solver.ml 28.1 KB
Newer Older
1
(*-----------------------------------------------------------------------
2
 ** Copyright (C) 2001, 2002 - Verimag.
3 4 5 6 7 8 9 10
** This file may only be copied under the terms of the GNU Library General
** Public License 
**-----------------------------------------------------------------------
**
** File: solver.ml
** Main author: jahier@imag.fr
*)

11
open List
12
open Formula
13
open Constraint
14
open Util
15
open Hashtbl
16
open Gne
17
open Rnumsolver
18

19 20
(****************************************************************************)
	  
21 22 23
let (lookup: env_in -> subst list -> var_name -> var_value option) = 
  fun input pre vn ->  
    try Some(Hashtbl.find input vn)
24
    with Not_found -> 
25 26 27 28 29 30 31 32 33
      try Some(List.assoc vn pre)
      with Not_found -> None

(****************************************************************************)

type comp = SupZero | SupEqZero | EqZero | NeqZero

let rec (formula_to_bdd : env_in -> formula -> Bdd.t * bool) =
  fun input f ->
34 35
    (** Returns the bdd of [f] where input and pre variables
      have been repaced by their values.
36

37 38 39
      Also returns a flag that is true iff the formula depends on
      input and pre vars. If this flag is false, the formula is
      stored (cached) in a global table ([env_state.bdd_tbl_global]);
40
      otherwise, it is stored in a table that is cleared at each new
41
      step ([env_state.bdd_tbl]).  
42
    *)
43
    try (Env_state.bdd f, true)
44
    with Not_found -> 
45
      try (Env_state.bdd_global f, false)
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
      with Not_found -> 
	let (bdd, dep) =
	  match f with 
	      Not(f1) ->
		let (bdd_not, dep) =  (formula_to_bdd input f1) in
		  (Bdd.dnot bdd_not, dep)

	    | Or(f1, f2) ->
		let (bdd1, dep1) = (formula_to_bdd input f1)
		and (bdd2, dep2) = (formula_to_bdd input f2)
		in
		  (Bdd.dor bdd1 bdd2, dep1 || dep2)

	    | And(f1, f2) -> 
		let (bdd1, dep1) = (formula_to_bdd input f1)
		and (bdd2, dep2) = (formula_to_bdd input f2)
		in
		  (Bdd.dand bdd1 bdd2, dep1 || dep2)
64 65 66 67 68 69

	    | EqB(f1, f2) -> 
		let (bdd1, dep1) = (formula_to_bdd input f1)
		and (bdd2, dep2) = (formula_to_bdd input f2)
		in
		  (Bdd.eq bdd1 bdd2, dep1 || dep2)
70 71 72 73 74 75 76 77 78 79

	    | IteB(f1, f2, f3) -> 
		let (bdd1, dep1) = (formula_to_bdd input f1)
		and (bdd2, dep2) = (formula_to_bdd input f2)
		and (bdd3, dep3) = (formula_to_bdd input f3) 
		in
		  ((Bdd.dor (Bdd.dand bdd1 bdd2) 
		      (Bdd.dand (Bdd.dnot bdd1) bdd3)),
		   dep1 || dep2 || dep3 )
		  
80 81
	    | True ->  (Bdd.dtrue  (Env_state.bdd_manager ()), false)
	    | False -> (Bdd.dfalse (Env_state.bdd_manager ()), false)
82
	    | Bvar(vn) ->    
83
		( match (lookup input (Env_state.pre ()) vn) with 
84
		      Some(B(bool)) -> 
85
			if bool
86
			then (Bdd.dtrue  (Env_state.bdd_manager ()), true)
87
			else (Bdd.dfalse (Env_state.bdd_manager ()), true)
88 89 90 91
		    | Some(_) -> 
			print_string (vn ^ " is not a boolean!\n");
			assert false
		    | None ->
92
			if List.mem vn (Env_state.pre_var_names ())
93 94 95 96 97 98
			then failwith 
			  ("*** " ^ vn ^ " is unknown at this stage.\n "
			   ^ "*** Make sure you have not used "
			   ^ "a pre on a output var at the 1st step, \n "
			   ^ "*** or a pre on a input var at the second step in "
			   ^ "your formula in the environment.\n ")
99
			else (Bdd.ithvar (Env_state.bdd_manager ())
100
				(Env_state.linear_constraint_to_index (Bv(vn)) false), 
101
				false)
102 103 104
		)
		
	    | Eq(e1, e2) -> 
105 106
		let gne = expr_to_gne (Diff(e1, e2)) input in 
		  (gne_to_bdd gne EqZero)
107 108
		  
	    | Neq(e1, e2) -> 
109 110
		let gne = expr_to_gne (Diff(e1, e2)) input in
		  (gne_to_bdd gne NeqZero)
111 112
		  
	    | SupEq(e1, e2) ->
113 114
		let gne = expr_to_gne (Diff(e1, e2)) input in
		  (gne_to_bdd gne SupEqZero)
115 116
		  
	    | Sup(e1, e2)   ->
117 118
		let gne = expr_to_gne (Diff(e1, e2)) input in
		  (gne_to_bdd gne SupZero)
119 120
		  
	    | InfEq(e1, e2) ->  
121 122
		let gne = expr_to_gne (Diff(e2, e1)) input in
		  (gne_to_bdd gne SupEqZero)
123 124
		  
	    | Inf(e1, e2)   ->  
125 126
		let gne =  expr_to_gne (Diff(e2, e1)) input in
		  (gne_to_bdd gne SupZero)
127 128 129 130
		  
	in
	  if dep
	  then 
131
	    ( Env_state.set_bdd f bdd;	
132 133
	      match f with 
		  Not(nf) -> () (* Already in the tbl thanks to the rec call *)
134
		| _  -> Env_state.set_bdd (Not(f)) (Bdd.dnot bdd) 
135
	    )
136 137
	  else 
	    (* [f] does not depend on pre nor input vars *)
138
	    ( Env_state.set_bdd_global f bdd ;	
139 140 141
	      match f with 
		  Not(nf) -> () (* Already in the table thanks to the rec call *)
		| _  -> 
142
		    Env_state.set_bdd_global (Not(f)) (Bdd.dnot bdd)
143 144 145 146
	    );

	  (bdd, dep)
and
147
  (expr_to_gne: expr -> env_in -> Gne.t) =
148 149 150 151
  fun e input -> 
    (** Evaluates pre and input vars appearing in [e] and tranlates
      it into a so-called garded normal form. Also returns a flag
      that is true iff [e] depends on pre or input vars. *)
152
    let gne =
153 154
      match e with  
	  Sum(e1, e2) ->
155 156
	    let gne1 = (expr_to_gne e1 input)
	    and gne2 = (expr_to_gne e2 input) 
157
	    in
158
	      Gne.add  gne1 gne2
159 160

	| Diff(e1, e2) -> 
161 162
	    let gne1 = (expr_to_gne e1 input)
	    and gne2 = (expr_to_gne e2 input) 
163
	    in
164
	      Gne.diff gne1 gne2
165 166

	| Prod(e1, e2) -> 
167 168
	    let gne1 = (expr_to_gne e1 input)
	    and gne2 = (expr_to_gne e2 input) 
169
	    in
170
	      Gne.mult gne1 gne2
171 172

	| Quot(e1, e2) -> 
173 174
	    let gne1 = (expr_to_gne e1 input)
	    and gne2 = (expr_to_gne e2 input) 
175
	    in
176
	      Gne.quot gne1 gne2
177 178

	| Mod(e1, e2)  -> 
179 180
	    let gne1 = (expr_to_gne e1 input)
	    and gne2 = (expr_to_gne e2 input) 
181
	    in
182
	      Gne.modulo gne1 gne2
183 184

	| Ivar(str) ->
185
	    ( match (lookup input (Env_state.pre ()) str) with 
186
		  Some(N(I(i))) ->
187
		    (GneMap.add 
188 189 190
		       (NeMap.add "" (I(i)) NeMap.empty) 
		       ((Bdd.dtrue (Env_state.bdd_manager ())), true)
		       GneMap.empty
191 192
		    )
		| None ->
193
		    (GneMap.add 
194 195 196
		       (NeMap.add str (I(1)) NeMap.empty)
		       ((Bdd.dtrue (Env_state.bdd_manager ())), false)
		       GneMap.empty
197
		    )
198 199 200 201 202 203 204 205 206 207 208
		| Some(N(F(f))) -> 
		    print_string ((string_of_float f) 
				  ^ "is a float, but an int is expected.\n");
		    assert false
		| Some(B(f)) -> 
		    print_string ((string_of_bool f) 
				  ^ "is a bool, but an int is expected.\n");
		    assert false
	    )

	| Fvar(str) ->
209
	    ( match (lookup input (Env_state.pre ()) str) with 
210
		  Some(N(F(f))) ->
211 212 213 214
		    ( GneMap.add 
			(NeMap.add "" (F(f)) NeMap.empty) 
			((Bdd.dtrue (Env_state.bdd_manager ())), true)
			GneMap.empty
215 216
		    )
		| None ->
217 218 219 220
		    ( GneMap.add 
			(NeMap.add str (F(1.)) NeMap.empty) 
			((Bdd.dtrue (Env_state.bdd_manager ())), false)
			GneMap.empty
221 222 223 224 225 226 227 228 229 230 231 232
		    )
		| Some(N(I(i))) -> 
		    print_string ((string_of_int i) 
				  ^ "is an int, but a float is expected.\n");
		    assert false
		| Some(B(f)) -> 
		    print_string ((string_of_bool f) 
				  ^ "is a bool, not a float is expected.\n");
		    assert false
	    )

	| Ival(i) ->  
233 234 235 236
	    (GneMap.add 
	       (NeMap.add "" (I(i)) NeMap.empty) 
	       ((Bdd.dtrue (Env_state.bdd_manager ())), false)
	       GneMap.empty
237 238 239
	    )

	| Fval(f) -> 
240 241 242 243
	    ( GneMap.add 
		(NeMap.add "" (F(f)) NeMap.empty) 
		((Bdd.dtrue (Env_state.bdd_manager ())), false)
		GneMap.empty
244 245 246
	    )

	| Ite(f, e1, e2) -> 
247 248 249
	    let (add_formula_to_gne_acc : Bdd.t -> bool -> n_expr -> Bdd.t * bool -> 
		   Gne.t -> Gne.t) = 
	      fun bdd dep1 nexpr (c, dep2) acc -> 
250 251 252 253 254 255 256 257 258 259 260 261
		(* Used (by a GneMap.fold) to add the condition [c] to every
		   condition of a garded expression. *)
		let _ = assert (
		  try 
		    let _ = GneMap.find nexpr acc in
		      false
		  with Not_found -> true
		) 
		in
		let new_bdd = (Bdd.dand bdd c) in
		  if Bdd.is_false new_bdd
		  then acc
262
		  else GneMap.add nexpr (new_bdd, dep1 || dep2) acc
263
	    in
264
	    let (bdd, depf) = formula_to_bdd input f in
265
	    let bdd_not = Bdd.dnot bdd
266 267 268 269 270
	    and gne_t = (expr_to_gne e1 input)
	    and gne_e = (expr_to_gne e2 input) in
	    let gne1 = GneMap.fold (add_formula_to_gne_acc bdd depf) gne_t GneMap.empty in
	    let gne  = GneMap.fold (add_formula_to_gne_acc bdd_not depf) gne_e gne1 in
	      gne
271
    in
272
      gne
273
	
274
and
275
  (gne_to_bdd : Gne.t -> comp -> Bdd.t * bool) =
276 277
  fun gne cmp -> 
    (** Use [cmp] to compare [gne] with 0 and returns the
278 279 280 281
      corresponding formula.  E.g., if [gne] is bounded to
      [e1 -> c1; e2 -> c2], then [gne_to_bdd gne SupZero] returns
      (the bdd corresponding to) the formula [(c1 and (e1 > 0)) or
      (c2 and (e2 > 0))] *)
282 283 284
    match cmp with
	SupZero ->
	  ( GneMap.fold 
285 286 287
	      (fun nexpr (c, dep) (acc, dep_acc) -> 
		 let new_dep = dep || dep_acc 
		 and bdd = 
288 289 290 291 292 293
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i > 0 
294 295
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
296 297
			 | F(f) -> 
			     if f > 0. 
298 299
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
300 301 302

		   else 
		     Bdd.ithvar 
303
		       (Env_state.bdd_manager ()) 
304
		       (Env_state.linear_constraint_to_index (GZ(nexpr)) dep) 
305
		 in
306
		   (Bdd.dor (Bdd.dand c bdd) acc, new_dep)
307 308
	      )
	      gne 
309
	      ((Bdd.dfalse (Env_state.bdd_manager ())), false)
310 311 312
	  )
      | SupEqZero ->
	  ( GneMap.fold 
313 314 315
	      (fun nexpr (c, dep) (acc, dep_acc) -> 
		 let new_dep = dep || dep_acc 
		 and bdd = 
316 317 318 319 320 321
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i >= 0 
322 323
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
324 325
			 | F(f) -> 
			     if f >= 0. 
326 327
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
328 329 330

		   else 
		     Bdd.ithvar 
331
		       (Env_state.bdd_manager ()) 
332
		       (Env_state.linear_constraint_to_index (GeqZ(nexpr)) dep)
333
		 in
334
		   (Bdd.dor (Bdd.dand c bdd) acc, new_dep)
335 336
	      )
	      gne 
337
	      ((Bdd.dfalse (Env_state.bdd_manager ())), false)
338 339 340
	  )
      | EqZero -> 
	  ( GneMap.fold 
341
	      (fun nexpr (c, dep) (acc, dep_acc) -> 
342 343 344 345 346 347 348
		 let bdd1 = 
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i >= 0 
349 350
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
351 352
			 | F(f) -> 
			     if f >= 0. 
353 354
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
355 356 357

		   else 
		     Bdd.ithvar 
358
		       (Env_state.bdd_manager ()) 
359
		       (Env_state.linear_constraint_to_index (GeqZ(nexpr)) dep) 
360 361 362 363 364 365 366 367
		 in
		 let bdd2 = 
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i <= 0 
368 369
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
370 371
			 | F(f) -> 
			     if f <= 0. 
372 373
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
374 375 376

		   else 
		     Bdd.ithvar 
377
		       (Env_state.bdd_manager ()) 
378 379
		       (Env_state.linear_constraint_to_index 
			  (GeqZ(neg_nexpr nexpr)) dep) 
380
		 in
381 382
		 let new_dep = dep || dep_acc 
		 and bdd = Bdd.dand bdd1 bdd2 in 
383 384
		   (* We transform [e1 = e2] into [e1 <= e2 ^ e1 >= e2] as the 
		      numeric solver can not handle equalities *)
385
		   (Bdd.dor (Bdd.dand c bdd) acc, new_dep)
386 387
	      )
	      gne 
388
	      ((Bdd.dfalse (Env_state.bdd_manager ())), false)
389 390 391
	  )
      | NeqZero -> 
	  ( GneMap.fold 
392
	      (fun nexpr (c, dep) (acc, dep_acc) -> 
393 394 395 396 397 398 399
		 let bdd1 = 
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i > 0 
400 401
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
402 403
			 | F(f) -> 
			     if f > 0. 
404 405
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
406 407 408

		   else 
		     Bdd.ithvar 
409
		       (Env_state.bdd_manager ()) 
410
		       (Env_state.linear_constraint_to_index (GZ(nexpr)) dep) 
411 412 413 414 415 416 417 418
		 in
		 let bdd2 = 
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i < 0 
419 420
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
421 422
			 | F(f) -> 
			     if f < 0. 
423 424
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
425 426 427

		   else 
		     Bdd.ithvar 
428
		       (Env_state.bdd_manager ()) 
429 430
		       (Env_state.linear_constraint_to_index 
			  (GZ(neg_nexpr nexpr)) dep)
431
		 in
432 433
		 let new_dep = dep || dep_acc 
		 and bdd = Bdd.dor bdd1 bdd2 in 
434 435
		   (* We transform [e1 <> e2] into [e1 < e2 or e1 > e2] as the 
		      numeric solver can not handle disequalities *)
436
		   (Bdd.dor (Bdd.dand c bdd) acc, new_dep)
437 438
	      )
	      gne 
439
	      ((Bdd.dfalse (Env_state.bdd_manager ())), false)
440
	  )
441

442 443 444 445 446
(****************************************************************************)
(****************************************************************************)


(* Exported *)
447 448
let rec (is_satisfiable: env_in -> formula -> bool) = 
  fun input f -> 
449
    let (bdd, _) = formula_to_bdd input f in
450 451 452
      not (Bdd.is_false bdd) &&
      ( 
	try 
453
	  let (n, m) = Env_state.sol_number bdd in 
454 455 456 457 458 459 460
	    not ((zero_sol, zero_sol) = (n, m))
	with Not_found -> true
      )
      


(****************************************************************************)
461 462 463 464 465 466 467 468 469
(****************************************************************************)


(** In the following, we call a comb the bdd of a conjunction of
 litterals (var). They provide the ordering in which litterals
 appear in the bdds we manipulate.
*)


470
type var = int
471 472 473 474 475

let rec (build_sol_nb_table: Bdd.t -> Bdd.t -> sol_nb * sol_nb) =
  fun bdd comb -> 
    (** Returns the relative (to which bbd points to it) number of
      solutions of [bdd] and the one of its negation. Also udpates
476 477 478 479 480 481
      the solution number table for [bdd] and its negation, and
      recursively for all its sub-bdds.

      [comb] is a positive cube that ougth to contain the indexes of
      boolean vars that are still to be generated, and the numerical
      indexes that appears in [bdd].  
482
    *)
483 484 485
    let _ = assert (not (Bdd.is_cst bdd) 
		    && (Bdd.topvar comb) = (Bdd.topvar bdd)) 
    in
486 487 488
    let bdd_not = (Bdd.dnot bdd) in
    let (sol_nb, sol_nb_not) =
      try
489 490
	let (nt, ne) = Env_state.sol_number bdd 
	and (not_nt, not_ne) = Env_state.sol_number bdd_not in
491 492
	  (* solutions numbers in the table are absolute *)
	  ((add_sol_nb nt ne), (add_sol_nb not_nt not_ne))
493
      with Not_found ->
494 495
	let (nt, not_nt) = compute_absolute_sol_nb (Bdd.dthen bdd) comb in
	let (ne, not_ne) = compute_absolute_sol_nb (Bdd.delse bdd) comb in
496 497
	  Env_state.set_sol_number bdd (nt, ne) ;
	  Env_state.set_sol_number bdd_not (not_nt, not_ne) ;
498 499 500 501 502 503
	  ((add_sol_nb nt ne), (add_sol_nb not_nt not_ne))
    in
      (sol_nb, sol_nb_not)
and 
  (compute_absolute_sol_nb: Bdd.t -> Bdd.t -> sol_nb * sol_nb) =
  fun sub_bdd comb -> 
504
    (* Returns the absolute number of solutions of [sub_bdd] (and its
505
       negation) w.r.t. [comb], where [comb] is the comb of the
506 507 508 509 510 511 512 513 514 515
       father of [sub_bdd].

       The [comb] is used to know which output boolean variables are
       unconstraint along a path in the bdd. Indeed, the comb is made
       of all the boolean output var indexes plus the num contraints
       indexes that appears in the bdd; hence, if the topvar of the
       bdd is different from the topvar of the comb, it means that
       the topvar of the comb is unsconstraint and we need to
       multiply the number of solution of the branch by 2.
    *)
516
    if Bdd.is_cst sub_bdd 
517
    then
518
      let sol_nb = 
519
	if Bdd.is_true comb
520
	then one_sol
521
	else (two_power_of (List.length (Bdd.list_of_support (Bdd.dthen comb)))) 
522
      in
523 524 525 526 527
	if Bdd.is_true sub_bdd
	then (sol_nb, zero_sol) 
	else (zero_sol, sol_nb)
    else 
      let topvar = Bdd.topvar sub_bdd in
528 529 530 531 532 533 534 535 536 537 538 539
      let rec
	(count_missing_vars: Bdd.t -> var -> int -> Bdd.t * int) =
	fun comb var cpt -> 
	  (* Returns [cpt] + the number of variables occurring in [comb]
	     before reaching [var] ([var] excluded). Also returns the comb
	     whch topvar is [var]. *)
	  let _ = assert (not (Bdd.is_cst comb)) in
	  let combvar = Bdd.topvar comb in
	    if var = combvar
	    then (comb, cpt)
	    else count_missing_vars (Bdd.dthen comb) var (cpt+1)
      in
540
      let (sub_comb, missing_vars_nb) = 
541
	count_missing_vars (Bdd.dthen comb) topvar 0
542 543 544 545 546
      in
      let (n0, not_n0) = build_sol_nb_table sub_bdd sub_comb in
      let factor = (two_power_of missing_vars_nb) in
	(mult_sol_nb n0 factor, mult_sol_nb not_n0 factor)
	
547

548

549 550 551
(****************************************************************************)
(****************************************************************************)

552
(* Raised during the toss if no solution is found in the branch  *)
553
exception No_numeric_solution
554

555 556 557 558 559 560 561 562 563 564
let (toss_up_one_var: var_name -> subst) =
  fun var -> 
   (* *)
    let ran = Random.float 1. in
      if (ran < 0.5) 
      then (var, B(true)) 
      else (var, B(false))


let (toss_up_one_var_index: var -> subst option) =
565
  fun var -> 
566 567 568 569 570 571 572 573 574
    (* if [var] is a index that corresponds to a boolean variable,
       this fonction performs a toss and returns a substitution for
       the corresponding boolean variable. It returns [None]
       otherwise.

       Indeed, if it happens that a numerical constraint does not
       appear along a path, we simply ignore it and hence it will not
       be added to the store.
    *)
575 576 577
    let cstr = Env_state.index_to_linear_constraint var in
      match cstr with 
          Bv(vn) -> Some(toss_up_one_var vn)
578
	| _  -> None
579

580

581

582
let (is_a_numeric_constraint : Constraint.t -> bool) =
583 584
  fun cstr -> 
    match cstr with
585 586 587
	Bv(_) -> false
      | GZ(_)   -> true 
      | GeqZ(_) -> true
588
      | EqZ(_)  -> true
589 590


591 592
let rec (draw_in_bdd: subst list * store -> Bdd.t -> Bdd.t -> 
	   subst list * store) = 
593 594 595 596 597 598
  fun (sl, store) bdd comb ->
    (** Returns [sl] appended to a draw of all the boolean variables
      bigger than the topvar of [bdd] according to the ordering
      induced by the comb [comb]. Also returns the (non empty) store
      obtained by adding to [store] all the numeric constraints that
      were encountered during this draw.
599

600 601 602
      Raises the [No_numeric_solution] exception whenever no valid
      path in [bdd] leads to a satisfiable set of numeric
      constraints.  
603
    *)
604

605 606
    if 
      Bdd.is_true bdd
607 608 609
    then
      (* Toss the remaining bool vars. *)
      ( (List.append sl
610
	   (Util.list_map_option toss_up_one_var_index (Bdd.list_of_support comb))),
611 612 613 614 615
	store )
    else
      let _ = assert (not (Bdd.is_false bdd)) in 
      let _ = assert (Env_state.sol_number_exists bdd) in
      let bddvar  = Bdd.topvar bdd in
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
      let cstr = (Env_state.index_to_linear_constraint bddvar) in 
	match cstr with
	    Bv(var) -> draw_in_bdd_bool var  (sl, store) bdd comb
	  | EqZ(e)  -> draw_in_bdd_eq   cstr (sl, store) bdd comb
	  | _       -> draw_in_bdd_ineq cstr (sl, store) bdd comb

and (draw_in_bdd_bool: string -> subst list * store -> Bdd.t -> Bdd.t -> 
       subst list * store) = 
  fun var (sl, store) bdd comb ->
    let bddvar  = Bdd.topvar bdd in
    let topvar_comb  = Bdd.topvar comb in
      
    if
      bddvar <> topvar_comb 
    then
      (* that condition means that topvar_comb is an unconstraint
	 boolean var; hence we toss it up. *)
      let new_sl =  (toss_up_one_var var)::sl in
	draw_in_bdd (new_sl, store) bdd (Bdd.dthen comb) 
    else 
      (* bddvar = combvar *) 
      let (n, m) = Env_state.sol_number bdd in
      let _ =
	if ((eq_sol_nb n zero_sol) && (eq_sol_nb m zero_sol))
	then raise No_numeric_solution ;
      in
      let (
	bdd1, bool1, sol_nb1,
	bdd2, bool2, sol_nb2
      ) =
	let ran = Random.float 1. 
	and sol_nb_ratio = 
	  ((float_of_sol_nb n) /. (float_of_sol_nb (add_sol_nb n m))) 
	in
	  if 
	    ran < sol_nb_ratio
	      (* 
		 Depending on the result of a toss (based on the number
		 of solution in each branch), we try the [then] or the
		 [else] branch first.  
	      *)
	  then
	    ((Bdd.dthen bdd), true, n,
	     (Bdd.delse bdd), false, m )
	  else 
	    ((Bdd.delse bdd), false, m,
	     (Bdd.dthen bdd), true, n )
      in
      let (sl1, sl2, new_comb) = (
	((var, B(bool1))::sl), 
	((var, B(bool2))::sl),
	(if Bdd.is_true comb then comb else Bdd.dthen comb) 
      )
	    
      in
	(* 
	   A solution will be found in this branch iff there exists
	   at least one path in the bdd that leads to a satisfiable
	   set of numeric constraints. If it is not the case,
	   [res_opt] is bound to [None]. 
	*)
	try 
	  draw_in_bdd (sl1, store) bdd1 new_comb
	with No_numeric_solution -> 
	  if not (eq_sol_nb sol_nb2 zero_sol)
	  then draw_in_bdd (sl2, store) bdd2 new_comb
	    (* 
	       The second branch is now tried because no path in
	       the first bdd leaded to a satisfiable set of
	       numeric constraints. 
	    *) 
	  else raise No_numeric_solution
  
and (draw_in_bdd_eq: Constraint.t -> subst list * store -> Bdd.t -> Bdd.t -> 
       subst list * store) = 
  fun cstr (sl, store) bdd comb ->
    
    let (n, m) = Env_state.sol_number bdd in
    let _ =
      if ((eq_sol_nb n zero_sol) && (eq_sol_nb m zero_sol))
      then raise No_numeric_solution ;
    in
    let (store_plus_cstr, store_plus_not_cstr, store_plus_not_cstr2) =  
      split_store_eq store cstr  
    in
    let (
      store1, bdd1, sol_nb1, 
      store2, bdd2, sol_nb2,
      store3, bdd3, sol_nb3
    ) =
      let ran0 = Random.float 1. 
      and ran  = Random.float 1. 
      and sol_nb_ratio = 
	((float_of_sol_nb n) /. (float_of_sol_nb (add_sol_nb n m))) 
      in
	if 
	  ran0 < 0.5
	    (* 
	       When taking the negation of an equality, we can
	       either try > or <. Here, We toss which one we
	       will try first.  
	    *)
718
	then
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
	  if 
	    ran < sol_nb_ratio
	      (* 
		 Depending on the result of a toss (based on the number
		 of solution in each branch), we try the [then] or the
		 [else] branch first.  
	      *)
	  then
	    (store_plus_cstr,      (Bdd.dthen bdd), n,
	     store_plus_not_cstr,  (Bdd.delse bdd), m,
	     store_plus_not_cstr2, (Bdd.delse bdd), m)
	  else 
	    (store_plus_not_cstr, (Bdd.delse bdd), m,
	     store_plus_cstr, (Bdd.dthen bdd), n,
	     store_plus_not_cstr2, (Bdd.delse bdd), m )
	else
	  if
	    ran < sol_nb_ratio
	      (* Ditto *)
	  then
	    (store_plus_cstr, (Bdd.dthen bdd), n,
	     store_plus_not_cstr2, (Bdd.delse bdd), m,
	     store_plus_not_cstr, (Bdd.delse bdd), m)
	  else 
	    (store_plus_not_cstr2, (Bdd.delse bdd), m,
	     store_plus_cstr, (Bdd.dthen bdd), n,
	     store_plus_not_cstr, (Bdd.delse bdd), m)
    in
    let call_choice_point3 _ =
      (* 
	 The third possibility is tried if no path is found in the 2
	 previous ones. Note that there only is a third one if the
	 current constraint is an equality.  
      *)
      if 
	not (eq_sol_nb sol_nb3 zero_sol)
      then
	if is_store_satisfiable store3
	then draw_in_bdd (sl, store3) bdd3 comb
	else raise No_numeric_solution
      else
	raise No_numeric_solution
    in
    let call_choice_point2 _ =
      (* 
	 The second branch is tried if no path in the first bdd
	 leaded to a satisfiable set of numeric constraints.  
      *)
      if 
	not (eq_sol_nb sol_nb2 zero_sol)
      then
	if is_store_satisfiable store2
	then draw_in_bdd (sl, store2) bdd2 comb
	else call_choice_point3 ()
      else
	call_choice_point3 ()
    in
      (* 
	 A solution will be found in this branch iff there exists
	 at least one path in the bdd that leads to a satisfiable
	 set of numeric constraints. 
      *)
      if 
	is_store_satisfiable store1
      then 
	try draw_in_bdd (sl, store1) bdd1 comb
	with No_numeric_solution -> call_choice_point2 ()
      else
	call_choice_point2 ()
    


and (draw_in_bdd_ineq: Constraint.t -> subst list * store -> Bdd.t -> Bdd.t -> 
	   subst list * store) = 
  fun cstr (sl, store) bdd comb ->
    let (n, m) = Env_state.sol_number bdd in
    let _ =
      if ((eq_sol_nb n zero_sol) && (eq_sol_nb m zero_sol))
      then raise No_numeric_solution ;
    in
    let (store_plus_cstr, store_plus_not_cstr) = split_store store cstr in
    let (store1, bdd1, sol_nb1,  store2, bdd2, sol_nb2) =
      let ran = Random.float 1. in
	if 
	  ran < ((float_of_sol_nb n) /. (float_of_sol_nb (add_sol_nb n m)))
	    (* 
	       Depending on the result of a toss (based on the number
806
	       of solution in each branch), we try the [then] or the
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
	       [else] branch first.  
	    *)
	then
	  (store_plus_cstr,      (Bdd.dthen bdd), n,
	   store_plus_not_cstr,  (Bdd.delse bdd), m)
	else 
	  (store_plus_not_cstr, (Bdd.delse bdd), m,
	   store_plus_cstr, (Bdd.dthen bdd), n )
    in
    let call_choice_point _ =
      (* 
	 The second branch is tried if no path in the first bdd leaded
	 to a satisfiable set of numeric constraints.  
      *)
      if 
	not (eq_sol_nb sol_nb2 zero_sol)
      then
	if 
	  is_store_satisfiable store2
	then 
	  draw_in_bdd (sl, store2) bdd2 comb
	else
	  raise No_numeric_solution
      else
	raise No_numeric_solution
    in
      (* A solution will be found in this branch iff there exists
	 at least one path in the bdd that leads to a satisfiable
	 set of numeric constraints. If it is not the case,
	 [res_opt] is bound to [None]. *)
      if 
	is_store_satisfiable store1
      then 
	try draw_in_bdd (sl, store1) bdd1 comb 
	with No_numeric_solution -> call_choice_point ()
      else
	call_choice_point ()
    	
		
846

847 848 849 850

(* exported *)
let (draw : vn list -> vnt list -> Bdd.t -> Bdd.t -> subst list * subst list) =
  fun bool_vars_to_gen num_vnt_to_gen comb bdd ->
851 852
    (** Draw the output and local vars to be generated by the environnent. *)
    let (bool_subst_l, store) = 
853
      draw_in_bdd ([], (new_store num_vnt_to_gen)) bdd comb
854
    in
855 856 857 858 859 860
    let num_subst_l = 
      match Env_state.draw_mode () with
	  Env_state.Verteces -> draw_verteces store
	| Env_state.Edges    -> draw_edges store
	| Env_state.Inside   -> draw_inside store 
    in
861
    let subst_l = append bool_subst_l num_subst_l in
862
    let (out_vars, _) = List.split (Env_state.output_var_names ()) 
863 864 865
    in
      assert ( 
	(*  Checks that we generated all variables. *)
866 867
	let (gen_vars, _) = List.split subst_l in
	let (num_vars_to_gen, _) = List.split num_vnt_to_gen in
868
	let vars_to_gen = append bool_vars_to_gen num_vars_to_gen in
869 870 871 872 873 874 875 876 877 878
          if (sort (compare) gen_vars) = (sort (compare) vars_to_gen) 
	  then true
	  else
	    (
	      output_string stderr " \ngen vars :";
              List.iter (fun vn -> output_string stderr (vn ^ " ")) gen_vars;
	      output_string stderr " \nvar to gen:";
	      List.iter (fun vn -> output_string stderr (vn ^ " ")) vars_to_gen;
	      false
	    )
879 880 881 882 883
      );
      (* Splits output and local vars. *)
      List.partition 
	(fun (vn, _) -> List.mem vn out_vars) 
	subst_l
884

885

886 887 888 889 890

(****************************************************************************)
(****************************************************************************)


891
(* Exported *)
892 893 894
let (solve_formula: env_in -> int -> formula -> formula -> vnt list ->
       (subst list * subst list) list option) =
  fun input p f bool_vars_to_gen_f num_vars_to_gen ->
895
    let bdd = 
896
      (* The bdd of f has necessarily been computed (by is_satisfiable) *)
897 898
      try Env_state.bdd f
      with Not_found -> Env_state.bdd_global f
899
    in
900 901 902 903 904 905 906 907 908 909 910 911 912
    let (comb0, _) = formula_to_bdd input bool_vars_to_gen_f in
    let comb = 
      (* All boolean vars should appear in the comb so that when we
	 find that such a var is missing along a bdd path, we can
	 perform a (fair) toss for it. On the contrary, if a
	 numerical contraint disappear from a bdd (eg, consider [(f
	 && false) || true]), it is not important; fairly tossing a
	 (boolean) value for a num constaint [nc] and performing a
	 fair toss in the resulting domain is equivalent to directly
	 perform the toss in the (unconstraint wrt [nc]) initial
	 domain.  
      *)
      Bdd.dand (Bdd.support bdd) comb0 
913 914
    in	
    let bool_vars_to_gen = Formula.support bool_vars_to_gen_f in
915
    let _ =
916
      if not (Env_state.sol_number_exists bdd)
917
      then
918 919 920 921 922
	let rec skip_unconstraint_bool_var_at_top comb v =
	  (* [build_sol_nb_table] supposes that the bdd and its comb 
	     have the same top var. 
	  *)
	  if Bdd.is_true comb then comb
923 924
	  else 
	    let topvar = (Bdd.topvar comb) in
925 926
	      if v = topvar then comb 
	      else skip_unconstraint_bool_var_at_top (Bdd.dthen comb) v
927
	in
928
	let comb2 = skip_unconstraint_bool_var_at_top comb (Bdd.topvar bdd) in 
929 930
	let _ = build_sol_nb_table bdd comb2 in
	  ()
931
    in
932
      try 	
933
	Some(Util.unfold (draw bool_vars_to_gen num_vars_to_gen comb) bdd p)
934
      with No_numeric_solution -> 
935
	Env_state.set_sol_number bdd (zero_sol, zero_sol);
936
	None
937