solver.ml 23.9 KB
Newer Older
1
(*-----------------------------------------------------------------------
2
** Copyright (C) 2001, 2002 - Verimag.
3 4 5 6 7 8 9 10
** This file may only be copied under the terms of the GNU Library General
** Public License 
**-----------------------------------------------------------------------
**
** File: solver.ml
** Main author: jahier@imag.fr
*)

11
open List
12
open Formula
13
open Util
14
open Hashtbl
15
open Gne
16
open Rnumsolver
17

18 19
(****************************************************************************)
	  
20 21 22
let (lookup: env_in -> subst list -> var_name -> var_value option) = 
  fun input pre vn ->  
    try Some(Hashtbl.find input vn)
23
    with Not_found -> 
24 25 26 27 28 29 30 31 32
      try Some(List.assoc vn pre)
      with Not_found -> None

(****************************************************************************)

type comp = SupZero | SupEqZero | EqZero | NeqZero

let rec (formula_to_bdd : env_in -> formula -> Bdd.t * bool) =
  fun input f ->
33 34
    (** Returns the bdd of [f] where input and pre variables
      have been repaced by their values.
35

36 37 38
      Also returns a flag that is true iff the formula depends on
      input and pre vars. If this flag is false, the formula is
      stored (cached) in a global table ([env_state.bdd_tbl_global]);
39
      otherwise, it is stored in a table that is cleared at each new
40
      step ([env_state.bdd_tbl]).  
41
    *)
42
    try (Env_state.bdd f, true)
43
    with Not_found -> 
44
      try (Env_state.bdd_global f, false)
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
      with Not_found -> 
	let (bdd, dep) =
	  match f with 
	      Not(f1) ->
		let (bdd_not, dep) =  (formula_to_bdd input f1) in
		  (Bdd.dnot bdd_not, dep)

	    | Or(f1, f2) ->
		let (bdd1, dep1) = (formula_to_bdd input f1)
		and (bdd2, dep2) = (formula_to_bdd input f2)
		in
		  (Bdd.dor bdd1 bdd2, dep1 || dep2)

	    | And(f1, f2) -> 
		let (bdd1, dep1) = (formula_to_bdd input f1)
		and (bdd2, dep2) = (formula_to_bdd input f2)
		in
		  (Bdd.dand bdd1 bdd2, dep1 || dep2)

	    | IteB(f1, f2, f3) -> 
		let (bdd1, dep1) = (formula_to_bdd input f1)
		and (bdd2, dep2) = (formula_to_bdd input f2)
		and (bdd3, dep3) = (formula_to_bdd input f3) 
		in
		  ((Bdd.dor (Bdd.dand bdd1 bdd2) 
		      (Bdd.dand (Bdd.dnot bdd1) bdd3)),
		   dep1 || dep2 || dep3 )
		  
73 74
	    | True ->  (Bdd.dtrue  (Env_state.bdd_manager ()), false)
	    | False -> (Bdd.dfalse (Env_state.bdd_manager ()), false)
75
	    | Bvar(vn) ->    
76
		( match (lookup input (Env_state.pre ()) vn) with 
77
		      Some(B(bool)) -> 
78
			if bool
79
			then (Bdd.dtrue  (Env_state.bdd_manager ()), true)
80
			else (Bdd.dfalse (Env_state.bdd_manager ()), true)
81 82 83 84
		    | Some(_) -> 
			print_string (vn ^ " is not a boolean!\n");
			assert false
		    | None ->
85
			if List.mem vn (Env_state.pre_var_names ())
86 87 88 89 90 91
			then failwith 
			  ("*** " ^ vn ^ " is unknown at this stage.\n "
			   ^ "*** Make sure you have not used "
			   ^ "a pre on a output var at the 1st step, \n "
			   ^ "*** or a pre on a input var at the second step in "
			   ^ "your formula in the environment.\n ")
92 93 94
			else (Bdd.ithvar (Env_state.bdd_manager ())
				(Env_state.atomic_formula_to_index (Bv(vn)) false), 
				false)
95 96 97
		)
		
	    | Eq(e1, e2) -> 
98 99
		let gne = expr_to_gne (Diff(e1, e2)) input in 
		  (gne_to_bdd gne EqZero)
100 101
		  
	    | Neq(e1, e2) -> 
102 103
		let gne = expr_to_gne (Diff(e1, e2)) input in
		  (gne_to_bdd gne NeqZero)
104 105
		  
	    | SupEq(e1, e2) ->
106 107
		let gne = expr_to_gne (Diff(e1, e2)) input in
		  (gne_to_bdd gne SupEqZero)
108 109
		  
	    | Sup(e1, e2)   ->
110 111
		let gne = expr_to_gne (Diff(e1, e2)) input in
		  (gne_to_bdd gne SupZero)
112 113
		  
	    | InfEq(e1, e2) ->  
114 115
		let gne = expr_to_gne (Diff(e2, e1)) input in
		  (gne_to_bdd gne SupEqZero)
116 117
		  
	    | Inf(e1, e2)   ->  
118 119
		let gne =  expr_to_gne (Diff(e2, e1)) input in
		  (gne_to_bdd gne SupZero)
120 121 122 123
		  
	in
	  if dep
	  then 
124
	    ( Env_state.set_bdd f bdd;	
125 126
	      match f with 
		  Not(nf) -> () (* Already in the tbl thanks to the rec call *)
127
		| _  -> Env_state.set_bdd (Not(f)) (Bdd.dnot bdd) 
128
	    )
129 130
	  else 
	    (* [f] does not depend on pre nor input vars *)
131
	    ( Env_state.set_bdd_global f bdd ;	
132 133 134
	      match f with 
		  Not(nf) -> () (* Already in the table thanks to the rec call *)
		| _  -> 
135
		    Env_state.set_bdd_global (Not(f)) (Bdd.dnot bdd)
136 137 138 139
	    );

	  (bdd, dep)
and
140
  (expr_to_gne: expr -> env_in -> Gne.t) =
141 142 143 144
  fun e input -> 
    (** Evaluates pre and input vars appearing in [e] and tranlates
      it into a so-called garded normal form. Also returns a flag
      that is true iff [e] depends on pre or input vars. *)
145
    let gne =
146 147
      match e with  
	  Sum(e1, e2) ->
148 149
	    let gne1 = (expr_to_gne e1 input)
	    and gne2 = (expr_to_gne e2 input) 
150
	    in
151
	      Gne.add  gne1 gne2
152 153

	| Diff(e1, e2) -> 
154 155
	    let gne1 = (expr_to_gne e1 input)
	    and gne2 = (expr_to_gne e2 input) 
156
	    in
157
	      Gne.diff gne1 gne2
158 159

	| Prod(e1, e2) -> 
160 161
	    let gne1 = (expr_to_gne e1 input)
	    and gne2 = (expr_to_gne e2 input) 
162
	    in
163
	      Gne.mult gne1 gne2
164 165

	| Quot(e1, e2) -> 
166 167
	    let gne1 = (expr_to_gne e1 input)
	    and gne2 = (expr_to_gne e2 input) 
168
	    in
169
	      Gne.quot gne1 gne2
170 171

	| Mod(e1, e2)  -> 
172 173
	    let gne1 = (expr_to_gne e1 input)
	    and gne2 = (expr_to_gne e2 input) 
174
	    in
175
	      Gne.modulo gne1 gne2
176 177

	| Ivar(str) ->
178
	    ( match (lookup input (Env_state.pre ()) str) with 
179
		  Some(N(I(i))) ->
180
		    (GneMap.add 
181 182 183
		       (NeMap.add "" (I(i)) NeMap.empty) 
		       ((Bdd.dtrue (Env_state.bdd_manager ())), true)
		       GneMap.empty
184 185
		    )
		| None ->
186
		    (GneMap.add 
187 188 189
		       (NeMap.add str (I(1)) NeMap.empty)
		       ((Bdd.dtrue (Env_state.bdd_manager ())), false)
		       GneMap.empty
190
		    )
191 192 193 194 195 196 197 198 199 200 201
		| Some(N(F(f))) -> 
		    print_string ((string_of_float f) 
				  ^ "is a float, but an int is expected.\n");
		    assert false
		| Some(B(f)) -> 
		    print_string ((string_of_bool f) 
				  ^ "is a bool, but an int is expected.\n");
		    assert false
	    )

	| Fvar(str) ->
202
	    ( match (lookup input (Env_state.pre ()) str) with 
203
		  Some(N(F(f))) ->
204 205 206 207
		    ( GneMap.add 
			(NeMap.add "" (F(f)) NeMap.empty) 
			((Bdd.dtrue (Env_state.bdd_manager ())), true)
			GneMap.empty
208 209
		    )
		| None ->
210 211 212 213
		    ( GneMap.add 
			(NeMap.add str (F(1.)) NeMap.empty) 
			((Bdd.dtrue (Env_state.bdd_manager ())), false)
			GneMap.empty
214 215 216 217 218 219 220 221 222 223 224 225
		    )
		| Some(N(I(i))) -> 
		    print_string ((string_of_int i) 
				  ^ "is an int, but a float is expected.\n");
		    assert false
		| Some(B(f)) -> 
		    print_string ((string_of_bool f) 
				  ^ "is a bool, not a float is expected.\n");
		    assert false
	    )

	| Ival(i) ->  
226 227 228 229
	    (GneMap.add 
	       (NeMap.add "" (I(i)) NeMap.empty) 
	       ((Bdd.dtrue (Env_state.bdd_manager ())), false)
	       GneMap.empty
230 231 232
	    )

	| Fval(f) -> 
233 234 235 236
	    ( GneMap.add 
		(NeMap.add "" (F(f)) NeMap.empty) 
		((Bdd.dtrue (Env_state.bdd_manager ())), false)
		GneMap.empty
237 238 239
	    )

	| Ite(f, e1, e2) -> 
240 241 242
	    let (add_formula_to_gne_acc : Bdd.t -> bool -> n_expr -> Bdd.t * bool -> 
		   Gne.t -> Gne.t) = 
	      fun bdd dep1 nexpr (c, dep2) acc -> 
243 244 245 246 247 248 249 250 251 252 253 254
		(* Used (by a GneMap.fold) to add the condition [c] to every
		   condition of a garded expression. *)
		let _ = assert (
		  try 
		    let _ = GneMap.find nexpr acc in
		      false
		  with Not_found -> true
		) 
		in
		let new_bdd = (Bdd.dand bdd c) in
		  if Bdd.is_false new_bdd
		  then acc
255
		  else GneMap.add nexpr (new_bdd, dep1 || dep2) acc
256
	    in
257
	    let (bdd, depf) = formula_to_bdd input f in
258
	    let bdd_not = Bdd.dnot bdd
259 260 261 262 263
	    and gne_t = (expr_to_gne e1 input)
	    and gne_e = (expr_to_gne e2 input) in
	    let gne1 = GneMap.fold (add_formula_to_gne_acc bdd depf) gne_t GneMap.empty in
	    let gne  = GneMap.fold (add_formula_to_gne_acc bdd_not depf) gne_e gne1 in
	      gne
264
    in
265
      gne
266
	
267
and
268
  (gne_to_bdd : Gne.t -> comp -> Bdd.t * bool) =
269 270
  fun gne cmp -> 
    (** Use [cmp] to compare [gne] with 0 and returns the
271 272 273 274
      corresponding formula.  E.g., if [gne] is bounded to
      [e1 -> c1; e2 -> c2], then [gne_to_bdd gne SupZero] returns
      (the bdd corresponding to) the formula [(c1 and (e1 > 0)) or
      (c2 and (e2 > 0))] *)
275 276 277
    match cmp with
	SupZero ->
	  ( GneMap.fold 
278 279 280
	      (fun nexpr (c, dep) (acc, dep_acc) -> 
		 let new_dep = dep || dep_acc 
		 and bdd = 
281 282 283 284 285 286
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i > 0 
287 288
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
289 290
			 | F(f) -> 
			     if f > 0. 
291 292
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
293 294 295

		   else 
		     Bdd.ithvar 
296
		       (Env_state.bdd_manager ()) 
297
		       (Env_state.atomic_formula_to_index (GZ(nexpr)) dep) 
298
		 in
299
		   (Bdd.dor (Bdd.dand c bdd) acc, new_dep)
300 301
	      )
	      gne 
302
	      ((Bdd.dfalse (Env_state.bdd_manager ())), false)
303 304 305
	  )
      | SupEqZero ->
	  ( GneMap.fold 
306 307 308
	      (fun nexpr (c, dep) (acc, dep_acc) -> 
		 let new_dep = dep || dep_acc 
		 and bdd = 
309 310 311 312 313 314
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i >= 0 
315 316
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
317 318
			 | F(f) -> 
			     if f >= 0. 
319 320
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
321 322 323

		   else 
		     Bdd.ithvar 
324
		       (Env_state.bdd_manager ()) 
325
		       (Env_state.atomic_formula_to_index (GeqZ(nexpr)) dep)
326
		 in
327
		   (Bdd.dor (Bdd.dand c bdd) acc, new_dep)
328 329
	      )
	      gne 
330
	      ((Bdd.dfalse (Env_state.bdd_manager ())), false)
331 332 333
	  )
      | EqZero -> 
	  ( GneMap.fold 
334
	      (fun nexpr (c, dep) (acc, dep_acc) -> 
335 336 337 338 339 340 341
		 let bdd1 = 
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i >= 0 
342 343
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
344 345
			 | F(f) -> 
			     if f >= 0. 
346 347
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
348 349 350

		   else 
		     Bdd.ithvar 
351
		       (Env_state.bdd_manager ()) 
352
		       (Env_state.atomic_formula_to_index (GeqZ(nexpr)) dep) 
353 354 355 356 357 358 359 360
		 in
		 let bdd2 = 
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i <= 0 
361 362
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
363 364
			 | F(f) -> 
			     if f <= 0. 
365 366
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
367 368 369

		   else 
		     Bdd.ithvar 
370
		       (Env_state.bdd_manager ()) 
371
		       (Env_state.atomic_formula_to_index (SeqZ(nexpr)) dep) 
372
		 in
373 374
		 let new_dep = dep || dep_acc 
		 and bdd = Bdd.dand bdd1 bdd2 in 
375 376
		   (* We transform [e1 = e2] into [e1 <= e2 ^ e1 >= e2] as the 
		      numeric solver can not handle equalities *)
377
		   (Bdd.dor (Bdd.dand c bdd) acc, new_dep)
378 379
	      )
	      gne 
380
	      ((Bdd.dfalse (Env_state.bdd_manager ())), false)
381 382 383
	  )
      | NeqZero -> 
	  ( GneMap.fold 
384
	      (fun nexpr (c, dep) (acc, dep_acc) -> 
385 386 387 388 389 390 391
		 let bdd1 = 
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i > 0 
392 393
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
394 395
			 | F(f) -> 
			     if f > 0. 
396 397
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
398 399 400

		   else 
		     Bdd.ithvar 
401
		       (Env_state.bdd_manager ()) 
402
		       (Env_state.atomic_formula_to_index (GZ(nexpr)) dep) 
403 404 405 406 407 408 409 410
		 in
		 let bdd2 = 
		   if is_n_expr_a_constant nexpr
		   then 
		     let cst = NeMap.find "" nexpr in
		       match cst with
			   I(i) -> 
			     if i < 0 
411 412
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
413 414
			 | F(f) -> 
			     if f < 0. 
415 416
			     then (Bdd.dtrue (Env_state.bdd_manager ()))
			     else (Bdd.dfalse (Env_state.bdd_manager ()))
417 418 419

		   else 
		     Bdd.ithvar 
420
		       (Env_state.bdd_manager ()) 
421
		       (Env_state.atomic_formula_to_index (SZ(nexpr)) dep) 
422
		 in
423 424
		 let new_dep = dep || dep_acc 
		 and bdd = Bdd.dor bdd1 bdd2 in 
425 426
		   (* We transform [e1 <> e2] into [e1 < e2 or e1 > e2] as the 
		      numeric solver can not handle disequalities *)
427
		   (Bdd.dor (Bdd.dand c bdd) acc, new_dep)
428 429
	      )
	      gne 
430
	      ((Bdd.dfalse (Env_state.bdd_manager ())), false)
431
	  )
432

433 434 435 436 437
(****************************************************************************)
(****************************************************************************)


(* Exported *)
438 439
let rec (is_satisfiable: env_in -> formula -> bool) = 
  fun input f -> 
440
    let (bdd, _) = formula_to_bdd input f in
441 442 443
      not (Bdd.is_false bdd) &&
      ( 
	try 
444
	  let (n, m) = Env_state.sol_number bdd in 
445 446 447 448 449 450 451
	    not ((zero_sol, zero_sol) = (n, m))
	with Not_found -> true
      )
      


(****************************************************************************)
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
(****************************************************************************)

type var = int

(** In the following, we call a comb the bdd of a conjunction of
 litterals (var). They provide the ordering in which litterals
 appear in the bdds we manipulate.
*)



let rec (build_sol_nb_table: Bdd.t -> Bdd.t -> sol_nb * sol_nb) =
  fun bdd comb -> 
    (** Returns the relative (to which bbd points to it) number of
      solutions of [bdd] and the one of its negation. Also udpates
467 468 469 470 471 472
      the solution number table for [bdd] and its negation, and
      recursively for all its sub-bdds.

      [comb] is a positive cube that ougth to contain the indexes of
      boolean vars that are still to be generated, and the numerical
      indexes that appears in [bdd].  
473
    *)
474 475 476
    let _ = assert (not (Bdd.is_cst bdd) 
		    && (Bdd.topvar comb) = (Bdd.topvar bdd)) 
    in
477 478 479
    let bdd_not = (Bdd.dnot bdd) in
    let (sol_nb, sol_nb_not) =
      try
480 481
	let (nt, ne) = Env_state.sol_number bdd 
	and (not_nt, not_ne) = Env_state.sol_number bdd_not in
482 483
	  (* solutions numbers in the table are absolute *)
	  ((add_sol_nb nt ne), (add_sol_nb not_nt not_ne))
484
      with Not_found ->
485 486
	let (nt, not_nt) = compute_absolute_sol_nb (Bdd.dthen bdd) comb in
	let (ne, not_ne) = compute_absolute_sol_nb (Bdd.delse bdd) comb in
487 488
	  Env_state.set_sol_number bdd (nt, ne) ;
	  Env_state.set_sol_number bdd_not (not_nt, not_ne) ;
489 490 491 492 493 494
	  ((add_sol_nb nt ne), (add_sol_nb not_nt not_ne))
    in
      (sol_nb, sol_nb_not)
and 
  (compute_absolute_sol_nb: Bdd.t -> Bdd.t -> sol_nb * sol_nb) =
  fun sub_bdd comb -> 
495
    (* Returns the absolute number of solutions of [sub_bdd] (and its
496
       negation) w.r.t. [comb], where [comb] is the comb of the
497 498 499 500 501 502 503 504 505 506
       father of [sub_bdd].

       The [comb] is used to know which output boolean variables are
       unconstraint along a path in the bdd. Indeed, the comb is made
       of all the boolean output var indexes plus the num contraints
       indexes that appears in the bdd; hence, if the topvar of the
       bdd is different from the topvar of the comb, it means that
       the topvar of the comb is unsconstraint and we need to
       multiply the number of solution of the branch by 2.
    *)
507
    if Bdd.is_cst sub_bdd 
508
    then
509
      let sol_nb = 
510
	if Bdd.is_true comb
511
	then one_sol
512
	else (two_power_of (List.length (Bdd.list_of_support (Bdd.dthen comb)))) 
513
      in
514 515 516 517 518
	if Bdd.is_true sub_bdd
	then (sol_nb, zero_sol) 
	else (zero_sol, sol_nb)
    else 
      let topvar = Bdd.topvar sub_bdd in
519 520 521 522 523 524 525 526 527 528 529 530
      let rec
	(count_missing_vars: Bdd.t -> var -> int -> Bdd.t * int) =
	fun comb var cpt -> 
	  (* Returns [cpt] + the number of variables occurring in [comb]
	     before reaching [var] ([var] excluded). Also returns the comb
	     whch topvar is [var]. *)
	  let _ = assert (not (Bdd.is_cst comb)) in
	  let combvar = Bdd.topvar comb in
	    if var = combvar
	    then (comb, cpt)
	    else count_missing_vars (Bdd.dthen comb) var (cpt+1)
      in
531
      let (sub_comb, missing_vars_nb) = 
532
	count_missing_vars (Bdd.dthen comb) topvar 0
533 534 535 536 537
      in
      let (n0, not_n0) = build_sol_nb_table sub_bdd sub_comb in
      let factor = (two_power_of missing_vars_nb) in
	(mult_sol_nb n0 factor, mult_sol_nb not_n0 factor)
	
538 539 540 541

(****************************************************************************)
(****************************************************************************)

542

543
let (toss_up_one_var: var -> subst option) =
544
  fun var -> 
545 546 547 548 549 550 551 552 553
    (* if [var] is a index that corresponds to a boolean variable,
       this fonction performs a toss and returns a substitution for
       the corresponding boolean variable. It returns [None]
       otherwise.

       Indeed, if it happens that a numerical constraint does not
       appear along a path, we simply ignore it and hence it will not
       be added to the store.
    *)
554 555
    let af = Env_state.index_to_atomic_formula var in
      match af with 
556 557 558 559 560 561 562
          Bv(vn) -> 
	    let ran = Random.float 1. in
	      if (ran < 0.5) 
	      then Some(vn, Formula.B(true)) 
	      else Some(vn, Formula.B(false))
	| _  -> None
     
563

564 565 566 567 568 569 570 571
let (is_a_numeric_constraint : atomic_formula -> bool) =
  fun af -> 
    match af with
	Bv(_) -> false
      | GZ(_)   -> true 
      | GeqZ(_) -> true
      | SZ(_)   -> true
      | SeqZ(_) -> true
572 573 574 575 576


(* exported *)
exception No_numeric_solution

577 578
let rec (draw_in_bdd: subst list * store -> Bdd.t -> Bdd.t -> 
	   subst list * store) = 
579 580 581 582 583 584
  fun (sl, store) bdd comb ->
    (** Returns [sl] appended to a draw of all the boolean variables
      bigger than the topvar of [bdd] according to the ordering
      induced by the comb [comb]. Also returns the (non empty) store
      obtained by adding to [store] all the numeric constraints that
      were encountered during this draw.
585

586 587 588
      Raises the [No_numeric_solution] exception whenever no valid
      path in [bdd] leads to a satisfiable set of numeric
      constraints.  
589
    *)
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

    if Bdd.is_true bdd
    then
      (* Toss the remaining bool vars. *)
      ( (List.append sl
	   (Util.list_map_option toss_up_one_var (Bdd.list_of_support comb))),
	store )
    else
      let _ = assert (not (Bdd.is_false bdd)) in 
      let _ = assert (Env_state.sol_number_exists bdd) in
      let bddvar  = Bdd.topvar bdd in
      let af = (Env_state.index_to_atomic_formula bddvar) in 
      let top_var_is_numeric = is_a_numeric_constraint af in
	if
	  bddvar <> (Bdd.topvar comb) &&
	  not top_var_is_numeric
	then
	  let new_sl =
	    match toss_up_one_var (Bdd.topvar comb) with
		Some(s) -> s::sl
	      | None -> sl
	  in
	    draw_in_bdd (new_sl, store) bdd (Bdd.dthen comb)
	else 
	  (* bddvar = combvar xor top_var_is_numeric *) 
	  (* nb: I handle those two cases alltogether to avoid code
	     duplication (i.e., retrieving sol numbers, performing the
	     toss, the recursive call, handling the base case where a
	     dtrue bdd is reached, etc).  It makes the code a little
	     bit more obscur, but ...  *)
	  let (n, m) = Env_state.sol_number bdd in
	  let _ =
	    if ((eq_sol_nb n zero_sol) && (eq_sol_nb m zero_sol))
	    then raise No_numeric_solution ;
	  in
	  let (store_plus_af, store_plus_not_af) = 
	    (* A first trick to avoid code dup (cf nb above) *)
	    if top_var_is_numeric
	    then 
	      split_store store af
630
	    else 
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	      (store, store)
	  in
	  let (swap, store1, bdd1, bool1, sol_nb1, store2, bdd2, bool2, sol_nb2) =
	    (* Depending on the result of a toss (based on the number
	       of solution in each branch), we try the [else] or the
	       [then] branch first. [swap] indicates whether or not the
	       [else] part is put before the [then] one. *)
	    let ran = Random.float 1. in
	      if ran < ((float_of_sol_nb n) /. (float_of_sol_nb (add_sol_nb n m)))
	      then
		(false, store_plus_af, (Bdd.dthen bdd), true, n,
		 store_plus_not_af, (Bdd.delse bdd), false, m )
	      else 
		(true, store_plus_not_af, (Bdd.delse bdd), false, m,
		 store_plus_af, (Bdd.dthen bdd), true, n )
	  in
	  let (sl1, sl2, new_comb) = (
	    (* A second trick to avoid code dup (cf nb above) *)
	    match af with 
		Bv(vn) -> 
		  (((vn, Formula.B(bool1))::sl), 
		   ((vn, Formula.B(bool2))::sl), 
		   (if Bdd.is_true comb then comb else Bdd.dthen comb) )
	      | _ -> 
		  (* top_var_is_numeric *)
		  (sl, sl, comb)
657
	  )
658 659 660 661 662 663 664 665 666 667 668 669 670 671
	  in
	  let res_opt =
	    (* A solution will be found in this branch iff there exists
	       at least one path in the bdd that leads to a satisfiable
	       set of numeric constraints. If it is not the case,
	       [res_opt] is bound to [None]. *)
	    if not (is_empty store1)
	    then 
	      try 
		let tail_draw1 = draw_in_bdd (sl1, store1) bdd1 new_comb in
		  Some(tail_draw1)
	      with No_numeric_solution -> 
		None
	    else
672
	      None
673 674 675 676 677 678 679 680 681 682 683
	  in
	    match res_opt with 
		Some(res) -> res
	      | None -> 
		  (* The second branch is now tried because no path in
		     the first bdd leaded to a satisfiable set of
		     numeric constraints. *)
		  if not (eq_sol_nb sol_nb2 zero_sol)
		  then
		    if not (is_empty store2)
		    then draw_in_bdd (sl2, store2) bdd2 new_comb 
684
		    else
685
		      raise No_numeric_solution
686
		  else
687
		    raise No_numeric_solution
688

689

690 691
let (draw : formula -> vnt list -> Bdd.t -> Bdd.t -> subst list * subst list) =
  fun bool_vars_to_gen_f num_vnt_to_gen comb bdd ->
692 693
    (** Draw the output and local vars to be generated by the environnent. *)
    let (bool_subst_l, store) = 
694
      draw_in_bdd ([], (new_store num_vnt_to_gen)) bdd comb 
695
    in
696 697 698 699 700 701
    let num_subst_l = 
      match Env_state.draw_mode () with
	  Env_state.Verteces -> draw_verteces store
	| Env_state.Edges    -> draw_edges store
	| Env_state.Inside   -> draw_inside store 
    in
702
    let subst_l = append bool_subst_l num_subst_l in
703
    let (out_vars, _) = List.split (Env_state.output_var_names ()) 
704 705 706
    in
      assert ( 
	(*  Checks that we generated all variables. *)
707 708
	let (gen_vars, _) = List.split subst_l in
	let (num_vars_to_gen, _) = List.split num_vnt_to_gen in
709
	let bool_vars_to_gen = Formula.support bool_vars_to_gen_f in
710
	let vars_to_gen = append bool_vars_to_gen num_vars_to_gen in
711 712 713 714 715 716 717 718 719 720
          if (sort (compare) gen_vars) = (sort (compare) vars_to_gen) 
	  then true
	  else
	    (
	      output_string stderr " \ngen vars :";
              List.iter (fun vn -> output_string stderr (vn ^ " ")) gen_vars;
	      output_string stderr " \nvar to gen:";
	      List.iter (fun vn -> output_string stderr (vn ^ " ")) vars_to_gen;
	      false
	    )
721 722 723 724 725
      );
      (* Splits output and local vars. *)
      List.partition 
	(fun (vn, _) -> List.mem vn out_vars) 
	subst_l
726

727

728
  
729
(* Exported *)
730 731 732
let (solve_formula: env_in -> int -> formula -> formula -> vnt list ->
       (subst list * subst list) list option) =
  fun input p f bool_vars_to_gen_f num_vars_to_gen ->
733
    let bdd = 
734
      (* The bdd of f has necessarily been computed (by is_satisfiable) *)
735 736
      try Env_state.bdd f
      with Not_found -> Env_state.bdd_global f
737
    in
738 739 740 741 742 743 744 745 746 747 748 749 750 751
    let (comb0, _) = formula_to_bdd input bool_vars_to_gen_f in
    let comb = 
      (* All boolean vars should appear in the comb so that when we
	 find that such a var is missing along a bdd path, we can
	 perform a (fair) toss for it. On the contrary, if a
	 numerical contraint disappear from a bdd (eg, consider [(f
	 && false) || true]), it is not important; fairly tossing a
	 (boolean) value for a num constaint [nc] and performing a
	 fair toss in the resulting domain is equivalent to directly
	 perform the toss in the (unconstraint wrt [nc]) initial
	 domain.  
      *)
      Bdd.dand (Bdd.support bdd) comb0 
    in
752
    let _ =
753
      if not (Env_state.sol_number_exists bdd)
754
      then
755 756 757 758 759
	let rec skip_unconstraint_bool_var_at_top comb v =
	  (* [build_sol_nb_table] supposes that the bdd and its comb 
	     have the same top var. 
	  *)
	  if Bdd.is_true comb then comb
760 761
	  else 
	    let topvar = (Bdd.topvar comb) in
762 763
	      if v = topvar then comb 
	      else skip_unconstraint_bool_var_at_top (Bdd.dthen comb) v
764
	in
765
	let comb2 = skip_unconstraint_bool_var_at_top comb (Bdd.topvar bdd) in 
766 767
	let _ = build_sol_nb_table bdd comb2 in
	  ()
768
    in
769
      try 	
770
	Some(Util.unfold (draw bool_vars_to_gen_f num_vars_to_gen comb) bdd p)
771
      with No_numeric_solution -> 
772
	Env_state.set_sol_number bdd (zero_sol, zero_sol);
773
	None
774