Update notebooks for continous integration
Showing
- BHPD/01-DNN-Regression.ipynb 568 additions, 548 deletionsBHPD/01-DNN-Regression.ipynb
- BHPD/02-DNN-Regression-Premium.ipynb 449 additions, 429 deletionsBHPD/02-DNN-Regression-Premium.ipynb
- IRIS/01-Simple-Perceptron.ipynb 29 additions, 10 deletionsIRIS/01-Simple-Perceptron.ipynb
- README.ipynb 5 additions, 0 deletionsREADME.ipynb
- fidle/02 - Finished report.ipynb 53 additions, 25 deletionsfidle/02 - Finished report.ipynb
- fidle/cooker.py 6 additions, 6 deletionsfidle/cooker.py
- fidle/log/ci_report.html 52 additions, 24 deletionsfidle/log/ci_report.html
- fidle/log/finished.json 18 additions, 0 deletionsfidle/log/finished.json
source diff could not be displayed: it is too large. Options to address this: view the blob.
source diff could not be displayed: it is too large. Options to address this: view the blob.
This diff is collapsed.
%% Cell type:code id: tags: | %% Cell type:code id: tags: | ||
``` | ``` python | ||
from IPython.display import display,Markdown | from IPython.display import display,Markdown | ||
display(Markdown(open('README.md', 'r').read())) | display(Markdown(open('README.md', 'r').read())) | ||
# | # | ||
# This README is visible under Jupiter LAb ! :-) | # This README is visible under Jupiter LAb ! :-) | ||
``` | ``` | ||
%% Output | %% Output | ||
<a name="top"></a> | <a name="top"></a> | ||
[<img width="600px" src="fidle/img/00-Fidle-titre-01.svg"></img>](#top) | [<img width="600px" src="fidle/img/00-Fidle-titre-01.svg"></img>](#top) | ||
<!-- --------------------------------------------------- --> | <!-- --------------------------------------------------- --> | ||
<!-- To correctly view this README under Jupyter Lab --> | <!-- To correctly view this README under Jupyter Lab --> | ||
<!-- Open the notebook: README.ipynb! --> | <!-- Open the notebook: README.ipynb! --> | ||
<!-- --------------------------------------------------- --> | <!-- --------------------------------------------------- --> | ||
## A propos | ## A propos | ||
This repository contains all the documents and links of the **Fidle Training** . | This repository contains all the documents and links of the **Fidle Training** . | ||
Fidle (for Formation Introduction au Deep Learning) is a 2-day training session | Fidle (for Formation Introduction au Deep Learning) is a 2-day training session | ||
co-organized by the Formation Permanente CNRS and the SARI and DEVLOG networks. | co-organized by the Formation Permanente CNRS and the SARI and DEVLOG networks. | ||
The objectives of this training are : | The objectives of this training are : | ||
- Understanding the **bases of Deep Learning** neural networks | - Understanding the **bases of Deep Learning** neural networks | ||
- Develop a **first experience** through simple and representative examples | - Develop a **first experience** through simple and representative examples | ||
- Understanding **Tensorflow/Keras** and **Jupyter lab** technologies | - Understanding **Tensorflow/Keras** and **Jupyter lab** technologies | ||
- Apprehend the **academic computing environments** Tier-2 or Tier-1 with powerfull GPU | - Apprehend the **academic computing environments** Tier-2 or Tier-1 with powerfull GPU | ||
For more information, you can contact us at : | For more information, you can contact us at : | ||
[<img width="200px" style="vertical-align:middle" src="fidle/img/00-Mail_contact.svg"></img>](#top) | [<img width="200px" style="vertical-align:middle" src="fidle/img/00-Mail_contact.svg"></img>](#top) | ||
Current Version : <!-- VERSION_BEGIN --> | Current Version : <!-- VERSION_BEGIN --> | ||
0.6.1 DEV | 0.6.1 DEV | ||
<!-- VERSION_END --> | <!-- VERSION_END --> | ||
## Course materials | ## Course materials | ||
| | | | | | | | | | ||
|:--:|:--:|:--:| | |:--:|:--:|:--:| | ||
| **[<img width="50px" src="fidle/img/00-Fidle-pdf.svg"></img><br>Course slides](https://cloud.univ-grenoble-alpes.fr/index.php/s/wxCztjYBbQ6zwd6)**<br>The course in pdf format<br>(12 Mo)| **[<img width="50px" src="fidle/img/00-Notebooks.svg"></img><br>Notebooks](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/archive/master/fidle-master.zip)**<br> Get a Zip or clone this repository <br>(10 Mo)| **[<img width="50px" src="fidle/img/00-Datasets-tar.svg"></img><br>Datasets](https://cloud.univ-grenoble-alpes.fr/index.php/s/wxCztjYBbQ6zwd6)**<br>All the needed datasets<br>(1.2 Go)| | | **[<img width="50px" src="fidle/img/00-Fidle-pdf.svg"></img><br>Course slides](https://cloud.univ-grenoble-alpes.fr/index.php/s/wxCztjYBbQ6zwd6)**<br>The course in pdf format<br>(12 Mo)| **[<img width="50px" src="fidle/img/00-Notebooks.svg"></img><br>Notebooks](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/archive/master/fidle-master.zip)**<br> Get a Zip or clone this repository <br>(10 Mo)| **[<img width="50px" src="fidle/img/00-Datasets-tar.svg"></img><br>Datasets](https://cloud.univ-grenoble-alpes.fr/index.php/s/wxCztjYBbQ6zwd6)**<br>All the needed datasets<br>(1.2 Go)| | ||
Have a look about **[How to get and install](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Install-Fidle)** these notebooks and datasets. | Have a look about **[How to get and install](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Install-Fidle)** these notebooks and datasets. | ||
## Jupyter notebooks | ## Jupyter notebooks | ||
<!-- INDEX_BEGIN --> | <!-- INDEX_BEGIN --> | ||
| | | | | | | | ||
|--|--| | |--|--| | ||
|LINR1| [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb)<br>Direct determination of linear regression | | |LINR1| [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb)<br>Direct determination of linear regression | | ||
|GRAD1| [Linear regression with gradient descent](LinearReg/02-Gradient-descent.ipynb)<br>An example of gradient descent in the simple case of a linear regression.| | |GRAD1| [Linear regression with gradient descent](LinearReg/02-Gradient-descent.ipynb)<br>An example of gradient descent in the simple case of a linear regression.| | ||
|POLR1| [Complexity Syndrome](LinearReg/03-Polynomial-Regression.ipynb)<br>Illustration of the problem of complexity with the polynomial regression| | |POLR1| [Complexity Syndrome](LinearReg/03-Polynomial-Regression.ipynb)<br>Illustration of the problem of complexity with the polynomial regression| | ||
|LOGR1| [Logistic regression, in pure Tensorflow](LinearReg/04-Logistic-Regression.ipynb)<br>Logistic Regression with Mini-Batch Gradient Descent using pure TensorFlow. | | |LOGR1| [Logistic regression, in pure Tensorflow](LinearReg/04-Logistic-Regression.ipynb)<br>Logistic Regression with Mini-Batch Gradient Descent using pure TensorFlow. | | ||
|PER57| [Perceptron Model 1957](IRIS/01-Simple-Perceptron.ipynb)<br>A simple perceptron, with the IRIS dataset.| | |PER57| [Perceptron Model 1957](IRIS/01-Simple-Perceptron.ipynb)<br>A simple perceptron, with the IRIS dataset.| | ||
|BHP1| [Regression with a Dense Network (DNN)](BHPD/01-DNN-Regression.ipynb)<br>A Simple regression with a Dense Neural Network (DNN) - BHPD dataset| | |BHP1| [Regression with a Dense Network (DNN)](BHPD/01-DNN-Regression.ipynb)<br>A Simple regression with a Dense Neural Network (DNN) - BHPD dataset| | ||
|BHP2| [Regression with a Dense Network (DNN) - Advanced code](BHPD/02-DNN-Regression-Premium.ipynb)<br>More advanced example of DNN network code - BHPD dataset| | |BHP2| [Regression with a Dense Network (DNN) - Advanced code](BHPD/02-DNN-Regression-Premium.ipynb)<br>More advanced example of DNN network code - BHPD dataset| | ||
|MNIST1| [Simple classification with DNN](MNIST/01-DNN-MNIST.ipynb)<br>Example of classification with a fully connected neural network| | |MNIST1| [Simple classification with DNN](MNIST/01-DNN-MNIST.ipynb)<br>Example of classification with a fully connected neural network| | ||
|GTS1| [CNN with GTSRB dataset - Data analysis and preparation](GTSRB/01-Preparation-of-data.ipynb)<br>Episode 1 : Data analysis and creation of a usable dataset| | |GTS1| [CNN with GTSRB dataset - Data analysis and preparation](GTSRB/01-Preparation-of-data.ipynb)<br>Episode 1 : Data analysis and creation of a usable dataset| | ||
|GTS2| [CNN with GTSRB dataset - First convolutions](GTSRB/02-First-convolutions.ipynb)<br>Episode 2 : First convolutions and first results| | |GTS2| [CNN with GTSRB dataset - First convolutions](GTSRB/02-First-convolutions.ipynb)<br>Episode 2 : First convolutions and first results| | ||
|GTS3| [CNN with GTSRB dataset - Monitoring ](GTSRB/03-Tracking-and-visualizing.ipynb)<br>Episode 3 : Monitoring and analysing training, managing checkpoints| | |GTS3| [CNN with GTSRB dataset - Monitoring ](GTSRB/03-Tracking-and-visualizing.ipynb)<br>Episode 3 : Monitoring and analysing training, managing checkpoints| | ||
|GTS4| [CNN with GTSRB dataset - Data augmentation ](GTSRB/04-Data-augmentation.ipynb)<br>Episode 4 : Improving the results with data augmentation| | |GTS4| [CNN with GTSRB dataset - Data augmentation ](GTSRB/04-Data-augmentation.ipynb)<br>Episode 4 : Improving the results with data augmentation| | ||
|GTS5| [CNN with GTSRB dataset - Full convolutions ](GTSRB/05-Full-convolutions.ipynb)<br>Episode 5 : A lot of models, a lot of datasets and a lot of results.| | |GTS5| [CNN with GTSRB dataset - Full convolutions ](GTSRB/05-Full-convolutions.ipynb)<br>Episode 5 : A lot of models, a lot of datasets and a lot of results.| | ||
|GTS6| [CNN with GTSRB dataset - Full convolutions as a batch](GTSRB/06-Notebook-as-a-batch.ipynb)<br>Episode 6 : Run Full convolution notebook as a batch| | |GTS6| [CNN with GTSRB dataset - Full convolutions as a batch](GTSRB/06-Notebook-as-a-batch.ipynb)<br>Episode 6 : Run Full convolution notebook as a batch| | ||
|GTS7| [CNN with GTSRB dataset - Show reports](GTSRB/07-Show-report.ipynb)<br>Episode 7 : Displaying the reports of the different jobs| | |GTS7| [CNN with GTSRB dataset - Show reports](GTSRB/07-Show-report.ipynb)<br>Episode 7 : Displaying the reports of the different jobs| | ||
|TSB1| [Tensorboard with/from Jupyter ](GTSRB/99-Scripts-Tensorboard.ipynb)<br>4 ways to use Tensorboard from the Jupyter environment| | |TSB1| [Tensorboard with/from Jupyter ](GTSRB/99-Scripts-Tensorboard.ipynb)<br>4 ways to use Tensorboard from the Jupyter environment| | ||
|IMDB1| [Text embedding with IMDB](IMDB/01-Embedding-Keras.ipynb)<br>A very classical example of word embedding for text classification (sentiment analysis)| | |IMDB1| [Text embedding with IMDB](IMDB/01-Embedding-Keras.ipynb)<br>A very classical example of word embedding for text classification (sentiment analysis)| | ||
|IMDB2| [Text embedding with IMDB - Reloaded](IMDB/02-Prediction.ipynb)<br>Example of reusing a previously saved model| | |IMDB2| [Text embedding with IMDB - Reloaded](IMDB/02-Prediction.ipynb)<br>Example of reusing a previously saved model| | ||
|IMDB3| [Text embedding/LSTM model with IMDB](IMDB/03-LSTM-Keras.ipynb)<br>Still the same problem, but with a network combining embedding and LSTM| | |IMDB3| [Text embedding/LSTM model with IMDB](IMDB/03-LSTM-Keras.ipynb)<br>Still the same problem, but with a network combining embedding and LSTM| | ||
|SYNOP1| [Time series with RNN - Preparation of data](SYNOP/01-Preparation-of-data.ipynb)<br>Episode 1 : Data analysis and creation of a usable dataset| | |SYNOP1| [Time series with RNN - Preparation of data](SYNOP/01-Preparation-of-data.ipynb)<br>Episode 1 : Data analysis and creation of a usable dataset| | ||
|SYNOP2| [Time series with RNN - Try a prediction](SYNOP/02-First-predictions.ipynb)<br>Episode 2 : Training session and first predictions| | |SYNOP2| [Time series with RNN - Try a prediction](SYNOP/02-First-predictions.ipynb)<br>Episode 2 : Training session and first predictions| | ||
|SYNOP3| [Time series with RNN - 12h predictions](SYNOP/03-12h-predictions.ipynb)<br>Episode 3: Attempt to predict in the longer term | | |SYNOP3| [Time series with RNN - 12h predictions](SYNOP/03-12h-predictions.ipynb)<br>Episode 3: Attempt to predict in the longer term | | ||
|VAE1| [Variational AutoEncoder (VAE) with MNIST](VAE/01-VAE-with-MNIST.nbconvert.ipynb)<br>Episode 1 : Model construction and Training| | |VAE1| [Variational AutoEncoder (VAE) with MNIST](VAE/01-VAE-with-MNIST.nbconvert.ipynb)<br>Episode 1 : Model construction and Training| | ||
|VAE2| [Variational AutoEncoder (VAE) with MNIST - Analysis](VAE/02-VAE-with-MNIST-post.ipynb)<br>Episode 2 : Exploring our latent space| | |VAE2| [Variational AutoEncoder (VAE) with MNIST - Analysis](VAE/02-VAE-with-MNIST-post.ipynb)<br>Episode 2 : Exploring our latent space| | ||
|VAE3| [About the CelebA dataset](VAE/03-About-CelebA.ipynb)<br>Episode 3 : About the CelebA dataset, a more fun dataset ;-)| | |VAE3| [About the CelebA dataset](VAE/03-About-CelebA.ipynb)<br>Episode 3 : About the CelebA dataset, a more fun dataset ;-)| | ||
|VAE4| [Preparation of the CelebA dataset](VAE/04-Prepare-CelebA-datasets.ipynb)<br>Episode 4 : Preparation of a clustered dataset, batchable| | |VAE4| [Preparation of the CelebA dataset](VAE/04-Prepare-CelebA-datasets.ipynb)<br>Episode 4 : Preparation of a clustered dataset, batchable| | ||
|VAE5| [Checking the clustered CelebA dataset](VAE/05-Check-CelebA.ipynb)<br>Episode 5 : Checking the clustered dataset| | |VAE5| [Checking the clustered CelebA dataset](VAE/05-Check-CelebA.ipynb)<br>Episode 5 : Checking the clustered dataset| | ||
|VAE6| [Variational AutoEncoder (VAE) with CelebA (small)](VAE/06-VAE-with-CelebA-s.nbconvert.ipynb)<br>Episode 6 : Variational AutoEncoder (VAE) with CelebA (small res.)| | |VAE6| [Variational AutoEncoder (VAE) with CelebA (small)](VAE/06-VAE-with-CelebA-s.nbconvert.ipynb)<br>Episode 6 : Variational AutoEncoder (VAE) with CelebA (small res.)| | ||
|VAE7| [Variational AutoEncoder (VAE) with CelebA (medium)](VAE/07-VAE-with-CelebA-m.nbconvert.ipynb)<br>Episode 7 : Variational AutoEncoder (VAE) with CelebA (medium res.)| | |VAE7| [Variational AutoEncoder (VAE) with CelebA (medium)](VAE/07-VAE-with-CelebA-m.nbconvert.ipynb)<br>Episode 7 : Variational AutoEncoder (VAE) with CelebA (medium res.)| | ||
|VAE8| [Variational AutoEncoder (VAE) with CelebA - Analysis](VAE/08-VAE-withCelebA-post.ipynb)<br>Episode 8 : Exploring latent space of our trained models| | |VAE8| [Variational AutoEncoder (VAE) with CelebA - Analysis](VAE/08-VAE-withCelebA-post.ipynb)<br>Episode 8 : Exploring latent space of our trained models| | ||
|ACTF1| [Activation functions](Misc/Activation-Functions.ipynb)<br>Some activation functions, with their derivatives.| | |ACTF1| [Activation functions](Misc/Activation-Functions.ipynb)<br>Some activation functions, with their derivatives.| | ||
|NP1| [A short introduction to Numpy](Misc/Numpy.ipynb)<br>Numpy is an essential tool for the Scientific Python.| | |NP1| [A short introduction to Numpy](Misc/Numpy.ipynb)<br>Numpy is an essential tool for the Scientific Python.| | ||
<!-- INDEX_END --> | <!-- INDEX_END --> | ||
## Installation | ## Installation | ||
A procedure for **configuring** and **starting Jupyter** is available in the **[Wiki](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Install-Fidle)**. | A procedure for **configuring** and **starting Jupyter** is available in the **[Wiki](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Install-Fidle)**. | ||
## Licence | ## Licence | ||
[<img width="100px" src="fidle/img/00-fidle-CC BY-NC-SA.svg"></img>](https://creativecommons.org/licenses/by-nc-sa/4.0/) | [<img width="100px" src="fidle/img/00-fidle-CC BY-NC-SA.svg"></img>](https://creativecommons.org/licenses/by-nc-sa/4.0/) | ||
\[en\] Attribution - NonCommercial - ShareAlike 4.0 International (CC BY-NC-SA 4.0) | \[en\] Attribution - NonCommercial - ShareAlike 4.0 International (CC BY-NC-SA 4.0) | ||
\[Fr\] Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International | \[Fr\] Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International | ||
See [License](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). | See [License](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). | ||
See [Disclaimer](https://creativecommons.org/licenses/by-nc-sa/4.0/#). | See [Disclaimer](https://creativecommons.org/licenses/by-nc-sa/4.0/#). | ||
---- | ---- | ||
[<img width="80px" src="fidle/img/00-Fidle-logo-01.svg"></img>](#top) | [<img width="80px" src="fidle/img/00-Fidle-logo-01.svg"></img>](#top) | ||
... | ... |
Please register or sign in to comment