Newer
Older
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* Sandrine Blazy, ENSIIE and INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU General Public License as published by *)
(* the Free Software Foundation, either version 2 of the License, or *)
(* (at your option) any later version. This file is also distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** In-memory representation of values. *)
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
Require Import Coqlib.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
(** * Properties of memory chunks *)
(** Memory reads and writes are performed by quantities called memory chunks,
encoding the type, size and signedness of the chunk being addressed.
The following functions extract the size information from a chunk. *)
Definition size_chunk (chunk: memory_chunk) : Z :=
match chunk with
| Mint8signed => 1
| Mint8unsigned => 1
| Mint16signed => 2
| Mint16unsigned => 2
| Mint32 => 4
| Mfloat32 => 4
| Mfloat64 => 8
end.
Lemma size_chunk_pos:
forall chunk, size_chunk chunk > 0.
Proof.
intros. destruct chunk; simpl; omega.
Qed.
Definition size_chunk_nat (chunk: memory_chunk) : nat :=
nat_of_Z(size_chunk chunk).
Lemma size_chunk_conv:
forall chunk, size_chunk chunk = Z_of_nat (size_chunk_nat chunk).
Proof.
intros. destruct chunk; reflexivity.
Qed.
Lemma size_chunk_nat_pos:
forall chunk, exists n, size_chunk_nat chunk = S n.
Proof.
intros.
generalize (size_chunk_pos chunk). rewrite size_chunk_conv.
destruct (size_chunk_nat chunk).
simpl; intros; omegaContradiction.
intros; exists n; auto.
Qed.
(** Memory reads and writes must respect alignment constraints:
the byte offset of the location being addressed should be an exact
multiple of the natural alignment for the chunk being addressed.
This natural alignment is defined by the following
[align_chunk] function. Some target architectures
(e.g. the PowerPC) have no alignment constraints, which we could
reflect by taking [align_chunk chunk = 1]. However, other architectures
have stronger alignment requirements. The following definition is
appropriate for PowerPC and ARM. *)
Definition align_chunk (chunk: memory_chunk) : Z :=
match chunk with
| Mint8signed => 1
| Mint8unsigned => 1
| Mint16signed => 2
| Mint16unsigned => 2
| _ => 4
end.
Lemma align_chunk_pos:
forall chunk, align_chunk chunk > 0.
Proof.
intro. destruct chunk; simpl; omega.
Qed.
Lemma align_size_chunk_divides:
forall chunk, (align_chunk chunk | size_chunk chunk).
Proof.
intros. destruct chunk; simpl; try apply Zdivide_refl. exists 2; auto.
Qed.
Lemma align_chunk_compat:
forall chunk1 chunk2,
size_chunk chunk1 = size_chunk chunk2 -> align_chunk chunk1 = align_chunk chunk2.
Proof.
intros chunk1 chunk2.
destruct chunk1; destruct chunk2; simpl; congruence.
Qed.
(** * Memory values *)
(** A ``memory value'' is a byte-sized quantity that describes the current
content of a memory cell. It can be either:
- a concrete 8-bit integer;
- a byte-sized fragment of an opaque pointer;
- the special constant [Undef] that represents uninitialized memory.
*)
(** Values stored in memory cells. *)
Inductive memval: Type :=
| Undef: memval
| Byte: byte -> memval
| Pointer: block -> int -> nat -> memval.
(** * Encoding and decoding integers *)
(** We define functions to convert between integers and lists of bytes
according to a given memory chunk. *)
Fixpoint bytes_of_int (n: nat) (x: Z) {struct n}: list byte :=
match n with
| O => nil
| S m => Byte.repr x :: bytes_of_int m (x / 256)
end.
Fixpoint int_of_bytes (l: list byte): Z :=
match l with
| nil => 0
| b :: l' => Byte.unsigned b + int_of_bytes l' * 256
end.
Lemma length_bytes_of_int:
forall n x, length (bytes_of_int n x) = n.
Proof.
induction n; simpl; intros. auto. decEq. auto.
Qed.
Lemma int_of_bytes_of_int:
forall n x,
int_of_bytes (bytes_of_int n x) = x mod (two_p (Z_of_nat n * 8)).
Proof.
induction n; intros.
simpl. rewrite Zmod_1_r. auto.
Opaque Byte.wordsize.
rewrite inj_S. simpl.
replace (Zsucc (Z_of_nat n) * 8) with (Z_of_nat n * 8 + 8) by omega.
rewrite two_p_is_exp; try omega.
rewrite Zmod_recombine. rewrite IHn. rewrite Zplus_comm. reflexivity.
apply two_p_gt_ZERO. omega. apply two_p_gt_ZERO. omega.
Qed.
Lemma int_of_bytes_of_int_2:
forall n x,
(n = 1 \/ n = 2)%nat ->
Int.repr (int_of_bytes (bytes_of_int n (Int.unsigned x))) = Int.zero_ext (Z_of_nat n * 8) x.
Proof.
intros. rewrite int_of_bytes_of_int.
rewrite <- (Int.repr_unsigned (Int.zero_ext (Z_of_nat n * 8) x)).
decEq. symmetry. apply Int.zero_ext_mod.
destruct H; subst n; compute; auto.
Qed.
Lemma bytes_of_int_mod:
forall n x y,
Int.eqmod (two_p (Z_of_nat n * 8)) x y ->
bytes_of_int n x = bytes_of_int n y.
Proof.
induction n.
intros; simpl; auto.
intros until y.
rewrite inj_S.
replace (Zsucc (Z_of_nat n) * 8) with (Z_of_nat n * 8 + 8) by omega.
rewrite two_p_is_exp; try omega.
intro EQM.
simpl; decEq.
apply Byte.eqm_samerepr. red.
eapply Int.eqmod_divides; eauto. apply Zdivide_factor_l.
apply IHn.
destruct EQM as [k EQ]. exists k. rewrite EQ.
rewrite <- Z_div_plus_full_l. decEq. change (two_p 8) with 256. ring. omega.
Qed.
Definition rev_if_be (l: list byte) : list byte :=
if big_endian then List.rev l else l.
Lemma rev_if_be_involutive:
forall l, rev_if_be (rev_if_be l) = l.
intros; unfold rev_if_be; destruct big_endian.
Lemma rev_if_be_length:
forall l, length (rev_if_be l) = length l.
intros; unfold rev_if_be; destruct big_endian.
Qed.
Definition encode_int (c: memory_chunk) (x: int) : list byte :=
let n := Int.unsigned x in
rev_if_be (match c with
| Mint8signed | Mint8unsigned => bytes_of_int 1%nat n
| Mint16signed | Mint16unsigned => bytes_of_int 2%nat n
| Mint32 => bytes_of_int 4%nat n
| Mfloat32 => bytes_of_int 4%nat 0
| Mfloat64 => bytes_of_int 8%nat 0
end).
Definition decode_int (c: memory_chunk) (b: list byte) : int :=
let b' := rev_if_be b in
match c with
| Mint8signed => Int.sign_ext 8 (Int.repr (int_of_bytes b'))
| Mint8unsigned => Int.zero_ext 8 (Int.repr (int_of_bytes b'))
| Mint16signed => Int.sign_ext 16 (Int.repr (int_of_bytes b'))
| Mint16unsigned => Int.zero_ext 16 (Int.repr (int_of_bytes b'))
| Mint32 => Int.repr (int_of_bytes b')
| Mfloat32 => Int.zero
| Mfloat64 => Int.zero
end.
Lemma encode_int_length:
forall chunk n, length(encode_int chunk n) = size_chunk_nat chunk.
Proof.
intros. unfold encode_int. rewrite rev_if_be_length.
destruct chunk; rewrite length_bytes_of_int; reflexivity.
Lemma decode_encode_int:
forall c x,
decode_int c (encode_int c x) =
match c with
| Mint8signed => Int.sign_ext 8 x
| Mint8unsigned => Int.zero_ext 8 x
| Mint16signed => Int.sign_ext 16 x
| Mint16unsigned => Int.zero_ext 16 x
| Mint32 => x
| Mfloat32 => Int.zero
| Mfloat64 => Int.zero
end.
intros. unfold decode_int, encode_int; destruct c; auto;
rewrite rev_if_be_involutive.
rewrite int_of_bytes_of_int_2; auto.
apply Int.sign_ext_zero_ext. compute; auto.
rewrite int_of_bytes_of_int_2; auto.
apply Int.zero_ext_idem. compute; auto.
rewrite int_of_bytes_of_int_2; auto.
apply Int.sign_ext_zero_ext. compute; auto.
rewrite int_of_bytes_of_int_2; auto.
apply Int.zero_ext_idem. compute; auto.
rewrite int_of_bytes_of_int.
transitivity (Int.repr (Int.unsigned x)).
apply Int.eqm_samerepr. apply Int.eqm_sym. apply Int.eqmod_mod. apply two_p_gt_ZERO. omega.
apply Int.repr_unsigned.
Qed.
Lemma encode_int8_signed_unsigned: forall n,
encode_int Mint8signed n = encode_int Mint8unsigned n.
Proof.
intros; reflexivity.
Qed.
Remark encode_8_mod:
forall x y,
Int.eqmod (two_p 8) (Int.unsigned x) (Int.unsigned y) ->
encode_int Mint8unsigned x = encode_int Mint8unsigned y.
Proof.
intros. unfold encode_int. decEq. apply bytes_of_int_mod. auto.
Qed.
Lemma encode_int8_zero_ext:
forall x,
encode_int Mint8unsigned (Int.zero_ext 8 x) = encode_int Mint8unsigned x.
Proof.
intros. apply encode_8_mod. apply Int.eqmod_zero_ext. compute; auto.
Qed.
Lemma encode_int8_sign_ext:
forall x,
encode_int Mint8signed (Int.sign_ext 8 x) = encode_int Mint8signed x.
Proof.
intros. repeat rewrite encode_int8_signed_unsigned.
apply encode_8_mod. eapply Int.eqmod_trans.
apply Int.eqm_eqmod_two_p. compute; auto.
apply Int.eqm_sym. apply Int.eqm_signed_unsigned.
apply Int.eqmod_sign_ext. compute; auto.
Qed.
Lemma encode_int16_signed_unsigned: forall n,
encode_int Mint16signed n = encode_int Mint16unsigned n.
Proof.
intros; reflexivity.
Qed.
Remark encode_16_mod:
forall x y,
Int.eqmod (two_p 16) (Int.unsigned x) (Int.unsigned y) ->
encode_int Mint16unsigned x = encode_int Mint16unsigned y.
Proof.
intros. unfold encode_int. decEq. apply bytes_of_int_mod. auto.
Qed.
Lemma encode_int16_zero_ext:
forall x,
encode_int Mint16unsigned (Int.zero_ext 16 x) = encode_int Mint16unsigned x.
Proof.
intros. apply encode_16_mod. apply Int.eqmod_zero_ext. compute; auto.
Qed.
Lemma encode_int16_sign_ext:
forall x,
encode_int Mint16signed (Int.sign_ext 16 x) = encode_int Mint16signed x.
Proof.
intros. repeat rewrite encode_int16_signed_unsigned.
apply encode_16_mod. eapply Int.eqmod_trans.
apply Int.eqm_eqmod_two_p. compute; auto.
apply Int.eqm_sym. apply Int.eqm_signed_unsigned.
apply Int.eqmod_sign_ext. compute; auto.
Qed.
Lemma decode_int8_zero_ext:
forall l,
Int.zero_ext 8 (decode_int Mint8unsigned l) = decode_int Mint8unsigned l.
Proof.
intros; simpl. apply Int.zero_ext_idem. vm_compute; auto.
Qed.
Lemma decode_int8_sign_ext:
forall l,
Int.sign_ext 8 (decode_int Mint8signed l) = decode_int Mint8signed l.
Proof.
intros; simpl. apply Int.sign_ext_idem. vm_compute; auto.
Qed.
Lemma decode_int16_zero_ext:
forall l,
Int.zero_ext 16 (decode_int Mint16unsigned l) = decode_int Mint16unsigned l.
Proof.
intros; simpl. apply Int.zero_ext_idem. vm_compute; auto.
Qed.
Lemma decode_int16_sign_ext:
forall l,
Int.sign_ext 16 (decode_int Mint16signed l) = decode_int Mint16signed l.
Proof.
intros; simpl. apply Int.sign_ext_idem. vm_compute; auto.
Qed.
Lemma decode_int8_signed_unsigned:
forall l,
decode_int Mint8signed l = Int.sign_ext 8 (decode_int Mint8unsigned l).
Proof.
intros; simpl. rewrite Int.sign_ext_zero_ext; auto. vm_compute; auto.
Qed.
Lemma decode_int16_signed_unsigned:
forall l,
decode_int Mint16signed l = Int.sign_ext 16 (decode_int Mint16unsigned l).
Proof.
intros; simpl. rewrite Int.sign_ext_zero_ext; auto. vm_compute; auto.
Qed.
(** * Encoding and decoding floats *)
Definition encode_float (c: memory_chunk) (f: float) : list byte :=
rev_if_be (match c with
| Mint8signed | Mint8unsigned => bytes_of_int 1%nat 0
| Mint16signed | Mint16unsigned => bytes_of_int 2%nat 0
| Mint32 => bytes_of_int 4%nat 0
| Mfloat32 => bytes_of_int 4%nat (Int.unsigned (Float.bits_of_single f))
| Mfloat64 => bytes_of_int 8%nat (Int64.unsigned (Float.bits_of_double f))
end).
Definition decode_float (c: memory_chunk) (b: list byte) : float :=
let b' := rev_if_be b in
match c with
| Mfloat32 => Float.single_of_bits (Int.repr (int_of_bytes b'))
| Mfloat64 => Float.double_of_bits (Int64.repr (int_of_bytes b'))
| _ => Float.zero
end.
Lemma encode_float_length:
forall chunk n, length(encode_float chunk n) = size_chunk_nat chunk.
Proof.
unfold encode_float; intros.
rewrite rev_if_be_length.
destruct chunk; apply length_bytes_of_int.
Qed.
decode_float Mfloat32 (encode_float Mfloat32 n) = Float.singleoffloat n.
Proof.
intros; unfold decode_float, encode_float.
rewrite rev_if_be_involutive.
rewrite int_of_bytes_of_int. rewrite <- Float.single_of_bits_of_single.
decEq.
transitivity (Int.repr (Int.unsigned (Float.bits_of_single n))).
apply Int.eqm_samerepr. apply Int.eqm_sym. apply Int.eqmod_mod. apply two_p_gt_ZERO. omega.
apply Int.repr_unsigned.
Qed.
Lemma decode_encode_float64: forall n,
decode_float Mfloat64 (encode_float Mfloat64 n) = n.
Proof.
intros; unfold decode_float, encode_float.
rewrite rev_if_be_involutive.
rewrite int_of_bytes_of_int.
set (x := Float.bits_of_double n).
transitivity (Float.double_of_bits(Int64.repr (Int64.unsigned x))).
decEq.
apply Int64.eqm_samerepr. apply Int64.eqm_sym. apply Int64.eqmod_mod. apply two_p_gt_ZERO. omega.
rewrite Int64.repr_unsigned. apply Float.double_of_bits_of_double.
Qed.
Lemma encode_float8_signed_unsigned: forall n,
encode_float Mint8signed n = encode_float Mint8unsigned n.
Proof.
intros. reflexivity.
Qed.
Lemma encode_float16_signed_unsigned: forall n,
encode_float Mint16signed n = encode_float Mint16unsigned n.
forall f,
encode_float Mfloat32 (Float.singleoffloat f) = encode_float Mfloat32 f.
Proof.
intros; unfold encode_float. decEq. decEq. decEq.
apply Float.bits_of_singleoffloat.
Qed.
forall l,
Float.singleoffloat (decode_float Mfloat32 l) = decode_float Mfloat32 l.
intros; unfold decode_float. rewrite Float.singleoffloat_of_bits. auto.
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
(** * Encoding and decoding values *)
Definition inj_bytes (bl: list byte) : list memval :=
List.map Byte bl.
Fixpoint proj_bytes (vl: list memval) : option (list byte) :=
match vl with
| nil => Some nil
| Byte b :: vl' =>
match proj_bytes vl' with None => None | Some bl => Some(b :: bl) end
| _ => None
end.
Remark length_inj_bytes:
forall bl, length (inj_bytes bl) = length bl.
Proof.
intros. apply List.map_length.
Qed.
Remark proj_inj_bytes:
forall bl, proj_bytes (inj_bytes bl) = Some bl.
Proof.
induction bl; simpl. auto. rewrite IHbl. auto.
Qed.
Lemma inj_proj_bytes:
forall cl bl, proj_bytes cl = Some bl -> cl = inj_bytes bl.
Proof.
induction cl; simpl; intros.
inv H; auto.
destruct a; try congruence. destruct (proj_bytes cl); inv H.
simpl. decEq. auto.
Qed.
Fixpoint inj_pointer (n: nat) (b: block) (ofs: int) {struct n}: list memval :=
match n with
| O => nil
| S m => Pointer b ofs m :: inj_pointer m b ofs
end.
Fixpoint check_pointer (n: nat) (b: block) (ofs: int) (vl: list memval)
{struct n} : bool :=
match n, vl with
| O, nil => true
| S m, Pointer b' ofs' m' :: vl' =>
eq_block b b' && Int.eq_dec ofs ofs' && beq_nat m m' && check_pointer m b ofs vl'
| _, _ => false
end.
Definition proj_pointer (vl: list memval) : val :=
match vl with
| Pointer b ofs n :: vl' =>
if check_pointer (size_chunk_nat Mint32) b ofs vl
then Vptr b ofs
else Vundef
| _ => Vundef
end.
Definition encode_val (chunk: memory_chunk) (v: val) : list memval :=
match v, chunk with
| Vptr b ofs, Mint32 => inj_pointer (size_chunk_nat Mint32) b ofs
| Vint n, _ => inj_bytes (encode_int chunk n)
| Vfloat f, _ => inj_bytes (encode_float chunk f)
| _, _ => list_repeat (size_chunk_nat chunk) Undef
end.
Definition decode_val (chunk: memory_chunk) (vl: list memval) : val :=
match proj_bytes vl with
| Some bl =>
match chunk with
| Mint8signed | Mint8unsigned
| Mint16signed | Mint16unsigned | Mint32 =>
Vint(decode_int chunk bl)
| Mfloat32 | Mfloat64 =>
Vfloat(decode_float chunk bl)
end
| None =>
match chunk with
| Mint32 => proj_pointer vl
| _ => Vundef
end
end.
(*
Lemma inj_pointer_length:
forall b ofs n, List.length(inj_pointer n b ofs) = n.
Proof.
induction n; simpl; congruence.
Qed.
*)
Lemma encode_val_length:
forall chunk v, length(encode_val chunk v) = size_chunk_nat chunk.
Proof.
intros. destruct v; simpl.
apply length_list_repeat.
rewrite length_inj_bytes. apply encode_int_length.
rewrite length_inj_bytes. apply encode_float_length.
destruct chunk; try (apply length_list_repeat). reflexivity.
Qed.
Lemma check_inj_pointer:
forall b ofs n, check_pointer n b ofs (inj_pointer n b ofs) = true.
Proof.
induction n; simpl. auto.
unfold proj_sumbool. rewrite dec_eq_true. rewrite dec_eq_true.
rewrite <- beq_nat_refl. simpl; auto.
Qed.
Definition decode_encode_val (v1: val) (chunk1 chunk2: memory_chunk) (v2: val) : Prop :=
match v1, chunk1, chunk2 with
| Vundef, _, _ => v2 = Vundef
| Vint n, Mint8signed, Mint8signed => v2 = Vint(Int.sign_ext 8 n)
| Vint n, Mint8unsigned, Mint8signed => v2 = Vint(Int.sign_ext 8 n)
| Vint n, Mint8signed, Mint8unsigned => v2 = Vint(Int.zero_ext 8 n)
| Vint n, Mint8unsigned, Mint8unsigned => v2 = Vint(Int.zero_ext 8 n)
| Vint n, Mint16signed, Mint16signed => v2 = Vint(Int.sign_ext 16 n)
| Vint n, Mint16unsigned, Mint16signed => v2 = Vint(Int.sign_ext 16 n)
| Vint n, Mint16signed, Mint16unsigned => v2 = Vint(Int.zero_ext 16 n)
| Vint n, Mint16unsigned, Mint16unsigned => v2 = Vint(Int.zero_ext 16 n)
| Vint n, Mint32, Mint32 => v2 = Vint n
| Vint n, Mint32, Mfloat32 => v2 = Vfloat(decode_float Mfloat32 (encode_int Mint32 n))
| Vint n, _, _ => True (* nothing interesting to say about v2 *)
| Vptr b ofs, Mint32, Mint32 => v2 = Vptr b ofs
| Vptr b ofs, _, _ => v2 = Vundef
| Vfloat f, Mfloat32, Mfloat32 => v2 = Vfloat(Float.singleoffloat f)
| Vfloat f, Mfloat32, Mint32 => v2 = Vint(decode_int Mint32 (encode_float Mfloat32 f))
| Vfloat f, Mfloat64, Mfloat64 => v2 = Vfloat f
| Vfloat f, _, _ => True (* nothing interesting to say about v2 *)
end.
Lemma decode_encode_val_general:
forall v chunk1 chunk2,
decode_encode_val v chunk1 chunk2 (decode_val chunk2 (encode_val chunk1 v)).
Proof.
intros. destruct v.
(* Vundef *)
simpl. destruct (size_chunk_nat_pos chunk1) as [psz EQ].
rewrite EQ. simpl.
unfold decode_val. simpl. destruct chunk2; auto.
(* Vint *)
simpl.
destruct chunk1; auto; destruct chunk2; auto; unfold decode_val;
rewrite proj_inj_bytes.
rewrite decode_encode_int. auto.
rewrite encode_int8_signed_unsigned. rewrite decode_encode_int. auto.
rewrite <- encode_int8_signed_unsigned. rewrite decode_encode_int. auto.
rewrite decode_encode_int. auto.
rewrite decode_encode_int. auto.
rewrite encode_int16_signed_unsigned. rewrite decode_encode_int. auto.
rewrite <- encode_int16_signed_unsigned. rewrite decode_encode_int. auto.
rewrite decode_encode_int. auto.
rewrite decode_encode_int. auto.
reflexivity.
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
(* Vfloat *)
unfold decode_val, encode_val, decode_encode_val;
destruct chunk1; auto; destruct chunk2; auto; unfold decode_val;
rewrite proj_inj_bytes.
auto.
rewrite decode_encode_float32. auto.
rewrite decode_encode_float64. auto.
(* Vptr *)
unfold decode_val, encode_val, decode_encode_val;
destruct chunk1; auto; destruct chunk2; auto.
simpl. generalize (check_inj_pointer b i (size_chunk_nat Mint32)).
simpl. intro. rewrite H. auto.
Qed.
Lemma decode_encode_val_similar:
forall v1 chunk1 chunk2 v2,
type_of_chunk chunk1 = type_of_chunk chunk2 ->
size_chunk chunk1 = size_chunk chunk2 ->
Val.has_type v1 (type_of_chunk chunk1) ->
decode_encode_val v1 chunk1 chunk2 v2 ->
v2 = Val.load_result chunk2 v1.
Proof.
intros.
destruct v1.
simpl in *. destruct chunk2; simpl; auto.
red in H1.
destruct chunk1; simpl in H1; try contradiction;
destruct chunk2; simpl in *; discriminate || auto.
red in H1.
destruct chunk1; simpl in H1; try contradiction;
destruct chunk2; simpl in *; discriminate || auto.
red in H1.
destruct chunk1; simpl in H1; try contradiction;
destruct chunk2; simpl in *; discriminate || auto.
Qed.
Lemma decode_val_type:
forall chunk cl,
Val.has_type (decode_val chunk cl) (type_of_chunk chunk).
Proof.
intros. unfold decode_val.
destruct (proj_bytes cl).
destruct chunk; simpl; auto.
destruct chunk; simpl; auto.
unfold proj_pointer. destruct cl; try (exact I).
destruct m; try (exact I).
destruct (check_pointer (size_chunk_nat Mint32) b i (Pointer b i n :: cl));
exact I.
Qed.
Lemma encode_val_int8_signed_unsigned:
forall v, encode_val Mint8signed v = encode_val Mint8unsigned v.
Proof.
Qed.
Lemma encode_val_int16_signed_unsigned:
forall v, encode_val Mint16signed v = encode_val Mint16unsigned v.
Proof.
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Qed.
Lemma encode_val_int8_zero_ext:
forall n, encode_val Mint8unsigned (Vint (Int.zero_ext 8 n)) = encode_val Mint8unsigned (Vint n).
Proof.
intros; unfold encode_val. rewrite encode_int8_zero_ext. auto.
Qed.
Lemma encode_val_int8_sign_ext:
forall n, encode_val Mint8signed (Vint (Int.sign_ext 8 n)) = encode_val Mint8signed (Vint n).
Proof.
intros; unfold encode_val. rewrite encode_int8_sign_ext. auto.
Qed.
Lemma encode_val_int16_zero_ext:
forall n, encode_val Mint16unsigned (Vint (Int.zero_ext 16 n)) = encode_val Mint16unsigned (Vint n).
Proof.
intros; unfold encode_val. rewrite encode_int16_zero_ext. auto.
Qed.
Lemma encode_val_int16_sign_ext:
forall n, encode_val Mint16signed (Vint (Int.sign_ext 16 n)) = encode_val Mint16signed (Vint n).
Proof.
intros; unfold encode_val. rewrite encode_int16_sign_ext. auto.
Qed.
Lemma decode_val_int_inv:
forall chunk cl n,
decode_val chunk cl = Vint n ->
type_of_chunk chunk = Tint /\
exists bytes, proj_bytes cl = Some bytes /\ n = decode_int chunk bytes.
Proof.
intros until n. unfold decode_val. destruct (proj_bytes cl).
Opaque decode_int.
destruct chunk; intro EQ; inv EQ; split; auto; exists l; auto.
destruct chunk; try congruence. unfold proj_pointer.
destruct cl; try congruence. destruct m; try congruence.
destruct (check_pointer (size_chunk_nat Mint32) b i (Pointer b i n0 :: cl));
congruence.
Qed.
Lemma decode_val_float_inv:
forall chunk cl f,
decode_val chunk cl = Vfloat f ->
type_of_chunk chunk = Tfloat /\
exists bytes, proj_bytes cl = Some bytes /\ f = decode_float chunk bytes.
Proof.
intros until f. unfold decode_val. destruct (proj_bytes cl).
destruct chunk; intro EQ; inv EQ; split; auto; exists l; auto.
destruct chunk; try congruence. unfold proj_pointer.
destruct cl; try congruence. destruct m; try congruence.
destruct (check_pointer (size_chunk_nat Mint32) b i (Pointer b i n :: cl));
congruence.
Qed.
Lemma decode_val_cast:
forall chunk l,
let v := decode_val chunk l in
match chunk with
| Mint8signed => v = Val.sign_ext 8 v
| Mint8unsigned => v = Val.zero_ext 8 v
| Mint16signed => v = Val.sign_ext 16 v
| Mint16unsigned => v = Val.zero_ext 16 v
| Mfloat32 => v = Val.singleoffloat v
| _ => True
end.
Proof.
unfold decode_val; intros; destruct chunk; auto; destruct (proj_bytes l); auto.
unfold Val.sign_ext. decEq. symmetry. apply decode_int8_sign_ext.
unfold Val.zero_ext. decEq. symmetry. apply decode_int8_zero_ext.
unfold Val.sign_ext. decEq. symmetry. apply decode_int16_sign_ext.
unfold Val.zero_ext. decEq. symmetry. apply decode_int16_zero_ext.
unfold Val.singleoffloat. decEq. symmetry. apply decode_float32_cast.
Qed.
(** Pointers cannot be forged. *)
Definition memval_valid_first (mv: memval) : Prop :=
match mv with
| Pointer b ofs n => n = pred (size_chunk_nat Mint32)
| _ => True
end.
Definition memval_valid_cont (mv: memval) : Prop :=
match mv with
| Pointer b ofs n => n <> pred (size_chunk_nat Mint32)
| _ => True
end.
Inductive encoding_shape: list memval -> Prop :=
| encoding_shape_intro: forall mv1 mvl,
memval_valid_first mv1 ->
(forall mv, In mv mvl -> memval_valid_cont mv) ->
encoding_shape (mv1 :: mvl).
Lemma encode_val_shape:
forall chunk v, encoding_shape (encode_val chunk v).
Proof.
intros.
destruct (size_chunk_nat_pos chunk) as [sz1 EQ].
assert (encoding_shape (list_repeat (size_chunk_nat chunk) Undef)).
rewrite EQ; simpl; constructor. exact I.
intros. replace mv with Undef. exact I. symmetry; eapply in_list_repeat; eauto.
assert (forall bl, length bl = size_chunk_nat chunk ->
encoding_shape (inj_bytes bl)).
intros. destruct bl; simpl in *. congruence.
constructor. exact I. unfold inj_bytes. intros.
exploit list_in_map_inv; eauto. intros [x [A B]]. subst mv. exact I.
destruct v; simpl.
auto.
apply H0. apply encode_int_length.
apply H0. apply encode_float_length.
destruct chunk; auto.
constructor. red. auto.
simpl; intros. intuition; subst mv; red; simpl; congruence.
Qed.
Lemma check_pointer_inv:
forall b ofs n mv,
check_pointer n b ofs mv = true -> mv = inj_pointer n b ofs.
Proof.
induction n; destruct mv; simpl.
auto.
congruence.
congruence.
destruct m; try congruence. intro.
destruct (andb_prop _ _ H). destruct (andb_prop _ _ H0).
destruct (andb_prop _ _ H2).
decEq. decEq. symmetry; eapply proj_sumbool_true; eauto.
symmetry; eapply proj_sumbool_true; eauto.
symmetry; apply beq_nat_true; auto.
auto.
Qed.
Inductive decoding_shape: list memval -> Prop :=
| decoding_shape_intro: forall mv1 mvl,
memval_valid_first mv1 -> mv1 <> Undef ->
(forall mv, In mv mvl -> memval_valid_cont mv /\ mv <> Undef) ->
decoding_shape (mv1 :: mvl).
Lemma decode_val_shape:
forall chunk mvl,
List.length mvl = size_chunk_nat chunk ->
decode_val chunk mvl = Vundef \/ decoding_shape mvl.
Proof.
intros. destruct (size_chunk_nat_pos chunk) as [sz EQ].
unfold decode_val.
caseEq (proj_bytes mvl).
intros bl PROJ. right. exploit inj_proj_bytes; eauto. intros. subst mvl.
destruct bl; simpl in H. congruence. simpl. constructor.
red; auto. congruence.
unfold inj_bytes; intros. exploit list_in_map_inv; eauto. intros [b [A B]].
subst mv. split. red; auto. congruence.
intros. destruct chunk; auto. unfold proj_pointer.
destruct mvl; auto. destruct m; auto.
caseEq (check_pointer (size_chunk_nat Mint32) b i (Pointer b i n :: mvl)); auto.
intros. right. exploit check_pointer_inv; eauto. simpl; intros; inv H2.
constructor. red. auto. congruence.
simpl; intros. intuition; subst mv; simpl; congruence.
Qed.
Lemma encode_val_pointer_inv:
forall chunk v b ofs n mvl,
encode_val chunk v = Pointer b ofs n :: mvl ->
chunk = Mint32 /\ v = Vptr b ofs /\ mvl = inj_pointer (pred (size_chunk_nat Mint32)) b ofs.
Proof.
intros until mvl.
destruct (size_chunk_nat_pos chunk) as [sz SZ].
unfold encode_val. rewrite SZ. destruct v.
simpl. congruence.
generalize (encode_int_length chunk i). destruct (encode_int chunk i); simpl; congruence.
generalize (encode_float_length chunk f). destruct (encode_float chunk f); simpl; congruence.
destruct chunk; try (simpl; congruence).
simpl. intuition congruence.
Qed.
Lemma decode_val_pointer_inv:
forall chunk mvl b ofs,
decode_val chunk mvl = Vptr b ofs ->
chunk = Mint32 /\ mvl = inj_pointer (size_chunk_nat Mint32) b ofs.
Proof.
intros until ofs; unfold decode_val.
destruct (proj_bytes mvl).
destruct chunk; congruence.
destruct chunk; try congruence.
unfold proj_pointer. destruct mvl. congruence. destruct m; try congruence.
case_eq (check_pointer (size_chunk_nat Mint32) b0 i (Pointer b0 i n :: mvl)); intros.
inv H0. split; auto. apply check_pointer_inv; auto.
congruence.
Qed.
Inductive pointer_encoding_shape: list memval -> Prop :=
| pointer_encoding_shape_intro: forall mv1 mvl,
~memval_valid_cont mv1 ->
(forall mv, In mv mvl -> ~memval_valid_first mv) ->
pointer_encoding_shape (mv1 :: mvl).
Lemma encode_pointer_shape:
forall b ofs, pointer_encoding_shape (encode_val Mint32 (Vptr b ofs)).
Proof.
intros. simpl. constructor.
unfold memval_valid_cont. red; intro. elim H. auto.
unfold memval_valid_first. simpl; intros; intuition; subst mv; congruence.
Qed.
Lemma decode_pointer_shape:
forall chunk mvl b ofs,
decode_val chunk mvl = Vptr b ofs ->
chunk = Mint32 /\ pointer_encoding_shape mvl.
Proof.
intros. exploit decode_val_pointer_inv; eauto. intros [A B].
split; auto. subst mvl. apply encode_pointer_shape.
Qed.
(** * Compatibility with memory injections *)
(** Relating two memory values according to a memory injection. *)
Inductive memval_inject (f: meminj): memval -> memval -> Prop :=
| memval_inject_byte:
forall n, memval_inject f (Byte n) (Byte n)
| memval_inject_ptr:
forall b1 ofs1 b2 ofs2 delta n,
f b1 = Some (b2, delta) ->
ofs2 = Int.add ofs1 (Int.repr delta) ->
memval_inject f (Pointer b1 ofs1 n) (Pointer b2 ofs2 n)
| memval_inject_undef:
forall mv, memval_inject f Undef mv.
Lemma memval_inject_incr:
forall f f' v1 v2, memval_inject f v1 v2 -> inject_incr f f' -> memval_inject f' v1 v2.
Proof.
intros. inv H; econstructor. rewrite (H0 _ _ _ H1). reflexivity. auto.
Qed.
(** [decode_val], applied to lists of memory values that are pairwise
related by [memval_inject], returns values that are related by [val_inject]. *)
Lemma proj_bytes_inject:
forall f vl vl',
list_forall2 (memval_inject f) vl vl' ->
forall bl,
proj_bytes vl = Some bl ->
proj_bytes vl' = Some bl.
Proof.
induction 1; simpl. congruence.
inv H; try congruence.
destruct (proj_bytes al); intros.
inv H. rewrite (IHlist_forall2 l); auto.
congruence.
Qed.
Lemma check_pointer_inject:
forall f vl vl',
list_forall2 (memval_inject f) vl vl' ->
forall n b ofs b' delta,
check_pointer n b ofs vl = true ->
f b = Some(b', delta) ->
check_pointer n b' (Int.add ofs (Int.repr delta)) vl' = true.
Proof.
induction 1; intros; destruct n; simpl in *; auto.
inv H; auto.
destruct (andb_prop _ _ H1). destruct (andb_prop _ _ H).
destruct (andb_prop _ _ H5).
assert (n = n0) by (apply beq_nat_true; auto).
assert (b = b0) by (eapply proj_sumbool_true; eauto).
assert (ofs = ofs1) by (eapply proj_sumbool_true; eauto).
subst. rewrite H3 in H2; inv H2.
unfold proj_sumbool. rewrite dec_eq_true. rewrite dec_eq_true.
rewrite <- beq_nat_refl. simpl. eauto.
congruence.
Qed.
Lemma proj_pointer_inject:
forall f vl1 vl2,
list_forall2 (memval_inject f) vl1 vl2 ->
val_inject f (proj_pointer vl1) (proj_pointer vl2).
Proof.
intros. unfold proj_pointer.
inversion H; subst. auto. inversion H0; subst; auto.
case_eq (check_pointer (size_chunk_nat Mint32) b0 ofs1 (Pointer b0 ofs1 n :: al)); intros.
exploit check_pointer_inject. eexact H. eauto. eauto.
intro. rewrite H4. econstructor; eauto.
constructor.
Qed.
Lemma proj_bytes_not_inject:
forall f vl vl',
list_forall2 (memval_inject f) vl vl' ->
proj_bytes vl = None -> proj_bytes vl' <> None -> In Undef vl.
Proof.
induction 1; simpl; intros.
congruence.
inv H; try congruence.
right. apply IHlist_forall2.
destruct (proj_bytes al); congruence.
destruct (proj_bytes bl); congruence.
auto.
Qed.
Lemma check_pointer_undef:
forall n b ofs vl,
In Undef vl -> check_pointer n b ofs vl = false.
Proof.
induction n; intros; simpl.
destruct vl. elim H. auto.
destruct vl. auto.
destruct m; auto. simpl in H; destruct H. congruence.
rewrite IHn; auto. apply andb_false_r.
Qed.
Lemma proj_pointer_undef:
forall vl, In Undef vl -> proj_pointer vl = Vundef.
Proof.
intros; unfold proj_pointer.
destruct vl; auto. destruct m; auto.
rewrite check_pointer_undef. auto. auto.
Qed.
Theorem decode_val_inject:
forall f vl1 vl2 chunk,
list_forall2 (memval_inject f) vl1 vl2 ->
val_inject f (decode_val chunk vl1) (decode_val chunk vl2).
Proof.
intros. unfold decode_val.
case_eq (proj_bytes vl1); intros.
exploit proj_bytes_inject; eauto. intros. rewrite H1.
destruct chunk; constructor.
destruct chunk; auto.
case_eq (proj_bytes vl2); intros.
rewrite proj_pointer_undef. auto. eapply proj_bytes_not_inject; eauto. congruence.
apply proj_pointer_inject; auto.
Qed.