... | ... | @@ -34,7 +34,7 @@ The **installation** consists of **3 steps**: |
|
|
|
|
|
The simplest and most conventional way is with **git** (200 MB):
|
|
|
|
|
|
```plaintext
|
|
|
```shell
|
|
|
git clone https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle.git
|
|
|
```
|
|
|
|
... | ... | @@ -48,7 +48,7 @@ However, a **classic retrieval** (zip, tar, ?...) is possible via the download b |
|
|
The datasets used in the examples are **[available here ](https://fidle.cnrs.fr/fidle-datasets.tar)**.\
|
|
|
On Linux, you can retrieve and decompress them using the following commands:
|
|
|
|
|
|
```plaintext
|
|
|
```shell
|
|
|
wget https://fidle.cnrs.fr/fidle-datasets.tar
|
|
|
tar -xf fidle-datasets.tar
|
|
|
```
|
... | ... | @@ -75,7 +75,8 @@ A complete description of the different datasets is available in Notebooks. |
|
|
Fidle notebooks require a specific, but classical Python environment,\
|
|
|
which will be managed with Conda.
|
|
|
|
|
|
If the **conda** command is **not found**, the easiest way is to install **[Miniconda ](https://docs.conda.io/en/latest/miniconda.html)** (or [Anaconda](https://docs.anaconda.com/anaconda/install/)) - Choose a python version >=3.8 !
|
|
|
If the **conda** command is **not found**, the easiest way is to install **[Miniconda ](https://docs.conda.io/en/latest/miniconda.html)** (or [Anaconda](https://docs.anaconda.com/anaconda/install/))\
|
|
|
Note : Choose a python version >=3.8
|
|
|
|
|
|
### I just have a CPU :
|
|
|
|
... | ... | |