{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", "# <!-- TITLE --> [GTS3] - CNN with GTSRB dataset - Monitoring \n", "<!-- DESC --> Episode 3: Monitoring and analysing training, managing checkpoints\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", "## Objectives :\n", " - **Understand** what happens during the **training** process\n", " - Implement **monitoring**, **backup** and **recovery** solutions\n", " \n", "The German Traffic Sign Recognition Benchmark (GTSRB) is a dataset with more than 50,000 photos of road signs from about 40 classes. \n", "The final aim is to recognise them ! \n", "Description is available there : http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset\n", "\n", "\n", "## What we're going to do :\n", "\n", " - Monitoring and understanding our model training \n", " - Add recovery points\n", " - Analyze the results \n", " - Restore and run recovery points\n", "\n", "## Step 1 - Import and init" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import tensorflow as tf\n", "from tensorflow import keras\n", "from tensorflow.keras.callbacks import TensorBoard\n", "\n", "import numpy as np\n", "import h5py\n", "\n", "from sklearn.metrics import confusion_matrix\n", "\n", "import matplotlib.pyplot as plt\n", "import seaborn as sn\n", "import os, sys, time, random\n", "\n", "from importlib import reload\n", "\n", "sys.path.append('..')\n", "import fidle.pwk as ooo\n", "\n", "ooo.init()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 2 - Load dataset\n", "Dataset is one of the saved dataset: RGB25, RGB35, L25, L35, etc. \n", "First of all, we're going to use a smart dataset : **set-24x24-L** \n", "(with a GPU, it only takes 35'' compared to more than 5' with a CPU !)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%time\n", "\n", "def read_dataset(name):\n", " '''Reads h5 dataset from ./data\n", "\n", " Arguments: dataset name, without .h5\n", " Returns: x_train,y_train,x_test,y_test data'''\n", " # ---- Read dataset\n", " filename='./data/'+name+'.h5'\n", " with h5py.File(filename) as f:\n", " x_train = f['x_train'][:]\n", " y_train = f['y_train'][:]\n", " x_test = f['x_test'][:]\n", " y_test = f['y_test'][:]\n", " x_meta = f['x_meta'][:]\n", " y_meta = f['y_meta'][:]\n", "\n", " # ---- done\n", " print('Dataset \"{}\" is loaded. ({:.1f} Mo)\\n'.format(name,os.path.getsize(filename)/(1024*1024)))\n", " return x_train,y_train,x_test,y_test,x_meta,y_meta\n", "\n", "x_train,y_train,x_test,y_test,x_meta,y_meta = read_dataset('set-24x24-L')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 3 - Have a look to the dataset\n", "Note: Data must be reshape for matplotlib" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"x_train : \", x_train.shape)\n", "print(\"y_train : \", y_train.shape)\n", "print(\"x_test : \", x_test.shape)\n", "print(\"y_test : \", y_test.shape)\n", "\n", "ooo.plot_images(x_train, y_train, range(12), columns=6, x_size=2, y_size=2)\n", "ooo.plot_images(x_train, y_train, range(36), columns=12, x_size=1, y_size=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 4 - Create model\n", "We will now build a model and train it...\n", "\n", "Some models... " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# A basic model\n", "#\n", "def get_model_v1(lx,ly,lz):\n", " \n", " model = keras.models.Sequential()\n", " \n", " model.add( keras.layers.Conv2D(96, (3,3), activation='relu', input_shape=(lx,ly,lz)))\n", " model.add( keras.layers.MaxPooling2D((2, 2)))\n", " model.add( keras.layers.Dropout(0.2))\n", "\n", " model.add( keras.layers.Conv2D(192, (3, 3), activation='relu'))\n", " model.add( keras.layers.MaxPooling2D((2, 2)))\n", " model.add( keras.layers.Dropout(0.2))\n", "\n", " model.add( keras.layers.Flatten()) \n", " model.add( keras.layers.Dense(1500, activation='relu'))\n", " model.add( keras.layers.Dropout(0.5))\n", "\n", " model.add( keras.layers.Dense(43, activation='softmax'))\n", " return model\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 5 - Prepare callbacks \n", "We will add 2 callbacks : \n", " - **TensorBoard** \n", "Training logs, which can be visualised with Tensorboard. \n", "`#tensorboard --logdir ./run/logs` \n", "IMPORTANT : Relancer tensorboard à chaque run\n", " - **Model backup** \n", " It is possible to save the model each xx epoch or at each improvement. \n", " The model can be saved completely or partially (weight). \n", " For full format, we can use HDF5 format." ] }, { "cell_type": "raw", "metadata": {}, "source": [ "%%bash\n", "# To clean old logs and saved model, run this cell\n", "#\n", "/bin/rm -r ./run/logs 2>/dev/null\n", "/bin/rm -r ./run/models 2>/dev/null\n", "/bin/mkdir -p -m 755 ./run/logs\n", "/bin/mkdir -p -m 755 ./run/models\n", "echo -e \"Reset directories : ./run/logs and ./run/models .\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ooo.mkdir('./run/models')\n", "ooo.mkdir('./run/logs')\n", "\n", "# ---- Callback tensorboard\n", "log_dir = \"./run/logs/tb_\" + ooo.tag_now()\n", "tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)\n", "\n", "# ---- Callback ModelCheckpoint - Save best model\n", "save_dir = \"./run/models/best-model.h5\"\n", "bestmodel_callback = tf.keras.callbacks.ModelCheckpoint(filepath=save_dir, verbose=0, monitor='accuracy', save_best_only=True)\n", "\n", "# ---- Callback ModelCheckpoint - Save model each epochs\n", "save_dir = \"./run/models/model-{epoch:04d}.h5\"\n", "savemodel_callback = tf.keras.callbacks.ModelCheckpoint(filepath=save_dir, verbose=0, save_freq=2000*5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 6 - Train the model\n", "**Get the shape of my data :**" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "(n,lx,ly,lz) = x_train.shape\n", "print(\"Images of the dataset have this folowing shape : \",(lx,ly,lz))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Get and compile a model, with the data shape :**" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model = get_model_v1(lx,ly,lz)\n", "\n", "# model.summary()\n", "\n", "model.compile(optimizer='adam',\n", " loss='sparse_categorical_crossentropy',\n", " metrics=['accuracy'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Train it :** \n", "Note: The training curve is visible in real time with Tensorboard : \n", "`#tensorboard --logdir ./run/logs` " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%time\n", "\n", "batch_size = 64\n", "epochs = 30\n", "\n", "# ---- Shuffle train data\n", "x_train,y_train=ooo.shuffle_np_dataset(x_train,y_train)\n", "\n", "# ---- Train\n", "# Note: To be faster in our example, we can take only 2000 values\n", "#\n", "history = model.fit( x_train, y_train,\n", " batch_size=batch_size,\n", " epochs=epochs,\n", " verbose=1,\n", " validation_data=(x_test, y_test),\n", " callbacks=[tensorboard_callback, bestmodel_callback, savemodel_callback] )\n", "\n", "model.save('./run/models/last-model.h5')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Evaluate it :**" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "max_val_accuracy = max(history.history[\"val_accuracy\"])\n", "print(\"Max validation accuracy is : {:.4f}\".format(max_val_accuracy))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "score = model.evaluate(x_test, y_test, verbose=0)\n", "\n", "print('Test loss : {:5.4f}'.format(score[0]))\n", "print('Test accuracy : {:5.4f}'.format(score[1]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 7 - History\n", "The return of model.fit() returns us the learning history" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ooo.plot_history(history)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 8 - Evaluation and confusion" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "y_pred = model.predict_classes(x_test)\n", "conf_mat = confusion_matrix(y_test,y_pred, normalize=\"true\", labels=range(43))\n", "\n", "ooo.plot_confusion_matrix(conf_mat)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 9 - Restore and evaluate\n", "### 9.1 - List saved models :" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!find ./run/models/" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 9.2 - Restore a model :" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "loaded_model = tf.keras.models.load_model('./run/models/best-model.h5')\n", "# loaded_model.summary()\n", "print(\"Loaded.\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 9.3 - Evaluate it :" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "score = loaded_model.evaluate(x_test, y_test, verbose=0)\n", "\n", "print('Test loss : {:5.4f}'.format(score[0]))\n", "print('Test accuracy : {:5.4f}'.format(score[1]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 9.4 - Make a prediction :" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# ---- Get a random image\n", "#\n", "i = random.randint(1,len(x_test))\n", "x,y = x_test[i], y_test[i]\n", "\n", "# ---- Do prediction\n", "#\n", "predictions = loaded_model.predict( np.array([x]) )\n", "\n", "# ---- A prediction is just the output layer\n", "#\n", "print(\"\\nOutput layer from model is (x100) :\\n\")\n", "with np.printoptions(precision=2, suppress=True, linewidth=95):\n", " print(predictions*100)\n", "\n", "# ---- Graphic visualisation\n", "#\n", "print(\"\\nGraphically :\\n\")\n", "plt.figure(figsize=(12,2))\n", "plt.bar(range(43), predictions[0], align='center', alpha=0.5)\n", "plt.ylabel('Probability')\n", "plt.ylim((0,1))\n", "plt.xlabel('Class')\n", "plt.title('Trafic Sign prediction')\n", "plt.show()\n", "\n", "# ---- Predict class\n", "#\n", "p = np.argmax(predictions)\n", "\n", "# ---- Show result\n", "#\n", "print(\"\\nPrediction on the left, real stuff on the right :\\n\")\n", "ooo.plot_images([x,x_meta[y]], [p,y], range(2), columns=3, x_size=3, y_size=2)\n", "\n", "if p==y:\n", " print(\"YEEES ! that's right!\")\n", "else:\n", " print(\"oups, that's wrong ;-(\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }