{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2021-01-07T21:19:54.709020Z", "iopub.status.busy": "2021-01-07T21:19:54.707336Z", "iopub.status.idle": "2021-01-07T21:19:54.713111Z", "shell.execute_reply": "2021-01-07T21:19:54.712591Z" }, "jupyter": { "source_hidden": true } }, "outputs": [ { "data": { "text/markdown": [ "<a name=\"top\"></a>\n", "\n", "[<img width=\"600px\" src=\"fidle/img/00-Fidle-titre-01.svg\"></img>](#top)\n", "\n", "<!-- --------------------------------------------------- -->\n", "<!-- To correctly view this README under Jupyter Lab -->\n", "<!-- Open the notebook: README.ipynb! -->\n", "<!-- --------------------------------------------------- -->\n", "\n", "\n", "## A propos\n", "\n", "This repository contains all the documents and links of the **Fidle Training** . \n", "Fidle (for Formation Introduction au Deep Learning) is a 2-day training session \n", "co-organized by the Formation Permanente CNRS and the SARI and DEVLOG networks. \n", "\n", "The objectives of this training are :\n", " - Understanding the **bases of Deep Learning** neural networks\n", " - Develop a **first experience** through simple and representative examples\n", " - Understanding **Tensorflow/Keras** and **Jupyter lab** technologies\n", " - Apprehend the **academic computing environments** Tier-2 or Tier-1 with powerfull GPU\n", "\n", "For more information, you can contact us at : \n", "[<img width=\"200px\" style=\"vertical-align:middle\" src=\"fidle/img/00-Mail_contact.svg\"></img>](#top) \n", "Current Version : <!-- VERSION_BEGIN -->\n", "1.2b1 DEV\n", "<!-- VERSION_END -->\n", "\n", "\n", "## Course materials\n", "\n", "| | | |\n", "|:--:|:--:|:--:|\n", "| **[<img width=\"50px\" src=\"fidle/img/00-Fidle-pdf.svg\"></img><br>Course slides](https://cloud.univ-grenoble-alpes.fr/index.php/s/wxCztjYBbQ6zwd6)**<br>The course in pdf format<br>(12 Mo)| **[<img width=\"50px\" src=\"fidle/img/00-Notebooks.svg\"></img><br>Notebooks](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/archive/master/fidle-master.zip)**<br> Get a Zip or clone this repository <br>(10 Mo)| **[<img width=\"50px\" src=\"fidle/img/00-Datasets-tar.svg\"></img><br>Datasets](https://cloud.univ-grenoble-alpes.fr/index.php/s/wxCztjYBbQ6zwd6)**<br>All the needed datasets<br>(1.2 Go)|\n", "\n", "Have a look about **[How to get and install](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Install-Fidle)** these notebooks and datasets.\n", "\n", "\n", "## Jupyter notebooks\n", "\n", "<!-- INDEX_BEGIN -->\n", "| | |\n", "|--|--|\n", "|LINR1| [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb)<br>Direct determination of linear regression |\n", "|GRAD1| [Linear regression with gradient descent](LinearReg/02-Gradient-descent.ipynb)<br>An example of gradient descent in the simple case of a linear regression.|\n", "|POLR1| [Complexity Syndrome](LinearReg/03-Polynomial-Regression.ipynb)<br>Illustration of the problem of complexity with the polynomial regression|\n", "|LOGR1| [Logistic regression, with sklearn](LinearReg/04-Logistic-Regression.ipynb)<br>Logistic Regression using Sklearn|\n", "|PER57| [Perceptron Model 1957](IRIS/01-Simple-Perceptron.ipynb)<br>A simple perceptron, with the IRIS dataset.|\n", "|MNIST1| [Simple classification with DNN](MNIST/01-DNN-MNIST.ipynb)<br>Example of classification with a fully connected neural network|\n", "|GTSRB1| [CNN with GTSRB dataset - Data analysis and preparation](GTSRB/01-Preparation-of-data.ipynb)<br>Episode 1 : Data analysis and creation of a usable dataset|\n", "|GTSRB2| [CNN with GTSRB dataset - First convolutions](GTSRB/02-First-convolutions.ipynb)<br>Episode 2 : First convolutions and first results|\n", "|GTSRB3| [CNN with GTSRB dataset - Monitoring ](GTSRB/03-Tracking-and-visualizing.ipynb)<br>Episode 3 : Monitoring and analysing training, managing checkpoints|\n", "|GTSRB4| [CNN with GTSRB dataset - Data augmentation ](GTSRB/04-Data-augmentation.ipynb)<br>Episode 4 : Improving the results with data augmentation|\n", "|GTSRB5| [CNN with GTSRB dataset - Full convolutions ](GTSRB/05-Full-convolutions.ipynb)<br>Episode 5 : A lot of models, a lot of datasets and a lot of results.|\n", "|GTSRB6| [Full convolutions as a batch](GTSRB/06-Notebook-as-a-batch.ipynb)<br>Episode 6 : Run Full convolution notebook as a batch|\n", "|GTSRB7| [CNN with GTSRB dataset - Show reports](GTSRB/07-Show-report.ipynb)<br>Episode 7 : Displaying a jobs report|\n", "|GTSRB10| [OAR batch submission](GTSRB/batch_oar.sh)<br>Bash script for OAR batch submission of GTSRB notebook |\n", "|GTSRB11| [SLURM batch script](GTSRB/batch_slurm.sh)<br>Bash script for SLURM batch submission of GTSRB notebooks |\n", "|IMDB1| [Text embedding with IMDB](IMDB/01-Embedding-Keras.ipynb)<br>A very classical example of word embedding for text classification (sentiment analysis)|\n", "|IMDB2| [Text embedding with IMDB - Reloaded](IMDB/02-Prediction.ipynb)<br>Example of reusing a previously saved model|\n", "|IMDB3| [Text embedding/LSTM model with IMDB](IMDB/03-LSTM-Keras.ipynb)<br>Still the same problem, but with a network combining embedding and LSTM|\n", "|SYNOP1| [Time series with RNN - Preparation of data](SYNOP/01-Preparation-of-data.ipynb)<br>Episode 1 : Data analysis and creation of a usable dataset|\n", "|SYNOP2| [Time series with RNN - Try a prediction](SYNOP/02-First-predictions.ipynb)<br>Episode 2 : Training session and first predictions|\n", "|SYNOP3| [Time series with RNN - 12h predictions](SYNOP/03-12h-predictions.ipynb)<br>Episode 3: Attempt to predict in the longer term |\n", "|VAE1| [Variational AutoEncoder (VAE) with MNIST](VAE/01-VAE-with-MNIST.ipynb)<br>Building a simple model with the MNIST dataset|\n", "|VAE2| [Variational AutoEncoder (VAE) with MNIST - Analysis](VAE/02-VAE-with-MNIST-post.ipynb)<br>Visualization and analysis of latent space|\n", "|VAE3| [About the CelebA dataset](VAE/05-About-CelebA.ipynb)<br>Presentation of the CelebA dataset and problems related to its size|\n", "|VAE6| [Preparation of the CelebA dataset](VAE/06-Prepare-CelebA-datasets.ipynb)<br>Preparation of a clustered dataset, batchable|\n", "|VAE7| [Checking the clustered CelebA dataset](VAE/07-Check-CelebA.ipynb)<br>Check the clustered dataset|\n", "|VAE8| [Variational AutoEncoder (VAE) with CelebA](VAE/08-VAE-with-CelebA.ipynb)<br>Building a VAE and train it, using a data generator|\n", "|VAE9| [Variational AutoEncoder (VAE) with CelebA - Analysis](VAE/09-VAE-withCelebA-post.ipynb)<br>Exploring latent space of our trained models|\n", "|VAE10| [SLURM batch script](VAE/batch_slurm.sh)<br>Bash script for SLURM batch submission of VAE notebooks |\n", "|ACTF1| [Activation functions](Misc/Activation-Functions.ipynb)<br>Some activation functions, with their derivatives.|\n", "|NP1| [A short introduction to Numpy](Misc/Numpy.ipynb)<br>Numpy is an essential tool for the Scientific Python.|\n", "|TSB1| [Tensorboard with/from Jupyter ](Misc/Using-Tensorboard.ipynb)<br>4 ways to use Tensorboard from the Jupyter environment|\n", "<!-- INDEX_END -->\n", "\n", "\n", "## Installation\n", "\n", "A procedure for **configuring** and **starting Jupyter** is available in the **[Wiki](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Install-Fidle)**.\n", "\n", "## Licence\n", "\n", "[<img width=\"100px\" src=\"fidle/img/00-fidle-CC BY-NC-SA.svg\"></img>](https://creativecommons.org/licenses/by-nc-sa/4.0/) \n", "\\[en\\] Attribution - NonCommercial - ShareAlike 4.0 International (CC BY-NC-SA 4.0) \n", "\\[Fr\\] Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International \n", "See [License](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). \n", "See [Disclaimer](https://creativecommons.org/licenses/by-nc-sa/4.0/#). \n", "\n", "\n", "----\n", "[<img width=\"80px\" src=\"fidle/img/00-Fidle-logo-01.svg\"></img>](#top)\n" ], "text/plain": [ "<IPython.core.display.Markdown object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from IPython.display import display,Markdown\n", "display(Markdown(open('README.md', 'r').read()))\n", "#\n", "# This README is visible under Jupiter LAb ! :-)" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.9" } }, "nbformat": 4, "nbformat_minor": 4 }