solver.ml 24.5 KB
Newer Older
1
(*-----------------------------------------------------------------------
2
** Copyright (C) 2001, 2002 - Verimag.
3 4 5 6 7 8 9 10
** This file may only be copied under the terms of the GNU Library General
** Public License 
**-----------------------------------------------------------------------
**
** File: solver.ml
** Main author: jahier@imag.fr
*)

11
open List
12
open Formula
13
open Constraint
14
open Util
15
open Hashtbl
16
open Gne
17
open Rnumsolver
18

19 20
(****************************************************************************)
	  
21 22 23
let (lookup: env_in -> subst list -> var_name -> var_value option) = 
  fun input pre vn ->  
    try Some(Hashtbl.find input vn)
24
    with Not_found -> 
25 26 27 28 29 30 31 32 33
      try Some(List.assoc vn pre)
      with Not_found -> None

(****************************************************************************)

type comp = SupZero | SupEqZero | EqZero | NeqZero

let rec (formula_to_bdd : env_in -> formula -> Bdd.t * bool) =
  fun input f ->
34 35
    (** Returns the bdd of [f] where input and pre variables
      have been repaced by their values.
36

37 38 39
      Also returns a flag that is true iff the formula depends on
      input and pre vars. If this flag is false, the formula is
      stored (cached) in a global table ([env_state.bdd_tbl_global]);
40
      otherwise, it is stored in a table that is cleared at each new
41
      step ([env_state.bdd_tbl]).  
42
    *)
43
    try (Env_state.bdd f, true)
44
    with Not_found -> 
45
      try (Env_state.bdd_global f, false)
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
      with Not_found -> 
	let (bdd, dep) =
	  match f with 
	      Not(f1) ->
		let (bdd_not, dep) =  (formula_to_bdd input f1) in
		  (Bdd.dnot bdd_not, dep)

	    | Or(f1, f2) ->
		let (bdd1, dep1) = (formula_to_bdd input f1)
		and (bdd2, dep2) = (formula_to_bdd input f2)
		in
		  (Bdd.dor bdd1 bdd2, dep1 || dep2)

	    | And(f1, f2) -> 
		let (bdd1, dep1) = (formula_to_bdd input f1)
		and (bdd2, dep2) = (formula_to_bdd input f2)
		in
		  (Bdd.dand bdd1 bdd2, dep1 || dep2)
64 65 66 67 68 69

	    | EqB(f1, f2) -> 
		let (bdd1, dep1) = (formula_to_bdd input f1)
		and (bdd2, dep2) = (formula_to_bdd input f2)
		in
		  (Bdd.eq bdd1 bdd2, dep1 || dep2)
70 71 72 73 74 75 76 77 78 79

	    | IteB(f1, f2, f3) -> 
		let (bdd1, dep1) = (formula_to_bdd input f1)
		and (bdd2, dep2) = (formula_to_bdd input f2)
		and (bdd3, dep3) = (formula_to_bdd input f3) 
		in
		  ((Bdd.dor (Bdd.dand bdd1 bdd2) 
		      (Bdd.dand (Bdd.dnot bdd1) bdd3)),
		   dep1 || dep2 || dep3 )
		  
80 81
	    | True ->  (Bdd.dtrue  (Env_state.bdd_manager ()), false)
	    | False -> (Bdd.dfalse (Env_state.bdd_manager ()), false)
82
	    | Bvar(vn) ->    
83
		( match (lookup input (Env_state.pre ()) vn) with 
84
		      Some(B(bool)) -> 
85
			if bool
86
			then (Bdd.dtrue  (Env_state.bdd_manager ()), true)
87
			else (Bdd.dfalse (Env_state.bdd_manager ()), true)
88 89 90 91
		    | Some(_) -> 
			print_string (vn ^ " is not a boolean!\n");
			assert false
		    | None ->
92
			if List.mem vn (Env_state.pre_var_names ())
93 94 95 96 97 98
			then failwith 
			  ("*** " ^ vn ^ " is unknown at this stage.\n "
			   ^ "*** Make sure you have not used "
			   ^ "a pre on a output var at the 1st step, \n "
			   ^ "*** or a pre on a input var at the second step in "
			   ^ "your formula in the environment.\n ")
99
			else (Bdd.ithvar (Env_state.bdd_manager ())
100
				(Env_state.linear_constraint_to_index (Bv(vn)) false), 
101
				false)
102 103 104
		)
		
	    | Eq(e1, e2) -> 
105 106
		let gne = expr_to_gne (Diff(e1, e2)) input in 
		  (gne_to_bdd gne EqZero)
107 108
		  
	    | Neq(e1, e2) -> 
109 110
		let gne = expr_to_gne (Diff(e1, e2)) input in
		  (gne_to_bdd gne NeqZero)
111 112
		  
	    | SupEq(e1, e2) ->
113 114
		let gne = expr_to_gne (Diff(e1, e2)) input in
		  (gne_to_bdd gne SupEqZero)
115 116
		  
	    | Sup(e1, e2)   ->
117 118
		let gne = expr_to_gne (Diff(e1, e2)) input in
		  (gne_to_bdd gne SupZero)
119 120
		  
	    | InfEq(e1, e2) ->  
121 122
		let gne = expr_to_gne (Diff(e2, e1)) input in
		  (gne_to_bdd gne SupEqZero)
123 124
		  
	    | Inf(e1, e2)   ->  
125 126
		let gne =  expr_to_gne (Diff(e2, e1)) input in
		  (gne_to_bdd gne SupZero)
127 128 129 130
		  
	in
	  if dep
	  then 
131
	    ( Env_state.set_bdd f bdd;	
132 133
	      match f with 
		  Not(nf) -> () (* Already in the tbl thanks to the rec call *)
134
		| _  -> Env_state.set_bdd (Not(f)) (Bdd.dnot bdd) 
135
	    )
136 137
	  else 
	    (* [f] does not depend on pre nor input vars *)
138
	    ( Env_state.set_bdd_global f bdd ;	
139 140 141
	      match f with 
		  Not(nf) -> () (* Already in the table thanks to the rec call *)
		| _  -> 
142
		    Env_state.set_bdd_global (Not(f)) (Bdd.dnot bdd)
143 144 145 146
	    );

	  (bdd, dep)
and
147
  (expr_to_gne: expr -> env_in -> Gne.t) =
148 149 150 151
  fun e input -> 
    (** Evaluates pre and input vars appearing in [e] and tranlates
      it into a so-called garded normal form. Also returns a flag
      that is true iff [e] depends on pre or input vars. *)
152
    let gne =
153 154
      match e with  
	  Sum(e1, e2) ->
155 156
	    let gne1 = (expr_to_gne e1 input)
	    and gne2 = (expr_to_gne e2 input) 
157
	    in
158
	      Gne.add  gne1 gne2
159 160

	| Diff(e1, e2) -> 
161 162
	    let gne1 = (expr_to_gne e1 input)
	    and gne2 = (expr_to_gne e2 input) 
163
	    in
164
	      Gne.diff gne1 gne2
165 166

	| Prod(e1, e2) -> 
167 168
	    let gne1 = (expr_to_gne e1 input)
	    and gne2 = (expr_to_gne e2 input) 
169
	    in
170
	      Gne.mult gne1 gne2
171 172

	| Quot(e1, e2) -> 
173 174
	    let gne1 = (expr_to_gne e1 input)
	    and gne2 = (expr_to_gne e2 input) 
175
	    in
176
	      Gne.quot gne1 gne2
177 178

	| Mod(e1, e2)  -> 
179 180
	    let gne1 = (expr_to_gne e1 input)
	    and gne2 = (expr_to_gne e2 input) 
181
	    in
182
	      Gne.modulo gne1 gne2
183 184

	| Ivar(str) ->
185
	    ( match (lookup input (Env_state.pre ()) str) with 
186
		  Some(N(I(i))) ->
187
		    (GneMap.add 
188 189 190
		       (NeMap.add "" (I(i)) NeMap.empty) 
		       ((Bdd.dtrue (Env_state.bdd_manager ())), true)
		       GneMap.empty
191 192
		    )
		| None ->
193
		    (GneMap.add 
194 195 196
		       (NeMap.add str (I(1)) NeMap.empty)
		       ((Bdd.dtrue (Env_state.bdd_manager ())), false)
		       GneMap.empty
197
		    )
198 199 200 201 202 203 204 205 206 207 208
		| Some(N(F(f))) -> 
		    print_string ((string_of_float f) 
				  ^ "is a float, but an int is expected.\n");
		    assert false
		| Some(B(f)) -> 
		    print_string ((string_of_bool f) 
				  ^ "is a bool, but an int is expected.\n");
		    assert false
	    )

	| Fvar(str) ->
209
	    ( match (lookup input (Env_state.pre ()) str) with 
210
		  Some(N(F(f))) ->
211 212 213 214
		    ( GneMap.add 
			(NeMap.add "" (F(f)) NeMap.empty) 
			((Bdd.dtrue (Env_state.bdd_manager ())), true)
			GneMap.empty
215 216
		    )
		| None ->
217 218 219 220
		    ( GneMap.add 
			(NeMap.add str (F(1.)) NeMap.empty) 
			((Bdd.dtrue (Env_state.bdd_manager ())), false)
			GneMap.empty
221 222 223 224 225 226 227 228 229 230 231 232
		    )
		| Some(N(I(i))) -> 
		    print_string ((string_of_int i) 
				  ^ "is an int, but a float is expected.\n");
		    assert false
		| Some(B(f)) -> 
		    print_string ((string_of_bool f) 
				  ^ "is a bool, not a float is expected.\n");
		    assert false
	    )

	| Ival(i) ->  
233 234 235 236
	    (GneMap.add 
	       (NeMap.add "" (I(i)) NeMap.empty) 
	       ((Bdd.dtrue (Env_state.bdd_manager ())), false)
	       GneMap.empty
237 238 239
	    )

	| Fval(f) -> 
240 241 242 243
	    ( GneMap.add 
		(NeMap.add "" (F(f)) NeMap.empty) 
		((Bdd.dtrue (Env_state.bdd_manager ())), false)
		GneMap.empty
244 245 246
	    )

	| Ite(f, e1, e2) -> 
247 248 249
	    let (add_formula_to_gne_acc : Bdd.t -> bool -> n_expr -> Bdd.t * bool -> 
		   Gne.t -> Gne.t) = 
	      fun bdd dep1 nexpr (c, dep2) acc -> 
250 251 252 253 254 255 256 257 258 259 260 261
		(* Used (by a GneMap.fold) to add the condition [c] to every
		   condition of a garded expression. *)
		let _ = assert (
		  try 
		    let _ = GneMap.find nexpr acc in
		      false
		  with Not_found -> true
		) 
		in
		let new_bdd = (Bdd.dand bdd c) in
		  if Bdd.is_false new_bdd
		  then acc
262
		  else GneMap.add nexpr (new_bdd, dep1 || dep2) acc
263
	    in
264
	    let (bdd, depf) = formula_to_bdd input f in
265
	    let bdd_not = Bdd.dnot bdd
266 267 268 269 270
	    and gne_t = (expr_to_gne e1 input)
	    and gne_e = (expr_to_gne e2 input) in
	    let gne1 = GneMap.fold (add_formula_to_gne_acc bdd depf) gne_t GneMap.empty in
	    let gne  = GneMap.fold (add_formula_to_gne_acc bdd_not depf) gne_e gne1 in
	      gne
271
    in
272
      gne
273
	
274
and
275
  (gne_to_bdd : Gne.t -> comp -> Bdd.t * bool) =
276 277
  fun gne cmp -> 
    (** Use [cmp] to compare [gne] with 0 and returns the
278 279 280 281
      corresponding formula.  E.g., if [gne] is bounded to
      [e1 -> c1; e2 -> c2], then [gne_to_bdd gne SupZero] returns
      (the bdd corresponding to) the formula [(c1 and (e1 > 0)) or
      (c2 and (e2 > 0))] *)
282 283 284
    match cmp with
	SupZero ->
	  ( GneMap.fold 
285 286 287
	      (fun nexpr (c, dep) (acc, dep_acc) -> 
		 let new_dep = dep || dep_acc 
		 and bdd = 
288 289 290 291 292 293
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i > 0 
294 295
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
296 297
			 | F(f) -> 
			     if f > 0. 
298 299
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
300 301 302

		   else 
		     Bdd.ithvar 
303
		       (Env_state.bdd_manager ()) 
304
		       (Env_state.linear_constraint_to_index (GZ(nexpr)) dep) 
305
		 in
306
		   (Bdd.dor (Bdd.dand c bdd) acc, new_dep)
307 308
	      )
	      gne 
309
	      ((Bdd.dfalse (Env_state.bdd_manager ())), false)
310 311 312
	  )
      | SupEqZero ->
	  ( GneMap.fold 
313 314 315
	      (fun nexpr (c, dep) (acc, dep_acc) -> 
		 let new_dep = dep || dep_acc 
		 and bdd = 
316 317 318 319 320 321
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i >= 0 
322 323
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
324 325
			 | F(f) -> 
			     if f >= 0. 
326 327
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
328 329 330

		   else 
		     Bdd.ithvar 
331
		       (Env_state.bdd_manager ()) 
332
		       (Env_state.linear_constraint_to_index (GeqZ(nexpr)) dep)
333
		 in
334
		   (Bdd.dor (Bdd.dand c bdd) acc, new_dep)
335 336
	      )
	      gne 
337
	      ((Bdd.dfalse (Env_state.bdd_manager ())), false)
338 339 340
	  )
      | EqZero -> 
	  ( GneMap.fold 
341
	      (fun nexpr (c, dep) (acc, dep_acc) -> 
342 343 344 345 346 347 348
		 let bdd1 = 
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i >= 0 
349 350
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
351 352
			 | F(f) -> 
			     if f >= 0. 
353 354
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
355 356 357

		   else 
		     Bdd.ithvar 
358
		       (Env_state.bdd_manager ()) 
359
		       (Env_state.linear_constraint_to_index (GeqZ(nexpr)) dep) 
360 361 362 363 364 365 366 367
		 in
		 let bdd2 = 
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i <= 0 
368 369
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
370 371
			 | F(f) -> 
			     if f <= 0. 
372 373
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
374 375 376

		   else 
		     Bdd.ithvar 
377
		       (Env_state.bdd_manager ()) 
378 379
		       (Env_state.linear_constraint_to_index 
			  (GeqZ(neg_nexpr nexpr)) dep) 
380
		 in
381 382
		 let new_dep = dep || dep_acc 
		 and bdd = Bdd.dand bdd1 bdd2 in 
383 384
		   (* We transform [e1 = e2] into [e1 <= e2 ^ e1 >= e2] as the 
		      numeric solver can not handle equalities *)
385
		   (Bdd.dor (Bdd.dand c bdd) acc, new_dep)
386 387
	      )
	      gne 
388
	      ((Bdd.dfalse (Env_state.bdd_manager ())), false)
389 390 391
	  )
      | NeqZero -> 
	  ( GneMap.fold 
392
	      (fun nexpr (c, dep) (acc, dep_acc) -> 
393 394 395 396 397 398 399
		 let bdd1 = 
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i > 0 
400 401
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
402 403
			 | F(f) -> 
			     if f > 0. 
404 405
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
406 407 408

		   else 
		     Bdd.ithvar 
409
		       (Env_state.bdd_manager ()) 
410
		       (Env_state.linear_constraint_to_index (GZ(nexpr)) dep) 
411 412 413 414 415 416 417 418
		 in
		 let bdd2 = 
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i < 0 
419 420
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
421 422
			 | F(f) -> 
			     if f < 0. 
423 424
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
425 426 427

		   else 
		     Bdd.ithvar 
428
		       (Env_state.bdd_manager ()) 
429 430
		       (Env_state.linear_constraint_to_index 
			  (GZ(neg_nexpr nexpr)) dep)
431
		 in
432 433
		 let new_dep = dep || dep_acc 
		 and bdd = Bdd.dor bdd1 bdd2 in 
434 435
		   (* We transform [e1 <> e2] into [e1 < e2 or e1 > e2] as the 
		      numeric solver can not handle disequalities *)
436
		   (Bdd.dor (Bdd.dand c bdd) acc, new_dep)
437 438
	      )
	      gne 
439
	      ((Bdd.dfalse (Env_state.bdd_manager ())), false)
440
	  )
441

442 443 444 445 446
(****************************************************************************)
(****************************************************************************)


(* Exported *)
447 448
let rec (is_satisfiable: env_in -> formula -> bool) = 
  fun input f -> 
449
    let (bdd, _) = formula_to_bdd input f in
450 451 452
      not (Bdd.is_false bdd) &&
      ( 
	try 
453
	  let (n, m) = Env_state.sol_number bdd in 
454 455 456 457 458 459 460
	    not ((zero_sol, zero_sol) = (n, m))
	with Not_found -> true
      )
      


(****************************************************************************)
461 462 463 464 465 466 467 468 469
(****************************************************************************)


(** In the following, we call a comb the bdd of a conjunction of
 litterals (var). They provide the ordering in which litterals
 appear in the bdds we manipulate.
*)


470
type var = int
471 472 473 474 475

let rec (build_sol_nb_table: Bdd.t -> Bdd.t -> sol_nb * sol_nb) =
  fun bdd comb -> 
    (** Returns the relative (to which bbd points to it) number of
      solutions of [bdd] and the one of its negation. Also udpates
476 477 478 479 480 481
      the solution number table for [bdd] and its negation, and
      recursively for all its sub-bdds.

      [comb] is a positive cube that ougth to contain the indexes of
      boolean vars that are still to be generated, and the numerical
      indexes that appears in [bdd].  
482
    *)
483 484 485
    let _ = assert (not (Bdd.is_cst bdd) 
		    && (Bdd.topvar comb) = (Bdd.topvar bdd)) 
    in
486 487 488
    let bdd_not = (Bdd.dnot bdd) in
    let (sol_nb, sol_nb_not) =
      try
489 490
	let (nt, ne) = Env_state.sol_number bdd 
	and (not_nt, not_ne) = Env_state.sol_number bdd_not in
491 492
	  (* solutions numbers in the table are absolute *)
	  ((add_sol_nb nt ne), (add_sol_nb not_nt not_ne))
493
      with Not_found ->
494 495
	let (nt, not_nt) = compute_absolute_sol_nb (Bdd.dthen bdd) comb in
	let (ne, not_ne) = compute_absolute_sol_nb (Bdd.delse bdd) comb in
496 497
	  Env_state.set_sol_number bdd (nt, ne) ;
	  Env_state.set_sol_number bdd_not (not_nt, not_ne) ;
498 499 500 501 502 503
	  ((add_sol_nb nt ne), (add_sol_nb not_nt not_ne))
    in
      (sol_nb, sol_nb_not)
and 
  (compute_absolute_sol_nb: Bdd.t -> Bdd.t -> sol_nb * sol_nb) =
  fun sub_bdd comb -> 
504
    (* Returns the absolute number of solutions of [sub_bdd] (and its
505
       negation) w.r.t. [comb], where [comb] is the comb of the
506 507 508 509 510 511 512 513 514 515
       father of [sub_bdd].

       The [comb] is used to know which output boolean variables are
       unconstraint along a path in the bdd. Indeed, the comb is made
       of all the boolean output var indexes plus the num contraints
       indexes that appears in the bdd; hence, if the topvar of the
       bdd is different from the topvar of the comb, it means that
       the topvar of the comb is unsconstraint and we need to
       multiply the number of solution of the branch by 2.
    *)
516
    if Bdd.is_cst sub_bdd 
517
    then
518
      let sol_nb = 
519
	if Bdd.is_true comb
520
	then one_sol
521
	else (two_power_of (List.length (Bdd.list_of_support (Bdd.dthen comb)))) 
522
      in
523 524 525 526 527
	if Bdd.is_true sub_bdd
	then (sol_nb, zero_sol) 
	else (zero_sol, sol_nb)
    else 
      let topvar = Bdd.topvar sub_bdd in
528 529 530 531 532 533 534 535 536 537 538 539
      let rec
	(count_missing_vars: Bdd.t -> var -> int -> Bdd.t * int) =
	fun comb var cpt -> 
	  (* Returns [cpt] + the number of variables occurring in [comb]
	     before reaching [var] ([var] excluded). Also returns the comb
	     whch topvar is [var]. *)
	  let _ = assert (not (Bdd.is_cst comb)) in
	  let combvar = Bdd.topvar comb in
	    if var = combvar
	    then (comb, cpt)
	    else count_missing_vars (Bdd.dthen comb) var (cpt+1)
      in
540
      let (sub_comb, missing_vars_nb) = 
541
	count_missing_vars (Bdd.dthen comb) topvar 0
542 543 544 545 546
      in
      let (n0, not_n0) = build_sol_nb_table sub_bdd sub_comb in
      let factor = (two_power_of missing_vars_nb) in
	(mult_sol_nb n0 factor, mult_sol_nb not_n0 factor)
	
547

548

549 550 551
(****************************************************************************)
(****************************************************************************)

552 553
(* exported *)
exception No_numeric_solution
554

555
let (toss_up_one_var: var -> subst option) =
556
  fun var -> 
557 558 559 560 561 562 563 564 565
    (* if [var] is a index that corresponds to a boolean variable,
       this fonction performs a toss and returns a substitution for
       the corresponding boolean variable. It returns [None]
       otherwise.

       Indeed, if it happens that a numerical constraint does not
       appear along a path, we simply ignore it and hence it will not
       be added to the store.
    *)
566
    let af = Env_state.index_to_linear_constraint var in
567
      match af with 
568 569 570
          Bv(vn) -> 
	    let ran = Random.float 1. in
	      if (ran < 0.5) 
571 572
	      then Some(vn, B(true)) 
	      else Some(vn, B(false))
573
	| _  -> None
574

575 576

let (is_a_numeric_constraint : Constraint.t -> bool) =
577 578 579 580 581
  fun af -> 
    match af with
	Bv(_) -> false
      | GZ(_)   -> true 
      | GeqZ(_) -> true
582
      | EqZ(_)  -> true
583 584


585 586
let rec (draw_in_bdd: subst list * store -> Bdd.t -> Bdd.t -> 
	   subst list * store) = 
587 588 589 590 591 592
  fun (sl, store) bdd comb ->
    (** Returns [sl] appended to a draw of all the boolean variables
      bigger than the topvar of [bdd] according to the ordering
      induced by the comb [comb]. Also returns the (non empty) store
      obtained by adding to [store] all the numeric constraints that
      were encountered during this draw.
593

594 595 596
      Raises the [No_numeric_solution] exception whenever no valid
      path in [bdd] leads to a satisfiable set of numeric
      constraints.  
597
    *)
598

599 600
    if 
      Bdd.is_true bdd
601 602 603 604 605 606 607 608 609
    then
      (* Toss the remaining bool vars. *)
      ( (List.append sl
	   (Util.list_map_option toss_up_one_var (Bdd.list_of_support comb))),
	store )
    else
      let _ = assert (not (Bdd.is_false bdd)) in 
      let _ = assert (Env_state.sol_number_exists bdd) in
      let bddvar  = Bdd.topvar bdd in
610 611
      let topvar_comb  = Bdd.topvar comb in
      let af = (Env_state.index_to_linear_constraint  bddvar) in 
612 613
      let top_var_is_numeric = is_a_numeric_constraint af in
	if
614 615
	  bddvar <> topvar_comb 
	  && not top_var_is_numeric
616
	then
617 618
	  (* that condition means that topvar_comb is an unconstraint
	     boolean var; hence we toss it up. *)
619
	  let new_sl =
620
	    match toss_up_one_var topvar_comb with
621
		Some(s) -> s::sl
622
	      | None -> sl (* unconstraint num var will be drawn later (in draw) *)
623
	  in
624
	    draw_in_bdd (new_sl, store) bdd (Bdd.dthen comb) 
625 626 627 628 629 630
	else 
	  (* bddvar = combvar xor top_var_is_numeric *) 
	  (* nb: I handle those two cases alltogether to avoid code
	     duplication (i.e., retrieving sol numbers, performing the
	     toss, the recursive call, handling the base case where a
	     dtrue bdd is reached, etc).  It makes the code a little
631
	     bit more obscur, but it avoid code dup...  *)
632 633 634 635 636 637 638
	  let (n, m) = Env_state.sol_number bdd in
	  let _ =
	    if ((eq_sol_nb n zero_sol) && (eq_sol_nb m zero_sol))
	    then raise No_numeric_solution ;
	  in
	  let (store_plus_af, store_plus_not_af) = 
	    (* A first trick to avoid code dup (cf nb above) *)
639 640
	    if 
	      top_var_is_numeric
641
	    then 
642 643 644 645 646 647 648 649 650 651 652 653 654 655
(* 	      match af with *)
(* 		  EqZ(ne) ->  *)
(* 		     *)
(* 		| _ -> *)
(* 		    if  *)
(* 		      (dimension af) = 1  *)
(* 		    then *)
(* 	      let (st1, st2) =  *)
		split_store store af 
(* 	      in *)
(* 			 *)
(*  *)
(* 		    else *)
(* 		      () *)
656
	    else 
657 658
	      (store, store)
	  in
659
	  let (store1, bdd1, bool1, sol_nb1, store2, bdd2, bool2, sol_nb2) =
660
	    (* Depending on the result of a toss (based on the number
661 662
	       of solution in each branch), we try the [then] or the
	       [else] branch first.  *)
663 664 665
	    let ran = Random.float 1. in
	      if ran < ((float_of_sol_nb n) /. (float_of_sol_nb (add_sol_nb n m)))
	      then
666 667
		(store_plus_af, (Bdd.dthen bdd), true, n,
		 store_plus_not_af, (Bdd.delse bdd), false, m)
668
	      else 
669
		(store_plus_not_af, (Bdd.delse bdd), false, m,
670 671 672 673 674 675
		 store_plus_af, (Bdd.dthen bdd), true, n )
	  in
	  let (sl1, sl2, new_comb) = (
	    (* A second trick to avoid code dup (cf nb above) *)
	    match af with 
		Bv(vn) -> 
676 677
		  (((vn, B(bool1))::sl), 
		   ((vn, B(bool2))::sl), 
678 679 680 681
		   (if Bdd.is_true comb then comb else Bdd.dthen comb) )
	      | _ -> 
		  (* top_var_is_numeric *)
		  (sl, sl, comb)
682
	  )
683 684 685 686 687 688 689 690 691 692 693 694 695 696
	  in
	  let res_opt =
	    (* A solution will be found in this branch iff there exists
	       at least one path in the bdd that leads to a satisfiable
	       set of numeric constraints. If it is not the case,
	       [res_opt] is bound to [None]. *)
	    if not (is_empty store1)
	    then 
	      try 
		let tail_draw1 = draw_in_bdd (sl1, store1) bdd1 new_comb in
		  Some(tail_draw1)
	      with No_numeric_solution -> 
		None
	    else
697
	      None
698 699 700 701 702 703 704 705 706 707
	  in
	    match res_opt with 
		Some(res) -> res
	      | None -> 
		  (* The second branch is now tried because no path in
		     the first bdd leaded to a satisfiable set of
		     numeric constraints. *)
		  if not (eq_sol_nb sol_nb2 zero_sol)
		  then
		    if not (is_empty store2)
708
		    then draw_in_bdd (sl2, store2) bdd2 new_comb
709
		    else
710
		      raise No_numeric_solution
711
		  else
712
		    raise No_numeric_solution
713

714

715 716 717 718

(* exported *)
let (draw : vn list -> vnt list -> Bdd.t -> Bdd.t -> subst list * subst list) =
  fun bool_vars_to_gen num_vnt_to_gen comb bdd ->
719 720
    (** Draw the output and local vars to be generated by the environnent. *)
    let (bool_subst_l, store) = 
721
      draw_in_bdd ([], (new_store num_vnt_to_gen)) bdd comb
722
    in
723 724 725 726 727 728
    let num_subst_l = 
      match Env_state.draw_mode () with
	  Env_state.Verteces -> draw_verteces store
	| Env_state.Edges    -> draw_edges store
	| Env_state.Inside   -> draw_inside store 
    in
729
    let subst_l = append bool_subst_l num_subst_l in
730
    let (out_vars, _) = List.split (Env_state.output_var_names ()) 
731 732 733
    in
      assert ( 
	(*  Checks that we generated all variables. *)
734 735
	let (gen_vars, _) = List.split subst_l in
	let (num_vars_to_gen, _) = List.split num_vnt_to_gen in
736
	let vars_to_gen = append bool_vars_to_gen num_vars_to_gen in
737 738 739 740 741 742 743 744 745 746
          if (sort (compare) gen_vars) = (sort (compare) vars_to_gen) 
	  then true
	  else
	    (
	      output_string stderr " \ngen vars :";
              List.iter (fun vn -> output_string stderr (vn ^ " ")) gen_vars;
	      output_string stderr " \nvar to gen:";
	      List.iter (fun vn -> output_string stderr (vn ^ " ")) vars_to_gen;
	      false
	    )
747 748 749 750 751
      );
      (* Splits output and local vars. *)
      List.partition 
	(fun (vn, _) -> List.mem vn out_vars) 
	subst_l
752

753

754 755 756 757 758

(****************************************************************************)
(****************************************************************************)


759
(* Exported *)
760 761 762
let (solve_formula: env_in -> int -> formula -> formula -> vnt list ->
       (subst list * subst list) list option) =
  fun input p f bool_vars_to_gen_f num_vars_to_gen ->
763
    let bdd = 
764
      (* The bdd of f has necessarily been computed (by is_satisfiable) *)
765 766
      try Env_state.bdd f
      with Not_found -> Env_state.bdd_global f
767
    in
768 769 770 771 772 773 774 775 776 777 778 779 780
    let (comb0, _) = formula_to_bdd input bool_vars_to_gen_f in
    let comb = 
      (* All boolean vars should appear in the comb so that when we
	 find that such a var is missing along a bdd path, we can
	 perform a (fair) toss for it. On the contrary, if a
	 numerical contraint disappear from a bdd (eg, consider [(f
	 && false) || true]), it is not important; fairly tossing a
	 (boolean) value for a num constaint [nc] and performing a
	 fair toss in the resulting domain is equivalent to directly
	 perform the toss in the (unconstraint wrt [nc]) initial
	 domain.  
      *)
      Bdd.dand (Bdd.support bdd) comb0 
781 782
    in	
    let bool_vars_to_gen = Formula.support bool_vars_to_gen_f in
783
    let _ =
784
      if not (Env_state.sol_number_exists bdd)
785
      then
786 787 788 789 790
	let rec skip_unconstraint_bool_var_at_top comb v =
	  (* [build_sol_nb_table] supposes that the bdd and its comb 
	     have the same top var. 
	  *)
	  if Bdd.is_true comb then comb
791 792
	  else 
	    let topvar = (Bdd.topvar comb) in
793 794
	      if v = topvar then comb 
	      else skip_unconstraint_bool_var_at_top (Bdd.dthen comb) v
795
	in
796
	let comb2 = skip_unconstraint_bool_var_at_top comb (Bdd.topvar bdd) in 
797 798
	let _ = build_sol_nb_table bdd comb2 in
	  ()
799
    in
800
      try 	
801
	Some(Util.unfold (draw bool_vars_to_gen num_vars_to_gen comb) bdd p)
802
      with No_numeric_solution -> 
803
	Env_state.set_sol_number bdd (zero_sol, zero_sol);
804
	None
805