Skip to content
Snippets Groups Projects
Commit d6fa309b authored by Carla Di Geronimo's avatar Carla Di Geronimo
Browse files

Upload somefunc.py: contains the function aimed to perform demosaicing

parent 208936c5
No related branches found
No related tags found
No related merge requests found
import numpy as np
from scipy.signal import convolve2d
from src.forward_model import CFA
def bilinear_interpolation(op: CFA, z: np.ndarray) -> np.ndarray:
"""Perform bilinear interpolation for demosaicing
Args:
op (CFA): CFA operator.
z (np.ndarray): Adjoint image.
Returns:
np.ndarray: Interpolated image.
"""
# Bi-linear interpolation
ker_bayer_red_blue = np.array([[1, 2, 1], [2, 4, 2], [1, 2, 1]]) / 4
ker_bayer_green = np.array([[0, 1, 0], [1, 4, 1], [0, 1, 0]]) / 4
res = np.empty(op.input_shape)
res[:, :, 0] = convolve2d(z[:, :, 0], ker_bayer_red_blue, mode='same')
res[:, :, 1] = convolve2d(z[:, :, 1], ker_bayer_green, mode='same')
res[:, :, 2] = convolve2d(z[:, :, 2], ker_bayer_red_blue, mode='same')
return res
def spectral_difference(op: CFA, z: np.ndarray, res: np.ndarray) -> np.ndarray:
"""Perform spectral difference method for demosaicing
Args:
op (CFA): CFA operator.
z (np.ndarray): Adjoint image.
res (np.ndarray): Interpolated image.
Returns:
np.ndarray: Demosaicked image.
"""
ker_bayer_red_blue = np.array([[1, 2, 1], [2, 4, 2], [1, 2, 1]]) / 4
ker_bayer_green = np.array([[0, 1, 0], [1, 4, 1], [0, 1, 0]]) / 4
# Computation of spectral differences
delta_red_green_quad = z[:, :, 0] - np.multiply(res[:, :, 1],op.mask[:,:,0])
delta_red_blue_quad = z[:, :, 0] - np.multiply(res[:, :, 2],op.mask[:,:,0])
delta_blue_green_quad = z[:, :, 2] - np.multiply(res[:, :, 1],op.mask[:,:,2])
delta_blue_red_quad = z[:, :, 2] - np.multiply(res[:, :, 0],op.mask[:,:,2])
delta_green_red_quad = z[:, :, 1] - np.multiply(res[:, :, 0],op.mask[:,:,1])
delta_green_blue_quad = z[:, :, 1] - np.multiply(res[:, :, 2],op.mask[:,:,1])
# Estimation
res_sd = np.empty(op.input_shape)
res_sd[:,:,0] = res[:, :, 1] + convolve2d(delta_red_green_quad,ker_bayer_red_blue,mode='same') + res[:, :, 2] + convolve2d(delta_red_blue_quad,ker_bayer_red_blue,mode='same')
res_sd[:,:,2] = res[:, :, 1] + convolve2d(delta_blue_green_quad,ker_bayer_red_blue,mode='same') + res[:, :, 0] + convolve2d(delta_blue_red_quad,ker_bayer_red_blue,mode='same')
res_sd[:,:,1] = res[:, :, 0] + convolve2d(delta_green_red_quad,ker_bayer_green,mode='same') + res[:, :, 2] + convolve2d(delta_green_blue_quad,ker_bayer_green,mode='same')
return res_sd
def normalization(res_sd:np.ndarray)-> np.ndarray:
"""Perform a min-max normalization
Args:
res_sd (np.ndarray): Demosaicked image.
Returns:
np.ndarray: Normalized image.
"""
res = (res_sd - np.min(res_sd)) / (np.max(res_sd) - np.min(res_sd))
return res
def quad_bayer_to_bayer_pattern(op: CFA):
"""Quad to Bayer pattern conversion by swapping method
Args:
op (CFA): CFA operator.
Returns:
CFA: Bayer pettern.
"""
if op.cfa == 'quad_bayer':
for j in range(1, op.mask.shape[1], 4):
op.mask[:,j], op.mask[:,j+1] = op.mask[:,j+1].copy(), op.mask[:,j].copy()
for i in range(1, op.mask.shape[0], 4):
op.mask[i, :], op.mask[i+1,:] = op.mask[i+1,:].copy(), op.mask[i,:].copy()
for i in range(1, op.mask.shape[0], 4):
for j in range(1, op.mask.shape[1], 4):
op.mask[i,j], op.mask[i+1,j+1] = op.mask[i+1,j+1].copy(), op.mask[i,j].copy()
return 0
def quad_bayer_to_bayer_image(y:np.array):
"""Quad to Bayer conversion of a mosaicked image by swapping method
Args:
y (np.array): Mosaicked image.
"""
for j in range(1, y.shape[1], 4):
y[:,j], y[:,j+1] = y[:,j+1].copy(), y[:,j].copy()
for i in range(1, y.shape[0], 4):
y[i, :], y[i+1,:] = y[i+1,:].copy(), y[i,:].copy()
for i in range(1, y.shape[0], 4):
for j in range(1, y.shape[1], 4):
y[i,j], y[i+1,j+1] = y[i+1,j+1].copy(), y[i,j].copy()
return 0
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment