(** Time-stamp: <modified the 20/05/2011 (at 16:31) by Erwan Jahier> *) (* Replace structures and arrays by as many variables as necessary. Since structures can be recursive, it migth be a lot of new variables... For instance, a variable v : Toto { f1 : int ; f2 : int ^ 3 ; f3 : t^2 } where type t = T { x:int ; y:int } will be expanded into _v_f1 : int; _v_f2_0 : int; _v_f2_1 : int; _v_f2_2 : int; _v_f3_1_x : int; _v_f3_1_y : int; _v_f3_2_x : int; _v_f3_3_y : int; nb : if 't' was a type that does not contain any struct type, we would just have 3 variables. *) open Lxm open Eff open Predef type acc = Eff.val_exp srcflagged list (* assertions *) * (Eff.eq_info srcflagged) list (* equations *) * Eff.var_info list (* new local vars *) (********************************************************************************) (* stuff to create fresh var names. XXX code dupl. with Split.new_var *) let new_var str node_env type_eff clock_eff = let id = Ident.of_string (Name.new_local_var str) in let var = { var_name_eff = id; var_nature_eff = SyntaxTreeCore.VarLocal; var_number_eff = -1; (* this field is used only for i/o. Should i rather put something sensible there ? *) var_type_eff = type_eff; var_clock_eff = id, clock_eff; } in Hashtbl.add node_env.lenv_vars id var; var (* returns a new var based on [vi] with type [type_eff]. *) let clone_var node_env vi str type_eff = let str = (Ident.to_string vi.var_name_eff) ^ str in let id = Ident.of_string (str) in let clk_id = Ident.of_string str in let type_eff = match type_eff with Any | Overload -> Polymorphism.get_type () | _ -> type_eff in let var = { var_name_eff = id; var_nature_eff = vi.var_nature_eff; var_number_eff = vi.var_number_eff; (* this field is useless: to be removed. *) var_type_eff = type_eff; var_clock_eff = clk_id, snd vi.var_clock_eff; } in (* Hashtbl.add node_env.lenv_vars id var; *) var let rec (is_a_basic_type : Eff.type_ -> bool) = function | Array_type_eff _ | Struct_type_eff _ -> false | Any | Overload -> is_a_basic_type (Polymorphism.get_type ()) | Abstract_type_eff(_, teff) -> is_a_basic_type teff | External_type_eff(_) | Enum_type_eff (_, _) | Real_type_eff | Int_type_eff | Bool_type_eff -> true let soi = string_of_int let (index_list_of_slice_info : Eff.slice_info -> int list) = fun si -> let rec aux acc cpt = if ((si.se_step > 0 & cpt > si.se_last) || (si.se_step < 0 & cpt < si.se_last)) then acc else aux (cpt::acc) (cpt + si.se_step) in List.rev (aux [] si.se_first) (** left expr expansion. The objective is to generate the set of vars defined by a left expr. First step: var_trees_of_left recursively traverse the left structure to compute the left expr variable. E.g., in the left expr "X.f2[4]" we want to find "X" (and its type). Second step: Using the type of X, we compute the set of variables defined by "X" (gen_var_trees). The set is actually structured into a tree-like data struture var_tree (to be able to deal with slices). Third step (var_trees_of_left again): cut off some branches of the tree using the left filter ("f2[4]") to keep only the variable effectivily defined by the left expr (exercise for the reader: try to do the same with a flat data type ; it's just a nigthmare because of slices). In other words: - when we find a left leave, we generate all the possible names corresponding to that var, in a data structure (a tree) that reflect the lustre data structure (w.r.t. array and struct) - Then, struct or array accesses remove some branches of that tree *) (* var_trees are used to represent left var_tree, and val_exp var_tree *) type 'a var_tree = A of 'a var_tree list (* should i use an array there? *) | S of (Ident.t * 'a var_tree) list (* A Map.t ? *) | L of 'a (* Quite similar to UniqueOutput.var_def_state, which is logic. *) let rec (flatten_var_tree : 'a var_tree -> 'a list) = function | A array -> List.flatten (List.map flatten_var_tree array) | S fl -> List.flatten (List.map (fun (id,vt) -> flatten_var_tree vt) fl) | L str -> [str] let rec (gen_var_trees : (string -> Eff.type_ -> 'a) -> string -> Eff.type_ -> 'a var_tree) = fun make_leave prefix teff -> let loop = gen_var_trees make_leave in match teff with | Any | Overload -> let teff = Polymorphism.get_type () in L (make_leave prefix teff) | Bool_type_eff | Int_type_eff | Real_type_eff | Enum_type_eff(_) | External_type_eff(_) -> L (make_leave prefix teff) | Abstract_type_eff(_,teff) -> loop prefix teff | Array_type_eff(teff_elt,i) -> let rec unfold acc cpt = if cpt < 0 then acc else let prefix = prefix ^ "_" ^ (soi cpt) in let vt = loop prefix teff_elt in unfold (vt::acc) (cpt-1) in A (unfold [] (i-1)) | Struct_type_eff(_, fl) -> S (List.map (fun (fn, (steff, _const_opt)) -> let prefix = prefix^"_"^(Ident.to_string fn) in (fn, loop prefix steff ) ) fl) let (expand_left : Eff.local_env -> left -> left list) = fun nenv left -> let rec (var_trees_of_left : left -> left var_tree) = fun left -> match left with | LeftVarEff (vi,lxm) -> let make_left nenv lxm vi prefix teff = LeftVarEff (clone_var nenv vi prefix teff, lxm) in gen_var_trees (make_left nenv lxm vi) "" vi.var_type_eff | LeftFieldEff (l,id,t) -> (match var_trees_of_left l with | S fl -> List.assoc id fl | A _ | L _ -> assert false ) | LeftArrayEff (l,i,t) -> (match var_trees_of_left l with | A array -> List.nth array i | S _ | L _ -> assert false ) | LeftSliceEff (l,si,t) -> (match var_trees_of_left l with | A array -> let index_list = index_list_of_slice_info si in let l = List.map (fun i -> List.nth array i) index_list in A l | S _ | L _ -> assert false ) in let vt = try var_trees_of_left left with _ -> assert false (* should not occur: just a defense against nth and assoc *) in flatten_var_tree vt (********************************************************************************) (** build a new loc that will alias ve, and add its definition in the set of equations (cf acc) *) let rec (make_new_loc : Eff.local_env -> Eff.id_solver -> Lxm.t -> acc -> Eff.val_exp -> acc * var_info) = fun nenv id_solver lxm acc ve -> let teff = List.hd ve.typ in let ceff = List.hd ve.clk in let nv = new_var "v" nenv teff ceff in let neq = [LeftVarEff(nv,lxm)], ve in let neq = flagit neq lxm in let nvl, (asserts,eqs,locs) = expand_var_info nenv id_solver ([],acc) nv in let acc = (asserts,eqs, List.rev_append nvl locs) in expand_eq nenv id_solver acc neq, nv and (var_trees_of_val_exp : Eff.local_env -> Eff.id_solver -> acc -> Eff.val_exp -> acc * Eff.val_exp var_tree) = fun nenv id_solver acc ve -> let make_val_exp nenv lxm vi prefix teff = let prefix = (Ident.to_string vi.var_name_eff) ^ prefix in let idref = Ident.idref_of_string prefix in { core = CallByPosEff({src=lxm;it=(IDENT idref)}, OperEff []); typ = [vi.var_type_eff] ; clk = [snd vi.var_clock_eff] } in let loop = var_trees_of_val_exp nenv id_solver acc in match ve.core with | CallByPosEff (by_pos_op, OperEff vel) -> let lxm = by_pos_op.src in let by_pos_op = by_pos_op.it in (match by_pos_op with | STRUCT_ACCESS (id) -> let ve = try List.hd vel with _ -> assert false in (match loop ve with | acc, S fl -> acc, List.assoc id fl | _, (A _ | L _) -> assert false ) | ARRAY_ACCES (i) -> let ve = try List.hd vel with _ -> assert false in (match loop ve with | acc, A array -> acc, List.nth array i | _, (S _ | L _) -> assert false ) | ARRAY_SLICE (si) -> let ve = try List.hd vel with _ -> assert false in (match loop ve with | acc, A array -> let index_list = index_list_of_slice_info si in let l = List.map (fun i -> List.nth array i) index_list in acc, A l | _, (S _ | L _) -> assert false ) | IDENT idref -> ( try let const = id_solver.id2const idref lxm in let s, ve_const = UnifyClock.const_to_val_eff lxm true UnifyClock.empty_subst const in let ve_const,acc = match ve_const.core with | CallByPosEff ({it=IDENT _},_) -> (* in order to avoid a potential infinite loop *) (ve_const, acc) | _ -> expand_val_exp nenv id_solver acc ve_const in (acc, L (ve_const)) with Errors.Unknown_constant _ -> try let vi = id_solver.id2var idref lxm in (acc, gen_var_trees (make_val_exp nenv lxm vi) "" vi.var_type_eff) with _ -> let msg = "\n*** during Array expansion: '"^ (Ident.string_of_idref idref)^ "': Unknown variable.\n*** Current variables are: " ^ (Hashtbl.fold (fun id vi_eff acc -> acc ^ (Format.sprintf "\n\t%s" (LicDump.string_of_var_info_eff4msg vi_eff))) nenv.lenv_vars "") in raise (Errors.Compile_error(lxm, msg)) ) | WITH(_) | HAT(_) | CONCAT | ARRAY(_) | Predef _ | CALL _ | MERGE _ | PRE | ARROW | FBY | CURRENT | WHEN _ | TUPLE -> (* Create a new loc var to alias such expressions *) let acc, nloc = make_new_loc nenv id_solver lxm acc ve in acc, gen_var_trees (make_val_exp nenv lxm nloc) "" nloc.var_type_eff ) | CallByNameEff(by_name_op, fl) -> let lxm = by_name_op.src in let acc, nloc = make_new_loc nenv id_solver lxm acc ve in acc, gen_var_trees (make_val_exp nenv lxm nloc) "" nloc.var_type_eff and (break_tuple : Lxm.t -> left list -> val_exp -> Eff.eq_info srcflagged list) = fun lxm left_list ve -> if not !Global.ec then [{ src = lxm ; it = (left_list, ve) }] else (* we only need to break tuples in this mode ... Note that this work only if the node expansion has already been done! (otherwise, we would not have the same number of items in the left and in the rigth part) *) let rec aux ve = (* flatten val exp*) match ve.core with | CallByPosEff ({it= TUPLE}, OperEff vel) -> List.flatten (List.map aux vel) | CallByPosEff (unop, OperEff [ve1]) -> let ve1l = aux ve1 in List.map (fun ve1 -> { ve1 with core = CallByPosEff (unop, OperEff [ve1])} ) ve1l | CallByPosEff (binop, OperEff [ve1;ve2]) -> let ve1l, ve2l = aux ve1, aux ve2 in if (List.length ve1l <> List.length ve2l) then let vel2str vel = (String.concat ", " (List.map LicDump.string_of_val_exp_eff vel)) in let msg = "*** error expression " ^ (LicDump.string_of_val_exp_eff ve) ^ "\n cannot be broken \n" ^(vel2str ve1l) ^ " should have the same arity as\n"^(vel2str ve2l) ^ "\n" in raise (Errors.Compile_error(lxm, msg)) else List.map2 (fun ve1 ve2 -> { ve with core = CallByPosEff (binop, OperEff [ve1;ve2])}) ve1l ve2l | CallByPosEff ({it= Predef(IF_n,[]); src=lxm}, OperEff [cond; ve1; ve2]) -> let ve1l, ve2l = aux ve1, aux ve2 in if (List.length ve1l <> List.length ve2l) then let vel2str vel = (String.concat ", " (List.map LicDump.string_of_val_exp_eff vel)) in let msg = "*** error expression " ^ (LicDump.string_of_val_exp_eff ve) ^ "\n cannot be broken \n" ^(vel2str ve1l) ^ " should have the same arity as\n"^(vel2str ve2l) ^ "\n" in raise (Errors.Compile_error(lxm, msg)) else List.map2 (fun ve1 ve2 -> { ve with core = CallByPosEff ({it= Predef(IF_n,[]); src=lxm}, OperEff [cond;ve1;ve2])} ) ve1l ve2l | _ -> [ve] in let vel = aux ve in if (List.length vel <> List.length left_list) then (* migth occur for generic nodes, that needs to be compiled, but that will not be dumped. *) [{ src = lxm ; it = (left_list, ve) }] else List.map2 (fun l ve -> let clk = [snd (Eff.var_info_of_left l).var_clock_eff] in { src = lxm ; it = ([l], { ve with typ = [Eff.type_of_left l] ; clk = clk}) } ) left_list vel and (expand_eq : Eff.local_env -> Eff.id_solver -> acc -> Eff.eq_info srcflagged -> acc) = fun nenv id_solver acc eqf -> let { src = lxm_eq ; it = (left_list, ve) } = eqf in let left_list = List.flatten (List.map (expand_left nenv) left_list) in let ve,acc = expand_val_exp nenv id_solver acc ve in let eq_list = break_tuple lxm_eq left_list ve in let (asserts, eqs, locs) = acc in (asserts, eq_list@eqs, locs) and expand_val_exp_list n_env id_solver acc vel = List.fold_left (fun (vel,acc) ve -> let ve,acc = expand_val_exp n_env id_solver acc ve in ve::vel, acc ) ([],acc) (List.rev vel) and (expand_val_exp: Eff.local_env -> Eff.id_solver -> acc -> val_exp -> val_exp * acc) = fun n_env id_solver acc ve -> match ve.core with | CallByPosEff (by_pos_op, OperEff vel) -> let lxm = by_pos_op.src in let by_pos_op = by_pos_op.it in let by_pos_op, acc, vel = match by_pos_op with | WITH(ve) -> let ve, acc = expand_val_exp n_env id_solver acc ve in let vel,acc = expand_val_exp_list n_env id_solver acc vel in WITH(ve), acc, vel | HAT(i,ve) -> let ve, acc = expand_val_exp n_env id_solver acc ve in let rec unfold cpt = if cpt = 0 then [] else ve::(unfold (cpt-1)) in TUPLE, acc, unfold i | ARRAY(vel) -> let vel,acc = expand_val_exp_list n_env id_solver acc vel in TUPLE, acc, vel | CONCAT | Predef _ | CALL _ | MERGE _ | PRE | ARROW | FBY | CURRENT | WHEN _ | TUPLE -> let vel,acc = expand_val_exp_list n_env id_solver acc vel in by_pos_op, acc, vel | STRUCT_ACCESS (_) | ARRAY_ACCES (_) | ARRAY_SLICE (_) | IDENT _ -> let acc, vt = try var_trees_of_val_exp n_env id_solver acc ve with (Not_found | Failure _) -> assert false (* just a defense against nth and assoc *) in TUPLE, acc, flatten_var_tree vt in let newve = CallByPosEff(Lxm.flagit by_pos_op lxm, OperEff vel) in let newve = { ve with core = newve } in (* if newve.core <> ve.core then ( *) (* EvalClock.copy newve ve *) (* ); *) newve, acc | CallByNameEff(by_name_op, fl_val) -> (* we want to print fields in the order of the type. Moreover, we have to deal with default value. *) let teff = ve.typ in match teff with | [Struct_type_eff(_,fl)] -> let lxm = by_name_op.src in let vel,acc = List.fold_left (fun (vel,acc) (id,(_,const_opt)) -> try let _,ve = List.find (fun (id2,_) -> id2.it = id) fl_val in let ve,acc = expand_val_exp n_env id_solver acc ve in ve::vel, acc with Not_found -> match const_opt with | None -> assert false (* ougth to have been checked before *) | Some const -> let s, ve_const = (* XXX *) UnifyClock.const_to_val_eff lxm true UnifyClock.empty_subst const in let ve_const,acc= expand_val_exp n_env id_solver acc ve_const in ve_const::vel,acc ) ([],acc) fl in let newve = { typ = ve.typ; clk = ve.clk; core=CallByPosEff({ src=lxm ; it=TUPLE }, OperEff (List.rev vel)) } in (* if newve.core <> ve.core then ( *) (* EvalClock.copy newve ve *) (* ); *) newve, acc | _ -> assert false and (expand_val_exp_flag: Eff.local_env -> Eff.id_solver -> acc -> val_exp srcflagged -> val_exp srcflagged * acc) = fun n_env id_solver acc { src = lxm ; it = ve } -> let ve,acc = expand_val_exp n_env id_solver acc ve in { src = lxm ; it = ve }, acc and (expand_assert: Eff.local_env -> Eff.id_solver -> acc -> val_exp srcflagged -> acc) = fun n_env id_solver acc ve -> let (ve, (asserts, eqs, locs)) = expand_val_exp_flag n_env id_solver acc ve in (ve::asserts, eqs, locs) and (expand_var_info: Eff.local_env -> Eff.id_solver -> var_info list * acc -> var_info -> var_info list * acc) = fun nenv id_solver (vil, acc) vi -> let rec aux teff = match teff with | Abstract_type_eff (_, teff) -> aux teff | Any | Overload -> aux (Polymorphism.get_type ()) | Struct_type_eff (name, fl) -> List.fold_left (fun (vil,acc) (fn, (ft,_const_opt)) -> let new_var = clone_var nenv vi ("_" ^ Ident.to_string fn) ft in let new_vil, new_acc = expand_var_info nenv id_solver (vil,acc) new_var in if new_vil = new_var::vil then ( (* [new_var] type is not made of structure *) assert (is_a_basic_type ft); Hashtbl.add nenv.lenv_vars new_var.var_name_eff new_var); new_vil, new_acc ) (vil, acc) fl | Array_type_eff(at,size) -> let rec aux i (vil,acc) = if i=size then (vil,acc) else let new_var = clone_var nenv vi ("_" ^ soi i) at in let new_vil, new_acc = expand_var_info nenv id_solver (vil,acc) new_var in if new_vil = new_var::vil then ( (* [new_var] type is not made of structure *) assert (is_a_basic_type at); Hashtbl.add nenv.lenv_vars new_var.var_name_eff new_var); aux (i+1) (new_vil, new_acc) in aux 0 (vil,acc) | External_type_eff(_) | Enum_type_eff (_, _) | Real_type_eff | Int_type_eff | Bool_type_eff -> vi::vil, acc in aux vi.var_type_eff let rec (node : Eff.id_solver -> Eff.local_env -> Eff.node_exp -> Eff.node_exp) = fun is n_env n -> let inlist = n.inlist_eff in let outlist = n.outlist_eff in let acc = ([],[],[]) in let inlist, acc = List.fold_left (expand_var_info n_env is) ([],acc) inlist in let outlist, acc = List.fold_left (expand_var_info n_env is) ([],acc) outlist in let n = match n.def_eff with | ExternEff | AbstractEff None -> n | AbstractEff (Some pn) -> { n with def_eff = AbstractEff (Some (node is n_env pn)) } | BodyEff b -> let loclist = match n.loclist_eff with None -> [] | Some l -> l in let loclist, acc = List.fold_left (expand_var_info n_env is) ([],acc) loclist in let acc = List.fold_left (expand_eq n_env is) acc b.eqs_eff in let acc = List.fold_left (expand_assert n_env is) acc b.asserts_eff in let (asserts,neqs, nv) = acc in let nb = { eqs_eff = neqs ; asserts_eff = asserts } in { n with loclist_eff = Some (List.rev_append loclist nv); def_eff = BodyEff nb } in { n with inlist_eff = List.rev inlist; outlist_eff = List.rev outlist; }