Newer
Older
import z_personal_functions as my_functions
import requests, json, random, pandas as pd
# ______0______ load DOIs and remove duplicate
## specifier la liste des entrepôts à importer
files_to_load = [ "zenodo", "datacite", "rdg", "bso-via-hal", "nakala" ]
dois_raw = my_functions.from_files_load_dois(files_to_load)
print("\n\tDOIs loaded\t\t\t", len(dois_raw))
dois = list(set(dois_raw)) ## remove duplicate
print("\tDOIs to treat\t\t", len(dois))
# ______1_____ load DOIs already treater & get md from DataCite for new one
## pour essayer avec un seul DOI
# temp_doi = dois[random.randint(0, len(dois))]
# print(temp_doi)
# raw_metadatas = my_functions.get_md_from_datacite(temp_doi)
doi_error = [] # retrieve doi error
temp_rows = [] # put data in dict before df
df_old = pd.read_csv("../dois-uga.csv")
# req dataCite and paste data following instructions
for doi in dois : #[:300]
## if doi already treated
if doi in df_old["doi"].values :
#print(f"\talready treated\t\t{doi}")
continue
### if doi not in datacite
if raw_md == "error" :
doi_error.append(doi)
continue
## ___n___ from manual instructions retrieve appropriate data
selected_md = my_functions.parse_datacite_md(raw_md) ## placer les resultats dans un dictionnaire
temp_rows.append(selected_md) ## ajouter ce dictionnaire à une liste
print(f"\tadded\t\t{doi}")
if temp_rows :
df_fresh = pd.DataFrame(temp_rows)
df_out = pd.concat([df_old, df_fresh], ignore_index=True)
df_out.to_csv("../dois-uga.csv", index = False)
print(f"\n\nnb of doi exported \t{len(df_out)}")