Skip to content
Snippets Groups Projects
Commit d08c0df3 authored by maxime-torre's avatar maxime-torre
Browse files

First commit report and code

parent 25942cba
No related branches found
No related tags found
No related merge requests found
File added
"""The main file for the reconstruction.
This file should NOT be modified except the body of the 'run_reconstruction' function.
Students can call their functions (declared in others files of src/methods/your_name).
"""
from src.forward_model import CFA
import numpy as np
from scipy.signal import convolve2d
import cv2
def is_green(z,i, j):
return z[i, j, 1] != 0
def hamilton_adams_interpolation(y, op, z):
height, width = y.shape
green_channel = np.copy(z[:, :, 1])
for i in range(1, height-1):
for j in range(1, width-1):
if not is_green(z,i, j) :
delta_H = abs(z[i, j-1, 1] - z[i, j+1, 1]) + abs(z[i, j-1, 0] - z[i, j+1, 0] + z[i, j-1, 2] - z[i, j+1, 2]) / 2
# print(f"delta_H : {delta_H}")
delta_V = abs(z[i-1, j, 1] - z[i+1, j, 1]) + abs(z[i-1, j, 0] - z[i+1, j, 0] + z[i-1, j, 2] - z[i+1, j, 2]) / 2
if delta_H > delta_V:
green_channel[i, j] = (z[i-1, j, 1] + z[i+1, j, 1]) / 2 + (z[i, j-1, 0] - z[i, j+1, 0] + z[i, j-1, 2] - z[i, j+1, 2]) / 4
elif delta_H < delta_V:
green_channel[i, j] = (z[i, j-1, 1] + z[i, j+1, 1]) / 2 + (z[i-1, j, 0] - z[i+1, j, 0] + z[i-1, j, 2] - z[i+1, j, 2]) / 4
else:
green_channel[i, j] = (z[i-1, j, 1] + z[i+1, j, 1] + z[i, j-1, 1] + z[i, j+1, 1]) / 4 + \
(z[i, j-1, 0] - z[i, j+1, 0] + z[i, j-1, 2] - z[i, j+1, 2] + \
z[i-1, j, 0] - z[i+1, j, 0] + z[i-1, j, 2] - z[i+1, j, 2]) / 8
return green_channel
def interpolate_channel_difference(mosaicked_channel, green_channel_interpolated):
ker_bayer_red_blue = np.array([[1, 2, 1], [2, 4, 2], [1, 2, 1]]) / 4
print(mosaicked_channel.shape, green_channel_interpolated.shape)
difference = mosaicked_channel - green_channel_interpolated
difference_interpolated = convolve2d(difference, np.ones((3, 3)) / 9, mode='same', boundary='wrap')
channel_interpolated = green_channel_interpolated + difference_interpolated
channel_interpolated = convolve2d(channel_interpolated, ker_bayer_red_blue, mode='same')
return channel_interpolated
def Constant_difference_based_interpolation_reconstruction(op, y, z):
if op.cfa == 'bayer':
print("bayer")
red_channel = z[:, :, 0]
green_channel = z[:, :, 1]
blue_channel = z[:, :, 2]
green_channel_reconstruct = hamilton_adams_interpolation(y, op, z)
red_channel_interpolated = interpolate_channel_difference(red_channel, green_channel_reconstruct)
blue_channel_interpolated = interpolate_channel_difference(blue_channel, green_channel_reconstruct)
reconstructed_image = np.stack((red_channel_interpolated, green_channel_reconstruct, blue_channel_interpolated), axis=-1)
return reconstructed_image
elif op.cfa == "quad_bayer":
print(f"quad_bayer")
new_z = cv2.resize(z, (z.shape[1] // 2, z.shape[0] // 2), interpolation=cv2.INTER_AREA)
new_y=np.sum(new_z, axis=2)
op.mask = op.mask[::2, ::2]
green_channel_reconstruct_new = hamilton_adams_interpolation(new_y, op, new_z)
red_channel_new = new_z[:, :, 0]
blue_channel_new = new_z[:, :, 2]
red_channel_interpolated_new = interpolate_channel_difference(red_channel_new, green_channel_reconstruct_new)
blue_channel_interpolated_new = interpolate_channel_difference(blue_channel_new, green_channel_reconstruct_new)
reconstructed_image_new = np.stack((red_channel_interpolated_new, green_channel_reconstruct_new, blue_channel_interpolated_new), axis=-1)
reconstructed_image_upsampled = cv2.resize(reconstructed_image_new, (z.shape[1], z.shape[0]), interpolation=cv2.INTER_LINEAR)
return reconstructed_image_upsampled
else :
raise ValueError("CFA pattern not recognized")
def run_reconstruction(y: np.ndarray, cfa: str) -> np.ndarray:
"""Performs demosaicking on y.
Args:
y (np.ndarray): Mosaicked image to be reconstructed.
cfa (str): Name of the CFA. Can be bayer or quad_bayer.
Returns:
np.ndarray: Demosaicked image.
"""
input_shape = (y.shape[0], y.shape[1], 3)
op = CFA(cfa, input_shape)
z = op.adjoint(y)
reconstructed_image = Constant_difference_based_interpolation_reconstruction(op, y, z)
return reconstructed_image
####
####
####
#### #### #### #############
#### ###### #### ##################
#### ######## #### ####################
#### ########## #### #### ########
#### ############ #### #### ####
#### #### ######## #### #### ####
#### #### ######## #### #### ####
#### #### ######## #### #### ####
#### #### ## ###### #### #### ######
#### #### #### ## #### #### ############
#### #### ###### #### #### ##########
#### #### ########## #### #### ########
#### #### ######## #### ####
#### #### ############ ####
#### #### ########## ####
#### #### ######## ####
#### #### ###### ####
# 2023
# Authors: Mauro Dalla Mura and Matthieu Muller
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment