Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • daconcea/fidle
  • bossardl/fidle
  • Julie.Remenant/fidle
  • abijolao/fidle
  • monsimau/fidle
  • karkars/fidle
  • guilgautier/fidle
  • cailletr/fidle
  • talks/fidle
9 results
Show changes
Commits on Source (22)
...@@ -2,5 +2,6 @@ ...@@ -2,5 +2,6 @@
*/.ipynb_checkpoints/* */.ipynb_checkpoints/*
__pycache__ __pycache__
*/__pycache__/* */__pycache__/*
/run/** run/
*/data/* */data/*
!/GTSRB/data/dataset.tar.gz
%% Cell type:markdown id: tags:
German Traffic Sign Recognition Benchmark (GTSRB)
=================================================
---
Introduction au Deep Learning (IDLE) - S. Arias, E. Maldonado, JL. Parouty - CNRS/SARI/DEVLOG - 2020
Version: 1.12
## Episode 1 : Preparation of data
- Understanding the dataset
- Preparing and formatting enhanced data
- Save enhanced datasets in h5 file format
%% Cell type:markdown id: tags:
## 1/ Import and init
%% Cell type:code id: tags:
``` python
import os, time, sys
import csv
import math, random
import numpy as np
import matplotlib.pyplot as plt
import h5py
from skimage.morphology import disk
from skimage.filters import rank
from skimage import io, color, exposure, transform
import idle.pwk as ooo
from importlib import reload
ooo.init()
```
%% Cell type:markdown id: tags:
## 2/ Read the dataset
Description is available there : http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
- Each directory contains one CSV file with annotations ("GT-<ClassID>.csv") and the training images
- First line is fieldnames: Filename;Width;Height;Roi.X1;Roi.Y1;Roi.X2;Roi.Y2;ClassId
### 2.1/ Usefull functions
%% Cell type:code id: tags:
``` python
def read_dataset_dir(csv_filename):
'''Reads traffic sign data from German Traffic Sign Recognition Benchmark dataset.
Arguments: csv filename
Example /data/GTSRB/Train.csv
Returns: np array of images, np array of corresponding labels'''
# ---- csv filename and path
#
name=os.path.basename(csv_filename)
path=os.path.dirname(csv_filename)
# ---- Read csv file
#
f,x,y = [],[],[]
with open(csv_filename) as csv_file:
reader = csv.DictReader(csv_file, delimiter=',')
for row in reader:
f.append( path+'/'+row['Path'] )
y.append( int(row['ClassId']) )
csv_file.close()
nb_images = len(f)
# ---- Read images
#
for filename in f:
image=io.imread(filename)
x.append(image)
ooo.update_progress(name,len(x),nb_images)
# ---- Return
#
return np.array(x),np.array(y)
```
%% Cell type:markdown id: tags:
### 2.2/ Read the data
We will read the following datasets:
- **x_train, y_train** : Learning data
- **x_test, y_test** : Validation or test data
- x_meta, y_meta : Illustration data
The learning data will be randomly mixted and the illustration data sorted.
Will take about 2-3'
%% Cell type:code id: tags:
``` python
%%time
# ---- Read datasets
(x_train,y_train) = read_dataset_dir('./data/origine/Train.csv')
(x_test ,y_test) = read_dataset_dir('./data/origine/Test.csv')
(x_meta ,y_meta) = read_dataset_dir('./data/origine/Meta.csv')
# ---- Shuffle train set
combined = list(zip(x_train,y_train))
random.shuffle(combined)
x_train,y_train = zip(*combined)
# ---- Sort Meta
combined = list(zip(x_meta,y_meta))
combined.sort(key=lambda x: x[1])
x_meta,y_meta = zip(*combined)
```
%% Cell type:markdown id: tags:
## 3/ Few statistics about train dataset
We want to know if our images are homogeneous in terms of size, ratio, width or height.
### 3.1/ Do statistics
%% Cell type:code id: tags:
``` python
train_size = []
train_ratio = []
train_lx = []
train_ly = []
test_size = []
test_ratio = []
test_lx = []
test_ly = []
for image in x_train:
(lx,ly,lz) = image.shape
train_size.append(lx*ly/1024)
train_ratio.append(lx/ly)
train_lx.append(lx)
train_ly.append(ly)
for image in x_test:
(lx,ly,lz) = image.shape
test_size.append(lx*ly/1024)
test_ratio.append(lx/ly)
test_lx.append(lx)
test_ly.append(ly)
```
%% Cell type:markdown id: tags:
### 3.2/ Show statistics
%% Cell type:code id: tags:
``` python
# ------ Global stuff
print("x_train size : ",len(x_train))
print("y_train size : ",len(y_train))
print("x_test size : ",len(x_test))
print("y_test size : ",len(y_test))
# ------ Statistics / sizes
plt.figure(figsize=(16,6))
plt.hist([train_size,test_size], bins=100)
plt.gca().set(title='Sizes in Kpixels - Train=[{:5.2f}, {:5.2f}]'.format(min(train_size),max(train_size)),
ylabel='Population',
xlim=[0,30])
plt.legend(['Train','Test'])
plt.show()
# ------ Statistics / ratio lx/ly
plt.figure(figsize=(16,6))
plt.hist([train_ratio,test_ratio], bins=100)
plt.gca().set(title='Ratio lx/ly - Train=[{:5.2f}, {:5.2f}]'.format(min(train_ratio),max(train_ratio)),
ylabel='Population',
xlim=[0.8,1.2])
plt.legend(['Train','Test'])
plt.show()
# ------ Statistics / lx
plt.figure(figsize=(16,6))
plt.hist([train_lx,test_lx], bins=100)
plt.gca().set(title='Images lx - Train=[{:5.2f}, {:5.2f}]'.format(min(train_lx),max(train_lx)),
ylabel='Population',
xlim=[20,150])
plt.legend(['Train','Test'])
plt.show()
# ------ Statistics / ly
plt.figure(figsize=(16,6))
plt.hist([train_ly,test_ly], bins=100)
plt.gca().set(title='Images ly - Train=[{:5.2f}, {:5.2f}]'.format(min(train_ly),max(train_ly)),
ylabel='Population',
xlim=[20,150])
plt.legend(['Train','Test'])
plt.show()
# ------ Statistics / classId
plt.figure(figsize=(16,6))
plt.hist([y_train,y_test], bins=43)
plt.gca().set(title='ClassesId',
ylabel='Population',
xlim=[0,43])
plt.legend(['Train','Test'])
plt.show()
```
%% Cell type:markdown id: tags:
## 4/ List of classes
What are the 43 classes of our images...
%% Cell type:code id: tags:
``` python
ooo.plot_images(x_meta,y_meta, range(43), columns=8, x_size=2, y_size=2,
colorbar=False, y_pred=None, cm='binary')
```
%% Cell type:markdown id: tags:
## 5/ What does it really look like
%% Cell type:code id: tags:
``` python
# ---- Get and show few images
samples = [ random.randint(0,len(x_train)-1) for i in range(32)]
ooo.plot_images(x_train,y_train, samples, columns=8, x_size=2, y_size=2, colorbar=False, y_pred=None, cm='binary')
```
%% Cell type:markdown id: tags:
## 6/ dataset cooking...
Images must have the **same size** to match the size of the network.
It is possible to work on **rgb** or **monochrome** images and **equalize** the histograms.
The data must be **normalized**.
See : [Exposure with scikit-image](https://scikit-image.org/docs/dev/api/skimage.exposure.html)
See : [Local histogram equalization](https://scikit-image.org/docs/dev/api/skimage.filters.rank.html#skimage.filters.rank.equalize)
See : [Histogram equalization](https://scikit-image.org/docs/dev/api/skimage.exposure.html#skimage.exposure.equalize_hist)
### 6.1/ Enhancement cook
%% Cell type:code id: tags:
``` python
def images_enhancement(images, width=25, height=25, mode='RGB'):
'''
Resize and convert images - doesn't change originals.
input images must be RGBA or RGB.
args:
images : images list
width,height : new images size (25,25)
mode : RGB | RGB-HE | L | L-HE | L-LHE | L-CLAHE
return:
numpy array of enhanced images
'''
modes = { 'RGB':3, 'RGB-HE':3, 'L':1, 'L-HE':1, 'L-LHE':1, 'L-CLAHE':1}
lz=modes[mode]
out=[]
for img in images:
# ---- if RGBA, convert to RGB
if img.shape[2]==4:
img=color.rgba2rgb(img)
# ---- Resize
img = transform.resize(img, (width,height))
# ---- RGB / Histogram Equalization
if mode=='RGB-HE':
hsv = color.rgb2hsv(img.reshape(width,height,3))
hsv[:, :, 2] = exposure.equalize_hist(hsv[:, :, 2])
img = color.hsv2rgb(hsv)
# ---- Grayscale
if mode=='L':
img=color.rgb2gray(img)
# ---- Grayscale / Histogram Equalization
if mode=='L-HE':
img=color.rgb2gray(img)
img=exposure.equalize_hist(img)
# ---- Grayscale / Local Histogram Equalization
if mode=='L-LHE':
img=color.rgb2gray(img)
img=rank.equalize(img, disk(10))/255.
# ---- Grayscale / Contrast Limited Adaptive Histogram Equalization (CLAHE)
if mode=='L-CLAHE':
img=color.rgb2gray(img)
img=exposure.equalize_adapthist(img)
# ---- Add image in list of list
out.append(img)
ooo.update_progress('Enhancement: ',len(out),len(images))
# ---- Reshape images
# (-1, width,height,1) for L
# (-1, width,height,3) for RGB
#
out = np.array(out,dtype='float64')
out = out.reshape(-1,width,height,lz)
return out
```
%% Cell type:markdown id: tags:
### 6.2/ To get an idea of the different recipes
%% Cell type:code id: tags:
``` python
i=random.randint(0,len(x_train)-16)
x_samples = x_train[i:i+16]
y_samples = y_train[i:i+16]
datasets = {}
datasets['RGB'] = images_enhancement( x_samples, width=25, height=25, mode='RGB' )
datasets['RGB-HE'] = images_enhancement( x_samples, width=25, height=25, mode='RGB-HE' )
datasets['L'] = images_enhancement( x_samples, width=25, height=25, mode='L' )
datasets['L-HE'] = images_enhancement( x_samples, width=25, height=25, mode='L-HE' )
datasets['L-LHE'] = images_enhancement( x_samples, width=25, height=25, mode='L-LHE' )
datasets['L-CLAHE'] = images_enhancement( x_samples, width=25, height=25, mode='L-CLAHE' )
print('\nEXPECTED (Meta) :\n')
x_expected=[ x_meta[i] for i in y_samples]
ooo.plot_images(x_expected, y_samples, range(16), columns=16, x_size=1, y_size=1, colorbar=False, y_pred=None, cm='binary')
print('\nORIGINAL IMAGES :\n')
ooo.plot_images(x_samples, y_samples, range(16), columns=16, x_size=1, y_size=1, colorbar=False, y_pred=None, cm='binary')
print('\nENHANCED :\n')
for k,d in datasets.items():
print("dataset : {} min,max=[{:.3f},{:.3f}] shape={}".format(k,d.min(),d.max(), d.shape))
ooo.plot_images(d, y_samples, range(16), columns=16, x_size=1, y_size=1, colorbar=False, y_pred=None, cm='binary')
```
%% Cell type:markdown id: tags:
### 6.3/ Cook and save
A function to save a dataset
%% Cell type:code id: tags:
``` python
def save_h5_dataset(x_train, y_train, x_test, y_test, x_meta,y_meta, h5name):
# ---- Filename
filename='./data/'+h5name
# ---- Create h5 file
with h5py.File(filename, "w") as f:
f.create_dataset("x_train", data=x_train)
f.create_dataset("y_train", data=y_train)
f.create_dataset("x_test", data=x_test)
f.create_dataset("y_test", data=y_test)
f.create_dataset("x_meta", data=x_meta)
f.create_dataset("y_meta", data=y_meta)
# ---- done
size=os.path.getsize(filename)/(1024*1024)
print('Dataset : {:24s} shape : {:22s} size : {:6.1f} Mo (saved)\n'.format(filename, str(x_train.shape),size))
```
%% Cell type:markdown id: tags:
Create enhanced datasets, and save them...
Will take about 7-8'
%% Cell type:code id: tags:
``` python
%%time
for s in [24, 48]:
for m in ['RGB', 'RGB-HE', 'L', 'L-LHE']:
# ---- A nice dataset name
name='set-{}x{}-{}.h5'.format(s,s,m)
print("\nDataset : ",name)
# ---- Enhancement
x_train_new = images_enhancement( x_train, width=s, height=s, mode=m )
x_test_new = images_enhancement( x_test, width=s, height=s, mode=m )
x_meta_new = images_enhancement( x_meta, width=s, height=s, mode='RGB' )
# ---- Save
save_h5_dataset( x_train_new, y_train, x_test_new, y_test, x_meta_new,y_meta, name)
x_train_new,x_test_new=0,0
```
%% Cell type:markdown id: tags:
## 7/ Reload data to be sure ;-)
%% Cell type:code id: tags:
``` python
%%time
dataset='set-48x48-L'
samples=range(24)
with h5py.File('./data/'+dataset+'.h5') as f:
x_tmp = f['x_train'][:]
y_tmp = f['y_train'][:]
print("dataset loaded from h5 file.")
ooo.plot_images(x_tmp,y_tmp, samples, columns=8, x_size=2, y_size=2, colorbar=False, y_pred=None, cm='binary')
x_tmp,y_tmp=0,0
```
%% Cell type:markdown id: tags:
----
That's all folks !
This diff is collapsed.
%% Cell type:markdown id: tags:
German Traffic Sign Recognition Benchmark (GTSRB)
=================================================
---
Introduction au Deep Learning (IDLE) - S. Aria, E. Maldonado, JL. Parouty - CNRS/SARI/DEVLOG - 2020
## Episode 3 : Tracking, visualizing and save models
Our main steps:
- Monitoring and understanding our model training
- Add recovery points
- Analyze the results
- Restore and run recovery pont
## 1/ Import and init
%% Cell type:code id: tags:
``` python
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.callbacks import TensorBoard
import numpy as np
import h5py
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sn
import os, time, random
import idle.pwk as ooo
from importlib import reload
ooo.init()
```
%% Cell type:markdown id: tags:
## 2/ Load dataset
Dataset is one of the saved dataset: RGB25, RGB35, L25, L35, etc.
First of all, we're going to use a smart dataset : **set-24x24-L**
(with a GPU, it only takes 35'' compared to more than 5' with a CPU !)
%% Cell type:code id: tags:
``` python
%%time
dataset ='set-24x24-RGB'
def read_dataset(name):
'''Reads h5 dataset from ./data
Arguments: dataset name, without .h5
Returns: x_train,y_train,x_test,y_test data'''
# ---- Read dataset
filename='./data/'+name+'.h5'
with h5py.File(filename) as f:
x_train = f['x_train'][:]
y_train = f['y_train'][:]
x_test = f['x_test'][:]
y_test = f['y_test'][:]
# ---- done
print('Dataset "{}" is loaded. ({:.1f} Mo)\n'.format(name,os.path.getsize(filename)/(1024*1024)))
return x_train,y_train,x_test,y_test
x_train,y_train,x_test,y_test = read_dataset('set-48x48-L')
```
%% Cell type:markdown id: tags:
## 3/ Have a look to the dataset
Note: Data must be reshape for matplotlib
%% Cell type:code id: tags:
``` python
print("x_train : ", x_train.shape)
print("y_train : ", y_train.shape)
print("x_test : ", x_test.shape)
print("y_test : ", y_test.shape)
ooo.plot_images(x_train, y_train, range(12), columns=6, x_size=2, y_size=2)
ooo.plot_images(x_train, y_train, range(36), columns=12, x_size=1, y_size=1)
```
%% Cell type:markdown id: tags:
## 4/ Create model
We will now build a model and train it...
Some models :
%% Cell type:code id: tags:
``` python
# A basic model
#
def get_model_v1(lx,ly,lz):
model = keras.models.Sequential()
model.add( keras.layers.Conv2D(96, (3,3), activation='relu', input_shape=(lx,ly,lz)))
model.add( keras.layers.MaxPooling2D((2, 2)))
model.add( keras.layers.Dropout(0.2))
model.add( keras.layers.Conv2D(192, (3, 3), activation='relu'))
model.add( keras.layers.MaxPooling2D((2, 2)))
model.add( keras.layers.Dropout(0.2))
model.add( keras.layers.Flatten())
model.add( keras.layers.Dense(1500, activation='relu'))
model.add( keras.layers.Dropout(0.5))
model.add( keras.layers.Dense(43, activation='softmax'))
return model
```
%% Cell type:markdown id: tags:
## 5/ Prepare callbacks
We will add 2 callbacks :
- **TensorBoard**
Training logs, which can be visualised with Tensorboard.
`#tensorboard --logdir ./run/logs`
IMPORTANT : Relancer tensorboard à chaque run
- **Model backup**
It is possible to save the model each xx epoch or at each improvement.
The model can be saved completely or partially (weight).
For full format, we can use HDF5 format.
%% Cell type:code id: tags:
``` python
# To clean old logs and saved model, run this cell
#
!/bin/rm -r ./run/logs ./run/models 2>/dev/null
!/bin/ls -l ./run 2>/dev/null
```
%% Cell type:code id: tags:
``` python
ooo.mkdir('./run/models')
ooo.mkdir('./run/logs')
# ---- Callback tensorboard
log_dir = "./run/logs/tb_" + ooo.tag_now()
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
# ---- Callback ModelCheckpoint - Save best model
save_dir = "./run/models/best-model.h5"
bestmodel_callback = tf.keras.callbacks.ModelCheckpoint(filepath=save_dir, verbose=0, monitor='accuracy', save_best_only=True)
# ---- Callback ModelCheckpoint - Save model each epochs
save_dir = "./run/models/model-{epoch:04d}.h5"
savemodel_callback = tf.keras.callbacks.ModelCheckpoint(filepath=save_dir, verbose=0, save_freq=2000*5)
```
%% Cell type:markdown id: tags:
## 5/ Train the model
**Get the shape of my data :**
%% Cell type:code id: tags:
``` python
(n,lx,ly,lz) = x_train.shape
print("Images of the dataset have this folowing shape : ",(lx,ly,lz))
```
%% Cell type:markdown id: tags:
**Get and compile a model, with the data shape :**
%% Cell type:code id: tags:
``` python
model = get_model_v1(lx,ly,lz)
# model.summary()
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
```
%% Cell type:markdown id: tags:
**Train it :**
Note : La courbe d'apprentissage est visible en temps réel avec Tensorboard :
`#tensorboard --logdir ./run/logs`
%% Cell type:code id: tags:
``` python
%%time
batch_size = 64
epochs = 5
# ---- Shuffle train data
x_train,y_train=ooo.shuffle_np_dataset(x_train,y_train)
# ---- Train
# Note: To be faster in our example, we take only 2000 values
# but in the real world, we'd take the whole dataset!
#
history = model.fit( x_train[:2000], y_train[:2000],
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test[:200], y_test[:200]),
callbacks=[tensorboard_callback, bestmodel_callback, savemodel_callback] )
model.save('./run/models/last-model.h5')
```
%% Cell type:markdown id: tags:
**Evaluate it :**
%% Cell type:code id: tags:
``` python
max_val_accuracy = max(history.history["val_accuracy"])
print("Max validation accuracy is : {:.4f}".format(max_val_accuracy))
```
%% Cell type:code id: tags:
``` python
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss : {:5.4f}'.format(score[0]))
print('Test accuracy : {:5.4f}'.format(score[1]))
```
%% Cell type:markdown id: tags:
## 6/ History
The return of model.fit() returns us the learning history
%% Cell type:code id: tags:
``` python
ooo.plot_history(history)
```
%% Cell type:markdown id: tags:
## 7/ Evaluation and confusion
%% Cell type:code id: tags:
``` python
reload(ooo)
y_pred = model.predict_classes(x_test)
conf_mat = confusion_matrix(y_test,y_pred, normalize="true", labels=range(43))
ooo.plot_confusion_matrix(conf_mat)
```
%% Cell type:markdown id: tags:
## 8/ Restore and evaluate
### 8.1/ List saved models :
%% Cell type:code id: tags:
``` python
!find ./run/models/
```
%% Cell type:markdown id: tags:
### 8.2/ Restore a model :
%% Cell type:code id: tags:
``` python
loaded_model = tf.keras.models.load_model('./run/models/best-model.h5')
# best_model.summary()
print("Loaded.")
```
%% Cell type:markdown id: tags:
### 8.3/ Evaluate it :
%% Cell type:code id: tags:
``` python
score = loaded_model.evaluate(x_test, y_test, verbose=0)
print('Test loss : {:5.4f}'.format(score[0]))
print('Test accuracy : {:5.4f}'.format(score[1]))
```
%% Cell type:markdown id: tags:
### 8.4/ Make a prediction :
%% Cell type:code id: tags:
``` python
# ---- Get a random image
#
i = random.randint(1,len(x_test))
x,y = x_test[i], y_test[i]
# ---- Do prediction
#
predictions = loaded_model.predict( np.array([x]) )
# ---- A prediction is just the output layer
#
print("\nOutput layer from model is (x100) :\n")
with np.printoptions(precision=2, suppress=True, linewidth=95):
print(predictions*100)
# ---- Graphic visualisation
#
print("\nGraphically :\n")
plt.figure(figsize=(12,2))
plt.bar(range(43), predictions[0], align='center', alpha=0.5)
plt.ylabel('Probability')
plt.ylim((0,1))
plt.xlabel('Class')
plt.title('Trafic Sign prediction')
plt.show()
# ---- Predict class
#
p = np.argmax(predictions)
# ---- Show result
#
print("\nPrediction on the left, real stuff on the right :\n")
ooo.plot_images([x,x_meta[y]], [p,y], range(2), columns=3, x_size=3, y_size=2)
if p==y:
print("YEEES ! that's right!")
else:
print("oups, that's wrong ;-(")
```
%% Cell type:markdown id: tags:
---
That's all folks !
%% Cell type:code id: tags:
``` python
!kill $(ps ax | grep 'tensorboard --port 18529' | grep -v grep | awk '{print $1}')
```
%% Cell type:code id: tags:
``` python
%load_ext tensorboard
```
%% Cell type:code id: tags:
``` python
%tensorboard --host 0.0.0.0 --port 18529 --logdir ./run/logs
```
%% Cell type:code id: tags:
``` python
```
%% Cell type:code id: tags:
``` python
```
%% Cell type:code id: tags:
``` python
```
This diff is collapsed.
This diff is collapsed.
%% Cell type:markdown id: tags:
German Traffic Sign Recognition Benchmark (GTSRB)
=================================================
---
Introduction au Deep Learning (IDLE)
S. Aria, E. Maldonado, JL. Parouty
CNRS/SARI/DEVLOG - 2020
Objectives of this practical work
---------------------------------
Traffic sign classification with **CNN**, using Tensorflow and **Keras**
Prerequisite
------------
Environment, with the following packages :
- Python 3.6
- numpy
- Tensorflow 2.0
- scikit-image
- scikit-learn
- Matplotlib
- seaborn
You can create it from the `environment.yml` file :
```
# conda env create -f environment.yml
```
To manage conda environment see [there](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#)
About the dataset
-----------------
Name : [German Traffic Sign Recognition Benchmark (GTSRB)](http://benchmark.ini.rub.de/?section=gtsrb)
Available [here](https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/published-archive.html)
or on **[kaggle](https://www.kaggle.com/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign)**
A nice example from : [Alex Staravoitau](https://navoshta.com/traffic-signs-classification/)
In few words :
- Images : Variable dimensions, rgb
- Train set : 39209 images
- Test set : 12630 images
- Classes : 0 to 42
Episodes
--------
**[01 - Preparation of data](01-Preparation-of-data.ipynb)**
- Understanding the dataset
- Preparing and formatting data
- Organize and backup data
**[02 - First convolutions](02-First-convolutions.ipynb)**
- Read dataset
- Build a model
- Train the model
- Model evaluation
%% Cell type:code id: tags:
``` python
```
German Traffic Sign Recognition Benchmark (GTSRB)
=================================================
---
FIDLE - Formation Introduction au Deep Learning
1/ Objectives
----------
Traffic sign classification with **CNN**, using Tensorflow and **Keras**
2/ About the dataset
-----------------
Name : [German Traffic Sign Recognition Benchmark (GTSRB)](http://benchmark.ini.rub.de/?section=gtsrb)
Available [here](https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/published-archive.html)
or on **[kaggle](https://www.kaggle.com/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign)**
A nice example from : [Alex Staravoitau](https://navoshta.com/traffic-signs-classification/)
In few words :
- Images : Variable dimensions, rgb
- Train set : 39209 images
- Test set : 12630 images
- Classes : 0 to 42
3/ Episodes
--------
01 - Dataset preparation
- Undestand the data
02 - First convolutions
File added
VERSION='0.1a'
\ No newline at end of file
# ==================================================================
# ____ _ _ _ __ __ _
# | _ \ _ __ __ _ ___| |_(_) ___ __ _| | \ \ / /__ _ __| | __
# | |_) | '__/ _` |/ __| __| |/ __/ _` | | \ \ /\ / / _ \| '__| |/ /
# | __/| | | (_| | (__| |_| | (_| (_| | | \ V V / (_) | | | <
# |_| |_| \__,_|\___|\__|_|\___\__,_|_| \_/\_/ \___/|_| |_|\_\
# module pwk
# ==================================================================
# A simple module to host some common functions for practical work
# pjluc 2019
import os
import glob
from datetime import datetime
import itertools
import datetime
import math
import numpy as np
import tensorflow as tf
from tensorflow import keras
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sn
VERSION='0.1.4'
# -------------------------------------------------------------
# init_all
# -------------------------------------------------------------
#
def init(mplstyle='idle/talk.mplstyle'):
global VERSION
# ---- matplotlib
matplotlib.style.use(mplstyle)
# ---- Hello world
now = datetime.datetime.now()
print('IDLE 2020 - Practical Work Module')
print(' Version :', VERSION)
print(' Run time : {}'.format(now.strftime("%A %-d %B %Y, %H:%M:%S")))
print(' Matplotlib style :', mplstyle)
print(' TensorFlow version :',tf.__version__)
print(' Keras version :',tf.keras.__version__)
# -------------------------------------------------------------
# Folder cooking
# -------------------------------------------------------------
#
def tag_now():
return datetime.datetime.now().strftime("%Y-%m-%d_%Hh%Mm%Ss")
def mkdir(path):
os.makedirs(path, mode=0o750, exist_ok=True)
def get_directory_size(path):
"""
Return the directory size, but only 1 level
args:
path : directory path
return:
size in Mo
"""
size=0
for f in os.listdir(path):
if os.path.isfile(path+'/'+f):
size+=os.path.getsize(path+'/'+f)
return size/(1024*1024)
# -------------------------------------------------------------
# shuffle_dataset
# -------------------------------------------------------------
#
def shuffle_np_dataset(x, y):
assert (len(x) == len(y)), "x and y must have same size"
p = np.random.permutation(len(x))
return x[p], y[p]
def update_progress(what,i,imax):
bar_length = min(40,imax)
if (i%int(imax/bar_length))!=0 and i<imax:
return
progress = float(i/imax)
block = int(round(bar_length * progress))
endofline = '\r' if progress<1 else '\n'
text = "{:16s} [{}] {:>5.1f}% of {}".format( what, "#"*block+"-"*(bar_length-block), progress*100, imax)
print(text, end=endofline)
# -------------------------------------------------------------
# show_images
# -------------------------------------------------------------
#
def plot_images(x,y, indices, columns=12, x_size=1, y_size=1, colorbar=False, y_pred=None, cm='binary'):
"""
Show some images in a grid, with legends
args:
X: images - Shapes must be (-1 lx,ly,1) or (-1 lx,ly,3)
y: real classes
indices: indices of images to show
columns: number of columns (12)
x_size,y_size: figure size
colorbar: show colorbar (False)
y_pred: predicted classes (None)
cm: Matplotlib olor map
returns:
nothing
"""
rows = math.ceil(len(indices)/columns)
fig=plt.figure(figsize=(columns*x_size, rows*(y_size+0.35)))
n=1
errors=0
if np.any(y_pred)==None:
y_pred=y
for i in indices:
axs=fig.add_subplot(rows, columns, n)
n+=1
# Shapes must be differents for RGB and L
(lx,ly,lz)=x[i].shape
if lz==1:
img=axs.imshow(x[i].reshape(lx,ly), cmap = cm, interpolation='lanczos')
else:
img=axs.imshow(x[i].reshape(lx,ly,lz),cmap = cm, interpolation='lanczos')
axs.spines['right'].set_visible(True)
axs.spines['left'].set_visible(True)
axs.spines['top'].set_visible(True)
axs.spines['bottom'].set_visible(True)
axs.set_yticks([])
axs.set_xticks([])
if y[i]!=y_pred[i]:
axs.set_xlabel('{} ({})'.format(y_pred[i],y[i]))
axs.xaxis.label.set_color('red')
errors+=1
else:
axs.set_xlabel(y[i])
if colorbar:
fig.colorbar(img,orientation="vertical", shrink=0.65)
plt.show()
def plot_image(x,cm='binary', figsize=(4,4)):
(lx,ly,lz)=x.shape
plt.figure(figsize=figsize)
if lz==1:
plt.imshow(x.reshape(lx,ly), cmap = cm, interpolation='lanczos')
else:
plt.imshow(x.reshape(lx,ly,lz),cmap = cm, interpolation='lanczos')
plt.show()
# -------------------------------------------------------------
# show_history
# -------------------------------------------------------------
#
def plot_history(history, figsize=(8,6)):
"""
Show history
args:
history: history
save_as: filename to save or None
"""
# Accuracy
plt.figure(figsize=figsize)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()
# Loss values
plt.figure(figsize=figsize)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()
# -------------------------------------------------------------
# plot_confusion_matrix
# -------------------------------------------------------------
#
def plot_confusion_matrix(cm,
title='Confusion matrix',
figsize=(12,8),
cmap="gist_heat_r",
vmin=0,
vmax=1,
xticks=5,yticks=5):
"""
given a sklearn confusion matrix (cm), make a nice plot
Args:
cm: confusion matrix from sklearn.metrics.confusion_matrix
title: the text to display at the top of the matrix
figsize: Figure size (12,8)
cmap: color map (gist_heat_r)
vmi,vmax: Min/max 0 and 1
"""
accuracy = np.trace(cm) / float(np.sum(cm))
misclass = 1 - accuracy
plt.figure(figsize=figsize)
sn.heatmap(cm, linewidths=1, linecolor="#ffffff",square=True,
cmap=cmap, xticklabels=xticks, yticklabels=yticks,
vmin=vmin,vmax=vmax)
plt.ylabel('True label')
plt.xlabel('Predicted label\naccuracy={:0.4f}; misclass={:0.4f}'.format(accuracy, misclass))
plt.show()
# See : https://matplotlib.org/users/customizing.html
axes.titlesize : 24
axes.labelsize : 20
axes.edgecolor : dimgrey
axes.labelcolor : dimgrey
axes.linewidth : 2
axes.grid : False
axes.prop_cycle : cycler('color', ['steelblue', 'tomato', '2ca02c', 'd62728', '9467bd', '8c564b', 'e377c2', '7f7f7f', 'bcbd22', '17becf'])
lines.linewidth : 3
lines.markersize : 10
xtick.color : black
xtick.labelsize : 18
ytick.color : black
ytick.labelsize : 18
axes.spines.left : True
axes.spines.bottom : True
axes.spines.top : False
axes.spines.right : False
savefig.dpi : 300 # figure dots per inch or 'figure'
savefig.facecolor : white # figure facecolor when saving
savefig.edgecolor : white # figure edgecolor when saving
savefig.format : svg
savefig.bbox : tight
savefig.pad_inches : 0.1
savefig.transparent : True
savefig.jpeg_quality: 95
name: deeplearning2
channels:
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _tflow_select=2.1.0=gpu
- absl-py=0.8.1=py37_0
- astor=0.8.0=py37_0
- attrs=19.3.0=py_0
- backcall=0.1.0=py37_0
- blas=1.0=mkl
- bleach=3.1.0=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2019.11.27=0
- certifi=2019.11.28=py37_0
- cloudpickle=1.2.2=py_0
- cudatoolkit=10.0.130=0
- cudnn=7.6.4=cuda10.0_0
- cupti=10.0.130=0
- cycler=0.10.0=py37_0
- cytoolz=0.10.1=py37h7b6447c_0
- dask-core=2.9.0=py_0
- dbus=1.13.12=h746ee38_0
- decorator=4.4.1=py_0
- defusedxml=0.6.0=py_0
- entrypoints=0.3=py37_0
- expat=2.2.6=he6710b0_0
- fontconfig=2.13.0=h9420a91_0
- freetype=2.9.1=h8a8886c_1
- gast=0.2.2=py37_0
- glib=2.63.1=h5a9c865_0
- gmp=6.1.2=h6c8ec71_1
- google-pasta=0.1.8=py_0
- grpcio=1.16.1=py37hf8bcb03_1
- gst-plugins-base=1.14.0=hbbd80ab_1
- gstreamer=1.14.0=hb453b48_1
- h5py=2.9.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=h9c2bf20_1
- imageio=2.6.1=py37_0
- importlib_metadata=1.3.0=py37_0
- intel-openmp=2019.4=243
- ipykernel=5.1.3=py37h39e3cac_0
- ipython=7.10.2=py37h39e3cac_0
- ipython_genutils=0.2.0=py37_0
- jedi=0.15.1=py37_0
- jinja2=2.10.3=py_0
- joblib=0.14.1=py_0
- jpeg=9b=h024ee3a_2
- json5=0.8.5=py_0
- jsonschema=3.2.0=py37_0
- jupyter_client=5.3.4=py37_0
- jupyter_core=4.6.1=py37_0
- jupyterlab=1.2.4=pyhf63ae98_0
- jupyterlab_server=1.0.6=py_0
- keras-applications=1.0.8=py_0
- keras-preprocessing=1.1.0=py_1
- kiwisolver=1.1.0=py37he6710b0_0
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libprotobuf=3.11.2=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_0
- libuuid=1.0.3=h1bed415_2
- libxcb=1.13=h1bed415_1
- libxml2=2.9.9=hea5a465_1
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h7b6447c_0
- matplotlib=3.1.1=py37h5429711_0
- mistune=0.8.4=py37h7b6447c_0
- mkl=2019.4=243
- mkl-service=2.3.0=py37he904b0f_0
- mkl_fft=1.0.15=py37ha843d7b_0
- mkl_random=1.1.0=py37hd6b4f25_0
- more-itertools=8.0.2=py_0
- nbconvert=5.6.1=py37_0
- nbformat=4.4.0=py37_0
- ncurses=6.1=he6710b0_1
- networkx=2.4=py_0
- notebook=6.0.2=py37_0
- numpy=1.17.4=py37hc1035e2_0
- numpy-base=1.17.4=py37hde5b4d6_0
- olefile=0.46=py_0
- openssl=1.1.1d=h7b6447c_3
- opt_einsum=3.1.0=py_0
- pandas=0.25.3=py37he6710b0_0
- pandoc=2.2.3.2=0
- pandocfilters=1.4.2=py37_1
- parso=0.5.2=py_0
- patsy=0.5.1=py37_0
- pcre=8.43=he6710b0_0
- pexpect=4.7.0=py37_0
- pickleshare=0.7.5=py37_0
- pillow=6.2.1=py37h34e0f95_0
- pip=19.3.1=py37_0
- prometheus_client=0.7.1=py_0
- prompt_toolkit=3.0.2=py_0
- protobuf=3.11.2=py37he6710b0_0
- ptyprocess=0.6.0=py37_0
- pygments=2.5.2=py_0
- pyparsing=2.4.5=py_0
- pyqt=5.9.2=py37h05f1152_2
- pyrsistent=0.15.6=py37h7b6447c_0
- python=3.7.5=h0371630_0
- python-dateutil=2.8.1=py_0
- pytz=2019.3=py_0
- pywavelets=1.1.1=py37h7b6447c_0
- pyzmq=18.1.0=py37he6710b0_0
- qt=5.9.7=h5867ecd_1
- readline=7.0=h7b6447c_5
- scikit-image=0.15.0=py37he6710b0_0
- scikit-learn=0.22=py37hd81dba3_0
- scipy=1.3.2=py37h7c811a0_0
- seaborn=0.9.0=pyh91ea838_1
- send2trash=1.5.0=py37_0
- setuptools=42.0.2=py37_0
- sip=4.19.8=py37hf484d3e_0
- six=1.13.0=py37_0
- sqlite=3.30.1=h7b6447c_0
- statsmodels=0.10.1=py37hdd07704_0
- tensorboard=2.0.0=pyhb38c66f_1
- tensorflow=2.0.0=gpu_py37h768510d_0
- tensorflow-base=2.0.0=gpu_py37h0ec5d1f_0
- tensorflow-estimator=2.0.0=pyh2649769_0
- tensorflow-gpu=2.0.0=h0d30ee6_0
- termcolor=1.1.0=py37_1
- terminado=0.8.3=py37_0
- testpath=0.4.4=py_0
- tk=8.6.8=hbc83047_0
- toolz=0.10.0=py_0
- tornado=6.0.3=py37h7b6447c_0
- traitlets=4.3.3=py37_0
- wcwidth=0.1.7=py37_0
- webencodings=0.5.1=py37_1
- werkzeug=0.16.0=py_0
- wheel=0.33.6=py37_0
- wrapt=1.11.2=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- zeromq=4.3.1=he6710b0_3
- zipp=0.6.0=py_0
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- dask==2.9.0
prefix: /home/paroutyj/.conda/envs/deeplearning2