Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • daconcea/fidle
  • bossardl/fidle
  • Julie.Remenant/fidle
  • abijolao/fidle
  • monsimau/fidle
  • karkars/fidle
  • guilgautier/fidle
  • cailletr/fidle
  • talks/fidle
9 results
Show changes
Showing
with 2368 additions and 158 deletions
# Configuration file for lab.
#------------------------------------------------------------------------------
# Application(SingletonConfigurable) configuration
#------------------------------------------------------------------------------
## This is an application.
## Set the log level by value or name.
# Choices: any of [0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL']
# Default: 30
c.Application.log_level = 'INFO'
#------------------------------------------------------------------------------
# JupyterApp(Application) configuration
#------------------------------------------------------------------------------
## Base class for Jupyter applications
## Answer yes to any prompts.
# Default: False
# c.JupyterApp.answer_yes = False
## Full path of a config file.
# Default: ''
# c.JupyterApp.config_file = ''
## Specify a config file to load.
# Default: ''
# c.JupyterApp.config_file_name = ''
## Generate default config file.
# Default: False
# c.JupyterApp.generate_config = False
## The date format used by logging formatters for %(asctime)s
# See also: Application.log_datefmt
# c.JupyterApp.log_datefmt = '%Y-%m-%d %H:%M:%S'
## The Logging format template
# See also: Application.log_format
# c.JupyterApp.log_format = '[%(name)s]%(highlevel)s %(message)s'
## Set the log level by value or name.
# See also: Application.log_level
# c.JupyterApp.log_level = 30
## Instead of starting the Application, dump configuration to stdout
# See also: Application.show_config
# c.JupyterApp.show_config = False
## Instead of starting the Application, dump configuration to stdout (as JSON)
# See also: Application.show_config_json
# c.JupyterApp.show_config_json = False
#------------------------------------------------------------------------------
# ExtensionApp(JupyterApp) configuration
#------------------------------------------------------------------------------
## Base class for configurable Jupyter Server Extension Applications.
#
# ExtensionApp subclasses can be initialized two ways:
# 1. Extension is listed as a jpserver_extension, and ServerApp calls
# its load_jupyter_server_extension classmethod. This is the
# classic way of loading a server extension.
# 2. Extension is launched directly by calling its `launch_instance`
# class method. This method can be set as a entry_point in
# the extensions setup.py
## Answer yes to any prompts.
# See also: JupyterApp.answer_yes
# c.ExtensionApp.answer_yes = False
## Full path of a config file.
# See also: JupyterApp.config_file
# c.ExtensionApp.config_file = ''
## Specify a config file to load.
# See also: JupyterApp.config_file_name
# c.ExtensionApp.config_file_name = ''
# Default: ''
# c.ExtensionApp.default_url = ''
## Generate default config file.
# See also: JupyterApp.generate_config
# c.ExtensionApp.generate_config = False
## Handlers appended to the server.
# Default: []
# c.ExtensionApp.handlers = []
## The date format used by logging formatters for %(asctime)s
# See also: Application.log_datefmt
# c.ExtensionApp.log_datefmt = '%Y-%m-%d %H:%M:%S'
## The Logging format template
# See also: Application.log_format
# c.ExtensionApp.log_format = '[%(name)s]%(highlevel)s %(message)s'
## Set the log level by value or name.
# See also: Application.log_level
# c.ExtensionApp.log_level = 30
## Whether to open in a browser after starting.
# The specific browser used is platform dependent and
# determined by the python standard library `webbrowser`
# module, unless it is overridden using the --browser
# (ServerApp.browser) configuration option.
# Default: False
# c.ExtensionApp.open_browser = False
## Settings that will passed to the server.
# Default: {}
# c.ExtensionApp.settings = {}
## Instead of starting the Application, dump configuration to stdout
# See also: Application.show_config
# c.ExtensionApp.show_config = False
## Instead of starting the Application, dump configuration to stdout (as JSON)
# See also: Application.show_config_json
# c.ExtensionApp.show_config_json = False
## paths to search for serving static files.
#
# This allows adding javascript/css to be available from the notebook server machine,
# or overriding individual files in the IPython
# Default: []
# c.ExtensionApp.static_paths = []
## Url where the static assets for the extension are served.
# Default: ''
# c.ExtensionApp.static_url_prefix = ''
## Paths to search for serving jinja templates.
#
# Can be used to override templates from notebook.templates.
# Default: []
# c.ExtensionApp.template_paths = []
#------------------------------------------------------------------------------
# LabServerApp(ExtensionApp) configuration
#------------------------------------------------------------------------------
## A Lab Server Application that runs out-of-the-box
## "A list of comma-separated URIs to get the allowed extensions list
#
# .. versionchanged:: 2.0.0
# `LabServerApp.whitetlist_uris` renamed to `allowed_extensions_uris`
# Default: ''
# c.LabServerApp.allowed_extensions_uris = ''
## Answer yes to any prompts.
# See also: JupyterApp.answer_yes
# c.LabServerApp.answer_yes = False
## The application settings directory.
# Default: ''
# c.LabServerApp.app_settings_dir = ''
## The url path for the application.
# Default: '/lab'
# c.LabServerApp.app_url = '/lab'
## Deprecated, use `LabServerApp.blocked_extensions_uris`
# Default: ''
# c.LabServerApp.blacklist_uris = ''
## A list of comma-separated URIs to get the blocked extensions list
#
# .. versionchanged:: 2.0.0
# `LabServerApp.blacklist_uris` renamed to `blocked_extensions_uris`
# Default: ''
# c.LabServerApp.blocked_extensions_uris = ''
## Whether to cache files on the server. This should be `True` except in dev
# mode.
# Default: True
# c.LabServerApp.cache_files = True
## Full path of a config file.
# See also: JupyterApp.config_file
# c.LabServerApp.config_file = ''
## Specify a config file to load.
# See also: JupyterApp.config_file_name
# c.LabServerApp.config_file_name = ''
## Extra paths to look for federated JupyterLab extensions
# Default: []
# c.LabServerApp.extra_labextensions_path = []
## Generate default config file.
# See also: JupyterApp.generate_config
# c.LabServerApp.generate_config = False
## Handlers appended to the server.
# See also: ExtensionApp.handlers
# c.LabServerApp.handlers = []
## Options to pass to the jinja2 environment for this
# Default: {}
# c.LabServerApp.jinja2_options = {}
## The standard paths to look in for federated JupyterLab extensions
# Default: []
# c.LabServerApp.labextensions_path = []
## The url for federated JupyterLab extensions
# Default: ''
# c.LabServerApp.labextensions_url = ''
## The interval delay in seconds to refresh the lists
# Default: 3600
# c.LabServerApp.listings_refresh_seconds = 3600
## The optional kwargs to use for the listings HTTP requests as
# described on https://2.python-requests.org/en/v2.7.0/api/#requests.request
# Default: {}
# c.LabServerApp.listings_request_options = {}
## The listings url.
# Default: ''
# c.LabServerApp.listings_url = ''
## The date format used by logging formatters for %(asctime)s
# See also: Application.log_datefmt
# c.LabServerApp.log_datefmt = '%Y-%m-%d %H:%M:%S'
## The Logging format template
# See also: Application.log_format
# c.LabServerApp.log_format = '[%(name)s]%(highlevel)s %(message)s'
## Set the log level by value or name.
# See also: Application.log_level
# c.LabServerApp.log_level = 30
## Whether to open in a browser after starting.
# See also: ExtensionApp.open_browser
# c.LabServerApp.open_browser = False
## The optional location of the settings schemas directory. If given, a handler
# will be added for settings.
# Default: ''
# c.LabServerApp.schemas_dir = ''
## Settings that will passed to the server.
# See also: ExtensionApp.settings
# c.LabServerApp.settings = {}
## The url path of the settings handler.
# Default: ''
# c.LabServerApp.settings_url = ''
## Instead of starting the Application, dump configuration to stdout
# See also: Application.show_config
# c.LabServerApp.show_config = False
## Instead of starting the Application, dump configuration to stdout (as JSON)
# See also: Application.show_config_json
# c.LabServerApp.show_config_json = False
## The optional location of local static files. If given, a static file handler
# will be added.
# Default: ''
# c.LabServerApp.static_dir = ''
## paths to search for serving static files.
# See also: ExtensionApp.static_paths
# c.LabServerApp.static_paths = []
## Url where the static assets for the extension are served.
# See also: ExtensionApp.static_url_prefix
# c.LabServerApp.static_url_prefix = ''
## Paths to search for serving jinja templates.
# See also: ExtensionApp.template_paths
# c.LabServerApp.template_paths = []
## The application templates directory.
# Default: ''
# c.LabServerApp.templates_dir = ''
## The optional location of the themes directory. If given, a handler will be
# added for themes.
# Default: ''
# c.LabServerApp.themes_dir = ''
## The theme url.
# Default: ''
# c.LabServerApp.themes_url = ''
## The url path of the translations handler.
# Default: ''
# c.LabServerApp.translations_api_url = ''
## The url path of the tree handler.
# Default: ''
# c.LabServerApp.tree_url = ''
## The optional location of the user settings directory.
# Default: ''
# c.LabServerApp.user_settings_dir = ''
## Deprecated, use `LabServerApp.allowed_extensions_uris`
# Default: ''
# c.LabServerApp.whitelist_uris = ''
## The url path of the workspaces API.
# Default: ''
# c.LabServerApp.workspaces_api_url = ''
## The optional location of the saved workspaces directory. If given, a handler
# will be added for workspaces.
# Default: ''
# c.LabServerApp.workspaces_dir = ''
#------------------------------------------------------------------------------
# LabApp(LabServerApp) configuration
#------------------------------------------------------------------------------
##
# See also: LabServerApp.allowed_extensions_uris
# c.LabApp.allowed_extensions_uris = ''
## Answer yes to any prompts.
# See also: JupyterApp.answer_yes
# c.LabApp.answer_yes = False
## The app directory to launch JupyterLab from.
# Default: None
# c.LabApp.app_dir = None
## The application settings directory.
# Default: ''
# c.LabApp.app_settings_dir = ''
## The url path for the application.
# Default: '/lab'
# c.LabApp.app_url = '/lab'
## Deprecated, use `LabServerApp.blocked_extensions_uris`
# See also: LabServerApp.blacklist_uris
# c.LabApp.blacklist_uris = ''
##
# See also: LabServerApp.blocked_extensions_uris
# c.LabApp.blocked_extensions_uris = ''
## Whether to cache files on the server. This should be `True` except in dev
# mode.
# Default: True
# c.LabApp.cache_files = True
## Whether to enable collaborative mode (experimental).
# Default: False
# c.LabApp.collaborative = False
## Full path of a config file.
# See also: JupyterApp.config_file
# c.LabApp.config_file = ''
## Specify a config file to load.
# See also: JupyterApp.config_file_name
# c.LabApp.config_file_name = ''
## Whether to start the app in core mode. In this mode, JupyterLab
# will run using the JavaScript assets that are within the installed
# JupyterLab Python package. In core mode, third party extensions are disabled.
# The `--dev-mode` flag is an alias to this to be used when the Python package
# itself is installed in development mode (`pip install -e .`).
# Default: False
# c.LabApp.core_mode = False
## The default URL to redirect to from `/`
# Default: '/lab'
c.LabApp.default_url = '/lab/tree/README.ipynb'
## Whether to start the app in dev mode. Uses the unpublished local
# JavaScript packages in the `dev_mode` folder. In this case JupyterLab will
# show a red stripe at the top of the page. It can only be used if JupyterLab
# is installed as `pip install -e .`.
# Default: False
# c.LabApp.dev_mode = False
## Whether to expose the global app instance to browser via window.jupyterlab
# Default: False
# c.LabApp.expose_app_in_browser = False
## Whether to load prebuilt extensions in dev mode. This may be
# useful to run and test prebuilt extensions in development installs of
# JupyterLab. APIs in a JupyterLab development install may be
# incompatible with published packages, so prebuilt extensions compiled
# against published packages may not work correctly.
# Default: False
# c.LabApp.extensions_in_dev_mode = False
## Extra paths to look for federated JupyterLab extensions
# Default: []
# c.LabApp.extra_labextensions_path = []
## Generate default config file.
# See also: JupyterApp.generate_config
# c.LabApp.generate_config = False
## Handlers appended to the server.
# See also: ExtensionApp.handlers
# c.LabApp.handlers = []
## Options to pass to the jinja2 environment for this
# Default: {}
# c.LabApp.jinja2_options = {}
## The standard paths to look in for federated JupyterLab extensions
# Default: []
# c.LabApp.labextensions_path = []
## The url for federated JupyterLab extensions
# Default: ''
# c.LabApp.labextensions_url = ''
## The interval delay in seconds to refresh the lists
# See also: LabServerApp.listings_refresh_seconds
# c.LabApp.listings_refresh_seconds = 3600
## The optional kwargs to use for the listings HTTP requests as
# described on https://2.python-requests.org/en/v2.7.0/api/#requests.request
# See also: LabServerApp.listings_request_options
# c.LabApp.listings_request_options = {}
## The listings url.
# Default: ''
# c.LabApp.listings_url = ''
## The date format used by logging formatters for %(asctime)s
# See also: Application.log_datefmt
# c.LabApp.log_datefmt = '%Y-%m-%d %H:%M:%S'
## The Logging format template
# See also: Application.log_format
# c.LabApp.log_format = '[%(name)s]%(highlevel)s %(message)s'
## Set the log level by value or name.
# See also: Application.log_level
# c.LabApp.log_level = 30
## Whether to open in a browser after starting.
# See also: ExtensionApp.open_browser
# c.LabApp.open_browser = False
## The override url for static lab assets, typically a CDN.
# Default: ''
# c.LabApp.override_static_url = ''
## The override url for static lab theme assets, typically a CDN.
# Default: ''
# c.LabApp.override_theme_url = ''
## The optional location of the settings schemas directory. If given, a handler
# will be added for settings.
# Default: ''
# c.LabApp.schemas_dir = ''
## Settings that will passed to the server.
# See also: ExtensionApp.settings
# c.LabApp.settings = {}
## The url path of the settings handler.
# Default: ''
# c.LabApp.settings_url = ''
## Instead of starting the Application, dump configuration to stdout
# See also: Application.show_config
# c.LabApp.show_config = False
## Instead of starting the Application, dump configuration to stdout (as JSON)
# See also: Application.show_config_json
# c.LabApp.show_config_json = False
## Splice source packages into app directory.
# Default: False
# c.LabApp.splice_source = False
## The optional location of local static files. If given, a static file handler
# will be added.
# Default: ''
# c.LabApp.static_dir = ''
## paths to search for serving static files.
# See also: ExtensionApp.static_paths
# c.LabApp.static_paths = []
## Url where the static assets for the extension are served.
# See also: ExtensionApp.static_url_prefix
# c.LabApp.static_url_prefix = ''
## Paths to search for serving jinja templates.
# See also: ExtensionApp.template_paths
# c.LabApp.template_paths = []
## The application templates directory.
# Default: ''
# c.LabApp.templates_dir = ''
## The optional location of the themes directory. If given, a handler will be
# added for themes.
# Default: ''
# c.LabApp.themes_dir = ''
## The theme url.
# Default: ''
# c.LabApp.themes_url = ''
## The url path of the translations handler.
# Default: ''
# c.LabApp.translations_api_url = ''
## The url path of the tree handler.
# Default: ''
# c.LabApp.tree_url = ''
## The directory for user settings.
# Default: '/root/.jupyter/lab/user-settings'
# c.LabApp.user_settings_dir = '/root/.jupyter/lab/user-settings'
## Whether to serve the app in watch mode
# Default: False
# c.LabApp.watch = False
## Deprecated, use `LabServerApp.allowed_extensions_uris`
# See also: LabServerApp.whitelist_uris
# c.LabApp.whitelist_uris = ''
## The url path of the workspaces API.
# Default: ''
# c.LabApp.workspaces_api_url = ''
## The directory for workspaces
# Default: '/root/.jupyter/lab/workspaces'
# c.LabApp.workspaces_dir = '/root/.jupyter/lab/workspaces'
#------------------------------------------------------------------------------
# ServerApp(JupyterApp) configuration
#------------------------------------------------------------------------------
## Set the Access-Control-Allow-Credentials: true header
# Default: False
# c.ServerApp.allow_credentials = False
## Set the Access-Control-Allow-Origin header
#
# Use '*' to allow any origin to access your server.
#
# Takes precedence over allow_origin_pat.
# Default: ''
# c.ServerApp.allow_origin = ''
## Use a regular expression for the Access-Control-Allow-Origin header
#
# Requests from an origin matching the expression will get replies with:
#
# Access-Control-Allow-Origin: origin
#
# where `origin` is the origin of the request.
#
# Ignored if allow_origin is set.
# Default: ''
# c.ServerApp.allow_origin_pat = ''
## Allow password to be changed at login for the Jupyter server.
#
# While logging in with a token, the Jupyter server UI will give the opportunity to
# the user to enter a new password at the same time that will replace
# the token login mechanism.
#
# This can be set to false to prevent changing password from
# the UI/API.
# Default: True
c.ServerApp.allow_password_change = False
## Allow requests where the Host header doesn't point to a local server
#
# By default, requests get a 403 forbidden response if the 'Host' header
# shows that the browser thinks it's on a non-local domain.
# Setting this option to True disables this check.
#
# This protects against 'DNS rebinding' attacks, where a remote web server
# serves you a page and then changes its DNS to send later requests to a
# local IP, bypassing same-origin checks.
#
# Local IP addresses (such as 127.0.0.1 and ::1) are allowed as local,
# along with hostnames configured in local_hostnames.
# Default: False
# c.ServerApp.allow_remote_access = False
## Whether to allow the user to run the server as root.
# Default: False
c.ServerApp.allow_root = True
## Answer yes to any prompts.
# See also: JupyterApp.answer_yes
# c.ServerApp.answer_yes = False
## "
# Require authentication to access prometheus metrics.
# Default: True
# c.ServerApp.authenticate_prometheus = True
## Reload the webapp when changes are made to any Python src files.
# Default: False
# c.ServerApp.autoreload = False
## The base URL for the Jupyter server.
#
# Leading and trailing slashes can be omitted,
# and will automatically be added.
# Default: '/'
# c.ServerApp.base_url = '/'
## Specify what command to use to invoke a web
# browser when starting the server. If not specified, the
# default browser will be determined by the `webbrowser`
# standard library module, which allows setting of the
# BROWSER environment variable to override it.
# Default: ''
# c.ServerApp.browser = ''
## The full path to an SSL/TLS certificate file.
# Default: ''
# c.ServerApp.certfile = ''
## The full path to a certificate authority certificate for SSL/TLS client
# authentication.
# Default: ''
# c.ServerApp.client_ca = ''
## Full path of a config file.
# See also: JupyterApp.config_file
# c.ServerApp.config_file = ''
## Specify a config file to load.
# See also: JupyterApp.config_file_name
# c.ServerApp.config_file_name = ''
## The config manager class to use
# Default: 'jupyter_server.services.config.manager.ConfigManager'
# c.ServerApp.config_manager_class = 'jupyter_server.services.config.manager.ConfigManager'
## The content manager class to use.
# Default: 'jupyter_server.services.contents.largefilemanager.LargeFileManager'
# c.ServerApp.contents_manager_class = 'jupyter_server.services.contents.largefilemanager.LargeFileManager'
## Extra keyword arguments to pass to `set_secure_cookie`. See tornado's
# set_secure_cookie docs for details.
# Default: {}
# c.ServerApp.cookie_options = {}
## The random bytes used to secure cookies.
# By default this is a new random number every time you start the server.
# Set it to a value in a config file to enable logins to persist across server sessions.
#
# Note: Cookie secrets should be kept private, do not share config files with
# cookie_secret stored in plaintext (you can read the value from a file).
# Default: b''
# c.ServerApp.cookie_secret = b''
## The file where the cookie secret is stored.
# Default: ''
# c.ServerApp.cookie_secret_file = ''
## Override URL shown to users.
#
# Replace actual URL, including protocol, address, port and base URL,
# with the given value when displaying URL to the users. Do not change
# the actual connection URL. If authentication token is enabled, the
# token is added to the custom URL automatically.
#
# This option is intended to be used when the URL to display to the user
# cannot be determined reliably by the Jupyter server (proxified
# or containerized setups for example).
# Default: ''
# c.ServerApp.custom_display_url = ''
## The default URL to redirect to from `/`
# Default: '/'
c.ServerApp.default_url = '/lab/tree/README.ipynb'
## Disable cross-site-request-forgery protection
#
# Jupyter notebook 4.3.1 introduces protection from cross-site request forgeries,
# requiring API requests to either:
#
# - originate from pages served by this server (validated with XSRF cookie and token), or
# - authenticate with a token
#
# Some anonymous compute resources still desire the ability to run code,
# completely without authentication.
# These services can disable all authentication and security checks,
# with the full knowledge of what that implies.
# Default: False
# c.ServerApp.disable_check_xsrf = False
## handlers that should be loaded at higher priority than the default services
# Default: []
# c.ServerApp.extra_services = []
## Extra paths to search for serving static files.
#
# This allows adding javascript/css to be available from the Jupyter server machine,
# or overriding individual files in the IPython
# Default: []
# c.ServerApp.extra_static_paths = []
## Extra paths to search for serving jinja templates.
#
# Can be used to override templates from jupyter_server.templates.
# Default: []
# c.ServerApp.extra_template_paths = []
## Open the named file when the application is launched.
# Default: ''
# c.ServerApp.file_to_run = ''
## The URL prefix where files are opened directly.
# Default: 'notebooks'
# c.ServerApp.file_url_prefix = 'notebooks'
## Generate default config file.
# See also: JupyterApp.generate_config
# c.ServerApp.generate_config = False
## Extra keyword arguments to pass to `get_secure_cookie`. See tornado's
# get_secure_cookie docs for details.
# Default: {}
# c.ServerApp.get_secure_cookie_kwargs = {}
## (bytes/sec)
# Maximum rate at which stream output can be sent on iopub before they are
# limited.
# Default: 1000000
# c.ServerApp.iopub_data_rate_limit = 1000000
## (msgs/sec)
# Maximum rate at which messages can be sent on iopub before they are
# limited.
# Default: 1000
# c.ServerApp.iopub_msg_rate_limit = 1000
## The IP address the Jupyter server will listen on.
# Default: 'localhost'
c.ServerApp.ip = '0.0.0.0'
## Supply extra arguments that will be passed to Jinja environment.
# Default: {}
# c.ServerApp.jinja_environment_options = {}
## Extra variables to supply to jinja templates when rendering.
# Default: {}
# c.ServerApp.jinja_template_vars = {}
## Dict of Python modules to load as Jupyter server extensions.Entry values can
# be used to enable and disable the loading ofthe extensions. The extensions
# will be loaded in alphabetical order.
# Default: {}
# c.ServerApp.jpserver_extensions = {}
## The kernel manager class to use.
# Default: 'jupyter_server.services.kernels.kernelmanager.AsyncMappingKernelManager'
# c.ServerApp.kernel_manager_class = 'jupyter_server.services.kernels.kernelmanager.AsyncMappingKernelManager'
## The kernel spec manager class to use. Should be a subclass of
# `jupyter_client.kernelspec.KernelSpecManager`.
#
# The Api of KernelSpecManager is provisional and might change without warning
# between this version of Jupyter and the next stable one.
# Default: 'jupyter_client.kernelspec.KernelSpecManager'
# c.ServerApp.kernel_spec_manager_class = 'jupyter_client.kernelspec.KernelSpecManager'
## Preferred kernel message protocol over websocket to use (default: None). If an
# empty string is passed, select the legacy protocol. If None, the selected
# protocol will depend on what the front-end supports (usually the most recent
# protocol supported by the back-end and the front-end).
# Default: None
# c.ServerApp.kernel_ws_protocol = None
## The full path to a private key file for usage with SSL/TLS.
# Default: ''
# c.ServerApp.keyfile = ''
## Whether to limit the rate of IOPub messages (default: True). If True, use
# iopub_msg_rate_limit, iopub_data_rate_limit and/or rate_limit_window to tune
# the rate.
# Default: True
# c.ServerApp.limit_rate = True
## Hostnames to allow as local when allow_remote_access is False.
#
# Local IP addresses (such as 127.0.0.1 and ::1) are automatically accepted
# as local as well.
# Default: ['localhost']
# c.ServerApp.local_hostnames = ['localhost']
## The date format used by logging formatters for %(asctime)s
# See also: Application.log_datefmt
# c.ServerApp.log_datefmt = '%Y-%m-%d %H:%M:%S'
## The Logging format template
# See also: Application.log_format
# c.ServerApp.log_format = '[%(name)s]%(highlevel)s %(message)s'
## Set the log level by value or name.
# See also: Application.log_level
# c.ServerApp.log_level = 30
## The login handler class to use.
# Default: 'jupyter_server.auth.login.LoginHandler'
# c.ServerApp.login_handler_class = 'jupyter_server.auth.login.LoginHandler'
## The logout handler class to use.
# Default: 'jupyter_server.auth.logout.LogoutHandler'
# c.ServerApp.logout_handler_class = 'jupyter_server.auth.logout.LogoutHandler'
## Sets the maximum allowed size of the client request body, specified in the
# Content-Length request header field. If the size in a request exceeds the
# configured value, a malformed HTTP message is returned to the client.
#
# Note: max_body_size is applied even in streaming mode.
# Default: 536870912
# c.ServerApp.max_body_size = 536870912
## Gets or sets the maximum amount of memory, in bytes, that is allocated for use
# by the buffer manager.
# Default: 536870912
# c.ServerApp.max_buffer_size = 536870912
## Gets or sets a lower bound on the open file handles process resource limit.
# This may need to be increased if you run into an OSError: [Errno 24] Too many
# open files. This is not applicable when running on Windows.
# Default: 0
# c.ServerApp.min_open_files_limit = 0
## DEPRECATED, use root_dir.
# Default: ''
# c.ServerApp.notebook_dir = ''
## Whether to open in a browser after starting.
# The specific browser used is platform dependent and
# determined by the python standard library `webbrowser`
# module, unless it is overridden using the --browser
# (ServerApp.browser) configuration option.
# Default: False
c.ServerApp.open_browser = False
## Hashed password to use for web authentication.
#
# To generate, type in a python/IPython shell:
#
# from jupyter_server.auth import passwd; passwd()
#
# The string should be of the form type:salt:hashed-
# password.
# Default: ''
c.ServerApp.password = ''
## Forces users to use a password for the Jupyter server.
# This is useful in a multi user environment, for instance when
# everybody in the LAN can access each other's machine through ssh.
#
# In such a case, serving on localhost is not secure since
# any user can connect to the Jupyter server via ssh.
# Default: False
# c.ServerApp.password_required = False
## The port the server will listen on (env: JUPYTER_PORT).
# Default: 0
c.ServerApp.port = 8888
## The number of additional ports to try if the specified port is not available
# (env: JUPYTER_PORT_RETRIES).
# Default: 50
# c.ServerApp.port_retries = 50
## Preferred starting directory to use for notebooks and kernels.
# Default: ''
# c.ServerApp.preferred_dir = ''
## DISABLED: use %pylab or %matplotlib in the notebook to enable matplotlib.
# Default: 'disabled'
# c.ServerApp.pylab = 'disabled'
## If True, display controls to shut down the Jupyter server, such as menu items
# or buttons.
# Default: True
c.ServerApp.quit_button = True
## (sec) Time window used to
# check the message and data rate limits.
# Default: 3
# c.ServerApp.rate_limit_window = 3
## Reraise exceptions encountered loading server extensions?
# Default: False
# c.ServerApp.reraise_server_extension_failures = False
## The directory to use for notebooks and kernels.
# Default: ''
import os
#os.environ['FIDLE_MASTER_VERSION'] = '2.4.1'
#fidle_master_version = os.environ.get('FIDLE_MASTER_VERSION')
c.ServerApp.root_dir = f'/notebooks/last'
## The session manager class to use.
# Default: 'jupyter_server.services.sessions.sessionmanager.SessionManager'
# c.ServerApp.session_manager_class = 'jupyter_server.services.sessions.sessionmanager.SessionManager'
## Instead of starting the Application, dump configuration to stdout
# See also: Application.show_config
# c.ServerApp.show_config = False
## Instead of starting the Application, dump configuration to stdout (as JSON)
# See also: Application.show_config_json
# c.ServerApp.show_config_json = False
## Shut down the server after N seconds with no kernels or terminals running and
# no activity. This can be used together with culling idle kernels
# (MappingKernelManager.cull_idle_timeout) to shutdown the Jupyter server when
# it's not in use. This is not precisely timed: it may shut down up to a minute
# later. 0 (the default) disables this automatic shutdown.
# Default: 0
# c.ServerApp.shutdown_no_activity_timeout = 0
## The UNIX socket the Jupyter server will listen on.
# Default: ''
# c.ServerApp.sock = ''
## The permissions mode for UNIX socket creation (default: 0600).
# Default: '0600'
# c.ServerApp.sock_mode = '0600'
## Supply SSL options for the tornado HTTPServer.
# See the tornado docs for details.
# Default: {}
# c.ServerApp.ssl_options = {}
## Supply overrides for terminado. Currently only supports "shell_command".
# Default: {}
# c.ServerApp.terminado_settings = {}
## Set to False to disable terminals.
#
# This does *not* make the server more secure by itself.
# Anything the user can in a terminal, they can also do in a notebook.
#
# Terminals may also be automatically disabled if the terminado package
# is not available.
# Default: True
# c.ServerApp.terminals_enabled = True
## Token used for authenticating first-time connections to the server.
#
# The token can be read from the file referenced by JUPYTER_TOKEN_FILE or set directly
# with the JUPYTER_TOKEN environment variable.
#
# When no password is enabled,
# the default is to generate a new, random token.
#
# Setting to an empty string disables authentication altogether, which
# is NOT RECOMMENDED.
# Default: '<generated>'
# c.ServerApp.token = '<generated>'
## Supply overrides for the tornado.web.Application that the Jupyter server uses.
# Default: {}
# c.ServerApp.tornado_settings = {}
## Whether to trust or not X-Scheme/X-Forwarded-Proto and X-Real-Ip/X-Forwarded-
# For headerssent by the upstream reverse proxy. Necessary if the proxy handles
# SSL
# Default: False
# c.ServerApp.trust_xheaders = False
## Disable launching browser by redirect file
# For versions of notebook > 5.7.2, a security feature measure was added that
# prevented the authentication token used to launch the browser from being visible.
# This feature makes it difficult for other users on a multi-user system from
# running code in your Jupyter session as you.
# However, some environments (like Windows Subsystem for Linux (WSL) and Chromebooks),
# launching a browser using a redirect file can lead the browser failing to load.
# This is because of the difference in file structures/paths between the runtime and
# the browser.
#
# Disabling this setting to False will disable this behavior, allowing the browser
# to launch by using a URL and visible token (as before).
# Default: True
# c.ServerApp.use_redirect_file = True
## Specify where to open the server on startup. This is the
# `new` argument passed to the standard library method `webbrowser.open`.
# The behaviour is not guaranteed, but depends on browser support. Valid
# values are:
#
# - 2 opens a new tab,
# - 1 opens a new window,
# - 0 opens in an existing window.
#
# See the `webbrowser.open` documentation for details.
# Default: 2
# c.ServerApp.webbrowser_open_new = 2
## Set the tornado compression options for websocket connections.
#
# This value will be returned from
# :meth:`WebSocketHandler.get_compression_options`. None (default) will disable
# compression. A dict (even an empty one) will enable compression.
#
# See the tornado docs for WebSocketHandler.get_compression_options for details.
# Default: None
# c.ServerApp.websocket_compression_options = None
## The base URL for websockets,
# if it differs from the HTTP server (hint: it almost certainly doesn't).
#
# Should be in the form of an HTTP origin: ws[s]://hostname[:port]
# Default: ''
# c.ServerApp.websocket_url = ''
# ----------------------------------------------------
# ______ _ _ _ __ __
# | ____(_) | | | \ \ / /
# | |__ _ __| | | ___ \ \ / /__ _ ____ __
# | __| | |/ _` | |/ _ \ \ \/ / _ \ '_ \ \ / /
# | | | | (_| | | __/ \ / __/ | | \ V /
# |_| |_|\__,_|_|\___| \/ \___|_| |_|\_/
# Fidle pip virtual env
# ----------------------------------------------------
#
# To install your Fidle env, see https://fidle.cnrs.fr/installation
#
# Keras 3 / PyTorch version (Python 3.9.2)
--extra-index-url https://download.pytorch.org/whl/cpu
torch
torchvision
torch-geometric
torchtext
torchdata
lightning
tensorboard
keras
transformers
numpy
Scikit-image
Scikit-learn
Matplotlib
plotly
seaborn
einops
datasets
barviz
pyarrow
Pandas
Pandoc
pyyaml
Jupyterlab
fidle
# ----------------------------------------------------
# ______ _ _ _ __ __
# | ____(_) | | | \ \ / /
# | |__ _ __| | | ___ \ \ / /__ _ ____ __
# | __| | |/ _` | |/ _ \ \ \/ / _ \ '_ \ \ / /
# | | | | (_| | | __/ \ / __/ | | \ V /
# |_| |_|\__,_|_|\___| \/ \___|_| |_|\_/
# Fidle pip virtual env
# ----------------------------------------------------
#
# To install your Fidle env, see https://fidle.cnrs.fr/installation
#
# Keras 3 / PyTorch version (Python 3.9.2)
torch
torchvision
torch-geometric
torchtext
torchdata
lightning
tensorboard
keras
transformers
numpy
Scikit-image
Scikit-learn
Matplotlib
plotly
seaborn
einops
datasets
barviz
pyarrow
Pandas
Pandoc
pyyaml
Jupyterlab
fidle
name: deeplearning2
channels:
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _tflow_select=2.1.0=gpu
- absl-py=0.8.1=py37_0
- astor=0.8.0=py37_0
- attrs=19.3.0=py_0
- backcall=0.1.0=py37_0
- blas=1.0=mkl
- bleach=3.1.0=py_0
- blosc=1.16.3=hd408876_0
- bzip2=1.0.8=h7b6447c_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2019.11.27=0
- certifi=2019.11.28=py37_0
- cloudpickle=1.2.2=py_0
- cudatoolkit=10.0.130=0
- cudnn=7.6.4=cuda10.0_0
- cupti=10.0.130=0
- cycler=0.10.0=py37_0
- cytoolz=0.10.1=py37h7b6447c_0
- dask-core=2.9.0=py_0
- dbus=1.13.12=h746ee38_0
- decorator=4.4.1=py_0
- defusedxml=0.6.0=py_0
- entrypoints=0.3=py37_0
- expat=2.2.6=he6710b0_0
- fontconfig=2.13.0=h9420a91_0
- freetype=2.9.1=h8a8886c_1
- gast=0.2.2=py37_0
- glib=2.63.1=h5a9c865_0
- gmp=6.1.2=h6c8ec71_1
- google-pasta=0.1.8=py_0
- grpcio=1.16.1=py37hf8bcb03_1
- gst-plugins-base=1.14.0=hbbd80ab_1
- gstreamer=1.14.0=hb453b48_1
- h5py=2.9.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=h9c2bf20_1
- imageio=2.6.1=py37_0
- importlib_metadata=1.3.0=py37_0
- intel-openmp=2019.4=243
- ipykernel=5.1.3=py37h39e3cac_0
- ipython=7.10.2=py37h39e3cac_0
- ipython_genutils=0.2.0=py37_0
- jedi=0.15.1=py37_0
- jinja2=2.10.3=py_0
- joblib=0.14.1=py_0
- jpeg=9b=h024ee3a_2
- json5=0.8.5=py_0
- jsonschema=3.2.0=py37_0
- jupyter_client=5.3.4=py37_0
- jupyter_core=4.6.1=py37_0
- jupyterlab=1.2.4=pyhf63ae98_0
- jupyterlab_server=1.0.6=py_0
- keras-applications=1.0.8=py_0
- keras-preprocessing=1.1.0=py_1
- kiwisolver=1.1.0=py37he6710b0_0
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libprotobuf=3.11.2=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_0
- libuuid=1.0.3=h1bed415_2
- libxcb=1.13=h1bed415_1
- libxml2=2.9.9=hea5a465_1
- lz4-c=1.8.1.2=h14c3975_0
- lzo=2.10=h49e0be7_2
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h7b6447c_0
- matplotlib=3.1.1=py37h5429711_0
- mistune=0.8.4=py37h7b6447c_0
- mkl=2019.4=243
- mkl-service=2.3.0=py37he904b0f_0
- mkl_fft=1.0.15=py37ha843d7b_0
- mkl_random=1.1.0=py37hd6b4f25_0
- mock=3.0.5=py37_0
- more-itertools=8.0.2=py_0
- nbconvert=5.6.1=py37_0
- nbformat=4.4.0=py37_0
- ncurses=6.1=he6710b0_1
- networkx=2.4=py_0
- notebook=6.0.2=py37_0
- numexpr=2.7.0=py37h9e4a6bb_0
- numpy=1.17.4=py37hc1035e2_0
- numpy-base=1.17.4=py37hde5b4d6_0
- olefile=0.46=py_0
- openssl=1.1.1d=h7b6447c_3
- opt_einsum=3.1.0=py_0
- pandas=0.25.3=py37he6710b0_0
- pandoc=2.2.3.2=0
- pandocfilters=1.4.2=py37_1
- parso=0.5.2=py_0
- patsy=0.5.1=py37_0
- pcre=8.43=he6710b0_0
- pexpect=4.7.0=py37_0
- pickleshare=0.7.5=py37_0
- pillow=6.2.1=py37h34e0f95_0
- pip=19.3.1=py37_0
- prometheus_client=0.7.1=py_0
- prompt_toolkit=3.0.2=py_0
- protobuf=3.11.2=py37he6710b0_0
- ptyprocess=0.6.0=py37_0
- pygments=2.5.2=py_0
- pyparsing=2.4.5=py_0
- pyqt=5.9.2=py37h05f1152_2
- pyrsistent=0.15.6=py37h7b6447c_0
- pytables=3.6.1=py37h71ec239_0
- python=3.7.5=h0371630_0
- python-dateutil=2.8.1=py_0
- pytz=2019.3=py_0
- pywavelets=1.1.1=py37h7b6447c_0
- pyzmq=18.1.0=py37he6710b0_0
- qt=5.9.7=h5867ecd_1
- readline=7.0=h7b6447c_5
- scikit-image=0.15.0=py37he6710b0_0
- scikit-learn=0.22=py37hd81dba3_0
- scipy=1.3.2=py37h7c811a0_0
- seaborn=0.9.0=pyh91ea838_1
- send2trash=1.5.0=py37_0
- setuptools=42.0.2=py37_0
- sip=4.19.8=py37hf484d3e_0
- six=1.13.0=py37_0
- snappy=1.1.7=hbae5bb6_3
- sqlite=3.30.1=h7b6447c_0
- statsmodels=0.10.1=py37hdd07704_0
- tensorboard=2.0.0=pyhb38c66f_1
- tensorflow=2.0.0=gpu_py37h768510d_0
- tensorflow-base=2.0.0=gpu_py37h0ec5d1f_0
- tensorflow-estimator=2.0.0=pyh2649769_0
- tensorflow-gpu=2.0.0=h0d30ee6_0
- termcolor=1.1.0=py37_1
- terminado=0.8.3=py37_0
- testpath=0.4.4=py_0
- tk=8.6.8=hbc83047_0
- toolz=0.10.0=py_0
- tornado=6.0.3=py37h7b6447c_0
- traitlets=4.3.3=py37_0
- wcwidth=0.1.7=py37_0
- webencodings=0.5.1=py37_1
- werkzeug=0.16.0=py_0
- wheel=0.33.6=py37_0
- wrapt=1.11.2=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- zeromq=4.3.1=he6710b0_3
- zipp=0.6.0=py_0
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
prefix: /home/pjluc/anaconda3/envs/deeplearning2
VERSION='0.1a'
\ No newline at end of file
#--------------------------------------------------------------------
# ______ _ _ _ _____ _ _
# | ____(_) | | | / ____| | | | |
# | |__ _ __| | | ___ | | ___ _ __ | |_ ___ _ __ | |_ ___
# | __| | |/ _` | |/ _ \ | | / _ \| '_ \| __/ _ \ '_ \| __/ __|
# | | | | (_| | | __/ | |___| (_) | | | | || __/ | | | |_\__ \
# |_| |_|\__,_|_|\___| \_____\___/|_| |_|\__\___|_| |_|\__|___/
#
# Formation Introduction au Deep Learning - 2024
#--------------------------------------------------------------------
# Formation Introduction au Deep Learning https://fidle.cnrs.fr
# By MIAI/CNRS/UGA 2023/24
#
# This file describes the notebooks used by the Fidle training.
version: 3.0.15
content: notebooks
name: Notebooks Fidle
description: All notebooks used by the Fidle training
readme_md: README.md
readme_ipynb: README.ipynb
default_ci: fidle/ci/default.yml
toc:
LinearReg: Linear and logistic regression
Perceptron: Perceptron Model 1957
BHPD.Keras3: BHPD regression (DNN), using Keras3/PyTorch
BHPD.PyTorch: BHPD regression (DNN), using PyTorch
Wine.Keras3: Wine Quality prediction (DNN), using Keras3/PyTorch
Wine.Lightning: Wine Quality prediction (DNN), using PyTorch/Lightning
MNIST.Keras3: MNIST classification (DNN,CNN), using Keras3/PyTorch
MNIST.PyTorch: MNIST classification (DNN,CNN), using PyTorch
MNIST.Lightning: MNIST classification (DNN,CNN), using PyTorch/Lightning
GTSRB.Keras3: Images classification GTSRB with Convolutional Neural Networks (CNN), using Keras3/PyTorch
Embedding.Keras3: Sentiment analysis with word embedding, using Keras3/PyTorch
RNN.Keras3: Time series with Recurrent Neural Network (RNN), using Keras3/PyTorch
GNN.PyTorch: Graph Neural Networks
AE.Keras3: Unsupervised learning with an autoencoder neural network (AE), using Keras3
VAE.Keras3: Generative network with Variational Autoencoder (VAE), using Keras3
DCGAN.Lightning: Generative Adversarial Networks (GANs), using Lightning
DDPM.PyTorch: Diffusion Model (DDPM) using PyTorch
Optimization.PyTorch: Training optimization, using PyTorch
DRL.PyTorch: Deep Reinforcement Learning (DRL), using PyTorch
Misc: Miscellaneous things, but very important!
#!/bin/bash
# -----------------------------------------------
# _ _ _
# | |__ __ _| |_ ___| |__
# | '_ \ / _` | __/ __| '_ \
# | |_) | (_| | || (__| | | |
# |_.__/ \__,_|\__\___|_| |_|
# Fidle at IDRIS
# -----------------------------------------------
#
# SLURM batch script
# Bash script for SLURM batch submission of ci notebooks
# by Jean-Luc Parouty (CNRS/SIMaP)
#
# Soumission : sbatch /(...)/batch_slurm.sh
# Suivi : squeue -u $USER
# ==== Job parameters ==============================================
#SBATCH --job-name="Fidle ci" # nom du job
#SBATCH --ntasks=1 # nombre de tâche (un unique processus ici)
#SBATCH --gres=gpu:1 # nombre de GPU à réserver (un unique GPU ici)
#SBATCH --cpus-per-task=10 # nombre de coeurs à réserver (un quart du noeud)
#SBATCH --hint=nomultithread # on réserve des coeurs physiques et non logiques
#SBATCH --time=05:00:00 # temps exécution maximum demande (HH:MM:SS)
#SBATCH --output="FIDLE_CI_%j.out" # nom du fichier de sortie
#SBATCH --error="FIDLE_CI_%j.err" # nom du fichier des erreurs
#SBATCH --mail-user=Someone@somewhere.fr
#SBATCH --mail-type=END,FAIL
# ==== Parameters ==================================================
MODULE_ENV="pytorch-gpu/py3/2.1.1"
RUN_DIR="$WORK/fidle-project/fidle"
CAMPAIN_PROFILE="./fidle/ci/gpu-scale1.yml"
FILTER=( '.*' )
# ==================================================================
echo '------------------------------------------------------------'
echo "Start : $0"
echo '------------------------------------------------------------'
echo "Job id : $SLURM_JOB_ID"
echo "Job name : $SLURM_JOB_NAME"
echo "Job node list : $SLURM_JOB_NODELIST"
echo '------------------------------------------------------------'
echo "module loaded : $MODULE_ENV"
echo "run dir : $RUN_DIR"
echo "campain profile : $CAMPAIN_PROFILE"
echo "filter : ${FILTER[@]}"
echo '------------------------------------------------------------'
# ---- Module + env.
module purge
module load "$MODULE_ENV"
export PYTHONUSERBASE=$WORK/local/fidle-k3
export PATH=$PATH:$PYTHONUSERBASE/bin
# ---- Run it...
cd "$RUN_DIR"
fid run_ci --quiet --campain "$CAMPAIN_PROFILE" --filter ${FILTER[@]}
echo 'Done.'
campain:
version: '1.0'
description: Notebook test on CPU, default settings.
directory: ./campains/cpu-default
existing_notebook: 'skip' # remove|skip
report_template: 'fidle' # fidle|default
timeout: 6000
environment_vars:
FIDLE_SAVE_FIGS: true
#
# ------------ LinearReg
#
LINR1:
notebook: LinearReg/01-Linear-Regression.ipynb
GRAD1:
notebook: LinearReg/02-Gradient-descent.ipynb
POLR1:
notebook: LinearReg/03-Polynomial-Regression.ipynb
LOGR1:
notebook: LinearReg/04-Logistic-Regression.ipynb
#
# ------------ Perceptron
#
PER57:
notebook: Perceptron/01-Simple-Perceptron.ipynb
#
# ------------ BHPD.Keras3
#
K3BHPD1:
notebook: BHPD.Keras3/01-DNN-Regression.ipynb
overrides:
fit_verbosity: 2
K3BHPD2:
notebook: BHPD.Keras3/02-DNN-Regression-Premium.ipynb
overrides:
fit_verbosity: 2
#
# ------------ BHPD.PyTorch
#
PBHPD1:
notebook: BHPD.PyTorch/01-DNN-Regression_PyTorch.ipynb
#
# ------------ Wine.Keras3
#
K3WINE1:
notebook: Wine.Keras3/01-DNN-Wine-Regression.ipynb
overrides:
fit_verbosity: 2
dataset_name: default
#
# ------------ Wine.Lightning
#
LWINE1:
notebook: Wine.Lightning/01-DNN-Wine-Regression-lightning.ipynb
overrides:
fit_verbosity: 2
dataset_name: default
#
# ------------ MNIST.Keras3
#
K3MNIST1:
notebook: MNIST.Keras3/01-DNN-MNIST.ipynb
overrides:
fit_verbosity: 2
K3MNIST2:
notebook: MNIST.Keras3/02-CNN-MNIST.ipynb
overrides:
fit_verbosity: 2
#
# ------------ MNIST.PyTorch
#
#PMNIST1:
# notebook: MNIST.PyTorch/01-DNN-MNIST_PyTorch.ipynb
#
# ------------ MNIST.Lightning
#
#LMNIST2:
# notebook: MNIST.Lightning/02-CNN-MNIST_Lightning.ipynb
#
# ------------ GTSRB.Keras3
#
K3GTSRB1:
notebook: GTSRB.Keras3/01-Preparation-of-data.ipynb
overrides:
scale: default
output_dir: default
progress_verbosity: default
K3GTSRB2:
notebook: GTSRB.Keras3/02-First-convolutions.ipynb
after: K3GTSRB1
overrides:
enhanced_dir: default
dataset_name: default
batch_size: default
epochs: default
scale: default
fit_verbosity: 2
K3GTSRB3:
notebook: GTSRB.Keras3/03-Better-convolutions.ipynb
after: K3GTSRB1
overrides:
enhanced_dir: default
model_name: default
dataset_name: default
batch_size: default
epochs: default
scale: default
fit_verbosity: 2
#
# ------------ Embedding.Keras3
#
K3IMDB1:
notebook: Embedding.Keras3/01-One-hot-encoding.ipynb
overrides:
vocab_size: default
hide_most_frequently: default
batch_size: default
epochs: default
fit_verbosity: 2
K3IMDB2:
notebook: Embedding.Keras3/02-Keras-embedding.ipynb
overrides:
vocab_size: default
hide_most_frequently: default
review_len: default
dense_vector_size: default
batch_size: default
epochs: default
output_dir: default
fit_verbosity: 2
K3IMDB3:
notebook: Embedding.Keras3/03-Prediction.ipynb
after: K3IMDB2
overrides:
vocab_size: default
review_len: default
saved_models: default
dictionaries_dir: default
K3IMDB4:
notebook: Embedding.Keras3/04-Show-vectors.ipynb
after: K3IMDB2
overrides:
vocab_size: default
review_len: default
saved_models: default
dictionaries_dir: default
K3IMDB5:
notebook: Embedding.Keras3/05-LSTM-Keras.ipynb
overrides:
vocab_size: default
hide_most_frequently: default
review_len: default
dense_vector_size: default
batch_size: default
epochs: default
fit_verbosity: 2
scale: default
#
# ------------ RNN.Keras3
#
K3LADYB1:
notebook: RNN.Keras3/01-Ladybug.ipynb
overrides:
scale: default
train_prop: default
sequence_len: default
predict_len: default
batch_size: default
epochs: default
#
# ------------ AE.Keras3
#
K3AE1:
notebook: AE.Keras3/01-Prepare-MNIST-dataset.ipynb
overrides:
prepared_dataset: default
scale: 0.1
progress_verbosity: default
K3AE2:
notebook: AE.Keras3/02-AE-with-MNIST.ipynb
after: K3AE1
overrides:
prepared_dataset: default
dataset_seed: default
scale: 1
latent_dim: default
train_prop: default
batch_size: default
epochs: 4
fit_verbosity: default
K3AE3:
notebook: AE.Keras3/03-AE-with-MNIST-post.ipynb
after: K3AE2
overrides:
prepared_dataset: default
dataset_seed: default
scale: 1
train_prop: default
K3AE4:
notebook: AE.Keras3/04-ExtAE-with-MNIST.ipynb
after: K3AE1
overrides:
prepared_dataset: default
dataset_seed: default
scale: 1
train_prop: default
batch_size: default
epochs: 4
fit_verbosity: default
K3AE5:
notebook: AE.Keras3/05-ExtAE-with-MNIST.ipynb
after: K3AE1
overrides:
prepared_dataset: default
dataset_seed: default
scale: 1
train_prop: default
batch_size: default
epochs: 4
fit_verbosity: default
#
# ------------ VAE.Keras3
#
K3VAE1:
notebook: VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb
overrides:
latent_dim: default
loss_weights: default
scale: 0.1
seed: default
batch_size: default
epochs: 4
fit_verbosity: default
K3VAE2:
notebook: VAE.Keras3/02-VAE-with-MNIST.ipynb
overrides:
latent_dim: default
loss_weights: default
scale: 0.1
seed: default
batch_size: default
epochs: 4
fit_verbosity: default
K3VAE3:
notebook: VAE.Keras3/03-VAE-with-MNIST-post.ipynb
after: K3VAE2
overrides:
scale: 0.1
seed: default
models_dir: default
#
# ------------ DCGAN.Lightning
#
PLSHEEP3:
notebook: DCGAN.Lightning/01-DCGAN-PL.ipynb
overrides:
latent_dim: default
gan_name: GAN
generator_name: default
discriminator_name: default
epochs: 4
lr: default
b1: default
b2: default
batch_size: default
num_img: default
fit_verbosity: default
dataset_file: default
data_shape: default
scale: 0.001
num_workers: default
PLSHEEP3:
notebook: DCGAN.Lightning/01-DCGAN-PL.ipynb
overrides:
latent_dim: default
gan_name: WGANGP
generator_name: default
discriminator_name: default
epochs: 4
lr: default
b1: default
b2: default
batch_size: default
num_img: default
fit_verbosity: default
dataset_file: default
data_shape: default
scale: 0.001
num_workers: default
#
# ------------ Misc
#
NP1:
notebook: Misc/00-Numpy.ipynb
ACTF1:
notebook: Misc/01-Activation-Functions.ipynb
PANDAS1:
notebook: Misc/02-Using-pandas.ipynb
FID1:
notebook: Misc/07-Fid-Example.ipynb
overrides:
scale: .1
x: 345
batch_size: default
\ No newline at end of file
campain:
version: '1.0'
description: Automatically generated ci profile (06/01/25 16:42:30)
directory: ./campains/default
existing_notebook: 'remove # remove|skip'
report_template: 'fidle # fidle|default'
timeout: 6000
#
# ------------ LinearReg
#
LINR1:
notebook: LinearReg/01-Linear-Regression.ipynb
GRAD1:
notebook: LinearReg/02-Gradient-descent.ipynb
POLR1:
notebook: LinearReg/03-Polynomial-Regression.ipynb
LOGR1:
notebook: LinearReg/04-Logistic-Regression.ipynb
#
# ------------ Perceptron
#
PER57:
notebook: Perceptron/01-Simple-Perceptron.ipynb
#
# ------------ BHPD.Keras3
#
K3BHPD1:
notebook: BHPD.Keras3/01-DNN-Regression.ipynb
overrides:
fit_verbosity: default
K3BHPD2:
notebook: BHPD.Keras3/02-DNN-Regression-Premium.ipynb
overrides:
fit_verbosity: default
#
# ------------ BHPD.PyTorch
#
PBHPD1:
notebook: BHPD.PyTorch/01-DNN-Regression_PyTorch.ipynb
#
# ------------ Wine.Keras3
#
K3WINE1:
notebook: Wine.Keras3/01-DNN-Wine-Regression.ipynb
overrides:
fit_verbosity: default
dataset_name: default
#
# ------------ Wine.Lightning
#
LWINE1:
notebook: Wine.Lightning/01-DNN-Wine-Regression-lightning.ipynb
overrides:
fit_verbosity: default
dataset_name: default
#
# ------------ MNIST.Keras3
#
K3MNIST1:
notebook: MNIST.Keras3/01-DNN-MNIST.ipynb
overrides:
fit_verbosity: default
K3MNIST2:
notebook: MNIST.Keras3/02-CNN-MNIST.ipynb
overrides:
fit_verbosity: default
#
# ------------ MNIST.PyTorch
#
PMNIST1:
notebook: MNIST.PyTorch/01-DNN-MNIST_PyTorch.ipynb
#
# ------------ MNIST.Lightning
#
LMNIST1:
notebook: MNIST.Lightning/01-DNN-MNIST_Lightning.ipynb
LMNIST2:
notebook: MNIST.Lightning/02-CNN-MNIST_Lightning.ipynb
#
# ------------ GTSRB.Keras3
#
K3GTSRB1:
notebook: GTSRB.Keras3/01-Preparation-of-data.ipynb
overrides:
scale: default
output_dir: default
progress_verbosity: default
K3GTSRB2:
notebook: GTSRB.Keras3/02-First-convolutions.ipynb
overrides:
enhanced_dir: default
dataset_name: default
batch_size: default
epochs: default
scale: default
fit_verbosity: default
K3GTSRB3:
notebook: GTSRB.Keras3/03-Better-convolutions.ipynb
overrides:
enhanced_dir: default
model_name: default
dataset_name: default
batch_size: default
epochs: default
scale: default
fit_verbosity: default
#
# ------------ Embedding.Keras3
#
K3IMDB1:
notebook: Embedding.Keras3/01-One-hot-encoding.ipynb
overrides:
vocab_size: default
hide_most_frequently: default
batch_size: default
epochs: default
fit_verbosity: default
K3IMDB2:
notebook: Embedding.Keras3/02-Keras-embedding.ipynb
overrides:
vocab_size: default
hide_most_frequently: default
review_len: default
dense_vector_size: default
batch_size: default
epochs: default
output_dir: default
fit_verbosity: default
K3IMDB3:
notebook: Embedding.Keras3/03-Prediction.ipynb
overrides:
vocab_size: default
review_len: default
saved_models: default
dictionaries_dir: default
K3IMDB4:
notebook: Embedding.Keras3/04-Show-vectors.ipynb
overrides:
vocab_size: default
review_len: default
saved_models: default
dictionaries_dir: default
K3IMDB5:
notebook: Embedding.Keras3/05-LSTM-Keras.ipynb
overrides:
vocab_size: default
hide_most_frequently: default
review_len: default
dense_vector_size: default
batch_size: default
epochs: default
fit_verbosity: default
scale: default
#
# ------------ RNN.Keras3
#
K3LADYB1:
notebook: RNN.Keras3/01-Ladybug.ipynb
overrides:
scale: default
train_prop: default
sequence_len: default
predict_len: default
batch_size: default
epochs: default
fit_verbosity: default
#
# ------------ GNN.PyTorch
#
{}
#
# ------------ AE.Keras3
#
K3AE1:
notebook: AE.Keras3/01-Prepare-MNIST-dataset.ipynb
overrides:
prepared_dataset: default
scale: default
progress_verbosity: default
K3AE2:
notebook: AE.Keras3/02-AE-with-MNIST.ipynb
overrides:
prepared_dataset: default
dataset_seed: default
scale: default
latent_dim: default
train_prop: default
batch_size: default
epochs: default
fit_verbosity: default
K3AE3:
notebook: AE.Keras3/03-AE-with-MNIST-post.ipynb
overrides:
prepared_dataset: default
dataset_seed: default
scale: default
train_prop: default
K3AE4:
notebook: AE.Keras3/04-ExtAE-with-MNIST.ipynb
overrides:
prepared_dataset: default
dataset_seed: default
scale: default
train_prop: default
batch_size: default
epochs: default
fit_verbosity: default
K3AE5:
notebook: AE.Keras3/05-ExtAE-with-MNIST.ipynb
overrides:
prepared_dataset: default
dataset_seed: default
scale: default
train_prop: default
batch_size: default
epochs: default
fit_verbosity: default
#
# ------------ VAE.Keras3
#
K3VAE1:
notebook: VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb
overrides:
latent_dim: default
loss_weights: default
scale: default
seed: default
batch_size: default
epochs: default
fit_verbosity: default
K3VAE2:
notebook: VAE.Keras3/02-VAE-with-MNIST.ipynb
overrides:
latent_dim: default
loss_weights: default
scale: default
seed: default
batch_size: default
epochs: default
fit_verbosity: default
K3VAE3:
notebook: VAE.Keras3/03-VAE-with-MNIST-post.ipynb
overrides:
scale: default
seed: default
models_dir: default
#
# ------------ DCGAN.Lightning
#
PLSHEEP3:
notebook: DCGAN.Lightning/01-DCGAN-PL.ipynb
overrides:
latent_dim: default
gan_name: default
generator_name: default
discriminator_name: default
epochs: default
lr: default
b1: default
b2: default
batch_size: default
num_img: default
fit_verbosity: default
dataset_file: default
data_shape: default
scale: default
num_workers: default
#
# ------------ DDPM.PyTorch
#
DDPM1:
notebook: DDPM.PyTorch/01-ddpm.ipynb
#
# ------------ Optimization.PyTorch
#
OPT1:
notebook: Optimization.PyTorch/01-Apprentissages-rapides-et-Optimisations.ipynb
#
# ------------ DRL.PyTorch
#
DRL1:
notebook: DRL.PyTorch/FIDLE_DQNfromScratch.ipynb
DRL2:
notebook: DRL.PyTorch/FIDLE_rl_baselines_zoo.ipynb
#
# ------------ Misc
#
NP1:
notebook: Misc/00-Numpy.ipynb
ACTF1:
notebook: Misc/01-Activation-Functions.ipynb
PANDAS1:
notebook: Misc/02-Using-pandas.ipynb
PYTORCH1:
notebook: Misc/03-Using-Pytorch.ipynb
TSB1:
notebook: Misc/04-Using-Tensorboard.ipynb
overrides: ??
K3LSTM1:
notebook: Misc/05-RNN.ipynb
PGRAD1:
notebook: Misc/06-Gradients.ipynb
FID1:
notebook: Misc/99-Fid-Example.ipynb
overrides:
scale: default
x: default
batch_size: default
campain:
version: '1.0'
description: Notebook test on GPU, with scale=1
directory: ./campains/gpu-scale1
existing_notebook: 'remove' # remove|skip
report_template: 'fidle' # fidle|default
timeout: 6000
environment_vars:
FIDLE_SAVE_FIGS: true
#
# ------------ LinearReg
#
LINR1:
notebook: LinearReg/01-Linear-Regression.ipynb
GRAD1:
notebook: LinearReg/02-Gradient-descent.ipynb
POLR1:
notebook: LinearReg/03-Polynomial-Regression.ipynb
LOGR1:
notebook: LinearReg/04-Logistic-Regression.ipynb
#
# ------------ Perceptron
#
PER57:
notebook: Perceptron/01-Simple-Perceptron.ipynb
#
# ------------ BHPD.Keras3
#
K3BHPD1:
notebook: BHPD.Keras3/01-DNN-Regression.ipynb
overrides:
fit_verbosity: 2
K3BHPD2:
notebook: BHPD.Keras3/02-DNN-Regression-Premium.ipynb
overrides:
fit_verbosity: 2
#
# ------------ BHPD.PyTorch
#
PBHPD1:
notebook: BHPD.PyTorch/01-DNN-Regression_PyTorch.ipynb
#
# ------------ Wine.Keras3
#
K3WINE1:
notebook: Wine.Keras3/01-DNN-Wine-Regression.ipynb
overrides:
fit_verbosity: 2
dataset_name: default
#
# ------------ Wine.Lightning
#
LWINE1:
notebook: Wine.Lightning/01-DNN-Wine-Regression-lightning.ipynb
overrides:
fit_verbosity: 2
dataset_name: default
#
# ------------ MNIST.Keras3
#
K3MNIST1:
notebook: MNIST.Keras3/01-DNN-MNIST.ipynb
overrides:
fit_verbosity: 2
K3MNIST2:
notebook: MNIST.Keras3/02-CNN-MNIST.ipynb
overrides:
fit_verbosity: 2
#
# ------------ MNIST.PyTorch
#
#PMNIST1:
# notebook: MNIST.PyTorch/01-DNN-MNIST_PyTorch.ipynb
#
# ------------ MNIST.Lightning
#
#LMNIST2:
# notebook: MNIST.Lightning/02-CNN-MNIST_Lightning.ipynb
#
# ------------ GTSRB.Keras3
#
K3GTSRB1:
notebook: GTSRB.Keras3/01-Preparation-of-data.ipynb
overrides:
scale: 1
output_dir: "{datasets_dir}/GTSRB/enhanced"
progress_verbosity: default
K3GTSRB2:
notebook: GTSRB.Keras3/02-First-convolutions.ipynb
after: K3GTSRB1
overrides:
enhanced_dir: "{datasets_dir}/GTSRB/enhanced"
dataset_name: set-24x24-L
batch_size: 64
epochs: 5
scale: 1
fit_verbosity: 2
K3GTSRB3_1:
notebook: GTSRB.Keras3/03-Better-convolutions.ipynb
after: K3GTSRB1
overrides:
enhanced_dir: "{datasets_dir}/GTSRB/enhanced"
model_name: model_01
dataset_name: set-48x48-RGB
batch_size: 64
epochs: 5
scale: 1
fit_verbosity: 2
K3GTSRB3_2:
notebook: GTSRB.Keras3/03-Better-convolutions.ipynb
after: K3GTSRB1
overrides:
enhanced_dir: "{datasets_dir}/GTSRB/enhanced"
model_name: model_02
dataset_name: set-48x48-RGB
batch_size: 64
epochs: 5
scale: 1
fit_verbosity: 2
#
# ------------ Embedding.Keras3
#
K3IMDB1:
notebook: Embedding.Keras3/01-One-hot-encoding.ipynb
overrides:
vocab_size: default
hide_most_frequently: default
batch_size: default
epochs: default
fit_verbosity: 2
K3IMDB2:
notebook: Embedding.Keras3/02-Keras-embedding.ipynb
overrides:
vocab_size: default
hide_most_frequently: default
review_len: default
dense_vector_size: default
batch_size: default
epochs: default
output_dir: default
fit_verbosity: 2
K3IMDB3:
notebook: Embedding.Keras3/03-Prediction.ipynb
after: K3IMDB2
overrides:
vocab_size: default
review_len: default
saved_models: default
dictionaries_dir: default
K3IMDB4:
notebook: Embedding.Keras3/04-Show-vectors.ipynb
after: K3IMDB2
overrides:
vocab_size: default
review_len: default
saved_models: default
dictionaries_dir: default
K3IMDB5:
notebook: Embedding.Keras3/05-LSTM-Keras.ipynb
overrides:
vocab_size: default
hide_most_frequently: default
review_len: default
dense_vector_size: default
batch_size: default
epochs: default
fit_verbosity: 2
scale: 1
#
# ------------ RNN.Keras3
#
K3LADYB1:
notebook: RNN.Keras3/01-Ladybug.ipynb
overrides:
scale: 1
train_prop: 0.8
sequence_len: 20
predict_len: 5
batch_size: 32
epochs: 10
fit_verbosity: 2
#
# ------------ AE.Keras3
#
K3AE1:
notebook: AE.Keras3/01-Prepare-MNIST-dataset.ipynb
overrides:
prepared_dataset: default
scale: 1
progress_verbosity: 2
K3AE2:
notebook: AE.Keras3/02-AE-with-MNIST.ipynb
after: K3AE1
overrides:
prepared_dataset: default
dataset_seed: default
scale: 1
latent_dim: 10
train_prop: default
batch_size: default
epochs: 20
fit_verbosity: 2
K3AE3:
notebook: AE.Keras3/03-AE-with-MNIST-post.ipynb
after: K3AE2
overrides:
prepared_dataset: default
dataset_seed: default
scale: default
train_prop: default
K3AE4:
notebook: AE.Keras3/04-ExtAE-with-MNIST.ipynb
after: K3AE1
overrides:
prepared_dataset: default
dataset_seed: default
scale: 1
train_prop: default
batch_size: default
epochs: 20
fit_verbosity: 2
K3AE5:
notebook: AE.Keras3/05-ExtAE-with-MNIST.ipynb
after: K3AE1
overrides:
prepared_dataset: default
dataset_seed: default
scale: 1
train_prop: default
batch_size: default
epochs: 30
fit_verbosity: 2
#
# ------------ VAE.Keras3
#
K3VAE1:
notebook: VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb
overrides:
latent_dim: default
loss_weights: default
scale: 1
seed: default
batch_size: default
epochs: 20
fit_verbosity: 2
K3VAE2:
notebook: VAE.Keras3/02-VAE-with-MNIST.ipynb
overrides:
latent_dim: default
loss_weights: default
scale: 1
seed: default
batch_size: default
epochs: 20
fit_verbosity: 2
K3VAE3:
notebook: VAE.Keras3/03-VAE-with-MNIST-post.ipynb
after: K3VAE2
overrides:
scale: 1
seed: default
models_dir: default
#
# ------------ DCGAN.Lightning
#
PLSHEEP3_1:
notebook: DCGAN.Lightning/01-DCGAN-PL.ipynb
overrides:
latent_dim: default
gan_name: GAN
generator_name: Generator_2
discriminator_name: Discriminator_3
epochs: 30
lr: default
b1: default
b2: default
batch_size: 64
num_img: default
fit_verbosity: default
dataset_file: default
data_shape: default
scale: 1
num_workers: 2
PLSHEEP3_2:
notebook: DCGAN.Lightning/01-DCGAN-PL.ipynb
overrides:
latent_dim: default
gan_name: WGANGP
generator_name: Generator_2
discriminator_name: Discriminator_3
epochs: 30
lr: default
b1: default
b2: default
batch_size: 64
num_img: default
fit_verbosity: default
dataset_file: default
data_shape: default
scale: 1
num_workers: 2
#
# ------------ Misc
#
NP1:
notebook: Misc/00-Numpy.ipynb
ACTF1:
notebook: Misc/01-Activation-Functions.ipynb
PANDAS1:
notebook: Misc/02-Using-pandas.ipynb
FID1:
notebook: Misc/99-Fid-Example.ipynb
overrides:
scale: 1
x: 345
batch_size: default
<style>
div.warn {
background-color: #fcf2f2;
border-color: #dFb5b4;
border-left: 5px solid #dfb5b4;
padding: 0.5em;
font-weight: bold;
font-size: 1.1em;;
}
div.nota {
background-color: #DAFFDE;
border-left: 5px solid #92CC99;
padding: 0.5em;
}
div.todo:before { content:url();
float:left;
margin-right:20px;
margin-top:-20px;
margin-bottom:20px;
}
div.todo{
font-weight: bold;
font-size: 1.1em;
margin-top:40px;
}
div.todo ul{
margin: 0.2em;
}
div.todo li{
margin-left:60px;
margin-top:0;
margin-bottom:0;
}
div .comment{
font-size:0.8em;
color:#696969;
}
</style>
<style>
.fid_line{
padding-top: 10px
}
.fid_id {
font-size:1.em;
color:black;
font-weight: bold;
padding:0px;
margin-left: 20px;
display: inline-block;
width: 60px;
}
.fid_desc {
font-size:1.em;
padding:0px;
margin-left: 85px;
display: inline-block;
width: 600px;
}
div.fid_section {
font-size:1.2em;
color:black;
margin-left: 0px;
margin-top: 12px;
margin-bottom:8px;
border-bottom: solid;
border-block-width: 1px;
border-block-color: #dadada;
width: 700px;
}
</style>
\ No newline at end of file
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 34.4736 35.5346"><path d="M17.5108,8.3758V.9771H7.3A3.2083,3.2083,0,0,0,4.1015,4.1759V27.6783A3.2082,3.2082,0,0,0,7.3,30.8771H24.8618a3.2081,3.2081,0,0,0,3.1988-3.1988V11.5746H20.71A3.2081,3.2081,0,0,1,17.5108,8.3758Z" style="fill:#fff;stroke:#000;stroke-linejoin:round;stroke-width:1.95428428707763px"/><line x1="17.5108" y1="0.9771" x2="28.0844" y2="11.5508" style="fill:#fff;stroke:#000;stroke-linejoin:round;stroke-width:1.95428428707763px"/><rect x="3.0246" y="6.2946" width="2.1612" height="16.2901" style="fill:#fff"/><path d="M17.9579,26.3927h3.6729V18.63a1.1822,1.1822,0,0,1,1.1811-1.1806h6.2075A1.1833,1.1833,0,0,1,30.2,18.6251l.0352,7.7676h3.4028l-7.6362,8.586Z" style="fill:#e12229"/><path d="M29.02,17.8244a.8057.8057,0,0,1,.8057.802l.0367,8.1414h2.9409l-6.8084,7.6545-7.171-7.6545H22.006V18.63a.8057.8057,0,0,1,.8057-.8056H29.02m0-.75H22.8117A1.5574,1.5574,0,0,0,21.256,18.63v7.3878H17.0931l1.183,1.2629,7.1709,7.6544.5617.5995.5461-.6139,6.8084-7.6544,1.11-1.2485H30.6085l-.0333-7.3949A1.5589,1.5589,0,0,0,29.02,17.0744Z" style="fill:#fff"/><path d="M12.53,9.12l0,.01c-.0175,1.0847-2.8157,1.9623-6.2648,1.9623S.0176,10.2147,0,9.13l0-.01C0,8.03,2.8049,7.1472,6.265,7.1472S12.53,8.03,12.53,9.12Z" style="fill:#e12229"/><path d="M12.55,19.7408l0,.01c-.0175,1.0847-2.8157,1.9622-6.2648,1.9622S.038,20.8358.0206,19.7511l0-.01-.0041-2.779,0,.01c.0174,1.0847,2.8156,1.9622,6.2648,1.9622s6.2473-.8775,6.2648-1.9622l0-.01Z" style="fill:#e12229"/><path d="M12.5362,16.2168l0,.01c-.0174,1.0846-2.8156,1.9622-6.2648,1.9622S.0239,17.3117.0064,16.2271l0-.01-.004-2.779,0,.01C.02,14.5328,2.818,15.41,6.2671,15.41s6.2474-.8776,6.2649-1.9622l0-.01Z" style="fill:#e12229"/><path d="M12.5373,12.66l0,.01c-.0174,1.0847-2.8156,1.9622-6.2648,1.9622S.025,13.7551.0075,12.67l0-.01L.0033,9.8811l0,.01c.0175,1.0847,2.8157,1.9622,6.2648,1.9622s6.2474-.8775,6.2648-1.9622l0-.01Z" style="fill:#e12229"/></svg>
\ No newline at end of file
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 35.4564 35.5388"><path d="M29.0428,11.5771v16.11a3.2073,3.2073,0,0,1-3.2,3.19H8.2828a3.2073,3.2073,0,0,1-3.2-3.19V4.1771a3.2094,3.2094,0,0,1,3.2-3.2h10.21v7.4a3.2094,3.2094,0,0,0,3.2,3.2Z" style="fill:#fff"/><path d="M29.0428,11.5771h-7.35a3.2094,3.2094,0,0,1-3.2-3.2v-7.4H8.2828a3.2094,3.2094,0,0,0-3.2,3.2v23.51a3.2073,3.2073,0,0,0,3.2,3.19h17.56a3.2073,3.2073,0,0,0,3.2-3.19Z" style="fill:none;stroke:#000;stroke-linejoin:round;stroke-width:1.95428428707763px"/><line x1="18.4928" y1="0.9771" x2="29.0628" y2="11.5571" style="fill:none;stroke:#000;stroke-linejoin:round;stroke-width:1.95428428707763px"/><path d="M2.0421,7.1807h12.874a1.6675,1.6675,0,0,1,1.6675,1.6675v6.8394a1.6675,1.6675,0,0,1-1.6675,1.6675H2.0426A1.6675,1.6675,0,0,1,.3751,15.6876v-6.84A1.667,1.667,0,0,1,2.0421,7.1807Z" style="fill:#e12229"/><path d="M14.9161,7.5559a1.2961,1.2961,0,0,1,1.2923,1.2923v6.84A1.2962,1.2962,0,0,1,14.9161,16.98H2.0423A1.2961,1.2961,0,0,1,.75,15.6878v-6.84A1.2961,1.2961,0,0,1,2.0423,7.5559H14.9161m0-.75H2.0423A2.0446,2.0446,0,0,0,0,8.8482v6.84A2.0446,2.0446,0,0,0,2.0423,17.73H14.9161a2.0446,2.0446,0,0,0,2.0423-2.0423v-6.84a2.0446,2.0446,0,0,0-2.0423-2.0423Z" style="fill:#fff"/><path d="M2.2018,9.4488A8.3321,8.3321,0,0,1,3.7179,9.33a2.4056,2.4056,0,0,1,1.6386.46,1.6905,1.6905,0,0,1,.5489,1.3052,1.9307,1.9307,0,0,1-.4917,1.373,2.3388,2.3388,0,0,1-1.6631.5889,2.172,2.172,0,0,1-.3609-.0259v2.09H2.2018Zm1.1879,2.61a1.8559,1.8559,0,0,0,.3443.0253.8858.8858,0,0,0,.9834-.93.8009.8009,0,0,0-.8931-.8614,1.6415,1.6415,0,0,0-.4346.0425Z" style="fill:#fff"/><path d="M6.66,9.4488A9.4157,9.4157,0,0,1,8.1676,9.33a3.0234,3.0234,0,0,1,2.04.5883,2.6953,2.6953,0,0,1,.8687,2.209,3.0427,3.0427,0,0,1-.8687,2.3628,3.3479,3.3479,0,0,1-2.2861.6909A8.5047,8.5047,0,0,1,6.66,15.0958ZM7.856,14.1744a2.3257,2.3257,0,0,0,.36.0171c.9424.0083,1.5981-.6055,1.5981-2.0474,0-1.1855-.5571-1.8423-1.5-1.8423a1.9165,1.9165,0,0,0-.459.0425Z" style="fill:#fff"/><path d="M11.8634,9.3721h3.081v1.0323H13.06v1.373h1.7617v1.0152H13.06v2.3286H11.8634Z" style="fill:#fff"/><path d="M18.941,26.397h3.6729V18.6343a1.1821,1.1821,0,0,1,1.1806-1.1806H30.002a1.1835,1.1835,0,0,1,1.1812,1.1748l.0352,7.7685h3.4028l-7.6367,8.5855Z" style="fill:#e12229"/><path d="M30.0022,17.8286a.8057.8057,0,0,1,.8058.802l.0366,8.1414h2.941l-6.8085,7.6545L19.8062,26.772h3.1826V18.6342a.8056.8056,0,0,1,.8057-.8056h6.2077m0-.75H23.7945a1.5574,1.5574,0,0,0-1.5557,1.5556V26.022h-4.163l1.183,1.2629,7.171,7.6544.5617.5995.546-.6139,6.8084-7.6544,1.1105-1.2485H31.5913l-.0333-7.3949a1.559,1.559,0,0,0-1.5558-1.5485Z" style="fill:#fff"/></svg>
\ No newline at end of file
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 151.5327 11.1543"><title>00-Mail_contact</title><path d="M.9116,1.96H5.2651v.8755h-3.31V5.5225H5.0132v.8632H1.9551v3.6582H.9116Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M7.583,2.6079a.6536.6536,0,0,1-1.3071,0,.6433.6433,0,0,1,.66-.66A.6266.6266,0,0,1,7.583,2.6079Zm-1.1753,7.436V4.2393H7.4634v5.8046Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M14.2285,1.5288V8.5449c0,.5156.0122,1.103.0479,1.499h-.9473l-.0478-1.0073h-.024a2.1481,2.1481,0,0,1-1.979,1.1392c-1.4033,0-2.4829-1.187-2.4829-2.95-.0117-1.9312,1.1875-3.1182,2.6025-3.1182a1.9417,1.9417,0,0,1,1.7515.8872h.0239V1.5288ZM13.1733,6.6021a1.8552,1.8552,0,0,0-.0483-.4439,1.5518,1.5518,0,0,0-1.5229-1.2236c-1.0914,0-1.7393.9594-1.7393,2.2431,0,1.1753.5757,2.1465,1.7153,2.1465A1.5865,1.5865,0,0,0,13.125,8.0649a1.8257,1.8257,0,0,0,.0483-.4555Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M15.9834,1.5288h1.0557v8.5151H15.9834Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M19.4033,7.3335A1.8594,1.8594,0,0,0,21.394,9.3481a3.8142,3.8142,0,0,0,1.607-.3l.18.7559a4.7012,4.7012,0,0,1-1.9312.36,2.6957,2.6957,0,0,1-2.8545-2.9268c0-1.751,1.0317-3.13,2.7227-3.13a2.4594,2.4594,0,0,1,2.3989,2.7344,4.0351,4.0351,0,0,1-.0361.4917Zm3.0943-.7559a1.5029,1.5029,0,0,0-1.4634-1.7148A1.7492,1.7492,0,0,0,19.415,6.5776Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M24.4316,9.42a.7093.7093,0,0,1,.72-.7558.7.7,0,0,1,.7075.7558.7148.7148,0,1,1-1.4273,0Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M32.8525,9.78a5.1785,5.1785,0,0,1-2.1347.3838,3.7781,3.7781,0,0,1-3.9942-4.09,4.0228,4.0228,0,0,1,4.2217-4.2456,4.3292,4.3292,0,0,1,1.919.36l-.252.8511a3.8056,3.8056,0,0,0-1.6309-.3355,3.0057,3.0057,0,0,0-3.1543,3.334,2.9385,2.9385,0,0,0,3.1065,3.2505,4.18,4.18,0,0,0,1.7031-.336Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M39.248,7.0938a2.8367,2.8367,0,0,1-2.89,3.082A2.76,2.76,0,0,1,33.5752,7.19a2.8344,2.8344,0,0,1,2.8784-3.0821A2.7484,2.7484,0,0,1,39.248,7.0938Zm-4.6054.0595c0,1.2715.7319,2.231,1.7632,2.231,1.0073,0,1.7631-.9473,1.7631-2.2549,0-.9834-.4917-2.23-1.7392-2.23S34.6426,6.05,34.6426,7.1533Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M40.583,5.81c0-.6-.0117-1.0913-.0478-1.5708h.9355l.06.9594h.0244a2.1343,2.1343,0,0,1,1.9189-1.0913c.8033,0,2.0508.4795,2.0508,2.47v3.4663H44.4688V6.6978c0-.9356-.3477-1.7149-1.3433-1.7149A1.5,1.5,0,0,0,41.71,6.062a1.5228,1.5228,0,0,0-.0717.4917v3.49H40.583Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M48.4668,2.5723v1.667H49.978v.8032H48.4668v3.13c0,.72.2036,1.1274.7915,1.1274a2.3648,2.3648,0,0,0,.6118-.0718l.0479.7915a2.5838,2.5838,0,0,1-.9356.1441,1.4641,1.4641,0,0,1-1.14-.4439,2.1511,2.1511,0,0,1-.4077-1.5112V5.0425h-.8995V4.2393h.8995V2.8481Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M54.3813,10.0439l-.0839-.7314h-.0362a2.1617,2.1617,0,0,1-1.7749.8633,1.6538,1.6538,0,0,1-1.7749-1.667c0-1.4033,1.2471-2.1709,3.49-2.1587V6.23a1.1968,1.1968,0,0,0-1.3194-1.3433,2.8923,2.8923,0,0,0-1.5107.4317l-.24-.6954a3.6026,3.6026,0,0,1,1.9072-.5156c1.7749,0,2.2065,1.211,2.2065,2.3745V8.6528a8.1487,8.1487,0,0,0,.0962,1.3911Zm-.1557-2.9624c-1.1514-.0239-2.459.18-2.459,1.3072a.9345.9345,0,0,0,.9956,1.0078,1.4447,1.4447,0,0,0,1.4033-.9717,1.1109,1.1109,0,0,0,.06-.3359Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M61.0889,9.8281a3.8849,3.8849,0,0,1-1.667.336,2.7581,2.7581,0,0,1-2.8906-2.9624A2.95,2.95,0,0,1,59.65,4.1191a3.5249,3.5249,0,0,1,1.4629.3l-.24.8155A2.45,2.45,0,0,0,59.65,4.9585a2.009,2.009,0,0,0-2.0513,2.1948,1.9905,1.9905,0,0,0,2.0152,2.1709,3,3,0,0,0,1.2954-.2876Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M63.7544,2.5723v1.667h1.5112v.8032H63.7544v3.13c0,.72.2036,1.1274.7915,1.1274a2.3572,2.3572,0,0,0,.6113-.0718l.0484.7915a2.5838,2.5838,0,0,1-.9356.1441A1.4641,1.4641,0,0,1,63.13,9.72a2.1511,2.1511,0,0,1-.4077-1.5112V5.0425h-.9V4.2393h.9V2.8481Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M71.8638,10.8115a4.3726,4.3726,0,0,1-2.1348.48,3.57,3.57,0,0,1-3.6343-3.7422,4.3866,4.3866,0,0,1,4.378-4.6055,3.3311,3.3311,0,0,1,3.49,3.4664c0,1.7988-1.0073,2.854-2.1348,2.854A.8878.8878,0,0,1,70.94,8.209h-.0478a1.8835,1.8835,0,0,1-1.6909,1.0552,1.36,1.36,0,0,1-1.2954-1.5108A2.8323,2.8323,0,0,1,70.748,4.9106a3.1616,3.1616,0,0,1,1.2837.252L71.624,7.3335c-.18.9116-.0361,1.3311.3594,1.3433.6118.0117,1.2954-.8038,1.2954-2.1949a2.7482,2.7482,0,0,0-2.9023-2.9863,3.6818,3.6818,0,0,0-3.5982,3.9819,2.9958,2.9958,0,0,0,3.0825,3.2378,3.7408,3.7408,0,0,0,1.8111-.4194Zm-.66-5.1811a1.9508,1.9508,0,0,0-2.5068,2.0747c0,.5278.2641.9116.7915.9116.6958,0,1.3315-.8877,1.4633-1.6309Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M80.3,4.2393c-.0239.4194-.0483.8872-.0483,1.5952v3.37a3.339,3.339,0,0,1-.8272,2.65,3.0776,3.0776,0,0,1-2.1108.6958,3.7456,3.7456,0,0,1-1.9312-.48l.2637-.8037a3.27,3.27,0,0,0,1.7031.456c1.08,0,1.8711-.5639,1.8711-2.0268v-.648h-.0239A2.072,2.072,0,0,1,77.35,10.02a2.5951,2.5951,0,0,1-2.4707-2.83,2.7864,2.7864,0,0,1,2.6148-3.0821,1.9307,1.9307,0,0,1,1.811,1.0073h.0239l.0479-.8754ZM79.2085,6.53a1.5032,1.5032,0,0,0-.06-.4795,1.5209,1.5209,0,0,0-1.4756-1.1157c-1.0073,0-1.727.8515-1.727,2.1948,0,1.14.5757,2.0869,1.7153,2.0869A1.5434,1.5434,0,0,0,79.125,8.1372a1.8487,1.8487,0,0,0,.0835-.564Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M81.9346,6.05c0-.6836-.0117-1.2715-.0479-1.811H82.81l.0361,1.1391h.0478a1.7415,1.7415,0,0,1,1.607-1.271,1.1391,1.1391,0,0,1,.3.0357v.9956a1.5818,1.5818,0,0,0-.3594-.0362A1.4811,1.4811,0,0,0,83.0259,6.458a2.9788,2.9788,0,0,0-.0479.4917v3.0942H81.9346Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M86.3267,7.3335a1.8591,1.8591,0,0,0,1.9907,2.0146,3.8137,3.8137,0,0,0,1.6069-.3l.18.7559a4.7008,4.7008,0,0,1-1.9312.36,2.6957,2.6957,0,0,1-2.8545-2.9268c0-1.751,1.0318-3.13,2.7227-3.13A2.4594,2.4594,0,0,1,90.44,6.8418a4.0351,4.0351,0,0,1-.0361.4917Zm3.0942-.7559a1.5029,1.5029,0,0,0-1.4634-1.7148,1.7491,1.7491,0,0,0-1.6191,1.7148Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M91.7505,5.81c0-.6-.0122-1.0913-.0479-1.5708h.9356l.06.9594h.024a2.1341,2.1341,0,0,1,1.9189-1.0913c.8032,0,2.0508.4795,2.0508,2.47v3.4663H95.6362V6.6978c0-.9356-.3476-1.7149-1.3432-1.7149A1.5,1.5,0,0,0,92.8779,6.062a1.5228,1.5228,0,0,0-.0717.4917v3.49H91.7505Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M103.6636,7.0938a2.8367,2.8367,0,0,1-2.89,3.082A2.76,2.76,0,0,1,97.9907,7.19a2.8344,2.8344,0,0,1,2.8784-3.0821A2.7485,2.7485,0,0,1,103.6636,7.0938Zm-4.6055.0595c0,1.2715.7319,2.231,1.7632,2.231,1.0073,0,1.7632-.9473,1.7632-2.2549,0-.9834-.4917-2.23-1.7393-2.23S99.0581,6.05,99.0581,7.1533Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M104.9507,10.0439c.0239-.396.0478-.9834.0478-1.499V1.5288h1.0435v3.646h.0239a2.1621,2.1621,0,0,1,1.979-1.0674c1.439,0,2.4585,1.1992,2.4468,2.9624,0,2.0747-1.3076,3.106-2.6025,3.106a2.0672,2.0672,0,0,1-1.9429-1.0913H105.91l-.0479.9594Zm1.0913-2.3266a1.9858,1.9858,0,0,0,.0478.3838,1.6289,1.6289,0,0,0,1.5831,1.2353c1.1035,0,1.7631-.8994,1.7631-2.2309,0-1.1631-.6-2.1587-1.727-2.1587a1.6822,1.6822,0,0,0-1.6069,1.2954,2.0735,2.0735,0,0,0-.06.4316Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M111.8262,1.5288h1.0556v8.5151h-1.0556Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M115.2461,7.3335a1.8593,1.8593,0,0,0,1.9907,2.0146,3.8146,3.8146,0,0,0,1.607-.3l.18.7559a4.7,4.7,0,0,1-1.9311.36,2.6957,2.6957,0,0,1-2.8545-2.9268c0-1.751,1.0317-3.13,2.7226-3.13a2.4594,2.4594,0,0,1,2.399,2.7344,4.0308,4.0308,0,0,1-.0362.4917Zm3.0942-.7559a1.5027,1.5027,0,0,0-1.4633-1.7148,1.7492,1.7492,0,0,0-1.6192,1.7148Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M120.2739,9.42a.7093.7093,0,0,1,.72-.7558.7.7,0,0,1,.7075.7558.7148.7148,0,1,1-1.4273,0Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M127.1475,9.8281a3.8849,3.8849,0,0,1-1.667.336A2.7582,2.7582,0,0,1,122.59,7.2017a2.95,2.95,0,0,1,3.1187-3.0826,3.5249,3.5249,0,0,1,1.4629.3l-.24.8155a2.45,2.45,0,0,0-1.2231-.2759,2.009,2.009,0,0,0-2.0513,2.1948,1.9905,1.9905,0,0,0,2.0152,2.1709,3,3,0,0,0,1.2954-.2876Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M128.3857,5.81c0-.6-.0117-1.0913-.0478-1.5708h.9355l.06.9594h.0244a2.1343,2.1343,0,0,1,1.919-1.0913c.8032,0,2.0507.4795,2.0507,2.47v3.4663h-1.0556V6.6978c0-.9356-.3477-1.7149-1.3433-1.7149a1.4994,1.4994,0,0,0-1.415,1.0791,1.52,1.52,0,0,0-.0718.4917v3.49h-1.0557Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M135.0459,6.05c0-.6836-.0117-1.2715-.0479-1.811h.9234l.0361,1.1391h.0479a1.7413,1.7413,0,0,1,1.6069-1.271,1.1391,1.1391,0,0,1,.3.0357v.9956a1.5818,1.5818,0,0,0-.3594-.0362,1.4812,1.4812,0,0,0-1.4155,1.3555,2.9794,2.9794,0,0,0-.0478.4917v3.0942h-1.0435Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M138.8257,8.9644a2.7656,2.7656,0,0,0,1.3916.42c.7676,0,1.1269-.3838,1.1269-.8633,0-.5039-.3-.78-1.0791-1.0674-1.0434-.3721-1.5351-.9477-1.5351-1.6435a1.79,1.79,0,0,1,2.0029-1.7027,2.9,2.9,0,0,1,1.4273.3594l-.2642.7676a2.26,2.26,0,0,0-1.187-.3355c-.624,0-.9717.36-.9717.7915,0,.4795.3477.6953,1.1035.9834,1.0073.3838,1.523.8877,1.523,1.751,0,1.02-.7915,1.7393-2.1709,1.7393a3.3121,3.3121,0,0,1-1.6309-.396Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M143.3379,9.42a.7093.7093,0,0,1,.72-.7558.7.7,0,0,1,.7075.7558.7148.7148,0,1,1-1.4272,0Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M146.1816,10.0439V5.0425h-.8154V4.2393h.8154V3.9634a2.737,2.737,0,0,1,.6719-2.0269,2.0191,2.0191,0,0,1,1.4151-.54,2.4456,2.4456,0,0,1,.8994.168l-.1441.8159a1.5682,1.5682,0,0,0-.6714-.1324c-.8994,0-1.1274.7916-1.1274,1.6792v.3121h1.4033v.8032h-1.4033v5.0014Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M149.5776,6.05c0-.6836-.0122-1.2715-.0478-1.811h.9233l.0362,1.1391h.0478a1.7414,1.7414,0,0,1,1.6069-1.271,1.1452,1.1452,0,0,1,.3.0357v.9956a1.5892,1.5892,0,0,0-.36-.0362,1.4812,1.4812,0,0,0-1.4156,1.3555,2.9794,2.9794,0,0,0-.0478.4917v3.0942h-1.0435Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/></svg>
\ No newline at end of file
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 35.8683 35.5346"><path d="M18.9054,8.3758V.9771H8.695A3.2082,3.2082,0,0,0,5.4962,4.1759V27.6783A3.2081,3.2081,0,0,0,8.695,30.8771H26.2565a3.2082,3.2082,0,0,0,3.1988-3.1988V11.5746H22.1042A3.2082,3.2082,0,0,1,18.9054,8.3758Z" style="fill:#fff;stroke:#000;stroke-linejoin:round;stroke-width:1.95428428707763px"/><line x1="18.9054" y1="0.9771" x2="29.4791" y2="11.5508" style="fill:#fff;stroke:#000;stroke-linejoin:round;stroke-width:1.95428428707763px"/><path d="M19.353,26.3927h3.6728V18.63a1.1821,1.1821,0,0,1,1.1807-1.1806H30.414a1.1834,1.1834,0,0,1,1.1807,1.1757l.0351,7.7676h3.4029l-7.6363,8.586Z" style="fill:#e12229"/><path d="M30.4141,17.8244a.8056.8056,0,0,1,.8057.802l.0367,8.1414h2.9409L27.389,34.4223l-7.171-7.6545h3.1827V18.63a.8056.8056,0,0,1,.8057-.8056h6.2077m0-.75H24.2064A1.5574,1.5574,0,0,0,22.6507,18.63v7.3878h-4.163l1.183,1.2629,7.171,7.6544.5617.5995.546-.6139,6.8084-7.6544,1.11-1.2485H32.0032L31.97,18.6229a1.5588,1.5588,0,0,0-1.5557-1.5485Z" style="fill:#fff"/><path d="M6.6572,5.9063A6.1461,6.1461,0,0,0,.51,12.0537,7.71,7.71,0,0,0,2.8646,17.65v4.935H9.7374V20.0409H11.921a1.3259,1.3259,0,0,0,1.3249-1.3249V16.5093c.4877-.11,1.7066-.568,1.6594-.9663-.053-.4554-1.3928-3.4811-1.3928-3.4811C12.3342,5.3167,6.6571,5.9062,6.6571,5.9062Z" style="fill:#e12229;stroke:#fff;stroke-miterlimit:10"/><path d="M4.2366,12.7472l1.1279-.6491a.9361.9361,0,0,1-.1064-.3724l-1.7239-.4576A.6772.6772,0,1,1,2.47,10.4487a.6943.6943,0,0,1,.9577,0,.7247.7247,0,0,1,.2022.4789l1.66.4469a1.0535,1.0535,0,0,1,.33-.4788l-.564-.979a1.18,1.18,0,1,1,.7449-1.0961,1.1748,1.1748,0,0,1-.34.83c-.2022.2022.34.862.4789,1.0961a.9242.9242,0,0,1,.9151.2447L8.1632,9.7145A.6909.6909,0,0,1,8.27,8.8951a.6772.6772,0,0,1,.9577.9577.6909.6909,0,0,1-.8194.1064L7.0671,11.3107a1.1313,1.1313,0,0,1,.0639.33H8.6a1.2569,1.2569,0,0,1,.33-.66,1.1814,1.1814,0,1,1,0,1.6707,1.2192,1.2192,0,0,1-.33-.66H7.0565a.93.93,0,0,1-.3725.4576l.5108,1.9154a.7147.7147,0,0,1,.4789.1915.6944.6944,0,0,1,0,.9578A.6772.6772,0,1,1,6.8543,14.45l-.5-1.8728a.9507.9507,0,0,1-.7662-.2128l-1.1812.681a1.1251,1.1251,0,0,1,.0851.4256,1.18,1.18,0,1,1-.2553-.7236Z" style="fill:#fff"/></svg>
\ No newline at end of file
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 37.5373 34.8434"><path d="M19.8236,8.3758V.9771H9.6132A3.2082,3.2082,0,0,0,6.4144,4.1759V27.6783a3.2081,3.2081,0,0,0,3.1988,3.1988H27.1747a3.2082,3.2082,0,0,0,3.1988-3.1988V11.5746H23.0224A3.2082,3.2082,0,0,1,19.8236,8.3758Z" style="fill:#fff;stroke:#000;stroke-linejoin:round;stroke-width:1.95428428707763px"/><line x1="19.8236" y1="0.9771" x2="30.3973" y2="11.5508" style="fill:#fff;stroke:#000;stroke-linejoin:round;stroke-width:1.95428428707763px"/><path d="M28.3957,30.3053H20.6325a1.1822,1.1822,0,0,1-1.1807-1.1806V22.9171a1.184,1.184,0,0,1,1.1753-1.1811l7.7686-.0352V18.298l8.5854,7.6367-8.5854,8.0435Z" style="fill:#e12229"/><path d="M28.7705,19.1336l7.6544,6.8084-7.6544,7.1711V29.93H20.6327a.8057.8057,0,0,1-.8058-.8056V22.9169a.8057.8057,0,0,1,.8021-.8057l8.1415-.0367V19.1336m-.75-1.6709v3.8652l-7.3949.0333a1.5589,1.5589,0,0,0-1.5487,1.5557v6.2078A1.5575,1.5575,0,0,0,20.6327,30.68h7.3878v4.1631l1.2628-1.183,7.6544-7.171.6-.5618-.6139-.546L29.269,18.5731l-1.2485-1.11Z" style="fill:#fff"/><rect x="5.252" y="9.659" width="7.0866" height="7.0866" style="fill:#fff"/><path d="M8.9294,20.0123a30.3254,30.3254,0,0,1-4.9673-.4189C1.8185,19.1344.5,17.7316.5,15.9279V10.3771C.5,8.5739,1.8073,7.18,3.9108,6.7394a30.3865,30.3865,0,0,1,9.9863-.0039c2.107.3872,3.4629,1.8193,3.4629,3.6494v5.5513a3.82,3.82,0,0,1-3.436,3.6631,30.501,30.501,0,0,1-4.9937.413Zm-1.482-4.5947,3.6187-2.2036.06-.0449-3.6787-2.207Z" style="fill:#ed1c24"/><path d="M8.9142,6.8244a29.8856,29.8856,0,0,1,4.9008.4044A3.323,3.323,0,0,1,16.86,10.385v5.5511a3.3355,3.3355,0,0,1-3.0293,3.172,29.9807,29.9807,0,0,1-4.9008.4044A29.6913,29.6913,0,0,1,4.0452,19.1C2.1578,18.6957,1,17.5142,1,15.9281v-5.551c0-1.5623,1.1578-2.76,3.0134-3.1483a29.8874,29.8874,0,0,1,4.9008-.4044M7.3518,15.96a.3812.3812,0,0,0,.1985-.0557l3.965-2.379v-.0238a.4046.4046,0,0,0,0-.682L7.55,10.44a.43.43,0,0,0-.4045,0,.4127.4127,0,0,0-.1982.349v4.7581a.4126.4126,0,0,0,.1982.3648.4548.4548,0,0,0,.1983.0476l.0077,0M8.9142,5.8244A30.9912,30.9912,0,0,0,3.85,6.2423C1.4949,6.7344,0,8.3544,0,10.3771v5.551c0,2.0528,1.47,3.6428,3.8356,4.15a30.8109,30.8109,0,0,0,5.0929.4346,31.0686,31.0686,0,0,0,5.0661-.418c2.3571-.4467,3.8656-2.0774,3.8656-4.1584V10.385c0-2.0833-1.5169-3.7082-3.8644-4.14a31.02,31.02,0,0,0-5.0816-.4209ZM7.9472,14.5l0-2.656L10.16,13.1723,7.9472,14.5Z" style="fill:#fff"/></svg>
\ No newline at end of file
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 64.4826 14.1627"><title>00-fidle-CC BY-NC-SA</title><g id="Calque_2" data-name="Calque 2"><g id="Calque_4" data-name="Calque 4"><circle cx="57.2782" cy="7.1103" r="6.4407" style="fill:#fff"/><path d="M57.3886,0a6.8472,6.8472,0,0,1,5.0326,2.0613,6.8068,6.8068,0,0,1,2.0614,5.02,6.7435,6.7435,0,0,1-2.0237,4.9822,6.99,6.99,0,0,1-5.07,2.0992,6.8539,6.8539,0,0,1-4.9822-2.0866A6.814,6.814,0,0,1,50.32,7.0816a6.9263,6.9263,0,0,1,2.0865-5.02A6.7862,6.7862,0,0,1,57.3886,0Zm.0252,1.2773a5.4932,5.4932,0,0,0-4.0844,1.7073,5.6556,5.6556,0,0,0-1.7325,4.0967,5.5385,5.5385,0,0,0,1.72,4.0718,5.5929,5.5929,0,0,0,4.097,1.72,5.6848,5.6848,0,0,0,4.1224-1.7323A5.4188,5.4188,0,0,0,63.205,7.0813a5.5284,5.5284,0,0,0-1.6942-4.0967A5.5324,5.5324,0,0,0,57.4138,1.2773ZM54.2525,6.0822a3.1608,3.1608,0,0,1,1.0493-2.0168,3.09,3.09,0,0,1,2.0611-.7144,3.43,3.43,0,0,1,2.6555,1.0746,3.9187,3.9187,0,0,1,.9863,2.7567,3.7884,3.7884,0,0,1-1.0239,2.7121,3.4948,3.4948,0,0,1-2.6559,1.0812,3.1526,3.1526,0,0,1-2.0738-.7207,3.0631,3.0631,0,0,1-1.05-2.0485H55.985q.063,1.29,1.5554,1.29a1.4055,1.4055,0,0,0,1.2012-.6448,2.9238,2.9238,0,0,0,.4556-1.72A2.9487,2.9487,0,0,0,58.78,5.4183a1.595,1.595,0,0,0-2.7949.6637h.5185L55.1,7.4856,53.6966,6.082l.5559,0Z"/><path d="M13.7261,7.0777a6.17,6.17,0,0,1-.8732,3.15A6.2522,6.2522,0,0,1,10.506,12.55a6.6228,6.6228,0,0,1-3.2473.8542,6.53,6.53,0,0,1-5.6214-3.1767,6.14,6.14,0,0,1-.8459-3.15A6.1656,6.1656,0,0,1,1.6373,3.901,6.53,6.53,0,0,1,7.2587.7243a6.6228,6.6228,0,0,1,3.2473.8542A6.2522,6.2522,0,0,1,12.8529,3.901a6.1925,6.1925,0,0,1,.8732,3.1767Z" style="fill:#fff;fill-rule:evenodd"/><path d="M7.1769.0472a7.125,7.125,0,0,1,5.13,2.0555,6.7828,6.7828,0,0,1,1.5554,2.2691,7.558,7.558,0,0,1,.5185,2.7229,6.8858,6.8858,0,0,1-.5185,2.6962,6.9023,6.9023,0,0,1-1.5281,2.2157,7.3433,7.3433,0,0,1-5.1575,2.1089,7.2989,7.2989,0,0,1-2.7289-.5339,7.4348,7.4348,0,0,1-2.3468-1.5483A7.06,7.06,0,0,1,.5458,9.7642,6.8733,6.8733,0,0,1,0,7.0947a6.9053,6.9053,0,0,1,2.1285-4.992A6.893,6.893,0,0,1,7.1769.0472Zm.0272,1.2813A5.6428,5.6428,0,0,0,3.0563,3.01a5.8377,5.8377,0,0,0-1.31,1.8687A5.6335,5.6335,0,0,0,1.31,7.0947,5.3784,5.3784,0,0,0,1.7465,9.257a5.5607,5.5607,0,0,0,1.31,1.8687,5.8964,5.8964,0,0,0,1.91,1.2546,5.75,5.75,0,0,0,2.2376.4272A5.847,5.847,0,0,0,9.4418,12.38a6.6164,6.6164,0,0,0,1.9648-1.2546,5.3941,5.3941,0,0,0,1.6646-4.031,5.4515,5.4515,0,0,0-.4367-2.2157A5.6677,5.6677,0,0,0,11.3793,3.01,5.7935,5.7935,0,0,0,7.2041,1.3285ZM7.1223,5.92,6.14,6.4006a.8251.8251,0,0,0-.3548-.4271A1.0185,1.0185,0,0,0,5.3485,5.84c-.6276,0-.9551.4-.9551,1.2547a1.4158,1.4158,0,0,0,.2456.8809.8057.8057,0,0,0,.7095.3471.9087.9087,0,0,0,.9006-.5873l.8732.4271a1.8879,1.8879,0,0,1-.7914.8009,1.9146,1.9146,0,0,1-1.0915.2936,2.1289,2.1289,0,0,1-1.5555-.5606,2.24,2.24,0,0,1-.6-1.6017,2.1955,2.1955,0,0,1,.6-1.6017,2.06,2.06,0,0,1,1.5282-.5873A2.0048,2.0048,0,0,1,7.1223,5.92Zm4.1478,0-.9551.4805A.958.958,0,0,0,9.4964,5.84c-.6277,0-.9551.4-.9551,1.2547a1.4151,1.4151,0,0,0,.2456.8809.8055.8055,0,0,0,.71.3471.9323.9323,0,0,0,.9005-.5873l.9.4271a2.1227,2.1227,0,0,1-.8186.8009,1.9151,1.9151,0,0,1-1.0916.2936,2.2183,2.2183,0,0,1-1.5554-.5606,2.2235,2.2235,0,0,1-.5731-1.6017,2.09,2.09,0,0,1,.6-1.6017A1.9972,1.9972,0,0,1,9.36,4.9057,1.9784,1.9784,0,0,1,11.27,5.92Z" style="fill-rule:evenodd"/><path d="M30.3129,7.1845a5.8853,5.8853,0,0,1-.8459,3.0967,6.3089,6.3089,0,0,1-2.32,2.2958,6.6833,6.6833,0,0,1-3.1927.8275,6.5,6.5,0,0,1-3.1655-.8275,6.3842,6.3842,0,0,1-2.3468-2.2958,6.091,6.091,0,0,1,0-6.1933,6.3834,6.3834,0,0,1,2.3468-2.2958A6.5,6.5,0,0,1,23.9547.9645a6.6834,6.6834,0,0,1,3.1927.8276,6.3081,6.3081,0,0,1,2.32,2.2958,5.8847,5.8847,0,0,1,.8459,3.0966Z" style="fill:#fff;fill-rule:evenodd"/><path d="M23.9274.0472A7.1026,7.1026,0,0,1,29.03,2.076a6.7731,6.7731,0,0,1,2.1013,5.0187,6.4351,6.4351,0,0,1-2.074,4.9119,7.0927,7.0927,0,0,1-5.13,2.1089,7.0061,7.0061,0,0,1-5.0756-2.0822,6.6069,6.6069,0,0,1-2.1285-4.9386A6.8228,6.8228,0,0,1,18.8518,2.076,7.0846,7.0846,0,0,1,23.9274.0472Zm0,1.2813A5.6865,5.6865,0,0,0,19.78,3.01a5.5937,5.5937,0,0,0-1.7465,4.0844,5.4357,5.4357,0,0,0,1.7465,4.031,5.6938,5.6938,0,0,0,4.1478,1.7085A5.8885,5.8885,0,0,0,28.13,11.099a5.2006,5.2006,0,0,0,1.6919-4.031A5.4837,5.4837,0,0,0,28.1025,3.01a5.7488,5.7488,0,0,0-4.1751-1.6818Zm1.9375,4.0043V8.2159h-.8187v3.417H22.8086V8.2159H21.99V5.3328a.4372.4372,0,0,1,.1365-.32.4566.4566,0,0,1,.3274-.1335H25.401a.4566.4566,0,0,1,.3274.1335.4372.4372,0,0,1,.1365.32ZM22.9177,3.5175a.8864.8864,0,0,1,1.01-.9877.8864.8864,0,0,1,1.01.9877.8866.8866,0,0,1-1.01.9878.8866.8866,0,0,1-1.01-.9878Z" style="fill-rule:evenodd"/><path d="M47.05,7.051a6.3376,6.3376,0,0,1-.8732,3.1768A6.4017,6.4017,0,0,1,43.7752,12.55a6.5549,6.5549,0,0,1-8.8687-2.3225,6.3367,6.3367,0,0,1-.8733-3.1768,6.1916,6.1916,0,0,1,.8733-3.1767,6.574,6.574,0,0,1,8.8687-2.3225,6.4017,6.4017,0,0,1,2.4014,2.3225A6.1925,6.1925,0,0,1,47.05,7.051Z" style="fill:#fff;fill-rule:evenodd"/><path d="M45.7673,2.076a7.3977,7.3977,0,0,0-10.1786,0A6.8228,6.8228,0,0,0,33.46,7.0947a6.691,6.691,0,0,0,2.1285,4.9386,7.0061,7.0061,0,0,0,5.0756,2.0822,7.2846,7.2846,0,0,0,5.1575-2.0822,6.65,6.65,0,0,0,2.0467-4.9386A6.7733,6.7733,0,0,0,45.7673,2.076Zm-.9006,9.023a5.8427,5.8427,0,0,1-4.2024,1.7352,5.7557,5.7557,0,0,1-4.1478-1.7085A5.451,5.451,0,0,1,34.77,7.068a6.0961,6.0961,0,0,1,.3-1.8687l1.91.8276h-.1365v.8542h.6822c0,.1068-.0272.2136-.0272.3471V7.415h-.655v.8543h.7914a3.281,3.281,0,0,0,.6822,1.5216,3.5678,3.5678,0,0,0,2.92,1.3348,4.2327,4.2327,0,0,0,1.8829-.4272l-.2729-1.308a4.0008,4.0008,0,0,1-1.3917.2936A2.1665,2.1665,0,0,1,39.9,9.0968a2.14,2.14,0,0,1-.382-.8275h2.62L45.8491,9.871a4.666,4.666,0,0,1-.9824,1.228ZM40.2,7.415h0Zm2.2377-.5339h.1091V6.0269H40.5006L39.6819,5.68a1.0028,1.0028,0,0,1,.2456-.4,1.84,1.84,0,0,1,1.4736-.6407,4.0246,4.0246,0,0,1,1.3371.267l.3548-1.3348a4.8132,4.8132,0,0,0-1.8283-.347,3.7242,3.7242,0,0,0-2.7835,1.2013c-.1364.16-.2728.3737-.4093.5606L35.7251,3.9714a5.3353,5.3353,0,0,1,.7914-.9611,5.7105,5.7105,0,0,1,4.1478-1.7085A5.7727,5.7727,0,0,1,44.8394,3.01a5.4172,5.4172,0,0,1,1.7192,4.0844A6.79,6.79,0,0,1,46.3949,8.59L42.4381,6.8811Z" style="fill-rule:evenodd"/></g></g></svg>
\ No newline at end of file
<?xml version="1.0" encoding="UTF-8"?>
<svg id="b" data-name="Calque 2" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 752.58 36.04">
<g id="c" data-name="Iconographie">
<g>
<g>
<g>
<g>
<path d="m17.27,29.6c-1.91.52-2.55.5-2.75.45.14-.29.82-.94,1.54-1.44.17-.12.21-.36.09-.53-.12-.17-.35-.21-.52-.09-1.01.72-2.15,1.72-1.83,2.41.12.26.37.44.98.44.55,0,1.39-.14,2.68-.5.2-.05.32-.26.26-.47-.05-.2-.26-.32-.46-.27Z" style="fill: none;"/>
<path d="m21.59,12.35c.36.2,1.12-.24,1.58.42.24.34-.5-1.55-.86-1.75s-.81-.07-1.01.3c-.2.37-.07.83.29,1.03Z" style="fill: #e12229;"/>
<path d="m20.83,25.24c-.15-.18-.13-.46.05-.62.18-.16.45-.14.61.05,2.27,2.71,5.94,3.43,9.6,1.89.37-1.04.56-2.13.58-3.2,0-2.9-1.38-5.59-3.73-7.2-1.09-.75-3.6-1.75-6.9-1.19-2.42.41-4.94,2.28-5.92,3.12-.59.51-7.64,7.32-10.58,5.96-1.99-.92,1.56-4.26-.07-7.32-.04-.08-.16-.09-.22-.01-.83,1.14-1.64,2.51-2.74,1.89-.49-.27-.94-1.15-1.28-1.71-.07-.11-.24-.06-.24.08.13,3.84,1.95,6.66,3.41,8.45,2.53,3.09,6.97,6.69,14.15,7.42,7.39.68,11.33-1.85,13.04-5.17-1.11.38-2.22.56-3.29.56-2.53,0-4.84-1.03-6.49-3Zm-3.37,5.09c-1.29.35-2.13.5-2.68.5-.61,0-.86-.18-.98-.44-.32-.69.82-1.69,1.83-2.41.17-.12.4-.08.52.09.12.17.08.41-.09.53-.72.51-1.4,1.15-1.54,1.44.2.04.84.07,2.75-.45.2-.05.4.07.46.27.05.2-.06.41-.26.47Z" style="fill: #e12229;"/>
<path d="m24.24,13.91c.46-.66,1.22-.98,1.58-1.18s.49-.67.29-1.03c-.2-.37-.66-.51-1.01-.3-.93.56-1.1,2.86-.86,2.51Z" style="fill: #e12229;"/>
<path d="m24.09,10.61c.16-.51.58-.89.77-1.1.19-.21.18-.53-.01-.71-.19-.18-.51-.16-.69.05-.48.56-.15,2.02-.06,1.75Z" style="fill: #e12229;"/>
</g>
<g>
<ellipse cx="26.1" cy="22.56" rx="1.38" ry="1.52" style="fill: #fff;"/>
<ellipse cx="26.66" cy="22.89" rx=".93" ry=".95" style="fill: #e12229;"/>
</g>
</g>
<g>
<path d="m38.15,17.13h6.81v.82h-5.83v5.48h5.36v.82h-5.36v6.67h-.98v-13.79Z" style="fill: #808184;"/>
<path d="m48.59,17.13v13.79h-.98v-13.79h.98Z" style="fill: #808184;"/>
<path d="m51.92,17.33c1.06-.18,2.23-.31,3.54-.31,2.52,0,4.42.67,5.57,1.88,1.1,1.15,1.72,2.7,1.72,4.79s-.55,3.85-1.8,5.22c-1.21,1.33-3.29,2.11-5.95,2.11-1.06,0-2.07-.02-3.07-.12v-13.57Zm.98,12.77c.55.08,1.35.1,2.23.1,4.42,0,6.61-2.48,6.61-6.47.04-3.5-1.9-5.89-6.34-5.89-1.06,0-1.9.1-2.5.22v12.03Z" style="fill: #808184;"/>
<path d="m65.17,17.13h.98v12.97h6.14v.82h-7.12v-13.79Z" style="fill: #808184;"/>
<path d="m80.83,24.07h-5.5v6.04h6.16v.82h-7.14v-13.79h6.81v.82h-5.83v5.3h5.5v.82Z" style="fill: #808184;"/>
</g>
</g>
<line y1=".12" x2="752.58" y2=".12" style="fill: none; stroke: #e6e7e7; stroke-miterlimit: 10; stroke-width: .25px;"/>
</g>
</g>
</svg>
\ No newline at end of file