Skip to content
Snippets Groups Projects
Commit d6748054 authored by Jean-Luc Parouty's avatar Jean-Luc Parouty
Browse files

Rewrite Linear Reg. as jupyter example

parent c92e65ec
No related branches found
No related tags found
No related merge requests found
This diff is collapsed.
%% Cell type:markdown id: tags:
<img width="800px" src="../fidle/img/00-Fidle-header-01.svg"></img>
# <!-- TITLE --> [FIT1] - Complexity Syndrome
# <!-- TITLE --> [POLR1] - Complexity Syndrome
<!-- DESC --> Illustration of the problem of complexity with the polynomial regression
<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->
## Objectives :
- Visualizing and understanding under and overfitting
## What we're going to do :
We are looking for a polynomial function to approximate the observed series :
$ y = a_n\cdot x^n + \dots + a_i\cdot x^i + \dots + a_1\cdot x + b $
## Step 1 - Import and init
%% Cell type:code id: tags:
``` python
import numpy as np
import math
import random
import matplotlib
import matplotlib.pyplot as plt
import sys
sys.path.append('..')
import fidle.pwk as ooo
ooo.init()
```
%% Output
FIDLE 2020 - Practical Work Module
Version : 0.2.9
Run time : Tuesday 18 February 2020, 17:23:05
TensorFlow version : 2.0.0
Keras version : 2.2.4-tf
%% Cell type:markdown id: tags:
## Step 2 - Preparation of learning data :
%% Cell type:code id: tags:
``` python
# ---- Parameters
n = 100
xob_min = -5
xob_max = 5
deg = 7
a_min = -2
a_max = 2
noise = 2000
# ---- Train data
# X,Y : data
# X_norm,Y_norm : normalized data
X = np.random.uniform(xob_min,xob_max,(n,1))
# N = np.random.uniform(-noise,noise,(n,1))
N = noise * np.random.normal(0,1,(n,1))
a = np.random.uniform(a_min,a_max, (deg,))
fy = np.poly1d( a )
Y = fy(X) + N
# ---- Data normalization
#
X_norm = (X - X.mean(axis=0)) / X.std(axis=0)
Y_norm = (Y - Y.mean(axis=0)) / Y.std(axis=0)
# ---- Data visualization
width = 12
height = 6
nb_viz = min(2000,n)
def vector_infos(name,V):
m=V.mean(axis=0).item()
s=V.std(axis=0).item()
print("{:8} : mean={:+12.4f} std={:+12.4f} min={:+12.4f} max={:+12.4f}".format(name,m,s,V.min(),V.max()))
print("Nombre de points : {} a={} deg={} bruit={}".format(n,a,deg,noise))
ooo.display_md('#### Before normalization :')
print("\nDonnées d'aprentissage brute :")
print("({} points visibles sur {})".format(nb_viz,n))
plt.figure(figsize=(width, height))
plt.plot(X[:nb_viz], Y[:nb_viz], '.')
plt.tick_params(axis='both', which='both', bottom=False, left=False, labelbottom=False, labelleft=False)
plt.xlabel('x axis')
plt.ylabel('y axis')
plt.show()
vector_infos('X',X)
vector_infos('Y',Y)
ooo.display_md('#### After normalization :')
print("\nDonnées d'aprentissage normalisées :")
print("({} points visibles sur {})".format(nb_viz,n))
plt.figure(figsize=(width, height))
plt.plot(X_norm[:nb_viz], Y_norm[:nb_viz], '.')
plt.tick_params(axis='both', which='both', bottom=False, left=False, labelbottom=False, labelleft=False)
plt.xlabel('x axis')
plt.ylabel('y axis')
plt.show()
vector_infos('X_norm',X_norm)
vector_infos('Y_norm',Y_norm)
```
%% Output
Nombre de points : 100 a=[-1.40023862 1.64009905 1.89987647 1.24972783 1.17765272 1.90935391
1.11259327] deg=7 bruit=2000
#### Before normalization :
Données d'aprentissage brute :
(100 points visibles sur 100)
X : mean= +0.2539 std= +2.9283 min= -4.9332 max= +4.9177
Y : mean= -2914.8537 std= +5532.3607 min= -23848.6013 max= +5139.0627
#### After normalization :
Données d'aprentissage normalisées :
(100 points visibles sur 100)
X_norm : mean= +0.0000 std= +1.0000 min= -1.7714 max= +1.5927
Y_norm : mean= -0.0000 std= +1.0000 min= -3.7839 max= +1.4558
%% Cell type:markdown id: tags:
## Step 3 - Polynomial regression with NumPy
### 3.1 - Underfitting
%% Cell type:code id: tags:
``` python
def draw_reg(X_norm, Y_norm, x_hat,fy_hat, size):
plt.figure(figsize=size)
plt.plot(X_norm, Y_norm, '.')
x_hat = np.linspace(X_norm.min(), X_norm.max(), 100)
plt.plot(x_hat, fy_hat(x_hat))
plt.tick_params(axis='both', which='both', bottom=False, left=False, labelbottom=False, labelleft=False)
plt.xlabel('x axis')
plt.ylabel('y axis')
plt.show()
```
%% Cell type:code id: tags:
``` python
reg_deg=1
a_hat = np.polyfit(X_norm.reshape(-1,), Y_norm.reshape(-1,), reg_deg)
fy_hat = np.poly1d( a_hat )
print("Nombre de degrés : {} a_hat={}".format(reg_deg, a_hat))
draw_reg(X_norm[:nb_viz],Y_norm[:nb_viz], x_hat,fy_hat, (width,height))
```
%% Output
Nombre de degrés : 1 a_hat=[ 2.15635737e-01 -1.26046371e-16]
%% Cell type:markdown id: tags:
### 3.2 - Good fitting
%% Cell type:code id: tags:
``` python
reg_deg=5
a_hat = np.polyfit(X_norm.reshape(-1,), Y_norm.reshape(-1,), reg_deg)
fy_hat = np.poly1d( a_hat )
print("Nombre de degrés : {} a_hat={}".format(reg_deg, a_hat))
draw_reg(X_norm[:nb_viz],Y_norm[:nb_viz], x_hat,fy_hat, (width,height))
```
%% Output
Nombre de degrés : 5 a_hat=[ 0.09676506 -0.49102546 -0.19674074 0.41539174 -0.00888844 0.51187173]
%% Cell type:markdown id: tags:
### 3.3 - Overfitting
%% Cell type:code id: tags:
``` python
reg_deg=24
a_hat = np.polyfit(X_norm.reshape(-1,), Y_norm.reshape(-1,), reg_deg)
fy_hat = np.poly1d( a_hat )
print("Nombre de degrés : {} a_hat={}".format(reg_deg, a_hat))
draw_reg(X_norm[:nb_viz],Y_norm[:nb_viz], x_hat,fy_hat, (width,height))
```
%% Output
Nombre de degrés : 24 a_hat=[-3.39583761e-01 3.66524802e+00 1.35968152e+01 -5.33709389e+01
-1.54708597e+02 3.43661072e+02 8.76139324e+02 -1.29075459e+03
-2.93637308e+03 3.13537269e+03 6.25956959e+03 -5.14495063e+03
-8.72124478e+03 5.75688179e+03 7.93008239e+03 -4.30734159e+03
-4.57884398e+03 2.04404969e+03 1.58025869e+03 -5.55090657e+02
-2.89374022e+02 7.05282858e+01 2.12619645e+01 -2.67799255e+00
3.95718335e-01]
%% Cell type:markdown id: tags:
---
<img width="80px" src="../fidle/img/00-Fidle-logo-01.svg"></img>
......
# ------------------------------------------------------------------
# _____ _ _ _
# | ___(_) __| | | ___
# | |_ | |/ _` | |/ _ \
# | _| | | (_| | | __/
# |_| |_|\__,_|_|\___| Regression cooker
# ------------------------------------------------------------------
# Formation Introduction au Deep Learning (FIDLE)
# CNRS/SARI/DEVLOG 2020 - S. Arias, E. Maldonado, JL. Parouty
# ------------------------------------------------------------------
# Initial version by JL Parouty, feb 2020
import numpy as np
import math
import random
import datetime, time
import matplotlib
import matplotlib.pyplot as plt
from IPython.display import display,Markdown,HTML
class RegressionCooker():
__version__ = '0.1'
def __init__(self, mplstyle='../fidle/mplstyles/custom.mplstyle'):
print('\nFIDLE 2020 - Regression Cooker')
print('Version :', self.__version__)
print('Run time : {}'.format(time.strftime("%A %-d %B %Y, %H:%M:%S")))
if mplstyle is not None:
matplotlib.style.use(mplstyle)
@classmethod
def about(cls):
print('\nFIDLE 2020 - Regression Cooker)')
print('Version :', cls.version)
@classmethod
def vector_infos(cls,name,V):
"""
Show some nice infos about a vector
args:
name : vector name
V : vector
"""
m=V.mean(axis=0).item()
s=V.std(axis=0).item()
print("{:16} : mean={:8.3f} std={:8.3f} min={:8.3f} max={:8.3f}".format(name,m,s,V.min(),V.max()))
def get_dataset(self,n):
"""
Return a dataset of n observation
args:
n : dataset size
return:
X,Y : with X shapes = (n,1) Y shape = (n,)
"""
xob_min = 0 # x min and max
xob_max = 10
a_min = -30 # a min and max
a_max = 30
b_min = -10 # b min and max
b_max = 10
noise_min = 10 # noise min and max
noise_max = 50
a0 = random.randint(a_min,a_max)
b0 = random.randint(b_min,b_max)
noise = random.randint(noise_min,noise_max)
# ---- Construction du jeu d'apprentissage ---------------
# X,Y : données brutes
X = np.random.uniform(xob_min,xob_max,(n,1))
N = noise * np.random.normal(0,1,(n,1))
Y = a0*X + b0 + N
return X,Y
def plot_dataset(self,X,Y,title='Dataset :',width=12,height=6):
"""
Plot dataset X,Y
args:
X : Observations
Y : Values
"""
nb_viz = min(1000,len(X))
display(Markdown(f'### {title}'))
print(f"X shape : {X.shape} Y shape : {Y.shape} plot : {nb_viz} points")
plt.figure(figsize=(width, height))
plt.plot(X[:nb_viz], Y[:nb_viz], '.')
plt.show()
self.vector_infos('X',X)
self.vector_infos('Y',Y)
def __plot_theta(self, i, theta,x_min,x_max, loss,gradient,alpha):
Xd = np.array([[x_min], [x_max]])
Yd = Xd * theta.item(1) + theta.item(0)
plt.plot(Xd, Yd, color=(1.,0.4,0.3,alpha))
if i<0:
print( " #i Loss Gradient Theta")
else:
print(" {:3d} {:+7.3f} {:+7.3f} {:+7.3f} {:+7.3f} {:+7.3f}".format(i,loss,gradient.item(0),gradient.item(1),theta.item(0),theta.item(1)))
def __plot_XY(self, X,Y,width=12,height=6):
nb_viz = min(1000,len(X))
plt.figure(figsize=(width, height))
plt.plot(X[:nb_viz], Y[:nb_viz], '.')
plt.tick_params(axis='both', which='both', bottom=False, left=False, labelbottom=False, labelleft=False)
plt.xlabel('x axis')
plt.ylabel('y axis')
def __plot_loss(self,loss, width=8,height=4):
plt.figure(figsize=(width, height))
plt.tick_params(axis='both', which='both', bottom=False, left=False, labelbottom=False, labelleft=False)
plt.ylim(0, 20)
plt.plot(range(len(loss)), loss)
plt.xlabel('Iterations')
plt.ylabel('Loss')
def basic_descent(self, X, Y, epochs=200, eta=0.01,width=12,height=6):
"""
Performs a gradient descent where the gradient is updated at the end
of each iteration for all observations.
args:
X,Y : Observations
epochs : Number of epochs (200)
eta : learning rate
width,height : graphic size
return:
theta : theta
"""
display(Markdown(f'### Basic gradient descent :'))
display(Markdown(f'**With :** '))
print('with :')
print(f' epochs = {epochs}')
print(f' eta = {eta}')
display(Markdown(f'**epochs :** '))
x_min = X.min()
x_max = X.max()
y_min = Y.min()
y_max = Y.max()
n = len(X)
# ---- Initialization
theta = np.array([[y_min],[0]])
X_b = np.c_[np.ones((n, 1)), X]
# ---- Visualization
self.__plot_XY(X,Y,width,height)
self.__plot_theta( -1, theta,x_min,x_max, None,None,0.1)
# ---- Training
loss=[]
for i in range(epochs+1):
gradient = (2/n) * X_b.T @ ( X_b @ theta - Y)
mse = ((X_b @ theta - Y)**2).mean(axis=None)
theta = theta - eta * gradient
loss.append(mse)
if (i % (epochs/10))==0:
self.__plot_theta( i, theta,x_min,x_max, mse,gradient,i/epochs)
# ---- Visualization
display(Markdown(f'**Visualization :** '))
plt.show()
display(Markdown(f'**Loss :** '))
self.__plot_loss(loss)
plt.show()
return theta
def minibatch_descent(self, X, Y, epochs=200, batchs=5, batch_size=10, eta=0.01,width=12,height=6):
"""
Performs a gradient descent where the gradient is updated at the end
of each iteration for all observations.
args:
X,Y : Observations
epochs : Number of epochs (200)
eta : learning rate
width,height : graphic size
return:
theta : theta
"""
display(Markdown(f'### Mini batch gradient descent :'))
display(Markdown(f'**With :** '))
print('with :')
print(f' epochs = {epochs}')
print(f' batchs = {batchs}')
print(f' batch size = {batch_size}')
print(f' eta = {eta}')
display(Markdown(f'**epochs :** '))
x_min = X.min()
x_max = X.max()
y_min = Y.min()
y_max = Y.max()
n = len(X)
# ---- Initialization
theta = np.array([[y_min],[0]])
X_b = np.c_[np.ones((n, 1)), X]
# ---- Visualization
self.__plot_XY(X,Y,width,height)
self.__plot_theta( -1, theta,x_min,x_max, None,None,0.1)
# ---- Training
def learning_schedule(t):
return 1 / (t + 100)
loss=[]
for epoch in range(epochs):
for i in range(batchs):
random_index = np.random.randint(n-batch_size)
xi = X_b[random_index:random_index+batch_size]
yi = Y[random_index:random_index+batch_size]
mse = ((xi @ theta - yi)**2).mean(axis=None)
gradient = 2 * xi.T.dot(xi.dot(theta) - yi)
eta = learning_schedule(epoch*150)
theta = theta - eta * gradient
loss.append(mse)
self.__plot_theta( epoch, theta,x_min,x_max, mse,gradient,epoch/epochs)
# draw_theta(epoch,mse,gradients, theta,0.1+epoch/(n_epochs+1))
# draw_theta(epoch,mse,gradients,theta,1)
# ---- Visualization
display(Markdown(f'**Visualization :** '))
plt.show()
display(Markdown(f'**Loss :** '))
self.__plot_loss(loss)
plt.show()
return theta
\ No newline at end of file
......@@ -35,7 +35,7 @@ Useful information is also available in the [wiki](https://gricad-gitlab.univ-gr
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Direct determination of linear regression
[[GRAD1] - Linear regression with gradient descent](LinearReg/02-Gradient-descent.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;An example of gradient descent in the simple case of a linear regression.
[[FIT1] - Complexity Syndrome](LinearReg/03-Polynomial-Regression.ipynb)
[[POLR1] - Complexity Syndrome](LinearReg/03-Polynomial-Regression.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Illustration of the problem of complexity with the polynomial regression
[[LOGR1] - Logistic regression, in pure Tensorflow](LinearReg/04-Logistic-Regression.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Logistic Regression with Mini-Batch Gradient Descent using pure TensorFlow.
......
......@@ -31,7 +31,7 @@ import seaborn as sn #IDRIS : module en cours d'installation
from IPython.display import display,Markdown,HTML
VERSION='0.2.9'
VERSION='0.4.0'
# -------------------------------------------------------------
......@@ -390,7 +390,11 @@ def good_place( places={'SOMEWHERE':'/tmp'} ):
print('** Attention : No expected folder exists in this environment..')
assert False, 'No expected folder exists in this environment..'
def np_print(*args, format={'float': '{:6.3f}'.format}):
with np.printoptions(formatter=format):
for a in args:
print(a)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment