Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
"\n",
"# <!-- TITLE --> [SYNOP1] - Preaparation of data\n",
"<!-- DESC --> Episode 1 : Data analysis and creation of a usable dataset\n",
"<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
"\n",
"## Objectives :\n",
" - Undestand the data\n",
" - cleanup a usable dataset\n",
"\n",
"\n",
"SYNOP meteorological data, available at: https://public.opendatasoft.com\n",
"\n",
"## What we're going to do :\n",
"\n",
" - Read the data\n",
" - Cleanup and build a usable dataset\n",
"\n",
"## Step 1 - Import and init\n",
"### 1.1 - Python"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<style>\n",
"\n",
"div.warn { \n",
" background-color: #fcf2f2;\n",
" border-color: #dFb5b4;\n",
" border-left: 5px solid #dfb5b4;\n",
" padding: 0.5em;\n",
" font-weight: bold;\n",
" font-size: 1.1em;;\n",
" }\n",
"\n",
"\n",
"\n",
"div.nota { \n",
" background-color: #DAFFDE;\n",
" border-left: 5px solid #92CC99;\n",
" padding: 0.5em;\n",
" }\n",
"\n",
"div.todo:before { content:url();\n",
" float:left;\n",
" margin-right:20px;\n",
" margin-top:-20px;\n",
" margin-bottom:20px;\n",
"}\n",
"div.todo{\n",
" font-weight: bold;\n",
" font-size: 1.1em;\n",
" margin-top:40px;\n",
"}\n",
"div.todo ul{\n",
" margin: 0.2em;\n",
"}\n",
"div.todo li{\n",
" margin-left:60px;\n",
" margin-top:0;\n",
" margin-bottom:0;\n",
"}\n",
"\n",
"\n",
"</style>\n",
"\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"FIDLE 2020 - Practical Work Module\n",
"TensorFlow version : 2.0.0\n",
"Keras version : 2.2.4-tf\n"
]
}
],
"source": [
"import tensorflow as tf\n",
"from tensorflow import keras\n",
"from tensorflow.keras.callbacks import TensorBoard\n",
"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import pandas as pd\n",
"import h5py, json\n",
"import os,time,sys\n",
"\n",
"from importlib import reload\n",
"\n",
"sys.path.append('..')\n",
"import fidle.pwk as ooo\n",
"from fidle.pwk import subtitle\n",
"pd.set_option('display.max_rows',200)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.2 - Where are we ? "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Well, we should be at HOME !\n",
"We are going to use: /home/pjluc/datasets/SYNOP\n"
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
]
}
],
"source": [
"place, dataset_dir = ooo.good_place( { 'GRICAD' : f'{os.getenv(\"SCRATCH_DIR\",\"\")}/PROJECTS/pr-fidle/datasets/SYNOP',\n",
" 'IDRIS' : f'{os.getenv(\"WORK\",\"\")}/datasets/SYNOP',\n",
" 'HOME' : f'{os.getenv(\"HOME\",\"\")}/datasets/SYNOP'} )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 2 - Read the data"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"data_filename = 'origine/donnees-synop-essentielles-omm-LYS.csv'\n",
"schema_filename = 'origine/schema.json'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.1 - Read columns code"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"with open(f'{dataset_dir}/{schema_filename}','r') as json_file:\n",
" schema = json.load(json_file)\n",
"\n",
"synop_codes=list( schema['definitions']['donnees-synop-essentielles-omm_records']['properties']['fields']['properties'].keys() )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.2 - Read data"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
Loading
Loading full blame...