Skip to content
Snippets Groups Projects
01-Preparation-of-data.ipynb 664 KiB
Newer Older
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
    "\n",
    "# <!-- TITLE --> [SYNOP1] - Preaparation of data\n",
    "<!-- DESC --> Episode 1 : Data analysis and creation of a usable dataset\n",
    "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
    "\n",
    "## Objectives :\n",
    " - Undestand the data\n",
    " - cleanup a usable dataset\n",
    "\n",
    "\n",
    "SYNOP meteorological data, available at: https://public.opendatasoft.com\n",
    "\n",
    "## What we're going to do :\n",
    "\n",
    " - Read the data\n",
    " - Cleanup and build a usable dataset\n",
    "\n",
    "## Step 1 - Import and init\n",
    "### 1.1 - Python"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style>\n",
       "\n",
       "div.warn {    \n",
       "    background-color: #fcf2f2;\n",
       "    border-color: #dFb5b4;\n",
       "    border-left: 5px solid #dfb5b4;\n",
       "    padding: 0.5em;\n",
       "    font-weight: bold;\n",
       "    font-size: 1.1em;;\n",
       "    }\n",
       "\n",
       "\n",
       "\n",
       "div.nota {    \n",
       "    background-color: #DAFFDE;\n",
       "    border-left: 5px solid #92CC99;\n",
       "    padding: 0.5em;\n",
       "    }\n",
       "\n",
       "div.todo:before { content:url();\n",
       "    float:left;\n",
       "    margin-right:20px;\n",
       "    margin-top:-20px;\n",
       "    margin-bottom:20px;\n",
       "}\n",
       "div.todo{\n",
       "    font-weight: bold;\n",
       "    font-size: 1.1em;\n",
       "    margin-top:40px;\n",
       "}\n",
       "div.todo ul{\n",
       "    margin: 0.2em;\n",
       "}\n",
       "div.todo li{\n",
       "    margin-left:60px;\n",
       "    margin-top:0;\n",
       "    margin-bottom:0;\n",
       "}\n",
       "\n",
       "\n",
       "</style>\n",
       "\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "FIDLE 2020 - Practical Work Module\n",
      "Version              : 0.4.4\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "Run time             : Sunday 1 March 2020, 10:02:58\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "TensorFlow version   : 2.0.0\n",
      "Keras version        : 2.2.4-tf\n"
     ]
    }
   ],
   "source": [
    "import tensorflow as tf\n",
    "from tensorflow import keras\n",
    "from tensorflow.keras.callbacks import TensorBoard\n",
    "\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "import pandas as pd\n",
    "import h5py, json\n",
    "import os,time,sys\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "import math, random\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "\n",
    "from importlib import reload\n",
    "\n",
    "sys.path.append('..')\n",
    "import fidle.pwk as ooo\n",
    "from fidle.pwk import subtitle\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "\n",
    "ooo.init()\n",
    "pd.set_option('display.max_rows',200)\n"
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 1.2 - Where are we ? "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "Well, we should be at HOME !\n",
      "We are going to use: /home/pjluc/datasets/SYNOP\n"
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
     ]
    }
   ],
   "source": [
    "place, dataset_dir = ooo.good_place( { 'GRICAD' : f'{os.getenv(\"SCRATCH_DIR\",\"\")}/PROJECTS/pr-fidle/datasets/SYNOP',\n",
    "                                       'IDRIS'  : f'{os.getenv(\"WORK\",\"\")}/datasets/SYNOP',\n",
    "                                       'HOME'   : f'{os.getenv(\"HOME\",\"\")}/datasets/SYNOP'} )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 2 - Read the data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "data_filename   = 'origine/donnees-synop-essentielles-omm-LYS.csv'\n",
    "schema_filename = 'origine/schema.json'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.1 - Read columns code"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open(f'{dataset_dir}/{schema_filename}','r') as json_file:\n",
    "    schema = json.load(json_file)\n",
    "\n",
    "synop_codes=list( schema['definitions']['donnees-synop-essentielles-omm_records']['properties']['fields']['properties'].keys() )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.2 - Read data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/markdown": [
Loading
Loading full blame...