Skip to content
Snippets Groups Projects
Commit 1414eeb8 authored by Matthieu Muller's avatar Matthieu Muller
Browse files

Merge branch 'master' into 'master'

TheoLafond

See merge request mullemat/sicom_image_analysis_project!43
parents 90fa39e6 6cc9ff63
No related branches found
No related tags found
1 merge request!43TheoLafond
File added
"""The main file for the reconstruction.
This file should NOT be modified except the body of the 'run_reconstruction' function.
Students can call their functions (declared in others files of src/methods/your_name).
"""
import numpy as np
from scipy.ndimage import generic_filter, convolve
import warnings
from tqdm import tqdm
from src.forward_model import CFA
def regression_filter_func(chans):
"""computes the linear regression coefficients between channel :
red and green
blue and green
green and red
green and blue
Returns:
a is high order coef and b is 0 order.
_type_: a_red, b_red, a_blue, b_blue, a_green_red, b_green_red, a_green_blue, b_green_blue
"""
red = chans[:,:,0].flatten()
green = chans[:,:,1].flatten()
blue = chans[:,:,2].flatten()
nonzeros_red = np.nonzero(red)
nonzeros_blue = np.nonzero(blue)
return np.concatenate((np.polyfit(red[nonzeros_red], green[nonzeros_red], deg=1), np.polyfit(blue[nonzeros_blue], green[nonzeros_blue], deg=1), np.polyfit(green[nonzeros_red], red[nonzeros_red], deg=1), np.polyfit(green[nonzeros_blue], blue[nonzeros_blue], deg=1)), axis=0)
def personal_generic_filter(a, func, footprint, output, msg=""):
"""Apply func on each footprint of a.
"""
# Suppress RankWarning
with warnings.catch_warnings():
warnings.simplefilter('ignore', np.RankWarning)
for i in tqdm(range(a.shape[0]), desc=msg):
for j in range(a.shape[1]):
fen = np.ones((footprint.shape[0], footprint.shape[1], a.shape[2]))
if i+footprint.shape[0] > a.shape[0]:
i_end = a.shape[0]
i_start = i_end - footprint.shape[0]
else:
i_start = i
i_end = i + footprint.shape[0]
if j+footprint.shape[1] > a.shape[1]:
j_end = a.shape[1]
j_start = j_end - footprint.shape[1]
else:
j_start = j
j_end = j + footprint.shape[1]
fen[:i_end-i_start, :j_end-j_start] = a[i_start:i_end, j_start:j_end]
output[i, j, :] = func(a[i_start:i_end, j_start:j_end])
def combine_directions(bh,bv):
combo = np.zeros(bh.shape)
combo[:,:,0] = bh[:,:,0] + bv[:,:,0]
combo[:,:,0][(bh[:,:,0]!=0) * (bv[:,:,0]!=0)] = (bh[:,:,0][(bh[:,:,0]!=0) * (bv[:,:,0]!=0)] + bv[:,:,0][(bh[:,:,0]!=0) * (bv[:,:,0]!=0)])/2
combo[:,:,0][(bh[:,:,0]==0) * (bv[:,:,0]==0)] = 0
combo[:,:,1] = bh[:,:,1]/2 + bv[:,:,1]/2
combo[:,:,2] = bh[:,:,2] + bv[:,:,2]
combo[:,:,2][(bh[:,:,2]!=0) * (bv[:,:,2]!=0)] = (bh[:,:,2][(bh[:,:,2]!=0) * (bv[:,:,2]!=0)] + bv[:,:,2][(bh[:,:,2]!=0) * (bv[:,:,2]!=0)])/2
combo[:,:,2][(bh[:,:,2]==0) * (bv[:,:,2]==0)] = 0
for i in range(combo.shape[0]):
for j in range(combo.shape[1]):
moy = []
if i != 0 :
moy.append(combo[i-1,j,:])
if i != combo.shape[0]-1 :
moy.append(combo[i+1,j,:])
if j != 0 :
moy.append(combo[i,j-1,:])
if j != combo.shape[1]-1 :
moy.append(combo[i,j+1,:])
moy = np.stack(moy).mean(axis=0)
if combo[i,j,0] == 0:
combo[i,j,0] = moy[0]
if combo[i,j,2] == 0:
combo[i,j,2] = moy[2]
return combo
def run_reconstruction(y: np.ndarray, cfa: str) -> np.ndarray:
"""Performs demosaicking on y.
Args:
y (np.ndarray): Mosaicked image to be reconstructed.
cfa (str): Name of the CFA. Can be bayer or quad_bayer.
Returns:
np.ndarray: Demosaicked image.
"""
# Performing the reconstruction.
input_shape = (y.shape[0], y.shape[1], 3)
op = CFA(cfa, input_shape)
adjoint = op.adjoint(y)
bh = np.zeros(adjoint.shape)
# Horizontal interpolation
for i in range(3):
for j in range(adjoint.shape[0]):
non_zero = np.nonzero(adjoint[j, :, i])[0]
if len(non_zero) == 0:
continue
bh[j, :, i] = np.interp(np.arange(adjoint.shape[1]), non_zero, adjoint[j, :, i][non_zero])
bv = np.zeros(adjoint.shape)
# Vertical interpolation
for i in range(3):
for j in range(adjoint.shape[1]):
non_zero = np.nonzero(adjoint[:, j, i])[0]
if len(non_zero) == 0:
continue
bv[:, j, i] = np.interp(np.arange(adjoint.shape[0]), non_zero, adjoint[:, j, i][non_zero])
# Residuals interpolation
M = 3
N = 5
kernel_hor = np.ones((M, N))/(M*N)
kernel_ver = np.ones((N, M))/(M*N)
# Horizontal Regression filtering
regh = np.zeros((bh.shape[0], bh.shape[1], 8))
personal_generic_filter(bh, regression_filter_func, kernel_hor, regh,msg="Regression filtering horizontal")
ch = np.zeros(bh.shape)
for i in range(regh.shape[-1]):
regh[:, :, i] = convolve(regh[:, :, i], kernel_hor)
ch[:,:,0] = regh[:,:,0]*bh[:,:,0] + regh[:,:,1]
ch[:,:,1] = (regh[:,:,4]*bh[:,:,1] + regh[:,:,5] + regh[:,:,6]*bh[:,:,1] + regh[:,:,7])/2
ch[:,:,2] = regh[:,:,2]*bh[:,:,2] + regh[:,:,3]
# return ch[:,:,1]
dh = ch - adjoint
dh[adjoint==0] = 0
# interpolation
for i in range(3):
for j in range(adjoint.shape[0]):
non_zero = np.nonzero(dh[j, :, i])[0]
if len(non_zero) == 0:
continue
ch[j, :, i] -= np.interp(np.arange(adjoint.shape[1]), non_zero, dh[j, :, i][non_zero])
ch[bh == 0] = 0
bh = ch.copy()
# return bh[:,:,0]
# Vertical Regression filtering
regv = np.zeros((bv.shape[0], bv.shape[1], 8))
personal_generic_filter(bv, regression_filter_func, kernel_ver, regv,msg="Regression filtering vertical")
cv = np.zeros(bv.shape)
for i in range(regv.shape[-1]):
regv[:, :, i] = convolve(regv[:, :, i], kernel_ver)
cv[:,:,0] = regv[:,:,0]*bv[:,:,0] + regv[:,:,1]
cv[:,:,1] = (regv[:,:,4]*bv[:,:,1] + regv[:,:,5] + regv[:,:,6]*bv[:,:,1] + regv[:,:,7])/2
cv[:,:,2] = regv[:,:,2]*bv[:,:,2] + regv[:,:,3]
dv = cv - adjoint
dv[adjoint==0] = 0
# interpolation
for i in range(3):
for j in range(adjoint.shape[1]):
non_zero = np.nonzero(dv[:, j, i])[0]
if len(non_zero) == 0:
continue
cv[:, j, i] -= np.interp(np.arange(adjoint.shape[0]), non_zero, dv[:, j, i][non_zero])
cv[bv == 0] = 0
bv = cv.copy()
return combine_directions(bh,bv)
if __name__ == "__main__":
from src.utils import load_image, save_image, psnr, ssim
from src.forward_model import CFA
image_path = 'images/img_4.png'
img = load_image(image_path)
cfa_name = 'bayer' # bayer or quad_bayer
op = CFA(cfa_name, img.shape)
y = op.direct(img)
res = run_reconstruction(y, cfa_name)
print('PSNR:', psnr(img, res))
print('SSIM:', ssim(img, res))
save_image('output/bh.png', res)
####
####
####
#### #### #### #############
#### ###### #### ##################
#### ######## #### ####################
#### ########## #### #### ########
#### ############ #### #### ####
#### #### ######## #### #### ####
#### #### ######## #### #### ####
#### #### ######## #### #### ####
#### #### ## ###### #### #### ######
#### #### #### ## #### #### ############
#### #### ###### #### #### ##########
#### #### ########## #### #### ########
#### #### ######## #### ####
#### #### ############ ####
#### #### ########## ####
#### #### ######## ####
#### #### ###### ####
# 2023
# Authors: Mauro Dalla Mura and Matthieu Muller
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment