|
|
|
[<img width="800px" src="https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/raw/master/fidle/img/00-Fidle-header-01.svg"></img>](#)
|
|
|
|
|
|
|
|
**MAY BE OBSOLETE**
|
|
|
|
|
|
|
|
## Running Jupyter Lab
|
|
|
|
|
|
|
|
Here is a quick procedure **configure** and **run** Jupyter Lab with **fidle notebooks**.
|
|
|
|
|
|
|
|
## Start Jupyter at **GRICAD**
|
|
|
|
|
|
|
|
Almost as simple :
|
|
|
|
|
|
|
|
1. **SSH to the front-end dahu server :**
|
|
|
|
`# ssh f-dahu.ciment`
|
|
|
|
The configuration of ssh is described in the [wiki](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/howto-ssh)
|
|
|
|
|
|
|
|
1. **Add Gricad and fidle settings in your environment**
|
|
|
|
On f-dahu or luke :
|
|
|
|
`echo 'source /applis/site/env.bash' >> ~/.bashrc`
|
|
|
|
`echo 'export PATH=$PATH:/bettik/PROJECTS/pr-fidle/bin' >> ~/.bashrc`
|
|
|
|
|
|
|
|
1. **Get a node :**
|
|
|
|
|
|
|
|
- During the **Fidle Session** of March 9 and 10 :
|
|
|
|
**march 10, on f-dahu** : `oarsub -I -t inner=5878875 -t gpu --project=formation-deeplearning -l /core=8/gpudevice=1,walltime=08:00:00`
|
|
|
|
**marh 10, on Luke** : `oarsub -I -t inner=29109211 --project=formation-deeplearning -l {"hasgpu='YES'"}/core=6,walltime=08:00:00`
|
|
|
|
|
|
|
|
|
|
|
|
- Under normal circumstances :
|
|
|
|
for a gpu node : `# oarsub -I -t gpu -l /nodes=1/gpudevice=1,walltime=1:0:0 --project formation-deeplearning`
|
|
|
|
for a cpu node : `# oarsub -I -l /nodes=1/cpu=1,walltime=1:0:0 --project formation-deeplearning`
|
|
|
|
|
|
|
|
1. **Start Jupyter :**
|
|
|
|
`# jupyter_start`
|
|
|
|
- Choose *fidle* environment from list
|
|
|
|
- And open this link in a browser : http://localhost:8889
|
|
|
|
|
|
|
|
|
|
|
|
----
|
|
|
|
[<img width="80px" src="https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/raw/master/fidle/img/00-Fidle-logo-01.svg"></img>](#) |
|
|
\ No newline at end of file |