Skip to content
Snippets Groups Projects
Forked from Talks / Fidle
335 commits behind the upstream repository.

Session Fidle à distance (NEW !)

Faute de pouvoir organiser des sessions en présentiel,
nous vous proposons une session à distance :-)

- Prochain rendez-vous -


Jeudi 4 févier, 14h :
Episode 1 : Introduction du cycle, Historique et concepts fondamentaux
Fonction de perte - Descente de gradient - Optimisation - Hyperparamètres
Préparation des données - Apprentissage - Validation - Sous et sur apprentissage
Fonctions d’activation - softmax
Travaux pratiques : Régression et Classification avec des DNN
Durée : 3h - Paramètres de diffusion précisés 2 jours avant

A propos de Fidle à distance
Voir le programme

About Fidle

This repository contains all the documents and links of the Fidle Training .
Fidle (for Formation Introduction au Deep Learning) is a 2-day training session
co-organized by the Formation Permanente CNRS and the Resinfo/SARI and DevLOG CNRS networks.

The objectives of this training are :

  • Understanding the bases of Deep Learning neural networks
  • Develop a first experience through simple and representative examples
  • Understanding Tensorflow/Keras and Jupyter lab technologies
  • Apprehend the academic computing environments Tier-2 or Tier-1 with powerfull GPU

For more information, you can contact Fidle team at :
Don't forget to look at the Wiki

Current Version : 2.0.6

Course materials


Course slides

The course in pdf format
(12 Mo)

Notebooks

    Get a Zip or clone this repository     
(10 Mo)

Datasets

All the needed datasets
(1.2 Go)

Have a look about How to get and install these notebooks and datasets.

Jupyter notebooks

Linear and logistic regression

Perceptron Model 1957

Basic regression using DNN

Basic classification using a DNN

Images classification with Convolutional Neural Networks (CNN)

Sentiment analysis with word embedding

Time series with Recurrent Neural Network (RNN)

Unsupervised learning with an autoencoder neural network (AE)

Generative network with Variational Autoencoder (VAE)

Miscellaneous

Installation

Have a look about How to get and install these notebooks and datasets.

Licence


[en] Attribution - NonCommercial - ShareAlike 4.0 International (CC BY-NC-SA 4.0)
[Fr] Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International
See License.
See Disclaimer.