{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "jupyter": { "source_hidden": true } }, "outputs": [ { "data": { "text/markdown": [ "[<img width=\"600px\" src=\"fidle/img/00-Fidle-titre-01.svg\"></img>](#)\n", "\n", "<!-- --------------------------------------------------- -->\n", "<!-- To correctly view this README under Jupyter Lab -->\n", "<!-- Open the notebook: README.ipynb! -->\n", "<!-- --------------------------------------------------- -->\n", "\n", "## A propos\n", "\n", "This repository contains all the documents and links of the **Fidle Training**. \n", "\n", "The objectives of this training, co-organized by the Formation Permanente CNRS and the SARI and DEVLOG networks, are :\n", " - Understanding the **bases of Deep Learning** neural networks\n", " - Develop a **first experience** through simple and representative examples\n", " - Understanding **Tensorflow/Keras** and **Jupyter lab** technologies\n", " - Apprehend the **academic computing environments** Tier-2 or Tier-1 with powerfull GPU\n", "\n", "Current Version : 0.4\n", "\n", "## Course materials\n", "**[<img width=\"50px\" src=\"fidle/img/00-Fidle-pdf.svg\"></img>\n", "Get the course slides](https://cloud.univ-grenoble-alpes.fr/index.php/s/f5T59gk3bxm4Dt9)** \n", "\n", "\n", "\n", "<!--  -->\n", "Useful information is also available in the [wiki](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home)\n", "\n", "\n", "## Jupyter notebooks\n", "\n", "[](https://mybinder.org/v2/git/https%3A%2F%2Fgricad-gitlab.univ-grenoble-alpes.fr%2Ftalks%2Fdeeplearning.git/master?urlpath=lab/tree/index.ipynb)\n", "\n", "\n", "<!-- DO NOT REMOVE THIS TAG !!! -->\n", "<!-- INDEX -->\n", "<!-- INDEX_BEGIN -->\n", "[[LINR1] - Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb) \n", " Direct determination of linear regression \n", "[[GRAD1] - Linear regression with gradient descent](LinearReg/02-Gradient-descent.ipynb) \n", " An example of gradient descent in the simple case of a linear regression. \n", "[[POLR1] - Complexity Syndrome](LinearReg/03-Polynomial-Regression.ipynb) \n", " Illustration of the problem of complexity with the polynomial regression \n", "[[LOGR1] - Logistic regression, in pure Tensorflow](LinearReg/04-Logistic-Regression.ipynb) \n", " Logistic Regression with Mini-Batch Gradient Descent using pure TensorFlow. \n", "[[PER57] - Perceptron Model 1957](IRIS/01-Simple-Perceptron.ipynb) \n", " A simple perceptron, with the IRIS dataset. \n", "[[BHP1] - Regression with a Dense Network (DNN)](BHPD/01-DNN-Regression.ipynb) \n", " A Simple regression with a Dense Neural Network (DNN) - BHPD dataset \n", "[[BHP2] - Regression with a Dense Network (DNN) - Advanced code](BHPD/02-DNN-Regression-Premium.ipynb) \n", " More advanced example of DNN network code - BHPD dataset \n", "[[MNIST1] - Simple classification with DNN](MNIST/01-DNN-MNIST.ipynb) \n", " Example of classification with a fully connected neural network \n", "[[GTS1] - CNN with GTSRB dataset - Data analysis and preparation](GTSRB/01-Preparation-of-data.ipynb) \n", " Episode 1 : Data analysis and creation of a usable dataset \n", "[[GTS2] - CNN with GTSRB dataset - First convolutions](GTSRB/02-First-convolutions.ipynb) \n", " Episode 2 : First convolutions and first results \n", "[[GTS3] - CNN with GTSRB dataset - Monitoring ](GTSRB/03-Tracking-and-visualizing.ipynb) \n", " Episode 3 : Monitoring and analysing training, managing checkpoints \n", "[[GTS4] - CNN with GTSRB dataset - Data augmentation ](GTSRB/04-Data-augmentation.ipynb) \n", " Episode 4 : Improving the results with data augmentation \n", "[[GTS5] - CNN with GTSRB dataset - Full convolutions ](GTSRB/05-Full-convolutions.ipynb) \n", " Episode 5 : A lot of models, a lot of datasets and a lot of results. \n", "[[GTS6] - CNN with GTSRB dataset - Full convolutions as a batch](GTSRB/06-Full-convolutions-batch.ipynb) \n", " Episode 6 : Run Full convolution notebook as a batch \n", "[[GTS7] - Full convolutions Report](GTSRB/07-Full-convolutions-reports.ipynb) \n", " Episode 7 : Displaying the reports of the different jobs \n", "[[TSB1] - Tensorboard with/from Jupyter ](GTSRB/99-Scripts-Tensorboard.ipynb) \n", " 4 ways to use Tensorboard from the Jupyter environment \n", "[[IMDB1] - Text embedding with IMDB](IMDB/01-Embedding-Keras.ipynb) \n", " A very classical example of word embedding for text classification (sentiment analysis) \n", "[[IMDB2] - Text embedding with IMDB - Reloaded](IMDB/02-Prediction.ipynb) \n", " Example of reusing a previously saved model \n", "[[IMDB3] - Text embedding/LSTM model with IMDB](IMDB/03-LSTM-Keras.ipynb) \n", " Still the same problem, but with a network combining embedding and LSTM \n", "[[SYNOP1] - Time series with RNN - Preparation of data](SYNOP/01-Preparation-of-data.ipynb) \n", " Episode 1 : Data analysis and creation of a usable dataset \n", "[[SYNOP2] - Time series with RNN - Try a prediction](SYNOP/02-First-predictions.ipynb) \n", " Episode 2 : Training session and first predictions \n", "[[SYNOP3] - Time series with RNN - 12h predictions](SYNOP/03-12h-predictions.ipynb) \n", " Episode 3: Attempt to predict in the longer term \n", "[[VAE1] - Variational AutoEncoder (VAE) with MNIST](VAE/01-VAE-with-MNIST.ipynb) \n", " Episode 1 : Model construction and Training \n", "[[VAE2] - Variational AutoEncoder (VAE) with MNIST - Analysis](VAE/02-VAE-with-MNIST-post.ipynb) \n", " Episode 2 : Exploring our latent space \n", "[[VAE3] - About the CelebA dataset](VAE/03-About-CelebA.ipynb) \n", " Episode 3 : About the CelebA dataset, a more fun dataset ! \n", "[[VAE4] - Preparation of the CelebA dataset](VAE/04-Prepare-CelebA-batch.ipynb) \n", " Episode 4 : Preparation of a clustered dataset, batchable \n", "[[VAE5] - Checking the clustered CelebA dataset](VAE/05-Check-CelebA.ipynb) \n", " Episode 5 :\\tChecking the clustered dataset \n", "[[VAE6] - Variational AutoEncoder (VAE) with CelebA (small)](VAE/06-VAE-with-CelebA-s.ipynb) \n", " Episode 6 : Variational AutoEncoder (VAE) with CelebA (small res.) \n", "[[VAE7] - Variational AutoEncoder (VAE) with CelebA (medium)](VAE/07-VAE-with-CelebA-m.ipynb) \n", " Episode 7 : Variational AutoEncoder (VAE) with CelebA (medium res.) \n", "[[VAE8] - Variational AutoEncoder (VAE) with CelebA - Analysis](VAE/08-VAE-withCelebA-post.ipynb) \n", " Episode 8 : Exploring latent space of our trained models \n", "[[BASH1] - OAR batch script](VAE/batch-oar.sh) \n", " Bash script for OAR batch submission of a notebook \n", "[[BASH2] - SLURM batch script](VAE/batch-slurm.sh) \n", " Bash script for SLURM batch submission of a notebook \n", "[[ACTF1] - Activation functions](Misc/Activation-Functions.ipynb) \n", " Some activation functions, with their derivatives. \n", "[[NP1] - A short introduction to Numpy](Misc/Numpy.ipynb) \n", " Numpy is an essential tool for the Scientific Python. \n", "<!-- INDEX_END -->\n", "\n", "\n", "## Installation\n", "\n", "A procedure for **configuring** and **starting Jupyter** is available in the **[Wiki](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/howto-jupyter)**.\n", "\n", "## Licence\n", "\n", "[<img width=\"100px\" src=\"fidle/img/00-fidle-CC BY-NC-SA.svg\"></img>](https://creativecommons.org/licenses/by-nc-sa/4.0/) \n", "\\[en\\] Attribution - NonCommercial - ShareAlike 4.0 International (CC BY-NC-SA 4.0) \n", "\\[Fr\\] Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International \n", "See [License](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). \n", "See [Disclaimer](https://creativecommons.org/licenses/by-nc-sa/4.0/#). \n", "\n", "\n", "----\n", "[<img width=\"80px\" src=\"fidle/img/00-Fidle-logo-01.svg\"></img>](#)\n" ], "text/plain": [ "<IPython.core.display.Markdown object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from IPython.display import display,Markdown\n", "display(Markdown(open('README.md', 'r').read()))\n", "#\n", "# This README is visible under Jupiter LAb ! :-)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }