Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sicom_image_analysis_project
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Kourosh Gerayeli
sicom_image_analysis_project
Commits
81c3f209
Commit
81c3f209
authored
1 year ago
by
Aubin Mouras
Browse files
Options
Downloads
Patches
Plain Diff
import mourasa_reconstruct.py
parent
c24cefb1
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/methods/mouras_aubin/mourasa_reconstruct.py
+177
-0
177 additions, 0 deletions
src/methods/mouras_aubin/mourasa_reconstruct.py
with
177 additions
and
0 deletions
src/methods/mouras_aubin/mourasa_reconstruct.py
0 → 100644
+
177
−
0
View file @
81c3f209
#Imports
import
cv2
import
numpy
as
np
from
scipy.fft
import
fft2
,
ifft2
from
src.forward_model
import
CFA
from
scipy.signal
import
convolve2d
def
criterion
(
img_true
,
img
):
"""
Function that calculate the NMSE between img_true and img
"""
return
np
.
linalg
.
norm
(
np
.
int8
(
img_true
)
-
np
.
int8
(
img
))
**
2
/
np
.
linalg
.
norm
(
np
.
int8
(
img_true
))
**
2
def
mosaic_bp
(
img
):
"""
Function that collect values and index of known pixels for the Bayer pattern
"""
H
=
img
.
shape
[
0
]
W
=
img
.
shape
[
1
]
img_r
=
np
.
zeros
((
H
,
W
),
dtype
=
np
.
uint8
)
idx_r
=
[]
img_g
=
np
.
zeros
((
H
,
W
),
dtype
=
np
.
uint8
)
idx_g
=
[]
img_b
=
np
.
zeros
((
H
,
W
),
dtype
=
np
.
uint8
)
idx_b
=
[]
img_tot
=
np
.
zeros
((
H
,
W
,
3
),
dtype
=
np
.
uint8
)
for
i
in
range
(
H
):
for
j
in
range
(
W
):
if
((
i
+
j
)
%
2
==
0
)
:
img_g
[
i
,
j
]
=
img
[
i
,
j
,
1
]
idx_g
.
append
(
i
*
H
+
j
)
if
(((
i
+
j
)
%
2
==
1
)
and
(
i
%
2
==
0
))
:
img_r
[
i
,
j
]
=
img
[
i
,
j
,
0
]
idx_r
.
append
(
i
*
H
+
j
)
if
(((
i
+
j
)
%
2
==
1
)
and
(
i
%
2
==
1
))
:
img_b
[
i
,
j
]
=
img
[
i
,
j
,
2
]
idx_b
.
append
(
i
*
H
+
j
)
img_tot
[:,:,
0
]
=
img_r
img_tot
[:,:,
1
]
=
img_g
img_tot
[:,:,
2
]
=
img_b
return
img_tot
,
img_r
,
idx_r
,
img_g
,
idx_g
,
img_b
,
idx_b
def
mosaic_qbp
(
img
):
"""
Function that collect values and index of known pixels for the Quad Bayer pattern
"""
H
=
img
.
shape
[
0
]
W
=
img
.
shape
[
1
]
img_r
=
np
.
zeros
((
H
,
W
),
dtype
=
np
.
uint8
)
idx_r
=
[]
img_g
=
np
.
zeros
((
H
,
W
),
dtype
=
np
.
uint8
)
idx_g
=
[]
img_b
=
np
.
zeros
((
H
,
W
),
dtype
=
np
.
uint8
)
idx_b
=
[]
img_tot
=
np
.
zeros
((
H
,
W
,
3
),
dtype
=
np
.
uint8
)
for
i
in
range
(
0
,
H
,
2
):
for
j
in
range
(
0
,
W
,
2
):
if
((
i
+
j
)
%
4
==
0
)
:
img_g
[
i
:
i
+
2
,
j
:
j
+
2
]
=
img
[
i
:
i
+
2
,
j
:
j
+
2
,
1
]
idx_g
.
append
(
i
*
H
+
j
)
idx_g
.
append
(
i
*
H
+
j
+
1
)
idx_g
.
append
((
i
+
1
)
*
H
+
j
)
idx_g
.
append
((
i
+
1
)
*
H
+
j
+
1
)
if
(((
i
+
j
)
%
4
==
2
)
and
(
i
%
4
==
0
))
:
img_r
[
i
:
i
+
2
,
j
:
j
+
2
]
=
img
[
i
:
i
+
2
,
j
:
j
+
2
,
0
]
idx_r
.
append
(
i
*
H
+
j
)
idx_r
.
append
(
i
*
H
+
j
+
1
)
idx_r
.
append
((
i
+
1
)
*
H
+
j
)
idx_r
.
append
((
i
+
1
)
*
H
+
j
+
1
)
if
(((
i
+
j
)
%
4
==
2
)
and
(
i
%
4
==
2
))
:
img_b
[
i
:
i
+
2
,
j
:
j
+
2
]
=
img
[
i
:
i
+
2
,
j
:
j
+
2
,
2
]
idx_b
.
append
(
i
*
H
+
j
)
idx_b
.
append
(
i
*
H
+
j
+
1
)
idx_b
.
append
((
i
+
1
)
*
H
+
j
)
idx_b
.
append
((
i
+
1
)
*
H
+
j
+
1
)
img_tot
[:,:,
0
]
=
img_r
img_tot
[:,:,
1
]
=
img_g
img_tot
[:,:,
2
]
=
img_b
return
img_tot
,
img_r
,
idx_r
,
img_g
,
idx_g
,
img_b
,
idx_b
def
proxop1
(
X_fft
,
gamma
):
"""
Function that calculate the proximal operator of l1-norm
"""
H
=
X_fft
.
shape
[
0
]
W
=
X_fft
.
shape
[
1
]
output_fft
=
np
.
zeros
((
H
,
W
),
dtype
=
complex
)
for
i
in
range
(
H
):
for
j
in
range
(
W
):
output_fft
[
i
,
j
]
=
max
(
0
,
np
.
abs
(
X_fft
[
i
,
j
])
-
gamma
)
*
np
.
exp
(
1j
*
np
.
angle
(
X_fft
[
i
,
j
]))
return
output_fft
def
proxop2
(
X_fft
,
Y
,
idx
):
"""
Function that calculate the proximal operator of indicator function
"""
X
=
np
.
abs
(
ifft2
(
X_fft
))
H
=
X
.
shape
[
0
]
W
=
X
.
shape
[
1
]
output
=
np
.
zeros
((
H
,
W
))
for
i
in
range
(
H
):
for
j
in
range
(
W
):
if
((
i
*
H
+
j
)
in
idx
)
:
output
[
i
,
j
]
=
Y
[
i
,
j
]
else
:
output
[
i
,
j
]
=
X
[
i
,
j
]
return
fft2
(
output
)
def
DouglasRachford
(
X_fft
,
Y
,
idx
,
rho
,
gamma
,
NbIt
,
img_true
):
"""
Function that iterate the Douglas-Rachford Algorithm
"""
J
=
[]
J
.
append
(
criterion
(
img_true
,
np
.
abs
(
ifft2
(
X_fft
))))
for
k
in
range
(
NbIt
):
X_fft_temp
=
proxop1
(
X_fft
,
gamma
)
X_fft
=
X_fft
+
2
*
rho
*
(
proxop2
(
2
*
X_fft_temp
-
X_fft
,
Y
,
idx
)
-
X_fft_temp
)
J
.
append
(
criterion
(
img_true
,
np
.
abs
(
ifft2
(
X_fft
))))
return
X_fft
,
J
def
interpol_bp_rb
(
img
):
"""
Function that do the interpolation for R or B channel of a Bayer pattern image
"""
tool
=
np
.
array
([[
0.25
,
0.5
,
0.25
],[
0.5
,
1
,
0.5
],[
0.25
,
0.5
,
0.25
]])
output
=
convolve2d
(
img
,
tool
,
mode
=
'
same
'
,
boundary
=
'
wrap
'
)
return
output
def
interpol_qbp_rb
(
img
):
"""
Function that do the interpolation for R or B channel of a Quad Bayer pattern image
"""
tool
=
0.25
*
np
.
array
([[
0.25
,
0.25
,
0.5
,
0.5
,
0.25
,
0.25
],[
0.25
,
0.25
,
0.5
,
0.5
,
0.25
,
0.25
],[
0.5
,
0.5
,
1
,
1
,
0.5
,
0.5
],[
0.5
,
0.5
,
1
,
1
,
0.5
,
0.5
],[
0.25
,
0.25
,
0.5
,
0.5
,
0.25
,
0.25
],[
0.25
,
0.25
,
0.5
,
0.5
,
0.25
,
0.25
]])
output
=
convolve2d
(
img
,
tool
,
mode
=
'
same
'
,
boundary
=
'
wrap
'
)
return
output
def
interpol_bp_g
(
img
):
"""
Function that do the interpolation for G channel of a Bayer pattern image
"""
tool
=
np
.
array
([[
0
,
0.25
,
0
],[
0.25
,
1
,
0.25
],[
0
,
0.25
,
0
]])
output
=
convolve2d
(
img
,
tool
,
mode
=
'
same
'
,
boundary
=
'
wrap
'
)
return
output
def
interpol_qbp_g
(
img
):
"""
Function that do the interpolation for G channel of a Quad Bayer pattern image
"""
tool
=
0.25
*
np
.
array
([[
0
,
0
,
0.25
,
0.25
,
0
,
0
],[
0
,
0
,
0.25
,
0.25
,
0
,
0
],[
0.25
,
0.25
,
1
,
1
,
0.25
,
0.25
],[
0.25
,
0.25
,
1
,
1
,
0.25
,
0.25
],[
0
,
0
,
0.25
,
0.25
,
0
,
0
],[
0
,
0
,
0.25
,
0.25
,
0
,
0
]])
output
=
convolve2d
(
img
,
tool
,
mode
=
'
same
'
,
boundary
=
'
wrap
'
)
return
output
def
mourasa_reconstruction
(
op
:
CFA
,
y
:
np
.
ndarray
):
"""
Function that reconstruct the colour image
"""
#y = cv2.cvtColor(y,cv2.COLOR_BGR2RGB)
img_rec
=
np
.
empty
(
op
.
input_shape
)
if
op
.
cfa
==
'
bayer
'
:
img_tot
,
img_r
,
idx_r
,
img_g
,
idx_g
,
img_b
,
idx_b
=
mosaic_bp
(
y
)
#R Channel Reconstruction
cp_r
=
interpol_bp_rb
(
img_r
)
DR_r_fft
,
J_r
=
DouglasRachford
(
fft2
(
cp_r
),
img_r
,
idx_r
,
0.8
,
15
,
10
,
y
[:,:,
0
])
DR_r
=
ifft2
(
DR_r_fft
)
#G Channel reconstruction
cp_g
=
interpol_bp_g
(
img_g
)
DR_g_fft
,
J_g
=
DouglasRachford
(
fft2
(
cp_g
),
img_g
,
idx_g
,
0.8
,
15
,
10
,
y
[:,:,
1
])
DR_g
=
ifft2
(
DR_g_fft
)
#B Channel reconstruction
cp_b
=
interpol_bp_rb
(
img_b
)
DR_b_fft
,
J_b
=
DouglasRachford
(
fft2
(
cp_b
),
img_b
,
idx_b
,
0.8
,
15
,
10
,
y
[:,:,
2
])
DR_b
=
ifft2
(
DR_b_fft
)
#Channels
img_rec
=
np
.
zeros
(
y
.
shape
,
dtype
=
np
.
uint8
)
img_rec
[:,:,
0
]
=
DR_r
img_rec
[:,:,
1
]
=
DR_g
img_rec
[:,:,
2
]
=
DR_b
elif
op
.
cfa
==
'
quad_bayer
'
:
img_tot
,
img_r
,
idx_r
,
img_g
,
idx_g
,
img_b
,
idx_b
=
mosaic_qbp
(
y
)
#R Channel Reconstruction
cp_r
=
interpol_qbp_rb
(
img_r
)
DR_r_fft
,
J_r
=
DouglasRachford
(
fft2
(
cp_r
),
img_r
,
idx_r
,
0.8
,
15
,
10
,
y
[:,:,
0
])
DR_r
=
ifft2
(
DR_r_fft
)
#G Channel reconstruction
cp_g
=
interpol_qbp_g
(
img_g
)
DR_g_fft
,
J_g
=
DouglasRachford
(
fft2
(
cp_g
),
img_g
,
idx_g
,
0.8
,
15
,
10
,
y
[:,:,
1
])
DR_g
=
ifft2
(
DR_g_fft
)
#B Channel reconstruction
cp_b
=
interpol_qbp_rb
(
img_b
)
DR_b_fft
,
J_b
=
DouglasRachford
(
fft2
(
cp_b
),
img_b
,
idx_b
,
0.8
,
15
,
10
,
y
[:,:,
2
])
DR_b
=
ifft2
(
DR_b_fft
)
#Channels
img_rec
=
np
.
zeros
(
y
.
shape
,
dtype
=
np
.
uint8
)
img_rec
[:,:,
0
]
=
DR_r
img_rec
[:,:,
1
]
=
DR_g
img_rec
[:,:,
2
]
=
DR_b
#img_rec = cv2.cvtColor(img_rec,cv2.COLOR_RGB2BGR)
return
img_rec
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment