-
xleroy authored
- Revised memory model with concrete representation of ints & floats, and per-byte access permissions - Revised Globalenvs implementation - Matching changes in all languages and proofs. git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@1282 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
xleroy authored- Revised memory model with concrete representation of ints & floats, and per-byte access permissions - Revised Globalenvs implementation - Matching changes in all languages and proofs. git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@1282 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Memdata.v 33.60 KiB
Require Import Coqlib.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
(** * Properties of memory chunks *)
(** Memory reads and writes are performed by quantities called memory chunks,
encoding the type, size and signedness of the chunk being addressed.
The following functions extract the size information from a chunk. *)
Definition size_chunk (chunk: memory_chunk) : Z :=
match chunk with
| Mint8signed => 1
| Mint8unsigned => 1
| Mint16signed => 2
| Mint16unsigned => 2
| Mint32 => 4
| Mfloat32 => 4
| Mfloat64 => 8
end.
Lemma size_chunk_pos:
forall chunk, size_chunk chunk > 0.
Proof.
intros. destruct chunk; simpl; omega.
Qed.
Definition size_chunk_nat (chunk: memory_chunk) : nat :=
nat_of_Z(size_chunk chunk).
Lemma size_chunk_conv:
forall chunk, size_chunk chunk = Z_of_nat (size_chunk_nat chunk).
Proof.
intros. destruct chunk; reflexivity.
Qed.
Lemma size_chunk_nat_pos:
forall chunk, exists n, size_chunk_nat chunk = S n.
Proof.
intros.
generalize (size_chunk_pos chunk). rewrite size_chunk_conv.
destruct (size_chunk_nat chunk).
simpl; intros; omegaContradiction.
intros; exists n; auto.
Qed.
(** Memory reads and writes must respect alignment constraints:
the byte offset of the location being addressed should be an exact
multiple of the natural alignment for the chunk being addressed.
This natural alignment is defined by the following
[align_chunk] function. Some target architectures
(e.g. the PowerPC) have no alignment constraints, which we could
reflect by taking [align_chunk chunk = 1]. However, other architectures
have stronger alignment requirements. The following definition is
appropriate for PowerPC and ARM. *)
Definition align_chunk (chunk: memory_chunk) : Z :=
match chunk with
| Mint8signed => 1
| Mint8unsigned => 1
| Mint16signed => 2
| Mint16unsigned => 2
| _ => 4
end.
Lemma align_chunk_pos:
forall chunk, align_chunk chunk > 0.
Proof.
intro. destruct chunk; simpl; omega.
Qed.
Lemma align_size_chunk_divides:
forall chunk, (align_chunk chunk | size_chunk chunk).
Proof.
intros. destruct chunk; simpl; try apply Zdivide_refl. exists 2; auto.
Qed.
Lemma align_chunk_compat:
forall chunk1 chunk2,
size_chunk chunk1 = size_chunk chunk2 -> align_chunk chunk1 = align_chunk chunk2.
Proof.
intros chunk1 chunk2.
destruct chunk1; destruct chunk2; simpl; congruence.
Qed.
(** The type (integer/pointer or float) of a chunk. *)
Definition type_of_chunk (c: memory_chunk) : typ :=
match c with
| Mint8signed => Tint
| Mint8unsigned => Tint
| Mint16signed => Tint
| Mint16unsigned => Tint
| Mint32 => Tint
| Mfloat32 => Tfloat
| Mfloat64 => Tfloat
end.
(** * Memory values *)
(** A ``memory value'' is a byte-sized quantity that describes the current
content of a memory cell. It can be either:
- a concrete 8-bit integer;
- a byte-sized fragment of an opaque pointer;
- the special constant [Undef] that represents uninitialized memory.
*)
(** Values stored in memory cells. *)
Inductive memval: Type :=
| Undef: memval
| Byte: byte -> memval
| Pointer: block -> int -> nat -> memval.
(** * Encoding and decoding integers *)
(** We define functions to convert between integers and lists of bytes
according to a given memory chunk. *)
Parameter big_endian: bool.
Definition rev_if_le (l: list byte) : list byte :=
if big_endian then l else List.rev l.
Lemma rev_if_le_involutive:
forall l, rev_if_le (rev_if_le l) = l.
Proof.
intros; unfold rev_if_le; destruct big_endian.
auto.
apply List.rev_involutive.
Qed.
Lemma rev_if_le_length:
forall l, length (rev_if_le l) = length l.
Proof.
intros; unfold rev_if_le; destruct big_endian.
auto.
apply List.rev_length.
Qed.
Definition encode_int (c: memory_chunk) (x: int) : list byte :=
let n := Int.unsigned x in
rev_if_le (match c with
| Mint8signed | Mint8unsigned =>
Byte.repr n :: nil
| Mint16signed | Mint16unsigned =>
Byte.repr (n/256) :: Byte.repr n :: nil
| Mint32 =>
Byte.repr (n/16777216) :: Byte.repr (n/65536) :: Byte.repr (n/256) :: Byte.repr n :: nil
| Mfloat32 =>
Byte.zero :: Byte.zero :: Byte.zero :: Byte.zero :: nil
| Mfloat64 =>
Byte.zero :: Byte.zero :: Byte.zero :: Byte.zero ::
Byte.zero :: Byte.zero :: Byte.zero :: Byte.zero :: nil
end).
Definition decode_int (c: memory_chunk) (b: list byte) : int :=
match c, rev_if_le b with
| Mint8signed, b1 :: nil =>
Int.sign_ext 8 (Int.repr (Byte.unsigned b1))
| Mint8unsigned, b1 :: nil =>
Int.repr (Byte.unsigned b1)
| Mint16signed, b1 :: b2 :: nil =>
Int.sign_ext 16 (Int.repr (Byte.unsigned b1 * 256 + Byte.unsigned b2))
| Mint16unsigned, b1 :: b2 :: nil =>
Int.repr (Byte.unsigned b1 * 256 + Byte.unsigned b2)
| Mint32, b1 :: b2 :: b3 :: b4 :: nil =>
Int.repr (Byte.unsigned b1 * 16777216 + Byte.unsigned b2 * 65536
+ Byte.unsigned b3 * 256 + Byte.unsigned b4)
| _, _ => Int.zero
end.
Lemma encode_int_length:
forall chunk n, length(encode_int chunk n) = size_chunk_nat chunk.
Proof.
intros. unfold encode_int. rewrite rev_if_le_length.
destruct chunk; reflexivity.
Qed.
Lemma decode_encode_int8unsigned: forall n,
decode_int Mint8unsigned (encode_int Mint8unsigned n) = Int.zero_ext 8 n.
Proof.
intros. unfold decode_int, encode_int. rewrite rev_if_le_involutive.
simpl. auto.
Qed.
Lemma decode_encode_int8signed: forall n,
decode_int Mint8signed (encode_int Mint8signed n) = Int.sign_ext 8 n.
Proof.
intros. unfold decode_int, encode_int. rewrite rev_if_le_involutive. simpl.
change (Int.repr (Int.unsigned n mod Byte.modulus))
with (Int.zero_ext 8 n).
apply Int.sign_ext_zero_ext. compute; auto.
Qed.
Remark recombine_16:
forall x,
(x / 256) mod Byte.modulus * 256 + x mod Byte.modulus = x mod (two_p 16).
Proof.
intros. symmetry. apply (Zmod_recombine x 256 256); omega.
Qed.
Lemma decode_encode_int16unsigned: forall n,
decode_int Mint16unsigned (encode_int Mint16unsigned n) = Int.zero_ext 16 n.
Proof.
intros. unfold decode_int, encode_int. rewrite rev_if_le_involutive. simpl.
rewrite recombine_16. auto.
Qed.
Lemma decode_encode_int16signed: forall n,
decode_int Mint16signed (encode_int Mint16signed n) = Int.sign_ext 16 n.
Proof.
intros. unfold decode_int, encode_int. rewrite rev_if_le_involutive. simpl.
rewrite recombine_16.
fold (Int.zero_ext 16 n). apply Int.sign_ext_zero_ext. compute; auto.
Qed.
Remark recombine_32:
forall x,
(x / 16777216) mod Byte.modulus * 16777216
+ (x / 65536) mod Byte.modulus * 65536
+ (x / 256) mod Byte.modulus * 256
+ x mod Byte.modulus =
x mod Int.modulus.
Proof.
intros. change Byte.modulus with 256.
exploit (Zmod_recombine x 65536 65536). omega. omega. intro EQ1.
exploit (Zmod_recombine x 256 256). omega. omega.
change (256 * 256) with 65536. intro EQ2.
exploit (Zmod_recombine (x/65536) 256 256). omega. omega.
rewrite Zdiv_Zdiv. change (65536*256) with 16777216. change (256 * 256) with 65536.
intro EQ3.
change Int.modulus with (65536 * 65536).
rewrite EQ1. rewrite EQ2. rewrite EQ3. omega.
omega. omega.
Qed.
Lemma decode_encode_int32: forall n,
decode_int Mint32 (encode_int Mint32 n) = n.
Proof.
intros. unfold decode_int, encode_int. rewrite rev_if_le_involutive. simpl.
rewrite recombine_32.
transitivity (Int.repr (Int.unsigned n)). 2: apply Int.repr_unsigned.
apply Int.eqm_samerepr. apply Int.eqm_sym. red. apply Int.eqmod_mod.
apply Int.modulus_pos.
Qed.
Lemma encode_int8_signed_unsigned: forall n,
encode_int Mint8signed n = encode_int Mint8unsigned n.
Proof.
intros; reflexivity.
Qed.
Remark encode_8_mod:
forall x y,
Int.eqmod (two_p 8) (Int.unsigned x) (Int.unsigned y) ->
encode_int Mint8unsigned x = encode_int Mint8unsigned y.
Proof.
intros. unfold encode_int. decEq. decEq. apply Byte.eqm_samerepr. exact H.
Qed.
Lemma encode_int8_zero_ext:
forall x,
encode_int Mint8unsigned (Int.zero_ext 8 x) = encode_int Mint8unsigned x.
Proof.
intros. apply encode_8_mod. apply Int.eqmod_sym.
apply Int.eqmod_two_p_zero_ext. compute; auto.
Qed.
Lemma encode_int8_sign_ext:
forall x,
encode_int Mint8signed (Int.sign_ext 8 x) = encode_int Mint8signed x.
Proof.
intros. repeat rewrite encode_int8_signed_unsigned.
apply encode_8_mod. apply Int.eqmod_sym.
apply Int.eqmod_two_p_sign_ext. compute; auto.
Qed.
Lemma encode_int16_signed_unsigned: forall n,
encode_int Mint16signed n = encode_int Mint16unsigned n.
Proof.
intros; reflexivity.
Qed.
Remark encode_16_mod:
forall x y,
Int.eqmod (two_p 16) (Int.unsigned x) (Int.unsigned y) ->
encode_int Mint16unsigned x = encode_int Mint16unsigned y.
Proof.
intros. unfold encode_int. decEq.
set (x' := Int.unsigned x) in *.
set (y' := Int.unsigned y) in *.
assert (Int.eqmod (two_p 8) x' y').
eapply Int.eqmod_divides; eauto. exists (two_p 8); auto.
assert (Int.eqmod (two_p 8) (x' / 256) (y' / 256)).
destruct H as [k EQ].
exists k. rewrite EQ.
replace (k * two_p 16) with ((k * two_p 8) * two_p 8).
rewrite Zplus_comm. rewrite Z_div_plus. omega.
omega. rewrite <- Zmult_assoc. auto.
decEq. apply Byte.eqm_samerepr. exact H1.
decEq. apply Byte.eqm_samerepr. exact H0.
Qed.
Lemma encode_int16_zero_ext:
forall x,
encode_int Mint16unsigned (Int.zero_ext 16 x) = encode_int Mint16unsigned x.
Proof.
intros. apply encode_16_mod. apply Int.eqmod_sym.
apply (Int.eqmod_two_p_zero_ext 16). compute; auto.
Qed.
Lemma encode_int16_sign_ext:
forall x,
encode_int Mint16signed (Int.sign_ext 16 x) = encode_int Mint16signed x.
Proof.
intros. repeat rewrite encode_int16_signed_unsigned.
apply encode_16_mod. apply Int.eqmod_sym.
apply Int.eqmod_two_p_sign_ext. compute; auto.
Qed.
Lemma decode_int8_zero_ext:
forall l,
Int.zero_ext 8 (decode_int Mint8unsigned l) = decode_int Mint8unsigned l.
Proof.
intros; simpl. destruct (rev_if_le l); auto. destruct l0; auto.
unfold Int.zero_ext. decEq.
generalize (Byte.unsigned_range i). intro.
rewrite Int.unsigned_repr. apply Zmod_small. assumption.
assert (Byte.modulus < Int.max_unsigned). vm_compute. auto.
omega.
Qed.
Lemma decode_int8_sign_ext:
forall l,
Int.sign_ext 8 (decode_int Mint8signed l) = decode_int Mint8signed l.
Proof.
intros; simpl. destruct (rev_if_le l); auto. destruct l0; auto.
rewrite Int.sign_ext_idem. auto. vm_compute; auto.
Qed.
Lemma decode_int16_zero_ext:
forall l,
Int.zero_ext 16 (decode_int Mint16unsigned l) = decode_int Mint16unsigned l.
Proof.
intros; simpl. destruct (rev_if_le l); auto. destruct l0; auto. destruct l0; auto.
unfold Int.zero_ext. decEq.
generalize (Byte.unsigned_range i) (Byte.unsigned_range i0).
change Byte.modulus with 256. intros.
assert (0 <= Byte.unsigned i * 256 + Byte.unsigned i0 < 65536). omega.
rewrite Int.unsigned_repr. apply Zmod_small. assumption.
assert (65536 < Int.max_unsigned). vm_compute. auto.
omega.
Qed.
Lemma decode_int16_sign_ext:
forall l,
Int.sign_ext 16 (decode_int Mint16signed l) = decode_int Mint16signed l.
Proof.
intros; simpl. destruct (rev_if_le l); auto. destruct l0; auto. destruct l0; auto.
rewrite Int.sign_ext_idem. auto. vm_compute; auto.
Qed.
Lemma decode_int8_signed_unsigned:
forall l,
decode_int Mint8signed l = Int.sign_ext 8 (decode_int Mint8unsigned l).
Proof.
unfold decode_int; intros. destruct (rev_if_le l); auto. destruct l0; auto.
Qed.
Lemma decode_int16_signed_unsigned:
forall l,
decode_int Mint16signed l = Int.sign_ext 16 (decode_int Mint16unsigned l).
Proof.
unfold decode_int; intros. destruct (rev_if_le l); auto.
destruct l0; auto. destruct l0; auto.
Qed.
(** * Encoding and decoding floats *)
Parameter encode_float: memory_chunk -> float -> list byte.
Parameter decode_float: memory_chunk -> list byte -> float.
Axiom encode_float_length:
forall chunk n, length(encode_float chunk n) = size_chunk_nat chunk.
(* More realistic:
decode_float Mfloat32 (encode_float Mfloat32 (Float.singleoffloat n)) =
Float.singleoffloat n
*)
Axiom decode_encode_float32: forall n,
decode_float Mfloat32 (encode_float Mfloat32 n) = Float.singleoffloat n.
Axiom decode_encode_float64: forall n,
decode_float Mfloat64 (encode_float Mfloat64 n) = n.
Axiom encode_float32_singleoffloat: forall n,
encode_float Mfloat32 (Float.singleoffloat n) = encode_float Mfloat32 n.
Axiom encode_float8_signed_unsigned: forall n,
encode_float Mint8signed n = encode_float Mint8unsigned n.
Axiom encode_float16_signed_unsigned: forall n,
encode_float Mint16signed n = encode_float Mint16unsigned n.
Axiom encode_float32_cast:
forall f,
encode_float Mfloat32 (Float.singleoffloat f) = encode_float Mfloat32 f.
Axiom decode_float32_cast:
forall l,
Float.singleoffloat (decode_float Mfloat32 l) = decode_float Mfloat32 l.
(** * Encoding and decoding values *)
Definition inj_bytes (bl: list byte) : list memval :=
List.map Byte bl.
Fixpoint proj_bytes (vl: list memval) : option (list byte) :=
match vl with
| nil => Some nil
| Byte b :: vl' =>
match proj_bytes vl' with None => None | Some bl => Some(b :: bl) end
| _ => None
end.
Remark length_inj_bytes:
forall bl, length (inj_bytes bl) = length bl.
Proof.
intros. apply List.map_length.
Qed.
Remark proj_inj_bytes:
forall bl, proj_bytes (inj_bytes bl) = Some bl.
Proof.
induction bl; simpl. auto. rewrite IHbl. auto.
Qed.
Lemma inj_proj_bytes:
forall cl bl, proj_bytes cl = Some bl -> cl = inj_bytes bl.
Proof.
induction cl; simpl; intros.
inv H; auto.
destruct a; try congruence. destruct (proj_bytes cl); inv H.
simpl. decEq. auto.
Qed.
Fixpoint inj_pointer (n: nat) (b: block) (ofs: int) {struct n}: list memval :=
match n with
| O => nil
| S m => Pointer b ofs m :: inj_pointer m b ofs
end.
Fixpoint check_pointer (n: nat) (b: block) (ofs: int) (vl: list memval)
{struct n} : bool :=
match n, vl with
| O, nil => true
| S m, Pointer b' ofs' m' :: vl' =>
eq_block b b' && Int.eq_dec ofs ofs' && beq_nat m m' && check_pointer m b ofs vl'
| _, _ => false
end.
Definition proj_pointer (vl: list memval) : val :=
match vl with
| Pointer b ofs n :: vl' =>
if check_pointer (size_chunk_nat Mint32) b ofs vl
then Vptr b ofs
else Vundef
| _ => Vundef
end.
Definition encode_val (chunk: memory_chunk) (v: val) : list memval :=
match v, chunk with
| Vptr b ofs, Mint32 => inj_pointer (size_chunk_nat Mint32) b ofs
| Vint n, _ => inj_bytes (encode_int chunk n)
| Vfloat f, _ => inj_bytes (encode_float chunk f)
| _, _ => list_repeat (size_chunk_nat chunk) Undef
end.
Definition decode_val (chunk: memory_chunk) (vl: list memval) : val :=
match proj_bytes vl with
| Some bl =>
match chunk with
| Mint8signed | Mint8unsigned
| Mint16signed | Mint16unsigned | Mint32 =>
Vint(decode_int chunk bl)
| Mfloat32 | Mfloat64 =>
Vfloat(decode_float chunk bl)
end
| None =>
match chunk with
| Mint32 => proj_pointer vl
| _ => Vundef
end
end.
(*
Lemma inj_pointer_length:
forall b ofs n, List.length(inj_pointer n b ofs) = n.
Proof.
induction n; simpl; congruence.
Qed.
*)
Lemma encode_val_length:
forall chunk v, length(encode_val chunk v) = size_chunk_nat chunk.
Proof.
intros. destruct v; simpl.
apply length_list_repeat.
rewrite length_inj_bytes. apply encode_int_length.
rewrite length_inj_bytes. apply encode_float_length.
destruct chunk; try (apply length_list_repeat). reflexivity.
Qed.
Lemma check_inj_pointer:
forall b ofs n, check_pointer n b ofs (inj_pointer n b ofs) = true.
Proof.
induction n; simpl. auto.
unfold proj_sumbool. rewrite dec_eq_true. rewrite dec_eq_true.
rewrite <- beq_nat_refl. simpl; auto.
Qed.
Definition decode_encode_val (v1: val) (chunk1 chunk2: memory_chunk) (v2: val) : Prop :=
match v1, chunk1, chunk2 with
| Vundef, _, _ => v2 = Vundef
| Vint n, Mint8signed, Mint8signed => v2 = Vint(Int.sign_ext 8 n)
| Vint n, Mint8unsigned, Mint8signed => v2 = Vint(Int.sign_ext 8 n)
| Vint n, Mint8signed, Mint8unsigned => v2 = Vint(Int.zero_ext 8 n)
| Vint n, Mint8unsigned, Mint8unsigned => v2 = Vint(Int.zero_ext 8 n)
| Vint n, Mint16signed, Mint16signed => v2 = Vint(Int.sign_ext 16 n)
| Vint n, Mint16unsigned, Mint16signed => v2 = Vint(Int.sign_ext 16 n)
| Vint n, Mint16signed, Mint16unsigned => v2 = Vint(Int.zero_ext 16 n)
| Vint n, Mint16unsigned, Mint16unsigned => v2 = Vint(Int.zero_ext 16 n)
| Vint n, Mint32, Mint32 => v2 = Vint n
| Vint n, Mint32, Mfloat32 => v2 = Vfloat(decode_float Mfloat32 (encode_int Mint32 n))
| Vint n, _, _ => True (* nothing interesting to say about v2 *)
| Vptr b ofs, Mint32, Mint32 => v2 = Vptr b ofs
| Vptr b ofs, _, _ => v2 = Vundef
| Vfloat f, Mfloat32, Mfloat32 => v2 = Vfloat(Float.singleoffloat f)
| Vfloat f, Mfloat32, Mint32 => v2 = Vint(decode_int Mint32 (encode_float Mfloat32 f))
| Vfloat f, Mfloat64, Mfloat64 => v2 = Vfloat f
| Vfloat f, _, _ => True (* nothing interesting to say about v2 *)
end.
Lemma decode_encode_val_general:
forall v chunk1 chunk2,
decode_encode_val v chunk1 chunk2 (decode_val chunk2 (encode_val chunk1 v)).
Proof.
intros. destruct v.
(* Vundef *)
simpl. destruct (size_chunk_nat_pos chunk1) as [psz EQ].
rewrite EQ. simpl.
unfold decode_val. simpl. destruct chunk2; auto.
(* Vint *)
simpl.
destruct chunk1; auto; destruct chunk2; auto; unfold decode_val;
rewrite proj_inj_bytes.
rewrite decode_encode_int8signed. auto.
rewrite encode_int8_signed_unsigned. rewrite decode_encode_int8unsigned. auto.
rewrite <- encode_int8_signed_unsigned. rewrite decode_encode_int8signed. auto.
rewrite decode_encode_int8unsigned. auto.
rewrite decode_encode_int16signed. auto.
rewrite encode_int16_signed_unsigned. rewrite decode_encode_int16unsigned. auto.
rewrite <- encode_int16_signed_unsigned. rewrite decode_encode_int16signed. auto.
rewrite decode_encode_int16unsigned. auto.
rewrite decode_encode_int32. auto.
auto.
(* Vfloat *)
unfold decode_val, encode_val, decode_encode_val;
destruct chunk1; auto; destruct chunk2; auto; unfold decode_val;
rewrite proj_inj_bytes.
auto.
rewrite decode_encode_float32. auto.
rewrite decode_encode_float64. auto.
(* Vptr *)
unfold decode_val, encode_val, decode_encode_val;
destruct chunk1; auto; destruct chunk2; auto.
simpl. generalize (check_inj_pointer b i (size_chunk_nat Mint32)).
simpl. intro. rewrite H. auto.
Qed.
Lemma decode_encode_val_similar:
forall v1 chunk1 chunk2 v2,
type_of_chunk chunk1 = type_of_chunk chunk2 ->
size_chunk chunk1 = size_chunk chunk2 ->
Val.has_type v1 (type_of_chunk chunk1) ->
decode_encode_val v1 chunk1 chunk2 v2 ->
v2 = Val.load_result chunk2 v1.
Proof.
intros.
destruct v1.
simpl in *. destruct chunk2; simpl; auto.
red in H1.
destruct chunk1; simpl in H1; try contradiction;
destruct chunk2; simpl in *; discriminate || auto.
red in H1.
destruct chunk1; simpl in H1; try contradiction;
destruct chunk2; simpl in *; discriminate || auto.
red in H1.
destruct chunk1; simpl in H1; try contradiction;
destruct chunk2; simpl in *; discriminate || auto.
Qed.
Lemma decode_val_type:
forall chunk cl,
Val.has_type (decode_val chunk cl) (type_of_chunk chunk).
Proof.
intros. unfold decode_val.
destruct (proj_bytes cl).
destruct chunk; simpl; auto.
destruct chunk; simpl; auto.
unfold proj_pointer. destruct cl; try (exact I).
destruct m; try (exact I).
destruct (check_pointer (size_chunk_nat Mint32) b i (Pointer b i n :: cl));
exact I.
Qed.
Lemma encode_val_int8_signed_unsigned:
forall v, encode_val Mint8signed v = encode_val Mint8unsigned v.
Proof.
intros. destruct v; simpl; auto. rewrite encode_float8_signed_unsigned; auto.
Qed.
Lemma encode_val_int16_signed_unsigned:
forall v, encode_val Mint16signed v = encode_val Mint16unsigned v.
Proof.
intros. destruct v; simpl; auto. rewrite encode_float16_signed_unsigned; auto.
Qed.
Lemma encode_val_int8_zero_ext:
forall n, encode_val Mint8unsigned (Vint (Int.zero_ext 8 n)) = encode_val Mint8unsigned (Vint n).
Proof.
intros; unfold encode_val. rewrite encode_int8_zero_ext. auto.
Qed.
Lemma encode_val_int8_sign_ext:
forall n, encode_val Mint8signed (Vint (Int.sign_ext 8 n)) = encode_val Mint8signed (Vint n).
Proof.
intros; unfold encode_val. rewrite encode_int8_sign_ext. auto.
Qed.
Lemma encode_val_int16_zero_ext:
forall n, encode_val Mint16unsigned (Vint (Int.zero_ext 16 n)) = encode_val Mint16unsigned (Vint n).
Proof.
intros; unfold encode_val. rewrite encode_int16_zero_ext. auto.
Qed.
Lemma encode_val_int16_sign_ext:
forall n, encode_val Mint16signed (Vint (Int.sign_ext 16 n)) = encode_val Mint16signed (Vint n).
Proof.
intros; unfold encode_val. rewrite encode_int16_sign_ext. auto.
Qed.
Lemma decode_val_int_inv:
forall chunk cl n,
decode_val chunk cl = Vint n ->
type_of_chunk chunk = Tint /\
exists bytes, proj_bytes cl = Some bytes /\ n = decode_int chunk bytes.
Proof.
intros until n. unfold decode_val. destruct (proj_bytes cl).
Opaque decode_int.
destruct chunk; intro EQ; inv EQ; split; auto; exists l; auto.
destruct chunk; try congruence. unfold proj_pointer.
destruct cl; try congruence. destruct m; try congruence.
destruct (check_pointer (size_chunk_nat Mint32) b i (Pointer b i n0 :: cl));
congruence.
Qed.
Lemma decode_val_float_inv:
forall chunk cl f,
decode_val chunk cl = Vfloat f ->
type_of_chunk chunk = Tfloat /\
exists bytes, proj_bytes cl = Some bytes /\ f = decode_float chunk bytes.
Proof.
intros until f. unfold decode_val. destruct (proj_bytes cl).
destruct chunk; intro EQ; inv EQ; split; auto; exists l; auto.
destruct chunk; try congruence. unfold proj_pointer.
destruct cl; try congruence. destruct m; try congruence.
destruct (check_pointer (size_chunk_nat Mint32) b i (Pointer b i n :: cl));
congruence.
Qed.
Lemma decode_val_cast:
forall chunk l,
let v := decode_val chunk l in
match chunk with
| Mint8signed => v = Val.sign_ext 8 v
| Mint8unsigned => v = Val.zero_ext 8 v
| Mint16signed => v = Val.sign_ext 16 v
| Mint16unsigned => v = Val.zero_ext 16 v
| Mfloat32 => v = Val.singleoffloat v
| _ => True
end.
Proof.
unfold decode_val; intros; destruct chunk; auto; destruct (proj_bytes l); auto.
unfold Val.sign_ext. decEq. symmetry. apply decode_int8_sign_ext.
unfold Val.zero_ext. decEq. symmetry. apply decode_int8_zero_ext.
unfold Val.sign_ext. decEq. symmetry. apply decode_int16_sign_ext.
unfold Val.zero_ext. decEq. symmetry. apply decode_int16_zero_ext.
unfold Val.singleoffloat. decEq. symmetry. apply decode_float32_cast.
Qed.
(** Pointers cannot be forged. *)
Definition memval_valid_first (mv: memval) : Prop :=
match mv with
| Pointer b ofs n => n = pred (size_chunk_nat Mint32)
| _ => True
end.
Definition memval_valid_cont (mv: memval) : Prop :=
match mv with
| Pointer b ofs n => n <> pred (size_chunk_nat Mint32)
| _ => True
end.
Inductive encoding_shape: list memval -> Prop :=
| encoding_shape_intro: forall mv1 mvl,
memval_valid_first mv1 ->
(forall mv, In mv mvl -> memval_valid_cont mv) ->
encoding_shape (mv1 :: mvl).
Lemma encode_val_shape:
forall chunk v, encoding_shape (encode_val chunk v).
Proof.
intros.
destruct (size_chunk_nat_pos chunk) as [sz1 EQ].
assert (encoding_shape (list_repeat (size_chunk_nat chunk) Undef)).
rewrite EQ; simpl; constructor. exact I.
intros. replace mv with Undef. exact I. symmetry; eapply in_list_repeat; eauto.
assert (forall bl, length bl = size_chunk_nat chunk ->
encoding_shape (inj_bytes bl)).
intros. destruct bl; simpl in *. congruence.
constructor. exact I. unfold inj_bytes. intros.
exploit list_in_map_inv; eauto. intros [x [A B]]. subst mv. exact I.
destruct v; simpl.
auto.
apply H0. apply encode_int_length.
apply H0. apply encode_float_length.
destruct chunk; auto.
constructor. red. auto.
simpl; intros. intuition; subst mv; red; simpl; congruence.
Qed.
Lemma check_pointer_inv:
forall b ofs n mv,
check_pointer n b ofs mv = true -> mv = inj_pointer n b ofs.
Proof.
induction n; destruct mv; simpl.
auto.
congruence.
congruence.
destruct m; try congruence. intro.
destruct (andb_prop _ _ H). destruct (andb_prop _ _ H0).
destruct (andb_prop _ _ H2).
decEq. decEq. symmetry; eapply proj_sumbool_true; eauto.
symmetry; eapply proj_sumbool_true; eauto.
symmetry; apply beq_nat_true; auto.
auto.
Qed.
Inductive decoding_shape: list memval -> Prop :=
| decoding_shape_intro: forall mv1 mvl,
memval_valid_first mv1 -> mv1 <> Undef ->
(forall mv, In mv mvl -> memval_valid_cont mv /\ mv <> Undef) ->
decoding_shape (mv1 :: mvl).
Lemma decode_val_shape:
forall chunk mvl,
List.length mvl = size_chunk_nat chunk ->
decode_val chunk mvl = Vundef \/ decoding_shape mvl.
Proof.
intros. destruct (size_chunk_nat_pos chunk) as [sz EQ].
unfold decode_val.
caseEq (proj_bytes mvl).
intros bl PROJ. right. exploit inj_proj_bytes; eauto. intros. subst mvl.
destruct bl; simpl in H. congruence. simpl. constructor.
red; auto. congruence.
unfold inj_bytes; intros. exploit list_in_map_inv; eauto. intros [b [A B]].
subst mv. split. red; auto. congruence.
intros. destruct chunk; auto. unfold proj_pointer.
destruct mvl; auto. destruct m; auto.
caseEq (check_pointer (size_chunk_nat Mint32) b i (Pointer b i n :: mvl)); auto.
intros. right. exploit check_pointer_inv; eauto. simpl; intros; inv H2.
constructor. red. auto. congruence.
simpl; intros. intuition; subst mv; simpl; congruence.
Qed.
Lemma encode_val_pointer_inv:
forall chunk v b ofs n mvl,
encode_val chunk v = Pointer b ofs n :: mvl ->
chunk = Mint32 /\ v = Vptr b ofs /\ mvl = inj_pointer (pred (size_chunk_nat Mint32)) b ofs.
Proof.
intros until mvl.
destruct (size_chunk_nat_pos chunk) as [sz SZ].
unfold encode_val. rewrite SZ. destruct v.
simpl. congruence.
generalize (encode_int_length chunk i). destruct (encode_int chunk i); simpl; congruence.
generalize (encode_float_length chunk f). destruct (encode_float chunk f); simpl; congruence.
destruct chunk; try (simpl; congruence).
simpl. intuition congruence.
Qed.
Lemma decode_val_pointer_inv:
forall chunk mvl b ofs,
decode_val chunk mvl = Vptr b ofs ->
chunk = Mint32 /\ mvl = inj_pointer (size_chunk_nat Mint32) b ofs.
Proof.
intros until ofs; unfold decode_val.
destruct (proj_bytes mvl).
destruct chunk; congruence.
destruct chunk; try congruence.
unfold proj_pointer. destruct mvl. congruence. destruct m; try congruence.
case_eq (check_pointer (size_chunk_nat Mint32) b0 i (Pointer b0 i n :: mvl)); intros.
inv H0. split; auto. apply check_pointer_inv; auto.
congruence.
Qed.
Inductive pointer_encoding_shape: list memval -> Prop :=
| pointer_encoding_shape_intro: forall mv1 mvl,
~memval_valid_cont mv1 ->
(forall mv, In mv mvl -> ~memval_valid_first mv) ->
pointer_encoding_shape (mv1 :: mvl).
Lemma encode_pointer_shape:
forall b ofs, pointer_encoding_shape (encode_val Mint32 (Vptr b ofs)).
Proof.
intros. simpl. constructor.
unfold memval_valid_cont. red; intro. elim H. auto.
unfold memval_valid_first. simpl; intros; intuition; subst mv; congruence.
Qed.
Lemma decode_pointer_shape:
forall chunk mvl b ofs,
decode_val chunk mvl = Vptr b ofs ->
chunk = Mint32 /\ pointer_encoding_shape mvl.
Proof.
intros. exploit decode_val_pointer_inv; eauto. intros [A B].
split; auto. subst mvl. apply encode_pointer_shape.
Qed.
(*
Lemma proj_bytes_none:
forall mv,
match mv with Byte _ => False | _ => True end ->
forall mvl,
In mv mvl ->
proj_bytes mvl = None.
Proof.
induction mvl; simpl; intros.
elim H0.
destruct a; auto. destruct H0. subst mv. contradiction.
rewrite (IHmvl H0); auto.
Qed.
Lemma decode_val_undef:
forall chunk mv mv1 mvl,
match mv with
| Pointer b ofs n => n = pred (size_chunk_nat Mint32)
| Undef => True
| _ => False
end ->
In mv mvl ->
decode_val chunk (mv1 :: mvl) = Vundef.
Proof.
intros. unfold decode_val.
replace (proj_bytes (mv1 :: mvl)) with (@None (list byte)).
destruct chunk; auto. unfold proj_pointer. destruct mv1; auto.
case_eq (check_pointer (size_chunk_nat Mint32) b i (Pointer b i n :: mvl)); intros.
exploit check_pointer_inv; eauto. simpl. intros. inv H2.
simpl in H0. intuition; subst mv; simpl in H; congruence.
auto.
symmetry. apply proj_bytes_none with mv.
destruct mv; tauto. auto with coqlib.
Qed.
*)
(** * Compatibility with memory injections *)
(** Relating two memory values according to a memory injection. *)
Inductive memval_inject (f: meminj): memval -> memval -> Prop :=
| memval_inject_byte:
forall n, memval_inject f (Byte n) (Byte n)
| memval_inject_ptr:
forall b1 ofs1 b2 ofs2 delta n,
f b1 = Some (b2, delta) ->
ofs2 = Int.add ofs1 (Int.repr delta) ->
memval_inject f (Pointer b1 ofs1 n) (Pointer b2 ofs2 n)
| memval_inject_undef:
forall mv, memval_inject f Undef mv.
Lemma memval_inject_incr:
forall f f' v1 v2, memval_inject f v1 v2 -> inject_incr f f' -> memval_inject f' v1 v2.
Proof.
intros. inv H; econstructor. rewrite (H0 _ _ _ H1). reflexivity. auto.
Qed.
(** [decode_val], applied to lists of memory values that are pairwise
related by [memval_inject], returns values that are related by [val_inject]. *)
Lemma proj_bytes_inject:
forall f vl vl',
list_forall2 (memval_inject f) vl vl' ->
forall bl,
proj_bytes vl = Some bl ->
proj_bytes vl' = Some bl.
Proof.
induction 1; simpl. congruence.
inv H; try congruence.
destruct (proj_bytes al); intros.
inv H. rewrite (IHlist_forall2 l); auto.
congruence.
Qed.
Lemma check_pointer_inject:
forall f vl vl',
list_forall2 (memval_inject f) vl vl' ->
forall n b ofs b' delta,
check_pointer n b ofs vl = true ->
f b = Some(b', delta) ->
check_pointer n b' (Int.add ofs (Int.repr delta)) vl' = true.
Proof.
induction 1; intros; destruct n; simpl in *; auto.
inv H; auto.
destruct (andb_prop _ _ H1). destruct (andb_prop _ _ H).
destruct (andb_prop _ _ H5).
assert (n = n0) by (apply beq_nat_true; auto).
assert (b = b0) by (eapply proj_sumbool_true; eauto).
assert (ofs = ofs1) by (eapply proj_sumbool_true; eauto).
subst. rewrite H3 in H2; inv H2.
unfold proj_sumbool. rewrite dec_eq_true. rewrite dec_eq_true.
rewrite <- beq_nat_refl. simpl. eauto.
congruence.
Qed.
Lemma proj_pointer_inject:
forall f vl1 vl2,
list_forall2 (memval_inject f) vl1 vl2 ->
val_inject f (proj_pointer vl1) (proj_pointer vl2).
Proof.
intros. unfold proj_pointer.
inversion H; subst. auto. inversion H0; subst; auto.
case_eq (check_pointer (size_chunk_nat Mint32) b0 ofs1 (Pointer b0 ofs1 n :: al)); intros.
exploit check_pointer_inject. eexact H. eauto. eauto.
intro. rewrite H4. econstructor; eauto.
constructor.
Qed.
Lemma proj_bytes_not_inject:
forall f vl vl',
list_forall2 (memval_inject f) vl vl' ->
proj_bytes vl = None -> proj_bytes vl' <> None -> In Undef vl.
Proof.
induction 1; simpl; intros.
congruence.
inv H; try congruence.
right. apply IHlist_forall2.
destruct (proj_bytes al); congruence.
destruct (proj_bytes bl); congruence.
auto.
Qed.
Lemma check_pointer_undef:
forall n b ofs vl,
In Undef vl -> check_pointer n b ofs vl = false.
Proof.
induction n; intros; simpl.
destruct vl. elim H. auto.
destruct vl. auto.
destruct m; auto. simpl in H; destruct H. congruence.
rewrite IHn; auto. apply andb_false_r.
Qed.
Lemma proj_pointer_undef:
forall vl, In Undef vl -> proj_pointer vl = Vundef.
Proof.
intros; unfold proj_pointer.
destruct vl; auto. destruct m; auto.
rewrite check_pointer_undef. auto. auto.
Qed.
Theorem decode_val_inject:
forall f vl1 vl2 chunk,
list_forall2 (memval_inject f) vl1 vl2 ->
val_inject f (decode_val chunk vl1) (decode_val chunk vl2).
Proof.
intros. unfold decode_val.
case_eq (proj_bytes vl1); intros.
exploit proj_bytes_inject; eauto. intros. rewrite H1.
destruct chunk; constructor.
destruct chunk; auto.
case_eq (proj_bytes vl2); intros.
rewrite proj_pointer_undef. auto. eapply proj_bytes_not_inject; eauto. congruence.
apply proj_pointer_inject; auto.
Qed.
(** Symmetrically, [encode_val], applied to values related by [val_inject],
returns lists of memory values that are pairwise
related by [memval_inject]. *)
Lemma inj_bytes_inject:
forall f bl, list_forall2 (memval_inject f) (inj_bytes bl) (inj_bytes bl).
Proof.
induction bl; constructor; auto. constructor.
Qed.
Lemma repeat_Undef_inject_any:
forall f vl,
list_forall2 (memval_inject f) (list_repeat (length vl) Undef) vl.
Proof.
induction vl; simpl; constructor; auto. constructor.
Qed.
Lemma repeat_Undef_inject_self:
forall f n,
list_forall2 (memval_inject f) (list_repeat n Undef) (list_repeat n Undef).
Proof.
induction n; simpl; constructor; auto. constructor.
Qed.
Theorem encode_val_inject:
forall f v1 v2 chunk,
val_inject f v1 v2 ->
list_forall2 (memval_inject f) (encode_val chunk v1) (encode_val chunk v2).
Proof.
intros. inv H; simpl.
apply inj_bytes_inject.
apply inj_bytes_inject.
destruct chunk; try apply repeat_Undef_inject_self.
unfold inj_pointer; simpl; repeat econstructor; auto.
replace (size_chunk_nat chunk) with (length (encode_val chunk v2)).
apply repeat_Undef_inject_any. apply encode_val_length.
Qed.
(** The identity injection has interesting properties. *)
Definition inject_id : meminj := fun b => Some(b, 0).
Lemma val_inject_id:
forall v1 v2,
val_inject inject_id v1 v2 <-> Val.lessdef v1 v2.
Proof.
intros; split; intros.
inv H. constructor. constructor.
unfold inject_id in H0. inv H0. rewrite Int.add_zero. constructor.
constructor.
inv H. destruct v2; econstructor. unfold inject_id; reflexivity. rewrite Int.add_zero; auto.
constructor.
Qed.
Lemma memval_inject_id:
forall mv, memval_inject inject_id mv mv.
Proof.
destruct mv; econstructor. unfold inject_id; reflexivity. rewrite Int.add_zero; auto.
Qed.