Skip to content
Snippets Groups Projects
user avatar
Jean-Luc Parouty authored
1cff5b5f
History

About Fidle

This repository contains all the documents and links of the Fidle Training .
Fidle (for Formation Introduction au Deep Learning) is a 3-day training session co-organized
by the 3IA MIAI institute, the CNRS, via the Mission for Transversal and Interdisciplinary
Initiatives (MITI) and the University of Grenoble Alpes (UGA).

The objectives of this training are :

  • Understanding the bases of Deep Learning neural networks
  • Develop a first experience through simple and representative examples
  • Understanding Tensorflow/Keras and Jupyter lab technologies
  • Apprehend the academic computing environments Tier-2 or Tier-1 with powerfull GPU

For more information, see https://fidle.cnrs.fr :

For more information, you can contact us at :

Current Version : 3.0.15

Course materials

Courses Notebooks Datasets Videos

Course slides

The course in pdf format

Notebooks

    Get a Zip or clone this repository     

Datasets

All the needed datasets

Videos

    Our Youtube channel     

Have a look about How to get and install these notebooks and datasets.

Jupyter notebooks

Linear and logistic regression

Perceptron Model 1957

BHPD regression (DNN), using Keras3/PyTorch

BHPD regression (DNN), using PyTorch

Wine Quality prediction (DNN), using Keras3/PyTorch

Wine Quality prediction (DNN), using PyTorch/Lightning

MNIST classification (DNN,CNN), using Keras3/PyTorch

MNIST classification (DNN,CNN), using PyTorch

MNIST classification (DNN,CNN), using PyTorch/Lightning

Images classification GTSRB with Convolutional Neural Networks (CNN), using Keras3/PyTorch

Sentiment analysis with word embedding, using Keras3/PyTorch

Time series with Recurrent Neural Network (RNN), using Keras3/PyTorch

Graph Neural Networks

Unsupervised learning with an autoencoder neural network (AE), using Keras3

Generative network with Variational Autoencoder (VAE), using Keras3

Generative Adversarial Networks (GANs), using Lightning

Diffusion Model (DDPM) using PyTorch

Training optimization, using PyTorch

Deep Reinforcement Learning (DRL), using PyTorch

Miscellaneous things, but very important!

Installation

Have a look about How to get and install these notebooks and datasets.

Licence


[en] Attribution - NonCommercial - ShareAlike 4.0 International (CC BY-NC-SA 4.0)
[Fr] Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International
See License.
See Disclaimer.