Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"German Traffic Sign Recognition Benchmark (GTSRB)\n",
"=================================================\n",
"---\n",
"Introduction au Deep Learning (IDLE) - S. Arias, E. Maldonado, JL. Parouty - CNRS/SARI/DEVLOG - 2020 \n",
"\n",
"## Episode 1 : Preparation of data\n",
"\n",
" - Understanding the dataset\n",
" - Preparing and formatting enhanced data\n",
" - Save enhanced datasets in h5 file format\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1/ Import and init"
]
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"import os, time, sys\n",
"import csv\n",
"import math, random\n",
"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from skimage.morphology import disk\n",
"from skimage.filters import rank\n",
"ooo.init()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2/ Read the dataset\n",
"Description is available there : http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset\n",
" - Each directory contains one CSV file with annotations (\"GT-<ClassID>.csv\") and the training images\n",
" - First line is fieldnames: Filename;Width;Height;Roi.X1;Roi.Y1;Roi.X2;Roi.Y2;ClassId \n",
" \n",
"### 2.1/ Usefull functions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def read_dataset_dir(csv_filename):\n",
" '''Reads traffic sign data from German Traffic Sign Recognition Benchmark dataset.\n",
"\n",
" Arguments: csv filename\n",
" Example /data/GTSRB/Train.csv\n",
" Returns: np array of images, np array of corresponding labels'''\n",
"\n",
" # ---- csv filename and path\n",
" #\n",
" name=os.path.basename(csv_filename)\n",
" path=os.path.dirname(csv_filename)\n",
" \n",
" # ---- Read csv file\n",
" #\n",
" f,x,y = [],[],[]\n",
" with open(csv_filename) as csv_file:\n",
" reader = csv.DictReader(csv_file, delimiter=',')\n",
" for row in reader:\n",
" f.append( path+'/'+row['Path'] )\n",
" y.append( int(row['ClassId']) )\n",
" csv_file.close()\n",
" nb_images = len(f)\n",
"\n",
" # ---- Read images\n",
" #\n",
" for filename in f:\n",
" x.append(image)\n",
" ooo.update_progress(name,len(x),nb_images)\n",
" # ---- Return\n",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will read the following datasets:\n",
" - **x_train, y_train** : Learning data\n",
" - **x_test, y_test** : Validation or test data\n",
" - x_meta, y_meta : Illustration data\n",
" \n",
"The learning data will be randomly mixted and the illustration data sorted. \n",
"Will take about 2-3'"
"execution_count": null,
"outputs": [],
"source": [
"%%time\n",
"\n",
"# ---- Read datasets\n",
"(x_train,y_train) = read_dataset_dir('./data/origine/Train.csv')\n",
"(x_test ,y_test) = read_dataset_dir('./data/origine/Test.csv')\n",
"(x_meta ,y_meta) = read_dataset_dir('./data/origine/Meta.csv')\n",
" \n",
"# ---- Shuffle train set\n",
"combined = list(zip(x_train,y_train))\n",
"random.shuffle(combined)\n",
"x_train,y_train = zip(*combined)\n",
"\n",
"# ---- Sort Meta\n",
"combined = list(zip(x_meta,y_meta))\n",
"combined.sort(key=lambda x: x[1])\n",
"x_meta,y_meta = zip(*combined)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3/ Few statistics about train dataset\n",
"We want to know if our images are homogeneous in terms of size, ratio, width or height.\n",
"\n",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_size = []\n",
"train_ratio = []\n",
"train_lx = []\n",
"train_ly = []\n",
"\n",
"test_size = []\n",
"test_ratio = []\n",
"test_lx = []\n",
"test_ly = []\n",
"\n",
"for image in x_train:\n",
" train_size.append(lx*ly/1024)\n",
" train_ratio.append(lx/ly)\n",
" train_lx.append(lx)\n",
" train_ly.append(ly)\n",
"\n",
"for image in x_test:\n",
" test_size.append(lx*ly/1024)\n",
" test_ratio.append(lx/ly)\n",
" test_lx.append(lx)\n",
" test_ly.append(ly)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"execution_count": null,
"outputs": [],
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
"source": [
"# ------ Global stuff\n",
"print(\"x_train size : \",len(x_train))\n",
"print(\"y_train size : \",len(y_train))\n",
"print(\"x_test size : \",len(x_test))\n",
"print(\"y_test size : \",len(y_test))\n",
"\n",
"# ------ Statistics / sizes\n",
"plt.figure(figsize=(16,6))\n",
"plt.hist([train_size,test_size], bins=100)\n",
"plt.gca().set(title='Sizes in Kpixels - Train=[{:5.2f}, {:5.2f}]'.format(min(train_size),max(train_size)), \n",
" ylabel='Population',\n",
" xlim=[0,30])\n",
"plt.legend(['Train','Test'])\n",
"plt.show()\n",
"\n",
"# ------ Statistics / ratio lx/ly\n",
"plt.figure(figsize=(16,6))\n",
"plt.hist([train_ratio,test_ratio], bins=100)\n",
"plt.gca().set(title='Ratio lx/ly - Train=[{:5.2f}, {:5.2f}]'.format(min(train_ratio),max(train_ratio)), \n",
" ylabel='Population',\n",
" xlim=[0.8,1.2])\n",
"plt.legend(['Train','Test'])\n",
"plt.show()\n",
"\n",
"# ------ Statistics / lx\n",
"plt.figure(figsize=(16,6))\n",
"plt.hist([train_lx,test_lx], bins=100)\n",
"plt.gca().set(title='Images lx - Train=[{:5.2f}, {:5.2f}]'.format(min(train_lx),max(train_lx)), \n",
" ylabel='Population',\n",
" xlim=[20,150])\n",
"plt.legend(['Train','Test'])\n",
"plt.show()\n",
"\n",
"# ------ Statistics / ly\n",
"plt.figure(figsize=(16,6))\n",
"plt.hist([train_ly,test_ly], bins=100)\n",
"plt.gca().set(title='Images ly - Train=[{:5.2f}, {:5.2f}]'.format(min(train_ly),max(train_ly)), \n",
" ylabel='Population',\n",
" xlim=[20,150])\n",
"plt.legend(['Train','Test'])\n",
"plt.show()\n",
"\n",
"# ------ Statistics / classId\n",
"plt.figure(figsize=(16,6))\n",
"plt.hist([y_train,y_test], bins=43)\n",
"plt.gca().set(title='ClassesId', \n",
" ylabel='Population',\n",
" xlim=[0,43])\n",
"plt.legend(['Train','Test'])\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4/ List of classes\n",
"What are the 43 classes of our images..."
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"ooo.plot_images(x_meta,y_meta, range(43), columns=8, x_size=2, y_size=2, \n",
" colorbar=False, y_pred=None, cm='binary')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5/ What does it really look like"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"# ---- Get and show few images\n",
"\n",
"samples = [ random.randint(0,len(x_train)-1) for i in range(32)]\n",
"ooo.plot_images(x_train,y_train, samples, columns=8, x_size=2, y_size=2, colorbar=False, y_pred=None, cm='binary')\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6/ dataset cooking...\n",
"\n",
"Images must have the **same size** to match the size of the network. \n",
"It is possible to work on **rgb** or **monochrome** images and **equalize** the histograms. \n",
"The data must be **normalized**. \n",
"\n",
"See : [Exposure with scikit-image](https://scikit-image.org/docs/dev/api/skimage.exposure.html) \n",
"See : [Local histogram equalization](https://scikit-image.org/docs/dev/api/skimage.filters.rank.html#skimage.filters.rank.equalize) \n",
"See : [Histogram equalization](https://scikit-image.org/docs/dev/api/skimage.exposure.html#skimage.exposure.equalize_hist) \n",
"\n",
"### 6.1/ Enhancement cook"
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def images_enhancement(images, width=25, height=25, mode='RGB'):\n",
" '''\n",
" Resize and convert images - doesn't change originals.\n",
" input images must be RGBA or RGB.\n",
" args:\n",
" images : images list\n",
" width,height : new images size (25,25)\n",
" mode : RGB | RGB-HE | L | L-HE | L-LHE | L-CLAHE\n",
" modes = { 'RGB':3, 'RGB-HE':3, 'L':1, 'L-HE':1, 'L-LHE':1, 'L-CLAHE':1}\n",
" lz=modes[mode]\n",
" # ---- if RGBA, convert to RGB\n",
" if img.shape[2]==4:\n",
" img=color.rgba2rgb(img)\n",
" \n",
"\n",
" # ---- RGB / Histogram Equalization\n",
" if mode=='RGB-HE':\n",
" hsv = color.rgb2hsv(img.reshape(width,height,3))\n",
" hsv[:, :, 2] = exposure.equalize_hist(hsv[:, :, 2])\n",
" img = color.hsv2rgb(hsv)\n",
" # ---- Grayscale\n",
" if mode=='L':\n",
" img=color.rgb2gray(img)\n",
" # ---- Grayscale / Histogram Equalization\n",
" if mode=='L-HE':\n",
" img=color.rgb2gray(img)\n",
" img=exposure.equalize_hist(img)\n",
" # ---- Grayscale / Local Histogram Equalization\n",
" if mode=='L-LHE':\n",
" img=color.rgb2gray(img)\n",
" img=rank.equalize(img, disk(10))/255.\n",
" # ---- Grayscale / Contrast Limited Adaptive Histogram Equalization (CLAHE)\n",
" if mode=='L-CLAHE':\n",
" img=color.rgb2gray(img)\n",
" img=exposure.equalize_adapthist(img)\n",
" \n",
" ooo.update_progress('Enhancement: ',len(out),len(images))\n",
"\n",
" # ---- Reshape images\n",
" # (-1, width,height,1) for L\n",
" # (-1, width,height,3) for RGB\n",
" #\n",
" out = np.array(out,dtype='float64')\n",
" out = out.reshape(-1,width,height,lz)\n",
" return out"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 6.2/ To get an idea of the different recipes"
"execution_count": null,
"outputs": [],
"i=random.randint(0,len(x_train)-16)\n",
"x_samples = x_train[i:i+16]\n",
"y_samples = y_train[i:i+16]\n",
"\n",
"datasets = {}\n",
"\n",
"datasets['RGB'] = images_enhancement( x_samples, width=25, height=25, mode='RGB' )\n",
"datasets['RGB-HE'] = images_enhancement( x_samples, width=25, height=25, mode='RGB-HE' )\n",
"datasets['L'] = images_enhancement( x_samples, width=25, height=25, mode='L' )\n",
"datasets['L-HE'] = images_enhancement( x_samples, width=25, height=25, mode='L-HE' )\n",
"datasets['L-LHE'] = images_enhancement( x_samples, width=25, height=25, mode='L-LHE' )\n",
"datasets['L-CLAHE'] = images_enhancement( x_samples, width=25, height=25, mode='L-CLAHE' )\n",
"\n",
"print('\\nEXPECTED (Meta) :\\n')\n",
"x_expected=[ x_meta[i] for i in y_samples]\n",
"ooo.plot_images(x_expected, y_samples, range(16), columns=16, x_size=1, y_size=1, colorbar=False, y_pred=None, cm='binary')\n",
"\n",
"print('\\nORIGINAL IMAGES :\\n')\n",
"ooo.plot_images(x_samples, y_samples, range(16), columns=16, x_size=1, y_size=1, colorbar=False, y_pred=None, cm='binary')\n",
"\n",
"print('\\nENHANCED :\\n')\n",
"for k,d in datasets.items():\n",
" print(\"dataset : {} min,max=[{:.3f},{:.3f}] shape={}\".format(k,d.min(),d.max(), d.shape))\n",
" ooo.plot_images(d, y_samples, range(16), columns=16, x_size=1, y_size=1, colorbar=False, y_pred=None, cm='binary')\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A function to save a dataset"
]
},
{
"cell_type": "code",
"def save_h5_dataset(x_train, y_train, x_test, y_test, x_meta,y_meta, h5name):\n",
" \n",
" # ---- Filename\n",
" filename='./data/'+h5name\n",
" \n",
" # ---- Create h5 file\n",
" with h5py.File(filename, \"w\") as f:\n",
" f.create_dataset(\"x_train\", data=x_train)\n",
" f.create_dataset(\"y_train\", data=y_train)\n",
" f.create_dataset(\"x_test\", data=x_test)\n",
" f.create_dataset(\"y_test\", data=y_test)\n",
" f.create_dataset(\"x_meta\", data=x_meta)\n",
" f.create_dataset(\"y_meta\", data=y_meta)\n",
" \n",
" # ---- done\n",
" size=os.path.getsize(filename)/(1024*1024)\n",
" print('Dataset : {:24s} shape : {:22s} size : {:6.1f} Mo (saved)\\n'.format(filename, str(x_train.shape),size))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create enhanced datasets, and save them... \n",
"Will take about 7-8'"
"for s in [24, 48]:\n",
" for m in ['RGB', 'RGB-HE', 'L', 'L-LHE']:\n",
" # ---- A nice dataset name\n",
" name='set-{}x{}-{}.h5'.format(s,s,m)\n",
" print(\"\\nDataset : \",name)\n",
" # ---- Enhancement\n",
" x_train_new = images_enhancement( x_train, width=s, height=s, mode=m )\n",
" x_test_new = images_enhancement( x_test, width=s, height=s, mode=m )\n",
" x_meta_new = images_enhancement( x_meta, width=s, height=s, mode='RGB' )\n",
" save_h5_dataset( x_train_new, y_train, x_test_new, y_test, x_meta_new,y_meta, name)\n",
"\n",
"x_train_new,x_test_new=0,0\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 7/ Reload data to be sure ;-)"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"with h5py.File('./data/'+dataset+'.h5') as f:\n",
" x_tmp = f['x_train'][:]\n",
" y_tmp = f['y_train'][:]\n",
" print(\"dataset loaded from h5 file.\")\n",
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
"\n",
"ooo.plot_images(x_tmp,y_tmp, samples, columns=8, x_size=2, y_size=2, colorbar=False, y_pred=None, cm='binary')\n",
"x_tmp,y_tmp=0,0"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"----\n",
"That's all folks !"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
}
},
"nbformat": 4,
"nbformat_minor": 4
}