{ "cells": [ { "cell_type": "code", "execution_count": 7, "metadata": { "jupyter": { "source_hidden": true } }, "outputs": [ { "data": { "text/markdown": [ "<a name=\"top\"></a>\n", "\n", "[<img width=\"600px\" src=\"fidle/img/00-Fidle-titre-01.svg\"></img>](#top)\n", "\n", "<!-- --------------------------------------------------- -->\n", "<!-- To correctly view this README under Jupyter Lab -->\n", "<!-- Open the notebook: README.ipynb! -->\n", "<!-- --------------------------------------------------- -->\n", "\n", "\n", "## A propos\n", "\n", "This repository contains all the documents and links of the **Fidle Training** . \n", "Fidle (for Formation Introduction au Deep Learning) is a 2-day training session \n", "co-organized by the Formation Permanente CNRS and the SARI and DEVLOG networks. \n", "\n", "The objectives of this training are :\n", " - Understanding the **bases of Deep Learning** neural networks\n", " - Develop a **first experience** through simple and representative examples\n", " - Understanding **Tensorflow/Keras** and **Jupyter lab** technologies\n", " - Apprehend the **academic computing environments** Tier-2 or Tier-1 with powerfull GPU\n", "\n", "For more information, you can contact us at : \n", "[<img width=\"200px\" style=\"vertical-align:middle\" src=\"fidle/img/00-Mail_contact.svg\"></img>](#top) \n", "Current Version : <!-- VERSION_BEGIN -->\n", "0.6.0 DEV\n", "<!-- VERSION_END -->\n", "\n", "\n", "## Course materials\n", "**[<img width=\"50px\" src=\"fidle/img/00-Fidle-pdf.svg\"></img>\n", "Get the course slides](https://cloud.univ-grenoble-alpes.fr/index.php/s/wxCztjYBbQ6zwd6)** \n", "\n", "[How to get and install](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Install-Fidle) notebooks and datasets \n", "Some other useful informations are also available in the [wiki](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home)\n", "\n", "\n", "## Jupyter notebooks\n", "\n", "<!-- INDEX_BEGIN -->\n", "| | |\n", "|--|--|\n", "|LINR1| [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb)<br>Direct determination of linear regression |\n", "|GRAD1| [Linear regression with gradient descent](LinearReg/02-Gradient-descent.ipynb)<br>An example of gradient descent in the simple case of a linear regression.|\n", "|POLR1| [Complexity Syndrome](LinearReg/03-Polynomial-Regression.ipynb)<br>Illustration of the problem of complexity with the polynomial regression|\n", "|LOGR1| [Logistic regression, in pure Tensorflow](LinearReg/04-Logistic-Regression.ipynb)<br>Logistic Regression with Mini-Batch Gradient Descent using pure TensorFlow. |\n", "|PER57| [Perceptron Model 1957](IRIS/01-Simple-Perceptron.ipynb)<br>A simple perceptron, with the IRIS dataset.|\n", "|BHP1| [Regression with a Dense Network (DNN)](BHPD/01-DNN-Regression.ipynb)<br>A Simple regression with a Dense Neural Network (DNN) - BHPD dataset|\n", "|BHP2| [Regression with a Dense Network (DNN) - Advanced code](BHPD/02-DNN-Regression-Premium.ipynb)<br>More advanced example of DNN network code - BHPD dataset|\n", "|MNIST1| [Simple classification with DNN](MNIST/01-DNN-MNIST.ipynb)<br>Example of classification with a fully connected neural network|\n", "|GTS1| [CNN with GTSRB dataset - Data analysis and preparation](GTSRB/01-Preparation-of-data.ipynb)<br>Episode 1 : Data analysis and creation of a usable dataset|\n", "|GTS2| [CNN with GTSRB dataset - First convolutions](GTSRB/02-First-convolutions.ipynb)<br>Episode 2 : First convolutions and first results|\n", "|GTS3| [CNN with GTSRB dataset - Monitoring ](GTSRB/03-Tracking-and-visualizing.ipynb)<br>Episode 3 : Monitoring and analysing training, managing checkpoints|\n", "|GTS4| [CNN with GTSRB dataset - Data augmentation ](GTSRB/04-Data-augmentation.ipynb)<br>Episode 4 : Improving the results with data augmentation|\n", "|GTS5| [CNN with GTSRB dataset - Full convolutions ](GTSRB/05-Full-convolutions.ipynb)<br>Episode 5 : A lot of models, a lot of datasets and a lot of results.|\n", "|GTS6| [CNN with GTSRB dataset - Full convolutions as a batch](GTSRB/06-Notebook-as-a-batch.ipynb)<br>Episode 6 : Run Full convolution notebook as a batch|\n", "|GTS7| [CNN with GTSRB dataset - Show reports](GTSRB/07-Show-report.ipynb)<br>Episode 7 : Displaying the reports of the different jobs|\n", "|TSB1| [Tensorboard with/from Jupyter ](GTSRB/99-Scripts-Tensorboard.ipynb)<br>4 ways to use Tensorboard from the Jupyter environment|\n", "|IMDB1| [Text embedding with IMDB](IMDB/01-Embedding-Keras.ipynb)<br>A very classical example of word embedding for text classification (sentiment analysis)|\n", "|IMDB2| [Text embedding with IMDB - Reloaded](IMDB/02-Prediction.ipynb)<br>Example of reusing a previously saved model|\n", "|IMDB3| [Text embedding/LSTM model with IMDB](IMDB/03-LSTM-Keras.ipynb)<br>Still the same problem, but with a network combining embedding and LSTM|\n", "|SYNOP1| [Time series with RNN - Preparation of data](SYNOP/01-Preparation-of-data.ipynb)<br>Episode 1 : Data analysis and creation of a usable dataset|\n", "|SYNOP2| [Time series with RNN - Try a prediction](SYNOP/02-First-predictions.ipynb)<br>Episode 2 : Training session and first predictions|\n", "|SYNOP3| [Time series with RNN - 12h predictions](SYNOP/03-12h-predictions.ipynb)<br>Episode 3: Attempt to predict in the longer term |\n", "|VAE1| [Variational AutoEncoder (VAE) with MNIST](VAE/01-VAE-with-MNIST.nbconvert.ipynb)<br>Episode 1 : Model construction and Training|\n", "|VAE2| [Variational AutoEncoder (VAE) with MNIST - Analysis](VAE/02-VAE-with-MNIST-post.ipynb)<br>Episode 2 : Exploring our latent space|\n", "|VAE3| [About the CelebA dataset](VAE/03-About-CelebA.ipynb)<br>Episode 3 : About the CelebA dataset, a more fun dataset ;-)|\n", "|VAE4| [Preparation of the CelebA dataset](VAE/04-Prepare-CelebA-datasets.ipynb)<br>Episode 4 : Preparation of a clustered dataset, batchable|\n", "|VAE5| [Checking the clustered CelebA dataset](VAE/05-Check-CelebA.ipynb)<br>Episode 5 :\tChecking the clustered dataset|\n", "|VAE6| [Variational AutoEncoder (VAE) with CelebA (small)](VAE/06-VAE-with-CelebA-s.nbconvert.ipynb)<br>Episode 6 : Variational AutoEncoder (VAE) with CelebA (small res.)|\n", "|VAE7| [Variational AutoEncoder (VAE) with CelebA (medium)](VAE/07-VAE-with-CelebA-m.nbconvert.ipynb)<br>Episode 7 : Variational AutoEncoder (VAE) with CelebA (medium res.)|\n", "|VAE8| [Variational AutoEncoder (VAE) with CelebA - Analysis](VAE/08-VAE-withCelebA-post.ipynb)<br>Episode 8 : Exploring latent space of our trained models|\n", "|ACTF1| [Activation functions](Misc/Activation-Functions.ipynb)<br>Some activation functions, with their derivatives.|\n", "|NP1| [A short introduction to Numpy](Misc/Numpy.ipynb)<br>Numpy is an essential tool for the Scientific Python.|\n", "<!-- INDEX_END -->\n", "\n", "\n", "## Installation\n", "\n", "A procedure for **configuring** and **starting Jupyter** is available in the **[Wiki](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Install-Fidle)**.\n", "\n", "## Licence\n", "\n", "[<img width=\"100px\" src=\"fidle/img/00-fidle-CC BY-NC-SA.svg\"></img>](https://creativecommons.org/licenses/by-nc-sa/4.0/) \n", "\\[en\\] Attribution - NonCommercial - ShareAlike 4.0 International (CC BY-NC-SA 4.0) \n", "\\[Fr\\] Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International \n", "See [License](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). \n", "See [Disclaimer](https://creativecommons.org/licenses/by-nc-sa/4.0/#). \n", "\n", "\n", "----\n", "[<img width=\"80px\" src=\"fidle/img/00-Fidle-logo-01.svg\"></img>](#top)\n" ], "text/plain": [ "<IPython.core.display.Markdown object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from IPython.display import display,Markdown\n", "display(Markdown(open('README.md', 'r').read()))\n", "#\n", "# This README is visible under Jupiter LAb ! :-)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.7" } }, "nbformat": 4, "nbformat_minor": 4 }