(** Time-stamp: <modified the 19/03/2010 (at 14:29) by Erwan Jahier> *) open Printf open Lxm open Eff open List (* XXX changer le nom de cette fonction *) let (dump_long : Ident.long -> string) = fun x -> if !Global.ec then Ident.no_pack_string_of_long x else Ident.string_of_long x (* fun id -> *) (* let str = Ident.string_of_long id in *) (* Str.global_replace (Str.regexp "::") "__" str *) let type_alias_table = Hashtbl.create 0 (******************************************************************************) (******************************************************************************) let (get_rank : 'a -> 'a list -> int) = fun x l -> let rec aux i l = match l with | [] -> assert false | y::l -> if x = y then i else aux (i+1) l in aux 1 l let _ = assert (get_rank 5 [1;3;5] = 3) (* check it is a non-singleton tuple *) let rec (is_a_tuple : Eff.val_exp -> bool) = function | { core = CallByPosEff ({ it = TUPLE }, OperEff [ve]) } -> is_a_tuple ve | { core = CallByPosEff ({ it = TUPLE }, OperEff vel) } -> List.length vel > 1 | _ -> false (******************************************************************************) (* prefix used to prefix user type name in order to avoid name clashed with the alias type name that are generated by the compiler. *) let prefix = "_" let rec string_of_const_eff = function | Bool_const_eff true -> "true" | Bool_const_eff false -> "false" | Int_const_eff i -> sprintf "%d" i | Real_const_eff r -> r | Extern_const_eff (s,t) -> (dump_long s) | Abstract_const_eff (s,t,v,_) -> (dump_long s) ^ (* XXX ? *) (string_of_const_eff v) (* | Abstract_const_eff (s,t,v,false) -> (dump_long s) *) | Enum_const_eff (s,t) -> if !Global.expand_enums then match t with | Enum_type_eff(_,l) -> string_of_int (get_rank s l) | _ -> assert false else (dump_long s) | Struct_const_eff (fl, t) -> ( let string_of_field = function (id, veff) -> (Ident.to_string id)^" = "^ (string_of_const_eff veff) in let flst = List.map string_of_field fl in (string_of_type_eff t)^"{"^(String.concat "; " flst)^"}" ) | Array_const_eff (ctab, t) -> ( let vl = List.map string_of_const_eff ctab in "["^(String.concat ", " vl)^"]" ) and string_ident_of_const_eff c = (* that version generates a string that is a valid lic ident, in order to use it to generate a node name using static parameters *) match c with | Bool_const_eff _ | Int_const_eff _ | Real_const_eff _ | Extern_const_eff _ | Abstract_const_eff _ | Enum_const_eff _ -> string_of_const_eff c | Struct_const_eff (_, t) -> ( match t with | Struct_type_eff (sn,_) -> dump_long sn | _ -> assert false ) | Array_const_eff (ctab, t) -> string_of_type_eff t and string_of_const_eff_opt = function | None -> "" | Some val_exp_eff -> string_of_const_eff val_exp_eff and string_def_of_type_eff = function | Bool_type_eff -> "bool" | Int_type_eff -> "int" | Real_type_eff -> "real" | External_type_eff (i) -> dump_long i | Abstract_type_eff (i, t) -> string_def_of_type_eff t ^ " -- abstract in the source " | Enum_type_eff (i, sl) -> assert (sl <>[]); if !Global.expand_enums then "int" else let f sep acc s = acc ^ sep ^ (dump_long s) in (List.fold_left (f ", ") (f "" "enum {" (List.hd sl)) (List.tl sl)) ^ "}" | Array_type_eff (ty, sz) -> sprintf "%s^%d" (string_of_type_eff ty) sz | Struct_type_eff (name, fl) -> assert (fl <>[]); let f sep acc (id, (type_eff, const_eff_opt)) = acc ^ sep ^ (Ident.to_string id) ^ " : " ^ (string_of_type_eff type_eff) ^ match const_eff_opt with None -> "" | Some ce -> " = " ^ (string_of_const_eff ce) in "struct " ^ (List.fold_left (f "; ") (f "" " {" (List.hd fl)) (List.tl fl)) ^ "}" | Any -> "a" | Overload -> "o" (* exported *) and string_of_type_eff = function | Bool_type_eff -> "bool" | Int_type_eff -> "int" | Real_type_eff -> "real" | External_type_eff (name) -> prefix ^ (dump_long name) | Abstract_type_eff (name, t) -> prefix ^ (dump_long name) (* string_of_type_eff t *) | Enum_type_eff (name, _) -> prefix ^ (dump_long name) | Array_type_eff (ty, sz) -> array_alias ty sz | Struct_type_eff (name, _) -> prefix ^ (dump_long name) | Any -> string_of_type_eff (Polymorphism.get_type ()) | Overload -> string_of_type_eff (Polymorphism.get_type ()) and string_of_type_eff4msg = function | Bool_type_eff -> "bool" | Int_type_eff -> "int" | Real_type_eff -> "real" | External_type_eff (name) -> prefix ^ (dump_long name) | Abstract_type_eff (name, t) -> prefix ^ (dump_long name) (* string_of_type_eff4msg t *) | Enum_type_eff (name, _) -> prefix ^ (dump_long name) | Array_type_eff (ty, sz) -> (string_of_type_eff4msg ty) ^ "^" ^(string_of_int sz) | Struct_type_eff (name, _) -> prefix ^ (dump_long name) | Any -> "'a" | Overload -> "'o" (******************************************************************************) (** Stuff to manage generated type alias Indeed instead of printing: node toto(x: int ^ 4) ... we want to print something like : type int4 = int ^ 4; node toto(x: int4) ... That may occur only for array actually. To do that, we maintain a table of type alias that we fill each time we want to print (via string_of_type_eff) a type that is not a named type. Then, at the end, we will dump that table in the lic file. This table is filled by [array_alias]. *) and (array_alias : Eff.type_ -> int -> string) = fun t size -> let array_t = Array_type_eff(t,size) in try Hashtbl.find type_alias_table array_t with Not_found -> let alias_t = string_of_type_eff t in let res = Name.array_type array_t (alias_t ^ "_" ^(string_of_int size)) in Hashtbl.add type_alias_table array_t res; res (* exported *) and dump_type_alias oc = let p = output_string oc in if Hashtbl.length type_alias_table > 0 then p "-- automatically defined aliases:"; Hashtbl.iter (fun type_eff alias_name -> try p ("\ntype " ^ alias_name ^ " = " ^ (string_def_of_type_eff type_eff)^";") with Polymorphism.Exc -> () ) type_alias_table (******************************************************************************) (* exported *) and (type_eff_list_to_string : Eff.type_ list -> string) = fun tel -> let str_l = List.map string_of_type_eff4msg tel in String.concat "*" str_l and string_of_type_eff_list = function | [] -> "" | [x] -> string_of_type_eff x | l -> String.concat " * " (List.map string_of_type_eff l) and string_of_type_eff_list4msg = function | [] -> "" | [x] -> string_of_type_eff4msg x | l -> String.concat " * " (List.map string_of_type_eff4msg l) (* for printing recursive node *) and string_of_node_key_rec (nkey: node_key) = match nkey with | (ik, []) -> dump_long ik | (ik, salst) -> let astrings = List.map static_arg2string salst in let name = sprintf "%s_%s" (dump_long ik) (String.concat "_" astrings) in Name.node_key nkey name (* for printing iterators *) and string_of_node_key_iter lxm (nkey: node_key) = match nkey with | (ik, []) -> dump_long ik | (ik, salst) -> let astrings = List.map (static_arg2string) salst in sprintf "%s<<%s>>" (dump_long ik) (String.concat ", " astrings) (* for printing recursive node and iterators *) and static_arg2string (sa : Eff.static_arg) = match sa with | ConstStaticArgEff (id, ceff) -> sprintf "%s" (string_ident_of_const_eff ceff) | TypeStaticArgEff (id, teff) -> sprintf "%s" (string_of_type_eff teff) | NodeStaticArgEff (id, (long, _, _)) -> sprintf "%s" (dump_long long) and (string_of_var_info_eff4msg: Eff.var_info -> string) = fun x -> (Ident.to_string x.var_name_eff) ^ ":"^(string_of_type_eff4msg x.var_type_eff) and (string_of_var_info_eff: Eff.var_info -> string) = fun x -> (Ident.to_string x.var_name_eff) ^ ":"^(string_of_type_eff x.var_type_eff) and (type_string_of_var_info_eff: Eff.var_info -> string) = fun x -> (string_of_type_eff x.var_type_eff) ^ (string_of_clock2 (snd x.var_clock_eff)) and (type_string_of_var_info_eff4msg: Eff.var_info -> string) = fun x -> (string_of_type_eff4msg x.var_type_eff) ^ (string_of_clock2 (snd x.var_clock_eff)) and string_of_decl var_info_eff = let vt_str = (Ident.to_string var_info_eff.var_name_eff) ^ ":" ^ (string_of_type_eff var_info_eff.var_type_eff) in let clk_str = (string_of_clock (snd var_info_eff.var_clock_eff)) in let vt_str = if !Global.ec && (match (snd var_info_eff.var_clock_eff) with BaseEff | ClockVar _ -> false | _ -> true) then "(" ^ vt_str ^ ")" else vt_str in vt_str ^ clk_str and (string_of_type_decl_list : Eff.var_info list -> string -> string) = fun tel sep -> let str = String.concat sep (List.map string_of_decl tel) in str and string_of_slice_info_eff si_eff = "[" ^ (string_of_int si_eff.se_first) ^ " .. " ^ (string_of_int si_eff.se_last) ^ (if si_eff.se_step = 1 then "" else " step " ^ (string_of_int si_eff.se_step)) ^ "]" and (string_of_leff : Eff.left -> string) = function | LeftVarEff (vi_eff,_) -> Ident.to_string vi_eff.var_name_eff | LeftFieldEff(leff,id,_) -> (string_of_leff leff) ^ "." ^ (Ident.to_string id) | LeftArrayEff(leff,i,_) -> (string_of_leff leff) ^ "[" ^ (string_of_int i) ^ "]" | LeftSliceEff(leff,si,_) -> (string_of_leff leff) ^ (string_of_slice_info_eff si) and (string_of_leff_list : Eff.left list -> string) = fun l -> (if List.length l = 1 then "" else "(") ^ (String.concat ", " (List.map string_of_leff l)) ^ (if List.length l = 1 then "" else ")") and sov ve = string_of_val_exp_eff ve and (string_of_by_pos_op_eff: Eff.by_pos_op srcflagged -> Eff.val_exp list -> string) = fun posop vel -> let tuple vel = (String.concat ", " (List.map string_of_val_exp_eff vel)) in let tuple_par vel = "(" ^ (tuple vel) ^ ")" in let tuple_square vel = "[" ^ (String.concat ", " (List.map string_of_val_exp_eff vel)) ^ "]" in let str = match posop.it,vel with | Predef (Predef.NOT_n,_), [ve1] -> ((op2string Predef.NOT_n) ^ " " ^ (if is_a_tuple ve1 then (tuple_par [ve1]) else sov ve1)) | Predef (Predef.DIESE_n,_), [ve1] -> if !Global.lv4 then sov ve1 (* lv4 does no accept to apply # on One var only! *) else ((op2string Predef.DIESE_n) ^ (tuple_par [ve1])) | Predef (Predef.IF_n,_), [ve1; ve2; ve3] -> let ve2str = string_of_val_exp_eff ve2 in let ve2str = if is_a_tuple ve2 then "("^ve2str^")" else ve2str in let ve3str = string_of_val_exp_eff ve3 in let ve3str = if is_a_tuple ve3 then "("^ve3str^")" else ve3str in " if " ^ (string_of_val_exp_eff ve1) ^ " then " ^ ve2str ^ " else " ^ ve3str | Predef(op,sargs), vel -> if Predef.is_infix op then ( match vel with | [ve1; ve2] -> (string_of_val_exp_eff ve1) ^ " " ^ (op2string op) ^ " " ^ (string_of_val_exp_eff ve2) | _ -> assert false ) else ((op2string op) ^ (if sargs = [] then match op with | Predef.ICONST_n _ | Predef.RCONST_n _ | Predef.NOT_n | Predef.UMINUS_n | Predef.IUMINUS_n | Predef.RUMINUS_n | Predef.FALSE_n | Predef.TRUE_n -> tuple vel | _ -> tuple_par vel else "<<" ^ (String.concat ", " (List.map (static_arg2string) sargs)) ^ ">>" ^ (tuple_par vel))) | CALL nee, _ -> ( if nee.it.def_eff = ExternEff then if !Global.lv4 then (match nee.it.node_key_eff with (* predef op that are iterated are translated into node_exp ; hence, we need to do (again) a particular threatment to have a node ouput (i.e., "2>a" vs "Lustre::lt(2,a)" *) | ("Lustre","uminus"), [] -> " -" ^ sov (hd vel) | ("Lustre","iuminus"), [] -> " -" ^ sov (hd vel) | ("Lustre","ruminus"), [] -> " -" ^ sov (hd vel) | ("Lustre","not"), [] -> " not " ^ sov (hd vel) | ("Lustre","lt"), [] -> sov (hd vel) ^ " < " ^ sov (hd (tl vel)) | ("Lustre","lte"), [] -> sov (hd vel) ^ " <= " ^ sov (hd (tl vel)) | ("Lustre","gt"), [] -> sov (hd vel) ^ " > " ^ sov (hd (tl vel)) | ("Lustre","gte"), [] -> sov (hd vel) ^ " >= " ^ sov (hd (tl vel)) | ("Lustre","eq"), [] -> sov (hd vel) ^ " = " ^ sov (hd (tl vel)) | ("Lustre","neq"), [] -> sov (hd vel) ^ " <> " ^ sov (hd (tl vel)) | ("Lustre","diff"), [] -> sov (hd vel) ^ " <> " ^ sov (hd (tl vel)) | ("Lustre","plus"), [] -> sov (hd vel) ^ " + " ^ sov (hd (tl vel)) | ("Lustre","iplus"), [] -> sov (hd vel) ^ " + " ^ sov (hd (tl vel)) | ("Lustre","rplus"), [] -> sov (hd vel) ^ " + " ^ sov (hd (tl vel)) | ("Lustre","minus"), [] -> sov (hd vel) ^ " - " ^ sov (hd (tl vel)) | ("Lustre","iminus"), [] -> sov (hd vel) ^ " - " ^ sov (hd (tl vel)) | ("Lustre","rminus"), [] -> sov (hd vel) ^ " - " ^ sov (hd (tl vel)) | ("Lustre","div"), [] -> sov (hd vel) ^ " / " ^ sov (hd (tl vel)) | ("Lustre","idiv"), [] -> sov (hd vel) ^ " / " ^ sov (hd (tl vel)) | ("Lustre","rdiv"), [] -> sov (hd vel) ^ " / " ^ sov (hd (tl vel)) | ("Lustre","times"), [] -> sov (hd vel) ^ " * " ^ sov (hd (tl vel)) | ("Lustre","rtimes"), [] -> sov (hd vel) ^ " * " ^ sov (hd (tl vel)) | ("Lustre","itimes"), [] -> sov (hd vel) ^ " * " ^ sov (hd (tl vel)) | ("Lustre","slash"), [] -> sov (hd vel) ^ " / " ^ sov (hd (tl vel)) | ("Lustre","rslash"), [] -> sov (hd vel) ^ " / " ^ sov (hd (tl vel)) | ("Lustre","islash"), [] -> sov (hd vel) ^ " / " ^ sov (hd (tl vel)) | ("Lustre","impl"), [] -> sov (hd vel) ^ " => " ^ sov (hd (tl vel)) | ("Lustre","mod"), [] -> sov (hd vel) ^ " mod " ^ sov (hd (tl vel)) | ("Lustre","and"), [] -> sov (hd vel) ^ " and " ^ sov (hd (tl vel)) | ("Lustre","or"), [] -> sov (hd vel) ^ " or " ^ sov (hd (tl vel)) | ("Lustre","xor"), [] -> sov (hd vel) ^ " xor " ^ sov (hd (tl vel)) | ("Lustre","if"), [] -> " if " ^ sov (hd vel) ^ " then " ^ sov (hd (tl vel)) ^ " else " ^ sov (hd (tl (tl vel))) | _ -> ((string_of_node_key_iter nee.src nee.it.node_key_eff) ^ (tuple_par vel)) ) else ((string_of_node_key_iter nee.src nee.it.node_key_eff) ^ (tuple_par vel)) else (* recursive node cannot be extern *) ((string_of_node_key_rec nee.it.node_key_eff) ^ (tuple_par vel)) ) | IDENT idref, _ -> Ident.string_of_idref idref | PRE, _ -> "pre " ^ (tuple_par vel) | ARROW, [ve1; ve2] -> (if is_a_tuple ve1 then tuple_par [ve1] else string_of_val_exp_eff ve1) ^ " -> " ^ (if is_a_tuple ve1 then tuple_par [ve2] else string_of_val_exp_eff ve2) | FBY, [ve1; ve2] -> if !Global.lv4 then (if is_a_tuple ve1 then tuple_par [ve1] else string_of_val_exp_eff ve1) ^ " -> pre " ^ (if is_a_tuple ve1 then tuple_par [ve2] else string_of_val_exp_eff ve2) else (if is_a_tuple ve1 then tuple_par [ve1] else string_of_val_exp_eff ve1) ^ " fby " ^ (if is_a_tuple ve1 then tuple_par [ve2] else string_of_val_exp_eff ve2) | WHEN clk, vel -> (tuple vel) ^ (string_of_clock_exp clk) | CURRENT,_ -> "current " ^ tuple_par vel | TUPLE,_ -> (tuple vel) | WITH(ve),_ -> (string_of_val_exp_eff ve) | CONCAT, [ve1; ve2] -> (string_of_val_exp_eff ve1) ^ " | " ^ (string_of_val_exp_eff ve2) | HAT (i, ve), _ -> (string_of_val_exp_eff ve) ^ "^" ^ (string_of_int i) | ARRAY vel, _ -> tuple_square vel | STRUCT_ACCESS(id), [ve1] -> (string_of_val_exp_eff ve1) ^ "." ^ (Ident.to_string id) | ARRAY_ACCES(i), [ve1] -> (string_of_val_exp_eff ve1) ^ "[" ^ (string_of_int i) ^ "]" | ARRAY_SLICE(si_eff), [ve1] -> (string_of_val_exp_eff ve1) ^ (string_of_slice_info_eff si_eff) | ARRAY_SLICE(_), _ -> assert false (* todo *) | MERGE _, _ -> assert false (* todo *) (* | ITERATOR _, _ -> assert false (* todo *) *) (* Cannot happen *) | ARROW, _ -> assert false | FBY, _ -> assert false | CONCAT, _ -> assert false | STRUCT_ACCESS(_), _ -> assert false | ARRAY_ACCES(i), _ -> assert false in let do_not_parenthesize = function | IDENT _,_ | Predef((Predef.ICONST_n _), _),_ | Predef((Predef.RCONST_n _), _),_ | Predef((Predef.FALSE_n), _),_ | Predef((Predef.TRUE_n), _),_ | ARRAY_ACCES _,_ | STRUCT_ACCESS _,_ -> true | _,_ -> false in if (* already parenthesized *) ( Str.string_match (Str.regexp "^(") str 0 && Str.string_match (Str.regexp ")$") str 0 ) || (* ident or predef constants *) (do_not_parenthesize (posop.it,vel)) || !Global.one_op_per_equation then str else ("(" ^ str ^ ")") and string_of_val_exp_eff ve = string_of_val_exp_eff_core ve.core and string_of_val_exp_eff_core ve_core = match ve_core with | CallByPosEff (by_pos_op_eff, OperEff vel) -> (string_of_by_pos_op_eff by_pos_op_eff vel) | CallByNameEff(by_name_op_eff, fl) -> (match by_name_op_eff.it with | STRUCT (pn,idref) -> prefix ^ ( match Ident.pack_of_idref idref with | Some pn -> Ident.string_of_idref idref | None -> let idref = Ident.make_idref pn (Ident.of_idref idref) in Ident.string_of_idref idref ) | STRUCT_anonymous -> "") ^ "{" ^ (String.concat ";" (List.map (fun (id,veff) -> let str = string_of_val_exp_eff veff in (Ident.to_string id.it) ^ "=" ^ (if is_a_tuple veff then ("("^ str^")") else str) ) fl)) ^ "}" and wrap_long_line str = if String.length str < 75 then str else let str_list = Str.split (Str.regexp " ") str in let new_str, reste = List.fold_left (fun (accl, acc_str) str -> let new_acc_str = acc_str ^ " " ^ str in if String.length new_acc_str > 75 then (accl ^ acc_str ^ "\n\t" , str) else (accl, new_acc_str) ) ("","") str_list in new_str ^ " " ^ reste and string_of_eq_info_eff (leff_list, vee) = let str = string_of_val_exp_eff vee in wrap_long_line ( (string_of_leff_list leff_list) ^ " = " ^ (if is_a_tuple vee then ("("^ str^")") else str) ^ ";") and (string_of_assert : Eff.val_exp srcflagged -> string ) = fun eq_eff -> wrap_long_line ( "assert(" ^ string_of_val_exp_eff eq_eff.it ^ ");") and (string_of_eq : Eff.eq_info srcflagged -> string) = fun eq_eff -> string_of_eq_info_eff eq_eff.it and wrap_long_profile str = if String.length str < 75 then str else "\n"^( Str.global_replace (Str.regexp "returns") "\nreturns" (Str.global_replace (Str.regexp "(") "(\n\t" (Str.global_replace (Str.regexp "; ") ";\n\t" str))) and (profile_of_node_exp_eff: Eff.node_exp -> string) = fun neff -> ("(" ^ (string_of_type_decl_list neff.inlist_eff "; ") ^ ") returns (" ^ (string_of_type_decl_list neff.outlist_eff "; ") ^ ");\n") and (string_of_node_def : Eff.node_def -> string list) = function | ExternEff | AbstractEff _ -> [] | BodyEff node_body_eff -> List.append (List.map string_of_assert node_body_eff.asserts_eff) (List.map string_of_eq node_body_eff.eqs_eff) (* exported *) and (type_decl: Ident.long -> Eff.type_ -> string) = fun tname teff -> "type " ^ prefix ^ (dump_long tname) ^ (match teff with | External_type_eff (_) | Abstract_type_eff(_,External_type_eff (_)) -> ";\n" | _ -> " = " ^ (string_def_of_type_eff teff) ^ ";\n" ) (* exported *) and (const_decl: Ident.long -> Eff.const -> string) = fun tname ceff -> let begin_str = ("const " ^ (dump_long tname)) in let end_str = (string_of_const_eff ceff) ^ ";\n" in (match ceff with | Enum_const_eff _ -> if !Global.expand_enums then (begin_str ^ " = " ^ end_str) else (* do not print those const, because there were introduced by the compiler *) "" | Extern_const_eff _ | Abstract_const_eff _ -> begin_str ^ ":" ^ (string_of_type_eff (Eff.type_of_const ceff)) ^ (* (if !Global.ec then ".\n" else *) (";\n") | Struct_const_eff _ | Array_const_eff _ | Bool_const_eff _ | Int_const_eff _ | Real_const_eff _ -> begin_str ^ " = " ^ end_str ) (* exported *) and (node_of_node_exp_eff: Eff.node_exp -> string) = fun neff -> wrap_long_profile ( (if neff.def_eff = ExternEff && not (!Global.lv4) (* no extern kwd in v4... *) then "extern " else "") ^ (if !Global.lv4 then (* node and function does not have the same meaning in v4... *) (if neff.def_eff = ExternEff then "function " else "node ") else (if neff.has_mem_eff then "node " else "function ") ) ^ (string_of_node_key_rec neff.node_key_eff) ^ (profile_of_node_exp_eff neff)) ^ (match neff.def_eff with | ExternEff -> "" | AbstractEff _ -> "" | BodyEff _ -> ((match neff.loclist_eff with None -> "" | Some [] -> "" | Some l -> "var\n " ^ (string_of_type_decl_list l ";\n ") ^ ";\n") ^ "let\n " ^ (String.concat "\n " (string_of_node_def neff.def_eff)) ^ "\ntel\n-- end of node " ^ (string_of_node_key_rec neff.node_key_eff) ^ "\n" ) ) and (string_of_clock_exp : SyntaxTreeCore.clock_exp -> string) = function | SyntaxTreeCore.Base -> "" | SyntaxTreeCore.NamedClock clk -> " when " ^ (string_of_ident_clk clk.it) and (string_of_ident_clk : Ident.clk -> string) = fun clk -> let (cc,v) = clk in let clk_exp_str = match Ident.string_of_idref cc with | "True" -> (Ident.to_string v) | "False" -> "not " ^ (Ident.to_string v) | _ -> if !Global.lv4 then raise (Errors.Global_error ("*** Cannot generate V4 style Lustre for programs with enumerated "^ "clocks (yet), sorry.")) else Ident.string_of_clk clk in clk_exp_str (* exported *) and string_of_clock2 (ck : Eff.clock) = match ck with | BaseEff -> " on base" | On(clk_exp,ceff) -> let clk_exp_str = string_of_ident_clk clk_exp in " on " ^ clk_exp_str ^ (string_of_clock2 ceff) | ClockVar i -> "'a" ^ string_of_int i and string_of_clock (ck : Eff.clock) = match ck with | BaseEff -> "" | On(clk_exp,_) -> let clk_exp_str = string_of_ident_clk clk_exp in " when " ^ clk_exp_str | ClockVar _ -> "" (* it migth occur that (unused) constant remain with a clock var. But in that case, it is ok to consider then as on the base clock. *) (* | ClockVar i -> "_clock_var_" ^ (string_of_int i) *) and op2string op = (* Une verrue pour compatible avec les outils qui mangent du ec... *) if !Global.ec && op = Predef.INT2REAL_n then "real" else Predef.op2string op (*--------------------------------------------------------------------- Formatage standard des erreurs de compil ----------------------------------------------------------------------*) let node_error_string lxm nkey = ( Printf.sprintf "While checking %s" (string_of_node_key_iter lxm nkey) ) (*--------------------------------------------------------------------- Message d'erreur (associ� � un lexeme) sur stderr ----------------------------------------------------------------------*) let print_compile_node_error nkey lxm msg = ( Printf.eprintf "%s\n" (node_error_string lxm nkey); Errors.print_compile_error lxm msg ; flush stderr ) let print_global_node_error lxm nkey msg = ( Printf.eprintf "%s\n" (node_error_string lxm nkey); Errors.print_global_error msg ; flush stderr ) (* debug *) let dump_local_env e = ( let pt i t = Printf.printf "type %s = %s\n" i (string_of_type_eff t) in Hashtbl.iter pt e.lenv_types; let pc i t = Printf.printf "const %s = %s\n" i (string_of_const_eff t) in Hashtbl.iter pc e.lenv_const; )