solver.ml 22.1 KB
Newer Older
1
(*-----------------------------------------------------------------------
2
** Copyright (C) 2001, 2002 - Verimag.
3 4 5 6 7 8 9 10
** This file may only be copied under the terms of the GNU Library General
** Public License 
**-----------------------------------------------------------------------
**
** File: solver.ml
** Main author: jahier@imag.fr
*)

11
open List
12
open Formula
13
open Env_state
14
open Util
15
open Hashtbl
16
open Gne
17

18 19 20
(****************************************************************************)
	  
let (formula_list_to_conj: formula list -> formula) =
21
  fun fl -> 
22 23 24 25 26 27 28 29 30
    (** Transform a (non-empty) list of formula to the conjunction
       made of those formula.  
    *)
    match fl with
	[] -> assert false
      | f::[] -> f
      | f1::f2::tail -> 
          List.fold_left (fun x y -> And(x, y)) (And(f1, f2)) tail

31

32 33 34
let (lookup: env_in -> subst list -> var_name -> var_value option) = 
  fun input pre vn ->  
    try Some(Hashtbl.find input vn)
35
    with Not_found -> 
36 37 38 39 40 41 42 43
      try Some(List.assoc vn pre)
      with Not_found -> None

(****************************************************************************)

type comp = SupZero | SupEqZero | EqZero | NeqZero


44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
let rec (formula_to_bdd : env_in -> formula -> Bdd.t * bool) =
  fun input f ->
    (** Replaces input and pre variables by their values in the
      formula [f], and translates it into a bdd.

      Also returns a flag telling whether or not the formula depends
      on input and pre vars. If this flag is true, the formula is
      stored (cached) in a global table ([env_state.bdd_tbl]);
      otherwise, it is stored in a table that is cleared at each new
      step ([env_state.bdd_tbl_global]).

    *)
    try (Hashtbl.find env_state.bdd_tbl f, true)
    with Not_found -> 
      try (Hashtbl.find env_state.bdd_tbl_global f, false)
      with Not_found -> 
	let (bdd, dep) =
	  match f with 
	      Not(f1) ->
		let (bdd_not, dep) =  (formula_to_bdd input f1) in
		  (Bdd.dnot bdd_not, dep)

	    | Or(f1, f2) ->
		let (bdd1, dep1) = (formula_to_bdd input f1)
		and (bdd2, dep2) = (formula_to_bdd input f2)
		in
		  (Bdd.dor bdd1 bdd2, dep1 || dep2)

	    | And(f1, f2) -> 
		let (bdd1, dep1) = (formula_to_bdd input f1)
		and (bdd2, dep2) = (formula_to_bdd input f2)
		in
		  (Bdd.dand bdd1 bdd2, dep1 || dep2)

	    | IteB(f1, f2, f3) -> 
		let (bdd1, dep1) = (formula_to_bdd input f1)
		and (bdd2, dep2) = (formula_to_bdd input f2)
		and (bdd3, dep3) = (formula_to_bdd input f3) 
		in
		  ((Bdd.dor (Bdd.dand bdd1 bdd2) 
		      (Bdd.dand (Bdd.dnot bdd1) bdd3)),
		   dep1 || dep2 || dep3 )
		  
	    | True ->  (Bdd.dtrue  env_state.bdd_manager, false)
	    | False -> (Bdd.dfalse env_state.bdd_manager, false)
	    | Bvar(vn) ->    
		( match (lookup input env_state.pre vn) with 
		      Some(B(bool)) -> 
			if bool 
			then (Bdd.dtrue  env_state.bdd_manager, true) 
			else (Bdd.dfalse env_state.bdd_manager, true)
		    | Some(_) -> 
			print_string (vn ^ " is not a boolean!\n");
			assert false
		    | None ->
			(Bdd.ithvar env_state.bdd_manager 
			   (Env_state.atomic_formula_to_index (Bv(vn))), false)
		)
		
	    | Eq(e1, e2) -> 
		let (gne, dep) = expr_to_gne (Diff(e1, e2)) input in 
		  (gne_to_bdd gne EqZero, dep)
		  
	    | Neq(e1, e2) -> 
		let (gne, dep) = expr_to_gne (Diff(e1, e2)) input in
		  (gne_to_bdd gne NeqZero, dep)
		  
	    | SupEq(e1, e2) ->
		let (gne, dep) = expr_to_gne (Diff(e1, e2)) input in
		  (gne_to_bdd gne SupEqZero, dep)
		  
	    | Sup(e1, e2)   ->
		let (gne, dep) = expr_to_gne (Diff(e1, e2)) input in
		  (gne_to_bdd gne SupZero, dep)
		  
	    | InfEq(e1, e2) ->  
		let (gne, dep) = expr_to_gne (Diff(e2, e1)) input in
		  (gne_to_bdd gne SupEqZero, dep)
		  
	    | Inf(e1, e2)   ->  
		let (gne, dep) =  expr_to_gne (Diff(e2, e1)) input in
		  (gne_to_bdd gne SupZero, dep)
		  
	in
	  if dep
	  then 
	    ( Hashtbl.add env_state.bdd_tbl f bdd;	
	      match f with 
		  Not(nf) -> () (* Already in the tbl thanks to the rec call *)
		| _  -> Hashtbl.add env_state.bdd_tbl (Not(f)) (Bdd.dnot bdd) 
	    ) 
	  else 
	    (* [f] does not depend on pre nor input vars *)
	    ( Hashtbl.add env_state.bdd_tbl_global f bdd ;	
	      match f with 
		  Not(nf) -> () (* Already in the table thanks to the rec call *)
		| _  -> 
		    Hashtbl.add env_state.bdd_tbl_global (Not(f)) (Bdd.dnot bdd)
	    );

	  (bdd, dep)
and
  (expr_to_gne: expr -> env_in -> Gne.gn_expr * bool) =
  fun e input -> 
    (** Evaluates pre and input vars appearing in [e] and tranlates
      it into a so-called garded normal form. Also returns a flag
      that is true iff [e] depends on pre or input vars. *)
    let (gne, dep) =
      match e with  
	  Sum(e1, e2) ->
	    let (gne1, dep1) = (expr_to_gne e1 input)
	    and (gne2, dep2) = (expr_to_gne e2 input) 
	    in
	      (Gne.add  gne1 gne2, dep1 || dep2)

	| Diff(e1, e2) -> 
	    let (gne1, dep1) = (expr_to_gne e1 input)
	    and (gne2, dep2) = (expr_to_gne e2 input) 
	    in
	      (Gne.diff gne1 gne2, dep1 || dep2)

	| Prod(e1, e2) -> 
	    let (gne1, dep1) = (expr_to_gne e1 input)
	    and (gne2, dep2) = (expr_to_gne e2 input) 
	    in
	      (Gne.mult gne1 gne2, dep1 || dep2)

	| Quot(e1, e2) -> 
	    let (gne1, dep1) = (expr_to_gne e1 input)
	    and (gne2, dep2) = (expr_to_gne e2 input) 
	    in
	      (Gne.quot gne1 gne2, dep1 || dep2)

	| Mod(e1, e2)  -> 
	    let (gne1, dep1) = (expr_to_gne e1 input)
	    and (gne2, dep2) = (expr_to_gne e2 input) 
	    in
	      (Gne.modulo gne1 gne2, dep1 || dep2)

	| Ivar(str) ->
	    ( match (lookup input env_state.pre str) with 
		  Some(N(I(i))) ->
		    ( (GneMap.add 
			(NeMap.add "" (I(i)) NeMap.empty) 
			(Bdd.dtrue env_state.bdd_manager)
			GneMap.empty),
		      true
		    )
		| None ->
		    ( (GneMap.add 
			(NeMap.add str (I(1)) NeMap.empty) 
			(Bdd.dtrue env_state.bdd_manager) 
			GneMap.empty),
		      false
		    )     
		| Some(N(F(f))) -> 
		    print_string ((string_of_float f) 
				  ^ "is a float, but an int is expected.\n");
		    assert false
		| Some(B(f)) -> 
		    print_string ((string_of_bool f) 
				  ^ "is a bool, but an int is expected.\n");
		    assert false
	    )

	| Fvar(str) ->
	    ( match (lookup input env_state.pre str) with 
		  Some(N(F(f))) ->
		    ( (GneMap.add 
			(NeMap.add "" (F(f)) NeMap.empty) 
			(Bdd.dtrue env_state.bdd_manager) 
			GneMap.empty),
		      true
		    )
		| None ->
		    ( (GneMap.add 
			(NeMap.add str (F(1.)) NeMap.empty) 
			(Bdd.dtrue env_state.bdd_manager) 
			GneMap.empty),
		      false
		    )
		| Some(N(I(i))) -> 
		    print_string ((string_of_int i) 
				  ^ "is an int, but a float is expected.\n");
		    assert false
		| Some(B(f)) -> 
		    print_string ((string_of_bool f) 
				  ^ "is a bool, not a float is expected.\n");
		    assert false
	    )

	| Ival(i) ->  
	    ( (GneMap.add 
		(NeMap.add "" (I(i)) NeMap.empty) 
		(Bdd.dtrue env_state.bdd_manager) 
		GneMap.empty),
	      false
	    )

	| Fval(f) -> 
	    ( (GneMap.add 
		(NeMap.add "" (F(f)) NeMap.empty) 
		(Bdd.dtrue env_state.bdd_manager)
		GneMap.empty),
	      false
	    )

	| Ite(f, e1, e2) -> 
	    let (add_formula_to_gne_acc : Bdd.t -> n_expr -> Bdd.t -> 
		   Gne.gn_expr -> Gne.gn_expr) = 
	      fun bdd nexpr c acc -> 
		(* Used (by a GneMap.fold) to add the condition [c] to every
		   condition of a garded expression. *)
		let _ = assert (
		  try 
		    let _ = GneMap.find nexpr acc in
		      false
		  with Not_found -> true
		) 
		in
		let new_bdd = (Bdd.dand bdd c) in
		  if Bdd.is_false new_bdd
		  then acc
		  else GneMap.add nexpr new_bdd acc
	    in
	    let (bdd, dep1) = formula_to_bdd input f in
	    let bdd_not = Bdd.dnot bdd
	    and (gne_t, dep2) = (expr_to_gne e1 input)
	    and (gne_e, dep3) = (expr_to_gne e2 input) in
	    let gne1 = GneMap.fold (add_formula_to_gne_acc bdd) gne_t GneMap.empty in
	    let gne  = GneMap.fold (add_formula_to_gne_acc bdd_not) gne_e gne1 in
	      (gne, dep1 || dep2 || dep3)
    in
      (gne, dep)
	
and
  (gne_to_bdd : Gne.gn_expr -> comp -> Bdd.t) =
  fun gne cmp -> 
    (** Use [cmp] to compare [gne] with 0 and returns the
       corresponding formula.  E.g., if [gne] is bounded to
       [e1 -> c1; e2 -> c2], then [gne_to_bdd gne SupZero] returns
       (the bdd corresponding to) the formula [(c1 and (e1 > 0)) or
       (c2 and (e2 > 0))] *)
    match cmp with
	SupZero ->
	  ( GneMap.fold 
	      (fun nexpr c acc -> 
		 let bdd = 
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i > 0 
			     then (Bdd.dtrue env_state.bdd_manager)
			     else (Bdd.dfalse env_state.bdd_manager)
			 | F(f) -> 
			     if f > 0. 
			     then (Bdd.dtrue env_state.bdd_manager)
			     else (Bdd.dfalse env_state.bdd_manager)

		   else 
		     Bdd.ithvar 
		       env_state.bdd_manager 
		       (Env_state.atomic_formula_to_index (GZ(nexpr))) 
		 in
		   Bdd.dor (Bdd.dand c bdd) acc
	      )
	      gne 
	      (Bdd.dfalse env_state.bdd_manager)
	  )
      | SupEqZero ->
	  ( GneMap.fold 
	      (fun nexpr c acc -> 
		 let bdd = 
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i >= 0 
			     then (Bdd.dtrue env_state.bdd_manager)
			     else (Bdd.dfalse env_state.bdd_manager)
			 | F(f) -> 
			     if f >= 0. 
			     then (Bdd.dtrue env_state.bdd_manager)
			     else (Bdd.dfalse env_state.bdd_manager)

		   else 
		     Bdd.ithvar 
		       env_state.bdd_manager 
		       (Env_state.atomic_formula_to_index (GeqZ(nexpr))) 
		 in
		   Bdd.dor (Bdd.dand c bdd) acc
	      )
	      gne 
	      (Bdd.dfalse env_state.bdd_manager)
	  )
      | EqZero -> 
	  ( GneMap.fold 
	      (fun nexpr c acc -> 
		 let bdd1 = 
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i >= 0 
			     then (Bdd.dtrue env_state.bdd_manager)
			     else (Bdd.dfalse env_state.bdd_manager)
			 | F(f) -> 
			     if f >= 0. 
			     then (Bdd.dtrue env_state.bdd_manager)
			     else (Bdd.dfalse env_state.bdd_manager)

		   else 
		     Bdd.ithvar 
		       env_state.bdd_manager 
		       (Env_state.atomic_formula_to_index (GeqZ(nexpr))) 
		 in
		 let bdd2 = 
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i <= 0 
			     then (Bdd.dtrue env_state.bdd_manager)
			     else (Bdd.dfalse env_state.bdd_manager)
			 | F(f) -> 
			     if f <= 0. 
			     then (Bdd.dtrue env_state.bdd_manager)
			     else (Bdd.dfalse env_state.bdd_manager)

		   else 
		     Bdd.ithvar 
		       env_state.bdd_manager 
		       (Env_state.atomic_formula_to_index (SeqZ(nexpr))) 
		 in
		 let bdd = Bdd.dand bdd1 bdd2 in 
		   (* We transform [e1 = e2] into [e1 <= e2 ^ e1 >= e2] as the 
		      numeric solver can not handle equalities *)
		   Bdd.dor (Bdd.dand c bdd) acc
	      )
	      gne 
	      (Bdd.dfalse env_state.bdd_manager)
	  )
      | NeqZero -> 
	  ( GneMap.fold 
	      (fun nexpr c acc -> 
		 let bdd1 = 
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i > 0 
			     then (Bdd.dtrue env_state.bdd_manager)
			     else (Bdd.dfalse env_state.bdd_manager)
			 | F(f) -> 
			     if f > 0. 
			     then (Bdd.dtrue env_state.bdd_manager)
			     else (Bdd.dfalse env_state.bdd_manager)

		   else 
		     Bdd.ithvar 
		       env_state.bdd_manager 
		       (Env_state.atomic_formula_to_index (GZ(nexpr))) 
		 in
		 let bdd2 = 
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i < 0 
			     then (Bdd.dtrue env_state.bdd_manager)
			     else (Bdd.dfalse env_state.bdd_manager)
			 | F(f) -> 
			     if f < 0. 
			     then (Bdd.dtrue env_state.bdd_manager)
			     else (Bdd.dfalse env_state.bdd_manager)

		   else 
		     Bdd.ithvar 
		       env_state.bdd_manager 
		       (Env_state.atomic_formula_to_index (SZ(nexpr))) 
		 in
		 let bdd = Bdd.dor bdd1 bdd2 in 
		   (* We transform [e1 <> e2] into [e1 < e2 or e1 > e2] as the 
		      numeric solver can not handle disequalities *)
		   Bdd.dor (Bdd.dand c bdd) acc
	      )
	      gne 
	      (Bdd.dfalse env_state.bdd_manager)
	  )
441

442 443 444 445 446
(****************************************************************************)
(****************************************************************************)


(* Exported *)
447 448
let rec (is_satisfiable: env_in -> formula list -> bool) = 
  fun input fl -> 
449
    let f = formula_list_to_conj fl in
450
    let (bdd, _) = formula_to_bdd input f in
451 452 453 454 455 456 457 458 459 460 461
      not (Bdd.is_false bdd) &&
      ( 
	try 
	  let (n, m) = find env_state.snt bdd in 
	    not ((zero_sol, zero_sol) = (n, m))
	with Not_found -> true
      )
      


(****************************************************************************)
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
(****************************************************************************)

type var = int

(** In the following, we call a comb the bdd of a conjunction of
 litterals (var). They provide the ordering in which litterals
 appear in the bdds we manipulate.
*)

let rec (count_missing_vars: Bdd.t -> var -> int -> Bdd.t * int) =
  fun comb var cpt -> 
    (* Returns [cpt] + the number of variables occurring in [comb]
       before reaching [var] ([var] excluded). Also returns the comb
       which topvar is [var]. *)
    let _ = assert (not (Bdd.is_cst comb)) in
    let combvar = Bdd.topvar comb in
      if var = combvar
      then (comb, cpt)
      else count_missing_vars (Bdd.dthen comb) var (cpt+1)


let rec (build_sol_nb_table: Bdd.t -> Bdd.t -> sol_nb * sol_nb) =
  fun bdd comb -> 
    (** Returns the relative (to which bbd points to it) number of
      solutions of [bdd] and the one of its negation. Also udpates
      the solution number table [env_state.snt] for [bdd] and its
      negation, and recursively for all its sub-bdds. 
    *)
    let bdd_not = (Bdd.dnot bdd) in
    let (sol_nb, sol_nb_not) =
      try
	let (nt, ne) = Hashtbl.find env_state.snt bdd 
	and (not_nt, not_ne) = Hashtbl.find env_state.snt bdd_not in
	  (* solutions numbers in the table are absolute *)
	  ((add_sol_nb nt ne), (add_sol_nb not_nt not_ne))
      with Not_found ->  	
	let _ = assert (not (Bdd.is_cst bdd)) in
	let (nt, not_nt) = compute_absolute_sol_nb (Bdd.dthen bdd) comb in
	let (ne, not_ne) = compute_absolute_sol_nb (Bdd.delse bdd) comb in
	  Hashtbl.add env_state.snt bdd (nt, ne) ;
	  Hashtbl.add env_state.snt bdd_not (not_nt, not_ne) ; 
	  ((add_sol_nb nt ne), (add_sol_nb not_nt not_ne))
    in
      (sol_nb, sol_nb_not)
and 
  (compute_absolute_sol_nb: Bdd.t -> Bdd.t -> sol_nb * sol_nb) =
  fun sub_bdd comb -> 
    (* returns the absolute number of solutions of [sub_bdd] (and its
       negation) w.r.t. [comb], where [comb] is the comb of the
       father of [sub_bdd]. *)
    if Bdd.is_cst sub_bdd 
    then 
514
      let sol_nb = 
515 516
	if Bdd.is_true comb (* iff no bool are to be gen *)
	then one_sol
517
	else (two_power_of (List.length (Bdd.list_of_support (Bdd.dthen comb)))) 
518
      in
519 520 521 522 523 524
	if Bdd.is_true sub_bdd
	then (sol_nb, zero_sol) 
	else (zero_sol, sol_nb)
    else 
      let topvar = Bdd.topvar sub_bdd in
      let (sub_comb, missing_vars_nb) = 
525 526 527
	if Bdd.is_true comb (* iff no bool are to be gen *)
	then (comb, 0)
	else count_missing_vars (Bdd.dthen comb) topvar 0 
528 529 530 531 532
      in
      let (n0, not_n0) = build_sol_nb_table sub_bdd sub_comb in
      let factor = (two_power_of missing_vars_nb) in
	(mult_sol_nb n0 factor, mult_sol_nb not_n0 factor)
	
533 534 535 536

(****************************************************************************)
(****************************************************************************)

537 538

let (toss_up_one_var: var -> subst) =
539
  fun var -> 
540 541 542 543 544 545
    (* [var] is a index that ougth to correspond to a boolean
       variable. This fonction performs a toss and returns a
       substitution for the corresponding boolean variable. *)
    let af = Env_state.index_to_atomic_formula var in
    let vn = (
      match af with 
546
        Bv(vn0) -> vn0
547 548 549 550
      | _  -> 
	  (* Only bool index ougth to appear in the comb. *)
	  assert false
    ) in
551
    let ran = Random.float 1. in
552
      if (ran < 0.5) 
553 554 555
      then (vn, Formula.B(true)) 
      else (vn, Formula.B(false))

556

557 558 559 560 561 562 563 564
let (is_a_numeric_constraint : atomic_formula -> bool) =
  fun af -> 
    match af with
	Bv(_) -> false
      | GZ(_)   -> true 
      | GeqZ(_) -> true
      | SZ(_)   -> true
      | SeqZ(_) -> true
565 566 567 568 569 570 571 572 573 574 575 576 577


(* exported *)
exception No_numeric_solution

let rec (draw_in_bdd: subst list * Rnumsolver.store -> Bdd.t -> Bdd.t -> 
	   subst list * Rnumsolver.store) = 
  fun (sl, store) bdd comb ->
    (** Returns [sl] appended to a draw of all the boolean variables
      bigger than the topvar of [bdd] according to the ordering
      induced by the comb [comb]. Also returns the (non empty) store
      obtained by adding to [store] all the numeric constraints that
      were encountered during this draw.
578

579 580 581
      Raises the [No_numeric_solution] exception whenever no valid
      path in [bdd] leads to a satisfiable set of numeric
      constraints.  
582 583
    *)
    let _ = assert (not (Bdd.is_cst bdd)) in
584 585 586 587
    let _ = assert (Hashtbl.mem env_state.snt bdd) in
    let bddvar  = Bdd.topvar bdd in
    let af = (Env_state.index_to_atomic_formula bddvar) in 
    let top_var_is_numeric = is_a_numeric_constraint af in
588
      if
589 590
	not(Bdd.is_true comb) && (* iff no bool are to be gen *)
	bddvar <> (Bdd.topvar comb) &&
591
	not top_var_is_numeric
592
      then
593
	let new_sl = (toss_up_one_var (Bdd.topvar comb))::sl in
594 595
	  draw_in_bdd (new_sl, store) bdd (Bdd.dthen comb)
      else 
596
	(* bddvar = combvar xor top_var_is_numeric *) 
597 598 599 600 601 602 603 604 605
	(* nb: I handle those two cases alltogether to avoid code
	   duplication (i.e., retrieving sol numbers, performing the
	   toss, the recursive call, handling the base case where a
	   dtrue bdd is reached, etc).  It makes the code a little
	   bit more obscur, but ...  *)
	let (n, m) = Hashtbl.find env_state.snt bdd in
	let _ =
	  if ((eq_sol_nb n zero_sol) && (eq_sol_nb m zero_sol))
	  then raise No_numeric_solution ;
606
	in
607 608 609 610
	let (store_plus_af, store_plus_not_af) = 
	  (* A first trick to avoid code dup (cf nb above) *)
	  if top_var_is_numeric
	  then 
611
	    Rnumsolver.split store af
612 613 614 615 616 617 618 619 620 621
	  else 
	    (store, store)
	in
	let (swap, store1, bdd1, bool1, sol_nb1, store2, bdd2, bool2, sol_nb2) =
	  (* Depending on the result of a toss (based on the number
	     of solution in each branch), we try the [else] or the
	     [then] branch first. [swap] indicates whether or not the
	     [else] part is put before the [then] one. *)
	  let ran = Random.float 1. in
	    if ran < ((float_of_sol_nb n) /. (float_of_sol_nb (add_sol_nb n m)))
622
	    then
623 624 625 626 627
	      (false, store_plus_af, (Bdd.dthen bdd), true, n,
	       store_plus_not_af, (Bdd.delse bdd), false, m )
	    else 
	      (true, store_plus_not_af, (Bdd.delse bdd), false, m,
	       store_plus_af, (Bdd.dthen bdd), true, n )
628
	in
629 630 631
	let (sl1, sl2, new_comb) = (
	  (* A second trick to avoid code dup (cf nb above) *)
	  match af with 
632 633 634
	    Bv(vn) -> 
	      (((vn, Formula.B(bool1))::sl), 
	       ((vn, Formula.B(bool2))::sl), 
635
	       (if Bdd.is_true comb then comb else Bdd.dthen comb) )
636 637 638 639
	  | _ -> 
	      (* top_var_is_numeric *)
	      (sl, sl, comb)
	  )
640
	in
641 642 643 644 645 646 647 648 649 650 651 652 653 654
	let res_opt =
	  (* A solution will be found in this branch iff there exists
	     at least one path in the bdd that leads to a satisfiable
	     set of numeric constraints. If it is not the case,
	     [res_opt] is bound to [None]. *)
	  if not (Rnumsolver.is_empty store1)
	  then 
	    try 
	      let tail_draw1 = 
		if Bdd.is_true bdd1
		then
		  (* Toss the remaining bool vars. *)
		  ( (List.append 
		       sl1 
655
		       (map toss_up_one_var (Bdd.list_of_support new_comb))),
656 657 658 659 660 661 662 663
		    store1
		  )
		else
		  draw_in_bdd (sl1, store1) bdd1 new_comb
	      in
		Some(tail_draw1)
	    with No_numeric_solution -> 
	      None
664
	  else
665
	    None
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
	in
	  match res_opt with 
	      Some(res) -> res
	    | None -> 
		(* The second branch is now tried because no path in
		   the first bdd leaded to a satisfiable set of
		   numeric constraints. *)
		if not (eq_sol_nb sol_nb2 zero_sol)
		then
		  if not (Rnumsolver.is_empty store2)
		  then    
		    if Bdd.is_true bdd2
		    then 
		      ( (List.append 
			   sl2 
			   (List.map toss_up_one_var 
682
			      (Bdd.list_of_support new_comb))),
683 684 685 686 687
			store2
		      )
		    else
		      draw_in_bdd (sl2, store2) bdd2 new_comb 
		  else
688
		    raise No_numeric_solution
689 690
		else
		  raise No_numeric_solution
691

692

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
let (draw : vn list -> vnt list -> Bdd.t -> Bdd.t -> subst list * subst list) =
  fun bool_vars_to_gen num_vnt_to_gen comb bdd ->
    (** Draw the output and local vars to be generated by the environnent. *)
    let (bool_subst_l, store) = 
      draw_in_bdd ([], (Rnumsolver.new_store num_vnt_to_gen)) bdd comb 
    in
    let num_subst_l = Rnumsolver.draw_inside store in
    let subst_l = append bool_subst_l num_subst_l in
    let (out_vars, _) = List.split (env_state.output_var_names) 
    in
      assert ( 
	(*  Checks that we generated all variables. *)
	let (gen_vars, _) = split subst_l in
	let (num_vars_to_gen, _) = split num_vnt_to_gen in
	let vars_to_gen = append bool_vars_to_gen num_vars_to_gen in
          (sort (compare) gen_vars) = (sort (compare) vars_to_gen) 
      );
      (* Splits output and local vars. *)
      List.partition 
	(fun (vn, _) -> List.mem vn out_vars) 
	subst_l
714

715

716
  
717
(* Exported *)
718
let (solve_formula: env_in -> int -> formula list -> vn list -> vnt list ->
719
       (subst list * subst list) list) =
720
  fun input p fl bool_vars_to_gen num_vars_to_gen ->
721
    let f = formula_list_to_conj fl in
722 723 724 725
    let bdd = 
      try Hashtbl.find env_state.bdd_tbl f
      with Not_found -> Hashtbl.find env_state.bdd_tbl_global f
    in
726
    let bool_vars_to_gen_f = 
727 728 729
      List.fold_left
	(fun acc vn -> (And(Bvar(vn), acc)))
	True
730
	bool_vars_to_gen
731
    in
732 733
    let (comb, _) = formula_to_bdd input bool_vars_to_gen_f in

734 735 736
    let _ =
      if not (Hashtbl.mem env_state.snt bdd)
      then
737
	let rec skip_var comb v =
738 739 740 741 742
	  if Bdd.is_true comb (* iff no bool are to be gen *)
	  then comb
	  else 
	    let topvar = (Bdd.topvar comb) in
	      if v = topvar then comb else skip_var (Bdd.dthen comb) v
743 744
	in
	let comb2 = skip_var comb (Bdd.topvar bdd) in
745 746
	let _ = build_sol_nb_table bdd comb2 in
	  ()
747
    in
748 749
      try 	
	Util.unfold (draw bool_vars_to_gen num_vars_to_gen comb) bdd p
750
      with No_numeric_solution -> 
751
	Hashtbl.replace env_state.snt bdd (zero_sol, zero_sol);
752 753


754
	[]
755