Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
"# <!-- TITLE --> [GTS1] - CNN with GTSRB dataset - Data analysis and preparation\n",
"<!-- DESC --> Episode 1 : Data analysis and creation of a usable dataset\n",
"<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
"## Objectives :\n",
" - Understand the **complexity associated with data**, even when it is only images\n",
" - Learn how to build up a simple and **usable image dataset**\n",
"\n",
"The German Traffic Sign Recognition Benchmark (GTSRB) is a dataset with more than 50,000 photos of road signs from about 40 classes. \n",
"The final aim is to recognise them ! \n",
"Description is available there : http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset\n",
"\n",
"\n",
"## What we're going to do :\n",
" - Preparing and formatting enhanced data\n",
" - Save enhanced datasets in h5 file format\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"outputs": [
{
"data": {
"text/html": [
"<style>\n",
"\n",
"div.warn { \n",
" background-color: #fcf2f2;\n",
" border-color: #dFb5b4;\n",
" border-left: 5px solid #dfb5b4;\n",
" padding: 0.5em;\n",
" font-weight: bold;\n",
" font-size: 1.1em;;\n",
" }\n",
"\n",
"\n",
"\n",
"div.nota { \n",
" background-color: #DAFFDE;\n",
" border-left: 5px solid #92CC99;\n",
" padding: 0.5em;\n",
" }\n",
"\n",
"div.todo:before { content:url();\n",
" float:left;\n",
" margin-right:20px;\n",
" margin-top:-20px;\n",
" margin-bottom:20px;\n",
"}\n",
"div.todo{\n",
" font-weight: bold;\n",
" font-size: 1.1em;\n",
" margin-top:40px;\n",
"}\n",
"div.todo ul{\n",
" margin: 0.2em;\n",
"}\n",
"div.todo li{\n",
" margin-left:60px;\n",
" margin-top:0;\n",
" margin-bottom:0;\n",
"}\n",
"\n",
"\n",
"</style>\n",
"\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"FIDLE 2020 - Practical Work Module\n",
"Run time : Wednesday 16 September 2020, 16:00:46\n",
"TensorFlow version : 2.0.0\n",
"Keras version : 2.2.4-tf\n",
"Current place : Fidle at HOME\n",
"Datasets dir : /home/pjluc/datasets\n"
]
}
],
"source": [
"import os, time, sys\n",
"import csv\n",
"import math, random\n",
"\n",
"import numpy as np\n",
"sys.path.append('..')\n",
"import fidle.pwk as ooo\n",
"\n",
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Description is available there : http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset\n",
" - Each directory contains one CSV file with annotations (\"GT-<ClassID>.csv\") and the training images\n",
" - First line is fieldnames: Filename;Width;Height;Roi.X1;Roi.Y1;Roi.X2;Roi.Y2;ClassId \n",
" \n",
"### 2.1 - Understanding the dataset\n",
"The original dataset is in : **\\<dataset_dir\\>/origine.** \n",
"There is 3 subsets : **Train**, **Test** and **Meta**. \n",
"Each subset have an **csv file** and a **subdir**.\n",
" "
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Width</th>\n",
" <th>Height</th>\n",
" <th>Roi.X1</th>\n",
" <th>Roi.Y1</th>\n",
" <th>Roi.X2</th>\n",
" <th>Roi.Y2</th>\n",
" <th>ClassId</th>\n",
" <th>Path</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>53</td>\n",
" <td>54</td>\n",
" <td>6</td>\n",
" <td>5</td>\n",
" <td>48</td>\n",
" <td>49</td>\n",
" <td>16</td>\n",
" <td>Test/00000.png</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>42</td>\n",
" <td>45</td>\n",
Loading
Loading full blame...