Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • samanost/sicom_image_analysis_project
  • gerayelk/sicom_image_analysis_project
  • jelassiy/sicom_image_analysis_project
  • chardoto/sicom_image_analysis_project
  • chaarim/sicom_image_analysis_project
  • domers/sicom_image_analysis_project
  • elmurrt/sicom_image_analysis_project
  • sadonest/sicom_image_analysis_project
  • kouddann/sicom_image_analysis_project
  • mirabitj/sicom-image-analysis-project-mirabito
  • plotj/sicom_image_analysis_project
  • torrem/sicom-image-analysis-project-maxime-torre
  • dzike/sicom_image_analysis_project
  • daip/sicom_image_analysis_project
  • casanovv/sicom_image_analysis_project
  • girmarti/sicom_image_analysis_project
  • lioretn/sicom_image_analysis_project
  • lemoinje/sicom_image_analysis_project
  • ouahmanf/sicom_image_analysis_project
  • vouilloa/sicom_image_analysis_project
  • diopb/sicom_image_analysis_project
  • davidale/sicom_image_analysis_project
  • enza/sicom_image_analysis_project
  • conversb/sicom_image_analysis_project
  • mullemat/sicom_image_analysis_project
25 results
Show changes
Commits on Source (137)
Showing
with 1270 additions and 0 deletions
File mode changed from 100755 to 100644
File added
from scipy import ndimage
import numpy as np
############################################################
def color_pixel(i,j,cfa = "bayer"):
if (cfa == "quad_bayer"):
i = i//2
j = j//2
if ((i+j)%2==0):
return 'green'
else:
if (i%2==0):
return 'red'
else:
return 'blue'
def rmse_pixel(pixel_raw,pixel_extrapolate):
return np.sqrt(np.mean((pixel_raw-pixel_extrapolate)**2))
######### Method extrapolation with edge detection #########
def compute_orientation_matrix(img_raw):
vertical = ndimage.sobel(img_raw, 0)
horizontal = ndimage.sobel(img_raw, 1)
orientation_matrix = np.zeros(img_raw.shape)
orientation_matrix[vertical < horizontal] = 1
return orientation_matrix
## Green Channel ##
##Formulas for etrapolation of pixels:
def extrapolate_green_top(img_raw,i,j):
return img_raw[i-1,j] + 3/4*(img_raw[i,j]-img_raw[i-2,j])-1/4*(img_raw[i-1,j]-img_raw[i-3,j])
def extrapolate_green_bottom(img_raw,i,j):
return img_raw[i+1,j] + 3/4*(img_raw[i,j]-img_raw[i+2,j])-1/4*(img_raw[i+1,j]-img_raw[i+3,j])
def extrapolate_green_left(img_raw,i,j):
return img_raw[i,j-1] + 3/4*(img_raw[i,j]-img_raw[i,j-2])-1/4*(img_raw[i,j-1]-img_raw[i,j-3])
def extrapolate_green_right(img_raw,i,j):
return img_raw[i,j+1] + 3/4*(img_raw[i,j]-img_raw[i,j+2])-1/4*(img_raw[i,j+1]-img_raw[i,j+3])
## Extrapolation method:
def median_extrapolate_green_pixel(img_raw,i,j,orientations_to_drop):
list_extrapolate_pixel = []
if ("top" not in orientations_to_drop):
list_extrapolate_pixel.append(extrapolate_green_top(img_raw,i,j))
if ("bottom" not in orientations_to_drop):
list_extrapolate_pixel.append(extrapolate_green_bottom(img_raw,i,j))
if("left" not in orientations_to_drop):
list_extrapolate_pixel.append(extrapolate_green_left(img_raw,i,j))
if("right" not in orientations_to_drop):
list_extrapolate_pixel.append(extrapolate_green_right(img_raw,i,j))
return np.median(list_extrapolate_pixel)
def extrapolate_green_pixel(img_raw,i,j,orientation):
# First the borders:
orientations_to_drop = []
if (i<2):
orientations_to_drop.append('top')
if (i>img_raw.shape[0]-4):
orientations_to_drop.append('bottom')
if (j<2):
orientations_to_drop.append('left')
if (j>img_raw.shape[1]-4):
orientations_to_drop.append('right')
# Then the rest of the image:
else:
if (orientation == 1): # V < H so we gonna eliminate one horizontal pixel.
if ("right" not in orientations_to_drop and "left" not in orientations_to_drop):
rmse_pixel_left = rmse_pixel(img_raw[i,j],extrapolate_green_left(img_raw,i,j))
rmse_pixel_right = rmse_pixel(img_raw[i,j],extrapolate_green_right(img_raw,i,j))
if (rmse_pixel_left > rmse_pixel_right):
orientations_to_drop.append('left')
else:
orientations_to_drop.append('right')
else: # V > H so we gonna eliminate one vertical pixel.
if ("top" not in orientations_to_drop and "bottom" not in orientations_to_drop):
rmse_pixel_top = rmse_pixel(img_raw[i,j],extrapolate_green_top(img_raw,i,j))
rmse_pixel_bottom = rmse_pixel(img_raw[i,j],extrapolate_green_bottom(img_raw,i,j))
if (rmse_pixel_top > rmse_pixel_bottom):
orientations_to_drop.append('top')
else:
orientations_to_drop.append('bottom')
return median_extrapolate_green_pixel(img_raw,i,j,orientations_to_drop)
def extrapolate_green(img_raw,extrapolate_img):
orientation_matrix = compute_orientation_matrix(img_raw)
for i in range(img_raw.shape[0]):
for j in range(img_raw.shape[1]):
if (color_pixel(i,j)!= "green"):
extrapolate_img[i,j,1] = extrapolate_green_pixel(img_raw,i,j,orientation_matrix[i,j])
else:
extrapolate_img[i,j,1] = img_raw[i,j]
return extrapolate_img
## Red and Blue Channels ##
def extrapolate_top(img_raw,img_extrapolate,i,j):
return (img_raw[i-1,j] + img_raw[i,j]-img_extrapolate[i-1,j,1])
def extrapolate_left(img_raw,img_extrapolate,i,j):
return (img_raw[i,j-1] + img_raw[i,j]-img_extrapolate[i,j-1,1])
def extrapolate_right(img_raw,img_extrapolate,i,j):
return (img_raw[i,j+1] + img_raw[i,j]-img_extrapolate[i,j+1,1])
def extrapolate_bottom(img_raw,img_extrapolate,i,j):
return (img_raw[i+1,j] + img_raw[i,j]-img_extrapolate[i+1,j,1])
def extrapolate_top_left(img_raw,img_extrapolate,i,j):
return (img_raw[i-1,j-1] + img_extrapolate[i,j,1]-img_extrapolate[i-1,j-1,1])
def extrapolate_top_right(img_raw,img_extrapolate,i,j):
return (img_raw[i-1,j+1] + img_extrapolate[i,j,1]-img_extrapolate[i-1,j+1,1])
def extrapolate_bottom_left(img_raw,img_extrapolate,i,j):
return (img_raw[i+1,j-1] + img_extrapolate[i,j,1]-img_extrapolate[i+1,j-1,1])
def extrapolate_bottom_right(img_raw,img_extrapolate,i,j):
return (img_raw[i+1,j+1] + img_extrapolate[i,j,1]-img_extrapolate[i+1,j+1,1])
def median_pixel(img_raw,img_extrapolate,i,j,orientations_to_drop):
list_extrapolate = []
if (color_pixel(i,j) != "green"):
if("top_left" not in orientations_to_drop):
list_extrapolate.append(extrapolate_top_left(img_raw,img_extrapolate,i,j))
if("top_right" not in orientations_to_drop):
list_extrapolate.append(extrapolate_top_right(img_raw,img_extrapolate,i,j))
if("bottom_left" not in orientations_to_drop):
list_extrapolate.append(extrapolate_bottom_left(img_raw,img_extrapolate,i,j))
if("bottom_right" not in orientations_to_drop):
list_extrapolate.append(extrapolate_bottom_right(img_raw,img_extrapolate,i,j))
elif (color_pixel(i,j) == "green"):
if("top" not in orientations_to_drop):
list_extrapolate.append(extrapolate_top(img_raw,img_extrapolate,i,j))
if("left" not in orientations_to_drop):
list_extrapolate.append(extrapolate_left(img_raw,img_extrapolate,i,j))
if("right" not in orientations_to_drop):
list_extrapolate.append(extrapolate_right(img_raw,img_extrapolate,i,j))
if("bottom" not in orientations_to_drop):
list_extrapolate.append(extrapolate_bottom(img_raw,img_extrapolate,i,j))
return np.median(list_extrapolate)
def extrapolate_pixel(img_raw,img_extrapolate,i,j,color):
orientations_to_drop = []
if (color_pixel(i,j)!='green'):
if (i<1):
orientations_to_drop.append("top_left")
orientations_to_drop.append("top_right")
if (i>img_raw.shape[0]-2):
orientations_to_drop.append("bottom_left")
orientations_to_drop.append("bottom_right")
if (j<1):
orientations_to_drop.append("top_left")
orientations_to_drop.append("bottom_left")
if (j>img_raw.shape[1]-2):
orientations_to_drop.append("top_right")
orientations_to_drop.append("bottom_right")
if ("top_left" not in orientations_to_drop and "top_right" not in orientations_to_drop and "bottom_left" not in orientations_to_drop and "bottom_right" not in orientations_to_drop):
rmse_top_left = rmse_pixel(img_raw[i,j],extrapolate_top_left(img_raw,img_extrapolate,i,j))
rmse_top_right = rmse_pixel(img_raw[i,j],extrapolate_top_right(img_raw,img_extrapolate,i,j))
rmse_bottom_left = rmse_pixel(img_raw[i,j],extrapolate_bottom_left(img_raw,img_extrapolate,i,j))
rmse_bottom_right = rmse_pixel(img_raw[i,j],extrapolate_bottom_right(img_raw,img_extrapolate,i,j))
if (rmse_bottom_left> rmse_bottom_right and rmse_bottom_left> rmse_top_left and rmse_bottom_left> rmse_top_right):
orientations_to_drop.append("bottom_left")
elif (rmse_bottom_right> rmse_bottom_left and rmse_bottom_right> rmse_top_left and rmse_bottom_right> rmse_top_right):
orientations_to_drop.append("bottom_right")
elif (rmse_top_left> rmse_bottom_left and rmse_top_left> rmse_bottom_right and rmse_top_left> rmse_top_right):
orientations_to_drop.append("top_left")
else:
orientations_to_drop.append("top_right")
elif(color_pixel(i,j)=="green"):
if (i<1):
orientations_to_drop.append("top")
if (i>img_raw.shape[0]-2):
orientations_to_drop.append("bottom")
if (j<1):
orientations_to_drop.append("left")
if (j>img_raw.shape[1]-2):
orientations_to_drop.append("right")
if ((i%2!=0 and color == "red") or (i%2==0 and color == "blue")):
if ("right" not in orientations_to_drop and "left" not in orientations_to_drop):
rmse_pixel_left = rmse_pixel(img_raw[i,j],extrapolate_left(img_raw,img_extrapolate,i,j))
rmse_pixel_right = rmse_pixel(img_raw[i,j],extrapolate_right(img_raw,img_extrapolate,i,j))
if (rmse_pixel_left > rmse_pixel_right):
orientations_to_drop.append('left')
else:
orientations_to_drop.append('right')
else:
if ("top" not in orientations_to_drop and "bottom" not in orientations_to_drop):
rmse_pixel_top = rmse_pixel(img_raw[i,j],extrapolate_top(img_raw,img_extrapolate,i,j))
rmse_pixel_bottom = rmse_pixel(img_raw[i,j],extrapolate_bottom(img_raw,img_extrapolate,i,j))
if (rmse_pixel_top > rmse_pixel_bottom):
orientations_to_drop.append('top')
else:
orientations_to_drop.append('bottom')
return median_pixel(img_raw,img_extrapolate,i,j,orientations_to_drop)
def extrapolate_red(img_raw,img_extrapolate):
for i in range(img_raw.shape[0]):
for j in range(img_raw.shape[1]):
if (color_pixel(i,j)!="red"):
img_extrapolate[i,j,0] = extrapolate_pixel(img_raw,img_extrapolate,i,j,"red")
else:
img_extrapolate[i,j,0] = img_raw[i,j]
def extrapolate_blue(img_raw,img_extrapolate):
for i in range(img_raw.shape[0]):
for j in range(img_raw.shape[1]):
if (color_pixel(i,j)!="blue"):
img_extrapolate[i,j,2] = extrapolate_pixel(img_raw,img_extrapolate,i,j,"blue")
else:
img_extrapolate[i,j,2] = img_raw[i,j]
def extrapolate_img(img_cfa):
extapolate_img = np.zeros(img_cfa.shape + (3,))
extrapolate_green(img_cfa,extapolate_img)
extrapolate_red(img_cfa,extapolate_img)
extrapolate_blue(img_cfa,extapolate_img)
return extapolate_img
#################################################
##QUAD BAYER
#################################################
## Green Channel ##
### Formulas extrapolation of pixels:
def extrapolate_green_top_quad(img_raw,i,j):
extrapolate_quad = np.zeros((2,2))
for m in range(2):
for n in range(2):
extrapolate_quad[m,n] = img_raw[i+m-1*2,j+n] + 3/4*(img_raw[i+m,j+n]-img_raw[i+m-2*2,j+n])-1/4*(img_raw[i+m-1*2,j+n]-img_raw[i+m-3*2,j+n])
return extrapolate_quad
def extrapolate_green_bottom_quad(img_raw,i,j):
extrapolate_quad = np.zeros((2,2))
for m in range(2):
for n in range(2):
extrapolate_quad[m,n] = img_raw[i+m+1*2,j+n] + 3/4*(img_raw[i+m,j+n]-img_raw[i+m+2*2,j+n])-1/4*(img_raw[i+m+1*2,j+n]-img_raw[i+m+3*2,j+n])
return extrapolate_quad
def extrapolate_green_left_quad(img_raw,i,j):
extrapolate_quad = np.zeros((2,2))
for m in range(2):
for n in range(2):
extrapolate_quad[m,n] = img_raw[i+m,j+n-1*2] + 3/4*(img_raw[i+m,j+n]-img_raw[i+m,j+n-2*2])-1/4*(img_raw[i+m,j+n-1*2]-img_raw[i+m,j+n-3*2])
return extrapolate_quad
def extrapolate_green_right_quad(img_raw,i,j):
extrapolate_quad = np.zeros((2,2))
for m in range(2):
for n in range(2):
extrapolate_quad[m,n] = img_raw[i+m,j+n+1*2] + 3/4*(img_raw[i+m,j+n]-img_raw[i+m,j+n+2*2])-1/4*(img_raw[i+m,j+n+1*2]-img_raw[i+m,j+n+3*2])
return extrapolate_quad
### Extrapolation method:
def median_extrapolate_green_pixel_quad(img_raw,i,j,orientations_to_drop):
list_extrapolate_pixel = []
if ("top" not in orientations_to_drop):
list_extrapolate_pixel.append(extrapolate_green_top_quad(img_raw,i,j))
if ("bottom" not in orientations_to_drop):
list_extrapolate_pixel.append(extrapolate_green_bottom_quad(img_raw,i,j))
if("left" not in orientations_to_drop):
list_extrapolate_pixel.append(extrapolate_green_left_quad(img_raw,i,j))
if("right" not in orientations_to_drop):
list_extrapolate_pixel.append(extrapolate_green_right_quad(img_raw,i,j))
median_quad = np.zeros((2,2))
for m in range(2):
for n in range(2):
median_quad[m,n] = np.median([list_extrapolate_pixel[k] for k in range(len(list_extrapolate_pixel))])
return median_quad
def extrapolate_green_pixel_quad(img_raw,i,j,orientation):
# First the borders:
orientations_to_drop = []
if (i<2):
orientations_to_drop.append('top')
if (i>img_raw.shape[0]-4*2):
orientations_to_drop.append('bottom')
if (j<2):
orientations_to_drop.append('left')
if (j>img_raw.shape[1]-4*2):
orientations_to_drop.append('right')
# Then the rest of the image:
else:
if (orientation >0.5): # V < H so we gonna eliminate one horizontal pixel.
if ("right" not in orientations_to_drop and "left" not in orientations_to_drop):
rmse_pixel_left = rmse_pixel(img_raw[i:i+2,j:j+2],extrapolate_green_left_quad(img_raw,i,j))
rmse_pixel_right = rmse_pixel(img_raw[i:i+2,j:j+2],extrapolate_green_right_quad(img_raw,i,j))
if (np.sum(rmse_pixel_left) > np.sum(rmse_pixel_right)):
orientations_to_drop.append('left')
else:
orientations_to_drop.append('right')
else: # V > H so we gonna eliminate one vertical pixel.
if ("top" not in orientations_to_drop and "bottom" not in orientations_to_drop):
rmse_pixel_top = rmse_pixel(img_raw[i+2,j+2],extrapolate_green_top_quad(img_raw,i,j))
rmse_pixel_bottom = rmse_pixel(img_raw[i+2,j+2],extrapolate_green_bottom_quad(img_raw,i,j))
if (np.sum(rmse_pixel_top) > np.sum(rmse_pixel_bottom)):
orientations_to_drop.append('top')
else:
orientations_to_drop.append('bottom')
return median_extrapolate_green_pixel_quad(img_raw,i,j,orientations_to_drop)
def extrapolate_green_quad(img_raw,extrapolate_img):
orientation_matrix = compute_orientation_matrix(img_raw)
for i in range(0,img_raw.shape[0],2):
for j in range(0,img_raw.shape[1],2):
if (color_pixel(i,j,'quad_bayer')!= "green"):
extrapolate_img[i:i+2,j:j+2,1] = extrapolate_green_pixel_quad(img_raw,i,j,(1/4) *np.sum(orientation_matrix[i:i+2,j:j+2]))
else:
extrapolate_img[i:i+2,j:j+2,1] = img_raw[i:i+2,j:j+2]
return extrapolate_img
## Red and Blue Channels ##
def extrapolate_top_quad(img_raw,img_extrapolate,i,j):
extrapolate_quad = np.zeros((2,2))
for m in range(2):
for n in range(2):
extrapolate_quad[m,n] = (img_raw[i+m-1*2,j+n] + img_raw[i+m,j+n]-img_extrapolate[i+m-1*2,j+n,1])
return extrapolate_quad
def extrapolate_left_quad(img_raw,img_extrapolate,i,j):
extrapolate_quad = np.zeros((2,2))
for m in range(2):
for n in range(2):
extrapolate_quad[m,n] = (img_raw[i+m,j+n-1*2] + img_raw[i+m,j+n]-img_extrapolate[i+m,j+n-1*2,1])
return extrapolate_quad
def extrapolate_right_quad(img_raw,img_extrapolate,i,j):
extrapolate_quad = np.zeros((2,2))
for m in range(2):
for n in range(2):
extrapolate_quad[m,n] = (img_raw[i+m,j+n+1*2] + img_raw[i+m,j+n]-img_extrapolate[i+m,j+n+1*2,1])
return extrapolate_quad
def extrapolate_bottom_quad(img_raw,img_extrapolate,i,j):
extrapolate_quad = np.zeros((2,2))
for m in range(2):
for n in range(2):
extrapolate_quad[m,n] = (img_raw[i+m+1*2,j+n] + img_raw[i+m,j+n]-img_extrapolate[i+m+1*2,j+n,1])
return extrapolate_quad
def extrapolate_top_left_quad(img_raw,img_extrapolate,i,j):
extrapolate_quad = np.zeros((2,2))
for m in range(2):
for n in range(2):
extrapolate_quad[m,n] =(img_raw[i+m-1*2,j+n-1*2] + img_extrapolate[i+m,j+n,1]-img_extrapolate[i+m-1*2,j+n-1*2,1])
return extrapolate_quad
def extrapolate_top_right_quad(img_raw,img_extrapolate,i,j):
extrapolate_quad = np.zeros((2,2))
for m in range(2):
for n in range(2):
extrapolate_quad[m,n] =(img_raw[i+m-1*2,j+n+1*2] + img_extrapolate[i+m,j+n,1]-img_extrapolate[i+m-1*2,j+n+1*2,1])
return extrapolate_quad
def extrapolate_bottom_left_quad(img_raw,img_extrapolate,i,j):
extrapolate_quad = np.zeros((2,2))
for m in range(2):
for n in range(2):
extrapolate_quad[m,n] =(img_raw[i+m+1*2,j+n-1*2] + img_extrapolate[i+m,j+n,1]-img_extrapolate[i+m+1*2,j+n-1*2,1])
return extrapolate_quad
def extrapolate_bottom_right_quad(img_raw,img_extrapolate,i,j):
extrapolate_quad = np.zeros((2,2))
for m in range(2):
for n in range(2):
extrapolate_quad[m,n] =(img_raw[i+m+1*2,j+n+1*2] + img_extrapolate[i+m,j+n,1]-img_extrapolate[i+m+1*2,j+n+1*2,1])
return extrapolate_quad
def median_pixel_quad(img_raw,img_extrapolate,i,j,orientations_to_drop):
list_extrapolate = []
if (color_pixel(i,j,"quad_bayer") != "green"):
if("top_left" not in orientations_to_drop):
list_extrapolate.append(extrapolate_top_left_quad(img_raw,img_extrapolate,i,j))
if("top_right" not in orientations_to_drop):
list_extrapolate.append(extrapolate_top_right_quad(img_raw,img_extrapolate,i,j))
if("bottom_left" not in orientations_to_drop):
list_extrapolate.append(extrapolate_bottom_left_quad(img_raw,img_extrapolate,i,j))
if("bottom_right" not in orientations_to_drop):
list_extrapolate.append(extrapolate_bottom_right_quad(img_raw,img_extrapolate,i,j))
elif (color_pixel(i,j,"quad_bayer") == "green"):
if("top" not in orientations_to_drop):
list_extrapolate.append(extrapolate_top_quad(img_raw,img_extrapolate,i,j))
if("left" not in orientations_to_drop):
list_extrapolate.append(extrapolate_left_quad(img_raw,img_extrapolate,i,j))
if("right" not in orientations_to_drop):
list_extrapolate.append(extrapolate_right_quad(img_raw,img_extrapolate,i,j))
if("bottom" not in orientations_to_drop):
list_extrapolate.append(extrapolate_bottom_quad(img_raw,img_extrapolate,i,j))
median_quad = np.zeros((2,2))
for m in range(2):
for n in range(2):
median_quad[m,n] = np.median([list_extrapolate[k][m,n] for k in range(len(list_extrapolate))])
return median_quad
def extrapolate_pixel_quad(img_raw,img_extrapolate,i,j,color):
orientations_to_drop = []
if (color_pixel(i,j,"quad_bayer")!='green'):
if (i<1):
orientations_to_drop.append("top_left")
orientations_to_drop.append("top_right")
if (i>img_raw.shape[0]-2*2):
orientations_to_drop.append("bottom_left")
orientations_to_drop.append("bottom_right")
if (j<1):
orientations_to_drop.append("top_left")
orientations_to_drop.append("bottom_left")
if (j>img_raw.shape[1]-2*2):
orientations_to_drop.append("top_right")
orientations_to_drop.append("bottom_right")
if ("top_left" not in orientations_to_drop and "top_right" not in orientations_to_drop and "bottom_left" not in orientations_to_drop and "bottom_right" not in orientations_to_drop):
rmse_top_left = rmse_pixel(img_raw[i:i+2,j:j+2],extrapolate_top_left_quad(img_raw,img_extrapolate,i,j))
rmse_top_right = rmse_pixel(img_raw[i:i+2,j:j+2],extrapolate_top_right_quad(img_raw,img_extrapolate,i,j))
rmse_bottom_left = rmse_pixel(img_raw[i:i+2,j:j+2],extrapolate_bottom_left_quad(img_raw,img_extrapolate,i,j))
rmse_bottom_right = rmse_pixel(img_raw[i:i+2,j:j+2],extrapolate_bottom_right_quad(img_raw,img_extrapolate,i,j))
if (rmse_bottom_left> rmse_bottom_right and rmse_bottom_left> rmse_top_left and rmse_bottom_left> rmse_top_right):
orientations_to_drop.append("bottom_left")
elif (rmse_bottom_right> rmse_bottom_left and rmse_bottom_right> rmse_top_left and rmse_bottom_right> rmse_top_right):
orientations_to_drop.append("bottom_right")
elif (rmse_top_left> rmse_bottom_left and rmse_top_left> rmse_bottom_right and rmse_top_left> rmse_top_right):
orientations_to_drop.append("top_left")
else:
orientations_to_drop.append("top_right")
elif(color_pixel(i,j,"quad_bayer")=="green"):
if (i<1):
orientations_to_drop.append("top")
if (i>img_raw.shape[0]-2*2):
orientations_to_drop.append("bottom")
if (j<1):
orientations_to_drop.append("left")
if (j>img_raw.shape[1]-2*2):
orientations_to_drop.append("right")
if (((i/2)%2!=0 and color == "red") or ((i/2)%2==0 and color == "blue")):
if ("right" not in orientations_to_drop and "left" not in orientations_to_drop):
rmse_pixel_left = rmse_pixel(img_raw[i:i+2,j:j+2],extrapolate_left_quad(img_raw,img_extrapolate,i,j))
rmse_pixel_right = rmse_pixel(img_raw[i:i+2,j:j+2],extrapolate_right_quad(img_raw,img_extrapolate,i,j))
if (rmse_pixel_left > rmse_pixel_right):
orientations_to_drop.append('left')
else:
orientations_to_drop.append('right')
else:
if ("top" not in orientations_to_drop and "bottom" not in orientations_to_drop):
rmse_pixel_top = rmse_pixel(img_raw[i:i+2,j:j+2],extrapolate_top_quad(img_raw,img_extrapolate,i,j))
rmse_pixel_bottom = rmse_pixel(img_raw[i:i+2,j:j+2],extrapolate_bottom_quad(img_raw,img_extrapolate,i,j))
if (rmse_pixel_top > rmse_pixel_bottom):
orientations_to_drop.append('top')
else:
orientations_to_drop.append('bottom')
return median_pixel_quad(img_raw,img_extrapolate,i,j,orientations_to_drop)
def extrapolate_red_quad(img_raw,img_extrapolate):
for i in range(0,img_raw.shape[0],2):
for j in range(0,img_raw.shape[1],2):
if (color_pixel(i,j,"quad_bayer")!="red"):
img_extrapolate[i:i+2,j:j+2,0] = extrapolate_pixel_quad(img_raw,img_extrapolate,i,j,"red")
else:
img_extrapolate[i:i+2,j:j+2,0] = img_raw[i:i+2,j:j+2]
def extrapolate_blue_quad(img_raw,img_extrapolate):
for i in range(0,img_raw.shape[0],2):
for j in range(0,img_raw.shape[1],2):
if (color_pixel(i,j,"quad_bayer")!="blue"):
img_extrapolate[i:i+2,j:j+2,2] = extrapolate_pixel_quad(img_raw,img_extrapolate,i,j,"blue")
else:
img_extrapolate[i:i+2,j:j+2,2] = img_raw[i:i+2,j:j+2]
def extrapolate_img_quad(img_cfa):
extapolate_img = np.zeros(img_cfa.shape + (3,))
extrapolate_green_quad(img_cfa,extapolate_img)
extrapolate_red_quad(img_cfa,extapolate_img)
extrapolate_blue_quad(img_cfa,extapolate_img)
return extapolate_img
def extrapolate_cfa(img_cfa,cfa):
if (cfa=="bayer"):
return extrapolate_img(img_cfa)
elif(cfa=="quad_bayer"):
return extrapolate_img_quad(img_cfa)
else:
print("Error: cfa not recognized")
return None
\ No newline at end of file
source diff could not be displayed: it is too large. Options to address this: view the blob.
"""The main file for the reconstruction.
This file should NOT be modified except the body of the 'run_reconstruction' function.
Students can call their functions (declared in others files of src/methods/your_name).
"""
import numpy as np
import functions as fu
from src.forward_model import CFA
import importlib
importlib.reload(fu)
def run_reconstruction(y: np.ndarray, cfa: str) -> np.ndarray:
"""Performs demosaicking on y.
Args:
y (np.ndarray): Mosaicked image to be reconstructed.
cfa (str): Name of the CFA. Can be bayer or quad_bayer.
Returns:
np.ndarray: Demosaicked image.
"""
# Performing the reconstruction.
# TODO
return fu.extrapolate_cfa(y,cfa)
File added
"""The main file for the reconstruction.
This file should NOT be modified except the body of the 'run_reconstruction' function.
Students can call their functions (declared in others files of src/methods/your_name).
"""
import numpy as np
from src.forward_model import CFA
from src.methods.Chardon_tom.utils import *
import pywt
#!!!!!!!! It is normal that the reconstructions lasts several minutes (3min on my computer)
def run_reconstruction(y: np.ndarray, cfa: str) -> np.ndarray:
"""Performs demosaicking on y.
Args:
y (np.ndarray): Mosaicked image to be reconstructed.
cfa (str): Name of the CFA. Can be bayer or quad_bayer.
Returns:
np.ndarray: Demosaicked image.
"""
# Define constants and operators
cfa_name = 'bayer' # bayer or quad_bayer
input_shape = (y.shape[0], y.shape[1], 3)
op = CFA(cfa_name, input_shape)
res = op.adjoint(y)
N,M = input_shape[0], input_shape[1]
#interpolating green channel
for i in range (N):
for j in range (M):
if res[i,j,1] ==0:
neighbors = get_neighbors(res,1,i,j,N,M)
weights = get_weights(res,i,j,1,N,M)
res[i,j,1] = interpolate_green(weights, neighbors)
#first intepolation of red channel
for i in range (1,N,2):
for j in range (0,M,2):
neighbors = get_neighbors(res,0,i,j,N,M)
neighbors_G = get_neighbors(res,1,i,j,N,M)
weights = get_weights(res,i,j,0,N,M)
res[i,j,0] = interpolate_red_blue(weights,neighbors, neighbors_G)
# second interpolation of red channel
for i in range (N):
for j in range (M):
if res[i,j,0] ==0:
neighbors = get_neighbors(res,0,i,j,N,M)
weights = get_weights(res,i,j,0,N,M)
res[i,j,0] = interpolate_green(weights, neighbors)
#first interpolation of blue channel
for i in range (0,N,2):
for j in range (1,M,2):
neighbors = get_neighbors(res,2,i,j,N,M)
neighbors_G = get_neighbors(res,1,i,j,N,M)
weights = get_weights(res,i,j,2,N,M)
res[i,j,2] = interpolate_red_blue(weights, neighbors, neighbors_G)
#second interpolation of blue channel
for i in range (N):
for j in range (M):
if res[i,j,2] ==0:
neighbors = get_neighbors(res,2,i,j,N,M)
weights = get_weights(res,i,j,2,N,M)
res[i,j,2] = interpolate_green(weights,neighbors)
# k=0
# while k<2 :
# for i in range(input_shape[0]):
# for j in range(input_shape[1]):
# res[i][j][1] = correction_green(res,i,j,N,M)
# for i in range(input_shape[0]):
# for j in range(input_shape[1]):
# res[i][j][0] = correction_red(res,i,j,N,M)
# for i in range(input_shape[0]):
# for j in range(input_shape[1]):
# res[i][j][2] = correction_blue(res,i,j,N,M)
# k+=1
res[res>1] = 1
res[res<0] = 0
return res
import numpy as np
import pywt
def get_neighbors (img,channel,i,j,N,M):
P1 = img[(i-1)%N,(j-1)%M,channel]
P2 = img[(i-1)%N,j%M,channel]
P3 = img[(i-1)%N,(j+1)%M,channel]
P4 = img[i%N,(j-1)%M,channel]
P5 = img[i%N,j%M,channel]
P6 = img[i%N,(j+1)%M,channel]
P7 = img[(i+1)%N,(j-1)%M,channel]
P8 = img[(i+1)%N,j%M,channel]
P9 = img[(i+1)%N,(j+1)%M,channel]
return np.array([P1,P2,P3,P4,P5,P6,P7,P8,P9])
def get_derivatives(neighbors):
[P1, P2, P3, P4, P5, P6, P7, P8, P9] = neighbors
D_x = (P4 - P6)/2
D_y = (P2 - P8)/2
D_xd = (P3 - P7)/(2*np.sqrt(2))
D_yd = (P1 - P9)/(2*np.sqrt(2))
return ([D_x, D_y, D_xd, D_yd])
def get_weights(mosaic_image, i, j, channel, N, M):
derivatives_neigbors = []
for l in range(-1, 2):
for L in range(-1, 2):
derivatives_neigbors.append(get_derivatives(
get_neighbors(mosaic_image, channel, i+l, j+L, N, M)))
[Dx, Dy, Dxd, Dyd] = derivatives_neigbors[4]
E1 = 1/np.sqrt(1 + Dyd**2 + derivatives_neigbors[0][3]**2)
E2 = 1/np.sqrt(1 + Dy**2 + derivatives_neigbors[1][1]**2)
E3 = 1/np.sqrt(1 + Dxd**2 + derivatives_neigbors[2][2]**2)
E4 = 1/np.sqrt(1 + Dx**2 + derivatives_neigbors[3][0]**2)
E6 = 1/np.sqrt(1 + Dxd**2 + derivatives_neigbors[5][2]**2)
E7 = 1/np.sqrt(1 + Dy**2 + derivatives_neigbors[6][1]**2)
E8 = 1/np.sqrt(1 + Dyd**2 + derivatives_neigbors[7][3]**2)
E9 = 1/np.sqrt(1 + Dx**2 + derivatives_neigbors[8][0]**2)
E = [E1, E2, E3, E4, E6, E7, E8, E9]
return E
def interpolate_green(weights, neighbors):
[E1, E2, E3, E4, E6, E7, E8, E9] = weights
[P1, P2, P3, P4, P5, P6, P7, P8, P9] = neighbors
I5 = (E2*P2 + E4*P4 + E6*P6 + E8*P8)/(E2 + E4 + E6 + E8)
return (I5)
def interpolate_red_blue(weights, neighbors, green_neighbors):
[E1, E2, E3, E4, E6, E7, E8, E9] = weights
[P1, P2, P3, P4, P5, P6, P7, P8, P9] = neighbors
[G1, G2, G3, G4, G5, G6, G7, G8, G9] = green_neighbors
I5 = G5*(E1*P1/G1 + E3*P3/G3 + E7*P7/G7 + E9*P9/G9)/(E1 + E3 + E7 + E9)
return (I5)
def correction_green(res,i,j,N,M):
[G1,G2,G3,G4,G5,G6,G7,G8,G9] = get_neighbors(res,1,i,j,N,M)
[R1,R2,R3,R4,R5,R6,R7,R8,R9] = get_neighbors(res,0,i,j,N,M)
[B1,B2,B3,B4,B5,B6,B7,B8,B9] = get_neighbors(res,2,i,j,N,M)
[E1,E2,E3,E4,E6,E7,E8,E9] = get_weights(res,i,j,1,N,M)
Gb5 = R5*((E2*G2)/B2 + (E4*G4)/B4 + (E6*G6)/B6 + (E8*G8)/B8)/(E2 + E4 + E6 + E8)
Gr5 = B5*((E2*G2)/R2 + (E4*G4)/R4 + (E6*G6)/R6 + (E8*G8)/R8)/(E2 + E4 + E6 + E8)
G5 = (Gb5 + Gr5)/2
return G5
def correction_red(res,i,j,N,M) :
[G1,G2,G3,G4,G5,G6,G7,G8,G9] = get_neighbors(res,1,i,j,N,M)
[R1,R2,R3,R4,R5,R6,R7,R8,R9] = get_neighbors(res,0,i,j,N,M)
[E1,E2,E3,E4,E6,E7,E8,E9] = get_weights(res,i,j,0,N,M)
R5 = G5*((E1*R1)/G1 + (E2*R2)/G2 + (E3*R3)/G3 + (E4*R4)/G4 + (E6*R6)/G6 + (E7*R7)/G7 + (E8*R8)/G8 + (E9*R9)/G9)/(E1 + E2 + E3 + E4 + E6 + E7 + E8 + E9)
return R5
def correction_blue(res,i,j,N,M) :
[G1,G2,G3,G4,G5,G6,G7,G8,G9] = get_neighbors(res,1,i,j,N,M)
[B1,B2,B3,B4,B5,B6,B7,B8,B9] = get_neighbors(res,2,i,j,N,M)
[E1,E2,E3,E4,E6,E7,E8,E9] = get_weights(res,i,j,2,N,M)
B5 = G5*((E1*B1)/G1 + (E2*B2)/G2 + (E3*B3)/G3 + (E4*B4)/G4 + (E6*B6)/G6 + (E7*B7)/G7 + (E8*B8)/G8 + (E9*B9)/G9)/(E1 + E2 + E3 + E4 + E6 + E7 + E8 + E9)
return B5
File added
import numpy as np
from scipy.signal import correlate2d
from src.forward_model import CFA
def malvar_he_cutler(y: np.ndarray, op: CFA ) -> np.ndarray:
"""Performs demosaicing using the malvar-he-cutler algorithm
Args:
op (CFA): CFA operator.
y (np.ndarray): Mosaicked image.
Returns:
np.ndarray: Demosaicked image.
"""
red_mask, green_mask, blue_mask = [op.mask[:, :, 0], op.mask[:, :, 1], op.mask[:, :, 2]]
mosaicked_image = np.float32(y)
demosaicked_image = np.empty(op.input_shape)
if op.cfa == 'quad_bayer':
filters = get_quad_bayer_filters()
else:
filters = get_default_filters()
demosaicked_image = apply_demosaicking_filters(
mosaicked_image,demosaicked_image, red_mask, green_mask, blue_mask, filters
)
return demosaicked_image
def get_quad_bayer_filters():
coefficient_scale = 0.03125
return {
"G_at_R_and_B": np.array([
[0, 0, 0, 0, -1, -1, 0, 0, 0, 0],
[0, 0, 0, 0, -1, -1, 0, 0, 0, 0],
[0, 0, 0, 0, 2, 2, 0, 0, 0, 0],
[0, 0, 0, 0, 2, 2, 0, 0, 0, 0],
[-1, -1, 2, 2, 4, 4, 2, 2, -1, -1],
[-1, -1, 2, 2, 4, 4, 2, 2, -1, -1],
[0, 0, 0, 0, 2, 2, 0, 0, 0, 0],
[0, 0, 0, 0, 2, 2, 0, 0, 0, 0],
[0, 0, 0, 0, -1, -1, 0, 0, 0, 0],
[0, 0, 0, 0, -1, -1, 0, 0, 0, 0]
]) * coefficient_scale,
"R_at_GR_and_B_at_GB": np.array([
[0, 0, 0, 0, 0.5, 0.5, 0, 0, 0, 0],
[0, 0, 0, 0, 0.5, 0.5, 0, 0, 0, 0],
[0, 0, -1, -1, 0, 0, -1, -1, 0, 0],
[0, 0, -1, -1, 0, 0, -1, -1, 0, 0],
[-1, -1, 4, 4, 5, 5, 4, 4, -1, -1],
[-1, -1, 4, 4, 5, 5, 4, 4, -1, -1],
[0, 0, -1, -1, 0, 0, -1, -1, 0, 0],
[0, 0, -1, -1, 0, 0, -1, -1, 0, 0],
[0, 0, 0, 0, 0.5, 0.5, 0, 0, 0, 0],
[0, 0, 0, 0, 0.5, 0.5, 0, 0, 0, 0]
]) * coefficient_scale,
"R_at_GB_and_B_at_GR": np.array([
[0, 0, 0, 0, -1, -1, 0, 0, 0, 0],
[0, 0, 0, 0, -1, -1, 0, 0, 0, 0],
[0, 0, -1, -1, 4, 4, -1, -1, 0, 0],
[0, 0, -1, -1, 4, 4, -1, -1, 0, 0],
[0.5, 0.5, 0, 0, 5, 5, 0, 0, 0.5, 0.5],
[0.5, 0.5, 0, 0, 5, 5, 0, 0, 0.5, 0.5],
[0, 0, -1, -1, 4, 4, -1, -1, 0, 0],
[0, 0, -1, -1, 4, 4, -1, -1, 0, 0],
[0, 0, 0, 0, -1, -1, 0, 0, 0, 0],
[0, 0, 0, 0, -1, -1, 0, 0, 0, 0]
]) * coefficient_scale,
"R_at_B_and_B_at_R": np.array([
[0, 0, 0, 0, -1.5, -1.5, 0, 0, 0, 0],
[0, 0, 0, 0, -1.5, -1.5, 0, 0, 0, 0],
[0, 0, 2, 2, 0, 0, 2, 2, 0, 0],
[0, 0, 2, 2, 0, 0, 2, 2, 0, 0],
[-1.5, -1.5, 0, 0, 6, 6, 0, 0, -1.5, -1.5],
[-1.5, -1.5, 0, 0, 6, 6, 0, 0, -1.5, -1.5],
[0, 0, 2, 2, 0, 0, 2, 2, 0, 0],
[0, 0, 2, 2, 0, 0, 2, 2, 0, 0],
[0, 0, 0, 0, -1.5, -1.5, 0, 0, 0, 0],
[0, 0, 0, 0, -1.5, -1.5, 0, 0, 0, 0]
]) * coefficient_scale,
}
def get_default_filters():
coefficient_scale = 0.125
return {
"G_at_R_and_B": np.array([
[0, 0, -1, 0, 0],
[0, 0, 2, 0, 0],
[-1, 2, 4, 2, -1],
[0, 0, 2, 0, 0],
[0, 0, -1, 0, 0]
]) * coefficient_scale,
"R_at_GR_and_B_at_GB": np.array([
[0, 0, 0.5, 0, 0],
[0, -1, 0, -1, 0],
[-1, 4, 5, 4, -1],
[0, -1, 0, -1, 0],
[0, 0, 0.5, 0, 0]
]) * coefficient_scale,
"R_at_GB_and_B_at_GR": np.array([
[0, 0, -1, 0, 0],
[0, -1, 4, -1, 0],
[0.5, 0, 5, 0, 0.5],
[0, -1, 4, -1, 0],
[0, 0, -1, 0, 0]
]) * coefficient_scale,
"R_at_B_and_B_at_R": np.array([
[0, 0, -1.5, 0, 0],
[0, 2, 0, 2, 0],
[-1.5, 0, 6, 0, -1.5],
[0, 2, 0, 2, 0],
[0, 0, -1.5, 0, 0]
]) * coefficient_scale,
}
def apply_demosaicking_filters(image, res, red_mask, green_mask, blue_mask, filters):
red_channel = image * red_mask
green_channel = image * green_mask
blue_channel = image * blue_mask
# Create the green channel after applying a filter
green_channel = np.where(
np.logical_or(red_mask == 1, blue_mask == 1),
correlate2d(image, filters['G_at_R_and_B'], mode="same", boundary="symm"),
green_channel
)
# Define masks for extracting pixel values
red_row_mask = np.any(red_mask == 1, axis=1)[:, np.newaxis].astype(np.float32)
red_col_mask = np.any(red_mask == 1, axis=0)[np.newaxis].astype(np.float32)
blue_row_mask = np.any(blue_mask == 1, axis=1)[:, np.newaxis].astype(np.float32)
blue_col_mask = np.any(blue_mask == 1, axis=0)[np.newaxis].astype(np.float32)
def update_channel(channel, row_mask, col_mask, filter_key):
return np.where(
np.logical_and(row_mask == 1, col_mask == 1),
correlate2d(image, filters[filter_key], mode="same", boundary="symm"),
channel
)
# Update the red channel and blue channel
red_channel = update_channel(red_channel, red_row_mask, blue_col_mask, 'R_at_GR_and_B_at_GB')
red_channel = update_channel(red_channel, blue_row_mask, red_col_mask, 'R_at_GB_and_B_at_GR')
blue_channel = update_channel(blue_channel, blue_row_mask, red_col_mask, 'R_at_GR_and_B_at_GB')
blue_channel = update_channel(blue_channel, red_row_mask, blue_col_mask, 'R_at_GB_and_B_at_GR')
# Update R channel and B channel again
red_channel = update_channel(red_channel, blue_row_mask, blue_col_mask, 'R_at_B_and_B_at_R')
blue_channel = update_channel(blue_channel, red_row_mask, red_col_mask, 'R_at_B_and_B_at_R')
res[:, :, 0] = red_channel
res[:, :, 1] = green_channel
res[:, :, 2] = blue_channel
return res
\ No newline at end of file
"""The main file for the reconstruction.
This file should NOT be modified except the body of the 'run_reconstruction' function.
Students can call their functions (declared in others files of src/methods/your_name).
"""
import numpy as np
from src.forward_model import CFA
from src.methods.EL_MURR_Theresa.malvar import malvar_he_cutler
def run_reconstruction(y: np.ndarray, cfa: str) -> np.ndarray:
"""Performs demosaicking on y.
Args:
y (np.ndarray): Mosaicked image to be reconstructed.
cfa (str): Name of the CFA. Can be bayer or quad_bayer.
Returns:
np.ndarray: Demosaicked image.
"""
# Performing the reconstruction.
input_shape = (y.shape[0], y.shape[1], 3)
op = CFA(cfa, input_shape)
res = malvar_he_cutler(y,op)
return res
####
####
####
#### #### #### #############
#### ###### #### ##################
#### ######## #### ####################
#### ########## #### #### ########
#### ############ #### #### ####
#### #### ######## #### #### ####
#### #### ######## #### #### ####
#### #### ######## #### #### ####
#### #### ## ###### #### #### ######
#### #### #### ## #### #### ############
#### #### ###### #### #### ##########
#### #### ########## #### #### ########
#### #### ######## #### ####
#### #### ############ ####
#### #### ########## ####
#### #### ######## ####
#### #### ###### ####
# 2023
# Authors: Mauro Dalla Mura and Matthieu Muller
File added
import numpy as np
from scipy.signal import convolve2d
from src.forward_model import CFA
def malvar(y: np.ndarray, op: CFA) -> np.ndarray:
"""
Malvar-He-Cutler demosaicing algorithm for Bayer pattern.
"""
# Convert the mosaicked image to the initial estimated channels.
z = op.adjoint(y)
# Define convolution kernels
kernel_G_at_RB = np.array([[0, 0, -1, 0, 0], [0, 0, 2, 0, 0], [-1, 2, 4, 2, -1], [0, 0, 2, 0, 0], [0, 0, -1, 0, 0]]) / 8
kernel_RB_at_G = np.array([[0, 0, 0.5, 0, 0], [0, -1, 0, -1, 0], [-1, 4, 5, 4, -1], [0, -1, 0, -1, 0], [0, 0, 0.5, 0, 0]]) / 8
kernel_RB_at_RB = np.array([[0, 0, -1.5, 0, 0], [0, 2, 0, 2, 0], [-1.5, 0, 6, 0, -1.5], [0, 2, 0, 2, 0], [0, 0, -1.5, 0, 0]]) / 8
# Interpolate each channel
R = z[:, :, 0]
G = z[:, :, 1]
B = z[:, :, 2]
mask = op.mask
R_m, G_m, B_m = mask[:, :, 0], mask[:, :, 1], mask[:, :, 2]
# Interpolate G at R and B locations
G = np.where(np.logical_or(R_m == 1, B_m == 1), convolve2d(y, kernel_G_at_RB, mode='same'), G)
# Interpolate R at G and B locations, B at R and G locations
R = np.where(np.logical_or(G_m == 1, B_m == 1), convolve2d(y, kernel_RB_at_G, mode='same'), R)
B = np.where(np.logical_or(R_m == 1, G_m == 1), convolve2d(y, kernel_RB_at_G, mode='same'), B)
# Interpolate R at B locations and B at R locations
R = np.where(B_m == 1, convolve2d(y, kernel_RB_at_RB, mode='same'), R)
B = np.where(R_m == 1, convolve2d(y, kernel_RB_at_RB, mode='same'), B)
# Combine channels
return np.clip(np.stack((R, G, B), axis=-1), 0, 1)
####
####
####
#### #### #### #############
#### ###### #### ##################
#### ######## #### ####################
#### ########## #### #### ########
#### ############ #### #### ####
#### #### ######## #### #### ####
#### #### ######## #### #### ####
#### #### ######## #### #### ####
#### #### ## ###### #### #### ######
#### #### #### ## #### #### ############
#### #### ###### #### #### ##########
#### #### ########## #### #### ########
#### #### ######## #### ####
#### #### ############ ####
#### #### ########## ####
#### #### ######## ####
#### #### ###### ####
# 2023
# Authors: Mauro Dalla Mura and Matthieu Muller
\ No newline at end of file
"""The main file for the reconstruction.
This file should NOT be modified except the body of the 'run_reconstruction' function.
Students can call their functions (declared in others files of src/methods/your_name).
"""
import numpy as np
from src.methods.Elmehdi_lahmar.malvar import malvar
from src.forward_model import CFA
def run_reconstruction(y: np.ndarray, cfa: str) -> np.ndarray:
"""
Run the demosaicing process using Malvar-He-Cutler algorithm for Bayer pattern.
Args:
y (np.ndarray): The mosaicked image to be reconstructed.
cfa (str): Name of the CFA, expected to be 'bayer'.
Returns:
np.ndarray: The demosaicked image.
"""
if cfa != 'bayer':
raise ValueError("Malvar-He-Cutler demosaicing only supports Bayer CFA pattern.")
input_shape = (y.shape[0], y.shape[1], 3)
op = CFA(cfa, input_shape)
return malvar(y, op)
####
####
####
#### #### #### #############
#### ###### #### ##################
#### ######## #### ####################
#### ########## #### #### ########
#### ############ #### #### ####
#### #### ######## #### #### ####
#### #### ######## #### #### ####
#### #### ######## #### #### ####
#### #### ## ###### #### #### ######
#### #### #### ## #### #### ############
#### #### ###### #### #### ##########
#### #### ########## #### #### ########
#### #### ######## #### ####
#### #### ############ ####
#### #### ########## ####
#### #### ######## ####
#### #### ###### ####
# 2023
# Authors: Mauro Dalla Mura and Matthieu Muller
# Importing libraries
import os
import colour
from colour_demosaicing import (
demosaicing_CFA_Bayer_bilinear,
demosaicing_CFA_Bayer_Malvar2004,
demosaicing_CFA_Bayer_Menon2007,
mosaicing_CFA_Bayer)
from src.utils import psnr,ssim
# Image path
image_pathes = ['images/img_1.png','images/img_2.png','images/img_3.png','images/img_4.png']
for i in image_pathes:
LIGHTHOUSE_IMAGE = colour.io.read_image(i)
img = LIGHTHOUSE_IMAGE
colour.plotting.plot_image(
colour.cctf_encoding(LIGHTHOUSE_IMAGE))
# Mosaicing
CFA = mosaicing_CFA_Bayer(LIGHTHOUSE_IMAGE)
colour.plotting.plot_image(
colour.cctf_encoding(CFA),
text_kwargs={'text': 'Lighthouse - CFA - RGGB'})
colour.plotting.plot_image(
colour.cctf_encoding(mosaicing_CFA_Bayer(LIGHTHOUSE_IMAGE, 'BGGR')),
text_kwargs={'text': 'Lighthouse - CFA - BGGR'});
# Demosaicing bilinear
colour.plotting.plot_image(
colour.cctf_encoding(demosaicing_CFA_Bayer_bilinear(CFA)),
text_kwargs={'text': 'Demosaicing - Bilinear'});
recons_bilinear = colour.cctf_encoding(demosaicing_CFA_Bayer_bilinear(CFA))
# demosaicing Malvar
recons_malvar = colour.cctf_encoding(demosaicing_CFA_Bayer_Malvar2004(CFA))
colour.plotting.plot_image(
colour.cctf_encoding(demosaicing_CFA_Bayer_Malvar2004(CFA)),
text_kwargs={'text': 'Demosaicing - Malvar (2004)'});
# demosaicing Menon
recons_menon = colour.cctf_encoding(demosaicing_CFA_Bayer_Menon2007(CFA))
colour.plotting.plot_image(
colour.cctf_encoding(demosaicing_CFA_Bayer_Menon2007(CFA)),
text_kwargs={'text': 'Demosaicing - Menon (2007)'});
print('bilinear : ')
print(f'PSNR: {psnr(img, recons_bilinear):.2f}')
print(f'SSIM: {ssim(img, recons_bilinear):.4f}')
print('Malvar : ')
print(f'PSNR: {psnr(img, recons_malvar):.2f}')
print(f'SSIM: {ssim(img, recons_malvar):.4f}')
print('Menon')
print(f'PSNR: {psnr(img, recons_menon):.2f}')
print(f'SSIM: {ssim(img, recons_menon):.4f}')
\ No newline at end of file
File added
File added