diff --git a/AE/01-Prepare-MNIST-dataset.ipynb b/AE/01-Prepare-MNIST-dataset.ipynb
index 53ad4ed36cc8356518e1c1ad7e03c8dab641d2bf..bf499e6446bf2f959ccd73f782ecbfa50da4d97e 100644
--- a/AE/01-Prepare-MNIST-dataset.ipynb
+++ b/AE/01-Prepare-MNIST-dataset.ipynb
@@ -35,6 +35,9 @@
    "metadata": {},
    "outputs": [],
    "source": [
+    "# import os\n",
+    "# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'\n",
+    "\n",
     "import numpy as np\n",
     "import sys\n",
     "\n",
@@ -197,7 +200,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -211,7 +214,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.5"
+   "version": "3.9.7"
   }
  },
  "nbformat": 4,
diff --git a/AE/01-Prepare-MNIST-dataset==done==.ipynb b/AE/01-Prepare-MNIST-dataset==done==.ipynb
deleted file mode 100644
index 7774f8c7fa94c985554d49c73534b6d615587d62..0000000000000000000000000000000000000000
--- a/AE/01-Prepare-MNIST-dataset==done==.ipynb
+++ /dev/null
@@ -1,771 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
-    "\n",
-    "# <!-- TITLE --> [AE1] - Prepare a noisy MNIST dataset\n",
-    "<!-- DESC --> Episode 1: Preparation of a noisy MNIST dataset\n",
-    "\n",
-    "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
-    "\n",
-    "## Objectives :\n",
-    " - Prepare a MNIST noisy dataset, usable with our denoiser autoencoder (duration : <50s)\n",
-    "\n",
-    "## What we're going to do :\n",
-    "\n",
-    " - Load original MNIST dataset\n",
-    " - Adding noise, a lot !\n",
-    " - Save it :-)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 1 - Init and set parameters\n",
-    "### 1.1 - Init python"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:23:57.858088Z",
-     "iopub.status.busy": "2021-03-14T21:23:57.857567Z",
-     "iopub.status.idle": "2021-03-14T21:24:00.458283Z",
-     "shell.execute_reply": "2021-03-14T21:24:00.458765Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<style>\n",
-       "\n",
-       "div.warn {    \n",
-       "    background-color: #fcf2f2;\n",
-       "    border-color: #dFb5b4;\n",
-       "    border-left: 5px solid #dfb5b4;\n",
-       "    padding: 0.5em;\n",
-       "    font-weight: bold;\n",
-       "    font-size: 1.1em;;\n",
-       "    }\n",
-       "\n",
-       "\n",
-       "\n",
-       "div.nota {    \n",
-       "    background-color: #DAFFDE;\n",
-       "    border-left: 5px solid #92CC99;\n",
-       "    padding: 0.5em;\n",
-       "    }\n",
-       "\n",
-       "div.todo:before { content:url();\n",
-       "    float:left;\n",
-       "    margin-right:20px;\n",
-       "    margin-top:-20px;\n",
-       "    margin-bottom:20px;\n",
-       "}\n",
-       "div.todo{\n",
-       "    font-weight: bold;\n",
-       "    font-size: 1.1em;\n",
-       "    margin-top:40px;\n",
-       "}\n",
-       "div.todo ul{\n",
-       "    margin: 0.2em;\n",
-       "}\n",
-       "div.todo li{\n",
-       "    margin-left:60px;\n",
-       "    margin-top:0;\n",
-       "    margin-bottom:0;\n",
-       "}\n",
-       "\n",
-       "div .comment{\n",
-       "    font-size:0.8em;\n",
-       "    color:#696969;\n",
-       "}\n",
-       "\n",
-       "\n",
-       "\n",
-       "</style>\n",
-       "\n"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**FIDLE 2020 - Practical Work Module**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Version              : 2.0.20\n",
-      "Notebook id          : AE1\n",
-      "Run time             : Sunday 14 March 2021, 22:24:00\n",
-      "TensorFlow version   : 2.4.0\n",
-      "Keras version        : 2.4.0\n",
-      "Datasets dir         : /gpfswork/rech/mlh/uja62cb/datasets\n",
-      "Run dir              : ./run/AE1\n",
-      "Update keras cache   : False\n",
-      "Save figs            : True\n",
-      "Path figs            : ./run/AE1/figs\n"
-     ]
-    }
-   ],
-   "source": [
-    "import numpy as np\n",
-    "import sys\n",
-    "\n",
-    "from skimage import io\n",
-    "from skimage.util import random_noise\n",
-    "\n",
-    "import modules.MNIST\n",
-    "from modules.MNIST     import MNIST\n",
-    "\n",
-    "sys.path.append('..')\n",
-    "import fidle.pwk as pwk\n",
-    "\n",
-    "run_dir='./run/AE1'\n",
-    "datasets_dir = pwk.init('AE1', run_dir)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 1.2 - Parameters\n",
-    "`prepared_dataset` : Filename of the future prepared dataset (Can be in ./data)  "
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:24:00.462046Z",
-     "iopub.status.busy": "2021-03-14T21:24:00.461585Z",
-     "iopub.status.idle": "2021-03-14T21:24:00.463757Z",
-     "shell.execute_reply": "2021-03-14T21:24:00.463271Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "prepared_dataset = './data/mnist-noisy.h5'"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 2 - Get original dataset\n",
-    "We load :  \n",
-    "`clean_data` : Original and clean images - This is what we will want to ontain at the **output** of the AE  \n",
-    "`class_data` : Image classes - Useless, because the training will be unsupervised  \n",
-    "We build :  \n",
-    "`noisy_data` : Noisy images - These are the images that we will give as **input** to our AE\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:24:00.466647Z",
-     "iopub.status.busy": "2021-03-14T21:24:00.466170Z",
-     "iopub.status.idle": "2021-03-14T21:24:00.957188Z",
-     "shell.execute_reply": "2021-03-14T21:24:00.957684Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Dataset loaded.\n",
-      "Normalized.\n",
-      "Reshaped.\n",
-      "Concatenate.\n",
-      "x shape : (70000, 28, 28, 1)\n",
-      "y shape : (70000,)\n"
-     ]
-    }
-   ],
-   "source": [
-    "clean_data, class_data = MNIST.get_origine()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 3 - Add noise\n",
-    "We add noise to the original images (clean_data) to obtain noisy images (noisy_data)  \n",
-    "Need 30-40 seconds"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:24:00.963100Z",
-     "iopub.status.busy": "2021-03-14T21:24:00.962634Z",
-     "iopub.status.idle": "2021-03-14T21:24:48.907947Z",
-     "shell.execute_reply": "2021-03-14T21:24:48.908438Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [#---------------------------------------]   2.5% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [##--------------------------------------]   5.0% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [###-------------------------------------]   7.5% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [####------------------------------------]  10.0% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [#####-----------------------------------]  12.5% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [######----------------------------------]  15.0% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [#######---------------------------------]  17.5% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [########--------------------------------]  20.0% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [#########-------------------------------]  22.5% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [##########------------------------------]  25.0% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [###########-----------------------------]  27.5% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [############----------------------------]  30.0% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [#############---------------------------]  32.5% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [##############--------------------------]  35.0% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [###############-------------------------]  37.5% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [################------------------------]  40.0% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [#################-----------------------]  42.5% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [##################----------------------]  45.0% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [###################---------------------]  47.5% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [####################--------------------]  50.0% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [#####################-------------------]  52.5% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [######################------------------]  55.0% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [#######################-----------------]  57.5% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [########################----------------]  60.0% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [#########################---------------]  62.5% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [##########################--------------]  65.0% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [###########################-------------]  67.5% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [############################------------]  70.0% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [#############################-----------]  72.5% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [##############################----------]  75.0% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [###############################---------]  77.5% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [################################--------]  80.0% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [#################################-------]  82.5% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [##################################------]  85.0% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [###################################-----]  87.5% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [####################################----]  90.0% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [#####################################---]  92.5% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [######################################--]  95.0% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [#######################################-]  97.5% of 70000\r"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Add noise :      [########################################] 100.0% of 70000\n",
-      "Done.\n"
-     ]
-    }
-   ],
-   "source": [
-    "def noise_it(data):\n",
-    "    new_data = np.copy(data)\n",
-    "    for i,image in enumerate(new_data):\n",
-    "        pwk.update_progress('Add noise : ',i+1,len(new_data))\n",
-    "        image=random_noise(image, mode='gaussian', mean=0, var=0.3)\n",
-    "        image=random_noise(image, mode='s&p',      amount=0.2, salt_vs_pepper=0.5)\n",
-    "        image=random_noise(image, mode='poisson') \n",
-    "        image=random_noise(image, mode='speckle',  mean=0, var=0.1)\n",
-    "        new_data[i]=image\n",
-    "    print('Done.')\n",
-    "    return new_data\n",
-    "\n",
-    "# ---- Add noise to input data : x_data\n",
-    "#\n",
-    "noisy_data = noise_it(clean_data)\n"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 4 - Have a look"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:24:48.913221Z",
-     "iopub.status.busy": "2021-03-14T21:24:48.912592Z",
-     "iopub.status.idle": "2021-03-14T21:24:50.059285Z",
-     "shell.execute_reply": "2021-03-14T21:24:50.058774Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Clean dataset (clean_data) :  (70000, 28, 28, 1)\n",
-      "Noisy dataset (noisy_data) :  (70000, 28, 28, 1)\n"
-     ]
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Noisy images we'll have in input (or x)**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE1/figs/AE1-01-noisy</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAACiCAYAAABCt1z5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3E0lEQVR4nO3debxNZf8+8E/JIyFTZRYiEokkZZZwPKHMhIiECD0yPabyFFHmITOVeZ7nIQqZSeapTJmnx5Dw/f3x/eXlrOu6dW8LR9/X9f7Lvl5r7Xufvddeg3Puaz3wP//zPyYiIiIiIiK378GYfgEiIiIiIiJ/d7qwEhERERERCUkXViIiIiIiIiHpwkpERERERCQkXViJiIiIiIiE9JDvgg0bNlR9oITWv3//B+7VWNpm5U7QNit/N9pm5e/oXm232mblTmHbrH5jJSIiIiIiEpL3b6z+1KVLl2iPM2bMCMscO3aMrvvLL79A9uSTT3qNmyZNGsgOHDgA2dSpU+n6V65cgaxSpUpeY4dVpUoVyMaOHQvZ4cOHIRsyZAhkHTp0oOPc6XuSPfAA/ueRawz2/v7jH/+48e+GDRveuRcWof79+9/2ukuWLIGsSJEiXuu+/vrrkM2aNQuy9u3b0/U//vhjr3EY9tktXrwYMt+fxfWcbHtgy7mw9V988UXI4saNCxn7bsSJEwcy1z4mZ86ckG3YsOHGv2Nymw3um9jnlD17drru5s2bIWOfSapUqSAbNWoUZLFjx4asb9++dOzRo0fTPGjixImQVaxYETL2HXB9X3xFRUVBNn78eMgSJEhA12fvZdeuXSFjx6wvv/wSsjVr1kBWqlQpOvbPP/8M2YABA278e+bMmXS9e+HSpUvRHg8fPhyWOXv2LF03YcKEd+U13cy1X/I9biZOnBiy06dPe6176NAhmufNmxcydl7ja8uWLTTPli0bZN27d4fsww8/9Brn2rVrkLFjm5lZmTJl/vL5YmpfGzw3OHr0KCyTLFkyuu7AgQMhe++99yBr27YtZG3atIHskUcegWzlypV07BQpUkDWtGlTyNj5cPLkySGrWbMmZGyfZsa/By1atICsdevWkLHv4MiRI+k47DUx7Dl3794N2VNPPeW1rpnfeU2DBg2cr0m/sRIREREREQlJF1YiIiIiIiIhRfyngME/q2G/Cr/5TxNuxn7d6/tr+IMHD0LG/qzgjTfe8Hq+SJQuXRqyKVOmQPbQQ/ztzJUrl9c4KVOmhIz92Qv7M8JITJo0CbI8efJAFsmfJNz8Z3//lxQtWhQyts2yP6tgfxb16KOPQrZ8+XLv17Njxw7IYsWKBVmYP28x43+C4PvdCvvngWvXrvV6znTp0kG2f/9+yNh31cysfPny3q/pXitcuHC0x+znf/nll72fr0+fPpA1atQIMrYd586dGzLffZpLhQoVIGM/I/tzTdefAnbq1MlrWTZOz549IWN/WmNmtmjRIsjYn4Ww7yr7s/CrV69CNnv2bDr2X4nJPwXctGlTtMe9evWCZZo0aULXZZ8z+3Mz9meuS5cuhSz4/TEL/6fyZ86cgYx9h/r16wcZ+xMzM76NtGvXDrKXXnoJMvanwDt37qTjZMmSBTL2Z6W+2DHnu+++o8ueO3cOsmrVqt322HdS8PuyYsUKWKZz587ez8f+FPDTTz+F7Pz585Cx74tr7OnTp0PGXjvDtgXXn/0x7JyfHd/ZnwKy7+CJEye8x2bXAe+88w5k7ByicePGXq/HJbjsrf58Vb+xEhERERERCUkXViIiIiIiIiHpwkpERERERCQkXViJiIiIiIiEFHF5hc99G1z97suWLfMa48EH8XrPd5JZJL30PXr0gIzd82bGjBl3fGyG3ZvgyJEjkLH7nrjUqlULshEjRkAWyT2rGDZpk93nISYkSZIk2uNTp055r8smmTK+9/9gihcvTvPgfWHMzJo1awZZJJNrg1zfZ997cLGfm03yjmRbYhPP2faZL18+r+d78803vfO33377xr/jxYvn9fz3QiTfT9+iEN/JvGzyecGCBb3GCCuSfUjz5s0hY0UAFy5cgIwVVZQtW5aOM23aNMhYCcG+ffsgS58+PWSu0iNf77777o1/s3uO3Svr16+/7XVvvn/crbBjl++9MMNi92r0vceb6/jAymJatWoFGdsXPf/885C57n3ItrGhQ4fSZYNu3r7+NHjwYMhc50ns3m33i2CBRyTHUt9jGlvO9xyO7avM+D5+wYIFkLHzsjFjxniNHfZ+lL4ee+wxmrPziNSpU0PGiirYts0KgSI5hgbLrlz3NzPTb6xERERERERC04WViIiIiIhISLqwEhERERERCUkXViIiIiIiIiHpwkpERERERCSkiOuIgs0apUqV8l6XtZH8/vvvkLGmjs2bN0P23HPPQda7d2869tKlSyH74IMPIIsVKxZdP2jdunWQuRpGdu7cCdnTTz8NGWsAbNOmDWQdO3b0eIX/K3ny5N7LBrEGup49e3qvzxppYkIkLYBBLVq0gKx///63/XzBZhkzs9dee40uW7JkScjmzZsHWdeuXW/79Rw/fpzmbFuMioqCjDVr9unTB7KUKVPScQ4fPgwZa6Fi31/2Gplq1arRfPTo0ZA1adLkxr+HDBni9fz3QiStS6y1jr1/rJGMmT9/PmS5cuWiy2bIkMHrOX3lyZMHMlfL2L/+9S+v52QNa1u3boWMvY9mvDGK7Sc+//xzr3Fat24N2fTp0+nYu3fvhuzmhraGDRvS9WLC1atXIXM1jfked9m+MlWqVJG9sNvk27j43XffQeY6ZrPvJWtFZTZt2gSZq8nSt1X04MGDkO3atcvr9bDzHBffFsi7LdjAuH37dlgmc+bMdN3hw4dDVrt2bcjYd5KdQ7Dl/vnPf9KxFy1aRPOgYsWKeS3HTJo0iebsHIa5fv06ZOw8nrVbmpklSpTIa5xHH30UsgMHDkA2cuRIyNhnaMZbb4Pvx632tfqNlYiIiIiISEi6sBIREREREQlJF1YiIiIiIiIh6cJKREREREQkpIjLK4JlFa+++ios45pYN2DAAMgaNGgAGZtUySZf/vHHH5C5JsGyogtfq1evhoxN0nZNzI1k4nnQZ599dtvrmvkXXaROnRoyNql6xIgRdP3Tp09D1qtXL6+x7zXfIhSzcEUVrPyAlZG88MILtz2GGf9MsmXL5rXu448/TvObSxz+VLNmTcjYNl+vXj3IGjVqRMdhk4VZ2YSrgMJnbFZS4cIKdmJCsNQnTpw4sMzNpQU3q1KlCmTx48eHzHdS9cmTJyG70yUVrnGSJk0KWfPmzen6rLzCd9L+ypUrIVu1ahUdhxW2+L4f48aNg6xdu3aQuYoz2PelXLlyN/4dpqworOB7+PLLL8My7Oc3M6tcubLXGFeuXIGMTVRPkSIFZA89FPHpzl9q3749ZM8++yxkbIK9GS+q2L9/P2QLFy6ELJLzCnY8YN+NyZMnQ1arVi3IVqxYAZlrf1S9enXI2Hnj/cBVVMGwz55h+1R2zB41ahRkZ8+e9X49y5cvh6xAgQJe67L9huuYzc6H2T6RlZ/lzJnTa10zs6ZNm0J2+fJlyFgBDDvv7dSpE2SsbMSFlXG46DdWIiIiIiIiIenCSkREREREJCRdWImIiIiIiISkCysREREREZGQIp7NGZwg53sHaDOzc+fORTrcDb4TNV2T3NldnL/99lvIguUcZnyCP5sMzu40b2Z27NgxyObPnw8Zm+TJ9OnTh+aNGzeGLG7cuJClTZsWMjYBmGElFS43FyDc6i7Vd1twUu27774Ly3zyySd0XTZZkhWKXLp0CbK6detC1qJFC8hc5RVsIm3btm0hY5OLv//+e8jYRNaoqCg69pw5cyB7++236bJBrGiBTeg2M9uyZQtkS5YsgaxIkSJeY7PCkEGDBtFlWflN3759b/w7komtd1rw+5gxY0ZYhpVUmJklSJAAsqJFi3plY8eOhax+/fqQ9ezZk47dr18/r3EYVlThW1pkZrZt2zbI2HFj/fr1kLHjBivDMDPbsGEDZGfOnIGMvW+HDx+mzxnEJnmbmT399NOQlShR4sa/N23a5PX8d0OwrIJN9nZtsyxnn90PP/zwl+Oa8aKKu1EuxUqf6tSpA1nFihXp+g8+iP+3vXv3bsjYsSRHjhyQsWImM37+w963m4tQ/sTen8SJE0PmOjeYPn06ze9H//3vfyFj53pm/Jzp1KlTXuOwY/YTTzwBWZkyZej6M2bMgIy9dl+siMN1zsa2Jbb/Y/bt2wdZunTp6LKsjIOdL7ACvJv3iX9yff99sXIlF/3GSkREREREJCRdWImIiIiIiISkCysREREREZGQdGElIiIiIiISUsTlFa6JfD6qVq0K2fnz5yFjdyn3nWDKJta5FCpUCLIkSZJ4ZWyyLZv4bWaWPXt2yFiRR40aNSBjExpdd69n2ATqAQMGQMYmvaZMmRKyxx57jI4zdepUyNhd5WMCK6sIYoUeZvwO6QwrCWGTJdl2vGDBAvqcO3bs8HpOtt2wu4yzsV0/99y5cyEbOXIkZKxwhb1n48ePp+Own8d3Eu6kSZMgYxPmI5m0zspKYsKePXuiPWbvqWu7ZgU8bCLw2bNnIWP76DCT+834BOwMGTJAxgoxWBmGa6I02z7Zdrxx40bI2ETtpk2b0nFYgYTvd/3atWuQsaKFSN5z9j24H7D9V548eeiyP/74o9dzsn0de69YYQr7DoRVr149r6xNmzZ0fVaExArBihUrBhkrKkmYMCEdh52vNGvWDDJW4sTeS1ZU8Z///IeOzfYp+/fvp8vea1myZIn2mJ3fjh49mq7LzoWKFy9+26+FbdsrVqygy7Lyinjx4nmNw8rUIikX+/rrryHzLYZg39WwpRKsvIKV/0SyT2VlZKx4w0W/sRIREREREQlJF1YiIiIiIiIh6cJKREREREQkJF1YiYiIiIiIhBRxeYXrjvA+2ET5d955B7K33noLsm3btkH2zDPPQBbJRPUCBQpAxiZgfv7555BVrlwZsiJFitCxWRkHm0DI1K5d23ucq1evQsaKKkqXLg3ZzJkzIfO947qZ+67rfxdbt26l+ezZsyEbNGgQZI888shtj80mr5uZ7d69GzLfyZ9sOTaBmd093ozfubxVq1aQLVy4ELKoqCjIWAGMmVnJkiUhy5YtG2Ts7uxLliyBrF27dpC5Jq3+1fsWyYTeOy04adk1MZxhk/SHDBkCGSv6YE6cOAGZq8SGmT59OmRsQjwrtJgzZ473OGwyfpcuXbzW7d+/v/c4zMCBA72WixUrFmTs/XH5q4nebCL3vbJly5Zoj9n32LekwuWPP/6AzHfye/78+UONzbz22muQseIgVlJh5r/vZsux47hrX8fOA9gx/+jRo15jM6wMx4yfu7H9eUxgry2oWrVq3s/HSoZq1arlte7JkychGzp0KF2W7St9rVu3DrJPP/0UMnaeY2Y2atQoyOrWrQsZK2hj25LrfHbx4sWQsfMShhV5sPMF19jsfC5YdOJa10y/sRIREREREQlNF1YiIiIiIiIh6cJKREREREQkJF1YiYiIiIiIhBRxeUXwDuKdO3eGZebPn0/XZXeljuRuyD6mTJlCczZpjk08ZXfeZpMK2etmk+PMzC5fvgxZ3LhxIRszZgxkbAJh2PfMt6jCd2KtmVnSpEkhY+9bTDh//ny0x2zi/cqVK+m6bBLjG2+8AdkTTzwBWfXq1SEbPHgwZO+++y4d21f37t0hY58dK5oYO3YsfU42CX7jxo2Q5c2bFzJWSOOaVM/e9/3790OWKFEiun4QK3k4c+YMXZZNjr1ffPLJJ9Ees+9dcJlbyZMnD2TZs2eHjE2IHzZsGGTFihWj4+TKlcvr9bD3vm/fvpBlzpwZMtdkejbxPnXq1JDVq1cPsnLlykE2Y8YMOk7r1q0h+/DDD73GYXbu3Om1nMv9UrjCyiqCXJ8de//HjRsHGSv6CXs8PHXqFGSpUqWC7NKlS5Dly5cPMrZPdGGvne1n2T6MFa58+eWXdJzhw4dDxoqx2Pf64Ycfps8Z1K1bN6/lzMw2bdrkvWxMY6U4ZmY9evSALEWKFF7PyQoxRo8eDVmdOnXo+q48iJVcsG2OHXPZMcPM7Nq1a5Cx7wYri2Hvj+u8me0rZs2aRZf1WZf93KtXr6br++xTbrWv1W+sREREREREQtKFlYiIiIiISEi6sBIREREREQlJF1YiIiIiIiIh6cJKREREREQkpIhbAT/77LNoj2PHjg3LHDhwgK575coVyC5cuAAZa7Bp1KiR1+tjjW1mZl988QVk//rXvyDr2rUrZEeOHIGsffv2kOXIkYOOXaZMGchKliwJ2VtvvQUZa2BxtagUKVIEMtZq52poC/rjjz8gmzx5Ml2WNSvdLxIkSBDt8YMP4v8nbN68ma7LWmjYZ8daZJIlSwYZawBkjTxmZunTp/ca5/vvv4esVq1akLma3Bg2zoABAyCLpDmScbWEBQU/Q5c73TIaU+70z/H2229DNm3aNMg+/vhjyIYOHQpZmjRp6Dhs38+aAtevXw9ZlixZ6HMGud6bDRs2QHbw4EHI2HedNdodPnyYjlO/fn3IunTpQpcN2rVrF2TsOOTCfvayZcve+Ddrs7ufhN2uWbMwa7KMpB0xSZIkkLHjGdvPsu9Lx44dIduyZQsdmzVz+jb0svbVTJky0XFcedDWrVshY9/fefPmQcY+GzP+2tOmTev1eu624Gd64sQJWIa1/5nxn4s1KLLjrqtxNKhly5Y0Z/tu1kK8b98+yNixgJ2DPProo3Ts8ePHQ3bo0CHIfvjhB8jYtr1o0SI6ztdffw3ZP//5T8g6derkNQ671nA1HzLBz/tW59H6jZWIiIiIiEhIurASEREREREJSRdWIiIiIiIiIenCSkREREREJKSIyyuC2OTNSLDyCzbBv1q1apDVq1cPsl9//ZWOwyYIDxo0CLIWLVpAljFjRsgWL14MGSupMDMbNmwYZAMHDoSMTehkBRKspMLlm2++gax8+fJe6z70EG4e5cqVo8v+nUoD2MRR13bTrl07yFiZCSuqSJo0KWQnT56ELF26dHRshk2Y7dOnD2SNGzeGbPny5ZAVKFCAjtOrVy/Ili1bBlm3bt3o+kGtW7emefLkySH77bffvMb2NXfuXJpHRUXdcj3fkpe7Yc+ePdEeP/XUU7CMq/iDldts3LgRMlZKwbI6depAljp1ajo2w0pYmEjKVZhEiRJBxvbnx44dg2zEiBGQlShRgo7Dymu++uqrv36BxksEWBGA6z17+umnIXv//fdv/Hvq1Kler+NuCE6oZ/sQdtw048dydnyeP3++12spXLgwZEuXLqXLstKTnDlzQpY/f37IfI97rn3Q6dOnIWPf3yeeeAKyvHnzeo3tMnPmTMiKFi0K2dmzZyFjxQau/RH7GdkxKyawz9QX++zZ+QIrV/DlKgnavn07ZOwzYa+RlZ6wApjp06f7vEQzM2vSpInXcmzf6fpuvPrqq5CNHDnSaxy2LbLCD9c5OxN8L29VkKPfWImIiIiIiISkCysREREREZGQdGElIiIiIiISki6sREREREREQoq4vCJx4sTRHufIkQOWOX/+PF133bp1XmPEiRMHstGjR3ut6zJmzBjIHn/8ccjmzJkD2c6dOyHbu3cvZGyyrhmf5MZKO1yTP4MiKYrwLapgzp07B1nfvn3psm3atLntce62YAEIKw6JHz8+XZdN9EyZMiVk2bJlg4wVVUSCTXTftWsXZKyogk0OZpOdXZPu33vvPcjY94WVyjBsgr6Z2apVq7zGCYNNmDXjZR7svYwJrKwi6Pnnn6c5K6zJnDkzZM8++6zXa2GFFi1btqTLjh07FjJWtsMmxLPChuzZs0P23Xff0bHZ+7Fy5UrIsmbNCtmBAwcge+211+g4bKI3K5Vgxw3GVZLBsM/i5pKHF154wfu57rSyZctGexxJKc/vv/8OGStzYsVWrDCAFVWwAiszs23btkHGzgPY8TBBggSQDRkyBLLmzZvTsdkxv2DBgpCx7ZgVW0UiXrx4kLHCHlYY8PLLL0N2+fJlOk7wnNHMrEOHDn857v3i+++/pzkrQ/jiiy8gY+UV7Lhbv359yE6dOkXHZtsN2y+xsrETJ05Axs5zXI4fPw5Z7969vcZm5049evSg4zRr1sz7NQWFLVNjZWSu7YDRb6xERERERERC0oWViIiIiIhISLqwEhERERERCUkXViIiIiIiIiFFXF5x8ODBaI/ZBEjfEgYzXgKRIUMGyNjkuA8++AAyNhHVzGz//v2QtW7d2uMVmlWuXBkyVtDhmnTPiiqYKVOmQMYmZD/zzDN0/WHDhkH2888/Q1a3bl2v18Pu5P3vf/+bLss+sypVqniNc7cF3/8JEyaEej42efOxxx677ef78MMPad6lSxfIWBlJmImarKTChRVVVKpUCbJPP/0Usg0bNtDnnDx5MmRbtmyBjJV2LFu2DDK273G9P2xS9n//+1+67P1o48aNNC9evDhkO3bsgGz48OGQsX0de/8+//xzOvb27dshy5IlC2TsO8gmakdyLGGFGF27doWM7atYUYILK7pxvR9BrMhjyZIlkOXPn5+uzyZQ16lT58a/WVHSvdKoUaNoj/v16+e9LiuscpUh3K4vv/zSe1lWOBAs5zDj21yTJk0gc23H+fLlg4wVgrH3h23HLgsWLICMlbOw7ZMVMrAyjocfftj79Zw+fTra45gqv8qZM2e0x+w45drPvvLKK5CxEhaGlbDUqFEDsmPHjnk9n5nZL7/8AtmmTZsgu3r1KmSsyIkd283MPvnkE8hYAU+ZMmUgS5IkCWSsdMOldu3akNWrVw8yVq7Ctk9XqdbRo0chmzp1qscr/F/6jZWIiIiIiEhIurASEREREREJSRdWIiIiIiIiIenCSkREREREJKSIyytYWUXQ6tWrac4mULKJwA8+iNd7rKiCTQhlz2dm1rJlS5r7YHdcZwUSkyZNout//PHHkEVFRUHmKt4IYnftNuMT9tgdtX3LK+bPn++1nBkvqojkTtV3U6ZMmaI9rl69OiwTvBP8n7JmzQrZkSNHIAtOxnVh3w3Xnce7d+8OGdsW48aNCxmb+D1x4kTIXNtcmjRpIKtVqxZkiRIlgmz8+PH0ORlW3MEmULP3t2LFipBFUuTBPvMhQ4bc+Deb3H2vBPdt7Of66aef6LrZs2eHjE2WHjt2rNdrSZgwIWSsRMWMF+gw7LMbMGCA17rr16+nOVv/jz/+gGzWrFmQFS1aFLLFixfTcd5++23I2P6P7fdZUcWlS5cgcx2vWAlT+vTpb/y7QYMGdL17oW/fvrd8fCtLly697XHHjBkDWdWqVb3XP3z4MGTt2rXzypgRI0ZA5tovFSxYELJVq1ZBFitWLMjYd40d783892WRlP+EwY4bMYEVIAUFS1kixd77hQsXQsbeZ1fpCTsHZEVUvp/nmjVrIHMdx1npESuBYCVUhw4d8no9Lp07d4aMnf8wYctwgvuZpEmTOpfVb6xERERERERC0oWViIiIiIhISLqwEhERERERCUkXViIiIiIiIiFFXF5x4cKFaI/37NkDy7A7O5uZJUiQALK8efNG+hJuiGTSG7tLdtu2bW97bDbp/9SpU3RZNkGVTbhjd3Fv3749ZL169fJ5iWbGXyebhMsmZBcvXtx7HObmO9VXrlw51HOFsWvXrtted+vWrV7LsYmarETgrbfegqx+/fr0OdnE0y5dukDGvoPsjuuPP/44ZK4SAjZBNXfu3JCxQppr165BFsl3NUOGDJAlS5YMst69e0PGihbY98qMlz/s2LHjxr979ux5q5d5V/m8X9myZaN5nz59IHv++echGzx4sNdrYe8fK59wYceD2LFjQ8aKXZo3bw5Zzpw56TjsWLJo0SLIKlSoABkrMnGVV9y8X/sTK6Bo0qQJZI888ghkFy9ehKx06dJ0bObmbaVhw4be691tNWvWhOzrr7+myxYuXBiyxIkTQ8ZKbNh+lpVdsf2FmVnKlCkhc5UGBLHvKTs+u4pili9f7jVO8uTJIXMVVTBs/8lKGVzfrSBWbFCpUiXv13O/CJ6Tjhw5EpaZNm0aXZeVpsSJEwcy36IKxnV+7FtUwc71WDkKK6ZyfZ4TJkyguc847Hw2EqyMiH03GFbgxPblZnx/FNzmb1UUpN9YiYiIiIiIhKQLKxERERERkZB0YSUiIiIiIhKSLqxERERERERC0oWViIiIiIhISBG3AsaLFy/a4+eee8573SRJkkB2+fJlyFjDkm+LiqtNacWKFV7r+2LtTl988QVd9ueff4bsm2++gYw1mrEmI1cr4LJlyyArVKgQZKwpMGPGjPQ5gyZOnEhz1hJ28uTJG/+OybaqYFsOa8xzbcfsPWUtj6yZim2zrCnM1VYVSZNe0Lx58yCLioryXp+1Va1ZswYy1kTEXrerZYstu3fvXsheeOEFyB56CHdfV65coeMwpUqVguyrr77yXv9+1aJFC8hee+01r3W7d+8OGfvuHj16lK7PPucsWbJAxvY3efLkgYy1yLGGQzO+jbDmLtb0mTVrVsh69OhBx2HvJWvHZPtp1r7K2nLPnz9Px/b9vt0PqlSpAplrP/Dbb79BxhoAGdY6WaBAAa91XXzf09atW0PGmtj2799P12f7aVcbZRhz5syBjH1fWAMeawVl23HTpk3p2IcPH/Z4hTEjeLyoWrUqLOM6N2ANgvXq1YOMNQEzadOmhYydE7qwbZ59nmxflShRIsiCDeC3ek1nzpz56xdoZsOGDfNazoyfy8+YMcNr3e+++w4ydu7latZlli5dGu3xuHHjnMvqN1YiIiIiIiIh6cJKREREREQkJF1YiYiIiIiIhKQLKxERERERkZAiLq8I49SpU3f0+QYMGACZ7+Q2M7Nz585B9uijj0JWsmRJyC5evOg9jm9xQ86cOb2WS5YsGc3ZhPIwE5vbt28PWceOHemyFSpUuO1x7jaf98A1QbVPnz6QtWnT5rZfCyuqcJVXZMqUCbJdu3ZBtnbtWsjeeecdyCpVqgRZsIzmT7ly5aJ5kO/25VqOTWZfuHAhZOvWrfMa56mnnoJs+/btdFlWlvDGG2/c+DcrOblX0qVLF+1x0aJFYZlmzZrRdQcOHAhZjRo1INu9ezdk3377LWRsP+vCyl7Kly8PGSugYNs2w34WM76NsO34mWeegSxx4sSQud7fMPtU9npYiYoL28/WqlXrxr9ZqdK9MmTIkGiP69atC8u43jtWGlO/fn3IZs6cCVns2LEhY2VKrjIM9tkzrPSkc+fOkLF9GivuMuPfrSJFini9HlcRCMOKh1ihxpNPPgnZokWLIGMFYzly5PB+Paz0Iyb84x//+MtlXOdlvudrbJ+6atUqyH799VfIXO9T8Ltmxve9vttIJPu0SLY7H6lTp6Z5zZo1IVuyZAlkbNtmBU5hBYvgVF4hIiIiIiJyF+nCSkREREREJCRdWImIiIiIiISkCysREREREZGQ7kp5hWtym+8EOVYWMXfuXMjYXa4jGZsVVVy7dg0y18TToIIFC9KcTSrcsGEDZL6FGKyEwIz/7OznPnDgAGRp0qSBrFOnTpB99NFHdOwwE7rvNTaZdPPmzd7rBycxmpl99tlnkLHP48cff4QsKiqKjvPiiy9CxiYNs0mevp+Ha5tr1KgRZOznCZYsmJkVK1YMMjbZ1oXdBZ5hxSKs2CVLlix0/dWrV3utHxOCE8vPnz8PyyRIkICumz17dsguXLjgtRzbvlyFNQzbvo8dO+a1LpvI36BBA++xX3jhBciSJ08Ome/k65YtW9Lcdz/ri02Cnj9/Pl12woQJt3wu36Kku+HTTz+N9piVV7iwoopDhw5BxooUevTo4TWGq6SC7QNZCQibJL9gwQLI2rZtC9nly5fp2Ozn9sVeNzsWmJnlzp37tsdh+/OhQ4dCFknZT7D0I6a22+D+aseOHbCM6z1lvvjiC8iaN28O2U8//QRZ3rx5IXMVZbn2/UHbtm2DjBXFsIIn13GTFQ+F2Sf+/vvvNGflKqzYpWzZspCx8oo7vd++Ff3GSkREREREJCRdWImIiIiIiISkCysREREREZGQdGElIiIiIiISUujyCjYJ7+DBg3TZrl27QrZixQrIWFEFm6A2bdo0yI4fP07HZgUSrGyCTWgfPXo0ZKxY4OzZs3TsWrVqQTZy5EjI3njjDch27twJ2ffff0/H8Z2Ix4oqli5dCtmUKVMgc00Ubt++PWQ3TxaMZBL6nRacPF+jRg1Ypnr16nRddmf2K1euQMYmRrLCgHjx4jlfZxD7HjBbt271fs4gNknbhU1G79+/P2Tsu+oq6Jg9ezZkvXr1gowVE5w+fRqyEiVKQMa++2Z/r8IVNlmZFVqY8VKebNmy3fbY169fhyxWrFh0Wd/3lO2n2T5i3759kKVPn54+58yZMyF7/fXXIWvatClka9euhaxLly50HJazMqKECRNCFjduXMhSpEgBGduOzfj7W7Ro0Rv/dk04vxeCZUcrV66EZVzFS08++SRk7Dj3zjvvQOZbRjJ16lSas/3Ve++9B9mgQYO8xsmXLx9kP/zwA122W7duXs/JsG3pr8pNbnbu3DnI4sePDxnb5th7zj6b+11wv/jSSy+Fer7ChQtDxo5TbJwMGTJAtnfvXjrO5MmTIYsdOzZk7PPs0KEDZOXLl4ds8eLFdGy2r2P27NkDWcaMGSFzHTNYUc2RI0cg6927t9frYecq7PrDzOyVV16BLHjccZ3TmOk3ViIiIiIiIqHpwkpERERERCQkXViJiIiIiIiEpAsrERERERGRkCIur0iWLFm0x6tWrYJlUqdOTddl5QxsQmmYOyQ/9thjNC9UqBBkwcm2Zmbt2rWDrHbt2pCxyc7szuxmfKLhc889Bxl7LwYMGACZqxzko48+guzNN9+EjN0J3DWJL4h9hma81OLmzyym7qxuhhPtmzRp4r0uK6oYN24cZGwy/vvvv+89DsPeMzZRk01aTZcuHWTsuxr8Pt9K/vz5IWPvBZvk7donHDhwADL2+bB9Qo4cOSBjP+PDDz9Mx76fJUmSJNrjU6dOwTKXLl2i67J9JdtuPvjgA6/Xsn79eshcJUFsQi8rzvjwww8hq1evHmSDBw+GzHUsYEUVzJIlSyDbuHEjZK5ShGLFikE2Z84cyFix08WLFyFLmTIlZGzbNvvrMp2Y3M8GJ6bnzZsXlmHf90iwYghWiMH2Szt27KDPyY6nrNSHbXdFihSBjJ1ruAqnfLFtKXv27JC5tln22lnJDdO9e3ev5/s7CpZJse/dpk2bvJ8vd+7cXstdvXoVMlZUUa5cObo+K2JgJTisHCpx4sSQseKRLVu20LFZ0UW/fv0gY/vJkydP0udkRowYARk7n2XlcKz0iJUj7d69m47tW4jjot9YiYiIiIiIhKQLKxERERERkZB0YSUiIiIiIhKSLqxERERERERC0oWViIiIiIhISBG3Ah49ejTa4169esEyrta6VKlSQcZa5ljDyKJFiyB79dVXXS8T+LbYsIahzJkzQ8aaSBYuXEifM2fOnJB17twZMvZe/Pzzz5D17duXjsNaVF555RXIfBsAf/vtN8gmTpxIl2UtX82aNfMa525r1apVtMesaWzs2LF0XdYSOX78eMjeffddyFjLI8Oavsx48w+zefNmyEqVKgVZ8H0wM5s+fTp9zmCTopnZsWPHIGPbbI0aNSBjLUhmvB3z9OnTkFWtWhWy0aNH0+f8vyDYAshaARcvXkzXZe9p4cKFb/u1ZMiQATK2/zLj7Xi+WJtk+/btvde/cOECZMHWLzO+P2f7tbDNZ2y/37ZtW8hYayxrvzIzq1OnDmQzZ868jVd3512/fj3a4+C5gplZ8uTJvZ+Pvf/nzp2DrGnTpl7Pxz53M7OXXnoJsh9//BEy1hRWoEAByDp27Oj1esx465tvizB7f8Jus6wdbtiwYV7jRNKk5nsOcrdlyZIl2uPt27d7r8vOb7p06QJZnDhxIn9h/9+UKVNozrYR9pmwbZG1VlavXh0yV5PloUOHIGMNgGHavc3MvvnmG+9lg9KnTw9Zz549IXvoIX4JFGzlNcNGw1s1sOo3ViIiIiIiIiHpwkpERERERCQkXViJiIiIiIiEpAsrERERERGRkCIurwhOmmvSpAksc/HiRe/na968OWRsct2sWbO8nm/ChAk0D05SNDMbMGAAZKtWrfIah03Cc02m9538yco4+vTpA5mrvKJChQqQnTlzBjL2M5YsWRKy+vXrQ+YqZGjUqBHN7wesrCKoSpUqNGelCaxI5f3334eMTTxlpScjR46kYz/4IP6/BytXSZw4MWSsQIaVm+TPn5+OzSauXrlyBbIdO3ZAFskE1QULFngtly5dOsjYJNoECRJAxgpgXGOzSasxIVjg0bVrV1iGTZQ2M8uWLRtkW7ZsgSxlypSQsXKBf//735B169aNjs2wCf5LliyBLHbs2JBFsi2xoop169ZBxo4FFStWhCwqKoqOw8qV2GRp5j//+Y/Xci5ly5aFLFgaEVOChRtsv+b6PNn323fye4sWLSBr3LgxZOxYasaLKhi272XbNsOKWcx4CQHDfm62ze3bt8/r+VzYucrx48che/zxxyFzlVew/W+wVOvbb7/1fYl3VLCsgv38rNDDzGz9+vWQsSKqZcuWQfbpp59CNn/+fMhc3xd2vrVp0ybIZs+eDRnbT7JxXNv2E088ARkr22HfN3Y+NWbMGDoOw17T8uXLvdZl+3123mvGyzyC23eDBg2cY+k3ViIiIiIiIiHpwkpERERERCQkXViJiIiIiIiEpAsrERERERGRkCIurwhOHmN30A5OTLwVNnl+3LhxkLFSCna3Z1YiYGaWNGlSyLJnzw6Z712y2Wu8dOkSXfbzzz+HLHfu3JDVrFkTMtfdrxk2KZEZPnw4ZGwSn6uogilTpgxk06dP917/fuV7h3m2HJu0yravjBkz0rFz5swJGdvuWLEBK68IFiKY8e+AGd8e2MTcF198ka7va+DAgZA9+eSTkH322WeQTZw4ETJWIOOaIP7yyy9Dxt7LmBAsJEmbNi0s45pUXblyZa8xDh8+DBmbkJ0rVy6v5zPjJTBsG2N3vGffK5Z16NCBjv3xxx9Dxr6XbGIywyZ+m5nt3bvXa32G/TxsIvuBAwfo+qxw6WZz5869vRd2BwTLbeLGjQvLDB06lK7LCpVSpEjhNS4rYfnyyy8h27p1K12fFV0sXrzYa2y2P54zZw5kGzZsoOuz4ybb97JygHnz5kHmKpBg34PvvvsOsl9//RWyGjVqQMYKoVxFC77Hy/sB26d+9NFHdFn2/rHCG7Y9FCxYELJJkyZB9ssvv9CxWYHZ119/7bWc73vPyoTMzI4dOwbZ/v37IWPfK1aE4jpvZvsPVsDlK378+JCxfYeZ2ZEjRyALvm8NGzZ0jqXfWImIiIiIiISkCysREREREZGQdGElIiIiIiISki6sREREREREQoq4vCJ4x212B+5evXrRdZs0aQKZ78TGihUrQsbuks3u8m3GJ6OyyXXMqFGjIAvesduMT2Y0M3vkkUe8xunRowdkGzduhIy9j2Z8wt3Ro0chYxNUGTb2888/T5dln8+hQ4e8xrnbgncA9/3cXdatW+e1HJugunr1asgGDRpE19+9ezdk7C7l7Odp27YtZGyidCSTiNl3lW0j7OdxFQZ89dVXkMWKFcvr9bCJuUuXLoWsRIkSdH02+btFixY3/n2ryal32+XLl6M9njZtGiwzf/58uq7vZ8o+T1aqs2bNGshYUYSZWcuWLSFjJSzsvQ+WH5jxkotIsJ8xR44cXuuyEgEzXhDB9smsTCjMZ2PGyyuuXbvm9Zx3W7Ach01oL1SokPfzbdq0CbLevXtDduHCBchat24NWdasWek4ixYtgoyVRrFjHDuWskIL1zH73LlzkPm+R77lHmZmO3bsgIyV+viWEZUqVcp77LNnz0LGPtuYEDxnYu9pt27d6LpnzpyBrEGDBpCNHTsWMlbyw7bt9u3b07HZMZKVn7HSNvbdYEVjXbp0oWOz7xvbX61duxYy9rrZeY6ZWaZMmbzG9sVeT/LkyemyrGzGVSjE6DdWIiIiIiIiIenCSkREREREJCRdWImIiIiIiISkCysREREREZGQws0MNrNdu3ZB5pqoySa4BYsFzMw6deoEWb9+/SC7fv06ZK6JcKdOnYIszN2/2V2y2V23zcw6dOgAGZv0379/f6+xWXGGGZ94ybKVK1d6ZRMmTIDMVV7B7s5+8+fNJnXeK9WqVbvtddnnlCtXLq91gwUEZnzCcNgCCbY+W27ixImQXbx4kY7DCldYiUG6dOkgY9tI586d6Tis/IYVfBQuXBiyLFmyQMbuPl+5cmU6NpugyooWYsLDDz8c7TErqmCFPGZ8ovqKFSsgY9vNkCFDIPv9998hY/s0l/Xr10PGiiESJEgAGdunli5dmo7DSmW++eYbyN5//33Ihg4d6j0OK79gk/F/+uknun7QyZMnIYtkn+Bb9nKvsX3DzJkz6bKvv/46ZM8995xX5qt27do0/+CDDyArUKAAZKy8gj1nwoQJIXMdM3zLYlgRSPz48SFzbTfseDB16lTI2M/9yy+/QMaKACpUqEDHZq/p0qVLdNl7LXge16hRI+912T4sVapUkG3duhWysmXLQuYqP2NYacrVq1cha9q0KWSffPIJZKwkw3UsZOc1y5Ytg6xNmzaQff7555C5ytRY2RY7L2HvJSt7Yscsdg1hZpYsWTLIgqUyzz77LF3XTL+xEhERERERCU0XViIiIiIiIiHpwkpERERERCQkXViJiIiIiIiEFLq8omXLlpCxO02bmTVr1gyySCYL+nDdsT5MUQVz4sQJyFxFAMz58+chY5O32aTzQYMGeY/D7N27F7IZM2ZAxiY0RvL+3pw1bNgwkpd4RwXvPs6KNAYMGEDXfeqpp7zGmDt3LmRsouWoUaO8ns/M7IknnoCMFZywSa/s82jVqhVk7DW6vPjii5Cxcg82NitfMDNbuHAhZEWLFoVs8ODBkLE7szOspMKMf2b3S3lFEHtPXUUAvXr1goxtN0eOHIGsbt26XmNnz56djs0KG9ik6ju9PzYzK1GiBGSsHKV8+fKQxY0b13scVlTBtllWVMMm7bPCpeA+609s/7tz50667L0W/I4XL14clvnoo4/ouqy8YsqUKZC9+eabkLHtK3bs2JC5ygHYd56d13Tp0oWufy9kzZoVMlYq4zoHCfN9Y9vinj17vMdgxQYFCxaM9piVDt0LYc4/V61a5bXce++9B1kk+xsmX758kB04cACydu3aQcZKrBjXcZMV/bDzOzYOK7ZiBS4urLzGtU8JOnv2LGSu89mBAwdCFtx/3OqcVr+xEhERERERCUkXViIiIiIiIiHpwkpERERERCQkXViJiIiIiIiEpAsrERERERGRkCJuBQy202zduhWWOXbsGF23e/fukQ4XsbvRNsWwppevvvqKLlu/fn3IWAPgrl27IHvllVe8X9MHH3wAWZ8+fSBj79Fnn30G2ZYtW7zHZipWrHjj36yd6165fPlytMelS5f2XvfcuXOQjR8/3mvdOnXqeI/DuL5HQa+++ipkixYtgiySVqubP7s/hflusYYwM7PKlStD1rZtW8iefvppr9eTIkUKyFj7ndn92wBohm2JxYoVg2VYk9qt8iD2Pnfs2BGyYIOXmdmCBQu8xjAzy5MnD2Ss0SxWrFiQPfQQHqJYq6cZP76wbZ7tj1ljVPLkyek4zOLFiyFbs2YNZKxZ86WXXoKM7bfN+Da/du1an5d41/32229/uUwkx5SECRN6LVerVi3I2Pvs+3xmfLthLWfsc2cNs659J2vejYqKgixjxoyQbd68GTJXy13NmjUhY43DTZs2pesHsebR4HH2T6xh7X4RbM1bt24dLMO2LzOzSpUqeY0RJ06ciF/Xn5555hmasxbFevXqQcbadNm2yJpJ2TZnxltVWZssO7az64WqVavScbZt2wYZO69JkyYNZIUKFYLM1QrKHD9+HDLWau6i31iJiIiIiIiEpAsrERERERGRkHRhJSIiIiIiEpIurEREREREREKKuLxi3Lhx0R6zyajLli2j67JyBjZR0zXR3cekSZNozibc+fItB2CTos3MsmXLBtmhQ4cgO336NGSTJ0+GrFy5cnSc1q1bQ9a7d2/ISpQoAdm8efMgS5w4MWRXr16lY7PijOXLl9/4t+s13wvB8oJp06bBMqVKlaLrfvLJJ5D98ssvkHXr1g2yPXv2QMYmhEZSCsG+W2xbPHjwIGSzZs2CjJWwmPGJ2ux9ix07NmSu95KZPXs2ZKywhRVQsFIFV1EFw372li1beq9/NwXLKk6dOgXLJEmShK7LikcmTJgAGfucpk6dCtm+fftcLxMcOHAAsrRp00LWoUMHyFhxBsPKAcz4sahVq1aQPfDAA5BF8h3MlCkTZGwCNSs2YFjJRePGjemyq1evhuzZZ5/1Guduy5w5818uwwpKzPg2e/ToUcjYcfP69euQsffJhW0PwfMcM15WUKFCBchY8UiRIkXo2F27doWMFfBs2rQJsrAT9FmpTN68eSFj342VK1dCxs5VzPj74dq+77XguVCnTp1gGbZPc2HHH3YOxrDyj+3bt9Nl2f5m0KBBXhkzcuRIyNh7YcbPC+9GaRwrV2HnkaxIxXUN4osVrgS3g4YNGzrX12+sREREREREQtKFlYiIiIiISEi6sBIREREREQnpAd+/jWzYsOG9ufOu/J/Wv39//IP2u0TbrNwJ2mbl70bbrPwd3avtVtus3Clsm9VvrERERERERELy/o2ViIiIiIiIcPqNlYiIiIiISEi6sBIREREREQlJF1YiIiIiIiIh6cJKREREREQkJF1YiYiIiIiIhKQLKxERERERkZB0YSUiIiIiIhKSLqxERERERERC0oWViIiIiIhISP8P58x5i1TvjTEAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 1080x241.2 with 5 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Clean images we want to obtain (or y)**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE1/figs/AE1-02-original</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAACiCAYAAABCt1z5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAARyUlEQVR4nO3df6zVdf3A8XO5BuLlV4bRRYlWMYhyGmIkZhCaVENQ+iEbqPhrLAzYgohEiyk5pGwT8a6ophcNhTHFqS0C1kWdpgRdf20htSAdYSABJQQq9/tX+1av960P933vPffc+3j8+dznnM9bPd7d1z47r1vV1NRUAgAAoOW6lfsAAAAAlc5gBQAAkMlgBQAAkMlgBQAAkMlgBQAAkOmkohfOnDnT+kCy1dXVVbXXvXxmaQ0+s1Qan1kqUXt9bn1maS2pz6wnVgAAAJkKP7H6p7q6urY4B53czJkzy3Zvn1lawmeWSuMzSyUq1+fWZ5aW+m+fWU+sAAAAMhmsAAAAMhmsAAAAMhmsAAAAMhmsAAAAMhmsAAAAMhmsAAAAMhmsAAAAMhmsAAAAMhmsAAAAMhmsAAAAMhmsAAAAMhmsAAAAMhmsAAAAMhmsAAAAMhmsAAAAMhmsAAAAMhmsAAAAMp1U7gMAHc/WrVtDW758eWj19fWhXXXVVaHNmjUreZ8RI0a04HQAAB2PJ1YAAACZDFYAAACZDFYAAACZDFYAAACZLK8o4J133gnt4MGDWe+ZWgRw+PDh0LZv3x7a3XffnXzPefPmhfbAAw+EdvLJJ4e2YMGC0L7zne8k70Pn0djYmOwXXXRRaIcOHQqtqqoqtJUrV4b2yCOPJO+zf//+/3FC6Fg2bdoU2tSpU0PbvHlzaEOHDm2TM9H1LF68OLRvf/vbyWubmppCa2hoCG3MmDHZ54KuzhMrAACATAYrAACATAYrAACATAYrAACATJ1uecWf/vSnZD927FhoTz/9dGhPPfVUaAcOHAht7dq1J364Fhg0aFBos2bNSl778MMPh9a7d+/QzjrrrNB8abXze+6550L74he/mLw2tZwltaiiT58+oXXv3j20ffv2Je/zzDPPhHbOOecUek+Ke+KJJ0J74403Qrvsssva4zgVbcuWLaGNHDmyDCehq7j33ntDW7JkSWjV1dXJ16cWcKV+ngP5PLECAADIZLACAADIZLACAADIZLACAADIVNHLK37729+GNm7cuOS1qS/jdzSpL56m/rp6TU1N8vVTp04NbeDAgaG9+93vDm3o0KFFjkgHdPjw4dC2bdsW2rRp00LbvXt31r2HDBkS2vz580O7/PLLk68///zzQ0t95m+88cYWnI5/amhoCG3Hjh2hWV7x/44fP57sf/zjH0NLLU1qampq9TPRNe3atSu0o0ePluEkVLpnn302tPvuuy+01MKjUqlUeumllwrd54477ggt9fvok08+mXz9FVdcEdqoUaMK3bvcPLECAADIZLACAADIZLACAADIZLACAADIVNHLKwYPHhxa//79k9e2x/KK5r5Yl1oW8atf/Sq07t27h5b6Ah/8qxkzZoS2atWqdrn31q1bQ/v73/8e2pgxY5KvTy1VePHFF7PPxb+rr68PbfTo0WU4SeX485//nOwrVqwILfVzetiwYa1+Jjq/jRs3hrZs2bJCr23uM/fYY4+FNmDAgBM7GBVn9erVoc2ZMye0vXv3htbc8p2xY8eGtm/fvtDmzZtX4ITN3yf1ng8++GCh9yw3T6wAAAAyGawAAAAyGawAAAAyGawAAAAyGawAAAAyVfRWwFNPPTW0733ve8lrH3300dA+/vGPhzZ79uxC9z777LNDS23zKZVKpZqamtBeeuml0Ipu/qHrSm3hS218am7Tzn9KbfgplUqlCRMmhJba8jNw4MDQUv9fpTZjlkrp7ZhFz05xx48fL/cRKs51111X+NohQ4a04UnorJ566qnQpk+fHtqhQ4cKvd83vvGNZE9tUKZyvf3226Ft2bIltOuvvz60N998M7TU1t6bb745ee9PfepToR09ejS0r3zlK6GtX78++Z4pI0eOLHxtR+OJFQAAQCaDFQAAQCaDFQAAQCaDFQAAQKaKXl6Rcumllyb7uHHjQuvdu3doL7zwQmg/+clPQkt9kT+1pKI5H/vYx0JbsWJF4dfT+TU2NoZ20UUXhZb6YnNVVVVoX/jCF0J74IEHkvduaGgI7bvf/W5oqS/4n3baaaGdddZZyfukzvn444+Htm3bttBGjBiRfM+uLvUz7PXXXy/DSSrbgQMHCl/72c9+tu0OQqdVX18f2u7duwu9NrV46Morr8w9EhXg/vvvD+3aa68t9NqLL744tNWrV4fWp0+fwudJvb7ooopBgwYl+1VXXVX4/h2NJ1YAAACZDFYAAACZDFYAAACZDFYAAACZOt3yiuYU/SJe3759C12XWmgxZcqU5LXduplfad4rr7yS7EuXLg3t4MGDoaWWRdTW1oaW+jJor169kveeMGFCodYWDh8+HNr3v//90FatWtUex6k4P//5z0M7cuRIGU5SOVLLPXbu3Fn49aeffnornobOZt++fcn+05/+NLTq6urQ+vXrF9pNN92UfS46tub+G992222hpRZB3XDDDaEtXrw4tBNZVJGSWmxV1LJly5I99XtNpfAbPwAAQCaDFQAAQCaDFQAAQCaDFQAAQKYus7yiqEWLFoW2devW0BoaGkLbuHFj8j1Tf+maruno0aOhzZs3L3nt448/HlrqS6YrV64MbeTIkaFV8gKDV199tdxHqBjbt28vdN1HP/rRNj5J5Uj9P7hnz57ktUOHDg2td+/erX4mKlNq6cnkyZOz3nPWrFmhjRs3Lus96VhuueWW0FJLKkqlUqlHjx6hjR8/PrTbb789tJ49exY6zz/+8Y9k/+Uvfxnarl27Qmtqagrt5ptvDm3SpEmFzlNJPLECAADIZLACAADIZLACAADIZLACAADIZHnFf6ipqQntxz/+cWgjRowI7frrr0++52c+85nQUssFUn8lO/XXtKlc27ZtCy21pKI5jzzySGhjxozJOhNd07nnnlvuI7SqQ4cOhfaLX/witPvvvz+01Beym3PTTTeF1q9fv8Kvp3NLfeZefPHFwq+/8MILQ5szZ07WmehYDhw4EFpdXV1ozf3+l1pUsW7duhaf5/e//31oU6dOTV77m9/8ptB7fvnLXw5t/vz5J3awCuWJFQAAQCaDFQAAQCaDFQAAQCaDFQAAQCbLKwr40Ic+FNq9994b2tVXX518/cqVKwu1N998M7Qrr7wytNra2uR96Pi+/vWvh5b6C+WlUqk0duzY0Drboorm/tlbeh3F7d+/v9Xf8/nnnw/t+PHjoW3atCm01157LbRjx46F9rOf/Sx579R9evbsGdqoUaNC69GjR2hvvfVW8j6pxUN0TamFAQsWLCj8+gsuuCC0+vr60Pr27XtC56JjS/1c27t3b+HXL1u2LLS//OUvod1zzz2hpRZgvfzyy6H97W9/S947tVCjW7f4jGbatGmhpZbDdUaeWAEAAGQyWAEAAGQyWAEAAGQyWAEAAGQyWAEAAGSyFbCFLrvsstA+/OEPJ6+dO3duaBs3bgztW9/6Vmi7du0KbeHChcn7nH766clOeTz22GOhNTY2hpbaslMqlUoTJ05s7SN1OKl/9lQ7++yz2+E0nUNqE17q3+mMGTNCu+2227LundoKmNro+K53vSu0U045JbSPfOQjoV1zzTXJe59zzjmhpTZrDhgwILQzzjgjtCNHjiTvM2zYsGSnc9u5c2dokydPznrPD37wg6GlPp90Lt27dw/tve99b2ipTX+lUqn0gQ98ILTmfo8oIvW7Y58+fZLX7t69O7T+/fuHdskll7T4PJXOEysAAIBMBisAAIBMBisAAIBMBisAAIBMlle0ojPPPDPZ16xZE9qjjz4a2vTp00P74Q9/GNqOHTuS99mwYcP/OCHtKfXl92PHjoWW+tJqqVQqXX755a1+pvZw9OjR0BYtWlT49RdeeGFoS5YsyTlSl1JXVxfa4MGDQ3v66adb/d7vf//7Q5s0aVJow4cPD+2Tn/xkq58nZcWKFaGlviSeWixA13X77beHVl1dnfWeCxYsyHo9lalfv36hrVu3LrQJEyYkX//GG2+EllqelvrZm/o989RTTw1typQpyXunllc0d21X5YkVAABAJoMVAABAJoMVAABAJoMVAABAJssr2kHqi4pXXHFFaNddd11ob731VmhPPPFE8j4NDQ2hjR079n+ej/I6+eSTk722tradT3LiUosqFi9eHNrSpUuTrx80aFBoc+fODa1Xr14tOB3/9M1vfrPcR+gwNm3aVOi6L33pS218EjqqxsbG0NavX9/i95s4cWKyDx06tMXvSecyatSo0Pbu3dsu9079Trl58+bktVVVVaFZ9PPvPLECAADIZLACAADIZLACAADIZLACAADIZHlFK3rhhReSfe3ataFt2bIltNSiipThw4cn+6c//elCr6djae6LzR1N6gvdqaUUq1evDi31F+BLpVLpoYceyj4XtIVLL7203EegTC6++OLQ/vrXvxZ6bWoJQX19ffaZoK0cOXIktNSSiub6lClTWv1MlcwTKwAAgEwGKwAAgEwGKwAAgEwGKwAAgEyWVxSwffv20O66667Qmvsi/p49e1p875NOiv+Jamtrk9d262ZO7kiampoKtXXr1iVff+edd7b2kQr7wQ9+ENqtt94a2sGDB0ObNm1aaCtXrmydgwG0sX379oVWXV1d6LU33HBDaL169co+E7SV8ePHl/sInYrfxAEAADIZrAAAADIZrAAAADIZrAAAADIZrAAAADJ16a2AqW19q1atCm358uWh7dy5s9XPc+6554a2cOHC0CZOnNjq96b1VVVVFWrNbY2cPXt2aNdcc01o73nPe0L79a9/Hdp9990X2vPPP5+896uvvhra4MGDQ/vc5z4X2syZM5PvCZVkx44dyX7eeee180loS1dffXVoqe2t77zzTqH3Gz16dPaZoD2tX7++3EfoVDyxAgAAyGSwAgAAyGSwAgAAyGSwAgAAyNTplle8/vrryf7yyy+H9rWvfS203/3ud61+plGjRoU2f/780CZNmhRat25m387u7bffTva77747tLVr14bWt2/f0F555ZWsM6W+gD1u3LjQbrnllqz7QEd1/Pjxch+BVtTY2JjsGzZsCC21ZKhHjx6hpRb1DBgw4MQPB2X0hz/8odxH6FT81g4AAJDJYAUAAJDJYAUAAJDJYAUAAJCpYpZX7N+/P7QZM2aE1twXVFv7y3nnn39+aHPnzk1eO378+NB69uzZqueh4znvvPNC+8QnPhHac889V/g99+zZE1pzC1v+U//+/UObMmVK8to777yz8JmgM3rmmWeSffr06e17EFrFgQMHkr3oz8+BAweGdscdd+QcCTqECy64ILSmpqYynKRz8MQKAAAgk8EKAAAgk8EKAAAgk8EKAAAgU9mXVzz77LOhLV26NLQtW7aE9tprr7X6eU455ZTQZs+eHdrChQtDq6mpafXzULnOOOOM0B566KHQfvSjHyVff+utt7b43nPmzAntq1/9amhDhgxp8T0AgMp25plnhtbc7wapRXCpdtppp+UfrEJ5YgUAAJDJYAUAAJDJYAUAAJDJYAUAAJCp7MsrHn744UKtqOHDhyf7JZdcElp1dXVo8+bNC61fv34tPg/8q9ra2tAWLVqUvLa5DrTc5z//+dDWrFlThpPQnoYNG5bso0ePDu3JJ59s6+NAh3bjjTcm+7XXXlvo2uXLl4fW3O/nnY0nVgAAAJkMVgAAAJkMVgAAAJkMVgAAAJnKvrxiyZIlhRoA5Jo+fXqhRufyvve9L9k3b97czieBjm/y5MnJ/uCDD4a2YcOG0FLLt+65557QampqTvxwHZwnVgAAAJkMVgAAAJkMVgAAAJkMVgAAAJkMVgAAAJnKvhUQAADoGPr06ZPsa9asCW3hwoWh1dXVhZbaFDh8+PATP1wH54kVAABAJoMVAABAJoMVAABAJoMVAABAJssrAACA/yq11OKuu+4q1LoKT6wAAAAyGawAAAAyGawAAAAynfB3rGbOnNkW54A24zNLpfGZpdL4zFJpfGZpC55YAQAAZKpqamoq9xkAAAAqmidWAAAAmQxWAAAAmQxWAAAAmQxWAAAAmQxWAAAAmQxWAAAAmQxWAAAAmQxWAAAAmQxWAAAAmf4PfW74QeeEawcAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 1080x241.2 with 5 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "print('Clean dataset (clean_data) : ',clean_data.shape)\n",
-    "print('Noisy dataset (noisy_data) : ',noisy_data.shape)\n",
-    "\n",
-    "pwk.subtitle(\"Noisy images we'll have in input (or x)\")\n",
-    "pwk.plot_images(noisy_data[:5], None, indices='all', columns=5, x_size=3,y_size=3, interpolation=None, save_as='01-noisy')\n",
-    "pwk.subtitle('Clean images we want to obtain (or y)')\n",
-    "pwk.plot_images(clean_data[:5], None, indices='all', columns=5, x_size=3,y_size=3, interpolation=None, save_as='02-original')\n"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 5 - Shuffle dataset"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:24:50.063565Z",
-     "iopub.status.busy": "2021-03-14T21:24:50.062265Z",
-     "iopub.status.idle": "2021-03-14T21:24:50.210703Z",
-     "shell.execute_reply": "2021-03-14T21:24:50.211197Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Shuffled.\n"
-     ]
-    }
-   ],
-   "source": [
-    "p = np.random.permutation(len(clean_data))\n",
-    "clean_data, noisy_data, class_data = clean_data[p], noisy_data[p], class_data[p]\n",
-    "print('Shuffled.')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 6 - Save our prepared dataset"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:24:50.409581Z",
-     "iopub.status.busy": "2021-03-14T21:24:50.214065Z",
-     "iopub.status.idle": "2021-03-14T21:24:50.414143Z",
-     "shell.execute_reply": "2021-03-14T21:24:50.414635Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Saved."
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\n",
-      "clean_data shape is :  (70000, 28, 28, 1)\n",
-      "noisy_data shape is :  (70000, 28, 28, 1)\n",
-      "class_data shape is :  (70000,)\n"
-     ]
-    }
-   ],
-   "source": [
-    "MNIST.save_prepared_dataset( clean_data, noisy_data, class_data, filename=prepared_dataset )"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:24:50.417874Z",
-     "iopub.status.busy": "2021-03-14T21:24:50.417415Z",
-     "iopub.status.idle": "2021-03-14T21:24:50.419664Z",
-     "shell.execute_reply": "2021-03-14T21:24:50.420133Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "End time is : Sunday 14 March 2021, 22:24:50\n",
-      "Duration is : 00:00:50 963ms\n",
-      "This notebook ends here\n"
-     ]
-    }
-   ],
-   "source": [
-    "pwk.end()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "---\n",
-    "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.9"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/AE/02-AE-with-MNIST==done==.ipynb b/AE/02-AE-with-MNIST==done==.ipynb
deleted file mode 100644
index 8d5add42ce6511be65db03c64bb7a049c9d43564..0000000000000000000000000000000000000000
--- a/AE/02-AE-with-MNIST==done==.ipynb
+++ /dev/null
@@ -1,8719 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
-    "\n",
-    "# <!-- TITLE --> [AE2] - Building and training an AE denoiser model\n",
-    "<!-- DESC --> Episode 1 : Construction of a denoising autoencoder and training of it with a noisy MNIST dataset.\n",
-    "\n",
-    "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
-    "\n",
-    "## Objectives :\n",
-    " - Understanding and implementing a denoizing **autoencoder** neurals network (AE)\n",
-    " - First overview or example of Keras procedural syntax\n",
-    "\n",
-    "The calculation needs being important, it is preferable to use a very simple dataset such as MNIST.  \n",
-    "The use of a GPU is often indispensable.\n",
-    "\n",
-    "## What we're going to do :\n",
-    "\n",
-    " - Defining a VAE model\n",
-    " - Build the model\n",
-    " - Train it\n",
-    " - Follow the learning process with Tensorboard\n",
-    " \n",
-    "## Data Terminology :\n",
-    "- `clean_train`, `clean_test` for noiseless images \n",
-    "- `noisy_train`, `noisy_test` for noisy images\n",
-    "- `denoised_test` for denoised images at the output of the model"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 1 - Init python stuff\n",
-    "### 1.1 - Init"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:24:51.774821Z",
-     "iopub.status.busy": "2021-03-14T21:24:51.774347Z",
-     "iopub.status.idle": "2021-03-14T21:24:54.376387Z",
-     "shell.execute_reply": "2021-03-14T21:24:54.375798Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<style>\n",
-       "\n",
-       "div.warn {    \n",
-       "    background-color: #fcf2f2;\n",
-       "    border-color: #dFb5b4;\n",
-       "    border-left: 5px solid #dfb5b4;\n",
-       "    padding: 0.5em;\n",
-       "    font-weight: bold;\n",
-       "    font-size: 1.1em;;\n",
-       "    }\n",
-       "\n",
-       "\n",
-       "\n",
-       "div.nota {    \n",
-       "    background-color: #DAFFDE;\n",
-       "    border-left: 5px solid #92CC99;\n",
-       "    padding: 0.5em;\n",
-       "    }\n",
-       "\n",
-       "div.todo:before { content:url();\n",
-       "    float:left;\n",
-       "    margin-right:20px;\n",
-       "    margin-top:-20px;\n",
-       "    margin-bottom:20px;\n",
-       "}\n",
-       "div.todo{\n",
-       "    font-weight: bold;\n",
-       "    font-size: 1.1em;\n",
-       "    margin-top:40px;\n",
-       "}\n",
-       "div.todo ul{\n",
-       "    margin: 0.2em;\n",
-       "}\n",
-       "div.todo li{\n",
-       "    margin-left:60px;\n",
-       "    margin-top:0;\n",
-       "    margin-bottom:0;\n",
-       "}\n",
-       "\n",
-       "div .comment{\n",
-       "    font-size:0.8em;\n",
-       "    color:#696969;\n",
-       "}\n",
-       "\n",
-       "\n",
-       "\n",
-       "</style>\n",
-       "\n"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**FIDLE 2020 - Practical Work Module**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Version              : 2.0.20\n",
-      "Notebook id          : AE2\n",
-      "Run time             : Sunday 14 March 2021, 22:24:54\n",
-      "TensorFlow version   : 2.4.0\n",
-      "Keras version        : 2.4.0\n",
-      "Datasets dir         : /gpfswork/rech/mlh/uja62cb/datasets\n",
-      "Run dir              : ./run/AE2\n",
-      "Update keras cache   : False\n",
-      "Save figs            : True\n",
-      "Path figs            : ./run/AE2/figs\n"
-     ]
-    }
-   ],
-   "source": [
-    "import numpy as np\n",
-    "from skimage import io\n",
-    "import random\n",
-    "\n",
-    "import tensorflow as tf\n",
-    "from tensorflow import keras\n",
-    "from tensorflow.keras import layers\n",
-    "from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard\n",
-    "\n",
-    "import os,sys\n",
-    "from importlib import reload\n",
-    "import h5py\n",
-    "\n",
-    "from modules.MNIST          import MNIST\n",
-    "from modules.ImagesCallback import ImagesCallback\n",
-    "\n",
-    "sys.path.append('..')\n",
-    "import fidle.pwk as pwk\n",
-    "\n",
-    "run_dir = './run/AE2'\n",
-    "datasets_dir = pwk.init('AE2', run_dir)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 1.2 - Parameters\n",
-    "`prepared_dataset` : Filename of the prepared dataset (Need 400 Mo, but can be in ./data)  \n",
-    "`dataset_seed` : Random seed for shuffling dataset  \n",
-    "`scale` : % of the dataset to use (1. for 100%)  \n",
-    "`latent_dim` : Dimension of the latent space  \n",
-    "`train_prop` : Percentage for train (the rest being for the test)\n",
-    "`batch_size` : Batch size  \n",
-    "`epochs` : Nb of epochs for training\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:24:54.380000Z",
-     "iopub.status.busy": "2021-03-14T21:24:54.379533Z",
-     "iopub.status.idle": "2021-03-14T21:24:54.381197Z",
-     "shell.execute_reply": "2021-03-14T21:24:54.381667Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "prepared_dataset = './data/mnist-noisy.h5'\n",
-    "dataset_seed     = 123\n",
-    "\n",
-    "scale            = .1\n",
-    "\n",
-    "latent_dim       = 10\n",
-    "\n",
-    "train_prop       = .8\n",
-    "batch_size       = 128\n",
-    "epochs           = 30"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Override parameters (batch mode) - Just forget this cell"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:24:54.385003Z",
-     "iopub.status.busy": "2021-03-14T21:24:54.384540Z",
-     "iopub.status.idle": "2021-03-14T21:24:54.389159Z",
-     "shell.execute_reply": "2021-03-14T21:24:54.388672Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/markdown": [
-       "**\\*\\* Overrided parameters : \\*\\***"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "scale                : 1.0\n"
-     ]
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "**\\*\\* Overrided parameters : \\*\\***"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "epochs               : 30\n"
-     ]
-    }
-   ],
-   "source": [
-    "pwk.override('prepared_dataset', 'dataset_seed', 'scale', 'latent_dim')\n",
-    "pwk.override('train_prop', 'batch_size', 'epochs')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 2 - Retrieve dataset\n",
-    "With our MNIST class, in one call, we can reload, rescale, shuffle and split our previously saved dataset :-)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:24:54.544042Z",
-     "iopub.status.busy": "2021-03-14T21:24:54.543133Z",
-     "iopub.status.idle": "2021-03-14T21:24:55.646506Z",
-     "shell.execute_reply": "2021-03-14T21:24:55.646000Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Loaded.\n",
-      "rescaled (1.0).\n",
-      "Seeded (123)\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Shuffled.\n",
-      "splited (0.8).\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "clean_train shape is :  (56000, 28, 28, 1)\n",
-      "clean_test  shape is :  (14000, 28, 28, 1)\n",
-      "noisy_train shape is :  (56000, 28, 28, 1)\n",
-      "noisy_test  shape is :  (14000, 28, 28, 1)\n",
-      "class_train shape is :  (56000,)\n",
-      "class_test  shape is :  (14000,)\n",
-      "Blake2b digest is    :  849ddca256f308db28ef\n"
-     ]
-    }
-   ],
-   "source": [
-    "clean_train,clean_test, noisy_train,noisy_test, _,_ = MNIST.reload_prepared_dataset(scale      = scale, \n",
-    "                                                                                    train_prop = train_prop,\n",
-    "                                                                                    seed       = dataset_seed,\n",
-    "                                                                                    shuffle    = True,\n",
-    "                                                                                    filename=prepared_dataset )"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 3 - Build models"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### Encoder"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:24:55.651444Z",
-     "iopub.status.busy": "2021-03-14T21:24:55.650961Z",
-     "iopub.status.idle": "2021-03-14T21:24:56.604251Z",
-     "shell.execute_reply": "2021-03-14T21:24:56.604771Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "inputs    = keras.Input(shape=(28, 28, 1))\n",
-    "x         = layers.Conv2D(32, 3, activation=\"relu\", strides=2, padding=\"same\")(inputs)\n",
-    "x         = layers.Conv2D(64, 3, activation=\"relu\", strides=2, padding=\"same\")(x)\n",
-    "x         = layers.Flatten()(x)\n",
-    "x         = layers.Dense(16, activation=\"relu\")(x)\n",
-    "z         = layers.Dense(latent_dim)(x)\n",
-    "\n",
-    "encoder = keras.Model(inputs, z, name=\"encoder\")\n",
-    "# encoder.summary()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### Decoder"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:24:56.611215Z",
-     "iopub.status.busy": "2021-03-14T21:24:56.610734Z",
-     "iopub.status.idle": "2021-03-14T21:24:56.662840Z",
-     "shell.execute_reply": "2021-03-14T21:24:56.662355Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "inputs  = keras.Input(shape=(latent_dim,))\n",
-    "x       = layers.Dense(7 * 7 * 64, activation=\"relu\")(inputs)\n",
-    "x       = layers.Reshape((7, 7, 64))(x)\n",
-    "x       = layers.Conv2DTranspose(64, 3, activation=\"relu\", strides=2, padding=\"same\")(x)\n",
-    "x       = layers.Conv2DTranspose(32, 3, activation=\"relu\", strides=2, padding=\"same\")(x)\n",
-    "outputs = layers.Conv2DTranspose(1, 3, activation=\"sigmoid\", padding=\"same\")(x)\n",
-    "\n",
-    "decoder = keras.Model(inputs, outputs, name=\"decoder\")\n",
-    "# decoder.summary()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### AE\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:24:56.668036Z",
-     "iopub.status.busy": "2021-03-14T21:24:56.667569Z",
-     "iopub.status.idle": "2021-03-14T21:24:56.724014Z",
-     "shell.execute_reply": "2021-03-14T21:24:56.724490Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "inputs    = keras.Input(shape=(28, 28, 1))\n",
-    "\n",
-    "latents   = encoder(inputs)\n",
-    "outputs   = decoder(latents)\n",
-    "\n",
-    "ae = keras.Model(inputs,outputs, name=\"ae\")\n",
-    "\n",
-    "ae.compile(optimizer=keras.optimizers.Adam(), loss='binary_crossentropy')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 4 - Train\n",
-    "20' on a CPU  \n",
-    "1'12 on a GPU (V100, IDRIS)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:24:56.728987Z",
-     "iopub.status.busy": "2021-03-14T21:24:56.728514Z",
-     "iopub.status.idle": "2021-03-14T21:24:56.897435Z",
-     "shell.execute_reply": "2021-03-14T21:24:56.896913Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "# ---- Callback : Images\n",
-    "#\n",
-    "pwk.mkdir( run_dir + '/images')\n",
-    "filename = run_dir + '/images/image-{epoch:03d}-{i:02d}.jpg'\n",
-    "callback_images = ImagesCallback(filename, x=clean_test[:5], encoder=encoder,decoder=decoder)\n",
-    "\n",
-    "# ---- Callback : Best model\n",
-    "#\n",
-    "pwk.mkdir( run_dir + '/models')\n",
-    "filename = run_dir + '/models/best_model.h5'\n",
-    "callback_bestmodel = tf.keras.callbacks.ModelCheckpoint(filepath=filename, verbose=0, save_best_only=True)\n",
-    "\n",
-    "# ---- Callback tensorboard\n",
-    "#\n",
-    "logdir = run_dir + '/logs'\n",
-    "callback_tensorboard = TensorBoard(log_dir=logdir, histogram_freq=1)\n",
-    "\n",
-    "# callbacks_list = [callback_images, callback_bestmodel, callback_tensorboard]\n",
-    "callbacks_list = [callback_images, callback_bestmodel]"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:24:56.901498Z",
-     "iopub.status.busy": "2021-03-14T21:24:56.901020Z",
-     "iopub.status.idle": "2021-03-14T21:26:01.942471Z",
-     "shell.execute_reply": "2021-03-14T21:26:01.942988Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 1/30\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      "  1/438 [..............................] - ETA: 23:49 - loss: 0.6931"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 14/438 [..............................] - ETA: 1s - loss: 0.6624   "
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 27/438 [>.............................] - ETA: 1s - loss: 0.5965"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 40/438 [=>............................] - ETA: 1s - loss: 0.5449"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 53/438 [==>...........................] - ETA: 1s - loss: 0.5072"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 67/438 [===>..........................] - ETA: 1s - loss: 0.4772"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 81/438 [====>.........................] - ETA: 1s - loss: 0.4544"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 95/438 [=====>........................] - ETA: 1s - loss: 0.4366"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "110/438 [======>.......................] - ETA: 1s - loss: 0.4211"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "125/438 [=======>......................] - ETA: 1s - loss: 0.4085"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "140/438 [========>.....................] - ETA: 1s - loss: 0.3979"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "154/438 [=========>....................] - ETA: 1s - loss: 0.3895"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 1s - loss: 0.3818"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 0s - loss: 0.3754"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "198/438 [============>.................] - ETA: 0s - loss: 0.3694"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "213/438 [=============>................] - ETA: 0s - loss: 0.3641"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "228/438 [==============>...............] - ETA: 0s - loss: 0.3593"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "243/438 [===============>..............] - ETA: 0s - loss: 0.3550"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "258/438 [================>.............] - ETA: 0s - loss: 0.3511"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "273/438 [=================>............] - ETA: 0s - loss: 0.3475"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "287/438 [==================>...........] - ETA: 0s - loss: 0.3444"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "301/438 [===================>..........] - ETA: 0s - loss: 0.3416"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "315/438 [====================>.........] - ETA: 0s - loss: 0.3390"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "330/438 [=====================>........] - ETA: 0s - loss: 0.3363"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "344/438 [======================>.......] - ETA: 0s - loss: 0.3340"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "359/438 [=======================>......] - ETA: 0s - loss: 0.3316"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "374/438 [========================>.....] - ETA: 0s - loss: 0.3294"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "388/438 [=========================>....] - ETA: 0s - loss: 0.3274"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "403/438 [==========================>...] - ETA: 0s - loss: 0.3253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "418/438 [===========================>..] - ETA: 0s - loss: 0.3233"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "432/438 [============================>.] - ETA: 0s - loss: 0.3216"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - ETA: 0s - loss: 0.3208"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 6s 7ms/step - loss: 0.3207 - val_loss: 0.2085\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 2/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.2124"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 14/438 [..............................] - ETA: 1s - loss: 0.2071"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 28/438 [>.............................] - ETA: 1s - loss: 0.2061"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 42/438 [=>............................] - ETA: 1s - loss: 0.2056"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 1s - loss: 0.2052"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 1s - loss: 0.2050"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 86/438 [====>.........................] - ETA: 1s - loss: 0.2046"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "100/438 [=====>........................] - ETA: 1s - loss: 0.2042"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "114/438 [======>.......................] - ETA: 1s - loss: 0.2038"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "128/438 [=======>......................] - ETA: 1s - loss: 0.2034"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "142/438 [========>.....................] - ETA: 1s - loss: 0.2030"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "156/438 [=========>....................] - ETA: 1s - loss: 0.2026"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "170/438 [==========>...................] - ETA: 0s - loss: 0.2022"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "184/438 [===========>..................] - ETA: 0s - loss: 0.2018"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "199/438 [============>.................] - ETA: 0s - loss: 0.2014"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "214/438 [=============>................] - ETA: 0s - loss: 0.2010"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "228/438 [==============>...............] - ETA: 0s - loss: 0.2006"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "243/438 [===============>..............] - ETA: 0s - loss: 0.2002"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "258/438 [================>.............] - ETA: 0s - loss: 0.1998"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "273/438 [=================>............] - ETA: 0s - loss: 0.1994"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "287/438 [==================>...........] - ETA: 0s - loss: 0.1990"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "300/438 [===================>..........] - ETA: 0s - loss: 0.1987"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "314/438 [====================>.........] - ETA: 0s - loss: 0.1983"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "327/438 [=====================>........] - ETA: 0s - loss: 0.1980"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "340/438 [======================>.......] - ETA: 0s - loss: 0.1977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "355/438 [=======================>......] - ETA: 0s - loss: 0.1973"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "369/438 [========================>.....] - ETA: 0s - loss: 0.1970"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "383/438 [=========================>....] - ETA: 0s - loss: 0.1967"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "398/438 [==========================>...] - ETA: 0s - loss: 0.1963"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "412/438 [===========================>..] - ETA: 0s - loss: 0.1960"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "425/438 [============================>.] - ETA: 0s - loss: 0.1957"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1955 - val_loss: 0.1729\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 3/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1682"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 1s - loss: 0.1745"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 1s - loss: 0.1738"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 1s - loss: 0.1734"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 58/438 [==>...........................] - ETA: 1s - loss: 0.1732"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 73/438 [====>.........................] - ETA: 1s - loss: 0.1730"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 88/438 [=====>........................] - ETA: 1s - loss: 0.1729"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "103/438 [======>.......................] - ETA: 1s - loss: 0.1727"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "118/438 [=======>......................] - ETA: 1s - loss: 0.1726"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "132/438 [========>.....................] - ETA: 1s - loss: 0.1725"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "147/438 [=========>....................] - ETA: 1s - loss: 0.1724"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 0s - loss: 0.1723"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "177/438 [===========>..................] - ETA: 0s - loss: 0.1722"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "191/438 [============>.................] - ETA: 0s - loss: 0.1721"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "205/438 [=============>................] - ETA: 0s - loss: 0.1721"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "219/438 [==============>...............] - ETA: 0s - loss: 0.1720"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "233/438 [==============>...............] - ETA: 0s - loss: 0.1719"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "248/438 [===============>..............] - ETA: 0s - loss: 0.1719"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "262/438 [================>.............] - ETA: 0s - loss: 0.1718"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "276/438 [=================>............] - ETA: 0s - loss: 0.1717"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "291/438 [==================>...........] - ETA: 0s - loss: 0.1716"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "305/438 [===================>..........] - ETA: 0s - loss: 0.1716"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "319/438 [====================>.........] - ETA: 0s - loss: 0.1715"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "333/438 [=====================>........] - ETA: 0s - loss: 0.1714"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "347/438 [======================>.......] - ETA: 0s - loss: 0.1714"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "360/438 [=======================>......] - ETA: 0s - loss: 0.1713"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "374/438 [========================>.....] - ETA: 0s - loss: 0.1712"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "389/438 [=========================>....] - ETA: 0s - loss: 0.1712"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "404/438 [==========================>...] - ETA: 0s - loss: 0.1711"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "419/438 [===========================>..] - ETA: 0s - loss: 0.1710"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "433/438 [============================>.] - ETA: 0s - loss: 0.1709"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1709 - val_loss: 0.1647\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 4/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1670"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 14/438 [..............................] - ETA: 1s - loss: 0.1651"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 27/438 [>.............................] - ETA: 1s - loss: 0.1649"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 40/438 [=>............................] - ETA: 1s - loss: 0.1646"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 54/438 [==>...........................] - ETA: 1s - loss: 0.1644"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 69/438 [===>..........................] - ETA: 1s - loss: 0.1644"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 84/438 [====>.........................] - ETA: 1s - loss: 0.1643"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 1s - loss: 0.1642"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "114/438 [======>.......................] - ETA: 1s - loss: 0.1642"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "129/438 [=======>......................] - ETA: 1s - loss: 0.1641"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "143/438 [========>.....................] - ETA: 1s - loss: 0.1641"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "156/438 [=========>....................] - ETA: 1s - loss: 0.1640"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 0s - loss: 0.1640"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "182/438 [===========>..................] - ETA: 0s - loss: 0.1640"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "196/438 [============>.................] - ETA: 0s - loss: 0.1640"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "210/438 [=============>................] - ETA: 0s - loss: 0.1640"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "224/438 [==============>...............] - ETA: 0s - loss: 0.1639"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "238/438 [===============>..............] - ETA: 0s - loss: 0.1639"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "252/438 [================>.............] - ETA: 0s - loss: 0.1639"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "266/438 [=================>............] - ETA: 0s - loss: 0.1639"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "280/438 [==================>...........] - ETA: 0s - loss: 0.1638"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "293/438 [===================>..........] - ETA: 0s - loss: 0.1638"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "308/438 [====================>.........] - ETA: 0s - loss: 0.1638"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "323/438 [=====================>........] - ETA: 0s - loss: 0.1637"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "337/438 [======================>.......] - ETA: 0s - loss: 0.1637"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "351/438 [=======================>......] - ETA: 0s - loss: 0.1637"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "365/438 [========================>.....] - ETA: 0s - loss: 0.1636"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "379/438 [========================>.....] - ETA: 0s - loss: 0.1636"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "394/438 [=========================>....] - ETA: 0s - loss: 0.1636"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "408/438 [==========================>...] - ETA: 0s - loss: 0.1635"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "422/438 [===========================>..] - ETA: 0s - loss: 0.1635"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "436/438 [============================>.] - ETA: 0s - loss: 0.1635"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1634 - val_loss: 0.1602\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 5/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1648"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 1s - loss: 0.1608"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 1s - loss: 0.1601"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 1s - loss: 0.1597"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 56/438 [==>...........................] - ETA: 1s - loss: 0.1595"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 69/438 [===>..........................] - ETA: 1s - loss: 0.1594"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 82/438 [====>.........................] - ETA: 1s - loss: 0.1593"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 96/438 [=====>........................] - ETA: 1s - loss: 0.1592"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "111/438 [======>.......................] - ETA: 1s - loss: 0.1592"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "126/438 [=======>......................] - ETA: 1s - loss: 0.1591"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "140/438 [========>.....................] - ETA: 1s - loss: 0.1590"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 1s - loss: 0.1590"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "170/438 [==========>...................] - ETA: 0s - loss: 0.1589"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "184/438 [===========>..................] - ETA: 0s - loss: 0.1589"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 0s - loss: 0.1589"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "210/438 [=============>................] - ETA: 0s - loss: 0.1588"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 0s - loss: 0.1588"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "240/438 [===============>..............] - ETA: 0s - loss: 0.1587"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "254/438 [================>.............] - ETA: 0s - loss: 0.1587"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "269/438 [=================>............] - ETA: 0s - loss: 0.1586"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "284/438 [==================>...........] - ETA: 0s - loss: 0.1586"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "299/438 [===================>..........] - ETA: 0s - loss: 0.1586"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "314/438 [====================>.........] - ETA: 0s - loss: 0.1585"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "328/438 [=====================>........] - ETA: 0s - loss: 0.1585"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "342/438 [======================>.......] - ETA: 0s - loss: 0.1585"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "356/438 [=======================>......] - ETA: 0s - loss: 0.1585"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "371/438 [========================>.....] - ETA: 0s - loss: 0.1585"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "385/438 [=========================>....] - ETA: 0s - loss: 0.1584"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "400/438 [==========================>...] - ETA: 0s - loss: 0.1584"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "414/438 [===========================>..] - ETA: 0s - loss: 0.1584"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "429/438 [============================>.] - ETA: 0s - loss: 0.1584"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1584 - val_loss: 0.1570\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 6/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1596"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 1s - loss: 0.1566"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 1s - loss: 0.1563"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 42/438 [=>............................] - ETA: 1s - loss: 0.1564"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 55/438 [==>...........................] - ETA: 1s - loss: 0.1564"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 70/438 [===>..........................] - ETA: 1s - loss: 0.1562"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 84/438 [====>.........................] - ETA: 1s - loss: 0.1561"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 1s - loss: 0.1560"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "114/438 [======>.......................] - ETA: 1s - loss: 0.1560"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "129/438 [=======>......................] - ETA: 1s - loss: 0.1559"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "144/438 [========>.....................] - ETA: 1s - loss: 0.1558"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "158/438 [=========>....................] - ETA: 1s - loss: 0.1558"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "173/438 [==========>...................] - ETA: 0s - loss: 0.1557"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "188/438 [===========>..................] - ETA: 0s - loss: 0.1557"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "203/438 [============>.................] - ETA: 0s - loss: 0.1557"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "218/438 [=============>................] - ETA: 0s - loss: 0.1556"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "233/438 [==============>...............] - ETA: 0s - loss: 0.1556"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "247/438 [===============>..............] - ETA: 0s - loss: 0.1556"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "262/438 [================>.............] - ETA: 0s - loss: 0.1555"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "277/438 [=================>............] - ETA: 0s - loss: 0.1555"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "292/438 [===================>..........] - ETA: 0s - loss: 0.1555"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "307/438 [====================>.........] - ETA: 0s - loss: 0.1554"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "321/438 [====================>.........] - ETA: 0s - loss: 0.1554"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "335/438 [=====================>........] - ETA: 0s - loss: 0.1554"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "350/438 [======================>.......] - ETA: 0s - loss: 0.1554"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "364/438 [=======================>......] - ETA: 0s - loss: 0.1554"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "379/438 [========================>.....] - ETA: 0s - loss: 0.1553"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "394/438 [=========================>....] - ETA: 0s - loss: 0.1553"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "409/438 [===========================>..] - ETA: 0s - loss: 0.1553"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "424/438 [============================>.] - ETA: 0s - loss: 0.1553"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - ETA: 0s - loss: 0.1553"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1553 - val_loss: 0.1550\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 7/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1466"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 1s - loss: 0.1519"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 1s - loss: 0.1527"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 42/438 [=>............................] - ETA: 1s - loss: 0.1531"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 55/438 [==>...........................] - ETA: 1s - loss: 0.1532"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 70/438 [===>..........................] - ETA: 1s - loss: 0.1533"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 1s - loss: 0.1533"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "100/438 [=====>........................] - ETA: 1s - loss: 0.1533"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "115/438 [======>.......................] - ETA: 1s - loss: 0.1533"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "130/438 [=======>......................] - ETA: 1s - loss: 0.1532"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "145/438 [========>.....................] - ETA: 1s - loss: 0.1532"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "160/438 [=========>....................] - ETA: 1s - loss: 0.1531"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "175/438 [==========>...................] - ETA: 0s - loss: 0.1531"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "189/438 [===========>..................] - ETA: 0s - loss: 0.1531"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "204/438 [============>.................] - ETA: 0s - loss: 0.1531"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "219/438 [==============>...............] - ETA: 0s - loss: 0.1531"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "234/438 [===============>..............] - ETA: 0s - loss: 0.1531"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "249/438 [================>.............] - ETA: 0s - loss: 0.1531"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "264/438 [=================>............] - ETA: 0s - loss: 0.1531"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "279/438 [==================>...........] - ETA: 0s - loss: 0.1531"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "294/438 [===================>..........] - ETA: 0s - loss: 0.1531"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "309/438 [====================>.........] - ETA: 0s - loss: 0.1530"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "323/438 [=====================>........] - ETA: 0s - loss: 0.1530"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "338/438 [======================>.......] - ETA: 0s - loss: 0.1530"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "353/438 [=======================>......] - ETA: 0s - loss: 0.1530"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "368/438 [========================>.....] - ETA: 0s - loss: 0.1530"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "383/438 [=========================>....] - ETA: 0s - loss: 0.1530"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "397/438 [==========================>...] - ETA: 0s - loss: 0.1530"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "411/438 [===========================>..] - ETA: 0s - loss: 0.1530"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "425/438 [============================>.] - ETA: 0s - loss: 0.1530"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - ETA: 0s - loss: 0.1530"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1530 - val_loss: 0.1545\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 8/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1542"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 1s - loss: 0.1526"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 1s - loss: 0.1521"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 1s - loss: 0.1519"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 1s - loss: 0.1516"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 1s - loss: 0.1514"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 1s - loss: 0.1513"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 1s - loss: 0.1513"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 1s - loss: 0.1513"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "127/438 [=======>......................] - ETA: 1s - loss: 0.1512"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "142/438 [========>.....................] - ETA: 1s - loss: 0.1512"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 1s - loss: 0.1512"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 0s - loss: 0.1512"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 0s - loss: 0.1512"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 0s - loss: 0.1512"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "212/438 [=============>................] - ETA: 0s - loss: 0.1512"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "227/438 [==============>...............] - ETA: 0s - loss: 0.1512"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "242/438 [===============>..............] - ETA: 0s - loss: 0.1512"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "257/438 [================>.............] - ETA: 0s - loss: 0.1512"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "272/438 [=================>............] - ETA: 0s - loss: 0.1512"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "286/438 [==================>...........] - ETA: 0s - loss: 0.1512"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "300/438 [===================>..........] - ETA: 0s - loss: 0.1512"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "314/438 [====================>.........] - ETA: 0s - loss: 0.1512"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "329/438 [=====================>........] - ETA: 0s - loss: 0.1512"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "343/438 [======================>.......] - ETA: 0s - loss: 0.1512"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "357/438 [=======================>......] - ETA: 0s - loss: 0.1512"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "371/438 [========================>.....] - ETA: 0s - loss: 0.1512"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "385/438 [=========================>....] - ETA: 0s - loss: 0.1513"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "399/438 [==========================>...] - ETA: 0s - loss: 0.1513"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "413/438 [===========================>..] - ETA: 0s - loss: 0.1513"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "427/438 [============================>.] - ETA: 0s - loss: 0.1513"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1513 - val_loss: 0.1522\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 9/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1484"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 1s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 1s - loss: 0.1482"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 1s - loss: 0.1484"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 1s - loss: 0.1485"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 72/438 [===>..........................] - ETA: 1s - loss: 0.1486"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 87/438 [====>.........................] - ETA: 1s - loss: 0.1487"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "102/438 [=====>........................] - ETA: 1s - loss: 0.1488"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "117/438 [=======>......................] - ETA: 1s - loss: 0.1488"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "132/438 [========>.....................] - ETA: 1s - loss: 0.1489"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "147/438 [=========>....................] - ETA: 1s - loss: 0.1490"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 0s - loss: 0.1490"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "177/438 [===========>..................] - ETA: 0s - loss: 0.1491"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "192/438 [============>.................] - ETA: 0s - loss: 0.1491"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "207/438 [=============>................] - ETA: 0s - loss: 0.1492"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "222/438 [==============>...............] - ETA: 0s - loss: 0.1492"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "237/438 [===============>..............] - ETA: 0s - loss: 0.1493"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "252/438 [================>.............] - ETA: 0s - loss: 0.1493"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "267/438 [=================>............] - ETA: 0s - loss: 0.1494"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 0s - loss: 0.1494"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "296/438 [===================>..........] - ETA: 0s - loss: 0.1494"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "309/438 [====================>.........] - ETA: 0s - loss: 0.1495"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "322/438 [=====================>........] - ETA: 0s - loss: 0.1495"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "337/438 [======================>.......] - ETA: 0s - loss: 0.1495"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "352/438 [=======================>......] - ETA: 0s - loss: 0.1495"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "367/438 [========================>.....] - ETA: 0s - loss: 0.1495"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "382/438 [=========================>....] - ETA: 0s - loss: 0.1496"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "397/438 [==========================>...] - ETA: 0s - loss: 0.1496"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "412/438 [===========================>..] - ETA: 0s - loss: 0.1496"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "427/438 [============================>.] - ETA: 0s - loss: 0.1496"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1496 - val_loss: 0.1517\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 10/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1386"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 1s - loss: 0.1471"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 1s - loss: 0.1475"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 1s - loss: 0.1478"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 58/438 [==>...........................] - ETA: 1s - loss: 0.1479"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 72/438 [===>..........................] - ETA: 1s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 86/438 [====>.........................] - ETA: 1s - loss: 0.1481"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "101/438 [=====>........................] - ETA: 1s - loss: 0.1482"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "116/438 [======>.......................] - ETA: 1s - loss: 0.1482"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "131/438 [=======>......................] - ETA: 1s - loss: 0.1483"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "146/438 [=========>....................] - ETA: 1s - loss: 0.1483"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "161/438 [==========>...................] - ETA: 0s - loss: 0.1483"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "175/438 [==========>...................] - ETA: 0s - loss: 0.1483"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "190/438 [============>.................] - ETA: 0s - loss: 0.1484"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "205/438 [=============>................] - ETA: 0s - loss: 0.1484"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "220/438 [==============>...............] - ETA: 0s - loss: 0.1484"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "235/438 [===============>..............] - ETA: 0s - loss: 0.1485"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "249/438 [================>.............] - ETA: 0s - loss: 0.1485"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "263/438 [=================>............] - ETA: 0s - loss: 0.1485"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "277/438 [=================>............] - ETA: 0s - loss: 0.1485"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "291/438 [==================>...........] - ETA: 0s - loss: 0.1486"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "304/438 [===================>..........] - ETA: 0s - loss: 0.1486"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "318/438 [====================>.........] - ETA: 0s - loss: 0.1486"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "333/438 [=====================>........] - ETA: 0s - loss: 0.1486"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "348/438 [======================>.......] - ETA: 0s - loss: 0.1486"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "363/438 [=======================>......] - ETA: 0s - loss: 0.1486"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "377/438 [========================>.....] - ETA: 0s - loss: 0.1486"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "391/438 [=========================>....] - ETA: 0s - loss: 0.1486"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "406/438 [==========================>...] - ETA: 0s - loss: 0.1487"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "421/438 [===========================>..] - ETA: 0s - loss: 0.1487"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "436/438 [============================>.] - ETA: 0s - loss: 0.1487"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1487 - val_loss: 0.1513\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 11/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1518"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 1s - loss: 0.1487"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 1s - loss: 0.1483"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 1s - loss: 0.1485"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 1s - loss: 0.1485"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 1s - loss: 0.1484"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 86/438 [====>.........................] - ETA: 1s - loss: 0.1483"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "100/438 [=====>........................] - ETA: 1s - loss: 0.1482"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "114/438 [======>.......................] - ETA: 1s - loss: 0.1482"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "129/438 [=======>......................] - ETA: 1s - loss: 0.1481"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "143/438 [========>.....................] - ETA: 1s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "157/438 [=========>....................] - ETA: 1s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "171/438 [==========>...................] - ETA: 0s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "186/438 [===========>..................] - ETA: 0s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "201/438 [============>.................] - ETA: 0s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "216/438 [=============>................] - ETA: 0s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "231/438 [==============>...............] - ETA: 0s - loss: 0.1479"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "245/438 [===============>..............] - ETA: 0s - loss: 0.1479"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "260/438 [================>.............] - ETA: 0s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "274/438 [=================>............] - ETA: 0s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "288/438 [==================>...........] - ETA: 0s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "303/438 [===================>..........] - ETA: 0s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "318/438 [====================>.........] - ETA: 0s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "332/438 [=====================>........] - ETA: 0s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "346/438 [======================>.......] - ETA: 0s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "360/438 [=======================>......] - ETA: 0s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "374/438 [========================>.....] - ETA: 0s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "387/438 [=========================>....] - ETA: 0s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "400/438 [==========================>...] - ETA: 0s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "414/438 [===========================>..] - ETA: 0s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "429/438 [============================>.] - ETA: 0s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1480 - val_loss: 0.1504\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 12/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1556"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 1s - loss: 0.1502"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 1s - loss: 0.1494"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 44/438 [==>...........................] - ETA: 1s - loss: 0.1489"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 59/438 [===>..........................] - ETA: 1s - loss: 0.1486"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 74/438 [====>.........................] - ETA: 1s - loss: 0.1484"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 89/438 [=====>........................] - ETA: 1s - loss: 0.1482"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "103/438 [======>.......................] - ETA: 1s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "117/438 [=======>......................] - ETA: 1s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "130/438 [=======>......................] - ETA: 1s - loss: 0.1479"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "143/438 [========>.....................] - ETA: 1s - loss: 0.1478"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "156/438 [=========>....................] - ETA: 1s - loss: 0.1478"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 1s - loss: 0.1478"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "182/438 [===========>..................] - ETA: 0s - loss: 0.1477"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "195/438 [============>.................] - ETA: 0s - loss: 0.1477"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "210/438 [=============>................] - ETA: 0s - loss: 0.1477"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 0s - loss: 0.1477"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "240/438 [===============>..............] - ETA: 0s - loss: 0.1476"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "254/438 [================>.............] - ETA: 0s - loss: 0.1476"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "267/438 [=================>............] - ETA: 0s - loss: 0.1476"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 0s - loss: 0.1476"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "296/438 [===================>..........] - ETA: 0s - loss: 0.1476"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "311/438 [====================>.........] - ETA: 0s - loss: 0.1476"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "325/438 [=====================>........] - ETA: 0s - loss: 0.1476"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "339/438 [======================>.......] - ETA: 0s - loss: 0.1476"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "353/438 [=======================>......] - ETA: 0s - loss: 0.1475"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "368/438 [========================>.....] - ETA: 0s - loss: 0.1475"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "383/438 [=========================>....] - ETA: 0s - loss: 0.1475"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "398/438 [==========================>...] - ETA: 0s - loss: 0.1475"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "413/438 [===========================>..] - ETA: 0s - loss: 0.1475"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "428/438 [============================>.] - ETA: 0s - loss: 0.1475"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1475 - val_loss: 0.1512\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 13/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 1s - loss: 0.1461"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 30/438 [=>............................] - ETA: 1s - loss: 0.1460"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 45/438 [==>...........................] - ETA: 1s - loss: 0.1460"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 60/438 [===>..........................] - ETA: 1s - loss: 0.1460"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 75/438 [====>.........................] - ETA: 1s - loss: 0.1459"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 89/438 [=====>........................] - ETA: 1s - loss: 0.1459"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "104/438 [======>.......................] - ETA: 1s - loss: 0.1460"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "119/438 [=======>......................] - ETA: 1s - loss: 0.1460"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "133/438 [========>.....................] - ETA: 1s - loss: 0.1460"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "148/438 [=========>....................] - ETA: 1s - loss: 0.1461"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "163/438 [==========>...................] - ETA: 0s - loss: 0.1461"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "178/438 [===========>..................] - ETA: 0s - loss: 0.1461"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "193/438 [============>.................] - ETA: 0s - loss: 0.1462"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "208/438 [=============>................] - ETA: 0s - loss: 0.1462"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "223/438 [==============>...............] - ETA: 0s - loss: 0.1462"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "237/438 [===============>..............] - ETA: 0s - loss: 0.1463"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "251/438 [================>.............] - ETA: 0s - loss: 0.1463"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "266/438 [=================>............] - ETA: 0s - loss: 0.1463"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 0s - loss: 0.1463"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "296/438 [===================>..........] - ETA: 0s - loss: 0.1463"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "311/438 [====================>.........] - ETA: 0s - loss: 0.1463"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "326/438 [=====================>........] - ETA: 0s - loss: 0.1463"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "341/438 [======================>.......] - ETA: 0s - loss: 0.1464"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "356/438 [=======================>......] - ETA: 0s - loss: 0.1464"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "371/438 [========================>.....] - ETA: 0s - loss: 0.1464"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "386/438 [=========================>....] - ETA: 0s - loss: 0.1464"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "399/438 [==========================>...] - ETA: 0s - loss: 0.1464"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "412/438 [===========================>..] - ETA: 0s - loss: 0.1464"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "425/438 [============================>.] - ETA: 0s - loss: 0.1464"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - ETA: 0s - loss: 0.1464"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1464 - val_loss: 0.1501\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 14/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.1469"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 14/438 [..............................] - ETA: 1s - loss: 0.1442"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 27/438 [>.............................] - ETA: 1s - loss: 0.1447"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 40/438 [=>............................] - ETA: 1s - loss: 0.1450"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 53/438 [==>...........................] - ETA: 1s - loss: 0.1451"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 66/438 [===>..........................] - ETA: 1s - loss: 0.1452"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 79/438 [====>.........................] - ETA: 1s - loss: 0.1453"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 92/438 [=====>........................] - ETA: 1s - loss: 0.1454"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "107/438 [======>.......................] - ETA: 1s - loss: 0.1454"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "121/438 [=======>......................] - ETA: 1s - loss: 0.1455"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "136/438 [========>.....................] - ETA: 1s - loss: 0.1455"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "151/438 [=========>....................] - ETA: 1s - loss: 0.1455"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "164/438 [==========>...................] - ETA: 1s - loss: 0.1455"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "179/438 [===========>..................] - ETA: 0s - loss: 0.1455"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "194/438 [============>.................] - ETA: 0s - loss: 0.1455"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "209/438 [=============>................] - ETA: 0s - loss: 0.1455"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "224/438 [==============>...............] - ETA: 0s - loss: 0.1455"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "238/438 [===============>..............] - ETA: 0s - loss: 0.1456"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "253/438 [================>.............] - ETA: 0s - loss: 0.1456"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "268/438 [=================>............] - ETA: 0s - loss: 0.1456"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "283/438 [==================>...........] - ETA: 0s - loss: 0.1456"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "298/438 [===================>..........] - ETA: 0s - loss: 0.1456"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "313/438 [====================>.........] - ETA: 0s - loss: 0.1456"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "328/438 [=====================>........] - ETA: 0s - loss: 0.1456"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "343/438 [======================>.......] - ETA: 0s - loss: 0.1456"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "358/438 [=======================>......] - ETA: 0s - loss: 0.1457"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "373/438 [========================>.....] - ETA: 0s - loss: 0.1457"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "388/438 [=========================>....] - ETA: 0s - loss: 0.1457"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "403/438 [==========================>...] - ETA: 0s - loss: 0.1457"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "418/438 [===========================>..] - ETA: 0s - loss: 0.1457"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "433/438 [============================>.] - ETA: 0s - loss: 0.1457"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1457 - val_loss: 0.1502\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 15/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1424"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 1s - loss: 0.1448"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 1s - loss: 0.1454"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 1s - loss: 0.1454"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 1s - loss: 0.1453"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 1s - loss: 0.1453"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 1s - loss: 0.1452"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 1s - loss: 0.1452"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 1s - loss: 0.1452"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "127/438 [=======>......................] - ETA: 1s - loss: 0.1452"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "141/438 [========>.....................] - ETA: 1s - loss: 0.1452"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 1s - loss: 0.1452"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 0s - loss: 0.1452"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 0s - loss: 0.1451"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 0s - loss: 0.1451"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "211/438 [=============>................] - ETA: 0s - loss: 0.1451"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 0s - loss: 0.1451"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "239/438 [===============>..............] - ETA: 0s - loss: 0.1451"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "253/438 [================>.............] - ETA: 0s - loss: 0.1451"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "267/438 [=================>............] - ETA: 0s - loss: 0.1451"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 0s - loss: 0.1451"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "295/438 [===================>..........] - ETA: 0s - loss: 0.1451"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "309/438 [====================>.........] - ETA: 0s - loss: 0.1452"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "323/438 [=====================>........] - ETA: 0s - loss: 0.1452"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "337/438 [======================>.......] - ETA: 0s - loss: 0.1452"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "351/438 [=======================>......] - ETA: 0s - loss: 0.1452"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "365/438 [========================>.....] - ETA: 0s - loss: 0.1452"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "379/438 [========================>.....] - ETA: 0s - loss: 0.1452"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "393/438 [=========================>....] - ETA: 0s - loss: 0.1452"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "408/438 [==========================>...] - ETA: 0s - loss: 0.1452"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "422/438 [===========================>..] - ETA: 0s - loss: 0.1452"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "437/438 [============================>.] - ETA: 0s - loss: 0.1452"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1452 - val_loss: 0.1496\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 16/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1555"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 14/438 [..............................] - ETA: 1s - loss: 0.1464"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 28/438 [>.............................] - ETA: 1s - loss: 0.1455"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 42/438 [=>............................] - ETA: 1s - loss: 0.1450"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 56/438 [==>...........................] - ETA: 1s - loss: 0.1449"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 1s - loss: 0.1447"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 86/438 [====>.........................] - ETA: 1s - loss: 0.1447"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "101/438 [=====>........................] - ETA: 1s - loss: 0.1446"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "116/438 [======>.......................] - ETA: 1s - loss: 0.1446"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "131/438 [=======>......................] - ETA: 1s - loss: 0.1446"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "146/438 [=========>....................] - ETA: 1s - loss: 0.1445"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "161/438 [==========>...................] - ETA: 0s - loss: 0.1445"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 0s - loss: 0.1445"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "191/438 [============>.................] - ETA: 0s - loss: 0.1445"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "206/438 [=============>................] - ETA: 0s - loss: 0.1445"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "221/438 [==============>...............] - ETA: 0s - loss: 0.1445"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "235/438 [===============>..............] - ETA: 0s - loss: 0.1445"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "250/438 [================>.............] - ETA: 0s - loss: 0.1446"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "264/438 [=================>............] - ETA: 0s - loss: 0.1446"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "279/438 [==================>...........] - ETA: 0s - loss: 0.1446"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "294/438 [===================>..........] - ETA: 0s - loss: 0.1446"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "308/438 [====================>.........] - ETA: 0s - loss: 0.1446"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "323/438 [=====================>........] - ETA: 0s - loss: 0.1446"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "338/438 [======================>.......] - ETA: 0s - loss: 0.1446"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "353/438 [=======================>......] - ETA: 0s - loss: 0.1447"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "367/438 [========================>.....] - ETA: 0s - loss: 0.1447"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "382/438 [=========================>....] - ETA: 0s - loss: 0.1447"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "396/438 [==========================>...] - ETA: 0s - loss: 0.1447"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "409/438 [===========================>..] - ETA: 0s - loss: 0.1447"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "422/438 [===========================>..] - ETA: 0s - loss: 0.1447"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "435/438 [============================>.] - ETA: 0s - loss: 0.1447"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1447 - val_loss: 0.1494\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 17/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 1s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 1s - loss: 0.1440"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 42/438 [=>............................] - ETA: 1s - loss: 0.1443"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 56/438 [==>...........................] - ETA: 1s - loss: 0.1444"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 70/438 [===>..........................] - ETA: 1s - loss: 0.1444"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 84/438 [====>.........................] - ETA: 1s - loss: 0.1443"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 98/438 [=====>........................] - ETA: 1s - loss: 0.1443"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "112/438 [======>.......................] - ETA: 1s - loss: 0.1443"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "126/438 [=======>......................] - ETA: 1s - loss: 0.1443"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "139/438 [========>.....................] - ETA: 1s - loss: 0.1443"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "152/438 [=========>....................] - ETA: 1s - loss: 0.1442"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "165/438 [==========>...................] - ETA: 1s - loss: 0.1442"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "178/438 [===========>..................] - ETA: 0s - loss: 0.1442"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "191/438 [============>.................] - ETA: 0s - loss: 0.1442"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "204/438 [============>.................] - ETA: 0s - loss: 0.1442"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "217/438 [=============>................] - ETA: 0s - loss: 0.1441"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "230/438 [==============>...............] - ETA: 0s - loss: 0.1441"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "244/438 [===============>..............] - ETA: 0s - loss: 0.1441"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "257/438 [================>.............] - ETA: 0s - loss: 0.1441"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "270/438 [=================>............] - ETA: 0s - loss: 0.1441"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "283/438 [==================>...........] - ETA: 0s - loss: 0.1441"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "296/438 [===================>..........] - ETA: 0s - loss: 0.1441"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "309/438 [====================>.........] - ETA: 0s - loss: 0.1441"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "322/438 [=====================>........] - ETA: 0s - loss: 0.1441"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "336/438 [======================>.......] - ETA: 0s - loss: 0.1441"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "350/438 [======================>.......] - ETA: 0s - loss: 0.1441"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "365/438 [========================>.....] - ETA: 0s - loss: 0.1441"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "380/438 [=========================>....] - ETA: 0s - loss: 0.1442"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "395/438 [==========================>...] - ETA: 0s - loss: 0.1442"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "410/438 [===========================>..] - ETA: 0s - loss: 0.1442"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "425/438 [============================>.] - ETA: 0s - loss: 0.1442"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1442 - val_loss: 0.1496\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 18/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1393"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 1s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 1s - loss: 0.1418"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 1s - loss: 0.1422"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 1s - loss: 0.1424"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 1s - loss: 0.1426"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 86/438 [====>.........................] - ETA: 1s - loss: 0.1427"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "101/438 [=====>........................] - ETA: 1s - loss: 0.1428"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "116/438 [======>.......................] - ETA: 1s - loss: 0.1428"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "131/438 [=======>......................] - ETA: 1s - loss: 0.1429"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "145/438 [========>.....................] - ETA: 1s - loss: 0.1429"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "158/438 [=========>....................] - ETA: 1s - loss: 0.1429"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "171/438 [==========>...................] - ETA: 0s - loss: 0.1429"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "184/438 [===========>..................] - ETA: 0s - loss: 0.1429"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "199/438 [============>.................] - ETA: 0s - loss: 0.1430"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "213/438 [=============>................] - ETA: 0s - loss: 0.1430"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "228/438 [==============>...............] - ETA: 0s - loss: 0.1430"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "243/438 [===============>..............] - ETA: 0s - loss: 0.1430"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "258/438 [================>.............] - ETA: 0s - loss: 0.1431"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "273/438 [=================>............] - ETA: 0s - loss: 0.1431"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "288/438 [==================>...........] - ETA: 0s - loss: 0.1431"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "302/438 [===================>..........] - ETA: 0s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "317/438 [====================>.........] - ETA: 0s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "331/438 [=====================>........] - ETA: 0s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "345/438 [======================>.......] - ETA: 0s - loss: 0.1433"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "359/438 [=======================>......] - ETA: 0s - loss: 0.1433"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "374/438 [========================>.....] - ETA: 0s - loss: 0.1433"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "389/438 [=========================>....] - ETA: 0s - loss: 0.1433"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "404/438 [==========================>...] - ETA: 0s - loss: 0.1434"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "419/438 [===========================>..] - ETA: 0s - loss: 0.1434"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "433/438 [============================>.] - ETA: 0s - loss: 0.1434"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1434 - val_loss: 0.1496\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 19/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1494"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 14/438 [..............................] - ETA: 1s - loss: 0.1444"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 28/438 [>.............................] - ETA: 1s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 42/438 [=>............................] - ETA: 1s - loss: 0.1429"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 1s - loss: 0.1428"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 1s - loss: 0.1428"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 86/438 [====>.........................] - ETA: 1s - loss: 0.1428"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "100/438 [=====>........................] - ETA: 1s - loss: 0.1429"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "115/438 [======>.......................] - ETA: 1s - loss: 0.1430"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "130/438 [=======>......................] - ETA: 1s - loss: 0.1430"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "144/438 [========>.....................] - ETA: 1s - loss: 0.1431"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "159/438 [=========>....................] - ETA: 1s - loss: 0.1431"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "174/438 [==========>...................] - ETA: 0s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "189/438 [===========>..................] - ETA: 0s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "204/438 [============>.................] - ETA: 0s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "218/438 [=============>................] - ETA: 0s - loss: 0.1433"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "233/438 [==============>...............] - ETA: 0s - loss: 0.1433"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "247/438 [===============>..............] - ETA: 0s - loss: 0.1433"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "260/438 [================>.............] - ETA: 0s - loss: 0.1433"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "274/438 [=================>............] - ETA: 0s - loss: 0.1434"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "289/438 [==================>...........] - ETA: 0s - loss: 0.1434"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "304/438 [===================>..........] - ETA: 0s - loss: 0.1434"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "318/438 [====================>.........] - ETA: 0s - loss: 0.1434"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "332/438 [=====================>........] - ETA: 0s - loss: 0.1434"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "346/438 [======================>.......] - ETA: 0s - loss: 0.1434"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "360/438 [=======================>......] - ETA: 0s - loss: 0.1435"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "374/438 [========================>.....] - ETA: 0s - loss: 0.1435"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "388/438 [=========================>....] - ETA: 0s - loss: 0.1435"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "402/438 [==========================>...] - ETA: 0s - loss: 0.1435"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "416/438 [===========================>..] - ETA: 0s - loss: 0.1435"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "429/438 [============================>.] - ETA: 0s - loss: 0.1435"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1435 - val_loss: 0.1496\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 20/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1459"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 1s - loss: 0.1439"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 1s - loss: 0.1434"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 1s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 1s - loss: 0.1431"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 1s - loss: 0.1431"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 1s - loss: 0.1431"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 1s - loss: 0.1431"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 1s - loss: 0.1431"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "127/438 [=======>......................] - ETA: 1s - loss: 0.1431"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "141/438 [========>.....................] - ETA: 1s - loss: 0.1431"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 1s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 0s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 0s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 0s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "211/438 [=============>................] - ETA: 0s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 0s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "239/438 [===============>..............] - ETA: 0s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "253/438 [================>.............] - ETA: 0s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "267/438 [=================>............] - ETA: 0s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 0s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "295/438 [===================>..........] - ETA: 0s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "309/438 [====================>.........] - ETA: 0s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "323/438 [=====================>........] - ETA: 0s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "337/438 [======================>.......] - ETA: 0s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "351/438 [=======================>......] - ETA: 0s - loss: 0.1433"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "365/438 [========================>.....] - ETA: 0s - loss: 0.1433"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "379/438 [========================>.....] - ETA: 0s - loss: 0.1433"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "394/438 [=========================>....] - ETA: 0s - loss: 0.1433"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "409/438 [===========================>..] - ETA: 0s - loss: 0.1433"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "424/438 [============================>.] - ETA: 0s - loss: 0.1433"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1433 - val_loss: 0.1491\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 21/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 14/438 [..............................] - ETA: 1s - loss: 0.1407"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 27/438 [>.............................] - ETA: 1s - loss: 0.1413"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 1s - loss: 0.1414"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 56/438 [==>...........................] - ETA: 1s - loss: 0.1415"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 1s - loss: 0.1415"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 86/438 [====>.........................] - ETA: 1s - loss: 0.1415"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "101/438 [=====>........................] - ETA: 1s - loss: 0.1416"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "116/438 [======>.......................] - ETA: 1s - loss: 0.1417"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "130/438 [=======>......................] - ETA: 1s - loss: 0.1417"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "143/438 [========>.....................] - ETA: 1s - loss: 0.1418"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "156/438 [=========>....................] - ETA: 1s - loss: 0.1418"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "170/438 [==========>...................] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "185/438 [===========>..................] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "200/438 [============>.................] - ETA: 0s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "215/438 [=============>................] - ETA: 0s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "229/438 [==============>...............] - ETA: 0s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "244/438 [===============>..............] - ETA: 0s - loss: 0.1421"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "258/438 [================>.............] - ETA: 0s - loss: 0.1421"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "273/438 [=================>............] - ETA: 0s - loss: 0.1422"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "287/438 [==================>...........] - ETA: 0s - loss: 0.1422"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "302/438 [===================>..........] - ETA: 0s - loss: 0.1422"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "317/438 [====================>.........] - ETA: 0s - loss: 0.1422"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "332/438 [=====================>........] - ETA: 0s - loss: 0.1423"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "347/438 [======================>.......] - ETA: 0s - loss: 0.1423"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "362/438 [=======================>......] - ETA: 0s - loss: 0.1423"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "375/438 [========================>.....] - ETA: 0s - loss: 0.1423"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "388/438 [=========================>....] - ETA: 0s - loss: 0.1424"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "402/438 [==========================>...] - ETA: 0s - loss: 0.1424"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "415/438 [===========================>..] - ETA: 0s - loss: 0.1424"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "429/438 [============================>.] - ETA: 0s - loss: 0.1424"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1424 - val_loss: 0.1492\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 22/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1369"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 1s - loss: 0.1397"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 1s - loss: 0.1402"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 44/438 [==>...........................] - ETA: 1s - loss: 0.1405"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 59/438 [===>..........................] - ETA: 1s - loss: 0.1407"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 73/438 [====>.........................] - ETA: 1s - loss: 0.1408"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 88/438 [=====>........................] - ETA: 1s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "102/438 [=====>........................] - ETA: 1s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "117/438 [=======>......................] - ETA: 1s - loss: 0.1411"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "132/438 [========>.....................] - ETA: 1s - loss: 0.1412"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "147/438 [=========>....................] - ETA: 1s - loss: 0.1413"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 0s - loss: 0.1414"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "177/438 [===========>..................] - ETA: 0s - loss: 0.1414"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "192/438 [============>.................] - ETA: 0s - loss: 0.1415"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "207/438 [=============>................] - ETA: 0s - loss: 0.1415"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "222/438 [==============>...............] - ETA: 0s - loss: 0.1415"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "237/438 [===============>..............] - ETA: 0s - loss: 0.1416"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "252/438 [================>.............] - ETA: 0s - loss: 0.1416"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "267/438 [=================>............] - ETA: 0s - loss: 0.1416"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "282/438 [==================>...........] - ETA: 0s - loss: 0.1417"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "297/438 [===================>..........] - ETA: 0s - loss: 0.1417"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "312/438 [====================>.........] - ETA: 0s - loss: 0.1417"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "326/438 [=====================>........] - ETA: 0s - loss: 0.1418"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "340/438 [======================>.......] - ETA: 0s - loss: 0.1418"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "355/438 [=======================>......] - ETA: 0s - loss: 0.1418"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "370/438 [========================>.....] - ETA: 0s - loss: 0.1418"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "385/438 [=========================>....] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "400/438 [==========================>...] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "414/438 [===========================>..] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "429/438 [============================>.] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1420 - val_loss: 0.1495\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 23/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1435"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 1s - loss: 0.1429"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 1s - loss: 0.1423"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 44/438 [==>...........................] - ETA: 1s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 59/438 [===>..........................] - ETA: 1s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 74/438 [====>.........................] - ETA: 1s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 89/438 [=====>........................] - ETA: 1s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "104/438 [======>.......................] - ETA: 1s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "119/438 [=======>......................] - ETA: 1s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "134/438 [========>.....................] - ETA: 1s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "148/438 [=========>....................] - ETA: 1s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 0s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 0s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "191/438 [============>.................] - ETA: 0s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "206/438 [=============>................] - ETA: 0s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "220/438 [==============>...............] - ETA: 0s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "234/438 [===============>..............] - ETA: 0s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "248/438 [===============>..............] - ETA: 0s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "262/438 [================>.............] - ETA: 0s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "277/438 [=================>............] - ETA: 0s - loss: 0.1421"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "291/438 [==================>...........] - ETA: 0s - loss: 0.1421"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "305/438 [===================>..........] - ETA: 0s - loss: 0.1421"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "319/438 [====================>.........] - ETA: 0s - loss: 0.1421"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "333/438 [=====================>........] - ETA: 0s - loss: 0.1421"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "347/438 [======================>.......] - ETA: 0s - loss: 0.1421"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "361/438 [=======================>......] - ETA: 0s - loss: 0.1421"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "374/438 [========================>.....] - ETA: 0s - loss: 0.1421"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "387/438 [=========================>....] - ETA: 0s - loss: 0.1421"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "402/438 [==========================>...] - ETA: 0s - loss: 0.1421"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "417/438 [===========================>..] - ETA: 0s - loss: 0.1421"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "432/438 [============================>.] - ETA: 0s - loss: 0.1422"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1422 - val_loss: 0.1494\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 24/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1361"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 1s - loss: 0.1403"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 30/438 [=>............................] - ETA: 1s - loss: 0.1405"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 45/438 [==>...........................] - ETA: 1s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 59/438 [===>..........................] - ETA: 1s - loss: 0.1413"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 73/438 [====>.........................] - ETA: 1s - loss: 0.1415"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 88/438 [=====>........................] - ETA: 1s - loss: 0.1416"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "103/438 [======>.......................] - ETA: 1s - loss: 0.1417"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "118/438 [=======>......................] - ETA: 1s - loss: 0.1417"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "133/438 [========>.....................] - ETA: 1s - loss: 0.1418"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "148/438 [=========>....................] - ETA: 1s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "163/438 [==========>...................] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "178/438 [===========>..................] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "193/438 [============>.................] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "208/438 [=============>................] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "223/438 [==============>...............] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "236/438 [===============>..............] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "250/438 [================>.............] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "264/438 [=================>............] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "278/438 [==================>...........] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "291/438 [==================>...........] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "305/438 [===================>..........] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "320/438 [====================>.........] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "335/438 [=====================>........] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "350/438 [======================>.......] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "365/438 [========================>.....] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "379/438 [========================>.....] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "394/438 [=========================>....] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "409/438 [===========================>..] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "424/438 [============================>.] - ETA: 0s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "437/438 [============================>.] - ETA: 0s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1420 - val_loss: 0.1494\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 25/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1414"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 14/438 [..............................] - ETA: 1s - loss: 0.1397"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 27/438 [>.............................] - ETA: 1s - loss: 0.1401"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 1s - loss: 0.1404"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 56/438 [==>...........................] - ETA: 1s - loss: 0.1406"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 1s - loss: 0.1408"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 86/438 [====>.........................] - ETA: 1s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "101/438 [=====>........................] - ETA: 1s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "116/438 [======>.......................] - ETA: 1s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "131/438 [=======>......................] - ETA: 1s - loss: 0.1411"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "146/438 [=========>....................] - ETA: 1s - loss: 0.1411"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "161/438 [==========>...................] - ETA: 1s - loss: 0.1411"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 0s - loss: 0.1412"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "191/438 [============>.................] - ETA: 0s - loss: 0.1412"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "206/438 [=============>................] - ETA: 0s - loss: 0.1412"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "220/438 [==============>...............] - ETA: 0s - loss: 0.1413"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "235/438 [===============>..............] - ETA: 0s - loss: 0.1413"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "250/438 [================>.............] - ETA: 0s - loss: 0.1413"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "265/438 [=================>............] - ETA: 0s - loss: 0.1414"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "280/438 [==================>...........] - ETA: 0s - loss: 0.1414"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "295/438 [===================>..........] - ETA: 0s - loss: 0.1414"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "310/438 [====================>.........] - ETA: 0s - loss: 0.1414"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "325/438 [=====================>........] - ETA: 0s - loss: 0.1414"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "340/438 [======================>.......] - ETA: 0s - loss: 0.1415"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "354/438 [=======================>......] - ETA: 0s - loss: 0.1415"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "368/438 [========================>.....] - ETA: 0s - loss: 0.1415"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "382/438 [=========================>....] - ETA: 0s - loss: 0.1415"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "396/438 [==========================>...] - ETA: 0s - loss: 0.1415"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "410/438 [===========================>..] - ETA: 0s - loss: 0.1415"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "424/438 [============================>.] - ETA: 0s - loss: 0.1415"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "437/438 [============================>.] - ETA: 0s - loss: 0.1415"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1415 - val_loss: 0.1501\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 26/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1387"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  2/438 [..............................] - ETA: 53s - loss: 0.1402"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 16/438 [>.............................] - ETA: 4s - loss: 0.1415 "
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 30/438 [=>............................] - ETA: 3s - loss: 0.1416"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 2s - loss: 0.1415"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.1414"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 72/438 [===>..........................] - ETA: 1s - loss: 0.1413"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 87/438 [====>.........................] - ETA: 1s - loss: 0.1413"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "102/438 [=====>........................] - ETA: 1s - loss: 0.1412"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "116/438 [======>.......................] - ETA: 1s - loss: 0.1411"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "131/438 [=======>......................] - ETA: 1s - loss: 0.1411"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "146/438 [=========>....................] - ETA: 1s - loss: 0.1411"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "161/438 [==========>...................] - ETA: 1s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "175/438 [==========>...................] - ETA: 1s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "190/438 [============>.................] - ETA: 1s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "205/438 [=============>................] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "220/438 [==============>...............] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "235/438 [===============>..............] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "250/438 [================>.............] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "264/438 [=================>............] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "278/438 [==================>...........] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "293/438 [===================>..........] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "307/438 [====================>.........] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "322/438 [=====================>........] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "337/438 [======================>.......] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "352/438 [=======================>......] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "366/438 [========================>.....] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "381/438 [=========================>....] - ETA: 0s - loss: 0.1411"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "396/438 [==========================>...] - ETA: 0s - loss: 0.1411"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "411/438 [===========================>..] - ETA: 0s - loss: 0.1411"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "425/438 [============================>.] - ETA: 0s - loss: 0.1411"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1411 - val_loss: 0.1494\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 27/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1378"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 1s - loss: 0.1404"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 1s - loss: 0.1405"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 44/438 [==>...........................] - ETA: 1s - loss: 0.1406"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 59/438 [===>..........................] - ETA: 1s - loss: 0.1406"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 74/438 [====>.........................] - ETA: 1s - loss: 0.1406"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 89/438 [=====>........................] - ETA: 1s - loss: 0.1406"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "104/438 [======>.......................] - ETA: 1s - loss: 0.1406"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "117/438 [=======>......................] - ETA: 1s - loss: 0.1407"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "130/438 [=======>......................] - ETA: 1s - loss: 0.1407"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "143/438 [========>.....................] - ETA: 1s - loss: 0.1407"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "156/438 [=========>....................] - ETA: 1s - loss: 0.1407"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 1s - loss: 0.1407"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "182/438 [===========>..................] - ETA: 0s - loss: 0.1408"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 0s - loss: 0.1408"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "212/438 [=============>................] - ETA: 0s - loss: 0.1408"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "227/438 [==============>...............] - ETA: 0s - loss: 0.1408"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "242/438 [===============>..............] - ETA: 0s - loss: 0.1408"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "257/438 [================>.............] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "271/438 [=================>............] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "286/438 [==================>...........] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "301/438 [===================>..........] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "316/438 [====================>.........] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "331/438 [=====================>........] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "346/438 [======================>.......] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "361/438 [=======================>......] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "376/438 [========================>.....] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "391/438 [=========================>....] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "406/438 [==========================>...] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "421/438 [===========================>..] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "435/438 [============================>.] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1410 - val_loss: 0.1497\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 28/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1392"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 1s - loss: 0.1432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 1s - loss: 0.1424"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 44/438 [==>...........................] - ETA: 1s - loss: 0.1419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 59/438 [===>..........................] - ETA: 1s - loss: 0.1416"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 74/438 [====>.........................] - ETA: 1s - loss: 0.1414"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 89/438 [=====>........................] - ETA: 1s - loss: 0.1413"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "104/438 [======>.......................] - ETA: 1s - loss: 0.1412"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "119/438 [=======>......................] - ETA: 1s - loss: 0.1411"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "134/438 [========>.....................] - ETA: 1s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "148/438 [=========>....................] - ETA: 1s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "163/438 [==========>...................] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "178/438 [===========>..................] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "192/438 [============>.................] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "207/438 [=============>................] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "222/438 [==============>...............] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "237/438 [===============>..............] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "251/438 [================>.............] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "266/438 [=================>............] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "295/438 [===================>..........] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "310/438 [====================>.........] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "324/438 [=====================>........] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "339/438 [======================>.......] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "354/438 [=======================>......] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "369/438 [========================>.....] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "384/438 [=========================>....] - ETA: 0s - loss: 0.1409"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "399/438 [==========================>...] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "414/438 [===========================>..] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "428/438 [============================>.] - ETA: 0s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1410 - val_loss: 0.1493\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 29/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1375"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 14/438 [..............................] - ETA: 1s - loss: 0.1420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 1s - loss: 0.1414"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 44/438 [==>...........................] - ETA: 1s - loss: 0.1411"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 59/438 [===>..........................] - ETA: 1s - loss: 0.1410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 74/438 [====>.........................] - ETA: 1s - loss: 0.1407"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 88/438 [=====>........................] - ETA: 1s - loss: 0.1406"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "103/438 [======>.......................] - ETA: 1s - loss: 0.1406"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "118/438 [=======>......................] - ETA: 1s - loss: 0.1405"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "133/438 [========>.....................] - ETA: 1s - loss: 0.1405"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "147/438 [=========>....................] - ETA: 1s - loss: 0.1404"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 0s - loss: 0.1404"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "177/438 [===========>..................] - ETA: 0s - loss: 0.1404"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "192/438 [============>.................] - ETA: 0s - loss: 0.1404"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "206/438 [=============>................] - ETA: 0s - loss: 0.1404"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "220/438 [==============>...............] - ETA: 0s - loss: 0.1404"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "234/438 [===============>..............] - ETA: 0s - loss: 0.1404"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "248/438 [===============>..............] - ETA: 0s - loss: 0.1404"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "263/438 [=================>............] - ETA: 0s - loss: 0.1404"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "278/438 [==================>...........] - ETA: 0s - loss: 0.1405"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "293/438 [===================>..........] - ETA: 0s - loss: 0.1405"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "308/438 [====================>.........] - ETA: 0s - loss: 0.1405"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "323/438 [=====================>........] - ETA: 0s - loss: 0.1405"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "338/438 [======================>.......] - ETA: 0s - loss: 0.1405"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "353/438 [=======================>......] - ETA: 0s - loss: 0.1405"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "367/438 [========================>.....] - ETA: 0s - loss: 0.1405"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "381/438 [=========================>....] - ETA: 0s - loss: 0.1405"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "396/438 [==========================>...] - ETA: 0s - loss: 0.1405"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "411/438 [===========================>..] - ETA: 0s - loss: 0.1405"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "425/438 [============================>.] - ETA: 0s - loss: 0.1406"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - ETA: 0s - loss: 0.1406"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1406 - val_loss: 0.1497\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 30/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 1s - loss: 0.1355"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 1s - loss: 0.1389"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 1s - loss: 0.1391"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 44/438 [==>...........................] - ETA: 1s - loss: 0.1394"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 59/438 [===>..........................] - ETA: 1s - loss: 0.1395"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 74/438 [====>.........................] - ETA: 1s - loss: 0.1396"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 89/438 [=====>........................] - ETA: 1s - loss: 0.1396"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "104/438 [======>.......................] - ETA: 1s - loss: 0.1397"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "119/438 [=======>......................] - ETA: 1s - loss: 0.1397"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "134/438 [========>.....................] - ETA: 1s - loss: 0.1397"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "149/438 [=========>....................] - ETA: 1s - loss: 0.1397"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "163/438 [==========>...................] - ETA: 0s - loss: 0.1397"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "177/438 [===========>..................] - ETA: 0s - loss: 0.1398"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "191/438 [============>.................] - ETA: 0s - loss: 0.1398"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "205/438 [=============>................] - ETA: 0s - loss: 0.1398"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "219/438 [==============>...............] - ETA: 0s - loss: 0.1398"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "233/438 [==============>...............] - ETA: 0s - loss: 0.1398"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "247/438 [===============>..............] - ETA: 0s - loss: 0.1398"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "261/438 [================>.............] - ETA: 0s - loss: 0.1398"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "275/438 [=================>............] - ETA: 0s - loss: 0.1398"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "289/438 [==================>...........] - ETA: 0s - loss: 0.1399"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "303/438 [===================>..........] - ETA: 0s - loss: 0.1399"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "317/438 [====================>.........] - ETA: 0s - loss: 0.1399"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "332/438 [=====================>........] - ETA: 0s - loss: 0.1399"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "347/438 [======================>.......] - ETA: 0s - loss: 0.1399"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "362/438 [=======================>......] - ETA: 0s - loss: 0.1400"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "377/438 [========================>.....] - ETA: 0s - loss: 0.1400"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "392/438 [=========================>....] - ETA: 0s - loss: 0.1400"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "406/438 [==========================>...] - ETA: 0s - loss: 0.1400"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "421/438 [===========================>..] - ETA: 0s - loss: 0.1400"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "436/438 [============================>.] - ETA: 0s - loss: 0.1401"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 2s 4ms/step - loss: 0.1401 - val_loss: 0.1495\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\n",
-      "Duration :  00:01:05 039ms\n"
-     ]
-    }
-   ],
-   "source": [
-    "pwk.chrono_start()\n",
-    "\n",
-    "history = ae.fit(noisy_train, clean_train,\n",
-    "                 batch_size      = batch_size,\n",
-    "                 epochs          = epochs,\n",
-    "                 verbose         = 1,\n",
-    "                 validation_data = (noisy_test, clean_test),\n",
-    "                 callbacks       = callbacks_list  )\n",
-    "\n",
-    "pwk.chrono_show()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 5 - History"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 10,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:26:01.958450Z",
-     "iopub.status.busy": "2021-03-14T21:26:01.957957Z",
-     "iopub.status.idle": "2021-03-14T21:26:02.548122Z",
-     "shell.execute_reply": "2021-03-14T21:26:02.548624Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE2/figs/AE2-01-history_0</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAGdCAYAAABQEQrmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABOWElEQVR4nO3dd5xcdb3/8ddn62xNNr1BQpMWELyh2IIg0ryiXpCiSPEK4ki96lURERXlWig/kPkp+LtgCYoi4FW4KEjvBAyEEqlJSM9mU7bNlpnv74/vmd2zk9nd2c3szszu+/l4zOPM+Z4zM9+ZTDLvfNsx5xwiIiIiuVSS7wqIiIjI2KOAISIiIjmngCEiIiI5p4AhIiIiOaeAISIiIjmngCEiIiI5p4AhIiPGzB4yM2dmZ+a7LiIyuhQwREREJOcUMERERCTnFDBEREQk5xQwREREJOcUMEQkL8ys3swuN7MXzKwluL1oZt8xswkDPO4wM7vdzFaZWaeZbTWz183sLjP7gpmVpJ1fZ2bfMrPnzKw5eMwaM1tsZj82s/kj/25Fxh/Txc5EZKSY2UPAYcBZzrlbQuW7A/cDc4OitmBbHWxXAkc6515Pe75zgJ+HitoAB9SEyqqcc/Hg/AnAE8A+wbEksBWYQO9/sH7onPv68N6hiPRHLRgiMqrMrAL4Iz5cvAMcBdQGtyPx4WJn4E4zqww9rhq4Ktj9b2Bn51yNc64WmAwcC/wWHyJSLsSHi43AvwKVzrlJQAR4F/B14M2Reaci41tZvisgIuPOycD+QDdwnHPupdCxv5vZccA/gH2Bz+DDBMB8fAhpBc5xziVSD3LONQH3BrewQ4PtVc65u0PndwGvAz/M1ZsSkb7UgiEio+3EYHtXWrgAwDn3MnB7sHtS6NC2YFuOb7HIRuoxM4daSRHZMQoYIjLa3hNsHxzgnAfSzgXf4vA6UAE8aWYXm9leZmYDPM89wfYCM/u1mR1rZnXDqrWIDIkChoiMtqnBdvUA56wKtpNTASLoEvl08LhdgauBV4FGM/uDmR2fHjacc78CbgQMOA0fOLaY2T/M7LtmppYNkRGigCEi+VI5+Cl9OecWA3vgw8KvgLeASfhulz8Bd5tZadpjvoAfv/Fd4CGgAzgA+Bbwupl9ZNjvQET6pYAhIqNtY7CdO8A5c4LtJpc2l9451+6cW+ScO8M5txu+NeNK/HTVY4Fz05/MOfeyc+7bzrnDgYnAx4Cl+OmtvzSz8h15QyKyPQUMERltzwfbwwc454i0c/vlnHvbOXcJcFtQdNgg53c65/4CfCoomolvFRGRHFLAEJHRlpohcqyZHZh+0Mz2pXemye9D5RWDPG97sA2vnTHQY9pD94fcXSMiA1PAEJHRdhvwYnD/LjM7MjU408w+jB+IWQ68DCwKPe44M3vSzM42s57uFTOrNrOz8WtmAPw19Jj7zew6M1toZlWhx+wL3BLsrsV3l4hIDmmhLREZVc65TjM7gd6lwu8D2oKMEV4q/N+ccx1pDz80uGFm7UAcP6YiNXvkHvyskZR64PzgljSzrUAVfiVP8EuNf9Y5152r9ycinlowRGTUOefeAN6Nn9kRXmzrJeB7wP7OudfSHvYA8Fngl/gWhzagDtiEDytnAB9LCwufB76NX3NjJT5cACwDfgrMd879PXfvTERSdLEzERERyTm1YIiIiEjOKWCIiIhIzilgiIiISM4pYIiIiEjOKWAMUTQaddFoVCNjRUREBqB1MIZPIUNERMYTG/yUXmrBEBERkZxTwBAREZGcU8AQERGRnFPAEBERkZzTIM8c6erqYtWqVcTj8XxXpeBFIhHmzJlDeXl5vqsiIiIjRAEjR1atWkVdXR3z5s0juCqkZOCcY9OmTaxatYpddtkl39UREZERoi6SHInH40yePFnhYhBmxuTJk9XSIyIyxilg5JDCRXb0OYmIjH0KGGNIbW1tvqsgIiICKGCIiIjICFDAGIOcc3z1q19l/vz57Lffftx2220ArF27loULF3LAAQcwf/58Hn30URKJBGeeeWbPuddcc02eay8iImOBZpGMgKO/d/eIPfdfv/XRQc+54447WLJkCS+88AKNjY0cdNBBLFy4kFtvvZWjjz6ab37zmyQSCdra2liyZAmrV6/mpZdeAmDLli0jVncRERk/1IIxBj322GOceuqplJaWMn36dA477DCeffZZDjroIG6++WYuv/xyli5dSl1dHbvuuitvvfUW559/Pvfeey/19fX5rr6IiIwBChhjkHOZL/S6cOFCHnnkEWbPns1nP/tZfvWrX9HQ0MALL7zAhz70IW644QY+//nPj3JtRURkLFIXyQjIphsjZXVTK63xLgBmNlRTV1Wxw6+/cOFCfv7zn3PGGWfQ1NTEI488wo9//GNWrFjB7NmzOfvss2ltbeX555/nuOOOo6KighNOOIHddtuNM888c4dfX0RERAEjz0pLeteESCYztzwM1Sc/+UmefPJJ3v3ud2Nm/OhHP2LGjBn88pe/5Mc//jHl5eXU1tbyq1/9itWrV3PWWWeRTCYBuPLKK3NSBxERGd+sv+Z0ySwajTqAWCzWp/zVV19l7733HvLzbdzWzuaWDgCm1EeYVBvJQS0L33A/LxERyZshrZKoMRh5Fm7BSOSoBUNERCTfFDDyrNQUMEREZOxRwMizErVgiIjIGKSAkWelJb1/BLka5CkiIpJvChh5pjEYIiIyFilg5JkChoiIjEUKGHkWHoORdK7fVThFRESKiQJGnpWYURLMJHHOkRzFgFFbW9vvseXLlzN//vxRq4uIiIwteQ8YZlZiZheb2TIzi5vZO2Z2lZnVZPHYBjO70Mz+Fjyu3cz+aWY3mtlOAzxuHzO71czWmlmHma0yszvNbHpu3112NJNERETGmkJYKvwa4ALgTuAqYO9g/0AzO9I5lxzgsYcEj/k78FOgEZgPfAE4ycze55x7JfwAMzsauAt4E7gOWA9MA94L1Af7O+bzxwzp9F2HcvIv7u330Ne+9jXmzp1LNBoF4PLLL8fMeOSRR9i8eTNdXV1cccUVfPzjHx9S/eLxOF/84hdZvHgxZWVlXH311Rx++OG8/PLLnHXWWXR2dpJMJvnjH//IrFmzOOmkk1i1ahWJRIJvfetbnHzyyUN6PRERKX55DRhmti9wPnCHc+6EUPnb+B//U4BbB3iKZcCezrk30573buA+4LvAiaHyacHzPQQc75zrys07KQynnHIKF110UU/A+P3vf8+9997LxRdfTH19PY2NjRx66KEcf/zxmGW/4usNN9wAwNKlS1m2bBlHHXUUr732Gj/72c+48MIL+cxnPkNnZyeJRIJ77rmHWbNmcffddwOwdevW3L9REREpePnuIjkVv7b5tWnlNwFtwGkDPdg5tzw9XATl9wNN+NaMsHOBScB/Oue6zKzazMqHWfeCc+CBB7JhwwbWrFnDCy+8QENDAzNnzuSSSy5h//3358gjj2T16tWsXz+0RprHHnuMz372swDstddezJ07l9dee433vve9/OAHP+CHP/whK1asoKqqiv3224/777+fr33tazz66KNMmDBhJN6qiIgUuHx3kRwEJIFnwoXOubiZLQmOD5mZTQDqgJfSDh0HbAMmBs//biBpZk8A/+Gce3Y4r7edAboxMtmwtZ0trf6CZ1MnVNFQUznslz7xxBO5/fbbWbduHaeccgqLFi1i48aNPPfcc5SXlzNv3jzi8fiQnrO/mS2f/vSnOeSQQ7j77rs5+uij+cUvfsERRxzBc889xz333MM3vvENjjrqKC677LJhvx8RESlO+W7BmAU0Ouc6MhxbDUwxs4phPO+lQDnwy7TyPfGh6l5gCb775D/xLR0PBV02GZnZOWa2eBh1GVQuB3mecsop/O53v+P222/nxBNPZOvWrUybNo3y8nIefPBBVqxYMeTnXLhwIYsWLQLgtddeY+XKley555689dZb7LrrrlxwwQUcf/zxvPjii6xZs4bq6mpOO+00vvKVr/D888/v0PsREZHilO+AUQ1kChcA8dA5WTOzE4EvA38Fbk47XBc8353OuTOdc390zl0FfDIo7/e/2s65G51zC4ZSl2yFL3i2o8uF77vvvjQ3NzN79mxmzpzJZz7zGRYvXsyCBQtYtGgRe+2115CfMxqNkkgk2G+//Tj55JO55ZZbqKys5LbbbmP+/PkccMABLFu2jNNPP52lS5dy8MEHc8ABB/D973+fSy+9dIfej4iIFCfL58JOZrYUmOac2256qJn9HvgUUOmc68zy+Y7Dz0Z5Efiwc25b2vFmoBb4SDBOI3xsBRDJVJewaDTqAGKxWJ/yV199lb333jubam5nW1sn67a0AVBXVcHMhiFlqqK0I5+XiIjkRfazA8h/C8YafDdIpkEHs/HdJ9mGi2OAO4CXgaPSw0VgVbBdl+HYWqAhm9fKtb7LhQ80K1dERKQ45HuQ57PAUcDBwKOpQjOLAAcAj2TzJMHaFnfip60e6Zzb3M+pzwB7AXPYfgDoHGDDEOqeM32WCx/lhbaWLl3aM0MkpbKykqeffnpU6yEiImNLvgPGbcAlwEWEAgZwNn5MxKJUgZnNBCYAK51zbaHyo/ALZ72G7xZpGuD1fg2cjp+u2jPVw8w+hm8xuWmH3s0w5fOCZ/vttx9LliwZ1dcUEZGxL68Bwzm31MxuAM4zszuAe+hdyfNh+i6ydSVwBnA4fqEszGwB8Cd8v9DNwLHpC0g5534Tun+/mf0WONXM7gH+AszFL/a1Frh8B9/PkBawShlvV1TVBd1ERMa+fLdggG+9WA6cA3wUv9z39cBlgywTDn56aSS4f00/5/wmbf904AXgc/gFvrYAtwPfdM6tGVLNQyKRCJs2bWLy5MlDDhkl1veKqknn+pSNJc45Nm3aRCQSGfxkEREpWnmdRVKM+ptF0tXVxapVq4a8iFXKxm3tpMZ3Tq2P9BmXMdZEIhHmzJlDefmYWURVRGQ8GNIPUyG0YIwJ5eXl7LLLLsN+/E9iD7FqUysAP//CQuZNq8tV1UREREZdvqepSqC+qnfB0ub2rGbmioiIFCwFjAJRX9XbXbCtfUxd5FVERMYhBYwCUVfd24KxTS0YIiJS5BQwCkSfFow2tWCIiEhxU8AoEBqDISIiY4kCRoGoC7VgNGsMhoiIFDkFjAIRbsHQGAwRESl2ChgFoq5as0hERGTsUMAoEH1aMNrUgiEiIsVNAaNA9B3kqRYMEREpbgoYBaK+TxdJp644KiIiRU0Bo0BUlJVSWV4K+Eu2t3V257lGIiIiw6eAUUDCi201a7EtEREpYgoYBURTVUVEZKxQwCggmqoqIiJjhQJGAdFUVRERGSsUMApInzEY6iIREZEipoBRQPqOwVAXiYiIFC8FjAKiC56JiMhYoYBRQOo0i0RERMYIBYwCUq9ZJCIiMkYoYBSQPtcj0SwSEREpYgoYBUQLbYmIyFihgFFAtNCWiIiMFQoYBaQ2Uk6J+fttHd10J5L5rZCIiMgwKWAUkBIzaiOaqioiIsVPAaPAaByGiIiMBQoYBUbjMEREZCxQwCgwmqoqIiJjgQJGgVEXiYiIjAUKGAVGXSQiIjIW5D1gmFmJmV1sZsvMLG5m75jZVWZWk8VjG8zsQjP7W/C4djP7p5ndaGY7ZfH4/c2sy8ycmZ2Ym3e0Y+o0i0RERMaAvAcM4BrgauAV4HzgD8AFwJ/NbLD6HQJcBTjgp8B5wD3AacBSM9unvwcGz30TEN/RN5BL9dXqIhERkeJXls8XN7N98aHiDufcCaHyt4HrgFOAWwd4imXAns65N9Oe927gPuC7QH8tE+cD+wI/Ar4z3PeQaxrkKSIiY0G+WzBOBQy4Nq38JqAN3xLRL+fc8vRwEZTfDzQB8zM9Lug+uQK4HFg51EqPpPoqjcEQEZHil++AcRCQBJ4JFzrn4sCS4PiQmdkEoA5Y388pMeAttg82eVenWSQiIjIG5DtgzAIanXMdGY6tBqaYWUWGY4O5FCgHfpl+wMxOBj4KnOuc6x7Gc4+o+moN8hQRkeKX74BRDWQKF9A7+LJ6KE8YzAb5MvBX4Oa0YxPxrRY3OeeeHOLznmNmi4fymOHosw5GWyfOuZF+SRERkZzLd8BoAyr7ORYJnZMVMzsOWAQ8B5zktv91/gn+PX99iPXEOXejc27BUB83VJXlpVSW+T+W7qSjvTMx0i8pIiKSc/kOGGvw3SCZQsZsfPdJVgMRzOwY4A7gZeAo59y2tOPvAT6Hn8462cx2N7PdgWnBKTOCsv4Cz6ip01RVEREpcvkOGM8GdTg4XGhmEeAAIKsuCTM7GrgTP231SOfc5gyn7YyfsfJd4PXQ7YfB8euD/f2G+iZyrc9UVY3DEBGRIpTXdTCA24BLgIuAR0PlZ+PHXixKFZjZTGACsNI51xYqPwq4C3gN+LBzrqmf13oG+FSG8g8BX8Iv2PUUsN2019HWZ6qq1sIQEZEilNeA4ZxbamY3AOeZ2R34VTj3xq/k+TB9F9m6EjgDOBx4CMDMFgB/wrdM3Awca2bpr/GbYLsGuD29DmZWG9x9yjm33fF80FRVEREpdvluwQDferEcOAc/fbQR311xmXMuOchj59M7GPSafs75zY5XcXTV64JnIiJS5PIeMJxzCXz3xFWDnHcmcGZa2S3ALTv4+jv8HLmmC56JiEixy/cgT8kgfMGzZnWRiIhIEVLAKEDpi22JiIgUGwWMAlSnC56JiEiRU8AoQPVaaEtERIqcAkYBCq+DoUGeIiJSjBQwCpDGYIiISLFTwChANZFyUsuFtXZ0k0gOthyIiIhIYVHAKEClJUatuklERKSIKWAUKHWTiIhIMVPAKFD1mqoqIiJFTAGjQNVpqqqIiBQxBYwCpamqIiJSzBQwCpQu2S4iIsVMAaNA9WnBaFMLhoiIFBcFjAKlFgwRESlmChgFSrNIRESkmClgFKjwBc+a1YIhIiJFRgGjQPVpwdAYDBERKTIKGAVKYzBERKSYKWAUqL5dJF045/JYGxERkaFRwChQkfJSKsr8H09XIkm8K5HnGomIiGRPAaOA6YJnIiJSrBQwClidpqqKiEiRUsAoYPW64JmIiBQpBYwCpgueiYhIsVLAKGDhqapabEtERIqJAkYBq9NiWyIiUqQUMApYvRbbEhGRIqWAUcDqqzUGQ0REipMCRgFTC4aIiBQrBYwCpjEYIiJSrBQwCphaMEREpFgpYBSwvhc8U8AQEZHikfeAYWYlZnaxmS0zs7iZvWNmV5lZTRaPbTCzC83sb8Hj2s3sn2Z2o5ntlOH8w8zsBjNbambNZrbRzB43s1PNzEbmHQ5fbaScVKVa4t0kksm81kdERCRbeQ8YwDXA1cArwPnAH4ALgD+b2WD1OwS4CnDAT4HzgHuA04ClZrZP2vk/BD4OPAR8GfgBUArcCtyYg/eSU6UlRk1EM0lERKT4lOXzxc1sX3youMM5d0Ko/G3gOuAU/I9/f5YBezrn3kx73ruB+4DvAieGDn0NeMw5lwid+3+AB4HPm9n/cc69tGPvKrfqq8tpiftgsa29i4k1lXmukYiIyODy3YJxKmDAtWnlNwFt+JaIfjnnlqeHi6D8fqAJmJ9W/nA4XARlSeD2YLfP+YWgXsuFi4hIEcp3wDgISALPhAudc3FgSXB8yMxsAlAHrM/yIXOCbbbnjxpd8ExERIpRvgPGLKDROdeR4dhqYIqZVWQ4NphLgXLgl4OdaGazgC8AbwGPDeO1RlSdpqqKiEgRynfAqAYyhQuAeOicrJnZifgBnH8Fbh7k3GrgTqAGONM5128TgZmdY2aLh1KXXNBiWyIiUozyHTDagP5GLUZC52TFzI4DFgHPASc559wA50aAu4AFwFnOuUcHem7n3I3OuQXZ1iVXtNiWiIgUo3wHjDX4bpBMIWM2vvskq19VMzsGuAN4GTjKObdtgHNT4eJI4Gzn3G+GWvHRogueiYhIMcp3wHg2qMPB4cIgABwAZNUlYWZH47s6lgFHOuc2D3BuZXDuUcA5zrn/HlbNR0mfMRhtasEQEZHikO+AcRt+kayL0srPxo+9WJQqMLOZZrZXMG6CUPlR+NaI14APO+ea+nuxIFzcBRwNnOuc+8WOv4WRpS4SEREpRnldaMs5t9TMbgDOM7M78Ktw7o1fyfNh+i6ydSVwBnA4fiVOzGwB8Cf8Who3A8emr/id1v2xCDgGuB9oM7P0dTZedM69mJM3lyOapioiIsUorwEjcBGwHDgH+CjQCFwPXBYsgjWQ+fQOBr2mn3PCASM1SPPI4JbuO0BhBYxqtWCIiEjxyXvACFbWvCq4DXTemcCZaWW3ALcM4bXmDbF6eVefNk3VOUcBXpdNRESkj3yPwZBBVJaXUl7q/5i6Ekk6uhKDPEJERCT/FDAKnJn1maq6TeMwRESkCChgFIF6TVUVEZEio4BRBMLLhTfH1YIhIiKFTwGjCKgFQ0REio0CRhHoc8EzjcEQEZEioIBRBMItGM1aC0NERIqAAkYRqNMsEhERKTIKGEVAYzBERKTYKGAUAXWRiIhIsVHAKAJaaEtERIqNAkYRqNMl20VEpMgoYBSB9AueiYiIFDoFjCIQXgejNd5FIunyWBsREZHBKWAUgdKSEmojZQA4oEXLhYuISIEry9UTRaPRvYBjgTbgd7FYbGuunlv8OIyWeDfgZ5JMqK4Y5BEiIiL5M+QWjGg0elk0Gl0bjUYnhcqOBP4B/ASIAc9Ho9HJuaum9FkLQzNJRESkwA2ni+RYYFksFmsKlV2Jb73/NvB/gV2AC3e8euPAUw/A7f8Prvs2dPU/Q6TPVFUttiUiIgVuOF0k84A7UzvRaHQ28C/A1bFY7IqgbC/gE8BlO17FMe5Pv4aNa/39te/AzrtlPK0uErpku1owRESkwA2nBaMBCLdevB/fevGXUNlzwM47UK/xY/bc3vtrVvR7Wn211sIQEZHiMZyAsRGYHdo/HOgCng6VVQzzucefWdkFjDpdj0RERIrIcLpIlgDHR6PR+UAcOBl4LBaLtYfOmQes3eHajQdZBow+i22pi0RERArccFoZfgRMAF4A/hncvyp1MBqNRoAPAYtzUL+xb1aoJ2n1QAFDFzwTEZHiMeSAEYvFHgX+FbgLP9jzxFgs9r+hU94HLCc0EFQGMGMnsOCPoXEddMQznlanC56JiEgRGdZCW7FY7F7g3n6OPQAcuCOVGlcqKmHqDNiwBpyDde/A3D22O61eYzBERKSI5HQgZjQabYhGozW5fM5xIYtxGOExGJqmKiIihW44K3l+OBqN/igajTaEyqZFo9GHgUagKRqNXp3LSo554YCxemXGUzRNVUREislwWjDOB/4tFottDpX9BPgg8AawCbgwGo2elIP6jQ9ZrIURKS+lvNT/cXV2J4l3JUajZiIiIsMynIDxbuCx1E40Gq0CTgTui8ViewJ7Au8A5+akhuNBFl0kZtbnsu2aSSIiIoVsOAFjGrAmtH8IEAFuAYjFYs34VT333NHKjRsz5mQ1k6TvQE+NwxARkcI1nIDRAVSF9j+IXyr8kVDZNmASkp3yCpg2s3d/bX/jMNSCISIixWE4AeNt4IjQ/gnA67FYbHWobCf8gE/JVp+Bnpm7ScIXPNNaGCIiUsiGsw7GL4Fro9Ho00AnsB/wnbRz3oNf5VOyNXsu/OMJf7+fcRh1mkkiIiJFYjgtGP8X+B2wAH8l1b8AP0wdjEajBwN7Aw9l82RmVmJmF5vZMjOLm9k7ZnaVmQ26noaZNZjZhWb2t+Bx7Wb2TzO70cx26ucxE8zsejNbHbzey2b2RTOzbOo7YsItGP11kWixLRERKRJDbsGIxWJdwKej0ei5gAsGdYa9hV/Jc3mWT3kNcAF+afGr8OHkAuBAMzvSOZcc4LGHBI/5O/BTfLfMfOALwElm9j7n3Cupk82sArgvqN/1wKvAsUAMmA5cnmWdc0+LbYmIyBgyrKXCAWKx2LZ+yhvJcvyFme2LX1fjDufcCaHyt4HrgFOAWwd4imXAns65N9Oe9258kPgufgptyueBg4ALnHPXB2U3mdkfgUvM7GbnXP9XHBtJ02dDSQkkk9C4HuLtEKnqc4oW2xIRkWIx7IARjUargX/DtwZMBLYCzwN3xmKx1iyf5lTAgGvTym8C/gs4jQEChnNueT/l95tZE741I+zTQFvw/GHX4t/LyfirxY6+8gqYNttfiwR8N8kufWf61umS7SIiUiSGdS2SaDR6HLACP+DzYuAs4KJgf3k0Gv3XLJ/qICAJPBMudM7FgSXB8SEzswlAHbA+VFaCH3z6j+D5w54J6jGs18uZQVb07HPJdo3BEBGRAjaca5G8B7gD32qxCPgcfhzD54L9icDt0Wj0X7J4ullAo3OuI8Ox1cCUYNzEUF0KlOMDT0oDfv2O1eknB6+/CZg9jNfKnUHGYdSrBUNERIrEcLpIvolfWOuDsVjsqbRjt0Sj0RvwM0guwa+RMZBq/MJdmcRD52T933UzOxH4MvBX4Oa012KQ16vu5xhmdg5wzhe/+MVsqzJ0g1z0TGMwRESkWAyni+SDwB8yhAsAYrHY08DtwXmDaQMq+zkWCZ2TFTM7Dt+K8hxwknPOpb0Wg7xev6/lnLvRObcg27oMy6yde+9naMEIj8Foae8ikXTbnSMiIlIIhhMwJuAvZjaQlUB9Fs+1Bt8NkulHfza++ySr/6qb2TH4rpuXgaOcc+mzXDYD7WToBglefzIZuk9G1fTZUFrq7zdtgHjfvFNaUkJNpW90ckBrh7pJRESkMA0nYKwBDh7knAXA2iye69mgDn2ez8wiwAHA4mwqZGZH49fRWAYc6ZzbnH5OsJ7G8/j1NdIDzcFBPbJ6vRFTVu5DRsqagbtJmnXBMxERKVDDCRj3AEdEo9GvR6PR0vCBaDRaEo1GvwwcGZw3mNvw/xm/KK38bPx4iEWpAjObaWZ7mVmfcRJmdhRwF/Aa8GHnXNMAr/fb4HnPSSu/COgGfp9FnUfWIAM9+05V1TgMEREpTMMZ5Pk94BPA94EvRKPRR/GtFTOADwDzgHXAFYM9kXNuqZndAJxnZnfgQ0lqJc+H6bsGxpXAGcDhBMuQm9kC4E/4tTRuBo5NX/HbOfeb0O5N+Cm1V5vZPPxKnscBnwSucM69ndUnMJJmzQUe9fczXPSsrkoDPUVEpPANZ6nwddFo9P3Az4GPAHPTTrkPODcWi2XTRQK+9WA5vlXho/hVQK8HLhtkmXDwC2mlBoNe0885PQHDOddpZkfiw8+p+HEXb+JXE70hy/qOrKFMVVUXiYiIFKhhreQZi8WWA0dHo9HZ+JU8J+BX8vxH2mXbB+WcS+CvJ3LVIOedCZyZVnYLcMsQX28LcF5wKzyDBozQGAy1YIiISIEa9lLhAEGYyO/Mi7Fm2iwoLYNEN2xuhLZWqO69sKwW2xIRkWIwaMCIRqP/PczndrFY7N+H+djxq6wMZsyB1cv9/toVsNs+PYfrtNiWiIgUgWxaMM4c5nM7QAFjOGbN7Q0Yq/sGDI3BEBGRYpBNwNhlxGshffVZ0bPvWhgagyEiIsVg0IARi8W2H2koI2uAgZ59r0eiFgwRESlMw7pcu4ywAS7broW2RESkGChgFKKps/yy4QBbNkFbS8+hPl0kbQoYIiJSmBQwClFpqZ9JkhJa0bOqopSyEr9aaUd3ko6uxGjXTkREZFAKGIWqn3EYZtb3gmcahyEiIgVIAaNQDTDQU+MwRESk0ClgFKoBB3pqsS0RESlsChiFaqCpqqEWjGYttiUiIgVIAaNQTZ0B5UFLxdbN0NLcc6heLRgiIlLgFDAKVUkpzNipdz/UilGnC56JiEiBU8AoZH2WDO8NGPW64JmIiBQ4BYxC1s84DI3BEBGRQqeAUcj6DRhqwRARkcKmgFHIwgEjtJpnnbpIRESkwClgFLKp03tnkjRvgeatgLpIRESk8ClgFLKSUpi5/UySPhc8iytgiIhI4VHAKHQZxmGEp6k2t3eSdG60ayUiIjIgBYxClyFglJWWUF1ZBkDSQWu8Ox81ExER6ZcCRqHrZ6BnvS54JiIiBUwBo9D1uejZyp674XEYjdvio1kjERGRQSlgFLrJ06Gi0t9v2QrbtgCw64z6nlOefG19HiomIiLSPwWMQldSAjO3XzJ84d4ze4oefWWtBnqKiEhBUcAoBhkGeh6wy2QmBAtuNTbHeeWdzfmomYiISEYKGMVg1vbjMEpLSnj/XjN6ih9+Zc1o10pERKRfChjFYHbmq6oetk9vN8ljr64jkVQ3iYiIFAYFjGKQ3kUSjLfYb+5kGmr8ANCmlg6WrtyUj9qJiIhsRwGjGEyaBpURf79lW89MktIS4wN7h7pJXl6bh8qJiIhsTwGjGPQzkwTgsH1n9dx/fNk6EsnkaNZMREQkIwWMYpFhJgnAvjs1MLnOd5NsbetkyXJ1k4iISP7lPWCYWYmZXWxmy8wsbmbvmNlVZlaT5eNPMrObzewFM+syM2dm8wY4f2cz+7mZvWFm7Wa22sz+bGYLc/amRsLszAGjxIwPhtbEeETdJCIiUgDyHjCAa4CrgVeA84E/ABcAfzazbOoXBU4B2oE3BzrRzGYBzwEnAbcD5wE/A94NPGhmHx3mexh5/bRgQN9ukseWraMroW4SERHJr7J8vriZ7YsPFXc4504Ilb8NXIcPDrcO8jSnA2ucc91m9lNgzwHOPQOYAnzCOfen0Ov9FngdOBu4ezjvZcSlX/TMOTADYO/ZE5k2oYoNW9tpiXfxj7caOXiPaXmqqIiISP5bME4FDLg2rfwmoA04bbAncM6tdM5le73y1AU80lelWgckgdYsn2f0TZoKkWp/v60Ftjb1HDIzFobWxHjkFXWTiIhIfuU7YByE/2F/JlzonIsDS4LjufTXYBszs8PMbLaZHQT8FmgBrsrx6+WOGczKPJME+i669cQ/19HZnRitmomIiGwn3wFjFtDonOvIcGw1MMXMKjIcGxbn3EPAl4BdgIeAVfhwsydwqHPu+Vy91ojoEzBW9jm0x8wJzGzwLRytHd0892bjaNZMRESkj3wHjGogU7gAiIfOyaWNwGLgq8DHg+0E4G4z26m/B5nZOWa2OMd1GZoBBnqaWZ8rrOraJCIikk/5DhhtQGU/xyKhc3LCzM7GDxr9inPuJ865/3HO/QQ4EtgJuLK/xzrnbnTOLchVXYYlfaBnmsP27Q0YT722no4udZOIiEh+5DtgrMF3g2QKGbPx3SedOXy9bwDLnHMvhQudc0uBZcBhOXyt3OvnmiQpu06vZ84kv3xIe2eCZ9/YMJq1ExER6ZHvgPFsUIeDw4VmFgEOwHdl5NJsoLSfY2XkedruoBqmQFXQY9TeClv6rtppZizcN9xNotkkIiKSH/kOGLcBDrgorfxs/NiLRakCM5tpZnuZ2Y6MyXgF2NPMDg0Xmtl7gXfhA0/hMhtwHAbAYfv0Lrr19OsbiHdmO4NXREQkd/IaMIKuiRuAfzOzO8zs82Z2FX5lz4fpu8jWlcCrbN/asdDMLjWzS4HUGInzQmVh3w6295nZj4OBmz8G7gM6ge/k9A2OhEHGYcybVsfOU2oB6OhK8NTr6iYREZHRVwhdAhcBy4FzgI8CjcD1wGXOuWzWvD6C3uCQ8uXQ/StSd5xz/2NmH8HPHPkcfvbIZvz6GN9zzi0Z1jsYTYO0YIBfOvzXD78GwCMvr+FDoaXERURERkO+u0hwziWcc1c55/Z0zlU652Y75/7DOdeSdt6ZzjkL1rIIl18elGe8ZXi9B5xzxzrnJjvnypxzU51zJxRFuIDsAkZo0a1n3thIW4e6SUREZHTlPWDIEIWvqrp25XYzSQB2mlLLrtP9quhdiSRPvbZ+tGonIiICKGAUnwmToNqPsaC9DTZnXrEzfG2Sh1/WolsiIjK6FDCKzSDXJEkJd5MsfnMjLfGuka6ZiIhIDwWMYjTITBKAWZNq2GPmBAC6k44n/rluNGomIiICKGAUpywGekLfVgxdwl1EREaTAkYxmp1dwAiPw3j+rUa2teVy1XUREZH+KWAUoz4tGJlnkgBMn1jNXrMnApBIOh5XN4mIiIwSBYxiVN8ANXX+fkc7bOh/lshhfWaTqJtERERGhwJGMTKDnXfr3b81BsnMi55+MBQwXljeyJbWjpGunYiIiAJG0Tru5N77Lz8H992Z8bSp9VXsu1MDAEkHjy1TN4mIiIw8BYxitfeBcMynevfvuBmWv57x1MNC1yLRolsiIjIaFDCK2SdOh3l7+PuJbrjpvyDevt1pH9hrBqmLsixd0cSm5vjo1VFERMYlBYxiVlYOZ38DKqv8/vrVfjxGmsl1EfabOwkABzz2qgZ7iojIyFLAKHbTZ8FpX+rdf+I+ePrB7U7r002iRbdERGSEKWCMBe89Eg49onf/N9fDxr4h4gN7zaDEfEfJy+9sZuO27btSREREckUBY6z4zJdgajAltb0NbvohdHf3HJ5YU8kBu0zu2X9UrRgiIjKCFDDGiqoaOPvrUFrq999aBv/zmz6n9LmEuwKGiIiMIAWMsWTXPeETZ/Tu/+9tsOyFnt337zWD0hLfTbJs9RYWv7lxtGsoIiLjhALGWHP0ibD3Af6+c/CLH0HzVgDqqyo4ZI9pPad+9w/P8cqqzXmopIiIjHUKGGNNSQn8+1ehdoLf37IJfnlNzwXRosfsy7QJflprR1eCb/32Gd5avy1ftRURkTFKAWMsmjgZzvqP3v0lT8GDfwb80uFXfuZgJlRXANAS7+abtz7DmqbWfNRURETGKAWMserdh8CHP967//ubYNXbAMyZXMv3P30w1ZVlADS1dPCNRU9rhU8REckZBYyx7MR/h5129fe7u+DGK6HDh4g9Zk7guycvoKLMfwXWbWnnkkXPsK29M1+1FRGRMUQBYywrr/BTVysq/f6alb4lI7Df3MlceuJ7emaWLN/YzGW/fZb2zu5MzyYiIpI1BYyxbtbOcMq5vfsP3w3PPdaze8ge0/nK8e/u2X919Ra++4fn6OxOjGYtRURkjFHAGA8+eAz8ywd69395LTT1roFxxH6ziR6zb8/+82818qO7lpBIulGspIiIjCUKGOOBGZx+IUya6vfbWvx4jLbemSMfP2gepx/2rp79R19dx3X3LMU5hQwRERk6BYzxoqYOzv4aWPBH/sYr8L3zYOUbPad8+oO784mD5/Xs3/uPd/h/f182yhUVEZGxQAFjPNljPvzbWb37G9fCDy724zKcw8z4wlH7cOT+s3tO+cOTb3Hb42/mobIiIlLMFDDGm2M/Bed8Ayr9ap50d8Gvr/dLisfbKTHjPz62P4e+a3rPQ/77gWXc8/zKPFVYRESKkQLGeHTwYfCt62H2vN6ypx+EKy6A1cspLSnhmyccyP5zJ/Ucvu7upTz88prRr6uIiBQlBYzxasYc+Ob/8TNMUta9A9+/EB7/GxVlpVx+8gL2mOmvaeKAH921RFdgFRGRrChgjGcVlXDGRfC5r/QuxtXZATdfDTdfTQ0Jrjj1IHaaXANAd9Jx+W2Lufcf6i4REZGB5T1gmFmJmV1sZsvMLG5m75jZVWZWk+XjTzKzm83sBTPrMjNnZvMGecw+Znarma01sw4zW2Vmd5rZ9IEeN2a970jfmjFz596yx/8GP7iIids28IPPHMLU+ggAXYkk1/xlKdf8+UUtxiUiIv3Ke8AArgGuBl4Bzgf+AFwA/NnMsqlfFDgFaAcGne5gZkcDzwH7A9cBXwR+iv8s6odR/7Fh9jwfMg49ords9XK44nymLXuKH5/+XnaZVtdz6N4l73DxzU+wbkvbqFdVREQKn+VzISUz2xdYCtzpnDshVH4+/sf/M865Wwd5jp2BNc65bjP7KfAlYBfn3PIM504DXgWeAY53znUNtc7RaNQBxGKxoT60ODgHj94Lt8b8DJOUwz5K/N/+nevue42/L13dU1xXVc7XPnEAB+0+LQ+VFRGRUWRDOTnfLRin4it8bVr5TUAbcNpgT+CcW+mcy/bqXOcCk4D/dM51mVm1mZUPob5jnxksPNa3ZkzvXQ+Dh+8mctVX+ep7p/KlY/alLLhAWnN7F9/67bP85uHXSGrVTxERCeQ7YBwEJPEtCj2cc3FgSXA8l44DtgETzWwJ0ArEzexRM8v1axW3nXaFS6+DBR/sLVv5Jnb5Fzl+xQNcfdJ+TKnz4zIc8OtHXuey3z2ry72LiAiQ/4AxC2h0znVkOLYamGJmFTl8vT2BMuBefIA5EfhPYD7wUNBlIylVNfCFS+DTUSgt82VdnXDv79nz+ov5xW4bWbBz77CVZ9/YyHm/eIzX127NU4VFRKRQ5DtgVAOZwgVAPHROrtQFz3enc+5M59wfnXNXAZ8Myi/r74Fmdo6ZLc5hXYqDGRxxPHzjath5997ythaq/nQLV7z0cy6d0UiJSwKwfks7F9/8hKayioiMc/kOGG1AZT/HIqFzcqU92N4SLnTOPQSsBD7U3wOdczc65xbksC7FZd67fJfJOd+AqTN7im1zIx98+rf8se0uFnatAOc0lVVERPIeMNbgu0EyhYzZ+O6TXHbqrwq26zIcWws05PC1xp6SEr/M+Pdu9N0mdRN7DlU3ruaba/6HnzbdxT7xtYCmsoqIjGf5DhjPBnU4OFxoZhHgACDXXRKpwaRzMhybA2zI8euNTWXlvtvkypvh45/tvXAasEfLKq5ZfzuXbbibnbqaeGPdNs77xWM88c915HNKtIiIjK58B4zb8JMQLkorPxs/JmJRqsDMZprZXma2I2Myfh1szw0XmtnH8C0m9+zAc48/kSr42Gd80Dji+N6BoMD729/i52tu5aJNf6eyeTPf+f1zXPD/HufxZes0nVVEZBzI60JbAGZ2PXAecCf+B35v/EqejwNHOOdHD5rZLcAZwOHBmInU4xcCC4PdfwUOAa4CtgA4565Ie71b8etv/C/wF2AufgXRLcAC59yAlwwd8wtt7YiNa+GuX/krs4Z0WCl/rdmHh2v24JXKmcyZWs8p79+ND82fRWlJvjOuiIhkaUgLbRVCwCjFt2CcA8wDGvEtG5c551pC591C5oBxOfDt/p7fOdfnAzGzMuDLwOeAXfDB4l7gm865dwarrwJGFla+AX/8b3j5+e0ONZVU83j1bjxaszsbp+/Gie/fg4+8ew4VZaV5qKiIiAxBcQWMYqOAMQSvPA9/vBlWvJ7x8JaSKh6v3pUXJu/NXh8+jGMX7EJVRVnGc0VEJO8UMEaSAsYQJZPwzxfhucfg+cdh2+aMp20tifBs3e7Ygg9y8L9+hLq6XC5/IiIiOaCAMZIUMHZAMgGvvwzPPYZ77jFsa1PG01pKKlmz8/7M/Mgx1O0zH2rq/BRZERHJJwWMkaSAkSPJJLz5ColnH6Xz6Yepat3S76mupBTqJ2ITJ0H9JJjQ4G/1DTBhUnAL9isj/T6PiIjskCEFDHV4S36UlMAe8yndYz5Vp3yBxFvLWPXXe6l5+WmmdPa9loklE7Blk78NJlLtw8aue8P7joQ991frh4hIHihgSP6VlFC6+z7M3X0fkskkLzz8FBseuI/dG19jancztUNZzDXe5m/rV8OT98OkafDeI+B9H+l7+XkRERlR6iIZInWRjA7nHK+s2syDL63hyZdWUtqylYZEGw2JViYl2mhItDEp0cZOFZ3sVNpJfXcrpc1boLur/yfdbR/fqnHQQqiuHbX3IiIyRmgMxkhSwBh93Ykk/3i7kQeWruaJf64n3rX9BdRKDA6cN5mP7NHAoRM6qXr+UXjmIWjZtv0TllfAge/1rRr7HAglWoNDRCQLChgjSQEjv+Kd3Tz12gYeeGk1i9/cSCK5/fe3oqyEA3aZwrtn13NoxwpmvfoEJS89C4kMV3adMAne+2HfsjFr7ii8AxGRoqWAMZIUMArHtrZOHnl1LQ++tIaXVmae8goQKS/l4OkVHNP5Jvu88xxV65ZnPnHeHvCu/YNZKpN6bxMnQVUN2JD+bomIjDUKGCNJAaMwrd/SxkMvr+XBl1bz9obmAc99V2ITJ7q3OHjTy1TFBz63R3lF73TY9PBR3wC1E6C6xo/tqK7xV5wVERlbFDBGkgJG4Vu9qZUXV25i6Yomlq5sYsPW9oznlbgkC9pXcHTrMg5tf5syl6ELZbgqKnvDRlVt3/BRXetvVTUwaSpMmwWTp0PpCI0F6e6Gpg3QtBEmTvavp6m7IjJ0WgdDxrfZk2uYPbmGYw/cGYB1W9qCsLGJpSubWNPUBkDSSnimeheeqd6FukScBfEVTO1uZlKijRnWzkyLMynRRk18G6XdQ5gqC9DZ4W/ZrN0BPlxMnu5//KfO9NvUbcp034LSH+egtdlfzXbjOmgMtqn7mzaCvyixF6mGnXeDnXeHucF2xk4jF3BEZFxSC8YQqQWj+DVui/PSyqaeVo6VjS0DP8A5qlwXc8s7mT8Bdq9KsHNFJ9NdnJqOZr/keVuLv7W3+m0yOfBzDoUZNAQtHdNm+sDR2gKN62DDWh8i2tt27DUqKmGnXYPQsbvfztpZXT0iEqYukpGkgDH2bGnt4KWVTbz0zmZeX7uVN9dtpb0zu+6Suqpydp8xgd1m1LPLtDp2mVbPTpOrqUh09Q0cba3Q1hxsg/3WbdC43rc8bG4c2TfZMMXfNq6F5q2Dnw8+XMye51s7Kqsg0R3cEmnb/sqS/joyDZN910zDFD9upWGK358wSa0mMnQdcdi80Xf5NW30F1CsroNJU3wQb5jiv3calD0SFDBGkgLG2Jd0jtWbWnlj3VZeX+tvb6zbRltHd1aPLy0x5kyuYZdp9ew63YeOXabXMaUugvX3j15HPGiRWBO6rYWNa2DTBt8NMpDKCEyZ4btXpgbb1H64i8U5H2ZWvgEr3vDblW+OfMDJxAzqJ8LEKX6w7MQpvWGkssoHnPJyv03devbLti8vKfXvL9HtF1zrTm2D+4m0/fDx4XJJSDq/dc63XKXfTx1PBuXO+bE4tfV+cHBqW12Tv7ExXZ1+Bdz2Noi3Byvitvv6lJZCaVloWxaUl21fXhbctxJ/jtnQfugTwWUBUmOGmhr9/c0bfVff5o2Z17ZJV1HZG6obQsGjYUpvEKmt938u8fbgfbf54J/6HNrT7qfO6Wj338/aeh9saut8oKmt99ua0P5ALYDOBa/Z4lsk21p8V2eqNTRV1t7qP9OKSv89L6+EiorQNrhVVPbeD58zJafjuxQwRpICxviUdI61m9t4IxQ4Xl+7lZZ49j9OtZHynsAxb1odu06vY87kWmojg3RDdHXCpvW9oWPTev8PWDhE1E3Ysf+xbd0M77zZGzpWvOEDTzGxkr5jTYqNlfgfq57QUe//XFP3a+r8OcmkvzJxIuHfbyLh95Np91PnJBM+wLYHP5Ydbb0/lqkf10R24XnY7ysVNkpK0vZLe8ud861ro/VnWFqaeW2cXKqMQE3wZ1dd48NJ6wh1pfbn6t/5IJ8bChgjSQFDUpxzrN/SzuvrtrJ8QzNvr9/GWxuaWbt5aOMh6qrKmdlQzayGGmZMrGLWpBpmNlQzY2I1U+ojlOSrqbelGd55A1av8D9S2/2PtXTgshLzPxibG2Frk9+mLlq3eRM0b8nP+5LiVloatERM6+12a2v236+mRt/y0ZF55ti4dP0f/Yy13NAsEpHRYGbMaKhmRkM1H9x7Zk95W0c3KzY28/aGZt5av423g/DR2k8XS3N7F83tW3ltzfZjI8pLS5gxsYqZk2qYObGamQ3VQRjxr1tRNoJjGGrrYO8D/W0kdHf5lpMtjbAlFEC2NvkZOF1dkOjy2+7Qrb/9lFTICXehlJX17VbpOR6EoeGGuJ7/kZvfmmX4H3vof+6p12lrhZatvrm/ZZu/v6MDdXdEaRlUVfsZRpEqf7+yKuhyGmSsTXeG8TipLqHhmNDguzAmT/PbSWm3+obBu5LaW/33aXMQOFL3w/vtrf7c1PuuqvY/xKn7kWA/db86OFYZ8S0/Ldt8l0ZrsG1p7rvf2jz4Z1AZ6Z22XlMXuh8qi1T7gJ/6O9HVAZ2dftvVFZSn9jt7j3V2+v3yyuH9OeSAAoZIjlVXlrH3nAb2ntPQU+acY+O2eJ/A8XbQ2tGV6P8foa5Eknc2tfLOptbtjhkwuT7CrJ7Q4Vs+Ui0gg3a95FtZuf8RmTxtx58r9UNYUlK8a3x0d4UCRxA6moNta3Pv2IOSUh+iSkp671swVqKktHfcRLgsEgnCQ+rHs6rvD2lZ+cgMiuwzFiU1NiWRudw53xU00JTsbFXV+NtAy/93dfaOJxkJzvnQmAod7a1QEQnCQ924WJBPAUNkFJgZ0yZUMW1CFYe+a3pPedI5mpo7WLu5lbVb2ljb1MaazW2s3dzGui1tbG3rf/0Nh59y27gtzosrtl8qPdz14oNHNdMmVDG1roop9REqy8fQDA4z3xpRzMrK/QDXiZPzXZPcMQsGGBbgdy0XQWYgZsHCejV+4PU4VOR/I0WKW4kZU+ojTKmPsN/c7X9YWuNdrA0Cx9otfrtmcytrN7excWs7Ga711mOgrheA+qpyptT7sDG1PsKUughT66v8/foIU+qriIylECIio0oBQ6SA1UTK2X3mBHafOWG7Y12JJBu2tLNmc2tPq8faJn9/3ZY2OrsH7v/d1t7FtvYu3lrf/7S/uqryIHj4wJEKH1Prq3rKIxX6Z0REtqd/GUSKVHlpSc+y6OmSzrGpOd7T+rGmybd6NDb7LpXG5njGS92n860gXQNeQK42Us7U+u1DyJS6KqbUVTK5LkJ1ZVn/a4CIyJikgCEyBpWYBd0dVeyfoeslkXRsae2gsTnOxq3tPcFj47Y4G7f5/U3b4nRnEUJa4l20xAcOIZVlJUyqizC5LsKkWh86JgfbSbWVwbFKqisURETGCgUMkXGotMT8j3xdhD1nTcx4TtI5trZ2+sCxLc7GUBjZuC1OY1CeTQjp6E72tKYMpLK8lMl1lUyorqC+yt/qqsuD++Vp+xXUV5eP7FRdERk2BQwRyajEjIbaShpqK3nXrMznpEKIDx3tQfDw4WPjtjhNLb6VpKMruxUTO7oSrGlq67nibTYqy0v7hI+6SDl1VRXB1t9qU2XBfl2knMryUrWWiIwgBQwRGbZwCNkjw0BU8GuAtHV2s6m5g6aWOE3NHWxqjrOppYOmYLupOU5Tc5yOQQamZtLRlWBjV4KN2+JDelx5aUlP+JhYU8Gk2oh/LzWVTAreU+p+fXUFpSUKIyJDoYAhIiPKzKipLKemspydp9T2e55zjraObjY1x9na3kVzWyfb2jv9bJe2TprbuzLuZzNYNZOuRJKmlg6aWjpYOci13koMJtb4wNEQCh+1kTIiFWVUV5QRqSjt2VaFyyrLKC8tUWuJjDsKGCJSEMyMmkg5NUNYgTTVOtLc5sNGatZLc7yL5vbOYOtvLamyYH+gFVTTJR09YYT1Q39vJWZUV5b2hJHqyjL/XivLqKksozZS3lNWGz4WbGsj5VRVluXvujQiw6CAISJFK9w6MqOhOuvHOefo6E7S0t7F1rZOtrR1sLnF35paQ/dbOtjS2sG29h24pDt+rEpLvJuW+PCvWmr4ZehrgzEktUEYq4uUUxt09fhbWTDmpLesJlJOeWmRLqEuRUsBQ0TGHTMjUl5KpLyUKfWRQc/vSiTZ0tobOjYH99s6uol3Jfy2s5v2rgTtHd20dyZo7+wObokhtZb0xwGtHd20dnSznqFfLbSirMS3klQGrSXBrbqynJqIb1VJHa+p7G1l6WlxqfTdQRqLItlSwBARGUR5aUnPuiLD0ZVIEg9CR1tHN22d3bTGu2iNd9PS4betHV2+rKM7tPXH2+L+MTuisztJZ3cnW1r7v75NNiLlpT1hpCeUVPigktqPlJcSqSilMghxkfKytP3wcYWWsUoBQ0RkhJWXllBe5WetDFci6Wjt6KIlNZ4kFVDivWNM+tyCsSgtwXlJN7zBsOniXQniXQk/HiVHyktLfNioKCVS5oNHar+yrDeYVIZukdC2qqKUqsre8S1VFWpxKQR5DxhmVgJcCHwBmAdsBH4PXOac2/4a1ds//iTgWOA9wD7497SLc255Fo/dH3gueMynnHO3D+9diIiMrNIS61lgbKhSY05a4120Bd0sraGWkVSLSVtHqiXFn9PT4tLR2/IyEroSSboSSVriOzbWJZNUi0tVT/go9a0tFaVUlPsAU1FWQkVqW+63lWWllJeV9NzvOVZa0vu48t5jmiW0vbwHDOAa4ALgTuAqYO9g/0AzO9I5N1jnZRQ4BHgBeBPYM5sXDYLNTUAc6H/unIhIkQuPOZlcN/znSTrXJ3S0d3b3BJO2noDSTUdXgnhXN/HORHA/uPXs+7ErHUFZbtpWMku9NuSuxSWdQU8A6Rs8Sqks960zFWVprTBlJX1aZCrTjwfP0dOyU15GZXlpUbXI5DVgmNm+wPnAHc65E0LlbwPXAacAtw7yNKcDa5xz3Wb2U7IMGMHr7gv8CPjOUOsuIjLelIRm7eSKc47O7mRv4Ai2HWn78QHK2sKtLZ2999s7s1tBdoffA345/I7uJM3kvhUmrKKsJBjDUtZnPIsPJ2U991PnfPKQeTn98xqKfLdgnIoPf9emld8E/BdwGoMEDOfcyqG+qJntBFwBXA4MssSOiIiMFDPr+V97riWdI96Z6AkeqSDSHrS0dCWSdHQlggGwfbcDl/c9JxezhLLl65LMeur0xxbMHeEa9S/fAeMgIAk8Ey50zsXNbElwfCTEgLfwwea0EXoNERHJI7/AmR97MZISSUdnd6IncKRCSEd3ks6gpSVV3tHdt4WmI1Xec17mFpt4Z6qrZ2giIxDcspXvgDELaHTOZeocWw28z8wqnHM7Nq8qxMxOBj4KvD/oVsnVU4uIyDhUWmJUVfiBpCMpNVg33tndEzhSY116Q0h3n0BSUZa/BdbyHTCq6X/kTTx0Tk4ChplNxLda3OSce3KIjz0HOOeLX/xiLqoiIiIyJOHButTkuzaDy/fasW1AZT/HIqFzcuUn+Pf89aE+0Dl3o3NuQQ7rIiIiMmblO2CsAaaYWaaQMRvffZKr1ov3AJ8DfgpMNrPdzWx3YFpwyoygrL/AIyIiIlnKd8B4NqjDweFCM4sABwCLc/haO+NnrHwXeD10+2Fw/Ppgf78cvqaIiMi4lO8xGLcBlwAXAY+Gys/Gj71YlCows5nABGClc2443SbPAJ/KUP4h4Ev4Rb6ewi/WJSIiIjsgrwHDObfUzG4AzjOzO4B76F3J82H6roFxJXAGcDjwUKrQzBYCC4Pd1BiJ88xsS/AaVwTbNcB2S4GbWWoVz6e0VLiIiEhu5LsFA3zrxXLgHPz00UZ8d8VlWSwTDnAE8O20si+H7l+x41UUERGRoTCXoyvsjRfRaNQBxGKxfFdFRERkNA1p4ah8D/IUERGRMUgBQ0RERHJOAUNERERyTgFDREREcq4QZpEUpWg0mu8qiIiIjCYXi8WyHuipFgwRERHJOU1TLRBmtlgXU9uePpfM9Llkps8lM30umelzySxXn4taMERERCTnFDBEREQk5xQwCseN+a5AgdLnkpk+l8z0uWSmzyUzfS6Z5eRz0RgMERERyTm1YIiIiEjOKWCIiIhIzilg5ImZlZjZxWa2zMziZvaOmV1lZjX5rls+mZnr59aS77qNBjP7hpn9wczeCt738kHO39PM7jKzzWbWamaPmtkRo1TdUTOUz8XMLh/ge/SVUaz2iDKzd5nZd83sKTPbaGbNZrbEzL6Z6d+RcfRdyfpzGS/fFej5819kZq+a2VYzawt+f642s5n9nL9D3xet5Jk/1wAXAHcCVwF7B/sHmtmRzrlkPiuXZ4+y/SCjrnxUJA9+ADQBzwMTBzrRzHYDngC6gR8BW4Gzgb+a2bHOuftHtqqjKuvPJeRioDGt7Lkc1infPgd8CfgfYBH+78jhwBXASWZ2qHOuHcbddyXrzyVkrH9XAOYAM/G/Oavw34X9gHOAU8zsAOfcBsjh98U5p9so34B9gSTwx7Ty8wEHfDrfdczjZ+OAW/Jdjzy+/11D918Clg9w7u+BBHBAqKwWWAH8k2AQ91i4DfFzuTz4Hs3Ld71H+DNZAEzIUH5F8P7PG6fflaF8LuPiuzLI5/Wp4DP4z1x/X9RFkh+nAgZcm1Z+E9AGnDbaFSo0ZlZhZrX5rsdoc869lc15QVPv8cBDzrkloce3AL8A3gUcNBJ1zIdsP5d0ZlZvZmOypdY5t9g5tzXDoduC7XwYl9+VrD6XdGP5uzKIFcG2AXL7fVHAyI+D8C0Yz4QLnXNxYAlj6C/7MJ2ID1rNZrbBzK43swn5rlSB2R+oBJ7McOypYDvev0cv4pt242b2hJkdm+8KjZI5wXZ9sNV3xUv/XMLGzXfFzCJmNsXM5pjZUcDPg0P3BNucfV/GY1orBLOARudcR4Zjq4H3mVmFc65zlOtVCJ4B/gC8AdQDxwHnAYeZ2fuCFC3+OwT++5IuVTZ7lOpSaLbgx/A8AWwG9gQuAu42s885527JW81GmJmVApfh+85vDYrH/Xeln88Fxud35fPA9aH95cBpzrlHg/2cfV8UMPKjGsgULgDioXPGXcBwzh2SVvQrM3sR+D5wYbAV//2AzN+jeNo544pz7tr0MjP7b/zYjWvM7PYxHFSvBQ4FLnHO/TMo03cl8+cyXr8rdwHL8GMqDsR3h0wNHc/Z90VdJPnRhm+CyiQSOke8H+PD1kfzXZECkvp+ZPoe6TuUxjm3CfgZfgbK+/Jbm5FhZt/Dt/bd6Jy7MnRoXH9XBvhcMhrr3xXn3Crn3P3Oubucc98GzgB+aGbfCE7J2fdFASM/1gBTzCzTH+BsfPfJuGu96I9zrovgM8t3XQrImmCbqakyVZapiXM8Wx5sx9z3yMwuBy4FbgbOTTs8br8rg3wuA1kebMfcdyWdc+5F4B9ANCjK2fdFASM/nsV/9geHC80sAhwALM5DnQpW8LnMIfPgrPFqKb4J870Zjh0abPU96muPYDumvkdm9m3g28CvgM+7YE5hyLj8rmTxuQxkTH5XBlAFTAru5+z7ooCRH7fh5x1flFZ+Nr5va9FoV6gQmNnkfg59Dz9e6M+jWJ2CFvQL/xn4kJm9O1UeTO39PPA6abOUxgMzK8s048jMdgK+CGzCD+gbE8zsMvxaDr8GznIZFugbj9+VbD6XcfhdmdFP+eH4qbtPQW6/L7qaap6Y2fX4fsE78dODUit5Pg4ckekvxFhnZtfgE/KDwEr8IKTj8KvwPQ0c7rZfgW9MMbPPAnOD3fOBCvxKrwArnHO/Dp27O/4vehd+Zdht+JC6H/BR59xfR6veIy3bz8XMJgJv4weyvUrvzIDP479Ppzrn/jBqFR9BZvYl4Kf4vyvfwk99D1vvnLsvOHc8fVey+lzG03cFwMzuxK/k+QB+7YsI8C/AKfgxFR9KrXuRs+9LvlcRG683oBT4Mn5VtA58n9bVQG2+65bHz+TjwF+DzyIOtOLXBbkEiOS7fqP0GTyEb93KdHsow/l7A3/CT7drAx4Djsz3+8jX54IfmPYLfDPv5uAfyLXA7cDB+X4fOf5MbhngM9nu+zKOvitZfS7j6bsSvN+TgLuBd4J/X9vxs0muB3bOcP4Of1/UgiEiIiI5pzEYIiIiknMKGCIiIpJzChgiIiKScwoYIiIiknMKGCIiIpJzChgiIiKScwoYIiIiknO6XLuIjFvRaPRy/PUqDo/FYg/ltzYiY4sChogMWzQazWalPv14i4xDChgikgvfGeDY8tGqhIgUDgUMEdlhsVjs8nzXQUQKiwKGiIya8JgH/NVRLwL2ApqBvwCXxGKxdRketwf+ypgfBqYCjcD9wPdisdjrGc4vxV/98bP4S1FX4C+i9xDww34ecyLwn8H5ceBvwJdjsdjqHXjLIuOWZpGISD5cDPwMeAG4Fn9V4bOAJ6LR6NTwidFo9CBgMXAa8CzwE+Ap4DPA4mg0uiDt/ArgXuD/AjsBtwLXAc8BnwTen6E+UeA3+O6cG4CXgJOB+6PRaOWOvlmR8UgtGCKyw4KWiUzisVjsvzKUHwscEovF/hF6jmvwLRr/Bfx7UGbAr4B64LRYLLYodP7JwO+A30Sj0X1isVgyOHQ5cCTwZ+BTsVisI/SYyuC50h0DHBSLxZaGzr0VOBX4OPD7/t67iGSmFgwRyYVv93P7ej/n/zocLgKXA1uBT4daDd6H70J5MhwuAGKx2G3AY8CewAegp2skCrQD54bDRfCYjlgstjFDfa4Lh4vATcH24H7eg4gMQC0YIrLDYrGYDfEhD2d4jq3RaHQJcBiwN7AEeE9w+IF+nucBfLg4EHgEH0YmAE/HYrE1Q6jP4gxl7wTbhiE8j4gE1IIhIvmwvp/y1ADPCWnbtf2cnyqfmLYd6sDMLRnKuoNt6RCfS0RQwBCR/JjeT/mMYLs1bTsjw7kAM9PO2xJsZw+7ZiKSEwoYIpIPh6UXRKPRCcAB+CmirwbFqXEaH+rneVLlzwfbZfiQsX80Gp2149UUkeFSwBCRfPhsNBo9MK3scnyXyG9DgzMfx09h/UCwTkWPYH8h8Bp+sCexWCwBxIAq4GfpU0yj0WhF+jRYERkZGuQpIjtsgGmqAHfFYrElaWX/CzwejUZ/jx9H8YHgtpzQzJNYLOai0egZwH3AbdFo9E/4Voo9gU/gF+g6PTRFFfyy5YcAHwNei0ajfwnO2wk4CvgqcMsw3qaIDIEChojkwrcHOLYcPyMk7BrgTvy6FycDLfgf/UtisdiG8ImxWOzpYLGtS/HrW3wMv5Lnb/Eref4z7fzOaDR6DHAucDpwBmDAmuA1HxvqmxORoTPnsrkYoojIjtPl0UXGD43BEBERkZxTwBAREZGcU8AQERGRnNMYDBEREck5tWCIiIhIzilgiIiISM4pYIiIiEjOKWCIiIhIzilgiIiISM4pYIiIiEjO/X9Yvg/OEaYwPgAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 576x432 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "pwk.plot_history(history,  plot={'loss':['loss','val_loss']}, save_as='01-history')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 6 - Denoising progress"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 11,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:26:02.556123Z",
-     "iopub.status.busy": "2021-03-14T21:26:02.555645Z",
-     "iopub.status.idle": "2021-03-14T21:26:09.032523Z",
-     "shell.execute_reply": "2021-03-14T21:26:09.033021Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Real images (clean_test) :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE2/figs/AE2-02-original-real</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAByCAYAAAC89bCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAOFUlEQVR4nO3de2xURRvH8QNCi6VYhAreITbgBYlSvBBApZgAUUK4KEhVgnIRGgwRoxELAm25qFTSUBtspIYQlcZEIoGiRCNFDCihFeMloiKo4aISQahIgfT9w/d93nnGnnXp7tndnvl+/vpN5uzZSQ5bJjNzZto0NTV5AAAArmib7AYAAAAkEp0fAADgFDo/AADAKXR+AACAU+j8AAAAp7SL9sKCggJeC0sBFRUVbWK9B88yNcTjWXoezzNV8NsMD55luDT3PBn5AQAATol65Od/KioqgmgH/kVBQUHc78mzTI4gnqXn8TyThd9mePAswyXS82TkBwAAOIXODwAAcAqdHwAA4BQ6PwAAwCl0fgAAgFPo/AAAAKfQ+QEAAE6h8wMAAJxC5wcAADiFzg8AAHAKnR8AAOAUOj8AAMApdH4AAIBT6PwAAACntEt2AxKptrZWlUeNGiV58+bNqm7gwIEJaRMiO336tOSXXnpJ8tatW9V1W7ZskdyvXz9VV1hYKHncuHFxbiFSSU1NjeR7771X1U2bNk1yZWVlwtoEtFZ1dXWqXF1dLXnlypWq7pZbbpE8bNgwVffUU09JTk9Pj2cTW4yRHwAA4BQ6PwAAwCl0fgAAgFOcWvNTVFSkyn/88YfkMWPGqLpPP/1Uco8ePYJtmOPMdRovvPCCqjPnnE+ePCm5qalJXdemTRvJn332marLz8+XvGPHDlWXm5t7/g1Gyti+fbsqjx8/XrL5b8LzPO/AgQMJaVNYbdy4UZU3bNgg+dVXX43qHnfeeacql5SUSB48eHAMrUO8mGt5Fi9erOqOHDkiuWfPnqruiy++kPzRRx+pui+//FLy6tWrVV1GRkaL2xoLRn4AAIBT6PwAAACnhH7aq7y8XPLHH3/se92vv/6qyidOnAisTS46dOiQZHvYc8mSJZL/+uuvuH/3mTNnJJ87dy7u90fy2FsenDp1SvL06dNV3YIFCxLRpFbN/rs3f/58yfbvtqGhQbI9xehn27Ztqjx27FjJq1atUnXmVgWp8np0WDQ2Nqry+++/L9n8e2xuNeJ5nvfKK69InjRpkqr77rvvJNv/186YMUPy8OHDVd3kyZOjbHV8MfIDAACcQucHAAA4hc4PAABwSujX/Kxfv16yPc9pysnJUeXu3bsH1iYXlJWVqbJ5NMVPP/3k+7kOHTqo8ogRI5q9zpyX9jzPu/XWWyWbaxEQPjNnzpS8du1a3+uKi4tV+ZJLLgmsTWHx9ttvq7J9hIGf7OxsyXl5eb7X/fnnn6q8adMmyffff7+qmzp1qmRzrQli9/LLL6vynDlzmr3OPALK8/65js504403Sr7ooot8r7P/bzC3mcnKyvL9XLwx8gMAAJxC5wcAADgl9NNe0bJ3q2SIPDZt2+p+daSprptuukny9ddfr+reeOONZj+zf/9+VbZ3fEZ4/PLLL6psvt5+zTXXqDrz1Wx+w9E5ePCg5FmzZkX9uZEjR0o2d3ju1q2b72feeecdVTanvWzmPZn2it2ePXskL126NKrP1NbWqrK5y7f5/M+HvQP/3r17JZvLF4LGyA8AAHAKnR8AAOAUOj8AAMAprPn5L/M0aMTugQceUOU+ffr4Xtu3b1/JkdZpmOuG7NPf7Vdo/dpy7bXX+l6H1PT999+r8jfffCPZPk3cfl0a/2758uWSI20T8cQTT6hyaWmp5KNHj0q21/fV1dVJHj16tKqLdCxGp06dfOtw/hYuXCjZPs7JVFVVJXnnzp2qzvxb+sMPP6i61rbGjpEfAADgFDo/AADAKaGc9jKHxXfs2OF7nTnkesUVVwTaJtfYQ6BDhw5t0X3MU9hLSkokV1ZWquvMZzlkyBBVZ74my1B662CeEG2fHm3uHnvHHXckrE1hVV9fLznSNFRNTY0qm9Nbn3zyieSff/7Z9x72/SN9X6TdhPHv7Ckr8/llZmaqOvNU9/79+0t++OGH1XU33HCD5AsvvDAu7UwWRn4AAIBT6PwAAACn0PkBAABOCeWan44dO0ru0qWLZHMbd8/TR1rcc889gbcL/84+tuLZZ5+VvG7duqjuYb9qW1FRIdl+XTctLe08W4ggRHru+/btU3XmGq5evXoF2i4XTJgwQfK2bdt8rzOPIfA8vbYy0tqd3r17S7aPofn222+jbifOj719S2Njo2R7S4jbb789qnvOnj075nalp6ercvv27WO+Z0sw8gMAAJxC5wcAADgllNNeu3fvlmxPdSH5zNfXPU9PY6xcuVLVmUPr0bJ3BJ47d67kAQMGqLpBgwZJbtculD+HlGVOZ40YMULVma+6jxkzRtWZ0zSInblrb1lZmaqzp7r8mCd8z58/X9WZU5OLFi1Sdfb3ITbHjx+XfObMGVV36aWXSjanlRNt4MCBqnzzzTcnpR2M/AAAAKfQ+QEAAE4J5Tj/xo0bk90ERGBOS3qe582aNSvme5rTJu+++67vdXl5ear89NNPS162bFnM7UD0HnroIcn2VKX59uXrr7+u6jp06BBswxzTuXNnyV9//bWqe/PNNyVffvnlqu6uu+6K6v61tbWSV6xYoeoivSXG7t3nz1xCcPjwYVX33HPPSTZ3ak60++67L2nfbWLkBwAAOIXODwAAcAqdHwAA4JRQrvkx2TuKmqKds0Z8ma+ee17kZ2TuBmqu5bFPbjetWbNGlSdPnux77Ycffuhbh9jZr9sWFhZKNk+dNndl9zzW7aWKiRMnxnyPuro6yZFOdc/OzlZ19rYU+Cf75PaioiLfa3NycgJty9mzZyUvXrw4ae2IFiM/AADAKXR+AACAU0I/7RXpVUp7mBWJYe/waU49jRs3TtW99tprkjMzM6O6f35+vipv3bpVsj0lZg7J21Mt5q61aJmvvvpKlUtLSyWbv03zNVyES3V1dVTXPfbYY6rcrVu3IJoTKseOHVPlhoYGydddd52qC3pndHN3/srKSlV38cUXS7a3TEgWRn4AAIBT6PwAAACn0PkBAABOCeWanwcffFDy6tWrfa/LyMhIRHNgsU99njlzpmRzq33Pa9kzat++vSqPGjVKsr3mxzxh3nxVEy13+vRpyeXl5b7XTZ06VfLs2bMDbRMSZ/To0apcX1/ve625/mPKlClBNSm0du3a5Vv3zDPPqLK5bUgQtmzZ4ltnHmnRt2/fQNsRLUZ+AACAU+j8AAAAp4Ry2qtr165RXdelS5eAW4LmpKWlqXKqvPqI+CgrK5NcVVWl6sxnPW/ePMn2vwmkPnOauKSkRPKGDRt8P3PBBReo8vTp0yX36NEjjq1zQ6Qd6ocOHRrod5tbiHienva6+uqrVd2qVasCbUtLMPIDAACcQucHAAA4hc4PAABwSijX/JivR2dlZUk+fvx4MpqDBDt06JAqv/jii77Xmv8+OO4kPjZv3izZPqJgwYIFkq+66qqEtQnxZx4NU1xcLDnSkUL9+/dXZXvbC6Q2c12PvaVBU1OT5LFjx6q6tm1Tb5wl9VoEAAAQIDo/AADAKaGc9srJyZGcm5sr2X4tcN26dZLZYTY87F29d+7c6XutefLx4MGDA2tTmC1atEiVzVdgBw0apOrMXZ3Ruuzdu1eV7WkPP71795a8fv36eDbJSQcPHpR84MCBQL9r9+7dqjx+/HjJp06dUnUTJ06UvGLFikDbFQ+M/AAAAKfQ+QEAAE6h8wMAAJwSyjU/pttuu02yvebnyJEjiW6OsxoaGiT/+OOPqu7KK6+U3KlTp6ju99tvv6myuaX+kiVLfD/XsWNHVZ42bVpU3wfNXLthbyXQq1cvyWvXrk1YmxCsTZs2qfLhw4clR3q93Xyd/bLLLot/wxxjHhFjHwmyb9++mO9fU1MjubCwUNWZ28XYayTttX+pjpEfAADgFDo/AADAKaGf9ho2bJhk+/U7c+rkgw8+UHV33313sA1zzJNPPim5srJS1Q0ZMkRytLv+fv7556q8Z8+eqD5XWlqqyo8++mhUn3Od/crrI488ItnexdncBbZnz56BtgvBKisrk7xw4UJVZ+7oayovL1fl/Pz8uLcLf5s0aZIqm0s7zOkrz/O8KVOmSD579qyqKygokGxOaR87dkxdN3z4cMnmVjGe53mdO3eOrtEpgpEfAADgFDo/AADAKXR+AACAU0K/5icvL0/y448/ruqWL18uedmyZaqONT/xVV9f71tnHocQLXu9gfmqbVpamqqbO3eu5Gi35Id29OhRVT5x4oTk7du3qzrW+YRHdXW15JMnT6o68zdnrtubMGFC4O3C38zjJjzP89577z3JM2bMUHXPP/+8ZPvv5/79+5u9/5w5c1R56dKlku2/s60NIz8AAMApdH4AAIBTQj/tZZo3b54qm0P59mt75gnG5qnEaBnzFcldu3bF/f7ma7i5ubmqbuTIkXH/Pvyf/ao7Wi97evP333/3vbZ79+6S33rrLcldu3aNf8PQrIyMDFVes2aN5D59+qi64uJiyY2NjaouOztbsvmKfL9+/dR17dqFp8vAyA8AAHAKnR8AAOAUOj8AAMAp4ZnAi0JWVpYqV1VVNZsRf0VFRc1mtA7mMTGe53nnzp1LUksQpMzMzIhl04ABAySzzic1mK+f22tc7bLrGPkBAABOofMDAACc4tS0FwDAX3p6uioHsS0FkAoY+QEAAE6h8wMAAJxC5wcAADiFzg8AAHAKnR8AAOCU837bq6CgIIh2IAl4luHC8wwPnmV48CxTEyM/AADAKW2ampqS3QYAAICEYeQHAAA4hc4PAABwCp0fAADgFDo/AADAKXR+AACAU+j8AAAAp9D5AQAATqHzAwAAnELnBwAAOOU/oHKSE+WzKJgAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 720x169.2 with 5 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Noisy images (noisy_test) :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE2/figs/AE2-03-original-noisy</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAByCAYAAAC89bCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAr8UlEQVR4nO2de/xVY/bHF6JQyCiVyD1pyCghYnKrkXu55q6pkZRSMuRSUi4htyQhuV9zGSUyFOOWa2nkEqVEhFyKQvP7w+ynz/p8v8/TOd/OmZ+X/Xn/09rftc/e++z97H12z1rrs1b5z3/+Y0IIIYQQeWHV/+8DEEIIIYT4X6KXHyGEEELkCr38CCGEECJX6OVHCCGEELlCLz9CCCGEyBXVCl2xW7duKgv7DTB8+PBVVnYbupa/DUpxLc10PX8r6N78/aBr+fuisuupmR8hhBBC5IqCZ34y1l13XTMzGzJkiPv7gAEDgr1kyRLnGzx4cEHb7tWrl1seNmxYsFmP6KKLLgr2eeed53zPP/98sHffffdgL1261K23xhprBLtWrVrOd9NNNwV72bJlznfMMcdUevxmZqussvwFk4/5jDPOCHbLli2j2/zLX/7ifKeddpqNGzcuus+qMnz48KI/s/nmmwebx8Bee+0V7DXXXNP5atasGexTTz3V+c4666xgb7bZZtF9//DDD8HeYostnG/evHnRzy1atCjY48ePd76OHTsG+5tvvnE+/H743czM9ttvv+jnsnskRrdu3ZL+qpJdz9dff939vXnz5tHP4BjFsWtm1rp162D36dPH+Tp16hTs7777zvl4O7H9VZVRo0YFu3Pnzs730ksvBbtBgwbOh+dll112cT4cn/fff7/z4b1ZvXp15+vbt68bX6XihhtuMLOK52vSpEnBXm+99ZyvWbNmBW2bt5m6Xni/7L///tHtjBkzJtjHH398Qcdh9uv5y5g+fbrzFfrMe+KJJ9xyu3btgj1z5kznw+cGn7+FCxeW5d788ccfzczs7LPPdn/feuuto5955plngt2mTZuC94W/iyeccILz4bXs2rVrdBs4Hr799lvnw9/JU045xfluvvnmgo8ztr+HHnrI+Q499NDo5+bPnx/sDTfcsNJ1Utez6JefI4880szM3n33Xff3Cy64INh//OMfnS/18tOqVatgv/DCC86HLz//+Mc/nI9feBB84cF977HHHm69W265Jdj8AD/ooIOC/f777zvfggULgt2jRw/nSz3c8fvgi5CZ/zHhbXzxxRdlefnJKGYQf/jhh8GeNWuW89WpUyfYG2+8sfPNmTMn2LNnz3Y+fOH597//7XzbbrttsPGF6oorrnDr4cvklClTnA/PJ77smJl179492HweLrnkkmC/8cYbFuOVV15xy3it+LrxfVMOdtxxR7eMPyp4Phk+b19++WWw27Zt63x4v/B/dvAl9bPPPnO+1H8OCl0PX3j44bbzzjsHm19wNtlkk+j+mjRpEux33nnH+XDc4Xcz+/UHc/XVV49ut6pk3xkf8GZmf/7znyusk/Hss88G++2333Y+/H577713dL9/+tOf3PKWW24ZbH7Jx2s0bdq06DaRevXquWV8DhbzjFt11eVBC/7PKf7nl/eHLFy40C3zD32pyF5yUi8766yzTpWOhV9433rrrei6+OLHzyH04bXkSQHkp59+ivqefvppt7zPPvtUun2zqv+HCK9t6j8JMRT2EkIIIUSu0MuPEEIIIXKFXn6EEEIIkSuKzvnZaKONzKxiwinGKP/2t785388//xzsrbbayvkef/zxYBeTP4Px5g022MD5vvjii2Cfc845wR49erRbL5Xw++ijjwab47GYJ1JVjj32WLeM+UAM5tKUA87xmTx5crAxv8nM7LDDDgv2pptuGt0m5viY+WuZiu1zEmKMo48+2i1j0iPn4GDeBOcAVDXvpG7dusH+5z//6Xx4LTl236hRI2vfvn10n+UgleeD3HXXXW75yiuvDDbnkGBe32WXXeZ8mI933HHHOR8nu8fAZ8hzzz3nfJiI/cADDzhflihsZnbiiSc6X//+/YM9aNAg58Pry2MLc4D4XE6YMKFC4n8p4UROzJcYO3as82FyKCfJFppXwblteI/zfYVwnmeMVA4YJwSnwDwfzjnDnE8G98efW3fddQsen8UQ+16YdIy/g0yqoIJzfDAX6uGHH3Y+zGPl/Fd85n/11VfRY3nqqaeCjUnuZj65HHN8mIEDB7rl77//PthHHXWU8zVs2DDYjz32WHSb11xzjVvO3iXuvffe6Gc08yOEEEKIXKGXHyGEEELkiqLDXplmAWsIIFiOaWa22mqrBRvLZ838NPKFF17ofKmwA05Fb7PNNs6HJdgfffRRsHkavFA4dIF6CVzu3aFDh2BjaIRp0aKFW8bSw8aNGzvfyJEjCz7WYsjOL08nHnDAAcHm8BVy7bXXuuWJEycG+5FHHql0X2YVZQs++eSTYKf0JxYvXhzstdZay/lw2pbB0EFq+p/H5o033hhd9/PPPw82lv+b+fBDv379nG/27Nll0/nJwlasQ/Xxxx8Hm8u9sbSZQx5YHs3aUxgS+/rrr50PtXY4ZIUcfvjhwWZtHQxfsQ4NTnHjdWA4lIxl1fx9sISdjxlDPyzFUG5YLwvvRw41odwIhvhWBIYpUSfGzIeMOZxUaCgNwyGcLsGSGAiWhk+dOtX5atSoEWzWXkJ47Jx00knBRp03s1+/T7nuzcpIPV8Q1g375Zdfgo2/rWY+1HXwwQc7H14vfl6iD+8blpTBEnJMKTHzsjL8m/XXv/412CwXwWM8BmutXXrppcFmLbNCQv2a+RFCCCFErtDLjxBCCCFyhV5+hBBCCJEris75yWK0nO+BeTdcAn311VcHm/NnMCbLfVgQzD8wqyhBj+D+0cYSeLOql5Bjj5s333zT+fC8cM4PxrcPOeQQ58Nj45yfLl26lCUWnZUYrr322tF1UjF5lsk//fTTg805Pxh/xpwihr8nyhFgng+PB5aqLxQsqWb5+d69ewebcwcwRo79zsx8f5oXX3zR+TjeXUqyXB/OwUm1dUi17cBxiDk+zFVXXeWWcV3OJ8O4Peb5cIkrlqhiLouZl8TAMcdw/hhew0aNGjkftgDBHDQzL9XPEhXF9LEqhuxYOa+G+xMimBOHvRZxe5Vtk/N8EByvWOZs5tv+4H3LuRmYN4LtMvhYbrvtNud77733gt2zZ0/nw2d3Kr8plZfEpeD8TC4V2TlM5bZwax387pyDxnk+CJazM5jnxtcB88fw+YXPQIbHDbbV4f6CCMuNYCk/57FNmDAh2Hydb7311mBjbq/Z8lJ77hWGaOZHCCGEELlCLz9CCCGEyBVFh70yZVQu750xY8YKP2OWVmnk8EFV1XexzA7LfjnMhd2YWXn0D3/4Q3TfuD/eJqrk7rvvvs6H5YVcasiKm/8LMpXUdu3aub+jWjLaZssVvs3MtttuO+fDzuopNVgOiWFZIqtuY3gCu8Hffvvtbj0MrbLiMobnuJsxqvPWrl3b+XAqv379+s6H4Swuf8YpbFYtxzL4csHfA0tjq1Xzt3xqLGMoiFVZzz///Eq3YeafBTwNj+Xt9913X7BZiRW3iWWy7EsdF8sh4FQ/hmyY1HPn008/rfC3coSks2PgzvQoI8CSBvjsueOOO5yPn60xeOzgvcTPs/322y/YeA7uvPNOtx7eO3jNzfy5Tsmn4P1tVljX7hXB92JVu4uviJdfftnMKkrAIKyyj+khfA9h9wEGO9pjWMjMS72kwvgIh7tTv7sYJucye+zCwIrVCP/u4jOf00FQ/gDv+0LRzI8QQgghcoVefoQQQgiRK/TyI4QQQohcUXTOT5avMWXKFPd3LDXmuDHGBouRXccyO449cisMpEGDBsGuWbNmsLn0HKXOuTN8ofFfltHGuPi8efOcL5XXg+ev0M7mK0vWEZjzehDOB0I4Dp8qYcfcBTzvZr7EtFevXs6H7SEwX2ennXaK7ovzHbAM8u9//7vz3X333dHtdOnSJdjYbsHMSxNw6Ske86uvvup89957rw0dOjS6z3Jw4IEHBpvHNXaFZikIpJiYOspecOdn7vJeCChHYObzdfj84vXE/CIzn2/CpbiYV/Taa68VfGwosV9KsuPDHB8Gc3zMfK4j32NYos/jr0+fPsFmmYQUmFOC9y2fW5QwqVWrlvPh84V9KIVwxBFHOF9V80ERLvcuF7FcH5TWYAmYW265JdipHB8GW5BwOxIcA1wajvc+5rU1a9bMrYd5gXxf4r3Hpfuc0xSDc7nwWvJv9Nlnnx1sbpmUfe7UU0+N7kszP0IIIYTIFXr5EUIIIUSuKDrs1blz50r/jqEuDhHgdCwqNpr5zras8Ny+ffvocWDYixVgY+EX7gCdUsNM8fbbbwc7VXKJ4TfmsMMOc8s4ndi6dWvnY1XZUsHTopXBCp8YfsSwkJnvBswqrzh9j+WLZr5cefvtt3c+DInhFPYDDzzg1uvYsWNlh29mviSXS5xRPXXu3LnOhx3PuQNzoWOnXGGRyshCWDxVPW7cuOhnsOM9dmU2812buTQW73c8v2Zm99xzT7BTYa5FixYFm8MTo0aNCjY/cyZOnBjsk08+2fnwvuIO4liCj2q0Zj7Uxcq/CxYsiB4Lh7ZLxVdffbXCdfA5ZObvxyVLljgfXj887wzLNmA5OHdWx9AaKum3adPGrYfPyC+//NL51llnnWBjuNjM7JJLLgk2jw9U0meVbw6FIvjsYdXocoOdAcy8ijN3mB8xYkSw+XfwsssuC3bfvn2dD68zh5owzMZyI506dQo2PoNr1Kjh1kOVaDxGBsN2Zl7KIussUBndu3d3y4Wmn2CJv1nFkFxlaOZHCCGEELlCLz9CCCGEyBV6+RFCCCFErig65yeLN3LHZCwj5RJTzGdJldNef/31bhlj2FyizKWPMbDUjXORsNXG6NGjnQ9l3Tl/hTvPIqkyS4yzprrNsozATz/9FF13ZciOtWnTpu7vmBvFeVKYX8WtBfD7zpkzx/kefPDBYHfo0MH5sIyaO0djGwvMK4jlnvFxmHmpdS7zxVg3d6lPxZsLHdMce06NnZUly/WZNWuW+zuet4YNGzof5jlhjg/DuQWYd8A5JNjOJiVtsfbaa0d9eM0w58bMy0ngdzPzz4xUTgKD+Rg4Vs3Mvvvuu2BzG46rr766LO0tsq7UfE0wLys1lqpXr+6WU2MZO9NzLiLeq5z/gey5555RHz4TeT3Mu+H8OMx15O+KeT48Ppo3bx49Fhwv5WpnEYNb9yBLly51y5g3x6XueD75vpw2bVqwi3nW4DaxhDzrSJ+RekbcdtttwX722WedD3+/ORcWZRL4+YyyGZzXg6Xv3OolGzupe1MzP0IIIYTIFXr5EUIIIUSuKDrslZWivfPOO+7vHOpCcBo8BZesYwiEp9uwfJKVQevVqxdsLJnlcl0EO96aFT4lWmh3XDMfJuKutxgmYvViLg8tFVnIA8tGzdId7QcMGBDslKIzhxix7JLLcHHams/n+uuvH+wsFGCW7srN4NjkEnUMaXCZPcKhkFSoC78Dl9N27969LGESs+Uqp6nrwuX8CIccMbyEYS6Gw1cpVdUYHG7BcmX+PrvuumuwX3zxRefDUNfqq6/ufKnwccuWLYM9duxY58Mp9SOPPDK6jVKSjaHU84Q7pBeaCnD55Ze7Zbw/WEICS9/5WHCcoyQGK9SjEjzLXPTo0SPY+Nw2878xHEbHkmt+XmI6A4d+cB+obm5WUSKiVGShvmI60R911FHBfuaZZ5wvNSbwOcXfHaUeMJxk5n9DhwwZEt0+dkzga3LCCScEu1WrVs7H9ynCoTsEj5mVwzHsxZ0BCpGH0cyPEEIIIXKFXn6EEEIIkSv08iOEEEKIXFF0zk8WW+OyvSZNmkQ/w2XxMTivAmPF1ar5Q8VSdMzbMEvn9iAYv+RtIJzDgPksHH/FEj/u5oux9caNGzsfdixnUjk4K0PWyZrbH7z55pvRzyxbtizYmCdh5s8Fn5dUV/Bvvvkm2NySALeDJZ/YeoLB1idmZmeddVawN954Y+fDXKTHH388uk0uz8cxxu0d8Jg5v6KcZLkxmC9gZvbyyy8Hm/MqUHKBJe8xp+Smm25yPuy4zfl+hY7XlCwE+vh6YksOBp81nOODx4nHz/vg5weX0SJXXHFF1LcyvPDCCytch/OPMOcnlb/FORbYlmbMmDHOx/k7CD4LCn3mch4K57Mg2CYj1d1+t912i+6Dy6M/++yzYHOOT6tWrWyHHXaI7qeqXHzxxWZWMWcFW6zw+cM2UPPnzy94X5w3i3CeD4K/f4sXLw52So4iVfbO4xe/K7dl+eSTT4K90UYbRbeZ8qVyMGNo5kcIIYQQuUIvP0IIIYTIFUWHvTbbbDMzM/voo4/c39dcc81gc5gLS5tZdfXoo48O9l133eV82IWWO74jGAIz82XkGHraY4893HqTJ0+ObhPp06ePW8bS26y8uLL9MaicyR2MES7BbNOmTYVQRinIwl1clo7dhvn7HHjggcFmZVUMRXFYCrv88hQ2Kn6myjgxpIjjzczsySefDDZO8TNcnonTzbvssovzYRkujlM+Tg7VoTRBqoyz1GTnB9Vhi+Gqq65yy1gqzgrrWA7Lz4LsGbEiCpWTqFu3rltGlV4OO6VUbTHUlZKoSB0XP2u6detmZ555ZnT9qpI9H1LPqA8//DDq43sAldKPO+4458PQBt7fZhXVhRF8zmNYlGVDWD0fQVVgTp3AUmZW8sau93fccUd0+yzRgNeWf1NeeOGFsshQ7L777mZmdt1117m/YygIQz9m/pnI6SAYNtpuu+2cD0PCGOIzM7vmmmuCzRIcKC2BYUS+FzDUheExM7O11lor2NwVAUOkHHLG9Bbu+I7pNRzuxmvLz5xCwrCa+RFCCCFErtDLjxBCCCFyhV5+hBBCCJEris754fh+BnZ/xfwLM19OPHXqVOfjmCWCHbf5c6ky2RYtWgR7nXXWCfZqq63m1sOO26kcAM7pSLVBSB1XbD0zH+vk0uGRI0dWyDUoJVzKjzkrnAeSAkvk33jjDedLnZeJEycGe5NNNnE+jG/jeeF2CJgfwOcPJfpZYh7j4lwGj3k+nDuA+WOpfDTOQUlJx68sJ510kplVvP+22mqrYPO4w++fKiG/8sor3TLmRqRyfLBbupmXVRg/fnywmzZt6tbDfCvOQ4k9g5ivv/7aLadadGBnei7vxXOGsgxmFfMxSkUs1wfHD+dhIZgvabY878TMbN1113W+H3/8MdjYGsLMXz8+JjxnWdsjs4q5LZ07dw72nXfe6XwoYcK5SFguzfkl2Pbm3nvvdT7Mj0w9g7fccku3nJK6WBmyfMfNN988ug6W9ZuZDR48ONhcGo6yG9OnT3e+bbfdNroPzKlNnZeU1AkeVwqWMMB8Lm7txMsxUJbDzEuYxEj9bmrmRwghhBC5Qi8/QgghhMgVRYe9MlAV1MyHDFgNF8ul11hjDedD5V+ehkS10fPOO8/5cNqOSz5x+h67kGO5nZmfBmTfIYccEuyHH37Y+Xjd2HFh52EzP83PpNSmO3bsWNawF6txVq9ePdjFqEvjd0dVYTP/3bFk3czs9NNPj24TyyIPPfTQ6HpYds/Ktzj+sFO0mQ+RLV26NLp9nmLF8l0ukUd4ynqPPfZIlmOvDLFwEEoLpJS3OVSJMg4c8mjYsGGwues6hg9S0+uoOJupjWfg+Emp1jIo08DPGgwZ1alTx/nw/uNjxmVWQ7/rrrsqlGGXEwx1zZs3z/leeeWVYON5YFIhfg4t4PdNlQ9fe+21weawK94f2D3czId7WL4Cnz033nij82H4kUvka9SoEWwe01heztd59uzZFaRLSsHJJ59sZmaNGjWqsL8MVvi/++67g83jH8OKHHbFcFPbtm2dj9MbEJQ0aN++fXQ9ZOzYsW4Zy+DPOOMM58P3hffff9/5METL1wQVujnVYWXRzI8QQgghcoVefoQQQgiRK4oOe2XVAFhRZWa2cOHC6Gd4+hkZOHBg1IcVNSmlU572xKlhDHtlTVkzsEKBFZRZpRRp3rx51Ifw1B82X+Npd4SnhrEaoxy0atWqSp/jKWIMf7DCM44BbjaI1Tw43WtmNmjQoGCvuuryd3WuGsHp3qyRYGXwWClUZZhBxWqeJk5d28mTJ5dFRdZsuTI4N2xMheWwWSBWhZlVrPxB8H5PhQpSIRac6udQCYIVm2ZepZsr9FKVbUjv3r2jx8UhI6xWYmXccePGle16rggO02KoPgU2zWS4SgebF3N6QazKj0M4eB2wKtPMqwJz89xC700OJ2HlMZPaJm+nVGTj4+OPP3Z/x/QGHuNYhYnPQDOvbs1hL1T25t+RVJPSgw46KNhYfcUq/q1btw42Vkub+ZQCTm3A0BY/Z1LXhKtAY6SeMzE08yOEEEKIXKGXHyGEEELkCr38CCGEECJXFJ3zw2qrxcKx/f322y/YHPfkkm8Ey4WxW7qZz/PZddddg80xaoxZsiopltlzLB3zDDgv4vjjjw82K8wi2GHXzOdlpMpUf0twiTOWlHOpO8bhWTUac6g4VwjVW1Nx3Pnz5wf7888/j66XUi/luPHcuXODjbkxZukcNCyv5e/TpUsXp2pbSjIVdM75QThOP2LEiOi6H3zwQbA5Tv/iiy8GO5VTxMq1eI7xc9jZ2cyXJKM68YpI5flgzh3mmpj5fAhWk+/Tp0+wMTci21+qhHhlSeUyFFNij2XCXM6Ois/ffvttdH+Fgh3kzbxSOj/Tsdwb72EzXx6NncbNfC4SHyN2iudcTsylGTp0qPNhuX4pye6xTz/91P0dc3JS57l///5R35IlS9wy5ge1a9fO+XbaaacVH6yZ7bnnnsHmHC3s/s45RJhTy2rxKGPA5x3vLwZ/R/j7zJgxI9icL8Z5UpWhmR8hhBBC5Aq9/AghhBAiV5Rs/v2pp54KNqrGmvkp8lRJPE+5IlzuXbt27WBfccUVzhcLO+BxmKWnGrFcmqfu99577+jnunbtGvXhd8fGjan1zMzWW2+96LqlgMNQKGPAKp44ndmvXz/nw/Ajq1ujynDjxo2d74knngg2K0rjNUIlalTnNvNhyzvuuMNi4L7M/HXm8XDRRRcFmxXGsdktK5Zyc1Zk5MiRZSuN5saQlcGNVTEUhMreZn5aO3WvpJTMjznmGOerV69esFHK4vrrr3frTZs2LdjYmNbMl/pySAzDRBwSwFAzXluziuHAQunZs2dSGbyqZGrdeB7MvNJx6lnDcKgL4WatCCqgs8QHpxtkcKgO5St4jKEsCavYH3vsscFOPRcYDOPxb9Gll14a7HKFuZgsjIpj38yHzjHUZOa/Xyr0yV0RMFT/ySefON/w4cODzbIv+BvAZeoIKrtzWgeGVvm3AVNHMsXrDPx+2ODbzDdF57AXKsRz0/Ls2ZLqCqCZHyGEEELkCr38CCGEECJX6OVHCCGEELmiyjk/9evXd8tYxocS28wRRxzhlmfNmhVsju1jN/W6des633PPPRdszFswi7cXuPXWW90y5iNw2SjGVbnUEHN++vbt63yXX355sL/88kvnw/wE7i7+2muvBZtj6/Xr10/GLleWlNQ/ypmvCMyD4VJwLGvGa2fm82k233zz6Pax3JVj/tiOBM+lmY8pc57CpEmTgs1tGk444YToscycOTPq+/nnn4ONUg5m6TYOK0uWz4N5FGb+fPP1xLHN5aGnnHJKsO+//37nw271nEeFcgJHHnmk82H3dszbSpWzc5sYzC/kcXDfffcFm/NLUnkiWMLLHebx+/A21l9/fVc+XSoyWY5Fixa5v6PEB+fI7LXXXtHt4T2QOg+LFy92y3jd+RmM99IDDzwQbC5nx5xMHn9Yss5gLhl2l18RKGOAOT5mhXemLyWZjAOXY2POG+cUYl5b6nphHqSZz9HiFkB4f7OsAIK5cnwPpeRbsP0J59ficaauAZbEm1V87sRgKY5C7knN/AghhBAiV+jlRwghhBC5osphL1TmZDh8NXHixGCfdtppzoel6Pvss4/z4VRqauqPw1w4rYbKsSeddJJbL7VNnPrjLuE4fYhhLobLM1nFFsHu9lzeyuel1PB5wFJtnnbHUB4qqZr5MBFPQ+IUOZd6YydpDhPhsV122WXB5hAmHsvo0aMtBn9XLIvn6XosmcWu9GYVy1Zjx1LOMBcTk0/gcYiklFBxyjlVbluMCnCshJe3gfISGNI0S59TfC7xlDmG5hs0aBA9LpTKMPNK15Wdh3J2da9Zs6ZbxvAPSwygVAir5eN9xaXMqMzO5xpDVpxegGCol88HlmOfe+65zofhHnwGmlVUR4/B36dt27bB5nGFy9xlfZNNNinLtcyeFaj+b+Z/O1h6gdMpYrB0BXYx4G1sv/32wWZZGSyDx1A4bwPVup9//nnnw9+pCy+80Pnw2vI1wVDXqqsWPh+D6t333HOP82X7SF1PzfwIIYQQIlfo5UcIIYQQuUIvP0IIIYTIFVXO+eEcCOykzR3LsXN0JtuekSqdS4Ex+3nz5jkf5qxgHgTnRGDHdy7NwxI/lsnHvJdUPgWDsegJEyY4H5bXYgze7Ne4fznzChhs1/D0009H10uVgqdyRDAubeblDjgejGXajz/+eLA5zs/5XAh2n+c2Btg1ntuKFJrLwt/13XffTa5bri7gWU4Ul7Hi/cetWjDfiq8L36tIhw4dgt25c2fnGzNmTLCxtQGz/vrrR314XMuWLXM+zF/Bsnez9DXD5wSX4Mda4pj5Zw1vv9xd3YvJp8IcSWyDYea7YzPYAoLzNTHnL3UsmE/Fne8fffTR6Oc4zwdBiQGWU8BtYr6Kmdkvv/wSbOz8beZbInCZeKotzcqQ5fOwNAG2CqpsXGVwLiK2errhhhui++U8GISfg/vvv3+lNj/bmjVrFmyWLcDfA86pw5zP1G9DCpYiSX2/bP/YVoPRzI8QQgghcoVefoQQQgiRK0rW1b1GjRrB5ilXnHbnqXUkNR3Gisgc6kKmT58ebAxtYXjFrGJn8Bgc4is01MXTdNhlF1VIzXzn9qFDhzrfgQceWND+SgWGTXAK1Mxs2LBhwWZV3lGjRgU7NY3LIUZUf+YQB6pwz5kzZ0WHbmYVzzsu33LLLc6HY5VlC1ApmZVHUak89V15f+Usjc5CCHw82A0Zw0kM3x/vvfdesCtTNs548MEHnQ9LsFP3NIaPMWxi5hXkufwVS905fIVl6RwaxfBcasqcw5+oGM6yE+UudWfwfHIpf/v27YOdCuFwOPORRx4JNj47zXyYKHUsCF8TDF9xGALDltwZIBUO4Q7fCI6XDTbYwPkKVbouB6zAnTqW1LGh/AFfZ5R6QPkBMy8/wuEyVPbG3yZUmjbz933Pnj2dr0+fPsHG7u8Mq4ij3Mixxx4b/RymL5iZPfbYY8Hm38js/UCl7kIIIYQQ/0UvP0IIIYTIFXr5EUIIIUSuKDrnJ8uDYHl/jP9VNZaa+lyTJk0K3g6Wrb7++uvBXrp0qVsPy/2423eqdDoFxrQxlm4Wl/bndTF2+v9BKl8AO2xjDpOZz+1ieXP87hyHxXW5pJXLQzO4QzLmH6XyWjBObOalFji+neowv2DBgqjvf51LsKL9ct5RDM7vwBwrHq94rlDCwczn63B8H+XxsQz+pZdecusdeuih0eNM5UpgngOX2xYKf59+/fpF91euUvcsP4THMt4f/IzCfIy3337b+fCe4/zJt956K9ipjtt77723W8Z2PZhnw7kmWB698847Ox+2t+DWNr169Qr2ySef7HzY3R67iZuZbbHFFsEuJpeGZRNKDZbgm/nfJmwjYmZ25plnFrTNVD5otWr+5x1zZn766Sfnw/HSsmXLYHM7qrXXXjvY2P7HzOf57LDDDs6H+Xbdu3d3PszzQekRM7OmTZsGG/MszSrKMiDZ+wJLeyCa+RFCCCFErtDLjxBCCCFyRdFhr6yLLCrvrggsX+ay1YMPPjjYHCZKgV2LuUMtdv/G8Bx38cV98xQhqqXiNKqZD8Xw9CROEz788MPR4+fp14ceeii6LpbalgMsOTbzpfx8zho1ahRsli3A6WcOe2GZJ099Y4iDp7exbBpLNXnqHhWyeQqZl5GNN9442KlSelZtbty4cXRdHDsdO3Z0vmuvvTb6uVLBEg4oF8BgN2k+pylQQoLH58iRI4PN4fG5c+dWur1UmItZffXVoz68j1mmAeFxjeXDKTVkDgsdfvjh0XVXhiysy8+eKVOmBJuV57lMHcFwPCsi49jm59Jhhx0WbA5BY1dvTilAMFTO479OnTrRzyFcJo7HwuM9Fdrabrvtgs2hwQMOOMA9D0pFNmb4uFBJnFXF8dgwxMfgb5iZD9VzODD17MFQV+/evYPNCu34HbirO4LyBsxVV13lljE0hZ3azXwoMhXmiklqqNRdCCGEEOK/6OVHCCGEELlCLz9CCCGEyBVVbm/BHV1/+OGHYHP8DeN2XJqXyvNJlbRing/vb7fddgs2xk6xFNvMS9xz52GMkXN+R6rMGcs1+ZgxP4ilwbGT+9Zbb+187733nt18883RfVaVrLz/0ksvdX/H4+ayd/RxqTuCMWQzsy+++CLYHA/GMcDdhv/1r38FG8ursbOxmW+xgG0pzHw7DZa7L7QsnfMpcEzw+ON8EuS0006rUOpZajjHJ9USAVuLpMqc+/bt65axNJ3bGTz99NPB/uabbwo44opg3gHnCLz66qvBTuWrcZsK7ESPx1gMLJVQqIxAsXTp0sXMKh4n3lc8drlEH8HnG5eU4/3BbSOwFQZfZ8xHws7jl1xySfQ4uI1JoTk/KEnB4HU1888JLP83M5s2bVqwL7jgAucbMGBAWVqVcFl5IeCzlXN+Uu0gMKcudT/z2MEycpRaufLKK6Pb4PZGCOewYu4Y5wFiWTwf18yZM6P7wDwp/lx2XjA3mNHMjxBCCCFyhV5+hBBCCJErig57ZWVprDw6adKkYLP67vfffx9s7oqM3bJ5mo7DPzFY6TQ2Fc1T92eddVawUXnWzOzcc88Ndq1atZwPS7x32mkn50uFUbD8m6fjcDoWu2mb/VqGe/zxx0e3W1Wy6elx48ZV6fMYmjDz6pyvvPKK8+HUNF8HLJvm84djAEOr3JUYy9Q33HBD5+Mu8giWf3K5KcIdwvH78NRwqlyWpR5KSXYOeP8tWrQI9kEHHeR8eOzFKFOPGjUq2NwhHe93HiOdOnWq9Lh433hcfH7xOTFx4kTnQxVivL/NfAhp2LBhzofl2CipYGb2/vvvB5s7Sx9wwAFlCZVkpdwsAYDfic/LcccdF+xY6W9lYLn+iSee6HxY9n/fffc5Hypbc/l8jFatWrllHCsM3u+o2s+w+j+H1hAME6XCQqUkC8MPHTrU/T11TVIhTLzOHPZCyYHbb789+rnU+MAwFKco4G8hhjp5m/zdUK2bZVAw7YFL97fccsvoNlNjIgsNqtRdCCGEEOK/6OVHCCGEELlCLz9CCCGEyBVF5/zEOmZjiSRLYmMZcgosuzXzMvmDBg1yvv79+we70HgzU2iOA8v+z5s3L9hYdrsisPUFnxMsZ6wsHluOvIKsKzPnoWDMlyUAsPSdO/CmwO+LORRmFcuHEYwB33jjjcFOXTvMITLzeRrYLsPM7PTTTw92Kg7OZZ233nprsFOdg3mbnB9TSrLcJs752XfffYO9xhprOF8md1AZeE9jN3EzX3rMuVL4jEiVyg4ePDjqw/PGZbN4XbCDvJkvv07J77N0BLYk+eCDD6Kf43YWF198cXTdlSGT6xg7dmx0ndR4ZXkAzMHDXBozn695/vnnO19qbMfKkLk9CLaz4RwfbD3DrYIwH5TlOPr16xdslh7BbvNcdo+SGxMmTHA+bhdSKi6//HL3b7Fwax28zjwGsPULl9hjzk+qlU2qNQXm6XHOT4odd9wx2NwNHp/x/8vnpWZ+hBBCCJEr9PIjhBBCiFxRdNgrmxqsXr26+zuGQG677baCt4dTj1ySnCqdQ6VTLqvGqVQsb61qSTeXUqK6NE+5po55zJgxla5nZvbcc88Fm+UAykUWDsEyXzNf/s0Kz8jAgQPdMk6ZY1jIzFypPpcSDxkyJNhNmzZ1PpwKT00bL1q0KNgpiYRUmJKvV48ePYKNCqhmvvQdw4QMlmqa/aqSi2GGUpKdHz7WTTfd1O0fwU7JHAbAUNdaa63lfDVq1Ag2T69jSGy99dZzvtmzZwcblbhZyRhD4KywnrrHEFZ4xmPma4BKwChlwbBCdqxL/coSC9l9/vnnwcZnhpk/h6+//rrz4T1Xu3Zt58OwFPPkk08GO6XoW+j2MJXBzKczcNgL4Q7lCKu2Y6irmHJ2/k0rFZl0CaZLmHlV/2XLljkfpiJss802zodjnsc/hvXHjx8fPSYMKaYYPXq0W8YwM0vAoLI2U61a/FUjJXWCEjT87EI4LaSQVBjN/AghhBAiV+jlRwghhBC5Qi8/QgghhMgVRef8bLvttmbm2zGYVcwzQM4555xgc3lrSsY7Fc/HPB+UzjbzZZ6pODKCXarNfFyccw4GDBgQ7Krmb6S+23XXXVelbRZLFmfm756K2SNcFotwy5EUI0aMCDaXYiNTp04NNsq4my3vgm1m1rNnT+crNEeEueaaa4LNXepx/Hft2tX5sHUCl/Ufc8wxFfJgSkVWDszxboyH43ky8+eG700ch5xXx52mY9vk841lyFgGz1IWqZYkmDfEzJo1K9iY62Tmcy44r6dBgwbBxk7mDOdfzJgxI7puKcD8QjOfh8al5lOmTAk2n3csbeacH8z1Wrx4sfNlJfdmZvPnz3c+zHVLtZRIjQcsvz7qqKOcD58hKHPBcOuZ1q1bB5vHKf9uIW3btnVSCaWiWbNmZuafJ2Y+52e11VZzvlRez0UXXRTs8847L7pfHA9mvhUTS1fwMyyDZUOw/UkqzwZ/883SshZ4r/MYQ9mcVNsZ/E0uFM38CCGEECJXrFLo/4S7detW+H+ZRdkYPnz4Snfj07X8bVCKa2mm6/lbQffm7wddy98XlV1PzfwIIYQQIlcUPPMjhBBCCPF7QDM/QgghhMgVevkRQgghRK7Qy48QQgghcoVefoQQQgiRK/TyI4QQQohcoZcfIYQQQuQKvfwIIYQQIlfo5UcIIYQQuUIvP0IIIYTIFf8HQ71t6zqe07sAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 720x169.2 with 5 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Evolution during the training period (denoised_test) :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE2/figs/AE2-04-learning</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAbCCAYAAADF75bjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd6BdVbXuJ1JDS++d9E4qhI6A0lFB4YKiKAoewAYX9FoQvYBw9dowz4IKAgpIl06QXkMJhEASkpBKeif08v5470y+8XHWyFr77H2yzpnf76+xM9ZZe+3Z1sxoc4sPPvggCCGEEEKkwsc29wMIIYQQQjQl2vwIIYQQIim0+RFCCCFEUmjzI4QQQoik0OZHCCGEEEmxVd4L6+rqlBZWAiZNmrRFY++hviwH1ejLENSfZUFzs+WgvmxZNNSfsvwIIYQQIilyW37qmTRpUi2eo0G8GkRbbFF8Y/7++++bz++9917m/bbaKrtp+D7Ixz6WvZ/E31P0+evq6gpdn4esvqz09yHcd/g57z0auk89XvsVqV1VyTgKwbZRkd8TQm36MoSmnZsIzqMQbPvnnUfcD/iZxyPqKu2/atKUc7Op8daCLHj+4T34fttuu21Fz4Fzjr/v3XffjfLWW2+d6/71NPe+zLsucZvlnUdvvfVWlPP23aa+Gz97a/eWW25Z+Lu8/iy8+WlK8i6OeeHBUPSl1di/a8zmpxbk2VhU+pzV6K8if5e3bSst6ulN2NSptK+9RQ8XumrMt4Y+Z+kqWWSbM7x5RbDtK53D2J5F5g1uYrwxwM9VdMPTksjbR9i2jNd+3obnnXfeybw//ieI77+53oVyewkhhBAiKbT5EUIIIURSaPMjhBBCiKQodcxPXt+7F2DnxYLgZ/Ypox+cfeJ4rRfQyVQau1Ar6tuJn6vWPlgOXkT/sBeIh8/pxW/x/b2AS28M4PjjNkktLsSjWvFdWeSN1dnUtV4sW9nmZlNS6TqLn7PWXP68zTbbZN7fm7dMrQKemzvYZl6/eu3ixeJ5sXF4z0rbnWOFMMB6hx12qOieWaQ744UQQgiRJNr8CCGEECIpSu32ykte03cRU7fn8sibSl2GdHaP+ucr8pxeWqznQvJM2J4pvBKKlDTIa+Ite19uTiptm7xp1JXqRD68uZm37Yu4/7PgeZp3XVCq+4dUYz7gPbw1EV1SIdh299Zcfofg+ONxVG1XFyLLjxBCCCGSQpsfIYQQQiSFNj9CCCGESIpSx/xUGl9SSdpq3hTrTeEdyVG2dNos/3Cl6cKev9k7Ry3ruhBCeP3116P8xhtvRJnTLLfffvvMe2633XaZf+f9Hi99t2x92Rzxzu/CceC1fTViTfg7UosjyjuWeW5mlajgOYaf33777czv9v5O5APbk/sLj5/gPsd5lLekSJG5h/3undPWlHNPK7gQQgghkkKbHyGEEEIkRandXl7KnQea1TZs2BDlVatWmevWr18fZXSphBBC7969o9ytW7fM70JTYgjVOY26qSmS6po3bZxNrq+99lqUV6xYYXQLFiyI8sKFC43u1VdfjfLGjRujvNNOO5nr2rdvH+XWrVsbXY8ePaLcv39/o+vUqVOUa12pOEW8eYtuExwfIdh5u2zZMqNDNyb39c477xxlTpP1UqDV15vGc0vldRti3zFFXJ/e93llSlKC12o8kZ3bBdt67dq1UcZ3ZAh+xWWvUj+WLdhxxx0zn4vdovhcrVq1CtWkebydhRBCCCGqhDY/QgghhEgKbX6EEEIIkRSljvnJGzPD/kWMH5g3b16Up02bZq5DHd9jr732ijLHl6Dvkf3Uzam0er3fN29qO8P+WYzTwPicEEKYOXNmlOfMmWN0zz//fJRnzZpldIsXL27wnpza3q5duyizT3ncuHFR/sQnPmF0XvxIyvECtQLnC/YnxnaFEMKSJUuiPHv2bKNr06ZNlDker3v37lHmGBVMzVXffgiWk+AjJbDNeJ148803o4yxIHwyN/4drhEh2DWE1/u2bdtGGec3P5doGG+MY9+FYOff3Llzo7x06VJzHY4VrzQIg3E93JcYk9mrVy+jw1jOaiPLjxBCCCGSQpsfIYQQQiRFqW2HlVYaxvS4devWRXn+/PnmuunTp0cZU2RDsOY9dmVVanJFE2+1TzJvDN4J7NwHWW6LEGwK++rVq43uwQcfjDK6NPgznxSM7YTuzJUrV5rrsIwBp9mjO2v8+PFG51URR9iUj2NOlWjzg+MHTe/cn1jygMcZmtC51ESRkhji/4EuZHZdoJuK5+3LL7/coMzlKjBdmuc3zh12YY4dO7ZBOQTfvYlzOmX3GK9t+C5ctGiR0WFYwiuvvBJlfA+GYN+FHA6C6zPfH8uZ8Fo6dOjQKB922GFGt+eee0bZK5NQCbL8CCGEECIptPkRQgghRFJo8yOEEEKIpCi1QxT9z15KOeswJgDTntk3jLEgnTt3NjqMHeDS++h75O9GnzY+Rxmp/43eERYcU4HxF5y2iteyr33gwIFR5pLpqOvatavRYXu+9NJLUZ46daq5DuNHuJ8xXZNjSzCmyEvlrXZp9eYO+u29uAovHRbHEpdNwHgCL82Z4w68k+I9XVmPoqm0DAX/HfYXx1xge2LsTggh/Otf/4oylqQIIYTly5c3KPOagXPYW0v59zz22GNRrqurMzpMg+e/4zFRFjgGx4sV9OIu8e+8mEU+sunee++N8pNPPml0OP/weIuJEyea6/A9iUcDhZB9FFEIIdx+++1RxvIlIdjSJ4MGDTK6kSNHRlkxP0IIIYQQjUCbHyGEEEIkRandXnlP52WTeZbriata4t+xaRHdZV5aOpv8W0Kqrfcb0N3IVZaxj/jEX2xrdjlg+2L13hCsiR77hPuSyxggeE/vmXmMld1tuTnxXF3YZ2x6x7mJpnE2k6N7hCt24xjkuYkuD/675giPSZyb3jxldwh+5vn33HPPRfmBBx4wusmTJ0eZ09SxPAimqfN6jC4xnrfoAuffg2nWPD5wjLX0eeq5ZD1X/X333Wd0N9xwQ5TZhdmvX78oY+r5sGHDzHVYYoDdUBgawP2F44OruXvhLXifjh07hmoiy48QQgghkkKbHyGEEEIkhTY/QgghhEiKUsf8IOzbzBuX0qVLlyhzaiF+5vRr9Gd6J7UXSZEtWzpt1qnu+JljDrAtuD0xzsfrH44Hwrbme+J9MF6H/cYYI8IxB+gr5mNMPLz+Qt902fp1c8Op1AiOH+x3L3YOjy4JwcbycAwXxvzkTSUOoWX0oRcP5Onw2AOMzwnB9guWpAghhAEDBkQZ5zTPP0yfv/vuuzO/m9cFjC/hcgfY77w+l3VuVhoP6sW7cmwXHi2CMT4hhPDwww9HmWOvJkyYEOXddtstytjHIdj105t7HIuHcWVr1qwxur59+2Z+X7XjfJDyjAwhhBBCiCZAmx8hhBBCJEWp3V550zrZZI6f0QTP1X2x8i9We+Z7sPkcK5h6LrFNPWdZ8U4s91wJnnkWK7KyeRvbhU3m2NZe6QNMd2VTMH635/Yq4gopq2l9c+DNTTZ/Y7th6jTOxRBCmDdvXuY9sQosl0bw5qPXZ56rt7ngzVvv9+H8GDJkiNFhivLgwYONDqv9eiVFUDdlyhSjW7FiRZTZrbbffvtFefjw4UbnVfttLuVGqjHmeL3E09m5rbEfRo8ebXQf//jHozxu3Lgo83qJ44pLHyD8Pu3Tp0+Ue/XqZXQ4rtDVGYJfZqaxpL1qCyGEECI5tPkRQgghRFJo8yOEEEKIpCh1EAr6QYucHI1+0GnTpkX58ccfN9fNnj07yocddpjRYRof+x351GIk72m8ZSDrVPfG3q8hMK6AfcX4/d4xBwsWLIgynz69bNmyKLO/Gf3WfOKz1yeeTz71OB+EY6W8cbB69eooP/vss1G+5557zHXYv3vssYfRYdozjqsQbD956d7c7/gbmkvMj/ecrMM1jPurR48eUeZYGlzr+BRvjK/C+YB9zN/H8X54T45D2XPPPaPMcSJZz8jP1RLB34tHgIQQwtSpU6OMa2IIIYwfPz7KBx98sNFhqruXXo5xQ1zSAsccx13iuouxYiGE0Lt37yjzkTSVxtfmQSu4EEIIIZJCmx8hhBBCJEWp3V558U6CxZNtX3zxRXMdulR22WUXo+vQoUPm9zWXlPVaw+3uufy8ytB5T/XFk9sxpTMEa2rffffdjQ5NrnwCNJrrvfRnRm6vD/Hcu2z+Xrx4cZQxFffJJ58012FV509+8pNGh2Zzr7pvEfdVSv3Jv9Wrir1hw4Yo87qHp3hjW3P69dq1axv8mxBs2QJMsQ7BVv71UvebS2o7j8dK3asYNsAnE7zwwgtRZhcjur0mTpxodOhWxLb2Qjx4POC4wncrX4unLvB38zMr1V0IIYQQokpo8yOEEEKIpCi1/yZvpDeb5tBUi4e5cSYRmntHjhxpdFw5FkFTvmf6Y8pWRTbPMxQxKeNv57/zzKfYnnwdmj0xi4vdknhd+/btjQ4z99gNg9/nmVj578qWuVdWuNovui6ff/75KPOBmjj/MBuEdUXAPlT/fYg3N1HH7iycL1g9Hw+xDCGE6dOnZ95/2LBhUd51112NjjMzEVy7mkt2V6VrPocCoNuL3UuYqcUZXQcddFCU+/XrZ3TojsQ+5/cbzmceD2+88UaU+fBS/O2cTYZrOa+z/NuriSw/QgghhEgKbX6EEEIIkRTa/AghhBAiKUod8+OBMSXse1y3bl2UMfWP41CwUixXEPXiP/D7OMYn70ngZY45yOtnLZIejD5f/jvPf4/+4REjRkQZU6ZDsPFc7Kf2To3Hz5xmieNFMT/ZcNvgZ5yLIYQwd+7cKGO5Aq5Ui6c748niIdi5yTFF3rzFWAbuv+bYn7ye5Y0p4b/jk7sRbBeu/oz3wfnIMT8zZsyIMldfx7RnrDQdgv09XhVn/t1YebhMZUkqjfnh/sLfx+P/wAMPjDJXP8cqzgzOP1yfuc+9dx/GVnKlZuxnXme7du0aZV7/azkvZfkRQgghRFJo8yOEEEKIpCiPTbAB0ASGaXQh2NQ87zC+/v37R3nJkiWZ92fzPB4KxwexoXmPzbHoMmKzYHMxrde62i0fiIemaU5TRzPrmDFjosyp7li9GyvK8v3ZTOyl2WN/sTulbGULNic8rrE9uAItpj17cwXN5lyVG9OqOW0W+4XHGZvbmyPVGGtF7oFlBbyUa3Rd4IHRIYTw1FNPRZnn7bHHHhtlzxXJ48MbO2Wbj/XPWmRdxd/HB0HjmsWuLQzf8A7k5krbWe5idmnjb+D1EucpvzNxHedSFegKZZ1S3YUQQgghqoQ2P0IIIYRICm1+hBBCCJEUpY75Qdjvj3D6MvolO3XqFGVOZx81alSUOZ2WUzKz4FRK9DfX0l/Z3PBOT/fA9kS/NKfnoo/ZSw3lOBCvj7wTwssWV7A54f7EWABub4yzw7genkfDhw+PMs7hEPIfe6A+Kg7HaOE882JrMGZy1qxZmdcNGDDA6HDecuxmS6GSceitkRiHw+8+7L+ePXsanRfzhvfE7+Znx/gjjhuaM2dOlLkUCV7Lx9XkfddWG1l+hBBCCJEU2vwIIYQQIilK7fZC94VnBmTTHFZuHjRoUJQ5XX7s2LFR5pRZzwTrpVl6z6VTpf8f7ArBdmKXFbY1ukw4JRJTbdl0v2LFiijzacM4Jjht1Huu1F0qnAKLYDkBbjes9NqnT58G/yYEe9o3p0d7c5O/TxSjSPvhfMS/47Ih6KYcP3680aELxAttKELZ5mZj3V5emj+7vbBSM6ebI5ymjmsyuqh4nuPayiVF8DSFDRs2GN2uu+4aZVyrQ7DjyCuDUm1k+RFCCCFEUmjzI4QQQoik0OZHCCGEEEnRbGJ+PL8pp9xhSh+m0eGxFCHY2CAmK/UvBOuX9E6R5mdOOc4H4fRyL24KxwD6tzl+C33d8+fPN7pXXnklynx8BpY44JRqjC3hWIjUj7fAPuO2wb7h0vw4H9H3z6e6Y2wQx4J4bY9z05tviuFqGK+MAMdj4GeMBeGYLIzpwBIGIfhxKUjK/eOtj7yWbty4McrLly83Ohzz/N7COYb9yinrmM6ORwrx/TmdvXv37lHmk9vxNzRleRhZfoQQQgiRFNr8CCGEECIpSu32ymvq5HQ8NM3hKdILFy4016FJnlMG0fTHZrq8zyXTesN4rkJus9WrV0cZTbAvv/yyuQ6ryj7wwANGh/3O5lj8vMsuuxgdmu+571J3e+FvZncIlhPAuRiC7Te8Dqs9h2Ddk56Z3Ks6nNedyqTWn5j2zG2Nfctpx/PmzYvynXfeGWUuJ4GV9dH9EcJHQxYQb461hD7Ku4bwOMZ+4LUUXc7s/kc3GLsmsZ+XLVuW6x6cLj9mzJgojxgxwuiwXIUXQsDjr5bI8iOEEEKIpNDmRwghhBBJoc2PEEIIIZKi1DE/eVm1apX5jDEfzzzzTJQ5NgH9pezPxjRZL66AQf8lp+0p1f3/4aUzcl8+//zzUX7iiSei/NRTT5nrXnrppSjPnj3b6LyjGDCmiNOt8e9qWWa9OYKxBZheG4KNzZo6darRYR9im44ePdpchynQXKLCm0d5+4nHBN6zJcSTFMGLjeI1E8G+vPbaa6OMx8mEEMKECROizEfIYH9xn2A/FOmTltZ/PN4xTopj5bA9586da3T4ecmSJUaHcxbXRO4vjJHcZ599jA7LGGCcVwi2Tzi+1jvWxIs5ayyy/AghhBAiKbT5EUIIIURSNFtbPqbZrVy50ugwtRnNgpxm2a9fvyizab1SE5t3EnjKoPmST/DGE4BnzJhhdPfdd1+UH3/88Shj1eYQ7BhgMz6mT3KqO7pXvNPCmZZmWi8Kuij4FG+s9stukzZt2kR5wIABUZ44caK5Dk9890ojVAvP9dPS8dyIeHL3zJkzje6mm26K8oIFC6LMbYlzDit8h2D7tkjld7y27Gnw9e8B7zm9sijcDuj24vbElHKuwIwuaAwHCcG6unbeeecoDxw40Fy39957R3nfffc1OlxLeUxhfxV5t9ayL9Od8UIIIYRIEm1+hBBCCJEU2vwIIYQQIilKHfPjpcdhWjKf8I2pc1hyG2MMQrAxP0WOXMibAl023/PmJOt09hBsejsfh4Ap7IsWLYoy+5Q5tRJBH/bYsWONrn///g1eF0LacSCbwjvxHudS3759jQ7beI899ojykCFDzHUdO3bMvD/ilU3g/vPiRFIG4ye5bMGrr74a5VtuucXo7r333ihjn/NJ7XhUyQ477GB0OI+LxEimfLwMtjXHqmLbc5o6tn27du2MDmOFRo0aFeWjjz7aXHfwwQdHmddLfC8Wid/y+r2W5WG0ugshhBAiKbT5EUIIIURSlNrthfBpr2j669Gjh9F95StfiTKaRNkMiKY/z+3FZtW8qXqq6PwhaAbltkbTbadOnYwOTbCY1sknCqOrk92b6BIbOnSo0aFbhlPd81byTs3sHoId21xCAufZuHHjjA7byqtUm/U3TBHXJF4rl+aHYPviqd0h2ArrS5cuNTpcP7GEwZ577mmuw1R3nvuvvfZalL0xwOD889LEy0Ce5ynyzDj32I2I99l9992NDvsLy1GEYNdWLDPRs2dPc91OO+2U+czVKA/TlGgFEEIIIURSaPMjhBBCiKTQ5kcIIYQQSdFsYn7YL4hxIuxrRP8z+oPZ39wUZfPF/wNjcvgUX4z9QJ9yCDYVHeMDeDxgX7IfHO+JY6OhZ8lL2eIKmhpvXnF8XhaKwSkfPD8wRo7HPMbLYUzfsGHDzHW77rprlHlu5p1/XkmD1Ocigu9Fjn3EWB5v/UxlLqbxK4UQQggh/j/a/AghhBAiKZqN28urAil3VvnB6p9sckUzK1YaDcFWh81bAbbSEgN8f/yciik4L17bVOKG4LZHN4dKRtQW7C92ew0fPjzKXK0bT3zH0hM4Z0P4aMXnaoBjTm6vD3n33XejzOEglaSi47odgp2nlaa2lwWt6EIIIYRICm1+hBBCCJEU2vwIIYQQIimardMOfZsM+iI9fzDGFSimo7ZUGreR1X/c/15MUd5S+F4skrB4p3F77V3k5G7RNOA453nqnSDesWPHKON8rFYMDq7PfE/F+TSMF4eDayQfD4Q6HANciqAltbtWdyGEEEIkRWHLT11dXS2eQ2wG1JctC/Vny0F92XJQX5YTWX6EEEIIkRRbyAcvhBBCiJSQ5UcIIYQQSaHNjxBCCCGSQpsfIYQQQiSFNj9CCCGESAptfoQQQgiRFNr8CCGEECIptPkRQgghRFJo8yOEEEKIpNDmRwghhBBJoc2PEEIIIZJCmx8hhBBCJIU2P0IIIYRICm1+hBBCCJEU2vwIIYQQIim0+RFCCCFEUmjzI4QQQoik2CrvhXV1dR/U8kFEPiZNmrRFY++hviwH1ejLENSfZUFzs+WgvmxZNNSfsvwIIYQQIilyW37qmTRpUi2eozAffPDhpvrNN980ulatWjWo22or+3O33HLLKL///vuZ9+e/e++996L89ttvZ343g3+H352Hurq6Qtfn4Xe/+10IIYQttqjsPznYRvyZdXnb2msXbL+Pfczu2yv9DZXy7rvvRpnHx6aoRV+GUJ65uTl55513orz11lvX/O9CqE1/NmVfvvXWW1H21si88NxHeO5Xcv9NkXJfIm+88Yb5jG29zTbbVP37vH731mccE7yuNxavP2X5EUIIIURSFLb8NCXe/65xJ+ntFnE36lkL+H8gbNFB8FrP0uM9SxmoxFqSd3fP9+b/8SF5//eH1/FzoFUIZYbHAI4rfkb8zOOvqLVH1AZcI0Kw/9NnndfXRS0ELYltt902U4ftxPMqy2LrzedKLT383bg+c9+l3JcIv5vyvn+8tRTHw3bbbWd0uObzd3nWHe/93Rgr3qaQ5UcIIYQQSaHNjxBCCCGSQpsfIYQQQiRFqQMXPB9i3uhx9DEXiSRH/yL7PT2/dd6MpzKT1zdcJGbIuxa/j+M0suKy+H5ezAHe33sOHh84jjAjJgSbLdHUmWap8frrr5vPGLvjZa1wXBb2J8YShGD7XjEjH4Ltknf99OLx+B5eBixey7q8MUapgXNl++23N7q865T3zsR7cDaZNxdxvnF/efOtlnGysvwIIYQQIim0+RFCCCFEUpTa7YXmMc/1xGY0NM15pjg0qbFbA9P4irjL8DmVDp0Pr+QAuiryuq8YvAenOHumdew/z4Uit1dtYfO9x2uvvRblHXfc0eiwnzi9m92tKYGuEs+dzO6JrHHP/+6VJam0qB2u6+wawbXcS+NvieR957DLCvvBK1mCY6BImRevyK3nEqtFMcZ6ZPkRQgghRFJo8yOEEEKIpNDmRwghhBBJUeqgFPTlejE/ef2c06dPN5/Xrl0bZfYtjh07Nsrsl8b4gCIHbNbyALdq4pUYqBT06/Jv91IrK2knTo3GmBEvDZ7Tn70UzDL3X0tn5cqVUX788ceNbsGCBVHeeeedje7jH/94lLt162Z0KadLF4mpqgRsWz6EGucYx4LgERa8xmMsj2LuPsSLkcG25/Urb2wUvvs4bgjXT+4vnIveGu8dg1RttIILIYQQIim0+RFCCCFEUpTa7YXmzCJVV9F09vLLL0f50ksvNdctXrw4ykceeaTRDR48OMo77bST0XlVTz2zHZpx+UTczUGWS8tLdfT+3vvt2H8vvfSS0T3zzDNRnjNnjtEtXLgwyq+++mqUMaWZQfdGCCGMHDkyymPGjDG6rl27NviMDP82dMOqInBtWbNmjfn89NNPR/kHP/iB0aFpn035/fr1izK7uTp37tzo52yuoCvDKxvikdc9zn3ilbnAecWlCLyyF6mlt2fB7n9MTff6dcmSJVGeNm2a0eFnXI9DsG4wLjOBa/C4ceOMrnfv3lHmvqtlqIgsP0IIIYRICm1+hBBCCJEU2vwIIYQQIilKHfODsI/SOz0dU+4wZmTy5MnmOkyZPfroo42u0lPd0TfNaYdlS6etb7dKU0W9OBjWTZkyJcq33HKL0eHnV155xegwhsOLKcIYqgcffNDo+vfvH+VPfepTRof9Pnr0aKPz0ml1dEnTwfMP4/g4JgHTtrk/27RpE2VOg08ZHMs8x3D+bdiwwejwM8YzcmwGrqUcq4fXtm3b1ui6dOnS4DMyHA9UyUn0LRGvDAv38z//+c8o33TTTVHGeMwQQpg1a1aUveNOOOZn2LBhUeZYocMOOyzKuFaH4JdBaSzpjgwhhBBCJIk2P0IIIYRIilLb7tGcyWZPr5okuiu8tEc0g/fs2dPo0I3ClX+zTsANwZp/2e1VtpToxrq9vFR3dlVgujKWGAjBplayObZDhw5R9p4T0zi5iuz69eujzFW+d9tttyhjOiajKrKbD64kO2/evCiz+wrLUhxxxBFGh2OJT6T25m1LB9dZdjs/+uijUeawgSeeeCLK6Mpg9wS2Na+BON+5DMUXv/jFKH/yk580Ouz3StPzWzq8BiOzZ882n6+++uooo9uLwb7lvmRXFzJ//vwoP/fcc0aH626fPn2MrpZlC2T5EUIIIURSaPMjhBBCiKTQ5kcIIYQQSVHqmB+vZHreFDj0ey5btszo0De8YsUKo8O4ET6KwotFwlRbfv6y+aIbm3rPv91LR+3evXuU2beP8UB8wvT48eOjPHTo0ChzXMbMmTOjfMMNNxgd+ps5tmvXXXfNfGbEG4tl69fNDbYVx3BljTlOV8YYHCxJEUIIf//736PMcQf77LNPlDFmJIQQOnbsGOWNGzca3Q477NDgc6UAtvULL7xgdFdccUWUZ8yYYXS4ZuI9MJaSr+N2xn54/PHHjQ7jiLhsAfY7x29hjGYZ4izr54D3nuLx7x37gXjvGH5vYR/9+Mc/Nrp//etfUcY+4rWtdevWUR40aJDRYcwPv0/xPrhWh2BLVxx44IFGh/F+3M+NRZYfIYQQQiSFNj9CCCGESIpSu7080IzmVXjG1GauUIomUT653TOXem6OvCeipwaaSNn8i+ZZbjN0S6HLat26deY6NJFzP6O5lCuIoomXU0PxM5uldXL0h3BfoGmcTfZLly6NMlbw5TGB7s9zzz3X6PC0av7u0047LcqemZzdL7U0r5cdbMPVq1cb3Zw5c6LMJSoQbE90cYdg3SHcz2+99VaUufozumlw3IRg5zGXQmiO/VdpCAK/+7DNeI3685//HOU77rjD6HCtw5CPE0880VyHIQt9+/Y1OnxnPv3000aHlaK5ajS6vbisTC37UpYfIYQQQiSFNj9CCCGESAptfoQQQgiRFM025gfhdFr0I2MJdj72AGnXrp357Plg88b8eM+Z2mnD2Ce9evUyulWrVkV5+fLlRoepsBi/xemSTz75ZJTnzp1rdBgrNGrUKKNr3759lL1jDbxS8SmCsQYY48Nwu2Gcj1cy4m9/+1uU77nnHqPDeXzKKacY3ZAhQ6LMcXxIU8YWlJ2uXbtGmY8XwLgOXhMxHm/s2LFRHjhwoLkO44gwdT4EW8aA13GM7fLgeLyyUb/We2np3nvDW3u4TzDOB48NCsGmt69du9bo8P33ta99LcrHHXecuQ7XT55DOIfbtm1rdPgs/MzYLp6u2jG0ab2BhRBCCJE82vwIIYQQIilK7fbyqup6pjI0v2FVUr4OXU9clbQWeL+npYOnMHN1XUynveuuu4wOTeboHkM5BJuuy+ZRTL0dNmyY0eWtAMsusbJVkW1q0BTPLivsX24bnIP4d3zS88UXXxxldlf36NEjypwGz66TLDg9OsU+rAfdS9yX2NYoh2BPWscUaKykHYKtsH7ttdcanef6xPWS0+dx/HnuzTJRrSrx3rXYlxdccIHRoeuJSz1MnDgxyt/61rei3Llz58zv4tAN7BMMJwjBujfZTYlu0qZcZ2X5EUIIIURSaPMjhBBCiKTQ5kcIIYQQSVHqmJ8ip9ki6DvGsujso8R78GniCKcaej5XLzUv5eMuMBYDj6IIwcZ7cFl0PPGdjzJAMFWZ4wPwNHhMtebnwnT8EPwx4Z1gnwLe7/dOSMcjDLB9v//975vrsOQ9c95550WZ4z3wKAUG+xdj0EKwc7zSowaaK3i8TIcOHYwO09k5fRl1WO6AT/R+/vnno8xlKPA4BpRDCGHAgAFR5phMvJbLFJT1qBJe/3Ht8cZckfGIp7NfdtllRofzkvvyC1/4QpT5NHgEU+S5TzA2j2PvXnjhhSjz+r/LLrtEmeOBahmLJ8uPEEIIIZJCmx8hhBBCJEWpbfeVmp/RvL1+/fooc0VKvD+b+tB9xSY8NMWx+y2vKTM10CS6YMECo0NTOJ/ejKmbnksRTd1sPsc+4fuji6xImmXKLkxmw4YN5rOXeoxuqT/96U9R5irO2IcHHHCA0eFJ0zynEZ63aFLnE69TBtuJXZZ4ejq7OTCMANOosRJ7CCFcddVVUWa3V9b9QgjhqKOOijLPN8+dVdbq+V4YBLt7PLcy9heXbMCT29HFHIKdeyNHjjS6vffeO/M5Ea8kDK6fvCagu4z7B0soeFWjq005R4kQQgghRI3Q5kcIIYQQSVFqt5eHZ9pEc59nFkfTt2cG976riNsr5QrPmNnD2VgY7f/SSy8Z3aJFi6KMJlDOSkGzMbczVvm++uqrje7zn/98lLmaacr9VQQvO4TnH/YnVqBltyK6zn7yk58YHY4DNotjRiAfuIrfwS6xlF3U2IacDYk6djVluV+4L3lOI3hPPnT4kEMOiXIRN2XZXJr17cTvEfxc5OBkDCHgg6AfeeSRKHM/YF9+5jOfMTrsB8yE5AxYbFue2+gumzJlitHh7+ODrbt165b5zLVElh8hhBBCJIU2P0IIIYRICm1+hBBCCJEUzSbmh330XhwO+p+9tD1M/fNSmb14AK9qp/gQjMPq06eP0X3961+P8v7772908+bNa/B+nE6Nvu/JkycbHVYU5ZifESNGRHm//fZr8LtC+OgYSDlGJAQbd1Ak5ufss8+OMvYt3+NrX/talPfYYw+jw/gBjpXgys2Il4rbXE4GrwXYR9wPfJI7gvEguJZylW2OS0FwHceTxUMIoXfv3lHm+Yb9zmPMG4+bg/p4RC6lgRSJL8QyEKtXrzY6bPuNGzca3THHHNOgHMJH4+Pq4fgpfL/xOxPHwwMPPGB0+Jw9e/Y0OowHbcrK+bL8CCGEECIptPkRQgghRFKU2u3lVVn20gTRdMapegiavrESdAjWDM4uNvw+NtOhmbC5ptPmNcEWqXKM5ljuk4EDB0Z58ODBRocmbc/UjW417pN//vOfUeZD9f7nf/4nyphyH4KtbsugSdk7yHNzwOMO+7NaYxBdC9wXaA7/61//anTXXXddg/cbPny4+Xz66adnfjf+hkp/T8puLgb7y6s0zG4UHPc4xvAg04buieDYqaurMzoMX2BXGvY7P1fZ3F5Z7i5sF88lxuBvX7x4sdHh+4dLB5x00klRZjdXXjc2rvn83n344YejfOeddxodVoY+44wzjM5bP2t54LAsP0IIIYRICm1+hBBCCJEU2vwIIYQQIilKHfODsQsch+KVA8e4Du8kcPRDFkllzhvr0lyPR8DfV4vfwOmT+B0cP4JpnViCnf3SGMNx2GGHGd21114bZTwlPoQQXn755SjzCcn4mX3yZYvzQbzTo6sF9hP2UQghrFixIsqXXnqp0eGcw/4855xzzHVY8l7UlrxHK/CYx5hJnNPc5zj+OH7yy1/+cpS5z/PGeBSJl9kc1Mf2cCxiNWJY+B54dBCnsw8ZMiTzPrie4nuX+2vlypVR5hIGRx55ZJR5TGGMEa/PCP9dLeNkZfkRQgghRFJo8yOEEEKIpCi128tLafVMc2vWrIkymkQ5Bbh9+/aZ9/fwqksjzdXthbDLBH9TpVVJPfOvV2k76zlCsKnumDofgk2t5zGAabKcTovPkrfPy4Dn5uJ28/oQ78P3xLbhPrvsssuiPHXq1My/O/roo6PMlb1F04Hzj93OCJeoQFcJVk7nquw437kCN6a3Y6XfTT2LV5UadU15SngWWXPMm6fo/uG1B9uT16xPfepTUebyEW3btm3w/iHY9RNdVNznqBs/frzR4XOyK/y//uu/ooyub2bt2rXmM76jq03zWdGFEEIIIaqANj9CCCGESAptfoQQQgiRFKWO+UFfKacooy+XUx2z/KXse/V0eZ/L89vWIsW4mtT/jiLP6aXBe22IqbB8HcbhcEwOfvZO/MV4gdmzZxudd8QJnjDMvmjv+8oWVxBCZf3pjWXvPvj7586da3R8pAWy6667RvmrX/1qlGvp2xf58cYyl4JYunRplH/2s59F2Yuf5DiUESNGZF5bJHYNacqTwfOQ1abe0Q1eTCt+5nffsGHDotyxY0ejw7geL74R4bVzv/32i/KSJUuMDuN8Dj74YKM7+eSTo8xr/KJFi6Lcq1cvo9PxFkIIIYQQVUKbHyGEEEIkRbnsgwSaPdlU5lX17Ny5c5QxtRIrkoZgTad88jB+H5tfPZNkc4RNyJVWsPbS4NF8iuZX/j42x+Y9oRmrjV5zzTVGt2rVqiiz6X6PPfaIMo8pNOOyrpaVRyulflwWqU6O47eImwHb5k9/+pPRoduRTe/f+c53oowuMLH58MY5VuvmvvzRj34U5RdffDHKXrV8TMUOwa/ujs/Cqdmee67s4Qb1eK47bDN+92EIyLp164xuxowZUebSAVihG09xDyGEDh06RHnKlClRRtd0CCFMnz49yvzOxPcuVtVn+Hejq4ufK+/6XwnN/80thBBCCFEAbX6EEEIIkRTa/AghhBAiKUod84NwLAjCPlG8FlOsOTXPO/bA88fmTYtvLr7nauHF/OAxEgsXLszU4ensIdi0VSx9zunseDo7Hq8Qgo352WWXXYwOYxD41Gr0rXOMQXON9ao0vot98TNnzozybbfdlvl3Y8aMMZ+zYqy4HL53tI2oLt5YbteuXZT5FO/bb7+9wb/h+JyhQ4dG+dOf/rTRYZyP18/euOVYobKUnmCKzD3sE/59OBc5fhJjcp544gmj69OnT5THjRtndE8//XSUcf3EtTME+z7l/sJjTfA6pkhMIv7Wasf/NM8VXAghhBCiQrT5EUIIIURSlNrtxa4oBM3kbGZFHVbtZZNajx49osymOC8FOK/bq+ynuldSETjP/VgOwboc77rrLqP797//HeVly5YZHbqe0MTL5l50nTEjR46M8vHHH290e+21V+bfcapo2cnTjzynPBM0ziNu74cffjjKPP8GDx4c5cMPP9zo0CWBz+ulR4vagq5lTl9GHZc0WL16dZSxv9jlceyxx0YZXS8hVKdavldyowyhB/XPUyS0AuHfgO75Tp06GR1+x6OPPmp06BK75JJLjA7dSxh6wM+M5Q7uv/9+o0P3HLtSUce/B9dZXktquQbL8iOEEEKIpNDmRwghhBBJoc2PEEIIIZKi1DE/6Cf0UufYL9ilS5co77bbblHm0u2Y5swxBs35tPYywP7stm3bRpn9uhjng+mSIdhYE8+Xj+Ojf//+RocxB3V1dUaH6ZNr1qzJfGYGj8lo1apV5nVNSZ70+yLxETj/MPYqBNve++67r9Fhevuee+5pdFiGwjtWAb+7rKnLLQWvrbGkxPXXX290OF+w/zA9PoQQPvOZzzT4XQ19H4KlSLyT2nntLlvMT/0z8LNgfBX/Bm9u4JFN/fr1M7qJEydGmWN+sC95HciK88H3Zwgh3HDDDVHGIzH4Ofn+ng5pylg/WX6EEEIIkRTa/AghhBAiKUrt9kLTunfiL4NusFNOOSXK7G7p1q1blLm6r0fe6r5lT9dtbJVi/nvvfu3bt4/yQQcdZHTYt5wGj6ZadJkMGzbMXDdgwIAof+Mb3zA6NMNzBWmkdevW5rNnPq/lacO1xHMfsDka5xGevByCrdR79NFHZ34Hfx+6Obz5IVdX04Ftje7cEOx83LBhg9HhfMe5w+MBwxCK9KsX6oCUfZ2th9dH7/fl/e3du3c3n7Fy81FHHWV0WImd33e4JqM8evRoc50XCoBUGjaS93dXA1l+hBBCCJEU2vwIIYQQIim0+RFCCCFEUpQ65sc73sLzG2JsCJbaZ8qSopwC6Mvl9En8/MMf/tDoMOUTY1I45gtjCdatW2d0OB48mnMJ/aYG46j49+NnTyfKB8dW4qneeERNCHZO77///lH+5Cc/aa7LGyciGg/G/AwfPtzozj///Cjnja3h8dCSkOVHCCGEEEmhzY8QQgghkqLUbi90LXgpkuySQNO6XFvlgMsMIJgCyqnRXmp2FpyynhdvHKUA/16vEmsl/SLKCbqWsXpwCLYKPp7oHYIthTBhwoQo88ntWMlY46a2YFvzO9MrCYBzHe/RktdAWX6EEEIIkRTa/AghhBAiKbT5EUIIIURSlNoBm7dsOfqsQ7AxJF6sEJ5UzSfDi+pS7eMKOB4FyyLk9W039BkpkvreEtmcv78lxxqUDe+ooJEjRzYoh2DXXZzfRWLHRHXxYqrw6BIuI4OxsakcLSPLjxBCCCGSorDlp66urhbPITYD6suWhfqz5aC+bDmoL8uJLD9CCCGESIot5I8VQgghRErI8iOEEEKIpNDmRwghhBBJoc2PEEIIIZJCmx8hhBBCJIU2P0IIIYRICm1+hBBCCJEU2vwIIYQQIim0+RFCCCFEUmjzI4QQQoik0OZHCCGEEEmhzY8QQgghkkKbHyGEEEIkhTY/QgghhEgKbX6EEEIIkRTa/AghhBAiKbT5EUIIIURSbJX3wrq6ug9q+SAiH5MmTdqisfdQX5aDavRlCOrPsqC52XJQX7YsGupPWX6EEEIIkRS5LT/1TJo0qRbP0Sg2bNhgPu+0004NXrdx40bzeYcddsi859tvvx3lbbbZxujefffdKG+1lW3CDz74cLO/xRZ2s/nee+9Fecstt8z87oaoq6srdH0e6vsSnysE+9wf+1j2/hjbgeF2Qd55553Ma7nNkLxt+/777xvd1ltvnXnPSsHv8NqoIWrRlyGUc25uTnic4TjwdEWp5dxsCrx5Ve3789z05g7OaX6uoutnXpp7X3L7ItievD5n9Tv2nXfdpsDv5vfGtttum/l3OE8rmaNefxbe/DQlb731VpS9Bsra7DDeZofhTke8AYY6nqC1mrCbiyIvfRz83LY4wHlS4nd4Ew/btlrt7G1Wi254RG1Yu3at+dymTZsoe4tlLTbEzRWcV/wfIe8/Ffh32J48N/A6nkfexsv7D1TeDVUtNnNlBn87bzK8dsF3LfYR9wEaBfge+H3bbbed0XnrM96TdbWcp1rBhRBCCJEU2vwIIYQQIim0+RFCCCFEUpQ65sfz13oBp2+++WaUvYApvD/HFHn+ZvRLcvyKF/NTVrid8/rJi8S9VDsmh/3ZXpA2+rMZ9k1n3ZNjIZpL37YEMCYgBNu/GOOzKby4M+zP1OJEkGrEKXIMDrY13w/nMf8dJpoUSR5Juf8Qrz0ZbM+8QeitWrUyOny/Flkv8bl4XX/jjTcyv6+xyPIjhBBCiKTQ5kcIIYQQSVFqt5dnKkNzGKewo/nNc2sgRcx0ntvLo9b1NCqlKZ7ltddei/KOO+6YeV3efuB299yUeccA45l/G1PnRxSDzfXoxuR+X7FiRZTZzY0uMq7zU6b52NSgW5HHMn7OO86LtGWlqcx51+DU+hXdRp6bi11i22+/fa77o+vJW6t53cb3Nfc5zuG89YeqgVZtIYQQQiSFNj9CCCGESAptfoQQQgiRFM025sfzBaJvGtPeZ86caa7D+IAuXboY3eDBgxu8H3/m52iO8R/8G4rEMWX9HacsenE+3t/hZ3xOz5+9cuVK87ldu3ZRzpvGGYI//ppjP7cU8EiLKVOmGN3jjz8e5Q4dOhjdEUccEeU+ffoYnXdeX0vHm0tI3tgar3TG+vXrjQ7jNXm+eenX3vflPRapJeKNXTzbkvsya31++eWXM+/3+uuvm8+dO3eOMh85hWPMe0YuS1LL/tMKLoQQQoik0OZHCCGEEElRavuul07suSTQHDd79uwo/+xnPzPXvfTSS1Guq6szOjSLc2qeZ4qr1FVXJvA52Tzq/QZMmUV3Ywg21fGZZ54xuueffz7KbGadMWNGlJcvX5753ThWdtttN6MbP358lPfaay+j69u3b5S5ZAKaalXRefOB5nr+/Nvf/tbonnrqqShz+i66XM466yyj0ynvm8ab+94p6/h55513rui72SXtuU5Sc3Uh3jsTx7jXfg888ECUr7jiCqNbsGBBlHFtDsGWFOnZs6fRfepTn4rycccdZ3QdO3bM9VzVRpYfIYQQQiSFNj9CCCGESAptfoQQQgiRFKWO+cHYHfbfezEYeC2W42Yf5dy5c6M8ffp0o0N/qZeC6T0Hn0adN6W0qaj30+f15fNn1uHv5TiNG264oUE5hBBeeOGFKHOs0IYNGxp8Lh4P+N3YryGEcP/990eZ+/mYY46JMscKoQ+bYw4QxQPVFp43S5YsiTLG9IVg0+A5fqBbt25R9uIhUgPHNq9ZOI95TuNc5RIVWXBf4trD8UBYqoDnmBdjlPJ8xL7k9dl7/0yePDnKv//976N86623muswFZ1PWccjY+bMmWN0OBdHjBhhdPvuu2+Dzx+C3QNw+nxjkeVHCCGEEEmhzY8QQgghkqLUbi+vKjCardnkijo09eHJ4iFYU9zq1auNzjvl1nOBIPxczdHtlfU3IXzU3IxmTzaf47Wcso5tz+nm+GxoZm3fvr25bs2aNVHmcbNq1aooP/roo0aHlbyHDx9udG3bto1yyqb0zQ23/b///e8o81jCa8eNG2d0J598cpTXrVtndOjiTI1XXnklylxq4pFHHokyzx0sFYLtyS5FXPdwjQghhO7du0f5yCOPNLqTTjopykOGDDE6XBd4nU15rqL7lt93uC7yvPnHP/4R5ZtuuinK/K7D9yJXeMZK+uh+DiGEJ554IsroYgvBrsF80kIt35my/AghhBAiKbT5EUIIIURSaPMjhBBCiKQodcwPwvEliHeyOqa3sx8SUzfRfx2C9U2zDzmvT7nsp0PnOZmcr/HKp2OqKqclHnLIIVHGoy5CCOGee+6JMsdajRw5Msp4TAXH9WBsApdkx+fklOYBAwZkfrcHjo+U06RD+KjvH+NneIxgu+G85bmCsWUrV640uquvvjrK3Pb9+/eP8m9+85vMZ27dunWmriXgncDO4HqGZSFCCOHee++N8vz5840O+wX7kuOncL5zLCDe46qrrjK6efPmRfmXv/yl0WGsUNmpJLayob9v6DPfEz9776lLL73UfL7yyiuj7L1rsVwEx2fi+5XnF5Yseeihh4zuhBNOiDLH/GA8V7Xfp7L8CCGEECIptPkRQgghRFKU2i+DFUT5pF4v1RHTLvGEWjafo1kQT5ZlnWdC9k49by6nuBeh0hPf27RpE2VMYQ0hhE9+8pNRZtckurfwpGCs8huCPbGbK9FiVVI2l/fq1avB7wrBmn/5t6Xu6sI0Wq8kBac2Z7UbV4Tt169flM855xyjw77n8fKDH/ygwXswXDm82tVjmxO4fi5dutToMGyA5xWC/crjAd3hXMEd12S+P343V+fH9brsp7g39j3gubY8uAIzujT/z//5P0aH7khsWww1CCGET3ziE1FGF3MIITz11FNRZhcm9jPP9VdffTXKXkmDaiPLjxBCCCGSQpsfIYQQQiSFNj9CCCGESIpSx/xg3I3n++MUOPRhT5kyJfPvMA2X/Zeo4xLfedNI86SSN2f493kpmJj6yP2F7cuxFxh3M3PmzCjfd9995rrbbrstynicRQg2PfOAAw4wumHDhkXZK6WeN3YlFbyyABg/wHEcGPuFcHzOgw8+GGWOH8C+2HvvvY3u+OOPz3wupKXPTZ5/3pqFp6djaYkQQnjuueeivGLFCqMbOHBglDE2pFOnTuY6HAN8RAYee8DxQAsXLowyxoWEYMcYz1tcT1I76gLLTvAcrauri/KiRYsy74ExmN/61reMrk+fPlHmI4ZwPPAxKTh2OPZ27ty5Ud5vv/2Mrpb917JXACGEEEIIQpsfIYQQQiRFqd1enmvBM3uii4VdIAi6VDjFzsNLgU4p1b2IznMpoVkczewh2MrN6OpasGCBuQ5T3fk50Bz78Y9/PPO5PNcWm1+98ZcC6DbiUhPYbm3btjU6rPaLqbicsn7iiSdGmfsFU6e///3vGx1WiMUSBwxXp23p5F2Lunbtaj5jOEDv3r2Nbq+99ory/vvvH2U83TsEm9qMbq4Q7Nzh/sI5xv2FVaTZpYd/x+neZcJzRVb67kBX149//GOjY1cUginsF154YZS5Lz13d48ePaLM6yy6sbmfcf3gEBO5vYQQQgghqoQ2P0IIIYRICm1+hBBCCJEUpY75QTiuANMivZiLNWvWRJnTW9G/OGjQoMx7eGmjnm+2SCr45qCxpw0XAY9DWLZsmdHddNNNUf7Xv/5ldE8//XSUvfL62NZ8ojDGiHgxAOxvxtgV7ssU43wQL53YG08Yv4N9wUee8AniyDHHHBNlTMtluM+8U6HzHtfREsHyEnwiO8b58Bo5atSoKGNMDh8dgnGX06ZNMzqM9eLYLkyZx3IVIdi+5BT5Msf51BpcWy+77DKjwzWL18if/vSnUcbYHQZjK3FdDcEvHcNrPoIp801ZmkCWHyGEEEIkhTY/QgghhEiKUru9MCWO3QxsnkXwZOLly5dHGVPUQ7CmUzzdm2HzuZfq7rm2yub2aspnwP679957je7SSy+N8uzZs40OnxFNotz/OFYwnTqEEF555ZUoP/7440aHJlc8zZhRhWcL9gW3N/Y169BU/pe//CXKWKE7BDs3R48ebXT//d//nflclZYgKJurJCsNuhZzFl1+XLV36NChUe7Zs2fmPbCC77x584wO+9mrLMxgtenOnTtnXpe34n7ZwOcuUnEc/47DQf72t781eF0Itvrz4YcfbnQTJkyI8uLFi6PcvXt3c5333vXcarh+8nNh+jynwXup9Y1Flh8hhBBCJIU2P0IIIYRIilK7vbxqyZ5JGw/EY7M7ghkKbO718EyU6BJL7VA9D3RFcqVRzPjgTBs062K2F/cBmmPZvYnj4brrrsv8u+OOO87oPDdl6hWeEe4LHPfcn+iGPu+886LsuRW5ijNWIeYMQDST8zjwDituLnO1Fq5zPGx24sSJRocZXtxGuLZ67Y7z3cuAZVfJkUceGWWuNIzrQtlclllUyz2HY5fnza233hplXPdCsGvd0UcfbXR4H3R18QkJ+J7k78bxwa5PHB889/Bg3abMkJblRwghhBBJoc2PEEIIIZJCmx8hhBBCJEWpY368iqzoV8YUvhBCWLlyZa77Y1wB+40r9TU217TLWoNp5MOGDTM6PB2a4wWw2ijGH3AsybPPPhvl22+/3eiw4iyeDB+CjdfBirUhhNCnT58oN5e4gqYCYy623XZbo8N0VU5d/fa3vx3lBQsWZN4D09mPOuqozPtzyQGcqxxb4J1E31xifmoNzz+Mi8RK0CHYdRfXaowhCsHGmvBait/HcT177rlng88Rgu1bfk/g+OBx1RLA387jGOOr+F20yy67RJlPXc96x3EsrFfhGcfDPffck6njfu7Xr1+UOZXeqyTfWGT5EUIIIURSaPMjhBBCiKQotdvLcyGhCZtNorNmzYoyptixe8wzz6M5nU2CaH7jdD8vDR5NlM01PTqvW4/bDN1G7MbYf//9o8ztgiZ0vAeb54899tgo/8d//IfRfetb34oyV5BGdxkesBpCCN/73veizOZlzyW7ueG2wT6rlumYvwPBFOg//vGPRvf3v/89yjhG2OX45S9/OfP+eV0ZXh+V3R3SlNXXcQ3j72VXF4LzEUs/rF692lw3d+7czPsjZ555pvk8YMCAzGu99bOsa2ul4RP8dzh2uWwIvuPYhXTggQdGmV1WWfMZDwYPIYS2bdtmPjO6sW+++Wajw0Nqca0Owa+sX0t3tCw/QgghhEgKbX6EEEIIkRTa/AghhBAiKcobuBDyHxXhndbugeXUOQYg7z041ZbTa5GyxfzU+5WL+KLx2iJp/XhyNKeNe37krFLuPB7Qv927d2+jw1LuGMcTgvWRP/HEE0b35ptvNnj/EMqdTsv9WYv4EW/8Pv3001G+4IILjA5jSLA/L7roInMdp8OK2sFrGIJrFq+JWccPnX322ZnX8Zpx6KGHRnm//fYzOi/eCGmuR5V4eDE/uC6tW7fO6LC/evXqZXT77LNPlPO+t3htxuv4bzBOb9GiRUaH6yfPdYTjcnHMVfudKcuPEEIIIZJCmx8hhBBCJEWp3V6eOdZLtUXzGKeiZ13n3a9ImrPnCiqbe6Qefua8bhK+Du/D9+SKzAiaT70Twj1zNvZzly5djA5LIXBf4hjgU6UxfZfdXmXtyxD8/uN+8cZrlluD4Tn2m9/8JspslkfwtHZ2eYjNA7sycK3z0p7/8Y9/RBndnnwPHkdf/epXozx06NDM5/LWYHQDhfDR0iebm6zwAs+1hesgv5twXeLfjieks8sKy0l4rnFMWccK+yHYNfib3/ym0T322GMhi5/97GdR9kIImFqGh8jyI4QQQoik0OZHCCGEEEmhzY8QQgghkqLUMT8e3jES6OtE3zDHJuRNiWSfq3fSrBc7VNYUzLxxH0XgdsB4AY6Z4lOgETwqAZ8Tjy3he3J5/cmTJ0fZi9XBYzb42o0bNxpd2eIKQqisdIEXd+DdB+cAn+B8//33R5n7CcsQ/Od//meUOcUV4/282D9RXfDU7hCy19IQQnjqqaeifN5550WZ5xjGdIwbN87oJk6cmPksODYxzoWfpbmMD+/YGQ9+12H78vwaPHhwlPnYCHz/YOmREGxMJqbIc0zRJZdcEmU+ugbZddddzWeMDypyZAa+s6vdz7L8CCGEECIptPkRQgghRFI0G7dXkSqenTt3jjKmL3spdWx2R7dGkXQ7zx1XVoqkYHqgWZf7C/th8eLFRocupfbt2xsdtqfnstqwYUOU//rXvxrdww8/HGUeN2ga5pPF8fvKnNpeT337e3PDS6ktkiKPpuv/+Z//MTr8fjZVX3jhhVHGSt88xzz3sagdngvC68tXXnklytyX6KL60pe+ZHS4VjM4Hr3yImWolu9R/zuKlJnwwLWIy3Pg6ekc5jFz5swos9senwX/7oorrjDXYXVmvj+mxaN7LAT7PuAxhnOd35+1qE4fv6tmdxZCCCGEKCHa/AghhBAiKbT5EUIIIURSNJuYnyL+0Z133jnK3hEWy5cvj/KLL75odJiSyaeQe3E96JvmZ0a/Z95T42tJli+6UrB9uRz9Sy+9FGVOjcZ09rFjxxpdz549o4xpl5hmG0IId955Z6YO+5lPisaTiDnmp5ZplpuLSo8y4ZTX2267LcpTpkwxOoytO+GEE4zuiCOOaPCeHLdRS1+/sHgxfhhLd/fddxvdv//97wb/jtPS99hjjygfc8wxmc/BMZkY21Ikrsc7iX5zwu8NL64N1x7vyB+O3cGU9Yceesjo8AgSTjfH9fmBBx6I8oMPPpj5jLyW/vznP4/ynnvuaXRr166NMpc2wX7neEUdbyGEEEIIUSW0+RFCCCFEUpTHJrgJ2BzmmWox/Q/T6hYuXGiuQ3PbkiVLMnXeKbReCrSXVlwmquVi8FLdZ82aFWV0UYVg3VRspkaXGLYfuyLRPM8ut27dukX5kEMOMbpTTz21wfuH8NFUzrKTpx/Z1O6lxaP7givCPvroo1HGqs0h2JPcTzzxxMx7YnVadquhm7GsldFbCjgmeHxgGYo//OEPRodzE/uL5/AXv/jFKHup7exa9tzOnq5abvxa470P8p4UwBWeMWyAQznuvffeKKPLMoQQVqxYEWVeP5GuXbtG+aSTTjK6Y489Nso4NkKwLjIuK8O/AcH78JrfWMr5NhZCCCGEqBHa/AghhBAiKbT5EUIIIURSNJuYH/bjev5SPLIAU6U5vQ9jJDA9PoQQ2rVrl3l/9DdzbIt3XEBLS9/1yrV7JxhzKiz6mDm1EdsX/47vgd/HfXn44YdH+cc//rHRYTl4jjvhWK+s5ypLTEqemDKvz3h84jhnPz228YABA4yub9++UWY/fVY8Brd1c4nbaAl44xfLRODxCCFkHxfUv39/8/nQQw+NshfvweM3K6aIn5nHSnMpS+HNV/x93nUcL3PggQdGmUtQLFq0KMqvvvqq0WX15dChQ83nr371q1HGk9pDsHFDfKK898y4/nO8UbXjfBBZfoQQQgiRFNr8CCGEECIpSu328lIw85oCf/WrX0V56dKl5jp0cxxwwAG5n8tzh3g0F7dX3ufk67BduI3GjBkT5aOPPtrosL/mzZtndGj+xf5Cd1UIIfTr1y/KZ511ltENHjw4ypiqyTQXc3lj4DRkb45hGYfu3bsb3RlnnBFlNlXjd/Cp0+jW9FxuzWWutDTYBXbjjTdGmV3NCPbzZz/7WaPDqsNeWjPD1YuRspYNqRZ5K1NzG6E7Hl1gIVi3FIPr6Sc+8YkoH3nkkeY6rILPc9RzdXngb23KitwtewQJIYQQQhDa/AghhBAiKbT5EUIIIURSlDrmB/26HI/gpRpj7AYebcBxImVJUU4BjLvhVNi6urooc6wQ+pWxz7nEAPY5Hq8QwkdPEc6iSNmC5pqKXeRUd9Tx3/Xq1SvKfAwIXpv3VGZue7xHmU7mbongfOEYLUyJ5lIhCM5pPkIm7/wTjQdLUBx11FFGd9BBB0WZ5z3GYqUy32T5EUIIIURSaPMjhBBCiKRoNvYtdlGxmTyLWlaIFPnB/mKzKn7mfkV3Z96TvouY2Ss9ub0lmobzusCYapQIaCluxeYIurr4NO7TTjstypiyHoLtd0xv7927d7UfUVQAz0t2aWaBc4/LWOD6XGnJl7Igy48QQgghkkKbHyGEEEIkhTY/QgghhEiKZhu4kLe8OfssEYwbUTn92oKxNV68Dsd6oI8Z+5z7H0vvczyOF9eTN46oOVAfH1Vp7E4l38Uyw/2UNW91vEU54BjJkSNHRvn88883OpyrXmwlxhEpBrMc8HsR5zDOPV5LW9IRQLL8CCGEECIpClt+sCCdaN6oL1sWp59++uZ+BFElNDdbDurLciLLjxBCCCGSYgvV0xBCCCFESsjyI4QQQoik0OZHCCGEEEmhzY8QQgghkkKbHyGEEEIkhTY/QgghhEgKbX6EEEIIkRTa/AghhBAiKbT5EUIIIURSaPMjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSQpsfIYQQQiSFNj9CCCGESAptfoQQQgiRFNr8CCGEECIptPkRQgghRFJslffCurq6D2r5ICIfkyZN2qKx91BfloNq9GUI6s+yoLnZclBftiwa6k9ZfoQQQgiRFLktP/VMmjSpFs/RKN566y3zeeutt47yG2+8EeUddtjBXPf2229HeZtttqn6c7333nvm85Zbblnxverq6hr7OB8hqy8/+ODD/7BssUX+/wDh78V7hBDCVlt9ONSw3UPw2x7v8+677zZ4P76On9n7DZX+1vfffz/KH/tYsf9D1KIvQyjn3KwG77zzTqYO5/qm2LhxY5R5LcB1olWrVgWermnnJsJzrNI54IHjHGW+p7e24brA12Hf8u/JuyZXa3yEsPn6sqnBtTQE2/bYRzxu8Dpv3eP74xjYdtttiz1sI/D6s/Dmpyl5/fXXo8yTBhvQa0xe5BDsPH4hZ13H8HPhYCn6UiwLlS6U3u/1FlFvcUS8hQyfmTfDWRObP/Pii8/Jm63m2rfNEa/fX3vtNfN5xx13zLwW5zivC0U3PLWm/uXBcxHHXbU2OB74fZWO+UrnNML/kfTmZi3aobmAG0FuB2wnbrO8eOssvof5/nm/z3s3FN3Ibgqt4EIIIYRICm1+hBBCCJEU2vwIIYQQIilKHfOz/fbbR9kL7sPYoBCsPx/9/NXyQ+YNkuW/a0zAcy2o/x3V8pF790Edx2h5f4eBc168A44BL+6jUjgmDMeO4n9qC8d74PwrEjzZtm3bTB3GLzRlQGZTgW3Gaym2rxdHlHed8OYDByfjPOL743PxWur9XcpUGheD/eIFkGO78zzx+svro821lmrVFkIIIURSaPMjhBBCiKQotdsLYbNZljuEwVoR69atM7rWrVtH+c033zS67bbbLvO7PdjcV2bqn7WIO64adXE8EzaT17yNJli+P7o02IWC9+e6IjiualEHSuSDxye6ONE1HoJNfee+xvnOrp+yuboqTUXOwnN7VTuF2KPId+F8L/J33vho6eQtG8KuLby2Gq6zIiEmXs20WrrBZPkRQgghRFJo8yOEEEKIpNDmRwghhBBJUeqYH89/mbdU98yZM6N80003Zd7joIMOMrrhw4dHmf2j6DPH2CDWlS21nWHffzXhs1282B1sX/47jNfBe7AvH9saz3AKIYSddtop72MbOGYEwbardnyG8MH4qzlz5hjd3/72tyivXLnS6Pr27RvlE044wei6du1azUesGV5MoRcfkTd2osj9cQ54xypgDAmXjMBrvfWoyPEyvCanhNcu3rsJ/w7XvVmzZpnrXnzxxSg/++yzRoclZkaNGmV0e+yxR5TbtGljdPh9vP7XMtZSlh8hhBBCJIU2P0IIIYRIilLb6/Oa8LzU5ilTpkT5t7/9rbkO09sHDBhgdCNGjIgyp8F6FTDxWcru9spjCi/iGkOTJVfdXr9+fZSfeeYZo3v66aejPGPGDKNDt+XSpUujzH2A7Y7ujRCsyfWwww4zugkTJkS5ffv2Rlf2/ksFHoPY93/5y1+M7q9//WuUlyxZYnSDBg2KMo8DdI3WokJ4pfDahp9rUdmYXb34HbxeoA7dE567mNOoK/0N6D7je6ZccT2vG5Hb6I033ojyww8/HOXLL7/cXHfbbbdFee3atUaH7sYhQ4YY3fHHHx/lz3/+80bXpUuXzOesJemOEiGEEEIkiTY/QgghhEgKbX6EEEIIkRSljvlB3zGnOmK8DsfkYBo0+u8xFigE6xNdvHix0Xm+aK/8t+dnxViFpiwpn0Uefzv/Hs+f7sX83HXXXVGePHmy0T3++ONRXrVqldHhcQVe22LMAadgLliwoMFnDMHG+XDMD+LFMSg2qLbwOH3hhReizGMJY8s4pfaQQw6JMp/w3hyPQSgS24LjnuPl8DPPP4zr4DmAn3E95utwfnAaOq7rHTp0MLru3bs3eF0I9rfzuo5ra8pzk49satWqVea18+fPj/Idd9wR5fvuu89ch+MBU9tDsPN06tSpRofza/To0Ubnxfxg2RL+vsYiy48QQgghkkKbHyGEEEIkRandXnnTID3zL5o9N2zYYHRonp03b57ReScDowm5SHXfsplgq50qi+3Jpmg0ra9Zs8bo8DOn9mIKMqa3cp+jqRtP7w4hhBUrVkSZ3SSYkskp8h07dsz8vlqkGYuG4bH0r3/9K8pPPfWU0eF8HDlypNGdeeaZUfYq3JaJSk+5ZtcTrmeY1hxCCLfeemuUX375ZaPDir6vvvqq0eG8RXejV92dXW64to4fP97ojjvuuCh/4hOfMDp0UavCesN47cL98Oijj0b5uuuuizL3ObqeuJJ+jx49osyVvLESO46pEEIYN25clHfeeefM76s25ZzxQgghhBA1QpsfIYQQQiSFNj9CCCGESIpSO0vRL89+ak5vzwLLcXspkXiMQgjWF83+c/SleqfQFkkT3xzUP58Xv+I9M/uN8T7t2rUzuqFDh0Z50aJFRocpydxmGL+DR45wyizGftx4441Gh+UO+Jm9NFyvNAHGJpWtX5saLnPPKeYIpt9ie3NaLurw+JMQQvjjH//Y4HUh2Lityy67zOgwJoHnNK4NedeWpqDSU9yLHEuDKeW33HKL0WHKMq+fy5cvb/B+nFKNsSG8XuIcu/fee41u5cqVUeb4lcMPPzzKPAbKFo+Xpy+q9cwY14rxkiHYMT937lyju+CCC6KMxwgxGINz0EEHGR32+4MPPmh0OI6vueYaozvllFMavC6E2sbJpr1qCyGEECI5tPkRQgghRFKU2u2FeCf3sqkMXWSzZ8/OvCf+HbtpUiCP28uDTdF4H+6TPffcM8pcyRVT0TlFEt2PXbt2jTK7QqZNm5b53Wh27tmzp9H16tUrymw+x/vwc6F7M0Ww8rbn5mI3RxbshkJ3yEknnWR06A7hSs2nn356lPv06ZP5fdyfXvXb5gjPTRyvPD+w7dnNgP3HbYbfgXOf5xGu3ex2RlcajxV0v7ArBu/J61elpUhaAujq8tzRX/7yl40O12Dso969e5vrzj777ChPmDDB6LAveYxheQoOMcG1e9ddd828Z7Xd0bL8CCGEECIptPkRQgghRFJo8yOEEEKIpGg2DtEivluM+ZkxY0bmdRg3xL7NvHjxMmVLuWQa+3z8914foR8ej40IwcbhcDot+oOxDD+WYw8hhOnTp0cZ41FCsLFCnJ45atSoKHNcGeKd6p4inv/di7nAzxhDwmXsf/CDH0R51qxZRofjbuLEiUZ37LHHRtmLy2ou5Ql4jhVJYUewLfi39+vXL8p43EsI9liCdevWGR3OY4yZ5Firzp07R5mPEXriiSeivHr1aqPDoxXwOUKwKd0cc9Zc4nxq/X7g+K1LLrkkyo8//rjRYYzOoEGDoowxPiGE8JnPfCbKPGfxCJUxY8YYHZac4bI12M9jx451f0M1aR4rgBBCCCFEldDmRwghhBBJUWr7YN4qut7Jx2hKZTMjfu7fv39Fz1jEdOmllG4OmtIth6Zodi9hBVh0X4UQwl/+8pco33nnnVHmNE4cK5xqi5WhDz30UKPDqr9sjsX0Zy8FuLmY2auJ5yLE9mA3DY45dMVwRdhf//rXDV4XgnVzfP3rXzc6TH33Thdntx26SrEi+OamWnMU10QerzgHONV4wYIFUeb50alTpyh36dIlyryWYmmLm2++2egee+yxzGfGscMniONnHh+1PAm8EppyncWwgVWrVhndueeeG2Wu/ty+ffsof//734/yCSecYK7DdxivAfiZxxHOWXRZhmDdqeg6C8H2bbXXWVl+hBBCCJEU2vwIIYQQIim0+RFCCCFEUjTbYAUvfgbjP1BmHyXGBOyyyy6Z39Wc09mrDfrhi/x2/Ds+Ufjf//53lDElMoQQHn744Sh7cTbYz+i/DsHGHHBaLI4dPlkc40I4rizFOB8kb8wTly7gIxLq4SMssMQ+/80hhxzSoLwpsk6UD6FccT558dLevRR51mGcBaalhxDCyJEjo8z9jDE/OFf4Okxvf/bZZ40Oj1XwyiLw2o39x+t/pWtUSwDfi3/605+MjksJIJdffnmUjzrqqCivX7/eXLfzzjtn3gOPIuJjhDBGi++J8Uc8pmu5zsryI4QQQoik0OZHCCGEEElRatu9l97upcFjih+aAfmkWfzcvXv3zO8qYjr1nqs5mmA903qRarPocnjkkUeM7oorrogyVnTm78C0R05vxX7mdMkXX3wxyg888IDRYfVnPiEcv9tLm04R/P2cAo06di/hZ6wey65QZPjw4eYzVn/O+4wh5D9hvszgGsLzDz8XmZvosuJ1cPDgwVH2XE84BpYsWWKumzx5cpR5fiNcRd07JRxdXTzG0GXqlWRornh9iyUbLr30UqPDNZNT0dHVhXjrHJcfwBIDK1euNLo1a9Zk3mfgwIEN3qPWyPIjhBBCiKTQ5kcIIYQQSdFsbfdojuOMkvnz50fZM3Vjhge7PPJms7ArC023LcHtVWlGF4OuSD6kcPHixVFmsydmF6DrjPu1devWUeZnRpfKlVdeaXS9evWK8ic+8Qmjw/uUoSJ3WeG+8NzVL7zwQpR/85vfRJkPu0XXJVamDcFWEOZDbL2sLXSPoGskhObpHql0PeG/w7mDGTshWHcTzwFsQ6zay5WF8WDarGy/hp4LK09z1WjP/dcc+9KjiAvzuuuui/Ly5cszr/vhD3+YqcNsLC+7yzs4GLN0Q7B9whmFeCguuzdxXOE4rQay/AghhBAiKbT5EUIIIURSaPMjhBBCiKQodcyPV6kTP7P/3vN1Ihjnw+mSGLtTJK25SNXVzU39s1brubz7oL92/PjxRodxGxxXMGTIkCh369Ytytwn2F9///vfje6ZZ56JMqfZ33rrrVEeNGiQ0WGVUo5jaenptJsC46/4hGiEU1wvvPDCKKN/Hyv9hhDC9773vSh/5jOfMTrsay/Gx0vFLXufVTI3K53H3kndmPrO8UA4B7CfOdUdKwt7MT/83XvssUeUDzjgAKPDfueYT17LU2LSpElR5pgcXDPHjh2beQ+cJ16JD+4vfPfdcccdRofX8mkK+H28zlY7zgeR5UcIIYQQSaHNjxBCCCGSotRuLzSreml1WKE0BGtaRTMap9EhbN5r1apV5rWeOw7Ne2WvCpxlJsd2ZzOkl/LtHTaLJvPDDjvM6NCkzf2Mf4ft51W3xcMYQwjhlFNOifKCBQuM7vrrr4/yl7/8ZaPD9Gs2+Zcx9b1+fHup5gxW5uW2x9/Ic8frC0yV/e1vf2t011xzTZRxvIwaNcpcd84550S5yO9BmrJabLVpShc59jNXR/fWLHR94vxg1/LChQsz74F/N2DAAKM766yzosxVvvG5PFdaGaifO94cYtcd9r/37nv66afNZywjwuMfXZh8+HPWd/M6563xuLY+8cQTRoeuyIsvvtjoOGylqZDlRwghhBBJoc2PEEIIIZJCmx8hhBBCJEW5glCIvH5vr1y7dw/Pl+rhxfx4z1U26mOS2K+fNw3Yi7th0FfMqdFt2rTJ/Dv0hWMMlZfOyv5sL0Ue06Hx9PcQ7MnHfOJ0Gfu2PjaGYwu8mBmcA0XimLxYkHvvvTfKeIRFCHaMYFn7888/31xXyxRXYcGYC45tQ3h+Y7r5vHnzovzLX/7SXIcxmRxLifFheDRDCCF06dKlwWcMwa5R/MwYi1SGtPf6tcKLOeW4VWxrbneM08MyHiHY9ZLn/X777Rdlb4331jZ8lrVr1xodxm7y78H4o9122y3z/txGWAbFO2qjEmT5EUIIIURSaPMjhBBCiKQotdvLM82heYzNguhG8VLzipyWWwlldI0glTyf12aeK8RL68R+YVckm0/rYTfUypUro8ynBmP1WTar4hjjyrQIm5DL3LfcNthnPAfyurq8fscKviHY9HY+4Ru/79RTT43yoYcemus5RPXx1llMfee5iH152mmnRZlTz/E6dpX86Ec/ijKf3I7wvMXPZZ+b9c/DpU+8sAvvN6AraPbs2Zn35HCCz3/+84Xv763Hp59+utFhmj3z4IMPRnndunVGh+3CIQvVdnUhsvwIIYQQIim0+RFCCCFEUmjzI4QQQoikKHXMT16/LuuyUqfZt43+TI6TqAZl8z0zeeI9uF2wT7xYAY7rwfRTbhcvHRX9z3gdxxdhnM+zzz5rdMuWLYsyxw7gc/br18/oMN7BSwEuO168jhc7540PjOv4+9//bnT3339/lDlmYMKECVH++te/HmUcHyH4x8uI6uKV7sAYHSwZEYI9pgBP8cYSBiHYmLC+ffsa3XnnnRflRYsWGV2PHj2izGs8PjOnwWfFCW5uvFR3r2wI/3ZMG+cjLLBEBB8Xgv3HsVf4d1iKBGMpQwjh3HPPjfINN9wQsuCjgrBsCMc+6XgLIYQQQogmQJsfIYQQQiRFqd1eaB5j87nn9kKTOborvDTnIqY3r/pm2V1dDcGuLWzPIlV/sfIoVnwNIYSXXnopymz23GWXXaI8aNAgo8P+w2fZsGGDuQ7TLM8880yjW758eeYz9+rVK8rokuHv5vTdSquDbw7ynorujV2+B7b3n/70p8xr2ZX4zW9+M8p4ynRznDctBVz7eFyjq+Tf//630V144YVRxjWXSx9gP//617/OfA50c4VgU6K54jeOl7wV6Tc33lrqhV1477eePXsaHbr/eZ2dMWNGlLHacwh2DCxcuDDKl19+ubkOy1jges/3vOCCC4wOr2WXNoYw8D2xb71SKpUgy48QQgghkkKbHyGEEEIkhTY/QgghhEiKUsf85PXlev5STHt/9dVXjQ59ypxqm/fkdo+yxzHUx0Cxb9hLFfX81nhC89y5c43ummuuiTL6nkMIoWPHjlE+6KCDjG7gwIFRxud8/PHHzXU333xzlL0y65yG+5Of/CTKXFodY8Q4FqIa46NW8PN4MT9544Gw5EAIIVx77bVRnjZtmtFhGx988MFGd/jhh0cZ5y378zEGobnEdDRXcGxzDOPzzz8f5bPOOsvocL578Rjnn39+lI844gijw1IT3vEZHhzLmXdMNzVenCD/VpzD/H7Dz3jyfQi2Hzju8vrrr8+853PPPRdlLF2B/c9gSnwIIUyaNCnKuKaHYPuEYzA7deoU5aYscVHOUSKEEEIIUSO0+RFCCCFEUpTa7YWmP8+0yWZ+TFEeMmRIlNnt5Z00ji6Wapndy+wqyQu2C5u6PdM3Vll+4YUXjA77Fs2vIdgUc7yO2w9T3/kk4A4dOkT5K1/5itF95jOfiTKXO8AxwebYMvZf/fiq1rNhm7Ir8eGHH44ym7979+4d5f/4j/8wOq+aNyK3V9OB84rdm6eeemqUZ82alfl36LbZf//9zXVf/OIXo8wlI9DVxaEHuI57Vcq9vysD9c/uufH4/YbXepWhOdUdP69YscLoMDTg6quvNjqc697JCuii+t73vmd0GKLAf7dx48YG77EparkOyPIjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSotQxP+jn9fy63gnf48aNizL7rPFYBY738PysSJH4irLF/NT7ZYukhmI/7LjjjkaHJeg51bFPnz5Rnj59utHhycHczxyDUA/HjuAY4Jifn//851H+9Kc/nfndGBsUgvUx4wnvIZQvriCED8cU9yeOZS+2gMckHlPAMT/Y99zXo0ePjnL//v2NDlNsvTiOMrZvSwXjcB555BGjw5PWMW4jBDsHcf6ddtpp5jr8Oz6FHMcDz2kcH964LXtMWP2zc8wPvnO43AjGGPL7DecpHwly9NFHR5nn7JIlS6KMZQr4+3Ct4yN/zj777ChzWRL8fRxDy/2OeMeY1LJvZfkRQgghRFJo8yOEEEKIpCi12wvNe0XM4Gj2P+ecc6J8xhlnmOvQNIcusE1R5KTzrOcqE0VMi+juYLcFtsv48eON7pRTTsn8vvvuuy/KbB7FqqhoPh86dKi57rDDDosyVhEOwZrT2XzOri4Ef19TVh6tlPrfxuMM5xHrPNcymqD32WcfoxsxYkSUuXIt9qFX1bbapzSLysD5wdXX0S3M6x66rCZOnBhlnvve2u2tpThuvevK7vbKenZ8bu83eCESeIJBCNbtxX+HJ7TPnz/f6NC9ddxxx0V5r732Mte1bds281kQ75QAhl1dTUU538ZCCCGEEDVCmx8hhBBCJIU2P0IIIYRIilI73b3jDDw/KPobUWb/qJdqK6oLxgRw+iSmfHrHH2A6KKeG4t9x7Ar60724K44H8safd7xKcwKfnf30GJPDcwXnktc2Xnt7qcyoU2xQbcFjf/i0b4zX4VT3XXfdNconnHBClHv16mWuw1R6LwZMNB6MLzr++OONDvvIOy6qrLGp1SaNXymEEEII8f/R5kcIIYQQSVFqe3K1zW9FXGdi03D7eW7EN954I8qcNo6mWnZn4T3RfcWuEK9SbF74+fGzlz5eFrLmi9cv+Dv4N9XC3ZT1LKmY2stIt27dosyuEtQtW7bM6Hr37h3lj3/845n3x4rBcnvVFpxfXnkAb75hGIK3JhZJZy8jWnGEEEIIkRTa/AghhBAiKbT5EUIIIURSlDrmJy9emizixWko5qDx5C0/4MF+6qz0do5HqfTIEYSfH+/ZUsYHz4286fxF7omfWZcVY1TGGKoUwRifEGwMEMfj5Y0J22mnnRr/YCIX3jE8XiwPxmKV/biQatEyVnQhhBBCiJwUtvzU1dXV4jnEZkB92bJQf7Yc1JctB/VlOZHlRwghhBBJsYWOeBBCCCFESsjyI4QQQoik0OZHCCGEEEmhzY8QQgghkkKbHyGEEEIkhTY/QgghhEgKbX6EEEIIkRTa/AghhBAiKbT5EUIIIURSaPMjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSQpsfIYQQQiSFNj9CCCGESAptfoQQQgiRFNr8CCGEECIptPkRQgghRFJo8yOEEEKIpNgq74V1dXUf1PJBRD4mTZq0RWPvob4sB9XoyxDUn2VBc7PloL5sWTTUn7L8CCGEECIpclt+6pk0aVItnmOTvPnmm+bzdtttl+ta77q33noryttuu63RvfPOO1Heeuutq6JrDHV1dVW7Vz31ffnBB/Y/KPh5iy3shpk/5+W9995r8P4hhLDVVoWHYdV49913M3Xec3lttClq0ZchbL65WWu4j7C9WcfzOIu3337bfN5yyy0blPNQy7lZBByT77//vtFhm33sY/b/vNiGRcYy3ifv3/HcRypdW6pJWfqyUrAvi6yrWWPHmwsbN240n3fYYYfMa/G9yM9Vy373+nPzvXUKUqSB8l7rLZQ4iHgTU/YJnJes38GLY96/9zYE3iTCyYabJO8ZeQLlfeZN3QfBCcv3L/qCFJXj9dEbb7xhPuOcxv4Lwf5nZ8cdd6zS09WWImsNfi4yPpvyPx+Vro9eO9Ti+5or2Je8Afb+Y47rmzd28L3Imx1vHfcMAdi3PJ/x+3beeefMe1SC3F5CCCGESAptfoQQQgiRFNr8CCGEECIpmk3MT96YkRCy43U4yNELhvZiSDwfuedjRj9oGWJG6tut0ngZjyKxCvj9/CyVBBZzECz2O7e7F/fl+c9F0+HFgXmxOxxngJ95fOYN8tzcNCbQvqF7hGB/e5F7Zj2Lt554weteDJP3XJXGA7V0uM1w/Odd87m/cC7ye9CLkcz7nNtvv33uv2sssvwIIYQQIim0+RFCCCFEUpTa7YUmNzZ9o2maTWxZ9QY49RXdXuwS89whnknP05XN7VVPNUzd/JndRJW6FbKejccD9l+rVq2MDs2zRUzklaYOi+rCbf/6669HmU3vq1ativI222xjdDvttFOUefxszlpTHt4c49+AeOsQz02vPpC3zmbdk+cYPnMt2pmfGduFx0BLx6td563P+G7ENuP+8kIB8tbY2rBhg/mM38f3yFuzrxJk+RFCCCFEUmjzI4QQQoik0OZHCCGEEElRTkf3/wf9i5WmQK9evTrKV199tdFh6t/EiRONbtiwYbnuz3jXlq3Uep7n4biCvOmnXnlzjgl47bXXMnVZ/mCOA8E4n7Vr1xodlkXPG5PFKOanPGA67LRp04zuxhtvjPL69euN7sADD4zy+PHjja59+/bVfMRGU0kZCu9cp0rPLqskjZzTo/E3eCUjvPWE28E7jiHluZo37gZjg0Kw6yz2A6+l8+fPj/KiRYuMDtfgbt26GV2vXr2ijLF3m6LacT6ILD9CCCGESAptfoQQQgiRFKV2eyFs9vTMp2jufvbZZ6P8y1/+0ly3bt26KJ933nlG179//yhzumRe1w9TtnTaPCZ1Nnt7f4Pp5pzOuHDhwihPnTrV6J588skoz5s3z+jQbblx48Yoc/9jHw0dOtToxo4dG+X999/f6PBaNhnjb/fcf7WokC3y8ec//9l8vuWWW6K8ZMkSo1uzZk2UR4wYYXQ4dsuQHp3H7cVrT6WuLYTLgXjtknVSNz9zNZ5LFMerzszlQJBXXnklytddd53R3XrrrVFmlzP2+6BBg4zuC1/4QpQ/97nPGV27du2ijGUsQrBur2qvs1q1hRBCCJEU2vwIIYQQIim0+RFCCCFEUpQrCIVAfzPHy3gpmJjajGmxGOMTgo1LwbiTEEL44he/GGX2NXoppVnXberassK/3YtxwpT1ZcuWGd0111wT5ccee8zonn766QbvUQSMJeCYonvuuSfKM2fONDrs5913393o8Ld7JftF0zJ9+vQo81havnx5lHEdCMH2b5s2bYyuDHE+SJ7xxdfkXYu4BMCcOXOizPMWU515LcAYOdTxdfhcXbt2Nbodd9wxyhj7EYLtI++3FTnqJiX4/eOlwc+YMSPKV1xxRZSvvPJKc92CBQtyfTevwT169IjybrvtZnTY7zwPaxlPKcuPEEIIIZJCmx8hhBBCJEWp/TCeKZpNelk6NIFiqnQI1lzK1Sq9lMy8Lg9OGy2b26velVOksmpDf18Pti+mFYdgzemYvs736dSpk9Gh2xJN8JwSiSZdTsFdsWJFlO+66y6jGzhwYJT79u1rdJ07d44yt5HS25sOnrc33XRTlNFcz9cOHz7c6E444YQoe9W8y0CelHDvBHYG3clLly41up///OdR5lITWKKCqwJ7bmEE1z12a2NKNJehOOCAA6I8evRoo+vSpUuUvWrvKeOd6s6lSDA04G9/+1uU+b2I6zOPB+yTxYsXG92jjz7aoByCXXdbt24dmgqt4EIIIYRICm1+hBBCCJEU2vwIIYQQIinKFYRCeCnl6LNnHX7GNGqOwUGfOfuivbTAllKiPSvWB9u2SOyTl5p6/PHHR5njejB+Z5dddjE6jLvBNFlOucRU+kceecTo8Fk4zRdjFdq2bWt0XiwUjh3F/1iwbbgNs9oUY/OYZ555xnzGIy14fHbv3j3KF198sdHhnOa/e+ONN6JcppgRjk2q9KgIXEt5rcPxi6d28/fz3+G84rU16/4cJzJ79uwov/TSS0b34osvRvnss882OowN4bW6ucxHL04KqbSshvd32O4hhPDDH/4wyhg3x3MB4+gOOeQQo8P4IIwhCsHGXd58881Gd8opp0SZx1EtS1A0j1EihBBCCFEltPkRQgghRFKU2u3lndyOJj3vJGI81d0zzfIptEillZqzTj0uG9zOntvCMymjiZRN8uPGjYvyyJEjjQ5P7mXw+3faaacoP/zww+Y67BO+H1b2RjdaCCHsu+++UcZU+hBs6qYqOltwTnBf4xh58803M++B/cTV1zt27Bjls846y+jQNcOug+985ztR5vRofE5+rjK5ukLI7xLJC7Y1V77GtuZUY3RXsGsSXRIoe5WnvTWRXWJz586NMrtpJkyYEOXm4uZisJ1qUUGe2xO/o66uzuhwzcfrDjvsMHPdN77xjSj369fP6Dx32W9+85sosxsbP48fP97o8oZgVELzHDVCCCGEEBWizY8QQgghkkKbHyGEEEIkRaljfrzYGvQxc0wOfmb/YhZ8onfW/fi5OF4G/c/eSfRliiHx4nqKxB7g7+XfjjEH7IvGNuS2xjR4PM37uuuuM9dNnjw5yhzbhamwBx54oNENGzYsykWOPMDvaC6xXdUE+9eLBfHiubANMe4khBB+//vfR/nJJ5/MvMfEiRPN55NOOinKGCMWgh1nZT/eop5qrRN4TAyfno6xURz3hvFVXCaiV69eUcY1g+cwriEcu4PHZ/BaivFGfMyCd7xRc6QW7wMuAYBz6rnnnjM6LPWwzz77RJlLDIwYMSLK/MzdunWLMp/cjnDJhJUrV2bes5ZlZWT5EUIIIURSaPMjhBBCiKQotdsrbwoju1jQDfHqq69G2UvJRXNeETy3V3PBMzWy26uS6r18H06DRFP71KlTje7OO+9sUObTvNGVxlVB99577ygfe+yxRofmc04BRti1k7fcQQpwe2Mauef2wrnyyiuvGN2FF14YZR4v+Hff/OY3jQ4rPLNrCz/vsMMOmboyVHCvxA3iVR3HzzzOsQwF9+WSJUuizO5qrMaOfY5ujBBCWLZsWaZuzpw5UfZ+M7pl+PvYveNV528JeKEIOAbYVfjrX/86ytzPWHUfqz1z6jmu1VwWAcdH7969jQ7nMD8/ur9Zh2EPPGcbS/N7UwshhBBCNAJtfoQQQgiRFNr8CCGEECIpmk3gAvvv0bfJqcboH8aS2+zLxzgOPDGc8WIAPP8lP1eZ0tvzws+Mv5fjnfBa/js8vmD16tVG9+CDD0b5hhtuMLrHHnss8+8Q9Adz2nSfPn2ijDEhIfgxWtiXRY75SAH073OMBcb58PzA+YjXnXrqqeY6jA3heI/PfvazUeaTpRGet9489o7raC7gGunF43G8R8+ePTPviTqMvwghhPbt20d5+fLlUeajSubNmxdljvnBduc4OtTxd+Nv5TFWtvitauPF/ODvveSSS4wO+4GPd5k0aVKUsRzIhg0bzHVt2rTJ/G4cYxxXhv3Hayeu3RxXVu04HyTtFVwIIYQQyaHNjxBCCCGSotm4vdhU5lVoXbx4cYP/7p0Sv+OOO5rPaFr00pr5uZpT5dF6t45XAoCptPozVtu95pprjA5TMGfOnGl0WSdHc+o5jgd2kzz99NNRvueee4zuxBNPbPAeIaRZuTkv6Oriyr9o8mb3C86zP/zhD1G+7777zHXocuS02Z/85CcNftem8NwhZU2PrvS0b+/v+B5Y/Zldxuh2YBcIrot4Ha+XL7/8cpTxpPaGngXB38CuOvwO7jt0nbREtxfC7zRMb//b3/5mdNgun/jEJ4zu+OOPjzKurZ7biddgbGt2b+KazKUrsDK0Vxqj2sjyI4QQQoik0OZHCCGEEEnRbNxeRbJtXnrppQb/nU3BaIJnU1xe8zKbVT3XWtmob8NKqzgXyV5DMyhXHsXMA8wgCcGatNHszi4pPKyRM0PQlXbZZZdl/t3BBx9sdOwKzXrmpjTVNnewLy6++OIos3kdK8lixdkQQhg8eHCUvQrr3gGbrCur26tIBXlci4rMTXQpcT/gHGAXI7YnXsduUDzIktcadF/xbxs0aFCUx4wZY3Q457iNytqX1cILN7j++uujjAfDhmDHxM9+9rPMe6xatSrKnAWNmXw8HvD+jzzyiNFh33J2YYcOHaLM8xJda+ierQay/AghhBAiKbT5EUIIIURSaPMjhBBCiKQodcyPF1eBfk9Miw3BnhTMOgTTrzmV0sOrSuqdiI6UodpzVhoo+tArTbVl8O8wZiOEED75yU9GmdMnMc2ZU54RrDB70003ZeqmTJlidP/7v/8b5T333NPo0E/N/ubU0+AxrsOLBcH4gRBsWQOM/eJ+P/nkk6P8la98xejwWo73wHWC5z7H9WXds8haUGuKlJPIW3Xcm8M8rrE9eQ5g6QCMFeLTvnGs8DrulR+YMGFClPfee2+jwz7i0hZerF5Lg8fHrbfeGmUe71jGAKve830wzofnJfctgtXbb7nlFqPDMTdgwACjwxPlGa/MTGOR5UcIIYQQSaHNjxBCCCGSotRuLy9lEc2zfEgbps7hPfjQNDTpsYnc+24vnR1Nz/xcZU2J5t+O5mc2peNvz3soaAjWNXLkkUca3QEHHNDgd4dgD9LD7/PSW4855hijQxcKH446a9asKGPF4RBC+PGPfxxlTsEsg9uSqX9GbkPvWb2DeBE2r2N/egfcYjXmEEL485//HGWcf0OHDjXXYdszed1Snpur0ns2NU3tXuWxgm4przwAjo8LL7zQXIelJ3gNRvbYYw/zGd2dnB6Nz8mumbLC7YcuHe/gbgbHxLRp04xu6tSpmd+H4QU8N7IOrC5SIRvDCx544AGjw7X7ggsuyLwHvzdqOf5l+RFCCCFEUmjzI4QQQoik0OZHCCGEEElR6pgf9Ot6KdfeUQf4d+zP9vz8XmxLXj9k3tTTzU2RU929NH/8O74Htj2nonqngFcCp2OedtppUf7CF75gdBiX9eKLLxodjh3+PWXs2/r+4PgBz2+f16fP98S24fmAJfZvu+02o8P4DCw18e1vf9tc171791zPJRoPxuRwOjuugxwHicdW4LElDz30UOb9sc9DsEfWXHLJJUY3bNiwKC9ZssTo8CRwvmfeOLamxov5KbIG4xyaPn260WGfcCzUqFGjolxp/CmOB46fPPPMM6PMY6Vfv35R7tGjR+7vq2Vflm8FF0IIIYSoIdr8CCGEECIpSu328kCzO5sM8WRwNP15pkXWVVqdGc10taxOWU2KuHDyVpzle3qnNyOc6ojuFmx37i/8jKUOQrBmdy4/gC43TNUMwZ5gjCn3Ifju1M0Nu6iQIuZ1hH8jmvCxfUOwVbPnzp1rdDgOvvjFL0b5qKOOyvUcovqgqwvHfAjWhbxy5Uqjw3l2+umnR9mrqo9uLv674cOHZ/4dVwH25l8ZXdIhFKvWjfDvw3canmYQgn/aPVewR7DPcG5zSjx+9+WXX250N954Y+b9zznnnChz2AM+J7u2sGq03F5CCCGEEI1Amx8hhBBCJIU2P0IIIYRIiuYRlBI+6i/1/LqY6o5weh/6Hr1UZvadejrPf1nmOJG85I3d4ZOWMQ6F2wzvyeUHKknJxNPCQwjh6quvjjK3Oz5L//79c39Hc+0/D6+chBdjdd111xndo48+mvkdBx10UJTPOOOMKGOcXgjlTVdu6XjzjWPpfv/730f58ccfz/w7nN+9e/c2uosvvjjKK1asMDocExw/6aXnFzmSoSnx1kuO08PPvCZiGjmvQ/hOw3hG1nnPhvfn9Hw8Nf7nP/955v0OOeQQ8/mEE07IvBb7kp+R+7aayPIjhBBCiKTQ5kcIIYQQSVFqt1fWSbMh+CZETM/zqgejiRdT6kLwTX94nyKVf9GU2VzS4Bnv9+GJzcuWLTM6PG14hx12MDqs/tmrVy+jw37H9uOU9TVr1kT5V7/6ldE9//zzUfbcp3jqcQg2vd2rzlo2uI88N0CRtHhk8eLFUf7jH/+YeR27ObCSc58+faJc1vTkFFi7dm2UuaQD8thjj5nP5513XpRxrPCYQnfZL37xC6PDtZqrAuNc5XuiO4QrGeOzlMkF5j1LkTR4vA+XAEAX0siRI40OKzJ36dLF6LDt8f5PPfWUuQ5d1UuXLjW6ESNGRPmXv/xlrucPwbq6OFyCU+2riVYcIYQQQiSFNj9CCCGESAptfoQQQgiRFOUNXAh+bA3C/mCME0F/M5fax7iUV155xeiy0uVDsGm4nIbY0lKg2Rftpetj3NSqVauMbsGCBVG+9957jQ6vHTdunNHtvvvuUUbfMPui8fRwjC8KwY4P9jd/85vfjPK+++4bsuAYH4w5qvSE5FpRJM7BO7ke241j4v7whz9EmfsC4+xOPvlko9t///0bvD/T0uZRmcEjLPhoCozj+/rXv250mJrupWbjHONjTDDGg+M7MM6O5x/q+PvKRn3beO8wL4bQe7/17NnT6LBcB6+DGIfzjW98w+jWr18f5auuuirKvFZjnA/HG/3Xf/1XlAcNGhQqgee9t3Y3Fll+hBBCCJEU2vwIIYQQIilK7fZCvFRA1qEbYtiwYVFmtxeeYPzcc88Z3ejRo6PM5jZOrcxLmdIuawGabrkq7+zZsxuUQwhh4cKFUZ41a5bR/eUvf4kyp5sjnPqOdOvWLcpHHnmk0Z111llR5oqontmdSy+Ugfp5UMRlhGOS/+61116LMvZRCCE8/PDDUW7btq3RDR48OMqf//znjQ7bEWXuv6zrRPXBfsc+DyGEX//611HmNRLB+T5hwgSjQ7cXz2F0dXnzm0E3LLrtyki9u8ubl14pF3Z7oW7gwIFGh+EaPXr0MLrp06dH+bjjjjM6LBWCLjAG11J2neE9OQ0eU+t5ruP7mkMIvErejUWWHyGEEEIkhTY/QgghhEgKbX6EEEIIkRSldqajD5jjbND/xzEBmIKHqdOckovxDnPmzDE6TPnksuse6LstciTH5qC+fTkWCX3T7Kf2/NaYis5l8vfZZ58oc8wPnsK+YcMGo8NUW4T7BNuW0yy/+tWvNig3dB8ExxU/Ry1PG25KvP5E3zz78PEYEo7V+PSnPx1lPsokC44Ra+nxcWUC43x4jfrnP/8ZZe4TjEXB9fLAAw801+E9vfgtjt3EMcHHHmCcT5ET0TcHWXPMi1P0ymdgG/bt29fofvCDH0T5ggsuMDqM2VqyZInR4dqNMscUYQwYx3YhnAaPcJ/g2OF1QKe6CyGEEEJUCW1+hBBCCJEUpXZ7oXmPzbHoUmIdpk/W1dVF+ZBDDjHX4cnUfKI3mirZfeWZJD0zq1cdeXNQ7RRi7Ac+zbtz585RxtO8Qwjh7rvvjvIDDzxgdOgS22mnnaI8YMAAcx26YU466SSj69ixY5TRpMt4FYeLuD6bK1zdF03ObOLGdHYeR9hWPFeyKrayS6Vsc6Ulg2vWvHnzjA5dYt78QPfLMccck3l/D3Z5IN7p3jx2movLNG9leK/9+LfuvffeUf7tb39rdHfccUeUH3nkEaPDFHmswr3XXnuZ6/K6sb0QD9ZtrnAQWX6EEEIIkRTa/AghhBAiKbT5EUIIIURSlDrmxwNjAjhFEmME0JfJaXN4Ai77Hb10b1Ec9G+PHz/e6PDz97//faPDeCvvBHLsIzy2JITK/dR5y9GXpYRBJcdbIBy748W9tW/fPspezEWlbaM513RgTAm3O8bnYYxkCCEMGTIkyscee2yUOR5Pfdl0YNmJfv36Gd3Xv/71KHPJj7zxR1jyo7nHQZZj1RZCCCGEaCK0+RFCCCFEUjQbtxebz9EFwiZ51KEJnt1e+JnTOGthqk3Z/FupmwivzZv+XOSU50pTqsvo9mrs+OK/12nqaYBzAEtGhBDCxRdfHOUXXnjB6Hr27BllTLEuUsFXVBecs/xOw3ehN7fRdcbv1ubu6kLKsWoLIYQQQjQR2vwIIYQQIim0+RFCCCFEUpTaqe/FY+BnjrlAnyX6m72U3CIl0Tm1PouUY3yYvHExXvyWdz+vrfEeXon+IjEuZezbpnymvHMgL2Vsz1TAtueYjt122y3KY8eOzfw7XD8xHbqhe4qmodJjPnBu5z2apDkiy48QQgghkqKw5QcPChXNG/Vly0L92XJQX7Yc1JflRJYfIYQQQiTFFtX23QshhBBClBlZfoQQQgiRFNr8CCGEECIptPkRQgghRFJo8yOEEEKIpNDmRwghhBBJoc2PEEIIIZJCmx8hhBBCJIU2P0IIIYRICm1+hBBCCJEU2vwIIYQQIim0+RFCCCFEUmjzI4QQQoik0OZHCCGEEEmhzY8QQgghkkKbHyGEEEIkhTY/QgghhEiKrfJeWFdX90EtH0TkY9KkSVs09h7qy3JQjb4MQf1ZFjQ3Ww7qy5ZFQ/0py48QQgghkiK35aeeSZMm1eI5Nsl7771nPn/wwYeb6q22yv4Z+Hdbbrll7u977bXXorzjjjtmXofPwd/Hz/XOO+9Eeeutt879LCGEUFdXV+j6PGT1Jf8mZIstqmKsMFTSR2+//bb5jG39sY/l39O///77Uebf7T0LXlu0TWrRlyFsvrnZ1Lz77rtR5jn21ltvRXnbbbc1OuxrHiOVrhMh1HZu8pj0xhr+PpT577zfx3+HePPK+27v+/L+Hl7/8Z78XF4/b4qmXGdrAc4NBtua2z1vO3lt63039hf3ZS3e3/V4/Vl489OUYENX8sNDsI3HkxJfoDvssIPReYMB/26bbbYxukonepnI+5xFFua84AYxhOxNIrc7sn79evMZ+4RfiN7E8zZGRRdVUT28Oeb9p8Lrz7JR/3z8nPiZxyB+LjI+8aVV6TjP+9384sNrvT4p+p/FVPHWs7zgPPE2SfwfUG9NRvgZvQ1VLeepVnAhhBBCJIU2P0IIIYRICm1+hBBCCJEUpY75qTTADv/O80N6fuRWrVpFmf2OXlCgF/dStpif+t+xueNXvBgOjAHyAvaQnXfeOVPn+ZCLBK+XrS9TAtve60+ep9WIh2gqssZXNWIgvLievGsuf/bmphe4jDF43pziYNq8sU+pgQH/PN69dRb7Bdua/wbv6b1beYx5cWXec9VyzqY7SoQQQgiRJNr8CCGEECIpmo8dmEAzGptS0WWFrFmzxnzG9Pa89wihclNcS3CVVFrfBtMi2cyJnz1dXjZs2GA+4zOzqXa77baLMv8edIuyqbYxNZtEMVatWmU+t2/fPsrcZ14NIA8cMzvttFPRR6wZ/Pvwc6U1eaqRzl7k75BK187m5LIsC0XWTm8NzguOKx5j3hqJcxbddiF8tDRJNZHlRwghhBBJoc2PEEIIIZJCmx8hhBBCJEWpHalvvvlmlDE2I4T8KXdLliyJ8mWXXWZ0eH7Xpz/9aaMbN25c5j09/7OXilq2FMw8MTteOXoPjkfAPmK/LvYzg7E16P/lmCy8rtKYDX4Or2SC4nyaDozxYaZPn24+/+Y3v4kyH5UyYcKEKH/+8583ujLF+YTw4TpSJK7Oi3fy0tlxPhZZo/BaL07Euyf2kXdeX5HYj0rjvloCXjvhu4nbOuvvZs+ebT4/99xzUX788ceNrkuXLlEeNGiQ0Y0dOzbKXbt2NTrsI+98sGpTrrexEEIIIUSN0eZHCCGEEElRapugZ0r1ToJFM+4LL7wQ5T/96U/mupUrV0a5e/fuRjdy5Mgoey4ONkt7bq+ypbrneZ4iJ7eji4zTzdH9+OCDDxrd1KlTozx//nyjmzt3boP35D5/4403osxm1X322SfKRx99tNHtscceUWbXKsJuPDTP5j3NWFQGj8EVK1ZE+aGHHjK6f/7zn1HeuHGj0aGLZeLEiUY3ePDgKNcyvTYv9XPJc9vwXMT1soj7yvu97B5BsF/yuis8d3gRVzK6qHl8pDwfcQ321m7uc5wbzz77bJSvuOIKc92NN94Y5cWLFxsd3rNPnz5Gh2ElX/va14yub9++UfbW4Gojy48QQgghkkKbHyGEEEIkhTY/QgghhEiKUsf8eP5u9EXzdeh/Xr9+fZQXLFhgrkP/6Jw5c4zOKx2POo5LQl97NU5griV50mmLxA5g6YDly5cb3T/+8Y8o33bbbUb30ksvRZlT67NiDnbccUfzGf8O47z4Wfh+GB+w++67Gx2OK26jlOMKmhpu+9WrV0f57rvvNjo8wmbnnXc2ur322ivKvXv3NroyxPkglcTjeTGSuCauW7fO6KZNmxZlXiNfffXVKHPpgKzUaS+uB+M7QgihW7duUR44cKDRYRwmr/F4z7KVENmcYFsUiTGdNWtWlHGtvuGGG8x1OB64BAWOj5kzZxrd9ddfH2WMrwvB9jOvq/hO4TW/sWjUCCGEECIptPkRQgghRFKU2u2F6YzeKesMntaOqXNsOt1+++2jzGmxaH7zTlb2KFtqO1Ntt9frr78eZXQ/hGD7ktsazeetW7c2OjSno8wmf0x1Z3cHur3uvfdeoxs+fHiUuSppx44dM7+v7H3bkuCK4FOmTInyXXfdZXQ4p7lKO6bbtmnTxujQZF+G6t1ZLix0KbF7yZurWCZi6dKlRnf55ZdH+cUXXzQ6DAdgtxeC85ufA9djnKchhNC2bdsojxkzxug+9alPRfnggw82OnSXMbgO4XhIgbzrEpZ5CSGEm266Kco4Hngd79WrV+Z34ZyaN2+e0S1atCjKTz/9tNGhO7pfv35GV21XFyLLjxBCCCGSQpsfIYQQQiSFNj9CCCGESIpSx/x4vnf05Xq+b0yr5nRWjD3h1Gz0TXPJbfTHe6nTXPK9bCcM17cTx7N4qfwe6J/lVOL9998/ytyvCxcujHKnTp2Mrn///lHGuC9+5quvvjrKDzzwgNFh/3E/Y59gjE8I/hEqKZ8cHYLfNtg33E9ZcSne8SFchuInP/lJ5t/hGPzhD39odBznk+e5yoZ3OrsHthOmD4dgy0RgbEYINpaHY35w3OM6yOnKuJbyPbAUyf333290y5Yti/Iuu+xidJhm7cVyloFKSp5UI6aQy4bgWo6p7SGE8IMf/CDK+J7s0KGDuQ7jsI488kijwzT4K6+80ujwGJo777zT6L7//e9HmeP7almConnMeCGEEEKIKqHNjxBCCCGSotT2es+sm7fCM1YPRhMrM2TIEPM57+mynkmziMtoc+KZWIukeHsmygkTJkR5/PjxRofmWTZ7tmvXLsrYnuwKmTx5cpS9VPcePXoY3cc//vEoszsAzfdsyk/R1YVgn/E8xTGCbhMG3Zh4UnsIIXTu3DnKdXV1RodptOxa/u53vxvlsWPHGh32oeeuLhPVKrGA45XLhqBLjMc1uqm4zXC+Yzo7uxexbXk8rFq1KvP+s2fPjvL06dONDtPiy1ade3OC44XfP0uWLInyd77zHaPbaaedooxlEXjunXLKKVHu2rVr5nevXbvW6KZOnRplLrXw/PPPR3nixIkhi2r3syw/QgghhEgKbX6EEEIIkRTa/AghhBAiKUoduJA3lZOvw/LmnNKXBZ/ojf5SjitAvJgf9s83l/RofO4ivw99+5zOjv58LwWTQT8v+oZvueUWc90dd9wRZT4+A+O3Dj/8cKPDE4aLxIFgu6R41AX2L6cvo847lgb/DmN8Qgjh4osvjjKXLkD23HNP8/nkk0+OMsYxMJwiX1aKxPx4YxLHMsfEDRgwIMqYXh6CXbN4XmEZCjymAv+ddfPnzzc6PJ6Ej77A7+Y4Ee+ojeY4N6v1nHgfbk8sB/Lkk08aHbbZYYcdFuWvfOUr5jo8AshbLzmGFu/PsZUYi1TL4ywYWX6EEEIIkRTa/AghhBAiKcrre9kEnqsEzbN8Ki2C5nk+0TsvlVTvLDvoRuTfl9cNxmZcdF+xyRrNpy+88ILRPfroo1G+9tpro8zuzNWrV0eZxwZWJeXUTRwrnsmV3SSYslu2irJNDbtw0azttSn208yZM43uoosuavC6EGxa9Zlnnml03bt3jzK7V3FMcikLLLHQXFOnvcrsntsLXYc8b1u3bh1lDi8YMWJElHEO9OnTx1yHY+Cee+4xOnalZcGp0+vWrWvwu/k5y9SXTe2C4zXyT3/6U5R5znbr1i3K559/fpSHDh1qrsOQEm53nG9cqR/XfB5HqONSCNh/1W4/WX6EEEIIkRTa/AghhBAiKbT5EUIIIURSlDrmB32B3gnvDJ4ui/EkfA/0UaJvm3Wer5F1+Hfsdy/bcRf18TtFfh/CcTB4Lft1Me2S43qmTJkS5euuu87oML0dS+EzGAfCMQ1Yhh192/zMHhzrlHqcD/Ynp7PjZ467QZ8+xqFwLBbGdPA9jjjiiCgfeuihmc/oHbvBYFp1meJEqhVTiGsPj11MTcd2D8HGRuFJ6vx3ODe5RMTixYujPHfuXKPD8cBxKLi+8LE33nEdLZ28cZc33nij0eFRT8zPf/7zKI8aNSrzurzrHh9xgusFz0svTg8/V7s8jCw/QgghhEgKbX6EEEIIkRSldnt5biJPx1VE62FzIZrR2KSG5jav0q9nimO3UN6K1U1FHrcXk9cNxr8dTwq+7LLLjO7666+PMleYxbb33BFoFueK3LfffnuUufIoVgT2KFKVOgXQ1bB+/XqjY7cjgu7JSy65JMr333+/uQ7HD1cM/slPfhJlb0wUcUnjc5WJWpTSYPc/VmDmStsYNsCuDGwzTIHm+YcnsqMbe1PPhWOAq3U3ZSXgMsPrLFZLvvTSSzP/7pOf/KT5fMwxx0TZc2kjXKYAx8PKlSuNDtdnz+3alPOwXG9jIYQQQogao82PEEIIIZKi1G6vSt1EmF2AZmN2XXTp0iXK7Nry3Fl5I9C5knHZ3F71z1Pk8FKEXQdoguV7YgXfqVOnGh1WBGaTKGbhedVg0f3Bz4UZJr///e+NDjNYMIuooWcRjQddIHh4KbpeQrBZQD/+8Y+Nbpdddomyd6gqz3ccn+yaKVOGl4d3aGelFXDR1dCjRw+jQ7cHr3W4ZqKMLrAQbBhCVkhCCB/ty549e0Z52LBhRoftwN+H7dASM8G89RqzZfE9GIJdS9F1zPC8QXBeei6qhx9+2HzGrEGuAI7PxW48HBPVnqPlehsLIYQQQtQYbX6EEEIIkRTa/AghhBAiKUod84Pwaa/o2+dYGkyzYx8ignEG7E/04nPQD+mlPHvfXWbwuTmOwGsXT4d+XT4pGFNo2e+PaZD4d5xOvXz58ijfcccdRoe/Ydq0aUb305/+NMoTJkwwul69ekW5SIXxFMDSBdwXGE/DVbl/+ctfRnnRokVR5jiGH/3oR1E+4YQTjA5TcTEVOwQ7zvieXh96afBlohoxP9wuOG855gfjbvjvcK5iny9cuNBcN3v27Aa/i+G4S5yPBx10kNFhP+N4COGjafEtGe6Tq666Ksoc74Tjf/DgwZn39MoIYOwOg7GbvAZjbOXYsWONrl27dlHm8eGVmWkssvwIIYQQIim0+RFCCCFEUpTa7eVVWUbzGJrbQshf/RPNgmwyRtcPm+LQ9Mdmd0wHZVeaZ7LenHiVcIu4vbCKJ/cXms85zRJT2Nms2qFDhyhj23I6JrY1u0m+8IUvRBndNSHYQ3D/+Mc/Gt25554bZW6HMqZG17shuI88Nw6OX8/EzOZ1L4UY3RBXXnml0f35z39u8G/YFH722Wdn3h+/23uOIgchltXVVeQ35F1T+J64fnprJ6+zmOqM340V20MIYcGCBVHm9RIZOHCg+XzmmWdGGdePEOz8L3tJijyV9LldcC56Oi4bgmU9OOzi2GOPjTLPm7zvJgw/4bUaQw/uueeezGe+6KKLjM4LI6nle1KWHyGEEEIkhTY/QgghhEgKbX6EEEIIkRSljvlBfx/HHOBnjlVAX6fnO/VS7PKepsz+c89HWbaYn3q/OftZMSUy7+/ha1mHfnkui45pq/wsWbE1XiwEpzR/6UtfijKXXcf4FPRZh2B92pyCj5/LkgZf/xxeeXomb6wL/34PPMrkwgsvNDosL4Fj5Be/+IW5zkupFdXFi/PBoyP4OhwT8+bNizIesRBCCGvWrIkyp6FjDB6fQo5xYDw3O3XqlPnMZZub9WUAvJg6T8dzFPvk+eefN7rVq1dn3mePPfaIMrcLzkWM6+H1Fz9ziQGMtezWrZvR4fd17NjR6HAtX7t2rdFhGZRqI8uPEEIIIZJCmx8hhBBCJEWp3V5eWrWXcodmNO8eWJm2yAnl6N7x7u/9XRnIep68z8nXeaZbNEWz+bySKp58Kjd+xvT4EGyKLqbjh2BTPtevX290+JmrGBdxA21uPHdrpSneXor8r3/96yhzhWecq3ha+7777lvRc4jagm4OXs9w7PzmN7+JMrti8B5cauJb3/pWlLncAYLu0hDsPC5j2Qmkses+z1EsDfLss88aHbqJuATA3nvvnfkd+IxZMoPzPIQQXnzxxSjzWvrkk09Gmd1lGAbBbq5ahorI8iOEEEKIpNDmRwghhBBJoc2PEEIIIZKi1DE/CJfq9vy8nTt3jjLG/7DvlFOuEYzlyZv2zvAzl62EvhevVA+nTWNbeOnmXAof/dSYqhmCTYPkNsJ4EowX4e/Gz5zuefXVVzf4XSHY3zdkyBCj4/7LeuayUel49WLUOK4HP993331Gh8cb8DwdNWpUlE877bQoYzp0CB+N8RC1A+cAjwFvjt91111RvuKKKzKvw3v26tXL6P77v/87ysuWLTM6PAmc59u6deuizGOsbHMzz/PwOuu9K3BdWrp0qdHhO41jH/HvOPYR29CL0br77rujzDE/GOfz2c9+1ujGjx8f5SKlOHS8hRBCCCFEldDmRwghhBBJ0WzcXl6KMtOjR48oo8mR06PRFeOdnOudeu6ZJyt1PzQ17N7xUvk9kyWaovF04RBCePTRR6OMbskQQhg5cmSUe/fubXRodsf25FRzdJtccMEFRvfcc89FmU3QmML+qU99yugw7ZL7EsdS2czsjGc6xr4vYmLGUhPougjBtg27JM4777wo4xwr+8ncLRlcw3BNZB3Pue9+97tRZvcIgqUtMCU+BOum4TAEnHO8dmNVeNZ5rrqywuuLNy+9NRhdh2PGjDE6r+RHVhjJU089ZT5jn7PLDUsV/OEPfzC6vKUJOFzCqz7eWGT5EUIIIURSaPMjhBBCiKTQ5kcIIYQQSdH8nKMNwP5L9AdjXAGn077wwgtRXrJkidFx7AmC/tiypa9XAvvM854wzH5qTHWcM2eO0T3zzDNRnjVrltHhSc8HHHCA0eFJxOgrvv/++81111xzTZSnTJlidPicODZCCOH000+P8ujRo40O+5ljn8oY8+Ol5meBbeOVPuBYkD/96U9RfuCBB4wOYxSOOeYYozvooIOijLEL/N3e8TWiumA/cNwNjvOLL77Y6DCWDvuc5wPGeR111FFGh2UvOO7Li6305mbZqJ9jXkydF6fE7ze8D5cO6NevX5QfeeQRo7vwwguj/I1vfMPosJ8vv/zyKN9+++3mukWLFmV+9x//+Mco45oegv19vJbgmOMYH4wzq/Y6W+5RI4QQQghRZbT5EUIIIURSNBu3VxHTN1aHHThwYJS58u+KFSuizKnZnTp1ijKn1TeXFPZNUf87irhL0BTNplp0S7Hu5ZdfjjKe/huCPeWXXVZo8kVzL5vB2aWJdOzYMcqf/vSnje7rX/96g/cPwabv8qnuZXTF1PdnETdAXlfX/Pnzje66666LMrtKsJTBmWeeaXRYUsJrwyJVYEXjwDnGrid0e3AJCQTXxGHDhhkdupYZbwygy4PXE1wzvLInZaB+fa00RILnAr7f+KT2O+64I8r8nsJQgXvvvdfocF5iyRL+blxL0Y0WQgi77rprlL0SKd7JCkwtyxbI8iOEEEKIpNDmRwghhBBJoc2PEEIIIZKi1DE/eVONuVx2ly5dorzbbrtFeeXKleY69ENyqjum2pbdp1wp9TEuRWJE0DfM/lg8hblbt25Gh6f6cuwVpsVzmXxO86zHK5HOZQpOPvnkKJ9yyilGx6nvCMb58HNxKmcZyNOf3sntDMb8vPrqq0aH7d+uXTujw/T2nj17Gh2OGSxlzymuReICROPAOB+O7brooouijHE2DPbfPvvsY3RYAoNj5zCuh0ts4LrL343PXPbjLbJifby4Nvwbns8YJ7X77rsbHcZX/e53vzM6fP95p8FjSvmECRPMdf/n//yfKI8aNSrz+TGeNgQbK8R46wCuV9U+4V2WHyGEEEIkhTY/QgghhEiKctkHiUorYqLJ8Hvf+16U0f0Rgk3pQ7cMw64CrwJy3mcsE3l/TwjW3MztguZZbk80e44bN87oHnzwwShz9Wc0n+J46Nu3r7lu0KBBUT7xxBONDlOvO3ToELJgMzT+vlqeLlwt6tvHc215c4rdB+h2wDTWEKxJndOV0SXIOpwTXpvW0twtslm4cKH5jFXweT3DsASsLHz88ceb69jVhXjua8QLPWgu6yyTN/XdKweAJVlCCOHUU0+NMrvE7rzzzijPmDHD6Pr06RPlww47LMp8MnzeZ/bcXIy3DtSyercsP0IIIYRICm1+hBBCCJEU2vwIIYQQIilK7SxFXz8fweCdRo1+SUzDbdOmjbkO0yxFbcEYHU6D/8xnPhNlLwYAY1K4z/EzxnKFkD9tutLy82Whfk54x69wu+Ec49gJjO/iuDCM6+F2qyQGg+Ot8HORmDRRHCzjwOMDY+mmTZtmdHh00H/+539GmdOjsWxIGY+FaUlg2vjw4cONbsSIEVHmdx+mt3vroJeW3tyQ5UcIIYQQSaHNjxBCCCGSotRuL8Sr8Mwm8yyzO98DXSyeq0Cptg3D7ZL3tPu86a1MXneKV7WZ8aqIe+CYK4u7rP75PRcx67xnR10tfqOXzl6WNk0BdGFy1d7f//73UV62bJnRYQkJTolG0MUit1dtQRe/996qdH41d1cXIsuPEEIIIZJCmx8hhBBCJIU2P0IIIYRIimYT88N4PkuMJUCZy/dj3EZLPbm9KfF8zHljZLyTjjEmh+OLsG85NdobA6jj5/Kes5Zl1xuL92xePFCR2Da8T95YL/4OlMvcninB8wOPNcnbR1xqokgMnmgcOKc4nR37luc69i3KzfXokDxoxRFCCCFEUhTe1tXV1dXiOcRmQH3ZslB/thzUly0H9WU5keVHCCGEEEmxRRF/vRBCCCFEc0eWHyGEEEIkhTY/QgghhEgKbX6EEEIIkRTa/AghhBAiKbT5EUIIIURSaPMjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSQpsfIYQQQiSFNj9CCCGESAptfoQQQgiRFNr8CCGEECIptPkRQgghRFJo8yOEEEKIpNDmRwghhBBJoc2PEEIIIZJCmx8hhBBCJMVWeS+sq6v7oJYPIvIxadKkLRp7D/VlOahGX4ag/iwLmpstB/Vly6Kh/pTlRwghhBBJkdvyU8+kSZNq8RyFef/996P8sY/ZPdw777zToG7LLbfMvN97772Xef+tt9468/6se/fdd6O81Va2eb1n3hR1dXWFrs9Dnr7E3xNCCFts8eEG2mtPj7ffftt83mabbXL9XaXth/3FcP/l+e6i38/Uoi9DKM/crDYffGD/A/3mm29GuVWrVkb3xhtvZOrwPjiON6XbFLWcm7wu4XPy+pJ1HX/msVvpb+c5kXUP7554D/6teddupqx92RR47yYPXJO9MYb9wOsqfh+PP29een2EY6KS943Xn4U3P00Jdgi/IL2XD3YYv7yRt956K8rbb7+90Xl/hx3CA8zrIB4QzYFKNzj8W3GAF5mU+KJDeDzgIsoTtsj3IbwYI41ZYEUxuH158cyrw/uUfS7Wj2feYOQda0XGJK51vK5687+S/wB4L8wi98O5yX+X8nz01jp8n3K/5v0PKOKNDe4Dfr8iOMZ5fGy77baFnysvcnsJIYQQIim0+RFCCCFEUmjzI4QQQoikKHXMjxfQh3AALf6d5wP1/JDed3u+6VoGb9UKLz4nb7Ai4wVV8t95bYH9lzf+AGO5QrB9WaTvvO/zAttFbcGxxHPfG7veWoBzswz9WT9HiozJhv6+HmwzvkelMXFZ9+e4DWxbLwj99ddfz7w/x6Tk7csyrbNNAfY7x62iLm9Quhc47yX0YIAzX+vF8TTl3JPlRwghhBBJoc2PEEIIIZJi89t3HTwXBZrf2M2Rlba3Zs0a83m77baLMptRPfOblxaYt5ZImfCeq0jaqHdtrdOM0f1RJD3SS2f3TOapmdM3Jzy/sX+5r/O6I3msls3t1dhn8OaY5+b26p15afB4D2995DV4hx12aFBuDCnPTeyvIunrjalB19DfFelL/Dt2maKu2iUMZPkRQgghRFJo8yOEEEKIpNDmRwghhBBJsfmd2w7e8Rbo//NS1ufNmxfla6+91ujWr18f5c9+9rNGN3LkyAa/a1Og75R9z83FF5336AYvnd2D4xmwn704Ka/9cHysWLHC6Fq3bt3gdXxPTg31zslJuYR+U+PFcD3++OPmM56jxLFCI0aMiDKf+dOuXbvGPGIp8OI28o5X7+/4HjhfuOQAgnOnbdu2mdfxPXDu8/zLGw+a2jzNG6+T93zFpUuXms8vv/xylO+++26j69evX5SHDRtmdAMHDowyrsch2P7imLNqlGHIQpYfIYQQQiSFNj9CCCGESIpSu73ymvA80+b06dOjfPnllxvdsmXLotyjRw+jGzRoUJQxJb4xlCGFtiG4ndF8zpVivT5BMzhX+MR+eP75541uxowZUV6+fLnRoQtr3bp1UWazLX5G90YI1oW57777Gt2uu+4aZU7PRBMsu8TK2pctEa9i8LRp04zugQceiPLq1auNDsfIq6++anTo/mSz/Oag3hXAaxvOR3YzVyMt2JvvfE+cA9WYD0XS8z1d2coWNCXYFrwGo84LFZkzZ06Ur7zySqO7/vrro8xzD+fQkCFDjO6EE06I8nHHHWd0ffr0iXK13rV5kOVHCCGEEEmhzY8QQgghkkKbHyGEEEIkRakdopWe6o5+w5UrV0Z57ty55ro333wzyrNmzcr8bvYpY/wHp+Kh35NjFWqZtlcJ9f59juPBzxzr4sX8oI95yZIlRnfFFVdE+bHHHjM6bHtOdcTv946iwP568cUXje6ee+6JMsYehWB90fvss4/R7bjjjlHmMeClwYvqwu2L6be33nqr0WEsD/8dxn517drV6MoQ54NUcgSMF+eDsTwbN240ug0bNkR54cKFRjd//vwocwzV2rVro4yxefjvIdi50r17d6MbPXp0lPfcc0+j42sRXBe8WKTUwPcPl4jw1m6Mf73xxhujzOVhcG3lOYTz8oUXXjA6XP87depkdBgDxLFIXrmbxiLLjxBCCCGSQpsfIYQQQiRFqe2DeU8bz3vKOld8RRMhmn5D8E2n6H7xXB5NWa2yEuqfr9JTfBl0I65atcro0Hz5+uuvGx32C5s9W7Vq1eDf8djAtmUXBj7L5MmTjQ5NsFzuwKvyXa02E5uGXa9YGuHee+81OixXMHToUKP71Kc+FeX27dtX8QmrT9b4wnFYxDWGLmksGRFCCL///e+jzC5jdF/wiey4vmXJ/MysQ9cy99dhhx0WZey7EEIYMGBAyOK1115r8P6pwW2NY4rXYHQfX3bZZVHGis4h2LT0Ll26GF3fvn0z/w7T5x955BGjO/DAA6Pcq1cvo6vE/ZsXreBCCCGESAptfoQQQgiRFNr8CCGEECIpmk3MD/vAMQ7Ai8+55ZZbGrxfCNYXzfFAnt/YSynF52rKUt2VkBWDhGmxRdJG8ff27t3b6I444ogosy961KhRUW7Tpo3RYRxOx44do8wnvN93331Rfu6554wOY364/MCUKVOifMYZZ4Qs8p6CLPzTxREcB3ysAo5NTLcOIYRvfetbDd4jBDtX+eR2PFm67NSvVdwuOO6LHGGB4xfT0kOw8+Opp54yOlwXeQ5g3AiuexxPhfFG/Mzr16+P8rPPPmt0mFrPMT677LJLlHkt4BTvVOF2QZ588knzGefKzjvvHGWOg/zSl74U5RNPPNHoZs6cGWWMIwvBrs8PP/yw0WE5mm7duhldLftSlh8hhBBCJIU2P0IIIYRIilK7vfLCpmE0sy5atCjz79BkPnjwYKPzXFaeudkz8+d1BzRX0ETJLsa99947yphCHoJ1VaAZPASbuozmWD6Ve968eVG+8847jW6nnXaKMrozQwhhjz32CHlgNxf+vkpP0G7OYDvyXMnrKkWzPLtiMI321FNPNTpOx0bQfH/AAQcYHY6lsldfr/aYwj5hVwK6tvgkcHRJMFlzk10XuO7x73rppZcafI4QQli8eHGU2fWJafdc2qIlrq2VwO2AVffPPvtso8M1Evv8P/7jP8x1n/3sZ6Pctm1bo9ttt92ijOUoQgjh/vvvjzL3JbrLsOJ3CLWtpK9RIoQQQoik0OZHCCGEEEmhzY8QQgghkqLUMT95j7dgPzLGIyxYsCDzHugTHTdunNF5cQteCqHnq8cYo+bil/bKAzAYS8AxMt5vx5gf9iNjP2Bf3nbbbea6G264Icpcvh9/w6BBg4zu6KOPjjKndeIz63gLC/YZp5vnPeoA+4VL5f/5z3+OMh9JgnDM1kknnRRlPnUaY084TrAl4MWhYbwEHyGz++67R5lPZMdjCXhNHDJkSJSxDEW/fv3MdbguTJs2zejw+/hIHOwjjtXD38rPlWIMXkNwXNtVV10VZSzxwRx66KFR/upXv2p02Occo4X9jGMqBNtH/HcLFy6MclOus2mv4EIIIYRIDm1+hBBCCJEUzdbthbCpDNM1MSWSTWhoCu7fv3/u50K3Fz+jZ3oumzm2/lmLmBrzpnizDtsMU2RDsNVhMe0xhBCmT58e5X/+859Rfvzxx811S5cujTK7zvD3cNr0sGHDouyls7OptuzVu5sSdgNjW+Wt0IrulRA+moqLdOjQIco//OEPjY5PBkfQDZBaFWAc21yxHt29mK7MulatWhkdtjWOgXbt2pnrsDK0V6mf1wz8Oy6BgX2J9wjBztvUKrHjb+d087/+9a9R5rRxrJj9i1/8IspcAgbhe2A/dO/e3ejQ7cVjAPud+7LICQNFkeVHCCGEEEmhzY8QQgghkkKbHyGEEEIkRaljfryUci8eCON80G/M/kNMpcTy3iFYn7KXSskps95J9N7v2RzUP7vng2WyUpW960II4c0334zysmXLjA5PGL766quNDo8y4HggxCvfj6fGc2o0pv3iKdWs4xif1I+3wP7ktvGOOcn6u1NOOcVchyd6M0cddVSU9913X6PDsczxA16cT0voT+83YLtw7E7v3r2jzCeyb9y4Mcrcfhh7henKGzZsMNdh7MkzzzxjdBirx2C8DpdMQDj2hFO8UwL7ncuBzJo1K8o8LydNmhRljPPhOYTwexHftV7cF4NlErhMCd6n2vNSlh8hhBBCJIU2P0IIIYRIilK7vYqkUiNZJ7mzCQ/NpeyS8k4iRthlVMQV1Nzh3+pVzcW2v+eee4zuyiuvjPJjjz1mdFkn+XK7owuFTel9+/aN8q233mp0Y8aMiTJXvvXcCC3BTdIYsL09dyHPOfw7NLU/8sgjmd/F6bbnnnturmf0SjawGb6sKdF5y30UgX8rnsjOcwDdEOxOwn5HVxeGHYQQwtSpU6P8yiuvZD4XzyOs+s3V170QglqmR5cdLAlw+eWXGx3OxQMOOMDoPv7xj0cZS1XwWPHWOpzby5cvNzocR/yewPWZXau1XFtl+RFCCCFEUmjzI4QQQoikaDb2QTaVoUmbdXgAJppA2QSPJl4273lmcMw8YPMrmunKblqvb8NKTYteBWs218+bNy/KXHl05cqVUWazJ7q90MzOfY7XcTbL008/HWU+6HbkyJFRPuaYY4wO+5krPHOV6pThQydxXrHbcsmSJVH+1a9+FWXOGMO2/9nPfmZ0PXv2jDK73Dxq4UIqK96BxLxmoXuJxzn+HetwDe7cuXODfxOCPbCU3SFZ9wvBujtHjBhhdPj7+LdihX9247V0brnllijzOovt+81vfjPzHvje8jIk2Q2Kc/2BBx4wOpzPOFZCsG4vrj5eS2T5EUIIIURSaPMjhBBCiKTQ5kcIIYQQSdFsY34wlod1WB0W42w45gdTPIuk2HkxP1nX8XN6abhNRdZv9NL88bN3cjv3CZ603qdPH6MbOHBglDleB09dx0q07MufP39+lPEk+BBsGvWKFSuM7rzzzovy8OHDjQ5jDlJOn20IjP/o1KmT0WHMBceJXHjhhVGeO3dulHm8/PSnP40yVnQOwc7v1q1b535m77RvXBvK1NeVxil5MT+89uBnjtHCz6zLqhrNqe5YWZjjIL1YPYzz4dPmcb3mdYjvkxKXXnpplPH9FoJ9H40dOzbzHnjagVe+xKusfd999xkdvhv69etndG3atMn8Dozpq3b81uZ/AwshhBBCNCHa/AghhBAiKcpj390E3iFq7HrCNGQ0m3EaHVbDZBdVVmXhEPwD9/Azm1/RtF4Gt1e9mZJ/q9e2eK2X6si/D/uP3RgHHnhglNn9iGmRmA7NLkz8PnSnhBDCpz/96SijCT4Em3r717/+1eh+8IMfRJnHThmrOmcdVOuBfe2VYmA3ipcCi/zjH/8wn3/72982eN2ee+5pPp9++umZ9+RDE7Mo0g5lcnUh3jrEVLqmeC4/XM94DOB8RLc2V3BnVzOCa8jBBx9sdF/60pei7KVAs5sNn6VM8LsC11avSrrnwnz11VeNDg9/5hIU48ePj3K3bt2MLuvAYR5T3kHhWNLgb3/7m9HhOP7Wt75ldFzmAqllqYLN/wYWQgghhGhCtPkRQgghRFJo8yOEEEKIpCino/v/g75ojrHA+AQv1R1hHyimTnsxHN7RGt5p8EzZyutnPavng0W8GAP+rVzSHEG/P/cD+orxntzu6H/mWKvvfve7UT755JONDmN+Xn75ZaPz/M1lPNW9vj+88cp4pRoQjlfAPuP2xriD//7v/zY6jMfD5/rf//1fc52X/iqqizcGMLaLr8NjaZ599tkoX3vtteY6jCfhY2GwFMLZZ59tdFh6Yu3atUaH44NjfPDaMowjnjsN4aXn81qK93vhhReMDuNYOYZvwIABUca+CyGEDh065PpuL94Vj8xgHfYRx3Z573JcZ/LGGeZFlh8hhBBCJIU2P0IIIYRIilK7vdAsXsQtlWWSx8qzIVhzG7sG0NzHKd2e+c1zMZTFPVJPHnNste6Nbc8pktgPngke+8RLTe7Vq5f5jGmyPFawT/DEcX5mTrUta0XgED7a9p67MK/bi8eu5/b6xS9+EWVOxUU3JrrEJkyYkOs5RPXxXLg4PtB9FYKdS3/+85+jzPMI18uNGzca3de+9rUo77XXXpnPyO4yj7Kd5F4/H9kNVanrHP/uueeeMzqvIvKRRx4ZZa9cBPazV2rhsssuM5/Z3Yl873vfizJWkA7Bf2av/EZjkeVHCCGEEEmhzY8QQgghkkKbHyGEEEIkRbmCFYhKy7XjqeGYts0xP+iL5u9CH2y1UtTzxlc0FVmxS17qOeL9Hi7Xvm7duihzTAr6gNu3b595T+wjPi0cv4+PvrjpppsynxmfhU91x1geHgNl68tKwd/Fv9Er6YAnRk+ePNnorrnmmihzPBDG9vznf/5nlLkMhXecgaguedc3nnN4cvcdd9yR6+86duxodD/60Y8y749jjmNP8Fqe70Xig5qCrJhAXGeLHC2D9+P4Kj62Atlll12izO87TJHHdybP+4ceeijK5513XuZ3TZw40XzG42q8I6G8I0CqjSw/QgghhEgKbX6EEEIIkRSldnt5eKnGQ4cOjTK6ujiNDk2pbHLFaz1XCes8E3LZUt2zTIqeu8NLz8TU1wULFhjd0qVLo8ylA7zqz9gP2F/sskOzMaZVhhDCE088EWU8lTgEm/J53HHHGR2af9EsHMJH0zXLhJeuzOBYLjI+0U11wQUXZF7H1cIxvR2/r2zpySmB44PnB84rXtu+//3vR5nnB4Kuz5/+9KdG17179yjzGuyVkMA1pOwu0sau++wKwnWWXX4rVqyIMlZ0DsGWnRgyZIjRYVtjn8+ePdtchxXyFy5caHT9+vWL8sUXXxzygmspvxvk9hJCCCGEqBLa/AghhBAiKbT5EUIIIURSlDrmx4ut8XyBmE7JJdkRPNkWfaUh2BPfOc2S/axI2eJ6KsH7DV4JgNWrV0d5xowZRnfLLbdEmU8ixribz33uc0b3iU98Isroi7777rvNdX//+9+j/NRTTxndmjVrQhannnpqlMeNG5d5HaZ2l50iJSKwD/nvMLaAjyX42c9+FuX777/f6DB+57Of/azR4REGODc5Ngi/u9KSF6I4nHKNJ6RfdNFFRjdnzpwoYx/xETJnnnlmlDFmJAQbk+mdbM54MWIYN+Idz9BU1L/HOIYp77PxOou/r1OnTkaHZV4WLVpkdH/4wx+ijO83/rvf/e53Df5NCCHMnTs3ylyW5Dvf+U6U+agSHBM8PrySBt7RF41Fq4oQQgghkkKbHyGEEEIkRandXnldSGwWRDfKqFGjoswn4GLV4fnz5xsdngxexJXVnEz0We477zd4Lj90U3KFZ3SDvfzyy0aHZtzp06cbHabTeqxatSrKPB7QXHrooYca3Te/+c0oc8rshg0bolzm1PZ66n93kfGKJmfud3R1sQn95ptvjnLr1q2NrkuXLlE+44wzjA7HCLq6vOq+zWlONUfQDcGp7litG12dIWS7ugYOHGiuQ3dIkdRlHH9ctRm/m9ekMri6kPr5yO4ez1WIOnaXoY5d9f/4xz+izOVAHnzwwSiPGTPG6LDkALo6uYRBz549o/z5z3/e6Orq6qLM8xmfhUNR8Fpeg2vZl1pVhBBCCJEU2vwIIYQQIim0+RFCCCFEUpQ65gd9m1ziG+NEOE0WYw6OOOKIKGNcSAg2NmTZsmVGh35Ivn/eVPCy45WPzwJ905wWi7EfGHcVgj1tmI++wDID3Edc7rweTovFvmzTpo3RoW/6u9/9rtFxqiiCcT7sp0ZfdFlOeK9vAy9Gxju5ncHfjMeThBBCjx49oswxFxhXxad4Y1vhWOL4BNF04NrKMXeXXHJJlDn+AscS9uXee+9trsN5xOs4zmMup4BxPhxDiOOo7GOn/ll5nuDc41gr72R1/Dx27Fij+/a3vx3lCy+8MPPvMJ4xBBv/imsuH4Nx/vnnR3n//fcPWXgxP17Kuvd31UaWHyGEEEIkhTY/QgghhEiKUru90ETK5nk0C3oVMM8666won3baaZnXYQrfpiiLm6OxVJIaja4udkmh6Xvfffc1OnR/PPTQQ0b3yCOPRJldYsuXL48ymr7R7RJCCMOHD48ypq/ztegSZbx0U3Z9Nle8vmaXBKad7rbbbkaHVWDZNI1mbTZxexWlxeYB5xVWaQ/BhgPwfMexNGzYsCij6yWE/O51TmdHql3dd3PgtUOl6wu7lY899tgoT5gwwehwneUK/HgfXLtHjx5truNU9CwqrYjflC5MrT5CCCGESAptfoQQQgiRFNr8CCGEECIpSh3zkze2huMYMC4F/azsN+YYj9SoJOYHYR823ofbdvz48VEeOXKk0Z1++ulR9nzfHJOC4FjBk6JDyH9aNMeOeZTx1PHGllngv/d+F54CXeTvsuDxgn3RUmLsygrGWXBbDxgwIMqvvfaa0eExFp/73Oei3LlzZ3Odd0yFqC74juN1FtPWuXQHjgEuYYI0tyN/PMqxagshhBBCNBHa/AghhBAiKUrt9qoGaIIvi3uiLFTbTeKlcqIbw3NDZVV0DiH/Cb953Vz8fc2pOndDNPb5vfnB7pBK51KWa1Fzc/OBruY99tjD6K688sooz5492+gwPXrXXXfNvH8Rd7JoHJ6LGNfPSk9Lb+6uLkQrjhBCCCGSQpsfIYQQQiSFNj9CCCGESIpmG/OTdaIwg3EQiiuwlDHGhfsobzkCTN3kVE38nRx/gLoip9yXMdW92ni/y+sXL8ZD87F8eGO5b9++Ue7du7fR4QnceA9Oia/0qANRHIxh5HmIfctrf9b7lNfEljRnW84vEUIIIYTIQWHLT11dXS2eQ2wG1JctC/Vny0F92XJQX5YTWX6EEEIIkRRbqAaDEEIIIVJClh8hhBBCJIU2P0IIIYRICm1+hBBCCJEU2vwIIYQQIim0+RFCCCFEUmjzI4QQQoik0OZHCCGEEEmhzY8QQgghkkKbHyGEEEIkhTY/QgghhEgKbX6EEEIIkRTa/AghhBAiKbT5EUIIIURSaPMjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSYqu8F9bV1X1QywcR+Zg0adIWjb2H+rIcVKMvQ1B/lgXNzZaD+rJl0VB/yvIjhBBCiKTIbfmpZ9KkSbV4jk3y7rvvms/vv/9+lLfZZpvMv3vnnXeivPXWW2fe42Mf+1huXV7ee++9TN2WW25Z6F51dXUVPYNHfV9+8IH9Dwp+LvLb8e/4nt593n777ShvsYXdoHOf1YP96l23KbCfvWfm52oMtejLEDbf3GxqNmzYEOWddtrJ6NasWZOp22qrD5e7119/3ei23377ip+nFv15ySWXhBA+Ou6qOQ7rwTngfR/Pj0qeC7+L/867B3+3tz43po1quc42BbiW8jvGe+dk9W21xtubb74ZZX5fY//x+MD3vveez8Lrz8Kbn6YEGwIXriJ4L8W8GxweGLip4QHlTeZKN1G1ploD3PvtuFnhvqxkUHv9+tZbb5nP2O783ajzNoG1eOmIfHC/YB++8cYbRte2bdvM++C12267bZWerjbUj7ci4877z0dD964n77qUd3PC/zHB9bJVq1aZ9+D/4CI8b4v+5zEVKllLQ8je5PI4wutwQxOCHUf8HNttt12u5+CxWOnvyfVdNbuzEEIIIUQJ0eZHCCGEEEmhzY8QQgghkqLUMT95fdEbN240n9E/jD5D9ll7cUReEBbC9/R87c2FvL79IvEIXowOxgRwDAd+H/alF7NRaTyHF6fkxSM0JlhWbBoM4gzBjxvBPuP+9P4O15Addtih6CNWnay5lTeux4P/zhvbCK+XWTF+HKeB6yd/F96T74/XcnwJxvx4ySqVJkI0VzDekdsF25fHF7ZZ3kQdL46H35leTBg+J/cXPkulcb9ZyPIjhBBCiKTQ5kcIIYQQSVFqtxea8DyTa14z9WuvvWY+77jjjlFmdwuayNl86LnjvJoZZaPeFFlpOm2Rv8O2Z7M4fsY+KQK6Roqks3tmVXyuWqZcCh92Y65fvz7KO++8s9FhX3vp0OvWrTOf+T5lJW8Ke5G5WesSHHlDCBjsvyIujyLf0dLAdipSDgD7KO944FpZuEZ6/cWuT29trWUYiSw/QgghhEgKbX6EEEIIkRTa/AghhBAiKUod81NpyjL6FG+88cYoX3XVVeY6jOv58Y9/bHSDBg2KMvuQ8x6FUdbjLOrJE/NTqc+V0yUxlod9vhivw22GcV9eDADeg2O72rVrF2Wv3AGn0+Y9rqMMqdEpgfE5CxYsMLqzzjoryjwGP/e5z0X505/+tNGVNT6vyDEVlf4GjHes9Dwo/G7vb3je4trKx9IgXpkCBvs9tVR3r+2xXfKWj+D59fzzz0cZ360hhDBgwIAoT5w40eiGDx8eZVyPN0Ut+6/cb2chhBBCiCqjzY8QQgghkqLUbi+Eq0J65jA0rS5ZsiTKDzzwgLkOXTGzZs0yuj59+kTZc195urKa0uvJ49LyTvVl0ITNpQMwtXjy5MlG99hjj0V5xowZRvfyyy83eE92iaIrbciQIUa3xx57RPnwww83urFjx0a5iGldqe9NB4/BtWvXRpld2c8880yUMSU+BOsO5TEycODAKOc9gbop4N9eaakJhN34RcZ91n2y5BDsGsnuFpxH3nOwCxPfB+zqKVP/NTVeVXocL15b4xp85ZVXGt3111/f4HUh2HfyiBEjjO6EE06I8nHHHWd0Xbt2jbJXybvaa64sP0IIIYRICm1+hBBCCJEU2vwIIYQQIimaTcwPx/igP5PjgdDnvGHDhihjrAB/Xrp0qdGhf5TTM9H/zDE/XhxNNfz1TQ3/Hi/GyTud/fe//32U77jjDqPDeCv27XMJ9aznwD5/6KGHjG7atGlR5mMNWrduHWX2UyN46ncIdjwq/qe2eOUJnn76aaNbuHBhlDkubP/994/y4MGD3e9oaeAayevlmjVrorx8+XKje+WVV6K8aNEio1u9enWUcZ566/GYMWOMrlu3blHmPunZs2eUOa6nlqd9N2e8tvDiZFesWBHl2267Lco333yzuQ7jfDhlHddIjL3j5xo2bJjR4RjgeK1azktZfoQQQgiRFNr8CCGEECIpSm0vRHMpuzm802vRVIYmNb4H/h2baj1XRqUVkfH3FDlxt1Zk/Q78DUUqPOPv45RWrILstd/2229vPmOfoambXRqYIsknw69cuTLK9913n9FhGjyb3dFMzP0lV1fTwa7Qf/3rX1H+97//bXTYL6NGjTI6TLHlcd3S+pPTzXF940rK9957b5Rfeuklo3viiSeizKnNGDaQt8LzpZdeaj537Ngxyvvuu6/RHX/88VFGl2UIfn/hWpBa2jv2gxeSweEEd999d5SvvfbaKGOpkRBC6NKlS5TZ7dWhQ4cov/jii0aH93nqqaeMbvTo0Q3eIwS5vYQQQgghqoY2P0IIIYRICm1+hBBCCJEUpY758fx9mOrupffhkRZ8P7wH+8g9v7Hn0+b75P27zUFW2rqX5o9w3AT+PvTlhxDCZz/72SjzKeirVq2Kcvv27TPviWnp+DchhHDPPfdEmdMsMT4A03pDsGnwXHYdj0fAk8RDsGmdOtXdgnPAGyMIlxLANp09e7bRffvb344yx6/06tUrynxye/fu3aPMab94H44n2xzUxzkVWWu8eA+cx3jMRwi2j3juYJwPlwPBNsQYP14vOZ4SwdT6u+66y+iWLVsW5X79+hkdHj/Ea1QZ+q8M8JzCNYyPejr//POjPH/+/Ch36tTJXHfAAQdE+Ytf/KLRYXmTX/3qV0b38MMPR/n22283utNOOy3KHIvE8ZvVRJYfIYQQQiSFNj9CCCGESIpSu728ish5TxdfvHhxlDllFu+B5vIQapMimddV11zB9uT+6d27d5RPPvlko8O2ZrMnup7QFcIpuWiex/TcEKxJnt0wmGbJbgTP5CpX14dgFfUQQthpp50yr8WqwJgq682Hk046yXzGKt3s9jrqqKOizG5MdNOw25TdrS0NLxXdK+mA7n+vPAD+HadA4wnifH90aaKbi3Vz5841OnSrozs8BDsmUkt1R1eX56r/5z//aXS4fuJY6dGjh7nu9NNPjzK6HkOw42Pvvfc2uscffzzKWHokBBuK0LdvX6Or5TtTlh8hhBBCJIU2P0IIIYRICm1+hBBCCJEULS/wJNg4kTlz5mRehz5K9jUiXkppkVikslH/+yt9Zu+3e6e/c3tiTA7H0uBnjN/C1PYQQrjxxhujzPEc6CvGGJ8QQhg/fnyUvRRZPqUe4xhSh48kQbivOR6kHm77X//611F+7LHHMu9/+OGHm89nnHFGlPFoG8aLSyoDRY6VyQPOR46d2GWXXRqUQ7CxNhyvg6UDUMdrKfYDx3vgZ1y3Q7Ap+Tj3N0VqcT4IrpccPzl58uQoX3nllUaH423o0KFR/sEPfmCuGzFiRJS9I0b22msv8/mXv/xllHkMYLkDHjvee6SxyPIjhBBCiKTQ5kcIIYQQSVFqt1elp6ejuRTTJ737ZZnjQ/io6d5LufPMdGVNb+e2rNQNhr/du6eXJr5kyRLz+dFHH43yTTfdFGU+zRurz7IbZuDAgVE+4YQTjK5r166Zz4J4VWu5WnAKYNkIdoeguZ1N41nzg0+Bvuiii6LM8wZdjj/84Q+NDl0x7KrE5+Tn8n5PWSkyT7Hd+bdjFd+RI0caHfYltyemQeN12AchhNC2bdso33///UaHays/F67jHL6A5Q54vqc4H/NwzjnnRJnXM3QD/+xnP4vyoYceaq7jMYBgKv3w4cONzqswzuUqELm9hBBCCCGqhDY/QgghhEgKbX6EEEIIkRTlDEL5/1Qa84P+YEyj9nz5nGrbHGMAygT3HfqDue+ee+65KF9//fVGd8cdd0QZS7AzGLPFaeiYvsunQ2P8EZ8+7Z1un3pcgRff5aW+YxkCPFLi3HPPNddx7BeCx6NMmDDB6HCcebFlRY7k2BzUjz0vdq5IzA9e641dPuYHY3L4WfD4BExF59gd1C1atMjoMP6Djx/COefFb/FztfRjhDzwfffII48Y3cyZM6PMc+M73/lOlDnOB/FKfGBbd+jQweiw//AZQ7AxYbwG13KdleVHCCGEEEmhzY8QQgghkqLZ2AS9E9kZNJmjeZ7vga4udnt5J8ojnAbv6So1WdeKpnwGNF9ee+21RvfHP/4xylOnTjU6NoNmgeZzdH2EYNNk7733XqPDCs9exdKmNMc2B3DsoJs5hI+eso2gq+svf/lLlO+8887Mv+G02bPPPjvK7PLIWxm5DPPPo37dqsVzshsf+6R3794NPkcIH51X6F7acccdM++P84+rr3vzGytDDxo0yOi6dOmS+X3i/3HmmWeaz9hH2OchhFBXVxdl7BOv6j2/3/BadLGFYN3MnGaP/cx9qVPdhRBCCCGqhDY/QgghhEiKZuP2YhObZ+qcN29eg//uub3Y5ZHXfM739NwhLSELIa87kMGMj2eeecbosLrvm2++aXToQkFzKfcPZi9gO4dgs8Quv/xyo8ODTo844ojM5+f+qrQdWiKcOYJzgvsJ3R5YSZbdH9jv//M//2N06PJg0LTPWSU4N/G6MtLYMVUkSwzbmnXYZnzwKLrB2rRpE2XuyxUrVkR54cKFm3r0yJgxY6I8duxYo8P1n9eMlA82xcr306ZNMzrsy//6r/8yOmxPz9WFlby9DNirrroq8x7swsSsQa7oXMu1VZYfIYQQQiSFNj9CCCGESAptfoQQQgiRFM0m8IR92N5pr3jCt5eKjnE+Xoodx/Ggzrs/0xxjQ7zYJ0/n/db+/fubz3vuuWeU16xZY3QDBgyI8u677x5ljvvACqK333670d18881Rnjt3rtFdccUVUd57772NDn8fViENQae6e78fdRz/8eMf/zjKL7/8cub9v/71r0f54IMPNjosa8CxOxiTwJWmcd568X+pge3C8TJYHZ3nNM45jP/huB5cj7F/QrBxI507dzY6nI+77rpr5vPzPVOO+Zk0aVKUO3XqZHQ45g877DCjw/GP48GLAfPmPZeuwHctxlnyd/C8rGUZA1l+hBBCCJEU2vwIIYQQIilK7fZC8xunoqO76a233jI6NHvi33EKNJrU2H3lmU7R5ealrHOqrVdBuEygOZvbAU2U3GaeKxIPHmU3xr777htlPmAS0yCx/bjdUffxj3/c6J599tko8xh44oknonz//fcb3VFHHRVldvGV2dXlVT32+qgI3u9H3d/+9jeju+yyy6KMfdinTx9z3fnnn595fy9N3TtUFb+vuZaayEsRFzu2Ba9ZOF7Q3cg6THX/3e9+Z66bPXt25nPhfNx///2N7qSTTsp8LjxgE9eWEOz7oEzuTO99wO5h7+BW1LEb/6mnnory8uXLje64446LMocN4FqO9+f+8sI8sGTJlClTjA7v873vfc/o8LfzwanYZtV+f8ryI4QQQoik0OZHCCGEEEmhzY8QQgghkqLUjm/097GPHv3N7CfMe/RAhw4dolzEn4jf7ZWRL/tpw/X+dm5b/FzkRHsvHgjjNLit8ftqEUvz1a9+Ncrf+MY3jM47cgR/D/vkMSWzLKm1WaUHKo3zwfsVKTXxyiuvRPmCCy4wOmxTjM/BE95ZJ2qLF1uJ8X9erNXDDz8cZe5LnDs8bvCeF154odFh/B8frYFrPqe6l23s1M8db87kPRYpBPt7H330UaNbsmRJlPm9OGrUqChze2IpD3zvcpwXxldhCYMQbExRjx49jA6PwOH4PhxzHL9by5gtWX6EEEIIkRTa/AghhBAiKUrt9kJ3QpHKj5wunQWa29isj+Y3/i40UXrPVXa3VxaVukk8F5nnivQqfOKJzXidZw5Fd2YI1g3jpTizeRlhc2wZTwWvdzVWOu68FHkG+4n783//93+jzKm4yI9+9KMoc3VtUQ7QdcLjAU9rx1PCucKz5w4/99xzo8yuEpyPmErPlL1yfv1cqVZ5BVwT77vvPqPDduL17IADDogyV6xH0E3JZQTwuy+66CKjmzFjRuY9X3jhhQbvEYJtF17XvbCExiLLjxBCCCGSQpsfIYQQQiSFNj9CCCGESIpSx/x4KeVeCfN+/frlur8X45E3boLjY7LKhLOuWscMNIYsH6r3nHmPSsAU2RBCWLlyZea1GKPDsTSYIumBMSh8Wvj1118fZY4PwJOPe/bsaXTYDmWM8akG+Bu5bfKO0X//+9/m89///vco4/EkIYQwaNCgKJ999tlR5jiAvPFdovHgOuAdWcMp5VdddVWUH3rooShzf+FaPWHCBKP79re/HeUNGzYYnTf38VnKltrOZL1L8P3D13jrLF47f/58o8N1sHXr1pl/5x214fX5v/71ryjjUTXMiSeeaD4PGzYsyhw/6ZVaqOUxNJv/DSyEEEII0YRo8yOEEEKIpCi12wthk7yXhovuC3S/cHofmtrZDJjX1M4mSc+Vht9RlqrAm8JLS2fw93GKM1YiZRfSiBEjorzLLrsYHZrhvVO5165dG2VMuw0hhFWrVjX4jCGEsNtuu0V51113NTocH2xaR/NyWUoa5En55VICSBFXLLoofvOb32TqeJ5efPHFDX6fV05CNB08P3Cd4lPCL7300ijj2GO3Rv/+/aPMYwXxSpTgHA4hhPbt22dei1WJy+CuzpqXXvkP7/2G84bnycaNG6PM5QHWrVsXZXYvYVgCvifZrXbqqadGGdfcEELYZ599ovyHP/zB6PC96L1bm7Jatyw/QgghhEgKbX6EEEIIkRTa/AghhBAiKUod84MxFxwjg5+9E6cxZoRPskUdlt8OIYSxY8dW8MQ+tUzbq4T638/tlzeGhf8O25djfqZOnRrlWbNmGR3GaH3qU58yujFjxkQZy67ffvvt5jqMP5g2bVrmMw8dOtR8/trXvhZl9rt7/mbPJ7+5yBPzU+R0doRjQTB254EHHjA67KfDDz/c6Pbbb78oly02Q3y0RAWuBZza/OKLL0YZ1zaOe8QYPIyxC8EvWYJjjo9Z8I49KFvqe32cHc81L64Nr8X5xPB6Nn369Chz/Mw555zToByCXWdxbv/lL38x12GcT7du3YzukksuiTL/trxp9tx33h6gscjyI4QQQoik0OZHCCGEEElRLj8MkTfdlc39+HdYUfTJJ58016E58bnnnjM6rEjJbiBMF2ZTnOd6KJvbKwvPFeK5e7zft2DBgig///zzRjdlypQoT5482ejYVVkPtzumwnpVouvq6ozuwAMPjDJXmMXUW0wh5XuWhfq+8cYg963X1+iS4LTWm2++OcpcFRjbH6s4h2DnHF7H4wrdGkp7bzq4H3A+Tpo0KfPvsL/QtRlCCJ///OejzGnw6Opil5tX+Rev5flehur5SP37w/vtHjy/0DV08MEHG90jjzwS5Xnz5hnds88+G2WuwIyV7levXh1lXn+xrc8991yjGz58eJR5DcL1s8jaqQrPQgghhBBVQpsfIYQQQiSFNj9CCCGESIpSB6FgrA37gzEOgP2CeEr4Zz7zmShzqW70PXJaoJdWV2mac9lOdc96Bq/sOqYetmrVyujwFGH0IYcQwuDBg6PMp64vWrQoyhxbg+nQCPvB8Zm7du1qdFhSf4899mjwfiF8tLw+xnaxn9pro81FnnFZZNxhjAL7/rt06RJl7L8QQjjooIOiPHDgQKPDeYvxPxzXg9+tmJ/agm3Nqca//OUvo4xHIIRg+wXnzpFHHpn5XRzngvOY5xHeE9cd1jFlnJsh+EfL8HqGz82/Ad+L++67r9F95zvfibJ3lAgfVYIxk/gu3HPPPc11v/rVr6I8evTozGfmsYLvZAa/j9+7ivkRQgghhKgS2vwIIYQQIilK7fZCUyC7WDzQRXHGGWdE+atf/aq5Ds3unTt3zn1/TrtEvOrIZXB1IVmp0Z6pGM2SbMbF1FQ2iaLZEys6hxDCXXfdFWVOz8S2RnP2yJEjzXV77713lE877bTMZy6SZon9xS6lMpnT62ns6fJsesc5x3120UUXRZnbAk+T3nnnnTO/z3NnqeJz04H9N2fOHKNbunRprr/DCsEnnHCCuS5vJWMv1KBIdd8yzs0Q/MrT3rvBe9+w7qijjooylmsJwabBz5w50+gwTAFLFey6667murzp+Z6bi9lcFbnL9TYWQgghhKgx2vwIIYQQIim0+RFCCCFEUpQ65gcpEnOR5Udm3zPHOIhN46VgYruzDlOe+/bta3R45ITnU8aUXO+EZE6LRZ3nW+fx4KXher+1pYC/i9sNS9nzKd6YnurFe2D7cvwY3qOltm9ZwD7iWCuM3Vu8eLHRDRo0KMpf+9rXosxlLvDYGC9FXTQeXD855gfXYD5qA+P7vNhBLD3S3OPyZPkRQgghRFJo8yOEEEKIpCi128szd3suiSxzfdlSzZs7RU5/z3tKt1elGE267KJCM26RtFjvu/Ez/9YyumLynOru4bn2mLyuLQ+vEm8Z27elgm3NJT9++tOfRhldWyFY99aAAQMy77+5UpmFBedppXO2SKmQsqPdgBBCCCGSQpsfIYQQQiSFNj9CCCGESIpmE/PjxYJ4KesppCRXSrXbw4sRwaNEPLyTjzHOhL+rsUc7hOCfntwc4sWy5kjefvbibliH38Wp7gifypx1z+bQvinAKdC9evVqUPb+bt26dUbHqe+iduBczPteZHBu87rakuZpy/klQgghhBA5KGz5wYJ0onmjvmxZnH766Zv7EUSV0NxsOagvy4ksP0IIIYRIii28WBohhBBCiJaGLD9CCCGESAptfoQQQgiRFNr8CCGEECIptPkRQgghRFJo8yOEEEKIpNDmRwghhBBJoc2PEEIIIZJCmx8hhBBCJIU2P0IIIYRICm1+hBBCCJEU2vwIIYQQIim0+RFCCCFEUmjzI4QQQoik0OZHCCGEEEmhzY8QQgghkkKbHyGEEEIkxVZ5L6yrq/uglg8i8jFp0qQtGnsP9WU5qEZfhqD+LAuamy0H9WXLoqH+lOVHCCGEEEmR2/JTz6RJk2rxHIV5//33o/yxj9k93Hvvvdegbostsjfz+DchhLDllltmXvvmm29Gebvttst13aau3RR1dXUV/20W9X2JbRlCCB988OF/WLhtvTaslLfffjtTt8022zT4715/vfXWW5n34OfH384677e+8847Ud56660zr2uIWvRlCOWZm9UG2zoEOz55fGDfc7/gWOYxj2Ow6Dyt5dysFthmKDM83/PesxbrwuagOfSlR94+effdd81nnA84b/geuO7yOzLvd/P4867F+bzttttmXpeF15+y/AghhBAiKQpbfpoS3PXx/0i8/6HgjtSzKqBlZuedd879XJ5VqJLrNhf1O3DP4lFkB591jxBsX/L/1rOsOx5e2xb5HwKOI/493v9yilp7ROVwW+O85f/B5u37DRs2mM+tW7eu8OmaB3nntAdbW7PmP/+7Z6lDPAu0Zy3w3gUtxSKVF2xDb43caqvqv/rfeOONKHOf4LxkSy4+M1tdK7H25EWWHyGEEEIkhTY/QgghhEgKbX6EEEIIkRSljvnx/H3sN0TQ1+n5mPPGmrC/OW+8R9njQup/V6UZHkWu8/oSfb6cIYc69FOzzxr7nP38GPfFcQXoY65WNqCoLkWyJrGfXnvtNaPDuJ7tt9/e6BqTvdeS8OJ6eJ2o9hwosg4hPKez1owUwP7ieLis6xhvLfX6CNd4L0vYe+/yex3X7h122CHz7ypBlh8hhBBCJIU2P0IIIYRIimZrE/QKlqHZDk1/q1atMtd16tQpypwSX2mKnZce7RVm3BzkSQP10laL/AZsX24X/MzuiLxgP7OpG82sPFY88LnYHeB9n6gu7Oby5hH2mZe+XmsXTnOl0nbA+eEV0PPW1SJFRpGmKMTaXMi7FnEhWPy7vOs6vzO9dXbjxo1R5jHWqlWrKLPLuZYu6M3/BhZCCCGEaEK0+RFCCCFEUmjzI4QQQoikKHWwAqa9eanNnp/62WefjfKNN95odOhPPPHEE42ub9++Ua5WKnhzjPnhWJe8z83tgP5g9jd78UAYP4DxAl7c0IoVK4yuTZs2US7iQ8bfoJiQzQePJRyDDzzwgNGdc845UebYkzPOOCPKX/ziF6v5iM0anH/c1rjuenMA1xLvQNki4HrJMST4ffxcKcf8eHjxqFl9O2PGDPP56aefjvLkyZONbvTo0VEeP3680Q0dOjTKO+64Y+Yz8rtBx1sIIYQQQlQJbX6EEEIIkRSldntVWk0YTaTTpk2L8uWXX26uQ3Mvm+n69OmT6/vYxFrkpPOykvc0Ze/vMLUxBNsPDz30kNE999xzUV64cKHRLViwIMpoEmVzKLpI9957b6MbM2ZMlPfbbz+jGzZsWJSrXUFUVAcec2vXro3yww8/bHQvvfRSlLkyNLrADzjgAKPr0aNHYx+z1HglHrwUZVwj2QWO4Nz3XMtcwde7Ft1l7DrDZymyRrV0sH29kAWusozXPvnkk1Hmd+ZNN90U5ZUrVxrd9ddfH+X+/fsb3XHHHRflE044wei6du0a5aYML5DlRwghhBBJoc2PEEIIIZJCmx8hhBBCJEWpY37ynrrO6XHoR0af9bJly8x16N9+8cUXje6Tn/xklNkPiX7VvM8YQvPxRXsxTd5veP3116PM/uDf/va3Ub7//vuNbsmSJVHmowyy0nA5VgCvu+aaa4zu7rvvjvLMmTON7qSTToryxIkTjS7rmBTWNZd+bSlgX0+dOtXo1q9fH2WO4cJ4L47xwXsWmdO1on6sVzq2OHYHYzpYh3F1s2fPNjqcL7x+YlzfG2+8kfksOFcHDx5sdBhbOWTIEKPr1atXlDnGT6UnGgbbukhZjzlz5kQZ43ruuusucx2OgXbt2hndmv/b3psH2jWd//9LW1SDSCLzLANCRiGmxBDz1KKmqipFSY2fUq2qotpSYqyYaqipKGpWQ4IYghgiIog5EklEJpIYavj+8fvd1ffz7t1P9jk55959znq//nrOffbZZ581nXXXMy1YEGX0rwvBlprZeOONja5z585RZj8lnM+rr7565vOXg05+hBBCCJEU2vwIIYQQIikKbfbyyFvZGauE8xEyXvfBBx8YnRey7oV8esfURTOPNLShl4G1lGfGo28MRw4hhO7du0cZMy7ztXy0mRXSysfgGNbM4bR4HMth9kOHDo1y//79jQ6PalU5ujhMnjw5yvfee6/RrbnmmlHGrLIh/K9ZE8mbVqOpWF6zl5f+g9eviRMnRvm5554zuieffDLK7733ntGhmdvLHozml/nz5xsd9sk+++xjdOh60KdPH6PzzF6e2b7ewe/Opkj8LeQ0EE8//XSU0dQ1b948c92AAQOivPPOOxsdujqMGzfO6F555ZUojx071uhwnuL8DUFV3YUQQgghKoY2P0IIIYRICm1+hBBCCJEUhfb58Wy3XqpufN99992XeX8MX/7www+NzrMVr7LKKlFmuyrqmKLZn7N8ffJWYebwbwwt5vTmmNKcQ1qxDTt06GB0q622WpQxDJ4rt7/wwgtRPv/8842uXbt2UeZQXvRbQB+fEKxdnEPw0a+omnbpWgDDxEOw8xHbNwTrd4DjB6uHh2DnMPpshRDC0UcfHWWvXMLo0aONrn379o1/gUY+v7lpmIPsu4OvvXnKPjFeqDuGGt96661Gh2ko2I8P1zPsB/bbw/HRqlUro5s5c2aUL7jgAqNDv742bdoYXdu2bUMWRVtn8/iTVeqZs/qEmTZtmnn9m9/8Jso4Z9nX6v/+7/+ivMsuuxgdhsvzbzKWycAyGCGEcMghh0SZ/dGqmdJAJz9CCCGESAptfoQQQgiRFMU66yXwCI9NLHhM7VX1xeM9vgfC5pa8ph/vuqJXG84T6u7B78M+YV3fvn2j3LNnT6PDo002oeB9Vl111Shj9e4QbKgmmzDQpIlmlxBCGDZsWJQ/+eQTo2NTFyJTV76MyNzemBUYzaQzZsww12EG5l/84hdG9/7770eZ5/SRRx4Z5YEDB2Y+1+LFi81rHFv1CK49vA5hX7LOqxKO5i2cc1ilm3U8vznjOnLPPfdEefjw4Zn35NQZmPHfm8P1CH53NuMvWrQoymeffbbRoesBZlXecMMNzXWYnZnXQHR1WG+99YwOxw7PdXRF6Nq1a2gqdPIjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSotA+PwiH7Xk+P2hX9mzK6E+CPikhWD8UDg3F93khsvy+olYiLtc3if16PN8hDJ/katsItxH6dGDo+TPPPGOuu+aaa6KMtu0Q7PfZaqutjA5Tq3Oagrx9W67PVC3jtQ36DHCbZvU9V1lHH65bbrnF6LDt0WcrhBAOPvjgKHt+WSn2WQP83bGyOrcn9jP7xGWFm/PfcU5jOHQItqI8+oOFYEsiYMh9CCF06tQpyrxe1YqfTzV8QD3/O1wzOdwc19nNN988ysccc4y5Dn1yeA3AccXpTPBa7mdMd8BUs1RJuiuAEEIIIZJEmx8hhBBCJEXNmL1KOcKePXt2lNHcwkeCeIy2zjrrZN6fQzzx8zxTVtHNXk159I8hzxxmjJlcua2xavcVV1wRZa4+jaZOHisjRoyI8hFHHGF0eBzLx7jYf0Xvy6bGGzuc4TcL7DPO4nzQQQdFmc2yaEr75S9/aXSYsoL7DO/DIfhFrQRejcy/3HfYFuuvv77RoZmSs3Vj9nWs6M1zAyuDc5ZonHPcX2i+njx5stFhdXEvw3gRaMrxhJ/1wQcfGN2ZZ54ZZey7EGw/XHbZZVHm30U0j/E4wv7zTJ9s+vbcIKqJTn6EEEIIkRTa/AghhBAiKbT5EUIIIURSFNrnB/0/2B8D03ijz0gItvSBZ29F+2X37t3Leq7UfT/ygmGynLZg4sSJUb7++uuN7u67744y+g7weEC7f7du3YxurbXWijKnXeexg+D4YD+iIvmFNDccuurZ8LHUCFbq/v3vf2+ue+211zLvsfvuu0f5+9//fuZ1eappN4DfocilLsodd57Pj+ergTpOIYHzA9vaC1l/5513jI79/xCc0+xvhGuwl+qkaP4/TclNN91kXj/55JNR5jGA6y76+XD5GO/3zvOpwzQlvHY3ZUkLRCc/QgghhEgKbX6EEEIIkRSFNnt5eEfamNXZqyiMcGVghI/p8CjQOwaUaeS/YGglm7Yuv/zyKL/88stGh0foeATPfYn356P08ePHR3nw4MFG97Of/SzKfMTrHZmnbvrEtuIjbtRhtegQQmjdunWU77jjjij/4x//yPwsNmOeeuqpUfb6iPsFxwzrimzqKgcvazt/d6zCztmRsV0wnD2E/zWDNYAuCSFYcwtnicZreRzhWOnfv7/R4XOy6Zrncb3h/fbhGL/wwguNDtuJ18E999wzymiabteuXeZncTvj7yS6KIRgzV5scvM+QxmehRBCCCEqhDY/QgghhEiKQpu9vCyyeNzNx4B4POsdEWJUipdBmo/b8kaRpGz24jbCjMyceRSPvvkoFY+30bTF98ejfD4Gnzp1apQvvvhio+vcuXOUt9lmG6PzinembvbCsc3jHF+zOQkzOf/hD3+IMhZD5XucfPLJRtenT58os4kF+54zBmN/cibxeu9Dby3CdmnZsqXR4TrLOuwzNE1yX2IfcSZvhPtgs802izJHaXpzs94oJWrx1ltvjTIXg0XOP/988xr7CKMwPbzf5/vvvz9TxxGFXkb4alYh0MmPEEIIIZJCmx8hhBBCJIU2P0IIIYRIikIbTtFOXUrlXrTns90f8cLbK0HRfX4a2sbz2SgXvgf61mDG5RBC2GijjaLMIZiYbRQrdnt28H/961/m9X333Rdlrg6NPkBbb7210WGYNlYSDyHtzLEhWP8MDmfHtuFsv7/61a+i/NJLL0WZfYMOP/zwKB966KFGh2Gz7COW1+eHxw9mHff8/4pMub6I+D6+B/r5sM9P+/bto4xtPX36dHMdhrdzf+G8Yt8PzOTdo0cPo8O+5OzPHDKfEliRnSu3Y/9xe+K8yRtKz2sg9vNdd92Vef++ffsaHfp1eikaKo1OfoQQQgiRFNr8CCGEECIpCm32ypvdkTP6DhgwIMp4rMoFNcsNV857vMymOs6e2txkhRFyOyGeScBrT0wrsOWWWxrdVlttFWXPvOQdz+P4GD58uNFNmzYtymhqCcEWXUTzWAghbLfddqEWYXMPthX3eSWOlfn4G8fB3/72N6O78sorG70HmjdDCOH000/P/Ly888gLh+bvXaumLqQSRU+91AGcnRnNKjjfb7nlFnPdm2++mfnZuEbutttuRrfLLrtE2csm7BXRLNKa6xUA5jmLr71x/Oijj5rXWNSbUw6g+bhVq1ZGh9d6oedo4ua1BFPMTJo0yehwjTjllFOMzjN7VROd/AghhBAiKbT5EUIIIURSaPMjhBBCiKQotM8P2qI9mzz7iaAdme2sWe8rJV06l0/ISzUr1JZDg12ZbbfYFpV6TmxrtsPj5/GzoO0bdV7ac+6fkSNHRpn9D7CCsefTwL4Q2C5FCXtvGF9e6gKvPz17u/c+9u96/fXXo4wlLEKwqfPRt2z06NHmunLnmCgd9JFhfw+cExw6jVXd33rrrSiznxfOHe5X/LxTTz3V6NCXh8ti4BrCoe78e1AUSvErQ785XuvQ/4lTd6DfDadyQV9Y7PMQbD/gmstlYDBcntfLww47rNH78bMMHTrU6LzxUc0yQjr5EUIIIURSaPMjhBBCiKQotNnLwwtnLCdzM4ca4tEiH7flNQUV/eg+y8xRrqnLO5bMCllf1uehaQTv75nHuGowmrb4iBzNMBxOi0eu3JdeOoDmoqFdS6mEnDe0lK/D0FjO/HvcccdFGU0jIdg2vfHGG6O86aabmuuqWc1ZWLxwcDR1ceg09jtm7n777bcz78fm49/+9rdRbteundGh+wKHZuN857W7CC4FjcGuFXlTUPBag2vYxIkTjQ7NTZiBO4QQNttssyjnNSF5prqrr77avH744Yczr/373/+eqfN+J7FvZfYSQgghhFgOtPkRQgghRFJo8yOEEEKIpKgZnx+vNAWz9tprRxnt0mxvxtfs04D2Wc+mzM+B9yklfL45aLChej44rPPs1AiHQaLvB7dn69ato8zVvfOmp8f782c//vjjUebvg/5hXG14/vz5UWY/okrbnytBHl+HcvuTwXnFtv9HHnkkyjw/vv/970d5v/32izKPCdE88DqLaxiHL1977bVRHjt2bJQ59QP67nDpmaOPPjrKGKYdgl0XGPR74TWjaGSlFMG2Zt8abEPuE5zn6M8Ygl2X2L8RP58/L8uHiks03X777VH+85//HLLYddddzWssVcJgGgP27aomOvkRQgghRFJo8yOEEEKIpCi2XQbgY3GsiMusueaaUcbjQzZ7Ybg8mjhCCKFTp05R9swB3lEmk5WtuLnhtsVnY1OKFxqdlfE1hBBmzJiRec+ePXtGuWvXrkaH12LmVj62RfPYr3/9a6PDo2H+7G7dukWZM49ihlnPzFoU8pi9+HvkHYfc7zhf+Pgb+4LNgyeffHKUvWP/os6Veocz4qNZeO7cuUZ30kknNXoPHmNoTuZM3ngtm7mw3xcvXmx0nqkLzT1c8b05yDJ75YXnNc4pTuuCJqRevXoZ3axZs6LMZnw0b6L89NNPm+uOP/74KM+ePdvocP287LLLjM6b614m/Wqmi9GqIoQQQoik0OZHCCGEEEmhzY8QQgghkqJmfH48eymH46F9GO2jXMkWwXDoEGyonmc3Znus95xepd7mhMs6eHbWvOHt77zzjtHde++9UX755ZeNrmPHjlHec889jW7jjTeOMvqdPPjgg+Y6TJ/+0ksvGR22O/r4hBDCwQcfHGWvn3nseD5nRQPbrZTSIngt+4KcfvrpUX7jjTcy73naaacZHbY/2v55DBY9TUQ9gf5V7EOCuoMOOsjoZs6c2ej92OfnlFNOifKGG25odDiueE7hZ5cSzl60qu5Za2bedBk8N/B+gwcPNrpp06Y1Kodg/XWwHEkI1u/yyiuvjDKXpZg3b16Uu3TpYnTnn39+lHFNZ9AvKQQb3s7rrHx+hBBCCCEqhDY/QgghhEiKujhb9sKx8Vjw/vvvz7zu2WefNbqtt946ypxlGMP2+FjOMyMUMStwqeCRNn8fPG7mLK/vvvtulF955RWjQzMYm6wwbBWPf/n+eJTKx+5oajnggAOMbt99940ypylAs0wtmbkYHOc8Pr3xim3P2XfHjRuX+T40VXJ7Z2XtlZmr+cDxwWkvzjvvvCij6ZrBcGVMExJCCPvvv3+UP/30U6PDecXzD8Oe2eyFrg2sK1pV9yyzF/6d1yxcW9lUjWsf/k6FEMIDDzwQZf5teuKJJ6I8YcIEo0MTFqYGYXM3VornVAdYNZ7fh/3MWZxxTHBf4ppf6TVCJz9CCCGESAptfoQQQgiRFNr8CCGEECIpasbQzv4laAfldNlolxw5cmSUOVU32lk5rTZWMGabrVeB2vOJKZotuoFSwu6xnTg0vE2bNlHmMMhhw4ZFefr06Ub33nvvRZnLjHBa+wbY5wf9BbD/Q7ChtnvvvbfRYR+V0j+eH01zkSeNfinPirb4hQsXGt2gQYOizKkm9thjjyhzagF8Ni/lfRHbt17BOXDTTTcZ3SWXXBJl9n3EsGRMc/Gb3/zGXIdlMbisAsI+HTgmsHROCCG0bNky8z7eGlxU+DcFn5u/A7YLh7offfTRUf7lL39pdNguXPEd0xbgfEb/vRBCuOCCC6LMaQsQ7zeSwXHFoe485iqJTn6EEEIIkRTa/AghhBAiKQpt9sKjs1JCdDHk+uc//3mUOXswHqUOGDAg834cauhlEGVzDFLU43s2OXigqcur8I5mkRDsMXWfPn2MDkNoX3zxRaPDMYChm/369TPXDRw4MMrHHnus0eFRO4bkMvx9as2EmSek1oO/P5oxUQ7BZnNlcwXOAW+MeOOuiO1br6AJhFM6oAmETRK4Dm600UZRHjJkiLnOM3UhXp97Zi6mVkxdiDcXvN8Uft9OO+0UZf5Nw1D3SZMmGV27du2ivP3220cZ19UQ8rett84y2O/VNHMxOvkRQgghRFJo8yOEEEKIpNDmRwghhBBJUWifH/RV4NA5fM0+DWhDxHTZHJrN6dRF9VhrrbWi3LVrV6PD9PdeFV/sL/YzwT7nsNi8pSm8ccR44y8F0KbP37+c9AHsG4SvU2zfpgT9RtD3IwRb7RvD2UOwYdCHHXZYlPv372+uw5QJRau4Xm/g+tmrVy+jw3X3hz/8odGhr43n14NlK2q55E8IOvkRQgghRGJo8yOEEEKIpCi02Qvho280gfCReVb1V74HHhF6IbkKu20cbhevDREvY6kHXsdmUHyWUsJiy80kXI9mr1L60wu/FbUF9jNmYg/BVgnnTN44j70Q5XqZH7UOztly52+tm7oQjUohhBBCJIU2P0IIIYRICm1+hBBCCJEUNePzw5QTTuuFy2f5CYn85O0HzweA+yhvyHPeCuFYsoIpZQyk4Afmfce8/l15719K+RpRWdD/g0tY4Dq7+uqrG92XX34ZZUwvwfOvlFIHYvnA9fPzzz83OpxTnFIEdejbxWtiPflv1c83EUIIIYTIQcnHHaNGjarGc4hmQH1ZX6g/6wf1Zf2gviwmOvkRQgghRFKsUAnbvRBCCCFEraCTHyGEEEIkhTY/QgghhEgKbX6EEEIIkRTa/AghhBAiKbT5EUIIIURSaPMjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSQpsfIYQQQiSFNj9CCCGESAptfoQQQgiRFNr8CCGEECIptPkRQgghRFJo8yOEEEKIpNDmRwghhBBJoc2PEEIIIZLiO3kvHDVq1DfVfBCRjzFjxqywvPdQXxaDSvRlCOrPoqC5WT+oL+uLxvpTJz9CCCGESIrcJz8NjBkzphrPsUw+/fRT83qVVVbJ9b4vvvgiyiuttFLuz/v888+jvPLKK2de99VXX5nX3/72t3Nd613XGKNGjSrp+jw09OU339h/UPD1t76Vf3+M7+N74n2wT0IorV+y+M9//pOpW3HFFTN1+JyfffZZ5nOV2l8e1ejLEJpvblYbnmPe+Fy0aFGUW7VqlXlPnN8h2L5eYYXS/umv5txsCrA9ve/O/YBgP3j34HnqzU2Pr7/+OvPzSu0/pNb7EsE2CiGEL7/8MvNaXN/yrnW8Xn73u9/NvBY/+zvfyd528O8Gjpdyfie8/ix589OU4GTzGszDazCvQ/IOgFI2B8szKatJpZ4L7+Pdkwc4boa43XHw40LJ16GOJyVvthDc2ObdUIcQwpIlS6LcokWL3O8TpcN97f1Yr7rqqpn3wXHB60JR52ZTkPe7510T+UcX13He7KCON6T4efwPqLfu5v3Htd7hNipn88B9iXOP2xb7kj8bf195/fd+hyvxj3EWMnsJIYQQIim0+RFCCCFEUmjzI4QQQoikKLTPT14nrKVLl5rXaMP2/Dg8PyL8PLZ75nXuY2rFryCvv06536cUOzx+Rl7/Ks/xzsPzFfre975ndPLzaTp4/qEfmOf7xQ66ON95LOFnlOLHVw+gjwz7Y3jzD9vT8/fz1m7U8RxD+LmynjGEtP18cM3i/sK25jZDvxucC+X6wnrjiD8b5yw7ZeNv++qrr57rs/OS1iwXQgghRPJo8yOEEEKIpCi02cvL0YNHc95xKeLlCmLTGd6Tj909vFw+RTN7NRxNlvJc5Zq9Fi9enKnDtuaj2rwmCDSFcC4Rr0/ws9lchq95DOB4yTv+RHmw+SqvWYPn9GqrrZZ5La4NRTBpZpl5qrGGVMJMlDeHTCm5YRAeA/haaQv+S97QcF4jsY/KTSvjgf3OqUfQnMWfXWlTF6KTHyGEEEIkhTY/QgghhEgKbX6EEEIIkRSF9vkpt+7LwoULo3zddddF+b777jPXoc/Pueeea3Q9evQo67OXp35XU5PH58cLMfVgGz2WHWAdhtp6Pj6ebwKOlXLHDfuEYbuwb4L8fJoOrz8nT55sXp9xxhlRnj17ttGtv/76UT7zzDONrpq+BeVQjj9eqfduAP0/WIc+GN56ltdPJG/9p2Xd3/u8vHWkUsMrP5G17r766qvm9TPPPBPle+65x+j69esX5W222cboNt544yh7c419kdBXyPPZKwed/AghhBAiKbT5EUIIIURSFPpMEI9g2VSCeNVrX3zxxSg//PDD5ro11lgjyu+//77Rde/ePfP+Xri3ZyYqWhbZPCYtL1Mng9+PTUiTJk2K8oQJE4xu4sSJUX7vvfeMDk0Xn3zySZT5eBTDJzt16mR0O+20U5QPOOAAoxs2bFiUORs4hkqXG6Irlp8lS5aY1xiKzubHJ554Isoff/yx0c2YMSPKJ5xwgtGhSbUIGYIb5lm5Zi+et/ia0zbgesmV1XHccxg1msG89dmr6I3rYLkmKu+eqYH94PWJFxKPv5lXXnml0d1yyy1Rnjt3rtHdfvvtUf7nP/9pdD/96U+jvP/++xsdrtc83itt6kLSHSVCCCGESBJtfoQQQgiRFNr8CCGEECIpCu3zg7Zbz46LviAhWFv0zJkzo8yhlB999FGU2ecH7aVsiy63hEXRfH7yUIo9HduFfX7uvvvuKLPv1QsvvJDrWbBtOfwZ++Hdd981uuuvvz7Kc+bMMbojjjgiyiNHjjQ69CfhdvBKr4jK4vlXPfnkk+b1okWLosxzE/27WrVqZXRF8PNBljfEnccrrj3s8/Phhx9GmUObp0yZEmX28cA57pUvQHr16mVer7XWWlHu37+/0XXp0iXKPAbw+/GalHJ5CxzzpaRaee2116J86623RvnBBx801+EY6Nixo9HhOML7hRDC/fffH2VeZ7Gfm/J3sTZ+gYUQQgghKoQ2P0IIIYRIikKbvdCMwke1aPbgI2s0Q2A4O4NhdPPnz8/8bDZ7lZv1uNz3VYus42F8zlKeGfuIj77xCJY/F81LmAk6BBvWjEfrbFZDk2bLli2NDk0hGAodQgibbrpplAcPHmx0rVu3jrIXHiyaFuzPK664wuhwvHJ19gMPPDDK1QyhLSJeqPvUqVOjPG7cOKPDrPhvvPGG0eEcR3MFm1vwNWbfD8Fm3d51112NbpdddonyBhtsYHSemRLXidRSUmA/s5sH/mayq8gjjzwSZQxTf+edd8x1vXv3jvLAgQONDtMkjB8/3ugw1cmjjz6aeU9e/5FKZ+vWyY8QQgghkkKbHyGEEEIkhTY/QgghhEiKQvv8oG2aQ5vRtsk6fB+GPbMtGu2eb731Vu7n8myPXgXqcquNV4ussEL0yfG+qxcGv+aaaxrdvvvuG2UsHRKCtcuzj1abNm2ijHZ+9tHC8ExOrY5wqDumOEAfnxCsTwP7KZUSRlrvcPkJ9IfiMY/+GNiG3tzgkgtnn312lJ999lmjw7In22+/vdFtsskmmZ9Rb/DcxjWRx3K7du2ijP5UIdgSIexDgmsDjoG2bdua69B/kit6Y3j01VdfbXQ4Vrp27Wp0+Jr9C1Pz80Gwb3ne4BzjFBEnnnhilHGs8Hp88sknR5krt+NvKPfJU089FWXuZ/xt4PFRzdB3nfwIIYQQIim0+RFCCCFEUhTa7IXHdN6Rq2d+WbBgQZS9Krd8vCezRulgu/PROoa0dujQwegw2y73ZVZIOYbnhmBDJL3wfMwmGkIIG220UZSx6ndj1yI4HisdglkL4NE4f3/PhJVl6sJs6yFYs+lJJ51kdBdccEGUOZx93XXXjfJf//pXo+MUCEi99yfOR56bOMd4vqHZa+nSpUaHJopu3bpFGbM2h2BNkXi/EEJ45ZVXMp/r8ccfjzKaRkKw853TFuDnFc3VoNrgd+ew8Q8++CDKF198sdGhqRDTEXz/+98312233XZR5vm0zjrrRLlfv35Gh6H0nusBr7k45jAlSiXQyY8QQgghkkKbHyGEEEIkhTY/QgghhEiKmjFuoy0zBN8uj2GX8+bNy7wObcydO3fOfX/PpwTvydfVe7VhLywRfSowtJZhv4IsvxD0BwjBhrdz6QtkxIgRma851B3h8ZeaL4EHlxpYvHhxlDncFlMXIJwaYezYsVEeM2ZM5mdzqYYbb7wxyjyncT7yXKxHP58s+LujDx76TIVgfTd4fqC/XI8ePRqVQ7BpKZ555hmjw1QkPFbQB+/NN980uj59+kQ5pb5bFt66hBXa77nnHqPD+bf55ptHmf3tuJI7gj45G264YeZzcWmN9957L8qcjqKav5k6+RFCCCFEUmjzI4QQQoikqJnzQq+KNpuXMNOkZwJBOOuwd/+8Zi8+kq+V8Pm8ldxLOZLEY082IWEKAgx7DMFm8L388sujPHnyZHMdmtX4ufAY95BDDjE6DLNfZZVVjA6zlGK22RBk9vJMnNg2XpVmHGecugD7iecNjh8Mew8hhPXWWy/KfLyOIdFomlvWc9YDXqj77NmzM9+H84NDjTGkHduP1z0MneZQ96ws0fx6woQJRrfVVltFmdd4nsepwv161llnRZlNmOiKgGZmDF8PwU8Jges4zsMQbCg9mzd5vCDV7Eud/AghhBAiKbT5EUIIIURSaPMjhBBCiKQotM8P2gLZ7u/5pUyZMiXKnl8K3oPDYr3P8vx6EC6nUSs+P9UAw9TZXwTDX0ePHm10kyZNijKmLWCfGy+t+9ChQ6M8bNgwo0O7Nfell/bfC5tODS49w6HvCJabQR+c3/3ud+Y6DIFmtt122yjvt99+RofjgMseIDxG0A/Be/7mptxx5/loYWkfrsiOIdDsQ4UV4GfNmhVl9ifBMPXp06cbHfpe8XqJaS/4s3nMIXif1NZcXMNuv/12o3vttdeizP5b5557bpTZzwdhf00E+4RTV2Bf8rjt2rVrlJsyPYxOfoQQQgiRFNr8CCGEECIpasbsxce2eMTGJhCuzp0F3jMr82wIftV471jOM4kVgYbvxd+hGkeNGDLL1bavuuqqKL/66qtGh5WjET5+xWNcDFEPIYQnnngiyvfee6/R7bXXXlEuJWQWP99Lw1Cv4JzwxjmHNuM4uPbaa6P8wAMPmOvQHMlzH1Me8DjwQtYxXQGG3oaQP71DPcDzu0WLFlFmUyHOKzRZhmBNWNi2PB9wPeYUAzhX2dyI92FzNfazQtv/C7YvuxBgm22wwQZGt/3220cZ3Qv4dxF/a3le4pyaO3eu0eH44H7u1atXlHlsVtOEqZMfIYQQQiSFNj9CCCGESIpCm73KLViHR9icTTLr/nj0WwqeiYijF+odbHc2I2CmZixkF4LtIzZj4HEptjUfraMZlE1lzz33XJT/+Mc/Gl3Pnj2jPGjQoJCFCptm45n9eA7jkfqf/vSnKHNBW+Scc84xr7lwJoL34eN1PDZPLcMzwmsWmo169+5tdFtvvXWUsUBpCNZMjPODI31w/uUtNB1CCEOGDIny8OHDjY7NlkjK0V4PPfRQlN955x2jw3mK0V0h2GzaXoFn7zcZzd+PPPJI5nVcHBVN4U2JTn6EEEIIkRTa/AghhBAiKbT5EUIIIURSFNrnB+HwZc/2iOGZnv0XX3v3Kzf0O6Xw2RD88GfM4skVfzEcunv37kaHYZB4D/YrQF+Cu+++2+jwWV566SWjQ78TDKEOwYZ5ysfHgnOCfdvwNacPwIzMr7/+epTZh2PnnXeO8nHHHWd0XpZZnPs8BnG+s48Pri+1krqgGtlwu3TpYl536NAhyhzajH4i6EPFfj1Y1Z19u3Dd5T7Zcccdo9yvXz+jw2dJ2X+LueOOO6LMaQvQ16ZPnz5Gl+XzWkqVAsz4/dhjjxmd51eG45Yzd5fr95sHnfwIIYQQIim0+RFCCCFEUtSM2YuPovE4jo9SMRQWj9MxbDoEe8TGx21edmksssdHi/hcXjhmEcg6JkezAl+TN9SRr0Mz1S677GJ0I0eOjDK3Gbavl10Uj2P32Wcfo9tuu+2izOG6GIKPYaIhWNNLVqbpItEwhr0+qlSxXa/AJt7z/PPPNzpsY7yOC2r+/e9/jzL3tVeks5zrQqgdU1e1i+ii6SKEEFq2bBlldj3AuYnyJZdcYq574403oszmY7znTjvtZHQ///nPo8wpS9CMwmauooa6eyYdb16y+RbHNRaUDSGExx9/PPOeP/jBD6LMv1v4G4p95Jn72fyMa8LDDz9sdOhCcOKJJxodtktT/mbq5EcIIYQQSaHNjxBCCCGSQpsfIYQQQiRFoX1+0KbItke0iWJ4awjWTs1+Pgi+j1Phe/4CecOe2T7v+RE1B1lV3asR1o3fnW30mE693M9Ge/Maa6xhdHvssUeUL7roIqObOXNmlNkfCP182K8M+68ovl15wkJL8Rnxxiveh+85ceLEKGMqgRCsbw/22ZVXXmmuK7fcjCgd9KfBtZPx/C6xhMVVV12VeR2PI/y8M844w+jQLwXTYYRgfX44nUJRq7yX63/EbYZ+UjjXQgjhww8/jDL7KW666aaZn8G/oVngOsjvOfXUU6PspWHg5/A+G9MpVHpNaP5fYCGEEEKIJkSbHyGEEEIkRaHNXuWaQNq3b5/rOjw+5DBEPKplk5hnOkAdH1cWrcp7ltmrXDyzCx5F85EothOHdaLZ0gvBxO/AVYLRfMr97GUqxvHBR7N8nyLjmR2QUjKSo6mE74khygyaLzCcHauHi6aF17cseMyjSeKCCy6IMpqSQ7Djg+9x8sknRxkzuIdg559X+btWMunzOovfrxSTGJr5OKQcdT179jS6YcOGRZnN+Li+ee4meN2tt95qdDif+f4nnXRSo/dY1udVMwWFTn6EEEIIkRTa/AghhBAiKbT5EUIIIURSFNrnB2FfEPQ54NBGrF6L9kW2DeNrtkV770O7ZCn2ZvwORUi7nifc3mszfj/qsARICNYWzffEkEy2B2Pfer5JOB68lO+ckh3DJ/v27Wt06J/CVeSrWW14eWHfJS8sHa9lnTc+8NoLL7zQ6F588cUoc+j0j370oyhzGRLEC6kV1cPzBeExP27cuCjffPPNUWb/nAULFkR54MCBRnfcccdFGau/h+CXlMH1hMeHV3qlOWhY93k+lft7gN/vzTffNDrsI04P4PkwIl55kBdeeCHKxx57rNHh53E/47VeWQymGmlXGtDJjxBCCCGSQpsfIYQQQiRFcc/uCS88mkFTCWYP5mNAhHVc9TYLNjF4ZiE23RUFr2owHxt7R5RYEfqtt94yuldffTXKfJy9/vrrR7lLly5Gh0ek3nNhZlOuGvzOO+9kPjN+3tChQ40OTV2cRRazOhfhaB3hPvKO1HH8lnLE/NJLL0X5tNNOMzpsj3bt2hndKaecEmU0NbNJpZrH3cKC/cDmEFwbuKr7+eef3+h1aOYKwY4BzrCOY4UzsyNsEvOuxRB8zibfHGStmTjmvd8z/o3B8G82MeK6xP31yiuvRLlTp05Gh+ZO/O2bPXu2uQ5N1ZzSoHPnzlHG1Ach5M/OvHjxYvMav0+lXQ108iOEEEKIpNDmRwghhBBJoc2PEEIIIZKi0D4/XiggvmafFbT5og17xowZ5jq0Nz/11FNGh5XA8/pMLOvaaqbqXh44zN97TrRNsy0bw9vZz+b555+P8vvvv290vXv3jvLuu+9udIMGDYoy2qVvueUWcx36EqBtm+EU+hiCyeHsiFcWo5bBueN9pzlz5pjXf/jDH6LMaQ3Qz+L44483OvTBQxs+z2H5/DQd3pqFc5xTGowfP77R93DfnXDCCVEePny40aEvHacswbWVfXy8cPaipUbI8ufJ68PCvzHoB8MV0u+6667M+xx99NFRPuSQQ4zugAMOiPLll18e5d///vfmOlyD2Z9q1KhRUd5iiy2MDvuLvw+2A9+zmmWEdPIjhBBCiKTQ5kcIIYQQSVFos1de0wIfjeGx67rrrhvladOmmevwKO6RRx4xupEjR0aZQ7PxGJOPNPNmxa1VvOyfeGzNpjMMdccw6RDs8fltt91mdBji6plo5s2bl/nMa621VpTxeDeEEA477LAoeybMvKkPikAp48y7Fs3HU6ZMMTqcL3gMH0IIu+yyS5R/8IMfGF2WOYvDcvmeonrgGOB+wGzdbPbKYuONNzavDz744Ch/9tlnRodrButwPnKotBfOnidzfVPS0L7sJlDu7wF+vy233NLoBg8eHGV25UCT1V/+8hejO/PMM6OMa7eX4R/7NYQQDj/88ChzahDsZzaTr7zyylFmk2U1M+kXa5QIIYQQQlQZbX6EEEIIkRTa/AghhBAiKQrt84OwLRr9MdguifZhDK2cNGmSuQ6rf3Mab7R7enZHz77Mvkj4zEXy/ynFRo7V09k+i6HiXKZiyJAhUea06O+++26U2VbM6c4b8NKlc0kFDLXFquIh2O9eSlil5/tUS3jjEG3zb7/9ttFxygBkr732ijKGtnufV6T5kDI8B/75z39GmUsA4bjH9XKdddYx1+FcRf+OEHw/Pnwfrjsh+GUr8J5F8v/hauZ5U594c4Pb+qyzzooyV11//fXXozx//nyjw3mKaS14Lb344oujvNtuu2Xeg8HfaPafxN9XXu9xDFR6jSjOyBBCCCGEaAK0+RFCCCFEUhTa7IXHXGxawGM0PkpFMPwOQ3BDsMd7G264odF5GaTzHqWyucyriN6clBJOiKYu7/tgyGUItvpwnz59jO6+++6LMpsmsVo79jNWgg8hhIEDB0b5yCOPNLq2bdtGmdMWINyvnmmryKauUp4N+55Nyy1btozyfvvtZ3RbbbVVlDksHU0Secc8z2Evg6+oHmxeQjMY9wPOD5zTbG7x1mecc951ns67Z5EoN8O/l+2c5/omm2wS5XHjxhnd1KlTo8ypKzAUHX8Le/bsaa7DeVnKOoNjx/u98cyZlaaYo0QIIYQQokpo8yOEEEKIpNDmRwghhBBJUWifH89fIK8fAIbKYfXwEGy4LtuJ8f7yOVh+0HbcuXNno0N/Eq+sQd7wck6f7oXFI6X4ChQxnLZhvpQyXvHZ2RaPOm7v7t27Z+rKaQ/2q8O+VoX36oIh2OibF0IIgwYNijKnN8A+w7Dnfv36VfgJRTnwuod+kRwij/5Inn9VUf1Wy6EYq7YQQgghRBOhzY8QQgghkqLQZi+klLC6rDBZvgeGbXNF72qYuurNfMbfxzsSxSNy7oe8Zg00p3B/oa4pKrDj59ey2Qvh79GU38szO4vqghXS11hjDaM78MADo7z11lsbHZpH2FyGYDVxzgovKguuS5ytG9fZvGH3Xtb7alZcbwqKsWoLIYQQQjQR2vwIIYQQIim0+RFCCCFEUtS20S4D9C/xbJboV1BK6vG84X6p+S143zdvW3Db5g0px3Bdry/ZVwgpxa+sKH4+SFOON68dEX6mvCkkUps7zQn6+aB/Tgi2HzhFBc4XXGe5TIr8fJoObw3z/BRx3cX+4/vVup8PUrwVXAghhBCiipS8jRs1alQ1nkM0A+rL+uIXv/hFcz+CqBCam/WD+rKY6ORHCCGEEEmxQj2lqxZCCCGEWBY6+RFCCCFEUmjzI4QQQoik0OZHCCGEEEmhzY8QQgghkkKbHyGEEEIkhTY/QgghhEgKbX6EEEIIkRTa/AghhBAiKbT5EUIIIURSaPMjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSQpsfIYQQQiSFNj9CCCGESAptfoQQQgiRFNr8CCGEECIpvpP3wlGjRn1TzQcR+RgzZswKy3sP9WUxqERfhqD+LAqam/WD+rK+aKw/dfIjhBBCiKTIffLTwJgxY6rxHMvk008/Na9XXnnlKH/rW5Xfw3355ZdR/s53bDN9/fXXNoDITwAAf4lJREFUuT4brwshhBVWWKFROQ+jRo0q6fo8XHTRRY0+i/edvvnmm0blxu6Tpfvqq6+M7tvf/vayHzb47Y73ZJ33XHn7kvniiy+ivNJKK+V+XwjV6csQmm9uNjU47kqZR+X29bKoRn82V1/ynMZ5xfO01DUshP9dE/Oun//5z38y37fiiiuW/BxZ1HpffvbZZ1H+7ne/m3kdrl8hZK9hpfSXB/ZfJftrWXj9qZMfIYQQQiRFySc/zQXvTPP+x4AnOJ9//nnmPXg3ivfgkx98H59ieM9Yzn9K1aThecp9Ln5f3vt4/10y+B8K9gO3bd7TI8YbR95/vaWe9ojy4fGR9wQV/wsOwf9PePHixVFeddVVS33EmsYb57z2Zb0P/7PnPsF78v1wffbehyf9IhtsJ15nsa299RL7le+B6yWfHuH7uJ+90x6+D1LNdVYnP0IIIYRICm1+hBBCCJEU2vwIIYQQIikK7fODfjd5bZQhWDsl2gxLsR96figI2lFDsLbOovn4MA32W7br8mukEt/J8yPwrs3rn8PP6NmUPT8QpFJRD6J0eO7Pmzcvym3atMl8n+cnwv2Zmp8PwmsY4q27qCsnYjMEO1dL8dtDH6NK+f/VA9ie7POGv3/e+oXjwfvN9HTe7yePgbxrfKXRCi6EEEKIpNDmRwghhBBJUWizV14TCyfAyjJlzJ0717xu1apVlNkUg0enfH8M2/PCM73nbMpET8uCvwMfS3rX5mXJkiVR5qPNVVZZJfN9edsJj1n5ODavaYvBvuQ2KTfRnlh+vPb2Qq7LNbHUO555EMc5z4G8begl3vOSpuZNqKr51zheihYG5403HtAkxomH8fO8NZ1NYt4aX83fTJ38CCGEECIptPkRQgghRFJo8yOEEEKIpCi0z4+XLhvxfDrQz2f06NFG9/HHH0f5pz/9qdFtsMEGuZ5R9ubGYRt9ixYtMnVcdgTBMYA2X7b/Yj9gKHQIIayxxhpRLsXXA59Toe3FAftzzpw5RveTn/wkykuXLjW673//+1E+8sgjjQ79HFKb0zj/eH7k9bvx5oe3PuM92KcIn4vv4fUR+qJ4vif1DvclrqWc/gPbE9fWjz76yFz3+OOPR/mOO+4wur59+0Z5xIgRRjdw4MAor7baakaH/V5KsezlRSu6EEIIIZJCmx8hhBBCJEWhzV7ekRcelXlHrm+99VaUb7jhBqObNWtWlDnDa+/evaOMIfEMH9NlVZQPoTYrgZdy7IjHqhzOuGDBgig/+eSTRjdhwoQov/nmm0b3/vvvR3nhwoVR5rbF11tvvbXR4ZErH8euu+66UeYxkJr5o6h4qSYmTZpkdM8880yUFy1aZHQ9e/aMMs79EELo1KlTlFOrIJ73+3I/LF68OMrYJ56pidONYIbuUlJgeKRs6vIy3aMZzGuj6dOnR/nGG280umuuuSbKr7/+utHhGBg0aJDRoVvJPvvsY3Q4BtgFoppzUSc/QgghhEgKbX6EEEIIkRTa/AghhBAiKQrt8+P58mCoHodBot0T7dIcFovXvfHGG0bnlbBAWIfPXCs+P14V91LwQinRdnz//fcbHfr8YH958NjAtr3uuuuM7p577onyiy++aHQHHXRQlNkfCMeAV6VYpRKqC6c1QN+vv/71r0aHfj7sL4A+PzxvU/PzQebPnx9lDm1+5ZVXosxzZ8aMGVHGNYTXOZyrbdu2NTrsE04vsvbaa2feE8PZeXwUqXRQU5PXF5bBfv/nP/8Z5auvvtpcN23atCh37tw58x4TJ07MfK4+ffoY3bbbbhvlppyHOvkRQgghRFJo8yOEEEKIpCi02curnO1lfMb3YUVhL2SWw5wxCyWbPPC1Z/Koh1Bp7zuwuQzbxTP5cZvhUScfe+K1eNTNfYm0bt3avMZj/XHjxhkdhmQOHjw48z7K8Nx84BwOwZq9Hn30UaNDE/iwYcOM7tBDD41yly5djM5ba+odzHT/0ksvGd1tt90W5bFjxxodmjlwveQwalwLeN7i+zhFBfYXm6S/973vRdkzSacG/qZ56UA4m/bzzz8f5bvuuivK7733nrkOU4N4VRAwE3QI1kQ6ZcoUo9t4442jzNmfq4lWdCGEEEIkhTY/QgghhEgKbX6EEEIIkRSF9vnxwsbR54dtvqjjsGoE34chlyHYkGv2B0L/APZfQZu2Z/v2fJaaGvZxKNfnAf16ODQV7florw8hhL322ivK7K+D/gg4Hrh0AYbL33vvvUaHFeWxzEYIIcyePTvKWC08BL86dF6/rxRYsmSJeY3tzaC/Drc3gm2PcgghHHDAAZnvQ5+fY445xug6dOiQ+b56x6vOjiUFsBxQCLZcCKehwPmI6x6HMmd9Vgg2/chTTz1ldB07dowyVgwPwfYlz79yw73rDfbrwTV5/PjxRnf88cdH+dVXX40yl3Y6/PDDo/zDH/7Q6D755JMoX3TRRUZ36623RvmWW27JvCenSKlmeph0R4YQQgghkkSbHyGEEEIkRXFsL8vAMy3wMS6+njlzZq73YWXZZX1eKeHfed9XD+D343bo3bt3lDnMGI822byJx+loJpk6daq57p133omylxGYM8xuueWWUUYTWwh+2GXqpi5MH8CmSoTD1LNMXRgKG4IdI1wF+oknnsj8vKOOOirKu+++e+Z1DJoIUutbTC/B5mR+jaDpaciQIVHefvvtzXVoFuVK4E8//XSUea2+4447onzIIYcYHZqhOT1Gytm6cf1kk9HcuXOjzFnw33777SijW8IOO+xgrsNszOy+sOaaa0Z5vfXWMzpMmcD9jCkTunbtGpoKnfwIIYQQIim0+RFCCCFEUmjzI4QQQoikKLTPT96U8xzOiHZPDt3Mun+3bt2MzqsMXG74ZL2FXZZS7R5DGEtJYZ4VNj158mTz+vbbb48yh7Nju2+zzTZGhyna+bNS8/0oBc/PB8OZly5danQYio5+NuwH9ve//z3Kd999d+ZnoS9ZCCH8/ve/z7wWYV+Wli1b5npfPYJpN3je4lzlKt5YdX3kyJFRZp+fDz74oNHPCiGEl19+Ocpc+uLdd9+N8muvvWZ07du3jzL7+NS7b6UHrlncnphK4B//+IfR4Zz9/ve/H+UTTjjBXIflLbyw9LXWWsvo8LcWfY9CsOs1+/zgd/B+k8uhvn6NhRBCCCGWgTY/QgghhEiKmjV7eVk8MfsuZhD14AzPXgbmvMeqnGGzaGavrLD8co+NvfdhaCqHs+PxKR/VYhX2Sy+9NMpczRvbmo9H0dSF2URDsOGa/L681aJTN49xf2K7eeYxnA9snj766KOjzCG7+L5zzjnH6DhlBYIZaFM2czFo8uD2QzME9yW6CmBKAzRlhWDXYA51nzZtWpQ5kzemRXjggQeMbpNNNokyrztoauVw7HoH5yKvX2effXaU2Rw9fPjwKOOcYlMnwvMS78kpLbyqCM3VR8X6NRZCCCGEqDLa/AghhBAiKbT5EUIIIURSFNrnx/Mhyevzg/Zsvg7vUamKz/jMRff5aUqwxATbfDHF/bXXXmt0jz32WJSxAjv7BiGctgDDM/v162d0q6++euZ90BeJq7qnDtr3uW08Gz7OR/SxOuyww8x1XGoE2XfffaO86667Lvth/3/ylshJLVQa5xKXf8HUBFiGIAS7vj333HNR9uYKhr2H4PczrpfsD+SR8jqLc+quu+4yuieffDLKPMYvu+yyKKP/K/+GeeD84jGA6wX702JZDKbS4e1IuqNECCGEEEmizY8QQgghkqLQZq9ywZBWPALloz7UeeYPxjsix6M/r8J7Eaj08X7eivY33HCD0V155ZVR5mrtaML0TF3Yf1hxPARbBXzAgAFGt//++0cZTTIh+Mf3+Fwphrqjacvrdy+T8oUXXhhlTGnAcLbYP//5z1HmqvH4XByCjzoeS9U8Xi862CdsMu7YsWOUMSw9BGuGnjdvXpQ54zK2NY8HnDtsrsJxtcUWWxgdzk0ef2iqSw1s65NPPjnzur333tu8XmeddaKMpslOnTqZ63C+8ZzBfp8+fbrRLV68OMqYnZvfx+H51VxbdfIjhBBCiKTQ5kcIIYQQSVGzZi/Poz8rqzMfqeHxqJfRmcFjVj5yxecqxVO+FuHv7rXLhAkTovz2228bHUZy8Pvw2BOzhnLbYmQW6/Cz2bTVp0+fKA8aNCjkBU0qKZq9sJ84EgfNS5xJGTM5n3XWWVHmI3RsUy5W2qNHj8zn8rL7ejrsz1LWgnoAo2147uy+++5R5kgtNHXh2srj4d57740yRn3y5/E8GjJkSJSHDRtmdDheOGIs5ezdWASYi8HiuObM6Ni3bJZCsI/YrIy6m2++OfMegwcPznyf95tSaTcNnfwIIYQQIim0+RFCCCFEUmjzI4QQQoikKLRx27P3eT4/GOrsVeb2bPteBml8Li+Lc2qZRr2Q5/79+0cZQ2RDsGGQW221ldF17949ypiFm+3NmH32xhtvNDr0M3n++eeN7pJLLokyVo0PwfoRcQVjDudNDZyPXkZn9vE44ogjoox+Bty+xx13XJR/8pOfZN6ffbjwWTjlAVYl53mbmp8Pgv4zHNq8xx57ZL4P5xz23xtvvGGue/jhh6PsZeNv1aqV0R144IFRZj+v1OdfFn//+9+jzG208cYbR5l97LL8fNh/y0sxgNfefvvtRof9zms8z/2mIq1fZyGEEEIkjzY/QgghhEiKQp/14lEZH7HhcSmbQJYsWRJlNF14eCHrDIbmcXgmHqfzczXX8V4WDdlAvey2nlmPTYrYhnxPPNLeb7/9jG633XbL/Dw0VXifjZlHhw8fbnS77LJL5nP9+9//jjKH8mKBPzavFPHYveEZeUx6Jh3PtOeB7c0ZdXH+nXjiiUY3duzYRu/HZo1TTjkl13N4/YBjh0nNJI1mSnYh8FIAIJg5PwQ7p3HM3Xbbbea69957L8pe+o8999zTvN5uu+2izP2Fa6uXUbpImbv59wDnJa8v+NzeWH399dfN6ylTpkSZ2xrXXTZz4XqK44Oz3GNagVVXXdXonnnmmSjjmArBjhU2Y6O5jPurmubotFYAIYQQQiSPNj9CCCGESAptfoQQQgiRFIX2+UHYTp3Xj4FtqUi5adC9EHzPtl40ssoyoG3a+w5eH7APFfqIsC9GXv8Z7Fd+rhYtWkSZK1NvuOGGUb7//vsz78llUbp06ZL5jEUsh9DwjOxb4JH32fmeXuXsiRMnRvmqq64yOvQrwnIlnGYg5crcTY3n54NpKFZbbbXM67CUwnXXXWd0CxYsyHxfr169onzYYYcZHfqlcMoEHDteSYQi4fnu8Dz0rsXftKefftrosHQQpgYJIYRNN900yuiXF4JdP1HH697qq68eZfa7PPTQQ6OMJVNCsGOHnwvh32v5/AghhBBCVAhtfoQQQgiRFMU4r8/Ay7KM8NEYh+dlgaF6nnmHj/fwuTg0r5bMXlltis/N3x3f430/Pr70suviMSs/E5o/sK29z+7YsaN5jUfyPDbwiByrVPPn8VF6UUxdeSg3U3rWPUKw4aloGgkhhCOPPDLKHD6PIbCXXXZZlDnrq2g60PTL4yHLNB6CDXs+9dRTo8wZ3BEef6effnqU+/Xrl/k+NHOF4D9z0VKKNKx33lwrJfUCuhA8+uijRodmKjYvYZZ9TluA4NrG6xyavw855BCje/PNNzPviZn1OQweza5NmbZAJz9CCCGESAptfoQQQgiRFNr8CCGEECIpCu24gL4hXlp0tku2a9cuyphWm30T0L7o2bbZTp03lLLoPj9ZYFt4vh5sn8Xvy6HRaKPntvZCaD1/lazrHn/8caN7//33o8xjBb8Dht0yHBrKqd3rAe5rbG+2t+Pr0047zeheeeWVKLP/BfoJYFkTBn3GilhKpJ7wfGQ837a77747yjfffHOUOU0BrgUHH3yw0f3oRz+KMvp3hBDCokWLosxpSfBaDNMuIlnrFn4H9vnB97AOfwunTZtmdOjTiD5ZIdg1zPOLxfnGfXLJJZdE+a677sq8x1577WVeY/oRfi6PapYn0cmPEEIIIZJCmx8hhBBCJEWhzV543MdHf57pKSskmsO2UcdmNTTNeEeSpZDXhNNUZJkS8ft6x95svkKTGFZyDsF+dz4Wx2ygbE7K+vz58+eb11jN+LjjjjO6Tp06RXn69OlGt8kmm0R5nXXWMTo88uUsuOVWQ28OvLGGY6CUMYmZZPEoPATbVtzXf/7zn6OMIbvcz0Vv0xThOXf99dc3eh32awh2jp1zzjlG56UNwbXAy0jsfX4RMoU3rH1eNQDP7YLXaTQj8m8aZsJmMz6m/OC1LmudxWztIYTw29/+NsrsRjJo0KAoX3zxxZnPhVmiGc4Gjm4rlUYnP0IIIYRICm1+hBBCCJEU2vwIIYQQIikK7fPjlbfw/HUwdTfKXlkF9FcJwQ+x8+yztURDm6L/Sgj2+/F39XyAPvjggyg/8cQTRjdp0qQos71+4MCBUcYK7CGE0LZt2yhj+Ynbb7/dXHfllVdG2UuzzvbmE044IfNapOgp9EPI9i3I854Q/BT7bN8/+eSTo+yFrv7hD38wr9GPA/0xPvzwQ3MdpqsQ1QX9RjhFBa6ZF110kdE99dRTjd6P/TQuvPDCKHOZCi+dCa49pYSzF8GfEmloX55feUvksF8Pzln23cE1eOrUqUZ3zDHHRPk3v/mN0WEoOvYXr7O4DvAc/dvf/hZlXLcZz1+XfbTylrgqB538CCGEECIptPkRQgghRFLUjNmLQVMNH3Pi0Wr79u2jPGPGDHMdmsQwm2gINgOmV7ndwwttLBL8XJ5Zz6uyi8ezbEbErMszZ840OrwPh7pjH+Fn8/E8mjA5LB2P4TkMHsNw2bSDR+1e9uOi0PCMpRwPe98D24NTFzzwwANR5uP7DTbYIMr77LOP0WWZk70s36K6ePN9/PjxUR4zZozRZZk7MWtzCCEMHTo0yrzOYuZmDqXHdZzHNIaz85gqWkbwhudj94JyTefYLj/4wQ+MbsKECVHmOYVmyj322MPo0IQ1Z86cKHOG565du0b5sssuMzqc92yqmzt3bpS52jzCmaf5PpVEJz9CCCGESAptfoQQQgiRFNr8CCGEECIpCu3z44Wbe1V9Mfxv8ODBUWY/FLQnsr8HVpUut7JsEf1CEPabyYPnh4XhkgMGDDA6TH2OIeshhDB79uwocx8tXbq00c/27PocanvTTTdFefPNNzc69DNo3bq10XklLPC52MeouWgYb6WMO88/CP2o2E+rX79+UX7rrbeM7ic/+UmUuS/QvwT7mm39OB/ZD0xUFi8dyHnnnRdlTkeA9O3bN8rHH3+80eFc4ersWM6A5x+u8bw+Y8oKvH8IxZmPjLd2sm8N+tGxTxbO2e23397osC8vuOACo8N1gddZfB/20Q477GCuwxD5nj17hiz4u6KfD+vwNftWqqq7EEIIIUSF0OZHCCGEEElRaLOXd3zvZfxEk9Xf//73KPPxKF631lprVeS5yrmuucibYRRBc5OXkZXNS1i5nbM4jxs3LspvvPGG0WGIJLYnmtH48zCTaQjWZMXPzEftiHfkWsSj9eUdb17bjBgxwuhuvPHGKHM7oQmLxxgea+N1fNzNZjBRPXBOT5kyxeg4/DyLM844I8qcRd2bK17VbhxXtTYXG8OrMO99P29e8zw54IADorzbbrsZ3axZs6KMZq4QbBt27Ngxyt766OF9Hza1Vzpzc1508iOEEEKIpNDmRwghhBBJoc2PEEIIIZKi0D4/6INQSqkItGGjzBWFveqyKVBOFXCE34e2W/YfwdD39dZbz+iOPvrozHsiXvoB/GxMfR+C9Tsp175cC+UtKg1+R243TIfPOvT9ytvepZRYEZUFfeI4pQNW58b0BiGE0KVLlyivu+66UWafH0wpon6tLrjucooIDE3n9RnXU1wved3DtbXW/fJ08iOEEEKIpNDmRwghhBBJUWizV6VD4GqlynpTkWX2KzeUH/uLdXhc6oV8MnmzOmOG1FLu71Fr46OaZkymnDQJophgpfX111/f6G677bYos6kEw6W9kHXRdHhzthyTI68J9TTvdfIjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSoi4MeGyLLseXpblSbDcny+vz472v3HtgWGwItm+9Pkqx/5hK+3CV259elWbE8xETTQdXWkewX7gv0bcOffrYtwT9RNTPzQfOyy+//NLosG+9ivLVrLLe1OgXQwghhBBJUfLJz6hRo6rxHKIZOOqoo5r7EUQFOfLII5v7EUSF0DpbP6gvi4lOfoQQQgiRFCukXuJBCCGEEGmhkx8hhBBCJIU2P0IIIYRICm1+hBBCCJEU2vwIIYQQIim0+RFCCCFEUmjzI4QQQoik0OZHCCGEEEmhzY8QQgghkkKbHyGEEEIkhTY/QgghhEgKbX6EEEIIkRTa/AghhBAiKbT5EUIIIURSaPMjhBBCiKTQ5kcIIYQQSaHNjxBCCCGS4jt5Lxw1atQ31XwQkY8xY8assLz3UF8Wg0r0ZQjqz6KguVk/qC/ri8b6Uyc/QgghhEiK3Cc/DYwZM6Yaz7FMli5dal5/73vfi/Knn35qdKussspyf97XX38d5W99y+4Rv/nmvxv6FVbI/gcB78Hv+/a3v13S84waNaqk6/PQ0Jf/+c9/zN/xO33nO/mHSN52YbCd8B4h2Hb68ssvG5VDCOG73/1urudiSnnOSlGNvgyh+eZmteG+xtdev3vwmF9xxRXLuk8I1enPiy++eJnXNPXY9eZRXkpZL3ndRb766qvM5yplzWKquc42N9hmTKm/RyH8b7tj37IO5xvPNe99yzvGvf4sf5Q0AV988UWUcbPDeJudJUuWZF6Hm6YWLVoYndchOIh40HidVc4Aawr4mfMOuFI2d9iXK620ktF5ixyCi1opC1y5E4h/IJHl+bEUpcF9jf3JGyMcS/xPEa4hOB5DSLs/vXGO7VmJ9WvOnDnm9RprrBHllVdeOfN9/Iz4XMuz2UmJvP2H6zi3O675vK7i+3g+8ZqPNNc6K7OXEEIIIZJCmx8hhBBCJIU2P0IIIYRIikIbSz0HLbTnsy8P2h7RHsy+Jezng+R1wmK7p+e8W1RKseXjd2KfH8+3xrP5Itzn7NPRAPclvvZ8tPh9nk0Zxw4/l+f3JaoL++sguBZ489tbW4pMNZycK+FXgXOO5yy2dfv27TPv4c19fkbPT7DcwIt6oBLfHdf1vOu2dw+G+7nSfmV50cmPEEIIIZJCmx8hhBBCJEWhzV5eDg/vWA2P+zB8csGCBeY6L3we38fHh97RXKVzKVSThiPSco9H+X15Q9Y9uI3wnuU+pxcKi0frnimN75FljhOV5/PPPzevvdQWaA7nNQLNYKuvvrrReXm9moOmNNegGdGbA15KDJTZRIWvP/7448x7sJnSC33HfuZn9t4n/j94TuG6662XOE8wjUwItt09c1kpeZm8/EDLS/PPciGEEEKIJkSbHyGEEEIkhTY/QgghhEiKQvv8eHZvL4wVmT17dpS5Xg7aOX/84x8bXe/evXPd36PoYZbl+PzgteX6MLFfVFZqAr42r+/OvHnzjK5t27ZRZv8A/A4cQu35DiilftPhpYyYPn26eX3NNddE+ZNPPjG6LbbYIsrbb7+90aVc3qLccGbEK3uAr9nXqtx7VqJ+Yz3ireWef2PWejZ58mTz+umnn47yc889Z3T9+vWL8lZbbWV0/fv3X+ZnNYbKWwghhBBCVAhtfoQQQgiRFDVzds8VmvHYk80oePSHR3OXXXZZ5nVDhw41um7dukXZC//0wmJTNo1wKPj8+fOj/MgjjxjdxIkTo/zWW28Z3RtvvBHlRYsWRZlNIRh2OXLkSKMbNmxYpg6Par3UCkzKWWSbGs+8ymMJTdsffvih0eEYGTRokNF16tQpykUIda80nunQy0qPr/NmrOf2w/mxdOlSo1tttdUy7+Olk8hbJTxlcyanesB55K1ZaOr629/+ZnQ333xzlHl+rbrqqlHecMMNje7AAw+M8u677250aApl14NKmGSzqL9ZLoQQQgjhoM2PEEIIIZJCmx8hhBBCJEXNOKV4/jOcqhuvnTp1apTnzp1rrkPb9KxZszLvzz4HXpVwj6L5iWQ9u2fn974v2ug59fl9990X5VtuucXoMHxy4cKFmc+CsH8OXnfbbbcZ3bhx46KMPkQhhHDooYdGme3UCPsfFK1UST3Dfhtz5syJ8r///W+jQ78wnmPrrLNOlNnXpN78fPL654Rg/XDefvtto3vxxRej/PrrrxsdphHBshU899Ffk303d9hhhyjvvffeRrf++utnPjN+Bs/FUnz36plS1u5XXnklyjfccEOU7777bnMd+vmsscYaRoepJdgXD8dYhw4djG7bbbeNclP6ydbXjBdCCCGEWAba/AghhBAiKQpt9kLzkhey6FVn/+ijjzJ1GEZXSoidZ7LyjpuLZvbKAp+TwyW9o1MMMeXjbTwiZ/Mj9jMfiWK/4P25/RYvXhzlVq1aGd2CBQui/OCDDxodhjz36dPH6DAEk9MppJzGoKlhs/akSZOifMcddxgdjt2ePXsa3WabbRblvBniUwBNwRMmTDA6NFc///zzRocmRq/6u5elHc1sbJI+9thjo4zpKkKw/cfjQywbXp+ffPLJKKOpi91B1l577Sj36tXL6DD9DKYvCcFmYp8yZYrRYd+yKa2a6ORHCCGEEEmhzY8QQgghkkKbHyGEEEIkRaEdF/L6xbCfDb7vqaeeynwfhi+XEhqK7+MwS88XBH1WvIrhzU3e8h0MtgWHEmOVX+5X/Izu3bsbHYbQfvbZZ1FmmzWGanJ4JrY13i+EEGbOnBlltjfnrSifOjiuQ7BzqRLp6bnPfvnLXzb6WSHYPtx1112NDkuZcH/i2KqHUGmeY7hmsf9a69ato8yh7tOmTYsyhjKHYNsM250rt2N7chg8+mSOHz/e6LASOJYfCSGErl27RpnX0lrxrawE3m8f+kGGEELLli2jzD45v/nNb6KMfpbrrruuue7II4+MMoaoh2D9g0aPHm106JuHofQhhHDwwQdHmcdHNX3zdPIjhBBCiKTQ5kcIIYQQSVGzZ/kYgu0dbWI4JoPHv6WE2JUb6l5vWWQZ/H5sVhgyZEiUMdNuCH6qAjRvYSglh8XiES8fg2NFeQ6l33LLLRu9Rwi2SrHIhvsa5webxHDOoTkE0xGEYNMV7LXXXkaHmYZ5vu24445RxqP8EOz4YbMp6lID24LNXhiizOlA0PS0+eabR3mDDTbIvP9LL71kdM8++2yUOQXGXXfdFeV99tnH6HBcsetBva+zCP8WoRlxzTXXNDpMCXDuuecaXdbvKVdg32233aLMcwbXy4EDBxrdvffeG2V0NQjBmrqach6mM0qEEEIIIYI2P0IIIYRIDG1+hBBCCJEUhfb58XxrMHSTw2nRHoxVaNkWjHZODqX0KNemXO/h0mh7575D3ysMrWXY7wbbDPv8mWeeMdddc801UfZKmmDIfQghDB48OMqe7xGHB6de1R3bw2sL9vnJamP2ufvrX/8a5cceeyzz/ptssol5jSG2nh9fKaktikS5Ydx4Lb8P18h58+YZHfpgcBqKnXbaKco4r7gUBYbL8zxCHyD2w8IyCOwrhL573rxNDU4zgPzjH/+I8uOPP250CxcujPIRRxwR5YMOOshc17Zt28z74+9ply5djA5/M9m3C/ud14tqpp3QyY8QQgghkkKbHyGEEEIkRaHtMOWGlC9dujTKeIzLleEx9K9z586Z9+PK5uVmDa2VbKOVOFpnUwiautB8FYINocW+C8Eez1511VWN/p3vyfffYostoszHuGgyzVuxPgSZvTww8y+bJLLG1vvvv2+uO/300zPvgX1x9tlnG12bNm0a/awQ7Njie+IcL1KodKXMc57ZC/urXbt2RtenT58od+zY0egwAzOasziUGV9zlmjPRI2h04888ojRbbPNNlHm75OVHqNo5O3bUtZgXM8mT55sdGhKxt++EELYdNNNo3zcccdFGdMZhODPIRxHbN5E2P2juaodFGeWCyGEEEI0Adr8CCGEECIptPkRQgghRFIU2ufHw7PLox0ZbY9ehWlOBe7h2WDxubyKu7VCpb4DpjDnfnj66aejfNlllxkdVnrGcHm2WaPPBvp9hBBC3759o8ylNbwSFuhbUu9pCkoFfZ7Q1h+CH56KlZ8xvcQf//hHcx2HwyKjRo2KMvoqhGArwHPYL/oWcKV4L0S4SHh+InnnJq+d7du3j/LQoUONDtdPrriNIezo18O+QejTN3XqVKPDsib8/DjHub/YB0/8LzfffLN5/eqrr2Zei75za621VpTZ3xX9fErRYX/x+o/V5ldbbbXMZ6w0OvkRQgghRFJo8yOEEEKIpKjZs3wv1HjGjBmN/p2P4jD03csS6mWGZvDotlazyFYDbOsbb7zR6MaMGRPl559/3ui8kEkExwNniZ44cWKUx40bZ3T77rtvlLlqtWcmLWpodHPghaqyeQJNXVdffXWUMUM3g8fwIYTwu9/9LsqcFRjNVzz/PFNdrZi9kFJM0p4OMzdvttlmRodz4t133zU6DHtGM6WXYuDNN9/MfA5+H5q5OWu0twYXObwdyWum5HbB16zDVAJ33HGH0eGY52rtaD7GVCF8f1zr2PUA253nJV7L/dNcaUPSXrWFEEIIkRza/AghhBAiKWrG7FVKYUnOMNoAH8GjWYPvlzfLcT1EdDHlZnj2jmNffPHFKH/wwQdGh23P3v547I6mM34uPAbnsTJp0qQoX3LJJUa37rrrRhkz1i4LfK5qFt8rKp7ZD9sfo3lCsEfvp556apTZ5IgRIOedd57RYVFLxiu4ikfxnMk4b6HW5sabm57Om8fY1jgfQrAmCs6+jlG1AwYMyLz/XXfdFeX58+dnPhe7HgwcODDKW265pdFhlGbRiw439Eulfhvw+7L57+GHH47y22+/bXT4e3fMMccYHd7Hi2xFs5pn7n7llVcydb169TKvPbeBas5LnfwIIYQQIim0+RFCCCFEUmjzI4QQQoikKLTPD9qwS7Hrol0Zr+N7eNmY0Qbq+QOxzRXtpaXY5JuTSvktee3Su3fvKHMF7xEjRkR58803NzrM1owy+v+EYEMpr732WqPDrLJcDf7yyy+P8sUXX2x0XqqCFP18kLyZhjms9bDDDovy9OnTo8x2f0xBsNtuuxmdV7Ubw3R53nqhuLUSHo1Uat5i26P/TwghDB48OMrcnhjejv4fGKIeQgj33ntvlDk8Gr9Dq1atjO6AAw6IMobjh2D7i9sBfTt5nahFvFB3XmcxbQiPaaxiMGjQIKPDMYD+d5zuw8vAPG/evCi/9NJLRofPMmTIkEwd++VWs/908iOEEEKIpNDmRwghhBBJUWizFx5h8/GbdzSHhSzR1OUdbfNxmxfGh0eN3rEcH/F692xOvIKCHPaIR9/YP6zje6KZaJdddjG6nXbaqdF7hGDbl8Ohs+6/4447Gh0es7K56qGHHooyZ5/t0aNH5nPVC9jXPI88M4pnXkKz8znnnGN0d955Z6P341Dpiy66KPOzvXmcd47VipmL+6AS49Azx3Px0jXWWCPKbCpEMwquibfccou5DucYrxlobsF1IIQQfvKTn0TZC7/m74NrfhHMXg3Ph2HiIfgmJOwTNgnjPB07dqzRTZ48OcqcZuJnP/tZ5mdjv7do0SLzuTBVBa8XOAZee+01o8P5duyxxxpdc/WXTn6EEEIIkRTa/AghhBAiKbT5EUIIIURSFNrnx7Pzor2Rw/0+/PDDRt/DNuv27dtHme2qedPIexTB3uzR4O/BfhLY7p6PAeuwnViH9+T+wtf8LNgv6K/DVbk//vjjKHOa/KFDh0b53//+t9GhXZzv6fkw1Uo5hGXh+ch4IbXe++bMmRPlCy+80OiwejrOD04zUPS5U0/g2EYfnxD8tALIk08+GeUzzjjD6LAsBq+zWKbid7/7ndHh57G/DK7/tZK2wFsn2BfK84PB7ztx4kSjw3Bz9FkM4X99qhD088H+4vQwnj/QiSeeGOWFCxcaXdu2baPcr18/o1u8eHGUcTzwfXhsLi86+RFCCCFEUmjzI4QQQoikKLTZKy98NIfHuHjMykf3eHTKYXuIl8XZw6tWWwSyni/vc/NRLR7Psgkpb0Zkbuss8yPfz7s/VpHnI2RMccDH5/h5pYSpNhcNbcf9h21aSrVvL5wd78mVuk855ZTM+6N58tZbb43yJptskvkcorp4Yc64tvJ8R5MEmrree+89cx2urZyu4re//W2Uu3TpYnQ4N9FcyvCaUVTYHI9rm+dCwPMZ01NMmDAh8/N4jdpwww3Les4sbrjhBvP66quvjjL/Rt5xxx1RnjVrltF17Ngx8zMqbepCiv3rLIQQQghRYbT5EUIIIURSaPMjhBBCiKQotM8P2j3ZrwdtxxzauO666zaqY5s1vvZ8IUqpluyFyOPn5fUbqiZZ4cSej4hnp0bQtyME6xfC/jkY3sjtgs/ifR7awV955RWjmzFjRpT5O6N9u1OnTpn357FTRLJSMOStwM6gr4HnB3bZZZeZ15hOgMvGbLPNNlHec889M++JPmN5/cVEeaCfD6+zHHqMXH755VHGEhZt2rQx12H49bbbbmt0v/rVr6L80UcfGR2Wz2DylmMoAlm+eF4JC2+twzk7ffp0o2vdunWU2YcR24z7FecprsHso3XddddF+aijjsp8rl69ehmdV2Jo7ty5UcaQeH7mSvezTn6EEEIIkRTa/AghhBAiKZrf9pITLxSQ6dmzZ5TRHMLmMdRxVmgv/M4jr5mmCDQcu5Zr2mLwiJTDXdHs1bJlS6PDI1I+9sy6P5vVMHzykEMOMTo0dXFYNppeOnfubHR4FNyqVSujK5oJM4TsOeGle/Dw+h4zy3IWZ5xXfFSNVd4905ZMXU2Ht2bhWsAhytdee22UcY4tWrTIXNe/f/8oX3TRRZnPweYyhKvNeyaQvFmpm4qGtYLTqeD6wrq8KSg4LB3XN/wdDCGEd999N8poHgsh2wWCQ+l/85vfRBnneQghdO3aNcpPPPGE0eF8ZhcCXPP5ntU0aerkRwghhBBJoc2PEEIIIZJCmx8hhBBCJEUxnBXKwKv6jOGa6O/AdmO0s7766qtG16FDh1z3LyU0u+g+QA3kfU4Og5w5c2aUX3jhBaNDGzBX/F177bWjvOuuuxod+gtgSCSGXIZgw605ZBbp1q2beX3aaadFmUPCvcrKRaRhrLNfjxeyjn4H/B09fw+0/bO/HHLSSSeZ13379o0yVobnti8lvYRYPjy/yAULFkT5D3/4g9G9/fbbUca+xCrdIYRw6aWXRhnnegh+KDOOTa/sBq9XRfDzQbJ8AvG5ec6ijtdZ1A0bNszo0Nfy+eefN7r/+7//i/Kpp55qdLgu/vWvf40yr7Poa8lV4zHdgZemANfxEEJo165dlNlfDHWVRic/QgghhEgKbX6EEEIIkRSFNnt52ZLx6I+PzPG4dMSIEVEeO3asuQ5D7qZNm2Z0W221VeZnZ2XDXBZFO8rPeh7vOfEIlkMW8eiWq7o/+eSTUWYzyXPPPRflO++80+jwWjwi59BQ/DwO48Qj2F//+tdGh+GgnBEVP4OPpYsS3t4YfEyOYabct55pDyvZY2h7CNaMyX2x4447Rvmggw7K9Sw8h7G9vezSYvnxzEQ4b6+88kqjw/mPa+IOO+xgrtt0002jzHMMzVlLly41Om9s4rWcrbho62zW+MU1xEtBwd8H2+wHP/iB0T3zzDNR5uzqaAbbZZddjA7DzWfPnh1lzviNZqibb77Z6DircxZeGhk2c6FJFk2rlUCrihBCCCGSQpsfIYQQQiSFNj9CCCGESIriOi4Ea+v0wnfZJrraaqtFGcsXcPg12p+57EHR7MbVpJQwY2x3Tq3evXv3KHNIK/pQPfzww0aHlYnZlyarmjqPB/wOq6++utH961//inK/fv0yP5vD4Ktpb64mlapAjyHLU6dONTpsR/QRCCGEAw44IMpsw88Krecxl9L8a27Qr4NTfowePTrK7EOCa0GnTp2ifMopp5jr0AfN8y/ikiZ4f/YVwjWe1y/8PPZHaw4ano/bz/MpxO/O3w/Xok022cToTjzxxCifcMIJRod+kVweaM6cOVHGUj7bbLONue4vf/lLlLGcRQj2+/H89XwkuaQFUs11Vyc/QgghhEgKbX6EEEIIkRSFNnshfIzmhcKiOWa//faL8tZbb22umzdvXpT5+NDDO7qthUzATCkmBi88E49nt9xyS6Pr3bt3lNddd12ju+OOO6L81ltvGR2GW2OI5/Dhw81122+/fZR//OMfG52XSZVNXYh35OqlYWhuOBuu96xetWW8D4esjxw5MsotW7Y0Ogyb5VDZvPOjyO1bb2DYOKf84Gy8CK4Fhx9+eJR5fuc1PXkpDbw1l8dHEUxdSMPzec/lmYW89/F82m233aLMJv4pU6ZEmbNwo8vCeuutF2VOG+JR7m9fc7kU6ORHCCGEEEmhzY8QQgghkkKbHyGEEEIkRc34/Hjp7xm0HaM/AoZHhuD7e4jSQds72+/R5+f44483uuOOOy7KXkV5DndF0CeAQyfxuVL0H8nrP8N+B1g2gO3yGA7Ltn7PdwOfBecwP5dKWjQduC5ymghcPzt06GB0mM6if//+jd5PNB+45oZgS/mwfx/OfW8NRh8+77paQCuMEEIIIZJCmx8hhBBCJEXNmL34GByPz9kklvcenFE0NRrarVxTUCmmCswuymYSLxQd7+mFuyJsvqmGqavI5jMvLYTXvgz2S6WOuDn0vdL3F8sHpwPBLL5s+sTs3ZztHaknU0nRwXWWf9/yzudyfltrEZ38CCGEECIptPkRQgghRFJo8yOEEEKIpKgZnx8mbzge+jh49suipURvCrLaI68/i1eJu5SqvghXPka8NOjl+hXktWkX2cenFLyUEXlD1EOwvgXc3tjX3G7y+Sge3hjAcHaem/i+JUuWRJn73PMHEpXF82PF/vN8/9Ans17WvcbQyY8QQgghkqLkk59Ro0ZV4zlEM3DkkUc29yOICqK5WT+oL+sH9WUx0cmPEEIIIZJihXqO4xdCCCGEYHTyI4QQQoik0OZHCCGEEEmhzY8QQgghkkKbHyGEEEIkhTY/QgghhEgKbX6EEEIIkRTa/AghhBAiKbT5EUIIIURSaPMjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSQpsfIYQQQiSFNj9CCCGESAptfoQQQgiRFNr8CCGEECIptPkRQgghRFJ8J++Fo0aN+qaaDyLyMWbMmBWW9x7qy2JQib4MQf1ZFDQ36wf1ZX3RWH/q5EcIIYQQSZH75KeBMWPGVOM5lslXX31lXn/729+O8tdff53rfSusYDd/3/nOf7/+l19+malj8Fp8Dv6Mzz//3OhWXnnlzHsui1GjRpX93iwuvvjiEEII//nPf8zf8TusuOKKue+H/fCtb1V+X419+dlnnxkdti333aeffhplHgPf/e53Mz8P+5nH2EorrZTjiRunGn0ZQvPNzWqzZMkS87pFixaZ1y5YsCDKrVq1MjqcjzwXPd2yqEZ/NmVffvNN9gEFz5cscH7we/A1rzXe+sJzHPHm7RdffBHlUudprfcltpnXRvx7iuB44HUcX2M7h+C3Na7BzCqrrJKpW56+DMHvz5I3P00JdgJvTnBCeT+0eX+EeRODg4N1ee+5PJudpqChDfn75YUXTW8Rxf7j9kMd3wMHPD6n9wPIeJMLP8/bYHubYVFdvve972XqeLzwhgfxfmiLPleribfB8X4kcR7nXRN5HmH/cV9in+TdhIVQ/npWD3gbHtygcr9iv3jth5sR7hPsP9bhGsz9jBti/uzl+SdzWcjsJYQQQoik0OZHCCGEEEmhzY8QQgghkqLQjgxoN2SbvGeLRucqtCGy/XDp0qVRLsWvAO3bnrN1KXbq5qRcGzl/d+/7ej4znl03q5/Zx8BzNMfP5mfE7+A5rzPVdu4W/4X7YeHChVHmsYO+BTx2sJ8qGYxQz+RdG3A+sCMs+nSsuuqqmfcoZR6hYy8/YylBGvWM51zurbne2oavPf8t/mxvDcbn8vxGK41WbSGEEEIkhTY/QgghhEiKQpu98OiMjzK9I1LP1IV4pi68h3cUxzo8audnXt6cBUXAC2f0+gRNkXxc6h1T5z12z5unpZR8Tnj8yyY+mbqaDzRtlWKuwj7j99XD3CwXL9Q47zjH6zjc2gu/Rrw5xussPmfKoe0evNZ56yz+buFc4DQhuF6yeRP7i38b8P6eKa0pXUW0ggshhBAiKbT5EUIIIURSaPMjhBBCiKQotM+PZ6P0QpTRZo+2xscee8xcN2fOnChvs802RrfmmmtG2bNDeqUaik5D23hh4x6l+L146c3zlr7wfDHQh+Pjjz82utVXXz3Kno8Ph0ajLwS/Tz4/xWDGjBnm9amnnhrl+fPnG92uu+4a5b322svovBDseidvaDinB8iaH3y/vKWIODwa13j2PfGeeXnqtNUT3Ga4vnk+VPi+xYsXm+tmzZoV5blz5xrdaqutFuUOHToYXdu2bTOfE5/L88mstG+XVnAhhBBCJIU2P0IIIYRIikKbvTzweMw7DsNjcTwSDyGEqVOnRvn22283uk022STKbPLAY1w2EXkmo1rJPOpVWs5r7uEjbDRBsPnx+eefj/J7771ndG+//XaU8QiWnwOzdW+//fZGN3z48CiPGDHC6PB4lseRF6KLR7UKta0uXsjuG2+8YXRjx46NMh/Lr7322lHm43yc43lDs+sFbAtO/+GlB0AzdN7K8OhqEIJ1L6iUiSplU5cH9iWHqeP4nzdvXpSvv/56c92tt94a5aefftrosJ8HDBhgdD/96U+j/MMf/tDounTpEuWmXEt18iOEEEKIpNDmRwghhBBJoc2PEEIIIZKiZnx+sIpvCPntumjLfOmll4wOQ6KnTZtmdBtvvHGUvVTdpdgoi1blPevZy62si74ZS5YsMbprrrkmynfeeafRYb+wLTordUCLFi0yr7v00kuN7vHHH4/ya6+9ZnR77713lNdff/1GP6sxitaX9Qz73OFawGNp+vTpUeZQX/T5QV+Txj4jJXAtRX+PEEJ46623ovzqq68aHfpTLly4MMoLFiww1+Hrvn37Gh36hmy66aZG16NHjyhz6QscA5wCo1Z8K6uBV6YF1yz+/fzkk0+ifMMNN0R59OjR5rr3338/ymussYbR4Rjg39p77703yj179jS6Tp06RZl9ORctWhTlli1bhkqikx8hhBBCJIU2P0IIIYRIipo56/XCzdlUguYcPHLlzL+YkfKjjz7KvAfjZZfm41nEq4heVEoxgaHpycsGyyZMbMP27dsbHbYnPgsfbaOZDfs1hBBeeeWVzGfGY3c2e6F5E0PpG/sMUT14Tr3zzjtRvv/++40Oj/MHDhxodCNHjowyrycpZwXGNBSTJk0yujvuuCPKDzzwgNGhCQTnI6cKwP677777jK5Pnz5RxgzcIYSwzz77RHnQoEFGh2bvcs309Qiaunje4O8k9xGaNK+99tooYx+HEEL//v2jzKZj/LyZM2caHbqVYDqKEELYYIMNooxh7409ZyXRyY8QQgghkkKbHyGEEEIkhTY/QgghhEiKmvX58UL6EEzHzfdAPw62LeL9OWTWC4v1fIXwnkX2K0B/JO/7sK0d7f5sD95///2jvN5662XeByuwh2D9gzC0kkPpx40bF+WbbrrJ6Fq1ahVlTmnA5TQQtGGnHAq9LNi/C8cBh65++umnUcY5xz5wWb5eIYRw9NFHRxnLn4QQQps2baJ8zDHHGB2G1PIzF3k+VhvshzfffNPoHnnkkShzuZAsX5tu3bqZ1zhXOXUFpibAEOsQ7Fg57rjjjK5jx45R5vUfx07ecjz1CKccwLnxwQcfGN2oUaOijD6SHF6+5557RhnThIRgy6TwGoxlMnBMhRDCUUcdFWX2U6rmvEx3ZAghhBAiSbT5EUIIIURSFPos3zu+9I4z8X0YFstHrniPzp07G50XYlduyHq9V//GtuAjcTwKx0rqIfyvWRHJqjg9e/Zscx2GVvLRKR7/ogkshBCGDRsWZcxyGkIIq666apRTPj5vDDRl8BzwjqrxWpQxk2sI9rj9Jz/5idE99dRTUeY5heHRe+21l9HhuEjZzMXg/OBq99jP3GbrrLNOlDFkHedUCNZkzKH0EyZMiDLP6fHjx0f5xBNPNDpcXzAlRQj1v8564BhHM1cIts0uueQSo8OMzPg7ue+++5rrfvzjH0cZzcghWHM3/u6GEMKNN94YZTafYr/jOOJnqbTrgVZ0IYQQQiSFNj9CCCGESAptfoQQQgiRFIX2+fHSlns+GBgePWXKlFz352rD1Sg/UW+2aK+NWIdhq56PD5e+QD8ftO1zuOT5558f5Tlz5hgdtvu2225rdBh2zz4NWf4pISicFssLMGinZ18e9EPAvuaQWqwCfd111xkd9gVXAj/llFMavS4EOw64XAmOs9TAPuGyLdjP6OMTQgj77bdflIcMGRLl7t27m+u8lCLoa8L+Rhh2zxXlN9pooyjz/Ku3dbYUsC1wzQ0hhGeffTbKF1xwgdHhnMUyMCeffLK5rlevXrmeg39PsbwRp5ngfkeq2ZfprdpCCCGESBptfoQQQgiRFIU2e5ULmiTefffdzOvQ7NW1a9dc9wuhNHNPXl1zkGVWLPc5vfd5ZgU0Z3E6Agxrvuaaa6LMFaaxMjWHRO6yyy5RxuzAIdjwTC9TOJN6JWnP7IdH3Bxui3iZhY8//vgo89E3ZgE/++yzjc77PBwjrVu3Nrq8GePrETQ7cNg4moK5bTHj+kcffRTlDz/80FyHps+PP/7Y6GbNmhVlNodgHz300ENGN3jw4ChjSooQ7PjD+d1cVHqd9cD1E9shhBBOO+20KHNaDzQfX3rppVFmMxeOD56XCxcujDKOjRDs/OI+YZM3Us3fTJ38CCGEECIptPkRQgghRFJo8yOEEEKIpCi0z08lQojRnu3ZD7maOMI+P+VWdS+3LEY9MGPGjCiz7wCGu15++eVGN3bs2CijXwGHxGMfYcXnEEJYd911ozxw4ECjY38BBH0QVA7BgnOT+8JLZYD+H2jr/93vfmeumzZtWpR5/v3whz+M8iabbJL5Wey/4s3xlH240E+E5yb6QrIPCc5NLFHA4ezYz5yGAn1+GFwjOTWBt34WLdS9YWxVY83ncYvthP0TQgiPP/54lNmv7dxzz41y7969o8w+mF7b4j3Zpw7HDj9zu3btosx+X6rqLoQQQghRIbT5EUIIIURSFNrsVW7YOB7D43VeJlDW4ZF5Kea3WjJnVfpZPdMBHl9edNFFRve3v/0tyu+9917mPfnYHcGjdTSPhRDCo48+GuUNNtjA6PbYY48os5nEM29Ws9pwrcFH09hnnOEZQ2Cx3//5z3+a69DUNWDAAKM788wzo8yh02jaworkrOPj/JTNmmim4hBlzPDMJqqZM2dGGdMIsOkMQ5u9+e2ts1tuuaV5jabVold1b1hny11veV3F12wSxnGMoe0h+NXahw0bFuUFCxZEuVWrVuY6NEtxyDqmM3nrrbeMLus3OQS7dvMYqGYmfZ38CCGEECIptPkRQgghRFLUzHk9H+95R2B4bIfX8T28qBQ8SvUyvpZy5FpLJrE8eMexrHv99dejzBEf2C98lIqvsf0wY2gI1iTG5jHMEs0mKoxm2XDDDY2O+xZJ3eyFx9gc3YNwf2L237POOivKnsnx97//vdFhJIkX7cLRXYrea5y2bdtGmQvFYnvyvEVwbnJBzfHjx0d54sSJRof9zFngN9tss0blEGz/Fb1I7fKu+zzGcb3k37QHH3wwyhhFy/zhD38wrzFar0OHDrmeyytCzWZshKNx8X28XlQzClMnP0IIIYRICm1+hBBCCJEU2vwIIYQQIinqwlmBw1Yx/NXzQ8nyJ2nsdd7PLlqYZVPi2WcxZHLo0KFGhzZfrja82mqrRXnNNdfM/Kx58+ZF+b777jO61157LcrofxBCCFdccUWU2ecHs4Nz5WHPzyUF8Pt7/njsy7PPPvtEGSu5c3vuv//+UcZ0BCFYnxL2t8KxxL5f6CdS9PDopgTTEXCoO2bT5vbkta+BqVOnmtfPPvts5ntwHrOP1p577hllr/J3atm5vVD38847L8o8prfddtsos18U+vmgLw/3Oa7HDPrU3XHHHUaH/bf++usbnbeW4ver9BzVyY8QQgghkkKbHyGEEEIkRaHNXl6oMcLF0PB4DI/w+KgPj8zZzJU3m2QpYYwYnu2Fzzc3Xrtj25ZSXBBDynv16mV0O++8c5T5GBf7DO/Jx+f4LAcddJDR9e/fP/OZ0Qw2d+5co/PCoYtYpLZhrHvHyKWYe/JmV+U+w/Y4+uijjY7Njg1svPHG5vXo0aMzP89LUYFw2CySspmLKbc9s8bE22+/bV6PGzcuyp6bwIgRI4xut912izKbN3EcYxbqEKy52itc3NRwaHhe0zm3M649nDrg5ZdfjjLP9c033zzKnTp1Mjqeww2wmQvTCvDvKZqjJ0+enHn/P/3pT0bXXOlhdPIjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSotA+P2gL5HIGqGN7MNqVvTToGDqdZfMs5Rn5Pl4V+SLQYDtmu2q5z+l9d7Qd8+d5tu+squ6e/wH7APzoRz+K8g033GB06J/APj/9+vWLslc9vChk+biUGwrszQlsbx4vDz/8cJRvueUWo0Nft759+0aZS1h4oc2isuT1P+SyFegrtHDhwiifcsop5rqPPvooyjxGsVTJ6aefnnl/b/6xz2dR01B4PoSeLx5/v/nz50eZfeiwrXH9CsGmjOC1DkucYPt5JSz4mbFkBo8VnOtrr7220Xm+sCpvIYQQQghRIbT5EUIIIURSFNrshXCIJB6P8XEi6vAIj48P27Rpk/l5eUPsPLMXH9kVzexVafBI28v6y/2A5kgOTcV7Yr9y5lE8nm3fvr3RoVmUj2NxfOCRMeOFTReFhvHlVYH2Qtb5fd4cwD7kI/Rf//rXUeb2RpPk+eefH+Utttgi87NEdcG5w+MD5xy7DaBZ6rLLLosyZlQPwa7P7L6A5s6ePXsaHZpV2MyM92Hzi2deag6y3Atwvnnzkt068H0TJkzIfB+G/Idgq6lzJm8E10F0DQnBzufnnnvO6M4999zMZz7zzDOjzKYtz+xazd9MnfwIIYQQIim0+RFCCCFEUmjzI4QQQoikqBmfn1Jsf1hBHH2FOI07+peUm77fK4vhva8I5HketqejvZntuh4Yqsr9gP3lgXZ+9sHB11jhPYQQnn766cx7Yogn+xVg+K5nIy8apYxXL5TUm3M4r/74xz8a3QsvvJD5vl/96ldRHj58eOZzeWn0RWVBHxlvTWAfyUmTJkX5jDPOiDKHmqNP0U477WR0RxxxRJR53no+mehz5lUaLwIN/ons24Jrq7eW8jzEa999912jQ78e9q3EeeSV2kA/n08++cRch+v4PvvsY3S4Bvfo0cPosKI8t8P06dOj3K1bN6PDdaaU35s86ORHCCGEEEmhzY8QQgghkqLQZq+sTM0MH/PjMSgen3Pm3wULFmTewzODYZi1F6ZXzeyUlcT77nzkyqGqWfeZPXu20WHGXg5Tx8/jlAZ4POtlicYjXgyrDCGEt956K8r8fdZff/0or7XWWkbnZXHGI+uipTAoJcUCtrcXzs9j5JFHHonypZdemvm+QYMGmddY5R3DZtl0UQupBeoF7FseK2iKYjPURRddFGUOq0bWWWedKI8ePTrzOs/MtWTJEvPaM3XhmlGEbM/lmGtwDvOaiGswz/VZs2ZFeZtttjE6NOO3a9fO6HAuolsCz8NNN9200c8KwboQPPbYY0bHKUwQNHXx70ve7OPloJMfIYQQQiSFNj9CCCGESAptfoQQQgiRFIX2+ckbGu75kKAdGavhhhDCjBkzovzhhx8aXYcOHRq9XwjlV4AvGg1+K6X4O3n+I4sWLYoy+tmEEMK0adOizP2KVX7ZRwR9hdCW/+CDD5rrbrrppijfc889RofhmuzXg6G2HILvUSv+XMsi7/eYOXOmec1V2BHsMw6DRz8q9mVA5PPTdOCc5hIWGB6N5QtCCOHGG2+MMq4Z7Ct39tlnRxn9f0KwawaOmxCs/wf7ayJFL2+RtZ7i33ke4mten3Gd2njjjY0O/XrmzJljdLhGYpqJEEIYPHhwlO++++4oH3XUUeY6DEvn/rr++uujzKlBcA32/LU4PB/9pbzfpXLQyY8QQgghkkKbHyGEEEIkRaHNXnmPudgUg69HjhwZ5Ztvvtlch0eLbKZBcxkfwec1x/FxZdFCohueh4+NPTwzCX5fzAQaQgi33nprlNmEgkfaXJEdQ1zxSJezwb7zzjuZz4VhnQcccIDR7brrrlHmdvDC2SudbbSIYB++/PLLRodmTM7QPWrUqChztXYvAzqCpmyZwJoOnt8TJ06M8nnnnWd0nCW4gT333NO83mWXXaLMocxeCgw0wXHIc9Znh1CM8PbGYJOOZ57D3xge//jbtNdeexndlClTovz6668bHZugEXTzeP/996PMGZ4xnP2cc84xuu222y7KvJaiqY7dT1q3bh1lNolV08VEJz9CCCGESAptfoQQQgiRFNr8CCGEECIpCu24gHZPL+01+1+gnXDrrbeO8p133mmuQ1sj+6GgfZZtruj/wTZyfOZaCYcuJYTQq7KLdl22Z/fq1SvK6C/CrzncHP1OsF89vyusShyCtXX/6Ec/MjrsI/brwTHANuxqpl2vJl7Fdwbb/s033zS6zTbbLMrsf3HggQdGmUOU8fPRN4PbV34+TQf2M/t4HHvssVHG1CAMzu9jjjkm8zqeN7iusw7DpTEkPgTfV6ioeL6V3u+Il4pkyJAhRoflYzhMHefUBx98YHS41mGpkg022MBcd+WVV0YZSwMxvK7g92MfQc+vp9Lh7ebeVbuzEEIIIUQB0eZHCCGEEElRaLMXUoqZAY/39tlnnyhj2HsI9iiVjw898oY5F9000nAUWUrYNpoqvOPmYcOGmdcYnokZnUOw2Zo5pBpNKmiW6tOnj7luvfXWi/KvfvUro+vcuXOUMWMtw0fPXihqEau65+lPPkbG19yfaBY+6KCDjG7//fePMn8ejns+6s9qq6K0Yeo899xz5jWml2BwLp1++ulRZrOGR941krMJI7ViIvXWHs/87M1nXFdDCOGHP/xhlLFaegghPPDAA1FmN4+BAwdGGdN/9OjRw1yXN/S8FHNV3tQxlUYnP0IIIYRICm1+hBBCCJEU2vwIIYQQIilqxueH/THQ9sj2RbQhoq2Yba61EiJZLRratFybK9uivfBMrBrMIZI///nPo+z5AKD/CD8zjgEO11111VUz74l44aZMEX1UmrI/0R+K5x+2Td5n8apaVzPcVdgq7NzWmKqge/fuRod+klhdvEuXLpV+RJETDFnfdNNNjQ5ff/rpp5n34HQjiPe7W2vU9tMLIYQQQpSINj9CCCGESIqaMXt5GSMx63AI9tgdj+Y4JLJWQiSrxfKGGPL784bMl9vueU1NXBnYA4+JvTBwpojHv83Vn6K2QXMyhjmHYDN587zF92E2Zu/+RTQX1xOcUT0LNm3h76m3ttXTmlCMVVsIIYQQoonQ5kcIIYQQSaHNjxBCCCGSomYNeJ6fRVZldU61j6+9Ugb1SnOlFWc8/y20P3sh1HlTH3jh7KX4I2CahKKMnabsT27HcsDn5WcvythMAW/cY4kTrMAegi09s3Tp0iizP4n8fJoH9Gfk1+y/hX3mrZe4Pte6z6xOfoQQQgiRFCWf/IwaNaoazyGaAfVlfaH+rB/Ul/WD+rKY6ORHCCGEEEmxQiVs90IIIYQQtYJOfoQQQgiRFNr8CCGEECIptPkRQgghRFJo8yOEEEKIpNDmRwghhBBJoc2PEEIIIZJCmx8hhBBCJIU2P0IIIYRICm1+hBBCCJEU2vwIIYQQIim0+RFCCCFEUmjzI4QQQoik0OZHCCGEEEmhzY8QQgghkkKbHyGEEEIkhTY/QgghhEgKbX6EEEIIkRTfyXvhqFGjvqnmg4h8jBkzZoXlvYf6shhUoi9DUH8WBc3N+kF9WV801p86+RFCCCFEUuQ++WlgzJgx1XiOZbJ48WLzetVVV828dunSpVH+3ve+F+X//Oc/5roVV1wxyl999VXm/b7++uvM9zGfffZZlL/73e8aHX7Gt7/97cx7NMaoUaNKuj4PDX3J3x2/r/dduV3wtff9VlihvH+qvvnmv/9IYTuHEMJKK63U6HUhhPCd72QPc/4OyLe+lf2/AY4lr40aoxp9GULzzc1q88UXX5jX2NfMp59+GuVVVlmlas+EVHNuNjVffvmleY3zw2t3hOcfzneeb94cw/vw+0pdP/NST33JeO2JOuwTr388+P6ff/55lFdeeWWjw8/gsZP1XHnx+rPkzU9Tgg3YokWL3O/DSYqNzosobpJatmyZ6zmWRbUmZTXhzUi5Ax7vw/fEtuc28jae2Jd4z0r9sHkTD38IeANV6oZHlA//6Hr/YHjgWsDjE/uz3M15reL90+L944B4bYv9x2sLfjbPP3wWb13lDRuuJ/xDW+9wWyDYl3l/p/h+2Ed8D+xLHjfeeo335LFTzbkos5cQQgghkkKbHyGEEEIkhTY/QgghhEiKmvH5YRsi2nXZjpxl22wK+289+PzktbOyjd7zFfKcJb02y/K38p6Zn4udoxG0RXv3ZL+kWuznesHz+fHGIM5/7s/U/HwQnC/enOY2wrmJ15UyN7zP9hx0MeCAx0BeP6V6BNu+3DHt/bZ68wv7iH2FsE947nmfV47DfV508iOEEEKIpNDmRwghhBBJUejzQe/4FEMr+dgzK+T6o48+MtetttpqUeajOMwPxMeoXmgeH90i5YaQV5tSjkfLDUv0Qt29fs7bZp4pBE1bXv8w+Fw8PrwweFFZcK6HYOctg6atDz/80OjatWsXZR5zKfcntgWbK7DtuV3wdd55yvnaMMUAmzVwPfHWDJ7TefON1SN513KeU/i+vOYlTh2DY8CbQ6Ws/57LwvJSzF9jIYQQQogqoc2PEEIIIZJCmx8hhBBCJEXNGrfRr4PtzWgnRLvk7373O3Md2puPPfZYo1trrbWiXIpPjGdvLlo4bYOtvNznKsXfCe3IXGMNX3Nfog+C1+eoW7BggdFh6ZJy/a5S8x0oElxKBPtwxowZRnfGGWdEefLkyUa39957R3nfffc1ug4dOiz3c9YDnl9PXrywdK8mI68fS5YsiTL7oXjlSHDNb6r6bkXB813zUsdkrW/vvfeeef3SSy9F+bnnnjM6nEODBw82uvXXXz/Kns8eU0r5mlLRyY8QQgghkkKbHyGEEEIkRaHNXnic6WWMZPCY9bXXXovy1Vdfba7Do74f//jHRtejR48ol2Iq8TINF83sVQ7ed8BwcA6l/OCDD6I8fvx4o5s0aVKUp0+fbnTvvPNOlDFMlp8Dj8i32247o8Mj2BEjRhjdOuusE2VMbxBCdnbpEIqbtqAe8cypHM7+wAMPRBnHXAghdOvWLcp77LGH0eF4Ta0S+CeffBJlNhPhOsvmajQv4XxkUwW25/z5842uVatWjd6Dn+XTTz81Opyb3F+pmboQ7zcTf++89WvKlClRvu6664zuX//6V5TfeOMNo0NT5KBBg4zu8MMPjzKbnHHdXbp0qdF5rg7Li1ZwIYQQQiSFNj9CCCGESAptfoQQQgiRFIX2+fEq/iJs20Q74Ztvvhll9kNBezan6vbIqmYcQm2FROfxQSrFbwl9fjgt+RVXXBHle+65x+imTp26zOdgOPQV/RGuvfZao7vvvvui/PLLLxvdT37ykyhvvPHGRoe+BOzvkFVCRVQenlPo+3XVVVcZ3bvvvhtl9gtEn5/VV1/d6FLz80Ew9Jh9qF544YUoT5gwwehw3s6bNy/KPFdwXVh77bWNbsCAAVHedtttjQ7Do1u0aGF0uOY3pZ9I0fFKlXjr1KuvvhrlG264Icr/+Mc/zHXvv/9+lDlkHeflxIkTja5jx45RHjp0qNHhGOC0FtUkrZEhhBBCiOTR5kcIIYQQSVFosxcen3qh7Z7ZC4/BPUqpUI6f51UiZpORVxG9SJRS+RxBcyCbEbHNWIcmhzZt2hgdHlvjc3mmEA5R/+ijj6L86KOPGh0eufbr18/o2rZt2+hzhFDs/qs30GwSgg1hv/HGG41uzTXXjDKauUIIYb/99ovyGmusUcEnrG3Q1MWmrX/+859RHjdunNHNmTMnyl51dpz7GEYdQggPPfRQlNHEFkIIP/vZz6I8fPhwo8PfA56LqZm6yoHnFPbLY489FmVOTYBzauDAgUaH6zimLwnBmkh5DW7Xrl2UMfVBCNU1g2mUCCGEECIptPkRQgghRFJo8yOEEEKIpCi0zw/ajj0/FM//4qmnnsrU4T07depkdBg+yWGW+FxeCvFa9QvJ+9zcJ2ifRX+ZEELYZZddooxhjyHY9Oa9e/c2OrTtYz+gH08IIYwdOzbKnJId091zxXf0d+Bn5pBdpJZSGlQbTiGBtn9OeYBzx6syjW3PpQ3233//KHN/os/ApptuanRY5qQeS894eGlDcCyzrwb6Z/Ccw77Eau1e1W7uS5x/7AuCPiVYhiYEW0Gc56KXiqQ5yOND2RTjD+cppoAJIYTTTjstytOmTYsytnMIIRx66KFR/sEPfmB0ixYtijKHyGNpqZtvvtnofvSjH0UZyxSFUN0UFM0/MoQQQgghmhBtfoQQQgiRFIU2e+U9vvRMEJyxFMGjRq7onTfErpQQ+VoJdS8XL8x/k002ifJ6661ndGiWYvMHjgE0e73++uvmuqeffjrK3Hd41N6+fXuj23zzzaNcSsXp1MFQWS8NBYPtiO9j8xVmYN5mm22MDrPMMjvuuGOUR48ebXRz586NMps4i2YqaUqw7blt0ZTB4dGdO3eO8pAhQ6K82WabmevQNQDDqEMIYfLkyVFmk8cDDzwQ5b333tvo0C3BqwafGrjWcTugKfn88883utmzZ0cZ58JOO+1krjvwwAOj3Lp1a6NDM+jMmTON7tZbb40ypqoIwaZM6NGjh9FVc16mNcuFEEIIkTza/AghhBAiKbT5EUIIIURSFNrnxysjgbDPAb7P8w/A92Go5rI+DynFDon2y3oIlfb8YFiH3xfTmTMcGo3ti6G2GNoegi1zwCG52M/sP4LlLbxSJUzKPiIh2P7kUHfUcagqtim+j9PaY+gtV4hGdthhB/Ma/Xy4P9HPh0OuU/YTwXJA7NeDvld9+/Y1ur322ivK6Du38cYbm+tefvnlKGP19xBsWDX6ZIUQwksvvRTlZ555xujw81q2bBlqkWr4EeI4xpI/Idh5dP311xsdrmfYryeddJK5rmvXrrmeg/06cYzx+vzxxx9HmX1vyy21lIf0Vm0hhBBCJI02P0IIIYRIikKbvcoNG8fjdD5mRfAoDuVSKOXosmjh0llHiuU+p/c+DD9nM4lXDf7hhx+OMoZnYmh7CP97XIrsvPPOUT7iiCOMLitLLcOV4lM0dWXBpi0Mj+Y2zcqAzhW9sa/R9MKfxyG7mJH2k08+MTrMPJyymYtBcxNnrEfYjIiZ2tF0gRW8Q7B9y/Mb00uwyQ255557zOuhQ4c2+hx8nyK4FzTXus+pA/70pz9FmX/vMAXI5ZdfHmXO1o335MoHON94zmKf8FqKc7GU1DHLi1ZwIYQQQiSFNj9CCCGESAptfoQQQgiRFIX2+fH8KtA2zeUMMMQPr+OQePQTKcW2WG6F+aL5/DQlmEKfw5oxjPXCCy80Okxxv3Dhwiiz3Rh9DjDtfgg27BJD20OwY4x9DrC/5ONjwZQE7D+Afj7sQ4I+HzgfjzrqqMz7c/qDiy66KMo9e/Y0Opyb7K/gpf5PGRzbXD19ypQpUUZfrhBCePHFF6OM4ctrrbWWuQ59/LgsDd6T11V8H6cmyJuGogg+P00JfndOD/Dss89GGcuDhBDC7bffHmWcN57fHIPjiOcX+gphmY0QrH8Q6/KWmSoHrehCCCGESAptfoQQQgiRFIU2e+GRJR+JeqYnPILFYzM+gudQvbz3L5eimb0q/Txem6Gp68EHHzS6Sy65JFPHx7MN8LNj+DOawEKwYfHjxo0zuu222y7KbF7x0h+knuEZ24ZTF2BfeGYHNF899dRTmddxlfDDDjssynnNHyHYo3g2caZmHkHatGkTZc7Mi2HqH374odGhKQNN0l4G3zfeeCPzOXgeoYl02223NTovLUU1TSVFwFtncVyzCwGasNZff32j22qrraKMFdnZhSDrs0Kwv6ds3kS3B/7dxXnZlGtpequ2EEIIIZJGmx8hhBBCJEWhzV4eHLmFzJ49u9HrOLtoNTJL4lF7U2arbA48UyTrsLjh9OnTM9/Hx9nYnnhcyvfHI12OGHjyySejfMEFFxhd9+7do7z22muHvOBYKjc7eL3gmb2Y8ePHR/n000+PMmeExePv8847L/N+bOLAccCRKdhnnK0Yx0y9m02YLl26RJlNEmgOZJMEti+OATYh3nzzzVFmk1jW/UKwWZzZ7IXjpd5NmKW4YKBZn6O98D68DuLc8ExdiJeRG/ucGTx4sHmd10xeaXTyI4QQQoik0OZHCCGEEEmhzY8QQgghkqJmfH5K8Z/BsDovdA5t+5Xyx/F8furNFs14tmnMxMt2fwyz5LBmDJFfY401osx+PXjPK6+80ujeeeedKI8dO9borrjiiiifc845RudVuE7dzwfDnNlfB/uGM8T+4Q9/iDL2Gc+Vc889N8obbrhh5nPgXA/hf7OHI978S83PB8H+4vbbeuuto8z+QNj22H6cYuAf//hHlNk/DP1GWrZsaXT77rtvlDt06GB06LNVjbQktcpVV10VZW5rzG7P6yz+TmJ78rz0/OZwrt95551Gh9UUtthiC6Pz1lIcH5X+/dTJjxBCCCGSQpsfIYQQQiRFzZi92MyBR6scWtu2bdsoY5FTPqbj0Pes+3umM74HHs3VqpnLC1nHtuAjUWwzNiNgGOvmm29udBj6yCkM8H14fzZJ4dHplltuaXQYMsvfB8Pg3333XaPr1KlTlHns4JGyF9rdHPB39Ey6mNWav6M37tEEwhm1MYUEmxIfffTRRu+3zTbbmNdc6DQLz8zF1Op8rAQ4Bng8lFuoGdse5yNnab/33nujzFnUkd133z3ztTfH+BkxKzyaW5qLhvb12hJ/p0KwKT+8/nr//feNDsPb+TcT3Qt4rnumLsQzD8+dOzfKs2bNyrz/sccea3TevKxmehid/AghhBAiKbT5EUIIIURSaPMjhBBCiKSoGZ+fUkJRufpwA+yfwyG6SF6fH/ZRqaWwy4bv6KURKKVqNoYlcn+hXwjb77EfvH7GfuDU6uhzwCUysHL7fffdZ3SvvvpqlNlGjnZxri5fBF8CJo9vAZM3ZJ/HNbY3z6PJkydH+S9/+YvRYb+hbxZWeA+haas7p44XTpy3H958880o//a3vzU69P/g+2NJmcMOO8zo0KeolJQGRUtb0NC+Xkkmbx7y3MM0E4888ojRYUX2vn37Gh2WCMnbnpyWZM0114wyp7E4++yzo8x+gBtttFGj9wjBTylSzXVAK4wQQgghkkKbHyGEEEIkRaHNXnmzO7IJBF+j6YLNXhzulwWbd/Aojo/l8LOLXm244Xt5x7GlmPGwPfkoE7MzlwK2Iba1F/qK2aT5Wu5LfE48Tg7BhrPnHSvNSZa5C9uQr/GOldEM6I0RPkI/4YQTGv3sEGymXqzqjuYP0bRgP/N4QHMMm35xbcCM3JMmTcr8LB4Pv/vd76K8zjrrZL6PzTI4N9nMVTSzV0ObeikovPnFcxb7i834uJ7NmTPH6DCzMrsG4PvwWdhEhf338MMPG92ll16a+cyY8mLRokVGx5m9sz5PGZ6FEEIIIZYDbX6EEEIIkRTa/AghhBAiKQrt84Owr4YXztujR48oo68G24I//fTTzHug3ZM/Oy/8vqL5/GTZmdH+64XBe/4i8+fPN6+xLbgd0K+A+wivxc9m+zmGVn7wwQdGN3Xq1Mxnbt26dZS5PdCvgMO5q2mLribsc4HtweMVX/M4wLbi0OaHHnooyhzC++c//znKWNaEyfJBEJUHS5Wwn0j79u2jzH5vY8aMifIVV1wRZU4Dgb5CO++8s9HtueeeUeaxiaUwuKI8jo+ilZdhstZJ9N3hdc/T4etp06YZHfpWYpmnEKzPK6+fWb9x/Hcsn3H44YcbXbt27aLcsWNHoxs+fHij9w8hhHnz5kWZfbuqubbq5EcIIYQQSaHNjxBCCCGSotDnyd6Rl5eBGatxY7VcDu9DU4kXls739z7bM83UCvj9vOq/3GbY1hzuiuHQHD657rrrRhlDoflZ8Kib0xZgtlEMtQ4hhLfeeivKPKYGDhwYZTziD8HPAF5LfYtjlJ8bX/NY9swJd911V5Svv/76zOv69+9vXu+zzz5R9tIHlGtqFsuHF1I+ffp0o7vmmmuijGOHQ+JxfmPIM9+f12c0n3EaCjaDZd2zyCaxctcQ/I3xMulzCDlWXUdzfwh27Ubd7NmzzXU//elPo8yVFHBdv/vuuzOfnyvYt2nTJsql9PPyopMfIYQQQiSFNj9CCCGESAptfoQQQgiRFIX2+fFAuyf7f2SF6LKtceHChVHmFP3sl4JklVzg16VU1y4S3nOjDkNRQ7AVgF944QWje/7556PMbY1p7ffYYw+j22CDDaKMadFvvPFGcx2mVn/nnXcynx/TIIQQwvHHHx9lL806jx32TygCDT4EXooFDhvPG7LPIdCnnnpqlLlt0E7/+9//vqzPq4VyIvUC+sutttpqRvf+++9H+Y9//KPRvfrqq1FG3xr0uQkhhDPPPDPKXgkLBteaVVZZxeg8v8uipkbgeemV4UCdV74JfRZDCOG1116LMv8u/uUvf4nyqFGjjA7X2TvuuCPKWIImhBBmzJgR5X79+hndtddeG+WuXbsanTfGkKb00dLJjxBCCCGSQpsfIYQQQiRFMc8HG4GrhOPRJh974pH5NttsE2XMPBuCPZ6dOXOm0WH4HZuB8obhFt3s1dCmfEycNwST34ehqfzdX3zxxSjjUXoIITz33HNR/ve//210aFJBMxsfBWOIJx+rdu/ePcoHHHCA0WGlY8bLslpEGtqczQ6ccRfBecVmKDQLP/nkk0b3xhtvZN7zwAMPjPLWW29tdGi+wJBo7xlFdfHMEI8//niUr7vuOqPLWgd32GGHzNccBo/9jqaREPzM73gfziJeKxnX8/4+cDujaWj33Xc3ugkTJkT53XffNbqbbropyldddZXRYYoDvD+HuqO5/4ILLjA6NJ0xOMbY7QE/m39TcM3nfl5edPIjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSomZ8ftD/IgRrG2R7MJZI2G+//aL89NNPm+vwfRimHYL1m2BbY16fmKL7/GTB/jQIfncOS8RKvuhnE4JNcY/+OSFY3xIOqeZrG/B8cLhExujRo6O83XbbGR2maMeqxCFYXzL+PGyHovUz+8flvZbDy7FtJk6caHTYn7NmzTK6Qw45JMpeP3l+Pl4os6ge3M8Y3u6NcywNc9xxxxkd+uDwGMP5zeVkcGzyOoDXNmVJhOXBG8ecNgR/c7jdcd1Fn9YQQjj22GOjjOkoQrDtxL5XWaljRo4caa67/fbbo+yV/2G/Q/y95pQi+NvObVRpPx9Eq4oQQgghkkKbHyGEEEIkRaHNXnj0zRk+875vr732ivKuu+5qrsPjPawEvyzyHsUVPeQy6/nytjWbx/CYmtsas4FyOPv9998f5WnTpmXeE4/MhwwZYq7bbLPNonz00UcbHfYXmyzZ1IV4/Vc0UxfiHUczaCLgjLBostp5552NDkPYuQ27dOkS5XKz7crU1XSgeXPq1KlGh3Oc5ztmwd97772jzCHP3jzyxiqOHe+6opq5SsH7TfHmEJsRf/zjH0d5xIgRRoeh72yWwjmMLgtt27Y11+X9TSslU3NzzXWtMEIIIYRICm1+hBBCCJEU2vwIIYQQIikK7fNTri0QbaRoD2a7at4yFeK/oK8L+714Fe3R56d3795Gd8wxx0TZC41GnwOvQjLbs1Hn+eqwPxB+hvddi0LD83rPxt8Rvxf7D3Tr1i3KWO6F38f2/bwV2bE/+ZmL7FNVb6C/B5e6wH5h/w8sDYM+YDxWipwWot7A37i+ffsaHc5nL3zeA+ds0X1al0XxVnAhhBBCiCqizY8QQgghkqLQZi/Ey6rsHeWjXG7YrWicUswr+NoL6/RMkXjMykeumCW0lDBLxHvmIpq5yoG/o3eMja9LCZ/3wNQFnglVNB04JvbYYw+jwxQSPD6wwrfXf9jnnllbVJdysiXzeoyvZfYSQgghhKghtPkRQgghRFJo8yOEEEKIpKhZJxi0Peb11WC7dOo+B5X+zqX4AGXx6aefmtf4jF4V8Er4EnB7oE27FsZHnlB31mG/eNXgy/3+/HnyuyseWNaE/eUwDB796kKwKQ04vQQiP5+mw/OZxLnurcc4Z3n+1ovvYwg6+RFCCCFEYpT8b9ioUaOq8RyiGVBf1hdc0FXULpqb9YP6spjo5EcIIYQQSbFCXl8MIYQQQoh6QCc/QgghhEgKbX6EEEIIkRTa/AghhBAiKbT5EUIIIURSaPMjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSQpsfIYQQQiSFNj9CCCGESAptfoQQQgiRFNr8CCGEECIptPkRQgghRFJo8yOEEEKIpNDmRwghhBBJoc2PEEIIIZJCmx8hhBBCJMV38l44atSob6r5ICIfY8aMWWF576G+LAaV6MsQ1J9FQXOzflBf1heN9adOfoQQQgiRFLlPfhoYM2ZMNZ5jmXzxxRfm9be+9d9923e+Y7/GggULotyqVasoL1myxFzXokWLzM/7/PPPM+//7W9/O8pff/115j3wGUMI4Ztv/vuPwAorlPaPxahRo0q6Pg9ZfYnfib9DuXz11VdRxvYrBewTbvdVVlklU4ftzpT7LMtDNfoyhOabm9WG5/5KK60U5UWLFhnd6quvnnkfnHM4HkNYvnHQlHOzqcm7FnB7Il7b4tzke/C6W4nPWxb13JfIf/7zn0zdiiuumKnD/uJ5ufLKK2e+D6/lcZS3n8vpV68/S978NCXY0LjgLYvVVlut0b9zo3/22WdR/u53v2t02CFeo5eyOViezU9TUu6Gp9xNBg5wbhd8Fm9yZb2H8Z7Rey6mOTZNqeK1dcuWLXPf58svv6zE49QduMHhH0Wcj94anHc+4D+mIdj+834Eed5q/jVO3n/a825weA3E13nX4xD8sYPPzOt/Kb/7pSKzlxBCCCGSQpsfIYQQQiSFNj9CCCGESIpC+/x4oJ2a7ZJoz8Tr0Cl2WVTDplyKv0ktUMr38Rwnsa35nvi+vLZo7me0KfP92dcr73PViv9WPcBz8dNPP83U4dxfunSp0X3ve9+LsufPlRrl+NWFYOcA+lNx2+L8wAAUht+H9/T8Vxh0rq2mz0gRwXYp5TcM2x77ldvd88vCecl9iess36O5+kgnP0IIIYRICm1+hBBCCJEUhTZ7eeYE75gVj77xSJdzguARL5tivKO4cvPgFM080nC8WcpzlWvuwT7y2ozvif2Mx7ilHJV6R/l5w+xZh2OgaP1a7+Q1X3th23z0nrKpBOcYj2V87elwzfXCqBcuXGhe45zmFCWe2cZLW5Ba/yGeWQrx2i/vPZhS3EoQHEecow3ncKX7VSc/QgghhEgKbX6EEEIIkRTa/AghhBAiKQrt84P2P7YF5rX/YZjz2WefbXRoazzyyCONrl27do1eF4K1Q3r+JBweXak6WZUij6+KV7usFF8XtCNzjTX0EeB+zarHxHVlPv744yhziHOXLl0afY4QrF8BjhW+lv0PitaXKYEhtR9++KHR/f73v4/yzJkzjW7dddeN8vHHH2903bp1q+Qj1hQ4lqtR2gbn8BprrJF5nVeTr5R6UCnj+VZ6/o1Z/lWvvfaaef3cc89Fec6cOUbXoUOHKONcCyGE3r17R5l9u7y0EypvIYQQQghRIbT5EUIIIURSFPrsEI/tOGzVO/bEML7XX389ypdddpm5Do/+9t9/f6Nr06ZN5mflzWzMx7hFq0ScJ9Sdv2teU9dnn31mXqOp4p///KfR3XfffVHmY1Y8WsV+wGy9fP+hQ4ca3YgRI6K80047Gd16660XZTZh4nfnvvRCgEVl4bHkmVAfeOCBKM+fP9/o3nzzzSgfdthhRocmz1KyHNcDWdl9+TWHR2el/PDSQrC5Gqu6s5kGzdf8XC1atAhZ4JjwrqtH8DeG+wv7xfsteuGFF6J81VVXGd1tt90W5dmzZ2fef4MNNjC6Aw88MMq777670XXu3DnzWaqJTn6EEEIIkRTa/AghhBAiKbT5EUIIIURSFNrnB+GU6WgDZnsw2jpfffXVKH/00UfmOrR7Ll68OPez5PXx4BC+ovn8NDyf5z/Fdnjvu6ONfsGCBUZ31llnRRl9fEII4a233ooy+1tk+SOwPwf6Fdx///1G99RTT0UZ/T5CsL4fG220kdF5adcV6t50YEVo5uabbzavOfQdGT58eJS7du1qdKn5+SA4znEuhhDCxIkTozxp0iSj++CDD6KMfja8lqKO23n77beP8g9/+EOj69OnT+Yzo+8Qr1+p+flkwWuUt2Zh31555ZVRvuWWW8x1+BuK/loh2PJRGBIfgu33Vq1aGR32O48P9OUst3xGFlrBhRBCCJEU2vwIIYQQIikKbfZC81UpGT3xmByPZhk0pXEIpndEmNfk4WVHLgJ5nq+UMG4MScYj0BBsW7MZA49PWffJJ59EGdMdrL766pnPySbSWbNmRfnee+81uvXXXz/Ka6+9duZzKZy9+eA0Fzi2LrjgAqPDI3U+lj/uuOMydTh2PTNbPYLz48UXXzS6O++8M8qPPvqo0c2dOzfKaK5g8z72H+vw85599lmjO/bYY6O8xRZbGB1m/kXTSAiVN4/UKux2gb9bnAV/woQJUUa3BHYVQVPkOuusY3RZKWZCCOH555+P8q233mp0uAYPHDjQ6JThWQghhBCiQmjzI4QQQoik0OZHCCGEEElRaJ+fvCUsvOsw7Jl9ddDOz5Vm0Sa66qqrGh36lHjp4IsePtvwPfJWZGY4fTp+X05Zvscee0SZK2h7YZAY0o79wJ+N/gh333230aEPAKdkf//99xu9juESC1xeI2W4bXDM8BzI61uD5SZ4DB5xxBFRZt8y9CnZdtttjW7w4MGN3n9Zz1IPeKlBsM3mzZtndE8++WSUP/74Y6PD+YLzsWPHjua6hQsXRpl9OPCe48ePNzrsE/bRQj8Rnrfov1lNn5G8NPhW8jiuth8h+8rh7xb6+IQQwq9+9asoY1/26NHDXHfIIYdEec899zQ6TDNx7rnnGt2MGTOi/PTTTxvdzJkzo4zV30OobtoCnfwIIYQQIim0+RFCCCFEUhTa7IWhehwimTfcHMMxvWNGPl7Le1xajYrotQL3CbYZ98+mm24aZQ6RxCNtNmFipmhsv2nTppnrJk+eHGVOW4ChsG3atDG6IUOGRJnTIuCRL5u5sG/rrV/zgCkIOLWAZ+7NmrdoGgkhhDXWWCPK++yzj9E9/PDDUWaTNI4tzFQbgh0HRTdJNyXYLq+99prRoemETYXt2rWLMpq6Ro4caa5DUxrO0xCsiYXNp2ge4TGG1/LcLFom/Yb1oZR1wjNTNnbvBnDt43Z57733ovzXv/7V6LJSB2y55Zbmuu9///tRbt26tdHheBgwYIDRoSsCm1Yx1UJTuhPo5EcIIYQQSaHNjxBCCCGSQpsfIYQQQiRFzfr8eKAdGUOZ2T6K/gdcLqHcEEmvEni9we2Jdnn23UHfAQ5nx37gEHYE/X/Gjh1rdFdccUWU2TcB2WyzzczrzTffPMpos2aUQt/CqSGyQN8gfh+OCfTxCcGWVbj99tuNDsfIoEGDjO7666+PMs9hHJPsX4I+QKn5cKHfFPqFhGD9TdjHY/jw4VEeOnRolLfbbjtzHfoRYYX3EGzqCS65gCHQU6dONbr27dtHmediUX1+mLx+PR78PlyDOTUB+srdcccdRod+lyNGjIjy//3f/5nruARQFv369TOvvbm3ePHiKHNblbsHyINOfoQQQgiRFNr8CCGEECIpCm328sLZvWNCPBbHsDoOb0WzVCkhdvi+vCH3RaThiNHLUp31nrz3bgBNEGzawmNQNG2FYCsMX3311VGeOHGiuQ7vySZMDGc//PDDjQ6P8vn4HO+JR7ONXSv+C4atszkLwSN6DrH+xS9+EWVuazSPnHzyyUaHx/KYcTYEa9bkjM44p1Mze6Hpac6cOUaHphNOB4Jthn3OcxNdD9gcjvOK1wVck//9738bHZqri2bmykvedbaU8YhmIjZhnnnmmVHm37s111wzypdeemmUe/Xqlfuzsf/QLBmC7SM2meNnM9X8fa3dX24hhBBCiDLQ5kcIIYQQSaHNjxBCCCGSotA+P2gf9vxS0M4Zwv+GJTfg2Q89uzF/Nn5eLfv8NMA25XJTq2fdIwS/zAimsf/b3/5mdBjSjmGy7DuAsI/IsGHDooxhnCH4/YefwWG+qZe3QDh8mX2ukPnz50cZUx6w7w6GOTP7779/lLmyNKb359QFqOP5Xqt+I5UAx+/AgQONDn3wOIXEm2++GeXp06dHmX0r0e8L14EQ/jcVAoI+JPzZ3vyvZnj08lDKWlrumoLfHdNFhGD7ixk9enSU+/btG2UuFYTfgdsWP5vXS7wPp6DgyvFINdfW2v/lFkIIIYQoAW1+hBBCCJEUhTZ7IZwtGc0VbPbiCtFZ1+GxnXe8Vu+ZmsvFM0V6psJLLrnE6K677rooc3gy91kDHBaL4ZOc2fTxxx+P8oMPPmh0u+++e5S9MeYd8RbpaL054BBohM0aaOo677zzonzbbbeZ67DtOWz2pJNOijKPMy8zO+rYVOd9h3qnbdu2UUYTcQjW/Mgmq6yUH+x2gCart99+O/dzYTqC3XbbzehwHPEYKOp89NbLcs07vGZhhXSvcvt6661ndFit3UtV4Znu0NzJYwDTmfCa3qlTp1z3r7QJTCc/QgghhEgKbX6EEEIIkRQ1a/bC7LBsAvnoo4+ijEeg7LmeN0uvVxCVKbdAXVEpNwqB2+GFF16IMh7NhmAjNzjzKPYt9jmPBy+S56mnnoryWWedZXQYmbTllltmfgf+3kU9Wm8q0JzlFTnlyB/se4wwYXBMcJ+tu+66US7FXI1jhM1ceCzP2Z/rnY4dO0aZi5Ji1A67E2BBVITNzjfddFOUX3rpJaPDecRRgjvssEPmc+H4SK3oMBYERjkE60LA2brR7MWuB5g13ZvPedd/di9A2IyNGZ5l9hJCCCGEqBLa/AghhBAiKbT5EUIIIURSFNrnB232Xrg52wnR5ow2ZQ6xQ7ux58fDurx+PbXi/8PPWW5FYe993bt3j/KAAQNyPwvag7t06ZJ5f6wcfffddxsd2r6feeYZozv11FOjfMsttxhdmzZtoswh1FlhvqmAfgE8r7BvODPvT3/60yh/8MEHUWYfqh/84AdR/tGPfmR0WX5gIfi+O/iax1lqfj4IjuUOHToYHfYD9yW2/bx586K8aNEic91ll12W67M5rHrvvfeOcpZ/UWPPVW8+P/zbh34+/N2vvPLKKLds2dLounbtGuX+/fsbHfpalvu7hWOAU1fg/Fp77bWNDtcSL91IpUlv1RZCCCFE0mjzI4QQQoikqBmzF4fMommLQyTxNR7J8xE5woXy8H1eqDuH2eN9vHsWKVSavx+aDtjcg9+dwyyxffm4cq211opy586djQ5DVbmfMZMrwp+N79tnn32Mbuutt44yHwWjGWzSpElGt8022zT62fz5/MzNRcMzeePcG69Z9wvhf/sTdWwywvHD4ewPPfRQo5+F4yOEEK699tool1KENK/5KrVitJ5J2is6ibCJBcc9Zom+8MILzXWTJ0+OMo8/fJY99tjD6HDe8jj1zGUYts2pM5oTb81iU5NnVsc+uu+++4wOTU+cXR37hfsZM+tzQWDEMytjcdt33nnH6HDOHnPMMUaH46op11Kd/AghhBAiKbT5EUIIIURSaPMjhBBCiKQotM+P54/Afj4Ih1o2wDbX3r17Z94DbbClhMF7ttoi+fmE8F9bP9t/Pd8dpJSQSLS9sx0e/XDyltPwfBP69etnXm+22WZRZhs5fofx48cb3Y477tjodSEUx88HyRpfeceydz/uB8+3Bn08/vSnPxkdlkvAe2KIbgi1kyaiHsC5hD4dIVgfHV5z0VfjxRdfjPK4cePMdXhPXtPRv+SXv/yl0WEI9OzZs40OQ/LZt8Urz1BUSikjhN/32WefNbrFixdHmX/fNt988yh7/YC/k1w6BMcAlzs57bTTojx//nyjw8rtG264odF5a2lef7Ry0MmPEEIIIZJCmx8hhBBCJEWhzV4IV2T3jsCyQuQxBDIEm/Gy3CzHXggw37NoZq8s8ppGKpV9E+/D2YKzzIjeZ/MxKl7LfYJhsnyM64V1ehXfm4uG78nfsVyzlzcHcJzz3ETzBT8LHoffeuutUR4+fHjmM4umg8c5h7cjS5YsifJvf/vbKD/99NOZ7+FQd3wfVpdnuBI44mX/LwJ5UlCUAq5LTz31lNF5cx3TEfBvIboiYJ977iV//etfzes777wz8324JnhmSUxhs6zPX1508iOEEEKIpNDmRwghhBBJoc2PEEIIIZKiZnx+OEzd8/lB+zDasDlsD+2c7NOA/jmePxCDOrZFF83nJ6sN0e+GQyKxLbxUBBwyi6/ZFo19xM+Ut83QX4dTq2PFdwafZdNNN831WSHYvi1av5YyXtkHA/H6F/18Lr/8cqNDnw9umz333LNR2asMXxSfqnrFS8+B/nM8Vh577LEoc3g7guNoxIgRRnf44YdHmUPWcexweoyPPvooymuuuWbmZxeBhjbltsU5xPMEr/XC4GfNmmV0GLLO8xf70vv9XHXVVTN1119/fZTPOecco8N1nNON/OxnP4tyixYtjA79j9jHR6HuQgghhBAVQpsfIYQQQiRFzZi9vOq8bF7CkD40dfGxGWehzILNCJ5ZCF+zqa5WKLf6PL6PTU/YFqussorRYYgr91GWWcbrk5NPPtnosNowg2GXHG6Nx7heBfuiwW3jhbd7YznruhBCePXVV6N83nnnGZ13PH3GGWdEGfuWQ6r5aFxUDxwfPN9wTPB6edZZZ+W6P6YU4bGCa7cXAs1mdK7kjmC4dDVDpfOSNf/QfOWZqr2K72yievvtt6Pcs2dPo8PKB7wG4zqPunvvvddch+YrTnHRpUuXKN98880hL/jbzmY8L/3B8qKTHyGEEEIkhTY/QgghhEgKbX6EEEIIkRSF9vlBPwCv8quX3hxtp+xXgH4pXNoAbcocaoh2cc9PolZCdLn9vDBLhG3R2IbTpk0zOgyFZbsu+gTstNNORjd48OAoYygs25Qx3Pq9994zOuyv7t27G90pp5wSZaw8zFSqlEc1aejHUlIsYP9612FocQghnHnmmVH2UglwpW70C8C5g9WoRdPirbM4d04//XSje+aZZxp9H6+zJ554YpQHDBiQeX8P9rHDscr+aJ5/aHPQMB95fuH4LyUdBa67uD6GYP2ypk6danTob7fXXnsZHc7La665JsqXXnpp5nNxX44ePTrK3bp1y3wfpzRAqunjwxR/RRdCCCGEqCDa/AghhBAiKQpt9ioXPCIdNmxYlB955BFzHYZE8tE9hkiyySNvxemim70avkc1MlHz0fdDDz0U5RkzZhgdHlM/+OCDRofZPzFtAYdZzps3L8ocao1HsIceeqjRHXzwwY1/gWC/A9+zmplHy6XS4w2rdk+ZMsXoJkyYEGU2/W622WZRPuyww4wuK0WAF7osqguaVXju33bbbVG++OKLM++Bc2XkyJFGh2OAs+xjWDWbQ7yMxJh6gse954rQHGTNS68agGdmx/D23Xff3ej4Nw75xz/+EeVLLrnE6HCNRLcErv6OLgoXXXSR0WH2bgyrDyGEli1bRpm/m5fWAu+D96gEOvkRQgghRFJo8yOEEEKIpNDmRwghhBBJUSzjKOGFt3vhma1bt47yLrvsEuVnn33WXIe+JnPmzDG6Pn36RBnLHIRQG2HPeWiwOXtVgxm0tbP/Btqi2T67/vrrR5ntwR9++GGmjtPaZ302wv2F4Zroj8Kfx8/she96Y7O5yOpPxCsLwqAfFZazCMH258yZM43uF7/4RZT79u1rdDh+sE05PNkbZ6KyoM/FxIkTje60006LMpdEwLHTqlWrKB9zzDHmOhxzPDfxHl55C/bx8/zsiuaP1/B7wXMN/au4fA6uL+yHhevUtttua3QnnHBClP/yl78YHfrycPg8+r9imx1++OHmul//+tdRxjJSDK+P6NPEPj5eOaVK+/kg9fErLoQQQgiRE21+hBBCCJEUhTZ7IXxc7x2F47E/VqFFE1gI9lh/k002yf0seU0elQgZbwpKeU5sd+4TPC7dbrvtjG6dddaJMlcKvv3226PMIdUYtorHpb169TLXoZnyyCOPNDrMXupVefYqKxfRzMU0HGXnzegcgjVDsGkPj5z3228/o9t7772jzHMR78khvHitN5bqxbRcC+A6iFXBQ7Dzj8PUcXycdNJJUR4yZIi5zuvLvGtPKearIpi6GsP7rt764rUfm4tHjRoV5d12283opk+fHmU2s6255ppR7ty5c5Q5BUXeecnmTY/m+p3UCiOEEEKIpNDmRwghhBBJoc2PEEIIIZKiZn1+vEruaJdEuzSHUnqVZ0VlwWrqXFLigAMOiDLbsNEenLfPvRT6HhyK6qXJ98Izm4sGfx7PdynrPSH8r98B+uRw2+Nr9gPA1+X67hS9NEw90aZNmyh36NDB6HDectqJ/v37R3no0KFR9kKgRXXB+Ya+OyGE0K5duyjz2la0kiBNgU5+hBBCCJEU2vwIIYQQIilq5qzLq6yet8o636OUcDzxv7BpwusH1LF5pZx+8D4rr5krBJsNthRTSxHNMg3mN24br62871EJ8xWT9SylZBkX1WPDDTc0ry+88MIocwg5ZnVmczVSzcrcwoLzi83x5ZjnvYzwtW4q08mPEEIIIZJCmx8hhBBCJIU2P0IIIYRIipo12nn2S7RLYkiu5/tQ1JTotUQ1/DSw+jD2H38WVynOei4vDLwUG3ZeP7PmwPPF8lJG8PvK9fPJO+dUwqJ4sO9Oz549o8xzbPHixVHGPmcfPvn5NB3eGoxzkVNXoM7z9at1Px9Eq48QQgghkqLkbRwWThO1jfqyvlB/1g/qy/pBfVlMdPIjhBBCiKRYoci+C0IIIYQQlUYnP0IIIYRICm1+hBBCCJEU2vwIIYQQIim0+RFCCCFEUmjzI4QQQoik0OZHCCGEEEmhzY8QQgghkkKbHyGEEEIkhTY/QgghhEiK/webYrKyvmtZSwAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 720x2268 with 75 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Noisy images (noisy_test) :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAByCAYAAAC89bCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAr8UlEQVR4nO2de/xVY/bHF6JQyCiVyD1pyCghYnKrkXu55q6pkZRSMuRSUi4htyQhuV9zGSUyFOOWa2nkEqVEhFyKQvP7w+ynz/p8v8/TOd/OmZ+X/Xn/09rftc/e++z97H12z1rrs1b5z3/+Y0IIIYQQeWHV/+8DEEIIIYT4X6KXHyGEEELkCr38CCGEECJX6OVHCCGEELlCLz9CCCGEyBXVCl2xW7duKgv7DTB8+PBVVnYbupa/DUpxLc10PX8r6N78/aBr+fuisuupmR8hhBBC5IqCZ34y1l13XTMzGzJkiPv7gAEDgr1kyRLnGzx4cEHb7tWrl1seNmxYsFmP6KKLLgr2eeed53zPP/98sHffffdgL1261K23xhprBLtWrVrOd9NNNwV72bJlznfMMcdUevxmZqussvwFk4/5jDPOCHbLli2j2/zLX/7ifKeddpqNGzcuus+qMnz48KI/s/nmmwebx8Bee+0V7DXXXNP5atasGexTTz3V+c4666xgb7bZZtF9//DDD8HeYostnG/evHnRzy1atCjY48ePd76OHTsG+5tvvnE+/H743czM9ttvv+jnsnskRrdu3ZL+qpJdz9dff939vXnz5tHP4BjFsWtm1rp162D36dPH+Tp16hTs7777zvl4O7H9VZVRo0YFu3Pnzs730ksvBbtBgwbOh+dll112cT4cn/fff7/z4b1ZvXp15+vbt68bX6XihhtuMLOK52vSpEnBXm+99ZyvWbNmBW2bt5m6Xni/7L///tHtjBkzJtjHH398Qcdh9uv5y5g+fbrzFfrMe+KJJ9xyu3btgj1z5kznw+cGn7+FCxeW5d788ccfzczs7LPPdn/feuuto5955plngt2mTZuC94W/iyeccILz4bXs2rVrdBs4Hr799lvnw9/JU045xfluvvnmgo8ztr+HHnrI+Q499NDo5+bPnx/sDTfcsNJ1Utez6JefI4880szM3n33Xff3Cy64INh//OMfnS/18tOqVatgv/DCC86HLz//+Mc/nI9feBB84cF977HHHm69W265Jdj8AD/ooIOC/f777zvfggULgt2jRw/nSz3c8fvgi5CZ/zHhbXzxxRdlefnJKGYQf/jhh8GeNWuW89WpUyfYG2+8sfPNmTMn2LNnz3Y+fOH597//7XzbbrttsPGF6oorrnDr4cvklClTnA/PJ77smJl179492HweLrnkkmC/8cYbFuOVV15xy3it+LrxfVMOdtxxR7eMPyp4Phk+b19++WWw27Zt63x4v/B/dvAl9bPPPnO+1H8OCl0PX3j44bbzzjsHm19wNtlkk+j+mjRpEux33nnH+XDc4Xcz+/UHc/XVV49ut6pk3xkf8GZmf/7znyusk/Hss88G++2333Y+/H577713dL9/+tOf3PKWW24ZbH7Jx2s0bdq06DaRevXquWV8DhbzjFt11eVBC/7PKf7nl/eHLFy40C3zD32pyF5yUi8766yzTpWOhV9433rrrei6+OLHzyH04bXkSQHkp59+ivqefvppt7zPPvtUun2zqv+HCK9t6j8JMRT2EkIIIUSu0MuPEEIIIXKFXn6EEEIIkSuKzvnZaKONzKxiwinGKP/2t785388//xzsrbbayvkef/zxYBeTP4Px5g022MD5vvjii2Cfc845wR49erRbL5Xw++ijjwab47GYJ1JVjj32WLeM+UAM5tKUA87xmTx5crAxv8nM7LDDDgv2pptuGt0m5viY+WuZiu1zEmKMo48+2i1j0iPn4GDeBOcAVDXvpG7dusH+5z//6Xx4LTl236hRI2vfvn10n+UgleeD3HXXXW75yiuvDDbnkGBe32WXXeZ8mI933HHHOR8nu8fAZ8hzzz3nfJiI/cADDzhflihsZnbiiSc6X//+/YM9aNAg58Pry2MLc4D4XE6YMKFC4n8p4UROzJcYO3as82FyKCfJFppXwblteI/zfYVwnmeMVA4YJwSnwDwfzjnDnE8G98efW3fddQsen8UQ+16YdIy/g0yqoIJzfDAX6uGHH3Y+zGPl/Fd85n/11VfRY3nqqaeCjUnuZj65HHN8mIEDB7rl77//PthHHXWU8zVs2DDYjz32WHSb11xzjVvO3iXuvffe6Gc08yOEEEKIXKGXHyGEEELkiqLDXplmAWsIIFiOaWa22mqrBRvLZ838NPKFF17ofKmwA05Fb7PNNs6HJdgfffRRsHkavFA4dIF6CVzu3aFDh2BjaIRp0aKFW8bSw8aNGzvfyJEjCz7WYsjOL08nHnDAAcHm8BVy7bXXuuWJEycG+5FHHql0X2YVZQs++eSTYKf0JxYvXhzstdZay/lw2pbB0EFq+p/H5o033hhd9/PPPw82lv+b+fBDv379nG/27Nll0/nJwlasQ/Xxxx8Hm8u9sbSZQx5YHs3aUxgS+/rrr50PtXY4ZIUcfvjhwWZtHQxfsQ4NTnHjdWA4lIxl1fx9sISdjxlDPyzFUG5YLwvvRw41odwIhvhWBIYpUSfGzIeMOZxUaCgNwyGcLsGSGAiWhk+dOtX5atSoEWzWXkJ47Jx00knBRp03s1+/T7nuzcpIPV8Q1g375Zdfgo2/rWY+1HXwwQc7H14vfl6iD+8blpTBEnJMKTHzsjL8m/XXv/412CwXwWM8BmutXXrppcFmLbNCQv2a+RFCCCFErtDLjxBCCCFyhV5+hBBCCJEris75yWK0nO+BeTdcAn311VcHm/NnMCbLfVgQzD8wqyhBj+D+0cYSeLOql5Bjj5s333zT+fC8cM4PxrcPOeQQ58Nj45yfLl26lCUWnZUYrr322tF1UjF5lsk//fTTg805Pxh/xpwihr8nyhFgng+PB5aqLxQsqWb5+d69ewebcwcwRo79zsx8f5oXX3zR+TjeXUqyXB/OwUm1dUi17cBxiDk+zFVXXeWWcV3OJ8O4Peb5cIkrlqhiLouZl8TAMcdw/hhew0aNGjkftgDBHDQzL9XPEhXF9LEqhuxYOa+G+xMimBOHvRZxe5Vtk/N8EByvWOZs5tv+4H3LuRmYN4LtMvhYbrvtNud77733gt2zZ0/nw2d3Kr8plZfEpeD8TC4V2TlM5bZwax387pyDxnk+CJazM5jnxtcB88fw+YXPQIbHDbbV4f6CCMuNYCk/57FNmDAh2Hydb7311mBjbq/Z8lJ77hWGaOZHCCGEELlCLz9CCCGEyBVFh70yZVQu750xY8YKP2OWVmnk8EFV1XexzA7LfjnMhd2YWXn0D3/4Q3TfuD/eJqrk7rvvvs6H5YVcasiKm/8LMpXUdu3aub+jWjLaZssVvs3MtttuO+fDzuopNVgOiWFZIqtuY3gCu8Hffvvtbj0MrbLiMobnuJsxqvPWrl3b+XAqv379+s6H4Swuf8YpbFYtxzL4csHfA0tjq1Xzt3xqLGMoiFVZzz///Eq3YeafBTwNj+Xt9913X7BZiRW3iWWy7EsdF8sh4FQ/hmyY1HPn008/rfC3coSks2PgzvQoI8CSBvjsueOOO5yPn60xeOzgvcTPs/322y/YeA7uvPNOtx7eO3jNzfy5Tsmn4P1tVljX7hXB92JVu4uviJdfftnMKkrAIKyyj+khfA9h9wEGO9pjWMjMS72kwvgIh7tTv7sYJucye+zCwIrVCP/u4jOf00FQ/gDv+0LRzI8QQgghcoVefoQQQgiRK/TyI4QQQohcUXTOT5avMWXKFPd3LDXmuDHGBouRXccyO449cisMpEGDBsGuWbNmsLn0HKXOuTN8ofFfltHGuPi8efOcL5XXg+ev0M7mK0vWEZjzehDOB0I4Dp8qYcfcBTzvZr7EtFevXs6H7SEwX2ennXaK7ovzHbAM8u9//7vz3X333dHtdOnSJdjYbsHMSxNw6Ske86uvvup89957rw0dOjS6z3Jw4IEHBpvHNXaFZikIpJiYOspecOdn7vJeCChHYObzdfj84vXE/CIzn2/CpbiYV/Taa68VfGwosV9KsuPDHB8Gc3zMfK4j32NYos/jr0+fPsFmmYQUmFOC9y2fW5QwqVWrlvPh84V9KIVwxBFHOF9V80ERLvcuF7FcH5TWYAmYW265JdipHB8GW5BwOxIcA1wajvc+5rU1a9bMrYd5gXxf4r3Hpfuc0xSDc7nwWvJv9Nlnnx1sbpmUfe7UU0+N7kszP0IIIYTIFXr5EUIIIUSuKDrs1blz50r/jqEuDhHgdCwqNpr5zras8Ny+ffvocWDYixVgY+EX7gCdUsNM8fbbbwc7VXKJ4TfmsMMOc8s4ndi6dWvnY1XZUsHTopXBCp8YfsSwkJnvBswqrzh9j+WLZr5cefvtt3c+DInhFPYDDzzg1uvYsWNlh29mviSXS5xRPXXu3LnOhx3PuQNzoWOnXGGRyshCWDxVPW7cuOhnsOM9dmU2812buTQW73c8v2Zm99xzT7BTYa5FixYFm8MTo0aNCjY/cyZOnBjsk08+2fnwvuIO4liCj2q0Zj7Uxcq/CxYsiB4Lh7ZLxVdffbXCdfA5ZObvxyVLljgfXj887wzLNmA5OHdWx9AaKum3adPGrYfPyC+//NL51llnnWBjuNjM7JJLLgk2jw9U0meVbw6FIvjsYdXocoOdAcy8ijN3mB8xYkSw+XfwsssuC3bfvn2dD68zh5owzMZyI506dQo2PoNr1Kjh1kOVaDxGBsN2Zl7KIussUBndu3d3y4Wmn2CJv1nFkFxlaOZHCCGEELlCLz9CCCGEyBV6+RFCCCFErig65yeLN3LHZCwj5RJTzGdJldNef/31bhlj2FyizKWPMbDUjXORsNXG6NGjnQ9l3Tl/hTvPIqkyS4yzprrNsozATz/9FF13ZciOtWnTpu7vmBvFeVKYX8WtBfD7zpkzx/kefPDBYHfo0MH5sIyaO0djGwvMK4jlnvFxmHmpdS7zxVg3d6lPxZsLHdMce06NnZUly/WZNWuW+zuet4YNGzof5jlhjg/DuQWYd8A5JNjOJiVtsfbaa0d9eM0w58bMy0ngdzPzz4xUTgKD+Rg4Vs3Mvvvuu2BzG46rr766LO0tsq7UfE0wLys1lqpXr+6WU2MZO9NzLiLeq5z/gey5555RHz4TeT3Mu+H8OMx15O+KeT48Ppo3bx49Fhwv5WpnEYNb9yBLly51y5g3x6XueD75vpw2bVqwi3nW4DaxhDzrSJ+RekbcdtttwX722WedD3+/ORcWZRL4+YyyGZzXg6Xv3OolGzupe1MzP0IIIYTIFXr5EUIIIUSuKDrslZWivfPOO+7vHOpCcBo8BZesYwiEp9uwfJKVQevVqxdsLJnlcl0EO96aFT4lWmh3XDMfJuKutxgmYvViLg8tFVnIA8tGzdId7QcMGBDslKIzhxix7JLLcHHams/n+uuvH+wsFGCW7srN4NjkEnUMaXCZPcKhkFSoC78Dl9N27969LGESs+Uqp6nrwuX8CIccMbyEYS6Gw1cpVdUYHG7BcmX+PrvuumuwX3zxRefDUNfqq6/ufKnwccuWLYM9duxY58Mp9SOPPDK6jVKSjaHU84Q7pBeaCnD55Ze7Zbw/WEICS9/5WHCcoyQGK9SjEjzLXPTo0SPY+Nw2878xHEbHkmt+XmI6A4d+cB+obm5WUSKiVGShvmI60R911FHBfuaZZ5wvNSbwOcXfHaUeMJxk5n9DhwwZEt0+dkzga3LCCScEu1WrVs7H9ynCoTsEj5mVwzHsxZ0BCpGH0cyPEEIIIXKFXn6EEEIIkSv08iOEEEKIXFF0zk8WW+OyvSZNmkQ/w2XxMTivAmPF1ar5Q8VSdMzbMEvn9iAYv+RtIJzDgPksHH/FEj/u5oux9caNGzsfdixnUjk4K0PWyZrbH7z55pvRzyxbtizYmCdh5s8Fn5dUV/Bvvvkm2NySALeDJZ/YeoLB1idmZmeddVawN954Y+fDXKTHH388uk0uz8cxxu0d8Jg5v6KcZLkxmC9gZvbyyy8Hm/MqUHKBJe8xp+Smm25yPuy4zfl+hY7XlCwE+vh6YksOBp81nOODx4nHz/vg5weX0SJXXHFF1LcyvPDCCytch/OPMOcnlb/FORbYlmbMmDHOx/k7CD4LCn3mch4K57Mg2CYj1d1+t912i+6Dy6M/++yzYHOOT6tWrWyHHXaI7qeqXHzxxWZWMWcFW6zw+cM2UPPnzy94X5w3i3CeD4K/f4sXLw52So4iVfbO4xe/K7dl+eSTT4K90UYbRbeZ8qVyMGNo5kcIIYQQuUIvP0IIIYTIFUWHvTbbbDMzM/voo4/c39dcc81gc5gLS5tZdfXoo48O9l133eV82IWWO74jGAIz82XkGHraY4893HqTJ0+ObhPp06ePW8bS26y8uLL9MaicyR2MES7BbNOmTYVQRinIwl1clo7dhvn7HHjggcFmZVUMRXFYCrv88hQ2Kn6myjgxpIjjzczsySefDDZO8TNcnonTzbvssovzYRkujlM+Tg7VoTRBqoyz1GTnB9Vhi+Gqq65yy1gqzgrrWA7Lz4LsGbEiCpWTqFu3rltGlV4OO6VUbTHUlZKoSB0XP2u6detmZ555ZnT9qpI9H1LPqA8//DDq43sAldKPO+4458PQBt7fZhXVhRF8zmNYlGVDWD0fQVVgTp3AUmZW8sau93fccUd0+yzRgNeWf1NeeOGFsshQ7L777mZmdt1117m/YygIQz9m/pnI6SAYNtpuu+2cD0PCGOIzM7vmmmuCzRIcKC2BYUS+FzDUheExM7O11lor2NwVAUOkHHLG9Bbu+I7pNRzuxmvLz5xCwrCa+RFCCCFErtDLjxBCCCFyhV5+hBBCCJEris754fh+BnZ/xfwLM19OPHXqVOfjmCWCHbf5c6ky2RYtWgR7nXXWCfZqq63m1sOO26kcAM7pSLVBSB1XbD0zH+vk0uGRI0dWyDUoJVzKjzkrnAeSAkvk33jjDedLnZeJEycGe5NNNnE+jG/jeeF2CJgfwOcPJfpZYh7j4lwGj3k+nDuA+WOpfDTOQUlJx68sJ510kplVvP+22mqrYPO4w++fKiG/8sor3TLmRqRyfLBbupmXVRg/fnywmzZt6tbDfCvOQ4k9g5ivv/7aLadadGBnei7vxXOGsgxmFfMxSkUs1wfHD+dhIZgvabY878TMbN1113W+H3/8MdjYGsLMXz8+JjxnWdsjs4q5LZ07dw72nXfe6XwoYcK5SFguzfkl2Pbm3nvvdT7Mj0w9g7fccku3nJK6WBmyfMfNN988ug6W9ZuZDR48ONhcGo6yG9OnT3e+bbfdNroPzKlNnZeU1AkeVwqWMMB8Lm7txMsxUJbDzEuYxEj9bmrmRwghhBC5Qi8/QgghhMgVRYe9MlAV1MyHDFgNF8ul11hjDedD5V+ehkS10fPOO8/5cNqOSz5x+h67kGO5nZmfBmTfIYccEuyHH37Y+Xjd2HFh52EzP83PpNSmO3bsWNawF6txVq9ePdjFqEvjd0dVYTP/3bFk3czs9NNPj24TyyIPPfTQ6HpYds/Ktzj+sFO0mQ+RLV26NLp9nmLF8l0ukUd4ynqPPfZIlmOvDLFwEEoLpJS3OVSJMg4c8mjYsGGwues6hg9S0+uoOJupjWfg+Emp1jIo08DPGgwZ1alTx/nw/uNjxmVWQ7/rrrsqlGGXEwx1zZs3z/leeeWVYON5YFIhfg4t4PdNlQ9fe+21weawK94f2D3czId7WL4Cnz033nij82H4kUvka9SoEWwe01heztd59uzZFaRLSsHJJ59sZmaNGjWqsL8MVvi/++67g83jH8OKHHbFcFPbtm2dj9MbEJQ0aN++fXQ9ZOzYsW4Zy+DPOOMM58P3hffff9/5METL1wQVujnVYWXRzI8QQgghcoVefoQQQgiRK4oOe2XVAFhRZWa2cOHC6Gd4+hkZOHBg1IcVNSmlU572xKlhDHtlTVkzsEKBFZRZpRRp3rx51Ifw1B82X+Npd4SnhrEaoxy0atWqSp/jKWIMf7DCM44BbjaI1Tw43WtmNmjQoGCvuuryd3WuGsHp3qyRYGXwWClUZZhBxWqeJk5d28mTJ5dFRdZsuTI4N2xMheWwWSBWhZlVrPxB8H5PhQpSIRac6udQCYIVm2ZepZsr9FKVbUjv3r2jx8UhI6xWYmXccePGle16rggO02KoPgU2zWS4SgebF3N6QazKj0M4eB2wKtPMqwJz89xC700OJ2HlMZPaJm+nVGTj4+OPP3Z/x/QGHuNYhYnPQDOvbs1hL1T25t+RVJPSgw46KNhYfcUq/q1btw42Vkub+ZQCTm3A0BY/Z1LXhKtAY6SeMzE08yOEEEKIXKGXHyGEEELkCr38CCGEECJXFJ3zw2qrxcKx/f322y/YHPfkkm8Ey4WxW7qZz/PZddddg80xaoxZsiopltlzLB3zDDgv4vjjjw82K8wi2GHXzOdlpMpUf0twiTOWlHOpO8bhWTUac6g4VwjVW1Nx3Pnz5wf7888/j66XUi/luPHcuXODjbkxZukcNCyv5e/TpUsXp2pbSjIVdM75QThOP2LEiOi6H3zwQbA5Tv/iiy8GO5VTxMq1eI7xc9jZ2cyXJKM68YpI5flgzh3mmpj5fAhWk+/Tp0+wMTci21+qhHhlSeUyFFNij2XCXM6Ois/ffvttdH+Fgh3kzbxSOj/Tsdwb72EzXx6NncbNfC4SHyN2iudcTsylGTp0qPNhuX4pye6xTz/91P0dc3JS57l///5R35IlS9wy5ge1a9fO+XbaaacVH6yZ7bnnnsHmHC3s/s45RJhTy2rxKGPA5x3vLwZ/R/j7zJgxI9icL8Z5UpWhmR8hhBBC5Aq9/AghhBAiV5Rs/v2pp54KNqrGmvkp8lRJPE+5IlzuXbt27WBfccUVzhcLO+BxmKWnGrFcmqfu99577+jnunbtGvXhd8fGjan1zMzWW2+96LqlgMNQKGPAKp44ndmvXz/nw/Ajq1ujynDjxo2d74knngg2K0rjNUIlalTnNvNhyzvuuMNi4L7M/HXm8XDRRRcFmxXGsdktK5Zyc1Zk5MiRZSuN5saQlcGNVTEUhMreZn5aO3WvpJTMjznmGOerV69esFHK4vrrr3frTZs2LdjYmNbMl/pySAzDRBwSwFAzXluziuHAQunZs2dSGbyqZGrdeB7MvNJx6lnDcKgL4WatCCqgs8QHpxtkcKgO5St4jKEsCavYH3vsscFOPRcYDOPxb9Gll14a7HKFuZgsjIpj38yHzjHUZOa/Xyr0yV0RMFT/ySefON/w4cODzbIv+BvAZeoIKrtzWgeGVvm3AVNHMsXrDPx+2ODbzDdF57AXKsRz0/Ls2ZLqCqCZHyGEEELkCr38CCGEECJX6OVHCCGEELmiyjk/9evXd8tYxocS28wRRxzhlmfNmhVsju1jN/W6des633PPPRdszFswi7cXuPXWW90y5iNw2SjGVbnUEHN++vbt63yXX355sL/88kvnw/wE7i7+2muvBZtj6/Xr10/GLleWlNQ/ypmvCMyD4VJwLGvGa2fm82k233zz6Pax3JVj/tiOBM+lmY8pc57CpEmTgs1tGk444YToscycOTPq+/nnn4ONUg5m6TYOK0uWz4N5FGb+fPP1xLHN5aGnnHJKsO+//37nw271nEeFcgJHHnmk82H3dszbSpWzc5sYzC/kcXDfffcFm/NLUnkiWMLLHebx+/A21l9/fVc+XSoyWY5Fixa5v6PEB+fI7LXXXtHt4T2QOg+LFy92y3jd+RmM99IDDzwQbC5nx5xMHn9Yss5gLhl2l18RKGOAOT5mhXemLyWZjAOXY2POG+cUYl5b6nphHqSZz9HiFkB4f7OsAIK5cnwPpeRbsP0J59ficaauAZbEm1V87sRgKY5C7knN/AghhBAiV+jlRwghhBC5osphL1TmZDh8NXHixGCfdtppzoel6Pvss4/z4VRqauqPw1w4rYbKsSeddJJbL7VNnPrjLuE4fYhhLobLM1nFFsHu9lzeyuel1PB5wFJtnnbHUB4qqZr5MBFPQ+IUOZd6YydpDhPhsV122WXB5hAmHsvo0aMtBn9XLIvn6XosmcWu9GYVy1Zjx1LOMBcTk0/gcYiklFBxyjlVbluMCnCshJe3gfISGNI0S59TfC7xlDmG5hs0aBA9LpTKMPNK15Wdh3J2da9Zs6ZbxvAPSwygVAir5eN9xaXMqMzO5xpDVpxegGCol88HlmOfe+65zofhHnwGmlVUR4/B36dt27bB5nGFy9xlfZNNNinLtcyeFaj+b+Z/O1h6gdMpYrB0BXYx4G1sv/32wWZZGSyDx1A4bwPVup9//nnnw9+pCy+80Pnw2vI1wVDXqqsWPh+D6t333HOP82X7SF1PzfwIIYQQIlfo5UcIIYQQuUIvP0IIIYTIFVXO+eEcCOykzR3LsXN0JtuekSqdS4Ex+3nz5jkf5qxgHgTnRGDHdy7NwxI/lsnHvJdUPgWDsegJEyY4H5bXYgze7Ne4fznzChhs1/D0009H10uVgqdyRDAubeblDjgejGXajz/+eLA5zs/5XAh2n+c2Btg1ntuKFJrLwt/13XffTa5bri7gWU4Ul7Hi/cetWjDfiq8L36tIhw4dgt25c2fnGzNmTLCxtQGz/vrrR314XMuWLXM+zF/Bsnez9DXD5wSX4Mda4pj5Zw1vv9xd3YvJp8IcSWyDYea7YzPYAoLzNTHnL3UsmE/Fne8fffTR6Oc4zwdBiQGWU8BtYr6Kmdkvv/wSbOz8beZbInCZeKotzcqQ5fOwNAG2CqpsXGVwLiK2errhhhui++U8GISfg/vvv3+lNj/bmjVrFmyWLcDfA86pw5zP1G9DCpYiSX2/bP/YVoPRzI8QQgghcoVefoQQQgiRK0rW1b1GjRrB5ilXnHbnqXUkNR3Gisgc6kKmT58ebAxtYXjFrGJn8Bgc4is01MXTdNhlF1VIzXzn9qFDhzrfgQceWND+SgWGTXAK1Mxs2LBhwWZV3lGjRgU7NY3LIUZUf+YQB6pwz5kzZ0WHbmYVzzsu33LLLc6HY5VlC1ApmZVHUak89V15f+Usjc5CCHw82A0Zw0kM3x/vvfdesCtTNs548MEHnQ9LsFP3NIaPMWxi5hXkufwVS905fIVl6RwaxfBcasqcw5+oGM6yE+UudWfwfHIpf/v27YOdCuFwOPORRx4JNj47zXyYKHUsCF8TDF9xGALDltwZIBUO4Q7fCI6XDTbYwPkKVbouB6zAnTqW1LGh/AFfZ5R6QPkBMy8/wuEyVPbG3yZUmjbz933Pnj2dr0+fPsHG7u8Mq4ij3Mixxx4b/RymL5iZPfbYY8Hm38js/UCl7kIIIYQQ/0UvP0IIIYTIFXr5EUIIIUSuKDrnJ8uDYHl/jP9VNZaa+lyTJk0K3g6Wrb7++uvBXrp0qVsPy/2423eqdDoFxrQxlm4Wl/bndTF2+v9BKl8AO2xjDpOZz+1ieXP87hyHxXW5pJXLQzO4QzLmH6XyWjBObOalFji+neowv2DBgqjvf51LsKL9ct5RDM7vwBwrHq94rlDCwczn63B8H+XxsQz+pZdecusdeuih0eNM5UpgngOX2xYKf59+/fpF91euUvcsP4THMt4f/IzCfIy3337b+fCe4/zJt956K9ipjtt77723W8Z2PZhnw7kmWB698847Ox+2t+DWNr169Qr2ySef7HzY3R67iZuZbbHFFsEuJpeGZRNKDZbgm/nfJmwjYmZ25plnFrTNVD5otWr+5x1zZn766Sfnw/HSsmXLYHM7qrXXXjvY2P7HzOf57LDDDs6H+Xbdu3d3PszzQekRM7OmTZsGG/MszSrKMiDZ+wJLeyCa+RFCCCFErtDLjxBCCCFyRdFhr6yLLCrvrggsX+ay1YMPPjjYHCZKgV2LuUMtdv/G8Bx38cV98xQhqqXiNKqZD8Xw9CROEz788MPR4+fp14ceeii6LpbalgMsOTbzpfx8zho1ahRsli3A6WcOe2GZJ099Y4iDp7exbBpLNXnqHhWyeQqZl5GNN9442KlSelZtbty4cXRdHDsdO3Z0vmuvvTb6uVLBEg4oF8BgN2k+pylQQoLH58iRI4PN4fG5c+dWur1UmItZffXVoz68j1mmAeFxjeXDKTVkDgsdfvjh0XVXhiysy8+eKVOmBJuV57lMHcFwPCsi49jm59Jhhx0WbA5BY1dvTilAMFTO479OnTrRzyFcJo7HwuM9Fdrabrvtgs2hwQMOOMA9D0pFNmb4uFBJnFXF8dgwxMfgb5iZD9VzODD17MFQV+/evYPNCu34HbirO4LyBsxVV13lljE0hZ3azXwoMhXmiklqqNRdCCGEEOK/6OVHCCGEELlCLz9CCCGEyBVVbm/BHV1/+OGHYHP8DeN2XJqXyvNJlbRing/vb7fddgs2xk6xFNvMS9xz52GMkXN+R6rMGcs1+ZgxP4ilwbGT+9Zbb+187733nt18883RfVaVrLz/0ksvdX/H4+ayd/RxqTuCMWQzsy+++CLYHA/GMcDdhv/1r38FG8ursbOxmW+xgG0pzHw7DZa7L7QsnfMpcEzw+ON8EuS0006rUOpZajjHJ9USAVuLpMqc+/bt65axNJ3bGTz99NPB/uabbwo44opg3gHnCLz66qvBTuWrcZsK7ESPx1gMLJVQqIxAsXTp0sXMKh4n3lc8drlEH8HnG5eU4/3BbSOwFQZfZ8xHws7jl1xySfQ4uI1JoTk/KEnB4HU1888JLP83M5s2bVqwL7jgAucbMGBAWVqVcFl5IeCzlXN+Uu0gMKcudT/z2MEycpRaufLKK6Pb4PZGCOewYu4Y5wFiWTwf18yZM6P7wDwp/lx2XjA3mNHMjxBCCCFyhV5+hBBCCJErig57ZWVprDw6adKkYLP67vfffx9s7oqM3bJ5mo7DPzFY6TQ2Fc1T92eddVawUXnWzOzcc88Ndq1atZwPS7x32mkn50uFUbD8m6fjcDoWu2mb/VqGe/zxx0e3W1Wy6elx48ZV6fMYmjDz6pyvvPKK8+HUNF8HLJvm84djAEOr3JUYy9Q33HBD5+Mu8giWf3K5KcIdwvH78NRwqlyWpR5KSXYOeP8tWrQI9kEHHeR8eOzFKFOPGjUq2NwhHe93HiOdOnWq9Lh433hcfH7xOTFx4kTnQxVivL/NfAhp2LBhzofl2CipYGb2/vvvB5s7Sx9wwAFlCZVkpdwsAYDfic/LcccdF+xY6W9lYLn+iSee6HxY9n/fffc5Hypbc/l8jFatWrllHCsM3u+o2s+w+j+H1hAME6XCQqUkC8MPHTrU/T11TVIhTLzOHPZCyYHbb789+rnU+MAwFKco4G8hhjp5m/zdUK2bZVAw7YFL97fccsvoNlNjIgsNqtRdCCGEEOK/6OVHCCGEELlCLz9CCCGEyBVF5/zEOmZjiSRLYmMZcgosuzXzMvmDBg1yvv79+we70HgzU2iOA8v+z5s3L9hYdrsisPUFnxMsZ6wsHluOvIKsKzPnoWDMlyUAsPSdO/CmwO+LORRmFcuHEYwB33jjjcFOXTvMITLzeRrYLsPM7PTTTw92Kg7OZZ233nprsFOdg3mbnB9TSrLcJs752XfffYO9xhprOF8md1AZeE9jN3EzX3rMuVL4jEiVyg4ePDjqw/PGZbN4XbCDvJkvv07J77N0BLYk+eCDD6Kf43YWF198cXTdlSGT6xg7dmx0ndR4ZXkAzMHDXBozn695/vnnO19qbMfKkLk9CLaz4RwfbD3DrYIwH5TlOPr16xdslh7BbvNcdo+SGxMmTHA+bhdSKi6//HL3b7Fwax28zjwGsPULl9hjzk+qlU2qNQXm6XHOT4odd9wx2NwNHp/x/8vnpWZ+hBBCCJEr9PIjhBBCiFxRdNgrmxqsXr26+zuGQG677baCt4dTj1ySnCqdQ6VTLqvGqVQsb61qSTeXUqK6NE+5po55zJgxla5nZvbcc88Fm+UAykUWDsEyXzNf/s0Kz8jAgQPdMk6ZY1jIzFypPpcSDxkyJNhNmzZ1PpwKT00bL1q0KNgpiYRUmJKvV48ePYKNCqhmvvQdw4QMlmqa/aqSi2GGUpKdHz7WTTfd1O0fwU7JHAbAUNdaa63lfDVq1Ag2T69jSGy99dZzvtmzZwcblbhZyRhD4KywnrrHEFZ4xmPma4BKwChlwbBCdqxL/coSC9l9/vnnwcZnhpk/h6+//rrz4T1Xu3Zt58OwFPPkk08GO6XoW+j2MJXBzKczcNgL4Q7lCKu2Y6irmHJ2/k0rFZl0CaZLmHlV/2XLljkfpiJss802zodjnsc/hvXHjx8fPSYMKaYYPXq0W8YwM0vAoLI2U61a/FUjJXWCEjT87EI4LaSQVBjN/AghhBAiV+jlRwghhBC5Qi8/QgghhMgVRef8bLvttmbm2zGYVcwzQM4555xgc3lrSsY7Fc/HPB+UzjbzZZ6pODKCXarNfFyccw4GDBgQ7Krmb6S+23XXXVelbRZLFmfm756K2SNcFotwy5EUI0aMCDaXYiNTp04NNsq4my3vgm1m1rNnT+crNEeEueaaa4LNXepx/Hft2tX5sHUCl/Ufc8wxFfJgSkVWDszxboyH43ky8+eG700ch5xXx52mY9vk841lyFgGz1IWqZYkmDfEzJo1K9iY62Tmcy44r6dBgwbBxk7mDOdfzJgxI7puKcD8QjOfh8al5lOmTAk2n3csbeacH8z1Wrx4sfNlJfdmZvPnz3c+zHVLtZRIjQcsvz7qqKOcD58hKHPBcOuZ1q1bB5vHKf9uIW3btnVSCaWiWbNmZuafJ2Y+52e11VZzvlRez0UXXRTs8847L7pfHA9mvhUTS1fwMyyDZUOw/UkqzwZ/883SshZ4r/MYQ9mcVNsZ/E0uFM38CCGEECJXrFLo/4S7detW+H+ZRdkYPnz4Snfj07X8bVCKa2mm6/lbQffm7wddy98XlV1PzfwIIYQQIlcUPPMjhBBCCPF7QDM/QgghhMgVevkRQgghRK7Qy48QQgghcoVefoQQQgiRK/TyI4QQQohcoZcfIYQQQuQKvfwIIYQQIlfo5UcIIYQQuUIvP0IIIYTIFf8HQ71t6zqe07sAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 720x169.2 with 5 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Real images (clean_test) :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAByCAYAAAC89bCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAOFUlEQVR4nO3de2xURRvH8QNCi6VYhAreITbgBYlSvBBApZgAUUK4KEhVgnIRGgwRoxELAm25qFTSUBtspIYQlcZEIoGiRCNFDCihFeMloiKo4aISQahIgfT9w/d93nnGnnXp7tndnvl+/vpN5uzZSQ5bJjNzZto0NTV5AAAArmib7AYAAAAkEp0fAADgFDo/AADAKXR+AACAU+j8AAAAp7SL9sKCggJeC0sBFRUVbWK9B88yNcTjWXoezzNV8NsMD55luDT3PBn5AQAATol65Od/KioqgmgH/kVBQUHc78mzTI4gnqXn8TyThd9mePAswyXS82TkBwAAOIXODwAAcAqdHwAA4BQ6PwAAwCl0fgAAgFPo/AAAAKfQ+QEAAE6h8wMAAJxC5wcAADiFzg8AAHAKnR8AAOAUOj8AAMApdH4AAIBT6PwAAACntEt2AxKptrZWlUeNGiV58+bNqm7gwIEJaRMiO336tOSXXnpJ8tatW9V1W7ZskdyvXz9VV1hYKHncuHFxbiFSSU1NjeR7771X1U2bNk1yZWVlwtoEtFZ1dXWqXF1dLXnlypWq7pZbbpE8bNgwVffUU09JTk9Pj2cTW4yRHwAA4BQ6PwAAwCl0fgAAgFOcWvNTVFSkyn/88YfkMWPGqLpPP/1Uco8ePYJtmOPMdRovvPCCqjPnnE+ePCm5qalJXdemTRvJn332marLz8+XvGPHDlWXm5t7/g1Gyti+fbsqjx8/XrL5b8LzPO/AgQMJaVNYbdy4UZU3bNgg+dVXX43qHnfeeacql5SUSB48eHAMrUO8mGt5Fi9erOqOHDkiuWfPnqruiy++kPzRRx+pui+//FLy6tWrVV1GRkaL2xoLRn4AAIBT6PwAAACnhH7aq7y8XPLHH3/se92vv/6qyidOnAisTS46dOiQZHvYc8mSJZL/+uuvuH/3mTNnJJ87dy7u90fy2FsenDp1SvL06dNV3YIFCxLRpFbN/rs3f/58yfbvtqGhQbI9xehn27Ztqjx27FjJq1atUnXmVgWp8np0WDQ2Nqry+++/L9n8e2xuNeJ5nvfKK69InjRpkqr77rvvJNv/186YMUPy8OHDVd3kyZOjbHV8MfIDAACcQucHAAA4hc4PAABwSujX/Kxfv16yPc9pysnJUeXu3bsH1iYXlJWVqbJ5NMVPP/3k+7kOHTqo8ogRI5q9zpyX9jzPu/XWWyWbaxEQPjNnzpS8du1a3+uKi4tV+ZJLLgmsTWHx9ttvq7J9hIGf7OxsyXl5eb7X/fnnn6q8adMmyffff7+qmzp1qmRzrQli9/LLL6vynDlzmr3OPALK8/65js504403Sr7ooot8r7P/bzC3mcnKyvL9XLwx8gMAAJxC5wcAADgl9NNe0bJ3q2SIPDZt2+p+daSprptuukny9ddfr+reeOONZj+zf/9+VbZ3fEZ4/PLLL6psvt5+zTXXqDrz1Wx+w9E5ePCg5FmzZkX9uZEjR0o2d3ju1q2b72feeecdVTanvWzmPZn2it2ePXskL126NKrP1NbWqrK5y7f5/M+HvQP/3r17JZvLF4LGyA8AAHAKnR8AAOAUOj8AAMAprPn5L/M0aMTugQceUOU+ffr4Xtu3b1/JkdZpmOuG7NPf7Vdo/dpy7bXX+l6H1PT999+r8jfffCPZPk3cfl0a/2758uWSI20T8cQTT6hyaWmp5KNHj0q21/fV1dVJHj16tKqLdCxGp06dfOtw/hYuXCjZPs7JVFVVJXnnzp2qzvxb+sMPP6i61rbGjpEfAADgFDo/AADAKaGc9jKHxXfs2OF7nTnkesUVVwTaJtfYQ6BDhw5t0X3MU9hLSkokV1ZWquvMZzlkyBBVZ74my1B662CeEG2fHm3uHnvHHXckrE1hVV9fLznSNFRNTY0qm9Nbn3zyieSff/7Z9x72/SN9X6TdhPHv7Ckr8/llZmaqOvNU9/79+0t++OGH1XU33HCD5AsvvDAu7UwWRn4AAIBT6PwAAACn0PkBAABOCeWan44dO0ru0qWLZHMbd8/TR1rcc889gbcL/84+tuLZZ5+VvG7duqjuYb9qW1FRIdl+XTctLe08W4ggRHru+/btU3XmGq5evXoF2i4XTJgwQfK2bdt8rzOPIfA8vbYy0tqd3r17S7aPofn222+jbifOj719S2Njo2R7S4jbb789qnvOnj075nalp6ercvv27WO+Z0sw8gMAAJxC5wcAADgllNNeu3fvlmxPdSH5zNfXPU9PY6xcuVLVmUPr0bJ3BJ47d67kAQMGqLpBgwZJbtculD+HlGVOZ40YMULVma+6jxkzRtWZ0zSInblrb1lZmaqzp7r8mCd8z58/X9WZU5OLFi1Sdfb3ITbHjx+XfObMGVV36aWXSjanlRNt4MCBqnzzzTcnpR2M/AAAAKfQ+QEAAE4J5Tj/xo0bk90ERGBOS3qe582aNSvme5rTJu+++67vdXl5ear89NNPS162bFnM7UD0HnroIcn2VKX59uXrr7+u6jp06BBswxzTuXNnyV9//bWqe/PNNyVffvnlqu6uu+6K6v61tbWSV6xYoeoivSXG7t3nz1xCcPjwYVX33HPPSTZ3ak60++67L2nfbWLkBwAAOIXODwAAcAqdHwAA4JRQrvkx2TuKmqKds0Z8ma+ee17kZ2TuBmqu5bFPbjetWbNGlSdPnux77Ycffuhbh9jZr9sWFhZKNk+dNndl9zzW7aWKiRMnxnyPuro6yZFOdc/OzlZ19rYU+Cf75PaioiLfa3NycgJty9mzZyUvXrw4ae2IFiM/AADAKXR+AACAU0I/7RXpVUp7mBWJYe/waU49jRs3TtW99tprkjMzM6O6f35+vipv3bpVsj0lZg7J21Mt5q61aJmvvvpKlUtLSyWbv03zNVyES3V1dVTXPfbYY6rcrVu3IJoTKseOHVPlhoYGydddd52qC3pndHN3/srKSlV38cUXS7a3TEgWRn4AAIBT6PwAAACn0PkBAABOCeWanwcffFDy6tWrfa/LyMhIRHNgsU99njlzpmRzq33Pa9kzat++vSqPGjVKsr3mxzxh3nxVEy13+vRpyeXl5b7XTZ06VfLs2bMDbRMSZ/To0apcX1/ve625/mPKlClBNSm0du3a5Vv3zDPPqLK5bUgQtmzZ4ltnHmnRt2/fQNsRLUZ+AACAU+j8AAAAp4Ry2qtr165RXdelS5eAW4LmpKWlqXKqvPqI+CgrK5NcVVWl6sxnPW/ePMn2vwmkPnOauKSkRPKGDRt8P3PBBReo8vTp0yX36NEjjq1zQ6Qd6ocOHRrod5tbiHienva6+uqrVd2qVasCbUtLMPIDAACcQucHAAA4hc4PAABwSijX/JivR2dlZUk+fvx4MpqDBDt06JAqv/jii77Xmv8+OO4kPjZv3izZPqJgwYIFkq+66qqEtQnxZx4NU1xcLDnSkUL9+/dXZXvbC6Q2c12PvaVBU1OT5LFjx6q6tm1Tb5wl9VoEAAAQIDo/AADAKaGc9srJyZGcm5sr2X4tcN26dZLZYTY87F29d+7c6XutefLx4MGDA2tTmC1atEiVzVdgBw0apOrMXZ3Ruuzdu1eV7WkPP71795a8fv36eDbJSQcPHpR84MCBQL9r9+7dqjx+/HjJp06dUnUTJ06UvGLFikDbFQ+M/AAAAKfQ+QEAAE6h8wMAAJwSyjU/pttuu02yvebnyJEjiW6OsxoaGiT/+OOPqu7KK6+U3KlTp6ju99tvv6myuaX+kiVLfD/XsWNHVZ42bVpU3wfNXLthbyXQq1cvyWvXrk1YmxCsTZs2qfLhw4clR3q93Xyd/bLLLot/wxxjHhFjHwmyb9++mO9fU1MjubCwUNWZ28XYayTttX+pjpEfAADgFDo/AADAKaGf9ho2bJhk+/U7c+rkgw8+UHV33313sA1zzJNPPim5srJS1Q0ZMkRytLv+fv7556q8Z8+eqD5XWlqqyo8++mhUn3Od/crrI488ItnexdncBbZnz56BtgvBKisrk7xw4UJVZ+7oayovL1fl/Pz8uLcLf5s0aZIqm0s7zOkrz/O8KVOmSD579qyqKygokGxOaR87dkxdN3z4cMnmVjGe53mdO3eOrtEpgpEfAADgFDo/AADAKXR+AACAU0K/5icvL0/y448/ruqWL18uedmyZaqONT/xVV9f71tnHocQLXu9gfmqbVpamqqbO3eu5Gi35Id29OhRVT5x4oTk7du3qzrW+YRHdXW15JMnT6o68zdnrtubMGFC4O3C38zjJjzP89577z3JM2bMUHXPP/+8ZPvv5/79+5u9/5w5c1R56dKlku2/s60NIz8AAMApdH4AAIBTQj/tZZo3b54qm0P59mt75gnG5qnEaBnzFcldu3bF/f7ma7i5ubmqbuTIkXH/Pvyf/ao7Wi97evP333/3vbZ79+6S33rrLcldu3aNf8PQrIyMDFVes2aN5D59+qi64uJiyY2NjaouOztbsvmKfL9+/dR17dqFp8vAyA8AAHAKnR8AAOAUOj8AAMAp4ZnAi0JWVpYqV1VVNZsRf0VFRc1mtA7mMTGe53nnzp1LUksQpMzMzIhl04ABAySzzic1mK+f22tc7bLrGPkBAABOofMDAACc4tS0FwDAX3p6uioHsS0FkAoY+QEAAE6h8wMAAJxC5wcAADiFzg8AAHAKnR8AAOCU837bq6CgIIh2IAl4luHC8wwPnmV48CxTEyM/AADAKW2ampqS3QYAAICEYeQHAAA4hc4PAABwCp0fAADgFDo/AADAKXR+AACAU+j8AAAAp9D5AQAATqHzAwAAnELnBwAAOOU/oHKSE+WzKJgAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 720x169.2 with 5 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "imgs=[]\n",
-    "for epoch in range(0,epochs,2):\n",
-    "    for i in range(5):\n",
-    "        filename = run_dir + '/images/image-{epoch:03d}-{i:02d}.jpg'.format(epoch=epoch, i=i)\n",
-    "        img      = io.imread(filename)\n",
-    "        imgs.append(img)      \n",
-    "\n",
-    "pwk.subtitle('Real images (clean_test) :')\n",
-    "pwk.plot_images(clean_test[:5], None, indices='all', columns=5, x_size=2,y_size=2, interpolation=None, save_as='02-original-real')\n",
-    "\n",
-    "pwk.subtitle('Noisy images (noisy_test) :')\n",
-    "pwk.plot_images(noisy_test[:5], None, indices='all', columns=5, x_size=2,y_size=2, interpolation=None, save_as='03-original-noisy')\n",
-    "\n",
-    "pwk.subtitle('Evolution during the training period (denoised_test) :')\n",
-    "pwk.plot_images(imgs, None, indices='all', columns=5, x_size=2,y_size=2, interpolation=None, y_padding=0.1, save_as='04-learning')\n",
-    "\n",
-    "pwk.subtitle('Noisy images (noisy_test) :')\n",
-    "pwk.plot_images(noisy_test[:5], None, indices='all', columns=5, x_size=2,y_size=2, interpolation=None, save_as=None)\n",
-    "\n",
-    "pwk.subtitle('Real images (clean_test) :')\n",
-    "pwk.plot_images(clean_test[:5], None, indices='all', columns=5, x_size=2,y_size=2, interpolation=None, save_as=None)\n"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 7 - Evaluation\n",
-    "**Note :** We will use the following data:\\\n",
-    "`clean_train`, `clean_test` for noiseless images \\\n",
-    "`noisy_train`, `noisy_test` for noisy images\\\n",
-    "`denoised_test` for denoised images at the output of the model\n",
-    " \n",
-    "### 7.1 - Reload our best model"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 12,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:26:09.036267Z",
-     "iopub.status.busy": "2021-03-14T21:26:09.035795Z",
-     "iopub.status.idle": "2021-03-14T21:26:09.228559Z",
-     "shell.execute_reply": "2021-03-14T21:26:09.229049Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "model = keras.models.load_model(f'{run_dir}/models/best_model.h5')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 7.2 - Let's make a prediction"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 13,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:26:09.232389Z",
-     "iopub.status.busy": "2021-03-14T21:26:09.231908Z",
-     "iopub.status.idle": "2021-03-14T21:26:10.008249Z",
-     "shell.execute_reply": "2021-03-14T21:26:10.008743Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Denoised images   (denoised_test) shape :  (14000, 28, 28, 1)\n"
-     ]
-    }
-   ],
-   "source": [
-    "denoised_test = model.predict(noisy_test)\n",
-    "\n",
-    "print('Denoised images   (denoised_test) shape : ',denoised_test.shape)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 7.3 - Denoised images "
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 14,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:26:10.014156Z",
-     "iopub.status.busy": "2021-03-14T21:26:10.013680Z",
-     "iopub.status.idle": "2021-03-14T21:26:11.860929Z",
-     "shell.execute_reply": "2021-03-14T21:26:11.861428Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Noisy test images (input):**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE2/figs/AE2-05-test-noisy</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA44AAABwCAYAAABRhy5gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABEH0lEQVR4nO29ZbxcRdbFvWZwH0JwHYIzBBjcgwcyuD64DC6BB9cAA4MFmWAhBB3cgoUJwX1wCA7BggV3Z3jeL29V1l63q9L3ppt5f7zr/2n3rerTp49UVd+z1t6/+7//+z8YY4wxxhhjjDElfv/f3gFjjDHGGGOMMf/fxj8cjTHGGGOMMcZU8Q9HY4wxxhhjjDFV/MPRGGOMMcYYY0yV8ZvtuPvuuzuLzn+Zs88++3fjug2fx/8+Po+/DXwefxv4PP428Hn8beDz+NvA5/G3QaPz6CeOxhhjjDHGGGOqNP3EMfHCCy8AAH7/+/ib86677mrq/RtuuGGOtRTIkCFDOrs7Hfj0009z3K1bt6bes+KKK4bXp512Wo4POOCAHM8wwwyh3+WXX97p/bvwwgvD6+23336s79l99907/Tlj4+yzz2749++//z7HE088cVPbeumll8Lr+eabr9h3wgknzPGPP/6Y419++SX04+vrzDPPzPGee+4Z+vE+XnvttaHtm2++yfHvfjfmnyabbrppcf+4HxCv0bfeeivHs88+e+h3+umn53ifffZpuO12nsfXX389/H3OOecsvmfttdfO8a233lrsx8eiV69eoe3uu+9u2O/tt98O/WadddYcf/XVVzm+4YYbQr+tttqquB/HH398jg855JAcv/jii6Hf/PPPX9xGiT/+8Y/hNW/z3XffDW3/+c9/AMRz3SpK92OzLLLIIjl++umnm37fI488kuOllloqx1NPPXXoN3z48BwvscQSxe298847OZ5llllCW+ke+eKLL0K/qaaaqr7T/y99+/bN8T/+8Y/Qdvvtt+d49dVXD23petJrtRWk83jSSSeFv/O9P/nkkxffP9FEE+WYjyUATDvttMX3PfTQQzledtllm9rXV199Ncdzzz13U+9pFTxm8Bir8yHPlyNHjgxtc801F4Bfd36sUfpOOsbwOb7jjjtCm94zzTB48OAcb7vttqFtggkmyPHPP/9cbOP91X1abbXVcqzzBc8lNdZdd90c33TTTQ37tOM8pntB55dVV101x7r+4zUKzzeXXHJJ6Lfwwgs3jAFgiy22yDGvE6+//vrQj9fDzHfffRdeTzLJJA37KTy2fP3116Htf//3f3OsazY+r6XrGAAeffTRHG+22Wah7c033wQA7Lbbbk3ta2dI92NtfVZD38fcf//9OV5++eVD28orr5xjXvPUOOKII3J87LHHhrbnn38+x++//35o4/m3NkfUzg/v/wMPPNDw79qm9OzZs+F7GD9xNMYYY4wxxhhTpdNPHO+55x4AwKhRo8LfX3755RzPO++8oe29997L8fnnn5/j2hNB/Q/BDjvskOM//OEPOeZf8ABw+OGH57j2i5m57777im38JPWiiy4q9rvyyivDa/5v8f7775/j2hNG/U8c/5eu1aQnVPrfUH6CN2jQoNDG/3G54oorcsxPLYD6E8ePP/44x3yO119//dCPnz7rU0aGn5AqP/30U4716VGJe++9t9imTxmZfffdN8f6ZDodx9px6SrLLLMMAODhhx9u+j3/+te/Gv5d/6PG30Pbfvjhhxzzf730KckzzzyTY/4vmv6nuvZfNP4vPD+d0ieMvI299947tB199NE55vFj6NChoR9f1zzmNNqvVpL2XT9j2LBhOV566aVDGx8Lfsp41VVXhX76n2GG/8vJfPjhh+E1P52oscEGG+T4scceC22lJ/FrrrlmeP3vf/87x0cddVRo49f85EafkPIxUCVCeorQjicciYMOOii85nMwxRRThDY+53xfrbLKKqFfTdXD/9l+8MEHczxgwIDQj59IsQJg9OjRoR8/GeEn/kA8tnwff/7558X9U0qKCL3G+UmqPjXia63VTD/99ACi+giIT5Ka5Y033giveR5hRQYQx0t+iqUqAm7jJ2a6HmIlQnqSkCiNZ/yEUdlvv/3C69ITR12/sRLs16SkZLnzzjtzvN1224U2Xuelp2hAHJcAYKaZZip+bmm85CedALDJJpvk+Jprrslxs08YgXjf8VPGCy64IPTjeZ/nQCA+JeTr4n/+539Cvy233DLHK6ywQmhL1x6vd1tNTQX37LPPhtcLLbRQjpudu3VNoaqmhF7fvP7jeU/XTQsssEDDGGh+/Kx9F36SyGsxVQrwejGtIROvvPIKAD9xNMYYY4wxxhgzDviHozHGGGOMMcaYKv7haIwxxhhjjDGmSqc9jieffDIAYMkllwx/X2mllYrvKWnBVavLfgJtK2lyVWfdrK+xRsqeCMTsj+p/Y2385ptvPs6fq57GpKNuR5aqWtbNBGfhAqJ+njXeSROd4Kxkesz43PE5fu6558a6P51l0UUXzTFnGuS/A/H4aoY1zsjImRo/+uij0G+ttdbKsV4L0003HYCOXqtWkDK2aZY09gbtuOOOoU0ztiU0Cxtr9dVbwN5S9tuwRweI/lT2DLInAIjeNfW1sSeMM27WMqypJ4g9Hfw+9YGwB7krGQ5bDV9XmsWZ/SfsqTvxxBNDP87wOeWUU4a2XXfdNcfsqav56TgDsmbX3muvvYrv43GCffDqTeFsy3otMGkuAjrOF7XrqZ18++23ADp6qziTs+4r+wvZV6znIG0bACaddNLQts466+S4lCERiD43vmY0kybvY80L2qwvR32sPC+w97WWsVgzRzezf13lgw8+GGsfzUxY8kMpnJ1bs7fy+al5mfhYzDPPPDnW8z3++GOWeDyWdAYed/Q78uf985//zHE7/eCdIXl/OfcFAPTr1y/HBx54YGhj71mqIgAA55xzTuh3xhln5JizrwJA7969c1zKsAqUM8zWMk2r9/m6667LMXvT1cfI5059bbzO5etTjw3vv+YG0TGpHeh+c2Zo9jQq7IfW6g2cLVevb/4tMN544+W4dn3zOkr97IxmJ+fjl3LJAB3vac70qnMbr19r6xdeD+t3SWu72rjqJ47GGGOMMcYYY6r4h6MxxhhjjDHGmCqdlqoecMABAOoyMU2NzgUxOZ2zPiJl+Ro/LgdigWeW/C244ILFfeX90M+aZpppcqyyIi4Tstxyy+WYixGPjZtvvjnHLCPqDKlA9d///vcuvb8ZaueRU3k36ptQicJnn32WY03tzZJjLuHypz/9qbiPLIdS+QUzxxxzhNecSrtZjjnmmPCaZSGcUjzJT5vh4osvBgBMNtlknd6fsZHKqdQK3DYrG1KpNL+P5cdATNFfk3WxBIald1owmWUbmuKdZW5/+ctfGu6fvtYSMVwGqNnjobJLlQO3ktI+8d9POOGE0Mb7x7IplWVxqZvFF1+8uA8s09GSMizZqpVR2mabbXLMcjAglkRhCZDKXVmSqdcdX+d8v/fv3z/007IOvxZpjNBSRocddljxPXysWbKv0iuWx+uYW7Iz8HUBRJk+S++7Cl8LPO4D8dpVqSrLnWvy1FqZHi6d02rS5/bt2zf8nWWMO++8c1PbUkkrl6RSOdhss82W4xtvvDHHahvh88gltfQc8Pu0LMif//znHPO8qiUE+vTpk2OVLp511lk5Hjx4cI51TdWK+akrcMF6hm0TWmaLLUg87ul+1q7NnXbaKccqT2XS2gCIc6LKYlN5GADYY489QhtbSvg+qx1XLdPDZUHYdtarV6/QT1//WqRjzfMGEOWjWpKM5wA+x1oyjOcstSrVSvWVYBuYlnBhG4ba/UaMGNFwe3oeWfqs+8sWJZajailB3ibLoIFoXynhJ47GGGOMMcYYY6r4h6MxxhhjjDHGmCr+4WiMMcYYY4wxpkqnPY6Jmn5adfas8W5Wz66684033jjHrMfW7d1yyy3F/WDYI6A+SU6dvvfee+dY/UHscZhvvvlCG6embtbjqB4E9i60i59++qnYVvNmdO/evantqwab4ZT8CvsH2Geq+1TzGbBHhH1e2o99IKqTZ406p9zujC8j+Sa1TEIr6cz+sE+BPSu1bXz55ZfFNj4u6k+87LLLcrzqqqsWt8FpxNnjBgC33XZbjvn+1nPF3pRddtml+Fl8zXAqbgDYeuutc9zO86WkMibq/WQOPvjgpraVUtA3QkuxsPfh/fffb2r7fPzUS8q+Q/Y0KuprZNgLrNckp1W//vrrc8z+Y6Duw2wn6T65+uqrw9+57MKpp5461vcD9ftRvXFa1iEx0UQTlXe2SbR8Efu+2LPD5WGAWLJHPXrN8sknn+RY/a5p7mpHuarSsedrn78fEL34vKZQvx/fg/z9AGDUqFENP1d9h5zmn/32mg+Bz4mW4rnmmmtyPO200+Z41llnDf2GDh2aYy07weMx35u13AmKfrdWkspd8DULAD169Ci+h+dE/k5a+o2/E89RAHDeeec13LbmjWA/HM+BDz74YHGfeB0GxHwdjM6B5557bo61vFYpH4SW/uA8BVy6CojlkVrN888/D6DjvMHnQK85XkdwiSL1VPNr9TS+9tprOeZrRsvHcY4OLpex1FJLoYTub2lcLZVsATqWbeG1Mh8bXhuNbRsJl+MwxhhjjDHGGNNl/MPRGGOMMcYYY0yVTktVkzxT043X4PSxjEonWKZTkzrUHk9zmmWW5E0++eSh39NPP53jr7/+urDnUWqpj/dVqsI0K8355ptvcqzS1JLcoZWMP368BFgGzFIWIMpZmpVGcimWGlrqgNN8c/mVn3/+OfTjlOLDhg0Lbeutt16OVQbMsBxZZWTDhw/PMV9rLJMDoqRF5YCvvPJK8bNbBZd/AWJpDd2fe+65J8csxdDrjVOK6zYmmWSSHLPM5fHHHw/9WCrH29NSACxBPvLII0Mbl3ThchxaauD111/PMUuAgJjevHbtPvvsszlebLHFQltXUnM3S5Kocrp/IMpX7rzzztBWk/6W4PMGRJkfX/tcNgmI0ns+3yrJ5BTjWt5l//33zzHL+lQOVTs/et8ldI7h62TPPfcMbVpmpZWk61/Hf7YyqNx++eWXzzGnUJ9xxhlDP5YSa5kj5qijjmoYAzGdPaeyV3jufOqpp4r9mCS3Tuh8yfC91LNnzxxruSWWHGs5mpEjRza1X13hlFNOARDnPCCWDON5Q6lZKLi0mJb7KHHooYeG11999VXDz+LyDgCw7bbb5lhL7Ky11lo53nzzzXN85ZVXhn6pLBgQSxcAUbrI6DW+2Wab5VjHjFQ2QSXRrUTH1WYZMmRIjnWtycePyz0BUT7Kpaa03JfOdQkte8Jo2TG+Ft57770c83UGxP1nSwbQ0bKRKJ1fALjuuuvCax3vW0k6f/qZfA5q8wZLuPl4AcA+++yTY5WF/vWvf80xj6VaSqNUbuaqq64q7lOza2i26QHxtwuXOwPitVaD5eETTDBBaOP5qISfOBpjjDHGGGOMqeIfjsYYY4wxxhhjqnRaqrrjjjs2/DtLLmqPyFmidNxxx4V+nKFLH+Nyhp9SBjkgSgbOPPPMHKs8ibev2aE4qx9LLDRrHMOfBUR5FMuDNONhv379cqyZAFOmwFp2o66SzokeZ5aFsiwHiN+DZUJzzTVX6MdyUs20xZkWWXqnMkDux99fpVdPPvlkjnv37o0SKu9gWCKsx2PNNdfM8b/+9a+mPkvlgCo5aweaEbNZGQRng1MpGEtL9TuxRISPC8tFgXgvJUkS0FE6zNlYeXtAHBf4fG+55ZahH8uD/va3v4W2ww8/HM0wzzzz5JjlW8AY2ZJKuVpBGgc0+18pwzMADB48OMcs8WO5ORAzCrP0CohZEllWo9cPy9YHDBiQ4yTpa4TKt1jKxNmKVS7PmZ5VKsWyVs7KPNVUU4V+Kk9l0ljAMu1WkaR8nK0WiFntNAMsH2vOGli7hzU7Y0kaWcv+V3o/EMd3HgeAaCu4//77c6xSarZyqDSO59Va5m2Wo5fsH+2YH9O1xZJnoKNErQRnRVR4rcT3EgDMP//8OV5jjTVyrNfC6NGji20MS0tffPHF0MbyzcceeyzHOseutNJKOdbsoQyPH5zdEYhyQM6yD4y5/9shVU2yPs0qOXDgwByrhJfXCmwBqR1nld/y2FSzVrG0kOdAPQeMZr3lsY7XoTqf6+sSbJ9SKe2ll16a41KmdbWhtJKNNtoovOaKBWrX4XPC82gNzYBcyybPsBVOpbAMz4EsgwWitYqvGc0ez7+b9JpkaXoNzvzaFfzE0RhjjDHGGGNMFf9wNMYYY4wxxhhTxT8cjTHGGGOMMcZU6bTHMfmUVFvLWmOlpA1X3yFr7nfdddfQ9s477+T422+/zfGIESNCP/bVTDHFFDlWjTunDr/wwgtDG3v5WJPOKX2V2vfntOfsaVR+jfIbCS4zwdR0/KlkANDxuDOc4l/9qLPMMkuO+Zxq2nOGvRmq/efX7CsAgJdffjnHjzzySI7VS1ry/QDRb8flGWrlYrQkxeKLL17c/rjy1ltvARhTJqcRH3/8cXjNviT2B3XGK8ReZaZPnz7hNXuZainGb7311mLbQgst1PDvWmKHvapdLZ3B5UPUD6ivW0ny7p122mnh7+yr5lINALDCCivkmFN21+5h9aqyD63mxeE29lCq147H1Y8++ii08bjK29MyRLx99l4BwEwzzZRjHktLJZ+AjqUM0jjeDm9cQsdHLhukcxF7OmuwP0ZTqJfQ9OxcVofPsZbc2HDDDXOsHkeep9hb+8UXX4R+7E/UkkQ8l6gfmamVTkljXztI3saaR1S9R8sss0yO+fzoPcfnQH3LU089dY7ZR673I3sI+drXa5rHX/Vv8f3IayrNWcBeYN0+z+/8WbX1gZaBSWNBO+7HtI7kEgaKHpdddtklxz/88EPxfbW8Hjz2PfTQQznW8gnsa+OSR+zBBGKZCF43AR3zazRDbXzn9Zb6/Gve8XZSKjPB84N+p1IJttVXXz28Zk/mZZdd1qX9Y1/jueeem2O+loCO5T4YzQeS0Hmfxwj9zhNOOGGO+drVbfNYxXMT0LGsUiP8xNEYY4wxxhhjTBX/cDTGGGOMMcYYU6XTUtWSDIrTpuuj4FJ6cJUIctkCTtcOxEey/Gj1iSeeCP1Y1jbppJPmmOUhQEyXrnIR7sv7/uGHH6LE7LPPHl5zCQFN6c3UyoyoXKGVpHPE6boB4JJLLim+hx9hP/DAAzlefvnlQz+WXCillNA9e/YsvodTlOujeZYEabpxZtCgQTnW65PLFcw222yh7e23384xXws1OeDEE09cbGs1SXaqpVM4xbjKPPia0/uCYYmaXoslWYVKezglNpfyee+990I/vke0zMazzz7bsB/fY0AsBaLXCXPvvffmmFPNA/XxaYMNNgDQnnTj7777LoCOJQeuv/76HHOpBqD5kitvvvlmjvV8c5kNlv2oRJTT8LNc6dVXXw39+H7p3r17aHv00Ucb7p/KyFj+eN1114U2llDWpP0sDzv++ONDm0rlWkn6jqeeemqX3r///vvnWCXaPG7V5iKWMmn6epYoMSeddFJ4zfePyky5jedpvs6AKF3U664ZORRQLjUAdJxz24GOAVwmSm0n99xzT45ZKq+lOfj4qdSbLQBsk9B7nS0fNYknl8jgEh5AHE9++eWXHKvs8rDDDmv4ucqNN96YY71mavN7O9F1ZIKvJS4xofAcc8EFF4Q2PU4Mlwdii5POWQyXrFH5du1a4OuQr880pyRmnnnmHNesVTVrDR8rtRi0k2T/aXbOA2JZFS6DV5u/a8eFf5+wDQqIZTu0zAbDZcHUXsRjP6Nlo+acc84cczktoFxmg+d5IP5uWm211UIb20FK+ImjMcYYY4wxxpgq/uFojDHGGGOMMaaKfzgaY4wxxhhjjKnSaY/jFVdcASCmiQeijrtWtoI9A7WUwMr444/Z1SeffLL4WawT5xTTs846a+jH6ev79+8f2jTNdmK66aYLr9m3oSm3S75GTVmuvkbmm2++KbaNK+nYq0+D06TXfCis7+fjDETPoMKpr7mUhpbZ4LTFnLL6gAMOCP3Yz6Nptfk88nWhXqsPPvggx+zRAoDBgwd3+A5AR68Ql+C4/PLLQ1ut3Me4kr6X3jucxp5TRQOxBAPD/ggAWHPNNXOsvrAll1wyx6zb57InQCz9wV5YTQHN97SOC+zVYM9TKg2UKPlZFPbvqceR/XW/Jmm84GsR6DjmlLjjjjtyrB5e9SEy7FXmMhg1jyh7ibUfjwvqHWePFXtw1QPGcHpxII6X7O3S+5b9W3pvtLMMR7ov9Liwd1rLSJSOdZprEzwfnHjiiaGtVEpF08uzP6ZWfoX9leqVYp8pl81iDxAAPP/88zk+5phjQht7iXj+uPPOO0M/HjN4rAe6XnKnGVJ5IPXR8jpE6dWrV4532GGHHKu/j8+rzpWjRo3Ksa5ZmFJ5AvVN8f7rfZBKAAExR4X6rNmzv8cee4Q29k7x+NEZan7dcSWVk9DzVvM1MrX8FDV43iuVwFH4/BxxxBGhjV9zyTkg3qu8/ffffz/0m2+++XLMnnUgzp28ftGcBVxq4tckHRu9xq699toOfRLsueY1CpexAuI6h/sp7AWccsopQxt7WjnfRK281jTTTFP8LIbHbEXzegwdOjTHfG/quubKK68c6+fW/Lh+4miMMcYYY4wxpop/OBpjjDHGGGOMqdJpqeoWW2wBoKNElKUza6+9dmgrSZT0cS+n/1eJyFlnnZVjlmNwumkAeOedd3K82GKL5ZjTXAPxEXxNflKTz37yySc51jTVnK533nnnzTE/0gaAkSNH5pjlmQCw3377AWiPtCo9Qu/Ro0f4u0pGS2h63xI1OXLts+aaa64cswxUU0Wz/EKPLafk79u3b45VivPRRx/lmMsfAMBSSy3VcP/0Gmfpqsop0jHYbbfdGm5rXEjHU0sasHxF5UsqIUxw+nwgHlsuUwFEySBf67ofF198cY5ZdqZSHJaL6D3H9+pEE02U4wUXXDD042tNt8ElXWplW3isqqWebzVpLNQxkfeB5ccAcNBBB+WY5WRcAgWI95LC92BNRjV8+PAc87HU48wycB2b+fo68sgjc6yp53kbLInWz+M56NBDDw39ajK/NIeppLyV6HHhY8vjUu19ej74Ow0YMKC4DS5hoiUsWJJYu19YHqVjIsMyTC5HAcQSAipV3X777XPM0tckLUywpKpWKqrVHHjggQA6jns1uLQVlwZ64403Qj8uY/DSSy+FtptvvjnHtWt4yJAhDf+u6ya9f5i777672MZwqQFl0003zXFnSiUwzcrxu0KSVuragEs1aBmZVsBrz+22267Yr3a/M2yv4LJWCq+vOQbinM3WBt0ml5PQEiTMDTfcEF7XLEqtorbuVJn7qquu2rAfy4gB4JxzzsmxluPg+5HLzJ1++umhX2kuYsk60FFm3BXWXXfdHOvcyVYzhufvVuAnjsYYY4wxxhhjqviHozHGGGOMMcaYKp2WqpbkCMOGDSu+Rx+ZJzTjG0t41lprrdDGspeaxIbbONPpTz/9FPrxY/sJJpggtHFmwNdeey3HLMkDOsoVGZanMvqYnDM8qYRSpQCtJEnijj322PD3mWaaKccstwDiY3GWGqqch7OIcjZBIGYp5Wy2KnFcYIEFGu537XxrG2eSYhm0Skf4fSrt4uPBPPjgg+G1SrEabb8dkuMkxWHZNBDlEieddFJoSzIsIEpRVFbB2Tk1my3fPyxHVanEoEGDcnzqqafmWLOvcpa32r3PqJSrJkFlSRVnC9b9ZVmWSotZ0tIuWO4GxGyzn332WWgrXfua3bKW7ZAlo9NPP32OWbKr1CRpLI1Tmdztt9+eYx5LJp988tCPM0bqZz311FM5Vnkqw3JdPvfAGMl0O6WqKifj/V5kkUVCG2f45nOq8iI+TprVmecw/qxJJ5009PvPf/6T4xdeeKG4/yy1VHgfWdamUurevXsXt7HRRhvlmKW1NQkuZwEF6lm/x5VmJKqLLrpoeM3H/ZdffsmxZkWs3T8sQ+N+tSzUfJ/ptk844YTiZ/Hx47WSZvPla6GrclSeR9U2pFnZW0mSqGrGcJan8rkC4nlMsnag4/qPM43zfQXE9QBnHk7ZehM1eSrTp0+fHGsWWrbvsARXP4u3oeeR97927XOWWc262c4qAIma9akmqebfJzou8TpRf5OUMg9379499ON1I68vVZrKWVX13px99tlzvOyyy+aY11dAlM9yrPvFFiydS9ZYYw2MC37iaIwxxhhjjDGmin84GmOMMcYYY4yp4h+OxhhjjDHGGGOqdNrjmFDtbi1FcImll146vGb9tHqgmA022KCp7X/33Xc5rmnzt95662Iba5I5TbxS8/kx6qFjr5x6RFK5gVan0gXGeEnY2wBEX6PqoFXTnih9VwDYY489wmvWZLNnQPejhJ7HPffcM8dccgMAvvjiixxzSQcuCwFEjwVvr4b67mpehX333bepbXaF5GlgHwUAHHbYYTnWY8b3Bfsa2bcIRE+a+tDYzzDhhBPmeNtttw39OJ0+U/PelDyNY4PLRGgZlX//+99NbYNTeOtxe+CBB7q0X82QyhCUjhfQMW09+5y4pMF9991X3Ib6Qt9+++0cc0kU5Yknnsgxj5daPoSPs44XXNaBv4uWEKjBvjLed/XXqK/x1yJ5qtTzzL5GvfbVf59gvxIAzD333MXP/fnnn3PM5R603NLUU0+d46+++irHeq2zh11TvvN+cTkXLe/w448/5li9/Txest9Rfcp8nbzyyiuhLa0DauVNukrav9q6gb1wyu9/P+Z/8rqNCy+8MMd6j3Bfnh/5Xld4XXLjjTeGtkMOOSTHWkKNzz/7JHV91ayvkefVk08+ObS99957TW2j1SQfc79+/Yp9dM5i37/6GhnO16Bj85ZbbpljLp2yzz77hH58bPn4aVkaXpfpXMYlqvie0xwctfPIfk0+V+qR5uv1008/DW3dunUrbn9cSWUyar5m9gUCsTSf5tpgeI2vcEkynm+22mqr0I/PV628H6+VdHw/44wzcvzwww/neJ555gn92O/M83INXRvzOMt5KLgvl0xS/MTRGGOMMcYYY0wV/3A0xhhjjDHGGFOl01LVlLaX03ADsWyFllLQx7oJTWnL8hV+pAvER/D8yL3ZdMYq5Zt22mlzrFIchmUgnCobAG666aYcq1zz0ksvzTF//6uuuir0e/bZZ3M82WSThbaaNGlcSY/8a/IFlciyNIclY3oOODW8lnhgOROXPTn++ONDP5ZAsRRDYemvplJmWAagHHzwwTmupYNn2cJLL70U2lgmqXKrs846C0DHe6YVJHlhZ9Kks9yD97VWLkTlDCzbZImryrlZfl6DZWhvvPFGaGMJJY8ttfIbLDfSvixrVCmOlgJhUukKvg5aRU2imlAp4Morr5xjloHq/cjSVb5OFZYn6vHjkglcxoElskCUh+u5HzhwYI5Z9qNjPffT7fN1x9+lJkVSSaGWUWgl6fvrOWCpkFojeNyqzW0sczvttNNCW+n+5zEWACaeeOIcqxyO4TmxlgKf0X4sFZt55plDG5dAYGm6ynY//vjjHCfrRkJl162kVF6Jy2zpnM/3CJdMmGKKKUI/vlb5vgXiMXzrrbeK+8drCl5rrLfeeqFfbV7gUlx87yss+1cLEV/XbG3hUgBALOmhc+zpp59e/OxxJUlGuawGECW8//znP0Mbl0Xj48c2BiCeb/2+LDtlSStLQoFYKovHhV122UW/Soal6EAsd8cyaIXLTuj4wbJELp2i6zfevl5bs8wyC4CO6+RWkOTTPOcBsQwZlzUCojyexzP9fVIr6cZrm9pvjdK4rdu75JJLcqxWvWZKAAH1MlKlz9b1KtOrV6/wOlmZautBP3E0xhhjjDHGGFPFPxyNMcYYY4wxxlTptFT1scceAwC8+eab4e+cRYwzvAFResZSTZYIAvHRci3zZQ3OWDds2LAca9Yrlr1oViV+ZMxSUs4IqnDWTgC48847c1yS6gJjpL9Ax6yGKdMoSwdaRXqMrVnDWIqjsKSIMzvV5DA1mdMKK6yQ4wMPPDD0W2mllXJckwbycdbMbZzxkTORqVSB90O59tprc8wSFqUmBUhSNJUatpLbbrstvGZ5zDnnnBPaFl988RyzXEL77bbbbjnmLHFAlCRyVkSW79TgjK1AlDnp9cTXEJ9T7cfSRZW1cV/+nvwdgXiNf/3116HtrrvuAlCXcHSV9B11nONswyqj/f777xtuS7NPcla2ZrNE6n3L8mbOEKpSO97H1VZbLbSxXYDlqSpH5SyEajHQvqX95e+p0tTPPvus4TZagR77RvC9A8Q5htFzxXOFSo5ZSl4bz9jywe/Re58zbip8rLmf3kvLLLNMjkeNGhXa7rnnnhzX5OFsgdHMgHrttRK97hI8X+p6gGWHPJ+pPaU21vGaiK0wmu2bZcZs89C1AmcMrd0jhx9+eI579uwZ+rE8dcSIEaGNs7jqmpBhOeiKK65Y7NdqkkWhWbk1AJx66qkN/37ooYeG18cdd1yOV1999dDGcyJnH915551DP75OWO6qGXCvueaaHGsGaR5z1HrBcAbOueaaK7SVMmiq3YAtDLp+T9L0dsyPqWqDzskLL7xwjjXjKh/3mhT7gAMOyPENN9wQ2tZff/0c89pDLQCcdb52bXGGfZULcybVc889N8csqwbiGl0z2/Jn83nQfWK7ia6HaxmcE37iaIwxxhhjjDGmin84GmOMMcYYY4yp4h+OxhhjjDHGGGOqdNrj2K1bNwDRhwLEVOEK+57mmGOOYj/1NTKs3WY/pXry2IPAPgr1lSyxxBI5/uCDD0IbexxHjhyZ45r3SlNKc9piTj2vKcRHjx5d3I+nn34aQHs04wn2uwF1b8vVV1+dYz4Wmm6ct6HHjFORTzXVVDlWfTp/Fmv4WacPxBTZWraDfafbbLMNSrDfTktmsG9HteBMTdfOevJ2oSn+OR18DT4f6kPaZJNNcty7d+/QlkqMAB3T0jPsyxp//DHDjXpaNc02wz4D9o6ob4V9Juo5Za8U30+cah6I6bLZt9Buks+NPbVAPK/qaSz5JXjcGxucppw/O6XkTnBa9lo6cPaI6vlhz9arr76a48541R5//PEc69jFsF+ISy8BwNRTT93053WW5Cc95ZRTin20zBKfA74P1K8255xz5lhL0fA2eExkTyMQrxP2pyk8pqsHkecw7qe+ZZ479VpgD3v//v1zrPO0lkBgkt/1jjvuKPbpKnrNJGqp9nUOS+h9W7v+llxyyRyX/LxA9J5xrMd5u+22y7F67Lm0Da+9dK7kch86z/A8XTs2/D4tvdVOkieutnZTPyF7GXlftR+v6/r06RPaLrroohyzZ1T3g+9Pzg1y2GGHhX58r+p4yfMZj6vq1Sx54gFgoYUWyjGvfz///PPie9TT3KNHDwAdc3W0guT502uzdM8BwIknntgwZk8jEO+f8847L7Tx2uPLL7/MMd9XQPSIcjk6zffC55/LFQHxmuQ8AnrdMTx2at+hQ4fmWMuk8e8p9WDrGrsRfuJojDHGGGOMMaaKfzgaY4wxxhhjjKnSaanqHnvsAaDj494anDKX0wCfeeaZoR+XU6g9nuXHvSpJY4nAW2+9lWMu2wBEyVOtTALLilRmUJMnMipPZVZZZZUc62N3le20kiRlVGkqp1hmeRoQH2GrJIZhaca6664b2ljewbKpP/zhD6EfywdYYsFpvQFgs802y7E+cucyKzPOOGOOP/7449BvnXXWyTHLoAHgk08+yTHLJE4++eTQr3Y/qFyhlSQ5ikpT+bWWomFUnspwCnCVxrE8lUudcBkQADjqqKNyfMYZZ+RYywmwlETLnrB8pHv37jlW2dTMM8+c419++SW0Pf/88znm+1avY02z/WuRjidLhoBY0kJL/hx00EENt6Up31lqeMwxx4S2I488Msfrrbdejscbb7zQb6+99srx2muvnWMtScDvU9k32xR4XE0lnhKvv/56jvn+BqIkiKVSKivma17HaR6D2oVew3yuauUZuJSG3tN8rV5xxRWhjdPNc6yljHi+5POt4yrfWyzzBuJ34ZIemuJ/+PDhaAbevsqPedzh8h5AXUbXLmpzPpfS4XuQj9HYYHkqn2+WIALxPmapru4f3yP9+vULbVx64I9//GOOuXwaENPz83gORDtDDV5LcEkHAFhsscUAdLQNtIKSnJ3LOkw22WShjUsF7b///jnW8hO1dR3fCzUJL38Wr1F0/ct2HV7jAlFOyeWbVMLN55/LPWhfLg+k9zCPVbPPPntoa8f5S6RxX+e2K6+8MsdcogYoS9i5ZB8Q56xevXqFtlRKDYjnbsCAAaEfy895LchSbiCuS9SKwNvn8V3XKPx7pWb949I5bAsDop1F59gkl9c1LuMnjsYYY4wxxhhjqviHozHGGGOMMcaYKv7haIwxxhhjjDGmSqc9jinlNqeNBoDlllsux6oZ1/Tjic8++yy8fvPNN3PMKaABYKuttsox64a57AUQtfQ1PwJr37XfIYcckuP7778/x6o15vdpCnzVSifUO8TlCnQ/7rvvvobbaAXsx2BU/12C93XXXXcNbayfZ+8aEEtmcJkKPs5A9DWyF4ePFxA17loWglNdc4rkhx9+OPTj63DgwIGh7ZZbbskxn3/1BDHqRUup8ttRViXdd+rbuvfee3PM9w4Qdfbq6WT23HPPHGsJBvZSzDLLLDnmMjcAsNNOO+WYfXLaj32Smkac4ZIbtfub/a1AR09YM9uo3e/tQlOts+9F/Y/sRWF0P9nPrf5e9t+yF123wR7CW2+9teHnAnXvs6Y6T2iZG742zj///NDG3hLedy4DAsTyFOrZmmGGGYr72C5OOumkHOuxPfbYY3PMnlb1JvNYp76UEpoDoIR6tNmn/v7774e20tw25ZRThtfsn9eSTQz7prjkCBDnafU0ppIZzfrsuoIeZ/anctkGIHrg2JOoKfN5Div5lIH6eMNlg/ie03wNfI/wnKDwPaI+aD7ftW2cc845xTZO/68eR/W7t5J0bPRY8hij5bLYZ1w7B5wbQb2ffN1efPHFOeYSNUBHX3BCS7PxnFiblzhvhPrPjz766Bxr6Ts+r4cffniO+d5U1AP30EMPAYge+FaR1m+1797sfK1r8Np7OK8Fl+PYe++9Q7++ffvmmK+np556KvTj86ol/Hj7XFawdg3WSvuor5HhMke6pma/cwk/cTTGGGOMMcYYU8U/HI0xxhhjjDHGVOm0VDXBEjQgylP1kTGnHGa5kpZgWGSRRRrGQJQd8vY5PTvQsYREiY8++ijHnG4aiHLNU045JccPPvhg6MfvU/kOp1Kffvrpc6yPnVkmeeONN4a2JPNceeWVG3+JcSA9jlZp3AYbbNDpbWlqZy7jwKUAgChB5c9WORnDx4UlLwpLLIAof+XSLCpVq0nXuCxITRbBclCW47abUgpsLiNSk32zlEJlFVwuR+WuLOfWtNIMy2WmmWaaHC+77LKhX00yy/CY0aNHj9DGqftZ1gfEe5qlUioX4RI4KhVnKUm7qN1/JWkqUE/5zvutEuHRo0fnmGVUf/7zn0M/Huv4s/i+0s/WVOEs52e7gR5XToGusExWxxaGZdYqvUklD35NySofFy3VwfIy7rf00kuHfiybVIkSy9D4vuU0/jU07T7LlvXe5PnorrvuynFtnKnB5Th0XXH88cfnWCWFKrtuB1o6hdGSCby24e+Ryk00Qks68Pni7bNkHYjnuCZl43JfKhVni8E777yTY7UQrbjiijnm862wZYWl2bq/JUlhO6wcJXgcVGuJ2rASKh9VKSjD4zjLHRUuQcfzqJaF4vlWzzfbPPbdd9+GMRCPO1s+gLje5jFdS25wGROdf5PVrB3nsSQ5fvrpp3O83XbbhTaeL9XmwfB6VWXv/HkqxS/10+PO8G8BhW0ZJSsZEG1S448ff8LxmpfvfbWD1CxyNbtJwk8cjTHGGGOMMcZU8Q9HY4wxxhhjjDFVOi1VTdm8VFLCqESpJEPcfPPNw2vORLX11luHNpZ+brzxxjnWx9N77LFHjktSDKBjxjqGpU2cgVJROVdp+/woeJ555gn9WLo5atSo0JZkuO2QqqZ9qmWiYokK0DHzaaP3KNddd12xbYsttsjxfvvtF9q++eabHLMMWrO01uDsaJx9V+UCKtsooY/7Gc7GqhJslgy0mpKsoNkMoIsuumjDGIiSW5XzPPDAAzluNtsjX8csJQRihkKWpwFRmsHSLpb4AVESr9+fsxCyrE8zCDJ8/QAdM0/+txk8eHCO+VypdJyl3pqllMdI5rHHHguvr7322hzzseWsw0DMLqjXJsv5OVbJF2dRVil9s/cqjx+6j2mb7ZBUvfvuuwCAmWeeOfyds9jdeeedoa2URZglaMAYiS0AfPfdd6GNs/zx+/Q++Otf/5pjlmxrvy233DLHasMozf01GVYNzqq56aabhjaei3UdkSTOtcykXSXNF2qF4WyH8803X2jjTL4pwyTQMSM135+apXSjjTbKMWcK1vPD65waXck62ZkstZzFle0RemxU1siwVLnVpO8422yzhb/rWqsEzz0jRowIbZwpeLfddgttPG7tsssuOU7jQ2Lo0KE55kzg++yzT+hXu7dU0l6C91EzaXK2ap6L2aoFAAsuuGCOeYwA4vjUaoYMGdLw7yyxVfsLy1PZdqJrGb7eee4BOtrHEnyfAsBzzz2XYx4jFL4ueE4AYuZ/ns9ZSgvE30a6tmQpOUukl1lmmdCPx1wd3/W3UiP8xNEYY4wxxhhjTBX/cDTGGGOMMcYYU8U/HI0xxhhjjDHGVOm0x/Hnn38GALz//vvh75xKWLXz7JXbdtttc6wp81l3rpruksab04YDMdX5+uuv3/A9QNSTq96bU3Cz76tZ31iNG264IbzmlNucap4/rx1enPRZquF+6aWXcvzVV1+FNvYXslemhqYb51TXrDVX/wX7QGrHncspaBpkfh/7eWpeD/Vxss9tzTXXzLGmhq/Rv3//pvt2lrTv6r+reYMuuuiiHHOZCtXm83Fh/woA/PTTTznmsghaRmevvfbKMZdj4DTaQPQHqT+GNf0lvyMA3H777TlebbXVQlspJbpeW+zdfP3110PbySefDKA992M6vt27d6/uH8Plgdjj1q1bt9DvrLPOynHfvn1DG3s12J+q3mT2nvE4zeVq9LWWK9h5551zPGjQoBw/88wzoR+X1VG/Fd+77Gn99NNPQz/1zzNaQqSVqLcxwb5GHX94TuR7U2Hvovp0Jplkkhy/+uqrOdbyReyNZD+qwh4r9TSyL5jLRHRmTOTjwXMO38NAHLv0WlPvaitRb2OCxyb29wHRK8RrD51j+Z6+7bbbQhv7Gmt0ZS1Se894442XY10PMcOGDQuvuSwMe7TUH96KtdO4UCsNw35oIOZUYI+fjlNPPPFEjqeddtri9nmsa/dx4HOQ1uqN6NmzZ3jNnjr1NTI8dmq/2ueNK1wGhOG5WM8jzzfNHnf1DnO5M/bJ8rkH4vqlBvsada3JeR9WWmmlHB9xxBGhH5chqpXH4Vww6667brGf+iSTx1HXUIyfOBpjjDHGGGOMqeIfjsYYY4wxxhhjqnRaqrrDDjs0/HvtUfCf/vSnHO+4447Ffiw9Uljew5+lqZwffvjhHHP6YU5dDwBXXHFFjllqp/vLqYn1Ufjkk09e3F/exyWWWCLHLCkDgEsvvbS4jXay9tprAwCmnHLK8PeU4hyI6YwB4MADD8xx6XwAUc7CMiQgSlV5G5pSmmVZTz31VI61ZAQ/0q89tmdJTe1aVYnNIYcckmOWxWopCJb3qMQ3yRNU+thKkoyy9JrhEjYcc2kYIJ6DWspvllepDG/iiSfOcbNyES3VwdtkyZGmxGa5nlK6Xn//+/i/My7bofJWlda3kiRVVQliDZZxpvsZqEuxr7766tBWKkeiZVVYqlorV8T3Ko+dNViaqqiUj7/z2WefnWOVanMbp0oH4vjeaqaZZhoAHaXdjN4HWlIqoefxs88+y7GW/GE45b+W7SiVBeHxEYjj6kcffRTauLwAy6jY/gHEOVa/S+/evXPMkmtNqc+UykH9mvC5U0k9S/2nmmqqhu8BYkkctXyUZPl6/FhGxvOeWgB4DlcZMJe2qclTGb3ueJszzDBDjvU7v/322zlWi0E7ScetVtKMpakKH08eY4F43FX+vuuuu+aY1wpqVdpggw1yXLOGpHEF6Hgt8P6zXFTXtWqFYtieVSupVStx107OPPNMAB0lxyyzZGkmAFx88cUNt3XGGWeE12ynYTsSEO9xvob1fPO6NO0rAMw111yhH7+Px1Egjh987vR3Ecuia2sqnpv1muE5/KSTTgpt6TjWLDl+4miMMcYYY4wxpop/OBpjjDHGGGOMqeIfjsYYY4wxxhhjqnTa45hQP5F6KZiaZpq54447cqxaZvZcMJqqlst2sN9GtfmsDWYvBgAstthiOZ533nmL+9usZ+vxxx/PMXsYdB81ZS5rqtsFexoV9WOyRp6/+4gRI0I/9q9wDADDhw/PMfurjjzyyNCP9d+sH1fdOqeyVziVO/uDuGQLEEvLqMeMNen8nUeOHBn6sZZdr6fkFax5KVpNzYPKsB9KSwnce++9Odb7h71y/fr1K37WFlts0fBz+boHop9HtfWl/f/iiy/C65rHUcuEJLSMA/sJ1FOVSjzcd999xc/pKvPMM0+n36OemwSXYwCAm266Kcc8xgLAgAEDcsylOmrXDPuh1DtROs4K99M09/zZur1vv/02x/vtt1+OS34WoL2eRiV5kx555JHwd07rzvMBADz66KMNt6U+6pqvseYDZ3RMT3z++efhNXux1JfFcyx/lpZDqo0LjF5DDL9P7/d2kr6zeuN+/PHHHB9//PGhjT3QfJ2ynwiI85J6HNlj/eyzz+ZYzw+XuuG8AX369An95phjjhzXxi322g0ZMiS08bXL5R4A4KCDDsoxe1y1hIvu/69NLf+BwnMWj7Gnnnpq6Mf5ENQHzGWVuByd3gfssefSObqe1pIuDJfO4bmzVBqoEaU1uq5J2SP9a1Lyy7NPW72zfN0y6ofnMXHgwIGhjb2qRx99dI65NB0Q5xiO9fdJbZ7n3xp8PnT8aPZ3B5cEqr2nR48e4bV6RRvhJ47GGGOMMcYYY6r4h6MxxhhjjDHGmCpdlqrqo3SWbey///6hjVP9liSnALDccsvlWKUF99xzT47nn3/+HGu5h9Ij2ZpUQtOIs0SUZVmaur/GBRdckOObb7652I+lPipNTY+1OfV2q0jlFbjkgrL44osX27i0RM+ePZv+3DXWWCPHLEdVmZPKQhKaur4mVeVH/Jyef5lllgn9OB3xY489FtpY9jdq1Kgczz333KEfX58qtUwyFpXjtpLafaClNFhCpim7GZbYbLnllqHtiSeeyDGnYVcZyOWXX57jDz/8MMcTTTRR6MdSnFopEWbGGWcMr/k7q8xP09QnVP7H5XG03Ee6Xscbb7ym9q8VXHfddcX9KaHXZpLYAlGWDcR0+v/4xz9yzOcKiCnLa6VZ+Pip3YDZfvvtc8wSWYVlkbrNZs+D3u9csqld6HFmSbRK1l944YWG22AJ2tjgeYQlnVwWAojjJ8v3L7roouK2WfIExPuMpe467vE9reeRxx0ec3XO4ePWrVu30KaWgFaSpJu6nhg0aFCOufQBENc5fO5U6svSuJqEjO0PfP8BscQXb0Nlv7ymqJXe4nGA11dAnFt0f3le/frrr3OspbxYJrvOOuvg16J0fPna15I/PGfVYHnqm2++Gdq0rFcJlvryGlrLx6lklOFxsCTPBOI1yaXFFC7jwDYHAJhiiilyzOsIAJhzzjmL2xxX0nqDrzEAOOecc4rv4f1he8B5550X+m244YY51hJ7fP3MNNNMOeZSf0Acw1j2rSVLeC7StQffF109liyR5zWbrqd5bawlDZM8m2Xuip84GmOMMcYYY4yp4h+OxhhjjDHGGGOqdFmqqhx33HE51qyVpcyKKqvgx7jvvfdeaGMpwIsvvtjp/dNMcyyV0UfGLB+oyUBqMpMddtghx5whqVevXqEfPxr/5ptvQls7s3CmrH+rrLJK+Ds/3t5xxx2L72fZEMtcgChH1WPEx5Bly/PNN18zu12FM3MCwDbbbFPcD2aTTTbJscqKWKY19dRTN7W9ZrNetRKVcbEcQzM81uSpDN+PLE1Vdt5556a2N9100zWMgZjts1kJIku5gCj1UMlsqZ/KyDnr8ZprrhnakoxOM8K2giRNYQk4EOWpOv6wVIqzAU877bShX03St+eee+Z49dVXz7GeH86iy/0UlpK+/PLLoY2zxrE8VcdmlpGp5I0tB5r1toSeY92vVpL2T48f35+33HJLaFNpYOK5554LrzlbX20uUnlqo/1TVGrH97TOQ5wpm++RM844o/i5H3zwQbGtBsuiX3nlldCWsj53xkLSLOl46nHmuU4tJCyPr0kBeZ6vnUe27uj8yNktObOkSqRZzq8Z1NmGweeR5fGK3julsZozwiqdWUe1CpbhA3H8YSk/EKWL119/fY41cyqPszxmAVEKWPt+nB2XM3iyRQoAvvrqq+I2ONsnxzV0TuB9LK3Xx7YfKaN0O0hSy9rnKzqXJrSyQS0DPd8z+puEYek4Z0rm8wtEa5hKtnk/WFascyCPpWoB4N8uvH5XySzft7PNNltoS9UT1HrA+ImjMcYYY4wxxpgq/uFojDHGGGOMMaaKfzgaY4wxxhhjjKnSZY+jat0nnHDCHGuqffaiLL/88jnuqrad00Nzilwgpt3ncgKajp99Spr+n/eLUzPXSnrUOPbYY3N86KGHhrazzjorx6prT/us6eRbwZVXXgmgY3pj1kXXvAjsC615nhRO0c4pptUTsfLKK+d4kUUWabgPjfaRYU9Qs5xyyinhNXsc1cfAsD9h4MCBnf7crpJKtqj/Z6eddmoYd4aa9p99Y3weNYXzG2+80dRnXXPNNTk+8MADm3oPp70GYlkVhff/zDPPzLH6we6+++4cq1dwlllmAdAej6OmPU+k+7QRfM7ZN6elNBj+7kBMAV+Djx9fT3pd8Fh3+OGHhzb2nLC/So8nl+q48MILQ1vp2uA08UD0wiy44IKhrVSapRWkEg1aKoZh7zUQvYFcdkHLWnHZKPV3su+Fj0XyASb4fHEuAvYYA7F8guYAWHjhhXPM3jj1ynCqfE1fXxpbHnjggdBPxzUmlUeqpY3vKskDptc3e4903iutZ9QbxfNSbT7jkmcTTzxx6FfyEB522GHFfdKxmMv21HyNvE8jR44MbXwMvv/+++L+/rdIY3ip5E0juGRNbQ5kr5zmV+C+PLbXympwPz1XXE5BfYy8j+wz1NJlnF9D85BMM800OWaPI3vggbhe1ZwcySuq5aBaQToeWuKJy49oyZrS2vCEE04Ir/V7MBtvvHGOuVTQ+OPHn07qES+h63+mK7+HuuoXPvHEE3OsY+z5558/1vf7iaMxxhhjjDHGmCr+4WiMMcYYY4wxpkqnparp0ag+Er3rrruK7+HHs4ccckiOl1122dCPU0z/7W9/C20sv+LU1Crl+umnn3J8ySWX5Lj2CFdT93NfloBxqYqxbZMfIc8+++w51kfanKZdS2Ok7dfS4naVVCJk+PDhxT76/R5//PEc82P7JZdcsvo+hqUanIZfJXNcToKlcbPOOmvoN3jw4BzXyodwCZdS+nugnuKfpVjdu3cPbUkyCsQU3sCYkgoq12oFKrtI1MrIlDjyyCOL27j00ktDG0tGauebJVUXXXRRjvWaqclT+bP5c2vS1Bosv1EpDsNp7oExZUy0vEMrSGPLM888E/7O6bX1HuHxU8fSEvp911577Rx/+umnOWaZPxCtCIMGDSpuX+WpzLfffptjLXXC9O/fP8dDhgwJbaVzrmnaeSxVyXGScPXo0aO4D10lzW+XXXZZ+DtL+tR6wGMJS6+0jE6zcNmg1157rdiPy0cMHTq0uA1OLw+MKR0zNmrjXUr5DtTlgDWaSRvfVR588EEAUR4MxLIOuq8s8WOLC5cUAYC33347x/vuu2+xrSb35PVQs5YCTf+fpL5AXKNoeRPeZq3cRw0uQ/BrlqvSEhqN0HUDS/X43HGZMaC+duJSOrzm4fUpAEwwwQQ5nnTSSXOs618e97QESr9+/XLM16uujVnGqvYAbuNrXK0NLGFn2SoAzDDDDGgXaYzUdUgNlg8/9NBDOeY5FYhrqIMPPji0lc7xu+++W/xcLsWnayqW1fOxBICjjjoqxyxb5pJ9Sk2Czd+TpakA0KdPnxzzPNAsfuJojDHGGGOMMaaKfzgaY4wxxhhjjKniH47GGGOMMcYYY6p0uRyHwiUTNtlkk9D21ltvNXzP2WefXdyGMt100zX8e0oB3Aj2VqrfglOFK+wZYK+CpkhmDbF6b1jHzyn/u5o+t9UkbTT7HIB6Sm32NTKPPvpol/Zh2LBhOZ5++ulD27XXXpvjlBod6OipYC+Ocvvtt+e4MyVDmB9//DHHAwYMyDGX6RgbyTumqdJbwYYbbtjw7836Gllnr34bRkt6cNp8Lj/C/ggA6Nu3b47ZQ6d+EUZ9eOz9YP8J6/SBeE7YbwQAe++9d475fvziiy9CvyeffDLH7LkGOpYKaCXqbUzw2MmljIDox2BPjY6J3Mb+cCCWNmL0+mEPIbexjxwAevfunWMty8RlCH755Zcc//3vfw/92CepJVf4fHE/TQHPnlneJ6Yd3rjkzf7hhx/C3/U4MVwKoVlfo/pj2JPKZYN69uwZ+nF5jtrcU2srlSXSa4a9M1zGAhjjFwbqczijaePZV95qkrdLPU8173jpmLFvsdYPGFPyZ2ywT79WXoZ9jepN5jG42XWIlg3aZZddGvbTciHsFSzNTe3IAfDll18C6LjO4bUN55kAgHnnnTfHWnauhHrh2M/N1xDnzACA/fbbL8daCozhOVbnPT53XCJES+xsuummDd+j8JytjBgxIsc8hgNjvLHtGFcTeq0vsMACOWYfPhCPhZZAYvj86LXJ8w97IWtjD3tO//KXv4Q2vi80Z0EpT4zuE5dV0fUWe0DZ18jlzvSzR48eHdqaueb9xNEYY4wxxhhjTJXfNfufpt133/2/82jMZM4+++zmHiNV8Hn87+Pz+NvA5/G3gc/jbwOfx98GPo+/DXwefxs0Oo9+4miMMcYYY4wxpkrTTxyNMcYYY4wxxvz/Ez9xNMYYY4wxxhhTxT8cjTHGGGOMMcZU8Q9HY4wxxhhjjDFV/MPRGGOMMcYYY0wV/3A0xhhjjDHGGFPFPxyNMcYYY4wxxlTxD0djjDHGGGOMMVX8w9EYY4wxxhhjTBX/cDTGGGOMMcYYU+X/AQf6FLnlco3aAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 1152x169.2 with 8 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Denoised images (output):**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE2/figs/AE2-06-test-predict</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA44AAABwCAYAAABRhy5gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjsUlEQVR4nO2d29NXZfn/L7OsRDJBEXeAIrL1QQXRZCsQmUlglnIgpdNBM8zUNNM/0HnNdNJ4bE6jtnFqHJPcBam4QQ0kZKcYoCCmaIr7Nn4PfuM97+v9e9bthweeh89n8XodXR/u+/ls1r1Za7He7+s67uOPPw4AAAAAAACAJj5ztL8AAAAAAAAAdDfcOAIAAAAAAEAVbhwBAAAAAACgCjeOAAAAAAAAUOWznXZctWoVWXSOMrfccstxh/sejOPRh3FsB4xjO2Ac2wHj2A4Yx3bAOLaD/saRJ44AAAAAAABQpeMnjp9wyy23DMb3gAqrVq064u/JOA49jGM7YBzbAePYDhjHdsA4tgPGsR3UxpEnjgAAAAAAAFDlkJ84AgB0yscf929R+N///tfY77jjsqT+M5/p//+3vB8AAAAADB48cQQAAAAAAIAq3DgCAAAAAABAFW4cAQAAAAAAoAoex0+h5r0CgMx//vOf9PrgwYMlfvHFF0u8a9eu1O+VV14p8Zlnnpnaxo4dW+IxY8aU+JRTTkn9jj/++BKzVgEAAACOLDxxBAAAAAAAgCrcOAIAAAAAAECVnpGqavr+//73v/3GjrZ5WQCV1NXS/3/uc58r8QknnNDYD9oJUuVPR4/RBx98kNr27t1b4jVr1pT4ySefTP10LU2aNCm1nXbaaSX+97//XWKXxep7MFYA0MvovurXOXo9pHaAN954I/XT17XrnFGjRpV4+PDhqd+JJ55Y4s9+Nl8ysud+Ok0lqQaKH2euUdrBQEqX+d80rUefF4c7T7jzAQAAAAAAgCrcOAIAAAAAAEAVbhwBAAAAAACgypB7HGt6b21TL1NExIcffthv/NJLL6V+r776aon/+c9/lvijjz5K/d5+++0Sn3zyyalt6tSpJZ4wYUKJPf0/dBc+t1Qb3uSR9dc+T959990S6/ir7yPi2PYW6LHVtRkRsWnTphLfe++9JdbjGhExffr0ErvHcfTo0SX+4he/WGL3GB/LYwAAvUHtXKQe8bfeeqvEO3bsSP22bNlS4ocffrjEf//731O/119/vd/Pjcge8REjRpT4/PPPT/0WLVpU4ksuuSS1TZ48ucS182Ov5oOo+Uzff//9Ev/rX/9KbTt37izxnj17SqzXnRH5PPjmm2+W+Atf+ELqp+Oj16fepufKL33pS6nf5z//+RLXzp2cRw+Pmgex07ZaHhe9xvI8D+pB1ljHPiLnbhnI2uzN1QwAAAAAAABDBjeOAAAAAAAAUGVIpKpNj2c7lRb6a308q3KOiCwRUJmcygD871wad+GFF5ZYJQO9KrdoM51KSfTxvpeMeP7550vs0md9/3nz5pX4zDPPTP0O99F/L6Nrc/v27anttttuK7GuzSVLlqR+N910U4nHjBmT2k466aQS1yQ1pCU/cvje3HQ8a9aDWhrxWj/9LG9TVIqDbBm6FZ/3ev45cOBAatu4cWOJn3nmmRJrKaOIiP3795dY5Y/+Wccff3yJXf6odiCVtLrs8uWXXy6xXlNFRNx4440lnjNnTrSBJsuU2zBee+21Ej/33HOp7aGHHiqxjqNbNLRciu51vp+pDPiiiy5KbTNmzCjxrFmzSnzuueemfnqN4jRds7CP9k9NZlqTout8qpUSVMuU3+Po+vT5pJLUYcOGldhtdlrizGWsnXBsXeECAAAAAADAIcONIwAAAAAAAFQZEqlqp4+7tZ8/OtfXKr/wzFH6mFizWancIiLLXc8666zUphnBBvIYFw4df/Sv4+OZo5r+zh/9a1ZdlQStX78+9Xv00UdL/M4776S2Sy+9tMR9fX0l9ky8Og99vrdR7qHHXaVX9913X+q3bdu2Eo8fP77EK1euTP00U5xmTvXPUgmHyxiPNYnwQKhJbHSd1TIPqwTc18uuXbtKvHfv3tSmUqmRI0eWePjw4amfriXff7WvrsFeWnM1G0aNmkxbX9fkw0qn/fyzmiR1vTQGg40eW5c46rpQaWpExB133FHi3bt3l/i9995L/TS76ezZs0us56iIiFNPPbXEPs9U4vr444+X+Omnn079tm7d2u/fREQcPHiwxDXpXS/RJDX0jOv623WsInJ2W70O9XOUzhOVE375y19u/H4uXdT9uLYetY2sqoeHryWdJ7redY5EZEm4r2lF/05l6RFZIu1zQeXomvHYMyXrudMlzJ1cR3GlBQAAAAAAAFW4cQQAAAAAAIAq3DgCAAAAAABAlSHxOCo1/XRNW3vCCSf0209T9Xs/1SHv27cv9VMtsKZ1j4gYMWJEv5+F9vvIouPjem/VcasnxMdKvQCuO1dvxoYNG0q8du3a1E9TGk+bNi21aakW9d659+pY9giol9Q9juq/WLBgQYm15E1EXsc1H4hS877W/B1tp9NU4RHZj6Fpvl999dXUb8eOHSVWj7B6GiNyenn1ikdEjB07tsS6bv376tryeaKe45qv+Gjjv0mPs/tSdK9r2vc+jaYSD56uXcdEv5OXajj99NNLfMYZZzR+1qhRo0rsJYrUx+q+Zc1T0EZ0nXl5i82bN5d49erVqU33UvWEL1q0KPX76le/WmIdA73+iagfZ90/R48e3fge6rfSayPv26lXt5fQfaVWWqHmF9Z1oF7+iIhx48aVWNeclwxTb5zn9dASHFrKyvtxLXt4NJVpicjjpflUtARZRMSzzz5bYt8XdP/UsfJ+WjLOzxE6n3Tf9n3gcP3Ix87VFAAAAAAAAAwIbhwBAAAAAACgypBLVZVa+u5OUwlrCuOILHnTx/su2VHOPffc9Fof8R9LErehQOUsKmN87rnnUr8nn3yyxFrSweUXKudxeceaNWtK/MILL5TY54K+xxVXXJHaLr744hLro3+XdrVdeuWoVOOPf/xjibds2ZL6qfzmmmuuKbGXYOj0+NXS3Gubp5huAzU5lK4r76dtnlJepS5alua3v/1t6qdS1dNOO63EKj+NiJg+fXqJJ0yYkNpUnvrKK6+U+C9/+Uvqp3JXlV5FNJ8HukV69cmx9zFQKb6m6o+IuP/++0v80EMPlViPUUSWF/lep20qQfTzl8qA9W/cAqD9amtJ5VW+d37rW98qsUv0NB18G8+xemx1Pkdk6Zmfi/Q4XX/99SV2ybauJR27gZZE0fdzyfEFF1xQYrcH6DwfSEmYbqTpmPlv0nXhbbpH6jlw3rx5qZ+Ot76flz3RfVrliBHZTqPjWFu33bJfdjtN5ar02jUij8+DDz5YYrVIReQ93csA6rjqfYyXvNL38O+h5XdUVl4ruTGQudC+HRsAAAAAAACOKNw4AgAAAAAAQBVuHAEAAAAAAKDKUfU41qjpbmta+jfffLPEWoLDvT2q/1UfW0ROHY4W/PDw8VFN9vbt20t8++23p36PPfZYidWjpX6BiOwF8LTFWjZAPUbuaVVvzty5c1Ob+ho1lX0bfTmHgpYNuO2220rsvsNrr722xBMnTiyxe6o6Rdexepgjst/Z0/+3EV1bGnuqbZ37fsweeeSREt91110l9nFcvnx5ibUUgPttamOg7/nMM8+U2Ne++mfdB6Lej17yFeuY7N+/P7Wp51FTrbuPUT02XvpAz1Pa5vtUk+/J308/2+eCfg8tH/GPf/wj9VMfuHqvIiKGDRtWYi//0AZqHj8dA/cuqp9wypQpJfZcDjVfY6ffSfdSLb/z/PPPp376/u5/1JwDOsd9PnWjH7kJ/X56nL28UG3eNnlQdd5HZC+xfq5713Qv9bWkbbU9sduPezei81j9yJ6T44EHHiixevZ9zanHVc+jEdn3recIzc8Rkfdcz/mhc1Lfz3NyDPT66xOO7atfAAAAAAAA+FS4cQQAAAAAAIAqXStVraGPjz3VtZZxUNmqo2njXS5yrMsQDxd9PO9yq927d5f497//fYnvvvvu1E+lGpra2qVx+jje09erRE8lbrNmzUr9Fi9eXGIvL9AkTz3WZB8qH4yI+Otf/1piLdVw9tlnp34333xziQcqH1UJ1MGDB0u8a9eu1E/njEszVCLU9vXtY1UrffGnP/2pxCqbWrlyZeqna2b06NEldrmWHluX6ehrXZsHDhxI/dQ64PNJx7Wb12Dtt7ucTH+T7lMu0+3r6yvxyJEjG99D14HL2tSi8dZbb5XYJXSaAt7HZ926dSXevHlzv+8Xkcu7eKmOc845p8Qq3ezmMT0UdIxd4qjnMC83o8dFz20+ZwYiT3X5o0pSVWq3c+fO1E/Pieedd15q0/Wp+7vvsb00rvpd9Xf4Xqfz1s83iq4LlehH5OtXvV7146XzpJeOZS+ga8Ql1roP6l6n164REffdd1+Jdc/9xje+kfotW7as334R2WqlViC/ztF55xJ2tXKNGjWqxC5pPdw9t91XUAAAAAAAAHDYcOMIAAAAAAAAVXpGqqpyNX2k64/+n3766RJr9jd/VPvtb3+7sQ0pwOGhx33v3r2p7de//nWJ77zzzhJ7RlSVwy1durTEl156aeq3cePGEm/dujW1qbRk9uzZJV60aFHqp5niXI7SNBdcitb2OaPSwog8jipH1rGKyBlsO5WIelZQlYuovOrxxx9P/VSG5+OoEitt6+Vxa8qk6lkwVR5+zz33pDaVSn33u98t8Ve+8pXUT9ejSlpruGRWMyCvXbu2sZ+uT/3ciN6RNfp3U7ni+PHjU5v+XpWkuSxw/vz5JXZp3PDhw0tcy7Ko30v3ac+yp20qm4rIY6IyaJe01mR+bZeL6+9TyVhEHitHJcMDmet+XtK15dkZdQ/XLJGTJk1K/fS1ZnqNyFnHdU62cXz9N+madjmyZqnVDJmeeVhl3yoldim6ShD9murKK68sse4tKnWOyGu8jeMzUHTN+LlTx+t3v/tdiR966KHUT+f+kiVLSvz1r3899dNrFLdxabZUtQJp1u2ILA+//PLLU9vMmTNLXDtnk1UVAAAAAAAABhVuHAEAAAAAAKAKN44AAAAAAABQpWs9jq7VV/23arwfeeSR1E+15ervUI14RPYduKdKP7ubfTTdgvphInL66Ycffji1qTb8o48+KrGX2VixYkWJly9f3u/fRETccccdJdaxj8hjrh5HTXkekfXe/v5Nc8E14u4lagP629UnFxHxt7/9rcTqEb7uuutSP/c2NaFzyMvo6GdpGuwnnngi9dOyLV7KQH2sveKT+zQ0dbgeP/WERkRs27atxF6yZsaMGSWeO3duiT1VuM5vnRe1shPqaYyIuP/++0t81113ldg9fwsXLiyx+8G63ZvTNJ/UY3L++eenNv1NF110UYl9DNT/6PuPzmkdK/8++trHTqmlqNc17edORT027tfU49HLa7AJ/U3uL6p5rAdS8qnJ6xyRfY2/+MUvUpvmB1CvlJ5vI/L69Dmpv6U273qVptIcEdnX5p5jXTPqXfM9UT2oevz8HKheuw0bNqQ29cNp2aRrr7029ZswYUKJ3ZPZ7fvqkcT3PV0z7udWL37Nlz9nzpwSqxfdfaY6rnpejsilsrRMlr+HrlX1t0bknBI6xn6+ONz1eezMFgAAAAAAABgQ3DgCAAAAAABAlZ6RqqqEcN++fSX2FNMqEdC05P5oXh8Ln3LKKalN5VttTzE9UPTxvqdhVwnM3Xffndr27NlT4rFjx5b4xhtvTP1UNqdjsHnz5tTvySefLLHLB6ZPn15ilXl5aQkt8aBzJiJLcVSmoymRIwYmMep2VP6oxzkil0+ZPHlyiVUqEdEsjXNJlUpxdG1GRDz66KMl1tTULvvRz9q5c2dq0/nUq9RkoTr3Dx48mPppm66DiLxGdI/0Oaypw3Wuu7Rb15am+I+I+OUvf1liTVH/k5/8JPXTtXWkJTZDhX9P/R0nnXRSatM1ozJj76fvUStvoZ9dO161Np1baj2IyBJxlV6pXDYi20F8X+2VcRwoNYljU79DQcdH1+CLL76Y+v385z8vsUv7J06cWOKbb765xF6Oo9PyLk3fr9av26mtJT0WWkYlIssLdR3XbFFq+fDrVb2u1RJKERHbt28vsVpKvGzHD37wgxL39fWltrZLx/U416xVeu0aEfGb3/ymxGrz0PNmRJbi67ly165dqZ9e/z744IOpTW1cen2l1o2IbGfw87nOw8Esv8KdEAAAAAAAAFThxhEAAAAAAACqdK1UtYZKMzzjkMpOVRbg8kR9TOxy1+985zslXrRoUYlVehPRnuyMnaKP+999990Sb9myJfXTY6sSxIgsO1X5oModI7LcTuUDt99+e+qnGctcKqWSDs3Mqd/d+3kGwTPOOKPEKmH2eaeyFf8evYLLizTD2J133pnaVAaxYMGCErtkpynzp45bRJY0q2QjIsvhXPKm6Nyq9atlk+wlmvYcn8Mqe5oyZUpqa8o262tE9099f99XX3/99RKvXr06takkXLPBXX311amfjl1b9lX9HS7309+rkiLfR7TNpUdHWoqk59j169entk2bNpX4ww8/LHHN8nEsZ3E8EnPY17TKz1We+LOf/Sz100yQag2JiPjRj35U4qlTp5bYM4R2asNoezZ6/00qF3eLhu5vem3ja1rPl5rt3SX6Kn90ObLaSHStrlmzJvXTz/7xj3+c2lRq2Wkm9G5H14yuF5feP/vssyV2a5Vee+r4eGZ+/Sy9HnYbl14Pu/1Hr4lULq4VASLyWNXW6mBy7OzeAAAAAAAAMCC4cQQAAAAAAIAq3DgCAAAAAABAlZ7xOKo+e8SIESXWFMYREePHjy+x+m/ci6PpbjWdcUTErbfeWmL12i1btiz1U/+ba9LbiHpG9fg9/fTTqZ96YFxPruOoWv0//OEPqZ/66zStv+v7VfvvHgRNhayeLfdvKSNHjmx8f/WI+O/yediLuI9G14yXeFDP0rRp00rs6cbff//9Eqv/zVPDP/bYYyX28bngggtKrGnDt27dmvrp3Bo9enRqG8zU1EOFz+8m35zPRfVEjBs3LrWpV1dLQWjsr3VeuJdU163uAxHZI3799deX+PTTT0/9dKza6JVyj6PO6ZqfbDDnsK9bLXm1bt261Pbyyy/3+x5arshf96rve6hRn6DG6iWNyH4o9Z/7vqpeqZtuuim1XXzxxSVumoMRnfsaa//e9nXs1w1XXHFFiZtKbkTk/bNW+k3fw69l58+fX+Jf/epXJXaPuXrqvBTEDTfcUGL9Lb10rvQ5p9du6jX0MlF67aElNyKyd3XChAkldm+hXg/qZ/n76d7p46jXOZdffnm//x6RveS1clWdlmUaCL0zKwAAAAAAAOCowI0jAAAAAAAAVOlJfaXKKlx6pa9r8sRt27aVWCV0ETn9v6aQ17TXEVkyO9jp0bsBTdGuaYW95Marr75aYpc/qnxAS2TomEZkKayOh36HiCyBcsmbjo+mY/ZSGmPGjCnx2WefndpUtqEy6OHDh6d+Lj/rRXys9Ljr8Yv4/9Prf4LLL/Q9du7cWWKVh0RkSase54iIvr6+EqtEy+VbKsdwKcmxJJVz+aimg/d5qutR5Yp+vHQt6frxz9LSNlp+JSLLtxYvXlxiX0u1vbONkjf9vZoKfzDkfk1SSJ0HEdm+4Wnjdd3pd9d9NCLvx/7dm75HW8a305I/3q+p1I3bae66664S//nPfy6x2mcisjx14cKFqU3XXafXK/59m35nW8axU/x82FQOyq9zdD/uVFro76Gf/b3vfa/EPmd27NhRYi/VoXYT3ad7qTSHn29UPqolN9xapdf/l112WWq76qqrSlyzI+ln+TWqovchft7T8/TMmTNL7NekncrKB3MNtu/uBgAAAAAAAI4o3DgCAAAAAABAFW4cAQAAAAAAoEpXeRxVL+9+K6Wm8dX0tJoO3LX/mq7f0/NqGQdNS66+yIh6et42osda9dnnnHNO6qfp/913qF45LfHgfjUdf9Wu+3hruuQf/vCHqc0/+xNOPfXU9HrYsGEl9rTaOq7qW3APWK96Wpu8RhF5THx+qydK18XEiRNTP/W8qRdW/z0ij4nOH/8e6pN0L4GmrfaxV69GW/w3Oud0fHxu6lrt1KPkfhFdt7o2vUzLli1bSuxlG5YsWVJiLc1RK2XUlrGq0fQbj7Sn0V/rGO/fvz/1W79+fYn37NmT2vTvNDW87sUReX76+bxTD2Avob9RY/+t6iX28576GtWTds8996R+6jtVb+mKFStSP/WrnXTSSamtaX7VxsbH0b3vn+Brug3lyvy46Drw/bLT91A6Xe/eT89tWjJs9uzZqZ+WStLrWn/tpXm6GT2emichIudDUB+jHz+9jnefdlNpEr/20PfU/BxamiMiX2tq3gD/HrqXurdSz/Wes2Cozpe9ebULAAAAAAAAQwY3jgAAAAAAAFCla/UDNXmHyjk03X9EfhSsj3j9sbBK6vTRckR+xN2UKt2/o0s49O/aIrdSuYmmCJ47d27qp5JBL8+gEscXXnihxJouOSJLC2rj+NOf/rTEmuI/IktzdAwOJYVxk9xqMFLlHw1q31slES5zUonV448/XuJ33nmnsZ+OvffTz3rxxRdTm5bE0bTXLiueNWtWic8888zUpuPYq+n/a99VJSsuXxmILND3M5Vi6Zi6HHXjxo0l9rI38+fPL7GOdy+NwWAz2MdC54KOo5dU2rp1a4ldlqVjp+dRl6nrnlGTVPXq+Neki3q94qVO9JpF5YMRWZ6q8bp161I/fc+lS5eW+MILL0z9dN9zWayiY1ArEeLSVC0v0GTriOhdqWrtGk/XhZd00+Okc/+0005L/ZquUQ5lTTRd2/j+WzsPqOS8l2w3+ptcYus2ik/o1I4U0VyO5O23306vm9a091P73FlnnZXatJSgtuk9TUReS76vDtXY9c4MAQAAAAAAgKMCN44AAAAAAABQpWv1A/7IVTMF6qNbl0BodqgmmVxElqNqFtWI/NhZpQQ1qeqxgB5rfdw/Y8aM1E+zW6m00Ns0s+JTTz3V2E/lqatWrUr9li1bVmKXGRxpCVST3HEwPuto4GtOx8cztGmmRZUr7t27t6P398yfKu3xDHW6jjWD78KFC1O/K6+8ssQuaW6jdPxIy/06zaaoa1NlyhERmzdvLvHVV1+d2iZNmlRi3UvaMh69hq65l156KbVpdlw/x6qsbfr06SWeOnVq6teUkTCiWRrZS3OhJunU855nkNYs1Lt3705tKtPXvVQzI0dkSapmiNes0xE5W65mo4/I46iySx8DnSduMVA0o6eeOyLaKU3X85RL9vU6VPtNmTIl9VN5olpy/Pyo+LzTsdP5pJl3I7Kc1iXNau1w+WM3o3PJM7/rb9Lrf88grdf7bpPRagwqhfVM07pfqnzbLTO6J+r5MCKir6+vxJoV3q9rdXx8LQ2VBYAnjgAAAAAAAFCFG0cAAAAAAACowo0jAAAAAAAAVOkqj2OtZIL6C1XTf+6556Z+TR4BT4urqXq9HIdy3nnnlfhQtMZtR3+7a8t1rNwXqt4PTVusnoCIrPG/7LLLSnzdddelfkfLO9HG8fY1px6Y5cuXpzb1VTz88MMlfuWVV1I/9fd4KndFfVTq9YiImDBhQom/+c1vlljLO0TkFNbuEemlFONHi5o/Qv0dWrrh3nvvTf3Uw7FkyZLU1pR6HoYO9eFpqST3JnuZCOXUU08tsZZe0jgi+/LcJ9kGz7GXZ9Bzm3qeNmzYkPo98MADJXaPo16X6DHTvdg/W3M0eFkVXXMnnnhiatPSELUx0PfwfVU9e1qiq1fLbzi1PVG9i+5j1fJi6h/28VHP/syZM0usa8zxMhPbt28v8a233lriNWvWpH7qcXV/nXr5etXj6HNOy5Go19Cv99W368e2yd+rpeQi8jFT3/eYMWNSPy3Hcf7556c2HQO9rj2U8nFDtZdyNQUAAAAAAABVuHEEAAAAAACAKl2rJ/BHrvooWB9BX3LJJanfpk2b+o09Ba/KDPwRt0ouJk6cWGJPravSj6P1yLgbqP12LaUQEfHEE0+U+Pbbby+xl+1QKcXKlStLrGmK+/tsGDguiVBptqZaj4i44YYbSqzSDJXoROTU8wcOHCixruGILMVSeXhETvOvcjhdpxF5PfaS3KZb0DTvLivWlOVagkPHNCLiiiuuKLFKjCPqKeZhaNBxVYnjunXrUj8tueIWDV2fWorJJeZtL7nia0RLfKk81eXcWiZBU/c7ul50PCLyutNzp1tyVPLmthG9nlE5ql8PqdxO5XQRWVJZG+82jL+XwdBjq7LfiPx7de/0uaCWD30PlTRG5DF2W4+W2VAZZk1WfNVVV6U2Xbu9OlZ+ztc5rWtVrW4RWUqs8v2IPOYq9XWZqV6v6npxebiWCfP9UvfZTqX8R2useOIIAAAAAAAAVbhxBAAAAAAAgCrcOAIAAAAAAECVrvU4Oqr5VW25ehAjcrr+Dz74oMTqK4jIqXVVdxwRMW/evBLPnj27xOPGjUv9ailz4f/h3oy1a9eWWEunuD5dfW3qr2tLmu9eQMfE9fiTJ08user9Fy1alPo1eXjcb6NaffeSaF/1bbj3qg0p/gcbP7b6WktuuNejKaV8X19f6rdw4cIS+77KmAw9XjJCywZoun71O0bkdea+Ni2BNWzYsMbP0tdtPD/6OUuPhZYiUR9bRPZK6d9E5D1Nfd9edkyvPfQ6x8dA+/m5WMsX6Vp176Z6Wj3Pg/q59Le0ca37HFb/2vjx41PbggUL+n2P1atXp9davmrr1q0l1r04IufkcHStqjdSr10jIr7//e+XWEucReQ52avU8qLo79O1GZFLonhpOe2ra9PLpeh7aD+/ztE23z+aymx041pq324OAAAAAAAARxRuHAEAAAAAAKBKz+j+mh7delr/xYsXl3jOnDkl1pTFERF79uwp8WuvvZbaNI28SjH8Ebc+au7Gx8lHC5W67N27N7VpWmmVQKksJyJi2bJl/fZzuQjHffDQY+uyCn2tcgxPPz1y5Mh+389RyaTLKTv5fp/2/scytWOr0jaVsnn5op07d5ZYx1sl5RHZOuBzoek7MW6Dh0sXtVyDyuS8n8oOvTRA0/7u8i2dJ75vt6Fcjpc70OsDlZYuXbo09fva175WYi/joJJRXUtaWiAiHz+Vv/l30nJYLnd0CW1/7+2v/XvoGDedE9pCTQqp57mILAXVuTBt2rTU76mnnirx+vXrS6wlPCLyOPo176WXXlpiLbNx+eWXp346t1yS2YY9uHY9oPPR5eG6b7lkV69LdX37GOh71krg1O4ZemkMeOIIAAAAAAAAVbhxBAAAAAAAgCo9I1VtwiUw+mhYY88KqZnCXKbT7RmNuh2VxLh0RrONqazYMzDOmjWrxCp5Yzy6m4GOD2tu8FBZqO91Kk/dt29fiVWaGpGz42o2RpdeqYSHcTw66Hh7hkzN1qiyLD8/qjTOM2nq3+le71k79bNq2XyVXpoz/l1VdqrZpTXTcATZn3uVmlTV5b167al7omYgj4hYsWJFiT2TqlLbwzXTfO07HWs0SVVdUq8yU88C35QF1TO6656o/WrZpH0+9VLm6d75pgAAAAAAAHBU4MYRAAAAAAAAqnDjCAAAAAAAAFV63uN4JOglbXEvoHrycePGpbZRo0b1289TJKuGHP8bQOfUSm64j0Z9aW+88UaJ33vvvdSvaT2qvyai7t9qKsHh35c1fnjoGLvHUY+t+s+9HJKmlNeSVBG5PJKWZ/BU9joX3Jelr9vo+eOa4thmINcsvpfC4dG0r3hJGT23eemhJr9ip2Xh2rKfOexuAAAAAAAAUIUbRwAAAAAAAKjCs3E44tQkUCoFQIIKcOSppfl2yaDKxUePHt3v30Q0p3zXv4mIGD58eL/v7e/Jeh88VPrr46gS1L6+vhKr/DQip6z3trPPPrvEI0eO7Pe9I/J5wGV4OoeYCwAwmNTsFUiEDx2eOAIAAAAAAEAVbhwBAAAAAACgCjeOAAAAAAAAUAVxLwwq7l/BzwIwtKjPzX2H+vrkk08usZfRUWprmPV9dFBfo/oHNdV8RPYnXnPNNSX2Mi36Hj5n1BOkMfMCAKD98MQRAAAAAAAAqhzyE8dVq1YNxveAIYZxbAeMYztgHNsB49gOGMd2wDi2A8axu+CJIwAAAAAAAFQ5Tr0RAAAAAAAAAA5PHAEAAAAAAKAKN44AAAAAAABQhRtHAAAAAAAAqMKNIwAAAAAAAFThxhEAAAAAAACqcOMIAAAAAAAAVbhxBAAAAAAAgCrcOAIAAAAAAEAVbhwBAAAAAACgyv8BKYqrQ1PNjqwAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 1152x169.2 with 8 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Real test images :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE2/figs/AE2-07-test-real</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA44AAABwCAYAAABRhy5gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXmklEQVR4nO3de7TOVR7H8e1aSUYuWbll1pCWS3JbqlWJSUKEMlLLIjFyuivRBUdJLMKEo6mMdNwKTbpnTCI1J62mC0maVTQTSVYqSuUyf7T6+n5357f7nXOe55zn8n799dmz9/OcPX7n8vz6fffe5Y4cOeIAAAAAAIhSvqwnAAAAAABIbdw4AgAAAACCuHEEAAAAAARx4wgAAAAACKoYd2BOTg676JSxvLy8ciV9D65j2eM6ZgauY2bgOmYGrmNm4DpmBq5jZijsOvLEEQAAAAAQFPuJ4y/y8vKSMQ8E5OTkJPw9uY6lj+uYGbiOmYHrmBm4jpmB65gZuI6ZIXQdeeIIAAAAAAjixhEAAAAAEMSNIwAAAAAgiBtHAAAAAEAQN44AAAAAgKAi76oKACW1d+9e0x4yZIjkl19+2fQtWLBA8iWXXJLUeQEAAKBwPHEEAAAAAARx4wgAAAAACMqaUtVt27aZ9tlnny35888/N325ubmSx40bl8xpAVnjq6++knzRRReZvg0bNkg+44wzTF+jRo2SOS0AAADEwBNHAAAAAEAQN44AAAAAgCBuHAEAAAAAQVmzxnHevHmmvWvXLsnlypUzff6aRwAlN3r0aMl6TaNzztWuXVvy/PnzTV+rVq2SOzEASDGHDx+WnJ+fb/r0Pgz+/g1xnX766ZL1MUc33XSTGXfiiSdK9j8r4bf98MMPkqdOnWr6/Ov6i5NOOsm0v/zyS8n33Xef6evdu3cJZwgUDU8cAQAAAABB3DgCAAAAAIIyulRVl6P+9a9/jf26Jk2aJGM6QNZ5/fXXJS9dulSyX/I0c+ZMyf5xHACQDfQymdtvv13yggULIl9z/PHHS65QoULsr7V582bJGzdulDxx4kQzbvv27ZLr169v+ihdLZwuT9V/28aOHWvGVapUSXLFikc/jn/zzTdmnP6+mDJliunr1auX5PLleRaE5OO7DAAAAAAQxI0jAAAAACAoo0tV586dK3nPnj2xX9emTZtkTAdpYO/evaatS5w3bdok+YorrjDjunXrltR5pQv/50zv0Pftt99KvuGGG8w4/98T6WH37t2mPXv2bMl6N0bnnFu+fLnkBg0aSG7btq0ZN2LECMm6DA/IdHr3TF2eqksanXMuJydH8q233iq5Xr16sb+Wfv9XXnlF8mOPPWbGnXLKKZL1z7BzzvXt2zf218sm/fv3l7xy5crIcfoaDBgwQPJbb71lxrVr105yQUGB6Vu7dq3kTp06FX2ySAkHDx6UvG7dOsnr168341asWCH5vffei3y/l156SfKFF16YiCkKnjgCAAAAAIK4cQQAAAAABHHjCAAAAAAIyug1jjt27JB85MiRyHEXX3yxaXfs2DFpc0Lq0esa9dbWzv26vvwX/lqP77//PuHzSheHDh2SPGbMGNP35ptvStbrNEaPHp38iSEp/v73v0u+9tprTd/OnTsl16lTx/Q1bdpUcuXKlSXfcccdZpxe33PLLbeYPv09lOn89Up6Hdr5559v+vTfrNzc3ITOI/R+EyZMiOxbs2aNZH++KBp/HfCMGTNK/J6DBg0qNJ9wwglm3Jw5cyTra+qcc3369JGczUdz+P8uq1atknzuuedKHjhwoBmn10Jqb7zxRuyvXbVq1dhjUbb0Osb8/HzTN2/ePMn6GDP/3uXkk0+W3Lx5c9Onj9j597//LZk1jgAAAACAUsWNIwAAAAAgKONKVXV56iOPPCI5VEaRl5eX1DmhZPQW//pIB+ecu/3224v8fgsXLjTtBx98ULIuEfBVr15dclSJSTaaP3++ZP0z55xz5csf/W9T06ZNk1y3bt3kTwzF9s0335i23vJ/yZIlkv0SmHHjxklu2LCh6fOP5/jF5Zdfbtrdu3eXXL9+fdOX6aWquixUl6b6/D7dDpWPliZdahtaKoKj9LEbo0aNKpM5PPDAA6a9aNEiybps1Tnnpk+fLtk/MiSb+OW9eulKly5dJA8bNizW+914442RfaeddlqwjdSxevVq09bHk+myUueca9WqleTx48dLvuSSS8y42rVrS/aP4+jRo4dkXdKaaDxxBAAAAAAEceMIAAAAAAjixhEAAAAAEJRxaxwnTpxY1lNAAuzatUvy/fffL3n79u1mnF4f9fvf/z7y/Z544gnJkydPNn3vv/++ZH8tbIcOHSTrdV6XXnpp5NfKBgUFBZJHjhwZOW7w4MGSOeYm9Rw+fFjyxx9/LPnqq6824zZs2CB5xIgRkv1jVfwjOOLYunVrZJ9/VFImirs+MXSkRWg9JNKHPrJmypQpZTgTFEWzZs1M++6775Y8fPhwyfv37zfj9PpRva5NH9vgnF0vPGnSJNPnr69E2brqqqskL1u2zPTpv7f+kTr6ddWqVYt8/wMHDkh++OGHTV/Pnj0lJ/MzKk8cAQAAAABB3DgCAAAAAIIyrlT1ueeeizVOl0Alc9taxPPiiy+att6O2i9PjWv9+vWSdbnI119/Hfma9u3bm7Y+qqV169bFmkcmWrdunWR9RIpfYqG3n0bZ06UyztmjaQYNGiTZv46PPfaY5H79+pV4Hvn5+ZJ1Cbhz9mc/04/fcC4xZab6uAv9fv57R5XC+mWwobLytWvXRr6/pkvvkD62bNli2vp3hj4KAEdVqVLFtK+88krJX3zxheTbbrvNjHvhhRdivb9ehnPmmWcWZ4pIojvuuEOy/lvZoEEDM06XrvqfNaP45a76uJzXXnvN9OmlI1WrVo31/sXBE0cAAAAAQBA3jgAAAACAoLQvVX3nnXdMe+/evZJ1+c4pp5xixj344IOSK1SokJS54dc+++wzyWPHjpU8f/78WK+vV6+eaesSDn3tnbM7rvp9WqtWrSQ/8sgjpq9ly5ax5pXpDh06ZNpPPvlkoeP8nbz49yt7utTs1VdfNX3Dhg2T/Oijj0q+8MILzbhElPPr76HVq1dLbtKkiRmndw30S8CymS4fzc3NjRyny079EtTQ6+LS78Furpnhyy+/lHzeeeeZPr20w99FuVKlSsmdWArTn2X++9//mj69C6r+/fvjjz8W62vpv7fLly83fZdddpnkFi1aSL7uuuvMuGy+Vomgr2O3bt1M36pVqyQ3btxYsl7S45z9O6pPDnDOli3fe++9kv/zn/+YceXLH33e17VrV9M3dOjQ6P8DCcQTRwAAAABAEDeOAAAAAIAgbhwBAAAAAEFpv8bxo48+Mu19+/ZJLleunGR/bRxHcCTP//73P8l6LalzdithfYyDvlY+Xbc/a9asyHEjR4407R07dhT6/v6W4pMnT5bMmrzC+VtCv/HGG5IrVjz6a6RLly4J/9r6Ou7evTtyXP369SXXrFkz4fNIV/oIhr/85S+mr6CgQHKyj5uZPXu2ZL1l+YoVK8w41jX+LBnrExNBH8eBzDBnzhzJer2jr27duqUxnZR04MAB0z7jjDMkh/7NNH+vjRkzZkheuXKl5KuvvtqMq1OnjmR/fd3f/va3Qr+WXmvnnP39rv9WIh69/8U//vEP09ewYUPJ+vOkvh9xzrmZM2dKXrBggel79913Y82jZ8+ekp966qlYr0k0njgCAAAAAIK4cQQAAAAABKV9qerSpUtjjduzZ49p/+tf/5J81llnJXRO2eaJJ54wbb1l9/bt22O9x7HHHmva+iiNvLy8yHH62IC4W8NfeeWVpl21atVYr8tm+ufFp7ceHzBgQLHef9OmTZL98gtd7qy3QPc1b95csn+8S/v27Ys1r3T09ttvm/bUqVMl+2WhySxP9Y9wmT59uuTOnTtL7t69e9LmkA50CWqqlKNq/u/VqN+zfmmt30ZqGTx4sGT/b7imj4LQZXLZZvPmzaYdKk/Vx4TpYzH00RnO2RLHPn36xJrH1q1bTXvhwoWSb7rpJsm9evUy40aMGCFZLxlyzi43wVE//fSTZL3UwqePe9OfgfTrnQsvyYpSrVo109bXu6zwxBEAAAAAEMSNIwAAAAAgKC2fT7/11luSn3/++Viv8R/v6xLHGjVqmD5dmtG2bdviTDHj6XKlgQMHmj7/8XyU008/XfKjjz5q+nQJ3eHDhyVPmzbNjNO7W8UtA9A7WzlnyxqfeeYZ03fOOefEes9Mt2XLlsi+0047LdZ7fPjhh5JvueUW07dq1SrJcb9/fO+//75kf4eybCpV9Xee1TtI+zvyJZouOe7Xr5/p+/TTTyXr3ZH98nOklrhLAMaPH2/alKqWvS+++ELy4sWLTZ8uT9U7hvq/m3v06CG5QoUKiZ5i2tC7qDpnP4fqv23O2d+z1atXT+g8/GswaNAgyeedd55kf2fWuXPnSn7vvfdM35IlSyQ3aNAgIfPMBPqzSKg0WV8T/ZlR/+w4Z/8++ruqanrn/4ceesj0pcLSKp44AgAAAACCuHEEAAAAAARx4wgAAAAACEqbNY47duyQ3LFjR8k//PBD5GuOHDkS2bd///5Cs3POtWvXTvL1118v2d/COJuNHTtWcmhNWtOmTU1b127/+c9/lrxu3Toz7s4775R88OBByatXry76ZH+D3kp5yJAhpk+vYzjhhBMS/rUz3csvvyxZ/9v6x7Qcd9xxkk866STTFzqCA7+m1zUV18aNG027SpUqkmvWrCnZX79z6qmnSvbXLuptxbt27VriOSK1+GshWeNY+vy9AiZPnizZ3+dBX58xY8YU+r8751ylSpUSNr90Vr68fc7Spk2bQnNZ0seA+Mc21KtXT/Jrr71m+vTaSL1es3LlyomeYlrRf/feeecdyS+88IIZp9e06s8v/p4coXWNes+P/Px8yS1btow/4VLCE0cAAAAAQBA3jgAAAACAoLQpVa1bt65kvcXt8uXLI1+jH/Hq0kpfTk6Oaettd5cuXSr50ksvNeN0yWy20WXAoZJg/xgH3X711VeTNifn7LbFzZo1k3z//febcRy58dt0iXHIs88+a9pXXHGF5G+//VbyRRddZMbNmTMn8mvt27dP8p49eyT36tXLjPvkk09izTHT+dvG63+/Fi1amL5GjRoV+h7//Oc/TXvUqFGShw8fLtkvVdWlybq0xznnHn74YcnHHHNMoV8XqWft2rVlPQV41q9fL1n/PfOXcuifz7vuusv06eUg/DxmN72sIO6xZtlGl6DqI1Ccc+7777+X3LlzZ8lr1qwx40488UTJfrlrhw4dEjLP0sATRwAAAABAEDeOAAAAAIAgbhwBAAAAAEFps8axOAYPHiz5sssuixynj2Nwzh4ToddUzZ0714zL5jWOetvn119/vVjvodckFreu/ne/+53kG2+80fTdfPPNknUNP+s5is7/Xl+0aJFkvXX0ypUrzbiodY3z5s0z4/QaZp8+BkUf26GPhXDOrnH0j/TIJv46xhUrVkieNWuW6fv4448l6zUWb775ZvA9f3Ho0CHTHjdunGT/OI7evXsHZo1Uoo/W8I/ZiJKbm5uUucC5xYsXm/Y111wjWa9h7tKlixk3ceJEye3bt0/S7JDuWrduLZnjV36bf8/QqVMnye+++67kOnXqmHF6bXLjxo2TM7lSwBNHAAAAAEAQN44AAAAAgKC0LFUdOnSo5NBxHMV5P+dsqar23HPPmfbOnTsln3zyySWeRzqZNm2a5ObNm5u+ZcuWSd6/f7/p09v/n3XWWYW+xjnnNm/eHGse+pqcffbZsV6DojvzzDNNW28r/dVXX0n2Szg0XV4VKk39+uuvTVtf46lTp0r2j3vQpck9e/aMfP9so4+bSfTRM9u3bzdtXeLqb1leq1athH5tJM+ECRNijRs/fnySZ5Jd1q1bJ7mgoEDyPffcY8bpo6b69u0r2T927A9/+EOipwhkpd27d0v2P1/o8lS95OPxxx834xo2bJik2ZUunjgCAAAAAIK4cQQAAAAABKVlqaoujfTLJDdt2iR55MiRkqtXr27GXXXVVZLvvvtu06d3+9T+9Kc/mXa2ladqereoMWPGmD6/HUXvxjpp0qTIcRUqVJCsr6lzlKeWlpYtW5r2Qw89JLlfv36x3kOPq1y5cuQ4f6fOAwcOFDru1ltvNW1dNlfcXXpRNNddd11k34ABA0pxJkikuDupnn/++UmdR6bz/51Hjx4tWZd9+7sz6r+Do0aNSs7kkHZ27doleebMmbFfp5cQ4agNGzZI7tatm2S9PMc5W7qqd5zXJeWZhCeOAAAAAIAgbhwBAAAAAEHcOAIAAAAAgtJyjaPeyv/55583fT169JC8ceNGyXrtgHPOvfjii5HvoddHVatWTbLe7h8lp49T+OmnnyLH6fWpU6ZMSeKMENfFF18suWnTppI//PBDM65x48aSK1Y8+utmy5Ytke99wQUXmLY+tkX/DPrrllnXWDr27dsn+YMPPjB9xx9/vGR//TkyD2scj/rxxx8lz5o1S7I+usrnHz0UtZ77uOOOM+0mTZoUZ4ooAX19nbN7XvjrCWvUqCFZf4ZMBn0E1owZMyTro6t8/r4Ew4cPT/i80tGzzz5r2noNv17X2Lt3bzNu3rx5kjN1XaPGE0cAAAAAQBA3jgAAAACAoLQsVdXq169v2roEtVOnTpI/+ugjM2758uWx3r9v376SW7RoUZwpQlm/fr3ka6+9NnKcfty/cOHCpM4JRXfsscdK1qVYgwYNMuN0WfmaNWskHz58OPK99fErzlGCmmo++eQTydu2bTN9/fv3l+z/bkbq0n8rfwvlqT/zj5DSvwd1+aBPly5ec801pm/Pnj2S8/PzJfs/Z08//XShffrnz7nsPjIs0fxj2vRSm44dO5q+U089VfL06dMl+8daRVmyZIlpd+3aVbK/HER/jnr77bdjvX9eXp5p16pVK9brMpE+cuPyyy83ffv375esl9A8+eSTyZ9YCuOJIwAAAAAgiBtHAAAAAEAQN44AAAAAgKC0X+Po0zX9BQUFkh9//HEzTh/B4W/B+9RTT0nu0qVLgmeY3fy1Gr/w17ENGTJEsq7vR+rRR3PoNToh5cvz36zSVWjN8Q033FCKM0GivPLKK7HHjh8/PnkTSSP+0Rl6XeMf//hHyf76t5EjR0quUqWK6dNrv+fMmSN56dKlZpy+Xvr97rrrLjOuWbNmkX29evVyiO+YY44xbX0N2rZta/pWr14tuU2bNpL9Y1TatWsnedmyZZL97y39tf2jy6L2C2jUqJFp6/0/atasWehrMtXBgwclr1ixwvSNGjVK8nfffWf6Bg4cKPmBBx5I0uzSD5/eAAAAAABB3DgCAAAAAIIyrlRVq169uuThw4ebPr+N0qG3Itdq165t2tdff31pTAdAEemyOf/nWR+/gtQWtzzVP36D4zh+5pfsjh07VrIuxfePFwrRr9NHUg0dOtSM00s59NedMGGCGad/Vvv06WP6KlWqFGtOO3bskFyjRo1Yr8kGuhRUL31yzrlx48ZJXrVqleQPPvjAjPPbUbp37y5506ZNpk8fjaWPj/O/Z7L5eCRdOjxgwIDIcTk5OaY9e/bspM0pnfHEEQAAAAAQxI0jAAAAACAoo0tVkXp0+Y0usdi9e7cZ179/f8kvvfSS5Fq1aiVxdgCKonXr1qbt7+SH1BW3VNXfFRQ/80tQi1KSWlK6pLVp06aSFy9ebMb5bSRHhw4dTFt/ZkHZ0OXDeudhX8+ePSXfc889SZ1TpuCJIwAAAAAgiBtHAAAAAEAQN44AAAAAgCDWOKJUde7cWXJBQYHknTt3mnGNGzeWzLpGIHXodYzbtm0rs3mgdPhHPKxdu1bymjVrSns6APCbPvvsM8lbt26V7K9HXbRokWS9Bwei8cQRAAAAABDEjSMAAAAAIIhSVZSZVq1aFZoBpC5dqggAQKoZNmxYoRklxxNHAAAAAEAQN44AAAAAgCBuHAEAAAAAQaxxBAAgy+Tm5haaAQCIwhNHAAAAAEBQkZ845uTkJGMeKGVcx8zAdcwMXMfMwHXMDFzHzMB1zAxcx9TCE0cAAAAAQFC5I0eOlPUcAAAAAAApjCeOAAAAAIAgbhwBAAAAAEHcOAIAAAAAgrhxBAAAAAAEceMIAAAAAAjixhEAAAAAEMSNIwAAAAAgiBtHAAAAAEAQN44AAAAAgKD/A0tcvPjDx8JAAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 1152x169.2 with 8 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "i=random.randint(0,len(denoised_test)-8)\n",
-    "j=i+8\n",
-    "\n",
-    "pwk.subtitle('Noisy test images (input):')\n",
-    "pwk.plot_images(noisy_test[i:j], None, indices='all', columns=8, x_size=2,y_size=2, interpolation=None, save_as='05-test-noisy')\n",
-    "\n",
-    "pwk.subtitle('Denoised images (output):')\n",
-    "pwk.plot_images(denoised_test[i:j], None, indices='all', columns=8, x_size=2,y_size=2, interpolation=None, save_as='06-test-predict')\n",
-    "\n",
-    "pwk.subtitle('Real test images :')\n",
-    "pwk.plot_images(clean_test[i:j], None, indices='all', columns=8, x_size=2,y_size=2, interpolation=None, save_as='07-test-real')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 15,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:26:11.864689Z",
-     "iopub.status.busy": "2021-03-14T21:26:11.864216Z",
-     "iopub.status.idle": "2021-03-14T21:26:11.866531Z",
-     "shell.execute_reply": "2021-03-14T21:26:11.867004Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "End time is : Sunday 14 March 2021, 22:26:11\n",
-      "Duration is : 00:01:17 493ms\n",
-      "This notebook ends here\n"
-     ]
-    }
-   ],
-   "source": [
-    "pwk.end()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "---\n",
-    "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.9"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/AE/03-AE-with-MNIST-post==done==.ipynb b/AE/03-AE-with-MNIST-post==done==.ipynb
deleted file mode 100644
index 93101351ef79102f7ac923f966405bebe6b5b936..0000000000000000000000000000000000000000
--- a/AE/03-AE-with-MNIST-post==done==.ipynb
+++ /dev/null
@@ -1,543 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
-    "\n",
-    "# <!-- TITLE --> [AE3] - Playing with our denoiser model\n",
-    "<!-- DESC --> Episode 2 : Using the previously trained autoencoder to denoise data\n",
-    "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
-    "\n",
-    "## Objectives :\n",
-    " - Retrieve and use our denoiser model\n",
-    "\n",
-    "\n",
-    "## What we're going to do :\n",
-    "\n",
-    " - Reload our dataset and saved best model\n",
-    " - Encode/decode some test images (neved used, never seen by the model)\n",
-    " \n",
-    "## Data Terminology :\n",
-    "- `clean_train`, `clean_test` for noiseless images \n",
-    "- `noisy_train`, `noisy_test` for noisy images\n",
-    "- `denoised_test` for denoised images at the output of the model\n"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 1 - Init python stuff\n",
-    "### 1.1 - Init"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:26:14.145949Z",
-     "iopub.status.busy": "2021-03-14T21:26:14.145480Z",
-     "iopub.status.idle": "2021-03-14T21:26:16.669091Z",
-     "shell.execute_reply": "2021-03-14T21:26:16.669588Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<style>\n",
-       "\n",
-       "div.warn {    \n",
-       "    background-color: #fcf2f2;\n",
-       "    border-color: #dFb5b4;\n",
-       "    border-left: 5px solid #dfb5b4;\n",
-       "    padding: 0.5em;\n",
-       "    font-weight: bold;\n",
-       "    font-size: 1.1em;;\n",
-       "    }\n",
-       "\n",
-       "\n",
-       "\n",
-       "div.nota {    \n",
-       "    background-color: #DAFFDE;\n",
-       "    border-left: 5px solid #92CC99;\n",
-       "    padding: 0.5em;\n",
-       "    }\n",
-       "\n",
-       "div.todo:before { content:url();\n",
-       "    float:left;\n",
-       "    margin-right:20px;\n",
-       "    margin-top:-20px;\n",
-       "    margin-bottom:20px;\n",
-       "}\n",
-       "div.todo{\n",
-       "    font-weight: bold;\n",
-       "    font-size: 1.1em;\n",
-       "    margin-top:40px;\n",
-       "}\n",
-       "div.todo ul{\n",
-       "    margin: 0.2em;\n",
-       "}\n",
-       "div.todo li{\n",
-       "    margin-left:60px;\n",
-       "    margin-top:0;\n",
-       "    margin-bottom:0;\n",
-       "}\n",
-       "\n",
-       "div .comment{\n",
-       "    font-size:0.8em;\n",
-       "    color:#696969;\n",
-       "}\n",
-       "\n",
-       "\n",
-       "\n",
-       "</style>\n",
-       "\n"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**FIDLE 2020 - Practical Work Module**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Version              : 2.0.20\n",
-      "Notebook id          : AE3\n",
-      "Run time             : Sunday 14 March 2021, 22:26:16\n",
-      "TensorFlow version   : 2.4.0\n",
-      "Keras version        : 2.4.0\n",
-      "Datasets dir         : /gpfswork/rech/mlh/uja62cb/datasets\n",
-      "Run dir              : ./run/AE2\n",
-      "Update keras cache   : False\n",
-      "Save figs            : True\n",
-      "Path figs            : ./run/AE2/figs\n"
-     ]
-    }
-   ],
-   "source": [
-    "import numpy as np\n",
-    "import sys\n",
-    "import h5py\n",
-    "import random\n",
-    "\n",
-    "import tensorflow as tf\n",
-    "from tensorflow import keras\n",
-    "\n",
-    "from modules.MNIST import MNIST\n",
-    "\n",
-    "sys.path.append('..')\n",
-    "import fidle.pwk as pwk\n",
-    "\n",
-    "run_dir = './run/AE2'\n",
-    "datasets_dir = pwk.init('AE3', run_dir)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 1.2 - Parameters\n",
-    "These **parameters must be identical** to those used during the training in order to have the **same dataset**.\\\n",
-    "`prepared_dataset` : Filename of the prepared dataset (Need 400 Mo, but can be in ./data)  \n",
-    "`dataset_seed` : Random seed for shuffling dataset  \n",
-    "`scale` : % of the dataset to use (1. for 100%)  \n",
-    "`train_prop` : Percentage for train (the rest being for the test)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:26:16.672968Z",
-     "iopub.status.busy": "2021-03-14T21:26:16.672494Z",
-     "iopub.status.idle": "2021-03-14T21:26:16.674136Z",
-     "shell.execute_reply": "2021-03-14T21:26:16.674615Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "prepared_dataset = './data/mnist-noisy.h5'\n",
-    "dataset_seed     = 123\n",
-    "scale            = .1\n",
-    "train_prop       = .8"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Override parameters (batch mode) - Just forget this cell"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:26:16.678050Z",
-     "iopub.status.busy": "2021-03-14T21:26:16.677583Z",
-     "iopub.status.idle": "2021-03-14T21:26:16.680297Z",
-     "shell.execute_reply": "2021-03-14T21:26:16.680769Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/markdown": [
-       "**\\*\\* Overrided parameters : \\*\\***"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "scale                : 1.0\n"
-     ]
-    }
-   ],
-   "source": [
-    "pwk.override('prepared_dataset', 'dataset_seed', 'scale', 'train_prop')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 2 - Retrieve dataset\n",
-    "With our MNIST class, in one call, we can reload, rescale, shuffle and split our previously saved dataset :-)  \n",
-    "**Important :** Make sure that the **digest is identical** to the one used during the training !\\\n",
-    "See : [AE2 / Step 2 - Retrieve dataset](./02-AE-with-MNIST.ipynb#Step-2---Retrieve-dataset)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:26:16.839035Z",
-     "iopub.status.busy": "2021-03-14T21:26:16.760034Z",
-     "iopub.status.idle": "2021-03-14T21:26:17.936207Z",
-     "shell.execute_reply": "2021-03-14T21:26:17.936696Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Loaded.\n",
-      "rescaled (1.0).\n",
-      "Seeded (123)\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Shuffled.\n",
-      "splited (0.8).\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "clean_train shape is :  (56000, 28, 28, 1)\n",
-      "clean_test  shape is :  (14000, 28, 28, 1)\n",
-      "noisy_train shape is :  (56000, 28, 28, 1)\n",
-      "noisy_test  shape is :  (14000, 28, 28, 1)\n",
-      "class_train shape is :  (56000,)\n",
-      "class_test  shape is :  (14000,)\n",
-      "Blake2b digest is    :  849ddca256f308db28ef\n"
-     ]
-    }
-   ],
-   "source": [
-    "clean_train,clean_test, noisy_train,noisy_test, _,_ = MNIST.reload_prepared_dataset(scale      = scale, \n",
-    "                                                                                    train_prop = train_prop,\n",
-    "                                                                                    seed       = dataset_seed,\n",
-    "                                                                                    shuffle    = True,\n",
-    "                                                                                    filename=prepared_dataset )"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 3 - Evaluation\n",
-    "**Note :** We will use the following data:\\\n",
-    "`clean_train`, `clean_test` for noiseless images \\\n",
-    "`noisy_train`, `noisy_test` for noisy images\\\n",
-    "`denoised_test` for denoised images at the output of the model\n",
-    " \n",
-    "### 3.1 - Reload our best model"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:26:17.939999Z",
-     "iopub.status.busy": "2021-03-14T21:26:17.939533Z",
-     "iopub.status.idle": "2021-03-14T21:26:19.036307Z",
-     "shell.execute_reply": "2021-03-14T21:26:19.036836Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "model = keras.models.load_model(f'{run_dir}/models/best_model.h5')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 3.2 - Let's make a prediction"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:26:19.040327Z",
-     "iopub.status.busy": "2021-03-14T21:26:19.039836Z",
-     "iopub.status.idle": "2021-03-14T21:26:21.757801Z",
-     "shell.execute_reply": "2021-03-14T21:26:21.758309Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Denoised images   (denoised_test) shape :  (14000, 28, 28, 1)\n"
-     ]
-    }
-   ],
-   "source": [
-    "denoised_test = model.predict(noisy_test)\n",
-    "\n",
-    "print('Denoised images   (denoised_test) shape : ',denoised_test.shape)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 3.3 - Denoised images "
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:26:21.764703Z",
-     "iopub.status.busy": "2021-03-14T21:26:21.764219Z",
-     "iopub.status.idle": "2021-03-14T21:26:23.768623Z",
-     "shell.execute_reply": "2021-03-14T21:26:23.769121Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Noisy test images (input):**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE2/figs/AE3-05-test-noisy</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA44AAABwCAYAAABRhy5gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABEiElEQVR4nO2dZ7gcxbW1tw0WEsHkHA0iZyEkkggmm5xzzogsQGRkco4XMMnABUQ2GXzJGZFB5JxlEBgBJoO5368u3lrnVDFHmoPvw7feP9pzqqenp7u6qka91t6/+d///d8wxhhjjDHGGGNK/PY/fQDGGGOMMcYYY/5v4x+OxhhjjDHGGGOq+IejMcYYY4wxxpgq/uFojDHGGGOMMabK2K1uuPPOOzuLzn+YM8888zdjug9fx/88vo6/Dnwdfx34Ov468HX8deDr+OvA1/HXQWfX0U8cjTHGGGOMMcZUafmJY8OZZ57Z6d/33HPPFB911FFZW69evVL8xz/+McV33XVXtt1MM82U4pdeeilrGzlyZIpPPPHEFJ966qnFY/3Nb376oaxlR2688cYUr7baasXPmnnmmVP8xhtvZNu98sorKV5iiSWKx1F6T0TE+OOPn+Jpppkma5t00kkjImKDDTZoad9dYd99942I/Jwrp512Wvb6zTffTPHJJ5+c4g8++CDbjvs855xzsrYtttgixbwmr732WrZdjx49UnznnXemeKuttsq2++1vf/q/D72O119/fbTCp59+muLrrrsua9tyyy1b2kcr7Lzzzm3bV8NZZ50VER37d58+fVL8wgsvZG3ffPNNlz+H/TQiv15TTTVVinlvRkTstttuKd52221TfNFFF7X82ffff3+KZ5lllhTr/XL55ZeneM4558za5p9//pY+i+ftkksuydrmmmuuiOie61gaV3fZZZcUr7feelnbUkst1el7OO5FRPz1r39N8dZbb521DRs2LMX9+/cv7qPVsk1PPfVUipvxq+Gzzz7rdLt33nkn2+53v/tdigcPHpy18TzxOowYMSLbTvtGZ3THdVxrrbUiImKFFVbI/v7666+nmHNKVxg1alSKJ5544qxtr732SvEBBxyQ4uWXXz7bjuP2v//97xQvt9xy2XaXXXZZirUvcD567rnnUnzxxRdn20000UQp3n///bM2vm+eeeZJ8dtvv51tt9lmm6V4yJAhWVuzluiO6/j+++9HRH0O0fNy9dVXp3jgwIEpfvHFF7PteO14niMiNt544xT/4Q9/SLGuPeaYY44U61qJ8PjXWGON4nY1+D2nnnrqrO0f//hHpzHnBEXH1eYa77TTTqN1fDU23HDDiIgYPnx49neeZ84vEeXztOiii2avH3744RRzzRiR3//sC9ttt13xWDlPN3NNw6677prim266KWvjuuy9995L8XTTTVf8LKU5TxERV1xxRYp13N9hhx1SfPbZZ2dts846a0R0HHPaQXOPc6z4JeC5XnXVVdu675VXXjl7fe6556a4du04bo89dv4Tjv1w8sknT/Hdd9+dbbfMMsv87PHVxlU/cTTGGGOMMcYYU6XLTxwb9NfyrbfemuL77rsva1tyySVT3Ldv3xT37Nkz2672JOT3v/99ivV/3kvwf0v+53/+J2vj06na/67zf0anmGKKbLvdd989xQMGDMjaTjjhhBTzf5tLTxY6o3ly+8wzz7T8nlZpjkmfOPJ/rx5//PGsbf311+90X5NMMkn2mtex+Z/bBj7p5XnnU8WI/Mk0/+fk9ttvz7b78ccfO92fUvufI/7PeO0JY+0JNmme5jY0/8tf+9/G0aV5Qvr0009nf+dT1Np9xSeCp59+enE7fZrA+4L/u7ziiitm2/HpEfdfu1b//d//nb3efPPNU7zRRhulmGNJRMSgQYNSrE8u+HkzzDBDig866KBsOyoC9H99H3nkkeIxt4uXX345e/1f//VfKf7hhx+ytieffDLF7I+1vvnoo49mr/mUkU8j9bN4/ngNhg4dmm234IILpphjYETE3nvvneJ55523eIx6TUjpf0FbecL4S9A8ceSTvYiIhx56KMWcyyIi/va3v6V4++23L+77vPPOS/E+++yTtZ100kmdvodPdhUe01VXXZW18Qm9Ps2lWoAKkmOPPbb4WUrpycGMM86YveZagk9dIvI5ot2o8qQzeN0ifrr2ERErrbRSiscbb7xsu4UWWijFTzzxRNbGe+vbb78tfjafMn7++ecp1idrtaeMvKf51E3XMkT7AvfBeUDPH49D10DN/ETVWrto1p5cg0bk46yqwErU1mH6ZJpj3QMPPJDi2hqAqp6PPvooa+PcqfP0mmuumeJavz3uuONSrGsUqnUYK+uuu26Kt9lmm6zt1VdfjYjuUQC08qRxnHHGyV7/+c9/TvF+++2XYqoYInIVG5/yR+RrxQ8//DDFU045ZbbdlVdemWIqgW677bZsO342fzNF5OvoTz75JErw2uk9w7Xysssum2JdX48pfuJojDHGGGOMMaaKfzgaY4wxxhhjjKniH47GGGOMMcYYY6p02ePYZDFVfS5RPTmhzlq19My8dvTRR2dtzERGL4VmMy350NR7RdQTVNqH+rKY+bPVrINKLWvrP//5z9HaZys0+mfVdNPjqF6z0nnheVCmnXba4mvuQ7976bNmm222bLt//etfKb7ggguyNmaYGt2MWPRU8jhUJ08PIPt4RMTaa68dER3PZzsoeVj0fBJmb2PmXM2iS9QjzMxp9MPVvAgTTjhhijXTILMEjjvuuFlbq/cWPQj0Meo+vv/++xTTgxkR0bt37xQz01zET96PrmSEbZXmOOabb77s703W3IiO/hV6vOiP0HGKmfaY2VS3pb9O7yV64Dgu1fzh9PlE5Nld6SVmZuSIjtmRCX1lzX0VkWcSjeiY2fuX4osvvoiIjueF56LZpmHHHXdsad/qaySt+q8Jzzu9SxER7777borVW9gOry/zFHCu5/2nMMNwd9P0p2OOOSb7Oz319DRG5OMCxyL1k00//fQtHQN9bprVmr58emZ1PcRrp944jjV8H33KEXmuA7036ZMlem7YJ3XtqN607qDmqdf7hd+f8/pXX32Vbcc1pd7D/P6bbrppS8fIz33ssceyNvYZ9b62er9zXU6/dETuaV544YWL++C8r3PJfwJe1zPOOCNrK3ktNeN6zSvN3yjMqqtrPGaaZsZ5vT84r+oajWtN9h9mso3omLm+hI47JdQfz8z1JfzE0RhjjDHGGGNMFf9wNMYYY4wxxhhTpctSVZagKFGTL1EmprIHvma6f90H0Uf6mia34bDDDste8zgOP/zwrI0yKkohR1eOWpNJ1GjkMt2R3rg5Jv1OlFOyDEJEOeW7csghh6RY04M3UueI/DE+05B3dlwNY401VvaaRYeV0ZFvKZTuklp5CpVrdodEVdGCrix7ojInlplgSYc+ffoU96/3CM/nDTfckOLVV189245p6QmlqYoWZKYUVgvetrpPng+OMypppORR05Iff/zxxf2PKc131PT8hAXgI3JpMa+BFp9nH1YpLM81CzpTqhiRS38pk9P7imnPVebH9O0s/aESxMUWWyzFiyyySNZGudgRRxyR4mHDhkUJLX/B8gXdRW280RJIJakqS+pE5Oe99nlNWvyIjvJWysUpHVYojVO5Va9evVJMuZqWWHnnnXdSrGUIWPie97SW0eG1m3322YvH224a+aye88kmmyzFaiVhaZILL7ywuG+WbmC5nYi8FA1l9EsvvXS2Ha07LByu/Y5jQW1dxpIRnBMUjqO6T5XJllDbiI737aRZO+l52WuvvYrvYXkGzuVTTz11tl1t7UFYlkjLmXC+qVmTdtpppxRz7doVWLJLxxyOxzWp6rPPPptiLZ3zS8B7LCJi8cUXT7FK6rlupiXrrbfeyrbjNdDfD3PPPXeKa9JPyoBZfkfLtPD6s0RcRD5PX3vttcXPqq1ruX6glFpLY3FeYNmSiNbK0/iJozHGGGOMMcaYKv7haIwxxhhjjDGmin84GmOMMcYYY4yp0mWPY+Nb0HT3rfrJ6GfQdL70X9TS+lMjrzrhRx99NMXU+9J3F5Gnz1U0FX3DOuusk70enZTLtXOjJR7WXHPNlvY5OpSOgzp49TRSn73nnnsW961+0hKbbLJJitXjWOKbb74ptj3zzDPZ61Z9jUOHDk3xxhtvnLUxFTLLFdDnExFxxRVXpFj7bnOuTj755JaOZ3S45557stf0Nep5Yeptvq/mcdT7jNB3xtTtEXmaf00BTqi5r3kJqf1//fXXsza+Vh8IvUo83gMPPDDb7t57702xliBp6A7PMUsREfoa1S9a6t+XXnpp9pq+LPUh0etCT5qO76VjUt8UvZZKqbSRfg+W2WD5A30fx/CFFloo246p7dXTyGvcbhqvpXoziV5HplcfNGhQitVfRw/UpJNOmrWdcsopKa6NzYMHD07xdNNNl+IPPvgg247XRD3SpOZ3Pfjgg1NMH57CMhZaNot+M3paI+prhDGlGevV38lroOVx6Gtk+RV6diNyD1HPnj2zNvq0WA6ob9++2XbsJ5rngdRK2/BeWnnllVN8yy23ZNuVSuBERGy77bYprl1jUiuN1l3U/J3KKqus0unfdVzl+pVr14i8jAP9owo9rt99911xO5ZIUE94aSzV/Awcm2edddasjX7n2thMH/OQIUOytpo3ckxpcieo/5brer3G9DXSO13z1LKMTg1dXzAHxFRTTZVi9VNyvNTfP7zHtTwSqfVdzoNcy/br16/lfTTU1jl+4miMMcYYY4wxpop/OBpjjDHGGGOMqdJlqWojYdJyGTX+/e9/p5jlLTQlMOV+lK9E5KUhmOadKeQjIo488sgUM5W3ytq+/vrr4vHykTfLSVxzzTXF96hEi2UJao+FKZP84osvsrZGusryIO3m/PPPz17XSm5Q4sj0zbW07pTzRuQlBCgrVthP7rjjjhSrJLN0fBG59JISh67IVpZaaqkUs89o/6mVXBndUiBdofYZCyywQPaaErWSLFvRUhCUYFBSpVC+ctddd6WYY0JExDnnnJNiTXPeo0ePFLNEwZ133pltRwmKps6m7JRp1btybbRUQDvR89vAtPs333xz1sZ7kHLU4447LtvuhRdeSDFLsUTk0hnGKr3neaJVoHfv3tl2lP5qaRbC8VglTzVpHNt4D1Jqp695D0f8JFXlfNMuxh133IjI+2xExHvvvZfiv/zlL8X3MzW8lorhWHrfffdlbd9++21Lx8d085Sn6n3Qv3//FD/yyCPF/VFKrCWK9NqR999/P8VMsc/5MCKXp3755ZfF/bUbjkekVq6K8zRlrFpygzJBnTe4T8pRtYwOzy3XOW+88Ua2HSWOCq/5GmusUdyOVge9piwZQmnciy++mG331FNPpZglR7qbM888M/u3geed42hEbqHh+KZrD8pTtYwS5aQ1aeRLL73U6d/VUjDFFFOkWOXT/OxDDz00xVregzLGccYZp3hMJUuBtmkZBx3H20mzvqaVKiJf29BKFJFLdSm3L53zn4OlNfR+YTkOlizkejciYuDAgSnWe5UScZ53LYHIuVPL47CE2B//+McU6/w4pqXq/MTRGGOMMcYYY0wV/3A0xhhjjDHGGFOly1LVBpUh1R53jjXWWClmBjk+Vo3IpTkzzzxz1sbH8cyKyKxeEXkWTD6O1yxSlFhoxkhmM6VUhtnQIiKWX375FKuUhFBGpBIByjs0o2dDd2RxbB5V1zIMatYnynZrUt8ZZ5wxxSrv43epZRGbYIIJUqxy11ahPFWlyuTKK69M8frrr5+1UZ5CaQb7dES9/1922WU/e6zthtnB2iGVZYayGip1Zna5ZZZZJsUqgWG2ZV6PiIjTTz89xZQ3a/989913U6wZUSkBo9xMobxFvzP7ZLtp5IuaeZbZ2/70pz9lbc8++2yKOf6oDJjy1E8++SRr47hIKU5Nfjz99NOnmJLyiIhFF100xRwvIvLvRgldTbJOaWpELq1mxs2aVUDHuFdffbX4eWNKcx1qY1sNlaeSkSNHFtv222+/FDMrpMqbKQP/4YcfivujPJXy8Ihc0kyplEo3iY5B0047bYrPOuusFGtmZ2ZOVfljd9LYRjSjLL+jZg/X89RQy1atqEWntG/eF8x0Offccxf3rfcIpXLMyqvyN857tDlE5BmLNXsxWWGFFVJ82223Fbf7peA6TO06L7/8corZb3V9tvTSS6eYGXUj8vUGsxxrVlCuh5hZnnNlRJ6RXbOzs38x2/JMM82UbUepN9fQEfnadrbZZkuxZh0nv4QFR2G27J87htKaZfLJJ89ec4xRC16rks6SVUltCbSR6JqUGZA5F+tvofXWWy/Furbk2Fybw7lO0zGnNoY0+ImjMcYYY4wxxpgq/uFojDHGGGOMMaaKfzgaY4wxxhhjjKnSZY9jo+vXVLL0JQ0bNixroyabOmFNg8yyDtTER5R18UwbHpF7M+gtZDrjiNw7RF9TRO4XokeLnsaIXLuuWuamlIaiemKmIldtsZ7HdtJch1q6ZfVVlDTe6m1h6m2WAogo+zVVc890x0zdrvu7/fbbU6x9hnpy+t9qWnWmzY/I+xBTXSv0Lmjq48ZvWEvLPbo0+2aafX3NtO4Ruc+YaEpxpu9WPxQ9iYTppiMinn/++U6323///bPXLA3AFP8Rue+Unlntu/TCqr+Bvltef03/v/fee6eY3quIiKOPPjoiuuZZapXmmPTa1MreDB48uNN90aMSkftXevbsmbVpyvYGLT3EUipM/69lIegnbLVEjXoh2ddWXHHFrI3edJYJoLc9Ih+rWc5HP7u7qI2r9CNG5OWlWLqBKf0jyiVlIvKxjqUHeN0i8v7FEi7qRecxaikDwrIBWsJFy3OUYH/V+ZzUPHTtRr2NDZznDznkkDH+HO2LXJece+65KdZ5k/2LaffVo1Xr6/SLcc6md1rR+ZHHwXtfS+DMPvvsxX3+EmhZEn4PvVfpneaYq/O/zh0leK8++OCDWRv9ayxPN8000xT3x3Wnvub1XmmllbLtxhtvvE63i8j9ujxeHd//U4wYMSIiumfsph++dv/wPKvPlLkCON+o151e2NocUfNW0mesvtvS+VFfv/Yh8thjjxXbGvzE0RhjjDHGGGNMFf9wNMYYY4wxxhhTpctS1VNPPTUiIvbaa6/s75STaUkDyq123XXXFKu8k49n33rrreI+KB9QORllFkxTranM+VmUp0VEfPTRRylmKupaWvJWH6E3ab4bamUCmvT/O+20U0v77gpNSuI55pgj+zvlMdttt13x/QsssECKn3766ayNcjJKb5SalK13794pfu2114rbqTyVUGKlcuTScdSuI0sZTDLJJFkb5Yvar7uT5n7UUhGUgjJFd0RZEkFpqqLSVJZFoPxaSx9Q1kipzGmnnZZtR8m23geUdzBNuZYuoDxKr/fhhx+eYspyNtlkk2y72vVv5B4q028HTSp2Ta990EEHpVjHXJbC4H2rZYOISsIpC1544YVTXCt9wBJFtfOlsmXKhymBWnLJJbPtmIr8zjvvzNrYX//+97+n+OOPP862owyPcvbuppHVazp9QmmqQnmqloladdVVU0zpdUTEww8/nGLKjNdee+1sO0qVOZ/xPo2oy1N53/HaqTSVx89jj8j7NfuT9juWkplqqqmyNpYW+aWgnLAmNSO6Ha+drnNYcoeSt7vvvrv4Wf369fvZY4joaJOhPHXiiSdOsV4rSvnOOeec4nFQZkzLUETE/PPPXzyu7qQ597XzUmvj+k+lqpxztSwRy6XQhqGlFTbYYIMU8zrus88+2XZcv2qpKZWIN3B8jMi/p8qsOR+zv+o6Z5FFFkmxWqkaK0d30KwptV9xjOEcH5HPbVxTLLfcctl2fB9/n0Tkcn7aAfSepjWNstBll102247jtFqaLrnkkhT36NEjSvD68zdIRF6Ki7Lb3/42f0bIdYCWCGzWAVzjKX7iaIwxxhhjjDGmin84GmOMMcYYY4yp4h+OxhhjjDHGGGOqdNnjWErfTjS19zzzzJPi008/PcXqUappzelDPPjgg1Os6aHPOOOMFB977LEpZur2iIgbb7wxxarpZ4pbegA1NTzLdqivjX4u6p81zTc9YVrWonldKmExJjSfSw/Jz0H/qJ5Pct5556WYqa0jyrpp1XvfeuutKWa/YJmOiIgJJ5wwxdNPP33WxhIcTBuv+nT1mZDXX389xZ999lmKVftPHn300ew1y0S0myYt9Ndff13c5oADDshe77bbbimmh0P9qCxho/cmryvP3z333JNtx3NNryXLDkTk/hv14tCDQG8G/UYR9dThvB/pqbriiiuK79F7uvGddIfneLHFFuv07zzWNddcM2u77rrrUkxPp5YiIfRsROTeplGjRhXfx+uoZSJKaFkQem7US0L0Hifsh/TDNR7RBvVd/1JMO+20EdGxrArHWS0pVPJY67z0+OOPp1jvd3qqWvVs1+YV7oN+84iOqd1L0M+vYyJ98GTOOefMXvP41VtMj153oXMF1wB6bjm+cZ1Uuwa6f/rEWJ6r8bJ39j4tfVHiwAMPzF7TV1679zkG0ZuqbfSfaak1+qg0d0J3lscp7XusscZKMX1hEfl6jb7dRRddNNtOfY2E3mL6gLXfs/RQzYPY5KSI6OhpvOWWW1KsHnnCPjPTTDNlbZxjeRw6jjK3hdLkVeiO9Wrz/XkeIvI1wNJLL5210V+45ZZbtvQ5WmaDc31pzIrI+wlzKNTgGjciXxuzDJyOEfRrrrvuulkb+zXn+mZeamAJH80p0cr96CeOxhhjjDHGGGOq+IejMcYYY4wxxpgqXZaqtoI+3mb6acqcVK5WY/bZZ08xpXb66JqPYJnCWh+/7r777iluUqg3UL5GyYXKbZgeXGVzpCYd0sfrpDslHI10Sh+DM4WxtlFGpBJUMt1006WYUtIazz//fPa6VDJi+eWXz7aryUcpf73rrrtSfP7552fbUY6g8oHSMSmUB6r0tZEZtSqX6AoliSplQ0yTHpFLvnjONL39uOOOm2It40AoHdfyKKXr2JW+PXz48E7fp/cO+6SWcKGMleV2dPwYOnRoilWS2nx2d0hxGulQLcU/y1RE5BITyoopW4zI08GfcMIJxf3zszXtPq8rx21aD5Rtttkme82xmeO53i+U899///1ZG1Ois1THhx9+WDwORcuadAcsBxKRy1MpOY1ovYwDtzvyyCOzNt7Hp5xySkv7YMkNLe/R6v3J8VLtBrw+G264YdbGMYljWK1UiZYy0PuhnTTn7fPPP8/+rmWPCOWpvOe0jIiOx2S//fZLMc8Z752IjmVqGrSEC8dwXedQejdo0KAUqxSS0vGXXnopa1PpaoNKJvm9hgwZ0ul7fkkoT9UyG7SncD20yiqrZNvx3tLyNZw7OPfofdWrV68Us8ycyh1r/YklXAYMGJBivT+0L7eCWosoi9ZSP8356A4rRyOD1Tmfkk7O6xG5nYoSW70GHFd0XctrQnQf7Au8fx544IFO3x/R0QpT+g2h61VKqbU0C+ft7bffvvjZlOSqxUvnp87wE0djjDHGGGOMMVX8w9EYY4wxxhhjTJUuS1U1i2lnf1eZGKnJU5k1UOVWzBZ09tlnp1ilEswu2KdPnxTXJDvMuBmRyxOYSZSSuYiITz/9tMN36Gwf/CzNeFiThnbno/8Glbwst9xyKdbH4GOP/VN34SN8lX6ddNJJne4vIuLll19OMbOrqSSNGRMbmUJEx0y8PGeadU/PZ8Nqq62Wveb3Yva3iDxr3DTTTJNileDyO6ukav7554+I7pE4NpndVBbI7MK1vs82yh0j8oyrNSiduO2224rb8XMffvjhrI1ZRXnPRURcddVVKZ5hhhlSTLljRD5+6DjFz3vnnXdSrBI6Zh/rTqm4svrqq0dExHfffZf9nZmha8fD/tizZ8+sjdkemeFPoQyN91xEnoWP93ANzZ548803p5j9k/0nIqJfv34p1ix+lBKTWh9Xmnu1O+7HBh0TKQ3SY+NxUPKm20099dQp1nNGKF3jta+hmdB5Pp988smsjfNqbQ4899xzi238brwfFcoaNbtrIwnTeaqdMGNlRJ7pVLMRUkbNDNXaN5lt9uqrr87auC0zyV9++eUtHa9ud+mll6a4R48eWRvH1Wb8GRNqVgRKyVXu+kvw3HPPZa+Z6V/nudK8p+Mev+OVV15Z/Gxu99vf5s9qKG+m3Pzjjz/Ottt3332L+6csnvYszQJKS4leH65zeB1pO4rIs/vqOe1OKwezDRNaAPQ+owSe8ypl0xG5vFPXq9wn5eK0PikPPvhgillhICJi2223TXGr9jbNGM5xVeeBkjz19ttvz17T8qUSdpXGdoafOBpjjDHGGGOMqeIfjsYYY4wxxhhjqviHozHGGGOMMcaYKl32ODaaZ/VOUKu9yCKLZG2zzDJLipnqWL0J9HDsueeeWdt4442XYvrcSj62iLwkgfq3anr8iSeeOMUsLaIpl9UzQKh5p4+KHsyfY+DAgRGR+yDbjab51tclqHWnvy+ifk3+/ve/p5ja7YUXXjjbjvp0Xm/126j+m9x4440pXnXVVVPMVNwRuX9Wj50+E3p3NZUy6Yrfakxp0sO36rGotelx0+f2ww8/ZG30hS666KLF/bMEyYUXXlh8T6vniOPAl19+mbXRQ6fp4A8//PAU77HHHsXPHTlyZIo5DkR0TJHeTprjGDFiRPZ39rPBgwcX38+U+csuu2zWRu9nrTwO/THqQeV9xvNHD1VE7nvRa8B9sLTRMsssk21H/4j26/XXXz/F7K9MQ/9zlErYtIOmpE3N993q+MBSUBG5N2efffbJ2uipm2222VI866yzZtudeOKJKaafe9iwYS0dU0TuleI8rfcjy1rVoG9ZaebAiI79RMtGtJMVV1wxIjqWPWGeA3oaIyKeeuqpFNfmefoktRTNFltskeJSiv+IfG1DT+sll1ySbcfXeo25TqMHlz6siLwESa3vMseAfn/mdphyyimzNl3rdQf0NCo1HxrzGujYzDGX5d0i8nGQnjGuQyIi7rjjjhS3OgfqWpa+fOae0HwiHH/1O5Mmb0JEx7JMvFfffffdrO2aa66pHXa3w/IbEbmPnus4Pc/0Pzb5KBo4/9Y8ibynee1XWmmlbDt69HfYYYesjb8TWOZq1113zbbj2kv7Asdm/iarlUljH+c+al5VP3E0xhhjjDHGGFPFPxyNMcYYY4wxxlTpslS1SVX8ySeftPweylP5KHW33XbLtmvkIREdJRH9+/dPMaWvmiKZkgFKIvTxdKvyC0o3+bkKUyJHlCVVNTmCPupvpAbdmTZe0zxTxtm3b9+sbZVVVkkxywTo4/2zzjorxRdddFHWRskK5a76yJ2pzimrUBkN00Xfe++9WRtlIZT6bLzxxtl2lPro9SldO+0zlKJpKZlfAsoSIlpPw//AAw+keHQltSzpwvs0IuLzzz9P8U033ZRiSq0icimpSrOZwpzp/1U+yzI9KpVaa621UkwpJN8TkctHtNRAI7utSUZHl+azVDZCWYqOPxxXeb9QjhgRMf7446dYU5HzPv7973+fYpXHMF07UcnxQgst1Ol2ERGTTz55ilmSYPrpp8+2Yz/U/rTBBht0up3ejzxeLdnUq1ev4jGOKbRblGj1PlNrBO8DljeIyNPVU86tZTYoy+JxqKT11VdfLR7XoEGDUszzrHMgoXxW98/jUPkb+4am/28lbfzo0lgqarYLlfExFT7PBceeiIhrr702xZx7IvJ1CSWcvIf1NUtwUJKnaGkRltipyUV5Dq6//vqsjeWXVA5XgtL5iIjrrrsuIrpnndOU+apJ2XVNwfIwlKdqX6A0WcsGkVNOOaXYRik0pcNrr712th3nHO0LHCcOOeSQFHO8jcilqlpyhOeA+9c1YK10TgPlt+2iWTfqvM4yMlxDROTjFGOF51blroR9Qc8f50v2E7WGfPbZZyked9xxs7aLL744xVx7cD0dkVtmGmtEQ+l3WW3OGZ21o584GmOMMcYYY4yp4h+OxhhjjDHGGGOqdFmq2mQZosxBUTnUMccck2I+7n3//fez7TbffPMUUzYVkUvb+Eh/9tlnz7ajbJKP5lVmcNVVV6V4vfXWy9q4LSWnzDYVkcsTt9pqq6yNMlxmp6TUKiLinnvuSbFKPdZZZ53oLhpJ1QcffJD9nY+0KTOMyK8Jr6PKs1555ZUUM3NfRMfz1MCMpQplFJrB9b777kuxZrmjFJbZHzUz6xNPPJFifdTPTIGaKZFQ6vPxxx8Xt+suVF7APqzn/IUXXkixZuEjo0aNSvEkk0yStbGf3HDDDSneZpttsu0oEd5ss81SzHs9Ir8HeW9G5FIvSlNUZkrJBSVUCuV18847b3E7lW81Y4tmSmsHTQZSvR8p6TvttNOK769JMymP4Visr9lnVF7Fe+bWW29NsUocmclPpfe8H4lm16adQa0IJckNZYIReabk/wQqJ6PESjOiMtsw6dmzZ/aa12e++ebL2jjmLLfccil+8MEHs+0ojzrggANSzDEhIp+/NGMk5/7jjz++01hRKwL79corr5xi9i1F+0+T3XennXYqvmdMYWbuiDzLon5fjpecRyhNjcgtOfp9KamsZaUt2Wa++uqr7DWvt2aFZsZrfk+VrvGeU6mgrolaoZGm/hIsueSSEdFRUv/QQw8V38O1DbOI6tjDtaZKHJkNmnYn2iQi8uvP7Ki1TPp6zjkuHHrooSlWSf6MM86Y4vfeey9ro4WI15jvici/53bbbZe1MVN2uyllKeaaT9eQaqFq0KoP/G1RkxXz+uv9x4zClNtr1mSue3r37p21cX1Us2Fw/cExZ3ShtUE/u4SfOBpjjDHGGGOMqeIfjsYYY4wxxhhjqviHozHGGGOMMcaYKl32ODbpX9WjRJjiPSLi6aefTjH9NuoZYykI9dfRSzNs2LAU18onMBUuS3NERHz99dcpVs9bnz59Uky/zVFHHZVtN3To0BSr55PaZqZA1zS+c8wxR5Rgyvp2o2l8O0M9qOo7bVBf1mKLLZbiZ599Nmujl6LxdWkckV9XlhrQPlPzHdKbw1i/+8CBA1OspTSoO6cfkP7ZiNxTRw9LREefTHegx13TqfMeUZ09Yfr/hRdeOGt7/PHHU8yyGOor4H1Av+jcc8+dbUf/knqCSp4Y9VQwPbpC3y39YeqNY9mAk08+OWvTY24npVT0m2yySYrVa8bXLM3B8xwR8dhjj6WY/reI8jig54XHoWn9Ccfm2na1EkW8fzTFegn1u9Y8IqNbdqYr6NjNOVA9jbVyQyV0vuH14WdpynfCEh4saxQRcfrpp6dY08Hzfqc3ij6fiHopC5YQaLUMg/b/xhtZ8yWNKVrSgPOZjlMcV1i2gB63iLpHuikfEZH7Tueaa67iezg+aumPWl9nqazVVlutuB2ZeeaZs9f8Lk0Jk85gH9d9LLPMMi199ujQfH/O4xG5H45jZ0TH8bNErXQDc2PQb821ZUReDo33y8iRI7PtOG7r+Wt1PGPZFvWxsl9PNNFEKdaSVCwD1J2eRqVZY0411VTZ34cMGVJ8D8ux7bLLLinWUmBES7pdffXVnW6nfaaE5oZg+RVdQ5bGMZ0DmcOAOVIiOpYIatC8G5NNNlmK1UvfCn7iaIwxxhhjjDGmin84GmOMMcYYY4yp0mWpaoM+Ej3hhBOK2zL1Lx+R1+SSE088cXEfNZgKd/rpp0+xpuqlRG/xxRcv7o8yEJVTUpb39ttvZ22UC2kK5lbRlO7tpLkOlB1F5JLeOeecM2urycvI2GP/1K123HHHrI1yT0pCdH+UNFMW3RXZGUu1MK2/pkCnzFMlnzxepqjv27dvth1LqegxNXIupp1vF43cSCUcLHGg0vGapJNQ6q1lb1S62jB48ODsNT/74osvTrHKL9jv1l577azt/PPPT/GgQYNSXPsew4cPz15TeseU+iod4vfiZ5FWpXWjg0pKKJVXWcqaa66ZYpUvEcqceA0iIpZddtlO30PJaUTEn/70pxSz/Moaa6yRbbfUUksVj5elVOaZZ54UsyyAolLBUskHHReYfr9kZ+iOMg7N9dPj5jEwxX9ELmusjbHPP/98inXO4viz4IILdro/3Wdt7GQ5CfZBfd8OO+xQ3Ae3U6kl7yHecyqL5TV64IEHsjZaQLqL/v37F1+rzeSll15KMa+xXu9WpYU1qS/3wXFA981SWVqSgjJJLWVFanLnkjxVSx6wTM8hhxxS3F93oeMez+26666btZXkiZRwRuR2p2+++ab42SyrpiXWWE6MZbMuuOCCbDte1379+hU/q0Ztvmx1bbfQQgsV27rTAtCsb/Q6Un6rdoWPPvooxVqujPC8N+VbGlRq2rD88stnr7neojRZz8nGG2+cYv3NwDKGXPOoBaAmJeY8TXQ+or1MbXw6znaGnzgaY4wxxhhjjKniH47GGGOMMcYYY6r4h6MxxhhjjDHGmCpd9jhuscUWERFx1VVXZX//6quvUqwp3xdYYIFO9/Xiiy9mr+mp0xTNTH3NVLIK04qzRIKmhmdpDfpyInK/Jv0d6iOjn0u9XfTw/PWvf03x1ltvXTx29TQ0Hk2mFW4XNc13CZbFqEEtPdNwR0Tss88+Kaa/Ukt/TDvttJ3uWzXj9C5+++23xTaWetFrQC+WpmNmSQqmOtf+yXIx6u9gSYp209yP6l95+OGHU6zlQaaYYooU0xtFP2dErnXXkhj0qw0YMCDFLNOhMCW6lvOh75AlMSIittlmmxTz+tPDEJH7rdSreu6556b49ttvT7F6Nem/Oeywwzr5Ft1DyR/CsgXKqFGjOv07+3pE7rnQNOK8JvRDsY9ERIwYMSLFvHZd8bXQG3nHHXekWH0ZvD68hxWmvP8lSmy0QjM31Y6HnsaIfMypvY/jlo6r9KjRj6zefnrNOC8vscQSxWPiGBiRz1O8r7Sv0se46aabZm30KrFczPXXXx8ltIxFU/Kk5ElrB+r9o+dJcxewBAvLqmi+Bs43ujbiOoXnQr3E9LmxLIKuIegf1nvppptuis6oeSs17wHXcDPOOGOK1SPNfl3zA7ab5rvQ4x4R8eOPP3bYpjM472n5Ca4h1ZtLn/Hvfve7FGtplkMPPTTFXEPrOMDSObPMMkvWVvIn7rHHHtl2HN/pp6vRlZwStfM4pjS/N7jOioi44oorUlzzW3Ptpp7Weeedt/g+ruNZSk/zMHCMbHUuOvDAA7PXLHXC+4druYj894SuedmH2Adrx8TvGBFx6aWX1g47IvzE0RhjjDHGGGPMz+AfjsYYY4wxxhhjqnRZqtqk/2/+7YySNDUiTwOrsgeiMhBK2fhIWh+PU6LGNLvbbbddth0lenwEHZGn1uX+tXxILYXxc889F53xxBNPZK8prdV9jDPOOJ3uo53o+aPsR1NHU9a29NJLp5gyAN1n7RE50wyrNPXkk09O8V577VXcR6uyAF5vlf5y/xdeeGHWRtkf+8krr7ySbVdLWd4cY3eWcVA5A0uOaBkQSjwpT9XyBEy1rpJOyg4pa9P00JSScB812bOmwOZYwH1Q4haR3/sqM6UElbIvSjv0fTz2iI6S9v9L1GRC/L66HV9T2qLS5BJMGx6Ry4oVjv2azpxQxqplW8iVV17ZyiF2KL/Tnfdjcz51XLr77rtTrDJ32j7Yx3SuoHxJJeHsx0xRr1AeRSsHS0lE5HOd2jwoGdV5lfD8HnDAAVkbXx9zzDEpVokj5xZKQbubRoqvElte12mmmabYduKJJ6aYc7xuV4NyXi2/wlIk33//fYp1LUMJpY7hfB+tDj179sy2Y99lubOIXDJNea6WZ+M4o6Xcan1oTGmktFo6hfOUruso4aW1hmVPFB1LODZR2s91bEQuJW61DMb++++ftT344IMp5jV98803s+1OOeWUFKu1ivB6a7/jml2tZuutt15EdCz90A4a+wpL4EVEDBkyJMUbbLBB1nbEEUek+KCDDkpxr169su1q0um55547xVw36lqJpf94j9SkvpR2R+RrXloMdB/jjTdeinVMLK29hw4dmm1Ha4LOj/wuJfzE0RhjjDHGGGNMFf9wNMYYY4wxxhhTpctS1YaPP/44e81Mp8OHD8/a+HiZj+pV4sgsVZ999lnWVsqY9Oyzz2avmSGImY+efvrpbDtKKXbfffes7eyzzy62kZpshVm8mFVNs2oRZhmN+CljUndIqpoMfSqP4KNuShsi8nNBiQXjiDxzn8IsfDWJyp577tlpTPlORJ6NtZSJNSLPNKgSN76vyVLaGcyApjJiSof0nM4000wR0TF7ZHfC8zzXXHNlbTw+9i3NDFeDmWKb79cZzCBIaYbK1CkXUbkVpX2Up6qcnfcWpakRuQyEsj6VnPAcqBxQs0v+EjAjLiX0Efm9+tBDD6VYZYGUneoYw4x/zIasGQRnmGGGFH/55ZcpVmkqzy2vfUTe/ymH+/rrr6OEShd33HHHFOuYXkKl2htuuGFEdJREtwPN3tjAPjxy5MisbZNNNkkxpWaUp0Xk165v375ZG+fBzz//PMV67++9994ppiRNsyz26dMnxZrNlLz99tspZh+JqFsWaFO44IILUqxjCe9PSpgjWr/+o8ONN96Y/dvQalbJP/zhDynW8axVaA1hHJFbKMYeu7yMo9xe52VKx0899dQUM4NnRC6fHjRoUNY24YQTdvq5uh37ncrmdB3YTpr7hNcjIr9fJppooqyNc2eraL/YeOONU8z1r64vWC2A/Yd/j8gliffff3/WxuvD8by2bnzyySez15SjU9bJzOo/R5MVtDukqpSMkk8++STFKs1ldm6ON+zrEflvC83oXrKcKbTucb7VfsFj1GyuJbsJs6hGRNx5553F4+DncZ5mRt2I3KKk64VW8BNHY4wxxhhjjDFV/MPRGGOMMcYYY0wV/3A0xhhjjDHGGFOlyx7H448/PiLyNMXKcccdl72m7pZp+KeccspsO2rdVRv83nvvpZjpYvWzWCaA+nvq+SPylLm19LOtps4eMWJEsU29GYQ+KvWj1LwLY0qjm95ll12yv88333wp1lIF9AbS16jabPpvLr300qxN/RMN6qOhVp9+CaYRjsh9X5oqnP4olpZQpppqqhS//vrrWduPP/6Y4kknnTTFjf+0FRqvl/bV7oRlEm6++easjV7DM888M8W89hH5d2/S0zeUrmOPHj2y17zf6TOtpcButd+rd4j3oKbRp0+W/iBN4U2ftaaUb8YCesPajfqQWDJB4djE8VG/0zPPPJNi9ReRgw8+OMX03UVEvPrqqylmqnC+JyIvn6GeXh4XfeQ1WFIpIvd7tFr2h36jiJ/KVXSHd3ysscbq9O8sgTPFFFNkbXxdK6PD8fj3v/998RjYpsfDckPsF4888ki23frrr59iLbFDzz59jfR5R9SvCVPKv/zyy8XteN7UO6U+3HbS3Pvq1avBY9VzMTrQo6UlPXgfcDstc8PryFjhuMc4Iu+HWkaJpWRq17vW1o5zVaJZs+jaoDZ2nHTSSSlmDgUdm1lGRv3S9HezTIlCzza9cf3798+24/2pZah4vIT+eEXXQ/Q1Ei3zxbItyn333RcR3TOuNr7wf/7zn9nfeS7Ux8oyYaRWuqrmm+Z6Q8uZML8Cx0fNp/HCCy+kWNeQLGPIfANKk58kIvcqKhxjtQQUj9ceR2OMMcYYY4wxbcc/HI0xxhhjjDHGVOmyFnLBBReMiI6PSPn49Jxzzim+n4+JNS0uJTH6mJ2PcSl5Ouyww7Lt/vWvf6X4wAMP7HTfEfnjWZVNbb/99p0eu6bmZekPhZKR559/PsW77rprtt3++++f4ubcNtQeV7eLWumMGpSoqEyXpUlUBkL5GtOwq9SDj9aHDBmSYk3xv9tuu6X4tNNOy9quv/76FLP/qByB8j2VO7RagoGya6bUj4gYNWpURHQs/dAOGqkpS8/oMYw77rhZG1Mz/+Mf/0ixlsg477zzUqzSOJ5DphuvoSUyCD9b5XWUxfJaaSmeWupspjOnrHOOOebItlt66aVT/MQTTxT3112odJyvOVZE5FKpRRZZJMUq9aUcSmVNHD95ff72t78Vj5EScEpTI3Lp/YABA7I2lu5gyQgttcTx+MUXXyweB8cWLe3DlPpM2d7drLPOOp3+vdUU9Sw3pFLVmjyVUG7PchkKr53ONSxRNP7442dtlCv27t07xZS2R+RySj2OY489NsUlqV1ExAQTTFBsa9YcWjanHeg83Qqla6zSON6rKgXkPEVpKWVnET9ZhiIi9thjjxSrLYESV457NbQ8DuXTSknyqeUkuI+ZZ545a1PZXztp7BEqm6cEVWF/ou2G421EXsaDpQ8icttHTabLMji069SOj+U3IvL5V/tTiZo8kXJULYfUqnWr3Wj5kAYeT608F8tVKVxfDhw4MGvjGMZybAqvN+dftcjVpLCXXXZZijlXcoyNyPtazSpSY0yvo584GmOMMcYYY4yp4h+OxhhjjDHGGGOq+IejMcYYY4wxxpgqXfY4Lrfccp3+nSmHWaohItf1MlUtvXAREcsuu2xLx8B90LsU0dHrUuKBBx5IsfrY3nzzzRTT8zbvvPMW98cU/xERG220UYrp/1S/A31L6jNpfH8bbrhh8XNHl5tuuikiIlZdddXs701K5YiIJZdcsvj+9dZbL8X6naif1pTpTN9eS8lPLxtLS+y7777Zds33iIgYPnx41kZfDY+RZSEiOqYqHh34PVnuIuInHylTMbeLJvX1Lbfckv2d5S7U/8jXLLNAv2NE7lXWFOD3339/ilmeYd111822Y1+gn069ybw+K6ywQtY200wzpZjn+Ygjjsi2q40f9GmxrIr6c1ma5Zprrinur7vQ9P/0PKmPhvcnS06oZ5BoOv1Sin71eZ9++ukpZjkS9Y7TG7b33ntnbSxvUvNYMJ17v379sjaOq+OMM06K6ceNyD2OtVI87aZnz55j9H6ORTo2c6xT6O2fZZZZUkx/a0Q+17EUj8L7UUtvnXjiiSnmXMx5To9JmWyyyVLMPkm/UUTEG2+8UdyH+t3biZYVaqDPjf40hSW+dNzXsluE5QaYo4GeYIUewVdeeSVrq/nK2RfoT+3Vq1fxPQp9WfTgar+r5b3oThr/54033pj9/cgjj0yxzkX8HuqbI03ugoiOfvvSWlHXSqXrutlmm2Wv6WNUDyp9ja2WKKqt2Vr1SSo1P/WY0oyFzM8Qka9ZdP7nd1psscVSzFJvEXlZIvX2M88BPagsvRPxU4mniHzMWm211bLt2C+0z9CHSW+lXkeW+FBPI33M9DdzvR6R5ygZHfzE0RhjjDHGGGNMFf9wNMYYY4wxxhhTpctS1UY2yHSxEbk0TqHkppYSmlIcSqMiItZcc80UM2W5ynkI5Ur6aJ5yrlVWWSVrY7poPibW9Px9+vQpfrbKdjrbX0ReQkJTzzepfJluu100csDao/8alCoqe+21V4o11TqlZ3/5y19SrKnnCWUva621VtbGa1eTNbWaflhlnaWyBDfccEP2mhJDyj8jfiqpQAleu9F041oSpMQ777yTYkpvInKp4XXXXZe1UUrBVNn8u1KT0fC1yr4pjVx88cVT/N133xU/qwbLM7RaSuSXgjJAZfPNN89e85xR7leTIel553hMCczHH3+cbUfJFuXiWraAqeJZMiAilyGyZASllRG5hFJLaXz11VcpplS11t8//PDD7DVL57SbZl5UKdBnn32WYqbxj4i4/fbbU0yrRaksVERup4jILRW8X0455ZRsO5YaqN2PnDtpQ4mIuPfee1PMsV6vlZbxICxJwbT52sd5jCp9bUrnsN92N5SnatkgjlvvvvtuilXmXysPw/cRLZ/AfXAe1fmcfUuhPJXnWe8XSva1pBRtNJT38v5WWCYrImKNNdYobjumNBJVHR94rbREAud2lmDgXBmRH7dK9lnWiaVJtOxYybqjZaI45up3oTWm1XWOSmRp3VpiiSVSrLJV2iW0dNTLL78cEd1TdqxBy1vUxrCSFFvXDZRz631GKb7KU8ncc8/d6XHUrgfLCkZEXHHFFSmuldWorXvYd7ne1Pmodt6attp19BNHY4wxxhhjjDFV/MPRGGOMMcYYY0yVLktVVaLaQIkFM4pF5HIoyk0mmGCCbDtmbFUJKuVLc845Z/H4+Ii3yWYZUX9krBJUMvnkk6dY5VsLLrhgilWSSalCjd12262l7dpNI61QaSqlmSrbJAMGDEixntsffvghxZr5jlkiKdm69dZbi59F+ZJmwKU0jnFExMiRI1M8xRRTFPdPdDvKZCkJmm+++bLtKE997rnnsrZ55pmnpc8eHRpZgWZyfeutt1LM+yAil5gwI6pm+SrJVyJymQ5lsnodt9pqqxSzn6gsm5kGNQvmiiuumGJK/nQflO9phjXKITkeqTRMxy4yutnmWqGRmqpUj3L4m2++OWujbIjZGPV+ZBZZymEi8jGX4yAzvEXk4y8/S7P5UnJ+ySWXZG0cWyjf0uPl96IcNSJivPHGSzHHJ+4vIs9QzXE6om6XGFNK2er4PWpzEaWfmgGX37GRhTVQQjnhhBOmWLO88j6uHYdmHiRbbLFFiilNp4Q1Is/0q/c0pbCUqurcXjvGZtxh1uV2o5JLZrRUST3hvLrwwgtnbex/Kknj+LPnnnumWMdVzcDeUJOpK5ynOA/wetQ+S+H9yMykEbnUUo+pmbcp92s3tf7MNUlEPl7wWDmnRuSS20UXXTRrY6ZWWo1UOk5rAjNczzbbbNl23IdaSlqtRkB0HaXze4OOM5yLtU925/Vr0L7z5z//OcV6zrimYFZRHaN5re68886sjee2tp7keEbrDt8TEfHII4+kuCYFpURWv/Omm26aYs38XrJDrb766tlr7rM0ZtSsVX7iaIwxxhhjjDGmin84GmOMMcYYY4yp4h+OxhhjjDHGGGOqdNnj2KtXr4joqHtn+uCmZEcD/WDU+5911lnZdtQeM+16RMSwYcM6PZ6apn/o0KGdvkdZaKGFivuopa0lqiGmx5F+ocUWWyzbjn7Ascfu8uUYbUqev+mmm674Hur46ffSdPr0hbTq9ayhenzyyiuvpLhJvd3AEhlEvVebbbZZiuljjIgYPHhwipkuW9OejxgxIsXd6WlUmuvA9PaKps0mLEujadFvu+22FL/99ttZ25FHHpli9bmR0v2jvuJW04g3409ExNVXX521HXzwwSlW7yJ9RTpmtHocTf9nOaB2od7GBvolHn300ayNfj964+iNishT9y+//PJZG78v/ZRaaoh+Bx3fCb0yAwcOzNrocaz5J/i91I9ITybvQfW78n5Ub9ILL7xQ/OwxpfGss8xSREevIaFvV73yo8MXX3zR5ffQzxyR+xi1BJKezwYtQ0T/o47hl112WYprc+wyyyyTYpYZ4TGqt7Kd9O7dO3vd6jjFvqklnegF1OtdKp9R8xny/Gmqfs7nei9xnmp1nUMvV0RePubbb79NsZZ7IBdeeGH2upmf9Pq2g6Yk0D777JP9naXfaiXd2G/1vHDMoZ83Ii9hw7wgJ598crYdvb/0rnGtEZGXo1N4n/E6Mj9DRL7evuCCC7I2lrliiRC9jly/n3feeVlbs2bvjrJjzXfUHCu8Jpw3IvJyYq2ipZJILU8Gr3ftXlpppZWK++C55vs0D8k000xT3H/ps7V8HNF9NPkytEwh8RNHY4wxxhhjjDFV/MPRGGOMMcYYY0yVLmsjmY66hD5OZpmE/v37p/i4447LtqulpyX7779/ilU2RUnC008/3dL+mNI3IuLQQw9N8fzzz198HyWAfHys8NG/yuSmnHLKFH/44YdZm0ov28lBBx0UERFHHHFE9vd+/fql+J133snaKE+tPY5n2/vvv5+1UT5KuZKWOplsssk6Pe7LL788e015FKUyEXlaesrBNDU3j19LkPB9tRTGH330UYpZwiWiozS2nTSyH02FzfNOGXlELglnmmqVM9QkS6eeemqKX3rppeJnqcytgbKciFz+SelwDUpTFS2rQRlU0/cjOqbDJywLEdFRCtNOmpTghxxySPZ3SpYoK46I2HLLLVNcu1ZsK0nhInLJn5a2ofSTqDSOJZY22mij4mexvIdSG1taLYnCeYb3cETEkCFDIiKXPbeLo48+utO/f//99ynW8YfzHu0V2r9rfZUsueSSKaYVIiK3QzDVfikdf0TH8gykdq1a3X8NyuWVRrbcHVLVZi5pVZoakcvAeZ+xTFBELvFTSbhKybvKHXfckb2mPFXXQ+wbnCtV0kq5q5Z+YMmYktw+IpfZ6xryjDPOiIiOZUvaQVMGZLXVVsv+zrGJJeIicqsN54B55523+DlaDqs0tui64f77709xbZ3AMUwtGqU+o1YwUrOvEF2Ts3wcJbLdzbTTThsR9fuxVWlqzd6mNqPhw4enWEuwleD+tG9xfqRcOiLvo9yHrqFLJZ/0ffyeaiPo0aNHivX3z6WXXhoRdaufnzgaY4wxxhhjjKniH47GGGOMMcYYY6r4h6MxxhhjjDHGmCpd9jiWvDhEtbuj40FQb8MKK6yQ4pKPJCIvSzDOOOOkmNriiFx7TE9jRK7/VQ8Pac5FREcv5Jxzzpnixx9/PMXqG1QvVmfUyh2MLvyOZNSoUSl+5plnsjamd27VU6VlVOhrpGacWvKIXJ9PDx29dT8HS0Z88803Kd5ggw2y7VjSQ1Onl6h9f03F3/gCWJalXTTlQzRtNj1p6jtcf/31U8zvoeeWng71VdAHwrTNd911V7ZdzedGmKZcvRP0VdBLTB/bz9G3b98U089Tozs9jUpTroFeuIjcc6wMGDAgxTzv6kN65JFHUqx+GHoG6ZNVf6fus+Goo47KXt96663F4yUss6DeKJYgee2117I2lkd44403UqzlaNTXSJpU9N2RNv6iiy7qdN8PPvhgirVEUclL0ni/Glr1ONLbMvPMM2dtvG85P2644YbZdvSS8/6LKKdpV59/yRcbUZ7D1V93zz33pFh9t63MnaOL+lA7g+cyIvc1Mg+DfleWo9CyY1w3sFSDeuh4jZlDQcs9cN2k9xJLA3z66acp1vUbPY7an/h6++23T/Fcc82Vbcd5QMuOTTzxxBERcd9990W7aeY3zYXB9Z963ng+tQxVCfWhaRkXPZ7OqJXSaLyaEfm6JiLiuuuu63T/LNEUkY/NWr6oBNdrERHrrLNOirfeeuusrRnHxx9//Jb23RWavqoe3tK8VKN2DbRsErfl99U1yrXXXpti5lPQtSBRf3PpuLh2iYj44IMPUlzza5JZZ521uF2pvJY9jsYYY4wxxhhjRpvftJo1bOedd249vZjpFs4888xy5fIW8XX8z+Pr+OvA1/HXga/jrwNfx18Hvo6/Dnwdfx10dh39xNEYY4wxxhhjTJWWnzgaY4wxxhhjjPn/Ez9xNMYYY4wxxhhTxT8cjTHGGGOMMcZU8Q9HY4wxxhhjjDFV/MPRGGOMMcYYY0wV/3A0xhhjjDHGGFPFPxyNMcYYY4wxxlTxD0djjDHGGGOMMVX8w9EYY4wxxhhjTBX/cDTGGGOMMcYYU+X/AaN9nWwYvsKdAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 1152x169.2 with 8 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Denoised images (output):**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE2/figs/AE3-06-test-predict</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA44AAABwCAYAAABRhy5gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAk8ElEQVR4nO2da7CWVfnGbzv8tQzPqCgiKGfkpOQJFCVNB4bJtBkkacYoZwqb6VvN1Nemppk+NeUXp2aiohxQGC3IwBQ5KgdFQEEkBVTAxDykVpr+Pzgur/tyP8st7A37fffv9+nerLVf3v2sZx2eea7rvo969913AwAAAAAAAKCJTxzpLwAAAAAAAAA9Gx4cAQAAAAAAoAoPjgAAAAAAAFCFB0cAAAAAAACo8qnOdpwzZw5ZdI4wt91221GH+hmM45GHcWwPGMf2gHFsDxjH9oBxbA8Yx/ago3HkjSMAAAAAAABU6fQbx/e57bbbuuN7QIU5c+Z0+WcyjocfxrE9YBzbg944jlp+66ijDvmFQI+gXcdRx8rLpr311lsl/uQnP9nY79Of/nQ3fbuup13HsbfBOLYHtXHkjSMAAAAAAABU+dhvHAEAAKBnom+d3n777dSmP9feOB599NGd6geHhr8h1J/feeedEvs4vvnmmx1+nr599J99HBlXADgYeOMIAAAAAAAAVXhwBAAAAAAAgCo8OAIAAAAAAEAVPI4fA/cjdLbtE5/g+RwAALoH9cM9//zzJV63bl3qt2vXrhK/+uqrJR46dGjqd8UVV5T4lFNOSW2f+hTHhkOhli313//+d4l1fF544YXU78UXXyzxf//73xKfeuqpqd/AgQNL/NnPfja1acZVPaPgfQToGmoe5s5Sm49Haq7yRAMAAAAAAABVeHAEAAAAAACAKr1Wc6LSHo0jIv73v/912Kb/HlEvpqwykCZJCAC8R22evf766yVWKVdtzv3f//1favvMZz5TYk9ZDwdPTYrTWZmOr4k6rsjmOscbb7xR4vXr15d43rx5qd+WLVtKfNppp5XYx2Ds2LElPvHEE1NbrcQDfDQ6D956663U9vLLL5dY5agqP46I2L9/f4l17FxG3Ldv3xL7mojkGODgqO1tOqdfe+211O/vf/97ifft25fa9Nyj87ZPnz6p38knn1zi4447LrUdc8wxJdb53dWleHiKAQAAAAAAgCo8OAIAAAAAAEAVHhwBAAAAAACgSsuL3DtbIsP7qQ75lVdeSW36s/qr3At59NFHl/jYY49Nbccff3yHMXxAZ/1QB5uOuLOeKug+mryLb775Zuq3Y8eOEj/88MOpbcWKFSVWr4/r+0eOHFniqVOnprZx48aVWD0DeLQ+QOeL+0zVQ7d79+4SP/7446nfmjVrSqylHyKy/+KCCy4o8YQJE1K/IUOGlFj9HBHZp9Wbx873omeffbbEixcvLvHKlStTPy3doPNn1KhRqZ96bHrzde4OdJ69/fbbqU093Hv37i2xro8REQcOHOjw83ys+vfvX2L3qnZ2j4Xuo+kM5Ovvf/7znxL/61//Sm26Nuu64B5W3fe8NIuuq5Rm+Wh8/dXnCfUmb9iwIfW74447Srxz587UpnkYBg0aVOIRI0akflo66bzzzkttJ510UonVi675HyI+PP4fF07QAAAAAAAAUIUHRwAAAAAAAKjSMlLVJtmhvzJuksa5JOSf//xnibdv357ann766RKrbFVlJBER/fr1K7HK5CI+LKOD92iSZtRKojSVR4mopxx2ucf7qMQ4AmlGV+LzTGU0zzzzTIk3bdqU+t17770lXr16dWpT6YfeM56mWqWRLtM59dRTS6xSSEpzfIDOLR23iCyrWbhwYYl/97vfpX4vvfRSh58XkeX8Kq30MgFnnHFGiWvyOqW3zVuVnEZEPPDAAyVetmxZiX3PUgnq9OnTSzxx4sTU74QTTiixz5Hedq0PFb9ndexeffXV1Pbcc8+VePPmzSV+7LHHUj9dE3XNVblbRC6r4msia9/hQddB3x91/Pfs2VPirVu3pn5Lly4tsdsD9Ix6yimnlPjMM89M/c4666wS+3wfPXp0h7+n9oKI3n1W0nH09VfHUcsh3XPPPamfSld9j9XxUTmylvCIyHN84MCBqa3pucPPvIcKbxwBAAAAAACgCg+OAAAAAAAAUKXHSlVrWTb1lbFmm4rIr381I6pnotKMZcuXL09tmolu3759JfZMRJdddlmJVf4WkbMYtfsr/Y+TEVXlo9rPX/3r2KkMwF/vq3TCpYv6f+mrepe/aRvynY+PXufXXnsttanse8GCBSW+//77Uz+VaGmGsoiclVjlVj73NdvnQw89lNouv/zyEqu8o7ePd1MmP5XCReRMt4sWLSrxCy+8kPrpXFIpf0SW0ej66HNax7gmk2z3ddXRfe8f//hHatNsfbq3eTY9zbr3hS98ocSe+Vuve2+7zl2NWyY0o7SP46OPPlriu+++u8RPPvlk6qdzRDPiqhQ5ojnLYgTj2p3omOv6plnBIyK2bNlS4l/96lclXrt2beqnn+HnLZ3j2qZ2rIi8P9b2WF2nXd5cW5vbEb2ees1839Px+v3vf19iveYR2ZbhGVFVPqxjquu5/9++fuh819j3gUOFN44AAAAAAABQhQdHAAAAAAAAqMKDIwAAAAAAAFTpsR5H19+r1lhTGruOW71SWmZD/z0ip4330gCa1l8/31PdqubZ21TL3Nu8BOrF8ZT86oFT36l64SIitm3b1mF84MCB1E/TT7tPR9MWa9uECRNSP/W8uU+yN49jDZ2PmvJfxyoie6/Us+PzVn2nkydPTm3nn39+h/+vepEjIlasWFHiHTt2pDb1CF166aUdfl5E7xvjpnF86qmnUj8t8aBp491TNWXKlBJfeOGFqU29yuod11IpEdm33FR+ozeivin38G7cuLHE6v31dPrDhw8v8bnnnltiveYRvW8edCe1chxeduGuu+4qsY6pl3HQOXP22Wd3+O8RHx5/6B78nKOeRC2nsGTJktRv/vz5JfYyG8qgQYNK7N64ESNGlFjPK/v370/9tByWlkOKyOdj/b88r4euE73B46hrrnoL9VwTEfGHP/yhxHq20TU2IudF0RIoERH9+/cvsV5nP8uo59HXBfWgdmeeFd44AgAAAAAAQBUeHAEAAAAAAKBKj5WqOioF0FIN+vo9ImLdunUl3rBhQ4k9ba3KGD1dtr7u1Ve8tbITxx57bGpz6U+7oX+7X5emVNQRWY6xevXqEruEQ8dVZcWeRromxdFxVCmklwlQ6eLUqVNTm8ok9Z5p9/H9KHSMVTqxdOnS1E/Lbqg0+bTTTkv99LrPmjUrtWlfnft+L6xatarELmnW+e/zHd7j5ZdfLrHLgNevX19ilUPddNNNqd8111xTYi97oxIelTSfccYZqZ/KozwdfG9Gyzj85je/SW1eBud9XEr8pS99qcSf+9znStwbZGc9BZWEq7w+Ipfj0PF2G8bgwYNLrNLFAQMGpH46ri6nhEOjqZRRRN5/dIz/+Mc/pn5qoVCZsZ9Dpk2bVmKXP+q9ofucSp0jsjxVbQMR+Yyl+4BbsNpd+uxnWV1X77zzzhLfdtttqZ9eM5Wg3nrrranf0KFDS+zXVvc6lbP7WUZLuvg4qk2hVhbvUOndp18AAAAAAAD4SHhwBAAAAAAAgCo8OAIAAAAAAECVHmsgca2xanc1zbBqxP1n1SerZjgipxw+/fTTU5vqvTV2v43+rL6fiPZMZ97ka/Rr++KLL5bYyzPcfvvtJVaPo2rEI7J/Tf0DPgZ6X7jPQL+j+kW0FEBEvmc2b96c2r7zne+UWL2Q6g+KaH/Po89H9Rqql+KRRx5J/fS6qzdj9uzZqZ96OLTESkSeS3qfuMdRvUPu2dKU9UcffXSHn90bUd+T+mMee+yx1E+vrfo0Lr/88tRP/Yo+J/QzNFW4j5V+J8pxfIDe+56iXa+TXturrroq9Zs0aVKJ1a/U7uvXkcS9hXp+Ue9wRB5j9Qh7aRsdx7Fjx5bYveN6L/hc0u+l62BtTezt62UTXhZBz406V71ExgknnFDi66+/vsQzZ85M/fS8qvtXRB5XLRmhZeUiclkQ/wxdm3Vf9fFu9/H3cdSSfnPnzi2xnnEj8r73ta99rcQXX3xx6qf+fb+Wen7VMfD8Kdqm4x2R80h0597JbgEAAAAAAABVeHAEAAAAAACAKj1WquqvjJtkOlu2bEn99PW8yhhdWjhkyJASe8kIlXeoNFJlBRERw4YNK7G/Tm7HV/pN8tRXXnkl9VOZ2/z581Pbvffe2+Hv6TWPaC594ZLgmtxKx1xlP16aRWUaLh360Y9+VOIf/OAHJZ4yZUrj92hHXAasUg1ND63XMiJi+PDhJVZ56pVXXpn66Vj5OKo0QyVADz74YOrXJIuNyGVVKPHwATquKtnWsjkRWdZ2zjnnlNjLBGg/l/OoRFwlNieddFLqpzJo//zeVDbCJY5aXsolb4pesxtuuKGxrR33qJ6C7pV6DomI2Lp1a4ldaqZjoucLlxyrBE5l+H4OqVlK/Hu9j8sYdT32tVl/7qzctR3x/VH3LLVM+bXVc+gll1xSYi3N4b/nFg0th/XAAw+U+L777kv99F4bMWJEalOppa4Rfi5rx3HVdVbPFxFZnqq2Kz2fRuTzoMrI+/Tpk/rp9fNx1POLnqN8nmpZKx37iIiRI0eWWOXNXQ1vHAEAAAAAAKAKD44AAAAAAABQpUdptvSVscqVIiI2bdpUYpU77ty5M/VrkkCpJCAiv/rfvXt3atPXxPqdPNvj4MGDS+yv9JvwTEet9Opfv7uOj2brioi45557SvznP/85tak8VSWD/fr1S/2asoi5REAlFn379k1tAwYMKPFZZ51V4qeffjr1U1neokWLUpveX3fccUeJR40alfqpXKgdcVmFyp40U9iECRNSP71OmoGzJuHwOaISjqVLl5Z43bp1qZ/+nsp+IiL69+9fYjJIfoCOq0rMDxw4kPrp+qbSK7cK6LX1jNe6Nqv1wCV0Z555Zol9XehNuFRV19xaxjxd61wG3Flqn9/ZbH1k53wPzXQYkSVvfs5RqanKUSdOnJj66f6oMn8/h+j8fvXVV1ObnnPUGuS2Hr0Pfe1Ui4Z+d/8eKjFvx7H366JnFrU4+Xp28sknl1jvE5UjRuQx8DPvsmXLSqxSVbWQROQz8Fe/+tXUpvJKzczr0tp2tAroHFm1alVqu/vuu0usY6CS0IiIyZMnl1jPqD73dV995plnUpvuqzo3/byqP7ulT9eT7pxnnKAAAAAAAACgCg+OAAAAAAAAUIUHRwAAAAAAAKjSozyO6nV54oknUpvquDUtuad819IaqtVXn1RExMqVK0vs5Rk0Ja9qjT2Nv2r6PWWul414H9fCt5LeX/XUqsFfvXp16rdmzZoSe3kGvWaaEvraa69N/VSPr6mp3ceofh712kXka61jN3bs2NRPP/P+++9PbXv27Cnx2rVrS/zQQw+lfuqhaxcfgGr6Pd24Xk8dK0/zrZ4OTxXfhPspVdP/29/+tsReBka9GTNmzEhtuha00pzratyfpr4n9Xf4eqlzS+e0+0x1HayV41Dvh5fcaErx39HP7YyPlfrG/DrofNR5UPtM91Aq2lbzWuo4+hqh/jcfY/VOtct6qei1cL/wU089VWL392oeBfVNqZc/Iq9nOvZ+zzSVhfDvpeuA99PzkfskNY/AuHHjSuzlJNTn13Q2amX8bHjccceVWMsXue9Qr+fGjRtL7GVadA/UfB/eV+fS+PHjUz8tzXPZZZelttNPP73EOm/bcf31derZZ58t8e23357adI7oPe2eYz1DNnn5I3IeAd8fda7qmus5RHQfdc+srqu1/eJQ4Y0jAAAAAAAAVOHBEQAAAAAAAKocdqmqSik8laymp/UyDvfdd1+J9dWyS6r0M1UesX79+tRPJSIujVO5q36ev+5VqZxLC/RVs8oWXNLQna+Tuxq9Zrt27Srx8uXLUz99la6yh4icRnz27NklnjJlSuqnaeRVJtcVab41BXZExNChQ0vsZTVUqqrj7SmxdbxbVXpVkzl5WmmVKusc8fFRWVtTmRv/ef/+/altwYIFJd68eXOJfbyvvPLKEo8ZMya1dbZcTrvj111lcyqdcTnZiSeeWGKVNXmJIl3rfHz+8pe/lFglPPodIrJ8i9IpH6DX2tPk6zzTcXSplJd/eJ/a/Pa9TffSvXv3ltjvLZXve3mc0aNHl1jvGV87e/qe2IReC5eq6s/+9+r+qOPtNgz9PV1/fRxV4qgyuYhcFkS/r46p/+xSS5XQ6hj7fq5lmrxETDvOcT33DB8+vMR6do3IlpcHH3ywxC4X1jOVc+6555b46quv7jCOyKWxXM6u6307jofe3z5H1J7kFjldm/R6aqmciLxO6flFbW8R+XnFr7M+G+h39O+r67uXp1M7EOU4AAAAAAAA4IjBgyMAAAAAAABUOSxSVZVSqFTGJRHz588v8eLFi1ObSi5UQufyOkVf97ukVV/xqjQ1ollS56+dVfrhEiCVJ6hMrrOZJXsiet23b99e4i1btqR+mllx2LBhqe3mm28usWZS9exQ3SnhdXmQSoLOPPPM1Kbjr/eQ37s1uWZPRjOMeYY/leOqjDwi4sknnyxxUybjiCzHUAmHSyx0znnG2rlz55ZYx0Az+kVEzJo1q8QqMYEP8CzHjz/+eIl1LfX5eP7555d46tSpJdZ1LiLL0JpkkRER8+bNK7HLKVUa6RnwehMuZdKsfiodjsh7k2bh0+zhEVmipjL8Rx99NPVTOapnHde9WHGpqq4FjzzySGqbOXNmiVX25TJGlW+1koROr4XLO5uyYEZkG0XN/tAk7XcLxd/+9rcSe3ZGXdN1PXZZrO5tnj1eLSsqMfeMkboe61oS8WHZdTugf1OfPn1K7HNE7w2V7Hs/PQOpnDki4rrrrivxtGnTSjxw4MDUTzMbuxWhleZWZ2myxT333HOpn9rg/KzZtO+51LdJgur7qJ5ZfE6rFUorR7jEXPdwt1apjQSpKgAAAAAAABwxeHAEAAAAAACAKjw4AgAAAAAAQJVu8Ti6L0W1u6rjdv9FTY+vGmLV4Kt+3Ns0VbRruPXzPPWxolpwLxOgOmT3BajWWL0p7eJxfPjhh0usqdsdT9d/0UUXlVh14u4L7E59tvti1bfhqef1Xtaxc/+AewZ6Mk2+TU8VvmTJkhJv3LgxtemcVly3rz43vRfcK6Ofp767iOyxUu/IjTfemPppWZXa/dOqKf4PFh1v9x7pGqxjMn78+NRv+vTpJda0++61U0+alkOKyF429ZWoXzoip56vedh7G3otfL3UdUrTt7u3sG/fviVWX+OmTZtSPx0D98Xq/NG9zfd99T67h1Lvm5r/zff3VkGvhecA0Dnoa5Gun3r9PCW/+oL1873smF53/wz9jjpXtbxDRB5/n4/q9Vfvq/vldc0477zzUlsr7Z2KXgu/93V8duzYUWL3q+l5Q8+oft/rvNVSNhERQ4YM6fD3PI9AK5V+6wqazjk+R3TtUx9oRC7xNWLEiBL7+qtzRO9nH0ed3z6X9Jyj67Y/d+jfpc8ZEXnMu9O3yhtHAAAAAAAAqMKDIwAAAAAAAFTpMqmqvnb10heaun/dunUl9tf2mtrZ0VeyKklz2UNTGn6XIKqEw9PG66tgffXr0iv92SWZ+kq6KW41VMrmpUkUlXT6NVN5qr7SP5zSCZeVqHTIUzWrPFdTxV9++eWpX08eV5dE6N+kMgidmxFZqurlR3SeqUzb55/+nsrUXTbVVLInIuKYY44psUqdp0yZ0tjP/2ad0yrh6A2SHZWNuWTQZaLvM3jw4PSzSle1ZEBNYu7Xtun3dOwjPnxv9FZcaqSlglwqv23bthLr/Pbx1uuuc9NLoujarHLUiCxlnDRpUonderJq1aoS+5iqPEz/Li814OV9WgVdf/xv1/nokk69Ln/6059K7CVRVMa6YsWKEvuZSi0ALsPTfVrvGbfuHDhwoMRacsPbdF91K0JNxtoqcnT/nrpu+f64cOHCEi9atKjEbsHSc62WVvA5p/uXnzX1vK3fSce0o+/fbvjfp/ejnlddqqr36jnnnJPaVDqv1jff2/T/VjtNrZ/bffQZRc9i/uyi51DfB/QMRDkOAAAAAAAAOGLw4AgAAAAAAABVeHAEAAAAAACAKl3mcVQ9rfu91KegWm3X7etneJp39diMGzeuxBMmTEj9VNet3rXdu3enfnv27Cmx+gUiskZZ/ZTTpk1L/VRfPGzYsNSm2nX1gLWyp0r9nupX0hT8EVlnr/0ijpwXUO8714zfeeedJVY/bkQer7Fjx5ZY/Qg9Hf3bI7LeX9M+63WIyL4Un4/qRdL721P3q39Ay7a4B0avs6cR13Tj6qlyz456wtzHqtdAfQatPB+bcK+HemDUZxqRPUv6e+o7i8jXWn1yB5vyW+8T9zzpZ3ZnSvGejt+bOs8mT56c2tTnpmOqHrSI7IHTOeL/l463l2e48MILS6zzyv8vneO+LuhaoL/na1Wrzk+dI+7z1/OF54PQNVc95l4uReeM+tTdN6XX3b2W+j30POTlkPQ+cY+jtumZZ/jw4amfljLw8hutMsf93tT7Vv2oEXkvVR+5+xNvuOGGEutZ9vnnn0/99Mzi94yec3Vv1xIeEXl99z2iVedZDT2H6vXzsmO6rvpap75G9Q/W7lm9lrX8El4aS0ue6Xz3/VH35jFjxqQ2Lf+BxxEAAAAAAACOGDw4AgAAAAAAQJUuk6oqnqJdX8+rnMFf26t8xeUM+npW09H661j9jOXLl5d46dKlqZ++uvbXzirD+/rXv15iLQUQkV8L11Jdq5TTpZqtJBFQCaFKUR544IHUT1O779ixI7Xt3LmzxHqNVDYTka9TZ6+RS0lUpqPyhF/+8pep34IFCzr8nYhclmD27Nklbir70hNx2aZKxNesWVPirVu3pn563/q9r+nCVerxxBNPpH4q71Bcjqr9/NqqHEPTZftY6X3n80zneO3eaqX52ITLY/Q6uZxQpWcqK3fpfWdL5+j/7RIblcC5ZFZRuVBPLnNzuNE1csaMGalt7dq1Jf7rX/9aYp/7KmXTz9M91XFpnJb40M/bvHlz6lcrq6JnBB1vL0PQKjJGR+9blxWrXHjDhg2pTctBaekGlZL65ytuAdD56OuljoGu9bovR2SrkZcr0PEaNWpUiUePHp36afkq//yevObqmcKvn65nOucisuRYz5Pf/va3Uz8tKaXXed++fY3/1+rVq1OblrHTcmdup2n3chyOjp2WmPF9SeeBn+O1TT+vVmZDY5+Peg696667Utu8efNKrOPva/ONN95YYi9H6M9e3UVrrsoAAAAAAABw2ODBEQAAAAAAAKp0i1TV5SX6+lczU77++uupn0pn9NWy91XZhr6mj8jSO5WE+Ofpq+Z+/fqltq985SslVimBy2hU3uGviJvkcD1ZlvFRqJzwyiuvLLFn41Qp5Pr161Pbz372sxLPmjWrxP7KXWXMep1dZqAyKpdGqXxr/vz5jd9J740BAwaktu9///slvvjii0vsUuqeTC0bnErNXFahWdlccqqyHc0A59mL9TNViuNzSeWpZ511VmrTjHwqi/XxVvmry6GaJLPtSE2qqhkYHb331VIQ0ZwprpY1zmV4Ovf1e6jELSJLkz1jc29G91XN9hcR8ZOf/KTEmk3QZW261qlM2eeS7l+e4VHlr3pvuZRPP8OzMn/xi18s8dSpU0us8zuidfdLvW81C21ExPe+970SL1u2LLUtXLiwxNu2bSux73u6/+ic83OIXj9v089QK5DaMyIiRo4cWWKXoGrGWD3n9e/fP/VTCWVPl5/rmlbLKKu2DD+H6vllzpw5JfbM/Lrv6fz2dVUljv5/6fxUWbTveQdj/2ll9G/Ue93vP51bKjGOyJlO9Rzlc0nXPl1j1ZoVkef3vffem9r09/SsdNNNN6V++nzitp7DNa68cQQAAAAAAIAqPDgCAAAAAABAFR4cAQAAAAAAoEq3GEhcZ6veRfXRuH9F/Q0rVqxIbZqmWj1aWlYjIvsCVDPsnjRNPX/NNdektunTp5dYvSSua1ZNuvs621FDrtpwTdf/zW9+M/VTL5OnEVdPx6ZNm0rsab7V86ipid2Lox46H4Pt27eXWMu0eD9NFa6exohchkI9dO0yvnr9XPuv/g73LurcVU+Ve5TU06xpyTWOyF5V9c3491Dvh5cJ0L/F53tTOYl2GUfF/yYdVx8f9Z7pmOp6G5E9o+plcl/bqlWrSvzjH/84tWlpHvVmaJmbiOw5b8fx6QpqJaR+/vOfdxhHRMydO7fEr7zySok9B4Di+7TOwSYfUUT2JqufPaJ5j+3p/reDwf3W48ePL7HvexMnTiyxeqB8nulap2WIaj51T+uvvkP9Tvo7/rOPj94bes7ze6aVvMp6f6t/1EsZaUkhv+6TJk0qsZ4v3JOm11P3Of+/9Kyk5XAi8pl64MCBJVafXEReM9pxXa3te7rPeU4TzYWycuXK1KaeR/Wt+j6qZxH1nPo+qt5+PTf5d7zllltK/N3vfjf10+9xpMoV8cYRAAAAAAAAqvDgCAAAAAAAAFUOi1RVX6eqnMVTvmuqZ39Vr6mQ9+7d22EckWUGKqny9OUqJbjuuutSm77uV/mF/13t+Lq/hv69ffr0KfGXv/zl1E/H+9e//nVqU3mHlu3wcVy3bl2JVQbikheXDyvaV+UJM2bMSP1mzpxZ4nPPPbfxM1oVlzOoJELvdZejqgzcJeE6t7S0ht4XEbnUgpbZcMmTzm9PI64yY70H9TtEZImrf4aO45GSdxwuPJW7rmGeal8lUCqj+cUvfpH6qbRfr6XPW01f7mu43huaYtzXD5f2wUej80lLK/zwhz9M/VQ2t2DBghLrehuR52Nt39Ox0rUkIpfc0BTyEVlu1Y7yVMXXG12bXN6r55LPf/7zJXYppMrcdL7XrqXvlfqzrhH+GV1xzmnVs5JeZ5UER2R5t18zlTI2lcCJyFJYXX+1fFhEnqtu11GZsVqI1FoT0f77nqP7lJ5RdI5F5FInej6NiNi6dWuJVY6qsuKID8tO38fPIXr2Ull6RMStt95a4gkTJpTYz1Q9Yb3sXXcSAAAAAAAAfGx4cAQAAAAAAIAqPDgCAAAAAABAlcNi4FJ9u+qOPaWteiQ0XXdE9ihq+lzXGmvaavW1aXmHiOz1UB9WRPZt1HThrarb7wr0uniab/Us+XVfvHhxidesWVPiXbt2pX6q49f/y32x6pXx9NOqE7/++utLPGTIkNRPdeg9QT/e1fg9rHPp0ksvLbGXt3jiiSdK7GOs43D22WeXWFPwR+Q5qD6ad955J/WrpZRX/4Dq/T2ttvrw3Fug49ru89bHW1PAX3HFFalN04UvWbKkxDr2EfneaPJzRORr677yb33rWyVWj6On/+9tXpyuRq+fl7aZNm1aibUMlZd70JTyb7zxRmp7/fXXS6zzzP3g+n/r3Oyob29C54jvN/qz+h99b2v6vK74Tl2B+6xbiabv7vesrqu+32zZsqXEP/3pT0vs+6iWGtM55+ch3RMvvvji1KY5Opq86BHtv+85TeU4rr766tRPPeH3339/arvnnntKrF5If+7Qa60ldq699trUT9dfL8Wj95N+Xk8cN3ZoAAAAAAAAqMKDIwAAAAAAAFQ57HoRfe1aS1OtEsSILKnTV7wujdP0xqeddlqJtRSAt3n6957+mrin4XIblWNoSvGIiDFjxpT4pZdeKrGn9dfSEE1lNSKyhMelGU1j3B3pxnsyPs9UQnbRRReV2OeIStI8tbf+rDIQv5Yqc1MphqeG13vGZXMqZdRxdPlW7V5o9zFW/G9VydugQYNS280339xhm0p0IiI2b95cYr2f3G4wefLkEt9yyy2pbfjw4SXW+wdp6uGjqTSWl4XQuVqTHWpbrV87WgC6G53HrbB+tbI8VdFrrfuU7nMR+Szj0tJHH320xBs2bCixy77VsqH7sssY9fzr5cTUaqXrcW9fV3UcdX1za8Qll1xS4qFDh6a2qVOnllhLkvnZQ88vAwYMKLGX0miXZ4vefWcBAAAAAADAR8KDIwAAAAAAAFQ5oqnN/FWtvsZ1aYvKWDVz1LBhw1I/fT1fk3ro5/f2V/pdTS1rnEopNNbMVhERF1xwQYefd7Dfozfj97fKNlQS7hnfDiajsMuV9OfaeKgE1T+js5ItxrtjdA6qBDEiS/11Lf3GN77R+HlNa+xHtUFrwpyDztAu90KTxNEzumuGard5bN26tcQqY9Vs8RFZ8qiSU80IHxHRv3//Evsa3i7yx8NFzSLn51D/Gd6DJyYAAAAAAACowoMjAAAAAAAAVOHBEQAAAAAAAKocUY9jjZonUWNP6w+tiY83Wv3DQ82Peqif19HPnf09ODw0jT/lEwCgN9K0Jh5//PGpn/7sZY6uuuqqbvp2AEce3jgCAAAAAABAFR4cAQAAAAAAoAoPjgAAAAAAAFCFB0cAAAAAAACowoMjAAAAAAAAVOHBEQAAAAAAAKrw4AgAAAAAAABVeHAEAAAAAACAKp/6uL8wZ86c7vgecJhhHNsDxrE9YBzbA8axPWAc2wPGsT1gHHsWvHEEAAAAAACAKke9++67R/o7AAAAAAAAQA+GN44AAAAAAABQhQdHAAAAAAAAqMKDIwAAAAAAAFThwREAAAAAAACq8OAIAAAAAAAAVXhwBAAAAAAAgCo8OAIAAAAAAEAVHhwBAAAAAACgCg+OAAAAAAAAUOX/ARGdNEKfZ+z8AAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 1152x169.2 with 8 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Real test images :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE2/figs/AE3-07-test-real</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA44AAABwCAYAAABRhy5gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZ+UlEQVR4nO3de7yNVR7H8ZVLhMoUSkPNkEITGaGUUU0OU2hoVC9NRiqdOWR0MB1Cyi2MXAp1kDIqr0S5RNRcMqWbS2UmgwyjRChNYuQ6f8yrn99vdZ5ln305l30+77++q/WcZz9se5/9tH+/tU46duyYAwAAAAAgSqnCvgAAAAAAQNHGjSMAAAAAIIgbRwAAAABAEDeOAAAAAICgMrEemJWVxSo6hWzy5MknJXoOnsfCx/OYHnge0wPPY3rgeUwPPI/pgecxPeT1PPKNIwAAAAAgKOZvHL8zefLkVFwHArKyspJ+Tp7HgsfzmB54HtMDz2N64HlMDzyP6YHnMT2Enke+cQQAAAAABHHjCAAAAAAI4sYRAAAAABDEjSMAAAAAIIgbRwAAAABAEDeOAAAAAIAgbhwBAAAAAEHcOAIAAAAAgsoU9gUAAIDku/vuu804NzdXcq9evSRPmDChwK4JAFB88Y0jAAAAACCIG0cAAAAAQBA3jgAAAACAIHocARQpEydONOOTTjpJ8u7duyUPHTrUHHfs2LE8f8Y553JyciSPGDEiKdcJFBW7du2S/PTTT0ueOXNm5M/ofkf9+nDOuerVqyfx6lBY9u/fL7l8+fJmrlQpvjcAkm3dunWSBw4caObmzZsX+XP9+vWTrF+bbdu2Ncc1a9ZMctmyZeO+zkTwzgEAAAAACOLGEQAAAAAQRKkqgAL33nvvmbEum5s+fbqZ88tOT/Tf85p78cUXJVOqmpi9e/dKnjZtmpnLzs6WHHp+evbsKdkvTUb+LVq0SLIueQp54IEHJFepUiXp14TkOXDggBm/9dZbknVp8sGDB81xs2fPlty7d28zp/+dUJpc+N555x3J8+fPN3Nz586VvGHDhoQfa+HChWbsl0Mi7PDhw2a8atUqyTfffLPkrVu3muNCvxP/8Ic/5PnfR48ebcZ6i6Vx48aZOb8cPVX4xhEAAAAAEMSNIwAAAAAgiFLVPAwbNkyyLhlo0aKFOW7AgAGSKfUBvu+rr76SvHz5csndu3c3x+lVIX2VKlWSfM4550Qet379+jiuELH44osvJN92222Sly5dao7TpTihshxdKkWpav7t2bPHjGP9O6xZs6bkPn36SC6s1fkQ7euvv5acmZlp5p577rl8n2/KlClmrFdn1OV1SB3/dTt48GDJTzzxhGS/FDK0Yrimf1c2bNjQzN13332SMzIyYrxi5GXq1Klm3KNHD8mnnnqq5KZNm0aeo0mTJmas34P16/vzzz83x+l/J2eeeaaZ0/cuqcQ3jgAAAACAIG4cAQAAAABB3DgCAAAAAIJKbI/jvn37JOueHefs0v26nnzlypXmuH//+9+S9XLJiM3u3bslL1682MzNmTNH8po1ayLPcfToUcmlStn/D9KpUyfJ/rLFKBgdOnSQrHsc82P8+PGSb7/9dsm678M550qXLh3X+XFi99xzj2S/rzEeenuB7du3mzm2BjgxvSS7c869//77eR53yimnmPGyZcsk09dY9CxZskRyt27dJO/YsSPyZ+rVqye5du3aZk6fo1atWmbO74FDauj+8BtuuMHMrVixIt/nu+CCC8y4TZs2kvU2R6+//ro5TvfKnXzyyfl+3JLu0KFDkh9++OHI40aOHCk5Kysrrsfq3Lmz5HvvvdfMvfnmm5L9z1T79++XXKFChbgeOxZ84wgAAAAACOLGEQAAAAAQVGJKVdetW2fG999/v2S95YZzsS8pz/L/+ffWW29J1l/H67Lf/Khfv77kjz76yMx98MEHkvfu3StZL5eM1NLlMvq1VLlyZXNcly5dJMdaVuyXcCB1tmzZIrlMmeO/NvztUcaMGSNZb1fknHObNm2SvHPnTsl6eXHnnBsyZEgil1oirF27NqbjbrnlFjOuW7duKi4HcZowYYIZ9+3bV7LekqFGjRrmON1Oo0tVK1asmOxLRIL++Mc/Sg6VppYrV05y69atzZzeSsMvMdYlifp99cEHHzTH6VLVli1bmrnzzz8/8rrwf7o15pNPPjFzbdu2lfzrX/864ce69NJLJev2Aueca9WqleQ33njDzN15552Sn3rqKcnJLk3mG0cAAAAAQBA3jgAAAACAIG4cAQAAAABBad3jqHul/OVzdS2438dYpUoVyXrLCH/5/5ycnKRcZzqbNm2aGY8dO1ay7mv0ezMyMjIk9+vXT7LfN7Vx48bIx9Z9jbrXrnz58pE/4/cPVK1aNfJYnNh1110nWb/O9LLhzn2/pyPZdB8QTszf3kH3dOi+xs2bN0eew3+/9PvtvjN06FAzpscxb6tXr5asfy+FNGvWLFWXgzg98sgjknVPsHO2r1HTS/w7Z3ugULSNGjUqpuMmTpwo+a677orrsXQ/5aeffmrm9PvxkSNH4jp/Saa3e+vRo4eZ032Np512WlIf199SKbRGx+zZsyVPmjRJMj2OAAAAAIACxY0jAAAAACCo2Jeq7tq1y4z1sv5Lly6V7JejVqtWTbJf/jhv3jzJ/nK3mt4KAsfp5YP9LRP27duX58/cdtttZtyxY0fJ/fv3l6xLTp2z5Rf+c7xq1SrJ7du3P9FlO+eca9CggRn36tVLcrdu3WI6B45btGhRUs+3bds2yQsWLIg8rlKlSmbM1h35M336dDPWf+81a9aM65x+6WqU7Oxsybqsr6TT2wvFWqqKwudvNaXLTkPP4+DBgyXrratQ9P3tb3+TvGPHDsl+yeCUKVMkx/r54tChQ2acmZkp+cknn4z8uSuuuELy2WefHdNj4Tj9+dLf6kSXhept4fytOcqWLZvwdfTu3VuyvscpSHzjCAAAAAAI4sYRAAAAABBUbEpVdYnjiy++KNkvcdRfJ+vSqJ/97GfmOF0i4K+4qL8K1uc799xzzXH+uKT68ssvzVivYBtVmup7/PHHzViXytWuXVty3bp1zXGhUtXGjRtL1qtCbtmyxRy3detWyR9++KGZ06t/vvbaa5KfffbZ7/8hkHJ61Ti/BEwbP368Gbdo0SJVl5Q2pk6dKjk3N9fM6ddWo0aNIs+xYcMGyX4LgP/6jBLrccibXnWvTp06hXglcM6+rpwLl6fqzzO6TUKv6IiiT6/crrO/4mY87S+TJ0824xkzZkjW753+6vEvv/yy5NNPPz3fj1sS/Pe//zVj/Vn21Vdflfz222/HdL4RI0aYsS4trVWrVjyXGGyfKyi8GwEAAAAAgrhxBAAAAAAEceMIAAAAAAgqsj2OeksM55ybNWuW5Pnz50v2+2H0Fhk5OTmS/R5H3Z8Y6pPU+ZVXXjHHValSJfoPUILo58O5cA223hZBb5fRvHlzc5zuT7zxxhsTvURj+/btZqx7BIYNG2bmDhw4IFn/m9T/Hp37/rLLSB7dk6r/3v3tHUI9zTixb775RvLhw4fN3MUXXyzZ36pD0300//rXv5J4dYhV1apVJV9zzTVJP79+T+zbt6/kN998M/Jn9O9i55xr06aN5HTvtxo+fHjMx950002SzzzzzFRcDgpAkyZNJOt/+7pnzjnnfve730keM2aMZH/bjkcffVSy3qbFp3son3/+eTOX7q+zeK1du1byPffcY+aWL1+e0Lk3bdpkxvp9z7+fiLXnceXKlZFzV111leQKFSrEdL548I0jAAAAACCIG0cAAAAAQFCBl6pGbavhnC0Z9UtQo7ZdaN26tTlOL9cfKiXVXxM/88wzkY+lS978rSDwf/5X7HoZ6IsuusjMtWzZUvLYsWNTe2ERqlevbsZ62wB/7o477pB88OBByV26dDHHUaqaOuvWrcsz++8R5513nuRUlmmkq5kzZ0bO6S0e4i2ha9q0qeSuXbtKzsrKiut8KBj79+83Y116N2nSpJjOccstt0SO9VZMlNMh3ejPF59//rmZ0yWoixYtktypUydz3IQJEyR/++23Zk6Xp95+++2SMzIy4rzi9LZ3714z1u1JodJUXZYfaoWZO3euZP8e5+OPP5bcqlUrM7d+/XrJZcrEd2t2wQUXSC5Xrlxc54gF3zgCAAAAAIK4cQQAAAAABBVIqapejXLgwIGS9VezzkWvZurTc7t37zZz2dnZknWpqi5xc8651atXx/RY//znPyXrlbKcc65Dhw55PpZzznXs2DFyLt34Jad6dcannnrKzF144YUFcUlxa9++vRk3atRI8po1awr6ckqkr776yox1OU/I4sWLJfslxzixDz74QLL/ntiuXbuYzqFL0XV2zrYE+Ku2ouh64IEHzDjW12PI7NmzJet/a88++2zC5y5qzjrrLDP2yxU1vTJt27ZtU3ZNIf5nJf0Za9myZWZu69ateZ7jjDPOMGNdjl6nTp1EL7FYKVu2rGRdcuqcLXns1q2b5NGjR5vjolq1nHPu7rvvljxq1KjELrYEGDRokBnPmTNHco0aNcxcbm6uZF1aWrp06cjz69etbs9wzrkePXpI3rx5s5nTbXa65HjJkiXmuHfeeSfysTt37hw5l0x84wgAAAAACOLGEQAAAAAQxI0jAAAAACAoJT2O9erVM2Pdyxiq1dZzvqi5lStXmvGqVavy/VihuZ07d0r2exOiHss55zIzMyUfPXo0z2tPF3/961/NWP9dhJ7Tokg/387ZXljtqquuKoCrKR6mTJki2e9bjnqd6b4M5+x7hu4ddi56iWx/yXL/fQf5E3qthpYf1376059K/vOf/xx53CeffBL5uMXtPaOg6L6a0O8snY8cORJ5jhD9OyvqPdB3/fXXm7HeKuuhhx4yc7pvTveOx3u9RdmsWbPMWP+9+J8NdJ+T3p6sfv36CV+Hv43D0qVLJYe2EPC3L4iHXutgz549CZ8vXUS9bkPvgb///e/N+OGHH07+haUZvdWJv+7GD3/4Q8kLFiwwc5dccklCj+tv06Z7hOfPnx85pz/b+O+deg0IfzvCyy67LO5rzQ++cQQAAAAABHHjCAAAAAAISkmpamibjdB/1+VQftmZ3tLCL2WLhV9+MXz48MjrqFq1qmRdOuKfQy9b7ZfThbb4SAe6RPjQoUNmLtZtVYoK/We5+uqrzZy+/tNOO02yLvMpCfRWDc45l5GRIXnXrl2RPxdVqjpx4sSYfsb/ucqVK0vWS7wjPu+//77k0Os22a/joUOHFthjpYsuXbpIHjlypJnT20bpZd6nTZtmjvNLxKP0799fcqjkuHz58pJ1OZhv7dq1Zjx16lTJ+tr171vnnOvatesJr7Wou/baa81Yb5nQr18/M7dt2zbJP//5zyW3aNHCHNemTRvJ11xzjeQf/ehH5ji9lcrChQvNXDzbS+ntqZyzZadbtmyJ/Dl/i6WSRH8+8j833HrrrXn+zCmnnGLG+nei3tbIOVsO+ZOf/CTu60xnugT166+/NnPNmzeXnGhpqu/UU08141/+8peS/VLV559/XvK+ffskh7bf8FumTj755DiuMv/4xhEAAAAAEMSNIwAAAAAgiBtHAAAAAEBQSnoc/e0ZdA+DrtUvyOXzx40bZ8ah5Y719gK6l0tnn9/nle59OqNHj5bsL/N9/vnnS9Z9gUXF9u3bzVj3efk9Iv/4xz8k6yXRV6xYYY5Lx+05dB/apEmTzJxeTl/X8fvbNjRu3DjP8+XHWWedJVkvpR3rFhGI5veUpZLuc3vppZcK7HHT0eWXX27G+neslpOTY8aXXnqpZP3a3Lhxoznuueeei3zsSpUqSZ4zZ86JL9Z9//2jXLlykh977LGYzpEusrOzJR8+fNjMDRo0SPKOHTsk+3/Peqz7vv2eKr3tTTJ8+umnZuz/7v9O2bJlzXjMmDFJvY7i5IUXXpAc1dPonP2spPvdnHOuWrVqknv27GnmBg8eLHnevHlxX2e6+fLLLyXPmDGjEK/kOL3Fjv/erLf7C/WL6/sQf2uWgsI3jgAAAACAIG4cAQAAAABBKSlV9UvICqukbNiwYZL90ihdSnrjjTeauY4dO+b7sfQWHiWBLpXxy3KvuOIKydWrVy+wawr57LPPJP/qV78yc2+//Xbkz+ntOXTJyQ9+8IMkXl3h0cs+65IX5+z2M34pti7pve+++yR3797dHKeXg4+VLr1yzpantm7dOt/nw3F+adw333xTYI+tWwC++OKLyOP0thPIm1/eqUvq3333Xcn+Nghjx46VPGvWLMnvvfeeOS5U4qhfn3pbiBC/dFG/B5e0UtVSpY7//3q/XK1Zs2aSc3NzJet2CudsGd7OnTslp3rbi9DWSzVr1pQ8YMAAM5eZmZmyayqKJk+eLLlPnz6Sy5SxH7n1liv695xuz/C1b9/ejKdPny5Z/z6vWLFizNe7d+9eyRUqVJBcunTpmM9RlB05cqSwL8E5Z1/7sfK32NCvrcJqieMbRwAAAABAEDeOAAAAAICglJSqppoul9i6dauZW7dunWS9Qpn/lW7v3r0lP/LII0m+wpJNr1r64YcfmrkGDRoU2HVMmDBBsi4d8VcQPP300yX/4he/MHMTJ06UnC7lqdry5csljx8/PvK4li1bmrEuYz148KBk/bpyzv79xVpW4ZeVs3pq8vgrCk+bNi3P4y655BIzPvfcc/P9WH553cKFC/M87oYbbjDjhg0b5vuxShpdTuacc3379pV80003Rf6cXi317LPPlpyf9+VatWrFfGyUzZs3S9YldfqaSiLdGqFbPvwS86VLl0rWrTb+avG6hcZfcTVW+vnp3LmzmWvatKnkJk2aJPxYxZVf6q0/exw4cEDylVdeaY5bsmRJwo+tP8/ox8pPqeqhQ4ckHz16VHK6lKoWFXr1a/81HcXffaIofB7iG0cAAAAAQBA3jgAAAACAIG4cAQAAAABBxbLHUS/Xrmv9nbN9VKEtN/zlopE/un905MiRZm7ZsmWS/T6niy++WHKNGjUk//a3vzXH6eXbdW+hXnrcN2TIEDP+y1/+Ivnbb7+VfNFFF5njBg4cKPnmm2+OPH860j2Ofn+M7mscN26cmevfv7/kxx9/PPL8/jljMXfuXDMuCjX96Uo/PzrrPpd46WXinXNu27ZtkvXS/fPmzUv4sUq6a6+9VvLTTz8t2e853rNnj2T9mq5bt27Mj9WuXTvJelsIf8l7vRbB2rVrzZz+t/Hyyy9L9nupSzK9DL+/JH+HDh0kv/7665J177lzzmVnZ0vWv2+ROL2lUEZGhpnT26LoXtVFixYl/LhvvPGGGcfzO9Z3xhlnJHyOokb32eptg1555RVznH4P87enqlSpUr4fV6/r4W/1pnvRC3IrrGTjG0cAAAAAQBA3jgAAAACAoGJTqrpq1SrJujw19DW9XkLeX0a6SpUqSby6kuehhx6SrJfkds65fv36SV6/fr2Z+9Of/pTn+XR5lXPOlS9fXnL16tUl62XcnbPPv7/dg95m48c//rHk3/zmN+a4klaequkyQf/vT29t07p1azOny9BC22ycd955kjt16iTZL9N44oknJM+cOdPM6S1SdMkJEhf13Pnb6Ohtj/Tr0Td16lTJubm5Zk5vDeDPITG6nF+3ctSpU8ccp9+Pdbm5LtdyzrYK6KX6nbPv7y+88IJk3Q7gnG1T8EvhdHsD5amJadGiRZ4ZybV//34z1tsI/ec//zFzzZo1k6xLsfVnkhC9rYZz9vPRq6++auZatWoluXLlyjGdvyTQ72HDhw+X7JfNv/vuu5LvuOMOM6c/s2j79u0zY73d24YNGyT7/y60tm3bmvHHH38sWW/bURTxjSMAAAAAIIgbRwAAAABAEDeOAAAAAICgYtPjqIV6qurXry95ypQpkqn9Tx2/VrtevXqSV6xYYeY2bdok+cknn4zp/LrHxl9SXG8b0Lx5czPXq1cvyVdeeWVMj4XjdB+jTy9Tfc4550Qep3so9b8Lv0dA94vo5805u8Q8PY6JKVeunBnr505vl+Hr3r275IoVK0Yet337dsl+v82MGTMk+z2zSI3LL788cty1a9fIn9M9Vf77wDPPPCN59erVkkeMGGGOu/XWWyXfeeedZo5eLBQ3fo+j/myjtxdyzrnFixdL1n2NGzduNMd99NFHkvU6Hv62HWvWrJF84YUXmrmrr75acunSpaP/ACVYo0aNJN9///1mbtiwYZLnzJlj5vxxfuk1Hpyz2+P4W9DpXtglS5ZI9rcSLAr4xhEAAAAAEMSNIwAAAAAgqNiUqjZu3FjykSNHJPvLunfs2FEyW24Ujtq1a+eZfUOGDCmAq0GILoMYNWpU5HH+kvn33nuv5Hbt2uX7cf1yR1266G/hguSpVq2aGeuSKF3y5C8j/ve//z2m819//fWSBwwYYOYuu+yymK8Thcvfskjr27dvAV4JUDT4W8rotonXXnvNzLVv316y/n3mb7Pht2xEueuuuyQ/+OCDZi60PRK+LzMz04x1i9PgwYPN3IIFC2I6p27XysjIkOy3A+gWH59u19G5KOIbRwAAAABAEDeOAAAAAICgYlOqGkWv9gcgf/RKiP6qiEh/DRs2lDxo0CDJ8ZYj9unTRzKlqQDSRalS9nuW6667TvJnn31m5vSKq8eOHZPs7wjQqlUryTk5OZL91a/9FeORPA0aNJD80ksvFd6FFCN84wgAAAAACOLGEQAAAAAQxI0jAAAAACCo2Pc4AgASp7dY0RkAYPXs2TPPDKQ7vnEEAAAAAARx4wgAAAAACOLGEQAAAAAQxI0jAAAAACCIG0cAAAAAQBA3jgAAAACAIG4cAQAAAABB3DgCAAAAAILK5PcHsrKyUnEdKGA8j+mB5zE98DymB57H9MDzmB54HtMDz2PRwjeOAAAAAICgk44dO1bY1wAAAAAAKML4xhEAAAAAEMSNIwAAAAAgiBtHAAAAAEAQN44AAAAAgCBuHAEAAAAAQdw4AgAAAACCuHEEAAAAAARx4wgAAAAACOLGEQAAAAAQ9D9PpAepe9cOiwAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 1152x169.2 with 8 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "i=random.randint(0,len(denoised_test)-8)\n",
-    "j=i+8\n",
-    "\n",
-    "pwk.subtitle('Noisy test images (input):')\n",
-    "pwk.plot_images(noisy_test[i:j], None, indices='all', columns=8, x_size=2,y_size=2, interpolation=None, save_as='05-test-noisy')\n",
-    "\n",
-    "pwk.subtitle('Denoised images (output):')\n",
-    "pwk.plot_images(denoised_test[i:j], None, indices='all', columns=8, x_size=2,y_size=2, interpolation=None, save_as='06-test-predict')\n",
-    "\n",
-    "pwk.subtitle('Real test images :')\n",
-    "pwk.plot_images(clean_test[i:j], None, indices='all', columns=8, x_size=2,y_size=2, interpolation=None, save_as='07-test-real')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:26:23.772411Z",
-     "iopub.status.busy": "2021-03-14T21:26:23.771930Z",
-     "iopub.status.idle": "2021-03-14T21:26:23.774115Z",
-     "shell.execute_reply": "2021-03-14T21:26:23.774613Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "End time is : Sunday 14 March 2021, 22:26:23\n",
-      "Duration is : 00:00:07 107ms\n",
-      "This notebook ends here\n"
-     ]
-    }
-   ],
-   "source": [
-    "pwk.end()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "---\n",
-    "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.9"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/AE/04-ExtAE-with-MNIST==done==.ipynb b/AE/04-ExtAE-with-MNIST==done==.ipynb
deleted file mode 100644
index 5398e1cb7587431b1c2394b2d586f9185f206502..0000000000000000000000000000000000000000
--- a/AE/04-ExtAE-with-MNIST==done==.ipynb
+++ /dev/null
@@ -1,14306 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
-    "\n",
-    "# <!-- TITLE --> [AE4] - Denoiser and classifier model\n",
-    "<!-- DESC --> Episode 4 : Construction of a denoiser and classifier model\n",
-    "\n",
-    "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
-    "\n",
-    "## Objectives :\n",
-    " - Building a multiple output model, able to **denoise** and **classify**\n",
-    " - Understanding a more **advanced programming model**\n",
-    "\n",
-    "The calculation needs being important, it is preferable to use a very simple dataset such as MNIST.  \n",
-    "The use of a GPU is often indispensable.\n",
-    "\n",
-    "## What we're going to do :\n",
-    "\n",
-    " - Defining a multiple output model using Keras procedural programing model\n",
-    " - Build the model\n",
-    " - Train it\n",
-    " - Follow the learning process\n",
-    " \n",
-    "## Data Terminology :\n",
-    "- `clean_train`, `clean_test` for noiseless images \n",
-    "- `noisy_train`, `noisy_test` for noisy images\n",
-    "- `class_train`, `class_test` for the classes to which the images belong \n",
-    "- `denoised_test` for denoised images at the output of the model\n",
-    "- `classcat_test` for class prediction in model output (is a softmax)\n",
-    "- `classid_test` class prediction (ie: argmax of classcat_test)\n"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 1 - Init python stuff\n",
-    "### 1.1 - Init"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:35:37.639732Z",
-     "iopub.status.busy": "2021-03-14T21:35:37.639200Z",
-     "iopub.status.idle": "2021-03-14T21:35:40.237821Z",
-     "shell.execute_reply": "2021-03-14T21:35:40.238317Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<style>\n",
-       "\n",
-       "div.warn {    \n",
-       "    background-color: #fcf2f2;\n",
-       "    border-color: #dFb5b4;\n",
-       "    border-left: 5px solid #dfb5b4;\n",
-       "    padding: 0.5em;\n",
-       "    font-weight: bold;\n",
-       "    font-size: 1.1em;;\n",
-       "    }\n",
-       "\n",
-       "\n",
-       "\n",
-       "div.nota {    \n",
-       "    background-color: #DAFFDE;\n",
-       "    border-left: 5px solid #92CC99;\n",
-       "    padding: 0.5em;\n",
-       "    }\n",
-       "\n",
-       "div.todo:before { content:url();\n",
-       "    float:left;\n",
-       "    margin-right:20px;\n",
-       "    margin-top:-20px;\n",
-       "    margin-bottom:20px;\n",
-       "}\n",
-       "div.todo{\n",
-       "    font-weight: bold;\n",
-       "    font-size: 1.1em;\n",
-       "    margin-top:40px;\n",
-       "}\n",
-       "div.todo ul{\n",
-       "    margin: 0.2em;\n",
-       "}\n",
-       "div.todo li{\n",
-       "    margin-left:60px;\n",
-       "    margin-top:0;\n",
-       "    margin-bottom:0;\n",
-       "}\n",
-       "\n",
-       "div .comment{\n",
-       "    font-size:0.8em;\n",
-       "    color:#696969;\n",
-       "}\n",
-       "\n",
-       "\n",
-       "\n",
-       "</style>\n",
-       "\n"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**FIDLE 2020 - Practical Work Module**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Version              : 2.0.20\n",
-      "Notebook id          : AE4\n",
-      "Run time             : Sunday 14 March 2021, 22:35:40\n",
-      "TensorFlow version   : 2.4.0\n",
-      "Keras version        : 2.4.0\n",
-      "Datasets dir         : /gpfswork/rech/mlh/uja62cb/datasets\n",
-      "Run dir              : ./run/AE4\n",
-      "Update keras cache   : False\n",
-      "Save figs            : True\n",
-      "Path figs            : ./run/AE4/figs\n"
-     ]
-    }
-   ],
-   "source": [
-    "import numpy as np\n",
-    "from skimage import io\n",
-    "import random\n",
-    "\n",
-    "import tensorflow as tf\n",
-    "from tensorflow import keras\n",
-    "from tensorflow.keras import layers\n",
-    "from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard\n",
-    "\n",
-    "import os,sys\n",
-    "from importlib import reload\n",
-    "import h5py\n",
-    "\n",
-    "from modules.MNIST          import MNIST\n",
-    "from modules.ImagesCallback import ImagesCallback\n",
-    "\n",
-    "sys.path.append('..')\n",
-    "import fidle.pwk as pwk\n",
-    "\n",
-    "run_dir = './run/AE4'\n",
-    "datasets_dir = pwk.init('AE4', run_dir)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 1.2 - Parameters\n",
-    "`prepared_dataset` : Filename of the prepared dataset (Need 400 Mo, but can be in ./data)  \n",
-    "`dataset_seed` : Random seed for shuffling dataset. 'None' mean using /dev/urandom  \n",
-    "`scale` : % of the dataset to use (1. for 100%)  \n",
-    "`latent_dim` : Dimension of the latent space  \n",
-    "`train_prop` : Percentage for train (the rest being for the test)\n",
-    "`batch_size` : Batch size  \n",
-    "`epochs` : Nb of epochs for training\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:35:40.242058Z",
-     "iopub.status.busy": "2021-03-14T21:35:40.241587Z",
-     "iopub.status.idle": "2021-03-14T21:35:40.243244Z",
-     "shell.execute_reply": "2021-03-14T21:35:40.243718Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "prepared_dataset = './data/mnist-noisy.h5'\n",
-    "dataset_seed     = None\n",
-    "\n",
-    "scale            = .1\n",
-    "\n",
-    "latent_dim       = 10\n",
-    "\n",
-    "train_prop       = .8\n",
-    "batch_size       = 128\n",
-    "epochs           = 30"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Override parameters (batch mode) - Just forget this cell"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:35:40.246782Z",
-     "iopub.status.busy": "2021-03-14T21:35:40.246310Z",
-     "iopub.status.idle": "2021-03-14T21:35:40.250723Z",
-     "shell.execute_reply": "2021-03-14T21:35:40.251230Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/markdown": [
-       "**\\*\\* Overrided parameters : \\*\\***"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "dataset_seed         : 145\n",
-      "scale                : 1.0\n"
-     ]
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "**\\*\\* Overrided parameters : \\*\\***"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "epochs               : 30\n"
-     ]
-    }
-   ],
-   "source": [
-    "pwk.override('prepared_dataset', 'dataset_seed', 'scale', 'latent_dim')\n",
-    "pwk.override('train_prop', 'batch_size', 'epochs')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 2 - Retrieve dataset\n",
-    "With our MNIST class, in one call, we can reload, rescale, shuffle and split our previously saved dataset :-)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:35:40.410521Z",
-     "iopub.status.busy": "2021-03-14T21:35:40.409960Z",
-     "iopub.status.idle": "2021-03-14T21:35:41.507126Z",
-     "shell.execute_reply": "2021-03-14T21:35:41.506618Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Loaded.\n",
-      "rescaled (1.0).\n",
-      "Seeded (145)\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Shuffled.\n",
-      "splited (0.8).\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "clean_train shape is :  (56000, 28, 28, 1)\n",
-      "clean_test  shape is :  (14000, 28, 28, 1)\n",
-      "noisy_train shape is :  (56000, 28, 28, 1)\n",
-      "noisy_test  shape is :  (14000, 28, 28, 1)\n",
-      "class_train shape is :  (56000,)\n",
-      "class_test  shape is :  (14000,)\n",
-      "Blake2b digest is    :  ea9e754e59993275b45e\n"
-     ]
-    }
-   ],
-   "source": [
-    "clean_train,clean_test, noisy_train,noisy_test, class_train,class_test = MNIST.reload_prepared_dataset(scale      = scale, \n",
-    "                                                                                    train_prop = train_prop,\n",
-    "                                                                                    seed       = dataset_seed,\n",
-    "                                                                                    shuffle    = True,\n",
-    "                                                                                    filename=prepared_dataset )"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 3 - Build models"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### Encoder"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:35:41.512215Z",
-     "iopub.status.busy": "2021-03-14T21:35:41.511730Z",
-     "iopub.status.idle": "2021-03-14T21:35:42.453516Z",
-     "shell.execute_reply": "2021-03-14T21:35:42.452939Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "inputs    = keras.Input(shape=(28, 28, 1))\n",
-    "x         = layers.Conv2D(32, 3, activation=\"relu\", strides=2, padding=\"same\")(inputs)\n",
-    "x         = layers.Conv2D(64, 3, activation=\"relu\", strides=2, padding=\"same\")(x)\n",
-    "x         = layers.Flatten()(x)\n",
-    "x         = layers.Dense(16, activation=\"relu\")(x)\n",
-    "z         = layers.Dense(latent_dim)(x)\n",
-    "\n",
-    "encoder = keras.Model(inputs, z, name=\"encoder\")\n",
-    "# encoder.summary()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### Decoder"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:35:42.460534Z",
-     "iopub.status.busy": "2021-03-14T21:35:42.459909Z",
-     "iopub.status.idle": "2021-03-14T21:35:42.510298Z",
-     "shell.execute_reply": "2021-03-14T21:35:42.510771Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "inputs  = keras.Input(shape=(latent_dim,))\n",
-    "x       = layers.Dense(7 * 7 * 64, activation=\"relu\")(inputs)\n",
-    "x       = layers.Reshape((7, 7, 64))(x)\n",
-    "x       = layers.Conv2DTranspose(64, 3, activation=\"relu\", strides=2, padding=\"same\")(x)\n",
-    "x       = layers.Conv2DTranspose(32, 3, activation=\"relu\", strides=2, padding=\"same\")(x)\n",
-    "outputs = layers.Conv2DTranspose(1, 3, activation=\"sigmoid\", padding=\"same\")(x)\n",
-    "\n",
-    "decoder = keras.Model(inputs, outputs, name=\"decoder\")\n",
-    "# decoder.summary()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### AE\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:35:42.515355Z",
-     "iopub.status.busy": "2021-03-14T21:35:42.514882Z",
-     "iopub.status.idle": "2021-03-14T21:35:42.562178Z",
-     "shell.execute_reply": "2021-03-14T21:35:42.562652Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "inputs    = keras.Input(shape=(28, 28, 1))\n",
-    "\n",
-    "latents   = encoder(inputs)\n",
-    "outputs   = decoder(latents)\n",
-    "\n",
-    "ae = keras.Model(inputs,outputs, name='ae')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### CNN"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:35:42.571224Z",
-     "iopub.status.busy": "2021-03-14T21:35:42.570577Z",
-     "iopub.status.idle": "2021-03-14T21:35:42.612018Z",
-     "shell.execute_reply": "2021-03-14T21:35:42.612503Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "hidden1     = 100\n",
-    "hidden2     = 100\n",
-    "\n",
-    "inputs    = keras.Input(shape=(28, 28, 1))\n",
-    "\n",
-    "x         = keras.layers.Conv2D(8, (3,3),  activation='relu')(inputs)\n",
-    "x         = keras.layers.MaxPooling2D((2,2))(x)\n",
-    "x         = keras.layers.Dropout(0.2)(x)\n",
-    "\n",
-    "x         = keras.layers.Conv2D(16, (3,3), activation='relu')(x)\n",
-    "x         = keras.layers.MaxPooling2D((2,2))(x)\n",
-    "x         = keras.layers.Dropout(0.2)(x)\n",
-    "\n",
-    "x         = keras.layers.Flatten()(x)\n",
-    "x         = keras.layers.Dense(100, activation='relu')(x)\n",
-    "x         = keras.layers.Dropout(0.5)(x)\n",
-    "\n",
-    "outputs   = keras.layers.Dense(10, activation='softmax')(x)\n",
-    "\n",
-    "cnn       = keras.Model(inputs, outputs, name='cnn')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### Final model"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:35:42.617687Z",
-     "iopub.status.busy": "2021-03-14T21:35:42.617216Z",
-     "iopub.status.idle": "2021-03-14T21:35:42.691105Z",
-     "shell.execute_reply": "2021-03-14T21:35:42.690625Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "inputs    = keras.Input(shape=(28, 28, 1))\n",
-    "\n",
-    "denoised = ae(inputs)\n",
-    "classcat = cnn(inputs)\n",
-    "\n",
-    "model = keras.Model(inputs, [denoised, classcat])\n",
-    "\n",
-    "model.compile(optimizer='rmsprop', \n",
-    "              loss={'ae':'binary_crossentropy', 'cnn':'sparse_categorical_crossentropy'},\n",
-    "              loss_weights=[1,1],\n",
-    "              metrics={'cnn':'accuracy'} )"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 4 - Train\n",
-    "20' on a CPU  \n",
-    "1'12 on a GPU (V100, IDRIS)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 10,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:35:42.695504Z",
-     "iopub.status.busy": "2021-03-14T21:35:42.695023Z",
-     "iopub.status.idle": "2021-03-14T21:35:42.860512Z",
-     "shell.execute_reply": "2021-03-14T21:35:42.861009Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "# ---- Callback : Images\n",
-    "#\n",
-    "pwk.mkdir( run_dir + '/images')\n",
-    "filename = run_dir + '/images/image-{epoch:03d}-{i:02d}.jpg'\n",
-    "callback_images = ImagesCallback(filename, x=clean_test[:5], encoder=encoder,decoder=decoder)\n",
-    "\n",
-    "# ---- Callback : Best model\n",
-    "#\n",
-    "pwk.mkdir( run_dir + '/models')\n",
-    "filename = run_dir + '/models/best_model.h5'\n",
-    "callback_bestmodel = tf.keras.callbacks.ModelCheckpoint(filepath=filename, verbose=0, save_best_only=True)\n",
-    "\n",
-    "# ---- Callback tensorboard\n",
-    "#\n",
-    "logdir = run_dir + '/logs'\n",
-    "callback_tensorboard = TensorBoard(log_dir=logdir, histogram_freq=1)\n",
-    "\n",
-    "# callbacks_list = [callback_images, callback_bestmodel, callback_tensorboard]\n",
-    "callbacks_list = [callback_images, callback_bestmodel]"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 11,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:35:42.865261Z",
-     "iopub.status.busy": "2021-03-14T21:35:42.864784Z",
-     "iopub.status.idle": "2021-03-14T21:37:28.916428Z",
-     "shell.execute_reply": "2021-03-14T21:37:28.916928Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 1/30\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      "  1/438 [..............................] - ETA: 34:14 - loss: 3.1841 - ae_loss: 0.6931 - cnn_loss: 2.4909 - cnn_accuracy: 0.0938"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 3.0276 - ae_loss: 0.6135 - cnn_loss: 2.4141 - cnn_accuracy: 0.0962   "
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 2.9203 - ae_loss: 0.5366 - cnn_loss: 2.3837 - cnn_accuracy: 0.1007"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 23/438 [>.............................] - ETA: 2s - loss: 2.8475 - ae_loss: 0.4828 - cnn_loss: 2.3647 - cnn_accuracy: 0.1048"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 31/438 [=>............................] - ETA: 2s - loss: 2.8002 - ae_loss: 0.4482 - cnn_loss: 2.3519 - cnn_accuracy: 0.1088"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 39/438 [=>............................] - ETA: 2s - loss: 2.7668 - ae_loss: 0.4243 - cnn_loss: 2.3424 - cnn_accuracy: 0.1125"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 48/438 [==>...........................] - ETA: 2s - loss: 2.7388 - ae_loss: 0.4046 - cnn_loss: 2.3342 - cnn_accuracy: 0.1163"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 2.7172 - ae_loss: 0.3899 - cnn_loss: 2.3273 - cnn_accuracy: 0.1201"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 65/438 [===>..........................] - ETA: 2s - loss: 2.7010 - ae_loss: 0.3795 - cnn_loss: 2.3216 - cnn_accuracy: 0.1236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 73/438 [====>.........................] - ETA: 2s - loss: 2.6867 - ae_loss: 0.3709 - cnn_loss: 2.3158 - cnn_accuracy: 0.1272"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 82/438 [====>.........................] - ETA: 2s - loss: 2.6717 - ae_loss: 0.3628 - cnn_loss: 2.3089 - cnn_accuracy: 0.1316"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 90/438 [=====>........................] - ETA: 2s - loss: 2.6590 - ae_loss: 0.3568 - cnn_loss: 2.3022 - cnn_accuracy: 0.1358"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 98/438 [=====>........................] - ETA: 2s - loss: 2.6466 - ae_loss: 0.3515 - cnn_loss: 2.2950 - cnn_accuracy: 0.1403"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 2.6341 - ae_loss: 0.3469 - cnn_loss: 2.2871 - cnn_accuracy: 0.1450"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "114/438 [======>.......................] - ETA: 2s - loss: 2.6214 - ae_loss: 0.3429 - cnn_loss: 2.2785 - cnn_accuracy: 0.1500"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "122/438 [=======>......................] - ETA: 2s - loss: 2.6087 - ae_loss: 0.3393 - cnn_loss: 2.2695 - cnn_accuracy: 0.1550"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "131/438 [=======>......................] - ETA: 1s - loss: 2.5944 - ae_loss: 0.3356 - cnn_loss: 2.2588 - cnn_accuracy: 0.1608"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "139/438 [========>.....................] - ETA: 1s - loss: 2.5816 - ae_loss: 0.3327 - cnn_loss: 2.2488 - cnn_accuracy: 0.1660"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "147/438 [=========>....................] - ETA: 1s - loss: 2.5688 - ae_loss: 0.3301 - cnn_loss: 2.2388 - cnn_accuracy: 0.1711"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 1s - loss: 2.5562 - ae_loss: 0.3276 - cnn_loss: 2.2285 - cnn_accuracy: 0.1762"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "163/438 [==========>...................] - ETA: 1s - loss: 2.5436 - ae_loss: 0.3254 - cnn_loss: 2.2182 - cnn_accuracy: 0.1814"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "171/438 [==========>...................] - ETA: 1s - loss: 2.5312 - ae_loss: 0.3233 - cnn_loss: 2.2078 - cnn_accuracy: 0.1864"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "179/438 [===========>..................] - ETA: 1s - loss: 2.5188 - ae_loss: 0.3214 - cnn_loss: 2.1974 - cnn_accuracy: 0.1914"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "187/438 [===========>..................] - ETA: 1s - loss: 2.5065 - ae_loss: 0.3197 - cnn_loss: 2.1868 - cnn_accuracy: 0.1964"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "193/438 [============>.................] - ETA: 1s - loss: 2.4972 - ae_loss: 0.3184 - cnn_loss: 2.1788 - cnn_accuracy: 0.2001"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "201/438 [============>.................] - ETA: 1s - loss: 2.4850 - ae_loss: 0.3168 - cnn_loss: 2.1682 - cnn_accuracy: 0.2050"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "209/438 [=============>................] - ETA: 1s - loss: 2.4729 - ae_loss: 0.3154 - cnn_loss: 2.1575 - cnn_accuracy: 0.2099"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "217/438 [=============>................] - ETA: 1s - loss: 2.4610 - ae_loss: 0.3140 - cnn_loss: 2.1470 - cnn_accuracy: 0.2146"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 1s - loss: 2.4491 - ae_loss: 0.3126 - cnn_loss: 2.1365 - cnn_accuracy: 0.2194"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "233/438 [==============>...............] - ETA: 1s - loss: 2.4374 - ae_loss: 0.3114 - cnn_loss: 2.1260 - cnn_accuracy: 0.2240"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "241/438 [===============>..............] - ETA: 1s - loss: 2.4258 - ae_loss: 0.3102 - cnn_loss: 2.1156 - cnn_accuracy: 0.2286"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "249/438 [================>.............] - ETA: 1s - loss: 2.4144 - ae_loss: 0.3091 - cnn_loss: 2.1053 - cnn_accuracy: 0.2331"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "257/438 [================>.............] - ETA: 1s - loss: 2.4031 - ae_loss: 0.3080 - cnn_loss: 2.0952 - cnn_accuracy: 0.2375"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "265/438 [=================>............] - ETA: 1s - loss: 2.3921 - ae_loss: 0.3069 - cnn_loss: 2.0852 - cnn_accuracy: 0.2418"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "273/438 [=================>............] - ETA: 1s - loss: 2.3812 - ae_loss: 0.3059 - cnn_loss: 2.0753 - cnn_accuracy: 0.2461"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 1s - loss: 2.3705 - ae_loss: 0.3050 - cnn_loss: 2.0656 - cnn_accuracy: 0.2503"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "289/438 [==================>...........] - ETA: 1s - loss: 2.3600 - ae_loss: 0.3040 - cnn_loss: 2.0560 - cnn_accuracy: 0.2544"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "297/438 [===================>..........] - ETA: 0s - loss: 2.3497 - ae_loss: 0.3031 - cnn_loss: 2.0466 - cnn_accuracy: 0.2584"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "305/438 [===================>..........] - ETA: 0s - loss: 2.3395 - ae_loss: 0.3023 - cnn_loss: 2.0373 - cnn_accuracy: 0.2623"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "313/438 [====================>.........] - ETA: 0s - loss: 2.3296 - ae_loss: 0.3014 - cnn_loss: 2.0282 - cnn_accuracy: 0.2662"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "321/438 [====================>.........] - ETA: 0s - loss: 2.3198 - ae_loss: 0.3006 - cnn_loss: 2.0192 - cnn_accuracy: 0.2700"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "329/438 [=====================>........] - ETA: 0s - loss: 2.3102 - ae_loss: 0.2998 - cnn_loss: 2.0104 - cnn_accuracy: 0.2737"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "337/438 [======================>.......] - ETA: 0s - loss: 2.3008 - ae_loss: 0.2990 - cnn_loss: 2.0017 - cnn_accuracy: 0.2773"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "345/438 [======================>.......] - ETA: 0s - loss: 2.2914 - ae_loss: 0.2983 - cnn_loss: 1.9932 - cnn_accuracy: 0.2809"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "353/438 [=======================>......] - ETA: 0s - loss: 2.2823 - ae_loss: 0.2975 - cnn_loss: 1.9847 - cnn_accuracy: 0.2844"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "361/438 [=======================>......] - ETA: 0s - loss: 2.2733 - ae_loss: 0.2968 - cnn_loss: 1.9764 - cnn_accuracy: 0.2878"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "370/438 [========================>.....] - ETA: 0s - loss: 2.2633 - ae_loss: 0.2960 - cnn_loss: 1.9673 - cnn_accuracy: 0.2916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "379/438 [========================>.....] - ETA: 0s - loss: 2.2536 - ae_loss: 0.2952 - cnn_loss: 1.9583 - cnn_accuracy: 0.2953"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "387/438 [=========================>....] - ETA: 0s - loss: 2.2450 - ae_loss: 0.2945 - cnn_loss: 1.9505 - cnn_accuracy: 0.2985"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "396/438 [==========================>...] - ETA: 0s - loss: 2.2356 - ae_loss: 0.2938 - cnn_loss: 1.9418 - cnn_accuracy: 0.3021"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "405/438 [==========================>...] - ETA: 0s - loss: 2.2263 - ae_loss: 0.2930 - cnn_loss: 1.9333 - cnn_accuracy: 0.3056"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "413/438 [===========================>..] - ETA: 0s - loss: 2.2182 - ae_loss: 0.2924 - cnn_loss: 1.9259 - cnn_accuracy: 0.3086"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "422/438 [===========================>..] - ETA: 0s - loss: 2.2093 - ae_loss: 0.2916 - cnn_loss: 1.9176 - cnn_accuracy: 0.3120"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "430/438 [============================>.] - ETA: 0s - loss: 2.2015 - ae_loss: 0.2910 - cnn_loss: 1.9105 - cnn_accuracy: 0.3149"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - ETA: 0s - loss: 2.1938 - ae_loss: 0.2904 - cnn_loss: 1.9034 - cnn_accuracy: 0.3178"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 9s 10ms/step - loss: 2.1928 - ae_loss: 0.2903 - cnn_loss: 1.9025 - cnn_accuracy: 0.3181 - val_loss: 1.0618 - val_ae_loss: 0.2037 - val_cnn_loss: 0.8581 - val_cnn_accuracy: 0.7406\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 2/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 1.3222 - ae_loss: 0.2053 - cnn_loss: 1.1169 - cnn_accuracy: 0.6406"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 1.2630 - ae_loss: 0.2055 - cnn_loss: 1.0575 - cnn_accuracy: 0.6517"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 1.2662 - ae_loss: 0.2064 - cnn_loss: 1.0599 - cnn_accuracy: 0.6466"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 1.2635 - ae_loss: 0.2061 - cnn_loss: 1.0574 - cnn_accuracy: 0.6463"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 33/438 [=>............................] - ETA: 2s - loss: 1.2629 - ae_loss: 0.2057 - cnn_loss: 1.0572 - cnn_accuracy: 0.6460"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 2s - loss: 1.2626 - ae_loss: 0.2054 - cnn_loss: 1.0572 - cnn_accuracy: 0.6457"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 49/438 [==>...........................] - ETA: 2s - loss: 1.2622 - ae_loss: 0.2051 - cnn_loss: 1.0572 - cnn_accuracy: 0.6459"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 1.2618 - ae_loss: 0.2048 - cnn_loss: 1.0570 - cnn_accuracy: 0.6461"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 65/438 [===>..........................] - ETA: 2s - loss: 1.2609 - ae_loss: 0.2045 - cnn_loss: 1.0564 - cnn_accuracy: 0.6464"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 73/438 [====>.........................] - ETA: 2s - loss: 1.2595 - ae_loss: 0.2043 - cnn_loss: 1.0552 - cnn_accuracy: 0.6467"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 81/438 [====>.........................] - ETA: 2s - loss: 1.2583 - ae_loss: 0.2040 - cnn_loss: 1.0543 - cnn_accuracy: 0.6469"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 89/438 [=====>........................] - ETA: 2s - loss: 1.2573 - ae_loss: 0.2038 - cnn_loss: 1.0534 - cnn_accuracy: 0.6471"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 97/438 [=====>........................] - ETA: 2s - loss: 1.2561 - ae_loss: 0.2036 - cnn_loss: 1.0525 - cnn_accuracy: 0.6473"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "105/438 [======>.......................] - ETA: 2s - loss: 1.2547 - ae_loss: 0.2034 - cnn_loss: 1.0514 - cnn_accuracy: 0.6475"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 1.2532 - ae_loss: 0.2031 - cnn_loss: 1.0501 - cnn_accuracy: 0.6479"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "121/438 [=======>......................] - ETA: 2s - loss: 1.2519 - ae_loss: 0.2029 - cnn_loss: 1.0490 - cnn_accuracy: 0.6482"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "129/438 [=======>......................] - ETA: 1s - loss: 1.2504 - ae_loss: 0.2027 - cnn_loss: 1.0477 - cnn_accuracy: 0.6486"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "137/438 [========>.....................] - ETA: 1s - loss: 1.2491 - ae_loss: 0.2024 - cnn_loss: 1.0467 - cnn_accuracy: 0.6489"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "145/438 [========>.....................] - ETA: 1s - loss: 1.2477 - ae_loss: 0.2022 - cnn_loss: 1.0455 - cnn_accuracy: 0.6493"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "153/438 [=========>....................] - ETA: 1s - loss: 1.2463 - ae_loss: 0.2020 - cnn_loss: 1.0443 - cnn_accuracy: 0.6497"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "161/438 [==========>...................] - ETA: 1s - loss: 1.2449 - ae_loss: 0.2018 - cnn_loss: 1.0432 - cnn_accuracy: 0.6501"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 1s - loss: 1.2436 - ae_loss: 0.2015 - cnn_loss: 1.0420 - cnn_accuracy: 0.6504"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "177/438 [===========>..................] - ETA: 1s - loss: 1.2423 - ae_loss: 0.2013 - cnn_loss: 1.0409 - cnn_accuracy: 0.6508"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "185/438 [===========>..................] - ETA: 1s - loss: 1.2410 - ae_loss: 0.2011 - cnn_loss: 1.0399 - cnn_accuracy: 0.6511"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "193/438 [============>.................] - ETA: 1s - loss: 1.2398 - ae_loss: 0.2009 - cnn_loss: 1.0389 - cnn_accuracy: 0.6514"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "201/438 [============>.................] - ETA: 1s - loss: 1.2385 - ae_loss: 0.2007 - cnn_loss: 1.0378 - cnn_accuracy: 0.6517"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "209/438 [=============>................] - ETA: 1s - loss: 1.2373 - ae_loss: 0.2005 - cnn_loss: 1.0368 - cnn_accuracy: 0.6521"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "217/438 [=============>................] - ETA: 1s - loss: 1.2361 - ae_loss: 0.2003 - cnn_loss: 1.0358 - cnn_accuracy: 0.6524"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 1s - loss: 1.2348 - ae_loss: 0.2001 - cnn_loss: 1.0347 - cnn_accuracy: 0.6528"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "233/438 [==============>...............] - ETA: 1s - loss: 1.2336 - ae_loss: 0.1999 - cnn_loss: 1.0337 - cnn_accuracy: 0.6531"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "241/438 [===============>..............] - ETA: 1s - loss: 1.2323 - ae_loss: 0.1997 - cnn_loss: 1.0326 - cnn_accuracy: 0.6535"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "249/438 [================>.............] - ETA: 1s - loss: 1.2311 - ae_loss: 0.1995 - cnn_loss: 1.0316 - cnn_accuracy: 0.6538"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "258/438 [================>.............] - ETA: 1s - loss: 1.2297 - ae_loss: 0.1993 - cnn_loss: 1.0304 - cnn_accuracy: 0.6542"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "266/438 [=================>............] - ETA: 1s - loss: 1.2285 - ae_loss: 0.1992 - cnn_loss: 1.0293 - cnn_accuracy: 0.6546"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "274/438 [=================>............] - ETA: 1s - loss: 1.2272 - ae_loss: 0.1990 - cnn_loss: 1.0282 - cnn_accuracy: 0.6549"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "282/438 [==================>...........] - ETA: 0s - loss: 1.2259 - ae_loss: 0.1988 - cnn_loss: 1.0271 - cnn_accuracy: 0.6553"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "289/438 [==================>...........] - ETA: 0s - loss: 1.2248 - ae_loss: 0.1987 - cnn_loss: 1.0262 - cnn_accuracy: 0.6556"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "297/438 [===================>..........] - ETA: 0s - loss: 1.2235 - ae_loss: 0.1985 - cnn_loss: 1.0250 - cnn_accuracy: 0.6560"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "305/438 [===================>..........] - ETA: 0s - loss: 1.2223 - ae_loss: 0.1983 - cnn_loss: 1.0239 - cnn_accuracy: 0.6564"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "313/438 [====================>.........] - ETA: 0s - loss: 1.2210 - ae_loss: 0.1982 - cnn_loss: 1.0228 - cnn_accuracy: 0.6567"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "321/438 [====================>.........] - ETA: 0s - loss: 1.2197 - ae_loss: 0.1980 - cnn_loss: 1.0217 - cnn_accuracy: 0.6571"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "329/438 [=====================>........] - ETA: 0s - loss: 1.2183 - ae_loss: 0.1978 - cnn_loss: 1.0205 - cnn_accuracy: 0.6575"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "337/438 [======================>.......] - ETA: 0s - loss: 1.2170 - ae_loss: 0.1977 - cnn_loss: 1.0194 - cnn_accuracy: 0.6579"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "345/438 [======================>.......] - ETA: 0s - loss: 1.2158 - ae_loss: 0.1975 - cnn_loss: 1.0183 - cnn_accuracy: 0.6582"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "353/438 [=======================>......] - ETA: 0s - loss: 1.2145 - ae_loss: 0.1974 - cnn_loss: 1.0172 - cnn_accuracy: 0.6586"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "361/438 [=======================>......] - ETA: 0s - loss: 1.2133 - ae_loss: 0.1972 - cnn_loss: 1.0161 - cnn_accuracy: 0.6589"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "369/438 [========================>.....] - ETA: 0s - loss: 1.2121 - ae_loss: 0.1971 - cnn_loss: 1.0150 - cnn_accuracy: 0.6593"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "378/438 [========================>.....] - ETA: 0s - loss: 1.2107 - ae_loss: 0.1969 - cnn_loss: 1.0138 - cnn_accuracy: 0.6597"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "387/438 [=========================>....] - ETA: 0s - loss: 1.2093 - ae_loss: 0.1967 - cnn_loss: 1.0126 - cnn_accuracy: 0.6601"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "396/438 [==========================>...] - ETA: 0s - loss: 1.2080 - ae_loss: 0.1966 - cnn_loss: 1.0114 - cnn_accuracy: 0.6604"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "405/438 [==========================>...] - ETA: 0s - loss: 1.2067 - ae_loss: 0.1964 - cnn_loss: 1.0103 - cnn_accuracy: 0.6608"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "413/438 [===========================>..] - ETA: 0s - loss: 1.2056 - ae_loss: 0.1963 - cnn_loss: 1.0093 - cnn_accuracy: 0.6612"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "422/438 [===========================>..] - ETA: 0s - loss: 1.2043 - ae_loss: 0.1961 - cnn_loss: 1.0082 - cnn_accuracy: 0.6615"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "430/438 [============================>.] - ETA: 0s - loss: 1.2031 - ae_loss: 0.1960 - cnn_loss: 1.0071 - cnn_accuracy: 0.6619"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 1.2018 - ae_loss: 0.1958 - cnn_loss: 1.0060 - cnn_accuracy: 0.6623 - val_loss: 0.8201 - val_ae_loss: 0.1800 - val_cnn_loss: 0.6401 - val_cnn_accuracy: 0.7978\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 3/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.9355 - ae_loss: 0.1823 - cnn_loss: 0.7531 - cnn_accuracy: 0.7891"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 1.0202 - ae_loss: 0.1798 - cnn_loss: 0.8403 - cnn_accuracy: 0.7299"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 1.0350 - ae_loss: 0.1785 - cnn_loss: 0.8565 - cnn_accuracy: 0.7223"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 1.0411 - ae_loss: 0.1779 - cnn_loss: 0.8632 - cnn_accuracy: 0.7207"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 33/438 [=>............................] - ETA: 2s - loss: 1.0409 - ae_loss: 0.1776 - cnn_loss: 0.8632 - cnn_accuracy: 0.7212"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 2s - loss: 1.0392 - ae_loss: 0.1775 - cnn_loss: 0.8617 - cnn_accuracy: 0.7220"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 49/438 [==>...........................] - ETA: 2s - loss: 1.0373 - ae_loss: 0.1774 - cnn_loss: 0.8600 - cnn_accuracy: 0.7225"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 1.0362 - ae_loss: 0.1773 - cnn_loss: 0.8590 - cnn_accuracy: 0.7222"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 65/438 [===>..........................] - ETA: 2s - loss: 1.0342 - ae_loss: 0.1771 - cnn_loss: 0.8571 - cnn_accuracy: 0.7222"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 73/438 [====>.........................] - ETA: 2s - loss: 1.0327 - ae_loss: 0.1770 - cnn_loss: 0.8557 - cnn_accuracy: 0.7221"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 81/438 [====>.........................] - ETA: 2s - loss: 1.0317 - ae_loss: 0.1769 - cnn_loss: 0.8549 - cnn_accuracy: 0.7220"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 89/438 [=====>........................] - ETA: 2s - loss: 1.0307 - ae_loss: 0.1768 - cnn_loss: 0.8539 - cnn_accuracy: 0.7220"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 97/438 [=====>........................] - ETA: 2s - loss: 1.0292 - ae_loss: 0.1767 - cnn_loss: 0.8526 - cnn_accuracy: 0.7222"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "105/438 [======>.......................] - ETA: 2s - loss: 1.0280 - ae_loss: 0.1766 - cnn_loss: 0.8514 - cnn_accuracy: 0.7223"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 1.0268 - ae_loss: 0.1765 - cnn_loss: 0.8502 - cnn_accuracy: 0.7225"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "121/438 [=======>......................] - ETA: 2s - loss: 1.0253 - ae_loss: 0.1765 - cnn_loss: 0.8489 - cnn_accuracy: 0.7228"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "129/438 [=======>......................] - ETA: 1s - loss: 1.0238 - ae_loss: 0.1764 - cnn_loss: 0.8474 - cnn_accuracy: 0.7231"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "137/438 [========>.....................] - ETA: 1s - loss: 1.0223 - ae_loss: 0.1763 - cnn_loss: 0.8459 - cnn_accuracy: 0.7235"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "145/438 [========>.....................] - ETA: 1s - loss: 1.0208 - ae_loss: 0.1763 - cnn_loss: 0.8446 - cnn_accuracy: 0.7238"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "153/438 [=========>....................] - ETA: 1s - loss: 1.0195 - ae_loss: 0.1762 - cnn_loss: 0.8433 - cnn_accuracy: 0.7241"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "161/438 [==========>...................] - ETA: 1s - loss: 1.0184 - ae_loss: 0.1761 - cnn_loss: 0.8423 - cnn_accuracy: 0.7244"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 1s - loss: 1.0173 - ae_loss: 0.1761 - cnn_loss: 0.8412 - cnn_accuracy: 0.7246"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "177/438 [===========>..................] - ETA: 1s - loss: 1.0161 - ae_loss: 0.1760 - cnn_loss: 0.8401 - cnn_accuracy: 0.7249"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "185/438 [===========>..................] - ETA: 1s - loss: 1.0151 - ae_loss: 0.1759 - cnn_loss: 0.8392 - cnn_accuracy: 0.7252"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "193/438 [============>.................] - ETA: 1s - loss: 1.0140 - ae_loss: 0.1759 - cnn_loss: 0.8381 - cnn_accuracy: 0.7255"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "201/438 [============>.................] - ETA: 1s - loss: 1.0129 - ae_loss: 0.1758 - cnn_loss: 0.8371 - cnn_accuracy: 0.7258"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "209/438 [=============>................] - ETA: 1s - loss: 1.0119 - ae_loss: 0.1758 - cnn_loss: 0.8362 - cnn_accuracy: 0.7261"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "217/438 [=============>................] - ETA: 1s - loss: 1.0109 - ae_loss: 0.1757 - cnn_loss: 0.8352 - cnn_accuracy: 0.7263"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 1s - loss: 1.0100 - ae_loss: 0.1756 - cnn_loss: 0.8344 - cnn_accuracy: 0.7266"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "233/438 [==============>...............] - ETA: 1s - loss: 1.0092 - ae_loss: 0.1756 - cnn_loss: 0.8336 - cnn_accuracy: 0.7268"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "241/438 [===============>..............] - ETA: 1s - loss: 1.0084 - ae_loss: 0.1755 - cnn_loss: 0.8329 - cnn_accuracy: 0.7270"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "249/438 [================>.............] - ETA: 1s - loss: 1.0077 - ae_loss: 0.1755 - cnn_loss: 0.8322 - cnn_accuracy: 0.7272"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "257/438 [================>.............] - ETA: 1s - loss: 1.0070 - ae_loss: 0.1754 - cnn_loss: 0.8316 - cnn_accuracy: 0.7274"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "265/438 [=================>............] - ETA: 1s - loss: 1.0063 - ae_loss: 0.1753 - cnn_loss: 0.8310 - cnn_accuracy: 0.7276"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "273/438 [=================>............] - ETA: 1s - loss: 1.0056 - ae_loss: 0.1753 - cnn_loss: 0.8303 - cnn_accuracy: 0.7278"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 0s - loss: 1.0050 - ae_loss: 0.1752 - cnn_loss: 0.8297 - cnn_accuracy: 0.7280"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "289/438 [==================>...........] - ETA: 0s - loss: 1.0043 - ae_loss: 0.1752 - cnn_loss: 0.8291 - cnn_accuracy: 0.7282"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "297/438 [===================>..........] - ETA: 0s - loss: 1.0037 - ae_loss: 0.1751 - cnn_loss: 0.8285 - cnn_accuracy: 0.7284"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "305/438 [===================>..........] - ETA: 0s - loss: 1.0030 - ae_loss: 0.1750 - cnn_loss: 0.8280 - cnn_accuracy: 0.7285"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "313/438 [====================>.........] - ETA: 0s - loss: 1.0024 - ae_loss: 0.1750 - cnn_loss: 0.8274 - cnn_accuracy: 0.7287"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "321/438 [====================>.........] - ETA: 0s - loss: 1.0017 - ae_loss: 0.1749 - cnn_loss: 0.8268 - cnn_accuracy: 0.7289"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "329/438 [=====================>........] - ETA: 0s - loss: 1.0011 - ae_loss: 0.1749 - cnn_loss: 0.8262 - cnn_accuracy: 0.7291"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "337/438 [======================>.......] - ETA: 0s - loss: 1.0005 - ae_loss: 0.1748 - cnn_loss: 0.8257 - cnn_accuracy: 0.7293"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "345/438 [======================>.......] - ETA: 0s - loss: 0.9999 - ae_loss: 0.1748 - cnn_loss: 0.8252 - cnn_accuracy: 0.7294"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "353/438 [=======================>......] - ETA: 0s - loss: 0.9994 - ae_loss: 0.1747 - cnn_loss: 0.8246 - cnn_accuracy: 0.7296"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "361/438 [=======================>......] - ETA: 0s - loss: 0.9988 - ae_loss: 0.1747 - cnn_loss: 0.8241 - cnn_accuracy: 0.7297"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "369/438 [========================>.....] - ETA: 0s - loss: 0.9983 - ae_loss: 0.1746 - cnn_loss: 0.8236 - cnn_accuracy: 0.7299"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "377/438 [========================>.....] - ETA: 0s - loss: 0.9977 - ae_loss: 0.1746 - cnn_loss: 0.8231 - cnn_accuracy: 0.7301"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "385/438 [=========================>....] - ETA: 0s - loss: 0.9971 - ae_loss: 0.1745 - cnn_loss: 0.8226 - cnn_accuracy: 0.7302"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "393/438 [=========================>....] - ETA: 0s - loss: 0.9965 - ae_loss: 0.1745 - cnn_loss: 0.8221 - cnn_accuracy: 0.7304"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "401/438 [==========================>...] - ETA: 0s - loss: 0.9960 - ae_loss: 0.1744 - cnn_loss: 0.8215 - cnn_accuracy: 0.7305"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "409/438 [===========================>..] - ETA: 0s - loss: 0.9954 - ae_loss: 0.1744 - cnn_loss: 0.8210 - cnn_accuracy: 0.7307"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "417/438 [===========================>..] - ETA: 0s - loss: 0.9948 - ae_loss: 0.1743 - cnn_loss: 0.8205 - cnn_accuracy: 0.7309"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "425/438 [============================>.] - ETA: 0s - loss: 0.9943 - ae_loss: 0.1742 - cnn_loss: 0.8200 - cnn_accuracy: 0.7310"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "433/438 [============================>.] - ETA: 0s - loss: 0.9937 - ae_loss: 0.1742 - cnn_loss: 0.8195 - cnn_accuracy: 0.7312"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.9933 - ae_loss: 0.1742 - cnn_loss: 0.8191 - cnn_accuracy: 0.7313 - val_loss: 0.7007 - val_ae_loss: 0.1656 - val_cnn_loss: 0.5351 - val_cnn_accuracy: 0.8268\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 4/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 1.0677 - ae_loss: 0.1603 - cnn_loss: 0.9074 - cnn_accuracy: 0.7344"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.9783 - ae_loss: 0.1649 - cnn_loss: 0.8135 - cnn_accuracy: 0.7445"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.9493 - ae_loss: 0.1646 - cnn_loss: 0.7848 - cnn_accuracy: 0.7528"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 26/438 [>.............................] - ETA: 2s - loss: 0.9380 - ae_loss: 0.1649 - cnn_loss: 0.7731 - cnn_accuracy: 0.7562"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 34/438 [=>............................] - ETA: 2s - loss: 0.9338 - ae_loss: 0.1651 - cnn_loss: 0.7687 - cnn_accuracy: 0.7570"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 42/438 [=>............................] - ETA: 2s - loss: 0.9295 - ae_loss: 0.1652 - cnn_loss: 0.7643 - cnn_accuracy: 0.7578"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 51/438 [==>...........................] - ETA: 2s - loss: 0.9239 - ae_loss: 0.1654 - cnn_loss: 0.7586 - cnn_accuracy: 0.7587"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 60/438 [===>..........................] - ETA: 2s - loss: 0.9185 - ae_loss: 0.1654 - cnn_loss: 0.7530 - cnn_accuracy: 0.7598"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 69/438 [===>..........................] - ETA: 2s - loss: 0.9141 - ae_loss: 0.1655 - cnn_loss: 0.7486 - cnn_accuracy: 0.7607"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 77/438 [====>.........................] - ETA: 2s - loss: 0.9112 - ae_loss: 0.1655 - cnn_loss: 0.7457 - cnn_accuracy: 0.7610"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 86/438 [====>.........................] - ETA: 2s - loss: 0.9090 - ae_loss: 0.1656 - cnn_loss: 0.7435 - cnn_accuracy: 0.7613"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 94/438 [=====>........................] - ETA: 2s - loss: 0.9075 - ae_loss: 0.1656 - cnn_loss: 0.7419 - cnn_accuracy: 0.7614"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "102/438 [=====>........................] - ETA: 2s - loss: 0.9063 - ae_loss: 0.1656 - cnn_loss: 0.7407 - cnn_accuracy: 0.7615"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "111/438 [======>.......................] - ETA: 2s - loss: 0.9054 - ae_loss: 0.1656 - cnn_loss: 0.7398 - cnn_accuracy: 0.7615"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "119/438 [=======>......................] - ETA: 1s - loss: 0.9049 - ae_loss: 0.1656 - cnn_loss: 0.7393 - cnn_accuracy: 0.7615"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "127/438 [=======>......................] - ETA: 1s - loss: 0.9045 - ae_loss: 0.1656 - cnn_loss: 0.7389 - cnn_accuracy: 0.7615"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "135/438 [========>.....................] - ETA: 1s - loss: 0.9042 - ae_loss: 0.1656 - cnn_loss: 0.7386 - cnn_accuracy: 0.7614"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "143/438 [========>.....................] - ETA: 1s - loss: 0.9040 - ae_loss: 0.1656 - cnn_loss: 0.7384 - cnn_accuracy: 0.7614"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "152/438 [=========>....................] - ETA: 1s - loss: 0.9037 - ae_loss: 0.1656 - cnn_loss: 0.7381 - cnn_accuracy: 0.7614"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "160/438 [=========>....................] - ETA: 1s - loss: 0.9034 - ae_loss: 0.1656 - cnn_loss: 0.7378 - cnn_accuracy: 0.7613"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 1s - loss: 0.9030 - ae_loss: 0.1656 - cnn_loss: 0.7374 - cnn_accuracy: 0.7613"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "178/438 [===========>..................] - ETA: 1s - loss: 0.9025 - ae_loss: 0.1655 - cnn_loss: 0.7369 - cnn_accuracy: 0.7614"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "186/438 [===========>..................] - ETA: 1s - loss: 0.9020 - ae_loss: 0.1655 - cnn_loss: 0.7365 - cnn_accuracy: 0.7614"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "195/438 [============>.................] - ETA: 1s - loss: 0.9016 - ae_loss: 0.1655 - cnn_loss: 0.7361 - cnn_accuracy: 0.7615"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "204/438 [============>.................] - ETA: 1s - loss: 0.9011 - ae_loss: 0.1655 - cnn_loss: 0.7357 - cnn_accuracy: 0.7616"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "213/438 [=============>................] - ETA: 1s - loss: 0.9007 - ae_loss: 0.1654 - cnn_loss: 0.7353 - cnn_accuracy: 0.7616"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "221/438 [==============>...............] - ETA: 1s - loss: 0.9003 - ae_loss: 0.1654 - cnn_loss: 0.7349 - cnn_accuracy: 0.7617"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "229/438 [==============>...............] - ETA: 1s - loss: 0.8999 - ae_loss: 0.1654 - cnn_loss: 0.7346 - cnn_accuracy: 0.7617"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "237/438 [===============>..............] - ETA: 1s - loss: 0.8996 - ae_loss: 0.1654 - cnn_loss: 0.7342 - cnn_accuracy: 0.7618"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "245/438 [===============>..............] - ETA: 1s - loss: 0.8992 - ae_loss: 0.1653 - cnn_loss: 0.7339 - cnn_accuracy: 0.7619"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "253/438 [================>.............] - ETA: 1s - loss: 0.8988 - ae_loss: 0.1653 - cnn_loss: 0.7335 - cnn_accuracy: 0.7619"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "261/438 [================>.............] - ETA: 1s - loss: 0.8985 - ae_loss: 0.1653 - cnn_loss: 0.7332 - cnn_accuracy: 0.7620"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "269/438 [=================>............] - ETA: 1s - loss: 0.8982 - ae_loss: 0.1653 - cnn_loss: 0.7329 - cnn_accuracy: 0.7621"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "277/438 [=================>............] - ETA: 1s - loss: 0.8979 - ae_loss: 0.1652 - cnn_loss: 0.7326 - cnn_accuracy: 0.7621"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "285/438 [==================>...........] - ETA: 0s - loss: 0.8975 - ae_loss: 0.1652 - cnn_loss: 0.7323 - cnn_accuracy: 0.7622"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "294/438 [===================>..........] - ETA: 0s - loss: 0.8972 - ae_loss: 0.1652 - cnn_loss: 0.7320 - cnn_accuracy: 0.7623"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "302/438 [===================>..........] - ETA: 0s - loss: 0.8968 - ae_loss: 0.1652 - cnn_loss: 0.7317 - cnn_accuracy: 0.7624"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "310/438 [====================>.........] - ETA: 0s - loss: 0.8965 - ae_loss: 0.1651 - cnn_loss: 0.7313 - cnn_accuracy: 0.7625"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "318/438 [====================>.........] - ETA: 0s - loss: 0.8961 - ae_loss: 0.1651 - cnn_loss: 0.7310 - cnn_accuracy: 0.7626"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "326/438 [=====================>........] - ETA: 0s - loss: 0.8958 - ae_loss: 0.1651 - cnn_loss: 0.7307 - cnn_accuracy: 0.7627"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "334/438 [=====================>........] - ETA: 0s - loss: 0.8955 - ae_loss: 0.1651 - cnn_loss: 0.7304 - cnn_accuracy: 0.7627"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "342/438 [======================>.......] - ETA: 0s - loss: 0.8951 - ae_loss: 0.1650 - cnn_loss: 0.7301 - cnn_accuracy: 0.7628"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "350/438 [======================>.......] - ETA: 0s - loss: 0.8948 - ae_loss: 0.1650 - cnn_loss: 0.7298 - cnn_accuracy: 0.7629"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "358/438 [=======================>......] - ETA: 0s - loss: 0.8944 - ae_loss: 0.1650 - cnn_loss: 0.7295 - cnn_accuracy: 0.7630"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "366/438 [========================>.....] - ETA: 0s - loss: 0.8941 - ae_loss: 0.1650 - cnn_loss: 0.7292 - cnn_accuracy: 0.7630"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "374/438 [========================>.....] - ETA: 0s - loss: 0.8938 - ae_loss: 0.1649 - cnn_loss: 0.7289 - cnn_accuracy: 0.7631"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "382/438 [=========================>....] - ETA: 0s - loss: 0.8935 - ae_loss: 0.1649 - cnn_loss: 0.7286 - cnn_accuracy: 0.7632"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "390/438 [=========================>....] - ETA: 0s - loss: 0.8932 - ae_loss: 0.1649 - cnn_loss: 0.7283 - cnn_accuracy: 0.7633"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "398/438 [==========================>...] - ETA: 0s - loss: 0.8929 - ae_loss: 0.1649 - cnn_loss: 0.7280 - cnn_accuracy: 0.7633"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "406/438 [==========================>...] - ETA: 0s - loss: 0.8926 - ae_loss: 0.1648 - cnn_loss: 0.7278 - cnn_accuracy: 0.7634"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "414/438 [===========================>..] - ETA: 0s - loss: 0.8924 - ae_loss: 0.1648 - cnn_loss: 0.7276 - cnn_accuracy: 0.7634"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "422/438 [===========================>..] - ETA: 0s - loss: 0.8922 - ae_loss: 0.1648 - cnn_loss: 0.7274 - cnn_accuracy: 0.7635"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "430/438 [============================>.] - ETA: 0s - loss: 0.8919 - ae_loss: 0.1648 - cnn_loss: 0.7272 - cnn_accuracy: 0.7635"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - ETA: 0s - loss: 0.8917 - ae_loss: 0.1648 - cnn_loss: 0.7270 - cnn_accuracy: 0.7635"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.8917 - ae_loss: 0.1647 - cnn_loss: 0.7269 - cnn_accuracy: 0.7635 - val_loss: 0.6610 - val_ae_loss: 0.1596 - val_cnn_loss: 0.5014 - val_cnn_accuracy: 0.8388\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 5/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.7778 - ae_loss: 0.1485 - cnn_loss: 0.6293 - cnn_accuracy: 0.7812"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.8236 - ae_loss: 0.1554 - cnn_loss: 0.6682 - cnn_accuracy: 0.7722"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.8217 - ae_loss: 0.1569 - cnn_loss: 0.6648 - cnn_accuracy: 0.7789"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 0.8237 - ae_loss: 0.1577 - cnn_loss: 0.6660 - cnn_accuracy: 0.7802"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 33/438 [=>............................] - ETA: 2s - loss: 0.8257 - ae_loss: 0.1579 - cnn_loss: 0.6677 - cnn_accuracy: 0.7801"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 2s - loss: 0.8270 - ae_loss: 0.1582 - cnn_loss: 0.6688 - cnn_accuracy: 0.7801"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 49/438 [==>...........................] - ETA: 2s - loss: 0.8296 - ae_loss: 0.1585 - cnn_loss: 0.6711 - cnn_accuracy: 0.7793"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.8319 - ae_loss: 0.1587 - cnn_loss: 0.6731 - cnn_accuracy: 0.7789"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 65/438 [===>..........................] - ETA: 2s - loss: 0.8342 - ae_loss: 0.1589 - cnn_loss: 0.6754 - cnn_accuracy: 0.7784"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 73/438 [====>.........................] - ETA: 2s - loss: 0.8367 - ae_loss: 0.1590 - cnn_loss: 0.6777 - cnn_accuracy: 0.7777"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 81/438 [====>.........................] - ETA: 2s - loss: 0.8393 - ae_loss: 0.1592 - cnn_loss: 0.6801 - cnn_accuracy: 0.7768"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 89/438 [=====>........................] - ETA: 2s - loss: 0.8415 - ae_loss: 0.1593 - cnn_loss: 0.6822 - cnn_accuracy: 0.7761"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 97/438 [=====>........................] - ETA: 2s - loss: 0.8433 - ae_loss: 0.1594 - cnn_loss: 0.6839 - cnn_accuracy: 0.7755"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "105/438 [======>.......................] - ETA: 2s - loss: 0.8449 - ae_loss: 0.1595 - cnn_loss: 0.6854 - cnn_accuracy: 0.7750"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 0.8462 - ae_loss: 0.1596 - cnn_loss: 0.6866 - cnn_accuracy: 0.7747"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "121/438 [=======>......................] - ETA: 1s - loss: 0.8472 - ae_loss: 0.1597 - cnn_loss: 0.6875 - cnn_accuracy: 0.7744"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "128/438 [=======>......................] - ETA: 1s - loss: 0.8479 - ae_loss: 0.1597 - cnn_loss: 0.6882 - cnn_accuracy: 0.7742"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "136/438 [========>.....................] - ETA: 1s - loss: 0.8485 - ae_loss: 0.1598 - cnn_loss: 0.6887 - cnn_accuracy: 0.7740"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "144/438 [========>.....................] - ETA: 1s - loss: 0.8490 - ae_loss: 0.1598 - cnn_loss: 0.6892 - cnn_accuracy: 0.7739"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "152/438 [=========>....................] - ETA: 1s - loss: 0.8492 - ae_loss: 0.1599 - cnn_loss: 0.6894 - cnn_accuracy: 0.7739"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "160/438 [=========>....................] - ETA: 1s - loss: 0.8493 - ae_loss: 0.1599 - cnn_loss: 0.6894 - cnn_accuracy: 0.7739"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "168/438 [==========>...................] - ETA: 1s - loss: 0.8494 - ae_loss: 0.1599 - cnn_loss: 0.6895 - cnn_accuracy: 0.7739"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "175/438 [==========>...................] - ETA: 1s - loss: 0.8495 - ae_loss: 0.1600 - cnn_loss: 0.6896 - cnn_accuracy: 0.7739"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 1s - loss: 0.8496 - ae_loss: 0.1600 - cnn_loss: 0.6897 - cnn_accuracy: 0.7739"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "191/438 [============>.................] - ETA: 1s - loss: 0.8497 - ae_loss: 0.1600 - cnn_loss: 0.6897 - cnn_accuracy: 0.7739"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "199/438 [============>.................] - ETA: 1s - loss: 0.8497 - ae_loss: 0.1600 - cnn_loss: 0.6897 - cnn_accuracy: 0.7739"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "207/438 [=============>................] - ETA: 1s - loss: 0.8497 - ae_loss: 0.1600 - cnn_loss: 0.6897 - cnn_accuracy: 0.7739"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "215/438 [=============>................] - ETA: 1s - loss: 0.8497 - ae_loss: 0.1600 - cnn_loss: 0.6897 - cnn_accuracy: 0.7739"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "223/438 [==============>...............] - ETA: 1s - loss: 0.8495 - ae_loss: 0.1600 - cnn_loss: 0.6895 - cnn_accuracy: 0.7739"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "231/438 [==============>...............] - ETA: 1s - loss: 0.8494 - ae_loss: 0.1600 - cnn_loss: 0.6894 - cnn_accuracy: 0.7740"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "239/438 [===============>..............] - ETA: 1s - loss: 0.8492 - ae_loss: 0.1600 - cnn_loss: 0.6892 - cnn_accuracy: 0.7740"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "247/438 [===============>..............] - ETA: 1s - loss: 0.8490 - ae_loss: 0.1600 - cnn_loss: 0.6890 - cnn_accuracy: 0.7741"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "255/438 [================>.............] - ETA: 1s - loss: 0.8489 - ae_loss: 0.1600 - cnn_loss: 0.6889 - cnn_accuracy: 0.7741"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "262/438 [================>.............] - ETA: 1s - loss: 0.8487 - ae_loss: 0.1600 - cnn_loss: 0.6887 - cnn_accuracy: 0.7742"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "270/438 [=================>............] - ETA: 1s - loss: 0.8485 - ae_loss: 0.1600 - cnn_loss: 0.6885 - cnn_accuracy: 0.7743"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "278/438 [==================>...........] - ETA: 1s - loss: 0.8484 - ae_loss: 0.1600 - cnn_loss: 0.6884 - cnn_accuracy: 0.7743"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "286/438 [==================>...........] - ETA: 1s - loss: 0.8482 - ae_loss: 0.1600 - cnn_loss: 0.6882 - cnn_accuracy: 0.7744"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "294/438 [===================>..........] - ETA: 0s - loss: 0.8480 - ae_loss: 0.1600 - cnn_loss: 0.6880 - cnn_accuracy: 0.7744"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "302/438 [===================>..........] - ETA: 0s - loss: 0.8479 - ae_loss: 0.1600 - cnn_loss: 0.6879 - cnn_accuracy: 0.7745"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "310/438 [====================>.........] - ETA: 0s - loss: 0.8477 - ae_loss: 0.1600 - cnn_loss: 0.6877 - cnn_accuracy: 0.7746"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "318/438 [====================>.........] - ETA: 0s - loss: 0.8475 - ae_loss: 0.1600 - cnn_loss: 0.6875 - cnn_accuracy: 0.7746"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "326/438 [=====================>........] - ETA: 0s - loss: 0.8473 - ae_loss: 0.1600 - cnn_loss: 0.6873 - cnn_accuracy: 0.7747"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "334/438 [=====================>........] - ETA: 0s - loss: 0.8471 - ae_loss: 0.1600 - cnn_loss: 0.6871 - cnn_accuracy: 0.7748"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "342/438 [======================>.......] - ETA: 0s - loss: 0.8469 - ae_loss: 0.1600 - cnn_loss: 0.6869 - cnn_accuracy: 0.7749"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "350/438 [======================>.......] - ETA: 0s - loss: 0.8467 - ae_loss: 0.1600 - cnn_loss: 0.6867 - cnn_accuracy: 0.7749"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "358/438 [=======================>......] - ETA: 0s - loss: 0.8465 - ae_loss: 0.1600 - cnn_loss: 0.6865 - cnn_accuracy: 0.7750"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "366/438 [========================>.....] - ETA: 0s - loss: 0.8463 - ae_loss: 0.1600 - cnn_loss: 0.6863 - cnn_accuracy: 0.7751"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "374/438 [========================>.....] - ETA: 0s - loss: 0.8461 - ae_loss: 0.1600 - cnn_loss: 0.6862 - cnn_accuracy: 0.7751"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "382/438 [=========================>....] - ETA: 0s - loss: 0.8459 - ae_loss: 0.1600 - cnn_loss: 0.6860 - cnn_accuracy: 0.7752"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "390/438 [=========================>....] - ETA: 0s - loss: 0.8457 - ae_loss: 0.1599 - cnn_loss: 0.6858 - cnn_accuracy: 0.7753"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "398/438 [==========================>...] - ETA: 0s - loss: 0.8455 - ae_loss: 0.1599 - cnn_loss: 0.6856 - cnn_accuracy: 0.7753"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "406/438 [==========================>...] - ETA: 0s - loss: 0.8454 - ae_loss: 0.1599 - cnn_loss: 0.6854 - cnn_accuracy: 0.7754"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "414/438 [===========================>..] - ETA: 0s - loss: 0.8452 - ae_loss: 0.1599 - cnn_loss: 0.6853 - cnn_accuracy: 0.7754"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "422/438 [===========================>..] - ETA: 0s - loss: 0.8450 - ae_loss: 0.1599 - cnn_loss: 0.6851 - cnn_accuracy: 0.7755"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "430/438 [============================>.] - ETA: 0s - loss: 0.8448 - ae_loss: 0.1599 - cnn_loss: 0.6849 - cnn_accuracy: 0.7756"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - ETA: 0s - loss: 0.8447 - ae_loss: 0.1599 - cnn_loss: 0.6848 - cnn_accuracy: 0.7756"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.8447 - ae_loss: 0.1599 - cnn_loss: 0.6847 - cnn_accuracy: 0.7756 - val_loss: 0.6350 - val_ae_loss: 0.1622 - val_cnn_loss: 0.4727 - val_cnn_accuracy: 0.8457\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 6/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.9244 - ae_loss: 0.1630 - cnn_loss: 0.7614 - cnn_accuracy: 0.8125"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.8561 - ae_loss: 0.1619 - cnn_loss: 0.6942 - cnn_accuracy: 0.8050"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 18/438 [>.............................] - ETA: 2s - loss: 0.8331 - ae_loss: 0.1603 - cnn_loss: 0.6728 - cnn_accuracy: 0.8039"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 26/438 [>.............................] - ETA: 2s - loss: 0.8281 - ae_loss: 0.1598 - cnn_loss: 0.6683 - cnn_accuracy: 0.8022"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 35/438 [=>............................] - ETA: 2s - loss: 0.8258 - ae_loss: 0.1593 - cnn_loss: 0.6664 - cnn_accuracy: 0.8003"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 2s - loss: 0.8249 - ae_loss: 0.1590 - cnn_loss: 0.6658 - cnn_accuracy: 0.7986"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 51/438 [==>...........................] - ETA: 2s - loss: 0.8253 - ae_loss: 0.1589 - cnn_loss: 0.6664 - cnn_accuracy: 0.7972"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 59/438 [===>..........................] - ETA: 2s - loss: 0.8253 - ae_loss: 0.1587 - cnn_loss: 0.6666 - cnn_accuracy: 0.7961"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 67/438 [===>..........................] - ETA: 2s - loss: 0.8254 - ae_loss: 0.1586 - cnn_loss: 0.6668 - cnn_accuracy: 0.7953"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 75/438 [====>.........................] - ETA: 2s - loss: 0.8254 - ae_loss: 0.1585 - cnn_loss: 0.6670 - cnn_accuracy: 0.7946"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 83/438 [====>.........................] - ETA: 2s - loss: 0.8252 - ae_loss: 0.1584 - cnn_loss: 0.6669 - cnn_accuracy: 0.7940"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 91/438 [=====>........................] - ETA: 2s - loss: 0.8247 - ae_loss: 0.1583 - cnn_loss: 0.6664 - cnn_accuracy: 0.7937"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.8239 - ae_loss: 0.1582 - cnn_loss: 0.6657 - cnn_accuracy: 0.7936"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "108/438 [======>.......................] - ETA: 2s - loss: 0.8232 - ae_loss: 0.1581 - cnn_loss: 0.6650 - cnn_accuracy: 0.7935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "116/438 [======>.......................] - ETA: 2s - loss: 0.8226 - ae_loss: 0.1581 - cnn_loss: 0.6645 - cnn_accuracy: 0.7934"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "124/438 [=======>......................] - ETA: 1s - loss: 0.8221 - ae_loss: 0.1580 - cnn_loss: 0.6642 - cnn_accuracy: 0.7933"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "133/438 [========>.....................] - ETA: 1s - loss: 0.8217 - ae_loss: 0.1579 - cnn_loss: 0.6638 - cnn_accuracy: 0.7932"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "142/438 [========>.....................] - ETA: 1s - loss: 0.8213 - ae_loss: 0.1578 - cnn_loss: 0.6635 - cnn_accuracy: 0.7931"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "150/438 [=========>....................] - ETA: 1s - loss: 0.8210 - ae_loss: 0.1578 - cnn_loss: 0.6632 - cnn_accuracy: 0.7930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "159/438 [=========>....................] - ETA: 1s - loss: 0.8207 - ae_loss: 0.1578 - cnn_loss: 0.6629 - cnn_accuracy: 0.7928"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "168/438 [==========>...................] - ETA: 1s - loss: 0.8203 - ae_loss: 0.1577 - cnn_loss: 0.6626 - cnn_accuracy: 0.7927"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "177/438 [===========>..................] - ETA: 1s - loss: 0.8202 - ae_loss: 0.1577 - cnn_loss: 0.6625 - cnn_accuracy: 0.7926"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "186/438 [===========>..................] - ETA: 1s - loss: 0.8201 - ae_loss: 0.1576 - cnn_loss: 0.6624 - cnn_accuracy: 0.7925"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "195/438 [============>.................] - ETA: 1s - loss: 0.8199 - ae_loss: 0.1576 - cnn_loss: 0.6623 - cnn_accuracy: 0.7924"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "204/438 [============>.................] - ETA: 1s - loss: 0.8196 - ae_loss: 0.1576 - cnn_loss: 0.6621 - cnn_accuracy: 0.7923"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "213/438 [=============>................] - ETA: 1s - loss: 0.8194 - ae_loss: 0.1575 - cnn_loss: 0.6618 - cnn_accuracy: 0.7922"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "222/438 [==============>...............] - ETA: 1s - loss: 0.8192 - ae_loss: 0.1575 - cnn_loss: 0.6617 - cnn_accuracy: 0.7921"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "231/438 [==============>...............] - ETA: 1s - loss: 0.8190 - ae_loss: 0.1575 - cnn_loss: 0.6615 - cnn_accuracy: 0.7920"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "240/438 [===============>..............] - ETA: 1s - loss: 0.8188 - ae_loss: 0.1574 - cnn_loss: 0.6614 - cnn_accuracy: 0.7920"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "249/438 [================>.............] - ETA: 1s - loss: 0.8187 - ae_loss: 0.1574 - cnn_loss: 0.6613 - cnn_accuracy: 0.7919"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "257/438 [================>.............] - ETA: 1s - loss: 0.8186 - ae_loss: 0.1574 - cnn_loss: 0.6612 - cnn_accuracy: 0.7918"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "266/438 [=================>............] - ETA: 1s - loss: 0.8185 - ae_loss: 0.1574 - cnn_loss: 0.6611 - cnn_accuracy: 0.7917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "275/438 [=================>............] - ETA: 1s - loss: 0.8184 - ae_loss: 0.1574 - cnn_loss: 0.6610 - cnn_accuracy: 0.7917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "284/438 [==================>...........] - ETA: 0s - loss: 0.8183 - ae_loss: 0.1574 - cnn_loss: 0.6609 - cnn_accuracy: 0.7916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "293/438 [===================>..........] - ETA: 0s - loss: 0.8181 - ae_loss: 0.1573 - cnn_loss: 0.6608 - cnn_accuracy: 0.7915"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "302/438 [===================>..........] - ETA: 0s - loss: 0.8180 - ae_loss: 0.1573 - cnn_loss: 0.6607 - cnn_accuracy: 0.7914"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "310/438 [====================>.........] - ETA: 0s - loss: 0.8179 - ae_loss: 0.1573 - cnn_loss: 0.6606 - cnn_accuracy: 0.7914"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "319/438 [====================>.........] - ETA: 0s - loss: 0.8178 - ae_loss: 0.1573 - cnn_loss: 0.6605 - cnn_accuracy: 0.7913"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "328/438 [=====================>........] - ETA: 0s - loss: 0.8176 - ae_loss: 0.1573 - cnn_loss: 0.6603 - cnn_accuracy: 0.7912"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "336/438 [======================>.......] - ETA: 0s - loss: 0.8175 - ae_loss: 0.1573 - cnn_loss: 0.6602 - cnn_accuracy: 0.7912"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "344/438 [======================>.......] - ETA: 0s - loss: 0.8174 - ae_loss: 0.1573 - cnn_loss: 0.6602 - cnn_accuracy: 0.7911"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "352/438 [=======================>......] - ETA: 0s - loss: 0.8173 - ae_loss: 0.1573 - cnn_loss: 0.6601 - cnn_accuracy: 0.7911"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "360/438 [=======================>......] - ETA: 0s - loss: 0.8172 - ae_loss: 0.1573 - cnn_loss: 0.6600 - cnn_accuracy: 0.7910"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "368/438 [========================>.....] - ETA: 0s - loss: 0.8172 - ae_loss: 0.1573 - cnn_loss: 0.6599 - cnn_accuracy: 0.7910"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "376/438 [========================>.....] - ETA: 0s - loss: 0.8171 - ae_loss: 0.1573 - cnn_loss: 0.6598 - cnn_accuracy: 0.7909"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "384/438 [=========================>....] - ETA: 0s - loss: 0.8170 - ae_loss: 0.1572 - cnn_loss: 0.6597 - cnn_accuracy: 0.7909"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "392/438 [=========================>....] - ETA: 0s - loss: 0.8169 - ae_loss: 0.1572 - cnn_loss: 0.6597 - cnn_accuracy: 0.7908"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "400/438 [==========================>...] - ETA: 0s - loss: 0.8168 - ae_loss: 0.1572 - cnn_loss: 0.6595 - cnn_accuracy: 0.7908"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "408/438 [==========================>...] - ETA: 0s - loss: 0.8167 - ae_loss: 0.1572 - cnn_loss: 0.6594 - cnn_accuracy: 0.7907"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "416/438 [===========================>..] - ETA: 0s - loss: 0.8165 - ae_loss: 0.1572 - cnn_loss: 0.6593 - cnn_accuracy: 0.7907"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "424/438 [============================>.] - ETA: 0s - loss: 0.8164 - ae_loss: 0.1572 - cnn_loss: 0.6592 - cnn_accuracy: 0.7907"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "432/438 [============================>.] - ETA: 0s - loss: 0.8162 - ae_loss: 0.1572 - cnn_loss: 0.6590 - cnn_accuracy: 0.7906"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.8161 - ae_loss: 0.1572 - cnn_loss: 0.6589 - cnn_accuracy: 0.7906 - val_loss: 0.6092 - val_ae_loss: 0.1621 - val_cnn_loss: 0.4471 - val_cnn_accuracy: 0.8513\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 7/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.6519 - ae_loss: 0.1590 - cnn_loss: 0.4929 - cnn_accuracy: 0.8047"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.8176 - ae_loss: 0.1587 - cnn_loss: 0.6589 - cnn_accuracy: 0.7873"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.8076 - ae_loss: 0.1581 - cnn_loss: 0.6495 - cnn_accuracy: 0.7921"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 0.8010 - ae_loss: 0.1572 - cnn_loss: 0.6437 - cnn_accuracy: 0.7936"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 33/438 [=>............................] - ETA: 2s - loss: 0.7999 - ae_loss: 0.1568 - cnn_loss: 0.6431 - cnn_accuracy: 0.7938"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 2s - loss: 0.7997 - ae_loss: 0.1566 - cnn_loss: 0.6432 - cnn_accuracy: 0.7937"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 2s - loss: 0.7994 - ae_loss: 0.1564 - cnn_loss: 0.6430 - cnn_accuracy: 0.7935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 59/438 [===>..........................] - ETA: 2s - loss: 0.7987 - ae_loss: 0.1562 - cnn_loss: 0.6425 - cnn_accuracy: 0.7935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 68/438 [===>..........................] - ETA: 2s - loss: 0.7979 - ae_loss: 0.1561 - cnn_loss: 0.6417 - cnn_accuracy: 0.7937"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 76/438 [====>.........................] - ETA: 2s - loss: 0.7971 - ae_loss: 0.1561 - cnn_loss: 0.6410 - cnn_accuracy: 0.7939"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.7962 - ae_loss: 0.1560 - cnn_loss: 0.6402 - cnn_accuracy: 0.7941"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 94/438 [=====>........................] - ETA: 2s - loss: 0.7954 - ae_loss: 0.1560 - cnn_loss: 0.6394 - cnn_accuracy: 0.7942"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "103/438 [======>.......................] - ETA: 2s - loss: 0.7949 - ae_loss: 0.1560 - cnn_loss: 0.6389 - cnn_accuracy: 0.7942"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "111/438 [======>.......................] - ETA: 2s - loss: 0.7943 - ae_loss: 0.1559 - cnn_loss: 0.6384 - cnn_accuracy: 0.7943"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "120/438 [=======>......................] - ETA: 1s - loss: 0.7939 - ae_loss: 0.1559 - cnn_loss: 0.6380 - cnn_accuracy: 0.7944"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "128/438 [=======>......................] - ETA: 1s - loss: 0.7936 - ae_loss: 0.1559 - cnn_loss: 0.6378 - cnn_accuracy: 0.7944"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "137/438 [========>.....................] - ETA: 1s - loss: 0.7934 - ae_loss: 0.1558 - cnn_loss: 0.6376 - cnn_accuracy: 0.7944"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "145/438 [========>.....................] - ETA: 1s - loss: 0.7932 - ae_loss: 0.1558 - cnn_loss: 0.6374 - cnn_accuracy: 0.7944"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "154/438 [=========>....................] - ETA: 1s - loss: 0.7929 - ae_loss: 0.1558 - cnn_loss: 0.6371 - cnn_accuracy: 0.7944"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "163/438 [==========>...................] - ETA: 1s - loss: 0.7925 - ae_loss: 0.1557 - cnn_loss: 0.6368 - cnn_accuracy: 0.7944"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "172/438 [==========>...................] - ETA: 1s - loss: 0.7923 - ae_loss: 0.1557 - cnn_loss: 0.6366 - cnn_accuracy: 0.7944"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "181/438 [===========>..................] - ETA: 1s - loss: 0.7922 - ae_loss: 0.1557 - cnn_loss: 0.6365 - cnn_accuracy: 0.7944"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "190/438 [============>.................] - ETA: 1s - loss: 0.7919 - ae_loss: 0.1557 - cnn_loss: 0.6362 - cnn_accuracy: 0.7943"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "199/438 [============>.................] - ETA: 1s - loss: 0.7916 - ae_loss: 0.1556 - cnn_loss: 0.6360 - cnn_accuracy: 0.7943"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "207/438 [=============>................] - ETA: 1s - loss: 0.7914 - ae_loss: 0.1556 - cnn_loss: 0.6358 - cnn_accuracy: 0.7943"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "216/438 [=============>................] - ETA: 1s - loss: 0.7912 - ae_loss: 0.1556 - cnn_loss: 0.6356 - cnn_accuracy: 0.7942"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 1s - loss: 0.7911 - ae_loss: 0.1556 - cnn_loss: 0.6355 - cnn_accuracy: 0.7942"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "234/438 [===============>..............] - ETA: 1s - loss: 0.7909 - ae_loss: 0.1556 - cnn_loss: 0.6353 - cnn_accuracy: 0.7941"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "242/438 [===============>..............] - ETA: 1s - loss: 0.7908 - ae_loss: 0.1556 - cnn_loss: 0.6352 - cnn_accuracy: 0.7940"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "251/438 [================>.............] - ETA: 1s - loss: 0.7907 - ae_loss: 0.1556 - cnn_loss: 0.6351 - cnn_accuracy: 0.7940"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "260/438 [================>.............] - ETA: 1s - loss: 0.7906 - ae_loss: 0.1555 - cnn_loss: 0.6351 - cnn_accuracy: 0.7939"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "269/438 [=================>............] - ETA: 1s - loss: 0.7905 - ae_loss: 0.1555 - cnn_loss: 0.6350 - cnn_accuracy: 0.7938"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "277/438 [=================>............] - ETA: 1s - loss: 0.7905 - ae_loss: 0.1555 - cnn_loss: 0.6350 - cnn_accuracy: 0.7938"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "286/438 [==================>...........] - ETA: 0s - loss: 0.7904 - ae_loss: 0.1555 - cnn_loss: 0.6349 - cnn_accuracy: 0.7937"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "295/438 [===================>..........] - ETA: 0s - loss: 0.7902 - ae_loss: 0.1555 - cnn_loss: 0.6347 - cnn_accuracy: 0.7937"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "304/438 [===================>..........] - ETA: 0s - loss: 0.7901 - ae_loss: 0.1555 - cnn_loss: 0.6346 - cnn_accuracy: 0.7936"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "313/438 [====================>.........] - ETA: 0s - loss: 0.7900 - ae_loss: 0.1555 - cnn_loss: 0.6345 - cnn_accuracy: 0.7936"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "321/438 [====================>.........] - ETA: 0s - loss: 0.7899 - ae_loss: 0.1554 - cnn_loss: 0.6344 - cnn_accuracy: 0.7936"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "330/438 [=====================>........] - ETA: 0s - loss: 0.7898 - ae_loss: 0.1554 - cnn_loss: 0.6344 - cnn_accuracy: 0.7936"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "339/438 [======================>.......] - ETA: 0s - loss: 0.7897 - ae_loss: 0.1554 - cnn_loss: 0.6343 - cnn_accuracy: 0.7935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "348/438 [======================>.......] - ETA: 0s - loss: 0.7896 - ae_loss: 0.1554 - cnn_loss: 0.6342 - cnn_accuracy: 0.7935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "357/438 [=======================>......] - ETA: 0s - loss: 0.7895 - ae_loss: 0.1554 - cnn_loss: 0.6341 - cnn_accuracy: 0.7935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "366/438 [========================>.....] - ETA: 0s - loss: 0.7893 - ae_loss: 0.1554 - cnn_loss: 0.6339 - cnn_accuracy: 0.7935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "374/438 [========================>.....] - ETA: 0s - loss: 0.7892 - ae_loss: 0.1554 - cnn_loss: 0.6338 - cnn_accuracy: 0.7935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "382/438 [=========================>....] - ETA: 0s - loss: 0.7891 - ae_loss: 0.1554 - cnn_loss: 0.6337 - cnn_accuracy: 0.7935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "391/438 [=========================>....] - ETA: 0s - loss: 0.7889 - ae_loss: 0.1554 - cnn_loss: 0.6335 - cnn_accuracy: 0.7935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "400/438 [==========================>...] - ETA: 0s - loss: 0.7888 - ae_loss: 0.1554 - cnn_loss: 0.6334 - cnn_accuracy: 0.7935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "409/438 [===========================>..] - ETA: 0s - loss: 0.7886 - ae_loss: 0.1553 - cnn_loss: 0.6332 - cnn_accuracy: 0.7936"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "418/438 [===========================>..] - ETA: 0s - loss: 0.7885 - ae_loss: 0.1553 - cnn_loss: 0.6331 - cnn_accuracy: 0.7936"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "427/438 [============================>.] - ETA: 0s - loss: 0.7883 - ae_loss: 0.1553 - cnn_loss: 0.6330 - cnn_accuracy: 0.7936"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "435/438 [============================>.] - ETA: 0s - loss: 0.7882 - ae_loss: 0.1553 - cnn_loss: 0.6329 - cnn_accuracy: 0.7936"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.7882 - ae_loss: 0.1553 - cnn_loss: 0.6328 - cnn_accuracy: 0.7936 - val_loss: 0.5971 - val_ae_loss: 0.1564 - val_cnn_loss: 0.4407 - val_cnn_accuracy: 0.8558\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 8/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.8702 - ae_loss: 0.1596 - cnn_loss: 0.7106 - cnn_accuracy: 0.7500"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.8354 - ae_loss: 0.1543 - cnn_loss: 0.6812 - cnn_accuracy: 0.7751"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.8148 - ae_loss: 0.1542 - cnn_loss: 0.6606 - cnn_accuracy: 0.7789"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 0.8060 - ae_loss: 0.1540 - cnn_loss: 0.6520 - cnn_accuracy: 0.7811"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 33/438 [=>............................] - ETA: 2s - loss: 0.7973 - ae_loss: 0.1537 - cnn_loss: 0.6436 - cnn_accuracy: 0.7845"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 2s - loss: 0.7911 - ae_loss: 0.1535 - cnn_loss: 0.6376 - cnn_accuracy: 0.7875"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 49/438 [==>...........................] - ETA: 2s - loss: 0.7882 - ae_loss: 0.1534 - cnn_loss: 0.6348 - cnn_accuracy: 0.7892"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.7853 - ae_loss: 0.1534 - cnn_loss: 0.6319 - cnn_accuracy: 0.7906"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 65/438 [===>..........................] - ETA: 2s - loss: 0.7831 - ae_loss: 0.1534 - cnn_loss: 0.6297 - cnn_accuracy: 0.7917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 73/438 [====>.........................] - ETA: 2s - loss: 0.7810 - ae_loss: 0.1534 - cnn_loss: 0.6276 - cnn_accuracy: 0.7928"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 82/438 [====>.........................] - ETA: 2s - loss: 0.7794 - ae_loss: 0.1534 - cnn_loss: 0.6260 - cnn_accuracy: 0.7938"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 90/438 [=====>........................] - ETA: 2s - loss: 0.7784 - ae_loss: 0.1534 - cnn_loss: 0.6251 - cnn_accuracy: 0.7945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 98/438 [=====>........................] - ETA: 2s - loss: 0.7777 - ae_loss: 0.1534 - cnn_loss: 0.6243 - cnn_accuracy: 0.7951"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.7770 - ae_loss: 0.1533 - cnn_loss: 0.6237 - cnn_accuracy: 0.7957"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "114/438 [======>.......................] - ETA: 2s - loss: 0.7764 - ae_loss: 0.1533 - cnn_loss: 0.6231 - cnn_accuracy: 0.7961"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "122/438 [=======>......................] - ETA: 1s - loss: 0.7757 - ae_loss: 0.1533 - cnn_loss: 0.6223 - cnn_accuracy: 0.7965"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "130/438 [=======>......................] - ETA: 1s - loss: 0.7751 - ae_loss: 0.1533 - cnn_loss: 0.6217 - cnn_accuracy: 0.7968"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "138/438 [========>.....................] - ETA: 1s - loss: 0.7746 - ae_loss: 0.1533 - cnn_loss: 0.6213 - cnn_accuracy: 0.7971"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "146/438 [=========>....................] - ETA: 1s - loss: 0.7741 - ae_loss: 0.1533 - cnn_loss: 0.6209 - cnn_accuracy: 0.7974"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "154/438 [=========>....................] - ETA: 1s - loss: 0.7738 - ae_loss: 0.1533 - cnn_loss: 0.6205 - cnn_accuracy: 0.7976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 1s - loss: 0.7734 - ae_loss: 0.1533 - cnn_loss: 0.6201 - cnn_accuracy: 0.7979"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "170/438 [==========>...................] - ETA: 1s - loss: 0.7731 - ae_loss: 0.1533 - cnn_loss: 0.6198 - cnn_accuracy: 0.7981"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "178/438 [===========>..................] - ETA: 1s - loss: 0.7729 - ae_loss: 0.1533 - cnn_loss: 0.6197 - cnn_accuracy: 0.7983"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "186/438 [===========>..................] - ETA: 1s - loss: 0.7728 - ae_loss: 0.1533 - cnn_loss: 0.6195 - cnn_accuracy: 0.7984"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "194/438 [============>.................] - ETA: 1s - loss: 0.7727 - ae_loss: 0.1533 - cnn_loss: 0.6194 - cnn_accuracy: 0.7986"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "202/438 [============>.................] - ETA: 1s - loss: 0.7725 - ae_loss: 0.1533 - cnn_loss: 0.6193 - cnn_accuracy: 0.7987"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "210/438 [=============>................] - ETA: 1s - loss: 0.7724 - ae_loss: 0.1533 - cnn_loss: 0.6192 - cnn_accuracy: 0.7989"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "218/438 [=============>................] - ETA: 1s - loss: 0.7723 - ae_loss: 0.1533 - cnn_loss: 0.6190 - cnn_accuracy: 0.7990"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "226/438 [==============>...............] - ETA: 1s - loss: 0.7721 - ae_loss: 0.1532 - cnn_loss: 0.6188 - cnn_accuracy: 0.7992"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "235/438 [===============>..............] - ETA: 1s - loss: 0.7719 - ae_loss: 0.1532 - cnn_loss: 0.6186 - cnn_accuracy: 0.7993"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "243/438 [===============>..............] - ETA: 1s - loss: 0.7717 - ae_loss: 0.1532 - cnn_loss: 0.6184 - cnn_accuracy: 0.7995"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "252/438 [================>.............] - ETA: 1s - loss: 0.7715 - ae_loss: 0.1532 - cnn_loss: 0.6182 - cnn_accuracy: 0.7996"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "260/438 [================>.............] - ETA: 1s - loss: 0.7713 - ae_loss: 0.1532 - cnn_loss: 0.6181 - cnn_accuracy: 0.7997"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "268/438 [=================>............] - ETA: 1s - loss: 0.7711 - ae_loss: 0.1532 - cnn_loss: 0.6179 - cnn_accuracy: 0.7999"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "276/438 [=================>............] - ETA: 1s - loss: 0.7709 - ae_loss: 0.1532 - cnn_loss: 0.6177 - cnn_accuracy: 0.8000"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "285/438 [==================>...........] - ETA: 0s - loss: 0.7706 - ae_loss: 0.1532 - cnn_loss: 0.6174 - cnn_accuracy: 0.8001"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "294/438 [===================>..........] - ETA: 0s - loss: 0.7704 - ae_loss: 0.1532 - cnn_loss: 0.6172 - cnn_accuracy: 0.8003"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "302/438 [===================>..........] - ETA: 0s - loss: 0.7701 - ae_loss: 0.1532 - cnn_loss: 0.6170 - cnn_accuracy: 0.8004"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "310/438 [====================>.........] - ETA: 0s - loss: 0.7700 - ae_loss: 0.1532 - cnn_loss: 0.6168 - cnn_accuracy: 0.8005"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "318/438 [====================>.........] - ETA: 0s - loss: 0.7698 - ae_loss: 0.1531 - cnn_loss: 0.6166 - cnn_accuracy: 0.8006"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "326/438 [=====================>........] - ETA: 0s - loss: 0.7696 - ae_loss: 0.1531 - cnn_loss: 0.6165 - cnn_accuracy: 0.8007"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "334/438 [=====================>........] - ETA: 0s - loss: 0.7694 - ae_loss: 0.1531 - cnn_loss: 0.6163 - cnn_accuracy: 0.8008"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "343/438 [======================>.......] - ETA: 0s - loss: 0.7692 - ae_loss: 0.1531 - cnn_loss: 0.6161 - cnn_accuracy: 0.8009"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "351/438 [=======================>......] - ETA: 0s - loss: 0.7690 - ae_loss: 0.1531 - cnn_loss: 0.6159 - cnn_accuracy: 0.8010"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "360/438 [=======================>......] - ETA: 0s - loss: 0.7688 - ae_loss: 0.1531 - cnn_loss: 0.6157 - cnn_accuracy: 0.8010"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "369/438 [========================>.....] - ETA: 0s - loss: 0.7687 - ae_loss: 0.1531 - cnn_loss: 0.6156 - cnn_accuracy: 0.8011"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "378/438 [========================>.....] - ETA: 0s - loss: 0.7685 - ae_loss: 0.1531 - cnn_loss: 0.6154 - cnn_accuracy: 0.8012"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "387/438 [=========================>....] - ETA: 0s - loss: 0.7683 - ae_loss: 0.1531 - cnn_loss: 0.6153 - cnn_accuracy: 0.8013"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "396/438 [==========================>...] - ETA: 0s - loss: 0.7682 - ae_loss: 0.1531 - cnn_loss: 0.6151 - cnn_accuracy: 0.8013"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "405/438 [==========================>...] - ETA: 0s - loss: 0.7680 - ae_loss: 0.1531 - cnn_loss: 0.6149 - cnn_accuracy: 0.8014"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "414/438 [===========================>..] - ETA: 0s - loss: 0.7679 - ae_loss: 0.1531 - cnn_loss: 0.6148 - cnn_accuracy: 0.8015"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "423/438 [===========================>..] - ETA: 0s - loss: 0.7677 - ae_loss: 0.1531 - cnn_loss: 0.6146 - cnn_accuracy: 0.8015"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "432/438 [============================>.] - ETA: 0s - loss: 0.7675 - ae_loss: 0.1531 - cnn_loss: 0.6145 - cnn_accuracy: 0.8016"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.7674 - ae_loss: 0.1531 - cnn_loss: 0.6143 - cnn_accuracy: 0.8017 - val_loss: 0.5836 - val_ae_loss: 0.1533 - val_cnn_loss: 0.4303 - val_cnn_accuracy: 0.8571\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 9/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.6952 - ae_loss: 0.1520 - cnn_loss: 0.5431 - cnn_accuracy: 0.8203"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.7061 - ae_loss: 0.1490 - cnn_loss: 0.5571 - cnn_accuracy: 0.8167"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.7129 - ae_loss: 0.1494 - cnn_loss: 0.5635 - cnn_accuracy: 0.8157"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 0.7203 - ae_loss: 0.1498 - cnn_loss: 0.5705 - cnn_accuracy: 0.8139"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 33/438 [=>............................] - ETA: 2s - loss: 0.7224 - ae_loss: 0.1498 - cnn_loss: 0.5726 - cnn_accuracy: 0.8132"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 2s - loss: 0.7251 - ae_loss: 0.1499 - cnn_loss: 0.5752 - cnn_accuracy: 0.8126"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 49/438 [==>...........................] - ETA: 2s - loss: 0.7281 - ae_loss: 0.1499 - cnn_loss: 0.5782 - cnn_accuracy: 0.8119"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.7306 - ae_loss: 0.1499 - cnn_loss: 0.5807 - cnn_accuracy: 0.8114"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 65/438 [===>..........................] - ETA: 2s - loss: 0.7334 - ae_loss: 0.1499 - cnn_loss: 0.5835 - cnn_accuracy: 0.8108"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 74/438 [====>.........................] - ETA: 2s - loss: 0.7363 - ae_loss: 0.1500 - cnn_loss: 0.5863 - cnn_accuracy: 0.8100"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 82/438 [====>.........................] - ETA: 2s - loss: 0.7388 - ae_loss: 0.1500 - cnn_loss: 0.5888 - cnn_accuracy: 0.8092"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 91/438 [=====>........................] - ETA: 2s - loss: 0.7411 - ae_loss: 0.1501 - cnn_loss: 0.5910 - cnn_accuracy: 0.8084"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.7426 - ae_loss: 0.1501 - cnn_loss: 0.5924 - cnn_accuracy: 0.8078"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "108/438 [======>.......................] - ETA: 2s - loss: 0.7440 - ae_loss: 0.1502 - cnn_loss: 0.5938 - cnn_accuracy: 0.8073"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "117/438 [=======>......................] - ETA: 2s - loss: 0.7451 - ae_loss: 0.1502 - cnn_loss: 0.5949 - cnn_accuracy: 0.8069"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "125/438 [=======>......................] - ETA: 1s - loss: 0.7460 - ae_loss: 0.1503 - cnn_loss: 0.5957 - cnn_accuracy: 0.8067"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "134/438 [========>.....................] - ETA: 1s - loss: 0.7469 - ae_loss: 0.1503 - cnn_loss: 0.5966 - cnn_accuracy: 0.8064"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "143/438 [========>.....................] - ETA: 1s - loss: 0.7476 - ae_loss: 0.1503 - cnn_loss: 0.5973 - cnn_accuracy: 0.8062"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "151/438 [=========>....................] - ETA: 1s - loss: 0.7480 - ae_loss: 0.1504 - cnn_loss: 0.5977 - cnn_accuracy: 0.8060"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "159/438 [=========>....................] - ETA: 1s - loss: 0.7483 - ae_loss: 0.1504 - cnn_loss: 0.5979 - cnn_accuracy: 0.8059"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "168/438 [==========>...................] - ETA: 1s - loss: 0.7486 - ae_loss: 0.1504 - cnn_loss: 0.5982 - cnn_accuracy: 0.8058"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 1s - loss: 0.7489 - ae_loss: 0.1504 - cnn_loss: 0.5984 - cnn_accuracy: 0.8058"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "184/438 [===========>..................] - ETA: 1s - loss: 0.7490 - ae_loss: 0.1505 - cnn_loss: 0.5985 - cnn_accuracy: 0.8057"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "192/438 [============>.................] - ETA: 1s - loss: 0.7491 - ae_loss: 0.1505 - cnn_loss: 0.5986 - cnn_accuracy: 0.8057"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "200/438 [============>.................] - ETA: 1s - loss: 0.7493 - ae_loss: 0.1505 - cnn_loss: 0.5988 - cnn_accuracy: 0.8057"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "209/438 [=============>................] - ETA: 1s - loss: 0.7494 - ae_loss: 0.1505 - cnn_loss: 0.5989 - cnn_accuracy: 0.8057"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "217/438 [=============>................] - ETA: 1s - loss: 0.7495 - ae_loss: 0.1505 - cnn_loss: 0.5990 - cnn_accuracy: 0.8057"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 1s - loss: 0.7497 - ae_loss: 0.1506 - cnn_loss: 0.5991 - cnn_accuracy: 0.8056"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "233/438 [==============>...............] - ETA: 1s - loss: 0.7499 - ae_loss: 0.1506 - cnn_loss: 0.5993 - cnn_accuracy: 0.8056"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "241/438 [===============>..............] - ETA: 1s - loss: 0.7501 - ae_loss: 0.1506 - cnn_loss: 0.5995 - cnn_accuracy: 0.8056"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "249/438 [================>.............] - ETA: 1s - loss: 0.7503 - ae_loss: 0.1506 - cnn_loss: 0.5997 - cnn_accuracy: 0.8055"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "257/438 [================>.............] - ETA: 1s - loss: 0.7505 - ae_loss: 0.1506 - cnn_loss: 0.5998 - cnn_accuracy: 0.8055"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "265/438 [=================>............] - ETA: 1s - loss: 0.7506 - ae_loss: 0.1506 - cnn_loss: 0.6000 - cnn_accuracy: 0.8054"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "273/438 [=================>............] - ETA: 1s - loss: 0.7509 - ae_loss: 0.1507 - cnn_loss: 0.6002 - cnn_accuracy: 0.8054"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 0s - loss: 0.7511 - ae_loss: 0.1507 - cnn_loss: 0.6004 - cnn_accuracy: 0.8053"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "289/438 [==================>...........] - ETA: 0s - loss: 0.7513 - ae_loss: 0.1507 - cnn_loss: 0.6006 - cnn_accuracy: 0.8052"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "297/438 [===================>..........] - ETA: 0s - loss: 0.7515 - ae_loss: 0.1507 - cnn_loss: 0.6008 - cnn_accuracy: 0.8052"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "305/438 [===================>..........] - ETA: 0s - loss: 0.7516 - ae_loss: 0.1507 - cnn_loss: 0.6009 - cnn_accuracy: 0.8051"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "313/438 [====================>.........] - ETA: 0s - loss: 0.7517 - ae_loss: 0.1507 - cnn_loss: 0.6010 - cnn_accuracy: 0.8051"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "321/438 [====================>.........] - ETA: 0s - loss: 0.7518 - ae_loss: 0.1507 - cnn_loss: 0.6010 - cnn_accuracy: 0.8051"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "329/438 [=====================>........] - ETA: 0s - loss: 0.7519 - ae_loss: 0.1508 - cnn_loss: 0.6011 - cnn_accuracy: 0.8050"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "337/438 [======================>.......] - ETA: 0s - loss: 0.7520 - ae_loss: 0.1508 - cnn_loss: 0.6013 - cnn_accuracy: 0.8050"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "345/438 [======================>.......] - ETA: 0s - loss: 0.7521 - ae_loss: 0.1508 - cnn_loss: 0.6014 - cnn_accuracy: 0.8050"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "353/438 [=======================>......] - ETA: 0s - loss: 0.7522 - ae_loss: 0.1508 - cnn_loss: 0.6014 - cnn_accuracy: 0.8050"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "361/438 [=======================>......] - ETA: 0s - loss: 0.7523 - ae_loss: 0.1508 - cnn_loss: 0.6015 - cnn_accuracy: 0.8050"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "369/438 [========================>.....] - ETA: 0s - loss: 0.7523 - ae_loss: 0.1508 - cnn_loss: 0.6016 - cnn_accuracy: 0.8049"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "377/438 [========================>.....] - ETA: 0s - loss: 0.7524 - ae_loss: 0.1508 - cnn_loss: 0.6016 - cnn_accuracy: 0.8049"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "385/438 [=========================>....] - ETA: 0s - loss: 0.7525 - ae_loss: 0.1508 - cnn_loss: 0.6017 - cnn_accuracy: 0.8049"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "393/438 [=========================>....] - ETA: 0s - loss: 0.7525 - ae_loss: 0.1508 - cnn_loss: 0.6017 - cnn_accuracy: 0.8049"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "401/438 [==========================>...] - ETA: 0s - loss: 0.7526 - ae_loss: 0.1508 - cnn_loss: 0.6018 - cnn_accuracy: 0.8049"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "409/438 [===========================>..] - ETA: 0s - loss: 0.7527 - ae_loss: 0.1508 - cnn_loss: 0.6018 - cnn_accuracy: 0.8048"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "417/438 [===========================>..] - ETA: 0s - loss: 0.7527 - ae_loss: 0.1508 - cnn_loss: 0.6019 - cnn_accuracy: 0.8048"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "425/438 [============================>.] - ETA: 0s - loss: 0.7528 - ae_loss: 0.1508 - cnn_loss: 0.6020 - cnn_accuracy: 0.8048"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "433/438 [============================>.] - ETA: 0s - loss: 0.7528 - ae_loss: 0.1508 - cnn_loss: 0.6020 - cnn_accuracy: 0.8048"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.7529 - ae_loss: 0.1508 - cnn_loss: 0.6021 - cnn_accuracy: 0.8048 - val_loss: 0.5846 - val_ae_loss: 0.1543 - val_cnn_loss: 0.4303 - val_cnn_accuracy: 0.8584\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 10/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.7225 - ae_loss: 0.1528 - cnn_loss: 0.5697 - cnn_accuracy: 0.7891"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.7123 - ae_loss: 0.1523 - cnn_loss: 0.5600 - cnn_accuracy: 0.8079"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.7114 - ae_loss: 0.1520 - cnn_loss: 0.5595 - cnn_accuracy: 0.8093"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 0.7123 - ae_loss: 0.1516 - cnn_loss: 0.5607 - cnn_accuracy: 0.8108"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 34/438 [=>............................] - ETA: 2s - loss: 0.7143 - ae_loss: 0.1513 - cnn_loss: 0.5630 - cnn_accuracy: 0.8104"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 2s - loss: 0.7184 - ae_loss: 0.1510 - cnn_loss: 0.5673 - cnn_accuracy: 0.8095"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 51/438 [==>...........................] - ETA: 2s - loss: 0.7222 - ae_loss: 0.1510 - cnn_loss: 0.5713 - cnn_accuracy: 0.8088"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 59/438 [===>..........................] - ETA: 2s - loss: 0.7248 - ae_loss: 0.1509 - cnn_loss: 0.5740 - cnn_accuracy: 0.8086"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 67/438 [===>..........................] - ETA: 2s - loss: 0.7272 - ae_loss: 0.1508 - cnn_loss: 0.5764 - cnn_accuracy: 0.8083"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 76/438 [====>.........................] - ETA: 2s - loss: 0.7291 - ae_loss: 0.1507 - cnn_loss: 0.5784 - cnn_accuracy: 0.8081"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.7305 - ae_loss: 0.1507 - cnn_loss: 0.5798 - cnn_accuracy: 0.8080"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 94/438 [=====>........................] - ETA: 2s - loss: 0.7319 - ae_loss: 0.1506 - cnn_loss: 0.5813 - cnn_accuracy: 0.8079"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "102/438 [=====>........................] - ETA: 2s - loss: 0.7329 - ae_loss: 0.1506 - cnn_loss: 0.5824 - cnn_accuracy: 0.8078"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "111/438 [======>.......................] - ETA: 2s - loss: 0.7340 - ae_loss: 0.1505 - cnn_loss: 0.5835 - cnn_accuracy: 0.8077"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "119/438 [=======>......................] - ETA: 1s - loss: 0.7347 - ae_loss: 0.1505 - cnn_loss: 0.5843 - cnn_accuracy: 0.8077"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "128/438 [=======>......................] - ETA: 1s - loss: 0.7352 - ae_loss: 0.1504 - cnn_loss: 0.5848 - cnn_accuracy: 0.8077"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "136/438 [========>.....................] - ETA: 1s - loss: 0.7355 - ae_loss: 0.1504 - cnn_loss: 0.5851 - cnn_accuracy: 0.8077"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "145/438 [========>.....................] - ETA: 1s - loss: 0.7357 - ae_loss: 0.1503 - cnn_loss: 0.5854 - cnn_accuracy: 0.8078"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "153/438 [=========>....................] - ETA: 1s - loss: 0.7358 - ae_loss: 0.1503 - cnn_loss: 0.5856 - cnn_accuracy: 0.8078"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "161/438 [==========>...................] - ETA: 1s - loss: 0.7360 - ae_loss: 0.1503 - cnn_loss: 0.5857 - cnn_accuracy: 0.8078"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "170/438 [==========>...................] - ETA: 1s - loss: 0.7361 - ae_loss: 0.1502 - cnn_loss: 0.5859 - cnn_accuracy: 0.8078"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "178/438 [===========>..................] - ETA: 1s - loss: 0.7362 - ae_loss: 0.1502 - cnn_loss: 0.5860 - cnn_accuracy: 0.8079"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "187/438 [===========>..................] - ETA: 1s - loss: 0.7364 - ae_loss: 0.1502 - cnn_loss: 0.5862 - cnn_accuracy: 0.8079"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "195/438 [============>.................] - ETA: 1s - loss: 0.7366 - ae_loss: 0.1502 - cnn_loss: 0.5864 - cnn_accuracy: 0.8079"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "204/438 [============>.................] - ETA: 1s - loss: 0.7367 - ae_loss: 0.1502 - cnn_loss: 0.5865 - cnn_accuracy: 0.8079"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "213/438 [=============>................] - ETA: 1s - loss: 0.7368 - ae_loss: 0.1501 - cnn_loss: 0.5866 - cnn_accuracy: 0.8080"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "221/438 [==============>...............] - ETA: 1s - loss: 0.7369 - ae_loss: 0.1501 - cnn_loss: 0.5868 - cnn_accuracy: 0.8080"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "230/438 [==============>...............] - ETA: 1s - loss: 0.7369 - ae_loss: 0.1501 - cnn_loss: 0.5868 - cnn_accuracy: 0.8081"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "239/438 [===============>..............] - ETA: 1s - loss: 0.7369 - ae_loss: 0.1501 - cnn_loss: 0.5868 - cnn_accuracy: 0.8081"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "247/438 [===============>..............] - ETA: 1s - loss: 0.7369 - ae_loss: 0.1501 - cnn_loss: 0.5868 - cnn_accuracy: 0.8082"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "255/438 [================>.............] - ETA: 1s - loss: 0.7369 - ae_loss: 0.1501 - cnn_loss: 0.5869 - cnn_accuracy: 0.8083"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "264/438 [=================>............] - ETA: 1s - loss: 0.7369 - ae_loss: 0.1500 - cnn_loss: 0.5869 - cnn_accuracy: 0.8083"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "272/438 [=================>............] - ETA: 1s - loss: 0.7369 - ae_loss: 0.1500 - cnn_loss: 0.5869 - cnn_accuracy: 0.8084"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 0s - loss: 0.7369 - ae_loss: 0.1500 - cnn_loss: 0.5869 - cnn_accuracy: 0.8084"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "289/438 [==================>...........] - ETA: 0s - loss: 0.7369 - ae_loss: 0.1500 - cnn_loss: 0.5869 - cnn_accuracy: 0.8085"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "297/438 [===================>..........] - ETA: 0s - loss: 0.7369 - ae_loss: 0.1500 - cnn_loss: 0.5869 - cnn_accuracy: 0.8085"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "306/438 [===================>..........] - ETA: 0s - loss: 0.7370 - ae_loss: 0.1500 - cnn_loss: 0.5870 - cnn_accuracy: 0.8085"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "315/438 [====================>.........] - ETA: 0s - loss: 0.7370 - ae_loss: 0.1500 - cnn_loss: 0.5870 - cnn_accuracy: 0.8085"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "324/438 [=====================>........] - ETA: 0s - loss: 0.7371 - ae_loss: 0.1500 - cnn_loss: 0.5871 - cnn_accuracy: 0.8085"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "333/438 [=====================>........] - ETA: 0s - loss: 0.7372 - ae_loss: 0.1500 - cnn_loss: 0.5872 - cnn_accuracy: 0.8085"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "341/438 [======================>.......] - ETA: 0s - loss: 0.7373 - ae_loss: 0.1500 - cnn_loss: 0.5874 - cnn_accuracy: 0.8085"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "349/438 [======================>.......] - ETA: 0s - loss: 0.7375 - ae_loss: 0.1499 - cnn_loss: 0.5875 - cnn_accuracy: 0.8085"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "357/438 [=======================>......] - ETA: 0s - loss: 0.7376 - ae_loss: 0.1499 - cnn_loss: 0.5876 - cnn_accuracy: 0.8085"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "365/438 [========================>.....] - ETA: 0s - loss: 0.7377 - ae_loss: 0.1499 - cnn_loss: 0.5878 - cnn_accuracy: 0.8084"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "374/438 [========================>.....] - ETA: 0s - loss: 0.7379 - ae_loss: 0.1499 - cnn_loss: 0.5880 - cnn_accuracy: 0.8084"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "382/438 [=========================>....] - ETA: 0s - loss: 0.7381 - ae_loss: 0.1499 - cnn_loss: 0.5882 - cnn_accuracy: 0.8084"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "390/438 [=========================>....] - ETA: 0s - loss: 0.7382 - ae_loss: 0.1499 - cnn_loss: 0.5883 - cnn_accuracy: 0.8083"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "399/438 [==========================>...] - ETA: 0s - loss: 0.7384 - ae_loss: 0.1499 - cnn_loss: 0.5885 - cnn_accuracy: 0.8083"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "408/438 [==========================>...] - ETA: 0s - loss: 0.7385 - ae_loss: 0.1499 - cnn_loss: 0.5887 - cnn_accuracy: 0.8083"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "417/438 [===========================>..] - ETA: 0s - loss: 0.7387 - ae_loss: 0.1499 - cnn_loss: 0.5888 - cnn_accuracy: 0.8082"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "426/438 [============================>.] - ETA: 0s - loss: 0.7389 - ae_loss: 0.1499 - cnn_loss: 0.5890 - cnn_accuracy: 0.8082"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "434/438 [============================>.] - ETA: 0s - loss: 0.7390 - ae_loss: 0.1499 - cnn_loss: 0.5891 - cnn_accuracy: 0.8081"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.7391 - ae_loss: 0.1499 - cnn_loss: 0.5892 - cnn_accuracy: 0.8081 - val_loss: 0.5804 - val_ae_loss: 0.1534 - val_cnn_loss: 0.4270 - val_cnn_accuracy: 0.8584\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 11/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.6414 - ae_loss: 0.1482 - cnn_loss: 0.4932 - cnn_accuracy: 0.8359"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.7090 - ae_loss: 0.1481 - cnn_loss: 0.5609 - cnn_accuracy: 0.8105"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.7226 - ae_loss: 0.1479 - cnn_loss: 0.5747 - cnn_accuracy: 0.8057"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 0.7242 - ae_loss: 0.1480 - cnn_loss: 0.5762 - cnn_accuracy: 0.8059"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 33/438 [=>............................] - ETA: 2s - loss: 0.7261 - ae_loss: 0.1481 - cnn_loss: 0.5781 - cnn_accuracy: 0.8064"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 42/438 [=>............................] - ETA: 2s - loss: 0.7280 - ae_loss: 0.1482 - cnn_loss: 0.5798 - cnn_accuracy: 0.8070"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 51/438 [==>...........................] - ETA: 2s - loss: 0.7298 - ae_loss: 0.1482 - cnn_loss: 0.5815 - cnn_accuracy: 0.8071"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 59/438 [===>..........................] - ETA: 2s - loss: 0.7310 - ae_loss: 0.1483 - cnn_loss: 0.5828 - cnn_accuracy: 0.8071"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 68/438 [===>..........................] - ETA: 2s - loss: 0.7320 - ae_loss: 0.1482 - cnn_loss: 0.5838 - cnn_accuracy: 0.8071"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 77/438 [====>.........................] - ETA: 2s - loss: 0.7325 - ae_loss: 0.1483 - cnn_loss: 0.5843 - cnn_accuracy: 0.8069"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.7332 - ae_loss: 0.1483 - cnn_loss: 0.5849 - cnn_accuracy: 0.8068"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 93/438 [=====>........................] - ETA: 2s - loss: 0.7336 - ae_loss: 0.1483 - cnn_loss: 0.5853 - cnn_accuracy: 0.8067"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "101/438 [=====>........................] - ETA: 2s - loss: 0.7340 - ae_loss: 0.1483 - cnn_loss: 0.5856 - cnn_accuracy: 0.8067"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "110/438 [======>.......................] - ETA: 2s - loss: 0.7341 - ae_loss: 0.1484 - cnn_loss: 0.5858 - cnn_accuracy: 0.8067"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "119/438 [=======>......................] - ETA: 1s - loss: 0.7345 - ae_loss: 0.1484 - cnn_loss: 0.5861 - cnn_accuracy: 0.8066"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "127/438 [=======>......................] - ETA: 1s - loss: 0.7348 - ae_loss: 0.1484 - cnn_loss: 0.5864 - cnn_accuracy: 0.8066"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "136/438 [========>.....................] - ETA: 1s - loss: 0.7349 - ae_loss: 0.1484 - cnn_loss: 0.5865 - cnn_accuracy: 0.8066"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "144/438 [========>.....................] - ETA: 1s - loss: 0.7350 - ae_loss: 0.1484 - cnn_loss: 0.5866 - cnn_accuracy: 0.8067"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "152/438 [=========>....................] - ETA: 1s - loss: 0.7351 - ae_loss: 0.1484 - cnn_loss: 0.5867 - cnn_accuracy: 0.8067"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "160/438 [=========>....................] - ETA: 1s - loss: 0.7351 - ae_loss: 0.1484 - cnn_loss: 0.5867 - cnn_accuracy: 0.8068"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "168/438 [==========>...................] - ETA: 1s - loss: 0.7351 - ae_loss: 0.1484 - cnn_loss: 0.5868 - cnn_accuracy: 0.8068"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 1s - loss: 0.7352 - ae_loss: 0.1484 - cnn_loss: 0.5869 - cnn_accuracy: 0.8069"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "184/438 [===========>..................] - ETA: 1s - loss: 0.7353 - ae_loss: 0.1484 - cnn_loss: 0.5869 - cnn_accuracy: 0.8069"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "192/438 [============>.................] - ETA: 1s - loss: 0.7353 - ae_loss: 0.1483 - cnn_loss: 0.5870 - cnn_accuracy: 0.8070"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "200/438 [============>.................] - ETA: 1s - loss: 0.7353 - ae_loss: 0.1483 - cnn_loss: 0.5869 - cnn_accuracy: 0.8070"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "208/438 [=============>................] - ETA: 1s - loss: 0.7352 - ae_loss: 0.1483 - cnn_loss: 0.5869 - cnn_accuracy: 0.8070"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "216/438 [=============>................] - ETA: 1s - loss: 0.7352 - ae_loss: 0.1483 - cnn_loss: 0.5869 - cnn_accuracy: 0.8071"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "224/438 [==============>...............] - ETA: 1s - loss: 0.7352 - ae_loss: 0.1483 - cnn_loss: 0.5869 - cnn_accuracy: 0.8071"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "232/438 [==============>...............] - ETA: 1s - loss: 0.7352 - ae_loss: 0.1483 - cnn_loss: 0.5869 - cnn_accuracy: 0.8072"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "240/438 [===============>..............] - ETA: 1s - loss: 0.7352 - ae_loss: 0.1483 - cnn_loss: 0.5869 - cnn_accuracy: 0.8073"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "248/438 [===============>..............] - ETA: 1s - loss: 0.7351 - ae_loss: 0.1483 - cnn_loss: 0.5868 - cnn_accuracy: 0.8074"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "256/438 [================>.............] - ETA: 1s - loss: 0.7351 - ae_loss: 0.1483 - cnn_loss: 0.5868 - cnn_accuracy: 0.8074"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "264/438 [=================>............] - ETA: 1s - loss: 0.7351 - ae_loss: 0.1483 - cnn_loss: 0.5867 - cnn_accuracy: 0.8075"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "272/438 [=================>............] - ETA: 1s - loss: 0.7350 - ae_loss: 0.1483 - cnn_loss: 0.5867 - cnn_accuracy: 0.8075"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "280/438 [==================>...........] - ETA: 0s - loss: 0.7350 - ae_loss: 0.1483 - cnn_loss: 0.5867 - cnn_accuracy: 0.8076"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "288/438 [==================>...........] - ETA: 0s - loss: 0.7350 - ae_loss: 0.1483 - cnn_loss: 0.5867 - cnn_accuracy: 0.8076"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "296/438 [===================>..........] - ETA: 0s - loss: 0.7350 - ae_loss: 0.1483 - cnn_loss: 0.5867 - cnn_accuracy: 0.8076"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "304/438 [===================>..........] - ETA: 0s - loss: 0.7350 - ae_loss: 0.1483 - cnn_loss: 0.5866 - cnn_accuracy: 0.8077"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "312/438 [====================>.........] - ETA: 0s - loss: 0.7349 - ae_loss: 0.1483 - cnn_loss: 0.5866 - cnn_accuracy: 0.8077"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "320/438 [====================>.........] - ETA: 0s - loss: 0.7349 - ae_loss: 0.1483 - cnn_loss: 0.5865 - cnn_accuracy: 0.8078"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "328/438 [=====================>........] - ETA: 0s - loss: 0.7348 - ae_loss: 0.1484 - cnn_loss: 0.5865 - cnn_accuracy: 0.8078"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "336/438 [======================>.......] - ETA: 0s - loss: 0.7348 - ae_loss: 0.1484 - cnn_loss: 0.5864 - cnn_accuracy: 0.8079"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "344/438 [======================>.......] - ETA: 0s - loss: 0.7347 - ae_loss: 0.1484 - cnn_loss: 0.5864 - cnn_accuracy: 0.8079"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "352/438 [=======================>......] - ETA: 0s - loss: 0.7347 - ae_loss: 0.1484 - cnn_loss: 0.5864 - cnn_accuracy: 0.8080"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "360/438 [=======================>......] - ETA: 0s - loss: 0.7347 - ae_loss: 0.1484 - cnn_loss: 0.5863 - cnn_accuracy: 0.8080"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "368/438 [========================>.....] - ETA: 0s - loss: 0.7347 - ae_loss: 0.1484 - cnn_loss: 0.5863 - cnn_accuracy: 0.8081"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "376/438 [========================>.....] - ETA: 0s - loss: 0.7346 - ae_loss: 0.1484 - cnn_loss: 0.5863 - cnn_accuracy: 0.8081"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "384/438 [=========================>....] - ETA: 0s - loss: 0.7346 - ae_loss: 0.1484 - cnn_loss: 0.5862 - cnn_accuracy: 0.8082"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "392/438 [=========================>....] - ETA: 0s - loss: 0.7346 - ae_loss: 0.1484 - cnn_loss: 0.5862 - cnn_accuracy: 0.8082"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "400/438 [==========================>...] - ETA: 0s - loss: 0.7346 - ae_loss: 0.1484 - cnn_loss: 0.5862 - cnn_accuracy: 0.8082"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "408/438 [==========================>...] - ETA: 0s - loss: 0.7346 - ae_loss: 0.1484 - cnn_loss: 0.5862 - cnn_accuracy: 0.8083"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "416/438 [===========================>..] - ETA: 0s - loss: 0.7346 - ae_loss: 0.1484 - cnn_loss: 0.5862 - cnn_accuracy: 0.8083"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "424/438 [============================>.] - ETA: 0s - loss: 0.7346 - ae_loss: 0.1484 - cnn_loss: 0.5862 - cnn_accuracy: 0.8083"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "432/438 [============================>.] - ETA: 0s - loss: 0.7346 - ae_loss: 0.1484 - cnn_loss: 0.5862 - cnn_accuracy: 0.8084"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.7346 - ae_loss: 0.1484 - cnn_loss: 0.5862 - cnn_accuracy: 0.8084 - val_loss: 0.5716 - val_ae_loss: 0.1548 - val_cnn_loss: 0.4168 - val_cnn_accuracy: 0.8622\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 12/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.6131 - ae_loss: 0.1444 - cnn_loss: 0.4687 - cnn_accuracy: 0.8750"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.6983 - ae_loss: 0.1463 - cnn_loss: 0.5520 - cnn_accuracy: 0.8285"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.7118 - ae_loss: 0.1466 - cnn_loss: 0.5652 - cnn_accuracy: 0.8224"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 0.7210 - ae_loss: 0.1468 - cnn_loss: 0.5742 - cnn_accuracy: 0.8179"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 34/438 [=>............................] - ETA: 2s - loss: 0.7277 - ae_loss: 0.1468 - cnn_loss: 0.5808 - cnn_accuracy: 0.8142"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 2s - loss: 0.7333 - ae_loss: 0.1469 - cnn_loss: 0.5863 - cnn_accuracy: 0.8114"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 52/438 [==>...........................] - ETA: 2s - loss: 0.7342 - ae_loss: 0.1470 - cnn_loss: 0.5872 - cnn_accuracy: 0.8106"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 61/438 [===>..........................] - ETA: 2s - loss: 0.7339 - ae_loss: 0.1471 - cnn_loss: 0.5868 - cnn_accuracy: 0.8103"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 70/438 [===>..........................] - ETA: 2s - loss: 0.7333 - ae_loss: 0.1472 - cnn_loss: 0.5862 - cnn_accuracy: 0.8100"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 79/438 [====>.........................] - ETA: 2s - loss: 0.7328 - ae_loss: 0.1472 - cnn_loss: 0.5856 - cnn_accuracy: 0.8098"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 88/438 [=====>........................] - ETA: 2s - loss: 0.7321 - ae_loss: 0.1473 - cnn_loss: 0.5849 - cnn_accuracy: 0.8097"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 96/438 [=====>........................] - ETA: 2s - loss: 0.7314 - ae_loss: 0.1473 - cnn_loss: 0.5840 - cnn_accuracy: 0.8097"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "105/438 [======>.......................] - ETA: 2s - loss: 0.7306 - ae_loss: 0.1474 - cnn_loss: 0.5832 - cnn_accuracy: 0.8099"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "114/438 [======>.......................] - ETA: 2s - loss: 0.7296 - ae_loss: 0.1474 - cnn_loss: 0.5822 - cnn_accuracy: 0.8101"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "123/438 [=======>......................] - ETA: 1s - loss: 0.7289 - ae_loss: 0.1474 - cnn_loss: 0.5815 - cnn_accuracy: 0.8103"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "132/438 [========>.....................] - ETA: 1s - loss: 0.7285 - ae_loss: 0.1475 - cnn_loss: 0.5810 - cnn_accuracy: 0.8104"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "141/438 [========>.....................] - ETA: 1s - loss: 0.7282 - ae_loss: 0.1475 - cnn_loss: 0.5807 - cnn_accuracy: 0.8105"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "149/438 [=========>....................] - ETA: 1s - loss: 0.7278 - ae_loss: 0.1475 - cnn_loss: 0.5803 - cnn_accuracy: 0.8106"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "157/438 [=========>....................] - ETA: 1s - loss: 0.7276 - ae_loss: 0.1475 - cnn_loss: 0.5801 - cnn_accuracy: 0.8107"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "165/438 [==========>...................] - ETA: 1s - loss: 0.7273 - ae_loss: 0.1475 - cnn_loss: 0.5798 - cnn_accuracy: 0.8108"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "173/438 [==========>...................] - ETA: 1s - loss: 0.7270 - ae_loss: 0.1475 - cnn_loss: 0.5795 - cnn_accuracy: 0.8108"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "181/438 [===========>..................] - ETA: 1s - loss: 0.7268 - ae_loss: 0.1475 - cnn_loss: 0.5793 - cnn_accuracy: 0.8109"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "190/438 [============>.................] - ETA: 1s - loss: 0.7266 - ae_loss: 0.1475 - cnn_loss: 0.5791 - cnn_accuracy: 0.8110"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "198/438 [============>.................] - ETA: 1s - loss: 0.7264 - ae_loss: 0.1475 - cnn_loss: 0.5789 - cnn_accuracy: 0.8110"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "207/438 [=============>................] - ETA: 1s - loss: 0.7262 - ae_loss: 0.1475 - cnn_loss: 0.5786 - cnn_accuracy: 0.8111"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "216/438 [=============>................] - ETA: 1s - loss: 0.7260 - ae_loss: 0.1476 - cnn_loss: 0.5785 - cnn_accuracy: 0.8112"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 1s - loss: 0.7258 - ae_loss: 0.1476 - cnn_loss: 0.5783 - cnn_accuracy: 0.8113"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "233/438 [==============>...............] - ETA: 1s - loss: 0.7256 - ae_loss: 0.1476 - cnn_loss: 0.5781 - cnn_accuracy: 0.8114"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "242/438 [===============>..............] - ETA: 1s - loss: 0.7255 - ae_loss: 0.1476 - cnn_loss: 0.5779 - cnn_accuracy: 0.8114"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "251/438 [================>.............] - ETA: 1s - loss: 0.7253 - ae_loss: 0.1476 - cnn_loss: 0.5778 - cnn_accuracy: 0.8115"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "259/438 [================>.............] - ETA: 1s - loss: 0.7253 - ae_loss: 0.1476 - cnn_loss: 0.5777 - cnn_accuracy: 0.8115"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "268/438 [=================>............] - ETA: 1s - loss: 0.7252 - ae_loss: 0.1476 - cnn_loss: 0.5776 - cnn_accuracy: 0.8115"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "276/438 [=================>............] - ETA: 1s - loss: 0.7252 - ae_loss: 0.1476 - cnn_loss: 0.5775 - cnn_accuracy: 0.8116"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "285/438 [==================>...........] - ETA: 0s - loss: 0.7251 - ae_loss: 0.1476 - cnn_loss: 0.5775 - cnn_accuracy: 0.8116"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "294/438 [===================>..........] - ETA: 0s - loss: 0.7250 - ae_loss: 0.1476 - cnn_loss: 0.5774 - cnn_accuracy: 0.8116"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "303/438 [===================>..........] - ETA: 0s - loss: 0.7250 - ae_loss: 0.1476 - cnn_loss: 0.5774 - cnn_accuracy: 0.8116"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "311/438 [====================>.........] - ETA: 0s - loss: 0.7250 - ae_loss: 0.1476 - cnn_loss: 0.5774 - cnn_accuracy: 0.8116"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "319/438 [====================>.........] - ETA: 0s - loss: 0.7250 - ae_loss: 0.1476 - cnn_loss: 0.5774 - cnn_accuracy: 0.8116"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "328/438 [=====================>........] - ETA: 0s - loss: 0.7250 - ae_loss: 0.1476 - cnn_loss: 0.5774 - cnn_accuracy: 0.8116"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "337/438 [======================>.......] - ETA: 0s - loss: 0.7250 - ae_loss: 0.1476 - cnn_loss: 0.5773 - cnn_accuracy: 0.8116"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "346/438 [======================>.......] - ETA: 0s - loss: 0.7250 - ae_loss: 0.1477 - cnn_loss: 0.5773 - cnn_accuracy: 0.8116"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "355/438 [=======================>......] - ETA: 0s - loss: 0.7249 - ae_loss: 0.1477 - cnn_loss: 0.5773 - cnn_accuracy: 0.8116"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "363/438 [=======================>......] - ETA: 0s - loss: 0.7250 - ae_loss: 0.1477 - cnn_loss: 0.5773 - cnn_accuracy: 0.8116"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "372/438 [========================>.....] - ETA: 0s - loss: 0.7250 - ae_loss: 0.1477 - cnn_loss: 0.5773 - cnn_accuracy: 0.8116"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "381/438 [=========================>....] - ETA: 0s - loss: 0.7250 - ae_loss: 0.1477 - cnn_loss: 0.5773 - cnn_accuracy: 0.8116"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "390/438 [=========================>....] - ETA: 0s - loss: 0.7250 - ae_loss: 0.1477 - cnn_loss: 0.5773 - cnn_accuracy: 0.8116"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "399/438 [==========================>...] - ETA: 0s - loss: 0.7250 - ae_loss: 0.1477 - cnn_loss: 0.5773 - cnn_accuracy: 0.8116"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "408/438 [==========================>...] - ETA: 0s - loss: 0.7250 - ae_loss: 0.1477 - cnn_loss: 0.5773 - cnn_accuracy: 0.8116"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "416/438 [===========================>..] - ETA: 0s - loss: 0.7250 - ae_loss: 0.1477 - cnn_loss: 0.5774 - cnn_accuracy: 0.8116"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "424/438 [============================>.] - ETA: 0s - loss: 0.7251 - ae_loss: 0.1477 - cnn_loss: 0.5774 - cnn_accuracy: 0.8116"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "433/438 [============================>.] - ETA: 0s - loss: 0.7251 - ae_loss: 0.1477 - cnn_loss: 0.5775 - cnn_accuracy: 0.8115"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.7252 - ae_loss: 0.1477 - cnn_loss: 0.5775 - cnn_accuracy: 0.8115 - val_loss: 0.5693 - val_ae_loss: 0.1504 - val_cnn_loss: 0.4189 - val_cnn_accuracy: 0.8609\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 13/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.6628 - ae_loss: 0.1362 - cnn_loss: 0.5267 - cnn_accuracy: 0.7969"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.7561 - ae_loss: 0.1445 - cnn_loss: 0.6116 - cnn_accuracy: 0.8005"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.7398 - ae_loss: 0.1451 - cnn_loss: 0.5947 - cnn_accuracy: 0.8033"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 26/438 [>.............................] - ETA: 2s - loss: 0.7263 - ae_loss: 0.1452 - cnn_loss: 0.5811 - cnn_accuracy: 0.8070"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 35/438 [=>............................] - ETA: 2s - loss: 0.7212 - ae_loss: 0.1453 - cnn_loss: 0.5760 - cnn_accuracy: 0.8086"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 44/438 [==>...........................] - ETA: 2s - loss: 0.7190 - ae_loss: 0.1454 - cnn_loss: 0.5735 - cnn_accuracy: 0.8097"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 53/438 [==>...........................] - ETA: 2s - loss: 0.7182 - ae_loss: 0.1456 - cnn_loss: 0.5726 - cnn_accuracy: 0.8104"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 62/438 [===>..........................] - ETA: 2s - loss: 0.7182 - ae_loss: 0.1457 - cnn_loss: 0.5725 - cnn_accuracy: 0.8107"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 2s - loss: 0.7184 - ae_loss: 0.1458 - cnn_loss: 0.5726 - cnn_accuracy: 0.8108"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 80/438 [====>.........................] - ETA: 2s - loss: 0.7185 - ae_loss: 0.1459 - cnn_loss: 0.5726 - cnn_accuracy: 0.8109"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 88/438 [=====>........................] - ETA: 2s - loss: 0.7188 - ae_loss: 0.1460 - cnn_loss: 0.5728 - cnn_accuracy: 0.8110"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 97/438 [=====>........................] - ETA: 2s - loss: 0.7190 - ae_loss: 0.1461 - cnn_loss: 0.5729 - cnn_accuracy: 0.8112"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.7191 - ae_loss: 0.1461 - cnn_loss: 0.5730 - cnn_accuracy: 0.8112"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "115/438 [======>.......................] - ETA: 2s - loss: 0.7193 - ae_loss: 0.1462 - cnn_loss: 0.5731 - cnn_accuracy: 0.8112"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "124/438 [=======>......................] - ETA: 1s - loss: 0.7196 - ae_loss: 0.1462 - cnn_loss: 0.5734 - cnn_accuracy: 0.8112"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "133/438 [========>.....................] - ETA: 1s - loss: 0.7197 - ae_loss: 0.1462 - cnn_loss: 0.5735 - cnn_accuracy: 0.8111"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "142/438 [========>.....................] - ETA: 1s - loss: 0.7198 - ae_loss: 0.1463 - cnn_loss: 0.5735 - cnn_accuracy: 0.8111"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "151/438 [=========>....................] - ETA: 1s - loss: 0.7200 - ae_loss: 0.1463 - cnn_loss: 0.5736 - cnn_accuracy: 0.8110"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "160/438 [=========>....................] - ETA: 1s - loss: 0.7202 - ae_loss: 0.1464 - cnn_loss: 0.5739 - cnn_accuracy: 0.8109"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 1s - loss: 0.7206 - ae_loss: 0.1464 - cnn_loss: 0.5742 - cnn_accuracy: 0.8108"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "178/438 [===========>..................] - ETA: 1s - loss: 0.7208 - ae_loss: 0.1464 - cnn_loss: 0.5744 - cnn_accuracy: 0.8108"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "187/438 [===========>..................] - ETA: 1s - loss: 0.7210 - ae_loss: 0.1465 - cnn_loss: 0.5745 - cnn_accuracy: 0.8107"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "196/438 [============>.................] - ETA: 1s - loss: 0.7211 - ae_loss: 0.1465 - cnn_loss: 0.5746 - cnn_accuracy: 0.8107"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "205/438 [=============>................] - ETA: 1s - loss: 0.7212 - ae_loss: 0.1465 - cnn_loss: 0.5747 - cnn_accuracy: 0.8107"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "214/438 [=============>................] - ETA: 1s - loss: 0.7212 - ae_loss: 0.1466 - cnn_loss: 0.5747 - cnn_accuracy: 0.8107"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "223/438 [==============>...............] - ETA: 1s - loss: 0.7212 - ae_loss: 0.1466 - cnn_loss: 0.5746 - cnn_accuracy: 0.8108"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "232/438 [==============>...............] - ETA: 1s - loss: 0.7212 - ae_loss: 0.1466 - cnn_loss: 0.5746 - cnn_accuracy: 0.8108"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "241/438 [===============>..............] - ETA: 1s - loss: 0.7212 - ae_loss: 0.1466 - cnn_loss: 0.5746 - cnn_accuracy: 0.8108"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "249/438 [================>.............] - ETA: 1s - loss: 0.7212 - ae_loss: 0.1466 - cnn_loss: 0.5746 - cnn_accuracy: 0.8108"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "258/438 [================>.............] - ETA: 1s - loss: 0.7212 - ae_loss: 0.1466 - cnn_loss: 0.5746 - cnn_accuracy: 0.8108"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "267/438 [=================>............] - ETA: 1s - loss: 0.7212 - ae_loss: 0.1467 - cnn_loss: 0.5745 - cnn_accuracy: 0.8108"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "275/438 [=================>............] - ETA: 1s - loss: 0.7212 - ae_loss: 0.1467 - cnn_loss: 0.5745 - cnn_accuracy: 0.8109"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "284/438 [==================>...........] - ETA: 0s - loss: 0.7211 - ae_loss: 0.1467 - cnn_loss: 0.5745 - cnn_accuracy: 0.8109"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "293/438 [===================>..........] - ETA: 0s - loss: 0.7211 - ae_loss: 0.1467 - cnn_loss: 0.5744 - cnn_accuracy: 0.8109"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "302/438 [===================>..........] - ETA: 0s - loss: 0.7211 - ae_loss: 0.1467 - cnn_loss: 0.5744 - cnn_accuracy: 0.8110"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "311/438 [====================>.........] - ETA: 0s - loss: 0.7211 - ae_loss: 0.1467 - cnn_loss: 0.5744 - cnn_accuracy: 0.8110"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "319/438 [====================>.........] - ETA: 0s - loss: 0.7210 - ae_loss: 0.1467 - cnn_loss: 0.5743 - cnn_accuracy: 0.8110"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "327/438 [=====================>........] - ETA: 0s - loss: 0.7210 - ae_loss: 0.1467 - cnn_loss: 0.5743 - cnn_accuracy: 0.8110"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "335/438 [=====================>........] - ETA: 0s - loss: 0.7209 - ae_loss: 0.1467 - cnn_loss: 0.5742 - cnn_accuracy: 0.8111"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "343/438 [======================>.......] - ETA: 0s - loss: 0.7209 - ae_loss: 0.1467 - cnn_loss: 0.5742 - cnn_accuracy: 0.8111"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "351/438 [=======================>......] - ETA: 0s - loss: 0.7209 - ae_loss: 0.1468 - cnn_loss: 0.5741 - cnn_accuracy: 0.8111"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "359/438 [=======================>......] - ETA: 0s - loss: 0.7208 - ae_loss: 0.1468 - cnn_loss: 0.5740 - cnn_accuracy: 0.8112"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "367/438 [========================>.....] - ETA: 0s - loss: 0.7207 - ae_loss: 0.1468 - cnn_loss: 0.5740 - cnn_accuracy: 0.8112"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "375/438 [========================>.....] - ETA: 0s - loss: 0.7207 - ae_loss: 0.1468 - cnn_loss: 0.5739 - cnn_accuracy: 0.8112"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "383/438 [=========================>....] - ETA: 0s - loss: 0.7207 - ae_loss: 0.1468 - cnn_loss: 0.5739 - cnn_accuracy: 0.8112"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "391/438 [=========================>....] - ETA: 0s - loss: 0.7206 - ae_loss: 0.1468 - cnn_loss: 0.5738 - cnn_accuracy: 0.8112"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "399/438 [==========================>...] - ETA: 0s - loss: 0.7206 - ae_loss: 0.1468 - cnn_loss: 0.5738 - cnn_accuracy: 0.8113"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "407/438 [==========================>...] - ETA: 0s - loss: 0.7206 - ae_loss: 0.1468 - cnn_loss: 0.5738 - cnn_accuracy: 0.8113"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "415/438 [===========================>..] - ETA: 0s - loss: 0.7206 - ae_loss: 0.1468 - cnn_loss: 0.5738 - cnn_accuracy: 0.8113"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "423/438 [===========================>..] - ETA: 0s - loss: 0.7206 - ae_loss: 0.1468 - cnn_loss: 0.5738 - cnn_accuracy: 0.8113"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "432/438 [============================>.] - ETA: 0s - loss: 0.7206 - ae_loss: 0.1468 - cnn_loss: 0.5738 - cnn_accuracy: 0.8113"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.7206 - ae_loss: 0.1468 - cnn_loss: 0.5738 - cnn_accuracy: 0.8114 - val_loss: 0.5660 - val_ae_loss: 0.1516 - val_cnn_loss: 0.4144 - val_cnn_accuracy: 0.8605\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 14/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.7725 - ae_loss: 0.1520 - cnn_loss: 0.6205 - cnn_accuracy: 0.7812"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.7267 - ae_loss: 0.1494 - cnn_loss: 0.5774 - cnn_accuracy: 0.8074"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.7142 - ae_loss: 0.1479 - cnn_loss: 0.5662 - cnn_accuracy: 0.8118"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 0.7106 - ae_loss: 0.1473 - cnn_loss: 0.5633 - cnn_accuracy: 0.8127"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 33/438 [=>............................] - ETA: 2s - loss: 0.7084 - ae_loss: 0.1469 - cnn_loss: 0.5615 - cnn_accuracy: 0.8131"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 2s - loss: 0.7064 - ae_loss: 0.1468 - cnn_loss: 0.5596 - cnn_accuracy: 0.8138"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 49/438 [==>...........................] - ETA: 2s - loss: 0.7060 - ae_loss: 0.1467 - cnn_loss: 0.5593 - cnn_accuracy: 0.8140"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.7071 - ae_loss: 0.1467 - cnn_loss: 0.5604 - cnn_accuracy: 0.8139"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 65/438 [===>..........................] - ETA: 2s - loss: 0.7074 - ae_loss: 0.1466 - cnn_loss: 0.5608 - cnn_accuracy: 0.8140"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 73/438 [====>.........................] - ETA: 2s - loss: 0.7077 - ae_loss: 0.1466 - cnn_loss: 0.5610 - cnn_accuracy: 0.8143"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 81/438 [====>.........................] - ETA: 2s - loss: 0.7082 - ae_loss: 0.1466 - cnn_loss: 0.5616 - cnn_accuracy: 0.8143"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 89/438 [=====>........................] - ETA: 2s - loss: 0.7087 - ae_loss: 0.1466 - cnn_loss: 0.5621 - cnn_accuracy: 0.8143"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 97/438 [=====>........................] - ETA: 2s - loss: 0.7089 - ae_loss: 0.1465 - cnn_loss: 0.5624 - cnn_accuracy: 0.8144"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.7093 - ae_loss: 0.1465 - cnn_loss: 0.5628 - cnn_accuracy: 0.8145"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "114/438 [======>.......................] - ETA: 2s - loss: 0.7095 - ae_loss: 0.1465 - cnn_loss: 0.5630 - cnn_accuracy: 0.8146"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "122/438 [=======>......................] - ETA: 1s - loss: 0.7098 - ae_loss: 0.1465 - cnn_loss: 0.5633 - cnn_accuracy: 0.8146"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "130/438 [=======>......................] - ETA: 1s - loss: 0.7101 - ae_loss: 0.1464 - cnn_loss: 0.5637 - cnn_accuracy: 0.8147"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "138/438 [========>.....................] - ETA: 1s - loss: 0.7105 - ae_loss: 0.1464 - cnn_loss: 0.5641 - cnn_accuracy: 0.8147"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "146/438 [=========>....................] - ETA: 1s - loss: 0.7109 - ae_loss: 0.1464 - cnn_loss: 0.5645 - cnn_accuracy: 0.8148"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "154/438 [=========>....................] - ETA: 1s - loss: 0.7113 - ae_loss: 0.1464 - cnn_loss: 0.5649 - cnn_accuracy: 0.8148"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 1s - loss: 0.7116 - ae_loss: 0.1464 - cnn_loss: 0.5653 - cnn_accuracy: 0.8148"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "170/438 [==========>...................] - ETA: 1s - loss: 0.7118 - ae_loss: 0.1464 - cnn_loss: 0.5655 - cnn_accuracy: 0.8148"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "178/438 [===========>..................] - ETA: 1s - loss: 0.7119 - ae_loss: 0.1463 - cnn_loss: 0.5655 - cnn_accuracy: 0.8149"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "186/438 [===========>..................] - ETA: 1s - loss: 0.7121 - ae_loss: 0.1463 - cnn_loss: 0.5658 - cnn_accuracy: 0.8149"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "194/438 [============>.................] - ETA: 1s - loss: 0.7123 - ae_loss: 0.1463 - cnn_loss: 0.5660 - cnn_accuracy: 0.8150"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "202/438 [============>.................] - ETA: 1s - loss: 0.7124 - ae_loss: 0.1463 - cnn_loss: 0.5660 - cnn_accuracy: 0.8150"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "210/438 [=============>................] - ETA: 1s - loss: 0.7124 - ae_loss: 0.1463 - cnn_loss: 0.5661 - cnn_accuracy: 0.8151"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "218/438 [=============>................] - ETA: 1s - loss: 0.7125 - ae_loss: 0.1463 - cnn_loss: 0.5662 - cnn_accuracy: 0.8151"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "226/438 [==============>...............] - ETA: 1s - loss: 0.7126 - ae_loss: 0.1463 - cnn_loss: 0.5662 - cnn_accuracy: 0.8151"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "234/438 [===============>..............] - ETA: 1s - loss: 0.7127 - ae_loss: 0.1463 - cnn_loss: 0.5663 - cnn_accuracy: 0.8152"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "242/438 [===============>..............] - ETA: 1s - loss: 0.7128 - ae_loss: 0.1463 - cnn_loss: 0.5664 - cnn_accuracy: 0.8152"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "250/438 [================>.............] - ETA: 1s - loss: 0.7128 - ae_loss: 0.1463 - cnn_loss: 0.5665 - cnn_accuracy: 0.8152"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "258/438 [================>.............] - ETA: 1s - loss: 0.7129 - ae_loss: 0.1463 - cnn_loss: 0.5666 - cnn_accuracy: 0.8152"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "266/438 [=================>............] - ETA: 1s - loss: 0.7130 - ae_loss: 0.1463 - cnn_loss: 0.5667 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "274/438 [=================>............] - ETA: 1s - loss: 0.7131 - ae_loss: 0.1463 - cnn_loss: 0.5667 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "282/438 [==================>...........] - ETA: 0s - loss: 0.7132 - ae_loss: 0.1463 - cnn_loss: 0.5668 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "290/438 [==================>...........] - ETA: 0s - loss: 0.7133 - ae_loss: 0.1463 - cnn_loss: 0.5669 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "298/438 [===================>..........] - ETA: 0s - loss: 0.7134 - ae_loss: 0.1463 - cnn_loss: 0.5670 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "306/438 [===================>..........] - ETA: 0s - loss: 0.7135 - ae_loss: 0.1463 - cnn_loss: 0.5671 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "314/438 [====================>.........] - ETA: 0s - loss: 0.7136 - ae_loss: 0.1463 - cnn_loss: 0.5672 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "322/438 [=====================>........] - ETA: 0s - loss: 0.7137 - ae_loss: 0.1463 - cnn_loss: 0.5673 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "330/438 [=====================>........] - ETA: 0s - loss: 0.7138 - ae_loss: 0.1463 - cnn_loss: 0.5674 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "338/438 [======================>.......] - ETA: 0s - loss: 0.7139 - ae_loss: 0.1463 - cnn_loss: 0.5675 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "346/438 [======================>.......] - ETA: 0s - loss: 0.7140 - ae_loss: 0.1464 - cnn_loss: 0.5676 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "354/438 [=======================>......] - ETA: 0s - loss: 0.7141 - ae_loss: 0.1464 - cnn_loss: 0.5677 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "361/438 [=======================>......] - ETA: 0s - loss: 0.7142 - ae_loss: 0.1464 - cnn_loss: 0.5678 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "369/438 [========================>.....] - ETA: 0s - loss: 0.7143 - ae_loss: 0.1464 - cnn_loss: 0.5679 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "377/438 [========================>.....] - ETA: 0s - loss: 0.7143 - ae_loss: 0.1464 - cnn_loss: 0.5680 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "385/438 [=========================>....] - ETA: 0s - loss: 0.7144 - ae_loss: 0.1464 - cnn_loss: 0.5681 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "393/438 [=========================>....] - ETA: 0s - loss: 0.7145 - ae_loss: 0.1464 - cnn_loss: 0.5682 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "402/438 [==========================>...] - ETA: 0s - loss: 0.7146 - ae_loss: 0.1464 - cnn_loss: 0.5682 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "411/438 [===========================>..] - ETA: 0s - loss: 0.7147 - ae_loss: 0.1464 - cnn_loss: 0.5683 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "419/438 [===========================>..] - ETA: 0s - loss: 0.7147 - ae_loss: 0.1464 - cnn_loss: 0.5684 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "428/438 [============================>.] - ETA: 0s - loss: 0.7148 - ae_loss: 0.1464 - cnn_loss: 0.5684 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "437/438 [============================>.] - ETA: 0s - loss: 0.7149 - ae_loss: 0.1464 - cnn_loss: 0.5685 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.7149 - ae_loss: 0.1464 - cnn_loss: 0.5685 - cnn_accuracy: 0.8153 - val_loss: 0.5702 - val_ae_loss: 0.1519 - val_cnn_loss: 0.4183 - val_cnn_accuracy: 0.8649\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 15/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.6909 - ae_loss: 0.1444 - cnn_loss: 0.5466 - cnn_accuracy: 0.8203"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.6708 - ae_loss: 0.1445 - cnn_loss: 0.5263 - cnn_accuracy: 0.8180"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.6860 - ae_loss: 0.1450 - cnn_loss: 0.5410 - cnn_accuracy: 0.8178"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 0.6939 - ae_loss: 0.1451 - cnn_loss: 0.5488 - cnn_accuracy: 0.8176"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 34/438 [=>............................] - ETA: 2s - loss: 0.6980 - ae_loss: 0.1453 - cnn_loss: 0.5527 - cnn_accuracy: 0.8183"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 42/438 [=>............................] - ETA: 2s - loss: 0.7009 - ae_loss: 0.1454 - cnn_loss: 0.5555 - cnn_accuracy: 0.8182"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 2s - loss: 0.7045 - ae_loss: 0.1454 - cnn_loss: 0.5591 - cnn_accuracy: 0.8175"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 58/438 [==>...........................] - ETA: 2s - loss: 0.7069 - ae_loss: 0.1454 - cnn_loss: 0.5615 - cnn_accuracy: 0.8171"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 66/438 [===>..........................] - ETA: 2s - loss: 0.7085 - ae_loss: 0.1454 - cnn_loss: 0.5631 - cnn_accuracy: 0.8166"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 74/438 [====>.........................] - ETA: 2s - loss: 0.7099 - ae_loss: 0.1454 - cnn_loss: 0.5644 - cnn_accuracy: 0.8162"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 82/438 [====>.........................] - ETA: 2s - loss: 0.7112 - ae_loss: 0.1454 - cnn_loss: 0.5657 - cnn_accuracy: 0.8158"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 91/438 [=====>........................] - ETA: 2s - loss: 0.7123 - ae_loss: 0.1454 - cnn_loss: 0.5669 - cnn_accuracy: 0.8154"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "100/438 [=====>........................] - ETA: 2s - loss: 0.7132 - ae_loss: 0.1455 - cnn_loss: 0.5677 - cnn_accuracy: 0.8151"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "109/438 [======>.......................] - ETA: 2s - loss: 0.7137 - ae_loss: 0.1455 - cnn_loss: 0.5682 - cnn_accuracy: 0.8149"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "117/438 [=======>......................] - ETA: 2s - loss: 0.7137 - ae_loss: 0.1454 - cnn_loss: 0.5683 - cnn_accuracy: 0.8149"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "125/438 [=======>......................] - ETA: 1s - loss: 0.7137 - ae_loss: 0.1454 - cnn_loss: 0.5683 - cnn_accuracy: 0.8149"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "133/438 [========>.....................] - ETA: 1s - loss: 0.7139 - ae_loss: 0.1454 - cnn_loss: 0.5684 - cnn_accuracy: 0.8149"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "141/438 [========>.....................] - ETA: 1s - loss: 0.7140 - ae_loss: 0.1454 - cnn_loss: 0.5686 - cnn_accuracy: 0.8148"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "150/438 [=========>....................] - ETA: 1s - loss: 0.7142 - ae_loss: 0.1454 - cnn_loss: 0.5688 - cnn_accuracy: 0.8148"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "158/438 [=========>....................] - ETA: 1s - loss: 0.7143 - ae_loss: 0.1454 - cnn_loss: 0.5689 - cnn_accuracy: 0.8147"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "166/438 [==========>...................] - ETA: 1s - loss: 0.7143 - ae_loss: 0.1454 - cnn_loss: 0.5689 - cnn_accuracy: 0.8147"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "174/438 [==========>...................] - ETA: 1s - loss: 0.7142 - ae_loss: 0.1454 - cnn_loss: 0.5688 - cnn_accuracy: 0.8147"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 1s - loss: 0.7140 - ae_loss: 0.1454 - cnn_loss: 0.5686 - cnn_accuracy: 0.8148"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "191/438 [============>.................] - ETA: 1s - loss: 0.7138 - ae_loss: 0.1454 - cnn_loss: 0.5684 - cnn_accuracy: 0.8148"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "200/438 [============>.................] - ETA: 1s - loss: 0.7136 - ae_loss: 0.1454 - cnn_loss: 0.5682 - cnn_accuracy: 0.8149"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "208/438 [=============>................] - ETA: 1s - loss: 0.7134 - ae_loss: 0.1454 - cnn_loss: 0.5681 - cnn_accuracy: 0.8149"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "216/438 [=============>................] - ETA: 1s - loss: 0.7133 - ae_loss: 0.1454 - cnn_loss: 0.5679 - cnn_accuracy: 0.8150"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "224/438 [==============>...............] - ETA: 1s - loss: 0.7132 - ae_loss: 0.1454 - cnn_loss: 0.5678 - cnn_accuracy: 0.8150"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "232/438 [==============>...............] - ETA: 1s - loss: 0.7131 - ae_loss: 0.1454 - cnn_loss: 0.5677 - cnn_accuracy: 0.8150"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "240/438 [===============>..............] - ETA: 1s - loss: 0.7131 - ae_loss: 0.1454 - cnn_loss: 0.5677 - cnn_accuracy: 0.8150"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "248/438 [===============>..............] - ETA: 1s - loss: 0.7132 - ae_loss: 0.1454 - cnn_loss: 0.5678 - cnn_accuracy: 0.8150"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "256/438 [================>.............] - ETA: 1s - loss: 0.7132 - ae_loss: 0.1454 - cnn_loss: 0.5678 - cnn_accuracy: 0.8150"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "264/438 [=================>............] - ETA: 1s - loss: 0.7132 - ae_loss: 0.1454 - cnn_loss: 0.5678 - cnn_accuracy: 0.8150"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "272/438 [=================>............] - ETA: 1s - loss: 0.7132 - ae_loss: 0.1454 - cnn_loss: 0.5678 - cnn_accuracy: 0.8150"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "280/438 [==================>...........] - ETA: 0s - loss: 0.7132 - ae_loss: 0.1454 - cnn_loss: 0.5678 - cnn_accuracy: 0.8150"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "288/438 [==================>...........] - ETA: 0s - loss: 0.7132 - ae_loss: 0.1454 - cnn_loss: 0.5677 - cnn_accuracy: 0.8150"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "296/438 [===================>..........] - ETA: 0s - loss: 0.7132 - ae_loss: 0.1454 - cnn_loss: 0.5677 - cnn_accuracy: 0.8150"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "304/438 [===================>..........] - ETA: 0s - loss: 0.7132 - ae_loss: 0.1455 - cnn_loss: 0.5677 - cnn_accuracy: 0.8150"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "312/438 [====================>.........] - ETA: 0s - loss: 0.7132 - ae_loss: 0.1455 - cnn_loss: 0.5677 - cnn_accuracy: 0.8150"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "320/438 [====================>.........] - ETA: 0s - loss: 0.7132 - ae_loss: 0.1455 - cnn_loss: 0.5677 - cnn_accuracy: 0.8150"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "328/438 [=====================>........] - ETA: 0s - loss: 0.7131 - ae_loss: 0.1455 - cnn_loss: 0.5676 - cnn_accuracy: 0.8150"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "336/438 [======================>.......] - ETA: 0s - loss: 0.7130 - ae_loss: 0.1455 - cnn_loss: 0.5675 - cnn_accuracy: 0.8151"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "344/438 [======================>.......] - ETA: 0s - loss: 0.7130 - ae_loss: 0.1455 - cnn_loss: 0.5675 - cnn_accuracy: 0.8151"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "352/438 [=======================>......] - ETA: 0s - loss: 0.7129 - ae_loss: 0.1455 - cnn_loss: 0.5674 - cnn_accuracy: 0.8151"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "360/438 [=======================>......] - ETA: 0s - loss: 0.7129 - ae_loss: 0.1455 - cnn_loss: 0.5674 - cnn_accuracy: 0.8152"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "368/438 [========================>.....] - ETA: 0s - loss: 0.7128 - ae_loss: 0.1455 - cnn_loss: 0.5673 - cnn_accuracy: 0.8152"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "376/438 [========================>.....] - ETA: 0s - loss: 0.7127 - ae_loss: 0.1455 - cnn_loss: 0.5672 - cnn_accuracy: 0.8152"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "384/438 [=========================>....] - ETA: 0s - loss: 0.7127 - ae_loss: 0.1455 - cnn_loss: 0.5672 - cnn_accuracy: 0.8152"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "392/438 [=========================>....] - ETA: 0s - loss: 0.7127 - ae_loss: 0.1455 - cnn_loss: 0.5671 - cnn_accuracy: 0.8152"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "401/438 [==========================>...] - ETA: 0s - loss: 0.7126 - ae_loss: 0.1455 - cnn_loss: 0.5671 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "409/438 [===========================>..] - ETA: 0s - loss: 0.7126 - ae_loss: 0.1455 - cnn_loss: 0.5671 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "417/438 [===========================>..] - ETA: 0s - loss: 0.7126 - ae_loss: 0.1455 - cnn_loss: 0.5670 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "425/438 [============================>.] - ETA: 0s - loss: 0.7125 - ae_loss: 0.1455 - cnn_loss: 0.5670 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "433/438 [============================>.] - ETA: 0s - loss: 0.7125 - ae_loss: 0.1455 - cnn_loss: 0.5670 - cnn_accuracy: 0.8154"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.7125 - ae_loss: 0.1455 - cnn_loss: 0.5670 - cnn_accuracy: 0.8154 - val_loss: 0.5687 - val_ae_loss: 0.1501 - val_cnn_loss: 0.4186 - val_cnn_accuracy: 0.8625\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 16/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.7237 - ae_loss: 0.1458 - cnn_loss: 0.5779 - cnn_accuracy: 0.8047"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.6958 - ae_loss: 0.1433 - cnn_loss: 0.5525 - cnn_accuracy: 0.8153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.6917 - ae_loss: 0.1442 - cnn_loss: 0.5475 - cnn_accuracy: 0.8186"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 0.6928 - ae_loss: 0.1446 - cnn_loss: 0.5482 - cnn_accuracy: 0.8196"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 33/438 [=>............................] - ETA: 2s - loss: 0.6944 - ae_loss: 0.1447 - cnn_loss: 0.5497 - cnn_accuracy: 0.8196"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 2s - loss: 0.6978 - ae_loss: 0.1448 - cnn_loss: 0.5530 - cnn_accuracy: 0.8185"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 49/438 [==>...........................] - ETA: 2s - loss: 0.6988 - ae_loss: 0.1448 - cnn_loss: 0.5539 - cnn_accuracy: 0.8185"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.6990 - ae_loss: 0.1449 - cnn_loss: 0.5542 - cnn_accuracy: 0.8188"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 65/438 [===>..........................] - ETA: 2s - loss: 0.6991 - ae_loss: 0.1449 - cnn_loss: 0.5542 - cnn_accuracy: 0.8190"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 73/438 [====>.........................] - ETA: 2s - loss: 0.6995 - ae_loss: 0.1449 - cnn_loss: 0.5546 - cnn_accuracy: 0.8190"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 81/438 [====>.........................] - ETA: 2s - loss: 0.6999 - ae_loss: 0.1449 - cnn_loss: 0.5550 - cnn_accuracy: 0.8189"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 90/438 [=====>........................] - ETA: 2s - loss: 0.7001 - ae_loss: 0.1449 - cnn_loss: 0.5552 - cnn_accuracy: 0.8188"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 98/438 [=====>........................] - ETA: 2s - loss: 0.7001 - ae_loss: 0.1448 - cnn_loss: 0.5553 - cnn_accuracy: 0.8188"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "107/438 [======>.......................] - ETA: 2s - loss: 0.7006 - ae_loss: 0.1448 - cnn_loss: 0.5557 - cnn_accuracy: 0.8187"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "115/438 [======>.......................] - ETA: 2s - loss: 0.7011 - ae_loss: 0.1448 - cnn_loss: 0.5563 - cnn_accuracy: 0.8186"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "123/438 [=======>......................] - ETA: 1s - loss: 0.7015 - ae_loss: 0.1448 - cnn_loss: 0.5566 - cnn_accuracy: 0.8185"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "131/438 [=======>......................] - ETA: 1s - loss: 0.7017 - ae_loss: 0.1448 - cnn_loss: 0.5569 - cnn_accuracy: 0.8185"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "139/438 [========>.....................] - ETA: 1s - loss: 0.7020 - ae_loss: 0.1448 - cnn_loss: 0.5572 - cnn_accuracy: 0.8184"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "147/438 [=========>....................] - ETA: 1s - loss: 0.7021 - ae_loss: 0.1448 - cnn_loss: 0.5573 - cnn_accuracy: 0.8184"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 1s - loss: 0.7023 - ae_loss: 0.1448 - cnn_loss: 0.5575 - cnn_accuracy: 0.8183"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "163/438 [==========>...................] - ETA: 1s - loss: 0.7025 - ae_loss: 0.1448 - cnn_loss: 0.5577 - cnn_accuracy: 0.8183"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "171/438 [==========>...................] - ETA: 1s - loss: 0.7028 - ae_loss: 0.1448 - cnn_loss: 0.5580 - cnn_accuracy: 0.8182"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "179/438 [===========>..................] - ETA: 1s - loss: 0.7030 - ae_loss: 0.1448 - cnn_loss: 0.5582 - cnn_accuracy: 0.8181"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "187/438 [===========>..................] - ETA: 1s - loss: 0.7033 - ae_loss: 0.1448 - cnn_loss: 0.5584 - cnn_accuracy: 0.8181"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "195/438 [============>.................] - ETA: 1s - loss: 0.7035 - ae_loss: 0.1448 - cnn_loss: 0.5587 - cnn_accuracy: 0.8180"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "203/438 [============>.................] - ETA: 1s - loss: 0.7037 - ae_loss: 0.1448 - cnn_loss: 0.5589 - cnn_accuracy: 0.8180"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "211/438 [=============>................] - ETA: 1s - loss: 0.7039 - ae_loss: 0.1448 - cnn_loss: 0.5591 - cnn_accuracy: 0.8179"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "219/438 [==============>...............] - ETA: 1s - loss: 0.7041 - ae_loss: 0.1448 - cnn_loss: 0.5593 - cnn_accuracy: 0.8179"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "227/438 [==============>...............] - ETA: 1s - loss: 0.7043 - ae_loss: 0.1448 - cnn_loss: 0.5594 - cnn_accuracy: 0.8178"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "235/438 [===============>..............] - ETA: 1s - loss: 0.7044 - ae_loss: 0.1448 - cnn_loss: 0.5596 - cnn_accuracy: 0.8178"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "243/438 [===============>..............] - ETA: 1s - loss: 0.7045 - ae_loss: 0.1449 - cnn_loss: 0.5597 - cnn_accuracy: 0.8178"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "251/438 [================>.............] - ETA: 1s - loss: 0.7047 - ae_loss: 0.1449 - cnn_loss: 0.5598 - cnn_accuracy: 0.8177"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "259/438 [================>.............] - ETA: 1s - loss: 0.7048 - ae_loss: 0.1449 - cnn_loss: 0.5599 - cnn_accuracy: 0.8177"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "267/438 [=================>............] - ETA: 1s - loss: 0.7050 - ae_loss: 0.1449 - cnn_loss: 0.5601 - cnn_accuracy: 0.8176"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "275/438 [=================>............] - ETA: 1s - loss: 0.7051 - ae_loss: 0.1449 - cnn_loss: 0.5602 - cnn_accuracy: 0.8176"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "283/438 [==================>...........] - ETA: 0s - loss: 0.7052 - ae_loss: 0.1449 - cnn_loss: 0.5604 - cnn_accuracy: 0.8176"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "291/438 [==================>...........] - ETA: 0s - loss: 0.7053 - ae_loss: 0.1449 - cnn_loss: 0.5605 - cnn_accuracy: 0.8176"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "299/438 [===================>..........] - ETA: 0s - loss: 0.7054 - ae_loss: 0.1449 - cnn_loss: 0.5605 - cnn_accuracy: 0.8176"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "307/438 [====================>.........] - ETA: 0s - loss: 0.7055 - ae_loss: 0.1449 - cnn_loss: 0.5606 - cnn_accuracy: 0.8175"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "315/438 [====================>.........] - ETA: 0s - loss: 0.7055 - ae_loss: 0.1449 - cnn_loss: 0.5606 - cnn_accuracy: 0.8175"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "323/438 [=====================>........] - ETA: 0s - loss: 0.7056 - ae_loss: 0.1449 - cnn_loss: 0.5607 - cnn_accuracy: 0.8175"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "331/438 [=====================>........] - ETA: 0s - loss: 0.7057 - ae_loss: 0.1449 - cnn_loss: 0.5608 - cnn_accuracy: 0.8175"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "339/438 [======================>.......] - ETA: 0s - loss: 0.7058 - ae_loss: 0.1449 - cnn_loss: 0.5609 - cnn_accuracy: 0.8175"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "347/438 [======================>.......] - ETA: 0s - loss: 0.7059 - ae_loss: 0.1449 - cnn_loss: 0.5610 - cnn_accuracy: 0.8175"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "355/438 [=======================>......] - ETA: 0s - loss: 0.7060 - ae_loss: 0.1449 - cnn_loss: 0.5611 - cnn_accuracy: 0.8175"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "363/438 [=======================>......] - ETA: 0s - loss: 0.7061 - ae_loss: 0.1449 - cnn_loss: 0.5611 - cnn_accuracy: 0.8174"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "371/438 [========================>.....] - ETA: 0s - loss: 0.7061 - ae_loss: 0.1449 - cnn_loss: 0.5612 - cnn_accuracy: 0.8174"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "379/438 [========================>.....] - ETA: 0s - loss: 0.7062 - ae_loss: 0.1449 - cnn_loss: 0.5612 - cnn_accuracy: 0.8174"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "387/438 [=========================>....] - ETA: 0s - loss: 0.7062 - ae_loss: 0.1449 - cnn_loss: 0.5613 - cnn_accuracy: 0.8174"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "395/438 [==========================>...] - ETA: 0s - loss: 0.7063 - ae_loss: 0.1449 - cnn_loss: 0.5614 - cnn_accuracy: 0.8174"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "403/438 [==========================>...] - ETA: 0s - loss: 0.7063 - ae_loss: 0.1449 - cnn_loss: 0.5614 - cnn_accuracy: 0.8174"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "411/438 [===========================>..] - ETA: 0s - loss: 0.7064 - ae_loss: 0.1449 - cnn_loss: 0.5614 - cnn_accuracy: 0.8174"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "419/438 [===========================>..] - ETA: 0s - loss: 0.7064 - ae_loss: 0.1449 - cnn_loss: 0.5615 - cnn_accuracy: 0.8174"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "426/438 [============================>.] - ETA: 0s - loss: 0.7064 - ae_loss: 0.1449 - cnn_loss: 0.5615 - cnn_accuracy: 0.8174"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "434/438 [============================>.] - ETA: 0s - loss: 0.7065 - ae_loss: 0.1450 - cnn_loss: 0.5615 - cnn_accuracy: 0.8174"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.7065 - ae_loss: 0.1450 - cnn_loss: 0.5615 - cnn_accuracy: 0.8174 - val_loss: 0.5562 - val_ae_loss: 0.1498 - val_cnn_loss: 0.4064 - val_cnn_accuracy: 0.8638\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 17/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.7608 - ae_loss: 0.1461 - cnn_loss: 0.6146 - cnn_accuracy: 0.7812"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.6828 - ae_loss: 0.1441 - cnn_loss: 0.5388 - cnn_accuracy: 0.8200"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.7004 - ae_loss: 0.1443 - cnn_loss: 0.5561 - cnn_accuracy: 0.8143"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 0.7024 - ae_loss: 0.1443 - cnn_loss: 0.5581 - cnn_accuracy: 0.8137"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 33/438 [=>............................] - ETA: 2s - loss: 0.6988 - ae_loss: 0.1441 - cnn_loss: 0.5547 - cnn_accuracy: 0.8151"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 2s - loss: 0.6935 - ae_loss: 0.1440 - cnn_loss: 0.5495 - cnn_accuracy: 0.8173"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 49/438 [==>...........................] - ETA: 2s - loss: 0.6890 - ae_loss: 0.1439 - cnn_loss: 0.5451 - cnn_accuracy: 0.8189"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.6864 - ae_loss: 0.1439 - cnn_loss: 0.5426 - cnn_accuracy: 0.8201"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 65/438 [===>..........................] - ETA: 2s - loss: 0.6856 - ae_loss: 0.1438 - cnn_loss: 0.5418 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 73/438 [====>.........................] - ETA: 2s - loss: 0.6856 - ae_loss: 0.1438 - cnn_loss: 0.5419 - cnn_accuracy: 0.8206"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 81/438 [====>.........................] - ETA: 2s - loss: 0.6858 - ae_loss: 0.1437 - cnn_loss: 0.5421 - cnn_accuracy: 0.8207"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 89/438 [=====>........................] - ETA: 2s - loss: 0.6862 - ae_loss: 0.1437 - cnn_loss: 0.5425 - cnn_accuracy: 0.8206"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 97/438 [=====>........................] - ETA: 2s - loss: 0.6868 - ae_loss: 0.1437 - cnn_loss: 0.5431 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "105/438 [======>.......................] - ETA: 2s - loss: 0.6871 - ae_loss: 0.1437 - cnn_loss: 0.5434 - cnn_accuracy: 0.8204"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 0.6873 - ae_loss: 0.1437 - cnn_loss: 0.5436 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "121/438 [=======>......................] - ETA: 2s - loss: 0.6876 - ae_loss: 0.1437 - cnn_loss: 0.5438 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "129/438 [=======>......................] - ETA: 1s - loss: 0.6878 - ae_loss: 0.1437 - cnn_loss: 0.5441 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "137/438 [========>.....................] - ETA: 1s - loss: 0.6880 - ae_loss: 0.1437 - cnn_loss: 0.5443 - cnn_accuracy: 0.8206"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "146/438 [=========>....................] - ETA: 1s - loss: 0.6884 - ae_loss: 0.1437 - cnn_loss: 0.5446 - cnn_accuracy: 0.8206"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 1s - loss: 0.6888 - ae_loss: 0.1438 - cnn_loss: 0.5450 - cnn_accuracy: 0.8206"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "164/438 [==========>...................] - ETA: 1s - loss: 0.6893 - ae_loss: 0.1438 - cnn_loss: 0.5455 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "172/438 [==========>...................] - ETA: 1s - loss: 0.6897 - ae_loss: 0.1438 - cnn_loss: 0.5459 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "180/438 [===========>..................] - ETA: 1s - loss: 0.6900 - ae_loss: 0.1438 - cnn_loss: 0.5462 - cnn_accuracy: 0.8204"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "188/438 [===========>..................] - ETA: 1s - loss: 0.6903 - ae_loss: 0.1438 - cnn_loss: 0.5465 - cnn_accuracy: 0.8204"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "195/438 [============>.................] - ETA: 1s - loss: 0.6905 - ae_loss: 0.1438 - cnn_loss: 0.5467 - cnn_accuracy: 0.8204"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "203/438 [============>.................] - ETA: 1s - loss: 0.6907 - ae_loss: 0.1438 - cnn_loss: 0.5469 - cnn_accuracy: 0.8203"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "211/438 [=============>................] - ETA: 1s - loss: 0.6909 - ae_loss: 0.1438 - cnn_loss: 0.5471 - cnn_accuracy: 0.8203"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "219/438 [==============>...............] - ETA: 1s - loss: 0.6911 - ae_loss: 0.1438 - cnn_loss: 0.5473 - cnn_accuracy: 0.8203"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "227/438 [==============>...............] - ETA: 1s - loss: 0.6913 - ae_loss: 0.1438 - cnn_loss: 0.5474 - cnn_accuracy: 0.8203"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "235/438 [===============>..............] - ETA: 1s - loss: 0.6914 - ae_loss: 0.1439 - cnn_loss: 0.5475 - cnn_accuracy: 0.8202"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "243/438 [===============>..............] - ETA: 1s - loss: 0.6915 - ae_loss: 0.1439 - cnn_loss: 0.5476 - cnn_accuracy: 0.8203"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "251/438 [================>.............] - ETA: 1s - loss: 0.6915 - ae_loss: 0.1439 - cnn_loss: 0.5476 - cnn_accuracy: 0.8203"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "259/438 [================>.............] - ETA: 1s - loss: 0.6915 - ae_loss: 0.1439 - cnn_loss: 0.5477 - cnn_accuracy: 0.8203"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "267/438 [=================>............] - ETA: 1s - loss: 0.6916 - ae_loss: 0.1439 - cnn_loss: 0.5477 - cnn_accuracy: 0.8203"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "275/438 [=================>............] - ETA: 1s - loss: 0.6917 - ae_loss: 0.1439 - cnn_loss: 0.5477 - cnn_accuracy: 0.8204"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "282/438 [==================>...........] - ETA: 1s - loss: 0.6917 - ae_loss: 0.1439 - cnn_loss: 0.5478 - cnn_accuracy: 0.8204"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "290/438 [==================>...........] - ETA: 0s - loss: 0.6917 - ae_loss: 0.1439 - cnn_loss: 0.5478 - cnn_accuracy: 0.8204"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "297/438 [===================>..........] - ETA: 0s - loss: 0.6918 - ae_loss: 0.1439 - cnn_loss: 0.5478 - cnn_accuracy: 0.8204"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "305/438 [===================>..........] - ETA: 0s - loss: 0.6918 - ae_loss: 0.1440 - cnn_loss: 0.5478 - cnn_accuracy: 0.8204"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "313/438 [====================>.........] - ETA: 0s - loss: 0.6918 - ae_loss: 0.1440 - cnn_loss: 0.5478 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "321/438 [====================>.........] - ETA: 0s - loss: 0.6918 - ae_loss: 0.1440 - cnn_loss: 0.5478 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "329/438 [=====================>........] - ETA: 0s - loss: 0.6919 - ae_loss: 0.1440 - cnn_loss: 0.5479 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "336/438 [======================>.......] - ETA: 0s - loss: 0.6919 - ae_loss: 0.1440 - cnn_loss: 0.5479 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "344/438 [======================>.......] - ETA: 0s - loss: 0.6920 - ae_loss: 0.1440 - cnn_loss: 0.5480 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "353/438 [=======================>......] - ETA: 0s - loss: 0.6921 - ae_loss: 0.1440 - cnn_loss: 0.5481 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "361/438 [=======================>......] - ETA: 0s - loss: 0.6922 - ae_loss: 0.1440 - cnn_loss: 0.5482 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "370/438 [========================>.....] - ETA: 0s - loss: 0.6923 - ae_loss: 0.1440 - cnn_loss: 0.5483 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "378/438 [========================>.....] - ETA: 0s - loss: 0.6924 - ae_loss: 0.1440 - cnn_loss: 0.5484 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "386/438 [=========================>....] - ETA: 0s - loss: 0.6925 - ae_loss: 0.1440 - cnn_loss: 0.5484 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "395/438 [==========================>...] - ETA: 0s - loss: 0.6926 - ae_loss: 0.1441 - cnn_loss: 0.5485 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "404/438 [==========================>...] - ETA: 0s - loss: 0.6927 - ae_loss: 0.1441 - cnn_loss: 0.5486 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "412/438 [===========================>..] - ETA: 0s - loss: 0.6927 - ae_loss: 0.1441 - cnn_loss: 0.5487 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "421/438 [===========================>..] - ETA: 0s - loss: 0.6928 - ae_loss: 0.1441 - cnn_loss: 0.5487 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "430/438 [============================>.] - ETA: 0s - loss: 0.6929 - ae_loss: 0.1441 - cnn_loss: 0.5488 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.6930 - ae_loss: 0.1441 - cnn_loss: 0.5489 - cnn_accuracy: 0.8205 - val_loss: 0.5623 - val_ae_loss: 0.1541 - val_cnn_loss: 0.4082 - val_cnn_accuracy: 0.8680\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 18/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.5803 - ae_loss: 0.1497 - cnn_loss: 0.4306 - cnn_accuracy: 0.8594"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 3s - loss: 0.6386 - ae_loss: 0.1467 - cnn_loss: 0.4919 - cnn_accuracy: 0.8395"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 16/438 [>.............................] - ETA: 2s - loss: 0.6478 - ae_loss: 0.1455 - cnn_loss: 0.5023 - cnn_accuracy: 0.8321"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 24/438 [>.............................] - ETA: 2s - loss: 0.6510 - ae_loss: 0.1447 - cnn_loss: 0.5063 - cnn_accuracy: 0.8307"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 32/438 [=>............................] - ETA: 2s - loss: 0.6554 - ae_loss: 0.1443 - cnn_loss: 0.5112 - cnn_accuracy: 0.8297"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 40/438 [=>............................] - ETA: 2s - loss: 0.6577 - ae_loss: 0.1440 - cnn_loss: 0.5138 - cnn_accuracy: 0.8296"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 48/438 [==>...........................] - ETA: 2s - loss: 0.6583 - ae_loss: 0.1437 - cnn_loss: 0.5146 - cnn_accuracy: 0.8299"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 56/438 [==>...........................] - ETA: 2s - loss: 0.6594 - ae_loss: 0.1436 - cnn_loss: 0.5158 - cnn_accuracy: 0.8302"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 64/438 [===>..........................] - ETA: 2s - loss: 0.6616 - ae_loss: 0.1435 - cnn_loss: 0.5181 - cnn_accuracy: 0.8297"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 72/438 [===>..........................] - ETA: 2s - loss: 0.6641 - ae_loss: 0.1434 - cnn_loss: 0.5207 - cnn_accuracy: 0.8293"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 80/438 [====>.........................] - ETA: 2s - loss: 0.6660 - ae_loss: 0.1434 - cnn_loss: 0.5226 - cnn_accuracy: 0.8289"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 88/438 [=====>........................] - ETA: 2s - loss: 0.6675 - ae_loss: 0.1433 - cnn_loss: 0.5242 - cnn_accuracy: 0.8287"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 96/438 [=====>........................] - ETA: 2s - loss: 0.6686 - ae_loss: 0.1433 - cnn_loss: 0.5253 - cnn_accuracy: 0.8285"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "104/438 [======>.......................] - ETA: 2s - loss: 0.6699 - ae_loss: 0.1433 - cnn_loss: 0.5266 - cnn_accuracy: 0.8283"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "112/438 [======>.......................] - ETA: 2s - loss: 0.6712 - ae_loss: 0.1433 - cnn_loss: 0.5279 - cnn_accuracy: 0.8280"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "120/438 [=======>......................] - ETA: 2s - loss: 0.6724 - ae_loss: 0.1433 - cnn_loss: 0.5291 - cnn_accuracy: 0.8278"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "128/438 [=======>......................] - ETA: 2s - loss: 0.6737 - ae_loss: 0.1434 - cnn_loss: 0.5303 - cnn_accuracy: 0.8275"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "136/438 [========>.....................] - ETA: 2s - loss: 0.6747 - ae_loss: 0.1434 - cnn_loss: 0.5314 - cnn_accuracy: 0.8273"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "144/438 [========>.....................] - ETA: 2s - loss: 0.6757 - ae_loss: 0.1434 - cnn_loss: 0.5323 - cnn_accuracy: 0.8270"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "152/438 [=========>....................] - ETA: 2s - loss: 0.6767 - ae_loss: 0.1434 - cnn_loss: 0.5332 - cnn_accuracy: 0.8268"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "160/438 [=========>....................] - ETA: 1s - loss: 0.6775 - ae_loss: 0.1435 - cnn_loss: 0.5340 - cnn_accuracy: 0.8266"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "168/438 [==========>...................] - ETA: 1s - loss: 0.6782 - ae_loss: 0.1435 - cnn_loss: 0.5347 - cnn_accuracy: 0.8263"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 1s - loss: 0.6787 - ae_loss: 0.1435 - cnn_loss: 0.5352 - cnn_accuracy: 0.8262"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "184/438 [===========>..................] - ETA: 1s - loss: 0.6793 - ae_loss: 0.1435 - cnn_loss: 0.5358 - cnn_accuracy: 0.8259"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "192/438 [============>.................] - ETA: 1s - loss: 0.6800 - ae_loss: 0.1435 - cnn_loss: 0.5364 - cnn_accuracy: 0.8257"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "200/438 [============>.................] - ETA: 1s - loss: 0.6805 - ae_loss: 0.1435 - cnn_loss: 0.5370 - cnn_accuracy: 0.8255"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "208/438 [=============>................] - ETA: 1s - loss: 0.6810 - ae_loss: 0.1435 - cnn_loss: 0.5374 - cnn_accuracy: 0.8254"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "216/438 [=============>................] - ETA: 1s - loss: 0.6814 - ae_loss: 0.1435 - cnn_loss: 0.5379 - cnn_accuracy: 0.8253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "224/438 [==============>...............] - ETA: 1s - loss: 0.6819 - ae_loss: 0.1436 - cnn_loss: 0.5383 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "232/438 [==============>...............] - ETA: 1s - loss: 0.6823 - ae_loss: 0.1436 - cnn_loss: 0.5388 - cnn_accuracy: 0.8250"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "240/438 [===============>..............] - ETA: 1s - loss: 0.6829 - ae_loss: 0.1436 - cnn_loss: 0.5393 - cnn_accuracy: 0.8249"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "248/438 [===============>..............] - ETA: 1s - loss: 0.6834 - ae_loss: 0.1436 - cnn_loss: 0.5398 - cnn_accuracy: 0.8248"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "256/438 [================>.............] - ETA: 1s - loss: 0.6839 - ae_loss: 0.1436 - cnn_loss: 0.5403 - cnn_accuracy: 0.8246"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "263/438 [=================>............] - ETA: 1s - loss: 0.6843 - ae_loss: 0.1436 - cnn_loss: 0.5407 - cnn_accuracy: 0.8245"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "271/438 [=================>............] - ETA: 1s - loss: 0.6847 - ae_loss: 0.1436 - cnn_loss: 0.5411 - cnn_accuracy: 0.8244"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "278/438 [==================>...........] - ETA: 1s - loss: 0.6850 - ae_loss: 0.1436 - cnn_loss: 0.5414 - cnn_accuracy: 0.8244"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "286/438 [==================>...........] - ETA: 1s - loss: 0.6854 - ae_loss: 0.1436 - cnn_loss: 0.5418 - cnn_accuracy: 0.8243"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "294/438 [===================>..........] - ETA: 1s - loss: 0.6857 - ae_loss: 0.1436 - cnn_loss: 0.5421 - cnn_accuracy: 0.8242"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "302/438 [===================>..........] - ETA: 0s - loss: 0.6860 - ae_loss: 0.1436 - cnn_loss: 0.5424 - cnn_accuracy: 0.8242"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "310/438 [====================>.........] - ETA: 0s - loss: 0.6863 - ae_loss: 0.1436 - cnn_loss: 0.5426 - cnn_accuracy: 0.8241"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "318/438 [====================>.........] - ETA: 0s - loss: 0.6866 - ae_loss: 0.1436 - cnn_loss: 0.5429 - cnn_accuracy: 0.8241"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "326/438 [=====================>........] - ETA: 0s - loss: 0.6869 - ae_loss: 0.1436 - cnn_loss: 0.5432 - cnn_accuracy: 0.8240"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "334/438 [=====================>........] - ETA: 0s - loss: 0.6871 - ae_loss: 0.1436 - cnn_loss: 0.5435 - cnn_accuracy: 0.8240"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "342/438 [======================>.......] - ETA: 0s - loss: 0.6874 - ae_loss: 0.1436 - cnn_loss: 0.5438 - cnn_accuracy: 0.8240"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "350/438 [======================>.......] - ETA: 0s - loss: 0.6877 - ae_loss: 0.1437 - cnn_loss: 0.5441 - cnn_accuracy: 0.8239"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "358/438 [=======================>......] - ETA: 0s - loss: 0.6880 - ae_loss: 0.1437 - cnn_loss: 0.5444 - cnn_accuracy: 0.8239"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "366/438 [========================>.....] - ETA: 0s - loss: 0.6883 - ae_loss: 0.1437 - cnn_loss: 0.5447 - cnn_accuracy: 0.8238"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "374/438 [========================>.....] - ETA: 0s - loss: 0.6886 - ae_loss: 0.1437 - cnn_loss: 0.5449 - cnn_accuracy: 0.8238"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "383/438 [=========================>....] - ETA: 0s - loss: 0.6889 - ae_loss: 0.1437 - cnn_loss: 0.5452 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "392/438 [=========================>....] - ETA: 0s - loss: 0.6892 - ae_loss: 0.1437 - cnn_loss: 0.5455 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "400/438 [==========================>...] - ETA: 0s - loss: 0.6894 - ae_loss: 0.1437 - cnn_loss: 0.5458 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "409/438 [===========================>..] - ETA: 0s - loss: 0.6897 - ae_loss: 0.1437 - cnn_loss: 0.5460 - cnn_accuracy: 0.8235"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "417/438 [===========================>..] - ETA: 0s - loss: 0.6899 - ae_loss: 0.1437 - cnn_loss: 0.5462 - cnn_accuracy: 0.8235"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "425/438 [============================>.] - ETA: 0s - loss: 0.6902 - ae_loss: 0.1437 - cnn_loss: 0.5465 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "433/438 [============================>.] - ETA: 0s - loss: 0.6904 - ae_loss: 0.1437 - cnn_loss: 0.5467 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 8ms/step - loss: 0.6905 - ae_loss: 0.1437 - cnn_loss: 0.5468 - cnn_accuracy: 0.8234 - val_loss: 0.5651 - val_ae_loss: 0.1500 - val_cnn_loss: 0.4151 - val_cnn_accuracy: 0.8644\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 19/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.7684 - ae_loss: 0.1402 - cnn_loss: 0.6282 - cnn_accuracy: 0.8281"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 3s - loss: 0.6998 - ae_loss: 0.1419 - cnn_loss: 0.5579 - cnn_accuracy: 0.8350"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.6971 - ae_loss: 0.1420 - cnn_loss: 0.5551 - cnn_accuracy: 0.8300"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 24/438 [>.............................] - ETA: 2s - loss: 0.6960 - ae_loss: 0.1421 - cnn_loss: 0.5539 - cnn_accuracy: 0.8273"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 32/438 [=>............................] - ETA: 2s - loss: 0.6950 - ae_loss: 0.1422 - cnn_loss: 0.5527 - cnn_accuracy: 0.8264"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 40/438 [=>............................] - ETA: 2s - loss: 0.6928 - ae_loss: 0.1422 - cnn_loss: 0.5505 - cnn_accuracy: 0.8266"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 48/438 [==>...........................] - ETA: 2s - loss: 0.6917 - ae_loss: 0.1423 - cnn_loss: 0.5494 - cnn_accuracy: 0.8265"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 56/438 [==>...........................] - ETA: 2s - loss: 0.6918 - ae_loss: 0.1423 - cnn_loss: 0.5495 - cnn_accuracy: 0.8262"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 65/438 [===>..........................] - ETA: 2s - loss: 0.6930 - ae_loss: 0.1424 - cnn_loss: 0.5506 - cnn_accuracy: 0.8256"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 73/438 [====>.........................] - ETA: 2s - loss: 0.6939 - ae_loss: 0.1424 - cnn_loss: 0.5515 - cnn_accuracy: 0.8253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 82/438 [====>.........................] - ETA: 2s - loss: 0.6950 - ae_loss: 0.1425 - cnn_loss: 0.5525 - cnn_accuracy: 0.8248"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 91/438 [=====>........................] - ETA: 2s - loss: 0.6961 - ae_loss: 0.1426 - cnn_loss: 0.5536 - cnn_accuracy: 0.8242"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.6970 - ae_loss: 0.1426 - cnn_loss: 0.5543 - cnn_accuracy: 0.8238"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "108/438 [======>.......................] - ETA: 2s - loss: 0.6975 - ae_loss: 0.1427 - cnn_loss: 0.5548 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "116/438 [======>.......................] - ETA: 2s - loss: 0.6977 - ae_loss: 0.1427 - cnn_loss: 0.5550 - cnn_accuracy: 0.8232"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "124/438 [=======>......................] - ETA: 2s - loss: 0.6978 - ae_loss: 0.1428 - cnn_loss: 0.5550 - cnn_accuracy: 0.8230"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "132/438 [========>.....................] - ETA: 2s - loss: 0.6978 - ae_loss: 0.1428 - cnn_loss: 0.5550 - cnn_accuracy: 0.8228"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "140/438 [========>.....................] - ETA: 1s - loss: 0.6978 - ae_loss: 0.1428 - cnn_loss: 0.5550 - cnn_accuracy: 0.8227"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "149/438 [=========>....................] - ETA: 1s - loss: 0.6977 - ae_loss: 0.1429 - cnn_loss: 0.5549 - cnn_accuracy: 0.8226"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "158/438 [=========>....................] - ETA: 1s - loss: 0.6977 - ae_loss: 0.1429 - cnn_loss: 0.5548 - cnn_accuracy: 0.8225"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "166/438 [==========>...................] - ETA: 1s - loss: 0.6978 - ae_loss: 0.1429 - cnn_loss: 0.5549 - cnn_accuracy: 0.8224"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "175/438 [==========>...................] - ETA: 1s - loss: 0.6979 - ae_loss: 0.1429 - cnn_loss: 0.5549 - cnn_accuracy: 0.8223"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "184/438 [===========>..................] - ETA: 1s - loss: 0.6980 - ae_loss: 0.1430 - cnn_loss: 0.5550 - cnn_accuracy: 0.8222"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "192/438 [============>.................] - ETA: 1s - loss: 0.6982 - ae_loss: 0.1430 - cnn_loss: 0.5552 - cnn_accuracy: 0.8222"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "201/438 [============>.................] - ETA: 1s - loss: 0.6984 - ae_loss: 0.1430 - cnn_loss: 0.5553 - cnn_accuracy: 0.8221"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "209/438 [=============>................] - ETA: 1s - loss: 0.6985 - ae_loss: 0.1431 - cnn_loss: 0.5554 - cnn_accuracy: 0.8221"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "218/438 [=============>................] - ETA: 1s - loss: 0.6986 - ae_loss: 0.1431 - cnn_loss: 0.5555 - cnn_accuracy: 0.8220"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "226/438 [==============>...............] - ETA: 1s - loss: 0.6986 - ae_loss: 0.1431 - cnn_loss: 0.5555 - cnn_accuracy: 0.8220"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "235/438 [===============>..............] - ETA: 1s - loss: 0.6987 - ae_loss: 0.1431 - cnn_loss: 0.5556 - cnn_accuracy: 0.8219"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "244/438 [===============>..............] - ETA: 1s - loss: 0.6988 - ae_loss: 0.1431 - cnn_loss: 0.5557 - cnn_accuracy: 0.8219"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "252/438 [================>.............] - ETA: 1s - loss: 0.6989 - ae_loss: 0.1432 - cnn_loss: 0.5558 - cnn_accuracy: 0.8218"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "261/438 [================>.............] - ETA: 1s - loss: 0.6990 - ae_loss: 0.1432 - cnn_loss: 0.5559 - cnn_accuracy: 0.8218"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "269/438 [=================>............] - ETA: 1s - loss: 0.6992 - ae_loss: 0.1432 - cnn_loss: 0.5560 - cnn_accuracy: 0.8217"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "278/438 [==================>...........] - ETA: 1s - loss: 0.6993 - ae_loss: 0.1432 - cnn_loss: 0.5561 - cnn_accuracy: 0.8216"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "286/438 [==================>...........] - ETA: 0s - loss: 0.6994 - ae_loss: 0.1432 - cnn_loss: 0.5561 - cnn_accuracy: 0.8216"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "295/438 [===================>..........] - ETA: 0s - loss: 0.6995 - ae_loss: 0.1432 - cnn_loss: 0.5562 - cnn_accuracy: 0.8215"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "303/438 [===================>..........] - ETA: 0s - loss: 0.6995 - ae_loss: 0.1432 - cnn_loss: 0.5563 - cnn_accuracy: 0.8215"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "311/438 [====================>.........] - ETA: 0s - loss: 0.6996 - ae_loss: 0.1432 - cnn_loss: 0.5563 - cnn_accuracy: 0.8214"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "320/438 [====================>.........] - ETA: 0s - loss: 0.6997 - ae_loss: 0.1433 - cnn_loss: 0.5564 - cnn_accuracy: 0.8214"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "329/438 [=====================>........] - ETA: 0s - loss: 0.6998 - ae_loss: 0.1433 - cnn_loss: 0.5565 - cnn_accuracy: 0.8213"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "338/438 [======================>.......] - ETA: 0s - loss: 0.6998 - ae_loss: 0.1433 - cnn_loss: 0.5566 - cnn_accuracy: 0.8213"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "347/438 [======================>.......] - ETA: 0s - loss: 0.6999 - ae_loss: 0.1433 - cnn_loss: 0.5566 - cnn_accuracy: 0.8212"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "356/438 [=======================>......] - ETA: 0s - loss: 0.6999 - ae_loss: 0.1433 - cnn_loss: 0.5566 - cnn_accuracy: 0.8212"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "365/438 [========================>.....] - ETA: 0s - loss: 0.6999 - ae_loss: 0.1433 - cnn_loss: 0.5566 - cnn_accuracy: 0.8212"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "374/438 [========================>.....] - ETA: 0s - loss: 0.6999 - ae_loss: 0.1433 - cnn_loss: 0.5565 - cnn_accuracy: 0.8212"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "383/438 [=========================>....] - ETA: 0s - loss: 0.6999 - ae_loss: 0.1433 - cnn_loss: 0.5565 - cnn_accuracy: 0.8211"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "392/438 [=========================>....] - ETA: 0s - loss: 0.6998 - ae_loss: 0.1433 - cnn_loss: 0.5565 - cnn_accuracy: 0.8211"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "401/438 [==========================>...] - ETA: 0s - loss: 0.6998 - ae_loss: 0.1433 - cnn_loss: 0.5565 - cnn_accuracy: 0.8211"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "410/438 [===========================>..] - ETA: 0s - loss: 0.6998 - ae_loss: 0.1433 - cnn_loss: 0.5564 - cnn_accuracy: 0.8211"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "418/438 [===========================>..] - ETA: 0s - loss: 0.6998 - ae_loss: 0.1434 - cnn_loss: 0.5564 - cnn_accuracy: 0.8211"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "427/438 [============================>.] - ETA: 0s - loss: 0.6997 - ae_loss: 0.1434 - cnn_loss: 0.5564 - cnn_accuracy: 0.8211"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "436/438 [============================>.] - ETA: 0s - loss: 0.6997 - ae_loss: 0.1434 - cnn_loss: 0.5563 - cnn_accuracy: 0.8212"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.6997 - ae_loss: 0.1434 - cnn_loss: 0.5563 - cnn_accuracy: 0.8212 - val_loss: 0.5515 - val_ae_loss: 0.1496 - val_cnn_loss: 0.4019 - val_cnn_accuracy: 0.8671\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 20/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.6612 - ae_loss: 0.1361 - cnn_loss: 0.5251 - cnn_accuracy: 0.8516"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.6592 - ae_loss: 0.1424 - cnn_loss: 0.5169 - cnn_accuracy: 0.8362"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.6707 - ae_loss: 0.1428 - cnn_loss: 0.5280 - cnn_accuracy: 0.8317"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 0.6814 - ae_loss: 0.1431 - cnn_loss: 0.5383 - cnn_accuracy: 0.8267"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 33/438 [=>............................] - ETA: 2s - loss: 0.6847 - ae_loss: 0.1431 - cnn_loss: 0.5416 - cnn_accuracy: 0.8249"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 2s - loss: 0.6852 - ae_loss: 0.1431 - cnn_loss: 0.5421 - cnn_accuracy: 0.8246"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 49/438 [==>...........................] - ETA: 2s - loss: 0.6858 - ae_loss: 0.1430 - cnn_loss: 0.5428 - cnn_accuracy: 0.8241"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.6865 - ae_loss: 0.1430 - cnn_loss: 0.5434 - cnn_accuracy: 0.8238"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 65/438 [===>..........................] - ETA: 2s - loss: 0.6871 - ae_loss: 0.1430 - cnn_loss: 0.5440 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 73/438 [====>.........................] - ETA: 2s - loss: 0.6875 - ae_loss: 0.1430 - cnn_loss: 0.5445 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 81/438 [====>.........................] - ETA: 2s - loss: 0.6881 - ae_loss: 0.1430 - cnn_loss: 0.5451 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 89/438 [=====>........................] - ETA: 2s - loss: 0.6886 - ae_loss: 0.1430 - cnn_loss: 0.5455 - cnn_accuracy: 0.8233"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 97/438 [=====>........................] - ETA: 2s - loss: 0.6892 - ae_loss: 0.1430 - cnn_loss: 0.5462 - cnn_accuracy: 0.8232"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.6901 - ae_loss: 0.1430 - cnn_loss: 0.5470 - cnn_accuracy: 0.8231"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "115/438 [======>.......................] - ETA: 2s - loss: 0.6908 - ae_loss: 0.1430 - cnn_loss: 0.5478 - cnn_accuracy: 0.8231"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "123/438 [=======>......................] - ETA: 1s - loss: 0.6912 - ae_loss: 0.1430 - cnn_loss: 0.5482 - cnn_accuracy: 0.8231"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "131/438 [=======>......................] - ETA: 1s - loss: 0.6916 - ae_loss: 0.1430 - cnn_loss: 0.5486 - cnn_accuracy: 0.8231"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "139/438 [========>.....................] - ETA: 1s - loss: 0.6919 - ae_loss: 0.1430 - cnn_loss: 0.5489 - cnn_accuracy: 0.8231"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "147/438 [=========>....................] - ETA: 1s - loss: 0.6919 - ae_loss: 0.1430 - cnn_loss: 0.5489 - cnn_accuracy: 0.8231"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 1s - loss: 0.6919 - ae_loss: 0.1430 - cnn_loss: 0.5489 - cnn_accuracy: 0.8232"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "163/438 [==========>...................] - ETA: 1s - loss: 0.6920 - ae_loss: 0.1430 - cnn_loss: 0.5490 - cnn_accuracy: 0.8232"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "171/438 [==========>...................] - ETA: 1s - loss: 0.6922 - ae_loss: 0.1430 - cnn_loss: 0.5492 - cnn_accuracy: 0.8233"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "179/438 [===========>..................] - ETA: 1s - loss: 0.6924 - ae_loss: 0.1430 - cnn_loss: 0.5494 - cnn_accuracy: 0.8233"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "187/438 [===========>..................] - ETA: 1s - loss: 0.6925 - ae_loss: 0.1430 - cnn_loss: 0.5495 - cnn_accuracy: 0.8233"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "195/438 [============>.................] - ETA: 1s - loss: 0.6926 - ae_loss: 0.1430 - cnn_loss: 0.5496 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "203/438 [============>.................] - ETA: 1s - loss: 0.6927 - ae_loss: 0.1430 - cnn_loss: 0.5498 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "212/438 [=============>................] - ETA: 1s - loss: 0.6928 - ae_loss: 0.1430 - cnn_loss: 0.5498 - cnn_accuracy: 0.8235"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "220/438 [==============>...............] - ETA: 1s - loss: 0.6930 - ae_loss: 0.1430 - cnn_loss: 0.5500 - cnn_accuracy: 0.8235"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "228/438 [==============>...............] - ETA: 1s - loss: 0.6931 - ae_loss: 0.1430 - cnn_loss: 0.5501 - cnn_accuracy: 0.8235"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "236/438 [===============>..............] - ETA: 1s - loss: 0.6932 - ae_loss: 0.1430 - cnn_loss: 0.5502 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "244/438 [===============>..............] - ETA: 1s - loss: 0.6933 - ae_loss: 0.1430 - cnn_loss: 0.5503 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "252/438 [================>.............] - ETA: 1s - loss: 0.6934 - ae_loss: 0.1430 - cnn_loss: 0.5504 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "260/438 [================>.............] - ETA: 1s - loss: 0.6936 - ae_loss: 0.1430 - cnn_loss: 0.5505 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "268/438 [=================>............] - ETA: 1s - loss: 0.6937 - ae_loss: 0.1430 - cnn_loss: 0.5507 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "276/438 [=================>............] - ETA: 1s - loss: 0.6938 - ae_loss: 0.1430 - cnn_loss: 0.5508 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "284/438 [==================>...........] - ETA: 0s - loss: 0.6940 - ae_loss: 0.1430 - cnn_loss: 0.5509 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "292/438 [===================>..........] - ETA: 0s - loss: 0.6941 - ae_loss: 0.1430 - cnn_loss: 0.5510 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "301/438 [===================>..........] - ETA: 0s - loss: 0.6941 - ae_loss: 0.1430 - cnn_loss: 0.5511 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "309/438 [====================>.........] - ETA: 0s - loss: 0.6942 - ae_loss: 0.1431 - cnn_loss: 0.5511 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "317/438 [====================>.........] - ETA: 0s - loss: 0.6942 - ae_loss: 0.1431 - cnn_loss: 0.5512 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "325/438 [=====================>........] - ETA: 0s - loss: 0.6943 - ae_loss: 0.1431 - cnn_loss: 0.5512 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "333/438 [=====================>........] - ETA: 0s - loss: 0.6943 - ae_loss: 0.1431 - cnn_loss: 0.5513 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "341/438 [======================>.......] - ETA: 0s - loss: 0.6944 - ae_loss: 0.1431 - cnn_loss: 0.5513 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "349/438 [======================>.......] - ETA: 0s - loss: 0.6944 - ae_loss: 0.1431 - cnn_loss: 0.5513 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "357/438 [=======================>......] - ETA: 0s - loss: 0.6944 - ae_loss: 0.1431 - cnn_loss: 0.5514 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "365/438 [========================>.....] - ETA: 0s - loss: 0.6945 - ae_loss: 0.1431 - cnn_loss: 0.5514 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "373/438 [========================>.....] - ETA: 0s - loss: 0.6945 - ae_loss: 0.1431 - cnn_loss: 0.5515 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "381/438 [=========================>....] - ETA: 0s - loss: 0.6946 - ae_loss: 0.1431 - cnn_loss: 0.5515 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "389/438 [=========================>....] - ETA: 0s - loss: 0.6946 - ae_loss: 0.1431 - cnn_loss: 0.5515 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "397/438 [==========================>...] - ETA: 0s - loss: 0.6946 - ae_loss: 0.1431 - cnn_loss: 0.5516 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "405/438 [==========================>...] - ETA: 0s - loss: 0.6947 - ae_loss: 0.1431 - cnn_loss: 0.5516 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "413/438 [===========================>..] - ETA: 0s - loss: 0.6947 - ae_loss: 0.1431 - cnn_loss: 0.5516 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "421/438 [===========================>..] - ETA: 0s - loss: 0.6947 - ae_loss: 0.1431 - cnn_loss: 0.5516 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "429/438 [============================>.] - ETA: 0s - loss: 0.6947 - ae_loss: 0.1431 - cnn_loss: 0.5517 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "437/438 [============================>.] - ETA: 0s - loss: 0.6947 - ae_loss: 0.1431 - cnn_loss: 0.5517 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.6947 - ae_loss: 0.1431 - cnn_loss: 0.5517 - cnn_accuracy: 0.8236 - val_loss: 0.5635 - val_ae_loss: 0.1495 - val_cnn_loss: 0.4141 - val_cnn_accuracy: 0.8649\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 21/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.5045 - ae_loss: 0.1447 - cnn_loss: 0.3597 - cnn_accuracy: 0.8750"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.6323 - ae_loss: 0.1439 - cnn_loss: 0.4884 - cnn_accuracy: 0.8340"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.6459 - ae_loss: 0.1434 - cnn_loss: 0.5025 - cnn_accuracy: 0.8317"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 0.6499 - ae_loss: 0.1431 - cnn_loss: 0.5068 - cnn_accuracy: 0.8313"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 33/438 [=>............................] - ETA: 2s - loss: 0.6519 - ae_loss: 0.1428 - cnn_loss: 0.5091 - cnn_accuracy: 0.8317"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 2s - loss: 0.6550 - ae_loss: 0.1427 - cnn_loss: 0.5123 - cnn_accuracy: 0.8318"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 49/438 [==>...........................] - ETA: 2s - loss: 0.6588 - ae_loss: 0.1426 - cnn_loss: 0.5161 - cnn_accuracy: 0.8310"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.6623 - ae_loss: 0.1426 - cnn_loss: 0.5197 - cnn_accuracy: 0.8301"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 65/438 [===>..........................] - ETA: 2s - loss: 0.6651 - ae_loss: 0.1426 - cnn_loss: 0.5225 - cnn_accuracy: 0.8292"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 73/438 [====>.........................] - ETA: 2s - loss: 0.6681 - ae_loss: 0.1426 - cnn_loss: 0.5255 - cnn_accuracy: 0.8283"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 81/438 [====>.........................] - ETA: 2s - loss: 0.6712 - ae_loss: 0.1426 - cnn_loss: 0.5286 - cnn_accuracy: 0.8273"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 89/438 [=====>........................] - ETA: 2s - loss: 0.6736 - ae_loss: 0.1426 - cnn_loss: 0.5311 - cnn_accuracy: 0.8265"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 97/438 [=====>........................] - ETA: 2s - loss: 0.6754 - ae_loss: 0.1426 - cnn_loss: 0.5328 - cnn_accuracy: 0.8261"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "105/438 [======>.......................] - ETA: 2s - loss: 0.6768 - ae_loss: 0.1426 - cnn_loss: 0.5343 - cnn_accuracy: 0.8258"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 0.6780 - ae_loss: 0.1425 - cnn_loss: 0.5354 - cnn_accuracy: 0.8256"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "121/438 [=======>......................] - ETA: 2s - loss: 0.6788 - ae_loss: 0.1425 - cnn_loss: 0.5363 - cnn_accuracy: 0.8254"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "129/438 [=======>......................] - ETA: 1s - loss: 0.6794 - ae_loss: 0.1425 - cnn_loss: 0.5369 - cnn_accuracy: 0.8253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "137/438 [========>.....................] - ETA: 1s - loss: 0.6800 - ae_loss: 0.1425 - cnn_loss: 0.5376 - cnn_accuracy: 0.8252"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "145/438 [========>.....................] - ETA: 1s - loss: 0.6807 - ae_loss: 0.1424 - cnn_loss: 0.5383 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "153/438 [=========>....................] - ETA: 1s - loss: 0.6813 - ae_loss: 0.1424 - cnn_loss: 0.5389 - cnn_accuracy: 0.8249"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "161/438 [==========>...................] - ETA: 1s - loss: 0.6818 - ae_loss: 0.1424 - cnn_loss: 0.5394 - cnn_accuracy: 0.8248"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 1s - loss: 0.6824 - ae_loss: 0.1424 - cnn_loss: 0.5399 - cnn_accuracy: 0.8247"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "177/438 [===========>..................] - ETA: 1s - loss: 0.6828 - ae_loss: 0.1424 - cnn_loss: 0.5403 - cnn_accuracy: 0.8247"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "185/438 [===========>..................] - ETA: 1s - loss: 0.6831 - ae_loss: 0.1424 - cnn_loss: 0.5407 - cnn_accuracy: 0.8246"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "193/438 [============>.................] - ETA: 1s - loss: 0.6835 - ae_loss: 0.1424 - cnn_loss: 0.5411 - cnn_accuracy: 0.8245"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "201/438 [============>.................] - ETA: 1s - loss: 0.6839 - ae_loss: 0.1424 - cnn_loss: 0.5415 - cnn_accuracy: 0.8244"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "209/438 [=============>................] - ETA: 1s - loss: 0.6843 - ae_loss: 0.1424 - cnn_loss: 0.5419 - cnn_accuracy: 0.8244"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "217/438 [=============>................] - ETA: 1s - loss: 0.6846 - ae_loss: 0.1424 - cnn_loss: 0.5423 - cnn_accuracy: 0.8243"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 1s - loss: 0.6850 - ae_loss: 0.1424 - cnn_loss: 0.5426 - cnn_accuracy: 0.8242"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "233/438 [==============>...............] - ETA: 1s - loss: 0.6852 - ae_loss: 0.1424 - cnn_loss: 0.5428 - cnn_accuracy: 0.8241"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "241/438 [===============>..............] - ETA: 1s - loss: 0.6854 - ae_loss: 0.1424 - cnn_loss: 0.5430 - cnn_accuracy: 0.8241"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "250/438 [================>.............] - ETA: 1s - loss: 0.6857 - ae_loss: 0.1424 - cnn_loss: 0.5433 - cnn_accuracy: 0.8240"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "258/438 [================>.............] - ETA: 1s - loss: 0.6860 - ae_loss: 0.1424 - cnn_loss: 0.5436 - cnn_accuracy: 0.8239"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "266/438 [=================>............] - ETA: 1s - loss: 0.6862 - ae_loss: 0.1424 - cnn_loss: 0.5438 - cnn_accuracy: 0.8239"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "274/438 [=================>............] - ETA: 1s - loss: 0.6863 - ae_loss: 0.1424 - cnn_loss: 0.5439 - cnn_accuracy: 0.8239"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "282/438 [==================>...........] - ETA: 1s - loss: 0.6865 - ae_loss: 0.1424 - cnn_loss: 0.5441 - cnn_accuracy: 0.8239"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "290/438 [==================>...........] - ETA: 0s - loss: 0.6866 - ae_loss: 0.1424 - cnn_loss: 0.5442 - cnn_accuracy: 0.8238"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "298/438 [===================>..........] - ETA: 0s - loss: 0.6867 - ae_loss: 0.1424 - cnn_loss: 0.5443 - cnn_accuracy: 0.8238"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "306/438 [===================>..........] - ETA: 0s - loss: 0.6868 - ae_loss: 0.1424 - cnn_loss: 0.5444 - cnn_accuracy: 0.8238"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "314/438 [====================>.........] - ETA: 0s - loss: 0.6868 - ae_loss: 0.1424 - cnn_loss: 0.5444 - cnn_accuracy: 0.8238"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "323/438 [=====================>........] - ETA: 0s - loss: 0.6869 - ae_loss: 0.1424 - cnn_loss: 0.5445 - cnn_accuracy: 0.8238"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "331/438 [=====================>........] - ETA: 0s - loss: 0.6870 - ae_loss: 0.1424 - cnn_loss: 0.5445 - cnn_accuracy: 0.8238"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "339/438 [======================>.......] - ETA: 0s - loss: 0.6870 - ae_loss: 0.1424 - cnn_loss: 0.5446 - cnn_accuracy: 0.8238"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "347/438 [======================>.......] - ETA: 0s - loss: 0.6871 - ae_loss: 0.1424 - cnn_loss: 0.5447 - cnn_accuracy: 0.8238"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "354/438 [=======================>......] - ETA: 0s - loss: 0.6872 - ae_loss: 0.1424 - cnn_loss: 0.5447 - cnn_accuracy: 0.8238"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "362/438 [=======================>......] - ETA: 0s - loss: 0.6873 - ae_loss: 0.1424 - cnn_loss: 0.5448 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "370/438 [========================>.....] - ETA: 0s - loss: 0.6873 - ae_loss: 0.1424 - cnn_loss: 0.5449 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "378/438 [========================>.....] - ETA: 0s - loss: 0.6874 - ae_loss: 0.1424 - cnn_loss: 0.5450 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "386/438 [=========================>....] - ETA: 0s - loss: 0.6876 - ae_loss: 0.1425 - cnn_loss: 0.5451 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "394/438 [=========================>....] - ETA: 0s - loss: 0.6877 - ae_loss: 0.1425 - cnn_loss: 0.5452 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "402/438 [==========================>...] - ETA: 0s - loss: 0.6878 - ae_loss: 0.1425 - cnn_loss: 0.5453 - cnn_accuracy: 0.8235"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "410/438 [===========================>..] - ETA: 0s - loss: 0.6879 - ae_loss: 0.1425 - cnn_loss: 0.5454 - cnn_accuracy: 0.8235"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "418/438 [===========================>..] - ETA: 0s - loss: 0.6880 - ae_loss: 0.1425 - cnn_loss: 0.5455 - cnn_accuracy: 0.8235"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "426/438 [============================>.] - ETA: 0s - loss: 0.6881 - ae_loss: 0.1425 - cnn_loss: 0.5456 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "434/438 [============================>.] - ETA: 0s - loss: 0.6882 - ae_loss: 0.1425 - cnn_loss: 0.5457 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.6882 - ae_loss: 0.1425 - cnn_loss: 0.5457 - cnn_accuracy: 0.8234 - val_loss: 0.5735 - val_ae_loss: 0.1488 - val_cnn_loss: 0.4247 - val_cnn_accuracy: 0.8636\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 22/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.7409 - ae_loss: 0.1453 - cnn_loss: 0.5956 - cnn_accuracy: 0.8359"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.7140 - ae_loss: 0.1442 - cnn_loss: 0.5698 - cnn_accuracy: 0.8201"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.7254 - ae_loss: 0.1435 - cnn_loss: 0.5820 - cnn_accuracy: 0.8131"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 26/438 [>.............................] - ETA: 2s - loss: 0.7225 - ae_loss: 0.1429 - cnn_loss: 0.5797 - cnn_accuracy: 0.8145"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 35/438 [=>............................] - ETA: 2s - loss: 0.7182 - ae_loss: 0.1427 - cnn_loss: 0.5755 - cnn_accuracy: 0.8160"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 2s - loss: 0.7143 - ae_loss: 0.1425 - cnn_loss: 0.5717 - cnn_accuracy: 0.8168"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 51/438 [==>...........................] - ETA: 2s - loss: 0.7101 - ae_loss: 0.1424 - cnn_loss: 0.5677 - cnn_accuracy: 0.8177"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 59/438 [===>..........................] - ETA: 2s - loss: 0.7080 - ae_loss: 0.1424 - cnn_loss: 0.5656 - cnn_accuracy: 0.8180"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 67/438 [===>..........................] - ETA: 2s - loss: 0.7074 - ae_loss: 0.1423 - cnn_loss: 0.5651 - cnn_accuracy: 0.8183"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 76/438 [====>.........................] - ETA: 2s - loss: 0.7062 - ae_loss: 0.1423 - cnn_loss: 0.5639 - cnn_accuracy: 0.8187"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.7047 - ae_loss: 0.1423 - cnn_loss: 0.5624 - cnn_accuracy: 0.8192"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 94/438 [=====>........................] - ETA: 2s - loss: 0.7034 - ae_loss: 0.1423 - cnn_loss: 0.5611 - cnn_accuracy: 0.8196"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "102/438 [=====>........................] - ETA: 2s - loss: 0.7024 - ae_loss: 0.1423 - cnn_loss: 0.5601 - cnn_accuracy: 0.8199"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "111/438 [======>.......................] - ETA: 2s - loss: 0.7014 - ae_loss: 0.1422 - cnn_loss: 0.5591 - cnn_accuracy: 0.8203"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "120/438 [=======>......................] - ETA: 1s - loss: 0.7005 - ae_loss: 0.1422 - cnn_loss: 0.5583 - cnn_accuracy: 0.8207"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "129/438 [=======>......................] - ETA: 1s - loss: 0.6997 - ae_loss: 0.1422 - cnn_loss: 0.5575 - cnn_accuracy: 0.8209"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "138/438 [========>.....................] - ETA: 1s - loss: 0.6992 - ae_loss: 0.1422 - cnn_loss: 0.5570 - cnn_accuracy: 0.8211"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "147/438 [=========>....................] - ETA: 1s - loss: 0.6986 - ae_loss: 0.1422 - cnn_loss: 0.5564 - cnn_accuracy: 0.8213"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "156/438 [=========>....................] - ETA: 1s - loss: 0.6982 - ae_loss: 0.1422 - cnn_loss: 0.5560 - cnn_accuracy: 0.8215"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "165/438 [==========>...................] - ETA: 1s - loss: 0.6976 - ae_loss: 0.1422 - cnn_loss: 0.5554 - cnn_accuracy: 0.8217"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "174/438 [==========>...................] - ETA: 1s - loss: 0.6971 - ae_loss: 0.1422 - cnn_loss: 0.5550 - cnn_accuracy: 0.8219"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 1s - loss: 0.6967 - ae_loss: 0.1422 - cnn_loss: 0.5545 - cnn_accuracy: 0.8220"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "192/438 [============>.................] - ETA: 1s - loss: 0.6963 - ae_loss: 0.1422 - cnn_loss: 0.5541 - cnn_accuracy: 0.8222"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "201/438 [============>.................] - ETA: 1s - loss: 0.6958 - ae_loss: 0.1422 - cnn_loss: 0.5537 - cnn_accuracy: 0.8224"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "210/438 [=============>................] - ETA: 1s - loss: 0.6954 - ae_loss: 0.1422 - cnn_loss: 0.5532 - cnn_accuracy: 0.8225"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "218/438 [=============>................] - ETA: 1s - loss: 0.6950 - ae_loss: 0.1422 - cnn_loss: 0.5529 - cnn_accuracy: 0.8226"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "226/438 [==============>...............] - ETA: 1s - loss: 0.6948 - ae_loss: 0.1422 - cnn_loss: 0.5527 - cnn_accuracy: 0.8227"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "233/438 [==============>...............] - ETA: 1s - loss: 0.6946 - ae_loss: 0.1422 - cnn_loss: 0.5525 - cnn_accuracy: 0.8228"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "241/438 [===============>..............] - ETA: 1s - loss: 0.6944 - ae_loss: 0.1422 - cnn_loss: 0.5522 - cnn_accuracy: 0.8229"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "249/438 [================>.............] - ETA: 1s - loss: 0.6942 - ae_loss: 0.1422 - cnn_loss: 0.5520 - cnn_accuracy: 0.8229"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "257/438 [================>.............] - ETA: 1s - loss: 0.6940 - ae_loss: 0.1422 - cnn_loss: 0.5518 - cnn_accuracy: 0.8230"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "265/438 [=================>............] - ETA: 1s - loss: 0.6938 - ae_loss: 0.1422 - cnn_loss: 0.5516 - cnn_accuracy: 0.8231"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "273/438 [=================>............] - ETA: 1s - loss: 0.6936 - ae_loss: 0.1422 - cnn_loss: 0.5515 - cnn_accuracy: 0.8231"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 1s - loss: 0.6934 - ae_loss: 0.1422 - cnn_loss: 0.5513 - cnn_accuracy: 0.8232"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "289/438 [==================>...........] - ETA: 0s - loss: 0.6932 - ae_loss: 0.1422 - cnn_loss: 0.5511 - cnn_accuracy: 0.8232"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "297/438 [===================>..........] - ETA: 0s - loss: 0.6931 - ae_loss: 0.1422 - cnn_loss: 0.5510 - cnn_accuracy: 0.8233"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "305/438 [===================>..........] - ETA: 0s - loss: 0.6930 - ae_loss: 0.1422 - cnn_loss: 0.5508 - cnn_accuracy: 0.8233"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "313/438 [====================>.........] - ETA: 0s - loss: 0.6929 - ae_loss: 0.1422 - cnn_loss: 0.5507 - cnn_accuracy: 0.8233"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "321/438 [====================>.........] - ETA: 0s - loss: 0.6928 - ae_loss: 0.1422 - cnn_loss: 0.5507 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "329/438 [=====================>........] - ETA: 0s - loss: 0.6928 - ae_loss: 0.1422 - cnn_loss: 0.5506 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "338/438 [======================>.......] - ETA: 0s - loss: 0.6927 - ae_loss: 0.1422 - cnn_loss: 0.5505 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "347/438 [======================>.......] - ETA: 0s - loss: 0.6926 - ae_loss: 0.1422 - cnn_loss: 0.5505 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "355/438 [=======================>......] - ETA: 0s - loss: 0.6926 - ae_loss: 0.1422 - cnn_loss: 0.5504 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "363/438 [=======================>......] - ETA: 0s - loss: 0.6925 - ae_loss: 0.1422 - cnn_loss: 0.5504 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "372/438 [========================>.....] - ETA: 0s - loss: 0.6925 - ae_loss: 0.1422 - cnn_loss: 0.5503 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "381/438 [=========================>....] - ETA: 0s - loss: 0.6924 - ae_loss: 0.1422 - cnn_loss: 0.5502 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "389/438 [=========================>....] - ETA: 0s - loss: 0.6924 - ae_loss: 0.1422 - cnn_loss: 0.5502 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "398/438 [==========================>...] - ETA: 0s - loss: 0.6923 - ae_loss: 0.1422 - cnn_loss: 0.5501 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "407/438 [==========================>...] - ETA: 0s - loss: 0.6923 - ae_loss: 0.1422 - cnn_loss: 0.5501 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "415/438 [===========================>..] - ETA: 0s - loss: 0.6923 - ae_loss: 0.1422 - cnn_loss: 0.5501 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "423/438 [===========================>..] - ETA: 0s - loss: 0.6923 - ae_loss: 0.1422 - cnn_loss: 0.5501 - cnn_accuracy: 0.8233"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "431/438 [============================>.] - ETA: 0s - loss: 0.6923 - ae_loss: 0.1422 - cnn_loss: 0.5500 - cnn_accuracy: 0.8233"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.6922 - ae_loss: 0.1422 - cnn_loss: 0.5500 - cnn_accuracy: 0.8233 - val_loss: 0.5751 - val_ae_loss: 0.1500 - val_cnn_loss: 0.4252 - val_cnn_accuracy: 0.8594\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 23/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.6716 - ae_loss: 0.1422 - cnn_loss: 0.5294 - cnn_accuracy: 0.8438"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.7184 - ae_loss: 0.1409 - cnn_loss: 0.5775 - cnn_accuracy: 0.8185"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.7142 - ae_loss: 0.1412 - cnn_loss: 0.5730 - cnn_accuracy: 0.8198"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 0.7115 - ae_loss: 0.1412 - cnn_loss: 0.5703 - cnn_accuracy: 0.8215"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 33/438 [=>............................] - ETA: 2s - loss: 0.7081 - ae_loss: 0.1412 - cnn_loss: 0.5669 - cnn_accuracy: 0.8230"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 2s - loss: 0.7050 - ae_loss: 0.1411 - cnn_loss: 0.5640 - cnn_accuracy: 0.8238"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 49/438 [==>...........................] - ETA: 2s - loss: 0.7026 - ae_loss: 0.1410 - cnn_loss: 0.5616 - cnn_accuracy: 0.8241"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.7022 - ae_loss: 0.1410 - cnn_loss: 0.5612 - cnn_accuracy: 0.8240"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 65/438 [===>..........................] - ETA: 2s - loss: 0.7022 - ae_loss: 0.1409 - cnn_loss: 0.5612 - cnn_accuracy: 0.8239"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 73/438 [====>.........................] - ETA: 2s - loss: 0.7016 - ae_loss: 0.1409 - cnn_loss: 0.5607 - cnn_accuracy: 0.8240"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 81/438 [====>.........................] - ETA: 2s - loss: 0.7008 - ae_loss: 0.1409 - cnn_loss: 0.5599 - cnn_accuracy: 0.8241"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 89/438 [=====>........................] - ETA: 2s - loss: 0.6999 - ae_loss: 0.1409 - cnn_loss: 0.5590 - cnn_accuracy: 0.8243"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 97/438 [=====>........................] - ETA: 2s - loss: 0.6989 - ae_loss: 0.1409 - cnn_loss: 0.5580 - cnn_accuracy: 0.8245"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "105/438 [======>.......................] - ETA: 2s - loss: 0.6976 - ae_loss: 0.1410 - cnn_loss: 0.5566 - cnn_accuracy: 0.8248"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 0.6965 - ae_loss: 0.1410 - cnn_loss: 0.5555 - cnn_accuracy: 0.8250"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "122/438 [=======>......................] - ETA: 1s - loss: 0.6958 - ae_loss: 0.1410 - cnn_loss: 0.5548 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "130/438 [=======>......................] - ETA: 1s - loss: 0.6954 - ae_loss: 0.1411 - cnn_loss: 0.5543 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "139/438 [========>.....................] - ETA: 1s - loss: 0.6950 - ae_loss: 0.1411 - cnn_loss: 0.5539 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "147/438 [=========>....................] - ETA: 1s - loss: 0.6946 - ae_loss: 0.1411 - cnn_loss: 0.5535 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 1s - loss: 0.6941 - ae_loss: 0.1411 - cnn_loss: 0.5530 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "164/438 [==========>...................] - ETA: 1s - loss: 0.6937 - ae_loss: 0.1412 - cnn_loss: 0.5526 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "173/438 [==========>...................] - ETA: 1s - loss: 0.6932 - ae_loss: 0.1412 - cnn_loss: 0.5520 - cnn_accuracy: 0.8252"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "182/438 [===========>..................] - ETA: 1s - loss: 0.6928 - ae_loss: 0.1412 - cnn_loss: 0.5516 - cnn_accuracy: 0.8252"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "191/438 [============>.................] - ETA: 1s - loss: 0.6924 - ae_loss: 0.1412 - cnn_loss: 0.5512 - cnn_accuracy: 0.8253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "199/438 [============>.................] - ETA: 1s - loss: 0.6921 - ae_loss: 0.1412 - cnn_loss: 0.5508 - cnn_accuracy: 0.8253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "207/438 [=============>................] - ETA: 1s - loss: 0.6918 - ae_loss: 0.1413 - cnn_loss: 0.5505 - cnn_accuracy: 0.8253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "215/438 [=============>................] - ETA: 1s - loss: 0.6915 - ae_loss: 0.1413 - cnn_loss: 0.5502 - cnn_accuracy: 0.8253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "223/438 [==============>...............] - ETA: 1s - loss: 0.6912 - ae_loss: 0.1413 - cnn_loss: 0.5499 - cnn_accuracy: 0.8253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "231/438 [==============>...............] - ETA: 1s - loss: 0.6910 - ae_loss: 0.1413 - cnn_loss: 0.5496 - cnn_accuracy: 0.8253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "239/438 [===============>..............] - ETA: 1s - loss: 0.6907 - ae_loss: 0.1413 - cnn_loss: 0.5494 - cnn_accuracy: 0.8253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "246/438 [===============>..............] - ETA: 1s - loss: 0.6906 - ae_loss: 0.1414 - cnn_loss: 0.5492 - cnn_accuracy: 0.8253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "254/438 [================>.............] - ETA: 1s - loss: 0.6904 - ae_loss: 0.1414 - cnn_loss: 0.5490 - cnn_accuracy: 0.8253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "262/438 [================>.............] - ETA: 1s - loss: 0.6902 - ae_loss: 0.1414 - cnn_loss: 0.5488 - cnn_accuracy: 0.8253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "270/438 [=================>............] - ETA: 1s - loss: 0.6901 - ae_loss: 0.1414 - cnn_loss: 0.5487 - cnn_accuracy: 0.8253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "278/438 [==================>...........] - ETA: 1s - loss: 0.6900 - ae_loss: 0.1414 - cnn_loss: 0.5486 - cnn_accuracy: 0.8253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "286/438 [==================>...........] - ETA: 0s - loss: 0.6899 - ae_loss: 0.1414 - cnn_loss: 0.5485 - cnn_accuracy: 0.8252"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "294/438 [===================>..........] - ETA: 0s - loss: 0.6899 - ae_loss: 0.1414 - cnn_loss: 0.5484 - cnn_accuracy: 0.8252"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "302/438 [===================>..........] - ETA: 0s - loss: 0.6898 - ae_loss: 0.1414 - cnn_loss: 0.5483 - cnn_accuracy: 0.8252"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "310/438 [====================>.........] - ETA: 0s - loss: 0.6897 - ae_loss: 0.1415 - cnn_loss: 0.5483 - cnn_accuracy: 0.8252"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "318/438 [====================>.........] - ETA: 0s - loss: 0.6897 - ae_loss: 0.1415 - cnn_loss: 0.5482 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "325/438 [=====================>........] - ETA: 0s - loss: 0.6896 - ae_loss: 0.1415 - cnn_loss: 0.5481 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "333/438 [=====================>........] - ETA: 0s - loss: 0.6895 - ae_loss: 0.1415 - cnn_loss: 0.5480 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "341/438 [======================>.......] - ETA: 0s - loss: 0.6895 - ae_loss: 0.1415 - cnn_loss: 0.5480 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "349/438 [======================>.......] - ETA: 0s - loss: 0.6894 - ae_loss: 0.1415 - cnn_loss: 0.5479 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "357/438 [=======================>......] - ETA: 0s - loss: 0.6893 - ae_loss: 0.1415 - cnn_loss: 0.5478 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "365/438 [========================>.....] - ETA: 0s - loss: 0.6893 - ae_loss: 0.1415 - cnn_loss: 0.5478 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "373/438 [========================>.....] - ETA: 0s - loss: 0.6892 - ae_loss: 0.1415 - cnn_loss: 0.5477 - cnn_accuracy: 0.8250"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "381/438 [=========================>....] - ETA: 0s - loss: 0.6892 - ae_loss: 0.1415 - cnn_loss: 0.5476 - cnn_accuracy: 0.8250"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "389/438 [=========================>....] - ETA: 0s - loss: 0.6891 - ae_loss: 0.1416 - cnn_loss: 0.5476 - cnn_accuracy: 0.8250"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "397/438 [==========================>...] - ETA: 0s - loss: 0.6891 - ae_loss: 0.1416 - cnn_loss: 0.5475 - cnn_accuracy: 0.8250"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "405/438 [==========================>...] - ETA: 0s - loss: 0.6891 - ae_loss: 0.1416 - cnn_loss: 0.5475 - cnn_accuracy: 0.8250"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "413/438 [===========================>..] - ETA: 0s - loss: 0.6890 - ae_loss: 0.1416 - cnn_loss: 0.5474 - cnn_accuracy: 0.8250"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "421/438 [===========================>..] - ETA: 0s - loss: 0.6890 - ae_loss: 0.1416 - cnn_loss: 0.5474 - cnn_accuracy: 0.8249"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "430/438 [============================>.] - ETA: 0s - loss: 0.6889 - ae_loss: 0.1416 - cnn_loss: 0.5473 - cnn_accuracy: 0.8249"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.6889 - ae_loss: 0.1416 - cnn_loss: 0.5473 - cnn_accuracy: 0.8249 - val_loss: 0.5562 - val_ae_loss: 0.1498 - val_cnn_loss: 0.4064 - val_cnn_accuracy: 0.8651\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 24/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.5301 - ae_loss: 0.1415 - cnn_loss: 0.3886 - cnn_accuracy: 0.8438"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.6160 - ae_loss: 0.1412 - cnn_loss: 0.4748 - cnn_accuracy: 0.8414"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.6354 - ae_loss: 0.1402 - cnn_loss: 0.4952 - cnn_accuracy: 0.8354"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 0.6471 - ae_loss: 0.1401 - cnn_loss: 0.5069 - cnn_accuracy: 0.8335"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 33/438 [=>............................] - ETA: 2s - loss: 0.6544 - ae_loss: 0.1402 - cnn_loss: 0.5142 - cnn_accuracy: 0.8318"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 2s - loss: 0.6596 - ae_loss: 0.1402 - cnn_loss: 0.5194 - cnn_accuracy: 0.8302"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 49/438 [==>...........................] - ETA: 2s - loss: 0.6630 - ae_loss: 0.1402 - cnn_loss: 0.5228 - cnn_accuracy: 0.8291"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.6659 - ae_loss: 0.1402 - cnn_loss: 0.5256 - cnn_accuracy: 0.8281"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 65/438 [===>..........................] - ETA: 2s - loss: 0.6681 - ae_loss: 0.1403 - cnn_loss: 0.5278 - cnn_accuracy: 0.8274"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 73/438 [====>.........................] - ETA: 2s - loss: 0.6693 - ae_loss: 0.1404 - cnn_loss: 0.5289 - cnn_accuracy: 0.8271"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 81/438 [====>.........................] - ETA: 2s - loss: 0.6700 - ae_loss: 0.1405 - cnn_loss: 0.5296 - cnn_accuracy: 0.8271"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 89/438 [=====>........................] - ETA: 2s - loss: 0.6702 - ae_loss: 0.1405 - cnn_loss: 0.5297 - cnn_accuracy: 0.8273"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 98/438 [=====>........................] - ETA: 2s - loss: 0.6702 - ae_loss: 0.1406 - cnn_loss: 0.5296 - cnn_accuracy: 0.8274"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.6704 - ae_loss: 0.1406 - cnn_loss: 0.5298 - cnn_accuracy: 0.8275"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "115/438 [======>.......................] - ETA: 2s - loss: 0.6706 - ae_loss: 0.1406 - cnn_loss: 0.5300 - cnn_accuracy: 0.8275"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "123/438 [=======>......................] - ETA: 1s - loss: 0.6709 - ae_loss: 0.1406 - cnn_loss: 0.5303 - cnn_accuracy: 0.8275"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "131/438 [=======>......................] - ETA: 1s - loss: 0.6712 - ae_loss: 0.1407 - cnn_loss: 0.5305 - cnn_accuracy: 0.8275"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "140/438 [========>.....................] - ETA: 1s - loss: 0.6715 - ae_loss: 0.1407 - cnn_loss: 0.5308 - cnn_accuracy: 0.8274"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "148/438 [=========>....................] - ETA: 1s - loss: 0.6717 - ae_loss: 0.1407 - cnn_loss: 0.5310 - cnn_accuracy: 0.8273"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "156/438 [=========>....................] - ETA: 1s - loss: 0.6721 - ae_loss: 0.1407 - cnn_loss: 0.5314 - cnn_accuracy: 0.8272"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "164/438 [==========>...................] - ETA: 1s - loss: 0.6725 - ae_loss: 0.1407 - cnn_loss: 0.5318 - cnn_accuracy: 0.8271"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "172/438 [==========>...................] - ETA: 1s - loss: 0.6729 - ae_loss: 0.1407 - cnn_loss: 0.5322 - cnn_accuracy: 0.8269"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "181/438 [===========>..................] - ETA: 1s - loss: 0.6734 - ae_loss: 0.1408 - cnn_loss: 0.5327 - cnn_accuracy: 0.8267"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "189/438 [===========>..................] - ETA: 1s - loss: 0.6739 - ae_loss: 0.1408 - cnn_loss: 0.5331 - cnn_accuracy: 0.8266"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "198/438 [============>.................] - ETA: 1s - loss: 0.6744 - ae_loss: 0.1408 - cnn_loss: 0.5336 - cnn_accuracy: 0.8264"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "207/438 [=============>................] - ETA: 1s - loss: 0.6748 - ae_loss: 0.1408 - cnn_loss: 0.5340 - cnn_accuracy: 0.8263"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "216/438 [=============>................] - ETA: 1s - loss: 0.6752 - ae_loss: 0.1408 - cnn_loss: 0.5343 - cnn_accuracy: 0.8262"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "224/438 [==============>...............] - ETA: 1s - loss: 0.6754 - ae_loss: 0.1409 - cnn_loss: 0.5345 - cnn_accuracy: 0.8261"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "233/438 [==============>...............] - ETA: 1s - loss: 0.6756 - ae_loss: 0.1409 - cnn_loss: 0.5347 - cnn_accuracy: 0.8260"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "242/438 [===============>..............] - ETA: 1s - loss: 0.6758 - ae_loss: 0.1409 - cnn_loss: 0.5349 - cnn_accuracy: 0.8260"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "251/438 [================>.............] - ETA: 1s - loss: 0.6760 - ae_loss: 0.1409 - cnn_loss: 0.5351 - cnn_accuracy: 0.8259"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "260/438 [================>.............] - ETA: 1s - loss: 0.6762 - ae_loss: 0.1409 - cnn_loss: 0.5353 - cnn_accuracy: 0.8259"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "269/438 [=================>............] - ETA: 1s - loss: 0.6764 - ae_loss: 0.1409 - cnn_loss: 0.5355 - cnn_accuracy: 0.8258"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "278/438 [==================>...........] - ETA: 1s - loss: 0.6766 - ae_loss: 0.1409 - cnn_loss: 0.5356 - cnn_accuracy: 0.8258"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "286/438 [==================>...........] - ETA: 0s - loss: 0.6768 - ae_loss: 0.1410 - cnn_loss: 0.5358 - cnn_accuracy: 0.8257"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "294/438 [===================>..........] - ETA: 0s - loss: 0.6769 - ae_loss: 0.1410 - cnn_loss: 0.5360 - cnn_accuracy: 0.8257"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "303/438 [===================>..........] - ETA: 0s - loss: 0.6771 - ae_loss: 0.1410 - cnn_loss: 0.5361 - cnn_accuracy: 0.8257"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "311/438 [====================>.........] - ETA: 0s - loss: 0.6773 - ae_loss: 0.1410 - cnn_loss: 0.5363 - cnn_accuracy: 0.8256"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "320/438 [====================>.........] - ETA: 0s - loss: 0.6775 - ae_loss: 0.1410 - cnn_loss: 0.5365 - cnn_accuracy: 0.8256"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "329/438 [=====================>........] - ETA: 0s - loss: 0.6777 - ae_loss: 0.1410 - cnn_loss: 0.5367 - cnn_accuracy: 0.8256"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "338/438 [======================>.......] - ETA: 0s - loss: 0.6779 - ae_loss: 0.1410 - cnn_loss: 0.5369 - cnn_accuracy: 0.8255"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "346/438 [======================>.......] - ETA: 0s - loss: 0.6781 - ae_loss: 0.1410 - cnn_loss: 0.5371 - cnn_accuracy: 0.8255"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "355/438 [=======================>......] - ETA: 0s - loss: 0.6783 - ae_loss: 0.1410 - cnn_loss: 0.5373 - cnn_accuracy: 0.8254"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "363/438 [=======================>......] - ETA: 0s - loss: 0.6785 - ae_loss: 0.1411 - cnn_loss: 0.5374 - cnn_accuracy: 0.8254"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "371/438 [========================>.....] - ETA: 0s - loss: 0.6787 - ae_loss: 0.1411 - cnn_loss: 0.5376 - cnn_accuracy: 0.8253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "379/438 [========================>.....] - ETA: 0s - loss: 0.6789 - ae_loss: 0.1411 - cnn_loss: 0.5378 - cnn_accuracy: 0.8253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "387/438 [=========================>....] - ETA: 0s - loss: 0.6791 - ae_loss: 0.1411 - cnn_loss: 0.5380 - cnn_accuracy: 0.8252"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "395/438 [==========================>...] - ETA: 0s - loss: 0.6793 - ae_loss: 0.1411 - cnn_loss: 0.5382 - cnn_accuracy: 0.8252"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "403/438 [==========================>...] - ETA: 0s - loss: 0.6794 - ae_loss: 0.1411 - cnn_loss: 0.5383 - cnn_accuracy: 0.8252"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "411/438 [===========================>..] - ETA: 0s - loss: 0.6796 - ae_loss: 0.1411 - cnn_loss: 0.5385 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "419/438 [===========================>..] - ETA: 0s - loss: 0.6798 - ae_loss: 0.1411 - cnn_loss: 0.5386 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "427/438 [============================>.] - ETA: 0s - loss: 0.6799 - ae_loss: 0.1411 - cnn_loss: 0.5388 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "435/438 [============================>.] - ETA: 0s - loss: 0.6801 - ae_loss: 0.1412 - cnn_loss: 0.5389 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.6802 - ae_loss: 0.1412 - cnn_loss: 0.5390 - cnn_accuracy: 0.8250 - val_loss: 0.5475 - val_ae_loss: 0.1484 - val_cnn_loss: 0.3991 - val_cnn_accuracy: 0.8688\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 25/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.7224 - ae_loss: 0.1360 - cnn_loss: 0.5864 - cnn_accuracy: 0.8125"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.7053 - ae_loss: 0.1402 - cnn_loss: 0.5651 - cnn_accuracy: 0.8310"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.6950 - ae_loss: 0.1409 - cnn_loss: 0.5541 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 0.6881 - ae_loss: 0.1408 - cnn_loss: 0.5473 - cnn_accuracy: 0.8348"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 33/438 [=>............................] - ETA: 2s - loss: 0.6857 - ae_loss: 0.1408 - cnn_loss: 0.5449 - cnn_accuracy: 0.8347"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 42/438 [=>............................] - ETA: 2s - loss: 0.6851 - ae_loss: 0.1407 - cnn_loss: 0.5443 - cnn_accuracy: 0.8343"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 51/438 [==>...........................] - ETA: 2s - loss: 0.6836 - ae_loss: 0.1407 - cnn_loss: 0.5429 - cnn_accuracy: 0.8341"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 59/438 [===>..........................] - ETA: 2s - loss: 0.6820 - ae_loss: 0.1406 - cnn_loss: 0.5414 - cnn_accuracy: 0.8341"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 68/438 [===>..........................] - ETA: 2s - loss: 0.6809 - ae_loss: 0.1406 - cnn_loss: 0.5403 - cnn_accuracy: 0.8340"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 77/438 [====>.........................] - ETA: 2s - loss: 0.6799 - ae_loss: 0.1406 - cnn_loss: 0.5394 - cnn_accuracy: 0.8340"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.6797 - ae_loss: 0.1406 - cnn_loss: 0.5391 - cnn_accuracy: 0.8338"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 93/438 [=====>........................] - ETA: 2s - loss: 0.6796 - ae_loss: 0.1406 - cnn_loss: 0.5390 - cnn_accuracy: 0.8335"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "101/438 [=====>........................] - ETA: 2s - loss: 0.6794 - ae_loss: 0.1406 - cnn_loss: 0.5387 - cnn_accuracy: 0.8333"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "110/438 [======>.......................] - ETA: 2s - loss: 0.6789 - ae_loss: 0.1407 - cnn_loss: 0.5383 - cnn_accuracy: 0.8330"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "119/438 [=======>......................] - ETA: 1s - loss: 0.6788 - ae_loss: 0.1407 - cnn_loss: 0.5381 - cnn_accuracy: 0.8327"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "128/438 [=======>......................] - ETA: 1s - loss: 0.6787 - ae_loss: 0.1407 - cnn_loss: 0.5380 - cnn_accuracy: 0.8324"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "137/438 [========>.....................] - ETA: 1s - loss: 0.6788 - ae_loss: 0.1408 - cnn_loss: 0.5380 - cnn_accuracy: 0.8321"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "146/438 [=========>....................] - ETA: 1s - loss: 0.6788 - ae_loss: 0.1408 - cnn_loss: 0.5381 - cnn_accuracy: 0.8318"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "154/438 [=========>....................] - ETA: 1s - loss: 0.6790 - ae_loss: 0.1408 - cnn_loss: 0.5382 - cnn_accuracy: 0.8315"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "163/438 [==========>...................] - ETA: 1s - loss: 0.6791 - ae_loss: 0.1408 - cnn_loss: 0.5382 - cnn_accuracy: 0.8312"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "171/438 [==========>...................] - ETA: 1s - loss: 0.6792 - ae_loss: 0.1409 - cnn_loss: 0.5383 - cnn_accuracy: 0.8309"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "180/438 [===========>..................] - ETA: 1s - loss: 0.6793 - ae_loss: 0.1409 - cnn_loss: 0.5384 - cnn_accuracy: 0.8306"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "189/438 [===========>..................] - ETA: 1s - loss: 0.6794 - ae_loss: 0.1409 - cnn_loss: 0.5385 - cnn_accuracy: 0.8303"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "198/438 [============>.................] - ETA: 1s - loss: 0.6796 - ae_loss: 0.1409 - cnn_loss: 0.5387 - cnn_accuracy: 0.8300"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "207/438 [=============>................] - ETA: 1s - loss: 0.6798 - ae_loss: 0.1409 - cnn_loss: 0.5388 - cnn_accuracy: 0.8298"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "216/438 [=============>................] - ETA: 1s - loss: 0.6800 - ae_loss: 0.1409 - cnn_loss: 0.5390 - cnn_accuracy: 0.8295"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "224/438 [==============>...............] - ETA: 1s - loss: 0.6802 - ae_loss: 0.1409 - cnn_loss: 0.5392 - cnn_accuracy: 0.8293"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "232/438 [==============>...............] - ETA: 1s - loss: 0.6803 - ae_loss: 0.1410 - cnn_loss: 0.5394 - cnn_accuracy: 0.8291"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "241/438 [===============>..............] - ETA: 1s - loss: 0.6806 - ae_loss: 0.1410 - cnn_loss: 0.5397 - cnn_accuracy: 0.8289"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "250/438 [================>.............] - ETA: 1s - loss: 0.6809 - ae_loss: 0.1410 - cnn_loss: 0.5399 - cnn_accuracy: 0.8287"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "259/438 [================>.............] - ETA: 1s - loss: 0.6812 - ae_loss: 0.1410 - cnn_loss: 0.5403 - cnn_accuracy: 0.8285"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "268/438 [=================>............] - ETA: 1s - loss: 0.6816 - ae_loss: 0.1410 - cnn_loss: 0.5406 - cnn_accuracy: 0.8284"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "277/438 [=================>............] - ETA: 1s - loss: 0.6819 - ae_loss: 0.1410 - cnn_loss: 0.5409 - cnn_accuracy: 0.8282"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "286/438 [==================>...........] - ETA: 0s - loss: 0.6822 - ae_loss: 0.1410 - cnn_loss: 0.5412 - cnn_accuracy: 0.8281"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "294/438 [===================>..........] - ETA: 0s - loss: 0.6824 - ae_loss: 0.1410 - cnn_loss: 0.5414 - cnn_accuracy: 0.8279"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "302/438 [===================>..........] - ETA: 0s - loss: 0.6826 - ae_loss: 0.1410 - cnn_loss: 0.5416 - cnn_accuracy: 0.8278"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "311/438 [====================>.........] - ETA: 0s - loss: 0.6828 - ae_loss: 0.1410 - cnn_loss: 0.5418 - cnn_accuracy: 0.8277"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "320/438 [====================>.........] - ETA: 0s - loss: 0.6830 - ae_loss: 0.1410 - cnn_loss: 0.5420 - cnn_accuracy: 0.8275"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "329/438 [=====================>........] - ETA: 0s - loss: 0.6832 - ae_loss: 0.1411 - cnn_loss: 0.5422 - cnn_accuracy: 0.8274"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "337/438 [======================>.......] - ETA: 0s - loss: 0.6834 - ae_loss: 0.1411 - cnn_loss: 0.5423 - cnn_accuracy: 0.8273"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "346/438 [======================>.......] - ETA: 0s - loss: 0.6835 - ae_loss: 0.1411 - cnn_loss: 0.5425 - cnn_accuracy: 0.8272"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "354/438 [=======================>......] - ETA: 0s - loss: 0.6837 - ae_loss: 0.1411 - cnn_loss: 0.5426 - cnn_accuracy: 0.8271"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "362/438 [=======================>......] - ETA: 0s - loss: 0.6838 - ae_loss: 0.1411 - cnn_loss: 0.5427 - cnn_accuracy: 0.8270"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "370/438 [========================>.....] - ETA: 0s - loss: 0.6839 - ae_loss: 0.1411 - cnn_loss: 0.5428 - cnn_accuracy: 0.8269"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "379/438 [========================>.....] - ETA: 0s - loss: 0.6840 - ae_loss: 0.1411 - cnn_loss: 0.5429 - cnn_accuracy: 0.8268"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "387/438 [=========================>....] - ETA: 0s - loss: 0.6841 - ae_loss: 0.1411 - cnn_loss: 0.5429 - cnn_accuracy: 0.8268"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "396/438 [==========================>...] - ETA: 0s - loss: 0.6841 - ae_loss: 0.1411 - cnn_loss: 0.5430 - cnn_accuracy: 0.8267"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "405/438 [==========================>...] - ETA: 0s - loss: 0.6842 - ae_loss: 0.1411 - cnn_loss: 0.5431 - cnn_accuracy: 0.8266"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "413/438 [===========================>..] - ETA: 0s - loss: 0.6843 - ae_loss: 0.1411 - cnn_loss: 0.5431 - cnn_accuracy: 0.8265"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "422/438 [===========================>..] - ETA: 0s - loss: 0.6844 - ae_loss: 0.1411 - cnn_loss: 0.5432 - cnn_accuracy: 0.8265"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "430/438 [============================>.] - ETA: 0s - loss: 0.6844 - ae_loss: 0.1411 - cnn_loss: 0.5433 - cnn_accuracy: 0.8264"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.6845 - ae_loss: 0.1411 - cnn_loss: 0.5433 - cnn_accuracy: 0.8263 - val_loss: 0.5491 - val_ae_loss: 0.1494 - val_cnn_loss: 0.3997 - val_cnn_accuracy: 0.8692\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 26/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.9316 - ae_loss: 0.1440 - cnn_loss: 0.7875 - cnn_accuracy: 0.7734"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.7749 - ae_loss: 0.1396 - cnn_loss: 0.6353 - cnn_accuracy: 0.8064"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 18/438 [>.............................] - ETA: 2s - loss: 0.7404 - ae_loss: 0.1398 - cnn_loss: 0.6006 - cnn_accuracy: 0.8146"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 27/438 [>.............................] - ETA: 2s - loss: 0.7234 - ae_loss: 0.1396 - cnn_loss: 0.5838 - cnn_accuracy: 0.8186"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 36/438 [=>............................] - ETA: 2s - loss: 0.7157 - ae_loss: 0.1398 - cnn_loss: 0.5759 - cnn_accuracy: 0.8208"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 44/438 [==>...........................] - ETA: 2s - loss: 0.7113 - ae_loss: 0.1399 - cnn_loss: 0.5715 - cnn_accuracy: 0.8221"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 53/438 [==>...........................] - ETA: 2s - loss: 0.7072 - ae_loss: 0.1399 - cnn_loss: 0.5672 - cnn_accuracy: 0.8231"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 62/438 [===>..........................] - ETA: 2s - loss: 0.7036 - ae_loss: 0.1400 - cnn_loss: 0.5636 - cnn_accuracy: 0.8239"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 2s - loss: 0.7009 - ae_loss: 0.1400 - cnn_loss: 0.5608 - cnn_accuracy: 0.8245"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 80/438 [====>.........................] - ETA: 2s - loss: 0.6986 - ae_loss: 0.1401 - cnn_loss: 0.5586 - cnn_accuracy: 0.8249"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 89/438 [=====>........................] - ETA: 2s - loss: 0.6966 - ae_loss: 0.1401 - cnn_loss: 0.5565 - cnn_accuracy: 0.8253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 98/438 [=====>........................] - ETA: 2s - loss: 0.6947 - ae_loss: 0.1402 - cnn_loss: 0.5545 - cnn_accuracy: 0.8257"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "107/438 [======>.......................] - ETA: 2s - loss: 0.6929 - ae_loss: 0.1402 - cnn_loss: 0.5527 - cnn_accuracy: 0.8260"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "115/438 [======>.......................] - ETA: 2s - loss: 0.6916 - ae_loss: 0.1402 - cnn_loss: 0.5514 - cnn_accuracy: 0.8262"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "123/438 [=======>......................] - ETA: 1s - loss: 0.6906 - ae_loss: 0.1403 - cnn_loss: 0.5504 - cnn_accuracy: 0.8264"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "131/438 [=======>......................] - ETA: 1s - loss: 0.6898 - ae_loss: 0.1403 - cnn_loss: 0.5495 - cnn_accuracy: 0.8265"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "139/438 [========>.....................] - ETA: 1s - loss: 0.6889 - ae_loss: 0.1403 - cnn_loss: 0.5486 - cnn_accuracy: 0.8266"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "147/438 [=========>....................] - ETA: 1s - loss: 0.6882 - ae_loss: 0.1403 - cnn_loss: 0.5479 - cnn_accuracy: 0.8268"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "156/438 [=========>....................] - ETA: 1s - loss: 0.6876 - ae_loss: 0.1404 - cnn_loss: 0.5472 - cnn_accuracy: 0.8269"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "164/438 [==========>...................] - ETA: 1s - loss: 0.6870 - ae_loss: 0.1404 - cnn_loss: 0.5466 - cnn_accuracy: 0.8270"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "172/438 [==========>...................] - ETA: 1s - loss: 0.6865 - ae_loss: 0.1404 - cnn_loss: 0.5461 - cnn_accuracy: 0.8271"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "180/438 [===========>..................] - ETA: 1s - loss: 0.6859 - ae_loss: 0.1404 - cnn_loss: 0.5454 - cnn_accuracy: 0.8273"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "188/438 [===========>..................] - ETA: 1s - loss: 0.6853 - ae_loss: 0.1405 - cnn_loss: 0.5448 - cnn_accuracy: 0.8274"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "196/438 [============>.................] - ETA: 1s - loss: 0.6847 - ae_loss: 0.1405 - cnn_loss: 0.5442 - cnn_accuracy: 0.8275"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "205/438 [=============>................] - ETA: 1s - loss: 0.6841 - ae_loss: 0.1405 - cnn_loss: 0.5437 - cnn_accuracy: 0.8276"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "213/438 [=============>................] - ETA: 1s - loss: 0.6837 - ae_loss: 0.1405 - cnn_loss: 0.5432 - cnn_accuracy: 0.8278"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "221/438 [==============>...............] - ETA: 1s - loss: 0.6833 - ae_loss: 0.1405 - cnn_loss: 0.5428 - cnn_accuracy: 0.8278"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "230/438 [==============>...............] - ETA: 1s - loss: 0.6831 - ae_loss: 0.1405 - cnn_loss: 0.5425 - cnn_accuracy: 0.8279"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "239/438 [===============>..............] - ETA: 1s - loss: 0.6828 - ae_loss: 0.1405 - cnn_loss: 0.5422 - cnn_accuracy: 0.8280"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "248/438 [===============>..............] - ETA: 1s - loss: 0.6825 - ae_loss: 0.1406 - cnn_loss: 0.5420 - cnn_accuracy: 0.8280"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "256/438 [================>.............] - ETA: 1s - loss: 0.6824 - ae_loss: 0.1406 - cnn_loss: 0.5418 - cnn_accuracy: 0.8280"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "265/438 [=================>............] - ETA: 1s - loss: 0.6822 - ae_loss: 0.1406 - cnn_loss: 0.5416 - cnn_accuracy: 0.8280"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "274/438 [=================>............] - ETA: 1s - loss: 0.6821 - ae_loss: 0.1406 - cnn_loss: 0.5415 - cnn_accuracy: 0.8280"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "283/438 [==================>...........] - ETA: 0s - loss: 0.6819 - ae_loss: 0.1406 - cnn_loss: 0.5413 - cnn_accuracy: 0.8280"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "292/438 [===================>..........] - ETA: 0s - loss: 0.6818 - ae_loss: 0.1406 - cnn_loss: 0.5412 - cnn_accuracy: 0.8280"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "301/438 [===================>..........] - ETA: 0s - loss: 0.6817 - ae_loss: 0.1406 - cnn_loss: 0.5411 - cnn_accuracy: 0.8280"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "310/438 [====================>.........] - ETA: 0s - loss: 0.6816 - ae_loss: 0.1406 - cnn_loss: 0.5410 - cnn_accuracy: 0.8280"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "319/438 [====================>.........] - ETA: 0s - loss: 0.6815 - ae_loss: 0.1406 - cnn_loss: 0.5409 - cnn_accuracy: 0.8280"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "327/438 [=====================>........] - ETA: 0s - loss: 0.6815 - ae_loss: 0.1406 - cnn_loss: 0.5409 - cnn_accuracy: 0.8280"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "336/438 [======================>.......] - ETA: 0s - loss: 0.6815 - ae_loss: 0.1406 - cnn_loss: 0.5408 - cnn_accuracy: 0.8280"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "345/438 [======================>.......] - ETA: 0s - loss: 0.6814 - ae_loss: 0.1407 - cnn_loss: 0.5408 - cnn_accuracy: 0.8279"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "354/438 [=======================>......] - ETA: 0s - loss: 0.6814 - ae_loss: 0.1407 - cnn_loss: 0.5408 - cnn_accuracy: 0.8279"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "363/438 [=======================>......] - ETA: 0s - loss: 0.6814 - ae_loss: 0.1407 - cnn_loss: 0.5407 - cnn_accuracy: 0.8278"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "372/438 [========================>.....] - ETA: 0s - loss: 0.6814 - ae_loss: 0.1407 - cnn_loss: 0.5407 - cnn_accuracy: 0.8278"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "381/438 [=========================>....] - ETA: 0s - loss: 0.6814 - ae_loss: 0.1407 - cnn_loss: 0.5407 - cnn_accuracy: 0.8277"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "390/438 [=========================>....] - ETA: 0s - loss: 0.6814 - ae_loss: 0.1407 - cnn_loss: 0.5407 - cnn_accuracy: 0.8277"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "399/438 [==========================>...] - ETA: 0s - loss: 0.6814 - ae_loss: 0.1407 - cnn_loss: 0.5407 - cnn_accuracy: 0.8277"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "408/438 [==========================>...] - ETA: 0s - loss: 0.6814 - ae_loss: 0.1407 - cnn_loss: 0.5407 - cnn_accuracy: 0.8276"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "417/438 [===========================>..] - ETA: 0s - loss: 0.6814 - ae_loss: 0.1407 - cnn_loss: 0.5407 - cnn_accuracy: 0.8276"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "425/438 [============================>.] - ETA: 0s - loss: 0.6814 - ae_loss: 0.1407 - cnn_loss: 0.5407 - cnn_accuracy: 0.8276"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "434/438 [============================>.] - ETA: 0s - loss: 0.6815 - ae_loss: 0.1407 - cnn_loss: 0.5407 - cnn_accuracy: 0.8275"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.6815 - ae_loss: 0.1407 - cnn_loss: 0.5407 - cnn_accuracy: 0.8275 - val_loss: 0.5581 - val_ae_loss: 0.1487 - val_cnn_loss: 0.4094 - val_cnn_accuracy: 0.8677\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 27/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.7300 - ae_loss: 0.1348 - cnn_loss: 0.5952 - cnn_accuracy: 0.8203"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.6854 - ae_loss: 0.1389 - cnn_loss: 0.5465 - cnn_accuracy: 0.8319"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.7059 - ae_loss: 0.1397 - cnn_loss: 0.5662 - cnn_accuracy: 0.8245"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 0.7108 - ae_loss: 0.1401 - cnn_loss: 0.5707 - cnn_accuracy: 0.8221"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 33/438 [=>............................] - ETA: 2s - loss: 0.7131 - ae_loss: 0.1404 - cnn_loss: 0.5727 - cnn_accuracy: 0.8203"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 2s - loss: 0.7132 - ae_loss: 0.1405 - cnn_loss: 0.5728 - cnn_accuracy: 0.8188"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 49/438 [==>...........................] - ETA: 2s - loss: 0.7111 - ae_loss: 0.1405 - cnn_loss: 0.5706 - cnn_accuracy: 0.8186"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 58/438 [==>...........................] - ETA: 2s - loss: 0.7090 - ae_loss: 0.1405 - cnn_loss: 0.5685 - cnn_accuracy: 0.8185"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 67/438 [===>..........................] - ETA: 2s - loss: 0.7071 - ae_loss: 0.1405 - cnn_loss: 0.5666 - cnn_accuracy: 0.8185"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 75/438 [====>.........................] - ETA: 2s - loss: 0.7054 - ae_loss: 0.1405 - cnn_loss: 0.5649 - cnn_accuracy: 0.8186"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 83/438 [====>.........................] - ETA: 2s - loss: 0.7040 - ae_loss: 0.1405 - cnn_loss: 0.5636 - cnn_accuracy: 0.8188"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 91/438 [=====>........................] - ETA: 2s - loss: 0.7027 - ae_loss: 0.1404 - cnn_loss: 0.5622 - cnn_accuracy: 0.8191"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.7014 - ae_loss: 0.1404 - cnn_loss: 0.5610 - cnn_accuracy: 0.8193"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "108/438 [======>.......................] - ETA: 2s - loss: 0.7001 - ae_loss: 0.1404 - cnn_loss: 0.5597 - cnn_accuracy: 0.8197"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "116/438 [======>.......................] - ETA: 2s - loss: 0.6989 - ae_loss: 0.1403 - cnn_loss: 0.5586 - cnn_accuracy: 0.8199"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "125/438 [=======>......................] - ETA: 1s - loss: 0.6980 - ae_loss: 0.1403 - cnn_loss: 0.5576 - cnn_accuracy: 0.8202"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "134/438 [========>.....................] - ETA: 1s - loss: 0.6974 - ae_loss: 0.1403 - cnn_loss: 0.5571 - cnn_accuracy: 0.8204"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "143/438 [========>.....................] - ETA: 1s - loss: 0.6968 - ae_loss: 0.1403 - cnn_loss: 0.5565 - cnn_accuracy: 0.8205"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "152/438 [=========>....................] - ETA: 1s - loss: 0.6962 - ae_loss: 0.1403 - cnn_loss: 0.5559 - cnn_accuracy: 0.8208"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "160/438 [=========>....................] - ETA: 1s - loss: 0.6956 - ae_loss: 0.1403 - cnn_loss: 0.5554 - cnn_accuracy: 0.8209"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "168/438 [==========>...................] - ETA: 1s - loss: 0.6952 - ae_loss: 0.1403 - cnn_loss: 0.5549 - cnn_accuracy: 0.8211"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 1s - loss: 0.6948 - ae_loss: 0.1403 - cnn_loss: 0.5545 - cnn_accuracy: 0.8213"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "184/438 [===========>..................] - ETA: 1s - loss: 0.6944 - ae_loss: 0.1403 - cnn_loss: 0.5541 - cnn_accuracy: 0.8214"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "192/438 [============>.................]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      " - ETA: 1s - loss: 0.6939 - ae_loss: 0.1403 - cnn_loss: 0.5536 - cnn_accuracy: 0.8215"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "200/438 [============>.................] - ETA: 1s - loss: 0.6935 - ae_loss: 0.1403 - cnn_loss: 0.5532 - cnn_accuracy: 0.8216"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "209/438 [=============>................] - ETA: 1s - loss: 0.6931 - ae_loss: 0.1403 - cnn_loss: 0.5528 - cnn_accuracy: 0.8217"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "218/438 [=============>................] - ETA: 1s - loss: 0.6927 - ae_loss: 0.1403 - cnn_loss: 0.5524 - cnn_accuracy: 0.8218"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "227/438 [==============>...............] - ETA: 1s - loss: 0.6924 - ae_loss: 0.1403 - cnn_loss: 0.5520 - cnn_accuracy: 0.8220"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "235/438 [===============>..............] - ETA: 1s - loss: 0.6921 - ae_loss: 0.1404 - cnn_loss: 0.5518 - cnn_accuracy: 0.8220"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "243/438 [===============>..............] - ETA: 1s - loss: 0.6918 - ae_loss: 0.1404 - cnn_loss: 0.5515 - cnn_accuracy: 0.8221"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "252/438 [================>.............] - ETA: 1s - loss: 0.6916 - ae_loss: 0.1404 - cnn_loss: 0.5512 - cnn_accuracy: 0.8222"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "261/438 [================>.............] - ETA: 1s - loss: 0.6912 - ae_loss: 0.1404 - cnn_loss: 0.5508 - cnn_accuracy: 0.8222"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "269/438 [=================>............] - ETA: 1s - loss: 0.6910 - ae_loss: 0.1404 - cnn_loss: 0.5505 - cnn_accuracy: 0.8223"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "278/438 [==================>...........] - ETA: 1s - loss: 0.6907 - ae_loss: 0.1404 - cnn_loss: 0.5503 - cnn_accuracy: 0.8224"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "287/438 [==================>...........] - ETA: 0s - loss: 0.6904 - ae_loss: 0.1404 - cnn_loss: 0.5500 - cnn_accuracy: 0.8225"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "296/438 [===================>..........] - ETA: 0s - loss: 0.6901 - ae_loss: 0.1405 - cnn_loss: 0.5496 - cnn_accuracy: 0.8225"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "304/438 [===================>..........] - ETA: 0s - loss: 0.6898 - ae_loss: 0.1405 - cnn_loss: 0.5494 - cnn_accuracy: 0.8226"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "313/438 [====================>.........] - ETA: 0s - loss: 0.6895 - ae_loss: 0.1405 - cnn_loss: 0.5491 - cnn_accuracy: 0.8226"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "322/438 [=====================>........] - ETA: 0s - loss: 0.6892 - ae_loss: 0.1405 - cnn_loss: 0.5488 - cnn_accuracy: 0.8227"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "331/438 [=====================>........] - ETA: 0s - loss: 0.6889 - ae_loss: 0.1405 - cnn_loss: 0.5484 - cnn_accuracy: 0.8228"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "340/438 [======================>.......] - ETA: 0s - loss: 0.6887 - ae_loss: 0.1405 - cnn_loss: 0.5482 - cnn_accuracy: 0.8228"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "349/438 [======================>.......] - ETA: 0s - loss: 0.6884 - ae_loss: 0.1405 - cnn_loss: 0.5479 - cnn_accuracy: 0.8229"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "357/438 [=======================>......] - ETA: 0s - loss: 0.6882 - ae_loss: 0.1405 - cnn_loss: 0.5477 - cnn_accuracy: 0.8229"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "366/438 [========================>.....] - ETA: 0s - loss: 0.6880 - ae_loss: 0.1405 - cnn_loss: 0.5475 - cnn_accuracy: 0.8230"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "375/438 [========================>.....] - ETA: 0s - loss: 0.6879 - ae_loss: 0.1405 - cnn_loss: 0.5473 - cnn_accuracy: 0.8230"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "384/438 [=========================>....] - ETA: 0s - loss: 0.6877 - ae_loss: 0.1405 - cnn_loss: 0.5472 - cnn_accuracy: 0.8231"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "392/438 [=========================>....] - ETA: 0s - loss: 0.6876 - ae_loss: 0.1406 - cnn_loss: 0.5470 - cnn_accuracy: 0.8231"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "401/438 [==========================>...] - ETA: 0s - loss: 0.6874 - ae_loss: 0.1406 - cnn_loss: 0.5469 - cnn_accuracy: 0.8232"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "410/438 [===========================>..] - ETA: 0s - loss: 0.6873 - ae_loss: 0.1406 - cnn_loss: 0.5468 - cnn_accuracy: 0.8232"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "418/438 [===========================>..] - ETA: 0s - loss: 0.6872 - ae_loss: 0.1406 - cnn_loss: 0.5466 - cnn_accuracy: 0.8232"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "427/438 [============================>.] - ETA: 0s - loss: 0.6871 - ae_loss: 0.1406 - cnn_loss: 0.5465 - cnn_accuracy: 0.8233"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "436/438 [============================>.] - ETA: 0s - loss: 0.6870 - ae_loss: 0.1406 - cnn_loss: 0.5464 - cnn_accuracy: 0.8233"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.6869 - ae_loss: 0.1406 - cnn_loss: 0.5464 - cnn_accuracy: 0.8233 - val_loss: 0.5607 - val_ae_loss: 0.1511 - val_cnn_loss: 0.4096 - val_cnn_accuracy: 0.8646\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 28/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.6560 - ae_loss: 0.1463 - cnn_loss: 0.5097 - cnn_accuracy: 0.8516"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.6862 - ae_loss: 0.1401 - cnn_loss: 0.5461 - cnn_accuracy: 0.8225"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.6848 - ae_loss: 0.1396 - cnn_loss: 0.5452 - cnn_accuracy: 0.8206"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 0.6862 - ae_loss: 0.1394 - cnn_loss: 0.5468 - cnn_accuracy: 0.8193"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 33/438 [=>............................] - ETA: 2s - loss: 0.6857 - ae_loss: 0.1394 - cnn_loss: 0.5463 - cnn_accuracy: 0.8191"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 42/438 [=>............................] - ETA: 2s - loss: 0.6833 - ae_loss: 0.1394 - cnn_loss: 0.5439 - cnn_accuracy: 0.8195"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 51/438 [==>...........................] - ETA: 2s - loss: 0.6826 - ae_loss: 0.1395 - cnn_loss: 0.5431 - cnn_accuracy: 0.8196"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 59/438 [===>..........................] - ETA: 2s - loss: 0.6819 - ae_loss: 0.1395 - cnn_loss: 0.5423 - cnn_accuracy: 0.8196"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 67/438 [===>..........................] - ETA: 2s - loss: 0.6807 - ae_loss: 0.1396 - cnn_loss: 0.5412 - cnn_accuracy: 0.8199"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 75/438 [====>.........................] - ETA: 2s - loss: 0.6801 - ae_loss: 0.1396 - cnn_loss: 0.5405 - cnn_accuracy: 0.8202"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 83/438 [====>.........................] - ETA: 2s - loss: 0.6797 - ae_loss: 0.1396 - cnn_loss: 0.5401 - cnn_accuracy: 0.8204"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 92/438 [=====>........................] - ETA: 2s - loss: 0.6792 - ae_loss: 0.1397 - cnn_loss: 0.5395 - cnn_accuracy: 0.8206"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "100/438 [=====>........................] - ETA: 2s - loss: 0.6787 - ae_loss: 0.1397 - cnn_loss: 0.5390 - cnn_accuracy: 0.8208"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "108/438 [======>.......................] - ETA: 2s - loss: 0.6785 - ae_loss: 0.1397 - cnn_loss: 0.5388 - cnn_accuracy: 0.8210"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "116/438 [======>.......................] - ETA: 2s - loss: 0.6785 - ae_loss: 0.1397 - cnn_loss: 0.5388 - cnn_accuracy: 0.8211"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "125/438 [=======>......................] - ETA: 1s - loss: 0.6785 - ae_loss: 0.1397 - cnn_loss: 0.5388 - cnn_accuracy: 0.8214"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "133/438 [========>.....................] - ETA: 1s - loss: 0.6784 - ae_loss: 0.1398 - cnn_loss: 0.5387 - cnn_accuracy: 0.8216"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "141/438 [========>.....................] - ETA: 1s - loss: 0.6783 - ae_loss: 0.1398 - cnn_loss: 0.5385 - cnn_accuracy: 0.8218"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "149/438 [=========>....................] - ETA: 1s - loss: 0.6782 - ae_loss: 0.1398 - cnn_loss: 0.5383 - cnn_accuracy: 0.8220"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "157/438 [=========>....................] - ETA: 1s - loss: 0.6779 - ae_loss: 0.1398 - cnn_loss: 0.5381 - cnn_accuracy: 0.8222"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "165/438 [==========>...................] - ETA: 1s - loss: 0.6777 - ae_loss: 0.1398 - cnn_loss: 0.5379 - cnn_accuracy: 0.8223"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "173/438 [==========>...................] - ETA: 1s - loss: 0.6775 - ae_loss: 0.1398 - cnn_loss: 0.5376 - cnn_accuracy: 0.8225"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "181/438 [===========>..................] - ETA: 1s - loss: 0.6772 - ae_loss: 0.1398 - cnn_loss: 0.5374 - cnn_accuracy: 0.8227"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "189/438 [===========>..................] - ETA: 1s - loss: 0.6771 - ae_loss: 0.1398 - cnn_loss: 0.5372 - cnn_accuracy: 0.8229"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 1s - loss: 0.6769 - ae_loss: 0.1398 - cnn_loss: 0.5371 - cnn_accuracy: 0.8230"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "205/438 [=============>................] - ETA: 1s - loss: 0.6768 - ae_loss: 0.1398 - cnn_loss: 0.5370 - cnn_accuracy: 0.8231"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "213/438 [=============>................] - ETA: 1s - loss: 0.6767 - ae_loss: 0.1399 - cnn_loss: 0.5369 - cnn_accuracy: 0.8232"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "221/438 [==============>...............] - ETA: 1s - loss: 0.6767 - ae_loss: 0.1399 - cnn_loss: 0.5369 - cnn_accuracy: 0.8233"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "229/438 [==============>...............] - ETA: 1s - loss: 0.6768 - ae_loss: 0.1399 - cnn_loss: 0.5369 - cnn_accuracy: 0.8233"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "237/438 [===============>..............] - ETA: 1s - loss: 0.6768 - ae_loss: 0.1399 - cnn_loss: 0.5369 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "245/438 [===============>..............] - ETA: 1s - loss: 0.6768 - ae_loss: 0.1399 - cnn_loss: 0.5369 - cnn_accuracy: 0.8234"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "253/438 [================>.............] - ETA: 1s - loss: 0.6768 - ae_loss: 0.1399 - cnn_loss: 0.5369 - cnn_accuracy: 0.8235"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "261/438 [================>.............] - ETA: 1s - loss: 0.6768 - ae_loss: 0.1399 - cnn_loss: 0.5369 - cnn_accuracy: 0.8235"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "269/438 [=================>............] - ETA: 1s - loss: 0.6769 - ae_loss: 0.1399 - cnn_loss: 0.5369 - cnn_accuracy: 0.8235"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "277/438 [=================>............] - ETA: 1s - loss: 0.6769 - ae_loss: 0.1400 - cnn_loss: 0.5370 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "285/438 [==================>...........] - ETA: 0s - loss: 0.6770 - ae_loss: 0.1400 - cnn_loss: 0.5370 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "293/438 [===================>..........] - ETA: 0s - loss: 0.6770 - ae_loss: 0.1400 - cnn_loss: 0.5370 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "301/438 [===================>..........] - ETA: 0s - loss: 0.6771 - ae_loss: 0.1400 - cnn_loss: 0.5371 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "309/438 [====================>.........] - ETA: 0s - loss: 0.6771 - ae_loss: 0.1400 - cnn_loss: 0.5371 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "317/438 [====================>.........] - ETA: 0s - loss: 0.6772 - ae_loss: 0.1400 - cnn_loss: 0.5372 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "325/438 [=====================>........] - ETA: 0s - loss: 0.6772 - ae_loss: 0.1400 - cnn_loss: 0.5372 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "333/438 [=====================>........] - ETA: 0s - loss: 0.6773 - ae_loss: 0.1400 - cnn_loss: 0.5373 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "341/438 [======================>.......] - ETA: 0s - loss: 0.6774 - ae_loss: 0.1400 - cnn_loss: 0.5373 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "349/438 [======================>.......] - ETA: 0s - loss: 0.6774 - ae_loss: 0.1400 - cnn_loss: 0.5374 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "357/438 [=======================>......] - ETA: 0s - loss: 0.6775 - ae_loss: 0.1401 - cnn_loss: 0.5375 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "365/438 [========================>.....] - ETA: 0s - loss: 0.6776 - ae_loss: 0.1401 - cnn_loss: 0.5375 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "373/438 [========================>.....] - ETA: 0s - loss: 0.6777 - ae_loss: 0.1401 - cnn_loss: 0.5376 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "381/438 [=========================>....] - ETA: 0s - loss: 0.6777 - ae_loss: 0.1401 - cnn_loss: 0.5376 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "389/438 [=========================>....] - ETA: 0s - loss: 0.6778 - ae_loss: 0.1401 - cnn_loss: 0.5377 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "397/438 [==========================>...] - ETA: 0s - loss: 0.6779 - ae_loss: 0.1401 - cnn_loss: 0.5378 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "406/438 [==========================>...] - ETA: 0s - loss: 0.6780 - ae_loss: 0.1401 - cnn_loss: 0.5378 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "414/438 [===========================>..] - ETA: 0s - loss: 0.6780 - ae_loss: 0.1401 - cnn_loss: 0.5379 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "423/438 [===========================>..] - ETA: 0s - loss: 0.6781 - ae_loss: 0.1401 - cnn_loss: 0.5380 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "431/438 [============================>.] - ETA: 0s - loss: 0.6782 - ae_loss: 0.1401 - cnn_loss: 0.5380 - cnn_accuracy: 0.8237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.6783 - ae_loss: 0.1402 - cnn_loss: 0.5381 - cnn_accuracy: 0.8237 - val_loss: 0.5512 - val_ae_loss: 0.1487 - val_cnn_loss: 0.4026 - val_cnn_accuracy: 0.8663\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 29/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.6112 - ae_loss: 0.1408 - cnn_loss: 0.4704 - cnn_accuracy: 0.8125"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.7022 - ae_loss: 0.1409 - cnn_loss: 0.5613 - cnn_accuracy: 0.8158"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.6941 - ae_loss: 0.1404 - cnn_loss: 0.5537 - cnn_accuracy: 0.8177"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 0.6940 - ae_loss: 0.1401 - cnn_loss: 0.5539 - cnn_accuracy: 0.8181"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 33/438 [=>............................] - ETA: 2s - loss: 0.6967 - ae_loss: 0.1400 - cnn_loss: 0.5567 - cnn_accuracy: 0.8181"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 2s - loss: 0.6989 - ae_loss: 0.1399 - cnn_loss: 0.5590 - cnn_accuracy: 0.8183"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 49/438 [==>...........................] - ETA: 2s - loss: 0.6999 - ae_loss: 0.1399 - cnn_loss: 0.5601 - cnn_accuracy: 0.8189"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 58/438 [==>...........................] - ETA: 2s - loss: 0.6995 - ae_loss: 0.1398 - cnn_loss: 0.5597 - cnn_accuracy: 0.8196"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 66/438 [===>..........................] - ETA: 2s - loss: 0.6985 - ae_loss: 0.1398 - cnn_loss: 0.5587 - cnn_accuracy: 0.8202"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 75/438 [====>.........................] - ETA: 2s - loss: 0.6973 - ae_loss: 0.1398 - cnn_loss: 0.5575 - cnn_accuracy: 0.8209"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 83/438 [====>.........................] - ETA: 2s - loss: 0.6966 - ae_loss: 0.1397 - cnn_loss: 0.5568 - cnn_accuracy: 0.8214"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 92/438 [=====>........................] - ETA: 2s - loss: 0.6959 - ae_loss: 0.1397 - cnn_loss: 0.5561 - cnn_accuracy: 0.8219"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "100/438 [=====>........................] - ETA: 2s - loss: 0.6951 - ae_loss: 0.1397 - cnn_loss: 0.5554 - cnn_accuracy: 0.8223"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "108/438 [======>.......................] - ETA: 2s - loss: 0.6943 - ae_loss: 0.1397 - cnn_loss: 0.5546 - cnn_accuracy: 0.8227"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "116/438 [======>.......................] - ETA: 2s - loss: 0.6937 - ae_loss: 0.1397 - cnn_loss: 0.5540 - cnn_accuracy: 0.8230"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "124/438 [=======>......................] - ETA: 1s - loss: 0.6932 - ae_loss: 0.1397 - cnn_loss: 0.5535 - cnn_accuracy: 0.8233"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "132/438 [========>.....................] - ETA: 1s - loss: 0.6928 - ae_loss: 0.1397 - cnn_loss: 0.5531 - cnn_accuracy: 0.8236"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "140/438 [========>.....................] - ETA: 1s - loss: 0.6925 - ae_loss: 0.1397 - cnn_loss: 0.5528 - cnn_accuracy: 0.8238"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "148/438 [=========>....................] - ETA: 1s - loss: 0.6923 - ae_loss: 0.1397 - cnn_loss: 0.5526 - cnn_accuracy: 0.8240"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "156/438 [=========>....................] - ETA: 1s - loss: 0.6919 - ae_loss: 0.1397 - cnn_loss: 0.5522 - cnn_accuracy: 0.8241"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "164/438 [==========>...................] - ETA: 1s - loss: 0.6915 - ae_loss: 0.1397 - cnn_loss: 0.5518 - cnn_accuracy: 0.8243"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "172/438 [==========>...................] - ETA: 1s - loss: 0.6911 - ae_loss: 0.1397 - cnn_loss: 0.5514 - cnn_accuracy: 0.8245"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "181/438 [===========>..................] - ETA: 1s - loss: 0.6907 - ae_loss: 0.1397 - cnn_loss: 0.5510 - cnn_accuracy: 0.8247"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "189/438 [===========>..................] - ETA: 1s - loss: 0.6903 - ae_loss: 0.1397 - cnn_loss: 0.5506 - cnn_accuracy: 0.8248"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 1s - loss: 0.6901 - ae_loss: 0.1397 - cnn_loss: 0.5504 - cnn_accuracy: 0.8248"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "205/438 [=============>................] - ETA: 1s - loss: 0.6899 - ae_loss: 0.1398 - cnn_loss: 0.5501 - cnn_accuracy: 0.8249"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "214/438 [=============>................] - ETA: 1s - loss: 0.6896 - ae_loss: 0.1398 - cnn_loss: 0.5498 - cnn_accuracy: 0.8250"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "222/438 [==============>...............] - ETA: 1s - loss: 0.6893 - ae_loss: 0.1398 - cnn_loss: 0.5495 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "230/438 [==============>...............] - ETA: 1s - loss: 0.6890 - ae_loss: 0.1398 - cnn_loss: 0.5492 - cnn_accuracy: 0.8252"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "239/438 [===============>..............] - ETA: 1s - loss: 0.6886 - ae_loss: 0.1398 - cnn_loss: 0.5489 - cnn_accuracy: 0.8253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "248/438 [===============>..............] - ETA: 1s - loss: 0.6883 - ae_loss: 0.1398 - cnn_loss: 0.5485 - cnn_accuracy: 0.8254"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "257/438 [================>.............] - ETA: 1s - loss: 0.6880 - ae_loss: 0.1398 - cnn_loss: 0.5482 - cnn_accuracy: 0.8255"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "265/438 [=================>............] - ETA: 1s - loss: 0.6878 - ae_loss: 0.1398 - cnn_loss: 0.5480 - cnn_accuracy: 0.8256"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "273/438 [=================>............] - ETA: 1s - loss: 0.6876 - ae_loss: 0.1398 - cnn_loss: 0.5478 - cnn_accuracy: 0.8256"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 1s - loss: 0.6874 - ae_loss: 0.1398 - cnn_loss: 0.5476 - cnn_accuracy: 0.8257"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "289/438 [==================>...........] - ETA: 0s - loss: 0.6872 - ae_loss: 0.1398 - cnn_loss: 0.5474 - cnn_accuracy: 0.8257"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "297/438 [===================>..........] - ETA: 0s - loss: 0.6870 - ae_loss: 0.1398 - cnn_loss: 0.5472 - cnn_accuracy: 0.8257"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "306/438 [===================>..........] - ETA: 0s - loss: 0.6868 - ae_loss: 0.1399 - cnn_loss: 0.5470 - cnn_accuracy: 0.8257"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "314/438 [====================>.........] - ETA: 0s - loss: 0.6867 - ae_loss: 0.1399 - cnn_loss: 0.5468 - cnn_accuracy: 0.8258"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "322/438 [=====================>........] - ETA: 0s - loss: 0.6865 - ae_loss: 0.1399 - cnn_loss: 0.5467 - cnn_accuracy: 0.8258"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "330/438 [=====================>........] - ETA: 0s - loss: 0.6864 - ae_loss: 0.1399 - cnn_loss: 0.5465 - cnn_accuracy: 0.8258"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "338/438 [======================>.......] - ETA: 0s - loss: 0.6863 - ae_loss: 0.1399 - cnn_loss: 0.5464 - cnn_accuracy: 0.8258"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "346/438 [======================>.......] - ETA: 0s - loss: 0.6861 - ae_loss: 0.1399 - cnn_loss: 0.5463 - cnn_accuracy: 0.8258"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "354/438 [=======================>......] - ETA: 0s - loss: 0.6860 - ae_loss: 0.1399 - cnn_loss: 0.5461 - cnn_accuracy: 0.8258"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "362/438 [=======================>......] - ETA: 0s - loss: 0.6859 - ae_loss: 0.1399 - cnn_loss: 0.5460 - cnn_accuracy: 0.8258"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "370/438 [========================>.....] - ETA: 0s - loss: 0.6859 - ae_loss: 0.1399 - cnn_loss: 0.5459 - cnn_accuracy: 0.8259"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "378/438 [========================>.....] - ETA: 0s - loss: 0.6858 - ae_loss: 0.1399 - cnn_loss: 0.5459 - cnn_accuracy: 0.8259"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "386/438 [=========================>....] - ETA: 0s - loss: 0.6857 - ae_loss: 0.1399 - cnn_loss: 0.5458 - cnn_accuracy: 0.8259"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "394/438 [=========================>....] - ETA: 0s - loss: 0.6857 - ae_loss: 0.1399 - cnn_loss: 0.5457 - cnn_accuracy: 0.8259"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "402/438 [==========================>...] - ETA: 0s - loss: 0.6856 - ae_loss: 0.1399 - cnn_loss: 0.5457 - cnn_accuracy: 0.8259"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "410/438 [===========================>..] - ETA: 0s - loss: 0.6856 - ae_loss: 0.1400 - cnn_loss: 0.5456 - cnn_accuracy: 0.8259"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "418/438 [===========================>..] - ETA: 0s - loss: 0.6855 - ae_loss: 0.1400 - cnn_loss: 0.5456 - cnn_accuracy: 0.8259"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "426/438 [============================>.] - ETA: 0s - loss: 0.6855 - ae_loss: 0.1400 - cnn_loss: 0.5455 - cnn_accuracy: 0.8259"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "434/438 [============================>.] - ETA: 0s - loss: 0.6854 - ae_loss: 0.1400 - cnn_loss: 0.5454 - cnn_accuracy: 0.8259"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.6854 - ae_loss: 0.1400 - cnn_loss: 0.5454 - cnn_accuracy: 0.8259 - val_loss: 0.5574 - val_ae_loss: 0.1500 - val_cnn_loss: 0.4074 - val_cnn_accuracy: 0.8683\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 30/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 2s - loss: 0.6634 - ae_loss: 0.1374 - cnn_loss: 0.5260 - cnn_accuracy: 0.8125"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  9/438 [..............................] - ETA: 2s - loss: 0.6382 - ae_loss: 0.1383 - cnn_loss: 0.4999 - cnn_accuracy: 0.8248"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 17/438 [>.............................] - ETA: 2s - loss: 0.6448 - ae_loss: 0.1382 - cnn_loss: 0.5066 - cnn_accuracy: 0.8279"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 2s - loss: 0.6545 - ae_loss: 0.1385 - cnn_loss: 0.5160 - cnn_accuracy: 0.8276"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 33/438 [=>............................] - ETA: 2s - loss: 0.6620 - ae_loss: 0.1386 - cnn_loss: 0.5233 - cnn_accuracy: 0.8264"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 42/438 [=>............................] - ETA: 2s - loss: 0.6693 - ae_loss: 0.1388 - cnn_loss: 0.5306 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 2s - loss: 0.6732 - ae_loss: 0.1388 - cnn_loss: 0.5344 - cnn_accuracy: 0.8246"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 58/438 [==>...........................] - ETA: 2s - loss: 0.6757 - ae_loss: 0.1389 - cnn_loss: 0.5368 - cnn_accuracy: 0.8244"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 66/438 [===>..........................] - ETA: 2s - loss: 0.6770 - ae_loss: 0.1389 - cnn_loss: 0.5382 - cnn_accuracy: 0.8244"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 74/438 [====>.........................] - ETA: 2s - loss: 0.6780 - ae_loss: 0.1389 - cnn_loss: 0.5391 - cnn_accuracy: 0.8245"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 82/438 [====>.........................] - ETA: 2s - loss: 0.6789 - ae_loss: 0.1389 - cnn_loss: 0.5400 - cnn_accuracy: 0.8245"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 90/438 [=====>........................] - ETA: 2s - loss: 0.6796 - ae_loss: 0.1389 - cnn_loss: 0.5407 - cnn_accuracy: 0.8246"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 98/438 [=====>........................] - ETA: 2s - loss: 0.6799 - ae_loss: 0.1389 - cnn_loss: 0.5410 - cnn_accuracy: 0.8247"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "107/438 [======>.......................] - ETA: 2s - loss: 0.6802 - ae_loss: 0.1390 - cnn_loss: 0.5412 - cnn_accuracy: 0.8248"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "115/438 [======>.......................] - ETA: 2s - loss: 0.6800 - ae_loss: 0.1390 - cnn_loss: 0.5410 - cnn_accuracy: 0.8251"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "124/438 [=======>......................] - ETA: 1s - loss: 0.6797 - ae_loss: 0.1390 - cnn_loss: 0.5407 - cnn_accuracy: 0.8253"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "132/438 [========>.....................] - ETA: 1s - loss: 0.6794 - ae_loss: 0.1390 - cnn_loss: 0.5404 - cnn_accuracy: 0.8255"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "141/438 [========>.....................] - ETA: 1s - loss: 0.6790 - ae_loss: 0.1390 - cnn_loss: 0.5400 - cnn_accuracy: 0.8257"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "149/438 [=========>....................] - ETA: 1s - loss: 0.6788 - ae_loss: 0.1390 - cnn_loss: 0.5398 - cnn_accuracy: 0.8258"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "158/438 [=========>....................] - ETA: 1s - loss: 0.6786 - ae_loss: 0.1391 - cnn_loss: 0.5395 - cnn_accuracy: 0.8259"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "167/438 [==========>...................] - ETA: 1s - loss: 0.6783 - ae_loss: 0.1391 - cnn_loss: 0.5393 - cnn_accuracy: 0.8260"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "175/438 [==========>...................] - ETA: 1s - loss: 0.6782 - ae_loss: 0.1391 - cnn_loss: 0.5391 - cnn_accuracy: 0.8261"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 1s - loss: 0.6782 - ae_loss: 0.1391 - cnn_loss: 0.5391 - cnn_accuracy: 0.8262"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "191/438 [============>.................] - ETA: 1s - loss: 0.6781 - ae_loss: 0.1391 - cnn_loss: 0.5390 - cnn_accuracy: 0.8263"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "199/438 [============>.................] - ETA: 1s - loss: 0.6781 - ae_loss: 0.1391 - cnn_loss: 0.5390 - cnn_accuracy: 0.8264"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "206/438 [=============>................] - ETA: 1s - loss: 0.6781 - ae_loss: 0.1391 - cnn_loss: 0.5390 - cnn_accuracy: 0.8264"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "214/438 [=============>................] - ETA: 1s - loss: 0.6781 - ae_loss: 0.1392 - cnn_loss: 0.5389 - cnn_accuracy: 0.8265"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "222/438 [==============>...............] - ETA: 1s - loss: 0.6781 - ae_loss: 0.1392 - cnn_loss: 0.5389 - cnn_accuracy: 0.8265"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "230/438 [==============>...............] - ETA: 1s - loss: 0.6781 - ae_loss: 0.1392 - cnn_loss: 0.5389 - cnn_accuracy: 0.8266"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "238/438 [===============>..............] - ETA: 1s - loss: 0.6780 - ae_loss: 0.1392 - cnn_loss: 0.5388 - cnn_accuracy: 0.8266"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "246/438 [===============>..............] - ETA: 1s - loss: 0.6779 - ae_loss: 0.1392 - cnn_loss: 0.5387 - cnn_accuracy: 0.8267"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "254/438 [================>.............] - ETA: 1s - loss: 0.6778 - ae_loss: 0.1392 - cnn_loss: 0.5386 - cnn_accuracy: 0.8267"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "262/438 [================>.............] - ETA: 1s - loss: 0.6777 - ae_loss: 0.1393 - cnn_loss: 0.5385 - cnn_accuracy: 0.8268"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "270/438 [=================>............] - ETA: 1s - loss: 0.6776 - ae_loss: 0.1393 - cnn_loss: 0.5383 - cnn_accuracy: 0.8269"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "278/438 [==================>...........] - ETA: 1s - loss: 0.6774 - ae_loss: 0.1393 - cnn_loss: 0.5381 - cnn_accuracy: 0.8269"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "286/438 [==================>...........] - ETA: 0s - loss: 0.6773 - ae_loss: 0.1393 - cnn_loss: 0.5380 - cnn_accuracy: 0.8270"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "294/438 [===================>..........] - ETA: 0s - loss: 0.6773 - ae_loss: 0.1393 - cnn_loss: 0.5379 - cnn_accuracy: 0.8270"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "302/438 [===================>..........] - ETA: 0s - loss: 0.6772 - ae_loss: 0.1393 - cnn_loss: 0.5378 - cnn_accuracy: 0.8270"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "310/438 [====================>.........] - ETA: 0s - loss: 0.6771 - ae_loss: 0.1394 - cnn_loss: 0.5377 - cnn_accuracy: 0.8271"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "319/438 [====================>.........] - ETA: 0s - loss: 0.6770 - ae_loss: 0.1394 - cnn_loss: 0.5377 - cnn_accuracy: 0.8271"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "328/438 [=====================>........] - ETA: 0s - loss: 0.6770 - ae_loss: 0.1394 - cnn_loss: 0.5376 - cnn_accuracy: 0.8271"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "337/438 [======================>.......] - ETA: 0s - loss: 0.6769 - ae_loss: 0.1394 - cnn_loss: 0.5375 - cnn_accuracy: 0.8272"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "346/438 [======================>.......] - ETA: 0s - loss: 0.6769 - ae_loss: 0.1394 - cnn_loss: 0.5375 - cnn_accuracy: 0.8272"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "355/438 [=======================>......] - ETA: 0s - loss: 0.6768 - ae_loss: 0.1394 - cnn_loss: 0.5374 - cnn_accuracy: 0.8273"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "364/438 [=======================>......] - ETA: 0s - loss: 0.6768 - ae_loss: 0.1394 - cnn_loss: 0.5373 - cnn_accuracy: 0.8273"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "373/438 [========================>.....] - ETA: 0s - loss: 0.6767 - ae_loss: 0.1395 - cnn_loss: 0.5373 - cnn_accuracy: 0.8273"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "382/438 [=========================>....] - ETA: 0s - loss: 0.6767 - ae_loss: 0.1395 - cnn_loss: 0.5372 - cnn_accuracy: 0.8274"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "391/438 [=========================>....] - ETA: 0s - loss: 0.6767 - ae_loss: 0.1395 - cnn_loss: 0.5372 - cnn_accuracy: 0.8274"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "400/438 [==========================>...] - ETA: 0s - loss: 0.6767 - ae_loss: 0.1395 - cnn_loss: 0.5372 - cnn_accuracy: 0.8274"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "408/438 [==========================>...] - ETA: 0s - loss: 0.6767 - ae_loss: 0.1395 - cnn_loss: 0.5372 - cnn_accuracy: 0.8274"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "417/438 [===========================>..] - ETA: 0s - loss: 0.6767 - ae_loss: 0.1395 - cnn_loss: 0.5371 - cnn_accuracy: 0.8275"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "426/438 [============================>.] - ETA: 0s - loss: 0.6767 - ae_loss: 0.1395 - cnn_loss: 0.5371 - cnn_accuracy: 0.8275"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "435/438 [============================>.] - ETA: 0s - loss: 0.6766 - ae_loss: 0.1396 - cnn_loss: 0.5371 - cnn_accuracy: 0.8275"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 3s 7ms/step - loss: 0.6767 - ae_loss: 0.1396 - cnn_loss: 0.5371 - cnn_accuracy: 0.8275 - val_loss: 0.5631 - val_ae_loss: 0.1516 - val_cnn_loss: 0.4115 - val_cnn_accuracy: 0.8659\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\n",
-      "Duration :  00:01:46 049ms\n"
-     ]
-    }
-   ],
-   "source": [
-    "pwk.chrono_start()\n",
-    "\n",
-    "history = model.fit(noisy_train, [clean_train, class_train],\n",
-    "                 batch_size      = batch_size,\n",
-    "                 epochs          = epochs,\n",
-    "                 verbose         = 1,\n",
-    "                 validation_data = (noisy_test, [clean_test, class_test]),\n",
-    "                 callbacks       = callbacks_list  )\n",
-    "\n",
-    "pwk.chrono_show()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 5 - History"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 12,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:37:28.933787Z",
-     "iopub.status.busy": "2021-03-14T21:37:28.933288Z",
-     "iopub.status.idle": "2021-03-14T21:37:30.711229Z",
-     "shell.execute_reply": "2021-03-14T21:37:30.711728Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE4/figs/AE4-01-history_0</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAGdCAYAAABQEQrmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABW2klEQVR4nO3deZxbdb3/8dcnmUxmbTvdV1ZZylqEQpWtFaQCKnDFBQEBBZRcUNCfehWv4AWpgAKCRBZFRBZZBGRRFq+3gFCWUii0AhW62Ha6MJ2lnT2TfH9/nCTNpJk9M0lm3s/HI4+T8z3fc/JNCM17vud7vsecc4iIiIhkky/XDRAREZHhRwFDREREsk4BQ0RERLJOAUNERESyTgFDREREsk4BQ0RERLJOAUNERESyTgFDRLLKzO40M2dmC3PdFhHJHQUMERERyToFDBEREck6BQwRERHJOgUMEckLZvYfZvaUmX1oZm1mts7M7jGzj3azz0Qzu9bMlplZk5m1mtlaM3vJzP7HzHbOsM9JZvYXM9tkZhEzqzWz98zsPjP74uC+S5GRw3SzMxHJJjO7EzgLeM45N7cX9X3A74CvxIuiwDZgTHw9BlzonPt12n47A4uAKSn7bY3vZ/GyC5xzt6Ts81PghymH2QYEgJL4+ibn3OSe2iwiPVMPhojk2vfwwoUD/huocs5VAdOBB/H+nfqVmR2Vtt9leOHifeAooNg5NxYoBfYHrgQ2Jiqb2S7Af8VXFwATnHOjnHOlwCTgVODJwXiDIiORejBEJKv60oNhZuVANTAK+Jlz7gdp2/3AQuAI4AXn3FEp2/4JzAS+5Jy7vxft+gJwP/Cuc25mH96SiPSDejBEJJeOwwsX7cA16Rudc1HgivjqkWaWevpia3w5hd5J1B9tZmX9aKuI9IEChojkUmIA51LnXF0XdZ4HOtLqA/wlvrzazG42s3lmVtrNa70C1OIFkkVmdr6Z7drfhotI9xQwRCSXJsSX67uq4JxrBbak1Qe4GngMKAZCwN+BrfErSL5rZmPSjlMHnAnUAwcAtwIrzWyDmf3ezI4e+NsRkQQFDBHJB8G+7uCca3POnQR8DO/0yst4A0UT6yvM7MC0ff4C7AKcDzyAN/5jMt4g04VmdtsA3oOIpFDAEJFc+jC+3GG+igQzKwHGpdVPcs697Jz7vnPuY0AVcBrwb7zejt9kqN/gnLvdOfdF59w0YF/g9vjm88zsxH6/GxFJUsAQkVxaEl/uYWbTuqhzFFCUVj8j51yTc+6PeD0UAAfHr1Tpbp9/OufOx+sBAdCpEpEsUMAQkVx6Bu/qjgDw3fSN8ctU/zu++oJzLnVei+JujtuSqIY3RqOn+qn79Pl0jYjsSAFDRAZLwMzGd/fAuzz1qnj9b5rZpWZWARDv0bgPbw6MGPCjtOMvM7OrzGx2IjyY51Dgpnid11KuTrnAzJ42sy+bWfLSVjMbY2Y/BObGi57O7scgMjJpoi0RyaqUibZ6Yx7wAnAHnacKT53yOwZc5JwLp71OPTA6ZZ8GoBKvNwSgBjjGOfdWvP7FwPUph2gCImyfkhzgNufc13vZdhHpRlHPVUREBk98Mq2zzOwxvLETB+NNvrUBeA74hXPu9Qy7ngTMxxujsRPedN/twDt4c2Rc75zbnFL/XqAROBbvMtUpQEX8dV4Dfuuceyzrb1BkhFIPhoiIiGSdxmCIiIhI1ilgiIiISNYpYIiIiEjWKWCIiIhI1ilg9FEoFHKhUEgjY0VERLqhy1T7TyFDRERGEutLZfVgiIiISNYpYIiIiEjWKWCIiIhI1ilgiIiISNZpkGeWRCIR1q1bR2tra66bUlBKSkqYPn06gUCg58oiIlIwFDCyZN26dVRWVrLLLrtg1qeBtiOWc44tW7awbt06dt1111w3R0REskinSLKktbWVcePGKVz0gZkxbtw49fqIiAxDChhZpHDRd/rMRESGJwWMYaSioiLXTRAREQEUMERERGQQKGAMQ845vvvd77Lffvux//77c//99wOwYcMGjjrqKGbNmsV+++3HCy+8QDQa5eyzz07Wvf7663PcehERGQ50FckgmH/Fk4N27Kf/+8Qe6zz88MO8+eabLF26lJqaGmbPns1RRx3Fvffey/z587n00kuJRqM0Nzfz5ptvsn79epYtWwZAfX39oLVdRERGDvVgDEP/+Mc/OO200/D7/UyaNImjjz6a1157jdmzZ/O73/2Oyy+/nLfffpvKykp22203Vq5cyUUXXcRTTz3FqFGjct18EREZBnIeMMzsB2b2oJmtNDNnZqv7uP/c+H7dPQ7vZf0nsv4Gc8C5zDd6Peqoo3j++eeZNm0aZ555JnfddRdVVVUsXbqUuXPncvPNN3PuuecOcWtFRGQ4yodTJFcBtcASYEw/9n8HODNDeRC4DagBXs2w/TbghbSydf14/R305jRGwoa6Zra1tAMwaUwZo8uKB/z6Rx11FLfeeitnnXUWtbW1PP/881x77bWsWbOGadOmcd5559HU1MSSJUs44YQTKC4u5nOf+xy77747Z5999oBfX0REJB8Cxu7OuZUAZrYM6NO1ls65TcDd6eVmdhpeD81dzrlIhl0XOed22G+oBfzb54HoiMaycsxTTjmFRYsWceCBB2JmXHPNNUyePJnf//73XHvttQQCASoqKrjrrrtYv34955xzDrGY99oLFizIShtERGRky3nASISLQZDo6/9NVxXMrByIOudyNpVkkX/7WarIAANGY2Mj4E1ede2113Lttdd22n7WWWdx1lln7bDfkiVLBvS6IiIi6XI+BmMwmNmuwDzgH86597qo9kugEWgxsxVm9i3LwbSSgZSAka0eDBERkVwblgED+CpgZO69iACPAd8DPgt8A6gHbgDu6OqAZna+mS3OdkOz2YMhIiKSL4ZdwDAzP3A2sBV4MH27c+5F59xJzrlbnXOPO+duBeYATwNnm9kRmY7rnLvNOXdIttvbuQfDdXkFiIiISCEZdgEDmA9MB+5zzjX3ZgfnXAxIjG48YbAalonPZ/h9lmgHHTEFDBERKXzDMWB8Lb7scnBnF1bHl+Oz15TeKdI4DBERGWaGVcAws4nAZ4C3nHN9HS+xR3y5Kbut6llA4zBERGSYKaiAYWZTzGxvMyvrospXgADdX5o6LkNZELg8vvr4QNvZV+rBEBGR4Sbn82CY2ZnAzvHVCUCxmf0ovr7GOfeHlOoLgLPwLkFdmOFwXwVayTDxVoqnzKwaeB2oBqYCZ+D1YNzknMs06+egyqcejLlz5/Lzn/+cQw7J+nhWEREZQXIeMPDGTBydVnZFfPkc8Ad6wcw+DswE7nXO1XVT9SHgZOAivKnJm4A3gMucc/f1utVZ1OlKkg4N8hQRkcKX84DhnJvbh7pn412CmmnbS3hzX/R0jKuBq3v7mv1y7qf6VL0C2LO3lX/zVLebTz75ZNauXUtrayvf+ta3OP/883nmmWe47LLLaGtrY/fdd+d3v/sdFRU9z8h+3333cdVVV+Gc48QTT+Tqq68mGo3yta99jcWLF2NmfPWrX+WSSy7hxhtv5JZbbqGoqIh99tmHP/7xj719RyIiMgzlPGBIdt1xxx2MHTuWlpYWZs+ezUknncSVV17J3/72N8rLy7n66qu57rrr+PGPf9ztcaqrq/n+97/P66+/TlVVFccddxyPPvooM2bMYP369SxbtgyA+vp6AH72s5+xatUqgsFgskxEREaughrkKT278cYbOfDAA5kzZw5r167l9ttv55///CeHH344s2bN4ve//z1r1qzp8TivvfYac+fOZcKECRQVFXH66afz/PPPs9tuu7Fy5UouuuginnrqKUaNGgXAAQccwOmnn87dd99NUZFyq4jISKdfgsHQw2mMTFZv3kZ7RxSAncZXUFLc9/80Cxcu5G9/+xuLFi2irKyMuXPncuCBB/LJT36S++7r2/CSrmYUraqqYunSpTz99NPcfPPNPPDAA9xxxx08+eSTPP/88zz22GNcccUVLF++XEFDRGQEUw9GnkifMrw/GhoaqKqqoqysjHfffZeXX36Z1tZWXnzxRd5//30AmpubWbFiRY/HOuyww3juueeoqakhGo1y3333cfTRR1NTU0MsFuNzn/scV1xxBUuWLCEWi7F27VrmzZvHNddcQ319ffLOriIiMjLpT8w8UVRk0OY97++lqp/61Ke45ZZbOOCAA9hrr72YM2cOEyZM4M477+S0006jrc17gSuvvJI99+x+WOmUKVNYsGAB8+bNwznHCSecwEknncTSpUs555xziMW8Ni5YsIBoNMoZZ5xBQ0MDzjkuueQSxowZ06/3ICIiw4Pp5lp9EwqFHEA4HO5U/s477zBz5sx+H7e2sZWara0AjCkPMnF06QBaWVgG+tmJiMiQ6PFKzVQ6RZInNJuniIgMJzpFkieGejbPU045hVWrVnUqu/rqq5k/f/6gv7aIiAx/Chh5Yqh7MB555JFBfw0RERm5dIokTxT5DDPv9FY05ojFNDZGREQKlwJGnjAzivzbx8/k+qZnIiIiA6GAkUcCGugpIiLDhAJGHinKo9u2i4iIDIQCRh7J5x6MuXPnsnjx4lw3Q0RECoQCRh7p3IOhQZ4iIlK4dJnqINj/9/sP2rHfPuvtbrffdddd/PznP8fMOOCAA/D7/YwaNYrFixezceNGrrnmGk499VQWLlzI5Zdfzvjx41m2bBkHH3wwd999d/JKlu7cd999XHXVVTjnOPHEE7n66quJRqN87WtfY/HixZgZX/3qV7nkkku48cYbueWWWygqKmKfffbhj3/8Y7Y+ChERyWMKGMPI8uXL+elPf8qLL77I+PHjqa2t5dvf/jYbNmzgH//4B++++y6f/exnOfXUUwF44403WL58OVOnTuXwww/nxRdf5Igjjuj2Naqrq/n+97/P66+/TlVVFccddxyPPvooM2bMYP369SxbtgyA+vp6AH72s5+xatUqgsFgskxERIY/nSIZRv7+979z6qmnMn78eADGjh0LwMknn4zP52OfffZh06ZNyfqHHnoo06dPx+fzMWvWLFavXt3ja7z22mvMnTuXCRMmUFRUxOmnn87zzz/PbrvtxsqVK7nooot46qmnGDVqFAAHHHAAp59+Onfffbdu3y4iMoLoX/xB0NNpjO6s3LQ1OcBzl4mVFBf5e72vcy7jKY5gMNipTqZyv99PR0dHr14jk6qqKpYuXcrTTz/NzTffzAMPPMAdd9zBk08+yfPPP89jjz3GFVdcwfLlyxU0RERGAPVg5JmBXElyzDHH8MADD7BlyxYAamtrs9o2gMMOO4znnnuOmpoaotEo9913H0cffTQ1NTXEYjE+97nPccUVV7BkyRJisRhr165l3rx5XHPNNdTX19PY2Jj1NomISP7Rn5J5ZiBXkuy7775ceumlHH300fj9fg466KBsN48pU6awYMEC5s2bh3OOE044gZNOOomlS5dyzjnnEIt5oWjBggVEo1HOOOMMGhoacM5xySWXMGbMmKy3SURE8o911eUtmYVCIQcQDoc7lb/zzjvMnDlzwMev2dpCbWMbAOMqSxhXWTLgY+a7bH12IiIyqHq+zDCFTpHkGc3mKSIiw4FOkeSZXM/mecopp7Bq1apOZVdffTXz588f8raIiEjhUsDIoq6u4uiLXPdgPPLII0P6ejpFJyIyPOkUSZaUlJSwZcuWAf9gdu7BcMP6B9g5x5YtWygpGf7jTERERhr1YGTJ9OnTWbduHR9++OGAj/Xh1hbiF2PQVluC3zewXpF8VlJSwvTp03PdDBERyTIFjCwJBALsuuuuWTnWr25/gfc3bgXgurM/xswZY7NyXBERkaGiUyR5aNLo0uTzzQ0tOWyJiIhI/yhg5KGJY8qSzxUwRESkEClg5KGJKT0YmxQwRESkAOU8YJjZD8zsQTNbaWbOzFb34xgL4/tmehySof5oM7vJzNabWauZLTezC2yg15j2w01v3MRFf7+IU/58CrWt3r1DdIpEREQKXT4M8rwKqAWWAGMGcJwa4JIM5StTV8ysGHgWOAi4CXgHOB4IA5OAywfQhj5buHYhK+pWALBu2zrGlozt3INRr4AhIiKFJx8Cxu7OuZUAZrYMqOjncZqcc3f3ot65wGzgm865m+Jlt5vZn4AfmtnvnHNr+tmGPptROSMZMNZuW8sBEw7YoQcjGxN4iYiIDKWcnyJJhItsMDOfmY3q4VTHl4Fm4Pa08huAAPDFbLWnN2ZUzkg+X7ttLQCVpQFKAn4AWiNRtrVEhrJJIiIiA5bzgJFF04BGoAFoNLOHzWzv1Apm5gM+CrzhnGtN2/9VIIbXuzFkUgPGum3rADAzDfQUEZGCNlwCxirgGuAc4PN44ymOB14xs/1T6lUBpcD69AM459qALXhBZchMr9g+i2WiBwNg0hgN9BQRkcI1LAKGc+4c59ylzrn7nXMPOee+CxyHN57jupSqiQkm2ro4VGtKnU7M7HwzW5y1Rsdl6sEAXaoqIiKFbVgEjEyccy8AzwPzzCzxa90cXwa72K0kpU768W5zzu1wyetATa6YjN+88RabWzbT2uGdudGlqiIiUsiGbcCIWw348U6NANQBLWQ4DWJmQWAcGU6fDKaAL8Dk8snJ9fWN3stPGp0ym2d9xswjIiKSt4Z7wNgD6MCbZwPnXAxvvo2D4oEi1aF4n0fWT4P0JNOVJBPH6BSJiIgUroIKGGY2xcz2NrOylLLRZvFzDJ3rnggcDjybdsXIfXjjLM5P2+VivDDyQNYb3oNM4zB0ikRERApZzifaMrMzgZ3jqxOAYjP7UXx9jXPuDynVFwBnAfOAhfGyecB1ZvY43qydHXi9EWfgze55cdpL3o53tcl1ZrYL3kyeJwCnAFc651Zl67311vTKHa8kqaoIEvD7iERjbG2J0NreQUlxzv9ziYiI9Eo+/GJ9DTg6reyK+PI54A907z3gdeDTeFN9B4B1wC3AVc65TmMqnHPtZnYscCVwGt64iw+Ai4Cb+/82+i/TKRKfGeNHlbChzht/samhhZ0nVOaieSIiIn2W84DhnJvbh7pnA2enlb2DN/dFX16zHrgw/si5TAEDvNMkiYCxWQFDREQKSEGNwRiuUifbWt+4npiLAZoLQ0RECpcCRh6oKK6gKuhdSRuJRdjcvBlIG+ipu6qKiEgBUcDIE7pUVUREhhMFjDyReiVJ4lLVibpUVURECpQCRp7IdKlqp9k8FTBERKSAKGDkiUynSMaPKsHiZVu2tRKJxnLQMhERkb5TwMgTmWbzDPh9jKssAcABNVtbM+0qIiKSdxQw8kTqpaprG7fPhdH5UlXd9ExERAqDAkaemFA2gaDfu/9aQ1sDW9u3AhroKSIihUkBI0/4zNepFyPjTc80F4aIiBQIBYw80tNcGBvVgyEiIgVCASOPZL5UVadIRESk8Chg5BFNtiUiIsOFAkYeyXSpamoPxocNLcScG/J2iYiI9JUCRh7JdIqkpLiIUaUBADpijtptbTlpm4iISF8oYOSR6RXTsfjcnRubNxKJRgDNhSEiIoVHASOPFPuLmVQ+CYCYi1HdVA1ooKeIiBQeBYw802lGz+SlqrrpmYiIFBYFjDyTcS6MTqdIFDBERCT/KWDkmZ6uJFEPhoiIFAIFjDzTYw+GpgsXEZECoICRZ3ozm6fTXBgiIpLnFDDyTGoPxvrG9TjnqCwNUBLwA9AaibKtJZKr5omIiPSKAkaeGR0cTWVxJQAtHS1sad2CmWmgp4iIFBQFjDyU6VLVyWM00FNERAqHAkYe0qWqIiJS6BQw8lCmS1UnjtZkWyIiUjgUMPJQj1eS1Ot+JCIikt8UMPJQxlMkY3SKRERECocCRh7SbJ4iIlLoFDDy0KSySRT5igDY0rqF5kgzVRVBAn7vP9fWlgit7R25bKKIiEi3ch4wzOwHZvagma00M2dmq/u4f5WZfcvMnjGztWbWYmbvmdltZjYjQ/258dfJ9Hgia29sAPw+P9MqpiXX125bi8+M8aNKkmU6TSIiIvmsKNcNAK4CaoElwJh+7H8Y8Avgf4FfATXAfsDXgS+Y2cedc//MsN9twAtpZev68fqDYnrldNZsXQPAusZ17DV2LyaNLmVDnTfAc3NDCztPqMxlE0VERLqUDwFjd+fcSgAzWwZU9HH/d4G9nHMfpBaa2ZPAs8D/AKdm2G+Rc+7ufrR3SMyoyHSpqgZ6iohIYch5wEiEiwHsv7qL8r+ZWS1eb0ZGZlYORJ1zrQNpw2Do+VJVBQwREclfOR+DMVjMbDRQCWzqosovgUagxcxWxMdx2JA1sAcZJ9vSpaoiIlIgct6DMYh+BASA36eVR4DHgL8A1cBU4GvADcAs4Jwha2E3epouXJeqiohIPhuWPRhmdirwHeBp4Hep25xzLzrnTnLO3eqce9w5dyswJ173bDM7ootjnm9miwe77QmpV5FUN1bTEetgkqYLFxGRAjHsAoaZnQDcA7wOfME553raxzkXAxbEV0/oos5tzrlDstbQHpQFyhhfOh6ADtfBpuZNjB9VQuIczpZtrUSisaFqjoiISJ8Mq4BhZp8CHgaWA8c557b2YffV8eX4bLerv9JPkwT8PsZVenNhOKBma96NTRUREQGGUcAws/nAI3iXrR7rnKvr4yH2iC+7GhQ65Hq+bbtueiYiIvmpoAKGmU0xs73NrCyt/DjgUWAFcIxzrrabY4zLUBYELo+vPp61Bg/Q9IodL1XVQE8RESkEOb+KxMzOBHaOr04Ais3sR/H1Nc65P6RUXwCcBcwDFsb3PwT4M2B4AzqPT7/aNG1CrafMrBpvjEbiKpIz8HowbnLOvZq1NzdAqXNhZLzpmebCEBGRPJXzgIF3iejRaWVXxJfPAX+ge/sBiZt0XN9FndSA8RBwMnAR3tTkTcAbwGXOuft61eIhorkwRESkUOU8YDjn5vah7tnA2WlldwJ39uEYVwNX97Z+LqXP5umc023bRUSkIBTUGIyRZlzJOEqLvEDRGGmkoa1B9yMREZGCoICRx8xshytJUnswara2Eut5mg8REZEhp4CR59KvJCkpLmJUaQCASDRGXWNbrpomIiLSJQWMPNdpoGejbtsuIiKFQQEjz2WabEuXqoqISL5TwMhzGWfzHLN9njH1YIiISD5SwMhzmSbb0nThIiKS7xQw8tyUiin4zQ/A5ubNtEXbNBeGiIjkPQWMPBfwBZhcPhkAh2P9tvWdezA0BkNERPKQAkYBSJ/Rc9KYzj0YTnNhiIhInlHAKADpl6pWlgQoLfZOm7RGomxrieSqaSIiIhkpYBSA9CtJzKzTaZJ/1zTmolkiIiJdUsAoAOmzeQLsOWVMsuypN9YOdZNERES6pYBRADLdtv3Th+ycLFu4vJraxtYhb5eIiEhXFDAKQHrAiLkYe08bw8zpYwDvniRPvv7vHLVORERkRwoYBaCiuIKqYBUA7bF2NjdvBuCUQ3dN1nni9TW0d0Rz0j4REZF0ChgFItOMnkfMnMyEUSUA1De1s3B5dU7aJiIikk4Bo0Ckz4UB4Pf5+OzsXZLlj7yyWnNiiIhIXlDAKBCZbnoG8KmDZhAMeHNirNy0lbfW1A5520RERNIpYBSI1EtV1zWuSz4fVVrMJw+Yllx/5JVVQ9ouERGRTBQwCkSmS1UTTkoZ7Pnyik1U1zYNWbtEREQyUcAoEF2dIgHYaXwFsz8yAQAH/Pm11UPYMhERkR0pYBSICWUTKPYVA1DfVs+29m2dtqdesvrMm+toatP9SUREJHcUMAqEz3wZL1VN+Ohu49lpfAUAze0dPP1m5+0iIiJDSQGjgHR3msTMOOWw7b0Yf351FdGYLlkVEZHcUMAoIN0FDIBP7D+NytIAABvrW3hlxaYha5uIiEgqBYwC0ukUSeOOp0BKAn5O+OhOyfVHXtUlqyIikhtFfd0hFApVAVOAD8LhcFtK+TnAyUATcEM4HH41W40UT089GACfOWRnHlq0kmjM8daaWt7f0MBHpoweqiaKiIgA/evBuAp4JXXfUCh0EfAb4DPAl4CFoVBon6y0UJK6G+SZMGFUKUfOnJJcf/TV1YPdLBERkR30J2AcDvxvOBxuSSn7f8B64CjgC/Gybw+wbZJmWsU0DANgQ9MGIrHMl6KmDvZcuLya2sbWIWmfiIhIQn8CxjQgeXI/3lMxA7gpHA7/IxwOPwQ8jhc2JIuC/iATyyYCEHMxNjRuyFhv72ljmDl9DACRaIwnX//3UDVRREQE6F/AKAVS/yQ+HG8Cyb+llH2AF0Qky3ozDgM6T7z1xOtraO+IDmq7REREUvUnYKwH9k5Znw9sBZamlFUBqadQumRmPzCzB81spZk5M1vdjzZhZieY2Utm1mRmtfFj7tpF3dFmdpOZrTezVjNbbmYXmJn157WHUm/GYQAcMXMyE0aVAFDf1M7C5dWD3jYREZGEPl9FAvwfcFYoFLoQryfjs8CfwuFwLKXOR4Cu/7zu7CqgFlgCjOlHezCz/wAewgs53wVGAxcDL5rZIc656pS6xcCzwEHATcA7wPFAGJgEXN6fNgyV3vZg+H0+Pjt7F377v+8C8Mgrq/nkAdMpgAwlIiLDQH96MBYAjcAvgdvwQsbliY2hUGgicDTwUi+Pt7tzbpxz7pNAn//MNrMAXlBYCxzpnAs75xbg9axkCgznArOBbzvnvu2cu9059x/Aw8APzWznvrZhKPU2YAB86qAZBAN+AFZu2spba2oHtW0iIiIJfQ4Y4XB4FbAv8C3gm8B+4XD4vZQqOwM3A3f25njOuZV9bUOao4GpwG+cc40px30TWAh8MR5CEr4MNAO3px3nBiAAfHGA7RlUnQJGY/cBY1RpMZ88YPtQmEde0cRbIiIyNPpzioRwOLwR+FUX214DXhtIo/podny5KMO2l4FPAHsCy83MB3wUWOKcS79281UglnK8vDS9ovMYDOdct6c9Tjp0V56IX0Xy8opNVNc2MXVs+aC3U0RERrasTRUeCoXGh0KhU0Kh0PxQKOTP1nF7YWp8uT7DtkRZ4s/4KryrYHao65xrA7bQxdUvZna+mS0eWFMHbnRwNJWBSgBaOlrY0rql2/o7ja9g9kcmAN6lPn9+bfUgt1BERKQfASMUCl0QCoVeCYVCY1PKDsYbLPkQ8BfgpVAoNFR/JpfFl20ZtrWm1emubqJ+WaYNzrnbnHOH9KuFWWRmvb6SJCH1ktVn3lxHU1vmCbpERESypT89GF8EXDgcTh0xeC1e78Dv8ALGbOAbA29erzTHl8EM20rS6nRXN1G/uYtteSM1YPQ00BPgo7uNZ6fxFQA0t3fw9Js9hxIREZGB6E/A2AN4K7ESCoXG4w20/G04HD43HA5/Bm8Mxpez08QeJa48yXRqI1GWOCVShzc/xw51zSwIjCPzqZa8kjrQszc9GGbWafrwP7+6imjMDUrbREREoH8BYxywOWX98PjykZSyF/CuJhkKiQGlH8uwbQ7eJGArAJxzMbz5Ng6KB4pUh+J9HjkfZ9GTvlyqmvCJ/adRWepdTLOxvoVXVmwalLaJiIhA/wJGLTA+Zf1ovKsvUue9cGw/PZE1ZjbFzPY2s9RxEs8BG4Bzzawipe6BwFzgQedc6qCD+/DGWZyfdviLgQ7ggWy3O9s6jcFo7N3pjpKAnxM+ulNy/ZFXdcmqiIgMnv5cpvoO8JlQKHQpEMUbk/FaOBzemlJnF2Bjbw5mZmeyvbdjAlBsZj+Kr69xzv0hpfoC4CxgHt4cFzjnImb2LeB+4AUzux0YBVwCfAhclvaStwPnANeZ2S7x93MCcApwpXMu7395+9ODAfCZQ3bmoUUricYcb62p5fHFq/nMIbsMQgtFRGSk60/A+CXwKLAO7y/+MuD7iY3xS1SPoPczeX4Nrxck1RXx5XPAH+iBc+5BM2sBfgT8HO8qkf8Fvu+cW59Wt93MjgWuBE7DO+XzAXAR3gRheW9y2WSKfEV0xDqoaamhOdJMWSDjxS+dTBhVyif2n8azS71ej1/9dTllxUUcc8D0HvYUERHpm/7M5PkY3hUiy4H3gP8XDofvTqlyLN7pkad7czzn3FznnHXxmJtW9+x4+cIMx3nCOTfHOVfmnKtyzp3qnPugi9esd85d6Jyb6pwLOuf2cc79yjlXECMf/T4/0yq2j1Nd1dD7TpfQ/H3Ze9qY5PrPH3uLl97rVWeTiIhIr1mB/KbmjVAo5ADC4XBO2/Gdhd/hmTXPAHDS7idx5RFX9nrfrS3tfO+ul1m1eRsAAb+PK06bzUG7ju9hTxERGcH6dLfMrM3kKUPrzH3OTD5/YuUTrG/s/dW1o0qLuer0Q5lS5Z1WiURjXH7/Yt5ZV5f1doqIyMjUr3uRAIRCoTl4dyY9CO826w3A68DvwuFwb8dfSD/NmjiLQycfyqsbXyXqovz27d/y44/9uNf7j60o4WdnHMZ3fr+Imq2ttEai/Oi+V7n2Kx9jt0mjBrHlIiIyEvSrByMUCl0JvAh8FS9g7ArMwhuw+UIoFLoqWw2Urp1/wPYrbR99/1E2NvVtLMXkMWUsOP0wRpcVA9DY2sEP73mV9VuastpOEREZefpzL5LPAz8E/o3Xg7Eb3g3Edouv/xv4figU+kIW2ykZHDr5UA6ccCAAkViE3y//fZ+PsdP4Cq768qGUBb3OrLqmNv7rnlfY3NCS1baKiMjI0p8ejIuATcDscDh8RzgcXh0Oh9viyzvw7kPyIfCf2Wyo7MjMOvViPLTiIWpaavp8nI9MGc0VX5pNsMj7OmxuaOEH97xCfVNX94QTERHpXn8CxoHAQ+FwOOMvWbz8QbxTJjLIjpx2JDPHzgSgNdrKH/7Z47QhGe2301h+/IVDKPJ5g4TXbWnih/e8SmOr7rwqIiJ915+AUUTPdxxtZgADSKX30nsx/vjuH2loa+jXsQ7ZfQL/9R8HEc8YfLBpKz/+42u0tndko6kiIjKC9CdgvA98OhQKZdw3Xn4C3uyYMgQ+sdMn2H307gA0dzRzzzv39PtYR86cwiWfOSC5vnxtHf/z4Ou0d0QH3E4RERk5+hMw7gNmAn8OhUJ7pG4IhUK7Aw8B+wD3Drx50hs+83HeAecl1+9+524a2xv7fbzjDpzBN47bJ7n++soarn7kTaKx2IDaKSIiI0d/AsZ1wPPAicA7oVDo36FQ6JVQKLQGb+rwk/EuYb0ua62UHs3fZT47VXp3S93Wvo0/vvfHAR3vlMN25cyj90yu/+PdjVz/xNvENPOriIj0Qn/uRdIOfBK4FFgFTMe7cmRGfP1S4Jh4PRkiRb4izt3/3OT6XcvvojnS01CZ7p1+5Ef4jzm7JtefXbqOm/6yjLaITpeIiEj3BnwvklAoVAGMBhrC4XBjvKwEKE67hfuwkC/3IskkEotw4sMnsqFpAwDfm/29TlOK94dzjhueeJun3tx+W/hJo0s579iZHDFzMmZ9mppeREQKV5/+wR/wlR7xUJF+wv/XwJnZOL70XsAX4Gv7fY0rX/FufHbnsjv5wl5fIOgP9vuYZsY3T9yflvYOnvunF1w2NbRw5Z+WcOAu47jguH3YVVOLi4hImsG82Zn+tM2Bk/c4mQmlEwDY3LKZP7//5wEf0+8zvn/KQXzrxP2T04oDLF29hdDtL/Crvy5ja4vOiImIyHa6m+owE/QHOXvfs5Prv337t0RiA58sy+8zTvjoTvw2NJeTD90FX/zUSMzB44vX8NWbF/L44jVEYxoEKiIiChjD0ql7nkpVsAqA6qZqnlz5ZNaOXVka4IL5+/Lr84/koF3HJ8u3tUT41V+X8Z+3v8Bba7Zk7fVERKQwKWAMQ2WBMr6y71eS6795+zdEY9m98mOXiZUsOP1QLvv8wUweU5osX7V5G9+962V++qclumGaiMgIpoAxTH1pry9RWVwJwJqta3hmzTNZfw0z4+N7T+b2C47mrLl7Egz4k9ue/+cGzg0v5O7nVuiyVhGREUgBY5iqKK7g9JmnJ9dve+s2Ym5wZuIsLvLz5SP34Leho5m339RkeVtHjD88/y/O/fVzPLt0nYKGiMgI0qt5MEKhUL9+GcLhsL/nWoUln+fBSFffWs/8P82nucObcOuGeTdwzE7HDPrrLvt3Lb9+ejnvb+w8DUp5sIij953K/Fkz2GvqaM2hISJSWPr0j3ZvezCsHw/JsTElY/ji3l9Mrt/21m0MdGK13thvp7Hc+LUjdristamtg78s+TffuuNFzr/leR5atJK6xrZBb4+IiAy9Ac/kOdIUUg8GQE1LDZ/606doi3o/5L8+9tccMe2IIXv9xtYITyxew9NL11Jdu+PU5X6fcehHJjJ/1gxmf2QCRX6dtRMRyVNDO5On5LfxpeM5dc9Tk7dwv3XprRw+9fAhOz1RURLgS0d8hC8evjvL19bx9Jtref6fG2iNj8eIxhyLVmxi0YpNVJUHOeaAaRx34HR2nlA5JO0TEZHBoR6MPiq0HgyAjU0bOf7h4+mIdQBwx/w7mD15ds7a09LewfP/3MDTb65l+dq6jHX2njaG+bNmcNQ+U6goCQxxC0VEJAP1YEhnk8snc/JHTuahFQ8BXi9GLgNGaXER82fNYP6sGazb0sgzS9fxt7fWsWXb9vEY766v59319dz812UcuMs4Pr73ZD625yTGVZbkrN0iItJ76sHoo0LswQBYt20dn37k00Sdd2riD8f/gVkTZ+W2USmisRhLVtbw9JtrWfTeJjq6mHJ85rQxfGyvyRy+9ySmj6sY4laKiIxoferBUMDoo0INGACX/uNSHvvgMQCOnHYk4WPz8z00NLfzf8vW879vrWfFhoYu6+00voKP7zWJw/eezB5TdNmriMggU8AYTIUcMFY1rOKkR0/C4f03//bB3+ac/c7Jcau6t7mhhUUrNvHSuxt5a00tsS6+r+NHlXhhY6/J7L/zWPw+XY0iIpJlChiDqZADBsAPXvgBT6x8Irn+n7P+k68f8PWC+Ot/a0s7r6zYzEvvbeT1Dz6krSPzzKSVpQEO/chEDt1jIofsPkGDREVEskMBYzAVesBojjRz4d8v5LWNryXLzt3/XL550DcLImQktEaiLPngQ158byMvr9hMY2vmW9L7zNh3RhWH7jGRw/aYyE7jKwrqfYqI5JHCChhm5gO+BXwd2AX4EHgA+LFzrqmHfecC/9fDSxzhnHuxF/WfdM59uqf2FnrAAGjpaOHi/7uYl6pfSpadMfMMvjf7ewX549sRjbHs37W8+N5GXnpvEzVbW7usO2lMKYd+xAsbB+4yjuKiYTebvYjIYCm4gPFL4JvAI8BfgZnARcALwLHOdX2HLjObBHwyw6YgcBtQA0x3zkXi9efiBYzb4sdPtc45t7Cn9g6HgAHQHm3nOwu/w8J1C5Nln9/z8/xozo/wWeGOX3DO8f7Grbzyr828+q/NvFdd32XdYMDPQbuM49A9vNMpE0aVdllXREQKaB4MM9sXL0w87Jz7XEr5KuBG4EvAvV3t75zbBNyd4bin4d1n5a5EuEizyDm3w34jSbG/mOvmXsf3X/g+z655FoAHVzxIe7Sdn3z8J/h9hfmXvZmxx5TR7DFlNGcctQd1jW289oEXNl5fWUNzW0eyblskysv/2szL/9oMwG6TRjF9XDnBgJ+S+COY8ihJW6Y+H1dZQkmgMD8zEZHBkOuJtk7DS0Q3pJXfDvwMOINuAkY3zo0vf9NVBTMrB6LOua7704e5gD/ANUddw3+/+N/JgZ9//uDPtEfb+emRPyXgK/zBkVUVQY47cAbHHTiDSDTG8n/X8sr7XuBYt6XzGbiVm7ayctPWLo7Us3GVQaZUlTO1qoypYzsvyzXQVERGmJyeIjGzp4FjgTLnXFvatheBPZ1zE/p4zF2BD4AXnXNHpm2bi3eKZCswKl78L+Bm4EbXiw9juJwiSRWNRbni5Sv407/+lCw7ZqdjuOaoayj2F3ezZ2FbX9vEq//azKvvb+at1Vu6nNwrG0aXFTOlqqxT6JgSX44uKy7IsS8iMuIUzhgMM3sbmOicm5Rh2wPA54Ggc669D8e8AvgRcLZz7vdp2w4Hvgf8BagGpgJfA2YDdzrnupwUwszOB86/4IILDobhFTAAYi7GglcW8Mf3/pgsO3LakVw/73qC/mAOWzY0mts6eGddHdtaI7RForRGorSlPFq7KGuLRGlu76BmayvRfgaU8mBRpx6PaWPLmTq2jKlV5YwpV/gQkbxRUAHjAyDgnNspw7a7gDOBKudcfS+P5wdW4/VOTHHO7Xh/8B338eEFjvnAkc65f3RXfzj2YCQ457ju9eu4c/mdybLDphzGjfNupCxQlruGFYBoLMbmhlaqa5uormumuq6J6tpmqmub2FjfTHsXc3b0pKy4iKljy7xTL2PL4uGjnPGVJYwpL6a0ONdnOUVkBCmcQZ5AMzCxi20lKXV6az4wHbi1N+ECwDkXM7MF8X1PALoNGMOZmfHtg79N0B/k1rduBeCVDa9wwd8u4OZjbqaiWPf+6Irf52NKVRlTqso4OG1bzDm2bGuluraZDYngkbJsaY92edzm9g7e37iV9zdmHhsSDPgZU15MVXmQMWXFjKnwllUVQcaUBRlTUcyYsiBVFUEqSwP41BsiIkMk1wGjGtjHzILpYzCAaUBNX06P4J3ugG4Gd3ZhdXw5vo/7DTtmxoUHXUjQH+TGN24EYMnmJXz92a8TPjbM6ODoHLew8PjMmDCqlAmjSjlwl3GdtjnnqG9qp7quifW123s9quuaWV/b1Omql0zaIlE21bewqb6lV+0YU17M2AovcFSVBxlbEYyvl1BVEWRsubettNivUzMiMiC5DhivAccBh5IyL4WZlQCzgOd7eyAzmwh8BnjLObe4j+3YI77c1Mf9hq3zDjiPoD/ItYuvBeCtmrc495lzue2Tt1FVUpXj1g0fZub92FcE2XfG2E7bnHM0NLd7YWNLU7LXY0NdM3VNbdQ1thGJ9v7US8w5ahvbqG1Mz/I7Cgb8XvCIB46SgB+fz/B3evi8pW0v86WUF/mNypIAYxLHKQ8yqqwYv0/BRWQkyHXAuB/4IXAxnSe+Og8oA+5JFJjZFGA08O8uTn98BQjQ/aWp45xzW9LKgsDl8dXH+/wOhrGv7PsVgv4gV75yJQDv1r7L6X85nUsOvoRjdzpWf+EOMjNjTHmQMeVB9pm+Y6hzztHc3kF9Yzv1zV7gqG9upz6+7LzeRmNr970hqdoiUTbUeWEmm3wGo8uC3mmdePBInuKJ96iMKQ8yqixAZWkxwSKfvmciBSofZvK8CbgQbybPv+DN5PlN4EXgE4mZPM3sTuAsYF6mGTfN7J/ArsBU51xdF6/1Gt5pmdfZfhXJGXg9GDc5577ZU3uH8yDPrjzyr0e47KXLkndhBdhv3H586+BvMWfKnBy2TPqivSNKfVM7tY1eGKlraov3aLR6641t1Da1Ubutbz0jgyng91FZGog/iqksCXReLw1QWRKgojTAqNJixlV6AUVjTUQGRUEN8gSv92I1cD5wIt703jfh3YukV//KmdnH8YLJvV2Fi7iHgJPxZg8dAzQBbwCXOefu61frR4BT9jiF0qJSfrLoJzRGGgFYtmUZ5z1zHodNOYyLP3ox+43fL8etlJ4UF/mZOLqUiaO7nxLdOUdzW4cXRFJOxURjLvmIxTqvb3/Ey50j0hFjW0skeYy6pja2tWS+KV1XItFYr0/rJAT8PsaPKvHe66hSJoze/nzi6FImjC7t06yr0Zj3eTS1Rmhqi9DU1kFTawct7R0UF/moKAlQXhKgPFiUXBb5C3e6fZFsyXkPRqEZiT0YCfWt9fx22W+59517aY91Hnv7yZ0/yYUHXchuo3fLUeukEESiMRqa2qlraqO+qS0lfMRP6TRtDyLbWiKD1pMyuqyYCfEQMn5UCR1RL0Q0JkJEa4cXKtoi3V7l05WSgJ/ykiLKgwHKS4q8EBJ/Xh4MECzyESjyUeT3EfB7zwPpz+PL4iJ/p23BgJ/iIq9c41lkiBXOPBiFaCQHjISNTRu5ZektPPr+o0Td9n98febjpN1P4oIDL2BKxZQctlCGA+ccbR0xtrW0JwPHtpZ2trVGOq03xtcbmtup2dba516SQub3GcEiP4EiH8VFvuTz1BBSXORLDsr1GclBuIlBuz5LGaCb+txnlAV3DEkV8eelwSKdihp5FDAGkwLGdqsaVvGrN37FM2ue6VRe7CvmS3t/iXP3P1dXnMiQa27r4MOtLWxuaOHDra1sbkg8317W11lXvR9a74e1LH4qpKy4iLZINNnj0Zjs+YgwiLPO5w3D+1wSp4gqSoooC3qniHxmxJzDOUfMeWHRQaf1ZHniOeA3OgeeRBhKCz6pgcjnM+/mhMVFlBb7KQ0UUVLsp7Q4vkxu89YDOn01EAoYg0kBY0fLa5bzyyW/ZNGGRZ3KywPlnLXvWXxln69QHijPUetEOovGHPVNbWxuaGFTQwu121oJFPkoD24PD4kwUR4s6vNf6s45WtqjNLZGdjjt0tQWobG1g/aOKJGOGJFo/NGxfdkR3bG8PWV7W0eU9o4Y7ZEo+te774p8Rkk8bBSl9ez4fJbynB22JQIQQIztQYlOwcnh4oGp07oDM+/hM8PMey0zy1jmI76M9yRVlASoiH8/vVCX1qtUGqC0eNB7lRQwBpMCRtde2fAKv1zyS96uebtT+diSsZwx8wxO2O0EplVMy1HrRIYX5xwdMUd7JB44OqK0dcSIxJftHVHaI94yOTjXpS1TB+6mlXVEYzS3dyRDUmPr9pDU1NpBc3vvL3uWoeEzKEs5jVVeEuAHpxxEVUXW7ielgDGYFDC655zj7//+Oze+cSMrG1busP3ACQdy/K7HM3+X+YwvHfETp4oUrGgslryipqk1kjxF1NTmjYExUv4aN4PkX+k7Lg1v2V3w2eF5ypVLrZEore1RWiMdtLRHaW33li3tHcltLfGy2Aj7zXvw/32SUaVZuyt2wV2mKsOImXHMzsdw9IyjefyDxwkvDbOxaWNy+9IPl7L0w6Vc89o1HDr5UE7Y9QQ+sdMnNAW5SIHx+3yMKi3O5o/XoHPOEYnGkoEjU89Nai9PMsSkPI/FXNppjfTTHJ3DVXJ7vA3bT5nsOB4lsS21TkfM0dLewbaWSKcgl9qr1NgWobElQmtkxyueyoO5+5lXD0YfqQejb9qibTy9+mn+uuqvLKpe1Omqk4SAL8Dh0w7nhF1P4OjpR+vOrSIi/dAR9XqVvODhjQGatWtWe4p1imQwKWD0X11rHc+ueZa/rPoLSzYt6TQzaEJpUSlzZ8zl+F2O54hpRxDwB3LQUhERyUABYzApYGTHxqaNyZ6N5VuWZ6xTWVzJvBnzOHLakXxs6sd0GkVEJLcUMAaTAkb2rdm6hr+u+it/XfXXjANDAfzm58AJB3Lk9CM5ctqR7Fm1p26CJSIytBQwBpMCxuBxzrGibgV/XfVXnlr9FOsb13dZd2LZRI6cdiRHTj+SOVPmaJ4NEZHBp4AxmBQwhoZzjuVblvPCuhd4Yf0LLKtZlnHMBkCRr4iDJx2cDBy7jtpVvRsiItmngDGYFDByY0vLFl6qfokX1r3Ai9UvsrV9a5d1p1VM4/Cph/OxqR9j9uTZGrshIpIdChiDSQEj9zpiHbxd83ayd+Pd2ne7rOszH/uM3YePTf0Yc6bMYdbEWRT7C+e6fRGRPKKAMZgUMPLPpqZNvFj9Ii+se4FFGxbRFGnqsm6Jv4SDJx3MnClzmDN1DntW7YnPdPMjEZFeUMAYTAoY+S0SjfDmh2+yqHoRL294meVblhNzsS7rjy0Zy2GTD2PO1DnMmTKHKeVTNH5DRCQzBYzBpIBRWBraGnht42u8vOFlXt7wMmu2rulxH7/58ZufIl8Rfp+fIvOWibIiX5FXJ76tyFfEuJJxTKmYwrSKaUytmMrU8qlMrZjKmOAYBRYRGS50LxKRhNHB0Ry787Ecu/OxAFQ3Vntho9oLHHVtdTvsE3VRoi5Ke6x9wK9fWlTK1PKpyfAxpTy+jK+PKxmnACIiw5J6MPpIPRjDR8zFWFG3Ihk2lmxeQktHy5C2IegPej0eFVOZXjGdaRXTvEflNKaVT2N0cLQCiIjkC/VgiPSGz3zsPXZv9h67N2fvdzbgzb+R6MHoiHXQEevw1mM7liWW7dF2NjdvZkPTBtY3rmdD4wbWN62nurG62wGn4N0MblXDKlY1rMq4vTxQvj10pDzGl45nTMkYxgTHUBGoUAgRkbyjgCGSwsy8cRUUEfQHB3Qs5xxb27dS3VhNdVO1t4w/NjRtYF3jOra1b+v2GE2RJlbUrWBF3You6xRZUTJsJB9p61UlVcnl2JKxlBWVKZSIyKBSwBAZJGbG6OBoRgdHM3PczIx1trVvY33jeu+xbf325/FHb07ZdLgOalpqqGmp6XXbgv4gY0vGMrZkbDJ0jCsZ12l9bKlXVlVSRbGvWIFERPpEAUMkhyqLK5OnadI556hrq9sheFQ3VlPbWktDWwN1bXX9GjfSFm1jQ9MGNjRt6NN+PvNhGGaGD5+3bobPfPjwgZF8bmaMKh5FVUkVVcGqZHCpKok/D6Y8LxmrCdBEhhkFDJE8ZWbJXob9J+zfZb22aBv1rfXUt3mPurY6Glq98JEIIfVt9dS31lPXWseW1i20Rdv61abknCK9HBte21rL6q2re1W3IlCRDByjikdRWVyZXKY+RgW8soriimQdhROR/KOAIVLggv4gk8onMal8Uq/qO+do6WhhS+sW6lrrqG2tTT62tGyhrq2O2pbtZXVtdXTEOgb5XUBjpJHGSCNrt63t875Bf5DK4komlE5gUpn3WUwqm8Tk8snJ9YllEyktKu13+2IuRmOkka1tW9navpWmSBMBX4CKQAUVxRWUB8opKyrD7/P3+zVEhhMFDJERxswoC5RRFihjRuWMXu/nnCPmYsSIgYMYMWIulix3uO3rxIjGomxt3+qFlNY6L8y01SZDTeqyvq2eqIv2+z21Rdtoa2mjpqWGd2rf6bLe6OBoJpdNTgaQSWVe8GiPtrMtsi0ZHpKPlPXG9sYu7+ibqqyojIpABeXF5d4ykLIsrqCsqIygP0iRr4iAL+At/QGKLL6Mlye3xZ8n1ov9xd7D5y0DvgDF/mKKfPrnXPKLvpEi0itm5s1gSu//Qp9QNoHd2b3HejEXY1v7tmTg2Na+zftRjzSyrX1b8rG1fWun9cSjw/Wuh6WhrYGGtgbeq3uv1++hr5o7mmnuaIahnVIFn/ko9hUT8AeS4SMRQPzm98bGmA+/+ZP/Lbta+vDh9/kpLSqlIuCdiioPlHdaJkJToqwiUNHn3puYixF1US+4ulhy/E6irRpYXNgUMEQk53zmS15xs+voXfu0r3OO1mgrDW0NfNj8IRubN7KpaRObmjexqWlTcn1z8+ZeB5GuJH5sRxWPojxQTiQWoTHSSFN7E42RRi9Y5EjMxWiNttIabc1ZG8qKyigPlGNYMjikLxOP3vRYJYJGIvAk1+NBKfG8xF9CaVEppUWllBSVJJdlRWXJ9dKiUq9ewFsmTmd1dczE807BK77e1fvpbj0xfikxKBpIDpjOtEzU8ZkvGeASwa5QTsMpYIhIQTOz5A/I5PLJ7E/mAbExF6O2tdYLHU0bveDRvIma5hqCRcFOA0tHBUd5y5RHRXFFj6chorEozR3NNEWaaGz3xpQ0RZq2L9u9ZSQWoSPWQSQW6fJ5+jISjSTrtEfbvUesnUg0Qnusvdub+g2VZO9NlqT+MJP7t5c3yorKqCiu8L6X8TFAlcWVVAYqd3g+b8Y8ygJlOWmnAoaIjAg+8zG+dDzjS8ez7/h9B+U1/D5/8moXygflJbrUEeugPdq+PYDE2pNBJP0va4cjGosvM/ylnajXHGlOnqZqijRtX0a2JXttEmVNkaZejVFJl9prkBjPk2ijZJYIcpubN/dY9/++8H8KGCIi0n+JO/3mSszFkoHEMPw+v7c0Pz5f51MOqaclupKYtj+xTD/tkCyLRb1TQx2ttHS00NLRQmtHK80dzbRGW2mJtHjL9G0drRmP12k9lhLI4usxYsl5Xrp6T53KfNvHlQA4XHIgNK6L9URZvC1NHV7v17b2bTRGGvv036UiUDGg/64DkfOAYWY+4FvA14FdgA+BB4AfO+e6v5GDt/9C4OguNs92zi1Oqz8auBL4D2Ac8AHwK+AWpzu/iYj0i898VBR73fXZkJi2HyBAICvHHA5iLpbsTUoEjvTnje2NXi9TpGnAtzwYiJwHDOB64JvAI8AvgJnx9YPM7FjnenVisQa4JEP5ytQVMysGngUOAm4C3gGOB8LAJODy/r0FERGRwecz3/bTcHkupwHDzPYFLgIeds59LqV8FXAj8CXg3l4cqsk5d3cv6p0LzAa+6Zy7KV52u5n9Cfihmf3OObemT29CREREdtD1CbChcRre/eVvSCu/HWgGzujtgczMZ2ajrPsLp78cP+7taeU3AAHgi719PREREelargPGbLyLj15NLXTOtQJvxrf3xjSgEWgAGs3sYTPrdPeo+FiPjwJvxI+f6tV4O3r7eiIiItKNXI/BmArUOOcy3XlpPfBxMyt2zrV3c4xVwIvAW0AUOAy4EDjGzI5wzr0dr1cFlMaP24lzrs3MtuAFFRERERmgXPdglAFd3daxNaVOl5xz5zjnLnXO3e+ce8g5913gOKACuC7ttejh9bp8LTM738wWd7VdREREtst1wGgGurqGpiSlTp84514AngfmmVni9omJ43T3el2+lnPuNufcIX1ti4iIyEiU64BRDYw3s0w/+tPwTp90d3qkO6sBP96pEYA6vNsP7XAaJP7648hw+kRERET6LtcB47V4Gw5NLTSzEmAWMJBTEnsAHUAtQHw+jSV482ukB5pD4+3QKRAREZEsyHXAuB9wwMVp5efhjYe4J1FgZlPMbG8zK0spG21mO9xWzsxOBA4Hnk27YuS++HHPT9vlYrww8kC/34mIiIgk5fQqEufc22Z2M3ChmT0M/IXtM3k+R+dJthYAZwHzgIXxsnnAdWb2ON6snR14vRFn4M3ueXHaS94OnBPfZxe8mTxPAE4BrnTOrcruOxQRERmZcn2ZKnghYDVer8KJeMHgJrx7kfQ0Tfh7wOvAp/Gm+g4A64BbgKucc53GVDjn2s3sWLx7kZzG9nuRXATcnJ23IyIiIqb7e/VNKBRyAOFwONdNERERGUrdzZS9g1yPwRAREZFhSAFDREREsk4BQ0RERLJOAUNERESyTgFDREREsk4BQ0RERLJOAUNERESyTgFDREREsk4BQ0RERLJOAUNERESyTgFDREREsk4BQ0RERLJOAUNERESyTgFDREREsk4BQ0RERLJOAUNERESyTgFDREREsk4BQ0RERLJOAUNERESyTgFDREREsk4BQ0RERLJOAUNERESyTgFDREREsk4BQ0RERLJOAUNERESyTgFDREREsk4BQ0RERLJOAUNERESyTgFDREREsk4BQ0RERLJOAUNERESyTgFDREREsi7nAcPMfGZ2iZm9a2atZrbWzH5hZuW92LfKzL5lZs/E92sxs/fM7DYzm5Gh/lwzc108nhicdygiIjLyFOW6AcD1wDeBR4BfADPj6weZ2bHOuVg3+x4W3+d/gV8BNcB+wNeBL5jZx51z/8yw323AC2ll6wb0LgYiFgNfzrOeiIhI1uQ0YJjZvsBFwMPOuc+llK8CbgS+BNzbzSHeBfZyzn2QdtwngWeB/wFOzbDfIufc3QNsfnY0boPrfgCfPR1mfSzXrREREcmKXP/ZfBpgwA1p5bcDzcAZ3e3snFudHi7i5X8DavF6MzIys3IzK+lrg7Mq0g7h/4F/vw83XwF/fyynzREREcmWXAeM2UAMeDW10DnXCrwZ395nZjYaqAQ2dVHll0Aj0GJmK+LjOKw/rzUgW+uhrsZ77mJwbxgeuN07ZSIiIlLAch0wpgI1zrm2DNvWA+PNrLgfx/0REAB+n1YeAR4Dvgd8FvgGUI/Xg3JHdwc0s/PNbHE/2tK1cRPhB9fDrnttL3vmT3DrVdCe6SMREREpDLkOGGVAV7+krSl1es3MTgW+AzwN/C51m3PuRefcSc65W51zjzvnbgXmxOuebWZHdHVc59xtzrlD+tKWXhk1Bv7f1XDQx7eXvf4P+MUPYFtD1l9ORERkKOQ6YDQDwS62laTU6RUzOwG4B3gd+IJzzvW0T/wqlQXx1RN6+1pZFSyBCy6FY07aXvbBP2HBJbCpOidNEhERGYhcB4xqvNMgmULGNLzTJ+29OZCZfQp4GFgOHOec29qHdqyOL8f3YZ/s8vnhtAvgi1+HxHCQzdVeyPgg05W2IiIi+SvXAeO1eBsOTS2MX90xC+jVmAczm483j8a7wLHOubo+tmOP+LKrQaFD55OnwDcuhUB86EljA/z8v7zTJiIiIgUi1wHjfsABF6eVn4c39uKeRIGZTTGzvc2s05gMMzsOeBRYARzjnKvt6sXMbFyGsiBweXz18T6/g8Fw8BHeuIyK0d56pB1u+Sk88zD0fNZHREQk53I60ZZz7m0zuxm40MweBv7C9pk8n6PzJFsLgLOAecBCADM7BPgz3lwavwOOT7/aNG1CrafMrBpvjEY13lUsZ+D1YNzknOt0uWxO7T7Tu8Lkxv+GTeu9YPHAbVCzEb70de+UioiISJ7Kh6nCL8YbA3E+cCLedN83AT/uYZpw8CbSSgwGvb6LOqkB4yHgZLzZQ8cATcAbwGXOufv63PLBNmkq/Nd18KufbB+H8ffHoPZDOO/73uBQERGRPGS9uNBCUoRCIQcQDoeH7kXb2+COn8PilNun7LoXXPQT7zJXERGRwdenCSlzPQZDeqM4COf/AOZ/bnvZqvfgqoth7UqNyxARkbyTD6dIpDd8Pvj8eTB+Mtz7a29q8ZqN8JMQjK6C3WZ64zZ2nwk77+GFEhERkRxRwCg08z4DVRPgtgXbpxNvqIM3XvIeAH4/zNitc+gYN2n7/BoiIiKDTAGjEM2aA//1C3j0LvjXMmhJm+w0GoXV//IeiTu0pvdyTJ4BFaMUOkREZFAoYBSqnT4C3/wfiEVhw1r44J3tj41rd6yf3ssB4C/ygsfosdsfY8buuF45xusVERER6SUFjELn88O0XbzHUcd7ZY3bYPV72wPHqnd37OUAiHZ4l7zWftj9a5gPRo32AkdZJZSWQUkplMSXpWXx52Vp21LWi4Oau0NEZARRwBiOKiphv0O8B+zYy7F6hRcqWpp6dzwX83pAGvo6A3safxEUF0Mg6C2LijuvB4IQCHhhJFDsLYsC8UdRyvP0sm62BdLKAwEFHRGRIaCAMRJk6uUAaGuFrXVQXwsNtVC/xVsmHvW1XqhozNJt46Md0NKRuTdlKPl8nQNHegDxJwJKUS+fJx5+77NOLH2+zOV+X3xZ5NVJ1vV3Xk8tt5Ttltie9jCfxtSISN5QwBjJgiUwYYr36E5HBLbWe4GjpQlam+OPFi8stLZ46y1N0JZW1trsrSeueMkHsZjXnnxqU7ZYF8HD5/fCR6cy214/sc3Snie2Zarfm+1macdLLe9un8Q2S2tTX+t0UZb++qnlmFdOyr6pZWZdHC/9kWF74jjmS3ud9GOnHoPt9RPPk8vUY2coU+CUHFLAkJ4VBWDsBO/RX855QSXS7v2wpy4j7dDeDpG2HZcdHd5+yWXqo7ttEYh0sT6cuRhEYxDNdUMkbySCjaU+t+3bUp8nQw6d6/lSAk6mIAQpwaefr5EawpK5KEPd1NCU/t7Ml+FY6cdIa2e8ePtxM70GXbxub95HN/VSj5Xcl87r6Z8hGeqkHzv1M/n0l3M2L5IChgwNM29cRaAYyipy1w7nvFM16QEkkhJaoollSoDp6Xk05o11iUW9y4SjHfHnse1lie0diXodXm9KLLFvyjIajYeF6I7bo1HvfSTKXPwYmtFVMnEOcN59q2Xk+dQXFDBEhoTZ9vEWw+1ecc51DiOJ4JEaYpyLPxJlKc9Tg0rq80xlOzx320OPS3kO8fakvG6nfdKO0+n1MpUl1tOO1ev9EkHMdX59SDmeSzsOacsM2yB+HLf9veLSjt2L10g/Dul1Xd+2ieTwLJkChshwYeYNBNWcJZLQKcCkBQ+X9jwZWOjiudvxGMkAlSn4pOyb6EHpbRviu2Y+FhmO1007018jvaxT7056e0h73tP76KFdnY6XWjf9/WX6bNKPm+HzyVSnKECuKGCIiAxXZmAKnJIbupuqiIiIZJ0ChoiIiGSdAoaIiIhknQKGiIiIZJ0ChoiIiGSdAoaIiIhknQKGiIiIZJ0ChoiIiGSdAoaIiIhknQKGiIiIZJ0ChoiIiGSd7kXST6FQKNdNEBERGUouHA73+v6s6sEQERGRrDOXentYyRkzW+ycOyTX7cg3+lwy0+eSmT6XzPS5ZKbPJbNsfS7qwRAREZGsU8AQERGRrFPAyB+35boBeUqfS2b6XDLT55KZPpfM9LlklpXPRWMwREREJOvUgyEiIiJZp4AhIiIiWaeAkSNm5jOzS8zsXTNrNbO1ZvYLMyvPddtyycxcF4/GXLdtKJjZD8zsQTNbGX/fq3uov5eZPWpmdWbWZGYvmNknhqi5Q6Yvn4uZXd7N9+j/DWGzB5WZ7Wlm/2NmL5vZh2a2zczeNLNLM/07MoK+K73+XEbKdwWS//3vMbN3zKzBzJrjvz/XmdmULuoP6PuimTxz53rgm8AjwC+AmfH1g8zsWOdcLJeNy7EX2HGQUSQXDcmBq4BaYAkwpruKZrY78BLQAVwDNADnAU+b2fHOub8NblOHVK8/lxSXADVpZa9nsU259lXgP4HHgHvw/h+ZB1wJfMHM5jjnWmDEfVd6/bmkGO7fFYDpwBS835x1eN+F/YHzgS+Z2Szn3GbI4vfFOafHED+AfYEY8Ke08osAB3w5123M4WfjgDtz3Y4cvv/dUp4vA1Z3U/cBIArMSimrANYA7xEfxD0cHn38XC6Pf492yXW7B/kzOQQYnaH8yvj7v3CEflf68rmMiO9KD5/X5+Ofwfey/X3RKZLcOA0w4Ia08tuBZuCMoW5QvjGzYjOryHU7hppzbmVv6sW7ej8LLHTOvZmyfyPwG2BPYPZgtDEXevu5pDOzUWY2LHtqnXOLnXMNGTbdH1/uByPyu9KrzyXdcP6u9GBNfFkF2f2+KGDkxmy8HoxXUwudc63Amwyj/9n76VS8oLXNzDab2U1mNjrXjcozBwBBYFGGbS/HlyP9e/QWXtduq5m9ZGbH57pBQ2R6fLkpvtR3xZP+uaQaMd8VMysxs/FmNt3MjgNujW/6S3yZte/LSExr+WAqUOOca8uwbT3wcTMrds61D3G78sGrwIPA+8Ao4ATgQuBoM/t4PEWL9x0C7/uSLlE2bYjakm/q8cbwvATUAXsBFwNPmtlXnXN35qxlg8zM/MCP8c6d3xsvHvHflS4+FxiZ35VzgZtS1lcDZzjnXoivZ+37ooCRG2VApnAB0JpSZ8QFDOfcYWlFd5nZW8BPgW/Fl+J9PyDz96g1rc6I4py7Ib3MzO7AG7txvZk9NIyD6g3AHOCHzrn34mX6rmT+XEbqd+VR4F28MRUH4Z0OmZCyPWvfF50iyY1mvC6oTEpS6ojnWrywdWKuG5JHEt+PTN8jfYfSOOe2ALfgXYHy8dy2ZnCY2RV4vX23OecWpGwa0d+Vbj6XjIb7d8U5t8459zfn3KPOucuAs4CrzewH8SpZ+74oYORGNTDezDL9B5yGd/pkxPVedMU5FyH+meW6LXmkOr7M1FWZKMvUxTmSrY4vh933yMwuB34E/A74RtrmEftd6eFz6c7q+HLYfVfSOefeAt4AQvGirH1fFDBy4zW8z/7Q1EIzKwFmAYtz0Ka8Ff9cppN5cNZI9TZeF+bHMmybE1/qe9TZHvHlsPoemdllwGXAXcC5Ln5NYYoR+V3pxefSnWH5XelGKTA2/jxr3xcFjNy4H++644vTys/DO7d1z1A3KB+Y2bguNl2BN17o8SFsTl6Lnxd+HJhrZgcmyuOX9p4L/Iu0q5RGAjMrynTFkZnNAC4AtuAN6BsWzOzHeHM5/AE4x2WYoG8kfld687mMwO/K5C7K5+FduvsyZPf7orup5oiZ3YR3XvARvMuDEjN5vgh8ItP/EMOdmV2Pl5D/D/g33iCkE/Bm4XsFmOd2nIFvWDGzM4Gd46sXAcV4M70CrHHO/SGl7kfw/keP4M0MuxUvpO4PnOice3qo2j3Yevu5mNkYYBXeQLZ32H5lwLl436fTnHMPDlnDB5GZ/SfwK7z/V/4b79L3VJucc8/G646k70qvPpeR9F0BMLNH8Gby/Dve3BclwMHAl/DGVMxNzHuRte9LrmcRG6kPwA98B29WtDa8c1rXARW5blsOP5OTgKfjn0Ur0IQ3L8gPgZJct2+IPoOFeL1bmR4LM9SfCfwZ73K7ZuAfwLG5fh+5+lzwBqb9Bq+bty7+D+QG4CHg0Fy/jyx/Jnd285ns8H0ZQd+VXn0uI+m7En+/XwCeBNbG/31twbua5CZgpwz1B/x9UQ+GiIiIZJ3GYIiIiEjWKWCIiIhI1ilgiIiISNYpYIiIiEjWKWCIiIhI1ilgiIiISNYpYIiIiEjW6XbtIjJihUKhy/HuVzEvHA4vzG1rRIYXBQwR6bdQKNSbmfr04y0yAilgiEg2/KSbbauHqhEikj8UMERkwMLh8OW5boOI5BcFDBEZMqljHvDujnoxsDewDXgC+GE4HN6YYb898O6MeQwwAagB/gZcEQ6H/5Whvh/v7o9n4t2KuhjvJnoLgau72OdU4Hvx+q3AM8B3wuHw+gG8ZZERS1eRiEguXALcAiwFbsC7q/A5wEuhUGhCasVQKDQbWAycAbwG/Bx4GTgdWBwKhQ5Jq18MPAX8GpgB3AvcCLwOnAIcnqE9IeBuvNM5NwPLgC8CfwuFQsGBvlmRkUg9GCIyYPGeiUxaw+HwzzKUHw8cFg6H30g5xvV4PRo/A74WLzPgLmAUcEY4HL4npf4XgT8Cd4dCoX3C4XAsvuly4FjgceDz4XC4LWWfYPxY6T4FzA6Hw2+n1L0XOA04CXigq/cuIpmpB0NEsuGyLh7/1UX9P6SGi7jLgQbgyym9Bh/HO4WyKDVcAITD4fuBfwB7AUdA8tRICGgBvpEaLuL7tIXD4Q8ztOfG1HARd3t8eWgX70FEuqEeDBEZsHA4bH3c5bkMx2gIhUJvAkcDM4E3gY/GN/+9i+P8HS9cHAQ8jxdGRgOvhMPh6j60Z3GGsrXxZVUfjiMicerBEJFc2NRFeWKA5+i05YYu6ifKx6Qt+zowsz5DWUd86e/jsUQEBQwRyY1JXZRPji8b0paTM9QFmJJWrz6+nNbvlolIVihgiEguHJ1eEAqFRgOz8C4RfSdenBinMbeL4yTKl8SX7+KFjANCodDUgTdTRPpLAUNEcuHMUCh0UFrZ5XinRO5LGZz5It4lrEfE56lIiq8fBazAG+xJOByOAmGgFLgl/RLTUChUnH4ZrIgMDg3yFJEB6+YyVYBHw+Hwm2llfwVeDIVCD+CNozgi/lhNypUn4XDYhUKhs4BngftDodCf8Xop9gJOxpug6yspl6iCN235YcBngBWhUOiJeL0ZwHHAd4E7+/E2RaQPFDBEJBsu62bbarwrQlJdDzyCN+/FF4FGvB/9H4bD4c2pFcPh8CvxybZ+hDe/xWfwZvK8D28mz/fS6reHQqFPAd8AvgKcBRhQHX/Nf/T1zYlI35lzvbkZoojIwOn26CIjh8ZgiIiISNYpYIiIiEjWKWCIiIhI1mkMhoiIiGSdejBEREQk6xQwREREJOsUMERERCTrFDBEREQk6xQwREREJOsUMERERCTr/j9t1s89fkQUegAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 576x432 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE4/figs/AE4-01-history_1</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgwAAAGdCAYAAAB+VCt0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABpcklEQVR4nO3deXxcZdn/8c+dZLLv6b7QfadAFyj7LmIVEGSpAgKC23lciooIKiLyE1zhAT3yICoKVUAUREFApEAp0NKWQoEudKVt2jRpkzTNnsz9++OcSSbpJJNJJpm0+b5fr+HMuc+ZM9dMhs4192qstYiIiIh0JinRAYiIiEj/p4RBREREolLCICIiIlEpYRAREZGolDCIiIhIVEoYREREJColDCKHAGPMrcYYa4x5MMKxrf6x0+N53d5mjHnJf+6r+/q5u8MY86Af762JjkUkEZQwiHSRMeaP/hfG+zE85n/8x9QZY/J7Mbx+wxgz1k9EFiY6FhGJHyUMIl33oL+dZoyZ28XHfNbf/sNaWxH3iDybgPVATS9dP1ZjgR8AC6Oc9yFe3JW9HI+IxEFKogMQOYS8BGwDxuAlAis6O9kYMwU4zt/9Y28FZa09q7eu3ZustZ+NfpaI9BeqYRDpIuvNo/6Qv7vAGBMt4Q59Ie4Gnuu1wERE+oASBpHYhGoKBgMf6+gkY4wBrvB3F1lrm/3yecaYO4wxbxhjdhpjGowxe4wxzxpjLu5OQNE6PRpjphhj/uI/T60xZp0x5gfGmLQo1x1vjPmmMea/xpgtfj+MCj/2bxpjMiLFAiz2d8f4cYXfrg47t9NOj8aYXL8vxNvGmAP+7R1jzA+NMXkdPKZNJ05jzFXGmGXGmCpjzH5jzGJjzEc6e93dZYxJM8Z8w3++Sv+9Xm+M+aUxZlgnjzvaGPMn/+9Y78e62f9MLDTGZLY7P9UY83VjzGv+36PRGFPiv0+/Nsac0BuvT0RNEiIxsNZuNMa8BpyIV4Pwzw5OPR04wr//RwBjTDbwRtg5jUAdXvLxUeCjxpj7rbVfjFe8xphTgX8DoS+d/cA44Fb/OV/q5OGPAXP8+xavr0EeMM+/LTDGnGmtrQp7TCmQCxQAQX8/XG0X454IvIDX/AOt/TNm+rerjTFnW2s/6OQaDwDXAs1AtR/X6cCpxphLrbV/60osXYx3MF4t0iy/qB5oACb7t6uNMfOttW+0e9x84EkgEPa4IN7faBze3+hZYJ1/fgrwPHCaf37o71IEDAGO8u+/Hq/XJhKiGgaR2IVqGc7rZORDqDniLWvtGv9+EHgG+DQwEki31oa+XL8KHAC+YIy5JB5BGmMKgL/iJQurgGOstXlANnAVcDTgdHKJt/A6Lk70Yy0AMoDzgQ3AXODO8AdYa48FLvJ3t1trh7W7PdqFuFOBv+ElC9uBc/yYs4Gz8TpLHgE80UktyQXA5cCXgVz/dY8HXsH7d+/eLjQpxeJPeMlCOXApkOX/bY8F1uD9jZ80xgxq97h78ZKFfwFTrLXpfqx5wKnAb/GSypDP4CULNcCVQKb/d0nDe7++Arwdx9cl0spaq5tuusVww/vHvBbv190XIhzPxPslb4Gvx3DdK/3HLI5w7Fb/2IMRjm31j53ervz7fnkZMCjC467wj0e8bpRYx+PVkFTjfWmFHzvdv+bWKNd4yT/v6g7eh0bgyAiPm4H3690Cn+vgfbLA5REeOxzvV7wFTo3xNT/oP+7WduWnhD3nuREeNxTY5x+/Lax8SNjjhnYxBtc//zeJ/v9At4F3Uw2DSIystZXAP/zdSD39LwRygCbgLzFcOtS8cbwxJrn7EbYI9Yn4rbW2LMLxRXijPmJmrd0MvIeXHB3Treg6For7SWvtuxGe+z3gcX/30g6u8SHw5wiP3QUs93eP7GGcIaF4V1hrn43wnCXAff5ueLxVeLVO4CUyXbE/xvNF4kYJg0j3hJolTjLGjG93LJRE/Ntauyf8gDEmxRhzrd+hbZffyc0aYyxedTZAOl4Vdrf51foz/N2XI51jrbV4VfSdXecjfofJTcaYmvAOjHhNGgAjehJrBLP97eJOznmx3bntrfBfXyQ7/W2P3uMwscQ72RiTBWCtraX1b/OcMeZ7xphjoiSL//a3FxhjnjLGXGSMKep25CIxUMIg0j3PA7v8+1eGCo0xw4HQvAht5l7wOz2+DDyA15ltGF6HvFKgxL+FZPUwvkIg9MVT3Ml5Ozs6YIy5B+91LsBrgkjBq1oPxdoYp1jbGxwtNmCHvy0yxpgIx6silIWE+gQEOjknFrHEa4DwfgzXAWvxmid+hNdvpMIY87Qx5or2/SystS8Dt+DVXp2H19ejzBiz1hjzc2PMpB6/GpEOKGEQ6QbrDZN82N+9MuzQFXhf1Ps4eATF9/FGV5ThdTocaq3NtNYOsdYOw+sIGRLpS7A3RHweY8zH8DpiNuP1C5gIpFlri6zfgRFY1tk14qDTYZ/9UMzx+k07R+E1Y92PlzxkA/Px5vxY5iea4Y/5Ed7Ii5vwRmbsB6YC3wTeN8ZoQizpFUoYRLovVIMwwRhzon8/lDw8Yq1taHd+aPTDV621f2rfXIHXOS5e9uF92UPnTQYdtYWHYn3AWvtDa+2mCFX88Yw3XGgo5phOzhnlb/d20vTQV2KJN9QJtYW1tsla+6S19ovW2ul4f5Mb8GpCZuNNs027x2yx1t5prT0XrzbpDLzmpRTANcYM6ckLEolECYNIN/md71b6u581xszCmyMAIk8FHfrSeKuDS54dx9ga8Dolgjc87yB+VX7EY0SJ1RgzBq/WIZJQR77u1jys8rdndHLOme3OTaRQDKd10DwCrfFusNZWd3Yxa+1ua+3PgbtD141yfrO19iXgE3jNRFl4Q15F4koJg0jPhBKDS4HP+/fXWWuXRzg3tMjSzPYH/Grn78Y5tr/6288bYwojHF+At1BUJB3G6vsxHScEoZ78EWdj7ILQCIiP+UlYG8aYGbSOTHism88RT6F4Z+DN/9CGMWYo8CV/97Gw8kAnCQa0TnLV0tThd2btSAOttUqHWnOOHAKUMIj0zF/wftUVAKEZGjtaaOo//vaXxpiWX6PGmGOB/9K2M1w8/BrY41/3OWPMUf7zBYwxV+BNCtTRSpGhWL9ojPlc6IvKGHOEMeaPeJNPlXfw2A/w3pM8Y8ynuhH3o8A7/v0njTFnh71XZ+FNfhXAq0FZ1I3rx5W1dgnebIwAvzfGXBwa6WCMmYPXcbQAr6Po/4Y9dAbwrj/98+Sw1xjw37dv+OeFr0PyJ2PMH4wxHzXG5IQKjTFj8T536XiJxpJ4v04RJQwiPeDPb/C0v5uEVx3/cAenfw+v/Xo03qRFNcaYA3jzAszE+xKOZ2yhWQdr8aqo3zbGVOCNIHgI70v5Nx08/EG8aaxTgN/5sZbjzdvwWbx29XciPdCvcg/NP/G4v97BVv8Wdb0MvznlU/5zHYGXvBwwxlTjTRd9BN48CxdZa+ujXa+PfBZYjZcY/BUv3v14K5oehZdcXWit3dvucdOBu/CW+a41xuzF67vwOF4NzQrg9rDz04Gr8RKUSmNMuf++bAEuw6th+GIH826I9IgSBpGeC69ReNFauyPSSX6P+OPwEoo9eKMpKvB+JR9rrX0+3oH5w/Bm4f1qL8Wrqt6KN/LhTLxZDyM9rgGvT8WdwGa8RKgJ78v7PL+nfme+BNyB90UYmrZ4DN4IgK7EvRFvnofbgPDJm97FG354lLV2Q1eu1RestaXACXgjFVbg1bCk4tW23A3MsNa2X99hLV7Tyn34wynx1rvYD7yKN0rlJGvt/rDHfAf4Nl7CsNl/jmRgE/AHYLa19iFEeoFJfAdjERER6e9UwyAiIiJRKWEQERGRqJQwiIiISFRKGERERCQqJQyA4zjWcRz1/hQREelASvRTBhQlDSIiMlDENH27ahhEREQkKiUMIiIiEpUSBhEREYlKCYOIiIhEpU6PnWhsbGTHjh3U1dUlOpQBKz09nVGjRhEIBBIdiojIgKaEoRM7duwgJyeHsWPH0vmy9dIbrLXs3buXHTt2MG7cuESHIyIyoKlJohN1dXUUFRUpWUgQYwxFRUWq4RER6QeUMEShZCGx9P6LiPQPShhEREQkKiUMh5Hs7OwOj23dupUjjzyyD6MREZHDiRIGERERiUqjJLrooz96uteu/dz3Px6x/MYbb2TMmDE4jgPArbfeijGGV155hfLychobG7n99tu54IILYnq+uro6vvzlL7NixQpSUlL45S9/yRlnnMF7773HNddcQ0NDA8FgkL/97W+MGDGCSy+9lB07dtDc3Mz3v/99Lrvssh6/ZhERObQoYejHFixYwMKFC1sShscee4xnn32W66+/ntzcXMrKyjj++OM5//zzY+oc+Otf/xqANWvWsG7dOs455xw2bNjAfffdx9e//nUuv/xyGhoaaG5u5plnnmHEiBE8/bSXMFVWVsb/hYqISL+nJol+bNasWezZs4fi4mLefvttCgoKGD58ODfffDNHHXUUZ599Njt37qSkpCSm67766qtceeWVAEydOpUxY8awYcMGTjjhBH784x/zk5/8hG3btpGRkcHMmTN54YUXuPHGG1myZAl5eXm98VJFRKSfUw1DF3XUbNBeU3OQzSX7AUgyhgnDcns0NPDiiy/m8ccfZ/fu3SxYsIBFixZRWlrKypUrCQQCjB07NuZ5CqyNvIr3Zz7zGebNm8fTTz/NRz/6UR544AHOPPNMVq5cyTPPPMNNN93EOeecwy233NLt1yMiIocmJQxxlpxkSE4yNActQWtpag4SSEnu9vUWLFjA5z//ecrKynj55Zd57LHHGDJkCIFAgMWLF7Nt27aYr3nqqaeyaNEizjzzTDZs2MCHH37IlClT2Lx5M+PHj+drX/samzdv5p133mHq1KkUFhZyxRVXkJ2dzYMPPtjt1yIiIocuJQxxZowhNSWZ2oYmAOqbepYwzJgxg6qqKkaOHMnw4cO5/PLLOe+885g7dy7HHHMMU6dOjfmajuPwpS99iZkzZ5KSksKDDz5IWloajz76KA8//DCBQIBhw4Zxyy238Oabb3LDDTeQlJREIBDgN7/5Tbdfi4iIHLpMR9XTA4njOBbAdd025WvXrmXatGkxX29PZS0V1fUAFOWkU5STHocoB67u/h1ERKRTMbWXq9NjL0gLtL6tDU3NCYxEREQkPtQk0QtSw5og6huDffrca9asaRkBEZKWlsayZcv6NA4RETm8KGHoBWlhCUNDUzNBa0nqo0WUZs6cyerVq/vkuUREZOBQk0QvSEoybWoZGhrVLCEiIoc2JQy9JDWl9a2tb+rbZgkREZF4U8LQS9ICbZslREREDmVKGHpJWpuOj0oYRETk0KaEoZekhg2t7KuREtnZ2b3+HGPHjqWsrKzXn0dERPoXJQy9JJCc1LKGRHMwSFOz+jGIiMihS8Mqu+q6c2M63QCTunryA89GLL7xxhsZM2ZMy/LWt956K8YYXnnlFcrLy2lsbOT222/nggsuiPoUBw4c4IILLoj4uIcffph77rmHhoYG5s2bh+u6JCdHn876l7/8Jb///e8BuO6661i4cCHV1dVceuml7Nixg+bmZr7//e9z2WWX8Z3vfIennnqKlJQUzjnnHH7+85939d0REZF+IOEJgzHmJmA2MAcYB2yz1o7txnXmA98Djgbqgf8C37bWbolftH1rwYIFLFy4sCVheOyxx3j22We5/vrryc3NpaysjOOPP57zzz8/6oqY6enpPPHEEwc9bt26dTz66KMsXbqUQCCA4zgsWrSIz372s51eb+XKlfzhD39g2bJlWGuZN28ep512Gps3b2bEiBE8/fTTAFRWVrJv3z6eeOIJ1q1bhzGGioqKuLw/IiLSdxKeMAA/BvYBq4D87lzAGHMR8DjwNnADkAcsBJYaY+Zaa4vjEmkfmzVrFnv27KG4uJjS0lIKCgoYPnw4119/Pa+88gpJSUns3LmTkpIShg0b1um1rLXcfPPNBz3uv//9LytXruTYY48FoLa2liFDhkSN7dVXX+XCCy8kKysLgIsuuoglS5Zw7rnn8q1vfYsbb7yRT3ziE5xyyik0NTWRnp7Oddddx8c//nE+8YlP9PzNERGRPtUfEoYJ1trNAMaYd4GYeu4ZYwLAvcB24BRr7QG//N/ASuBW4As9jrKDZoPO1NQ3sWPvAcAbZjlmcE7M17j44ot5/PHH2b17NwsWLGDRokWUlpaycuVKAoEAY8eOpa6uLup1OnqctZarrrqKO+64I6a4Olq0bPLkyaxcuZJnnnmGm266iXPOOYdbbrmF5cuX89///pdHHnmEX/3qV7z44osxPZ+IiCRWwjs9hpKFHjgNGAE8EEoW/OuuBl4CLvOTij7XdhGqYIdfsp1ZsGABjzzyCI8//jgXX3wxlZWVDBkyhEAgwOLFi9m2bVuXrtPR48466ywef/xx9uzZA8C+ffu6dM1TTz2VJ598kpqaGqqrq3niiSc45ZRTKC4uJjMzkyuuuIJvfetbrFq1igMHDlBZWcn8+fO5++67NXW1iMghqD/UMPTUsf729QjH3gDOBCYD7/VZRL7kpCRSkpNoavaShYamYJsJnbpixowZVFVVMXLkSIYPH87ll1/Oeeedx9y5cznmmGOYOnVql67T0eOmT5/O7bffzjnnnEMwGCQQCPDrX/+aMWPGdHq92bNnc/XVV3PccccBXqfHWbNm8dxzz3HDDTeQlJREIBDgN7/5DVVVVVxwwQUtNRp33XVXTO+BiIgknunOr97eEmqSiKXTozHmXuArwHRr7dp2xxzg18BHrbXPd3QNx3EsgOu6bcrXrl3LtGnTuhx/JDv3VlNd3wjA8IJMcjJSe3S9gSgefwcRETlITKsiJrxJIg4y/W19hGN17c5pwxjzBWPMil6JypeICZxERETi7XBokqjxt2kRjqW3O6cNa+39wP2hGobe0GaK6D5YU2LNmjVceeWVbWNIS2PZsmUxXWfevHnU17fNwR566CFmzpzZ4xhFROTQczgkDKEhkyOBte2OjfS3O/sunLbaLELVB2tKzJw5My6dCmNNMERE5PB2ODRJvOlvT4hw7HhgP7Ch78JpK5DSOkV0Y3OQ5qCaJURE5NBzSCUMxpjhxpipxpjwPgkvA7uA64wx2WHnHg2cDvzVWtvYt5G2SjKG1JS2wytFREQONQlvkjDGXAmExvANBlKNMd/z97dZax8KO/0O4CrgDLw5FrDWNhpjvg48CiwxxvwWyAWuB0qBH/T6i4giNSW5ZYnr+sZmMlIT/raLiIjEpD98c12LN/lSuB/525eBh4jCWvtXY0wt3loSP6d1LYkbrbUJ678QkhZIoqrWu98XHR9FRETiLeEJg7X29BjOvRq4uoNj/wL+FZeg4ix8pERDLw6tzM7O5sCBA9FP7AVjx45lxYoVDBo0KCHPLyIiveuQ6sNwqEoNtB1a2Z8myxIREemKhNcwHCpm/rH35h9Yc9WaiOU33ngjY8aMaVne+tZbb8UYwyuvvEJ5eTmNjY3cfvvtXHDBBV16np/+9Kc89NBDJCUl8bGPfYw777yT008/nXnz5rF48WIqKir43e9+xymnnMKDDz7IU089RU1NDZs2beLCCy/kpz/9aZee55e//CW///3vAW/K6IULF1JdXc2ll17Kjh07aG5u5vvf/z6XXXYZ3/nOd3jqqadISUnhnHPO4ec//3mXnkNERPqWEoZ+bMGCBSxcuLAlYXjsscd49tlnuf7668nNzaWsrIzjjz+e888/v2XoZkf+/e9/8+STT7Js2TIyMzPZt29fy7GmpiaWL1/OM888ww9/+ENeeOEFAFavXs1bb71FWloaU6ZM4atf/SqjR4/u9HlWrlzJH/7wB5YtW4a1lnnz5nHaaaexefNmRowYwdNPPw14i2Ht27ePJ554gnXr1mGMoaKiogfvloiI9CY1SfRjs2bNYs+ePRQXF/P2229TUFDA8OHDufnmmznqqKM4++yz2blzJyUlJVGv9cILL3DNNdeQmemNSC0sLGw5dtFFFwEwZ84ctm7d2lJ+1llnkZeXR3p6OtOnT+/SKpavvvoqF154IVlZWWRnZ3PRRRexZMkSZs6cyQsvvMCNN97IkiVLyMvLIzc3l/T0dK677jr+/ve/t8QmIiL9j2oYuqijZoOuqqyup6TSGyqRk5HK8IKufTlefPHFPP744+zevZsFCxawaNEiSktLWblyJYFAgLFjx1JXVxf1OtbaDmsh0tK8WbWTk5Npamo6qDzSsc6eJ5LJkyezcuVKnnnmGW666SbOOeccbrnlFpYvX85///tfHnnkEX71q1/x4osvRn0OERHpe6ph6CNtOj7GMEX0ggULeOSRR3j88ce5+OKLqaysZMiQIQQCARYvXtylX/0A55xzDr///e+pqfGW1QhvkoinU089lSeffJKamhqqq6t54oknOOWUUyguLiYzM5MrrriCb33rW6xatYoDBw5QWVnJ/Pnzufvuu+MypbWIiPQO1TD0kTZDK5uCBK0lKUq/A4AZM2ZQVVXFyJEjGT58OJdffjnnnXcec+fO5ZhjjmHq1Kldev5zzz2X1atXM3fuXFJTU5k/fz4//vGPu/16OjJ79myuvvpqjjvuOMDr9Dhr1iyee+45brjhBpKSkggEAvzmN7+hqqqKCy64gLq6Oqy13HXXXXGPR0RE4sNoiB+EVqt0XbdN+dq1a5k2bVrcnmfLnv00+lNDHzE4m/SA8rWuiPffQUREAIj+qzWMmiT6UF9N4CQiIhJv+onbh9ICyRyo89bB6q0potesWcOVV17Z9nnT0uK2XPW8efOor69vU/bQQw8xc2bvzVMhIiKJp4Qhis5GF8QqfNXKWDo+xmLmzJm92nkwXolHV6nJTESkf1CTRCfS09PZu3dv3L600gJtOz5K56y17N27l/T09ESHIiIy4KmGoROjRo1ix44dlJaWxuV61kLp/lpC+UdtWTpJSfGpvThcpaenM2rUqESHISIy4Clh6EQgEGDcuHFxveZXf/cqG4orAfjJFfM4ZpxWdxQRkf5PTRJ9bPyQ3Jb7m/dUJTASERGRrlPC0MfGDc1pub+lZH8CIxEREek6JQx9bOyQ1oRhq2oYRETkEKGEoY+NC2uS2FpaRXNQwwZFRKT/U8LQx/IyUynM9laBbGgKUryvOsERiYiIRKeEIQHGDQ2rZVCzhIiIHAKUMCTA+LB+DJv3qOOjiIj0f0oYEiC84+OWEtUwiIhI/6eEIQHad3wUERHp75QwJMDoQVkk+1NC7yqvoaa+KcERiYiIdE4JQwKkpiQzqiirZV+1DCIi0t8pYUiQNs0SGikhIiL9nBKGBBkfNkX0Zk0RLSIi/ZwShgRpM1JCNQwiItLPKWFIkLZNEvuxVlNEi4hI/6WEIUEG56aTnZ4CwIG6Jkr31yU4IhERkY4pYUgQYwxjw2oZtmjGRxER6ceUMCTQOC11LSIihwglDAk0PmwRqs2aIlpERPoxJQwJ1HakhJokRESk/1LCkEBjB7cmDDv2VtPQ1JzAaERERDqmhKGX1DfXU1lf2ek5mWkpDC/IBKA5aNleVt0XoYmIiMRMCUOc/ffD/3LxUxdz/KLjue/t+6KeH17LoGYJERHpr5QwxJnBsL58PU22ibX71kY9f9xQjZQQEZH+TwlDnE0vmt5yf92+dQRtsNPzx4fNxbBZCYOIiPRTShjibGjmUArTCwGobqxm2/5tnZ7fZqSEFqESEZF+SglDnBljmFY0rWV/7d7OmyVGFGaRmuL9GfYdqKeypqFX4xMREekOJQy9YHpha7PE+3vf7/Tc5CSjjo8iItLvKWHoBeH9GLrS8bFts4T6MYiISP+jhKEXtEkY9q6NunT1uKHhS10rYRARkf5HCUMvGJ41nPy0fACqGqvYXrW90/PHh9UwbFaThIiI9ENKGHqBMYZpha0dH9/f13k/hvAmiW17qmgOdl4jISIi0teUMPSS8GaJaB0f87PSKMxOA6C+Kcju8ppejU1ERCRWShh6SfjQymgJA8A4NUuIiEg/poShl8Ta8VEjJUREpD9TwtBLRmWPIifVSwL2N+xn54GdnZ4/LmyK6A92d77KpYiISF9L6eqJjuOMBaYDL7uuW+2XpQDfBz4JVAM/c133ifiHeegxxjC9cDrLdi8DvPkYRuWM6vD86aMKWu6/tbmMqtpGcjICvR6niIhIV8RSw/AD4CGgPqzse3gJw0zgeOAxx3GOjyUAY0ySMeZ6Y8w6Y0ydMWa7MeYXxpisLj7eGGM+Y4x5zRhTZoypMsa8Z4y5xRiTG/0KvSeWjo8ji7KYPDwPgMbmIEvW7urV2ERERGIRS8JwAvBf13WbABzHSQIcYB1wBHAcXi3D9THGcBfwS+B94KvAX4GvAf80xnQlvtuBRUAt8EPgBmCNf/95Y4yJMZ64iSVhADjrqJEt9/+7pvMmDBERkb7U5SYJYCgQvvTiMcAg4Ieu6+4AdjiO8w/glK5e0BgzAy9J+Lu19lNh5VuAe4AFwJ87eXwKsBBYBXzE2pa1pO8zxjQBlwNHA6u7GlM8tV+EylpLZ/nLadNH8H/PryVoLe9+uI/dFTUMy8/si1BFREQ6FUsNQwAI7+p/kr//YljZDmB4DNf8NGCAu9uV/xaoAa7oQkwZwO6wZCGk2N9WxxBPXI3OGU12IBuA8vpydlfv7vT8guw05kwY1LL/omoZRESkn4glYdgBHBW2Px8oc103fHWlIUAskwgcCwSB5eGF1to6vFqBYzt7sLW2FngFONcYc6MxZqIxZqwx5mq85pKHrbUfxBBPXCWZJKYWTm3Z71KzxMy2zRLRhmOKiIj0hVgShn8BH3Ec5+eO49wOfAR4qt05U2nbbBHNCKDMWlsf4dhOYJAxJjXKNS4HFgN3Ah8AW4Df4/WN+GxnDzTGfMEYsyKGeGPWph9DlCmiAU6YMoyM1GQAduyt5oNdGmIpIiKJF0vC8FO8L+NvADcDu/BGTgDgOM4Y4ES8X/xdlUnbURfh6sLO6Uw9sBn4E/AZvGaOv+GN4Li5swdaa++31s7tcrTdEGvHx/RAMidPbW3VUedHERHpD7qcMLiuuwdv+OT5/m2667rFYadk4yUTD8Tw/DVAWgfH0sPOicgYkwm8BuRaa6+y1v7FWvuItfYS4FHgNmPMlBjiibv2U0R3pYnhzLBmiZfeK6Y52L57hoiISN+KZZQEruvW4jVNRDr2HvBejM9fDEw3xqRFaJYYiddc0dDJ4y8GJgE3RTj2V+Ay4GRgfYxxxc3Y3LFkpmRS01TDvrp97KnZw9CsoZ0+5uixRRTlpLG3qp6K6gZWbS7j2IlD+ihiERGRg8WUMETiOM5U4GN4NQGPuK4bS6P7m8A5eHM4LAkVGmPS8YZtRmveCP0UT45wLKXdNiFCHR9X7VkFeLUM0RKG5CTDGUeO5PHXNwPwwjs7lTCIiEhCdblJwnGcWxzH2eU4TmFY2dnAW8DPARdY5ThOUQzP/yje0MyF7co/j9d3YVGowBgz3Bgz1W+GCAl1CrgqwrVDZW/GEE+vaLMQ1b61nZzZ6swjW5slXl+/m5r6prjHJSIi0lWxdHr8GLDOdd19YWV34H3h/wD4DTAO+HpXL2itXQP8GrjIGPN3Y8x1xphf4M38+DJtJ226A1iLVxsR8i+8IZnzjTGvGGO+boxZaIx5xY/3r9baVTG8xl4Ra8dHgAnDcluWvK5vCrJ0XedzOIiIiPSmWBKGsXhf2AA4jjMSmAO4ruve7rruV/AmcfpkjDEsBL4FzMBLHhYA9wKfiDAZUxvW2mbgbLxkYgjeSI47gQLgRrxREwk3rbBtx8euOnOmpooWEZH+IZaEoQAIr10IzfQY3glyJd66El1mrW221v7CWjvFWptmrR1prf2GtfZAu/OuttYaa+1L7cqrrLU3W2un+o9Pt9bOtNb+1FrbL+rxx+WNIyMlA4DS2lJKa0q79LgzjhxBaCLp1VvKKNtf1+n5IiIivSWWhKGU1k6GAGcAjcCysLLUGK85ICQnJTOloHV0Z1f7MQzOzeDosV6XEAssfk+1DCIikhixfLmvBs53HOdIx3Em4g1ZfNUfahkyFm9CJ2mn/XwMXRW+guWLa4o7OVNERKT3xDrTYx7wNt68BnnAL0IHHcdJB04HenWq5UNVdzo+Apw0dRipKd6faXPJfraUxLJUh4iISHzEMtPjEuATwJPAE8DFruv+O+yUE4Gt/jFpp7sdH7PSApwwuXXeBnV+FBGRRIh1psdngWc7OPYiMCseQR2OJuRPIC05jfrmekpqSthbu5eijK5NWXHWUSN5+X2vpWfxu8Vcc+ZUkpNMlEeJiIjEjzoo9pGUpJRudXwEmDN+MHmZ3qKdZVV1rNm2N+7xiYiIdCbmaZMdx1kAXIdXm5AH7McbTvk713UfiW94h5dpRdN4p+wdwGuWOHnkyV16XEpyEqfPGME/3twKwAtrdnLMuEG9FaaIiMhBYpka2jiO8xDedM1nArl4Qy1zgLOARY7j/LmTSwx4baaI3tv1GgZoO4nT0rW7qWtsjltcIiIi0cTSJPFF4HJgFd7siumu6w7HW4b6bLxahsscx/lS3KM8THR3pATAlBF5jCzMAqCmoYk31pfENTYREZHOxJIwfA5vFMSpruu+6LpuM4Drus1+h8fT/OPXxjvIw8WEvAkEkgIAFFcXU1FX0eXHGmM4K3yq6Hc1WkJERPpOLAnDdOCJdhM1tfDLnwSmRTouEEgOMLlgcsv++/tiq2UIb5ZYsbGUiur6uMUmIiLSmVgSBgtEG8unsX5RdHfGR4DhBZnMGF0AQNBaXn5PMz+KiEjfiCVhWAtc5DhORqSDfvkngdi+BQeYnnR8hPYrWCphEBGRvhFLwvB7vJUoX3Ec5yzHcVIAHMdJdhznDGAxMMY/TzrQk46PAKdOH06KP2nT+uIKtpcdiPIIERGRnoslYfg/4C/AHOB5oNZxnBKgDngBOA74q+u698U9ysPIpPxJpCR501/sOLCDyvrKmB6fm5HKcZOGtOy/qM6PIiLSB2JZS8K6rns53tDKF4FKoNDfvghc7rrugl6J8jCSmpzKpPxJLfvr9q2L+RrhzRIvrtmJtTYusYmIiHQk5pkeXdf9C15Ng3TT9KLpLVNDv7/3feYNnxfT4+dNGkJ2egoH6prYXVHL+zvKmTG6sDdCFRERAbSWREJ0d+XKkNSUZE6ZNrxl/4V31CwhIiK9SwlDArQZKRHDIlThzjpqVMv9V97fRUOTpooWEZHe02GThOM4Qby5F2JlXdeNualjIJlUMIlkk0yzbWbb/m1UNVSRk5oT0zVmjC5gaF4GJZW1HKhrZMXGUk6cOqyXIhYRkYGusy/2V+hewiBRpKekMyF/AhvKNwBex8djhx0b0zWSjOGMI0fwyNJNgLeCpRIGERHpLR0mDK7rnt6HcQw404umtyQM7+99P+aEAeCsmSNbEoblH+yhqraRnIxAXOMUEREB9WFImJ52fAQ4YnAOk4bnAdDYHOQlTRUtIiK9RAlDgsSj4yPQZgXL3/7nfZZ/sKdHcYmIiESihCFBphROIcl4b//Wyq1UN1Z36zpnHzWKopw0AOqbgtz62ApeXKNhliIiEl9KGBIkIyWD8XnjAbDYbs34CJCTEeBnV57A0HxvTbDmoOUnT67myeVb4hariIiIEoYE6unKlSEji7K46+oTGTu4dWjmb557nz+9tEHTRouISFwoYUigeHR8DCnKSednVx3PtFH5LWWLlnzAr599j6CSBhER6SElDAkUr46PIbkZqdx5+TzmThjcUvbPFdv4yROraWwO9vj6IiIycClhSKCphVMxGAA2V26mprGmx9dMT03h1svmcvqMES1lL71XzA8eXUFdQ1OPry8iIgNTzFM4O46TDEwBCoDkSOe4rvtKD+MaEDIDmYzNG8uWyi0EbZAN5Rs4ZsgxPb5uIDmJGy88hpyMAP9csQ2AlZtK+c7Dy7jt08eSm5Ha4+cQEZGBJaYaBsdxvg+UAmvwpo5e3MFNuii8WaKn/RjCJRnD/5w7g8tPmdRStnZnBd/64+uU7a+L2/OIiMjA0OUaBsdxvg38EKgEHgK2A6rj7qHphdN5evPTQHwTBgBjDJ89fTJ5mQHc57xrbys9wDf++Bp3fGYeI4uy4vp8IiJy+IqlSeLzwE5gtuu6pb0Uz4AzrShspMS++CYMIRccN46cjFR+/tTbNActJRW1fOOPr/H/Pn0cE/2ppUVERDoTS5PEaOBJJQvxFT60cnPFZuqaeqe54MyZI7n10rmkpXh/8orqBm546A3WbNvbK88nIiKHl1gShhK60UlSOpedms2Y3DEANNvmlhUse8Nxk4ZwxxXzyE73/ow19U3ctGg5/1yxjeag5moQEZGOxZIwPAZ8xHGctN4KZqCaXhifGR+7YsboQn722RMozPb+jI3NQX7173dZ+PulrC+u6NXnFhGRQ1csCcMtwC7gccdxxvVSPANSm5ESvdSPIdz4obn88uoTGVXY2ulxw65Kvv67pfzv02vYX9PQ6zGIiMihJZYmhveAADACmO84TiVQEeE867ruhDjENmC06fgY55ESHRlekIn7hVN47LVNPLp0E43NQSzwzKoPeXXtLj531lQ+esxokozpk3hERKR/i6WGIQlvGOWH/q0SMBFumj0yRuEJw8byjTQ0980v/LRAMleeNpn7v3Qqx01snU56f20jd/9rDdf/4TU+2FXZJ7GIiEj/ZrSaITiOYwFc101YDPP/Pp/tVdsBeOTjjzBj0Iw+fX5rLa9vKOG+596npLK2pTzJwMfnjOGq06eQkxHo05hERKRXxVSFrNqAfiJ8eOV7e9/r8+c3xnDilGHc/+XT+PTJEwkkex+NoPUWsLrWfYn/vL1DK1+KiAxQ3U4YHMfJdRxntOM4ufEMaKDqrSmiY5UeSObqM6Zw3xdPYfb4QS3llTUN/Pypt/nWH19nc8n+hMUnIiKJEdO8Cv7CUzcA1wHjwsq3AA8AP3ddV9NFd0N4E8TLO16mMdhIIClxTQCjirL58WeO49V1u7nv+fdb1p94b3s5//PbVzn/2DF89rTJZKWrmUJEZCDocg2D4zipwH+A/weMxVtLYrm/HeuXv+CfJzGaM3QOgzO8jodltWW8+OGLCY7Ia6Y4ZdpwHvjyaVx64gSSk7zmrqC1PLl8K9e6L/PCOztQPxgRkcNfLE0S3wBOB54GprmuO9Z13RNc1x2Lt9z1P4FT/PMkRoGkAJ+a/KmW/cfWP5bAaNrKSE3h2rOmct8XTuGYsUUt5eXV9fzsH2/zzT++zqbdaqYQETmcxZIwfAZ4F/ik67ofhB9wXXcTcBHeXA2Xxy+8geVTkz5FskkGYPnu5Wyu2JzgiNo6YnAOd14xj5sumkVRTuuEn+9tL+crDyzh18++y4G6xgRGKCIivSWWhGEi8G/XdYORDvrl/wY0aVM3DcsaxmmjTmvZf2xD/6llCDHGcPqMETzw5dO55ITxYc0U8NSb2/jcr1/iudXbNZpCROQwE0vC0ABkRzknC9BPzB64bMplLfef2vgUNY01CYymY5lpKVx39jTu++KpzBrXdjTFL//5Dt/QpE8iIoeVWBKGd4CLHccZHOmg4ziDgIuBt+MR2EB1/IjjGZ0zGoCqxiqe3fpsgiPq3BGDsrnj8uP43qdmMzg3vaV87c4KvvrAq9z7zBr212ptChGRQ10swyp/BTwCLHcc53ZgMd5iVMPwOkN+DxgMfC3OMQ4oSSaJSydfyi9W/gKAR9c/ykWTLkpwVJ0zxnDK9OEcO3Ewf351I397fTNNQYsF/rXyQ155fxfXnDmVc2dpbQoRkUNVl2sYXNd9DLgTGAPcD3wAHAA24s3BMA74mX9elxljkowx1xtj1hlj6owx240xvzDGZEV/dMs1UowxXzPGrDLGVBtjKv37X4wllv7ikxM/SWqSNzr1/b3v827ZuwmOqGvSU1P43JlT+b8vncqcCW3Xpvjfp9fwdS2hLSJyyIpppkfXdW8GTgR+D7wFbPa3vwdOcl33O92I4S7gl8D7wFeBv+LVUvzTGBM1PmNMKvAv4GfAauB64CbgZbzk5pCTn57PuePObdl/dP2jCYwmdqOKsvl/nz6WH1wyh6F5GS3lG4or+drvlvKl/3uFB15Yy+qtZTQ2R+xDKyIi/UxCF58yxswA1gBPWGs/FVb+VeAe4HJr7Z+jXONHeAnCR6y1i7sTR39YfKq9t0vf5opnrgAgPTmdFy55gby0vARHFbu6xmYeXbqRv762OWJykJGazDFjBzF34mDmThjMsPzMBEQpIjIgHVKLT30aL+C725X/FqgBrujswX6zxdeBf1hrFxtPTm8E2teOGnQUUwunAlDXXMdTm55KcETdkx5I5qrTp/B/XzqVk6YOIyWp7eeztqGZ1zeUcO8z73LVvYu51n2J+55/nxWbSqlvbE5Q1CIi0l6HnR4dxznCv7vTdd3msP2oXNf9sIunHgsE8aaYbmGtrTPGrPaPd+YUIAdYaYz5X+BzQLYxpgwv6bjFWntIrm1hjOHSKZdy2+u3Ad7Mj1dMuwJziHYaHFmYxS2XzKG2oYnVW/ayYtMe3txUSklFbZvzduytZsfeLTyxbAupKUkcNaaIY/3ah1FF0Ub1iohIb+lslMRWwALTgA1h+9HYKNcNNwIos9bWRzi2EzjRGJNqre1oXN4Uf7sQb56IbwN78WabvAkYCVzV0ZMbY74AfOHLX/5yF8PtWx8f93F+seIXVDdWs3X/VpbvXs684fMSHVaPZKSmcMKUoZwwZSjWWnbuq+bNjaWs2FTKO9v20tDU2mzR0BRkxSbvGMDooixOnDKME6cOZfKIfI24EBHpQ519sf8J78u/st1+PGUCkZIFgLqwczpKGELND4XAkdbadf7+Y8aYxcBnjTE/sdZGXC/aWns/cH+oD0N/kxnI5Lzx5/HI+kcAr/PjoZ4whDPGMKoom1FF2Vw4bxz1jc2s+XAfb27cw4pNpezYW93m/O17q3n0tU08+tomCrPTOGHKUE6cMoyjxxYRSE5065qIyOEt0Z0e1wBDrLVDIxx7DLgESOuohsEY803g58BSa+3J7Y5dgzd6w7HW/qazOPpjp8eQjeUbufCpCwFIMSk8f/HzDM6MOHfWYWd3eQ0rNpfy5sZS3tpcSn1T5BEVmWkpHDdxCCdOGcrciYPJStOS2yIiXRBTNW0sEzf1hmJgujEmLUKzxEi85orOpgnc4W93Rzi2y98W9DDGhJpYMJHZQ2azas8qmmwTf/vgb3zp6C8lOqw+Mawgk0/MGcMn5oyhrrGZVZtLeW19Ccs2lLC/tnUG8pr6Jl56r5iX3ismkJzEMeOKOHHKMI6fPITC7PROngGstTQHLU3NQRqbQ9sgScaQn5VKimouRESAGBIGx3GagVtd1/1RJ+d8F/ih67pdve6bwDnAccCSUKExJh04BnglyuNDnSVHRTgWKtvTxVj6rcumXMaqPasAeHzD41w38zpSkhKd6/Wt9ECy139hyjCag0He217Oa+tLeG397jYdJxubg7y50auVuOdpGD0oG2OgKSwZaGwO0tQcpKnZRp0HIi8zlcLsNP+W7m1zwu5np1GYk056ILm33wIRkYSK5VvH0LXqi1iqOB4FbsbrtLgkrPzzeH0XFrVc1JjhQB7wobW2BsBau8UYsxSvc+Rsa+0q/9xk/xpNwPMxxNMvnT3mbArfLGRf3T5Kakp4ZccrnHnEmYkOK2GSk7zRE0eNKeKLH5nG5pIqXl+/m9fWl7CpZH/LeRb4sOxAj56rsqaBypoGtuyp6vS8zLQUCrPSGJyXwcRhuUwZkc+kEXkMzcs4ZEe2iIiEi/fP1AJaOytGZa1dY4z5NfAVY8zfgWfwRmV8DW+mxvBJm+7AG/FwBvBSWPlX8ZKNF4wx9+CNkrgMr9biNmttV4d49lupyalcOPFCfvfu7wCv8+NAThjCGWOYMCyXCcNyueK0yeyuqOF1v+bh3Q/3EexCF53kJENKchKBZG+bkpxEU3OQyuqGLvfyralvoqa+iR37qnlrS1lLeW5GgEkj8pkyPI9JI/KYPDyfopw0JRHSp4LW0tAUJJCc1LIkvUisOk0YHMc5tV3R2AhlAMnAEXjDGdfHGMNCvCGbXwA+DpQB9+LNoRB13mBr7VvGmBOB2/1rpQNrgWustQ/GGEu/dcmUS/j9u7/HYnmt+DU+3P8hR+R2eWqMAWNYfiYXzhvHhfPGsb+2gZKKWlJCCUFKEgE/IUhJNi33Oxqe2RwMUlHdwL4D9eytqmPfgXr/Vse+qtb75QfqaeogM9lf28jKTaWs9IeGAhRmpzF5eB6TRuQzeXgek0fkkZ+V1ivvhxw+mpqDbCrZz3vby9lTWUt9YzP1jc00NHnb+qZgWJl/v6l1H7yZVc+aOZJPHjeO0YM0r4nEptNREo7jBOn6UEqDNwnTZ13X7XQ65/6mP4+SCOe84LBkp9dyc/WMq/nm3G8mOCIBr+Pk/tpG9lXVsWNvNRt2VbJhVwUfFFdSXd+1ecPyMlPJSQ+QkZZCZloKman+1r8fsTwthay0FHIzU8lOD8R9XopICVNdQxOpgWRSU5JITUkmLSWZ1EASaSnJpPnl4WWpgWRSkoxqVLqhuq6RtTsreO/Dfby3o5x1OyviOvvpcRMHc+G88cwaV6S/z8AV11ESt+ElDAa4Ba8p4OUI5zXjNQUsdl13XYTjEgeXTbmsJWF4cuOTfGXWV0hL1i/TRDPGkJeZSl5mKuOG5nLK9OGAVw28q7yGDcUVbNhVyQfFlXywq5K6CP/oh/pKdFeSgZyMVHIzAuRmppKb4cWTm5lKbmag7X5GgOSkJK+mJFRr0qYGxas5iaVJJlps+VlpzBo3iGMnDmbOhMHkZqTG4cqHlz2Vtby3fR/vbS/nve3lbCnZH9eJbwLJSW06+S7fWMryjaWMGezNg3LmkSNJU+dd6USX52FwHGcLcJfruvf0bkh971CpYWgONjP/7/Mpri4G4Mcn/5jzJpyX4KgkFs1By869B7xaiGKvJmLT7v1tZrg83CUZmDqygGMnDua4iUOYMCy3V37hWmupbwpyoLaRA3WNVNU1trlfXeff98sO1DWSFkhm7oTBnDRlGMMKem8hNGst20oP8M62vX6CsI/S/dG7fw3Ny2DG6ALGD80lPTWF9FCtTiC59ebvp6Yke8f9cwzwzrZ9/H3ZFpZtKDkoGcnLTOXjs4/gE3PHUJTT+XBk6VvWWiprGthVXkNRTjpDwlYB7qGY/sdL6MRN/cWhkjAA/Pad33LPW17OdvTgo3l4/sMJjkh6qjkYpPxAAzUNTdQ2NLV0oKypb6LG368Nux9efqCukf01DV1u+ohVy7DSnHQKs9LITEuhsTnY2nbeFKTBbytvaAx6W7/9vLHJ22+O0vO0MDuNYycO5tiJQ5g9bhBZ6V2beMtay74D9RTvq6a4vIad+6op3lfDrvJqyqrqqK5r6tHy6eOH5nLSlKGcOHUY44bk9Dip2V/bwFuby1ixqZSVm0vZW9XRJLeeJOPFMGN0IdNHFzBjdAGDc+PzRbFzbzX/eHMrz63eflCNV0qS4bQZI7hw3jgmDT/0VsjtiLWW+sZmquubqK5r9Lb+/bRAMlNG5FOQnbga2/rGZkoqathVUcPu8hp2VdSyu7yG3RU17Cqvafk7XXvWVC49cUK8nlYJQ6wOpYShrLaMjzz+EZqC3hfE4+c9zpTCKVEeJYe7puYg+2sb2F/TyP5ar3ljv9/MUVXb6O2HlTcHLQXZ7eaTCO3nePcLstLiMnFVU3OQLXuqWP7BHt7cuId1Oys6rGpPTjLMGF3AcROHcNykIYwqyqZsfy3F5TUtiUFxWGLQ0eyf8Ta8IJMTpgzlpCnDmDaqoEsjDZqDlvXFFaz010PZUFzR6aid9EAy00Z5icGM0YVMHZlPZlrvzrdyoK6RZ9/azj/e3MqeytqDjs88opAL543j+MlD++3oipr6JjburmR9cQV7KmuprvMSgZr6Rv9+o7/fFDV5HZqfwbSRBUwdmc+0UfmMH5pLakp8mmmstVRUN1Bc7n1+Q4nA7grvFi2BDPn4nCP42vyZcYmJ3kwYHMcxwMXAR/FmYoyUjlnXdc+KJYhEO5QSBoBvv/xt/r313wBcMvkSbjnhlgRHJNJ1lTUNrNxUynJ/zZCqsFk720syhmAPftQEkpPITg+QnZ5CdkaAnPSAt5/hbXNC99O8bfG+apauL+GtzWUd1k7kZ6VywmRvHZNjxhW1+UIp21/HytB05lvKOFDX8WvLTg8wa1wRRx5RyIzRhYwfmkNyUmJmFm0OBnltXQlPLN/Ce9vLDzo+KCed6aML/NE9eUwaltflmqB4amwOsqVkP+uLK1hfXMn6nRVsLzsQ90WOQgLJSUwclsvUUX4SMTKfIZ3MrWKtpby6nuJ9oRqvanb6yW3xvhpqGrpfE5iZmsKwgkxOmjqMK06d1O3rtNM7CYPjOGl48ySc7j9JqDNkSGjfuq57SPWcOdQShhW7V3DNc9cAkJGSwYuXvEh2qoZIyaEn9Cv8zQ/2sHzjHjbu3h/9QWFyMgKMKMhieEEmIwozGVGQxYjCTIbkZZCTkUpaSlK3mhJq6pt4c+MeXltfwvIP9nT4D31magrHThxMUW46qzaVsbW04wm+kgxMGZHPnAnecu2TR+T3y1/t63ZW8MSyLSxZu6vTX+QjC7OYNDyPSf7Q4AnDcuO6jkvQWnaUHfASg+IKNhRXsrlkf4+amQLJSWSlp5CVFiArLYVM/35FdT0f7KrsUl+iwuw0po7MZ+rIAvKzUluawrwasGpqG7o3kiXJGIbkpTOsIJPh+ZkMy8/07vv7ORmB3ujr02sJwy3ArcCPgHuAUn//frwk4k7gNeBK13XjN/anDxxqCYO1loueuoiNFRsB+O6877Jg6oIERyXSc3ur6lixqZTlH+xh1eYyahqaKMhKOyghGFHoJQl9MdqioamZt7fu5bX1Jby+voTy6q5VHQMU5aQxd8Jg5owfzKzxgw6p0SGl+2v554ptPLPqw05rgUIMMLIoq2WOkUnD8xiWn9E6J0To1tRMfaNXVhc2j0Rd2DnF5TV8sKuSmi70zUkyMGZwDpNH5DFmcA7Z6V4ykBXapgXISveGIXfWvBCqvVi7s4J1O8pZu7OCXeU1sbxlUWWmpjCiMJPhBVmMKGhNCIblZzI4Nz0Ra9f0WsKwBqh3XXeuvx/EW1viNn9/PLAaby2JX8QSRKIdagkDwJ/X/pk7lt8BwMT8ifz9/L9rLLUcVpqD3lof/WmdjuagZd1Obx2Tpet2H/SFEkhO4sgjCpkzYRDHThjCmMHZh/z/l6Ev0g92VbYMD95aWhW1P0BvGV6QyeTheUwZmc/kEflMGuaNGOkNFdX1rNtZwbqdFazdWc6GnZVRmxUy01IYWZjFyEIvKRhR6CW5IwuzyMtM7W+fh15brXIC8NuwfQu01D+5rrvZcZyngauBQyphOBSdN+E87l51N7VNtWys2Mhbe95i9tDZiQ5LJG6SkwzJSf0nWYBQp0yvz8F1Z01l654q3vhgDzX1Tcw8opCjxhT22pdXogSSk5g8wvty/rhf1tDUzOaSKj7YVeElEsWVbCs90KP+JpHkZ6UyZUQ+U0bkM3lEHpNH5JOX2Xe1NPlZaRw/eSjHTx4KeAnj9rIDrN3ZOpHW8AKv5mtkkZcg9MOkIG5i+WQ30nadiCpgcLtztgHn9zQoiS4nNYf54+bztw/+BnjrSyhhEOk7xhjGDc1l3NDcRIfS51JTkv12/PyWsvrGZjaX7PdqIfyaiP21Df7cEKF5IpJIDyS3zBORFkgO2289lpeZyuQR+QzOTe9XX77JSYaxQ3IYOySHj80aeFPzx5Iw7MAbGRGyATih3TmzgH09DUq65rIpl7UkDP/Z9h9urLuRwvTCBEclIgNRmj8sdNqogkSHIr0kloRhKXB22P6TwO2O4/wO+Dtex8ezabvCpPSiaUXTOGrQUbxT9g6NwUbue/s+vnPcd0gyiRmaJSIih69Yvln+DKx3HGesv3838CZwDfAU8E1gE/CdOMYnUVw65dKW+39Z9xcWLl5IVUPHQ7tERES6o0czPTqOkwJcAEzEW6L6n67rxnccSh84FEdJhDQGG/mfF/6H13e93lJ2RM4R3H3G3UwqiNvkHiIicvjR1NCxOpQTBvCShrtX3s2f3v9TS1lGSga3nnAr88fPT2BkIiLSj8WUMKix+zAQSApww7E38LPTfkZGirc4TW1TLTcuuZGfLP8JjcHok66IiIh0psNOj47jfLa7F3Vd90/Rz5J4O3fsuUzKn8TCxQvZun8rAA+vfZj3977Pz0/7OYMz24+CFRER6ZrORkk8CG3W9DDt9iMJnaOEIUEm5E/gLx//C99b+j3+++F/AVi1ZxWX/utSfnHaLzRXg4iIdEtnTRLXAJ8Lu10D/AsvKXgFuA1w/O0Sv/wp/1xJoOzUbO46/S4Wzl7YMsSyrLaMa5+7lkVrF6F+KyIiEqsOaxhc1/1j+L7jOPOBc4ELXNf9Z7vTf+g4zgXAY8B9cY9SYmaM4dqZ1zJj0Ay+/fK3Ka8vp8k2cefyO3mn9B1+cMIPyAxkJjpMERE5RMTS6fG7wBMRkgUAXNf9B95kTt+PQ1wSJ8cPP55HP/EoRxYd2VL2zJZnuPyZy9m2f1sCIxMRkUNJLAnD0cDGKOdsBI7qfjjSG4ZnD+ePH/sjl0y+pKVsY8VGFvxrAYs/XJzAyERE5FARS8LQgJc0dOZovEWqpJ9JTU7llhNu4bYTbyM1yVvt7UDjAb62+GvcufxOahoPufm2RESkD8WSMPwXmO84zlccx2kz2YPjOMZxnK8CHwNeiGeAEl8XTrqQh+Y/xIisES1li9Yu4uJ/XsyK3SsSGJmIiPRnsSw+9R3gDOB/gYWO47wKlABDgZOBcXgrVWotiX5uetF0Hv3Eo3x36Xd5ZccrAGyv2s41z13DZ6Z+hq/P/ro6RIqISBtdrmFwXXcTcDxeTcN44LPADf52PF7Nwgmu627uhTglzvLT8/nVmb/i9pNuJyeQ01L+53V/5lNPfYo3d7+ZwOhERKS/6dZaEo7jjARmAXlAJfCW67o74xxbnznU15LoqZLqEm5747aW2oaQBVMWcP2c61XbICJyeNLiU7Ea6AkDgLWWf27+J3cuv7PN8tgjs0dy24m3cdzw4xIYnYiI9AItPiWxM8Zw/oTzefKCJzlt1Gkt5TsP7OTa56/l9jdu10gKEZEBrLPFp36Pty7Eza7rlvj7XWFd1702LtFJnxuSOYR7z7yXf23+F3cuv5P9DfsBeHT9o7y681V+eOIPmTd8XoKjFBGRvtbZKImr8RKGn+CNhri6i9e0gBKGQ5gxhvMmnMfxw4/ntjdu46XtLwFebcN1z1/HpZMv5Rtzv0FWICuhcYqISN/prEliHN7oh81h+125je+tYKVvDc4czD1n3MMdp9xBbmpuS/ljGx7jon9cxMvbX05gdCIi0pfU6RF1euyKstoyfvT6j3hx+4ttyk8bdRo3Hnsjo3NHJygyERHpJnV6lPgblDGIu8+4m5+e+lPy0/Jbyl/e8TIX/OMC7n3rXmqbahMXoIiI9KoOaxgcxzmiuxd1XffDbkeUAKphiE15XTn3vHUPf9vwNyytn5/hWcO54dgbOPuIszEmpsRVRET6Xkz/UHfW6XEr0J32ChvlunKIK0gv4Acn/IBPTfoUP172Y9aUrQFgV/UuvvHSNzh++PHcdNxNjM9XdxYRkcNFZ1/sf6J7CYMMEEcOOpKH5z/MPzb+g7tW3kV5fTkAb+x6g0899SmumH4FXzr6SxpNISJyGFCnR9QkEQ+V9ZW4q10eWf8IQRtsKR+cMZhvzv0m88fNVzOFiEj/ok6P0vfy0vK4ad5NPPaJx5g9ZHZLeWltKd9Z8h2ufvZq1u9bn8AIRUSkJ5QwSFxNKZzCg+c+yB2n3MGgjEEt5av2rOLSf13Kj17/Ef/Z9h82lG+grqkugZGKiEgsYm6ScBznWOCjwEggLcIph9zU0GqS6B0HGg7wf+/8Hw+//zBNtumg4wbDsKxhjM0dy5jcMYzN87ZjcscwImsEyUnJCYhaRGTAiNsoiTYcxzHAg8AV/pPYdk9mw8oPqYRBekd2ajbfnPtNLpx4IT9e/mOW7VrW5rjFsqt6F7uqd/H6rtfbHAskBRidM9pLJHLHMi5vHLOGzGJM7hj1hRARSYBYhj9+BbgSb/TEPcAK4G7gMeB04DvAM8BNcY1QDnnj88fz24/8liU7l/B68ets3b+Vbfu3sfPAzjYdJMM1BhvZXLmZzZWb25QXpRcxZ+gcZg+dzdyhc5lUMIkko5Y1EZHeFkvCcBWw3nXdqwEcxwGocF33DeANx3GeA94A/gP8Ic5xyiHOGMOpo07l1FGntpQ1Njey/cB2tlVuY9v+bS2JxNb9WymrLYt4nb11e3l+2/M8v+15AHJSc5g9ZHZLEjG9aDqBpECfvCYRkYEkloRhCl7tQsTHu677luM4/wIclDBIFwSSA4zPG8/4vIMneDrQcIBtVdvYVuklEO/vfZ9Ve1ZR1VDV5ryqhipe3vEyL+/wFsLKSMngqMFHMWfoHOYMmcO0omkkm8h9IcJnqWzflyclKYX0lPSevkQRkcNGLAmDASrD9quBwnbnfACc09OgRLJTs5lRNIMZRTNayoI2yAflH7CyZGXLbW/d3jaPq22qZdmuZQf1l+iOjJQM8tPyyU/LpyC9oO02rYD89HbbtHwCyardEJHDUywJw068kREhm4E57c6ZhJdIiMRdkkliSuEUphRO4TPTPoO1lg+rPmyTQOw8sDNuz1fbVEttUy27qnd1+TGF6YUcNfgoZg+Z7TWRFE5XEiFxY62luLqY3dW7CdogQRuk2TZjraXZNreUdVRemF7I8SOOV7OddEssCcNy2iYI/wZucBzn+8Df8To+XgD8K27RiXTCGNMyDPOiSRcBsLt6d0vysKpkFcXVxZ1fI2ygT/joi/rmepqCBw8FjWZf3T5e2v4SL21/CYD05HRmDp7JrCGzmDNkDkcPOVpTZUuXWWvZUbWDN0veZMXuFawoWRFTAhvJkMwhfHrqp7l40sXkp+fHJ1AZELo8D4PjOJ8E7gDmu667xXGcQryREmNpHVK5DzjZdd11vRJtL9E8DNKetZaaphrK68qpqK84eFtfTkVdu219RYejPkKSTBJTCqYwZ+gcZg2Zxeyhs9tMcBVJU7CJ6sZqaptqqW6spqaxhuombwve9NtDModQlFFESlLvrPsWtEEq6iuobqzGWuv9YiXYet8GsXj3Ix3PTs1mYv5EjWiJwlrLtv3bWFGygjd3v8mKkhXsqdnTK8+VnpzOJyZ8gsunXs7Egom98hzS78U0Rr3ThMFxnPOBf7muG/FfQcdx8oDPAxPwVrf8k+u6PUt/E0AJg8RD0AbZun8rb5W8xao9q1hVsoodB3ZEfdwROUcwIX8C9c31bZKBmsYaappqqG+u79LzJ5kkBqUPYnCml0AMyRzC0MyhLfuh+zmBHIwxNAWbqKivYG/tXu9W1/G2vK6cZtvco/enML2Qk0acxEkjT+LEESdSkF7Qo+vFW01jDRbbpzVA1lq2VG5hRcmKlhqE0trSTh+TkZLBpPxJpCSlkJyUTJJJIokkkpKSSDbJ3n2TRHJSMgbjlSV5idobxW8c1O8H4IThJ3DF9Cs4eeTJSuoGlrgmDEG8vgt/AH7nuu62nsXWPylhkN5SUl3CW3taE4gN5RvajM5IhIyUDNKT06mor0hYLAbDkYOO5OSRJ3PSyJM4sujIPpvZs7yunM2Vm9lUsYktlVta5vvYXb0bg+GowUdxxugzOOOIMyKO4Ompstoylu5cytKdS1m2exn76vZ1en5WIIvZQ2Yzd9hc5g6dy7Siad3ug9DQ3MCzW5/l4fcfZu2+tQcdH5s7ls9M+wwXTLiAzEBmt55Dek/QBmkONsezX1RcE4b/AGf6Fw3izbFwP/CU67o9+7kRCsCYJODrwBfxmjdK8SaDusVaG3MHSmPMY8AlwHvW2iO78hglDNJXqhqqWL1nNW/teYuVJSt5t+xdGoINnT7GYMgKZJGZkklmwLuF9pttM2W1Zeyp2RP1i6enclJzyE3N9X6xmiSMMSThbUP3w8tD9w2GD6s+7DS+vLQ8Thx+IieN9GogojXTRGOtpaSmhM0Vm1sSgs2Vm9lcsbllGfauGJs7tiV5OGrQUd1KahqDjbxT+g6v7nyVpTuXRvyiDpcTyGH20NkcO+xY5g6dy5TCKXFvarLWsrJkJYvWLuLF7S8e1JSWE8jhU5M/xaenfpoR2SPi+ty9IWiDbK3cyp7aPVhrvUTYekOnLba1DFrut2z9WqVxueMYkjkkITPJ1jfXU1Zb5t1qvG1pbWlrmb+/r3YfX5n1Fa6dGbfJlOOXMAA4jjMGuA64Gm+UhAVKaK112Nzxo7sQgDH/C3wNeAKvI+U04KvAEuBsa6M0Cre91ieAfwD1wGYlDNLfNTQ38N7e99hTs6clIcgKZJGVkkVGIIOsQBbpyeld+kesobmhJXkoqSmhtKa09X6td39PzR5qm2pbHlOQVkBRRhFF6UUUphd69/398G1heiGpyandfp1BG2Tt3rUs2bmEpTuX8k7ZO53295hWOI2TR57MjEEzaGxubBmx0v5W11QXsby0tpTqxth+b6SYFIIEO4yrML2Q00adxhmjz+D4EceTkZLR4bV2V+/2ahGKl/J68escaDzQ4bm5qbnMGTqnJUGYXDC5T9dR2VG1g7+s+wt//+DvB8WZZJI464izuGTyJcwYNIPc1Nw+i6sz1Y3VvFP6Dm+Xvs3q0tW8U/rOQXO0dEd2INubGybfmx9mQv4ExuWNY2T2yG411TQHm9lbt5eS6hJKakrYXb2bkpoS9tTsaZMIxBL7FdOu4Mbjbow5lg7EN2EIcRwnCZiP12fhY3gjLILAi3i1Dk+6rhtTt3JjzAxgDfCEtfZTYeVfxZt++nJr7Z+7eK1s4H3gSeB84IASBpG2rLUcaDxAfXM9+Wn5vdZJMprK+kpe3/V6S9V8tHb7eEpPTmdc3jjG5Y1jQv6ElsnDRueOprqhmld2vsKLH77Ia8WvtUmu2l/jhBEncMboMzht9GlkB7J5a89bLN25lCU7l7CxYmOHz59iUpg1dFZLf47JBZP7Rb+B6sZq/rHxHyxau4gPqz6MeM6QzCFMzJ/IhPwJLdsJeRPITs3utbistWyv2u4lB3tWs7p0NRsrNkbtYBxP6cnpjM0b2/JZCX1usgJZlNSEJQPtEoPSmtKIC+/1xAUTLuD2k2+P1+V6J2EI5zjOMOBz/m08Xq1DGd7iVA+4rvtBl57cmNuB7wKnWmuXhJWnA3uBl62187t4rf/Fa4qYCryDEgaRQ4K1lg3lG1pqH1bvWR2Xf2RzUnOYkDeh5ddiKEEYnjW8S1/QdU11LNu1jMXbF/PS9pcidhYEr8koPSW9w+QCYFjWME4eeTInjzyZecPm9eoXbE8FbZAlO5bw8NqHeWPXG116zLCsYV4Skdc2meioH0SoLb7Zht38/aANsr1qe0ty8E7pO11qbitML2R83nhvZlfj/V0MpqVZLFJZqOauvK6czRWbqWrseS1FdySbZIoyihiUMYjBGYMZlDGo5TY4YzBFGUUMzhxMUXpRvGeg7f2EIZzjOGfhNVl8EkjFW966Sz9bjDHPAWcDmdba+nbHlgKTrbWDu3Cd44DXgU9bax8zxmxFCYPIIamqoYrlu5aztHgpu6t3k56STkZKBhkpGWSmZHqdNsPK2twCGWQkZ5CblktRelHc2qODNsiasjUs/nAxi7cvPmhRtPYCSQHmDJ3TkiSMzxt/SK6y+kH5Bzy6/lFW7VnF1sqtNAYbY3p8TmpOy+RR4QlCTyWZJCYXTObowUdz9OCjOWbwMYzKGdWj99haS1ltGZsqN7Xp+7KpYlOP+gcVpBUwNGsoQzOHMixrGEMzhzIkc0ibRCA/LT9RtUx9njCkABcC3wSOw0sYutQAZ4xZAwyx1g6NcCzUeTHNWtthrzBjTAqwEii21n7ML9tKFxIGY8wXgC98+ctfngNKGESka7bt39aSPLy15y0sllHZo1oShGOHHXvYjTJoCjbxYdWHbKrYxMaKjWyq2MSmik1s3b+1W5OcxSInNaclMTh6yNHMHDSzT4e/VtRVtEkgtlRuYVPlJhqaGxia6SUDQ7NaE4LwxKCfr0nTNwmD4zhT8GoWPgsM8p94C15HyB936cmN2QQErLVHRDj2J7zltAustRWdXOMm4PvAkdbazX7ZVlTDICJ9oLK+krqmuoT1sE+0xmAjH+7/sCWJCG237d/WaW1CimmdRyLFpLTMI5FskslLy+OowUe1JAlj88b2i34eh6GYPrAx9XhyHCcduBQvUTjJf7JGvKmhf+u67vOxXA+oAYZ0cCw97JyIjDETgVuA20PJgohIX8pLyyMvLS/RYSRMICngdX7Mn9CmvLG5kQONB0hOSvYSAn8yqdCwXDn0dClhcBznGLzREZ8BcvEShU3AA8AfXNft7tylxcB0Y0xa+z4MeEM4yzprjgB+gTcd9RN+8hCSAqT6ZdXW2kNu9kkRkUNZIDlAQXL/ms1TeqbThMFxnC/iJQqz8JKEBuCvwP2u674Yh+d/E2857OPw5l0AWkZJHAO8EuXxY4ARwHsdHP8AeBr4RE8DFRERGcii1TD8xt9uAH4L/NF13bI4Pv+jwM3AQsISBrwkJRNYFCowxgwH8oAPrbWhZopvAfkRrusCdcA3ANUuiIiI9FC0hOEveLUJL/fGk1tr1xhjfg18xRjzd+AZvJkevwa8DIRP2nQHcBVwBvCS//gXIl3XGPNzvE6Pj/dG3CIiIgNNpwmD67qX90EMC/FWuvwC8HG8CaDuxVtLou+m8hIREZEOJWZe2DDW2ma8zou/iHLe1XjrWXTlmmN7GpeIiIi00tgWERERiUoJg4iIiESlhEFERESiUsIgIiIiUSlhEBERkaiUMIiIiEhUShhEREQkKiUMIiIiEpUSBhEREYlKCYOIiIhEpYRBREREolLCICIiIlEpYRAREZGolDCIiIhIVEoYREREJColDCIiIhKVEgYRERGJSgmDiIiIRKWEQURERKJSwiAiIiJRKWEQERGRqJQwiIiISFRKGERERCQqJQwiIiISlRIGERERiUoJg4iIiESlhEFERESiUsIgIiIiUSlhEBERkaiUMIiIiEhUShhEREQkKiUMIiIiEpUSBhEREYlKCYOIiIhEpYRBREREolLCICIiIlEpYRAREZGolDCIiIhIVEoYREREJColDCIiIhKVEgYRERGJSgmDiIiIRKWEQURERKJSwiAiIiJRKWEQERGRqJQwiIiISFRKGERERCQqJQwiIiISlRIGERERiUoJg4iIiESlhEFERESiSnjCYIxJMsZcb4xZZ4ypM8ZsN8b8whiT1YXHFhhjvm6Med5/XK0xZr0x5n5jzOi+iF9ERGQgSHjCANwF/BJ4H/gq8Ffga8A/jTHR4psH/AKwwK+ArwDPAFcAa4wx03sr6E5Zm5CnFRER6S0piXxyY8wMvCTh79baT4WVbwHuARYAf+7kEuuAKdbaTe2u+zTwH+A24OJ4xx3Vn/4XMrNg/gLIyunzpxcREYm3RNcwfBowwN3tyn8L1ODVFHTIWru1fbLgl78A7AOOjE+YMfhwI7z6HDz3N7jpGnj+79DY0OdhiIiIxFOiE4ZjgSCwPLzQWlsHrPaPx8wYkwfkACU9jC92S//T2iRRcwAeux++/wVY/hIEg30ejoiISDwkOmEYAZRZa+sjHNsJDDLGpHbjut8DAsAfOzvJGPMFY8yKbly/Ywu+BF+4CQYNay0r2w333wk/Xgjr34nr04mIiPSFRCcMmUCkZAGgLuycLjPGXAx8E3gO+ENn51pr77fWzo3l+l0IAI47DX50P1z2xbZ9GLZugJ99G+79ARRvi+vTioiI9KZEJww1QFoHx9LDzukSY8x8YBGwErjU2gQOVwikwkcuhDv+AOdeAimB1mNvL4MffNnrHFm5L2EhioiIdFWiE4ZivGaHSEnDSLzmii71GDTGnAv8HXgPOMdauz9+YfZAZjZcfC38vwfghLNay20QXvk33Pw5eOphqKtNXIwiIiJRJDpheNOP4bjwQmNMOnAM0KX+BcaYjwJP4A2zPNtaWx7fMOOgaChcewPc8iuYdkxreX2dlzB893Pw8jPQ3JywEEVERDqS6IThUbxJlxa2K/88Xt+FRaECY8xwY8xUY0ybPg3GmHOAJ4ENwFnW2v5dx3/ERPjGHbDwdhg5trW8shweugd+8CVvKOa+0oSFKCIi0p5JZDM/gDHmXrwZGp/Am6VxGt5Mj0uBM621Qf+8B4GrgDOstS/5ZXOBJXhzOXwHKGt/fWvtw9FicBzHAriu2+PXE5NgM7z2Ajz5J6jYe/DxCdNgzikw9xQoHNy3sYmIyOHOxHJyQmd69C0EtgJfAD6O96V/L3BLKFnoxJG0do68q4NzoiYMCZOUDCd/FI49Df7zBDz7V6gL6+O5aa13e+x+JQ8iIpJQCa9h6A8SVsPQXnUVrFoKK5bA2rc6nuhJyYOIiPTcIVfDICFZOXDKud7twH546zVY8QqsXd02eYhU8zD7RK9jpYnp7y8iItIlShj6q+zc1uShqtJLHlYu6Tx5SEuHwcNhyIjW7RB/WzDIawKJB2uhucnfMa1Jimn5j1em5EVE5LChhOFQkJMHp37Mu3WWPNTXwY4t3q29lAAMGto2mRg8HHILvH4TtdXe2hc11f796taySPuxrothDGAgNdWbNnvwMBg03NsOHu7dBg31JrwSEZF+RwnDoaaj5GHzeu+LvCNNjbB7h3dLBGsB6yU1O7d6t0gKBvkJRXgyMcxrbsnKUUIhIpIgShgOZeHJg7Vep8k9xd6tdJd/399WVcT3uZPDmjes9WbTwLbud1d5mXf74N3Ix9PSvcQhKweyciEru3U/O/fgY2np3mRYTY1eM0qTf2v2b02Nrfvh94NB7zUmp4RtUyApydum+OVJ7c4xBhrqvSXNmxq9bUM9NPr3GxugqQEaGsL2G73H5RVCfhHkF0L+IO9+dq73nNK5xgbYXw4V+7zp1pubITcf8gq89zU9U01kIj2khOFwYYz35ZKdC+OnHny8rqY1eSgN21ZXQUYWZGZ525b72a1lmVneFNfh54WvjdERG55AhJb8rvFW7yzb5cVTttuLo3Q37NsTvamjvs67DZSJrZKTwxKJotaEIs+/n5XtJSNNYbfO9kP3g83e9ORB622tDduPVObvGwOp6V4ilpYWdj8dUtP8bXiZvw2ket1bTFJr/5aWm58QJSW1Nl0l+duGei8BqNzXmgxE2q+u6vx9TE3zmt9CCURegb9f2HY/K6c1DpPUNuZDWTDYmgiHhPczanl9ob9J+P1D/LWD97rra6G2xm+CDdvWVnuf7YwsyMj0bumZrf/epabHL2kPNnv/DzbU+z8k6r0fD+H3G+uhvr71x0b782bMhtknxSeeGClhGCjSM+GICd6trxz0jxGQnePdxk46+PymJi9pKPUTitJQMrHLq3WoOTDwps5ubvaSo4GSIPWWhno/Ud3d/WuYJC+ROSjpSTr4CzaU+LQpb3cOeF9EScl+bZV/v2U/bNtyXlJr5+XGRmjuJElsbmotb+mk3IPXnpoKgTQIBLwELMXfBlK9W6p/LBBWlpTUGkezX4MXqslramqNP7Qfit/ag9+DSNv2ZcHmyElB+Pw2Mb924ycQfhLRkkxkerWKoZrC8FrENrfG1prFePz7lZ6uhEGElBR/ZMeIyMet9f7Hr65qvR0Iu1+9/+DyhnrvuikpkBxobUpICbQ2LYTfD21Nkvc/d3NT2Na/H2xf3tzalAHt/vEM+0c29I9opFtzk/eLuWIvVO5tvR/tl7N4TJLfBFHo1cCkBLzp1veXezUQDfU9fw4bhGbw/zOw2GBr7d5AY61XC1FbDfSDxD0en+VuUsIghw5jWptNBg1LdDR9I1QlXxGWRFSUtd6vrfGSkRT/Fn4/tJ8c4VjoF+1Bv5r9bfuy0H7Q/+Jo8L88Gupbv0hCZS3361vLGhuBUHNHqImDsKaPDo6lBLymgvzC1uaDSPdz8joeNmytVx1dsc9PIMrDmjb8+6HyUPV0m2aZw2Ryu5RAa9V6+OtqeX2h1x12/3CSlhHW3NBua0zb2ojQqLC6mvgmScZ4PxBSAq1Ndalprbfw/Y7ujxoXv3hipIRBpD9LTWsddirdE6pSHpYJw0Z17xqR+nO0TyrCb/hfvC33w76cw+8Hg/7Nr7kKBsNqsZpby5ubW88LVWuHksFISWJKoLX2LHTrSV+EpqZ2nXXr23bcDXX0bWxXFgxGiCWldZvcbj90DgZs2OsO1ea1eV8ivFcm6eB+COmZXjV+d+ehaW5uHXpeG0oq/PtNTe1qE1MhJTVCjaK/H+oYfYhSwiAiEo0xYJITv75vooSa9dIzo597uElObh19NcAN1I+/iIiIxEAJg4iIiESlhEFERESiUsIgIiIiUSlhEBERkaiUMIiIiEhUShhEREQkKiUMIiIiEpUSBhEREYlKCYOIiIhEpYRBREREotJaEmEcx0l0CCIiIn3Fuq7b5dWwVMMgIiIiURl7uK153k8YY1ZYa+cmOo7+Ru9LZHpfItP7Epnel8j0vkQWr/dFNQwiIiISlRIGERERiUoJQ++5P9EB9FN6XyLT+xKZ3pfI9L5Epvclsri8L+rDICIiIlGphkFERESiUsIgIiIiUSlhiCNjTJIx5npjzDpjTJ0xZrsx5hfGmKxEx5ZIxhjbwe1AomPrC8aYm4wxfzXGbPZf99Yo508xxjxpjCk3xlQbY5YYY87so3D7TCzvizHm1k4+R9/qw7B7lTFmsjHmNmPMG8aYUmNMlTFmtTHmu5H+HRlAn5Uuvy8D5bMCLX//RcaYtcaYSmNMjf/980tjzPAOzu/250UzPcbXXcDXgCeAXwDT/P1ZxpizrbXBRAaXYEs4uONNYyICSYAfA/uAVUB+ZycaYyYArwFNwE+BSuDzwHPGmI9Za1/o3VD7VJfflzDXA2XtylbGMaZE+xzwP8BTwCK8/0fOAG4HLjXGHG+trYUB91np8vsS5nD/rACMAobjfefswPsszAS+ACwwxhxjrd0Dcfq8WGt1i8MNmAEEgb+1K/8qYIHPJDrGBL43Fngw0XEk8PWPD7v/LrC1k3MfA5qBY8LKsoFtwHr8jsqHwy3G9+VW/3M0NtFx9/J7MhfIi1B+u//6vzJAPyuxvC8D4rMS5f26xH8Pvh3Pz4uaJOLn04AB7m5X/lugBriirwPqb4wxqcaY7ETH0destZu7cp5ftXo+8JK1dnXY4w8ADwCTgWN7I8ZE6Or70p4xJtcYc1jWjlprV1hrKyMcetTfHgkD8rPSpfelvcP5sxLFNn9bAPH7vChhiJ9j8WoYlocXWmvrgNUcRv/zdtPFeIlTlTFmjzHmXmNMXqKD6meOAtKA1yMce8PfDvTP0Tt4Val1xpjXjDEfS3RAfWSUvy3xt/qseNq/L+EGzGfFGJNujBlkjBlljDkH+D//0DP+Ni6fl4GYefWWEUCZtbY+wrGdwInGmFRrbUMfx9UfLAf+CmwEcoH5wFeA04wxJ/pZrnifIfA+L+2Fykb2USz9TQVeH5jXgHJgCrAQeNoY8zlr7YMJi6yXGWOSgVvw2p7/7BcP+M9KB+8LDMzPynXAvWH7W4ErrLVL/P24fF6UMMRPJhApWQCoCztnwCUM1tp57Yr+ZIx5B/h/wNf9rXifD4j8Oaprd86AYq29u32ZMeb3eH0f7jLGPH4YJ553A8cDN1tr1/tl+qxEfl8G6mflSWAdXp+EWXjND4PDjsfl86ImifipwavyiSQ97Bzx/Awvefp4ogPpR0Kfj0ifI32G2rHW7gXuwxthcWJio+kdxpgf4dXG3W+tvSPs0ID+rHTyvkR0uH9WrLU7rLUvWGuftNb+ALgK+Ikx5ib/lLh8XpQwxE8xMMgYE+kPMhKvuWLA1S50xFrbiP+eJTqWfqTY30aqGgyVRapSHMi2+tvD7nNkjLkV+B7wB+BL7Q4P2M9KlPelM1v97WH3WWnPWvsO8Bbg+EVx+bwoYYifN/Hez+PCC40x6cAxwIoExNRv+e/LKCJ3Vhqo1uBVGZ4Q4djx/lafo7Ym+dvD6nNkjPkB8APgT8B11h8DF2ZAfla68L505rD8rHQiAyj078fl86KEIX4exRv3urBd+efx2oYW9XVA/YExpqiDQz/C60Pzzz4Mp1/z21X/CZxujDk6VO4PRb0O+IB2o3AGAmNMSqQRNcaY0cCXgb14HdwOC8aYW/DmEngIuMZGmPBtIH5WuvK+DMDPyrAOys/AG2r6BsTv86LVKuPIGHMvXrvaE3jDWUIzPS4Fzoz0AT/cGWPuwstgFwMf4nXKmY83S9sy4Ax78AxthxVjzJXAGH/3q0Aq3kygANustQ+FnTsR73/cRryZQ/fjJZ0zgY9ba5/rq7h7W1ffF2NMPrAFr2PXWlp7vl+H93n6tLX2r30WeC8yxvwP8Cu8/1e+jzdUO1yJtfY//rkD6bPSpfdlIH1WAIwxT+DN9Pgi3twL6cAcYAFen4TTQ/MuxOXzkugZqQ6nG5AMfBNv1qx6vDahXwLZiY4tge/JBcBz/ntRB1TjzUtxM5Ce6Pj66D14Ca/2KdLtpQjnTwP+gTc8rAZ4FTg70a8jUe8LXketB/CqVcv9f/B2AY8DxyX6dcT5PXmwk/fkoM/LAPqsdOl9GUifFf/1Xgo8DWz3/32txRstcS9wRITze/R5UQ2DiIiIRKU+DCIiIhKVEgYRERGJSgmDiIiIRKWEQURERKJSwiAiIiJRKWEQERGRqJQwiIiISFRa3lpEDhuO49yKt9bAGa7rvpTYaEQOL0oYRKSF4zhdmclNX8YiA5ASBhGJ5IedHNvaV0GISP+hhEFEDuK67q2JjkFE+hclDCLSbeF9BvBWnlwITAWqgH8BN7uuuzvC4ybhrTp4FjAYKANeAH7kuu4HEc5PxltZ70q8ZXtT8RY0ewn4SQePuRj4tn9+HfA88E3XdXf24CWLDFgaJSEi8XA9cB/wNnA33oqt1wCvOY4zOPxEx3GOBVYAVwBvAj8H3gAuB1Y4jjO33fmpwLPAb4DRwJ+Be4CVwIXASRHicYCH8ZpPfg28C1wGvOA4TlpPX6zIQKQaBhE5iF9zEEmd67p3Rij/GDDPdd23wq5xF16Nw53AtX6ZAf4E5AJXuK67KOz8y4BHgIcdx5nuum7QP3QrcDbwT+AS13Xrwx6T5l+rvXOBY13XXRN27p+BT+Mtuf5YR69dRCJTDYOIRPKDDm7f6eD8h8KTBd+tQCXwmbBf9SfiNVm8Hp4sALiu+yjwKjAFOBlamiIcoBb4Uniy4D+m3nXd0gjx3BOeLPh+62+P6+A1iEgnVMMgIgdxXdfE+JCXI1yj0nGc1cBpwDRgNTDbP/xiB9d5ES9ZmAW8gpdc5AHLXNctjiGeFRHKtvvbghiuIyI+1TCISDyUdFAe6vCY1267q4PzQ+X57baxdlSsiFDW5G+TY7yWiKCEQUTiY2gH5cP8bWW77bAI5wIMb3dehb8d2e3IRCQulDCISDyc1r7AcZw84Bi8IY1r/eJQP4fTO7hOqHyVv12HlzQc5TjOiJ6HKSLdpYRBROLhSsdxZrUruxWvCeIvYZ0Vl+INuTzZnyehhb9/KrABr/Mjrus2Ay6QAdzXfkik4zip7YdtikjvUKdHETlIJ8MqAZ50XXd1u7J/A0sdx3kMrx/Cyf5tK2EjK1zXtY7jXAX8B3jUcZx/4NUiTAE+iTfh02fDhlSCN031POA8YIPjOP/yzxsNnAPcADzYjZcpIjFQwiAikfygk2Nb8UY8hLsLeAJv3oXLgAN4X+I3u667J/xE13WX+ZM3fQ9vfoXz8GZ6/AveTI/r253f4DjOucCXgM8CVwEGKPaf89VYX5yIxM5Y25XF6UREDqblpEUGDvVhEBERkaiUMIiIiEhUShhEREQkKvVhEBERkahUwyAiIiJRKWEQERGRqJQwiIiISFRKGERERCQqJQwiIiISlRIGERERier/A4b/GqAzMK9iAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 576x432 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE4/figs/AE4-01-history_2</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAGdCAYAAABQEQrmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABeMUlEQVR4nO3dd5xcZd3//9dne0myaaQHQk+hJEAQKRqkCUgTFBAQkKKMlODX+9abWxEryk+KIiOCCoL0SFWKcNOUnkAA6YQkkIT03STbd2ev3x/Xmd3ZyczuzGZ2z+zu+/l4zOPMXOfMOdeZDMxnr/K5zDmHiIiISC4VhF0BERERGXgUYIiIiEjOKcAQERGRnFOAISIiIjmnAENERERyTgGGiIiI5JwCDBEREck5BRgig4iZHWtmLnj8M+z6iMjApQBDZHA5PeH5QWY2KbSaiMiApgBDZJAws1HAkUA9cDv+v/9TQ62UiAxYCjBEBo+vAcXAA8AfgrLT0x8uItJzCjBEBo94MHEb8C/gY2Cqme3d1ZvMbJqZXW9m75tZnZnVmNmbZvZbM9szzXtGmdmPzWxBcHx98P47zeyYpGMvC8aE3NxFHW4OjrksqXxOUL4keH24mT1iZqvNrM3M5iYc+xkzu9zMXjSz5WbWHBz3qJmd0NVnkM09mdmfgzrN6+Z8Pw6Oe767a4v0R0VhV0BEep+ZzQD2BNYB/3TOOTO7A/gePvB4Oc37LgCuBgqDojqgBNgleOwGzEl6zwHAfcCooKgZaAR2DB4nApajW0u87v8Dfg04YAPQlrBvCPBiwuEtQZ22Ag4DDjOzG5xz30xz7mzu6Y/AmcBRZjbKObcuxfmMjoDvz1nfrEg/oBYMkcEh/mN2t3OuJXh+W7A9ycxKkt9gZl8BfosPLuYB051zQ4BKYAJ+/MaCpPdsD/wd/0O8EPgCUOGcqwJG4n/M783dbbUbC/wKiALjnXMjgCFBvcEHGw8DJwMTgTLn3DBgBHABUAucG9xzJ9nek3PueeBtfCB2Spr6HgRsgw/Y7urpTYvkMwUYIgOcmRXSMZjz9ni5c+5N4E38j+RRSe8pBq4KXt7hnPuKc+6d4H3OOfepc+4259z/S7rc5cAw4H3gc865p5xzseB91c65fzrnjs/xLQKU4YOnbzvnVgXXa3TOLQue1zvnjnTO3emcW+GcawvKa5xzvwMiwXkiKc7dk3v6Y7A9M019vxFs5znnNvXgfkXyngIMkYHvUGA8sBR4LmlfvBUjebDnQcAkIAb8VyYXCbohjgteXhrCD+f/twXvfSjY7hMEZMAW3dMt+G6UmWY2K3GHmVUlnFPdIzJgKcAQGfjiwcMdzjmXtO8O/JiFw81sq4TyfYLt68655RleZy/8uC4HPNrTyvZQA/B6VweYWZGZnRUM6vzUzJriSceA6uCwMny3SVyP7ikYd3F/8DK5FeNrwXU+cM49m+k5RfobBRgiA1jw13J8hsPtyfudcx/jZ5QU4X/44sYG24+zuFz8PRuccxuyrOqWWhfv9kglaIl4Bt91cRgwDt86swZYFTziKhOeb8k9xbtJvpY0xiXePXJTlucT6VcUYIgMbCfi/1oGeCMhTbhL+Ov9c8H+xG6SnszyyPnMkCzEutn/Q2BfYC3+Psc65yqcc2Occ+PwAz/jLM3zbD0BLMYPDj0a2mfz7BXU9y9bcG6RvKcAQ2RgyyaR1iwz2zV4vjLYbpPF++PvqQpaTjLVGmzLujgmm/OlEp8dcoFz7hbn3Oqk/WOT3xDo6T0RdEfFx1jEu0nOCraPOedWZHM+kf5GAYbIAGVmO+D/ageYiR9bkO4RH+QYD0jiOSN2M7PEv+67Mh8fLBhweBZVrQm2KddFCXJGpEzolYX4uV9Ls//gNOU9vae4m/CtFYeZ2TZ0zObR4E4Z8BRgiAxc8WDhdefc68GUzJQP4J7g2FOCWRT/ByzH58DIaHaGc64Wn4wK4MdmNjTDer4ZbGeb2fgU+08BJmd4rnTi4yd2Td4RjM/431Rv2oJ7ir9/OfAI/nO8DZ/Yaw3wYDbnEemPFGCIDEDBX/2nBS8zSWz1ED675TjgsCAZVzzHxclmdreZTU04/3gzO8fMfpt0nkuATcBOwLNmdqCZFQTvGW5mR5rZP5Le8xywAp+Y6g4z2zY4vsLMvgncSMcsj556PNheZWafDz4fzGw2Ppga3cV7e3JPieKDPfcLtn9NSHYmMmDZ5rPWRKS/M7MDgSeDl7s4597K4D2P4mdY3O2cOzEo+w6+BSP+x0gt/q/x8uD1M865OSmufS8wPChqwqfVbh/D4JyzpPcch8+6Gb/ORqACP7vlz8E1Twd+7Jy7LOF9c4CngKXOuSld3Nt2wEt0BBKN+K6LSvwU12OBx4J92zrnlmzpPSW8twg/GyfeOrOrc+4/6eoqMlCoBUNkYIp3j7yfSXAR+FuwPcbMhgM4564CZuHHEizBr8baCLwB/Aa4OPkkzrmngJ3xqbv/gx/DUITPhHkHwYyKpPfch08I9hS+taAQn5b7bOfcWcnHZ8s59xGwN/BXYHVw/hp8t8Vs59w/u3l/1veU8N5WOsa4vKLgQgYLtWCIiPQyM3sfvyjaec6568Ouj0hfUIAhItKLzOwgfE6MOmCCc25jyFUS6RPqIhER6SVmNpqOWTh/VnAhg4laMEREcszMfg18FT8rpxifQXRGigRfIgOWWjBERHJvND53RwPwT+ALCi5ksFELRpYikYgDiEajYa67ICIikteKwq5AP6bITEREBpOs/rBWF4mIiIjknAIMERERyTkFGCIiIpJzCjBEREQk5zTIM0daWlpYtmwZjY2NYVdF+kBZWRmTJk2iuLg47KqIiOQlBRg5smzZMoYOHcqUKVMIVoKWAco5x7p161i2bBnbbrtt2NUREclL6iLJkcbGRkaNGqXgYhAwM0aNGqXWKhGRLijAyCEFF4OH/q1FRLqmAENERERyTgGG5JXW1tawqyAiIjmgAGOAueWWW9htt93YfffdOe200zjjjDO48MIL2Xfffdluu+2YN28eAE8//TRz5szhhBNOYOrUqZxyyil0tS7NT37yE2bPns0uu+zCueee237shx9+yMEHH8zuu+/OHnvswaJFiwC44oor2HXXXdl99935/ve/D8CcOXOYP38+AGvXrmXKlCkA3HzzzXzlK1/hqKOO4tBDD6W2tpaDDjqIPfbYg1133ZUHHngg7f1t2rSJbbfdlpaWFgA2btzIlClT2l+LiEg4NIukFxz203/02rkf++GRafe99dZb/PznP+e5555j9OjRrF+/nu985zt8+umn/Pvf/+bdd9/l6KOP5oQTTgDgtdde46233mLChAnst99+PPfcc+y///4pz33++edz6aWXAnDaaafx97//naOOOopTTjmF73//+xx33HE0NjbS1tbGI488wv33389LL71ERUUF69ev7/a+XnjhBd544w1GjhxJa2sr9913H8OGDWPt2rXss88+HH300bz99tub3d/QoUOZM2cO//jHPzj22GO58847Of744zV9VGQwaItBLAZFxaBxUXlHAcYA8uSTT3LCCScwevRoAEaOHAnAscceS0FBAdOnT2fVqlXtx++9995MmjQJgJkzZ7JkyZK0AcZTTz3FFVdcQX19PevXr2fGjBnMmTOH5cuXc9xxxwE+NwTAE088wZlnnklFRUWnenTlkEMOaT/OOccll1zCs88+S0FBAcuXL2fVqlVp7+/ss8/miiuu4Nhjj+Wmm27ixhtvzO6Dk8HLOdi0ASqGQJH+d9in2tpgzUr4+ENY+iGsWArNTRBrgdZW/4i1+ACiNSiLBeWtLf55vNW1qBiGVsGQKhgyLHg+rKNsaFVC2XCoHAqFhaHefpdamqFmPVSvhU01MGw4jB4HVSOhoP90POi/qAHEOZdydkNpaWmnY1KVFxYWph3/0NjYSCQSYf78+UyePJnLLruMxsbGtF0q6epRVFREW1tb+zkTVVZWtj+/7bbbWLNmDQsWLKC4uJgpU6a0Xy/Veffbbz+WLFnCM888QywWY5dddklZLxGam2DpB7DoHf/48G3/P/CiYpiwDWy9ffDYASZvB6VlubluYz2sWg6rVsD61T6gGTUWRo3xj+KS3FwnX7XFYOUyH0jEA4pPFkFDfW7O39rif4yr12Z2vJn/Nxg7ESZs7f/t448Ro3uvNcQ5f881QV2r10H1GqhZl/B6LdRuSP3+omIYPdYHG1uN89vE5xVDeqfePaQAoxd01Y3Rmw466CCOO+44Lr74YkaNGpVR10Qm4sHA6NGjqa2tZd68eZxwwgkMGzaMSZMmcf/993PsscfS1NRELBbj0EMP5Sc/+Qlf+9rX2rtIRo4cyZQpU1iwYAF77713+1iQVDZs2MCYMWMoLi7mqaeeYunSpWnvL96K8fWvf52TTz6ZH/7whzm5ZxkgqtfCorc7AoqlH/q/fJO1tvgfvo8/7Cgz8z9AW28Pk3foCD6GVqW+VnMTrF7hA4nVK2DVMh9QrF4OG6q7rmfViCDgSAg62p+PhbLynn8Gfa21xbdGJAYTyxb7zyfXzPxf9LFYdu9zDuo2wUfv+kei8kofaEyMBx1BAFI1Mn3g0doCG2uCx3q/3VANG6s7thurfQDR1NCDG024zspl/pFKxZCEgGMsjB4Psz/nW25CoABjAJkxYwb/+7//y+c//3kKCwuZNWtWTs47fPhwzjnnHHbddVemTJnC7Nmz2/fdeuutfPOb3+TSSy+luLiYe+65hy9+8YssXLiQvfbai5KSEo444gh+8Ytf8N3vfpevfvWr3HrrrXzhC19Ie71TTjmFo446ir322ouZM2cyderUtPd38803t7/nBz/4ASeffHJO7ll6aN0qeP8/8MF/4JOPoKyi8//sRo+Drcb6Zutc/5XY2grLPgqCibfhw3d8a0F3SkpT//g51/E/85ef6SgfMdoHGhOn+B+peBCxfk3P674h+CFK/rGLGzIMRo7xwU3l0OAxBCqCbbysIuF5X7aKrF8Dr78EC1+A997wP4SZGFIF2+zgH5O3hyFDobDYd18UFfm/2AuL/PP2bXGwrwgKCv2/U3OTb4mq3ei7vGo3BNuNCduE/XWb0tepoS4ISt/uXF4xxAcdYyf5621MCCC6Ol9PWAEMH+m/a0OG+WusXdn9deprNw+Ud9kztADDupo5IJuLRCIOIBqNdip/5513mDZtWih1Epg3bx4PPPAAt956a59dc9D/m7e1wacfdwQUH76V+Y9sabkPOhKbeeN/eY0aA60xqN/k/4dat8n/jzP+vK5287L6Wv/jkckP27hJsP102H6af4zfGurrfJP9x4v8/5w/WQSfLgPXtmWfUVxhkb+3sRN9i0R9Laxb7R/Va3N3nUQlpR1Bx8RtYLtp/rH1dv6He0s45wPIhS/Awhc7/6ClEw/Mtg4Ciq136N3uiK7EYj7g+PRjWL7Ut7jEtw11vXvtklIYPsrf+/BRMGIrGBF/Pdo/HzYi9RiRhjpYuwrWfOoDjrWr/HbNSh/cJwfKBQUQfTCX44uy+sdSC4b0exdccAGPPPIIDz/8cNhV6R2xWNDk/AEs+QCWL/E/WEOGQuUw/yMyJP5Xbfz1MF9WkcPBbK0tvg7vv9URUNTX9uxcTQ3+PpYvyU3d0ikphW137ggotpuauotjyFCYNtM/2uvY6OvXHnR85Jv6W5pTX6ugwAcPYyfCmAk+kBkzwb8eOSb9v0Nrq++Tjwcc61YFj9X+B2T9mtTdOt1pbvKP6rX+PuKtMMUl/gd++yDg2H6a/6HrTmsLvPemDypef7HrYHL0uI4gIt46UTUi+3voLYWF/p6Hj4JpCS29zvnxEIkBx4qlsOJjP44mHSvw36uqEX5A5rCRfls1wgcL8e3wUT7g62lQVV7pxwZN3m7zfc75FpV4wLF2pQ9IQhy8rABDOjnuuONYvHhxp7Jf/epXHHbYYSHVqHvXXntt2FXInbYYfPqJ77de8r7/Qf94UfoftUyUV3Y0m5eU+OCksDDYFvkfxvjz9vKE/S4Gi9+Hxe91X4/SMv+jtdMuftvaEvy1Ff9LK3i+Jf3QXRk1JmiZmO4fk7bt+f9gS8t8QLLd1I6yWAxWfuL/TVZ+4gO6sRP9Y/TYnrUMFBV1tOCk0tbmfzjWrYa6jelbcDq17mxKPy6hpdkPbv0woQtg5JiOFp3EVo66TfDmK76V4j/z0//IFhbBzrvBzH1g9338v0N/ZOZbEkaMhhl7dpQ75wO1FUv9+JryCh8wxB9Dh/numjCZ+XEiVSP9dz8PKMCQTu67776wqzB4tLX5vvslQcvE0vf9D1dTjhdRa6gLmlZX5va84P9q23EX2GGGDyomb999i4lzvjsj8S+txOfVa6G4OGje72KMQeLz+CNXsz7SKSz0Yy8mTund6yQqKOj4aztTzvnvUd0m2LDeB6vxga6pvgfrV/vHK0ErR1GxD5o+/dh/T1OpGAK7zvYBxS57QUVl6uMGAjMYuZV/SMYUYIjEOef7wtvij1jHNpb4Oni+YT1ceq6fdtbaCjhwBFvXcc72bbA//jw+vz8TI8fAlB1hmx19k7MV+L9mazd2/BWb6nl9bUcdcmGr8bDjDB9U7DjDD3jLtrnXrCMvwbY7565u0sHMzzwpK/etCdtNhS8c7fdtWO8Hky56x2+XvL95331rS+ruq9HjYOZnfUvFDjOUO0S6pG+HDDwu+IGPZ/lrDxYSA4UU+9rasvsxbm3xfbO5NnxURzAxZSe/HTa8Z+dqi/kBjPHAI56gKBbrSFwUi38ewfPkbVub/2t2xxnZ/RUt+alqJMza1z8gmH2zGD56J3Urx7Y7dwQVE7ZRxkzJWOgBhpkVABcB3wSmAGuAu4FLnXPdDuc1n3npZOB8YCegFPgYuAu4xjm3MeHYOcBTaU71D+fcl3p6HxKitjbfHNzUAI0N/nlvjMrvDUOH+2AiHkhM2TG3P+IFhcGAz3CmqUk/UFQUfAd3TGjlqPZ5PMZMUFApPRZ6gAFcDVwI3AdcCUwLXs8ys4Od6/aX4mfAJcCTwI+BFmBO8PwIM/us23wu7g3Av5LK0mQukbwTi3UOKJobc9cNYAW+z7ugMNgmPC8s7Px6YwNc9ns/iLKoCDD/1137H3jBa4Ky5OdW4Gc56C9CyTdVI/Jr1of0S6EGGGY2A7gAuNc5d3xC+WLgt8BJwO1dvL8ImAu8ChySEIxcb2atwCnA7sDCpLe+4Jz7a45uQ3pbrDVomYgHFM0Egx3SMwsCgUIoLOh43h4opNmXTZ7/4hI/S0FERDYTdgvGyfi/565JKr8R+CVwKl0EGEAxUA6sTNHSsSLYpuxmMbNKIOacy/GQ/f5jyJAh1Nb2MI9Bb2pr89PhGup8QJHJFM3iEp+8KT6wrbBILQMiIiEKO8CYDbQBLycWOucazWxhsD8t51yDmT0LfNHMvgf8DWjFd5FEgL865z5I8dbfADcBmNkHwHXAb1N0pUhfaW3xgxEb6nxw0eU/hfmuhbJyPy0xHlCkOm1rK0Ua6S4i0ufC/j/vBGCtcy7VKjjLgX3NrMQ519WfsKcAf8G3ePwyKHPAz4FLk45tAR4EHsa3cEwAzsK3oMwEzuzRXSQ7+4s5OU1Kf3w07a7vfe97bLPNNkQiEQAuu+wyzIxnn32W6upqWlpa+NnPfsYxxxyT0aWuuOIKbr31VgoKCjj88MP55S9/yZw5c/jMZz7DU089RU1NDX/605844IADuPnmm3nwwQepr69n0aJFHHfccVxxxRVpz33et77FK6+8TENdPSccfhg/vujbALzy+htc9JNfUFdfT2lJCf93281UVFTwvSuu5rFn/4UVFnDOOedwwYUXMWXKFObPn8/oyqHMnz+f7373uzz99NNcdtllrFixgiVLljB69Gh+8YtfcNppp1FX5xuzfve737HvvvumvMdzzjmHr3zlK7z66qsAfPDBB5x00kksWLAgo89MRES8sAOMCiDdEnuNCcd0FWA0AR/hA5JH8cHF8cAPgnP8PH6gc+45oNOvq5ndiA84zjCzPznn/p3qImZ2LnDueeed180theekk05i7ty57QHG3XffzaOPPsrFF1/MsGHDWLt2Lfvssw9HH310ymXPEz3yyCPcf//9vPTSS+0rosa1trby8ssv8/DDD/PjH/+YJ554AoCFCxfy2muvUVpays4778wFF1zA5MmTO07aFvM5Ixrq+Pm3z2Hk0O8Qi8U46JQzeOPQg5i6/XaceMHF3HXt1czeazYbW9soHzmKG265lcVr1vLaG29QVFSU0SqxCxYs4N///jfl5eXU19fz+OOPU1ZWxgcffMDJJ5/M/PnzU97jyJEjqaqqYuHChcycOZObbrqJM844I/t/DBGRQS7sAKMeSJdTtizhmJTMrAJ4HnjVOXdSwq47zexO4CdmNs859166czjn2szscuAw4AggZYDhnLsBuCG+2Fk+mjVrFqtXr2bFihWsWbOGESNGMH78eC6++GKeffZZCgoKWL58OatWrWLcuDRpiQNPPPEEZ555JhUVFQDty6IDfPnLXwZgzz33ZMmSJe3lBx10EFVVfp2H6dOns3TpUiaPH+/TFtfX+UGaQdfH3Q/+nRvuuJvW1lY+XbOGtz9chJVXMH7CBGYfeQwUFROfWPnEk0/yrW99q72rI7Eu6Rx99NGUl/slrltaWjj//PNZuHAhhYWFvP/++13e49lnn81NN93EVVddxV133cXLL7+c+iIiIpJW2AHGCmC6mZWm6CaZiO8+6ar14gRgR+B/Uuy7BzgR2B9IG2AElgTb0d3WOBNddGP0thNOOIF58+axcuVKTjrpJG677TbWrFnDggULKC4uZsqUKTQ2dj+u1TmXtpWjtLQUgMLCQlpbWzcrp62NQhytqz/1CXySZnws/uQTfn3jn3nlofsZMX4CZ8z9Do2VVbiRY7Ci4s3Wc0hXl6KiItqCNMbJ91RZ2ZG2+Oqrr2bs2LG8/vrrtLW1UVZW1uV5jz/+eH784x/zhS98gT333JNRo5QHQEQkW1nMyesVrwR12Dux0MzK8GMi5nfz/onBNtXiB0VJ267sGGxXZXBsXjvppJO48847mTdvHieccAIbNmxgzJgxFBcX89RTT7F06dKMznPooYfy5z//mfp634DUbbeEcz4j4NpVsOyjYCXHRjabTlpSxkaKqBxWRdX03VgVg0cefwIKCpg6dSorVqzglVdeAWDTpk20trZy6KGHcv3117cHM/G6TJkypX1sxN/+9re0VduwYQPjx4+noKCAW2+9lViwCFS6eywrK+Owww7jvPPO48wzczMsR0RksAk7wLgL/ws0N6n8HPzYi9viBWY23symBt0icfHlAE9Pce542SsJ59jsT1EzKwUuC14+lEXd89KMGTPYtGkTEydOZPz48ZxyyinMnz+fvfbai9tuu42pU6d2fxLgi1/8IkcffTR77bUXM2fO5Ne//nX6g2vWQfU6v+5F7YbNF0cqq/DrIUzaFiZsze4HfJ5Ze+zBjF124Rvf+Ab77bcfACUlJdx1111ccMEF7L777hxyyCE0NjZy9tlns/XWW7Pbbrux++67c/vtfubyj370Iy666CIOOOAACrtYYCsSifCXv/yFffbZh/fff7+9daOrezzllFMwMw499NCMPi8REenMwp6ZaWbX4tN834cfbBnP5Pkc8IV4fgszuxkfNBzonHs6KCvEj8HYG5+Z82/4vBpfBg4A7nHOfTXhWq/gu2UW0DGL5FR8C8a1zrkLu6tvfAxGNBrtVP7OO+8wbdq0HnwC/VBbmx9XUbsp/fLNRcU+PXXlML8yZj/z61//mg0bNvDTn/407TGD6t9cRCQhT3Emwh6DAb71YglwLnAksBa4Fr8WSZdpwp1zMTM7GD8G48vAFfgWkQ+A7wFXJb1lHnAsPnvocHwSrteAHznn7sjFzQxYzvmkV7UbgxU6U/zTFBT45bWHDPP5KfppoqvjjjuORYsW8eSTT4ZdFRGRfiv0Foz+ZqC1YLz55pucdtppncpKS0t56aWXOgpammHd6jStFQblFT6oKK/cLNX2Zz7zGZqaOo/fvfXWW9l1111zdQuh6a//5iIiPdTvWjAGjK5mXuSrXXfdlYULF6be6RxsrIaa9Zu3WBSXwpChvguki0yZnQKVAUSBuYhI1xRg5EhZWRnr1q1j1KhR/S7ISKmp0bdaNCdO/zQYOgyGVA3qVUCdc6xbt659uquIiGxOAUaOTJo0iWXLlrFmzZqwq7JlnPPrgTTU02mKaWGxb7FoaIXV3WfSHOjKysqYNGlS2NUQEclbCjBypLi4mG237edLd7/7Otz6G1i9oqOsuASOPhUO+XKXXSEiIiKJ9IshflbIvD/Bs490Lt9pVzh9LoydmPJtIiIi6SjAGOxefQ5uuw42JHR7lFfCV86G/Q/bbFaIiIhIJhRgDFY16+D2qA8wEs3aF075NgzX+hsiIv1NQ3MrazY0sGZjIxsbmjlwl/BaoBVgDDbOwb8ehXv+6AdzxlWNgK99G/bcP7y6iYhIWi2xNtZtbGTNRh9ArN7QkPS8kdrGlvbjiwqMz8+YQEFIM/4UYAw28/4Ej83rXHbAF+GEs6ByaDh1EhHpI7E2R01dEzV1ze35bDr//lqnssRd8RQEQ8uLqaoooagwd13Izjk2NbawuqaB1RsbWL2hgVUbGtpbI1ZvaKC6til5+cgutbY5qmubGDU0nCn1CjAGkw/fhn8mrDq61Xj4+kUwbWZoVRIRyYVYWxs1dc2sr21i3abGtNuauibacpQnb0hZMcMrS6iqKGF4ZWmwLWF4RQlVlaXBc7+tLCumuraJ1Rsa2h+rghaIVTV+29Ac2+I6FRcWMHpYGVsNK2OrYeWEmRNQAcZg0dIMf7mG9m/bjD3g2z/yCbNEJHTxv2Br6prb/8KOb6vrmtjU0MLwyhLGDi9n3PAKxg+vYNyICoaU5XYxQeccDc0xquuaqGtsobaxlbqmFuoaW6hraqWu/XUrtY0t1DW1UN8Uf95KfVMrBWYUFBhFBUZRYQGFCdvCAqOooICiQqOwfeufx6/v4ltH5+ft+zqet8ba2FDfnNPAIVO1jS3UNrawbF1d9wfngAEjh5ay1bBy/6jyQcSYYWVsVVXOmGHlVFWWhNYlkkwBxmDxjzvh04/989Jy+PpcBRcivaixJcamhmY2NbQEj2Y2Nbawsb6FmvomNiQFEBvqm4n14BdySFkR44ZX+MeICsYFAci44RWMHV5OSVGhr09zK+trm6iua6K6tonquuZg61/X1HU8b2rtcp3JbsVwEIOm7g8NxbDyYoZXllJcWNCpyyF5CYDEly44Mtbm2NTQwsb65qy6KzJRVlzImKryzo9hZYwZXsFWw8oYNbSM4hx2y/Q2BRiDwbLF8MhdHa+PPxNGjQmvPiJ5oiXWxrpNjTS1xGiNtdESc7TG2oLn/tEalLUE5fHjWmJt1Da2JAURLWxq9K+bt/BHOlO1ja18uHIjH67cmHL/iMpSGppbaWzZ8ub3fFdVUcLIIaWMHFrGqCGljBxSyqihZZ22I4aUtgddW8IHGs3U1DW3t6D4bTMb6ps2K9/U0EJVZUkQNJQzZng5Y+PPg2BiaHnxwFhqIqAAY6Bri/mukVjwP5cdpsOcL4VaJZG+0hJrY03Q172qpp5VNf75ypp6Vm1oYN3Gxpz/FbolKkqLOvXbD6/s2A4tK6a6romVNfWsrK5nZY2/j+4Cmeq67NsRSosKGD7EX3NIWTGVpUVUJDyvLC2iMng+pKyYyrJiKoLn5SX+xzvW5miNOWJtQZDW1kaszRGLtdHa5oL9wfOY34eBYZj5QZaGUWCABVv8QEv/3G/NjKqKEkYMKe3Tv+4LCyz498msJbg/Loa5pRRgDHRPPACL3/PPi4p914iSZ0k/FmtznccABP3gmxpb/MC5mvwIIIoLCxhaXhw8Shha5p8PKS9uDyBGJAQQVRUllBZn95e1c47quiY+ra5vv++VNfXtr9dsbGgfl1BcWMCIIaWMqCxlRGVJx/MU2/KSwkH3Y9jbBuPnqQBjIFuzEu7/S8frI0+CCVuHVx+RQDxIaB+bkDBOYWNDSxA4tLYPoosPIKxt9AMKcyU+aK6ipIiiwgKKCwsoLiqgqNA/ioPBiZ33WbCvgMqy4oQgopihZSUMLS9mWHkxpcW9/yNtZowcUsbIIWXMmLz5/tZYG+trm6gIWh0G44+chEcBxkDlHNzyG2gOmkcnToHDvxpqlWRga3OOdZsa25vvV21oYGN9c6fBjfHxCbUNLX3SsmDAqKFljA36u8cGAx/HVvntVsPKctIfn6+KCgsYU1UedjVkkFKAMVA9/wS885p/bgVw+sW+i0Skh5xzbGxo2WwMwKoa/3z1hgZaYn0zsDGx739IWcfz0e3BxOAIIETymQKMgWhDNdz1h47XBx8D2+0cXn0k78WDh3WbGjslJVq3qZG1m5raB0jWN+eue6KytKh9fMKw+DiF8mI/sLDcDyj0gUMRQ0qD1+XFlJcUUVigpn6RfKcAYyC64/d+CXaA0ePg2NPDrY/0OuccrW2O5tYYLa1tNLe20dwaC7ZttLTGaGyJBZkOG1m3KQggahtZv6mJ9bVNOWl9qKroSAQ1tqqckUNKOwKHhGBiSFlxTtMsi0j+UYAx0Cx8AeY/2/H66xdCaTh56CU3NtQ3s2jlRhat2sBHKzeyZE0tDc2tNLXE2oOH5ta2PhnTUFZcGCRxKmfciArGxjNKDvfjGypK9b8UEfH0f4OBpL4O/vq7jtf7HgLT9wivPpKVNudYWV3PolUb+WjlRhat2siilRtZu6mxT64/pKzIz0gYWsqoIT5r4KihpYwcUsaYqnLGDS+nqqJEMxFEJCMKMAaSv/0Jatb550OHw1fPDbU6kl5tYwsr1texePUmFq3cyIcrN7B41aYtGuNQWGCUFBVQUlTYaVuc8LyqosQHDvFshwnPy7LMwSAi0hUFGAPFe2/AMw93vP5aBIZo+fVsxNocZuRkoaDWWBurNzTwacKMi0+rO5Ig1Ta2ZHyukqICpowZyg7jqthu7DC2GzuUEZWlCYGEDyIKlUBNRPJI6AGGmRUAFwHfBKYAa4C7gUudc90uUWe+vfZk4HxgJ6AU+Bi4C7jGObcx6fgq4GfAl4FRwCLgd8D1Lnmlm/6iucnnvIibuQ/sdUB49elnNjY0c8vT7/P468tobIlRVlxIeUkR5aWFlBcXUV5aRHlJUNa+LWp/XVpcyPraJlZW1/uAoqaeNRsaerSyY1VFCduNHcYO44ax3dhhbD9uGJNGVSp4EJF+J/QAA7gauBC4D7gSmBa8nmVmBzvnuhva/jPgEuBJ4MdACzAneH6EmX02HjiYWQnwODALuBZ4BzgciAJjgctyeWN95qHbYNVy/7y8Ak453yfyly7F2hyPvPYxNz/1HpsaOloUGlv8jIvqXlyBuaSogLFV5Wyz1VC2H+cDie3HVjFqaKnGOIjIgBBqgGFmM4ALgHudc8cnlC8GfgucBNzexfuLgLnAq8AhCcHI9WbWCpwC7A4sDMrPBmYDFzrnrg3KbjSzvwGXmNlNzrmlObq9vvHxh/DYvI7XJ5wFI0aHV59+4s2l64g+9jYfrUq9AmUujB5axrgRHbMsxo2oYPwIv4z2iCGlOemKERHJV2G3YJyMz+Z7TVL5jcAvgVPpIsAAioFyYGWKlo4VwTbx79CvAfXB+RNdg+8yORG4IrOq54FYDG6+BtqCW99pVzjg8FCrlO9Wb2jgT//3Lk+/taJT+djh5XzzkOnss9NYGltaaWyOUd/kl7huaG71z5tj1De30tjcSn1zLNj68qrKEsYP7wggxg4vVwZJERnUwg4wZgNtwMuJhc65RjNbGOxPyznXYGbPAl80s+8BfwNa8V0kEeCvzrkPoH2sxx7Aq8655Hl/Lwf16PJ6eeef9/oWDAhWSr1IK6Wm0dwaY94LH3Hnc4toaom1l5cWFXDS/jtw/D7bta9kWVlaTGVpMaM0RlZEpMfCDjAmAGudc00p9i0H9jWzEudccxfnOAX4C77F45dBmQN+DlyacNwIfGvH8uQTOOeazGwdMDHdRczsXODc8847r4uq9KFVK+DBWzteH30qjJsUXn3ylHOOF95bxR8ef5uVNQ2d9n1++njOPniaFoMSEekFYQcYFUCq4AKgMeGYrgKMJuAjfODwKD64OB74QXCOnyecJ358uutVpNmHc+4G4IZIJJIfM03u/TO0BB/L5O3h0OO7Pn4QWrpmE79/7G1eW7y2U/m2Y4YS+eIMdttmVEg1ExEZ+MIOMOqBMWn2lSUck5KZVQDP47s9TkrYdaeZ3Qn8xMzmOefeSzhPaRfXS3utvNJYD6+/1PH66xdCUdj/lPmjtrGFvz77AQ+8vIS2hJnHQ8uLOX3Ozhyxx2RN+xQR6WVh/yqtAKabWWmKbpKJ+O6TrlovTgB2BP4nxb578IM29wfeA6qBBlJ0g5hZKT4nxjNZ30EY3ngZWoNplZO2hW0H90qpzjk+WVvL28uqeeuTal76YDUb6ju+NgUGR+65DV+fsxPDyktCrKmIyOARdoDxCnAosDfwr3ihmZUBM4FnU7+tXTxYSDVcvyhx65xrM7NX8fk1kgOavYECYH62NxCKBf/ueL7n/uHVIyRNLTHeX1HTHlC8vay6Ux6LRLttM5LzDpvBdmOH9XEtRUQGt7ADjLvwSbLmkhBgAOfgx0PcFi8ws/FAFfCxcy7elfF2sD0dn/0zUXyN8lcSyu4A9gPOxSfaipuLn32SfI7809QIbybc0p4DP2Pn+trG9kDi7U+q+fDTDbR2kyZzq2FlnHPwND43fbwSV4mIhCDUAMM596aZXQecb2b3Ag/TkcnzGTrnwLgcHzQcCDwdlP0dP8X0iGC66t/weTW+DBwA3OOcezXhHDcCZwJXmdkUfCbPI4DjgJ855xb3wm3m1n/m+9TgAOO3hglbh1ufXvLRqo3c+9Ji/vPxej6t7n5ozLDyYqZPGsH0ySOZMXkEO08cTnGhxlmIiIQl7BYM8K0HS/CtCkcCa/GtC5d2lybcORczs4PxYzC+jE+S5YAPgO8BVyUd3xwc/zN8kq/4WiQXANfl7I5604KEhp4B2D1S19TCrc9sPkAz2eRRlUyfPIIZk0cyfdIIJo2qVEuFiEgeCT3AcM7F8GuQXNnNcWcAZ6Qo34TvZrkkw+vV4BdGOz+7muaBlmZ4PSEn2QAKMJxzPPPWp/zh8bdZX9t5vG9JUQE7TRjO9EkjmDF5BNMmjaCqQoM1RUTyWegBhmThrQXQFCSLGjPBzyAZAD5eW8t1j/yHhUvWdSrffcoovv75ndTdISLSDynA6E8WPNfxfI/9+/2KqY3Nrdz+rw/524sfdRq0OXJIKeceMo05Myao20NEpJ9SgNFftLbAwhc6Xu/Vf7tH4um7f//Pt1m9oSN9d4EZx+w9hdM+vyOVpcUh1lBERLaUAoz+4p2F0BAsDDtqDGyzY6jV6akV6+v4/WNv8fKHazqVT580gvMP34XtxylfhYjIQKAAo79ITK7VD7tHmltj3P3cIu58bhEtsY7JQVUVJZx10FQO2X0SBf3snkREJD0FGP1BLNavu0de+XA11z36Vqd8FgYcsefWnHHgzkrfLSIyACnA6A/efwNqN/rnw0fBtlPDrU+GahtbiD76Fv/35vJO5TuOr+KCI3Zh5wnDw6mYiIj0OgUY/cH8xO6R/aAfrAS6cMlafv3A66zZ2NheNqSsiDMOnMoRe2xNYYG6Q0REBjIFGPmuLQavPd/xeq/8XnukuTXGTU+9x70vds66ftCuEzn3kGkMrywNqWYiItKXFGDkuw/fho3V/vnQ4bDD9FCr05VFKzdyxf0LWbJmU3vZsPJiLjxyVw6YNj7EmomISF9TgJHv5iesPbLHflCQamX6cMXaHH978SP+8tR7nRJmzd5hKy7+0m6MGloWYu1ERCQMCjDyWVtb5+6RPfcLry5prKyp59cPvM6bH69vLystKuCcQ6bzpT23ViZOEZFBSgFGPlv8LlSv9c+HDIOddgu3PgmcczzxxnKij75FfXNre/lOE6r472NmMnn0kBBrJyIiYVOAkc8S1x6ZuQ8U5cc/14b6Zn77jzf597sr28sKzPjaATtw8v47UKSFyUREBr38+MWSzTkHCxLGX+yZH7NHXvlwNVc99EanJdUnjKzge8fOZOrEESHWTERE8okCjHy19ANYt9o/L6+EaTNDrU5TS4wbn3iHh+Yv7VR+5J5bc+7B0ygr0VdJREQ66FchXyWuPTJzHygKb3VR5xy/+NurvPjB6vayEZWlXHzUrnxmx7Gh1UtERPKXAox85FznAGPPcNceefCVJZ2Ci313HstFR+6qpFkiIpKWAox8tGwxrF7hn5eWw4w9Q6vKR6s2cuMT77a/Pmb2FM47bLqmn4qISJc03D8fJbZe7L43FIez2mhjS4zL732tfXn17ccO4+yDpyq4EBGRbinAyEevJi5uFl73yA2Pv83Ha2sBnzzr+1+eRUlR/mUSFRGR/KMAI9+sWAorPvbPS0ph19mhVOO5d1fyjwUft7/+1mEz2FrJs0REJEMKMPJNYvfIrrOhtO/X8VizsYGr//5G++v9p47j8FmT+7weIiLSf4UeYJhZgZldbGbvmlmjmX1iZleaWWUG751jZq6bx34ZHv/33r3TDL2akL1zj75feyTW5rji/oVsamgBYKthZcz90m4adyEiIlnJh1kkVwMXAvcBVwLTgtezzOxg51xbF+99BzgtRXkpcAOwFng5xf4bgH8llS3Lst65t2oFfPKRf15UDLvt3edVuPv5Rbyx1C9cVmDwvWNnMrQ8vBwcIiLSP4UaYJjZDOAC4F7n3PEJ5YuB3wInAbene79zbhXw1xTnPRnfOnOLc64lxVtfcM5t9r7QJQ7unLGHz+DZh95dXs0tT7/f/vqk/Xdg121G9WkdRERkYAi7i+RkwIBrkspvBOqBU3t43rOD7R/THWBmlWbW9wMcuhLi2iN1TS1cfu9rtDkHwLRJwzn1czv2aR1ERGTgCDvAmA20kdSN4ZxrBBYG+7NiZtsCBwL/ds69l+aw3wC1QIOZvW9mF1nYgwzWroQlH/jnhUWw+2f69PK/e/g/rKxpAKCitIjvHzeLwoKwvx4iItJfhf0LMgFY65xrSrFvOTDazLLNMvUNfKtIqtaLFuBB4L+Bo4FvATX4FpQ/Z3md3Eoc3DltJlQO7bNL/98by3jyPyvaX190xK6MG17RZ9cXEZGBJ+wAowJIFVwANCYckxEzKwTOADYC9yTvd84955w7xjn3B+fcQ865PwD7AI8BZ5hZ2qxWZnaumc3PtC5ZC2ntkRXr67j2kf+0vz5k90nM2WVCn11fREQGprADjHr8jI9UyhKOydRhwCTgDudcRu8LZqlcHrw8oovjbnDO7ZVFXTJXvRYWveOfFxTAzM/2ymWStcba+OV9C2lojgEwYWQFkcNm9Mm1RURkYAs7wFiB7wZJFWRMxHefNGdxvrOCbdrBnWksCbajs3xfbiR2j+y8Gwyt6pPL3vLM+7y3ogaAogLjf46bRUVpPsxcFhGR/i7sAOOVoA6dEj4EsztmAhl3SZjZGOAo4A3nXLZdGfHpEquyfF9uLOj7tUcWLl7L3c8tan99xoE7s9OE4X1ybRERGfjCDjDuAhwwN6n8HPzYi9viBWY23symmlm6MRlfB4rpemrqZkkdgtaTy4KXD2Va8ZzZUA0f/CdeGdhj396/ZH0zVzywEBe8nrXtaI7/7Ha9fl0RERk8Qm0Pd869aWbXAeeb2b3Aw3Rk8nyGzkm2LgdOx09BfTrF6b6BHxjaVQKtR81sBbAA3z0zAZ9rY0fgWudcqqyfveu15yHIPcGOu0DVyF69nHOOqx96g3Wb/NjaqooS/uuY3SlQKnAREcmhfOhwn4sfA3EucCQ+vfe1wKXdpAlvZ2b74gOT251z1V0cOg84Fp89dDhQB7wG/Mg5d0ePar+lOnWP9P7aI4+89gkvvN/RE/Sdo3Zj1ND8yjcmIiL9X+gBhnMuhl+D5MpujjsDPwU11b7n8bkvurvWr4BfZV3J3tLUCB+92/G6lwMM5xzzXvio/fXRs7dhn53G9uo1RURkcAo9wBjUSsvgytvhzVdg2UcwcqtevdzSNbUsX18HQFlxIWcdNK1XryciIoOXAoywlZXD7M/5Ry977t2V7c9n7zCGsuLCXr+miIgMTmHPIpE+9Px7HQHG/lPHhVgTEREZ6BRgDBIrq+v5cOVGAIoLC5i9Y+92x4iIyOCmAGOQSGy9mLXtKCpLi0OsjYiIDHQKMAaJfyeMv9hX3SMiItLLFGAMAtW1Tbz9iU8PUmDwWU1NFRGRXqYAYxB44f1V7WnBZ0weyfDKdAvYioiI5EbG01QjkcjrwPXAX6PR6Kbeq5LkWuL01P3UPSIiIn0gmxaM6cDvgBWRSOTGSCSyVy/VSXKorrGFhYvXtr/ed2d1j4iISO/LJtHWJOAs4Oxg+41IJPIa8Afg9mg0WtcL9ZMt9NIHq2lt8x0kO46vYuzwdIvRioiI5E7GAUY0Gl0F/AL4RSQSOQy/ONlR+G6TX0cikduAG6LR6MLeqKj0TGL3iFovRESkr/QoVXg0Gn0MeCwSiYzFt2acBXwT+GYkEnkFH3TcGY1GG3NWU8laU0uMVxataX+t7J0iItJXtmgWSdCqcTnwHWAFfkXTvYE/AZ9EIpG5W1pB6bkFH62hqSUGwKRRlWy91dCQayQiIoNFjwOMSCQyMRKJ/AhYCtwLjAMeBI4FfgrEgCsjkchPc1BP6QHNHhERkbBk1UUSiUQMOBzfHXJ48P742IwbotHoJ8GhD0YikSuB/8N3n/wwZzWWjLTG2njx/dXtr9U9IiIifSmbPBg/wM8gmYzvCnkWiAL3RqPR1uTjo9Hopkgk8hBwWW6qKtl4Y+l6ahtbANhqWBk7jq8KuUYiIjKYZNOC8RNgIz6o+H00Gn07g/csAG7pScVkyyQubrbf1HGYWYi1ERGRwSabAOM8fBbPjPNdRKPRh4GHs66VbJE255Kmp6p7RERE+lY2eTD+0JsVkdx5b3kN62ubAKiqKGGXrUeEXCMRERlsshmDsQfwJeAPwfTU5P3j8Mm3HlSyrXAltl7ss9MYCgu0pp2IiPStbH55vosf5Lk6zf5V+Bkj39nSSknPOed47j1NTxURkXBlE2B8FngqGo26VDuD8ieB/XJRMemZJas3sWJ9PQDlJYXM2nZ0yDUSEZHBKJsAYxywrJtjVgDje14d2VLPvdfRe7X3DmMoKSoMsTYiIjJYZRNg1ANbdXPMVkBTNhUwswIzu9jM3jWzRjP7xMyuNLPKDN47x8xcN4/9kt5TZWbXmtny4Hpvmdl5NkDmcXaaPaLuERERCUk2AcZC4JhIJDIk1c5IJDIMOCY4LhtXA1cBbwMXAPcAFwIPmVl39XsHOC3F42ygDT9e5OX4wWZWAjwOfAu4K7jee/jcHj/Kst5559Pqej5atRGA4sIC9t5hTMg1EhGRwSqbAOMGfAvF45FIZLfEHZFIZHfgn8Do4LiMmNkM/I/8vc65LzvnbnTOfQc/UPRA4KSu3u+cW+Wc+2vyA9/aUgDc4pxrSXjL2cBs4DvOue8E1/syfi2VS8xsm0zrno8SWy9mbTeaitIeLZYrIiKyxbLJg3FXJBI5HPg68FokElkFLAcmAmPx6cP/Eo1G78ji+icH77smqfxG4JfAqcDtWZwv7uxg+8ek8q/hg48bk8qvAb4MnAhc0YPr5YXEAENrj4iISJiySpAQjUbPwHcvvI0f9LlnsH0LODcajZ6Z5fVn47syXk4sdM414rtaZmd5PsxsW3zrx7+dc+8llBcAewCvBedP9HJQj6yvly/WbWrknWXVABQYfGZHdY+IiEh4ss7AFI1Gb4hGo7sCQ4BJwJBoNLpbNBpNbi3IxARgrXMu1cDQ5cDoYNxENr6BbxVJrs8IoDw4byfB9dfhW2NSMrNzzWx+lnXpMy+8v4r4/OFdth7J8MrSUOsjIiKDW4876aPRaD2+u2FLVJB+1kljwjHNmZzMzAqBM/CLst2T4lp0c72KNPtwzt0A3BCJRFLmAQnb8+8quZaIiOSPsHNI1wPp/tQuSzgmU4fhW1XucM4lvy/+uqvrbWnAFIpNDS0sXLKu/bUWNxMRkbBl1YIRiUQqgQj+h3wiqX+sXTQa3T7DU64ApptZaYpukon47pOMWi8CZwXbVN011UADKbpBzKwUGAU8k8W18sbLH6wi1uYbVnYaX8WYqvKQayQiIoNdNoudDQf+DUzHd0EMAzYAJfixDeADhpZU70/jFeBQYG/gX/FCMysDZgLPZnoiMxsDHAW84ZzbbKyEc67NzF4FZqUIaPbGt+bk7RiLrjyn7hEREckz2XSR/AAfXJyFHzAJPknWEGBf4FVgETAti3PeBThgblL5OfjxELfFC8xsvJlNNbN04yS+DhSTuvUi7o7gvOcmlc8FWoG7M614vmhsiTF/0Zr218reKSIi+SCbAONo4NloNHpT4oJn0WjURaPRF4EjgKnA/2Z6Qufcm8B1wJfN7F4zO9vMrsRn9nyGzjkwLsdn7tw7zem+gR+o+dcuLnkjsAC4KkhHfraZ3YvPgfFL59ziTOueLxYsWkNTaxsAW48ewtajUyZaFRER6VPZBBiT8a0UcW0kjMGIRqOrgUfoJvtmCnPxS8HPwAcbJwHXAl9yzrVlcgIz2xffcnKvc6463XHBeI6DgT/gk3xdhw+KLgAuzbLeeaHT2iM7jw2xJiIiIh2yGeRZD8QSXm/AJ9lKtIouckmk4pyLAVcGj66OOwM/BTXVvufxuS8yuV4NcH7w6NdaY2289EHH6qn7T9NCtiIikh+yacH4BN+KEfc28LlIJJK4Hvj+wEqkT7y+dB21ja0AjKkqZ4dxw0KukYiIiJdNgPEM8PlIJBJvKbgL2B74RyQS+XYkErkH2Ad4OMd1lDSSu0cGyIrzIiIyAGTTRfIX/JTUSfjWjOuBLwDH4qeaAjyHn20ivazNOV54L6F7RLNHREQkj2SzmuqrwHkJr1uBL0cikT2BHYAlwCvRaDSjgZmyZd5ZVs36Wp/Ko6qihOmTR4ZcIxERkQ7ZJNr6HLAxGo0uTCyPRqML8FM/pQ8ldo98duexFBaoe0RERPJHNmMwnmLzBFUSkreXdczG/exOmp4qIiL5JZsAYy1+LQ/JA/HuEYDJo5RcS0RE8ks2AcbT+JTgEjLnHDUJAcbwISUh1kZERGRz2a5FsnMkEvlpJBIp7q0KSfcammPt6cFLigqoKMlqUVwREZFel80v0/8A/wEuAc6KRCKv45NquaTjXDQaPSv5zZI71XUdrRcjKkuV/0JERPJONgHGGQnPx7F5mvA4h19xVXpJTUKAMbyytIsjRUREwpFNgLFtr9VCslJdm9iCofEXIiKSf7JJtLW0Nysimauua25/PnyIWjBERCT/ZDPIU/JETdIYDBERkXyTTSbPrTM9NhqNftyz6kgmOg/yVBeJiIjkn2zGYCxh8xkjqbgszytZ6pQDQy0YIiKSh7IJBG4hdYAxHJgJbINPxqWxGr0scQzGCI3BEBGRPJTNIM8z0u2LRCIFwA+BbwGnb3m1pCvVmqYqIiJ5LieDPKPRaFs0Gv0xvhvll7k4p6SnQZ4iIpLvcj2L5Hng0ByfUxI0tsRoaI4BUFxYwJAyDXcREZH8k+sAYyRQmeNzSoLEAZ5VlSVKEy4iInkpZwFGJBI5GDgRv16J9JLkdUhERETyUTZ5MJ7s4hyTgXiejJ9saaUkPeXAEBGR/iCbFow5aR77AUOBx4BDotHo37OpgJkVmNnFZvaumTWa2SdmdqWZZdzVYmZFZnahmb1qZnVmtiF4/s2k4+aYmUvzyKreYalJTBOuFgwREclT2UxT7a204lcDFwL3AVcC04LXs8zsYOdcW1dvNrMS4EHgQOA24Hr8fe2Iz82Ryg3Av5LKlvX0BvpS54XOFGCIiEh+CnUKgpnNAC4A7nXOHZ9Qvhj4LXAScHs3p/khcDBwiHPuqQwv/YJz7q89qHLoOuXAUJItERHJU2EvdnYyYMA1SeU3AvXAqV29OehGuQh4wDn3lHlDM7mwmVWaWVn2VQ5XjcZgiIhIP5BxgBGJRH4QiURaIpHIxDT7J0QikeZIJPL9LK4/G2gDXk4sdM41AguD/V05AD/+Y4GZ/QbYCGw0szVm9gszS9dC8xugFmgws/fN7CLrJ/M9O6UJVxeJiIjkqWxaMI4Cno5Go8tT7YxGoyuAp4BjsjjnBGCtc64pxb7lwOhgjEU6OwfbucDxwH/jp8o+D/wP8Kek41vw4zX+Gzgan9q8Bt+C8ucs6h0aLXQmIiL9QTYBxg7A290c83ZwXKYqgFTBBUBjwjHpxLtDRgIHO+d+75y72zl3DH7hta+b2fT4wc6555xzxzjn/uCce8g59wdgH/wMmDPMbP90FzKzc81sfma31Xs6TVPVGAwREclT2QQYFfhxEV1ppONHPxP1QLpfybKEY9JpCLYvOufeTdp3S7D9fFcVCGapXB68PKKL425wzu3V1bl6W3NrjLqmVgAKzBhaXhxmdURERNLKJsD4BP/Xflf2wXdtZGoFvhskVZAxEd990pxiX1x8aunKFPs+DbYjMqjHkmA7OoNjQ9M5B0YJBf1j2IiIiAxC2QQYjwKfi0QiJ6baGYlETsK3FjySxTlfCeqwd2JhMLtjJtBdl0R8cOikFPviZaszqMeOwXZVBseGRmnCRUSkv8gmD8avgFOA24Mg41F8a8VE4HD8oMn1ZLdc+13AJfhBmomJr87Bd8ncFi8ws/FAFfCxc64ewDm32MyeA/Y1sz2cc68GxxYG52gF/plwjlHOuXWJFQhaTy4LXj6URd37XKckWxp/ISIieSybTJ7LI5HIYcA9wLF0ni1i+G6Gr0Sj0YwzYjrn3jSz64Dzzexe4GE6Mnk+Q+ckW5cDp+Mzdj6dUH4BPjh5wsx+C6zDzyTZG/iJc+7jhGMfNbMVwAJ898wEfK6NHYFrnXOdpsvmG7VgiIhIf5FVJs9oNDo/EonshJ+yug8wHD/N80XgoWg02tKDOszFByfnAkcCa4FrgUu7SxMO4Jx7zcz2BX4WnKsMeAc40zl3c9Lh8/DB0QVB3euA14AfOefu6EHd+1R1pymqSrIlIiL5K+tU4UEQcW/w2GLOuRh+DZIruznuDOCMNPvewHfRdHetX+G7evqlxEGe6iIREZF8FnaqcMmCukhERKS/yLgFIxKJ/AD4ETAlVTbPSCQyAd/VcWk0Gs1moKdkKHEdEmXxFBGRfBZ2qnDJQuel2jUGQ0RE8lfYqcIlC9UagyEiIv1E2KnCJUMtsTZqG/0knQKDoeVqwRARkfwVdqpwyVDi+IuqilIKC5QmXERE8lfYqcIlQ8nrkIiIiOSzsFOFS4aUJlxERPqTjFswgtkjhwEf47Nh/h54MNgeAywFDssmVbhkTjkwRESkP8kq0VY0Gp0P7AScgM+8+adgewKwM/BaJBLRNNVe0DkHhrpIREQkv+UkVXgkEtkGuBQ4ExgPFOaqguJ1mqKqFgwREclzWQcYcZFIpBDfNXIucDC+NcQBT+SmapKo80JnCjBERCS/ZR1gRCKR7YCz8QuPjQ2K1wJ/AP4UjUaX5qx20i6xi0SDPEVEJN9lFGBEIpEi4Dh8a8WB+NaKZnw3yfHAA9Fo9NLeqqQkD/LUGAwREclvXQYYkUhkR+Ac4HRgNGDAq8DNwO3RaHR9JBJp6+1KSnIeDLVgiIhIfuuuBeM9/LiK1cDVwE3RaPStXq+VdBJra2NjvQ8wDM0iERGR/JfJNFUHPAzMU3ARjpq6ZlzwfFhFCYUFWc0uFhER6XPdtWD8EPgGfvrpGZFI5D1898it0Wj0016umwSUA0NERPqbLgOMaDT6c+DnkUjkMPxYjKPwqcB/HolE/gn8pferKMqBISIi/U1Gbe3RaPSxaDR6AjAZuASfFvxw4A58F8rMSCSyZ6/VcpBTDgwREelvssqDEY1GV+NbMH4ZiUQOwk9bPQbYC3g5Eom8AfwxGo1el/OaDmLKgSEiIv1Nj0cLRqPR/4tGoycCk4D/Bt4Hdgd+m6O6SUA5MEREpL/pcarwuGg0uhb4NfDrSCQyB5/lU3JIOTBERKS/2eIAI1E0Gn0aeDqX5xQt1S4iIv1P6AkVzKzAzC42s3fNrNHMPjGzK82sMotzFJnZhWb2qpnVmdmG4Pk3UxxbZWbXmtny4Hpvmdl5Zma5vbPcSRzkqTEYIiLSH+S0BaOHrgYuBO4DrgSmBa9nmdnBzrkuU5GbWQnwIH6NlNuA6/H3tSOwTYpjHwdmAdcC7+Bnw0TxC7ddlqubyqXOXSQagyEiIvkv1ADDzGYAFwD3OueOTyhfjB8sehJwezen+SF+ufhDnHNPdXPs2cBs4ELn3LVB2Y1m9jfgEjO7yTmXV6vBxtocG+o1TVVERPqXsLtITsYvr3FNUvmNQD1waldvDrpRLgIecM49Zd7QLt7yteC8NyaVXwMUAydmXPM+srG+mbYgT/jQ8mKKC8P+JxMREele2L9Ws4E24OXEQudcI7Aw2N+VA4ChwAIz+w2wEdhoZmvM7Bdm1t5CY2YFwB7Aa8H5E70c1KO76/U5DfAUEZH+KOwAYwKw1jnXlGLfcmB0MG4inZ2D7VzgeHw+jhOB54H/Af6UcOwIoDw4byfB9dcBE9NdyMzONbP5XdSlV1RrHRIREemHwg4wKoBUwQVAY8Ix6cS7Q0YCBzvnfu+cu9s5dwx+uuzXzWx60nm6ul7aaznnbnDO7dVFXXpFTa1aMEREpP8JO8CoB9L9apYlHJNOQ7B90Tn3btK+W4Lt55PO09X1urpWKDotdKYpqiIi0k+EHWCswHeDpPrlnIjvPmlOsS9uWbBdmWJffDn5EcG2Gh+QbNYNElx/FCm6T8LWeal2BRgiItI/hB1gvBLUYe/EQjMrA2YC3Y15iA8OnZRiX7xsNUCQT+NVfH6N5F/qvYN69PkYi+5oHRIREemPwg4w7sIv9z43qfwc/HiI2+IFZjbezKaaWfs4CefcYuA5YG8z2yPh2MLgHK3APxPOe0dw3nOTrjc3OPbuLbud3KvWOiQiItIPhZpoyzn3ppldB5xvZvcCD9ORyfMZOifZuhw4HZ+x8+mE8guAfwFPmNlv8bNBTsS3SvzEOfdxwrE3AmcCV5nZFHwmzyOA44CfBQFLXqlRmnAREemH8iFV+FxgCb5V4UhgLT6N96XdpQkHcM69Zmb7Aj8LzlWGDxzOdM7dnHRss5kdHBx7Mn7cxSJ8kHJdTu4mx5QHQ0RE+qPQAwznXAy/BsmV3Rx3BnBGmn1vAEdneL0a4PzgkdfanNM6JCIi0i+FPQZDurCpoYU25/OEV5YWUVJUGHKNREREMqMAI49VK8mWiIj0Uwow8linHBga4CkiIv2IAow8phwYIiLSXynAyGPKgSEiIv2VAow8poXORESkv1KAkcc6dZFoDIaIiPQjCjDyWOeFzjQGQ0RE+g8FGHms01Lt6iIREZF+RAFGHlOacBER6a8UYOQp5xwbEmeRaAyGiIj0Iwow8lRtYystMb/WW3lJIWXFShMuIiL9hwKMPFXdaYCnWi9ERKR/UYCRp2o0/kJERPoxBRh5qvNCZ5qiKiIi/YsCjDylhc5ERKQ/U4CRp5QDQ0RE+jMFGHlKgzxFRKQ/U4CRp2o0BkNERPoxBRh5ar0WOhMRkX5MAUaeqtEYDBER6ccUYOQh51znaapqwRARkX5GAUYeqm/qSBNeWlxIeUlRyDUSERHJTugBhpkVmNnFZvaumTWa2SdmdqWZVWb4/qfNzKV57JV07Jwujv1779xh9jqvoqoBniIi0v/kw5/GVwMXAvcBVwLTgtezzOxg51xbBudYC1ycovyjNMffAPwrqWxZZtXtfcqBISIi/V2oAYaZzQAuAO51zh2fUL4Y+C1wEnB7Bqeqc879NYtLv5Dl8X0qcYqqcmCIiEh/FHYXycmAAdckld8I1AOnZnqioKtlmJlZhsdXmllZpufvS9WaoioiIv1c2AHGbKANeDmx0DnXCCwM9mdiIlALbABqzexeM5vaxfG/CY5vMLP3zeyiTAOTvtA5i6fGYIiISP8T9hiMCcBa51xTin3LgX3NrMQ515xif9xi4DngDSAGfAY4HzjIzPZ3zr2ZcGwL8CDwMLAiuP5Z+BaUmcCZW3Q3OaIcGCIi0t+F3YJRAaQKLgAaE45Jyzl3pnPuf51zdznn5jnn/gs4FBgCXJV07HPOuWOcc39wzj3knPsDsA/wGHCGme2f7jpmdq6Zzc/wvrZI56XaFWCIiEj/E3aAUQ+k+wUtSzgmK865fwHPAgeaWXk3x7YBlwcvj+jiuBucc3ul259LWqpdRET6u7ADjBXAaDNL9Ss6Ed990lX3SFeWAIXAiAyPBRjdw2vllPJgiIhIfxd2gPFKUIe9EwuD2R0zgS3pktgRaAXWZ3gswKotuF7OKA+GiIj0d2EHGHcBDpibVH4OfuzFbfECMxtvZlPNrCKhrMrMCpNPamZHAvsBjwczUuLlo1IcWwpcFrx8qMd3kiMNza00tcQAKC4soKI07HG4IiIi2Qv118s596aZXQecb2b34md3xDN5PkPnJFuXA6cDBwJPB2UHAleZ2UP4rJ2t+NaQU/HZPecmXfJRM1sBLKBjFsmp+BaMa51zLxOy5EXO8mj2rIiISMby4c/jufgxEOcCR+IDg2uBSzNIE/4ePlj4EjAWKMan/L4e+IVzbnnS8fOAY/HZQ4cDdcBrwI+cc3ds8Z3kgHJgiIjIQBB6gOGci+HXILmym+POAM5IKnsH+EoW1/oV8KusK9mHlANDREQGgrDHYEiSzjNIFGCIiEj/pAAjz3Re6ExdJCIi0j8pwMgzWuhMREQGAgUYeSYxB4aWahcRkf5KAUaeqdEYDBERGQAUYOQZpQkXEZGBQAFGnqmpTegi0RgMERHppxRg5JGmlhj1za0AFBUYQ8uKQ66RiIhIzyjAyCOds3gqTbiIiPRfCjDySI3ShIuIyAChACOPVCeMv1AODBER6c8UYOSR5C4SERGR/koBRh7ptFS7AgwREenHFGDkEeXAEBGRgUIBRh6p0TokIiIyQCjAyCOJ65Coi0RERPozBRh5pPNS7QowRESk/1KAkUe0VLuIiAwUCjDyRHNrjLomnya8wIyh5UoTLiIi/ZcCjDxRkzD+YnhlCQVKEy4iIv2YAow80XmKqrpHRESkf1OAkScSk2xpmXYREenvFGDkiRol2RIRkQFEAUaeUA4MEREZSEIPMMyswMwuNrN3zazRzD4xsyvNrDLD9z9tZi7NY68Ux1eZ2bVmtjy43ltmdp5ZuKMqa7TQmYiIDCBFYVcAuBq4ELgPuBKYFryeZWYHO+faMjjHWuDiFOUfJb4wsxLgcWAWcC3wDnA4EAXGApf17Ba2XOeFztRFIiIi/VuoAYaZzQAuAO51zh2fUL4Y+C1wEnB7Bqeqc879NYPjzgZmAxc6564Nym40s78Bl5jZTc65pVndRI50WqpdgzxFRKSfC7uL5GTAgGuSym8E6oFTMz1R0NUyrJuujq8F570xqfwaoBg4MdPr5VqNxmCIiMgAEnaAMRtoA15OLHTONQILg/2ZmAjUAhuAWjO718ymJh5gZgXAHsBrwfkTvRzUI9Pr5ZzyYIiIyEASdoAxAVjrnGtKsW85MDoYN9GVxcAVwJnAV/DjKQ4HXjKzXROOGwGUB+ftJLj+OnygkpKZnWtm87upS4+0xtrY1NACQIHBsAqNwRARkf4t7ACjAkgVXAA0JhyTlnPuTOfc/zrn7nLOzXPO/RdwKDAEuCrpWnRzvbTXcs7d4JzbbFZKLiR2jwyrKKGwQGnCRUSkfws7wKgH0vUHlCUckxXn3L+AZ4EDzaw86TxdXS/ra+WCukdERGSgCTvAWIHvBkn1qzoR333SnGJfJpYAhfiuEYBqoIEU3SDB9UeRovukLygHhoiIDDRhBxivBHXYO7HQzMqAmcCWjHnYEWgF1gME+TRexefXSP4V3zuoR6+MsehOtdKEi4jIABN2gHEX4IC5SeXn4MdD3BYvMLPxZjbVzCoSyqrMrDD5pGZ2JLAf8HjSjJE7gvOem/SWufhg5O4e38kWqK5NWKpdOTBERGQACDXRlnPuTTO7DjjfzO4FHqYjk+czdE6ydTlwOnAg8HRQdiBwlZk9hM/a2YpvjTgVn91zbtIlb8TPNrnKzKbgM3keARwH/Mw5tzi3d5iZGo3BEBGRASYfUoXPxY+XOBc4Eh8YXAtcmkGa8PeABcCX8Km+i4FlwPXAL5xzncZUOOeazexg4Gf4JF+jgEX4bKLX5eZ2sqdBniIiMtCEHmA452L4NUiu7Oa4M4Azksrewee+yOZ6NcD5wSMvdEoTrjEYIiIyAIQ9BkOAmlqlCRcRkYFFAUYe6NRFokGeIiIyACjACFmsrY2N9R0tGFVKEy4iIgOAAoyQbahvxgXPh5UXU1SofxIREen/9GsWsk45MDT+QkREBggFGCHT+AsRERmIFGCErLpWOTBERGTgUYARshq1YIiIyACkACNkWuhMREQGIgUYIaup0yBPEREZeBRghEzrkIiIyECkACNknQZ5agyGiIgMEKEvdjbYnXLAjqysqae6rokxVeVhV0dERCQnFGCE7IDp48OugoiISM6pi0RERERyTgGGiIiI5JwCDBEREck5BRgiIiKScwowREREJOcUYIiIiEjOKcAQERGRnFOAISIiIjmnAENERERyTgGGiIiI5JwCDBEREck5rUXSQ5FIJOwqiIiI9CUXjUYt04PVgiEiIiI5Z865sOsggJnNd87tFXY98o0+l9T0uaSmzyU1fS6p6XNJLVefi1owREREJOcUYIiIiEjOKcDIHzeEXYE8pc8lNX0uqelzSU2fS2r6XFLLyeeiMRgiIiKSc2rBEBERkZxTgCEiIiI5pwAjJGZWYGYXm9m7ZtZoZp+Y2ZVmVhl23cJkZi7NozbsuvUFM/sfM7vHzD4K7ntJN8fvbGb3m1m1mdWZ2b/M7At9VN0+k83nYmaXdfE9+m4fVrtXmdlOZvYTM3vRzNaY2SYzW2hm/5vq/yOD6LuS8ecyWL4r0P7vf5uZvWNmG8ysPvj9ucrMxqc5fou+L8rkGZ6rgQuB+4ArgWnB61lmdrBzri3MyoXsX2w+yKgljIqE4BfAeuBVYHhXB5rZ9sDzQCtwBbABOAd4zMwOd8490btV7VMZfy4JLgbWJpUtyGGdwvYN4NvAg8Bt+P9GDgR+BnzVzPZxzjXAoPuuZPy5JBjo3xWAScB4/G/OMvx3YVfgXOAkM5vpnFsNOfy+OOf06OMHMANoA/6WVH4B4ICvhV3HED8bB9wcdj1CvP/tEp7/B1jSxbF3AzFgZkLZEGAp8B7BIO6B8Mjyc7ks+B5NCbvevfyZ7AVUpSj/WXD/5w/S70o2n8ug+K5083l9JfgM/jvX3xd1kYTjZMCAa5LKbwTqgVP7ukL5xsxKzGxI2PXoa865jzI5LmjqPRp42jm3MOH9tcAfgZ2A2b1RxzBk+rkkM7NhZjYgW2qdc/OdcxtS7Lor2O4Cg/K7ktHnkmwgf1e6sTTYjoDcfl8UYIRjNr4F4+XEQudcI7CQAfQfew+dgA+0NpnZajO71syqwq5UntkNKAVeSLHvxWA72L9Hb+CbdhvN7HkzOzzsCvWRScF2VbDVd8VL/lwSDZrvipmVmdloM5tkZocCfwh2PRxsc/Z9GYzRWj6YAKx1zjWl2Lcc2NfMSpxzzX1cr3zwMnAP8CEwDDgCOB/4vJntG0TR4r9D4L8vyeJlE/uoLvmmBj+G53mgGtgZmAv8w8y+4Zy7ObSa9TIzKwQuxfed3x4UD/rvSprPBQbnd+Vs4NqE10uAU51z/wpe5+z7ogAjHBVAquACoDHhmEEXYDjnPpNUdIuZvQH8HLgo2Ir/fkDq71Fj0jGDinPumuQyM/szfuzG1WY2bwAHqtcA+wCXOOfeC8r0XUn9uQzW78r9wLv4MRWz8N0hWyXsz9n3RV0k4ajHN0GlUpZwjHj/Hz7YOjLsiuSR+Pcj1fdI36Ekzrl1wPX4GSj7hlub3mFmP8W39t3gnLs8Ydeg/q508bmkNNC/K865Zc65J5xz9zvnfgScDvzKzP4nOCRn3xcFGOFYAYw2s1T/gBPx3SeDrvUiHedcC8FnFnZd8siKYJuqqTJelqqJczBbEmwH3PfIzC4DfgDcBHwrafeg/a5087l0ZUmwHXDflWTOuTeA14BIUJSz74sCjHC8gv/s904sNLMyYCYwP4Q65a3gc5lE6sFZg9Wb+CbMz6bYt0+w1feosx2D7YD6HpnZj4AfAbcAZ7tgTmGCQfldyeBz6cqA/K50oRwYGTzP2fdFAUY47sLPO56bVH4Ovm/rtr6uUD4ws1Fpdv0UP17ooT6sTl4L+oUfAuaY2e7x8mBq79nAByTNUhoMzKwo1YwjM5sMnAesww/oGxDM7FJ8LodbgTNdigR9g/G7ksnnMgi/K+PSlB+In7r7IuT2+6LVVENiZtfi+wXvw08PimfyfA74Qqr/IAY6M7saHyE/BXyMH4R0BD4L30vAgW7zDHwDipmdBmwTvLwAKMFnegVY6py7NeHYHfD/obfgM8NuxAepuwJHOuce66t697ZMPxczGw4sxg9ke4eOmQFn479PJzvn7umzivciM/s28Dv8fys/xE99T7TKOfd4cOxg+q5k9LkMpu8KgJndh8/k+SQ+90UZsCdwEn5MxZx43oucfV/CziI2WB9AIfD/8FnRmvB9WlcBQ8KuW4ifyTHAY8Fn0QjU4fOCXAKUhV2/PvoMnsa3bqV6PJ3i+GnAA/jpdvXAv4GDw76PsD4X/MC0P+KbeauD/0F+CswD9g77PnL8mdzcxWey2fdlEH1XMvpcBtN3JbjfrwL/AD4J/v/agJ9Nci2wdYrjt/j7ohYMERERyTmNwRAREZGcU4AhIiIiOacAQ0RERHJOAYaIiIjknAIMERERyTkFGCIiIpJzCjBEREQk57Rcu4gMWpFI5DL8ehUHRqPRp8OtjcjAogBDRHosEolkkqlPP94ig5ACDBHJhR93sW9JX1VCRPKHAgwR2WLRaPSysOsgIvlFAYaI9JnEMQ/41VHnAlOBTcDfgUui0ejKFO/bEb8y5kHAVsBa4Angp9Fo9IMUxxfiV388Db8UdQl+Eb2ngV+lec8JwH8HxzcC/wT+XzQaXb4FtywyaGkWiYiE4WLgeuB14Br8qsJnAs9HIpGtEg+MRCKzgfnAqcArwK+BF4FTgPmRSGSvpONLgEeB3wOTgduB3wILgOOA/VLUJwL8Fd+dcx3wH+BE4IlIJFK6pTcrMhipBUNEtljQMpFKYzQa/WWK8sOBz0Sj0dcSznE1vkXjl8BZQZkBtwDDgFOj0ehtCcefCNwJ/DUSiUyPRqNtwa7LgIOBh4CvRKPRpoT3lAbnSvZFYHY0Gn0z4djbgZOBY4C70927iKSmFgwRyYUfpXl8P83xtyYGF4HLgA3A1xJaDfbFd6G8kBhcAESj0buAfwM7A/tDe9dIBGgAvpUYXATvaYpGo2tS1Oe3icFF4MZgu3eaexCRLqgFQ0S2WDQatSzf8kyKc2yIRCILgc8D04CFwB7B7ifTnOdJfHAxC3gWH4xUAS9Fo9EVWdRnfoqyT4LtiCzOIyIBtWCISBhWpSmPD/CsStp+mub4ePnwpG22AzNrUpS1BtvCLM8lIijAEJFwjE1TPi7YbkjajktxLMD4pONqgu3EHtdMRHJCAYaIhOHzyQWRSKQKmImfIvpOUBwfpzEnzXni5a8G23fxQcZukUhkwpZXU0R6SgGGiIThtEgkMiup7DJ8l8gdCYMzn8NPYd0/yFPRLnj9OeB9/GBPotFoDIgC5cD1yVNMI5FISfI0WBHpHRrkKSJbrItpqgD3R6PRhUlljwDPRSKRu/HjKPYPHktImHkSjUZdJBI5HXgcuCsSiTyAb6XYGTgWn6Dr6wlTVMGnLf8McBTwfiQS+Xtw3GTgUOC/gJt7cJsikgUFGCKSCz/qYt8S/IyQRFcD9+HzXpwI1OJ/9C+JRqOrEw+MRqMvBcm2foDPb3EUPpPnHfhMnu8lHd8ciUS+CHwL+DpwOmDAiuCa/8725kQke+ZcJoshiohsOS2PLjJ4aAyGiIiI5JwCDBEREck5BRgiIiKScxqDISIiIjmnFgwRERHJOQUYIiIiknMKMERERCTnFGCIiIhIzinAEBERkZxTgCEiIiI59/8D5iQdBNk44WoAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 576x432 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "pwk.plot_history(history,  plot={'Loss':['loss', 'ae_loss', 'cnn_loss'],\n",
-    "                                 'Validation loss':['val_loss','val_ae_loss', 'val_cnn_loss'], \n",
-    "                                 'Accuracy':['cnn_accuracy','val_cnn_accuracy']}, save_as='01-history')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 6 - Denoising progress"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 13,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:37:30.719271Z",
-     "iopub.status.busy": "2021-03-14T21:37:30.718783Z",
-     "iopub.status.idle": "2021-03-14T21:37:34.671165Z",
-     "shell.execute_reply": "2021-03-14T21:37:34.671665Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Real images (clean_test) :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE4/figs/AE4-02-original-real</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAByCAYAAAC89bCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAANWUlEQVR4nO3de4hV1R7A8TXD5PTUMrIHYU44WBQo6SSp2MvKMDHDtCwkKwwGS4rwn6LRpsfUWIhOA2XmZJkiY2qolZklRTFBFD1QCyxfmJWlk70sm/vHvf3u77d0b/c5c/Y5417fz1+/ddeafRZ3z5l+rmdZR0eHAwAACEV5qTsAAABQTCQ/AAAgKCQ/AAAgKCQ/AAAgKCQ/AAAgKBVJG9bW1rItrAtobm4u6+wzeJddQyHepXO8z66C72Z28C6z5XDvk5EfAAAQlMQjP/9qbm5Oox84gtra2oI/k3dZGmm8S+d4n6XCdzM7eJfZEvc+GfkBAABBIfkBAABBIfkBAABBIfkBAABBIfkBAABBIfkBAABBIfkBAABByfmcHwBI28qVKyWePHmyqWtra5O4urq6aH0CkB2M/AAAgKCQ/AAAgKCQ/AAAgKBkfs3P5s2bJb788stN3a5duyRev369qfPbAkjPxo0bTfnWW2+VuKLC/pn6559/itInANnFyA8AAAgKyQ8AAAhK5qe9tPLy6FxvxowZpsy0F5Cun376SeKJEyeauv3790t83333mbp+/fql2zHgKNHY2GjK06dPl9j/3jz11FNF6dPRgpEfAAAQFJIfAAAQFJIfAAAQlMyv+dm0aZPEO3fujGzH9tns8NdvzZw5M7JtXV1d5M8hXfX19RJ/+umnke0aGhqK0BsUw6pVq0x50qRJEo8cOdLUtbS0SNytW7dU+3W0+uKLL0y5rKxM4u3btxe7O+Lvv/82Zf23ddmyZaZuzZo1EldVVaXaL42RHwAAEBSSHwAAEJTMT3shm3KZ2ooT93NMgxXe7NmzJW5qapLYn9Y47bTTJNZD+ej6tm3bZsp6enP+/Pmm7oQTTpB4+fLlpk7/Tjz77LOmrrKystP9zIL29vbIuh49ehSxJ5Z/Y8Jjjz0mcUdHh6lbvXq1xFOnTk23YwojPwAAICgkPwAAICgkPwAAICis+UGX9u6770qc9pUjGzZsSPX5IfJva581a5bEejtsTU2NaffRRx+l2zEU1JtvvinxuHHjTJ2+qsRfh6K3vvt1c+bMkdhfR1RdXZ1/Z5E6f81PnOHDh6fYk2iM/AAAgKCQ/AAAgKAw7YUuxZ/a0tNeSb3zzjumfNlll0kct0U+n8/Cof766y+Jb7jhBlMXdcr64MGDEz9fT6P4J7N379498XPQOW+88YbEY8aMkfjAgQOm3YgRIyResWKFqfv5558l9o+d0O+yvJx/p/9r7969Er///vul60iezjjjDFPu1atXSfrBbxQAAAgKyQ8AAAgKyQ8AAAgKa37+54ILLih1F4Kl1/nErbvRa3f0bex+XZxCXYuBaAsXLpR406ZNke2uvfZaiefOnRvZbuXKlaY8ZcoUiX/99VdTd/fdd0vsv2uuROicPXv2mPK9994rsV57dc0115h2ra2tEuvrLJxzbsGCBRI///zzkZ/9yy+/mPJzzz2XoMfZpI+I+PHHHyPbDR06tBjdEfr3w7+ORF9pcckll5g6fw1QsTDyAwAAgkLyAwAAgpL5aS99c3ScCRMmpNwT/CuX7ex6Osvfwp6PuJva/ak0JPP999+bsp4O8fXu3Vvip59+OrLdwYMHJb7xxhtNnd5K72toaJB49+7dpu6FF16I/Dkcnp7KGDVqlKnTU5pjx46V+NVXX038/HXr1nWid2F6/PHHJS4rK4tsp79rxaBPZdfHUThn+3ndddcVrU9xGPkBAABBIfkBAABBIfkBAABByfyaH3/eH6WRz3Z25wqzDifpZyM/a9euNWW9Lbmiwv6JmTdvnsTnnXde5DNvu+02if01PqNHj5b4s88+M3Vbt26VWN8YjvxMnTpV4ra2NlM3YMAAiRctWpToeXfccYcp+8cY4FD+EQP+e4jiX31xxRVXdLov+vvlX2Py+uuvS+x/7/UaPv94iqVLl0q8ePFiU1dfXy/xhRdemEePozHyAwAAgkLyAwAAgpL5aa845557rsRVVVUl7En2+NNLSaebkp7cHPd8Tm1O3zfffCPxQw89FNlu0KBBpnz11Vcftt2yZctMefny5ZHPvP/++yXWQ+3O2a3uyF1jY6MpL1myROKTTz7Z1D3zzDMSH3fccRL//vvvpl1zc7PELS0tkZ/tn/Ktlyz0798/utMZ509zffDBB5Ft9TvSt787F3+C9vr16yU+/fTTJX7rrbdMu23btkmsT2127tDprCj33HOPKcdt19deeeUVU9a/c/lg5AcAAASF5AcAAAQlk9Ne+rK3uKG4LVu2SKyH8Z1zrk+fPgXvV0j8U5zT/rlCSHo5Kpz7+OOPJfa/O5o/VB1lzZo1pqy/t/oiU+ecGzZsmMT+RZl62ktfAOmcc+3t7RJ37949Ub9C8/bbb0fW3X777aY8ZMgQifXp6/pyWeec+/LLLyOfqXf86Z1l+D9/SjiOnuqaPXu2qdPTVEmnmnyFeEYufvvtN4n9XZ9MewEAAOSA5AcAAASF5AcAAAQlk2t+9PyzXtfj0/P+rAEIk17nw5qfwisvj/731caNGyX21/xoDzzwQOQzW1tbI3/O33KtbyG/+OKLI38uZD179oysa2pqMmV9Wvcff/whsb82Qzv22GNN2T/RF4fSW8+dO3SLeT7Sfoa/Fu+ss86S+Ouvv458zvnnn2/qHnnkEYkL/d9oRn4AAEBQSH4AAEBQMjntlfSSvVGjRkk8cODAtLoTJD316Fz+W9j1VNSll1562P/dL+eyBdPvJ4pHnx773XffRbY788wzI+v0Jaq+k046yZSZ6joyfWqzc/YYg08++cTU6WlF/1gBTV9yuWHDBlOnL0fF4Y0ZM8aU58+fL/GVV15p6s4555zI5+jpJf+S0JqamkR90ctIJk6caOr27dsn8dlnn23q9Lb7CRMmmDp92e3DDz9s6k488cRE/coHIz8AACAoJD8AACAoJD8AACAomVzzo7e0xkl6nPqOHTtMuUePHhL76wrwX/6aHL22xr+RvRDbzZOuKWI7e3F9++23phy3JiEp/X2MuyUcuTvllFNM+cMPP5TY36Ksr624+eabJfbX/7z00ksSs+4qd4MHDzZlfdt9sT355JMS6zU+vq+++sqU9bUzn3/+uanr3bt3gXqXG0Z+AABAUEh+AABAUDI57VUIeuvt5MmTTd1dd90l8bhx44rWp6NZoU9SnjFjhin7U2lR6urqOv3ZSE6f0OrcoUP4STz66KOmvHTpUon17e/OOVdZWSnx3Llzc/4sRPOnxNauXSuxPuHZ/5t40003pdsxFE17e3uidqtWrTLlq666SuJjjjmmoH3KFyM/AAAgKCQ/AAAgKCQ/AAAgKEGv+VmyZInE/pUI48ePl1hvbXfOuUGDBqXbMRyRf0x+HL3Nnq3uhdGrVy+Ju3XrZuoOHDgg8bp160yd/v//zz//TPRZM2fOTNyvO++8U2L/GH3k7uDBgxJPnz7d1C1YsEBifRv3iy++mH7HUBT+2p3W1laJ464R8tf2dZV1PhojPwAAICgkPwAAICiZnPYaPXq0xJs3b45sp7fC+tti9TDdvHnzTF2fPn062UPkQ29nj9vaHnfjOwpj+PDhEjc3N5s6PfXka2trK2g/+vbta8pPPPFEQZ8futdee01iPc3lq6+vl/j4449PtU8oHn0ys0/fEu+cc9dff73Ep556alpdKhhGfgAAQFBIfgAAQFBIfgAAQFAyueZnypQpEi9atEjiXbt2JX6G3qo3cuTIwnQMOdNre5Le3K63tiN9+kZv5+z3zL/eIun2du2iiy4y5WnTpknsX53gb7tHbt577z1TnjRpUmRb/d7Hjh2bWp9QXHv27JF4586dke0qKmz6MHDgwNT6lAZGfgAAQFBIfgAAQFAyOe1VXV0t8S233CLxrFmzIn/G376+cOHCgvcLR+bf1p70dF+mukrH39r84IMPSqyPnXDOubq6Oom3bNki8bBhwyKf7/9O6NOl0Xm7d++W2H9f+/fvl7impsbUNTU1SVxezr+js2Lx4sUSb926NbLdgAEDTFl/748G/MYCAICgkPwAAICgkPwAAICgZHLNj6aP2v/hhx9MXWVlpcRDhgwxdVVVVel2DEJvZ0+6xkevHXGOKyy6qv79+5vyihUrStMRiL1795qy3qK8b98+Uzd06FCJ58yZY+p69uxZ+M6h5Hbs2JGo3YgRI1LuSboY+QEAAEEh+QEAAEHJ/LRXv379JG5paSldRxAp7oZ2TU9t+dufASTz8ssvm3LcKb76eBD/pG1kU9++fUvdhaJg5AcAAASF5AcAAASF5AcAAAQl82t+0PXptTxxW925wgLovIaGhsi6xsZGU/avtED26eNhdJw1jPwAAICgkPwAAICgMO2FktPTXh0dHaXrCBCApCf4AlnGyA8AAAgKyQ8AAAgKyQ8AAAgKyQ8AAAgKyQ8AAAhKzru9amtr0+gHSoB3mS28z+zgXWYH77JrYuQHAAAEpYxzVQAAQEgY+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEH5D4+frCe4lbkyAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 720x169.2 with 5 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Noisy images (noisy_test) :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE4/figs/AE4-03-original-noisy</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAByCAYAAAC89bCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAr/UlEQVR4nO2de/xVY/bHFzHjkkwzEgopl6mZSEUiKbdKJIUaanSTJpIxEZXRKCZTiZiKKffKfdzvRmQQuXYTpSuKIZeiKH5/zOzHZ33O2U/nfDvHz8v+vP9au3XOPvu797OfvXvWWp+12XfffWdCCCGEEFlh8//vAxBCCCGE+CHRy48QQgghMoVefoQQQgiRKfTyI4QQQohMoZcfIYQQQmSKLQr9YN++fVUW9iNg3Lhxm23qPnQtfxyU4lqa6Xr+WNC9+dNB1/KnRb7rqZUfIYQQQmSKgld+Em655RYzM/viiy/cv59yyinB/sUvfuF848aNK2jfY8aMcdt33nlnsJ9//vliDjOw2Wbfv/CxptF5550X7JEjRzrf9OnTg/2rX/3K+QYOHBjsBx54wPnWr18f7LVr1zpf5cqVCz1sx2abbWZ/+MMfKvTdGOPHjzez3PMyc+bMYDdu3Nj5zjnnnGCfddZZzvfII48Eu1+/fs5Xp06dYC9cuLDgY4xdv4rw1ltvuW28JjxuY9fr3HPPDfYVV1xR1DH07du3qM8XSnKf4Tkz8+eNfVOnTg12586dU/fN5573k8by5cvd9oIFC4L9zDPPBPviiy92n9t3332D/fTTTzsf348IjsnddtvN+c4///xgX3TRRc43fPjwYBczzkaNGmXvvvtuwZ8vlORazps3z/173bp1g3322Wc739ixY4O9dOlS5+Nzkcatt97qtrt06ZL62Z49ewZ70qRJwS5m/CF77bWX237nnXfy7sPMbNdddw32smXLUvcZY/Xq1W67cuXKZbk30+ZZJHZe+Hvz588P9j777FPwcVSrVi3YOMebmQ0ePDjYkydPDvbHH3/sPvfLX/4y2F27dnW+5N3ALD6OvvnmG+fbcsstg/3ggw8637HHHhvsKlWqON+SJUuCXbVqVed7+OGH8+4PKfrlZ/To0WZm9sc//tH9O77g8MXCFwucgMz8ZMj7nD17dupxHHzwwcF+9NFHnQ9P0pw5c1L3wb+HHHrooak+vMg4gZuZtWjRItj4omDmX+74hsWbuX79+s733Xffle2BaeYfgGZmv/vd71I/e+WVVwb7mmuucT58YeSJGYlNjvfcc0+qL8Z2220XbH4xTyYfMyvqJbJly5bBfvbZZ51vw4YNwX711Vedr2HDhqn7vOGGGwr+/WJJHpT8IhF7gcRzxS9/OMlWr1694H3GfDVr1gw23isM3puxlx1+MTrooIOCfcwxxzhf7D87uI0PXbPchzIyYMCAstybycsKv8S88cYbwcaXHeb111932/fff3+w+T8tH330UbD5ARPj+uuvDza+/Lz33nvuc8mDyKy4F8vHH3881YfzJ88nJ554YrDxP9BmZsOGDQs2v1hOnTq1LP/JbNCgwUY/s2bNGre9zTbbBJuvSYcOHYJ94403Ol+PHj2Czfczzs+777678+HLCj6L+N7D/9Djc9DM7Kmnngr23nvvbWnwC9VOO+0U7OOOO875cN79/PPPU/fJJPd+7OVHYS8hhBBCZAq9/AghhBAiU+jlRwghhBCZouicnyTWysnJMTDWjvbGwMRiBuOonEC7//77B7tevXqp+8AYIueaYFw8lozGOQexmPbEiROD3atXL+fDhK1Vq1al7qOUJMfKfx/Gdbt37576fU62w+RWPg+tWrUK9l133ZW6T47RYnwbeeWVV9w25/kgGMf/9ttvnW/WrFnB3m+//ZyvadOmwebr3L59+2Dfe++9qb+db+yUI6/A7Ps8pKFDh7p/520Ec6U+/fRT58P7ChOQzeLjnPMs0njuueeCzWPi66+/DjaPwa233jrYX331VUG/ZWZ26qmnBptzJXDML1682PkwsZJzJcpVjJDk+lx11VXu33/9618Hm8drocUBtWrVcts333xzsNu1a+d8nTp1Cjbm+JiZ9e/fP9iYJ8U5Uv/6179SjwXHQLNmzZzv6KOPDjZeczN/3f/617863wUXXJD6e5zojkyZMqUs+Vv//Oc/zSz3OPEaDRo0yPkwZyuW64K5r2a+MIiT1XHsYO6TmT8vOD7uu+8+97mf//znwf7973/vfDiOYs+wadOmue1GjRoF++2333a+WL5dDMwzS0MrP0IIIYTIFHr5EUIIIUSmKDrslYStsBTPzOzLL79M/c7hhx8ebC7DPeyww4LNpXOsI4Bg+XKhOkIMltquWLEi9XOl0Jcx86Eu1kHAZUIOlTRp0iRaPr2pFPP3NWnSJNgzZsxwPlymHjFihPNhOT2GWszMevfuHWxeWsdl99tvvz3YuFTKXH311W4bNYc239y/72PoIFaCzxS6PJ5vH+WSLfjtb3+b998xRB2Td2A6duwY7Fi4gMFSY2bUqFHBxnN/4YUXus9dfvnlwebrgmEm9uGyPOtsYaicy49Ro+rMM890vpiOz9KlS3PCGaXg/fffNzMfWjIrTg8GwXAWh/UQLIc28/ccg/MZljbzcWD4pXXr1s4XCxniuOVrgGENDnPh9eBx9f9BUjrOx8ISGQiOTw4voYzICy+8kLoPfsbgeeH7GcPOffr0CXZsTPHzGsNerLuDcKgupkGF453D8igBwPdFEkJVqbsQQgghxP/Qy48QQgghMoVefoQQQgiRKYrO+UnibJzj85e//CXYnNez4447BpvlslGivU2bNqm/y60iMBa5cuVK50O5bPwcy4RjTBT7i5jl9h9BML7Ipft/+9vfgn3yySc7H7ZE4DYH2FIiX7uAcuT8pOUPYGyVJdIR7pMVy33AnjAMnuutttrK+datWxdszD948cUX3edQUp9ba2BsPdZeIhbf5rGJcv4M9rmbMmVK6ufKBV9XbBOAOVtmuXlbCLZS4JYIFWXAgAEFfS4mpYH99JIy4oSdd9459XvYzmDRokXOh60wiunVha0ASskuu+xiZmafffaZ+/eK5h/Wrl27oM9xrgaOJS57xjwiPC7sk2bm2x6wZATmOt5xxx3Oh/3zeNyi/AHP/7E8n421ZSmHbEGlSpXMzPc3NPP5rpjjZualPB566CHnw3YksfHwxBNP5D2OfGCe3gknnJD6Oczffe2111I/FwNzg8zMhgwZEuxi8i6R008/3W2zDEQ+tPIjhBBCiEyhlx8hhBBCZIqiw1533323meUu5yf/no/bbrst2LiUbuaXrWOdwHnJFbuLs69GjRrBxu6/vOSK5dLr169P/W3mP//5T7B32GEH58OldS6zw+VEVj1Fxc18S3/lKI+uXLmymeWqI+Oyf2zZkTvfY5ksq5LiUi0v/+L5fPLJJ52PVV8TTjvtNLeNHci5BJOVTivCFVdc4baTsIRZcUu11apVs5NOOmmTjycfyXFwefJRRx2V194YMaXmPfbYI9gcQsKlcQ6joJI6hisw7Gtmtu222wYbl8XNfGkzh9gvvfTSYL/88svOh1IM22+/vfNxB3gEQ69YSm/2X9mGmCTHpvKzn/3MbceUlGMhHZwvWX0XrxHLJVQkzMbXK1ZujL/NaQIoRcJjjENdaWCXczM/rpiXXnopGhavKMl14d9GiRZWsMbnyODBg50PFeUxzcLM39+cGsDq5AhKkXC3AwTHB5eoF6owzuOjW7duwebOBwiX52N4Ne33Ys9NrfwIIYQQIlPo5UcIIYQQmUIvP0IIIYTIFEXn/CTddGM5Pgx2ceX8CO7wiqxevTrYHPPFPJ8zzjgjdR+YX8LS/p07d079HsIdoDFGyT7ORUH+/Oc/B3vPPfd0Psx9KlU7jY2R5PpgSamZz2/BWLCZ2QEHHBDsnj17Oh9eS4zXm3mZAS4Tx5wALGOOgTk+DOf44JjjnA3M54id97p166b6+HvYAf3NN990vo8++qhs7S2S4+B7DHMpOOcuVhKK5a9cJouyDcwll1wS7LScLTOfk9C2bVvnmzt3brC5dBlzflBig7cxl8zM5/8xeM4ee+wx52vVqlWw+VrHpCBKAeeCVKtWLdjcqiU2frELOpeU4z3O+UA4Xp599lnna968ebAx74nzIDn3BMGxyTlm+PdUr1491ReD2+XgXIP5U2b/ndvKkfOTHCu2UDHzsh48X2IHdrTN/HzNXdCxNQvnT+I54zkCO7njc5HzZFGaBvM4zXyeJ/tw3PI9g8++li1bWhrciZ63kQULFqT6ErTyI4QQQohMoZcfIYQQQmSKosNeyfImhxYwlIHKlWZ+Sa+YsFdSim2WWzp9/PHHB7vQJVD+bSw9x2V2BsNcTCzMxeAyHYYGzNI7cpvlhtZKDZdxI3PmzHHbWJLMoTtcZl26dKnzYVkkh8twiZRLe7/++utg4/X78MMP3edQRZzBEmdUOzYrfOxwZ2VWKUVmzpyZ6rvuuusK+r1NIbZ0zGGuQstTWTn52muvDTaHibBUlu85VG6eNWtWsFkd/E9/+lNBxxUbZxx+iZWs429weDz2+8uWLStLGDM5b7EwG4eocGxhObSZ74LOEhUY1sPwB8MhaQx74T3NociDDjoo2GvXrnU+DKtxWAhV4YtJBcC5FVMNzHLnjR+SWAcDDi/FQIkWVII2M1u+fHmw+ZmyYsWKYOdTt85n83yM42Px4sWpx4jSCma+JB/TWcziHeA/+OCDYMfU2xl+NuVDKz9CCCGEyBR6+RFCCCFEptDLjxBCCCEyRdE5P9zNPQFjvhznx87EHGvE+B93UscO8Jzzg3C539577516LAh28OXYJlKq0vNvv/022Nttt53z4Xng3+vWrZu99NJLJTkGJJEI4BycAw88MNjcOoQ7NiNHHnlkQb8baweBZcz5PpvAeRkIdyXmzt+F7N/Ml5TGcnyY2Fjq169fzvkuFckxcuuUGHgeY9cFcwnMzOrVqxfsWL5cLLcA4WsWG++jRo0KNss0nH/++cHGvCQzn7vHOTFLliwJNneUx2M75JBDnK/QLvXFkrRl4PN17LHHBptzcHr37h1sbDFi5scE+wrN+6pZs2aqb5tttgk25tiZ+XYzPFaw9VHr1q2dD3OarrnmGuc766yzUo+F83wK5eOPP67Q9yrKiBEjgs1yDrGydPTtv//+znfEEUcE++9//7vzYXd4noNwnygHgOPNzKx27dqpx4x5e3wNMN+J876wzQfnRGKO6cEHH5z6e5xjdM4555iZf8YzWvkRQgghRKbQy48QQgghMkXRYa+GDRuamdmjjz7q/h07xsaWTnkJD8ucsbTdzKxJkyYFHROGufg3UFmSVSdHjx6dus/zzjsv1YeKqNyNOsZVV10VbO6kjrCacK1atVwX7VKRqC6zEiiW07I6K342FubikMPkyZODzePj008/DTb/ndjlt3///sGuX7+++xyWunNX4lhoC+FwVWx8dOrUKdjcRR2XY3lpeN26dWVTeE7K8VmlduTIkcHmsAPKHMQkD7CLvZnZ+++/H2zu2o3XvtCO9zfddJPbxuX2QYMGOR+eXw47YUktd7xO5i6z3BJ5LNdnBVpUip4+fbrzlSvslYT2atSo4f4dy7gvu+wy58PzxPcfjoEYfL0wPMgKzxgSx7Ba06ZN3ecwZIXSFWb+/sC52syPFQzFm/mwFx8zqtAXky6www47RMMkpQb/dpRhMPNl3XzPbL/99sHmLuio5M3PGH6+poEhbQwxm3kVbkxLYWLhbr6WMfkPlMLhc4TXGeUUzL5/VqiruxBCCCHE/9DLjxBCCCEyhV5+hBBCCJEpis75mTdvnpnltrfAuB2WPZr5XAouSWMJemSvvfYKNkqpm5ldfPHFwebck7QywVgckmObKK/PYGz9qKOOcj4s8eMYNsq+c7kfxiaxJDHt+EpBkhuzcOFC9+/YEZfl05944olgY8zVzEsOJGX0+bZ5n40bNw42X6PXX3892CjXzp2Ok3GZD/Tx9apTp06wn3nmmdR93H///W4b83yGDh3qfKecckrqfspJ0lYDO2ybmb3wwgsFfZ9zZLCrO+b4mPm8qg4dOjgf5utwGwm857Bs/NZbb009Lm590a5du2Cz5D3eRxdddJHzYT4H30/Y4oFJymbNcnMB33zzzdTvbQqJ5D+3wYnNZ5hDUmiOT779pIEthfhY8Hxu2LDBfQ7zIjmnBlsk8DyO5z2WixM7fs4FwRxGlsD47rvvypKPl7QWOeaYY3J+L4FL97Gtw/PPP+98KPvC+ZoDBw4M9owZM5wPy+AZzNnCHNpYTlssn+/6669P/V7sHHNeGT73ORcP85sqglZ+hBBCCJEp9PIjhBBCiExRdNgrIbZMPXbsWLeN5Y28VIVLgdh52MyXcvKSF8LLnrjMij5edkRiYS4ul8SwDXYeNjPbaaedgv3qq6+m7pOX93CZcNKkSc7HYalSkRZKwyXQ9957z/kwTLls2TLnwzAYK3zi8j2GuRguxcZwGYZzuLw8BobIeByhmi+rpaKi7fz581P3z+cRw2BYxm9mVqlSpY0dboVp27atmeVKRHDILg2UEjDz9zgqu5rlShIguBy+zz77OB+q6D733HOp+0AFWgy/mfnxwwrkuEyOZbJmZk899VSwWYUYYYVnVMHu2LGj83EZfqlIriGHLnA+Gz9+vPNheDAWkkCleTMfGnr55ZedD1WjuXwe56zu3bvn+Sv+C0qDMHhc2K3czF8H7vyN15K7hGN5PksFIKwqzuelVCTjnJ8/s2bNCjaHytesWRNsVjbGUCGHRdEXC79jCoaZv/djz1qEQ1s45ljiA/fJzxSE01sQHn84J+E4NcvtFJAPrfwIIYQQIlPo5UcIIYQQmUIvP0IIIYTIFEXn/CSd17kVwCOPPBJsbolw9tlnB3vrrbd2PszzKaZz7x133BHs2bNnOx9K5cdKQ1GyH7sLm/m8ApQTN/Ox2sMOO8z5Yh2FMQ7K5bsIl5TusMMOZSnB5Jh3AsZPuY3JhAkTgs0l1bF9x0r18RxynBpL3bE0db/99nOfww7XW221lfNheTufd8zz4TwJzIXYdtttU4+f26bE2mlwS4JSkuThFJrjw3BZOpaKcxdolGpo1qyZ8yVtNsxy21YUCpbSDxkyxPkwh5DlFk477bTUfaJUAucEYHue6tWrO99xxx0XbO6kftlll5Xl3kxyfbh1D8pJ8DjHNiOx8m/uXo55PrFO8U8//bTzvfPOO8HGnJ8bb7zRfa5bt27B7tOnj/O99dZbweYcydh9hPloKM3BcHk35vFhV3Wz/85n5WhvkXbPY4sefH6a+fmGc4Xwmcm5o5gvyvl2mLfI8hwoHYNgDpGZz/Xj69W5c+dg8zyLzwO+nzFv7pZbbnG+RL7DzLeHMvPzTEXQyo8QQgghMoVefoQQQgiRKYoOe2255ZZmlhvead26dbBjZY+8RDxu3Lhg8/Iehko++eQT58MS6JNPPtn5eHk2gbulo/IthrLM/BIbq7/iMjgvLw8bNizYrEL87rvvBpvL11FpGJeTzeIq2KUgVhaL15W3Wa0brwmqs5r5Tr58HbA0e8qUKanHiWHDxx9/3Pn23HPPYLds2dL50hS/zXy3eQzPmuUusyIYYsCle/49Xsbt2rVr2bq6J+HmWNiBiYWFkxC3mdmKFSucD5WNeck81h1+1113DTZKJfC9v2rVqrzHaObVprmkFhWfWUUdO7JjOTTDoVfcRhkIM7PDDz88dT+lAMNcZl46gefZHj16BBvnKDPfmZ47q//mN78JNqpzm3mlYSZNYRevMYNdwc38uY0prMfU+ZcvX+58KAFw9913O99dd90VbA4ZlUvhOTlWnksx1MXjCJWbOSSGcx9LrWCndQ5vYtiXzyfOmSj7gmkHDF9LniMQTFnAZ6SZ2bnnnhvsfffd1/lwDuZ3DtwPjm+zeMf5BK38CCGEECJT6OVHCCGEEJmiwgrPrBCJxJZKMfTD8FI0NlVj9d1Y1QyHPRI4pIJhL8xUN/PLxldffbXz4fI5gxUyvPTMlRRpcAiuadOmBX2vovDyaKFwaAuXrXkJG5d1K1eu7HzcUBPBiisML3EoBCvkWL03VjW4fv36YHOYC5eJuaIQwwMnnXSS82Hzy0KbRpYSHne77bZbsJcuXep8sZAg+jBsaeZVz2PfGz58uPM1bNgw7zHzEjqGr1CxnX0xMHTG8Hyybt26YHMFGd5/H374YUG/vakkzSxZ3ReVjnlsoeJurLHkP/7xD7eNYxura8z83HfooYc6H1bbYPUtNyjFakiea2JhV2xszeBneexgxRY3WcVr+UPdm8nv8H2Cz4oqVao433bbbZfz/XzEGvLyPIghVFbnR3VrvLdxDmRY3Rz/Bn6edurUKdhcCYxjjCvBMMTHSuGo7M3PlEKurVZ+hBBCCJEp9PIjhBBCiEyhlx8hhBBCZIqic35uuOEGM4uXszPYefnMM89M/RyWvJn5Dtgcu0W4FBBjiBj7a9Gihfsc5hKwSm8sZoiKtpyvgiV2WA69MWKx73KR5LhwvJTVfAsFlZo5HozyA3ydMQ+EO/dinhaqBbNSLI4rLrWOKd/ieecyyzlz5gSb1cdROZZLfrn0Fvn8889TfZtKIj3AuVgc30cwryJ2btiHnc4ZzDnC3AUzs3nz5uXdP4PXuhglV+wUz2XLWG6LZfzFwLkM9erVy5lXSgHn+iSgGnMs14oVdlHlnNXKURKA851QRZqlAzA3cfTo0cFmFX9UyOc5EaUguDs7S36kwTl3COf7oazGDw3Kupj58cn3F+YNxvLtOL8PJShWrlzpfDjmOZcH1d1RzmGLLfwrAl5L7s6OitI8fjHPh3NvMc+HxyZ+lqVj8LP8DCsErfwIIYQQIlPo5UcIIYQQmaLosFdauAuXYFlx+fbbb0/dHzao69Kli/PFQl1ImzZt3DaqxcaW1rEBJJcaFhqGOv/88902luNxiAOXBXn5HJeUuRy0ELXKitC/f38z+76sNgGXvnGZfWPgtUz2nYBlnbx8ieXX3AAVQxWoPMrlrbiMy2W+eC1joQIuoUbFZ242u8022wSbJRrat29vaXC5ZilJwl2xv5HLv3G5O/Y9DlWOGTMm2O3atXM+vP9Q9dvMl9tiuTmrw2KDUg6Vo1wGN07FkDRKWZjFJTgqyty5c8uiCjxw4EAzM7v88svdv+O9GQtTclgSy555DOB+eCzjuOewDUpDYPk8h5ZQfZ1lQjB0werS06ZNszRw7mYFfGyszeMWxwSH+GLh6lLATVNxm+dLPLeoSm3mrwPLp6BaN8/d2Iycla87duwYbE4jQVBhHL9j5qVI+vXr53y4zfMMStOwgjrCSvKo+PzFF1+kfi8NrfwIIYQQIlPo5UcIIYQQmUIvP0IIIYTIFBVub8Fxu4kTJwabWwFgHI+712LcrmbNms6HZbjc0XXChAnBTjrN5wPj/Jw7gF12uZQZu67HciEYluJHYu0ZrrvuumDvsssuzte2bdvUfZaCRo0aue1YOe3mm3//vswxX4yvc3wbcz+WLFnifHjusZ2FmS+NxVg3l5fHcrsQzD8w813Be/fu7XyxFi4Iyx1gzg/nu/Xp0yfn3JSa2Pjk9gx8r6YR69jM9zTnR6Wx++67B/vSSy91PiyNvfnmm53vscceCza2VTAzmzx5crBfe+0158Mx8uWXXzofl2cjOF55jMTyIzaFRMoBS9TNclvfIJjDwnIPuB27V7htEF5LloLAXCe8RpivZeZzQLHVipnZjTfeGGzO8YnlXeJxcZdw7HQ+duxY54u1PImNgU0hmd9YEgHHMef8IHzPYm5lMbIo+Iw+/fTTnQ/3g3Mr7x/zQ++5557U3+LnIOZhcS7s119/HezYsxZzlphXXnnFbfMzLR9a+RFCCCFEptDLjxBCCCEyRdFhr6TElZfDnnzyyWCzQvAnn3wSbAwzmMW7vCOTJk0q6jgTsHy5Ro0azhcrbeRlceTVV18Ndp06dZwPFTAZ/L1dd93V+VCpE8uozfwyZylJQkq1a9d2/47lkthV18zstttuCzZfk27dugUbS9TNcssUkVjX9caNGwf7iSeeCDYvgdatWzfYqCJs5pf8eTkW//annnoq9Th4POA1YqkApFq1am571qxZOSXDpaJr165m5pW2zcx69eoVbFSHNfPyCzFYlTUmbbFo0aJgc+k0gmX2HNpFmYs33njD+bBEnsM0vJyP4JzVvHlz5+vQoUOwWSEbVapZ1Xbu3Lmpv7cp7LHHHmaWK/9Rv379YGPZsZm/tigpYOavM48/vFc5jIhg528+Ngw3MklXgHzgnMHEQjoxH4YmedzGrlcsjLMpJPMbh5hRxgBlPMz8XMTSJzjfjBw50vlQGXrdunXOh/PAjBkzUo8X7wV+9hSqto7PCbPCw3P8OQxnsXQFwmGuREoGQ6CMVn6EEEIIkSn08iOEEEKITKGXHyGEEEJkiqJzftK6OWNs9cgjj3Q+jLtxfkesnBHLqjnejOXCWPZuZrbTTjsFG0t0OV6PnbmxG7RZPOcH203EcnwYzPPh8kWE99m1a9dovLOisJx8Ap5bzk3q1KlT6v6wbBVtM3+N9ttvP+fDMcB5DFheiyXHXLKatAMwyy2zT3JhzHKl8GPXGeE8LMw74ZJqhMvA27RpE/I5Sg12yE7jxBNPLHh/WMo8fvx458Ny2L333tv5sF1JrKwa8/Eeeugh58MYPssTYG4G569gjgLnHmILm2effdb5ME/ks88+cz7skF6oNECp4LJx3k6DrwnKgfD9UahMBIPzNeb8xPI7rr32WrfN7U9KAbbaKKYU/Pjjj4/eyxUlmTt4HOMzAHO5zLykAT6nGMzxYTCnjuFxhHl6eG9zjk/16tWDzfIXV199dbBjeZzFgPMA5nWa5eZ2Ikm7o/fffz/1M1r5EUIIIUSm0MuPEEIIITJFhRWeedkYO2mzWjKGm3AJ2cyHKzgMg9vvvPOO8+EyPIe9sDwOl1V5CXTlypXBZnXpSpUqpX4Pl0Zr1arlfPjZjz76yPlQlZTLowvtIl9KkhJK7kwfkxXgjuwIhg64tD2muInLlxzyw1AXKinjuDHzpcscoim0tPzNN99021jCjercZmYXXHBBsPlvxc7V3KX4kUceKUsXcLPvwxkzZ850/46K3axiGxt3eN5Y7RrDjiwfkBYaN/PdqnHOQLVbMy8RsH79eufDrvEYOjPL7RqeBis1Y6hkiy38tIjjiUuLOVxeKpIQJocd8BqxNAPOYSxhgCq6rLCbtn+Gw2Np4bI1a9a4bezczmEu3EeDBg2cD+dZPH6zuNov/g3c9RwlRZgdd9wx1bcpJKF1TrtAWMkbQ8esio3hbQzpMzG15GbNmjkfzp/4bMcwl5m/N7jrAt7PCxYscD4srY+lcHBZ//Dhw4PN8yz+fVxan3Stb9q0aepvaeVHCCGEEJlCLz9CCCGEyBR6+RFCCCFEpqhwzg930sUY5fz5850PO+vG4pBNmjRxPiwF5DwC7PaNndvNcvMAEjiuyrkRCP5e0tIjAcucOUaO7SA4LwVj2Fwyy3kNyNChQ1N9m0JSsh/L8eHrhaXonJ+DUvWcQxXLJYjlEeHv47nl/Q0aNCjYzzzzTOo++HsYK2Yf5vksXrzY+WIl/yjLwDkozZs3L1tXd851SsD4PueoxK4Ltks48MADnS9WHo3tEq688krnw+7VN910U7A5twX337JlS+fD68s5HZjHxy0ekHbt2rntk046KdjcsgZLeJlydQJPJCYGDBjg/v2LL74IdqwEOgaW/Jv5McA5TYMHD07dD+Y74jXCHB+GWy7gb2MbESaW4xODc3ywbQrmdf4QcHslBFvwbIxYng8SK9vnZ0qPHj3yfo6frXhfYnm8mW/7hPeTmc/z4bwebHF1wAEHOB8/e5GkhYVZ7vM0+dtj+ZVa+RFCCCFEptDLjxBCCCEyRYXDXtjF3Sx3KQs5++yz89pmZueee26wucM7l4qngYrOZn4pFZfp2rdv7z6HXcJZ8ZI7O6eBpbtmflk/pv6cKFDmo2rVqm572rRpOcqopaB79+5mltt1GUMHDJYwcvk6lqxjZ2Azv5yJpddmXvGZQw7I0UcfneqraAdoXDplUI7g4IMPTv0cLy9jWPTQQw/NOZZylbonY5ZDTRjqwnCxmS8bZ/VrVKJmBWY8p6eccorzYTiLO7KjYjfem6z6jZIYOEeY+RAIL71jmDEWSmMFZCxD5lJt3Gal70aNGkXDxhWlRYsWZpZ7b8ZCQ48++miwWUrjkksuSf0eKunz/YDzFM/dKCmCoUEMf5j5dIPYc4I7sMeIhV3x93lsYniuUAmMUnHHHXe4bRzznCaA4Z4hQ4ZU6PdYOgDvo0MOOcT5cBvnfy51R26++eZUH19LfNZOnDjR+W6//fbU/SCc+oLniEvaMTychlZ+hBBCCJEp9PIjhBBCiEyhlx8hhBBCZIoK5/xwHgXG32Ly9gyW+KV1GTcz22uvvdw2trvgODx3lU8488wz3Tb+DVjWa+bl/Lkzd5cuXYKNHabNfLk3l0NjuTSXFqI0OOcQHH744dHS6orC+QQJmA/B1xml1rGTs5mX2+fzEivXx7wQ7sKLZdNYtlq5cmX3ubvuuivYXGrbpk2bYHPrFSx35TwJjk0jmN+EOT5mvlUDd3KO5TRtKpzrk4CtHO69917nQzkJlKQw8+M8BreeQQkJbp2CuSeY48ed7i+88MJgYysRhr+H28uXL3e+iraNwXJ2lvQfP358dN7aVLjbN+ZZsKTH3Llzg835HjFwHsD5y8zfZ+zj7QTObcE8H8yJNPM5k7HWEwyOK2x7Y+bvR+78HZMtKDfY3sgs3nW9HHmBxZTTJ8SkaWJ5V6eeeqrbvvXWW4PNkjMIz8/YHf7OO+90vtGjRwe7kBwfRis/QgghhMgUevkRQgghRKYoOuyVlFO2bt3a/TuGuh5++GHna9u2bbA59ISKwVwGieEmLJE188unSdfcBCylvv/++4PNJdzTpk0LdlJamoCqw9ztG2E1YSz/5DL4qVOnBhvDXAyXiS9atMgWLlyY+vmKkoRDrrvuOvfvn332Wep3UMmblz2x83KsbJW/h6WO9erVc74TTzwx2LjsyV3AW7VqFWwucUbJAVxGNfPjCLslM1zqziGytGPhvzUt1FgKknJSXlbGbsgc2sLl6KQTcgKGfrlLMy5/s3RBmiq3mdnTTz8d7GXLlgUbu6qb5Za3Fwr+9ooVK5wPVWa5NBbDtHz/ffXVV8Fu2LCh8y1durRs0gVmuSEkDLFxl3AMFXKYGf8mns/ws6x8fd999xV1vGZmJ5xwgtvGuauY0BbKMPAzBX0cWo4pusckK1g2odQUE+bCEDY/mzB0x2H0f//738FOVMITsJye0wbSzhnLX2AYkc8t/g2sNo/zDINpHjw/Y6k9PlvNvEQDE5NrCd/f6CeEEEIIIX5C6OVHCCGEEJlCLz9CCCGEyBRF5/wkuT4ck8cyOu4EGyuPwzJSjK2bmQ0fPjzYXDKLHeA554c7wyawVDfmmnBcFVspYBzVzMdjuQ1G48aNg80xUYynY6dtM1+qx3kvAwYMKEsn8KQckWP02LqE8wMwT4r/vlg7iFj3dITHB8ecE7i8GvNsWHZ9woQJwebYM/49nPuEpbyxHB8et3j+OFdr1apVObIKpSIZs3x+MdbPvsMOOyzYsdL2ipa88jjH/COUqOByds7XKRRsNTJq1Cjnw47lnBOD21iqb+bPH7du2HnnnXPun1ISGys8XvGei41XlpOoW7dusPnewWvLLXlWr14dbMyXOeigg9znMDcpTYbELLflyNtvvx1sbqeEeW0HHnig8+HYjD2n+FpyPlepWLJkiZnlSsBgnhnmUpr5Fi44R22MI444Ith8r6OsR762O/lgyRKUaBk8eLDzYbsQfD6b+XmX55mePXvm/ZxZYbk7Zr4djpnPf0tDKz9CCCGEyBR6+RFCCCFEpqiwwjOXviKssItLp6yai0te3IG30G62rPBcKNylGHnxxReDzeXsGOricFwspINl97wsiMvbrPBcrk7gyRJwrJyVlyhjJYuzZs0KNoe9sFs0hsDMvNwBqxTj0ir+dr9+/dznsEQSy2DNfAkmhzdjnZ1RqoBDWximwdCtmS/n5VDB7Nmzy9IF3Oz78lL+TQzL7L777s6XLMmbxUNbPK5xmZmXmAtVUsZwNV9PlB3gMYjHyaEEDHFyOBwZMWKE28bzEJMj4I7vH3zwQVnuzUQ+gNWjUU5i1apVzodK3gyes/POO8/5UA06NgYeeOAB50srW+frj+HHAQMGpB4X/z0Ydh40aJDz4fOHy71xPmNVYwxpcnpEgwYNciQQSkFyz8XkSh588MGS/Fas/Btp376920aldyyD55J4fC5iiodZXGKA53wEQ3DTp093PlSk52NGeA7CLvJpaOVHCCGEEJlCLz9CCCGEyBR6+RFCCCFEpqhwzg/mrzD77LOP28b4H5dZItwSAeXvWao7BsZWMV8H5e3NfN5Nr169UveH5bl8LFzmuuWWWwb7m2++Sd3njBkzUn0/FEnHaD5OjL3H8lP4OmNp6hlnnOF8sXjw7Nmzg835KphfhbkfnAeCpaIshb9hw4Zgc+7O/Pnzg81xYmx98cknnzgfdh/m7todO3YMNpfPcky7lCQ5DNymA7tcc04HdlbnDuLYNZk7UsdKSdevXx/sLbZIn2Kw1QbnCWIeGIPjh9ucjBkzJtixDtGcDxTLJ8P9sLQF/l4pSa7l4sWL3b9jfhl3rceSfD7OWB5Wy5Ytg12lShXnw9woLG0389Idsf1zDl7acfHYxLJ4LoPfZZddgs3PFJxbUcqBv9emTRvnW7t2bepxloI33njDbePfi1IdZmbdu3cPNs6PZmbDhg2r0O/jb7AEwI477hhszJvr06eP+1zsOsfkFfA64Pxg5vONqlat6nycB4bEnilJjmmnTp1Sv6+VHyGEEEJkis0Krczo27dvYR8UZWXcuHHpinIFomv546AU19JM1/PHgu7Nnw66lj8t8l1PrfwIIYQQIlMUvPIjhBBCCPFTQCs/QgghhMgUevkRQgghRKbQy48QQgghMoVefoQQQgiRKfTyI4QQQohMoZcfIYQQQmQKvfwIIYQQIlPo5UcIIYQQmUIvP0IIIYTIFP8HhmBzvns3A5QAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 720x169.2 with 5 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Evolution during the training period (denoised_test) :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE4/figs/AE4-04-learning</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAOiCAYAAACfI7YeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAADXQ0lEQVR4nOydd7xcVfX2F9JLQkhCSCWk0UILkAAiLXQEpIggiKjwQwiCDXsB6YgoWKKioAgiqAjSu/TeISEBEggkJCSEAKHX94/3M9tnPd6zcmbuzL3n3v18/1qTde6ZM7udndX2Yh999JEJIYQQQuTCxzr7AYQQQgghOhJtfoQQQgiRFdr8CCGEECIrtPkRQgghRFZo8yOEEEKIrFii7IUTJkxQWlgFmDhx4mLtvYf6sho0oy/N1J9VQXOz+6C+7F601Z+y/AghhBAiK0pbfmpMnDixFc9RN2XrE+F1iy3mN3/4+cMPP3S6j32sWvvCCRMmNP2eVelLbPuojyLef//9JC+xhB/WOAZ43OD9y37Xor5vUbSiL806tj+xz1o9VzpiblatP6syN8vSjDnM/Yw02ufRe6KtteCII45o6HsifvOb3yzyGn6W6LmxLbht2zOO6+WDDz5wn6O1FD/zb8N+5zGA1y611FJ1P2M0N1vbOu0EO5IHf9nJEG1wogU82jSVpeobqo4kWtiaQTTRG93gNPp9OVB2LEcLHcL9gvePvqueIq3RnM69P6tAPf1cdlOz+OKLt//B2kltzEdjvKPXpaj9omfB+dto2/L98T4d2V/5vo2FEEIIkSXa/AghhBAiK7T5EUIIIURWVNrR3QqfKBLFAGAwF/tHI78q/l0rnrmr0miMCMZ9RXFD2NZLLrlk6efCe+J38bNwn1chlqCqcCAk0ox2i8ZEFBSpQ5zbpmx8Y9k4kSg+h+dYFNvV6PpZdox1h/U5SuDguRG9m4rarNFYqyhwmSkbKN3s/pLlRwghhBBZoc2PEEIIIbKiy7i9mEbcUvWky6OuWem0YtF0dAoy9jO7TNSXjYFtFc0xdIG88sorTvfaa68l+Y033nA6NKkvv/zyTtevX78k9+jRo/C5RHPBtmXX1rvvvptkdq+gjsG5z67sVodENJOyLqUiItdT9O5rtDwMUtY9xtd2hbAAWX6EEEIIkRXa/AghhBAiK7T5EUIIIURWVDrmp9lHIrz++uvu86uvvppkjjno2bNnkvv06eN0yy23XOF3oF+Vn7+VaXtdiejIg6gEPMLp1PiZ4wMaSfHka6OU0kiXI9hn3E8vv/xykp988skkP/LII+666dOnJxnjf8zMVlhhhSQPGzbM6dZbb70kjxw50ul69eqV5KWXXtrpdLzFooliT7CfeZ1duHBhknlu4LXvvPOO0y277LJJxvXYzMd6cV/i/G9W+nwrKFu6o55jP6JzssoeGVO2VAXHdrUiZb2VcZey/AghhBAiK7T5EUIIIURWVNrWG5nKomqSb731VpLnzZuX5MmTJ7vrpk6dmuQXXnjB6dZff/0kjxs3zulWXXXVJHN6dGRaVIXZ/089rqciorbl++P4YJMufjePo/fee6/wGZdZZpnCv4vScKtkdm8P2I5R+jLPqwceeCDJN910U5JvvfVWdx26xLivV1lllSSvu+66TocuFjbLr7766knu27ev03W1NN1mUta1wO2J8wPX3BdffNFdh5+nTZvmdBh6wG4vdFMOGjTI6QYOHJjk/v37O13v3r2TzOtzZ50gvijKuvsX9XeRu6xsGEnZ91TkKo5cpPVUf0ZdPZX7yyDLjxBCCCGyQpsfIYQQQmSFNj9CCCGEyIouE/MT6dhniDEHL730UpInTZrkrrvrrruS/Pbbbzvd4MGDkxydjst+8MgP2l3iPRoB4wMi3y1eZ+ZLEGA8B5fFxzHAqdF4bVR+gMcRxgtgnImZj0GI+rXKqbbtIUqpxTn30EMPOd3VV1+d5JtvvjnJmNpu5vsCU57NfBu++eabTjdnzpwkz5492+mwzzCehO9ZpViQjiCKucC+5TmHbT9//vwkP/vss+46/HznnXc6Hc5VnvsrrrhikocMGeJ0WMZg9OjRTodzjvsZ53RH93NUEqOeoyfw/cNthmsrlpUw82UFOBYKYxijWFtsM46fjI7dwPvwOxKfhcsWtHK9lOVHCCGEEFmhzY8QQgghsqLSbq+yKXBsGkPTGVZjRtOemTfhsVkVK8eyDs3wkfslSs/vLu6PsqCpk/sVTd9TpkxxunvuuSfJDz/8cJLZpYFpsnyaN8IuNxwTPD7Q1TVmzBinQ3cnlj4wy69veQ6g2wvLSZiZPfroo0meNWtWkrmCL6Yvs8sRXRns1sC5zy5pNNPzGORrc6Ks24vbCNPbMWV97ty57rqZM2cmOar+zKEHeP+omjC6x/gzVgM382t+Z1dmL/t9/NvfeOONJGMbmfnQDmx3M++aZFcylgdAXXQyPPadWezawvcwz9mVV165zecw85W82VXXXmT5EUIIIURWaPMjhBBCiKzQ5kcIIYQQWVHpmB/0IbI/GOMzoiMLBgwYkGT2Q2KaIJe7x/RJjhNBPyv7TpHouapAzZfM7YLxM/zboxO7o6Mi0G/Nfurzzz8/yeecc47Tod8aU2v5udZee+02v8vM+8H79evndHgfThvFOB8uvY9tFqWzd2QcQa3N60mbjdJToxi1aG5iXAceU2Hmj5vBWDo8esLMbJdddkkyxwPhOONUd/zu6ER5ji1YaaWVLFcwZovXKBz3fFQJxnNhrB6WpzDz8R4YS2nm0+C53AGuExzHh3OV+xnjvnjeoq6j5matfXmdxXnK4xjbjMG2/ve//+10t9xyS5IxDsvMv6uGDh3qdEUxrhxPhW2NMURmZgsWLEgyrwn42zHGx8xsvfXWSzIeK2X2vzFbzUSWHyGEEEJkhTY/QgghhMiKSru9kMiUz6ZaNNejWfWxxx5z1+EJw5tuuqnTYVpdo1V6q57yXPR8Zd1z0WnmbIrGyrsXXnih011wwQVJnjx5stOheRvdHxtuuKG7bpNNNkkyu73wuZ5//nmnQ9Mtu+MwxZrdm9hGVenn9j5HPSfQoxmbU92xJMEjjzzidDg30cS9/fbbu+u22267wudAcz67SjD9ll0eOCajkge5EblYsKQE9yWurTgGMNTAzJctQNeImXeR8bqD/c7uD6zWzd+HfRu57TuKMinakcuZ18TLLrssyRdddJHToWuSxz+2E5ePwHbBta5Pnz7uOpwn6MI28yUuuMo3pudz6AGuJdivZt7tplPdhRBCCCHagTY/QgghhMgKbX6EEEIIkRWVjvnB2I3otHQG40TwVGk8KsHMl9fn9LuoxHfZmJiqxILUC/7eemKt8PeyvxnTM2+88cZCHffzwIEDk7zbbrslee+993bXYeoy+pfNfFrnJZdc4nSYYspxPejv5lRs9JnXEyvTSoq+Nzq+oMzftwXOTU5tvu+++5LMvv9Ro0YleezYsUnGmC0z377RsQpcngBTbDlGAMcW/1aMB6paSYqOhOctxurNmDHD6bCsAM5TTqPGtZXHYpSyjn/H91xnnXWSvOaaazodzmM+Jbwz+zaahzxWsV0efPBBp7v55puTzDFvCMfWYFzr+PHjnQ7bEGODONU9OsIC+4/HCsYHcYwgxl3yfOb+ayay/AghhBAiK7T5EUIIIURWVNrtVdb9wmZxTHd94IEHkszVZtFsx+mSUeXm6Fm60snt7XWTRO2A1XTNvMuRXSFYvZVT2PHz7rvvnuTNNtvMXYfuK/5urETLYwVNsHw6O343m5Dxt1fF7VVE1J+Npv6ieZpP8UY3Jrsy0O01fPjwJHMFX+xDdsU888wzSX7iiSecDlOzV1ttNafDfuHfnbPbC/vytddeczrsBy4FgS4RrBDMcwXB/jEze/HFF5PMay5W/h03bpzTYUV3dLmZ+d/TaMhCM6mN38iFw8+FcwrfYWa+6j23GZ5UwGvkHnvskeSNN97Y6TBsAMsKcPvhuxXnr5nZ008/nWT+rTi/eD6j+xRl/sxrBNLImivLjxBCCCGyQpsfIYQQQmSFNj9CCCGEyIpKx/xEfjyMY+A4DvQTYvwB+7Mxzof91JF/ttE4iarFAxX9Djy2oh4fOcbdPPfcc06HcTfcD+inxmMNzMy22WabJGMfcXo1lpDHY0vMfLwR+svNvP+ZU2a32GKLJHN5/Sh+pOi6rgzHDeEY4b7GuI7ll1/e6TA+A9uU5zD2Cx9J8uijjyaZy1fg8Qk8hzEWhI8cKHMEQXcF06w51RjjfPg4G2wz1GF6vJlPZb733nudDlOgR4wY4XSbb755krEsgplfC8oew9JZFB3LgHOKY+NwDk2aNMnpsM143GIbcswPlpPANdfM9zuu+VH78anxuCZzuRH8rXxP/D5uB4zJ5PEX9XuZdVeWHyGEEEJkhTY/QgghhMiKzrcJBqCZKzpZnV0zaCrj1EoETfIrrbSS0zXqyohcW426kzqa6Pfhb+Dr0O3Fpm+sps1VQ9EVElVkxe/mE4XRTXLDDTc43e23355kTsseMmRIkseMGeN0WEW22ScKt5LohOh6XLbY3uyWwv596qmnnA77DE/0NvPpqkXuaTNvNr/rrrucDktW8InXkQsHn6szTveuKrhecpuhW6VXr15Oh+MDXTNcygKr/fLJ8D179kwyu72wqjqPI3Sd8Hgv27f8d61yURc9D88pBCuVY3q5mXcNcfkBHP+8zqKri9PGcS7iPOE2wu/jfsZ3Lbu9cF3nk+IxzX655ZZzuuhZEKW6CyGEEEIsAm1+hBBCCJEVlXZ7RVHgkQkbzYlopuMoczw8Maro3CzKVk7ubCKXHLYtX4cmV9ah+ZwPkUXTN2cO3XbbbUnGww3RLGxm9thjjyX5iiuucDp0y/BYGT16dJKxaizD4y+q8NzZNGuc4W9mdwgeqMiHGKJ5ffDgwU6H4wfN5Fjp18y7J++++26nw4wuzhzEOR1lcPHvwbWhK7k4mwGukTzOMTSAMx6x3zEDD+eima8SzesCZiBxRheOo3oye6IMJXTV8Tzp6FCE6AQDHJ/8+9Cdxe4lDAdgtxR+5qrYGLKA2XlccRmzZTlzD6utc5X9ZZZZJskcYoLrfxTC0uz3pyw/QgghhMgKbX6EEEIIkRXa/AghhBAiKyod81MW9gWyP78Gx5oMGjQoyeznx3vWk0oZ+SWrFvNTayf2kZdN5Wf/LMYEcFrsJz7xiSQ/9NBDTofxVpzqjtV90d/MsR73339/krnCM/Ytp1luuummSeaYH4x/4PERpfxXmXqeFX8/p+VGcTeYRstxN1gVFscPly7AGCD+bpx/fH/U8enRGNfA96xy6YlWg3MuWgs4vuSZZ55JMsb8cEVuTF9eY401nA4ruHNFYowNiWI+6yFa11tFbZ3lNST6DZjezunsGD/D7YL9x3MKS0TwPTGGEnUc84PxQBjjY+b7neceVuTGkxXMfBkDTs/H39rs0gSy/AghhBAiK7T5EUIIIURWdBm3F5sIo+qYqBs5cmSSOfUPXTFoXjNrvCpuZMqsWgptI6ZjNJFHh9BttNFGTofmTKzcyvfEap9m3v2BafAvvfSSuw4P1eP+QrfMfvvt53Rbb711knkM4Od6DtXrLGrjPkr1radKKn7mSsoPP/xwktGdxPDBptiO6Ebhfo+q2GIa7QsvvFD4zFzFFlNquY2qWvGZx130nOju5+uisiHYf7wm4DxD15aZLyGB7hAG3VcbbLCB0+FhwjxW8Dk5zR7BdccsLnHQGe7N2rpfT1/i+vntb3/b6W666aYko+vRzLcTH/6MbjB2L6EbG+GxgvONXWK4tnD4QnSaApY0iMZAsw8fruaMF0IIIYRoEdr8CCGEECIrtPkRQgghRFZUOuYHfdgcLxPFNaAO/f6YbmcWl9UuG9NRjx+3arQ3boX/Hn87t+eoUaOSvNpqqzkdpkWy/x7TIDElntMsMTWU48Hwu9dff/3C+3PMT0QVY36K4hmikv74mccyxnHgURRmPgaIdRhPwPMB5yb2NccNYawX67CvOc0e06o5TgTnP+uitaYzqWecRWncGDvBR8Ngv/OxBLNmzUoyx1fh+MA5zPEeWGIEY3zM/DELHKNVtdIg7SWKG+R+xpIc48aNczqMkeH+wrnI68Hw4cOTzGVfik5P5/UY5za/g7HfeS3FZ+Z4I5xvfM9WHjvVdd7UQgghhBBNQJsfIYQQQmRFpd1eaA5jV0ZkmsOUaEyn5TS6nKu6mjWhQmaQThvdm83baA5mkzzeEyuIcmomjg82nX784x9PMpY3MPNur7KVratK0fNj+3KfoY7dS3PmzEkyp9TitZwOi33BVYFRF7li8DPfA1N42ZWAVduxzIWZT6fntuoK/bsosG/590WlA7DqNpcDwarAuK6a+TR4vP8qq6zirhs2bFiS11tvPadDtxe7G3lcFdFVQg3qed9gWje67c38GOe+xHWRdehKY3cSr8k1OJ0d788p6/h97PocPHhwktnlhtfyuG2lC7prjBohhBBCiCahzY8QQgghskKbHyGEEEJkRaVjfpDoRFf2bc6dOzfJmILJMT8Yt8BxQ+ifjfyO9fib8TdUMVW6RqPPiW3G7YJ9xDr07bMO404efPDBJHNsAn43xvGYmW2++eZJ5lOly/6+rhATUnvG6Ddx++Lv4rgbTGXGlGcz35+YJm7m4wKmTZtW+H04N/ke0cnSqFt11VWdDmO61l13XafDOAqe7xyj0NnU2oljmqK4kSh1GtuX23PmzJlJxiMrzHysFx9hgf2HpQNGjBjhrsPyEkOGDHE6LE3AlJ1zXSV2M5qX0an1PGf5PYZgPA2WhDDz77Gy8Zr8zNhffCQNfh/PJ0x1x9gjs/pKjDQTWX6EEEIIkRXa/AghhBAiK7qM24vNv0WVYs28Oyty4WB1WHadoRmQU6cbdVnhb+gqptrI3chEOjTVsokX2xcr+5qZXX/99W3K6A4z8+252WabOR2eJM0pnmVPOef+ilLrO4sit1fZFH50Y5j5ecTzA10n/Hc4HzlNHXV4D3Z74VxhE/raa6+d5K222srpttlmmySzSwzN61V3Y5Z5vqiKM6+X6JLA073NzKZMmZJkrNxt5tPb2V2GbhR0Z2244Ybuuk022STJ7CqJwgbKrrNR2YIqhBfU+iVa87kvo/IU+Jt47Slb1iI6mQCfJZr3/My4JnKoCLqcOa0eXaY811tZxkCWHyGEEEJkhTY/QgghhMgKbX6EEEIIkRXVCFYoAR9vgensjz32mNPhZz5xGsF4hOi062ZR9TiDZhLFI7AOU6PvvPNOp7viiiuSjP3KvnyMJeA4ED5Fvui5otidrnAcQlF8Qz0ptgjGR3F6as+ePZPMMT8YF4BHUZgVxyTwSc+9evVKMp8EvuuuuyaZ+xpPbufYgijmAmORMD6hs6i1DcdmINGxIrxeYnwjrp1mZlOnTk0ylybAIyx4HOExFlhWgGN+8HgG7ueoTxqNiyw7pzuKMr8j6uco7oXHKvY7fy+uWVGMXXQ8DcYB8nE4eE8uYYAxQJyqj2sJ6xTzI4QQQgjRJLT5EUIIIURWdL5NsCTsZnj55ZeTzKcNo6kdzWaYUmfmq05yih2a6ZqVLtlVTh9G6vntUSolpteySR4rN994441OhxVmMe2ST44eN25ckrGirJk3tUdp9kyUzt5VShWYla/4zG4iPI2b05yxHdm1jK4TdGmaFbvShg4dWvjdG2+8sdONGTOmzXt0R6I1I6rSG7nxo5IG/He4RrLLavTo0UnGKuo8/9CFydV8I3dPo1Qhvb1eIhcVt1HZ+czp5uiW4jGA8xmvY/cYwvfH8YHuZzM/T3mdQRdZR74ju97bWAghhBCiHWjzI4QQQois0OZHCCGEEFlR6ZgfTM+M/IuDBg1yunXWWSfJ6GPmE4UxhZZ90WXTXaMy4UxXjPmph8hPjT5ljNcyM3v00UeTzKe1oz8Y40U4fgtL6LO/Gf3p0enJDJ5yzt9XxbiCMqe6MzivOKaDffNI//79k8xxPXgCPJfHx/gP7Cc+igLLE3D6K44zPtoGY7N4vkVp/VVIb68X/n0Yt8gxaqjjtRRTjXnu4JjAOCwzH2c3duzYJPN6XE+6PoK/r555W9V1NjoqqNEYQp7rUao79gPH/ODfYZwPx2fi9+FcNvPjasCAAU6HsWOcBh/99lYeI1TNUSKEEEII0SK0+RFCCCFEVlTa7YXmWDZ7otmd01233HLLNu/H5lD8zKd9l6WqJtb20KhLB82XbMrEduKT2zHVls2xeBr1euutl2Q8vdvMuzA5Db7oORYFu7qQKrq9in5b2WflPsPPWKXXzGz48OFJjk6kLlu5Njq5mkFdPe6qrlSeoEbUtvX8HnRhYjVmM+/mYB32y+DBg51uxIgRScY1OHK3MOyCK6Ke31rFuWnWMc+F84HHTlRRHddddGNz/+DaiuVLzMwGDhzY5nVm3u3KrnBc/7mNyo6PRuh+b24hhBBCiABtfoQQQgiRFdr8CCGEECIrKh3zg0TxCOz3Lzpxu564AtFcMNWRT1nHNHVOkcR4BPQpcwl9PvlbtJYoBgNjPIrmopmff90xdq4ZRO0Xwf2DMT8cR7HDDjskmU/qxr7kkgNRKQTR+dSTWo+lXjCFnd+RGCvEsbYY18NjA+N3OZYSv7uVMT6MVhwhhBBCZIU2P0IIIYTIii7j9oqQybz6oPkc3VdmvmwBV/FEM2jkJsHPZV0tojVoPjaPZo1XDA2IygOwSwLnbdSvWIqkFZWMRfuJ+g/7BddgrsZctiJ3FKYSjWkui4BjqdljR6uUEEIIIbJCmx8hhBBCZIU2P0IIIYTIikrH/KB/kf2E+FlxHNUH0xlbjcZD54J++rLxV+qztonWPW7bRtsaT86Ovi9CsTzVI4rxiWJrEE49r+c4maL7R+O2njHdXmT5EUIIIURW1G35mTBhQiueQ3QC6svuhfqz+6C+7D6oL6uJLD9CCCGEyIrFWulTE0IIIYSoGrL8CCGEECIrtPkRQgghRFZo8yOEEEKIrNDmRwghhBBZoc2PEEIIIbJCmx8hhBBCZIU2P0IIIYTICm1+hBBCCJEV2vwIIYQQIiu0+RFCCCFEVmjzI4QQQois0OZHCCGEEFmhzY8QQgghskKbHyGEEEJkhTY/QgghhMgKbX6EEEIIkRXa/AghhBAiK7T5EUIIIURWLFH2wgkTJnzUygcR5Zg4ceJi7b2H+rIaNKMvzdSfVUFzs/ugvuxetNWfsvwIIYQQIitKW35qTJw4sRXP0Sbvv/9+khdffHGnW2yx/27k3njjDadbdtllk/yxjxXv79566602/4b58MMPC78bZTOzjz4q3uzztfUwYcKEhv+2iI7sS2yXqB0++OAD9xn7r56/Q3jsFPHee++5z9jvSy65ZOFz1Usr+tKsY/sTwXlkVn4uYRvOnDnTXTd48ODCe+BYwjXC7H/7CXnzzTeTvNxyyzkd3meJJepbFrv63IzAecVtje0UzbGy62x0/when/E+Sy21VKl71GhlX7777rvu36NnK5onrOP3Tdn1kuG1r0Y0n+rpL3zO6JmbTdSfdW9+OhJszGgDsvzyyxfeAwccT9BoIhZ9Vz20Z7PT3cB+iDYSZTcqEXyPaLHAa6OJzkSLUw7gYhnNI15UcU7gi5U3O9FmBO/B60LUL0svvXThc9a74elOvPPOO0nmFzLOj0bnJo6Pt99+2+nw+7gPcK7y32E/8/pf74ano+Dfx2MXid4dqOMxjvOtnvUMr43+Ax8ZJCIig0Fnkd+qLYQQQois0eZHCCGEEFmhzY8QQgghsqLSjm6MCWD/IvqAOdgVfczo/2Ufa+TrLhvUzP7Rqvgzq0YUb4FwEF3RGIjibLhPsN95rOC1UdxHM4MquwORvx/bhvup6O+mT5/uPl966aWFf7PVVlsledCgQU634oorJjmKX2Gitaa7E83NaK3DNkOZ10BsT+6TaB7jfcrGZ5q1L3i9lfBvxefkNsNrec2KEjGwj6J4OAbbqSguj69jovtH/Vw29qnZ71ZZfoQQQgiRFdr8CCGEECIrqmMTbIPIVLbMMsuUugeaFrnOAt4jqlnQLHNb2Vo33ZGyqeFsVm3EbM1mVLxH2VoUDD9zjq4uBNsD6+eYeVN81N74dyeeeKLT3XzzzUlml8dKK62U5P79+ztdWXccj5EcyxW0Ba+ROCfYPYZtVk9adRE8jrC/+LvLuuqqQK1No9CKaNzyWI1+X7QuYX9hyIdZ8Txlt1f0nFEJikb7pJXvSc14IYQQQmSFNj9CCCGEyAptfoQQQgiRFZWO+cEzYdj3h2W8e/bs6XT3339/kk877bQks/9yp512SvL+++/vdOjb5O/Gz1XzL1eVRtMgEYwBiM7h4nObyhL5l1t1Zlt3gOMAovgPjCn55z//meR//OMf7jrsz0996lNON2rUqCRj/A/DYw7nf9nSCzkQpYaXnZtFae98jygNvtF5yzQj/qiZRGtfGbjN8PdxrCqec8lrVq9evZJcNmaR19no76K09EbKX7QaWX6EEEIIkRXa/AghhBAiKyrt9orMoGi2ZtPfSy+9lOTLLrssyXwy8IwZM5L8mc98xunKurPqqfCcc6o7mtPZDIymVTaBoom0bMo6g2Z4Hitl03X579B9w6dK50Y9acdz585N8p/+9KckL1y40F2HlZoPPfRQp9twww0LvzsaS1Vzh1SFyMWPsDsL11O8R9kyJGY+5ZpdLHhP/m507/B6gt8fuUU7iiJXUVRVHOdN5BZ64YUX3Od///vfSV5hhRWcbrvttkvykCFDgif+L5Hbk/sE18SXX37Z6ebPn59kXrv79euXZA5hwfHY7Pkry48QQgghskKbHyGEEEJkhTY/QgghhMiKSsf8oE+Z/abob+Sy6AMHDmxTfv755911s2bNavN+ovmgD5vbGv26kY8Z+/mVV15xOiyL8Pjjjxd+N8eg4PdxjBn6ovn08D59+hQ+Z+6g75/jOM4999wkY0kKZuONN07yBhts4HQY5xOdOl1PXB2OrWalXHcVsA05HiOaO2Vj3TDeY8qUKU73yCOPJHnq1KmFz8WxIHisyXrrred066+/fqnn6iiK1rQoBT46DgjnFB4DY2Z29tlnJ5mPfhk2bFiSBwwYUPh9+K6NUtt5PCxYsCDJPLcfeuihJHPszrhx45I8ZswYp8P0/GYjy48QQgghskKbHyGEEEJkRaXdXpiyyCZCNJ1hWqyZd3VhCi2b4KNTnlW5uXXUk7L49NNPJ/nKK69M8iWXXOKue/DBB5PMZmI0mXP6J5r5eRxhSvWuu+7qdJtvvnmSc3OTmMVpumgqf/31153uuOOOSzK6x7hfDj744CRzv0SUTdXmZ+aT43MiKhsRtRmCbmiemxdffHGSJ0+e7HTz5s1r87vMvNt5lVVWcbrVV189yeySZhdZVainLEqU5j9nzpwks9vrqaeeSjKGAvBn7kucizh/eS3F38DjBu//xBNPON3111/f5v3N/Pxee+21na6ekib1IsuPEEIIIbJCmx8hhBBCZIU2P0IIIYTIikrH/BT5Ic28f5H99b17904y+n/Rv8z34JLsZWN+yp56XEVqv5GPbsCYnHr81GVTN6OTnbE8u5nZhAkTkoyplFgWn+/JMQBrrLFGkrG8gZk/CoXHR9++fZPMcQQ5x4iY+f7k+AFMG//mN7/pdDin0de/6aabuuu23377Us8RxaFEZQ2ia3M7eiYCYy54zmGcz3e+850k33DDDe46jFEZPny40+G6zmnNOFY4TnDHHXdM8mabbeZ0VY3X5JhTLNmAv9XMj2set6+99lqS7733XqfD8jC8HmP7cl8WxS1Gp7rze2Pw4MFJ5hi+mTNnJpl/K/YXP1cr6bpvbiGEEEKIBtDmRwghhBBZUWm3V5TmFpm7ETbbIZF5tKzpux63UFWJ3AH1/J7oPqjjE3/POuusJJ922mlOh9eiKRXTYM3MDjvssCTvtttuTocmXawwbGb2t7/9Lcl44riZNxuzK60r9nMzQTcEm9exiu8111zjdFgVOHKPocuRQdM4u0MwLZj7CNeTelxi3Z3I5Td79uwkc2jApz/96STfeeedSWaX8H777ZdkLB9h5vv5mGOOKXyujTbayOnWWWedJLO7rOy7oaOJnisKBeD5hWnk6AIz832EbjX+zH1ZRPQOZh3+hnvuucfpsOQMu7bw5AV2i0aVrttLvjNeCCGEEFmizY8QQgghskKbHyGEEEJkRaVjfiIfH/obufw3/h2m/jGYqsc+1xxiOmq/sR4feZRKib5+bj/8u+eee87pvv/97yeZYzEwXgfjt84//3x33VprrZVkPg4B7/nss886Haa3c3omnhadc0zIouA5hrEbmObMbLvttknG40LMYl8/fo50EVF5h9zAuRqVq/jud7/rPuPJ3fh3Rx99tLsO09JHjRrldL/+9a+TzH2Hz7XFFls4HaZVc/xKVdfuemJ+ED6m4qabbkoyx0/iu5Bja6KjnvBabM963g133HFHm89oZvbqq68W3jNKb8fn5Bim9qIVXQghhBBZoc2PEEIIIbKi0m4vhM2xaCKN0tkjtxeaCCOTa7Oomjm25g6qJ+03qtSMn7lPpk+fnuTtttuuzedoCzxN/Qc/+EGS8VRnM2+qZZcGnip9+eWXOx2mW3PK7JZbbpnklVZaqfAZcwert5qZXXHFFUnu06eP082fPz/JX/7yl5PMFWaxejD3C6Zfc+V37E/WoaskOq26avO01aDbgUMIzjvvvCSzqxnnxD777JPkz372s+46nKtXXnml002cODHJ6JYx867Q0aNHOx26tqOwhypQez5295Qdc1iF3szs1ltvTfIbb7xR+Hc4F8x8Wjy7efH7o/R2bGt+LuzLF154ofAeHF6A6e38vuY53EyqNUqEEEIIIVqMNj9CCCGEyAptfoQQQgiRFV0m5ify60apc1EaXeRzjXywVT01uF5qsTHsI8d4HfYNY2xN5FvnFMz/+7//SzLGffB3YHq5mS+hP3DgwCTzeED/NpbaN/NHZrCPvEePHkneYIMNnG7MmDFJ5pL9GJ+A98gFnAN8ZAj2J/c1prdjLAj7+jGu57HHHnM6TKPlVHocF1j+wMxsr732SvLQoUOdrrvM6UbAGLmpU6c63T/+8Y8k49EkZmbjxo1LMsZvcamJadOmJZnT4LHdeQxgHBEfZ4NjjOML8dTwVsaMlKUWJ1lPqjuuZxw/89RTTxXeB2PnOLYGY344Hgj7AZ+Tj8/A+YyxfWZm1157bZI5biiKFcV1nfuy7DEcjSDLjxBCCCGyQpsfIYQQQmRFpd1eUbVRhN0vaKqL0uCxYmSjqe71nOpetRTaoqq27FJCot+ALqWrrrrK6R5//PEkc1ozmmDZTfLkk08mGV1NL774orsOT2RH86uZPwWZweqphx56qNNFJ4u30hzbFViwYEGSzznnHKfDecXzD10Z6ErE6rBmZjfffHOSb7vtNqdDl9jrr79e+IyPPvqo+4zj7vOf/7zTsVszJ9A1dNdddzkdrovsQsKT1vE6di2fdNJJSWa3GvLJT37Sfd5pp52SzGsGwu6kqqW6Fz0PrqW8rqLrjlPK0U3Jvx3XUlw7zXw1ba7AjPMI3WXsisR38sMPP+x0WJ6C10e8D7vc8PdwCIFOdRdCCCGEaBLa/AghhBAiKyrt9kJTYD0HrGGmUeQ6w+yFqrmkOpMo8wXbkzPp0LWFlWHNvCuS2xrN6ehOMTM78cQTk4zmWB4PaCbmDAXMPsHrzHzWD1Z05mv5t+aY4YWgSZ0zrjDTgys8DxkyJMk4ztjdcs899ySZs13wnmxeR7fppEmTnA6/Y88993S6nN1e6EJmlwSOe65y/swzzyQZ3ShYzd3MZwPyvMF5fOSRRzodZgFx9hC61jgLrWrUfiO/iyK3F37mg02x4jlXxca1lNc6nFOPPPKI0+F3YDgEu5pWWWWVJPMB1QhX2Ud69+7tPkcuTbm9hBBCCCGahDY/QgghhMgKbX6EEEIIkRVdJuaHfaKRL5D9oEVgvECOMT+1NuT2Q38tpi2beR89x91gvA77lLF9OWUW4wo4hgN16Btm/3mUnv/qq68mmX/Pt771rSRzTAPek2MVqlZFtqPhGB0Exw/795999tkkY79g+rqZj9Pad999nQ778L777nM6jPfilGtMxeW4NkzFza2MAbYFx2jhZy6NgXPgD3/4Q5I51grnPpc+OOWUU5LMJ7fj+sLrcxTng/O2nljRVsNxMBjHxL8Pn5vHKsb8cKkHjN3hOKmyp8jjd/O6imsdz22MtY3iOkeNGuV0w4YNSzLHnEXxQO1Flh8hhBBCZIU2P0IIIYTIikq7vRBO94tSU4vMb2w+RLMgu37KujUi8yG7ZqpWebQINClzije6HNiFhCZyrpZ8ySWXJHnevHlOh2bcAQMGFD7LgQcemGQ+OPWXv/xlknmsIFtvvbX7fMABBySZTfJFFbDN8nR1IZhSzuMA4TZE0//MmTOTzNW011577SSzOwT7id2rmHbPJnN0XWLKrlk8ZqoErim8vrCbowie09ieI0eOdLoRI0YkedVVV3W666+/Psno6uLxgK6ZM844w+n23nvvJEd9wr8NxxWv61VydZn99/miNYP7EsfuVltt5XTHHXdckm+44Qanw6rL6FY2865k/j50RY0dOzbJ3OcPPvhgkv/4xz9aEdwnWOLiRz/6kdPhXOd+bqULs2u8jYUQQgghmoQ2P0IIIYTICm1+hBBCCJEVlY75Qb8k+5ExdoD9hJjSirFBfEIt+hM5Pb5nz56FzxXF+aCvMzpao6vE/7DvNmr39dZbL8n9+/d3um984xtJ5nbBFHMuyY5HWiAzZsxwnzHmh1NKceyceuqphTpRnnHjxiWZxwj2L59IPWXKlCTjqeA8XjDugOfKn/70pyTffvvtTodznNO2v/jFL1oRXSW9vdF1I4oVwjnAKeSf/exnk3zLLbcU3hOfi9Ovd9hhhyR/6lOfcjqO80HwnlH8Hc/36NrOoPZ80XNF8Vs8NzBOca+99nI6fN/xOw2/n+MbcQxEsbB4T3zPmsXvxZNOOinJHMMUxfIo5kcIIYQQoklo8yOEEEKIrOgybi92sWC6JuswDTeq/Itmu6efftrpNtxww8K/i1w/+H1Rhc0qUOSWQ1Nn5A6I3EuY2lgPZc36XEWWTxZHdt111ySvv/76TofjiL8b+4/NxNh2XcVl0kz69euXZE6PfuKJJ5LMpveHHnooyZjezmnAeJI7p7NfdNFFSeY5ha6ugw46yOnQLcuUrX7bUdTWkcjU36gLjH8fpkCzux9P7ua2xuraOD/wfmZmxxxzTJKjdSE6CTwiCi+oAmVKEHCfFJ2yzveLSr7wuoT3idYs7EseY5xaj+D4GDNmjNOhey6qFM7rQCtLisjyI4QQQois0OZHCCGEEFmhzY8QQgghsqLSMT+RrzTSFaX0sf8cdVi228xsgw02SDL7Y6OYgCjmpwqxBEjt+TguqiiFdVGgn5rbGn23nM6O38Fthqd0YzzCb3/729LPhTEHDD4Ln9yORL8nRzAVfbfddnO6yZMnJ5mPmHjmmWeSfPrppyeZYxAwXZrHC/YTxxRhXM+JJ57odPgdHMNV9miIjqKR+MBo3uJnHru4XvI4x7a/7LLLCnXIscce6z5//OMfTzK3O34fx+7Uk95eZWp9yb8Pfzu3exTLg+0e3ZPfNxjfGJX4wLblPrj//vuTzOslzsUJEyY4HfY7zzX83JFHQsnyI4QQQois0OZHCCGEEFlRLVtvQD0m0UGDBiW57InTXL10m222SfJqq63mdFH6adXS2cvAvydK/8Y2i8yXbN4uuseiwArPV199dZKvuOKKwr9Zd911Cz9z/0SuLjT/Vv3k6I4Gf//+++/vdHjaN6a2mxXPD3ZjoGmf5zCOyc0339zpLr300iSzK23BggVJxqriVaSMi7zRFG+e09gnfOL7rbfemmQ8MdzM98tXvvKVJH/1q19110Xu8MgdF9FVKuSb/fdZeU3EMV9PpflGXe5l3UvocuPxgCUoojG6++67l/5uHBO8DsjtJYQQQgjRJLT5EUIIIURWaPMjhBBCiKzoMjE/7HtEvyT7CQcMGNCmPH36dHcd+mA55ueee+5JMpdrx7L8TJQyGx2L0RnUnoefBf3PjabBR3E9fE/8fj4RGmN++ER2BE+j/sEPfuB00TPjuIriePj3YBxDlJaaA3xsxA9/+MMkYzq7mY8b6dWrV5JnzZrlruvdu3eSOV1+4sSJSd5yyy2dDvuQ44uiOJ+oxH5n0JExLRi7wensZ555ZpI5LgWPqvje977X5v3Mysf1cH9FZUPwntGcrieWptXUc6o7jsdoveTfh+snrp2L+r6i8TZ16tTCv+MYpmHDhhXeH/s9ilXj59Cp7kIIIYQQTUKbHyGEEEJkRef7XkoSuYnYzDpw4MAkY3VRPKHYzJtZ6zkZHs19/N3Rc1YtPbro5Gj8TdEzs/kSPzdaXZRNtbfddlubMoOukX333dfp0N0YmVXrMZHneJJ7EW+88Yb7vOOOOyb5E5/4hNPNnj07yc8++2ySZ8yY4a7bdtttk7z66qs7XdRn0Rh85ZVXCnXs2u5syqS611N5Htest99+2+meeOKJJP/0pz91OuwXnu+HHXZYknH+cRhC2WrCvM5GLszot1YhpACpubAilx+vS42uL+wiLoLX9aISFFxSJCphMnjw4CRjZX4zHyrC34XvBnYNtvKdKcuPEEIIIbJCmx8hhBBCZIU2P0IIIYTIimo5R4koJgf9z+wX7N+/f5LHjx+f5DvuuMNdh/7LzTbbzOnQf7nyyis7HfpnMeW5redEqnaqe5EvHtslSs9k32302yNf9JtvvlmowxPZsd352XfZZZckc1kEvJbjFqLnwhgEjmvBE+ZzBNsYywww3L6Ybs4p8gi2fRRDwmMHv4/jDjC1nqlaenRtbkVrRqSL4iq4nMTJJ5+c5CeffNLpMPaEx/ymm26a5KjcQ9nyGPW0e2fFiTRCUawPjvF6jm9COH4L+4vnDa7P0djBNPvJkyc7Hf4WvI6/u0+fPoXPyfFM2F8cU6TjLYQQQgghmoQ2P0IIIYTIikq7vRo1+SJf+MIX2pQbvR/THav7ljW5NmpeZnMpuiruvfdep3vqqafavAenxB955JFJjszn9ZhR8ffl7uZiGnUNlU1DxraPxlnktqynz6rg6kKK1iN0lURuZ/57dA8+//zzToduMP47XN8+//nPOx2WFImI5lyjaelV669GKDvGI9iFhO6zKFSEywrgmo8yloox8ych8EkH++yzT5v34OeMXHX8d62svC7LjxBCCCGyQpsfIYQQQmSFNj9CCCGEyIpKx/yI7gn7t+fOnZvkSZMmOR3GKuBJ3+uvv767DnVCdHVq8RkcL4MxOUVHErQFxshhKRAzsw022CDJI0aMcLqhQ4cmeffdd3c6PMUb4fIf+Jxlj18QjRHFV2E/cNwlrsl4j5133tldh3Feo0ePdrrVVlstyVHcaFVKvsjyI4QQQois0OZHCCGEEFnR7d1ejZqJRetgt1e/fv2SjJWazbyJHl1bXEG0yAQvRFeklorMbgz8zFWBMX2Z5xi6m1ZZZRWnO+2005K8cOFCp8P1k8tLIFiZl1OSq1ZxuTuDY4LdS9gPXJW96N3I62q0zuL4Y9cnPks9KevNTm9HZPkRQgghRFZo8yOEEEKIrNDmRwghhBBZ0e1jfpCqpNjlSHSqL8YL9OjRw+nGjx+f5KikfSvLoAvR0ZQ59oHjgTgGqIhoHvH8KxsnWfbEcNFa+NgKpJH0cz4ZHscc63CsNBr3xWNYp7oLIYQQQjSJui0/EyZMaMVziE5Afdm9UH92H4444ojOfgTRJDQvq4ksP0IIIYTIisVU+0YIIYQQOSHLjxBCCCGyQpsfIYQQQmSFNj9CCCGEyAptfoQQQgiRFdr8CCGEECIrtPkRQgghRFZo8yOEEEKIrNDmRwghhBBZoc2PEEIIIbJCmx8hhBBCZIU2P0IIIYTICm1+hBBCCJEV2vwIIYQQIiu0+RFCCCFEVmjzI4QQQois0OZHCCGEEFmhzY8QQgghsmKJshdOmDDho1Y+iCjHxIkTF2vvPdSX1aAZfWmm/qwKmpvdB/Vl96Kt/pTlRwghhBBZUdryU2PixImteI5F8s4777jPiy++eJKXWKLun2FmZh9++GGSP/ax8vvADz74oM17mJktueSShX/39ttvJ3mZZZYp/X1mZhMmTKjr+jJ0ZF9+9NF//xO02GLF/6l699133Wds36jNsE9wbJiZvffee0nmfsbP3Jd8n6J7Rn3eFq3oS7POm5vYt2a+f9966y2nW3bZZZMc9VnZ7+Pvxv7E+Wbm+3e55ZYr/X2LoqvPzQieE0jRmsl/g/3Mf4P9jtfx56WWWqr0M9azljOt7Ev+fdGYf//995Pc6PsN1yizeJ3C9yt+9/LLL9/Qd/NvxT6J1v9m9qVZ3J+NtWonsPTSSxfq+IWJjYuLIw8ibFi+B8ITLxq02HncyfVueLoT2Bbc1tgP0SIXEfVJ2c0J3wMXAe7Lejc83Q2cV7zIog43O8wbb7yR5J49exbquK1xjEQLKc83XpCLvq/RBb+rgvOR50A9m9Ia9fwHI/quspuDRX1/VajnuaINT9n/SNbTd/h+jdbgsv/xj/4DyuDf8e9pz38yF0U1R4kQQgghRIvQ5kcIIYQQWaHNjxBCCCGyotIxPxgsGcUOsI+yyCfKAZAYE8D+RPy7KHAsihNhn2ij8SzdjagdIt8w+sw50BV90RwfhjqON0LfOo8B7Fv+u0ZiIbor3J9RXAD2Icb53HTTTe66K664Isk898ePH5/kkSNHOl3fvn2TzLE7UcxFbnE+CPYf9xeuZ9x+eG2UVFA2XjMKCOYx1mgQcGdQayduF17DkCiWJwqGxr/je2D78nfjfaLvxr+rJwYHr41iBDsytlKWHyGEEEJkhTY/QgghhMiKStsO0dwdpTayS6Kohgems5p5txeb4tDMGqXBs1kOzYeRCydnInNvo2bOyAyO5nNOf45MvKiTy9JTNsWW5y3Opblz5yb5pJNOctfdeuutSR44cKDTrbPOOknecMMNnS4aP1G9maqmR3c0Ua0dnjvYZmXdUNzOOK+ielE8jqIabZELvDMocntFpRewPfm34/wqu37x3/E9i2pu8TNG/YzvVx4reE+eo43W+2ovmvFCCCGEyAptfoQQQgiRFdr8CCGEECIrKh3zg/DZXpiayn5IjCv4y1/+kuQzzzzTXffKK68k+dxzz3U6TKeN4j0iP3WUaphzqvSbb77pPqMPOGprLH3A7Y5xXq+//rrT4ViJfOQco4VjjsdYzkeVMHx+F7ZNFCNw6qmnJvnGG290OuxPbuvBgwcneaWVVnK6KJ4M5xxf1+g5f90B/O28LpWNwcP2rCc+B3X1xOdExxZVLQ2+tu7zc+FviMZc9Hs4Jmf27NlJ5r4cMGBAqXsWPeOiwHWW/w7LzPD4wH7nZ27lvMxrlgshhBAie7T5EUIIIURWVMs+GFC2irOZd2fdcMMNSZ4yZYq7Dk1///rXv5xu8803T3JkjmV3HF6rCs//BdsiqqbLLhQ0g0ZVvrEfVlhhhcLr2LWFJlg21Ub3QdddUWmF7gya26N+4arqaJb/85//XPh32L677rqr0w0bNqzU3/E4i1zS0Wnj3R3sy8jNFc0dXNvqKVfx2muvJZnnPq6l0brA4JhbccUVSz9LqyhyteN602gYxJNPPuk+45zi9WufffZJ8pprrtnQ9yFRyAe/a6+66qok8ztz4403TvIGG2zgdP369WvvYxYiy48QQgghskKbHyGEEEJkhTY/QgghhMiKSsf8oB8+Or2WQV//s88+m2ROscPPM2fOLPzuRsk5joDB8gPNSBPHfjUzu//++5P8ox/9yOnmz5+fZI4DwaMT8NgEM7P9998/yVtttZXTVS2dtqMpG6PAMT+//vWvk4zxORwPh/EeRxxxhNNhqjsTxR8h9aTwdneidQrbidusqK35OCCcqyeccILTPfXUU0nmNR37edCgQU43duzYJG+66aZOV4U4H6QoBioag5EO46SuvPJKpzvvvPOSzLGIw4cPT/LQoUOdDuczzsXoPcv9jLFjN910k9P96le/SjLG5JqZbbnllkk+4IADnG7PPfds87magSw/QgghhMgKbX6EEEIIkRWVtt1HqalRqjuax9C1xS4PNLv37dvX6dCky2bhRk4zzh10db366qtOh2ZhNtWi2wRdJr/97W/ddZMnT05yVEUWTcZmZi+88EKSJ02a5HQrr7xykseMGeN0PXv2NPH/wdPZzXx6Ks+5n//850mOTq4+5JBDksynuiN4krRZ7PbCdGl22+VchqJsZeXI1Tlv3rwko+vFzOycc85JMs43M7MFCxYkmddxHDvsOsL7sAsH3TtVoMh1FLkbcT5wiYHnn38+yexewvZk9xK+78qWI4hOKeBxg/dndzf+Vp6zuHZPmzbN6Vo5L2X5EUIIIURWaPMjhBBCiKzQ5kcIIYQQWVHpgBX0N3J5c/Tts38R40vQv8j3wLghTp/FazmOIDqdHf2znNKNunpKwLca9iljzAz/PvRFL1y40OnwhG3uE/QPR6moGDtgZva5z30uydddd13h32Epdz7VHb+P/dQvv/xykrns+nPPPVf4d1Xty44C504U/7TXXnu5zzi20J/Pc+ywww5LMo9P7Av+O7x/lJodrQVRem9HUVtj+Fmik62jtPToN0WnuuPfcYzKjBkzknzwwQcn+c4773TXRXMF52Z0TNFqq63mdKusskqSo9IHVaC2ZnJ8KI5HXkt79OiRZG6zWbNmJfnhhx92OmxrXrPwWBhe6zC+quxJ6pzqjvGa0anuPGdxDcYSBnyfZs9LWX6EEEIIkRXa/AghhBAiKyrt9kIi10KUgokuEDbbohltyJAhThdVIW60OmyjJ/e2GjZtRs+Jplt0czF8j8h8eddddyWZT/Auams26WI/77333k6HqbC33nqr06H5l8cHjgF2vUQnvucA9iH3xYMPPpjk++67z+mwjbHtP/3pT7vr1l133Tb/huGxG7mkEZ7fVXB1IbXnafS5+O+i+2A7cRkKdEtxVfVx48a1eQ92h4wYMSLJXEUdK7Oj+8PMrzVcomLzzTdP8qqrrmpVpvY7opIpPB4xvIBdVLhecjo7thmXDcE1i0tQIJHbC3Wcho7uOF5nOZwBwfHB1boxfT565kaQ5UcIIYQQWaHNjxBCCCGyQpsfIYQQQmRFl4n54TTBsr599iMjGEe0xhprOF3kI2805idKG+xMoudiX3uU1ozxApzOjr7iCy+80OkOPfTQJHPKJ9KnT58kcwn7Y445Jsnrr7++091zzz1JxngUfmZMLzXzfnceY1hCodm+6K4A+uI5tuDoo49O8osvvlh4D/y7r33ta4XX8fjEMcnjEWMgcLyY+THIpRhwLahC6YLab+a1Jlp7Go0Pwng2XmcxvoRj6bAfsG3XWmstd93Xv/71Nq8z8+ODyw9gTMlGG23kdJtttlmSoyMYqhRnGZVs4DGHbYElBczMrr/++javYziOCMd8VAohGmPRu+L8889P8i233FJ4HdOrV6/C+zf6ri1DNd/GQgghhBAtQpsfIYQQQmRFl3F7RWa6yBSH5vkoLZYriJb9bqZKZtaysCkafwO7dKKU9egE3ssuuyzJaAY3864urNxq5tM8sVowusrMvIvjpZdecrqLL744yQ888EDhM7LLbb311ksyVyXldN7cwL7GFFczs//85z9J5nbD8bPnnnsmecyYMe46dEeyKwb7kE+DR1fM6NGjnW7NNddMMrvqcC2oEjzHorT/ZqTr44nhZmb77rtvkufMmeN0ffv2bVO+5JJL3HU4h3/2s5853ZQpU5LMadsrr7xykrGCtJlZ//79kxxV+K8S9bwbcJ6g297M7PHHH08y93m0duOaxeO97NjB+YXPYWZ21llnJTkKX+A1Aeclu8k5vKGZyPIjhBBCiKzQ5kcIIYQQWaHNjxBCCCGyosvE/LBvv5F0VC7Dj2mCmG7HRMdiMNGp0lUroV8jKmFej58afbl8rAHGDnAMB/Yll0H/7W9/m+Rtt902yXy0xtNPP53k7373u06Hp0xzqfjoJPrtttvOiojim3IA+/DUU091Ooy54FRcjEM44IADkszxJDNnzkzyOeec43SPPPJIkjlGAOcYlzz48Y9/nGSM5zLrmrF6jcLrEqZg/+hHP3K6BQsWJHnkyJFOh3PpzDPPTDKXjHjyySeTjGnaZv8b54NgTNguu+zidDj++N1QNYpOdY/iJ1GH5QbMfNwNj1tsC45LfOGFF5LM6yzOWYyTnTt3rrsOjzg544wznG769OlJ5pg6vCe/TzG2i8sBtBJZfoQQQgiRFdr8CCGEECIruozbK0rxZPj04RqR2ylyo0Umya5MkTk2As2S3GZPPfVUko8//ninw/5DEyizwQYbuM9XXnllkh9++OEkT5061V2HqdGPPvpo6WdGs/7//d//Od3gwYOTzOMPKzyzmT8HsA/PO+88p4vmx6677ppkdKNgyrOZ2QUXXJDkf//7306HbY+ymXfh8gnlOH7Y7dUVqceNjqnNnOaM7ctlC9CNwu4lLFnRu3fvJKOby8ynQON8Y7bYYgv3Gat+R27m7uCC5j7B9SY6pYDXJayszyU/vvnNbyZ5woQJTofuaXwfsFsN5xe7tPHvojWenxnd2M8884zTYQkFrtjeXmT5EUIIIURWaPMjhBBCiKzoMm6velwzeKgamuk4+h3NxlEl1agydJTRVdXsrhpFlbHxuTk7Cs2gfOjp1VdfneRrrrnG6bCd2EyN34dZW2Y+6wddHJwVsMIKKyS5nuwPNKUeeeSRhffktsrxMFMEs/nY9YR9wwfcYgYPjh/sZzOzm2++OclsJkc3I5vlcW7Onz/f6e64444k77777k6HY5IzVTqTZrnYsV14HURXFM9pnAN8+DP2M/bfdddd56678cYbk8zrCbrLdtttN6cbMWJE4XM12wXSSoreXdi3PI5xTRw2bFjhvXl8sKsXidxnuL7hs3B/YdgA/67opAXMtOb1H5+Zs9A4A7eZyPIjhBBCiKzQ5kcIIYQQWaHNjxBCCCGyosvE/LBPFH2RXLn5wQcfTDL6JdnXjb599ldG8TroZ21G5enOhtMssa3Zr4u6119/3enwlF+O9cC0S/4+/A72MeN3YAVpjBUw835j9oPjM3Os0Pe///0kc0wDPhf/XVfs52Zy6623JpnbJko9Rp8+/h2eBG/mK86us846TodjgmMEcJzxOMA0bi5P0BUrPJddo8z8nOM1C+fS6quv7nTYLtxmWF0bY8AwxsfMp0RzrBxWUT/ooIOcDtdkTHlmePzhvK1S3GU9J6njb+Dxj33C98C+5bbm2Lyy9yy6LorHwflr5td1fq4tt9wyyRzftMoqqxR+R3uR5UcIIYQQWaHNjxBCCCGyosu4vdgdEpnmMF06SntGsyrfL0pnR5cHp+FiZcsqpcy2Rc0NyCZKJEq17devn/uM5kuu2IsuMa7yit/PbYYprfvss0+S2e2Fh1byWMG+XGuttZzuS1/6UpLZXYNjh91caPKN2q+7glVZGXQvs4kbq6/Pnj07yVzZdcyYMUnmcYaHoD7//PNOh6Z97rOxY8e2+Yxmvu+r5AJrNNW9HpcYzqXVVlvN6fDgXzyA0szsiSeeSPLkyZOTHKVU77zzzu7zCSeckGTu58itEh1sWlWXNI8rHIMcXoBryk477eR0J598cpK5ujq6fbldMDykZ8+eToefcY0cMGCAu+5vf/tbkvndF/0edFviWm1mts022yR50KBBTodrdz3lbsogy48QQgghskKbHyGEEEJkhTY/QgghhMiKLhPzE6VcMxg/gH5Jjs3AtLroftGJ8pwiH/mb0SdahZOIy8SqROmZ3Cc77LBDkjllFuM7OB5h7bXXTjKntKKfGtvvtttuc9dh+jPHDWEcFp5Ebfa/KfkIptDyb61C/3Umr7zySqEO43w4Dfnee+9t8284jRp56qmn3GcsZYHp1kz//v3d54033jjJWDbB7H/HeVVoNFWb43pwneI1CuN6DjnkEKfDOXf33Xc73XPPPZdkjLPk++Mcw3gVM7Phw4cnmccKxqw0GpdYZXAN4d+O7c7p3t/61reSfMQRRzhdo3GmGCcZHYVyzz33JJnHQ3SU1CmnnJJkPsaE4486Cll+hBBCCJEV2vwIIYQQIiu6jNsrckuxyRDNsdF1aHbktMAolTJyeUTpeFWqNopEJ9Nz9Ww0iXJ7Yqoqp63i32HFVzN/cjSD6a5oPj/11FPddeiaRDeXmdm4ceOS/PnPf97pylYzZddndIJxDmCbckXfqJIslkCITlJ/6KGHCu+BpRLYfYWMHj3afd5qq60Kr8UxE7ngOppmrRk4lnnsDh48OMmc2jx//vwkP/DAA073z3/+s837c19edNFFSR45cmThM/Ici9aFKBShatTGVuSSYlchvkeitYfvie8qduXyWl70/Xgdv/twXkauVa5KvcceeySZy1/gc/J7Ht8xzS5hkPcKLoQQQojs0OZHCCGEEFmhzY8QQgghsqLLxPxEsE8U/YYYE8CxJngSOOvQ789xPOgHZf85+kHZf1m1sus1X2t0KnJUYoDbHeNz+O8wdiHy5XM/oP8Zj8i4/fbb3XUYD4T9aubLqbPfG38D92WUipp7zA/69Dm+a+7cuYV/h/FAeCI7pzJje0dp6ByTsO+++yb5l7/8pdPhuJsxY4bTDR06tPA7OoPaOlJPzA+uPRyPEZ3ajXE+fDQMxpT8+c9/djqeEzX4dPbx48cnmecmxn9E8ZKcOh3FveBvr0KcZe35eKzi53reFdHcwHlUT5wsthO2LcfP4vuU139s9+9///uFzxXRkUeV5L2CCyGEECI7tPkRQgghRFZU2u0VpcBFqY4DBw5M8syZMwuvQxMvnjZt5s367OKIXB5oTqzS6dBtUXu+KL2Qzap4LZsk8TP/Hbqz2O2F7rIorXPChAltPoeZN6fvvffeTrfLLrskmc36aGqPUv5zd3Mxu+66a5JvueUWp7vggguSjJW3I6ITvBkcP+xiOf3005Mcpfaym6tq1dfb667hvy97P55X1157bZKxui9fi6UPjj/+eHcdzs2oojqDc5XdXlE5AhxLUSmEjiYKIeD+wXWQ10RcZ3kNjqpd45rM12Fb4/zikiJYZoLB6vy4PjBRmEpHohVdCCGEEFmhzY8QQgghskKbHyGEEEJkRaVjftA3yH5BjMFgH+KoUaOSjOX0GfQN/+c//3E6TJ8cMmSI06GflX21kf+yaimYReDv45RI9BtHsRHcDlF6e5QGee655yYZT3LneA585p/85CdOh/7ssimXiyJKkc8BPIl5v/32czo88f3KK690uujoi6L7r7XWWk6HKexjxoxxOhwHHEcUHdtShTif9lJ2TeF4D2ynyZMnO93RRx+dZD59G4++OPHEEwuvaxTso3r6p2olRWpraPQOY1DH6d8YP8l9XrZMCT9L0VFP119/feEzMuutt16SeZ737t07yVHZAn5mHW8hhBBCCNEktPkRQgghRFZU2u0VmbnQ7cDXbbPNNkm+4oorCu+B5t9nnnnG6TCljyvYImyOjUyZVXN11UyKUTVmbltsdzZfFt3DzLf1woULna5Pnz5Jfu2115wOU5fxWThl/dOf/nSS+TRvvGc9bi985ijdNHdwvpmZbbTRRknmNHiszI0nqa+77rruOiw1scYaazgdjpeo+jO7tnBMsksschdUCRyH9aSz499FZSh+97vfOd1TTz1VeH9MZ0b3I7o9zcx69eqVZF4zIlcMwt8drT1Vc2EWrRU4BtkV2ajLLwLdWTzGcT2dNm1akl988UV3Hb7fOJRh7NixpZ6Df0/Ul6rwLIQQQgjRJLT5EUIIIURWaPMjhBBCiKyornN7EaC/lE/13X777ZO8+uqrJ5njNvAzlubmz+zbjEqIR9dFqfudQc2fyu2CvmH2uaLPl323ZVP5MWbDzMcc3HrrrU73xBNPtPndeBK1mdlRRx2VZD5SAVNvOW0UxxH3M/6G6DiVHMG+5nII2I677bab0+2www5Jxr7A070XBabRRn/Hpfgx3bZZJQ9aDa8hjZbLwL/jOXDeeeclOUpt5jXrhz/8YZJxjnHcI86xqN15juHfdeXSBLX25jibqC2idwz2H8c+4nyI3j8MrvNz585NcnS0E8dn4vfhXDMrPwaYKE6pvcjyI4QQQois0OZHCCGEEFnRZd1e7OpCME0W3SYR9ZiQy15bT/XnzqSeU+sjGk3lx3TK4447zunYRF9j8803d5/XXnvtJEfVpNl0Gl2LRCeE5wj2dT0uCGzHRtu0rIuMTe9diZqLIpqLXEUX+4H7BF2Tjz32mNNdfPHFSZ4xY4bT4ZqF1Z7NzIYOHZpkfE5OpS/r5uDfGq3xXYlG3DXRWlq2LAPfI5qnuM7iiQbYx2Zms2fPTjKntu+8886F949S1vG5MATCzGzZZZct/Lv2IsuPEEIIIbJCmx8hhBBCZIU2P0IIIYTIii4b8yO6FpgGyUcLPPvss0nG0uoMnhq89dZbO11Xju8QgimK9cEYHI5Xi46ewVie6dOnO93jjz+eZD6RfbPNNkvyVltt5XT9+/ev69lF68HYnagfOO0d425GjBiR5B/84AfuOowxwpIyZmYDBw4s/D5MyY9iuThOSae6CyGEEEI0CW1+hBBCCJEV3d7thWa0spWZRfPBfuDU1zXXXDPJhx12mNPhtZhaufHGGxfeX4iuTs1NwGnjaPrnNOeo/ACmL/PfHX/88Unm6uvrrrtukkePHl34vJFbu5XpysKDri5eE/FzUQkR5nOf+5z7XLY8Baes8zgugu/fynVdlh8hhBBCZIU2P0IIIYTICm1+hBBCCJEV3T7mB1FcSDXgmABMmf3ud7/rdD169Ch1z1amRArR0dRiHzglGWMnOIYRdTwHML0YU5nNzI444oiGnhG/D2UdBdN5lC0zEB118eabbyY5SktfuHCh+4yxZPXEeXXW2i3LjxBCCCGyom7Lz4QJE1rxHKITUF92L9Sf3Qf1ZfdBfVlNZPkRQgghRFYspto3QgghhMgJWX6EEEIIkRXa/AghhBAiK7T5EUIIIURWaPMjhBBCiKzQ5kcIIYQQWaHNjxBCCCGyQpsfIYQQQmSFNj9CCCGEyAptfoQQQgiRFdr8CCGEECIrtPkRQgghRFZo8yOEEEKIrNDmRwghhBBZoc2PEEIIIbJCmx8hhBBCZIU2P0IIIYTICm1+hBBCCJEV2vwIIYQQIiuWKHvhhAkTPmrlg4hyTJw4cbH23kN9WQ2a0Zdm6s+qoLnZfVBfdi/a6k9ZfoQQQgiRFaUtPzUmTpzYiudok/fffz/JSyzhH/XDDz9M8sc+VryHe+ONN5K8/PLLO90777yT5KWXXtrpPvrov5v2xRbzm8bouZB3333XfV5qqaUKr10UEyZMaPhvi+jIvnzvvfeSvOSSSxZe98EHH7jP2PZRP0f9VRZ8RjOzxRdfvPC78TnxujK0oi/NOrY/I3Bucn9i3+P84LlRdn6/+eab7jPO46hfFi5c6D736NGj8NpF0dXnZll4PcN5Fs3pqJ9bwVtvvZXkZZddtq6/bWVf4vvG7H/fOUi0npWdGzz38Fq+J659+HfLLLNM4XMxeM9Gx8rbb7/tPvP310vUn3VvfjqSaGOBncANhotedI+oE3CA8SIa3RNp9CXcHYnaGoleWDih+Lro73Cs8AYHqWdhjsZHDkQvNFxkeXF++eWXk9y7d+8k86IabaCQ5ZZbrtQz8nPyZgfXkPYuuF2NspuTRjcujf4dPlfUl3z/ejc8HQU/J475ejYq0YYnInof4fpc9r2IRgAzv5lrtM/LvieagdxeQgghhMgKbX6EEEIIkRXa/AghhBAiKyod84PBjOzbxziLsjEX9QRT4T3Rz2nmfa4cq4B+1UaDtLsj0W9H3zHH5ES+fQT7ln3bjfqi8bl4jHWkb7qKROM3Cm7HOB9kzpw57vPZZ5+d5GnTpjld3759k/yVr3zF6YYOHZpkDHzlZ+ExknN/lp0TvA7i/IgSALBtOeg3WoPx76Jn5OfCvq1S3GWUOMMxP1FcKf5efv9EsUJlg5Uj8B71rKW4JkQB3Ir5EUIIIYRoEdr8CCGEECIrKu32QlcXm+yi9OWi+glsBkeTK6ftodkxMhdGZlw271XJBNvRRG4SbGu+rmybobm0bLo8fx+bmvEz15PB74jqdXRXIrM89hnW2TL731pbNf7yl7+4zz/96U+TzHNs/fXXT/LnPvc5p0O314orruh0OP87ot5MV4TnB659PM4bacNorrDrBz9H31X1dbbWptFviNolKs8RuYmiduD3XVF5iui6eurf4d/VUxqklaEisvwIIYQQIiu0+RFCCCFEVmjzI4QQQoisqHTMDxKlAkb+0muuuSbJxx13nNNheu2FF17odOPGjUtyM1IE+T5V80t3JFF5APbrYgwCnsfEpQ/KlrRvNNYjOkYhd1577TX3uWfPnknmcT5//vwk41EXv/jFL9x10flM6667bpJ79erldFHcAd4nivHLjaikQ9n4DFyf6zmfLypZEn03xuBxqjvGlVVhnS16hui9gnDMT7QWzZ49O8ncDwMGDEhyo+O9bDwQ88orryR5hRVWcDqM6cO1Y1H3bC+y/AghhBAiK7T5EUIIIURWdBlbb2Sm4zRkNPddf/31SX7kkUfcdWhSu+KKK5wOTetROmHkcmOzIJo/czsJPHJjoNmayxGgCbtPnz6F90fXC1eNRbMqp/KiK41TqldZZZUks3tF/JeyldLNvMn+4IMPTvKLL75Y+vu22GKLJA8ePNjpsH+jsgk5u7mYsm3BbhScL42WfnjppZeSzGURcJ3gcYRjjt0oVaPo/cHuuiKid8ULL7zgPv/85z9PMvfDnnvumeR11lnH6XAMoBy5DaNxw8/1j3/8I8mvv/660+E4Gj9+vNN94hOfKPV9jSDLjxBCCCGyQpsfIYQQQmSFNj9CCCGEyIpKO74xPY5L1aMvkmMOMDXw4YcfTjLHBuE97r77bqdDf2yjvkaO+YliI7o7USo6xmZEbYTted999zndzTffnGQuW/D0008nmeN6+vfvn2SMJTEzO/LII5P88Y9/3OlwLOWeBs/lA3jcI/fff3+S//3vfye5R48e7jqMxdp3332dbpdddkkyx0PgOItiVMqWRsiBqAQH6jg1u2jccywLlhTBeWpmdu211yZ5+vTpTofrAh+LgrEgu+22m9MNGTIkyVWI1au1G7dtlMaNY5djdzA26oILLnC6c889N8k8p0aPHp1kjvnB72tGbM3UqVPd5/POOy/JHA/E8xRZe+21k9yvX792Pxciy48QQgghskKbHyGEEEJkRaXdXpHJEt0ObDZDc1/kRkHzHqZcmsVmcfw+NgWXPQ0+Z7giMJrP2eSKpvDTTjstyRdddJG7bsGCBUlmczKa4dlNMmvWrCT//e9/d7pBgwYlefXVV3e6vn37mvj/sCsRzfTYL2Zm3/jGN5KMcxPdXGbeRP+tb33L6dD8zSnyWJ4gcokx+BvqSdXuDkTpzLjWRSnX2M+Y1mzm5+qUKVOcDl0gPPdx/ef0aARdYGb/69LpbGrlF3hcRe6lqE+wijO7+NElxu8f/P6yIRjROyyqks5lC7CyO5czwbn36quvOh2XJmkmsvwIIYQQIiu0+RFCCCFEVmjzI4QQQoisqHTMD8J+wrLpxRhLwCfGYuxJPTEc6Ptmvyf6SKNjMaoEp6ZGKcH4+zh2h8sRIOiz537Ae/IRJAcddFCbOo7rwbZeaaWVCnX8zNH4eOihh5LM/nr0RTd6UnxXBvuM2wb7mmOzMNUd4XiSn/3sZ0nmeCtk5ZVXdp+jE8qjOIqqxfnU5iTPTRz3ZVOlzXx/RbEmHL8VrWHTpk1LMs7TBx980F2Hz8m/B+MzuQ+w1AnPTex3TIeuIkVxMzgeuQwLvt847gX779lnn3U6LPPC8TMjR45MMvcDjhfs82issA7n3vPPP1/4XNivZv60+R122MHp+PiaZiLLjxBCCCGyQpsfIYQQQmRFl3F7Ra4FNiuiOXHevHlJjtLmhg8fXqh7++233WdME4y+u+onR9eenc3n6OriNsN+YDdXdKI2nrzMric0+W699daFOoTNtth/X/3qV50OTeR//etfne6mm25KMvczmnE5dZOrp+YGjnt2SSMnn3xyoQ7H2a677up0m222WeH98e/QnG7mx13k5mKwr6swb2vPXs9vaOvviz4XwesZtuejjz7qdDhXcY5xf2FIwY477lj4fZdeeqnToRuMnwtdJZEbvdH2ayZl0srrqTh+4403JplLRODv5XuiG5jXZ2wzdIFFVal5Dcb1/5ZbbnE6LCnCYEkDLm+D6y5X+W4vsvwIIYQQIiu0+RFCCCFEVmjzI4QQQois6HzndkB0LAHC6eaYqoelwDmNE9l0003dZ/RtRqdU1+NTxt8Tpal2FGWenf33UewV+p/79OlTeN2TTz7pPo8fPz7J3EdFcUT77befu+6b3/xmktdff32nmzRpUpI5zRL7hGN+RowYkeRm+5u7Exxb8P3vfz/Jzz33XOG1OKcPP/xwd11UNgGJSh4w0REWVYjzQdob81PP+oJxUxyfgnE+O++8s9NhPB7O6dVWW81dh+OBU5exFAL3Ha4nm2++udN94QtfSDL/1iqsrW3B8Wk45rif8Vo+wuVvf/tbkqM4Vu7L6IiQ6P1aBLfz+eefn+Trrruu8O969+7tPo8aNSrJeDyNWWvX3WqOEiGEEEKIFqHNjxBCCCGyolq2XiJyE6EuMg2j6TQ6oXaDDTYo1EWm9HpMrJhCWCXTbHQ6b9lK2mZxSidWfeV0VzSfs1sN73nssccmedttt3XXrbfeeknGE4TNzP7whz8k+bbbbnO6qG8//vGPJ5lT23M+BdysuCKsmdkpp5ySZG437Ovdd989yVtttVXhdeyOnDp1apK5r9GkzpWh0ZUWla+oEry2RWtYo6DLY+7cuU635557JhlPYDczGzRoUJJxneCU9f79+yf5z3/+s9NdffXVSeaKxNiX++yzj9OtscYaSeb1C1319aSQtxruO5xD7HbF98MDDzzgdHfddVep7+NK9+jyZxcYliJBuG2jKs5Y1mLBggVOh7/v5ZdfdrohQ4YkuSPfi9V5AwshhBBCdADa/AghhBAiK7T5EUIIIURWVDrmJ4rlifylUWp6EVFqdpQGy88YxSlVKc4nAtMsOZ4jOs0c0xLvuecepzvggAOSzOnz2JccP/OXv/wlyRjXw+mSeLrxn/70J6f717/+ZUVgn3Aa7pgxYwr/Lsc4HwTjRC655BKnwzbl0gXY19/+9reTzGX6Z86cmeQrrrjC6a666qok87EjWB6f40QOOeSQJFcttb2IaA2MjtaJ4GMJcD7++Mc/djosFcLlB/DzlVdemWROdb/77ruT/Ktf/crpOMYIwf761Kc+VfhcAwcOdLqq9W2tvaMyIQzOL45TxHg4XodwvvF7cPLkyUnGI0fM/PEkeA+O3cG4LD4qCNfgKIaOnwuPKuHjLaJ3UXvpGm9jIYQQQogmoc2PEEIIIbKiWvZBIqo6GZ3ePGfOnDbvwebe6ITasvB3o0mP3VyNVNFsJTUXBJuJ0TVRD/PmzUvyL3/5S6dDN0ZUaXujjTZyn9GlglVDH3nkEXcdtvtTTz3ldOxSQfBZdthhB6dbe+21C++R+6nuOLZ/+tOfOh2Oc65Au9NOOyUZ3SP/+c9/3HX4+frrr3e6J554IsmR2R/Ho5nZOuusk2SuGFy16utlqMfthb+P59/ll1+e5KeffrrwHhwa8IMf/CDJ6NLBshZmfi1A1wg/88Ybb+x0++67b5LRLWPm53u0rleBMuUJuPozgu6qRf0dnnCP70Ezs+9+97tJZtdT0TNyW+K7guc26riUBLqs2H36+OOPJ/nhhx92Ogx1YFdde6nWKBFCCCGEaDHa/AghhBAiKyrt9kLYFRO5kKZNm5bkyJ1VNiuAvwtNhnwPNOPW88ydQe1Z2eQZPSfq2HR6ww03JPnaa691usjVhdkanCV2//33JxlN6+zSwCwBPrw0cgegKfUzn/mM02F1WMywMIvHQA6gGxP7yCx2/X72s59NMrouOaMFM/R4fKLZnDNAcJzhoZxmPmuMDzKu2tys/WYeu/i5nmrPuBaxuwIzp7B6tpmfA1tssYXToWvj1ltvTfI111zjrmO3JYIZojz/cG6+9NJLhTquPI3uuSpkZdbGFrc7rmfcl3gtjwFcb3gNfu211wqfA9+FXLkfxz9mUPL7MzpIFfuEXW7onuN74PoxdOhQp0M3ntxeQgghhBDtQJsfIYQQQmSFNj9CCCGEyIouE6xQT/zMrFmzCv+u6B71+IbLnsbLaYhViyuoPSvHs0QnueNveOaZZ5zupptuSjKnhmPsAFd4Zp/9op7X7H8rgWI/cCVV9DFzf33iE59IMp7ibhb7yBstjdBdwKq93DZ4YjSfqo19gbEmfEI03pPLCuDfcYVgrPzNp0djmnXV5iJTFPPTKDheOU4EY3e4cjr+HVfTxvggjAHD2D8zH6/D7b7JJpskedddd3W6fv36JZnjRHBt5QrPVSWK+eE1C/to0KBBTocnsHN8Y9F1Zn5e8ppfVPaFY+rwOXk84Gee9zjGOL5ps802SzJX1V933XWtVcjyI4QQQois0OZHCCGEEFnRZdxebBaMKrKiCRbTYvFQNjOfOhdVBWUzceRKw/uwK62qVWTZbYFmSf6t6DZi0yaaZzGF1cwfkMemfDwEj91Jo0aNSvLWW2+dZDSXm5mdfvrpSeYqoegiY5fbKaeckuTcqzbXA6aRozndzPchu1HwWjSF89xEV0bUL2x6x/vz4YqRCT06sLczKFofGnW3RnMaqydzOjEe9svuCiwrcMcddySZ09Jxvo8fP97pTjzxxCSvueaaTod9ginPTD1u+86E3wdRuQwcu4ceeqjTrbTSSklmFyO6enl9xu/glPLhw4cnGUsFcNviQdM899AVyRWe8VnwQGMzX/Udq+qbtbZUQXXewEIIIYQQHYA2P0IIIYTICm1+hBBCCJEVlY75wfiMKKWc/eB4Ci7HEiAYlxLF8fB3R8cZoK+T0zo5bbCzqf3mKO03SrXt37+/+7z77rsnmU/uxTgc9kXj6d6Yem5mNmLEiCSjH3zSpEnuOvR1c4wIpoMed9xxThelyUYxWs1KQe6qYNtEcSjcbnjiN85NjsXCNGeemxjXE81vPoU8ivmpQpxPGRo93gLnOP9WjP84+eSTnQ7jJ7msAPbljBkzCr8b44h+/OMfOx2f5I5gTBGvndgOVVtXmVo/8TobrSE4b8aOHet0q6++epKPOuoop8PYKI67LFveAeN8uAzJP//5zyTz83OcD4Lvhl122cXp8PfxPTGOqNn9LMuPEEIIIbJCmx8hhBBCZEWl3V7sHinL9OnT2/x3NvdiGl1kQmazfpSmXtV09rYo+s2RaR0/s4kSq3Oiu8rMVxvlFEns5+iUbuyvn/zkJ+665557rvAe6C77yle+4nToIuPfGrVD7m4v7E9uC9SxW+quu+5KMproea7gSc/sUsFU5qhsApdD2G677awIdLs1uu40kzKnutdDVKJi9OjRSWY3MLpO5s+f73SXXnppm9/F7pZzzjknyezWjsD5XtZFVEVqzx79Bn7HYBo8/z4MKeDwAvy7RquYR9XVi96tZr6/uDTBEUcckeSNNtrI6aJ2aaVLs9qjRgghhBCiyWjzI4QQQois0OZHCCGEEFlR6ZifCEx35RLY8+bNSzL6S9m3iCnQUao7+2Mx/oP9qugvrScVtarw78OS89yeGFPFvmj8O445QL8uHyWCfYvp8lzWHeMMOKbopJNOSjKWhjeL+6isj77qMQetAI8p4LiA1157rfDvsE2nTZuW5KgfOIYE+5fLTmAa8OWXX+50+B1z5sxxOi7b0NnUxlc9cRtlSzPweolxPgsXLnQ6nC+/+tWvnA7XWWTChAnu82677ZZkXmejIx6i8gP4WxuNbekoar+R1xPsI+6v6Ldjm/F6iWsppomb+fblE+axX/AdNnXq1NL3x9+37bbbOt2mm26aZO4vTJHne7byyKH8Vm0hhBBCZI02P0IIIYTIikq7vaK06igNGU1laKZjkyumt2JVaDNflZTdNGVPVo4qYPKJ050JtwuaJfk3oMmc/y7qr8iMW5TOzhx00EGFOmxbTnE+/PDDk8zmXuxL7pPIJI+/PUe3F1bmPeCAA5zuwgsvTPKCBQucDt0qkasLU2UjNxqnr1922WVJnj17ttMNGjQoyezmamUl2UboLJc5j/NrrrkmyY8//rjT4TqB1bO5ijqWO+AUaLxH5L5iVzb2UdWrcxedCIBrTz0lDPB+0WkD9bg+i8bbH/7wB/cZ5wnfH9dgTmfHtTQqRRKFnzSb/FZtIYQQQmSNNj9CCCGEyAptfoQQQgiRFZWO+Yn8oJj+yjE4a6yxRpLx5GH2J2L8x7XXXut0AwYMSDKWfzfz/lG+J/pB2YcdxbN0BjV/Mf8G/Bz54ZuVYop+ZG6jH/7wh0nmmAME2x3/xux/U6URThUtei72red+vAXOgW9961tON2zYsCT/4he/cDqMw8FYOj7VHeN8Ro4c6XRf+9rXknzggQc6Ha4FGONj5o9n4BPfo5iEzqCVcWQc34ExOXfccYfT4Snv/Ey4TvzoRz9KMsfORfGNUcxKdI9o7alqbCWD7cnvMIyDZF3ZeCc+ZR3bjP8OxwTOxZtuusldh+3Jz4W6zTbbzOnw2ui4KJ57URxpe5HlRwghhBBZoc2PEEIIIbKi0m6vKNUYYfMeVpO8+uqrk8ynEkfVKtH0x/fHv2NTcFR5tKquksiEHKX18+9BE2WUqsvfh6eAs2vrzDPPTDK6ImfNmuWuw9TrnXfe2emicRT9dnTLoBnarHouzI4G2w3dXGb+BOc999zT6bAyO7u6EKzUzC6qiDfffLNQF7lAqnCSO9LIWhH9Dc5HXutwXTz++OOdDt2U7B7/1Kc+leT1118/yVzeAKtE83qC9+Tnx7na6BpVBWpjktcM/E38HsHxGLmJIvj7uN/bekYzX7mby0zgs/Aaj3N2rbXWcjoMPYjep7w+y+0lhBBCCNEktPkRQgghRFZo8yOEEEKIrKh0zE/ZNEg8hdbMbKeddkoyprA/+eST7rrBgwcnefPNN3e6IUOGJJnTAqNU2CjuBf3bZX9bK6n5gKPfE8U0RUeOMFHZcvQ3//3vf3c6jNfBOB8+nf2EE05IMrc7tjXr8P5RzAHHp+Qe8xPFUeF85DR1jJ3CmAeOa8A5x32GcQgrrrii00X9gnEHfFxCVA6hM2h2fAO2L5d3+P3vf5/ke+65x+lw/uORP2Zmhx12WJJHjBhR+N3Yf7ye4GeOq8M24JgfvhapWno7v59qRGU2ongg7EteV3Eu8t9FcwPbDGODON5uxowZSeb3Yr9+/dp8RobnMz5nFEfabGT5EUIIIURWaPMjhBBCiKzofN9LC0ATLJ7y3BFE5uoquLqQRirZNlp5Fs24bMq87rrrknzuuec6XVF65pe+9CX3Gd2WUTtz/5Rtg169epW6LhcaHcuNuAu5z9jVhZStOl41NxdTc2dE1X25XaLK7Ojmw5Pazcwuv/zywufAdjrqqKOcDstLIM1KzW7WtVWl0TmE7Rm1bT1hF/i5R48eST7ooIPcdWeddVaSx44d63S4JrOLFKmnBEwry8PI8iOEEEKIrNDmRwghhBBZoc2PEEIIIbKiWkEootuCxxpwnM3ChQuTPGfOHKfDlPYddtghyXvvvbe7rpWnYAvR0dTiIuqJecBjAzi9+t13300yH+WB8UBcmmCrrbZKMh8bUxTXwSncGONRNiZLNEZ0HATG9XBcFn7GY4R+8IMfuOu+8pWvJJnj5opS+vm56ok1xfcGHoPUDPTGEEIIIURWaPMjhBBCiKyQ20t0CJHJco899ii8Dk8MR5nTnVtZCVSIzqKetHF0a7DLo3fv3kkePXq00/3hD39IMrsysNI9ygy63DiNWq6ujgMrX0eVrqNK2whXcV555ZUL74lrMFdQxzHA94zGR7NdXYgsP0IIIYTICm1+hBBCCJEV2vwIIYQQIisU8yM6HExfNPPl1HfffXenQ38wputyLATes2fPnk15TiE6i1r8RHQ6NhMd+YAxHcOHD3c6/lyWouMSVHai88A4Hz7xHY8Kio63QKKUeC5pgHFm9cTq4HPx2GllvJhGqRBCCCGyom7Lz4QJE1rxHKITUF92L9Sf3Ycjjjiisx9BNAnNy2oiy48QQgghsmIx1UcRQgghRE7I8iOEEEKIrNDmRwghhBBZoc2PEEIIIbJCmx8hhBBCZIU2P0IIIYTICm1+hBBCCJEV2vwIIYQQIiu0+RFCCCFEVmjzI4QQQois0OZHCCGEEFmhzY8QQgghskKbHyGEEEJkhTY/QgghhMgKbX6EEEIIkRXa/AghhBAiK7T5EUIIIURWaPMjhBBCiKxYouyFEyZM+KiVDyLKMXHixMXaew/1ZTVoRl+aqT+rguZm90F92b1oqz9l+RFCCCFEVpS2/NSYOHFiK56jTd55550kL7300g3d45VXXklyr169nO6jj/67MV9sseKN/rvvvus+L7744m3KZmYffvhhm7KZ2cc+9rE25TJMmDChruvL0JF9WZZ62hr54IMPCq977733ksztjtfieDCLx0R7aEVfmnVef7799tvu8zLLLFN4LfbFkksumeRXX33VXbfiiiuW+u7333/ffV5iif8uaTyWllpqqVK6eulOc5PbBYnaCOcfzyPsEwbHA4PjI4LXWZy39c7hVvYlvs/M4ncaX4vgGsZthG3PcwOvxf4y8+2E9+f+QV20HjNvvfVWkvl34z1ff/11p1thhRVKf0dbRP0py48QQgghsqJuy09HUnZnzLvY5ZZbLsnR/yDxfwx8D/xfDu9wox0v3jP6H0/O8P8u8X8djf4PPOoT/B8P/6+06DkWBf6G9lgNugNs6cG5yf8zxfmBFiOep2gJ4vaNrHw456J+YQsgPle9VtmuTjMs7GWtADz/ylp3+O/QqsHrbKsstu2lrOXMzP+meiws+NujtuXvK/JKRJbyelh22WVLXdfo+GuEvGa5EEIIIbJHmx8hhBBCZIU2P0IIIYTIikoHpURxFWV9g+gDbTTDg/2jkd+zUZ9odwfbsJ4YGfTto9+fYwAwZoMzJXr27JlkjgfA5+J+juIKco/zidommpsYh4B9wdleZ511VpLnz5/vdCNHjkzyPvvs43RlYwuY3OJ8kLJrKc8PzATCdY/bEudqFAfJ2Un4me/ZleZfbW2K2oUz1srG6/B6hmsfzwVszyiONZrbZeEsMXxOvie2A//uKL6vveQ744UQQgiRJdr8CCGEECIrKu32QhNYVMyMTWyoQ3MbFloy86ZTvj+a2Pj++HdRIUMGU3ujQnDivzRido3alk33kTuuK5nWO5NobjJF8+PXv/61+/yb3/wmybNnz3a6/fbbL8l77LFH4XdxX5d1v+RM5E6up+RHEQsXLnSf0eXG861sH/EajOsslj3pLIrcXvjckZsrKnjILsvI7Vu2PfF9F/1NVBQ2cl9F38djoJVhJLL8CCGEECIrtPkRQgghRFZo8yOEEEKIrKi04xt9iFH578hfeuWVVyb59NNPd7oZM2YkGVNrzcy23XbbNr+LicqEMzmn06LvlksOYMxI5KN/8803kxylnke+aPYh47XRYX8cVxClZ+YAtn90GGEUD3TFFVck+aKLLnLXYZwPz5t+/folmWMe3njjjSRzX0exYDnH40VzoGycCPYzzxWcmz169GjkEf8n7gW/g/urCnE+SFHcStk0bp5Dyy+/fKlreV5i2/OcwrUOY3CiGCJex6OSCTgv+buxzMWAAQOcrpXvzHzfxkIIIYTIEm1+hBBCCJEVlXZ7IZH5lc1v6B65++67kzxlyhR33UsvvZTkP//5z063ySabJBnN+EyUGtqVq5I2G2yXKKUc+451kTn7tddeSzL3F5rMub9w7PA46tWrV5JzdG2VJWobnreY6vyTn/wkyZMnT3bXoRmeTeEbbrhhktmNguMsSq9lcnZJR9V3kWjuYFvXU2UbXR7oejTz8z26J5cwQRdSR54SXkTRKfPoooreDZEbFt9hZma//e1vk8yuwv333z/Jw4cPL/yO6PuichGo43X83//+d5K5n7Ed1ltvPafbfPPNC5+lveQ744UQQgiRJdr8CCGEECIrtPkRQgghRFZUOuYHfZbsk0e/LvtL8e8eeuihJHOZfOT22293n/lIiyLYn4vPWc/RF92dV155Jcm9e/cuvI59+0X+8ieffNJ9vuOOO5J88sknO91TTz2VZE4pHTFiRJLHjRvndJ///OeTPH78eKfDeIdGTxLvLkTxCjwHzj///CTff//9hX+H6bwY42Pm4/EYnGM833BOc5xSzvF40SneGMfBKddF8TR83axZs5KM89TM7M4770wyjweMDcHyBmZm6667bpK32247p9tiiy0W+YwdSdHxFtH7IDpWBOMbuUQLlnPh+2+zzTZJHjVqVOF3R3MBY7t4rOCaOGfOHKe78MILkzx37tzC79tyyy2dbs0110xynz59Cp+rEfJ9GwshhBAiS7T5EUIIIURWVNrthSZLTkNGWIcpkugC4xQ+NKtyWiBey6Z7NOuWNV0yubnA0NWF1T7NfFuwC2nBggVJ/tOf/pTkc845x103adKkJEembnZ3TJ8+PcnsSsMxMWTIEKdDc2yO4Bxg1ySa6WfOnOl0aJbv2bNnktGUb+bHy8EHH+x02PacUovztlE3Q25zM/q92Lec6o5gCYO//e1vTveHP/whyU8//XTh3/F6iX2J89TMbN68eUlebbXVnG7rrbcufM7OoLaO8NoWlYiI2hrb8He/+53ToVuK58aKK65Y+N04n/EevJZGlahxHLFLDENOnnnmmcJ7cJkS/Du5vYQQQggh2oE2P0IIIYTICm1+hBBCCJEVlY75Qb9nlH7H/kv0dWJ8SXRqN8ct4D3ZJ47+TC6tjroobbRKcLnxqLw5+uW5HEAUa4Ntz6cS4/dzOYLDDz88yVgincH+4vv37ds3yRzbheXh+fnxaBRM1RflT/v+zW9+4z5jfB7H+SBf/vKXk4ypy2Y+ToT7Gucxx5BE8Qo4lquQHl1EK2KTsE/KHm1g5uO5jjzyyCTfdNNN7jpcg7m/MI6DdRiH8sILLzgdxq9ssMEGThfFWnYGReMpSmePxuoTTzyR5BdffNHpcBzzcUB4lAiDbR2NgaLSI2Z+HD377LNOh6nvvJbi9w0aNMjp+vfvX/h97UWWHyGEEEJkhTY/QgghhMiKLuP2isxt7M5CFwimRHLlUYTT6MqmqddzCnLVqP3GyKXIZQTw97I5F02uUX9xu2CaOlfvLTLt82neaB496aSTnA7dXph2a2Z27bXXJvn11193OvzMVanRVReZibsr2IfsSsSK2hdffLHTPf/8823eb6+99nKfDzzwwCRzX0cpwhFobu/Vq5fTVdnVhTTq6orWMxy/7MrG+c/r55gxY5KM84HnEaaif/GLX3S6kSNHJvnqq692OqwGjnPYzI8BrNJuVr35WLQWlu1LdiFdddVVSeZ3H85L7kuepwi2Gd6T+zx6J2MqP/clhjPw+wbfKRtttFHhczUbWX6EEEIIkRXa/AghhBAiK7T5EUIIIURWdJmYnwj2Z6NPEVMko/tFp9xGRPEHVT/VvfZ8UdwS+5TLxjhF7cL+4EMOOaTw/hhzsNJKKyV59OjR7rozzjgjyauvvrrToe+bU+nnz59f+JwYR8THWzQad9JdwLHNfnmMuZo2bVrhPYYOHZrkb3/7206Hbc9jAmN3sFSBmU+V5eMEoriesvGFHUVt3kUpzxG81uFn1mHpAEwhNzO74oorkozp7GZ+PcPxwPPv7LPPTvJaa63ldLfddluSp0yZ4nT427kcx1ZbbZVkjtes2jpb60sex2XHGbaRmdmll176P/eugb+ddXiaOpeZwLmCz1VPLByWIsF4LYbXCyxxsPbaaxfqmk21RokQQgghRIvR5kcIIYQQWVFpt1cEmlkj8yFWe+br0Py74YYbOh2aKNlMjPepx8RaBXM6UvuN0e9j1wG2O5tV0d3IussuuyzJfEo3VoDl1HqsUnruuecm+ROf+IS7Dl1i/HswNfTRRx+1ItiVhadDc3pm1csYdCSPPPKI+3zhhRcmmd02OK8+/elPJ5lLHGCJCm7ra665JslYJsHMbJVVVknytttu63Trr79+2z/AfBpwFVKlGxlfkesO+4Hvja6uxx9/3Om+853vJHnWrFlOh+200047JRld0Ga+rMDUqVOd7he/+EWS77//fqfDOT18+HCn22effZLMKdxVK1tQe0fUEwaBJwdwxWx8p/H8wnU3KufAY7zIjc/p8pj6jlWbzcyOPfbYJPNYQdDNaubXcu7nVr4zZfkRQgghRFZo8yOEEEKIrNDmRwghhBBZ0WVjftC3ySmERafXsn8U/Zd8MnDZWB72n5eNRaoS/JzoU+aTgZHo1GxMkTUzO+6445K8YMGCwntyqXqM11l11VWTzO2OqZsPPvig0/3+978v/G70dWOMgZmPK6h62YKOBvv61FNPLbyOY78wJueAAw5IMvcnprjiGDAz++tf/5pkPOHazI/dyZMnO92Pf/zjJONYMqtGnA9SZu2I0tmjv2cdrpennXaa00XxJRirganN0ZEIxx9/vNPdeuutSea1BsfKUUcd5XSYTs9p21WjtlbUE8eF5Rzuuecep8OxyjGS2Ld8LAzG4dx+++1ON3DgwCTj+5RjfjAW6ayzznK6hx9+uPC7Ma6T11I8/mSFFVYo/D6OP20vea/gQgghhMgObX6EEEIIkRVd1u0VmXgxXRN1kSkYq80uiuiEZKSrukYi8yz+Jm5PTGPldNfHHnus8J5o9txuu+2cDk2+aN4+55xzCu/H6c9oWmewL4cNG+Z048aNS3LuFZ0ZdJVcd911hdexS3rfffdNMro42XyPrst//vOfTocp0fx3eKI4u14x9X3llVd2umab1NtLmbWD16Gybnaulozte9999zkduonXWWcdp0M3Il7HKdbo8r7lllsKn4tdJYcffniSMZXezP9WrkqN7VKlNTiqls99iScTPPfcc06HZTe4L5Hnn3/eff75z3+eZK6Mjmt+1H7o0oyq/fO8RJcp/9annnoqyVxqASs+y+0lhBBCCNEOtPkRQgghRFZU2u1V1v3C3HXXXW3+O0eu4z34ADW8th6XR/RcVTXHshkSzYvcZtgWbDq94IILknznnXc6HZp8OWvk2WefTfLFF1/sdNdff32Sp0+f3ubzm5n17t07yZghwHBWD1Y9/fznP+90bE5Hot+TA9i/mBHE9OvXz33ee++9k4wuKu5brBKNZnEz3/ZceRvHLo9PrO6N1aWrSBkXFl8TrSlYBZmzYbFdOFML3RfsKpwxY0aS0V3BlZrPO++8wmdG1wlXbf/c5z6XZHZ5RPMPfwOPj86g9h7j9xn+higDjytWv/zyyw09B7omeV3H78D2i0I8eKzgPbjqNq67vK5iJhjPWXYVNpPqvIGFEEIIIToAbX6EEEIIkRXa/AghhBAiK7plzM+UKVNK3SOK1UBfN8f84D35OSJfPfovqxTzwzEyGP/EKYvYFs8884zTXX755UnmNEhsM/YVY1vMnz/f6fhzDY7dwZTPKOaHxwPGMXzhC19wurJ9mWPMz80335xkbm/sG45XwL7G052vvPJKdx2m93LlbUyl5nRejA3heAFMH+Y5XbaqeZWop4I8zg8+VTuq4oyVsFmHJQ4wVuPee+911+Gc41gTLD+Ap4Kb+bUHY/rMfLwYxwNVIc4HqfUTj7koBhTXz0GDBjkdxvxw/Az2M8fd8OdGwPnM4yFKu0cdx9dusskmScbU9ra+o5lU5w0shBBCCNEBaPMjhBBCiKyotNsLzYRRmjpT5LLiv0GzI5vui1L/zOKq0ficbLKrapVgNkMi7F7CtmAdpqpOmzbN6SK3AurYhN2/f/8kr7vuukneaKON3HWXXHJJkvGAPTN/WB73JabW1+PuyMHVhW4jTnnFNGcGTdx9+/Z1OnRjzp49O8mc4op/h+4qMz/u2CWG9+dKw2hS5/letQrPtfaO1rnIfRytPbwOrbfeeknGtGOz/624i6AbBUsV8EGj0QHSP/3pT5PMFaSjNGfsr2hdr1J4ARM9G/bJySef7HS4ZnH1enQxsksM11IGTzjAfp0zZ467Dt3dUYkLnk843w488ECnw5IGQ4YMcTo+6LSZVHdkCCGEEEK0AG1+hBBCCJEV2vwIIYQQIisqHfOD/kv2U6MPkdNp8XgLjhVC+vTpk2SO94hOrI2oalxPWxSVASibgjlq1Cin22effZKMPmQzs9tuuy3JHKeBnzGux8yf5ozPwjFFP/vZz5LMfYBpsUcccYTTYRwI+7CjGKAqxxK0Ao5tw9O/OQ35lVdeSTLHDODRBxg3xCX7o7iDJ598MslRKYuBAwe6z9EJ0dF9qgrH9URjEuOkOBbq4x//eJJHjhzpdDNnzkwyHxuExyVMnTq18LtxLTjxxBOdbsMNNyz8O4zd5P6K4i7rKQHQkUTHW/D7Bvto5513drpx48YlGfvAzI95Hh84BjgtHdsX3618VMlDDz2UZB5vGC/GazCWEfnSl77kdLzmI9hmze7XvFZwIYQQQmSPNj9CCCGEyIpKu70iMxea6dCtYWY2a9asJKPpj9N10d0SnV7LOnSlscutK1X+rbUvm2PxM/92/E1sikbzOaZqmpl9+ctfbvMebd2nDAcffLD7zFVrkQEDBiT50EMPdTo0N7OLNOrLVppjqwL+Lh4jmDY7b948p8MxM3fuXKdDdxnqOG0b74nz2cxslVVWSTL3O5rb999/f6fbcccdrQhMz+YU4c6g5lJotMp9dG2PHj2cbrXVVmtTNvMV0P/zn/843TXXXJNknEfcfmeccUaSd9lll8JnjE4aZ6LfXtW5yc+CvyEqp8JrD/YJyma+DaMQjKhtcT3mEAV0QfNz4TNvuummTvf9738/yYMHDy78bgbbpdkhJbL8CCGEECIrtPkRQgghRFZo8yOEEEKIrKh0zA/y6quvus/oV3722WedrihWgX2G6Ofn+yPRye1cgr0rxfwUgb+Xfzu2J8cj4O+tJ24C0zXZx4xgmiWfAh6lcf7whz9M8lprrVV4f449wvtwX6IvumqnSLcCHgcHHXRQkjGey8y3FbfNLbfckmScKzyPMHaBj1HBWCEeg1g6/2tf+5rT4bNwaj2n61eFKB4vWl+4PXHN4r7Ekh8cQ4Xr4lVXXeV0Rad4f+tb33KfozgfvAfHxEQxHjj/otiTKlBLHee5gM8drbMcCxXFNEWxUBiLxzFGOF7wOfl4E3xmHmNYGmT8+PFOh3E+fIQK3pNjkVpZUkSWHyGEEEJkhTY/QgghhMiKLuP2iky8bMJDMzlW7cWKoaybNGmS06GZjtMJG3VzVC0Fs/Y8nM4emRqj9Ofo90UpmNx/CJpIv/KVrxQ+I5rPN9tsM6dDFw1XUsW/Y/dKZHbPocJzNEY/+clPJnnEiBFOh9W3oxIE2L7RGGT3CprGv/jFLzrdd77znSQvv/zyTodm+qq6uToDnLfz5893uokTJyaZQwN69uyZZKzS+9WvftVdF40j7OdoXcWK33zPRqvxdxSNlPLA39esFG9sw+iZ8Lpzzz3X6XAOcb/i+3TYsGFOV+QiNfvfdRdpZehI91/BhRBCCCEAbX6EEEIIkRXa/AghhBAiK6rtLAVWWGGFQh3H5OC1mEbNMSrob7722mudDsv3b7TRRk6Hadwc+xH5KDGuoQpp8DWfLftuy8Ym1RO3FJXp5/5Dfv7znyf5zjvvTDKfTI3xXN/85jedjmM/kChFvqyuuxL176BBg5L8i1/8wulOP/30JD/22GNOh3MAT39nsH3XXHNNpzvssMOSzGn2CJayMPOpuEwU+9WZNHpiedl1yMyXCvnrX//qdJdcckmp7/jZz36W5Hrar2zsHMe9RH+HMYRVjgfCfoiOV6pnDOA6y6noZdv6qaeeSvJNN93kdBhvx8+B7b7qqqs6Hf6+aD2uJ/60vcjyI4QQQois0OZHCCGEEFlRXZug/bcyptn/puahjs3Z6KZCt1eUdssnw+P9Oc2ybMpgVyGqLsqm0+jvEE5fxzRWbms0g3K1bjTDY3oyV+jF06i32267wueKzKqR6ZmrrFbJNVIP7H5stOQCpj3vtttuTjdmzJgkP/DAA06H/YYyutHMzMaNG5dkTKk2M+vbt2+SeW7ivGXXKIJpuWaxS6wzqI3FshV767mW18HJkycn+be//a3T9evXL8kvvvii0+27775Jxj7HNdfMV23neVTWRRX9Ni5hUoUyIkjtN0bVmFvhnotcn9wPOD4efvjhJHPb4vuOdeieHjJkiNNFp8hjORNuo1bOS1l+hBBCCJEV2vwIIYQQIiu0+RFCCCFEVlQ65ieKp0EdX7fffvsledasWUmO4nrGjh3rdGuvvXaSMe29O1Hz2XJZefS7RmmWkW+d/c3Y1ly2AHWcWvncc8+1eR37kI855pjC70Y4ZR19yuxfxviYrnxye1RmoNEjV3r06JFkblM8Ggbjc8x8bAPKUZxIBPdLFFsQXYexbVUoQ1EGjseLTnzHPuISA+eff36SZ8+eXfh9o0aNcp8PPPDAJGN7Rn3AKevRmMOYkujEd45fiVKpO4My8TzRUUGLuhbBfo/i+3jO4nzGtuX5+9JLLyWZ47DWWGONNp/DzMfm8TqL8ZMdOfdk+RFCCCFEVmjzI4QQQoisqLTbq1E+85nPtCl3NlUzp5dx5TRaYZPN1Gja5PRkNG+feeaZhTpkp512KvwcVQOvJ3USf0NZd0oVaUXqL46LKO2/bEmAsm4uptHfVrW5yNRcFlFlcXYhRe4QLCvw73//2+kw1Z3BSr3f+c53nG6DDTZo82/YHRe1deQSKutqrpqbqxEareQdweUcsJ3QzWXm1+StttoqyRtuuKG77rbbbkvyNtts43ToBo1CRTB8wax5p9bXiyw/QgghhMgKbX6EEEIIkRXa/AghhBAiK7plzI+oHujD5jiiqVOnJpmPt8D4ATzyYI899nDXdddyBCJPanEyURwPg/FBHKOGxxfwcSEvvPBCkjFd2cxszz33TDLHeGD8HD4nH21T9fiq7gT2QxRPxeMKr8W19KSTTnLX4XqM5WDM4ljLqGxIND7w6Itmx3bJ8iOEEEKIrNDmRwghhBBZIbeX6BAwvZErcuOJ7Fip2cyn9m600UZJXmeddZr8hEJUj6jyL6dDo+uCXcsrr7xykvEEdjOzv/zlL0nmFOhhw4YlecCAAU7Hp8rXYJdbo1XERf2gWyoqz8HlCNBliu4rPKndLHY94XjgdHYcj1GJBh4frSxjIMuPEEIIIbJCmx8hhBBCZIU2P0IIIYTICsX8iA4B0xs5jmHFFVdM8hFHHFH4d9FRG3gMRlc+gV0IpJ5U9+iYAIyzGz16tNOtv/76DT0LxniUTVeO0qFF+8ET7jnVPUqDL+oXPp4G789xQxivU0+sDq7dvMZH6frtRZYfIYQQQmRF3duqCRMmtOI5RCegvuxeqD+7D+rL7oP6sprI8iOEEEKIrFisHp+yEEIIIURXR5YfIYQQQmSFNj9CCCGEyAptfoQQQgiRFdr8CCGEECIrtPkRQgghRFZo8yOEEEKIrNDmRwghhBBZoc2PEEIIIbJCmx8hhBBCZIU2P0IIIYTICm1+hBBCCJEV2vwIIYQQIiu0+RFCCCFEVmjzI4QQQois0OZHCCGEEFmhzY8QQgghskKbHyGEEEJkxRJlL5wwYcJHrXwQUY6JEycu1t57qC+rQTP60kz9WRU0N7sP6svuRVv9KcuPEEIIIbKitOWnxsSJE1vxHHXz5ptvJnm55ZZzuo8++u+G+7333kvyUkst5a774IMPkrz44os73dtvv53kZZZZxunefffdwntGf9ceJkyY0LR71ejIvvzwww+T/LGPld9z498ttthibcoM9qvZ//ZtEe+//777jONoiSX8VIm+f1G0oi/NOm9u4nxguN2wb5Zccskkv/rqq+66FVdcsaFneeutt5K87LLLFl73+uuvu88rrLBCQ99n1vXnZgT2F495/IxzJboO12MzPwYi8P6Leq6y870tWtmXODbN/G/neRK1Z1nwHWnm35O81vH3t5fou6MxgO9Ps/a/Q6P+bO4vbjLRQsabjiKi67ATeMKgjjsgGijtmXjdmaito/Ys2ijhpsjMLxZ8f9RFk76eBSDaAOcAvnzq+f3Yb6+99lqS69nsROsCfuaXDeqijVFuYD8sv/zyTld2PSv7go42O/ziw3vyGGv2y7ojiMYcr2e4Xkb/WYzac+mlly7URf3Kz4JEG1nso2hNqGe9b8YmsPC7mno3IYQQQoiKo82PEEIIIbJCmx8hhBBCZEWlHaeRjxT9f+yjfOONN5Lco0ePJEdBWEzkS60nYBeJAqy7O5H/Gf26HNhY5H/m6xD2DWN/Rf3K8UDYX+ynzjHOB4nmQBTcju2I8SXz589311100UVJfv75551uxIgRSd5rr72crnfv3kmO+jO3+RfRs2fPUte988477jP2M84rnpv4d9zuGE9ZT3Ar9i2PsUbX51ZRiw+sZ82I1ktO6ECiRCCMU4wSOLD/uC2jOKyi66JnNPPrQEeuq9UaJUIIIYQQLUabHyGEEEJkRaXdXpGZOkptRlcXwmbbyO2FJlg240ZumsgdUzVzbEeCfRmZUiOXVaNgn0Q1aepJp0Wze1dMu20vkVkb+yyq24Hz9je/+Y277re//W2SOaX28MMPb/MeDKdtR2MJ14bI5ZAb2C7c52XLBUSuZnSdce0lnLf8XWXrA1WBovUB50ajY47DAsq6DqP5G73DyhLNy3rWy1a6qvN9GwshhBAiS7T5EUIIIURWaPMjhBBCiKzossEK6Ddkv+crr7yS5HvuuSfJv//97wvvccYZZzjd4MGDC7+7KC3QLO+4nohGy5Rj32KcDbd7VPoA4wPKptzzZ37mHON8iuD2xjkQ9fUVV1yR5H/84x9ON2fOnCRzvMfw4cOTzHE9SHQeFOtyjvPBtuC4SOzLKA0ZxwCPB5wr0fEyRbGai6KeshedQZkjeupJDY9iraISAI2kkUdrIvdl2fvXM9dwPEYxuo2gN7UQQgghskKbHyGEEEJkRaVt93gq8worrFB4HZv3evXqleRJkyYl+Y477nDXYdrzf/7zH6f77Gc/W3h//FxP+h2aOXOrMBu5iSKTeVmze1nYVItwn0QnGOPnZptjuwJRuQeETdw45376058mefLkyYX3WH/99d3nNddcs/DahQsXJpnXDHzO6OTq3Iiq9kZufJxLZdO2o5IlkZuynnmLn6uwztbGGrdl1E74e9klhp9xvJuZ3XDDDUnmdWmLLbZIMpcKKCodEPV/1Lavvvqq+/zEE08kmX83ztMBAwYU6pqNLD9CCCGEyAptfoQQQgiRFdr8CCGEECIrKh3zE/n70D/M8Rioe/DBB5P80ksvFd4PU+LNzD7zmc8kmeNVyqZt81EKuZ8EXoP999ieZcvWz507133Gvj355JOd7sknn0zyyy+/7HQbbLBBkg888ECn23HHHZPMfupmlIDvykSlBTBOgHV4Wvtdd91VeN3AgQOT/PWvf93pxo4dm2Sem1G6dNRnOFdzm6fRKd5F15n5to/W6gULFiR5/vz5TvfAAw8k+d5773U6jPlcY401nG7TTTct1K244oqFz9IZ1N5PvIZE7w7UcWo7xkJdeOGFTnfeeecluV+/fk633nrrJZnbqJHjQqKYH47hO/fcc5PMvxvjfLbffnun22yzzep+rrLI8iOEEEKIrNDmRwghhBBZUWm3V2SKjqpj4rV8UjCCJ+C++OKLhfdg0G1T9sTi3IlM65GpHU3mN910U5L/8pe/uOuuu+66JLOZGCt+s+keU0XZhfLGG28keeutt3Y6TsnMGe4/nI/sZjzxxBOTjH3B823bbbdNMpvCsZ+4IjHeh9cFXE/49Ouc3ZiRGx9dLNzWmEqNoQc4T83MLr300iRfffXVToffx2EC+H0rrbSS0z366KNJPuCAA5xu/PjxViWKynxE75FoPKJL6dRTT3W6adOmJRldx2Z+nkanv0ffHZUcwL6cMWOG091yyy1JxrII/Jzcz2uvvXaSm+3OlOVHCCGEEFmhzY8QQgghskKbHyGEEEJkRaVjfqJUuig9Gn2K6LOOruNUzegoCrxPVJKd/aroL63CqeC1Z8dnNotjKhBO3cT25N9e9mgPPoLklFNOSfKNN96YZEyDXdQzDx06NMl4WjhzzTXXuM99+/ZNMpaGN2v8lPruSBQjcPbZZ7vPU6dOTTLG57CvH9PbWYexWNGp7hxbEMU5VLUPo1O1o1i56D71xDdhu/BxCZi2/pOf/CTJ//rXv9x1L7zwQpKjlHjW4f15vcTPq6yyitNF61BnUDS2orjSqG8feeSRJM+aNcvpMN6R413xdHi+P78Div4d251LzKDuvvvuc7rZs2cnmeclxvJwen4jKfhlkeVHCCGEEFmhzY8QQgghsqLzfS8NEpmp0a2C5rYoTQ9dHGblTcr1mMuralpnkzK6qNhEHpmRy568zGUFrrrqqiSfcMIJTjd9+vQkRyZzPOl73333dbo+ffok+eKLL3Y6TMHk6sA4dtj8W9W+7CiwPXj8PP7440k+66yznA7HAaY2H3nkke467E8015v9r/uliCjVnV0OaMJvpam9Xpo1zvA+fE+c4+xORjfK008/7XRYBR+rqPP911133SRj1XQzP3YuuOACp0N3VuRiQbe2WTVcXUjtXcLrI7YThwLg+wfXQDOzSy65JMnsQsJ24THOfYvg90dhCdEcwmrT119/vdPhc0btwGVKys71RpDlRwghhBBZoc2PEEIIIbJCmx8hhBBCZEWlY36iuJvoVGn02T/zzDNJ5vgVvMewYcMKdeyjjNLUIx99PampHUGt3djHi37dsuUGzP439b0IjgM544wzkhz5pTF188tf/rLTffWrX03y4MGDnQ7TqzG+iHnttdfc58h/njvRuPjDH/6QZJx/Zj6uasiQIUnmOC1s+ygG56WXXnKfMXaPxyMfn4B0leMtovWl0fILUczFY489luRDDz3U6Z599tkkY9vutNNO7rqvfOUrScZYLjMf58NxdRgnMnr0aKf75Cc/meSy605nEx3rw+8w1GEMnZk/yif6Do6RfPXVV5PMx87gfMO/i46uwaOHzMzOP//8JOO44fvz2oHHW6y88srWUVTrbSyEEEII0WK0+RFCCCFEVlTa7dUMEy+e6B3df/jw4YXXRVUuo3vWo+sMitxe+Pv4t2K7c/opuobYrHraaacl+Te/+Y3T4cnqDJ7oje4xdJnwc3F/XX755Um+6667nK5Xr16Fz4xVnbkUAn5H5ALKAU6B/utf/5pkNptj9e3PfvazSeYqvehqZncVmtTZvL7xxhsnea211nK6KAW6SuntZv8dz/WsGY26vbBiNrqyzMz22muvJHPKNc7BPffcM8nf+973Cq97+OGHnQ6rQc+dO9fp0H39pS99yem23HLLJHPf4Rirgkus9jzRsxRVWDb73zaLQgNwruDaZmbWs2fPJPfu3bvwHhH4Prjooouc7t577y38u6hS+DrrrJPkAQMGNPRcjSDLjxBCCCGyQpsfIYQQQmSFNj9CCCGEyIpKx/yUheMKuBx+DfYNo5+VYw6a8SxR+mIVqLUHp/JHMSyYfsppsXiff/zjH0537rnnJrmof8zM/u///s99PuaYY5KMcTdRHBbGBpmZnXfeeUnGk6LNvP95ww03dDpM2Y3GTu7wkSHYxnzqOsY9YPtyPASm0f7zn/90uttvvz3J06ZNc7rbbrstyePHj3e6/fbbL8ncn1WL2yoT89Noej6PXWxrjtfB8g98/Mt2222X5F/84hdt3o/vceyxxzodnv7N8YUHHXRQkj/96U+HvwGpWvxW7XdFpVZ4/GHc0t133+10OKe4PAfGta200kpON2nSpCRzH+G6jnFD/G7Atfv3v/+9082bNy/JXBokKp+C1/JJ9K2kWm9jIYQQQogWo82PEEIIIbKiy7i92IUUgam3kWkRTafswkEikzibX6tmPi8DnwyMbRGZKJlHH300yX/84x+dDivxcpttvfXWSd58882dDr8fT45GM7uZP4F98uTJhToGzbh777230w0aNCjJbLKumguzo8F027/97W9Oh2Z5TKM2M/v85z+f5DXWWCPJXGYA0+UxHdrM7Pnnn08yuzHRtI/jxcxs7NixSV577bWtypRxaUVuFAbXT06VRlfhCy+8UPgd++yzj9OhSzpyt/zyl79M8jXXXFP4jFtttZX7jK6uFVdcsfDvuFQGu+c6m9oaxnMB24zXWXQ3zZgxw+miSuW4lqNL0czsqKOOSjK61fjvEHZF4t9F7+RoLPL4e+KJJ5J8//33Ox1WfG5WaEqNvFdwIYQQQmSHNj9CCCGEyIou4/ZiE2/kXsKKmGi2Y3dL2SqoUUXnetxejVZgbTVR5kv0+1h3xx13JJkP48Pfy7995syZST7nnHOc7tvf/naSsQIsm8HxWThjIKrs26dPnyTvvPPOhddx1kPVMko6Gqz2y1WWsb25n/bff/8ko/kbXS9mZhdeeGGSOTswanu854MPPuh06JatuturDPW4YnF+sNsBs3TYhYT9h9Wezfy8xTmN2XhmvqI7r49RFWfU8TOja57ne9XcXjWiDCgOu8C+HDFihNNxRfUi2LX14osvJpnXYMy2xLWOq/iXrWzP6yXC342u1lmzZjndnDlzkiy3lxBCCCFEO9DmRwghhBBZoc2PEEIIIbKiy8T81AOfPlwjqmTcaMXeetL9qhbzU/vN0WnDnAKJFZExfd3MpxZznM0rr7ySZPZ9oy+a/dkY34G+/FdffdVdh9Wf+Zmxj9iHjafGr7nmmk6H4yOK+8qRRx55JMk8BzBGh9OX+/Xrl2RMccV4MTM/V/h0aqxqy2m/GMPF4xPXhahCeBUoWh+wXeqp8Ix9xG2GbbHttts6Hc6lhx56yOn22GOPJN90001JPu2009x1WGpihRVWcLpdd901yVjywsyfQs5jDH8DnwSO63wV+rUWr8RxPdGzoY7Lf9x6661J5jGAv52rq0fVk/HvUOa4HnxX8FqK8PzCv+NT3XFd5zIJUexQe5HlRwghhBBZoc2PEEIIIbKi822CJYnMe2w+RPMiuljYTIcmeDYzo5k1cl+xewefi1NPq1YVuPYbo5RFTivGtsD2M/PmWU51x/ID/H1oWmcXR//+/ZO8wQYbJJlN5JhOy+4OHB+cNnr88ccnmd1/mF7LYwzHR9X6tSOYOnVqkqPxgxVazbwLBN1X6BY182mtnOKKKexDhw51OjzolNPscSzxeoJulKiKeUfD7h6cf5HbhP8Ofy+6k8z8vFpttdWcDitoo2vZzOy5555L8q9+9askc+kDXEM+97nPOd03vvGNJA8cONDpcL3mdSg6DJNda51N7X3ELhzsIx5zuBZxZe3evXsn+d5773U6bCceAzheuJ9x/mFJCD4AFd3TPIfQZcV/h3PxU5/6lNPtsssuSd5kk02cjl2azSS/VVsIIYQQWaPNjxBCCCGyQpsfIYQQQmRFl4n5Yf82+hs5rQ59znySLoLxOuzPjuI4MD6A40TwuaoeC1Lm+divG5U3x7Rm9t8/88wzhd+BqY5cmh7jiLDd+aT2r371q0nmmAaMLcEYAzN/cjsTxbJUvW9bDcYvRGUiMDbIzJeyf+CBB5LMp7NjnA/39ZQpU5LMJfwRjI0wMxsyZEiSq348SXtLYfDf43jltXTddddNMo957Bc+YgLj+vAEcb4Hxm185Stfcbrhw4e3/QPo+6L+qlKMVlvU1tCoT3idxWu5jYYNG5bkgw46qPDv6hnjGHeJ6+z111/vrsN+5rmHcT5rrbWW0x1yyCFJ/vSnP+10uAZznFIrYyvzXsGFEEIIkR3a/AghhBAiKyrt9orST6MqlEUVnjkFMqoKHBGlmEamxrIn4nYUteeJzLHs1kMzJLs70LzNKYpjx45NMleYxTRINq1jv2Nl0KOPPtqKYFfn6quvnuQDDzzQ6bAvORU1MrNWrYpsR4MuJC73gGNm7ty5TnfRRRclGecAuzvvueeeJE+ePNnpMH2exxLy2c9+1n3eYostCq/FMcOVcTuD2pyMqjhHrhKe0zhGWYfziqvvYh/NmDHD6Y477rgkY59zuYpf/OIXSR49erQVwfOPx1URVVhLI2rtHT0nu3vQpRSdwB65/Hhu4LuJ74n3wXbn9xnek38Pvg/YtfWlL30pyTw+EG6HVoYXyPIjhBBCiKzQ5kcIIYQQWaHNjxBCCCGyotLBCmXjZxiOM6jBZdCxPDumQy+KyA8ZndxehZPckVr7clvib2C/Lv52/jssR89/h0eO8OnG6OtnHYJxIGeffbbToZ+an+vEE09MMseWIBxDEZWKr1pfdjR4GvdPf/pTp8OyBhx3cOONNyYZ+4zbHtNmOQZn3rx5hc+FKbU//OEPnQ7HFqfW42nwVaKeY3cicN7y+oXj/M0333Q6LBtx6qmnOh2WHECwD8zM9tprr8LnimJIyqaw899Fa3BnUOuz6H3AfRLFO2Gb8ZFNOFc4FhHjWqP7Y/wbH1OEfcKp7hi7ue222zodxvnwGEM6Mn5Llh8hhBBCZIU2P0IIIYTIikq7vdDEy+YwNNWym6NsqiqaD9lVhqY5Tv9ENw2bMlHHpsWqVQWuPTubR9GUymZVbHfuE/zMfYJuBnYxoIuDTwFH0+rhhx9e+N1o0t19992dDtMu+blwjEVuVi6FwGMiNwYPHpzk73znO0537LHHJnnOnDlOh2ON3dAIjhE+8R3nEabQmpmdcMIJSWYXKvZ9Vd1c9RClujcK3+Oaa65J8gUXXOB0mHKNpS3Y3RiVLCnr2mJXCf4dr19VcHUhtfHK/YXvCn43RO8K/O3cftEJA7i+sTsa+xJ1t99+u7suqqiO/RDNL+6fKNQhGjvtpVpvYyGEEEKIFqPNjxBCCCGyQpsfIYQQQmRFpWN+0L8YlV1nf/CIESOSjKl6nK6M97j77rudDo++4FN18VnYr1o1f3NELZ6HY13wM/vTo3L7CLdD5APmOB8ES+M/9NBDSca0SjPfJ9/97ncL79doKiWPndzBdNj999/f6TDm7phjjin8O4z1imLEtt56a6fDk6z5uBLsXy5fgTEDPA4w/oiPwenu4Do7adIkp8NjZKKYlYkTJyaZYx2jsiQRUTxedKRMK+NE2kN05Agf7YExhtzu+HfcLng8EMe+YnvysUXI1KlTk4zlRcz8Ohulukfxk9F3M63sP1l+hBBCCJEV2vwIIYQQIisq7fYqm07MJsPx48cnGd1Zs2fPdteh2f3VV191OjQfstkxSkNEczr/HZpj6zH9tYqaOToyUdZTpRr7ITqhmVOXseoym93/+te/JhnHA/cXnhq/2WabOR1+H58oHLnx8DdEbZQjaFJnl+DnPve5JH/yk590OnQvYRo8ps6b+b5mFxW6pdjljXOM+5rHZNE9q0Q0PutxseN9+J4vv/xyktF9ZWY2ffr0wntiCQlcc7lPcO5wH2Df8u9BXT1lQqrmoi4KL0DYjRe59SJwXkaV+5mFCxcmefLkyUnGsWHm5wm7pEaOHJnk3r17Ox32CZdPwXdtdOJ7s5HlRwghhBBZoc2PEEIIIbJCmx8hhBBCZEWlY34Q9hWjT3SllVZyOjxVGE+Yvuuuu9x16IfcaKONnA7T5TkeAH2pHI8Q6aoQ54PU4nDYR44+WfY9RzFNqOO/i2IxkPvuu899xngdjCVYZZVV3HV44jT7uvH7+LdGsRD4G6KU/65U3qBZROnEGD/AfY1zdciQIUnG+DsznzbLMQIIp1VHcYJRzAPGHUTl9jubRsca/naeA9dff32SL7nkEqfDdhk1apTTYUkJ7KNG46e4f/A5OeannjHR2dRifaJ1NjqKgsH78DEV+Nuj44cY/P4NN9wwyf3793fXYZwez5OhQ4cmmd/J2Lf8HozS2TGdvtnvT1l+hBBCCJEV2vwIIYQQIiu6jNurntQ/NP2dfvrpTX+WyHzYaAXhzoRNrmXNi/WY4KN2waq/nOo+c+bMNv+Gq/6iebasebetz2XJ0dWFRKZqLF1QFjaTI5ELoJ7+i+5TVVdXdPo2g24U/q3odnjwwQed7tJLL00yl6HAEgRcrXuttdYq9VyR+wqpp6xGVyw90eg6G92nHhdf5KrHFHlMUz/44IPddWeffXaSt99+e6fbe++9kxy9r7F6tVnnhYPI8iOEEEKIrNDmRwghhBBZoc2PEEIIIbKiy8T8iK5NFIcza9asJHM5ffQdb7nllknebbfd3HUDBw5s7yMKUTnqOaoBY354vmHKMOuee+65JI8ePdrpdt555yRvsskmTodxN1FKcqNxdaJ+sB+iuKjoyKZVV101yd/85jfddfvss0+SBw0a5HR9+/Yt9YwcDxTFdrUyHkijUgghhBBZoc2PEEIIIbJCbi/RIWB1Zq7Ci5VjDzvsMKfDk6M33njjJHPlUSG6I/WUzojcHFiaoF+/fk537LHHJplTp9ddd90kc1V1JHrOKAVfNBds38jdyCcmFLlFuQRFVJIC74mVwfm5qlKBW5YfIYQQQmSFNj9CCCGEyAptfoQQQgiRFYr5ER0CxvnwiczoD95xxx2dLvdjJETeNOv4DrwPpygPGTKk/gczH+MRHWegOdxxYD9zOjv2A/cXfsa/47Ua78Fj84MPPkgyx3VGMWH4fRh7xN+nU92FEEIIIdpB3ZafCRMmtOI5RCegvuxeqD+7D+rL7oP6sprI8iOEEEKIrFiM/YJCCCGEEN0ZWX6EEEIIkRXa/AghhBAiK7T5EUIIIURWaPMjhBBCiKzQ5kcIIYQQWaHNjxBCCCGyQpsfIYQQQmSFNj9CCCGEyAptfoQQQgiRFdr8CCGEECIrtPkRQgghRFZo8yOEEEKIrNDmRwghhBBZoc2PEEIIIbJCmx8hhBBCZIU2P0IIIYTICm1+hBBCCJEV2vwIIYQQIiuWKHvhhAkTPmrlg4hyTJw4cbH23kN9WQ2a0Zdm6s+qoLnZfVBfdi/a6k9ZfoQQQgiRFaUtPzUmTpzYiudYJG+99Zb7vOyyyxZe+9577yV5iSX++xM/+OADdx3qmI8++u+mfbHF/KYR77P44osX3uPdd991n5daaqnCaxfFhAkTGv7bIjqrLyM+/PBD95n7rAa3+8c+9t99PPYdw31Z9lnw/u2lFX1p1rH9+c477yR56aWXdjqcf0suuWThPaLr3n///SRH8zSaY3gPMz9m3n77baeL1pNF0Z3mJs83/BytX9iXDPYtz+9oXpVdZ7mfo/GyKFrZlzhnzP533jRC9Nv5nYn9x+352muvJblnz55J5v7Cz3yPetZWpOzYaYSoPxsfJR0ADpZ6GhYbDBdHnrzR5Io6OZqICD9ztKHq7mA/8IKH7cm6RjYdUdvyRMM+4fERbahef/31JPfo0aPuZ+zq4MKNbWFmtsIKKxT+3fz585Pcp0+fwutwEeeXRjResH9Zh+NimWWWcTp8UbRnI9QVwY0gz4Gy/2HD/ormXzSfuZ+RaM1tz2anI6itHdFmhzcxOI6jPojamsd49J/Cou9oxnq8KLBv+T8z7d38RMjtJYQQQois0OZHCCGEEFmhzY8QQgghsqLSzlL090W+xjfeeMN9Xn755ZPMAVtI5EdGXRSkx35U9MGyLzrnmJ/Ib42xV1F/lW0zvgd+d9kAXLM4jiHHOJ8iOLYgAuN83nzzzSQvt9xy7roLL7wwyY8//rjTrb766kn+1Kc+5XQYb1Q2Nq/ea7sbGIsSzTGOx8D5gu3HbYnrHva5mZ9H9QQAR/Gg7UksaQW1doqei98j2Bb87oveI1EiAsZ2cVwbfkczEj2i9yKD38Hf16qkEzNZfoQQQgiRGdr8CCGEECIrKu32wvS/yGQYuTLQJB/VCuL6FmXN4FG9EDb15ebqKktkMm8GaDrllFKE3ZRRf+XswjTzv5/brWyNHpy31157rdMdd9xxSX766aedbpdddknyVltt5XQrrrhi4fdFfV81V0lHguOXXcZRKYhG2qys+3tRNKNGTkdR5K7B91FUZoPBPoncZUz0nsTvx3dadD8eK7h2N1prjZ+xlWurLD9CCCGEyAptfoQQQgiRFdr8CCGEECIrKh3zU9anzP5RLKGP8tFHH+2uQ5/lscce63Qbb7xxm9fx99Xjk8w5TgTjLZpxJgzHB2Afsd8Y+6ueOIUodiW3/mPw93OpCYx7i44FwZIUPP+mTp1a+N2YLs9p9tF5YVH8UdlzpLo73F9l2wLnCs/N6Gwv/L4oJiU6/oH/ruzZch1F0biLjlBCuDxAPcdklHmO6LroXMso5offyfhc0T1Zp+MthBBCCCGahDY/QgghhMiKSru90HzJ5jA0zbE5r2fPnkl+5JFHknz77bcXftdVV13lPq+77rpJjkySkRulGSbI7kL0eyOTaFHb1+OaQLMxV3FGtwmbk/E71JfFcOVfdGcxqDvjjDOSfPfddxf+zaBBg9znbbbZJsmrrLKK06EJnZ8rmqtYGZerTedENK/YJYZthi4Qrh6Mc5rdIZhWHa3x3Jf8HUgVXF1Ibe3gdSJyX0Xp7NhHL7/8stPhe4zbeuutt05y//79nQ6vLXvyQZSOj2PDzOz5559P8iuvvOJ02O/9+vVzuiFDhhR+R3uR5UcIIYQQWaHNjxBCCCGyQpsfIYQQQmRFpYMVyp7AHZ0ifP311yd5wYIFhffjmAP0YTdaSp3jSyI/dU5wiiR+LhtDNW3aNKebMWNGkjlt+plnnkkyj4ExY8Yk+fDDD3e6fffdN8k8BtBv3atXr8Jn7q5gX6y00kql/w777aSTTkoyz2GMj9h+++2djo+0QKKYhCidPec4H4yn4fkXHQ3DZQaKmD17dpJxnpqZXX311Ul+9NFHnQ6fZY011nC6nXbaKcnrr7++0+HvqWdstgpe72qUPT6HxybGMF500UVOd8455xT+3YgRI5LM7YJzpez7LkpZnzx5stPddNNNScb12Mysb9++Sea5PXjw4MLvay+y/AghhBAiK7T5EUIIIURWVNrtheY9NuFFplr8PGXKlCRHlYWxErRZ7KJCdxabNNFkGJ1smzPcLpGrC6sH48nfv/nNb9x1aFaNUjW5+uxDDz2U5Msuu8zp0OT6iU98wulydHUhUZrrwoULk8wm9F//+tdJxvnN/YKujO9+97tOh+mvPG979+6dZDaTF7kfzPKu6hz99qifEVyP//nPfzrd2WefnWSu3I0uMQ5zWHHFFZPMbhTs24EDBzrdaqutVuqZO4qi9Q3fI1FFZP57bIuf/vSnToduRXZtoSuZ329Fc4PX6sj19NprryX5sccec7orr7wyyZMmTXK6NddcM8mjRo0q/X3tRZYfIYQQQmSFNj9CCCGEyAptfoQQQgiRFZWO+cE4H06zxDL5kS8f/b/sV0WfK54UbRanxaJvmk/cRbpK+iz/BvQHs88VffvcJ2V/L/cD+pX5nocddliS//a3vyWZY0TwmTl2YMCAAUnGMutmPnYH43/M/HEoG264odPVczp8dySKBcFxcOeddzrdH//4xyRHsSY//vGPkzxs2DCni9Lscbw2eup0lY4r4ZgL/Fw2Hof/ju8ZlQ15/fXXk7zCCis4HcbrnH766Un+y1/+4q579dVXk8zHKmBM2NChQ50O47n4SASMK+PjVLDf62mjVlF0vAV+juIg+WiP++67L8kvvfSS0+E6yGskjnFeZ7HN8O+i2CCeX1j64JZbbnG6e+65x4rA9WLttdd2uii2t710/sgQQgghhOhAtPkRQgghRFZUx767CKKUt6jS5HPPPZfk6GRudtlEZmL8vq6cIltrp8hdxVWq0fTIZkg2zxb9HZrSzbz5lM2eeOozmmD51GB0jZx88slOh/3HabhXXHFFktmE/NRTTyWZq9lW1U3SGfD8wD5D95VZsZv4gAMOcJ/x5HaeY2VLGbDZP/q7VqbUtodmPRfeh+8ZVWpGVxdXZ959992TjOssuqTMzEaPHp3kQw891OmwbMF5553ndHfccUeS0XVmZtazZ88kY0q8mV+zGq3O30xq60N0Ojv3CV7L6+oDDzyQ5LfeesvpcMxH77RG1yx0I7JLceLEiUm++eabnQ7nPc9D7Eues60ML5DlRwghhBBZoc2PEEIIIbJCmx8hhBBCZEWXCVZoNOYHj7eIjptYZZVVCnVRzE89vtOqpWDWnod9sFHqOaeRI+ib5rRYjNGJYgc4xujll19u87sOPvhg9/mUU04p/G6MR+DUzcjvjmnU7HvG58w95ofbDUsSsO8f2wpPc/7CF77grsM4AAbHJMdDYJxDFOPDf9dVSheUPQm8nlihKJ34wQcfTPJXv/pVp3vxxReTjG291157ueu+9a1vJXmdddZxuunTpyd52rRpTjd37twkb7HFFk43duzYJPOaVNX4LY7PiWIt8dp58+Y5HcZCcYwMwu2CsVj8LHgtjgde2zCej+foxRdfnGRe4xEuT7HRRhslOXoPN5vOfwMLIYQQQnQg2vwIIYQQIiu6rL0+SjVG8+/MmTNL3W/EiBHuc1R9E6nHfVU1t1cZd02UBsuug8gl9sgjjyR5jz32cDqsFMtgRdi///3vScZTv828GZfdHVi5+brrrnM6rCLLf4cpupy+y+m1uRFVBT7ppJOSzGMMr912222TjKZvM7MFCxYkmdPjn3322SRzv+AJ0dHp3lwqoWpur9qaU48Lp1G3F/52Xi8PPPDAJD/55JNOhxWZsS+PPvpod93IkSOTjOUjzLy7+tFHH3U6XCP3339/p9t6662THFXyrhLRe4TB3/744487HY5/fo/gfFt55ZWdDtuJnwX/Lnov4Fi58MILnQ5Pco/ccRyWgOODXWK4zkTvl0bo/DewEEIIIUQHos2PEEIIIbJCmx8hhBBCZEWXiflhH2V0kjv6CTEWJCohPmrUqML78d9hvFE9/uWqpWDWngfTF83iOB+8lq/DPsEUWTOzY489Nslcqh7hWB5Mn8Q0SPYb9+jRI8lcJh9901EK5pgxY9znzTffPMlVjSPoLLA97r33Xqd75plnksw+/DfeeCPJeIQFX4dxDTfddJPTTZ48Oclz5sxxutVXXz3Jn/jEJ5xu/PjxSeb4garF45WJ+aknhgTheAyMqfre977ndK+99lqSOS4K2/O0005LcnQCO15nZnbBBRckuVevXk634447Jhnnopk/yT06pb7ZcSLtgctsINHRF3fddZfTcbwagnGYPHawNAHHduFajqn1fB3G4v3xj390Ojy2iOcQzi8+cgT/DtcHMx9/pJgfIYQQQoh2oM2PEEIIIbKiy7i92IwWmXyxKnB0mjHec8CAAaWfBU14UVogP2MVzOltEbl0+DdEKYxoVv3d737ndFdffXXh3w0ePDjJRx11lNNh+2K//upXv3LXTZ06NclsJuYU3SKw0rSZT5VmN1vu4Fz67W9/63Ro1kYzuZl3ZaDbhF2veHL1jTfe6HToumQ3Jla/5X7HdProJPAqzNMyLq2o8jyDaxZX973yyiuTjBXx+VqeH8cff3yScX6gC9rM7Pe//32Ssfo3P1fv3r2dDtcCTIc28+sQ/+4qubrM/ttP0bjiSvo4Hrk8AK7XUQV+/rtvf/vbbd7fzM+/6AQDrOr80ksvFT5X2bAUM7N77rknyVj13cy7O6NwjEbo/FkuhBBCCNGBaPMjhBBCiKzoMm4vNm1G7qZZs2a1+XdsikPzfHTIXLOoWrZXjagtuc0w44PN7nfeeWeSr7/+eqdDcylnK2AlUjSRm5n97Gc/SzK6OLjq7/Dhw5OMVZvNYnMsZphssMEGToffwW6vqmUHdTTYxtdee63ToSmeTdWf//znk4yuZszgMjO75ZZbkowHXJp5cztmipj5TCN27+B3bLrppk5XNVdJGepxq6ObiNsFxzm7UQYNGpTkz3zmM073wgsvtHkPdGOYefcYZ/Pg3N95552dDucjZ5rh/ONnrlq17qJ1PzqlALPsWIe/L3KXMbwuFoFty+tllKlbFn4OrOzNbi+s2N7sqvr5rdpCCCGEyBptfoQQQgiRFdr8CCGEECIrKh3zUzaugk8XxxiBRk9kx3uyD7ls7E49qahVAtud0+DxM6cSY6VfjsVAHzYzbdq0JHMqfdFp7RhDZObjDzhtGqvBcswBplujbBbHgaGvvWoxBh0BxtVx3AH2IcfWrLPOOknG6rGTJk1y12FcALcvxjVwTBH2NZZeMPMxP3ziez2lLjqCorUC15R6KjzjnOb1EucqV8XGvnz44YedDksHYBXuM888012Hc5PT4DHO54QTTnA6jA3kmCxcC7ituko8XhTzg2OcT2fH+cAxPtH44HmKYHtiW3N8Jlap5u/G+/PaiWsyz2eMp+T+iqpit5fqjgwhhBBCiBagzY8QQgghsqLSbi80uUYHpbFJFF0sUfVivCcfthaZS6O02MhdVlXYbIyfI9cdH0SIrgOs2mzmTaLc1njwIbuzNttssyRjX376059212HlWD4IE/uETcg//vGPk4wuE7N4/OV+0Cm6PNnFiXA7YV+jSZ3dkUOGDElydOgpm/LxPmx6x3GAh+RWkaL1J6q+i3CKMv4dt+fYsWOTvPHGGzsdVujm8hIPPfRQks8+++wks3sM2XXXXd1nnH889yP3VVSRu8quLiSqWIxp3fvss4/ToSuIq9kjPP5xvnHZAgwveOSRR5LMZSawhElU7Z/7AN8VXCl8t912SzKu9/x3zaZrjBIhhBBCiCahzY8QQgghskKbHyGEEEJkRaVjftCvy3E26A+OToTmUu4I+hO5dHbkT48oe0J6FdLeaz7bRuNX+vXr5z7jid1cpvyxxx5LMsfWYD9j/IGZ2fbbb59kHAPz5s1z12EJffal4/g4+uijna5///5WBPYR91fuMT941AinwyIc94bxQc8//3ySsUyCmR8TXFJhzpw5ScbjLBhMxTYzGz16dJK7SlwIU3YNYR3+Xh676623XpvXmfl5hv1l5vvl9ttvL3yWESNGJPkb3/hGoY7BtZvXDKQKa2kZopIQ/L7BuJ4tttjC6bC/uIQIlhLgeBm8lo/rwdgujAn7z3/+467Do0v492A836qrrup0GOdzwAEHOB1ey3FKrezbrrkCCCGEEEI0iDY/QgghhMiKSru9ogq7aCZkMy5Wi8Xr2EyHptSoWiqb9dEUx2b9ruT2KmP655RZ/Bv+DWuttVaS8ZR1M2/qrOe3Y3ot9iWmyJqZPffcc4X3GDNmTJIPOeQQp+OKs0VE7ZA7bF7HdHNMmzUzmzhxYpLR1cxzE90t7BIbOHBgktl8j3OVq0uzSxWJXOxVJSpDEblpI5cYj2ssS8Hfd/LJJycZ12peE3/9618nmVPpEV5nuSQGgn3EczOqnNyZ8LNgW3PaOLY1/x3Om3pOOudSAkXPhs8VVerndke22WYb9/nggw9O8siRIwv/riPXWa3gQgghhMgKbX6EEEIIkRXa/AghhBAiK6rjEF0E7BNF3yCfLovxH+g35rgCTKXkk46RZqU1V+204TKxN/zbsa25T9DXH/nr+SiDKMYCYwmwlPuFF17orsPfwmmxeFp07969C7+LxxE+F/9W/Jxj2juexn3qqac6HbYjH4lw8803JxnHAccuvPzyy0nm/sRTwhmMLeCyBpg+zM/VytOjm0kUm1g29Z3HK35+9dVXnQ6PATnyyCOd7qmnnmrzuw4//HD3eaeddkoyr7O4JnJsSxSvg+3Aa2kV4imRWiwTx0JFsVYIx8FEsaN4H06Dj2J+UIdxPjhf+f68JmL8JB9TMXTo0MLvxnWgI+dh57+BhRBCCCE6EG1+hBBCCJEVlXZ7oXmPTWzRyePo3opOnkW3RlQJup50ycgdEqUGdibsDozSYrHN6nH3oCskqtbKYHXmfffdN8ncXzgGDjzwQKfbZZddSn0Xj5Xot1a1LzsKrJa81157OR26JNn0jm2KY4vdUAi7SdF1+alPfcrpsIIwVyCPqJqrpLNg9+Pdd9+d5H/84x9Oh5XUV1tttST/6Ec/ctfhHObq62XdxzwG0K3O63PV+rK96faNhkiwmwvXLF4/cU3GkgN4WoJZXBICv4/HEfYz/57ofdDKsgWy/AghhBAiK7T5EUIIIURWaPMjhBBCiKyodMxPdIwEwj5ETM+cPn16qb+bNWuW06288spJrqeEOPpV2YddpVLrEdFpw0g9vmj0D2MMgJlPreTjCjCNeubMmYXX4XN+/etfdzqMO4nSPZmyKaU5gm167LHHOh3OnTPOOMPpcGxFMXd4svQGG2zgdIcddliSOd4IxwGf+I5ptHx0TlWPRGg0tb2ee+J9eL383ve+V3gfnMd4hAWvl9FviOZRFCcS9RGm00fvjY6iKJYJ3xVRbGoEty3ek+OryqbWP/vss0l++umnna4oNsgsfm80GivayjIiea/gQgghhMgObX6EEEIIkRXVse+2QWSKRtMmm/422WSTJGOqJl+HaXtc2RRTb9lEHpniIlN0VV0ljZr5o3Rv/q1RX/bt2zfJkydPdrqf//znbd5z4cKF7jqs5jtq1Cine/HFF5McpX9y6mZkdq9qX3YU6ELiNj3mmGOSjC4qMz/npk2blmSem1ghlksx4CnykbuAT5uPwOeqgtur1h6Ry6geIhcLppH/7Gc/c7rHH3+88J6f/exnkzx+/Pgk81qKbjDuS2x3ru6La2lU+Teqzl8FitbJsm6oZnwXw+2Jbfjwww8nefbs2e46XCO5L7HCM67pZv6dGc1Zvmd0UkB7yXsFF0IIIUR2aPMjhBBCiKzQ5kcIIYQQWdH5zu2AyPeOvk2OOcD01/vuuy/JCxYscNdhTACm1vI9o1PH66Fq6bS156nnWbDd2b8cxUJFOkxJPu200wq/Dxk+fLj7/MUvfjHJmDpv5ksfMBhzEPmXORW7q5wC3ipwTvDRAxirMXjwYKfDOTBgwIAkc1ouxrpEcQycbovjjPsTU7N5TletP8vE+tST6h7N28svvzzJ55xzjtNh+6655ppOd/zxxycZ4zii0iCNHhXE7RHFkFStL2vxPPwbot8XldmI+j1aZ6OjRPAzztlVV13VXYclYfCYGTN/cjvH/GBMEY8/nPutTG1nZPkRQgghRFZo8yOEEEKIrOh830uDsJkc2WKLLZJ82223lbpfs04CjlIWq+DqQhp5nkbTM9G9xFVXp0yZkmQ+RRjdJGi25cq+6AaLxgZTNpWyaqb0KhGdyszgmIvGH87HyBTOZSgi6hkXnU3N7VFP6m9U2RjbmufYZZdd9j/fWwPLRvzkJz9xOnSJNFpxOfq7suEGXWVu8jumI108Zr5vIzciVlQ/8sgj3XXnnXdekjfccEOn23PPPZPMoQbY7xxC0FnI8iOEEEKIrNDmRwghhBBZoc2PEEIIIbKiWkEootsSxQfNmzcvyc8991zh32Gcz6677uquq1o8lRDtoRaDUc/xFhhbw/EyeFwPp4ZjzN3IkSOdbrfddkvy2LFjnQ6/I0qjrsLJ6rmAaeS85mK/RGVKMF5nwoQJ7jocD/369XM6LhdTRD2xd60sDyPLjxBCCCGyQpsfIYQQQmRFt/cVYHphs05IFvUTmS+33XbbJF9zzTVOh6nMaJLnFOeqn+wsRCOUPaXbzKfBc1o1poNz1e3vf//7SebqzBtttFGSo0rpUdp21Srbd2ei8IKonAumn2Nf8jq7xhprFN4Dq4FjaRMzP/7qSfFv5XiR5UcIIYQQWaHNjxBCCCGyQpsfIYQQQmRFVg7YZh1hIeoH0xu5vDl+3nTTTZ0O/chFqbVmSqcV3ZN6TvuOjoPAWBA+qRs/8/dFaybOzejYDcVadhy8LiIYa8NxNxiTg/3FsTuoi+Jx+MiRsqfNc4xb2SNOGkGWHyGEEEJkRd2WHy56JLou6svuhfqz+6C+7D6oL6uJLD9CCCGEyIrF5I8VQgghRE7I8iOEEEKIrNDmRwghhBBZoc2PEEIIIbJCmx8hhBBCZIU2P0IIIYTICm1+hBBCCJEV2vwIIYQQIiu0+RFCCCFEVmjzI4QQQois0OZHCCGEEFmhzY8QQgghskKbHyGEEEJkhTY/QgghhMgKbX6EEEIIkRXa/AghhBAiK7T5EUIIIURWaPMjhBBCiKxYouyFEyZM+KiVDyLKMXHixMXaew/1ZTVoRl+aqT+rguZm90F92b1oqz9l+RFCCCFEVpS2/NSYOHFiK56jXbz11lvu87LLLpvk9957L8lLLrmku+6DDz4ovOfiiy9eqHv99deTvMIKKzjdhx9+WHh//v56mDBhQsN/W0RV+hLb7KOP/H+W8PPHPvaxNuVFgWOA/y7q53fffbdQt9RSS5X+fqYVfWlWnf588803k8xjHj+/9tprSe7Zs2fp+2O/RP3w9ttvu8/LLLNM4bXvvPNOkpdeeunSz2LWvecmrmE4j8z83InWNmxbnn9l10RcI8zM3n///cJ7LrFE3a+1RCv7kteTRtcQ7BNuF2xPbCOzeP184403krzYYv81kiy33HLuOlyP8Tp+LtZF63Wj63MZov5sfJR0ALh4cWPiAhUNIhwMvBnBjuQJg4OKOyTqSHzO9mx2cqKejUwR0aSMFgTcOPPLseyLNXqpdldwweIFGNuD+xbbP9rw4D35/lG/RH8Xzel6NzzdCdyE8ssO18VGX0RR22Kf4CbJzPcR3yMaA9Fa0BnU3jtR+/FYxXcVv5vwPnxP/Lt63lvLL798oQ7B+Rs9Vz101ntSbi8hhBBCZIU2P0IIIYTICm1+hBBCCJEVlY75wdiBKDiZA8nQ94i+Yb4OA6OZyFcc+SjRd9veYK1ciOI0iogCo9kXjb5u1uFnjgfCuBaOOcgxzgcp66fnINmiuBvu9yuvvDLJzz33nNNtueWWSV5zzTWdDvuJ41ei58K52owYtK5EPcHmCK6nKEdBzRyEjmtwtB4z+D7gtQDX7iqswbWxHc0Z/g2NxsHguOa1DtuF36dlk0kajaHC38e/Nfq+KE6vveQ1y4UQQgiRPdr8CCGEECIrKu32QthMh+bMsubSyOQamU4ZNEny36HrhE2uUZpgd6dsDYiOdjlE7rKoj/D3VMG03tGUrYtTtq7LH//4R/f5l7/8ZZJnz57tdCeffHKSBw4c6HR9+vQp/O6IVprXuzLozuK+w5CCsjVrIncOuyJxbvL9u9KcK/rN+D6qp+YPvkd4LS3rjue2LiorwO+3aE2M6rVhf9XjOmvlXNQsF0IIIURWaPMjhBBCiKzQ5kcIIYQQWdFlAk/qiZFZsGBBkq+99tokX3jhhe46jFv4/e9/73Srrrpqqe/iFN3In8l+0JzAdqnHj4tthr7u6KgSLpPfq1evwvvjPbkvcz7yYFFg2+DxCGY+dZrHPMY54Blgp5xyirvumWeeKfxuLMXPZ+thf3KsBfavjp5pm+g8qLKxGtzn2O5cbgTHUdkSIm09JxKVtugMas/O615USgOJzq5ksF24jTAeiO9R1J7c7mWP6KhnjW/VGYqLQpYfIYQQQmSFNj9CCCGEyIrOtwkGsPsCicyEaBa///77k3z33Xe769A99sgjjzjd4MGDC+8fmYIj023OpvbIDIom1yhFEtsvaks26eI4evXVV51uxRVXTDKPKXwuTg1tpTm2q8HtHZU1QCZMmJDkF154wenw7zbaaCOnW3vttQu/G4lOyu5KqdIdSdnyDvw5cjWVLUvC/RWdzt6V5l+tnXgNRDcU/75oTUReeeUV9/niiy9OMvfDDjvskOQBAwYs4qkX/d0Mfh+PlTfeeCPJL7/8cqGud+/eTtevX7/S318vsvwIIYQQIiu0+RFCCCFEVmjzI4QQQoisqHTMT6OpxuhDvPPOO5P84osvFv7NY4895j7vvPPOSY7iA1QKv344tRH9ymX7nI88wL7905/+5HR4QvisWbOcbs8990zyUUcd5XSbbLJJkquQMlslXn/99SRjjJ1ZHOeDsXUXXXRR4T0wxmq//fZzupEjR5Z6xkbTbbtSPEkziGJrIsq200svvZTk6dOnO90dd9yR5Lvuusvp8Fk+/vGPO91WW22VZC5Lgus1xvR1FkVtWjYGdLnllnOfcW7gHDIzmzhxYpJ79OjhdBjnwzE/HG/VXrDPzXzfTpo0yemwXAX388orr5zkRk+UL0JvbiGEEEJkhTY/QgghhMiKStvyo9TUsmmQ8+fPT3JkBmc3SpTOXtZMzFUzGz3ZtrtRj1sB3Ss33XRTktm1dc011ySZ0yzRpMu6q6++OslcCRpN5muttZbTYaXisicpdyfQVI1tYebbY+HChU6H6e14Hbqqzcx23HHHJO+9995Oh+Z8dqHiHOM1A90FXfmU8I6kbBkK7Of//Oc/7robbrghyZdddpnT4d/xGMB+ZjcK9uUnP/lJp+O52tkUrfVYubmeMijPPfdckn/3u9853eTJk5PMLj9uX6Ro/JctUWLmQwO4dAWuz7feeqvTrb766klmF+bo0aOTzO6/9iLLjxBCCCGyQpsfIYQQQmSFNj9CCCGEyIpKx/xEpbUxzoBLpqM/H3Xsv8RYkOjkbwb/jv25VTtROKLmN4/8zRxTgdc2K24J+5l9+1/4wheSfNVVVxXeA1Pk8VRxMx9bwvEpeCL5Aw884HSYls2+aE7Nzpko5unPf/6z+4xtijEDffr0cdcdc8wxSV5ttdWcDo8o4bgGHEvc11GfVa1kRdHaF805/Jsodbme+EmMyeE1csqUKUnGGLzzzz/fXYfHy/BYwfVkjTXWKPzuRx991OnwyJOVVlqp8PsaLZfSEWC787sCYxM5tmbevHlJxhgfvpaP5Onbt2+Sozg9jA3idwN+jt5vt9xyi/uMsZUce4Tp7Bjjadb8OB+kWjNeCCGEEKLFaPMjhBBCiKyotF8mMkVHJjc0/eGpt2w+xPtzNczIvFzW7cXfh9dWIbW2yN2Fri5+zrKp/Xwd3odP9UU3Bp7YbeZdmOgaYbMtuqUOPfRQp8OTgv/1r3853Y033phkTCE1M3v22WeTzCZk8V/QdWjmzdpnnXVW4d/hPNpnn32cbr311ksyt31UtTeaY5hazK5yHLv1pB23iva6lPnvy85bXrPQpfT444873eGHH55kdBlzOQmsJvyd73yn8Dm48i9WZufSBJE7pGqurqK1PhpnOOa5T26++eYkc1gC9jO3A+qid2tZlz4/F7omr7jiCqdbsGBBknk+42eu3t5KF6YsP0IIIYTICm1+hBBCCJEV2vwIIYQQIiu6TMwPp36iv5TTOvEzHm8RMXDgQPc58pFHvtoobbQKcT5twT56pJ5njuKwMA6E01bxKAOG40lqHHjgge7zCSeckOT+/fsX3uPaa691OvztPFbQT53zcSSLgksLnH322UnmOBFsxxEjRiQZSxqYxXEHGCMwc+ZMpxs2bFiSeZ5G47wrEpUCqSd1H9uJY2vwaIpjjz3W6e69994kDxo0KMmYhm5m9oMf/CDJeFyBmR8feHyNmdmMGTOSvOWWWzrdxhtvnORWpkM3k6hsCIPvMD4qgo8IQXBMcBwrprNH4wPjbHjdi1Lw//GPfyT57rvvdjpc//me+O7FtHczP9cV8yOEEEII0Q60+RFCCCFEVlTa7YWwyRBNYFG6OadEI2gi7NevX+F17FYra1KuqpurRu3383PiZzatl00J5v5CV9cBBxywyGeqgW6MCy+8MMkbbrihuw77iE33WG30vvvuczo08WJKvJnZ4MGDk1y19NnOBtubq7L+8pe/TDK3G7b3XnvtlWR0Y5j5efvmm286HbpHuMLttttum+Rx48Y5HZr9Od22Cunt9cJzpaxrNprTs2bNcrpvfetbSWYX5jrrrJPkLbbYos2/MfOp7lxO4t///neSuYI79tcOO+zgdJtuummS2e2Kv6cKVfZrc6We8gP43A8++KDTPfTQQ0mOTi3gdxq2U9QuOBeidx1Xcca+ZJcYssIKK7jP6Cblv+Nrm4ksP0IIIYTICm1+hBBCCJEV2vwIIYQQIis63yFakihNNfKlYvwK+xPR9x2dTM3xK3htlGZfBX9zRC3ugWNkkKjNGExnvOuuu5wOj5zg1E1kk002cZ//9re/JXmVVVZJMrctxnDgCcJmZr/+9a+T/NRTTzkdjhU+PRx90Tw+cExE7dddwfmIqe1m/lgQjsfAOIS99947yRx3hve4/vrrnQ5Tap9//nmnwxggvL+ZP0IjGsfdHZ7Tc+fOTfLRRx/tdHj0DPfR5ptvnmQsNYFxXWZ+rpx55plOd8EFFySZY7sOPvjgJO+yyy5Oxye5I1Vbd2tjjePKcAxGRyHdeeedTofxcPxb8f3D78ynn3668Bkxbm/hwoVtynwdH2ExZcqUwudC8JgiM1+qAI+jajWy/AghhBAiK7T5EUIIIURWVMs+GFBPhV10v6Cpls22aBaMUl2j72bzeT2VVTubMqn4/PsiF8/UqVOTfO655zodVlnmtkaXEprSzbypFv+OXVtY6RdPajfzpyAz2AZ8ovyaa65Z+Hfs7swN7At0K5r59Hau0I2VuddYY40ko3vFzLtG77jjDqebPn16ktlMjunSbLJH10nZk6s7i9q8q2fdi67F8cpuKXQrsksaU9+xNIGZ2SGHHJJkdm8il1xySZL/8pe/OB3235gxY5xu//33T/L666/vdF2p4nrROwH7hEsv4LrL5QGQKDX8gQcecDp0I+I70szPFZwbyy67rLsOfwu7KXHeRyVm2CWGZVCGDBnidM8880ySsexJM+g6b2ohhBBCiCagzY8QQgghsqLLuL3qqcD60ksvJRnNgpGLKnJXlT3I1Cx2JUWHnnYGtWdl0yn+hnoyJ9DtddtttzlddMAsHop4+eWXO92ll16a5JdffjnJ7O4YOXJkkrlKLcL9jFWdd9ppJ6eLMkpyzPBCsK/RNG3mszlWXHFFp8OMKzT7z5s3z12HWXk8V/D+7MKZPXt2ku+55x6nw2wUPnwTn6UKruva8zSrSjy6+LnNcC7h2mnmsy85ew7nDrqnn3jiCXfdEUcc0eZ3mZkNHTo0yZ/5zGecDitI17NeVi0Ts+jZ8d85mxTbiecQura4ujp/RjCrj78P33H4PuDxEBFVY8bf+tZbbzkdHmD74osvOl3RwdbNoPNnuRBCCCFEB6LNjxBCCCGyQpsfIYQQQmRFpWN+Gq2WvGDBgiRzdWYE7xmdQhtVgy17fzOf/scphJ1JdDo0+6vx97L/HuM22PeMPmVO60RfND8Lxidge/bt29ddh6ma7FNGXzT3F8Ybbb/99k6Hv51TQ6ueKt1qrrnmmiRzTALGCXAc1QYbbJBkbFNOS8c4AI4lwLHEf4cxMrgOmPm4FI75qUKcD1KmAnU9cTC4lkZr3c477+w+Yzozn+qO6eeYVn366ae763A88LzBdPbPfe5zTofVwHlOYywPx0VVIc6nLbg8RrTOYowWp3/36NEjyVG7sA7HFMd9FZ2gwHMPSxrw+o9rPvcBrrucBo9jgt8NK6+8cpvP1QyqNeOFEEIIIVqMNj9CCCGEyIpKu70isy6a7bCypFmxyZhNcWj+ZbM36th9hTp2X0Um5Sq5uhBO5UfzLJso8RA6NEub+Qqc7FZAkzlX88V+4bbGKsvrrbdekrfZZht33aRJk5J82mmnOR2aXHlM/eAHP0hyr169rAh+rqqVLeho8OBRHiN4AO3w4cOdDq+NSipgmvPtt9/udGiiZ7M86tjsj+4Ddn9iH9ZTVqNVlHHz1zPu8H6Yom5mNnbs2CRvueWWToduL05DxlICv/nNb5J8//33Fz4HurnMzA466KAkDx482OmwL6O1k/u5qussv2Mi1ya6e770pS85HbYTlxTBciA4D828u4yrJeN8xncrz22ci1zhGeH5hWvrHnvs4XRYQgFLH5iZDRgwoPA72ossP0IIIYTICm1+hBBCCJEV2vwIIYQQIisqHfODaazorzSL0xnvvffeNv+d/ZCYYsflviOfe6SL4gWqVkK/5s/lZ8ZYDIzxWRQbb7xxkr/2ta85HR45wSXLMd2c427wnujL55TIX/ziF0mO0vMxxsDMxw5xv2LMAceVoa5ZRxB0JXC+cFwAtg2noheV0Z88ebK7DuNLnnzySafDsTRnzpzCZ+RTwjElv6rp0K0C5wSvPdhOPK8wroNjhR566KEk33333UnmuYLlDb7xjW843RprrFH4zDiuotISVVhLI2rzgdcJ7JOo3AjHzR1yyCFJ5hgqTEXne2KsJa+zOBcxhmratGnuOuxn/C4zv67ze+OrX/1qknfffXenw7hOfmZ8ZzZ7na32qBFCCCGEaDLa/AghhBAiKyrt9mKzWlnwVGF0l7EJHt0oZSqq1ojS4COqlhJdM/1zdc/IvBil8mNaIqcoYjVfNomiqb2sO+Liiy92n2fOnJlk7svVVlstyYcddpjTsSkfQfMvp1TXM166I9huPF7QvYSnv5uZXXrppUnG0gVcjfmRRx5J8nXXXed0mAbMLhY88X3fffd1upEjR1oRkYu9O4CuIR67OB9Zh3/HVdtPOeWURX6Xmdnxxx+fZOxzhr+b+7YI/r6qhReUeYaosj3/Pa6R/I6M3PHRuMb3GF7H6x5WSednRpc2lk8wMzviiCOSXE/V5laus50/MoQQQgghOhBtfoQQQgiRFdr8CCGEECIrKh3zg3BcCvpBWYe+aYwnYR9oVMY78p0WnYDLz8W+2qrF/NSeL0ovjPzV/Hf4mXVRqir2QxTzg2mX3/nOd5xu/vz5SWY/NaZZbrrppk6HsUj8jI2WO8gBLEl/0kknOR2e4o3ta2Z28sknJxljg3hOYbl9TsvlYxaQz3zmM0k+/PDDnQ5jSPhU664S51M2BiJaa1iH9+TYK4ztwnlk5o+swXt+/etfd9dtv/32SeZ+xhhCnvtl51gVjiOJqP1Gfo9E7wouvYLgO43Lt+DazWMav59PmMfPOB64bAz2M98DY8d22mknp8M4Hz4WA78vek80G1l+hBBCCJEV2vwIIYQQIiu6jO2ezaX4mc2eWDEY3VmcYo0mvHnz5jldVF0Uzedsho5Oiu8qVYEjkzk+d3QduxXQjMunMKN5Nkq7P/PMM5PMlUeRHXbYwX3mqs5I5MLMrQpwPWDV2UMPPdTpzjrrrCS/8sorToepsshKK63kPvPfITi/x40b53RYWZzTgHGuVs0F3ZlgW7CLEUsOXHTRRU6HpUJGjBiR5GOOOcZdh64ZnlNl10F2leCaX3W3V+35uEwIrj3s4ovGZ6O/Hcc/r3t4H7zuX//6l7suckXi362zzjpOhy4y/m04jhhss2b3syw/QgghhMgKbX6EEEIIkRXa/AghhBAiK7pMzE898RejRo1q89/Zb4y+xilTpjjd6NGjk4z+bDPvs2T/ZeSXrFqcQS1lsh5/M8byROmYXJoefb6Rj5djAM4///wk//rXvy78O3yWAw44wOkwnoT97tERKlEaLqabVj3moBVgaQE8vsDMx41g/I+ZP0YCT5nmlHgcg3jqs5nZT37ykyRzSi3Gj2HKvZlZ3759k8z9ic+CKfhVoxlrSHSCOMfSffOb30wyx+rhfU444YQkR3Ol0efkdSGacxivGa1RHU0UL8MxONhmUXxO9F6MSpFE7Yfffc899zgdruu8luL9oyMsovWfaeXaKsuPEEIIIbJCmx8hhBBCZEWl3V5RdWY01bJZENNw11prrSTjae9m3kzH1Srxnmzew+/uyqe6N3LiMbYZVxdFE2x0OjSDrhA2c1522WVt6vi7hw0bluTNN9/c6XAcRRVy2Twf9RePl9xA1xDPgaOOOirJWAnazLskpk+fnmQ232+yySaF98fv5nGAbtnIpcnUc21XpKiCr5nZnDlzksxp6nfddVfh3+2xxx5JRvcjuzCxVAjPMVzXo4r40QnvkXunCtTeH7ye4G/n91ujpVCidxrek9sI33czZsxIMlf85r5F8L3LZWWi9R/dqdxGrXRbyvIjhBBCiKzQ5kcIIYQQWaHNjxBCCCGyotIxP2XT3DgmYMMNN0zyfvvtl+SJEye66/r165dkjA0yMxsyZEjhc2AMEMcDRSf1trJUdyPUfMBR7A6DaYqN+tbZj4yp6DfccIPTPfTQQ0nG5+Q+/+EPf5jkPn36OF0Ul8W/HYnaIYpByAFsU0x7N/Ptv/r/a++OcdOHoTiO+7/DwgVYSsVCpUqVOiFmhGBnYGFsD9CpN+h1qh6AM8DKyIDEwAn+E9bPT/CURLSE+PuZjAwhIk6w7Pfsx8ekTu+Bp6enWLbxCd5yEspeo+PxGMs2jke/235f07cy8WJBfn5+Yvn7+zup0xgd3VYkhBA+Pj5iWduDvTe8rYgunaN9bZ+lel62rkwq9V84/Tb2v0JjXcps++HFb+nn7Pd5dXpdNKbu+fk5eZ/u8t5qtZK6l5eXWPZifGz7u9X1YuQHAABkhc4PAADISq2nvYqyQ386bKfTIVq2yqR9l0lvV3WY6jqn6pC/Nx3h/Z42DVKHsNfrdVK33+/PHmM0GiWvNb29zPVp+nTHX7DTjJ5L16bKsgvneCnrVe/bOik65WHp9O5ut0vqVqtVLOtSASGkK/V+fn4mdTql6X130elx+zwpurP5vbDtr2p7LHqv2OnHokt+6P/ncrlM6vRzg8EgqdOlD+x0t9LlLux52nak7f1az4h4vKseDQAAoObo/AAAgKzQ+QEAAFm5/0lw3B07F304HGJ5u90mdTrvr6nR0+k0eV+3273mKQI3dYp1sHEvGgNht/XR99r4CI35sanGm80mlvv9flI3mUxieTweJ3WdTieWvRiSum3r02TejvZF46T0+bxYLJK62WwWy7aN6ZIlHpva7rWP32w7jPwAAICs0PkBAABZacS0lx0a0yFYhlzrQYfdbXq5Dp/P5/OkbjgcxvLDw0Msawou0DSX0no1PbpMarjec+12O6n7+vo6e/wQQuj1erGsK+KHkD5nvdWYq+5QjvK8XdC9/0V9PmtKvD2et6yFfs4umaDH8VL87ZTstdPbk2P/2pEBAABqiM4PAADICp0fAACQlUbE/FhF43yq7kqO8jTmQOeGQ0hTMF9fX5M6+/oSTfslxgD37vRs8p5lZdq5phfblGe7VUxRGp/hnYvuXl63HdebzD5n9XrZ5Ub0+axluxWFFw+kbdVuYeTF7njLMOh5Xjt+l5EfAACQldIjP29vb79xHrgBrmWzcD2b4/39/dangCvhvqwnRn4AAEBW/hH3AgAAcsLIDwAAyAqdHwAAkBU6PwAAICt0fgAAQFbo/AAAgKzQ+QEAAFmh8wMAALJC5wcAAGSFzg8AAMjKfywHmWxJ5vehAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 720x1209.6 with 40 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Noisy images (noisy_test) :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAByCAYAAAC89bCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAr/UlEQVR4nO2de/xVY/bHFzHjkkwzEgopl6mZSEUiKbdKJIUaanSTJpIxEZXRKCZTiZiKKffKfdzvRmQQuXYTpSuKIZeiKH5/zOzHZ33O2U/nfDvHz8v+vP9au3XOPvu797OfvXvWWp+12XfffWdCCCGEEFlh8//vAxBCCCGE+CHRy48QQgghMoVefoQQQgiRKfTyI4QQQohMoZcfIYQQQmSKLQr9YN++fVUW9iNg3Lhxm23qPnQtfxyU4lqa6Xr+WNC9+dNB1/KnRb7rqZUfIYQQQmSKgld+Em655RYzM/viiy/cv59yyinB/sUvfuF848aNK2jfY8aMcdt33nlnsJ9//vliDjOw2Wbfv/CxptF5550X7JEjRzrf9OnTg/2rX/3K+QYOHBjsBx54wPnWr18f7LVr1zpf5cqVCz1sx2abbWZ/+MMfKvTdGOPHjzez3PMyc+bMYDdu3Nj5zjnnnGCfddZZzvfII48Eu1+/fs5Xp06dYC9cuLDgY4xdv4rw1ltvuW28JjxuY9fr3HPPDfYVV1xR1DH07du3qM8XSnKf4Tkz8+eNfVOnTg12586dU/fN5573k8by5cvd9oIFC4L9zDPPBPviiy92n9t3332D/fTTTzsf348IjsnddtvN+c4///xgX3TRRc43fPjwYBczzkaNGmXvvvtuwZ8vlORazps3z/173bp1g3322Wc739ixY4O9dOlS5+Nzkcatt97qtrt06ZL62Z49ewZ70qRJwS5m/CF77bWX237nnXfy7sPMbNdddw32smXLUvcZY/Xq1W67cuXKZbk30+ZZJHZe+Hvz588P9j777FPwcVSrVi3YOMebmQ0ePDjYkydPDvbHH3/sPvfLX/4y2F27dnW+5N3ALD6OvvnmG+fbcsstg/3ggw8637HHHhvsKlWqON+SJUuCXbVqVed7+OGH8+4PKfrlZ/To0WZm9sc//tH9O77g8MXCFwucgMz8ZMj7nD17dupxHHzwwcF+9NFHnQ9P0pw5c1L3wb+HHHrooak+vMg4gZuZtWjRItj4omDmX+74hsWbuX79+s733Xffle2BaeYfgGZmv/vd71I/e+WVVwb7mmuucT58YeSJGYlNjvfcc0+qL8Z2220XbH4xTyYfMyvqJbJly5bBfvbZZ51vw4YNwX711Vedr2HDhqn7vOGGGwr+/WJJHpT8IhF7gcRzxS9/OMlWr1694H3GfDVr1gw23isM3puxlx1+MTrooIOCfcwxxzhf7D87uI0PXbPchzIyYMCAstybycsKv8S88cYbwcaXHeb111932/fff3+w+T8tH330UbD5ARPj+uuvDza+/Lz33nvuc8mDyKy4F8vHH3881YfzJ88nJ554YrDxP9BmZsOGDQs2v1hOnTq1LP/JbNCgwUY/s2bNGre9zTbbBJuvSYcOHYJ94403Ol+PHj2Czfczzs+777678+HLCj6L+N7D/9Djc9DM7Kmnngr23nvvbWnwC9VOO+0U7OOOO875cN79/PPPU/fJJPd+7OVHYS8hhBBCZAq9/AghhBAiU+jlRwghhBCZouicnyTWysnJMTDWjvbGwMRiBuOonEC7//77B7tevXqp+8AYIueaYFw8lozGOQexmPbEiROD3atXL+fDhK1Vq1al7qOUJMfKfx/Gdbt37576fU62w+RWPg+tWrUK9l133ZW6T47RYnwbeeWVV9w25/kgGMf/9ttvnW/WrFnB3m+//ZyvadOmwebr3L59+2Dfe++9qb+db+yUI6/A7Ps8pKFDh7p/520Ec6U+/fRT58P7ChOQzeLjnPMs0njuueeCzWPi66+/DjaPwa233jrYX331VUG/ZWZ26qmnBptzJXDML1682PkwsZJzJcpVjJDk+lx11VXu33/9618Hm8drocUBtWrVcts333xzsNu1a+d8nTp1Cjbm+JiZ9e/fP9iYJ8U5Uv/6179SjwXHQLNmzZzv6KOPDjZeczN/3f/617863wUXXJD6e5zojkyZMqUs+Vv//Oc/zSz3OPEaDRo0yPkwZyuW64K5r2a+MIiT1XHsYO6TmT8vOD7uu+8+97mf//znwf7973/vfDiOYs+wadOmue1GjRoF++2333a+WL5dDMwzS0MrP0IIIYTIFHr5EUIIIUSmKDrslYStsBTPzOzLL79M/c7hhx8ebC7DPeyww4LNpXOsI4Bg+XKhOkIMltquWLEi9XOl0Jcx86Eu1kHAZUIOlTRp0iRaPr2pFPP3NWnSJNgzZsxwPlymHjFihPNhOT2GWszMevfuHWxeWsdl99tvvz3YuFTKXH311W4bNYc239y/72PoIFaCzxS6PJ5vH+WSLfjtb3+b998xRB2Td2A6duwY7Fi4gMFSY2bUqFHBxnN/4YUXus9dfvnlwebrgmEm9uGyPOtsYaicy49Ro+rMM890vpiOz9KlS3PCGaXg/fffNzMfWjIrTg8GwXAWh/UQLIc28/ccg/MZljbzcWD4pXXr1s4XCxniuOVrgGENDnPh9eBx9f9BUjrOx8ISGQiOTw4voYzICy+8kLoPfsbgeeH7GcPOffr0CXZsTPHzGsNerLuDcKgupkGF453D8igBwPdFEkJVqbsQQgghxP/Qy48QQgghMoVefoQQQgiRKYrO+UnibJzj85e//CXYnNez4447BpvlslGivU2bNqm/y60iMBa5cuVK50O5bPwcy4RjTBT7i5jl9h9BML7Ipft/+9vfgn3yySc7H7ZE4DYH2FIiX7uAcuT8pOUPYGyVJdIR7pMVy33AnjAMnuutttrK+datWxdszD948cUX3edQUp9ba2BsPdZeIhbf5rGJcv4M9rmbMmVK6ufKBV9XbBOAOVtmuXlbCLZS4JYIFWXAgAEFfS4mpYH99JIy4oSdd9459XvYzmDRokXOh60wiunVha0ASskuu+xiZmafffaZ+/eK5h/Wrl27oM9xrgaOJS57xjwiPC7sk2bm2x6wZATmOt5xxx3Oh/3zeNyi/AHP/7E8n421ZSmHbEGlSpXMzPc3NPP5rpjjZualPB566CHnw3YksfHwxBNP5D2OfGCe3gknnJD6Oczffe2111I/FwNzg8zMhgwZEuxi8i6R008/3W2zDEQ+tPIjhBBCiEyhlx8hhBBCZIqiw1533323meUu5yf/no/bbrst2LiUbuaXrWOdwHnJFbuLs69GjRrBxu6/vOSK5dLr169P/W3mP//5T7B32GEH58OldS6zw+VEVj1Fxc18S3/lKI+uXLmymeWqI+Oyf2zZkTvfY5ksq5LiUi0v/+L5fPLJJ52PVV8TTjvtNLeNHci5BJOVTivCFVdc4baTsIRZcUu11apVs5NOOmmTjycfyXFwefJRRx2V194YMaXmPfbYI9gcQsKlcQ6joJI6hisw7Gtmtu222wYbl8XNfGkzh9gvvfTSYL/88svOh1IM22+/vfNxB3gEQ69YSm/2X9mGmCTHpvKzn/3MbceUlGMhHZwvWX0XrxHLJVQkzMbXK1ZujL/NaQIoRcJjjENdaWCXczM/rpiXXnopGhavKMl14d9GiRZWsMbnyODBg50PFeUxzcLM39+cGsDq5AhKkXC3AwTHB5eoF6owzuOjW7duwebOBwiX52N4Ne33Ys9NrfwIIYQQIlPo5UcIIYQQmUIvP0IIIYTIFEXn/CTddGM5Pgx2ceX8CO7wiqxevTrYHPPFPJ8zzjgjdR+YX8LS/p07d079HsIdoDFGyT7ORUH+/Oc/B3vPPfd0Psx9KlU7jY2R5PpgSamZz2/BWLCZ2QEHHBDsnj17Oh9eS4zXm3mZAS4Tx5wALGOOgTk+DOf44JjjnA3M54id97p166b6+HvYAf3NN990vo8++qhs7S2S4+B7DHMpOOcuVhKK5a9cJouyDcwll1wS7LScLTOfk9C2bVvnmzt3brC5dBlzflBig7cxl8zM5/8xeM4ee+wx52vVqlWw+VrHpCBKAeeCVKtWLdjcqiU2frELOpeU4z3O+UA4Xp599lnna968ebAx74nzIDn3BMGxyTlm+PdUr1491ReD2+XgXIP5U2b/ndvKkfOTHCu2UDHzsh48X2IHdrTN/HzNXdCxNQvnT+I54zkCO7njc5HzZFGaBvM4zXyeJ/tw3PI9g8++li1bWhrciZ63kQULFqT6ErTyI4QQQohMoZcfIYQQQmSKosNeyfImhxYwlIHKlWZ+Sa+YsFdSim2WWzp9/PHHB7vQJVD+bSw9x2V2BsNcTCzMxeAyHYYGzNI7cpvlhtZKDZdxI3PmzHHbWJLMoTtcZl26dKnzYVkkh8twiZRLe7/++utg4/X78MMP3edQRZzBEmdUOzYrfOxwZ2VWKUVmzpyZ6rvuuusK+r1NIbZ0zGGuQstTWTn52muvDTaHibBUlu85VG6eNWtWsFkd/E9/+lNBxxUbZxx+iZWs429weDz2+8uWLStLGDM5b7EwG4eocGxhObSZ74LOEhUY1sPwB8MhaQx74T3NociDDjoo2GvXrnU+DKtxWAhV4YtJBcC5FVMNzHLnjR+SWAcDDi/FQIkWVII2M1u+fHmw+ZmyYsWKYOdTt85n83yM42Px4sWpx4jSCma+JB/TWcziHeA/+OCDYMfU2xl+NuVDKz9CCCGEyBR6+RFCCCFEptDLjxBCCCEyRdE5P9zNPQFjvhznx87EHGvE+B93UscO8Jzzg3C539577516LAh28OXYJlKq0vNvv/022Nttt53z4Xng3+vWrZu99NJLJTkGJJEI4BycAw88MNjcOoQ7NiNHHnlkQb8baweBZcz5PpvAeRkIdyXmzt+F7N/Ml5TGcnyY2Fjq169fzvkuFckxcuuUGHgeY9cFcwnMzOrVqxfsWL5cLLcA4WsWG++jRo0KNss0nH/++cHGvCQzn7vHOTFLliwJNneUx2M75JBDnK/QLvXFkrRl4PN17LHHBptzcHr37h1sbDFi5scE+wrN+6pZs2aqb5tttgk25tiZ+XYzPFaw9VHr1q2dD3OarrnmGuc766yzUo+F83wK5eOPP67Q9yrKiBEjgs1yDrGydPTtv//+znfEEUcE++9//7vzYXd4noNwnygHgOPNzKx27dqpx4x5e3wNMN+J876wzQfnRGKO6cEHH5z6e5xjdM4555iZf8YzWvkRQgghRKbQy48QQgghMkXRYa+GDRuamdmjjz7q/h07xsaWTnkJD8ucsbTdzKxJkyYFHROGufg3UFmSVSdHjx6dus/zzjsv1YeKqNyNOsZVV10VbO6kjrCacK1atVwX7VKRqC6zEiiW07I6K342FubikMPkyZODzePj008/DTb/ndjlt3///sGuX7+++xyWunNX4lhoC+FwVWx8dOrUKdjcRR2XY3lpeN26dWVTeE7K8VmlduTIkcHmsAPKHMQkD7CLvZnZ+++/H2zu2o3XvtCO9zfddJPbxuX2QYMGOR+eXw47YUktd7xO5i6z3BJ5LNdnBVpUip4+fbrzlSvslYT2atSo4f4dy7gvu+wy58PzxPcfjoEYfL0wPMgKzxgSx7Ba06ZN3ecwZIXSFWb+/sC52syPFQzFm/mwFx8zqtAXky6www47RMMkpQb/dpRhMPNl3XzPbL/99sHmLuio5M3PGH6+poEhbQwxm3kVbkxLYWLhbr6WMfkPlMLhc4TXGeUUzL5/VqiruxBCCCHE/9DLjxBCCCEyhV5+hBBCCJEpis75mTdvnpnltrfAuB2WPZr5XAouSWMJemSvvfYKNkqpm5ldfPHFwebck7QywVgckmObKK/PYGz9qKOOcj4s8eMYNsq+c7kfxiaxJDHt+EpBkhuzcOFC9+/YEZfl05944olgY8zVzEsOJGX0+bZ5n40bNw42X6PXX3892CjXzp2Ok3GZD/Tx9apTp06wn3nmmdR93H///W4b83yGDh3qfKecckrqfspJ0lYDO2ybmb3wwgsFfZ9zZLCrO+b4mPm8qg4dOjgf5utwGwm857Bs/NZbb009Lm590a5du2Cz5D3eRxdddJHzYT4H30/Y4oFJymbNcnMB33zzzdTvbQqJ5D+3wYnNZ5hDUmiOT779pIEthfhY8Hxu2LDBfQ7zIjmnBlsk8DyO5z2WixM7fs4FwRxGlsD47rvvypKPl7QWOeaYY3J+L4FL97Gtw/PPP+98KPvC+ZoDBw4M9owZM5wPy+AZzNnCHNpYTlssn+/6669P/V7sHHNeGT73ORcP85sqglZ+hBBCCJEp9PIjhBBCiExRdNgrIbZMPXbsWLeN5Y28VIVLgdh52MyXcvKSF8LLnrjMij5edkRiYS4ul8SwDXYeNjPbaaedgv3qq6+m7pOX93CZcNKkSc7HYalSkRZKwyXQ9957z/kwTLls2TLnwzAYK3zi8j2GuRguxcZwGYZzuLw8BobIeByhmi+rpaKi7fz581P3z+cRw2BYxm9mVqlSpY0dboVp27atmeVKRHDILg2UEjDz9zgqu5rlShIguBy+zz77OB+q6D733HOp+0AFWgy/mfnxwwrkuEyOZbJmZk899VSwWYUYYYVnVMHu2LGj83EZfqlIriGHLnA+Gz9+vPNheDAWkkCleTMfGnr55ZedD1WjuXwe56zu3bvn+Sv+C0qDMHhc2K3czF8H7vyN15K7hGN5PksFIKwqzuelVCTjnJ8/s2bNCjaHytesWRNsVjbGUCGHRdEXC79jCoaZv/djz1qEQ1s45ljiA/fJzxSE01sQHn84J+E4NcvtFJAPrfwIIYQQIlPo5UcIIYQQmUIvP0IIIYTIFEXn/CSd17kVwCOPPBJsbolw9tlnB3vrrbd2PszzKaZz7x133BHs2bNnOx9K5cdKQ1GyH7sLm/m8ApQTN/Ox2sMOO8z5Yh2FMQ7K5bsIl5TusMMOZSnB5Jh3AsZPuY3JhAkTgs0l1bF9x0r18RxynBpL3bE0db/99nOfww7XW221lfNheTufd8zz4TwJzIXYdtttU4+f26bE2mlwS4JSkuThFJrjw3BZOpaKcxdolGpo1qyZ8yVtNsxy21YUCpbSDxkyxPkwh5DlFk477bTUfaJUAucEYHue6tWrO99xxx0XbO6kftlll5Xl3kxyfbh1D8pJ8DjHNiOx8m/uXo55PrFO8U8//bTzvfPOO8HGnJ8bb7zRfa5bt27B7tOnj/O99dZbweYcydh9hPloKM3BcHk35vFhV3Wz/85n5WhvkXbPY4sefH6a+fmGc4Xwmcm5o5gvyvl2mLfI8hwoHYNgDpGZz/Xj69W5c+dg8zyLzwO+nzFv7pZbbnG+RL7DzLeHMvPzTEXQyo8QQgghMoVefoQQQgiRKYoOe2255ZZmlhvead26dbBjZY+8RDxu3Lhg8/Iehko++eQT58MS6JNPPtn5eHk2gbulo/IthrLM/BIbq7/iMjgvLw8bNizYrEL87rvvBpvL11FpGJeTzeIq2KUgVhaL15W3Wa0brwmqs5r5Tr58HbA0e8qUKanHiWHDxx9/3Pn23HPPYLds2dL50hS/zXy3eQzPmuUusyIYYsCle/49Xsbt2rVr2bq6J+HmWNiBiYWFkxC3mdmKFSucD5WNeck81h1+1113DTZKJfC9v2rVqrzHaObVprmkFhWfWUUdO7JjOTTDoVfcRhkIM7PDDz88dT+lAMNcZl46gefZHj16BBvnKDPfmZ47q//mN78JNqpzm3mlYSZNYRevMYNdwc38uY0prMfU+ZcvX+58KAFw9913O99dd90VbA4ZlUvhOTlWnksx1MXjCJWbOSSGcx9LrWCndQ5vYtiXzyfOmSj7gmkHDF9LniMQTFnAZ6SZ2bnnnhvsfffd1/lwDuZ3DtwPjm+zeMf5BK38CCGEECJT6OVHCCGEEJmiwgrPrBCJxJZKMfTD8FI0NlVj9d1Y1QyHPRI4pIJhL8xUN/PLxldffbXz4fI5gxUyvPTMlRRpcAiuadOmBX2vovDyaKFwaAuXrXkJG5d1K1eu7HzcUBPBiisML3EoBCvkWL03VjW4fv36YHOYC5eJuaIQwwMnnXSS82Hzy0KbRpYSHne77bZbsJcuXep8sZAg+jBsaeZVz2PfGz58uPM1bNgw7zHzEjqGr1CxnX0xMHTG8Hyybt26YHMFGd5/H374YUG/vakkzSxZ3ReVjnlsoeJurLHkP/7xD7eNYxura8z83HfooYc6H1bbYPUtNyjFakiea2JhV2xszeBneexgxRY3WcVr+UPdm8nv8H2Cz4oqVao433bbbZfz/XzEGvLyPIghVFbnR3VrvLdxDmRY3Rz/Bn6edurUKdhcCYxjjCvBMMTHSuGo7M3PlEKurVZ+hBBCCJEp9PIjhBBCiEyhlx8hhBBCZIqic35uuOEGM4uXszPYefnMM89M/RyWvJn5Dtgcu0W4FBBjiBj7a9Gihfsc5hKwSm8sZoiKtpyvgiV2WA69MWKx73KR5LhwvJTVfAsFlZo5HozyA3ydMQ+EO/dinhaqBbNSLI4rLrWOKd/ieecyyzlz5gSb1cdROZZLfrn0Fvn8889TfZtKIj3AuVgc30cwryJ2btiHnc4ZzDnC3AUzs3nz5uXdP4PXuhglV+wUz2XLWG6LZfzFwLkM9erVy5lXSgHn+iSgGnMs14oVdlHlnNXKURKA851QRZqlAzA3cfTo0cFmFX9UyOc5EaUguDs7S36kwTl3COf7oazGDw3Kupj58cn3F+YNxvLtOL8PJShWrlzpfDjmOZcH1d1RzmGLLfwrAl5L7s6OitI8fjHPh3NvMc+HxyZ+lqVj8LP8DCsErfwIIYQQIlPo5UcIIYQQmaLosFdauAuXYFlx+fbbb0/dHzao69Kli/PFQl1ImzZt3DaqxcaW1rEBJJcaFhqGOv/88902luNxiAOXBXn5HJeUuRy0ELXKitC/f38z+76sNgGXvnGZfWPgtUz2nYBlnbx8ieXX3AAVQxWoPMrlrbiMy2W+eC1joQIuoUbFZ242u8022wSbJRrat29vaXC5ZilJwl2xv5HLv3G5O/Y9DlWOGTMm2O3atXM+vP9Q9dvMl9tiuTmrw2KDUg6Vo1wGN07FkDRKWZjFJTgqyty5c8uiCjxw4EAzM7v88svdv+O9GQtTclgSy555DOB+eCzjuOewDUpDYPk8h5ZQfZ1lQjB0werS06ZNszRw7mYFfGyszeMWxwSH+GLh6lLATVNxm+dLPLeoSm3mrwPLp6BaN8/d2Iycla87duwYbE4jQVBhHL9j5qVI+vXr53y4zfMMStOwgjrCSvKo+PzFF1+kfi8NrfwIIYQQIlPo5UcIIYQQmUIvP0IIIYTIFBVub8Fxu4kTJwabWwFgHI+712LcrmbNms6HZbjc0XXChAnBTjrN5wPj/Jw7gF12uZQZu67HciEYluJHYu0ZrrvuumDvsssuzte2bdvUfZaCRo0aue1YOe3mm3//vswxX4yvc3wbcz+WLFnifHjusZ2FmS+NxVg3l5fHcrsQzD8w813Be/fu7XyxFi4Iyx1gzg/nu/Xp0yfn3JSa2Pjk9gx8r6YR69jM9zTnR6Wx++67B/vSSy91PiyNvfnmm53vscceCza2VTAzmzx5crBfe+0158Mx8uWXXzofl2cjOF55jMTyIzaFRMoBS9TNclvfIJjDwnIPuB27V7htEF5LloLAXCe8RpivZeZzQLHVipnZjTfeGGzO8YnlXeJxcZdw7HQ+duxY54u1PImNgU0hmd9YEgHHMef8IHzPYm5lMbIo+Iw+/fTTnQ/3g3Mr7x/zQ++5557U3+LnIOZhcS7s119/HezYsxZzlphXXnnFbfMzLR9a+RFCCCFEptDLjxBCCCEyRdFhr6TElZfDnnzyyWCzQvAnn3wSbAwzmMW7vCOTJk0q6jgTsHy5Ro0azhcrbeRlceTVV18Ndp06dZwPFTAZ/L1dd93V+VCpE8uozfwyZylJQkq1a9d2/47lkthV18zstttuCzZfk27dugUbS9TNcssUkVjX9caNGwf7iSeeCDYvgdatWzfYqCJs5pf8eTkW//annnoq9Th4POA1YqkApFq1am571qxZOSXDpaJr165m5pW2zcx69eoVbFSHNfPyCzFYlTUmbbFo0aJgc+k0gmX2HNpFmYs33njD+bBEnsM0vJyP4JzVvHlz5+vQoUOwWSEbVapZ1Xbu3Lmpv7cp7LHHHmaWK/9Rv379YGPZsZm/tigpYOavM48/vFc5jIhg528+Ngw3MklXgHzgnMHEQjoxH4YmedzGrlcsjLMpJPMbh5hRxgBlPMz8XMTSJzjfjBw50vlQGXrdunXOh/PAjBkzUo8X7wV+9hSqto7PCbPCw3P8OQxnsXQFwmGuREoGQ6CMVn6EEEIIkSn08iOEEEKITKGXHyGEEEJkiqJzftK6OWNs9cgjj3Q+jLtxfkesnBHLqjnejOXCWPZuZrbTTjsFG0t0OV6PnbmxG7RZPOcH203EcnwYzPPh8kWE99m1a9dovLOisJx8Ap5bzk3q1KlT6v6wbBVtM3+N9ttvP+fDMcB5DFheiyXHXLKatAMwyy2zT3JhzHKl8GPXGeE8LMw74ZJqhMvA27RpE/I5Sg12yE7jxBNPLHh/WMo8fvx458Ny2L333tv5sF1JrKwa8/Eeeugh58MYPssTYG4G569gjgLnHmILm2effdb5ME/ks88+cz7skF6oNECp4LJx3k6DrwnKgfD9UahMBIPzNeb8xPI7rr32WrfN7U9KAbbaKKYU/Pjjj4/eyxUlmTt4HOMzAHO5zLykAT6nGMzxYTCnjuFxhHl6eG9zjk/16tWDzfIXV199dbBjeZzFgPMA5nWa5eZ2Ikm7o/fffz/1M1r5EUIIIUSm0MuPEEIIITJFhRWeedkYO2mzWjKGm3AJ2cyHKzgMg9vvvPOO8+EyPIe9sDwOl1V5CXTlypXBZnXpSpUqpX4Pl0Zr1arlfPjZjz76yPlQlZTLowvtIl9KkhJK7kwfkxXgjuwIhg64tD2muInLlxzyw1AXKinjuDHzpcscoim0tPzNN99021jCjercZmYXXHBBsPlvxc7V3KX4kUceKUsXcLPvwxkzZ850/46K3axiGxt3eN5Y7RrDjiwfkBYaN/PdqnHOQLVbMy8RsH79eufDrvEYOjPL7RqeBis1Y6hkiy38tIjjiUuLOVxeKpIQJocd8BqxNAPOYSxhgCq6rLCbtn+Gw2Np4bI1a9a4bezczmEu3EeDBg2cD+dZPH6zuNov/g3c9RwlRZgdd9wx1bcpJKF1TrtAWMkbQ8esio3hbQzpMzG15GbNmjkfzp/4bMcwl5m/N7jrAt7PCxYscD4srY+lcHBZ//Dhw4PN8yz+fVxan3Stb9q0aepvaeVHCCGEEJlCLz9CCCGEyBR6+RFCCCFEpqhwzg930sUY5fz5850PO+vG4pBNmjRxPiwF5DwC7PaNndvNcvMAEjiuyrkRCP5e0tIjAcucOUaO7SA4LwVj2Fwyy3kNyNChQ1N9m0JSsh/L8eHrhaXonJ+DUvWcQxXLJYjlEeHv47nl/Q0aNCjYzzzzTOo++HsYK2Yf5vksXrzY+WIl/yjLwDkozZs3L1tXd851SsD4PueoxK4Ltks48MADnS9WHo3tEq688krnw+7VN910U7A5twX337JlS+fD68s5HZjHxy0ekHbt2rntk046KdjcsgZLeJlydQJPJCYGDBjg/v2LL74IdqwEOgaW/Jv5McA5TYMHD07dD+Y74jXCHB+GWy7gb2MbESaW4xODc3ywbQrmdf4QcHslBFvwbIxYng8SK9vnZ0qPHj3yfo6frXhfYnm8mW/7hPeTmc/z4bwebHF1wAEHOB8/e5GkhYVZ7vM0+dtj+ZVa+RFCCCFEptDLjxBCCCEyRYXDXtjF3Sx3KQs5++yz89pmZueee26wucM7l4qngYrOZn4pFZfp2rdv7z6HXcJZ8ZI7O6eBpbtmflk/pv6cKFDmo2rVqm572rRpOcqopaB79+5mltt1GUMHDJYwcvk6lqxjZ2Azv5yJpddmXvGZQw7I0UcfneqraAdoXDplUI7g4IMPTv0cLy9jWPTQQw/NOZZylbonY5ZDTRjqwnCxmS8bZ/VrVKJmBWY8p6eccorzYTiLO7KjYjfem6z6jZIYOEeY+RAIL71jmDEWSmMFZCxD5lJt3Gal70aNGkXDxhWlRYsWZpZ7b8ZCQ48++miwWUrjkksuSf0eKunz/YDzFM/dKCmCoUEMf5j5dIPYc4I7sMeIhV3x93lsYniuUAmMUnHHHXe4bRzznCaA4Z4hQ4ZU6PdYOgDvo0MOOcT5cBvnfy51R26++eZUH19LfNZOnDjR+W6//fbU/SCc+oLniEvaMTychlZ+hBBCCJEp9PIjhBBCiEyhlx8hhBBCZIoK5/xwHgXG32Ly9gyW+KV1GTcz22uvvdw2trvgODx3lU8488wz3Tb+DVjWa+bl/Lkzd5cuXYKNHabNfLk3l0NjuTSXFqI0OOcQHH744dHS6orC+QQJmA/B1xml1rGTs5mX2+fzEivXx7wQ7sKLZdNYtlq5cmX3ubvuuivYXGrbpk2bYHPrFSx35TwJjk0jmN+EOT5mvlUDd3KO5TRtKpzrk4CtHO69917nQzkJlKQw8+M8BreeQQkJbp2CuSeY48ed7i+88MJgYysRhr+H28uXL3e+iraNwXJ2lvQfP358dN7aVLjbN+ZZsKTH3Llzg835HjFwHsD5y8zfZ+zj7QTObcE8H8yJNPM5k7HWEwyOK2x7Y+bvR+78HZMtKDfY3sgs3nW9HHmBxZTTJ8SkaWJ5V6eeeqrbvvXWW4PNkjMIz8/YHf7OO+90vtGjRwe7kBwfRis/QgghhMgUevkRQgghRKYoOuyVlFO2bt3a/TuGuh5++GHna9u2bbA59ISKwVwGieEmLJE188unSdfcBCylvv/++4PNJdzTpk0LdlJamoCqw9ztG2E1YSz/5DL4qVOnBhvDXAyXiS9atMgWLlyY+vmKkoRDrrvuOvfvn332Wep3UMmblz2x83KsbJW/h6WO9erVc74TTzwx2LjsyV3AW7VqFWwucUbJAVxGNfPjCLslM1zqziGytGPhvzUt1FgKknJSXlbGbsgc2sLl6KQTcgKGfrlLMy5/s3RBmiq3mdnTTz8d7GXLlgUbu6qb5Za3Fwr+9ooVK5wPVWa5NBbDtHz/ffXVV8Fu2LCh8y1durRs0gVmuSEkDLFxl3AMFXKYGf8mns/ws6x8fd999xV1vGZmJ5xwgtvGuauY0BbKMPAzBX0cWo4pusckK1g2odQUE+bCEDY/mzB0x2H0f//738FOVMITsJye0wbSzhnLX2AYkc8t/g2sNo/zDINpHjw/Y6k9PlvNvEQDE5NrCd/f6CeEEEIIIX5C6OVHCCGEEJlCLz9CCCGEyBRF5/wkuT4ck8cyOu4EGyuPwzJSjK2bmQ0fPjzYXDKLHeA554c7wyawVDfmmnBcFVspYBzVzMdjuQ1G48aNg80xUYynY6dtM1+qx3kvAwYMKEsn8KQckWP02LqE8wMwT4r/vlg7iFj3dITHB8ecE7i8GvNsWHZ9woQJwebYM/49nPuEpbyxHB8et3j+OFdr1apVObIKpSIZs3x+MdbPvsMOOyzYsdL2ipa88jjH/COUqOByds7XKRRsNTJq1Cjnw47lnBOD21iqb+bPH7du2HnnnXPun1ISGys8XvGei41XlpOoW7dusPnewWvLLXlWr14dbMyXOeigg9znMDcpTYbELLflyNtvvx1sbqeEeW0HHnig8+HYjD2n+FpyPlepWLJkiZnlSsBgnhnmUpr5Fi44R22MI444Ith8r6OsR762O/lgyRKUaBk8eLDzYbsQfD6b+XmX55mePXvm/ZxZYbk7Zr4djpnPf0tDKz9CCCGEyBR6+RFCCCFEpqiwwjOXviKssItLp6yai0te3IG30G62rPBcKNylGHnxxReDzeXsGOricFwspINl97wsiMvbrPBcrk7gyRJwrJyVlyhjJYuzZs0KNoe9sFs0hsDMvNwBqxTj0ir+dr9+/dznsEQSy2DNfAkmhzdjnZ1RqoBDWximwdCtmS/n5VDB7Nmzy9IF3Oz78lL+TQzL7L777s6XLMmbxUNbPK5xmZmXmAtVUsZwNV9PlB3gMYjHyaEEDHFyOBwZMWKE28bzEJMj4I7vH3zwQVnuzUQ+gNWjUU5i1apVzodK3gyes/POO8/5UA06NgYeeOAB50srW+frj+HHAQMGpB4X/z0Ydh40aJDz4fOHy71xPmNVYwxpcnpEgwYNciQQSkFyz8XkSh588MGS/Fas/Btp376920aldyyD55J4fC5iiodZXGKA53wEQ3DTp093PlSk52NGeA7CLvJpaOVHCCGEEJlCLz9CCCGEyBR6+RFCCCFEpqhwzg/mrzD77LOP28b4H5dZItwSAeXvWao7BsZWMV8H5e3NfN5Nr169UveH5bl8LFzmuuWWWwb7m2++Sd3njBkzUn0/FEnHaD5OjL3H8lP4OmNp6hlnnOF8sXjw7Nmzg835KphfhbkfnAeCpaIshb9hw4Zgc+7O/Pnzg81xYmx98cknnzgfdh/m7todO3YMNpfPcky7lCQ5DNymA7tcc04HdlbnDuLYNZk7UsdKSdevXx/sLbZIn2Kw1QbnCWIeGIPjh9ucjBkzJtixDtGcDxTLJ8P9sLQF/l4pSa7l4sWL3b9jfhl3rceSfD7OWB5Wy5Ytg12lShXnw9woLG0389Idsf1zDl7acfHYxLJ4LoPfZZddgs3PFJxbUcqBv9emTRvnW7t2bepxloI33njDbePfi1IdZmbdu3cPNs6PZmbDhg2r0O/jb7AEwI477hhszJvr06eP+1zsOsfkFfA64Pxg5vONqlat6nycB4bEnilJjmmnTp1Sv6+VHyGEEEJkis0Krczo27dvYR8UZWXcuHHpinIFomv546AU19JM1/PHgu7Nnw66lj8t8l1PrfwIIYQQIlMUvPIjhBBCCPFTQCs/QgghhMgUevkRQgghRKbQy48QQgghMoVefoQQQgiRKfTyI4QQQohMoZcfIYQQQmQKvfwIIYQQIlPo5UcIIYQQmUIvP0IIIYTIFP8HhmBzvns3A5QAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 720x169.2 with 5 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Real images (clean_test) :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAByCAYAAAC89bCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAANWUlEQVR4nO3de4hV1R7A8TXD5PTUMrIHYU44WBQo6SSp2MvKMDHDtCwkKwwGS4rwn6LRpsfUWIhOA2XmZJkiY2qolZklRTFBFD1QCyxfmJWlk70sm/vHvf3u77d0b/c5c/Y5417fz1+/ddeafRZ3z5l+rmdZR0eHAwAACEV5qTsAAABQTCQ/AAAgKCQ/AAAgKCQ/AAAgKCQ/AAAgKBVJG9bW1rItrAtobm4u6+wzeJddQyHepXO8z66C72Z28C6z5XDvk5EfAAAQlMQjP/9qbm5Oox84gtra2oI/k3dZGmm8S+d4n6XCdzM7eJfZEvc+GfkBAABBIfkBAABBIfkBAABBIfkBAABBIfkBAABBIfkBAABBIfkBAABByfmcHwBI28qVKyWePHmyqWtra5O4urq6aH0CkB2M/AAAgKCQ/AAAgKCQ/AAAgKBkfs3P5s2bJb788stN3a5duyRev369qfPbAkjPxo0bTfnWW2+VuKLC/pn6559/itInANnFyA8AAAgKyQ8AAAhK5qe9tPLy6FxvxowZpsy0F5Cun376SeKJEyeauv3790t83333mbp+/fql2zHgKNHY2GjK06dPl9j/3jz11FNF6dPRgpEfAAAQFJIfAAAQFJIfAAAQlMyv+dm0aZPEO3fujGzH9tns8NdvzZw5M7JtXV1d5M8hXfX19RJ/+umnke0aGhqK0BsUw6pVq0x50qRJEo8cOdLUtbS0SNytW7dU+3W0+uKLL0y5rKxM4u3btxe7O+Lvv/82Zf23ddmyZaZuzZo1EldVVaXaL42RHwAAEBSSHwAAEJTMT3shm3KZ2ooT93NMgxXe7NmzJW5qapLYn9Y47bTTJNZD+ej6tm3bZsp6enP+/Pmm7oQTTpB4+fLlpk7/Tjz77LOmrrKystP9zIL29vbIuh49ehSxJ5Z/Y8Jjjz0mcUdHh6lbvXq1xFOnTk23YwojPwAAICgkPwAAICgkPwAAICis+UGX9u6770qc9pUjGzZsSPX5IfJva581a5bEejtsTU2NaffRRx+l2zEU1JtvvinxuHHjTJ2+qsRfh6K3vvt1c+bMkdhfR1RdXZ1/Z5E6f81PnOHDh6fYk2iM/AAAgKCQ/AAAgKAw7YUuxZ/a0tNeSb3zzjumfNlll0kct0U+n8/Cof766y+Jb7jhBlMXdcr64MGDEz9fT6P4J7N379498XPQOW+88YbEY8aMkfjAgQOm3YgRIyResWKFqfv5558l9o+d0O+yvJx/p/9r7969Er///vul60iezjjjDFPu1atXSfrBbxQAAAgKyQ8AAAgKyQ8AAAgKa37+54ILLih1F4Kl1/nErbvRa3f0bex+XZxCXYuBaAsXLpR406ZNke2uvfZaiefOnRvZbuXKlaY8ZcoUiX/99VdTd/fdd0vsv2uuROicPXv2mPK9994rsV57dc0115h2ra2tEuvrLJxzbsGCBRI///zzkZ/9yy+/mPJzzz2XoMfZpI+I+PHHHyPbDR06tBjdEfr3w7+ORF9pcckll5g6fw1QsTDyAwAAgkLyAwAAgpL5aS99c3ScCRMmpNwT/CuX7ex6Osvfwp6PuJva/ak0JPP999+bsp4O8fXu3Vvip59+OrLdwYMHJb7xxhtNnd5K72toaJB49+7dpu6FF16I/Dkcnp7KGDVqlKnTU5pjx46V+NVXX038/HXr1nWid2F6/PHHJS4rK4tsp79rxaBPZdfHUThn+3ndddcVrU9xGPkBAABBIfkBAABBIfkBAABByfyaH3/eH6WRz3Z25wqzDifpZyM/a9euNWW9Lbmiwv6JmTdvnsTnnXde5DNvu+02if01PqNHj5b4s88+M3Vbt26VWN8YjvxMnTpV4ra2NlM3YMAAiRctWpToeXfccYcp+8cY4FD+EQP+e4jiX31xxRVXdLov+vvlX2Py+uuvS+x/7/UaPv94iqVLl0q8ePFiU1dfXy/xhRdemEePozHyAwAAgkLyAwAAgpL5aa845557rsRVVVUl7En2+NNLSaebkp7cHPd8Tm1O3zfffCPxQw89FNlu0KBBpnz11Vcftt2yZctMefny5ZHPvP/++yXWQ+3O2a3uyF1jY6MpL1myROKTTz7Z1D3zzDMSH3fccRL//vvvpl1zc7PELS0tkZ/tn/Ktlyz0798/utMZ509zffDBB5Ft9TvSt787F3+C9vr16yU+/fTTJX7rrbdMu23btkmsT2127tDprCj33HOPKcdt19deeeUVU9a/c/lg5AcAAASF5AcAAAQlk9Ne+rK3uKG4LVu2SKyH8Z1zrk+fPgXvV0j8U5zT/rlCSHo5Kpz7+OOPJfa/O5o/VB1lzZo1pqy/t/oiU+ecGzZsmMT+RZl62ktfAOmcc+3t7RJ37949Ub9C8/bbb0fW3X777aY8ZMgQifXp6/pyWeec+/LLLyOfqXf86Z1l+D9/SjiOnuqaPXu2qdPTVEmnmnyFeEYufvvtN4n9XZ9MewEAAOSA5AcAAASF5AcAAAQlk2t+9PyzXtfj0/P+rAEIk17nw5qfwisvj/731caNGyX21/xoDzzwQOQzW1tbI3/O33KtbyG/+OKLI38uZD179oysa2pqMmV9Wvcff/whsb82Qzv22GNN2T/RF4fSW8+dO3SLeT7Sfoa/Fu+ss86S+Ouvv458zvnnn2/qHnnkEYkL/d9oRn4AAEBQSH4AAEBQMjntlfSSvVGjRkk8cODAtLoTJD316Fz+W9j1VNSll1562P/dL+eyBdPvJ4pHnx773XffRbY788wzI+v0Jaq+k046yZSZ6joyfWqzc/YYg08++cTU6WlF/1gBTV9yuWHDBlOnL0fF4Y0ZM8aU58+fL/GVV15p6s4555zI5+jpJf+S0JqamkR90ctIJk6caOr27dsn8dlnn23q9Lb7CRMmmDp92e3DDz9s6k488cRE/coHIz8AACAoJD8AACAoJD8AACAomVzzo7e0xkl6nPqOHTtMuUePHhL76wrwX/6aHL22xr+RvRDbzZOuKWI7e3F9++23phy3JiEp/X2MuyUcuTvllFNM+cMPP5TY36Ksr624+eabJfbX/7z00ksSs+4qd4MHDzZlfdt9sT355JMS6zU+vq+++sqU9bUzn3/+uanr3bt3gXqXG0Z+AABAUEh+AABAUDI57VUIeuvt5MmTTd1dd90l8bhx44rWp6NZoU9SnjFjhin7U2lR6urqOv3ZSE6f0OrcoUP4STz66KOmvHTpUon17e/OOVdZWSnx3Llzc/4sRPOnxNauXSuxPuHZ/5t40003pdsxFE17e3uidqtWrTLlq666SuJjjjmmoH3KFyM/AAAgKCQ/AAAgKCQ/AAAgKEGv+VmyZInE/pUI48ePl1hvbXfOuUGDBqXbMRyRf0x+HL3Nnq3uhdGrVy+Ju3XrZuoOHDgg8bp160yd/v//zz//TPRZM2fOTNyvO++8U2L/GH3k7uDBgxJPnz7d1C1YsEBifRv3iy++mH7HUBT+2p3W1laJ464R8tf2dZV1PhojPwAAICgkPwAAICiZnPYaPXq0xJs3b45sp7fC+tti9TDdvHnzTF2fPn062UPkQ29nj9vaHnfjOwpj+PDhEjc3N5s6PfXka2trK2g/+vbta8pPPPFEQZ8futdee01iPc3lq6+vl/j4449PtU8oHn0ys0/fEu+cc9dff73Ep556alpdKhhGfgAAQFBIfgAAQFBIfgAAQFAyueZnypQpEi9atEjiXbt2JX6G3qo3cuTIwnQMOdNre5Le3K63tiN9+kZv5+z3zL/eIun2du2iiy4y5WnTpknsX53gb7tHbt577z1TnjRpUmRb/d7Hjh2bWp9QXHv27JF4586dke0qKmz6MHDgwNT6lAZGfgAAQFBIfgAAQFAyOe1VXV0t8S233CLxrFmzIn/G376+cOHCgvcLR+bf1p70dF+mukrH39r84IMPSqyPnXDOubq6Oom3bNki8bBhwyKf7/9O6NOl0Xm7d++W2H9f+/fvl7impsbUNTU1SVxezr+js2Lx4sUSb926NbLdgAEDTFl/748G/MYCAICgkPwAAICgkPwAAICgZHLNj6aP2v/hhx9MXWVlpcRDhgwxdVVVVel2DEJvZ0+6xkevHXGOKyy6qv79+5vyihUrStMRiL1795qy3qK8b98+Uzd06FCJ58yZY+p69uxZ+M6h5Hbs2JGo3YgRI1LuSboY+QEAAEEh+QEAAEHJ/LRXv379JG5paSldRxAp7oZ2TU9t+dufASTz8ssvm3LcKb76eBD/pG1kU9++fUvdhaJg5AcAAASF5AcAAASF5AcAAAQl82t+0PXptTxxW925wgLovIaGhsi6xsZGU/avtED26eNhdJw1jPwAAICgkPwAAICgMO2FktPTXh0dHaXrCBCApCf4AlnGyA8AAAgKyQ8AAAgKyQ8AAAgKyQ8AAAgKyQ8AAAhKzru9amtr0+gHSoB3mS28z+zgXWYH77JrYuQHAAAEpYxzVQAAQEgY+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEH5D4+frCe4lbkyAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 720x169.2 with 5 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "imgs=[]\n",
-    "for epoch in range(0,epochs,4):\n",
-    "    for i in range(5):\n",
-    "        filename = run_dir + '/images/image-{epoch:03d}-{i:02d}.jpg'.format(epoch=epoch, i=i)\n",
-    "        img      = io.imread(filename)\n",
-    "        imgs.append(img)      \n",
-    "\n",
-    "pwk.subtitle('Real images (clean_test) :')\n",
-    "pwk.plot_images(clean_test[:5], None, indices='all', columns=5, x_size=2,y_size=2, interpolation=None, save_as='02-original-real')\n",
-    "\n",
-    "pwk.subtitle('Noisy images (noisy_test) :')\n",
-    "pwk.plot_images(noisy_test[:5], None, indices='all', columns=5, x_size=2,y_size=2, interpolation=None, save_as='03-original-noisy')\n",
-    "\n",
-    "pwk.subtitle('Evolution during the training period (denoised_test) :')\n",
-    "pwk.plot_images(imgs, None, indices='all', columns=5, x_size=2,y_size=2, interpolation=None, y_padding=0.1, save_as='04-learning')\n",
-    "\n",
-    "pwk.subtitle('Noisy images (noisy_test) :')\n",
-    "pwk.plot_images(noisy_test[:5], None, indices='all', columns=5, x_size=2,y_size=2, interpolation=None, save_as=None)\n",
-    "\n",
-    "pwk.subtitle('Real images (clean_test) :')\n",
-    "pwk.plot_images(clean_test[:5], None, indices='all', columns=5, x_size=2,y_size=2, interpolation=None, save_as=None)\n"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 7 - Evaluation\n",
-    "**Note :** We will use the following data:\\\n",
-    "`clean_train`, `clean_test` for noiseless images \\\n",
-    "`noisy_train`, `noisy_test` for noisy images\\\n",
-    "`class_train`, `class_test` for the classes to which the images belong \\\n",
-    "`denoised_test` for denoised images at the output of the model\\\n",
-    "`classcat_test` for class prediction in model output (is a softmax)\\\n",
-    "`classid_test` class prediction (ie: argmax of classcat_test)\n",
-    " \n",
-    "### 7.1 - Reload our best model"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 14,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:37:34.674971Z",
-     "iopub.status.busy": "2021-03-14T21:37:34.674505Z",
-     "iopub.status.idle": "2021-03-14T21:37:34.984679Z",
-     "shell.execute_reply": "2021-03-14T21:37:34.984158Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "model = keras.models.load_model(f'{run_dir}/models/best_model.h5')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 7.2 - Let's make a prediction\n",
-    "Note that our model will returns 2 outputs : **denoised images** from output 1 and **class prediction** from output 2"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 15,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:37:34.988159Z",
-     "iopub.status.busy": "2021-03-14T21:37:34.987684Z",
-     "iopub.status.idle": "2021-03-14T21:37:36.002514Z",
-     "shell.execute_reply": "2021-03-14T21:37:36.001985Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Denoised images   (denoised_test) shape :  (14000, 28, 28, 1)\n",
-      "Predicted classes (classcat_test) shape :  (14000, 10)\n"
-     ]
-    }
-   ],
-   "source": [
-    "denoised_test, classcat_test = model.predict(noisy_test)\n",
-    "\n",
-    "print('Denoised images   (denoised_test) shape : ',denoised_test.shape)\n",
-    "print('Predicted classes (classcat_test) shape : ',classcat_test.shape)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 7.3 - Denoised images "
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 16,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:37:36.008236Z",
-     "iopub.status.busy": "2021-03-14T21:37:36.007755Z",
-     "iopub.status.idle": "2021-03-14T21:37:38.029250Z",
-     "shell.execute_reply": "2021-03-14T21:37:38.028740Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Noisy test images (input):**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE4/figs/AE4-05-test-noisy</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA44AAABwCAYAAABRhy5gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABD4klEQVR4nO2dd9hU1dn1V2ILFqKC5bUbTcSgEg2iYsXeG6Amgr3F3sEu9m5siBUbgogFFQtI7GKMDY0tlog9auwNFd/vj+/am3WvZ8525mFGv8tv/f6659l7zpw5Z5999jxnrfv+xf/+7//CGGOMMcYYY4yp4pc/9Q4YY4wxxhhjjPl/G/9wNMYYY4wxxhhTxD8cjTHGGGOMMcYU8Q9HY4wxxhhjjDFFpq+345577uksOj8xgwcP/sW0bsPn8afH5/Hngc/jzwOfx58HPo8/D3wefx74PP48qHUe/cTRGGOMMcYYY0yRup84Ji688EIAQKmMx4477hheDx06NMdPPvlkjpdddtlGPx4AsN566+X4rrvuCm3zzTdfjt9+++0cr7nmmqHfPffck+Pddtutcn9HjRqV408//TT069evX+U+1vs9f/GLqT/mX3nlldD28ssvAwBuvvnmyve3l+mn/7+n/tRTTw1/79ChQ44nT54c2maaaaYc83dacsklQ79rr702x2+99VZom3/++Wvuz6KLLhpe//vf/87xxIkTc/z3v/899NNzx5x22mk5HjBgQI6POuqo0O+4447L8YYbbhjabr/99hzvt99+Od59991Dv9///vc5PvLII0PbX/7yFwDAiSeeWLmv7WXBBRcEABx22GHh7zyu+vfvH9quuuqqHPNxHzZsWOjXs2fPmu8BgO22266u/TvvvPNyvM8+++T4t7/9bei31lpr5XjIkCF1bXvnnXcOr9OYBoCLLrqo8n18Tfft2ze0lea1L774AgBwyCGH1LV/jZDm1csuuyz8/bHHHsuxzmF8DJdffvkcP/zww6HfzDPPnOOuXbuGtqrvy+NH+z344IM5XnXVVUO/559/PsddunQJbXydHX300TU/94c4/PDDc3zSSSe1axuJPffcc5reX4vBgwfX/Dsfz3SuE3vssUdT94HHwj/+8Y/Qxvc2vk+Xzvdss80W2j777LNp3sdXX301x7/5zW9yfMABB4R+J5xwQo7POeec0JbmvgkTJkzz/igDBw4E0PZ89u7dO8d6L9p1111zzPdK5dFHH83xr371q9DG9zqeY/U6HT16dI6PPfbYHPO6o73MOuus4fXnn3+e4xEjRoS2P/3pT5X7yJxyyik13wMACy+8MICf7npUxo0bl+MVV1wxx3pc7r777hzreuCss87K8WabbVb5uXfeeWeOeV3bavRYVx2nEjvttFN4PcssswAApkyZ0v4dq6Ce/dNjy+eO16u6LT6vPNabwTXXXBNel34zMFtssUWO+b4JxPs+r9eBODfreGXWWGONHN977701+5SuRz9xNMYYY4wxxhhTpOEnjum/Svrrnv97+f3331e+n/+Lxk8EAeDDDz9s8zm14KeMnTp1quzH+/j666+HtvTfylo8++yzOZ577rlzvMwyy4R+/Mv/pZdeCm381GTLLbfM8QsvvBD68X+f+T+v/LoVTxwPPvhgAG3/Y8HHTPeV/zvGTyrXXXfd0I//y83//QaAr776Ksd8vvWzmG7dutWMgXhsb7zxxtB26KGH5njvvffOMT+BUfgJo6L/8a6C/0sOAJdeemld72sP6UmjPnnn60evVX56yE92//vf/1Z+Tvfu3cNr3mbpWuWnjIxeLwyPMwD49a9/neOVVlopxyussELop/+9r4KfVJb2/bvvvguv039UW8Hw4cMBAGPHjg1/v/zyy+t6/zfffFNXvxdffLGufqXjssoqq1T2K/0nn/vy09O//e1voR+/1qes/DSfx8X48eNDPx2vDD8xbRX6NGqeeebJMc9ZQPwvcceOHXOsx3bkyJE51nsCqzz4KbXC18hqq62W49L8W+8TRn4aDEQ1Az+NA4Arr7wyx4MGDcrxpptuGvrxNafbT2MtKTqaSbpP8TECgE022STH7777buX7+TrTealHjx45Lj3p5fXFe++9F/r94Q9/yHG9TxlVhcHrGZ5X9Sk1s8022xRfJ/jJNgAsssgiOU5PGBNJydFKdE3Kx1nXDXz9sGKGn/ICwNprr51jnVP+53/+p+Z+lOZVVg2dfPLJlf103M0777w55qd9559/fujHbe15wghEpYDem5LSRZ+yNYMzzzwTAHDQQQeFvz/xxBM5Lh1bXufomqTep4w8n/H2SugTRl57qdqJ1+I33XRTXdsv3X/79OmT4+uvvz7046eMpTmoCj9xNMYYY4wxxhhTxD8cjTHGGGOMMcYU8Q9HY4wxxhhjjDFFGvY4JtQbx5p29QZ9++23OX7mmWcqt1nyx7CmmLXGu+yyS+inWUIT7KcDoi9PsxaxXp2zr7JOH5ia9bQWnJGSs2U1kjmLs6U1m7Rt1amzd2KJJZYIbfo6wRkxAeDPf/5zjtWTyOOGfUCq6WadPGuu1Run/oQqPvnkkxyXPI5Ke3Ttyu9+9zsAUY/fbHRccTZbzuKnTJo0Kcc6vtmfqtvgc8LXnGbt3HjjjXPMY+upp54K/fja52y4QMxiyn4mzU5Zgv1hPBZKcJbWVpO8Qp07d27X+9mbq5mBmTQWE3fccUeO2afOmWeB6GtkdA7kcVHl8wGAW2+9Ncc673/wwQeV7+Nrt97zqL7lkr+2Waj/lucp9jsC8ZhxXMo0vdVWW1V+dsmjwh7ROeecM8dVczvQNnsi3zN43vnjH/8Y+r3zzjuV2+R7Lnsce/XqVfke5eqrrwbQNotwM0jHQ48Lj1uFxzFfP+rN5PHN3kIges/22muvHKunlTN1MuoB43GimT85GzpnDNcsv5wBWddXmnk9oZn1+bPUF6nZ6lvBL39Z/YxEPcf18tFHH+VY5zq+/nmdc8UVV4R+O+ywQ45LvsZSToGqNj6nAPD000/n+M033wxtCyywQOVnM19//XVlW+l6n1bSdaLXEh+z448/PrTNPvvsOeYcF+xbVd54443weqGFFsoxH1vNY/HAAw/kWPNNMOwl17mF11jsWy2hFRvYP62/jRj2Fet4Sr9deL2m+ImjMcYYY4wxxpgi/uFojDHGGGOMMaZIw1qs2267DQDw5ZdfVvZRqRGnD15qqaVyfOCBB4Z+JYmNynYSKu2qSjeuae71NfPXv/41x/vvv3+OS4+gVf60/fbb1+ynkkyW9/BjcWCqPIVlr82iKs0/p/YupelleYmm0+fUv1qk/fHHH88xFwvXc1+V0lkLxzMqn2ZZCMtjSlIPLuoLRHlYSS5y9tln51iLWLNEpNmkfdJxtfnmm+dYZSgsL+LU6Pqd+DrW1N7rr79+jgcMGFDXvqo8lWEpE0tTgfpLf5T6bb311jlm+RZL0YFYiqd///6hjcs/tAqWDgP1f3eWoanchksPadsGG2yQY56nWcIKRCkWS5IWX3zxyn1S6RLL3Fj+WO85BWJpGy4voCUEuLRMlXS3FQXH0/2C7yFAnMNL35e/k5Y54rlo/vnnD20zzjhjXfvHkmMuiaHw8VR5M8PStZNOOqmyn55H/i5cEF4l8Vz+QqV86fpsRTmOJMHW8T1ixIgca6kpPq9zzTVXjnX+52uJbR1APO71pMVX9N5TkiCus846OWZ5qp6rjz/+OMdq6+F7BN9vuYA5EK/99qT/by/pvsJrDd2H0uezNFlLxfD7uEwFADz33HM5Zim1liKpQueP0j6yZJbR++1rr72WYy3fxOOE12yXXXZZ6Mcl49j+UWubzSQd33333Tf8neec0rji+5zOUyz31DJ9Vcddyy2Vfk9U7W9pvuR9GjNmTGibb775clwqxcNraC1rxWt2LVWY1giWqhpjjDHGGGOMaTf+4WiMMcYYY4wxpoh/OBpjjDHGGGOMKdKwx/HQQw8FEL0HQNQCq09ho402qtnvrLPOCv1Y36/+gSrUD8UabE7DnvY7oSn/GfY1sg9kyJAhoV+92nw+VuPGjQttpfTGSaPeCi9OlYeDKX2/jh07VvZjv11KmV4L9VtVfTb7W++8887Qj1Maf/XVV6GNfT+l78Jtquln+vbtW9nG/gFOdQxMTQXdivOY9l31/f369cvxrLPOGtrq9UOxf3iNNdYIbaVxw3DJDPYi6bhgD4p+F/YPn3nmmTnW1PP1nmNG0/+zF4BTeAOtLY+TvqN6grt37175HvaZl3ymq666al37wONzueWWC23tSbX+z3/+M7yu1wtblQIdAO67774cl8rMMOorUh9pM0neJE2Tzp4+9owp7FXV8j9VPv8S6nm76qqrcsz3Np0j2N+rXhc+J+wdPuWUU0I/zjegJQ/YAzZ8+PAcaxp69XrV2o9WzKvpHL333nvh7zz/KOxXfP/993Os3szDDjssx9dee21o43mby2Cot5BL0fB9ST2NPNa0dBWPhXPPPTfHer7Z210qmVaafy+++OLKtlaSxnjJ//af//wntHG5HN5v/X5871Cv/GeffdbwvvI8pXMUl/fQMg58Hvl7zjDDDKEf+06XXnrp0Mb3GS7LxfMtAKy++uo51nJVaS5ohed47bXXBlAuU1Eq46Se/Xqp8sIOGzYs9Gt2/gOeE9nTqPuk3t0uXbrkmOcSjhXNrZLW5aV51U8cjTHGGGOMMcYU8Q9HY4wxxhhjjDFFGpaqJomJPvpnWcrMM88c2vgRL8sTNfVtvfJUTn273nrrVX7WLrvskuOqlMW1YFkNP5LeYYcdKt/DKcWBWLqDU+aWUqArhx9+eN19G+X0008HENO/Kyo141IqXNJAz+MZZ5xR1z6w/E23wXBa6UYkAYsttliOOT2/jjOWp6pUkOEyI3puWDI9yyyz1L2P00qSOKqMhlPAq1QqldQBYlkVTQ3P8LlvBJatsERLZW3ML38Z/5918MEH5ziVqKkFl5NQSQtfgywjHD9+fOjHx1Gl6Umq2gppXDoeKpXu1q1b5Xt4ntX094zK4aoYPHhwjh944IG63lNCZcCc/p+lOPfee2/ox3OnHo/S9VnF0KFDw+tdd90VQFspVzMppUnn0gTKY489lmOVvN9///2VbVUywVJafy5tpGN69tlnzzGXagCiDPPII4+s+bkK2z8AYLvttsvxI488kuMnnniichujR48OrzfbbLO6Prs9JNkgl9VQ9NqcOHFizX4sPwaizPSCCy4IbZxCf8KECTlmKSkQ72dzzjlnjrXMFh8jPuZAlLHytVkqm8QSY/3sZH8B2loZ+H6kY5XnnWbTo0cPAOXSB3otMVyOQ2F5KltVgCj3ZHbcccfw+phjjslxSULP5R/YggXE9RZft3PMMUfox+UztJQGX8dHHXVUjlVizJYVPY9JWl+ygbWXdD/XEln77bdfjnV861hN8DwKRCmojtuqeZWtWgCwzDLL1Oynv5P4fKv1hddEAwcOzDFf64qu2armz0ZK4KRyQaU1hZ84GmOMMcYYY4wp4h+OxhhjjDHGGGOKNCxVTXA2NQAYMWJEjlXi+Morr+SYH++zlBSIj2Q7deoU2jj76Lrrrptjlg8qLE/lDGVAzFKmck3NPpYoPd7Vx+IffvhhzX66H7z/mrUzyYdKMov2krJ+cdZLIEoYNFNYVb9LL700tLHUsHTMkoykVj9+tM5Zz1Sqyv30mO+111457tmzZ45VeqWSuirqzaK76aabhtc8XptNkps1IkVgCQtLsUpS1W+++Sa8rsrM+vnnn4fXLCtnKYbKUXfbbbcc65is4uyzzw6vNYMk07Vr1xxzxjuVm2244YY5VklQK0mSTB6nAPDwww/n+Pzzzw9tf/zjH3P89ttv51hlwJytWrM6szRyn332yXG9mVh13A0aNCjHOn+88MILOWapKmfqA6oz8QJxLmS5uMp+eD9Uqp3mq1Zk/6uCM4iXsstyP70HlsYjn1eWHZbmgSTZBdpmHecMrs8880xoq5KtT548ObyeaaaZKj+bM0EyPKYB4PHHH8/x5ptvHtrqnY/bQ0mimtB7EUusx4wZk2OVmfI1rhaXqn4Ky+hZBtqhQ4fQTzONM+ecc06OeZ7WuZnR+wBnIOVYKWW1TOucVlgA0vdim4TCmfgVzqqr442/r0q2eU3JNhy1TKmMvh40mzjPq7wuYzsREMdkKVsxZ6vm+3Kt10yVPLeZlLL0V0lTFc2iu9pqq+WYJaJAlNGzxUmvfbb8aDZs5qGHHspxac3GlhyVjNY77/G6XOXnvE7TjNrJQuasqsYYY4wxxhhj2o1/OBpjjDHGGGOMKeIfjsYYY4wxxhhjirTb48ieRiCmNF566aVDG6cgZl/Siy++GPqxd+Lbb78NbV26dMkxpz5mTxIQfUBrr712jtnjBER9MXsTgOjVKPk0GPYZNIL6GpmSx3BaOfHEEwEAa665Zvh7SZ/Nx4w10+pV1dcMeylYx60puZdccskcs4Z/hRVWqNy2+jn23nvvHLN/i1NWK/weII6nDTbYIMc77bRT6MfnUTXot9xyC4C2qZ6bwSqrrAIgpkUHol9RyzFwuZC33nqrctvsqdpoo41CG/sl+BpUvTz7y7hkifqmSr5G9q5ySv4DDzww9Ct5HLk0C5cEmm666UI//s7qQfjggw8qtz+tpM/SciM8/vTz2Y9x33335bh37941tw20HZvsg+F05noeq7ah22NfxGyzzRba2M915513ooqS97CqRJF6HPm1elrScWuFpyqVclLPE98D1W/C5WEYLlf0Q/D8xvc9PS483tnXqOUy+D6gY5I9cDwvqLebvX2XXHJJaGN/JY8h9jQCcdxxyS8AWGmllQBUH79pIZU/UM/l9NNPXzMG4jEsldIaNWpUjueff/7Qxj4x9lex9xWIJT603EcVmnuCSxlwfomVV1459NN5kOFzx/N7KveV4PI+6p9O22+F5ziVa+P1IwA8//zzOdbSTVzWic+/es14fHMZFSAeMz7OG2+8ceW+8j3q1VdfDW18nHU/brjhhhzzfK73WF6Xq7eWv2cqxwDE+zwQv5fmRNBj0ExSLgctz8SeR51jGL6v65q7dH/k0mWbbLJJjnWsVq2b+RoGgBVXXLHysx588MEcq5+b4fGqJYnYW8vrcC0Xo/d3pvQbIOEnjsYYY4wxxhhjiviHozHGGGOMMcaYIg1LVW+66SYAbR+Xs/ytlC6WU9pymngA+O677yrfx49a65VOLLzwwjk+6qijKvup3JWlfSzt6dOnT+jH0kWW3ug+8meVHl3r97rgggvQKlK6dU7JDUTZz5NPPhnaSt+jCv1OLDvkMhXaj1Nk8+dqP5Y0q3TovPPOyzEfS01TzbDsA4hSQU4prqmfOd33rbfeWnPbrZDGJQnQhAkTwt85VbjKnFjiyaU5FL0uqtruvffeHGvJAL7GWdpSSs/OsncAeOKJJ3LM8ke+dn4IlqeyPPtvf/tb6MdS2CQxTqS5rxUk+YlKT0pwaZ+S3IbRNk4Pz1JflZpVbbMkOVb5Ps/vSUJWC5aRsWQdiKWdWNpVQssElEoUTCtVpZxYxsVjEag+tmrl4BIRKrE+4ogjcswlXNTywffB7t2751jvA5yuX2VTn3zySY5Z1qTzDL/WbfB5rHfsckkuYOqc14p5NVkiSinztTQBy04PPvjgHPfv3z/0Y3uAft+XX345x0meV6vflVdemeMddtihst91112XYy2hxnz//fc5ZslcI/CcsdZaa4W28ePHV75vmWWWadfnNQLPKYrK+LgMDh8XXk9om67VLr744hzzOCmVwai6JhSV+S+00EI5/te//pVjvbfz+Hz99ddDG48NLuOQrDAJlhz/mCQJe8eOHcPfuZSGwrY4/n2ilNaXLPdkqapaq6ooWauOP/748JrndD7uf/jDH0I/tlOpPeDyyy/PMduptFQK2zfUJlQaewk/cTTGGGOMMcYYU8Q/HI0xxhhjjDHGFPEPR2OMMcYYY4wxRRr2OCa9LZdVAKIv8JRTTgltQ4YMybH6GhnWGo8cOTK0cUkGTiusPhpO9Txp0qSa7weid2aBBRYIbexP4M9izyQQPY4dOnQIbawpZo/WgAEDQj9Oo6+sscYaANqm0W4mqpFm32GJkr+MNdKaKv2YY47JsaZzZljvXyp1UYJT1DP6ndnLpinw2SPCafTVV9OjR4/K/dDU2s0kHWv1/7D/66CDDgpt7HFsrzeOfSCcyr1Xr16hH3tb+Do488wzK7ev+8v+MPanlXySCvu+1NfIsHdo0KBBoS3Nffw9moV+51rwMQeib6d07rh8Qsm/wJ4QhdO1swdGr+999903x+qb42uLS39wSnUAWGeddXKs9xke1zwu+vXrF/qxv4N9H8DUEhKaor8ZpOOr54Pvj+qjrmKJJZYIr9n7q54d9tGxZ4xT6wPxXswlqtRvU5oX2Pdz/fXX55h93gBw2mmn5VjLk/B+8HqBSzrU+mwmedU7d+5c2WdamTJlSnjN18gee+wR2ngNkMp51ILzPCh8TfP5Vq/q9ttvXzPW9QWXnnr//fdDG5ca41JR7GEFoofyiiuuqNz3L7/8MsclT6Oi5XKaST3rBS3zwvezN998M8e6TmS0xAh7BjX/RRVcbimV9Umw911zT3BpDfYx6v7ynKvrBW7bdttta25P36fHrZWsvvrqAOL9BYhljtQ7zm18Hbz33nuhH+fGKI2XmWeeOce6huC8CexBXX/99Su3xzkKSp/96aefhtd8Ttj3DrQtE1cFfxe9ptPnbbPNNpXv9xNHY4wxxhhjjDFF/MPRGGOMMcYYY0yRhqWqqYyDSixZ+plSyyeOPfbYmtvikgtAlPQtuOCCoY1LKLDcUaVXnHr95ptvzrGmAy+lZ2ZYuqmPljlN7mOPPRbaVKaVYEkAEFNYNyLDnFZSCQV+nA/E9OoqbWH56P3335/jlVZaqfJzVNb3+9//PsfnnntujvW7s6SZ5VAqAeJ0xzoWWB7Gcg6VTZVgyUkpnTmnxNbvojLpZpK+s55HlvSVZFPtlZuwnIfTVKvskK8Rln2rhI4lFsOHDw9tLNVeaqmlcnzZZZeFfrvvvnuOWVoJAL/73e9yzOdDyz3wOOH9bTUqwUlwenU+5gDw61//OscsX9J5ddSoUTkulRdgOW/Pnj1DP577+NhyyQAA+Oabb3KscyBLbq666qqasaLSG5ZCa5kDZujQoTnW8ZRkRjpWm4FKGxM8rtTWUK8crpRSnuc6lmxp6SE+3ywlPfTQQ0M/3g8tz8BySL6O77nnntCPx5DKoD/++OO2XwJty8CUSPLKqm01Ay27xBIvlRLzcWd5opbt4DIoakOpKt2gsjE+jywz1jI3LKHjaxOIVhu+NnWOmGGGGXKspSt4HcjXO493IMrUde317rvvAmhNWZVpRUt8MVzaRo8tny+2zPC5B6Z+dyBeV+0tg1GyIvA8W1prspST12hA9X0KmCrL1PtPM1B5bqIkqa8q7zf33HPX/bk8t/D2tdwMt7E8led2RSWoVeg6nKXEuiao4tRTTw2veazpNZ0oXY9+4miMMcYYY4wxpoh/OBpjjDHGGGOMKdKwVDXBmbaAmAXqpptuCm1bbLFFzW2wLFJRqRRn7+PHwvponh/9M8stt1x4zRn5WD4JRJksyypYpgJEqY9KGr7//vscc1ZDzmQGxGxcF110UWhbeeWV0SpSxtZx48aFv5ce/XMGJ84AplIzltfpOebjyceFMykCwF133ZXjUlY3ltGwXAuIWVs51mycLI9SiXRVZimWPgJl6UfK4viXv/ylsk97SRkUNSsiZ95i+TYAzDHHHDnmLKXzzTdf6Pf222/nWI87n5Nbb701xzqeePt8jDizKwCsvfbaOWZpJQD06dMHtZhxxhnDa5UL1cPkyZMrt8n7DrSVGDaT9B05wy/QdpwxF198cY5L8iCef3WcsoRfM5MyzzzzTI55bitJoxSV9tWDZkQ9//zzc8xyyrfeeiv0K12PSV6rc04zSNkPX3rppfB3lnxpJnDOglqCt6GSMZ7f6j0nKk9l+PpWK8IjjzyS4/333z/HKonn+xffK4GY5ZDP1euvvx76cSZzPafpXt+K7I5JIq3jj6XybN0A4nfke6KOTZYrsp0GADbeeOMcs1RVxwxz3HHH5ZizQiu69qhaR+l1+uKLL+ZYLUq8DZa2abZHft2tW7fQ1kqpcTonpbGu8vLpppsux3w/43kPiHJktu4A1WOaLS0AsNpqq9XcJ5WH8/nRzMO8fkkWJGDqGi9x8skn55ivPyBm0uV91zVBiZRNtBWS4zRGdL95HaHXmWaErYLXq3q/ZVtTKaMsr7/Y1qEydaZjx47hNdsweB2iklb+raVWG7bv8G8orXQxcODAHPMaGqhvHeUnjsYYY4wxxhhjiviHozHGGGOMMcaYIv7haIwxxhhjjDGmSMMex6S751TwAHDjjTdWvof9cJ07d270IwFEDxRvT30PZ511Vo45pXGPHj1CP/U1MpxWu+T5Y9RXwmUIOJWwpkdPnhigbepjTXXfClJK81r07ds3vF5xxRVzzHrs//znP6Ffab/5GG6//fY5Zg8rEFOFsyePz6/uo6YAZ/07e185XXKt11X7y+U4WBevaMmVtI1WaP8nTpxY8+98TkaOHBna2IvE41FTgDNa7uPll1/O8XnnnZdj1eNXXTN6Hhm9lsaOHZtj9qU99NBDldt4/PHHw2stz5Hg7wHEeUE9jfWW8GkP6m2shXpzeTwOGTIkx5oqnOfmnXfeObSNHj06x+y30nHFXo+Sh640R3744Yc5/uKLL3KsvmLmhhtuCK85tT17dtiz8UPssssuAIBJkybV/Z56SX5f9ceWyjjwXMLHT4+lliapgn1Z+lk8h7NXUc/p559/Xvm5EyZMqPm5pXHB4wxo69NKqAeMjwF7qQFg0KBBAOI4aBbqbawFl4kC6i+ttd9+++VYS9Y8+uijOWavFJ8roLq0kZYoYg+37lOnTp1yzDkFtFQSeyNLnmudd+ollVFqxf0xeRtLvkD2NAJxHTFixIgcl85pqewCj+nbbrsttHGZDS5rpWP97rvvzjGvhUv7ddhhh4XX7MtjTyMAXHLJJTnm76z3xxJaWqaZqLex1t/V08g+cy7NoWv/lIMCaJuv44ILLqj5ubr+43sYl2lJc1SC52Mts5HKRAFxLtWx1bVr1xx/9NFHoY1zcnz22WeV/Xj77ckN4SeOxhhjjDHGGGOK+IejMcYYY4wxxpgiDUtVVYJTC5Ws8KN0lkFUlTrQ9ygsS9I0syxJY3mqpu7ntNr8GBsArr766pqfqzIvTp2t+1slxdH9YPmZli058cQTa26jGaRU4osttlj4+/Dhw3NcOj/zzjtvjqtKoNRittlmyzE/Si/JnHjMnXHGGaGNZRWajpn3S+WaDMvfWHap+1XaBqdBVzlP2kYrynGk8aPpz//73//mmL8fEKUazz33XI5L5SZ0fHMqek7drzJlvh5ZPsrlA4C2pVSYNddcM8dchkCl3YxKTFh6xpIgLTXAsqUuXbqEttKcNK0kScsxxxwT/s7ylVLa+j322KOybcCAATk+6KCDQhtLmrnUhUrqudxHvXMzS3YA4OGHH84xnwOW7gGxDEHv3r1DGx+PY489Nscql+cyI6uvvnpoO/PMMwFUl3mZFpI0UK+lRmwOVcw666yVbZtuummOeS5Q6aJKHuvZv2+//bau/dNtcHmKUjkE/v5azodleTxm+H2tmFfroVROjK+5U089NbSxPFVtDSyVS+UNgLZjhEtBzDLLLDlmiwcQZcYlqfN6661X2TZ06NAc6/y+7bbb5pjncF4bAW0lmj82Ku9kuNwIENdAHOs54PlYy1bwdZek8bXguY/n2EUXXTT0Yxlw6VplW5RKuPnaUlvPsGHDcsz3oNIaUHnvvffq7tte2AIGxOtMqbJM6fHj6/P222+v7MvS8ZK9omRvY0k4r2sULoX2zjvvhDYuZ6Nl2Hgss7Wm9JtMqWde9RNHY4wxxhhjjDFF/MPRGGOMMcYYY0yRhqWq6RFnKTuqPgblDG382HWNNdao3AZn8gJi5h/e/m677Rb6sVSj9MiYM0DpY9zll1++5vsuvfTS0E+lpQxn7XrwwQdzrJkr+bM56xUwVdqlcq1mkKQUJ510Uvi7ZuFjWGZ7zTXX1PU5mmmL5akl9t9//xzzceHsjkCUw2mmX5ZmlKQqLKErwZnNXnjhhdC2995753i55ZYLba3MqpqO0z333BP+3r1798r3aHbOBEvLfgiWqmoGOIblvTzWVRrVs2fPHB9wwAGhjc/dqFGjcqwyPJaSs/QGiFJV3l/NBs1jSOeMVkrjkuxSJaIsE1R5EcOS26qsl8BUmWaiKqPnPPPMU7mN0rzKsp8FFlggtPE1wrA0VWHJDhDlR/xdpkyZEvpxxma9Vueee+7Kz5tW9L5Vi3qz0mo/zv6n0k/Oysvv0wyCLFXmMaMS1lI203rnMf5sPQcsxWuvBLyV82o9qNyeszj+4x//qGsbmsWRYVm+WnJY+smSNM0+ucwyy+T46aefDm0LL7xwjjm7p2bS5AzYeo/gjKErrLBCjjlzt6Lnu2RTaBaacZMprXnUysDwvULXF7xO4cz1G264YejHx4/XV5ptlzO/s4QZiPJ9tldwNnog2qe+/vrr0FaVMVxlkppxl0nSS75HN4t0j9A1N98TdQ7j487y/euuuy7023LLLXOsNqP+/fvnmOfVgw8+OPR79dVXc1yaz/ia5jUuEO+5bMNgCbNuQ+GxzHFpn1577bXwup551U8cjTHGGGOMMcYU8Q9HY4wxxhhjjDFF/MPRGGOMMcYYY0yRhj2ORxxxBIDGfAmcRpzTxd57772V70lpzRPsWeHPvvjiiyu3UfKLvP/++zmu8t4AwOGHH55j9QOWYI163759c6xeBS6bMOecc4a2L7/8EkBbPXUzSMdXy6tw6vpPP/00tHFfLlugrLvuujnmcgxA2xTRCR0L7H9lD5SOOx5bQ4YMCW2aIjuhfkAuE1GCUzUfeOCBlf2eeOKJ8Hrs2LF1bb89fPDBBwCqv2stuFQAexu0bMeOO+6Y4169eoU29mOwj1X9f1VpxPV6ZL+N+nTYu8h+hEZSrDOcYr3kG1Ra6alKHj0tbcNeUC4hBMTjXvI9LLLIIjlWPwOXseAU/5pa/YQTTsgx+34aSfNddc1wKQkgeupK21MPJaOeOibNJ+pvbQbJe8gedyD6rfU78dhnmlHCQ8uvMOw/1s9iX36VJ1r3Q7fBJRnUa8llgJ566qkca7r9ElrupZmk8aMledjHx3MbUO3V++STT8Lr6aefuuxirzgQPYnsW500aVLox8ea749akor94hMnTqy5fwDw/fff5/iiiy4Kbey3ev3110Mbe87Yp77qqquGfuyhVJJXlMdcs9G5s957APvF9Zrj13ov4jYuQaYlpKrWf3zMgep1ExDLOvD1/tFHH4V+PLb4mgNi/g4uH1LyNCpnn3123X0bJR039hICQMeOHXOs61WGvzuPUyDeRzRPBs9Hpd8rb775Zs336NqP7wNaQorLoPC6WUvbMLrOYV8jj5n77rsv9OOxUfIjV+EnjsYYY4wxxhhjiviHozHGGGOMMcaYIg1LVZdccsmaf+d09ywtA6KsopT6mNESCVdeeWWOWbbx8ccfh37dunXLMZd+eOONN0I/Ts/Lj4+BsvymXvbbb78c//vf/87xwIEDQz9Ofa2f1alTp3Z9dj2k8zDzzDOHv/M+bLbZZqFt9OjROeZU+CqHOv/883Os6Y3vv//+HK+22mo51lIkvB98/FRmyqVeVK5ZdR5ZgglE+Z6my5533nlzPHTo0BxzinIgynNVnpDabr75ZjQblrowJYk1Hxe+nvn76WuVVC222GI5ZqnPDDPMEPrxGC5dV9z2y1/G/2f169cvx5weW+UXvA2VffNx4hT4LAcDgL322ivHmvY8ST923313NJv0nVlCBUQJ0TbbbBPaWD6qZWoYHt8qt+Ixedxxx+VYv/uzzz6bY5apl+Zz/ayuXbvmeMSIETnWcccyGi0hcMUVV+SY5/4k2U7cdNNNNfcXaFtuoJmkcgV77LFH+LumVGdUhphQSVXp/LCdYZNNNsmxyie33XbbHD/00EM5XnnllUO/0n2P0/ozKkXmOZKlqQDw5JNP5pjLF+nnsj2CJfbA1PHfivI46f627LLLhr+XZF077bRTjnk9pPI3hiV0QJQGcikEvZb4+uH5d5ZZZgn9+Bx88cUXoY3XIuedd16OeV4BoiSXSz8A8XxxqQ62dQBRJlslR27FeUySY153AG3LuDF8v+G1Quma0NJyvCZKliOg7b1Y71MJLVF02GGHVX72gAEDcsxzva7V9X7JLLjggjX/rnMTy+q15Ey6/ltxHpPUWO8HLE/l0lVAXIuUZNp879DfE1VWOL0eWX4+fvz4HPO6EIhzOpckAuovqcW/jXgOB+LczCVo9H7B91G1ViWZbOk8+omjMcYYY4wxxpgi/uFojDHGGGOMMaaIfzgaY4wxxhhjjCnSsMcxeRXUC8aadtb6A8Dmm2+eY9Zq77DDDqFfSkkPAP/6178q94HTqHO6aYVT2Wt5D9arX3jhhaFNvUQJ9R+V0jizxp39gMriiy+eY/U/arrvZpI0/qr1f/TRR3PMnkallOa9c+fOOeZ0yQDw4Ycf1nyPHltOe17yB7GGXFM1V3kS2DcGRL06p1UGok6cPQNakoF9jerv0Gvlx4C9FOp14FIFfIz0umV/h/qaqjx16hdmSiVM6tk2EPeXS7EAUe/PnjyFy7ZwqQogeof4WgCmen9aUY4joeV62O+pKe55fuBjpvMNX6slbyl7GtT3wHNzqRQPo+Np/fXXzzGX/WFfOgAMGjQox5rinV9zOQb2lCnqfUnfsxVenHQ89TjzMeNjCcQ07OzhVZ//qFGjctynT5/QxuUG+DorpfFnH6ju7913351jLTVwxhln5JjLtuj9qwSXXih5x9SDz/D9vdmka1w9fUypxAijY1NzQDBXX311XfvH5cR4DtPyWlyyZ8UVVwxtnIuAPY66DT4G6qFkll566RyvssoqoY19eFoGJ5X0aMW8msqpaFmVkneWyzPwHMu5FgBggw02yPFLL70U2vg65vOt3529l7wN9dqx31XH2amnnprj0jzDc72OyaprSUsFcTmW5ZdfPrSlnCKpJFEz0VwEif333z/H6gtl2Ler3nEuZ6JwTg0ukTLPPPOEflxag3N36G8LHuO6zmFfI1+rjzzySOjHHkotScQ5RXg8bbfddqEf//bSnBK6rqqFnzgaY4wxxhhjjCniH47GGGOMMcYYY4o0LFVNqb4bkd9xyndOb/3888/XvQ1+zF5VgkD7sXSN5ZPKY489Fl6zTJYfO2sKXk4bz2n8gSi/4Uf6msKYZRGDBw8Obek1p+huNpwqGigfJ4a/h0oWOMU0p0sGgO+//z7Hd911V465fInCZUEeeOCB0HbHHXfkWB+5c/pxTjf/1FNPhX7vvvtujlWCwFSloVd+TGlqknypNIjR62zLLbfMMUspSinKVWKjZVHqgSWUmhpepcoMSwpZEsKlWIC21yfDKeBZtq4yOZaF6LhO22+FxDHBEjQgyrRVUlMl8VMZOR8XluIq/H1VIlqyBDCcYnz22WcPbZdddlnN98w999zhNcttWKIFtK880jnnnFNzG62QxlXtn0rgGZbmsmxVr7Fnnnkmx1zaBAAuueSSHHMpnpRaPcGSwdNPPz3H5557buh3xBFH5HjGGWcMbXx/ZNkcf66+1jIE++yzD+qBj2ePHj1CW0qVr/LuZpDWKVqOg9HSHPfee2+Ohw0blmM+NwBw22235Viln1wKgmEpKQDsvffeOdbyUgxL3nR+5GO70EIL5VhLlzE6bzNcdqT0WT8mSd6v6wa2GfH9EIjST461ZA1bPkrw+nfkyJGhjaWlXDpH5ya+T+saktloo41yrNYQPgcsKwbKY4jhcaLUI3FsL2nu0/1meWppzJXsLyXZMq89S/dOXsfztcn2AkXL3vCcqOXPGC6xo3YGHmsspS8dG16T1+pbCz9xNMYYY4wxxhhTxD8cjTHGGGOMMcYUaViqeuutt/5gH32U/tvf/rZmzJnVgJh1TyURyyyzTI75cSxnaVW4TWUunBmuJKPgx8Iqvdpqq61yXJI9laQFJQkTf89mkyRGmhmOpXFV2c8AYIkllsjxddddF/ptvfXWOS49IudMXioX4c/+7rvvclySKSssXVWJCFOSpx533HE57t69e45LclTNqpqycfH7m0WVRJWzIqpk5bTTTssxX3MlWJYNRNkkX2elLI4sxfnzn/8c2lgmq9mKeczoflT1UwnH0KFDc8xzydFHHx36cQbBUlbhZpOuk3333Tf8XTMFMyydqcoEDcTjMu+881b2Y7nSfPPNF9pY6sXZOEufVcpIyTIdlRHxXKrnsd6sk8zBBx/c8HvaS5LmazZpthuoNIjl0TzflDLgaqZkvk+VpEYsd91+++1zfOWVV4Z+LHG87777QhtLiUv3zl/96leVbVXoWOBxolmOfwr42KrFZdKkSTlWeSrDWVBVRs3jm+dmtWGwHG655ZbLsWYMZ6uNZmdkuI0zibeXRqSp6V6imU+bQZq31NbAayu9XlgGzlYbvbfx+zbddNPQ1qtXrxyzzF8z27JFg++PmqWV5xPNms0SR16fl84BzwMKv68e2eKPQToemkWUz2O9Y06/E2eGVqkqX1t8j9Vsz7wffM1x5mIgZtHlfkDMfKqWFYYz7i622GKhjdfzPG9rRmBGKx3UY+XwE0djjDHGGGOMMUX8w9EYY4wxxhhjTBH/cDTGGGOMMcYYU6Rhj2MVrBsuaY05dTb76YCoQ9e2iRMn1uzHafaBqElmnTmnilY4pS8Q0+2rP4yZMmVKZRsfj9dffz3H2267bejH3iE9bpdffjmA1qSNf/HFFwG09TgymoqcvxMfT/V+sl+tXt25piXnz7rzzjtzvPrqq4d+6r9h2IOi22fYK6beRfXA1YNuI6XIboXHMfH111+H13PMMUeO1ffCvsgPPvggx+rLYtRzweeVyyzo+Wav5VVXXZVjvQ6YUqkPLvWi32vgwIE55rIdANCzZ8+a29tjjz0qP+uWW24Jr3+MMg4lb5TCXtAhQ4bkmMsCKHocqvyK6gnu27dvjtmzw946IPovtHwIb+P666+v3MfSnMH+afVWM3zdsm+w1ZSuoYSWS+H7D5fOGTduXOhXOi48X7JvSv3CnM5+//33r/l+IPpe+Lr6of1guLSIzqPrrrtujseOHZtjTVHfrVu3HPMaAGisnFejpPmOczIA5e+upU+q0FI3VXC5Ks4HoHB5lLnmmiu0sVdqhRVWqNwG+xq1H+eb4HPVCHwf2HXXXUNb8l+1Yl5N6zc95nweF1xwwdDGZWr4Xq65C9iTqb7QTz75JMcbb7xx5f6l8nZAvObUi85lNj777LPQxnM6f69DDz009ON5RsvjsA+c7+e77LJL6JdK4ABtfZ3pOOr5bQYpB0bpWNZLI/5b9nPzvKrHj3NvlLbPpeB0LVvvfnE/vccyvP1SrhG9j7JXuwo/cTTGGGOMMcYYU8Q/HI0xxhhjjDHGFGmaVJXlEioTmzx5co5Z6qAysXrlrrPOOmuOWZoKADvvvHOO//nPf+b4vPPOC/04Be/iiy8e2jiNeGk/+vXrl2N+jA0Azz77bI5ZXqVSHH7UrI+TWRbQbNZZZ50f7MOP1YGYwpnLG2iqcJZ+aPpk/f4JPc7XXHNNjvl8lKSpevx43M0000yVn1UlwQWAO+64I8el0hX1jt1mkz53zJgx4e+lciHffPNNjt94440ca5kAliBrORv+vprqnFljjTVy/Nprr+VY01mzxFElqCw5Z9kyy0iAKKmbbrrpQlvVOSmNGZbs6PZbxQUXXBBes+wnSdcTVd9pttlmC69Z2qTSVN4Gl4xQmfpee+2VYy4FoPC8qpIqlqdyiaLll18+9GMZ0OGHHx7auGRIKVX8TjvtVNn2U6OyeT4HfE8ZNmxY3dtkyXAqtQS0vab5WuI5Q8tsHXHEETkulVVhWTlvGyjPg7wO4NI8XJIAiDJjnov5fSrHbQbJyqFSVZ4TeK2hrLrqqjl+++23Q1up3AG/Pv7443Oslhymd+/eOWYZea3tV+0HM8MMM4TXXBKnZPkosfbaa+dYSwPoPNFM0nWx8MILh7+zpJxloECUHfLcxDYrIB4/lVAOHjw4xyzT5fkRaFuWKqHS2s6dO9fsB1SvPVhyqxxyyCHhNUtVWZ6q5WJ4bmFLEjD12iiVfZlWZpxxxvCay11wWRIA+Pbbb3M8/fRTf+qotYpLruh8yWsl/my9LzFc2iiVYkvwGohLAip8nNVOxvdRnZt5Xc6lX/hzFbbmMS7HYYwxxhhjjDGm3fiHozHGGGOMMcaYIv7haIwxxhhjjDGmSMMex6SnVn38+PHjc7z99tuHtg4dOuS4lP6+5IlgDwenOh40aFDox9py9h0+9NBDod93332XY9Wn835sttlmOVaPk/oaGdYls0dAvSQXXnhhzc9lWpGmOvlE1QPx1Vdf5TilQP4hSudNfS/s22A/4SKLLFK5DfbJlT5L/Vuqh0+w9h2IHtTdd989tFX5Gnn8/NB+lcb8tJLSdrM/DQBOO+20HGtabkZTkddLvT5O9hawd0K9Q5qammG/K/vr2N8AACuttFLD+6f9VltttRxzqRxgajmRCRMm1LXtRkheCvUV8z6UfHs8/5bKmSjsiWDfi/qc9t133xwfeeSRldtT3ymz5JJL5rhUSoH9I1pahK9H9p/o/uo8y+j130xOPfVUAMCAAQMq+6jPu8qjxONe0XlbvW1VsIeXPUpcFgBo6wljeD5m75rO9fXCc5X6pfn+q3z00UcAWnN/rEr7z7kcSv5B9obxtQOU8wuwp47zA3AZFQDo06dPjtkvrmWO6i3hUur34IMP5livK76OuXwRHycAGD16dI61HM1CCy0EoDVe1TTe99tvv/B3fn311VeHNvYZ8/Xy6KOPhn68VtCyRKWxwfD55jlc1wzvvvtujvkeBVSfu9I55bkYiLk22DfHJXuAuF5VUr6RVngc05jR62CppZbKMZczAeLag+F8CkCcc/S8sQ9Rx20VXEpFS/TwOEn3ilqfXfJB85hUOAcAo+WveL2t44TLB1bhJ47GGGOMMcYYY4r4h6MxxhhjjDHGmCINS1VPPvnkmn/nR+sq82DZJsuh5pprrtCPU8DfcMMNoY0fmWv5B4ZLNzAqZdLHxMzNN9+c4+222y7HLIXT1yX5Gss2VBLE6Zir0uK2gnHjxgEoyxm0jcuDaCpmpiSBqWrTR/qTJk2q3Ea9n8W0dxv8iH+rrbbKscodWN6xxRZbVG6/2SQJi5ZP0NcMlztgmZemqS6xww475JilMyqnTPJOIF5L/HegLFVlWJ6qx7V0jvl4PPnkkznmkj1AnHe49AcA9O/fH0BrpKpJPqnyak7r/+abb4a2BRZYIMdrrbVWjr/88svKz1GpGc9HpeOnqc6r4POv5UNY1sZyGJb2APEYsCxS4dI86dwkWEam+1Gv5Kg9JIlqly5dwt85xf/7778f2vi489jS8hNcmqIksb7//vtzrOn/q8Yul0cBppajAIDHH388tKl8OLH55puH1yzJ3WabbUIbX3dsj9BSXlzKgmXVwNQSS3PMMUfN/WkFvG4orSEmTpyY4znnnDO0qaSOYVkoX/u6rpkyZUqOOe2+lrZgSaJaa+qV8/Nns6xYt8GlnbQckpZ/YFopOU77XvquWjJs/vnnzzGXXOnWrVvoxxLXkkS/3uPMZajWW2+90HbXXXflmEtnNAJbg9ju1Qh///vfc6xyWr6Om02nTp0AAF27dg1/11JODN87eM7Skhtc3q/ec8XzOQBcdNFFOWZpulqduKSdym6rSrOoNJnvj/obSu8tib59+4bXJTnqX//618q2hJ84GmOMMcYYY4wp4h+OxhhjjDHGGGOKNCxV1cyiiXolgyxfYQkrELOPXnbZZaGNsynWC++HZgKcbbbZKt/Hkht+rM2ZrYAo+ynJ5ljGoJJMlgGpzEQzzDWTY445BkA5w5vC+1o63/VKRlma8cQTT9S1DZZQAW0zqVZx5ZVX5liz/vJn6bjjLFUseWPZB9BWnsqkTGStkCJXZUVlefQSSywR2vj7fvHFFznWbJPzzDNPjlVexfKoUrZPlqcyK6+8cng9atSoHHPGQCDK3A488MAc1ysrAYBjjz02x/XOVaeffnp4zfLpZrP44osDAN55553wd5YnHn300aGN5TEsG2I5DBAzz1VlmgOiXFElQFXHTGWMfI3onDh27Ngc87Fcd911Q78xY8bkWK8ZltGwfUFl1ny+q7j22mt/sE97UQl06bgzb731Vo753P8QLE9lVJLEGQ833XTTHLPUGQCuu+66HPN9GYjHmrOe6nXL90c9HgzfHzm7IxAzTS622GKhLa0fWiFxrIKlejwHAlG6yJk5S9lxNRs2X/+NzG9V6L2OqbqmS/NHx44dQ9tLL72UY5ZQ6vqqdAxaiWZCrcULL7wQXm+44YY55vHI8mNFj1m9544rDtQr9VSbEJ+TTz/9tPJ9LE/ltRcQLWivvPJKjlUmqXJxRu1gzWTuuecG0HaNzNLuVVZZJbTdeOONOeZ1ziyzzBL6ldYD/FuALWw6FjgTON8T1SqwwQYb1Pxche97bMkA4hpVpeNsb+jdu3eO1b5SyqZ/9tlnt9kHxU8cjTHGGGOMMcYU8Q9HY4wxxhhjjDFF/MPRGGOMMcYYY0yRhj2Ot9xyC4C2GlnWBrOXBYgeFvYabrnllqEfeyfU38FeANad15uKm70JP0TypAHRI6KeBvXmMOwxYw+HegS4xIOiqXybSfKtaMkB1mB37949tLEHSnXiDGuj+VgqOk6Y5557LsfshVW/Hr+ePHlyaGNfXsnrwedY0xZz6Rf2O6a0+wlOza5+I/XzNZPkjVN4zKlun/ePY/UBc5pqRVNxNwqXZgDaekYZ9ludc845OW6kHAfPE6V+nPZ80UUXDW3p+LTCU6XexgSn/dZSBVxyYqONNsoxl+kAoh9D55Rzzz03x3xNf/3116EfHzP2AN1+++2hH3um9RxziQqeOzt37hz6lVKF65yUUL9ivT7WVqGeRvapaImRu+++O8fqE6xiueWWC6/ZI85+MvbalUglERJcBkP9j+zFWmihhXLMY7CRzz7ggANyfNZZZ1X205wIus+tQD2XXM6mVGqKvztfL4qWJWJ4ntEcD0899VSOOY2/ep7Yx6olYpjSNc2Uyjiwr7ERT2M6bq3IAZDKZGnZgkUWWSTHWurknnvuyTHnLijlU9D5kuG15worrBDa+Fpij96hhx4a+rEPU9eyvA3+LqV92mWXXcLrM888s2Y/9dcxjdx/p5W0v5zjAIjHhT3/QMwJwGNTSw+VSnqMHj265t91XuD1YKlMD8MefWCqt/CH4Pu75j3gscG+RvWYcykQ9cw+9thjANrm+2D8xNEYY4wxxhhjTBH/cDTGGGOMMcYYU6RhqWp6TDr//PNX9mEZBQDMO++8OWapFMthFE1jy/Ajck4VDVQ/Lh83blzl9liCCJRTDlehshx+NH7bbbflWOWuyy67bI633nrr0DZy5EgAUx8dtwKVrvHxUzkUU5IUscRxvfXWC20sBbz++utrfm57mWmmmcLrhx56KMcsxVGZbXs+uyRH0JI1qZyEpv1uBkmKo5InLoPBKfOBKL/gFNMKSwY5nTVQlipXwfIlltICwK677lr5vqrzo39/8803c6xyTU4rXpLy8XjlsfpjoSVA0vkFokwXiHITTgevEnCef/U4c1r2eq+DkpSN51kuZQRESVVJps4p/jt16hTa+HytuuqqOdZ9Z9mkHlOV5jSTZFF4+umnw99Zgvrss8+GNpZE831DU88zpfJUJYlolYRXpfeMlgngbXAJn0MOOST0K9kw2iMl/jGlcQm+/hSVYqtUtx7U7sLjZvDgwTkufXee6/meCgAnnXRSjvV65PWXlgWpF5bG8ryayickSuu59F1aYQHYa6+9ALS1XZSkuXxsSyUTWP5XkjuyPPXJJ58MbVzCgktLKCw51n3iMjAqw2RYZr3JJpuENh3LCS1Bx/eSRuxfzaK07lSasY6vus50vVVlVdJyd2ynqleaqvAaRdfXVfPqjDPOGPpxyZXf/OY3oa1qLDB+4miMMcYYY4wxpoh/OBpjjDHGGGOMKeIfjsYYY4wxxhhjijTscUwaWtWwsz6dtfn8HgCYZ555cjx+/PjQj9N+lzT9JW/DlClTcsxpvjntvKJaaC5RwRpvLbPA6WpPOOGE0PbWW2/lmD07mnqefSDqf1x44YUBtM87US+l46wele+++y7HRxxxRI7V73fGGWfU9dk6ThhOr8/pxh999NHKferZs2doY5/bI488kuNSGRXlm2++yTGnPj7llFMq3/Pqq6+G13/6058AAMccc0zdn9so++yzT3jNnohUQieRPJcAMGLEiMptfvrppznWchlc6oS3N2rUqNCPPVvsHyj5djVlOXsy2WOhfP755znWcZLOARD1/SUa8VM0C/WJsd8gldBJDB8+PMeHH354jldfffXQj+czvaYvueSSHLOnU70TDJdR0pJK7ANRT1WHDh1qbo/vCUAsO7LtttuGNvbWl9LjjxkzpmYMtD3GzSR5d9XDy8dCy0owfB9hXy4QU/SrF6fkxWJ4fmefDp+3H4J98Vx2pOTZUc+nprNPlNYEPIcDcX5qFer3WXLJJWvGQNtSWwkd37xW6tWrV2hj3zLfV0trHj6PWlZBy1AwvH5hz9vmm28e+k2YMKFyP6rupeppZC+9rmfY59dshg0bBiCWLgKAQYMGVb6HveSl4875NUrjlv2VfI8Cok+Sx5qOrfPPPz/Hes/m3Bg8L+i6jH3MWr6I11hM6X774osvhtc9evSo7DutpPWGnjc+V2+88UZo4zmYfdrqzeT1RqmMTKl0DlPyRddb3oU5/vjjK9uOOuqo8LpqvOr9qISOvVr4iaMxxhhjjDHGmCK/qDcz2Z577vnjV1E2gcGDB9f3b+UCPo8/PT6PPw98Hn8e+Dz+PPB5/Hng8/jzwOfx50Gt8+gnjsYYY4wxxhhjitT9xNEYY4wxxhhjzP+f+ImjMcYYY4wxxpgi/uFojDHGGGOMMaaIfzgaY4wxxhhjjCniH47GGGOMMcYYY4r4h6MxxhhjjDHGmCL+4WiMMcYYY4wxpoh/OBpjjDHGGGOMKeIfjsYYY4wxxhhjiviHozHGGGOMMcaYIv8H6AG8ZnkS58IAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 1152x169.2 with 8 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Denoised images (output):**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE4/figs/AE4-06-test-predict</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA44AAABwCAYAAABRhy5gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhPUlEQVR4nO3dW6xV1fXH8WFbRFBBCigXuYrc7yJFBBGRUjAqoaWJbbUP1rahti99bOJLH0yTNvGhIY22iQVTaW2NFiOIqVhA5SI3kZuAXASBcpGLKG2t/h/+6fA3hmfPHpDD2Wfv7+dpnKzJPvusuedca7HHmPOSTz75xAAAAAAAqOQLzf0GAAAAAADVjQdHAAAAAEARD44AAAAAgCIeHAEAAAAARV9qbMM5c+awik4zmzt37iWf9zXox+ZHP9YG+rE20I+1gX6sDfRjbaAfa0ND/cg3jgAAAACAokZ/4/hfc+fObYr3gYI5c+Zc8NekHy8++rE20I+1gX6sDfRjbaAfawP9WBtK/cg3jgAAAACAIh4cAQAAAABFPDgCAAAAAIp4cAQAAAAAFPHgCAAAAAAoOudVVQHg8zp58mT4eeXKlR5v2LAhHOvWrZvHU6dO9bhTp06h3Ze+xHTWUvzrX//y+MyZM+HY2bNnPb788svDMf35kksuaTBu6Gd81ieffLpF2n/+859w7PTp0x7v378/HNNx9uUvf9nj9u3bh3atWrXy+AtfiP9HTf8AF9fHH3/sMfPlxaFz7P/SkvqAbxwBAAAAAEU8OAIAAAAAisjtAnBRaHriq6++Go49/PDDHh85ciQcu/feez3+4IMPPD6XNBA0P+3/3bt3e5xTk7X/Bw0aFI4NHz7c47Zt23qcUyEvu+wyj1tSClBT0zHz73//2+OcOv7mm296/OKLL4ZjXbp08Vj7Y8iQIaHdVVdd5XHuH30f9E/DSvNbpXPWFHMi/dNyaMr5qVOnwrG9e/d6fMUVV4RjOlY1/TyP23qmY6uxYzO303ThfOyLX/yix9V+3qv73QEAAAAAmh0PjgAAAACAIh4cAQAAAABF1DgCaDKa06/L+j/55JOh3WuvveZxnz59wrG+fft6rEv+a00Aqs9HH30Ufn733Xc9Xrhwoce53nXAgAEed+/ePRw7fvy4x7qNR95O4tprr/W4devW5/K2a0qpxub999/3ePv27aHd4sWLPV6zZk04NnHiRI/1vOdaOP3d+nvNYg3P+dTytWSlbVC0hvvgwYMev/XWW6Hd22+/7bHWCOsYM4t1bm3atAnHevfu7fHo0aM9HjZsWGjXr18/jzt06BCO6dhiPm4eWqusdYx5Xt28ebPH+bMwYcIEj8eOHetxu3btLtj7bAnyXKTXMB2bedxeeumlHpfmtn/+858NvrZZrMvX/snbjFXDnMg3jgAAAACAIh4cAQAAAABFLT5VtZSKo/LXu9W+3C1QC06fPu3xH//4R4+feeaZ0E7TMb797W+HY7fccovHmqpaDSkbqExTIc3M1q1b5/Ff//pXj3M/9ujRw2Pd+sEsbsGhaXKaKmT22fQe/D9NsdK0xlWrVoV2S5Ys8bhnz57hmKYBd+3a1eN8TdXfVdqOo7Fbc7Sk8V5aul/vUXSLGjOzo0ePevy3v/3N4+eeey600+1STpw4UfH19Hfl87d+/XqPNR156tSpod306dM9Hjx4cDimWzfoeOT+6sLSz9DZs2fDsR07dnj8+OOPe7x06dLQTtMk87zaq1cvj0eMGNHg7zVrWWOwsfRvzOmjWhqhW0jlPujUqZPHrVq18jinb+v90LFjx8Kxa665xmOdc/PWKdWQEs7oBgAAAAAU8eAIAAAAAChqMfk8mnKhKTAffvhhaKepHroKUv66V1Pe9Ktls/hVcGO/Fs7tKqVq1OJX/eei0kp7ujKYWexX7e+cIqD9rat2msVVqrSPO3bsGNp169bN4yuvvDIc05S3eu+7xsipHrri32OPPeaxpmyYmU2ePNnjnKp69dVXe6zjjP6oPjqONZ3OzGzBggUe62qPuqKfmdn111/vsfa9WUxV1ZXnGjv/1ptcuqGpV2vXrvVY08jN4rVTU8XNzG666SaPNb0qr15bGp+lFVeV9mN+vZYy/vPfV2mlRrM4X/7973/3WFdRNYvXsJEjR3qsqaNm8dqW73Peeecdjw8cOOBxXsFVV7XW1GSzuOpmPa9efKHlVTt13L7wwgvh2KOPPurxxo0bK76GzpH5PkrvnTSFMt8rtZQxdy50fObnCV2ldtmyZR7n683QoUM91nOWx5ymh2tfmZkNGjTIY70PzSvgkqoKAAAAAKh6PDgCAAAAAIp4cAQAAAAAFDVrjWNe6rd0TJeZ1nz81157LbTTuo333nvPY831NzO77rrrPL788svDsQ4dOjR4TOtrzGIecufOncMx/Xf1XJeV6zt0SehDhw55vG/fvtBOc8u1viPXeugSyXn5f10iWfP9Bw4cGNrNnDnTY12K2izWjFDv2DAdq7l28dlnn/VY+yrXrj300EMe63YMZmytUM1yHc2WLVs8/sUvfhGO6ZYPo0eP9njKlCmhndZU6VxsFj8L+rsZj58qLd2vW6L88pe/9DjPvzon5hpUrXPTurZSDWK+nldaAj/X7zR2q45qlv92rQPWexkzs9dff73BY3kbjDvvvNPjG264weM8r+r5zFt1HDx40GPdjiPfU+k6Anr9NivXoOLc6L3SkSNHwjHdvujhhx8Ox/RzonNiro3T189rfui9kt7z1Fuf5rGqtfi7du3yWNfPMDO7+eabPdbnhLxNlM7HWs9sFutY9fWqsQ/4xhEAAAAAUMSDIwAAAACgqKpywCptuWFmdvjwYY//9Kc/efzUU0+FdpriqF8T9+vXL7TTpahzqqrS9I5evXqFY+PGjfM4p7HqV9n1tjS8ft1fWlb65Zdf9vj5558P7bZt2+bxyZMnPc7pF927d/dYl4Y3i0uda5qkpuiYxeX/dUlkNI6O2507d4Zj2q+acnH//feHdppuldM7UF10fG/atCkc++lPf+qxpt2ZmfXv39/jBx980OOcHq7zcV7iX+cTjXNKvC6DXm+pznpecgrqI4884rFulzJt2rTQ7utf/7rH+bpX2gZFNXY7jvNdXr4aU7gakt+npuZqKpyZ2YkTJzzu06ePx3fddVdoN3bsWI/1upeX/6/0e83i2NJ01B07doR2Oh/n7ar097WU/qgmlco8nn766dDu5z//ucfaV2axH3XuzHOibjWRt23RftV713roU/0bc7mTlkbpXKpb4JjF86np4vneX8twclmPzgW5xKDa1NcTDQAAAADgnPHgCAAAAAAo4sERAAAAAFBUVdtx6M8513jlypUez5s3z+N//OMfoZ3WqI0aNcpj3X7DLOYe67YdZjGHXF8/t9N8Za2TM4t50/VW46h06XEzs3fffdfjFStWeLx69erQrl27dh5rDdTUqVNDu+HDh3usNY1msYZS6xpznaRupZJrOOp5K5XG0tqJ+fPnh2NaL9OxY0ePb7vtttBOa4Q5z9VN6811GxUzs1deecXjvJXGrFmzPB46dKjHOtbNymNOfy4tPV9vc67WM2mtzJ///OfQbtmyZR5rzen3vve90G7MmDEe536sVJOYa+hyjZXSfmxsLWRp+65q09i/KW9vcdVVV3ms9xR5jQatZSttE1Vp2xOzeD9z5swZj3P9W8+ePT2u93H2eeXPsN7nLl682OPHHnsstNO1IfL40/uXLl26eLxnz57QTutR83oQen9cz2sM5PtVXWtD+0q3JDKLY6ZUZ6r1o/l+Vbdgqfatphj1AAAAAIAiHhwBAAAAAEVVlaqqW19oSqOZ2aJFizzWJaunT58e2t13330e9+7d2+OcgqjL3eYlsTUV68UXX/Q4bzWgX0Pnr/frOcWxtB2H9p2mymgao5nZ7NmzPZ4yZYrHOWVH0y/y8v/bt2/3+NixYxVfY8iQIR5fccUV4RipOA3Tz75udfLcc89VbDd58mSP83LW57skPy4OTavRNCqdH81iKs6PfvSjcGzmzJkea/pj3kKgNHfqMU3Ry/NvrY/b0rVT58Enn3wytNP+0fRU3d7BLKZMltIfdXznNC+d+/P41r5rbF+11Oto/vv0XGh/mMX04fbt2zf4b8zitVPPez5HmuJ46NChcOyNN95o8H3k1HG9j8rbjuF/0/GS7zUXLFjg8aOPPuqxbgNhFudI7Q8zs9GjR3usqcS6NZ1ZeczpfU9pS5dapP2TtzrZunWrxzrH5lRVvf7oGMzztG7Boa9nFq+xmlaeU8yrYXup2r66AgAAAAA+Nx4cAQAAAABFVZWqqiuMaWqhWfzKWFeOmjFjRminq/Vpuk0pHUZTQvLv1vSOvNKrrqSUX6PWU6VKtF/z1/EnT570WFefyqlSmsqoqaV5VTdN2XnqqafCMV1BsHXr1h7ffffdoV3fvn09JmWycTRFbcOGDR7nFPNOnTp5/JOf/MRjHZvnorSyYktNZatGebXHv/zlLx7/6le/8jiniD7wwAMef+tb3wrHtM9LK0HqZ6uU4qjqbdyWUqB03tPVpM3iqtTTpk3zOK+cqkopqJpGldvpNTCvLlgpHbl03ayV8a19lz+3Op727dvnsaacmsXzrtfY/fv3h3ZaRpBT3pSu4JpX3Cz1SUta6fZi0nOtpU9PPPFEaPfII494rCv453lO505d5dbMrFu3bh6vWbPG4zyHV0qnzOqtT3Vuyunc+ixQSkHVMVJqp6ne+Zh+TnSl+tLuE801J9bv0w0AAAAAoFF4cAQAAAAAFPHgCAAAAAAouug1jpWW8jaLW2Totg1msRZgwIABHuetFXQpaV1WuFRHo8vgmpmtXbvW4y1btnjcuXPn0E5zzbWGzqy+axxL9LxoXY3WO5rFOhqt78i5/88++6zHuX5Aa25uu+02j2+99dbQTpeirpU6mqamY/XVV1/1ONc53XDDDR4PHDjQ43yetSYkzwu5TrbSa+h4z0uK068N0/lYa2JWrVoV2v3sZz/zWPsjb7lxzz33eJznQK3b0Pk813Do2M/zQqk2stbpecrjbNeuXR7r9SufvwkTJnisW1TlbZO0ZlL7Lf+sn5l8DSwt8a/bP5S2X6mFPs61hTp35r9Pz6dul7Fnz56K7bSuMddC6nnP40xr4/Q95i0J9DOkNetmsWar3samns88RnQ7jV//+tceP/3006GdrtGg86Wun2EWx63Wo5rF66XWSeYxrWt05PvrI0eOeKxbwlTD1g9NTT/7eh7M4jnT+TLPdTqHaT/m86e/S9f7MKtcg5rnev3d1DgCAAAAAKoSD44AAAAAgKKq+h5av/rXFAgzs3Hjxnl89dVXe5xTJzQ1o5Quql//ajqqmdnChQs91tSPW265JbTr0aOHx/XwlX5j6XnPKUq6lYqmFeelo9955x2PK6W4mZk9/vjjHmt6lVlM6dBtAvr06RPa1dtS/ucjpzlpeve6des8zudy8ODBHuvnQlN0zOI4y0vKa8qNpjfr58csbomTt/to7FLk9UbPrW6losvEm8UUnhEjRng8ZcqU0O7MmTMea7qWWVzmv3v37h5r2qJZTMXJn6d6LgHQMZjLK9566y2Pt2/f7rGeZ7OYnqivl7fR0W088tZYmmKl7yNv46DzbC7z0JStalhevinllEFNVc1bfOncp+Nn27ZtoZ3+O00dL42lnF6ndP7Nc7Pe2wwaNCgc69q1a8XXrAWaBlpK/Vy6dGk4pumpq1ev9ljnR7PYJ1qCddddd4V2EydO9DjfK5W28VD6/vP8offDtTgGS/S8nDp1KhzT/tc439dWui7lNHW9juZjev+i70nnC7PKaf75fTRlP9bvVRgAAAAA0Cg8OAIAAAAAii56fqV+fZq/ZtVV2DQd1cxs0qRJHmvaS141rtLXs3mlRl1VSlNTzcw2b97ssa4KqSsGmsWVr+o5hSrTPsgpx5o+qn26b9++0E7Tl3bv3u1xXvVKj+U0jVmzZnn8la98xWNNW0Tj5DSdvXv3eqypMm3atAntNP1iw4YNHutKrGZmr7zyisc5jUbT7XTFt5EjR4Z2mkaV07JKKyzXkzwPaurUCy+84HHuH01x1FWJc2rPxo0bPc7pdaNGjWrwPWn6ulm8DjCvfkrnxJyWr2NLU/tziqiO402bNnms1zyzz6aLq/wZ+q/Dhw+HnzWlKl8HNM1cr+G1ODZzSpr2T15ZUdOCDx065HE+51qioynBw4cPD+169+7tcZ6bdezr71q/fn1op9fYPKZ1PtbXb0mlO7kMQ1NB9RzllW0XLVrk8e9+97twTFO/tf9zaZWWP33zm9/0eMiQIaGdzol6vTWLnyFd+TPPnaX5Q9OTK43vWpH7W//ePP9UWsE0P7tUSvXNq9ceOHCgwX9jFlNStfQgXx9L99eVVpa/0PMqV2UAAAAAQBEPjgAAAACAIh4cAQAAAABFzZqInnOwNUe+V69e4ZjWPOq/y7VMmr+suct5CeOtW7d6nGscNSddl0UeOnRoaJeX5MVn5VoH3SZB6w5zvZouMa71j7/5zW9CO+2rvFS41gxoTU0t1tE0tVz3oLVtWpOYx7TW7OiS5S+++GJop/VReUl5/d1aB5B/l84FWhOSf671urlcw6E/53lQ63YWL15c8TW1vnvgwIEea/2TWdxGJ9d2aW2x1nfk/r5YS4q3NLlflZ5Prb/JNTA6znTLDa2RNIvXtmHDhoVjWjepW3/kGrC+ffs2GJvV1xjM18DSdjM6FrQ+MdcHjx492mNdhyFvj6E1dfl3aZ2b1rTmGvPly5d7vGLFinBs/PjxHuuaDy1JvrZpzaBu1fbYY4+FdlrjmGtVtY91S6o77rgjtJsxY4bHen+Zx61+nvLY0feo87veQ5nFz1Zj76/rgfZ/Hqv6s44XrQk2i7WLOs7efPPN0G7NmjUV34feo+hcqusLmMX+yfWPWi+u750aRwAAAADARcWDIwAAAACgqFlTVfPXp/rVak4106/Z9Wv7nL6jy41rqpR+lWxm9oc//MFj3VrAzGz69Okef+1rX2vwPeD8aB/r1+p5WxXtR+27lStXVnzt7373u+FnTf3IaTo4N3ms6s86Bt9///3QTtMf9d/ksaSpWJqilWm6iKabm8W0LE0PqgeabpOX+daf8zYLug3K22+/7XEplUmXg8+vp+/jxhtvDMd69uzpsfZVHvtsnfK/5fS6Sku05+XgNXVK59WcojVlyhSPx44dG47pGN+xY4fHOQ1aU5NLKWC12Mc6J+atjHQO0605zGK5haag6pZEZjEl9ZprrvE4X+dK51k/J5r+pltmmcU5QrdwMYv9r+nILWnLq9JWU0888YTHL730Umin5Rr5fnXMmDEef/WrX/VYx5VZPNe6lUbuK0071S1CzOLWDcePH/c4/136GdL3ZGY2YMAAj+utBEv/3lzupGn5ukXV3LlzQzu9L9XX074xq5xWnH/W/s4px5oWrSVYZp9NcW4qfOMIAAAAACjiwREAAAAAUMSDIwAAAACgqFlrHDPN6865+pqDX2nLDbNYz6O5wTnX+Pnnn/e4Q4cO4dj3v/99j3Up3FqsxbjYSn2stD5Vt0vZuXNnaHfdddd5/J3vfCcca0l1Fi2N9l3pPOsY7NOnj8e33npraDd8+HCPO3bsGI5pTZXWTOrWD2Zx2xatIzIrb2VQC3QezDUw7733nsevv/56OKY/6znKdYd6rnWLlbx0v86luYZD+6RU30yN4/8r1e/nc6vnTMdPrr3S7ZD0WK6h0+0e8pZXWue2bds2j/Oy8VoflMe01jjXyvL/leqM81ykdWiZzpHaJ/keRceMzr/nMl7032mcPzP6t+RjugVHS11HIM+XWsu2atUqj3UrKLP4+Z46dWo4putk9O/f3+M8zvSclbZN0vvXJUuWhGO6tdXRo0c9zusIaN2/viezOC/UG51/tF7YLNbt6lYaug2RWTzv+rnI9Yn6Wcvzu44zrXfNfVNaH0A/T0157ayNGRsAAAAA0GR4cAQAAAAAFFVVqqpq7PL/mR7TpciXLVsW2mn623333ReO6VLKOU0HTSP3qS7zP3/+fI9zWtMPf/hDj3M6FC6cPB41tUnTJfIS4Pqz/puceqXpFzm94/Dhwx7r8vW6LHVD/66elNJSjhw54vHGjRvDsUOHDnmsfZLH2fLlyz3WNKouXbqEdro8eE7R07Q2Hat5+fdaSV38vEqpqnnLFe07TbfKW9voNg6a1pSXddeUKt3Cw8xs6dKlDb6Gbh9hFtPh8uvn7Tlaolwmo/2l/ZO3Atu1a5fH+bPfpk2bBuO8zP75pqcqff+6tYRuGZCPaSqtWW2kquYta9544w2P9dqj5TNm8VzkLUz0866fBS2nMIvjQOdVTZc1M1uxYkXF91vp89SvX7/QTreWy9st1VNZT2kbwJyqquVPOh4PHjwY2ml6qsY5LV3TjPP1Ua+JAwcO9FjTZc3i1lh5XiBVFQAAAABQFXhwBAAAAAAUtch8kdJXsJp+oau/PfPMM6Gdfp08e/bscEzTr843/ULTVup5ZcDGyiubPfroox7rio55NbCZM2d6XAvpT9Uqf4Z1BUVdETWn4mia0549ezxet25daKcpk7pSY/53mvqhaXdmZgMGDPC4tHpdLaq06rRZTKvZvHlzOLZ161aPdQzmlGN9fU3Zyak9+vPNN98cjo0aNcpjTeUiNbVx9NqW+0dpCpT2r1lcYVdXyMxzp64mmVck17lAV5OcMmVKaKfjM6/wWIvXRB13WgqT5zMtm2nfvn04pudM57DzPV/6nnKqpaaw68qcuuK8WUy1HDZsWDimaXMtaY7V85LHkt5v6HnXec8sjsfdu3eHYzq/6fjZsGFDaKfXQS290M9Pfr/5PGuaqV4DZ82aFdpNmjTJY+23/Jq1ODZLNL03r2A6YsQIj6+99lqPtWTGLJa0aV/lsa+fhXfffTcc07Hfo0cPj7WMxyyWBuV5+2L1HVdsAAAAAEARD44AAAAAgCIeHAEAAAAARS2yKExziPOS2Jq3v2DBAo91ewczs/vvv9/j0aNHh2MXolau3vLEz4fWXKxevTocmzdvnseag/6DH/wgtNNccDSdXIemefe6nc3OnTtDO6390PpHrbUyi3UmuRZHf7f29+TJk0M73Q4g16PU03jM9WRad5hrErUOXOfO3N96PrXWQ+sWzczuuOMOj4cOHRqOaW1GPfXHhaLXPV263yzWOX3wwQcer1+/vuLr6byax4v+nPvx9ttv93jixIke9+zZM7TTz2Et9nf+m7R/tLY733vodg9nz54Nx7RPdAzm2n6tjay0pUN+H7ptg1mstfz973/vcd7maMKECR7fdddd4Zhux9GS+ljfa94aSj/He/fu9fjo0aOh3fbt2z3Wukgzs5dfftljrR3PWzDotU7vZfN41Out1jGamd14440e69gcMmRIaKd1l2yB1LBcP6rXrNwnlei2YDr+zOIWKXmdB/3dej+Un0e0XXP1G58WAAAAAEARD44AAAAAgKIWn6qat3HQZaUXLVrkce/evUO7Bx54wGNdlhxNS/vu2LFjHv/2t78N7TQtZPDgwR7ffffdoR1bcFwcOQ1Jl5++6aabPH7ooYdCu4ULF3qsaXOaTmcWPxd5qXDd7mP69Oke51Qc3SJE319D77+W5b+9b9++Huv2NWZmV155pceaXqVL8JuZDRo0yOMZM2Z4PH78+NBO59l6ThduCpqilNPrNAVKUwvzZ0HnVU2HytdHXYY+b6uinwXdMiL/rnpOf2vbtq3HvXr1Cseuv/56j3O62rPPPuvxypUrPR4zZkxop/csuoWAbl1kFksFcqqqbtOjY3PcuHGh3Y9//GOP83YcOeWxJdJ0RDOze+65x2M9z0uWLAntND31xIkT4Vil7T40pdwsbv2mY0nHmFkc0yNHjgzHNI1VPwv5d+l4ZC4+d42dz/S859IQnac1zdss9olef/O1OG+31Rzqd2YHAAAAADQKD44AAAAAgCIeHAEAAAAARS2mQEzzenW527z8//z58z3W3HLdMsAs1h3Ucy1GU8v52B9++KHHWsOxYsWK0E5rCx588EGPu3btGtqRq988tLa0Y8eOHmsNolmszTh+/LjHucZR67e0TsMs1qBoTV6ub63ncazjIC8prv2TaxI7d+7ssdbO5NolrYHTOg197fzvGJufT/486/YWuiWKWRwjumWN1h+bxa0WdPl/ra8yi/2d63R0btYxWG/9nf9eHXdav5RrRPX85T7WOuMDBw54vHbt2tBO+07vc/L1Vvsn1xxr7bPWLc+aNSu007rGvNVPLci1uTpHag1i3vpL+yRfz/QeVetddcsos1i/r9uA5DGn26/k+T3/jOal80Iec7p+Q77G6jjW7cqqoaYxq987LQAAAABAo/DgCAAAAAAoqtpU1fz1bKWvcXW5f7O45PTtt9/u8bRp00K7/BUymob2m5nZ/v37PZ43b57Hp06dCu00xUpTfdh+o/poakZOZdKfNS0STSen0GlKjC7dbhbTgnUJ+DzO9DU0tave0hObk6Y15vQ6HVuazq1pxZmmuOW0KT2WPwva5/T/p7R/9P5Ctwkyi2ms/fv3D8dWrVrl8UsvveTxli1bQjst+dC0yLy12KRJkzzWtEizeI3VVGVNrTSr/RKA/BnWv1+3fMp9pX2Q718qpQjn+04dd7V+nuuFfp7yPK2pqqNHjw7H9LPQrl07j/N2HHpPndOUL9Z8zCcVAAAAAFDEgyMAAAAAoKhq8/5yqqquWrVx40aPly9fHtrpV8F33nmnx3k1Tk0LIN3mwtK+O336dDi2evVqjzdt2uSxpleZmU2ePNljTcMinQM4f6U01g4dOlzst4PzlOdB7decrvh5cX08d3rOcqqv9s+AAQPCMf05rwSPi0/78dJLLw3H9Gdd9RT4r1wCMHjwYI/vvffecOyjjz7yWFfNzp+7apiPuQsHAAAAABTx4AgAAAAAKOLBEQAAAABQVLU1jnkbh+PHj3u8c+dOj3U5ebO45LTmE+cauryMLZqGLhVuZnb06FGPtU/GjBkT2ulS4VoTUg353QBQTZgXAaC65OcMXa9j4sSJ4djHH3/ssc7npXr25pr3+cYRAAAAAFDEgyMAAAAAoKhqU1Uz/bq2d+/eHn/jG98I7QYNGuRxnz59PG7btm3F18OFpV+f51Ti2bNnezx+/HiPcypxjx49PL7ssssafG0AAACg2un9a05jbUnlczw9AQAAAACKeHAEAAAAABTx4AgAAAAAKKraGsdWrVqFn7XmrWvXrh7nmjetXaSOsfm1bt06/Ny9e/cGYwAAAADViycrAAAAAEDROX/jOGfOnKZ4H7jI6MfaQD/WBvqxNtCPtYF+rA30Y22gH6sL3zgCAAAAAIou+eSTT5r7PQAAAAAAqhjfOAIAAAAAinhwBAAAAAAU8eAIAAAAACjiwREAAAAAUMSDIwAAAACgiAdHAAAAAEARD44AAAAAgCIeHAEAAAAARTw4AgAAAACK/g8qnLbsfY/CxQAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 1152x169.2 with 8 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Real test images :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE4/figs/AE4-07-test-real</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA44AAABwCAYAAABRhy5gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXEElEQVR4nO3de5TN1f/H8Z2Mu6ioIdFFuqyVXHKZZHVRtIouYhKjEJFULlMowkphaLDUrDAiXVBqVYtcKrmWSLm0dEFyp6jBMq7x/eO3envv/Tuf3ZmZc87MnHk+/np97H0+Z+djzpxPn/fe+5wzZ84YAAAAAACCFMvvAQAAAAAACjZuHAEAAAAAXtw4AgAAAAC8uHEEAAAAAHgVD7djz549WUUnn2VkZJyT13NwHfMf1zE+cB3jA9cxPnAd4wPXMT5wHeNDqOvIE0cAAAAAgFfYTxz/lZGREY1xwKNnz54RPyfXMfa4jvGB6xgfuI7xgesYH7iO8YHrGB9815EnjgAAAAAAL24cAQAAAABe3DgCAAAAALy4cQQAAAAAeHHjCAAAAADwyvGqqgAQaWlpaZL79+9vtU2bNk3yo48+GqshATDGZGdnW8fjx4+XPGnSJMnTp0+3+jVt2jS6AwMAxBxPHAEAAAAAXtw4AgAAAAC8KFUFEHMnT560jufPny/5nHPOsdreeOMNyZSqxr+PP/5Y8ieffGK16bLlatWqSf7tt9+sfgkJCVEZW1Fx6NAhyQMGDLDapk6dKnn48OGSr7/++ugPDEBY+vbtax2PGzdO8ooVK6y2pKSkWAwJcYInjgAAAAAAL24cAQAAAABe3DgCAAAAALyY4wgg5rp162YdL168WPK5555rtb3wwguxGBLyyYIFC6zjhx9+WPLp06ettjZt2kh+9dVXJTOnMW8OHz5sHT/22GOSZ8+ebbWNHDlScr9+/aI7MBhjjMnKyrKOJ06cKPn777+X/P7771v9UlJSAs+p56Q+/vjjkitWrJjLUSK/paenS9ZzGo2xf6/qLXWMYY4jcoYnjgAAAAAAL24cAQAAAABelKoCiJqjR49K1ltuuCVVWq9evazjli1bRn5giLnjx49L1ls6pKWlWf0qV64s+a233rLabrvttiiNrujRZcAjRoyw2nR56ksvvWS19e/fP7oDK8L2798vedSoUZIzMzOtfgcPHgz5encro3feeSewTdNl36NHj7baHnnkEc+Ikd/0thu6PPXMmTNWv3/++UeyOwUA/+3IkSOSX375ZatNH+ufs8GDB1v91q1bJ/nTTz+N9BBjhieOAAAAAAAvbhwBAAAAAF6UqqLA++abbySPHTvWalu5cqXkHTt2hHW+Pn36WMd6JTJE1ty5cyUnJycH9tPlqMOGDYvqmBAbukzZGGM6deokWZcqP/DAA1Y/XW5VvXr1qIwNxnz55ZeS3VLV5s2bS37++edjNqaiTpfzjxkzRrJbZlqyZEnJekXUCy64wOrXoUOHwPfSK+nqfk8//bTVr06dOpJr164deD5Ej/4O5K6Iqj9L9cqpujTVbStWjGdGOXXgwAHJ7uelXu27Xr16gedYunSp5H379lltF198cV6HGDP86wEAAAAAeHHjCAAAAADw4sYRAAAAAOBV6Oc4/vDDD9bx2rVrJX/++eeSs7OzrX6ffPKJZHf+QNOmTSXrOQelS5fO01gRPr3EtDuvUXPnK2qNGzeWnJqaGng+fY5LL700R+OEzf05c7da+FelSpWs45kzZ0ouU6ZM5AeGmNizZ4/kbt26WW16vmvr1q0lv/vuu1a/UqVKRWl00Mvwt2vXTnKVKlWsfvqaMB8qdhYuXBjyz+vXr28dT5kyRXIk5h3qecV33XWX1bZ+/fqIvhdy7oMPPpDsbmWlt93Q8xrZjiOyfv/99xy/JiEhwTrW2+hs3LjRamOOIwAAAAAgbnDjCAAAAADwKjSlqvoxe8+ePSVPmzbN6nfixImQr3fLn/Ry4+4S1rps7vXXX5esyx2Rd3r7jCZNmgS2ff3115KrVatm9Qu3tNTXj/LUyBk8eLB1/N1334XsN3v2bOuY8tTCyb2+Q4cOlaynChhjl4S/8sorkilNjZ0nn3xS8l9//SU5MzPT6ueWkiM29u/fL/mSSy6R/N5771n9rrrqqoi+76233iq5QYMGET038k6XEuttNYyxvxuzHUf06C1RwnXfffdZx0OGDJHs/u687bbbcjewfMC/HgAAAACAFzeOAAAAAAAvbhwBAAAAAF6FZo7jrFmzJE+aNElyhQoVrH66hviiiy6S3KpVK6ufXvr21KlTVtuCBQsk6zlbnTp1svoxDyRv9LYYek6jMcZs375dcm7nIOpzPvTQQ4H99Hsh55YsWSI5IyMjsF+zZs0kJyUlRXVMiB79eann3hhjz2ucMGGC1fb4449HdVz4/zZt2mQd66X89efqY489FvH3ivQ8vHh0/Phx61hvZ9OjRw/J0f671FsN7Nq1K6rvhdD095WVK1dabUFbbvja2I4j7/Tf2YcffijZ3cKvePFCcysVETxxBAAAAAB4ceMIAAAAAPAqNM9Xg5b11yWnxthLvpcuXTqsc7uPmXv37i1Zl76uX7/e6nf77beHdX6cpZc01qWqbdu2tfpFYosMXyksImfUqFGS3dKrxMREya+99prkhISE6A8MUaG3KHr33XettgEDBkimNDV/ZGdnS05OTrba9BYcixYtCut8bglqx44dQ55PlzsaY0zr1q0lT5kyxWorW7ZsWO8d70qWLGkdV6lSRXL58uWj+t7Lly+XnJKSInn37t1WP/d3M6JDl6e2b9/eatOlke52HI0aNQp5Pr2Nmfs6tuMIz759+ySvXr1a8mWXXWb1q127dsjXu99z9N/75s2bIzDC/MG/HgAAAACAFzeOAAAAAACvAluqqsttjDFm7ty5IfvplRqNiUwJXNAKZhs2bLCOKVXNuaCSUXcVMb36386dOyVXq1bN6qfLUd1zBNHlzMi7Y8eOBbbVqVNH8tVXXx2D0SAa5syZI3nQoEGS27RpY/V78cUXYzYmhNaiRQvJa9euDeznlltpeqVpvbqnMcZ8++23kitXriy5S5cuVr+JEydKTktLs9ooVQ3tvPPOk6xXqG7ZsqXVT0/l2LZtm2S3XHjFihWS9aqQxtglyCdOnJCcmZlp9XPLaZF77vcfvdq7nsbjrtqpV0h1S1N1ybE+n29VVbcNOVOrVq2w+tWsWdM6rl69umTfZ3NBxxNHAAAAAIAXN44AAAAAAC9uHAEAAAAAXgV2juOaNWus419//VWynoM4YcIEq5+7VHFufPzxxyH/PBLnLuqSkpJC/rmv9j8SGjduLDk9PT2i5y6KtmzZIvn7778P7MdS7oWTntNojDEPP/yw5Jtuukny9OnTrX7hboGEyPr8888l63ltpUqVsvqlpqZKLleuXOD53nzzTcmLFy+22rp27Sp56NChkt3l/9955x3JzJMLj57LOGvWLMn16tWz+l1xxRWS161bF3g+PZfNnTcXxN36rEOHDpK5jnnjfq/RWzyEu+XGzJkzA8+v12/44IMPrDZ9znD/LRR1QVsWhbtOxqlTp6xjPc90z549VtuhQ4ck67nOBRFPHAEAAAAAXtw4AgAAAAC8Cmypqi6pMcYuuVmyZInkaJePJiYmSu7YsWNU36so0MuI6zIavf1GuK83xpi+fftK9m3H4b4OefPXX39J1iUWJUqUsPrVrVs3ZmNC3uzevVvyU089ZbVdeOGFksePHy+5WDH7/z2uX79est62wRh72Xi9/L/7XroUFuFZuHChZP25qrfEMMaYRx55JGS/UaNGWf1eeeUVybrk1Bi7bFlbtmxZYL+LL744cOw4S2/xdfnll0t2t9nwlafm1RtvvBHYpre/MobS1SC6TFT/nektN4yxS0b1VmPuZ6CvPFXTP9Nsx5F3uvxef4Y1bdo0rNeXKVPGOr7nnnskuz9nBw8elEypKgAAAACgUOPGEQAAAADgVWBLVYcMGWIdZ2VlSa5SpUpE32vp0qXW8ezZsyWnpKRIrlChQkTfF2clJyfn6nW7du0Kq9+rr76aq/MjNL3qonb69GnreOTIkXl+L13u0aVLF8lu+ZtebRk5N23aNMluaZz+HPzhhx8ku2WLa9euzfH76hItYyhVDYf7uafLSStVqiRZl6a6+vXrJ9ktQezdu7fkoNJUY4zZsGGDZHcVx3nz5gW+Dv9Hl2wbY/+9b926Naxz6HJRXepqjP2zpKcXGGNMmzZtJNevX1/y6NGjrX6DBw+WfO2111ptbpl5UaLLTnX5vjH21Bvfaqa6Tb9GrwKfE3ocvvdiVdXQjhw5Yh1/9tlnkvU0nLJly+bq/BUrVszV6woanjgCAAAAALy4cQQAAAAAeHHjCAAAAADwKrBzHO++++6YvZc7/03P07rllltiNg78N3fbjh07dgT2bdu2rWS244iNU6dOWcfhbrMSLj0PT28RYYwxDz30kORnn33WaqtRo0ZExxEv9JYZkydPDuyn59C52zNoN998s+R7773Xaps/f77kRYsWSb7rrrvCGyyE3trEGGP27t0r+Yknngh83YEDByTr5eAvu+wyq19aWlpY43jmmWcku0vU16lTJ6xzFGXu37NeX0HPhxo3bpzVr1WrVpL1fLXzzz8/z2MaNGiQdaznsaanp1tt7dq1k1y5cuU8v3dB5m6loeePunMG9XYXehsMdz53JOY1Br0v23HkXHZ2tnW8bds2yZH4DulbJ0Vvx1HQv6/yxBEAAAAA4MWNIwAAAADAq8CWqkbb7t27Jf/444/5OBLkhC5HdLmP9yNdJomzkpKSJE+cODGwX61atSR37txZ8g033BD4mnXr1lnHR48elay3Afnjjz+sfhkZGZI3b95stekyyaLM3cZBXxO9BYde4t8Yu1SuevXqkq+//nqrn94i5csvv7TadBlevXr1JDds2DCMkUPzlbXt27cvsE3//OifK3fbnISEhMBzLFmyRLLemmXq1KmBr8FZulx40qRJVtt5550nee7cuZLzc4savVWHu+WKLq+Lx1JVXZ7qbkujy1P1VhfG2GWhqampklu3bm31i0R5atCY2I4jsvTWOWvWrLHa9O9LPYVGf8Ya4/9779Gjh+SvvvpKsu+zOL/wxBEAAAAA4MWNIwAAAADAixtHAAAAAIBXkZ3jOHz4cMm//fab1Va2bFnJ99xzT8zGhNDCnas4a9asKI8E/9Jz1Hxq164tuX///mG9xrc9w9ChQyXrLR2MMaZ79+6S3fmPR44ckax/vouahQsXWsc//fST5PLly0vW8xGNMaZ58+Zhnf/PP/+UrLd7MMbeqkVv/aHfF+HZtGlTWP30cvLGGDN69GjJiYmJkn1zx6dMmWIdDxgwQPJLL70k+f777w9rTEXdjBkzJO/Zs8dq099L8nNeo1aiRIn8HkJUuVt6rVy5UnJycrJk35YbjRo1str0XMa+ffsGvpc7ZzSInmvpbs2ix6HHyHYckaXnjt94441WW/HiZ2+lypUrJ/n48eNWP3fOo7ZixQrJen5zQfxc5YkjAAAAAMCLG0cAAAAAgFeRKVXdv3+/dexbnl+X8+jl5ZE/fGVUejlrvUUEoqtmzZqS9XYKq1atsvrNmTNH8ttvvy25Y8eOeR7D7bffbh3rspBKlSpZbe5y6UXV2rVrA9t69eol2VeaqssfdfmpMXYZ4969e622efPmSb7ooov+c6wI9vPPPwe26TLtzMxMq02XEutyYV3KbYz9meuWN6enp0vW/2YQHv1dpGLFilZbuOX80bR161breMyYMfk0ktjQpanGGNO+fXvJ4W650adPH6utatWqktu1ayd5+/btVr/Vq1eHPJ/vvcJt03/utrEdR2gXXHCBdTxw4EDJI0aMCHyd/j2YlZWVq/fW5a+tWrXK1TlihSeOAAAAAAAvbhwBAAAAAF5FplT1hRdesI51OcbVV19ttT3wwAMxGROC6VXEfMJdcRWRVapUKcl61S93tce///5bcqdOnSRfd911Vj+3RCTIrl27JOsV74yxSyPdVc/0eIuaY8eOSXZXOu3QoYPkYcOGBZ5j48aNkrt06SJ53bp1Vj99jV9//XWrjfLUyGnZsqV1/NRTT0levnx5yOz66KOPJD///PNWm155eNmyZVabu4IkCr/FixdLTklJsdr0Z65eIdQYe8pCYeX+HglamdQt/dRtbdu2DWzzrXSam/dy2/R76/O5q8zr17mrLe/cuVNytWrVTFHllgHrVaP1Z6xb2q+nYejvNu73nA0bNkhu0aKF1ZaQkBA4joKGJ44AAAAAAC9uHAEAAAAAXtw4AgAAAAC84nqO48GDByUvWLAgsN/48eOt48TExKiNCeEJ2oLDXfb60ksvjcVw4KG3YNDzHY0xpmvXrpK//vpryQ0aNIj4OOrWrSs5IyMj4ucvrPT8mEsuucRqGzVqlGQ9x2LPnj1WvylTpkg+cOCAZH3tjTFm0KBBkgv6PI3CLBLL6et5Oe58Gz0/9corr8zzeyE0d+n+5557TnJaWlpE32vNmjXW8fTp0yXruc8nT560+t1yyy2ShwwZEtExFQSpqanW8bhx4yTHcosMPXfY/Z4TNGfSGGMefPBBE4r73Uj/d3377bdWm94yxDcvuqjR16dKlSqB/fT8R5/du3fneUwFAU8cAQAAAABe3DgCAAAAALziulRVlyC4yw937txZ8h133BGzMSE0d/uNHTt2hOznlnCgYLnmmmus4y+++ELy2LFjJetlro2xt4wIly6vMcYuxWHrh9Dcn6vBgwdL1iVquqzYGGMmTpwoeeTIkZJ1eStip3Tp0tax3hZh8+bNYZ1jwoQJkrt162a1lSxZMg+jg8+FF14o2f35GTNmjORVq1ZJbtOmjdVPlxYfP35c8uzZs61++udYb7lhjDGnTp2SXLz42a+C3bt3t/rpktny5cubeNO6dWvrWH9G6u+Nbnmn3rbipptustpOnz4tuVixs89nGjZsaPVztzeJJPe/S29dtn37dqvN/bxHdNSoUUOyuwXZli1bJOtpdhUqVIj+wHKIJ44AAAAAAC9uHAEAAAAAXtw4AgAAAAC84m6O4+HDhyXPmTNHsltPPHz4cMksG5//grbfMMZeVprtNwqXUqVKSR44cGDIjOjSn296yxJjjJk6dark5s2bS05PT7f6NWvWTHIktoJA3rhzeDdt2pRPI0FO6aX73a0vJk+eLHnJkiWSly5dmqv38m3j8Oijj0pu37695DvvvDNX71VYJSUlBR7v3LlTsjvHUW9t1Lhx4yiNLvfc/65Zs2ZJdudk8h04NipVqiS5Vq1aVtvKlSslZ2dnS2aOIwAAAACg0OHGEQAAAADgFXelqv3795e8d+9eyboExBhjqlatGrMxITS97HXQ9hvGGLNixYpYDAeISyVKlJCsl/gHkL/c7Rj0dg0vvvii5CNHjlj9fvnlF8mHDh0KPH9KSorktm3bWm26/Lxs2bJhjrho0Vtu6FwY6XJavV0I8kdycrJ1rEtV9e/p++67L2ZjChdPHAEAAAAAXtw4AgAAAAC8Cn2p6rFjx6zjGTNmSK5Ro4bkli1bxmxMCE+TJk0C21hJFQBQlNx8882SFy1alI8jARBN7sq22rhx4yRTqgoAAAAAKHS4cQQAAAAAeHHjCAAAAADwKvRzHDMzM63jrKwsyXoLjsTExFgNCbngzmNkCw4AAADEm0aNGlnHZ86cyaeR5BxPHAEAAAAAXtw4AgAAAAC8Cn2p6p9//hnY1qBBgxiOBDm1ffv2/B4CAAAAgDDwxBEAAAAA4MWNIwAAAADAixtHAAAAAIBXoZ/jOGzYMO8xAAAAACBveOIIAAAAAPDK8RPHnj17RmMciDGuY3zgOsYHrmN84DrGB65jfOA6xgeuY8HCE0cAAAAAgNc5Z86cye8xAAAAAAAKMJ44AgAAAAC8uHEEAAAAAHhx4wgAAAAA8OLGEQAAAADgxY0jAAAAAMCLG0cAAAAAgBc3jgAAAAAAL24cAQAAAABe3DgCAAAAALz+B6ABGww6cC8sAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 1152x169.2 with 8 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "i=random.randint(0,len(denoised_test)-8)\n",
-    "j=i+8\n",
-    "\n",
-    "pwk.subtitle('Noisy test images (input):')\n",
-    "pwk.plot_images(noisy_test[i:j], None, indices='all', columns=8, x_size=2,y_size=2, interpolation=None, save_as='05-test-noisy')\n",
-    "\n",
-    "pwk.subtitle('Denoised images (output):')\n",
-    "pwk.plot_images(denoised_test[i:j], None, indices='all', columns=8, x_size=2,y_size=2, interpolation=None, save_as='06-test-predict')\n",
-    "\n",
-    "pwk.subtitle('Real test images :')\n",
-    "pwk.plot_images(clean_test[i:j], None, indices='all', columns=8, x_size=2,y_size=2, interpolation=None, save_as='07-test-real')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 7.4 - Class prediction\n",
-    "Note: The evaluation requires the noisy images as input (noisy_test) and the 2 expected outputs:\n",
-    " - the images without noise (clean_test)\n",
-    " - the classes (class_test)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 17,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:37:38.033768Z",
-     "iopub.status.busy": "2021-03-14T21:37:38.033294Z",
-     "iopub.status.idle": "2021-03-14T21:38:02.885975Z",
-     "shell.execute_reply": "2021-03-14T21:38:02.886506Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Accuracy :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Classification accuracy : 0.8688\n"
-     ]
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Few examples :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE4/figs/AE4-04-predictions</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq8AAAT2CAYAAAAMMEqYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9dXCV59vuD3/i7u5OhChBAgRCCO7u7rR4aaFYi5RCBSstbXF3txCcYCGBeAJxIcSIu96/PzLr2s3+7r0f0pl33nme4ZjpTJusrqxr3dd9X6ccx3HKSZLEZ3zGZ3zGZ3zGZ3zGZ3zGfwfI///7A3zGZ3zGZ3zGZ3zGZ3zGZ3wqPgevn/EZn/EZn/EZn/EZn/HfBp+D18/4jM/4jM/4jM/4jM/4b4PPwetnfMZnfMZnfMZnfMZn/LfB5+D1Mz7jMz7jMz7jMz7jM/7bQPFTX/jFF1/8t7cl+OOPP+T+b7/7n74++J+/xv8J64P/+Wv8vE//Z68P/uev8X/C+uB//ho/79P/uev7XHn9jM/4jM/4jM/4jM/4jP8+kCTpk/5ZuHChtHDhQunbb7+VvvzyS+nChQtSTU2NVFtbKyUnJ0uHDh2SXFxcJDk5OWn16tWSDMeOHZOmTJkihYWFSTU1NdKiRYukgQMHSgkJCZIkSVJjY6MUHR0tJSYmSvX19VJ9fb2UmZkplZSUSP87GhsbpaqqKqm4uFj666+/JFNTUwmQ5s+fL2VkZEiSJEnp6elSfX29JEmS9Mcff0jOzs6S7LN/yvq6d+8unT17ViorK5MkSZKam5vF34+OjpZ2794tLVq0SAoMDJRUVVUlQJKTk5MAydLSUnrx4oUkSZJ0//596eHDh1JDQ4NUV1cn3uPXX3+VNDQ0pO3bt0uSJEkPHz6U/vzzT6m0tLTVWj98+CCtWLFCAiRA+vvvvyVJkqSCggIpNDRUqqysFK/9lPX9c41hYWHSpk2bJB0dHUlbW1s6deqUeK958+ZJOjo60sqVK8XPVq9eLQHSwYMHpZqaGikwMFAyNTWVUlJSJEmSpNraWqmgoEC8/u3bt9KhQ4ekJ0+eiJ9VVFRIz58/l37//Xfp2LFjUn5+vhQVFSWtXLlSunnzpiRJkrRkyRIJkDZv3iz+v+rq6k9eo+w1GzdulJqbm6X6+nopLCxMSktLE++Xl5cnXbhwQfrhhx+k06dPSxUVFZIkSVJpaal0584d6erVq61ev2DBAgmQduzYIfZDcHCwdPv2bSklJUVqbGyUGhoaxOtjY2Ola9euSW/fvhU/279/v9grK1askIqLi6WPHz9Kv/32mzRz5kxp/PjxkpOTU5vW+M/vqLa2Vux/SZKk3bt3S4qKipKWlpb0xx9/SJIkSYmJidL8+fOlIUOGSD/88IN07949KSsrq9V73L17V+rbt68ESMOHDxf3QFlZmfT8+XPp5s2b0sOHD6WPHz9KkiRJ2dnZUmNjoyRJkvTXX39J8vLyUt++faV3795JkiRJVVVVUlNTk/gbbd2nMuzZs0eaOXOm9Pz5c/Ez2WeTJEnKzMyUfv31V+nIkSPi3m9qapKqqqrEf0uSJD5rU1NTq2u2efNmaezYsVJoaKhUWloqXb9+vdXelaG5uVmqqakR65ckSTp//rxkaGgozZw585PX+M9naWNjoxQaGiqtX79eCg0NlSRJkhoaGqQePXpIioqK0qNHj6Tc3FzJ0dFR8vDwkGpqalp9ptjYWGnt2rXS8ePHxc8qKyul8vJy8d+//fabtGHDBqm8vFx69OiR5OjoKH355ZeSJElSeHi4FBgYKPn7+0uPHz+WJKnlGSV77uzZs0eSJEnaunWrBLT5Gv7www+SJEnSjh07pMGDB0sJCQlSZmamFBgYKPXq1Uu6dOmSdO/ePenSpUvS2bNnpalTp0qApK2tLS1fvlxKTEwU6zh69Kg0d+5c6cGDB5IkSVJxcbEUEhIiXbhwQTp79qx05swZ6erVq1JycrJUU1MjXb9+XTpy5IgkSS3Pbn19fcnb21vsg/z8fOn8+fPS+/fvJUmSpHXr1n3yGv/5LD169KiUmJgoBQcHS46OjpKnp2ere0uSJCklJUVasGCBtHDhQun8+fPSL7/8IllYWEiANG7cOOn58+fSihUrJHl5eWn69OlijzU0NEiNjY1SUVGReK/jx49LysrK0qpVq6SmpiZp48aNUqdOnaTw8HDxmpqaGunZs2fSqFGjJD8/P2n37t1SXl6e1NDQIGVlZbVpjTKsXbtWCgwMFPtUklrucRmam5vFdytJre/RixcvStra2uI+ef/+vTRixAjJ1tZW+v7778Vzora2ttV7yFBXVyelpqZKV69elbZv3y5t2rRJOnnypDiDiouLpdevX0tv376Vmpqa2rxPb9++LX399dfSvXv3pMuXL0v6+vqSv7+/VFlZKV26dEmys7OT1q1bJ127dk0aMmSING/ePHF2VFVVtXombNiwQbK3txf3ZHJysnTp0iUpIiJCSk1Nlc6ePSvNnDlTOnjwoNTc3CydPHlSGjFihBQeHi6VlJRICxculDZt2iTV19dLISEh0uTJk6WdO3dKkZGRUkxMjJSTkyNJUtueNTJs3LhR6t69u3Tt2jXxM9m9DUhOTk7S8ePHW8UjtbW1UmhoqBQcHCzisurqamnEiBESIO5j2bMpNzdXGjp0aKvYpa6uTlq7dq0UEBAgvX79WpKklrN4165d0smTJ6WKigrp6NGjkoqKijRixIhPWt8n0wZk8Pb2pkOHDlhaWqKqqgqAo6MjKioqyMnJkZaWRocOHcTr/f39kZOTw8jIiLq6OgwNDamqqqKoqIi6ujoaGhrw8PAAoLS0FD09PaytrXn69CklJSX079+fsrIytmzZQkhICK6urgwcOBAdHR3mz5+PgoICLi4uPH/+nIyMDAICAnj79i0//fQTzc3NHDhwgFOnTn3y+pSVlZk/fz7jx49n0aJFGBsbY2xsDICVlRXy8vLIy8vTo0cPAgICiIyM5MmTJygpKbF8+XL8/PxIT0/n2LFj9OjRg169egFQVVVFTU0NZmZmLFy4kJ49ewKgr69P+/bt0dbWpqSkhNraWszMzDAzM6OqqgoXFxd69uxJXV0dp0+fxsXFhW7duiEvL8+VK1c4ePAgVlZWbbqGOjo69OvXDy0tLRobG/Hz8xO/CwoKwtTUlCFDhlBcXMyFCxeIjIxk6dKlDBs2jJqaGuzs7NDV1UVTUxMAFRUVjIyMyM3NJS4ujsePH6OkpMTkyZMB2LlzJ9nZ2axfv56uXbuKvyUvL4+bmxsfP37k1atX9O7dm06dOtGrVy8kSeLjx4/o6+vT1NTUpvVZWFhw584dlJSU6NatG2pqajQ3N7Nw4UKUlJT4+uuvGT16NHfv3mX9+vUoKyszdOhQ+vbtS3x8PIcOHaJ9+/aMHDkSV1dXXFxcMDAwAEBOTo7m5mYSExPp3LkzCgoKABQXF6Ovr4+7uzvm5uasXbsWIyMjNm3aRJcuXbC1tcXMzIyZM2eip6dHQUEB9vb2GBgYIEkS7du3Jzc395PXaGlpyYkTJ6itrcXCwoKgoCDxOycnJ3744Qf09fUxNDTk1KlTGBgYMGDAAI4ePUpERATTp0/HwsKCW7duYWFhgZeXF7169eLx48eUlZXh5eVFY2Mj5eXlxMXFoa2tjbm5OQ0NDWhpadHc3ExaWhqpqal4e3tjaGjI6NGjGTp0KO3atQNAXV1dfKbq6uo2XUOAc+fOMW7cOPz8/LCyshJ7JyUlhcLCQvHfhoaGqKurY2JigpKSEjk5OWRlZbXaa4C4VsnJyURHR9OlSxdsbGz45ptvePDgAaqqqujo6BAUFMTVq1eZPn066urqzJ49m44dO/Lo0SMOHz5M9+7dmT9/PgDt27fn6NGj1NXV8fjx4zatb8iQISgoKKCuro6VlRUmJiYAKCoqMmfOHPz9/amtrSUzM5MpU6YA8OrVK+Tk5NDU1MTHx4eKigpSUlLQ09MT76uhoSH+/fr169y/fx9/f3+0tLQwMDAgJSWFbt26AdCxY0fGjh2LlpYWL1++5M8//8TDw4P9+/fz+vVrFBUVqa2tJTAwkG+++YaKioo2rdHDw4Pi4mL69+9Pr169sLW1JTg4mLKyMnx9fXF3d6ehoQFzc3NcXV3R19cnLS0NaDlrTE1NaWhoIDU1FV1dXfr3709DQwOvXr1CQUEBFRUVrKyscHV1RUFBgdevX5OXl4ejoyNDhgyhsbGR6upqtLW1+f3337l79y4rVqxg9erVqKmpcefOHRITE1m/fj2jRo3i2bNnbVpf+/btUVZWpqCggJMnT5KSkoKLiwuGhoYkJyezY8cOhg8fzoABA5g+fTqSJOHu7k5SUhIfPnwgIyODsWPH4ubmhoGBAc3NzVy9epWOHTsyceJE8dxpbm5GkiTk5OT48OED9fX15OTk0NzcTP/+/dHQ0MDS0lJ8rubmZnR1dVm8eDGZmZmUlZURHR2Ni4sLxcXFbVqjDGPGjKG4uJg1a9awevVqBg0aRGJiImvXrmXUqFHMmzdP3GPQcp7funWLly9f0tjYyK5du/Dy8hL37/Dhw3F1dSUtLY0ffviBxYsXo6GhwU8//URhYSEzZ85EUVGR1NRUfHx8UFVVJT09nZqaGnr16oWnpye6uroA6OnptboH2ornz5/z8eNHlJWV6dSpE8uWLcPOzg4NDQ3evHlDeno66urqaGpqkpSURFNTkzj/1NXVRUAVEhLCjh07qKyspKCgAGiJjyRJwsjICB0dHVJSUiguLiYuLo7i4mI6deoEgI2NDQUFBeTn56OkpER2djbl5eWYmJjg5uZGbW0tDx48wMzMjOHDh7dpfVFRURw9ehQNDQ22bNlC+/btxe9GjhxJfn4+JSUlTJgwgYEDBxIeHs7p06dxcnJi6NChmJmZkZSURFRUFB4eHigrKzNs2DBevnzJo0ePsLGxYeTIkQDU1taiq6uLj48Pw4cPZ9q0aSgrKzN48GAKCwvZvn07gYGB6Ovr8/TpUxQVFenbty/jxo0jPT0da2vrT1pTm4NXAE1NTRG4AjQ0NGBsbMyMGTNava6+vh4FBQUCAgKwsrKioqICOTk55OTkqK+vR0VFBRUVFRobG1FUVERPT4/6+npevnxJWFgY7dq1Q1lZmaysLG7dukVKSgqlpaV0796dQYMGMX78ePG37t27R3FxMY2Njbx//54XL17QuXNnOnbs2Kbgdf78+axatYqEhATy8vJwd3cHoKysjLq6Otq3b098fDyGhoYsXryY1NRUNm/eTI8ePZg9ezbQcjiam5sjLy9PVVUVGhoa1NXVkZ6eTmBgIBMnThTfj6enp/jbpaWlVFZWoqioSHJyMra2tixZsgQ3NzfOnTvH/v37WbRoET4+PgC8ffuWGzdusHDhwjZdPyMjI5ydnenSpYv4mezmGzdunPjZH3/8wdq1axkwYAC7du0CWoK06dOno6uri7a2NgD5+fnk5OSQnp5OfHw8MTExGBoakpaWRkNDA0ePHqWiooIJEybQuXNnsrKyUFNTw8jIiJEjR/L06VPi4uLo1asX9vb2vH//ntu3b2NtbS2Snragb9++3Lp1i/T0dKqqqggKCuLw4cMcP36cAQMGYGNjA7QECc+fP0dJSYm+ffsiJyeHoaGhuFbV1dUMHDiQjx8/kpOTw7t373B2dsbDw4OmpiZSU1OpqKggMzOT6upqunTpgp6eHgoKCsTFxfHx40fGjh2Lq6sr3333Hebm5mI/GRkZMWjQoFaf+4svvvjkNbZv356wsDDS0tJoamri48eP6Orqkpqairm5OQMHDgQgMjKScePG0b9/f/bu3YuxsTFnzpyhoKAASZJISEigtrYWW1tbwsLCAFixYoW4tzZu3MiTJ0/YuHEj7u7uIuFUUlJCTU2NjIwM3r59S9++fRk+fDhlZWW8f/9ePCPk5eVRVlZuFch+Kh49esSIESPo1KkTnTp14uPHj8TFxZGRkYGjo6N4XVJSEmVlZTQ2Nopg7/nz51RXV9OrVy8UFBTIy8tDRUUFPT09jI2Nef/+PR8+fGDUqFFYW1vj7++PomLL41BNTY2EhASOHTuGra2tSMLi4+O5cOECZmZm4m+7urri6upKdHQ00dHRbVqfLIDs0KGDSPjLy8tRUlJi2rRpAGzZsoWGhgY2btxIUVERc+fOpbS0lA0bNgBgYmKCk5OTCHIAGhsbaW5uJiEhgYyMDLy8vMQB+erVKzQ0NCgsLKSkpAQ9PT3x/Dhw4ACnT5/G0NCQb7/9ljlz5pCUlISCggJ+fn74+fm1aY8CDB06lOzsbOTk5ESgl5eXR25uLubm5jg5OfHixQvCw8NRUVHBycmJqVOnoqysTJ8+fdDV1SU7O5ukpCRRNLl37x4PHjzA29sbZWVl3r17h7KyMhYWFjQ1NVFdXU1eXh6mpqa8f/+e69ev065dOyZMmICZmRnff/89Dx8+ZOLEiTg7O/PmzRvu3buHq6srv/76K/v37//k9WloaODt7c2bN28oLS0FoEePHsjJyfH48WNu3bqFl5cXAH5+fjQ2NqKgoICTkxObNm1qlWj4+Pgwa9Ys0tLS+PDhg3juSZIk3t/S0hJ7e3tWrVpFhw4dUFRUpEuXLnTp0oWmpiYaGhooLS0lMTERaElOOnToQEREBM3NzdTU1LTp+gHU1NTQ0NCAk5MTHTp04MyZM/zxxx84OTlx+/Ztnj59Sp8+fQAoKSmhpKQEKysramtref78OefOnaNv377069cPZWVlIiIicHFxEcnlkCFDOHbsGObm5kyYMIHr16+Tn5/P3LlzycnJ4dSpU2hpaREQEICNjQ3m5uYEBAQALbFHU1MTxcXFVFZW4uDg0ObzAloS4vT0dJKTk+nRowfr168Xv9PT02PcuHGMHj2ampoaSkpKxP3T2NjImzdv8Pf3Jy8vj+PHj1NZWYm3t3erAFFZWVkU+Hr16sWLFy8ICwvj5MmTjBo1ikmTJgEtMUG3bt3Q0dGhoKCArKwsbG1t6devH7GxsZw4cQJbW9v/ODv+K7x8+ZL09HRGjBghCmr5+fk0NTXh4uIizncZbt26xc6dO+nSpQsDBw7EwcGBxMREDhw4gIeHB4sWLWL8+PEkJiby999/U1RURFFREQYGBigpKaGnp8fQoUP56quvUFFRoaqqiq5du6KoqMiSJUu4e/cuQ4YMITc3l+fPnzN48GCmTJnCd99998lranPw+vLlS3788Ue++OIL5s6dC8CbN2949OgRJiYmjBw5Eh0dHerr63n69CnV1dViY1dVVXHp0iUqKipYsmSJeM/KykqRQb1+/Zo1a9bQv39/kV1oa2vz008/IScnh4ODA9bW1iJwkqFPnz58+PCB4OBgtLW1OX/+PBcvXsTHx4fAwMBPXt/48ePp1q0bmZmZItAoLy/nl19+oUePHvj4+PDbb7/x8uVLJk+ejIODA/PnzxfV43PnzlFTU8OaNWtISUlh//79BAYG4uXlhSRJ4pApKioiJSWlVQBpZ2dHYWEhy5cv5/Xr12zZsgU3NzegJSsLCAholV3OmDEDGxsbQkNDP3l90FLthZYHTWJiIt26dRNJhQy3bt3i2rVreHl5tbpR1NXVcXNzw9DQkKamJkJDQ3n+/DkaGhrY29vj5+eHtbU1SUlJbNiwgcrKSmxsbFBQUGDp0qW8ffsWe3t7Nm/ezKBBg9DV1cXFxYV27dphYmJCaGgoO3bsQEVFhW3btgEtFdq2wNramkGDBvHjjz8yfPhwVFVV6dq1K9999x3Tp08HICQkhGfPnrFgwQL8/f0xNjYmLy+P8vJyli5diomJiUio/Pz8WLNmDZcvX+bUqVM4OjpiaWnJrl27ePbsGY6OjkyePFkkXzExMcyePRsNDQ2amppoampi2LBhvHnzhvPnz+Pq6ir21r9F+/btcXJyIjs7m4qKCmpra1FXV8fV1ZV79+6RlZXF0KFDxT6ToVu3bigqKhIZGYmuri59+/bFzMyM27dvs3v3bpqbm0XgCxAWFsaDBw+YPHky/v7+qKioUFdXJ4IRWRVWS0sLgCNHjrB//36++eYbZs6cSUVFBQoKCq0qMp+K8ePHi/+vqqqKyZMnExUVxfr16/H39wdanj3Xrl0jKSmJ5uZmTE1N0dPTo7GxkbVr19KzZ0+++uorPnz4wPPnzxk+fDhWVlZMmzaN48ePs2DBAt6+fcvQoUPZvXs3ABcvXkRBQYGTJ09iZmYmKgGjRo3Cw8OjVWWguLiY/fv3Y2hoSP/+/Xn58mWb1ihLBGRISEjAyMgIBwcHAO7fv09lZSUbN24kNzeXy5cv0759e3Hw29vbM2bMmFb3iKzK1tzczNixYzE1NSU7O5t9+/Zx5coV1NXVefbsGdOnT2fNmjWi8zJx4kQKCgq4fv06kyZN4quvvsLX17dN6/k/QUdHh2XLllFVVcXFixfp2rUrDQ0NfPjwgcrKSs6dO8euXbsICQlhw4YNjBo1ivz8fD5+/IipqSlWVlY0NTWJymJqaiqFhYUiEP75559JT09nzJgxLFy4EB8fH169esWWLVt49OgRubm5zJgxg/79+xMQEMCPP/4oqpgrV67kr7/+Yv78+YwePZqffvqpTWtrampCQUEBNzc35s2bh6OjI9bW1iQnJ2Ntbc369esZMWKEeL2skl1YWIiGhkar4NXf35927dpRXFyMpqYmpqamAGRnZ3Pjxg3i4uIYNWoUEyZMYNSoUf/xXFRQUCA0NJTbt29TVVWFtrY2Dx8+pF27dvTs2RNjY2Oqq6tpaGho0xrz8/NJSUmhtrYWe3t79u3bx40bNxg0aBBubm7cu3cPPz8/nj9/zldffYWdnR3btm1DW1ubgQMHMnLkSOLj45k8eTLq6urMmTMHOzs78f7m5uYAZGVloaGhwY8//khTUxOurq6kp6fz4cMH8vLygJZkKCEhgaysLFRVVWlubhZ7+9atW4waNYpvv/22TesDcHd3Jy4uTlT9Aerq6khNTcXX15cxY8ZgbW3NkSNHKCwspEOHDlRVVbF7924uXbrEhQsX8PHxwdnZmfXr17Ny5Uq0tbVJSkri8uXLpKam0rNnT6ZMmYKysjJeXl7cvn2b48ePY2RkJApaRkZGBAYG4uPjg5ycHGFhYcTHx4subO/evdHS0sLIyKhN61NRUeHvv//m5cuX7N27lyFDhlBTU8O5c+do3749Y8aMAVpincuXL3Pr1i309PTo2rUrFhYW4n1yc3Px9vZGTU2NmJgY1NXV+f777zEwMODNmzcEBATQ3NxMbW0tISEhovtpbGyMi4sLFhYWfP3113h7e6OlpcWxY8eQJImqqqo2X7M2B69+fn68evWKN2/eiKpiUVERhw8fRk9PD3Nzc/z9/UlOTqagoABdXV1xAGVkZKCtrY2Hhwc2NjbU1tZy7949bGxs0NXVJS4ujn379pGdnU1xcTEZGRlYWVnh5OSEk5MTAHFxceTl5aGhoYGioiLl5eXk5uaipaVFbW0tkiShpKSEtbU1Li4urQ6GT8H169fR09PDy8sLLS0tCgoKmDFjBrdv32bnzp3069cPQ0NDgoODCQsLY+DAgeIgeffuHTdv3sTAwAAXFxcuXbrEyZMnUVNTw8vLCwMDA5qamkhLS+P06dPEx8cLaoGlpSW6urqoq6tTWVmJsbExHTt2BFoOsIKCAhYsWIChoSHNzc08ffoUa2trJk6c2Obgtbq6mhs3bhAVFYWioiKZmZmiPa6qqkpubi7bt28XAfTUqVPF/6uqqiqq7goKCrRv356qqirq6+vp2LEjxsbGFBQUEBoayvnz58WecXZ2Jjo6mtLSUtHuk0FWRSsrKyM2NpaysjI8PDxEtU5WEWsLrK2tCQoK4uLFixQWFuLj48OqVauAloDjl19+QUVFha+++kokQrGxsRQVFaGurs6HDx8wMDDA3t4eFxcXnJycSEpK4tWrVzg6OoqWnb6+PhYWFhgZGVFcXMzOnTuJiYlhzZo1ODs789tvv/HmzRtmzZqFgoIC+fn59O/fH2gJoDU1NfH29haVkk+Furo6xcXFfPjwAWipAMq+qydPnnDmzBmePHlC+/btmTJlCkZGRqLSZmNjw4MHD6isrGTw4MGoqKigqqpKfHw8SkpKgqaRlJSEJEn07t27VQteU1MTSZJ4+/YtTU1NoqoXEhLC+fPnUVVVFQGelpYWhYWFpKent/kaBgQE0NDQgIKCArm5uZiYmNC7d2+RDFdUVFBaWoqOjg62trYoKSlRW1tLx44dSUhIICwsjIyMDH744QdMTEwoKiri1KlTTJs2DTMzM7p27cqKFSsA2LNnD9bW1nh6eqKsrMzq1atRUVEhKyuL169fo6amhrm5Obq6uqSkpBAWFkZzczMvXrzg3bt3eHh4tGrbfgoKCgooLi4mOTmZiooKnJyccHV1RV1dnaamJp4/f46enp44xKOioujZsycbNmxARUWF2NhYXr16xciRI9HX16e5uRk5OTl0dXVxc3OjuLhYXEtTU1OUlJTEQRQSEsL169fp168fvr6+hIaGYmhoyJo1a1BUVOTWrVt8+PABX19fysvLkSQJHR2dNl9DaHlmaGlpkZGRwZMnT0hNTeXjx49Ay17y8/PDzs4OBQUFQTErLy8nOjoaOTk5PDw8sLW1Fdf8wYMHFBYWMmLECHx9fTExMSE2NpYjR44wfvx4dHR0sLKyEudI3759CQwMJDMzE3Nz81Y0KWhpsTc3N1NZWdnmtSkoKFBfX4+qqipDhgyhU6dOvH79mtraWvr16we0FGRCQ0Pp2LEjVlZWqKqqYmBgQGxsLA8fPkRFRQVbW1ucnZ1xcHAQicvHjx/FnlZXV8fW1pZevXphaGhIUlISRUVFGBsbIycnh4WFBSoqKri4uHDz5k1CQkIoLS2lXbt2WFpaYmpqioKCwr+6hlZWVuJecHV1RVtbGzc3N6ZPn46Ghob4PmXPaw0NDczNzVFUVBSJsKOjI2fOnCEsLAwdHR2ysrIYMmQIjo6OrFq1CmNjY9ERk1VVo6KiePjwIa6uriKQV1BQwMTERCTteXl5oqooK/7cuHGjzWusrKwkNja21XPu/v377N+/n379+gmK4JkzZ3BxcWHRokVYWlqir69PfX09L168wMfHhwkTJhAWFiaoDioqKvz222/k5OQQGxtLVVUVPj4+WFhYYGZmxpUrV7hy5QoDBw6krq6OkpIS0YW5f/8++fn52NraEh0djbm5OYsWLcLCwqLNBZ0jR47g7OzMhw8fSEpKoqSkBBcXF3x9fWlqaqKurg4VFRVqamrIzc0VSfHUqVNFDGVmZsaQIUMYPHgw8vLy3Lp1i+LiYr766ivKysrYsGEDJ0+eZOTIkQwdOpS8vDx++uknvvrqK7777jtycnJITU1l1KhR4nP16tULExMT0U2Gls61mpraf7mmNkcF48aNY/DgwRw7doyDBw8yd+5crK2tcXJywsrKCnNzc16/fk10dDSOjo706dMHRUVF7ty5Q3h4OCtXrmTYsGEATJ8+nTt37nDs2DEMDQ2ZN28eFRUVfPXVVzx9+pS+ffuydetWxo4dC8CPP/7Itm3bcHFx4ddff8Xf35/S0lIOHjxIWFgYffv2Zf78+bx9+5ZvvvmGPn368Pz5c7755ptPXt+wYcOQl5fnxIkTDB8+nPXr13P79m2gpa1fUFCAn58fGhoarVqXAAYGBjg7O3P//n1u3rxJUlIS8L84aOXl5aSkpJCTk8OrV6+4efMm0dHRKCoqMmHCBKClyrhlyxZsbW3R1NTk/v37/P7777i4uIjsLCEhgQMHDtChQweWLVvW1kvI/v37WbVqFePGjWP48OFcuHCB06dPs3fvXqytrVFVVaWgoICmpqZWrQ9ZleGf0NfXZ8CAAZSXl4sgMDo6mitXrojXREREoKqqytKlS7GxsUFbWxsXFxeghR+TnZ0tqu/jx49n5MiRyMnJiapeW2/UhoYGGhsb6d+/P+Hh4ZSXl7fKVNXV1enYsSPl5eVUVFSgra2NJEl4eHhw//59li5dSnV1NWvWrGHChAnY2Njw999/k5mZSXh4ODNnzqSuro6RI0cyf/58GhoaKCsrIyYmhuvXrxMTE8PAgQMpLi7m5MmT2NvbM3XqVLp27YqXlxfq6uqEhIQwdepUpk+fTteuXdvMlwwNDWXr1q3k5OQwfPhwnJyc0NPTIyEhgZycHPLy8jh//jwaGhps3LgRe3t7oKWKImtvq6qqiu8mICCA/v37i+5Geno6mzZtwszMjKVLl4rgGFr2aGNjI0+ePEFXV5dOnTpx9+5dpk6dyoABA/jrr79a0YqSk5M5cuTIv0pC5OXlaWhowNramr/++gtlZWWxB5WVlenWrRuenp6UlpbS3Nwsqjgyjq2ysjIVFRXo6+sTGBjIqlWrxOHu6OiIi4sLb9++BWDlypUMHDiQY8eOieTqq6++oqqqCl9fX0pLS9m2bRsFBQU0Nzfz5MkTXFxc2L59u+i8tAVKSkq8f/+e7777joyMDP7880+RCNy5c4e4uDgWLVpEp06dqKysxNbWluPHj2NtbU19fT1TpkyhvLycoKAgwQ0vKSnB2NgYU1NTMjIyOHjwID179mT48OHMmTOHPn36iAQxPT0dLS0tHj9+zDfffIOysjJ79uxh6dKlzJ8/Hx0dHTIzM3n27Bmenp7/KvCpqalBUVGRI0eOkJCQwNatW0VCL0vOx48fj7+/P01NTZiZmYkChJ6eHmVlZSQnJ+Po6IicnByKioqCqtLU1ISzszOnTp1i0aJFpKWliaDYxcWFPXv2UFdXh5mZmXiWxMTE0NjYSMeOHamurmb79u2kpaXxxx9/0LNnTxobG//VdZTBxMSELl26iL3e1NTEzp07SUpK4s8//xT6BF1dXaytrdm5cyfPnz9n1KhRzJ8/X1AMysvLyczMRE9PDysrK+bOnYuKigqWlpZkZmayfv163r17x6BBg5gwYQLKyspAS5KycuVKnj17RnJyMuvWrRN0ttra2lb35adCQUFB6DBk8PDw4MGDB9y4cYM9e/YwfPhwvL29uXHjhrjm0EJhSUhIwMDAgODgYP766y9WrlzJmTNnePbsGYcOHcLBwYGNGzeSmJhIfX09ysrKvHnzhuXLl9Pc3MyyZcvw9fUV1DZjY2O0tbUJCwvj2bNnJCUlMW3aNCZMmMC1a9c4ffq0eA58KhISEoDWXb7i4mKuXLkiqr7Xr18nLi6O9evXM2TIEACmTJmCpqYmL168wMrKiqFDh/Lnn3+yfPlyzp49S8+ePdHT0yMnJ0ck0zJ6iOz7rK2tJTk5mVOnTiEnJ8eOHTt4+fIlM2bMEB2Q8PBwbt++zfDhw9HS0qK+vr5N63vy5Am9e/dm27ZtbN68mdLSUjIzM8U6mpubATA2Nmbu3LmCJ/7Pe97a2pqpU6diaGhIfX0979+/R1FREVVVVVJSUrh8+TKlpaWYmJiwfft2tLW1yc/PF3sTWjrO/9yHCxcuRF5evlWwWlJSIihs/y+0+TSJi4ujrq4OXV1dVFVVaWhowN7enpUrV6KmpkZDQwMvX76ksLBQtCgBTpw4QWRkZKuoOzo6msLCQoyMjDAzM8PFxQU3NzeWLFlCSkqKIHbLYGpqioODA69evWLDhg1MmDCB1NRUdu7cSWNjI+rq6qIy6uTkRGxsbJsFBgCjR4/G0tKStLQ0TE1NGTt2rKgM/P3333To0IHhw4ejr69PXl6eODQNDQ2xs7OjqamJ+vp6vLy8GDZsGAMGDODdu3fs3r0bfX19+vTpg5OTE/b29owYMYIxY8YI2oSamlqrlnJZWRlGRkb07NmTkpISLl26xNOnTwkMDGTYsGEUFRW1eX03btygS5cujBgxgm7dulFRUUFWVpa4IbS0tOjatSs9e/akb9++NDU1sX37dtzc3BgyZAjPnj0jPDwcZWVl0b4bPnw4np6eREZG8vPPP1NcXIyjoyODBw9GSUkJHR0dzM3Nyc7ORklJCXd3d5qamvjrr7/Yv38/1tbW7NmzpxV3T4a2Crbq6+upra0FENk8wLx587C3t+frr79m6dKlxMTEiN/Jycmho6PDwIEDefToEXl5edjZ2SEvL4+CgoIQBNjZ2XH58mVu376Nr6+vSEx0dXUxNTVlxowZhIaGYmJigoWFBRMnTkRFRUW0h9XV1cnOzmbv3r0iQZCTk8PR0bFVe/+/wowZM0hLSyMgIAAHBweuXLki+Evdu3cnNTWVZ8+ecefOHXr27Im9vT1NTU1kZ2eTmpoqAjJZUN/Q0MCoUaNo37495ubmnDp1iufPn7Ny5Uo8PT05ePAgqampLF++HCMjIyorK+ncuTMaGhq8fv2anTt3UlBQQEBAgGjnbd++nfz8fPT19encuTNv3rxp03WUJUSyYPXu3bvEx8fj4OBAv379RIApq2TJaC/Xrl3j5MmTBAYGYm5uzoYNG3ByciInJ4ekpCSqqqqYPn06q1ev5sSJE2zbto0LFy4ALW2x9evXM3nyZOTl5amsrBT7yczMjPbt2+Po6CjoIDIOtGzftQV6enp4eHjQt29fsrKyRMUtOjqajIwMOnToIChPcnJygioRERHBr7/+ip2dHSNGjBDXUElJCQMDA/Ly8nj69Ck3btygvLxcVLIAbG1tsbW1pX379rx58wZVVVUePHhAZGQkAFu3bmXgwIH4+fnh5eVFXV0d4eHhguvWVvzzUCorK+PkyZMArF69Gjc3N/bt20dTUxNdu3ZtRVHQ1NTEwsJCCDczMjJEl8fX1xc9PT0RaBgZGbFt2zZevnyJo6Mj0dHRlJWVCVHso0ePSEhI4IsvvsDb25s///yTkpISbGxsBGf1n1SZtuD+/fsEBQURGhpKREQEQ4YMEV1CaKG7+Pv7ExAQgJubG1lZWTx48IDAwEBsbGwE/9Dd3R1NTU1RINDW1sbd3V3scQcHByRJ4u7duzx8+JCSkhLevXuHpqYmq1atQk5OjgsXLmBhYSEoUnfu3BHCQmgJHHR1dUWg8qm4c+cOL1++xNnZGT09PSIjI+nSpQuBgYH069eP77//ntzcXL7++msMDAyorKzk7NmzuLi4IC8vz+7du1FUVGTx4sV06tRJ6EYuXLiAoqIikydPpl27djg5OYlAp7i4GF9fX2xsbPDz8xPiKNk9rqqqipKSEnZ2dvTv3x8nJyeeP39OUVERgwcPFvv5UzFhwgTc3d1RVVXl6NGjSJJEXl4e8+bNIykpiY0bN1JaWkqvXr0wMjLi9u3bpKen4+TkhIqKCiEhIVRVVTFgwACGDh3K06dPuXr1KhoaGixatIhDhw7x6tUr8vLyeP36NTU1Nejr67N48WK6detGYmIijx8/JjU1ldLSUoyMjBgzZgyzZ89GSUkJU1NTIiIiePLkCX379hXfx6di2rRpvH//Xojdr127xo4dO/D392f58uUYGBhw69YtqqqqmDNnjjiHQ0JCCA0NxdHRkZ49e4oOSEFBgThjY2NjiYmJQZIk9PX1kSSJI0eOoK6uzpIlS8jIyGDz5s14eXlhYWHB8+fPRUddJoaHliC+uroaAwODTxKhtzl4PXToEKmpqUyfPl2oyyoqKujevTuKioq8evWKiIiI/+AwyMvLCwWdm5sbV65cob6+HisrK168eIGRkRFLliwRFbnc3FyUlZWFAhdg5syZjBw5kqlTp3Ljxg0aGhpQVVVFUVERKysrLC0tefz4MUOHDmXWrFksX76cTZs2tUnQtH79ejZt2gS0CKIWLFggMqTdu3dz/vz5VgKJgoIC8YDOzc0lNDQUfX19vvvuO7p16yYePllZWYSFhdGlSxd69eqFl5cXXbt2xcfHR/BHKysrBT9Q9p5+fn54e3tjb29PdnY2u3btorS0lFWrVmFgYPCvCPh1dXUsWLCAnj17Ymho+B9CO0mSGDt2rODGHjp0iAMHDrB+/XoUFRV5+PAhV69exdXVlWfPngnxhampKcePH+fJkydoampiZmaGu7s7U6dORV5eniNHjrBnzx6MjY3p0qULSkpKPHv2jPj4eBoaGoiIiBDV7NzcXJqbm7GwsGhzNURGKXn79i1VVVVYW1tz/PhxTpw4wbBhw0TrqUuXLlRXVwuRDLRUGfbs2fMf30dxcTEGBgbo6Ogwa9Ys6urqWomQiouLUVVVZdmyZcyaNYvExERqampYt25dq2q1TDEaHx8P/K/DfdiwYQQHB3/yGtPS0lBVVWXz5s24urrSp08f0tLSuHz5MuPHj6e8vFy0kq9evUp5eTnm5uYkJSWRkZGBlpYW+vr61NbWEhcXR1xcHJ6enkJAqKGhwZgxY+jZsydv375l586dVFdXi8NQV1eXbt26kZuby759+6iqqmLhwoWC2x0aGsq5c+eIiopi6dKlbNiwoc1iH0VFRdHOysjIYOPGjTx79ozu3bujoKBAnz59UFZWprq6mubmZvFAf/ToERkZGQwdOhQ1NTV+//13iouLkZeXx8jIiKqqKm7evElQUFAr/l3v3r0xMjLi0KFDvHz5knnz5jFx4kQ0NTUxNDRESUmJqVOnCoGp7LvIz89HUVHx/5h4/b8gqyJt375d/CwhIUG4qsgC16KiolZ7aOvWrQQHB4sWHSAESjLe4+LFi8nPz2fGjBmYm5uLDkZNTQ2NjY3Y29tjZ2fHo0ePyMrKQltbm+rqaq5evcrVq1fR0dHhxo0b+Pv7Y25uzq5du0Q1qK1oamoiMzOTy5cvo6enx6BBg1ixYgVlZWWsXbuWJ0+eYG1tzd69exk6dChNTU3Iy8sL14qkpCTu37/Pu3fv6NatG9OnT6e2thZHR0caGxtpbGzEzMxMdKbevXvHy5cvsbKyQktLi02bNhEVFUX79u0JCAigS5cuJCcnY2BgwNdffy0ExMrKym3m3r148YKgoCCSkpIIDg7G3d1dBK+NjY1oaWnRt29fjIyMUFVVJTw8nEOHDlFWVsbSpUtZsmQJ8+bNa1URbWxsRJIklJWVKS8vR1lZGVVVVfLy8ti7dy+5ubki2Hr//j3v3r3DysqK58+fo6ysjKenJ/3796d///6i0qWtrY2FhQVFRUVCBf+pCA4OZteuXQwdOhQ3Nzf27NmDmZkZ9+7dw87OjunTpxMSEsLTp08ZNmwYYWFh3Lp1Cw0NDUF5efjwIWFhYfj5+dGhQwfMzMyIi4vjzJkzhISECHcfOzs7EhIS0NbW5tdffxXBqizJb2xsRFlZmebmZrS1tQUXNTg4mGXLltGnTx/27t3b5meNrPO5f/9+Vq9eTUlJCb/88gt//fUXO3bs4NGjR/Ts2ZNJkyYRGRlJcHAw5eXlODg4UFtbS2lpKbGxsVy5coWxY8dy584d9u3bR3R0NPPnz8fBwYGhQ4eKquOjR4/o06cPx48fp6qqSgjEtLW1uXDhAl9++SU7duwQ67e3t6djx46sXr2a6Ohofvzxxzat7+jRo+LfX7x4QUhICFFRUURFRWFgYEBgYCA7d+4kPDwcY2Nj0R3ftWsX9+7dY82aNXTu3JkbN24gSZLoDEiSRFxcHKmpqejp6Qnh88yZM+nbty8hISHs3buXxYsX89tvvzFs2DCePHlCWFgYpqamwvEIID09nfz8fLp06YKdnR1nz579f66pzcFrly5d6Nixo8gYAT58+EBtbS1eXl6YmZkJ5Z6sElFWVsbo0aOZMGEC2tra7Ny5k127dpGVlQXAsmXLuHDhAnPmzEGSJC5evCgqIUpKStTX1/P48WO8vLwwNjZm9OjRyMvL07dvX7y9vXn//r2wl9DQ0ODt27dERERgY2PD9u3bycjI+OT1ubu7c/36ddq3b4+VlRUlJSXiAJXxkmpra6mpqUFNTY127drR2NhIbm4uBw8e5PDhwwwcOPA/RGIdOnRgw4YNogyvp6cnBAKxsbGoqqqKqtCyZcuENY6ZmZnYwEZGRvz444+EhISwZ88eJk6cSI8ePdp6CbG3t+fy5csYGhoKXtY/KQGyDDItLY3vvvuOhIQEVq9ezcyZM4EWYdmUKVMYPny44BxZW1uTkZGBJEl06NCBkpISQkNDqaurIyAgACcnJ/r06UNtbS1qamooKChQUFDAiBEjBFXj5MmTHDlyhI0bN5KVlcXWrVuZOHGi4CW2BXV1dVhZWREeHs6yZct4//49GzduZN68eeI1TU1NvH37lrdv3xIVFUVqaipdunRh8+bNyMnJUVlZiZKSEsrKyty/f5+oqCg6duyInZ0de/fuFa10WWaZkpLCgQMHcHJy4sqVK9y+fZsbN24ILmRjYyOqqqqMHj2a8PBwfv/9d+Li4oRKsy2YP38+6urq+Pn5UVNTQ1lZGfLy8tjY2KCjo0Pfvn0ZNmwYysrKPH/+nKysLCIiIrhw4QIaGhps3bpVVD0ePHjAsGHDhPpdxnkKDAxEQ0ODyMhIZs+ejby8fCtR3+3bt7l8+TKamposWbJE8Lo/fvyIkZERX3zxBWlpaYLj21bU1tZy69YtioqK0NbWZuzYsTg7OxMVFcWCBQvw8fHhiy++EO+flpbGu3fv6Nq1K97e3uTm5vLhwwfmzp1Lu3btKCsr48yZM0BLoJqens78+fPR1NRk+fLlpKWlYWJiwoEDB0hOTiY0NJShQ4eKblFcXBzPnj3DyMioVQdJQ0OD6urqNieSiYmJZGdn06NHD5EImZmZ0aNHD1GFjYqKEq1GWXdG5jjy+vVrqqqqREs/PT2d8vJyPn78KDpAKSkpBAcHY29vLzpFCxYsQFtbmxUrVogqh4GBAcrKypSVlQkajEw9P3r0aLS0tDA0NOTBgwdtWmNsbCxpaWno6ekxceJEBgwYgLy8PBUVFVhYWLB48WJevXpFVlYWT548EUIuPz8/QSvQ1NSkrKwMfX19XF1dW1VzExMTuX//Pr179xbiVmdnZ5ycnPj777958OAB/v7++Pn58d133wkFtI+PD5mZmWI/FxUV8fjxY0pKStq0vgEDBgDg6+srbLskSaKhoQFlZWUaGxtF4vfTTz/h7e0tKnwy/PPfKysrefToEXFxcairq9PQ0ICRkZHgaffq1YuHDx8iJyfHjBkzSE1NZevWrdTV1TFnzhxsbW2JjY0VPNR9+/bx4cMHNm3ahKGhoXBnaAs6derEwoULGT16NMXFxdTU1JCWlkZJSQl2dnaiECE72ywtLZk0aZK4L2WV3szMTKKjo1FWVua3335jy5YtbN++naioKKqqqjh+/DgpKSmUlZUxePBgOnfuLD5DSUkJ2dnZxMbGUl5eLjpMMuFQVFQUo0aNEkHXv0FRURGVlZX4+Pjg6OgozmBTU1N69uzJl19+Sffu3QkPD6e2thYHBwfy8/MpKCgQtIZ9+/ZhYmJCz549GTdunHgmmJiYoK6uTm1trbC68/PzQ11dnYiICO7evYuxsTHr168XPNoTJ05QXV3NuHHj0NPTQ01NjdDQ0P8Qq38KXrx4QdeuXQkJCWHXrl107dqVc+fOkZKSgo2NDYmJiWJfXLx4ERsbG96+fUtKSgpubm6MGzcOQ0NDVq1aRXR0NPb29qSmpqKvr8/79+/JycmhqKhI6GjgfxVmfH196dGjh7g/e/bsyfLlyzl16hSTJk0S33NeXh719fUoKip+UnegzcGrmZmZaMdkZmZiY2ODs7MzYWFhXL9+naioKIqLi3F2dhZfso6OjthUHz584NGjR+jp6VFTU4OGhoZ4mJ0+fZqKigrByRs7diz+/v4iI5YRqrt37067du3w8/MTraM9e/bw6tUr4c92584dRo4cibe3d5uyMFNTUy5fvoyuri729vaEhoaSkJAguHVaWloUFRXx4sULPD09MTQ0BFqqKGZmZpiamhIZGcmRI0dElSIpKQl1dXXhnhAZGYm+vj7p6emcPHlSVOGghatlbW0tAsmioiIKCwtpbGzE3d2dIUOG4ODgwOzZs1FQUPhXwaujoyPr169HS0uLfv36UVtby507dzAxMcHGxkZUmpOSkti0aRPe3t5CfBUWFoaPjw+amppUV1fj7++Pv78/2dnZJCQkMHDgQLS1tUX1srGxkfz8fJycnLCzs2Px4sXic9TX14vqCkB4eDgnT54kJCQESZIoKiqiqqqqzVzJjIwM0d5wd3cnLS0NXV1dFi5ciKamJjExMejr66Ojo0NZWRk5OTmUlJSQkZGBiooK0dHRmJqa8uTJE2xsbOjYsSMqKiq8fPmS+/fvM3r0aObMmQPAw4cPOXLkCMeOHQPg1KlTjBo1irS0NGpqakhJScHS0pLm5maioqJwcHBAT09P2KwZGxv/K2uX3bt3k5SURGNjI3Jycqxfv57y8nKh+vfy8iI7OxtFRUUmTZpEREQEixcv5t27d4Keo62tTW5uLqWlpVy7do3p06fTrl07MjIyyM3NRUdHB2VlZTp27CgCiezsbGpra3nz5g0LFiwgKyuLo0ePMnr06Fafz8jISDysgDa3KgFx7+Xk5DBy5EiRPPXr1483b95QXFzcqhIYERFBYmIiX3/9Nerq6qxbt47q6mrhIgBw8OBBiouLadeuHbGxsVy6dIl58+bx448/cvfuXerr6xk1ahShoaG8f/++FZ/xxo0b/Pzzz/Tr1w9ra2u0tLSoq6vDzc2tzW08aOlG5efnc/r0aaysrLCyssLCwqKVoKiyshJ9fX1Bf6mvr6d379707t2bqVOn8sMPP9C1a1d++uknDAwM+PPPP8nPz2fjxo1UVVVx7tw5lJSUUFJSory8nIsXL5KcnEx6ejr6+vr8+uuvDB48mL1796KoqMgPP/wgLO9kFRF7e3sWLFiAJEltDl5ramqIjY3Fy8tLnBsyfpyMMnXr1i3OnDmDkpISCgoKVFdXExMTg4WFBfr6+ly9epUHDx4wcOBAcSDKKsgy6k1GRgaqqqoUFxejq6uLoaEhNTU12NjYiE6al5cX27dvp2vXrnTr1g0bGxtyc3Opr6+nqqqKhoaGVjS1T4HsvvD29sbb2xtoOQtkqKio4PXr15SWllJSUoKFhQWurq5COFddXU1YWBiSJNGtWzexj9LT01FSUsLQ0BBFRUWCg4NxdXVl7NixyMvLEx0dzfjx4/H09OT27duCw+3l5UVoaCipqak0NTXx4cMHqqqqqKiowNDQEFVVVV69etWmNY4dO5YJEyYgLy9PRkYGw4cPFxSqmpoaUVgyMzOjubkZa2trnJ2dAbhy5Qrl5eUiYFNRUcHOzg5nZ2fc3NyYOnUqixYtwszMjLVr13L58mV0dHRE4KempibcTSorK8nKyqK5uRlVVVXU1NRISkri6NGjODg4sHr1aoB/JbxLSEjgxo0bPH36lPbt27N69WqRLNbX1zN27FgCAwNRVlZGR0dHeLbW1tZSVFREaWkpxsbGWFlZie9cloACXLp0SXTnfHx8sLS0FMH9/fv3SUtLE/Q7ExMTdu7cyYoVK4SuAlqCyp49ezJ48OA2J1mPHz/Gw8OD+Ph4amtrCQoKEsWKwsJCbt++zdSpUykvL8fY2JjMzEz09fXp2rUrNTU1lJaWkpuby6tXr8jPzycrKwsXFxeCgoKwtLTkw4cPNDY2Eh4ejqqqKgMGDGDMmDGkp6ejrKzM1KlTiYuLo0uXLmhoaODj48OuXbtaJQmqqqoYGRkJR47/Cm0OXkNCQujZs6fw4pQdbF26dGHJkiX89ttvBAQEsGnTplYXTwYdHR3mzp3L+PHjyczMRF1dHXd3d968ecOSJUuIiorCxcWFn3/+mcmTJ4uHVc+ePQWR38nJqZV9A7RsgOvXrzNz5kyx+f8NunTpgpmZGQ4ODlRXV5Ofn4+8vDympqbY2tpibGxMREQE5eXl5OXlIUkSWlpaaGlpMXv2bLS1tVmyZAkzZ85ERUWFiRMncvjwYcLCwjh16hR1dXXMmjWLqKgounTpgrm5uQh0Ro4cKTI3GVJTUzly5AgdO3YUXFhLS0u2b9/eii/SFhgbG6Ovr9+KMyjjLI0ePVq0JP4ZVIWHhxMWFsabN2/4/vvv+fDhA9OmTaNDhw6sW7eOqKgoampqGDVqFHFxcZSWlhIQEMDJkyexsLCgvLychoaGVhXGfxK5oWWYQa9evXjw4AEaGhqcPXv2P4zmPwWnT58WdikWFhbs2rWL+vp6wsPDCQkJIT09nUWLFuHv74+zszOqqqqMGDFCiLc8PT2JiooiMjKS2tpaOnfuTLdu3YiKiuLWrVtcuXKFtLQ0VFRUuH//PvHx8ZiamjJz5kw+fvzIihUrGDRoELt37xbViPr6eqEunj59Os7Ozuzbt4/a2lqMjIzazOtVUVHBzc2NpqYm1NTUmDVrFg0NDa043jt37uTjx48cOXIEe3t7ysrKgJbKeU5ODlZWVly+fJn+/fsTHR1NfHw8vXv3xs7Ojv3793PgwAEWLlzI0KFDgZYOSlxcHKGhoVy4cIGsrCz09PREAidb5/9+XaHtdmfQEiyOHTsWS0tLkeTk5eWhpqaGqakpY8aMEQIXQJjwy6ppioqKrTjPJ06cICcnh4aGBs6cOUNOTg7QQoHQ19dn/PjxvH79mo0bN6KoqMiIESMwNDQkLi5OiH2qq6txdnZGV1eXS5cukZaWxvz581upZT8VLi4umJqacvjwYbZv346NjQ2TJk0SbgoAbm5u4hCFluRflpiNGjWKM2fO8OLFC6Kiopg9ezZxcXG8fPmSnTt3YmNjI3xA5eXlGT9+PNnZ2axbt45Xr17x7t076urqcHV1RV5eHm1tbZYvX46ioiKPHj3i8ePHGBoa4u/vz61btzh8+HCbLXpsbW2xsbEhJSWF169f4+vrS2NjIykpKTx58kQkhs7Ozvj5+TFs2DDKysr48ccfOXHiBHZ2diQnJ/PmzRt0dHREYhofH8+rV6+wsLBg9OjRpKen88svv/DixQsyMjIwMTFhzpw5/Pzzz0BLl2Xp0qVs376dcePGceDAAQYMGMCzZ8949uwZo0ePZurUqSQnJ7Nz5842X8uKigrk5eXR0NBATk5O3APy8vL8/PPP6Orq4uTkxOvXrykpKcHd3Z3GxkZCQ0O5ePEi+vr6GBsbiwKFra2t4LCXlJTw66+/cu7cOTZs2ICvry+XL1/m/PnzLF26lL///pujR49y5coVsrOz8fX1paqqiszMTGbOnIm2trYIiuXl5cnJyWll0fVfQZbAFRcXU1xczPr16/Hw8BC89sePH7Nu3TrMzMx4//69CCy3bNnC5s2bUVBQQJIk3r9/z7p16/jmm294/PgxX3zxBV5eXqxcuRJAnHu+vr7069cPNTU14ShgaGhIp06dMDMzQ01NDQsLC/Ly8oiJicHW1rZVwvdvhKFKSkrU1dXx5s0bEaD7+/uL4oCSkpIotllaWlJcXExkZCTGxsbiu9bW1ubbb78V+93W1hYtLS0ePXrE5cuXARg4cCBffPGF8MYHxLVRUFAgJiYGOzs7zp07B7R0iKBFGBYREcGpU6fw9vbm4cOHbVrfhAkTUFFRoUePHoIy9M+1BwYGMnz4cOrr60XxEVqsCHfu3ElsbCyWlpatukuzZ89m6tSpvHz5EnV1dQYMGEBwcDD6+vqMGzcONzc3Ll68KLxxT5w4wfPnzzlz5gy9e/emX79+reI4JycnNDU1kZOT+/+N24CDgwMlJSXChHzv3r0EBQUxYcIEhg4dKtSvsiw7Li6O2NhYoUo2NDREQ0MDQ0NDoYCWfUkya6xZs2bRsWNHnj59SlpaGnZ2dqK9LYOKigolJSXo6upSVVVF3759UVFR4cGDByQmJtLQ0IC/v3+bD5W0tDTRDi4rK+Px48doaGiIjaahoSGskfT19cXDPCIigsjISBwcHPjpp5948OABJSUlHDx4UPiVnjlzBkVFRaKiooCWKuaQIUNwdXUlNjYWHR0diouLhY+dnZ0dmZmZGBkZiRZKc3MzjY2NouL6KRnK/w4jIyP27t3bSoBhbW1NXl4eu3btwtTUlFmzZtG/f3+Cg4O5evUqK1euRFFRkWnTpmFtbY2mpiYdOnTg8ePHPH78mLy8PAIDA+natStmZmYEBgayYsUKsTnT09NRUFAgMzOTjIwMPnz4gI6Ojgik6urqmDZtGsOHD8fS0pLk5GTs7e2pqKgQQcan4u7du4JHbG5uLqr+169fp7i4GCcnJ+rq6qirq8PFxYWysjIKCgpaiTYUFBTQ0tLCwsJCiLm6dOmCuro6ly5d4q+//hK+vwoKCkyZMoWvvvqKuXPncu/ePQICAoS9C7QkCMOHD+fly5fk5uZibGwsgpB/g4qKCrS0tFBQUCAtLY3g4GCcnZ0JCgqisrKS7du38/79e9zd3blw4QIlJSXY29uTkZHB69evuXjxIn5+fpiYmPDHH3+we/dukayYmppibW3N4cOHKSkpwdnZmXbt2hEeHs62bdt4+vQp6urqWFpaYm5uzpMnT8SEpJcvXxIdHY2JiQmSJJGRkYG9vX2rKuynQibAhBbO+Pv371FTU2PZsmWkpaWRn59PaGgoSkpKWFlZMXDgQBITE0lPT0dbW5uhQ4cSFxfHt99+K+xh2rVrR3Z2dqvWqew5lJKSwtGjRykuLmbWrFm0b9+en376iVu3buHh4UFiYiJKSkp07twZR0dHunXrxtu3b7l8+TLR0dFtnnQHLYHzkCFD0NbWpri4GG1tbRobG7l37x4RERFCzHnhwgUKCwvp1asXhYWFFBYWoqmpyddff91K7CUTJV68eFH4o8oM7z08PHB1dRXBSGlpKbt27cLNzY0JEyaQnZ3NuXPnmDRpEt26dWPevHk8fvyYGzdu8Pr1ay5cuNDmgShRUVHY2tpSXFzMixcvhN2Ys7MzjY2NVFVVMXz4cIYOHSr8pHV0dIiPj+fhw4doamrSu3dvTExMcHZ2prKykoyMDNLS0mhsbMTW1hZLS0sx8ai5uZnS0lJKS0s5cuQIHh4edOrUCXl5eXx9fXFwcOD+/fvk5OSISYwJCQliKMc/xVZtwalTp3j06BFdu3Zl+PDhImnS0dERQjto4TT27dsXV1dXFBUV6dChA/fu3ePs2bPExcWxfPlygoKCWol2TU1NUVFRobq6GisrK4yMjMjKymLZsmVIksSyZcsYNmwYzs7O+Pj4cOfOHQBhu/RPvnRlZSUdO3ZsszVffX09qampVFdX4+vri7KyMomJiTQ1NeHu7i5oL6ampiJwNzMzE1QVGcrLy7l37x6//fYbDx8+JDU1FS0tLRoaGsjOzsbe3h5dXV2ePXsmWtEVFRU4OzvToUMHoYlITk7m3bt3WFhY0KNHD5KSkti9ezd+fn6tvNM/FU5OTixYsID4+HjOnz/PgQMHxOCSoqIi9uzZI9xwPD09xcQpmaOQlZUVo0aNQklJSbgKSJKErq4uz58/p76+nq5duzJ16lQ6duxIcnKycETp1asXixcvpqamhosXL/Lu3TuqqqqYMWMG7dq1Izg4mObmZjp16oScnJyY8Hnx4sVPXp/srHFzcxPdgtzcXCIjI+nevbugu2RkZIjANTg4mDt37pCfn09+fj4ZGRmiyDJmzBiRdMgmPS5evJiuXbvy4MED4Wrz/Plz4TktS+wOHjxIZmamsFSTwdDQUAg0ZZSl/xfaHLzKrBoUFRXp3r07W7duFSXpvn37EhAQ0CrYePjwId9//z1z584VwUFqaiqVlZWiarJq1SphDi2z3Dhz5owQMowaNQpfX18xPq+urg41NTUMDAyE1+yiRYsYNWoUK1asEG2ijRs3tjl4vXDhAv3796dz585IkkRubi5ycnKUlZWhrq5Oc3MzlpaWKCgotDJ73rFjBxcuXODPP/9k1qxZTJ06la1bt7J27Vqg5UaOjo4mNTUVaFHBu7m5iYlBsr995swZamtr0dPTIygoiClTprBq1SrxcJBl9zL8k4P4qTA3NxcPdBlkZPAff/yRr7/+GgUFBRYtWkT//v159+4d9+7dY/bs2cLkX19fnzNnzoj2BsD79+8JDw/HycmJ77//no4dO9LQ0MD58+dpbm5m2LBhlJSUcODAAWEAP3DgQDIzM4mKiqKgoICVK1fi6+tLXV0d69ato6ysrBW/+lNQU1PDokWLUFBQYPLkyXh4eGBnZ8fQoUPx8/OjqKiIxMREsrKycHJyIioqipUrV7Jw4UKxD+vr69HQ0BAHfXl5OYqKipiYmKCnp4etrS3z5s1j/Pjx3LlzB21tbeTl5UXic+vWLQYMGECHDh3E96yvr8+gQYOE5cs/r11bqQMyekBOTg67d+9mz549TJgwgaCgIA4cOMCWLVs4ePAgU6dOZc6cOURFRdG9e3fBGc3JySEyMhJvb29BiXn06BGvXr2ic+fODBo0iCdPnpCRkcGDBw9o166dqAw0NzfTu3dvdHR0SExM5PXr1/Tq1Qtvb2/i4+M5ffo0HTt2pKSkhHPnztG1a1dhd9cWyGyjKisruXbtGnFxcfTt25fBgwejp6fHyZMnKSkpwdLSEmNjY1RUVHB1dSUlJQUNDQ3hUbpq1Sry8/MxMzPDz89PcLzi4uKAlsTt48ePzJkzh4SEBO7evYuXlxeVlZUkJiYKXrSpqWmrCo+/vz8NDQ0cO3aMY8eOYW1t3abhE2/evMHLy0s4j5SUlIgq9uXLlzl06BC2trbU1dWxYcMGTExMmDZtGurq6ty7d4+mpibmzZuHra0tKSkpJCYmMnXqVDp16sS4ceOIjY2lf//+YnjIjz/+yNOnT5k0aRLZ2dnY2NiwZcsW/Pz8OHXqFM+ePWP79u3o6enRvXt35OTkKCwspKmp6T9sAT8V58+fZ9GiRbi5ufH+/XuqqqrQ1dXFxsYGfX19vLy8hMhPhqdPn1JeXo6zszMLFy4UHpgNDQ2oqKgQERFBcXExhoaG4h6ysbFh+fLl4jmZmJhIfHw8kyZN4urVq/j6+nL16lVUVVX566+/8PHx4cSJE4SHh4uRztC65d8WREdHc+bMGeLj47G0tMTMzOz/2IGQeZbLKBlGRkb4+Phw4MABbt68SVVVFZqamv8RgLm7u4sgvbCwUHTNvvvuO0aNGtXKD1mmX3B1df0PYamWlhbz589vk8Vic3MzysrKqKmpUVNTQ2VlJUVFRbx7945+/frRtWtXFBQUaGpqarXm2bNno6+vz7fffsu7d+/Q0NDgzJkz7NmzB1VVVRwdHamrq2Pr1q0UFBRgYmKCsbGxmOTUqVMn9PX1UVNTa+Wh/PjxY86ePYu3t7ewerp27RrffPMNs2fP/lfBK/yvAQF5eXkioJaJzDMzM0UQbmpqyuDBgzEzM+Pw4cPo6upy7tw57OzsWLJkCc+ePWPKlCl07NiR0tJSMUo1ICBATPzT1NSkpqaGmpoaOnXqhJubG1evXuXnn38mKiqKzZs3s2rVKnbu3MmNGzfYunWrcH15+/atECd+KmQdsX9en/r6esrKyiguLkZHR4eLFy+SnZ3NqFGjyMjIYMOGDYSHh6OpqYm9vT35+fkUFhYyePBgfv31V3Etbty4QY8ePQgICMDR0ZFnz55x+PBhzMzMUFJSQl5eHkVFRQYPHoydnR3Xr18nNDQUJyen/7Buk5OTIyYmhpCQkP9yTW0OXsPDwwVXw8rKivHjx2NnZ4e3tzeVlZXs2rULAwMDkaHX1dXR3NzcqsokqxIEBwezfv16cYhASzXSzc2tle+loaGhuNkLCgrEjQT/y0NVZgPk5eWFubk5+vr6NDY2snz58jatLzc3lzt37iAnJydawRUVFZSVlaGnpycM3aGFu/r27VsyMjJoaGhg1apVYlOdOnVK+FIOGDAAT09PwsPDxUCBJUuW4OPj00pA9E+ujiRJODg4iPnnoaGhREZGMmnSJAwMDLh+/Trm5ub/agKOhoYGYWFhvH79mubmZgYMGEC7du2YN2+eUB2PHDmS+vp6Dh8+TFxcHOvWrWPw4MGkpaVx6dIlampqCAoKonv37hw9elSY28tG3AYEBKCmpsaBAwf46aef6NOnD1OmTEFbW5thw4aJmzc9PZ3Hjx9TWlpKWFgYKSkpODo6ihG/xcXFba5Qurq6kpmZyYwZMxg9ejRPnjwhKyuLgIAADAwMOHv2rKCfQAvnp7Kykp9//lkIfIqKikhNTRVjGYcNG4apqSm7d+8WXq8yrk5FRQUJCQnY2NiwcuVKrKys2L59O7/88gs//fQT5eXlrF27lqKiIr788stW44FlDxOZhVBbsXnzZo4cOcLIkSPp1KkTixYtori4mM2bN6Otrc3hw4epr6/HxMSExsZGhgwZwuzZs3Fzc0NFRUU4RcgEBK9eveLGjRsoKiqyfPlytLW1sbOzo66uDgcHB3bu3MmDBw+E4baNjQ2DBg0SB4a7uzvz5s3Dz8+PhIQEUlNTMTQ0xNzcXHgpfioqKysJCgqic+fOdOjQgdjYWDZv3syVK1fo06cPX3zxhehOHD16FENDQ4YNGyYCrYaGBjw9Pfn999/5+eefCQsL4+bNm0ybNo2vvvpKBFOyoMDf35+ePXuKpFpVVZX9+/fzyy+/sGvXLlxdXTl06BB37twRivk+ffpQWlpKfHw8ycnJbQpe4+Li6NChAy9fvuTIkSPMnTtXBK8eHh7MnDkTV1dXlJWV6dq1K127dkVDQ4OUlBQ+fPjA2LFjsba25vHjx0RERGBsbMzHjx9JTExsNRimY8eOWFhYEBISIobAaGhoiGdoXl4eJiYmTJkyRcxThxZ+sLy8PPLy8hgbG7N69WpBPflUNDY2YmFhIQoN2dnZREZGkpCQQM+ePWlubub169c8fvwYdXV1HB0dKSsrw8vLC11dXdFhko0ShxbOvsxL28nJiXXr1qGvr4+ZmRkfP34kPT0dX19f1NTURMUuNTWV48eP07dvX2bMmEFERAR37txh1qxZrFq1CmtraxoaGtocvN66dYtBgwbRo0cPYmJi6NixI/7+/igpKXHgwAHu3LnD4MGDBTc7Li6OR48e0dTUJIahKCsrs379eq5fv055eblIdhsaGnjx4gX19fVUV1eTlZXFypUrkSSJwMBAMZFLxovetm0bDx8+5JtvvmH06NGC03j16lWOHj0qnHr+T0H1/wuyz/Pu3Ts+fvxIp06dUFNTE9Vb2V7Ly8vjyZMnxMfHo6qqiqenJ3Z2dvz888+cO3eO+/fvo6ury9ixY3FxcRGm/LLEX0bhMDAwoEuXLgQFBQkKhmwtp0+f5vDhwygoKBAUFCQ+o5mZmRjH/m9w+vRpYmJiyM7OZsyYMcyYMYP4+Hh27NiBhoaGcGz566+/cHFxoUOHDmhoaNCuXTuGDRuGm5sbL168EO1+WXdZRUWF0aNH09jYKAZUQEvCLNMPqKmpCdFnWloa1tbWjBgxAiUlJdLS0nj58qVwV+jatSs//vgj165dazVt87/Cr7/+yqpVq1BUVCQ/P59r166hoaEhhlo8ePCATp064eHhwbVr16iurmbo0KE0NDQQFRVFeXk5JiYmuLi4sHr1ajGEJjY2loULF9K/f39qa2uFRkFWlR4wYACLFy+msbGR4OBgHj16JDzFZbag9fX1lJSUCNpISUkJZ8+e/S/t69ocvF68eBENDQ08PDzQ0NBg8+bNQEt2NnXqVK5cudJqPJuJiQkBAQGCFK+qqkpTUxM1NTWEh4eTmJgoPBRlym5ZBmBsbExQUBALFizAxMSEFy9e8OzZMwICAtDX16empgYlJSUkSeLatWtkZWUxffp0kUX/8ccfnD17tk3jYTU1NdHQ0CAvLw9LS0vGjRtHXl4er169oqSkRHAwZWKi+/fvk5GRwYoVK4Qga9u2bezevRs5OTm2b9/OvHnzePPmjXBQkM0qdnFxoUePHsLf087OTrT4bGxs+OKLL8QEl8uXLwtLDkmSSE5Opqio6F8Fr05OTty4cYNDhw7R0NCAh4cH7dq1w9DQkClTpgiO3dOnT9m5cycdOnRg2rRpwgni/fv3REVFcfLkSWbMmCGI8snJyYSFhYlsOSoqinPnzpGcnIyuri4vX77Ez8+PAQMGCJXuF198IVoE+vr6gpQvE6iFh4cTGxvbiqPzX2HOnDl06tRJjLaLi4sjKyuLvLw8EhMTKSoqalXNlVlExcTE8ObNGxISEoR/3+XLl4mJicHKygpdXV1KS0uFXyK0VHh2797Nq1evqKqqYuPGjQwYMICbN28Kf9jy8nLh8SfjU8voBoBoqbZ1Ghy0JHM2Njb88ssvVFRU8PfffzNz5kxWrVrFrFmzOHz4MEOHDiUoKIi8vDw6d+4sOKwyyHxM1dXVMTY25tmzZ5iZmdG/f390dHQoLCykrq4Oa2trZsyYQXFxMcePHwdgxIgRLFy4EFVVVWpra+nevTs9e/YUVYu///4bbW1tYa3TFrx9+5Y3b95gYWHBoEGD8PDwICQkhAsXLmBkZCQmv8XGxnLmzBmcnZ0FbUUmcjQzM2P06NFUVlYSExNDTU0NFy5cwMPDg2XLlqGpqUlBQYEYDiJDbGws6urqODg4MHz4cM6cOYOFhQWKioqkpKTw8OFDevXqRZ8+ffDx8WHOnDmkpKS0SSySl5dHRkYGu3fvFjQO2f08evRopk2bhpaWFnJycvz55580NzeLaWVubm4oKioSERHB7du3qa+vp6GhgYcPH6KlpcX27dvJzMwkOTmZhQsXYmFhwcyZM7l27Rr+/v7o6OgQFRWFjY0NAwcOJCkpCW9v71bPbh8fH5qbm2lqasLGxoZx48axf//+Nl1D2dhpS0tLIW6Jj4/n5cuXeHl5IS8vLxJie3t7nJ2d8ff3x9DQkOTkZO7evSs6Je7u7qI1m5+fz40bN1p5XgYHB/Pu3TtsbW0JDAxkypQpgq5SXFwsnp8y5w1DQ0OmTp0q+NRNTU1tNvF/9OgRQUFB9OnTBx0dHZydnQXFLDExkatXr7aq1qelpREaGipGfurr67Ny5UomTpzIqFGjOHDgAG/evMHX11dM1/rll19EkFtWVkbHjh1ZvHixoCNUV1ejrq7O9OnTUVZWZteuXWhqaoqAr7y8XIgRBw0a1GZnExmSkpJ4/vw5ZmZmDBs2DD8/P4qLi8XvCwoK+Oqrr/j48SOjRo3i+fPnuLi4sGPHDpycnIiPjycwMFBU7U6fPk1+fj69evWic+fOYijF2LFjWbBggeh4KioqIi8vT1hYGMePH6e2tpZx48ahr68vns3m5ubs3LmzTefEP/Hy5UtCQkKor6/H19cXTU1N4uLiuHTpErNmzaJ3795s2bKF3bt3i8lg+fn5dOvWTeyxiooKfHx8KCkpQU5OjoaGBjGuWlYNr6ioQJIkYV2WlpaGkpIShYWFnDp1ivLycvF+zc3NeHl5MWPGDMHjlSUxmZmZwt7rU5CZmSme8TLrOhsbGzFAISkpiRUrVuDv78/OnTtRV1dnwoQJ1NXVCceT8ePH079/f6ytrYmJieH48ePIy8uzYcMGdHV1SU9PJy0tDSsrKwoLC8nMzKS0tJRRo0ZhaWlJZGQkycnJLFq0SBQwa2trW1miykSY/xRy/9/Q5uDV0tKSP//8k86dO7NkyRKgRUQwY8YM7t69y/Dhw1uNEzUzM8PAwIBTp06RlpbGpEmTePLkCb///juTJ08mODiYqVOnkpGRIVTmo0ePpra2VkzjkrX+79+/z/HjxzEwMMDHx4d79+6RkJCAo6Mj6urqDBkyRASux44do6Kigh9++KFNh6ZMqKGrq0tdXZ1QjIeHh9OhQweam5spKCgQ9hhGRkbk5OTQr18/mpqa+OqrrwgLC2Pt2rV4enpib2+Puro65ubmVFVVoaenx++//467uzvNzc1MmjSJ2tpaHj58iJ6enrAy+fDhg3gIPnv2jA4dOuDu7k5xcTHR0dEYGxvj4ODwr5TqKioqDBs2jGfPnvHixYtW75GRkUFeXp4gde/atYu6ujpiYmJoaGigb9++zJs3j9OnT7N06VJ2795NVlYWmpqa1NfX07NnT8HPvXjxIvfv3xf80zlz5uDm5sbKlSvFazp16sTZs2cpLy/HzMwMT09P5OXl6dy5M6WlpSQkJBAVFdWmh1K3bt1wcnJi1apVZGRksGbNGuzs7Dh16hTGxsZ89913rV4fFBRE+/btKSsrQ0lJSYx8tbe3582bNzx48IBvvvmGTZs2sXPnTg4dOiQCXX19fYqKipAkie3bt1NZWYmZmRmWlpZifrO7uztXrlwRqs3Tp0/z+PFjcdg8e/aMzp07t8lYW2bgv3fvXqKionj+/DlVVVVs2rSJfv36kZSUxMuXLwF49eoVHTp0EBXFmJgYXFxcRAUmNzeX7Oxs0bYLCAigffv2KCkpsW7dOkHa19bWpqSkhEePHgEtgiN/f39UVVUpKSkhPj4ef39/6urqWLZsGXJycvzxxx+fvKb/HfLy8ty5c4eysjKio6MxMzPjyJEjFBQU8PHjR9atW0dsbCxxcXFoamoybtw4lJSUuH//PqWlpYwePZr8/Hy+/fZblJWV2bBhA3v37iUnJ4elS5diZWXFyJEj0dLSIiUlpZXwrKmpiUePHvH9999TVFREUFCQ4EX36NGDZ8+e0b59e1JSUkhKSsLLy4vRo0cLv8ZPQVFRET169BDVDl9fX/Ly8kT1SFFRUUyaU1JS4saNG5w5c4Zp06bh5eXF+vXrqaysZO3atdTW1nL69GmcnJyYNWuWOAyysrIE7zwoKEiM4QwODqaiooJp06YxbNgwEhISyMjIYMSIEUAL9Wbu3LlACyXK0dGRiIiINl/DjIwM3r9/j4GBAY6Ojjg6OopRtzIrxfHjxyMnJ4eqqqqYXihJEk+ePOHgwYPExsYCLTSNqqoqnJycUFJSwsXFhREjRqCsrMymTZvYsWMHX331leAP/tMBwsbGhtGjRwuhUJ8+fZg8eTIRERFERUUxcOBAnJ2dW1HBPgUjRoygqKiIxsZGHBwcWoltFy5ciIeHhwgyc3JycHFxYf78+WzZsoX4+Hi+//570YmRBd3z5s3jwYMHnD17FkdHR+7evQv8L17mhAkTsLKyIi4ujpSUFDw8PEQw4OXlxfz581sd/kOHDsXIyIhz584xd+5ccV3bCh0dHSIjI5k/fz4pKSmsWLGilZiwrq6O3NxcXFxcWLt2LWfPnuX+/ftkZmbSrl07AgICWgl0kpKSOHLkCA8fPhRFk+XLl4vkOi4uTvBGL1++zNWrV9HW1mbhwoX4+/vz5MkTtmzZwsePH5k7dy6LFi0C/p2zycKFCxkwYIAYmywbxXzmzBnevHmDv7+/cEGSFaEADh8+zPnz5/n222/p2bMnO3bs4Nq1a1RVVVFWVoaZmRmJiYkYGBhgbm7OgwcPSEhIYOzYsWhpaXH//n3++usv8vLyhAirpqaG5ORkHBwcmDhxIjNnzkRVVZWrV6+ydOlSXFxc+O233zh16tQnr2/27NkiEdXX1+ebb74hPz+f5ORkunXrxrRp0wTlrXfv3nz48IEXL16IgFxXV5eRI0eKkevLly8XzwhZt8LAwICBAweKSWuHDx8WNpSWlpYcPXpUOO78c8/IEkaZM0xhYSGLFy/m1q1b/881tTl4nTx5Mjdv3mw1LvLMmTN8+PCBOXPmMH/+fKqrq4mMjMTHx4fOnTsTExNDWloa9fX1wv5DT08PLS0t2rdvz6xZs0R7MSwsjPr6enr16sXMmTP/IwJ3cHDA1NSUiooK3rx5Iya/bN26VbSB//rrL16/fo2fnx/du3dvU/BqamqKvb29UKcXFhby8eNHJEmiqamJ3Nxc5OXlqa2tJTMzEw8PD9zd3amrq2P69OliJJzsRvrzzz9xcnJCW1ubyZMn4+3tLYQJAH369MHc3JzY2FgKCwvp06cPHTt2RE1NjZCQEDGtSNainjt3LmVlZRw+fLhNitF/4saNG1hYWBAQEECHDh0EQVuSJAoKCoiOjub9+/dMmjSJAQMGUFpaytWrV4V5MCBcGPLy8ti3bx9qamrMnz9ftPiLi4t5+/Ytzc3NeHt706NHD2HR8+OPP+Lr68vgwYMZPHiwUN127txZtKh0dXUZN24cqqqqbTLvl8HIyAhjY2MePnwoDhZjY2OSk5O5d+8eXl5eQmynqKiItrY2KioqVFRUUFRUJILX77//nurqaiHacnNzw9TUlD/++IOKigo6dOjA1q1bhSn869evGTVqlOAIXb9+XUx8kxHSd+3aRUpKCl9//TXQ0mKaPn16m4LXkJAQBg4ciLm5OUZGRnz33Xdoa2sLW5WoqCh69OiBhoYGVVVVxMfHo6enh42NjRgLq62tTUNDA9XV1TQ2NlJXV4eBgYFoCUFL8HP79m0cHR358ssvxVAJOTk5unXrRvv27Wlubm6lYK6oqCAqKorY2FgcHR0ZOnTov0qyoOWB6OLigomJCcrKymKISVlZGRs3buT9+/fU1taKQQKGhoY4ODgQERFBXFwcV65c4fDhw+jr6/Pzzz+zbds2tm3bRnx8PL/++isODg4YGRkRGxtLREQE3t7eeHp64u3tzdu3b3n06BGlpaWMHTsWBQUF3r9/j6WlpZg/rq6ujp6eHurq6m2+H42NjTE3N2fGjBmiE5Gdnc21a9eoq6sjMDCQLl26UFZWxrVr19i1axcfP34UljfHjh3DwsJCXMPU1FRqa2sJDg5GTk5OrCUpKYnHjx9TWVmJkZERCQkJ1NbWMnXqVObNm0dpaSmHDx+mrq4ORUVFfH19OX78OPfu3cPd3V2IQv/NaFFZ1+3ly5fCscXe3l60ZK2srOjatWsrd5jHjx8Lz9rS0lKRzPbp0wdbW1sUFRXx9PQUIkEZX75Dhw50794dXV1ddHV1KSgoID8/H21tbUHpUVJS4t27d/To0QM9PT369+8vvC7/TfDarVs38vPzhbexpqYmKSkpREZG0rt3b0EXyMzMpKamRijvBw4cKCrgb968QV5eHmtra4yMjPD29iYxMZHt27fj6enJtGnTOHbsGOXl5QwcOFAIAzMyMigtLaWwsBAzMzNUVVVxcnJqVbmrqKhAV1eXAQMG4ODgIAYktAVNTU1IkoShoSFubm7k5eWRmZnJrVu3hMNJhw4daGxsZOnSpXh6etKuXTsGDBiAvr4+ZWVlaGtr079/fwoKCnj16hWWlpYiPoiPj+fKlStYW1tja2tLTU0N5eXlpKWlYW9vj4qKCpcuXSIlJYXp06fTr18/lJWVKSgoID09XVhOqqmpMX78+H9lW+fi4oKLiwu2trbs3LmT7OxsrK2t6du3L7q6uvz+++/idXZ2dqioqFBYWEhWVhbFxcUEBwcLLY+dnR2dO3cWUyRzc3NpaGjA0NBQ2JxFRUWho6PDu3fvePLkCdBChwkKChJWampqasjLy5OamkpmZiZXrlxBTU2Nvn37tllYKNMPAEKvU1lZiZycHEZGRmhra1NeXk59fT0KCgqUl5eTnZ1Nx44dGTt2LLq6uoISZWVlhZeXF1paWgwaNEjQF7S1tdHW1sbJyYmYmBgxqnnNmjUoKCjQqVMnFBQUuHPnDvr6+rRv317Yjb17904ktPr6+q0q+v83/Cu3AVnFtb6+nlu3bqGmpsaJEyfw9vYmPz+fLVu2UF1dzZYtWzAzM2PMmDH06dMHMzMz4fE1depU9u3bx5o1a5g+fTpff/01O3fuZM2aNQD0799fBK6FhYV8+PCBnj17MmbMGJydncUINWNjYyoqKoRFUFxcnGgzyvxL24Ju3brR2NjIu3fviI+PF95senp61NbWUlZWhpubGxUVFZw5c4aCggKCgoK4cuWKmAhhYmJCfn4+YWFhHDx4EFtbW6ZOncqECRNE8Pe/z5mWlc7nzp1L165diYiIYN26dSgpKbF3716gReh2584dDAwM/lWLWYaVK1fi7OzM7NmzRVAsm1LUp08f3N3defnyJc+ePaNv375Ay3WXBQ5Tp07lxIkTray6vv32W1F1ioiIIDg4mMbGRgIDA7G0tMTf359vv/2WmzdvsmHDBh48eEBVVZUQ88kUj01NTdy8eZO6ujpGjx7NrFmz6NevH1u3bv3k9f35558sWLCAbdu2MXr0aMLCwoiLi2PKlCl888039O/fn82bN4u99uTJEw4dOsTz589Fq2bp0qX07dsXBwcHEZTLDgVLS0u+/vprobwcO3YsjY2NbN68mSFDhvDll1/y888/s2PHDnx8fNDW1kZNTY3vvvsOc3NzXFxcqK+vF62kbt26tZmH1tjYKPbA27dv6datG8bGxqKF2KNHD9q1aycqxzLv1oCAAHFfxcXFER4ejoGBAZ07d8bU1FRw1GVJxOrVq1FVVeXYsWO8fPmSAQMGCPGNrGJrZmZGu3btxOcxNDRkw4YN7N+/nz179nDt2rX/8IH9FBgZGTF37ly++OILxowZA7S0XS0sLFBRUeH7779nx44d3L59m99++43Xr18zZswYbG1tef/+PUuXLhVq99LSUg4dOsS+ffu4ffs2S5cuJTs7mzdv3uDp6Ulubq6Y4mRra4uenh59+vThwoUL3Lx5kytXrtC9e3e2b99Oc3Mz165dE0JAc3NzoqOj2/ys0dPT49atW63auNXV1Tx9+hQtLS1xb6ampvL777+Tm5tL586duXz5MvHx8bi4uKCvr8/kyZOpqalBXl6e8PBw/vzzTwC+/PJLMcHqhx9+oKysjJqaGpFo79ixA2VlZUJCQnjx4gV6enrExcVx69Yt3r59y44dOxg6dCjV1dUUFhbSvn37Nl/D7777jurqak6cOMGbN2+YO3euOPhTUlKYN28e27dvFwl9cHAwa9asEeNR27dvT79+/Zg/f744POvq6qisrCQ7O5vk5GTy8vJYvny5+PwxMTF4enpSVVVFaGioSFwtLS1ZsWKF4B9mZGQILYWM7vFPZf6nwsjICDk5OfE8fP36NXPnzmXhwoVs376dhoYG8vPz6dy5M3fu3OHEiRPMnDkTNzc35s6dy6NHj1i1ahUDBgzA2NiYixcvcvbsWWbMmMHIkSPZvXs39vb2HDlyRDiIAAQGBqKoqEh8fDxhYWG4uLgIj25A2J/J4OTkxNatW4mJiREB06dAQUFBjIRfsGABvr6+fPjwgc2bN3P79m0hxpFNhXr37h0XL17E09OTRYsW8erVK16/fk3nzp2pqqoiJycHNTU1hg0bhqenp6C3nDp1Svhl29ra4urqioKCgqAGOjg4YGhoyPv376mvr8fAwIC5c+eSnp4uJmzJy8sLP+h/A2dnZ7Zt2yamnBUVFeHn58fp06dZs2YN8vLy/PTTT7i7u/P69WtMTEyor69n7dq1QmC+detWoQGQk5MT/Gs5OTkxQGPv3r2Ulpa2igFmz54tRv3K8OrVK3799VcePHjAmDFjuH37Nu/evRMjnP8N3r9/z86dOzE3N2fu3Lm8evWKr7/+Gl9fXzp06MDbt29RV1dn8uTJrdwAZBg0aBD+/v5IkiSsIP+J4uLiVt71MhcNHR0dSktL0dXVZdKkScIX+fz586xatQpPT0/27NlDaWkp69at+y9Fom0OXp8+fcq7d+/w8PBARUVFjNmTfRATExO6detGSkoKoaGhBAYGYm1tLao5MtN9FRUVXFxcqKio4OnTp1RWVuLr60ufPn0EHUAmaPn48SONjY14enqKNoW2tjbDhw/H3d2dnJwcqqqqCAsLQ1FRkaCgIKGMbGu1QGYjYWtrS7t27cjLyxOtwY4dO4qLaWBggKurK83NzTx9+rSV4KasrIxff/2Vuro6evToIcRshw8fRk5OjuHDh9OrVy8+fvzImTNnuHTpEjY2NiJwlSSJgwcPirn0MqWljo4OK1asICYmhjlz5qCqqvp/3Dz/FZSUlITNkwz/VKSamJiQlpbGhw8f0NfXx9fXFzs7Ox4+fEhwcDD37t3D0dGR8ePH4+LigpaWVis7mLdv37JlyxZ8fHyYPXs25eXlhIWFUVFRIeZD19TUiIkksoBOVVVV7A+Z3ci8efNaKU0/BWFhYWRlZfHdd9/RqVMnoqOjCQ0NpX379kyZMgVJksQYVGhRCp89exZJkrCxsSEpKYnTp0/z8eNHnjx5QmZmprA7i4iIEA+kxsZGIiIihCJVQ0NDzG/ftGkTNTU1DB8+HAsLC27evEliYiIODg5MmTKFQ4cOsXjxYiZOnIirq2urVtSnQNYuraqqorKyEhUVFXR1dWlqahICSHd3d9TU1Lh06ZLgb0dHRxMeHs7cuXNRUFBg27Zt9O7dW9iJyUQxoaGhhIWF0a9fP5YtW0ZqaioPHjxAQUEBb29vOnfuzLNnz/jjjz/w8vJCXV2dzMxMQRPp2rUrXl5e3LlzRwS4bbXnmTFjBiUlJfz1119iJHVOTo5Q3ssOi4EDB1JTU8OjR4/Ytm0bnTt3JjQ0VBjq29raoqysTHR0NBcvXmTgwIH069eP5uZmfHx8UFJSwsDAAC8vLzw9PVFSUqKgoAAFBQW6dOmCjo4OmzdvxtHRUdjLpaamimA9MzOTrKws8vPz27S+yMhIPDw8kJOTIyUlhcePHxMTE4OhoSF9+/YVLWgLCwumTJkiphpFR0djbm7O2LFjyczMFIGIhoYGs2bNQlFRkdTUVExMTGhubhbTfk6cOEFpaSlycnI4OjqKhCkgIIDVq1cLbriJiUmr6X0yWoVsb7QVMj5mYmKicBHYu3cvq1evpqCgQLzv0aNHOXLkCNra2oImUVRUxJo1a0QF+Ny5c/Tr1w9TU1OUlJTQ1NTEwMCAnJwc4uLiUFJSwsLCgqysLEJCQkhLSxMVsISEBJSVlUWnycDAgEWLFpGRkYGSkhJ5eXlt5oPKpuP9M5HX0tKiY8eOxMbGsmPHDnR0dIQdm52dHf379xdDfDw8PCgtLUVFRQVlZWVxTo4fP56EhAQxClRHR4fFixeLkd3QUjxKSEhAUVERTU1NIiMjyc/PF2dxbW0tKioq1NXVkZCQwOvXrykuLv4/BiT/FVRUVHB0dBSeyAYGBlhaWhIYGEhgYCCOjo5UV1fz6NEjysrK0NXVxdTUlOfPn7N69WpsbGw4e/as8Bd/8eKFUOL7+vri7u4uKtPq6uqUl5cTHx+PoaEhHTt2RElJibKyMlRVVUVA26dPH3r27ElISIhwgunUqZMQHLYFHz58QFNTU4zNlqGqqkp4FMumhl65coWMjAyqq6tRUVHh48ePQrdiZmZGQUEBe/fuRV5eHicnJ1EAAoSrwvbt2wkNDeXEiRNAi4+rpqYmf//9NxoaGnTu3Jl27dqJzpOCggLjx4/H1taW06dPExkZ2abgNSIiQrh0yKbo2dnZoa2tTWBgINnZ2a3cZubNm4eCggL5+fns37+f4uJiTE1N0dTURFNTE2tra+zs7Hjz5g1PnjzBwcGBsWPHUl1dzYEDB0hISGDChAkEBgZSVFTErVu3KC0tFQNTZIL6O3fu8M0335CXl4eLi4voqvTv3184M/3f0Obg9caNG2zfvp2pU6cyffp0Pnz4QHp6OoMGDcLU1JTGxkYmTpxIeXk5ly5d4t69ewwbNgwNDQ0qKipISUnh1q1bFBYWsmrVKrp27UqPHj3Yvn07z58/Z/fu3YwePZrk5GQeP36Mra2tGD0nM4339PTEwsICY2NjwaE5fvw4Dx8+ZNKkSUJFW1lZSf/+/QVH71NQW1tLU1MTGhoaDBkyhOzsbMrKykhKSqK6ulq0lZSVlXF1dRVtENkD0NfXl9LSUs6fP88XX3whWsPLli3j999/x9XVlR49elBQUMDly5fZuXMn6enpovpYXl7O7NmzuXDhAsbGxmKSE7RUtJYtW0ZoaCjTpk0jIyMDeXl50Sr+VMyZM4clS5YgJycnqn/V1dVUV1cLZ4cHDx6QkpIi+MsfPnzgzJkzREZG4uTkxKRJk5g1axbKyso0NDS0mvghU7dDCxXB3NyckJAQzp8/j7W1NYMGDcLExIRnz55x9OhRNDU1mT59urA86t69OykpKdy7dw8NDY02z6n29vbmjz/+wNzcnEWLFuHn58f169c5evQo/v7+/Pzzz63agzIR3Lx585g0aRK7d+/myJEjhISEkJOTg6amJu/fv8fDw0N4jTY3N3Pv3j3++OMPiouLKS8vF61nGfz8/OjduzcuLi506tQJRUVFmpqaUFJSorq6mtu3b1NdXU1AQADXr19v5Qv7X6G5uZmGhgbRyXj8+LEYmPHgwQMuX77Mzz//jKGhIfHx8XTo0AFPT09u3rzJpUuX8PPzE2rfzMzMVu/b1NTEpUuX2LVrF1FRUaxdu5Zp06aRmprKy5cvqa2txcLCgrq6OmJjY8WwghcvXvDkyRPs7e1xdXXFycmJmTNn0tjYiKKiYpunM5mZmbFw4UJGjhzJzp07GTRoEFZWVoSGhpKVlYWWlhYTJkzAxcVFCHm2bt3KtWvXcHR0pFOnTkRGRvLmzRvxnjdv3iQpKQlLS0vGjh2Ll5cXd+/epbi4mNmzZ4tsPysrSwS11dXV4qAoKCjA2NhYjIeViVgcHR1p166d8HD+FFRUVPDTTz8xf/58VFRUOHr0KIWFhRw8eJAhQ4bQ3NxMUVERJiYmLFq0iIsXL7Jt2zYCAwOZPHmysJgzNjYWk6a6du0qOJTl5eVoamoiLy/PN998Q0ZGBufPn8fLy0sMuJAkCUVFRdatWycSlPbt29OtWzeam5uFyENXV7fVPvlUvHv3DnNzczHnXjYdacqUKSgrKwvRWGRkpBC5zp8/n9evXwu6l6wA8cMPP7Blyxa+//57QZORVRYnT57M7du3OXPmDA4ODtTU1FBdXS26c42NjaSlpSFJEnZ2digrK6OqqsoXX3xBamqqcHBoyz0ICH6u7FlaXl4uJkCeO3eO4OBgvL298fLyoq6ujnbt2omOSGFhIVu3bqWkpIQLFy6Qnp4u6HhKSkps3LiRv//+m0WLFjF48GA2bNhAXV0dkZGR2NnZcf78ecLCwli0aBGdOnXizJkzfPz4ETc3N7G+5uZmMYp77969IqBuC2TWflZWViJhy8nJoXPnzowePVq4Dx07dow//viDHj16sGbNGsHDDgsLQ15enuTkZEGhS0tLY+/evbx79461a9eyadMmIQLr1KkToaGhDBo0iLi4OHr37o22tjbJycl8+PChFS0kJiaGxsZGJk2aRMeOHVFUVBTt6ragsbFRGORXVVUJT2I3NzdiYmLYvXs3BQUFKCkpsX79ekHz0NPTIyMjQ4i558yZI6YZQsu5b2tri5OTkxjXrKury5QpU3BwcODWrVuYmJjg5eXFrVu3uH37NgDLly9n+/btuLm5icIJtOh+7ty50+ZBDC9fvhSfae7cuWzevFkktwoKCkyYMEGMxNbU1BTWZ6tWreLo0aOoqanh5eVFQUEBpaWlODg40LlzZ9LS0nj06BFffvklkydP5tGjR5w+fRptbW2mTZtG//79iYyMRFFREWtraxQVFYmJicHBwQE1NTUiIiLIy8vDzs6OgIAA3r59i7GxMV999dV/ee63OXhVV1fHxsaGgIAArKysiIyMFG375uZmHjx4QFBQEGZmZvTr14979+5x8OBBdHR0MDExQVNTE29vb5qbm1FSUhJj8D5+/Mjy5cuZMGECa9euFRyuzMxMIeL5+++/iYiIYNu2bYwYMYLg4GCUlJRwdXUlLS2NmJgYAgIC8PLyory8nJKSklZZ1Kdg//79nDx5kvnz5zNz5kxhft6pUyeSk5O5f/8+I0aMoK6uTojQZGMMXV1dCQoKIj4+ntjYWMH/vH37NmfPnqV///5s3LgRMzMz9u3bx5MnT5g9ezaamprcu3ePxYsXC1W+tbU1O3fuFB5+0dHRYhqTh4cHZ8+e5eTJk8IkuS2Q+XHKLMWgZXzdpk2b+OuvvwgMDKSpqYnk5GRxcERERGBjY4ONjQ23b98WWXNKSgp//PEHQ4cOpaqqij///FNYeZ05c4Z9+/YxZcoUVqxYQXx8PJGRkdy9e5d3796hpKSEj48PFhYWSJJEdXU1+vr6uLi4MHPmTLp3746iomKbK3YjR44UQzGgxTrr7du3PH78mJMnT2JiYsKYMWOEOKW6uhp5eXkhrti3bx+SJJGTk0OnTp1Ys2YNQUFBZGVloaamJjxyb9y4wfXr1+nUqRP29vZCWAKwadMmbGxs+O6773Bzc2PDhg1IksShQ4d4+vQpJiYmrF+/nsbGRt6+fYuXl1ebKndz5swR/qmmpqZ0794dDQ0NSktLuXLlCo8ePeLkyZNMnDgRBwcHkeEGBATg7OzMpUuXaGxs5Pvvv6esrExUqTt27EhCQgIvXrwAWqrSDx8+pKamBjMzMxEwxcXF0aNHD7p06cKLFy8ICwtDVVWVadOmicrWb7/9xpMnTxg3bty/8nkNCQkR6vixY8eK5GHkyJFcvnyZO3fuYGNjI+gsQ4YMoaGhgY8fPwpO1rFjx0SFFlpoQY6Ojjx//pxnz54JG5zY2NhW6l03Nzdh/VdbW8uRI0cIDw9nzJgx+Pv7s2DBAurq6khMTMTFxeVftfBmzZpFVlYWlpaW6OrqsmrVKuGhK0NdXZ0Ijp49e0ZKSgqrVq0iKCiIL774gqioKBYtWkRjYyPHjx9n3bp15OTksHLlSsFplokvkpOTgRY+tJGREQoKCuzbt4/Q0FD++uv/Y+0vo6u62v1/+JNkx93dnQgRICQECAQN7looVgotLVCghdIiFShSoFCoQNHipRSCu4WQkBAlRtzd3Z4XGWsecu7ze27S8b/G6IsyMnYy95przku+8iv29vbY29tz8OBBvv/+e9ra2hg/fjyTJ0/+1wz127dvc+rUKUpKSnjvvfdYs2YNZWVlnD59Gl1dXWbOnElkZCTh4eFMnDgRDw8PysrKSExMxNDQkLlz5zJv3jxBLoEuWTl/f39GjBhBQUEB+/btE5d+Tk4O0OWrvmjRIvH/zc3NwmSko6OD+Ph4WlpahJxTZWVlj6E70JVY19XV0d7ejra2tsD/qampMWjQIExMTNDT0xPqJbW1tVy9epWMjAyhTqOmpsb9+/dJTk6mqKiI+fPni06wk5MTFy5coLy8nJs3bwrVhObmZqqrq3F0dBS/MygoiLS0NDIyMsQ7IVkQ19TUMHnyZFauXMn8+fP56KOP3nmNkgOktE+hS84oKiqKP//8k3Pnzgm+wsCBAwX5taioiNGjRzN16lSysrLYs2cPrq6uTJgwgZCQEO7fv09KSgqpqanIy8vz5s0bXr58Sd++ffHz88Pc3Fzo9To5OVFfX8+rV6948+YNffr04YcffuDu3bvs2rULDQ0N5syZg7OzM1u2bOnxc1RWVhbEI3V1de7cuUNaWppQL1q5ciVlZWWUlJQQHx9PdnY2ZWVlFBYWCjx/SkoKubm5NDQ0CIOb+vp6vv/+ewoKCjAzM2PmzJnY2Niwc+dObt++jb+/P7q6uty+fVsQbAEhv/k2PLC1tZXCwkJqamp6/D5KnWFXV1e+/fZbMSmQl5fnp59+IioqiuDgYAIDA8XZqqWlxaVLl9DR0WHXrl10dnayefNmrK2tmTt3Lnl5edTW1jJ//nxWrVqFnJwcYWFh5OTkEBwcTFZWloBuubu7M2LECBobG7l165aAun3wwQeigz1gwABsbW0pLS0V2vf//+JfmRS4ubkxfvx4amtr0dPTw8nJCUdHR8LDw8X4c+7cucjLywviyr1792hoaGDevHlMmjRJfN7r168FzujevXv4+vqybNkyTExMuHTpEnv27MHNzY3Zs2ejpqYmgLxSZRAWFiYeTK9evQS5QEtLi+rqap4+fdqj9bW0tJCRkSEOSulzoYtEJGmRKigo0NjYKJJwNTU1SkpKBGhbU1NTJKFhYWE4OTkRGBiIpaUl+fn53LlzRzDw6+rq+PTTT4EuQPjHH3+Mr68vLi4uolPn7OzMlStX2LVrFw4ODnz44Yds2rSJjIwM/vjjjx6t0cLCglu3bqGmpsaMGTNQVVUVHYw//vgDBQUFBg8ejIaGBuHh4UII3sXFhfz8fOzt7dHX16eyspIDBw5w/PhxQkJCsLW1RVFREZlMhqGhodB0nDFjBu7u7ri7u1NeXi6SiVWrVvHjjz/y+vVrdu/eTU1NDYsXL0ZJSUl0KPLy8rp1zt4lrKysmD9/PsnJydy9e5dhw4YxdepUioqKOHXqlCAbAaJ7OWHCBGEoII3ubGxsmDdvHqNHj0ZZWRl1dXXKy8vJzMxEU1MTT09PfHx80NPTw8rKiqCgIB4+fIienh4LFizAyMhIyGgNHz4cOzs7ioqKBBHBwMAARUVFdHV1GT58uDDXeJc4c+YMT58+RVlZmQ8++AA5OTnS0tIoLCzE3t5ekNQaGhpQUlIiMzOTPXv2MGrUKIKDg9m/f78Yh2dmZjJ+/HhevXqFoqIiNTU1qKuro6mpib29PfX19YSFhZGcnIyOjg5KSkro6upiZGREZ2cnGRkZ1NXVYW9vLzrMf/75Jzt37qSoqEgYe/Q0wsPDOXLkCEuXLmXw4MFAV7fSzs6OQYMGYWtrK7CSaWlptLe3i44odHWHPD09mTBhAnfv3iUgIICvv/4afX19Ojs7hZqIsbGxGNv7+/uTkZGBpqYm+fn5HD16FBUVFYYOHYqFhQU1NTUcPnyY8vJyRowYgZ+fn1jbuxy4b4fkQiiFNOWQ9JJ1dHTEiDcmJobY2Fjk5eWFVe2tW7doaGhg1qxZODg40NjYyM6dO/ntt98YPHgwffv2RVFRkcTERIGjleLOnTt0dnby+++/8+rVK0aMGMH7779PYWEhDx8+5Nq1a5iYmBAYGEhNTQ0mJib/yo7axcWFkpISsrKySElJQUtLi9DQUL744gv69+/PvHnzyMnJob29nZCQEHx8fDh58iQVFRU4ODgwb9489PX1SUhIEIoA9+/f58cff+TNmzdCHgy6upWnT5+mvLxcGM1I+ND29nba2trEOSed35IZibGxMQ0NDRQWFvZoffn5+WL6JyUX0AX1CAwM7Aanqq6u5ueffxb4aYkwKhVPEolNIiWfOnUKfX193n//fbKysqipqcHa2pqLFy/y6NEj3N3d+eqrr7CxsaGlpQUTExN0dHSE0ohERmxoaBBTSD8/P0pKSnq0RhMTE5KSkkhNTRVuWoaGhkInuqKiAkVFRUaOHNlN8ae5uVk0CK5evcqNGzcoKipiwoQJaGtro6Ojg5ycHE5OTjQ3N3Pz5k2OHDmCmZmZSIJTUlI4fPiwKLrNzc0FWUk625ycnGhsbOT169cYGxv/Kz7I2xqjz549E0S34uJi1NTUGDNmDK6uruTn5/PTTz8RGxsrGisFBQU4OzujrKzMsWPHMDEx4eOPP8bExISIiAgBKTQ1NWX58uVYWlqSnp5OYmIiffv2pby8nCdPntDU1ISJiQne3t7MmTNHQPlqampQUFCgrKyMvLw88vLyKC0t7dH6rK2tcXd3Z+nSpRgZGVFYWIiWlpYw4snIyOCzzz7DwsKCZcuWkZOTw4gRIxg0aBAODg5MmzZNOCuuXr2auXPncuDAAR48eMBHH30knrmysjLjxo3D09NT5F8xMTGCrFZTU8OjR4+IiIjA29sbb29vvvvuO+Li4tDT08PW1lYUPv8tepy89u7dW1gMymQyPv/8c1HlJSYmCpcYiSzl6OjIlClTSEpK4sSJE/9B3OjXr58YOX/++eeEhISQkpKCiYkJ7u7uxMbGCmb2tm3b6N27t7Dek/zoHz58SP/+/Vm0aFG3jdvW1iYq73cNyaFGT0/vPyofT09PDA0NhVvIxo0bSUhI4Pjx48LZ5Pr16zQ2NqKsrMyhQ4dISUnh66+/Zvz48XzxxRf8+uuvBAUFYWdnJxQF3maZS4eVsrIy33//PfLy8mzfvl1o6+7Zs4e///6b3377jZ07d7JkyZIeJ6/29vb079+f33//ndu3b7N8+XLGjx/P6NGjCQkJYcyYMfz1119CVsXJyYkffviBX375hd9//51169Yxc+ZMrl+/TlxcHP369ROXwrfffsvx48eZPXs2L168wN/fv5sWrfQ8Zs2aJcZXqampnDp1SnhBm5mZCQey4uLiHrNjpdixYwdXr17l9u3beHt7M3fuXMzMzLC1tcXNzY2SkhKePn2Ks7Mz8+fPx8HBgZycHJycnDhx4gRubm48ePCAjRs38vXXX6OiosK5c+eorq7m8OHDwt1o/vz5tLS08MMPP3D58mV++eUX7t+/z7x58wTZR0qI3n//fSF1snTpUt5//32+/fbbHjPV586dy6lTp/j777+xtrampqaGpKQkTE1NmTNnDj4+PmhpafH06dNuyf/Fixe5ceMGUVFRwnq1ra0NdXV1cnNzycvLw9nZGUNDQ9ra2ujfvz9jx47l6dOnVFVV4eXlxbp162hvb2fHjh3cunWLZcuWYWZmxtWrV0lMTERBQUGogBw6dIjY2Fg++OADgaF81xg2bBglJSW8ePGCLVu28PnnnwNdSa2mpibr169HVVWVnJwcPv/8c8zMzNi7dy8ymYzQ0FB+/fVXDA0N+fLLL4WFodSxmDdvHq2trRgaGuLp6Slw0evXrycvL09c+BUVFZSVlTFmzBg2bdrEsWPHWL9+PceOHRMJbXt7OydPnuxxUlBZWYm2tnY3p7vOzk6KioqQl5fvJkPk6upKYGAgOTk5nD17FmVlZTIyMujbt6+4eCXtT8m5Sgop2Q8ICGDEiBHcvn2bEydOcOjQIcrKyrCzsyMnJ4etW7cSGxtLr169BPlMRUXlX3ddAYYPH87Vq1e5c+eOuCckKSOJkzB27FiRdBkaGjJ27FjCwsI4ffo0f/zxB9OnT0ddXZ05c+aI7+ibb77h1q1bfPrpp2zevJnDhw/z999/ExMTQ0xMDPv27eOLL74QsnhVVVX8/vvvmJmZMWfOHHr16kV1dbV472xsbLh586YwkXnX+PnnnwWZtKysjN9//13APP53HD16lEePHtG7d28mTJiAqqoqjx8/5unTpygqKqKpqUlLSwvnzp3DycmJmpoarly5wh9//MHEiRPZuHGj0CB/9OgRGhoaIjkvLS1FXV0dHR0dHBwcOHXqlJDj09bWpr6+nqioKHJycjh9+nQ3Ytd/C3V1dXr16sWzZ8+4d+8eAQEB2Nvbs27dOpYvXy7G7UA3DoaJiQmFhYXExcVx48YNIeNlZWXFsWPHePjwoVCi6ezsRFdXF319fR48eEBrayva2tqCef7PP/+IDp/0O7744gsaGhowMjISsKS35e7+TXz++edC+ko65yRs9sGDBzE3Nyc+Pp7Y2Fhhxa2jo8Nvv/2GTCZj/vz5Ah/a2Ngozl5NTU1GjRrF69evUVVVZffu3QQEBLBlyxZB2n358iXa2tqsX79enJVFRUUYGBggk8nIzc3l2bNnPU5coQvX7ujoSEVFBd9//z1VVVUMGzaMESNGCGiW1DAsLi4Wcmetra1cuXKFL774gvDwcMrLywW0pqysjJycHMLCwnB3dycnJwcvLy+R20gmS7du3aKxsREDAwNUVFRQVFQkNjaW999/nz179jB06FBsbGwE6V5bWxt/f3+hJf7/ih4nrxKgH7q6mxKrrqKiQoDFLSwsUFFREQ9aEu+eMWOG6GKmp6fT0tJCS0sLH3zwAc3NzQwYMIDMzExev34tXkIJE6Srq4uenh6LFy8mIiKCnJwcrKysqKys5MqVK3h7e4sOSEZGBv/88w9tbW307duX5OTkd15fdXW1cBCRoqCgAHl5eUxMTDA1NaW9vR05OTmB2bhw4YIgWeTm5nL37l3q6upQVFTEwcEBR0dHQYDKysqivr4eJycnYmNj2bRpE+7u7mzdupVLly4RGxvLpUuXMDQ05Pfff0cmkzFp0iT8/PwwMzNj7ty51NTUUFRU9K82sRQ+Pj7CyWLgwIHCFWbo0KGYm5uTmppKfn4+VlZWwsN9x44dZGVlkZ+fT2NjI1FRUZSWlmJkZMSFCxeErl1GRobAEH788cfdPN+dnZ1ZvHixsJm9ePEip0+fZtSoUbi5uaGmpoaioiLNzc3k5+eL8UtPoq2tjZqaGry9vUlPT2fbtm2sXLmSgICAbp05dXV1mpqacHNzw8HBgfDwcLZv3059fT1+fn6C0ayqqkp2djZPnjzhypUraGtri7/JzMxMWB3269eP3r17U1RUJEgDJiYmLF68mMjISExMTDA0NGTq1KlERUWRm5uLoaHhv5I8+/jjj0lISBB6nUuWLMHLy4u4uDgKCgowMDDA3d0dFxcX7O3tSUxMxNjYmAcPHohJxfPnz1m+fDm5ubmUlpYycuRI3NzcKCgoEFABY2NjXF1dBbxEYvInJyejqqoqnNTu3LnD48ePkZOTw9vbG1tbW2bNmsXEiRPJysoSMIOeREBAAF5eXmzcuJG4uDiysrJwcnJi4sSJKCsro6qqSktLCydOnCApKUkI90MXa/3atWuiwyPhQM+ePYumpibjxo1DVVVVaN726dMHeXl5wsLCSExMRFNTEx0dHYGNbmtrw9fXFy8vLyZNmkRycjJpaWlUVFTw+vVriouLe+R4I/2Nt27dIigoSEgqNTc3o6CggIGBAWVlZVy+fBkVFRWmT59OYGAgR44c4e+//xaf0draSnh4OAEBAVhaWop3LSUlhefPnyOTyejs7ERDQwNzc3PS09Opra3F1dUVW1tbrl+/LkT7ZTIZLS0tTJo0SUiBSXhl6Xf1NCR2fFJSEmFhYXh5eTF06FA+//zzbmxiU1NTGhoahPW2sbExdXV17N+/Hy0tLWEgERoa2s190dLSkpCQEKysrIQxhUwmo6ioiMbGRvLz8+no6BB6nZJJjiRZdfnyZYKCgtDR0aGtrY0ff/zxvzr7vB1ZWVmcPHmSkSNHoqmpydChQ0lNTeXQoUPU1dUJ3K2Ojg5GRkYsXbqUPn36iOnOq1evOHnyJFVVVQwZMoSFCxfi5eVFfHw8d+7cISsrCw0NDaKjowkNDWXGjBmsWLECDQ0NAc+Brk6yVOxInVFJCknCLEvfV3BwcI/c7l68eIGfnx+9evXi9evXVFVVCd3SN2/ekJWVhaurq9j/r1694tGjR/j5+WFtbU1+fj52dnasXbsWW1tbUlJSRFfWysoKDw8PVFRUBL/j3r17Yu8OGDAANTU1ioqKKCsr4+TJkzg6OqKuro6jo6PACGdmZpKYmCiaXv82TE1NhWW29L3KZDJOnDhBbm4uM2bMwMDAAA0NDe7cuUNJSQmGhoY8fPiQkSNHsnv3biIiIggPDyc9PZ3y8nLU1dW7Nb6am5vR0NAQsqGDBw/Gz8+PL7/8krS0NNHMKysrQ19fH5lMRltbG7GxsRgaGjJ58uRuBOt3CRUVFUJCQrh79y4xMTHo6Ojw5s0bYmJikJeXZ+jQoZiYmGBubo6xsTE6OjqoqalRVVVFWloaaWlptLW1YWVlxeXLlwXBavjw4Xz33XdkZWWxbNkyysvL+eOPP/D09BTuoBLWPj09ncDAQAGtjIuLY8eOHbS1tYnuvbq6+n+oFfy/osfJa15e3n+wFWtra4mKisLU1BR3d3fRrRw2bBgvX77kk08+EdJF0MXQLCkp4ejRo9TW1rJp0yYsLCz48ssviYyMZMqUKUKLTMJzSaGsrExeXh6xsbHY2try7NkzysrKSElJET/z4MED1qxZw9SpU1m7dq2wbHuX+Oeff9DX12fw4MGCIaqnp4eioqI4GC0sLKirq+PSpUucOnWKuro6HBwchLxHQUEBcXFxAmNUUVFBaGgo3t7eLFmyhMDAQEpKSggLCyMjI4OQkBC+/PJLzMzMWLx4MWvXrsXd3Z3q6mqsra0F/tDQ0FAkfpJ+4b8JiSHb3Nws2J7p6enMnTuXadOmceTIEWbNmsXt27e5ceMG/v7+bNq0iYKCAgDOnz/PmzdvaGpqQkdHh4yMDKKjo9m1axfQ1U1ftmwZEydOFFWaJL80ffp0+vbtS2JiIhMmTBASIPv27RPWtAoKCsjLy9PZ2YmSkhKWlpY9ZuNraWmxYsUKjI2NWbhwIYWFhdy8eZPW1lZ+//13nJ2dBSZZsraVhLAB7t+/L1zjNm7cSEdHhxhPjhw5UnTL4uLi+PDDD/H29qa+vh51dXWhCSiFTCb7D7/tlStXMmbMmH81ioWuIuDDDz/ks88+IzExERsbGwYPHkx2djbbtm3j8ePH7N27F2dnZzw9PXnx4oVgZ9vY2JCVlUVJSQlnzpyhqqoKc3NzZs+ejYODA5s3bxZdRA0NDeLj46mqqqJv374MGDBAjJUXL17M6NGjOXPmDI8fPxbi14MGDcLa2lqs7d/6xUPXRbxixQrKy8sxMjJCQUGB6dOnU1VVxaNHj7h16xYPHjzA2NhYKAFkZ2djYmLC9OnTSUlJYe/evRw6dAhAED51dXXp7Ozk7t279OvXj/feew8fHx/ee+89SktL6d27N87Ozuzbt4+Ojg7OnTsn3PUka+Hz58+TnZ3N2LFjee+99zA0NBTwn3eJxMREjh8/3q2z2dHRgaGhoZCM27BhA6qqqshkMioqKv6jYK2oqODu3btiYjBw4EAqKyv54YcfOHr0KDKZTGhR6+jo8Pz5cxobG1m2bBljxoyhqamJo0ePkpaWxsiRI/+DsFRSUkJeXh6urq7/qsjauXMnfn5+7Nu3j8TERHx9fZk4cSLbt28XEC/JklbSgYSuok9OTk64Cba2tpKbm8uPP/7I48ePkZeX76Y+4+7uzl9//UV4eDgVFRXY2dnh7+9PSkoKGzZs4Pnz5yxevJjx48d3k5i7cuUKdXV1zJ07l+Li4h6T0oYNG8aJEydIS0tj69atDBkyhPr6ehYvXtwNwz506FB+++23bgLtdXV1YqIBXZM9SR6tsrKSN2/eMG7cOFavXs25c+dYsmQJT58+ZcOGDcLVELogEf/7uY0ePVqw8svLy7GxscHQ0BBnZ2f69+/fIxLs8ePH8fHxETa/Uuc8MjKS77//ntjYWNatW8eHH34IdEEENm3axNq1a9mxYwcLFy6kubkZZWVlIiIiiIiIYNCgQSxdupTy8nKxfiMjIwH3evLkCQ4ODkKrvbKykuPHj7Nu3To8PDwYO3YsZ8+exdrami+//JKcnBzmzp1L7969uxV3PY0VK1YwZ86cboWodE88ePCApqYmZs+ejZycHCdOnMDCwgJDQ0M+//xzwsLCOHfuHCoqKuzbt4+ysjJUVVVpbW0lKipKuGclJyezfft2srOzGTp0KB988AFmZmYcPXqUlJQUQYqWBPwVFRV58OABqamp+Pj4EBgYiLu7u5AsfZeoqKgQesnOzs6oq6tz+/ZtvvnmG4qKiujbty9///03jo6O9O/fX8iPVVZW0traypAhQxg0aBD19fXs2LGDU6dOcfLkSebNm8elS5dISkrCzMyMgoICHj58iI6ODtXV1SgoKBAWFkZJSYlo6IwfP56rV6+SmZmJgYEBxcXFREZG4uLigq6uLk+ePOHnn3/uVpz9X9Hj5FWqSB49esSBAwewtLRk7NixYhQriRZLERISQkVFhXgpoSuxcHZ2RiaTcfnyZerq6lBTU+P8+fN4eXkxa9YszMzMuumRSYx6qVOWnZ0tJLvc3NzIzc1l+fLl9OnTh7a2NnGJ9jQ8PT3JyMhg69atmJmZ8dVXX3XrwkLXiCY+Ph5lZWU+//xzioqKePbsGadPn0ZJSQllZWWCgoLw9PSkvb0dY2Nj3NzcKCoqwsTERLhLtbe3U1RUJHyKBw4cyPbt2zl69CgvXrzAyMiI0aNHi26EvLw8ysrKqKmp/SuJLCmOHDnCkydPkJOT48KFC/Tr148zZ84QHh5OYmIiNTU12NraChZ0fHw8VlZW/Prrr2RnZ/P7778TGRnJnDlzWL58OeXl5Vy4cEFI9iQnJ4tOra6uLkuWLMHQ0JCIiAh69eqFg4MDu3fv5uHDh6xYsYL169cLPN7/VVH+7+//v0VzczPq6uqEhoZy+PBhxowZQ69evfjqq68oKSkRxURFRQUaGhosXboUS0tL+vXrJ7CqTU1NPHv2jJKSEu7du4eHhwdLly5lxIgRFBYWsnPnTjF5mD17Ng8fPmTNmjXMnDlT4DPLysqoq6sTEwGJ3DhgwACMjY2FbFF7e7vQjH3XkEwcjIyMSE1NJSsrC21tbfr168eMGTMoKioiPz+f2tpabt++TWFhocAjDRs2DDk5OVJTUykoKKCyspIBAwYQGBhIaGioGBn/8MMPODk5cezYMZ4+fYqXlxdDhgxh+vTp/PPPP7x69Ypvv/2W5ORkhg4dKvQNOzs7yc7OJjs7m8GDBzNz5kxMTEx6PJI9duwYMpmMXr16CQm7Fy9eCO1ONzc3bGxsUFVVpaysjN27d/P3338zatQoQkJChCRbdnY2+/fvJy4uDugqtg0MDGhubkZOTq5bcSx1x2tra5GXlxcXmQSxaG1tJTk5WbgeSZ2afyM/VFFRwdixY8U4/NChQ9TU1LB06VIiIiL49ddfcXJywtXVlfPnzwunHslysqamRpBe4+PjaWxsxNraGjk5OdGdlOwWpQKkf//+zJ8/n4aGBtauXYuBgQHbtm0jOzub+Ph4oqKiiImJYdq0aYSEhPDo0SN27tzJqFGjeoTJfnuNYWFh9OrVi+Dg4G5OeWlpaWRlZREUFISFhQWhoaF0dHQwcuRIli5diomJCWfPniU1NZXp06fj6+vLpEmTGDBgAKqqqkKqZ8mSJezZswcjIyPS09MJDQ1ly5YtKCoqCgmmsrIyYZAAXVyLhoYGxo4dS2ZmJrNnz6aqqop169b1SGopJCREdIqLioooKCggPDxcJHuampo8efKEyspKbty4gZWVFSkpKbS3t5OYmCiK8lWrVjFx4kRu3LhBUlIS8fHxjBgxgkWLFtG3b1/hMX/hwgUSExMZOnQovXv3pl+/fmISunv3blJSUpg5c2Y30p802g4PD2fXrl0C5/uuMWLECJHwSwTelpYWUlJS0NXVZcqUKTg7O5Obm0tsbCxlZWWsWLFCqBBIP79582bS09Px9vYWd6Genh63bt3ip59+YsGCBWKyYWNjg7e3NxUVFRw9ehR5eXm0tbWZOXMm7733Hq6ursybN48//vhDkMC+//57mpub30ng/v+K9vZ2MjIyqK2tFZyZu3fvcv/+fQYMGICzszNWVlZkZGSgoKDApk2bcHNzo7CwEDU1NdLT0/nwww8pLS2lvLwc6ILGQNd7mJ+fT0tLCwUFBSJHunv3LqmpqTg4OODn50dVVRX9+vXD1dWV0tJSzpw5Q21tLb1798bX15fo6Gjy8vKEHNq7hrW1tWg2SQWfh4eHaAxIKgoymYyRI0fi7e1NTU0NYWFh2NnZ4eLiwqRJk1BXV+f69etcuXKFr7/+muXLl7N+/Xphdz506FChOKGgoMDLly/x9fVl7ty5ODo60tnZiaurK6dPn6azsxMLCwvq6+vR0NDAw8MDmUzG5MmT0dTU/K9FSI+TV+iyk/z111+5ePEienp6mJiY4OPjI76UkydPcvPmTUJCQvD09GTHjh00NTWRk5ODkpKS2LQ2NjY0NTURGhoqmJ6S3aaZmRlVVVUcO3aMzs5OevfuLawDvb29hfaZm5sbdnZ2/Pbbb2zbto2MjAzWrVvH0qVLaW1t7XElPWLECNLS0oTY9a1btxg5ciTV1dWiGxgXFycgEtKIQlVVlYcPH1JWVoa3tzdTpkwRf/+yZcsYNGgQ169f56+//qJPnz44OTmJy/fGjRt888037Nu3j88//xyZTMa3335LcHAwM2fOpFevXhgYGJCdnS26KWPGjBGjoZ6GnJycSLYkfU9jY2MWLFjA0aNH2bFjB69evcLZ2ZnVq1ejrKzMtm3bADhw4AAGBgZUV1eLF02yqS0qKkJDQ4PW1lb27dsHdOHt+vXrh6mpKbdv3yYsLEwkc2PGjGH69OkicZWMGzo6OpCTk6Ojo4O6uroed+6SkpJwcnLiwIEDJCcnExUVRXt7O7a2trS0tLBz507KysrEmlxcXJg/fz79+vWjs7OT4cOHo62tzaNHjzh37hxv3rzBz8+PwMBAKioq+PjjjwkNDRWSY4DAi/7zzz/Y2tpiZWUlyCQdHR0YGxuTmpqKoqIinp6eFBUVcfnyZWxtbXF0dOyxOHpZWRlaWlpMmjSJlpYWvv32W3Jzc9mwYQN+fn7cuHGD1NRUMSZWUVHB29ubkSNHCvvF1NRUoqOjBZmuvb2du3fvoqOjw7Jly1i3bh0JCQlcuHCBsrIyIQxuZWXFe++9x927d3n16hV9+vRh0qRJYmSdnJzM4cOHUVFR4ZNPPsHGxoZZs2b1OHmNi4ujqamJsLAwxo8fz6hRo2htbeXPP/9k+PDhgvh59+5doqOjqa6uJjIykr59+4qxtxS6urp8/PHHFBUVYW1tjY2NDWZmZmhpaQn3vPr6erKzs6murubixYtER0dz6tSpbmNIRUXFbnjBtrY2YXPaU53XtLQ05s6dK+Atz549w9LSkpqaGm7evMnz58/54YcfGDRoEAsWLCA5ORlPT098fX1RUVFBJpNRU1NDXl4eSUlJ5Obmis+2sLDAz89PuCxVVlYKUfKhQ4fy2WefsXfvXo4cOcKCBQtISEjgiy++4MmTJ0JU38HBgfb2dvLz83s0Zn47xo0bR21tLUOHDv0Pi+eioiJSU1OxtrZGXl6ep0+foqOjw5gxY1BQUCAoKIjOzk72798vJKckuR/omiCdPXuWK1eu4OLiwvTp07ly5QqPHz8WI8qkpCQGDx6Mv79/t+lHW1sbTk5OWFhY8M8///Dtt9/i7+/Pl19+KbDV7xKGhoYCApWQkMAff/xBbW0tGzZsEGStq1evcu/ePeLj4zl16hQvXrzo9hmLFy/mxx9/JDMzk1GjRgm74QsXLghyUr9+/fjpp5/YuXMnV69epaWlRXT9oGtiePjwYTQ0NBg+fLgYs9fW1uLg4ICBgQFXrlzh8OHDQJcd6rvGxIkTRXEtnVPp6eno6+uzefNmAYE4evQoN2/eZOTIkSxcuBDowhq3tbVx7Ngxdu3ahZ6eHurq6oSHh2NkZMSYMWO4efMmJ0+eJC8vj88++4yqqip69+7NgAEDOH78OMePHwdgwYIFHDp0CB0dHTo6OtDW1sbW1hYjIyOUlJRYvnw5tbW1/3rSI6lvREVFcezYMZycnDh79iwXL15kyJAhBAUF0dHRIZj4U6dOFWfD9OnT+fHHHzl06BDy8vIEBQUBXXCG9vZ2rK2tsbW1pbW1FXNzcxoaGkhKSqK6upqbN28iLy9PRUUFRkZGorCQrOcLCwuZM2cO6urqREREiAloT8LY2FhMC2tqarh79y7Nzc2sWbNG5F4hISFERkYyevRooQGvqalJdna2IOoCzJ49m8ePHxMTE8OOHTt48uSJ6Pw7OjqKYqu6ulpMbFpbW4Uzo6urK2ZmZlRWVhIREYGCggKjR49GRUWF7OxsASH9/zx5vXLlCp9//jlKSkrMnTuXhoYG4dQjifHevXtXOG/06tWLjo4OTp8+TWJiIsOHDxdWiBI7d8GCBUydOpV//vmH27dvs379eqZNm4a3tzc//fQTp0+fZsWKFcybN08cXqqqqvj5+YnR5Lhx47C1tRU2kVFRUaLb1NOwsbHhp59+4uXLl+zZs4cVK1ZgamqKmZkZdnZ2wnnp1atXxMTE0Lt3byZOnIiOjg6nTp0SjkOSBmRoaCjW1tYoKCgQHx/P/PnzRSX0ti5kbGwsERERyMnJiQpT6nRDV3J35coVIdAM9MgpRQrJJUXCH7e0tGBvb8/GjRsZOnQoMplMVNLPnj0TyU5kZCTfffcdJiYmDB06lObmZrKyskTy6uPjw+zZs7l7966QjZozZ47wpo+LiyMyMlIkxS0tLXz++ee4ubnx448/iqpe0pasq6sT44WexKtXr4Qv+JYtWzA0NCQyMlLIqi1ZsgRNTU3U1NT46quvqKioQE5OjufPn3PkyBEsLCzo378/Ojo6TJ48GW9vb1RUVHj69Cnnz5/nzp076Orq0r9/f6F4oa+vz3fffcfOnTsJCgrixIkTuLi48NtvvxEbG8vKlSsxNjYW0lglJSUUFhb2GM8rxePHj3FxccHExISsrCxsbW2xsbERB1RtbS1//fUXampqfPPNN7i4uFBTUyM6Tw0NDRw5coQbN26watUqAbjX19fn559/Zvbs2QBcvnxZJEXy8vLcu3eP2tpaIiIisLKy4sGDB1hZWbF3715Gjx7NkSNHsLe3RyaTdRtx95Q4CV17p6CggJ9//pmDBw8SEBBAYGCg0PhsaGjg+fPnwsrRxMSEXr16dUs28/LyOHbsGC4uLvz999/s27dP4LbNzMzw9fUV7G0dHR2BJweEl7kU2dnZWFtb89FHH6GiosLWrVuJiYnhyJEj3ayN3zVSUlKIjo6msLAQdXV1IX9WXl4uko62tjZyc3PR1dUVmLCmpiZkMhmqqqrU1NSQkpJCbW0tmpqaoqOjp6dHQECAkPlSVlbm22+/xcbGhm3bttHY2MilS5fEOeLu7s7u3bs5d+4cmzZt4uHDh7x+/ZrJkydjbGyMnJxcj7UloYuw1dTU1C3hl8xnhg8fjqGhIdu2bSMxMZE5c+bwySefIJPJRMdLVVWVOXPm8OGHH3azuIQucqubm5swTmlra0NXV5dPPvkEV1dX1q1bx8mTJ1mzZg0bN24E/gfDa2dnJ2AJTk5OHDx4EDs7u26KDO8SlZWVYrpmZWXFyJEjaWxs7LYHNTU1hVnPH3/8IZJXExMTTExMGDJkCNDlpiRJH77//vvdLECVlJRwc3Pj448/ZuTIkdjb24tk/NixYxw+fJh+/fqxZs0azM3N2blzJ5cvX2bmzJkC7jJ9+nRsbW1RU1PrkRtcQ0MDZWVlIkl9/PgxeXl5BAQEiH8rLi5GU1OT4ODgbnfW9evXuX37NvX19cycOZO8vDzOnTtHY2Mj5ubm5OfnU1ZWhra2Njk5Ofzwww8kJSWhoaFB//79hfZ4WVkZ6urqaGtrU1lZyTfffIOmpiYXL17Ex8eH+vp6tm7dio+PDzNmzOjRM3w7pKlqWVkZ7u7uAucdFRXFkydP8PPz48MPP6SpqYnTp0+zePFi7OzsMDExYdq0afTp00dMRMzNzVFTU6O5uRl5eXn09fXR0tKipaVFuN3V19cTHx/PTz/9RFJSEpWVlaSnp7N27Vrmzp3LokWLyMrKQl9fH3l5ecaNG9dja1joSqIlyIpkLy9JrUlTre+++44XL16Qn5/Po0ePcHR0xNLSEgcHB7S0tIR5kJOTE/v37+e9997jzZs3lJSUiOT19u3bPH36VEyQ/P39CQsL46OPPqKhoYGtW7fSu3dvEhISWLRoEREREfTv35+LFy/S0tLCjBkziIyMZOzYsd24Mv9X9Pg0evbsmQD1L1y4kOzsbGJjY6muru5GBlBTU8PIyIjGxkba29uRyWRoamqKEQd04Vcl5w43NzfCw8PR0dERGDBPT088PT1pbm5mxowZqKurs2zZMsG8kxbX2NiIvr6+SJ4rKyu5c+cOTU1NYkT/rpGeni5Ym+3t7dTV1Ql5CmdnZ5ydnWlvb+fevXvCDWPTpk14eHgwY8YMxo0bR05ODgoKClhZWeHm5kZGRga3b98mNzeXxsZGwsPDu2m6jRgxAicnJ7Kysli0aBEeHh6iE9jR0UFbW5twhvHx8aGlpQUVFRUxEu1p5ObmMmTIEOTk5CgrKyM1NRUVFRV8fHxEciM9n/Xr19PZ2SkwLkVFRSgoKODq6srIkSPFQaWhoSHc0jQ1NVmwYAEBAQFMmTKFjo4OLl26RE5ODllZWfTr148RI0bQ1NTErl27uHz5MgEBAQQFBVFfX4+ampr4Lzo6mrNnzwrJlXcJRUVFnj59ipWVlfj+GhoaWLVqFY6OjuKCcnV1xdnZGXt7e+rq6pCXl8fGxkYwVlVVVVFRUaGsrIyEhAS2b98uTAi+//57pk+fTnt7O3l5efTq1QtPT0+GDBlCVFSUgMJIEkbS6CUqKoqff/6ZpqYmAgIChD6oNGZ61/D396e9vZ2tW7eSkpLCt99+i6+vL7W1tdy4cYPo6GhMTExwcXHBy8tLdL1aW1spLS0lPz+frKws4uPjefz4MbNmzUJdXZ0xY8bg4+NDQ0MD+/btEw4wgHCAksZYH3zwgegwmJiYUFJSQnh4uEjwioqKkMlkdHR0/Kt9KsnFvXnzhgcPHvDjjz/y4YcfdtsLMTExNDY20qdPH/r27YuRkVG3Ef6VK1e4f/8+fn5+9O/fn1u3bgmSBXRJRh0/fpz8/HyMjY2prKwkPj4eTU1NgoKCOH36NP3792fEiBFC5URRUVHg+65cuUJNTY3ADfck3NzcBLlD0n6sra3lxYsXAj/bp08fFBQUmDdvntCElLoW9+7dE/qmEvNccsAxNjams7OTpKQkGhsb8fHxYe7cuURERLBhwwamT5/OxIkTqampYefOnfTv35+BAwfy9ddf09TUxJMnT3B2dkZNTU2cq/+GsCVhB1tbWwVRpbGxkaKiIqysrPDy8sLAwIDc3FyKi4tpa2ujtbVVEFxHjBghCino6tZGR0djamoqHPzk5eUpLCwU49vKykpOnjxJSkqK6PI0NDSIDrm2trbACmdkZDB8+HBB6OtpSKROiTBlaGhIY2MjGhoaQBdsIiUlBQcHB7y9vVmzZo3AEEsTkuLiYlpaWgT2UyI/RUZGoq6ujpGREQYGBrS0tAiFDH19fQoKCoiIiCA2NpZ+/foJLWToGoFraWlhb29PcXExhYWFODs7C5JcT5JXJSUlZDIZDx48IDExkba2NoKCgrCxsREOb0ZGRnh5edHS0kJbW5sgWXt5eZGQkICJiQljx47l5s2bvHr1ShQa5eXlmJqa0q9fP+rq6khNTaWuro7CwkKysrJwdHRkyJAhaGpqMnbsWOTk5Hj69ClJSUls2rQJHx8fSkpK2Lx5M62trTQ2NvZYFxy6iJwDBgzA1NQUZ2dn5OTkUFJSYs6cOeJc6+zsJCAggLlz5xIbGysss9euXSu04Pv27UtDQwNv3rzBycnpPxw+m5ubqamp6UZWlKAkWVlZZGVlERcXx6lTp8Q0q7GxkcLCQiwtLYVyj0S6fdfIyckRd7uioiI2NjbU1NRQXV0timdJuurly5dCf1o6S6XvtbW1FUdHR3r37k1OTg4RERHdDIrevHnD/fv3sbGxobi4mBcvXnDx4kUhKSeTyYRFsATXklSG1NXVcXd3JzIykkePHnWDmv5f0ePkdeDAgSxbtky8bPb29gQHB1NZWUloaCiZmZniQba0tNDZ2Ymqqirz5s2jpKREvNTQhcNobm7mm2++4dixY9TV1TF58mS++eabboBpOTk5ISKckZEhANRSBa+qqirkZYyMjNDQ0GDQoEEoKSn1mNTU0dFBZWUlq1ev5vnz5yxatIiRI0dy9+5dAgMDRbXw559/kpubi5+fn6g+oQuz6eLiIip8FxcXrK2tqaysFMLbMplMdJ0DAwPZsGEDzs7OfP3114SGhtK7d2969+6NTCajuroamUwmWvaffvop7e3twvHG0tKymzj+u8T+/fvp27cvEyZMQENDg4qKCpFgSdCP1tZWjIyMmDhxIidOnGD58uUYGhoyYcIEUlJSaGpqYsqUKQKPKnUAr127xoIFC/jpp5+EN7SNjQ39+/fn8OHDODo6MnjwYEEau3PnDr///jsHDhzg4sWLTJkyRSTEkpVcT8dAw4YNo7y8nF27dhEWFsbevXuZMmUKvr6+yMvLk5KSwvfff8+TJ08IDg5mwIABREZGYm1tzTfffNNNwDk+Pp6wsDASEhJElzwwMFDgFCWcj7Svp0+fTnBwsBhl7dixA3l5edTV1QWE4ezZs7i5ufHRRx+J7ppk6fquIdkQxsXF8fr1a4Gtys3NFVJSGzZsQEdHhwcPHhAfHy/IKsrKynh5ebFkyRLa2tpwdnZGRUUFFRUVVFVVef36NadOneLXX3+loqICZWVl4ehVUVHB5MmT2bt3b7fKePXq1cJZLz09nZCQEGG3KBlAnDlzpkdrhK498Omnn+Lo6Mj27dtJSUnp9jmqqqqYmZlhZGQkCmkpMU1ISEBLS4tdu3bh4+NDU1MTb968wdjYGDMzMzIzM/noo49IS0tDV1eXwsJC0XXduHEjc+bM4aOPPuKPP/7g0qVL3bSBpQQ2MDBQELwUFBQE4e9dYt26dVy4cIH4+HiysrL47rvvuH79OgYGBuL9VFJSorm5maqqKkxNTQkICMDQ0JDU1FSuXLkiPktDQ0Ng5G1tbXn9+jXXr1/n2bNnAKJb09LSgpGRETU1NcTFxYnLJTY2Fm1tbTw9Pfnkk08YOXKkYHJLIRF1ehqtra20traKd6Suro64uDiKioro168f+/fvZ+DAgezfv59NmzaxZcsW5s+fj5+fn5DXkkJRUVFIfJ08eRIHBwfmz58v8LPR0dECnrJ9+3Y++eQTzp07x5QpUxg+fDgfffQRcnJyREZG8ueffwpZIwmn3tPQ1dVFRUUFAwMDSkpKSExMpLq6GgsLC8GKlySTAgMDsba25uDBg+L93bx5MxkZGUKSELpgTwcOHGDYsGHY29vj7u6OgYEB9fX14kzz9PSkoKCA6upqNm/ezKJFi4D/0T795JNPWL16NSYmJoSHh3P58mXGjh1LYGBgN9OOdwmZTIaZmRmbNm0iNDSU7777TmAub9y4wfXr1wkICMDIyEjcydLou1evXmzcuBF5eXlUVFQYOXIkdXV1PHz4kIaGBtzd3QkKCsLAwIDY2FhUVVXx9PSkrq6O6OhoUlNT0dDQ4L333hMYWmkiK+1pqYC+f/8+LS0tHDx4sMfP8dixY4JPY2lpKRoY06ZNo6CgQEgQTp48meLiYvLz8/Hx8WHfvn2kpqZy8+ZN3N3dSU1NJSMjQygoAMJkBBAC/ZMnTxYJrLa2Nu+99x4DBw7k6NGjgvCkqKhIXl4eDx8+pE+fPuK8jYmJ6db8epeQk5MTkyEtLS3Wr1+PlpYWGhoaFBQUkJqaiomJCRYWFvTp0wcvL69uKiOhoaE0NDQwYsQI8R4vW7aMhQsXdsNP+/v706tXL3x9fYmKimL9+vU4ODgQFRWFpaUlSUlJ3LhxAzU1Nc6dO4e2tjYKCgrddObfe+89srKyiIyM/P+7ph4nr2PHjgW6OhZXr14VY3xdXV2cnJzIzs7mr7/+QlFRES8vL3Jzczl9+jQjR44UUj6RkZHIy8sL9nZTU5MwBSgpKeHNmzdC7H/ChAk0NzfT3NwsfLAlBnpHRwc1NTWoqKhgYmJCS0uLwF3+W7kM6YWoqakhKytL6A5qaGgINlxAQABLly4lJSUFAwMDgcvMy8vj5MmTmJiY8N577xEVFcX169cZMmQIq1evxtPTkzNnzpCUlISFhQX29vb4+vri6OiIiYkJM2fOFL7GUhteW1ubtrY2zp8/T3NzsxAyhy48aWdnJ9evX+/RGiUrXxUVFYFjlKSBAOGfnpeXJ7TcBg0aRHFxMe3t7cyfPx9bW1tu3LhBaWkpRUVF5ObmoqamRp8+fdDV1eXhw4fU19cLC9v29nZ69+5NWVkZ8fHxmJqaMmnSJBQVFVm+fLlgokpYTkB0u7/88sseYe4sLCz47LPPaGtrIzw8XFSP0kvX3NzMiRMngC4WsI+PjxDUd3Nzo6WlhaysLJSUlBg6dCjDhw8XZJ/x48eza9cuUS3X1taKsYv0O6Tf097e3m1ceunSJS5cuMCQIUNYs2aNGOfJy8t3K+reJb755hsaGxvx8/MjICBACGs7OTkJHLOk9WlhYUFZWRk1NTXdLDV79+7NmDFjuiWh6enp/Pbbb1y/fl0QH5qbmxk6dCimpqYYGBiwdu1a0WV8G8cudXezsrIIDQ3F1NRUdILe1ix917h//74gnvj5+TFjxgyeP3/O7Nmz8fDwEFqnjY2Nwh61tbWVmpoaOjo6hE2thNNTUVER7PX9+/fz+vVrce5UVlbi5OREbW0tCgoKODg4YG5uzhdffMH9+/fFeqUuiImJieisS9OC/91l+W8xZMgQlJWVcXR0JCsri8bGRnR1dQkMDGTMmDECB3rgwAEyMzOZOXOmcGUyNzdn5syZwkSioqICZ2dnFixYQEdHB7/99htPnz4VSVJ4eDg3btygX79+/P777xQUFBATE0NOTg56enq8fv2aDz/8kJCQEDZs2ICJiQnnzp0jKSlJYPv+DQSrsrJSNDCkUFFRQUtLi5KSElEITJ8+nZcvXwpzDOjCoktYyNGjR+Pn54e+vr6QRTp16hSbN2/G1tYWPT095OXl0dPTEx0qFxcXLly4wIYNGygsLMTJyUkUwkZGRgwZMoSOjg50dHR49OgRRkZG3cjG7xIS/Eiats2ePZvz58+zdOlSJk6cKDzrL1y4gEwmExA0gF27dhETE4OxsTEpKSm0trYKE4r4+HjmzJlD3759xfsaHx8vcIAymQx7e3tSU1O7TW0kwuvbpiDOzs6EhISIvdBTsm9paSmGhob4+fkhLy/fDb6hrKxMSUkJv/32G9nZ2XzwwQcCL3ny5Eni4uIYM2YMAQEBNDc3Y29vz6JFi3jw4AEvXrxg/PjxTJ06Feg6S5KSkqiqqkJVVZXKykqqqqooKCjAysqKxsZGjh07xsCBA0WiuGzZMqEVe/HiRWQyGZ6enj02JwoICEBHRwdPT08hryfFxIkTRTNJarJIUJD169eTm5vLqVOnSEtLIy4ujoULFwpoZFRUFPfv38fZ2VmYFFVWVoqEuLGxkTt37tDc3Mz777+Pu7s706ZNE0WAiYkJdnZ2okH28OFDwsPDRYH+rtHa2ipgMq2treJOLCsr4969e0RERNDe3o6lpaWQyzI1NUVLS4u6ujpUVVVRUFAgOzub9vZ2zMzM/k9pwMGDB4v7Pjo6Gl9f324QABMTE77++muys7NZsGABs2fPpri4mIMHD5KRkcGgQYMIDg7G19f3//vkVYr09HQ6OzsFM7O1tRU/Pz9MTU0JDAzk3LlzPH36lMjISL744gth41daWsr27dt58+YNqqqqODo60tTUJHB1r1+/Zs2aNTx+/BgrKyuGDh2Ku7s7JiYmGBgYiCy/oqICTU1N8WJ3dHTQ2dkpxkaFhYVoa2v/aymi6dOn4+7ujoODAy0tLdjY2IiDQUNDg5UrVwJdtqnPnz/H398fmUzGkSNH0NLSYuTIkbx+/ZrDhw+LC8nIyIjm5mYhc2VmZkZwcLDYSEOHDhWXdVNTE/X19ULnLTIyUogwjx49WnR235ZeedcICQkRnubQVS3V1NQI3Jy2tjbt7e38+OOPvHr1is8//5zr16/z1VdfCUycsbEx/fr1Ex3vjo4OBgwYwGeffUZOTg7r168Xh8CNGzdwcnLio48+Iicnh8jISKEEIVWlixYtora2ltjYWPz9/VFQUODo0aM4Ozvz8ccf90japampic7Ozm7Ei5qaGpEkOjg4MGDAABoaGggKCiIvL09IKd27dw9tbW2xHwMDA1m4cCH//PMPaWlprFmzRhQ48fHx1NTUoKamRq9evejs7KSpqQklJSUUFBRoa2sTTi3QRdCROomSM5SUULq5ufXoGX799dc4ODhw8eJFXFxcmDdvHqGhoZw+fVp0IiRvewnXCP9jhauiooKysrLQ+01LS8Pc3Jy0tDSuXr1KXl4eJiYmNDU10draKtxhpO5jXV2dgMYA1NfXo6ioKCYEV69eFZ0MFxcX6uvre7Q+6LIBlYighoaGrFixAk9PT6ZNm8a5c+cYM2YM0JUsZ2dnExAQwIwZMwgMDEReXl7oFEoC6DU1NZiamnL37l327NmDmpoa6urq1NfXC0F0d3d3zM3NRbLVv3//bsWJqqpqN2iNhE/Nz8//D0LSf4uKigoCAgK6YQShC5cpLy9PY2MjR44c4dy5c0BXg8Dc3Bxvb2+MjY1ZtmwZy5Yt4/nz55w8eZLm5mZRpLx+/ZqmpiZsbW1pamqiqKiIyspK9PX1GT9+PI8ePSIxMREHBwd8fHyIiIhg+/btPH/+nF69ejFw4EB++OEHCgsLWbBgAcC/eoZvX3AShEdfX59BgwaRlJREaGio0Jz95JNPhHe6jo4OeXl57Ny5k5aWFqGDW1pairOzM4mJiezfv1/IC6qqqpKRkSEE4KdNm8aNGzdYunQpTU1NeHl50bdvX+rq6lBSUmLgwIEMHDiQ2tpa3rx5Q1FRkVDo6EnIy8uLaY6klKCtrU1UVBTGxsaMHj2a8vJyUlNTsbKyIi0tDTMzM/766y/++usvoKsQuXv3LpqamgQGBgo8+9vd7zdv3vDmzRtGjRolZPKampo4dOgQFy5coLCwkGXLlgm3qebmZjQ1NZGTk0NTU5MBAwaIIm769OmiGH+X+Ouvv1i4cCGLFy9m8eLFQuIMuu6O169fExoaSnZ2drfu/I0bNzhz5gxv3ryhtLQUCwsL/P39UVZWFn+fVMADREdH8+rVK6HQIk2TJJmn6upqrl+/Tn5+Pl988QXbt28nOjqa+/fvo6CgQEhICCNGjBAW3D2Jr7/++j/+raWlBXl5eaytrTE1NWXu3LlcuHAB6Br1q6mpsXTpUoHbvnTpEoAgjcnJyZGTk0NZWZnQTtXT08PBwYHQ0FBKS0uxtrYmJSWFpKQkfH19RZGgoaFBQ0MDampq4vxOTU3l0aNHKCgo4OHhQVRU1Duvr6mpidLSUoyNjUXxUl1dzfPnz7lx4wYxMTFYWlpSVVVFeHg4dnZ2hISEoKKiIuyIU1JSiI+PF+og0FXMS1KTioqKyMvLU1RUxLZt21BVVWXLli2oqamJteTm5pKWlkZsbCwxMTE8ePAADQ0Nnj59Slpamij83nZh/X9Fj5PX2tpasrOzGTlyJOPHjycjI4MdO3agoaHB8uXLsbKyYsKECRw/fpzdu3fT3t4uiCUAwcHBeHh48ObNG7y8vPjll18ICwtj3759KCgoYGFhIQg6ysrKooP7yy+/oKqqSm5uLmvXriU/P599+/aJl3vv3r1UVFSwdu1aqqur+fDDD7Gzs+PIkSM9Wt/Dhw+Jjo7G2tpaJGDSyMvQ0JD6+nquXbuGnp4ew4YNw8fHh8TERIqLi7GwsGD+/PmUl5fT0tLCqFGjxOG9e/duDh8+TF1dHQYGBsTExNDS0tItKXtbEDw8PJz9+/czfPhwPvzwQ0aOHElubi5hYWHExsaSlZXF2LFjRSe8J/HFF1/Q0tLC7NmzBej/8ePH7Nixg0GDBrF582aCgoKYO3eusOaFLn3T9PR0EhISuH79upA7mTBhAo8ePSI1NVXoiSopKSEnJyfwsZaWlqioqDBgwAD8/f0FFllK5sPDw4UUl6KiIqWlpZw7d+7/dKr5b7Fp0ybi4+MF47etrY3Hjx9jYmJCnz59UFJS4ssvvxTVpbRHZDIZFy5cwMXFhW+++YbDhw9z6NAhEhMTefbsGcbGxmIfV1ZWEhAQQHZ2Nt9++y1JSUkMHTqU6dOn4+npKQT0JSxtZ2cny5YtY/jw4aioqFBQUICurq4oxnratVu1ahUGBgZ4eHgIN6aCggKKiopElRsdHU1dXR1DhgwRv2f79u28ePGCpUuXMnnyZPFuXbp0iUWLFmFnZycuOUVFRUJCQmhsbCQnJ4crV66goKBAdHQ0jx49YsaMGeKQUVJSEuLSsbGxgtA4c+ZMQkJCul1S7xp3795l3LhxbNq0SRzgJiYmbNy4ESMjI2xsbHj8+DFPnjyhqqpKdDekYuHAgQNijC+xbZubm3F1daW5uRkbGxtxYUiXYHt7uzAESE1N5fTp0zQ1NTFr1qxurlVSmJiYoK2tjZqaGmVlZT1a38GDBwWR6O2QVCn09PSYMmUKdnZ2NDQ08OLFC9avX8/SpUtZt26d+HlNTU2ampq4dOkSkZGR9O/fn6CgIDQ0NIiJiUFXV1foukJX4+H69etUVlYyffp0hg0bxuDBg4mJiRHM79zcXDo7Oxk9ejTW1tbk5eUJHed/G9XV1dTW1oqCp6qqitWrV1NXV8fOnTt5//33efr0KR999BGrVq1i7NixTJo0CV1dXWxsbIiLi2PDhg2MGjUKb29vvvrqK44ePSpMbu7du0dGRobAjrq5ubF+/XqhUezi4kJFRQUtLS3dsHyS8oCmpiYGBgaEhYX1eG3Nzc3s37+fzZs34+npyZEjR5gyZQrFxcXExsZibGzMkCFDqKur49dff6WyspKNGzeio6NDXFwcUVFR9O3blyVLlqCuri5kEaELCvTy5Us0NDTYuXOnmCqeP3+eJ0+eCPxgdHQ0FRUVqKmpMXbsWKZPn46Ojg4PHz4kPT2d8ePH4+7u3mOYmYaGhihKpZCUYczMzFiwYAHz58/nzZs3hIaGkpGRwahRo9i4cSN9+/altLSUp0+fCuy7kZGRgHBI58LChQu5fv06AwYMYOjQoRgYGPDkyRNhVy7Z3+7bt4/169czZswYxo0bx/jx4zl+/DgpKSmsWrWqGz7634bUaX57zW1tbUJ3XVJE2L17N5GRkSxcuJDg4GCcnJyE8P+MGTOwsLDA3d2d+fPn4+LiIsb2KSkp3Llzh/z8fAICAvD09ERNTY2tW7eiqanJhAkT8Pb2JiMjg/b2dgwNDdHW1qa5uRkrKysUFRV7LB8pJyfHs2fPGDx4sOAUaWpqoq+vLxpgkumDrq4upqameHp6Al3n0a5du8jNzeXLL7/Ex8dHEFulybfUJdbS0hLNIHt7e7Zs2SK0/DU1NdHV1RVTK1dXV/GdLF68GH19fUpKSigtLeXhw4f/dU09Tl5zc3PJzMzEyMgIU1NT2traqK+vJz09nV27dhEQEMCSJUvw9PQkNDSUnJwcAd6NiIigX79+fP311+Tl5WFnZ0dVVRVlZWUoKSmhra0tuqU1NTXo6Ojw9OlTZs2aJcZlERERJCYm0tjYSGlpKa6urjx9+pRbt25hZmZGU1OTENb28PDosc+x5F3v7u6OtrY2DQ0NZGRkiK6K5Od8+fJl4uLiCAoKYsSIEejo6KCiovIfFdzAgQOFNpuk0aqnpydG/ufPn+f9999HT0+PqqoqUbUlJydTWlpKWloadXV1BAUFIZPJyMvLIzIykszMTDIzM/9VNyQrK4vi4mKUlJSE1EhDQwNpaWm4u7uLBHr16tVAV8flzJkzPH/+vJt3tpycHGZmZpiZmQkrT+hK7DQ0NJCXl6elpQU9PT3hkCY9R4nAIY1yw8LCqKurw93dXRQJFhYWqKqqdtPhfJcICwvj6dOnQm4lPz9fuAxJY8q3XXRMTEwYNmwYM2fOFHqegwcP5vLly8TGxgrWee/evSktLcXR0RFdXV10dXXR1tZGSUlJ2FKampqKgkAqxqSQOutS8WFqaipGOT1do2StCwgv98DAQFEsNTU1IScnR1NTE4WFhQJflZSURERERDepnLi4OJKTk2lpaaFfv37MnTuXbdu20dTURGNjI5aWljQ3N/Ps2TOio6Opra3FxsZGEJja2tpob29HTU1NuOl9+OGHREVF8dVXXxEfH09wcHCP1gddo92qqiqSkpIwMDAgOjoaNTU1IU9WUVHB5cuXhVV1Z2cnT548YejQoTx69IjvvvvuPzyypYRf6mwNGDCArKws4dvt6uoqDm2ZTMbNmzfp6OgQnb+EhASBD5eTk6OiogJVVVWBOe1JSIxjVVVVysvLRRe3urpajL/fLlB37tzJzZs3u0FRpLNTV1eX4uJiiouLaW1tpW/fvqIgGjJkCHPmzKGzs5OYmBgBwXm7K6qnp8eGDRu67cmPP/4YDw8PSkpKuHr1KkVFRcJp7V0jISFBXFjSOwOIqVR2djaGhoZiqtXZ2Ul6ejovX75k+vTpwtimsLCQpUuXEh4ezpYtW/D19RUaxWlpaeTl5aGpqUn//v1RUlIiISEBd3d3cR5LZ1h9fT2DBw8W7lD379/HzMxMEG3S09N7tL7W1lbKysq4f/8+t2/fBrqgXg4ODsjJyaGnp4e5uTnu7u7Mnj2bmpoa/v77bwYMGCCeq+Tu9+rVKyorK0lKShLfc21tLWfOnEFJSYn+/ftTV1cnJmSJiYkkJSUJgxJpH2tqajJt2jTs7e2pqqri9evXREVFiSleTyXr9PX1ycnJEa5QbysyKCkpCdWawsJCDh06RK9evZg2bRq9evXC3NycrVu3iu8mLS1NWH9L0KsjR45w9OhRoAteJD3DrKwspk+fjqGhIWFhYdjb22NnZ8f06dP55ptvsLKyYtCgQfz2228UFhYyd+5cjI2N/xU2W7rnX758SWtrK3369BHQFisrK3R0dFizZg0aGhr4+/uTkJDAkSNHyMzM5KuvvmLfvn28//77AhNcVFREYGAgAQEBaGlpkZWVRWZmpujyS5C9u3fviiT3+PHj1NXVsXHjRpycnKirqyMzMxNFRUWampqEnrO1tXWPoR+ampr8/PPPvH79mrlz56KgoEB9fT0ODg4sWbKEhIQE0tPTUVVVJTAwEDk5OWJjY1FSUiIxMRElJSU8PDzw9/cXz7+iokIQFd9uxNja2hIUFISxsTHt7e2kpKRw//59ysvLsbW1RVFRkXHjxjFp0iRUVFSoqqrCyspK7Pl79+5x4MCB/2ph3OPktampibt373L79m1cXV1ZtWoVa9as4cKFC6xZswY1NTUuXLjAkiVLeP36NQ8ePKC4uJiUlBQqKysxNjbGy8uL3377jR07dhASEkJ9fT2mpqaoqqqSmZlJbm4uRUVF1NfXc+LECZSUlJgyZQrQxcT85ZdfUFJSorOzk02bNgkt1g8++AA5OTnhovRvLsyhQ4fi6emJo6MjhYWFosratWsXvXr1QkFBgYkTJ1JUVMSmTZuYOnWqePHe7pwCnDp1ip9//pl+/fqxdu1adu/ezbFjx3j8+DEfffQRGhoa4rs7f/48FhYWXL16lfz8fJycnNi3b59IajU0NBgwYACtra3079+f2tpaYRvY0zh9+jRv3rxh165dLFmyhE2bNjF9+nQcHBz+zw0TFRXF8uXLqaqqwsXFhRUrVjB48GCeP39OdHQ06enpzJo1i/Xr1+Pu7s6ePXv49ddf0dXVxcLCglevXuHt7d0NhxwfH09nZyfm5ubIyckxbNgwvL29MTc3x9HRkZaWFhYsWCDseHsSAwcOxMTEBGdnZ5qbmzEzM0NVVRUtLa3/KGakxGTevHkCs3zr1i0ePXokOmmSv7uvr+9/4HxUVVU5ePAgJiYm/PDDD93Gcf8v6aT/3cH7tzJEUujo6Aghcalbo6ysjLe3N83Nzd2q9Hnz5jFhwgSRvF+4cIGOjg5GjRolOpYbN25EJpPx008/cfHiRRYvXsyGDRvEgS3ZGZuamorCVU1NDXNzcyZPnkxzc7N4jh4eHqLIkcak7xqzZ89m3Lhx3Lt3j5CQECorK9m8eTPQlTRs27aNw4cPC2FtTU1Nvv/+ez7//HMaGhrEJWFqakppaSl1dXWUlZWRlpZGU1MTQ4YMoba2lsOHD/PXX3/xwQcfsHr1agFFMjU15fvvv8fS0hJHR0fu3bvHp59+ipWVFR9++CGqqqq8ePGCjo4OZsyY8V8dYf53LFiwQDz32tpatm/fjpKSEl9//TVmZmbdCpq6ujqmTZvGtGnThMtRS0sLampq1NfXY2RkJJQrZDKZ0KL85JNPmDJlCtXV1Zw5c4bOzk6mTJnCtGnTyMrKoqCggPj4eJydnRk4cCB2dnZCE1ZPT4+EhASOHj2KpqYm3333Hbt37+7RGr/77juGDh1KcHCwgFuEhYWxaNEiysrK+Oyzz5gwYYIo+CZOnIidnV239yEnJ4c5c+YQHh7O9OnTRdf04MGDPH/+nEePHokuVnBwMPb29nR0dAhXJ+hKTi5duoSSkhJBQUE0NTWRlJREcXGxeG6xsbE9dme6dOkSaWlpHD16FGVlZfEM58+fz5gxY/j+++/ZsGGDYGRraWkxfvx4QTqGruTQ2NiYJ0+eCDKisrIyJiYmxMfHExoaypIlS7C0tOS9995DTk6O8+fPExISwpMnT+jVq5cYX+fm5tLc3CwE3zs6Opg8eTKTJ08mLS2Na9eu4eLi0iOt0NLSUs6ePYurq2s38wNJ9Qa6VDeWLl1KcXFxt8bAli1bOHz4MLW1tejq6oopQVxcHPv27aO8vBxdXV1cXV3Jycnh+vXrQsO1pqaGJUuW4ODgwMcff8z+/fs5e/YsU6ZMwcPDgwMHDgjHMS0tLe7cuYOfn9+/kpK6f/8+u3btori4WOyPO3fu8ODBA5YsWcKPP/7I8OHDyczMJDk5mc7OTlatWsW2bdsEZjMsLIzk5GSKiopwcnJi9erVODo68tVXX3Hz5k10dHRQUFBgwIABLFu2jOTkZNatW8eXX35JSEgIo0ePxtLSUtwxknC/FElJSfz8888EBwczbdq0Hq1PsnOPiYkhLCxMSIF99913WFlZoaWlxYkTJzh06BCPHj1CRUWFM2fOkJWVJVRIJHlMKWxsbARf5u3Q19fnwIEDGBsbC+iWtE8yMzOprq5GWVmZgIAAQZQMCwvD29sbVVVVDAwM3qnp2OMbMzIyUti6TpgwAU9PTzQ1NenTpw9BQUGUlJSQlpZGaWkpkZGRqKmpCeyOpqYmhYWFWFtb4+XlJSxHJRyHv78/6enpAqhrbGwsmJbSmEJTU1MIkJeUlKCurk6vXr2YNGmSIFUMHz4ceXl5Ghoa+PPPP3u0vpycHJFctLe3i8Nkx44dwP+w8P39/QkNDSUmJoZ//vmHCRMmUFRUxI0bN9DQ0MDU1JRTp04RHh5OWVkZQUFBODo6oqWlxYwZM8QL3rdvX2prazEyMkJOTk5oq/Xp00d4q+fl5QmrP0VFxW4yGz0VRgeE3umiRYu4fv06DQ0NAPj4+FBVVcXevXt5/PgxXl5eTJ06lc7OTgYMGMC1a9fECMfCwoLRo0dTWFiIlpYWr1694saNGwJb5uHhgbm5ufDxdnFxwcjIiIKCAp49eyZE/Ldt20ZhYSG9evVCV1eXxMRErly5wrRp0/6VQxp0sVElnT3ppTEyMhIOKpLSgZ2dncDoREZGkpaWxosXL7h69SrNzc04OTlhbGyMsrKy6Jy4urqKsY+FhQUTJ05ETU2NZcuWCcamFFVVVTx58oSioiKMjIywtbVFJpNRXl5OTU0Nenp6ODs7Y2ZmJtio7xq5ublUV1ejqqqKhYUFGhoaVFdXk5qairKyMnZ2dt2UNiQyiKTZm56ezuPHj0lJScHd3R0PDw/RxVdRUaFPnz5UVlZiYGDAmjVrsLOzE+L45ubmmJqakpCQIDoifn5+qKqqikQ5KSkJV1dX+vTpQ2pqKr/88kuPn6O/v7+wpOzdu7fAm0oC7B0dHSgrKwuMn76+PgoKChQUFNDW1oa3t7d4l992N1NWVhYjybS0NDo7Oxk8eDAeHh4oKCjQ2NhIa2srWlpa4rJubm7myJEjJCYmYmVlhYGBAfLy8piZmVFeXs6RI0f+qy7h/w4JJw1dHax79+5RUlIiHAZlMhn5+flCuk/CwUmYWBUVFXJzc/nhhx+IjIxEU1NTEIiGDBlC79698fPzw8LCguTkZJEoSEWko6MjGhoaFBcXU1BQgI2NDebm5t0kvxQUFFBTU8PX1/df4eul7ltycjJZWVmYmZmRkpKCmZkZ/v7+zJw5E09PT968eUNmZiZubm4ika2vrycuLo7ffvuNFy9e4O3tzZAhQ4iJiRFTICsrK6GtmZycjLGxsRj5FhQUCJjA69evhXShiYmJIFNqamri6uoq8OomJiY9kiEyMTHh9evXWFtbExQUxMqVK8nMzOTgwYMkJycDiI7zqVOnMDIyYsSIEcTGxnL06FEBOZHuFA8PD1paWhg+fDjFxcU8ffoUOTk58T1K+tsdHR24u7uzatUqBg4cKCZiDg4OaGpqUlpayt27d/H39xfvgJubG1FRUbi7u3P//v13XqOpqSny8vKYmpoKNZG2tjbxuS9fvhQGINLPS4Y8N27cwM3NDTk5ObKysujduzfu7u789NNPZGZmoqury/LlyzEzM+PChQuEh4fT2toqzt7BgwejqKiIm5ubsJUHhMnPixcvqKurQyaTUVBQIEi0PY179+4RGxvL0KFDmTNnDm1tbTx//hwHBwdcXFyorKzk2rVrREVFMWfOHHGvVVZWcu7cOYqLi7l+/br43ba2tgJSdfbsWZqamtDQ0KC+vp7S0lK8vLzw8vLiyy+/JDc3l6NHj7J//34Bk0tNTeX58+dC1UAqAKOjoykoKBBmE+8aEvnV1NSUrKws4bApnfkdHR1kZGSQlJREUlISQUFB6OnpiZ+9c+cOw4YNQ1VVlfj4eKKjoxkxYgSmpqY8evSIlJQU9PX1aW1tRUdHB39/f7S1tQkPD+ePP/5ATk6O9957j8LCQo4dO0ZSUpKQuHv48CFJSUlcuXIFmUyGhoYGkydP/q8a9v8KNlBbW8uCBQvESEcSu7106ZLwa967dy/Pnz9nzpw5/PTTT2hqaoqsvb29HQUFBZydnbl8+TIhISEkJCSgr6+PqqoqV69eRSaTMX78eKZNm4aTk5PAn7S3t3PlyhWampoYPXo0K1asID4+XnSNpM+GrtHqnj17eiRaHB4ejru7OwoKChQXFwtGYFZWFu7u7sjJyfHy5Uuys7MZMGAAjx8/ZuvWrejp6eHt7c2rV6+4evUqPj4+wv0qPT2dyZMnAzB//nx+/fVXoKtTu2vXLjQ0NMTfLLmyNDY28urVK+Tl5XF1dUVJSYmWlhbevHmDTCYTsip+fn6cPn26R8/wwoULTJ06lYCAAFxdXXn+/DlpaWk4Ojpy/fp1Nm7cKAg4Q4cOZfDgwQwYMICTJ0/y119/cfXqVTw8PFiyZAmjR4+msrKSUaNGsWPHDpycnHB2dmbGjBk4OjqKdTc0NFBXV8eTJ0+EoUFWVhb37t0jMTERW1tbDAwMROGSmpqKs7NzN13gdw3poHxbZqeyslKYRtTW1hIUFCQ6QZcuXWLt2rVYWlri7++Pt7c3urq6ottXWFjIqFGj6Nu3L52dnezbt4+zZ8+ycuVKoTna0tLCvHnzurFUJctSSZR8//79+Pr6cvr0aa5fv87gwYNZsWLFv7IWbWxsJDk5GSUlJdTU1DA1NSU9PZ3bt2/j6Ogo9sfb0wApQa6pqeHGjRskJyfj5eVFQEAAmpqaVFdXi8/PyMgAYObMmd2MDSZMmEBrays3btzgwoULglDwtlpCaWkpp0+fxt3dnRkzZnDr1i12797NvHnzerzOI0eO4OnpKfRMq6urhbrI1q1bsbW15fjx4wKGMXv2bGGcUlRUJJKX1NRULCwsWL58OTY2NixcuJAHDx7g5eXF1q1b0dfXJzExkdevX+Pr69st8S8qKuLo0aMkJyczYMAAgRVXUFCgT58+ZGVl8dVXX3HixAmx398l6uvrUVJSEoQHXV1dcnNzef78OT4+PgIjJo3UIyIiuHjxIvb29sIuOyEhgTNnzlBVVYVMJqOtrY3+/fuzZcsWsQegS5lEukzf7kiamJhgamoqCK/SHuno6KCpqQkLCws++OCDf6U0APDVV1+J53jy5En09fWZOnUq58+fR19fn4SEBL766iuePn2KsbGx0LaUHIc2btzI/fv36d+/P5MmTUJbW5uSkhJu3bpFXFwc69atY968eVy/fp09e/bw8OFDGhsbcXR0FKz9p0+fYm5uztq1a0UC3tTURJ8+fbqteeDAgQQGBvLpp5++8/ok1Qs/Pz8sLS3p7OzE2NhYqJlIkZCQwOnTpxk0aBAjRozg2bNnbNiwAehSVZDk90aOHIm8vDw1NTWEh4eTnJyMpqYmBQUF+Pr6cujQIUFoq6mpYfTo0chkMqKiopgyZQrBwcEcPHiQy5cvc+jQIb788ksxtZSTk+vmMvauIeFSNTQ0KC8vJywsTDRapL9NKlq9vLxITk7m6NGjFBUVYWdnxx9//EFLSwtbtmxh6NChTJ48mfv375OXl8fZs2dFMv/s2TOmTJnCggULhKKB1LHeuHGjeE/S09ORyWTCrvuzzz5DTk6OvXv3YmZm1g1S1ZOYOXMmU6ZMEXewm5sbMpkMXV1dYmJi+P7776msrBT6o9ra2gQEBGBqairgjxERETx+/Jjq6mpycnJQV1dn8ODBtLS0iDOnsrKS3NxcAXeS4m0oQEREBB9//DF1dXU4Ojpy8uRJ/Pz82LhxI99//z2hoaHdiKT/LdLS0ti2bZtQacjKykJBQaGbEsu4ceOEBq+Hhwffffcdt27d4r333mPHjh1YWFiwYsUK/v77b77//nv+/PNPRo8ezRdffEF4eDjjx48nPT2d3NxcJk6ciLGxMefOnSMnJwdNTU2WLFkiin5PT0/8/Py4ffs2J0+epE+fPpSUlHD06FHmzJnDF1988f998jplyhTU1dUxMDAgJSUFGxubbl+6hoYGgYGBZGZmYm1tzcyZM9HU1CQqKoq0tDRmzpxJWVkZq1atwtLSkkGDBqGgoEBtbS0//PCDSHb19fVpbGzk2bNnvHz5kl69ehEUFER1dTVnz56lvr5eCLVfunRJ4Jhu3rxJe3s7w4cPF1VeT2LixInU1dWxd+9eHj16xMqVK2lpaWHPnj0UFRWxePFiSktL+fPPP4UupJ2dHbq6umhoaLB06VLMzMxQVlYWGotv65SWlJTw+vVr9PX1BcgZuvTfWltbsba2Jisri4yMDJycnLqNYHJzc1FRUaG+vl7Ib/wbhyZJdqS1tZWTJ09y9OhRhg8fzubNm3F0dGT8+PE4OTkxa9YsMVKTyWQYGxuTmJhIVlYWampqAvPY3NzM8OHDCQkJwdXVlfz8fCFzJYWamhotLS0EBwcLDT05OTk++ugjsrOz0dDQQFlZmYkTJ9Lc3ExsbCyTJk1iypQpAof6rmFpaSm0douKilBVVeXVq1eEhYVRUVGBq6trt+/NycmJwYMHU1RUxOPHj8nKyiIwMJD+/fujoqJCTk4OAwYMALr0AKFLb9fAwIAbN27g6+srpMfehhXIZLL/wAj6+/vT2dkpMMdS17unoaGhgYmJicCKQ5edoKOjo8BsQlcS0tHR0W0MI5EgLSwssLOzE5g1STP43Llz1NbWsmvXLhobG5k9ezatra24u7szYMAA7O3t0dbWFjqcEnb9wYMHTJo0STia3b17l379+hEUFMTixYuFSPy7Rltb23+s5+2zRl1dnQULFqCjo0NYWJjA4zk4OFBXV8fdu3cpKioSwvFpaWnIZDJMTEwwNzcnODiYlStXin38vy/2xsZGEhMTefr0KSkpKdjb22NlZYWqqioVFRVCs1kiPw4fPlyYWLxLVFZWCphOQ0MDw4cPx8/PT4i9S+opdXV1nD59mr/++ovS0lKqqqo4evSoIKHt2bOHf/75h8uXLwNdBfiSJUtYtWoVISEhNDQ0iPG4rq4upaWlonOvrq6Oh4eHKLrKysrEBSNpa0sX7L+xooYuLKQkryOJ7kukEXl5eX777TcBCRk8eLDgO2hra3cb+2tqauLt7Y2hoSEWFhaCWHX8+HFBJjMxMcHd3R1VVVWRVEmWum93jqWJTGNjo7Aj/zfQnStXrjB+/Hj09PQERlxFRUVolYaGhnLp0iVKS0uZMGGCwE53dHQIJrfUoR08eDA5OTmkpqYKhRsXFxdu377NDz/8gJqaGsHBweJZvS2htXz5crKzs6msrBQkWSUlJTZv3sy1a9eEyYG2trYwnehJFBYW4ujoiL6+PuPGjePZs2eEh4fj6upK37592bdvn8Bz3r9/X3RhKysrBal61apVWFtbC6c4Hx8fAXWJj4+nuLiYoUOHisT16dOnlJaWCutQ6OrypqamioTa1taWvn37YmZmJiYfrq6uPXZllDgAERERHDlyhBkzZnSTo3Jzc2PDhg1cuHCBzz77jKlTp7Js2TJxN7W3t1NaWioIq6mpqWzevBlLS0tWrVoldOc1NDRITk7m4cOHxMTEUFNTw8iRI9m4cSPe3t4UFRXx5s0biouL8fDw4Pnz5ygoKNDQ0EBqaip//PEHTU1NLF26tEdqA2PHjhW5kK6urpguSDhVNTU1vvjiCxobG9m2bRtGRkZoamoKxSVbW1uhHf7jjz8K3VjJJtbKyoqpU6eK6dT/Lt5qa2s5efIknZ2dwtBCSUkJT09Pxo4di4WFBdbW1igrK7+zYUiP31bJheH+/ftcu3aNkJAQXFxcyMrKoqqqCltbW7S1tZk9ezZOTk5ixP/TTz9x7949DAwMMDExES4SUVFRomqTmNmSduyDBw+4c+cOpaWl1NfX4+fnJ3CU0mF2+/ZtTpw4gbm5OaNHjyYrK4vU1FQGDBjAuHHjUFNT6xHWTur0ZWdnU1VVxYwZM9DS0uLBgwccOXIETU1NWltb0dTUJCEhAW9vb95//33a29vJzMzE1tZWMIjr6uq4du0aHh4ejBo1iubmZrFxYmNj0dDQICAgADk5OSorKykrKyMpKYnExEQsLCyE/l1BQYGQLrKysqKtrU04dfXUhAH+55J+8OAB9+7dEx24hoYGTE1NGTlyJG5ubjg6OlJZWYmKioqQKpEuk6qqKtLS0nj+/DnPnj1j0KBB4mBOSkoiMzOzmz2o1C2QYBDSd/E2cejtLojEVP/55597LF8j4Z7j4+Opr6/HxMQEOTk5bGxshFvN2xeVl5cXH3zwAb/88osgZ/Xt25fevXujqKgoXvr09HTy8vKYPn06QUFB3Lp1i7///hsNDQ0GDhyIpqam8BM3MDDA2dmZNWvWAF3C0hkZGXR0dBAQEMCff/7J1atXe2wpKoVElJOiubkZIyMjxo8fT319vXAb0tLSQk5Ojra2NoGhVFZWFt0F6ILKyMnJYWlpSXl5Od999x2jRo1i3759/P3336J79s8//+Di4sKaNWuYN2+ekHhqb28nNjaWsrIyQdiSyWRCaNvDw4O9e/f2SO4MuvDE/v7+yMvLU1VVJTC9TU1NAm+nrq7O3LlzGTlyJNHR0eTn51NaWoq6ujpWVlaUl5eL7o2NjQ0NDQ28fv2akpISYbkqkRWNjIzIy8sT+oSSMkVzczNubm4iIUhISODAgQP4+/sLfemRI0fS0dHRo+Q1JydHFFHy8vJMmTIFMzOzbqYn0EVu+uabb0Tx7OLiQnx8PCkpKYwdO5b3339f/G2JiYkCEuLk5MSwYcPo6OigtLQUfX19VFRUBFGyqamJ2NhYMjIyGDJkCGpqaiQmJgpCnqOjo4Bl/BstYoATJ04QERGBnZ0d69atw9TUlOrqauG406tXL4YMGcKbN2+YMWOGSEDq6+tRUFBg+fLl1NTU8OzZMw4ePIienh7+/v4EBwcTHBxMdnY2X3zxBdXV1QwePJgff/xRTFzKy8vR1NQkJCRE6GVXVVWJ4lnSB05LS+P169f4+fn1GF//4sUL5s+fL/5fkuSTzsmMjAxu3LiBjo6O6NJCVxH77bffcvXqVaKioqioqODJkyckJydz7do1vL29OXToEO3t7Zw8eZL29nbq6+uFbm5HRwcGBgZUVFRw8eJF6uvrmThxItOmTaO+vl6YEXz88cf8/fffeHl5ERMTQ1VVlejkv2vU1NTQ2tpKREQEjo6OgoD2/fffo6CgwKeffip0TW/dukVZWZnAlkt6wTNmzGDgwIG0tLQIKaaAgADa29spKSmhvLwcS0tLzMzMaGxspKysjMzMTNEUgK7zt6amBk9PT0GglhK56upqkpOTsbCwYOzYsT3WPpemFMeOHePhw4cYGxsLQl1CQgLOzs7MnTuX4OBgBg0axKVLl1i4cCFqamqkpKSgqqoqLKqDg4O5f/++ICTOmDEDVVVVOjs76dOnD8bGxkRERFBRUcHo0aMJDAzE19cXVVVVqqqqCA0NxdjYmKNHjxIREUFubi6GhoY8e/aMS5cuMXXqVBYtWtSj5HXp0qWCrCydZ83NzVRWVmJkZERWVhYlJSXo6OgwYMAAVFRUyMvL48SJE7i7u3P48GEqKir4/PPPaW5uZvXq1ZSVlYlkesiQIUyYMIGOjg5evHghZPo6Ozvp7OykpaWFly9figK4pKSEuro6rKysmDVrFrdu3cLGxkaYbbwLHPJfSWVJrE6JJXrgwAG2b9+OkZERq1atwtnZmWfPngmr1f79++Pn58etW7fYt28f8+fPZ9u2bWRnZ9PU1CQOtry8PAwMDAQ2y8/PD09PT5KSksjLy6OiogJzc3M+/vhjKioq0NbWxt7enhkzZqCoqEhKSgqBgYH4+PiITpOfn1+Pktf4+Hg8PDz4448/SEpKQl9fHw0NDY4fP84nn3zCihUr+OKLL/jtt99ISkrCwcEBJycnNm3axG+//SZa7NCF/QkKCmLGjBlC6F5LSws7OzsuXrzIP//8Q0VFBQsXLmTGjBlcu3aNyMhIBg8ezNy5c1FUVOTy5cscPXqUkSNHistfJpPRr18/QkND+emnn3osD9La2irkYdauXcucOXNQUVEhLi5OuHfcuHFDSD0NGjSIpUuXMmvWLDo7O1m3bh0FBQW8evWKkpISnj17RkdHBwMHDsTe3h5HR0eGDh0qDoTS0lLRkdyzZw8nTpxg7dq1zJ8/XyTEKioqlJSUCIyPt7c3f/31F19//TU3b94U2qXvEklJSfz111+oqqrS1NREfn4+QUFBTJgwgcjISG7duiU6x9XV1eJQiImJERI8/5fOnJaWlhD1b21tRUVFBVdX124X3suXLzl9+jTz5s1j2LBhBAQEsHnzZl6+fMn+/fuJjo7m+vXrgqQgdV7/bQcWui7hy5cvY25uzqBBg3j58iV//PEH/v7+QgMzNzeXwsJClJWVMTAwQEtLSzyTEydOcOrUKc6cOYOtrS0aGhqCVT9p0iQOHjzIxYsXuX//PvHx8SLBBwQTXYII/PLLL5w8eZLhw4ezePHifwWJkEJdXV2wbaWzRrIkhC77aIncY2hoyPDhw8nJySEnJwcHBwdGjhzJgwcPuHDhgvC8DwgI4Pbt2yQnJ5OamkpycrJwmouIiBAY923bttGnTx88PT1pbGxETk5OyLtJxL7IyEhWrVpFcHCwYM/3JCRNY0CQwuB/VAikqUx1dTV1dXU4ODgwZ84cXF1dyc7ORl1dnZKSEn7//XdsbW3ZuXMn6enpQp3B19cXZWVl5OXlBaZcUv+QupApKSlcuXKFtLQ0cdaeOHECfX19fvrpJ/r3709ERATy8vIMHDiwx8/w5MmTvHjxgpUrVwpXpqamJlJTU9HR0UFdXZ2DBw8KS14pcnJykJeXZ9SoUZSWlvLs2TMSEhJYuXIlAQEBwu3I2tqaWbNmMXXqVAYPHiwSU+gqfqT7Crqk49ra2sTPtLe3Y2NjQ2ZmJr///ju3bt0SDYN3jcmTJ4uCu7m5mdTUVCwtLbG1tUVHR4fRo0fTp08f4uPjOXz4MC9fvhRi9AYGBkyZMoUbN25w4sQJWlpacHZ2RiaToaWlRWtrK66uruzatQsjIyM8PT3p7OyksLBQ2JZXVlbi4+PD+PHjcXV1JTU1lbt37zJmzBgGDx7MsWPHSE9PR1tbm0uXLvH8+XMMDQ17ZNdcW1tLr1692Lp1q7j7dHR0ePz4Mbm5uZSXl3PgwAFsbGzo168f6urqLFmyBDU1NR48eMDPP/9MdHQ0P/zwA0pKSlRXVzNx4kQx9m5sbCQkJERYxgLC0eptCEVnZydBQUFCJ7alpQVNTU0aGho4ePAgZ8+eZfXq1axatapHz/DtGD16NKampigoKIhkLzc3l4SEBGbOnImpqSl///038vLyKCkpsX//fvbv34+XlxerV68WneT+/fvj5uZGUlISV69eJSYmhlGjRmFhYSHMZCZOnIiBgQFbtmwhODiY06dPdysapcnqgwcP0NHRYfDgwezcufNfQT/gf2BjFhYWnD9/nszMTNLS0jh9+jRXrlwhMTGRPn368P7776Ovr8/27duJiopiyJAhtLa2UlVVxahRozAwMCAgIEDY4wJCs9nX15dr165RVFQkFIYkYyoFBQUiIiKIjo4mKipKkM6lMygwMFCQ7G/evPlf19Pj5DUqKgoDAwNB8oiPj6eoqAgPDw+qqqo4cOAAjY2NpKamipGlhoYGnp6ezJo1S3TgJN3G6urqbpjP2NhYzpw5Q0BAAD4+PqJ75+PjI15aZ2dnbG1t+eGHH1BXV2flypU8efKEU6dOsXbt2m7dyJ52C+7duyd8mSV7Uw0NDSwsLOjXrx9JSUloaWlha2srqr+SkhKKioowNTVFR0eHyMhIYmNjuXDhAvr6+gwbNgxra2tqa2uRyWRCAqetrY2WlhZycnJERzYqKkqMVqCLyPG//drb29uRl5fHwMCgx8LoAM+fP2fQoEECzjB9+nQAbt++TXV1Ne7u7lRUVPDrr7/S1NRETk6O6CaHhITw5ZdfCuLT2LFjUVBQ4NSpU2RlZXHo0CFB4pO6im+PXySJjoSEBBISEoQ7mYWFBdXV1RQVFXHv3j2Cg4Nxd3dnxYoVYlT/rmFra0tISAgODg7Y2Njw6tUr4uPj0dDQID8/Hz09PTHKUldX5+HDh1y5coVevXqxaNEi9PX1efr0KW1tbWRkZKCpqcno0aNRVVUVyf2gQYOwsLAQTkzQpZV7/fp1TE1NMTIyIicnh/Pnz1NQUIC2tjYWFhbCjWb8+PEYGxuLi7Wnun3p6ek0Njbi7u5OYWEh58+fx9DQEBcXF2QymbDklA4sqVsjVcK1tbWCrCZJoVRUVAg1ifDwcM6fP8+MGTNYtmwZixYt4ttvv+XkyZPU1dVRUVGBnp6eIBsaGhoKUwZzc3MmTZok4AhxcXFCcLwnoaurK0hjUrdIUmZQU1MTo96srCyuX7+OhYXFfzC5vby8hE2nRL6Sk5PDysqK1NRUXr58yaBBg3BxcSEuLg4dHR1MTEyQl5cnNzcXS0vLbpdFZGQkJiYmrFixQkxnSkpKyMjIID8/v0fONxYWFqILKnVEpG6+tbW1UFYwMDAQqhF9+vQR6hfQtW/++usvFBQUGDRokDhzPTw8hHSXoqKi+P4UFRVFgnD//n2uXLlCSkoKlpaWQvpQMtmwtrYmPz+fnTt34ubm9q+S15KSEurr68X59eDBA2JjYwkICCA5OZmGhgYGDhyIsbExpaWl5OTkYGJiIrr2MpmMYcOGMXfuXB4/foyenh5tbW3ExcVhYWFB3759GT9+PB0dHUJiS8L0trW1oampycuXL1FQUKCiogIlJSUyMjKEYDx0FQ7SXu0pdCA4OFg8+7a2NhQVFUlMTOTFixfY29vTt29fHB0d8fX1JT8/n+TkZGJiYhg0aJCAq7i5uVFdXU1nZyfDhg1j7NixpKen09LSIkxGcnJyCAsLw8PDQ3yXpaWl2NvbizOktrYWdXV1HBwcuH37NoqKiowaNQpfX1+gK6GSfOd7MiH49ddfGT58OGFhYULb08jIiN69e5Obm4uSkpKQxJQMeaSQDH2ePHnC5MmT8fPzQ0dHh5aWFtLS0oQByv9WCCgqKuL169fY2NigpKREVFQUkZGRFBQUMGfOHJSVlVFWVqa6ulp0kyXsb0/W9na0tbUREBAgCIBSSEojhw4dwtraGmdnZ1H8FRcXk5aWRmFhIZ6entjY2AgdUzU1NTIzM7l37x7Dhw8XykFJSUlMnDhR3I9ycnLk5uayZcsW3n//fby9vWlqahL8DG1tbdTV1QXMC+jmqvYuITXlysvLefPmjZhMSeYFksObg4MD06ZNIycnh/3795OcnIypqSlnz56lb9++rF+/nri4OEEkHD58OE1NTcjLyxMREYGfn183RQqAxMRE3rx5w8aNG/n888/ZvHkzFhYWAjKVn58vdODj4+PfeW09Tl7r6up49OgRAO7u7qSnp9O/f382b97M77///h+jwQcPHmBiYoKnpydTpkzp9kfD/9ifSlFVVUVVVZVwxNmyZQvQJfJfW1vLrVu3cHZ2Jjs7m+3bt9OvXz8hWxMWFkZkZCTBwcEiSe5p6Orq8ssvvxAaGoqDgwO7d+9GS0uLp0+f4u7uzo0bN6iuriY9PR17e3shqDt69Gj279+PkpISDx48YMeOHaSlpXXrrknuMc7Ozjg6OrJ06VJxgVRWVhIeHk5qaioGBgY4OTkREBBASEjIf1wakkuFpA3XUyZ3UlISgwYN4siRIxw5coTTp08TGBiIp6engDJAl6TTwoULaW9vF0S4srIy8bysrKwICQnB3d2du3fv8urVK7Kzs3FyciIrKwstLS1xQEvx0UcfCQLO7du3ee+99wST09vbm5CQEDIzM7l//z4ODg4MGTIEBwcHtm3b9s7rGzBgAAMHDhSJm0wm49ixY/z111+EhITw6aefisu8qKiIjo4OevXqxdq1a+nduzcrV67k2rVreHl5kZ+fj76+vsDRbd++HWVlZUJCQrolSVFRUXzyySf4+Piwd+9e5OXl2bt3Lz/++COFhYV4eHiwe/du7OzsOH/+POfPn2fZsmVoa2uTnZ3d4716+/ZtXr16xbJly7CyshJYxtbWVoKCgrC3t0cmk4mRmzTSqq+vFwnWgwcP2L9/P/b29uzbtw8jIyPq6+uZOnUqKioqXLx4kcTERBYtWoSzszMrV67E1NSU4uJinj17ho+PD/b29tjb25OUlMTNmzcJDg7m888/71Y0Sl36nobEOn4bWqGhoSFUIqTfkZOTw1dffYW7uzsjR47sRi6Sk5Nj3LhxVFVVUVhYiEwmw8bGhtmzZ+Ps7Iyamhrjxo3Dz8+P4OBgduzYgaKiInFxcdy9excPDw/RIbp58ya///47EyZMYOHChQA8efKE27dv4+DgwKFDh/5Pp57/VwQHB3fzD4+MjOSXX37hxo0bDBo0iGXLlmFsbCwmJe3t7aLgbGtro6SkBC0tLdatW0d4eDibN29GU1OTlpYWzp49S//+/Xn//fdRUFAQlrnSPrtx4wYbN24kOjqaQYMGMXfuXKEwoauri62trTDwuHbt2r/uoEsESMlpasuWLSgqKjJnzhzS0tI4ePAglZWVjB8/HkNDQyoqKpCTk+t2R1hYWPDjjz8Ksp6enh5paWliuufl5UV8fDwnTpwgNjaWuro6XF1d+eyzzwQZKDk5GRMTEzHW9PLyEsmrmZkZK1euFFCKnkRCQgKnTp0iPj6ecePGsXz5cs6fP88HH3zA+PHjOXHiBLm5ubx+/ZqVK1dSV1fHy5cviYmJEZ3orKwskpOTcXd3F+vW1dXttu8PHDjAnTt3+OqrrwQp8O1CKS8vj2PHjhEUFERgYCBXrlzh2LFj7Nu3T4y/tbW1u3Eo3jWOHj3K8ePHCQoKYv/+/fj4+FBfX8/KlStZtWoVbm5u3bD+xcXFZGdn069fP2QyGebm5mRnZ4uRsZOTE6dOneLZs2fo6Ogwe/ZsgoKCKCsrQ05ODn19fcLDw1m6dClTpkxh7969ODs7s2XLFv7++2/y8/PZuHEjHR0dREdHY2dnx5YtW5gzZw6hoaH/gbd815DJZKLIfpso7ODggLa2Nr/88gu///47NjY2rFy5kkGDBjFz5kzq6urIyckREBvoajA9f/6ce/fu4ebmJr73mJgYsrKyaG1tRVlZmXv37jF37lxmzJjBggULePjwIVevXsXKykq4VM2ePbsb1KOiooKkpKQerU2CLz569IhVq1YhLy/Pxo0bhZlCQEAAenp6DBgwQOBgBw8eTENDA9nZ2UIrXFtbm/v37xMbG8ucOXPEmP/vv/8mNzf3/8TFx8fH8+jRI+bNm8fQoUM5duxYN0OX4cOHM3bsWPLy8nj9+rWAv0lE5//n8+rRN0BXxv/gwQOsra3F6CM6OprTp08THx+Pv78/vr6+dHZ2Ehoaio6ODi4uLvTu3Rt9fX3RFZUOKV1d3W7VrouLC5qamlhaWlJfX0+vXr1oamqioaEBZ2dnGhsbuX//PtnZ2cyfP5+AgAAUFBTw9PRk9OjR3Lt3j1OnTlFRUUFwcHCPW+wdHR306dMHZWVloZwgdVsllmFBQQHPnz9HUVERY2NjAVOQFAGkrpT0s9HR0cKlQvKZ7ujo4MqVK9TU1KCqqkpdXR2+vr5Cp7C9vZ1Hjx4Jyae3CUZGRkZUV1eTkZHRrUJ810hISOCnn37in3/+ERXf/v37cXFxITk5mTNnzjBr1iwWLFiAhoYGT5484caNG4wdOxZ1dXVWr15NcXGxAP5bWVmxdetWUlJSqKmpYd26dURERLB27Vp8fX05evSoGD8YGxuTlZWFiYkJI0aMwNDQkJcvX7Jnzx68vb3ZunUrdnZ23cSweypB9OrVKxISEsjIyMDMzEx4xT979oxhw4ahpqbG/fv3OXXqFHZ2dkIY297eHktLS4YMGUJVVRWGhoZ4eXnh6emJubk5jY2NjBs3jqysLBISEgSG8vTp0zx8+FDgoSRnFBMTE6ZNm0ZmZia9evXCw8NDuHxJ8k6hoaFcuHChx8nBmzdvuHz5MgMHDsTb25tNmzbx8uVLMRL939+ZTCZDJpOJCQd0CdO3tLRgaWkpunTq6uo4OjpSXl5OaGgoioqKZGVlcevWLeTl5QkJCREe5BK2MDo6mpycHNzc3HBwcEBRUVHY3gJCb1ay3O3Jc5Qc2OTl5enXrx+1tbVcuXKFhoYGIbOkpaXF2LFjhSZiXFwcz58/Z/Dgwbi4uJCZmUldXZ2ARBgaGgr8bFtbG7a2tigpKaGkpERTU5OYFtnY2GBjY0NVVRV37twhIyMDPz8/oqOjaWlpYfHixQwcOFC8+2+PrN8lWltbxaWkoqJCRkYGMpmMmTNnMmbMGOrq6sjNzeXu3bssWLCA/v37i7MyMjKSb775hgkTJrB06VLq6urYtm2buAjz8/OFD7mCgkI3FRZA6Ea7uroyefJk+vTpI4iSffv2xcDAgJs3b3L+/HnGjBkjLGJ7GnPmzMHR0RETExOKiorw8/MTuHNFRUXGjBnTbe9L56aEmZRII4aGht2SNQ8PD7766itCQ0MZPHgwgwYNQk1Njby8PJSUlBg/fjwTJ05EQUFBdAKjoqLQ0tISzj4lJSUYGRmhpqZGRkYGpqamPZ7UhYaGcvnyZSwtLcXv8ff3Z/z48Xh7exMXF8fu3bu5ffs2a9eu5dNPP6VPnz4cOnSIy5cvs379eiFp9vY7a2xsTE5ODtC1NySDglevXgmnMqnRIZGLzMzMBBGouLiY2bNn07t3b2JiYjh8+DC9e/dmyZIlPX6GEydORE5OjoULFxIYGCg6jf7+/t2Sqvj4eNE5c3BwEFOe6dOn09zcLIpAfX19fHx8hKSdNHXKysqisrKS4cOHY29vT3BwMI6OjigpKTF58mTWrFnD3r17+eWXX6irq6Nv374oKCiQm5uLtbU1Tk5OzJkzhytXrvS4WL58+TKDBg1CR0eH6upqKisrBQfHwcEBQ0NDxo8fj6amJh0dHVRVVREVFUVnZ6ew+jYyMhL7t729ndraWry8vOjduzcpKSkcPXoUR0dHevXqxfbt2ykuLmbEiBEEBwcLfdzW1lZMTEwwMDAgODiYjo4OIf3W1NREYmIip0+fJjIyskdkdGlicfPmTXJycnBxccHe3h5FRUXs7Oy6WV6fP3+euro6xo8fT9++fUlPT6dXr16CLDtixAi0tLREkgtd+vhHjx4lPz8fd3d3ampqaGtrE7rG7e3thIWFCWvo6OhoHj58yLhx4wR0Sl5eHnNzc8GT+m/R4+RVQUEBPT09URW6urry66+/curUKRwcHNi5cycTJ04kNzcXeXl5jIyMmDp1KvLy8rS2tgq9VukhS50EaaMbGRlhbGxMW1sb2trarFmzhtLSUqKjo/H09MTf359jx46RlZXF2rVrRVLn6OjIRx99xDfffMOZM2dobm4WxJmehGRZCF1Mya1bt1JTU8P69evFv925c4eOjg6UlJRQVlbGwcGBiIgI7ty5Q0VFBTY2NqxevZqff/5ZuCkpKysTFRWFubk5MpmM69ev8+uvvwpnJ2m0J+HcqqqquHXrFi9evEBbW1schs3NzaipqdG7d29u377Nb7/91mP2qOSJ7eLigrW1NdeuXWPPnj388ssvREVFsWbNGiIjI/nxxx+FKHp4eDhqamoMHTq0G6aopaUFJSUlQRT4888/OXHiBPX19QJzdvz4cZ48eUJ7ezvJyck8fvyY7du3i5cvJyeHkpISrl27hq2tLR9++KHo2JaWlvbYJe3Bgwfs2bOHwsJC3N3d8fX1ZerUqQLPVlNTww8//MDt27eZNWsWXl5etLW1Ccvizz77jPfee49Xr151s8nT0tJi9+7dhIeH8+jRI0Hw2L17N3Jycly7do3i4mLWr1/P0KFDmTlzJgEBAUKcOzo6msePH+Pv74+lpaWQivnzzz+RyWQ9ulicnJywsbERuofW1tYYGBigoKAgPOTflkKR4m09WRUVFcaMGYOBgQHFxcWoqqqKTq0EKxgzZgzOzs6sW7dOCOX7+vpSUlKCsbExmZmZrF+/Hjs7O/bu3Ut5eTmPHz+mf//+ArdnbGzMhAkTuHXrVo+eY1hYGFVVVWRkZGBsbIy3tzfV1dUCUyVBUyS5LCkuXrxIUlISAQEBtLW1ERkZiaqqqkhu6+vrUVZWRklJibKyMsrLy7GwsCAuLo7Lly9TV1fHgAEDhBvcixcvOHDggDBC2bBhA0uWLKGjo4MPPviA/v37k5KSQkxMTI/WFx8fT9++fVFWVqakpARFRUXmzZvHuHHjUFZWJj8/nz/++IO2tjY2bdrUrYBtbm4mJiaGpqYmBgz4/7F33tFRVlsb/0167733AgmkEEIgIfQaOihFqoIwgg1UFKQqoKCiQFARkCJFepEOoRNIgBBaEiC9996T+f4Y5kiuek2sV788a2UNTHnn7DnnPWfXZ3fh0aNHqKurExISQlhYGG5ubmRlZYn5/0/PfkhIyE8iOqdPn+bYsWPU1dVhamrK6tWryc3N5bPPPiMoKIi6uroWyQc06ZyjaOShgL6+vnAINDQ0CFaMxsZGwbvs4+NDZmYmVVVVNDQ0iDz6u3fvkpWVhUwm4+LFi0yfPp3evXuL5xRdhBQpBNbW1hw5cgRlZWXatGlDTk4OsbGxwiA6ceIE2traLfZMlpeXY2FhwcSJE8U+oa2tzfbt2wF5ipaCn3Tp0qWCYefu3bucP39eNFZ47rnnmqQOZWVlkZmZSVlZGQEBAQwfPpzevXuzfPlyli5dKqrp1dTUsLOzY8qUKUyZMoWpU6fy/vvvM2PGDJYuXQrAsWPHWL9+PaNGjfpNyuuHH34oDAwFnZHid9TS0qKuro6kpCTBMKKhoYGdnR0ymQwjIyN69+7dJLpaXV1NSEgInTt3JiEhQRjOpaWlIoXF29ubHTt2UFtbKwyvd955hzZt2rBy5UrWrl3LtGnTGDduHAUFBUL5NDc3Z+rUqS0uDlW0bh84cCAGBgbk5uYSFRVFUVERDg4OtG/fnjZt2tC+fXsqKytFO+nCwkLatm0rckEVUDDNKIrQdu/ezaeffsqmTZvo0aMHixcvJj8/nyVLllBYWMimTZsICwsTBlB1dbVQihWora0lMzOThIQELl261CLltX///qJgUV9fn88++4xu3bqRk5NDamoq/v7+KCkpERcXx6VLl4RTIygoSLQXV0RgXVxcsLe3Z9OmTaxdu5Zx48aRk5Mj0lwU7FEpKSm0b9+e7t27ExoaysyZM/nwww+5cuUKcXFxREREoKuraHQyGAABAABJREFUS1BQkOA+V+zRzUkza7Hy2qFDB8zMzARRfk1NDSEhIZiammJvby+sK1tbW7HBPxu+fTYEXV9fT35+PkVFRWRmZooD1NHREVNT0yab9dmzZzl79izBwcHCOt6wYQN+fn7069cPNTU1NDU16devH3p6eqLarV27dly+fLnZ8j1LbWRoaEj37t0xNTXFyMiIvLw85s+fz+HDhxk2bBgjR44kKSmJr776Cmtrazp16kRycjLOzs54eXkRGRkpOvAMHz4cAwMDNDU1KSkpwcLCgvHjx+Pl5YWtra1oQABypoPc3FwcHR0xNzenqKiIvLw8zp07R319PV27dkVDQwMDA4PfRO/i6+uLrq4uzz33HPn5+Zw+fZrr16+TmpoqNtCbN2+Snp6OjY0NHh4eqKqq/mL7y5qaGurq6oiJiSEtLY3evXuLoitlZWXGjh0rKLIiIyNpbGwkLi6OxsZGlJSU6NKlC8uXLyc2NhZlZWUiIyO5cuWKIJZXpDE0F/7+/kydOpXc3FxcXV2bHApFRUUcOHAADw8PBg0aRIcOHbh9+zYxMTEiD7a6upq0tDSqqqo4deoUJ06cIDQ0VHjxXVxcxMFibW3Ne++9x927d/nuu++4fPky5eXltG3blsbGRg4cOECbNm3o3bs3tbW13L59G09PT2xtbdHU1MTIyEjkNLYEI0eOxNramitXrjB9+nScnZ1FY4v09HSqqqrw8/MT92llZaXwLpaXl3P8+HGePHmCi4sLAQEBNDY2cufOHSQSCe7u7kyaNImOHTsyYMAAdHV16du3L3V1dWhra6Ouro6Hhwd6enpkZWVRUlLC/v37hQfbz88PBwcHrl+/zjfffMOQIUNE6LIlyM7Opl27dnh6eor70sTEhAEDBpCQkCAoZP6zVaKiWLCmpobMzExcXFxoaGgQ61xbW5vBgwfTvXt30fYS5OFpRWTgWaJzY2NjevfuTV1dHefPn6dbt24oKytz9OhRAKZNm4a7u7vgxm0J9uzZw82bN6mvr6dv374MHDhQ7JdGRkb06dNHdC8DeX6YsrIyrq6uLFy4kHPnzjFv3jzMzMxYv3694PR0c3MThSdAE/5WiUTys00xFL3OU1NTBXe3h4cHtbW1XLhw4TdFeaKiorh48SLdunX7CQfuzZs3uXfvHiYmJgQEBGBkZMT169e5fv06Ghoa9OjRAysrK06fPs2ZM2cICQnBzs6OuLg4jh49SkhICG3bthXNPhoaGkRe+scff4y/vz85OTmUlZWhqakpiO8VHrPi4mK2bt2Kqamp4L9sadFdnz59CAwMpF+/foLuUdElDeTn4JgxY+jevTuVlZXcvn2bS5cu4ezsTKdOnUhLS2Pbtm1CaV+xYgUJCQno6ekxYsQIoVRUVFSQnJyMiYkJ1tbW5OXl4eDgwHPPPdfEU+Xp6Ym2tnaTPU/REMjGxob4+PgWF4cqmmVYW1vT0NBAamoqtbW1QsFQ1DCoqakxevRobt26xe7du1FVVWXAgAFYWFhw9uxZLly4wJMnTzAxMWH27Nk4Ozvj6elJYWEhCQkJwkjJzs4WUZ26ujq2b99OXFwcvr6+BAcHY2RkxIULF/Dz88PNzY2ysjISExPJy8trcftiBXR0dPjyyy+pq6tj8uTJuLu7c/HiRfbu3YuFhQWFhYWoq6vz+PFjCgsLRTvqqqoqCgsLf8IaU19fz5EjR4ThOWrUKCorK/Hz80NNTY0XX3xRMEYkJSVRVVXVhFUnLi6Oe/fu4e3t3aQjo6urK5MnT6ZLly7CM98c2Nra0tjYSK9evXBxcRHXNDU15cSJExw7dgxnZ2esra1p27Ytly9fZu3atXTo0IGhQ4eKBi5JSUncvHmT4uJizMzMUFVV5cCBA0Iv6dSpE1VVVdy4cYO6uromDaUGDRqEpaWlKGp85513qK6u5oMPPhAMIiA3JK5evSocKb8EybMcpP8NUqm0eW/8H0Z4ePgvtjH6t8sH/34Z/w3ywb9fxtZ1+u+WD/79Mv4b5IN/v4yt6/TfK99vI5lsRSta0YpWtKIVrWhFK/4GNNvz2opWtKIVrWhFK1rRilb83Wj1vLaiFa1oRSta0YpWtOIfg1bltRWtaEUrWtGKVrSiFf8YtCqvrWhFK1rRila0ohWt+Meg5TxLfxCkUulIIBTwAdoDusB34eHhL/xdY/qjIZVKJcBkYBrQFlAG4oHNwLrw8PCGv3F4fyikUmkI8DrQGTACCoG7wOrw8PBjf+PQfhf+P82hAlKpdDygaFMzNTw8vGX8Qf+DkEqlNsASoB9gDGQBB4HF4eHhRX/j0P4U/BvnsAkkkiXA24ArMlnLul80vc5sYAXgjUwW9weN7vfj3y4f/GtllEqlA4HXgDb8uNfcBD4NDw+/9neO7Q/H3ziHf6fndT4wE7nymvHf3/qPxRZgI+AI7AY2AGrA58Dup4rRPx5SqXQ+cBHoCpwAPgGOAIZAt79vZH8I/l/MoQJSqdQWWAP8tM/fPxRSqdQZ+eExGbgBfAYkIj9grkmlUuO/cXh/OP7n51AiGY9EInv699Jv+LwtMAf4+icHppzEdgoSSSQSSRkSSSUSyW0kkleRSJR/5mrhQC6w6jdI8kvj+zPlG4lEsgaJ5BISSenT79j+X672x8gnkXyERHIWiSQNiaQKiaTw6e+6EImk5ffPL8kokRgjkbyERHIAieTx0+8qQSK5jETyIhLJz+ksf/wc/kZIpdKPgKOAH/Kz8HPgFjAEuCKVSv8+59xfNYc/vj4QieQUEkn60+9LRCLZg0QS9DNXa/Ec/m2eV+ANIB14jNwDG/E3juUPh1QqHQqMB5KAjuHh4flPn1cFvgdGABOBb/+mIf4hkEqlo4ClwBlgeHh4eNl/vN6y9lj/Q/j/MocKPFXENwMFwH7kG9O/AeGAGfBqeHj4GsWTUqn0U+T70IfA9L9pbH8o/ufnUH7gKRTrlvVi/RHvA+rAyp95bQvyezYXubFZAfRCrkR0RSIZxbMUOzJZFRLJ58BHSCSdkcmu/sYxyfHnyzcfeaSyHPn56fFfr/THyfcGciXsNPLfVhvoBCwCpiGRdGqh5+2XZBwFrEfurYwAUgFzYDjwDdD/T5/D3wipVGqB/H7LAdqFh4fnPvNad+Ac8ujPfzM2/kz8VXMoV5TlHtkC5BGufMAFuRI/AolkAjLZj7/Db5jDv83zGh4eHhEeHv4oPDz838rVpWgn84lC6QEIDw+vQz7pALP+8lH9gZBKpUrAR0AlMPY/FVcQ8v5T8a+fw//Aq0AP5B7Kir95LH8IpFKpE9AHSAbW/cfLC5HLOV4qlWrz78D/7hzK23opFOsvf+M19IFxwNmf8UoO5Udjsy0y2UvIZK8hj+4d5Edj8z+xHWgAWtZT9Kdj+3Plk+MNwA3QA2Y086p/hHx6yGSdkMmmIJPNRSabhUwWACwDrIB3m32l/y5jAjAYsEEmG4dM9i4y2RTkSnoa8jkczk/xx8zh74M9cp3q+rOKK8j1HaAMMP07BvYUf80cSiTPKvFtnt6Hc5HJRgJ9AQlyJf4/0aI5bC3Y+vNg8fTx53pGKp7zk0qlBn/NcP4UdEYeTj8GFEml0oFSqfQdqVT6mlQq/bnQwD8N/x/mEACpVOqJPOfo8/Dw8It/93j+QPR4+ngqPDy88dkXnhpbVwAt5B6IfzT+AXP4RyjWY5DP1+6feU0Ym8hkwthEJvvvxqZMlglcAkYikej9xnHBny8fyGQRyGSPaAlB+x8hn0xW/QuvfP/00bUFV/tlGWWyc8hkR5DJGv/j+Wx+NAi6/czn/qg5/D14BNQCHaVSqcmzL0il0q7I63rO/B0DA/66OXxGiUcma6LEI5P9shLfwjlsVV7/PCg2T8efec3pmX//97DP/zYCnj7mIA9HHEV+eK4Grkql0gtSqfTvtDR/L/4/zCFSqVQF2IY8RPfe3zycPxruTx8TfuH1R08f3f6Csfxp+J+fQ4lEKNbIZL9Hse719PHyz7zWLGMTicTgZ16/gjwE2vU3jeqvke/34PfJ98sY9PQxtgWf+a0yKqJ49b/w+p8lY7MQHh5eCLyDPM3hgVQq/VoqlS6XSqXfA6eQh+tf/jvG9iv4o+dQKPFIJE2UeCSSX1Pimz2Hrcrrn4ejTx/flEqlRoonnx4yi595n+FfOqo/FmZPH6cDmsgXtC7gBZxEvgD3/D1D+0Pw/2EOARYAvsCk8PDwqr97MH8w9J8+lvzC64rnDf78ofyp+N+dQ4nkj1Ssg5F7bn7OGPk9xmbU08eWKz5/nXy/B79dvmchkcxBIlmERPIZEskl5PUOscgV9+ai5TLKf+MJT/934hfe9cfI+DsQHh6+GnkEQAWYCsxFnsebBnz7n+kEfwv+7DmUyZoo8UgkXyORLEciaY4S3+w5/DsLtv7t2AW8APRHboUdRp4b2gtwRm6duCLP8finQlG9KwFGhoeH33n6//tSqXQY8oUdKpVKg/6hFCH/+jmUSqUdkR+4n/xD5+j3QsEW8Y/Nvf8HzKFCsQ5GJvvtirVEoob8QPylsPlR5OHMN5FIdj09RBWKz68Zm9lPH+1+w8j+Kvl+D36PfM9iDvIxKnACmIRMltesT/92GVcgd4ocQyY7+Qvv+aNk/M2QSqVvI88h/QJY+3RMHsBy4DupVOoTHh7+9t81vqf48+dQJluNRJIMbEKuxCvwGPj2J+kEP6LZc9jqef2T8DS/bjDyhZKNvJBgCvIK0WDkSf0gr/r7p0LBj5n4jOIKwFPvj2KT6fiXjuoPwr99Dp8JNSfwY07gvw0Kz6r+L7yu9x/v+0fhf34OJRKhWCOT/V7FWkHn80u8vLuA48gNS4XHZzUQAwzgxxSRnzM2C58+mvzMa7+Mv1a+34PfJt9/QiazQCaTIE/RGI7co30bicSvmVdouYwSyavAbCAO+R78S/hjZPyNkEql3ZAXMB8ODw9/Mzw8PDE8PLwyPDz8FjAMOSXo7KdFpH8f/oo5lEjeBvYiZ+JxRs5s4I88fec7JJKPf+GTzZ7DVs/rn4jw8PB65Jynnzz7vFQq1UReAVsF3P/rR/aHIf7pY/EvvK5Y3Jp//lD+HPzL51CHH3M9q6XSny3y3CCVSjcgLwJ6/a8a2B8IxRr9pZxWRZHCHx2m/avwvzuHP4bT/yjFWuHV1PjZV2WyRiSSwcj5e8c//asDriJnGViLfL5/zthU7FHN95z+1fL9PrRcvv8GmSwHOIBEcgu5/FuRe0Z/DS2TUSJ5BTnN2QOgp/Cm/zz+WBlbjrCnjz+h/QwPD6+USqU3kCuxvvx8XvZfiz9rDiWSbsiV+APIZG8+88otJBJFRHY2EsmXyGT/+Ts0ew5blde/B+ORT/yWfziV1EXkyfOuUqlULTw8vPY/XlfcCMl/6aj+Gvwb5rAGeQOGn4Mf8k32MnIF8H8xHN0cKA6SPlKpVOlZxgGpVKoLdEG+UUb+HYP7A/C/PIdNFGskP9vPYwMSyQbkhU6v/9eryWTFSCS1/Oj5+bn3/KyxiUTya8am4potiaL89fL9dvwW+X4dMlkKEskDwAeJxKQJy8PPv7/5MkokryNvKHIPueL6a2P/c2RsPtSfPv5SkbLi+f88J/9e/PFz+ItKPDJZJRLJf1Pimz2HrcrrnwipVKoXHh5e+h/PBSDP3ynn57nO/jEIDw/Pl0qlu5HzvS1ATqANgFQq7Y2c062EX06w/5/Hv3kOn6Z2/GwHIKlUugj55rLln9xaNDw8/IlUKj2FnOv1FeQE8gosRh7O+io8PPx/ixO1mfgfn8M/Q7G+C/gikeghk5X+6rt/hDA2n1Jn/ScURVwxLbjm/5J8v4bfIl9zYfX0sbm5/78uo0TyDvI9Ngbo/asKlRx/pozNwSXkXUOnSaXSr8LDw0XnUKlU2h+5oVyNPBLwv4Y/cg5/jxLf7Dn825TXp92Lhj79r4LiJEgqlX779N/54eHh/1vdYVqO01KptAq55VgGtEWee1WDvBvV3x86+P14EwgE5j3lsruBnOdtGPIbYWp4eHjx3ze8343/D3P4b4cU+YHxhVQq7Qk8RL5muyMPYc37G8f274W8eOnn26NKJIt4qlgjk7VEsT6PPHeuIz9Ht/Nzh6lE0hxjU8Hz2/xOj3+HfL8dLZdPAYnEAyh+yrX67PNKyCvVzYCryGTNzWM9z3+fw/eRz9NNoM+vpAo8i98u4x+Dvcjl6QU8lEqlB5DXSngi90ZKgLnh4eEFv3yJPwl/7RwKJR6J5CtkMqHEI5H8mhLf7Dn8Oz2vPvy024kTP1KapPC/1tqw5dgLjEZesa4JZCJvcbciPDw8+W8c1x+G8PDwXKlUGojc6zoM+eIrA34AloeHh/9Tw7EK/Ovn8N+Op97XDsgPxH7IjY8s5BXBi5/yM7bin4F9yIt3+vLzyt1pJJJfNDZ/JsdOcYD3BOKRye79SeNuLv67fPIuYkOf/k84fZBIvn3673xksjn/8ZnfK18/YCUSyUXgCfJCVXPkbd2dkCtoU3/54z/BL8sokUxEfp82IFeCXv2ZdIxkZLJv/+Nzf/schoeHN0ql0gHIIzyjkZ+HWsiLkI4BX4SHh5/6O8bGXzmH/6HEI5H8rBKPTNZUiW/pHMpksta/1r/Wv9a/1r/Wv7/uDxbJQCaDl37DZ2/JIFMGyj/z2lsyuCmDYhnUyCBJBl/KwOG/XK/P07G8/g+QT3HdX/pL/sPlAy8ZrJNBjAzyZVAvgxIZRD0dj9EfJuOvyyeTwfm/ZA7/TX9/5RzKX1OVwesyiJRB6dPvy5XBURn0+YXrtWgOJTLZP5besBWtaEUrWvH/DRLJGGAHck/qgT/gevuQe6Cckcn+fsq0f7t88P9Dxn87/uY5bFVeW9GKVrSiFf8cSCQS5AVQcgaB33OISSQ+yFtbv4pMtvYPGd/vxb9dPvj/IeO/HX/zHLY2KWhFK1rRilb8cyA/JKcBB/ixSvq3whI5R+uXv3dYfxj+7fLB/w8Z/+34m+ew1fPaila0ohWtaEUrWtGKfwxaPa+taEUrWtGKVrSiFa34x6BVeW1FK1rRila0ohWtaMU/Bs3meZVKpf/4/ILw8PCf7d8H/3754N8v479BPvj3y9i6Tv/d8sG/X8Z/g3zw75exdZ3+e+Vr9by2ohWtaEUrWtGKVrTiH4MWd9j69NNPUVVVRVlZGYCysjJUVVXR0NAgNTWVmpoaXF1duXPnDm+//TZOTk588sknSCQS5s2bx759+3B2dmbBggV069aN8vJyunfvTmJiIgcPHiQkJASAvLw8TE3lLXDv3r3Lt99+S1ZWFiEhIQwcOBA7OztkMhk1NTWoq8tb6UqeduKorKzkzJkzLF++nDt37jBp0qRmyxcYGMjEiROZOXMm69at49tvv2XixB8bgTU2NrJ48WLS0tJ47733cHFxASAzMxMrK3nB3e7du5k4cSKDBw/m+++/F7+Turo6ampqTb6vsbERJSW5DVFaWkp6ejrl5eVYW1tjbW1Nfn4+UVFR5OTk0KlTJzw8PLh69SoffPAB/v7+LF26FKlU2qI5XLdunfitcnJyWL16NSkpKTz33HP0798fdXV1CgsLOXfuHEeOHCEzMxNNTU0MDAxo27YtQ4YMwcND3oL4m2++4ebNm4wZM4auXbty9uxZXnrpJZKTk1m6dCnz588X3wOgo6ODiooKDQ0NqKuro6ysTFpaGvfv30dTU5OCggIuXLiArq4uM2fOxMLCgsrKSubMaX6ztXXr1lFfX091dTW6uroAREVFsWXLFnx9fXnxxRcBqKqqoqqqCl1dXerr64mKimLFihUcP36cbt268d1332FlZUVaWhrq6uqYmZnR0NAg1v7WrVspLi5m8uTJpKenM3/+fNTU1Pj8888xMzPjwoULDB8+HCsrKyIiIjAxMSExMZFx48ZhaGjI5s2bMTc3JyEhgYqKCjZs2NBsGRcvXoyRkRESiUSsn4yMDK5evYqRkRFKSkocOHCAmpoa5syZg6urKwCRkZFUVFTg7OxMdXU1KSkp+Pr6YmRkxLp168jMzGTo0KFcvnyZDz/8kICAAJYtW4aDgwMRERHExsbi4+PDyJEjAcjKyuLmzZuoq6vTu3dvAOLj4+natSvGxsacPn0aa2trDh8+zIkTJ5otH0B4eDgAPXr04NatW5w/fx49PT26du1KQUEBJ06cIDQ0lEuXLjF48GCcnJw4d+4c+vr65OfnExsbi46ODh4eHujp6dHQ0EBdXR0aGhoAFBcXExMTQ1JSEsbGxgQFBYk9RyaTiXvk59DQ0EBRUREmJiYAfPvtt3z//fc4ODg0W764uDi6du1KSkoK3377LQBDhw5lzZo1ZGRkcOjQIfr160fXrl2bfO69997j7NmzLFq0iP79+wPyeV2/fj1bt27F09OTH374AQ0NDWbPnk1sbCwdO3akQ4cOdO7cmXbt2tHQ0ICqqioAjx8/Zvbs2WhqavLhhx/i7OzM+vXrefvtt3F2dub48eNYWlpSUVHBW2+91Wz5AHr37s2SJUtITEzE3t6edu3a0aNHD0aOHImenh7V1dW8+eabZGVlsXDhQnx8fAA4cuQIZWVldO3aFRsbG7HPV1RU0KtXL+Li4jhy5AjBwcHiu3Jzc1mwYAFeXl7MnDmTzz//nHfffZdVq1YhlUq5d+8eeXl5dO/eHYCamhoyMzOJjo4mOTmZoKAggoODW7SftmnThmnTpjXZ19PS0vj666/Zvn07GhoaTJ8+nc6dOxMXF0dCQgJ2dnYEBgbSrl07AA4cOMDkyZMBWLBgAWFhYURHR3PkyBHat2/PG2+8gbq6Ojk5OWhqaqKnpwfA7du3xf1rb2/fZFwxMTHExMRgY2NDr169AJg9ezaffvopc+fOpaSk+VSoivvw2bM2LS2No0ePYmtrS1hYGAC1tbXU1NSIPfeLL77g5s2bTJ06VcxTVVUVmpqagPxMzMjIQEtLCzs7O0B+XymKyJWUlFBSUqKhoYHr169TVVVFp06d0NbWBuDatWvo6uri5eXF0aNHmTVrFhMnTmTRokUtPhMXLFiAkZERampqPHnyhNDQUCwtLTlx4gSlpaWsXbuW7t27C1mrqqpQV1cXe4REIqGhoYGGhgZUVFRQUlKivr6exsZGVFVVkUgkNDY2UltbK/afJ0+ecPToUezs7BgyZAhKSkpUVFSgqqoq1tP169fR0NCgffv2nDt3jtdff51x48bxzjvvtEjG+fPnU1hYiJGRERYWFuJ3ffb8eHZujh49yt69e+nSpQsGBgZ88sknaGhosHz5cqqqqrh06RK+vr48evSI+fPn061bN44fPy7mUFlZmbKyMk6fPk1kZCTa2toMGzZMrHkF1q9fz927d5FKpXh5eQHyvbe+vp7XXnvtv8rUYuW1qqpKKKpnz56loqICHx8funTpIhYggIeHB1KpFFtbW7S0tHj8+DEmJiZMmjQJV1dXjI2NAdDS0mLq1KmUl5fTqVMn8Xl9fX3xbzc3N7p3746BgUGTzUoikYiFoPjRampqqK6uRkVFBQ0NjSbXaQ4ePHjA4MGDUVFRYd26dYwYMUK8Vl5ezunTp9mzZw9VVVUMHz5cKK9GRkaUlZWRmJjI7du38fX1xdfXVxyC6urqYpEAnD9/noKCAnr16oW+vj5paWkAuLu7U1VVhY6ODiDfoL777jtsbGwYPnw4ALGxsRw/flxsYi3Fhx9+iI2NDf3798fAwIAuXbrg5+eHo6Mj27dv5969ewwZMoRevXqhrq5OSkoKOjo6FBcXixtTgSFDhmBgYIC1tTUAnp6efPLJJ2Rny1so3717F29vb8zNzbl58yYmJiZNNtqamhp27NjBjRs3GDVqFH379sXe3p6SkhLMzc0B+RppCSQSCaqqqqiqqlJZWYmWlhZt27Zl9OjRREVFMXPmTOrr6/Hx8WHgwIEYGRlRXV2NnZ0dkyZNwsLCAl9fXzQ1Nbl8+TLXr19n9OjRAEJxBejbty8SiQRdXV2qq6u5f/8+FhYW1NbWAvI1/MILLzBs2DBMTEzIysrigw8+IDg4mO7du5OamkpeXp4Ya0ugULJAroSlpKQAcuOrtraW7Oxs+vTpQ2ZmJvv378fHx4fg4GDc3NzIy8tDW1sbXV1dlJWV0dTUpLq6GmdnZ9q1a0dQUBDq6uo8efKEgIAAAgICAOjYsSM+Pj5oaGhQWFiIqqoqlpaWhIWFsW3bNkaPHs2LL75I7969CQ8PJycnR6yLwYMHt1h5BSgsLGTSpEl07NiR69ev4+npydq1azl16hSHDh3C2dmZNm3a8PLLL6OtrS3udxMTE4yNjZsc9srKytTU1HDu3DkuXbqEk5MT/fv3x9vbm7S0NCorK8X3njlzhvj4eDp37kxDQwP79+/HwMCAN954AzU1Ne7fv8/cuXMJCQnh3XffxcTEhPPnz7fIUNbS0uKjjz6iffv2zJw5k4qKCrp27YqZmRnx8fHcu3dPKGnFxcXo6elhZmZGZWUlffr0wdnZWVzL0dGRESNGYGVlRc+ePXF0dOTmzZvs3LkTkBuNYWFhmJubU1lZKe7n7du3c/r0afT19enSpQtJSUlcv36dpKQkBg4cyKNHjxg9ejQzZ84Ue11LMHfuXBISEhg6dCidOnXi5s2bHDx4EC0tLQYMGEB9fT0TJ06kqqqqieJ/9uxZDh06xOLFi5kwYYJQmrS1tenevTteXl5iXYJcETI2NmbZsmXcuHGDN954g6SkJN577z2GDRsGgJeXF7t27WLx4sWEhobSpUsXdHR0GDZsGCoqKmzdupUVK1Y0Ocd+DYrfUVNTUzgntLS00NHRoU+fPnTu3JlBgwZhZGSEoaEhnp6eZGdn8+mnn6KsrMz8+fPp1asX7777Lo8fP8bFxQVnZ2ccHR3x8PAQ1wUwNzfn7NmzWFtb4+HhwePHj1m1ahXt2rXjvffew9HRkcuXL7Njxw6ysrLo378/Pj4+JCUlsWvXLvLy8vj8888ZNmwYy5cvb/Fc3r59m927d3Pr1i3s7Ox47rnnCAsLo6KigpMnTyKTyZqclydOnODmzZtMmTKlyTXU1NTo0KEDurq6eHh4cOvWLXJycnBychJ6AcjPhkePHlFbW4u5uTn37t1j1qxZGBsbM3r0aJycnIQi6+Liwssvv9xkTbQECt1BTU0NbW1tpk+fjr6+PpqammhpadGrVy/U1NSEAgjyfVfxb5DvL4rzoa6u7id7upKSEhoaGpw8eZLz58+joaFB//796dixo3iPtrZ2E7pUPz8/4uLiWLlyJTdu3MDGxoYbN24wadKkFp2LGRkZfPrpp4wZM4bBgweL8QJcunSJmJgYBg4ciJOTEwCdOnXCzs6OM2fOcPXqVfr3709wcDAuLi6YmppiaGjIRx99xJUrV+jQoQOampoMGzYMNzc3OnXqhK2tLRoaGtjY2NC1a1fx78bGRrKzs9HR0UFDQwNTU1Pi4uIYNWoUo0aNYvbs2ejr6zfrPGyx8qqpqYlMJiMrK4vc3Fzq6uqora0VlkhhYSEaGhro6uoyZMgQ8bnS0lKCgoIIDAxs8qM3NjYyevRo6uvrqaioEJaXjo4OMpmMuro61NXVhcWTmZlJeXk5JiYmGBkZ8fjxYx49eoSzszNubm4UFxeTmZkJyA9bxWQ0F1paWpw5c4Zly5YJyyY5ORlra2uUlJQoLS3F2NgYExMTTExMSE5OJjExET8/PwwMDLh27Ro5OTlMmzaNgQMHCsussbGRuro6VFTkP3l6ejp5eXnU1taSmJjI+vXrsbe3Z/r06UJxVXyusbGRNm3aiEPYxcWFoUOHCg93S/Hdd9+hoqJCTk4OEyZMEL8twL59+1i9ejUxMTGsX7+eQYMGiddSU1MpLCzE1NSUiooKsrOzMTIyEl64iooKDAwMhJJ94cIFrl27RnV1NUZGRuTn51NZWYm6ujrV1dVCyTp//jwnTpzA1dWV0aNH4+/vD8gtsJycHPLy8lokX01NDY2NjWLjqampQUtLi+DgYIqKivjyyy95/PgxkyZNok+fPtTX15Oeno6amhrPPfcczz33HCC3jI8dO8bjx4+xtLRkzJgxSCQSqqqqqK6uRiKRYGZmBsiVdAMDAzp37iw88G3atOHzzz8H5JGEPn36kJCQwNmzZwkODmbnzp2UlJQwYsSIJspoc1BYWEhZWRn29vbo6elRVlaGTCbDy8uLiooKjIyMMDIy4tGjRwwaNAgnJyf69u2Ltra22HDT09OJjIzEzc2NwMBAevXqRWFhIeXl5dTV1eHl5YW1tbWIDpiZmZGXlycUwrKyMjGekpISTp48ib29Pb1792bEiBFUVFSQkZGBmZmZMM5aguzsbGpqapgwYQIAS5Ysoa6ujmnTpvHkyRM+/PBDXF1dmTFjBvPnzyctLY2Kigrq6urIy8sT+4xiDDU1NZw4cYL333+fuLg4unfvzqBBgzAwMEBFRYXTp09TW1uLq6sr8fHxhIeHo6Kigru7O9HR0WhoaDBz5kzU1NTQ0dEhJiaG8vJyJk6cSEVFBTU1NS2Sr1+/fkRFRdGuXTtWr14tDpPi4mIKCgpQUVHh7NmzHDx4ECsrK9TV1bG0tGTs2LG8+OKLqKurEx8fT1RUFG5ubgwePFgcTDU1NSQkJODn50dsbCyWlpa0b98eS0tL8f36+vpcvnyZ+Ph4Vq1aRVhYGBEREezduxcbGxs+/fRTYmJimDx5MqtWrfpVT8jPISMjg/79+/Pxxx/j6urKwYMHOXPmDLW1tdTW1mJiYkJgYCB1dXVUVFSIz9XU1FBYWMidO3eaROFKSkro0KEDubm53Lhxg7Zt26KlpYVMJkNZWVmcCWvXrmXq1Kki8pORkYG6ujo6Ojqkp6dz7tw51NXVcXV1FXvy1atXuXDhAuPHj2+2fMbGxuTm5pKcnExFRQWdO3dGT0+Pnj178vzzzwuFPC8vDysrK1xcXCgqKmLt2rVcv36dgQMHMnz4cN55550m162pqcHDw4Pa2lpyc3PR1tbm4cOHXLt2jY4dO+Lh4UFRURE3btygqKiIWbNmAXKP6Pr16wEYNWoUJiYmnD59mvfee4++ffvy6quvtngOy8rK0NXVJTU1lUOHDpGUlMTw4cNFlFThFU5OTkZTU5MBAwYAcodOfX09GRkZ4loSiYTHjx9TVFREYGAgenp6GBkZ8eDBA7GvFBUVoa+vj7KyMrt37yYqKoo1a9YwePBgdu/ezdmzZwkNDRXnRG1tLR4eHsydO7fFsilw7NgxLCwscHBwwM3NTawbhRexf//+7Nmzhz179jBixAiMjY25f/++0D0U+2FZWRkGBgYYGBhQX19PcXExampqaGpqUlJSwu3bt9myZQs//PADvXr14qWXXhLzlp+fj5mZGZaWltTW1gqnhpGREeHh4eTn54tIyvfff98iQ3nHjh2cPXsWT09PsUcoUFRUxKNHj0hNTcXJyYnU1FQMDQ3R09Nj27ZtxMTEcOrUKXr27CkUa09PTwoKClBVVWXevHnU1tYyceJEDh48iKOjI927d2fkyJEiMqTA48ePiYyMxM7Ojq5du9K3b19u3LhBeHg4N27coLy8HH19ferq6n5VphYrrxoaGjQ2NuLu7o6dnR2NjY1iQ9yzZw/3799n9OjRtGnThvT0dBoaGrC3t8fPz4/ExEQKCgqaKK9lZWX88MMPpKenY2BgQE1NDbW1tYSGhtKxY8cmobvz58/z0UcfERMTw/Tp03nvvfeIjIzkvffeY9KkSSxZsgQrKysKCgpwcXHBwMCAsrIyDh061Gz53N3d2bt3r7gBY2NjSU1NxcTEBB0dHQYPHoyNjQ1OTk44OjqyY8cOVq5cyZtvvsn48eOZMmUKlpaWmJmZCRc8yBWxhoYG8f8+ffoIC/3ixYts2LABY2NjlJSUsLCwwNTUlJCQEEJCQjA1NcXb21t8tlevXgQEBFBXV0d9fX1LpxArKyvOnTtHbm5uk8MM5AfqF198wfnz55kzZw47duwQSrOJiQnW1taUlpayatUqNm/ezKRJk1i0aBEgNyyysrIoLi5GSUkJZ2dnsrOzmTNnDhYWFixcuBATExNWrlzJN998Q0BAAG+++SZDhgwhPT2d1NRU7t27J8IHEomEw4cP8+mnn4pQX3NQXl4uPIog31wVHvCQkBA++eQTcnNz0dPTIzMzE5lMhqqqKhkZGTQ0NODm5gaAjY0Nr776Kvfv3+ezzz7jxIkTrFu3Di0tLdatW0dGRga2traUlpaSnZ3NwIEDmThxovBMK0I/8fHxzJgxg+zsbF5++WXMzMxITU1FSUkJOzu7FiuuIE+DuHDhAoMHD6ZTp04EBweTmJhIZWUlEolEKKiNjY1oaGj8rDfp4cOHrFy5koEDBxIYGIiGhgY1NTV88803XLp0iQcPHlBSUsKECRNYsWIFT548YcaMGXTp0oWPPvoIQ0NDocT37t0bW1tbobiDPH3nm2++4cKFC2hoaLQopA5gYWHR5J4ZPHgwhw4dYsSIEVy6dAlDQ0MsLCwAuQfM0tKSK1eusGLFCoqKili8eDFOTk7s378ffX197Ozs2L17N3FxcYB8fk6dOsXQoUOJi4tjx44dpKSkMHv2bFxcXNDR0UFVVZXg4GDeeecdsVkDODk5sW3bNh48eMDx48cpLy9n8eLFwnBuDgIDA9myZQs+Pj5NPPqFhYV4eHjw7rvvMnLkSGpqarCysiI7O5vCwkK6du0qvHEnT55k+fLlPP/888KDc/z4cdasWYOrqytffvklVVVVZGVl/SQKJZFIeOedd8jLy6Nz584AeHt7M336dCwsLLCyssLKyoqvv/6a2tpa/P39uXz5covmcP/+/Ziamoq0laFDhxISEiJSXkB+vyYkJGBqaoqBgQEAM2bMoF+/flhaWjZJ5Th//jw//PAD9+/fR0NDg3bt2jFy5Ei6du1KVVUVr732GpcuXeLDDz/k7bffBuQpCAkJCQwYMICwsDACAwOJioqirKyMiooK7t69y549e1BVVeXIkSMi1as5SElJwdzcnOvXrxMREcGjR4+YPHky7du3Jy8vj6NHj3Lr1i2UlJQICgqiR48eGBoasmjRIjIyMggMDPzZ6166dIkzZ86Iw1wikVBfX4+9vT1t27YF5N6xRYsWYWxsLPZMPz8/hg0bRkZGhlirBgYG6Ojo8OjRI44ePYq7u3uL53DYsGGEhYXh6upKdXU1VlZWYq5UVFSYMWMGGzduRCqVMmLECFasWMGoUaNobGwU0ReAoKAg9PX1efPNNykuLmbNmjUEBASgo6ODmpoa0dHRfP755wQHB4toxMmTJ4mOjsbV1ZUdO3Zw/vx5sUcrUgdlMpm4J34Ldu3ahZ+fH3p6euJcrampQUdHB2VlZeGYUVJSEnues7Mzy5cvJy0tjXHjxlFUVMT27dsZNGgQM2fOpLKyksjISAwMDGhoaODChQtcunSJvLw8Bg4ciFQqFSlVR44cITQ0FF9fXwDhtAO5zuXn50dFRQU9e/Zk4sSJSKVS9u/f32z5bt68ySuvvEK3bt1ITU1FWVkZAwMDtLW1GTx4MB06dKCuro6ysjLMzMxISkriyy+/JCYmRqQMKn7vzMxMlJWVmTt3LpWVlXh7e2Ntbc13333HK6+8QlJSEjo6OsLpoJBHVVVVpMnV1NTQtWtXdHV1GTVqFIMHD8bW1hY9PT1qamr+HM/rrVu3hJexsrKSsrIysTjLy8s5evQoNjY2GBoacurUKdLS0hgxYgReXl44OTkRGRnJjh07sLa2ZuzYsRgaGqKhocGdO3cwNTXFxcUFBwcHbG1tAZoIYW5ujqWlJcnJyWhra6Oqqiq8Js96PRSKnmKBt0R5bdOmDe3ataOqqorz58+TlJSEl5cXGhoaVFdXU1JSQpcuXUS6QmpqKklJSWzevBkPDw8CAgIYMmQIqampbNq0iYKCArE4FMpUTU0N+fn56OjooKOjQ48ePZg2bRpbtmxhzpw5+Pv7ExYWhqGhIV5eXsJ7EhMTg52dHVZWVlRWVmJmZtZEWWguhg4dytWrV5sYEUeOHCElJQUfHx+OHDnC2rVrSUlJ4fTp0/Tt21fkOylyVFNTUwG5R12xMF1dXXF0dOTVV19l8+bNvP322wwdOhQfHx8aGxuxt7cXoV2ZTIaamhoODg7U1dWJHCGFt06xpkpLS4WXrLlQhJ6uX79ORkYGoaGhGBsbU19fj7a2tvA0JyQkMGfOHJycnFi6dCnW1tYcPXqUyMhITE1NadeuHdbW1lhYWPDWW2/xww8/MHz4cAIDA3n8+DEnT55ESUkJS0tLpk+fzgsvvEBWVhbbt2/HzMyMPn36ALB69WoiIiJ47bXXWL16NQB37tzB3d1dHOq3bt1q0RwqNrbY2FhsbGyEQQVQX19PSUkJ+vr61NTUYGtry507d9iwYQMhISEiX7mwsJC7d+9SVlbGmDFjaNeuHenp6Xz88cdkZWWhqalJVVUVH330EZ07d8bU1JT8/HxOnjzJoEGDCA4OprKykvLyctzc3MShWF9fT1VVlfAMGxsbN/GqNRfJycnCY19eXk5jYyNqamrcu3cPPT09nn/+eRwdHcX7FTnLERERdO/eHQsLC8rLy7l79y7l5eVYWVnx8OFDjIyMGD58OMHBwZSVlYncvNu3b6OlpcW1a9fQ0dHh1VdfJTQ0FFVVVVxcXHB1daW2tpYrV66gq6tLz5496dmzJ5s2bUJNTY05c+bw5ptvNls+Nzc39PX1KSws5PDhw5iZmeHo6Ii2tjaWlpZoamr+bBj00qVLRERE4O/vLw7X3NxccY9euXKFq1ev4ubmRkBAAA8fPuT69es8fvwYAwMDHjx4IKIJQUFB4rrFxcWYmJiIdXv16lXS09Px9/dvkqLQEgQFBYkcyJSUFKqqqqipqSE2NpaGhgays7N58OABLi4uIrzc0NBAu3btRH6c4j2GhoZIJBIuX75MQkICAHZ2dsK4vnLlCteuXcPT01MoroWFhVy8eBFlZWVhTBYWFopUIlNTU+7cuUNcXBwDBgygW7duLVJe09PT6dy5M+7u7qSnp4tooaqqKtnZ2Zw4cYKYmBhUVFR49OgRWVlZIoVCgdraWhobG7lw4QKpqan069ePwMBA4uLiiIuLw8TEBF1dXbS1tfH09BTX1tLS4vXXXxdGyeXLl6mtrWXt2rVUVlYK71WnTp3EWZSdnc3FixdbNIfGxsZNUm8A8f/09HTq6+txcHBg4MCBbNmyhaSkJAoLC+nbty/GxsY4ODhQVVVFY2Mj2tratGnTBjs7O3JycsS+oMgd19XVZffu3Zw4cYKxY8cyY8YM7t27x5UrV3ByckJdXR03Nzdx7inStn4v0tPTSUtL44UXXkBHR4dFixaRkJDA6tWrRcTJy8sLTU1NEXEyNDTEzc2N7OxsqqurxdwnJSWRk5MjPPs6OjoUFhaKPdvKykqE4QEKCgooKSlpouSXl5eL1EclJSWmTZuGqakpfn5+4hotUV6fe+45Zs6cCcjPDDc3NzQ0NCgtLSU5ORktLa0maUHKysqYm5szePBgrK2tqaqqAuSpD4pxKhwHCgwYMIClS5eyZcsWQkNDcXFxIScnhwsXLhAXF4etrS2enp7079+fhoYGbt++jYqKChKJBDU1NVRUVMRcNqd5VouV1z179tC+fXsePnzIhg0b0NbW5tVXX8XCwkIcYPfv30dHR4fq6mqysrLYu3cvRkZGWFlZUVZWxu7duykqKqKhoYGJEycSFhZGYmIicXFxmJmZMWrUKECuuCgpKYkwuiLfraSkRFgCHTp0YOPGjT/5IX8rjIyMOHLkCNHR0ZSVleHt7U27du1EWDE6OpqhQ4fi7e1NTEwMhoaGTJ8+natXr/Lmm28ybtw4Jk2aRENDA4cPHxYFJB06dBDfoaqqyrFjx0SicmBgIB9//DEAK1euFIs/ISFBWNTr16/nq6++YtiwYTg5OREdHU3//v3FJt0SODo60rt37yZe13PnzrF69WqmTZvGV199RUhICJcvXyYzM5Nbt27h4+ODjo6OCFV5e3vz6quv0qZNG+DH8IqKigre3t5UV1ezadMmfH19WbRoERoaGiLlRCqV0r9/f5ycnDA0NGTv3r3ExsbStWtX4YlQ5KoqwsK/BZ9//jnHjx9n27ZthIWFoaKiQlpamjCM8vPzOXXqFI6OjixfvhxNTU3atm3LkiVLyMrKYurUqbzwwgs0NDTg4OAgcr7MzMwYPHgw1dXVPHnyhKFDh/LCCy8AsG3bNt555x0GDRpEu3btMDIywtjYGB8fHxHmAvnmo6Ghgba2NtXV1XzzzTctkq1bt254eXnx/fffs27dOkaNGiU2tpiYGFJTU+nduzdGRkaUlpYSGRlJZGQkq1atEsqrnp4e1tbWJCcnM27cOPbt24dMJqO0tFR4R06cOMG1a9dYvHgxc+fOZf78+XzzzTeMGTOGOXPm8Nprr2FkZERxcbG4J+vq6rhz5w4qKiqMHj2aSZMmkZqayooVK1ok444dO4Ryn5qaSnFxMS4uLhw5cgR9fX2qq6ubGIT79u0jIiKC559/nl27dgEQERFBfX09DQ0NFBYWoqysjK2tLR06dOCFF16goqKCFStWEBMTg6enJ66urly7dg0DAwP8/f2xtbUlNzeX48eP4+TkhLOzMxs3buTu3bvs27cPFxcX+vTpQ35+fpP8++ZAoXSsWLGCnTt38sYbbwil5tn8W/ixsLO8vFyE8zdu3Mjw4cMpLy8X6Su3b9+mtraWoUOH4uLiwsaNG/nyyy9JS0tDQ0OD+vp6wsPD2bt3L/b29kydOpUxY8ZgY2MjwucgTwHau3cvFy5coH///rzyyis/idI0B8uWLRP5lYmJiaxcuZLr16+LOWloaMDX1xdPT0/xmbq6OkpLSzE0NATg4sWLfPbZZ0ydOpXnn3+egIAAEhIScHBwYPr06fj4+HDhwgWio6NZvXo1oaGh4lpGRkZ07doVPT09nJ2d2bdvHx988AFDhw6lW7dugFy5e/fdd8nOzhbFSc1FRUUFZWVl9O/fnwEDBtDQ0CDm1cjIiC5dumBmZsalS5c4deoUurq6DB06FJDvmc9Gvw4dOsT69ev5+uuvmTp1Kq+99hpJSUlYWlqioaFBZWUlV65c4eHDhxgbG1NQUIClpSU9e/YkLS2Nt956C1tbW6F8K6IWhoaG4kytrKxkxowZIle0OVAY+0ePHuWVV14hNTVVGOI5OTls3bqVoUOH0r17dw4fPkxeXh46Ojo0NjZiYGDAw4cPRWGVAsuWLaO6uhpDQ0PhyFHkQBoYGFBRUUFhYSGurq5s3LiRVatW0atXL8rLy3njjTf49NNPgaaFlbW1tb/ZAxsQEMB3331HUlIS7du35/79+0RHR4v70NLSUihZ9fX1wkBROAPc3d2pqalBIpGQk5NDVFQUgYGBwqC3trbGwcEBa2trfvjhB06ePImtrS3dunWjffv25ObmNlHCtbS0RARPW1ubTp06iXUVGRnJ0aNHWyTf9OnTAbni+vjxY+zt7UXt0ieffEJZWRkLFy6kffv2gDw18e233yYiIoJ79+5RXV1NRUXFf103paWlhIaGMnjwYBHV3LNnD8eOHeP8+fNUVVUxaNAg9uzZQ1FREatXr8bGxgZ1dXVWrlyJmZkZx44dE97XX0OLldcRI0agrKzMqVOnuHv3LjNmzCAnJ4dNmzZhaWnJZ599Rk5ODikpKdjY2GBtbc3Dhw/ZuHEjlZWVPH78GGtra0JCQsjIyOCDDz6gqKiIa9euierJkpISSktL0dDQYOzYsVRVVbFx40ZKS0sZMGAAPj4+YiPX1dUVXrmSkhI2btzIjRs30NPTw9jYuIk10xwUFxcLa05RXa84lA0MDHBwcEBNTU2EDgICAujXrx+dO3cmIiKCGzdukJycjI6ODv7+/nTr1o3AwEAiIiK4cuUK/fr1o0OHDvTr148nT55w5coVGhoaqK6upkePHri4uHD16lWKi4vFYVhVVSVyCa2srDA0NKRTp064uLiI4qCWICEhgcWLF2NnZycs9AkTJmBnZ0dUVBRLly7l/fffJzg4WBSyKCzt+vp6Ll26hLW1tVjoABs2bODq1auoqanh6enJypUruXr1Kp999hnx8fFMnDgRTU1NEdJ+NtG9c+fOjB49usnmpvAKW1paEhoayoULF5ot3+XLl9HQ0MDW1pbAwEBSU1MpKioS4TPFTWhra8uqVatELrOmpiZ2dnb06dOHhw8fCqOptLRU/M7nz5/njTfeYMCAAVhYWBAbGysU1yVLlnD79m0mTJhAYWEhS5YsYeLEicyaNYvQ0FBu377NtGnTqK6upnPnziKsoqGhQdeuXVvsETExMcHc3JwbN24A8kP/888/Z+fOnSLlRLFO9fX1mTFjBn379hWff9aLcO/ePS5evMjAgQNZtGgR1dXVTJo0iRdffJEPP/yQ9evX88477zBu3DgKCgpIT08nPT1dXEtxjyjGcfnyZW7dukWPHj148cUXW1QEo0B1dbW4l1VUVNDS0sLT07PJOgG5Yrdx40YyMjKYNm0a06ZNE68pcic7duyIl5cXT548ITo6msbGRpSVldHT02PKlCnY2NhgYGBA3759UVFRYf369SxZsoRZs2bRrVs32rZtK9JDdHR0uHfvHj179uStt95CKpViY2Pzm7zLFRUVJCQkoKGhIZSu+vp6VFRUkMlkwruiKIRZvHgxBw8exMXFhc6dO6OhoYGPjw/t2rVDXV2diIgIMf+ZmZlcunSJhw8fYmNjQ0JCAsXFxSQlJVFXV8fjx49ZsmQJOjo6SKVSdHR0KCgoQCKRUFFRgbe3N+rq6tjb25OVldUkhaO5yMjI4MaNG3Ts2JH6+npRkWxnZ4efnx+qqqoMHDgQMzMzVq5ciaenJ2FhYWhoaAiDyMHBAV9fX8zMzNDW1ua5557D2tqaUaNG0aFDB1JTUzlz5gylpaVYWVkJJTwrK4vs7GwcHBxENE5RIW5kZERdXR3nz5+noaGBfv36ce3aNVauXNkiR8iTJ0+4du0a+vr6gilBAWNjY3r06IG9vT137twhOzubxsbGJsW4zxq0gwcPRl1dndTUVD7//HOh3Hl7e6Orq8v58+fZu3cvXl5eTJgwgbi4ODZu3MidO3dwcXHBzs6O6upqNm/ejKWlpYhsFRQUiPCvmZkZnTt3blGtRFVVFevWrSM3N5cePXoQGRlJVVUV169f58CBAxw4cABXV1dRVK3YCy5cuCBy/idNmiTqWLKzs4XCnp2djbm5uciF3bFjB++88w4dOnQQxouNjQ0DBw4kJSWFa9euUVxcTFZWFpaWlqSlpXHgwAEuXryIkpISYWFhPP/8882WTYEJEyaIoqZLly7RsWPHJsVnirze+vp6oVNUVlayceNG6urq+OyzzwB5ilhhYSGhoaGoqKhw7tw5njx5QlBQEF5eXujo6HD+/Hmys7MpLi6mrKyMuLg4zpw5g0QiwdPTE21t7SbF2GpqaoIFYe/evcTHx+Pu7k5hYWGz5bt69Sr37t0jNjaW3NxcTp48KSIGI0eOJCIigvnz5+Pn58eECRNwdnbm+vXrbNq0iZqaGtq1a4dEIuHkyZOiOM/d3V0Ur9bX1wu2DoXyefbsWbZs2UJ0dLQYR2xsLLNmzcLFxQUPDw/c3NwoKSkhNDSUhIQEVq1axZQpU5qVYtZi5VXhQYyOjqaoqAg/Pz8KCwv56KOP8PX1ZfLkyVhYWGBvb09eXh7u7u7Y2NgQHh7Opk2bMDc3Jzw8nOHDh7Nx40aRsGxkZISmpibnzp3j3Llz2NjYMHXqVLKysrh+/Toff/wxRUVFXLlyhdGjR9OhQwcROlBXV0dFRYWKigoOHz78E0WnJZ67mJgYXnjhBfz8/Lh7924T5bdTp05Nwmzt27envr4eZWVl7O3t6du3L5s2bWLXrl0YGxsjlUrp1asXkZGRzJ49mxs3bnDu3Dl2796Nl5cXy5Yt45VXXmHOnDkEBgayceNGevbsyePHj7lz5474bk1NTfr06UPHjh0xMzMTh/ejR4+IiIho6RSSlJSEVCpFQ0ODR48eoa6uLtgRZs6cyYIFC1BXV+ftt9/G1taWjIwMSktL0dPTEznORUVFJCYm4uTkRGlpKdeuXRN0P4sWLWLhwoVs2LCBadOmcfHiRaKjo/nmm2/Izc1l7969tG/fXuQVt2/fnrVr16Kuri6UaV1dXZSUlNDW1m6RlwDk821iYsL8+fP56KOPhPdfMYeKg8zGxoaZM2dSXl4ucnVtbW2ZMmUKubm53Lt3Tyi6CmW7e/fugtLEw8NDeDu//vprFi5cKGSfNWsWX331Fd27dycwMJDevXtz+vRpQYdVU1PD6NGj0dDQICoqioCAgBYpr4o87KysLKysrDAzM+Pq1ausWrVKFIdFRUWRkpKCn58fL774IqNHj26ShqOpqYmVlRWlpaUiBcXS0pI5c+aI6nYlJSUWLVpEXFwc58+f58iRI6Snp6OpqdlEiUxLS8Pc3Bw1NTXq6upITU3l1KlTPHnyBENDw990oAwfPpyDBw8SHx+Pt7d3kwKYtLQ0TE1N0dDQIDo6mq1bt+Lh4cFXX30F/Ji6oKjY9/LywsjICB0dHREFUsyDlZUVUqm0iWehoKCAc+fO0a1bN7p160bXrl25e/cu8fHxdO/eHVVVVb755hu2bdvGoEGDhCejpdDW1qZXr17Y2tqira1NRkYGe/fuxc/Pj6CgILKyssjPzyckJISEhAQuXryIn58f8+fPR0NDg4sXL7Jnzx5xACQmJpKens7NmzcpLi5GVVWVMWPGYG9vL3JLdXV1adeuHfHx8VRUVHDixAkGDhyIgYEBp0+fRk9Pj+7duwv6JpA7BoqKilos3+zZs1FVVeXJkyc8evQIBwcHDAwMfpLH/vDhQz755BMuX76MtbU1vr6+6OvrU1tbS8eOHZtUZCsK0xSKUGxsLKWlpWRlZXH48GE0NTVxcHAgKSmJO3fuNKkXkMlkBAQEUFVVxbfffktERATu7u4EBwdjbW1Nnz59iI2NbbZ8Dx8+JDk5GXV1dezs7NDU1KSiogJDQ0N0dXXR1dVFT0+P9u3bs3//frKysigrKyM/P5+bN2+ipqZGu3btqK+vp1+/fvTo0YNXXnmFDz74AIDQ0FB8fHy4fv06kZGRgHwP09DQIDk5mfPnz6Ourk5oaCjLli3j9u3bXLp0iY0bN9KmTRuGDx9OfHw88+fPp7y8nLCwMF566aUWKa9ffvkle/bs4aWXXhIRwvj4eFF8mpGR0aS+Q1GcfPXqVU6fPk11dTUaGhqoqKhgY2ODhoYGlpaW5OXlcfr0aTp27IizszPz589n9+7dbN68WdB7KfKFFcwN+/fvFywnIDe6d+3aJX4bb2/v33Qfdu7cmRkzZrBgwQKOHz/O9u3b8fHxETny/fr1Q0lJSaTLWVtbU15eztWrV0lNTWX48OFkZ2eL/POAgACuXr3KlClTSElJYeDAgfTq1YuEhAThCHn06BGrV68mKSlJpFoYGxszZMgQTExMqK2tpbi4WERVjh49yty5c3nhhRdaTJV14sQJHjx4IBxvFy9epKKigj59+tCpUyf69u1Lx44duXv3rvDSK3QZW1tb9PX10dLSIioqis8++wxNTU1efvll8T57e3sGDBhARUUFmzZt4saNG9y4cYP79+8D4OPjw/jx40lKSmLdunX069ePI0eOiDSU/v37c/PmTRYuXIiKigoLFiz4VZlarLweO3aM7t2709DQQExMDB999BFhYWEMHDiQa9eu8frrr7N06VIMDAy4evUqjY2N+Pj4MGDAABobG3F0dBQVaIrEXCcnJ1atWoWXlxcLFixg27ZtjB8/njfeeIPdu3fz3Xff0a1bN/T19TEwMMDCwgJLS0t0dXWb8JQpKyvz0ksvCYV4wYIFJCUltUi+u3fvAvKQS2ZmpnD7PxueqKurE8ncKioqlJSUoKWlhbKyMiEhIVhaWlJdXU1SUhKzZ8/m0qVLREVFAfIwZs+ePYmNjcXQ0JCoqChkMhkvvfQSpqamzJ8/n23bttG+ffsmOaknT54kMzOT999/H5Afzlu2bCExMbGJ16s5sLOz47PPPsPR0ZGQkBCsra25cOGCUC6XLl0qCjgATp06xddff42vry8vv/wys2bN4vHjx0RHRxMVFUVDQwNt27bl/fffx8LCAltbW7Zu3dpEsT579iwnT57k/v37LFmyBJArrYaGhj9Jf3jxxRdJSkrilVdeoU+fPujp6XHs2LFmy5efn8+9e/cYNWoUPXv2xNLSkoaGBubNm8eIESP4+uuvAbmh8v3332NhYcGwYcMEzx/IUzuio6NJT0+nS5cuPPfcc7zwwgv07NmTnTt38vbbbwuu4sbGRhITE5k+fTp9+vTh1q1bREdHo66u3mQjDQsLQ1dXl4yMDEExduLECcLDwzExMWnRpjtz5kxUVFSorq7G1dWVe/fuIZFIePfdd/Hy8kJLS4tly5ZRXl7O0qVLqa6uZsKECfj5+QmuTsU6yM7OFtEQBRRrqry8nNraWlatWkVZWRlJSUns3btXRD0ePHjAjh07ePDgAYMGDWLMmDGoqakREBCAtrY2HTt2pEuXLjx48KDZsing4+NDQUGBWPsKj+qjR4946623yMrKonfv3qirq6Ovr4+NjY34rIqKCkeOHOH48eOUlpaya9cuYmJi8PPz48MPPxTep2+++YbKykomT55McHAwd+7cYfny5dTV1bFt27Ym1HyVlZWimGrevHm88MILpKamkpWVhYWFRYvDlQrjLzAwkDt37vDmm2/y6NEjUlJSGDp0KAYGBowfP55Dhw4xceJEampqeOWVV5gwYQKVlZVMnz6db7/9Fi0tLY4cOYKVlRWDBg1i1apVnD17FmVlZQYPHoyJiQmVlZWYmJiQk5NDQUGBKBj58MMPOXLkCP7+/mhra3Pq1Cn69esnDEsFFIdXS6GIznz22WccPnyYhQsX/myVtKenJ/Pnz2fNmjW8+OKLLFu2jH79+lFQUEB9fb1I9VEgKyuLuXPn4uLiwrhx44iKiuLw4cNYW1tz48YNvv32W0pLS3F1dSU3N5c9e/YQHx/P6dOnuXnzJjo6OnTr1o2+ffvi4+MjqN9Gjx7dIuUV5AqswsD94osvuHfvHosXLxYKlqamJsOHD+frr7/m4MGDTJo0SRR5ffrppwwcOJAJEyYgk8nYunWrKEjq0aMHw4YNo6CggAMHDgDyPcTHx4cdO3awa9cuLCwsmjC0WFlZ0aZNG7755hvy8vKorq5GVVUVU1NTbG1t8fLy4uzZsy2SLzY2lrlz59KjRw/xnLu7OxYWFrRr147k5GSysrLEa2vXrmX79u0EBwezcuVKVq9ezc6dOzl+/DizZs0SrBW6urpcu3aNtWvXoqenx+PHjwF5SoGmpibPP/887dq1E8+XlJQQHR3dJAVPUfzk7++Purq6yOtsKWQyGS4uLqxZs0bwfr/77rscP36csLAw+vXrh6mpKRkZGXz//feYmJgQEhLCli1buHbtGnv27GHbtm00NjYKxXvv3r2CwvCHH37gwoUL9OzZk08//RRjY2MOHz7Mjh07MDU1ZdiwYaSnp/Pll1+SnJyMubk5BQUFmJqaMmDAAGH0BQQE0KVLlxbLN3r0aNLT00V6RklJCYaGhmKNqqmpsWrVKmpra4VTYtSoUeTm5qKvry+iBQMGDBDedYXX1M7ODhsbG7EWTp48KVJXXFxccHFxwcfHR9CCduzYERMTkyZFqgD+/v689tpr6OrqNivK85sKthTVzVeuXOHx48doa2uzaNEi1q1bx40bN7hw4QIhISHcv3+fuLg4Ghsb6d+/fxM3PCA40wYNGiTyaqytrTEyMkJfX5/09HQuX75MTU0Nb7/9tsgHUxTV9O7dW3gDi4uL0dbWZuzYsUKZLS4ubnGenaurq0i6zs7OJi8vDwcHB0EyXFdXR1VVFXV1dSK/SV9fnzt37lBcXExgYKCY/DVr1nDt2jWMjIwYPXo0MTExxMXFkZ+fz9atW7GwsMDOzo7evXszePBgvvrqK2HZLly4UCgz8fHxbNiwgaSkJAwMDIQnrLGxEXNz8xZT9Dg4OLB+/XoGDBiApqYmx48f54033iAxMZE1a9YIiwrkNBpJSUk8fvwYDw8PQeWhKF5LTU0VNGkTJkzAxcVFeFx1dXUZOXKkCPFUV1dTWVmJg4MDqqqqpKSkcOfOHdTV1UXYcufOnURERIgbROG9aAnmzp3L7t27iYyMJCgoCG9vb+rr6zE2Nqa8vFy8Lzc3lxUrVuDt7S02VAX1W1FRESoqKly7do24uDg8PDzo06cPysrKpKen8/DhQw4fPoyamhqHDx8mNzeXAQMGEBMTI/KWFXy1tbW1qKmp0bVr158QzpeVlVFfX09BQUGLUlyKiorQ0dERFDZbt26lZ8+eTeiMioqKUFVVxdfXl/j4eE6dOkViYiK9evXC19cXS0vLJuG7hw8fClozNzc3JBIJd+/eJSUlhbZt2xIaGoqXl5egWdPX1+fJkyfcuXOHu3fvYm5uTpcuXXBzcxPeSmdnZx49esT27dtbNIcg9y77+PhgYWHBwYMHWbRoEZ9//jkODg64u7tz8eJFamtrGThwIGPHjsXT05Py8nLKy8uJjo4WnJJaWlpkZWVRUFDAG2+8IQyz5ORk8vPziYyMRFdXl8DAQHJycjh37hyhoaFiTyosLCQ9PZ2srCx0dHQwMTHBwsICCwsLVFVVuXr1KtnZ2SKHsrmIiYlBVVWVhoYGQbOXkpLSpKpZkS+/bNkyPDw8RKqJIh3Aw8MDW1tbrly5gpqaGtOnT8fQ0JAzZ84A8Oqrr6KkpMTOnTu5ffs2hoaGogijuLgYf39/UVCp+G5FoSvIGUQMDQ3R1NT8SR5uc1BfX8+jR4/Izc3FwsJCFGtKJBLKysqoqqoSe0LXrl158uQJr7zyCqdPn6Zbt26CCqx9+/aoqalRVlaGoaEhW7duZevWrUyePBknJydkMhnJyclERkZiZGTErVu3qKqqoqCggKKiIurr6zEzM8PMzAwnJyfq6+txcXFhyJAhGBkZkZycTFlZWYuZP6ZOncqXX36JqqoqUVFRvP/++5SWljJv3jwAQSOp2AMzMjKaFNoocikvX77M999/z6VLlwB58xdFM5VVq1ZhZmbGsGHDmDFjBnFxcWzZsoXc3FzhVS8sLERPTw9NTU1cXV0JDAzk+vXrpKeno6yszGuvvcbQoUOxt7fn3XffbVGTAjMzM3r27Imenh6FhYXit1TwWCuMGkWdQkNDAykpKcyaNYvx48djbW3N4MGDRRqIoqB206ZNIpID8oYWhoaG3L59mxUrVuDm5kZFRQXnz58X95aCGtPMzIz27duLPXPo0KHi3FWkprQEGRkZSCQS7O3t0dXVJSEhgaioKO7evduEWL+hoUEogYooUF1dHd9//z1qamr069eP5ORkli1bhkQiYeDAgcTExJCRkYGGhgZOTk6MHz9eMM0cPnyYwsJCvL296d+/P9HR0SJy7O7ujqGhobjvRowYQW1tLQ0NDTx69KhF8ikKIBMSEkhISBBNar799lusrKzo06cPvXr1Ij09nSNHjuDm5kafPn0IDQ0VxZIgZ7NQRBsVsLe3F9R1CmYIS0tLvL298fLywtTUFCsrK3R0dLC3t29CRVdXVycYclRVVUWjm+agxcrrlClT0NbW5vnnn6dz587U19djZ2eHhYUF7777rujGlJiYiI6ODurq6sTGxuLv7/+zlntOTg7Xr19n48aNxMTEsHv3bgoLC1m4cCHffPMNFhYWeHl5UV1dLT6zf/9+EQ7S19cnLy9PVKtdv34dExMTcQP/J6fZr2HMmDGCW83Ly0sQmyuaDKioqFBVVUV+fr7IjVUUlZWWlop8K0Ve49ChQ7G1teXChQtMmDCB4cOHs3jxYnbs2MHChQtFkde2bduEV/Wdd95h+vTp1NfXc/bsWc6ePSsskQ8++ICSkhLmzZvHsmXLyMrKYunSpS2SsbKyki5dujB27Fjq6upYsGABGRkZHDlypElOJMhzury8vNi3b59QvA4dOkRJSQndu3cnKCiIo0ePcujQIc6fP4+jo6PYPHx8fHjllVdEdyNbW1s6d+7MuHHjMDEx4cqVK2zevJmuXbuSk5MjKhUVNGgKL2hubm6L5HvttdeYOHGiyOHR09Nj9OjRLF++HEdHR5Fs7+TkREhIiCg6AwTjgZOTE9OmTeODDz5gzZo1ODg4cO7cOTQ0NPD392fPnj0cPXqUgQMHinSDmzdvkpubKxo0FBUVERUVhb+/f5OClGcRGhpK+/bt0dPTEx7p5kBBA6WgeHr48CF2dnaCZQDgpZdeoqamhpqaGvz8/IiIiOCHH37g0qVLmJiYYGtrK8J/cXFxXLlyBZlMJrzQxsbG2Nvbk5yczLp169DQ0KBXr16iOUNiYiK1tbW8/PLL5OXlie8CeVFgTk4OZ8+e5csvv+TWrVs/WVu/hu+++47Zs2cTHBzMwYMH+eKLL9DX12fJkiUi4pORkYGVlRWurq5CEZ82bRr79+9n7Nix9OjRg5KSErS1tRk9ejS+vr7U1NRw+/Zt7O3tWbx4Md999x1paWnEx8fTp08fTp06RWRkJEeOHBG0TpmZmSgpKdGmTRvatGkjaH6uXbtG27Zt0dTUbHEKj5qaGocOHcLFxYXXXnuNl156iezsbNTV1TE1NcXU1FR0olu/fr1IWVqyZAlHjhxhzpw5PP/88+Tm5nLlyhXatm2LoaEhWVlZxMTE4OjoKAx5b29vNmzYQJcuXZg7dy5btmzh/fffZ+TIkbz11luUlpZSVFSEq6uriDYpwt+amppkZWWJCv+WIDw8nB07dvDSSy8xYsQIFi9ezMaNG9m8eTOmpqakpaU16U4VGhrKJ598gpqaGhcvXiQ1NZUbN26wbt06SkpK0NTURFNTk/z8fCwsLGjbti3x8fFij4iMjMTS0pIePXpw9+5dNm3aBECXLl1488036dKlCyUlJdTU1FBXV0dcXBx6enpYWVlRVFTEzZs3WyTfhAkTUFZW5tGjR2zdupXS0lIsLCyETBUVFaxbt45bt25hampK9+7dOX/+vFDgN2/eTGBgIAsWLBA0ZM968Q8cOMDixYvp1q0bH3zwATo6OmzevJmcnBy8vLywsLBg6dKl6OrqsmTJEkxMTNi5cyfJycmoqqry4MEDHB0dGT58uGgOM2LECPG7NAf+/v7s2rWLzp07CwWxtLSUqqoqfH19cXNzIykpiYSEBHx8fJg6dSrdu3cXee6DBg0iOjqa/Px8sQcsX76c9957D5CnQTz33HPo6upy69YtDAwMsLGxYcOGDezbt4/c3FzCw8OZMWMGb7zxBuPHj6d///7s3buX0NBQvv76ax4+fMiKFSu4ePEiYWFhTRwwzYFMJsPa2po333yTBw8esGHDBj7++GNmzJjRhHe9sLCQYcOGiYjMjh07WLNmDZ6enqxYsYI7d+6wdOlStLW1OXToEO+99x5SqZSsrCxefPFFampqOHDgACNGjBDsPJGRkXz//fccPHiQIUOGMG/ePKqrq3nttddwdXUVdJg6OjrY2NjwzTffcOLEiRYxDR07dowePXrw7bff8tlnn9GmTRtqamq4f/8+S5cupU+fPhw9epTp06dTVlbGnDlzeO+991BXV8fLy4v09HSRVnXv3j1SU1MJDAykqKiIhQsXcvXqVZSUlEhOTkZDQ4M1a9YwYMAAIiMjiY6OFuxU165d4/z583h7exMWFkZxcbFo6qSmpkZSUlITBpn/hhYrr4aGhqJVppmZGZmZmeTl5QnORQsLCxobGwVBto2NDZmZmRw7dgxVVVXRxULBnda7d2+qqqrYvXs3IFd4GhoaKC0tFYfh7du3uXv3Lu3bt8fIyIjc3Fw8PT3Jy8vD0tISZWVlDA0NKS4u5vDhw2hrazN37lwCAgJEJ7DmQpHz5ujoKBoT5ObmUl1dLSwtBbG3j48P1dXVojrbw8ODvLw8bt68yePHjwUpNcgXT2pqKm3bthXV3snJydy9e5eYmBgeP35MaGgonTt3FpaJiooK6urqFBQU0KZNG1RUVEhMTOT7778nJCSEUaNG/SaaEB0dHVxcXFBVVUUmk9G5c2c8PDzQ1tYmOjqa2NhYrKysSE9P59ixYwwdOlQoruHh4Tx+/Jjhw4dja2vL5cuXOX78ODKZjOrqar766ivq6uoYPnw448aNw93dXeTsPBsmiImJoa6ujrfeeouamhqWLVvGDz/8QLdu3ViwYAFKSkocO3aMvLy8n7SU+zUo2uxaWFgQGhqKRCJBJpNRUlKCu7s7qqqqFBYWUlRUxDfffCOSy52dnZsUFuno6ODo6Eh9fT0GBgaoqamJkG5wcDAmJiYcO3aMkpIS0tLSSEtLw8jIiLCwMPLz84XXeseOHXh7exMaGoq5uTm1tbUUFhZiaGgo7qOWKgaKzbOsrIwePXrQuXNnAgIChOKquEcAQXPSrl07Ghsbyc3NFcbWrVu3uHv3LklJSdy/fx93d3d8fX2FB8rKygpvb2+uXLlCSUmJUKpkMhmffPIJNTU1ougtMTGRzMxM4YExNzcnNTVV0I21tODH29u7iWKjra1NQkICy5YtY8yYMSLNoaamRrQfBnnXt5qaGpSVlUlJScHT05PZs2eLyM/NmzfJyckRTVQMDAzYvHkzbdu2xcvLCx8fH9q2bculS5fIz8/HwMAAKysrVFVVRWqCkpISRUVFODg4MHHiRIyNjUXKUUvmUCaT0bFjR5FT/Z8cnDdv3qSysrJJfujZs2dF+9AhQ4YIrxzIQ9jnz59n6NChVFRU8MEHH9CvXz80NDQYOXIkxcXF7N69m8TERFFE9e233yKRSJq0fX623TUgCtVaCk9PT4KCgkQ+r2L/V4REjY2NUVNTo6GhgaqqKszNzZk+fTpVVVVkZmaK9s2Kzon19fUiRO3t7U1ZWRlnz55FV1cXd3d34uPjefTokQhNOjg4UFJSgrOzM7W1tdy9exdlZWX8/f1pbGxkz549ohW1kZFRixuibN68GXV1dYyMjOjQoQP29vY4OzuTn5+PpaUlNTU1mJqaYmJiQnl5Oenp6Zibm6Onp0e3bt3Izc3l8uXLGBoaijxdZ2dnkSZRW1tL//79RfOau3fviv1WoYxeuHCBxsZGdHV16dGjBzk5OdTV1aGmpoaFhQW9e/fG2dmZBw8esGXLlhZH6kJDQ9m3b59gidDT06OyshINDQ10dHREK3OQpxnp6OiI4rX4+Hih6ChSG7Zu3cqtW7cEZ3j37t159dVXkclkIs8+ISGB9PR0LC0tGT16tLjXe/bsyezZs7lz5474Hf39/bl58yYff/wx6enpImezJXBzc0NZWRlra2vu37/Pw4cP6dixI1OmTMHAwIDU1FRKS0sF4wjI0yMUzSFcXV2pqKggLS0NJycnvL29RQdFd3d3odB/9dVXrFmzhnv37uHs7Cw8mnFxcaxZs4YuXbrg7e2Nm5tbk3ap27dvx9bWFh8fHwwMDNi0aVOLannKy8vJycnB3NwcT09P1NTUqKmpwcHBAVNTUy5fvszUqVNFMV1oaKg4r2NjYzl69Cht27Zl5MiRmJubc+XKFe7fv09sbKxgdgH5Xjps2DAmT56MsrKyMAiTk5MpLi7m1q1b7Nmzh27duqGhocHDhw+5f/8+JiYm+Pr6UlBQ0KTBzH9Di5XXlStXMnnyZGxtbSkvL+fy5cuoqqo24QGUSCS4uLhQX1+PhoYGZWVlzJ8/ny+++EK8x9DQkBUrVrBgwQL27t3L7du3GT16NLa2tmRnZ9O2bVuysrKYPHmy8GhERkaipqbG5s2bGTt2LAkJCcTGxop0grq6OpGfoajY9fHxaZHyquAYfbZQqLCwkPv372NsbIy2trbg7vPw8CAjI4Njx44REhKCv78/9fX1XL16VfQYz8rKIiUlhc2bNwPyRfr2229jaGhIr1692LZtG6dOnWLy5Mls2rQJExMTQdbv4eFBUFAQDQ0NnDt3TnCxqampcfbsWdG1paVQdIW5e/cuPXr04PPPP+fs2bMsXbqUR48e0a5dO5ycnIiKiuLy5ctIJBLMzc05d+4ct27dEt6wx48fs3TpUh48eMBrr72GsrIyFy9eJDQ0lE2bNlFZWUlERARBQUE4OjoKOq3q6mqkUin19fUcPXqUe/fucfDgQXr27CluhK1btyKVSunWrdtPunT8GubNm8fmzZuZOnUq58+fB2D37t1s27ZNdADbs2cPCQkJLFiwgOLiYrZu3UpAQAAODg5Nig/MzMyYNm0azz//PIGBgaILCMhbIO/fv5+XX36Zc+fOAXI+PUVxT1JSEsbGxly/fp19+/bx1ltvMXnyZBElUHDZ1dXVtcgTAnLlQlEsYGNjw9ChQ5tUSRsaGpKRkUFjY6NozxwXF4elpaXg8bx37x5JSUmYmJjQuXNnBg8ejKamZhPLV5HP/Nlnn1FeXi7uicrKSq5fv86TJ08YO3YsHTp0wMnJiVu3brF//3569eqFhYUFAQEBtGnTBjU1tRZ3aFKE7TMyMujevTvvv/8+GRkZgppOQReTn5/P7du3iYuLo0ePHiIq9PLLL3Pt2jXGjRvXpGjH3d29STVrVFQUaWlpTQ51JSUlevToIeZI0d5Tkfeup6fH8uXLBT0cyNfKwYMHmy2fgYEBYWFhTRqxKKDoYGdoaIiOjo5oHQpymrSLFy/y3XffUVpayrJly2jbti1Hjx5l+/bt+Pv78+mnn3L+/Hmee+453n//fVauXMmcOXPYvXs3EydOZNKkSZw5c4aVK1eKELe6ujohISFUVlaSkZGBjo4Oenp6ZGdnizqDjRs3Nls+kIeCe/fuzeeff05UVBSvvvqqUNpSU1OFsaiowlf0W9fS0sLBwUG0pvb19RWc3jdu3CA+Pp4rV66QkZGBp6cndnZ2dO/enXbt2lFTUyNSXb744guRRrJ8+XIyMjLw8PBg4sSJKCsrExUVhZmZmQhp+/v7s3Xr1mbLt379evr168fo0aPp2bOnSCtKTEwkNjaWdu3a8fLLL5OcnMyhQ4eIjY3FwsKCb775BjMzM8LCwqiurmbdunU0NjbywQcf4OfnJ5gn+vTpw7Bhw1BTU6OyspJ9+/aJOo7Hjx8Lxpvr16/z3XffATBnzhzKy8uJj48XaSEgT0X47LPP0NPTY9y4cc2WUWFQHDp0iF27duHk5ET37t1xcHBARUVFFC1LJBLRDCErKwsfHx/S0tKYOHEifn5+HDlyhDNnzrBq1Sqee+453n33XU6fPo2qqiqNjY2CeurcuXNcv34dS0tL3njjDSZOnAggqKgUOfvp6enU1NTwzjvvcPToUebNm0doaCi7du1qUTETyCNuSkpKfPTRR0yePJnJkyezb98+vvrqKyoqKtiyZQvt27cXkdwNGzYwe/ZsQO5we/jwIdu2bQPkBo2i1en27dtZvHixyIN98uQJFy5c4MKFC7Rv3x4/Pz9eeeUVoqKiWLduHcePH2flypVNjNX8/Hy2bduGh4cHn3zyCUFBQS0+LxQtkGfNmsXUqVMpLy8nOzub/Px8lJWViYiIoLCwEBMTE77//nuCg4PFfZSQkEBiYqJgRDI1NWX06NG8/PLLwuno4eFB9+7dCQkJoXPnzigrK5OTk0NxcTE5OTmcOXOGAwcOiAh6cXEx+/fvJyIigqqqKgYMGICfnx8dOnQgIiJC5Dn/N7RYed25cydKSkqMGjUKMzMz3NzcqK2tpaysDGVlZWQyGZqamqioqIhNXVdXt0kxhYGBAaNHj2bChAloaGgwdOhQ3N3dRUWpoke0vb09tra22NnZMWPGDIyNjWlsbGTs2LGA3FpS3DwqKiro6OgwduxYrl69yvLly2nfvn2TFrXNgSLPtLKyktraWrFhKtrRPjs+GxsbvLy8qK+vFweQiooKzs7OZGRkCEUhISFBWIgREREcOHCA8ePH8/LLL/PkyROSkpI4c+YMAQEBovf8tWvXOHz4MNOmTSM0NJSKigoePXpEnz59CAoKIikpSYRDW4qSkhK8vb2bVPD6+/vTt29fvLy8mhClu7q6cvnyZZ577jmCgoJYuXIlPj4+FBUV8e6771JZWcmrr76KlpYWS5cupaKigsDAQPT19YmNjWX16tVYWlri6OgoFNecnBxCQkJQV1cXXK4LFixokg8qk8kwMTGhU6dOwnPbXKxduxaQW/0KDBs2DFVVVeLi4pg8eTIXL16koaGB8vJyfH19CQoKapLLU1xcTGJiIoaGhsyYMUN4pIKCgti1axcffPAB8+fPx8XFRcyBotHCxYsXBVtEjx496NSpE9u3b2fjxo3U1NQwbdo0TExMaGxsBOTFYWPHjuXLL79stowWFhY4Ojqye/dukpKSRNeTCxcuiOIyX19fQTmnMOzKy8uFEZGfn8+JEyfo0aOHUBTz8vLYuHEjxsbGhIWFoaenJ/KRFLmGisYZY8eOZd26dWzZsgU3NzfhkVm2bBmffvopYWFhBAcHC6L/34KTJ0+KPuqdOnWisLCQmTNnCmO5qqqKS5cuUVxcLFrjpqSksG7dOk6ePCnWwUcffYSVlRWjRo2iXbt2wotYVVVFz5496dixo8gnPXr0KOfOncPFxYXnn39e5Og1NjYik8mIiopCU1MTHx8f0tPTef/99/Hx8Wmxcn706FF8fX3ZuXOnKEJzcXHhzp07HDlyRLSC1dTUpLS0lAMHDhAfH09eXp5Qert06SI8HFpaWvj7+9O+fXs0NTXp378/s2bNYvny5ezevRupVEpQUJAo0lQUKH399dekpKQQGRlJQUEBJiYmKCkp8cknn6Crq8uIESNEuk1LcevWLQoKCkTxmGKdKSkpkZeXJ1J4ni26VTQWuHHjBgUFBdy+fZsHDx7g6emJh4dHEyMjOTmZ5ORkQF4cpmCK0dTUxMPDA0NDQ0pLS0X1s7+/P+PHjycvL4/NmzeTlJSEra0tixYtYvTo0U32xOZg2bJlGBgYUFtby6NHj/Dw8MDGxgZlZeUm+5aDgwNTpkwRdFYKL+TUqVPJzMwkODgYT09PDA0NxT6Um5tLUlISjY2N1NTUcOvWLc6cOYOOjg6mpqbEx8eTnJzMlClTcHR0ZNeuXTx58oS2bduiqqqKu7s7pqamVFZWsmnTJrS0tNi6dStmZmYtatyjmK+QkBB0dHSwsLBowgtcVlbGkiVLUFdXZ8WKFbi6uvLkyROysrIE1/sPP/wgqugNDAzQ09PDxMSEoUOHUldXJ4xECwsLwcmdkpIi2tGGhYWJQq3r16/zww8/4OLiIu7ZkJAQ0cVQUdzWEnz33Xf4+Pjg5+eHm5sbkZGRWFtbY2ZmxoMHD1i6dCnz5s0TyquFhQVvvPEGubm5wjhSIDs7G21tbcaMGSPajivwbEfM+Ph4Zs+ejZubm2hN6+3tTZs2bVBWVqa0tFQ0p5g4cSL5+flijp9t6d4cKPZfmUyGlpYWWlpamJmZkZ2dTW5uLl26dGH16tX4+/vTsWNHHj9+zNtvv42xsTGvvPIKPXv25PDhw3z00UdMnz4dR0dH4TUGuXd+xowZwklQVVWFhoaGoAm9c+eOUFxNTU0ZOHAgVlZWHDx4kLy8vCbUmb6+vujq6v5qN78WK6+Ojo7k5uZSV1eHoaEhaWlpNDQ0CK+PTCajtrYWJSUlUeCUlZWFubk5vXr14tKlS/Tv318Q1yuq5RWbRkZGhuhpXlNTQ+/evRkwYIDwCjU0NJCXlyc2LScnJ9FZSMHTmZOTw/bt21FWVmb48OEtkk9xUFVUVFBbW4uuri62trYijKPotOHo6CiSkEeMGNGkI4SamprobuPp6Ymnp6dQohMTE6moqCApKQlPT0/c3d1JSkri8uXLfPLJJ7z66qt4eHjg4uJCbGwsERERBAQEUF1djZ+fH3369MHR0VGE0mtra1t8sxoaGtKxY0dBaaSvr4+pqanoDtTQ0MCpU6eorq6mffv2pKSkUFBQQGBgoLDiv/jiC/bu3cvEiRN5/vnnWb16tcj1VIR3FR2oFPQiit/V2NiYjz76SDyno6PDa6+9JjqP6evr0717d/T09FBVVW0xYwTIDwsNDQ1ByePr68vw4cNZuXKloPTS0NDg+PHjODs7CxLnqqoqNDU1qa2tJTs7Gzs7Ozw8PITCB4jc6h07dtCrVy/hEWtsbBShGUWh3uLFi2nTpg0ymYwJEyZw5coVNDU1RRvZoqIilJSUWtw6VUNDQ3i0L126RExMDDKZjHPnzqGjo0P//v0xNjYW1caK9ARFJyYtLS2ys7NFQeSsWbMwNjYmOjqay5cv4+rqyoABA1BRUaGxsZH6+nq2b9/Ozp07GTZsGG3btsXBwQEPDw+UlJTIyspCVVWVO3fuCKNB4U0xNzf/CTdrc6BoFDJ48GBRZKOmpiaKMEtLS7ly5YoI3wcHB9PQ0EB4eLhglHi2eElbW5vOnTvTrl07IiMjKS0tpU+fPqIwprS0lLS0NMrLy9m1axdZWVkUFhaKPufKysqi17yysjI+Pj48ePCAw4cPU1RUJNZQc5GWloaWlhZPnjwhIyODlJQU9PT0uHjxIpmZmejo6HD58mVRLGNqaiqo1qRSqTjAFDn5PXv2REtLi6SkJMFkMGvWLFJTU8nMzOT+/fsEBASwcOFCwUnr5OTEnj17mDZtmggDg5xD+Nq1a6LRBNCkiUFzMW/ePCwtLZkxY4boFlZSUoKurq4Ieyt4lBU9zS9cuMDSpUtFgZmjoyNGRkZER0cTHR2NhoYGFhYW4n6sq6sTClBeXp7gvlVWViYvL4+8vDzU1dWxtLQUjBiff/458fHx+Pn54eTkxMOHD3nw4EGTzlfNgYI5YdOmTezfv5+JEycSGhqKpaWl6CBVW1uLiooKenp6Ir0jKyuLiooKUR1fX1/fZA8GuQH9ww8/8P3331NeXo5EIhHFTYrzVsHWolBELC0tqa+vF90nQd557LvvviMoKIixY8eirKzcIuW1traWuro6tLW18ff3p6SkhCdPnmBlZSUYWm7evMndu3cJDg4WiqZCYZo8eTKbN2/myJEjeHh4EBgYyJMnTzh58iSjR49ukvpWXV2Njo4OgYGB2NjYsGvXLq5cuYKZmZlQXg8dOsTy5cub/FaK83Hv3r3s3LlTdOxqLvbs2cPFixeZP38+qqqqdOvWDU1NTREV1NfXF+s1IiICKysrVqxYwdWrV1m7di1eXl6YmJiQlpZGZmYmNTU1hIaGEhoayuXLl3n06JHIzVd063zrrbcYP3686MwllUqFEieTydDR0aGqqgpDQ0PGjh1LVlYW69ato6ysjKlTp3LixIlmy1dUVER5eTm5ublIJBJsbW1FCpmZmRnt2rVrwiYREREhmmoMHjwYHx8fJBIJH3/8Mfv372fp0qVNFHFFgRYgUj5NTU0JDg5m9OjRXLt2TaQFSSQSqqqqMDIywtnZmcrKSuLj4+nSpQu5ubkYGBjQoUOHX/Uut3g3mjt3Ltra2nh5eYmQlba2tigmqKuro6CgADMzM3Jycli+fDlnz57l9ddfZ+HChbz33nskJiYKDrCDBw8ye/ZsRo4cCcgP5by8PMH1OmTIEFRVVQXVhCKX8OrVq5SWljJr1qwmRM8g56KdP38+enp6TX7g5kLRucfIyKhJnuaDBw+4desWbm5uODs7o6ysLNIMFJ7XWbNmkZ2dzSeffCLoXF599VWsrKz44osvWLRoEcXFxdy8eZPMzMwmuY76+voEBARgZWUlyIPXrl3LkCFDGDhwIIsXL/6JB+tZq665UHg458yZw+nTp1m5cmUTS66goID9+/ezfft2XF1dGT9+PAsWLCA/P5+PP/6Y4uJikcrx4MEDtm7dSnl5OXPmzGHIkCFcunSJsLAwhg0bxsKFC9mzZw+RkZF88MEHwnuuQH19PYWFhUgkEh4+fEh0dDQqKioMGzZMfH7q1Kli028OevXqxcKFC0lOTiY6OpqMjAzhhXRwcKBfv36cOXMGCwsLZs2axSuvvALIlYnCwkLc3NxQUlJq0lIyPz+f6upqkdNma2vLiRMn0NXV5Z133qGiooKvv/4ad3d33nvvPW7duiUqnkFuFOnr61NSUsK+ffvo1q0b9vb2ZGRksHHjRm7fvt2kcKy5mDJlCt27dxcG1muvvcahQ4cYOXIkRkZGDBkyRBh+QBNvUHFxMfb29ty/f5/g4GA0NDRwcXFh4sSJBAQEiAMgLy+PmTNnEhUVxbBhw3Bzc2P9+vV8++236OjoMGPGDNzd3Tl//jw3b95EU1OTkJAQxo4dS0BAAC4uLk3mvLnw9PTE19eX2tpa7t27R3p6Ou7u7iIt6OLFi9TU1NCxY0eh/CsrKzNu3DiUlJQ4c+ZMk6rchoYGrKysyMzMZOHChUgkEsHZWlhYyPTp03F2dmbGjBmMGjWKL774gs2bNwt6IpB7MLy9vYW3PTQ0VFDktJQHVbG3hYSEiEYuM2fOxMXFhTfeeANdXV3RIGLXrl0EBwfz+uuvk5KSIiIBII8SKQp8jh07RmxsLJ6enqLgU9HmsX379k2KFRWQSCR4eXlhY2Mj8pINDAyYNGmSaHCheF9LUVNTw/jx45u0uVXkfCvW16lTp7h37x59+/alqqqKDRs2cPv2bUD+e0+YMIGePXsyb948Dh8+jLOzM6tXr8bQ0FB0/3F2diY3N5fNmzcTGRnJqFGjUFVVJScnh3bt2uHj4yO4ZsPDw4mJiaFPnz688cYbeHl5cf/+/SYsC83FyZMn6du3r7ivSktLAfla+/DDDzl16hSTJk2ibdu2REREMGDAAHr16sX69evZs2cPu3fvFhRDVVVVTdJblJSUyM/PbxJBUkBhWCu6+clkMgYPHoyWlhZVVVWkpKRQWFhI586d0dbWpqioiM8++4wbN25gZWXVIuVOYVgpvKiKDl+DBg0S116wYAHHjh1j2bJlnDlzRqxjVVVV3nvvPSwsLPj000+Ji4vDwMBA5F0qchsVBlhhYSGrVq2irq6ODz74gBdeeIHY2NgmaYkDBgzA3t6+SX74o0ePWLZsGaampsyePZstW7a0aB5NTEzYsWMHurq6rFmzhoiICBYvXsygQYNwdHTkwIEDBAcHc+nSJRYvXkyPHj0EPZeKigodOnSgV69e6OjoiFoSBYKDgzl+/DgHDx7Ezc2Nhw8foqqqKvKEJRKJKLZUQCKRiI5eCijyf2tqanB3d2+R8nr48GGMjY1xd3dHRUWFO3fuCBpTxdpNTk6muroaa2trxo4di4GBgTASbty4QVpaGiBPV3n99ddxdHQUUVqF0w/kTotn9/thw4ZhamqKpaUlsbGxvPvuu6xZs4ZevXqhqamJvr4+q1atYt26dSLK3pzi3hYrr8+Gdh8+fMjNmzdJT0+nTZs2jBs3TuRGVVVV8fXXX7N+/XpUVVXp0aMH7u7uKCsrc/36dcaPH09xcbH4MUCuIHz//fei77aZmRnJycmUl5eTmprKkSNHRIjI1tZWXE/Bi9fY2EhDQwN6enottqAVUJDka2tr09jYyJMnT0hISBDUSe3btxcbTG5uLgUFBaKYZ8mSJaxdu5aBAwcSFhbGhQsXWLFiBT4+PnTo0IGFCxcK4vCHDx/y8OFDEf5tbGxkwIABWFlZUVFRISi6tLW1kclkmJubo6qqSn19PdHR0ZiamuLo6CgW1G+BouPVs0wOx44dE4d++/bt8fX1JTg4mKCgIFJSUrh69SobNmwQnZmioqIoKCjggw8+YMyYMYCcK9fMzIzZs2djZmbGyy+/TFpamvDu1dXVcffuXWJjY7l16xYODg64ubmRkJBAfHw8vr6+wtOtmOeWYPr06QQHBxMQECCothITE1FVVWXUqFFYWloSGRlJcXExY8aMQV1dndraWm7cuCFyXlNTUzl+/DiBgYFYWVlx6tQpcnNzefHFF9HV1aW0tJQnT55QV1eHubk5b731Fg8ePKCkpIT79+/To0cP0Q65vLyciooKhg8fTl1dHYGBgaioqAj+xr1796KsrNwi5fXSpUsEBQUJCpSUlBT09fXp1KkTMTExrFu3juDgYNq2bYuenh51dXVkZmby8OFDamtrsbKyIigoiKVLl3L16lUOHDggur589NFHWFpaiuKLiooKnjx5gpubG3PmzCEtLY2FCxdSWloqvNIgp7kbN24cQUFBqKqqipbRKioqYr20BAoP/qlTpyguLqZbt27Y2NhQU1NDUVERbdu2pbGxUeSj5uXlUV9fLxgkTp8+DcC4ceO4du0aiYmJpKWl4eLigrm5OYWFhRQUFGBhYcGtW7c4deoUPj4+zJs3TyiJDQ0NnDlzRuSgK3J7Qb7ZK4ydZw+e5qKioqIJbdz3339PdnY2zs7OwgtiZGTE5s2bWbp0qagKBnkER+FdVXz31atXqampoX///vj4+Ih+8r6+vgQGBgqWFJAbaoqc55SUFCwtLfH396esrAwtLS309fVFehbIu0EVFBS0WEaF10Yhr8IgTE1N5fbt21RUVAhKsG3btvHo0SOSk5MxMzOjtLQUiURCZWWlUNTU1dVFMZK/vz9ubm5s2bKF5ORkCgoKiIyMpKKigg4dOohUNQMDA1xdXVFTU+PatWskJSXRo0cPnJ2dhbc5ODiYnJwcwU/ZXCg8mooWtIp8cWVlZYyNjamtrRV55I8fP6a8vJyqqirMzMxwdXUlMzNTpLHo6+tTUVEhimHq6uooLi4WKR4K2rjHjx9TUlLC888/z5QpU0QurCKnXZHWovAUlpeXCyOusLCQ4uLin1D2/TcoKysTHx8v2HT09PTEmlfQOimolpydnfn8889JS0ujS5cuGBsb4+DggJKSkkj3UET+3NzcRFtlhYFUXV0tOs7Z29tjZmaGjY0NJSUlwvAKDg4WBasNDQ3IZDKRs2xra/ub0luef/558vPzm0SIfH192bdvn6AGVYzd3d1d6AB37tzh5MmTFBYWEhgYKFI/QH6WGhsbi5bn+/fvp2/fvgwcOJCysjJ2795NTU2NiNCCPCXi+vXr2Nvb06dPHzQ1NSkpKaGxsRF9ff3fFMECuZNp8uTJot12WVmZMLTgRyeSgi3K3t6eUaNG8eTJExYtWsTNmzcZNGgQhoaGQmnu2LEjBgYG3Lx5k5SUFNLT00WnQpAbWNeuXcPV1VUoozo6OsLwVqQKKTzCZmZmODo6UlFR0UT5/yW0PA70FFFRUVy9epUBAwZw4sQJ5syZQ3x8vAjX3b59W2wEb775Ju7u7shkMqGRKxRXW1tbLCwsePLkCUeOHGHLli2Ym5szZswY3N3d2bBhA42NjYwfPx4PDw+WLl2Kqqoqs2fPJiwsjKtXrxIeHk5DQwO9evXCy8tLeCJ+C6m24kdTcFkePXqUDRs2UFVVxezZs5tYxpqammLRvfvuuyKcqegmpKenx/jx42nTpg16enr069eP/fv3o6SkJG6w8ePHY2RkRExMjLBefvjhB3bu3Imvry99+/blyJEjKCkpERMTQ1ZWFrW1tZSXl/+mjjfPYvny5bz44osUFBSI3ukxMTHs2LGDadOmCeqmkydPsnbtWgYPHsy8efNITExsUpiioK1RwNvbm927d2NmZkZiYiLl5eVoaGgIr3FdXR07d+4U/anHjRtHz549RT/rZw2PCRMmMHbsWObMmdNsufr16wfIc5N79OjBo0ePyMvLw9fXV4xPQdOTmZkpOGj19PTEgZecnMzx48cxNjamrKyMAwcOcOPGDTw9PZFIJNy4cYO6ujry8/MpLy/HxcWFtWvXMnfuXAYNGsSkSZNYtmwZ9fX1nD9/HkNDQ2bOnIm9vb2YZwV1VX5+PosXLxaGWXNw8uRJEe3Iycnh5ZdfprCwkBdffBFDQ0MWLlxIr169BEl8Q0MDqamponHHmjVrGD16tEhpmTVrFl9++SVZWVncvn1b9LJ2c3PDxMSEhQsX4uTkJHpzKzY+RWOEgQMHMnv2bKZOnSqKD+rr6/H09ERVVVV0wGkJ7t27x+eff86pU6fw9/cX3jT4MWz6LINBUlISMTExDBs2TKQeKSp8w8PDefvtt4mJiSEsLIxFixaJtpL9+vXD29ubefPmUV5eTn5+Po6OjmzcuJGysjJ27tzJ3Llz6dy5M1u3bkVDQ4PS0lIiIiI4ffo0ysrKTJkyRRTZNBfbtm3jlVde4dixY0ilUtFwok+fPsITNXfuXLS0tDh27Bjm5uYizGxiYiK8+iA/9M6dO8fw4cPF/aOhocG4ceO4f/8+Z86cob6+np49exIYGMjWrVt5/fXXKSoqwt3dnX79+pGRkcGpU6fo2LFjE88uyEPPR44caeIBaw4UYVNXV1c8PDzE3pWVlcWKFSsoLi5m06ZNmJqaMnjwYG7dusWwYcPIysoiMjISZWVltm7dSkxMDB9++CEbN25k5MiRvPbaaxw/fhwlJSW2bt1KVFQUampq1NbWEhISwtChQwkICBAKsJ6eHgMGDCAoKAglJSXMzc0pKipi6dKltG3blhdffJH9+/fz5ptvNuks9mtQKJaampq4u7tTVlYmaLAWLFjAuHHj0NPTE50RFXnTL7zwAqNGjRKtNBXrubKykm3btrF9+3ZUVVWxsrLC1NSUESNGMHbsWJycnEQIWMGGs2/fPjZs2MCtW7ewtbWltraWwYMHC+U1PT2dxsZGBg4cyI4dO0hJSWH9+vXNlrGqqoqGhgYcHBzo1KmTKCIEhDEQEhKCpqYmI0aMYOXKlezfv5+DBw+KWpEnT54AiE55HTt2RCKRUFJSIpQYxXf17dsXS0tLQaZ/4sQJ1NXVCQwMFHR4ChQWFrJx40bMzc358ssv+eGHHxg8eLBIdWkuFJ5UxfWvX79OVVUV27Zta+I88fLy4sMPPxSe65ycHHJzc/nhhx/IzMxk6NChoqvckSNHhGNHEfmKjIzk448/Jjo6mgMHDqCiosK8efNYtGgRIOe2njt3LiEhIXTo0AFlZWUiIyPx9/dvYiC3VEEvKirC3Nxc/Mbt2rXj0aNH7N+/H1dXV3r27CnYoZ6N7rq6ujJ9+nSGDh0quHbHjRtHfX09Pj4+PH78mLS0NEG1p3CygZylYNGiRYwYMUIo3ffv3xcF/1lZWaxfv57CwkLBONGxY0f+j7X3jO+q3Lq1r/Tee++VhDRCDSEQOqH3qghSBVQQFREVFBWkI0gTpFfpnQCBkISEkkB67733nvdDfus+ZPs8ZxPfM79st2Bg/cta855zjGvIycl1Cb343+pfNa+tra1cvnyZV69esWTJEkaOHMmJEydwcHCgsLCQ6Ohobt++zaRJk8RoXLpR+fj4MHToUOTk5EhNTRXZ2UpKSpiZmfHBBx/Qo0cPLCwsqKmpYeDAgWhqamJsbMyoUaPo0aMH0dHRFBcXc+TIERFTef/+fS5cuICVlZV4qLe3txMWFtata2traxPaLon16uvrS2xsLC9evGDz5s0UFRWJTHRJr2NmZsbixYsZMmQIRkZG7N+/HxsbG/GhhM6Hlbq6OocPHxavib+/P3/99RcPHz7Ew8OD2tpaEQrg5+cnTm3t7e3U1tbi5OREZWUlSUlJqKqq0r9//247D6OiooiPj2fEiBE4OjpSXV1NY2OjWDmpqKiIJr28vJxLly7x+vVrkpKSGDVqlDhIPH36lGfPngn5xrRp0wgICKBv374oKipy4cIFLl++zMSJE0UOO3SeviS5hK+vLx9++KEQrRsYGJCamioQRc3NzeLG976lpqYmJjqqqqo4OzsTHh7OwYMHCQwMxMXFhW+//Zb4+HhxU2lra8PFxQUNDQ3q6+upr69n0qRJDBs2TBgR8/Ly2LRpE6NHj6ZPnz48fvyYPXv2oKSkxAcffICHhwfLli1DRkaGoqIi0tPT8fLyQkZGBjk5OfGaPn78mKKiIpycnLC1tRUZ4VJz/T6loaFBRkYGDg4ORERECHOSvb09hw8fRlVVlRs3bvD06VOGDh2Ks7Mzfn5+jBo1irS0NCwtLUlKSiI4OJhhw4bh4uLCrl27uHHjBsrKyhQWFtLa2irCHcaPH09jYyMvXrygubmZ+fPnk5yczLNnz4DOm31NTQ1z5sxBXV2dKVOm4O7ujqWlJZcvX+bIkSNdMGTvU69evcLU1BQzMzMSEhI4cOAAS5cuxcTEhOvXr5OYmMjs2bPFulf6+0VHR9OzZ0+R9BceHk5raytr1qwRE822tjaSkpK4e/cuRkZGDBo0iC+++IKysjJxuNDT00NPTw8vLy/y8vLEZFNZWZnm5mZsbW3p168fFRUVgvfcnTIzMxNeAE9PTyIiInByciIoKIjnz5/z8uVLli5dyt69e9m+fTunTp0iLS2NmTNn0rt3bzQ1NXn9+jWXLl3CyMiIwMBACgoK+Pbbb1FXV2fw4MEoKytz5MgRHj16JAwz0GlumjJlCqdPnxaGUSm7fePGjejp6REeHi7y4idPnoyWlhbh4eHdukYZGRmUlJTEUEBRUZGKigqysrLo378/hoaGVFRUCGd87969MTMzIywsDGNjY5ydnWlsbCQsLIyTJ0/i7OzM69evKSkpISQkREhLzMzMaGpqIiIigvb2dhQVFVFWVhaf5ZSUFFxcXERzUltby5MnT4RRpra2FnNz824bYZSUlFBRUaGwsJDDhw+Tm5tLcXEx8vLyfPnll0LSFh8fT1RUFH379sXJyYn4+Hji4+OZNGkSOjo6PHnyREwZvby8uH79OlVVVWRlZQnTZWFhoXhdJPd6TU0NXl5eBAUF8erVK3JycgQ7s6qqCj8/P7y9vfn6668xNTWlrKys21Kz4OBgHBwc8Pb2pqOjg5cvX6Krqysg9K9evWL58uW4uLgQGBiIv78/z58/58GDB0RERAgG74oVKxgzZgxycnLk5OQIM3ZFRQUhISGoqqpSVFSEoqIipqamaGpq0tjYSE1NjdCRSgFCenp6LFy4EDk5OSIjIwFwdXUlPj7+Xw11ZGRkxMb4m2++4ciRIwwZMoS//voLZWVlWltbefjwoSArSaZOS0tLNm3axN69e4mOjmbSpEmoqakJrSp0Novy8vIiolricY8aNUpIE6XksH79+jFjxgx69uyJhoYGx48f5/Lly6xZs6ZLylx3cWdv375l9erVaGtrM3jwYMaOHUtqaio7duwQsho9PT0hISgtLeXmzZuEhYUJJFleXh65ubloa2uLht7a2pqhQ4cKzWtHRweJiYnIy8vT1tYmYqdPnjxJREQEmpqafPbZZ+jp6bFz504KCgpQUlKirq4OVVVVTE1NaW1t5dKlS//1mv5V8yovL09iYiJ3795lzpw5TJgwgVGjRhEdHc327du5cOECgwcP5vvvv6euro45c+YQEhKCsbExp0+fFhiI69evk5KSgo6ODubm5oLPVldXR0xMDHV1dXh6eooUIU1NTYyMjJCVlWXr1q0kJyfz2WefsX37dmxsbPjjjz+6rMCDg4NFtu77loqKCq2trWJlOnz4cHr37s2lS5c4deqUwKgMHDhQOB2hM35NejA8ePBAREsOHz5cPNTk5eXp27cvFy5cwMHBQZjLYmJiKCkpoaGhQcQWSpGCgGCoSlPeoqIiampqhPavu5WTk0NISIgwm2lqaopfCwwMFBqWsLAwzpw5Q21tLa6uruzdu5djx45x+/Ztfv75Z37++WfKy8tJSUkR+mUpHvTBgwfs2bOHkpISZs+ejb+/v5guVFZWkpOTg6WlJWfOnMHOzo7Lly/j7e2Nn58fmzdvpqamhqlTpxIcHMz333/fLaYddDawBQUFyMrKoqOjQ0VFhbh53rhxg7lz59LS0oK8vDwtLS3Iyclhbm5OS0sLSUlJmJqa8v333wtJgXQjioiIwNfXl+XLl4vpm/RrHR0djB07lrFjx3Lw4EGeP3+Ol5eXWJtC50Ns48aNODk5MWnSJObMmcOZM2eIiIjoVvPao0cP7t69KxjDfn5+REVFYW1tjaqqKtXV1Zw7d4779++Tk5PDrFmz0NXVZc2aNeLA9ddff3H27FmKi4vFIWvMmDHIyMjQ1NQkmK1SM5ednU1cXBwODg64u7sL9J0kZ9m6dSvFxcUsWbKEPn36CFZsRkYGZWVl3W5edXR0+OGHHxg9ejTr1q3j+vXruLm5MXPmTHJycjh48CAqKip89dVXQOek0dLSkqioKGxsbFi4cCFv3rxh48aNuLm5sXXrVqDz+xMeHk5RURGNjY1dpDcKCgo0NjbS0tIiXid9fX369euHo6OjOOxoaGjQr1+/bk9b3y1XV1eqq6uxsLDg/PnzTJ8+HS0tLUxMTEhPT+fq1asoKCjwySefsHjxYhITE7l48SIaGhrC4Pr8+XO2bdvGl19+Sb9+/Vi7di1bt24VhibJTKOqqkpQUJBY6Xl4eHDw4EHMzMwEu1l6ICopKVFSUsKFCxeIjY2lvLycKVOmMGfOnG43r21tbQIhJZXUgAwdOpTBgwcLnerkyZMxNDTk5MmTJCUloaenJ7SRzc3N7N+/X+S9Gxsbk5CQgLe3NwcOHAA6nyfR0dGC4NKnTx8aGxvJzs6msbFReDGgc4Wbm5vL7NmzsbKyorS0VHx3u4NZUlFRoaOjg/379/8jZERfX180r3FxcRw7doy2tjYcHBw4ceIEf/zxB4WFhQwZMoSzZ8/S2NjIwoULWbx4Mfb29nz77be8efNGNPs5OTns27cPe3t77ty5I9KgNDQ0CAoKEsxpyYtSU1PDn3/+yaRJk/D09OTo0aOsXr36H1P1/1YRERFMmjQJPT09QkND+eabbzAwMGDnzp04OjqK9XpsbKxI7wsKCsLS0pKysjJSUlKYO3cumzZtQktLi9DQUCorK9HV1UVZWZmcnBxu376Nuro6srKyAoLfs2dPvL29WbhwIadPn+bmzZtUVlZSW1uLjY0NQ4YMEYbaP//8kzlz5mBpadktDJhUUsLh7du3efToEY2NjZSUlHDt2jXmzJlDc3MzYWFhpKen06tXL27fvs2dO3fYuXMn8+bN4/Xr1+Tn54upvZTW5eHhQY8ePcjPz8fV1RV3d3dx8JAqPT2dxMRE0tLSsLOz6zKMSk1Npbq6usuBo7q6ussz+31KXV2dv/76CxMTE8zNzcnOziYvL08YUKOionB1dcXIyAglJSURDJKbm0tAQACPHj2ipKSE/Px8hg0bJppXRUVFIS9qaWkhMzOT9PR0GhoahP8jPj5eUBJcXFx4/vy5CCSQzF0VFRUUFRXR1tZGREQEwcHB/9Ug+q9lA1LT9K7h6P79+/z2228MHTqUzz77jOrqag4fPsyTJ0+ATsGxpG1JSkoS/MB334hHjx5x5swZRo8ejY2NDV9++SWNjY0i0u7IkSMkJiairKxMz549RSM8depUWlpaaGxs5Ndff+Xu3bu4u7szePDgbgHgpSCFZ8+eISsry7Bhw9DW1sbIyAh7e3u0tbUxMzNj2LBhXRziGRkZ5OXl4eHhgbm5OdbW1ty7d4/S0lK8vLyoqqoiPz+f/v37ExISwqFDh1i+fDm9evVi8ODBjBs3TvBM+/Tpg52dHZmZmVRUVGBjY4O6ujpNTU2EhISgpKSEs7MzYWFh/PTTT13E0u9TxsbGLFmy5H/EwgQEBGBra0tTUxPl5eUMGDAAW1tbqqqquH37NiUlJWJCo6SkxNixY/Hx8aGurk6gtaCTSrFx40ZCQ0O5fPky5eXlQiZw8eJFYmJiRCDFiRMn+Pzzz/nyyy9Zs2YNU6dOpaqqiv79+6OkpNTtB6ZUBgYG4vMmRey9m9YlrTekiE7pn11dXcnPz6eiokKk5bwbp6ivr4+lpSWffPIJH3zwgcCnHD9+HGtrawYNGsSiRYuIjY2ltLRUNG3Hjx/nt99+o1+/fixbtozm5mbs7e0FKul9ViXvltSUTJ06lUOHDnHv3j0KCwv54YcfMDc3F9+ha9eusWXLFuzt7dm9e7f4nHl4eDB16lQaGhq4evUqffr0EQcMJSUlbGxsOHPmDPHx8YwaNYr+/ftjbGxMUlIS4eHh1NfXM3PmTEaPHk1qaioRERH0798fdXV1tm3bxqNHjwRtY+XKlSL68n1LinHt06cP33zzDZmZmQwYMAAVFRXWrl2LjY0Np06dYsSIEQQGBjJ48GAx/U9MTGT9+vU0NzczYsQIRo8eLX6ugYEB3t7eonkMDQ0Vq6zy8nIKCgqYN28e48ePp6GhgcTERD788EP69esnHiJtbW1UVVWhra0tGlrJwf++df78eb7++mvmz5/PtGnT2L17NwUFBZSWltKnTx+WLFnCH3/8wa1bt/jkk0+YP3++MFZJNWzYMLZu3UpzczOXLl3C3d2dRYsWkZ6eTkdHB0FBQfTp04empiaxxQEEf1FKDZNc/dLKvaioiNzcXKKjo/nss8+4cOFCtzFS0LkJ+M8Mcy0tLerr6zl8+DBv3rzBycmJJUuWIC8vz5MnT3jy5Anp6elA5yGhvb2d+Ph4tLS0hE60uLiYV69eiUNtbW0te/bsoaCgAF9fX/T09CgtLSUvLw8VFRXs7e3R0NCgo6ND6KVtbW1pa2sjISGB1tbWbjvUofOwl5iYyLVr18S/++WXX/D29qawsJD9+/cLbqtklomLi8PAwAAXFxdOnTrFq1evxAH71q1beHp6Mm7cOLKzs9mzZw8GBgaCXytdx7tDmocPH3Ljxg0B2X/x4oWgEry7atbV1cXe3h4XF5du3VPNzc3Fa6OtrY2cnBwNDQ3CwDdmzBjS09NFbCx0GoTu37+Pvb09H374IS4uLgQHBwtqgLKyMh0dHTx//lxMy8vKyoS29d69eyQmJnLhwgWcnZ3R1NSkpqaG4cOH4+HhIXSRra2tjBo1itjYWJ48eUJgYCDLly/vliwCOocdTU1NODo68sMPPyArK0tbWxs1NTXcunVLcJeliNe1a9cycOBAcnNzWb58ufizpdeprq6OyMhIDA0NmT59OpaWlmhra4s+4d0ocImYFBYWRnFxsdgcQ6eWeMyYMQQGBgIILnF3m9f169czadIkOjo6cHNzQ1lZmcDAQAwMDATvNTo6GkdHR1RVVXn06BFRUVFYWloKMoGqqip+fn54eXnR1tZGY2OjMK4mJyezZ88ezM3NmT17NiYmJuTm5vL27VsqKiqYNGkShoaG3Lx5k7Vr1zJlyhQWL15MTEwMBQUFBAUFMXfuXNrb24mIiKC2tlYctP+3+lfNa3t7OwMGDKCpqUk0K9B5grCzsxPa0OTkZGJjY0XjZWRkxKtXr0hKSiItLQ1jY2N69uzZRWMRExNDeHg4M2bMwMPDg/LycrKyslBVVUVDQ4PS0lJiYmJwc3Nj6tSpKCkp8erVK7y9vZk3bx5Hjx7lp59+orGxkXHjxtG3b1/u3bvXretTUFDg/PnzxMfHo6GhgaOjI0+ePKG2tpbFixcL8XFFRQWampoCySIRFExMTOjduzf19fU0Njaio6NDeno6+/fvJzY2lr/++kvE2t2/f5/+/fvz9ddfA506P2n6Gx0djbKycpfUm02bNiEvL8+nn35KeHg458+f7/ZU0tjYGCsrKzIyMigpKcHW1hZdXV3i4+NFHvywYcNExC503iDt7OxQVFQkLy+PzMxM/Pz8hHEMOh/ohYWFVFdX4+DggJ2dHQEBAdy9e5cjR47g6upKnz59SElJwcDAgLy8PFavXk11dTXa2tqigXR3d6e9vZ23b9/S3NzMli1busVAhc7DVVVVFcrKyigpKYkEm3enoDU1NcjLy6OiooKysnKXGGApInDUqFFMmTKFvn37EhwcjImJCfLy8iIdDjqlFXfv3iUtLU3QFCSOZWJiIq2trWhoaHDlyhXk5OT46quvsLGx4f79+8jIyAh9VncmPhJQXXqYOTs7o6qqyp49e4iIiGDKlCkCAZWcnCw2GZLWHP4PWk46WJ06dQotLS2RX93Y2Ehubi6lpaXiZqmpqUlSUhJhYWG0trYyefJkJk+eTFpamuBXurm5ISsrK9iaO3fuZObMmd1uXrW1tYmOjkZLS0us+2tqaggNDcXd3Z1hw4Zx+/Ztzpw5I5jKjo6OODo6EhYWxq+//oq1tTWpqamCHyoZO+zs7ETTefPmTU6fPi1iXzMzM2lqasLLy4uGhgbq6uqQl5ensrJSGAskzF9+fj4WFhYiGag79fz5c1JSUjh37hwWFhbCjJWZmYmGhgYzZswgNTWV7777TiS1rVy5kqysLDZt2oSnpydjx47lk08+EYlbPj4+jBw5kkOHDpGQkICamhq2trY0Nzfz4sULkfpTWFjIy5cvSU5OxtXVlU8//bQL3ujdw1p7ezupqam0tra+d3SjVKmpqSKgpK6uDkVFRQwMDJg2bRq//vorhw8f5rvvvmPUqFFkZGSI9DBpPZuZmSkQfB9++CE+Pj789ddf5OXlAZ0u85SUFL777jsRFKKoqEhOTo5Y6dvZ2QkEUWVlpUjYgs7DbFVVFerq6v9qpe7m5sbt27fx8PAQ8pPp06ejr6/PnTt3yMvLQ01NTaDqgoODhds8ICCAtLQ0FBQUsLa2Rk9Pj9raWh4/fkzv3r3x9/dHXV1dNBodHR10dHTQ1NQkmkTJ0Cjde7KzswWdYMyYMYLjKeGHevbsiZmZWbeaVy8vL8FSNzY2Zu7cuSgrK4vNRHl5OZMnTxZGxtDQUHbu3Mnr16/x9fVFQUGB5ORkCgsL8fHxYcCAAUAn5/jPP/9EQUEBHx8fsrKyCA8Pp7GxEX19fTQ0NHj8+LForPr06cPHH3+MkpISDQ0N1NfXo6mpycCBA6mpqUFfX58xY8Z08aW8bzU1NaGjo4Obm1sXU5TEJY+KikJXVxcNDQ0hUxk8eDA///yzCEtpa2sjPz8fGxsbXr58KfwtEkM8KSmJR48eERcXJ2gMbW1tQupRV1eHkpISubm56Ovro6ysLA7dzc3NnD17loiICAICArrNzZawXf9ZNjY21NTU8OLFC2E4LC8vp7W1VUQxFxcXk5OTg4mJCSNHjsTJyQkZGRlxv+vo6CAyMpL8/Hz09fVRUVFBTk6OzMxM7ty5g6Ojo7iO/Px80tPTiY2NZe3atSxdupTm5mZhVpbCYTQ1NYmOjv6/XlO3m9dDhw4xdOhQ5s6dy9SpU0XCU3t7OytWrGDBggVCg+bo6Mj06dPJy8sjKiqKxMREXr58iZeXF71798bHxwc9PT2ioqLEOF6acEhTzYMHD1JcXIy+vj5aWlp8++23lJWVERISgry8PKqqqmhqarJ9+3Z0dHSoq6sjICCABQsWMH78+G6v1SUHb25uLhEREVRUVKCoqEhycrLQSKmpqdHS0kJycjL29vYEBgbi7u5OQUEBmZmZJCUlIS8vL6ZSGhoaQtP29OlTBg0axOXLl3n48KFYGUlr261btwoBs52dHXp6ejQ0NKCgoICSkhIVFRXExcWRmZmJu7t7l2nK+5aMjAz37t1j3bp1NDU1cfLkSTo6Oli1ahUPHz5kwIABuLq6iht+VFQUR48epbGxEX9/f0xMTNDR0RF8U+i8YUVHR9Pa2oqamhplZWXiBLlp0ya+/PJLli5dyujRoxk7dixLlizh1KlTPH78WPBXLSwshNnh2bNnAuq9Y8eObl9jW1sb9+/fp76+XqBqRo0a1QURpKam1mWCkZeXR15eHsrKyly/fp2LFy+SkpKCo6MjCxYswMjIiMePHwuOInQapzZt2kR9fT3ff/89QUFBtLW1MWPGDF6+fMmsWbO4du0a169fx9vbm5s3b2JqakpBQQHp6en/MCC8b/n4+ODl5dXFlFhUVISpqSk+Pj4MGTKE1tZW8vLyWLt2LWvXrsXAwAAdHR3KysoEmik0NJSgoCC8vb05d+4ccXFxLFmyhNLSUjIzM5GRkWH27Nnihn7y5Enevn2Lmpoaubm5YsJTVlbG/fv3UVdXx8fHh82bN1NfX8+RI0feyzn6P9Xt27f54YcfcHd3Z9++fSgrKwsdaGJiIiNGjBDpRjY2NoKZmp6eLhpldXV16uvrhSY1Pz+f+Ph4mpubcXBwECZSBwcHDA0NsbW1RUFBgcePH7N27VrWr19Pnz592LhxI6dPn2bNmjWMGjUKWVlZAe5XVVVFQUGh2yipqVOn0qdPH5qbm0V8sZaWFtbW1mI1uH79evT19Vm6dCmnT5/Gy8uLyMhINmzYwIwZMxgwYICIJlVTU+PixYvCte/k5MSJEyfo06cPMTExHDx4kLdv3yIjI4OHhwcdHR0UFxczaNAg+vbtS2pqKlu3bqVnz56YmppSXl6Oubk527ZtY9y4cSQlJYkV/fvWoUOH+PDDDyktLSUsLAx9fX1mz55N//792bJlC2fOnOHt27f06NEDV1dX/P39efHiBWPHjmXQoEGCH927d2/GjBkDdE61tLW18fX15c2bN+zZs4fExETxZ0ZGRtLQ0MD8+fOFXKapqYn29nbU1NS6HDKkprKjo4P6+vpuN6+1tbXo6+vz+eefC/LGwYMH+fPPP7G1teXnn3/G2dmZtLQ0vvrqK2pra4WHoq6ujhUrVuDu7s7Dhw/JyclBQ0ODxMREGhoaGDRokAhlkLT40oRYYgCfO3eO3r17s2zZMsLCwti2bRuOjo789NNPODg4sHbtWvbt28eJEyewtrbuwqt+39LQ0KCkpAQNDQ1aW1sZPXq02NA8ePCAuLg4saGDTq24j48PMjIyZGRksGHDBhwdHfn444/p3bs3ERERXLx4kePHj1NaWipS3WpqakhOTqa9vZ3169ezYsUKzp8/z+TJkxkwYAC//fYbSkpKVFVVkZ2d3cUk3K9fP+Tk5Lp9uJIqIyMDAwMDWltbef36NUVFRTg4OODq6oqVlRUGBgY0NDRQVlbW5Znh6emJmZkZeXl5VFRUkJ2dLfSxTU1NNDQ0sH79evr27UtZWRnl5eWkpqaKLY2cnBy7du3iypUrrF+/XgwcMjMzRQ/U0tLC5s2buXr1KmZmZmRkZHRb8yoZF99l6koHEg0NDXx9fYUJz8TEBAsLC5SUlEhKSiI3N5e6ujocHBwwNTVFVVVVSFZKSkqIjY3FysqKbdu2UVtbS3h4ONXV1ZSXl/8DaWZlZcW0adN4+/YtO3bsYOXKlfj5+bF//362bdvG6tWr8fb2xsrK6v998yonJydckNAZd1ZXV0fPnj27oH4yMjJIS0sjNjZWaDklJpq1tbXALCQmJvL8+XPa2tqwsrLC2tpaNGQVFRXU19djbW0togOjoqIEE+/OnTsMGzaMwYMHc/78eXJzc9HR0eG3334TDXR3v6hnz55l3bp1fPDBB5iYmGBsbIy6ujre3t7cvn2b33//ncrKSoyMjIiJiWH06NEMGjSIyMhIbt26Ra9evXBwcBCyiLi4ONrb2yktLWXWrFk0NzeTmpoqoht37txJZGQkf/zxB87OzowePZqsrCw0NDRwcXHBzs4OGRkZmpubkZGR4fPPP+fTTz8lMzMTdXV19u3bx5kzZ7p1jcbGxuTk5KCrq0tHRwdaWlqC/djR0cGAAQO4evWqyHd+/PgxERERjBo1im+//RYFBQWuXbtGbm4uo0aNEgzVkpISnJ2dkZeX5+7du9y+fRsvLy+srKz48MMPhSBcWVkZMzMz5s+fj5GREfLy8qSnp2NsbCwagMrKSszNzTEyMuqC9HjfUlJSIj8/n9u3b+Pj4yPMININLz8/n8LCQqEzlR7cT58+xcHBAQsLC+bOnYumpibx8fHU1dWJPHIrKyt0dHQoKiri4cOHhIeHM3DgQOHGfP78OXFxcbi7uzNr1iyOHj3KmzdvGD58uPjeZGZm4uLiIpzhWVlZ3b7G6upqSktLxeS0tLQUHx8fgcFZtWoVlZWVgnn44sULjh49Sl5eHm/evBEEgJiYGExMTKipqcHIyAgHBwfi4uLYsmUL+vr6NDY2kpKSgr6+PnZ2dsjLy3P69GmePXsmXM/SCr20tJSCggJMTEz48ccfGT16NM+ePRObhe7Uxo0befHiBampqcyZM4chQ4Zga2tLr169hObe19dXTCxra2t5+fIlYWFhVFRUoK+vLyQgTk5OaGtrC23wvn37yM/PR09Pj8zMTOLi4khKSmLu3Ll8//33XLhwgby8PExNTVFTU+P169fIysoKekNWVhYWFhZdEu66iwNbtGiRkLX8J/Lu3Z/r6OhIQEAAcXFxbN++XaDy8vLyWLdunUhvcnFxoU+fPty8eRNra2smTJhAz549CQkJITg4GBsbGywtLUlLS8PKygo/Pz/k5OTo1asXsrKy7Nq1i2PHjjFx4kQmTZpERkYGWlpaTJs2DUBce3fK2NgYU1NTOjo6sLS0xNTUlIiICFJTU+nZsycLFiwQ2zhXV1eWL1+Ol5eXeF+kh3yPHj3w9vYWTUJlZSWGhoZ4e3uLSZSSkhJNTU28ffuWV69eMWPGDHEAr62t/Ye8qry8nLCwMNrb2xk4cCA6OjrdHna0t7fj6+tLbm4ur169wsTERGj4vL29RfO5Z88eioqKGDlyJAMHDkRVVZXs7GwsLCywsrLCxsaG6OhocegwMTFBQ0MDRUVF0VCnp6cTFRUlJuTZ2dmEhoYyYsQILC0t0dfXF1KniRMnUl9fL5oI6b7a2tpKbGxst66xtbWVpKQk0bzA/8EcWVtbk56eLkyyYWFhIhEqLS2N1NRUVFRUMDExISkpCQ8PD5SUlHjw4IHAtqmqqlJVVYWuri5Tpkyhvb0dd3d3qqqqSE5OFtM4qTmW4rkTExOFGbNXr16MGDGCnJycLhKO9y0jIyPk5ORISEgQh/NXr15x584dsUWUUE52dnZUVFRw+fJlSktLGT58OGfOnCE9PZ3nz59jaGhIQ0MDEyZMEOENWVlZwtScn5/P9evX6ejowNPTE09PT6KioroYzd49wEraVC8vL7EFlKbU71vSxuzhw4coKioyc+ZMVFVVaWxsRFFREXV1dSIiIgRSTdIlQ6dMztDQEBcXF2xsbNDW1hbma0n+0tbWhoGBAXV1dRQUFFBcXCyaYskIp6KigqysLFZWVmJ4c+nSJUxMTLC1teXNmzesXr2a0aNHi+n8/6263bzOmDFDrNukFZ6MjAwODg5dMuELCgr44osvRPc8ZcoUsWaWTo75+fmEh4dTWFiIo6Njl1MBdK6Ejh07hr29PQsWLCA4OJivvvpKrIygUw+3fPlyPv30U3bv3i2iKv9tZWVl0dLSwqxZsxg7dqxYZS9evJiMjAwuX74sEl6Sk5MxNDREXl6eW7duceXKFWbMmMHUqVP5448/OHDgAF988QUtLS24uLiwbt06Ll++THJyMtevX+fcuXMsXboUf39/QWOQzCeVlZUoKyuL5lt6kHz00UcoKioyd+5crK2tGThwYLebV3l5eTw9Pbl48SLKysqoqKjQ0NDAtm3bumiL9u7dy549e9DT00NbWxtDQ0NhwomPj+fXX38lLS2NI0eOMHr0aAICAlBVVSU0NJSjR4+SmpoqwgD69evHhg0bkJeXJyoqiujoaIYOHcrUqVO5cOEC3333HfPmzRPXHxAQwNChQ6mpqemy6u5OaWlp4ezsLA5OPXv2xNraWqRFpaens3btWmxtbcnLyyMuLo6EhATKysoYMGAAs2fPRl1dnWvXrrF3715MTExYs2aNYArn5eVhb2/PnDlzRCJYVFQU58+fZ82aNSKTWzrRvgtutrW1RVNTUzyYpFzs963ExETu3LlDRUUFNTU1FBcX4+7uLhq5hIQEbt++jZaWFsXFxRQVFTFs2DAqKyuFCQ06USgSwsfd3Z2ePXsybdo0nj17RkdHB7GxseJhN3PmTE6cOEFlZSXXr18HOrXEEkR86tSpKCoqcvfuXWpraxk/fjzDhw/n8ePH/PLLL92Wt5SUlACdD8rr168L3JBE7fjjjz+ELlxHR4f6+npUVFREMpvEhXw3ehA6J0NpaWk8ffoUGRkZ8ZmWjJoTJ05ETU2Nc+fOUVhYKJicpqammJiYUF1dLeQ1JiYmlJeXo6ur2+0EKqlxBYSTuLW1VbjlOzo6+O2330hNTWXRokWkpKSwZ88e1NXVGThwoJiEGhkZUVVVxaxZs3B1dWX16tWkpKQwYcIEXF1diYyMRFZWlnXr1uHj4yO2KJMmTcLExEQkpEkN9Lhx4xg7diynTp2isLCQkpISDAwMiImJ6db1AcK4IyMjIxrDM2fOsH//fkaNGsUff/zB+PHjRcqWoqIiAQEBZGRk8OLFC8rLy4HOw152drZgUGZmZpKcnMzHH3+Mr68vO3bs4PTp00Dn903CcUn17oZC2u40NDTw559/0tzcjKenJzo6Ot1O85MOtbt372bHjh18/PHHrFixgo8++gh9fX1aW1uZOHEiERER7N69mzlz5gCdht+8vDxOnjxJRkYGI0eO5N69e+zZs4dffvlF6L3Ly8vR1tZGVlZW3AelxlFq2CX+rqqqKjNnzhRawaKiIpHkJ12/rKxst9ng1tbWpKWlUVFRId5LqSwsLFi4cCGysrJERUXxzTffEBQUxIYNG8TkUNpanTp1CisrK1avXs3MmTNJS0vD3d2dgIAANDU1KSkpwcfHh4CAAB4/foy/vz86Ojrs37+fsWPHAp33UDMzM8zMzARSTIqatbS0pLS0tFseF6mkxri+vh4vLy969epFcHAwn3/+OQ0NDXz77bdMmjRJbBtDQ0M5c+YMenp6qKmpoaGhQW1tLSUlJejr62Nvb4+dnR1tbW2kpKSIGPTp06eLeNfjx49z69YtPvjgA8aOHcvRo0fZu3cvc+bMQVtbW0gJrK2t+fHHH6mpqREbpHfvHe9bTk5O7Nixg2fPnglJn9SENjU18euvv3LlyhWGDBkiMHy+vr58/PHHWFlZCfqH9MyS5HHGxsYkJiby4sUL+vTpQ//+/cW01srKqsvftaKigps3b6KtrY2bmxu//fYbFRUVAtEXGBjIyZMn2blz53+9nm43rxJOSVo/SHzOpKQk3rx5g7y8PMOGDUNeXl6ckKAzTWb69OlER0fT2NiIvLw8pqamuLi4iP/V09OjuLhYRDdKcY7V1dUcO3aMiooKpk2bJhxpL168oKSkhNTUVLy8vFiyZImITQUE3Lc7NWHCBPHPksAfOk9mq1evpk+fPuKU6+joKEwMI0aMwMrKShACdHV1hWsZOm9CEs/P0tIST09PsrOzefr0Kc3NzYJHumHDBsaOHSsSaZqamqipqUFFRUXonObMmSNi+f5NctGtW7fIz8/v0kwkJyfTo0cPoFOLJEkEevXqJTQw3377LVVVVWzdupVffvkFJycnEhISCAsLo3///uIGeffuXd68eYOKigotLS08evSIhw8fMm3aNGbOnImVlZVgA1++fJmBAweyYMEC8vLy2Lx5M0FBQeJ9VFFREWar9627d+9y7tw53Nzc2L17t2gee/ToIaYzZWVlREZGcvbsWcHoPH/+PNeuXePOnTtCvD5hwgQGDx5MdHQ0LS0tohGSbiBubm60trZia2tLeXk5N27cIC4ujrVr1wKIdamzszOGhoaCYiFpehMSEnj48CEXLlwQUZPvUw0NDeTl5fHs2TNxQCwqKhLvqYaGBkuWLEFDQ4P8/HxCQkLQ1NTEzMyMoKAgDA0NaW1txdzcHD8/P+Tl5bl+/ToNDQ00NjYSGBjIlStXuH//PpcuXSImJobbt2+zYsUKbt++DXROBH///XccHBxITk4mKytL6Emla8/JycHKyorffvut28izrVu3igz63bt3U15eLqbIw4YNIykpif79+9PY2Mjjx48BsLOzIzs7m8TERKqqqqivrxfNaXBwMM+ePSMvL080RR0dHQQGBjJp0iRiYmLw9fUVYHApnWratGn07duX169fs2rVKiwsLLCzs6OpqYmCggLxHXz38P4+FRYWJkgeGhoaxMfHi9CSoqIifvrpJ168eIG/vz/Ozs6YmpqSlZXFo0ePuHXrllhfFhUV8fvvv/P48WNMTU2Rl5eno6OD0tJSNDQ0ePPmDaqqqkRFRREbG8vLly8xNzcnNTWVN2/e0NHRgbW1NUuXLmXixInMnj0bBQUFrl69yunTpzl37hzW1tb/CpAeHx+PvLw8ycnJnDlzhlevXuHs7MyWLVvQ1tbm+fPnXUy7El5v0KBBBAYGkpmZyfHjx8V2asCAAUycOBENDQ2ePHnCzp07GTZsGAUFBSJfXjIY3bhxg/r6ej777DMMDAw4f/48TU1NTJo0CX19fUFgMDExEabKV69edev6rl27RkJCAvv27aO1tZUbN26wYMECYdw5evSo+L6kpaXx4sULAWo3MzMTxqQJEyYwcuRI9u3bJ9LSoLNBfXfKOXPmTLS0tHjz5g2RkZEoKip2mS6HhITQ2toqMHxz5syhpqZGNCmSIfXWrVvvfY1ubm5oaGgQFhZGS0sLvr6+pKWl8fnnn9OnTx/WrVsHdDbyUqQpwPbt27G1teXBgwfC9Dly5EhkZGRYunQpPj4+tLS04OfnJyKqnz9/zvTp04WRSFtbmwkTJlBeXs7hw4extrZm7NixqKiooK+vLzZ/ra2t/Pjjj9ja2jJ//ny+/fbbbr2PDQ0N5OTkoKioKDbInp6eLFu2jLy8POEvgE5T+du3b5k8eTJGRkZERUWhp6eHsbExgwYNwsvLi/DwcK5du0ZNTQ2LFi0SZBppUCDh46RNoK6uLmpqaty8eVOwjn18fMTwSnre/PzzzwK51p2KjIykd+/efP7554LVXVpayujRo1FVVSUvL4/09HR0dXWZM2cOHh4ehISEoKOjw4wZM8Tn58WLF+jq6mJgYEBwcDDx8fG4urqipqYmNtVNTU0cOXKElpaWfzzTSktLRXper1698PT0JCMjg8TEREaNGsVff/0lDrf/7X7T7eb1XS0GdH4ZampqiIqK4vHjx2hoaDBy5EhcXV3FDRI6v1gSb6+oqAhjY2NsbW3/8SZIJqfS0lJcXV3x9vbm1atXbNiwgXHjxvH999+TnZ3Npk2bMDMzQ1dXl4yMDD788EPxQknaoH9zOpGc2FKyl4mJCZqamjQ3N9OjR49/vKCtra3U1dWJ1Vp1dTW1tbX07NmT8ePHU1VVhZ6eHr6+vuTn53Pv3j2GDRuGvr4+hYWFnD9/niFDhvDRRx9x/vx5Fi5cSHFxMT4+PiIesLGxEV1dXWRlZcX4ffTo0URGRopQiO7U/fv3OXDgAImJiXz66ac8e/aMqKgoTE1NKS0t5c2bN9ja2jJq1CjKyspEMwedjW2fPn0YO3YsI0eORFVVlZSUFNTU1FBRUeHvv//myJEjFBQU4O7uLhJPYmJiuH//vmCnhoaGcu3aNbKzsxk9ejRLly7l+++/59ixY2ICCJ03/O6GTTx//pwrV65gZGQkGlfpi6mkpIScnBweHh40NTWhqalJYmIibW1tgiIhxZw6OzszePBgDAwM6N+/PwUFBcIYAJ2Govb2duTk5FBRURHTiba2Nm7evIm3tzcnT54kPDxcJM9Jf5/S0lL+/PNPQkJCujRY71tubm4MHz6c4uJi8d44OjqKm4y5ubnI/t61axdHjx7Fzs6OzZs3i++clEgnxWhK8bhSapybm5sw50lygD/++IOOjg7c3d05ePAgffv2JScnh8TERGRkZLC3txfv3cuXL3n48CE9e/Zk3Lhx3TKkQedWpaCggJCQEOLj4ykpKSEqKgpfX190dXWZMWMGU6ZMoaOjg5CQELy8vLC1teXChQvC5OPt7S2Yu/v27ePy5ctdNLjSA2fKlCkiohogOjparKxVVVVRVlbm1q1btLe3s3TpUqZMmYKqqqqY3DY2NnbZCL1PSU57KZY1MzOT6upq9PT02LNnD3v27MHExISVK1diZGREe3s7NjY2vHnzhvLycpSUlFBQUKC5uZmmpiZevHjxv669jY2NycjIIDc3V5ix+vbti729PX5+fiKVDBBOf1tbW+zt7Tl79qzQ4na3CgoKsLS0FM1lbm6uoHFUVFRw5swZTp06JRBDb9++5e+//2bIkCH4+/uLoBsTExOKioqIjIxk2LBhIh1u9erVDB48mOLiYpSUlITkJz4+npSUFLKysliwYAHW1tbCCCZ9f1VVVZk9ezZKSkq0tbWxbds2nj171sUJ/t/q+fPnPHv2DDk5OUxMTETUr2QWU1RUxM/Pj5KSEsFf1dXVRV9fn/j4eHJzc6murhbkkAULFtDa2srTp0+pqKggNzcXNTU1PD09BckmMzOT/fv3c+TIEYyNjZGXl6e9vZ07d+6we/duZGRkWLlypXhWSZ8T6ByGvKv7f9+ysrIiJiaG2NhYbGxsiImJISoqivb2dmF0tbe3Z9GiRcJQpaKiwrBhwzh//jwGBgb89ttvyMrK0tjYSFtbGwEBASKGGzqncjExMbx9+xYbGxv8/f3F+vj58+dCulNUVIS1tTWjRo0Sz+unT5/y8uVLqqur/5UPpLm5GVVVVczNzQWaTUdHpwunXfp73L9/HxcXF+bOnQuAqampkMINGzYMJSUl1NXVOXXqFHp6enzxxRfExsaycuVKHj16xCeffEJAQIAwPzs5OdHS0sLgwYN58uQJR48eJTc3l8uXL1NUVMTNmzfx8PAgLy+PXbt2UVRUxOXLl7u1yTp58iTFxcUEBQXx2WefsWTJEv7++2/8/PxQVVXl7t272NjYMHToUPr164ezszPe3t7iv5dSMdPS0ujo6BB9X3JyMmVlZQwcOFBsC1JSUqivrxfcXknyKScnh4ODA4MHDyYyMpKSkhJWrlyJjIyMkDaNGjWKpKQkzp49+/++eb1x44ZIeSkqKuL48eMYGRnRt29fvLy8xHpbTk6ui2N1//79XLt2jfb2dhQUFKiqqmLMmDFiwtjS0kJCQgLt7e34+fmhqKgobjJycnI4OjqKD6UUjzd8+HDGjh37j5tNQ0ODgFL/mwa2vLwcFRUVNDQ0qKqqIjo6mvr6elxdXf+RMJOQkEB+fr4gEBw+fBgdHR3mz59Pz549qa2txdvbG0dHR968eYONjQ2ysrLs2bOH/fv3C34iwIABA/j1118FXaCxsREVFRXU1NSoqqqisrISLS0tGhoaiIyM5NixYyQnJ3f7FCZpu3bv3s2dO3dEYpCVlRVeXl4MHTqUjIwMLly4wP79+4mKigJg7dq1jB8/nkOHDjF16lS0tLT48ccfCQoK4sGDBxw5coTMzEyx3nr79i3y8vKMGjWKlStXYm5uLtba1tbWfPDBBwwdOhQ/Pz/u3LkjvlzSBBgQoPHu1JAhQ7CxsSErK4t169ahoqKCjo4OlpaWQvc6cOBAAgMDMTIy4u7du0yfPl24ymNjYxk8eDDz589HS0uLJ0+e8Pz5czQ1Nf+BQzIwMMDCwoL6+noRR9rc3Mz69esxNTXF09MTe3t7srOzxbQPOlfiwcHBWFhY8M0332BhYfFeqxKpNDU1GTt2LHV1dVhYWNC7d2+CgoKECU2Cw0dHR3Ps2DGx8n03mUVWVhZZWVmePHnCTz/9REFBAcuWLcPOzo7Y2FiWLVvGs2fP0NPTEw5tPz8/PD09CQwMFOaBDz74AHl5eXbt2iWcvsnJySgoKDB27FgSEhLYsmVLt95DgO+++06ktmzbto2ePXsKuomEOtLV1SUyMpKsrCwGDhwIINzWn3zyCXPmzOH06dMcP36c2tpa+vbtS2JiIhUVFVhYWPDtt99SVFTEypUrWbFihfj5lpaWfP755yxZsgRlZWUiIyNpb2/Hw8OD8ePHY21tLXS+0Im9+uabb8R6831KVlZW3NMks0l4eDhXr14VzvmCggLi4uKYMWMG4eHh7N69m8DAQA4cOMCrV684ffo0zc3NmJmZYWVlhby8PC9fvuTx48dCMpGTk0NhYSEBAQH079+fQ4cOAZ38zmnTprFo0aIuq+CDBw+yY8cO7Ozs8PPzEzrjf1MzZ87ExMQEExMTnJ2dUVBQICkpiRUrVmBra4udnR2vXr1i1apVzJgxgwkTJtC/f39GjBhBSkoKV65cQV5envXr16Orq8vt27cFgF86hEhbo/nz5zNixAgePnwopp3z5s0Tz5gRI0Z0OQi3tLQILmxISAinT59GVla2WxsQW1tb/Pz8iImJQUtLi3nz5hEdHc3s2bMZM2YMmzdvZsyYMURERNCjRw8RE7t161YuX74sJD8TJ05kwYIFzJ49m6dPn7J27VqSk5PFPePrr78WmuPs7GwuX75MRUWFQAnm5+fz4sULWlpaMDU1paGhgaKiIgwMDETjKiUKdrd53bVrF8uWLWPcuHHcuXOHtWvXoq+vz6lTp5CXl+fKlSvi++jv7y8OWnv37uXBgwfMmDGDjz/+WEyQGxsbOXr0KEpKSixYsAAVFRXOnz+PmZkZ3t7eopHcsWOH0FFKAxsPDw+RHCbV3bt3qampYeXKlZw5c4bhw4eL5/H7lpaWlugVWltbyczMFNxoqQ4dOkR8fDxDhgwRTTN0HrIdHR0FPhLoklTl4OAgnhvZ2dmCwJGcnMyWLVsYPHgwc+bMwcnJCT8/P8FWV1JSIi4ujo8++gjoxGZNmjSJ8PDw/2pm+s/S1tZm37591NfXM2DAAAYMGIC6ujra2tpis+Xn54eFhQXff/89VlZWIuyksrKSAwcOICsry+zZs0XYRWBgIMOGDaOqqoqysjIRaqKhocGxY8eor68nJSVFyMp69uyJlZUVGzduJCIiAgMDA6GDl5GR4fr160LW8D5x291uXhMTEzl+/DizZ8+mo6OD7OxsZGVlcXR0xNLSki1btrBjxw6UlZUxNTUVk6lXr17x5s0bAFxcXHBwcOjimIuPj2fHjh1YWVmxcuVK9PT0yMnJQU9PDw8PD3766Sdqa2u5ffs2p06doqysjOrqarKzs8nIyCA/Px8ZGRlsbW0FEeDp06fdFuAfOHCAjIwMRo0axaBBg9DQ0ODFixfk5OSgr6+PiYmJwB/17t0bOzs78vPzSUxMRFNTE11dXVRUVEhMTOTp06ciQzg9PZ2EhAQGDRqEgoKCyGGXmrlHjx6hrq7e5TT1buP29u1bmpqaGDJkiJjIysrKdkE/vW/5+fkxdOhQ4uLiUFNTw87OTqRbDB06FB0dHQ4cOEBoaKjAuDg7OzNo0CCMjIxEdJ+2tja2trZYW1sLE5M0iYqNjSU9PZ3Xr1+LLwZ0TptCQ0O5c+cObm5uBAUFUVVVxZMnT1BWVsbf318Ai42MjNDS0hLax+5cn5+fHxkZGezevVuc7FNSUlBWVsbQ0FBoDMvKyggLCxOTNinhxs3NjeTkZIqKinjz5g25ubm4u7uL1VFxcbFo6mJiYrroyF68eEFTUxP9+/dn8eLF3L17lx9++IErV64wdepUzMzMOHfuHKmpqfj6+gqGX3eqqqqK1tZWOjo6MDU1pUePHrS3t3fZjPzxxx/s379fGB7k5eW5dOkSOTk59OjRQzwM9+3bx71795gyZQpLliwBOg+pWVlZ6OrqYm5ujqqqKr1792bGjBldwjGqq6uprq4WAG5ArKaDgoLQ09MjMTFR0Ca6U+Hh4SQmJjJo0CAWLFggmpD4+Hji4uLQ0dFBX1+f5uZmysvLefDgARYWFtjb2zN27FgmTpxIfn4+d+7cQVZWlo8++ggbGxuSkpJISkrC2dkZY2NjqqurBdpFal5dXFx4+vQp6enpIs1JS0uLRYsWoaioyMOHDwVuKTU1lbCwsH9oa/9bpaamUllZSVlZGffu3RPGjoyMDOTl5TEwMKCkpISIiAiSk5OpqKhAT0+PoUOH4u3tzdOnTwkJCRFsxcDAQMLCwggLC8Pc3FzQSoqKisRUTEtLCw0NDW7evImLiwseHh5UVFSQn5+Pqakpurq6+Pr64uTkRElJiVjruri4dHFZv29ZWFiQm5uLqampcB3LyMjw+++/o6uri7+/P+3t7YSEhFBWVsbIkSORl5enqamJ58+fY2Fhwccffyz04xIoXU5ODhcXF6Kjo2lqamLu3LnMmTOHjo4Orl27JqZ206ZNIyoqChkZGWGGvXr1Kl5eXhgbGxMeHi4kPgATJ07s1vV5enri7OyMjY2N4KhKh4Xg4GBev35Nz549MTAwICUlBRsbG+zt7UVogMTKVFNTw8rKih49epCdnY2JiYnwImhoaHRxbFdWVorvn46ODvfu3UNRURF7e3smTZqEtbU1JiYmQpNYVVVFTEyMoPZIevf3rbt377Jq1SqgM3o7MTGR6upq8Z7Gxsby+vVr4uPjGT58OHJycsjJyXH69GnCw8MZM2YMCgoKAmmpra3NzZs3SUhIoH///qipqQkj9Lx584QU4t3GUUdHBw0NDcG7ff36NWpqamRkZHDixAmGDBnClClThGmsuxUaGkppaSnu7u7Y2NgIQ1x7e7swT9XW1mJgYCDupR0dHTx48ICmpia8vb0xNDQUE0c3Nzd+//138vPzUVVVxcPDgzlz5vDgwQPCwsLERlpVVbWLbj8wMJChQ4eKe4uOjg4ODg5kZmbi6+vLmjVryMjIYNu2bd26PldXV65cuSIkByNHjhRkhrdv35KYmEhQUBCmpqZcuXJFEC6++eYbMQyRkFmmpqbo6emRnJyMjo4OTk5OpKamirCohQsXoq2tTVRUFAkJCaSkpBAaGoq9vb0YXFpYWNC/f3/hc5LigqUEuXcPB/9b/SvN68KFC8nKyuLbb79l7dq1FBUVAZ3NlpaWFhs3bsTExIRdu3bh7e3NiRMnqK+vFzgTIyMj5s+f34XHJiVYJCUlCRh4SkoK/v7+uLi4oKKiws2bN9myZQtycnJ4eXmRmZlJdHR0l7Xl0KFD+e6773B3d+fq1ats27aNmTNnvvf1Xbp0iaysLAwNDRk0aBCKiorY2tpSU1MjnP9btmwhISGBv//+WwifExISUFdXZ+rUqWRkZHD27FkiIyNxdnYWLlADAwMx+fruu+/46KOPUFVVZe/evfz+++9MnTpVPKAl8wJ0rnpUVFSE0UZZWZnJkycTGBiIgoICGzZs6NZ7KB0GlJSUMDAwENpZeXl55OTkePv2LZqamkyYMIFhw4YxZ84cSktLWbVqFS9fvuTHH38Uuqb8/Hxqa2sJDAzEzs6OW7dukZ6eTlNTE+np6WhoaAg92759+zhw4IBYj8bFxaGpqYmzszPW1tbU19eTmppKbGwsvr6+BAQE0NLS0u11rFQ2Njb89NNPwpCSnJwsOK7QObFZtWoVWVlZLFq0CDMzM6ytrfHz8xMpXN7e3nzyySfiVK6oqEhTUxO5ubkYGhpSVVXF0qVLkZeXZ+vWrQLLM2jQII4cOYKurq5YDb2briVNs/9tXb58GXNzc6KioggNDSU1NZUePXqIuEvobEDfvHnD+vXr2bRpEx0dHUybNo1Vq1bx22+/ieZVQ0MDa2trPv74Y6DzO5Cbm8uWLVvo3bs3HR0dYsV57do1rl27RktLCzt27GDkyJHcvXtXHEQrKiqoqKjAw8NDuLslQ0l3a8WKFfzyyy+CmWhra4usrCx3797l+vXr9O7dW0y2DQ0NuX37NhoaGsyePZs5c+Zw69Ytzp8/j7y8PN999x19+/bl9u3bmJqa8tVXXxEfH8/BgwcZNmwYq1evJiMjQzxECgsL2bJlC9u2bRNa5alTp+Ls7Mzjx48pKyvDzc2NkpISdu7cib6+Po8fP+abb7557+tLSEjg3r17PHr0qEtyn4uLC7W1tWKKUVVVxcaNG/H09OTXX3+lra2NtWvXcuHCBdrb28nOzhZyq8uXLxMSEiJQe42NjaxcuVJo+auqqli/fj2//fYbxcXF4jUyMzNj3Lhx6OrqMnnyZGHuA8T72F1yC3QGkly6dInJkyeLBEUDAwPOnj2LhYUFWlpajB8/nokTJwoJjzR1tre359ChQ2J9mJeXh4WFBSNHjqS8vJzY2Fiio6MxNzcXU/fvv/+ehIQEdu7ciZeXl0hB8vb2plevXrx584ZVq1axbNky1q5d2wWEPnPmTH7//fduvYcGBgZERkbSs2dPXFxcSEhIoKqqinXr1nHq1CnGjBnD4sWLUVJS4tChQ/Tq1Ytz584xc+ZMlJSUWL9+PSYmJvz2228C/i6l8kn3zvb2durq6igtLaWlpYW2tjb8/f2xtrampaWF0tJSrKysGDJkiGBktra2imvLycnh5s2b6OjoCLRTd+pdJBXAp59+yunTpxk9ejSfffYZn3zyCdHR0Vy8eBE3Nzfx50qx3N999x1//vknSkpK4p5iZWUlKEQNDQ3ExMRQVVXF6dOnGThwoJBXSfX27VtaW1txd3cnOjpa6Gx9fX2xsLBAVVWV1tZWgoKC6NWr1z/Szv5bSRSPr7/+mqVLl4qhiXQtampqfPTRRzQ1NYnnh4yMDNeuXePs2bPMnz+fzz77rAv6cMGCBdTW1iIvL4+uri6HDh1i5cqVHDp0CE1NTREiIysry6NHjxg2bBiOjo5s3rwZOTk5ZGVl8fPzE3hGPT09lJSUMDIy4ssvv+xWEIOWlhb+/v4MHjwYS0vLLgQfaUDW3t6OiYkJ/fv359GjR/z111/Y2toya9Ys1q5dy19//cWOHTtYvXo1vr6+/PzzzyQmJnLjxg1kZGSorKzE0dFRDArCw8OF+ezy5cs0NjZSV1dHSUkJ8+bNY/DgwSKERFZWFl9fX27fvk1mZiY5OTn/NSK2282roaEhEyZMEBMoCwsLGhoa+OGHH3ByciIgIIDm5mYMDQ3FRCk6OhoDAwPhxvb29haN65UrV+jduzc9evTgww8/pKysTGTJa2lpkZeXR1lZGaGhoezbt4/c3FyWLVvGxIkTKS4upq6ujvLycqqrq0lOTkZfX1+sRd7Fbr1vSZFz0skHOj+4Hh4eGBoa0tTURGxsLHFxcXz88cecPXsWQ0ND9PT0ePz4MTU1NQJ27OHhQUtLCw0NDSgrK2NgYCA0og4ODqLJqKmpoampiby8PBobG1FWVqa4uJjTp09TUlLSZU2RmJhIaWkpnp6e/5oRamho+I8b0rtlYmJCYGAg6urqYmJqYGCAurq6yLN3cnIiMjKSwsJCBg4ciJeXF3V1dcTHx3P58mVxuurXrx9Pnjzhzz//5Pjx41RUVAhQtre3N76+vnR0dJCWliaMBZJ7VElJSUS4dqfu3r3LX3/9hZ2dHR9++CF2dnbY2Nj8gwGYlJREZGQkWlpaGBgYkJycTE1NDZMnT2bs2LFs2rQJOTk5AgICqK6u5uTJk/z+++8iLxzgyJEjhIeH4+fnh42NDQEBAbx580ZgekpKSlBUVGTNmjUUFBQIBNqXX35JSkpKtyUfUtXW1uLn58erV6/IzMzE1dWVKVOmYGxszPPnz7lx4waOjo70798fRUVFQZaws7PD2Ni4C9Zu48aNzJo1i7i4OJ49e0ZNTQ3l5eU8e/ZMTFRtbW25ePEiX3/9tWhqpJO2NBXKyMjg7t27mJmZiWYiIyODc+fO/atrHD9+PGlpaZw+fZqkpCQR9SshsCRWqZ6eHh9//DHq6urU1NSItWJwcDCPHj1ixYoVGBgYcOnSJQ4cOEB9fT0ZGRkoKSmRlZXF/fv3KS0tpba2lqamJpSVlUlKSkJFRUVsd9zd3Zk4cSK2traUlpZSVFREfn4+7e3tODk50aNHj/dadb1bQ4cORVNTEw0NDYYMGUK/fv0wMjIiLCyMtLQ01NXVcXV1paCggKtXr1JcXIysrCy3b9/m+fPnBAUFMWLECJ48eUJ8fDy2tra4u7ujra3NkCFDcHBwIDs7m5ycHIEVlB7K0oaktrYWFRUVBg8ejJqaGgcOHCAtLY2+ffsK8+n/nwoODubcuXPo6uoydepU4ViXDrQSR1tCg6moqAjTmb+/v8iV37VrFyEhIUydOpVhw4ZhYmJCYWEhLi4ubN26lbq6OhYvXsyTJ09YvHgxXl5eIkK4ubmZvn370tzcTENDA76+viJqW0VFBX9/f1xdXdmwYUO330OJwiJNpv/66y+0tLRYvHgxlZWVfP/99yQlJTF8+HAMDQ05f/487e3tXLhwgUmTJlFbW0tMTEyXe5P0+U1MTCQqKoqqqipycnJISkqiqqpK6MoLCwuJiYlhwoQJLF++HEdHxy5NX3V1NcrKyqiqquLt7Y2MjAxtbW3dZoTa2Nhw+/ZtwsPDaW9vZ9asWcLgs2LFChoaGrCwsMDb25vIyEgqKyupqqoSKKyCggJBfti6dStLlixh7NixfPrppzg6OhIVFSUwc2pqakLaIaWfRUVFceXKFXEvk5OTo7CwUNwHNDQ0UFNTo6ioSCR3dbekaHJpE1pRUYGWlpZoXtvb28UAQ9pAVFRUCD/AixcvhDTgzJkz3Lp1C19fX4KCgtDS0hINYltbG9ra2sL3cvfuXZycnOjbty+VlZWoqKiIAZb0+yU8WVRUFHFxcQwZMqTbQQxmZmYMGDCA9vZ2YmJiaG5upr6+npycHGJjYzEyMiI6OhptbW0cHR159OgRqampxMTEiPhXf39/Ll26xO3bt8V9vaGhgWvXruHr64uPjw8dHR38/vvvHDt2DOg0ZcnIyPD8+XP09PSEhM7Y2JiioiIMDQ2pq6vj6tWrxMfHY21tjb+/v4gc/r9Vt5tXaXSdkpLCy5cv8fHxIS4ujh9//JGxY8fy999/d+EB7t+/n6NHj4qGztjYWMB+paamsbGRGTNmsG7dOoG3gc4PzM2bNzlz5gzPnj0TbkBNTU0MDAwwNzcXGj8pwWXJkiXIyclx7do1VFRUOHr0KJs2bXrv65s0aZJYG9TV1REVFUVTU5MQjktcv7i4OMLDw/nll18YP348HR0dPHz4kIsXLzJ06FD++OMPAb+WHojQOalMTU2lrKyMnj17oqqqypQpU4SIX/p9ubm5HD58mIKCAjQ1Nenduzfy8vIUFhaSmZmJrKws/fv37/aNCDq1dlJaC3SeIKX/LyMjg52dHXZ2dnR0dAh3fH19Pb6+vrx48YJ9+/axa9cuAObPn09AQACXL1/mwoULxMXFUVhYiIyMDM7OzuK0nZOTg7GxMTNnzmTEiBEMHz5cNN+vXr1CUVFRYDVKSkooKCgQ0HCJsvC+JU3FjY2N0dHRISAgABMTE7S1tWlqakJNTQ0FBQX69OnDZ599RkZGBnFxcVy/fh1jY2OCgoLQ1dVl/PjxWFlZoaysjKysLImJiSLWd8uWLVy8eJHvv/8eBwcH1qxZg6GhITk5OYwZM4YBAwbQ0NDA5cuXUVRUFPBp6LwhycrKirV/U1NTt2+4kmShsrISNTU1RowYIQ4k+/fv59mzZ8JQNWLECAHtP3jwIPPmzSM5OZmrV6/Sq1cvzMzMyM7O5vTp09TW1vLRRx9RUVHBnj17aG5uFulmCgoKQgOlrq6OvLw8z549Q11dXbjz8/Ly0NTUJCcnR+CViouLu3BL37fU1dUZMWIEFRUVdHR0CJnFtGnTmDhxYpcHta+vL1paWiI0IS8vj9zcXGRlZWlvb+f27dvcu3ePiooKSkpK+Pnnn8UB8/r16xw5coQZM2bQ3NzMuXPncHR0ZObMmTx58oSioiImT55M3759sbCwEIfOvLw85OTkWLFiBW1tbfz999/duj5pFSuZJtTV1QkJCWHTpk2UlJSgo6ODqakptra2qKqqkpiYKHTVvXr1Yv369bi6unLy5EkuX75MeHg4CxYswMnJSXyX+/fvz+jRo/n000+5desWgYGBHDlyBFlZWfz9/ZGXl8fFxQV3d3eKioq4ePGiwNtpaWmJAcS/yVOHTvmFk5OTeM10dHSoqamhpqaGxsZGkeQjlZWVFVZWVtTV1Yl7YWhoKIcPHyYxMRFdXV0mTpwo+J8TJkwgICCALVu2cPDgQXr27CkS63777TcuX77Mzz//LCKcjY2NGT58OE5OTrS3t2Nubs6qVasYPXo0ysrK3Y74NTY2Ft/FhoYGMWXT1dWlR48eDBgwgF69eokoUQnQ/8svv/DVV18xceJEzMzMePv2Lebm5qKJzc/P5++//+bkyZMUFhaK91SiMwQGBpKenk59fb1IcJLeJ8kwJRmppPhRiW3d3U2IjY0NkZGRhISEUF5eTnp6OpaWlgwbNoz79+/z7bffcvHiRZYvX86+ffuIjIzE1dVV3DdlZWUFuq6goIC0tDQCAgIE0jI0NFQ8z7777jsMDAzo6OhATk6OiooK7t+/T05ODu3t7SIVccaMGQwZMgQ/Pz/y8/MFsunGjRv8/fff3fZJjBo1Cg8PD+Tl5amvr6eurg41NTVqa2sFs97V1bWLKba+vh4PDw/q6+sZPXq0GOhlZmZy8uRJXr58iY2NDWPGjKGxsZErV67w+vVrXFxcGDduHMnJycTFxeHq6tolQVAyaMvJyZGbm0tGRga1tbU8evSItLQ09PX1ux1lLKEEz58/T3l5OT169MDU1JT8/Hw6Ojqwt7enuLiYGzduoKamhrW1NTIyMl2iqIuKirCzsyM4OJgLFy5ga2uLnJwc9+7dw9TUlFmzZnHq1CmxuZg/fz7+/v7U1dUxf/58nJ2dhXZeMlRKwTl5eXns2LEDGRkZNm7cyJo1a/7rNXW7eZUixo4ePcq5c+f4+uuvkZeXx9XVVRiNwsLCOHz4MM3NzVRXV4sECukBeu3aNUJDQ2ltbcXa2vofaBCpZGVlUVZWZuTIkcydO5dr165x6tQp7t+/j6qqqog0zczMxMTEhFWrVmFubs7Dhw/55JNP8PPzY/Lkyd26vsTERH755RdGjx6Nr68viYmJNDc3ixNZe3s7EyZMYPjw4ejo6BAWFsann34q8CxWVlZUVFTw8OFD0bxJEN/Hjx/T1NQk0COSIcvKyoqpU6d20czV1tYyduxY0VSuWLECRUVFli5dysyZM7sAjbtbjY2NYi0hrQKbm5upra2luroaQ0ND1NTUkJGR4ezZsxw+fJja2lp8fHwwNTUVqIvffvuN1atXU1JSwsGDB3n+/DmBgYFs3LiRuro6QkNDBb9UW1ubdevWYWNjI6DVAH///TeFhYWMHz8eS0tLoqKiOHToEPX19bS3tzN06NBu34h69erF0aNHkZWVFQ/+4OBgrl69Kv4sqdlcvHgxp0+fJjs7m/Xr16OmpsapU6cEvFxOTo4nT56gpaUlJB+///47ubm5XL16FehkAI8fPx7ojBrNzMxkwoQJAufyrlELOtfyhYWFWFtbU15eTmRkpNBKvW+VlJQwbdo0rly5gpqamnAb79ixg5qaGr777jt0dHTYtm1bl1jW1NRU7t+/z8mTJ6mvr6eiooLk5GSxAVm8eDG6urq0t7cLQ11bWxtZWVk0NTUJOoWSkhLLli3DwcGBo0ePcuzYMXR1dfnoo4/Q1NQUa7tJkybx008/kZWVJQDY71taWlr069ePxsZGzp49y5o1a5g9e7ZwNL9bz58/p6amRmwKpIecNGkICAhg0aJFWFtbi38XExNDbm4uFhYWLFiwgHnz5hEaGsrdu3epqqpCX1+fJUuWiA3Ef2463l2/ysnJ4erqyoMHD7p1jYA4nCUkJHDp0iWh8a6oqCApKYlPP/2UYcOGsXfvXnbs2IGxsTEzZswgNjaW9vZ2hg8fTmRkJOfPn8fHx0fEN0olUTGioqLo6Ojg9evXeHl5YWhoSEVFBVevXiU6Opr+/fszZcoUvL29hfxESvTT19f/V83rwoULu+AHoVPLvHXrVry9vfn111+7/FpNTQ3p6enCbOTi4oKFhQXTp0/n7t27JCcn8/nnn2Nubi7SC3/77TeCg4MxMDDAzMxMIBr/J21naWmp0Fd+8cUX+Pn5UVFRgbKyMm1tbQQHB3fr+mRlZYmNjcXW1hZTU1NmzJjRJYgkLy+P+vp6Xr9+zfXr1xkwYAATJkwgMjKSQYMG8dNPPxEYGEhDQ0OX+4ShoSGTJ09GU1NTpKDJycnx008/8eDBA06dOoWnpycffvgh8vLyREdHo6amxvPnz0lOTiYgIEA0RO/+TAUFhW4fJAcOHIi9vb1IOCssLERDQ4Pp06czbNgwSkpKhMzB1NQUS0tLJk2axJgxYwgKCkJJSUkgCq2trbGwsBAmOSlUQEqRCwwMpKSkRGiF+/XrR21tLQ8ePCApKYmtW7fi7OzM9OnTxcZHer2h00D3b/GRO3bswN/fn2nTpmFnZ0d8fDxXr17l2rVrNDU18fHHH2NhYSEOW2ZmZsyePZsRI0Z0MTSuXLmSXr160dTURL9+/UQfU15eTkdHB+Xl5YSEhODg4MCuXbu6APkbGxtZvHgxZmZm/Pjjj1hZWVFWVoa6ujr9+vWjqamJixcvEhoa2q3rq6ysJDExkQcPHogUrHXr1rF27VoKCwu5du0aGRkZolGfOXMmy5YtIzMzkyVLlpCZmYmqqiolJSXiz96yZQsqKips3ryZHj16MGLECDGVnjFjBnv37kVVVRVZWVnGjBnT5dBkbGxMWFgYycnJ+Pv7s2zZMlxdXamoqHhvc2i3m1dArATa29vJz8/H39+fH3/8UZiHioqKuHLlChUVFdjY2PDVV19RWFjIqVOnyMzMpKamRpy4jY2NxQg8Ly9PgKhbW1tpa2vD2dlZxIYWFxdTU1ODtrY2GhoaxMbGcvfuXXJycnBxcSE+Ph43NzfRFP6nbuZ9KiYmRpinoJOPBoiYUDU1NdGoQOcJOSEhgdzcXPr164e6ujodHR3k5+djZGQkDCt3797l7NmzBAQEiJxfqSRMTnp6uiAB6OrqMnbsWJKSkggODiYiIgJra2uKi4tFxjTwr0wU6enpYm1cVVWFjIwMmpqaKCkpCX1bc3Mz8fHxFBYW0tDQQG1tLTo6Oujp6fHs2TOMjY1FotSrV6948uQJpaWlyMvLM2nSJNTU1MTNWElJid9//12sHx48eEBBQQGtra28evWKlpYW0aBaW1ujpaUluLiqqqrdRmXJyckxbtw4Xrx4QWZmJj4+PrS3t4sH04gRIwgJCRGTlqKiIhQUFFi+fDmqqqqMHTtWvO+1tbWkpaXR3NxMVVUVffr0obi4mKtXryIjI8OsWbO6GJEkM92ZM2cICAgQkhIp+jMnJ4eXL1+SkpKCu7s78vLy1NXV0djY2K3r1NXVFQQBb29vMeV98+YNa9asYc6cOeTl5ZGSkoKHhwf5+flCV/7kyRMiIiJECIaUWDdmzBgR6Zueno6ioiIeHh7IycmRnZ1NW1sbgwYNQl9fn6KiInR0dEhJSeHQoUNkZGQgIyPDqlWrsLa2FqZEQ0NDIcHpLioLOvW4AwYM4NWrV4ITamhoyLhx42htbUVRUZFz586xYcMGzM3NOXXqFMbGxoLVCp1YsW+++UZ8xsrLy7GzsyMrK4sTJ07Qr18/xo8fj52dHQ0NDXzxxRc0Njbi7u6OsbGxmLZWV1eTkpKCiooKWlpaVFVV0dzcjLW1Ndra2l0MJu9TBw4cwNPTk549e1JVVUVISAglJSUMHjxYTJu9vb0FAszf35+srCxmzZqFubk5n376Kc7Ozhw9epRBgwaxZ88e9u3bh5OTE46OjqiqqpKVlUVJSYkw7igoKDBz5kwhUZCyy8PDw0VAwIIFC4RUR0IiWVtbd5nCvG81NDTQ2traRS/b2NhIaGgoSkpKFBYW0t7eTlZWFq6urkL+JfknoJPd+/333zNr1iyCg4MpKytDVVWVuro6nj9/Lh54o0ePJi8vj4yMDOzt7TEzMxMkFej0Dvz9998i9hgQEeP/2Ty+bz169Iimpiah9WttbRXbsIaGBjIzM7l06RKamppERkbyzTffsGbNGk6fPs3GjRvJz88HOrX0737/GxoasLS0FGQf6NTou7u7k5KSIvwdo0ePprq6mgcPHpCVlcXFixcFJq53794UFhaSn59Pz5490dbWFlPN7pQ0Da+srKS6urpLc+Hm5iYGToWFhSgqKtLQ0EBiYiI9evRg3rx5//h5hYWFnDhxQlAvoFMfKyX5ZWRkiGfquHHjGDVqFFVVVZw/f566ujq8vb1xcnKisLBQBHBI3F4tLS1mzpwpBgvvWxkZGVy/fh0FBQWmT5+OmpoaiYmJ7N69m6ysLMzNzbGyshKNa1ZWFgoKCkJ+UlhYyIsXL4TszdXVFU1NTeTk5MjKyuLly5dkZ2fj5ubGixcvOHz4MPPmzRPc6pcvX6Knp0dMTAyZmZm0tbVRX1+PlpYW3t7ehIaGoq6uzpgxYwgPDxfSn/ctVVVVkbwWFRVFYmIiISEhDB8+HF9fXxoaGrhw4QKlpaV4eHjg7+9PQ0OD8KA8e/asy8+TXovy8nIKCgoIDQ0lNjaWjo4O+vbty8qVK8XnWTq8FBQUEBMTg5WVFXl5eWhra4s+pq2tDW9vb0xNTWlra3uv7UC3m9dLly4xcuRItmzZQmZmJmpqahgZGaGhoSFezIkTJ1JVVcX8+fNpaGhg6tSpGBkZMXr0aH744Qd0dXWZOXMmKSkppKWliYfK4cOHOXfuHHJycuTk5ODv78/BgwdJSEhg9erVaGtrs2PHDoyMjCgoKODu3bv06tULZWVl7t27x99//42joyOjR4/G0tKyixj/fUty4mVnZ3Pr1i1evnyJi4sLycnJKCoqoq2tLX5uQUEBtbW1jBs3jsLCQp4/f05xcTEBAQGMHTtWOJevXbvGkydPqKqq+h+nFw0NDdy9e5fw8HC8vb2ZM2cO5ubmHD9+XLgK161bR//+/bl//z7x8fHMnz8fFRUVXr582e1rTEtLw8XFhYKCAh4+fEhHRwf9+vUTaw/oxOjk5eUxbtw4JkyYQF5envhCS7G+o0ePxsfHh7KyMhFvevPmTXbs2MG4ceMElsfa2pqhQ4eKn+3q6oqMjAwWFhasWbOGS5cu8fPPPzNhwgQGDRrE7t27yczM/NdJadevX+fatWscPXoURUVFTp8+zahRoygvL8fR0ZG+ffvyyy+/sHPnTkxMTDAzM8PW1paQkBAUFRWFVkt6b16/fk1OTg5mZmZCAnP16lVcXV2FGbCurg5ZWVnWr19PSEgIX331Fdu3b+fHH39k6tSpIudaX1+fDz/8UOSzS4edjo4Ofvzxx/e+xrFjxwpjj8RrdXR05IsvvhCaOen0HhoayvXr14mKihJNqMRbfPXqFcuXL2fEiBEUFRURFRUl3tPjx4/T3NzM559/TkBAANeuXePGjRvIycmhrq7O77//zt27d0UqkaWlJU1NTTg7O7Nt2zZhovw3eerQ2WwoKCigp6fHjBkzePPmDZcvX+azzz4DOgNFbty4wbp160hPTycrK4ujR4+KKNqamhq0tLRYvny5uMccOnSIy5cvU15eLpBaiYmJ/P777/j6+mJnZ8fs2bOxsrKipaWF69evU1JSgqmpKZWVlYSHhwsD1x9//IG1tTW7d++mtbX1Hzf4/1YbNmzAxsaGVatWMW3aNGbMmEGfPn1Ec6GsrIyRkRFNTU2EhYUhLy/PDz/8gJubG0+fPqWyslI0Sj169MDT05OqqipiY2Oxs7OjqqqKs2fPimmwvb39P8gWNjY2LFiwAGVlZTIzMzl//jwqKioCNdTS0kJdXR2pqandZhFD5z394MGDzJ49W8i3pFW9tOY9fPgw5eXl/Pzzz4wZM4ZBgwb9j4lljo6O4p4QERHBBx98QEdHB5s2bWLAgAHk5uZSUlKClpYWL1++JD8/n169euHj40NwcDBr166lvr6es2fPMnLkSAChtbe1tcXMzAw5OTnu3Lnz3td39epVfvzxR0xMTMjNzeX333/H3NycNWvWEBQUJL53ysrKBAQEiM3ltGnT8PLywsTEhJycHF6/fo2ZmZk46D1+/FjEFRsZGXHnzh0BmP/uu+9ERKkUbWtgYMCxY8dE45qTk8Ovv/7KiRMnMDc35/Tp02hrawspWHdKOnivW7eO4OBgTp8+jY+PD0lJSZSVlQm+pyRj+uOPPygoKOCTTz7hyy+/REFBgfb2dkpKSoiLi+P+/ftdtkGKioq4ubkRHh7Os2fPsLa2pqGhgYyMDMzNzXFxcSE1NZX29namT58uNrzffPMNx44dw9/fX8SfLly4kBUrVnS7ef3888/5+OOP0dbWFk1ZVlaW0GTPmDGjC/f0xYsXxMTECD39L7/8wq5du7C0tBRSJX9/f0xNTXnx4gXh4eFoa2szfvx4PD09SUxM5PXr1yQnJ1NdXc0XX3xBfn4+gYGBrFu3DkdHR9ErtLS0cOLECVpbW9mwYQP+/v68fv1aJMq9T1laWjJjxgyWLVtGWloav/zyC6dOncLPz4+LFy8yePBgDh06RFNTE19//TUpKSkMHz6cfv368f3334vJNHRKtPz8/Hj58iXR0dE4ODhQX1/Ppk2b0NbWZvLkyV3SUpuamqiqqsLOzo7W1lZSUlIoKSmhV69eYiiwdu1aoqKiGDRoENbW1u+15el28/r69Wuxin8X0yStiaurq+nZsyf29vasXbsWAwMDseJramqiR48eKCoqIiMjI6DLr1+/5uLFi1y8eJGEhATxM69fv85PP/1Edna2SPcxMjKisrKSc+fO0atXL7Em1NfX5+XLlwIh4ubmRkFBQbeSRKAzuQc6J6oZGRm4uLgwY8YMAWkODw8XUxknJyeBsUhJSUFOTg4/Pz/Gjh1LY2OjQPJkZWUxbNgwFixYgLOzM62trUJbk52dTXZ2toi+lFAqlZWVPH/+nMrKShYsWMCKFSvE619ZWYmMjAxZWVnExcV19y0UXLWcnBzCwsLIy8sjPDwcS0tLdHR0UFRUxMDAgDFjxqCpqSn0NpGRkdTV1WFvb4+5uTl1dXW8ePFCTOSkaW5MTAzl5eUsXLhQTGfj4+O5dOkSnp6ejB07Vqx2tLW1UVNTY+fOnZSWljJo0CAMDQ0xNDQU7unuRjZqa2uTkZGBk5MTTk5OWFpaYmBgwKeffkpZWZkwjWhoaJCdnU11dTVjx47l/v37nDp1iuLiYnEq7Nu3L2ZmZlRWVuLk5ERgYCCysrL06tWLiooK4ejX1tZm+vTpqKioMGjQIEaMGMGDBw8E7+9dOYx0WpeqrKys2/gaLS2tLqZCCdclOWRVVFTIy8ujtLQUMzMzBg0aRGVlJcHBwTQ3NyMjIyMyq9va2ujo6EBVVZXXr19z5swZ4uLiUFdX79J0SriliooK5s2bh4aGBl5eXvTp0wdlZWXc3d2ZNGkS8vLyyMvLo6enR3t7O5GRkV2Yz+9b76YLOTs7c+jQIWxsbLhx4wa5ubnihO7p6cmsWbN49uwZP/30E2ZmZkyePJmgoCDCwsIEb1hCnpWWlhIVFYWKigozZ87E0tJSRDu+y5EMCwvj5MmTImREYpUqKytTWVkp8HCSga27xkJPT09kZWUxMTFBTk4ObW1tvLy8/vH72traKC8vF7r3lpYWEhMTmTJlCra2toSGhiInJ8fatWupqKjAxMQEBQUFlJWV6d27NxMnTsTKyorFixcDnQ2Xjo4OAwcOpL29nVevXqGsrIy1tTWurq7CuS0vL4+JiQn6+vq0t7f/q02WtMaNjo7m4MGDFBYWoqKiwuLFizE2NubatWvC0CIZW5WVlQkODhYBJpqamiJW28vLC3d3d968eYOsrCxOTk44OzsL417fvn1JSkpi586dNDQ08NNPPwmjSXt7OzNmzBCN65kzZ/jjjz/o0aOHkLn834ys/1NJWCrobN6MjIyQk5OjqakJLy8vdu3axfr164XkxtfXl/j4eNrb2wVFQVtbm9zcXCETkZGRQUZGBmVlZZ48eUJhYSGrV6+mpaWFfv36MW3aNOTl5Xn06JFI/fP19WXChAnIy8vj4OBAz549KSkpwcTEBBcXF0GukZGR+UcM+3+rsLAwRo0aJZCI0uBo165d9O/fXzSvsrKymJmZic91bW0tOTk52Nra8vbtW4KDg0lPT0dOTo7Ro0fTr18/Ojo6GDhwID4+Prx9+5a4uDjMzMxEAqC+vj7Jyck8fPiQ8PBwfHx88PT0pKamBjMzMyZNmoSHhwcPHz4kKSmJhw8fvpde8j/rP4H4lZWVaGtrM2vWLJycnLCysuLAgQOYmJgwZ84cLCwsuHnzJkePHsXe3p74+Higk+Pq5OSEhYUFb9++5eTJk+JnNjQ0kJaWhpGREQMGDMDLy4va2lrq6urEwd/ExIQRI0aI96i6uponT54IwpJ0b3r3efI+lZ2dLRj1KioqTJo0iZqaGqKjo6murkZHRwc/Pz9iY2OpqqqiqKgIExMTvL29xX3izp07JCQkYGtrS1BQEBUVFVhZWaGhoYG6ujqJiYmEh4eTk5ODo6Mj+vr6ZGZmiqASZWVl3rx5w61bt+jdu7fQwUuHlOrqauLj44mOjkZXV/e/fhf/FSqrvb2d2tpaEhISsLe3F1nhkZGRgq0aFBTEF198gZqaGsHBwTx48IDy8nLk5OQIDg7m119/ZceOHSxfvpzPP/+cvXv3CpZoSEiI+POuXLlCVVUV1tbWommeP38+wcHBXLt2Tfy+4cOH06dPH54+fSoiy548ecKJEye6vc6LjY0lMTERNzc3AgMDhUzgwYMHQqM1b948/Pz8aGhoENDgmTNnimnK2bNnOXr0KOrq6nzyySfihikhcKDzw3zx4kUAlixZgr6+Pm1tbUDnDSMxMZHx48fzyy+/AJ3rtnHjxgmN3Lu8uO6U1PRIN/zMzEweP34sEFcuLi6sX79enH4uX77M2rVraWxsFAitpUuXCrRFSEgI/fv3F4zEPXv2cODAAXR1dUVDe/fuXTZs2CBynKXXABCNjXTzllKwWltbOXv2LBcuXBD80fepmTNnCk6sJDmRSrrJrVy5Eh8fH4YMGYKvry+rVq3i2LFjFBcXA53a7v79+xMYGIinpydycnK0tLQIVBl0YoB++OGHLkZBqdasWcPXX38tDm4NDQ0C0/UuBi0lJYXr168TGhrarQdnTU0NLS0taGhooKCggKqqKvfu3SMqKoqvv/6aoKAg/vzzT/7++29WrlzJkCFDqK+vJy8vT0SCmpqa4urqyvbt2/ntt9+4ceMGw4cP5+eff0ZWVpa//voLRUVFgoODCQwMpLGxkfb2dpqbm2lpaWHJkiXY29tTWFhIeXk5Dg4OKCkpUVNTw88//4yhoSFLly6luLi4W9MsqaTPiGTi1NPTY8mSJdjY2IgHpLu7O15eXvTs2ZOjR4/y6NEj9u7di729vQhcOHv2LJs3b2bIkCF8/fXXzJ07l82bN6Otrc0PP/wgcFQtLS3CCPHkyRMOHDhAfn4+PXr0QF5eHgUFBYYOHSpMjEFBQeTn5wuW46BBg7hw4cJ7X99XX33FixcvxGcB/k9e+H++Di4uLuLz9ffff1NfX8/nn39OXl4ev/zyC87Ozqxfv158NqTfO3jwYHr06CHuGRcvXmTOnDksWrQIf39/8vPzuXz5MoBIuVNUVBTYuvz8fIyNjbG3t+8SHvK+NXDgQLZt20ZSUhInTpwgNDSUgQMHMnfuXFRUVIR/QDIuSrVt2zbCw8NxdXXF0tKSH374QcgJZGRkUFdXZ8iQIYwYMULI2CTKTGVlJVlZWfTp0wd/f3/xOvj7+4vp8aNHj9i5cyeRkZHIyMgIPXt3V+pLliwR5jgjIyPWrVsnTKHQqb8fNmwYtbW19O7dGxUVFe7fv09wcDBubm4sXLgQW1tb+vXrx9u3b3nz5g2NjY14enri7+/PlStX2LBhAy0tLRgaGjJ48GCqq6tJS0ujuroaS0tLgXfbuHEjX375JY2NjcK9v2bNGrS0tIRJtzurZqnCwsIYNmwYa9eu5ZNPPiE3N5etW7dy+/btLlISJSUlAgMDGTlyJC0tLcjIyCAvL09xcbGIs4VO2dbIkSPR0dERUjNjY2OReigvL09zc7P4zkmNTGNjI1u3bqWpqYkpU6awdOlScXCwtLTk0aNH3Y5o/p9K+g7279+fUaNGYW5uTkhICCdPnqSurg4jIyNGjhxJTk4Ou3fvprCwEE9PT6ZNmybCEgYPHsxnn30mpF0Sd/f+/fvY2NiIABUJn9mnTx/k5OSoq6ujsrJSNK8SWWTGjBnis3zy5Enu3r3brUOIZLY6dOgQDx484JNPPuHq1auUlZWJ+PVly5YREhLC1atXRayvjIwMmZmZaGtrM2DAABISEqirq6NHjx4YGRnRr18/4uLiRCLotGnTePz4sfjc3blzh+bmZpHKtn37du7evSuiqJubm6mrq2PFihUoKChw48YNMaD7b9Xt5rW6upq6ujqRkx4bGyu0JqNHj8bJyYm2tjZ69eqFvr4+r1694tWrVzg5OaGrq8tff/0lgO41NTUoKCgIh/CsWbMwMTGhqqqKHj16MGfOHCoqKggJCaG6upo3b95QUVGBu7u7GKtL7lA1NTUqKir46aefsLGx4fTp0wwbNozXr193YZr9t1q7di1OTk74+voKzqtUEsZq/PjxzJ07l1u3bnHhwgWSkpKwsLDAwcEBOzs7FBQU8Pf3p7CwEDs7O9G4bt++nYKCAn744QdUVVUFM1ReXl78OQUFBaSkpHDixAliY2O7iNEbGhq6OO8lbdC76/73rfb2dqysrBg/fjy9e/fukk2voKDA/fv3yc/PZ9GiRfTt25dly5aJ5JOUlBRevHhB3759CQoKomfPnl2mMkZGRsTFxfHtt98KLrCPjw8rV67sgmhKSkoS/Ntvv/2WxMREVq1aJfKpfX19mT17dreNIpqamqSmppKXl0dsbCyKiooihlN6eGlqatKvXz+2b9+Ovb29iIrMzMxEXl4eLy8vXFxcxIn8zz//pKysjA8++IDExEQ2b95MfX09c+bMQUVFhTFjxqCtrc3evXu5efMmW7duFf/tkiVLSE9P58svv8TW1pYNGzaQl5fH77//jouLC3Z2dmzdurVbgHQNDQ3q6upobW1FQUEBMzMzpkyZwsCBA+nduzf5+flkZmbS0dEhgN+So/bevXts376d4uJiOjo6hEwiKyuLfv368fnnn6OoqEi/fv04c+YMmzdvxtLSkj59+rBs2TI0NDSwt7enra2NqqoqTExMxOf0xIkTbN++ndraWlatWoWSkhJ2dnYMHTq021uQsrIyMQVvbGwkMjKSoqIiPDw86N+/PzIyMjg5OREREcH+/fvR1tZm586d7Nu3j+XLl3PlyhU+/fRTrK2tRSyzdED44osvqKqqEg+A/0zik/S6w4YNY8KECejo6Ij117sTVlNTU+rq6lBUVPxH0/nfqq6ujjNnzvDnn3/y2WefMX/+fJ4+fcru3btxcXFh8+bNyMjIkJyczI0bN0hNTaWtrY3W1lYmTpyIjo4OmZmZ3Lt3T3CXpc8GdLq409LSBPLq2LFjrFq1ChUVFby9vYVxU0IAvnnzhp07d7J27Vqam5vZuHEjpaWl/PrrryKTvbu1YcMGfH19hSzJz89PbFXg/+jh3q3q6mp8fX2F36G4uFhMmpSUlKiqqhIpg0OGDKF3794oKyuTnJzM2bNnkZeXZ82aNZSVlXHw4EH69OnThYCzb98+9u3bR3FxMePHj2fx4sUiFaq7utd3pRQyMjJdNPoREREcOnSIZ8+eMXr0aOTk5Hj27BkHDhwgJSWFzMxMXr9+TUBAAOPHj8fAwICCggJyc3NJS0tDU1NTyKs0NDTo06cP8fHxQmspeUOkkrjAGhoa/6vEo6CgQMhl3reKiorIyMhATk6OoqIitLS0GDZsGFlZWbx48YJNmzbxwQcfdBkSvfsdOX/+PLdu3RJmpadPnzJ9+nSUlZVJSUnhzz//xNDQkDlz5ojNQ3V1tWia1dXV2bx5MwYGBkImYWpqKrjMrq6uDB06lIkTJ3bZRnWnJBaxRA2SUI5SeXp6snfvXtHPSEinffv2idX/vHnz0NLSorm5uUukOnTKempra8VraW1tjaGhIS0tLXR0dIiBiLa2NkpKSqSkpJCdnU10dDTy8vJd+oCXL1/y7Nkz0Ve8T/Xv35/29naePHkiDmzQSa15971yc3OjsrJSoDHLy8sxMTHBycmJ4uJi/v77b/T09DAyMiI/P5+tW7eK3+/p6cnatWsZOnSoMBgOHDgQeXl57OzsePz4McXFxTQ2NrJjxw5iY2NZu3Yttra23Lx5k+LiYiHbrK+v/68yum43rxkZGdTU1IiJj5qaGrq6uuLU6+PjQ1NTE62trWRlZZGUlISpqSmTJk1CWVmZR48eAZ1fNA8PD5qbm/Hw8MDExIR169bR3NxMVlYW1tbW4s3x8/Nj//79hIWFERgYyPr160WzJ0W5trS0EBISItiL0dHReHp68vHHH3crjeLFixcMGDCAwYMHIyMjI0xL0snw+++/58MPP6SlpYVPPvlE3Ag8PDwE3NzCwgIbGxtWrlwpToJHjx7lq6++wsfHR3xwpDQdIyMjsrOzSUxM5PTp05ibm6OhoYGxsbG4Kevq6pKQkICWlpZY09TW1pKYmPivmldpXfm/sWLXrl3Ls2fPGDJkCN7e3l1ew88++4yXL1+SlJSEk5MTxsbGXXSi0vpIIkyMHDkSf39/cXKEzhtiVVUVVVVV2NjYYGhoSElJCampqfTs2ZOWlhYKCwsZN24c48aN65bZJz09nZCQEBISEpCVlcXKykqc5C0sLEQErJubmzBb5eXloaqqKmJMi4uLefDggWDzHj9+nOrqahYsWEBBQQHXr1/niy+++AcMOz8/n8ePH3PhwgXc3NzIzc0lPT2dyMhIUlJS0NHREdo8aTozbtw4wsLCxLTkfaqwsFDgVKRDRf/+/UVijxQ5OXHiRCZNmoSCggLOzs44OzvTr18/srKyyMrKEp/bmJgY0SBIEhWAuLg4EhISSEhIwMPDo4s7/OXLl7x69QpHR0eRWBYeHk5aWhoffPAB48aNE9P9oKCgbjevwcHBPH78mHnz5tGjRw8SEhLIzs5mxIgRwoAkrVY3btzItGnTOHfuHCoqKnz++edcuHCBNWvWMGHCBOF4l4yA70o3pGlyVVUVRkZGQGdTYmRkhLW1tWB/pqenk5ubi52dHbq6uoKIIWnbu5vm9/z5c5Gu8/DhQxYtWoSqqqogJ0j3iZqaGvbu3UtmZiYAc+bMEStAKflNYkNK3GsLCwtxCNbV1SUwMJDXr1+jqqrKokWLmDZtGsrKyujo6IjJYEJCAqdPn2bo0KFYWlqSnZ0tDg9At5tzgHPnzhEVFcW8efP4+OOPmTZtGtD5/SopKRGHsPr6evEAl7S9UlVWVjJu3Di8vb2xt7dHV1eXq1evikjqUaNGYWFhgZ6eHllZWdja2jJ48GAePXrE7du3MTQ0FEij0NBQ8vPzhURj48aNAk/19OlTEbjzvlVdXU1TUxNaWlooKCh0oYaEh4fz559/AjB16lRkZGRITEwU93w3NzcSExPZtWsXsbGxTJgwAQUFBVJSUoiOjqa8vFzEIzs5OWFrayuSnpycnFBSUuLNmzc8evQIGxsbvLy8KC8vJyYmRkhcgC4NeUVFhRgWvW9ZW1tTW1srIol/+eUXpk2bJsI+bt26xeDBgzE1NeX8+fMUFxfzwQcfoKOjQ2hoqEhpWr9+vXhmhYaG4uTkxNGjRzl16pSYkkvNa0JCAk+fPiUtLY1p06ZhbW0t8IxSPXjwgOzsbGF2mzZtmvgudrdevHiBt7c3165d49mzZ6xcuVL8mpQ+Z2hoiKKiIitWrCAjI4P169czY8YMwsLChOdFuuenpqYK/TF0Ui4ktquioqKQuty5cwcFBQV69+4tDqBmZmZoa2tz7do1wsLChGxNqh49eqCgoNBt7bLUcykrKwsKzqlTpzAzM2PChAkUFBSgqKjI+PHjiYyMZNasWQwcOFA8IyVDlvR9uXfvHleuXMHZ2Zn09HQcHR0ZOnQoQ4cOFZ85SWPf0tKChYWFOCBEREQIzJqJiQknT54kOzubiRMnoq2t3SXG/H+rbjevysrKKCgo8ODBAyIiIpg1a5ZoXN++fcvz58958+YNurq6jBw5kgkTJlBdXc3Lly8pKipi1KhRTJs2DUVFRRwdHZGRkWHGjBnCmSfpoR4/fkxoaKjI23V1dUVPTw93d/cu01BdXV3hOjUwMODkyZO8evWKX3/9lcGDB7Nw4cJuXd+KFSvw8fGhoqKChoYGzMzMRJMxevRoBg4cSHh4ONevX++y5iooKBAO2dzcXOGKVlZW5uDBg/z5558ixUhqaC9fvsypU6eYPn06enp6wpAiJQvNmzdPxLeePHmSgwcPYmFhIaYZRkZG3cZISfXfTDTr16+nsLBQoGvezcOeP38+LS0tmJubU1lZKaQLEoPX3t6eDRs2iBPX/6TPqaqqEu9nWloab9++xcXFhSVLluDq6srVq1fZtWsXH3744XtFxb1bzc3NaGpqMmnSJHR1dYmOjiY7OxtTU1OSkpJ48uQJbm5uYjIaGxvL6tWrhTgdOpvDTZs28eLFC7Zv386ePXuEpMHFxYU//viDoKCgf/zZK1asoGfPnhQUFHDt2jW8vLzYsmWLmM4bGxuze/duVFVVxaSipaWFNWvW8N133733Na5du5aFCxeKBtbAwIAHDx5w9uxZRo0axeLFi5k+fbowPb1b9fX1DBkyBCUlJcaNG4eCggLJycn/I0/X2tqaIUOG4OPj8494Vx8fH5qbm7tM5L799lvmz58vGjyp/g04PDw8nLNnz+Lr60vfvn1ZunQpRUVFIqEsPDycmTNnimnLq1evAFi0aBEKCgpcuHCB1NRUli1bRs+ePQHYuXMnRUVFbNu2TWwLZGVlqa+v5/bt29jY2DBo0CBKS0s5ceIEDx8+pK6uDj8/P1RUVERIQkdHh9g6SZ+j7javTk5OHD9+nLS0NDFd9vX15dChQ0I+BJ3T3T59+ojm1cLCAgUFBV6+fEl9fT0//PAD/fr1o7m5mQcPHghayYABA6iqqkJFRUVkxUtxzNLftaWlhTdv3lBXV4eTkxODBg0SST7r168XoPt/W19//TV//fUXP/74IxkZGcKwa2hoSFlZGUVFRTx79ozQ0FBhcpkyZUqXn2Fqaoqbmxs1NTXo6uqyZMkSxo0bx+zZswkNDeWDDz7g559/pk+fPnz55ZdERERw9epVlJSU+Pbbb7GxseHBgwds374dCwsLVq1axaJFiyguLu4y0YqLiyMiIqJb1I8nT56IdKSRI0d2+W/19PQYPHgwvXr1EsYeS0tLxo8fj6KiIhMnTsTa2poLFy5w4sQJ8vLy6Nu3L3FxccjJySEvL09eXh4PHjzA2tqawYMH07t3b9TU1IQMyczMjCVLlojIYlVVVc6fP0+PHj1E8yrpCC0tLendu7eIEX7fCgwMxMHBAU1NTWRlZcWkzsvLi3nz5qGurs6AAQMIDw/nm2++wcnJiTlz5pCYmMi8efOorq7G2tqaWbNmYWdnR2RkJBkZGRw9epTCwkIWLlzIwoUL6d27N4AgUcydO5cdO3awa9cudu/eLTZT5eXlaGpqMnXqVPLy8igoKEBJSUnoo/9NSUxj6WAhDUuqq6upr68nJSWFp0+fsnXrVhITE6moqGDs2LHMmTNHNNZPnz4VBvXhw4cTHR3Ntm3bqK2tRUlJiQ8//FBQFaQN5pMnT9DQ0CA1NVWw6bdv346dnR2mpqZERkaioqLS5d47dOhQZs2a1S1t7759+1i2bBkTJkwQ+tfnz59z6dIlfHx88PDwIDY2FmNjYwwMDEhKSuLMmTNiKHHo0CG+/vprjI2NxbbJ39+f3bt3Y2xsjLGxsRiiZGZmcvjwYXR0dFi+fDmKiookJiZiaWkpkuV8fHzo27cvAwcOpKGhgaCgIExMTLCxsSEtLY0vvvji/73mdeLEiRgYGIhR7/Hjx1m+fDkGBgYUFhZy7Ngx6uvr+fjjj0V6kIqKChEREaSlpfHDDz8I0XF9fb2YCDU1NXH8+HFsbGwYOHAgHh4ePH36FBUVFTw9PRk0aJBY6ZaXl1NZWSkaHkdHR1xcXITw2cXFhefPn1NWVtbtaYGDgwPm5uZER0fz+PFj/P398fb2Frq7srIy/vjjD1JTU1m9ejXW1tacP3+eiIgIXr16JUgHmZmZFBcX09TURE1NDWpqaqioqCAjI0NVVRVpaWnExcVhbGzMgAEDRCxbv379GDBgALq6usKMBnDnzh1iYmK6rBh69erFlClT3ksf8m49fvyYhoYGrKysRFNaUFBAW1sbNjY2yMnJifQNKTMbOhvexsZG0QiUl5cTERFBY2MjPj4+Qi/o7OyMg4ODaPr37t3L5s2bGTVqlEAxSVom6VqMjIxwcXEREzFdXV3evHnD999/3+0gBjU1Nfr37y8+fzU1NUKULi8vj6amJoMHDwY6T9Xjx48nPT1daPpqa2tZt24dSUlJ4ve5u7vj7u5OW1sb1tbWWFtbU1hYyJkzZ4RrUlqhz5gxg/DwcIqLi7GwsEBfX5/i4mIcHBwwMDAQN6Xq6mpxGOuuG9/ExETgT6DzJltaWoqMjAwFBQVkZWVhZmZGeno6eXl5GBgYCAZxXFwcWlpa4kbj5uYmJh4NDQ00NzdTUlJCfHw8MjIy/PrrrwKP8/btW8rLyzEzM6O+vh4VFRXs7OzIz88Xh1YbGxsxTZNMW92ZKkvl5+dHa2srRUVFQsduZGREUVERZ8+epby8XBhwPvroI8rLy8WWZPLkybx69YqUlBQSEhLo2bMnKSkpREZGkpWVJbi2eXl5uLu7IycnR21trZh+JCUlkZCQQHt7uyCXSBPIiooKFBQUsLCwICoqitevXzNkyJBux24OHTpUvH+lpaXcvHkTS0vLLoeihIQEGhoamDNnDllZWURERKCuro6Ojg63b9+mtLSU8ePHC5OQtbU1GhoaqKioYG9vz8yZM1FWVqaxsZHCwkLxvSsoKCA7O5vKykqGDRuGubk5DQ0NVFRUkJWVhZWVVZe1pHTP6m6NHj2a/Px89u7dy969e/H39xcxsWpqaujp6VFXV0dsbCwvX77E2dmZ5uZmKisrCQ0NpaOjgz59+hAQEEBsbCyHDx8mPz+fefPmsXLlSuLj43n06BFHjhwRaYodHR0UFBSgra0t3pPa2lpu376NlZUVu3btQllZWehFJYNU79690dfXF/G071OSqbCjo4P29nZycnJQV1dHT09PpCm961NwcnJi2bJl1NXVMWDAADQ1NTE0NCQiIoLm5mZMTEyYO3cuMjIymJiYUFtby8iRI6mtraWmpgZnZ+cuEi0lJSWsra2Jj4/n/2PvvMOjrLa3fSeZ9N57L6SQEEIKJUBoAaR36UVQGBDFhooFRUBBQUUDIggKSBNCCR2k1wAhJCGV9BDSey/v98c4+zPHU4i/c45HzHNdXpEZmOw1e797r73Ws561detWrKyshHqKEpaWllhZWWFkZISpqWm7i32U36syIm9ubk5LSwuPHj3C399fOJ3Gxsaoq6vTpUsXzMzM+Oyzz0Sx7aJFi8SFKTg4WEhdKhVYlMU7ystA//796dq1K3379iU1NVWcvWvWrEFHR0dc9CsrKwWVQUlnbG/xKyjO0pMnT5KRkUFgYKCI4MbExGBvb4+DgwO7d++mrKwMf39/vLy8hMJOYGCg6MYXFxfHjz/+iKurK7m5uVRXV2Nvb4q0DukAAQAASURBVM+HH36It7e32Mvc3NxQU1PD3d2d+vp6UlJSOHPmDJaWlkLDvampia5du6KlpUVaWhoBAQHimVFSL58UGRkZothaeZ4bGRnh5+eHp6cndXV1xMXFcfHiRbS1tVFTU2PMmDEMGDCAxsZGkpKScHd3Z8aMGUyYMAFdXV3R/AIU2SulMklqaqooqNPS0hL7f1lZGba2tjz77LNtmiy0tLQwdepU1NTUiImJ4ciRI21oUP8I7XZelZJHyp63I0aM4Pbt20RFRYmb2ezZs/9ulEbZ9k+JmpoacVNNSEhg6dKlWFhYsGvXLjp37izSWmpqamhpaVFRUSEcpezsbN599118fHzYvXu3iBaAQnng008//V3k9KNHj9K5c2eqq6tJSEjAwMBAKCRkZWVx5coVHBwc6NWrF5MmTcLc3Jzw8HAWLVpEUlISDx8+xMHBgdDQUHJzczEyMmLChAns3r2b2bNn8+OPPwpyfnV1NWvWrGH69OmA4qHesmXLbyJgMTExlJaWYmZmxmuvvYavr6946N944w3R5/lJcejQITQ0NBg+fLgQBk5OTm7jqC5evJjLly/z448/Cj5gY2OjcEirqqq4desWpaWluLm5tbklKUWZQcFb3LVrFzdu3KC0tJTCwkKcnJzo0aMHmpqaxMbGoqamJg5gQNBOvLy8uHLlCl988cVvKvT/GbS0tIQdzc3N6OnpYWFhga2trXBGlNzs1157jfT0dNTV1Rk6dCiVlZW8/PLLnDt3jrlz5/5mHTc1NYlxbty4kZMnT7Jy5Urc3d2pqKggOjoaExMTIbAPCs7X999/z/vvv0/fvn1Zv349n3zyCaNGjWL9+vXIZDLR2/5J8cEHH6CpqSnWuJaWFs899xwvvPACN2/eJDIyEk1NTe7evcvhw4cZPnw4q1evpqKigkuXLlFZWUlTUxNNTU0MGjSIwYMHi4i1oaEhp06d4ssvv2TAgAE8//zzANy/f5/PPvsMT09PgoKCRAX3hx9+SGVlJV988QUpKSmi3XPPnj0JDg5GT0/vN7zGJ8G4ceMYPXo0ERERvP3223h7ewt1j9LSUjp37oyqqioaGhrMnj0bNTU1TE1NKSwsJC0tjQULFgiBfmUr6V69emFjY0NcXByRkZEUFxezePFixo4dS58+fYSDqiwiWbBggbisNTc3o6qqSnZ2Nurq6tjY2NDQ0MCHH35Ibm6ukOh6UhQWFhIdHU14eDiamppcvHiR8vJy1q9fL/SWL1y4gK6uLv379yckJIQbN27Q2toqnL78/HwKCwvR1tbm+vXr+Pj4iANFGalUV1fnwoULIvLzww8/kJaWxtq1a+nZs6egBH3yySesXbtWtGb9NY4dO8bmzZvbcNafBEeOHMHS0hI3NzcaGxuFXYDQd/b29mb+/PlCtu/SpUukp6dz5swZUfw0ZMgQOnXqxOrVq4mNjaW5uZkPPviAd999l6VLl4rD8Pbt2+Tn5zNx4kQePHjAzp07GTJkCFpaWujq6lJTU8P169fp168fkiShp6cnAhwBAQEEBAS0y3nt3r07AQEBmJubC06gj48P4eHh5OTkcOjQIcLCwtqo4iibPyihoqLC2LFjMTIyYuzYsejo6FBVVUVmZiZdunRh5syZnDx5kpSUFLKzs8UcVFVV8fjxY1577TUOHz7MypUr6d69O+vXr8fa2lrwKZW1GMq94vdkQQDh6BgYGJCYmEh8fHwbJ8TW1pZly5aJ5ghKSt2mTZt47rnn+Omnnzh+/DiTJk3Cy8uLwYMHs3//flavXs3du3cJDg5GQ0ND8DBbWlqYNGkSEyZMwMDAgOvXr7N7926hW52ens6+ffsICAjAycmJrKwsEahoL5qamjh06BDp6emUl5djampKXl4eKSkpqKmp4eLiwrvvvsuzzz6LoaEhBQUFZGdnc//+fR4+fChUkgwNDUVmWLmOVq1aJZocLVmyhKioKBYtWsTbb7/NjBkzyMjIEB3vfHx8cHR0FDJdn3zyCVZWVmzdupVPP/2U1157jdLSUj777LN2qZssXLhQqHkozy8nJyfefPNNbGxsqKqqQlVVldTUVM6dO8fQoUMZPnw4BgYGNDc38+qrr/Lyyy9jaWnZJvP96NEjcnJyMDQ0xMPDQ0RVDQwMhE+g1IkvLS2lurq6DVVR6dNpa2tz6tQpfvzxR/z8/NixYwfvvffeP7Wp3c5rXFwcx48fZ+LEiXh7ezN16lRyc3M5ePAgt27doqqqCkmSuHfvnoicTpo0iWeeeYb6+noaGxtFylpJKlemHWfPnk16ejq7du2iW7duDBgwAGNjY7Kzs9m+fTuGhoaizaaBgQEjR44kPj6eDz74gNmzZ+Pg4EBpaSkmJibY2NiQnZ3NlClT2qX3KpPJuHLlCiUlJWJjUh68yiKnESNGUFlZya5du7Czs2PQoEFC19XFxYXa2lp+/vln9PX1ha7fpEmTuHTpEv7+/piYmHDixAlu3bpFREQEoFjoys5MynRrc3Mzt27d4urVqyJEHxAQQGtrK6tXr8bNze3vikD/KyjJ28obc1pamhDavnfvHtu3byc+Pp4ZM2bQp08fMjMz2bRpEwEBAYKz9vjxY7FgDQwMuHv3Lg8ePEBXVxcPDw98fHzQ1NSkurqawYMH06lTJ/z9/XFxccHCwgJNTU20tLSwtbUlOTmZa9eu4eLigq6uLpcvX2bLli3cuHEDDw8Ppk+fzu3bt9s1h0rnuaqqCmdnZyH3k5OTw4kTJ9i5cyeSJKGtrc3q1atxd3cnNjaWHTt2YGhoyLZt2+jRo4fIEjQ0NIgOZBUVFaSmptLU1MTo0aNFdMfOzo6PPvqI69evs2HDBnHI2NnZERYWxqFDhzh48CDV1dVMmjQJBwcHNm7cSGFhIRUVFe3KEsTExGBlZSUuHcoD48KFCxQVFeHj4yPEsEGxgVhaWvLgwQM2b95MRUUF4eHhdOvWjaqqKo4fP46FhYWItllZWeHq6ipS8pmZmbzzzjvExcXRu3dvevToQU5ODtnZ2WhqauLg4EDPnj3R0dERagABAQEiStReGSlQbGwpKSk4Ozvj7u7O9u3baW1tZfr06cyZMwcjIyPy8vKoq6trk6XIzc1FW1u7jaNVVVWFj4+PKIpRphqV6XIVFRX8/PxElH/o0KGiKYeSiuTj48PkyZMxNjYWhaKBgYHMnDkTNze3dsuBrV27ltOnT7N8+XIWLFhAeHg4t2/f5s6dO9jb25OZmYmWlhY+Pj7Y2dkxZcoUIQ/16NEjvL296dmzJ/b29hw4cIDly5djbGzMCy+8wIgRI9oUoenr6+Pu7s6gQYOwsLBgy5YtHDp0SOi5Xr58mYsXLzJu3DisrKw4fPiwUB9paGhg69at5OTktNt5vXDhAqWlpQwaNIh+/foJvU9zc3NxsbWwsKB79+706dOHY8eOcfLkSaysrBg5cqRo4nH27FkaGhqYPHmy0BbV1tZm+PDhxMXFiaCKsg2mqampkPj56quvuH//PsHBwQQGBlJZWcn58+fR1NTEzc1NBAtOnjwpugc+KX79HVtYWODp6Sl40506dSIkJITa2lpR6a/kTz9+/FgUG7W0tODt7U3Xrl3R0dHhxo0b5OTk8Mwzzwht7V8HG9LT09m7d6+oF2loaKCkpIRu3boxevRo4RwoOyhWVlaSlpaGpaUltra27eb1/rq2QYmYmBhu3boligF//vlnbt68yYQJE7C3tyc9PR1/f3/CwsKERJu7uzt6enpifN7e3nh5eZGcnMypU6dEh76uXbuKS051dTXFxcXi/Fi+fLlw/pTyYM7OziLIFRsb2+42zQA//vgjJiYmhISEUF9fLy5OSo33q1evMmvWLKEzbGlpiYeHB7m5uRQWFjJlyhRSUlJobGxk48aN6OjoYGFhwZtvvtmmWLBLly6UlpaKjo16enp4eXmJwjxlUXF5eTkDBgwQlCQbGxuxvxgbG+Pn5yfkuZ4ETk5O1NTUkJGRQVNTE7q6utjb24v9WV9fn6FDhxIYGIi1tTWamppkZWWJCKuSXhMTE8P+/ftpbm5m2LBholtoXV0ddXV16OrqYmRkhEwmIzY2lsuXL3Pt2jXq6uqYMmUK5eXlfPnllzg5OSGXyykuLiY5ORlvb2/Mzc0JCAhg+PDhT9T+tt0nyo0bN9iyZYto1fbZZ59x584djhw5wv379zE2NiYyMpJ169ZRVVXF888/LziedXV1IiRdWVmJrq4uqqqq5Obm4uLiwqpVq4iJieGbb77h3LlzuLu7iy4+Fy5coHfv3ujp6dHS0oK9vT0fffQR+/bt47333kNDQ4O33nqrDc9u9+7d7N69+zfRs3+GESNGcPPmTSwtLRk9enSbzam+vh4zMzMMDQ1JTU1l/fr1FBUVsWrVKoYPH86QIUNQV1fnwIEDrFmzhl69egl5lIqKCtatWye+i+rqalpaWsjIyEBTU5O1a9cSHx8v+qh7eHggk8nETVLpDICiM8+KFSsYM2bM73Jex40bJ25feXl5nDp1SjiWa9as4euvv+a9997j3XffFb/vk08+4bXXXhPOqzI9LJPJaG5uJi4ujr1796Knp8fUqVOFBrCDg4Pgkf4aympjc3NzYmJiOHHiBMOGDWPgwIFIkkR0dDSFhYXMmjWLOXPmtNt5VcqdKLuxyWQySkpKuHPnDl9//bVI2f/4449igwgPD+fatWv88MMPYlMuLCwUznZ9fT3Xr1/nypUropOLn5+f4Cdqampibm5Oeno6CQkJDBo0iNbWVgYMGMCAAQOYOHEiR44cYc+ePYwePZqkpCTGjh1LUlIS69atIyUl5YltXLt2LVOnTuXmzZuoqanRvXt3Tp48ybhx45g1axbbtm0TaS1QSH81NjaSnp4uUjK9evVi4cKFFBQUcPHiRdGHXDm/U6dOJSAggJqaGg4dOkRRURFBQUFYWVmho6PD7NmzKS4upri4mLKyMsLDw1m4cKF4BpUahrq6um04nE+Kn376iTNnzvDOO+8wcOBA7t69S0xMjOCet7S0cOfOHXJyctDS0hKXYeVz0tTURGtrK5qamujr69Pc3CxaiIIiapaWlvYbqaqmpibBid6yZQtvvfUWxcXFTJ06lSlTpqCvry+q3p2dnXnnnXcoKSkhPz+/Xfbdvn2bwsJCUew4fPhw+vTpQ3JyMsePH6empoaxY8eK9RkcHExwcLCoSA8JCREOxaNHj4Tmc0tLC927d8fQ0JDW1lbq6uro1q0bp06dEvObmpqKnp4enp6eZGdnM2PGDBwcHDh+/Dh5eXm8/vrrZGRkiE579fX1v9HCfFLcu3eP5557jgkTJnDq1CmuXbvG8OHDOXv2LEuWLMHZ2ZlVq1bh7+9PdXU1jx49olevXiJQcfPmTfbt24e3tzfbt29vM1+FhYUiqguKblyWlpaicCowMJDPPvuMK1eu8OqrrzJ06FCSkpJEIbFS6xgUUeKNGze267wARJOQ1tZWUUwICkdlwYIF1NbWcubMGfz9/cXvys3NFT3mlRcqJb3jm2++oaCggKCgIAoLC/nmm2/o1KkTI0aMAODq1assX75cOFLR0dGoqqoKpwAUNBSlA5CZmUlUVBSdO3dmzJgx7c5IxsbGoqGhgSRJbZoSKTM3NTU1bN68mfj4eCEreefOHcLDwwV1S7kGW1paaGlpEVrQkyZNoqWlhZqaGiZPntymmQ0oLj/Hjh3jmWeeYfLkycyZM4eCggLefvttXF1dxaVdeTlQFqQ9ifPza1y+fJmKigo+/fRTLCwsOHLkCFZWVowfP56HDx+ybt061NXVeeWVVwAFdcjAwAAnJyfc3NwYMWIEubm5rF+/nm3btuHh4cHatWsJDg4W6zcoKIilS5eydOlSMjIyhOaxlpYWnp6eeHh4UF5eTkpKiqitAMU+2qdPH8GD1tXVZdGiRe3uWKjch3NycjAzM0NPTw89PT3U1dVpaWnB1dVV0Md+/PFHNmzYwOjRo1m6dCmgeA4///xz9uzZg5aWlqBzmpqaCuUjpUZ0bGws9+/fJzMzk59//lko9ygDJb6+vrz11lvifVtbW8LCwoQu/H+ENhAUFCS6XSk5LJaWlvTs2ZPBgweTl5cneplPmzaN1157DZlMJiQl5s6di5qaGhs3bsTd3Z0XX3wRBwcHHj9+THp6Oo2NjYwZMwYzMzORSqupqWHevHmkpKTwxhtv0L9/fxEh6tmzJwsXLhTVt6Ao9Ni3bx8VFRWsWLFCtOB7Ejg5OVFfX4+LiwtaWlpERUWRmJiIqakpBQUFpKWlidB7QEAAzc3NoupPXV2d5uZmmpqa8Pb2pqKigo0bN+Lm5oaXl1ebSsjFixczePBgUlJS2Lt3L5cvX6ampoaDBw+Snp4uWv8FBwfT0NDAnTt3eP/991FRUeHAgQOAogr3woUL7Z1C4uPj6dKlCzExMaxYsUIISQOEhYXxzjvvCF4aKJycd955R0SRQRH5VkbTZDIZPXr0oKWlheLiYgwMDITz+I82Si0tLZqbmykvL0dHR4f+/fuLLkZOTk6sWrWK8vJyDAwMRAu9J4Wyj7SBgUGbg05PTw97e3uhWTpjxgxxIF+/fl20R7158yYtLS0MGDCA1tZWsrOzBT/uyJEjVFZWsnjxYtHWuLW1VVwGZs2aJTiu3333HV27dhW37R49ehASEiI2+Js3b+Lm5kZYWBidOnVql/Pq7++Pm5ubILhv3rxZpH9lMhnZ2dmcO3cOLS0tVqxYgbOzM0uXLkVXV5etW7fS2tqKj48Ppqam6Orq0tzcjJ2dHRUVFVy+fJnc3FxsbW3JysqitrYWGxsbVq5ciZmZGadOneL8+fO8/PLL2Nvbs3nzZrZu3UpoaKjQJFZKPilpRO2RdVFCV1dX8Oe0tLR44403yMrKEvxbNTU1goKCuHz5Mh9++CFGRka88MIL2NnZUV9fz5YtWzAyMmLixIkUFhZy7NgxrKysxPevzJ7cv3+fsLAw5s+fj42NDQUFBZiZmaGmpkZwcDAvvfQSVVVVguPq6+srmnnk5uYK0fn26kkvWbKEmpoawSkExXPl6upKfn4+ra2t4gA7d+4cpqam+Pv7Y21tjSRJwnE9cOAApaWlLFmyhKqqKrp3746dnR2PHj3i3Llz2NvbExYWJpyqBw8e0K1bN8LCwkQ3tZkzZwrOt62tLaNGjaKyspLW1lbR9tPb25tTp061y0aluoHyMuvn50dCQgJffvklmzdvFhx6FxcXdHR0ROrx1/3elTStrl27oqGhQU5ODqdPn6a6uprGxkZycnK4efMmP//8s3imKysriYqKIjo6Gjs7OzZv3iwupzt37kQmkzFt2rQ2wY7Ro0ejra39RAfn3+Lrr78mPT1dOONlZWWkpaVRUVEhikQdHR0ZO3YsAQEBohMTKPYrZ2dn4dRNmzaNa9eusXXrVnR1dUVhCyioW2pqaqJX/IMHD/Dy8iI8PFw4rkrdTiUsLS0JDQ1FQ0OD/Pz8dmdBGhsb2bVrF2pqavTq1QtLS0tcXFzw9/cnKiqKnTt3UllZyaRJk7C1teXRo0eiWBcQPHNHR0fu3r1LYmIiY8aMISwsjOHDh4tIndJx/eabb7h58ya+vr6YmJgwePBgoabR3NxMWFgYH3/8MYmJiXz++ec899xzqKiosHfvXvLy8pg8eTJnzpxpl43KQjZnZ2dKS0vR1NQUZ8fAgQN5+eWXRdahpaWF2NhYHj16hIeHh9iPlIXp5ubmzJkzR2Q2lU0Mzpw5w9SpU9HV1cXGxobU1NTfSJ3V1NTw1VdfUVBQwMCBA/Hz88PExAR3d3dUVVWprKxEQ0NDZH6eFLdu3SI4OBhbW1tkMhlGRkaiyZCqqiq6urpkZ2djZGSEjY0NZ86c4caNG4I+pGyvnpOTQ+/evUVbWSWampq4dOkSRUVFuLi44OzsjIODAzk5Ofj5+eHu7i7qNJRtrWUyGQkJCWRnZ//mmXuS4leVJ+W/yOXy30eU+R9CRETEP7xyPu32wdNv49NgHzz9Nnas06fbPnj6bXwa7IOn38aOdfr02td+4b4OdKADHehABzrQgQ504A/CE0deO9CBDnSgAx3oQAc60IE/Gh2R1w50oAMd6EAHOtCBDvxp0OG8dqADHehABzrQgQ504E+DDue1Ax3oQAc60IEOdKADfxq0Xzn83wi5XG4HfAgMAUyBfOAQ8EFERETZP/mnfwrI5fLxQF/AH+gC6AO7IiIipv2R4/pPQC6X9wZeBnoCJkApEAd8HhERcfwPHNrvhlwuNwXGAMMAX8AWaERh1zZgW0REROsfN8L/O/4KNirxNK5R+GvMoVwuVwFmA88DPoAakIzCvq8jIiLaLyT8Pwa5XP4JEAh4AGZAHZCF4kz8KiIiouSPG93/HX+ROcwEHP/B2wURERFW/+C9PxX+F3y3PyzyKpfLXYE7KBbzLWA9kA68BFz/ZUP+s+MdYBEK5zXvjx3Kfw5yufwd4BLQBzgJfAYcBYyBsD9uZP9nTAC+BUKAm8DnwAGgM7AF2PfLhvxnxl/Bxqd5jcJfYw6/B7YCzsBeFPZqAF8Ae58C+wCWALrAGRR27QKageXAfblcbv/HDe3fgr/CHAJUAB/8nf8+/SMH9e/C/4rv9kdGXiMAC2BxRETEBuWLcrl8HYqHeCUw/w8a278LS4BcIA1FBPb8Hzucfz/kcvkEYAVwFhgbERFR9Tfvq/8hA/v3IAUYCRz7deRKLpe/jeKhHQeMReEo/Fnx1Nv4lK9ReMrnUC6XjwamAxlAcERERPEvr6sD+1DYNxPY/gcN8d8Fg4iIiPq/fVEul68E3gbeAtrXVul/BH+hOQQoj4iIWP5HD+I/iP8J3+0PibzK5XIXIBzIBL7+m7ffB2qA6XK5XPe/PLR/KyIiIs5HRESkRkREPJV6ZHK5XBX4BKgFpvytUwAQERHR9F8f2L8JERERP0dERBz925RrRETEY2DTL38M+68P7N+Ip93Gp32NwtM/hygcb4DPlE4PiHl795c/vvhfH9W/GX/Pcf0F+3756f4P3v8z4C8xh087/pd8tz8q8tr/l5+n/86GWyWXy6+i+IK6A+f+24PrwBOjJ4oU0E9AmVwuH4YiVVkP3IqIiLj+Rw7uPwylw/Ov+9j9efE02PhXXqPwdMyhkieY/nfeU74WIJfLjSIiIsr/O0P6r2LELz/v/6Gj+L/hrzSHmnK5fBrggMKZuw9ceho4vfwP+W5/lPPa6Zef/6iZeyqKL8CDDuf1fxnK5sYFwF0UxSICcrn8EjA+IiKi6L89sP8k5HK5DJjxyx9P/pFj+U/hKbLxL7lG4amaQ2WkzvnvvOfyq//3BG7854fzn4VcLn8N0AMMURRwhaJwgD7+I8f1f8RfaQ6tgB1/81qGXC6fHRERcfGPGNC/Ef8zvtsfVbBl+MvPin/wvvJ1o//8UDrwf4DFLz/nA9rAQBSKCp2BUyiKY/b/MUP7j+JjFDYej4iIOPVHD+Y/hKfFxr/qGoWnZw6jfvn5ilwuN1G++Itz/sGv/p7xf3VU/zm8hiIF+zIKx/UkEP4nv2D9VeZwGzAAhQOri+Ky/A3gBJyQy+Vd/rih/VvwP+O7/aFSWf8EyqrDp5Ir+hRB7ZefKiiiV7G//DlBLpePQXE76yuXy3s8LelZuVy+GHgVSEJRgPDU4Smz8S+3RuGpm8M9wDRgKPBALpcfQcFhHgi4ooj2uANPQ1oWpZySXC63REF7+RiIkcvlwyMiIu7+oYP7/fhLzGFERMQHf/NSPDBfLpdXo3gel6OQtXta8V/z3f6oyKvSOzf8B+8b/M3f68D/JpR6bum/cgoAiIiIqEMR2QII/q+O6j8EuVy+EIWsywOgX0REROkfPKR/O55CG/9SaxSevjn8hVs3EkVE8jEKZ3wOCiWXUECpf1r4hwzwP4SIiIiCiIiISBRpWFPghz94SL8bf9U5/BWUhZN9/tBR/N/xP+O7/VGR1+Rffnr8g/eVVZX/iFfRgf8NKOex/B+8r3QctP/zQ/nPQi6Xv4xCzy4eGBAREfHUbbJPqY1/mTUKT+0cEhER0YxCm/ezX78ul8u1Ueho1wEJ//2R/ecRERGRJZfLHwD+crnc7NfV+n8m/JXnkP/vlP+pFZT4H/Ld/qjIq1LvNPwXKRsBuVyuD/RCsZD/7MTtpx2XUFQxu8vlco2/837nX35m/tdG9B+AXC5fisIhuIcikvVUOAS/xlNs419ijcJTPYf/DNMBLWDfn13y7F/A5peff+q0+j/AX2EOe/zy8++pLfyZ8D/ju/0hzmtERMRD4DQKEvPCv3n7AxS3kx8iIiJq/stD60A78EsEYC+KFMJ7v35PLpcPAgajSB/8aSud5XL5uyg4Z3dQRLL+lFGPf4an2ca/whqFp3sOAeRyucHfeS0Ihc3VKFpV/mkhl8s95XL5b1qHyuVy1V+aFFgA1/7MbdP/AnPo8+titF+97gh89csfd/53R/Xvxf+S76YiSX9MTdQvLcauoXgoDwOJKNob9kMRcu75FPRyHg2M/uWPVigOynTg8i+vFUdERLz23x/Zvw9yudwCuAq4obDrForezmNQkLanRERE/CmrueVyubLjSwuwgb/P48mMiIjY/l8c1r8VfxEbn9o1Cn+ZObyJIqITD1QBPsAzQAOKrml/ZjUFJd1jLYpMwUMUHFBLFJ0ZXVDwRAdEREQ8+KPG+H/FX2AOlwNvoohOZqCw0RUYhiKyfBwYExER0fhHjfHfgf8V3+0PUxuIiIh4KJfLA1HctoagWMT5wJfAB3/2IoNf4I+i5d2v4cL/17XLQkFg/9MiIiKiUC6XhwDvoHAGuqN4aI8BqyMiIv7M1A+lJqEaCtmav4eL/LlbGj71Nj7laxT+AnOIosnEsygq1rWBR8AW4OOIiIjMP3Bc/y6cBTajSLt2QSE1VIPCGdgBfPkUnIlP+xyeR6GD2hUFTUAXBdf+Coo53PE0dNv8X/Hd/rDIawc60IEOdKADHehABzrQXvxRBVsd6EAHOtCBDnSgAx3oQLvR4bx2oAMd6EAHOtCBDnTgT4MO57UDHehABzrQgQ50oAN/GnQ4rx3oQAc60IEOdKADHfjToMN57UAHOtCBDnSgAx3owJ8GHc5rBzrQgQ50oAMd6EAH/jR4Yp1XuVz+p9fUioiIUPlH7z3t9sHTb+PTYB88/TZ2rNOn2z54+m18GuyDp9/GjnX69NrXEXntQAc60IEOdKADHejAnweSJD3RfwsWLJAWLFggKbFq1SrJzMxM0tDQkFC0WJReeeUV8X5jY6PU2toqVVRUSNHR0dKFCxekuLg4qaamRmppaZFaW1slSZKk6upqadGiRdLQoUOly5cvi39fXV0t/r+wsFC6fPmylJiYKEmSJLW2tkotLS2SJElSXl6eFB0dLUmSJFVVVUkvvPCC5OTkJL3++utSdna2JEmS9Kux/0v7jhw5Ir344otSZGSk+P2VlZVSQ0ODJEmSVFtbKy1fvlxasGCBlJKSIv5OXV2d+P/a2lqptLRUqq2tlf4WVVVVUnp6upSZmSmdP39e+vDDD6X169dLxcXF4t8uWbJE+vDDDyVJkqRDhw5JGhoaUu/evaUlS5ZIqqqqUnh4uNTY2Cjt2LFD0tfXfyL7fm3jzZs3pQ0bNkg///yzGNfNmzelHTt2SOnp6VJKSoo0ePBgycnJSbp06ZL4O0ePHpUiIyOloqIiSZIk6fz589KYMWOkGTNmSIWFhVJOTo40ZMgQaebMmVJDQ4NUWloq9e/fXwKkmTNnSpIkSRs3bpQA6YMPPhCfq1wLJ0+elPbs2SPV1NRImZmZ0rvvvit9++237Z7DvXv3SmvXrpVu3LghSZIk1dfXi981d+5cSUNDQzpz5oxUUFAgeXh4SD4+PlJVVZUkSZLU3NwsSZIkxcTESB9++KGUkJAg1dTUSIMHD5b8/f2loqIi6ciRI5KGhoa0ZMkS6datW1KXLl0kR0dHKScnR/ye0tJSSZIkqaioSFq3bp00ZswYaffu3eL96upqYXdLS4vU3NzcLhsBycnJSVq/fr109OhRadSoUZKKiooUEhLSZu22tLSIZ0X5e0tKSsTaTE5OlpYsWSKe4eDgYOnBgweSJEnSN998I9na2kouLi7Sjh07xGc0NTVJkiRJZWVl4rUPP/xQAqQvv/xSampqkmbNmiWZmZlJ77//vrR9+3Zp7dq17V6nSrz++utifJ07d5aWLl0qrV+/Xjpx4oQkSZIUFxcnDRo0SBozZoyYx7i4OMnY2Fjy8fGRCgsLJUmSpBs3bkgZGRnic4uKiqTLly9Lb775prRkyRLp7t274r28vDwpLi5OunXrlpSamio1NzdL9fX1Yn3k5uZKnTt3ljp37txm3tszhy+88IJYm83NzVJjY6OYM6UdynGuWLFCWrhwoXTgwAHx/EmSYp9V7j0xMTGSj4+PZGVlJda+cqzFxcVSS0uL1NTUJPay6upqac6cOZK6urrUu3dvKTIyUoyntbW1zRi2bt0qjRw58nfP4aFDh6Q1a9ZI9+/fF69duHBB2r59u5SQkCBeu3r1qvTNN9+0OQtu3LghLV68WOwFkqTYk/Pz86XCwsLf7LPKOZIkxb68YcMG6fPPP5cSEhKkZcuWSTKZTHrjjTfE3/n189DeOVQ+W3V1deJ5Tk1NlXbs2CFsKCsrk7799lvp2WeflSZMmCBt2LBBys3NbTOHyn+rRHFxsXTr1i0pMTFR2PPrc0iSJOny5cvS/v37paKiIqm6ulqKjIyUrl27JrW2tkqnTp2SvvvuO6m+vl6KiYmRhg4dKr377rvi+2mPjfv375cuXrwoJSUlid+9Y8cOycTERFq5cqUkSZK0evVqaeDAgVJcXJwkSYqzYseOHdKaNWuksLAwcUZIkuIM7N27t+To6NhmnufMmSOFh4dL0dHRUlNTk/TWW29JlpaWUlhYmHTs2DHx9w4ePCiFhYVJXbt2lZYtWybdu3dPvPfWW29JWlpav3ud3rt3Tzp79qwYq3JulUhKSpK2b98uHT9+XDyvTU1NUnl5ufg7r7zyiqSioiItX75cvLZixQrJwsJC+vjjjyVJkqSKigrp4sWL0tmzZ6XZs2eL/Q2QVFVVpRdeeEE8f+Xl5dLly5elu3fvinVaX1/frjk8efKk2PuysrKk3r17SwsXLpQkSZK+/vprCRBj+zUGDx4smZiYSPfv35eKi4slPz8/SU9PT9qwYUObfSg9PV36+OOPJXNz89/4DZKkWON79+6Vli1bJu3atUu6e/euVFNTI8Zja2sr+fv7S+np6dLZs2elYcOG/Uv72t0eNj8/n4SEBKysrJgyZQrXrl3DysqKPn36UFRUxOjRo+nRowcTJ07E2dkZAwMDfH19iY6ORiaToaOjQ3V1NZ999hl9+/YlLCyMmTNncv/+fUJDQ8XvOXPmDDk5OTzzzDO4urpibGxMVVUVACoqKqioqHD48GFOnTpFU1MTJ0+eRF9fH0dHR1atWkVgYCB5eXmcP3++Xfb17t0bXV1dOnfuLF6rrKxEU1MTMzMztLW1sbGxobW1FQMDAwCioqJISkqie/fuhIaGIpPJOHv2LCoqKgwYMABjY2Py8/PJzs5GJpNhb2+PlpYWra2tqKmpkZSUxK5du+jevTseHh6MGTOG8vJyrly5QmRkJI2NjVy/fh2ZTIa7uzsmJiZERkZy/Phxmpub2zuFlJeXo62tja2trXitsLCQH3/8kVOnTqGlpcWpU6fQ0NCgrq4OgPr6etzd3TE0NKSmpoavvvqKzZs34+/vz7x584iPjyc+Pp4hQ4Zgbm7OrVu3sLGx4b333iMoKIiKigoWLFjAnj170NDQICwsTHxuVlYWHh4e+Pn5UVFRgZaWFrq6ugQHB+Po6Nhu+3x9fbG2tkZXVxcATU1NABITE2lsbGTAgAGoqalRXl7OyJEjsbCwQE9Pr81neHp6UlZWhre3N9XV1aSnp1NbW4uamhotLS00NjaSkJCAvb09S5Ys4dChQ6xatQp1dXVcXV2ZO3cuLS0tbNq0icOHD+Pu7t7md+jq6lJTU0NLS4tYR+3B0KFDiYmJobq6Gg0NDaqqqtDQ0KBnz56EhIRQWVnJ2bNnqaiooEePHrS2tnL37l3MzMzo27cv2tra1NTU8PjxYwICAnj99de5dOkSo0aNwsvLi6ysLFauXEleXh4vvvgiY8eOBaCqqoqamhqsrKwwMjICoKWlBSsrK2bOnElISAgymYxhw4bh4uKCv78/iYmJJCcni3loL3x9fZkxYwaWlpYUFRVx8OBBPD09GTBgAACdO3dm6tSpaGtri+/Yzc2NM2fOcOTIERYtWsTEiRMZNmwY169f57vvvsPJyYng4GAsLCwYMmQIWlpadO3aVfxOCwsLKioqcHZ2xszMDAA1NTUASktL+fTTT4mPjwfgypUrBAYGkpaW1i67BgwYgKamJuXl5Rw+fBg9PT2Cg4Oxt7cXdnz00Ufcvn2bIUOGMGPGDOzt7VFRUaGhoYEjR45gbm4unqXY2FgSEhJwcXHBysqKwsJCPvvsM3x8fJgxYwYADQ0NaGtrA4o12K1bNx49ekTfvn0ZNGgQmpqa5OXlERMTg5WVFYGBgeI7VlVV5datW+2ev+rqauzt7XFychLPU2pqKkFBQfTt25edO3fy888/s2jRInr27Im2tjanTp3i4MGDNDc309DQgIGBAZ06dRKfqa+vj76+PhUVFezevZszZ87QqVMn5s+fT15eHlu2bKFXr15MmzYNPz8/Ghoa8Pb2xsLCgubmZi5cuEBUVBSFhYU4OjqKtfTzzz+3yzZVVVUaGxvR0tISrzk7O9PS0kJTUxMARkZGhISE8MUXX9DQ0ICPjw9fffUVtbW1zJkzhy5dugBQXFws1pqGhgYfffQRhoaGbN++HYDHjx+zbt06Bg4cyLhx48jNzeXNN9/kvffeY86cOfTs2ZPKykpUVFTo1q0bXbt2RVNTEy0tLVxcXOjTpw+geF7bAzs7O2pqalBR+f/Z26FDh1JWVoZMJuP48eOYmpqyePFicW46ODhgZmZG79696d+/P8ePH2fp0qVMmDCBsLAwlixZwvnz53n06JH4THNzc4qKirC2tkYmkzF//nwqKyupra1t8/0OHz4cbW1tkpOTcXJyEutCkiRCQkJYvnw5WVlZ7bJRCVdXV7S0tHj48KHYT7S0tEhOTkZdXR0NDQ06deqEu7s76urqlJSUcOLECWpraxk5ciRWVlaYmZnh4eGBjY2N+Nzg4GDef/99fH19ATAwMKC4uJht27bR1NTEW2+9haGhIYWFhWhraxMYGCj2AENDQ5KTk6mtrcXPzw+g3XtpeHi4mD9TU1OWL19OfX09p0+fFr8/KChIzLOOjg4A1tbWlJaWMmrUKEaNGsWwYcOwsbHB09OTnJwc8f04OzvTt29fdHR0qKmp4fr16xw4cAAVFRXmzZuHt7c3qqqqPHr0iK5du4q99s6dO+zatYsRI0YwZ84cnJ2d+emnnzh37hyzZ8/+pza123m9cuUKO3fuJCAgAD8/Px4/fkxoaCgvvvgix48f59NPP+XEiRM0NDQwe/Zs7O3t0dTUJDMzk7S0NCwtLTl06BDLly8nJCSEq1evEhgYiJeXFxcvXsTU1JTS0lI++eQT4uPjsbW1xdXVFZlMRkZGBhkZGbi7u1NeXk5iYiIFBQU0NzeTlZWFj48PL730Ek5OTuKLuXfvXrvsU1NTo3///jQ2NlJYWIhMJsPS0hKZTPFVPXr0CG1tbfz9/dHT0+Px48fExMTw888/U1lZiZeXF2VlZVy/fh1NTU0CAwOF452amoqdnR0WFhaAYgE7OztjYWHBmjVraG1tJTg4mN69e1NdXc2hQ4fEZ8TGxnL9+nX69euHk5MTV69eRZIkJk+e3N4pxM7ODhsbGxoaGmhpaUFNTQ01NTXOnz8vnNQuXboQGhpKUFAQAGVlZTQ1NdHa2kpFRQUPHjygtLSUKVOmMHToUORyOTExMZw6dYqKigrmzp1Lz549ef/99+nbty+XL1/mpZdeory8HF1dXQoKCsjMzOTEiRPC4bO2tsba2pqmpibMzMwYPnw4ABUVFe2yz8vLC1BcOrKzs9HU1CQ/P5/4+HiGDRuGg4MDmpqaGBkZsXbtWgBaW1vF/FdWVgLQr18/AE6ePElRURFubm7U19djYWFBcHAwPXv2FE6boaEhr7/+Omlpafj7++Po6IiGhgZxcXHY2toyc+ZMBg8eDCguCuXl5ejp6WFubo4kSeJ3Pil8fX05ceIEOTk5hIeHExwcjJ+fH+vWrRN/Jy0tDZlMhq6uLrGxsRw+fJihQ4cK5yUtLY2srCz8/f2ZNm1am2flxIkTVFZWMnv2bF555RVSU1NJS0vDwcEBFxcXWltbUVVVpbm5maamJubNm8e8efMoLi7m4cOHjBo1ivHjxwMgk8lIT09vl32/RmBgIIMGDcLKyorr169z5MgRZDIZPj4+gOJCPXPmTEBxGSovL8fKyopu3boRExPDRx99hJGREaNGjaKsrIyoqCicnJywsrJi8ODBeHh40NraSkFBAVVVVUiShJWVFV5eXrS0tFBaWoqWlpbY0K9du0ZycjJWVlbiUFi3bh3Xr1+nR48eT2yXs7MzlZWVnDt3jps3b+Lh4YGjoyN6enoYGxtTWlrKsWPHyM/PZ9WqVTg4OFBbW4uOjg4lJSVcv35dXEQDAwOpr69HVVUVc3Nz9PT0iImJYceOHYwfP144r7W1tZSXl6OpqUlLSwvh4eEMHToUJycnVFRUaG1tJSEhgYKCAkxNTamurhYXyeDg4HY7r2fOnOHmzZuEhoYKJ/vOnTscPnyYQYMG4e3tzdWrV7l9+zadO3cmLCyMrl27kpmZSVRUFFevXsXLy4s33nhDOKGlpaUYGhqio6NDWloap06dYv/+/UyZMgUrKytyc3PZt28fiYmJjB8/XjhtoLjUBAYGUlhYyLJly6isrGTIkCHY2dnR1NTE48eP22UfKBxNgIcPH5KQkICxsTG9evVCVfX/s/IyMzPJzMzE3d0dS0tLvv/+e27cuEGvXr2E86oMFABcv36d6Oho7O3tqampQV9fn/r6er777jvu3btH//79aWhooLi4WDiAFhYWGBgYIEkSpqam4rNkMhlDhgwRz2F7Ax4+Pj4kJycTFxfH/fv3cXZ2plu3brz44otERkYSFRUlLq5VVVVERkbS0NBAjx49cHR0FGf+9evXsbS0ZOjQoYwZM4YhQ4Zw+PBhrly5QmhoKK+99hpXrlwhKSkJW1tbHBwccHR05ODBgxQVFQFQU1NDU1MTQ4YMwc/Pj9zcXGpqalBTU6O0tJQhQ4YwatQo5HJ5u2ysqqpCV1cXPT09nJ2defz4MZcvX8bNzQ0NDQ0KCwupra3F2tqabt26oa6uTmVlJZcuXeLOnTs0NTXRtWtXrKyscHV1xd/fHw8PDyRJYu/evQC/GZO9vT1GRkb07duXuXPntnmvpqaGmJgYzM3NKSkpISsrCy0tLUpKSrCwsBCBvCdFRUUFpaWlGBgYYGZmRmBgIOfPnycpKYmBAwfi5+dHY2MjDx48wMnJSex1gwYN4sKFC2RkZJCdnc2BAwfafG5hYSFXrlxBT0+P7t270717dwAOHDjAli1bSE1NRV1dnVWrVuHr60tTUxO9evUS//7o0aPk5+ezZMkSgoKCKC4uxsDAgAkTJvxLm9rtvKqrq1NQUMDevXupq6sjMzOTmpoaFi5cyDPPPMMPP/zAkiVL+Pbbb/H19cXe3h6A5uZmzp49y08//URJSYk43A8dOsS4ceOora1l1apVXL58GUNDQ7GJ/PqWePz4ca5evcrIkSMZOXIkw4YNo3v37mhqalJTU4ORkZFwXAH8/f2xsbFhz549T2zf5s2b6datG/Hx8eTl5TFq1CgxIVeuXOH777+noKCA8PBwamtrsbS0ZNy4cXTt2hUXFxdMTU1JS0ujuroaQ0NDjI2NAdDR0UFbW1ssil+jU6dOLFu2DEtLS/Ganp4eAQEB9OvXDzU1NX788Ud27dpFQ0MDFhYWBAUFoaurS319PTt27HjyCQS8vb1paWnh1KlT5OfnEx4ejoaGBurq6jg5ObF+/XocHR2RyWRi/NbW1iQkJJCUlISvry9vvvkmc+fOJTw8HID79++TkZFBS0sLeXl5nDlzpo09vXv35quvvmL16tVERUWxbNkybGxsqKqqYvTo0eJy0NDQQFNTE+rq6oDCqTx58mS77FP+ewMDAx4/fszSpUsBeOutt/Dz8yM9PZ3GxkZxiVD+HhUVFXJycoiKisLExIQJEyZQVlZGbGws7u7uuLm5cfv2bRwcHPjqq6/aROp69OjBu+++y7lz5ygtLeXGjRt4enry7LPPoqWlJW7MxcXFPP/881RWVrJ582bU1dVpampiw4YN7bJRuabt7Ozw8vKiuroaSWrLzV+4cCFaWlqoqamhpaWFkZER3t7e4n11dXUkSSI5OZmysjKKi4tpbGykuroac3Nzvv76ayZNmkRFRQVyuZzs7Gy+/PJLTE1NhZNnYGAg5g7gxo0bxMXFMXXqVBwcHABFlMbd3b2NY90eqKqqEh8fj5WVFb6+vrz44osEBASgqqrKzz//TEZGBtOmTUNNTY179+7h4+NDRUUFK1euJD4+nvXr12NhYcHXX3+NqakpH3/8Merq6jg4OKCmpkZdXR3Xrl3j2LFj7Nmzh4aGBr755hvGjx9PXFwcFy5cYPjw4bi5uQHg5OTEokWLkMlkDBw4kJaWFnbs2MG9e/fa5bxGREQQGBiIk5MT06ZNw8zMDHNzczQ0NCgrKyMrK4vFixdjZmaGlZUVt27d4uLFi1haWuLp6Ymvry/ffvstw4cPZ9q0aYSEhDBs2DCam5spLi6mX79+bNiwgbq6OioqKjA0NBS2xcXFERoayrx589DX1wcUEdLW1lZ8fX3x9PREX19fOGa/F8ePH+fzzz/n448/Fs6rqakpnTt35ocffiA2NhYHBwcmTpwoHDQtLS3GjBmDt7c3MTExqKurExwcjKGhIUVFRURFRdHU1MSwYcNEwGLcuHEEBwcDisvO1q1bUVFRaROxA3jmmWcwMTFh9erVpKSkMGvWLExMTHj//ffx9vZm/vz5XLlypd12xsXF8f777/Pzzz/Tu3dvVq9eTefOnWltbeXgwYOsWLGC6upqPDw86NGjB+Xl5RgaGrbZg9TV1UlPT6eqqory8nIRiFGeGZaWlrzwwgvo6elRX1/P4MGD2bp1K9bW1uIzfm1vdXU1Z8+exdnZmeHDh7NmzRpmz57Nm2++2S7b9PX1CQwMZNeuXXz99deEhoaydOlSbG1tSUhIQEtLC2tra5qbm1m8eDHbt29HS0uLY8eOAfDtt98SGxvL0qVLGTdunPhcbW1tLCwshJNvZmZGWFgYCxYs4P3338ff35+oqCiysrKora2lqKiIiIgI9PT0ePXVV7GxsaG0tJT6+npMTU0xNzcnLy+v3Y4dQHx8PIGBgaiqqqKhoUGvXr3Ys2cP69evx9/fnwULFmBqaoqWlhbq6upcv36dPXv24Ofnx6xZs8jKyhK+Tk5ODhcvXmTy5MmUl5ezfft2kpKSUFVVZezYsWK/9PPzY+3atW3WQHl5OQUFBWhoaFBSUsLy5ctJSkri+eefZ9asWbS2tnLz5s122/jVV1+xb98+li1bxpAhQ1i2bBl37tzho48+EmdTZWVlm4waKPZuFxcXUlJSRFDo15AkiWXLluHu7i78pIyMDDHP06ZN49KlS6SmpuLl5YWNjY3YbxobG1m0aBEJCQlcvXqVxMREhg4dygsvvMD06dN57bXX/qlN7XZelc7a9evXuXv3LhYWFlhYWJCSkoKnpyddunShd+/e1NfXY2dnJ/5dYGAgBQUF7Nu3j06dOvHJJ58AtEmnd+7cmdTUVDQ0NAgNDaVHjx64u7uLz1BVVeXq1av07NkTNTU1srKyUFdXF5ui8sssKCjAyMgIT09PPD092+W86urqkpaWxrFjx5AkiYkTJwLw448/EhkZSWpqKo8fP0ZPT48RI0agoqKCt7d3G6egsrKSK1euMGTIEAwNDQHIzc1l//79WFtbY2FhgZOTE8XFxSQlJSFJEjo6OiQnJ1NQUICjoyMBAQF4e3tTXl5Obm6uiDxFRUUhk8kIDQ3l8ePH/Pjjj+2dQkARYXR1dRUOj62tLa+++irBwcEMGTIEQNyi7ezsRGqmpKQEQ0ND8eeCggIOHz5MTk4OAQEBgMLxnjhxopiXhw8fYmNjQ8+ePZk2bRpRUVEUFBTQrVs3vL29sbW1pbS0FBMTEzQ1NdHU1KSxsZGCggJiY2O5e/duu2xrbW2lurpaRDaVG7pyk2htbcXT05OamhqioqKwtbUlNDSU+Ph4vvvuO6qrqxk9ejSqqqo0NTUREhJCv379SElJYePGjQwfPhy5XE5+fj5nzpwhODgYT09PZsyYwfDhw4mNjSUmJoaqqirs7OwoKChg/fr1GBkZUVxczIMHD3B1dRWOQXl5OcnJyeKhfhJYW1vTs2dPhg8fjr6+PnZ2dpw7d47k5GTMzMzQ19cXtAlletjc3JzU1FTi4uLo3r07dnZ2XLx4kZiYGGxsbLCwsKClpYVHjx7Rs2dP8fw+evRIUCiUc6oca3FxMadPn8bKyopOnTpRXl5OS0sLtbW1grajjFa0Fz///DNFRUWoqqri4OBASUkJADNnzsTc3Jza2lpaWlqwtrZGXV2dhoYGjI2N0dfX5+HDh3z++ecMHDiQxYsXc+3aNWbPns3WrVvFhQsQ9I+EhATKy8vR0tISzqyjoyOPHj3C2tpaXMQkSaJz58507tyZ5uZmVFVVUVVVZf78+W2iXU+C+Ph4goKCeOaZZ37zXnV1Nerq6m0yK3v27GH37t0MHDiQgIAABg0aRGlpKfv37+fixYuUlZWJiI+FhQVqamqMGzeOhoYGUlNTqaqqoqGhAVdXV5qamigrK2P37t306NEDX19f9PT0aGlpQU9Pr03UEBBUmfaiX79+JCcnc/36dXbu3El4eDidO3fGycmJu3fvUldXR0hICM8//zyGhoY0NzfT3NzMw4cPUVdX59lnn23zeebm5jg5OZGamgoonLWePXsCirNk79692NjYMHr0aEARiT969CgFBQUEBATQs2dPunfvzty5c8nIyGDx4sWAYl+ztLRs40g8CR4/fkxSUhI5OTno6+ujpqZGcXEx5eXlgCKaWlNTIxwWY2NjbGxseO655+jevbsItjQ3N2NgYEB1dTVpaWloa2szb948TExMaGxspL6+HmNjYz777DMkSRJ7x6RJkwDFHtvY2Cii9so51NPTIzs7m5ycHJKSktDQ0CA5Obl9k4hiD5AkiS5duuDj48PPP//MrVu3MDY2ZtGiRTg4OJCamkppaSkANjY2wgGrqKigb9++zJo1C4BLly5RWVlJUFAQ/fv3Jy8vj6ioKDQ1NdHV1aVr164kJSXx9ddfAwoHatq0abS2tpKamoquri6NjY1oaGigq6sr9iIlhSMnJ6fd9imDN0rIZDIGDRpEQkIC3t7eODs709DQIL73c+fO8eWXX7JixQq6dOlCS0sLZ8+epUuXLty/f5/6+nokScLY2FhkEFNSUkhISMDX1xdVVVWqq6spLS2lqqoKFxcX1NTUiI+P59tvvxXPt42NDTk5OQwcOBBTU1PKyso4dOgQGRkZmJiYPLF95ubmODs706lTJxFU8/T0bJOVUFJW6urqaGhowMjICGNj4zYR1eLiYq5fv05tbS02NjY8ePAAKysrPD09qa2tFd//48ePqaioYNy4ccLPqK6uprm5mdraWlpbW9HT08PMzIyuXbty8uRJysrKkCSJiooK4uLi/qVN7XZe8/LymDdvHnPmzOHhw4eoqamJg2nbtm3s3buXgIAApk+fjouLC83NzcIxtbe3Z8CAAejo6Ahnr7y8nPj4eHR1dXn//feZPXs2CQkJ+Pn54eXl1WbD7NSpE4MHD6Zz587cuHGD119/HTc3NwYNGiQ229bWVrGJ/B6EhoZy69YtHBwcCAgIoGvXrly4cIFXXnkFMzMzRo4cyYkTJzh//jwXLlwQ6cqioiLMzc0BRYg+MTERV1dX8bkJCQnCcZ8wYQI2NjbExsZy4cIFYmJiiIuLE0784MGDeeedd+jevTsnT57k22+/5bnnnmPSpEm0trZSWlrKnTt32LNnD7t27RIb9ZNCSRX4NYfM3d2dt956q02kOzMzkxUrVtDa2sorr7xCp06d6Nq1q9gszpw5w9q1a7lw4QKBgYE8//zzGBsbY2xszJdffinSG9HR0Tg4ONCzZ08qKirw8fFh1qxZvPbaa7S0tJCVlUVjY6NIRYPi0Hn06BEpKSltNpUngdIBVm4emzZt4sGDB1y5cgUDAwPhvERHR7NgwQLGjBlDaGgo0dHRbNu2jbFjx4ooTktLC97e3ri4uNDQ0MD58+dRV1dn6NChbNiwgY0bN7JhwwY8PT0BBRXE39+fwsJCEhISePToEcnJyURGRiJJEmZmZqxdu5Zp06Yhk8lExHPo0KHtivj8+OOPaGhoCN5ybW0tt27dahORVaYhw8PDeeWVV7CxsWHjxo1kZWVhZ2eHsbExd+/epaKiglGjRtGjRw8qKyspKioS1AIAR0dHtm3bhrm5+W+cmvT0dF599VX09PRYv349Xbp0ITAwEE9PT06fPs2rr75Kc3Mzy5Yta9ccApw+fZo1a9YIrhwoohrNzc00Njair69PcHAwKioqqKqqoq2tLda0vr4+CxcuFDz6q1evCkqBEg8ePBD0kf79+zNw4EA+//xz6urq+Pzzz3nppZeQy+VMmzYNUKTylJFsgLt379LY2EhISAjDhw8Xl5onxdy5c4Xz8bewtLTEyMioTRbCx8cHTU1NKisrKS0txcrKildffZVXX32VOXPmsHPnTlauXCnGK0kSKioqaGpqYmtrS2ZmJjo6OkyfPh0VFRV27NjBe++9h7W1NQcOHMDa2ho1NTXKyspExkUJZfS+vRg5cqT4bubMmcOuXbuYMGECenp6vPzyy7z66quYmpqiq6urKML4xcnbsmULp0+fZvHixTz33HNtPnPQoEEEBQW1WaMpKSl8/vnnbNq0iZCQEA4dOoSlpSV1dXVs2LCB6Oho3nrrLXr06IGKigpDhw5tc7YsW7bsdznnP/zwAxs3bmT+/Pl89tlnjBo1ioKCAnG+NTY2Mm3aNDw9Pdm2bRv29vaCS6ncY5qamkQAw8HBQWRAlLxG5QVJ+Xf/9hkEhRN/584dZDKZoDfp6ekxcOBAEf0OCwtj+fLl7Nu3r100njNnzhAXF0ePHj1Ys2YNGhoafP/99xw5coROnTrRv39/QOGYy+VyFi1ahLu7u+AXL1q0CFVVVdLT07l58ybXrl0T1DBLS0uysrKYN28ejx8/5oUXXmD9+vX07NmTxYsXY2dnx65du1BXV6empoZ+/fphZmYmnEgDA4M268DV1RUbGxsOHz7crnn89VmofG4sLS1ZvXo1TU1NJCYmcu7cOfz9/QkNDRXRyfT0dAoKCjhy5AgHDhyga9eu6OrqCv4mwKJFi5g+fboIyFRVVWFoaMjNmzd5+eWXCQ4OZufOnYBirq9duyb40Bs3bhQ0ClDsa7W1tVy4cEHUITwJ5s6dy5QpU8TZvWLFCmpqav7u2frw4UN0dHQwMjISkWArKyv09PR49OgRCQkJ7Nq1i/j4eLp3705ERARubm48fPgQJycnDAwMeP7550lLS2PVqlXMnz+f2tpajh07RkJCAq6urgwYMABdXV0KCwvJz89n+vTpuLu7k5+fz5tvvsn58+f/7qX+12i383r16lXBZfvbSEN9fT2VlZX07dsXLy8vDh48SG1trfiS1dXVCQwMpKSkhFWrVhEeHk5gYCAHDhzg6tWrfPTRR7i4uHD79m2+//57Jk+ezPTp0yksLBSLaMGCBaioqLBx40Zyc3Pp168fVVVV1NbWcufOHQIDA7GysqKlpYUffviBixcvtovc/Oabb5KXl8f8+fN54YUXAMUGNHDgQMLDw+natSvR0dHcu3eP+fPno6qqyvTp04XjmpmZSV1dXZuCnW7dumFgYMCSJUvo3bs3PXv25NSpUxw+fBgHBwecnJy4ffs2YWFh9OnTh6SkJM6ePUv37t2ZMGEC+fn5GBgYoKamxsCBA4mKiiIiIoL4+Ph2pSmVUB6+Fy9epKSkhB49emBtbS24rLq6unh6emJoaMiYMWO4du0aN27cwMTEhF69eqGuri4iYjY2NgwbNoy33nqL4OBgLly4ICLDSmhra4tLiqmpKXPmzGHkyJFiLC4uLoAiEpWWlkZgYCB2dnb4+/sLGsHfcm3+GW7cuIGvr68gnmtqamJlZcX+/fuxsbERzquSG1ZbW0tOTg5OTk706NGD/Px8IiMj6dKlCw8ePOD27dsiVe7n54eFhQX379/HxMSEzp07c+jQIezs7BgyZAglJSXs2bOHpKQkUaTi7u6OmZkZSUlJDB06VEQg4P87RJMnT26X86r8zkpLS8nOzqalpUVEYVNSUmhqasLQ0BBbW1tRbFNTU4OHhwcODg7o6OiIiKOhoSEymQwVFRXMzc1Fwd2aNWsICAhg0qRJwjl/7733uHv3Ls888wzjxo3D0tKSt956i3v37hEfH4+FhYUoSnBxcWHs2LEkJydTU1PzxLYpMXz4cEpKSigrK+Ps2bOEhYWhoqJCVlYWOjo6mJiYoKKiwqFDh8jLy8PKyorOnTtjZ2eHmpoaL774IpmZmXz11Vfk5+czb948YmNjmTlzJmVlZWhqatKjRw/mzJnTJlVmYGCAo6Oj4LBOnTqVrKwsmpqaxAYbHR2NhoYG3bt3R11dnfPnz3P79u122Tdp0iQMDQ05ceIEDx8+ZNiwYdjZ2XH//n1MTU1xcnKiurqa/Px8LC0tee6553B0dOSLL75g+fLlgk8OisxJt27dxCGsLPg0MjLCz89PXCpTU1PZsGGDKPIDBb9SyW3u169fG8dV6Sw1NTX9LueutbWVW7duERISQlBQEB4eHuI9JQ0DFJHmO3fu0KlTJ6ysrOjatSuHDh3igw8+oKWlhblz53L79m2OHDlCr169GDp0aJvfo6uri6OjI6NHj8bV1ZXq6mosLS0xNjamX79+ODg40Lt3b+7fv09CQgKhoaE4ODhw6tQp4uLiCAkJacPFe1I0Njby+PFj1NTUMDMzY+zYsWRmZmJsbExLSwu6urqoqakREhJCTU2NiIoCf5dCpqGhgbu7O01NTcJBk8lkyGQyWltbef/996murmbixInU1NSQmprKyJEjRbClurqa8vJyPv/8c2pqavj222955plnaGhowNfXFwcHB7p169Yu5/XBgwc4Ojri7+8vxtS3b19KSkoEX7e5uZmYmBgAQkJCflOEumPHDtasWUNQUBALFiwgPz+fEydOcPbsWdLT05HJZGhpaZGSksLWrVsxMDBgwYIFPPvss+jr67N7927u3r3L3Llz6dSpE/Hx8ejr62Nvb09VVRWqqqro6+tTV1dHfn5+u+exsrKSwsJCcnNzyc/Pp7W1FU1NTUpKSrh16xZxcXHo6OhQXFxMVVUVpqamvPnmmzQ0NPDRRx+RmpqKvb09jo6OODk5YWpqSmNjo6A1eXt706NHDwwMDMTlQ1m4qKamRlpaGm5ubvz000+kpaVhZ2cn1omlpSWnT5+mW7duODk58frrr6Orq9vmIv6vcPXqVTQ0NMjKyuLhw4fo6urSu3dvXFxcuHXrFvv376eqqorAwED69OmDg4ODCDy2tLRw6dIlkdGrrKwUxaoODg6YmJiQkJDAl19+SVNTE66urvj6+tKrVy+RjdXQ0ODs2bNs3rwZfX19Vq1axbx58zA2Nqa1tVVQX0xMTDAzMxOO/z9Du53XpqYmGhoaRGq3vr5eLNQuXbpgb29Pv379yMnJ4fTp0xgbGzNw4EDB4wkKCuL69evs2LEDbW1tunTpQkVFBdHR0Rw9ehQ7Ozu+/fZbKioqyMjIYPDgwdy7d49vv/2WGTNm0L9/fzZs2MD+/fsxMTEhPDwcQ0NDsrOzKSoqEreE2tpaIiMjOXLkiHBCnwRKns6vC2hCQkKEw9PU1ESnTp04e/Ys9fX1nD9/ntGjR6Ovr09+fj4nT55EU1NT8H8XLFhA3759eeutt1i+fLm4+fz0008cO3aM559/nrFjx9KzZ0+Cg4NxcnJiy5YtgiDv6+vLggULiI+PF4UoZmZmbNu2jUGDBrFv3z5efPHF9k4jADExMcTGxuLk5IS1tTXx8fGcPHlSVAyGhoby7rvvcuHCBY4cOQIgDjYjIyMGDBggqnRBcWO7e/cupqamBAUFoampiUwmw9fXl/r6evT19Rk3bhz5+fkcP36cqKgoRo0aJapzr127xoMHD2hpaUFfXx89PT2R1miP83rixAlCQkLaVMfW1tZiZWXVhsrSpUsXtm3bRlFRkeAIampqMn36dF544QXmz5+PmZkZly5dIikpiU6dOonijkePHhEWFoa5uTnLly/niy++oFu3btTU1HDq1CkSExOZOXMmzzzzjFDckMlkeHh4UFdXJyIryvH8HtUIgKysLAoLC/H19aVbt26MGzeO1NRU8vLy8PT0xMrKCkBEtefPnw8oIspXrlzBzs4OOzs7tLS0qK6uFqmoc+fOsWbNGubMmSOig3v37uXbb7/l8ePHHDt2jKSkJF566SUWL15MfHw80dHRovANFKnDVatWUVRURG1tLZs3b26XbaGhoXh4eAjFBicnJ9zc3CgsLBQp8CtXrrBx40Zu3LiBh4cH06dPF1W+hoaGREVFERUVxdSpU5kzZw5ff/21iHIYGhry8OFDrK2tmTx5skhFKhESEkJdXR3Hjh3DyMhIOIaJiYlkZWXRvXt34fQeOHCAr7/+mgULFjyxfYaGhpSVlbFq1SrxrDs7O3Pnzh20tLRwcnJCT09P8KI1NTUZOHAgGzZs4M6dOyKyfvLkSWxsbNi+fTudOnWitraWmJgYSkpKRIWvco9OTU3l22+/5dGjR4SHhzN58mTOnDnDqVOn0NHRoXfv3qirq1NeXo5MJhMHaElJiaBttAcHDx7k1KlTjBw5khEjRtDQ0EBOTo7gu9fV1WFtbU1ZWRnR0dGkpKQwc+ZMESVau3YtOTk5tLa2kpOTw2effcb27dtZuXIl48ePR0tLi8LCQvT09AS3XTmPra2tNDU18d5774kL+8mTJ4mJicHV1RVbW1uSk5PZvXs39+/fp7GxUVwGnhQODg4MHjxYpFyV81pXV4eOjg5qamqCH66MUCoLrVRUVAQtoLy8HHNzc7S1tcnPzycvLw8XFxdBe9LS0uL48eN89913goP66NEjTp8+jYmJCVOmTMHNzY2ioiLi4+OJiYmhpqaGe/fu4eDgwJgxY0QxlJLj2B4bx4wZIwqRnZyccHJy4pVXXgEUe9etW7fEd9jS0iKUNEpLS4mMjGTlypVkZGTwzDPPEBQURFZWFtu2bePQoUM4OTkxceJEzM3NOX78OK+//jrh4eFs2rQJfX19ysvLWb16NUVFRYwaNUqscW1tbVRVVamoqBDPYVRUFJGRkW0uo08CZcHm119/TXR0NH379kVdXZ09e/ZQVVUlnsd9+/Zx8uRJRo8eTb9+/fjpp5/YvXs3rq6uTJ06FR8fHwoKCrh16xb19fXExcURHR3Ns88+S2BgYJtAWqdOnVi8eDGWlpYUFhZy9epV7t27h6+vLyNGjKClpQVJkrh06RJZWVmoqamho6ODnZ0dq1ataleWZ8uWLTQ1NaGjo8ODBw+4ceMGkyZNYs2aNZSXl7NlyxZAcZ6MHTtW7BfKAra0tDRqamowMTERTnNISAhdu3blk08+4fbt29y/f5+GhgacnJzYs2cPISEhbcag/MyqqipSUlJQU1NDJpOJfcrS0hI9PT0++OAD6uvreeedd/6pTe12XqdMmSJuDhoaGmhoaBAVFcXhw4fx8/NjwYIFyGQyNDQ0mDBhApqamqiqqmJlZYWqqipXrlyhsrKSd999l4EDB6Kurs5rr73GhAkTcHJyIicnh1mzZtHQ0ICXlxeXL1+muLiYzZs3M2XKFEDhJIEi6nTt2jXGjx+Pr68vOjo6FBYWkpOTg4aGBs8//zx9+/YlJSXlie3btm0bjY2NnDp1iiFDhrBo0SLBWQEED0tZOQcKMnRlZSW6urpYW1tTXV3N3r17OXXqFKCoyIuPjyc3N5eCggJSUlK4fv06+fn5fPHFFxgZGTF//nxOnTrFe++9R9++fenfvz/Lli0jLy+PQYMG4ejoiK2tLUZGRqipqSFJEubm5r+LHvHZZ5/x0ksvMXXqVHx9fcWD7ufnx549ezh48CBGRkYiemplZUWPHj3w9/cXn/HrIh2A7du3c+nSJSZPnsygQYNoamqitLSU5uZmdHV10dLSEo6vqakpX3/9NcXFxYSHh5OamsqyZcuwt7dnypQpPHz4kKVLl2JmZsbMmTPb8J6fBJqamsJxVRaAuLq6MmLECKqrq8nOzsbAwAATExNho7Ji19vbG0NDQyRJory8nNmzZxMeHs6xY8e4efMmqampNDY2oqurS1FREXl5ebi6utLY2MiWLVvo168fzz33HN9//z0pKSkkJydTXl7O999/j6mpqSj6Sk5OZuDAgbzzzjvo6Oi0i5etRGtrKxYWFpiZmYnDs7q6mpaWFjQ1NUW00N7e/jepRjU1Nby8vJg9ezbW1tZibiVJEhERIyMjJEniyy+/5PLly6irq7N8+XKOHz/OkSNHOHPmjOCZubq6MnbsWJydnYWjkZaWRlVVFW5ubu0+MEFR7HP37l1cXFxYuHChyPQEBARw8OBBdu7ciaOjI8HBwdy5cwddXV2cnJxISEhg9+7doiK4uLhYOJyDBw/G39+f5uZmrl27xqlTp5DL5Rw8eBBfX1/y8vJITU2la9eurF69Gi0tLUxMTITjevfuXfT09OjVqxfFxcWkpKTg4eHB3Llz8fHxeSKu1q9hbGxMTU0NFRUVIhKqpaXVhr6jpMHk5uaye/duXFxcmDFjBmFhYZSVlaGlpSUUAwBxwJmammJiYoK6ujr79u1jz549GBoasnz5csrKykhPT2fQoEGMGjWK06dP0717d7S1tdm/fz/Hjh1DLpeL1HZDQ8Pvkh9ycXFh8eLFJCUl8c033+Dn50dISAitra3cuXOHxMREHBwchDyegYEBdXV1aGhoMGjQIMzNzdHU1KS6uhp3d3dGjx7Nnj17iIiIoF+/fiQmJvL222/z7LPP8vrrrwOKbEZjYyNRUVGkpqby/PPPC86yuro6I0aMICgoCFVVVTp37szs2bOxsrIiLy+PlStXtsu+4uJiPDw8flM0pdyXy8vLyczMFOvn4cOHvP766yKLVl9fT1RUFPX19XzyySf07NmTY8eOsWPHDsaOHYufnx8XL17k1q1bFBcX4+zszKxZs+jXrx+3bt0iJSWFrKwsUlJS0NfX5/bt2zx48ICJEycyYMAAevfuTXZ2Nt999x2HDh3C3d1d1Js8KZTZPS0tLSwtLX9DH1HyIwMDA5EkCQsLC8rLyykqKmLv3r3s3LkTMzMzFi5ciIqKCjNmzEBTUxMDAwMCAwMxMjIS0byioiImT57M3LlzxXeqpaXFihUruH//Prdu3cLAwKAN5UK5boqKijh37hy7d+9u1yUSFDQrXV1dYmJiyMjIYMqUKUyYMEFwRE1NTfnoo4+4e/cu6urqmJiYcOnSJRISEkTG+fr169y/f5+ioiKSk5PJz89HX1+fAQMGMHnyZJGiLyoqwsTEBDc3N+RyOW5uboKWM2/ePAICAtqsFz8/PwYMGMCBAwcYPXo0o0eP5o033miXff369cPU1BRPT08ePXrEkSNHsLS0RFdXl1GjRrF582bOnTuHl5dXm8xLSUmJUOzR0dEhJyeHgoICZDIZDQ0NnDlzhvPnzwuZMl1dXWQyGadPn8bCwkJEUGUyGRMnTkRbW5vc3FymTp2KTCZj48aNHD16lKVLl2JpaSnoM38vK/G3aLfzqiTH37hxAwcHB6F5umXLFrp37y6igNra2m2icqC4oX3xxRfIZDLeffddjI2NSU9Px8DAgIEDB9Lc3IytrW2bgooDBw7Q2NgoHqC7d++iqamJs7Mz1dXVImKkp6eHnp4eRUVFVFdX4+XlxdChQ4WM05NCmdK9e/cu165dE7eF5uZmsrOzcXFxITQ0VDg9dXV1fPbZZ3z33XcAjBkzBplMxoMHDwDFg9+9e3cSEhI4fvw4BQUF4vsBxeZ248YNXn75ZeLi4jhw4ACzZ89m0KBBREZGcvToUWpra3nzzTfR19enubmZx48fM2bMGLp37y5+T3sgSZKQ1PHx8RFRP6VjnJyc3CYSaGhoSGBgIFVVVcTHx6Onp4e+vj4GBgaoq6uTmpoqLgjKAjB1dXUyMzOJj49HVVUVe3t7PD090dbWpra2FmNjY6ysrLC3t+f27dvExcWJ6LORkRGffPIJsbGxZGZm8umnn7bLPg0NDa5du0ZISAgaGhqkpqaKB+nevXscOXKEQYMGYWRkxIMHD2hsbBTOW1NTE88//zwZGRl06dIFW1tbZDIZmZmZnDp1ivPnzzN58mT69u3Lvn37uHnzJnK5HFVVVSIjI/Hw8GDcuHFkZ2ezf/9+7t+/T21tLdevX0dFRQVPT0+Ki4uprKykpKSExMREjIyMuHjxYru4vQUFBZiZmbXR6q2pqeH27dtiU1VXV6dfv36MHz9eFA4WFhYKLrCy8Ki1tZXMzEx0dXU5d+4cy5YtIzc3l5CQENLS0ti2bRsA48ePp2fPnujq6pKZmUlFRQU//fSTiPIqDzZra2scHR25evUqO3bsYODAgW10k58URUVF3L9/HzMzM5qbm0lNTcXAwABLS0vy8vK4e/cuPXv2xM3NjVu3buHr60vv3r25e/cuWVlZQtarsLCQlJQUqqqqeO6551BRUSEqKopr166hqqpKeXk5586dQ11dnfj4eOLi4vD09BRSaaCooL148SIFBQU8++yzODo6Eh0dTWJionD+/f3927XXKIsTZs2aRXh4OO7u7rS2tuLt7Y2enh6tra2kpKTQ0NCAjY0NJ0+e5Pr168yfP1/skb/WTL5586agvyj1WZVrJT09nRMnTtClSxfeeecdXF1dSUxMxMDAAFtbWxElURab5ufnU1xcLD7jwoULREZGikj+k0J5eB0+fJgbN25gaWkpOJwqKiokJCTw4MEDvLy8cHR0xM/PT6xVDQ0N/P39hbOk3DdAwW10cHAgLS2NR48eUVtbK+YpOTkZNzc3mpqaiIuL44svvmDEiBF4eXm1OZNSUlKora1l9OjR2NnZUVxcTERERLvsc3NzIzg4uA1nUktLS1yeNTU1hc3KsyIyMpKJEydiYGDAli1bBN3kypUr2NracvfuXRoaGkSV91dffQVA9+7defPNNxk1ahSgqK0oKyvj8ePH3Lp1CxcXF1RUVHB2dsbe3l6skaysLI4dO0ZxcTFhYWHt1iM2MjKisLAQAwMDQVcqLCwUijqmpqZtCpaVUFIfjIyMsLe3x9LSkpKSEpKSkoTO75AhQygsLOTnn39GRUWF559/XlSZ19bWkp2dTadOnYTO6J49ezh79qzQPNXW1sbExISmpiYhs/TrPbE9MDY2ZsaMGVy8eJFRo0bRpUsXQYuorKwUF4i6ujoePHiAiooKhoaG9OvXDz8/PyEjqpSNqq+vR01NjdDQUGxtbXn48CEaGhoYGhoKp7tTp05kZmZSUlJCt27dCAgIoKCggMTERDw8PNrUzRgYGJCRkUFiYmK7bVNqpiq5xj179hTZCaUW67x585AkSVz+qqqqOH/+PLGxsZiZmWFnZ0d5eTm2trYEBASQnJwspOHMzMwwNjYmMDCQ6upqfvzxR37++WehDKOpqUlQUJCQ3lSOJTExkeLiYurr6wHFRaisrOyJKErtdl5B4ch99913NDY2sn37diGJ8+tfWF9fLyIGSigjTkptVj09PR4+fCj4VGpqakydOlVU+AOMGDGCqKgoZs2aRWFhIQMGDGDYsGFMmTKF1tZWbGxsUFVV5dSpU6SmptKzZ8+/K+nQXrzyyivMnTtXHAINDQ3o6+uL7g6tra3IZDK0tbV56aWXSEtL4/vvv+ebb75h0KBBohBBmXpTFncoYW5uTmFhIfX19WhoaFBbW8uUKVOwsbERBXAREREMGjQIHR0dRo0aRUlJCfPmzUNLS4vNmzfz6NEjsbG1B8rN4eTJk6SmpooNPTU1lfj4eAwNDdtEEpQyKKtWrWLbtm34+Pjw5ptvEhoaSmxsLCkpKbz88sukp6fz9ttvc/z4cT7++GPq6+uF9FBAQABJSUniZrdq1SrBofHz8+Pbb78V0REPDw9mzJjBq6++yvHjx/8lcftvkZuby/jx49m0aRMjRowQfOkffviB6upqoqOjCQsLo7i4mNdeew0zMzN++OEHQMGdmzp1qqB37N27ly1btpCeni54Yo6OjowdO5aUlBQyMzPp06cPRkZG3Lp1S9BNbGxs8PHxwcvLiy5duuDv709RURFaWlpoa2tjbW2Nvr4+SUlJnDt3DmdnZ3Jzc5/YxoMHDzJ16lSh61haWoqpqSm9evXi7NmznDlzhn79+tGtWzfhDIDiIGppaWmT3r916xarVq2isLCQoqIiYWdlZSWxsbGA4uCUyWTMmTMHFxcXwsLCOHr0KK2trSxatIjy8nLee+89bty4IdakUjtU6Vi0F1OmTGHgwIF8+eWX+Pn5YWJiwuTJk+nVqxcWFhbMnj2bsLAwEhISxL+pra1FRUWFwMBAPvroIyoqKpg3bx7W1tY8++yzqKiocPToUV5//XVSUlJEIwwTExNsbW1F4dev+ZgpKSnMmDGDpKQk5syZI6gFbm5uuLm5CZ5xey+S+/bto6mpicGDBwvnp7CwsE1Tls8//5yDBw8SHBxM//79mTFjhrho/bqwKjY2lunTp5OamsrEiRP54YcfRLS2pKSE4cOHY2pqyr59+xg/fjwLFy78jbYkKIISw4cPZ968edTV1ZGUlERzczM///wzkZGR7Y5oHT16lK+++opevXrx9ddfCzkhQAQcWlpaqKqqIiMjA0tLSxFBrq+vF9JThoaGXL58mU2bNhEaGioutH5+fnz55ZfiO7G3txeZh8DAQDIyMti2bRt37twRdBHluHbv3k1SUhLjx4/n7bffxszMjKVLl7JkyZIntk/J3f81lI5rc3Mz2traaGtrk52dzebNmzlx4gSDBw9m5cqVmJqa8uWXX4p/FxMTIwqFPvzwQyZPniwk9Dw8PNi8eTPm5uZcuXKF+vp68bw2NDTQ3NwsFF2UTWTOnDnDiy++SO/evdm0aROgcICUFLAnRWFhIaampmhqatLc3ExhYSFxcXE8fvyYzp07/0OVDTs7OxYsWICuri6ffPIJhw4dYt26dezevZtXX32Vw4cPo6qqKmoOli5dKs6msrIy0VRGXV0dZ2dnVFVVefbZZ1mxYgWTJ0/m+eef56233gIUe35VVRW9e/eme/funD17tl027ty5k2nTpvHOO+/wwgsvtPFbdu7cSWRkJJMmTaJXr168//77qKurs3TpUvT19TExMSEgIAA7OzsiIyMJCgpi06ZNXLhwgU8//ZTNmzezZ88e7OzsWLx4MX379m2z/65bt469e/dy7do1XF1dmT9/Po8fP+bUqVMYGBhQW1vL3bt3aW5uZseOHYSEhPwu/nlubi4bNmwgKyuLhQsX0rt3b1RVVdmyZQtpaWnMnTsXNzc3JEni8uXL5OXlcePGDTIzM3FycqKqqgqZTCYuMJmZmaL4sba2ltOnT3Pjxg2hXpKYmMjUqVNxc3Nj8eLFzJs3T4wlPT2dx48fM3XqVGbNmoWKigqFhYVYWFhQUlLC/fv3/6U9v8t5lclkTJgwgePHj7N9+3Zqa2sZNWoUISEhojpWKTnS0NDAyZMnOXToEK2trYwfP57i4mK+/fZbMjIyAERVGyAkUry9venUqRMaGhp07tyZzMxMSktL6d69O0OHDqW5uZktW7YI3kVtbS3Xrl0TjtiZM2dobm4WwvBPioKCAlpaWkRhwZ49e6ioqOCFF14QEh3vvvsuqampTJ06lXHjxqGqqtqGS6mmpoa9vT1JSUmkpKQwadIkhg0bxrlz57h06RIAvXr1Qltbmx9++IG4uDhKSkpwcXEhISGBTz/9FHt7e4YNG9ZGKicxMZGTJ08ik8kIDw/HzMwMNze3dt+kc3NzsbCwoKamBk1NTaytrUlPT2fJkiVcunSJsLAwZDIZ586d4+HDhzzzzDOiel0ptj1q1Ch8fHyoqqoSfMqEhATOnz9PSUmJ0BUtLS2loKCA0tJS9u3bh46ODmPGjOG9994TERVTU1MRyVZG0cPDwxk+fDg2NjbiVvuk0NLSora2lurqahITE0XkcMmSJULuSUNDg5aWFgIDA6moqOD27dsEBgZSU1PDtWvXcHZ2xs/PD5lMRkVFBd7e3ri5uXH69GkePnxIdHS0SJ+oq6sLFQktLS0aGhoIDw+ne/fuokPYP+LS1dbW8ujRI9zd3dscrk9iozIrkJ2dzaZNmwgICGDChAlMmDCBiooKBgwYgK2tLcePH0dFRYWBAwcKx6u2tpbY2FguX77MzZs3uXHjhhACVxa4pKen07dvX4KCgjA3Nxei056enowePZqoqCiKi4t57rnnMDQ05LXXXkNdXV2oRxw9erQNJ769UG6EFhYW1NfX09LSInhgPXv2FI5Q586d8fb2pr6+njt37mBgYMCkSZMYPHgw1dXVopJVyd8sKirC29sbLy8vOnfujJmZGfn5+aSmpqKpqcmYMWMwMzPjypUreHh48PDhQ0xMTAgJCSE0NFRwNC9evIienh5hYWFYWFhQWFjYLvtCQ0Opqanh/v37xMfHM3z48DZSTfr6+ri6umJmZkZ1dTUVFRVUV1eLhgadOnWiubmZiIgIwd1WFuWcPHmS5uZmEfkxMzMTChj5+fl8+eWX9O/fHxcXF+rr67l06RK5ubl4eHiIZzEjI4OqqirRjEGZNWoPNm/eTHR0NGPHjhXPwokTJ7h+/ToGBgaMGjUKc3Nzjh07xvbt2zly5AjPP/88QUFBSJKEk5MT9+7d4+7duxw9epQhQ4bw9ttvY2FhwaFDh0Rk/sqVK2RnZzNgwABxAEdGRnLhwgWxZ7322musWLECOzs7MjIy2L17N6AoSCooKCAoKKiNNvWT4MaNG6SlpeHh4UG3bt3a0LjKy8tpaGjA1tYWHR0dZDIZffv2Fd0oHz58yMiRI6mtrRU62Uqps7KyMiIjI1FTU+O1117D1dWVgoICbt68ya1bt8jMzKS8vBxVVVWcnZ0xNjYWzVx0dXW5c+cOR44cwdnZmUWLFrWRqouNjf1NR8F/BhUVFSG7J5PJkCQJBwcHfHx80NPTIyUlhfj4eGpra8U5UVFRgYODA5WVlVy9elV0MrOyshKFoaC4ONfW1tLQ0MC5c+faNLNQ7q0ymYycnBxBfwoPD6e4uLjNRUhfX59jx46JAuL2Oq/6+vo0NTVRUlJCQkIClpaWIlsUGRnJwYMHkclk9O7dGx0dHXx8fBgzZgygyL4mJydz7do13NzcmDJlCq6urtTU1KChoSEcsVu3buHl5SUaE2lpadHU1CTWztatW2lpaSEtLY3g4GCxb+bk5LBhwwZcXV1ZtWoV0P7GPVFRUeL7io6OZuvWrfTu3RtQOJKffPIJycnJfPPNN6JQS0VFhfr6elEI2djYyA8//MDDhw/FJQYU/oSjo6PweRITE1m3bh3Gxsbi7DUyMiIyMpK4uDjy8vJQV1cnNDRUSOE9evSIqqoqLCwsfqN//I/wu5xXUMiV6OrqsmnTJqqrq5k2bRrh4eHU19eTl5cnbs/KNl9lZWVMnjyZKVOmkJ6eLoo3lEUsjY2NJCUlkZCQwIcffsiyZctENEJDQ4NPP/0UXV1dEYW7evUqr732GuHh4Rw8eFCI5Cq1x9atW0eXLl1+U5X6r1BUVMTjx4+xsbHh8ePHfPzxxxQXFzN48GCcnJxESzVlZwplh5zo6Gjc3Nzw9fVl2LBh5OXlsWnTJvLz8wkODhZRHSVeeOEF3NzcuHbtGuXl5UIfcO3atVy+fBlLS0tSU1MZO3YsnTp1oq6ujuLiYoYPHy66ySxbtoyPPvqo3d1E3nzzTT744APGjRtHY2MjFRUV/PDDD5w+fRpbW1v69etHRUUFX3/9NVevXiUzM5NVq1bRt29ftm/fTklJCdeuXcPLy4tu3bphbW3N/v3720RDSkpKKCoqQl9fn0ePHpGfn09BQQEqKircu3eP2NhYkaqsq6sTNAp1dXXBFVUW6LVHzw4UUe1p06bh5ORESUkJTk5OlJeXi4KkadOmUVpair6+Pm+++abgsnbt2pWGhgaWL19OQ0MDp0+fZty4cfj4+NDY2CgoAJWVlfzwww8cOXKEqqoq0VBj/PjxlJaWiozD38oNAaIbnEwmw9HRkU6dOuHi4oIkSe1yXn/dNre5uZmjR4+KKFWXLl1Yt24d6urqREdHM3/+fBwdHenZsyeGhoYiNbxx40aioqLo168f48aNY/v27ZiamvL5559jb2/P3r17sbKywsTEhHXr1gltTW9vb2QyGSYmJpSUlFBfX4+/vz979uyhoKCAjIwMdu7cyeXLl3FycvpdLX4BUZHat29fNm3aRF5eHp06daJ79+5tDl9VVVVGjRpFbGwssbGxNDY2YmRkRGpqKu7u7qxZs6ZNA4dp06YJ3ci0tDR++uknvv/+ex4/fkxISAh9+/bFwMCACxcucP36dYKDg9m1a5cQKAfFpfynn35CRUUFX19fLC0tCQ0NbZfusjK9uXbtWg4fPkxpaamITlRVVaGvr8/LL7/MxIkTOXv2LFu2bGHNmjX069ePzz77DIDz58/zwQcfUFpayvz585k+fTotLS1cvnyZa9eu0alTJ6Gx/eWXX4pK7OLiYj7//HM++ugjGhsb+emnnygoKGDhwoWAgk+tra2NiooK+vr6TJ48mZEjRwpe6ZPi6tWrGBkZteHI5+Xl8cknnzBo0CARaXv06BHr1q3j3r17aGtrk56ezuDBgwkICODQoUO8/fbb9OjRg+PHjwOKLmdvvPGG6ODT1NSEtbU1a9asYdq0aaioqBAbG9umPfgPP/yArq4uX331FR4eHtjZ2ZGbm4u6ujqHDx9m3759Yg9/Unz77bfs37+f119/XfAwlV3QysvLSU9PR1VVFWtra+bMmUNrayu5ubksW7aMuro6tm3bRmhoKKNGjSIvLw9ra2taW1tZsWIF6enpLF26lI8//pjVq1ezYMECwsPD8fDw4Pbt26I9a2NjIzKZTBTClJWVkZGRQUNDA1evXsXf319kTpRpY2Wa9kmgvDzp6uqioqKCra0tNjY2oiPbzZs32bFjBxUVFYwYMQJVVVUOHz5MRkYGmZmZgIJOt2XLFqKjoxkyZAhFRUW4u7vz8OFDDAwMsLa25urVq8yYMYOdO3cyYMAAgoODKS8vFzUZyqxnSEiIKKZUIjs7m4SEBMzMzH5XG+qwsDDU1dV577332LlzJxEREcJ59fb25uDBg+zbt49Lly4RFBREYGCgCNTl5eXx0ksvERMTw6xZsxg9ejSSJJGYmIihoSGqqqpCvSA2NpZLly4xfPhw1NXVhZTY9OnTGT58OPHx8ezfv5+BAwcCCCnJ7Oxs0VK8tbWVo0ePtsu++/fvEx4ezrvvvou9vT33798Xnc2UVKC0tDRSUlLo2bMnKioqQtO+S5cu9OrVi9zcXFJTU0UnRqVdiYmJ9OjRgzfeeIMNGzaQk5ODtrY2YWFhbdrAr1y5krVr19LQ0CAUDX7++WfRGMHKygpJkrC3t8fa2pqDBw/+U5va7bweOHCAbdu2iRaZvXr1wsDAQGz4SnmotLQ07O3t2bJlixDP/uCDD0hOTub1118Xi9rHxwcdHR0cHR3p168fJ06cEDftHj16iP7tw4YNQ0tLi/j4eBobG1FRUeG9997j6tWrjBkzhhEjRgg9uZiYGFFB3V5B5p07dwpeYJ8+ffjwww/ZsGEDM2fO5KWXXmLQoEGsWLGCuLg4AgMDMTAwwNvbW7RYnT17NiNGjKC4uFik7UpLS1m9ejU3b97EzMyMFStWiEjc6tWrRcrn5s2baGpq0qtXL8aMGYOvry937txh27ZtdO7cmdGjR+Pt7Y2WlhYHDx5sk3poD4yNjSkpKRFC+Rs2bCAyMpJp06bx7LPPYmlpSWxsrCjUSk5OZv369cL2JUuWcOTIEebNm4e2tjaurq44OjoSFBQkBOO/+uoroXGak5ODo6Mj77zzDl27dhWbqLKYqrq6Wgi2a2pqsmXLFgoLC/noo4/Q1tZm9erV7bIvJSWFoqIiKioqGDhwIN9//z0lJSV4e3tTU1NDSUmJaH15/fp10tPTCQ0NRU1NDRsbG+rr60lPT6ekpAQ7Ozs8PT356quvOHr0KEFBQQwePJgHDx5QVlYmVDSUMDExoaWlhS+++ILU1FR8fHxEBH7p0qX4+fnx/vvvEx8fz0cffSQ2sfbi2rVrREZG8txzz+Hi4sL48ePJzs6msLAQMzMz8Zl1dXXk5OQIfVRQZBfef/99bt++jZOTE88++yweHh54enpiYmIiiqtmzJjB1q1b+fDDD4UMDsCGDRs4f/483bp1Y+bMmW0uHnZ2djQ2NtKrVy/B2VLq+7YX3bt3x8vLCx0dHe7du0dqairGxsbiwP7uu+84fvw4Xl5eTJ06FTs7O7777juio6MpKyvD1dUVd3f335D/NTQ0SExMxNnZmc6dO3Pt2jVxAVFRUcHDwwNbW1saGxupra3FwcHhNxeRlpYWLCwsRNHDrVu3RBvIJ8XOnTu5f/8+9vb2TJs2TRzuixYtIjc3V+hfOjo6iq5toDiob9y4wY0bNygsLGTNmjU0NzeTnp7Oxo0bsbe3x8vLC3t7e44dOyayOkpag/KQiIyMFFmFxsZG4uPjeffddykvL2fixIloaWlx+vRpysrKGDVqVJvuhe2Brq4ud+/e5f79+/j5+TFt2jTBQ1eiX79+vP/++6Ia3s/PDz09Pe7cuUN1dTXr1q0TsjugoKT4+vpSVVVFS0sLRUVFQi+ytLSUxYsXM3v2bJGB0dHRobq6mqCgIB49eoSxsTGvv/46zc3NmJiYUFdXR0lJCfr6+u06M/z8/EhOTm5DVVNqJSujoioqKqJhibKqWimxZW5ujqenJ7169RKFz2FhYbi5uZGens6jR49IT08XlyJXV1cmTZrE7du3uXHjBqamptTV1XHv3j2Sk5M5ceIE5eXlIqt58OBBGhoamDZtGn369EFbW5tFixa1q47g8ePH7N69m5ycHIYNG8bw4cO5f/8+X3zxBb1792by5MnU1NTw4MEDRo8eLdRjXn31VUBBr4mIiMDExISsrCxxCVbumwMHDuTFF18kPz+fGzdukJKSQlBQEAYGBsJxVWbkQJER+O677+jatSve3t7s37+fCxcuMGTIkN80tXhSXL58meHDh1NfXy8CRUro6emhpaVFc3MzXl5e+Pj4iCKrlpYWUXQYGhrKyy+/jJ6eHk1NTVRUVODo6IipqSk1NTXU1dXh7OyMtbW1kMxS7p1KebyXX35ZOK7379/n/Pnz5Ofni6Y0NTU1bNy4ke3bt7crMDd06FBRYD9z5kxycnKIi4tjyZIlFBcXs2DBAlFYq6qqSlVVFStXriQzM5OMjAzRgtfFxYUuXbrg4eGBhoYGlZWVGBkZER4ejra2NidOnCAmJoadO3dSXV2NTCajW7du2NvbExwcLL6f+vp6waPv3bs38+fPx8bGRgQZ/rYg/O+h3c7ryZMnuXr1KioqKkLrTMl5SUpK4tq1a5w/f57Lly9TXV0NKBbvypUrsbS05MCBAyQmJmJlZUWXLl2ErI2yS4OKigra2to8fPhQFO307NmTESNGUFZWxqVLl9DW1mb27Nn06dOHbdu2sWDBAnGzBUUaccmSJVRVVbX70KypqcHOzk7IgY0cORKZTMbUqVOJjIxk7NixDB8+XFSKgkLyQl1dXbTZBEVa9/nnnwfgjTfeENXkc+fOFaLbaWlp9O3bVxyMtbW1jBw5kq5du4rUnVKOy8DAQBQ/fPTRR4waNaoNVaE9WLhwoeApp6amkpycjK+vLytXrhRc14yMDEaPHo27uztXr14lLi6OcePGMWvWLBGlUUbUsrOzCQgIYMCAAYLzuHz58ja/09/fn7fffls8rDExMaSmpmJnZ4ckSWIdXLt2ja+++gorKysyMjLYtGkTK1eubBfX7vvvvxedhIYOHdqmi8iOHTu4deuWkCg5f/48aWlp4pYdHx9PaGgozs7OJCcn06VLF9LT09m/fz9XrlwR9IG6ujqsrKwwMDAQ8xAbG4urqytqamqcPHmSixcv8vLLL5OXl8e5c+eYNWuW2MgeP34sIgT19fXtTsk+evSIa9euERAQgL+/P8uWLSMpKUlUHKurq9OtWzchhm5qaiqcOFVVVdGyduHChTg6Ogo+tY6ODgUFBRgaGqKpqUleXh4xMTHIZDK6du1KSUkJ6enpVFdX884779CnTx+Rrvf09ERXVxcbGxssLS3R19dnyJAhv0vcHhSdtOzt7SkqKqK+vp7i4mIqKipQUVGhqamJ5ORkzpw5I9oMKiMKcXFxaGlpiTlVNoKwtLQUbaovXLhA586dmThxIuHh4UydOpVdu3ZhZGRE586d0dPTE86yo6Mjzc3NQvgdFEWMXbp0wcvLCz09PcHna886XbduHTExMfz000+MGzeOIUOGEB0djaGhIWlpaSLy7erqytatWwHFXtqzZ0+xjsePH8/atWt5+PAhq1atIjs7Gw8PD95++20cHR3JzMwkOTkZDQ0NnJ2dsbKyEo46KKKRQUFBLF26FBMTE7Zt28b9+/eZOHEimpqaREdHc/78eSoqKnjvvffaPYfm5ub4+fnRqVMnkpKSqK+vx9PTU1S8NzQ0EBMTg6amZhtOHCj2w1OnTgnnS5nSb2hooLKykoEDB2JjY0NFRQXFxcXExMTw+PFjDh8+TL9+/fD19WXt2rUkJSVhbGwsJIm2bNkiOiT+Wk+yvLycwsLCdjmvU6ZMYdSoUaJgSBn5y8vLw8jIqI1SijLDpK2tTXBwMOfPn+fAgQNtitQOHjyImZkZgwYNEsL83333HZqamvTr14933nkHdXV1wavV1tZGS0uL3Nxc4XDp6uri6uoqKEmZmZlUVVWJjlTtPTfu3bvHtWvXyMzMFHrPBQUFREZGkpmZyaxZsxg7dixjx44VTvNLL71ESkoKFy9eZPPmzSK6p6GhwdChQ0lMTKS0tBQDAwPs7e3x9fWlT58+jBo1ig8++IBly5Yxb948/Pz8RFMSJT755BO++eYbPv74Yzw9PTl+/DiNjY289NJLAO1SF1Li5s2b9OnTR+zRvy76ysrKor6+npdeeonnnnuOixcvcu7cOUExNDExEZnkgoICNDU1hSRcXl4e3bt3R0dHh/T0dNzd3XFwcKC0tFREUo8ePUpiYiKLFi2ib9++5OTkkJ6eTmlpqeiSNnr0aNFc5NddI58UXbt2RZIkysrKMDExwdvbm5ycHDZt2oSWlhYbNmxg3LhxaGtr09zczIEDB6ivr8fJyUkEuAwMDHj77beRy+WiJkTZ0AEU3GhldvnixYvcuXOHqqoq5s+fzzvvvMOIESMYMWIEoCgATUtLo6ioiJaWlt+o4Sh9x3+Gdjuvra2tHDhwAAsLCyRJavMlfvfdd3z22Wf0799fVMsPHTpUdIlYvHixaC2npqZGXFwcVVVVdOnShbq6Og4dOkRDQwOTJk0iNjaWH374AT09PUaOHImGhgZaWlr079+/zcMXFBTEd999R1NTEzdv3iQoKEhIBykLq7Zv3/7E9r344ou4ubnR0tJCeXk5KioqWFlZ8d133wmlhdbWVu7fv4++vj5GRkYiSgeKrkDZ2dmkpKQwduxYevXq1eawyM7OFodWbm4ukyZN4rnnnkNdXR11dXXMzMzafKc9evTAzs6uTerV0tKyjXxXe2FkZCQcmeLiYmbOnImrq2ubIq1fa/e6u7uTkpIiHN65c+cKXvNPP/3Ejz/+yAsvvMDgwYPp27evSO2BIr3t7u5Ojx49qKmpQVtbm9jYWMHx0tXVZdy4cbi4uHD37l1efvllIZVz8eLFdkezQHG4gaLfeFRUFNra2nh4eGBvb09hYSEXLlzA2dmZV155hVdffZWNGzfy3nvv8fHHH+Ph4SF4a19//TX79++nc+fOTJ06lYEDBxITE8OiRYtQUVFBTU2NPn36YGVlRWRkJO+++y7jx4/nnXfeYfr06Xh7ezNz5kzU1NQYNmwY3bt3R1VVlQ8++ICsrCzBOaqqquLjjz9uo0v7r6Bs9KAsVFFXV8fX11fwQh89ekRsbCw6OjpERERgZGQkLg4ODg5s376dxsZG8vLy2LJlCw0NDaL73bFjxzh//jy9evUiNDRUcPmUz/zFixdpaWkRz4OyCE25AZWXl/PRRx9RUlJC165df3fErrq6WohzL1q0iLCwMFRVVQUtY9q0afTq1Qt7e3tx2AwdOhRjY2Osra2FyP+aNWvIycnB1taWtLQ0ysrK8PHx4ebNm8THx7Ny5UrWrVtHdHQ0JSUl6OjoUFlZKWgYyur4X2c6NDU1efDgAaWlpXTr1u03hWNPgkmTJqGmpkZqairp6em8+eabODg44OjoSGJiInp6ejx+/FhcMHv37s2ePXuIjo5m3rx5Ql1i2rRp3L59m9LSUjw9PenWrRs7d+6kpaWFkJAQLl26RGNjIxkZGW10bLW0tKivr0dVVZXg4GDGjRtH//79UVdXFxd/BwcHHBwcUFFR+V3Rcy8vLz788EMCAwPZuXOnkOdTpgSrqqpYuHAhdXV1/Pjjj/j7+/P48WMRpXruuef48ssvmTBhAi+//DJjx47l3LlzfPLJJ0L/VENDg2effZavvvqKgoICoqOjuXjxIvr6+jg5OQmHCxQqMsrGMb+uh2hubmb79u2CsvWkUPKnv//+e7Zu3cr8+fOZMmUK9vb2vzmAtbW1BVWlvLz8/3F21nFZnu3/f9Mg3d2dggKiIqiILXbHbGfN6ZxTF07ddMamM2bP7m6MiRgoBiHdSHd3/v7gdZ9f+cbvkR1/PT4vBvd1X9d1nEd8gsTERH766SfMzMw6Na8fPnxAWVkZNzc3wUv4+eefGTp0KAoKCpw8eZK3b98CHaQZZ2dnkfOgw9xjzpw51NfXc+vWLaSkpHBzcxM5XaLp+bmRlpaGnZ0dQ4cOFeeOr68vR48e5caNG+zZs0cUjkuXLqWmpoaDBw+yceNGUlJSBDxMQk4cMGAAeXl5pKamkpqaytu3b5k3bx6zZ8/GysqKuro6Tp06xYsXL1ixYgWzZ89GS0uLY8eOsWvXLpqbm/n9999ZtWoVra2tfPvtt/To0UOozEyZMqXL5+Pw4cMpKyujd+/eODs7k5GRIdQLJJqyfn5+uLq6cujQIfbv34+qqiqDBg0S7oFVVVWsXLkSR0dH/Pz8CAkJ4eXLl/j5+Qm1AYnpSn5+PleuXOH58+c4ODjw008/4ejoSFRUFHPmzEFTU5Ndu3YxduxYCgoKUFNTE+fDkiVL8PPz65Iyxtu3b/Hw8OjEP9DU1KR79+6kpKQQFxdHnz59iI+PZ+fOnSgqKnL16lX69OlDcHAwf/31FzU1Nejo6FBbWyuKVykpKYFHVlNTEwMZBwcHLC0tyc7O/h/N0uvXr2lvb2ft2rXiHZFM2Nva2oRF9H+KLhevzs7OopOor68X+qbQsULx9/fHxMREeDFraGhQXV1NdXW1AF9nZGRQV1eHlpaW8JB/8+YNjx49ory8nDFjxmBjY8PEiRMFcaa8vBw9PT0cHBz4+PEjjx8/RlFRkaFDh+Li4kJFRQXBwcE0Nzfj7u5OU1MTxcXFnbBunxOGhoaEhIRgb29PU1MTJ0+eRFNTk6+//hqAGzdukJSUhL6+Ps7OztTX16OsrMykSZOE2H9VVRVycnIUFhYSFRXVCYPz/v17YmJiBKPbxsaGGTNm0K1bN3R0dAgLCwM6WLN6enrC8ai8vJzXr19TUVGBvLw8RkZG4oXoaly6dAljY2N69+6Ni4uLIHHo6Oigra1NVVUV5ubm1NfXk5OTI9xboMONJysrC19fX+Tk5AT2KTw8XIDZfX19SU9PR0ZGBnd3d9TU1JCVlSUqKgo3NzcUFBRITEzk+fPnuLi4CC/kffv2kZ2dzdSpUxk6dCiVlZUMGDCgk7zG54Sfnx+ysrKoqalx8+ZNDAwM0NXVxdTUlEmTJpGYmMiRI0fQ0NBg7ty5DBgwQGh6uru7k5KSwv3794GOSYGfn5+Yok+bNo3r168DHQeziYkJN27cEBNAMzMz4TAmWUX269cPe3t7ioqKhG6fm5sbaWlpKCkpISMjg7m5OVlZWZ99jZ+qYMTHx6OjoyP87JWUlFBWVqalpUVsNKBjqyBxHdPR0SEhIYFnz54RFhZGVVUVmzdvFrJara2tXLhwgUGDBuHt7U1NTY2QO+nXrx95eXmcP38eFRUVhg4dipOTk9A9rq2txdDQECsrKzGp/E/4pf8tFBUVqaio4NKlS3h7ewtMocTtpmfPnoKIIvHV1tfXF1JCkqlGRUUF8fHxYprw6bOckpKCioqKaCSqqqp4+/Yt0tLSYlIliYKCAqHZ+ejRIw4dOoSenh5jx45l8ODBGBoacuDAgc++PomsXk5ODmFhYYwZMwYVFRXevXvH1atX0dXVxcPDg6KiIlGIS5i/Q4cO5ezZs8TFxYkc7OXlxdq1a8nMzBTSOHv37mXFihXs27ePkJAQmpqaGDFiBAMHDiQzM5MbN25QWVlJWFgYkydPFod+amoqr1+/RklJSeh1P3z4sMv3cNasWXh6elJRUUFycjJKSko0NDQQHBzM0KFD0dLSYuTIkVy6dIn169czY8YMPDw8qKysRFVVFR0dHYYMGcLOnTvZt28fWlpanYivXl5ezJs3j8DAQFRUVARcq66ujszMTDQ0NIT7kpSUFGVlZTg7O+Pv799J3kpGRoZbt24REhLSpen56dOnGTFiBOfOneP58+c4OTkxZcoU9PT0BCzi2bNnJCcnY2pqipeXFy0tLVRXV9PQ0EBDQwPFxcWdGiN5eXmhA6quro6+vr5wvbt06RLv3r2jb9++wm0uNTWV1tZWPDw8GDVqFAsXLhTN3K1btygvLxcNZHFxMYmJiV26h4WFhcTExBAYGCh+T0VFBYGBgSgpKfHs2TO2bduGvLw8CgoKhIWFMW/ePA4cOICvry9paWlERkbi4OCAoaEhGhoamJubC/nLadOmcf78eTIyMjh9+jTz5s3j0aNHREVF8ezZM2bPnk1sbCx79uwhJyeHI0eOCLvo6Oho4eAZHBzMsWPH/tWmR/JZ6uvrKS8vR0VFBVlZWRoaGhg0aBBubm74+Pjw+vVroUxjaGiIi4sLqampVFZWEhkZiby8PIaGhqK+GTx4MH369OHDhw/cvXuXYcOG4eLigqysLGfPniUhIYFBgwYJ2Ilkszxu3Dgh01VTU0NVVZUgTGtoaODs7Nyl68vPz8fT01PglCXSbcbGxpiZmaGsrMz27dsJDw9HU1OT8ePHY2FhQXJyMlVVVYwbNw4NDQ0UFRWJjIxEVVUVJycnof9sbGzciURsaGjI4sWLaWpqIjMzkytXrqCrqytqCnt7+0668ZLmSwK//BzccpeL1+7du7N7925kZGTw8vISB0p7ezszZsxg5MiRQg5DQUGB8+fPExISwsGDB/n9999Zu3atcObYtm2b0FLMyMgQN+fDhw+sXr2aoUOHIiUlJbogPT09Wltb2bp1K9HR0fzxxx/ic0lE9SVMVknB1xVgOnRM2zZt2sTu3buZPn06KSkpFBYW0q9fP549eyaIThJLWAmGadmyZZSXl4tiWUFBAWVlZcrLyyktLSUzM1O4cmlrawuJGImFISDwW5K1K3QcppLvRDIRs7S0ZNKkSairq5Obm9vVW8jr16958uQJf/75J0FBQZw7d46srCzRycnIyGBpaUlTUxPJycnU1NRgYWFBbW0tDx8+ZN++ffj6+nLx4kX69OmDsbExT5484cyZM1hbW+Pg4MChQ4fQ0tIiKyuLixcvEhcXJ4S59fT0yMjIoKysDD8/PzIzM/npp59oaGhg1apVfPnll6irq1NYWMjixYupqqr6j24bn8b169cpLi4mJCSEoqIiBg8eLHCcpqamrFu3Dj8/P3bs2MGkSZOQlpZGQ0ODRYsWsW7dOvF8AkyfPl2sM+vr6+nTpw/Pnj0T5IrKykquXr2Kqqoq+/fvJzAwEOhYoTx//pxffvmFr776itWrV5Oamsr79++ZOXMmjY2N/PXXX5iYmLB8+XLWrl3bZeIddKxfkpKSGDJkiDgsW1tb0dXVRVNTEwUFBQoKCkhMTERRUREfHx+Ki4tZtmwZISEhDBw4kIULFxIWFsYff/xBfHw8f//9N9ra2kyaNInQ0FBMTU2FocTx48fR1NRESUmJI0eOUFFRgaWlJe7u7khLS1NeXo6RkRH79u0Tn2fDhg3s3bu3y3g0GxsblJSUmDx5Mtu2bePu3btClcHY2JivvvoKQMAa1NXVOznrSIwwBg0aJNbTJiYm9OzZk6KiIiFrtmPHDo4cOQJ0rNciIiIEwe3TtXJhYSGPHz8W+qSSAisnJwcLC4v/Vevy/xfV1dVoaGiI1amkmTh69CiJiYn4+/ujra2Nh4cHY8aMYffu3UyePJnr16+zYcMGXr9+TVZWFqdPn8bf35/c3FxqamoICwtDR0cHFxcXxo0bh5GREVZWVgwdOhRZWVl+//137O3thU/5kydP2LVrF4qKiqLwlxxSxsbGTJ48mfDwcH766Sd8fHy6dI2DBw/mypUrnDlzhm7dunHixAkUFRW5ePEiqampLFu2jI0bN+Lm5sbMmTORlpZmwoQJyMnJ8fLlSxwdHXF3d+fhw4ccOHCAhQsXoqysLOAP9vb2zJ49GwUFBX766SehN/7LL7/g5OQkmmjJoerr64uFhUWnwhU6Jkh9+/bl/fv3Xbq+hIQEoRfr5+eHiYkJcXFxnUhfe/fu5cqVKyxcuJABAwbg5OQkoHaKioo4OjqSkJAgzioLCwt8fHxwcXER6/YTJ07wzTffUFZWRt++fTl48CAWFhb89ttvbN68mW7dujFt2jRmz54tDEtyc3N59+6dWGNDB0Rp0qRJXSIW1tfX8/jxY3r06MGwYcNoaGjg1q1bNDY2MmLECLS1tYUM3a1bt3j69CnLly/nwoULuLu7U1JSQnx8PAoKClRUVNDU1ISDg4OAivXr14/r16/j4eEhoD6LFi3ixx9/FPfp3r17tLa2cvLkSfGMHjp0iI8fP6Kjo8OrV6+YN28eo0aN4unTp/zyyy9duo8SgmRkZCSvXr1i8ODBIpeMGjVKwDrOnTtHdXU1zs7OXL16FQMDA9auXcuJEyfo378/e/bswdbWloSEBAYMGICHhwf9+/cnLS1NOIFJtp7Lly9nwIABokiNj4/H2NiY48ePi+t+/PgxERERqKqqkpCQwIULF+jWrZuAHn5uSKy1JWRC6Gj4y8vLmTt3LoGBgYwdO5a0tDSePXuGoaEhw4YNE03H2rVrhZpURUUFzc3NxMbGoqCggI2NDdLS0oKUDQgipYeHB69evWLlypUoKiqyZs0aZs6cibm5OSUlJZSVlaGoqCik2LoSXS5e7ezsSEhIoLW1VbgsqKioICUlRXJyMtHR0ejp6bFgwQJiY2M5ffq00CzT1tYW2oR+fn6kpqby22+/sXjxYry8vLCxsUFfX5+lS5fi4OBAbm4uJiYmWFpaClmGhoYGTExM0NfXp0ePHtTV1fH48WMGDBiAiYkJdXV1XLhwQagPeHh4kJ2d/dnXFxwcTN++fRkxYoSYKEpA/1VVVQKELXnxJFZ8lpaWAqfa2tpKVFQU1tbW4sXOy8sjMTGR5uZmZGRkxLg8LCyMH3/8kdbWVrS1tRkwYADu7u40NzeTnZ1NaWkptbW11NTUkJiYSGFhIeXl5cyaNQsnJye0tLS67OU8ZcoU1NXV+eeffwgPD6ehoUF0ntCBmaqrqyM9PV3YtNbU1Ih1fklJCTdu3GDZsmXs2LFD6J5GREQgLS3dCRuoq6vL/fv3CQkJoa6uDj09PWJjY3nw4AEeHh6CpJeVlcXo0aMJCgoiODgYeXl5IUXS1XWllpaWsF2UaHbW1dWxe/duRowYQffu3fnxxx+Jj48XnaCsrCxGRkaoq6uLpsXExES8dBkZGXz48AEfHx+OHDlCaGgozc3NNDc30717d4YPH05gYCA1NTVERkbi5eVFYGAgZ86c4c8//2TJkiU4ODgIBYbCwkKqqqqwtLT8LHD6/xZ1dXWoqqpiaWnZ6cX/VEIGOiAFOTk51NbW4uPjQ2trK69evaK4uBgPDw++++47UlNTsbW1JTg4WLhRFRcXo6SkRM+ePblx4wY3b97k/v37TJs2TQh6p6eni2QoIyMjGrGQkBBBaoqNjf0sDNP/FnJycgQEBBAbG0tERAT5+fkYGBgIEXqJTaysrCxmZma0t7dz+vRprly5IqZ6WlpaaGhoYGFhgaamJpqamvTo0YNevXoJMl1paanw+7axsSE/P5/4+Hjy8vKYNm2akMkpKiri7t27NDU18eWXX2Jvb09FRYVYnXUlVFVVcXd3p729HWVlZerr61FTU8PCwoLMzEzS0tI4fvw4o0ePZuTIkdTW1orNi7W1NWvWrCEtLQ0PDw+gQ71gz549PHjwgBkzZrB69WqRp9LT05k7dy4FBQVcuHCB+fPno6WlhaOjI0+ePCEpKYmEhAT69u2Ljo6OkAPq168furq6aGhoEBkZ2eXi9enTp+zbt4+Ghga++eYbevTowT///MP9+/dxcnISsjwtLS2CvCvB4EucGAcOHMiECRNYtWoVCQkJJCYmoqWlJXzVQ0JCMDc3R09PDzs7OwYOHCgaiYyMjE5EL0VFRWRlZbly5YrQETUyMsLU1BQXFxcuXrzYJR1Uf39/MjIyBE/B1NSUyMhIjh07hr6+vtj6TJ48mdGjRwvYhmQ6aGFhIVawEvH3+vp6IiIixHki2Vz269cPGRkZxo8fL4p3bW1tpk2bRnl5Oc+fPyczMxNdXV2B0Z42bRpeXl5CGlBPTw9TU9MuFa/KysosXrwYV1dXgWs0NjYWzHN9fX2++uorsrOzCQkJoa2tjQ0bNuDh4UFxcTF2dnZCj9rQ0FDoiIaHh9PW1oaioiI7duzAy8tLFPAeHh7s3LlTKBKYm5uzaNEi4Wz17t07SkpKcHR0JC8vj6ysLAYNGsT06dPFM9+VOHnyJKmpqUKz9VM1k8zMTFJTU3FycsLHx0cQjyUFpqamJg0NDURGRpKUlIStrS11dXXCqtfT05MZM2aIgdWNGzcoKirC0dGxU0MvsVKXkpLi6NGjPH/+HGtrawYPHixMWkxMTHBxcaF///5C6u1zQk1NjcbGxk7QNHNzcyZMmICvry/6+vosWbKE58+f8/btW+7cuSNIur6+vvTo0QNlZWWkpaUxMzOjqalJDJw2bNhATk4OixcvJiQkRMihxcTE4OLiQkBAAH5+fjx79ozw8HAWL16MnJwc7e3tPHjwABUVFTFJT05O5smTJ4LU9/+LLp+apqamLFu2DECsPSSxdetWTpw4wenTp1m2bBnbt2/H3d0dMzMzysvL+euvv3B3d+fAgQNoaGjw559/cvbsWZycnBg5ciQzZsxAWVmZYcOGERYWRnh4uIAF6OnpCVvOT6dwr1694uPHj2RkZGBnZ4eWlhZ2dnbo6emhra3dCcf5OeHk5CQmkH/99Rfp6ekEBQXh7e2NkpIST548oaioSHQwaWlpXLlyRegu6urqEhsby8OHDzEyMhLThKlTp1JXV8e1a9eEmxF0YFEkGqZDhw6ld+/eKCoqUlpaSnx8PAYGBvTv3x97e3vBuA4ICGDSpEloa2vT3t7e5XVeUFAQQUFBTJw4kZMnT3L58mUhti0pMlJSUmhoaMDMzExMLZKTk9HS0mLEiBG8fPmSR48eCZyXxGkEOnTp3rx5Q+/evYUvNHS47Dx48ICqqiosLCyYPn06hoaGGBsbM3PmTJYvX46FhQXfffcd+fn5mJubIy8v32VRbUlIpEygQ+dOMq26desWixYtEj+nqKjYSZR+4MCBeHh4ICcnJ5ijb968IS8vDzc3Nzw9PRk2bBj79u3j6tWrODg44O3tTXNzM0+fPiU/Px8PDw+BF5YUNVpaWmLdp6SkRFBQEG5ublRUVLBx48YuXZvERk+COy0uLiYnJwc1NTWUlJRobW2lubkZVVVVtLW10dbW5s2bN4JUNnr0aDIzM5k+fTrwXy5qubm5fPjwgfT0dBQVFfnyyy9Zvnw5ffv2FUogEmc2iVsVdEyam5ubMTY2JjExkRUrVlBaWsqWLVsEprm2trZL17hnzx4UFRVZvnw5Ojo63Llzh/LycpYtWyaSn0R/VTJZkpKS4v79+zx69Ihdu3YJjKREbzY6OhpLS0u++eYbdHR0uHHjBh4eHtTU1PD+/Xuam5tRUlKisbGR9PR0NDU1SUhIQF9fHz09PcaPH8/79+/Jzc1l4cKFYrLw8ePHLhevEi1piSugiYkJPXr0YPjw4fz4448cP36cU6dOYWhoyOzZs4WGtcT0Yf78+bx//57169czZswY/P39Bb5+5syZYnW8ZMkSYmJiGDNmDA0NDWzcuJHg4GDmzp1LRUUFBgYGBAQE4O/vL6Z28vLyTJ06VeCk4+Li/se08nNCIn+1ZcsWZs2aRXZ2NkePHhUay8XFxbx69Yo7d+4IdYnc3FxkZWVJTk7m7Nmz3LhxA1lZWcaMGcO2bds4evQoFRUV9OjRg6amJi5fvszYsWNZtmyZOJva29vFASwtLS1yU21tLW/evOHYsWNC8gc6Cofvv/+en3/+uUv5pm/fvsjKyuLs7CxkgV69esW1a9fIzs7miy++YNOmTZiZmXUy65Bg+srKyqitraWhoUE4LO3atYuwsDCGDx+OpaUlp0+fxtbWVrhXSrZZz58/R09Pj0WLFlFaWsq6devEZzc3N2fIkCF88cUXYprZ3Nz8r2SkrKysRL6UTDpHjRolitWKigpWrlxJZGSk0Nl9/vw5CgoKoti1sbFBSkpK6Gbfu3dPkJw2bNgg7tvly5c5ffo0np6efPfdd8jKypKWlsbkyZMpLi7miy++EJCu48ePM3PmTIqKipCTkxMybp9aK39uFBYW8ueff/Lzzz8zcuRI6urqKCwsRF9fn8jISE6fPs38+fOZOnUqvr6+xMTEcPv2bczNzRk1ahSZmZmcP3+eKVOm8P3332NoaMj58+eF9rK/vz8zZ85k27ZtYoI+adIkrKysMDY2Ftry6enpTJkyRWCaDx8+LBpGDQ0NJk+ejKGhISYmJl0qXlNSUiguLsbIyEhAP5ycnHBychLPpYRDMG7cOKKiotDT0+P48eNCnrSkpETkg9raWq5fv05TUxPffvstOTk5hISEoKqqypAhQ4iJieHs2bP4+Pjg6upKaGgo/v7+wtRI0tSpqakJDLCtrS0fP34kPDycd+/eCSjX/xX/WucVEID5T/9tYGAgusLg4GB0dXX5448/aGtrIzo6Gh8fHzQ0NCguLhaEkydPnlBWVsbs2bMpLi5m3bp1VFdXM2LEiE7g+f/OSGttbRXFXWVlJS9evMDS0pKdO3fS2NjI8ePHOXfuXKfV338KiWLBhQsXWLt2Ld7e3oIlLykYTpw4QW5uLsuXL8fa2loAytva2oTg/FdffcWFCxdYsWIF06dPFx1bZWUlZ8+eZfny5fj7+/Pbb7/x5s0bBg8eLHCHO3bswMXFhd69e4upnERNwc7ODnd3d7F2kqw+/03069cPJSWlTiuuEydOcPfuXWbNmsX48ePJz8+nsbERXV1dkpOTeffuHfb29gwePBh1dXX69u1LY2Mjd+/eRV5entGjRwuXm6ioKAwNDdm4cSOmpqYcPnyYpqYm7O3t2blzp8DXWVtb8+OPPwpm7s8//8zu3bsZP348GhoaXdbqlcSzZ8+4d+8ePXv2REpKShSkb968EXAX6JBk+u2338QEC+gkjSQnJ4etrS3S0tKdvu/6+nqePn3K06dPgQ5ViZEjR/LmzRuWLVtGWVkZq1evxtvbW1ibFhcXc+7cOczNzfH39+fRo0ds2rSJjIwMZs2a9a+uEzqajkuXLhEcHExlZSV9+vRhypQpnaY3ZWVlpKSkYG5uzsiRI2ltbUVZWZng4GB27dqFjIwMCxcuxMfHhxEjRjBs2DDi4+OJiopiwYIFBAQE8PPPP/PXX3/h7OzM+PHjmTNnDrq6uoSGhvLrr78iJSWFoaEhysrKjBo1iunTpyMlJYWKigrBwcFduqYtW7YwYMAAkTwtLCyE444kWltbhS+4JFavXs20adNwcnJCWlqaHj16EBERwblz52hraxMT+dzcXG7evElycjL6+vqC5CYxZ/j111+xtbXlzp07fPfdd8ybN4/x48dTX1/Pw4cPGTt2LB4eHmJL9Klk2udGXV0dysrKKCgoUFNTg6qqKsbGxqKI7NmzJ5MmTRLTOaCT9Fdubi779+8nOzubQYMGMXv2bHx8fOjRowf5+fls2rSJjx8/CsILdOgRKyoqsmvXLhISEvDx8WH+/Pli+5KVlYWxsbGwil65ciU1NTWsXLlSOK59btTW1ootGSBgJoMHD8bf3x9lZWWcnZ3JyckhLS0NQ0NDfH19CQ8P59atW1RVVVFVVcXGjRtpaWlhwoQJ9OjRg6ioKPLy8mhqasLT07MTKbC5uZnRo0eTnZ2Nq6srT58+5dy5c2zcuBFLS0tcXV2ZNm0aixYtQkVFhXv37nHhwgXu3r3byVb3cyI2Npa///5bcCKgY8q1atUqqqur6d27tyC67ty5ExMTEyZOnCgme1JSUmhoaAjpopycHCorK6msrOT9+/fcuXOH48ePs2HDBvH7L168KAh6hoaGwuRFS0uL33//ncLCQlauXImDgwN//fUX6urqbN26FTk5OV68eNGpUf+ccHJyoqamRpB0JQWMoaEhM2fOpKWlhRcvXhAcHMyQIUOQkZHh1KlTLFiwAD09Pfbu3UttbS2TJk2ioKCA7777jhcvXghHsy+++EL8LU1NTW7fvk1sbCyrVq1CQUFBNHnV1dWdrFElG7n/Lmj/qVHE58bUqVPF5hM63jFJg+Ht7Y2CgoJwloKO+/7bb78xY8YMvvzySwYOHMj58+epra3l2bNnuLu7CzlQCfRj3bp14rtQVVUlJSWFlStXCv36iRMnkpeXJwrXrVu34ujoyO3bt+nevbtoQi5evMjNmzc7QaT+U6xcuZJevXrh6OhITk6OgBJJvi+Jnq6lpSXLly8nPT2dUaNGCbId/Bcxt729XehSW1tbo66ujrGxMfv378fY2JiioiJOnz5NREQEP//8s6i/DA0NSUlJ6YTv9vX1paioiIiICBISEnBycuKPP/4gJiZGKDT9X9Hl4rWoqEjI6EiKNU1NTZSVlZk3bx5+fn44ODgQFhbGu3fvsLa2RkNDA21tbVGcJCQkEB4ejqWlJbq6uqiqqlJUVERUVBR37twRq+iAgAAx9ZPYx7a3t1NaWkpbW5vwqweEEL6xsbF4WLS1tcnMzOxS8erp6UljYyOPHj1CTU2NhQsXdrqBTk5OFBQUCOme/v37d/Jtl8ihVFVVkZyczLNnz7CxsRHdk7OzMxMmTGDMmDGoq6sjJyfH2LFjOXLkCE+ePGH16tWcOXOG3377TXz+Dx8+YGVlhbe3Ny4uLsKr/N+uYrOysmhsbGT48OGMGTOG1tZWMjMzSU5O5p9//iExMZGkpCSio6Opq6sT/soVFRUkJSUJIwNJ8dnY2Mj58+d59+4dhYWFLFy4EAsLC/Lz8ykoKBD6r5LkPHXqVNTV1cnKysLMzEwk04SEBLS1tenRowfbtm1j2rRpREREkJub24k48znR2NhIdHQ0jx494tGjR6xcuZK1a9cSExPD/v37hXNYS0sLurq6mJubCxFmiXVrRUUFbW1tqKuri1XQ8+fPSU1NxczMjLa2NgwMDMQkXnIgeXp6kp6eLnCiFhYWxMbG8uHDB1JSUnj8+DFjxoxBQ0OD5uZmcnNzxQS1K9Hc3ExdXR3S0tJ069YNW1tbHjx4QGRkJBkZGZ06V2tra1xcXKisrKShoUF0x1u2bOHhw4eUlZWho6PDhw8fUFJSYvHixdja2vLmzRth3VtVVSUmO1lZWfzyyy/ExMRw8OBBbG1tqa+vFzI1vXv3ZuDAgRQXF/PkyRNevXrV5amPmZkZBgYGnfDueXl5SEtLY21tjaqqKjIyMjQ2NlJXVyeSa/fu3bG3txeHrLa2tiAI1NfXs2jRIlRVVblx44YgX/j4+ODs7ExsbCwvX75ES0tLHKrW1tYoKCgI5zBra2ssLCxITEwkOjpaPB9dvb6oqCjq6+uxt7dHS0uLsrIygb2zt7dn7NixQtINOt4/RUVFPn78KKSvZGVl6du3ryDl2dnZicN++/btHDx4kKlTp7JkyRKh2zh8+HDKy8s5ffo00FEEfGrxqaGhIQqAqKgooqKihFB5V4vX5cuXo6qqip2dHcnJydy8eRNra2tBKIOOYs/e3p4jR45QWVlJfX09Kioq2Nrakp2dTWpqKlFRUdy/f18U3lJSUqSlpeHp6SkKjoaGBsrKyvj777+JjIzExcUFa2trMjMziY2NJS8vDyMjI/z9/Ts53jk7O3Pr1i3i4uK6BDGTfD+xsbGEhYUxffp04QqlqalJQECAGAzcuHGD0NBQxo8fj6qqKv379+fNmzdYWFigqKhIfn4+GRkZQmpq3LhxKCgoCN3T6Oho/P392bNnD/v370dHRwcrKytaW1vFOSCBvGRmZuLp6Sm+M11dXZKSkkhLS2Pnzp3/caL136OlpYWkpCRBIKuvr6empgYNDQ2kpKT48OED8+fPR1NTk3/++Yfq6mrWrVtHe3s7AQEBgmGfmppKTEyM2DSamZkxcuRIdHV1KS4uRldXF29vbyZNmkRGRgYPHjygV69e1NTUCFK3rq4uhYWFeHt7Iy8vT2pqKjY2Nujo6FBVVYWUlNS/aiLt7OwE1ERyhktqD8mE8tOQcFfs7OyEE15QUJAwbXn8+DGenp5MnToVQ0NDjhw5wm+//QZ0TMWtrKwoKyvj+fPnQEcBPm7cOIyNjRk7dix9+/blm2++oaCggMOHD6OioiKaoJCQEM6fP98lYmFbWxsyMjIUFxejrKzcyYJZUVERBQUFYmNjaWhoEAO85uZmIiIiaG9vx9LSUpgFRUREUFdXx/fffy8gTvr6+p2akAcPHtDW1iZqr5MnT6KsrMyaNWsE/wQ6cqu1tTXZ2dmUlJSgpaWFpqbmZzVYXS5e7969KwTIW1paePDggZiSOjg44OzsjJKSEhkZGWhqapKXl8e9e/eYOXMm0DF6ltjEbdq0iZCQEL7//ntsbGxYtmwZERER+Pv7U1hYyB9//IGJiYko/CQ3ID8/X+B3JGFkZISRkVEniYUvvvgCf39/Qcb43GhpaeHrr7/myy+/FAcBdGiVmpiYsGTJEhQVFVFRUaGlpUUw91RVVVFSUiIiIoLVq1dTWVnJzJkzcXZ25uDBg6Snp+Pp6cmaNWt48eIF69atIzMzk8WLFyMjI0NgYCB79+5l//797Nq1ixUrVvDmzRu+/vprJk+ezK5du+jWrRu5ubk8ffoUU1PTfzWVTE5O7kQGSElJYdOmTVy4cIFFixaxatUqjh49ypw5c8S04NN48OABlZWVdOvWjYEDBwIduKjs7GwWLVqEjIwM8+bNo7W1lcePHyMnJ4eCggKDBw8WTNrt27fT2toqZHTKy8u5evUqZWVlzJkzB1dXV8H8ffjwYZdsfmNjYykrK0NWVhZFRUW6desmpsVZWVmEhIQgLy+Pjo4OhYWFGBoaoqKiwq+//kpSUhLbt2/Hy8uLK1eukJ+fT2BgILa2tjQ2NgqbSlVVVZYvX05kZCRycnKUlpZSU1NDdXU15eXlbNmyBXV1dQFbkbh0paamYmVlJRqcoKAgHB0dUVZWZvfu3Z99jVJSUjQ1NVFaWkp7ezsmJiaMGzeOoUOHsn37dt68edOp4O/Zsye6urokJCSIzjcnJ4edO3cyaNAgjh07JvC5169fp6ioiClTpgiG6aVLlwgNDQU6JnfLli3j+++/58KFC4wfP17YxWZkZFBUVCRcd8rKysR/N3/+/M++PuiQ3pOXl0dfX5/q6moyMzO5evUq5eXlQnMYOhrqt2/f4u3tjYmJCbt37+bdu3ds27ZNyE5JSUmxa9cu1NXVxcRBAmNQVVXlxx9/pHfv3rx8+ZJTp05x4cIFkpKS2LFjBz169ODs2bNUVlYiKyvLpEmTcHd3p6qqShDhPpWJ+dw4ffq0UKzQ0tJCSUmJiooKlJSUmDZtGsOHD0ddXZ3S0lLB0FVUVOTu3buEhoayaNEihg8fjp+fH2lpacTGxqKpqdlJoxIQVowSFzzJd6ivr09hYSG1tbVkZmaKQutTOZ0ePXpw7NixLsOvJLFgwQIxFd+3bx9//PEHAQEB/yvhZMGCBVy7do3jx4/Tr18/VqxYQW1trbC/lhyEd+7cYe3atUKDVxJZWVmsXr2a2tpaDh06RP/+/SkpKWHMmDHIysp2uoZP9SlLSkqora3Fw8ODmTNnsmbNms++PmdnZ7799lsqKiq4e/eu0Hxds2YN06ZNY9euXRQUFJCRkcE333wjtgh9+vTh2LFjaGpq8vDhQ+7evSt+35AhQ+jfvz/dunVDSkoKKSkpkpKSuHjxIo8fP6a2tpba2lqkpaVxcHAQZCLJBqF37978+eef3Lx5k8WLFwv94D179vD27VueP3/+PzR1/3+Rm5tLz549UVNTo7a2loiICCwsLJCTk+PatWusXLmSqqoqoRPdrVs3vv76a/bv3098fDxz5sxBS0uLx48fo6CgwK5duzh79ixRUVEsX75cQA1sbW1RVVVl4cKFpKSk8Pr1a44cOSKIhBI5wFmzZjFz5kySkpJ4/PgxTU1NODk5oaamJtwvuxpPnjzB3d1d4FIlG53/K4YMGYKXl5cYXGloaPDdd9+hqKjIhg0bePr0Kdu2bWPVqlV8+PCBt2/fig2NpJDX1dXF3d0ddXV1dHR0KCgowNLSkkuXLomNq56eHl988UWnd3L06NHCAfRzY8uWLaJe0dHREVvsT6egktwt2VSeOHGCP/74A319fbZt2yaGeBL4gra2Nm1tbRw9epTc3FyGDx8ufubQoUPivf/hhx/YuXMnP//8s9hQSGQzpaWlaW5uxtfXF1lZWcrKyti3bx9v3779jzCsLhevxcXFHDt2DH9/fxwdHcUI+ebNm0yZMkVgYyQHemNjI5WVldTV1dHa2kpbW5t4wKdOnUp+fj4xMTGkpKQgJSUldPKCg4N58+aNsICTAN1ramowNjYmKSmJffv2CbtICblCIpmSmZmJnp5ep1Xw50RtbS2KioqdVukpKSnU19fj4OCAsbGxYNupq6tTUlLC27dvMTAwwMPDg5aWFv755x9qa2sF5qipqYmXL19SWFiIi4sLJiYmBAcHk5mZiaysLDIyMuzevZulS5fi5+cnVpCSlaenp2enAtLExARtbW0MDAw+ywP4v4fEzhIQOEVXV1eSkpJYtmwZDg4OHD9+nLi4uE7r8/j4eNEpBgcH4+joiIODAzo6Ovj5+XHp0iWampp4+vQpY8aMobS0lBcvXohpxrt374S13sSJE7l37x6bNm1i9uzZ9O7dW4h7S9ZB6enpGBoaMm7cuC7hJa9du8bQoUMxMzPDycmJPn36MHnyZCH2rKKiIhxCQkJCyMzMxMTERGB6zMzMaGlpEZJJenp6KCsro6uri6+vL/fu3SMjI4Ps7GwMDAxoaGjgzp07hIWFERoair6+Prt27RLPUFVVFU1NTWhpaeHp6YmysjJJSUkcPHiQgICATr7jXQllZWWsrKxITk4mJCREGASMHDkSPz8/zM3NefPmjTAzkFjyffz4UbCkJ02axJIlS/D09ERDQ4PCwkJKSkqQkZEhPj4eXV1dxowZg7KyMqqqqri4uLBo0SJ8fX0ZMWIEb9++ZePGjdTX1zNixAgMDQ2JjIwU9rtKSkq4u7t32eIXEAdDUlISoaGhqKurCyyjvLy8KF6rq6uJi4tDV1dXyPRFRERw/PhxVFRUuH37NuPHj2f06NEUFxdz8eJF2tvbKSsrY+HChQQGBoqiwtvbm3PnzlFeXs6TJ0+4d+8erq6uYiqqra0t9Jj19fWRlZUlPz+fy5cvd9La/Jx49OgRysrKNDc3U19fT0pKitgEKCkp0dTURFNTExERETx8+JA+ffoQGBiItrY21tbWYhXf0NDA27dvaWtrw8fHRxSvAQEBtLW1dSJjtra2ismXs7OzmDh92qQ/f/5cQE9sbW3Fxqyryi3QgSUMDw/H1tYWe3t7rK2tuXLlCgsWLGDVqlVoaWkRERGBoqIiAwYMICAggJKSEoKDg9HQ0MDBwYGhQ4dSXV2Ng4MDKSkp7Nq1i7i4OCwtLSktLSU6OhpTU1NSU1NRUVGhT58+AsP/6aEPHRJgt2/fxtDQkOHDh6OoqEhhYaGAW3xK1PmckDhLhoaGinW/kpISzs7OQrP07NmzFBQUsHLlSqAD16murs7gwYOBjsFLVlYWcnJyzJ49GxMTEyIjI8nPzyctLU1M/R8/fkxJSQmKioo4ODjg6emJl5cXqqqqAqstKWQLCgqwsLAQhXhYWJiY7oWHh3fpGi0sLESR09bWJs5w6BD3z8rKYt26dQQEBLBt2za6d+/O0KFDcXR05NatW+Tm5vLx40e2b9+OkZERP//8M7169eL06dM8efKEGzdu0Lt3bxISEgQpGBAOTVpaWqLQk5BeY2Ji0NbWFhssSTg7O6OhodHlArayspKXL1+KTaCMjIwYhEkKyezsbDIzMzE0NMTGxgYjIyMyMzO5f/8+7e3tDBs2DAMDA/r06UNJSQm6urrk5OQQFxfHwIEDCQoKYuPGjbx7944+ffrQp08fYmNjkZaWRktLi5ycHPLy8igvL0dOTk44/UkatJKSEmHyMGzYsC6p08jKynaaZh4+fBh1dXUmT55MQ0ODcEL19PTk48ePyMnJUV5eTmJiIomJiURGRorCVNL8X79+nfT0dDEIu3HjBlevXhXKAYMGDcLFxQUrKyu8vLxoamoSk96XL18SHBxMdXU1gwYNYuLEiUhLS6Ompib0mf8TdrnLxatEkD0vL48lS5bQt29fnjx5wvnz59HU1BTFa2VlJW1tbXh5eQkd08bGRoGZkJKSwtvbm8OHDzNixAji4uK4dOmSsEYrKyvDxcWlk0NJZWWleDlbW1vZtm0bw4cPZ+DAgXz48IFTp06ho6NDv379hC1mV0kGkm5XEk1NTZSUlAiciIaGBn/99RcFBQWsX78eZWVlampqUFRUFALuhoaG3LhxA0NDQ1pbW0lJScHBwQFzc3PxIEocQxYsWICKigo//fQTISEhHD9+nKlTp4qD0NjYmJ07d3Za6+nq6jJ37txOguNdiU9xxBJzhFWrVrFs2TLhBKKtrc2cOXM6Ye0+xXva2dmhpKREcXExmpqaeHp68tVXXxEREYGbm5tY4XTr1o13794RFRUl3HUkSVtaWpo5c+YgJyfHqFGjCAwMRFZWFn19fU6dOsXy5csJCgri9OnTXXpRpaSk8PT0FJq5gwYNEglOR0dHTABzc3NRV1dHSkoKKysr1q1bh7q6Oh4eHrx48YLU1FR8fHyElImkgJs4cSL79u3j+vXrNDQ0UFFRQUxMDKmpqTQ0NJCWlsbbt29FcSEpCO3s7OjVqxcFBQXcu3eP7Oxsnj59SkBAgJB/+dyQaPVBx/Nw4cIFLl++jKGhIV9++SXjxo2jqqqK/fv3c/z4cUaMGIGvr68Q+b906RJKSkrs2bNHPA9mZmaCBJCcnExkZKQ4iM3MzBg/fjzQUUzeunULTU1Nxo0bx40bN1iyZAmDBw8Wa6CxY8diYmIibDK7desmfOw/N3JycjAxMeHu3bvExMSwadMmzM3NefHiRSf9Zjk5OaFk0traypo1a4S80u7du6msrGTEiBFARwO1bNkySkpKmDNnDnv27OlUsISHh4sGTaKc8eeff/Lw4UNcXV1ZsGABHz9+JCIigv79+9O7d29Bqjl06BBffvnlZ1+fmpoa8vLyqKio0NbWRmZmJioqKmJdLNFelRh4vH79Gl1dXaZMmcKMGTOQkZEhKyuLw4cPk5SURO/evdHV1RXfnZOTE0OGDKGqqoo7d+4QEhLC+/fvMTQ0RFdXF1dXV3x8fHBzc+s05YiIiCA8PBxpaWlR1AOdcMWfG0ePHmXnzp1s3ryZ1atXk5mZybt37zh69Ci6urrCKjY+Ph5NTU3c3d1FQyGZ3v/www+8ffuWkpISEhMT0dHRQVVVFVVVVTGFfPPmDQ0NDWzevFnAnCRRW1srthCPHj0S8nVTpkyhpqYGc3Nzli9fTmFhYZdY+ICAawwYMICcnBySk5MxNjbm6tWraGpqUl9fT1JSEsrKyrS1tXH37l3mzJkjtIGhwwRASkqK7t27Y2xsTFRUFDdu3EBOTk64y0HHOruoqEiQtD7VZJaTk8PU1JTs7GyioqIYPXq02Fjm5+cLlzZlZWXWr1//WSLwkpCWlubvv//G29sbX19f/Pz8xBlpYGBAUFAQM2bMQElJiQsXLnDv3j0MDQ1FY79p0yaamppEIaSnp8fPP//M3r17uXnzJjdu3OD9+/dkZ2fz8eNHoUowYsQIvv32W3r37k1LSwvdunUTm5X169ezatUqIYklsY81MjL6H1bOnxOBgYEUFBRQWVlJdnY2cnJydOvWTeSZsrIy7ty5Q0JCAv7+/qIQvHjxIhcuXKB37964urrS1tbGzJkzcXV15ezZs1y9epX58+czZswYoIPAqKqqytq1a3FwcGDRokV8/PhRED+vX79OdHQ0M2bMYMeOHcB/Pb9NTU3CYlmCif/c2Lt3L4cOHQI6pDLXrFmDt7c3o0aNIioqilOnTglVAW1tbWRlZZk8eTJJSUncu3ePV69e4ebmRs+ePVFQUCA4OJiFCxeiqqrKnTt30NHR4fTp0zx8+FDUCcOGDePkyZPMnTsXaWlpbt68yZYtWxg8eDDR0dHs27eP5uZm0XCampqiqKjIsmXLkJaWFgTF/yu6XLxKNMYkycPExIR169YxfPhwsVZQVlbG1taWX3/9FS8vL1E4SNZfUVFRREREYGNjg4aGBqampnh4eIgJQXp6OtHR0ULQ+O3btxw/fhw/Pz8hLSEvL8/EiRMZMGCAcDpKSEjgyZMntLa24urq2qng+9yQvJQJCQlkZ2djZWUl3CJ0dHQEcL1bt27U1tZiYGBAjx49UFBQoKmpiV69ev2P7r26ulrIeZibm+Pn50dAQAANDQ0YGhqSkZFBdXU1t27dYufOnWzZsgUFBQU2b95MQkICw4cPx9XVlcuXLxMcHEz//v3F+P3fuN7cvn2bc+fOMXHiRMaOHcv79+/R1NTE2tqaCxcusHXrViZOnCgY40lJSVhaWjJ9+nTk5eXJyMhAR0cHAwMD6uvrBXFgwYIFNDQ0iAPZ39+f2tpatmzZQkNDAwsWLBAM0/v373Py5EmmTZvGhAkTKCoqEliXAwcOcPDgQYEH7GosXboUaWlppKSksLCwwNTUlJaWFnbv3s3Tp09xdnZmwIAB6Ojo4O7ujpKSkrAElTQE8fHx4v43NTUhLy9PU1MTr1+/prm5WWB9Dhw4wNdff8348eMJCwsjKSmJQYMGiSbuwoULlJSUMG3aNDF91NPTw97enpqaGkE8+ZSE8zlx+vRp7ty5w9SpUxk3bhyjRo2ipqZGvHvQgfvt06cP5ubmFBQU8OuvvzJy5EhcXV0JCgoiISGB9PR09PX1aWho4ODBg5SXlzN9+nTRdUvWOb///jvQ4QqVnZ3N/fv30dHRYdq0aYKs8PDhQwIDA4Wta319Penp6V2WV5LEjRs3SEtLo7GxkVmzZmFqaoqpqSlbt27tBImQlZXFzc0NFRUVpKWlkZGRYeTIkXh7ewvHJslnGDZsGAsWLGDr1q2dJN3u37+PiooKcXFxVFRUoKCggL+/P1FRUWRnZ9OtWzdhriHBcn06Te7qdgA6FAFMTU3R0NBAXl6eHj16CDF9ieuWmpqakFB68eKFEOGHjjV8RkYGgYGBTJgwgdLSUgoLC8Wky9jYGFVVVcLDw3nx4gUyMjLY2toKqa25c+fSo0cPSktL+eOPP9DT02Pu3LksWrQIOTk5zp8/z8ePHxk9ejTp6en8888/Xb6HmZmZaGtro6ioKDZwLi4uODo6EhgYiJaWlsD8SjB90DHR1NXVFQYlXl5eYkq1evVqbG1tuXXrFjU1NfTp04f29naSkpI6Fa537tyhoqKCgIAAFBQUuHnzJgkJCSxfvpxevXoJbK26ujpnzpwhIyPjX+Ub6Ggg1dXVaWxspKWlRTyf8vLy9OrVC1VVVVpaWggLCxNmIQ0NDdy+fZubN2+yYsUKzM3Nef36NW/evMHNzY2goCDevHnD+fPncXR0xNTUlKdPn1JVVSUkzaCjeWtububcuXNs2LCBqqoq4XJ45coV/vnnH9auXSuaVMnA4XPj559/JjExkW+++QZfX99Owx1paWmamprIz88nICCALVu2kJGRQVRUFMHBwbx69Qo5OTmWLFki8PXnz59n7dq1rF27Fj8/PyoqKti8ebMgOEkiPT0dZWVlkZMl7H8ZGRnq6+sFQXTMmDFYWVmRnZ3NxYsXCQsLE5C4zw0NDQ00NDRISEggOjqapqYmevTogZSUFNevX2fPnj20t7czaNAg9PX1haWpk5MTo0ePxsHBAQMDA8zMzJCTk0NZWZkpU6ZQW1vLvn37xN+ZMWOGgDNCRw6IjY2ltLRU8ITs7e0ZOnSowOxLJr8aGhpcuXKFs2fPdtlBrLm5mTlz5ghM7rhx43B1deXRo0fo6ury+++/U1FRQX5+vnhOTExMOHToEMHBwWzcuJHDhw/z119/kZeXx7Nnz1i0aBFWVlacPHmSBw8ekJ2dLTY/xcXFTJgwAV1dXRITEzl79iwlJSVCXUeyFZDYzBcVFVFeXt5p+/SfosvFq5GRERMmTBD/rq6uxsLCAltbW9GZt7e3Y2VlxcqVK2loaCA9PR0rKyuMjIy4dOkS+/fvFzgmLS0t9u/fz5QpUygpKREWaiUlJbS3t6OkpISmpiY5OTk8ePCAfv36YWxsLBx3JBhDe3t7/vjjD/bt20doaKhIQl3BhXwab9++FXqCErvY4uJi6uvrCQgIEOtloFPCbGxsJCUlBWlpaYyMjASJpKGhgbq6OhobG5GRkREHS05ODoAohiTFTFVVFWfOnBEEmOrqah48eMDNmzfJyspi4MCBuLm5/avrS0pKIjExkaamJqSkpMjNzSUnJwdTU1Pi4uLIyMjA2NgYExMTKioqiI2NRUdHh969e9O7d2+ioqJobGzE1NSU9PR0QkJC8PHxEavHyspKlJWVkZWVJSgoiMTEREaNGiVs9CIiIli0aBHa2tpcuXIFdXV19u3bJybT+fn51NfXi+KyqyEpKuzt7TExMcHR0ZH6+nry8vK4e/cud+/eJS8vj9mzZwvbRMlkBDqIMe3t7UJHNysrCxsbG2pqaigsLKSoqAglJSXk5eXx9vZm1qxZeHh4MGzYMOrq6sShcuXKFdavX4+HhwfTpk0T342fnx9qamokJyeTn59Pfn4+169f7xILOCMjg2vXrmFtbc24cePw8PDoBJGRTPZHjhxJW1sbZ86c4enTp+Ln1NXViYmJ4c2bN2IS9/z5c65du0ZaWhqurq5IS0ujq6tLdXU1jx494s2bN0RGRmJkZERaWhrp6el4e3uzYMECHB0d2bhxI15eXuLdO3fuHNu3b2f8+PGdpMk+N8rLy9m9ezebN29mwIABtLa2kpCQIBpYyQrK0tJS6EdCx4RKQtr4lHwgmc4MHTpUMIMl1o/QkStyc3OF/qqzszM3b95EUVGRrVu34uDgwLt373BychKrs9LSUurq6vDy8mLgwIH/cVrwaSxatIj8/HxSU1NRVFTEwsJCNDE2NjY0NDQQExODnZ0dX3zxBX379hWHcl5enrDZdnZ2Rk1NjZSUFOrq6qivryc4OFjoKqemptLe3o6/vz+lpaXExMR0gh08fvyYH3/8ETs7O6ZNm4aKigqBgYHs2LGD8vJyxo4dS2JiIrt372bq1Klduoe9evXC09MTc3NzLl68yPXr19HS0mLatGmCaJWamkp+fj5v377Fy8sLdXV1pk2bRmFhIfX19ULyzsbGRpwxEgJlXV0dHz9+xNzcHBsbG4qLi9HW1hbGIyUlJeL7iomJYcCAAYwdO5YXL15w4MABZs6cSXNzM8+fP0dFRQVPT88uSQ9KRNahY7CjpKREQkIC586dw97eniFDhjB9+nTxM0ZGRsINLSMjgzVr1lBaWsrNmzepr6/nwIEDNDc3s3TpUmbMmCFcHCXkKFNTUxwdHUWBUVhYiI6ODrm5uTx48ICPHz8Kc5zy8nLevHlDYWGh2ORVVVVhYGDQJYjLo0ePgP+avH+6AU1KSiI4OBh/f38CAgIYNmwYhYWFZGRkCBUWyerfw8MDfX19CgoKeP78OXfv3mXTpk14e3ujp6dHZmYmPXr0wNzcnNjYWMLDw7l27Rq2trYUFBRQVVWFvr4+Y8eOJSIiglOnTrF3715KS0uZP38+8vLyJCQkcO/ePfHef25INF7fv39PUlJSpybm7du3vHr1Cg8PD3x8fDrpuY8aNYpRo0YBHWd/SUkJhoaGKCoqMnbsWCIjI4mKisLCwoLm5uZO+UhaWprx48czfvx4zpw5w7lz55CWlmbs2LE4OjoKmTHJeXL48GEOHDggnp+uRL9+/YQtuYeHB+fOnUNHR4eTJ08iIyNDnz59uHnzptg6ubu7C8yvmZkZ+fn51NbW8v79e+Lj44mJiWHVqlW4ubkxbdo0QeT87rvvGDhwILW1tZSXl9PY2Mjhw4d58uQJ69evZ+nSpUK/f+LEiTx58oS7d+8K+aykpCQKCgo+S6u3y8Xrf8fnKSkpcfLkSUJDQ5k4cSKjRo3q1JldunSJrVu3cvDgQfz9/YWnsaKiIhoaGtja2oqDQCKkK5GKkZChbGxshLB237592b17txjDP336lISEBBYtWoS6ujrLli3jzp07PHjwgLi4OGpqarrkGQ8dh2JcXJzoAtrb27l9+zbv37/HzMwMb29vHBwcRPcssZJsbW1l7dq1HDhwABcXFzZs2MCECRPEaqlbt25YWVnR2NhIQkKCYL/q6Ojg6uqKhoYG9vb2QlpIInw/ZcoUpKWlBSOzpaWFa9euUVFR0WUWPsD48eMJCgoSRXevXr1QUFBAXl5eJEwJI9Da2pr29nYKCwvFJPvTgvLDhw88evQIKysrUeCVl5eL5FZfX8+XX36JoaEh1dXVrF+/nnPnzjFkyBB+/fVX1NXVOXbsGPfu3ROJ4OTJk7S1tXHlypV/5SB25swZJk6cyNChQ4UIOnRIlXh4eJCbm4uzszOurq7o6uqK50OyhpeVlaV///4CP6Wrq0tFRQVqamqMGzeOoqIiPn78yM6dO5k4cSLx8fGcP3+ekSNHoqOjQ1NTE99//z2HDh1CRkYGVVVVrly5AnSIb3t5eWFmZsaHDx/EZ3706FGXitdx48ZhZmbWCc/4aTQ3N6Orq0tWVhanTp0iOzub+fPnC4Ldl19+SVpaGjt27EBPT4+4uDi++OILAgICyMnJQVtbm/79+2NgYEBzczP79u3j8uXLwlVLRUVFaIQOGjQIOzs7Bg0a1KmRKy0tJTk5ma1bt1JaWtplCRvJxEUySZ45cyYZGRmEhYUhJSUlhMMloH9JkfPu3Tv++OMP3r59y9y5c9m0aRPNzc0cOnSIzMxMXr58KVRIZGVlkZKSYuDAgQQHB5Obm4uMjIxwvtPW1sbU1FRoePbu3Vs829ABM5DojEpwll0JGRkZgoODKSsrY/LkyQInLZHJO3jwIOrq6vzyyy+4uLhQW1tLY2MjRkZGbN++ndDQULZu3Up4eDhWVlasWbOGxsZGXr16RWJiooDFQEfRERMTQ01NjWhuAFFkdO/eXciQPX/+nObmZnR0dJCVlcXY2Fjksa5EYGAgZWVlJCYmEh4eTnV1NaWlpZw/f14oYLx+/VpodG7dupWVK1eipKREXFwc7969w9PTEw8Pj06wBQ0NDXbs2MGuXbtYvHixwAEWFBRQUVFBz549xRr08ePH5OfnM27cOJHX7t27x71792hqaiIwMJBNmzahpaWFsbFxl4rXu3fv4uXlJeBgdXV1JCUlCRvP1tbWTp9bgqmsra0lISGBiooKqqurefnyJdLS0mLokZ6ezvnz5zEyMmL48OE8fPiQzMxM5s2bx9y5c9HT0+PJkydCzcbBwYEpU6YwbNgwUci3t7cza9YsUlNTiYuLo729HVtbW3777TeBv/2c0NXVxdPTkz59+lBWVsb27duxt7dnzpw5whJa0lT9/PPPNDQ08Ntvvwny9vnz59mwYQP79+9n/fr1rFu3jiFDhojzRF1dHV9fX1avXk2PHj3YsmWLEKl/9+6dMB2S1AkmJibs3LmTRYsWERsbS0pKCm/evGH48OFs3bqVwYMHC5Lo58aRI0fIzs4mJyeHPn36CLvW7Oxshg0bhre3N+Hh4Z3Oo4iICOzs7EQ+iI2N5cKFC4JUdvr0aXbv3s2aNWu4dOkSO3fuxMjIiLa2NoFrlUzAg4KCuHnzJteuXeP27du8fv0aPT09VqxYgY6ODps3b+ann34COsh+w4YN63R+/KfQ0dFh7dq1tLS0YGVlJRr90aNHc+TIEb799lth1BIbG8u6devo168foaGhfP/997S1taGtrc0ff/wh6oH58+fTv39/li5dipOTE+/fvxekypCQELZv346trS2WlpacPHmSKVOmICsrKxwgoWPjtW/fPtatW8fgwYOFzKaRkRHffffd//eauly8NjU10d7eTnp6ujgglZWVKSgoEDhPa2trcVMKCgrIzs7mxIkTZGRkCF/4AQMG4ODggJycnJiSyMvLo6enR1tbm0jisbGxNDc3Y2RkRK9evUhISOD27dv4+voK0sSxY8d49OgR69atE+4q8+fPJz4+nlmzZnVZUkpC2KqqqhLFTU1NDXfu3MHY2Jh+/foJtndTU5OYely/fp2ysjLxuc+cOcOECROQlZXFzs6OtLQ0qqqqxFpdYr+alJRETk6OgGK0tbVhYmLCl19+Sbdu3QQezcnJSUyfUlJSUFRU/FdEGEtLSxITE4mJicHS0hIDAwOysrJ4/vy50AeVhGQqde3aNdLT0+nbty9paWlkZmYiLy9PVlYW9vb2NDc3i4mxRHT5xIkTPH/+nICAAMaNG8fHjx+JiYlBVVWVSZMmoayszPLly7l48SK+vr6CDSwvL8/mzZupr68nISFBEEw+N8rKykThk5qaSmJiopDrmT59+v/QC25ubhZNiuTe2Nvb/68rREnXKbEeLisrExN5SUKQyNK4u7szd+5c3NzcyMjIEK43oaGhhIWFCVkjbW3tLrukubm5iYM4JiaGhoYGMe3W0NAQRL6mpibi4+Nxc3MTheuBAweIjIxk6NChDB06FOj4ziXFV2RkJLW1tZ2KaU1NTfr378/vv/9OTU2NeKdu377Nxo0bsbCwYMSIEZ1W55JJZEZGhiDbdCXu3LkDdBAmJQYMlZWVnDlzhhkzZmBra0tMTAxXrlwhJiaGWbNmMXbsWOLj47lx4wbQkX8KCgpoamqisrKSuLg4amtrcXBwYNCgQZSWltLU1ERGRgba2tr4+fmJbUJSUhKysrJUV1fz22+/MWXKFCwsLHjx4gUVFRUMHToULy8v0tLSaG1tpbq6ukvXd/36dZSUlFBVVRV5Ezomzt26dcPGxobu3bsTFRXF5cuXmThxIsrKyiQnJ6OiooKNjQ16enoEBwdTUlLC9OnT8fLyorW1FS8vLxITEwWsSF1dHTU1NTw9PamsrBR6prW1tQQEBNC7d298fX1RUFAgNDSUCxcuUF9fL5rr/v37U15e3uV30d7enpycHC5fvkxeXh5ffPEFra2tREZG8vHjR1xdXTth9yWY39zcXFJSUrC2tsbExET8TEFBAa9fv0ZLSws/Pz9GjRpFbm4ur169IiEhgfb2dvr16ydyiQRbV1paipKSEm5ubjQ2NqKnp4eJiQlVVVUYGRnRs2dP6uvrefPmTZeuT/KeSd795uZmbGxssLa2xtnZGWlpaWJiYsjOzkZLS0tsHM+dO4eJiQm2trYUFxcLx8H58+dTUVHB8+fPOXr0KM7OzvTu3VsMOD7F/ksILenp6YLg07dv305wOQnZae/evVRXV2Nra9vl5/TkyZMYGRnh6upKTk4Of/zxBzo6OgQFBTF37lzKysrQ19fn5s2bbNy4ESkpKQIDA7G0tMTMzIwBAwYQFRUlHPhcXV0FKS08PJzk5GS0tbWxsrKiqqqKtLQ08beLi4u5f/8+6enpWFtbY2RkhJaWFtbW1vj4+ODj40NKSgq1tbVCvvDfOGx9+PCB4OBgRo4cyciRI4mPj6egoAA7OzshLfbhwwcuXLiAtLQ0mpqaPHv2jG7duuHq6kpjYyNRUVHU1tYKVn91dTX5+fnU1NRgaGgoPpeEmNTW1kZJSQnS0tJCsSknJ4fXr18DiOlqZWUl5eXlKCoq4ubmxnfffddJZeNzwsnJSUyIAV68eCEI5G5ubjQ1NVFcXExxcTGZmZlYWFgIy+WXL1/Sv39/NDU1uX79Oi4uLowdO5aLFy8SGxvL7t27CQoK4urVq4SGhnL27Fl+/PFHoINk9uuvv2JgYEB1dTXh4eH07dsX6Gj0ysrK8PX1Zfjw4WhrawuJ0c8hh3a5eI2MjMTPz4+ioiJev36Nv78/U6ZMYcKECaxevZpZs2axatUqQYrp2bMn48aN48mTJ5w4cQJASGVlZmbS1tYmHo66ujrevHkjPNglsgmHDh1CXl6eixcvcvfuXRYvXsyoUaO4e/cu3t7etLS08PjxYyoqKnj06BGlpaXExsbi7OzM5s2bu9Rl3rx5k9GjRxMQEIC8vLwodGbMmMHLly95/fq1WEUlJSWJJHnw4EGePHnC8ePH+eKLLxg+fDgfP34Uvzc5OZn9+/cLpxTJWuzIkSNkZWUBHYkwJyeH4uJijI2NBS5SQnCTYId9fHzw9PTsJNbelTh16hTr16/Hzs6OHTt24ObmxokTJ9i7dy/z5s0TenSS+PjxI2FhYcJV7PXr1+zcuZPKyko2btzI119/TVZWFqGhoXh7ewuSV2xsLCdPnuTkyZO8fPmSn376idu3b5OWlsaHDx+YNWsW165dw8bGhunTpzNo0CCBL7Wzs+PMmTMcO3aMvXv3dgm/PH/+fKSkpMjIyBAYocrKSkaOHMmSJUuE37bk4JKQ7Zqbm//HlP5Tl67y8nK+++47nj17hrS0NGvWrOHUqVPs2rWLyZMnAwinlL/++kvIgkHHtFpaWpq0tDRmz55NTU0Nhw4dwtvbW1jKdsUxRbK6i42N5cWLF/To0QMlJSXS0tJob28Xh6qMjAzr168XzP29e/dy584dfv31V2bMmAF0bBo+1Sp2cnIS1o8SPdXs7GyuXbvWySUIOooiyaq7sbGx0zPZo0cPevToIVZkK1as+OzrA0ShJBG23rdvHxcuXCAyMpLu3bvj5ubG3bt3BWlDkmukpKRwc3Nj9uzZ4t1//fo11tbW+Pn50bNnT+Tk5EhLSxNWsnp6eixfvhx7e3vU1dWFxrGGhoYQYK+srOT777/n3r177N27V0yRli9fTl1dXZdtfn/77Tdmz54tiG7QIdMnaXRcXFz46quvePbsGdu3bycvL4/vvvtOYBol0/cdO3ZQU1Mj7qGMjAxBQUEUFhaKKaK3tzdr167Fy8uLyspKUQwqKyszZMiQTsRMiWC4JP99/PgRIyMjAgMDu1y8Ap2kwCTT0NraWiorK2lsbGTs2LFibSzZ6igoKGBtbY2NjQ0qKiqiOMzOzmbXrl0kJyfz008/sXjxYnbt2sXWrVv59ddfaWxs7NTUfffddyQmJiIjI8NPP/1EUVERq1evZsWKFfj6+tKtWzcMDQ1pbm7m6NGjwt7yc0OSsyTPvbq6eqfJvARPfOLECdTU1ISBT1VVFUlJSQwdOhRlZWVSU1MZPnw4S5Ys4d69e9y+fZvs7Gyys7N5/vw5P//88/8grfbp0wd7e3sKCwt59+4de/fuRVlZmUGDBtGvXz+ReyoqKtDW1sbY2JiPHz/yxx9/dOn+Sc5C6CCKKikpUV5eTmlpKb179+bQoUOEhITw+PFjLC0t6datG9u2baO0tBQNDQ0WLFjAmTNnkJOTo6SkhJSUFAoKCggNDRW60T4+Ply6dImCggKUlJRwdHQUGH7omNClpKQIaMfw4cMZP348RkZGnUjdhw8f5tSpU12Gm/Xt25fs7GxmzpyJo6Mj69evJysri5MnTwIdQ5DXr18THBxMVFQUffr0QU5OjpSUFDZv3oyMjAwTJkwQuVZi4Z6cnMzevXsF2VUSioqK1NbWCoJde3s71tbWjBkzhsTERKSlpZk9ezaOjo7CdCMwMFAU/l2N/05i1NDQoLq6msrKSoYMGUJoaChLly4V9yMkJERo8krgKpJGWFZWlqFDh/Ldd98RHR3NgwcP8Pb2ZvTo0WzZskUYasjLy4vtHXRoPkdFRXHx4kXs7e1RUFDgm2++wdzcHGVlZSG9Kqn3/pMKT5eL17a2NhoaGsTkU9LFycrKoqCgIIhOkkhISODDhw8YGxszevRoGhsbhaj4P//8g76+vhjR//3336SmpjJhwgSCg4M5ePAgN2/eBBASTD169EBHR4fg4GDmzZuHsbExaWlpQtxXTU2N6upqDA0NcXd377L24rZt24Q3eM+ePYUEjbW1Nb/88gvLli1j586dZGRk4ObmRkxMDNHR0SgoKLBmzRpUVVWFS5iDg4MoPKuqqrCzs8PQ0BApKSmUlZWZM2cO6enpvHv3DgcHB4E9/HS9KiGUREZGkp6eTs+ePbGwsKC6ulqsbbsaR44cEcQ6CetUWlqakpISbt68iYuLiyC+DB8+nAEDBlBUVCQ6YBcXF+bMmUNOTg6urq6oqKhgbGwsbB0lMX78eO7evUtKSgrnz58Xq0Fra2vy8/Oxs7Nj5cqVDBkypJOOq4RRq6amxtdff83t27e75M7UrVs3ysrKqK+vx8bGhgEDBgg5LMkB/9dff/H69Wt++OEH+vTpg7y8vEjQsbGxxMbGoqamRu/evVFWVubSpUscP36c5ORkNDQ0xLagpqaG4uJisrKyyMnJQUVFBTc3NwwMDPj48SPHjh2jpKSEgIAABg8ejJaWFsOHD8fIyEi4fD158qSTAsTnxI0bN4Sv+MCBA3F1dRXPWltbG7du3RJOXtu2bQM68HEtLS3Mnj27E3axubkZGRkZ8vLy0NDQQFVVFS0tLS5evEhISAhubm7U1NRQV1cntgAeHh6Ym5ujoaHBgQMHePfuHXV1daxcuVJgKaOjo/nw4QMaGhr/akMwe/ZsjI2N8fHxQV5enqqqKpycnJCXl+fZs2fcuXOHoqIiRo0aRVtbG6amphQVFeHh4SH0RCXx6tUr3r59K/RBoSNBb926FTs7O4YOHUpycjLnzp0jMzOTNWvW4OHhwdatW4GO1eno0aMFwaempobt27eTmJiIl5cXw4cP7+TA8zkxYcIEnJ2dqays5OLFi0Kn08fHB01NTUpKSjAzMxNa15aWlkhLS2Nubi4kdczMzLCwsCAnJ4cTJ07Q1NSErKwsHz58oKioSOgcOzg44OHhgbKysigIEhMTBUGlrq6ORYsWYW1tTXJyMjk5OSxduhQ7Ozt+++03+vbtK5qdrsSFCxcYNWqUgD4dOnSIMWPGMGzYMGpqanjx4gUDBw4kICCAH3/8kaqqKry8vHB1deXVq1ccP36c58+fM3v2bMzNzZGWliYnJ4eSkhIaGxtJTk7m+fPnREdHo6urS2ZmpnAOk5WVxdbWlmHDhqGpqUlaWhpFRUXcunWLESNGdHLTqqqqEkOPruTUpKSkTuL22dnZfPjwgYiICKqrqyksLBS5S+IWBh3br4kTJ6KgoMCJEyfIyckRttGSLU6vXr1IT0+nuLiYa9euIScnR21tLfLy8gQGBmJlZYWZmZnAJH777be4uLiwYMECSkpKuH37Nvb29nh4eIgmLj8/H1dX107WuP8p9u/fL2TLJFAWiRMcdAyd1NTU6N+/P/7+/igqKpKSksKVK1eorq6mpaWFvLw8Xr9+zZMnT7CxsWHy5MlYW1uLz+Hh4YGlpSXW1tbo6+tz//59Ll++jJ2dHUFBQRw8eJCYmBhaW1tFjpKXlycvL4+HDx+io6PDkCFDcHd37/L0HDoslN3c3MjKymL79u2UlJQIDd6goCBqampEzm9tbSUgIAArKytB9Ovfvz8zZswQ4v+amppYWlpiZWUlCtcVK1aQkpLCnDlzhOZ4aGgoCgoK9OjRQ8iJTp06FSsrK0aOHClcTN+8eUNzc7OYWnbViEFizmNlZUVQUJAgDUuarnfv3tHQ0CBgRhIjJCUlJbS1tYmMjMTKyor58+dTWFjI48ePhdzXrFmzePXqFb///jsDBw7k3bt3YiteWlrKzp07qamp4fz58zQ1NXHo0CG+/fZbDA0NcXJyorCwkAsXLtCtWzdh9f3q1av/eE1dLl579eolMDy6urqEh4fT2tqKr68vNjY2uLi4dOo809PTiYmJYf369WzevBno8CS+c+eO0L8sKSmhubmZbdu2UVdXh42NDZGRkaJwdXZ2xsbGhtTUVL7++mtsbGxYtGiRkNkwMDDgxx9/ZObMmWRnZ/P48WPxcKenp3fp+hISEnj16hXe3t706dOHly9fcvjwYb788kssLS2ZN28eq1at4v79+0ydOpV79+6xceNGVq1axdSpU7l69Srv379n3rx5Ai8aHx+PhoYGy5cvR1ZWlsbGRqSkpCgqKkJfX58VK1Ywb948SktLO+Gt2tvbaW1tpaCgQPi69+jRg7a2Nt69e4eSktK/Kl6VlZU5duwY5ubm6OjoICcnx6RJkygtLRWTn4SEBCGT5OLiwty5c8nNzSUuLk4INMN/aT+qq6szYMAAcnNzhRZejx49WL16Nb/88gvS0tL8888/aGtro6qqiq+vrwC+t7W1CQJBW1ubWBtK5FECAgK6VLw+f/6c169f06tXL6ZMmcKUKVMEflpaWprS0lLu3r1LVlaWgEU0NjYiLy9PWVmZEIHv06cPw4cPp76+nr///puoqCi2bdtGTU0Na9euFZ1laGgo27dvB+Cbb77Bzc2N+/fv8/333xMZGYmBgQFVVVUYGhri6urK6tWrRdJYtmwZ+/fv72Qv+TlRVVXF06dPWbZsGd7e3hQWFpKTk4Obmxvl5eU8f/6cy5cv4+TkxJQpU/Dw8EBWVpYZM2agq6tLe3u7MP2Qk5OjqqoKTU1N0SxJ3HAyMjLIz8/Hw8MDeXl5amtrcXJy4tdff8XBwYHk5GSmTJlCZGQkioqKTJw4UXzGuLg4fvvtNxoaGvDw8Ojys3r8+HHxv8vKyjh69Cju7u5MmjSJLVu28P3337N161Zh7pCXl0d2drbYEEiIotBBeHz9+jWhoaFiMieRUlu6dCmzZs3it99+4/Xr16iqqjJs2DB69erF1atXKS0t5c6dO2KaM2zYMHR1dTly5AinTp3i1KlThIeHs27dui5dn6SZu3//Plu3biU6Opr+/fszZswY9PT0SExM5NixY+jr6/PNN9+IZ1Wysv10tfbXX3+xdetW5OXl8fDwIDk5mfLycqADTzd8+HAqKiooLi6msrKSsrIyMjMziYiI4MqVK5SUlGBqasry5cupra1FU1NTyH6tXLmS6urqf1W8SlylbGxsmDp1Kn369CEiIkI0bmlpadja2pKamsrly5dxcXERee/169ecOXMGY2Nj9PT0WLx4Ma6urtjY2FBdXU1DQwN///0327ZtQ0NDQyiIvHv3juzsbFavXs3PP//cSes1PDycK1eu0NbWJngT0OHCNmrUKIqKirp0fb/88guHDh1CVVWVhoYGnjx5wrlz53j16hVKSkooKytTXV2NhoYGPXr0ICEhgeLiYpYtW8aqVasICQkRLm+SoYWOjg4eHh5oa2ujr68vzD8OHTpEQkICBgYGtLe34+fnh729vWgOlZWVsbS0xN7enrCwMO7duyeUdySTa0NDQxYuXNgl6cEdO3bQt29fUfj6+vqKJvbFixfEx8fTr1+/TgOI/Px8SktLSUxMpKqqirNnz7J7926am5vZsWMH1tbWgtEvcWxydHTExcWF7OxsEhMTKSsrw97enjFjxvDy5UsePHiAlZUVo0ePFtC2tLQ0gcN0dHQUUIKuXB90wCuCgoL46quvePDgAWvWrMHFxYWXL18SFxdH7969mTVrFs3Nzbi7uzN48GBMTEyIjY1FVVWVb7/9FiMjI06cOIGKigpTp05lz5494vcfPHiQw4cPC5KphBwsKytLv379cHZ25sqVK5SWljJq1Ci8vb3FtjEjI4OHDx+Sk5ODhYUF06ZN65I1LMDZs2c5dOiQkNn7VB9+/fr1okmXFI+SpkKienD9+nWMjY1ZtWoVBw8eZMOGDULlJTg4GENDQ6qqqsS5XlRUxKtXrzhy5AhHjx6lvb0dOzs7zMzMhErP0KFDsbKyIjQ0lMuXL2NsbIyfnx8rVqxgxYoV//Eedrl4lSTQmzdvsmnTJurq6li6dKnwxzYzMyMlJYVnz57h7e3N0qVLcXR0RFZWVmApvLy8eP/+PfLy8jQ0NLBx40ba29sF837jxo3o6Ojg7e3N4MGDWbZsGfr6+hw+fJhz586hpqbG3LlzGTVqFPfu3RPrp7Nnz3Lz5k0ePHiAiYkJgwcP7uQg8Tkxc+ZM9PT0RGE1bdo0Nm/ezOzZs1m2bBkTJ07kr7/+oqKiAllZWXr16oW3tzenTp2iqqqKESNGsHLlSsEQlJKSQkdHR7A/JRjaM2fOsGvXLrKysvjrr7+AjuQVHR0tHiyJTmV2djb9+vVj0aJFWFpa0t7ejoWFRZendZJYunQp/v7+ApsDHaSYlStXIi0tjaysLDk5OZSVldHS0iKKgeXLl9PU1NTpwf+UjCBhlYaGhnL69GkaGxvR1NRk8eLFREREcObMGYqKivj222+RkZGhra2NmzdvkpGRQXNzMxkZGaiqqjJ48GAKCwvZv38/OTk59OvXr0sv68uXL4WWo5+fn/hsTU1N3L9/n/v372NgYMCqVavw8PCguLiYH3/8kaamJiH6L3FiamhoQEpKilWrVmFoaEjPnj2JjY1l7969ZGRkEBoaiqqqqgDPp6WlUV5ezuHDh4mMjGTq1KlMmzYNNTU1geN+/Pgx5ubmODk5dWJDdwUaMXjwYFxcXPD19aW5uZlTp06RkJDA2LFjcXJyYuTIkXTv3p2CggKePn2KnJycOBgk2G3JJKWlpaXT33779i3nz58nOjpaSPwkJCSISWdAQIAg72hpabF48WKxmmxtbeX69ev069ePgIAAGhsbSUpKQk1Njby8vM++PknExsbi6OiIlpYWrq6uYkvj4eEhdDEloaqqSnR0NOfPnyc5OZnevXuzYMECnJycCAoKEhCH58+f09raKoiLOjo6vH//Hi8vL7Zu3cqrV6/YsGEDOjo6ODk5sXnzZhwcHCgvL+fmzZv069ePuXPnMm7cODZu3Mj58+eFMkhXDCckWr2BgYHExcVRUlIitF+hYzggKyuLrKysyLu5ubm0tbUJuZ6WlhZKS0tpbW0Vz3h9fT1OTk68fPkS6HADGjp0KHl5eWzcuJGwsDBMTU0ZOHAggwYNws3NjaKiIjF1tbOzY8mSJTg6OpKXl0e/fv06rWa7Eh4eHqJRs7S0ZPPmzSgqKornzdfXVzSuixcvpm/fvigqKnL58mWxhWtoaODChQv07NkTb29vrK2tefjwIRs2bGDq1KnMnz+flJQU8vPz6dWrF7NmzUJTU1MYCJSVlVFVVYWFhQU9e/akqamJvLw8nj59ipOTk8hnHh4eLFmyROTjz4nIyEhOnz7N/PnzkZGRoba2FiMjI7Zu3cqoUaP48OEDX331lXBttLW15eHDh2JC5+3tzY8//khMTIzYWAwdOhRFRUU+fPjAw4cPkZaWZunSpfTo0YM1a9YQFxdHWFgY7u7uFBcXk5GRQUxMDIMHD6a9vZ1t27ahp6fHnDlzMDc3Z8+ePVy6dIlZs2axcuVK4uPju3QPe/bsyZQpUxg4cCBRUVGsWbMGc3Nz1q9fT9++fZGVle0kD1lVVcXNmzd5+PAh2traeHp6YmdnR/fu3dHW1sbHx0cYE23YsIGXL1/y6NEjfvvtN8ENkRCuJHAWCcY+KSlJ5ExA8EOUlZX/lQ7xf48JEybg4+PDgAEDxGRQQm788ssv8ff35+rVq9y5cwdDQ0PCwsIoKioiOjqalJQUjhw5InSS9+7dC3TksMLCQjZv3oyNjQ2VlZVER0dja2vLF198gYyMDHfv3qWwsFAYEknej2fPnhEeHi4KVikpKfLz87vseJecnMy6desYM2aMwN6+ePGCXbt2ce3aNfFzlZWVnb7H8ePH4+Pjw/v374UKgOQc27FjBxYWFhQXF3fSnc3KyhLPWM+ePYV73MiRI1mzZg1hYWHs3buXFy9eMH/+fCZOnIinpye///478+fPZ9OmTZ+lptDl4hU61k0PHjwgIiIC6CiyAgICcHR0ZMiQISgrK1NSUkJpaakQLb9+/TpXr15lwYIF6OvrIycnxxdffIG+vj6nT5/m48ePGBgYoKGhQU1NDR4eHixbtkx4vmdkZKCurs6iRYvo27cvZmZmODg4YGVlxfPnzwWWRnKIOjk5MWDAgC4xuKHjAZUQoyS6csOHD+fQoUOiW5AUtomJiRgaGrJv3z4WLlzIzp07MTMzE8xkiWf8lClT0NPTE45gEkHk6OhobGxskJOTIzIyksOHDws3DujA+kmck4YNGyYmPxkZGeIwkRT8XQl/f3/++ecfTExMxEOSmprKu3fvhGCwZKVWWFhIU1MT3bp1o6WlhfLyclGkQkdSkchouLu7d9L+jY2NxdfXlz///BMZGRnBHvzhhx8AeP/+PU+fPkVaWhoDAwMqKyspKioSOpsNDQ3k5ORw9erV/9VO8v+Kuro6tLW1RUKtqKjg8uXLvHz5ktDQULS0tNiwYQNBQUEUFRXx4MEDamtrxXR34sSJjBw5EjMzM+rr69HU1CQwMJCamhpSU1N5+fIl1tbWNDc3U15eLu6Bqqoqffr0QVNTEzc3NxITExkyZIjQ5GtpaeHZs2fcvHmTPn364OTkxLhx48jJycHX15eEhITPvkaJ84qcnByNjY2YmZnx5s0bjh8/zvTp08WqqqWlhePHj5ORkYGuri4vX74kMTGR7t27i4JIQjYqLS2lvr6e+vp6IaGmpKSElpYWMjIyyMvLY25ujr29PRUVFWLi86nV5KtXr0Qh5uDgIO5bYWEhGzdu/Ozrg45pYnR0NP369WPGjBnCCjkzM5P6+np+//13AgICqK6u5q+//iIuLg4pKSlevXpFSUkJfn5+tLW10dTUhLu7O+7u7qSlpXHu3DkyMjLw9/enV69egoE/YcIE/P39mT59Os+ePUNHR4c5c+aIQv3SpUtcuXKFyMhIvvzySxwdHfnpp5+E2YrEDfBz49GjR7i7u6Ovr8/q1avJysqioqKCyspKNDQ00NTUpG/fvkhLSwvnpubmZpKTkykpKcHDw4PKykouXbqEvLw8mzZtIiYmRjhtDRkyhNTUVCorK4mNjaW6ulqIuNfU1NDS0tJJfgs61oeDBg3C3t4eGRkZZGVlWbVqFerq6oJZ3pVwdHQkMjKS3Nxc9PT0BBfi/fv3dOvWDScnJ9rb29HV1RV5T7Jt6t69O15eXkRERHDo0CF+/PFHFi9eLCapEqm/mTNnCmiRhYUFc+fOFdCI6upqnjx5Qnl5OYMGDcLS0pJ+/foRHBxMfHw8ZmZm6OnpUVdXR3Nzcyfs9+eEhP8hkaxSVVXFzc2NBQsWoK6ujr6+PtbW1lRVVWFubo6DgwOxsbG0trYKkuXs2bMFPCA1NRVra2v69+9PTU0NVVVVwtLTx8cHLy8v4uLiiIyM5PHjxzQ3N3P//n20tbVZsmQJRUVFPH36lLlz5woy5vHjx8nNzRX3r6sOW2vWrBG8lO7duxMfH09sbCyLFi1CTU1N8FMkkJX09HThlgUdjbmbmxtDhgyhrq5OkGglgywJ7Gfnzp0EBwcL2JKampq418OHD+fChQtUVFTw+PFjRo0ahbm5OWZmZuzcuRNDQ0M0NTV59+4db9++7dL1wX9xCCTDDuggi9XU1KCmpiZyZGZmJq2trTQ3N5OSksL79+/JysrC2toaW1tbSktLgQ4N5m7durFkyRKUlJTo2bOnuIeAUAvKyckhMTFRDPt69uxJRUUF2dnZaGpqCg34oKAg7O3tqa2tJSsrq5NJy+fEpEmTxLQ6PT0dXV1d6uvrRZGppaVF9+7dqampEd+fqamp2FJJzJuam5sJCgri7NmzPH36lKioKAwMDPDz8+Pvv/8mOjqa0tJS+vTpg6GhIXl5eYKfMGPGDFH7SUi4RkZGTJs2DWtra2bPns3cuXP56quvBI/h/xddLl4fP37M6dOnCQwMZOTIkQKTGBAQgL29PdLS0qKb/pT84uzsjKOjI2pqasTHx1NRUSHkZWRkZDh8+DAzZ84UxBfJelLyN5csWYKLi0unLuHvv/8mJSUFV1dXxo0bh5qamliNSawsuxqSaaZE2Hv8+PG4u7vzww8/cPv2bTZv3szy5ctpaWnhwoULQhtRIvGyc+dOLCwsGDVqFNHR0fz+++/Y2Njg6elJXl4eDQ0NBAYGYmpqypgxY1ixYgXKysrMmzePyMhIpk+fjqOjI62trRgbG7Np0yb69++Pt7c3ra2tnD17FikpKQwNDWloaBCs6q5EXFwct2/fpk+fPqJ4jY+PZ926dRQWFjJnzhzmzJmDoaEhLS0t4jvZsmULN27cYOfOnYwbNw7omDzcvn0baWlp1NXVheampDCS6MdK7sWn+oLGxsbC1aulpUW4+RgYGAiJtJycHCorK8WK93NCVVWVCxcuiKS6f/9+/vjjDyoqKtDV1WXp0qUEBQURHx/PsmXL8PHxYefOnSgrK3Pq1Cn69etH//79uXfvHsXFxcIud+fOnTQ0NODj40P//v2ZM2cOoaGhHD58GEVFRX755ReBs9y4cSMuLi5cvXpVyPEcOnRICJLPmjWL2tpaYUcqUZH43AgPD+fp06f06tWLkSNHMnnyZKqqqvjpp58wMDAQxausrCzjx48nIiKCkydPoqSkxKhRozo5KklJSXHv3j3++OMP7Ozs2LlzJ5MnT+bMmTNCa3Pw4MFs2rQJFxcXysrKCAkJwczM7H/YL7u5ueHk5CQmJpLV9r/ZEhw/fpzW1tZOZIOsrCy2bduGpqYmW7ZsATpyxbFjx4SawYIFC5gwYQI9e/bsRLoEhOPdxYsX+eeff/jiiy8YOHCgaDjDwsKIiIhg0KBBbNmyBTs7O6qqqlBTU6N79+48efKEw4cPc/HiRYKCghg4cCC6urps2bIFU1NT8Zk+J7p168bbt28ZOXKkmJw2NjYKXKRkqiQnJ0drayvy8vIYGRmRn58vpiMJCQns378fOzs7li9fLqbPxsbGTJw4kYKCApYsWcKOHTvYuHGj2Ehcv36dmpoaSkpKRPHa1taGvLw8FhYWAhesoaGBj48Pzc3NXYZgQcekeNOmTSQkJODp6cnr169JS0sTslW3b9/uREZtbm4mLi6O4cOHExAQwLVr1wT05uHDh3z48IEff/yR58+fc+fOHfLz83n27BlycnKMGDECCwsLnj9/TlFRERYWFoKQqa+v32lKr6ioiIGBgWhws7OzRQ7rSnz33Xe0tLTQ1tZGfHy8mELeu3ePuro6sWGUTK8OHjzI69ev+eqrrzpNuKytrYmMjOTgwYM4OTkxd+5cBg8ezBdffCFIx5cuXRLs9I8fP3L06FGhbmNgYIC9vb3Qz/30ffvmm29YuHAhenp6tLa20q9fvy4VeJ9ig7W0tDh58iSNjY2dmh4tLS3q6uooKSlBS0uL5cuXM2LECMLDwzlx4gQHDx4EOgYvGhoabNiwQZw9UlJSbNq0iYiICF6+fMmWLVuwsbHh/PnzAts5atQobty4wYEDBygvL+fy5ctMnjwZU1NTUSdABzHz7NmzXbaFl9x3CezI3t6eZ8+esWHDBpYsWcKiRYtYt24dp0+fZu/evcyZM4eCggLu3r1LQUEBrq6uDBo0iIKCAq5du0Z+fr7Azh47doysrCyWL1/O+PHjWbt2LePGjeOXX35h8uTJqKurM2rUKHR0dCgsLKS2tpbIyEja2trw9vamb9++REVFUVxcLFwSJUosnxuSwjUsLIwrV64wduxYAgMDuX37NkuWLOHFixdiq/v27VssLCw4d+4c8vLybNy4kbKyMkaPHo28vDxqamps2LBB3Mtdu3bR2NjIhAkTqK2txdTUlB07dpCcnMyZM2fo2bOnOCP//vtvDh48KAY+ktpuwYIFeHt78/DhQ+FINnPmzP/vNXW5eL127RpGRkYC//TixQvu3buHpqYm7e3t1NbWkpOTg4yMDObm5jQ0NNDY2NhJwD4iIgIHBwfS0tI4dOgQFhYW7N69G3t7e2HFKWH4SqaWErYkIATmHz16JDo3PT09KioqsLGxEdPWqKgoIc31uVFRUSHIUZLVjbGxMQsWLCAsLIwdO3ZQXV3Nt99+i6enJ+Hh4Xz33XdUV1ejpKSEjIwMly9fprKykoyMDKSkpPj555+ZMmUKgwcPRkdHh7dv3xITE4OxsTH19fVERERQUFDAqFGj+PXXXzE1NSU3NxdbW1t8fX2FJlpGRgaVlZWiOJSTk/tXRJgPHz4Iwo0kjIyMcHd3JzExERUVFTQ0NKiqquLChQtUVlaiq6srCEJycnKUlZURHh5OXl4efn5+SEtL8/LlSy5dukReXp5wOzIxMaG8vJzu3bvz9ddfo6amRmlpKdra2p3WFy9evGDSpEmdSC/a2toiCXWleG1sbBT6p4qKikKTsKysDCsrK1Eky8vLo6ioSE1NDfX19fTv3x8LCwumTp1KQUEBe/bsEZCNhIQEgSF0dXVl+vTpFBUVielZ7969hXVhY2Mj69atY+LEiSQlJaGpqYm+vj4JCQkkJCSIa1RQUEBOTg5jY+MuiYZDBzmkrq5OqGqYmZmRnJxMQUEBr169Ejjrbt26oaWlhaWlJWfPnsXa2pq6ujpOnz5NcXExbm5umJubExUVxZs3b3jz5g1z5sxBXl5eNJ92dnYEBgYyZswYceA+evSII0eOoKSkJMiN0IHTVlZWRlpamg8fPnD27FkcHByYM2dOl64PEKQ7SeOTk5PDzz//TH19vSCcPX78mIcPHzJu3DjCwsIoLi5m4cKF4sDNyMjAyMiInJwcbt26RVhYGDk5OfTs2RMTExNUVFQ6kQybmpoYPnw4U6dOFYdrTEwMTk5O+Pj48MMPPwgdTh0dHSIiIsjMzGTgwIH/g9H7n0JZWZno6GjCwsLo2bOnIHBKJjtycnJCF1ECJZCXlxd2mZcuXWLv3r0UFhbi4ODAq1evSE1NpampSeQMAwMDAXmQTM/09PTw9vamtrYWDQ0NiouLiYiIICUlBQUFBUxMTLC0tMTCwkI0ofLy8l0mv0IH4VQCF/H09KS6upqsrKxONtHQkQM0NDQoLCykvLyccePGIS0tzZMnT7CwsKBfv348efKE+vp6goKCMDExoVevXpw/fx5paWn09PQE2aSsrIzW1laePXuGnp4egYGBKCkpce/ePZSUlOjduzc9e/aktLRUKGXY29tTX19PYWFhl65P8i5LlDCWLVvGpEmTuH37NqdOnSI6OhopKSmqq6tJSUkhLS2N6upqQkNDcXZ2xsvLS2Bd+/Xrx/v377l69SpqamosWbKEFStWcPLkSbKysoQSgpmZGTU1NaiqqtK9e3cMDAxwd3cXq9vu3btz48YNQkJCmDZtGr169aKiooKsrCxcXFy6vI1UUlKisrJSsP0/ZfJXV1eLRlVGRoaqqirU1dWFnq2npycXLlzg9evXFBcXCzcwiXRWfX29IGmNHTuWiRMn8uWXX1JXV8fPP/9MeHg4ampq2Nvbo62tzZYtW/j77785e/YsioqKDB8+nEePHqGkpCSuVfIOdCXy8/OJjY3lypUruLq6Ym9vj7W1NfHx8YSHh7NkyRJ69epFYWGhsLA3MDBATU1NbDDc3d2ZN28ebm5uxMXFsWfPHq5evUpQUBAvXrzg3bt3YmNaX1/Phw8fiImJEcYc8fHxQp7z5s2bREZGsn//fsaPHy+sxGVlZbGxscHX17dLpDuJskpeXh4ODg6iObWxsWHKlCk8evRIWAAPHDiQn376id69exMdHU1bWxvTp09n4MCBpKWl4eHhQf/+/dm0aRNycnIMGDCA5uZm8dyPGzdO6L1KYAoSjkVhYaEwXtLS0qKwsJADBw7w6NEjzp8/j6enJ+vXrxeGRv+/+FdqA5JfXFNTg6+vL/369cPHx0esmZ48eUJVVRUzZ87EyMhIJL2amhp++uknlJWVmTx5sljF//7778yePbvT34mPjycqKkroWd68eZOamhpevXrFrl27hOtHnz598Pb2JjY2lvv37+Pv7y+gBjdu3GDTpk0sXrz4s68vPT2djIwMevfujY2NDbGxsVRWVqKvry9e+pqaGqysrLCysqKoqIglS5aITnTq1KmkpKTwxRdfMH78eDZs2MD27dv58ccfefjwIWZmZixbtowrV66goqLCs2fPkJKSEgWRpKDU0tJCS0uLiooKoqKiUFBQEOtEeXl56uvrUVJSYty4cV2Wr9HQ0GDMmDEoKCgIGSMvLy8uX75MeXk52trayMjIkJycTHBwsOjS9+zZw/Lly6murmbTpk2EhoYyc+ZMRo4cSX5+PqtWreLChQs4ODgwbNgwDAwMSEtL48SJE8ybN4+dO3eSlpZGfHw8lpaWmJiYEBMTw08//URISAhtbW2sX78e6EiKkiKoq/EpkUVBQYExY8YwceJEsrKyiIiIIC4uTjin/frrrzx+/JgzZ87g5eUlOtQPHz6QkJBASUkJFRUVBAUF4eTkRGVlJUOHDsXa2pqjR49y4sQJhgwZgoeHB7du3eLkyZMoKioK28Dx48ejrKyMkpISgwcPRkVFRSSO3NxcCgoKkJKS6rKVsY+PD4GBgURGRrJ3714ePnxIXFwc0FFAnjlzBltbW2HPXF9fj6mpKbKysoSEhHD27Fny8vKYMGECgYGBQEehLyUlxYMHD5CXl8fGxkYwTCVAfomusbu7Oz/99JNY60uKV4mmrqQYiIuL+9dYNBkZGfLz88VBtHTpUu7cucP58+fx8/OjurpaEIz++ecfVq5cyZ9//inu/6VLl2hvb2fSpEm8e/dOSHU5OzuzcuVKJk2aRLdu3YiIiODx48diejJgwIBOWHmJXid0NC7r169HU1MTWVlZLl26xF9//UVSUtJnaRN+Gjk5OcTFxaGnp0efPn1wdXXFyMiI4uJiysvLO8mdQQe0p6ioiD59+lBeXs62bduIj49nxYoVNDc3s3PnTpqbm/nyyy87YVRXr16NmpoasrKy1NTUEBcXh6ysrIA/paen8/jxY3Jzc7Gzs6OsrIycnBzk5eU7NZOf2rd+blhZWfHLL7/Q3t6Or68vGhoauLm58cMPPwjcp+QQl8CEmpqa0NDQwNfXl2HDhuHj44OysjJ+fn6Ul5eLeyMnJ8fAgQOFzqi+vr6Q2oMOh7uIiAgKCwupq6tjz549mJubC0b8pw0aIIYP/ybCwsJ4+fIls2fPFoQdFRUVTp8+zc2bN4mNjaV///5MmTKFxMRETpw4wdOnTzl9+rS4D4aGhvzwww+Ul5cTGxtLY2MjOTk5gmg6efJkHBwcyMjIoLi4mOHDh7Nw4UJkZWWpqqrq9MweO3aMp0+fMnDgQO7du8ecOXPo27dvp81lV0JdXZ2Ghgays7NRU1MTg4dPNXrb2tpob2/vBJ/R0tJiyZIlzJ49m9bWVlRVVUlISGDp0qVs2LCBsWPH0rdvXyoqKmhubhZQh+joaDIyMigqKmLevHm0tLQwZ84cjh07Rvfu3Tl8+DDp6ekkJSWxa9cumpqa8Pf3x8vLC2dnZ1avXt2l64uKiuLUqVOUlZUJRr+uri4//PADysrK5ObmMnv2bCZNmtTpv+vWrZswEAKEg2FaWhrR0dGEhoZy9OhRtLS0GDNmDJMnTyYvL49Dhw7x+vVrbG1tsbGxISYmhsLCQszMzLCzs6Nbt24UFhby8uVLxo8fz4ABA2hvb+fx48e0tbWJGudz48SJE/zyyy+sWrWKVatW/Z8/19DQwIEDBwT+uqCggDlz5uDv709NTQ0XLlwgJCSEoUOHCtMB6HgXJSpGEk1tFRUVVq9eTVJSErdv38bT05PJkycjJSXFuXPnxHkFHYOKEydOYGlpia+vLzdv3hS1wP8VXS5eJ02aJFYtRUVF9OrVq9PB29LSIjTaJA+2hKD0xx9/kJ6ezvLlyzE3N2fWrFkYGhoKn1/4LymuXr160dbWxvnz5/Hy8iIoKAhVVVXi4+Px9fUVgsYjRowQq5oePXqIiYuEIb1ly5ZO0l3/KSRdlmSiaWZmJorvBQsWoKen12lN4eDgwLp164iIiEBWVlbgSCRkDF9fX+Tk5MRatrGxkZCQECoqKoSVqJqaGunp6Xz77beEhoayZcsWsUaTsOA/fvzI27dviYyMRFZWlpKSEiZMmNCJSfu5YWFhQU1NjZj8QUfBIycnJw7M2NhY3r9/z/jx47G2tkZBQYGxY8cCHWv5nj17oqamhpSUFL/99hv//PMPycnJzJ07lzVr1mBsbMzvv//O+fPnhczHjh07sLOzE8mtsLCQ0NBQLCws+Oqrr1BWVubWrVvY2toKYs6lS5c4cOCA+PfnhIQUYWRkhLS0NOnp6URGRhIfH09hYSEqKipER0fTp08fbGxsCAwMpKWlRdzXmpoaamtrhbyMrq4ucnJy/PPPP0RFRXHr1i1aW1uJiYkBOkD10LG+9vT0JCAgAFdXV7Kzszl+/DhhYWF4enoycuRIFi1ahIyMjMCN29vb06tXry7fQ8mUxcfHh+DgYJEIfv31VyorK9m7dy/Ozs7U1tYSFRVFSUkJGhoaYnsxbtw4KisrMTMzE5aoBw4cQFtbW9g0jx07luHDh4tEVlJSQn19PbW1tRQVFbFw4ULk5OSwsrLi0qVLhIWF4e3tLaxw1dTUGDt27L8m+0jEynfu3Mnhw4e5f/8+7u7uIl/IyMiwY8cOsrKyuHLlCpmZmUItpKGhgdraWlavXo2UlFSnA7V3795Cvk5VVRVnZ2cSExOpqakR3umSKZKysrIooiXWiFVVVQwePBg/Pz+8vLwYN24cLi4uDB48WEwVPifS09O5c+eOwMH99ddfpKSksHz5cqSlpQkJCcHR0VGsZ9PT0zl16hRHjx5FT08PLy8vdu3ahZ+fH9988w3V1dWYm5vzxRdfYGxsTEVFRaftzJkzZ4iPj2fw4MHib0JHPhg0aBCysrJYWlqSlZVFSUmJKOQaGxtpbm4WU8quRHp6OsuWLePIkSPs2bOHNWvWYG1tzY0bNzh79iz9+vVj/fr1jB07lu3bt7Nr1y5RUBoYGGBjYyOaLhMTEx48eCDsiDdt2kRGRgbbtm0jKCiIhQsXdiqmJkyYgLGxMSdPniQiIoLu3bsza9Ys5OXlBclNT0+P9+/fc+nSJSZMmNBl201/f3/s7e0ZNWoUQ4YM4enTpzQ3Nwstck1NTbS0tDA3N2fy5MnU1dWxZs0aoAO7/cMPP+Di4kJJSQnDhg1jypQpLFy4kJCQEFavXs2tW7fIyspiwoQJ7Nq1C319fZ48eUJISAjDhg1DVlaW2tpaXr16hY+PD7W1tUJ2aPPmzQwdOpRjx44JLkFZWZmwAP3ckGwB+vbtS2FhYSdIUGlpKc3NzaipqSEjI4O2tjZaWlq0tbXx/PlzwsPDMTAwEK6U0IGDtrCwICYmBh8fH/r27cuNGze4f/8+7969IygoCFtbW9avX09ERARv374Vkm63bt0SwvY+Pj74+fmxceNGMjMzO9n0djUkmGtPT0/a2tqYNWuWIOpKSUlx9OhR4WynpaWFvb294KLIyspy5coVamtrmTJlClJSUgKuoqWlxeDBg5kyZQqlpaVkZWVx9OhRzpw5Q3Z2tjh/JbruI0aMYODAgcKKVtLgQYfpS2JiItu2bUNbW7tLQwE/Pz9WrlzJ9OnTxf9XXFxMeno6UVFRODg44OXlJVQWKisruXDhgiC+trS0UF9fT1lZGXfu3CE8PFxsn/Pz84mKikJdXR1nZ2dxNr148YJbt26hpqbGoEGDkJOTw9TUlLVr1wq75h49erB27VoqKipEzfS597DLxasEVC+ZjMnLywvGuoyMDMrKygI/9umBkZWVRXp6upD/kJOTE7IWTU1NwuGovr5erEO6d+/O5s2bOXPmDKWlpfTs2RNDQ0P09fUFkURNTY329nYBF2hsbOTDhw80NTUxevRoRo8e3SXZjOzsbBoaGqiqqqK4uBhzc3NkZWUpKytDU1OTZcuWAR2koLy8PKyt/x975x0W1bX9/c/Qe+9FQERBKQKKqChi773GmkRNHHuiJqbZElMt0Yi9a2yx915QsCB2AUF6773Def+YzL7h5iaR3Ly/lMv3eXxGZuacOeucvddee5Xvcq7n6Z07dy4JCQmAIrf01q1bvPXWW0yaNIlu3bpx/fp10TmnadOmjB07lsrKSj7//HNiY2PZtWsXHh4evPbaa6ipqWFgYCCK2AoKCqipqaGqqooHDx4IRoWGwtDQkIsXL2JsbCwSySsrK0VxUn5+Pl999RXp6els3rxZFFpVV1eTmpqKhoaG8FBu3LhRUAR17dqVhQsXCiob5W5UeV+VbBPOzs7ExMSQmJiIhYUFK1aswNjYmMjISO7cuVOP6F7ZYauhxuuZM2fo0KEVKJ2lAAEAAElEQVQDqqqqzJw5UzwTFxcXwXSgqamJiooKbm5uWFhYoK2tLZ59YGCgMNYBzp07R21tLWVlZWzbto1r167h5ubGoEGDiIuLIzc3l4EDBzJy5EjRmevRo0ecOnWKyMhINDU1RS93QPRlV3p2G0p9oiyey8vLQ0VFBXt7e0GSfenSJdasWcOdO3eorKxET0+P0tJSUVzh5uaGs7OzCCknJiYSGRmJiYmJ8AR06dJF0KgVFxejpqYmlNKZM2e4evWq4AAuKCjg2LFjxMbGihxRfX193NzccHNzE+O6oWjSpAlGRkYkJCSQnZ1Nq1ateP3114Vi09HRoX///ty7d4/Ro0eLnExlAY6+vj6pqank5+djZGQkKMPc3d2JjIzk/PnzjB49WvCgHjhwgJs3bwq+aGUXnNraWnJzc4mIiODo0aOipaednR1NmjRhyZIl6OjoNDisXlVVRcuWLUUfc2XR18KFCzEzMyM+Pp7S0lJR8GdmZkZJSQnHjx9HRUWFM2fOiAKT/Px8XFxcWLhwoQjr6urqoq6uTlxcHOvWrWPv3r0EBgbi4+ODlpaW6BBnbm4uaI7KysowMTFBU1NTLI6ampq/K2UAFJ74wMBAQkJCOHfuHG+88QbW1tZcunSJzMxM0enHwcEBGxsbLCwsqKysRE1NDVVVVTQ1NYUxW1BQwP3797lw4QIVFRVoampSXFzMtWvXhIdY+Zz8/f3R19cXnKZZWVnMmTOHli1bEhYWxqZNm/Dx8WHmzJmCHSQuLo5NmzY1SL60tDQMDQ1p27YtKioqfP755xw5ckRQSgUEBNCyZUuxgdi3bx+ZmZlYW1ujqalJSEgIISEhtG7dmrKyMiIjI+nSpQvW1tZs27aNpKQkdHV1GTJkiMhj1dPTo2PHjmhoaIjUO2NjY3r27MmRI0f48MMPmTBhws/o92xtbcnNzW1wQZPSYNXQ0MDQ0BBJkqipqaG6upqsrCyKi4vx9PT8Wb6wshuacm4oWy7HxsbSrl07OnfuzJAhQ0RhW2xsLAcOHCA+Pp4vvviC2bNnU1lZyfLlywkODkaSJHJycrCwsBBNWZRRXKX9AL+viNnb21s4vmJiYrhz5w5OTk64uLgQExPD1q1bSU5OpmPHjvTv3x9tbW3s7e15/fXXsbCwYNiwYZw9exYPDw/c3d3Zv38/t27dEgV85ubmmJubs2vXLoKDg4VnUiaTUVNTg6urK2+88QatWrUSlFjz588XG1xbW1tUVVVJSUnhwoULqKmp/WZO6E/Ro0cPEWHLzc0VdkV1dTWampriWShTtC5fvkxYWJhILZIkCQcHB9zc3NixYwcPHz6kf//+tGnThtzcXE6cOIGmpibDhw8XVFnff/89ly9fZvLkyWKzrGxvraenJyLVP6VXrKysZMeOHa/U+vZ3sQ2AwvtWXl5ObGws6urq2NnZ/WwBliSJkpIStLS0mDdvHkFBQYSEhGBra4u2tjaJiYlcunQJS0tLXFxcKCsrQyaT4erqKhTnrFmz+OGHH0hOTsbX1xcLCwsWL15MXFwcq1atEvkUoDCuFixYQHZ2NvPnzxf8cg2Bvb09b7zxBqGhofTu3Zvdu3ejpqYm8vvkcjlqamqifWNJSQnx8fFC4f+0A9HTp0/ZsWMH48ePR0dHh+DgYJYvX05ubi6urq4MGDCArl27UlxcjJmZGRUVFWRnZ3PgwAHRtUlJE2Ztbc3w4cMxNTWltLSUZ8+eoaqq2uCqQ1AYkpmZmQQHB2NoaMiKFSuE0QH/qj5PTk4mLy9P7P7i4+O5cuUK3t7eIqdOGdLt2bMnc+bM4ejRo5w9e1Z0mlq1ahVmZmbo6emJ5HstLS2ePHlCVlYWY8eOFWF0U1NTBg4cKBT9/fv3cXZ25ocffuD8+fOvLJ+yc4m1tTU6Ojqig9nu3btp1qwZ+/fvx8LCggEDBqCvr09YWBjR0dF07NiR7t2712svmJKSwrVr10Qv9fT0dObMmcOtW7cICAjgm2++ISsri5iYmJ9RN9nY2LBw4ULMzc1p3rw5N27cYObMmQQEBDB48GDs7OzYtWsXc+bMEQVwr4qcnByOHTvG5s2bqaurY+XKlQwfPhxQdDSaO3cuq1at4uHDh4KeJTs7m0ePHtGkSROSkpLo2bMn69atE59/+umn6Ovr89VXX4nNwtOnT4mPj8fPz0/kP5aXlxMSEkJsbCx5eXm0bduWxYsXk52dzY4dO5g/fz4jRowQuWH79+9nyZIl9VgJXgUrVqygpqYGVVVVamtrqaurw9zcXIRHq6qqWLRoEdeuXaNTp0507NiRvLw8evbsiYODA8ePHyckJEQsIPPmzcPGxgaZTIaVlVW9vLjCwkLWrFkjCn8A0YNc2RmpU6dOWFhYYGJigpubm2jH6+TkJBqqKHO9XgX29vYi5z85OZnZs2eLJgigSIk6e/Ysa9asoU+fPoI3+fr16xQUFHD37l1UVFTYt28fRkZGnD9/HicnJ+rq6sSiBIqOeitXrsTKyoqAgADxHKurqwkLC0NPTw9fX18ePnzIhQsX6NWrlyg8/GmHud8DKysrDh48SNu2bXnttdeEd3DZsmVoa2ujpqbGsWPH2LdvH6+99hohISEkJCRgaGiIg4NDvbB+RUUFbm5ufPbZZ/j7+4tFd+fOnVhbW3Pt2jV27dqFg4ODWKjv3LnD4MGD6dSpEy1btiQtLY1ly5Zx9uxZ7ty5w8CBA2nfvr3ImV66dGmD5Hvy5AmlpaWC71fJXbp3716io6Pp06cPNjY25OTkiFSrDh06MHXqVHJyclixYgWOjo588MEHnDp1iunTp7Njxw6GDBlCz549adOmDc2aNaN9+/Y8efKERYsWYWtry2effcbjx49ZunQpdnZ2LFiwAJlMJjYFyqp35X0DxQbH1tYWuVz+StXcSsTHx3Pt2jUkSaJJkyaYmJjg6uoqcvVzcnLqjZHq6moqKyvx9fXF1tYWNTU10dVu69atHD58mAEDBjB27FhxnL29PevXr6dp06Zs3LiRo0ePMmTIELFBUUaOevfujbW1Nc+ePePq1atkZmaK+pqAgAAqKio4e/Zsg54h/Cs1R5IkMjIy+Prrr+nXrx+qqqpcuHCB5ORkRo4cyZIlSzAyMiIlJYUmTZqItrzKVq8hISFERESwbNkyKioqsLe3Z9euXejp6WFvby94ljU0NBg/fjwdOnRAT08PV1dXXF1diYqKYtKkSXTt2pXly5fz4MEDUV/k4OBAYWEh7dq1Y9KkSQ1qxvD48WM8PT2Ji4vj5s2bInrdqlUr1NTUuH79OosXL2bXrl28//77uLu7ixbw1tbWvHz5EiMjI7p06SIMbGVE6Nq1ayQmJjJ//nwCAgIoLCxk6tSpREVFidoPJQoKCvjiiy8oLS1lx44dP4t0HDhwgMWLF4vOe7+GBhuvFy5cICMjg27dumFrays6aBgZGVFaWsr9+/cFP+JPXb/Z2dno6OjQvXt3nJ2dRfvOW7dukZaWRvPmzenSpQv9+vVDU1OTR48eUV5ejr+/P2PHjhULg76+PqqqqmRkZPwsZJ6cnEx1dTWGhobU1tYSFRVFdHR0g+R7++23hWFYUVHBjRs3RFFPQUGB4NdTUVEhLS2N6Oho0fElNTUVHx8fZDIZqqqq3L9/n9u3b9OrVy/WrVuHp6cnM2bM4KuvvsLZ2ZmuXbtSVlZGdnZ2PQ9qfn4+O3bsIDc3l8TERPT19bG3t8fKyoqysjKysrJwd3enadOmP2tn+ipQLn6g8OBFRUXRvHlzkTJgZmZGnz596NatG82bN6ekpITdu3eTnp5OYGAg7u7ulJSUcO3aNcLCwvjwww/59NNPSU5OFsVQoOgoMnToUJ4+fUpOTo7wCKmoqAhifWWLYKXnMyUlhSdPnpCXl4eBgYHIq2mI8VpUVMTYsWPx9vamoKCA2bNnU1JSQseOHXFycsLX11csynFxccKYV3KePnz4UHTnevLkCXFxcXTp0gVbW1tsbW1Zs2YN7777Lq6urqIdpImJCTo6OhQWFoqKYCcnJ7E7TktLIzExkYqKClRVVdHR0UFHR4e2bdtSXFzc4FDXT9voKlNtlB5cV1dXRo0aRWpqKnFxcYLvUtl7u7y8XHhClBsnNzc3sflSLihXrlwhJycHGxsbkpKSyM7OFj2wlUZSUVGRSBvKzMwUnnnlexERETx//rxet6tXxdChQ8nOzhYbJVAsjMoNW01NDS9fviQ+Pp5Ro0YxZcoUampqiImJ4fHjx5iZmWFqaoqRkRHt2rWr5z3894YJ1dXVWFlZiU5ASgYAZWFJly5dCAoKEt5zSZLq9YhX5oc3JL/eyspKeLCUXhz4FyOHq6srSUlJREVFCV2n3DB99NFHBAcHC9YHf39/MX+VYX6lvMbGxiIc2b9/f2H86+vr06xZM/Ly8nj27BmXL18mJCREMAwoCfZLSkooKSlpcBEMIGipBg0aJHJmVVRUGDhwIKDQdfv27aO6uhpvb28sLCxEcS8o5o2amhoWFhaCVkeZZxcZGYmRkRHDhg2jsrKStWvXIkkS2traXLx4UdzHefPmCeNEmX6ivP+JiYk4ODiwZMkSduzYQUZGRoPky8nJIS8vj7CwMBISEujduzddu3YlPj5e9H6fP38+lZWVZGRkoK+vz7Bhw/D29qa4uFi0yn3x4gXa2toYGhqSmZnJ9u3b2bRpE1ZWVty5c4d79+6RnJzM0aNH6dixI5WVlRw+fFgU2piZmYmonJIDWgk3Nze6d++Ov7+/0DsNwb1791i0aBFeXl68++67GBkZUVtbS3l5OUlJSSJlrEePHjg7O2NkZIS6urqIhoaGhoq85OjoaM6dO8eYMWOEnrl06RIqKip07dqVmTNnsm3bNo4ePcrTp09xd3cXxXlKj72yq5iFhQWFhYWkpaVRV1dHmzZtRD7+gwcPGiSjkgKrqqoKbW1tEZUDRLe2Pn361OO3VqaoWFlZiU30zp07efjwIZWVlfTr14+2bduSk5PDnTt30NHRYdiwYWhpaVFbW8vEiRN/ljKWnp4uuiQq55uyZsHc3BwvLy+hqxuCuLg47OzsRCpUbW0toNAN/v7+FBcXs337dhISEoSd1bNnTywtLcnOzmbv3r2oqqrSo0cPZs+ezcOHD7l06RKxsbF8/PHHtGvXTujG8+fPU1ZWxujRo0UtU2VlJTU1NaSkpIh8dmW0p7Kyktu3bxMSEsLhw4dJTEx8pVbbDTZeb968ybJly1i4cCHLly+vV2F74cIFDhw4wJgxY+rlhQJ8+OGHhIaGsnnzZgwNDbl58yb29vZ8+OGHTJw4kS1bttCtWzfxUEJDQ0XVYIcOHejdu7fItfn000+pqakRHrKnT5+ira1N06ZNWblyJbGxsWRnZ2NsbMzHH3/Mxx9//MrymZmZsWnTJjQ0NHj+/Dn79+8XXHxKo1lDQ4OMjAzWrVuHJEn4+PiQkpLCixcvmDp1KmPGjKG2tpatW7eyaNEibt68ydy5czl58iTq6urU1dUJBRIbG0tSUhIODg5Cwc6bN49Ro0aJ4oXCwkJ0dHQoLS1l27ZtJCYmMmzYMFHp2FCEhYVhaGjIO++8I6oz79y5IyaSktpJ6UXatGkT06dPZ+TIkcIzsWPHDubMmYOPjw87duwAIDExUYQjR44cydChQ8nKymLWrFmAItdQqRSUht9nn32Gg4ODUPCbN2/m1KlTtGvXjuXLl6OmplYv/eBV8PLlS5FXpqenx8qVK7ly5QqrVq2iQ4cOjB49WnDrnj59GkNDQz788ENsbW25du0ac+fORVNTk6+++oo+ffrQpk2berl0Pj4+rFu3jszMTM6ePUtpaSmGhoYiXzQlJUW0BwRFG9Lly5fTqVMnNm7ciLq6uii4CwwMFKHfhhRTGBsbM2TIEN544w1CQkJ466232Lt3L8eOHUNTU5Pa2lrefPNNHB0dMTQ0FHMnPz+f6upq9PT0qKqqoqCggIKCAlxcXNi5c6fgbt2zZw8bNmwQRQpXr15lxYoVFBUV0aRJE4KCgmjTpo3Ih926dSvLli2jb9++guT9ypUr7N69G19fX2bPni3GwauisLCQ3Nxc0egDEAue0jjbs2cPISEhhIeHk5mZSdOmTTl+/Diffvop06ZN48MPP8TAwOA3lb2FhQXvvPMOZ86c4cKFC9jb2+Ph4UF6ejovX76kVatWwoi+cuUK0dHRIjQMCi9pQ8OVBQUFbNu2jSFDhtTzvCvDtMpQcLt27eqFZC0sLLC2tiY2NhZXV1fefvttEWXy8/OjdevWaGtriyKesWPHMn78eMFQ8tMiSCcnJzQ1NcnJycHf319shsLCwnBzc0NdXZ3Hjx9z5cqVBsmmhDLXU2l8K+m4srOzhY4fMWJEPY+wEkVFRRw5cgQVFRXGjRtXz1lRXFzM2rVradmyJTNmzCAqKgojIyPRqeydd96hbdu2bN68uV4RlvIcRkZG9O/fH5lMJgzYBQsWkJ+f3yA+Ynt7e/T09Pj666/55JNP2Lt3L3l5ecyYMYMDBw6wefNmvL29mTBhAlu3biUlJQUnJyeqq6t5+vQpFRUVHDx4kDVr1tCvXz8GDx7Mzp07AYUeVrb1bNWqFZ06daJnz560aNFCkPzDv1qIP3r0iKCgILp164alpaXQMV27dsXHx+d35YKCIvwvSRLe3t7CC5ibm0txcTF5eXncvXuXXbt2ce/evXr1GqAYy0uXLhVrc8eOHQkJCanndLl27Rrbtm1j06ZNdO7cGUtLS16+fCnmrLKr5alTp3jzzTdp2bIlBw8exNzcXPDXGhsbC27ftm3b1uvO9yrIzMwkIyODPn36UFBQwNtvv42qqioff/wxXbt2JTIykoSEBNGwR01Njerqaurq6kRRmpqaGsuWLaOqqor27dszc+ZMunXrRkVFBSUlJRgZGYmNRGFh4X90vtna2vLDDz+gpqZGamoqnp6eXLx4kdraWtzc3NDQ0GD58uW8+eabPyty/zV07twZLS0tmjdvTrNmzdDQ0KC2tlbMjQ4dOvDZZ59RW1srdKyFhQXm5uYUFhYSHh5OXl4e7777Lt7e3lhbW7Nq1SrBHayioiJqAkJDQ5k7d67g5VZ+HhISQlFRETNnzqzX6KiyspIvv/ySs2fPYm1tjaur6ysVhzbYeLW1teWtt94CFJxqylwGZcWot7c3nTt3pqysjE2bNqGnp0enTp0ENVJ+fj7ff/89W7Zs4eOPPyYoKIi33nqLo0ePit3ixYsXsbOzo1mzZkRFRWFpaUmLFi148eIF58+f5+2330ZdXZ2DBw+ye/duvL29mTJlCioqKmhpaYlFxtHRsV7nj1fBggULGDhwIAEBAaKCXEVFRRjpyl7Djo6OBAYGkpycjJqamlAuSgofVVVVOnTowLx587h48SLt2rVDRUUFIyMjWrduLa6xefPm6OnpkZmZSXZ2Nqmpqejp6eHs7Iyvry/5+fnCg6Cjo4OdnR3V1dUirUJJ39QQlJeXM378eNEe0djYmNOnT3P06FEqKyvx8PAgMDCQ/Px8Hj58yLNnz35WaWloaIiHhwfDhw8Xhp2JiQkrVqxAR0cHf39/8vPz2b17N1evXgVg4sSJLFmyBCsrK0JDQ7l+/boIp0RERKCuro6Xlxd1dXXY2tqK3WFDZdyzZ4/Y5So7kbRv357o6GiOHDnCixcvmDlzJpWVlVy8eBFXV1dmzpwJKAwmTU1NbGxsxOZI+ayOHz/O4cOH6dmzJ+PGjcPExIT9+/djYGCAn58fKioqnD59mnv37jF8+HBBh7J+/Xpqa2vp168f6urqZGdnk5ycTOvWrcXGoaGcxD/tPBMaGiryMBcuXIiPjw92dnYi9xwU3o3IyEhGjRqFlZWVSNRv1aqVUMY/rSz39PQkKCgIVVVVcnJyaNWqFT179uTq1auCYP358+fo6ekJr72vr289D6u9vb0g2W9Ie18lkpOTKSgowMbGhtTUVLZv346qqipyuRxDQ0NhCHXr1g1zc3POnz9PcnIy8fHxzJkzh7Fjx2JkZMSjR4+4fPmyaLogk8mQJAlfX1+GDRuGtrY2kiShoqIiQoFKftiOHTtSVVXF1q1bcXFxQUdHh3PnzpGcnIxMJiMjI0MQdX/55Zd8/fXXryzfs2fPaNasGY8ePeLKlSvk5ubSvHlz+vXrh7a2tshNKy0t5cKFC8JYUDJFvP3223h6enL48GF0dXUJCAjAwsKCmpoakS9fVlaGpqbmzwzD6upq7ty5w/Hjx6mqqmLUqFEMGjQIUHiRi4uLRQ2DjY0Nbm5uFBUViSK6V0VKSgp2dnbAv4jgtbS0iIqKorCwkJYtW4oQPyg8YEZGRhgZGZGXl8eNGzdE9X51dTV79uwhLi6OwsJCkZ9bUFCATCYjMDAQKysr0tPTKSkpwcLCAlVVVV6+fElYWBgDBgxg8uTJVFRUcObMGZ4+fYq/vz9qamrcuXOHZs2aNZiP2MjICHNzcyZPnoyamhoPHjygrKyM9957T7TVVW48lHngoDAI1dTU8PHxEd3nysrKqKysZPz48aIg6cKFC2hra1NWVoaamhoDBgwQrWBnz56Nv78/Z86cISIigm7dujFw4EBhFCmfuTLKUl1dzaVLlxrslezcuTMymaxe+9eamhq0tbVp164d+fn5Ih2iRYsWpKSksG7dOvr164e7uzvNmzcXXsRBgwaRkZHBoUOHkCSJ8ePHU1NTQ3p6OuHh4fTv35/Zs2dz9+5dkT6mvH8BAQEMHDgQJycnoZNVVFSwsbERa9Dly5eJj49vkHyg8E4rQ/8ZGRmYmppiamqKi4sLnp6eWFtbU15eTnp6OpaWlmRmZlJcXIybmxulpaXs2bOHu3fvMnHiRJo2bYq7u7u4X3p6esIOuXbtGnV1dXTt2pWKigree+897O3tmTVrFiYmJlRVVWFsbMzx48fZvn0748ePF5zdSig77DUEv0SpWVlZiaamJrq6ulRXV7N37172799Pjx49RHGXsbExrVu3JiIigkmTJmFiYoKVlRUWFhY4OztjZmZGSkoK8+fPx9HRkXbt2lFbW8vz58+FE1NVVRVjY2MyMzNFIaqTkxPFxcUcOXKEvLw8vL29RbqMqqoq27Zt+1WZGmy8tmzZknHjxnHhwgXCwsKwt7fHyMiI8PBwamtr6d69O8bGxly/fp0vv/ySyspKli5dSq9evejUqROqqqqcOHGCq1ev0qJFCzp37kznzp1xcnLCycmJJ0+ecO/ePbp3746Pjw8VFRWCwuXs2bMcPXoUX19fnJyc+Pzzz8XCoayGi4mJobq6Gg8PDzQ0NBrcHnbDhg0i1cDX11cYcVlZWVhYWGBlZSW47YYOHUp8fDyPHj2iTZs2uLq6UlVVRXR0NJWVlRgYGDB58mTeffddcX4NDQ369esnjCotLS2RExUTE8Px48eJjo4mMDBQtCTNysoiIyMDKysrRo4cSV1dHXl5eWRnZzeYngegY8eOgrokOzsbKysrbG1tmTlzJunp6Xh6elJdXU1VVRWXL1/G19eXb7/9FkAsjJ07dxZJ38oQdrNmzWjevLlw+e/Zs4ebN2/SvXt3bt++zYEDB/Dy8mLixIls3LiR+/fvc+DAAXx8fAR/8MSJE5k4cSL5+fnExsZSU1NTL4z4KlC24lNVVWXatGnU1dWhra3NtGnTePbsGYsWLRL5PnFxcRQUFFBSUoKenp5oYmBnZyeM15qaGp4+fcqBAwfYt28fVVVVjBgxAhMTE9zd3UWnF1AoquzsbHJzc7l79y6nT5/G1NSUd955B19fX9LT0/n2229xdXXFx8eH69evs3Tp0gb34lbik08+4ezZs0ybNk1UxUZGRrJ48WLS09PR1dVFkiR27drF7t27UVdXF7RlUVFRbNmyRcyTqqoqVFVVqaysFBR1YWFhXL58mU6dOjFhwgTc3NxITU3l8ePHfPvtt1hbW7NhwwYGDBggOuVUV1dTWlqKi4sLLi4ufP3117z55psNCqmDYq4oizILCwvZu3cvVVVVjBkzRhivycnJODg44OnpyfXr11m5ciVyuZyVK1cCipzECxcusH//fqKjo0Vb1fLycgoLC0XxRUlJCU+ePEFbW5uRI0cKZe/k5ERlZSWTJk3i6dOndO7cGVNTU+zt7dHS0uLIkSPs27ePiRMnimLOV4WqqiofffQRmzdvFhGNPn36MGDAAAwNDcnJySE6Oprnz59z9uxZCgsLBXVe8+bNRVcuuVxOQECAiDZERUVhamqKubk5Ojo6hIaGkpSURNu2bcUm/MmTJ2zevJldu3bh6uoq8pHr6uqwsbERi60ysuTj40NSUhJffPFFg2S8du0ao0aNQl1dXXQqqqysxNLSkoEDBwovndILZG9vL7xB5eXl6OnpCb7Z+/fv88knnwjv5eLFixk8eDA6Ojoi1Ku8r9OmTaNTp07U1dXx4MEDnj17RuvWrXF3d+eDDz4gPj6eu3fvMmDAANTV1dm2bRvNmjVj/vz5DZIvOjpatApXUplVV1cTFRWFq6srn3zySb3C5dTUVNLT00V3w5/m/G3atInDhw8zdepUYbAoWR4qKytFjrWBgYFo+KPsEpednc348eMxMDBg//79Ij8UFEV4KSkp3Lhxg8uXLxMVFSV4sF8Fffv2pV+/fpSUlPDo0SOSk5MxNTXFx8cHS0tLvL29GT16tKB53L17txgnAQEBfPHFF4SHh1NWVoaWlhaBgYF89dVXPHz4ECcnJ9HRUWmAjhs3jo4dOwpPqrI9dV5eHgsWLBDsJY8ePSItLU00wXnx4gUbNmwQRZcNgYGBAZ6enty/f5/c3FwWLlxI06ZNqa2tpbS0lMDAQLGu1dbWkpOTQ2lpKZqammRnZ7N582ZqamrYuHGjWNurqqqorKwkLS1NFPGePn2a6Oho7O3tSUxMZOvWrXTs2JG5c+eiq6tLXV0dN2/eZMOGDZw7dw4PDw8xFhITE3n27BkqKipMnTq1QSxKP81dr6urQyaTUVpaKu55RUUFV65cEc0PzMzMRHdEVVVVJkyYgKqqKnv37sXKyoqJEycyevRo4XRZtmwZ27dv57PPPmPChAmsXbuWI0eOsGTJEuzt7VFRUaFdu3bk5uayfPlyevXqxUcffcStW7c4evQoHTp0YNy4cXh5eaGqqlqvduiX0GDjNSEhgZCQEMzNzenWrRsmJiaoq6uLHMa9e/eSkpJCcXExLi4uSJJEfn4+x44do66ujkGDBjFixAjS09O5fv06U6dOFX2PlV21SktLOXv2LBcuXKBz585UVFQwe/Zs8vPzmTx5Ms7OzkRHR+Pt7U3Pnj3p2bMn586d48mTJ3Tv3l0oJOVDawiWL1+Ojo4O58+f58GDBwwfPpwXL16wYMEC+vTpw6hRo7h69SrXr19nyJAhorGCk5MTGRkZfPXVVxQUFDBt2rSfGV0nTpygvLyc3r17Y2hoSExMjCi26NSpE/Hx8Zw/f16EoAsKCrC2tsbIyIgXL15QVFRE8+bNUVFRwcTEpN7gawgmTpwIKIw8paHu7u7OokWL+Pzzz3n8+DHnz59n0KBBjB49Gl1dXV6+fClovUCx4y0uLubw4cPU1dXRv39/3NzcyMnJETtjZch37NixTJkyhWvXruHi4oKhoSGvvfYafn5+mJiYUFtbi7u7e71wk7GxMba2tr8rp/fjjz8mNDSUM2fOkJyczKBBg0RKhL+/P8nJyaiqqhIRESE6DCnTL5RVpGpqaqIISxmSvX//vpBFkiRkMhnNmjWjqqpKGPCDBw+mqqqK27dvc+PGDZo1ayb6Q4Oi+CEmJoaSkhJat26Ni4sL06ZNo3379g1SRqAInVpbW9OzZ08GDx6MgYEB+vr6WFpaoqmpyZYtW8jKymLw4MH0798fMzMzscHq0qULPj4+Inwjk8nQ0tLi0aNHbNy4UUQz2rdvT35+PqtWrcLe3p5hw4bRvn17DA0NBUG+Mn9aOS6ys7MJCwujQ4cOWFhY/G6eV319fRHqVFNTY8qUKaipqYlxoqKiUi8dYMCAASLn+PDhwwQFBdGkSRMCAwMxNjYWTQ+qqqpEhbjyeF1dXfz8/ERryp+ioqICDQ0NSktLhTHWu3dvMRdVVVVxcnJqsFdS6XEMDAxk2rRpVFRUiGIzDQ0N9PX1kSRJbAiVi2GnTp1wdnYWYb2lS5dy9+5dNmzYwIgRI9DW1ubo0aM4OzvTrVs3VFVVSU1NFa26AZEe4ePjw6JFi3B3dycuLo5r167h5eUleHurqqrq5c42FHfv3qVnz55YWFhQUlLC9evXMTc3x9vbm6ioKA4ePIiXl5eYnz81XCsrKxk4cCBeXl5oaWkJ3k9Q5BkqPeFAvXFgY2MjmtsoC0dNTEzqeaumT5+Ou7s7T58+ZfPmzYSFhdGnT58GUZ2BIrRqYWHBxYsXuXXrFpMnTyY7O5slS5YwbNgwhg8fLjZHSUlJnD9/nqdPnzJw4EDh6c7NzeXIkSMkJyczdepUkQ8MisictbU1KioqZGZmEhUVJZhSQLHBGzFiBDU1Nbi4uBAbG8t3331HbGys6Axlbm7O06dP2bZtG/Hx8fVYT14Fyu5vkiRRUFBAbGwsZWVlImUIFJu8uLg49u7dS0hICKNGjcLHx0ekyDk4OHD79m2xgXrrrbd4/PgxtbW19O/fH319fQ4dOsT8+fOZNm2aMPZAMQbPnz8vGsKMHz8eV1dXdHR0sLS0xN7enqioKNatW8fTp0/x8/NrkHygKBQaNGgQzs7OmJubCw73tWvXEhUVRefOnRk5cqSg0rOwsBBrk76+vkgzUBquoMj3z87OrkcVOGLECK5fv86KFSsoKChg7Nixgk1E+Tw1NDTo27cvHTt2pEuXLkiSRHV1NUZGRjg5OXHt2jWioqJERONVsGvXLpH6mJOTw+nTp1FXV2fAgAHChujVq5f4/+DBg0V6ZFJSEj4+PlhZWeHr64uOjo6IcihhbW1N586dxUZzzJgxrFixgo8++khQwIGC7Wfw4MF4eXkhk8kwMTGhbdu2uLi44OHhgaqqKvHx8ezfv/83ZZK9arW6XC5veFn7XwzBwcG/aAn90+WDf76M/wT54J8vY+M4/WfLB/98Gf8J8sE/X8bGcfrPla/h7Ysa0YhGNKIRjWhEIxrRiD8Jr+x5bUQjGtGIRjSiEY1oRCP+bDR6XhvRiEY0ohGNaEQjGvG3QaPx2ohGNKIRjWhEIxrRiL8NGo3XRjSiEY1oRCMa0YhG/G3QaLz+X0EmW4pMVoFMZv9fnuddZLJqZDLXP+jK/jj8L8jYiEY0ohGNaEQj/lT8KQVbcrncFBgC9AM8AFugCngCbAe2BwcHN6y7wB8JmexLoA3QHDADyoFE4BjwHZKU28Dz2QPRwBYkada/fZYAOPzCkZlIUv0m7DKZNhALPECS+v/Ho377eiahuM+/hjokSfU3vvPTc/6yjD//7nhg149/TUGStvzb5/+9jH8Q5HL5cCAQaA14AfrA3uDg4HF/5nX9kZDL5b863oODgxs23v9i+B+QbxKvMJ+Dg4NffT7/BSGXyxP4FV0ZHBxs9Quf/W0gl8v7AbOBloApkA7cB1YGBweH/ZnX9t/iL7/u/wH4H9A1f5ln+Gd5XkcAm4F2wB1gNXAYcAe2AAflcnnD2en/OMwFdIGLwLfAXqAGWAw8/h2exY8BTeCXekcWAkv+w79vfvZNSSr/8Zr6IZN1aOB1KPHwF35vCaBsYn62gef8LRkVUNy7tUDJL37nj5Hxj8JHwAwUxmvqn3sp/9/wq+NdLpf/d570Px//dPke8sfP578qXl1X/s3wo+FzCvABzqEYqxHAIOCWXC7/u2+Y/+rr/h+Bf7qu+cs8wwZ32PqD8AIYCJz+qZUul8s/AO4Cw4ChKG7KnwEDJOnnfVdlss+AD4CFwKv185TJDIGxwGUk6ZdaKBUgSYsbcH17gOU/XkNoA45TQJIeoljwfg6ZTLm73/TK53s1GfmxJcl2IBc4Asz7lbP+dzL+cZgLpKDwBAcCV//Ea/n/BYPg4OCfjXe5XN7w8f7XxD9avuDg4If8wnyWy+UNn89/bRQEBwcv/rMv4o+GXC63QqEPMwHP4ODgrJ98FoRiE7IUhV78u+Kvvu7/EfhH6xr+Qs/wT/G8BgcHXwkODj757+7l4ODgDGDDj392+T+/MCX+k+GqwMEfX11+4fP/hDGADnDgv7qmn0KS0oAQYDgymcEfdl6ZzB3wR+FhPN2AI19VxllAV+B1oPRXv/n/S8YGIjg4+GpwcHBMcHDwP5YQ+T8p2x/xe8b7Xw7/dPl+CXK5/PfO50b838MBxXp856eGKyh0EFAMmP8ZF/ZH4S+/7v8B+Kfrmr/SM/yzPK+/huofX2v+1Kv4zxjw4+vjBhzT/cfXm7/yHU1ksnFAExRG3WPgBpJU+yvH3EIxSDqjCDX9EXjrx9etv/Hb/47fllEmcwO+AL5Fkm4gk3V9hfP+/5CxEa+O3zPe/074p8sn5nNwcHBD5vNfGZo/hs/r6cp/gHwxKHIH/eRyuVlwcHCO8gO5XN4ZRa79sT/p2v4v8Fde9/8I/NN1DfwfP8O/lPEql8vVgAk//nnuz7wWAGSyeYAeYIgiCTsAxeD7ogFnCUCxa37xK9+xAnb/23vxyGSvI0nXf+GYez++/jGGnaJIahxQhyJ3pSH4dRllMjUU8iWhCJ28Kv5YGRvxq5DL5X/EeP/L4p8u308hl8v/m/n8V8Z/1JVyufz14ODgX9KVf3kEBwfnyeXy94CVwHO5XH4MRXqVM4ow7UX+tRn5R+Evt+7/Afhf0jXw5zzDv5TxiuLBugNngoODz//ZF4MiB8nyJ3+fAyYhSdmvdLRMpvHj8TH8Mq3DdhTh8WcoDMCmKAqEpgJnkcnaI0mP/sNxGT++Nnmla/ltjASMgNO/mrf673g1GT8BvIGAH4uxXhV/tIyN+HX8x/EeHBz8auP9r49/unw/hZjPwcHBrz6f/9r4VV0pl8vbBwcH/ydd+bdAcHDw6h8ZFbYBU37yUSyw49/TCf5B+Kut+38E/pd0DfwJz/Avw/Mql8tnAe8CUcD4P/lyFJAkKyRJhmK3PxSFsnyATObzimcw/fE1/1d+YwmSdAVJykSSypCkp0jS2yh24NooqhT/E/J+fDV7xWv5LUz98XVjA4/7dRllMj8U3tYVSFJDqV7+aBkb8SsIDg62Cg4O/tl4l8vlrzre/9L4p8v3b/i98/kvi+Dg4CU/5txlBgcHlwUHBz8NDg5+FV35t4BcLl8A/ADsQOFx1QV8gThgr1wu/+rPu7r/P/hLrvt/AP6XdM2f9Qz/EsarXC6fjoJW4jkQFBwcnPcbh/zfQmFYHgV6ojDWdv3GEUoovYxav+NXlcnPnX/hc+1/+43fD5msJdABRVX9mQYe/csy/itd4AUKKq2G4o+TsRGvjB+Ng98z3v8W+KfLJ5fL/5v5/HfEb+nKvzzkcnkX4EvgRHBw8DvBwcFxPxroESh4NVOBd+VyedM/8zr/SPzl1/0/AP8DuuZPe4Z/uvEql8vnAN8BT1EIn/HrR/yJkKREFA+pFTLZb3sDJakARRK+6W988z9BGSLS/YXPTf/te/8Nfm+h1m/JqIeCrNkNqEAmk8Q/WPTjdzb/+N7q/3D8HyljIxqI4OBgMd7lcvk/zvv9D5bvn1io9Wv4LV35d4CyGcvPqPiCg4PLUNAQqaBIv/rb42+17v8B+Cfqmj/7Gf6pOa8/Jqh/gYKjsMdPKyz/wrD58fVVF4UngDcymQGSVNSA32n/42vcL3yubJ36sAHn/DlkMi0Urv46YOvvPMsvyVj5K+f0QaGIb6LozPWfUgr+GBkb8d+goeP974Z/lHxyufyPmM9/N/yWrvw7QPPH11+iw1K+X/V/cC3/X/E3Xff/CPxjdM1f4Rn+acarXC7/GAXp8n2g518mZCCTuaJoGpDxb++rAMsACyAUSfrlPNb6uIYib8kPuPRv52wFpCNJef/2vgOKHQ38Mim1/4+v/y1p/gjAGDjVoEKt+rjGf5JRUZw1+T8eIZMtRmG87vxZe9h/4Y+SsRG/ALlc7oqC+D3j396vN96Dg4Nfdbz/pfBPl+8/QMznf1ChFnK5vBWQ/u/rhFwufxVd+XdACD8Wn8nl8o3BwcGim59cLu8DdAQq+HMbtvzX+Muu+38A/ld0zV/lGf4pxqtcLp+IQvhaFJN2llz+s6YTCcHBwTv+jy8NoDfwNTLZDeAlCroSSxTdlZqiqICf8suH/wyHUSQz9+LfjVfFQvM+MtlVIB5FBa0zir7BWijy1X7e9lBhSHcDopGkpw24lv8EZWHHf9OB59dk/H34Y2X83ZDL5YOBwT/+qeyd3l4ul+/48f85wcHBv9Yp7K+O3sDXcrn8jxrvfzX80+X7d/wR8/mviBHA+3K5vGG68u+DH1Dozu5ApFwuP4pibLqhSCmQAe8HBwfn/nmX+N/hL77u/xH4x+uav9Iz/LM8r04/vqoCc37hO9dRVF3+X+MSCsXfEfBCQTdTiqLoaDew5mee0l+DJIUhkz0AxiKTvf9vOaVXgRYoPJDtUeRsFaAIpe8Gdv8C/VR3wBZF69LfD0XjgAD+28KOX5fx9+KPkfG/R2tg4r+91/THfwCJ/Hqb2786fnO8/829I/90+QTkcvkfM5//mvhNXfl37oIXHBxcJ5fL+wLTgdEoirR0UDCunEExTi/8iZf4R+CvvO7/Efhf0DV/mWco+2Vqzkb8YZDJxgDfA0N/ZC34b893GMVuzhlJKvyvz/dH4H9BxkY0ohGNaEQjGvGno9F4/b+ATCZDUZCkDbT+FTL/VzlXayACmIUkffcb3/6/w/+CjI1oRCMa0YhGNOJPx59OlfU/AYUhNxU4yr8qDn8vrFFwpm74rS/+n+J/QcZGNKIRjWhEIxrxp6PR89qIRjSiEY1oRCMa0Yi/DRo9r41oRCMa0YhGNKIRjfjboNF4bUQjGtGIRjSiEY1oxN8Gr0yVJZfL//b5BcHBwbJf+uyfLh/882X8J8gH/3wZG8fpP1s++OfL+E+QD/75MjaO03+ufI2e10Y0ohGNaEQjGtGIRvx9IEnSK/2bNm2aNG3aNOn777+XlKisrJSKi4vF3+Hh4dKhQ4ek6Oho8V5JSYlUV1cnSZIkFRQUSMuWLZP8/f2ljh07SiNHjpQ++eQT6fLly1J+fr4kSZJUXFwsVVdXS5IkSWlpaVLr1q0lTU1NafPmzZIkSVJdXZ20b98+aeLEidLEiROlTZs2SZGRkVJNTY34zZycHOn+/ftSUlKSJEmSpLz2V5Hvp6isrJROnjwpDRkyRDIyMpKsra2lhQsXStnZ2VJdXZ1048YNacuWLdLjx48lSZKkyMhIydzcXPLx8ZHy8vKkBw8eSEOHDpU2bdokzrlo0SLJ3NxcOnjwoFRcXCwFBgZKRkZGUlhYWL3fvnDhgqSnpycFBARIZWVl4npqa2vFfVDiVeT7qYzKcyjP8+TJE2nEiBESII0bN046cuSI1LNnT6lfv35Sfn6+dO/ePcnf31/6/PPPxXEFBQX17vlPUVFRIZWVldX7PDU1Vbp06ZL07NkzSZIkqby8XHy2fft2ycjISOrTp4908uRJ6ezZs1JiYqIkSZL03nvvScDveobK+1ZbWyvt3r1bMjMzkwDJxMREOnr06M++V1RUJN7btm2bBEiTJk2S7ty5I7Vt21ZycHCQEhISpBMnTkiANGbMGPH9hw8fSgsWLJBcXFwkQNLQ0JD69+8vff/999KdO3ekhw8fShkZGZIkSdLLly+l4cOHS4A0c+ZM8dsNkdHPz08CpGXLlolrKCoqkmpra6WcnBwx9hMSEqTNmzdLkZGRkiRJ0uuvvy4B0pYtW8Rxa9askbS0tCRA8vf3lx4+fCitX79eMjAwkNq2bSu9/vrrkpaWluTp6SnOK0mKeabEs2fPpLfffluytraWgoKCpOvXr4vP7ty5I509e7bB43T//v3S22+/LUVHR0sZGRmSp6enZGVlJb18+VKSJEmqrq6WMjIypNLSUumneP78ubRo0SLJ1dVVcnFxkZYvXy7G4ooVK6RBgwZJn332mbR161Zp9uzZ0ujRo6Xhw4dL48aNk9auXStFRkZKsbGx0tKlSyVjY2NJT09Pmj17tnTmzBnphx9+kNauXSutWLFC2rZtm/T8+XNJkhR67sWLFw16hoWFhULXJSUlSR4eHpKrq6vQnxUVFVJcXJyUlZUlVVVVCfkqKirE/+/duyeNGTNGGjJkiPThhx9KH374obR69WopOTlZkiTF2A4KCpKMjY2lkydPSpKk0C2LFi2S9u/fL2VmZkrl5eVSRESEdObMGWnLli1Snz59JEACpC+//FKSJElatWqVpK+v/7t0TVVVVT19lZ+fL925c0c6evSotGDBAsnKykrS0NCQBg0aJM2bN09atmyZdPv2bUmSJCkvL0+aNWuW5OjoKC1ZskSSJEnKzs6WhgwZIgFS//79pSdPnkjPnj2Trl69KlVXV0uxsbHS1KlTpVGjRknjx4+XjIyMJAMDA2ndunXiPhYUFEhFRUVSTU2NVFZWJiUkJIj52ZBn2LlzZ2n37t1Sdna2uN85OTlSTk6OlJ6eLmS+cuWKpKenJ/Xp00cqKyuTnjx5In3yySfSkSNHpJ07d0pDhw6VvvnmG/H9oqIiKTU1VUpOTpYqKyslSVKshxMnTpQ+++wzSZIUetPV1VXat2+fJEmSdOvWLSkiIkKSJEk6dOiQ1K5dO6l169ZSYGCg1L9/f2nnzp1iHjRExg0bNkhdu3YV42fnzp3S4sWLhcxKJCcnS2vXrhXfKy4uljIzMyVJkqTjx49LDg4O0urVqyVJkqTp06dLgPThhx9KMTEx0uXLl6Xg4GBp586d0smTJ6Vx48YJHXv06FGpXbt2komJibR//34pNDRU+uijj6S9e/eK3962bZvUvn17aevWra8s309lrKqqkiIiIqRZs2ZJw4cPl86ePSvOPX36dElDQ0NatGiReO+jjz6SAGnevHnivYyMDCkhIUGSJMWac/nyZen06dNSeXm5lJqaKm3fvl06dOiQdPLkSWnx4sXS1q1bpbKyMqmwsFAKCwurN16qqqrEOl1bWyvWy4yMDDH2G/IMo6KixHmV2L17twRIgwcPFu8VFxcLW6yurk7q1auXpKenJ505c0aSJEnatWuX1KdPH2nmzJnS3bt3xXFKPfZTxMbGSocOHRLrxMcffywNHDhQ6ExJkqRz585J69evl9asWSMtXLhQmjJlivT9999LdXV1vylfgztsVVdX8+abb9KvXz+GDh2KhoaG+KxpU0XTITMzMwCKi4vJz89HJpOho6NDbW0tTZo0oWXLlkiShIODAz179qR9+/YUFhby9ddf06pVK/r27UtsbCzffPMN/v7+fPbZZ/j5+ZGUlERkZCSqqqp07tyZsrIy/Pz8sLKyYvXq1dy6dYvx48czaNAg1NTUqKqqarAx/84775CWlkavXr0YPHgw3t7e9OrVi2bNmuHn54e/vz/Pnj3j3LlzFBcX4+HhgaGhIQA2NjZ8/PHH2NjYoKOjQ3x8PDU1Naio/MvBraenh0wm4+rVq3h6eiKXy9m7dy9LlizB39+fUaNG4erqiq+vLxs3bkRTU/NHClV49OgR27dvx87Ojvnz56Ours6pU6caLGNpaSkAKioqqKqqYmVlxahRo7C3t8fKyor4+HgKCwvJzc1lw4YNtG/fngkTJvDo0SO++eYbJk+ejJGRkThfXV0dhw8fpqSkhIkTJ6KpqQnA559/Tnp6OjNmzKB58+bY2NiIZ6KlpUVycjIPHz6kpKSEmTNnkpOTw927d+nTpw9NmjQBQC6X06xZMyIiIhokY21tLUVFRchkMrS0tOjXrx+lpaXcvn2bdu3aMXjwYACePHlCfn4+nTt3Rl9fXxzfqVMntm/fjqurK8bGxvTr1w9TU1McHBwwNzdn5syZtGrVSnxfU1OTTp060bRpUzQ0NDA1NeXChQvMnj2byZMns3z5cnGvmjZtSqdOnTh8+DC6uroApKenN0i+Vq1akZCQQGpqKhUVFWhpaaGvr09xcTHp6eni/jk4OODt7U1ZWRkFBQX07NkTc3NzfHx8xLn8/f157bXXOHz4MBYWFpSVlZGTk0NRURH37t3DxMSEIUOGMGDAAOzt7YmIiCAkJIThw4eLc1RWVjJ06FAGDhyIo6Mjbm5u4jM/Pz+ePm14h9+oqCgCAwNp3rw5AOvWrSMmJgZ1dXVqa2tRU1PD0tISgLVr12Jtbc3w4cNxc3NjzJgx2NraYm1tjaurK7t27RJzbtiwYYSFhZGYmEjXrl1xcXHh+fPnhIaGoqamhouLC3V1dTRv3pz58+djYmKCo6Mjjo6O6OnpUVVVRXV1NaqqqpiZmRETE8P27duJiorCysrq10SqBwMDA3Hvtm3bxpMnTzAxMRF6NDU1FQsLC4qLi/nuu+9o0aIFffv25eHDh0RERNC/f39at27NyJEjefnyJZ6enrRp04bExER2796Nvb09bdu2ZciQIXh4eODi4gJAy5YtUVVVRUNDg/T0dCwsLPD29ubIkSMsXrwYa2trPvnkE1RVVWnfvj0Ac+bMoXXr1hw8eLBBz7CqqgotLS3u3btHZGQkQUFB2NvbY2dnh5mZGU2aNMHMzIykpCRxjcp5euDAATIyMoiIiECSJExMTACF/nJycmLo0KGMGjUKd3d3AGpqanjx4gWqqqqMGTOGiooK8vPzad68OS4uLvTr14/4+HguXLiAs7Mz3bt3p66ujqysLNTV1TE3N6e8vLxB8unr6yNJEhUVFQBoa2ujra0NKNkDFQgKCmLhwoWYmpqira2Nu7s7zs7OaGtrc+DAATIzM6mt/VdjwtraWlRUVLCxUbAO3rhxg2vXruHn50fv3r0B6NevH+7u7mIOdOjQgcuXL7Ns2TJkMhmjR48mMzOTuro6PDw8CAgIQFVVtUHyATRr1gxPT0+ePXuGuro61tbW+Pn5YWZmRl5eHmVlZdjZ2WFnZ0dKSgorVqxg+/btDBo0CCsrK168eMG5c+fQ09Pj6tWrXLp0iVOnTqGvr0/Tpk2prq4mLy9PrCk3btwgLS2NsWPH8s4772Bubo69vT2SJNG0aVPc3NwoLCwUzx2gXbt25OXl4ezs3GD5ANTV1bGwsGDMmDGoqKiIuQIwePBg7Ozs6NGjB6DQSy1atGDFihUkJyfTt29fampq8Pf3Z+JERTPGrKwsvvnmG0pLS2nRogXOzs706tWLmpoaNDQ0MDQ0REtLCy0tLbS1tZEkia+++gotLS0mT54sdAAoxoKWlhYAlpaWBAYGUljYsL49hw8fpkOHDmhqamJpaUnTpk3p2bMnK1asoHnz5qSnp3P27FliY2OZNGkSRkZGyGQygoKCaN68OY6OjoBi3Rk1ahR2dnZCLwOEhoayfv16ZDIZM2bMoEOHDqSnp7Ny5Uq++eYb+vbtC4CRkRH79u2ja9eu+Pn50alTJ+zt7Xnx4gV37twhOjqaXr16CZvn19Bg4/XRo0fs3r0bOzs7hg4dSnV1NS9fvsTe3p7S0lJqa2uFgaKiokJRURE5OTlCUU2YMAFdXV3WrVuHlZWVUI5HjhxhwYIF9OjRgzZt2nDt2jWePXvGhx9+KCbrqVOnyM3NpW/fvpibm9e7rufPn3P27Fk8PT0ZPHiwMCgbiqtXr/L48WNMTEwYMGAAtra2vPXWW+Lz9PR0njx5wqNHj1BTUyMoKAg7Oztyc3OJi4tj7NixQslWVVVhamoqlAsoDIWxY8cKw37kyJG0aNGCkSNHkpGRQWBgIC4uLqipqdGnTx+qqqqEMaipqcnFixdRV1dnxIgRuLi4NFjZAqiqqqKjoyP+1tDQYNiwYQwbNoznz5/z/fff06lTJ4qKioiIiKBPnz5MmzaNKVOmMH/+fPT19evdk6qqKkJDQ4mIiMDU1JSBAwcCEBISwuXLl/H396d58+ZUVVWRlpaGhYUF1dXVhIeHExoaSp8+fZgxYwYxMTFcuXJFbH4KCgpo0qQJw4cPb5DxWlpairq6OhUVFSQkJKCrq4uzszNvvfWWuO6SkhJu3brF9evXcXR0xMvLC0NDQ/Ly8nj48CFWVlaMGzeOmzdvcv78eeRyOebm5jx9+pSYmBjGjh2LhoYGoaGh6Orq0qxZM1xdXZEkSUw8Dw8PwsLCuHbtGo8ePcLLy0tsZLy9vZkxYwaenp7k5eVx9+7dBj3DmTNnYmlpiba2Nnfv3sXe3p7CwkLKy8txdnbGwMCApKQkJEnC19eXuro6QkNDadKkCT169MDExISysjIkSaJt27Z4enri7OxMRkYG1dXVdO7cmf79+3PmjKLL6KeffioU6vXr17l9+za2trYMHTqUkpISrKys8Pb2BiA3N5e7d++Sl5eHg4MDbm5u9RaaV0V2djaLFi0C4OnTp7i6utKxY0cyMjLIysrC2toagLCwMOLi4sjKysLJyQkXFxeMjIwYOnQopqamAKxYsYIDBw4wbNgwBg0aRFVVFUVFRYwaNQoANzc3WrRogbGxMZIkCaPO398fBwcHQLFxz8/PR0tLC0NDQ9TUFOqzsrKSmpoasrOzG2S81tXVoaKiwsWLF8UmdNiwYWRmZnLnzh1u3brFvHnzyMrKYvHixbRp04bu3btTUVHB3bt3cXd3x97ensGDB9cbd/fv3+f7779HJpOxfPlyZs6cKX6zpqYGGxsbbG1thcPgzJkzzJgxg9LSUmpqahgwYAAff/wxoJjb8fHxqKmp4evr22DjNS8vDy0tLZ48eUJsbCxeXl7Y29tjY2NDdXU1dnZ2eHh4oK6uLo558OABV65cYd++fWRkZKCvr8+gQYNo164dtbW1VFdX89Zbb4nFMy8vj9LSUjQ0NIiPj0dbW5u2bduKjaHyPgPs2bOHZcuW8fHHH9OnTx9qa2uJj4/H2dkZFRUVSkpKGiTf6NGjcXV1xcTEBEmSyMrKora2FnNzc9TV1cnPzyc/Px8DAwM++OADcVxSUpIYK87OzpiamlJQUEBVVRUaGhrC4aPEjh07uHTpElu2bBHzsKamhhYtWtRzjjx79ozLly+zYMEC+vbtS1paGvfu3cPX1xc7Ozuqq6sbLGOHDh2ws7PjxYsXVFdX07ZtW7Gm3b9/n5iYGDw9PbG0tMTIyIiUlBQSEhLo3bs3ZmZmvP/++zx58oQ5c+YA8M033wDQo0cPxowZg7a2NqWlpZiYmJCQkMCFCxeoqKhgyZIl+Pj4UFNTQ9++fSkuLsbKygo9PT169+5NXl4esbGxaGlp0bJlS1q2bAnU3zS8KioqKrC1tcXW1hZJkoTzxsDAgO7du9O9e3cA7t69y4sXL+jYsSNOTk5s2LCB1atXi+fRs2dPnJ2dKSkpIT09naKiIrKzs3F2dqauro6amhrs7e3F/SsrK0NHR4dmzZqRmJhIZmYmr732GgBFRUWAYpNbXl5OdXU1GhoaDB8+HF9fX77//vtXli82NpaSkhIcHR2pqKhAV1cXS0tL3nnnHfLy8ti1axf79++nadOm9ebie++9J/5fWVmJj4+PcHwoN2yg2GifOnWKkpIS7Ozs8PPzQ19fn7q6Oh49eoSPjw8jRoygoqKCS5cusW7dOsLDw+nfvz8tW7YUG1g9PT0MDAxeyfHYYOO1vLycgwcPMnjwYFJTUxk3bhza2tqsXbuWgoICjh49Svfu3bGyskJXV5eMjAxSU1NxdnYW3iA9PT1u3bqFgYEBRUVFxMTEcPjwYZo1a4ZMJmPjxo20bt2aDz/8kMLCQvbt24ehoSFmZmb4+vr+zHAFmDt3LoMHD8bKyko8ZKDebvZV8Pnnn1NQUEDLli3R1tamoKBA7AiPHz/OmjVr6Ny5MytXrkRDQwMjIyNUVFSorKykvLyc1NRUYbx2794dXV3del6oJk2a0KtXLywtLWndujUALi4ufP3115SWlmJgYEBMTAzHjx/nyJEjtGvXjm+//RYAT09PVq1aRXx8PImJidjZ2TFo0CCuXr3aIBl/qhShvnKvq6tDXV2ddu3aYWdnR2xsrNj9e3p64uDgQGJiIhkZGfUWajs7O27cuEFwcDB6enoEBgYyZswYLC0tqays5Pvvv+f48ePo6uoyduxYvL298fX1xcHBATs7O3Ef7OzsSE1N5ebNmyQkJBAREcHt27fFvXoVnDhxgpEjRwqjQ+mFUu6Kv/zyS1auXImtrS0fffQRHh4eXL9+nZqaGhwdHdHS0uL+/ft8+umn7Nu3Dz09PWGQz5s3j4yMDNauXYuNjQ1hYWFoaWnh5eUFKHblW7ZsITAwkIEDB3L//n3kcjldu3Zl2bJlyOVyzp07JwyShIQE1qxZ0yCjBxTRjebNm2Nra0tSUhLvv/8+WlpaBAcHY2FhQWJiIoMGDUImk3Hjxg309fXx9PTkwIEDvHz5En9/f7S1tUlLS6Nly5bo6enRo0cPnj59iomJCe7u7lhbW1NTU0NxcbHYDCqN3WbNmhETE8POnTvp06cPpqamhIeHEx4ezp07d7h58yaxsbF4e3uzYsUKgoKCGiQfKMYbwLlz5xgwYADOzs4sXLiQXr16YWVlRWlpKXPmzKGiooIFCxaQmprKa6+9Rn5+Pn369KF169b06dMHV1dXBgwYgLGxsRhr/fr1E572hIQEYmJiCAgIQFtbm/j4eIqLi6mtrWXdunU0adKE6dOnk5aWxmeffUZZWRmjR4+mV69ewmOzZMkS0tLSWLFixSvLt337dt588000NTVxd3dn4sSJ+Pj4sH37dr777juMjY0ZOHAgGRkZQk9WVVURGBiIJEn1PP9Kw3X16tV8+eWX1NbWMm7cOHx9fev9poqKCk+ePMHT0xNDQ0Nyc3P57rvvyMvLo2/fvuzatUvoaVBEz15//XWuX79Onz59hAfmVWFjY0NlZSWdO3fG19e33kb+3r17PHr0iKCgIFxdXQG4ffs2V65coX///gwcOJDPPvuMnJwcRo0aRdu2bamrq0NVVZVmzZoBkJaWxtKlS/Hy8uK1116jpqaGy5cvEx0dLSI46enpxMbGUl5eTmxsLFZWVtja2gKKjXyrVq3EetFQp0dgYCBGRkbo6OiQmJjI/Pnz0dHR4ZtvvsHMzIwDBw6wc+dOnJ2d+fTTT8X9W716NYWFhaxdu1bclydPnnDhwgU6dOiAiopKPSNi/PjxWFlZ1VvUDx06xMOHD5kxYwY+Pj4cOXKEmJgYZsyYITxdFRUVREVFiSiDmZlZg9cLbW1tWrRoQYsWLQBISUkhLy8PExMTjIyMuHHjBu+99x5+fn68++67/PDDD0RGRtKzZ08cHBz45JNPOHPmDDY2Nnh6emJlZcXevXvream9vb1JSEggLS0NFRUVqquruX//Pn5+fmhoaODi4kJKSko9g2nt2rVs2bKFoUOH8tlnn6GnpwcojMiGQvn8CwsLycnJwdjYWGx809PTycnJQV9fn9atW+Pl5cWzZ8+4c+cOFhYWXL9+ncrKSlJTU0lISMDGxgYTExNmzpxJVlYW5eXlrF+/nqNHj9KmTRvmzZuHiYkJ5eXlpKSk4OTkhLm5Oe+99x6lpaW0atWK6Ohorl69Su/evTEwMODFixfs2bMHAwMDhgwZQkBAQIOM16CgIF68eIGxsTG+vr4i6pOfn8/FixdJSkqif//+9OjRgyZNmlBVVYWKiorYoGdnZxMTE0P79u2FrtHS0qK2tpa6ujr69OnDtm3bWL9+Pc+fP+f58+d4eXkJ73ObNm1E1MrZ2ZmTJ09y48YNUlJSGDhwIC1atKBHjx507NgROzu7V7LbGmy8FhQUMGDAACF4Xl4e7dq1w9nZmcTERMrLy1FTU6O8vJytW7fy4sULgoKCMDMzIzU1laqqKqKjo+nZsydt2rTh5cuXpKSkMGzYMLy9vSkpKeHu3bu8fPkSU1NTCgsLhZelVatWWFtb8+DBA65fv46amhqtW7fG09MTd3d34d1JSkoiOjqapk2b4uTk1CD5lF7e/4T4+HgR6mjevDm1tbVkZmaipaWFjY0NFhYWnDp1ipMnT+Lo6Iivry+dOnWipqaGpKQkVFRU0NPTw9PTk4yMDK5evYqNjQ0tWrRg4MCBFBYWsn37dtLS0nj+/DlxcXG0b9+e/Px80tLSKCgooH///oDCO3Hs2DHatWvX0EdISkqKSL9Q7nr19fWxtLSkoKBAhO9cXV2FNy0tLU0YEBcvXmT9+vW89dZb2NjYoKGhgZ6eHtbW1ujp6ZGXl4eqqirjx4+nf//+bN68mUWLFlFRUUHr1q154403MDExwcTERCyUeXl5ZGVlUVpaSnl5OVVVVVRWVhIVFUVsbGyDjFdra2sqKyvR0dGhtLQUTU1NDA0Nyc/P5+DBg7z//vsATJ06laFDh5KcnMwXX3xBWFgYkydPZv78+RQXF/P48WNAYehUVVURHh6OhoYGlpaWVFRUoK+vT0BAADU1NcTGxhIVFcW5c+dIS0vD0dGRnJwc1NTUMDIyolmzZmJTo9xg5ebmkpiYiIaGBkFBQeL3XgU7duzA3t6edu3akZCQgJqamvBKFRcXc+DAAczNzdHR0WH79u289tprmJmZ4ePjIzyy5eXlJCUlUVVVhZeXF1ZWVmhpaYlFysXFhYkTJ3Ls2DHWr1/P4MGDcXZ2JiAggNTUVFRVVdHU1MTAwAANDQ3U1dXJzs6mqKgIFxcXtLS0qK6uJi4uji5duryybEpUVVWxY8cOoqOjcXR0JDo6mh9++IGePXsCio3WgQMHKC4uZty4cRgZGaGpqYmJiQk2NjbU1tby/PlzTExM6NmzJz169BAGgb6+PhoaGuTm5nLy5Enu3bvHw4cPqaysJC4ujkmTJmFlZcXmzZupqKhgwIABREdHs3nzZiwsLJg+fTqlpaXExMSQkZGBurp6vTDaqyA6OpqUlBQMDAyYMGGCMPBDQkLIzMwkMzOTBw8e4Ofnx8SJEzEwMBCLfZcuXcjPzyc1NRVLS0vU1NTIzc3lwYMHZGRkAAoP+OXLlwGF08HY2Ji4uDjCw8Px9PSke/fudOvWjfLychITEykuLhabtNzcXKKjowkLC6OsrAxQbMwaarxGRETQqlUrYWz+FEqv1IsXL4TxWlFRgYaGBqqqqjg5OTF58mQkSRKer7q6OqHTDx48yJkzZ8jKyqKoqEgYyV5eXsTExJCVlYWZmZnYTDVt2pSJEycyefJkjI2NiYmJoba2FktLS2G0VlZWNkg+e3t7QGEwRUREUFhYiI6ODkVFRZiZmWFhYYG2tjbl5eXi3BUVFezfv5/09HQsLS2ZNWsWnTp14sGDB6Snp5OcnCw2w0+ePCExMZH+/fsTFBTE4sWLiYuLY9asWbRr146wsDDy8vLIyckhPj6efv36iTVsz5491NXV0aJFCyRJoq6ujurqamHkNQS1tbVERkaSmZmJo6Oj2ASam5vj5ubG3bt3MTc3F0bzoEGDuHDhAk+ePMHJyYnhw4cTGhrKw4cPcXNzY/78+bx8+ZLvvvuOfv36YW1tzenTp9m3bx/u7u506tQJOzs7iouLMTAwoKamRqR2KJ9TXFwcJiYm+Pv7k52dzeXLl3F2dhYe2IZARUVFeL1NTEzIzc1FJpNhbGxMdnY20dHRtG7dWhi5dXV1VFVV0aRJEzp06AD8a75VVlZiYmJCly5duHnzJg8ePGDHjh08efIEMzMzkbpRXFyMTCYjMjISY2Nj/Pz8xPWUl5ejrq5OSEgIGRkZVFVVkZuby969e8nJyWHp0qUNkm/gwIHEx8djbW0tDNcffviBffv2YWRkRJ8+fXByckJbW5uysjKxsY+Li2P37t2cOHGCrl274urqSllZGVeuXKFFixZinBoZGTFixAhSUlLYtGmT8MYHBASQk5NDSkoKdnZ2mJqaoq+vz7Bhw7C1tRUOv8TEROHQelU02HiNj49n3bp1DBs2DBcXFw4dOiRuhra2Nq+//jpeXl6EhYWxdOlS3NzcWLx4MZIksXDhQm7evEn37t1ZuXIlLi4uFBUV0bJlSxEaB4SyDg0N5dtvv2XGjBkUFBSgq6tLQUEBGzduZOPGjYDCre3t7c3jx49JTU2lT58+5OXlsWrVKnx8fPj0008bJF9+fj7GxsY/ez8zM5NRo0bxxhtvkJ2dzeHDh4WRolxM1dTUsLCwYMeOHaxdu5bp06ezcOFCYZCrq6szaNAgAJYvX86xY8f48ssvhbGwe/dulixZgpGREW+99RbLly+nVatWPHnyhA8++IDi4mI2bdqEm5sb3t7eYlf/0/yYV8HZs2f59NNPMTY2pk+fPhgYGKCiooKrqys+Pj54eHiQlJREYmIiDg4O5OXlERkZSbdu3TAyMuLbb78lLS2NMWPGiDzW27dvA4qcYT8/P7KysrCwsMDY2JiKigqxY+7fv7+Y7JWVlaipqaGqqoqRkRHr1q3jwYMHTJ8+nW7dulFYWEhQUBB1dXWsXLnyleXr0qULNTU1XL9+nezsbAYNGkTz5s2JiIjg1KlTWFlZMXv2bGHEhoSEEBYWBihSUyZPnkyvXr1wcnKioqKCVq1aoaqqSkFBARs2bKC8vFwoO6VXeseOHcydO5eOHTuyZ88ejIyMWL58OStWrKBz584cP35ceFdbt26Njo4OO3fuxM7OjtmzZ4sQ56tC6e0wNDTEy8uLDRs2UFVVJXKM4+Pj2bNnD05OTkycOJFz585x8OBBfH19hYJ4/vw5ycnJqKmpoampib29PaampvU8PkOHDqWyspIVK1YQExNDcHAwoPBGtGrVSni3ARESrqmpwdTUlCdPnnD79m1atmz5SjlM/47Y2Fi+/fZbFi9ezJMnTzh//jxRUVFiAamsrKRv374cOHCAgQMHMm3aNHbu3ImHhwcymUxspJW65afX8Pz5c7KzszExMcHZ2ZmUlBR27dolcnO7d++Ov78/7du3Jz09HUNDQ2F8dOvWjfbt21NQUMDWrVs5dOgQeXl5dO3aVczlV0GbNm2EYa40BgDmz5/PrVu3OHnyJMXFxXTo0IF27dqRlJQkFr7a2lqePHmClpYWtra2Im3h/fffp127dnz88cfs2rWL48ePo6mpSVZWFqDQ0YaGhty7d4+4uDg++OADevbsyeHDh8nIyKC2thZVVVXKy8tZvnw5dXV1BAcH07x5cx4/ftwgbw/AqlWr+Oijj352X5RytWnThvz8fLGwdunSBU1NTXbs2EF5eTnTpk0TqWU5OTnCG3bixAkmT55M+/btWbhwIRs3bmThwoVs376d0aNHCx0AirBr69atCQgIELry4cOHQuZu3boxYMAAkS7SUNTV1YloypdffomJiQlJSUnU1dUxdOhQAgMDKS8vF8/44cOHWFpakp6ezokTJ+jSpQvDhw/Hzs6O8PBwsrOzxbnPnj3L1q1bMTIyIiAggJCQEBISEpg0aRLt2rVjzZo1lJWVUV1dzbBhw8Tm4rvvvuPIkSPMnj1brDlKvdWzZ0/Onj3bIBlVVVVZt24dISEhrF+/XuSWampqMnnyZN544416RnFFRQU7duzg8OHD9O3bl759+1JaWsrOnTtxcnJi48aNeHh4MHToUPbs2cOcOXM4e/Yst2/f5s0332Ty5MniXNXV1WhqatYzvIqKinj77bdp2bIlhoaGnD9/nunTp9OjRw+2b9/e4GeoTDXQ1tZGU1OTQ4cOUVVVxWuvvYanpyeOjo4YGBhQUVHBs2fPsLS0pE2bNoSHh7Nnzx48PDyoq6ujrq5OeCvT0tK4e/cuiYmJ5OXlYWxsTLt27cRGSendjYyM5M6dO8TFxeHs7IyRkRGtW7fGzc2NmTNnsnfvXr755hvkcjmPHj0iJiaGnJycBslnaGhYzwEUGxvL999/z9GjR5k1a5aIEl68eJHBgweLzeT333/P4sWLAUW+q5GREYcOHWLatGlMmDCBlStX1rOXSktLMTU1FWOhoqKCxYsXEx0dLdJCQeE8GD16NACJiYns2LGDkpIScY3/XzyvMplMFCFpamrSvHlz7t27x/bt23FwcBD5GnZ2dgQFBeHn54eJiQk3b97k5MmTZGRk0Lp1a/EADQwMuHnzJqdPn6a2tpaxY8eKEJC1tbUIcStD90ZGRrRv35579+5RVFREly5d0NXVpaioiEuXLuHg4ICtrS1dunQRu+KGYNeuXYwfPx4TExMKCwvZvHkzOTk5BAQEYGlpiUwmo0WLFnTu3JmIiAi8vLzQ1tYmNDSUkJAQunXrxrx58zhy5Ai2traoqqpiaGiIv7+/mHigKKRR7rRqamq4ffs2a9asoaCggPbt2zNmzBgcHBzIyMgQubDXr19n0KBBLF++nOHDh9O1a1e+/PJLpk2b1iAZ8/Pzyc3Nxdvbm759+1JRUUFYWBhZWVninj1//pzdu3fTokULnJyc0NHR4dGjR9y5c4cbN26IwiWAmJgY7t+/j5WVFQ4ODhQWFrJs2TKysrLo168fXbt2xd3dnby8PDw8PESKQmFhIXl5ebi6uqKiooKvry/l5eUiHGpoaPi7cpefPn2Ku7s7nTt3JioqChsbG+7cucPq1auRJIn58+fTqlUrsRts2rQpU6ZMIT09nXbt2gnvVvPmzYmMjGTbtm0MGjQICwsLMQ6rq6sJCQlBT08PPz8/bGxscHd3Z8CAASLvKywsDGtra5F+oaOjQ1JSEuHh4aSlpeHu7s7AgQPR0dERxsWr4u2336Z9+/a8fPmSzMxM/Pz8UFNTIzs7m6ysLJKTk1m/fj2BgYHU1dURGBiInp4eN2/e5OrVq8ydOxcrKyueP39OaWmpKGBTV1fn9u3blJWV0bJlS6ysrPDz8xP369KlSwwaNAhfX1+uXr1KQkICHTt2JDExkdDQUDp37iwM2gcPHojIxO9B7969ycrKQltbm9zcXLp160anTp3Q1dXlyZMn5OTkiA3IgQMHOHjwIF988QVpaWns3LmTbt260aFDB1FclZGRwcGDB0lKSqJDhw7o6OiQkZGBv78/vXr1ws3NjZUrV1JZWUllZSXV1dUsWLCAjIwMCgoKUFdXZ+zYsdjb2/P8+XOsrKzo3bs3FRUVJCYmihzcV4WXlxdGRkYilP7GG2/QokUL3nvvPU6cOMH7778vvEhKT2RKSorY8Cm9JNeuXSM0NBRNTU3effdd3Nzc0NHRITg4mOrqauHVMTMzw87OTvxeXV0dd+/exdLSEm9vb2xsbIRxnJKSgouLC02bNqVNmzYADQ5VAsJora6uFvNdJpNhbm4u5pKmpqYoSrl37x67d++moqKCHj160LRpUyorK6mrqxO58Js2bWL58uViE9qlSxciIiLIyckR6QBxcXGoqanRpEkTbG1t0dfXx8DAgKdPn3Lz5k1kMhmurq44OjpSWFjI5cuXsba2FtGRV8XZs2exsLAAwNfXVyy+ERERXLt2jYEDB4r0lxUrVlBeXs7gwYNZsWIFFy5cwMTEhA4dOqCtrU1ycjKHDh1CW1tbeJotLS3p2LEjd+7c4eHDh+Tn51NQUMDixYsZOXIkTk5O2NnZieeWlJTEunXreP78Oa+99hqDBg0iPz+fvXv34uXlRadOneqF3l8FCQkJODo6MnbsWCorK9myZQvJycl07doVc3NzVFVVkclkpKWlsXfvXgwNDXF3dxdRoczMTLHRMjExoaKigszMTJydnWnTpg03btxg27Zt1NTU8M477zB+/HhKS0sJDg7G0tKSCRMm0L59eyIiIrhw4QLa2tp4enqKTU1GRgbr1q0jNTX1d22SQWFAOTo6kpyczNq1awkPD6d3795iPBgYGIjUQG1tbZ49e8alS5eoqqrC3t4eFRUVHj16xNmzZ7ly5Qq9e/fG2NiYZs2aiXxTIyMjkafbrFkz4SRwd3enoqKC1atXk5eXx7x58+jatSuamppYWFiQk5Mj7unChQvR0tJqcGFaamoqUVFRGBkZ4erqir6+Pq1atSIxMVGkzSiLJZX64cWLF2hqajJo0CA0NDR44403UFFRwcrKigEDBuDl5YWamhr5+flERUURFxeHuro6c+bMwdfXl3v37rFp0yYKCgro0aMH2dnZwiGmoaHBnj17aNmyJT4+PgwbNoyTJ0+ydOlSgoKC6NSp02/K1GDj1dfXl3feeQdQWNmlpaXcunWL77//niFDhojvGRoacuDAAUpLS7l06RI3btzAw8MDCwsL8vLy+P777+nZs6fIh1y/fj2g2FFPmTKFCRMm0LdvXyIjI7l//z5OTk6oqqpSWVnJxIkTmThxIo8fP0ZLS4uysjLh+jY1NcXc3JwFCxaIUElDEBERwdtvvw0oFt/vvvuOwsJC0tPTyc/PJzk5mffee4/Ro0fTp08fQLEIXLx4kVu3buHi4sLQoUMJCAgQuwdJkkTuZ0lJCXp6esybNw9QDKpz584RGhoq8g6XLl2Kg4MDV69eJSIignbt2vHee+8RFBTEyJEj+fzzz2nTpg3Ozs4MHTq0oY8QDw8P5syZQ9++fUWFalxcHAUFBTx9+pSmTZsSFxfH6dOnOX36NIGBgbz11lskJydz4sQJKioqsLe3F8n/hw4dwtTUlKZNm3LgwAGioqLYuHEjdXV1PHv2jPXr14vrLCkpEd4dExMTkVJhZmYmduiSJFFUVIQkSejr6zc4b3nlypWsXLlShOuLi4s5f/48d+/eZcmSJYwbN47333+f+fPns2XLFvz9/fH39xfHJycni/9v2bKFNWvWkJ+fz4IFCwDFQqyurk5hYSF3794VYen27duLiv8JEyaI8RQREcGYMWMYOXIkvXr1YuXKlRQUFHD58mURYty0aVODZBw2bJg4f0JCAsbGxri5uZGSkkL79u2JjY1l//79nDt3jjFjxjB16lRA4fEPDQ0lMDAQT09P1NXVRVgYFEZLXFwc5ubmwlPs6OjI9OnTef78OcXFxVRWVlJWVsb69etRU1MT4csJEyYwZ84cVq1axdGjR1mxYoUoEPs9aN++PWpqapw9e5aVK1cyYcIEEaZKS0ujuLhYhFKVOiI8PJydO3eyZcsW8vLyRD6ZiooKpqamHD9+nNTUVCZPnoybmxtPnz4lOTkZKysrJk2axKBBgwgPD6eyspKsrCy6dOlCXV2dMOZmzZrFmTNn2Lx5M2+++SaDBw8Whj8o2DFeFcnJycLQj4qK4tatW4SGhooq8i+++KJeGLukpARNTU3U1dVFWk1MTAwpKSkUFRVhaWnJnTt3aNeuHZMmTaJjx46CFcXf35/AwEAqKiqIj4/Hzc0NVVVVVq9eTVhYGLNnz8bCwoKamhoiIyMxNTVl1apVgMLDramp+buKQwcNGsTNmzcpLCykdevWFBcXU1paKpwSylQXpZFw69Yttm/fzty5cxk/fjyg2Bwrx2J+fj7bt2+nqqqK48ePi/FgZmbGG2+8gZ+fH/Hx8WzYsIGmTZvy9ttv4+bmRkZGBs+fP2fx4sVcvXqVefPmieLN69evs2fPHvz8/JgyZUqD5EtKSsLe3p4+ffqgqqpKdnY2aWlpwpgMCwvD1dWVyMhIDh06hI2NDfPnzxeh8YKCAuGlun37NuHh4WIMPXnyBF9fXxE5WbduHcbGxujo6AhH0GuvvUaLFi1Edfz+/fv56quvePvtt4X3ct++fXz88cfMmDEDf39/1qxZ0yAZlSwaAQEBODs7M3bsWN59910WLlzI1KlTUVNTIzY2llOnTnHr1i3MzMywtLQUEbSNGzeSk5ND3759GTVqFIWFhRQVFVFaWsrXX3/N559/zrZt25g5cyZffvkloMgHf//99xk0aJDQpRoaGoSHh2NlZSWidxkZGaxevZrk5GQGDBhQzwZpCBISEmjSpAlHjx7lhx9+wNvbm7Zt24r1WpmDa2dnR8uWLYmNjWXFihV4enqyfft2NDU1yczMJDw8XOiK+fPn4+TkxIEDBwQ7Qm1tLRERERgYGGBhYUFtbS21tbUip1Qmk4lNGigKvFu1aiXWwOHDh1NeXt7gubh//342bdrE+PHj8fX1RVdXVxil+vr6VFZWYmZmRrdu3ZDJZGRmZlJaWsrrr7/O/PnzAcW6V1dXx6BBgxg0aBC1tbWkpKSIXO2cnByGDBkiWGhOnz7NxYsXGTVqFLNnzxaF7ubm5ly/fp21a9fi4ODAqlWrcHd3Jycnh+XLl1NbW/v/x3hVnjQ6OpqDBw8yZMgQJk2ahLW1NR4eHhQXF/P1119jaGjIu+++S25uLu+88w4BAQG89957rFmzhocPH2JjY8ORI0dIT09n2rRpbN++nXfffZfo6Gi+++47nj17Jm5SZGQk48aN4/z58wwdOpQ1a9ZgbW2NhYUF77//PtHR0cydO5eRI0fWu1alsdkQaGpqUlhYSGZmJhEREcycOZPU1FTOnDlDZWUlFhYWfPnll1y+fJnXXnuNrKwsbt26Rfv27enTpw+nT58mPDycN954Azs7O548eUJKSgo3b97k9u3b9OzZs17Vqa2trVhQ5s6dKzx3tbW16Ojo0KZNG+GJ9PPzIzw8nLVr1zJixAj69evH2rVrG5waoQxJ5Obm8tVXX7F3716Ro1JRUYGTkxP6+vp06dKFa9euUVZWJjYeV69eJSwsjJqaGg4dOkRYWBj3799nzpw5ODs78/HHHxMeHo6XlxfV1dXEx8czY8YM3n77baZMmSIUtbIQzsbGhh9++IErV64wbdo0PDw8ePDgAfPmzSM3N5fJkyfz5ptvNkg+dXV1hg4dirGxMSNGjGDEiBGMGTMGFxcXxowZI76XlZVFbm6u+Lu4uFiMTVB4xMeNG4ehoSEnTpzg5MmTDB48WEQFlNRYyvwg5WtBQYFYtDQ0NPDy8qKsrIyoqCgmT57Mu+++KzZsc+fOxdjYmBcvXjQoFy0yMpLs7Gzy8vJwd3fHzc2N8+fPM2vWLOzs7Pjhhx/Iz88nOjoaMzMzVq5cSWxsLK6urrzxxhvo6Ojw4sULRowYgZqaGpcuXRJhaX9//3phXm1tbdzc3AgICAAUqRVfffUVMTExfPLJJ2hpaZGQkAAoPBgAbdu25fXXX8fR0VGEoBqK48eP89133+Hu7s6sWbPqFSgFBgaK3E5XV1fOnj0r8puVxp+zszMymUyE8TQ0NFi6dCm5ubmiiNLd3Z13332XGTNmMHnyZCZNmkSHDh3IyspCQ0NDLF7K3GxHR0dkMhnR0dHC09CQVIGf4saNGyQkJFBWVoaamhpfffUVz58/Z/78+bRv35558+YJI09p5CjHSGxsLLt27SItLY0JEyYwcuRISktL+eSTT9izZw+LFi3C2tqapKQkrl+/TmJiImlpaURHRxMSEsLIkSORy+W8+eabpKWl4eDgwIMHD7h48SK+vr5069ZNXGdmZia2trYNzgcFhfH23nvvMWXKFPz8/HBycqKmpkY8E6VHVkdHBy0tLTp37syQIUNISEjg1KlT9OvXTxhmjx8/5vr16wwYMIBevXoJwxUUVfaVlZUMGDAAGxsbtLW1612vlZUVT58+FfP9p15yLS0t0tPTycvLa7B8U6dOFd6+mpoabty4QWFhIe3bt6dXr15kZmZy7do1CgoK+Pzzz7GxsaGmpkZsQsLCwjAxMSEgIAB/f39KSkpEXcPLly+FUd+7d29iY2MJCQmhqqqKoKAgpk2bhpmZGd9++y2VlZXMmTMHLy8vAgMDhXEHYGJiwscff4y5uTmrV69mzZo1Irf5VWBkZMTNmzfR0NDA2NiYpUuXcvDgQfbv34+NjQ3Dhw+nWbNmtG7dGn9/f1JSUnjx4gXOzs7U1tby8uVLamtrCQoKEp7xp0+fCuYAV1dXNDU1680jV1dXPv3003qhblNTU3r37o2hoaHwWqqqqtKvXz+CgoJE4VxUVFSDn2NlZSVHjhxBT0+P9evX4+PjQ2ZmJkeOHMHb2xs3Nzfy8vIEDaGyRuXy5cucOHGCESNGEBgYSJ8+fSgtLRUOsJycHG7fvo2amhpyuZxWrVoRHx9PRkYGFhYWpKam8tVXX3HkyBG6dOnCBx98IGp3JElCR0eHmpoakdaQk5PDhg0buHDhQoMYXDZt2sSLFy/qed2rq6tJSUnB2tqa0tJSnj17xtOnT2nZsiWtWrWqV1x56tQpEUlVvl9cXExISAihoaGkpqZibGxcb84NHDiQa9euceLECTQ0NJgzZw4ymYxBgwZRWFjI2LFjMTY25v79+9ja2tKxY0dmzZolUoN+Cw02XnV0dEToJTc3l9TUVNzd3QXlzPnz51m2bBmg8NLev3+fyMhIFixYQLdu3fj6669JSkrCwMAAMzMzsrOzad26Ne7u7mzcuJHbt2+TkJDA9u3befToEbq6ulhYWKChoSH4RLt3785bb70lwpGRkZGcOXMGHx8fbGxsSElJITc3l9LS0np8pK8CT09PQkNDiY6OxtnZmeHDh5OXl0dcXBzu7u707duXRYsWcfr0aQICAoiOjubQoUN4enpiYmLCrl27SEhI4PHjx/j7+xMVFSV2ZErqp7S0NLKzs7lz5w4tW7akRYsWBAUFUVlZKcKTWlpa+Pj4oKamhkwmIz8/H11dXczMzHBwcCA5OZkXL140uEod/qW4T548yerVqykvL8fLywtra2sKCgpQU1NjyJAhODo6UlBQgJ+fH+7u7lRWVqKiooK9vT1FRUXs2rWL8PBwWrVqxYABA9DW1qa6uhoPDw82bNiAqqoq06dP586dO2zfvp2+ffuKVAglRVW7du1o2rQp9+/fJyoqCktLSzHJlMwH/86O8FsYNmwYo0aNoqCggIiICFRVVQW1WGVlJbdv38bU1JRvvvlGbMYuXbrEZ599hkwm46uvvgIUOcze3t54e3tTWlrK2rVrMTU1xdvbW4xfIyMjiouLCQ0NJS8vj/79+2Nvb0///v0JCQlh69ateHt7M27cOCIiIrh48SJyuRx/f38++eQTTp8+zdtvv02PHj1E3u2rICkpCX19fcrLy0X+k6GhIQYGBnh5eYk8N1As+lOmTOHu3bssW7aM4cOHEx8fT1xcnDBSQkJCOHjwIJqamrRq1YrS0lLu378vOCmVeU2lpaVcuXKFmJgYhgwZIlJWLC0tadWqFW3btgUUaUPvvvuuuIbfQ1+jrD4eMWKEWMQSExOFl0CZ35eTkyMolYyNjQWPqDLc/fjxY54/f06TJk0ICAigoqKCq1evoq+vj7m5ucjPfeutt4iKimL58uWiKCg3N5ecnBwkSUJDQwMrKyvatm1L27ZtuXPnDpmZmTRr1oz8/HwiIyMbJJ+S6/ju3bu0aNGC1157DQ8PD06ePMmyZcuIjY1l4sSJItc8NjaWjIwMAgIC0NXV5dixY6IwFhTV+1u2bKGqqkqEVevq6nj69Cn37t3j0qVLgrpJWRymra2NhYUF6urqFBcXc+7cOQoKCmjRogUaGhq8fPkSCwsLkf7UUJw7dw4jIyOxWXj58iWRkZG0b99e5Fc/evSIY8eOYWNjg0wmo0mTJiQmJnLhwgUqKysZMmQIKioqPHjwgPDwcAYNGoSLiwv37t0jJyeH8vJyCgoKKC0t5e7du7Rp00ZsypRUjZmZmaiqqvLhhx9SXFyMtbU1aWlpIic/MDDwd22y7ty5Q01NDe7u7qirq4tUJyWFlbq6OgYGBhgaGor7WFhYiK6uLmlpaTx48AB1dXU8PDyYMGEC3bt3JzY2lhcvXmBpaUlWVhY3btygc+fOzJgxQ3jtlGtsaGgoN2/eFPe3WbNmdO/enWbNmpGdnc2qVavQ1tYW1GebNm3Cw8OjQTL6+/vz/PlzwsPDMTAwICAggMrKSlHX0bRpU3x8fERR5p49ezhw4AB5eXkYGBhw+fJl9PT0SEtLw9bWlufPn2NpaSk2Yq1atWLChAnk5OTw8OFD7Ozs6NKlizifkgbO2tr6Z6k55ubmmJubU11dTWJiIqqqqq9s/PwUTZo04ebNm3h5eYl0vpiYGPLy8sjLy0NNTQ1/f39B79ihQwfGjx9PkyZNOH/+PFpaWnh4eDBp0iRBuZaSksK5c+do06YNbm5uaGtr8+DBA0pKSkQhtEwmE4V7crkcd3d3kpOTKSsrE9R9paWlGBsbU1BQwPr169m6dSvFxcUNMl6V9Inl5eXEx8fj5OREbm4uNTU1NG3aFBMTE06fPi0ike3bt8fOzo62bduSmJjIwYMH0dbWFl7VU6dOceXKFZKTk0U9UlVVFadOneL+/fvCY9y5c2d27NjBp59+ioeHB76+vlRVVdG6dWtmz54NKPRWcnKyWDfh1QonG2y8Pn78mI8//pg333yTWbNmcezYMUJDQ5k+fToWFhY8e/ZMfHfp0qVoaWnRvXt3sRNU7lLr6upYvXo1FRUVHD16FLlcTnR0NKBodtCuXTvKy8uZOnUq/fr1Y/Xq1UydOpVjx46JXEsjIyO2bt3KxIkTWbFiBT169KB///50794dLS0tUQnZELi7u3P79m2cnJxECMLY2JhPPvkEJycnjI2N+eqrryguLqZ9+/bcuHGDW7du8fXXX/PNN98ID9TFixcJDw+ntLQUXV1dWrRogZubG61bt+bQoUNcvnyZ27dvY29vzwcffEBQUBA7duzg+PHjTJs2jdGjR6OqqkpaWhoGBgYYGxsTGRnJnDlzKCsrY+PGjdjZ2XH8+PGGPkKBgoICmjdvztSpU+natSvR0dGUlZURGBiIjo6OmFRKipbt27ezYcMGjIyMMDY2Jjo6GltbWyZMmICVlRVJSUl07twZNzc3/Pz8qKqqonPnzmhra9fbsV26dImdO3diY2ODoaGh4I47c+YMp06dwtXVlaNHjwrvc0PRsWNHVq5cSXBwMOHh4SxatAgLCwsCAwPZvHkzy5cv58033xThkPPnzzN16lSSkpKwtrautztVeomWLl1Ky5Yt2bdvH/v370dPTw9zc3NSU1MpKCjgwIEDhISEkJaWxtSpUxk/fjzh4eEsXLiQSZMm4ejoyIkTJ1iyZAkdO3YUNCJKsulRo0Y1yHjt1asXoBhnyirbDh06cPXq1Z+lWXh6ejJ+/Hju3r3LunXrMDAwoG/fvkKBgiKfUUdHh9OnT6OpqYmZmRn37t3D3Nyct956i+7du3Pp0iVWrVqFvb09Fy5cqLcItm/fHg0NjXqVvspwM9Dg9B1QhJxfe+01qqqqRCFlamoq3333Hba2tnz22WdoaGjw/PlzRo8eTceOHUV0Jzw8nIsXL2Jra8v777/P2bNnMTMzY/z48chkMo4dO0ZcXBxBQUGsX7+eoKAg+vXrx4EDB1i0aJG4blNTUzIzM1m1ahXm5uYsWrRIhITd3NxEHvuxY8cIDg6ul37yWxg5ciTq6ur4+/tz69Yt3n//fby9vZk7dy7btm1j9+7dvHjxgubNm2Nvb8/p06dZvHgx27dvp3///tja2goarYSEBHr16kVVVRWOjo6oqKjg4ODAnDlzMDMz49q1axgYGODs7Ezr1q1FscSsWbNISEjg4MGDdO7cma5du7Jr1y6OHTuGj48PQUFBDc7l/SkMDQ1Zt26d4BwdN24c+fn5/PDDD5iamlJZWcnJkyc5efIkpqam1NXVoaOjw6JFi3BwcGDp0qXs3r2bb7/9ltGjR1NaWsquXbv47LPPyMvLIz8/H0dHR+bMmYOfnx/3798nISGBIUOGYGxsTEhICB988AElJSV88cUXIjq3ZcsWdu3ahYODA3379mX8+PENdnSAYtxramryzTffMGPGDLp16yaoBw8cOMDdu3eZP38+NTU1jB07Fi0tLcGVq6WlJYjrlXPWxsaGyZMnk5GRwc6dOykqKuLzzz9HRUWFgIAANDQ0RI7t/fv36d+/P7169eKLL74AFJuF1NRUtLW1KSws5OjRo5SWlgov7dSpU+nQoYMovHxV/JRHVZkOBoro1ZAhQ9i4cSO9e/cmMjKSzZs3CwOvSZMmgoHm8OHDnDp1ioSEBKZNmybW8bZt26Kjo8O6des4cOAAY8eOZfr06f+x0LKmpobKysp6Ba5paWk8fPiQvLw8OnfuXK+25FXRokULTExMKCoq4vbt22RlZaGjo8OQIUPE+czMzGjdujXbtm3j6dOnTJ06lcDAQNTV1fnuu++4evUqkydPpqamhrlz53Lw4EF69uzJ2rVrKS8v55133uHhw4d06tRJOBfs7e1ZvHgxjo6O6OvrExoayrx58/D19WXNmjWCl9XQ0JBHjx5x7949unTpwqxZs9iyZcsry7dhwwZqamr46KOP6Ny5MwsWLGDw4ME4OjqK52pmZib4Zo8ePUp5eTnr1q1jwIABIn3KwMCAJ0+e8Nlnn3H79m3s7Oxo1qwZVVVVJCYmEhcXJ/hplcwfbdu25d69e3z66adMmzaNLVu21GsCoXR4/BTV1dW/KVODjdeoqCiRON60aVNsbW158OABeXl5WFhY0L9/f8zMzDh9+jTnzp2jqqqKAQMG8PLlS2Ec6OrqcvfuXVE9unbtWlJTU9HT02PatGm0adOGkSNHEh4eTtu2bfnuu+8ICAhg1KhRgopD6dLv2LEjQUFBPHz4kIsXL/Lo0SN69uyJn5/ff2QN+C0ou/QoqV3u379P69at8fHxISMjgy+++IIJEyaIhT8+Ph4tLS0R9p00aZKg3zEzM2PWrFmUlJSQm5srPJYRERGkpKTg6Ogoql+V1BxmZmb1SKdrampEyNDNzQ1dXV2MjY3F4NfR0eHixYsNlrO0tBQ9PT28vLwE956KiorIdamuriYqKoqioiJB/xQeHk5JSYnYVYKiYrp3797IZDLy8vKwtLQkISGBLVu24ODgQJcuXWjTpg06OjpER0djampKRUWFSGJXKqijR4+yadMmXF1dGTFiBPr6+iQlJZGcnPxKA/mn0NTUZNSoUbRo0YKTJ08SFxcnPH/KrjvK383JySEmJgZvb2+ys7Oxs7MTHn3lfVB6V5OTk4mOjiYmJobmzZszZcoUNDQ02LhxI1FRUXTo0IGmTZuSlJREaWkpAQEB5Ofnk5iYSHR0NNbW1jRr1oyLFy9iamqKvb099vb21NbWUlxc3CAZy8vLuX37Nubm5kyZMgUvLy9KSkq4c+cOKioqeHh4oK2tjYaGBoWFhaKrWkZGBseOHWPy5Mno6OhQUFBAcnIyL1++FFR2oaGhgsru1q1bfPLJJ1y+fJkLFy4QHR3NmDFjhOEaGRmJk5MTNjY2lJaWCrqoBw8ekJycTNu2bQVfbEOh9LDq6OiIuZyXl8eBAwdwd3dnzpw52NraUl1dja+vL61atUJPTw8nJyeePn3Kzp07KS8v5+rVq5ibm+Pn5ye8FgMHDkRDQ4OrV6+yadMmRo8ezahRo8jJyeHSpUvExMSQnJzM4sWL0dbW5s6dOzRr1oza2lru37/Pjh078PLyomPHjjx//lxEEhoCpY5xcHCgtraWqVOnEhMTw44dO2jatKnovpOQkICGhgbl5eW4urqSk5NDdnY2Y8eO5dmzZ9y6dQtQpBUpw7vNmzdHX18ffX19Fi5cyIgRI0hOTiYgIECEXD/44AMOHTpEbW0t7777LkuXLuX9998nKSmJzZs34+rqSsuWLYUnq6EVzqAwXhMTE0Wue4sWLaiqqhKLV3V1NZcvXyY7O5sWLVrQqVMnzM3NGTx4MHV1dZSXl5ORkYGpqSmamprI5XK+/fZbXrx4QbNmzejatasomlRyc2/fvp1NmzYxffp03N3d0dXVJTExUeQS3r9/n61bt/Lw4UOGDBmCrq6uiGD9NP/7VdC0aVNatGghnqWShxYUxmldXR3h4eGCEaBZs2bC46irq4uPj49gz0hKSuLq1aviOlevXo2RkRHe3t5ERERw7949qqqqyMjIYPHixURGRgpKQ+XmTtn0QV9fH11dXWFMl5eXExcXx40bN0RE4lVx8+ZNYmJiKCwsxMLCAmtra2xsbJgxYwahoaFoaGhw5coV8vPzqa6uxt/fX3RPMjU1ZebMmSJMXlJSgq6uLs+ePcPe3h4zMzORj6ympoaPjw8WFhbExMSgr68vGBrCwsKora0lMDAQNTU10RVNycWuqamJubk5oaGhDeaxBQVVlqWlJSYmJmINtLCwqMemEhUVxYMHD9DT08PQ0JC0tDRsbGxo06YNHTp0IDo6mrt37wrqzgMHDvDw4UOKi4vJyMjg4cOHgKLR06pVq0T3SFAU/vn6+pKUlERsbCyOjo6UlpZy8+ZNsV44OjrSp08fvL2963VIfBUo0548PDy4c+cOpaWlYv3JzMzk7Nmz6OjoMGbMGBH9VqYppaenk5aWRm1tLU+fPuXChQuCXSg3NxcTExOsrKxo0qQJJiYm6OrqYm1tTXZ2NqdOncLY2JigoCAePXrE6tWrqaqqwsPDg9TUVNTV1XFycsLCwgIDAwOha14lha7BxqvSe6Z06yo5XJWKu3nz5jRv3pyOHTuiqqrKvn37OHr0KAkJCfj6+mJhYYGbmxt37tzhnXfewdPTU7AXLFmyhLFjx4odWdOmTenRowcXL15kzJgxJCUlCW/ZkydPeO+992jTpg379+9nypQpmJqaoqamJlzk0PAmBUVFRbRt25by8nJu3rxJRkaGqN5ds2YNn3/+OQYGBsjlcm7evMnWrVuJiIjAxMSEuXPn8uGHH3Lt2jWKioro27cvCxYs4MSJEwQHB5OdnS2qMq2srOjfvz+DBw8WtClDhw5l+vTpaGhoUFpaSlZWFpIkCQYASZJ4//33BV+furp6gz3LSujq6grKJCVXoIGBAZmZmYSGhpKRkSF4ex8+fMitW7do06YNEyZMICUlhStXrgAKz5SxsTE5OTnk5uaioqLC0aNHiY6OZtGiRcyZM4eoqCj27NlDdXU1Q4YMoUWLFvVC77dv3xYVpsqip4iICJYuXUrTpk154403GiRbbm4u2dnZNGvWjOXLl1NZWSkM0sDAQBYsWEBtbS2rV69GTU2Nzp07M2XKFE6cOMHz58/rcT4qc84+/PBDUVSlzAEbPny48NR6e3uzZMkSrK2tOXHiBGfOnMHIyIiuXbty5swZrl+/zqeffsrUqVPZv38/W7ZsYfr06Zibm4vuVw3Bhg0bWLNmDaNHjxYFHtu3b2f69Ol06tSJH374QSzae/fu5dq1a9jb24tczsTERFGwtHz5cq5cuYK2tjaurq44OTkxatQounfvztKlS1m6dGk9DlplpevDhw+JiorC2tpacDuXlpZSVlbG5cuXRcoJ/D7P640bN0hPT6dTp06iKConJ4e6ujpatWqFra0tZWVlqKiosH37dszMzKirq2PJkiVMnDiRt956i0uXLtG2bVsOHz6MoaEhXbp0IT09nS+++IK6ujratGnDypUrOXLkCCNHjsT2/5H21lFdn////43u7u4UBQQVabELxcJuN93szU3d1E2d082pUzc3dQZ2Y3ejgiCiIC0h3d31+4Pzur7yeX9C9nucs7PtKLye1+v5fF7XI+5hYsLOnTuJiIhAUVGRadOm4eDggK+vr9gHTp8+zd69e5kyZQpZWVlcv36doKAgfvnlly5uVv9XSGx9oXN0qqGhQWpqKjk5OXh7e3Py5EnKysqIiYnh559/xsXFhbt379Lc3ExsbCympqZkZGRw8uRJ1qxZIyYIL1686CI92Nraiq2tLQYGBiJxXbVqFdu3b+frr7/G1NRUjNMlRNr09HQhRQWd+2hlZWW376GSkhJLly4lLy+PzZs3C71LSTEpIW6WlpayadOmLnrAdXV1TJ48mYaGBvH8dHR0CNjE3LlzCQwMpL6+Xvy5lZWVIGoVFRWxY8cOvv32W+FCV11dzYEDB4iMjERTUxMvLy+sra0FibS79qmpqalAZ1EYFRWFlJQU2trawkCmV69ezJs3j+LiYvbv3y8mkM3NzcjIyFBQUICOjg4yMjKcOHGCN2/eCCOMIUOGYGpqyt69ezl//jzbt2+nb9++dHR0cODAAb799luOHTvG48ePOXjwIKGhoSJxlDiObdu2DSUlJRISEvjqq6949OiRsKr+1Lhy5Qp79uyhsbERCwsLjh8/zoQJExgzZoxwEduyZQvnzp1j6dKlzJw5U1jmysvL06dPH1G8KioqUl1dze3bt3n16hX+/v5ERkYSFhbG1KlTWbBgAQkJCaSnpws728bGRq5cuUJVVRW2traiYG1ubhZEVWdnZyHk/+zZs/9Vr/2/C0m3XE5OTnSCa2trqaqqQkNDQ8i2JScnc/r0aQICAoDOiQvA7NmzhcWqnJwc3377LcnJyZw4cYJVq1aJ58rV1RULCwsuXbqElpYW69at4/Lly6xbt46DBw8yd+5coU+soqJCVlaW2LslvBEJXrw7IZkgTp8+naCgoC541nPnznHlyhWWLl3K4MGD0dfXx8fHBy8vLxQUFNi/fz979uwReUl+fr74WVlZWeG+N3z4cPT09LCzs0NGRoaLFy9y584dFBQUGD9+PAoKCty6dUtgs93c3FBUVCQ2NhYfHx/BqfjU6Pa3MHz4cOF1K6nE/P39yc3NFZ2ZHj16MGTIENavXy+ExKOjo8nMzGT06NEYGRlhaGhIR0cHTk5OHDp0CHV1dWxtbVFQUCA2Npbnz5+TnJyMrq4uQUFB5Obm8tdff5GTk8OSJUswNTVl8eLF6OrqipdfwkosKiriwIEDAkvanYiOjmbfvn3U1dUREBDAsGHDePHiBQcOHKCoqIivv/6a9vZ2rl69SltbG1paWjQ3N1NeXo6amprwA25ubqayspLdu3fz+++/U1NTIxjfz58/5+3bt9jb24sN82OdR+gclXz33Xd4e3uzePFiMaZQVFRk5cqVlJWVcevWLZ48efKvpYj8/f3R1dWlqKgIaWlpFBUV6dWrF1JSUty/f583b95gaWnJ2LFjkZKSwsfHhzFjxiAjI8PmzZs5duyYcFm5c+cOiYmJDBo0SEiMaWhoCIiBxHVDR0eHcePGERQUxPv377lz5w6ysrIsXrwYQNyv9vZ2rK2tsbOz+28d1f63aGpqIisri8zMTIKCglBRUaG2tpZ//vmH3r17M3/+fJYvX86rV684fPiwkLIJDg6mT58+ovOtra1NRkYG27dv5+bNm2ItGhoaZGRkMH78eJycnPDx8RFMbysrK3R1dWlqaiIsLIx79+4hJydHQEAAoaGhyMvL4+fnh5qamrhvjY2N3V6jxPp269atGBkZsXTpUry8vFiwYAFGRkZis5QQu4KDg1m9ejWnTp3i7NmzLFiwgDFjxlBcXCw0HydMmEBoaCjv3r0TphjBwcE0NzeTnp5OQUGBUPWATteV0tJSWltb0dXVRUtLi6ysLN68ecPly5dF9xDokkx9atjZ2dG3b1/u3r3L48ePGTdunCAPSpIcZWVl3r9/z/v378XfV1JSEpMERUVFAgICaGpqIi4ujp49e2JhYSEw+xIcWH5+Prdu3RLmALa2tmzYsIH+/ftTW1vLhAkTRNI+depU7Ozs6N+/P/X19ejp6REaGtrtxCcyMpLevXujrq5OR0cHhYWF1NbWiudPSUkJU1NT7ty5w9WrV4UZCHQW2ZcuXRIjaAn5ZdSoURgbG/P+/Xt69+6NjIwMJ0+epKioiNmzZ6Oqqsoff/xBWloaf/31l2DcZ2dnk5mZydq1a7l37x6tra1dICBlZWX/CsLTo0cPLC0tu3Sl79+/z8GDB5kyZQr9+vVj48aNtLa2CuOFPXv20L9/fwYPHszs2bO5ceMG69ev582bN2hpaREUFMSYMWPIzs7mypUrmJqaoq+vj6WlpeiKNTU1CaiH5Hd1dHRQWVmJm5sbffr0QUZGBicnpy7yWN19TmVkZLh//z6XLl1CWVmZ6dOni+6dhYUFVlZWJCUlUVhY+B+W3IAg8+ro6ODg4ICzszOampqoq6uzbt06kpOT2bNnD6dOnQI67Un79u3LqlWrWLZsGfLy8gwePBhTU1MxnZCWlqajowMFBQUUFBQoLCzkq6++IikpiSVLluDr60tmZuYnr9HS0pLg4GDy8/Px8fER0xVJIaSlpYW6ujptbW3o6urS1tZGdHQ0bm5u4p3o6OgQf19dXZ1hw4ZRVVWFpqYmHR0dKCkpiY6wREFFUrA2NjbSr18/nj59yooVK5gwYUIXcraUlBSvX7/m7NmzYoLx4cOHbt1HiatXeXk5jx494tGjR5iYmAhcaVRUFI8ePQLoct6eOHGClJQU7O3txfsiIT5KLL+zs7NpbGxESUmJMWPGMHToUF6+fCnOiYEDB6KsrMyECROQkpLis88+o7GxESkpKZYsWYKGhgbnz5+nqamJ77//HqDbRPSbN28ycuRI0W2FTk7B+fPnKSsrY+3atWJPdXFxobq6GmVlZXJzc8WzW1dXR3R0tHAWlfBzJk2axOzZs7skxG/evOHEiRMYGBiwcOFC/Pz8iIqKAmDWrFksXLgQRUVFioqK0NDQoGfPnpSXl3Pt2jVkZGQ+SQqs28mrtrY2QUFB4v/b2tqEj/zz588JCwsDYObMmYSEhODp6cnr16/FWF1KSgpvb29GjRqFn5+f6BxK9NNqa2t5/fo1+/fv5927dygpKbFmzRoCAwM5ePAge/bsITo6mr///ltUkAkJCbS3t+Pk5IScnBwJCQnk5eX9KwyTrKwsp06dQl1dnVmzZmFtbc3r16+5cuUKy5cvZ8uWLZw/f561a9eKkbu0tDRtbW1UVFQQFxeHm5sbQ4cOFZqFEochX19fCgoKqKyspLGxkcuXLzNjxgwMDAwEgcbV1RVdXV3hfiER2Y+JiRGYSEVFRb7//nshCyQ5gD41UlJSkJKSwsDAQBDGPnbVMDIyIjk5mdraWnr16kVwcDAuLi7Iy8uLF3f8+PG8ffsWZ2dn1NTUePr0Ka9evWLmzJl8++23AhMqeWYkgPisrCxkZGQwMTHh5cuXPHz4kMmTJwvMlsT+sFevXmKs1N2koKioiFevXlFRUYGMjAwjRozg6dOnPHr0CGtra0xNTVFRUREyJRUVFVy7dk1oE0uisbGR8+fPc//+fUxMTAgODkZTU5PHjx9z5swZoPOwO378ODExMQwdOpRZs2axY8cOXrx4wblz56iuruazzz5j9uzZVFdXU19fj5WVFVZWVkLEX0ZGpttFVlBQECEhIVy6dImff/4ZR0dHhgwZIqyEAeEyZG9vL5Kay5cvU11dTV5eHoWFhXR0dDB48GAsLS1Zs2YNVlZW1NXVceXKFbKzsxk/fjw//vgjiYmJHDp0SJCoJESG5uZmIdtUWFhIcXGx8NC2s7MT9/PfdF4ljnKPHj3i2rVr6OjoYG5ujqWlJdHR0aIQbmlp4YsvvqBXr168fv0a6Owm9OnTB1dXVz58+MC4ceOQlpamX79+lJSUCEmkadOmIScnR3R0NIWFhZSWlgrZpenTp4vraG5uJicnB3V1ddzd3XFwcBB2zv369RMjte6Eurq6eOegM1lXVlYWZLGoqCjevHnDxYsXycjIEFrM+vr6eHp6CskjienAunXrmDBhAvb29ty+fRs1NTVGjRpFZGQkV69eFQSumJgY+vbty+eff05TUxO5ubn88MMPREREsG3bNrKzsxk4cKAwYYFOYsy/0dB0dHRk586dmJqakpubS0JCAqmpqZSWlpKVlYWXl5cgaQDs27ePDRs2EBwcLCTWJAl4SUkJenp6DBs2DCUlJdLT00lKSsLV1RUvLy9xfRJITk5ODnfv3hVaqvr6+khJSbFw4UJUVVWFPBIgvOy7S0o7cOAAR48epbW1lUmTJmFoaIiSkpKAAUkmcA8fPhQYbEmyXFZWJpyTKisrmTp1KhoaGmzYsIHc3FyhRDJnzhza29uxtLSkurqaHj168OOPP6KkpER1dbV43yQJ8X+NGzduEBkZyWeffSbsi48dO/bJa5w0aRKzZs2ioaGB1tZW1NXVqampoba2Fl1dXXJzcyktLUVGRoaYmBiePn3Ky5cvCQwMZPDgwWKCJ9ETLSsr6wIJ8PLywsjICGtra/Ly8oiOjqapqYnExESUlJQoLy9n/Pjx9OnTh8mTJ7Nnzx5cXFxwdnbm/fv3PHjwgIcPH9LR0cG8efMYNGhQtyTrJCGRDXzx4gUHDx6kf//+ohipqKgQU8GP97Lm5maysrJ48eIFzs7Owrhp3bp1yMjIMGbMGFRVVXn8+DG5ubm8fPmS4OBgli9fLn6Hl5cXffr0oaysjIaGBmF9nZeXh4mJCZ6ennzzzTdERUUxYcIEHB0du61hX1JSQm1tLcrKyqJzW1hYKKQ4AwICqK+vJz8/H2tra+Tl5Xn16hXt7e34+/sjIyNDQkKCcIqTFCIODg7MmjULAwMDioqK0NLSIjMzkw0bNvDmzRu++eYbFi1aRHt7OxUVFWhqajJ37ly8vLyor6/H0NAQQ0NDWltbRT7wqRj7biev8fHxXeQrJF0CJycnRowYwZs3b3jz5g1hYWGcOXOGWbNmsX//fsrLy4mNjUVXVxdfX98uNmD79++nqKiIlStXoqqqio+PD5mZmUK+5MGDB8yfP5+1a9dSVFREZGQkd+/epVevXsTFxbFw4UJcXV0ZNmyYYP59/fXXGBoadqvChE73nGPHjtHS0iKkO7y8vNi/f78YFUg24YSEBBYsWMCpU6dQVlbm9evXQuAeOoHIO3bsYO3atbS2tpKVlUVkZCRKSkrCXtTOzo6EhASmTp0q/L9/++03fvrpJ1xdXVFQUODbb79l6NChHDp0iL/++osPHz4QERFBQECA0NjsTnh4eKCgoMCCBQuYP3/+f7gqtbe3C4a3BJf8MQzjxYsXvHz5koEDB4qORmNjIyUlJbx48YIhQ4bg7u5OYmIiDx8+JCAgAD8/PzFiUVFREX7jrq6ulJWVkZqaKl4ayTVoa2t3O3GFzmf04cOH9O3bF0NDQyIjIyksLGTWrFn069cPKSkp5s2bh4qKCt9//71gS0o8nz08PMjNzWXp0qXCI/7du3e0trYyefJkQdDS0tIS8Im8vLwuUju2trbY2dkxf/58oQ+7fft2ysvLWbNmDWpqauzZs0dgC7urGuHq6spPP/3ExIkTaWtr6wKAl0R9fb1gyV+/fl0IpwcGBvLdd9/h5+fHhw8faGpq6sJcNTAwwMDAQEBHJJjMoqIi7ty5Q1ZWltD1c3R0pKWlhWfPnnHq1Cnc3d2ZP38+bW1t5OfnU1VVhZSU1L+aDmzdupWcnBwcHR05fPgw1tbW5OTkoK2tzcGDB4mKiuL58+fCIrmmpgZpaWkyMzPFc1hbW8v+/fupqqrC0tKS8vJygYnz8vJiy5Yt7N+/n9OnT7N48WKmT5/OkydPuHfvHvPmzROj0evXr9PS0kLv3r2pqKjg+vXr5ObmMnPmTKZMmUJ4eDi///57t3QmP8atGRgYsGvXLqSkpETRXVVVxYULF7hz5w5AF/knc3NzFi5cyOjRozExMSErK4tnz55x/fp14c/u4+MjrH/z8/NpamrCwMCA+fPnC+jEqVOnsLGxYf/+/YwYMQJ5eXl0dHQwNTUlKiqKixcvMmTIkH9lKQqdBeCIESM4cOAA169fZ/LkyezcuZO6ujpxdkjkyAC8vb0ZPXo08fHx/Pzzz6xZswZHR0f69euHnJwcEydOpKCggHv37jFw4EC++OILmpqaaG5uFiQeXV1dFBUVcXd3Z+7cuWhqalJbWyuSWwnbWaILnpiYKGBd3RV/v3TpEu7u7owbN46ePXuSn59Pbm4ujo6OAmu6Zs0aRo8eLaS+fH19SU9PF82KcePGkZ+fT05ODg8ePOD06dOkpqby9u1bITlnZmaGubk57e3ttLW18fTpU/r160dFRQV//fUXZWVlLFu2TLzHH+/nTk5O/P7776IYePXqVbfWKMHgFhUVkZ2djbm5OdXV1Tx9+pS6ujqampp48+YNSUlJ5Ofn4+7ujoqKCkePHmXnzp04OzszYsQI6uvrhWXswIEDGT9+vLByluxfFRUV+Pj48OTJExYuXEhjYyPBwcF4eHhgbm7OsWPH+Oqrrxg+fDgjR45ETU1NTG5PnTrVxWK1OyEZq1tZWTFp0iTi4uKElb2lpSV9+/Zl69atKCoqChKVRFHI3d29i4yfoaEhgwcPZuTIkYwdO5Znz56RlZUl1AcUFRU5ePCgwHeeP3+eQ4cOkZmZSUhICAsXLhSKS21tbdTV1VFeXo6rq+u/NmEwNTXlxYsXWFhY4ODggJSUFL169WLVqlVkZWWxcuVKrl27hp2dHTt37sTBwQFjY2PU1dVRUVFBVVUVdXV1UlNTiY+Pp6amBnl5eQIDAzE0NCQ1NZXNmzejq6vLoEGDmDFjBl988YVwH5WWlsbJyYk3b96wfPlytLS0kJaWZsSIEZiamnLr1i0qKioYOXIk/fr1o6Oj4/+E0nU7eXV3d6eyspL4+HgKCwvx9vYWGoAKCgqMGDGCgIAAUlJSePv2LTU1NSgqKgr3hrq6OhISEsjPz8fR0ZHGxkaqq6spKCjg2rVrhIaG4uzszIYNG3B0dOT+/fvk5OSwYcMGvvzyS65evcqlS5eE4H9CQoJ4oST2d3V1daSkpFBYWNhtzbeGhgYhB/Ho0SMaGhpwcXERXZiGhgZ0dXUJDQ2lsLAQGRkZHj9+LIhJ0Ml+vH37Nu3t7QwYMABvb2+qqqrEOKGiogLo7Cj89ddfxMbGUlxcjJeXl3BnMjU1FZu8xALWz8+PPn36cOzYMfT09Bg9ejSKiordTl4lVndZWVncu3dPjBPKyspISEhAXl5eVMMSnbri4mL8/PzIzMxk2bJl5Ofnc+DAAUxNTamsrKRPnz4YGBggLS1NdXU1FhYWouKWlpYWMJNXr17x8uVLIiMjefHiBbm5uejo6Ih/1NXVkZOTQ0pKSlR4Ekb+p4aOjg4uLi589tln2Nracv78eUpKSpg6dapw8wkICEBaWlpg30aMGMHz58/54osv+Oabb8jIyODSpUuYm5tjb2/PixcvSElJYcGCBUybNo20tDScnZ2Rk5OjtLSUR48eCRm0a9euIS8vz9atWwVmUPK9Kyoqkpubi5SUFPLy8tja2mJvb9/tTUlRUREnJ6f/FvMsIdtFRkaSm5tLXV0djx494vXr19ja2uLj40N1dTVVVVXY2dmJAtHIyAh7e3ucnJyoqKggNzeXtrY2ysvLUVVVJTAwkPz8fCIiIoRnub+/P7KysuTn51NdXS0w0NAJuv+3kBboTC5bW1uFDiZ0dhm9vb2Jj49HRUWFmJgYtLW1mTVrFvr6+jx+/Jg///yT169fM27cOOzt7fHz86OkpISePXsSFxdHY2Mjtra2/PTTTxgYGJCfn4+amhqDBw/G1dUVOzs7kpKSuHv3Lu/fv8fMzIz6+nrMzc2pqanhyZMnREREAJ14QAlWvLss51evXmFra4uioiIqKipdtDklsBlfX19ev35NWVmZkGHLysriwYMHDB48GDMzM27evImSkhJGRkb8888/Yt+ReLHPnDkTf39/0eny9fWlsrKSV69eoaKigp6eHvn5+eLgkTQaZGRkCAwMRFVVlfv373P//v1u38P79+/Tp08ftLS0MDY2pkePHigoKJCZmUlHRweampqoqqrS1NQkDkNzc3PCwsJEMSwxodHT00NJSYnW1laMjIwYMWLEf+D/EhISOHfuHGZmZujp6VFQUCDksgoKCnj79i3Z2dlimgSdHVBJkfUxWfZTIisri/nz5yMnJ8fdu3dRU1PDzc0NOTk5ioqKkJKSwtbWFgsLC1JTU0lNTcXBwUFMpczMzEQCd+PGDa5cuSKmXDExMcTExDBlyhSamppobGxk4cKFSEtLc+vWLbKzs7GysqK9vV10QaGzeJeTkxPSX/379xf7kKTL292QdAJramqor6+nrq6Ojo4OVFRUkJaWpqysjOLiYoqLi0WnOy8vj4cPH/LmzRsUFRVFItPR0YGRkRFKSko8fPiQvLw8gbGUQEyys7M5fPgwjY2NVFVVkZ+fz7x58/Dw8GDq1KlkZmZSV1eHs7Oz4KhI1lVbW9vt9UkMjaSlpenRowfz58+nuroaIyMj2tvbMTExERq10Eneys/PJzQ0VJCu29raaGpqom/fvmLCZ2ZmxpgxY6ipqaGsrIzk5GSysrI4ceIES5cuFffr1q1bKCkpidG7BGYh4WAsWrSIiRMn4uDgIMyEuhP9+/fn1atXAtpYXV0tpkiysrIcO3ZMPP9Xr14VBHyJNbanp6eAyEj2PjU1NZSUlGhubiY1NZU3b95gbW0t3PygU1JLWVkZZ2dnhg4dSlVVFW/fvhVNn5CQEOTk5Dh06BBycnJcvHjxk9fU7eRV4oSwYcMG3r17x9mzZzExMeHChQvcvXsXJycnxo4dS8+ePWloaODJkyecP39eWJx1dHQQHx/Pu3fvUFVVZcGCBSxZsoTU1FS2bdtGVlYW3377LY2NjTg5OTFz5kzOnj3LtGnTaG5u5siRI0yaNEmQHSRST05OToSEhDBmzBjB5HN0dOy2u8+zZ89wcXEhKSmJyMhIzM3NMTAwEJuNkpISQUFBIpn95ZdfmDhxIp999pkY2SYkJPD3338LDOT8+fPp27cvMjIyXSQ+3r59K3B458+fFwf04sWLWbVqFcbGxjQ3N2NhYSFa6c7Oznz11VcoKir+68QgLi6OlpYWTp06JRJwyXVLrOtKS0vR09NDV1eXlpYWrl+/jqWlJQoKCpSXl1NfXy+wT7KysowcOVJg9xQVFYWjkQTnJSE2pKamcvbsWeEhnpOTQ25uruisSMgXErwW0O11+vn54e7uLkaCjY2NKCsriwJLkih6enpy8uRJocm4dOlS9uzZw4QJE/D09BSH/K5du2htbUVHR4eMjAy8vb05dOgQmzdvFo5x/v7+DBkyhPv37/Po0SP27dtHcHAwFy5coKWlhSlTpjBhwgRyc3OprKxESUmJ7777jnXr1iElJYWKigpXr179V/fzv0Z6ejp37tyhqKiI+vp6EhMThT1jSEiIsPobMmQIZ86cEeYGK1euZM2aNRgaGtKzZ08MDQ2Rk5NDWloac3NzFi1axLRp0/jhhx/4448/RJEhIZ2EhITQu3dvOjo6yMzM/B87wp8aBw8epLS0lIcPH3Lw4EFGjBiBsbExoaGhhIaG0tDQwNOnT6moqGDr1q28efOGuXPnkpGRgba2NgoKCri4uBAWFkZubi5JSUlkZ2czevRo1q1bh6urK7du3UJDQ4O5c+fS3NwsuoDr16/H0tKS7du3k56ezo8//siYMWPIz89HX18fPz8/wSJOT08XLjISjeBPiX/++YfVq1eLDreHh4foxjQ1NWFtbc26desYNGgQd+7cEdCS3bt3s3//frZu3Yq5uTmrV6+mtbWVHj16IC0tTXt7O2PHjhUSNBKTiY9DU1OTjRs3Cjm+jydU33//PSdPnmTv3r1ixH306FGOHTvWbSvqzMxMWlpamDBhAr6+vmhoaHDs2DF+/fVXBg8eLMbYCgoKtLe3IyUlhbW1NT/88AMfPnzg0aNHxMTEkJeXJ6BUP/30kyBx1tTUCOhFXl4ec+fO5cOHD8ycOZOsrCx+++03hg8fjrOzM7/99ps49D+e/NnY2PD111+jqqqKlpaWwBV+Skj2js2bN/Py5UsOHTqEqakppaWlFBcXCxxkdXW1wHcqKytjY2ODpaVlFyWVvLw8qqqqWLZsGTo6OkycOJHk5GSBdzUwMGDgwIEEBAQwdepUMb1bsmSJ0JKNj4/n3LlzeHp6/re6tRoaGvj6+nLhwoVPXmNbWxvy8vJ4e3uLJFFKSoqQkBDMzc3JzMzk8ePH4ruVwPjGjBlDz5492bRpExEREaxYsYLQ0FAyMzOxtramvr5eWKqmpaWhr6+PtbU1FRUVwrkvJSVFJP0vXrxg06ZNeHt7ExYWhpqaGubm5gwdOpT169cTGhrKTz/99K8hAwAFBQW8f/8ePT093NzchHX5fw0tLS3Mzc27uGFJJl0SzOjJkyeJiIhg9uzZBAUF8fjxY9HRjIiIoLm5mRkzZhASEoK+vj4uLi4CdyppwEgmBhJccXV1Nf/88w+vXr3qFixSTU1NyLo1NDRw/fp1ZGRkCAkJoWfPnuzbtw8DAwPu3r3LsmXLuHr1KvPnzxdKPWvWrEFHR6dL0qyiokJlZSX19fW4ubkxY8YMUdBAZ/Nv3rx5mJqasn//fkaNGoWnpyfv379nx44dZGVlMWDAAKG6VFRU1GUK839Ft5PXK1eu0NrairGxMYaGhigqKhIXF8eTJ0/Q0tIiODhYvDRKSkqMHTtW+Gy/e/cOe3t7DAwMxNgkMjJS6BM2Nzfz+vVrTp8+zevXr3n37h2jRo3C3Nyc5cuXU1RUxPfff4+xsTF+fn5CDsjS0pLRo0cLd6zCwkJ69OjB4MGD6du3L4mJiZ+8Pslha2hoiIWFBVVVVWRlZaGioiJ84yVJW1paGjU1NUyZMoXRo0cDnS+utLQ0q1evZsuWLURHRwtCVGFhIaNHj2bx4sWcOHGCp0+fCrUEGxsbWltbef36tTh0wsPDaWlpYeLEiUCnTJC2trbQ+ZNgDbsb7e3tPHz4EFVVVTw8PIiNjSUqKgpdXV3Gjx8vHL4klaiEFaivr4+CggJr1qwhPz9f4MM+dv6Bzs5fY2OjqCKPHj3KvXv3BCkrMTGR1tZWvLy8MDMzw8rKigcPHuDt7S0OooqKCjFC7S6JQl5eHnNzc27dusXly5fp06cP06dPF50xaWlpgSeSHOrh4eGYmpoyfPhwbt68SXFxMX/88QcFBQXs3bsXKysrvvjiC+FMduXKFf744w8BFWhubsbPz4+8vDwiIiLEGEpRUZG2tjZqa2spLS0lISEBGxubbo8n/2tIxoeSTTcnJ4d3796Rl5cnBK4nTJjAu3fviImJobW1ldbWVrS0tLCysiIwMBArKytqampQUFDAw8OjC0FHQ0MDRUVFsrOzuXz5Mk1NTUydOhVjY2N27NhBe3s7YWFh7Nixgzdv3jB06FB8fX0FXtPIyIhbt27xzz//UFdX96+EwyWqF6WlpWhqagpLRMlzV11dLRQNJA5KGRkZACxZskRci5aWFlpaWkKmzcjISLxjcnJyBAYGCm3UoqIiampqyMzMJDk5WWDdgoOD0dXVFdJd2traSElJsW3bNg4fPtxFpP1TY+LEiZibm7Nt2zaOHTsmnOiqq6tpamoSEKT+/fvj5OTE27dvhRWmvb09f/zxh5gsycvL4+DgwPTp03F2dmbIkCFkZmaK6ZempiYtLS1kZGSILqukQ/Ts2TNu3LhBamoqU6ZMYcCAAbx9+5YbN26IJOizzz5DT0+v27aUc+fORVVVldTUVCIiIgS+WjJxgE4ppqSkJOGKl5WVhbW1tSg+TUxM6N+/P1paWsTGxnY5tOvq6mhubhbe8pLpRlNTExYWFsyZMwcvLy/U1NSoqKjAzMwMR0fHLg5ihoaGwlWvu7FkyRKUlJQEV0FiD11eXo6lpaV4P9va2vD29hbd3iNHjhAVFcWcOXOEpe3+/fspLCxEQ0MDKysr1NXVUVRUZMmSJcLcQNJokJeXp62tjebmZoF/TEpK4uTJk+Tm5opnMSIigj/++IOmpiZmz55NcHBwt2XrPlZhaG1tpaGhAQsLC7FXW1lZCSKQgYEBMTEx5OTkMGjQIFatWoWuri4VFRVCXk9iSnPixAnq6+uZP3++wOOnpqbS2tpKeXk5lZWV6OjooKmpSUVFhUj8Kisref36tThfXrx4Icw17t27968tYqGzQJDs4S9fvmTIkCFCc/7YsWO8f/+ewYMHM2jQIFRVVcW4f9asWV0c39TV1cnMzOTZs2di+vX8+XOkpKT48OEDBQUFtLa2EhwcLIxw4P8VY5IzVZIcZ2VlsX//fh48eICsrCxDhgzpVl4jcb2U/Pf69evR0dHBz88PIyMj8V1qamqSlJREUlISixcvJiAggKioKM6cOUNra6uAOikpKeHn58eAAQME4Xz69On89ttvzJo1i9GjRyMnJ8fgwYNRV1fHyMhInMsnT54kMjKShoYGVqxYQe/evZk+fTplZWWsWrWqS+Pqf4tuJ6+rVq2iT58+LF++HE9PT6qrq7lw4QJGRkb4+PiIxLW6upqWlhZ0dHQYMmQIeXl5REVFMXDgQNzc3EhJSeHdu3fU1dUJJq2XlxeysrLExsby5MkTXr58SXx8PL/88gu//vorFy5cYOHChbS3twvpGIlET0ZGBgYGBuzevRsFBQXCwsJQVVXtNlHEy8uLpqYmtLS0GD9+PE+ePBHVcnFxMW/fvsXAwICnT58ya9Ys7OzsePLkCfLy8hQUFPDw4UM8PT0ZNGgQCQkJwu/Xw8ODv//+mx49evDZZ5+Rnp5OREQEX3zxhUhkLly4QHt7Ox4eHjx//pxZs2ZhZWXFiBEjUFFREbqckta/vLz8/wjS/99i2bJl/PXXX/z1119MmjSJzz77jMTERM6ePSs0TaGzWuvo6BAEo+TkZCorK5k8ebJIBCXVpqKiotjgPsafvXnzhpUrV2JiYsJff/2FgoIC8+fPJzExkUWLFrFu3Tpyc3M5evQodXV1jBs3Duh8+T/+fd2JuLg4fH19uXLlCqdOnRIORYCQPvmYKPPDDz/w448/Mn/+fObMmUNaWhpycnLCsc3BwYG2tjZ8fX2RlZVl+/btAseqoKBAU1MT7e3tqKqqMmPGDKFtCp1C++np6Vy9epXnz5+jra3dpSPysVxSd6K1tVUcjBUVFVy6dIlTp04hJyfHzJkzBQmmoqKiyzNSWlrKtGnThEh9U1MT48aNE9+7BOYhKZBu3LjBli1bqKysJDc3l2+++UY4JllYWBAXF8fVq1fR0NDAwsICWVlZTE1NUVJSQldXl7CwMNFl727Xbs2aNdTV1bF69Wrh4CcpqB4/fsyLFy8EKau0tJRDhw4JN6E1a9YAnfuQZDM0NjYWiiSS71CinNDS0kJMTAzZ2dm0tbXx6NEj7t27h5aWFjY2NqSkpKCqqoqSkpLQZnz//j2ZmZkUFxeLyUJ3QtJJjYmJEVaz0PlMSJ55icmJRJ7tu+++Y9GiRWzYsIHNmzeL5NXOzg5ra2vmz58vkoRHjx5x5swZYmNjMTQ0FPj6yMhIbG1tycvLo6SkRCgW1NTUMHXqVCZOnIiXlxe+vr4EBARw9uxZAgIC8PHx4csvv+zWGiUTjytXrgjCZGBgoHC2q6+vZ+/evVRVVTF06FCkpaW5d+8e/fr1w8XFBWlpaQwNDRk3bhx+fn48efJEJL2AwIqnpKQgLS3NwoULSU5OJiEhAR8fH8FKb2xsFETjtrY2srKySEhIwNzcXOxlzc3N3ZYhCggIQEZGhv79+9Pa2sqtW7d49uwZgwYNQlZWlvLycpSUlNDR0ekydQsPD+fevXsEBATQt29fbt68SUxMDKqqqsTGxhIfH096ejpubm6CnJWQkCBgFAMGDEBJSYmSkhI0NTWFZFp+fr6wS62urubatWucPn0a6Jw0BQcHU1JS0q01Qud7l5mZSXp6Ou3t7ZSVlWFtbY2+vj5NTU3o6OhgYmIirEYzMjJoaWlBTU2NpUuXUlFRIQh3xcXFrF27ljt37jBnzhxCQ0ORkpJi7dq1HDhwAEBMEAwNDYV5xsiRI4U97S+//IK5uTkDBgzg5cuXAjKgqqoqLKq7uz4pKSk6OjpISkpi165dQmFDgsG8ffs2z58/F1wYFRUV4uLiePnypZDmam1tFY0FS0tL7ty5w44dO9DQ0EBaWpqKigoyMzOxsbHBy8tLPL8VFRXExMQgLy+Ph4dHl2ZQWVkZGzZsEGT4TZs2sXjx4m51mC9evIiamhpmZma8efOGqqoqTExMhJRoe3s7ra2tvHv3Dn19fRwdHUVzycLCgsOHD5ORkYGFhQV2dnbo6Ogwfvx4rK2tRY4lIV6dO3eOwsJCNm3axPHjx7tcx8uXLzly5Iggxt6+fZvk5GTCw8Pp6OhgzJgx5OTkYGVl9X/Knf0r2EBVVZUYJ6mrq+Pg4EC/fv2EoL2E4PHs2TNycnIwMDDAzs6OH3/8UWT41tbWDBs2jMbGRoHNs7a2xsjIiMLCQuzs7Jg7dy49e/YUX7icnBw7d+5EQ0MDGxsbmpqacHJyQkZGRrgpDRo0iNWrV4ubL+nEfGokJiZy48YN4Qo2YMAAsrOzhQ5q//79MTQ0JDo6mpaWFhISEgSUQVNTk/Hjx5OSksKyZcvYvXu3EApXU1NDWVmZI0eOkJubS2NjIy4uLhw5coTY2Fj69OlDr169UFBQ4NixY/z4449UV1eLzh10ilifOnUKHR0dpk6dira29r9icbe1tQlsD3QeniUlJQJDuHz5cmbMmMHnn3+OlJQUjY2NJCYmsn79evLy8vjjjz8EPm/Lli1ERESwbt060c2QbNIfPnxg4cKFlJeX07t3b/T09GhsbKSyspLCwkJev36NlJQUZmZmzJs3j7i4OOLi4ujVq1cXKEN3cDDQSSxob28XBC0vLy/Ky8u5c+cOGhoaDB8+XBxYku4UdOLzysrKaGxsRFVVlXfv3mFsbIy1tbVwPLK3t6eiokJo5TU1NXHjxg3RKejZsycGBgZdOjkxMTFs3rwZb29vQkNDkZWVJSYmBisrq3/VkYTOLrykw33z5k327dtHY2Mjq1evZv78+UAnmeTAgQOUlpbi5OSEoaFhl8/s6OggJSVFSIVVVVURGRnZRfmgoKCAwsJC1NXV+fDhg4D4GBsb8+2339LS0iK6r9bW1uzevZvq6mp+/fVX/Pz82LVrF4cOHeq23jJ0wj8keHZJtLa2CqkWX19ffH19aWhoYN68eVy5coWhQ4cKX3FAJBBycnJdRnwSMo2kiJGVleXvv//m0aNHDB48mB49ejBhwgRBnPnpp58YPHgw8+bNE53f+/fvU15eztKlS7ul7yqJu3fvkp6ejru7O1OmTBEGLPr6+sJU4uOEp6ysDOhMtF1cXDh9+jTW1tb8888/NDQ0YGVl1cX1zMnJCVVVVVJSUmhqamLRokW4u7tTW1vLsGHDWLFiBSdPnhTJq7KysoDYGBsb4+TkRGxsLBcvXiQxMbGL89ynxvDhw3FxcWHWrFls3LiR4uJi3r9/Lwr2trY2evXqhZGREWZmZty/f5+HDx/i7u6OjIwMdXV13LlzB2lpaUxMTMTBCp0QJBUVFUxMTHBwcEBOTo5r166Rl5eHnZ2dwLRLVGhSU1ORl5cnNzeX7du3k5+fz6+//kpAQAC1tbWUlJR0kfv5lJAQZ6Gz8CspKRFNmLi4ODZu3EhgYCBTp04lPz9fWAjPnDmTOXPmUFdXx86dOyksLGTmzJkiyS0vL8fT05P6+np++eUXnJ2duXv3LseOHWP8+PECPyorK4ucnBwODg5oaGjg7+8vCtPa2lq8vLyEkovkOrvLVH/8+LGQZtLU1KSxsZFTp06RmZnJd999x7Bhw9DQ0CA2NhZ7e3tmz56Nt7d3lyKjsrKSzz//XEhpKioqMmDAAMrLy5k7dy7a2tp4eXmxbt06Nm/eTHt7O+7u7qiqqlJTUyPwpr/99ptIcAsKCsjMzMTPzw8FBQVSUlLQ1dX9V5bp0tLSlJeXc/78eb7++mtB/pR0KyV662PGjCE4OFj8nOQ+enp68vTpU7Zv346CggITJkxAV1cXJycnmpqaCAoKYvLkydTW1hITE4OhoSHTpk1DSUmJ/fv3c+DAAaFCoKqqKnSHobNBIpHpWrJkSbdgLZJIT09HXl6ejIwMFBQU+Pvvv8UEvLW1VUwJ3Nzc2L9/P8bGxuI5sbKyYvLkyezfv58bN24wePBgVq1aJc4RCayiubmZJUuW0KtXL5KSkigqKhKfX1lZybZt20hNTWXx4sUEBgbS1tYm7Kfd3NyoqKhgyZIl1NbW4uDgILC1/1N0O3lds2YNR48e5cyZMwKsLElkHj16REpKCubm5jg4OBAfH8+bN29QU1PDyckJAwMDSkpKuHXrFsXFxXh4eGBhYSE0zYyNjQVLW1KZA/z+++8cPHiQqVOnio6KBIgvwb02NTWRl5dHYGCgwKfeunWr22SmpKQksrKyyMrKwtvbGxkZGQwMDKiursbY2FgcdiNGjCAsLIwLFy4I/+5JkyahpKRERkaGwC/q6ekJgtacOXOIi4sTGrTOzs6iA9uvXz+h4rBs2TIyMzOFPaKamhpJSUn88ccfREREMHDgwH+VDEgiNDQUMzMzlJWVefr0KbW1tXh4eKCkpERycjJv3rxh0KBB4u9XVFSQnJzMhw8faG1tFQerRAtWMoaXeFDX19eTkJDApUuXgM4DbOrUqdTU1FBdXc3QoUNRUVHBysqK6Oho+vTpg6KiIsrKymRmZgrf5uLiYn755Rfu3r3brVGQi4sLbW1t9OvXTzDRJZ7qH2P/YmJiKC4uZsqUKVhZWfHnn3+SmZnJ8OHDcXNz4+TJk9y6dQsZGRmOHTtGYWEhurq6DB48GF9fXwwNDUlLS8PJyYmAgAD8/f1JTEzk4sWL+Pr6CiC/srIy7u7uGBoaCscwIyMjdHR0KC0tFUL/3YmSkhKys7OpqKigtLQUd3d3LC0tRQGRnZ3NDz/8wNu3bwU8xMzMjN69e4uEKDo6msjISOGScvToUdLS0mhoaGDAgAFkZGSgqanJokWLKCoq4sOHD8TExAB08daurKykrKyMuro6ysrKiI2N5dWrVzg5OTFp0iQmTJhATU2NeHc/NX7++WfS09NJSEjg9u3bYvybm5uLkZGROFgePnxIVlYW7u7uhISEEB8fT1NTE0ZGRjg4OHT5bj98+IC0tDSmpqYoKCgIQkJKSorQm2xraxPe6+np6RQXF2NhYYGLi4tIXMPCwti4cSODBw8WWPf/a7P9ryFJQI4cOSI63wkJCZiZmQmt0rdv32JiYiL2Rk1NzS6del1dXcrLyykuLubNmzfcvn0bc3Nz6uvrKS4uFkV8Q0MDXl5eaGho8OTJExobG2loaMDBwYGQkBBkZGSYOHFiFxmn6dOnM3nyZFpaWjh+/Djx8fEiMfrUqKqqEiRQQ0NDTp8+za+//sr8+fOFk96iRYsEyS8vL4+4uDjOnj0rMKhOTk5kZ2dz+/Zt6uvrqaqqwtfXl+rqakHM1dbW5saNG2zYsIHa2lomT54spH2mT5+Oo6MjDx48oKamRpgDVFdXi4T8v0KfPjVmz57Ntm3bCAoKEhrE2traZGZmsn79enEO9OrVi9zcXJKTk3FxcRF62L/88gv37t3Dzc0NHx8fLCws0NLSws7ODmdnZ548eUJYWBjp6eniM8vLy7l06ZLoRH748IGsrCz69u2Luro6kZGRQiVGopUqiY6Ojm53Xm/dusXVq1cZO3YsCxYsICcnh9bWVhQVFWlpaaGgoID4+Hiam5tJSEigsrISGxsbIXOloaEhvm+Ja+L169exsbFh7NixIqFftmwZvXv3pqCggNu3b/P555+jq6vL3bt3uX79Og8fPhTunoCQspKY/OTm5op98N9EdXU18fHxAne5fPlyYfesqKjI1KlTKS4uJiEhAQcHBzQ1NTEwMBCmQbm5uaSmpqKurk55eblIpCX2zvb29ujr6/9HR7Gjo4PW1lZSU1NJTEzE09OT/Px88vLy0NPTo6ioiEGDBvHhwwcxtu+uI+O4ceMEjEpi/11bW0t0dDTt7e3o6uqiqqqKm5ubyENaW1spLS3F0NAQZ2dn1qxZw4cPH4TbJHQWTxoaGkRFRREbG4ufnx/Tpk3j8ePHJCcnizNXU1OTa9eukZCQwOeff46Liwt5eXnC2ayyshItLS1hQgX/937a7eTV3t4eV1dXrl+/TnFxMRs2bBAjWRsbG+F1C52bs6OjIwoKCkhLS3P8+HEOHz4smGYBAQGYmZmRnp6OnZ3df6t1uWDBAuHhK5HkePXqFXl5eYSGhorx5vLly5k2bVqXg6q1tZWUlJQuItT/Vzg5OeHu7t7l9ygrKyMjI9MFhyHB8/bv35/8/Pwu1ayrqyunTp0iMTFRPBjQaQrw559/cuDAAWJjY1FRUWH37t04OzuL6kVSvQOsW7dOHHC///47Z86cYcCAAYwdO1bg4f6NdEa/fv1QVVXl7t27PHz4EE1NTXr37k1+fj6BgYFcv369C7NST0+PQYMGYWJigqGhIQ4ODly+fJkvv/ySKVOm8P333/PPP//wzTffsHHjRiIiIpgxYwbe3t5cuHABY2NjamtrUVJSQkVFhRUrVrBs2TKam5v58OEDO3fuJCMjA39/f5ycnLh37x4bN24kPT2drKysLiP+TwkHBweBVdbT08PY2BgbGxs8PDywt7envb2dkydPEhUVRUhICCNGjGD48OE8evSIpKQkvv76aywsLBg5ciQpKSkoKCiIka5Eaun9+/dYWlqioqJCYGCgwFheu3aNo0ePkpWVhaurK05OTgQHBzN69Gg+//xzpk2bxpw5c9ixYwfQmaDt37+fTZs2dWuNEsF1KSkpJk2ahIODA+/eveP+/ftkZGQgLy8vktTa2lqePn1KSkpKl8MsPT2d69evEx4eLiybi4uLSUtLo6ioCAUFBfbu3cusWbNYsWIFMTExKCgo4OTkhIODAzdu3ODFixdkZWUJOaNx48bx4cMHrK2taWlpEeS77upnSkLikhYfH89ff/2Fg4MD58+fx8bGhtGjR5OVlUVqairLli1j3LhxyMjI8M0334hpyMaNG4XFY0dHBw8fPqS9vZ2QkBCUlZV5/vw5iYmJ2NjY8N133wkY0+HDhwWZcdSoUSxatEh0qH/77Te+/vprALHRX7t2jRkzZjBlypRur1FyEIWHh3P//n3Gjx9PYGAgtbW1AgN2/vx5sQ55eXmKi4vZunUrO3fuFL/n3LlzVFVVIScnx9OnT9HQ0BAKAxUVFcTHx2NgYEBsbCxpaWlcvXqVkJAQJk+ejL29vdi34f+985IuVlFREcXFxd1eW1JSEsXFxdy5c4c9e/aQnZ1NUVERiYmJVFZWdklc4f+Nfbdv305KSgo//vgjkyZNIiMjg/Xr13Pp0iWuXr3KmjVrWLhwIRUVFaxZs4aYmBja29uFMsnx48dxdHQkJCQEW1tbZGRkkJeXF/C2kJAQysrKunT1/01kZWUxd+5ctm/fzsKFCzE3N+f27dusXbtWdCIdHR0pKChAV1eXzz//HH19fU6cOCHWqKurS3Z2Nvr6+mhqamJlZSUmiv3790dfX19ME37++Weam5uZOnUqP/74I9988w0//PADz54948qVK8L6WFpamj179vzH9TY3N3PlypVurbG9vZ2kpCRGjx6NhYUFZmZmqKmpYWRkhJycHLdv3xbWp9BJKLxx4wYjRoxg1KhRWFhY4OHhwZkzZ/j111+prKzE19dXYJOhc+Qs2eclKhpDhw7F0tISJycnFi1aRFNTE4sXL0ZPT48zZ87g4+PDtGnTWLduHVevXmXMmDHdxp1LoqWlRRCYhg4dioWFBcbGxkhJSQkNend3d/bs2cO2bdsICQnhq6++4sCBA5w5c4YNGzYwbdo0nJ2daW9vR0NDQyRw79694/Xr10RGRjJt2jSGDRsmCqWWlhY+//xzgoKCmDp1KosWLeLkyZM0NTUJB7+RI0fyyy+/EBcXJ3SYN2zY0K31fVx0mpubs3TpUhoaGvjqq6/Q1dXlxYsXWFtbi4mIBP7w8b5tYGDAyZMnOXLkCHv27KFnz55MmTIFNTU1Xr9+zfbt28XEzdraGkNDwy6QNVtbWxISEvj666/x9PQkMjKSpKQkevfuzU8//dQlqf/Y0fF/im4nr4WFhfTr1w9paWkSEhLYuXMnVlZWuLi4dJGKysjIwNfXV7SWKysraWtrQ0lJSbDnAwMDBSmkpqami2acvr4+bW1taGtr4+npiYuLC/379ycvL4+rV6/S1NTUBa/m4OCAg4MDOTk5vHr1it69ezNgwABaWlq4e/fuJ6/vY9/nqqoqcQ2Sboeky5GZmUlDQwPDhg3D3d2djo4O7t+/LyosSdevoKAAGRkZMjIyyMjIwNnZmUOHDrFr1y4eP35MaWkp7969IzIykrFjx+Lk5MSwYcPQ1tYWYx7oTIj19PSYN2+eqCxbWlr+VfKqqqqKkZERsbGxQg+zsrKSH374gZkzZwps2MekIH19fVEoSL4Hif7c06dP2bdvn9BtbWpqwsHBgaVLl2JsbExrayuxsbE4OzuLcVp+fj6mpqZYWlpibm5OcXGxsItVUVHB1tYWc3Nz7t27122/8devX+Pu7o6rqysRERGcOXNGWIE6OjoKwoKTk5Po8Ev80eXl5amtrSUzM1OoJri7uyMnJ0d8fDyVlZWoqqoK6a+4uDj09PQ4evQotra2VFZWimRSVlZWaHNK7FJdXFwwMDAQWMZevXoRGBjYbccUa2tr5OTkUFdXF1J1GRkZZGdno6enh7m5OY6OjsTExCAtLS1MBDZt2kRxcbFwaPp4MhEUFIS2tjbXrl2jsbERBQUFWlpaSEpKEodTz549sba2pq6ujoKCAqysrJgwYQL+/v6i+Px4XPj8+XNevHjRbZIIdHZJb926RWxsLNbW1kLn9eLFi3h4eDBy5EhkZWXR19enR48eooiWaD77+vqSnZ3N3bt3sbKywtXVFXt7e1paWlBQUKCkpESM2/38/DA0NOTx48dcv35duOMsXbqUWbNmCZKFpFvu5eWFm5sbampq/Pzzz7x8+RJ/f/9urW/s2LFYWVkxfvx44P+NgCWkKB0dHaSlpUW3SgJNOXfuHObm5hQWFmJmZoa6ujp1dXW0t7eLA0fid19TUyPWXVJSQmZmJhoaGqioqAh3OImBQ35+Pi9evEBWVhZHR0dRwBcVFZGQkEBhYWG376GVlRU2NjZif+zVqxe2trZISUmhrKxMVlZWF4mg2tpaFBUVUVNTw9HRUUx0Ghsb8fPz49WrVyQnJ7N//37WrVvH4MGDuXTpEnFxcTg6OmJnZ0dlZSUFBQX069ePb7/9Fg0NDdra2gSeT9KBkvw7JSWFO3fuoKWl1WXi9ymxaNEicnNz+fDhA0VFRRgYGNDY2EheXh4BAQGsW7dOcBQkJMGbN29y9uxZ0XHs6OjA0tISNzc30dDp6Ojg5s2bODo68vnnn+Pg4MCdO3dwd3enoqKC4cOHo6amRkJCAm1tbeJ8kJaWxtfXF3Nzc2xsbHj58iWlpaWYm5vj5OQkxt+xsbGfvMbBgwfT2NgoJh2ScfqTJ0/E+TxkyBDa2trQ0NAgMTGRN2/e0KtXL9zc3ITijIWFBXv37qW2tlZI+Q0fPpz29nZcXV3p6OigvLwcZ2dnzM3Nxfvs7OxMcHAwlZWVDBo0CEtLS/T09AgODhb7gbS0NDNmzEBBQUHoOHcnGhsbUVdX72LAJLFgh86kPzMzk9zcXKSlpVFWVkZOTg5DQ0PMzMzQ0tJCWVm5C2nrwoULwr0QOptgFy9epLCwkOHDh2NjYyN+f25uLg0NDWLfhs4kMysri7dv3+Lg4ICtrS2XLl36V1DBo0ePoqysjJOTE+Hh4ezfvx9HR0dxvenp6V3I3x9jvyWYVB0dHQYPHoyzszNVVVU4OzuL91ZC5k5KShLKJTt37hTJ8ObNm3n37h1SUlLEx8dTV1eHhoaGMKdwcHCgurqav//+W0Bv/q/odvJaXFxMv3796NmzJ+np6SxdupSrV6+yYcMGkfhdvHiRyspK7OzshI6ilJQUs2bNEuNjOTk51NTUaG5uxtTUlLa2NiExIhlrjRo1im3btpGWlkZUVBT29vYYGRkJdqokoZQ8AB0dHWRlZdHY2Eh9fT0qKiqMHj26W8nrxyEhSKWmpiIjIyNEezMzM7l8+TKxsbE0NzczefJk/v77b06fPs3atWvF4V1ZWSkOgPDwcFatWsXQoUM5e/Ys06dPJykpSYgEQ+cD4+TkRGhoKPb29l3sBCVagh9HZmZmtxiHH4eamhpVVVU0Nzfj4OCAjIwM+/btIzExkQMHDuDq6oq0tLSwGvw4SZbgkzds2MCdO3eE0oKenh7v378XjH2JlMbatWspLS1l9OjR1NXV8ccff5CQkEBwcDC//fYb48ePZ+zYsYIwMXz4cOGAdOTIkW53Cq5evSpws4aGhvz111+Ul5eLToSMjAyhoaGC/CMJc3Nzzp8/z4IFC3BxccHf35+VK1cCcPbsWUEKGDVqFKtWreLAgQPcvn1b4CJNTEz48ssvhXuNpOr8/fffhSzW6dOnCQ8PZ/v27Xz++efMmjWL8ePHs2XLlm4xuSU6r9DZVfvjjz+IjIwkKCiI0aNH09LSQltbm5DiUVJSoqGhgdevX4suzsfPk6ysLD/99BN6enq8ffuWgoIC1q5dy7t371i2bJnAA8rKyvLy5Us0NTWZN28eY8eOpaWl5X/U4m1vb+f8+fNERUV1waJ+Sjx79owzZ87Qt29f1q5di5aWFvfv3xcjS8n438bGhidPnlBUVMSQIUNYuHCh+Kzbt2+zY8cO7OzsWLduHSYmJpSUlAgDBUdHRzw9Pamrq+Pbb7/l6NGjQkFCWlqaqVOnYmJiwoIFC4iNjWXjxo1MmzaNn3/+Geg8FL777jumTp3KsWPHukVoOnHiRJd3fOTIkQQEBHS5L0uXLiU1NZWnT5/y5s0boFNZYvfu3Wzbto2FCxdy4sQJ0tLSxCHq7+/P8OHDefPmDZcuXcLMzEwYvzx9+lT4pIeGhnYZlb97946dO3ciJyfH0qVLhdPeihUruHXrVrc1UKFzIrZ79268vb25ePEiJSUlWFpaoqSkRExMDHfv3hUKNICAcXz77bcsXLiQo0ePsnbtWiwtLVm6dCm//vorX3zxBQ0NDSQnJ9OzZ09RLNrb2wt4TnNzM0VFRWJ9KSkpPH36FFtbW5GUSMiS79+/Z926dRgbG/+33cr/Lf7880/a2tq4ePEiFy5cYMSIEbi6urJ+/XoMDAzo3bs3dXV1Yvp26NAhli5dir+/P1u3buWff/4hNzcXNzc3AgMDxcTr4cOHbNmyBRMTE/bs2UNgYCDW1tb89NNPGBkZcfjwYWpqarh16xaff/65gO4pKChw+vRp5OXlqamp4fLly3R0dNC/f39kZGRobW0lICCAy5cvf/IaBw0aRGBgYBcTlkuXLjFz5kwmT57MgQMHWLVqFT179kRZWZnIyEgiIyPx8vISz3diYiKvXr0iODgYDQ0Ndu3aJRw5fX19aW9vF/dDQgCTTI4aGhr48ssvxXlkaGiIm5sbUVFRbNmyhaysLHx9fTEzMyMpKYknT5506x5C5/4owZg2NjYSExODkpISHh4eVFdX8+TJE7KystDX12fZsmX06dMHU1NTVq1axZdffomMjAz19fUoKCggIyNDR0dHF415Ly8vvL29hXlLWVlZl8Ruw4YN2NnZMWnSJAFbuH//PmvWrCElJYXnz5/j5+fH6dOnheJDd2L58uVYWlpiZWVFfn4+SkpKuLm5CXUDLy8vAZc0NjYWZ1d8fDyHDh3iyJEjtLS0MGLECMEH+lidxtvbmxUrVnDgwAGio6ORlZWlo6OD+vp6Tp48ybp164DOAmb8+PGMHz8eV1dXGhsbRYPzypUrbNq0CVNTU4H//9+i28mrRPsROtvAa9euFaLvkZGR/PPPP5iZmRESEkJ1dTXXr18nPT2dAQMGiDGDZIyfkZEhpE8k7OiUlBSuXLlCSUkJra2tFBcXc+PGDe7fv8+GDRuYMGEC8vLylJeXd9n4IyIiePfuHQUFBXh6eiItLU1BQUG33USuXLlCWVkZwcHBwnnqzJkzFBUVMX36dLy8vPDw8KCgoAB9fX1aW1s5deqU0KidNGkS/fr1IykpCV1dXVE9ZmVlUV1dzblz5/jiiy/49ttvmTRpEm/fviUrKwt7e3tyc3M5fvw4Pj4+zJkzB+hMFAsKCmhvbycxMZFr165hY2PD0KFDuX79OpcuXRId6O6ElpaWwHzZ2NgwZcoUmpub2bVrF+PGjWPJkiXMmDFDyAvJyckhKytLQUEBr1+/RkNDg9DQUIyNjVFUVERPT0/IikhGlbGxsRw/fpyUlBTa29s5ePCgkHuZMWMGw4cPFxuqpEsJCOODly9f4unpydChQ7s1Vnd3d+fGjRtoaGhQV1fHF198gYyMDBYWFhQWFopnOC8vjxMnTuDt7Y2vry+6urqUlpYCnZXo2rVrsbGx4eTJk7x//178fjs7O4yNjUUn2tDQkI0bN2JtbS1s7iT4Jujs6g4bNoy5c+eKiUVKSorAZsfExHQbw/To0SMhHi0tLS3eiQ8fPtDW1oaysnIXXLSLiwvTpk0TjFJZWVl69uyJrq4uKSkpmJiYdNnAbGxsCAgI4PfffxcwFonXta2tLdOnTxddqqqqKhITE8nKyuLDhw/ivx0dHfH392fChAkMGDCg2+LoNjY2zJkzh8GDB2NgYMD79+/Jy8tj9uzZXcwfmpubiY+PFxJQhoaGwmddS0uL6dOnY2JiQkVFBWfOnCEuLo6AgACGDBmCtrY2ERER7N69m3PnzgGdTmj29vYUFhbS0tLCy5cvMTMzw9TUVLDgJdGjRw+2bNmCjY1Nt8fqVVVVhIWFcfnyZYyNjfnll1/ERn7z5k2io6OZOHEiFhYWfPXVV8jJyfHbb7+xZ88eMjIyOH78OO7u7jx58oTKykoaGhqor69HR0eHcePG4eXl1cUd5+bNm1y8eJHq6mo0NDTQ1tamqqoKAwMDhg4dKsihEuUM6MRF37p1C+h0QuzufgqdCd7EiROFbnRHRwdv3rzh8ePHVFRUdHEnkiQBEpLZwIEDiYiIICYmRiiU3Lhxg3PnzvHnn38iKytLVVUVdXV1FBUViYJOXl6elpYWJk+eTHl5OQYGBkIiq7GxkYqKCtra2jAyMsLJyYkFCxagoqIioBmfGlevXmX06NGMHDlSuPDZ2toye/Zszp49y5YtW4SiwKVLl1i4cKEg3A0cOJCHDx+Kzm1YWBhv3rxBRkYGWVlZ2traiIiIYNy4cSxYsAB5eXlev35NdHQ0Dg4OmJmZYWhoKDq60ImFLygoEEWri4sLPXv2FIlZQ0NDt7HZgJhwFBYWcvnyZc6fP4+GhgZv3rxhx44dzJo1izlz5lBRUUFKSgpaWlpUVlZy7do1Xr16RVRUFJqamrx//553795x/vx5YVABiG6mZAJrbW0tiqX379930Vrv6OjgyJEj7N27l5SUFKBzvz5y5Ah9+/YlKChIaON2Z32SaG1tRV9fn+LiYtE8ycvLY9iwYejo6AjIn4RfUFVVRUlJiZDky8vL49y5c0RERAguD3TmO3369MHPz090/QExNWlqaiIsLIz9+/ezefNmgoKC+PXXX9m5cyfPnz/HxMQEa2trZGRkuhQSnxLu7u7U19fTu3dv1qxZQ15eHkePHmXQoEGsXLmSsWPH8vz5c44fP46DgwNBQUEUFhYSFhZGamoqQUFB9O7dm/T0dA4ePIiSkhL9+vXD09MTQ0NDHB0dhaTnoEGDGDhwIFVVVUyYMAFZWVmmTJnCtWvXkJOTY968eSLxLS0tpaKiAltbW2GDK+E5/J/3rFvfAAhcVElJCVVVVVhZWYlq8dq1a0RHRxMQECBYr/v27eP+/fuiysjPz6eyshJ9fX0ePHjAo0ePxKKhs9sise+rrKxk1qxZYlzV0tJCS0sL1dXV5ObmEhkZKUgxenp6aGpqik6ikpISV69e5fTp091iH1ZXV6OkpCQA5g8ePCAzMxN1dXWKi4vJz89HRUWFUaNGiYT78OHD6Orq0tjYyNOnT1FQUMDGxob29nays7OJjY0VCf7jx4/Zt28fvXv3Zv78+RQXF+Pq6oqLiws5OTlcvny5i7+5BKsmgVPcvHkTJycnbG1tKSws/FduKZJwdHQkMzMTGRkZFBUV+fnnnykqKuLSpUukp6eLF7q4uJjCwkJsbGwwMjKiZ8+e1NTUoKury6RJk4QcDSBGsa2trSQnJ6OlpcX8+fOJiopi9+7dWFpasn//fgYNGkR+fj579+7FwsKCzz//nJaWFvLy8rC0tCQhIYHjx48TGBjIyJEju7UuGxsbbt68ycOHDzE3N+frr7/G2tqa2tpawdiGzqQnNzeXZ8+eoa6u3uXPxo8fT1BQEMXFxTQ3N+Pp6YmUlBRJSUm8fPmSkJAQNDQ0cHd3x9bWlsDAQOzs7Ni4cSNHjhxhxYoVgoFuZ2cn7HNbW1tpa2vD2dmZkpISUlJSOH/+PK6urrx+/fqT11hZWYmMjAwVFRVoaWkxfPhwGhoaxPPSo0ePLhjGsWPHsmzZMvGzH2tlfjwekyh9qKmpkZKSgpGRkdBzloyDZsyYwbx58wC4c+cOtbW14vm8fv26OFCkpaXp378/8+fPR0NDo9vi4X379hV2j9nZ2bx48QJ7e3tRrDU3N9PS0iLUKyRkwoaGBh48eMCbN29wcXFh7dq1AIIAeO/ePQwNDQkKCiItLY1du3YJC9YpU6bg5+cnPvfGjRuUlJTw22+/iT2stLRUyOh4enri6enJo0eP+Pvvv7u1vqtXr7JlyxZycnKwtrbmwYMHTJw4kY6ODu7evUtWVhaff/65cNTx8vJi5cqV9OrVi8GDB3P58mUuX76MnJwcSkpKREZGAp3voJ+fH4GBgWIfrq2tFc5umpqaXL9+nWvXrtGjRw+GDBkiMP0rV65ES0tLrF9FRQUDAwNCQkKYN29et5PXefPmcfXqVZ49eybw1ikpKVy6dIkzZ84IrUnoTJTfv3+PlZWV6BpPnjyZFStWsGLFCvbt24eamhpz5syhsrKSiRMndoEySElJ4enpiaWlJaWlpVy4cIGkpCTevXuHo6MjO3bsEM+OBF/Z1taGiYkJv/76a7fWJQmJzWf//v3p1auXgDgpKyvz7NkzDh48KOAga9asoaWlBS8vLxQVFTl+/LjgApw6dQp1dXUqKyuFHGJAQIBw2vrmm29QV1cnLS0NWVlZLl68yIwZM4RcpaToKSwsFOoeo0ePxs3NjZKSEjGO19TU5MyZM93iEUgmpYqKirS3t3PkyBHk5OTYs2ePsGstLS1ly5YtxMbGCnLZ8+fPOXv2LCkpKTg6OuLm5kZ2djbnz58HOmFbkuvIz88nOjpa2I42Njaip6dHbGws79+/x8vLSySvX331lcB629vbIy0tTXJyMvv27cPU1JTZs2d3O3ltbm5GRkaGhoYGVFVVhevhn3/+yZ07d/D392fw4MHEx8dz9OhR3r59y8yZM9HQ0OD169fU1tYK7deEhATOnj1LeXk5Hh4eQlEJOhNjT0/PLljQ0NBQZGRkiI6OJioqiqqqKrZv346GhgbOzs74+/uTnp5Oeno6Ghoa6OjodIvHA50ToocPH6Knp0efPn3o06cPWVlZ/Pjjjxw9epS2tjbu3r3LgwcPePDgARcvXkRJSYmsrCx69erFjh07hGnLnTt3hDxkeno66urqjBs3jtGjRwtzoKCgIMLDwwUccu7cueTl5fHy5UvhTnnnzh0uXLiAqqoqU6dOxcPDg++//57k5GRBDP7fotvJqyROnDghNh9tbW1qa2txdnZmy5YtKCsrU19fj7KyMra2thw9elRgCWfNmkV2djbXr19nxowZ2NnZ4enpSVVVFVu2bOHWrVsMGTKE77//nrS0NE6ePAl0OllJbPIkAs5bt26lpqZGYIIcHBwoKysTL/LHWKpPjQkTJqCoqMiFCxf46aefaGho4Ouvv2bixIk8efKEkJAQ6urq+O677wQ5Y+LEidjZ2fHgwQPOnz+PlpYWo0aNIjs7m2XLlhEZGcn8+fPZs2cPu3fv5uDBg6KTZ2xsTFVVlZACk5OT4/Hjx8jIyBAQEICioiI6OjrY29szZcoUxo8fT11dHT169KBfv37MnDmz22N16NRXnDlzpmDyPn/+HG9vbzZt2kRwcDCmpqYCrP3mzRuePn1KQEAAo0aN+h/ZnCkpKfzwww84ODjwww8/MHXqVIHtLCwsRF5enoCAAKFksHLlSs6cOcN3330HIMYLGzduZPbs2TQ1NbFnzx4OHz7cRQLo/4oHDx4I+Ztbt26xZ88e5syZI7BUkrCysmLhwoXs37+fhQsXCjcmAwMDLC0tkZKSwsDAgOXLl6OoqMiDBw/YtGkTDx8+5M8//2Tq1Kls2bKFbdu24e/vj5WVFSkpKdTU1HTBeKakpLBhwwZu3bolNGLv3r3Ljh070NLS4rPPPqNXr17dSu4GDRokEtCWlhZUVVUZMWIEbW1tdHR0EBsbi7+/P1euXEFBQUF0ZyRWmJKfffjwIVpaWoJ41KdPH86ePcuDBw9IT0/Hz8+PSZMmcfnyZbZt2/Yf1yGRgLOzs8PU1JT4+Hjq6+tZu3YtISEhFBUVUVZW9q+w2U1NTaSlpZGQkEBtbS329vYCV9rS0kJRUZEQRm9sbKSsrAwLCwthFX3gwAHS0tKYN2+ewG2vX7+eyZMno6CgQHZ2Ni9fviQ1NZWAgAC++eYbiouL+fLLLxkxYgQ//vgjAwcOJDs7u4uphASqI7mWhIQEARvpDi5UVVUVT09PFixYgI+PD2/evCEkJARZWVksLS1ZsWIFBgYGQvJIgoWTyAFu3boVWVlZRo0aRXt7uxgFFxQUcOvWLZSVlenVqxeKioqCTT937lxCQkI4ceIEx44dY+DAgfj7+3Py5EmMjY3/Q4bHxcVFiMjn5+d3+x46OjoiLy+Purq6kCeztrZm0qRJIqmNjo5GXl6etWvXUlRUxMKFC1FWVqagoIAHDx6Qn59PSUkJycnJrFmzBjk5OdGp0tbWZsSIEZw8eVLogiYmJjJr1iwcHBy4evUqWVlZ5OTkiG79x8VaTk4ONTU13dpfPo61a9dibm4uZCF79uwpCGiSyaCUlBS1tbXIyMjg6urKokWLuHXrFqdOncLJyQkVFRVycnIICAhg5cqV3Lp1S6ishIaGEhISwqtXrwQcycrKiiVLluDv709lZSW1tbVieqWvry8cm0xMTIiMjGTDhg3Ex8fz559/MnPmzG4TYD+Gi6iqquLu7t6F0Hrp0iUuXLhAfX09UVFRovh59eoVVVVVzJ49m9DQUDQ0NCgqKqKlpYUTJ04gKyuLjY0NDQ0NTJs2jUePHuHn54e3tzcpKSnExMRw5coV3N3dhTzVvHnzOHToENCp3rN06VKKiorYtm2bSCI/di371EhJSRGkawlMTkFBATc3Nzw9PZk+fTr6+vpUVlZiZmaGnJwcHz58oGfPngQGBgplC8l3ZGlpKZQIPu4iXrt2jZKSEkFsgs53ZOzYsbi6urJ8+XLa2toICwtjxIgRrFixgtWrV9O7d29SUlL+1T4KnfJoffv2ZePGjezevZstW7awfPlyBg4cyM6dO9m9ezdaWlqiwSYxVgoNDWX16tVYWloSGRnJxYsX8ff3Z+3atSgqKrJr1y6uX7+OgoKC0EOXTBx69OjB33//jZaWFpcuXeLVq1c0NjaKhLm2tlZc18cEeUdHRxwcHHj+/Pn/uqZ/nbwqKyujrq6OlJSUeKns7e0ZMWIEb968YdeuXQwZMoRXr15RXl5OdnY2qqqq+Pj4oKysjJKSEgoKCoKU9ODBA2Gt2K9fP1pbW0WVrampKSQUpKWlGT58OLGxsRw5coStW7cKF4eHDx9iamqKs7Mz9fX1mJqaEhISQnh4+Cevq6qqioiICO7fv4+6ujqBgYG4u7tTXFzM/fv3BZFj6tSpvHz5Ugj1Ojo6Ul9fT01NjZAJsbe3x8rKisjISB48eMCBAwdYsmQJ9+7dAzqr/qSkJG7fvi26e+rq6rx9+5bk5GTk5OTw9/enra1NAKr/q92tq6trt5PX9PR04WOfn59PVFSU6Gp97OGckZEhLGOtrKxwdHQU1ywRYX7z5o1wDlNVVUVBQYG8vDzi4+ORkpJCRkYGJycnTE1NaWpqIiYmhtOnT3Pt2jXOnDmDpqYmGhoahIeHc/78eXR0dETBkZ+fT2pqarcdtszMzPD09KShoYHz58+TkJBAdnY2tra2KCsrU1FRwatXr4S8k0TTz9LSkmnTpiEtLU1DQwOXLl2ipqaGvn37CnD7nDlzePTokWDdOzk58fDhQx49ekRDQwO9e/fG19f3P8g7ffr0oUePHsJuUFpammPHjjFlyhTBYu9OtLS0EBcXh4WFhbCdlCSoEgve6dOndyH3NTQ08P79exoaGtDW1qa6upqioiLRcSgrK0NRURFnZ2c0NDS4evUqioqKyMvL09zcjKGhIVpaWigqKgqzh/79+3Pw4EFkZGTw8/Pj6NGjHD16FEVFRbE51dfXd7Ef/dRobGwUrlBSUlKiA//+/XsKCgrEuNnGxoZJkyaho6MjipOioiIGDBggxvnFxcXk5eUxatQo/Pz8KCsr47fffhMGIxMmTGDEiBHExcVRU1MjhM4VFBQwMjLizp076Onp4e7ujr+/P6mpqdy7d48PHz5QVVUlCDfd6Uw2NDSgrq4uOmRnzpwhPDwcBwcH3N3dUVJSoq6uDhkZGT777DOam5vJz8/H2NiY+fPnc+3aNXJycrCzsxNmDFJSUvTr14+2tjYKCwsF8eXUqVOcP3+e0aNH4+vrS1paGs+ePWPw4MFCBzk6Oppr164BncWti4sLhoaGTJ06laKioi5yTZ8akvcEEFJq5ubmODs78/3333Pp0iUxmZC4usnLy1NSUkJUVBS3b9+mo6NDwGokkJ/c3FwqKioYMGAAS5YsoaOjg4iICFRUVDA2NkZPT4/S0lJkZWW7qNjcv3+fxMREUeTU19d3wf12lxwqkeK7f/8+r169EglQRUUFmpqaTJw4ERcXF1xdXdm0aRPR0dGCqOvu7o6CggIVFRXo6+sL3WJtbW0ePHjAixcvePv2LZ6enoJMo6GhwbRp08TnaGpqikJUMm6XTCNfvHjBw4cPBZ/kxYsXNDQ0ICcn160ETwIZA4Tts6TzNnfuXMENkUjvAVhaWjJ8+HDGjh3bBWpTUFAgrGlLSko4fvw4+fn5Qse0vb0dNzc3lJSUBJn09evXHD16VDhdqaqq4urqyuDBg+nZs6cghcXExGBsbNxF+eBTQ0ND4z/sVjU0NAgODqa0tJTq6mr09fUZOXIku3btEnrImZmZPHjwgLdv3+Lo6Mi0adMYOnQoxsbGXLp0iYiICCwtLZGRkaGyspK8vDza2toEnvfVq1fijPmYLO7g4MB3330nus1SUlKieC0sLCQvL69b67t37x5nzpwhMjKSiooKvvrqK7Zu3Urfvn1pb28nKiqKvn378vvvv5OQkMDixYtpamqif//+orFx/PhxXrx4QU1NDXZ2digpKeHv78++ffvYv3+/kLs8fPgwHR0dFBUVMXXqVNra2sjMzMTIyIj29nahvqCgoMCmTZuEAU1bWxt1dXXk5uZ+kpzbv0peW1paGDRokKimNm7cyIYNG8QHVldXc+XKFQ4fPiw2PEkn6ocffhCHpMRVxszMTDh05OXlcfLkSVpaWhg4cCCfffYZBgYGNDQ00NjYiJaWFra2tnh4eHDkyBFUVVVJS0sjPDycv/76i9DQUDHO79u3L2ZmZt1KXg8fPszmzZsJDg4WL1R4eDhr1qyhvLwcHx8fUlNTKSkpEaDz0NBQzM3NkZeXZ8qUKUhLS5ORkYGbmxt79+7l6dOnVFdXU1JSQktLC4qKiuLhrayspKqqivb2duLi4mhvb0dOTg4TExPRUXN0dGTNmjW8ePGCsLAwIZ8lGRl3N8LDw/nqq6+Ij48nIiICY2NjgoKCushiZGdnc/DgQcLDw/H39+eXX35BXV2du3fv8sUXX+Dh4cGmTZt4/Pgx27dvZ+vWrSxatIgDBw7w+PFjrl27xp9//omWlpbQwYTOLtX69etJS0vDy8uLsLAwoqOjmT17Nr6+vmJ0HhYWxuLFixkwYAB///03Gzdu/OT1jRkzRqyhZ8+ezJw5U8hwtLW1kZeXx/79+wXGcfXq1Xz33XciUZJIeqxdu5a8vDwmTJiAt7c3tra2BAcHM2HChC6Mz7Vr17Jw4UKkpKQEjEOiPBAfH4+7uzuzZ89GXl5edDEkZCNJot4dAgV0joH++OMPlixZwsqVK8WBBf9P7SMuLg4TExMyMzOFoUfv3r1pbm4WXSEnJyexucbFxVFSUsLIkSMxMTGhd+/e3LlzhydPnpCWlkb//v2ZPHky+vr6FBUVoaGhQVlZGeHh4Tx58oT+/ftjZGTEwIEDGT9+PLq6uoSHh2Nubi424e6EtLQ0jo6OtLS0UFZWRkVFBWlpacTGxuLo6CiefXV1dWbOnIm8vLwonD98+MCKFSvEXvD9998THh7O7t27mTFjBjk5OcLFSNKpfv36NWpqamzbtq3LWC4pKYlly5YJKTRpaWmKi4uZO3cuGhoahIWF4e7u3m2r5rS0NEGgqqyspLm5mZ49e+Lr60t9fT1nz56ld+/eBAQEMGLECLKyskQSp66ujqqqKlVVVYSHhyMlJUVTUxO9evXC2dlZsH/T0tK4dOmSGLPeuXOHVatW8fTpU3JyckhNTcXLy4vg4GAaGxtZt24dcXFxmJqa8t133xEUFERzczNGRkZYWloKt6Z/EzIyMujo6NDc3Iy8vDwhISGMHTuWpqYmkXS/fPmSixcv8vDhQxobG4Vbm8RNad68efTr10/APCoqKgTcR6Lc4urqyo0bN5gzZw6jR4/m119/FUX/69evOXHiBGpqagwYMICePXt26bp212FLEkpKSqiqqlJbW0tCQgIxMTHIyMgwcuRInJ2dsbW1xdbWlrdv33Lo0CHWr1/P/Pnz2bhxI5WVlSxYsABjY2N+++03jI2NCQ0Npb6+nrS0NNauXUttbS1aWlqcPXsWW1tbzpw5g62trVCqaGpq6jLtefDgAWFhYZiamhIeHo6enh5r165lxYoVjBs3Tpi0fEpI4FYFBQXcvHmTp0+f0qdPH+rq6tDX12fp0qXiM6OioigpKeHhw4eEhITQq1cv4uPjUVBQEG6UEunLgoICvvjiCxQUFHB0dERTUxN/f398fX0xNTVFXl6epqYmHjx4wPr16wkNDWX+/PmsXbuWlJQUcnNzuX79Ov7+/vj5+dGnTx/a29u7rdwC/IdkmoQNLyGXSaQhJ0yYIDSZAdavXy/4GLNnzyYkJAR1dXV69uzJkSNH6OjoYOLEicjIyBAbG0tISIiwGX/58iV79uwRijMfh52dHSdOnBATAskkGzrhNZIG2KfG8ePHOXr0KOvWrWPcuHEsXLiQfv36ddHZ1dDQoGfPnnh5eZGWlsYvv/zShXQmabIkJCSwevVqfv/9d3r16oWBgQFFRUX8/fffAtMOncXJ77//jpOTE0FBQcI968qVK0RHR6OkpNTlXJDAF+/fv8+hQ4e68Br+u+j2mxobGysgApJkZ8WKFUDnYXP79m0SEhKEbSJ0ujCtWrWKuro6ofs5aNAgkpOTOX/+PHPnzsXX15e9e/fy2WefUVJSQklJCd7e3uJQljxM0Hk4Kysr88MPP9C/f3+cnZ3Jz8+noaFBkFAUFBTQ1NTs4lDzKaGhocGAAQO6MKMfPXpEcnIy7u7urFixgubmZp49e4aCggK2trZYWVmhp6cn7GF1dHTw8vIiJyeH+/fv4+3tjbe3N2pqajx8+JCcnBxMTEyQkZHBx8dHeFtLHClCQkJYtmyZYJACDB06lI6Oji52bv8mcYVOLNK8efOoqqqio6MDNzc34byTnZ0txIkzMjJISkpCRkZGJIJXrlwhPT2d5uZm9PT0cHV1paWlhQcPHjB06FCB15U4pFy7do25c+cybNgwdu3ahaKioqgcQ0JCRNdl1KhRXYwIpKWlcXZ2ZvLkyd12TCksLOTgwYO0trayePHiLt+jjIwMampq9O7dm+zsbDQ0NJg0aRLW1tbCGhA6pcCSk5PR1NRkyJAhQnfx42spKioiPz9fdNihkzh47do1Zs2aJaS4Hjx4IDZsf39/evXqhY+PD1999ZUQnXZxceH27dufvEYJKeru3btCEeHy5ctcv34dDQ0NbG1tCQsLIywsjEWLFnXp2EsO6OjoaO7fv8/AgQOF57yqqqogmlVWVpKfn092djYfPnzAy8sLf39/MZrdtGkTJSUl+Pj40Nrayq5du5g/fz59+vTh66+/pri4WLx//0YjNCYmhrdv3xIQEMCAAQO4efOmsDbV19entLQUFRUVWlpayM7O5tatW1y4cIGCggIhexUYGIiqqirjx48X04/s7GzS0tJ4+/Yt1dXVAFy/fh0rKyvc3d1JT0/nyZMn3Llzh9WrV1NXV0dycrKQaHJ0dOTkyZOYmJgwYcIE4Uve3QmBr68vtbW1wtRlxYoVnD17lri4OJSUlBg6dKggn0nEvHNycigsLKSmpobAwEBiYmK6WNPGx8fT0NAgyJARERHCLGTatGmYmJiwY8cOkejcuXMHBwcHodwybNgwYf8bFBREdXU1YWFhuLm5dbE1/tRISkrq0rH/OG7dukVSUhK+vr706dMHBQUFYSVuYmKCpaUlampqvH//noqKCnx9fUWn09zcnB9//JG6ujrOnz/PiRMnALrANhYtWsSWLVv45ptvWLRoEZ999hljx44lJydHyFPl5OTw4MEDjIyMmD59ehcizadEc3MzeXl5pKWlkZaWhpKSEi0tLWhpaQmnvY8PaB8fH6ZMmcK8efMwMzMTLmjLly+noaGBsLAwlJSUBDxLYoOclJTE4MGD6d27N9ra2jg7OxMREcH79++xsLDAz88PY2NjIV+ZkpKCm5sbXl5egjDU0tKCtrY23t7en0SIkUR1dTUvXrzg9OnTYnqxbNkydHR0uHnzJsnJyUydOpWgoCB+/vlnLly4gIyMDIcOHUJBQUFM0yRcEi8vLyIjI8XEwtLSktbWVpSUlKioqODs2bNYWFhQVFREfX09srKy+Pj4YGZmxu3bt/H29iY4OJjy8nJhUiElJSU6fxL71u7E06dPuXr1qpAa8/b2FnuXt7c3cXFxnD9/nsTERHr16sWwYcNQVFSkR48eDBo0CC0tLebMmYOhoSHx8fFs2bJFGDG0trbS3NyMubk5s2fP7mKU079/fzw9PWlpaeHRo0ecOnWKyspKTExMcHJyok+fPpiZmdHW1kZtbS1tbW0i2Y+Pj//k9fn7+6OpqcmaNWtQUlLi3Llz+Pv7Ex4eTkBAABs3bkRZWZnXr1/Tv39/UTwpKyuTlpaGnZ0d06dPF1JXEtMNOzs7Tp48ydatW7l79y75+fmoqalRU1ODhoYGPj4+wr1u3Lhx1NXVcfToUaATHmBpaUlLSws1NTWUl5fT3NyMurp6FxLn/xTdTl5fv34tsKS6urq0tbWhpqbG+vXryc7O5vHjxzQ0NNCjRw+qq6sZPnw4y5YtQ1ZWluTkZCHZIBEBf/r0KdbW1vj6+ooqYO3atTg5OYnEtbS0FHV1dTo6OoSbiK2tLUOGDMHIyAhpaWnmzJkjGPr/f2LRokXCg72oqIiTJ09y+/ZtdHV1CQwMxMfHB0NDQ4F3rampQUVFBWlpaTIzM5k+fTpOTk5MnjyZixcvMmfOHAYMGCDIMioqKpibm1NXV0dLS4tgdvfr14/379/T1NTEF198IeAUEpecj+V/WltbBfZF4nbVnZAwIq2trUWSBZ1dDBkZGQENkIx629rauHPnDvX19WhpaaGgoIC9vT3Nzc307t2bhQsXUlNTw86dO6mpqWHgwIFMnz6dgIAANmzYwLZt24iLi2PNmjWYm5vT3t5OVlYW7e3t5OXl4eLiwvHjx2lqaqK0tBQ5OTl8fHywtLREU1Oz225ip0+f5uzZs8ydO1ckrlVVVcLj3sLCgtWrV7N69WrxMxKdVEkntK6uDkNDQ8aPH8/kyZOpqakhNjaWsrIyNDU1SUpKEslTdXW12OgePnzIhQsXhDUgdCaaK1eupKWlhSlTprBmzRp69uzJ5MmTqa+vF1qj3QknJycsLCy6QA6Ki4v5559/mD17NpMmTeLx48e8fPlSJLeAGDtD56F0584dOjo6GDx4MC4uLoJQJrn/lpaWODs7k5qaSkJCAjU1NRgaGmJhYUFYWBgyMjLcv3+furo6lixZQkNDA2vWrGHp0qXU1NSgrKws3GO6G2/fvuX06dNCtD06OpqsrCxmzZqFo6MjsbGxlJaWClma/fv3k56ezsaNG7G1tWXlypUcO3aMe/fuMWrUKOrr69mwYYOQbdHQ0BCQCBkZGbS0tCguLua3336joKCAx48fExoairOzM7179yY2NpZTp04RFRWFoqIiN2/epH///sTGxtLY2NilSPqUsLOzw8nJCVlZWYyMjDAyMqKgoICrV69ibm4uJiwFBQVcu3YNdXV1zM3NeffunZAG8/X15e3bt4J9LCUlhaysrNB0lSgF2Nraiv0jPDyc1NRUdHV1UVZW5vz585SVleHj4yMkwCTx8OFDIaT/byIrK6vL/lJZWSme9Zs3b7J7925+++03AXmprKwUZEBJfPjwgXv37qGkpER9fT05OTnIysqyfv16zp07Jwijjo6OeHh4AJ3vc9++fQkPD2fEiBFs2bIFV1dX+vXrxw8//ICKigry8vIcP36czZs3U15eTkFBgbBW/tSQl5dHRkYGJSUl2tvbKS4uRkdHBw8PD7KyskRCK4levXphamqKiooKDQ0NBAQE0NDQQFVVFVpaWixatEhYg9rY2ODi4oKxsTGJiYloamry4MEDJkyYwOjRoykqKuKXX37BxsZGFFDPnj3jxIkTuLu7M2/ePBwdHTl79iynT5+mrq6OlStXMmjQoG4lr21tbVRXV1NRUYGamhr+/v4CWnb16lX27dvH+/fv2bt3L/PmzcPNzY0//viDU6dOoaCgIGTSsrKyWLBgAXv37uW3337j9u3bAgJx69YtSkpKeP36NYcPH+4yxVBTU+PgwYOoqqrSv39/rl27xsCBAzEwMEBZWZns7GySkpJobW3FzMys226F0CkTt3fvXnFP+/TpQ1tbGw0NDYI4OnnyZDZs2EDfvn1FoRUaGkpoaKiQ+YJO22fJhCItLU3Yc0sY+Dk5ORgbG+Pp6SmIka2trURFRfHw4UMKCgrE+qdMmcLq1avp1auXMN5xd3dnyJAh3eJIzJ07F+jMaeTl5TEzMxPGGhK5uVevXnHhwgVKS0sZO3YsvXv3JiIigmfPntHR0YG9vb2QsITObrCcnBxBQUHk5OTw5MkTmpqaBPbX09OTsWPHChhmaWmpUBxJT0+nf//+Qq9cSUlJaFkPGzaMWbNm/Z/r63byKrHms7W1JT8/n5ycHGxsbNDV1cXCwoLBgweTl5cn9BMlh8nUqVOxtrbm4MGDXL58mTVr1qChoUFgYCDV1dVkZWVhaWmJn58fSkpKREdH8/TpUxobG6mpqUFfX59Xr151GbHcvXuX27dvY2dnR2trq3Ak+ZjJ92/j6dOnnD9/nsjISAF9aGxsFMlNQ0MDP/30E4mJicydO5dRo0ZhZmaGgoKCMGQwNzdHQ0ODxsZGkpOTcXR0ZOHChaIr5O7uzrt37/Dz8+OHH34QCgIGBgaUl5eze/duzp8/j5WVFZs3bxaCwlJSUjQ3NwtiTXe7y1OnTkVOTk5Y8UJnJ1dZWRkdHR3Ky8s5d+4cL1++FC4mEgHwzz77DENDQ6F1a2RkRFBQEC0tLURHR/Pu3TtevHiBu7s7Li4ufPXVV1hbW/P06VPWr18vpDUk4uMS5y7o7HZKYANGRkaoqalRVlbWbQyTra0tq1ev7lK91dTUcObMmf9WQy45OZmrV6+ipKSEp6cnWVlZpKSk0K9fP/T19Tl8+DDHjx+npqaGpUuXoqKiwqNHj3B1dRWbAnRuQMHBwejr6wtFAjMzM1xdXdmxYwdXrlwRSg579uyhX79+PHjwgB07doiO0qdGjx49uHTpkpAlAwQRydraGhcXF1atWsXz58/Jz88XGLyqqioaGhqwsbFh/PjxyMrKdiFkpKWl8c0336CiosLcuXOprq7m8OHD4juU6LmqqKiwY8cO3r9/T0pKCuXl5UJ+Kisri7///pvGxkbWrFmDvr5+F+WDTw1TU1OWLl2KgYEBly9fJi4uThTN0tLSqKqqEhYWRnt7O8HBwWzatInc3FyWL1+OrKwsW7du5e3bt/j4+BAREUFwcDAnTpwQozAbGxtsbW2prq4WxiJ1dXWCibto0SKB1QsJCcHFxQUVFRWBNZZg8D7//HM0NTUFufRT4+zZswQHBxMfH8+VK1eYPn06Q4cOpaGhgatXr3Lo0CHmzp2LiooK27dvx9LSkl27dlFcXCxgNDNmzODXX3/l4MGD7N+/n2+//ZY5c+Zw4cIFIiIiGDlyJFlZWRQWFrJ69Wo8PT35+uuvBdM7Ly9PWHjq6+tTUFAgDv+cnBxKSkqYN28evXv3/lfi6BJykMTT/NGjRyxfvpwffviB8ePHC6x0Q0MDFy5cwNnZGW1tbR4+fMizZ89YuXKlGOmWlpaioKCAnp4edXV1ZGZmCvykpaUlR48eFRg+ickGwIYNGzh9+jQXLlygpqami/X1xIkTiYqKYu/evezbt4+4uDiB8fvUMDc358svv8TDw4PS0lLs7e0FZOPatWtMmDBBaH9HRUXx6NEjdHR0mDt3Lh4eHsTGxrJkyRICAgJYsGCBwKArKSmRmprKsWPHyM/Px8XFhZaWFvT09AgICMDX11ecSSoqKhQUFODg4EBYWBj6+voioZXYyXp6eopxf3dCck7379+fmJgY9u/fT3JyMkuWLGHcuHFkZGR0mTp8+PCBU6dOMWbMGJGsSrTMJXajP/zwA05OThQXFws5u6qqKm7evElUVFSXz5dIvenr6/Pdd98RFxdHRESEkOPS0dFBXV2d/Px8Lly40G08KEBwcDCtra2Ul5fTu3dvGhsb+fvvv3n8+DHr1q3DxcVFnJU6OjrCeEISRUVFFBUVYWhoyIQJEzAxMRGKGnV1dYJPcvbsWT58+MCPP/5Inz59eP/+Perq6ujp6TF79mysra0Fqa2hoQFpaWkBi9HQ0MDQ0LBbkA9JlJeX8/LlSw4dOiTONmtrayZOnEhZWRljxoyhsLAQExOTLkW4g4MDubm5xMfH09jY2IWANmjQIGRlZTl16hQnT54UcIHW1lbWrVtHjx492LVrF6qqqkyZMoWCggLy8vL4448/qKiooLq6WsAilJSUsLKyoqSk5JMnWN1OXuvr60Vb3tjYmObmZmJiYsjNzcXU1FTouXp6emJsbMykSZO4dOmS0DAdN24ccnJyBAcHExgYyE8//cStW7f4/vvvWbhwIS9evKCxsZHm5mbevXtHdnY26urqGBoa0tHRQWJiInfu3MHe3p4XL15QX1+PjIwMpaWltLW1oaOjIw6c/Pz8bjMPjx07RkREBPX19RgaGhIYGIiOjg4VFRUYGRnR2toq7BdPnjxJZmamkPWQk5Nj7ty5qKur09raSo8ePfjxxx/JzMzk/PnzeHl5MWjQIEJCQsjKyuLdu3dA5yhJSkqKjIwM0a1KTk4WNqPv3r0jKChIJK+SSj8hIYErV65025Jy4MCBlJaWkpaWRnNzM2pqaqirqwuVBskGExgYyPLlywWGFDqLF1VVVVpaWkhISEBFRQUfHx/a29spKSnh/fv3tLW1iU6bi4sLn332Gbq6uowfP57Hjx8zZcoUwsPDaWhoEMSm2tpa8vPzkZOTIzs7m5SUFKFh+HGC9ikhGRVDJ3O0paWF5ORkcnNzRQepo6ODZ8+ekZqaSn19PY2NjSQmJhIdHY2vry9jxoxh4MCBXLt2jZ9//pmsrCz8/PwE/ktiApCcnExzc7PwNXd1dcXV1ZWysjLOnz8vcGkBAQEEBQWxevVqoqOjefbsGa6urqSmpgp8X3cOTUVFRWxsbFBXV6ekpISioiL09PSYOXOm+DuDBg1i0KBB3L59m1evXjFo0CCsra158eIFqampuLm5iXsrwSHW1taSmJgosLDx8fHU1NSgpKTE4sWL8fT0pLm5mffv3zN69Gg6OjoYP348b9684bfffsPDw0OoPDQ2NrJ8+XLgPzFlnxKWlpZ4eHjw9u1bbty4gaGhIUOHDhXFqaOjI2ZmZpSUlODq6iqY+SUlJWRlZYmfra6uJioqCicnJ/r168eVK1cEK1vi2icnJ4eHh4fQm7SwsBCF6osXL+jbt6/ohAYEBKCvr09HRwe3b98W48/uTghSUlJITEwkIyODrKwsrKysGDVqFGPHjqWxsZGTJ09iZmYmXLYMDQ3FSF/SpZWQnySkPSMjI9ra2nj27BmamposXryY06dP8/vvv1NYWIivr6/oniQkJJCRkYGdnZ1Iml+9ekV7ezvq6uq8fv0aZWVlgRv+Ny5pr1+/xtTUlLdv31JUVERraystLS1IS0vj4eFBe3u7UPYwNDTExMREFIkJCQkYGxsze/ZspKSkKC8vR0ZGBm1tbZSVlfnrr794/fo1PXv2ZOfOnfTt25fW1lZyc3OxtLSkvLyctrY24Xa4d+9e0tPT8fHxob6+nrq6OszNzfn888958uSJcNXrTjx58oTm5mZsbGzw9fX9jz+XqCZIIiMjg3379hEUFCSwkqdPnxbs+3nz5nHnzh3evXvHvHnzBK68tLSUR48eiWmDjIwMvr6+XaAcCQkJWFhYEBgY2KVzKcHWm5qaCiJbd0JVVVWcqR4eHly9epUHDx4wb948Bg0aJEh20AlNeP78OYaGhgQEBODq6iomqNbW1piamhITEyPIq+np6VRUVDBw4EBB6DU0NERJSQkzMzOeP39OQUEBhw4dYuHChdjb2wttcEmio6uri5GREfLy8rx79478/PxuQ+p0dXVZvHixIBfV1dXx6NEjzp07R0dHB7t27RLqAxMnThQdU+jkVjx9+hQ5OTkBIayvrxed95SUFOTk5EhLS6O4uBgNDQ2UlJS6kJ8lON+pU6f+x7VJ7JRTU1PJzMzE3Ny8205wiYmJ7N+/XygyhIeHM2HCBMaPH8+NGzfYs2ePsE7Oz8/n2rVrggzs7e3Nhw8fePbsGVFRUbx8+VJMD4yMjHj06BHR0dEieZ05c6awd9+1axfBwcEMGTJEOCZKFGIyMjK4d+8ePj4+6OrqEhMTQ3h4OFFRUZ+U03Q7eS0pKaGpqUlkx5aWlty7d4+VK1eioKDAL7/8Isb3urq6qKurk5eX14UAIRlxScZmly9f5sSJE0RERFBeXk5HRwezZ89m+PDh/Pzzz2RnZzN//ny8vb1RVVVl9erVqKio8PPPPzN27FiKioooLy9HVVW1C+lIIo7cnfj2228pKChg0aJFrF27FgUFBVJSUpCWlsbIyIiOjg5KSkowNzcnLCyMyMhIIiIi2LZtG/3792f8+PH06tULeXl5Pnz4QJ8+fXB1dSUlJYVr164hJSXFwIEDBfbFwcEBFRUVjhw5wubNm9HT0+PYsWPY2dlhZmYmKlZJ0lVbW0tdXR0GBgaMHz+etrY2Ghsbu3sb0dHR4cKFC9y+fRs3NzfmzZuHlpYWiYmJvH37luXLlws8piQePnzIr7/+SlJSEvr6+gwZMgQvLy8sLCx4+vSp0Onz8fER4vnFxcXo6+tjaGjIqFGjGDNmDIMHDyYpKYlnz56JZ0FZWRl7e3uKiorIzMykqqoKV1fXf9WxkwhyQ+f4PywsjNevX+Ph4YGPjw8dHR1ERkby999/8/btW7744gvmzJnDr7/+yuXLlxk1apQQUZb4k3///feMHDmS9PR0KisrhYjzjz/+SHh4OIGBgRw+fFh0wb28vDhx4gQODg40NjZy+fJlzM3N+fXXX4VDVUNDA/3792fr1q04OTmJEe+nRFVVFVu3bsXZ2RkdHR3u3r1LZWUlwcHBeHt7d7HylRzW0InLLCwsZM2aNTg5OXH8+HG0tbUpLS1FS0uLPn36EB4eTnl5OQkJCTx+/Jh+/foxatQo8V6Hh4fz4MEDfvrpJxQUFEQCJoGZqKqqCuzWx5OK7oZkj3n27BmZmZksWrSI0NBQmpubqaqqEt3hyspKysvLKSwsFHqwiYmJqKmpsWnTJvr27UtgYCDNzc1oa2szatQoUeTq6elRUlJCc3MzTU1NKCkp0adPH9FV2bNnD6mpqYJk0dra2uXg6tmzJ6dOnUJbW7vbo/VJkybR1NREYGAgRkZGXfauiRMn0tLSwp07d6irq2PatGliYtCrVy8iIiJEgT99+nRhQ/nnn3/yzTff0NjYyKpVq+jbt6+QFgoNDWXr1q1AJ4Hj66+/pra2lvnz52NkZISDgwOenp4igZPYgP//iXPnzlFaWoqfnx9nz55FWlpadLC2bt3KuXPn+Oqrr5g6daroiMbExAjyb15eHsXFxZiYmHSRhKqoqODt27e4u7uzevVq3NzcKC8vZ/PmzWhra7Ny5UoaGhqIjo4W+rLjxo0T2MrHjx+TnZ1NcHAwzc3NeHt7M3fuXCZOnMjmzZs/eX2nTp3i2LFjBAYGsn37dpFMFhUVCYvdlJQU3r9/j42NDZaWlkLFBjqTWYlaj5ubm5BJunnzpuBKHDt2jDVr1hAVFUV1dTVxcXH/7fvk4uLCkydPOH/+PHZ2dmLdmpqaBAcH06dPHxwcHLrsDZ8S/9XZcc+ePcjKyqKlpUVubi7Nzc24u7tTUFDAP//8g729PVevXuXo0aMMHDiQRYsWUVNTQ1FREampqeTk5BAVFYWSkhKjR49GW1ubpKQksrOzKSkpwdDQULh3rV+/noMHD/Ls2TM0NDTEPrplyxZ0dXXF81BbW0t9fT2+vr6MHDmSHTt2dGuN58+fF6oaSUlJaGlpdWnmvHr1ipSUFGRlZbG2tkZeXp6Ojg6hC+/h4SHgMX///TdbtmzB3d2dOXPm8PbtW8LDw4mLi2Pu3LlMnToVaWlpXrx4gb6+Ps3NzVy/fp0PHz7g5OQkSHiSMDAwYM2aNWICNnHixC5QlE8JHR0d+vXrR3BwML179xa275aWltjZ2TF69Giqq6tJTU3l9OnTJCQk4OLiwvLlywkODsbc3JzS0lIBFXRwcODt27ekpaUxYMAAtLW1SUhIICgoSBD4dHV1BQEROhsYlpaWLF68mMLCQpydnWlpaeHIkSOYmZlRVFQkzsDr1693ser976LbyasEMNzS0kJUVBTW1tZ4eHgQGhpKTk4O0dHRfPjwAXNzc+zs7Ni3bx8ZGRmUl5fz4sUL+vfvT0VFBdDZ7WltbRUMbYk8DXRWixJW8/379xk8eDBz5sxh4sSJpKSk0NzcLLBOZmZmNDc3k5OT0+WmSoDi3XGj8PT0pLGxkUmTJonqTTJ++Tgkm5Svry8GBgYkJCRgb2+Pm5ubIMTk5uaKTaxnz568e/eOV69eUVdXR3BwMMOGDSM7O5sLFy4gLy8vPltyeHxcPTc0NPDhw4f/j73zjquyfP/4+7D3BtnIRgRkCQ5cqLh37q2peb6Wti3LhmbDssykTNMcac60HLnNrQiIooggG9l7r/P8/jid+ytNsL5Z/fi8Xr4OnvE89/U893Pf1/xcHDhwgKysLKZPny66fanyaVsDmUwmJk/Hjh3FgmZoaIilpSUZGRmkpKSgpqaGlZUV1dXVfPnll2KTTEtLw8XFhaysLKqrqzlx4gTnz5/HwsICBwcH4Wkrpny3VwABAABJREFUKytj5cqVVFZWsnTpUjp37kx5eTljxoxh6NChwpusyp02NDSkpKREFDuVlJSIYqeW4sE5kJmZSXJyMj/88AMpKSl4eHhgaWlJSUkJampqDBkyhOHDh2NjY8PMmTOxtLSkvLyc48ePU1BQgEwmY+bMmbi7u1NcXCwWAVCmNqgqoT08PERYtaysDCMjI/z8/LCwsODMmTN89dVXuLm5MX78ePr06YOVlRVaWlp07dqVgIAAdHR0WqW86ujoiMW0U6dOqKurU1FRQW5uLmpqaqKlYW1tLcOGDcPKyoqSkhKOHTsmCngMDQ3JyMjAzMwMW1tb0WnL19eXpqYm5s6dy8aNG+nTp4/oJrNt2za+//57unXrhra2Nnfv3sXZ2Rl/f386derE9u3bKSwsRC6Xi+dAkqRWL7agfMYaGxv5/vvviYmJEcphWloa7777LlpaWvznP//Bx8eHwsJCtm3bRkpKCu3bt6dr165ER0cjSZLwmGppaZGVlSU8VyplqlevXgQEBHD58mXU1dUFV2d6ejoKhQJHR0cxfg0NDXbt2kVhYSHTpk1rxv/aWgwcOJCdO3diamoqFLrY2FiOHTvGkCFDmDp1Kp9++impqam8+uqrwiC+deuWINuvrq4W97Njx45YWlqioaFBYGAg06ZNQ01NjZ49e2JhYcFLL70EKB0QN2/exNTUVFDaFBUVibaTycnJmJubi/SBpqYmmpqaHiodKzAwEEtLS0JDQzE0NOTmzZscPHiQkpIS4Q1WeQKvXr3KvXv3sLW1ZfHixULhU3mYVYT0VVVVvP7662zatInRo0eLiEVhYSH79u3Dx8dHeNDefPNNvv76a8LDwyktLcXT01NElVSerLq6OsaMGYO1tXUzw7cl6Ny5M4WFhbi7u4tmAFevXiU/P5/AwEACAgKws7Pj/PnzxMbG0tjYyLJly9DT0+PYsWPU19fj7e1Nbm6uoLHq1asXR44cYdmyZWzevJk+ffqwePFiXnjhBQwMDFiyZAn+/v7s2rWLI0eOEBQUxIIFCwBEV8EH75WPjw8rVqwQxWStlVHl6bx58yYlJSW4urri4OBAbm4ux48fp6amRtBbmZmZiZQxJycntLW16dixo+AZdnR05Pjx45SUlODo6EivXr2wtLTk+vXrJCUlYWJiwqxZs5g5cyYGBgaMHj2ayspKnJycaGhowNvbmx49emBsbMyJEydISUnhscceo7y8nL179+Lv79+s8Lel0NPTo7a2lvz8fDIzMyksLMTR0ZGZM2cydOhQjIyMuHXrFvn5+SJsL5PJMDIyEikN8N8iWDMzM/r164eHh4fI5wVlitqRI0dE/cTw4cMZMWIEBQUFrF+/noKCAioqKpgwYQJJSUnExcVx+/Zt0tPTcXd3x9zcHG9v71Z7lpOSkhgzZswvOoNU92XDhg2cO3cOLy8v7t27x+nTp7G2thYcuyNHjqRDhw7o6Oigrq7OxYsX2b9/P6WlpQwdOpTZs2eTkZHBunXrCAwMpGfPnnTr1o3q6mrOnj0rmCSsrKxITU1FX18fQ0NDFAoFHh4eok5kz549JCYm/vnKq+rGxcbGcvr0aQwNDQkICGDp0qWUlZVx8eJFXn/9dTQ0NNi+fTu9evWiV69eLF68mN27d+Pi4iK8MWpqalhaWoqF+0GouEirqqooKytjyZIl6OnpMX78eFauXEl1dXUzsukLFy4QFxfH1KlThabv7+9PSEiIsARagk2bNonCpJ+iurqa8vLyn5E8T5w4UYTUVK5zUOaR5uTkYGlpSYcOHejZsycJCQmsXbsWW1tbgoKCmDdvHqdPn2bDhg0cOnQIQHgGHuwXHxUVRX5+PmfPnqW6uhp3d3esra1b3WnjQfTo0UOEHyorK5EkSdCWPf744+zYsQMNDQ169+6Ntra2yD1VFVF9/fXX3L9/n44dO3LhwgXu3LlD7969m3kFiouL+fDDD3FycmLRokWkpqayZs0a+vTpw7BhwwBlIUdjY6OoyvXy8hLXeOXKlbz99tuiiK41yM7OJjExER0dHSoqKjh16hShoaGEh4fj6urKoEGDCA8PFwuPv78/NjY2zJ07l2+//RYjIyM2bNhAcHAwq1ev5u7du6xYsUIcX6WQm5qaisINUCqWBw8eJC8vj8mTJ4sCDFUIdcSIEc02l9aGKkE5R1T8eEZGRkyePFksogYGBlRXV3Pu3DlycnLw8fHBy8uL7OxsNm3aRHp6Oi+//DIzZsxoRg2UlZVFaWkpoaGhXLhwgX379gH/zX384YcfmD9/Pj179hTJ9IaGhkybNo3+/ftjYWHBjBkz+Oqrr7C0tBShH5lM1uy5aClUY1N5QVXzKiYmhp07d4pOfD4+PsJoKikpYeTIkVhaWrJkyRLi4+NFS+D4+HgSEhLIycmhtraWuLg4JEliyJAh+Pn5sXjxYkpKSli5ciVVVVVER0fTt29ffHx8mkU3vv76a44cOYKdnZ1Iu/hp17KW4O7du9TW1pKbmyvomu7du8dnn31GYWEhK1euZPbs2cTFxYmUhKKiIjZu3Mju3bv54IMPMDQ0pEOHDiQnJzNq1CimTZuGm5tbs2s+YcIEcS0LCgq4desWCxYs4JVXXuG7776jvLwcX19f1NTUOH/+PIWFheIZNDAwQF1dnczMTFJSUlp9D9944w10dHSEx3/hwoWcPn0aHR0damtrMTAwICQkhMTERKZMmYKenh4nTpygV69eFBQUkJSURENDA25ubsILvGnTJpFf3NDQIAx+hUIhWsXKZDLy8/OJjY0lLi6O6OhokpOTGTp0KP3790dPTw97e3u2bt2KnZ0dw4cPJzU1VXi3WoopU6Ywbdo04Q3+8ssv+f7770UIPCgoiKlTp1JTU8Mnn3xCnz59eOqpp1i3bh2ffvopr7zyimjOoEq1mjdvHpmZmbz11ls8++yzbNmyhQ4dOghjX+WZu3LlCl9++SUKhULMPxX39IPP9YPz8kGO0dZAQ0NDFDCnpqbi7u5OQEAAWlpaGBgYUFxcjJubG3K5nLKyMkpKSpgxYwazZ89u5r2/desWBQUFDBo0qFmxqb+/P5IkUVJSQnBwMLq6uty+fRtvb2++/PJLcnNzKSgoYOzYsSJl5oUXXiArK4vg4GAsLS2JjY2loqLiZ1zoLUFwcDC3bt1CW1tbNASwtbVl2rRp2NnZUVZWJujoHkxFVEUWQblHf/HFF3Tv3p3t27fT1NTEhx9+KLjhQVnMpTI2jY2NsbGxISgoCHNzc1xcXMjPz+fGjRsMHz4cmUzGF198wQ8//MALL7zA7t27MTAwQJIkNDQ0hMe+Jbh69WozukiVQaJQKNDS0qKmpoZVq1bR0NDAJ598wsCBAxkxYoRgYwFE91IVBg0axOXLl9mxYweurq7I5XJ27NjB8uXL+fTTT0VK4IkTJ0hISEBbW5vQ0FB27dolmDJ8fHxEkSUoUw7Cw8NFLvtv4aGU148//hhNTU1GjhyJr68vhYWFrF27ls6dOxMRESEWQE9PT0pLS3nttddoaGgQxRcODg48/fTTQqOfP3++aA4QFxeHubk5urq66OjoEBYWxuXLl6msrCQhIYHbt29z584dQVWlrq5OVVUVtra2DB8+HGtra1JSUigsLMTZ2Vlwo7UUqo5ht27dorS0FFtbW1Gdf+bMGYqLi/H19SUtLY1vvvmGkSNH8swzz6ChocGlS5fQ0dERnlqVtalSMM+dO8fFixe5e/cuQ4YMISgoSHgk3n//fRQKBdOnTweUir3Kmla13rx48aLotNPY2Mg333zzUOHY5cuXM2TIEEpKSjh69CgFBQWEhoYyduxYzMzMqKmpoX///iQmJhITE8PJkydFor+zszMvvfQS6enpvPXWW5w9e1b0nAflQllcXMx7771HfX09t2/fprGxkQ4dOnDv3j22bNki2jz26dOHlJQUTE1NsbS0ZPny5dy+fZvly5djaGgo0kiefPLJVuXbbd26lX379tG5c2f8/PyorKwUFqQqlObp6UldXR1nz57F1tYWf39/ampqiIyM5PDhw8hkMhYuXMiQIUPIycmhqKhIRAPOnz/P0qVL6d69u8hbexDl5eWsXr2ayspKFi5ciJmZGXV1dZiamjJx4kRMTU1JTk5m+fLl+Pj48Nxzz7X6HiYnJxMREUFqairV1dU/y5fV09Nj8ODBJCUliWdA1fRCoVAwcOBAYfidOXOG06dPC/J7UNIYqSIiAwcOpKioiNraWmbOnImLiwvp6ek4OTnh7u4ujM/o6GhcXV1ZsmRJswXp7t27xMXFtVpGFWbPns2AAQPw9vampKSEsrIyBg0aJMJdKvj4+FBeXi7Sc7y8vJg9ezbt2rVj27ZtfPLJJxgbGzNt2jRqa2uxsLDA0NAQBwcHYmJihLJhYWHBpUuXRDc0Hx8fdHR0BGXViy++SPv27dmwYQPZ2dnI5fJWK66g5DIeNmwYNjY2ohGDmZkZcrmcpqYmEbrz8PDgP//5D7169WL69OmYm5uzbt06zM3Nef755/noo4+4c+cOffr0Efdi+fLl6OrqMmfOHHJycoiKiqJTp06iMl2VohAcHMz9+/cxMzOjtrYWExMTfH19MTQ05MiRI9jY2IgN58MPP2y1V+vBVAhra2umTp1Kdna2UNRCQkJwdXUlKSmJiooKPD09hYfd0tKSO3fuYGdnh6GhIVeuXOHDDz+kqKiIqVOn4ufnR3BwsFBat23bJjpO1dXV0aVLF55//nm0tbWpq6vj8uXLgs4vOTkZuVxOVFQU48ePp1u3bnh6ehIaGkpGRkaL5Tt27BhZWVn069cPNzc3Bg4ciK+vL1VVVaxYsYLPPvuMkSNHMnDgQEGwr6mpSUREBNra2lhbW9O+fXsWLVqEtrY2CoUCNTU1pk2bRllZGXp6ely6dIm6ujrKysr49NNPqa6uZv78+TzxxBOiRXVpaSkxMTEi3Sw7O5vU1FTCwsK4ffs2n3zyCT179mTChAmtun+AKB6zsbGhtraW8+fPi4KpcePGYWJi0qzRw4P3XIWqqip27dpFZGQklZWVooIeENywAwYMQFNTk5iYGC5cuICbmxuBgYGCIaauro6tW7cSFBREr169WLhwoeAktrKyYvr06WhoaDwUA8+ZM2f4+OOPWbBgAdOmTROFSqpiYmNjY9q3b09JSQm3b98mJCSEmJgYPvnkE2QyGS+88AIeHh4MHTqUnj17oqGhwYYNGzh48CBTpkwBlDSKZmZm+Pr6ipC9o6Mjx44dIzExkRkzZvDmm29y9+5d0tLSCAwMJDIykl27dol6m4ctRlelOsB/0+qKi4spKioSXc7mzJmDTCbDwcEBBwcHjh07hpaWFtnZ2SQkJHDo0CHBcDJmzBjMzc2ZP3++mGOzZs2iurqaTz/9lJkzZzajrOzXr1+zbqdhYWHNmEe2bt1KVFQU/fr1w9vbmzlz5rBt27bflKnVymtoaKjI8VF5C7744gtWr16NXC5nzJgxPPvss6KAZMuWLWzcuJE5c+aIUHuXLl0ICwujpKREpBgsW7aMbdu28dZbb1FbW4uZmRkdOnRg7ty56Orqcv/+fdTV1VmzZo1wVffv3x9dXV3q6uoIDw+nV69eNDU1ceXKFVFE8zBFBhUVFXz77bfcvn2bGTNm0K9fP4qKirh58yanT5/Gzs6O0tJSrl+/jre3N/n5+YJj80FaouTkZDQ0NPD29iYlJYWnnnqK2tpaJk+ezN69e0lNTWXjxo3U1tbSv39/du/eLZTXsLCwZknZmzdvJi4ujpkzZ+Ls7Mzt27c5efIkt27danVe2rVr10TOjaqjTlZWlvCUJScn07FjR5566ineeecd7t+/T3FxMaWlpYIMOygoiICAAGJjY8nOzqZdu3YYGxuTm5vL1atXaWxs5PDhw5SVlTFr1izGjx/P1atXOXHiBAYGBmhoaJCRkUFVVZVoIXn79m2OHDnCzJkzMTMzIyoqiilTphAWFtYqWhAVRZCTk5P45+joKJREVXGSnp4eR48epXv37nTr1k00Q7CxseGDDz5g3LhxovJ34sSJhIWFYWBgwIkTJ4iNjcXIyEgocap8T2dnZ8zMzOjVq5coUElISKCsrAwfHx/h0T9w4AD79+9/6JxCY2NjwWZx8eJFzp07h5+fH0ZGRpSXl1NVVUXXrl0F5Roo0xxCQkIoKysTz8Xt27fZtWsXqampzJs3Tyxsqnz09u3bY2FhweHDhxk+fDhz5szh4MGDTJs2jTlz5jBlyhRSU1NZvXo15eXlyOVy0SlGteklJydz8ODBVnt8rl27RmBgYDMFVdXG8ZNPPhHtF+/evYuVlRWenp6YmJiwZs0aMjIykMvlIi0lOTmZyspKIiIi6Nu3L0lJSfj7+9OrVy8UCgXnz5+nb9++Yl1SpVyoFHhAVOKHhobi7OzMY489xueff05oaKjoYd4amJqa0qNHDwoKCvjqq68wMDBg7NixhIeHk52dTXJyMlVVVZw8eZJt27ZRWFjIgAEDsLe3x8TEBDMzM5F7Hh4eLrxt3333HW+++SYTJkzAyMiIAwcOsHbtWpYvXy5SQurr66mpqeHs2bOUlZXh6ekpZNPV1SUxMZFVq1bh7OyMk5MTenp6D+U9B2UESrXOz5w5k65duzJ27FgKCwuZPHkylpaWGBoasn79ekpLS0lMTMTT05OSkhL09PSE8X/mzBl27tyJs7MzkyZNYujQoSJac+XKFZE/3KNHD9TV1bG1tRVdG0Hp1ba2tqa2tpbPP/+c48ePA/8NGQMiz7Gl2LVrF1u3bmXmzJls3LhR0LoBwnt+/PhxQkNDGTVqFE1NTVRUVODh4SEYCIBmFF2qtsdr1qxBkiT27NnDpUuXuH79OjExMejo6NC3b188PDxYunQpoGTCSUtLE8XOFy9epKSkhC5dulBeXs7p06fJzc2ld+/erc55PXDgAGPHjqVTp07MmzePjIwM0YHNz8+vWUqQigISEGusKoUjOzsbNTU1srOzefPNNykvL+fJJ59EW1ubq1evYmhoiKmpKS+//DJqamp89NFHpKSksHv3bmbMmEF9fT2rVq3CxMSEs2fPMn36dKZPn05FRQVVVVU/yxVtDe7evUtCQgJnzpxh7NixmJqaolAoSE1NxdnZWTRkMDc3p7KykqNHj7J582Z27NiBp6cnBQUFeHp6iuLG0tJSVq9eTU1NDd9++y1mZma89957BAYGNmO7AKUBpDrO9OnTcXFx4caNG6SkpNChQweef/55Dhw4wOHDhxk2bJho9NEadOjQAYVCQUNDgyh8VBWD5+Xl0bt3b8HXD8pidxcXF5EWdfXqVU6ePMnNmzdF5y1jY2PhvMjLy2Pr1q1MmTJFUPJdvnyZc+fOMWDAAFHMWFNTQ01NDbdu3UJDQwMzMzMKCgrYuHEjZ86cISkpiY8//phu3br9+cprnz59MDAwwMPDg8LCQlatWsXp06d58cUXBT+fiYkJOjo61NfXM3jwYDZu3EheXh579+7Fz89PeAcOHDjARx99xFNPPcWsWbOYMmUK3377Lbt37+bevXsAWFlZMXbsWHJzc4mMjGT//v2Eh4czY8YM7O3tMTAwQEdHh7y8PM6fP4+zszOhoaFIkoS6unqr2/2B0rscHx/Pjh076NGjh7Cq7e3tycvLIykpibCwMD766COCgoLYu3cvb7/9tuiyAv9tg6cK7+rr61NSUoKlpSWvvPIKy5cv58iRI0RFRWFjY8PevXsxMDAQipVMJhPJ6KAstggNDRVeNFdXV4yNjQkLC2P9+vWtkm/MmDGcPXsWSZKwtrYmNzeX+vp6oUhpamry7rvvkpOTQ9euXSkuLhYdoFQ8nk888QQrVqzgiy++ICoqinfeeQczMzOmTp1KdXU177//Pp06deLixYuMHDkST09P4uLi6NixI+PHj2fChAk/SxdZtGgRQ4cOxcDAgNTU1GYMC62Bypvl6uqKvb0906ZNE+kuVVVVIvfVxsaGyZMnCyMsKSkJHR0dZs2ahbOzM5s2bcLc3JwBAwaIaltQhgpV3IsJCQlYWFiQkZHBzp076datG1OmTGH//v0cOXKEdevWceXKFSRJEqHDzMxM6urq+Pjjj/Hx8SE7O7vVHahUoTFjY2MhY4cOHVi3bh2xsbGsXbuWxx9/nAEDBojfGBoacurUKVJTU/H39ycpKYlnn31WUJs82NJ25syZjBgxgq1bt/Lmm29SXFyMg4MD4eHhREVFcfbsWeHFeeaZZ9i/fz+jR4/G1taWhoYGdu7ciY6ODsOHD0dPT4+6urpWK6/x8fHNPLiqfL0HU4+eeOIJrl27xrp16+jcuTPt2rXj5ZdfpqysDB0dHQoKCigsLOSxxx5j6tSplJSUcO7cOeLj4wVNW01NDT169GDixInExMTwxBNPoKenJ45ZWFhIamoq7dq1E51yrl69Kryaa9euxc/Pr0XE2g9ClYN65coVLl++zPDhw4XXys7ODg0NDdatW8e1a9eYMmUKmpqazJ8/n7q6Op599tlmzBIPholtbW355JNPhOFiY2PDmDFjRAeiHTt2NDNK7ty5Q8+ePUUOd3p6Ohs3buTy5ctibViwYAH9+vXj448/bpWMoIwiqfI7FyxYgJeXF8888ww6OjrCYNbR0WHo0KHs3r2bwYMHM3r0aN577z2CgoJEyNjX15enn36aS5cuCaVw0qRJ9O/fn6CgIJydndHS0sLQ0PAXjUJXV1fS09OJiYnB29ubLVu2oK+vLzrD7dixg6+++qpVzBiqvGBVNfmOHTuor69n+fLlzJ49m/z8fL755huqqqpYtmwZGhoa3Lx5EzU1Nbp06fKLx6ysrBTrvEwmQ1dXl5SUFMG8EBwcLFoeOzg44OTkhI6OjigCKykpwdzcHH19fUpLS+nSpQvr16/niy++oGvXrjQ2NjYzCH8PR44cYdSoUairq9O3b1/Mzc1FJOqnBk18fDwHDhxAoVDw5JNPoqenx44dO7h16xYjR47klVdeYfv27Tz++OO8+OKLdOjQQVAurV+/ns2bN1NWVsaCBQtwdXXl8OHDIr99xIgRDBs2TJD5q2o9YmJiyMnJEWvNw2DOnDkEBgayb98+lixZwssvv0xBQQFr1qxh4MCBDBw4UKQvtWvXjqioKHbs2EFAQAAbNmwgMDCQnJwccnJyCAwMxMjICC8vL7KyssQ5pk6d+ou5/wMHDuTYsWO8/vrrFBcXs2LFCgwNDRkzZgxlZWVMmTKFPn364OLiIpwfraWtu3//PjKZjF27drF79266du2Kra0tCQkJv5i2dvz4cVatWsXLL7/M+PHjGTVqFLW1tTQ2NmJqaoqFhQU6OjokJyfz4osvYmFhwY4dOygsLGTjxo0MHjxYGNQPpjYWFBSwZcsW1NTUmDFjBqCMsIwZMwYPDw8iIiJ+MY30l9Bq5fXKlSuiYGXbtm28/fbbWFpa8swzz2BkZERtbS1FRUWCdsfCwoKxY8dy8+ZNoqKixEWPjY3lu+++o7a2lvv374vjT5w4kcTERO7cuSM8eCpaopqaGnx8fFi9erXo7azKK12zZg0JCQl8/PHH2NnZUVBQgCRJrbYyf/jhB0EbpZowKtjZ2aGjo0N5eTmFhYUMHz4cZ2dn7t27Jyq8k5KScHJyoqSkhOTkZK5duyZ4cevq6oiPj+fs2bNERETg6+vLnj17RG6dKowSHR1NXl4ejo6OmJubo6Wlhbm5OZ6enhw8eJCqqioiIiKws7MTYY3WICgoCDs7O6qqqkRagImJCTdu3KBbt264urqK7lqzZs3C399fvJeTk8OtW7eQyWQMHDiQiIgIvvnmG3r06CGKFLp160b//v3p378/Fy9epH379mhraxMQECC8VjU1NZw+fRqFQiE6xqjIoLOzsykpKREKY2v6xYMy79jIyEgktjc1NZGTk4OZmZkIKZWVlWFlZdWsLZ+VlRV9+vTB2tqaU6dOsX//foYNGyZCpSqiZZWnq6KigsTERAYOHEhISAj79u3j8uXLdO7cGWdnZ2xtbbG3t+fo0aMkJSUJD1NtbS1dunQRG3dGRkarO1ClpqaSm5srqGpUOYQqqidAFAlIkoRMJkMmk4nQkZaWlsgZV+Vjq66LKkcxIyODkydPioLHbdu2UVZWxo0bNxg4cCBhYWHk5+cjk8no0qULjz/+OGZmZsTGxlJaWkpwcDBaWlqUlJRQUFDQ6vxsGxsbwWxSVVWFgYEBrq6u3Lp1i71793L8+HFRpKGipzt06BCFhYV0794dGxsbiouLSU1NpaGhAXd3d4yMjLC1tRV51irvsIqO7cqVK6SkpDB27NhmxPnx8fHCK3f48GFiYmL44osvMDU1ZdOmTWzdupXNmzf/bkvDB1FTU8PVq1dJTU2la9euWFtbc+/ePYyNjUVKQ35+Pu7u7rzxxhskJCQwd+5cNDQ0cHJyIjMzE4VCgbW1NcXFxZSXl4sCWpXSf+fOHRwcHAR346lTpygqKsLBwYHU1FTu3r0rKKUA0ThEV1eXLl260KdPH2xtbZEk6aEcAcXFxYLa6sqVK6JpwIgRI8jPz+fmzZuixkDVuVBdXR09PT2hLNy6dYvt27czZswYPvjgA1auXMn7778vKApVrBSFhYWkp6djZWWFj48P2tra5OTkcOnSJSwtLenRowdqamrU1tYyaNCgZmFMUOYTt1YpSE9PR1NTEycnJxISEnj//ffR1NRk+vTpWFpacv/+faytrXFxcaGwsBBDQ0N0dXUpKCjg2LFjVFZW0tDQIPI9bWxsGDp0KA0NDWzZsgUjIyP69esn7nePHj0wNDQkKiqK8+fPEx8fT9euXTE3Nyc3NxcnJycsLS0JDw/nzp07VFVVYWFhIcK0p06dalHf+Afh5+dHUVERmZmZFBUVCdaLoqIi8vLyROj36tWr7Nq1i4SEBJEmlpmZSV5eHkZGRmKvmjRpEgqFgo0bN/LVV1/h7OyMj4+PKLTT19cnLCwMdXV1FAoFubm5fP/998I76OPjQ25uLrt378bf3x8TExPs7OzEuvdgtKSlUIXKVWkRpaWloh21KjLo7u7O9evXiYuLIycnB39/f15++WXBypOXlyfS4FS6R0FBARcuXBAOldraWtG5SsUr27t3bz777DOeeeYZLl++TFJSkiiivn79OsuWLWPkyJE4OTlRXV1NZWVlq/WawsJCZDIZTU1NNDY2YmNjg7+/PzKZjPbt2wNK50BVVRVqamqUlJRQUVHB119/jZubG0FBQb9IX5WamsrZs2cJCgpCJpNx7949jh07houLC71792bo0KE0NjZSWVmJgYEBNTU11NbW4urqiq2tLXV1dZw5c4aOHTsil8tRU1Ojvr6+Rd0mW628bty4keDgYME1amJigrOzM9XV1RgZGaGuro6RkRF6enrNrCBXV1fh4Tp//jwrV67Ey8uLVatWoa2tLVoCdu3alalTp3Lx4kU++OADrKyskMlkorPP1KlTheKamppKdHQ0p06dYuvWrRgbG6OtrU1FRQWrV6/G2tpa5I22FPPmzcPR0ZEpU6bw1ltvic5e9+/fJysrSygZxcXFnDt3Dh0dHUaOHMn06dO5efMmL774Ij/88APPPPMMYWFhXLt2jX379tGlSxdqa2upra3lrbfeYuvWrXh4eNCnTx8OHz7M6NGjRe/p/fv3c+LECT799FNsbGxIT09HJpNRUlIi8kCtrKwIDQ1tFZOCCleuXBG0R7m5uTQ2NpKdnc2VK1cEHdnAgQPx9PQkJCQEb29v/P39RZeVjIwMwTihqanJmDFj2LlzJ6mpqbz++uvNCPe7dOmCmpoaZWVlODs70759exQKBWvWrGHlypUij/KZZ54RCoSFhYWw7uPj41tNOv3dd9+xbt063n//fSZNmsTp06e5ceMGs2bNwsrKCiMjI7S0tEShg4GBAQqFAj8/P3JycoiOjqa2thYfHx/69OkDwL59+1i+fDm5ublMmDCBiIgIQSatmrsrVqxgz549LFiwgFOnTvH444/z0UcfYWRkhFwuF53ogGZci7a2tq3eNFeuXMmJEyd47LHHkMvlbNy4UXAQh4SE8NFHH5GZmcnNmzdxc3MTG+b48eMxNzfHysqK3Nxcxo0bR3FxMUeOHBFpAqCkAHr66afJy8sT6Q5JSUl8+umnzJs3j6efflp0lXvnnXdwdHQUFryPjw9ubm6YmZlRUlLC/v37iY6ObnXbxh49eqChoUFTUxO6urrCkM3Ly2Pt2rWcPn2asWPHsnr1amxsbNizZw9z586lpKSEwMBA9u/fj4ODAxkZGaKw7p133mH8+PFIkkR8fDwlJSWCc3Hz5s0kJSXx4osvNkvZMTY2xtXVVShJYWFhmJiYUFJSItpCXr9+nY8//rhVyuvSpUuJjo5m4cKFhIeHs337dq5duyZCyNHR0YSHh4vnqV27dkydOpWKigquX7/O+++/j7+/Py+++CJ1dXVER0dTV1cnjL7du3ezY8cO5syZg6enJ3v27CE9PZ2xY8diYWEhWtyGhYWJtsc1NTV4eXnh7e3NlClTRHXy22+/zeeffy5YDlqKNWvW8Oqrrwq6Ni0tLQoLC8nLy+O7777j1q1bODo6Ultby5UrV/D39+fQoUM4OTmJY1RVVXHu3DkcHBwYPHgwkyZNwszMjC5dughZv//+e5YuXUpUVBSDBg3iiy++EAW/sbGxGBsb07FjRxwcHBg6dGizivusrCyioqLw9/fnscceEw0gWoKdO3eir6+PmZkZWlpaODs7i/N8+eWXfPbZZ7z55puCW7e8vBxvb29u3brF119/zc6dO8nIyMDAwIDKykp69epFv379KCsrY+nSpZiYmIjaEisrK1atWoWRkRHjx49n2rRp3L59m4aGBk6ePMn+/fvp2bOnCP/a2to2I9Lv3bs3hw4dorKyki1btrRYxmeffVY0L0lJSWHPnj2EhoaSmppKfX29aAceHR1NTEwMgwYNYtasWZw8eZJLly4xceJEXF1dRVFvv379mDJlCo6Ojjz//PO88cYbfP7558yZM4cOHTqwe/du6uvrUSgUdO/enVGjRqGjo0N6ejo9evRg/PjxXLx4UTADhISEiIhnenr6Q3XzU2HYsGFERERgZmZGQ0MDQ4cOFTUs7u7uWFhYEBUVRVBQEO+9914zQn8fHx9cXV3Jzs7m+PHjpKeno6+vT15eHoWFhVhYWCBJktCLiouLOXnypOgwevXqVS5fvkxBQQH+/v7s27ePsLAwrl+/LhTya9eu0dTU1Grl1dHREUmSGDFiBMHBwbi6uqKrq4uHh4cwXDU1NSktLeXw4cMEBwdz/vx5XnjhBYYOHcqXX37ZLIqngqenJ5s2beLgwYM8/vjjdOjQgdmzZ4vUMVBGhTQ1NamoqEBDQ4PHHntM1Gi88sorbNu2jfnz54u9ds2aNSxfvvx3uV5brbw+yHHo5+fHe++9h4GBgXhIVAwCqgGDMoc0ISFBVMaqFK/hw4eLRSozM5PU1FQuXLjApUuXRFK7i4sLO3bsYP/+/cyaNYvQ0FAOHjzI6dOnCQgIoGPHjiK/1c3NDW9vb27cuMGRI0fw8PAQBTothSp3ReX6B2XoxsLCQuQ1enp68sILL+Ds7ExeXp64EU5OTly8eJFLly4xb9485s+fj0wmw87ODhcXF5566ikaGhqwsbERCmD79u3p1asXt27dEufz9fWloaFBtB5V5Z9UV1dz48YN4uLisLGxEWTOrcWNGzf48MMPGTNmDC4uLmRkZJCXlydYGdLS0igqKsLc3Bx1dXVu377N8ePHCQkJoWvXrjg5OXHnzh3mzZtHU1MTrq6u3L9/X7RfBGUuWLt27Zq1ub1z5w5NTU24uLjQsWNHevToQV5eHgYGBqSkpJCdnY2WlpZYLFSeEHd3d86fP99i+Tw8PGjfvj27du2irKwMExMT2rdvT1ZWFurq6oLJIC4ujp07d4qwRffu3SkrKyMqKgoTExMGDRpEWFgYubm5rFq1itjYWEJCQnB0dKS6upoePXqQm5vL2rVrGTFiBKGhoXTq1EmEQ3bv3s2kSZPw8PDg6aefbjYXi4qKqK+vF80tWouamhoKCgqIj49HW1tbhFpU+WZ2dnZs2rSJgoICli1bJgijJ0yYIHLyEhISRMFJSEgIVlZWQnlVU1PDyclJbOj29vZcunSJ4uJi5syZg7m5ORs3biQmJoZXX30VHR0dzp8/j4mJCT4+Pujp6XHu3Dm++OILtm7d+lD5kg8av2VlZWzZsgWZTEZwcLBgbAgICBCh2/bt29O5c2fu3r2Lh4cHGzZsICMjg1OnTlFZWSn4DUH5TKuKJSwtLTE3N0dHR4fu3bszbNgw4aFWsWA8mNbRpUsXHB0dSU5OJjExEW1tbTp06MDixYubMYT8HlT3zdXVldLSUr777ju0tLR44oknyM/PJzU1lUGDBmFsbMzWrVsFW8tjjz1GQkICq1at4saNG0iSxH/+8x8sLS1Zs2YN/v7+zJkzh6SkJL755hsCAwMZNGgQ8fHxZGZmYm9vj5qaGt7e3owaNQpnZ2dRJKXquKZyTKjg4+Pzu9Q1vwTVfNTQ0MDd3Z3g4GBSU1NZsmQJMTEx9OzZkw4dOtDQ0ICBgQH9+vX7WdiwW7duLF26lOrqam7evImvry/9+vXj4MGDXLhwAQcHB6EseHh40L9/f6HMmJubCyqimJgYevfujaGhIffu3SMvL49u3bqRlJTERx99xIwZM36x0cBvQVNTU1RIq4pOra2t0dHRwd7enqCgIKKiojhw4AA9e/YUYd+DBw+ya9cuXFxcCAkJ4e7du+jp6dGtWzdR0zFs2DAqKytZuXIlXbt25fjx47z55pt07NhRKKg9evQgNTUVLy8vBg4cSExMDE899RQzZ84U62hFRQUymQxtbW2h7LdGeQWlIuzt7U19fT15eXlkZ2dz69YtGhsbcXR0xN7enrCwMDQ0NATpfIcOHUSTCFCuWerq6lRWVpKWlsbZs2fp1q0bnTt3FoZvWFgYp06dIiEhQTCfLFq0iPz8fJEeoaWlhYmJiehouWPHDu7du4eJiQlaWlqtegZV2Lx5s5h/qgiRg4MDs2bNEvSNaWlpWFtbExgYSFhYGDY2NmhoaFBTU0NTUxMGBgaCalLVNtXa2pp27dpRXl6Oqakp1dXV3Lt3j9zcXI4ePcqRI0ewsLDgmWeeYfjw4XTp0oXk5GTi4uKwsrJi2bJlREVFkZiYKByEbm5urY7U+fj4IEkSpqamqKmpsXv3bsF5rVAouHbtGu3bt0dPTw9XV1e6dOmChoYGdnZ2FBYWEhMTI5TXdevWcfv2bZFOoVAoyMrKwsrKChcXF9zd3UXzqtzcXEEXp62tLfQFFc6cOUNubq5wDFRXV3P06NEWec9brbxOnjxZhDkerDQGJQWDQqHA2NiYpqYmkaNmaGjIwYMHuXr1Ki+++CJ9+vTh5Zdfpry8XPTHdXBw4O7du+zcuZODBw/yzDPPiBza7Oxsjh49iq6urgg3nzt3jkGDBhEQEEBAQADDhg0TSonKRa2joyMUzpZi3rx59O3bFwcHBxobG6mqqhIeXTMzM3R0dFiwYIFoC5qVlUVVVRX6+voUFRXh6OhIRUUFNTU1oi2oqoL0wUrd+vp6qqqqqK+vp0ePHs2smnHjxjFu3DhKSko4c+YMtbW1dO7cGU1NTZEm8cMPPxAeHt4s7N1S2NjYiLZtqtwXbW1toWjm5OSQmZmJi4sL9fX17N+/n6VLlzJ9+nThWUpMTOT7778nJycHbW1tXnvtNVHdriJcVllSgFAKy8rK8PDwYMCAAfTr10+01SsoKKC8vBw9PT3BQWlgYCC8b62hsJk4caIgL9+1axefffYZzs7OfPrpp+jo6DBv3jxAaaWfOXMGJycnhgwZgqOjI2FhYWhqamJmZiY2sitXrpCdnU379u1ZsWIFffv2FeFmLS0tQXN25MgRcnNzxTgMDQ1Zt24dY8eOFaTZubm5rF+/XnD9qjrHtbY7k+rZMDU1JTU1VSgkKiOyvLycQ4cOUVFRwZw5c0hPT+fUqVNoa2uLfNlbt25x4MABGhoaCA0NbVasMmrUKGFUVVVV4ePjw4ABA8TxKyoq2LJlCz/88APw3zaCKmqp7Oxs9u/fz/79+5Ek6aEK0/Ly8jA2NkZHR4fKykpOnTqFhoYG48ePp0uXLkRERHDt2jVOnz5Nly5dMDMz44UXXqB3794oFAqmTp3Kzp07AaXncMGCBdy/f5/Tp0/j6upKfn4+ycnJpKWl0atXL8aNG4eGhgZ1dXWiq5gql1Tl9VWxoKgaiKjaLT7xxBO8/fbbrSosfO6556ioqCAtLY0tW7aQnZ0tKq7Ly8uxsLBAX1+ftLQ0PvzwQ9FN6sknnyQoKIjTp0+zY8cOLly4wJIlS3B3d+f111/n+PHjolmKtra2UMRLSkpITU0lMzMTJycnkespk8mE519bW1vkU1pZWQn5hw0bxpAhQ1odyRo+fDhqamokJiZSWFiIjo6O8IaWl5fTtWtXRo0aJZQ6VVhTQ0MDhUJBXV0dFhYWTJkyha+//prdu3eL9sCff/45N2/eJCwsDHd3dxYtWiSojUDpsTU1NSU4OJjc3FxOnDhBXFwcAQEBnD17lpSUFHx8fNDV1RUE7SoO8pYiIiKCxx57DAcHB7S0tBg2bBgKhYL6+npRUDZ9+nRmzJjB3r17hQGgaj7xwQcfEBgYyLvvvou/vz8REREsXbqU3NxcVq9eTVxcXDPvHigNU1UBXHV1taAgCg0NZfXq1aKrnUp51dTUREdHh6ysLFJSUlrNjKFi4XjjjTfIzMzE0NCQiooKdHR0uH37Nrt376Z///74+vri6+uLQqEQkSxVKtz9+/fx9PQkICCA2tpaXnjhBZKTk9m/fz/e3t6Ul5djZGREYWHhzwofQ0JCmlF83b9/n8bGRvz9/amqqhKUb6DM1VdFZluDo0eP4uvri7u7uxizynjOz88X1E7e3t6MGzcOY2Njbt68iaGhYTNlTKFQCA+6u7s76urq3L17FzU1NdTV1UUk6tChQ9y+fZvKykrMzMzYtm0bxsbG9OrVCzc3N/bs2cPevXuZNm0agwcPZs2aNVy5coWFCxdiYWHBF1980Sr57O3txdr99ddf88QTT+Dv709wcDBWVlbcvHlTtNLu06cPGhoapKeno62tLYrEVIiNjeXzzz/H29sbmUzGzZs3MTc3Z968eVRVVXHz5k2KiopE0xgtLS1sbGxQU1MTaZdGRkZkZGTg4uJCY2Oj8NTGxMRgbW3dIlaTViuv165dIycnhw4dOjQrYlFBFY55kGdQVRF8+vRp+vbtK5SaQ4cOcejQISZPnsygQYNEZWnnzp2bNQbw9vZmyJAheHl5YWxsTJ8+fQgICBAUDXv37qVnz55C+ZLJZHh4eDQLg7YUM2bMwNHRUaQfVFVVicUoIiKCDh06NKMlateunfAu6OjoMG7cOOrr64U3CGi2cSckJLB371769u0rFMEHmxE8CFNTU5HvV11djb6+vsjBvXTpEvHx8Q+lvPbs2VNY4pmZmcyaNQtra2tRqODo6MisWbMwMzOjXbt2gnLGw8ODzMxMUdz13HPPcePGDZycnJg5cyY1NTUsW7aMwsJC5s+fT/fu3cU5DQwMMDExaVa0o6oINjExwdTUFDMzM5KSkvjiiy/Q1tZm0aJFD0VBBEquWJWh5enpKTqHeHp6CuXVzMwMHx8f7O3thbWt6gbm4uIiaGp27txJv379mDhxoth8VB7v+Ph46uvruXHjBo8//jj+/v6MGzeOwsJCLC0tCQsLaxatiIuL4/Dhw2RmZqKmpoaLiwuWlpacOXOmVfINHToUGxsb1q5dS2RkJLq6us1C3QqFguDgYK5fv86pU6fw9/fnhRde4O7du7z22mu4u7tjb2/Pq6++SkpKCoaGhqKCVUXJYm1tLZpPODs7N2vT+2CXvbVr1zJr1ixGjhwpWn4qFApGjhyJjY0Nmzdv5vbt2628g8qw+a1btxgyZAgeHh5MnTqV0tJSoeh06NCBdu3aERsby4oVK7h79y4BAQH07dsXdXV1wWPr5ubGhAkTRKHp9evX2b17N/r6+gQGBuLm5ia8KKDc7L/++mvy8/OZOnUqWlpafPzxx2hoaPDCCy+gpaWFhoaG4Aq2trZGJpOJnt8thYmJCSYmJnzxxRfs2bOHkSNH8tRTT6Grq4uamhr+/v6iEt7R0ZHGxkbmz58vNsunnnoKX19f0WTC0NCQJ598krKyMgwNDWnfvj2LFy9m+PDhFBcXk5CQILqJASIq1NDQQHl5OTKZDENDQ4yNjVEoFCIXVdUp70G+ypZCNffr6+tJSEhgy5YttG/fntdee41Tp05x9+5d4ZVKSEggOzubTp06YWlpSVNTE7m5uRQVFXH79m0+++wzSktLCQkJYejQobzxxhs8/fTTXL58mZCQEGbNmoWlpSVFRUUYGRmJtebmzZvCGG/Xrh2nTp0SHNVubm507NiRRYsW4efn12p2Gi0tLe7evUtpaSnq6uo4ODhgZ2cn1q3AwECeeuopcnJymj0/ffv2JTw8nMDAQKqqqrh27Rr6+voMGDCAyZMnExsbS2FhIQkJCc3O9/zzz4t2uPHx8Xh7ezNjxgzBbR4eHs4bb7xBbm4umzZtYsiQIVhZWQlHkbW1dasjPYcOHUJNTY3AwEBxLE1NTQwNDcV6fe7cORYuXEivXr1E3mJ9fb3wgKvqNkDphR8wYAAjR47E29ubrKws3njjDXr06MGkSZMYPXo0xcXFYo2tq6sTUUlApH6p8idVHavKysoIDg4mKCiIzZs3t0pGDw8P0XBIlQ5XWVkpisOKi4sZM2aMMBpVEcHS0lLRTCM5OZmvv/4aGxsb4VyQJIna2lpB6Zmbm8vNmze5c+cObm5ujBo1ChsbGxQKRbPCKS8vL2Ekq6mpERoairq6OhYWFpw6dYrPPvtM5OS3BCrFNTU1VXQdLSoqEjmu3t7enDp1iiNHjtClSxe6dOmCjo6OqJd4ME1h4MCBWFtbCyU/NDSUAwcO8Pbbb9OtWzd8fX3Jzs4Wkbzr16+zcuVK+vfvj4ODA4cPHxaOlG7dugmGpe3bt1NRUcHw4cMxNzdn9+7dvy1TS8N5crn84XhS/kaIjIyU/dpn/3b54N8v479BPvj3y9g2T//d8sG/X8Z/g3zw75exbZ7+e+X7Y42r29CGNrShDW1oQxva0Ia/EC32vLahDW1oQxva0IY2tKENjxptntc2tKENbWhDG9rQhjb8Y9CmvLahDW1oQxva0IY2tOEfgzbltQ1taEMb2tCGNrShDf8YtCmvfxVksjeRyWqRyVpPQtf8OM8ikzUgk3n9SSP78/D/QcY2tKENjx5ta00b2vDo8Qifw0dSsCWXy82BUcAQwBewA+qBm8AmYFNkZGTr+mX+WZDJfndsSFLrxqa8sYnABiTpqZ989i4QDHgAFkANkA7sBz5Bkop+8n1dIBmIRZKGtmocf+S8v3+8X5bxYa7nnyXj/whyuXwqoGpRMycyMnLDoxzPH4FcLpcBM4G5QEdAHeV93ASsjYyMbF33hL8Z5HL5DJSy/BYUkZGR6r/znX8E5HJ5D2AR0A0wA4pRPmsfRUZGHn6EQ/svZLJmzw+S1Lrn57fX09+cz0hS00++37bWPAL8I+bpQ0Aulz8G9AL8gU6AIfBVZGTklEc5LgGZzB54ExgImAM5KPf8N5Ck1nXoeMR7/qPyvI4F1gOhwBXgI2Av4ANsAHb9uKn+LcfWrGF0y/AqoA2s/IXPngb0gePAauAroBF4HbjxM4tGkmp+/N4QZLLmrVdah9ad9/fxazK2/nr+eTL+6ZDL5Q7AGqDyUY/lT8Jm4AvAGdiJ8l5pobz+Ox/hc/hn4Trwxq/8O/Xjd448kpH9yZDL5a8AZ4GewPfAB8B3gCnQ+9GN7AEo15U/+vz81nr6m/O5ba159PhHzNOHxyvAApTKa/ajHcpPIJO5AtEojburwIdACrAQuPSj0tkaPNI9v9Udtv4k3AWGA4ce9LDK5fKXUV7UMcBolAI/srE1sw5ksocbm0xmDEwGTiJJmb/wDSMkqfZn78pkbwEvAy8BP+05uQ1Y8eP7F1s0jj/nvL+M35bxYa/nnyHjn4ofFblNQBGwD3ju0Y7oj0Eul48EpgKpQEhkZGThj+9rArtQ3pvpwJePaIh/GJGRkddRKrA/g1wuv/Tjn5//VeP5X0Eul48FlgEngNGRkZEVP/m8dW2V/hdQblh/7Pn5rbVGJhvJA/MZSSr88f3fm89ta81fhH/EPP1jeBrIQulF7AWcfrTDaYZIwAp4CklaI96VyVahHPdbwBMtOtLfYM9/JJ7XyMjIU5GRkd/9NDUgMjIyF/jsx//2/ssHBiBJp5Ck737m1pakhx3bREAPpRfgl873cwVSiV0/vrr/wm/uA+eAx5DJjH72eUvwMOf9dfy6jA97Pf8MGf98PAWEo7Rcqx7xWP4MjP7x9QOV4goQGRnZgNKqBnjyLx/VXwC5XO4DdEHpHTn0iIfzhyCXy9WAd4FqYNJPFQIQ9/RR4894fn5rPRXzWSiuAJL02/O5ba35S/APmqcPjcjIyNORkZFJkZGRfy8CfZnMBYgA0oC1P/n0NZRzbCoymT4twyPf8/+OBVuqydu6JtN/DR5mbP1+fD3fynMN+/H1xq98fgGly75nK4/7R8/7S3hYGX/vev6vZGw15HJ5B+AdYHVkZOTZRz2ePwnWP76m/MJnqvcC5XK5yV8znL8U8358/eKfnteLMm/QGTgMlMjl8iFyufxFuVy+UC6Xd33EY1NCJhPPD5L0R56f31prWjSfkclMfuHztrXmf4+//zz99yL8x9djv6BUVqCc/3ooDfqW4JHv+Y8qbeAXIZfLNYBpP/73+0c5lp9BJnvYsYUBFShd6b91/OcAA8AYZSFVGEoF8p1f+UXUj689gYOtGM8fPe8voWUyNj9vS67nnyPjH8SP83IrkIEypeLfApV3yvkXPnN54G8v4PL/fjh/DeRyuS4wBVCgzMH6p6Pzj695QAzKIgkBuVx+FngsMjKy4K8eGKB61v+s5+e31po/Mp/b1pr/Pf7e8/TfDc8fX39tj05C6Zn1AE624HiPfM//u3le30GZ1Hs4MjLy6KMezE8gxoYktWxsMpkW0A7I5fdpHZ5D6b5fhHJifA9EIEm/9iDn/vjq2KKx/HnnbY7WyfggWnI9/ywZ/yiWAgHAjMjIyJpHPJY/E6rF4Rm5XG6mevPHDfSNB75n+peO6n+PcYAJcCQyMvKX8tD/abD68fUJQBelV8QQ5fN1FOVGsPvRDA144Pn5sTDj4fD7a42Yz8hkZg/8riXzuW2t+d/j7z5P/80w/vG17Fc+V71v8rtH+pvs+X8bz6tcLn8KeBa4gzLp/u8Dmexhx6aq3vt9CgpJsv7xXO1QhlfeAWKRyYYiSTG/8IviH18tWjGeP+O8P0XLZVSh5dfzz5HxD0Aul4eg9IB8EBkZeen3vv8Pw9coPZCDgNtyufxblPlo/QBXlNa4O/BPD6v/FHN/fF33SEfx50FF8yVD6bmK+/H/t+Ry+SiU3pFecrm8618+h2Uy8fwgSX/03L+31jSbz8hkrZnPbWvN/x5/33naBlX1f0uU0b/Fnv+38LzK5fL/oKRJuA30iYyMLP6dn/x1kMmajQ1Jas3YVJazTot/IUl5SNI3KF345vyX4++n0P3JOf4YWn7en6J1Mrbuev65MrYSD4Tw7vLfgo9/DX4smByO0vuei3JRmYWyWjYMZaUzQP4jGeD/AHK53BulkZaFMvfu3wDVJpLygEIAwI/eO5WXI+QvHdV/0wX+rOfnt9caZS7fw87ntrXmf4+/5zz9/wGVZ9X4Vz43+sn3fgt/iz3/kXte5XL5IpR8Y/FA38jIyL/PRimTLeKBsSFJrRubJJUik9XzX0ulNb9NRya7Dfgjk1k0q55VQnXMP/d6/f55f/r9lsvY+uv5v5Gx5TBAmQMEUCuX/yJz2Hq5XL4eZXHFor9qYH8WIiMjG1HyLH7w4Ps/5oX6o1xEbv31I/uf4d9UqKVC4o+vpb/yuUpp0P2Vz/9XaPb88Mv02OuRydajLORa9JtHa8laI0m/OJ9/JEH359fnc9ta87/H33We/n+A6tp7/MrnKnah389h/Zvs+Y9UeZXL5S+iDFNfB/o/SNfzyCGTNRvb7ypxv46bQAAymRGSVN7K39r++PpLm6yqjdr1hxzXw573l/D7Mj7c9fxfytgS1KEkPP8lBKLMTTuPcmH4t4W5pqK0rDf/0+lrVJDL5Too5VLw6/f1n4izKKt33eVyuVZkZGT9Tz73+fE17S8d1f/m+XnY9VTM5x+ps36KtrXmf4+/6zz9/wAV32wEMpnaT/hXDYHuKA27lhbmPvI9/5Epr3K5/FWUbcqigYi/WapAs7G1MlXgpzgDBKEMhZz4yXm8gNIf+c8efF8NJZGzFXDxV9q2qSgtWk+C/MfO+0s4w6/JqDzuw17Ph5fxT8CPoazHf+kzuVz+OsoNZfM/uWWjXC43ioyMLP/Je51RLjqVKO/bvwVjURbrHPyXFGoBEBkZWSiXy3eiJA1firLLDwByubw/MABlOPCvZXBRFmf94vODTPY6Pz4/rWwPe4bfXmt+vpnKZC2Zz21rzf8Yf9t5+v8BknQPmewYyrTA/6Ds3KbCGyi7ba5DklrKKXyGR7znPxLlVS6XT0cpWBNKUtqnfiFMkhYZGfnlXzw0kMl+NrZfCHelIUlftvCIe1EmKg/g5zd5ILASmewscA9lTlY7lJ05XFDmbc35hTGqAX2BRCQpvoXj+OPn/XX8uowPez3/uIxtaBmOy+XyGpRhnQqU/eAHo/QEjY6MjPwlzsx/KlSFWv/4jlq/gGdQtmNcIpfLe6LsZOOEssd4EzAnMjKy9NEN70/Db62nAMeRyX51PiNJP5/PbWvNX4l/9Tz9sWvhyB//q+Id7iqXy7/88e/CyMjIR9UtTdW56mNksr5AAsp70QdlusCSVhzrke/5j8rzquLhU0dJ0fRL+IFH05byzx2bJF1CJosFJiOTLUaSHgzFn0C5kXYHOqGkqahCOZG2Ah//isXSD7BD2dLtYfCw5/1l/LaMD3s9/6iMbWgZ9gATUFZp6wL3UXKfvhMZGZn2CMf1p+JH4vcw/l2FWgKRkZH5crk8FKU3axRKD0YFyu5hb0dGRv47eHp/e62B35jPSFLarxy1ba35i/D/YJ76o2xB/CBc+C/PcDqPqtWv0vsajFKxHIjSqMsBPgbe+Kft+bLW0XS14aEgk00EtqO0/L/5E463F6WX1BVJakl14P8e/x9kbEMb2vDo0bbWtKENjx6P+DlsU17/CshkMpRJ9sqK1z9y0WUyf5TdSZ5Ckj75U8b3Z+D/g4xtaEMbHj3a1po2tOHR4xE/h38Lntd/PZQ3dS7wDf+t5H9Y2KDkAfzsjw7rT8X/Bxnb0IY2PHq0rTVtaMOjxyN+Dts8r21oQxva0IY2tKENbfjHoM3z2oY2tKENbWhDG9rQhn8M2pTXNrShDW1oQxva0IY2/GPQYqosuVz+j88viIyM/MX+hPDvlw/+/TL+G+SDf7+MbfP03y0f/Ptl/DfIB/9+Gdvm6b9XvjbPaxva0IY2tKENbWhDG/45kCSpRf/mz58vzZ8/X2psbJSampokSZKkmpoa6erVq9LVq1fFe9XV1dKZM2ek1157TQoJCZEACZDWrVsnSZIk5efnSzU1NZIkSdJLL70k6ejoSKtWrZIkSZIqKyulkSNHSoAUEREhPf/885KLi4ukra0tzZw5U/r888+l9evXSxs2bJB2794tHThwQHrvvfekZcuWSRkZGVJBQYH0n//8Rxo3bpx08+ZNSZIkqampSVKNvSXyqcY7c+ZMSYVNmzZJgLRkyRJJoVBI8+bNk7y8vKRbt25JpaWl0qhRoyQzMzNpzpw5UkJCgvhdQUGB+DszM1N68803pWXLlklpaWni83379kmHDx+WqqqqpAeRlpYmLVq0SFq1apVUW1srFRUVSZcuXZIKCwul+/fvS/v375fOnTsnNTQ0tEi+B2U8e/astGXLFik7O1u6d++e1L9/fwmQBg0aJJ07d076KS5evCgtXrxY2rJli1ReXi7uVUNDg/h7zZo10tq1a6X8/Hzp+PHj0sSJE6WNGzeKYxQXF0vV1dWSJElSWVmZNGjQIMnFxUW6dOmS+M67774rLVq0SNy7xsZGSZIkqb6+vlX38Pnnn5caGxuluro66dq1a1JeXp6Yr6rzz5gxQxo4cKB0584dSZIk6fbt29KVK1ek1atXS3Z2dlKfPn2k+/fvi/Pn5uaKcX755ZdSRESEtGfPHkmSJGnNmjVi3mzevFlqaGiQRo4cKWlqakrHjx8XvyssLBTX67333pMCAgKkd999V4ypNTJ++OGHko+Pj7RhwwZJkiTphx9+kK5evSpJkiQtXbpUAqSlS5eKc2/YsEEaMmSItHnzZkmSJKmiokJKS0uTFAqFlJOTI8XGxko1NTVSXl6etHPnTikpKUmSJEl6+umnJUDq37+/FB0dLX774NywsrKS+vTpI+ZDSUmJlJmZKb7z/PPPS0Cr56kKQ4YMkczMzKS4uDgpPT1dsra2lnR1daWdO3dK9fX1kiRJUkNDg1RXVycpFAqpqalJzJ0HUVNTIz3xxBPiXr3yyiuSJEnSvn37pGXLlklVVVXSmTNnJG1tbalXr17id7GxsdKrr74qXbt2TZIkSZo4caKkq6srnT59WsrOzpbGjh0rLVmyRJIkqVX38JVXXpEmTpwo+fv7S4MGDZIOHTokzqm67uPHjxdr63fffSfNnTtX2rlzp/heTk6OdOXKFenrr7+Wtm/fLt24cUN8tm7dOsnAwEBydnaWlixZIq1fv146duyYVFdXJ0mSJN27d09asmSJFBgYKPn6+krjxo2T5s+fL40YMUJ6++23JUmSpG+++UbS1NSUpk+f3mL5HpRx4cKFEiA9//zzYly1tbWSJElSXV2duH8xMTFSRESE9Morr0hNTU3SkSNHJAMDAwmQAgMDpW+//VaSJEmqqqqSgoODJUtLSzEfJUm5vqigUCik+vp6qaamRsiqQlNTk9TQ0PCLn6nQmnuowrJly6QRI0Y0Wz8ffE7q6+vF2ilJkhQeHi6ZmZlJsbGxUmZmptS7d29pzpw5zb5fXV0t7du3T3r66aelw4cPi8+KiorEdVPJU1tbK54/SVLO6SVLlkg7d+6UEhMTpejoaGnPnj3Sxx9/LL3xxhutkjE1NVVSKBSSJElSaWmpdPXqVSkzM1PKzMyUxo0bJwFSZGSkOHdlZaXU1NTUbE+7ePGiNGPGDOmzzz4T71VXV4u50NjYKM7xIMrKyqSMjAwpJydHvLd161bJxsZG8vX1lTZs2CBlZGQ0uw/+/v6tnqc5OTni/AUFBdKyZcuk119/XcrKyhLHzsvLkzIyMprdx6eeekrq3LmzdPLkSfFeSUmJFBUVJc2aNUusNcuWLZMkSZIWLVokaWtrSzt27BDfT09PF3+fPn1aMjExkby8vKSioiJJkiQpISFBsre3lzw9PaXU1FTx3YeZpw/OkWvXrklLliyRvv/+e6mxsVHat2+f9Mwzz0gbN26UPv/8c6l79+4SIJmamkqrV6/+mY6iuj8PXqNhw4ZJ2traYi27efOmdPnyZfF5ZWWlFBcXJz399NOSpqamBEja2tpS165dxTVcvHhxi/aLVnfYUldXB6C+vh4dHR06d+5MTk4Ozz33HP369WPw4MF06NCBO3fuMH/+fIYNG0ZVVRWDBw8GQE9Pj9raWnR0dJg0aRJ6enp07NgRgNraWoYPH46bmxu2traoq6sTGBiIm5sbHTp0oGPHjmhpaVFYWIi+vj7t27fHzs6O4uJiHBwcAOjfvz8lJSXimGpqrXMuf/DBB1hYWDB48GCqq6v57LPP2LRpEwMGDGDgwIHIZDIee+wxRo0ahbe3N2fOnCE2NhZ3d3fGjBmDl5eXOJaFhQUABQUFAMyYMYOdO3fy+uuvs2zZMuzt7Tlz5gwpKSl0795d/O6HH34gISGBTp06YWNjw759+zh37hw5OTn4+vrSvn17zM3NCQ0NRUPj4ZqkFRUVsWvXLu7evUtUVBTW1tYMHjyYoKAgABQKhbh2hoaGdOzYkZEjR2JgYEBSUhLR0dGEhITg4uKCvr4+ffv2pbKyEn19fby8vJg0aRJubm7ifAqFguLiYuzs7DAyMuKJJ57g/PnzZGZm0qWLsp1xWloa+/fvp1OnTvj4+KCurk5RURHx8a3r2Dhy5Ejq6upYu3YtJ06c4NlnnyUiIgIdHR0AjIyMiImJISMjg8rKSqqrqzl37hxeXl7MmTMHFxcX8vPzaWxsBEBTUxNzc3NxfC8vL7Kzs/nuu+/w8/OjX79+rFixgvz8fBwcHGhoaODJJ59kypQp9OvXT/xOdQx9fX1GjBiBrq4uLi4uJCUl8f33rWvn7efnx0svvURYWBgA1tbWtGvXDoC5c+diZGSEn5+f+H67du1wdHRET08PAAMDAwwMDADQ0dGhXbt26OjooKOjQ+/evZEkierqaiZMmICZmRn379/n22+/JS8vj4CAAPHbgoIC8vPzyc/PZ+3atcyePRsTExNMTEyoqanhwoUL5OXlMWjQoFbJp0JKSgrp6ekUFxfzySef4Ovri5WVFSYmJmRlZZGUlIS3t3ez50D2YyvCVatW8e233zJq1CgWLlyIjo4OISEhXL58GQsLCyIiIgDQ1dXF0NCQqqoqfHx8eP/99/H09BTH09HRIS0tjejoaAICAhg+fDhOTk50796dqqoqqquruXjxImvWrKE1GDduHPfv3ycrKwsXFxf69OlDXV0dO3fuxMzMjJ07d+Lk5ER5eTkmJib4+voC4O3tTVFRESdOnEBbW5s+ffqgUCg4fvw4Wlpa4nupqalUVlbi6+vLk08+iYmJCbt372bx4sVoampiaGhIeXk5HTp0wNnZmb59+1JYWMjTTz9NdHQ006dPZ+TIkTz77LP07t37oe7f9OnTcXZ2Ji8vjzVr1mBqakpUVBQJCQmMGzeOxx9/HICKigo6d+5Mv379UFNTIzk5mcrKSrS1tZk8eTLDhg0DlGvElClTuHLlCkuXLmXChAlMmTIFXV1drly5grm5OW5ubmhqaqKpqUlhYSGffvoplZWVzJ07F1dXV9TU1NDQ0ODq1atcvHgRFxcXBg4cSGNjIykpD9cNefjw4YSFhYl5U1FRQVpaGrm5uTQ0NGBubi7uC8DAgQPR1tYmKysLMzMzZs2ahYmJCU1NTairq4vxh4WFYWlpibW1tfitvr4+mpqagHJ/U8lz/vx5tLW16dSpE8OHD6d9+/YUFBTg4uKChoYGly9f5oUXXiAoKKjZ2vB7sLGxEc+UsbExnTt3FjKOHz8eOzs74uLieOKJJzAyMmLo0KH07NlTrDUAXbt2xdDQkE2bNjF8+HBmz57NiBEjxOcqveLy5cts2bKFkpIS+vbtS0hICGZmZmhpaVFUVERmZib19fU8+eST+Pr60qdPH/T19cVxBg8ejKGhIYmJiS2WD+Crr75i+vTpWFhYUFVVxdatWwkICMDOzg6AL7/8Ek9PTwICArh9+zbGxsY0NTWRlJREVFQUy5YtIzk5GVtbW/r06UNwcDByuZzKykoyMjIIDQ0FoK6ujrq6Og4dOsSAAQMwNTXF2NhYjKN37968+uqrmJqaYmZmBkBmZiaDBw/Gzc2NyspKDh48yOXLrWtEFhkZyZUrVwgICGD27NliT9fV1cXb2xsAbW1tTE1NcXNzw9raGg0NDby9vXF0dKRPnz5kZ2dz+PBh7t27R7du3ZgwYQJGRkYYGRkhSRIymYw333yTbt26ER0djZaWFmFhYWLfBeXc7dChA76+vuJZ79ChA66urjg7KxtzzZgxA3d3d65du/abMrVa82lqaqKyshKZTIaWlhYA33//PWfOnBELqYmJCf369cPV1bXZb+Pj4zl//jyampr069cPHx8ffHx8xOfm5ubMnDlT/D8tLY3u3bujpaWFhYUFlpaWqKmpUVZWhkKhwNzcXCitTU1NqKmpiQeitLQUDQ0NMcaWYuHChUqtXkODrKwsNm3aRFNTE59++inOzs40NjYSGhqKoaEhAFlZWfj7+zN16lQGDBgAIB4cZ2dnGhoauHbtGqampnTp0gU9PT1OnDjBgAEDiIiI4MqVKyQmJpKamkqnTp24fPkysbGxmJqa4ufnh0wmIzY2Vry/f/9+hg4dyqRJk4iKiiItLa1V8gE4ODjQ1NTE0qVLOXfuHCEhIaxYsYK+ffsC/1VcKyoqiIuLw8rKiilTpgBw5coVDhw4gLa2Ns7OzlhZWYkJqPqtvb099vb2ADQ2NqKhoYGuri5lZWWkpaXRvn17hg8fzvDhw4mKiqKhoQFNTU0UCgU5OTnNZEpISKCkpKRV8qkenmPHjpGWlkZxcTG1tbWUlJRgY2NDXV2dmDdqampUV1dTU1NDaWkpurq6DB06tNnxysrKqKmpwdramqamJg4fPsytW7dQKBTcvHmTwYMH89JLLwHKOb5z5058fX0JDw9HkiQaGhrQ0tKisrKSyspKNDQ00NbWpnfv3hgYGJCVlUV0dHSzxf73UFtby4QJE1BTU0OSJDw8PGhqaiIrKws9PT2effbZZt8PDw/H0tKSCxcu8P7779OvXz/8/f0BpTJvYmKCJEkoFAqsrKzE70JCQnB3d2f16tXExMSgUCgoLS3FwcEBe3t7Ghsb6dGjB3fu3CEqKoqgoCChUOfm5nLt2jUaGhrw9/entLS0VfexsLCQixcvYm1tTWFhIbGxseTm5mJtbY2Ojg6SJGFkZNTs+/r6+ujq6nLu3Dm2bdtGQkIC3t7eXLt2DTc3N6ZPn95sjQGlsmtoaEhxcTGenp4sWLCAoqIi7t27h4ODg1AIVdd6woQJTJgwAYCSkhLGjRvH3bt3uXTpEiYmJi2Wz9fXF19f32aGYmJiIikpKTg5OTF69GihlDc0NGBra4uTkxOgnGd79uxBJpOhoaFBY2Mj9fX1QskACA4OZtCgQQwYMEAYNrq6unz66acYGhoybtw4QLkezJ8/H1tbJVXjkSNHOHjwICdPnmTKlCm8/fbbAOTk5LRYNhUCAgIICAhgy5Yt7N69G0tLS1JSUrhw4YJYM0Bp6C9YsEAoaWpqakybNo3Ro0czYsQISkpKOHv2LKWlpQQGBqKlpcWWLVu4e/cuTU1NJCcnc/36dWEkZWdnU1NTQ2xsLPv27UMmkzFp0iRAec9u3LjB9evXiYmJQV1dnYaGBrS1tWloaGiVfCqDXXUf1dXVqaurIzs7m8TERE6dOsWVK1fw9fXl5ZdfFs/puHHjGDhwIJWVlSgUCqZOndrsuAqFgoaGBszMzMTzpEJ+fj5XrlxBXV2d0NBQbG1tyczMJCsri3bt2ok9z8XFhYCAAECpNOXk5ODq6tpsz20J1NXVxRytrq6moKCAqqoqnJ2dGT16NKNHj2bChAns3LkTR0dHvLy8cHd3x9zcnPLychobG7G2tsbHxwdtbW3OnDnDkCFDgP8q+V5eXqipqZGamsqZM2e4d+8ejY2NGBkZ0bVrV8zMzLhx4wb79u3D29tbrLeZmZnk5eVhZGSEnp4egYGBBAYGIpfLWyXj6dOnxfNQU1ODjo4O9+/fJyYmBk1NTSorK9HT00NHRwctLS3u3r1LUVERJiYmGBgYcOHCBRQKBUOGDMHAwAAvLy+CgoLYuXMnZWVlQkGNiIigtLQUQ0NDrly5Qs+ePTE2NqahoYGioiIKCgro0qUL7du3p7a2llu3bqGtrc26desASEpK4qWXXiI+Pp758+e3WL7r16+zZcsWYmJihOFuYWGBt7c3CoWCiooKXFxcsLCwwMjICFtbW2bOnNlsrbxx4wbXrl0jIyMDMzMzYmNj8ff3RyaT0dDQgEKhwN/fn/bt2/PJJ59w4cIFAgIC0NHRQaFQUFZWhomJCZqamgwePBg/Pz86dOjws33P3d2d9u3b//nKa1xcHOfOnWPChAkYGBiwYMEC4uPjWbJkCS4uLhw6dAgHB4dmVibAli1bWL58OUlJSXh4eJCWlsbzzz/fbPP5Kdq3b4+9vT2SJKGpqUltbS2FhYUYGRlhamra7LuqhQMgPT2d999/HzMzM+bOndsq+Y4dO8Z3333H7NmzCQoKYsOGDRQVFQmrQCaT0djYKLxNDg4OvP7663Tq1AmA+/fvs2bNGo4ePcrAgQOZN28e5ubmxMTEEBMTQ21tLe+++y5jx44lLy8PCwsLNDQ0iIuLY9u2bZw4cYLnn3+eSZMmUVJSQmJiIkOHDmXUqFFs376dZcuWUVFRQceOHTl79ixPPvlkqyax6ro6ODgQFBRERUUFixYtEoprYWGh8Bjfu3ePFStWMGvWLDw8PPjuu++YNWsWw4YNY9KkSeTl5aGpqYm3tzcFBQWUlpZiamoqfl9bW0tjYyO6urro6OhgZWX1syYcfn5+wovg5uaGu7s7jY2N5OXlYW5uTpcuXdDQ0ODYsWMtlu/evXucOXOGHj16sGLFCjp37iws+oiICEaOHMmXX35JdHQ0tra2mJqaMnr0aNTV1YmKiuLy5csEBAQQFhZGRUUFu3btwtTUFB0dHTZt2sS+ffsAGDZsGD169GhmWSYkJPDSSy9RWFjI1KlTefHFF4U35vTp0+zcuZN79+7h7+/P6NGj6dy5M3p6esybN4+tW7e2WMb333+ftLQ0AgMD8fX1RV9fn6ioKN577z2ampqYNm0aI0aMQENDA0mS0NPTw8fHh8OHD7Njxw4uXrzIrFmz6NGjh1hYVYo2/NcTEh8fz/r167ly5QqDBw9m9OjR7N+/n48//pi5c+cSERHBxIkTuXv3Lj179hQRD1Aab+Hh4Vy+fJn9+/e32nt3/fp1oqKiGD58OK+99hqJiYmcO3cOUCpmw4YNE0aSQqHAwsKC9PR0li9fzsmTJxkzZgzbt28H4Ny5c8TExDB79uxm56iurqaoqIisrCzy8/PFvdq2bRvvvPMOYWFhTJkyhY4dO2Jqaiquiwrt2rVj+PDhlJaWkpWVJc7XGpw7d45bt27RvXt3OnXqhK+vL88++yz9+/fngw8+IDAwEDU1NVJSUnB3dwfAzMyMdu3a8dVXX3HixAn69u3LiBEjCAwMFMcdNmwYPj4+zTYHHx8fnn32WXx9fbGzs+P999/n/v37zTapefPmERAQIAx0gGvXrrF+/fqfyd9S9OnTBxsbGwwMDKipqSE3Nxd3d3ckSaKpqQk7O7tmHigfHx9CQkIIDg7m3r17TJ06FXV1dfr378/Bgwepra3lzTffpH///lRXV1NeXk7//v1xdHSkqKiIJUuWkJaWRrdu3Zg7dy6+vr507NiRGzdu8NlnnxEfH4+Liwt9+/alc+fOaGpqoqGhIZS9luLYsWOMHj2aEydOcO3aNUaPHo2Hhwd1dXW4urqiUCg4efIkJ06cYPz48UJ5tbKywsnJSexpmZmZ2NnZCSOmsrKSnJwcKioq0NHRwdraWqyr9+/fZ/v27Rw5coROnTrx5ptvEhERwaBBg8Q1fOeddygoKOCDDz6gqamJgQMHYmdnxw8//EB5eTkrV65ssYyZmZlYWlpiYGBAdnY28+bNQ5Iktm/fjq6uLrW1tZSXl+Pl5cWiRYtwdHTk/fffp66ujl69etG1a1dxrLFjxzJ48GDCwsJITExk+vTp2NjYsHXrVgwMDPDw8OC1115DW1sba2trrK2thQfS2dmZIUOGCKN527ZtvP3225SXlzNt2jQWLVrUKgfAg2jfvr0w4DU1Ndm9ezcXL17krbfeIjQ0lLlz52JiYkJVVRXe3t5izwsMDGTq1Knk5uYKxW39+vW88cYbPP300wwfPrzZvB48eDA+Pj40NDSgpqZGVVUVenp6lJeXs3jxYrFuyeVydHR0UFNTE/KDUrHz9fXl7t27rZJv4sSJGBoakpmZyY0bNzAyMiIsLAwtLS1Onz5Neno6vXv3JiQkBIA7d+5QV1eHl5cX2traANja2vKf//xHGPHp6ek0NDQQEhKClpYW9+/f59ChQ1RUVNClSxcCAwOFnqampoaWlpaIQmtpaREYGNjM2FZh9+7dbN68mfbt2/+mTK1WXs+cOUNhYSHV1dXExMSwb98+zMzMGDp0KNra2ly+fJnc3FzhwVF5XxsaGlBXV6ddu3Z07NgRExMTvv32W2pra2loaMDQ0BAHBwc8PDzQ19cnIyOD8vJyHB0dsbe3p6GhgezsbBQKBdbW1tTU1HDt2jWqqqrw9/fH2tqasrIyjh07xooVK7h+/boISbUGe/bsYePGjZw7d47Lly8Ld398fDz6+vo4OzujoaFBeno6GhoahISEiAe4pqYGExMTgoODOXHiBBcvXiQkJITevXvj7e1NQkICPXv2JDg4WFwTX19fTE1NadeuHceOHePWrVtcu3aN3r1709TUhLm5udiw3njjDbS1tdHS0sLNzY3S0lLhPWstGhoaGD9+PEOGDBGKd2FhIVVVVWKRVCgUIoxZXl7Ot99+i4ODAxMmTEBTU5Mvv/ySXr16ERgYSGFhIVlZWWKsQDOlDhCh5uLiYhoaGpAkifr6eqqrq8nNzcXY2JgxY8YAcPv2bXr16kVOTk6r0wauXbtGamoqY8aMESGurKws0tLShHEVFBQkPOUKhUKkqQDY2dmRlpZGeXk5d+/eJSMjA29vb4yMjJp58j09PbG0tGx27vLycnJzcwGlx1b14Dc2NqKnp4eamhqxsbEYGxvj4eEhPHVWVlatUl4NDAwoKytjy5YtmJiYMGPGDMzNzXFyciI3N5eioiJu3rwplHMtLS2x+WtoaJCTk0N1dbVYWOvq6mhsbBQhuHv37nH69GnS0tLQ0dFh9OjRzJ49G3Nzc+Lj4zE3NycwMBA7Ozu6d++Og4MDvXr1QlNTk9jYWOHlNjMzo1+/fs0W4Jbi0qVL7Ny5k8WLFxMWFkZYWBi+vr5kZmbStWtXbG1tSUpKIikpCT8/P+zt7amtrSU7OxtjY2MmT54s0ngMDQ25ePEiX3zxBTo6Otjb2xMeHo6enh7FxcVcvnyZ8PBwce6Ghgasra1JT09n48aN6OrqMmDAALy8vCgpKaG0tBQvLy8KCws5c+YMnp6ehIWFtVp5lSQJNTU1DA0NxdxqamoClBvIJ598whtvvIGDgwPOzs7CuLSwsCAoKIioqChhRIeGhtK+fXuamprIyckRoXcvLy8aGhqora1FXV2dl19+WWzyzz33HFFRUWRkZODh4UFcXBwaGhosWLBAjDE7O5unn36a8+fPt9pQLi8vB5TeXVW0o66ujosXL6KmpiY8x6owbFVVFdra2vTs2VMcY+/evdy/f5+wsDAcHR2JiYmhpKSEuro6oqOjSUhIIDw8HFtbW2pqajhw4IBQAktKSpg9e7bYh6Kiovj0008BZXRO5VHX1NSkvLycO3futEq+GzduMHr0aKKjozl48CADBw4kPz+fDRs20KNHD8aNG0dNTQ3Hjx8Xz5YqCgPKNdLc3JwLFy5w9epVOnToINaa4uJicnNzqaysRJIkDAwM0NHRITg4mFGjRhEdHc3du3epra0F/puapa6uTkpKCidPnhRRlNTUVBHlUXnYWwpzc3Oxduvq6jaLzKkUz5ycHEaNGsW8efMAOHXqFHl5eejq6jZbIx0cHIRCU1JSgkwmQ1dXV8z9oKAgkboGyuewrKyMiooKTE1NxX58584dkpOTyczMpKamhh9++IEXXngBQKR7tQY9e/YUqUP19fXY29vTv39/6urqSEtL4/jx4wwfPhx9fX1ycnIoKSnB3t5eKLI/RVFREYcOHcLZ2ZkOHTqINcPExKRZOt2D19jExISGhgYaGxsxNzfHzMyMpqYmTp48yeXLl+nRowceHh48++yz9OrVi7i4uBbLFxwcjKmpKampqVRVVaGlpYVMJqOpqYkrV66wd+9eCgoKhFf+zp07bNmyhf79+wsHoKGhIV26dKGxsZHr169jbm5OTk4O69evp3v37nh6eqKmpsadO3fo1q2bWPMLCgowMTFBX18ffX19ysvL0dbWRiaTNUsddHZ2pqioiMOHD5OcnPznK6+VlZUMHz6c3Nxczp8/z+DBg3F3dyc+Ph5ra2u8vLxISkri9u3byGQyHB0d0dTUZPr06fTu3Zuqqiq8vLzQ1NTk/fffFxPOxMSEAQMG8PzzzxMUFMSZM2c4dOgQw4YNE8qSvr6+CCtlZ2cLC7xdu3ZYW1uTkJDAp59+yvXr1wFlyEoVLmspVBcsPj6ezZs3I5fLKS0tFTfL2dkZQ0NDnJ2dKSkpobq6Gm1tbdTU1NDT00NbW5sZM2YQERHByZMnKSsro7Kykp49ezZbkEG5EHTo0AFjY2O6deuGj48PFhYWbNy4katXr7J69epmDzLAiy++SElJCerq6vTs2ZMDBw7wzjvvtErGGzdukJCQQGBgIMHBwVy/fp0bN27QuXNnLCwshNLq5ubGq6++yooVK5g9ezbTpk0jJiYGgE8++YRvvvlGKF/Gxsaoqak1C4H+EmJiYrh37x6dO3fGwMCAr776ig0bNmBoaMhzzz3HkCFD2LhxI9HR0fTu3Zu9e/fy4osv/izU+1vQ09PD3t5ejCMvL4927doxadIkTpw4wfLly5k9e7ZID1Dlvvn4+BAREcHo0aM5fvw4L7zwAsbGxixcuBB/f3/s7OwYO3YsnTp14vPPPyc7O/tn53Zzc+Oll16iW7duhIeHU1VVRWpqKjY2NvTt2xcXFxf8/f0xMzMTIeCmpibu37/fYvkA1qxZg62tLZMnT2bdunV06tSJ8ePH8+GHH1JYWIi6ujp37twhISEBPz8/kTemUgJVaTUqqKurU1VVJTbYo0ePsmTJEsaOHcvatWuFdxxgwIAB9OzZU2yC5eXl2NraoqOjw5UrV9iwYQMpKSm4ubkxaNAgJk6cyMyZM3n++edbJWN5eTl5eXncu3dPvOfr64u3tzcGBgbU1tby7LPPcufOHTZu3Ii9vT2Ojo689957GBkZCa8sKA2SIUOGMHXqVPbt28ecOXOEsqqpqYmxsbHYoAGeeuoppkyZQmRkJMuWLQOU3oOgoCDy8/MpKCjAwsKC8+fP8/bbbzNw4ECxsbYUdXV1qKur07VrV3r06AEoPb6ff/45Y8eO5cKFC6xatYr58+ezadMmLC0tUVdXp7GxUSijI0aMYOTIkXTo0EEovaBMufroo4+4fv06L774IhMnThRG3dixY4XyWllZibW1NQ4ODmRnZ7NixQrMzc155513MDIyIjs7m7feeovz58+3SjYVVKlbD64LFy5c4JVXXqF79+7N1jd1dXVqamooKysTiu6qVau4cuUKzz33HL169cLBwYFJkyZx9uxZPvroI06cOEGPHj3E9Vu3bh2lpaW89tpr5OXlcfToUdLS0oTyqlAoxPlqamrYu3cvJiYmeHl5cfbsWTZu3Ngsv/T3oIocmpmZ4efnh6OjI7dv32bDhg1kZGQwbtw4pk+fTmhoKI2NjRQXF2NmZtZsrunq6uLl5cXJkyf57rvvqKqqonPnzjg6OoqxZGVlkZiYiIuLC4aGhsITHR0djZ2dHYmJibz33nvk5+czZcoU5syZg7a2NosXL6ZPnz5s27aNQ4cO0bNnT15++eVW3cMHn31LS0s2bdqEhoYGZmZm5OfnU1JSQnp6OmfOnKGgoABLS0sWL15Mfn4+Tk5O4vf5+fkcOnSI7OxsBg4cSJcuXTh06BBVVVXNzgHK/f3YsWNYWloSHBxMdXU1KSkpWFpaYmhoiKOjI8uXLyc8PJzp06dTW1srlPiHqQNR7fv6+vro6emxevVqQkJCmDdvHsuXL2fu3LmoqakxZswYTp8+zYkTJwgPD6dbt264uLgAypD+zp07cXFxYdeuXURFRREXF4eHhwfFxcV8/vnnmJub89hjj+Hm5vazfXL27NkEBwdjaWkpFPzbt2+zd+9e8vLySExMZPjw4XTp0oVOnTrx1FNPtVi+tLQ0ysrK6NSpE3Z2dsLRBsrn4M6dO5w+fZrHH38cBwcHKisrycrKoqqq6mfRlmPHjnH37l1mzpzJ3bt3+c9//oOrqys//PADs2fPpkePHiJtpn379lhaWlJfXy9+/2C0/dtvvyU5OZnu3btTXl7Oa6+9hpmZGT/88INYd38Nrb7LQ4cOxc/PT1hbr776Ks7OzkRHR5Ofny/CwAqFAm9vb27fvs3Vq1cJDw//WQ5sUFAQ48ePx9DQEFdXVwwMDMQkDgoK4tixY7z77rvcu3eP1157DWtra+rr68WCqPJgmpubU1lZiampKdOmTROFHEVFRa2eyIMHD0Ymk6FQKHB2diYrKwuZTCZCd6rE5Dt37vDZZ5/h4uLCq6++KizHV155BT8/P8aNG8fUqVO5efMmOTk51NbWkpWVRUJCAiYmJkyZMgUrKysCAgKIj48nOzsbLy8vJk+ezDfffENGRoZIFm9qauLq1atCaVZ5RoFm+YktRUxMDIcOHcLMzAw7OztOnjxJUVGRKBpT5RVbW1vTu3dvNDQ0sLe3Z/jw4eIYXbp0YdCgQSLx/+7du+zbt48DBw7g7OyMTCYTlmbv3r2FRXfy5EkyMzMZO3YsoFQc79y5w8KFCxkzZgwJCQnEx8dTW1uLTCajV69ezYqeWoKSkhICAgKEB9/GxoYePXqIjTIzM7OZ9btlyxY+/fRTBg4ciIaGBvfv3+fw4cP4+fkxZMgQRo0a1ez4TzzxBPb29rRr1054RS5evEhqaire3t6sWLFCXOfY2Fi8vb1F2omzszPz58/nwIEDzJ07l1GjRjFo0KBWh4GcnJwoLCwkODi4WYQjISGBq1evijzNTp06iUVSTU2NI0eOkJeXx7Rp01BTU+P8+fMYGBgIhVoFX19fBg0aRGlpKe+8844ImXfq1Ilu3bphamrK6dOnWb9+Pe7u7rz88stoamqipaVFfn4+CoUCd3d3nJycuH//PpmZma2SD6B79+40NDQwbdo0AHbu3MmVK1eYPHkyQUFBqKmpkZSURG5urthAdHV1m+X0xcfHs2HDBhwcHOjcuTOhoaHC671s2TLu379Pnz59WLFiBZmZmRw/fpzOnTtjYmJCeno6iYmJooihW7duGBsb4+rqKqIGWlpadOvWTXgNWgNtbW3u3LnDnj17MDIy4rHHHiMmJoZz585ha2vLk08+yYIFC5g5cyazZs1i4cKF4lnIzc0lKioKOzs74fmRyWTk5ORgY2NDWFgYu3fv5sCBA2RmZlJcXMyxY8dITk4mKCiIwMBAdu3aRWFhoTAGTp8+za5du7Czs6NPnz7U1NSIQhQ7OzsWL17M7du3WyWjSkm+dOkS5eXl9OrVCxMTE/z9/YWyX1tby+3bt0UxXmxsLBcvXuTcuXPs3r2b8vJyzM3N6d+/v9hw+/XrR0ZGBnp6emhoaPD++++jp6eHg4MDkydPxsnJCVtbW6FkVVVVkZiYSFVVFTNnzqSmpgY9PT1sbW1F5MnY2Bh/f38ROWkJVCFxHR0dDAwMqKqqwtPTk/nz56NQKMjOzsbOzg4nJyd27tyJgYEBo0ePRk1NjcrKSkpKSjAxMcHe3p5x48YRFRVFdHQ02dnZDB48WESvrK2tycrK4tKlSxQWFlJcXExKSgoaGhrcunWLCxcusHHjRkBZ0Ddo0CAmT55MYWEhvXv3Fl7ry5cvExcX16rc7BUrVuDk5ERISAh+fn5iLQOlshcUFIRCoeDSpUtERESwZs0awsLChJKSnZ3N5cuX+f777ykuLqZv375i7zYzMxPrznvvvUdGRgYLFy4kNjaWF154gZEjRwonQ1RUFJs2bcLFxUXkvIaHh6OrqyuiTar9rLUwMTFpdq+6detGTEwMCQkJVFdXM3r0aBISEti8eTN1dXV069YNa2vrZl7e77//nk8++YR3330XLy8v7Ozs+P7776mqqiIzM5MTJ04Ig7V3796UlJQQFRVFeXk5NjY26OvrU1VVJaKETU1NXLp0iczMTDp27EinTp0wMDAQRn1rYGhoiIGBAcbGxmhra4uIoGr/8vPzY8SIEcJotLW1ZdKkSc0McpUS6+7uLgx+f39/Zs+ezY0bN9i6dSsTJ07Ew8MDDw8PCgsLxXm0tLQ4efIkFy9eFAWFoDQaampquHXrFvfu3SM6Ohq5XI6Njc3vytRq5TUgIACZTIaFhQXW1tYiLOTp6YlCocDIyIjg4GDx0B06dIglS5Ywf/58IiMjAaUb2cjIiPDwcPr06SNCZ6C0jCVJomvXrjzzzDPMnTuXnTt30rVrVx577DG0tLSQJAkbGxuhAIHSevDw8MDd3Z3KykrWr1//UOGDn4YtVLCzsxOFaqBUkA4ePIi9vT1PPPEElpaWxMbGsnXrVjQ0NPDw8MDf3x8PDw/S09PZsGEDe/bsoaGhgWHDhhEcHIynpycpKSncuXMHTU1NXF1d6dy5M+vXryczM5OqqipAOWm0tbVJSEggJyeHrl27YmBgwOXLl7lx40arZTQwMMDS0hJjY2N0dXUxMTEReWM6Ojo0NjY2y1vt2rUrYWFhzfJVtbS0GDVqlFj4S0tLSUhI4OTJk828Gzo6Orz++utCoXBwcKCkpIQ7d+6gp6eHpaUlixYt4oMPPkBNTU14zCRJIjMzk06dOvHdd9+1KgH/2rVrdOvWjU6dOmFtbY0kSaJyWVV4VlNTQ319PeXl5aLyvq6uji+//JLdu3fTqVMnDh06hLm5uSjmsrCwEMZVr169xO8KCgr44osv2L17N4sWLaJr165s2bKFyMhIBgwYQP/+/amvr+fOnTsYGRnRvn179PX12blzJzKZjEGDBrW6sFDlPe/fv7/I00tLS2Pr1q2sWrUKNTU11q1b97PijO3bt3P58mVcXV0JDQ0lNjYWLS0tvL290dLSoqamBkmShDdr8eLFLF26FA0NDdzc3AgKChLP/ocffsh3333HSy+9hCRJ4pqOHj0aHR0dca2feeYZPvzww1aHnAcNGsTIkSMBJevAunXryM3NFSwB9fX1jBw5kry8PPLy8rC1taWuro4rV65gZWWFl5cXOTk5bN++nYKCAubPny8UwjNnzrBo0SKSkpLo1KkTjo6OXLhwgbi4OMrLy8nJyWHDhg2kp6czfvx43nrrLcEWUVNTI1779+/PY489Big9S62FlpYW33//PdevXxe5n6amplRWVlJcXIyjoyOdOnVi3bp11NbWEhAQgLm5ufCcl5eXEx8fj4+PD01NTc1SdXx8fPDz88PQ0JAbN25w/PhxTE1NsbOzE/Ll5eXh5OQkcoJ1dXXp2LEj9+/fZ9++fSQnJwMgl8tZsGBBqwthVEhPT+fu3bvY2dkRGBgo9oLq6mrOnj1LY2OjYAmIi4vjgw8+4NatW2hpaVFfX8/69evR0NBg9erVaGpqkp2dzaRJk5g1axa7du3i2WefpaSkRBhTAFVVVSIHuKioiKSkJExMTHj88ccxMjJCW1sbBwcHcc1Uc741Mj6YClBfX09OTg4hISHCY6xSiFQKR3l5uSgOA+W8liSJgIAAjI2NCQkJISEhgaSkJAoKCrCzs0OhUGBgYICVlRVvvfUW27ZtA5Qbv5OTE3FxcaSkpKCtrY23tzf29vaUl5fTpUsXEeatqKjA0dFR5N3/8MMPLZbx888/Z8iQIc3qWHJzcwULS+/evZk1axYffvgh169fZ/PmzYSGhqKpqUlDQwMVFRUkJycTFxeHjY0Ntra2VFRUUFlZSXZ2tlBkL126xA8//MCoUaNEIfCDaRxubm589dVXyGQyqqur0dPT4/r161RXV4vi4bq6ulYrdqA0sjIyMigrK8Pb25vw8HD27dvH2rVrWblyJStWrGD06NG8+uqrnDt3ThTRJSYmCoYILy8vbGxsRL5oWlqaCP9bWlpiZGTE+fPnuXr1Kt27d0eSJE6cOMHZs2d/c2ydO3fm2WefFc7AS5cutcrAAn4Wgm9oaEAmk1FbW0vv3r1xdnYmICBAFFiHh4eLvORLly7h7OxMu3btqKurw9nZGXd3dyoqKjA0NOSNN95g+/btvP322+Tm5ooIW0NDA5WVlRgYGFBaWsp3333HhQsXRL6rvb09c+bMITY2VnhzBwwYQEhISIsKJ1utvJ49e5bu3bszbNgwZDIZTz/9NK6urrz33nvC1f3gAnrz5k3gv7lP5eXlXLp0iY4dO+Lq6kphYSFvvvkmDQ0NfPjhh+jq6iJJEnV1dfTu3ZsdO3bw3nvv8fzzz4sN6MEkX1U4SldXl5qaGjZs2EBCQgKLFy8WFY0Pg6KiIpH3JkkS+/fvR19fX2ycAwcOZO3atRw9epSZM2dSXV2Nh4cHy5cv58aNG4waNQp3d3cef/xx1NXVBWWKlpYWtra2HD16lLfffpvk5GR8fX3p27evUIwiIiKoqanh3XffpX379syYMQN7e3vS0tLENb537x7p6emtpgID6NSpEwEBAcJbN2XKFBITE8nNzRUKlr+/P/fv3+e9995DXV2dV155BVNTU7Kzs1m7di2nT5/G2dlZeLx8fHyYMGEC+vr6nD59mrKyMkCp/MbFxXH16lVCQkKYMGECnp6eLFmyhOLiYubNm8djjz0m5HB0dGTx4sXcvHmT8+fPEx4e3urUj+zsbLZt2yYouN5//32ioqJ49913hdfgxRdfJDExkZdeeol33nmHyZMnU1paSk1NDREREQQFBWFubi4KQ77++mv69OnDsmXLqKqq4ttvv8XPz4+IiAhMTEyEofTZZ5+Rl5fHoUOHsLa2ZurUqUiSxMKFCzE1NeWVV14BlMU0x44do7i4mOjo6FYXwqipqREQENAsn6x9+/ZERERw7tw5zp8/z4cffoiBgQHDhg1DQ0OD69evExoaSt++fXFyckJNTU0wBZw4cUJ4cR80PmbMmIGbmxuSJHH48GG++uorqqurmTVrlvAiz5w5k2+//ZYVK1YwdOhQli5d2mys6enprZJNBdUGf/PmTY4dO0a/fv2IiIggODhYeKG6detGYWEhS5cuJSMjAysrKxobG5HJZMKqd3FxoXv37vj5+VFUVCTm47Rp03BwcODs2bMcPXqUcePG0a1bN9avX8/t27exsbFh2LBhDB48uBlV2ptvvsnNmzd5/PHHhXINNCvMaAlu376Nt7c327dvF4atkZERH3/8sQijvfXWW6SkpPD6669TW1vLlClT6NKlCwMHDhTec1X6hpaWFlpaWuTm5rJlyxbWr19PZWUlNTU1JCcn09DQgJ+fH+3atRMUPwCxsbGsXLmS4OBgVq9ejZeXF42NjWhqajJv3jz8/PyoqqrixIkTrb6HDQ0NwkPq6enZLBKWnJzM999/j7GxMT179kRNTY1Lly5x8eJFcd+cnJyE8nP69GlGjx5NYWEhFRUV+Pv7M3LkSMzNzRk2bBjfffcda9asQUdHh1GjRokCnLKyMszNzRk/fjz379+nrKxMMB2UlJSQkJCAp6fnQxX7nD9/XuQj19bWivW5uLgYQBS9tWvXjiFDhgjmE21tbQwMDET+pLa2NuXl5SLdxsfHBzU1NeLj47G1tRXeYxWlXs+ePRk9ejTJyclcvnyZjh078uGHHxIYGEhjY2Mzz9WNGzc4f/48vXv3xs/Pj/Hjx7dKee3bty/PPfcc3t7eNDY2cvXqVTZs2EBsbCwzZ87kqaeeYtWqVXh6enLw4EE6duwo9jJNTU1cXFyYO3cuAwYMYN++fTz55JPk5+fTv39/FixYINLUFi5cyNy5c3Fzc8PU1JRPPvmEzz77jMGDB/PBBx8QFBTESy+9RH19Pbq6uuTl5XHt2jUWLFhAv379RIrFpEmTHirNpaCggOjoaA4fPkx1dTXFxcVMnz6dMWPGkJ6ezv79+4HmaQlHjhxBXV2dJ554gv79+/PCCy9w9OhRxowZQ1lZGZMmTSI8PJxOnTrRuXNn4uPjaWhowMLCgrCwMCwsLHjuued+U4GtqKgQ0ZX169ejo6PDhAkTRApfS5Cfn8/9+/dFjczFixfJyclh/PjxDB8+nKSkJJYtW8Znn33GypUrsbGxQUtLiwMHDnDq1Cnc3d3R09MjMTGRDh06iOfL1tYWExMT7ty5Q1VVlYjEbt68mZMnTzJo0CBhoDo4OLBq1So6dOggitX09fUJCAgQ+d4TJkwQuf2/h1Yrr/fu3cPAwEAUvKxfv56kpCRKSkowNTWlqKiIxMREXF1dadeuHb179yYlJUXkl6WlpaGnpycUp8uXL3Py5EnU1dW5cOEC/fr1QyaTUVJSgrW1NUFBQUyfPp2zZ8/yzTff0KNHD2xsbEhLS8PY2FjQ/GhpaYniHnNzcyZOnAjQ6lxCUHp08vPzUVdXx8TEhG+++YaVK1fSpUsXnJycKCsrw9TUlHHjxhEeHi4UgJiYGBYvXszIkSO5desWR44c4f79+3h4eIiQYlBQEGZmZuzYsYObN2+ioaGBv78/t27doqqqCnt7ewwNDTl79iyxsbHIZDKqqqqwsrKiV69emJubN8tJNTQ0bNUkBmVhlp+fH/fu3SM/Px9XV1cCAwNFDq/q4VQVH+Xm5oqNQ5WXVldXh42NjVBes7OzMTAwYPr06QQFBbFlyxaSkpJwdHTExsaG7Oxsbt68KXIWGxoaRIK46nwpKSlYWVkREhKCp6cnJ0+eJDExsZni0BJYWVnx1VdfsWfPHgYOHEh0dDRZWVlCKVNRzdTW1ooKX0tLS5FPVlxcLEJeq1evFjnFlZWVmJiYkJuby+3btzE1NaWkpERsKF26dCErK4sdO3aIe21kZMSnn37KZ599xlNPPYWenh6VlZWcOnUKLy8vrKysSEtLE/laLcXVq1eZNWsWoFzc7t27h66uLvb29syYMQM1NTXy8/OJjo6ma9euGBsbo6WlxaxZs5pt0v7+/hgYGJCQkEB5ebnweNTU1NDQ0EC7du1E4WP37t2pq6ujXbt2gsKmXbt2Iue9vLwcPT29n3mR+/Tp81DPoQoFBQUYGBgwefJkEe1Zt24dUVFR+Pv7C/7apKQkbty4gaenJ25ubsJg7Nq1KxMnTsTHx4dr165x9uxZamtrWbhwIU5OThw9epSoqChWr16NqakpzzzzDCUlJaxYsYKePXuSlpbG0aNHRYFfXl4eV65c4emnnwaa55O1BhcvXqSsrExEmS5dukRFRYUwkBsbG9m5cyeampocO3aM6upqgoODuXv3Lp07dxbc2ZIkUVJSgpaWFnl5eWzfvp233npLzKny8nKCgoJ4/PHH0dbWJioqiqioKPz8/KitrRVrl66uLh999BG6urrivoFyvfj666+Ji4v7WW7i7+H06dMcP36c0NBQES5XeaqysrKoq6sToVpQKjvt2rWjU6dOlJWVCa7v8ePHk5eXR0JCApqamiQkJHDr1i1u3brFmjVrGD16NKdPn+bSpUvMnj0bHR0dBg0ahEwmEyHypKQkQW2VmJhIVlYWeXl5zar8VV71lkJLS0t4szMzM4WyGh8fz507d7C0tESSJHR0dGhoaMDZ2VkYOampqejr6wsWlhMnTggKJBsbG4qLi9HT0xNhdQ0NDSZOnMitW7cYOHAgffv2ZfDgwYwZM4ba2lpcXV0FJ2tpaSlpaWmkpqYKw0VV5PZg/mFLMGfOHExNTWlqahKeOZVB8SCtYa9evXB2dkZPT4/4+HgUCgXl5eWYmZnh7e2NqakpsbGx1NfXU19fj5GREd26dRPOp9DQUFGwZGRkxNixY8nJyeHZZ58VTDv/R9t7xlV1bm2/f3rvvUovAgoqAoqiCBZU7N2oGEuM3cRETaLRaGKKmsQae+8dxYaCioqogIB0kd5775wP/Nb9hDf7fbbknDM+7Z2QBXOtNe85xjWu8nfnghs3blBUVMTq1atRVVUlISGBlJSULrSGj622tjays7PFZsrS0pLNmzeL7dGlS5eYOXMm5eXlXLp0CQsLC3EWnT59mvr6esEtT0lJ4cSJE0DnlrNHjx7U1tZSUlKCv78/gwcPprKyUvRMLi4uREVFoaCgIFbyZmZmaGtr8/btW2xsbIiPj+fNmzecOXOGGTNmdPusKS0tpbKyksePHwugREVFhdevX+Pu7o6VlRUVFRWEhYUxfPhwQdVqbm4mPz8fOTk59PX1KSoqIiMjg6SkJMzNzWloaCAnJ0c8WyR0socPHxIREcGrV69obW3FwcGBlStXik3IlStXSExMZNCgQXh5eTFy5EiSkpIoLCzEwMCgCzXy/1bdbl5NTU25fv06DQ0NeHt7c/r0abKyssQNlp2dzZUrV1BRUWHlypUsXryYYcOGCa5GfX095ubm4vVsbW3F62VmZhITE4Obmxu6urpER0dTVlZGW1sba9euJTw8nICAAAwMDJg2bRrTp09HV1eXzMxM0tPTaWtrY8mSJWK6SEpK6pYiDxACLEdHR9rb27l79y4XLlygoqKCuro6/vrrL86dO4eFhQV3795FV1eXrVu38sMPP1BcXMy2bdv46quvuHHjBj/99BObNm3i3bt34vUbGhrIz88XsP/ixYuxtrYWHGJFRUXh87h27Vr8/f2pqqpCXl5eNHEtLS1YW1v/a9saSVN4/vx5oqOjWbRoEWvXrhVetNC5ctPQ0GDjxo2CDiJpwFetWsUXX3yBnp4eCgoKJCQksHHjRoqLi1mxYgW+vr6kpqaSlpaGhoYG48ePR1lZmR07dqCvr8/ixYs5cOAAubm5XYQLiYmJXLp0iTlz5mBkZMSIESOQl5fvNm958ODBxMfHc+nSJcrLy5k3bx6Ojo5CwKOurs6uXbvQ0tLC2tqanTt3cuDAATZs2MDgwYNZsmQJhoaGHDlyRBz0/v7+7N27l6qqKqqqqliyZAkGBgZcvnyZb7/9Vhx2b9684ZtvvgE6RRaLFy/m9u3bAML5YPv27Wzbtg1AmHafPHmyW9d4+vRp+vTpg6urK2pqapw4cYKwsDB69uyJvb09Y8aMwc7ODkdHRxQVFcVK8T+VlZUVBgYGAumETu5oTU0NN27coKmpiU8//ZSePXty7tw5NDQ0qK2tFSsvW1tbJkyYIDz9JFVfXw90IiH+/v788ccf3bpGiT+ir6+v4F5dv36dHTt2kJubi7q6OsnJyfj6+rJ9+3Y2bNjAhQsXMDIyYvLkySgpKfHw4UOSkpJobGwUgSgzZ85EQ0OD9vZ2nj9/TkBAAOvWrcPc3JyUlBRMTEwwNDTE0tISU1NTYbCfmJjI6tWr+eOPPwgKCmLQoEFUVFRw/vx5jIyMuv1AKSsrY8KECQwYMIA1a9Z0ORehc1jy8/OjqalJCH1OnTrFw4cPqa+vF/7IycnJYgW4f/9+Ll682AU9V1BQEP7XJ0+eFIb4y5YtE4jd0aNHycvLo6ioqMuK8dSpU2zcuBF7e3smTJjQ7fM0JiaG8+fP09zczJgxY5CTk6Ompob29nZ69+6Nk5MTsrKyYg08aNAgLC0tOXXqlKBPQeema+rUqSgrK9PR0cGuXbv46aefhMBGwp2HTjR1zpw5rF27VgiC4+LimDZtGmPHjuWHH37g119/ZceOHfz444/C/7W4uLjbjd3IkSOBTqQ1OzsbZ2dnDA0N8fDwICkpiUuXLgmXgPb2dqZMmYKZmRklJSXExsZia2uLs7MzjY2NFBQU0NDQwMOHDyksLBR2YdBJy5KRkeHPP//k1q1bbNmyhZiYGEGTyMzMZOPGjdja2rJo0SJevXrF0aNHMTc3FxZ29vb2NDQ0iLPnY6uhoYGvvvqKgIAAZsyYgZmZGZMnT2bRokX4+/vT0tLCxo0befz4MQEBAZiYmHDr1i3Cw8NRVlbG09NTcCl79erFkydPUFdXR0ZGpot4R3KGff755/j4+ADg4eHB8uXLBRqno6MjNq8ZGRkUFxcLakJQUBCvX79GX19fuNZ8bFVVVYmVPMCSJUtE41pSUsKgQYOYMmUKERERBAYGUlZWxvHjx3FxcSEtLY3vv/8ed3d3fH19u+gpoqKimDdvHiUlJdja2rJjxw48PDzYvn07586dQ0lJSeh4JEOan58fZmZmYggpLy8nISGBkydPUlVV9b/ai/7fSk9PDxsbG6ZOncrbt2958OAB9vb2zJgxAzc3N3bu3Mmff/7JN998I9xVpkyZwtKlS7G1tcXQ0JBevXqRnZ3N/v37OX36dJfV/pIlS1iyZAnbtm3j1q1b/Pjjj/j6+hIUFISdnR379u3DzMyMsrIyXrx4wYEDBwgPD2fSpElYWVlhY2NDRkYGZ86cEVv3/1bdbl4jIiIIDw8nPDycIUOGEBgYiJubm2gw3NzciI+PJy0tjejoaPz9/bt8mJ6enrx584Zjx47R1NSEra0tdnZ2FBcXk5ycLHgU796948SJE2RkZNC3b18cHByQlZWloqICS0tLwZkoLCzk1KlTYk07Y8YMbG1tUVBQEOhgd0pZWZmWlhZyc3OFTZK3tzdDhgyhtrZWoMrm5uY8ePAAOzs7DAwM+Pnnn4UP5b59+/D19e0iKmttbeX9+/doa2vTp08fzM3NkZaWZurUqairq5OVlcXevXvFui4oKIiFCxcCnahmWFgYampqgqsqKyuLoqKiQEm6U8bGxsI/ztnZWVgOFRYWIi0tLcjmRkZG//H9a2hooLi4mEePHpGQkEBwcDBPnz5FRUVFEM0lK8nk5GS8vLwoLi7mxIkTaGhosHTpUoyNjTEwMCA/P5+MjAwSEhLYv38/ubm5GBoaMnfuXFRUVKitre2iNv+YGjFiBA0NDbx8+RJDQ0PxgIFOJN7Y2JgBAwYAnckjO3fupLW1lerqaiIjI8nJyUFGRoaKigr8/f2FvRB0IrGGhoZik/B3Pzx9fX1hgSNRhksa11mzZqGurs65c+fIz89HS0sLU1NTevfujba2drcFW8OHD6empoaQkBASExPp6OhAXl6ec+fO4eHhwffff9/luisqKnj37p1AZwDBA5akRCkoKNDR0UFNTQ3q6uqoqKgQERHB/fv3aW5uZvTo0RQXF+Pk5ERZWRk3b94kOzubOXPmYGpqipSUFOXl5WJ9p6ysTENDQxdRRncqJCSE4uJi9PX1BX0kNjaWiIgILCwsmD17Ni9evODVq1fcvHmTwMBAVq9ejY6OjkDSJk2aREREBLq6uhQXFxMZGdklraqurk48pACCg4Npa2ujsrKS27dvC96or68vb9684erVq0ycOJFBgwZRWFjIgwcPcHJy6rbTgOT9sbW1RUtLi4yMDFJTUzE0NERFRYXi4mJevXrFiBEjRAOtra1N3759cXJyIjExkdLSUmE117dvX+rr64mPj6eyshJDQ0Pk5OQoLCzs4tdqZmaGiYkJnp6eBAYG0tzcjJubGwsWLMDe3p6UlBRu3bpFRUUF7u7ulJSUYGRkxIABAxg4cGC3m1czMzO8vb0JDg6murqaH374AR0dHW7evImcnBwTJ04UPytx5TA1NWXZsmWUlJSwf/9+wsPD0dXVFchlS0tLF7V0SEgIDx48QEpKSngzx8bGcvfuXcaOHYuRkRFPnjzBzc0NLy8vgfz26tWriy9xYmIiSUlJ3bq+jIwMzp49i6qqKk5OTkKnoKCggLu7OxEREYICIS8vT2JiIuXl5ejq6tKjRw+xBVFUVMTR0ZH79++TmJhIVlYW0dHRxMfHY25uzvv371FRUcHDw4PExESBnmtqauLv78+7d+/E5qO5uRkFBQWRTDl48GCBZBUWFna7QX/w4AG6urpC0Pvs2TOqqqqYNm2aeM2jR49SXFxMXl4eEyZMED+fnZ3NvXv3aGpqon///gwePBg7OzsKCwt5/vw5NTU1GBsbU1VVRWRkpODnZmVl8eDBAx4/foypqSleXl7/QOPa2tpISEjgyZMn9OzZExcXF4qKioRneXeqsLCQ3NxcTE1N+eSTT/jyyy9pbm7mt99+w8TEhLlz51JdXc3Vq1cxNDTE1NSUqKgo7t27B3QilI8fP6a+vp6oqCjxugoKCvTv35+2tjYsLS0FB/ncuXMCwDI0NKS2tpawsDCxBW1paaG8vBxHR0dBt2lsbBRb4e6GaUjEtB4eHjQ1NfHs2TOeP39OeHi42DZYWlqiqKjI48ePKSwsRFVVlVGjRnUJ0Pjw4QMZGRm0tLQwZMgQtLW1SUhIoE+fPujo6CArK4uKigoBAQEoKyvz7t07jI2NxfCSmZlJU1MTLi4uYgsQFxeHubk51tbW6OnpkZWVJfqH/6263bzevn0bGxsbYmJi2Lp1K8+ePeOrr74SD8qmpibmzJlDTk4OISEhXLt27R9q7fz8fL744gs0NDSYMWMGFy9eJC4uTnBdHjx4wPHjx4mKisLZ2Zm4uDjOnj1Lz5492bdvH/7+/kJ9uWfPHv7880/xAQQHB+Pr68umTZsYPHgw7e3tXLhwoVvXWFNTw7lz50hLS2Pu3LnC4urRo0fY2NiIG+nBgwdcvXoVXV1dLCws6N27N7q6upw8eZI//viDfv36sWjRIgwMDAgNDUVNTY2hQ4eyYMECYUzc3NyMrq4uv//+O42Njfz111/89NNPXRKSTExM2L9/P8+ePWP58uX06dOHqKgodHR0/tWNOnfuXDo6Ohg7diyamppISUnx8uVLjh49Sn19PTNnzhS+vdC5dpSkELW2thIWFsbly5d5/PixiFN0cXFh9OjRGBsbExsbK3iORkZGZGdnk5iYiKysLCNGjKBHjx4kJSURFxdHQEAAhYWFHDhwgLt37wqVd1pamvAM7W5ko4TnOX78+C4PbvgfgQV0poX98MMP6OrqcujQIaytrYmIiGD9+vU4Ojqirq6Om5ubQKPfvHkjuIGSg9vQ0JCJEyeiq6vL8ePHBS9q5MiRdHR0kJyczMSJEzlw4AD379/n0qVLLF68WCiD29vbSUtLo7q6ulsT9bp160hKSuLbb7+lpqaGM2fOMGvWLEaOHEl+fn4XFBU6eaPXr1/Hz89PNK9KSkrIyMiIVZCLiwumpqYCPVVRUUFWVpbi4mKePn3K69evCQ4Opl+/fiIW2sXFBQcHB0JCQpg1axZz5swRCGtubu4/fHC7U5GRkezbtw9lZWV+//13goKCcHFxQV5eHjc3N8GDnz59OqtWrSIyMpLjx48jLS1NY2Mj7e3tKCsr4+3tTUZGBqdOneLx48c4OTkJf2WJoK21tZVTp04Jm73k5GT++OMPbGxsmDdvHosXL+bcuXM8ffoUa2trIegrKChgzJgx/whN+ZgyNTUlJCQENTU1srKy2LJli4hpTUpKIjIykkmTJjFo0CA+fPgghFmKior07t1b2JtJHEckAiSJoENaWhpNTc0un0GfPn24cOGCQJ4l4raNGzdiZmZGeno6v/32G6GhocyZM4f58+czatQooYbubvXr1w8ZGRnCwsK4fv06CxcuxMDAgNTUVAoKCrCxsaFXr17U19fz4cMHsrOz8fHxQU1NjUWLFlFbW0twcDAhISGEhYXR2Ngo7Hsk7jPnz58nMzMTGxsb+vXrJ9L0SktL2bZtG+Xl5bi6urJnzx5aW1u5ePEiHh4eQrEuqaqqKp49e9at+/DOnTts376db7/9ls8//5zCwkLB73dxcWH16tW0t7cLEOP06dP8+eefTJo0icDAQB4+fMjjx48JDAwkIyODqqoqevXqhYyMDMHBwVy6dAkXFxc6OjpISkqitLQUY2NjvLy8qK+vZ//+/ezfvx9vb2/27Nkj0H8tLS0R8yyh8eTk5FBYWMjSpUvZsWPHR19jRUUFe/bsQVVVlZSUFC5cuICmpiYTJkxAT0+PhIQEDAwMKC4uRlNTE0dHR2bMmCFiuKdMmUJ5eTkTJkxAQUGB5cuXExoaSklJiUjsk5KSYteuXaxcuZKoqCi+/fZbbt26RWVlJerq6gwcOLBLIltjYyNlZWW8evWKQ4cOsWHDBvbu3Ss0M0uXLv3o64PO+9/c3JyxY8cK0OjChQv89ttvLF68mMzMTFatWsW9e/c4ePAgXl5e7Nixg+PHj6Orqyti6Tdv3kxaWhry8vJIS0vj4+PDtm3bsLKyEu4kt27dEimPW7ZsISsri++//x7odCxobGykra2NtrY2xo4dy+zZs7G2tmbixIm8ePGCqqqqbjubyMnJ0dbWxvr165kzZw5ffvkl58+fBxBuDi9fvqSsrAwDAwNSUlL4/PPP2bhxo7CpfPXqFdu3b+fly5cMGTKEn3/+mb59+/LixQvq6+tJSkqiX79+AiU3Nzfn119/paKigtraWhQVFXF1dcXFxUVQXSSNckZGBtbW1mzatInQ0FCCg4P/6zV1u3mVKIAlNkD9+vVDV1eXPXv2cPToUUxMTLhy5QpmZmYiQaS8vJyzZ8+SkpLC119/jaWlJfb29lRVVaGmpoaxsTEqKirU19eTnJxMVVUVpaWlDB48mFWrVhEWFsbr16+RkZERU8CTJ0/Ys2cPly5dAhCE+5iYGB49eoSJiQkKCgrd5ktGRETg5OQkppC/R/O5uLjQ3NyMoaEhdXV1GBsb06tXL5SUlNi9ezdPnz5lzJgxjB8/nh49egj16qVLl3jy5AlWVlb0799fTNvq6uokJCSIiTIgIICzZ8/y7t07Ll++THR0NNOnT6dXr160tLQQERHBlClTqKmp4dmzZ5iamv6r5lVCN/j7A9fAwIDx48ejoKCAgYEBYWFhuLi4YGdnR15eHmvWrEFJSYnZs2ejo6PDwIEDMTY2prW1FVdXV6G+j42Npby8nE2bNuHg4ICMjAzHjh0jISGBL774ggULFoiAicrKSjo6OrC1tWXixIlCTFFaWkpFRQU6OjrU1dX9Rz/V/62ePn36f31fNDQ0hN2ZxOjdyspKNKimpqa8ffsWHR0dFBQUhFOEkZER+fn55OXlkZeXh7u7uzDtr62t5eLFi8ImZ9myZQwfPpysrCza2tpYvnw5qqqqDBw4kNraWsGdvHr1Knfu3BE2O92p0tJSCgoKGD16NAMGDMDR0ZGqqiqsrKyQlpYmLy+PP//8kzt37iAlJYW/vz9Dhgzh5cuXvHz5kjVr1qChoSHUzy4uLmI4+TtnVdLkhIeHo6ioSG1tLeHh4WRlZWFnZ8fatWvR1NQUDxpJlG9ISAiPHz/myy+/RE9PTwhYulNubm4sXryY+vp6NDU1hd2c5O+CToR7+fLlgicpWZcrKirS1NQEdD60N27cyJUrV8RmZsWKFaSlpeHh4YGXlxcVFRU8ePAANTU1xo0bR3NzM9HR0Tx8+JCZM2ciLy/PjBkzGDhwIElJSXz48AEDAwOUlZU5fvw4srKy3Y7dlHDWodP6bOzYsWhpaaGgoIC1tTWDBw/GxsaG1tZWkpKSqKurEyKJv/PWoPPcunv3LlJSUtja2pKWlkZ7ezuamppoaWkJmsHfRWVZWVlYW1vj5OQkPGJtbGzYunUrNjY25Ofn8+eff2JjYyMShrpb1dXVPHr0iICAALGla21tZerUqSgpKVFbW8sPP/xAeXk548ePx8bGhvv375OUlISMjAy+vr706dOHhw8f8uDBA6qqqpCSkmLIkCEMHToUKSkpwsLCePfuHWlpaYSFhaGlpSXQu4yMDIYOHYqenh5nz54lODiYkpKSLhSWhoYG4bU6dOhQ3rx589HXN3DgQL755htx3hgaGpKQkMCBAwcYNWpUl8Qz6Nw8vnz5kujoaBISEkQzEh4ejpubG0FBQQKwSUxMRF5eHjk5Od6/fy/SiWRkZDh48CDa2tpC4T9t2rQutJX/8zwpKSkRSvHu+NgCjB49mqqqKkJDQ7l9+zbW1tYC3Pjw4QMfPnzAycmJAQMGMHHiRMHZBgS1SbJtevr0Kffv38fR0ZGBAweKIV5i1wSd4FFcXBy6urpCyLZz506ePHkizO6rq6vFRu727duoq6uzefNmmpqaRFPWnbKxsWHKlCmC2gWdmxGJVWRsbCz29vYicvnNmzfExsaKhEEJ9/X169dISUkxduxY/Pz80NTUFPoKCW2rubmZOXPm4OHhwZgxY3j06BGjRo3C0NCQnj17kpOTQ2NjI+7u7gLths7tnYGBAa2trd3e1P198FRRUWHAgAHk5OQgKysrUgVNTU1Zu3YttbW1bN68mcjISH799Ve8vLxwcHAQji7ffPMNvr6+SElJkZKSgpeXF+np6Vy9elVwVu/du4eRkREWFhaYmJh0+T5KXIsUFRUZMWIEUVFRlJSUCP2Mm5ubGNT+t+p28yohk0smSeg0ml2+fDnQeZM8fPgQGxsbKioqGDhwINra2kRGRnL27FlGjBjBmDFjWLVqFUeOHCElJYWRI0diZWXFzZs3uXLlCtDZKC5fvpwRI0ZgZmZGfHw8rq6utLe309bWRlxcHKWlpWhoaCAlJSXsKCTm7BKbFwl35mMrMjISKysrvL29+fDhA4mJiRgbG3dJCnn+/Dnl5eV4e3ujqalJc3MzTU1NlJaWUlhYyPjx4/nss8+AzsM7NjZW2LZI4PKGhgbq6+uF6CcrK0tEqx07doxjx47h5uZGnz59MDAwwNTUlPHjx1NTU0NwcDBpaWn/ManjY0qSYiMlJYWUlBTS0tJYWFh04brduHGD6OhoFBQUSExM5OXLl1RUVBAbG8vly5dFzKYkKUtOTo6EhATi4+OxsrIS68DY2Fi2b9+OgYEBW7duFfQSJycnmpubaWhoQF1dnQULFjBkyBDOnj1LcnIyeXl59O/fn+bm5o9aIfy9JOlRSkpKlJSUiDxqSWa1ZDpXUlJi+/bttLW1CUsPc3NztmzZwvPnz/n22285f/48W7duZfjw4YwcORIfHx8eP35MSkoKISEhKCkpERERQWtrK0OGDMHT01PQLnr37s2QIUOorKwkMTERe3t75syZQ15eHt999x3Hjh1DRUWFJUuWEBgYyLVr1z76Gt++fYuKigpTpkwRYpfIyEjRxN6+fZuEhASRTmZhYcGAAQN48uQJ4eHhWFpaMnXqVG7evIm8vLzI9a6vryc3N1fQWszMzNDQ0KCyshIVFRU0NDSoqqqioKCA2bNni6nd0dERJycnhg4dKh4+Em4j8K9oA46OjsybN0/YX71+/VrYRf1dlDF+/Pguqv/S0lKBuiooKFBbW0tOTg76+vqsWLECV1dXbt++LRp5GRkZOjo6CA8Px9/fn+XLl+Pk5MSnn37Khw8fujgxaGlpce/ePdrb29mxYweZmZmCszhkyJAu6NB/Kwl1oaamBikpKXENdXV16OnpMX36dPHvdXV1sbe3F7xtScqhjIyM8CWOiIgQq2UdHR0iIyOprq4WfF/ovF+bmprIz8+nqakJKysrysvLCQ0Npa6ujjFjxuDh4YGHhweHDx/mjz/+4PXr1ygqKnY7ahvg8ePHpKWlMXnyZHF9JSUl4rxub2+noqKCgoICQWl49OgR27dvx8jIiNOnT9OzZ0+cnZ2pq6sjPz8fX19fFi1ahIODgxAqSdDd2NhYYbkHnSKnadOmYWZmxuLFi0lJSaFfv35UVVUJzrAkXMXGxgYDA4NuNa9jxowR94CkHBwcKCws5OXLl3R0dGBmZiYEkJLgl0WLFnHjxg00NDRwd3enqakJXV1dMdjW1dVhYWGBm5sbPj4+vHjxgu3bt4v1u8Rl4u8xr/X19bS2tqKmpiZEvZJBVEVFReTK/z3M4mNqypQpXL9+nXnz5lFVVUVISIgAdeLi4lBRUcHPzw8nJyecnJy6COFkZWUJDAzkxYsX3L9/n+TkZPr06cOuXbvQ1dWlrq6OCxcuoKSkJOzMzpw5Ixrivn37kpGRwYsXLwgLC0NBQUF4ljo4ODBw4ECioqIoLS0lJSWF58+f89NPP3Xblk/iTSpJ81JTU6Nfv36kpKSgpqaGvb09zs7OaGlpoaOjQ3FxMVpaWsyePZupU6eSkZFBcHAwCgoKuLm5sWrVKoYOHUpBQQFff/01p06dYvr06Tg4OGBnZyeobWFhYbx9+5a5c+cybdo0qqqq2Lx5M6ampkIom52dTVxcHD169OCTTz6hvLxcuDh9bDU3N1NeXk5MTAwGBgYsX76chQsXsm3bNuEMZGJiIrzlpaSkRNSvhJ6kp6fHgAEDGD58OFpaWiIg5vfff6dnz55oaGjw66+/0tjYyKRJk5CTk+P169eMGTNGRP42NTWhoKBARUUFOTk5WFtb079/f+HyIAmBGjt27H+l8HS7eW1tbeXBgwfiJsvMzBSNmp+fHzt37iQhIYHFixdjYmIiuGBDhw4VXpHQyYUqKiriwYMHREVF4eXlRVpaGtnZ2UDnA0kywdnb27N7924qKiqIiorC0NCQyZMnM2TIEIqLi4Ut0IcPH9i2bRuysrIsXrxYqHcl6SsfUxJLKgkvJC4uDldXVxYvXoySkpJYobu5uaGpqcmLFy84ceIE7u7ufPnll2RlZZGcnIy8vDyWlpbIy8uzdOlSZs6cib29PUZGRpSVlbFr1y7a29vZunUrhYWFzJgx4x/RhOvXr0daWpq1a9cyfPhwtm7dyo4dOzh//jyDBw/GwcGh26gkdFrU/CfxTmVlJTU1NZiYmDBu3DguXbrEyJEj8fLy4uDBg3zxxRd8+PCB2NhYgShcv36dY8eOUV9fT1VVFYWFhcybNw83NzexYunZsyfr1q3rIrzq06cPRUVFIkyiZ8+e2NjY8PnnnzNjxgyePn3KhAkTsLCwQEZGplscn379+pGRkSHiMSW+lhkZGYwbNw4XFxdu3rzJhw8f+Pzzz7sgjZLoxlu3bhEWFkavXr1YuXIl48aNw9zcXPhstrW18fPPP3P+/HnMzc05efIkfn5+3L17l9DQUBQVFcV79P333/PXX39x8OBBxo4dKxpXPT09fvzxR8F77k7z6ubmhra2NgcPHuTUqVNYWVnh7u5Ojx49uH//PjExMaioqODp6Ymenh4VFRWsX7+e8PBw8bk9efKEd+/eCe9Fb29vGhoa+O2330QqXu/evRk6dCghISFdknAkzX9NTQ2qqqosXryYWbNmER0dzbVr1/D29sbW1vZfiQsklZiYiIeHB42NjURHR+Pg4MAnn3zCsGHDaG9vJz09XWSg/10Ff/nyZV69esWoUaOYPHkyjo6OglokEXPu3bsXCwsLUlJSsLGxEZZFqampqKioMHbsWLy9vUlKSiI9PZ0+ffrw8uVL1q1bR3h4uHBeUFRURE5OjsbGRsLDw7vVvEpKsi738/NDRkaGyMhIevToIc5KNTU1IdyRVE1NDb/88gvBwcGYmZmxaNEihgwZwqVLl9DS0mLz5s2cPn2aTZs2dXkI5Ofnk5iYiKmpKdra2ly7do3Xr18LT80zZ86wZs0apkyZwvTp0+nXrx8VFRVcuXKFkSNHdusshU4R1JYtWwgLC2PNmjWsXbuWjo4OfvvtN+zs7Pjss8/YuXMnqampwoFEEjX8dxswU1NTMXA7OjqK2F+Jq4CrqysPHjxg3759tLS0CPChvr4eQ0NDevfuzaeffkp+fj4BAQGYm5sTGxuLjIwMurq66OnpIScn949I6/9WLS0tlJaWoqenR1tbG4mJiVhaWjJ79mx2797N0KFDCQoKYurUqeTm5jJgwAD09fXFfTFp0iR+/PFH2tvbqamp6fLaFRUV6OnpMWLECEaMGIGbmxuJiYlERkYyc+ZMZsyYwddffy1+Pjo6GmVlZRFMUltbi7KyMqqqqsjKytLa2kptbW23m1dAxHfGxcUJPnlNTQ1NTU0MHDgQGxsbioqKOHz4MMHBwSgrKwuBlyQB6/vvv0dJSUnQUNrb21m0aBE9e/akoaGBt2/fcunSJe7cuUNNTQ2RkZHCDUfSCCYnJ1NaWoqUlBSDBw/G19dXpHp5eHjg7OwswK5/U2FhYZSXlzN//nxKS0u5ePEiCxYswNHRkX379hEXF8eBAwcEYioRFFpZWTFlyhTi4uKws7MTTh1GRkYEBQURHBzM+fPnMTMz4/PPP0dFRYWioiJ27txJUVGRSJN69OgRR44coWfPnsyePRsVFRXh3KOjo8OAAQMYNWoULi4u3aJD7t27V1C+fvnlF6DzDM/NzRX2iC9fviQ7O5tp06YxYsQI7t+/T15eHjY2NiJePDExETk5OUxMTMjNzaW0tFTYoE6fPl3QBCorK1FTUyM+Pp7MzEzMzc2xsbERQ8/9+/dZvHgxX3/9tbA/+/bbb2loaGDFihUfNXx0u3kNCwujpKRErHN//PFHCgsLcXNz4/PPPxfWVcOHD0dBQYHnz58LVWXfvn1pamoiOTkZWVlZxo8fL4Q7ampqwprKwcGB8ePHC1WhmpqamLxLSkqwsLCgvr6euLg4NDU1mThxIrm5uTQ2NhIUFISUlBTBwcFcvnyZhISEbh24krXg3bt3efjwIW1tbYwYMQItLS3u37/PnTt3mDNnjphQ4uLiePnyJS0tLYwYMQJPT0+uX7/ON998g5eXF8uXLxf2HhIyv46ODjk5OVy5cgUtLS369+9Pz549aWxsRFFRkcrKSj7//HOmTJnC8+fPyczMRFtbWxy4NTU1BAYGUllZyYoVK7rtgyqx43j48CFPnjzB0tISPz8/Ojo6OH36NHV1dWzdupVBgwahqqqKgYEBkydPpm/fvnzzzTddrJaeP3/OnTt3urz++fPnyc3NJTQ0FFlZWbEKe/XqFQ8fPsTBwYHAwECqq6s5evQo8vLyrFmzBjMzM65cuUJlZSXJycmcPn0aRUVFrKysupXsY2RkRHR0NC0tLejr6wv0rbq6mqysLIyMjERwQVhYGDY2NuI6JYk30NnMDxs2jEWLFomHmsTiTRJ9KDGmltjCKCsrC8RBUmpqamhqagozfQmq9t1339GzZ09iYmK6PYRIhBcST1eJYXhYWJjwKHV1daVPnz4ClQoLCwM6V5uS71JUVBT6+vpUVFRQUlJCfHw8+vr6woNz3rx5bNmyhZKSEuGr2tTURGRkJD/++CM1NTXCqSI/P59Hjx4hLS0tNgaZmZnU1tb+K+S1qamJp0+fUlBQgKGhIT4+PigpKWFsbMyTJ0+4evUqw4YNQ1tbmzdv3oiACwmyXlVVRXx8PFJSUsIGLSYmBmlpaXr37s3cuXM5ePAgsbGxqKqqMmbMGJSVlTl37hxDhw5lypQprFmzhuvXr7N06VJhowadK/fdu3djbm5OUFAQiYmJ3aYoRUVFkZ+fT2ZmJrq6utTW1qKrq4uVlRUlJSW8fPlS+IIqKiqSn5+PiooKU6dOxdjYmNLSUkFj+eKLLxg+fDjV1dW8evWKlpYWnJ2dcXJyIj09nVevXqGlpcX169d5//49c+bMwdnZmffv3xMeHo6npycqKirEx8cTExODj48PCgoKotn/8OEDR44c6XbzKokjllhmzZgxA319/X8M6jExMSQlJWFlZYWHhwe//fYb6enphISEiAhtPT09kpOTRVMvedhKPLUl4t/CwkLhXiOhGWhqajJ//nzKysqws7MDOsVWISEhKCoqEhgYiL6+fredTV68eCESl5qbm7l37x5VVVX4+PiI3x0cHCwCF+rr64U9nYWFheCzSh72kpJwtfPz8zl79iy9evUS1nuPHz/m7du3XbaKr1+/FjQRCaVEwoXOy8sjJiYGQ0PDLhvT7pShoSGrVq0iJSWFXr16UVRUxKFDh3BxcRGfR25uLjk5ObS1tXWxxwIEBczFxUWkxElLS+Pr64uvry8vXrzg4cOHaGpqMmvWLAoKCigqKsLZ2RkvLy/y8/N59uwZ2dnZNDY2iiFHAo7V1dVx7949PD09WbJkyb8K0yguLubx48fExsZSW1sruNX5+flcvHiRdevWUVNTIxxcUlJSugQ3JCYmkpOTI0IUiouLKSgoYOjQobi5ubF9+3YePnzIiRMnmDVrlghlgM6BW1ZWlsLCQgYOHEhbW5ugX2pra+Pk5ERlZSWFhYUiTbS715aUlCTs9TIyMli3bh3JyclYWlqK2Pbs7GzCwsJwdXWlo6NDULV0dXUxMTFBX19fWGcNHToUGRkZsQ1SUFAQrhOSrdvEiRNRU1OjsrKSxsZGMjIyKC8vF8CQgYEBHR0dyMjIiCCf58+f///TvNbW1uLl5UVYWJgwIx8xYgSHDx/m5cuXLF68mGnTprFu3ToAtm7dyqVLl1izZg0zZszgwoUL5OTk8Omnn7J582ZhkfLhwwfOnTvHmDFjmDp1qlCnSaq0tJSWlhax2n716hXz58+nV69eXLhwgYMHD1JeXi4a3gkTJhAREdHtJAro9LJNTEwU8LVkRX7hwgWOHj2Ku7s7bm5uNDU14ebmxnfffcemTZuEUba7uzsHDhzowkupqKjg/fv34vCwtbWlrq6Or776ihUrVvDXX3+Rnp4upjMJmt3e3o63tzdqampidT9q1CimTJnCsWPHuHr1ardXJJLm8+7du/z2228oKChw7tw5JkyYQEdHB0eOHMHS0pJPP/2UsLAwQQ63tLTk5MmTYtIChMethHT/7t07MjMzyc3N5ZNPPmHt2rU4OjqSlZXFsWPH2L9/P5qamhw4cABpaWlCQ0OF3+S3337L77//zrBhw9DU1OTbb79l6NChfP/9991qXmNiYoiOjsbCwkLEgUrQxcrKSjIyMhg1ahT29vZcvnyZsLAwhgwZgomJCW/evEFTU5OlS5cyYcIEwWVLSkrC0NBQNACbNm1i0KBBbNq0iSNHjjBjxgwmTJjA6tWr+fLLL8nLyyM0NBQDAwPmz5/P9OnTKSgoICkpiQULFogUoGvXrrFx40YqKiq6xO/+tzp+/Diampo4OTlx5swZLC0tuXjxIrGxsZibm/PZZ5/R2toqpmcHBwcmTJjAtWvXaG9vZ/78+WRnZ/P06VN8fHzw8fHh+PHjvH37li1btpCbm8uJEycoLS3FxcWFXr160drayieffCJU+7W1tTx58oQNGzaQkJDA3LlzqaioYNq0aYSHhxMaGoqMjAwaGhrigOtOWVlZcfv2bdzd3QWtQVLBwcGcPHkSCwsL+vbtK1KJJk6cSEBAAGPGjEFaWppbt25x/PhxtLW1sbW1JTY2ltbWVoYPH059fT23b98mMzOT4cOHs2/fPj58+MBPP/1ES0sLEydO5OTJk4SFhZGQkEDv3r0JDQ1l5cqVhISEcPz4cWbNmiWCHOTk5FizZs1HX9+PP/7IvXv3cHV1ZcWKFaLpkMRt79mzh4KCAhQUFCgpKaGwsBALCwuBOjk7O3P58mWgs3mR5KLX1dWxfv16DAwMGDx4MDExMfj7+6Onp4eqqipGRkZig+Tt7S2GLsngNWHCBLS0tIiMjERWVhYvLy9GjBjB0aNHefr0abc+w7FjxwKdRvfOzs4iWvfLL7/Ezc2NtrY2Pv/8cw4ePCg4rAoKCkybNg0FBQV27Ngh0tyGDBlCTk4Opqam1NTU8Nlnn6GgoEBAQIBoOv38/GhoaBDARUVFhRDzlpWVkZGRga2tLVJSUujp6VFdXU1FRUWX4JvuVH19PQMGDEBFRYXGxkbk5OTYt28f27dvZ/v27YSFhbF582aOHTuGoqIiurq6pKamCleV4uJitm7dytOnT0UEMCAcFyRipJ49exIQEEB+fj4GBgbs3r1biEZjYmIoLi7G1dVVINV/L4lYceDAgf+qeZWISQMCApg+fToKCgo8efKER48edeFQNzc3s3TpUhHa8veB1dTUlAkTJmBgYCAs9P5ekuTOurq6LjGoktSsDRs2EB0d3WVLlpaWJv53cHAwS5Ys4ZNPPuHPP//8V9eYmpqKkpIS5eXl/PLLL0yZMoXff/+dhw8fivdaTk6OH3/8UaTpSZ69586dExQOGRkZoqOjiY2NFe42PXr04LvvviMjI4Ndu3bx6NEjjIyMxCr92bNnuLm5MXfuXD799FNevHhBcnKyAI5kZGREwmZRUVG30fM+ffpQXl7OgAEDKCgoYNmyZdy5cwdPT08Rs21vb8/gwYMpLCxk9+7d3L9/H2lpacaNG4ehoSFGRkYsXLiQ2tpa5OXlxZAiLS1NVFQUsbGxBAYGMnHiRNavX09DQwM7duwQrhDDhg0jNjaW2bNnY2RkxM2bN9HT06OkpISqqiqGDx+Ompoa8vLyHxWi0e3mNSAgQBjaSkQuS5YsEeb6SUlJPHjwACsrK3x8fOjTpw9XrlwRQQJ9+/ZFVlYWTU1NgeC0t7cjIyNDv379RLNRUVFBcHCw4LiZmJgQHx9PQkIC/v7++Pj44O/vj4aGhphY09PTef78OZqamlhYWPDTTz+RlJT0j3XM/1YPHjwQdkgrVqxg1KhR4t/NmDGDhoYGnjx5wq1bt4iJieHzzz8XPnS7d+/m9OnT9O/fn88++4y2tjYiIiIwMDAQwrX79+/T2tpKU1MTmpqaVFZWEhkZSXJyMunp6RQUFDBq1ChBsE5PTxdCIYkvqaamJjU1Nfj6+op89u6UZJLq378/EydOFFzGyspKLC0tCQgIEGstSQRqREQEDx48wMDAoEuzrKGhgYODA69fv6a6ulqQ6VtbWxk/frxYoxYWFtKzZ08WLFhATU2NiEUcPXo048ePp1evXoLE7+HhIdD44cOHC07nx1ZiYiJHjhxBX18fbW1thg4dira2NtnZ2dTX1zN48GDh5evs7CzM/S9cuMDDhw8ZP348ixcvFgdzU1MT9fX1lJSUCE51YWEhOTk5REVFCWuUwYMHC4K95POWlZUVyvbs7GxCQkKE6CYjI4PXr1+jpqbWZYL/mJL47o4YMULQa1paWlBSUsLKygozMzMuXLggkmZWrFjBuHHjsLCw4N27d+jr6+Pq6kpwcDDDhg1DSUmJyMhILl26xMCBAxk9ejSurq7s3r1bmIiPGzeO3Nxc3rx5I0y6J02axPv378nPz6d3794CQVNRUREr6sDAwC4ijo+td+/e0aNHD4EW7NmzBx0dHaFULS4uFg4K7u7umJiYiAAFiduCnZ0dT58+/QftxNXVFTMzM4GyS9w03NzcGDJkCCoqKqiqqvLrr7/y66+/sn37drZs2YKtrS1TpkzhzZs3ODo6ChpKfn7+P9DE/1YDBw5EWlqagoIC7ty5Q1tbG56enmRkZPDzzz/z+vVrLC0tGThwoPB3lPhK3rhxg8LCQoYOHSriZHft2kVJSQkNDQ3Iy8uTlZVFZmYmZWVlwp/Yzc2NmTNn0rt3b6qrq+nZs6fwt7169Sq5ublCkGhoaEhKSoqIOJXQebpTEnGkxJpOUhKruZycHKSlpZk8eTITJkygtLSUCxcuUF5eTu/evXF1dcXIyAhVVVVcXV1JTk4mMjKS/Px8SkpKGDx4sDgrU1JSSEtLE+4vM2fOFEOUgoICGhoa4j7LysrizZs3mJubC0HX3bt3/7FF+m/l4OAgzkodHR3mzZtHbW2taEZ69OjBwoULyczMpLKykoKCAtLS0nj48CFaWloYGhpiYWHBgwcP+P7773n//j2TJk0SqKqOjg7Ozs6YmJiQkpLC7du3RTJVQ0MDa9eupbS0lMDAQNEstrS0cPjwYaqqqpg8ebJImKuvr+fRo0fdFodKrk+i+cjMzKS5uZn58+eLZ+CECRPw9/fv8t+dPn2aZ8+eMXfuXDw9PbG1teXmzZscOHAAGRkZpKSkUFZWFmp6XV1dwdUfMWKE4GM/fvyY8vJyPD09sbGxQUNDg5ycHGJjY9m0aROjRo0SvsEJCQkcOXKkW9cHnXQxXV1dZsyYwYABA4iLi8PNzY1BgwahqalJTEwMr169EueLvLw8JSUlHD16lFevXolAHmtra7y9vVFXVxcCpKysLHr06CFoXJcuXeLt27fk5eWhqamJkpKSMOuXJHq6urrSv39/pKSkxFDb1tbGX3/9Jbbc3amUlBRKS0tRU1PDyMiImTNn0tTURJ8+fejXr5/w+tbQ0MDc3JyoqCjevHmDq6urGIqhkzv9n1xHOjo6iIuLIzk5GUdHRyGEbm5u5vr16xQVFeHn54eHhwfjx48nNDRUbLH19PR48uQJlZWVfPPNN8TGxrJ06VLh8vR/q243r1ZWVrS3t+Pk5MShQ4cwMzMjPz+fW7duERAQwJdffomPjw8zZswQpumOjo4iI7tnz56Cb3nr1i3+/PNPamtrmThxIkFBQaJhePv2LfHx8aSmpqKsrIy7uzvp6emcO3eO2tpaJkyYwLFjx4BOdDIxMZHz589z9uxZnJyc2LhxI8OHD8fZ2VkoGj+msrKyeP/+PQEBAQLtyc/PR1lZGT8/Pzw9PVm5cqVIUYqJiaGyshI3Nze2bt3Kli1baGhoYPHixaSmprJnzx709PTw8fFBSkqKpKQk8vPzkZeXx9fXlzt37pCens5ff/2FkpKScF2QVGpqKidOnMDJyYnp06cLyD0rK4v+/ftjYWEhPEg/tmJiYhg7dixTpkwhMDAQBQUFKisriYqKonfv3iKdTCLGkpaWprKykosXL5KXl4eamppwfSguLiY6OprIyMguNxp0psxI0EQXF5cuXphPnjyhurqa1atXo6SkREtLCwsWLGDBggXEx8cL9bEkT7k7pampKWIf//jjD+zs7JCSkqK2thZjY2NhBl9dXY2fn58YfjZu3Eh0dLRQ4kuuT19fn759+1JeXs6FCxeoqqpi9uzZvH79ml27dgGdHO05c+bQ0tIiPG9NTU1JTExESkoKHx8flJWVKSkp4fDhw0KVb29vz7hx45g3bx67d+/+6GucP38+WVlZXZAWDw8PccNLDlTJ3zZs2DAsLCyYNm2a8OKFTqRKUVGRqqoqGhsbaW1t5fLly/j5+TF37lxevHjB8ePHGTt2LCYmJrx+/ZqEhAT69evHypUrUVdX58GDBwwbNoyjR48yZ84cTp8+zYwZM+jVqxe3bt0iOzu72wpnyXu/aNEilJSUeP/+PSdPnsTe3p6AgADBAZUElPTr10+o/f+ektTW1sb48eNJTEyksrKSvLw8RowYwVdffYWGhgb19fU4ODhga2vLkydP6N+/P999953wwnR2dmbhwoUiLODChQvCu1Zi3QWdHOJbt279I0P8fytJBvjnn3/O/v37SUhIoEePHty8eZP29nbU1NQYOHAggYGB+Pv7i4fGmjVrxPnj5+fH5MmTKS4uZu/evaSlpYmgjbdv3/Lo0SP09PTw8vLi5cuXqKio4OPjIx6SkqaqqKiI9PR03r17J2zubG1tMTExEZSZ7oAAkoqNjRVxkJJY1JaWFjIzMykqKkJBQYEtW7aIh2N4eDh3797ll19+YdSoUSI8AjqbqGHDhvHq1StycnJYuHAhffv2FW4BampqHD16FFNTU3799Vd0dXVJS0sjKSmJAQMG4O3tjZKSkvAKlpWVxdvbW1DAbt26xd69e7u1ybKwsKCjo0NYG6mpqbFp0yagE4mUbCpv3rzJ7du3KSsro6ysjPj4eKqrq9HS0uKTTz7B0dGRBQsWiFW8p6cnDx48ICIiQji7PH/+nNzcXNLS0ggPD+fevXv89ttvDB48WHyXJRzs+/fvc/PmTUxNTZk9ezYrVqzg5s2b3Lp1q9uWZ21tbUhJSVFVVcWrV6+Eyt7Pz4+cnBy2bduGjY2NaF7r6+t59+4de/bsITk5WdAEdHR0RJpfREQENTU19O7dG3t7e4yNjUlPT+fWrVvExsYya9Ysli1bxuvXr9mxYwcaGhoMGzYMNzc3Zs2ahZSUFOvWrWPLli08fvyY7777jn379vHw4UOePn3a7ahfRUVFwaN2dnZmzJgxtLW10dzcjIuLCzdu3GD//v3ienR0dLh8+TLnzp0jMjKSwYMHs3r1apydnbGzs8PMzExsqwoKCoQ4UFVVFTc3NxE+UFpaipubG5MmTWLw4MHk5eVx6tQpdHR0mDVrFtLS0sJiKzY2lmvXrqGjo9NtLUFzczN1dXU8e/YMFxcXIbbNzc0VCXF/DzaRuOb4+vqKQUoyFENnbyAtLY28vDyNjY3Ckm/btm0oKSmxZ88e7Ozs2L17Nz///DOAiAn+6quvePLkCXPnzqWlpYUJEyaQmpqKvLy8ELK9e/fu//vm9dGjR1RUVKCqqoqnpycaGhrEx8fz119/cfr0aQYPHkxAQIAQN2VmZvL+/XsuX77Ms2fP2LZtm0DjLCwsmDNnDnJycgwYMEBwxgoLCzEzM2POnDnk5+ejra1Ne3s7gwcPpq6ujh9//JHg4GDRlD59+hRtbW38/f25du0azc3NmJubU1JSItwLPrZGjhyJoaGhQJWhk5sWGRnJ6NGjGTRoEDNnzqRnz54Cil+5ciUtLS0CyWtubuaPP/4gLi6OjIwMpKWlSU1NxdbWVvB0lJSUuH37Ng0NDbS3t+Pv78+sWbPIz88nNjZWkNAlXyhJAzdjxgzs7e2xs7Pj3Llz3Lhxo9tBDBLUo76+noqKCkxMTNDU1ERBQUFMi9D5BZXYIxkZGfHXX3/x7Nkzdu7cSUxMDJs3b0ZHR4eqqiqRRpSenk55eTlycnLs3r2bhIQEvv32238IxLy9vQXx//Xr15w4cYLVq1djZWWFi4sLcXFxFBQUcO/ePVJSUrp1ff369WPnzp2cOnWK/Px8rl69yqRJk1i0aBFSUlICDZKWlqa6ulo0r97e3tTV1XURbUjUuTIyMqioqLB//35ycnKYOXNml4dAbGwsW7duxdjYGFtbW/z8/Hjx4gX79u1jwIAB+Pj40Lt3b8aNGycSnNra2jh79ixHjx7tNvJqbGwsGleJa0N8fDzFxcX4+vri6OiIo6OjSIepqqrizJkzKCgoCLXo8+fP+e233zA1NcXNzQ05OTnc3d2ZN2+eaBgOHTpE37592bt3L0VFRYwdOxZHR0eio6M5ffo0KioqNDQ0iJSikpISOjo60NfXx93dHRsbG2JjYwkJCenW9UGnyvnvtnJBQUEYGhqirq6OnZ0dK1aswMHBAUVFRSIjI8XKUV9fn5qaGoHyb9iwAQsLCyIiIpCWliYwMFB8xvb29oKTLCMjI+43eXl52tvbycvLIzo6Gk9PT5EQVV5ejpKSUheuuYuLC0pKSt12xgDE/Zuenk5MTAyAGA5u3LjB+fPnhVL/559/JjY2Vqzb2tra6NOnD2lpacjKyqKtrS2yxh0cHNi7dy9v3rzh0qVLtLe3k5CQQFhYGHPmzEFKSoqoqCh+//13mpqacHV1FTQISUne/xs3bnDp0qVuPzTz8vK4e/cuenp69OnTh8bGRi5dukRISAjm5uYiqQ86qVUODg58+eWXrFq1ilu3bnURJLW3tzNgwACsra1paGhARUWFZ8+ecfjwYZYvX46xsTF6enrCRSU8PJzbt2+zcuVKAUScPHmS06dPM2fOHGbPnk1CQoKgXAQFBWFhYdEtX2kJhSo6OpqwsDBqamrw9/dn1KhRyMvLU1lZKbZXAQEB4syQpIhdv34dS0tLBg0aREhICLGxsYwePRo5OTkePHjAiRMn0NTUxMjISHhlRkVFsXDhQiFWmzt3Ls7Ozl1W6oMGDaKxsVFwlqETOJKs4iV+1B9TBw8epHfv3jx69IjExETGjRuHtbU12dnZ9OvXjz///JP6+npevXqFu7u78F6VpLd5eXmRmprKnTt3UFVVZeXKlfTv35/y8nK8vLzIzc1l1qxZeHh4MHfuXADhsV1cXCwiaDMyMnBzc6Nfv344ODiwbNkyXr16RVFREQ8fPmTkyJH4+/tjbW3NrVu3Pvr6oFPRb25uzuvXr4mIiEBLS4s+ffoI0TXA5MmTycnJob6+HgMDA77++msCAgKIiIiguroaeXl5VFRUujw/ZGVlMTMzo66ujtjYWFJSUjA3N2fQoEG8evWKFy9edNkONzY2UlhYyMmTJ7l9+zbz588XAFCvXr3YuXMnJiYm3Q7u+f7774mOjmbnzp2cP39eJKZpamqSmprKixcv8PLyIi8vj82bNwOdw7WE3lhTUyMAiGvXrvHmzRsCAwPp27cvr169Ij4+HmVlZWbNmkVWVhbBwcEkJCRQXl4uNsw///wz2dnZKCoqYmhoKNJJ7969i5ubG4GBgcjJydG3b18OHTr0X2Pvu928FhYWCiJzTk4OSUlJnDp1SnxZpKSkBCqwa9cu7ty5g46ODpqamiQmJlJSUiLsfExNTQVaIslirq+vF3GkktQMQEwfo0aN4sCBA0KA0rdvX2RkZHBycsLMzIx+/fqhrq6OkZERjY2NIvHoY8vLy0sIrCQ5zg4ODly/fp3Hjx8zaNAghg0bJriQ27dv7xLtKckUP3DgAPX19QwZMoTGxkbu37/P/fv32bFjB3PnzuXu3buEh4cjLy/Pl19+KXgtkqQjCYLp4eGBq6srqampQskoUbEnJydz9+5dYSL8sZWcnCzQKU1NTWRlZVFXV8fJyYnY2Fjq6+tFow2dKHhZWRnjx4/HycmJa9euiZzzHj16CIuyPn36oKenx+PHjykqKhLvoWRlK0lvam1tpbCwUAjHrl+/zp49e7hx4wZXr16lX79+9OrVi4SEBA4fPkxkZGS30BBLS0vs7OwYMGAAhw4dIioqisbGRoYPH97FC1FGRkZEU0oEhJKDGRCRwxIU9tSpU0Jw4ebmhoaGBklJSZSXlwvEdeDAgSKwQ0lJiYqKCkJCQggNDcXPz+8ftk6ampps2bJFuGx8bNXW1gojfn19feTl5cnOzubLL79kxowZ/PDDD/j6+lJbW0t7e7vIfbeyssLNzQ0tLS2ysrJ49uwZHh4e+Pj4oK2tTUtLC3Z2djQ0NPD+/XucnZ3x9/fn5MmTFBUVoampibS0NH/88Ye4t9auXSsasP79+6OqqoqcnBxSUlJMnjyZqKgo4uLiunV90NnU1dfXU1RU9A+6SkdHB9OnTxf36pUrVygrKxM+jfHx8aSnpwuLO1NTU6ZPn05tbS1ZWVniYaOlpUVubi6FhYUMGDAAKSkp0tLSsLW1pb6+nu+//57Q0FAWLlzIrFmzqK+vR1VVFR8fn380C5IH0sfWhw8fxGEtcR8JDQ0lPT2dP/74gwEDBhAaGsr9+/eJiopCW1tbcMFmz54tUm7s7e2RkZFh+vTpyMnJkZaWxtGjR1m2bBlfffUVzs7OhIWF0d7eLs6SN2/e0NHRQUhIiIivXrFiBYsXLwY6I6RLSkoYPnw42tra5Ofnk5+f3+3mNSYmhj179jBr1iwWLFhARUUFjY2NVFdXdwlQyM3NpbKyUsSrent7c+TIEa5evcqKFSvIycmhubmZ9vZ2sdWATuR9x44dJCYm8vXXX7N48WISExNF6ImjoyO6urq0t7cLCy1JEEdERAS//PILTU1NHD58mL59+9K3b99urWT/bsmVk5MjhJfFxcUoKCggKytL3759sbS0RFlZWWTcSwbO0NBQKioq2LRpE3379hWRwzk5Oairq9O7d28yMjKIjIzs8ntramoEovp38U55eTnFxcX4+/szbNgw4amtqqqKuro6gYGBKCsrd6t5lZGRoampiQcPHpCamsqyZctQU1Pj/v37KCkp4e/vT2hoKCkpKbi7u4sIYCcnJ3F/Pn/+nKtXrzJjxgzhniCpe/fu8d1335Gbm8u3337L3r17MTAwoKqqStA41NXVRQDHwoULhX/0nDlzKCsr4927dxw4cIDPP/+cgICAbjevqamp5Ofnk5SUxL1790hISGDKlCls3boV6HwWSJxorl+/jqKiIqtXr8bPzw8/Pz/WrVtHSEgIZmZmAvhKSEigvb0dY2Nj8vLyuHXrFu/evUNPTw8zMzOUlZWRlpYWFKempiasra0ZPXo0ISEh3Lhxg379+nVpXnv16kVaWlq36S3S0tJi/f/o0SOioqLw9PSkvr6e169fi+9QdnY2ly9fplevXsKO8P379102Sg0NDYI+lpOTw+3bt3n//j2DBg1i7ty5xMXF8dNPP/H06VOWLl3KF198wa5du8jIyGDbtm0irritrY2oqCgaGhqYO3eu2ICYm5uzYMGC/3of/quQgsbGRmEEHRoaytmzZ4FOX0ZJUoQk+1dZWZm9e/eiq6tLbm4uzs7OxMbGcuvWLdzd3RkxYgQRERHs3r2bgoICPD096dWrF5WVlcjLy4v0IolSs7m5mV9//ZWMjAzhC+fh4YG0tDTR0dFYWlpiYWFBa2srjo6ObNiwQdhQdKcaGhrEetDBwYGVK1d2IfUXFRURFBT0jy/R7t270dTUFMo8U1NT5OXlSUhIEGpB6Pxil5SU8Msvv7By5UoiIiL49ttvKS0t5bvvvhP8pX79+vHZZ5+xfft2Hj16xK5du5gyZQp5eXmMGzeOgICAbpsyL1y4UPjJSR6CcnJyKCkp8ccff3Dw4EE2b97MZ599RlVVFffu3eP169eEhobi6enJDz/8IBCv+vp6HB0dSUhIID8/HyMjI4Gozp07V6zVnz9/jo6ODvb29hQXF/Pnn3/S3NzM8uXLxYMoJyeH2bNnc+DAAYYMGYKzs3O3UWXoTMqRxC9Onz6db775hq+++ooff/yRAwcOCPJ9c3OzUOQ2NjZiYGAgkJGkpCQ2bdqEh4cHo0aN4tChQ1y5coU5c+bw/fffIysry8GDB9HX18fOzo7Ro0eLplDymg4ODmzcuJGff/6ZwMBA1q9fz3fffdflbx02bBhWVlaYmJjw22+/ffQ1vn79mrCwMBwdHYUfqLa2NgUFBZw9e1YYT7e1tXHv3j3B6VRVVSU8PJy0tDTU1NS4dOkSgwYNor6+nocPH/L8+XOBVErUsz169BBuFBIPxr8PhZL1Tn19vThwJJzgiRMnMnDgQJH93p26fPky8+fP/49rTk1NzS6N1ODBg1FTU0NRUZHw8HBiYmL466+/qKys5Pjx4wwZMoQRI0Zw6dIlVq9eTU1NDdu3b2fWrFm8fv2a58+f4+XlhZqaGg8fPhQDXWpqKjk5ORgaGpKcnMzDhw/R19dnzZo1qKmpCUWxnp7efxTL/G/19ddf06tXLyZNmiR4vTNmzKCsrEwM9RMnTsTGxgZlZWVsbGz4888/OX/+PI2NjcyaNUtssfT19VmyZAmtra3s3buXnJwc4TNqa2vLypUrMTc3x8nJiZSUFA4ePMjjx4+Rk5NjyJAhItkLOiOQt27diqenp1DEjxo1iv79+3ebT3j27FmKi4vFe6OlpcX69esJCgpCW1sbY2NjOjo60NHR6SLqkwygCQkJXL58GQ0NDSwtLcnOziY8PBwjIyPGjBkjzNMPHDhAcXExFy9epKKighUrVjB06FAOHz7Mnj17sLe35+TJk2JA/e6779i2bRvQaQP1d7rTvyl3d3dBcaqpqSE8PJxTp07R1tbGhg0bsLS0pLy8nDNnznDz5k1iY2MFdejFixcsWLBADI9tbW3Y2dkxbtw4Pv30U2pqarhx4wa7d++muLgYW1tbdu7c+Q9/WYAzZ85w9OhRNm/eTGBgIJ999hl//fUXQUFBbNiwAWNjYyE2+thatGgRTU1N9OjRg9zcXOG4oaury/79+6mrqyMgIEAM5TY2NsyYMYOrV6+ycuVKli5dipOTE46OjsKg/u81cOBAPv30U/bu3ctvv/3G+fPnMTY2Zvbs2Zw5cwbotHrq06cP8+bNIyIiQtAp5syZw9KlS7l06RLr1q1DV1e3S7DQx1ZbWxvx8fF4enqio6PDypUrCQ0NZe3atSgrK2NhYcHNmzcJDQ0lKSkJJSUlkRjX0NAguP6S68vMzGTXrl2C65mdnc2VK1cEfU4SGPHJJ5+gq6srhIoA/v7+rF27Vpzv8D9AGiCijyXbsY+p+fPnM3jwYMaMGcPKlSuxsrLiyZMnwkd50qRJQGfftmzZMnr16kV7ezvt7e1YWVkJnnRhYaFInwwODubmzZuUl5djaWlJenq6aGwNDAxwdHTEzs4OOTk5XFxcePz4Mdra2mzatInc3FxCQkIYP348u3btQlNTk7KyMiHY+pjqdvNaV1cnDpmOjg5hyqutrc3OnTuxsrKipqaG3bt3ExgYyLhx4wRSaG5uTnJyMmvWrCEsLIw///yTESNGUFNTw8WLF4FOYvGsWbMoKSmhsrJSCDRaW1spLy/H1NQUTU1N7Ozs2L9/Px8+fBCpGxKzdQsLC1RVVbuYNH9sPX36FHl5eZydnamurubEiRP06tVLHOwXLlwQyVGGhoYYGhoKM/SUlBQKCwspLy8nMDCQgoICbt68yeDBg5kzZw6JiYm0tbXx9OlTDA0N2bJlC56ensTHx3PhwgWioqJQU1Pr8pDPyMjg+fPnKCkp4ePjg5GRkfBOk1Atutu8mpqaUlFRwf3797G1te3CRdXR0cHa2lqsPjQ0NJCRkeHx48ckJSXh7+8vpubDhw+Tm5tLz549hU+cxMx4yJAhfPbZZ0K1vH//ftra2ti7dy/6+vokJSWJxJSgoCC2b99OcHAwFhYWyMvL09HRQVRUlMgf704cXlpaGsXFxcI7VoL8ShoZNTU1AgIC0NDQ4NatW5iamuLq6kpWVpZQqsrLy2NgYMDbt2+5ffs2SUlJImGlvLyc6OhoXr9+LRBrf39/cdCkpaVRUVGBra0tc+fOxcDAgIMHD3L06FGKior44osvaGpqYs+ePWRmZhIQENBtUdrNmzfZtWsXa9asYfr06cTFxXHx4kUGDhxIaWkp27dvR05OTjheWFhY8NVXX+Hh4UFycjKPHj0S/FEpKSkiIyN58uQJRUVF3LlzBxUVFWHtVlFRwY4dO8jLy2P79u1A58Pa0dGRwMBAxowZQ0tLi2jmJcEiSkpKKCkpYWhoSFlZmUjD+9iqq6tDSUkJ6ETmTp8+jZ6eHp9++ikODg60trayf/9+5OXlmT9/vog5ltiw9OvXj5CQEHbs2MH27dtZsmSJ+LuqqqpISkrC2NgYXV1dsd7S1tbugjpYW1sjLy/P5MmTefPmDdu2bRMrZ+ikFB09epQhQ4awYsWKbl1ffn4+Dx8+JDk5mZEjR9Le3o6jo6NAj588eYKFhQVeXl6CzmBjY4OVlRVXrlzh2rVrvH//no6ODtFkAiLEQV1dnezsbN69e0dpaSnjx4/H0NCQ7OxsHj16RHp6OlOnTmXTpk2C1tPS0sKbN28oKytDS0tLxMKqqKhgYWHR7eY1OTkZNTU13r59y5EjR1BQUMDZ2fkfvrXNzc2EhoaipaWFi4sLXl5edHR0iMQxaWlpERIhsTFqbm7G09OTpUuXsnfvXkJDQ3n48CFSUlL06NGDjo4OMjIyaGtrw8LCQjQHkkAGPz8/Yagu2a5IfDs/tn7//Xe0tbWFr7HkPbx06RLv37+nubmZn3/+mfLychFrrquri7OzMx0dHSQmJlJeXi40IZJKTU3F2tqagQMH4uLigouLC46Ojvz88894e3uLxvXs2bMoKiqKUJiCggIBDg0bNkxcc0dHh9AwdLfa29tRUFBg7NixeHp6ivP/3bt3XLhwASkpKaZMmSLQO319fUaPHs3bt2+pqqrCzMwMAwMD2tvbu5zjEs9wKysrVqxYQXV1Na9fv+bmzZtAp3haXl6erVu3MnbsWJ49e0ZRURGysrJMnDhRcGgVFBRQV1cnLy+PJ0+edPv6oPN8lCQNuri4sGPHDqKionj//j1GRka8ffuW6upqbGxsMDU1RU9PD3V1dfbt28eLFy9E1HFERARv3rwhKSmJrKwscU+GhISQnZ3N3LlzWbZsmRBtaWhoCLAjJCQEOTk5/P39WbhwIUOGDOmC7Evq7du3vHr1qlvNqyQQRyKkgk6vfV9fX+zs7Ghvb+f169e0trayaNGiLoOkqqoqt27d4urVq7S0tDB06FDU1NRE3LAkBe7ly5dkZmaipKTEggUL+Pbbb9HX1+fSpUuUl5ejqqrK5s2b8fX1paCggOfPnzNhwgQ0NTX5888/SU5OFhz3j/medrt5ffXqFcbGxiKVpG/fviJdR8LRnDVrFhkZGcKfTlI1NTXCsBr+J7Ls75OghEcmMX1+/fo1urq6eHp6ClgZOpu6+/fvk5+fj5qaGhMmTGDgwIFd0FEJn6Q79e7dO1RVVfHw8CAnJ4cdO3YI54RXr17x+++/CzL50aNHCQ0N5cKFC0IMUVNTg4aGBsXFxcLTrKioiMGDB9OrVy9SU1N59OgRs2bNwszMjL/++ovr16+LB4MkI1qSYx4fH8/JkyeZP3++eHBERETw/PlzEhMT/5WK++zZs9y7d49169bx4MEDTp8+LZrzTz75RGQ7//0z6du3L2PGjGHcuHFA5wPg0qVLKCsrC3V3YWEhVVVVrFq1ivXr11NUVMTp06eRlpamrq6Oa9euYWZmxqpVq3BycuLJkyeUlpYiJyfH119/zcqVK0Um9OHDh9mxYweTJk1i69at3VrldXR0iId9XV0dRkZGeHt74+PjQ05ODqdPn6ZPnz5ISUkJbparq6tAHQGWL1/Ojh072LNnD6dOnWLWrFmsWLGC8PBwvvvuO9LT05GTk6N3795oaWmJxLTy8nIRjCAlJUVLSwsBAQEEBATg6+vLyZMnmT59urj++Ph4Hj9+3O3oTVlZWaSlpUUO9apVq0hLS2PTpk1kZGTw008/dfl5RUVFweMyNjbm9evXxMXF8fTpUzIzM9m+fbvwX5bExEpJSaGlpcXcuXORlpYmNzcXRUVFWltbGTlyJFOnThUI4YULF9iwYQOKiop88803zJ07VzSekiSo7taIESPEurexsZETJ07Q2toqxGeNjY0C2ffz8xPfG09PTyZNmkRERAQHDhwQrxcWFsaVK1fw8vJi/PjxFBQUiFW6h4eHEGlJUGuAIUOGoKWlhaamJsXFxVRUVAhKDHQ2oDdu3PhXeeqTJk1izZo1nDlzRiBMU6ZM4dSpU8TExHDs2DECAwPFGVpUVCQcLHR0dDh06BCZmZloamqybt068aC0sbFh+PDhjBo1ih49erB3715+/fVX8vPzWbJkCVlZWSJjfMKECV3SyiQ0hubmZiZOnNhlqOqucBI6UTVzc3PS09M5ffo0AMOHD+fnn3/uwsfMzs5m9+7d2NjYsHPnTry9vcVgIScnJ7iGWlpawmKro6MDPT09/vjjDwYPHszDhw+5fv06pqamDB48mCdPnrBjxw4+//xzcab98MMP/PDDD6xatYoHDx4AnUOtsrKyGNa6U6tXr6ZXr15IS0uLpuDdu3c0NzczevRoCgsLefHiBfv378ff35/p06czfvx4FBUVycjIYO7cuURERGBpaUnfvn0pKCgQCV9xcXHs27cPOzs7pk+fzujRo0lNTaWkpISbN2+SmZnJ3bt3sbe3Z9iwYcILFzo3hzU1NUyZMgVbW1ucnJwwMDBASkpKNEsfWwsXLmTcuHG4urqKBj0yMlKY3Q8cOLCLVqKiooL6+noWLFggKFghISGcPXu2C1ocFRVFaGgo7u7uBAUFcejQIQ4cOMC+ffuIj4/HwsKCQ4cOERgYyKVLl1i6dCklJSUsX76cX3/9FXl5eUE3ycjIQFFREWNj439lj2lmZibug/LycuGMBJ1I58uXL+nfvz/9+vUTFEaATZs2iWRDTU1Njh07RklJCVJSUgQEBIh7V0lJCV1d3S4RuBIq0Jo1a6itreXevXvk5ORgbm6Ovb09tra2tLa2Ap3bRMmApaCg0G30XOKpmpKSIrjllpaWYiMQGxtLdnY2enp6//DkLi0tZd++fWLLXF1djbGxMfn5+Tg4OODn50dra6vQIKmrqzN8+HDxPZOAjrNnzxZicCMjI/78808KCwvFNqlHjx6if/uYUKJuN6+Ojo7U1dWhpqaGiooKPXv2FJDyhw8fBIIGsHLlSkaOHEnfvn1xcXHh9u3bgg+7fv16gYDduXNHIJE+Pj7k5+dTU1PD8+fPuXDhAh0dHfj4+FBSUsKRI0fo168fhYWFhISEIC8vj4WFhVjZnD17ltbWVry9vdHR0RFI5ceWjY0Nenp6tLa2ivXg48ePmTVrFhoaGgQFBYmYREkGsSSx5cmTJ6Snp1NYWEhqaqpI6SkoKCA4OJi8vDw8PT0ZO3YsmZmZ3Lp1i9TUVIE0SNa/f6/+/fsTFBQkYHUdHR1kZGQ4duwYRUVF/+pGVVVVZdKkSZw/f57Lly+zcOFC1qxZI1b1kkpJSWHv3r3U1tby1VdfdfEhtbCwYPny5SQmJoo0Ki0tLdauXSscBGpqakTEocT2ZP/+/cTFxQmelLq6Ou/evePFixcizx06BUmOjo7k5+d3m9/j4uIiRFjS0tJ88skntLS0YGVlhYKCAtHR0fz0009UVlbi5eWFubk5v/76K2/evKF3795oa2szYcIE5OXl+fTTT7G2tsbf35/6+nq++OILEbna2NjIhw8faGhoEClg0tLSXTLrY2JiaGlpEVZDvr6+WFhYoK6uzrJly7h79y4WFhbY2toKW6uPqXXr1jFo0CBcXFyQkZHBz8+P6dOn8+mnnxIREUF8fDw6Ojr4+fmJqTo2NpYRI0YI4r0k1zo1NZUPHz5gZ2eHq6sr8fHxSEtLi3VyWVkZv/32G1paWmzbto3c3FwSEhKoqqrCysqKzMxMIT60trampqaGJ0+eIC8vj6KiImZmZt1GlqFzQyBBHGxsbFi9ejW3b99my5Yt+Pr6IisrKxKLZGRkhKuBZBCTkZHB1taWQYMG0dLSgoGBARYWFpSXl4vAgsuXLzNs2DD8/f25ffs2L168wNLSknv37pGfn8/GjRuxsbFhzZo1REZGsn37dnx8fKirqxNRrPPmzSMvL48FCxaIhv1javz48XR0dFBcXExWVhaxsbH06tWL5uZmHj16xIULF7C1tWXChAlAZ9hFQUGBiLK0t7dn3bp1wm5P8lDNzs6md+/eYn0q2aLs37+f8vJyvvnmG/z9/cnLy0NGRoZz585x7do1Jk2axLx584QVkLW1NTk5OXz11Vd8+PDhP55P/63Wrl2Lvb09Hz584MSJE9y9e5e8vDwR9Snxx9XR0WHs2LFYWlqKv/fvNB5tbW1u3rzJkydPUFRUxN3dHW9vb8H3nTp1KuPGjWP79u0cOnSIkpISbG1tmTRpkhi4oZNe4ubmRkJCAg8fPhSe0tD5wOxuSMGCBQtEfLck6CMlJYWePXsyfPhwpKWliY2NRUFBQTQFkuuzsrLC19eXvLw8XFxc0NTUJCkpicbGRtEUVFRUsHfvXq5evYqtrS2vXr0iMTGRx48fM2bMGAIDA4mOjmbBggX07NmTpqYmgoKChDuGgoICXl5eohHr6Ojo4sbxMXX06FFSU1PZsWMH0EkrWbduHY2NjUAnfUBXV1f8vIQSIXEZePHiBWvXrqWuro7c3FyuXbtGQUEBERER2NraYm1tLdDd/v378+WXXwKdq/erV69y9+5dkpOT6dGjB8OGDUNZWZmTJ08yZswYzMzMePnyJRoaGhw6dIiWlpZ/JQ6tr69HV1eXCxcusG/fPnr37s3y5cuxtbUVw42kuf37Nnfx4sW4ubkRFRXF2bNnKSkpwcvLiwkTJvDu3Tu++uorFBUV+eyzz5g2bRq5ubkEBgby6tUrLCwskJWVpaSkBCUlJYYNG0ZMTAxPnz5FRkYGCwsLKioquH37Ns+ePRPPDxMTky6Jgh9Tc+fOJTc3l/z8fPz8/MQwvmPHDoyMjJg6dSr6+vq0tbWhpKTE06dPuXTpkki7W7ZsmQgX6dOnD1paWly4cAENDQ2WLFlCW1sbDx8+JC0tjaCgIIYPH05VVRXHjx+npqaGvXv3YmlpSWFhYRdHDWVlZZqbm5kxYwaBgYGYmZnR0tLCvn37/us1dbt5ldhJQCeq9Xd7hePHj3Pw4EEsLS2xtrYmOjqa0tJSevToga6uLkZGRjg7O+Pq6srXX39NZGSkaEz69u2Lt7c35ubmNDQ0CGN5SR6vJGP8woULglNqb2+PoaGhEMikpaXx5Zdf0traysWLFxkxYgQuLi7cv3//o69Pkr4j4buuWbOGQYMGERAQgJ+fn2hcz507J5Ta69atY+TIkdjY2PDLL78IdeSwYcOYNm0ar1694sqVK6SmpjJu3Dh69+7N0qVLefDgAT/88APr16/nzZs3In1KTk5OqGn79++Pk5MTQUFBDBs2jD179qCioiJSopSUlLqNiEgecqNHjyYhIYGysjLS09Px9fUV7giSh/zx48fp1auXaFwrKytFg6ahocGzZ88Eku7h4UFQUBCqqqpkZmaip6cn0CB1dXVGjRpFSkoKERERTJ8+XTQZ+fn5PHjwgBs3bpCcnCw4gJaWlty5c0cosD+2FBQUKC0tRUlJCS0tLYYMGSIQPOh8EJ49e5b29naWL19OS0sLX331Fdra2ty4cYMePXrQ1tZGeHg4TU1NQjn89u1bSkpKxLXq6elRX19PTU2N8LHV0NCgvb2dlpYWweVOS0tj5MiRrFq1SmwPWlpaWLRoUZe8eIn128dUQ0MD3t7egi4jQYybm5sxMDBg2bJl1NTU4OXlhYmJCTY2Npw+fZr09HRsbGzIzMykpKSEzMxM9PX1WbRoERMnTqS6upp58+ZRX1/P9OnTMTAwICQkhEePHuHt7S2m7N27dwtUQF5eXtigjBo1Cl1dXRISEigoKMDa2roLDaU71dzcTFNTEyUlJRgYGIjXnzNnDj///DNLly7lp59+ErxoCX1H4gFrZmbGhg0bhCNGaWkppaWlpKeno6ioSG5uLmfOnEFHR4eCggJ2795NYWEhI0eOJCEhQbwXTU1N3Llzh549e/LVV1/R0dFBcHAwLi4u9O7dm88//5wtW7Zw/PjxbgsL/x5qEBUVRY8ePUTaYHt7O6WlpdTW1tLU1CRQYkm5urrSs2dPli1bRn19PRcuXOD9+/ekpqYyYcIEdHR0aG9vF58TdNKADA0NkZaWFs4QcXFx3Lp1C11dXT755BMsLS0pLi7GwsKCwsJC4uPjycvL61ZEs6QkkbcODg6MGjWK4OBg3rx5g7GxMdra2uIhbGxszPLly4H/McVXUFAgKioKZWVljI2NKS8v58SJE0Cna8DSpUsZO3Ystra2yMvLU1paKrwqS0pKmDNnDqtXrwY6G6Hq6mp8fHy4desW/v7++Pn5cfbsWYEGaWpqdnsDcujQoS7/v6CggNzcXLKzs7G0tGTUqFH/4KY2NDSICE0/Pz80NDSIiIggJycHW1tbMfD36dNHpGm9ffuWhw8fYmJiQnV1NdHR0QQFBfHZZ5+xZcsW8XdIxEOSszUnJ4eSkhLk5ORwdHRETk6u288LBwcHIiIiBCJ+48YNGhsb0dbWpl+/fri6ugoeLHT2BSkpKfTr14/W1lbWr1/Phw8fAISHaFFREbq6uvTu3VuctUOHDsXT05P169dz6NAhKisrOXHiBCoqKsycOZNPP/0UXV1dzp07x507d+jRowcGBgbk5uaipqbG5MmTSUtLE+BZd6qpqYm2tjZu3LhBXFwc69evFyhzUlISysrKVFdXC0ckyWBgbGyMj48PioqKQiQWGBjI2rVr2b9/PydOnBBNvqmpKffv3xd/n8RHVkdHR7igjB07luPHj4skudbWVuH/LtEamJqaihCajy1PT0+eP3+OlZWV+I5fvHiRCxcuMHHixH/w9dPT09m9e7egNcyZM4dBgwYRGRlJVVUVycnJgkokcWDp0aMH3t7eInL94sWL3Lt3DycnJ/H6WVlZ3Lhxg9TUVJydndHV1RWiUFNTU+Fle/z48X94Q/+f1e3m9f79+wwfPpyamhqSk5MF9wM6ET1NTU0mT57Mhg0bqKmpIT09HVNTU2RkZBg1ahT6+vpC5KCurs7ly5fR1dUlJyeHb775hsrKShGzamxszMSJE0lKSiIoKEgo5lxdXXFwcODIkSP/uBElN1F3VyOSevDgAb6+vl0QFHd3d1avXi1UhJcvX2bFihVUVlairq5Obm4uXl5ejBw5kh9//BGAoUOH8vbtW0JDQ/Hx8eGPP/4gJycHOzs7cnNzxcrK3d0dGRkZ7ty5w82bN1FVVaWgoABtbW2WLFnC3LlzUVFRobm5mbdv37J582ZWrlzJoUOH0NfXp7q6+qOmlL+XJPfa2tpaKMUlYQy//vorDx8+ZOPGjVhYWBAYGNhFzaqgoICSkhIfPnzgm2++EUj6mDFjGD16NE+fPhUTtKGhoUhHiYiIEPGyampqWFlZUVxcjLa2NqNHj8bKyopbt25RXFxMVVUVOjo66OrqMm7cOPT19btY5vy3ev78OdevX2fYsGEi4UfSuKanp/Po0SPmzJnDkCFDUFZWpry8nFWrVgmuHHQOQmvXruX169eMHDmShQsXCpJ9eXm5SLGSk5Pj5s2bPH78GDc3N/T19YmLi2P//v0cPnyY9vZ2DAwMxApUUv+Ge/b3Gjt2LK6ursybN0+g1QkJCSQmJjJgwACcnJz46quvOHnyJGfPnmXAgAFUVVVhbm5Oa2srxcXFPHv2jKlTp7JgwQLWr1+PkZGRWCtBZ/xmfn6+8ItNTEzk1KlTIoQCOqk/kydPZvz48bi5uWFkZCQCOBoaGkSs4L8pVVVVUlJSePjwIXp6esyePRszMzM2btxIcXGx8CuVlLa2NmVlZdy8eVNEKEv49kePHuXFixesWrWKMWPG8OLFCyorK6murubixYvExcWJLUZTUxM///wzUlJSXLx4kbKyMjZs2CC8jS9fvsy7d+9ELGZNTQ0qKioioOLflqqqqkDFJK4QBQUFrFixgjdv3hAUFMSqVauATt5b7969GTVqFGfOnOHq1av88MMPpKWlYWFhIWg2z58/59mzZzg6OrJo0SLGjx9PZGQkR48epaCggDFjxjBixAiRziQlJcWQIUMYMmQI0In2BgcHi4hficjpY6uwsJCXL18yePBgTE1NCQgIwNDQEBUVFYFESlIWobPJfPz4MaNHj0ZXV5f09HRqamr45JNPmDBhAgkJCYSEhFBSUsJff/0lfDLDw8N5/fo1Xl5eIpHq72h/dnY2K1asYMWKFcyfPx9vb2/evn0rzgWJaPX/bfXs2ZM7d+5w8OBBpKSkuoTcSKquro5Vq1ZRXV3NoUOHsLKy4unTp+jr67Nr1y50dHSIj4/nyJEjgk6ioaHBnDlzmDRpEocPH+b06dMinObv90BNTU2Xte/AgQO5e/cuN2/epLCwUNjkdacWLFjApk2buHDhAmlpaWzbto1t27bx/Plz7O3t6dOnDw8ePCAxMZF58+Zha2sr1vjq6urifZWcE8bGxpiamlJdXU1oaChPnjxBX19fxG1v2bIFNzc3Ll26hJqaGuPGjWPQoEGoqanR3t5OUFAQc+fOxczMTFAUqqqqiI2NxcDAgIkTJwpKw8eWgoICCQkJBAQEMGfOHAGI7dmzh7/++gtNTU2+++47hg8fLlBi6EwQTU1N5ccff2Tnzp2MHTuWS5cu8cknn/DJJ58gKytLWFgYd+7c4f79+/Tr14+FCxcSExODmZkZ+vr6XbxcpaSkGDhwYJeI39mzZ7No0SLxfmlqarJ161aRYvoxpaamRlBQEAUFBfzyyy88e/YMExMT4bJRVlZGQ0OD4LpKS0ujp6eHnZ0d5eXl7Nq1Czc3NwYOHMj27dvZtWsX48aNY8KECezfv5/Q0FBsbW357LPPuqDh3377LRcvXmTUqFGsXbtWaJby8vLIzc0V2oVjx45RWVmJlpYWGRkZH5XI2O3mdefOnRQUFIiscImwIzU1FQUFBbZv387s2bNRUVERYh4J1yIvL094jJ49exY1NTWhcpOYHRcWFjJu3DixMho8eDCZmZldctkVFBTQ1NTE3d2d1tZWsU6XNHwKCgqYmJiIbPTulKysLBUVFWhpaVFWVsaDBw/Q09MTyFZJSQnPnz8XajoHBwcqKirIyMggOTkZRUVFPvnkExYtWsSGDRt4+vQpDg4OzJ49Gy8vL6qrq3n06BFBQUFoaWmhp6fH/fv3hf0UdH5xrK2tUVFRoaqqSlhuSZrh9vZ2du3a1S3C9v95jaqqqnh7e6OlpUV9fT319fUoKSkhLS2NhoaGSIEaPny4UMB2dHTQ3NwsmtfQ0FAAevfujb+/v7BTcXFxEQKCxMRErl69SmZmJkOHDmXZsmVAJ4IbExMj8rpdXFyE562JiQmlpaXcuXOH+vr6f4g7/ltJIjX//jBqb28XSUYxMTF4e3uTl5cnrsvAwEA8yKBzQpQMRlFRUeI71tHRIdAqRUVFBgwYIPLpJQNPc3MzFRUVwou1b9++yMnJER8fj6OjI8rKyl1WT3/nUH1sSbxqlZWVaWtr4+3bt8TExGBnZydufInfZ0xMDIMGDcLX1xcFBQUhVnn37h0yMjJYWVkJ9PLJkydMmzZNiK2eP38uRCx2dnaYmJh0EV2Ym5tTXV1NY2OjaBYkSOzfjcK7u6qE/7FZc3FxISMjgw0bNjB06FBhht7Y2EhWVhbt7e2UlJRQVlZGdnY2FRUVqKmpdRkQEhISuHTpEu7u7lhaWgpv6WHDhvHixQtiY2NxdXVlyJAhgi8KnYKcqKgo8TCTlIWFhUAwjI2NWbVqFbq6ut1yjPjw4QOqqqrU1tZSVlZGS0sL5eXlREZGcu/ePfLy8nj79q14786ePYu1tTVOTk4UFxdz7do1Ro4ciaenJ56enjQ3N3P58mVGjx5Nnz59qKio4OrVq8jIyDBixAh0dXWpqakRCGNkZCRv3rxh/PjxXZosydpXsq1QUFDA0NDwH1y4j6mkpCRqa2t5/fo1hoaGyMrK0qdPH44fP87jx48ZOXJkF85tRkaGEHNIPDbV1NSorq7G2tqa48ePk5aWxv79+zl//jwdHR306dOH1tZWYmJiePfuHQMHDsTW1pbTp09TXFzMkiVLUFVVpbi4mJ07d2Jtbc3IkSMpLi4mPDycHj16CGBCIhb62Lp//z7FxcVUVlYKXcOoUaO4efMm2dnZwnYtNzeXd+/eYW5ujpGREb6+vqSlpVFYWEhBQQEVFRViawPw5s0b/vrrL2EAP3XqVFasWIGNjQ0DBw5EW1sbMzMzKisrxXsqIyODtrY2W7duxdnZmYkTJ9K7d29GjBghzop/U/Ly8oIP3LdvX5SVldHV1WX8+PEYGRnR0tKCjIwMNTU15OTkoK+vz4ABAyguLqa4uJipU6fi5OREjx49hPAMOi2yjh49Snt7O56enkRFRZGSkkLfvn3Fa02ePFk4cXz48AFLS0tUVVVJTU0VA5CzszOvX78mOzsbGxubf+VQk5ycTEVFBePGjROUr8TERJqbm5GVlRUWj4DQ++Tl5ZGYmEh8fDxPnjwR3tPy8vI0NTWhqqrKwoULGTlyJF988QX379/ns88+Y+HChURFRZGTkyP+1oyMDOLj47tYbSUnJ6Ovry+23TExMTQ3NwvbuO6UnJwcsrKynDlzhu3bt2NmZoa7uzumpqZimDl9+jQFBQXY2tpy7949KisrGT9+PDNmzBAhKkOHDsXd3R1bW1v69+9PVVWV0B1MmTIFV1dXMjMzefv2LT4+Ptjb25OcnMwff/yBubk5X375JdOmTSMpKYno6GiysrK4d++eeI0VK1aI55Sk5/u/Vbeb17y8PM6cOdNFcXv69GkuXryIpaUlmzdvRkVFhadPnxIYGMjkyZM5dOgQN2/e5NixY5w/f55evXqhpaXV5QNQU1Pjp59+QlpamkGDBqGlpUV5eTmJiYkYGxvj4uJCTk4OMTEx3Lt3T6BZEgNdiWejxEswMTGRmJgYIiMjBdT/MbVo0aIuiTIHDhxAW1tbrGHU1dVZt24dc+fOJSoqSkSLShJPtLW1mTt3Lt7e3jg6OvL06dMuPKq6ujoGDx7M2LFjaWpq4sWLFyI+TVKSlaiioiIVFRVoamoyZ84cZGVl2bhxI48ePeKXX37hyy+/7OJb2t2SCHJ2797N27dvGTp0KL6+vsydOxddXV2qqqqorq7GxMQEGRkZSkpKeP/+vYiUXLx4MZmZmcjKynL9+nWKi4uFVyJ0Iljv3r1j6NChWFpaCgNqQAwmMjIyFBYWEhkZibm5OX369KG0tJTQ0FBu377NzZs30dTUFLy/jykdHR0++eSTLodYYWEhERERODk5YWhoyObNm/n99985efIklpaWnD9/HkVFRWbOnImcnBxqamoMGTKEtWvX4ubmxvbt2zlz5owwr29rayMtLY0BAwbg5eXVpVnr1asXP/30ExoaGmhoaHDv3j3u37+Prq7uf8wW727jCnD79m00NTVRVlampqZGrMn/jv798MMP1NTUiO+/5PeoqKjwxRdfMHPmTKSkpLC1taW9vZ0ff/yRd+/esXr1ajw8PKisrGTZsmViqPLx8eG7777jr7/+IiwsTNjXXbt2jcbGRsaOHSsy3iWrPMln0N0sbknZ29ujqqpKcnIy27ZtIzQ0FF9fX2RkZHj69Cl1dXU0NDTw4MEDSkpKcHNzY9y4cdjb23cRb0oapLi4OI4dOyZSwSRuEK2trcydO/cfK96BAwcSFRXF559/TklJCRs3bmTKlCmUlZWJz9vOzu5fXVtmZqZIvsrMzGTixIk0Nzezd+9eLl682IWSZWFhwdu3b5kzZw579+5lwoQJXL58mTNnzrBgwQKgE1hYsmSJaPoeP35MYWEhS5cuxcDAgNWrVyMrK8uVK1c4duwYR44cIS4ujujoaHr27CmGtyNHjohGWVFRkdjYWCwtLbstSIPO83LQoEEkJSURFxdHnz59hJCztLQUFRUVjI2NBZJlb29PY2Mjb9++JTs7m+HDh2NsbExpaSkFBQUYGRlha2vLggULqKurw8zMDG9vb0Fp+emnn/jtt9/44YcfxOtbWFgQEBDAli1buHz5MteuXWPDhg0YGBgQGBhIcnIyYWFhvH37lh9++EG4PXxMXb16lZs3b1JQUECfPn3466+/6NevH48ePeKrr75i8+bNIszl6tWrtLe388cff/DZZ5+JeGOJ64qysjKbN28mLi6O1NRUkaRkZGSEqampoG3Iysqybds22tvbqa2tRUlJidWrV+Po6EhwcDCbN2/m6tWr1NbWCtrMyJEj/5XgDhCbl+3btzNz5kzmz59PVVUVwcHBNDQ0cPbsWdzc3HB1dSUtLQ0ZGRn69u3L3bt3ef/+PaNHj2bMmDFERUUJQOHBgwd8++23FBcXs3z5ckaMGMG+ffs4fPgwDg4OaGhoEBsbi6qqKlpaWlRUVODo6IilpSU3b95kxYoVLFmyhB9//BE3Nzfxc6qqqmJN3516/vw5FhYW1NbWiubV0tKSBQsWMGXKFJqbm7tszp48eSKSKn19fbl06RKqqqp8/fXXQjfy6NEjoFO3snPnTt68eYOTk5P4ZxKhX1NTE69evRJhNZJwhmvXrjF8+HA0NTX5/fffqa2tZdy4caLZ+3uQ0n8rAwMD7t69y969e5GTk+PQoUNoaGiwYcMGpk6dyvTp00lMTBQ0rKKiItrb25GTkxPPS0kwgmTrd+PGDTZu3Ah0PhuCgoKQl5fnw4cPXRD3YcOGsWPHDmpra4XrhqWlJRcvXiQlJYXY2Figkwa1cOFCnJ2dqaur+/++eV28eLEwapeUtrY2/fv3p62tjcjISAYNGoSenh5LliwhOzub7du3Y2RkxKeffsr58+d59OgRXl5eYqUnmfIlPnGSB522tjYGBgbY29vTq1cvrKysqKqqIjIykkOHDvHFF1+goaGBvLy8QL1evXolUkm8vb3x8PD4hw3J/1YSY37o5KjMnz+fa9euMWHCBCZNmsTs2bPR19cXa47m5mZUVVXR0dEhNTWVyMhIYmNjGTZsGFu3bkVTU5Pw8HCqq6sZN25cF+Xwu3fvUFBQEIkx0PmQkihflZSUBNqhpKTE/Pnzhbm2xPLn7w/oj62HDx8SEhLChAkT8Pb2Zvr06dy8eZPt27fTo0cP/P39qa2t5ciRI6irq2Nra0taWhopKSk0NTVhbm6OiYmJaD7v3r3Ly5cvxXtWUVHBtWvXuHTpEpWVlXz++eeiKZCsbz/77DP69u1LYmIijx49wsLCAkdHR2HHdP/+fWGJ1t0ps7i4mJSUFJExnZ2dTU5ODp6envTo0YOysjLu3LmDlJSU+B4bGBgQHx9PbGws7u7u5Obm8vr1a/z8/HB2dubAgQPExsYKQ/e5c+cKSoKWlhalpaUkJSWJ74ZEZQudK2Bvb+8uRs/Pnz8nJCQEQ0NDfH19u6C+H1OamppERUVhYWGBhYWFMMjfu3cvcXFxmJiYsHbt2i6Dm+S70tHRgZqamjikoXN126tXLxQUFCgoKBC/Y8uWLdTV1fH48WPa2tooLS1FU1MTBwcHLCws6N+/P01NTfj4+AhxTVlZGVVVVeLekPjLdrf+/rc3NDQwduxY8vLy2L17N25ubigpKdHW1kZubi6GhoYMGDAAPz+/Lu9zSkoKZ86cEV7PEkeUvLw8SkpK0NDQYNKkSVhYWODh4UFbWxt79uxBTU2NqVOnCg794cOHCQkJYdCgQQwdOlT8bcnJyTx//lxYxnSnvLy8UFRURFVVlcrKSmpra7Gzs2Py5Mmoq6uLiNjW1laioqJEpnxKSgpKSkrMnDmTw4cPM2fOHOrq6hg0aBCffvqp+DuqqqoYPny42G7169ePAwcOsGnTJn755Rc+/fRToJP7tmXLFkaNGoWHhweDBg0iMzMTMzMz7Ozs6NevH7m5ubx8+VI0mR9bffr0QVVVldbWVv78808aGxsxNTXFy8sLU1NTpKSkOHbsGFZWVgwZMkRYeUlSBCWDgZycHLdv36a0tBR7e3tKSkooKioiNjaW9vZ2AgICUFZWZty4cZiZmZGenk5iYiIWFhb07NkTPT095s2bh7a2NmpqauI+/f7777l//z4///yzeA+70/xMmDCBpqYmjh8/TnR0NGfPnqVfv37IyMigrKzMmTNn0NXV5dtvv2XixInIycmhqKjI27dvuXPnDnJycvj4+CArK4utrS3R0dHs3bsX6AxFMTMz48KFC1haWiItLS2s6latWiVAFmtra4yMjDAzM+vik9mrVy/i4+MpKCigsbERFxeX/zg8/7caP348JiYmLFu2DBUVFQwNDTEyMkJDQ4OoqCgiIiJEA9mjRw8R2tKjRw8UFRXR1dVFTU0NX19f6uvrOX/+POvXr6e2tpbt27fj7u7Oo0ePaG9vFxaTTk5OLFy4UARu2NvbM3ToULEF7N27t2j8FBQUBD8V+Ff8egm6n5WVJRwuJBS5v/tJS36frq4u0tLSlJWVoaSkhL29PbW1tTx48EBEwL99+xYrKytcXV0xNTWlvb2d2NhYCgoKxPuVkJDAo0ePSEhIEN/VDx8+UFRUhJmZGcbGxiK2u66ujvLycszMzAgICOjCM/5vpaqqira2NrNnz8bS0lLYnbm7u3Pr1i2ioqLEs62goEAMg4mJifz22298+eWXWFtb88cff+Dq6sqgQYNITU0lLy8PPz8/Tp8+3cUpysTEBA0NDQoKCjAwMGDp0qWkpKSItEorKys8PT2RlZUVQQ7jxo0Tjf/HRBh3u3mVrH1zcnKIjY3F3NxciJn279/P2bNnaW5uJjAwkB9//JGDBw9y7do1vvvuO0aOHMnIkSOFH5tEmFRaWiqQkYiICO7fv8+gQYPw9/enT58+ZGRkUFNTg4eHByoqKoSFhXH9+nUCAgJwd3cXjWteXh737t3jxYsXAAQEBLBs2bJu2SxBJ//p3bt3GBgYMGfOHPT09Jg2bRqysrICbZb4likpKSEjI4OLiwsbNmzg+++/Fz6sFhYWbN26FR8fH/bs2cPQoUPF7/j999/Jz89n/Pjx6OrqCu/JzMxMNmzYwMOHD/n666/p378/ra2tIhpwwYIFAmlpb2//V/YuV65c4dChQ9TV1eHt7c3QoUPZtm0bS5YsITU1lY6ODq5du0ZqaiobNmzA3NycsLAw0WTKy8vT0tLCq1evOHPmjBgOevTogYmJCdnZ2RQUFJCYmIiSklIXBOn27dsEBwfj6+tL3759iYuLo6WlhVGjRiEjI0NFRQXPnz8nNTWVoKAggoKCkJOT65Ji9t8qOjqaXbt2sXnzZtzc3CgqKiIpKUl4Wero6AhbD0ku+vjx41FWVubp06e8f/+eR48e8fLlSw4cOEBgYCCqqqocOHCAiRMn4ubmJtYcktVYa2srpaWlVFZW0tzcjKmpKTU1NWRkZKCgoCDiKVtbW0lOTub06dPcvXtX8DKfPXvWrc/w9u3bXLt2jUGDBrFkyRJUVFRoampi69atFBcXY2lpiaenp1h3V1dXo6ysjKysrIjIlazVJSuuwMBACgsLOXv2LHv27GHu3LlYWVlx/vx5Tp8+TUxMDPv37xcNH3Ry/Pz9/dHW1qaxsRF5eXlMTExQVVUVaXGS9/nfVkhICNXV1fz0009kZWVx5MgRga5LkJ5PP/0UJSWlLjQi6EQ3Jd8dXV1d1NXVaW1txcXFRVCLFBQUhNfx06dPuXfvHu7u7iLWc9OmTfj6+pKSksK7d+9QVlYWP9/Q0NBFmPDf8rj/XjIyMjQ3N2NsbMzo0aMFd1EiWJSca+/fv2fKlCniv4uOjubu3buMHDkSV1dXfvnlF2Ed6OjoyIgRI8jOzsbBwUEMZ5LY4Ddv3nD48GEaGhqEdZWtrS03b97kwoULmJiYMHXqVPF9lVRSUhLh4eHdcm4BxNASHBws+PGSbZympibx8fHs2rWLwsJCPDw8qKioEGIcif1STU0Nubm5JCYm8uDBAxoaGmhpaSEtLY26ujpiYmK4cuUK48aNY/78+cIVobCwkJKSEgEAyMrKMm7cOOrr68nJycHExITFixfTr18/tm3bhomJCStWrBD39seUJC0qICCAc+fO0dHRQWFhIYaGhsjJySEvLy9cYQYMGCAGxk2bNnH37l0uXbokhmDoROQiIiKoqqrCx8eHiooK4eNrYWEhztbKykrBHba3t0dZWZn29nZsbW3ZsGEDHR0d1NXVkZiYyNOnT4mMjGTGjBn/qnmVbOSgcyD68ccfBchTXV0tePSAGA7k5OTo2bMnPXv2FIixmpqaiCOW0MhmzpzJlStXWL16NUFBQdy4cYMPHz5QXV1N7969CQ4OpqWlhQULFuDo6MiNGzcwMzMjPDycyspKHj16hJGRkXBdqaio6HaqJnSKrD58+ICenp5ADKuqqigqKkJRURE9PT0UFBTEeaatrU1DQwM///wzTk5OXLlyhdbWVjw9PcnNzQU6ucJ+fn5oa2vz4cMHTp8+TUhICG5ubmKbcPjwYV68eMGoUaNYvnw5Ojo6vHr1CgUFBdFrtLS0MH/+fNEsOjs7M2PGjG71NRL/2KFDhwr7TgMDA9avX8+GDRv46aefmDVrFl9//TVHjhzB29ubTZs2sWTJEr777jv69u2LiYkJv//+O9LS0kycOJHw8HD69OkjEtEaGhqora0VDWhpaSnZ2dnU1dVhY2NDr169aGxsREZGBjk5OQICAhg4cKDYNEg26SoqKh8lRut28yqp06dPExUVxe7du9HW1iY9PV0QpiUH+KFDh0hJSWHGjBm8efOGZcuWERsby7hx41BRUaGoqIh79+6hpaUlJqfw8HB++OEHFi5ciL+/P3p6etTW1nLz5k1u376NsbExlZWVyAS5uvIAAQAASURBVMnJsW/fPqZOnYqdnR0PHz7kw4cPjB8/nsbGRu7cuUNkZKRotj+2srKyOH78OBEREQwePJjvvvuOUaNGCYN06IyefPXqFerq6khLSyMvL4+Pjw/q6up8++23JCYmisZATk6OL7/8krKyMjw8PIiPj2fb/8PeeYdHWW1t/zepk957Ib2QHpKQhN4JVToKShFBR1CaDUVE0WNBKWJAESkiRRQQ6S10AqQBIQmk9957ne+PcfYhejwSv/O+vgdzX5fX4MyTmWc/u6291r3u9f776OjoEBgYyM8//0xGRoaoPlJcXEx1dTUPHjzg0qVLlJSUUF5eTnNzMy4uLoSHh4uT5e7du/niiy9EmP5RUVpayurVq9HX1xfh03HjxglBeeVhwtHRUfBqvb29+fnnn8nLy6OtrY3a2lp+/vln0tLSUFFR4dlnn2XKlCk4ODhQVlZGeXk5w4YNo6qqipiYGFGFZeHChfj5+QnP5LBhw6isrBQEdW9vbz7++GNiYmJwdXXF398fPT29Lhmvymev5GaGh4dz6dIlXnrpJUJDQ0XSS21tLW+99Raurq4sXLiQoKAgfvjhBzZs2ICDg4Mw5qdOncquXbvo27cvb7/9tvAGXb58mS+++IIZM2YwduxYUaYwLy8PTU1NDAwMsLCw6JSlXVJSwtq1a7l//z4fffSRMEo2b97cyRP6R/D19RWHiNzcXOzs7ESCXXl5OePGjcPe3p7k5GQKCwupqKjA3NwcHx8fwXGqqakRHiK5XC5CkE8++SQXLlxgy5YtPPXUU9jY2PDss89y5MgR4uPjMTQ0xNzcnJMnT3L48GG+++47mpqa0NTUZPXq1QQGBgrKBCg4lF2RAVPi888/FwkmJiYm6Onp4e3tzbhx40T2qqamJkFBQWhpaZGRkcGqVavo37+/0PX08vLiq6++wtramtraWj7++GPi4+OZN28es2fPRkVFRUR6lHPs448/7uT1NTExYfz48eI5PuzZCQgIQCaTiQSh+/fvP3L7lixZQkVFBQsWLGDAgAGAYsNUciOV3GV7e3sGDhxIRUUFVVVVnDt3jvT0dK5fv054eDjr168nIyMDHR0dEZZUVVUVhuumTZtYvXo12tra+Pv7M2XKFFpbW1m8eDHu7u5YW1szYcIE2tvbycnJEeWGQRHJ2rVrl5Cd6qrxCv+s8gYKI2HDhg3Ca96jRw+mTZuGqakpBgYGXLx4kV27dokEnD59+pCRkcH169fR0tLCy8uLmJgYEhMTsbS0ZMSIEYJP6eTk1CkZSVlERpm8s3TpUlRUVHjnnXfYsWMHffr04dNPP6VXr16sWrWK4uLiLvUfKA4Wzs7OTJkyhYEDB5KQkEBaWhqlpaUEBweze/dugoODKS8v54MPPsDf35+pU6eyaNEievXq1cmYbGlpITExkRdffJGqqioiIyM5e/asoOJoamry5ptv0tLSIg46LS0tSKVS1NXVaW9vJzY2lrNnz3L37l38/PyYN28ea9as4cyZM3+KswyK6lb29vb4+Pjg6Ogo5nVTUxM2NjYMHz5cFIWQSCTC+Gtubqa4uFjsIZs2bWLnzp2iZn1raytbtmwRFTqV9ARHR0eioqKYNm2aELZXJngdOnSI0NBQIXFWXl5OZGQko0ePZu7cuZw7d44VK1YIma5HhY2NjUgsbWxspLS0FFNTU6ytrdmyZQtXrlxh/vz5IoJ4+vRpduzYQVVVFdnZ2cLrqKwkamlpyaRJkzrxV+/cuUNsbCympqZCkef06dNYWlqydOlS4eHV19cXz1gul5Ofn4+DgwOmpqZkZmaKaNOfQU1NDfn5+ejr64t7HjlyJGZmZkI+T6lC4OzsLKIhcXFxXLhwAQcHBzIzM9mwYQOtra0sWrQINzc37ty5I/i9q1evBhRJkrdu3cLDw0Mkt/7aK25gYEBAQAB1dXW0t7cLJ50yGfHf4U8brzk5OeTk5BAbG0t8fDwrVqxARUWFr776CkNDQ7Zu3cr8+fOZMGECn376KSdPniQ+Pp5BgwYxf/58EhISSElJQUNDQ9AHQHGi8ff378QjU2Zw19bWoqamxvPPP094eDj379/nwYMHmJubk5qaSktLC8888wzjx48nIiKik8fvUXH58mUSExNpamqisrKSGzdu4OXlRUREhJAZOXToED/++KOQ81Ly7/z9/TvpKzY1NVFUVMSECRNEyHb37t3s37+fWbNm0b9/f0Hk79WrFxYWFty7d08kg/z444+oqqrSp08f+vbti6mpKUVFRSIsmpmZSVpaWpeN1zFjxjBr1iyio6N5+eWX2b17N2+++aaQjAGF67+5uZm4uDhcXV0xMzPD19eXjIwM1NXVqa+vF8ahvr4+jo6OhISEYGBgQH5+PsnJyUycOJFBgwZRXV1NWloaHR0dDBo0SHigleL1Li4uyOVy4uLikMvlDBkyhCFDhnD37l1SUlI6Fbp4FIwbNw6pVIqqqipxcXEEBgbi7u7OyZMnyc7OFtcdPnyYjRs34unpyaxZs2hraxNcu5CQEObPn88XX3zBV199hZWVFR9//DEDBw6kvb2drKwsUY1NyYUyMTERYbO2tjY0NDSwtLTsxPdUlvlUlsoFhQ7io4RJHoa5uTnNzc2Ul5cLT6OTkxP/+Mc/OnGzEhMTuXfvHtXV1UgkEqqqqtDT00NNTe03skDp6elIpVLc3d2FbFhzczPPPvssFhYWDBgwAC8vLy5evMjBgwe5fPkyzc3NlJSUCAkx5UKsp6cnjK+DBw/y+eefdxpfj4Lk5GT69+8v6qPX1dWhoqIixk9TU1OnpMU9e/Zw8+ZN1NTUCAoKElIz7u7u9OjRg/T0dMrKyjA3N2fRokVig6iqqhKcQ6Uh39HRQXNzM2pqaiIhRZmAB4qNOSMjAw0NDcaNGyek5LriDTl8+DD5+fk0NzdjaWlJQ0MD58+fp7GxEW9vb9FH2dnZIoyuVCmpra0Vhw8lhx7g5MmTXLt2jdGjRwMImcG2tjZycnJEecaOjg527tzJ1atXef755wWF4Nq1a0RFRQmJq4sXL7Jp0yYGDx4s1Ba6ClVVVaZPn469vT1vvvkm1tbW3L17F1VVVXr27Nmpzn1HRwfV1dVUVVUJNYHMzExu3LghuK5aWlrU1dWhr6/PnDlz/mWZ1Lq6OnR1damtrSUnJ4e6ujphVP74449UVFSQmprKjRs3sLGxwdvbW/CEu4KzZ89SXl6Orq4uampq+Pn5UVZWRl5eHo6OjiLZpqmpifv373Py5EmKiop4+eWXGTJkCO3t7aSkpNDW1kZ6ejoSiYTBgwcLWbCYmBg0NTVF0qS1tTXR0dHk5eXh5eXVqaSsqqoq9fX1XLp0iaysLDQ1Nbl06RIjR44UJbGVfP2uQBkSVsqoKSGVSgkICPjN9dXV1dy9e5fr169jaGjIoEGDiIuL48MPPyQ/Px+pVIqlpSVyuZzo6Gj09PQIDQ0VZaSVqiEXL14UpVSTk5PZs2cPcrmc5ORkEXlQqtRER0czbdo0vLy8KCsr61L7QKFCU1FRgb+/P1KplJSUFFxdXXF0dBRqQL6+vmKslZWViTVPqQ8bEBDAu+++S2JiIpqamnR0dAjZt/79+9PY2CgkPvX09DA2NmbMmDE4OTkhkUgoKCigrq5O7AtVVVWi4EFeXh7W1tY4OjpSU1Mj1oGuQBn1KysrE2sqKLSPlQ7HzMxMTExMiImJ4bnnnuO7775j1apVHDhwgHv37rFgwQISEhKE5m9zc7OoOJmTk0NNTY34XqXaxMN0qszMTDFfHBwckEqlqKioiBwn5V72KGpRf9p4nTFjBhYWFmzfvp2ffvoJgOnTp+Pn50dRUREnTpwQmwgorPtbt27h5OTE/fv3+fzzz7G1tWX58uXiRpV0gzFjxnTaWN3d3enVqxdFRUVMnz6diRMnoq+vT0lJCTo6Otja2vLCCy8I3qCenh6rVq3qskEAipDc1KlTsbKywt7eHnt7e65cucLx48eJiIggNDSU2tpa7ty5AyAq/QDs3LkTGxsb1qxZQ0REBFlZWezbt4+JEyfi6+tLY2MjjY2NWFhYEBMTw+XLl5HJZERERHD27FmsrKxYs2aNyKrdt28fRkZGvPbaa2JzUhoLzc3NzJo1i5EjRwrtw0fFw7q49+/fp7W1lQcPHvwm8SQlJYW33noLf39/Vq9ezdChQ0lOThYctj59+pCbm0tdXZ0Iw48dO5bTp0/z2WefCVH3CRMmUFNT8xtjKTc3lzNnzgiN3I0bN3L06FGOHj1KWFgY1dXVVFZWdiqc8ChQGsirV6/m+eefZ8qUKUyYMIFt27Z1ykBXnnS1tLRQV1fn5s2b5OTkYGdnR3h4uOBFguKkbWVlhZaWlliAleLNysQJZdJAbW0t9fX1lJWVoaGh0YkzZWhoyFtvvcWNGzdYvHgxUVFReHh4sGTJEkFcfxTs27ePXbt2MXHiRF555RWA3yQVgGIuWFhY4ObmRs+ePamrqyM2NhZXV1fhiVHWzfb39ycjI4OPP/6Y/Px8XFxcqKmp4cMPP8TT05PJkyfTo0cPHjx4wLFjxzAzM2PNmjX079+f9PR0vvvuO3766SeuXLnCpEmTeO+995BIJCIbu6tYuHBhJw56Q0MD5eXlQof3YTm7VatWCXrJsWPHePnllxk+fDj6+vrs2bOHzMxMAgMDmTRpUqdyoNA5Ye7KlSsi6Wnt2rW4ubnR3NwsPNNKw7+4uJhXXnmF5uZmvv/++y7LDwFERETwzTffcPjwYc6cOUNtbS39+/fno48+wsjIiKioKKH+UVpaKrwRnp6erF69milTpnDt2jXmzp1LUFAQPj4+vPnmm7S3tzNw4EDKy8vZsmULw4cPZ8GCBSxYsIALFy5w8uRJli9fzrvvvsuhQ4c69Y2npyfx8fE8ePAAV1dXxo8fT0tLC2VlZZw7d67LbVQqFrz++uuUlpZy8OBBbt68KSIDv4aHhwfz5s0jNjYWbW1t2traBOc9NTWVPXv2MG3aNJ544gkuXLggkkigs2qHrq4ucrkcbW1tli5dKhRBCgoKmD9/Pnp6evTp04eAgADu3bvH2bNnsbW1ZdKkSWJtfxQ4OzvzxRdfCKrJ2rVrcXFxIS8vj4aGBkAxvywsLNi6dSsrV67kzTffRENDgxdeeIHa2lo2btxIRkYGgwYNYsqUKbS1tdHR0cELL7xAYWEhN27cEGHUVatWCf72zp07eeaZZ1BRUeHevXs4OTnh6+vLp59+ipubG7dv32bRokVs27aN/fv3o6OjQ3t7e5dzCAYMGCCKu9TX1zNt2rR/yys9cOAAy5Ytw8PDg7lz57Jv3z6+++478vPzMTY2xt3dHRUVFdzd3Xn66adxdXWlsbERS0tLQTMZMWKE8CAvXbqUI0eO4OHhwWeffUZCQgIrVqzAwMCAnj17oq+vT1lZGTU1NXh6enLu3Lnf6O/+EXbu3ElkZCSffvops2fPRiKRcO/ePRwdHfH09MTT05PS0lKys7OxtbVl5MiRaGtrc+PGDTIzM9m2bRsTJ05k3rx5jB07ljNnzrBx40b27t3LqlWrcHFxYeLEiYwcOVL0gbOzM++//z737t3j888/JzExkTFjxoh9+NSpU3h4eODq6iqUd5566in09fXp3bt3l+ZjSkqKGB+1tbWd9iQlsrOzaW1tpX///uTm5lJcXMzFixcJCQmhT58+DBgwAD09PaRSKX379iU5OZnKykqio6Pp3bs3R44cEdFpUFDKLC0taW1tpbm5GYlEwvnz59m0aRNBQUGsX78eUKy/fn5+Yo0rLy8XXuF/hy4brz///DNBQUEEBASQkpLC559/DsC0adP48ssvkUqlXLx4EUtLSzZv3iw2uIaGBiZMmICxsTFyuZz09HSCg4MxNzenoaGBq1evMmDAAGxtbSkqKiI1NZXm5maqq6spLS1l0qRJotOUJxNVVVUaGxvR19cXnaE0HAYPHoy6unqXva9OTk74+fl1MuRMTU1pamoiPz8fdXV1XnjhBUpLS9m7d68oSKCEkZERp06dErzJ3NxcUfJ127ZtZGRkEBISQnJyMidOnGD06NF4eHiIut7KcPrs2bOJiorCysqK8PBwkpOTSUpK4oknnsDc3Fx4ixwcHLpsvJ45cwZDQ0OKioqYOHEiNjY2WFtb09jYKKRfnnvuOZycnJDL5WRmZqKuro6trS22trbU19dTWVnJkCFDhEbhmTNnRKZoaGgoo0aNQlNTk7Nnz6Knp4enp6egKaSlpTF37lzc3d2Jjo4mLS0NR0dH+vXrJ4TpCwsLhWxHV6oWgYIukJycjIWFBaGhoaSkpHDr1i0mTpxIQ0MDKSkpeHh44O3tLcJ3UqmU8vJyfH19GTRoEJ6enly6dIm8vDz09fVJSUnhzTffxM3NDXNzc2xsbHBwcBBJEkqjMTU1ldu3b+Pm5oa9vT0SiYQHDx6IE7ixsTGFhYVcuHCBlpYW3NzcCA8PJzAwsEvGa0xMDNHR0Z0SFXJyctDQ0BBe2fT0dFJTUzEwMBDerdjYWC5evNgpGbCkpASpVIqxsTHV1dXcvHkTOzs7nnjiCRISErh79y4eHh50dHSwe/duQc8JCQmhf//+eHl54efnh4ODA3v37qW0tJRevXqJaIOfn1+X1CKUUHKU9+3bJ8ZqdnY2r776KsOGDeOll16iurqawYMHExcXx6JFi+jdu7cokqAU4W9paaGkpARzc3NBGdm/fz/19fU8/fTTFBUVcfv2beGd1dXVpbW1leTkZKysrASd4+Fx2NbWJqgQysIPSo3nR4WNjQ0vv/wyVVVVJCcnU1VVxZw5c0So8dixY7S3t4vqS2pqahgbG/Pcc88Jusknn3zC4cOHqaurIzw8nAEDBlBSUiK8IcpKVpqamsIA+vLLL3n22WcJDg7m2rVrQh928+bNGBkZYWVlxY0bN9DQ0MDV1ZXp06dz8ODBLo1PJaqrq0lPTxfJMFlZWfj7+wuJtYSEBOzs7LCysqKgoACpVMqaNWuorKzk+vXrnDlzRiQJVlVVcfv2bV599VWefPJJPvroI/bt20drayvLly9HQ0ODw4cPk5OTw+jRo3FwcBDJIU5OTiIRceDAgZ3KmTY3N6Ovr4+bm1unzfdRYGhoKBJalTqkGhoaQjautraWgoICXF1dUVFRYebMmaJseXl5OfX19QQGBqKvr092djYHDx6kT58+IiFXGXkYPHgwbW1tNDU1oaenh4uLCxkZGZw7d46ePXuipqbGhQsXMDc3F9KCLS0t2NnZYWBgQHFxMU5OTqirq3fZeF20aBHt7e0sX76ctWvXcuXKFSZPnkxubi7p6ekYGhoKD7oyEjVixAjCwsIYN24c6enpXLp0iQcPHjB48GDGjh1LQkKC4J4rKTpXrlwhPT2dwMBAfHx88Pb25ubNm1y+fBl9fX1efPFFIiIi0NPTIzU1lfT0dNzc3Pj666/JzMykrKwMW1tbEaLuCpydnXFzc+PBgwekpKQIR0tWVhZJSUmoqqpSVlbGrl270NLSYvTo0SLKkpycTGBgIC4uLpw9e5bs7GxiY2N58OABra2tvP322wQGBmJpaYmdnR3+/v7i+3NyckhMTERXV5dRo0ZhZmbG7t272bVrl6iuJpfL+e6778RcGThw4CPpoD4MJb1RQ0NDHBBSUlK4d+8ednZ2eHp60traiq6uLsOGDWPAgAGiTG55ebnwQAMiMU9ZJKWurg5tbW0hgaZMpjQ1Ne2kQQyIaqgmJibCuaikxNjb22Nubk5aWtpv7Kp/hS4br7t378bIyAh9fX3u3r2LhoYGEydOZN26dejr61NXV0draysTJ05kyJAhXL16la+//prs7GwuXbrEgQMHsLGxISwsTHhVDhw4QH5+Pv369SMuLo6FCxcilUoJCgoiOzsbGxsbZs6cKZKaWlpakEgk3L17F3V1dVxcXEQSijJ7V7lxdjUbf/z48ZSVlQnSPSg8vx9++KGQGnFychKht2+//RZQeLh69+5N7969KSkp4e2336ayshKpVCr0/g4fPoyVlRWjR49GU1OTCxcu8PLLLxMaGoqpqSnu7u6dvAfr1q0TBsa7777LhQsX0NfXZ9iwYSKc2NUsdVCIrCv1IpXqCUrv5pkzZ9i2bZuoavLmm292kvFqbGwkLy+P1tZWAgMDcXBwoLy8nOvXr6Ovr4+zszO+vr6MHj2ampoazp07x7vvvourqyuLFi3i9OnTbNu2DalUyuLFi5k1axYpKSncv3+f8ePHi2S0rKwsHB0d/1SxifXr1wu5nI0bN3Lw4EHOnj0rFv6Wlhah8rB27VrxvLW1tenXrx+2trZkZWVx69YtEhMTaWxsRE1NTYRd3NzcGDBgALt37+btt99m3bp1wpi4d+8et2/fxtbWVnxvTk4O8fHxDB06lNraWt544w2amprYtm0b7u7uNDc3k5KS0qU2Kg2phzfbmpoaWlpahLRZTEwMaWlpPPPMM+Ka5ORk4RFSorGxkYqKCjF/IiIicHR0JDAwEKlUioeHB3379iU2NpZ9+/YRHBzM6tWrKS8v59tvv2Xfvn306dOHkSNHEhgYKMZwW1sbhYWFjB07ljlz5nSqJtUVbN26lTt37hAREYGBgQGnT58W8+Kbb74RHDol7O3tmTlzJg0NDfj4+PDSSy/R1tYmvK3x8fG88cYbjBgxgtmzZ3P8+HEWLVqEv78/X331FVevXuXnn3/m4sWLIksaFKFoiUSCjo4O+fn5hISEEBISQkBAAFu2bGHt2rVdqrAlkUiYNWuWOIy3t7d3UmwICgqipqYGCwsLbGxsSExMRC6XiwOLTCbj8OHDgKKCzoABAxgwYIDQxT5w4ACZmZl8/vnnbN26tZOH+fbt2wQHBwtd1e3btzNhwgRGjBhBbGwsFy5cwMPDA2dnZ8rLy2lvbxdVrrqCrKwsPv/8c3bt2oWlpSVbtmwR5VqV+s9z5swRCWRaWlq88sorWFpaYmtri52dHbm5uSLUreRUSiQSQkND2b9/P99++61QBfnqq684ceIE2dnZLFmypNMmr6KiQkBAQCc+c2trKw4ODqJiYFdRXV3N8uXLeeutt6ivrxfP2NXVVew9zs7OYp328PAQ1ekKCgowMzMTa97ixYvZunUrvXv3RiqV8v7774vyvXp6elRWVvLyyy8LDu/atWtZv349b7zxBkFBQZw+fZrExEQkEgmJiYmkpqby6quvClqZshBDVyOSymeo5O9//fXX3Lt3j9raWhITE1FXV2fp0qUEBQVhZWXF2LFjGTdunKgSaWVlxSuvvIKamhrDhg1j5syZmJqacvbsWZKSkujXrx+gmMtXr17l008/xcfHh+TkZPbv34+1tTUrV64U1IdevXoRHBxMcXExVVVVjB8/Hg0NDRITE9m1a9efkuWbPXs2Tz31FOfOnePmzZv0798fBwcHrl27xpUrV8jMzKS1tZWMjAzKy8uFkX727FlSU1P59NNP6dmzJ4MHD+bOnTsidwD+maxoZWUlSrG+9tpr3L9/n1WrVmFlZSWSBOPj43nllVe4ffu2SB4rLy8nOztbFPD5M1A64+7evSs0yG/cuMEPP/zAwIEDCQkJEVE6pSKGEkrPqVIaUEkPmDp1KqNGjSI3N5fs7Gy0tLQwNzdHW1tbFIAxMjLqpFAyZMgQwsLCOtktyqqIyt+9evUq33//vVgXfw9dNl4nTZqEnZ0dDx48oKmpCU9PT3R0dPj666/R0dER9dKVPFZ7e3veffddrl+/LrJ7HRwcmDdvHqWlpaJWtY+PDxcvXuSjjz4SXJlhw4bh6emJmZmZKGsWGxsrqt+MGjUKDw8PoUlmbW39myopXTVeLS0txd/ExMQIzuegQYPQ0NAgKSmJuLg4dHR0WL58OatWrRISWbdv3+bSpUs4OTkxc+ZMTp06xYMHD7h37x79+/fn9ddfJzQ0lICAADZt2sQPP/zAsWPHqKio4L333mPIkCHcunWL999/H3Nzc7766itxX8OGDUMqlXLs2DFaW1sZPnw4JiYm5OTkdLULmTx5Mrq6unR0dNDR0dHJQFQOcmXJSeXCun37dqKiorC2tmbEiBGCd7hp0yb279+PRCJh3LhxomJGeno67u7uTJ48WWg8xsfHY2JiQlhYGPfv3xcZj8pqabm5uQQFBREWFiayaw8dOsQ333zTKXz8R7hy5QpNTU0cPHiQmTNn4ubmRlVVFSYmJhgYGGBiYvKbOtXNzc3U19dTVFQkTvExMTHCcH3//fcpLCxk/fr1GBgY8Nxzz3H+/HmioqI68Wj19fUJCgrqFBK1s7MTmcAaGhpMnz4dQ0NDMTlPnjzZ5Wz8hoYGVq9ejbe3t6hIYmtrS3FxMQ0NDaipqWFmZoa7uzve3t60tbXx2muv0djYyJNPPikMIOWBzNjYGBMTE0xMTIRSgoqKCt7e3pSUlPDtt99y48YNBg4cKCg6WVlZxMXF0dbWRu/evYWecWJiIomJieTk5GBvb9/JeP4zGDt2LO7u7rS2thIWFsahQ4dISkpiy5YtaGtrs3nzZkxMTPD19SUrK4uzZ88KfeFf6yAfPnyYY8eOMXDgQJYtW4aKioqoha6mpiY0PsvKyoiKiqJ37950dHSwfv16fvjhB8zMzLC0tMTAwIDp06czd+5cQJEUuGjRoi6VbJw/f77QwVWWGd6zZw+XLl3iqaeeEoUDSktLMTMzIyAggIsXLwr9Q2XJTQMDA27dusX+/fuZNm0axsbG7Ny5U/A3XVxcGDhwIH5+fly7do3r16+Tk5NDSUkJI0eOFBnA9+7d49SpU5w8eRJLS0sRzXJ2dqa2tlZI+3QF8fHxnD9/HhsbG55//vlOCUoeHh7Y2NjQo0cPsrKyOHPmDDdv3iQ5OZlRo0ZhZGSEh4eHOMj6+voSGBjI+fPn2bZtGz179mTJkiXU1dWxdu1aKioq8PDwQF9fn7Nnz+Lo6MicOXM4duwYX3zxBXZ2dnz22Weoqalx6NAhLl++zJtvvomJiQm7d+/GwMCgU+b/o8De3l5s9A8bhQ9vzsp50dDQgJ6eHn379qWxsfE3VCqlpqefnx9paWmcPn0aX19f4fm/f/9+JwqVtbU1enp6NDY2oqGhQUhICHV1dWIftLW17bS2V1VVIZfLu+wQqK6upry8nOnTpxMcHExWVhbGxsZYWVmRnZ1Nfn4+wcHBYiwXFBRw+vRpysrKsLOzw97eHn19ff7xj3/g4+ODiooKFhYWwuOsxMSJE/Hx8RFea4lEgrGxMfHx8Rw6dAhzc3OhAqJ89oWFhbzzzjuYm5vz8ssv4+3tza1bt35zoH0UaGhoEBERQXp6uthvbGxsGDNmDHK5XEheurm5kZ6eLmg3gEgiVFJOevTogaOjI8bGxkKhRyKRcPLkSb7++muSkpJobGzkwYMHgm9aWlpKVFQUgwcPJiIiAnd3d7FPvfjii6JYEfCntGwzMzP55JNPuHnzJqNGjaJ///7Mnj1bHEqU+uagqK546NAh+vTpw9ixY1FXVyc3N1cknhkaGgoHgp2dHWpqaiK6paOjQ9++fQUPOzY2llOnTqGiosLs2bOFU7CiogIVFRUMDQ2F3RYTE8OOHTuIjo7+zxuvSgkVpXSVoaEhCQkJnD9/Hi0tLSZOnMioUaOQSqXExsbS0dHBzJkzxQamXNy9vb1FmGD69OloamqydOlS7t27R48ePYRG2HPPPYepqan4u169evH000+TnJwsynsePXoUKysrrK2tqauro7a2VuiwdbWTlZMeFKeU/fv3i7q7rq6u3Lt3jw0bNqCurs6aNWvw9fXF0dGRzMxMLl++TEVFBcHBwXz66adcvnyZ/v37C6rF8uXLRalXBwcH/P39SUhIwNTUVGQGa2pqkpWVRXx8PLt372bgwIE0NDQwZswYxowZwxtvvMGJEyfo3bs3JiYmf4prp5TguHPnDvfv36e2tlYsaE888QRVVVWsWrWKDz74gJ49e6KlpcX27du5evUqTzzxhJBJAoVerTJkOWnSJDQ0NEhISCAqKoqEhARGjRrFG2+8wZEjR7h8+TKBgYE899xzJCYmcuzYMUJCQujo6CAlJUVco6GhwfDhwwGFIXry5EmRPf4o6NOnD42NjXh5eXHixAlaW1uxt7fvVCWpsrJSyCQpT4ft7e3k5ubS0dGBqqqq2JSkUin+/v4MGzaMpKQkTE1NqaqqIjw8nNzc3E4JZePGjRMbV3t7u0gYUoqvNzc3M3fuXBoaGtizZw+nT5/GyMiIOXPmcOnSpUduY21tLePHj8fGxkaUSFRqVyoRERGBVCqltbWVDRs2cOnSJWbMmCE8Hcr2Ozs7U1dXR2ZmJmpqatja2qKlpSUWtPb2do4dO4ZEIuHDDz9EV1eXyspKvv/+eyoqKhg6dKioQx0TE8ORI0dITk5GIpHQ2trKlStXulwzXvn8VFVVRahfiVGjRnH58mXWr1/P6tWrefbZZ8W9lpaWsnv3bi5fviwOWOXl5URFRXHnzh1iYmIICgpi5cqVqKur8/3335OWliYkX5TIy8vD19cXf39/GhsbuXLlipDgMzAwYPDgwcyfPx9AVPbZuHFjlxK2TE1NaW1t5fbt24JvFhUVxcGDB2lpacHX1xcbGxvhXff396d///6UlZWRkJDA0KFDGT9+PPX19ezfv59169bh7OyMt7e3+Bt1dXU++OADERlQzjdjY2PMzc0ZMmQIgwYN4uzZsyLxRUdHh169enXS21Z6n3fs2NGlPuzo6MDDw4PnnntO7B3nzp2jtLQUd3d3QZFQHu6uXLnC9u3bqa+vZ+LEiVRWVpKamopEImHAgAH06tWLmzdvcurUKQwMDPjss88ARdJjUlISkZGR2NvbM2/ePKRSKTo6OhQUFBAbG4uGhgY5OTl0dHQISbzs7Gzu37/P9u3b6du3b5eNV2WBD2Wiip6eHioqKjQ0NCCRSJBKpYJn/3CFK2UFO+W+JpfLcXJywsLCQnCqg4ODRfUwJWVAKdFYUVGBjY0Ns2fPFuFa5RxsbW3FxsaG+vp6wRsdMmQIxsbGJCcnizLIj4oLFy5w+PBhBg0a1KnQjFJmEBR8SaXO9Z49e0Tp0oCAAEaOHEnfvn0JDg4W2qyVlZXY2NjQs2dPmpqaSEpKIiwsjDFjxojCIx4eHshkMlJSUti/fz9nzpwhKipKSC41Nzdz7do1vvnmG3R0dOjduzdhYWH4+Ph0qX1KNDQ0kJGRIbjtSi33efPm0aNHDwoKCkhLS8PPz4/k5GSRNGVnZ8eBAwdElTTlvvzzzz8TEhLCypUrxbrs7+/Pjh07uHnzJj4+PixfvhwrKytWr15NVFQUAQEBrFmzRhyEamtr0dPTE4dkZTJaV51y1dXVVFRUUFlZKfo/MDCwk5NFqe2sqqrKuXPn+Oijj5g/f76YEwUFBRw9epSGhgaGDx+Om5sbcrmcqqoqQTGqqqqipKREFL9R/nZ2djbq6uqcP38ed3d3jIyMUFNTQ1VVVdAZysrKiIuLE4WZ/gh/OmGrZ8+e6OrqYmhoiI2NDVOmTMHY2BhnZ2ccHR2Fztzly5c5e/as0GxtampCR0cHiUQiBojSrSyVSpk9ezahoaF8/PHHbN26lYkTJzJw4MBOVaqUHbtt2zbu3r3L3bt3GTVqFMnJyWzduhV1dXVeeuklVFRURHWgR0VLSwvZ2dm4urri4OCApqYmqampxMfHiwz2sLAw7t27x6pVq9i+fTtqamrcvn1byOgoOUcBAQF4eHiQkpIiErc0NDTYv38/np6e/PDDD5w/f15MVlCc2Pbv3y+IzUuXLmXUqFF89NFHWFhY8Pzzz5Obm4tcLqesrIySkpI/24X4+PhgamoqRPYLCgowNzcXFXl++uknXnvtNdra2tDS0uK9997jiSeeEF6w3Nxc+vXrR0hISKfM2p49e1JZWcm6des4duwY69atw9fXl3379mFhYSE4aEeOHOHdd9+luroaT09PFi1ahKWlJVKplN27d3Pv3j2sra3Zv3+/KEX7KJg9ezbz5s3DwcGBuLg4Xn75ZczMzITxWl1dzZdffkl9fT2TJ08WBwClR6BPnz7Y2Nhgb2/PmTNnUFdXZ9++fYwdO5ZPPvmElJQUPvvsM+zs7Pj22287FSR42OPS3Nws+DyAqA0eGhoqsm/79u3LJ5980mWunbGxsShG8DDv9WFIpVIyMjJYuHAhdXV1vP32250254fDOWVlZcyaNYvq6mq+/fZbfH19aWlpoa2tDVNTU5YuXSqKDoBis01LSyMzM7OTh8fc3JzJkycLrcXk5GTeeust0tLSREb+o+Lh5DolkpKSWL9+PXv37qWlpYUff/yRY8eOkZeXx8KFC5k2bRqOjo7cv39f3NOyZcvYuXMnHh4eTJo0iRUrVqCurs6hQ4eEN3Dnzp2dKrI99dRTSKVS4YF55ZVXGDVqFFVVVaSlpeHp6YmVlRUHDhxgxYoVPP/88yxbtqxL7Xv77bd58sknsbS0xMTEBF1dXfz9/XF1deWrr76iX79+bNq0SZTH9Pb25p133uHmzZvk5+fj4+MjDiJaWlpijkilUjZv3oyDgwP19fVCPgsUhreWllanohE5OTls27aN5uZm3nzzTcLCwigpKSEzM5MHDx4I7/2fQUhIiKhypURhYSFLly5l8uTJREZGAopxs3LlSgwMDDh48CA9evRAW1ubPXv2EBUVhYGBAefPn6euro7Ro0eL5EElPvjgA8rLy8XvrFq1SmzMQ4cOFbJUx48f59VXXyU0NJTXXnuNK1eucPbsWQIDA3n66ad/Q6l5FKioqJCZmUllZaV41nfv3sXAwAAfHx/kcjkNDQ0YGBh02sdaW1tFzoZEIhFUpcLCQmxsbFi2bBk9evRATU0NNTU1vLy8xDohlUrx9PREV1e3k1FcV1dHXFwcjY2NwsDR0dGhtbUVTU1NdHR0hMH/qMjJyWHHjh3s2LGDpqYm5s+fT2pqKm+//Tbjx49n+vTpogSoiYlJp/LRampqPPXUUzQ1NbFs2TLCw8N59tlnaWhooLKyEnV1dW7fvs3q1avx9/dnwYIFohytMg/ik08+YdiwYSIbHRQ8/YULF5Kbm4tMJkNPT0+sUQ9rIncFzc3NQqbx448/7qRiERYWxuTJkzl58iS5ublER0cDCrrOE088wY0bN6ivryc8PJza2lrBh29paSErKwszMzOysrLw8/Nj48aNIi/Czs6OdevW8c477+Dq6sqbb74p7Jvs7GwqKiqEokNeXh47duxg4MCBXaquBYpCJE888QRvv/02WVlZ9OrVC7lcztmzZxk0aBCqqqocOnSIu3fvMmfOHMzNzQkNDe10ENDQ0EBVVRU7OzuhX3v37l3eeustwsLCWLZsGUePHkUmk6Grq8tbb73FnDlz6Nu3L25ubhgYGPDTTz8xYcIEevfuzZYtW5DL5Wzbto26ujpCQ0MJDw+nra3tkST5umy8Knk96urqODg4CP3Fh9HQ0NApe/Cnn37iwoULzJgxQ5zc2traRLWO8+fPI5fLGTduHC0tLSJZYMiQIZ0me1paGvHx8fTu3RszMzNaW1spLy8nIiICb29vkpOTKSsrEwLkoEhQ6QoWL15MQUGBEOZVqgS0tLSQl5eHiYkJb7/9NgUFBXzwwQccP36cjo4OGhoa8PDwYMGCBdjY2HD48GFqa2uZNWsWFy5cwM3Njba2Nq5du8bPP/+MXC5n8uTJODs7c/bsWfbv34+bmxtjx44VG8zevXsFd+Ty5cuMHDlSFAI4ePAgeXl5f2pTqa+vJzMzEx0dHRGWUGaL29rasmjRIhYsWICjoyPz58+npaWFVatWMXXqVGHo3bt3jx9++IEhQ4YIL6mSE6jUO62qqsLe3h5NTU1KSkq4du0ad+/eZdKkSaI2snIxcHBwEJq8HR0dfPPNNxgZGTFkyBD8/f27ZLxqaWkJlQBVVVWqq6uJiYnhm2++Ye7cuRgYGNCjRw8KCwvFZqAsuGBgYMCMGTNQU1PD3t6eAQMG0N7ezt27d2lvb8fX1xddXV1u3bqFg4ODMFxjY2MpKyujpaUFbW1tnJ2dRbW09PR0NmzYwMWLF4WYc25uLm5ubvTp04f29vYuh2Otra3ZtWsXycnJyGQybG1tyc3N5dq1a9TW1tKvXz/c3d1FJvnw4cOF4aqsPNTc3ExMTAxubm6oqanh6+tLbm6uMMCV5V+1tbXFgUwpIq2Uk0lJSemUyGRtbd3pNK9MmKusrOxS+0Cx8Skr6uXk5GBgYEBeXh6lpaWEh4cLGk9GRgagCItqamry7LPP4ujoSHV1NRcvXqSjowN/f38GDx4sqtSBIvJgbW3Niy++iJWVFampqdy9e5cRI0bg6upKaWkpd+7cEVQXpbxMaWmp4J7V1dWhrq7O/fv3u9yHBQUFqKioiEhPeno6RkZGvPTSS+jp6XHq1KlOsj9yuVxUE/Ly8hJSYNHR0WhqatKvXz+uXr0qxNI/+eQTzp07x08//UR0dDQ9e/YkNTWVqqoqDh48iJGREZMmTaKwsJDKykpRWleJ2NhYzMzMxLO5detWl/vQysoKqVT6G0+KjY0N+vr6QhtUWRBi9OjRxMTE4OLigp+fn9hb/P39hfyZk5OTmFvKPlBRUcHU1JSSkhIMDAwwNzcnISGBqqoqevbsKagzp06dIjMzkxUrVhAeHk5JSQlWVlY8/fTTfyrRp7a2ltbWVpHJX1BQQHV1Ne3t7UIKqKmpSXjz5HI5lZWVQsj/YZqbrq6uMNzs7e0JCAgQyT9KucKCggJqa2txc3MT7b9z5w719fVYW1t3qqLn4OCAu7s7tbW1ZGVl4e3tjaOjIw4ODp1UGv4IJiYm9OnTh6tXr7J9+3aGDx9OUlISJ0+eRFVVldGjR1NaWkpiYiLFxcWdDsWBgYHY2dmxdetWvv32W7Kysnj++ecJDAzk8uXLlJWVoa2tjYeHB3K5nPv379OjRw/a2tpEGHro0KHMmTOH5ORkEaqOjo7m5MmT+Pj4iBKlx48f5+zZszQ0NHQqCPSoMDIywtHRkZiYmE6HO6WyiaGhIVlZWSKZqHfv3uzcuRM7OzteffVVioqKGDBggFCfKS8vJyAgQEgatre3U1xcjK6uLi4uLlRWVoqyxOPGjWPgwIF4eHjQ3t5OcnIyxcXFnaTIUlNTsbe3x8rKqpNd9CjQ0tLCzMwMMzMzgoOD+emnn4iJicHCwgJnZ2dSU1P58MMPKSsrE7KcZmZmpKamkpKSgpWVFerq6kRERFBTU0NlZSWmpqakpqZy5MgRTp48KZLAlYck5fhWFq/R09Nj3Lhx7NmzBz09PcE9Lyws5NNPPyUiIoIdO3Ygk8mIjo7+Q233LhuvOjo6nTwi/0pYvampiZaWFszMzJgyZQouLi5cvnyZkpIS4QaXSCS4uLiQn5/Prl270NfX59VXX+XYsWO8/fbb9O/fn/Xr13fSldu7dy979uxh8eLFLFu2jLNnz2JiYsLYsWOpqqpCIpGwdOnSTp6GPn36CE7bo2Dz5s2Aouyf0nhVUVHBw8MDR0dH6uvrMTU1xdTUlG3btnH9+nWio6NJSUkhPDycBQsWcOXKFd5//338/f3ZsGEDr7/+ugjRtrS0EBQURGpqKhcuXGDgwIE0Njby6aefMm7cOGFg3Lt3j5dffpm5c+dSWVkpSsQBXLx4kbfeegsbGxvheekK8vLyuHr1KjY2NuL5lpSUcPXqVRwcHHj66acFJ3PUqFHo6OgQGhpKcXEx9fX1QhHi66+/prCwUAis5+bmkpuby4EDB7hy5QoTJkwQGdiFhYVUV1dTVlbGgQMHmD17NtbW1mzcuJFDhw6RlpYmBL9VVFSYMmUKBgYGgsPYFfzwww+sX78ef39/hgwZQlBQELW1tfzwww+4urrSr18/nnzySWGYPXjwgM8++4yjR4/i4OBAamoqnp6euLm5YW1tja6uLuPHjxfP39bWlldffVVMvujoaA4fPkx0dDTV1dX4+voyc+ZM4QW6efMmmzZtQi6XM3XqVHx9fZk1axbm5uYkJiayZs0aTpw40Unv8o/g7OzMjz/+yObNm9HW1uatt94iOzubxYsXU1ZWxpo1a3juuefw8/Nj586d4l4vXbpEfX09PXv25MaNG8yfP59+/fqxa9cuNm3aJOrBK6GtrU17ezuNjY2UlJSgpqaGjo4OHR0dYpN6OIlHKbulNEpUVFT46KOPeOmll/jHP/7RpX4EhYH3ww8/8PXXX6OlpcXixYuJjIwUUlLXr1/HyMiI/v37Y2trS2FhoaDUbN++nfb2dl599VW8vb2pqqqiuLhYcK0nTZpESEgIERERlJeX88wzz6Cqqio4ia+99hp5eXlMnjyZGTNmiOei5Aa3tLQwa9Ysxo0bx4kTJ9i/f3+X2rZy5UpxyM7Pzxc0hJ07d7J8+XIWLFhAUlIShYWFWFlZkZKSwuHDh4XEECiSXV988UUGDhzI+PHjiYyM5MMPP+Tw4cP07t0bW1tb3nnnHa5evcqgQYOIiIgQEofKqm6TJk3qpJTQ0tJCeno6fn5+gs703Xff8dZbbwnK0aNCWZVMObaV2en79u0T+s41NTUiWaqwsJCysjI6OjoEX1p5qFdu5D/88ANnzpxh3LhxODo6oqury4svvkhCQgJr165l2LBhfP/99yxduhR1dXU+/vhjPDw8RNREWbkQFHzq8PDwP5WsBQpKSlVVFY6OjtjZ2XHz5k3hRVIqkCg1gtXV1SkuLiYrK0sYIQ+jT58++Pv7d6oQd+HCBSIjI3nllVeYPHkyR44c4c6dO7z55pvY2NjQ1NTEe++9R1xcHK+++qpYV9vb28X8rK+v59atWzQ0NBASEsKyZcu6RG/x8vJi7969nDlzhoKCAioqKnB0dOS9997D3d1dHD5cXFwoKysTeuz9+/fHw8ODI0eO8MMPPwD/TDC1tbVl8ODBaGpq4u7uznvvvYeGhgaVlZUiOUoZOVGWg1UWAikrK+P+/fvMnTu302FL6Xmtra3tcj8qeeVvv/02s2fPFhEX5XrW1NREfHy8MFyDgoJ44403cHNzo6OjA3V1dZydnRk8eDDBwcHMnDmT+vp6tLW1MTU1Fa+7d+/m3LlzmJubc+vWLaKioliyZAlbtmzh+vXr/PTTT0yePBlvb28MDAw6KcLY2tr+KaMc6BRxu3HjBs8//zwODg7s37+fnJwcpk2bRlVVFREREZibm5OSksKZM2doamri2rVrzJw5UxQEiYuL48aNG1RVVVFbW4uZmRmlpaVERkbyzjvvEBcXR2FhIebm5qipqXHt2jXOnDnD1KlTCQ4O5vjx49y4cUOo/kyZMoXNmzdz7do1ysvLMTQ0JDAw8D9vvCr1LJX/jo6O5urVq1RXV+Pj48PQoUNFxytL2Cn5mleuXOGdd97B0dFReNlsbGyYMWMGmZmZHDp0iLy8PKEtqOR8KknKfn5+1NXV4eXlRXNzM7dv36awsJDs7Gza29txcXHB39+f2tpa3n33XUJCQrrMYYqIiMDS0lJ41JTC7MrEDxMTEz7//HOampp45ZVXGDp0qJA58vPzQ1VVFVVVVYyNjenXrx/a2trU1dVx9OhRvLy8cHd3Z+7cucTHxwuPVXV1NYWFhVy7do3MzEzq6+sxMDAgIiKC+/fvs2nTpk6i8leuXCE1NRULC4s/5Xn98ccfCQwMFM+1oaGB/Px8wsLCxEkxLS2Ny5cvY2JiIqgTzs7OIkR96tQpCgsLO3m2CwoKWLVqFYWFhYwfP55Ro0YJnUdvb29ee+01amtrRQIIKLxrDg4OvP3223z11VdMnz4dX19fwbmsqKj4jXbpH+HGjRtkZWVhY2Mjkgs9PT0ZNmwYt27d4vDhw4SFhYlwrKqqKkFBQWRmZpKTk8OyZcuYP3++kCh78OABISEh+Pn5IZfL0dDQEItwXl4e165do6amhkGDBqGrq4udnR3BwcHU1tZy8OBB7t+/z7x58zh58iRXr15l7NixgicrlUrJz8/vUqIPKCps9enTh+LiYuExsrKy4sknn6SsrExI86iqqmJkZERLSwvt7e0YGRkJjlx+fj5ZWVnCo5iens6JEycIDg7GxMSEoqIiHB0dsbGxoaKiQiQsjBw5Eg8PDzZv3sx3331HdHQ01tbWIqkQFJystLQ0UclImXzUFdTV1WFmZkbv3r2FKL2JiQlXrlwhNDSUiIgI+vfvL4zK6upqvv/+e6ZNm4a9vT23bt0SB0Pl51999RX29va89NJL2NjYkJSUREVFhRCWt7GxQU9Pj5iYGLZv3w4odJHlcrnI4B86dCgTJ04UbTUxMaG1tZVdu3aJ4gCPgoc9fRUVFZw/fx74Z17Ad99916kUbUlJifC+KGFqasqgQYPw8fERz0pJaQCFsTBgwADMzMwIDAwkPDwcHx8f9PX1aWxsFN+lPOBlZGRQUFCAtbW1kJOKi4sTUmVdRVJSEu+//z6bN29m+vTp4h4ervakXAfLyspEQQNlwq+/v7+I7NTX17N27Vra29sJCQkR0j2gKAV79+5dkYBYWFhIfn6++F4jIyP8/PxwcXFh1KhR6OvrU1lZSWtrKwYGBqIQwM2bN7vUPqXOt1IHWCkbZWpqys2bN0lISGDMmDGiuIWKiopItE1MTEQqleLg4ICtrS3t7e00NDR08sbeuXNH1J2fPHkylZWV5OTkCJpZRUUFJ06cEEVjNDU1qamp4fDhw2RkZGBoaIiuri45OTncuXOHlJSULidQOjk5Cd5lVlaWUNF55plnxDhS6pa3tbXh6+vLlClT6N+/P1KplNzcXCZNmsTIkSOxs7MjLi6Onj17Ci1PpbRh3759MTEx4dChQzQ1NXUS0h88eDB6enro6elRUlLCsGHDcHR0xMTEhIsXL4q+9/Hx6URbeFQcO3aM+Ph4XnzxRdzc3ARX39fXF319fdTU1Ojo6MDQ0JARI0Ygk8mErFVqaiqBgYEMGjRIHEYfTjBOTk7m3r17lJeXU1NTg5eXl1C9URpqMTExfPLJJ2RkZODq6oqlpSX19fW88cYbIslXQ0ODTZs2YWhoKPauR0VHRwdtbW3U19dz584dPD09mTt3Lvb29mzZsoWqqioGDBhAZGQkKSkpVFRUEBYWRlRUFDExMcyaNQtbW1uuXr1KTk4Ovr6+4h4nTZrE0aNH6dGjB8OHD0dXV5fTp0+TlZXFCy+8gKenJ3fu3OHs2bNIpVK8vb1JTU3l9OnTLF26lICAAOGVV9pdj6IY0WXjtaKiAm1tbVRUVOjo6CAmJoZ169ZRXV3NuHHj8PHxwdraulPNd3d3d3R1dTE3N+fQoUOoq6sLYfrm5maCgoJob2/nmWeeYdKkSezbt481a9awcuVKioqKRFaispJNbm4uR48eJS4ujjt37nDp0iXs7e2FTM358+f55JNPOoVKHxW/9tLa2NhgZGQkjPaKigoxYMPCwujbt6+oCqZckI2NjXniiSfw8/MTC+7+/fsZMWKEqKXt7+8vXP/KE5ZUKiUvL4+ePXsK7/Ht27e5f/9+J15lfX096urq+Pj4/CnOa05ODq+//joqKioUFRURHR2NtrY2CxYsEKHI7du3c/HiRVxdXTEwMCAxMREzMzNUVVUpLCyktLRU8LCUaGlpISEhgSeeeIINGzaQlJTEW2+9xYQJEwgODuatt94S1z7MLUtPTycvL4+6ujq2b9/OxIkTSUlJEZV+tmzZ0iVBZgcHBxwdHVm+fDnjx4/n6tWr+Pv7s2TJEnbv3s2yZcvw9/dHW1ubXr164ezszLJlyxg4cCDr16/n8OHDQqrnxx9/5PPPP2fy5Mls2rQJCwsL6uvrBf/ZwMAAfX19QkJCePLJJzuFzM6fP8/s2bN58skn2bNnD+vXr2fJkiVcu3aNCRMmoKOjg7a2NrNmzWLWrFld8oYo1TY8PT2FEeTg4PAbPltpaSkXL17E2NhYGDlK2NraMm3aNFFdbNmyZRw5coTNmzfj5eXF+fPnCQgIEIeA5uZmLl++TEtLCx4eHoSFhaGqqsrChQtpamqib9++aGlpiejK3bt32bBhAz/++GOnyiuPiqysLLy8vJg3b55Qvfj666+ZOnUqgwYN4sCBA5iYmIjErhs3bpCbmyuMFSsrK2pqasjLy8PW1paTJ09y/PhxUQAjLS2NkydPYmxszIABA1iwYAHa2tpoaGiIsKqNjQ19+vRBV1eXjIwMjhw5grm5+W8MOaW6QleQn58vEnSkUim2trb4+flhbW3Nl19+yQsvvCASX0ARVlYelpUYNmwYw4YNo6amhoKCAlavXo2RkZFIFjQ2NmbFihVCy1Rp8Ck9oQ9H0VpbW0UyqZLKcOXKFX766SdCQ0P54IMPujRGASGbk5ubS3V1Nfv27RPrpNLDqPS4xcXFiTCxmZlZJ+kpUHjWvvrqK7744ovfVNUaPXo0zs7OwuBWUVHBx8cHS0tLXFxcsLW1ZdmyZZSUlIgkXqlUKpIJ+/XrR3p6Otu2bevEz30UaGpqEhsbS0lJiUiWa2lp4cSJE1y/fh1TU1MxXpSh29zcXKKiotDX18fIyAg7OzsyMzO5ffu20N0GhL6v0sBXqjU8HNb28fEhMzNT5Bw8ePCA7du3c+HCBXGgtbOzIyMjg++///7fFhj4VyguLkZFRUX8p66uTltbmxhLKioqlJaWikNXWFgYr7zyitAW9vX1Fb8ZGxtLXFwcra2t4lB27NgxkVjbr18/GhoayM3NJT8/XxiDHh4eosKlMjlLIpFQXV0tJPyampoICgoiKCioS7QIUByyNm7ciJGREe+8846QkFPub0pFlYCAAKZOnYqJiQkHDx4U3t5vv/1W3KsysgOI+9uyZQtlZWX/Mnpx9uxZFi1aREJCAj169CA6OhoTExOxfhobGzNr1izhlHN3dxdVPB8V9+7do2/fvlRWVmJvb88333wjxrkyCfDZZ58VeSK2trbMmzdP8IyVh8WEhAT09fXF72tpaQlvqb29vTgobdy4kYKCAkaMGEHfvn1Zvnw5+/fv54cffuDbb78lJiaGwsJCoqOj8ff3Z8yYMdTV1dHY2CgqeP4Rumy8Kkvz6erqoqenx5gxY0hOTubw4cOi0sXatWvJyMggPDwciUTC1q1baWpqwtramtmzZ9PY2Mhnn31GWVkZpqamBAcHc/78eR48eCA4elOmTOHOnTvY2tqSkpIiMmRtbGxE9reWlhY1NTXU1dWRm5tLQ0MD1dXVODo6/mkO08NobW2lqKiIrKws7t+/T1ZWFsXFxUIf9eHT1cNhJ2Wodf369WhpaeHu7s5TTz3FgwcPuHTpEp6enp04K87Ozrz44oui6ICJiQnNzc3cv38fVVVV5s6di6mpKQcPHiQ+Ph4NDQ22bt1KWVkZH3zwQScPxKNAKXV04sQJvv/+ewYPHsz48eOFbIkyeaCqqoqgoCD69evHjRs32LNnD2fOnGH06NE8//zz+Pv7dzKqtbS0eOONN5g8eTKA4ET+qzBOYWEheXl5aGtrY2Fhwfvvvy9K8vXt21dIc1VXV3dZ227w4MFYWFgIfcMJEyaIhTUkJIQ33ngDXV1dpFIpdXV1YqEJDAzkySefxMnJiYEDB4oKU4CoelNRUUF1dTWWlpZoaWmhra3NwIEDhabprVu3UFFRYdKkSWLBVnqAFi9eTFZWFufPn2fdunW88MILVFVVERMT0+XF6Ny5c/Tt27fTGK+qqqK8vLyTsL5EIhFlBSUSiciyHjFiBH369BH8X7lczsiRI/H29iYkJITGxsZOyWcSiQR3d3dycnKQSCQkJydjbW3NzZs3qa2tpaioiEuXLmFoaCgqH+nq6rJ06VKysrLYv3//bwSr/wi5ubmC46mE0vCIiopi5cqVDBs2DF1dXSG+PnToUExNTVFVVeW5556jvr5eHCg8PDxwd3ensLCQc+fOYWdnJ8Ts1dXVeeKJJ9DR0aGiokIkZIwbN05ssp6enixbtuxflmO2sbHpch8qqTWgiEAow7AaGho4OzuzZMkS4bFua2vDzMwMe3t7bG1taW5uJjs7G3NzcwwNDYVhqvRCr1q1Cl1dXV577TW0tbWFEa9MclIWCADF+qMsc21iYoKZmRnt7e1s27aNuLg4+vbt2yk82xX07t2bDz74gMTERNzd3cV60dbW1sm70tzcLBJR7ezs0NTUFGtqamoqmzZtIi0tjXfeeaeT2klbWxuVlZUYGxsTGhqKvb09MTExnDlzhoCAAJ577jkMDQ2JiYnB3t4ebW1tMR5UVVWxtbUVIXqlB7UrWLFihVDDMTMzE167wsJChg8fjq2tLSdOnCAmJob58+cLg8HW1pYhQ4aIoiKg8OA7OzvT0dFBU1MTUqkUR0dHnnjiCeEhDw0NxcrKSjwbAwMDli9fTl1dnZB5s7CwYMaMGYSEhGBqaipC0HZ2doK+1RWcPHmSGzduoKamRt++fUW9e+W+o6mpyYIFC2hra+PYsWMUFRVx584dgoODRbKZEsoMc6Vm8JYtW7h79y7Dhw/Hw8MDiUTC2LFjOXbsGKtXr8bBwYF+/foJ6TYl71Qpz6U8bJqamuLg4MDIkSNxd3dnw4YNXWqjVCrljTfeYMiQIULTVOk0a2lpISMjA19fXzw8PNDT06O+vp6kpCRMTExoampi79693L9/H0tLS9zd3TE0NBTjzMvLi2eeeYaGhgahCPEwioqKsLKyYtCgQdja2gpPu6enJ8899xyOjo5YWVmhra3NokWLsLCw6LJ6y8OHIW9vb2FoA0JrPj4+nuLiYvr16yciB1OnThUFaq5cuYKrq6uI3IEi8hMaGirKOMfExODs7MyiRYsoLCzspLM8cuRIWlpaOHbsGJaWlkydOhV3d3dOnz5Nbm4usbGx1NbWMmbMmEdabySPOlllMlnXZvX/QURGRv6uvsTj3j54/Nv4OLQPHv82do/Tx7t98Pi38XFoHzz+bewep49v+7penqkb3ehGN7rRjW50oxvd+IvwyJ7XbnSjG93oRje60Y1udOOvRrfntRvd6EY3utGNbnSjG/816DZeu9GNbnSjG93oRje68V+DbuO1G93oRje60Y1udKMb/zXoNl670Y1udKMb3ehGN7rRNUgk7yKRNCGR2P3xxf/2e5YhkbQikXg88p/8VQlbMpksC+jxOx8XR0ZGdk0U8v8gZDLZR0AQ4AaYAo1ANnAY2BQZGdn1UiD/hyCTySYDAwB/wA/QA76LjIzsWg3J/8P4O7Tx15DJZE8Dytp8z0VGRn79V97P/y/+Dn34uK+nMplsNrD9Dy7riIyM7Jro9f9xPE5z8e/ShzKZbDTwMtATMAEKgVjgs8jIyOt/yU1JJLN5hGePXP7oz15hsN4HvkYuf+mh902ACcBowAewAVqAu7/cw3bk8o5ffZcWkAbEI5d3rkDyO+hykYL/MKqB9f/i/br/5fv4n8ISIA44A5QAOkAo8A4wXyaThUZGRub+dbf3/423UBgDdUAe8Minpv8i/B3aKCCTyeyAz1G0V/cPLv9vwd+lDx/n9TQBWP07n/UDBgMn/tfu5n8Bj+FcTOAx78NfHFavAuUonFRlgAswHpgkk8meiYyM3P0X3FoC//lnvxLQBD751ftTgM0ojPYoIAewACYCXwMRSCRTOlUEkcsbkUg2AB8hkYQjl1/7ox//q43XqsjIyHf+4nv4n4R+ZGRk06/flMlk7wMrgDeArtVb/L+FJSiMgTQUnq2ov/Z2/kfwd2gjADKZTILiZFwOHASW/7V39B/D36UPH9v1NDIyMgHFBvwbyGQypTfrq/+t+/mfxuM4Fx/3PpTJZJYo+qkY8I2MjCx56LNBwHngXeB/33iVyxP4nWePRNL1Zy+RGAAzgHPI5b92wD0AxgHHOnlYJZIVwE1gEgpD9sdf/d1u4AMUNtH/eeP1sca/Mlx/wfcojFfX3/n8vwKRkZHCCOhqzfP/Fvwd2vgQXkJxAh/4y+tjgb9ZH/6tIJPJvFFEs/KBY3/x7fwn8VjOxX+Fx6gPe6DII7rxsOEKijVIJpPVAmZ/yZ39HiSSP/vsnwS0gf2/+UQuP/8v/0IuL0Ii2QK8j2Jc//irzwuQSC4Dk5FIZMjlNf/uBv5q41VTJpPNBOyBeuAOcCkyMrL93//Zfz3G/vJ65y+9i2504xfIZDJP4ENgQ2Rk5CWZTPZYb5iPKf6O6+mCX163PS7t/BvOxcelD1NRcDtDZDKZaWRkZJnyA5lM1h8F1/7wX3Rvvwfx7JHLu/Lsh/7yeqWLv9f6y2vb73x+FYVh2x84+u++6K82Xi2Bb3/1XqZMJpsTGRl58a+4of8JyGSy5Sg4SwYoErj6othYPvwr76sb3QCQyWRqKOZhDoqIQDf+O/G3WE+VkMlkWsBMoAMFl+6/Hn+3ufg49WFkZGSFTCZ7DfgMSJLJZIdR0D6cUYTRz/BPY/GvhyJJ6s8++75ALQqKwKP+nhrwzC//d/J3rrr1y+sfGq9/pVTWdmAIigVXB0VW2peAA3BCJpP5/XW39h/HcmAVsBhFp58EhkdGRpb+lTfVjW78greBAGB2ZGRk4199M934U/g7radKTAUMgRP/5YmvD+PvNhcfqz6MjIxcj4LPqQY8B7yOIoEpF9jxazrBXwzx7P8Fb/X3IZFooEjAKqJrclUfAt7AceTyU79zTdEvr/Z/9GV/mec1MjLy15lvicDzMpmsDliGIiN/wv/2ff1PQClTI5PJLIBwFJ0YL5PJxkRGRsb9pTfXjb81ZDJZCAoPz6d/mYxLN/6/8XdaTx/C/F9ev/xL7+I/hL/pXHzc+vBVFElHG4FNKIwxD+AfwHcymcw/MjLy1b/wFh/Gn332Jr+8Vj7yX0gkL6FYh1KAp//NlRW/vJr+0Vf+XyxSsOWX1/5/6V38DyAyMrI4MjLyEDAcxQDY9Qd/0o1u/I/hoRDlAxSyJ914/PBYrqcymawnCkdAHnD8L76d/2/8HefiY9iHA4GPgCORkZFLIyMjMyIjIxt+cVBNQJEUtUwmkzn9lfcJgETy//PslREB6SP+1ovABiAJGIRcXvFvrtb61W/8Lv5qzuu/gtKtrvOX3sX/ICIjI7NlMlkS4P9rYnc3uvG/CF0UBTQAmn4nE3+rTCbbiiJ5ZPH/1o114z+Gx3U9fVySfJT4O87Fx60PleL6v5Hii4yMbJDJZDdRGLEBQMb/5o39C/zZRC2Qy6uQSFr4pwf29yGRLAbWoYgEDUEu/yPahPI7/5Be8X/ReA375fWv7tz/aVj/8vo4TNpu/HeiGdj2O58Folhkr6CoovJ3CWM+bnjs1lOZTCZFEXrs4PfH738b/lZz8THtQ81fXn9PDkv5fsv/wr38PiSS/8SzvwsEIJHo/66klUTyGgqKZAIwDLn8UZx0ygIyCX904V9ivMpkMi+gMDIysuJX7/dAwROBv0LI9z8ImUzmgUI0vOhX76sA7wHmwLXIyMhH5410oxv/QfySEDLvX30mk8neQbFh7vxvLkn5d8DfYT39FaYARsDRxyHJB/6Wc/Gx60PgMrAQRfXMLyMjI/OVH8hksgigD9DEIwjw/w9DPPsuJWp1xgWgFxACnP3NpxLJShQFGWKB4X9AFXgYob+8/mEhmb/K8zoFeF0mk0UBmSgkF5xR1MKVouBgrP2L7u0/hZHAJzKZ7BKQjkIywwJFhR8nFETu5/662/v/h0wmewJ44pf/VdZOD5PJZDt++XdZZGTkf3VlmL9DGx93/A368O+wnj4MZaLJf201pm48ln34AwpDbiiQLJPJDqHY5z1RUAokwOuRkZHlf90tAv+ZZ/8jigSsEfzaeJVIZqEwXNtRGPQvIZH8+u+zkMt3/OrvVFAoptxHLk/8oxv4q4zXKMAdxWkyDAUfqwpFWORb4NvIyMiuSDD8X8RZFIOjD4q66oYohMMfoGjjxl97Sv4L4Q/M+tV7Tr/8B5DNf39ZQ38e/zY+7vDn8e7Dv8N6CggB/748Jkk+f0c8rn0YGRnZIZPJRgEvAtNR8Fu1UWTQH0ex55/+C28RJJL/zLOXy68jkcQDM5BIXv8Vb9bxl1dVFPKg/woXgR2/em8oYIOinPcfQtI1ma5udKMb3ehGN7rRjW78rSGRPAnsASYilx/6D3zfjygi087I5dV/eHm38dqNbnSjG93oRje60Y1HhkQiQZE8qAX4d7Fgwa+/yx+IA15CLt/0B1cD/zd1XrvRjW50oxvd6EY3uvF/FQpjdT5wiH+qJ/1ZWKHQN97yRxcq0e157UY3utGNbnSjG93oxn8Nuj2v3ehGN7rRjW50oxvd+K9Bt/HajW50oxvd6EY3utGN/xo8slSWTCb7r+cXREZG/kZsTInHvX3w+LfxcWgfPP5t7B6nj3f74PFv4+PQPnj829g9Th/f9nV7XrvRjW50oxvd6EY3uvFfgy4XKdi4cSMxMTFIpVJcXFzQ0tKioqKCxsZGTE1NkcvlJCYmoq6uTmBgIO3t7Vy8eJHq6mp69eqFvb09R48e5ZtvvqFHjx7MnTsXfX197t69S05ODjU1Ndja2jJ06FAsLS25ceMGp06dIi0tjaqqKjQ1NXF0dMTa2hpNTUUpYSMjI5ycnNDW1qa8XFG8wsrKCqlUSmNjIxs2bHjk9k2ePJmGhgZaW1tRU1NDT08PDw8PJBIJ33zzDcnJybz00ksEBASwdetWbty4gZmZGQ0NDaipqTF06FDGjBkDwO3bt4mLi8Pe3h4TExMSEhK4c+cOjo6OPPXUUxgbG3Po0CFqa2sJDg4mNTWVhIQEhgwZQt++fQEoKCigpqYGfX19SktLOXHiBFlZWXh5eRESEoKDgwOrV6/uUh+uWLGCkpISLC0tMTU1pbS0lNzcXPT19enZsyctLS1s3LiRgoICXnzxRZydnamvr6e8vBx7e3sA9u3bx8aNGxk8eDBr1qwBIDs7mxs3bhAbG4uJiQnLli1DVVWV7du3o66uzsyZM8nJySEyMhInJyeMjY05d+4cGhoazJkzB39/f3JyctixYwfq6upMnjwZLS0t7t27x08//fTI7YuMjATg8OHDREdH4+TkhJWVFRKJhJCQEMzNzcnJyeHkyZPU19czZMgQWltbmT17NrW1tcTGxtLS0kKvXr1wdXXl1KlTSKVSKisrMTIyIisri8TERNGGqKgofv75ZywtLVm1ahUGBgasW7eOixcv8uyzz2JhYcHly5exsLBg5syZAGzZsoUXXngBDQ0NvvvuOyZPnoxMJnvkNm7YsAF1dXW+//579u7dy7Bhw3Bzc+PcuXNkZ2czatQo8VtHjhyhqKiIYcOG4ejoSGNjI+np6Xh7ewOQlJTEwYMHmThxIj179kQul5ORkUFJSQlnzpyhsrKSqVOnEhYWBsDNmzdZt24d+/btQ19fn82bNzN8+HBaW1uxsrKipaWFNWvWoKWlxcKFC8nLy2Pnzp3U1PzrEti/h2eeeYZTp06hra1NW1sb8fHxjBkzRry/cuVKhg8fLsYfQHV1Naqqqujq6gLQ1tYGgJqaYqmrqanhxo0bJCcn4+npyZAhQ2hsbOTy5cukpaWhp6eHjY0NUqkUCwsLXF1dAcU8LCkpwdHREQMDAwDa29spLy9HQ0MDQ0NDgC71oUwmE33wMKKjo7GyssLa2poTJ05w8+ZN3NzccHFxobGxkYqKCszNzfH29qayspJbt25haWnJoEGDxHfI5fJflGwUyMvLIz8/nxs3bpCUlIS7uzuDBw+moaGBAwcOcPz4cdTU1Bg9ejRjx44lLCwMVVVVUlNTOXr0KC0tLaioqJCZmfnI7YN/zsWYmBh27NjB+fPnGThwIG+88QaGhobk5eXh6ekprm9sbERLS6vTd1y8eJH9+/cTGBhIaGgoJ0+eJD8/nwkTJtDR0cGlS5dwdHRk2LBhaGlpIZFI0NfXp6GhAW1tbQBaW1tZtmwZN2/eZMyYMcyYMQNHR0eKioo4cuQIqampDB48mIiIiC71YXh4OKamphgaGqKhoUFtbS2pqank5uYilUoJDAykZ8+e3L9/n8OHDyORSJgyZQr9+/cnJSWF7777DmtrayZPnsyNGzc4ffo0kyZNYsCAAURHR4v519bWRktLC01NTSQnJ6Ojo8OqVasYMGAAa9asYeXKlejq6vLCCy8wcOBAGhsbaWxsJCQkBDc3N6qrq7l27RonTpzg7NmzDBw48JHbGBAQwNWrV3Fzc2PMmDE4ODggkUjQ1tZGVVUVgPz8fDQ0NDAzMwMU81A5T7Zs2cLNmzcZPHgw1tbWSKVSwsPDqa+v58cff8Tc3JyRI0fS2tpKbm4uTk6K2iHx8fFUVlZSVFTE2bOKIk5z584Ve2NpaSllZWU0NzfTo0cPNDQ0+Pnnnzl58qTo90eFr68vbW1taGhoYGJigp2dHa6urmhra5OUlERjYyPh4eHidzU1NdHX1wegqakJqVTKgwcP2LNnD25ubvTv35/4+HhKSkoYM2YMFhYWNDc309jYKNYKUKxP2dnZANjZ2dHS0kJycjLq6ur4+vqiovJP/+KDBw+IiooiLy8PR0dHYmJiHrl9D++JdXV1hIWFceTIEd544w1GjhzJ4cOHxbXV1dXExcURHx+PXC4X866uro6MjAw8PDzQ0dHh66+/Jicnh1mzZuHq6spPP/3Ezz//TGBgIAsXLgRgzZo1nD9/nl69etGzZ0/i4+M5ePAgjo6OvPbaawwZMuQ38z01NZWqqiq2b9/+b9vUZeM1KiqKH3/8ES8vL2xtbdHV1UVXVxdDQ0PU1dVpbm7mwYMHVFdXY2tri7m5OYMHD6ayshJtbW1yc3O5dOkSx44do0ePHoSGhjJu3DiGDBnCvXv3uHDhAhkZGWRlZWFpaYm/vz9FRUWkpqZy5coVrK2teeaZZxg7diwA5eXldHR00NHRwfnz59m7dy/29va89957GBkZdbV5FBQUMGXKFDQ1NSkrK+PkyZNoaGgQHh7OoEGDqK2tpaqqClVVVZ5//nmCgoLIz8+nd+/eaGlp8dNPP3H8+HFGjRpFWVkZP/74I56enowePRoXFxcCAgLo2bMn6urqwuC3s7OjsbGRXbt2cerUKUxMTDoZr/n5+Tg7O5ORkcGBAwcwMTFh5cqV2NjY0N7e/gct+i1KS0u5e/cuHR0dWFtbY2NjI/oPQEVFBWdnZ0xMTNDR0QFAR0eH2tpa8R2qqqrcuHFDTGCAsrIyTp06hY2NDUuWLEFVVZXExEQ2bNhAeHg4M2fO5OjRo3z00Ue89957zJ8/n4kTJ3L69GkxSVtaWti6dSsmJibMmzePhoYGseh3Fbt27eL48ePs2rWr03gBsLe3p6Ojg61bt9LY2Mirr77K7NmzOXfuHFVVVWhraxMWFkbPnj2RSqW0t7eLZ52cnMyBAweYPHky+vr6HDlyhH379gEwYsQIRowYwcWLFzl58iSLFi0iJCSEkJAQ8vLyxL0p505dXR2nT5/Gw8OjS227f/8+3t7enDp1isOHDzN+/HiGDh3K0KFDiYuLQyKRiEPPuHHjxOEKQFNTU2wQAA0NDZiamtLc3Awo5PvKy8u5evUqVlZWTJw4EQ8PDzo6OgAICQlhyZIlJCUlcffuXRITE/Hw8EBVVRVtbW0MDAx45plncHJyQkVFha1bt7Ju3TpeeOGFLrWxsrKSqqoq/P39GT9+PPBPY9Td3Z2FCxdSV1dHXFwcgYGBFBcXc/PmTezt7fHz8wMURpxygwXQ19dn2LBhDBs2jMbGRkAxtp2dnVm8eDFqamocP34ce3t72traaG1tRV1dHWtra0xNTTt9l6qq6p9aY5Q4ceIEXl5encZ2dnY2KSkp2NnZ0dHRwffff096ejpz5szB2dmZdevWkZ6eztNPP42JiQnJycls3ryZ3r17C+O1qakJVVVVMZ8rKys5fPgw3333HYMGDeLTTz8lNjaWH3/8kRkzZvDKK69w9epVbt68yb1799DW1sbJyQlra2tcXV1ZsmQJd+/e5dSpU3+6rcbGxnh5edHS0kJ4eDhWVlZkZmYSHR2NXC6nZ8+e4pn+Gk5OToSGhlJZWUlWVhaTJk3C0VFRxCc6OhodHR0cHR2xtFRU/m1paQHotPHn5eVRV1fH4MGDWbp0Kdra2sjlciwtLamtrWXt2rVUV1cTERHRpXa5ubkBUFRUhFQqpVevXgwYMICSkhIAzMzMkEgkWFpa0r9/f5qammhpaaGlpQVXV1eWLVsmjJkzZ87w+eef4+joyIABAwgNDRV7qIaGBuXl5Rw/fhxPT0/69OlD3759ycrKIi0tDYC6ujoMDQ0ZNWoUS5cu5YsvvmDz5s24ubmhp6fHkSNH2LJFoUTUFeNVV1eX6dOn4+npiZGRESUlJcjlchwcHER/WVhYiPWlpaWF5uZm2tvbUVVVZfLkyURERNDU1MTJkyepqanB3d2dtrY2Ll68iLGxMSNHjkRdXV2sS3FxcXz33XdMnz6dfv368cMPP3Do0CHCwsLE3lhYWEhOTg7t7e00NzdTWlrKkSNHyMjIIDAwsEv92LdvX7y8vNi+fTsbN27Ey8uLhQsXYm9vT15eHikpKejq6uLr64uZmZnYCx4+bEVHR7N69WqWLFnC1KlTuX37NseOHcPf3x8LCws0NTVpaWmho6NDjE01NTUKCwspLS3FyMgINTU1UlJSUFdXx9vbGxUVFdrb26moqMDU1JTQ0FC+++47fvrpJ2xsbLrUxmvXrrFkyRLkcjlnz56lb9++qKurU1lZ2ek6NTU1Ll26xI4dO5gzZ45YV65du8bx48eZM2cOrq6ufP/998THxzN58mRUVFSIiopi+/btnDhxAh8fHwYMGMBbb72Fv78/CQkJZGRkUFdXh6urq1iDNTU1f+NgSElJISoq6g/b02Xj9fXXX0dFRQVPT09MTU0B0NLSoqqqCkNDQzQ1NRk7dizXrl3jxo0b2NjY4OPjg5GREXl5eaxatYqYmBhmzJhBaGgoTk5OovNNTEzo06cPlpaWGBoaUldXh4qKihiIJiYmgGIDSklJISYmBi0tLSZNmgSApaUlDx484PLly3R0dGBiYiKMlUeFlpaW8OiampoSFhZGXl4eH374IXv37qWhoQEfHx9xvZ2dHTo6OmLhzM7O5osvvuDIkSP4+fkxd+5c3NzcMDAwoLq6GnV1daqqqpDL5dTW1mJjY0OPHj1QUVFh2rRpODs74+/vL75fuWHq6uri6urK888/T0NDA3l5eejp6f3m1PIoUHohnZ2dxXtKIxUUg8jX11c8UyWU//7hhx+4efMm27Ztw8vLS3g4NDQ0xCZXVlYmPCvh4eG4uLiwadMmMjMzee211xg+fDig2GCSkpJYsWIF69atY8CAAWzfvp3s7GyMjY2pq6vDycmpyx4fuVzOxIkTcXR0RE9PT7zf3NzMTz/9RK9evXB3d8fOzg5VVVXU1NRYtmwZPXr04PDhw5iamvLSSy8REhICKBZk5Sajra2Ng4MDHh4e2NraMm/ePOGZ27t3L1euXMHCwoJvvvmGIUOGUFNTw6ZNm+jfvz+2trYAjBo1isOHD9Pe3o6Dg4MwNB4V165dY+vWraiqqvLll18ybtw48Zlyvqxbt47KykoWL16MsbExoDDeTUxM0NbWpqysjOXLlwsDNTk5mfj4eKZMmYK/vz9NTU3o6OjQo0cPWlpaUFdXR11dncLCQoqLi5kzZw4qKio4Ojqio6MjogN3796ltbUVQ0NDTE1NGTt2LE1NTV1qH4CNjQ1jxozBy8tLvNfU1MSFCxcwNzfnySefpKysjOTkZHbs2MGlS5coLCxk6tSpeHl5oaam1um5FhQUkJqaysWLF0lKSsLT05MVK1agoqKCq6srRkZGxMfHc/XqVezt7VFTU+Odd96hsrKSNWvWiHGUnJxMSkoKPj4+uLi4AFBVVcWFCxe61L6oqCh8fHwYOXIkDQ0NHDx4kAMHDqCiooK1tTXDhw/nq6++4uuvv+bdd9+lV69ejB49msbGRlJTU8nIyCA6OhoVFRUxX2/dukV2djYDBw4kJSWFL774QhjHxcXFaGhooKOjg5aWFtnZ2RQXF+Pu7s6nn37Knj17ADA3NycvLw91dXX09PRQVVXF0tKS4cOHC+PnUVFaWoqZmRl2dnaMHTuW4cOHo6+vT319PaCYVx988AG2trbMmTMHd3d3UlJS+OijjzA2Nmbt2rWoqKjw9ddfo6ury5YtW0T0ByA0NBQrKyuOHTvGtWvXmD59uvhcKpVSW1vL0aNHiY+PJyQkhDFjxgivnPK59O7dmyVLljB69OgutQ0Q64OyTwoKCjAxMcHc3LzTdcpxqKGhIdZ/VVVVampqaGxsRE9Pj7CwMLS1tRk8eDCgWKsqKyvR1NTEzMwMExMT/P39GTZsmFiLt2zZIhwsI0aM4KWXXgIgISFBzFlQrLPjxo1DT08PqVRKWVnZI7exqamJixcvcvPmTSwsLNDR0cHX11c4J0pLSxk0aBAFBQWsXr0aHx8fFi5cyO7du9m+fTsTJkwgIiKCuLg4bty4gYaGBpcvX8bX15eIiAguXLjAk08+iZ6eHj179sTJyYn09HRqamqIj4+nubmZ4OBg3Nzc6Nevn3g2mpqa+Pn5oaOjw4ULF/j6668BmDNnDrdv3+5SPyojIG5ubvj5+dHa2kpqairOzs6MHTsWTU1N3n77bby9vXnnnXdITk7m448/pm/fvixYsABQRICXLl2Kl5cXt2/fxt7enjlz5uDg4CDuWU9Pj4aGBk6fPk1ZWRm2trbCKaSmpoa+vj79+vVDIpGgpqZGfn4+BQUF2NvbY2ZmRltbG5MnT6alpUXM10fB9OnTSU9PJysrC1BEIoKDg3nvvffEHnzz5k06OjoYMWIE5ubmyOVyioqKxHe0tbVRWVlJYmIi3t7erF27lnPnzpGRkYGqqioTJkzAycmJ8+fPs3jxYqZNm8bSpUsZNGgQ7e3tNDU14ebmhoeHB87OzsJYvX37Nm+88Qa9e/fmvffew8bGhqSkpE4Oln+FLhuv5eXlDB8+XJx+GhoaKCwsRFVVlaqqKnR0dDAzM6Nfv35cvXpVeC5qamr49NNP2blzJ2PGjOGbb74R36n0ZmZlZSGVSjE0NBQejY6ODuzs7LCzs8PMzIwff/yRGzdu0NbWxq1bt3B1dSUiIgJtbW1cXV3R19fn/v37XL9+naKiIhoaGpgxY8Yjt09TU5O6ujrU1dXR1NTE2dmZlpYWjh8/zp07d7C0tOxkDKmpqYmwV0ZGBsePH+fmzZuAgoIwdOhQ8dwqKipoa2sjMzOTwsJCNDU1CQ0NRU1NjcbGRqZOncrUqVMBxUBXU1PDwcFBDH5QTLLa2lrOnj2LXC4nNDS0q12IpaUllpaWlJaWUlhYiLm5uTDM2traUFVVxdnZmfb2dhobG2lvb0dHRweJRMLdu3e5dOkSurq6DB8+HAsLC8rLy9HW1sbExAQ/Pz8SExPZvHkzUqmUfv36MXXqVMrLy7l+/TpTpkwRbVTCxMSE3Nxc9u3bR2hoKEOHDhXeIxUVFfr06dMl4/Xo0aNIpVJmzpzJzJkz2b59O//4xz8YNmwYBQUFxMbGAuDq6opMJqOmpoaUlBQ8PDwYMWIEX3/9NXFxcRgaGlJVVQUoDjWtra0kJyfT3NxMr169KCwsxNDQkCFDhjBkyBBu377N2rVriY2NZcWKFfTt25fa2lpefPFFoqKiaGhowMPDAzU1NYqKiggICMDIyIiioiKuXr3apT6sqqri2rVrLFiwgHnz5gH/9P4YGhpSUlJCQUEB5eXllJaWYmxsTGNjo/CuAmzbto1du3bx+uuvExwcTEdHB8eOHaOwsFCEvioqKqirq8PIyEhshMnJyeTm5jJu3LjfLDBpaWnk5uZSV1dHfX09ffr0YdCgQQwaNKhL4VhAGGSNjY0iNJeWlkZiYqIwaMvLy0lJSSEtLY0LFy6QmZmJRCKhZ8+e9OrVC7lcTnt7O2VlZcTFxfHzzz+ze/dumpqamDdvnlif4uLimDZtGra2thw8eBA3Nze8vLwEzeDixYuMGTOGvLw8Ll26JDxnoNjcV6xYQVRUVKfQ/R/B3Nyc/Px82trahFfq+PHjDBo0iMrKStrb24UXdOXKleTk5DBz5kz09PTYu3cv27Zto6ysDH9/f9zd3WltbeXUqVO0tLQwefJk5HI5P//8M4aGhsycORN7e3vc3d1pbGxEVVWVXr16CUOub9++Yk2vqKggJiaGO3fuYGFhASjWeeWhvivIzs4WY8fKykr0WVFRET169MDPz48tW7Zw/fp1pk2bBij2g8OHDyOVSpkxYwZNTU1kZGTQp08fYZjm5uaipqaGlZUVPXr04PLly5w8eRIXF5dOxq2uri6XL18mPz+fRYsWYWtrKxwHyqjRw21XGtWPioqKChoaGrC1tcXX15f4+HiOHj2Kg4MDrq6uqKqqUlJSQnNzM1KplPT0dMrLy+nbty/t7e0cOXKE9PR0JkyYwPTp05k+fTqgmMsZGRlUV1dTWVlJU1OTcASBwuu4a9cuNm3aRH19Pd7e3mzcuFHQZWxtbfH39xf/X1paSlhYmPAsd2Uunj59mitXrmBra4u3tzdSqRSpVIqvry86OjpijczJyWHv3r0UFxczd+5cKioqOH/+PHK5HENDQ5qamvD09ERVVZWOjg6cnJxwcnLC0tKSMWPGUF2tqAg6f/587OzsKC0tJTIykjFjxrBq1SrU1dVJTEzk1q1bBAcH4+7uLu6xubmZEydOMGvWLBYsWNDltSYnJ4fGxkY8PDxYtGgR0dHRFBcXU1paiq2tLYMGDeKVV17h/v37yGQySktLOXv2LHZ2dgBkZmbi7e3N2LFjiY6O5ttvv2XmzJkEBQUBCOceKOyES5cuUV9fj5GREebm5tTW1lJQUIBUKsXGxkastenp6cKRY2Fhgbm5uaApdsV4vXLlivi3o6MjqampeHp6snjxYkARqr98+TKampr069ePoKAgQkJCyM3N5ejRo4wZM4bg4OBOnubAwEAkEgmfffYZPXr04M0332TQoEGoqamxdu1a1q9fT0lJCVOnTiU0NFREGquqqtDQ0BBe+4aGBnJzc6mtrWXMmDHicFRXV/dv29Rl43XNmjX4+Pjg5+dHQUEBCxcuxMLCgvfee4+YmBi++OILpkyZwjPPPMOAAQNEQzdu3Mj69esZMGAA77//vvi+lpYWERpTVVXl/v371NbWsnLlSsLDwzuFfpKSkti8eTMjRoxg4cKFDBo0qNPn+fn5aGpqEhERwSuvvEJNTQ2XLl0S4cFHQX19PWlpaVhZWYmF29zcnGeffZaxY8fi6elJSEgIra2tyOVy4Q0GxQCNjo5GKpWyYcMGQkNDBWfJ2toaExMTHBwcaGlpIS8vj+rqaqRSqQh3BAYGEhAQACgWeGNj438ZRtPT0xNhvT+LtrY2tm3bxq1bt8SzVLZBX19f8LdiY2Px9PQUXo87d+6waNEiqqurmTNnDp6enqxfvx5QbBTLli1j6NChVFVVERAQQFlZGevXr6e0tJRly5YJw1Uul9Pa2oqGhgazZs3Cy8uLb775hqCgIMzNzXnuueeYMGECWlpaIlz9qHj//fcJCAggODgYAwMDUlNT+cc//sG7777LwoULGTx4MLW1tZSXlxMREcH333/PtGnTCAsL45NPPmHJkiWsX7+epUuX4u7uzocffoivry8lJSWcOHFC8KK2b99ORUUFmzdvpmfPnvj5+TFv3jykUim9e/cmKyuLkSNHoqKiwocffsidO3dwcHBAT09PbEKlpaU0NDRgaGhIr169HrmN/v7+9O3bF1VVVaKjo9HU1MTW1hY1NTWuXbtGamoqY8eOFaf4u3fvkpubS//+/WloaGD16tWcPXuWDz74gGXLlgEKD5Svr684EYPCUySRSJBKpeI9FxcXbGxs/mXYytzcnNDQUJqbm5HL5V3uu3+F4uJisrOzUVdXR0VFhb59+2Jtbc3Vq1eJjIxER0eHBQsWYGlpyWuvvcaJEycICQnB3t4eHR0dkpKSyMvLIzc3l5qaGkaNGsWUKVOYPn06LS0tzJo1i+TkZD766CNCQ0N5//332bNnD5988gmfffYZp0+f5vz587z11ltUVVXx5JNP8sorr2BsbExsbCwrV67kxIkTAF0yXl944QVMTU1RU1NDTU2NoKAgdHR06NOnD4GBgZw9e5adO3dSUFDAK6+8grW1NV988QVyuZzS0lLBIVZy6YODg/Hy8hJGQL9+/diyZQuqqqoEBwfT1tYmNkU7OzsmT56MtbU1paWlnDp1Ck9PT3r16iW89Ldu3SI0NJRevXpx+PBhTpw40Ymv9yiQSCQiTH779m2SkpLQ1NQkJCREhNlffvll6urqhDHi5eXF0qVLSUhI4Pjx4/j7+/PVV19haGhITk4OUqlUjIX6+nqSkpJQV1cXz+/Xvz9v3jzKysqE8dzR0fG7hnhX9gpQcAl//vln5syZw/PPP09AQACHDx9m0aJFLF26FJlMxo4dO1i3bh0+Pj5oa2sjkUgwMzMjKCiI9vZ2wWlVIi0tjZSUFKysrAgODkYul9PU1CT2upSUFBEpUaKurk7sFY2NjSxcuJDKykru3bvHmDFjKC8vZ8aMGTz99NNd5p6fPHkSb29vXnzxRczNzdm/fz/Xr19n1KhRODo6CgqHtbU1K1asoK2tjYSEBHG4TUpKQkNDg9GjR6OpqUleXp7oC1AcHnbt2iWoQSNGjEBPT4+NGzdSWlrKkiVLxLhdvnw5FhYW7Ny5E/inB7a+vh6pVNopUtgVfP755/j6+jJy5EhcXV1pbGwUh2KlF/3dd9+loaFBGFdbt27FxcWFmpoacnJyxPitrKzkwYMH5OfnC+NVaQe1tLSQk5ODm5sbvr6+hIWFkZOTw4ULF8RBHMDHxwdnZ2d69OhBZWUlBQUFIlL6888/s2XLlk5OrT/C999/T21tLefOnSMtLY20tDTKyspE9NzV1ZXZs2fT0dGBubk5bW1tODs78+DBAxHuNzY25oknnhDfuX//fj799FNu377N4MGD2bx5M/fv36ehoYHPPvuMlJQUPv/8c1paWti0SVHxtaSkhB49enTaT3r16sXVq1c5deoU3377Lf369eOZZ54RPN3fQ5eNVxcXF8Eny83NFTwUY2Nj8vPzOXr0qPCK1NfXk5ycTHl5uSBsR0ZG4u7uzo0bN0hISKCxsZFr165RWFiIlpYWly5dEhvfO++8g6GhIaqqqjQ3N5OamoqLiwuOjo44OzuLzqutreWnn37ixIkT6OnpMXnyZMLDw7l9+zYGBgZdWpBMTEywtbUVRqmyAtnAgQPp0aPHb66/desWt2/fZsKECXh4ePDiiy9SW1uLXC7nyy+/ZNOmTfj5+fHOO++IEGN+fr5IblFTU6OlpYW2tjZiY2PR0dHB3NwcHR0dVFVVaWpqorKykrKyMnR0dLCwsCA1NZWzZ8+iqqoqQkxdQUdHB21tbRQVFVFYWNgptKrcbDQ0NNDQ0MDZ2RlTU1Pa2tpobGyko6ODoqIi7t+//xvXvpqaGh4eHp34m1lZWRQWFmJnZycSiJRE+/b2doqLizE3N0cikdDU1ERiYiKgSIQYN27cn6JFODo6YmtrS25uLm1tbbi7u+Pt7U1paSnu7u5ERESIcamhoYGXlxcBAQHY2toKr3rPnj0xNjZGQ0NDbBpKHpLSoLaysqK1tZWsrCzc3NwoKyvDw8NDHHqKi4uxsbHhmWeeYebMmVy8eJEDBw5gbm6OmpoaV65coa2tDX9/f0EneFQ4OTnh4uJCcnIyW7duJT09nSlTpjBz5kyRWFBSUkJaWppIPJBKpWhpaVFQUEBSUhLh4eG8/vrrgIIKUlhYSGhoKJ6enrS3tyOXy4XnJjY2lsbGRnr37o21tTVFRUW0tbVRU1NDQkICampqBAYGYmBg0IkHDYrxXlxc3OV+vHnzJv7+/jg4OBAXF8fOnTvp168fy5cvBxQJHaAIHSv5gQcPHuTGjRucPHmSWbNmYWVlJRI5DQwMmDRpEh0dHcII09DQQFNTk+LiYkxMTPDx8cHLywsrKyvR74aGhqLPNTQ08PT0FAae0iD08PDoEo8QFIcFJbS0tBg1ahQjR47E3t4ebW1t7ty5w61bt7C2tmb27Nno6Oiwfv16GhsbhSfjyJEjSCQSGhsbkUgkTJgwgRMnTrBp0ybGjh0r5tyvIZVKRdi8rKyMrKwsMjMzaWxsxNnZmaamJkpKSmhoaEBPT4/29nauX7/+pzih2tra1NXVkZeXR3p6uoiQtbS0UFdXx+zZs2loaCApKQkHBwdMTU1xdHQkKiqK3Nxcnn32WaysrLhw4QLr16/nqaeeEkZBc3MzNTU1uLi4EB4eLsLKoPA2SaVSce2tW7eorKxk8ODBaGpqCu5hU1MTDQ0NGBsbi838UaH0It+5c0e8N2jQICIjIykoKEBVVVV4KpU0qoSEBAYMGEB4eDizZ8/GysqK2tpacnJyUFVVJSEhAXV19U6H2ZqaGhFBiImJwc3NDXV1daRSKSYmJgwYMAANDQ1AMZaUdIaEhATS09MxNDTk2rVrZGRkdKLhPAoGDx7M9OnTmTJlCgB37tyhqqpKtO/evXt4eXnh6OjI4sWLRZRMyS9XJuJmZGQQEBCAm5sbpaWl7Nu3j/Lycp5//nnGjRvHhQsXiI6OZuzYsRQXFwtKQK9evcjPz+eTTz7h4sWLODo6cubMGcGZ/PHHH4mLi0Mmk+Hv7/9IfMlfIz8/HxMTE4qLizEzM8PGxoaysjLq6uooLi7Gzs5OGNdKKBOzQTHOa2trkUgkeHh48NRTT3H+/HlKS0uZN28empqaxMfH09rayrBhw8Sem5aWxrlz5ygtLcXPzw8TExPy8/PJy8vD2toac3NzgoKCRITkwYMHfPbZZ1y8eLFLOQTKPcHGxoa4uDjBtb958yaZmZnY29t3mjtNTU0MHDgQT09PDAwMyMvLQyKR0NraioeHB01NTcTGxhIbG0tHRwcxMTFcvnyZ+vp6QkNDGTlyJB4eHnz77bdinbl48SIXLlxg7Nix9OjRg7y8PCwsLLC0tEQul6OpqYmPjw/Dhw9/pFyCLhuve/bsoVevXqirq2NoaMjw4cPp168fKioqYoNSktgjIyNZtWoVOjo6LF68mHfffRcVFRViY2NZuHAhMTExmJub4+TkRHt7O2lpaSKseePGDZYsWUKPHj3EqXPUqFG8/PLLtLa2kp2dTWVlJQEBAWhpaZGVlUVKSgpubm706NGDqKgoPvnkE+Li4njyyScfuX22tradFjCJREJdXR0xMTFUVVUJw12JqKgoXnvtNW7fvs3nn3/Opk2b2L17N3PnzhWh6DFjxgjDNTc3l2vXrmFnZ0dYWBhqamrY2Ngwa9YsEhISuHfvHioqKri4uNDR0UF+fj7Z2dk8ePBA3FthYSFfffUVqampzJgx4zfGwh9BRUUFqVSKv78/KioqnbwpygzR0tJSQVsAxcl+yZIlxMTEMG/ePJqbm9m9ezcDBgwAFEa+tra2CMOCImT4888/M2nSpE4Tw9DQkNbWVs6fP8+GDRtISEjAwsICNzc3kQQXHh4uNtiAgIAuhUjWr1+PpqYmUqkUVVVVpkyZwpAhQ2hpaREnfhcXF+G59vf3Z+vWreK+Y2Njkcvl7N27F2tra1RUVGhra8Pc3Fxwddvb20Uyl56eHnFxcZw8eRI3NzcmT54MKIyTo0ePCgM8KCiI+Ph4dHV1efDgAXFxcTg4OBAYGEhOTg4bN2585Da2t7dz+fJlevToQUhICPv27SM9PZ0RI0ZgZmZGaGgoAwYMoKCggO+++47Q0FDh9TcxMeGjjz4SB4+YmBhWrlxJSkoKwcHB7Nixg549ewqvaXNzM59++ilSqRQ/Pz8aGhq4desWERERVFRUsGLFCkxMTNi7d68YC/BPTmFFRUWXOWgAX375JV988QWgSHw5f/48BQUFLFu2DIlEQp8+ffD29hYeD7lczpgxYyguLkZdXV1wyZQhKENDQ3r27MnZs2d56qmnGD9+PFu3buXFF1/EwMAALS0t2traCAsLE4bDhx9+SHR0NMuXL2fVqlUUFBR08kz37t2bbdu2oaGhgb6+fpfDlUp0dHRQUlIikiUBhgwZQlRUFPX19RQXF6Ojo8OSJUvQ1tamvr6ewYMH8/zzz4uEQqUXSktLi5UrV3L69GmOHDkins3DiWESiYS2tjbS0tKQSCQsXLiQ69evc+DAARwdHYWTQCKRIJfLcXFxYfTo0V32pCsPgxKJBAcHB3R1dXFwcMDExITs7Gxqa2sxNjampKSEzz77jF69evHUU09x+vRpoqKimDp1KlZWVmRkZPD5559TUlLSid+tqalJ3759BRVAmUjT0dHBwYMHycrKYu3atTg5OZGSkkJVVRX9+/dHTU1NRAY0NTX/ZYTrUTBhwgRGjBjRKQLn4eHBwoULRRLac889x1NPPYWJiQnr1q0jNzeXiooKQLHeWllZceDAAVpbWxk1ahSmpqYiZFpdXc2RI0fo06cPra2tfPjhh2hoaPDNN9+QkZHB/v37GTBggDCklElSShgbG/POO+8waNAgtm/fzldffSVC3Y+KLVu2iD2mo6OD0NBQ4e1cs2YNp0+fZv369Tg6OiKVSjup8+Tl5fHSSy+ho6PDBx98QEREBLNnz2bXrl3iEFpTU8MHH3zAgAEDCAkJQV1dnfb2dmbNmkVISAhmZmYsW7aMvXv3EhYWRnt7O//4xz/w8PDAzs6OLVu2UFhYyIEDB9DV1WX58uWd+uNR0K9fPy5duoSzszPe3t6YmJgIitev+cugoHVkZ2fj4uKCiYkJVlZWlJSUoKqqKtSQPv/8cy5dusSTTz5JXV0dq1evFsm7oDhcvfTSS2RkZIg9ysfHB39/f9ra2lBRUaG1tVVEuB48eMCaNWuoqqoS9JJHxdGjR7GwsEBfX5+nn34aiURCTk4On332Gfv378fJyYl9+/YRHBwMKOaVMpJRV1fH3bt3uXz5Mu3t7URERBAUFMS4ceOoqanh+vXrJCYm0tHRISLT27Zto6GhQahDJCUlceLECQoLC0lKSmL37t1cv36djz76SCQE5ufnc/z48UdOgu2y8drW1iYWMHd3d1599dVO/DNAGKU//PADoCAHPxzif//994XMQ0lJCYaGhlRWVlJaWip+Z8yYMRgZGXH48GFyc3OxsbFhzpw5wuDQ1tYmJiaGoqIiLC0tefnll7G3t+fmzZs0NjYSGBhI//79O2V4PwqKi4uJj4/H09NTJE61t7eTk5NDc3MzqqqqFBQUYGZmRkBAAJMnT6a4uLiT58zLy0ucIj777DOGDh1Kbm4u69ato62tjUWLFgm+HCg2FqlUipubm/g3KBZ8iUSCiYkJgwcPpkePHqipqeHu7s7cuXM5deoU6enpgmrQFRQWFpKcnExSUhKxsbEYGBjQ0tKChYUFurq6VFZWcvr0aerr6wkODhYe3qCgIHr16oW+vr4wXMvKyqitrcXR0VEYDYcOHeL06dO0tbUREBBAcXExBw8exMbGRnjvlGFXuVwuJKyMjIwYNmwY9vb2tLe3o6Ki8ptQ4B/h14uNmpqaOLm2tbVx7do1zM3NcXFxER7vhIQEampqqK2tpbKykuDgYIYPH/4buaHz589jaGgosp+VXlZDQ0MOHz7MyJEjmTx5Mq2trXz77bfCq97R0YGXlxcWFhbU1NRgb2/PzJkzyczM5MCBA//Sq//vIJfL0dfXx97eHlVVVYYPH05SUhJff/01Xl5eXLt2jba2NiIiIgQnu6Ojg5aWFgwMDMTGeuDAAe7evcvkyZMpKSkRhHpQHHIuXrxIVFQUWlpa9OvXD7lcjlwuF9y3iooKampq8Pf3F4vOvXv3KC8vR1VVldr/x9p7RmV1rfvbF7333jtIkaICgiKC2HvvxhhrEms0iTFq1ESNNZYYs429xI69d1TAAkgHAZEivff+fmCseeTs/Z4tGf/7yx57GOCZz5przrv8SlUVCgoKdO3alZcvX3Zqja6urtTV1YlCa926dZw7d47Ro0eze/duLC0t0dDQEAQCdXV1mpqamDFjBk5OTrx48YLCwkJCQkLw8/OjqakJgJCQEGbPnk1MTIzAPGtoaIjPGhwcTEFBAadOneLZs2eYmpoKEpx0/pSXl/PmzRv09PSws7MjIiKCyMjITq3v/PnzYkSanZ0tJOXMzc2xtLREW1tbFJbSOE5ZWVlMRT4+5Nva2nj27Bne3t707t2bH3/8katXr/LNN9+wePFiZGVl2bt3L42NjXz77bcYGxuTmZlJUlISQUFBaGtr4+zszL59+9DU1GTUqFGCzCgjIyNkD8+cOdOpNb59+5a4uDhsbGywsLAQLHQFBQXs7e0FxKG4uJiMjAyUlJQoLy+nd+/e6OnpCZjRhQsX0NXVpXfv3kRFRXHs2DEaGxsZNmwYkyZNIiQkhNevX/PLL7+gqqoqWOFRUVH88MMPBAcH07VrV1FwSt+Z1FlWUFDg2rVr3Llzp1Prc3NzE114gD/++INz585hbGyMm5ub+P1SEi91/qX3r7a2lr///psrV66IDpupqSnHjh0jMTGR8+fP8+rVK+7evUu/fv2QkZHhypUrQpIuNjYWFRUVTE1NUVRU5MOHD2RnZ1NeXi7u44ULF2JoaCgUHm7fvv1fyTAfh8Sub2xspKWlRRCQq6ur6d27N83NzaJghfZ7Kzk5mYyMDBQVFQXx09ramg8fPnDlyhViY2NRU1PD3t4eAwMDXr9+TXNzM7q6ujg4OFBfX09iYiLu7u7o6OgwcuRInj17RnV1NYaGhigoKHD48GGSk5O5d+8e9vb2KCoqoquri5eXF1lZWZ16jurq6pw+fRplZWXRYZbe9Tdv3nD06FGGDBlCSEiIwOBraWnx6NEjampq6Nu3r8Ba19fX8+eff5KSkoKMjAw//fQT1dXVREREiCmkubk5f/zxh5geSRjbnj17smjRIlEsKCkpUVVVRUZGBlFRUVhZWQl4kJRffUqsW7dO5CBOTk6kpKSwYsUKrl69CrTjcKdPn86QIUMELFJJSYmhQ4eir6+Pk5MTOTk5QvEA2huM8fHx+Pj4YGVlRXJyMtOnT8fAwIANGzZga2vL5cuXUVRU5Pfff0dHR4dp06bR1tbGrl27xL7u06cPISEhHD58mA0bNuDt7f1JxUenk9cpU6aIzkNNTQ09evQQ3TodHR0UFRUFo9DJyQlLS0uGDh1K9+7dqays5MCBA6SlpaGtrU1NTQ1tbW1UVlaKEW1ubi6WlpYsWLAAPz8/qqqqOHLkiOhAStHW1oaDg4MYG2lqatK7d2+Ki4upqalBU1OTzz//HHd3d+7evfvJ66utreXBgwdkZWWhr68vJI2CgoIEAy8iIoLY2FihL7t9+/YORBgtLS2WL1+Ourq6IGxlZmZy4sQJXFxcRMJTWlqKsrKySKx0dXWFlia0HwJSUtPa2kpDQ4MAun///fdC77KzSYGkLff+/XsyMzNJTEzEzs5OwBiam5vJyMjgzp07REdHM2nSJHr06IGmpqbAylZVVXHx4kWam5vp2rVrh2o+MjKSS5cukZaWJsb3BQUFAksrhb6+PoMGDWLIkCF8/fXXnD59mmPHjvH27VuRlH1cLH1qfNxlkmTUpD37/PlzUlJSxIUTHx/P/v37OXr0KG1tbejo6LBo0SJkZWXZsGED5eXl9OjRA3d3d65cucKqVavo2rUr33zzDbGxsRQUFPDjjz8KPTwJSnDv3j12797Nmzdv0NTUxNbWFnV1dV68eEFjYyNfffUVe/bs4cKFC6xYsYKlS5d2ao1VVVWiO6inp8fXX39NcnIyT548Ye3atcjKynL06FFBgklPT6epqQk1NTXxvj5+/Jjw8HB69OjBlClTgPakTNIABti2bRvXrl3j/PnzQtVDepbQPmX59ttv0dfXp6qqiqSkJF68eIGqqiovXrzg7t27TJkyhQ0bNnQgaX5KLFy4kOLiYt69e4eNjQ3Lli3DwsKCKVOmYGlpycaNG9m8eTNv3rxh7969ZGdnExYWxrBhw/D19eXvv/8mMTERR0dHLC0tqampIS8vDysrKzZu3MjNmzeZM2cOubm5BAcHi66dhoYGDx48ICYmhuHDhwuGemFhIWVlZZibm6Ompia0Zx89esSBAweIj48XzONPiYsXLwoJNwUFBXJzc9HU1BR4zJqaGsrKyjAxMcHJyYm8vDyeP3+Oubm5KHSlfX7u3DmePn1KaWkpI0aM4JtvvkFTU5Nz587x4cMHXF1defr0qeiEQXvBZWNjI96NtLQ0unbtKrQ8b968SXZ2NioqKpiYmHQouD81nj59yrlz55g0aRKOjo40NDQQExODiYkJenp6IqkzNDRk6NCh2NjY4OzsjLGxMdnZ2ejq6vLmzRtKS0uZPn06ffr04ccffxQakIqKiowcORIVFRUaGhq4cOECOTk5LFiwgP79+5OXl8eePXt49uwZFy9eREtLSyStampqHTgTYWFh7Nmzp1PjWFVVVdHtfPfuHaGhoTx8+BBra2tGjRolzva6ujoUFBQEf0JKCB88eMDDhw/Jzc0lPT2duro67t27x++//y6IULKysuTm5lJXV4eJiQl5eXksXbpUYH+Tk5NJSEhgwIABqKiocP/+fUJDQ2lra2PGjBmiaFNTUxNwus4kr5IygpycHLW1tbx584bm5mZ69uzJ4sWLWbx4sVDgsLa2FoQkT09P+vbtK2BnUsEYHh6OvLw8u3btYvr06SgqKnL79m02b96Mrq4uq1atIiUlRdwFZ86cYeTIkcTFxbF7924qKysJCgoiIiJCYM2lxNzS0pIVK1awcOHCT14ftBfcysrKAr/7cezbt48DBw4IAumjR49QVlamV69ePHnyhFu3bmFoaCiS1++++05M0RwdHbl9+zZycnJ06dKFhoYG1q5dS1FRkeiuBwUFoampydWrV0lISGDo0KF4eHgIkiq0445VVFRYu3Yt8vLyPH78uFPrk851Ce9869Ytkbj26tULQ0NDwsPDOXz4sGj+lZSUcOHCBaFVPGXKFKEaU15ezu3bt3n16hXu7u4CZmFlZYWJiQlycnJUVFSINTY1NeHp6SlUHXr16kVCQoJoWC5ZsgQbGxtmzpzJhQsXPmmC1enk1cnJiYSEBNEm7t27t7gMe/XqxcqVK1FTU6NLly4YGxujpqaGqakp2traJCYmkpCQQP/+/fn888+Jjo5m48aNyMvL8/nnn9O/f38qKirIy8tDTU2N2tpaxo8fz61bt8jPzycxMZGSkhJOnjxJamoq3377LRUVFUybNo1Xr17x+eefs2DBAjIyMpg6dSrOzs6sXbu2U8lrQEAASkpK3L59m/Xr1xMcHMzQoUM7yFcNHDiQxMREXr58yZkzZ2htbWXKlCki0aypqaG+vp579+7x5MkTVqxYQUBAAGFhYVy9epVFixaRkJCAk5NTByzs/xW//vorjx8/5uuvvyYwMJB3794JeZl/krxaW1vz5Zdfkpubi76+Pl5eXqLD+fjxY2JjY/Hz82PAgAEUFRWxZMkSLC0tWbx4MTo6OhQUFLBu3TpkZGT4888/UVdXp6Kigu3bt/Pq1StxIWZlZeHj40OvXr1QV1cXkJKYmBiSk5NZunQp/fv3B9qrTEtLyw56stHR0URFRXVqfVJUV1dTV1cnhLOltbu5uYnu4u7du3n//j2rV68mMTERgMGDB1NdXc2GDRtITU3FxsZGCI1LkZ+fj6KiIs+fP8fPz48FCxawZs0a3r59y2effUZdXR2jRo1i8uTJxMfH8+jRI2JiYsTPP3jwgJSUFLp168acOXMICAjo1D6Nioqivr4eAwMDYaTh4OCAvb091tbWaGtri8T1xIkTNDc3M3z4cLHWqKgonJ2d+eyzzxgyZAjV1dVcvHiREydOiLV7eXmJC/RjPeHw8HBiYmKYO3cuXbp04YsvvuDgwYMMGDCAhIQEBg0axIwZM2hpaSEjI4Pz5893WuMV2hM6yaBAivHjx9Pc3Mz58+fx9vYW+ouff/45jY2NpKenU1NTQ3FxMR4eHjg5OaGmpibUBm7fvk1zczN9+vTBxcWF48ePk5ycjIaGhijAmpubhUyXg4ODgJrIy8ujoqJCXV0dampq9OvXj4yMDK5evcrAgQNZvHhxp4TDAZGoWllZMX/+fEEUTU9P59KlS7i4uIipjpqaGvr6+kKsXklJiZcvX3L48GHOnDmDlpYW9vb2ZGVlUVNTg5mZGb/88osYBW7evJnGxkYBBdLX10dfX5+MjAwOHjxIZWUlEyZMwNPTk+LiYnbs2MGDBw+YNWsWc+bM+UfJqzQ5UlJSQk1NDR8fH65du8aePXtoa2vDw8ODgQMHYmpqyrRp00TyIF2uixYtwtzcXOxpgFGjRpGTk4O2tjZTpkyhra2Nhw8f8uDBAz777DPU1NSoqKggPj5eJG45OTn88ssvjBw5EiMjI1xcXFBTU+sw1Rk+fDjGxsa8ffv2k9cnJRebN2/m+fPnjB49mi+//JLMzEzRXYV2mTZp6iHB0uTk5AgICGDSpEns37+fY8eOERYWRlxcHOXl5aioqPDDDz8wePBgHj9+TP/+/VFVVeWLL75AUVGRsrIy8vLykJGRwdPTk27duuHm5oalpSVZWVlkZWXh5+eHpaUltbW1eHt7s379eo4cOdLpZyhFTk4OBw4coKCggMWLFwsIh62tLQcPHiQ0NBQLCwsmT56Mu7u7WKu8vDzZ2dlUVFSgpqYmCM9SM6OoqIiUlBTy8vKEKYeFhQURERH06tWLoUOHoq2tjYeHB/fu3aOoqIjhw4cLZQADAwPRkf0nUV9fz8WLFwWm+9ixY/z+++80NjZiZmbG+vXr8fX15eHDhxw5cgRFRUUqKiqwsLBg7ty5+Pr6kpaWxo4dOzhx4oT4vbq6ukydOlVAHd3d3SkpKeHbb78F2ifMGzduRF1dnb59+6KmpoaDgwMPHjzg8OHDfPnll/j5+YkzWrpXP27kfUoEBASwY8cOdHR0iIiIoF+/fuzatYvz58/j6+vL559/TmtrKxkZGZiZmdG9e3eampr47LPP2L59O4cPH6Zbt24cOHCABw8e4ObmxoQJExg0aBBhYWFcunQJHR0dZGRk6N69O8uWLePChQts3bqVKVOmMGbMGB4+fMiuXbsYOnQo33//PcHBwcjLywuo4ciRIzl37pwg9P03Y6JOJ6+ZmZlcu3aNtrY2+vbt24HdFxgY2IFtW1xczLNnz4iMjGTo0KG4uLgwdepUoTfo4uLCqFGjePPmDUlJSbi5uQlM4f379zl69KgYYb169Qp1dXXCw8P58OEDioqKFBUVUVNTQ1NTE/X19bx8+ZKtW7cC7cnRxx23Tw11dXWCg4NFFV1cXExZWRnv378nLS0NPT09fH19sbCwIDU1lXXr1gkHqNu3b4tE/vr168K1ori4mK1bt+Lk5MT169cFUzItLQ19fX369u2LqakpGhoa6OrqoqamRmNjI01NTaJLGxcXR0xMDOXl5TQ1NRETE8ODBw/o169fZx+hYGV+/Oza2tpISkri7t27vH79GkNDQ1asWIGhoSGJiYl8+eWXHbqgERERNDY2Ym5uLrpwt2/fZsOGDUB7AlhWVkZOTg4+Pj7MnDlTXJr19fW8ePGCkpKSDljY3NxcEhISyMvLw8jICG9vb65fv86ff/7J6NGjP3l9jY2NlJWViW61RISwtbXtQHDbuHEjhw8fZvLkyaxbt44PHz6wfPlyLl68iKmpKc7OzjQ2NlJcXMz169eBdpmxgQMH0r9/fzQ0NGhtbWX37t2kpKRQU1NDbm6uGMX+9NNPQHuVun//ft6/f09JSQlv3ryhS5cuNDY2EhwcTHBwMHl5eZ1KXt+/f4+Xlxfv37+ntLSUgIAAzM3NBXlJihs3brB8+XICAwOZOHEiampq4hJxcnISJKN79+5x+PBhoVW6a9culixZgp2dnUgIpWeXn59PZmYm58+fF4LvBgYGFBQUUF1djb29PQMGDMDNzY2SkhLu37/PwoULxV7+1CguLkZVVVWYeLx+/RpXV1cmT56MiYmJ6ASrq6vT2NgoyDP5+fmie+zp6cmHDx9IS0vj6tWrHD58WMBIJHzbx2dWZWUltbW1yMrKdri0m5qaUFdXFx37xsZGCgsLKS4upnv37kycOBFjY+NOJa++vr6Ul5fT3NxMUVERI0eOFH8zPDycurq6DnAkSZ5IilevXrFjxw5hkGFiYkJOTg7Hjh2jtraWbt26CVkcyZXH0tKSyspKcnJy0NLSwszMTBDWtLW1RZEuFUaSjI+qquo/MmSQ8KDSGFBDQ4Pg4GCio6N59+4dBgYGwrnMxsaGiooKXr9+zZUrV6itrRWfo1u3bqLz3aNHj39LwK5cuUJKSgonT54UepvHjx/HysqKwMBAHj9+zOXLlwXpKzAwkObmZqqrq0VSKUlm/RPc8rNnz7h+/TozZsxg1KhRnDhxgvPnz1NfX0+PHj2wsrLi0aNHFBUVoampSVlZGTIyMhgaGjJjxgyhrCARhnx8fPD392fUqFHo6ekRFRXFs2fPGDduHOvWrRMQmbt37wqirL6+PioqKvTt25ctW7bw9u1bMflTVVXF0tISS0tL7t27J4rST4mbN2+irq5OQECA4JTk5+dTXFws5B8jIiK4dOmSmORIDYmWlhbhDHXz5k2hG62pqcn79++5d+8eSkpKpKen4+joSElJiXBdW7JkCfHx8ezdu5eIiAgcHBzQ0NAQblWNjY04OjoKjKmEFe+smgK0cyAkubRTp07x3XffCY3TVatWCR7D/fv3efbsGQoKCqL4lzCp4eHhHDhwoEOxXVJSgomJCQkJCURGRjJhwgT8/f0pKyvj5MmTeHl50djYiIqKipCtgvZkPi0tjVOnTtGlSxehThMfH4+qqiq+vr5ERER88vrc3d0ZOHAg2dnZZGRk4ODgwMiRI1FSUsLJyUkUWqqqquKOLygoECZQioqKFBYWcvz4caKioigoKBDPWNLXLSsrE1Pwr7/+moyMDC5dukRAQABdu3blxIkTPH36FBMTEyZMmMCIESMoLy+nvLwcWVlZ2tra8PT0FHv2/3nymp6eTlxcHKNGjeqQCLS1tXUYwTQ2NnLz5k12794tvoAvvviCfv368ddffwlm9OLFi9myZQs7d+7kr7/+4tixY0yfPp3q6mp27twJwLJly4QI9bVr15g8eTI+Pj5cvnyZ5uZmzp07R01NjcBPWVhYcPr0aYyNjf/RRob2RNzLywsHBwfi4uJYsmQJL1++RFtbm+PHjzNs2DAcHR0ZMWKE2JhLlizhl19+oaCgQLDmoR3b9vDhQwwNDamtrcXJyUmIqB87doxdu3YJdyQ7OzuMjIxQVlZGVlZW6KqtXLmSxYsXY25ujq6uLmPGjGHVqlUMHjy4A4HhU6OtrY2KigrRzXjx4gVz5swhLi4OLy8vli1bJrCjLi4u7Nixg9bWVkE+cnBwYPHixTg7O2Nra0t4eDjHjh0Tvz8yMlKQEv7++2+sra359ttvxbr8/f2FzarUbSkvLxd6dDo6OmRnZwtcc2ciOjqaV69eMWbMGBQVFVm1ahVv377l1KlTguG9du1a1q9fD/yPqP+rV68E6WjYsGH8+OOP6OvrExoayrVr10hOThaM9G7dulFZWcno0aOZPn06kZGRQpD6wIEDguEM7ePZFStW0NDQILDGsrKyHRKT9PT0Tq1RXV0dHx8fzp49K3RJzc3NefnyJRkZGYSEhKCnpyccVDIyMigvL8fKyooff/wRKysrVFVVefbsGXl5eejr67Nx40bOnDnDrl27iIiI4N69e9TV1Ymi48qVKzx69IhevXoxZMgQtm/fzpgxY9i1axcjRozAycmJ/Px8HBwcUFRUxNramosXLzJq1CguXrzY6e6rpBsN7dOMM2fOICcnx+bNm+nbty83btxgwoQJ6OnpsXfvXpKSkgT8QcJ43rp1i379+lFTUyNGjG5ubqxcuZKYmBi++OIL5s2bx9y5c4F2mImGhgZPnjzhwYMHohtaVlZGeno6zs7OaGtrk5+fz1dffYW6ujq//vorLS0tne5oBQQEkJWVxZYtW8jJyWH37t24u7sTHh6OpqYmc+fOFe+gpL8sRWtrK7///rtIXHv06CFgU3V1dcJcZerUqcjJyQnDFskSNysrS7gJdu3alQULFnSAPpmbm/P7778LEtk/6bpCe0It2ZVKYWRkxNdff01lZSX6+vooKSnR1tZGSUkJa9as4ciRI8ydO5dt27YhLy9PWVkZ9vb25OTkUFBQIJLo2tpaMc6W1CGUlJTIzMzk5s2bZGRkYGdnJ+BnUVFR6OnpiQ5XcXGxwIz+byLup4YkNzRnzhy0tbU5deoUZ86cIS4ujpSUFA4dOsTVq1fx8PDg/fv34ru8ffs24eHhDB8+HENDQ7p27YqZmRk+Pj44OTmhoaFBbm4uf/31Fzdu3KC+vp65c+fy5ZdfCgUQBQUFfH19hSJKXl4eFRUV6Ojo4O/vj7e3N0lJSWRlZeHr6yvu54yMjA443f8WQ4YMQU1NjZMnTzJy5Eg2bdpEWFgYFhYW6OrqkpGRIYi327ZtY/78+eJnW1pa+Pbbb7l27RrQPmGorKxk3LhxtLa2snHjRrKzswVRyc7ODjk5OSEFOHHiRAYMGMA333wjJoyLFy+mR48e7N+/n3v37rFv3z7x+2pra6mtre30c3R3d+e3337j4cOHQq3A3t6erVu3dpCHcnBwoLGxEX19fYKCgjrIBRoZGWFmZia6ojo6OmhoaLBz506h4x0VFYW/vz/r16/Hz8+Pd+/esWHDBmRkZNiyZYt4z6TzdPv27XzzzTccPHgQGRkZzp8/j62tLTNmzOjU+hoaGlizZg0jR47E2tqanTt3UlBQwNKlSwU5d+nSpVy8eBEDAwMx+Q4ODubAgQNYWlqSnp6Ot7c3jY2NqKmpiURdRUUFZWVlLCwsOjQLBw0aJOAwx44dE5yAjyeh0oQI2ieEW7duZdasWSxevPi/rqnTyatk6VpZWcnVq1dRUFDAxsZGgIAl3IuGhgb19fU4ODjg4OBAcXExWVlZWFpaYmVlhbGxMerq6hgbGxMcHMzp06cpLy8nIyOD8PBwcShDO/s7Pj4eOTk59PX1SUlJobCwkOjoaHEYSElJa2srCgoKAjvaWeB2ZWUlDQ0NHUb56urqaGhoYG1tTVBQEJWVlcTGxqKlpUW/fv1QVFTk9evX1NbWsn//ft69e0dGRob4eSMjI4yMjNDR0aG5uRkDAwMGDhwoRJ/T09Oxs7PDzs5OtN6VlJTQ0NAgPz+fhoYGQY6SrA/V1dUZOnRopwkU0K54YGFhgbKysnBcgvYLS05Oji+//JJp06bR0NDAoUOHsLKyYsiQIR1+h6+vL0pKSsIW9Pjx49y+fRt7e3tRkffq1Qtzc3POnDnD2bNnmTJligDWS4zOY8eO8ebNG5ydnQVZpq6ujsbGRiIiIjAzM+uUWgS0Twe0tbUxNTUVQtDu7u6ier1165ZQBpg1a5YY7YeHh+Po6IiioiIDBgwQe2r58uX4+PgQHR2NiooKTk5O3L17l8OHD9OlSxfWrFlDY2Mjs2fPxtbWViSuR48excDAAE9PT4qKinj+/DlNTU2MHDlSQEyqqqqoqKj4R3qox44dY+fOnRQXF4uCadOmTZSXl2NkZETfvn2FZqazszMmJiZUVFRQXFxMc3MzJSUlXL9+nZKSEiZPnsyQIUNwdnYmPz+fBw8eCAF1yTCira2N0tJSgoODcXNzIzAwkIcPH4rRrJOTk2D+Hzx4ECUlJYYMGcLMmTM7rYgB7YecVCxVVVVhampKS0sLHz58wNbWFgsLC9zd3UW31MvLi4kTJxIaGirePz09PRoaGjo4CtnY2HDz5k3CwsKIiori0KFDeHh44OvrK4q56urqDq5ghoaGvHjxgjt37jBy5Ej09fXx9PRERkZGOIt9TDj9lJBUJp4+fcr79+95/fo17u7uKCsrY21tLTD2kh5ydnY2jx49Qltbm6qqKqEJaWVlha2tLVpaWnh4eKCurk56ejpHjhwhOTmZ/v374+DgIJ6TmZkZKioqlJaWisRBgkyUlJQIFn5eXh5mZmbo6+uTnp7eqcmAFHfu3GHAgAFoaGjQ1tZGaGgoOjo6/1EPt76+HkNDQ/r06YO+vj75+fmYm5uLZFX632vXrnHlyhXy8/NRUVERijXz5s1DVVVVTAqUlZVxc3Ojd+/emJmZ8erVK3x9fTvAJry9vYWcFdAhgf+UkBLwESNGEBQUxLZt2wgLC8Pe3l5wQKKiopCTk0NLS4sPHz6we/duTp8+TWZmJgUFBYwZM4bAwECsrKw63DvStENVVbUD5jQuLo7379/TpUuXDv+9oqIiGRkZlJSU4OPjQ11dndCi/uqrrwgODqayspLBgwd3ilzo4+ODnJyccAQcPXp0h4mZtPc8PT1F4vqvf/2Lqqoq3Nzc8PX1JTU1ldTUVDEet7Cw4MqVKyJR7NKlC9OmTUNBQYGLFy8KfXEzMzMCAgKYN28ebW1tGBgYMG7cOLp3705paSm3bt0S+1pWVhZVVdVOdZWlMDAwQFFREWNjY0JCQtDR0RHnfmRkJNevX2fFihV06dJFYJylHOPDhw80NTXx6NEjcnNzgXaXrwkTJlBYWMiJEyewsLAQRGdJFWT48OFcu3aNixcvkp6ezo4dOxg6dCgODg44OTnh6enJokWL2LdvH2vWrKFfv36EhITw7t07oZvamfW9fv1aqPCcPXuW7OxsfvjhB6D9vGtoaCAnJ0eQ3H19fZkzZ46wys7LyyMkJESstampiX79+jFkyBCKiopoamoS5GAALy8vFi5cSGhoKMeOHcPHx4exY8d2kNL8+F7w9fWlsrKSH3/88ZNs7zudvPr5+dGzZ0/WrVvHL7/80kGk/vr162zZsoXhw4fz2WefYWlpyZo1a7Czs+PKlSvCKq5///4EBwdTX19PW1sbISEhvH//Hjk5OeLi4jh58iRhYWHibz5+/Jh+/foxf/58/P392b17N8nJycyaNYvW1lYWLlwoOiiSbp/0sktV6qfG/8ZBSazuXbt2YWZmhpqaGq9fv+bixYtUVlbSs2dPfvjhBxQVFcnMzGTTpk3cuXOnQzLi5+fHmjVr6NKlC6dPn2bTpk2UlpayZMkSli9fLi7o5uZmoaUmHaaSaUJiYiIuLi6Ul5dTUVEhRrPHjx8nNDS0U2uURLSVlZUF6URDQ4OzZ88iIyMj1p+cnMxff/2Fk5MTISEhKCoqUlpaiq6uLrW1tUKbraGhgfLycsGgf/PmDaGhofTr148pU6agqqpKaWnpv6kG6Ovr06VLF3766Sfi4+NZtWoV9+/fB9oxoS9evMDZ2ZnBgwd3GKn8t9DU1BRwCnl5eX7++WeMjIxQVVUlPj6e27dvY2RkxKxZs5g5cyZ1dXVcu3aN5uZmVq9eTXBw8L8ZQPTo0YM+ffoA7ZfnZ599RmlpKU5OTsyePRtVVVVGjx4t9PQuXbrE/fv3RZfr3Llz7Ny5Ez09PWxsbLCysqKlpYXMzEwBaehMGBkZsWnTJpKTk3F2dqagoIDCwkKqq6tpamoiNTUVd3d3TE1NWbNmjdhjx48fZ82aNZSVlWFhYSE0Jq9fv0737t2xs7PD3d2d169fCzwdtBNvLCwsGDt2LPLy8qSlpTF06FBmzpwJtHcUEhISCAkJoaamhr/++ouIiAi+//57FixYwLBhwwRR6FPj3bt3Yoytp6fH7NmzRdV+4sQJ9u/fj56eHq6urvz1118MGDCAtWvXoqyszNGjRzE2NhaaoK9fv2bw4MGYmppSUlLCokWLcHBwYOPGjURGRrJ8+XI2btwoLuWBAwfSvXv3DkLg5eXlHDhwgJKSEhYsWMCGDRuoqKhAXV0dbW1tFi9e3Kl9Cu1Toj59+nD16lVx6UpY44qKClpaWkSXLCEhgd9//533799jbGwssLsmJiYkJSVRXl4uEuu9e/eSnJyMlZUVU6dOZezYsaKbIgnl+/n5UVJSQkFBAUZGRuJ9VldX5/Xr16xYsQJPT0+2bt1KeHg4Gzdu7KBt+Slx+vRpgoKChK3wlStX0NDQwMPDA11d3Q7STjo6OgJqM3fuXPr378+ePXvEGFGK48ePc/bsWXR0dKitraWhoYGffvpJ4OnT09MFJMLV1VVYqkr3xcfxsVsi/A8G+VNDwm7KyMigoaHB6tWrheauxAO4dOkSL1++FJ3x3377jfr6eiwtLYUT3siRIwXkDBBElw0bNqCiosKCBQv4448/KCgoYODAgULF4OPk1cLCgpqaGsLDw4mKiiI5OZlLly7R2tqKj4+PKGA/++yzTiWvkZGRtLa2smjRIn788UcaGxs7SDXV19fTq1cvVFRUaGtrIzIykm3btpGTk8POnTv58ccfcXR0ZMaMGfTo0YNvv/2Wy5cvc/nyZTQ1NcXI38nJSdxHMTExeHh4YGNjQ2trK4MGDeKLL74A2s+as2fPMmDAAObNm8fz58+5c+cO/fv3R0ZG5h9pgwMsXboURUVFampqqKmpEVOPP//8k+PHjxMYGIibmxva2trU1tYKPfTGxkbCw8O5f/8+zc3N9O7dmylTphASEiLe0aqqKkGWlfZYSUmJwJVmZmYSGhpKZGQka9aswcbGBkVFRby9vfnmm28YMGAAERER4pyYMWNGpyZZnp6eQv6rtraWgIAAamtrxXelqanJ77//jqenJ19++SXe3t5cu3YNfX39DmZPZWVlpKSkCMc7CQ4oTXKkaaLENTEwMODatWvEx8fz+eefM2PGDPT09ITG8sfvn729Pb///jsbNmxg27ZtHTre/yk6nbxCO4B71KhR1NfX4+HhIXBYr169oqCggBcvXtC9e3eysrIICgqiS5cuWFpa8v79e7E4OTk5kcx87LagqqpKamoq48aNw93dnUOHDomW++XLl6mpqcHJyYlevXrh7+8vGPsfZ/PS+EBDQ6PDgfApIR2kjx8/ZuvWrcjIyDBv3jz69+/P06dPuXPnDi4uLowZM0aA4l+8eEHv3r2xtrbmu+++E11DbW1tge+JiYlBU1OTzMxMYmNjiY2NRVFRkStXrmBsbIyfnx/e3t7ClEEKZWXlDjqEhoaGpKSkEBkZSUBAAP379+908vry5Uv27NnDvHnzaG5u5vjx4+jq6vLjjz8C7RgnycLts88+A9pxLampqcLyd+zYsaxcuVK4L/Xt25cRI0YwadIkHj58SFxcHK9fvyYgIIBZs2YhJycnZHBycnIoLi7GxcWF/v37c+bMGWJiYjpYwAYHBws/748VCj4lnJ2dUVJSorGxkfLycuzs7CgqKmL//v1iTJGens7vv//O48ePMTIyEhrFLS0tVFVVMXr0aIyNjbly5Qr37t1j7NixovstdTOgXcNRsn09e/Ysf/31F/369cPKyooZM2aIRMTb25vVq1fT0tJCTk4OL1++xMrKChkZGUE+6UyMGjUKAwMD0tLSaG5upqGhAVdXV3788Uf++OMPfv75Z8rKyvjuu+9QUVHh5cuX/Otf/+L8+fOUl5ejrKyMra0turq6PHjwQEALunTpIi6Uvn37MnToUCoqKjh37hxOTk7CZerhw4f06tVLJJMSMbOkpISGhgZGjRqFn58f3bp1o66u7h+ZFPzwww9MnDiR8ePH/1vn9syZMzx79ow5c+awZMkS3rx5IzDie/bsITg4mBs3btDY2Ej37t1xcXERntqSVaONjQ09e/YkKyuLy5cvM2bMGH755Rdmz54trBBjYmIE6/3Bgwc8efIENTU1xo8fT1NTE8XFxaKj39l9Cu2SdV988QU+Pj7k5uZy7tw5xo8f/2/7IT4+XhSwCgoKxMXFUVFRgbW1tcAAxsTEcO3aNUJCQujevTsxMTFUVFQQGxvL6NGjhRHI7du38fb2xsLCAjMzM8LCwrhy5QqOjo5ijzs5OYmLWU5OjjFjxghb687EoEGDiIuL62DxKtkXSw6Cp06dIjMzswNDXHKZunv3LlpaWjx+/Jjnz58D7Qnm6tWrsbS05PXr1xQUFODj40NNTQ1//vkn69atE/JtdXV1IlmQtF2zsrKEyPqVK1dwdnZm2bJlKCgokJCQ0Kn1RUZGCnjMy5cvhQyZFFpaWjg7O1NbW4uDgwOvXr3C3Nyc4OBgBg0axM2bN4U1qSQ/JSMjIxRzpMtdkqMsLS3Fx8eHrl27cu/ePWbNmgW0W5EPHjwYJycnZGVlqa6uRklJCT8/P+GWJH2ujw0VPjVkZWWZOXOmmBBKcfXqVUJDQ2lubmbkyJFC7WfcuHFYWFgwatQo8vLyOHToEA0NDYL8mJ2djZqaGsuWLcPLy4uEhASuXr2Krq4uAwYMYNiwYUKfWV1dvcN4Pj4+nhUrVjBo0CB2795NQEAAu3fvZseOHQwcOLDTyi3QPslsaWkR0n8fnzcDBw5ES0tLJF0jR47k/fv33L9/n0GDBgkptClTpjBr1iyioqL47rvvUFNTY9WqVQwcOFCQTIcOHQq0N2d++OEHlJSUWLFiBQ4ODly8eJEPHz5gZGREamoq169f58svv8TNzQ0NDQ3u3bvHjBkzCAoKYunSpR0mQ/8t1NTUMDAwQFVVFVVVVXbv3k15eTnGxsY0NTVRU1ODtrY2kyZNori4mB49egiyXVNTE+7u7jx//pzTp0/T0tLCsGHDSElJYefOnWzcuBFLS0sqKioEPOjjAsLBwQFtbW2hI7tgwQIh6zh69Gj8/PzYtGkTiYmJzJ07l+PHjxMRESHe9/+/6HTympWVRWtrK56ennh6elJWVib+rUePHoSHh+Pv74+SkpI4sFpaWvDw8EBJSYmSkhJqa2spLy9HTk5OEJQkBmJOTg5Dhgyha9euYuyTm5tLdXU1eXl5HD9+nCtXrjB8+HDhGS2NvAoLC9HS0kJDQ0OApjvzgAGBz7158yZPnjzB2toaJSUlWlpauH79Ojt37mT69OlMmDABd3d34uPjSUhI4Ny5cwwcOBBbW1uWLFnC0qVLqaurw8bGhubmZl68eEFxcTG5ubkYGBhQVFQkpCosLS0pLy8Xo8i6ujphJADto6x3795hb2+PnJwcxsbGxMTECN23zoa1tTVJSUni2YWGhlJTU8OECRNwdHTk7du3vH37lgkTJjB27FjevHnDggULiImJEVaFOjo6DBkyhO7du1NQUCAq0oKCApqamujatSvPnj3j5MmTbNmyBRUVFU6cOIGMjAyurq7Ex8cTFxeHr68v9vb2ODg4dPCBzsnJEUlBZ5+hjY2N6GpKxcv79+9JSEjA399fYHGuXr1KXFwcffv2FWO20NBQMjMzSUlJYdOmTZSUlPDo0SNcXFwIDAwkJSWFxsZGXF1d2bRpk5A6gvbLMTo6WljuhoSEUFVVRVVVlehUtLa2cvbsWSoqKjA0NKS8vFxIr3QmlJSUCA4OZsSIEZSVlfH69WscHBwwNjbm9evX3Lhxg+zsbKC9o3/27FmOHz+OoaGhYNR269aNrl27UlVVxZMnT6isrERWVhYDAwMCAgIYOXIk3t7e5ObmUlVVhba2Ng0NDcTFxREeHo6CgoJ4PyTIQE1NDbW1tXz33Xfis6ampnL79u1OrQ/aR7Jv377l1atXAiOuqKjI27dv0dDQwNnZmQEDBuDo6IijoyOXLl3i1KlTDBgwQHS8pc6ihYUFBgYGAm88cOBAWlpaePTokcAbFxcXC63ej6XaJH9xKysrunTpQmlpKatXr0ZVVRVXV1cMDAwwNjYWmPtPjcjISBobGwkMDCQwMJA//viD9PR0Md3IyclBSUmJjIwMLl68KCRspDFeYmKiIHfKyMhQWFjI+fPn0dPTE6YcJ06c4MiRI9jY2PD1118Lhx5LS0v++OMPtLS0MDQ05OXLlyQkJAhSV2ZmJn5+frS2thIbG4u7uzurV6/uNJlp2LBhREVFERYWhoqKClOmTOmgw5yens7t27cpKioiICAAf39/rl+/jrq6unBSkhwLw8LCaG5u5tSpU2IPT5w4EXV1dVEESvtYRUVFwGIcHBwYOHAg0C76r6ioSHFxMWFhYZw+fZrBgwfT1NREc3Nzp9UiiouLUVJSorCwkPv37+Pn5yd0QvPz89HU1BSi9NBeHDs5OTF69GgGDRokSJ5Skqqurk5zc7NwUwQEjG3JkiXCldDU1JSCggIePnxIZmamUFGxtLQUHWjJKU6abkq/q7MOVPX19bS2ttKjRw969OjRwXO+oKCAsLAwbG1tUVJSwsDAgH79+onJV3x8PGPHjiU1NRVox3k3NjYSHx9PVVUVKioqeHp60tbWxtOnT6msrGTy5Mn/pvP59u1btLW1MTAwQFZWFllZWSIjI4mLiyMgIAAXFxc2b978j0iF0A6Zi4qK4sKFC5SXl4viG9r3mKTc0tjYyOTJk3n69CkxMTHY2NgI+IYE95GRkWHr1q00NzcLCUhpDc+fP8fIyIg1a9aI7re1tTUODg5C/9vGxkYQUCMiIujTpw+DBg0iNTWVc+fO4enpyY4dOzr1Lkod5cjISGxsbFBRUUFVVZXKykqUlJREsaysrMysWbOoq6sjMzNTyHXq6enx5MkTHj58yOeff84PP/zA8uXLOXHiBJMnT6Znz540NjairKxMa2srHz58QElJSWjE9urVixs3bhAeHs748eOJj48nIiJCSBS+evVKNIn69euHnp7e//vk9YcffiA3N5ctW7bg7e3Nb7/9RkZGBmvWrGHZsmX0798feXl5NDU1CQoKQkVFRYzwtbW1mT9/PkZGRqxdu5YXL15w+vRpFi5cSFBQEPfu3cPIyIi5c+fyxx9/cPnyZUaOHMmkSZPYvXu36DBKchjq6uriIIyMjOTy5ctMnDgRDw8P8vLyyMjI6DSW8JdffiEmJgZ7e3sOHTqEi4sLjo6OYvzs5ubGtWvX+Oqrr5gzZw5+fn64ubkxa9YsDh06JBxMKioqBNbp66+/xt/fn5aWFnx8fHBxceHAgQMUFxczd+5chg4diry8vEi6bt++TU1NDUOGDEFLS4uCggKuXbvGmzdvmDp1Kg4ODigoKHQ6qZNCEso2MjLiw4cP1NfXU1dXJxL+efPmkZKSIhiIb968ITs7m/79+7N27Vq0tLQ4ceIEs2fPRllZmREjRuDm5sa9e/cIDQ0VNqre3t5CODs8PJxVq1YxefJkpkyZQlJSEmvXrkVdXV040ixcuJCGhgbGjBlDfX09N2/eREtL65PwL/87JOKN1Bns0aMHP/30E6ampkKWQ0FBAWNjY/r06YORkRFJSUkUFxdTWVlJYmIiN27cwM7OjrVr1wrLTB0dHdauXStMKKSQJIvKy8s5c+aMuFw3bdqEjo6OGH/Hx8djbm4umK2xsbGcPn1a4MY/NY4cOcKpU6eYN28en332GSEhIcTFxVFaWoq3tzcnT57EyMiI2tpaZGRkBDN24sSJKCgosHDhQtra2li+fDlqamqsWLGC0tJSmpqa8PDwoHv37mL8fOLECRQVFbG3txd6ohoaGvj5+YmuljQ6/d+wG2jXOmxsbOx0YnD27Fnq6uo4ePAgGzduJCQkBHd3d7Kzs+nTpw9LliwRiYE0Bbl8+TIbNmzA1dWVefPmYWNjQ0REBG/evKGhoYGDBw/y8OFDLC0tcXZ2pri4mJcvX6Kjo8Ps2bMZMGCASAZsbW3x8fHhw4cPtLS0sHbtWpYsWcLEiRPZv38/27dvJygoiKdPnwpJqM7ErVu3OqhojBo1SsAEoqOj2b9/P8+fPxcFq6KiIgkJCaipqTFgwAC+//575OTkePDggYBZSZ3z3NxctLW1CQoK4tq1a1y/fp358+djbW1NTk4Oz549w8HBga+//honJydMTEw4ceIE8+fPp7q6Gn19fVpbW0lJSeHKlSssWbJETGE6E1FRUTg4OGBra0tGRgbJycnizL579y6bNm3Cx8eHMWPGCBZzly5d6NatG3fv3uXdu3f4+Pjw9ddfM3/+fPLz80UiCh3H/ubm5qxcuZJx48aRlZXF1atXiYiIIDQ0FENDQ0G2g3Y4lp+fH9bW1nh5eaGtrS26fJ2JXr16ATBt2jQcHByE1qdkwV1ZWSm0XqG9IIuKiuLkyZPo6uri6elJr169OrwzHxOfpbM5MDAQOzs7ITtXXV3NggUL2LNnD+fOnaOioqIDUamxsRElJSV8fHw6fEeysrL4+fl1kP37b6GsrExVVRUFBQXk5eWRlZWFubk5np6ejBgxAlNTU1HAfhzh4eFMnTpVTNTWrVvHkCFDqKysJCsri9zcXJYuXUpbWxvjxo3D0dFRGCxIyRW0J9yrV68WMISJEydiZGSEnJycOEcDAwO5dOlSB6fPzoSMjAz29vYoKCjQ3NyMsbExxcXFXLx4EWdnZ8H5kPgaFRUVgoAH7Y2LU6dOUVJSQkhICA8fPmTHjh2EhoYydepUduzYweLFi9m/f3+Hwh7az4H79++Tm5tL165daWlpwdLSklmzZgkr8YCAACorK1FTU8Pd3V1wXz41JBjCsWPHuHv3Ltra2pibm2NiYsL48eMF/ERZWRlTU1Pu3r3LqVOnsLOzExNZCQ+urq6Ovb09q1ev5vz586JgMDIywtzcnPT0dL766ivq6upYu3Yturq6jBgxglmzZqGnp8e1a9eoq6tj27Zt9O7dm8bGRhYsWMB3332Hv78/Dx48YP369R2k5v5TdDp5LS8vJyYmhvfv3+Pt7S0wplKSaGdnJzZdW1sbsbGxZGVl4e3tTWVlpeiGWVtb8+7dO9LS0oS0kKmpKfLy8rx584Z9+/YRHx+Pq6srQUFB+Pj4EBERga6ursDKvn37ltzcXJSVlXn79q14iaSHcPXqVdLS0sSo4lNi//791NXVMX36dCGPcfbsWVpaWpg8eTKzZs0iKSmJbdu2Cb3UvLw8bt68SWFhIQUFBRgaGvLhwwegndnc1tZGfHw8lpaWwh7Ow8OD+Ph4+vfv30EYWTJyKC4uxtfXFwcHB+zs7IiPjxcOJ0AHLF5nQ/ITBkTH1cjICAsLC6qqqoiMjMTMzAx5eXmqq6tpbW1l8uTJ9OvXTzDzBw4cyK1bt6iurqa5uZmKigrhpPLy5UuKioqYN28evr6+3Lt3j5MnT+Lk5MSwYcOExJQ0gnRychK+0ZcuXaK2thYLCwtyc3PR0tLqtMNWREQEPXv2xMTEhIaGBh4/fkxlZSVdunRBVlaWxMREwsLCsLS05OuvvxY/l5+fz/jx4wkMDKSqqoq6ujp8fHw6dEWVlZXF5fv8+XOUlJRE91mSypES1y1btgi9x8rKSkpLSyktLRVCzRkZGRw4cIB3797R2NjYqeS1sbGRd+/e8erVK5FUGBsbc+HCBVxcXP4Nm2hlZcWHDx/o1q2bkJu5efMmBw4cICAggCVLltDQ0EB6erqA4GRlZXH//n3RIYiPjxfdegmuI4XURZGsdGVkZASG09DQUKy5MyHhjnNycrh9+zb3799n6tSpuLq6Mnz4cPE5Y2JiePHiBdCO7crIyEBGRobhw4ejqqoq8MC2trZ4e3sTHh5Oamoqjo6ODBkyhNTUVNra2li5ciU6OjocOnSIxMRE5s+fj5KSUof3Mz09HUVFRQYOHMiUKVMwNjYmNjaWlpaWTsvyWVtbY21tTWFhIVlZWULgWwqJUKmlpYWuri5Pnz4lOzsbIyMjfvzxR3x8fCgrKxOXUUhICPPnz8fAwIDQ0FCio6PJyMigqamJW7ducejQIfHuaWlp0draSlJSEgYGBmhqamJgYEBYWBgaGhro6OgI0wMzM7MOsmGdieLiYpFgNDQ08P3337N//37Gjh3Ls2fPqK2tFUorYWFheHl5oa6uzrFjx6ivr6dLly5iNGtlZYWHhweJiYnU19fj5OREQ0MDT548IScnhz59+uDr60uPHj1Yv369SDqk70hfXx9TU1Py8/PR19cX2srv37+nsLAQIyMjunXrJhRPPiWcnZ2Ji4vD3t6+A6lVUhMpKyvjzJkzgsxSX19PSUmJ0F6W1E0kjHlISAjKysrCQtPCwkJgGx0dHcV0JS8vD29vb4YNG4aLi4uQzJJCgrBoaGhQUVHB27dvUVNTE/adnVHGkCB4EmFQRkYGXV1dmpqaMDQ07LDux48fIycnR2trK5s3b+bdu3dYWVmJu+DBgweCbBYfH092djZXrlxh7ty5yMrKYmpqSmRkJImJiXh7ewvf+8LCQnJzc1FRUUFBQYH+/ftTXFzM27dvUVdXx8TEhJ49ewrprn8SkvOgvr6+6ITGxsZy48YNUlJS6NKlC25ublhYWBASEkJWVpbAPEtyflIDY+fOnezbtw9jY2OhYGBsbCyIbXV1dTg6OqKuri6wpN27dyckJEQkxF26dKG+vp7Kykp69+7NqFGjkJeXJzExUUg3dibMzMwELrqlpQV1dXXKy8s5duwY3t7e2NjYiHPaxMRE2Dh/jOk2NDTk/fv3REZGUlRUhL29vbgPJUiopaUl+vr6XL9+ncOHDzN79myh5lJUVER2djZOTk7iXJBskaU4ffo0jx8//n+fvC5atIiePXsKgsmPP/4oRoqvXr0iLS2Nvn37YmRkxOnTp7ly5QqqqqoiiVy5cqXAzNja2vLFF18IZQJPT08uX77M8uXLhef2xYsXaWpqEozDgoIC9PX1kZGRoa6ujitXrlBTU8P06dMJCQnhw4cP1NXVoa+vj7q6OpGRkf8V+PtxSPIfEo731q1bLF68mNraWlpaWpg2bRo+Pj7079+f+vp6Vq1axfPnz8nPzycoKAgnJydyc3OFePuKFSs4evQoP/zwA35+fqJb5O/vT5cuXXj8+DHnzp0Tws7QDtbPysoSYv1Dhw7F1dUVfX39fxuL/JMX9e3bt1RWVgps1YIFC0QisGbNGrZu3cr48eNZv349lpaWjB07llGjRgn4gjRqOHHiBHp6etTX15OWloa/vz/r1q1j2bJl7N27F1lZWby9vQkNDUVJSYl9+/bh6elJdXU1VVVVWFhYUFhYyJAhQ7CysmL//v2cPXuW5cuXM3bsWNLT00lLS/skE4eP48CBA4JFnJeXx08//UR4eDj9+/dn6dKlFBQU8Oeff6KkpET//v1xcnIiLS2NV69eoaOjw8CBA7G0tKS6uvo/ep5Ltoz3799HQ0MDR0dHXF1d+fLLL0XiumjRIu7evcvu3bvFXlFQUBC6qmFhYaxdu5aHDx+iq6v7H51d/q+YN28eo0ePFrbKBgYGwhGutLRU2CZ//MxPnjyJoaGhkNwJDw9n7ty5bN68me+++46UlBSxdwGSkpLo1q0bbW1t3Lp1i7a2Nvz8/IiJiaGhoaFD51+6VN6/f095eTk2NjYYGhpSX18viA2djVevXtG9e3cCAwM5ffo0TU1NREdHM2jQIFG8Seog6urqODs7M2XKFJYsWUJTU5Moovv160d1dTW6urr07duXwYMHc/fuXUJCQujatauQBUtISMDb25v4+Pj/6Ge+d+9eVq9ezZgxY9i/fz8KCgpUV1cTGBgoHANPnTr1yeuTig7JG1xSO1BQUMDLywsLCwvRJSsqKhKwBMnCEdqTnqqqKkaOHMn06dMFxtrZ2ZknT56QlJQk/t5PP/1EZWUlCgoKfP/998yaNYvY2FihCGBoaMjw4cOZPn061tbWTJkyhdbWVo4cOfJvpKlPjY/lFCWt7KioKP7++29mz57Nb7/9hre3N01NTUL2Cf4Hl7l582Y8PDxYvHgx2traTJ06lTdv3qCsrEzXrl3JyMhg5cqVJCcnExAQwJkzZ3jx4gV79uxhxowZrF69mj///JOHDx/Sr18/MjMzuX37NrNmzUJDQ4M//viDwsJCevXqhZGRUaeJk2/fvuXq1at4eXmJAlzqikk2vkePHuX27dt89tlnuLu70717d8LDw3n//j0tLS2Ul5cze/ZsysrK+PPPP+nfvz/Xr19n06ZNhISEiOS1ublZJPqSXBO036Pjx4+nrq7uP3aPJQtqFxeXDmzwT43IyEiCgoJQVlYW7m7S/SgRAKXnu3r1al6+fCkwk0uXLmX48OEoKSlx7tw50cn8+eef+fzzz9myZYvQrJUaT5ITo9Qxbm5uZtasWdTU1HTQij5y5IjASispKfH333+jq6sr5PL+SdjZ2YkmmkSkzcjI4MyZMxgbGzNy5Eg+//xzAAGvqaioQEtLix49emBubi6sixcsWMDSpUsxNzdn+/btHDp0iK1btxIdHc3bt2+Jjo4WpCZJe9rMzAw5OTlSUlJ48uSJuEPd3NxEUquiotLhbO9MDBkyRDzLzMxMjh07xp49e5CRkWHx4sVYWVmJO+3zzz8XjQj4HwfVa9eukZWVRUNDA126dMHLy6tDXqKgoMDOnTtRVFTkxIkTeHh4EBgYSHh4OE+ePGHixIno6elx8+ZNtLW1BTyjvLyciIgI7Ozs2Llzp4Ca/P9Fp5PXAQMGMGDAAJ4+fcqWLVvo3bu3YFirqqpibm4utPZSUlLQ1NTE0dGR3NxcampqGDhwIMbGxkRHR5OdnY23t7fAi0C7CHBaWhrQ3iFsamoiIyMDLy8vTExMUFNTEy9njx49hASXqqoqycnJxMTEYGRkRL9+/fj888+FbMynxt69e1FXV+fRo0fs2rULTU1N+vfvT3V1tcBPdunShdGjR4vKpba2FhMTE2xsbIQH99KlS3Fzc0NLSws/Pz9hw7pz5066d+8u8EkuLi5ER0eza9cukRwfPnyYmzdvUlNTI8Djkv6bRJpwdXUV3ZN/EtJ3ZmBg0IFZ36dPH16+fEl9fT1v3rwR5glSSALnOjo6HYD7MjIyyMvLo6CgwLhx4yguLqa2tpbXr1/j7++Ps7OzAHGrq6sL5yJJ0goQ9qyWlpbIyMigpaUl5GI6E6ampiQmJtK1a1c0NDQYNGgQampqgr3q6OjI1KlTha2ik5MTWlpaZGVlce/ePYyNjbG2tkZTU5Pw8HC2bdtGU1MTU6ZMYdiwYTQ2NlJRUSF0gNXU1NDQ0BDjoA8fPnDy5ElKS0vFBaOkpER2drYgYWRnZ/Pw4UOsrKzYunUrOjo6XLx48ZPXqKamJsS5Dxw4wKtXr/Dy8mLQoEE0NDRw/PhxMjIyGDhwIIMGDRLVszT6kZWVxdbWlrq6OmGb6uTkRGVlpXCuMzY2Jj8/nxcvXtDQ0ICXlxfDhw9HWVmZV69edSicmpqaaG1tJTs7W9hc9uzZs9NY3o9DWVkZGRkZvvjiCywsLLh+/ToGBgbiIK+vr0dTU5MePXqgp6cnzoe8vDwhBTNgwACGDBkiJHTevXuHsbEx33zzDXl5efz222+kpKRgbGzMiRMnOHHiBMnJyYwcOZK2trYO+tWS7M/MmTMFdOnDhw8CY9jZCYEU2trauLu74+bm1sEhSFVVlbq6OsLDwykoKKBfv34MGzZMkHSkvxkcHNzBelFBQYEePXqIZMfFxYXCwkLWrl1LTU2NUAWRDAgiIyNxcXHBxsaGAQMGEBISgoKCAtOnT0dXV1ckrvv37+/02iTiy7t376iqqmLUqFFCY9XJyUkYapSVlXHs2DGhU2phYcGOHTsYOXIkN2/e5PLly0JeyMrKioKCAqKiosjPzxdwjbCwMLZu3Yqamproyh47doz79+9jZGSEg4MDd+7c4dy5c1hZWTFnzhwWLVok9G+BTneYHzx4gK2tLc7Ozrx//56oqChaW1vp37+/SF7HjBmDq6srVlZWNDY2Ym9vj7m5OXZ2dvzyyy/cuXNHuO/t3LmTo0ePIisry3fffYexsTHHjx8X5ELJhvnevXvIy8sL+1VdXV1qamooKCggIiKC6OhodHV1GTt2LMbGxri6umJubi5MQzoTKioqwv71fxtl1NbWIi8vT0VFBdevX+ft27fU19fz9OlTvv/+e6ZOnUptbS0XLlwQ2P6ePXsKfkNQUJDAbT99+pTw8HAGDRok/v3ly5fk5+eL7/Px48eYmJjg7u4uuC52dnbIy8sLcnRnR+ofx8f63CUlJbi5uYnJhKmpKdnZ2SxevBhjY2MmTJiAnZ0dOTk5nD17ltOnT5OTk4O5ubmYdpSVlfHo0SNB8D1y5Ai6urqMGjUKBweHDhawH8fDhw9ZunQpY8eOxdvbW0w5Bw4cKBoDnYmNGzdSUFDApEmTRLJYWlrK69evKS8vx93dHU9PT1paWnj69CkPHjxAXl6eXr16iYIuLS1NyGjFxMTQs2dPHBwcSEhIIDExUZiImJqaYmpqSnNzM01NTRw8eJCioiJevnyJuro6gwcPRkNDAxkZmQ4TZFlZWXR0dPDx8cHExOT/ffKalZWFoaEhCQkJ3Lp1i8zMTGRlZenRo0eHNm9RURGWlpaMHj0aDw8Pbt26RWRkJNXV1QKv+fz5c7S1tTEyMkJRUZGDBw/y5MkTIb9UV1fHtGnTsLe3JywsjKSkJJydnYVGoLy8PIMGDUJeXr4DmcvV1RVXV1csLS1ZsmRJp3yOJdeIbdu2cePGDfbt28eoUaN4+PAhKioqtLa2YmNjg5qaGiYmJqioqLBw4UISExPZt28f69atY9CgQfz6669CXcDb2xsTExNWrVpFamoqioqK3L17F1dXV3755ReGDh3KpUuXuH37NtOmTcPOzo6xY8eSmZlJVlaWuJSKi4uFVps0IvonHS0lJSVev36Nk5MTbm5uNDc38/79e3R0dERlHx8fT3l5OXV1dSgqKtLW1iYMEyQ5IUnmpra2loSEBF68eCEO5zFjxvDkyRNu3rzJN998g5KSEmfPnuX9+/f06tWL5uZmdHR0MDY2Fhd23759aW5uJjU1FTMzM8zMzFBQUOjQPfqU8PX15dKlSxQVFREcHMyaNWtobm4W31lTUxPffPMNL168IDExkVevXtGjRw9cXV3Jy8vrUBDcuXNHJJXGxsb07t0bc3Nz+vXrR0NDA4qKisjIyAj4hLa2Njo6OvTq1Yu0tDTa2tqA9nHz33//jb6+PgsXLsTb25vZs2fj4OAgCB6dSV6hHVcnkbNu3rxJXl4eM2bMQElJiS1btnDy5EmuX7/Oxo0b8fDwYMWKFdjb2/PgwQNhfThq1CgaGxv57bffmDp1KjU1NVy+fJnU1FS8vLxQVFQU8A4NDQ26detGWVkZubm5Hfbex7i+5uZmZGVlBQbvn8rXuLm5UVtbK+RnJPc9gJSUFN69e4ejoyO2trbY2dmJxOPy5cusW7eOqqoqsrKyROGbnJzMhQsX6NGjBxMnTuTFixesXbsWKysr+vbty+XLlwWmsqKigpMnTxIYGIiFhQUNDQ34+Phw69YtoD1pvXLlCrq6usJ+s7Ms7piYGJKSkoTGLCAus8zMTI4ePcqhQ4cE3nzWrFniO5DOUT8/P3EZNTQ0kJSUREtLC25ubkyaNElI0mRnZ3P27Flyc3MFCUuCYOnr6yMrK4uhoSE2NjakpKTg5ubGsmXLxGf94osvOHTo0D+y+YX2bqSNjQ3Dhw9n9erVpKamdujc5+bmcvLkSWEFvWXLFsEaz8/PR0NDgxEjRghXtQcPHnD69GlkZGQIDg5GUVGRp0+fcu/ePRYvXszBgwd5+vQpGzZsIC0tje+++w5VVVVKSkpITU0Vf2fmzJnk5eUJvevOCtzLysoKwfjCwkKioqJQVVUVHWd5eXmmTZuGsrIyRUVF7Ny5k4SEBEaPHo2VlRW//vorb9++ZdKkScjIyAgYgZ+fH9u3b6eqqorVq1fT0NDA5s2bcXR05Nq1a8JyU4K21dbWoqamhqKiIlevXmX37t1oaGhgZmYm7Jql++PIkSOdgp3Z2dnx+vVr3r17h6amJhkZGSKh0dfXp7q6mmfPnhETE4OJiYkwlSkrKyM8PJy///5bjM0HDx5M9+7daW5upry8HAMDA1xdXdHQ0CA9PZ2oqKgODoEFBQXU1tZiZGREfHw8q1evFtahEolKyhWCgoJQV1f/Rw0dSVWjtbWVlpYW6urqxHfq5eUl3rHo6Gg2b95McnIy2dnZ7N69G2VlZUJDQ3n48CGamppMnjwZfX19zp49KyBXPXv2FIoBcXFxQDvGXVlZmdraWpSVlampqRGNouLiYlpaWujWrRsqKiqsX7+evLw8evTogZaWVqfv/QsXLtDa2oq9vb1YS1paGg0NDTg7O/Pll1+K3CcpKYk9e/ZQUlLC77//TmBgIHFxcURERIiGhoaGBsuWLaNPnz78/fffPHnyRLicSmoFvXv3ZtasWTx48IAtW7bg5eWFr68vUVFRyMrKMmjQIKC9Idba2oq2tja+vr7k5uYKsvH/FZ1OXo8ePcr169cZN24chw4dIjU1VYy3CwoKSE5OxsXFBUNDQ4HpgvaLX1lZWVQZfn5+vHz5kvPnz/P8+XPk5eV58eIFCgoKeHh48OLFC3R0dJgwYQKamprs27dPYFyXLFlCY2Mjhw8fpqmpia+//hoTExP8/f3Zvn07OTk5TJs2DWNj405Ln0D7xejq6oqPjw8TJkyguLiYw4cPEx8fz5w5c/jmm2/+bbzk4uKCm5sbp06d4tq1awQFBTFhwgSsra158uQJ+/fvJyoqinnz5jFmzBh2797N+fPn0dbWJjAwUCQOe/fuFWxZSQwe2g/G169fo6uri62tLS0tLaKb1tlISkri6NGjDBo0SIy5w8PDefToEYMGDaJv3764ubnR2NgoOnVtbW1s376dpKQkoakoJydHbGwsr1+/5u7duyQnJyMvLy8uQ0mmqKamBgMDA3x9fdm3bx8rV67E3t6ekJAQrK2tRSVfVlaGnJwc5ubmQholPj6eGzdudGp97969Exi3jy8RaK9oHz9+jLq6OsXFxTx+/JjY2Fhmz56Nv78/Q4YMQVdXl6KiIvbt20dGRgbr16/HycmpQ6IN7SoNT58+Zfbs2bS0tLBv3z569erFhAkTmDJlCqWlpQIj/PDhQ86dO4eSkhKGhobMmzePAwcO8PbtWyGB1NmQPn9paSkTJkxg4cKF6OjokJaWJoS7y8rKSE1NFaPm48ePs3PnTnGASlbNra2tXLlyhf79+/P9999z7tw5bt68ybJly1i0aBErV66kpKQER0dH9PT0KCsr+48YTwMDA5SUlPD29iYmJoYVK1Zga2vLzz//3On1PXz4kPXr15OZmcnIkSNZvny5wFW9fPmSVatWoaqqyldffcWsWbNEAi0l5IcOHaKqqoro6GhUVVWF7qs00TEzM2PDhg04OTmRmZnJ4cOHUVBQYNCgQURERPD7779z4MABWltb+fbbb3F0dBT2x4sXL+b8+fN89tlnDBkyhOjoaPbu3dspfP3Zs2f5888/2bdvHy4uLuzcuZO8vDx++OEHCgsLOXfuHFlZWXz11VesXLmSsrIy5s6dK7oe48aNIygoSBSQT548ESRDFxcX8vLy2LVrFy9fvqSxsVE4/xQUFLB582bi4uIEBl9RUVFI4nxs6ADw/fffc+jQoU4/Pynq6uqElJoUUre6tbWVo0ePkp2dzZIlSzhy5AgPHjwQ+xPai9Fvv/1WkB6hHcP97NkzoQUsiaTLyspiZGSEi4sLLi4u1NXV8fvvv5ORkcHjx4958+YNgJiihYaGsmjRIpqbm1m3bp3QLf7UGDNmTIf/P3HiREFQhvbC7fjx4+Tk5ODp6SmcvkpKShg1ahQjRoygf//+BAUFceLECZG8xsbGsmDBAnr27ImzszN37txh27Zt7Ny5E09PTwYMGNBBxaC+vl5M0qSzs6qqqoMaUHFxMenp6fj7+wtOxqeE1CU3MjIiLCyMn376iV69ejFv3jxaWloICwujurpayK5J8eTJEx4/fizMNPLz87lw4QIfPnxAW1ubgIAA+vbtK87UuXPnEhAQQFVVFampqaJZIJHsEhISiI+PJz4+njdv3ogkd//+/Tx79ozg4GDmz5/fgfD2qXHy5EkMDAyIiIiguLiYESNG4OHhIRj/0dHRYtK1YcMG1q9fz19//UXPnj2ZNm0a/fr1Q1lZmYEDB9LW1sb+/fuJjY3Fw8ODDRs20NTUxOnTp5kzZw5du3YlPj6elpYWxo4di6qqqsAVQ/td6+TkxP79+5k1axbx8fEiCZYcQ6Xi61Nj4sSJ+Pr60tjYyO3bt4Ut9o4dO7h9+zbp6ek8e/aM/v37M2bMGBITE3nz5o1IdLds2UJ2djZHjhzh8ePHhIaGoqKigpGREfr6+qIY++677yguLsbb21s4pB44cIAnT54QHBxM165dycrKElOqEydOsG7dOvT09Fi+fDnjxo3DzMzskwqQTievGhoaZGRkkJeXh46ODvb29sIUICcnh7S0NExNTXFwcBC+2pJ2qb+/P5WVleTm5iIrK4uXlxeZmZmcPHmSwsJCoB2W4OTkRExMDEVFRSgoKGBvb0+XLl14+/Ytvr6+wqrs4MGDyMrKMnToUGxsbFBWVqZXr17U19eTmJhIaWlpB1vCT4mLFy9y6NAhWltbmT9/PmpqamRlZVFTU0NmZiarVq2iubmZ5cuXo6qqSmFhIdnZ2cKhwsrKipiYGL777jtR+X755ZckJCTg6ekp/IQTEhLIysoiLS2NadOmYWFhQWJiIs+ePeP58+fCd762tpa0tDTKy8vR0NAQpC1pHNdZeR5AVHofd8skPdWcnBxRjGRnZ2NoaIiGhgaysrJER0cTGhqKv7+/uHxKS0tpaWkRzkC3bt0SNn7GxsY4OTkJaZWuXbvi7u7OhQsXsLe3Z9y4cR06ANILLI3aob3TX1pa2qkDqaWlBWVl5Q5wh7dv39LW1iZ0XM+fP09RURG2trY0NDRw+fJlAgICCAwMpK6ujpSUFJSVlXFwcMDT0xN/f390dXXFqPzt27esWLGCnJwcoXAhLy9PRkYGxcXFKCsrk5OTw7lz53Bzc0NGRgZFRUXhIgQIzV8FBYV/5ApjaGgoxnm7du0S3bsXL15gZmbGkiVLMDExwdHREQUFBerq6ggLCxOJgUQmbGxs5O3btxQWFqKurs7u3bsZNWoU3377LV5eXkyZMgUVFRXu3r3LrVu38PT0ZPTo0bx69YqffvqJgIAAMRJVVlbGzs6O6Oho9uzZw6tXr4TqQWcjLy+PlJQU8vLyiIyMJCMjA3Nzc4qKisjLy6O2tpasrCzWr1+Pv78/3bp1ExfjokWL6Natm8Dntra2imJaOlf69OlDnz59SE1N5cmTJ/Tq1Uvs15SUFIyMjPDy8kJfX1+4IUmJnVTUaWtro6amRlFREQ8ePGDq1KmfvD55eXlUVFSEhKAkqbN27Vrk5eVpaWmhV69ejBo1CgUFBV69esXr168FOTUzM5NTp06RlpaGnp4e5ubmWFtbY2ZmhrKyMh8+fCA6OprExEQUFBSE9JaEn6+vrxfjaynU1NQEfq2oqIjdu3fz66+/AnRg+X9qSGNUc3NzamtryczMpKGhAWtra3R0dCgqKuLvv/9GXl6e7777jkmTJjF37lzevXvHoUOHCAoKoqioiObmZmJjY4X7UFpaGpWVlRQXF3Pv3j2g/bxxcHAgKSkJPT09/Pz8WLx4MQYGBiQnJ1NTU0N9fT26urqiqLx58yY5OTnIy8sjKyvb6Y6WjY0NNTU1HDt2jHfv3jF58uQO5MS8vDx27NhBcnIywcHBhISEEBgYyOPHj7l9+zZXr14VroRhYWGYmJhQV1dHeXk5oaGh5OXlMXToUHJzc4mMjGTAgAEMHjyYcePGUV1dLbqgurq6AmI2YcIEHj16RFxcnIDYtbS0kJiYiL6+PlOmTGHlypWfvMZr166xYsUKoH0Sdfz4cWJjYxkwYAAZGRkcP36ckSNHEhwczJUrV8TP5ebm0tLSgrGxsYA7vH//nrt37zJ+/HgCAgKEDa5kfywjI0NjYyPNzc0oKioKsqWkQTxt2jTu3LnD1q1bGTduHHFxcWzatAlAaBv/Ex5ITEwM9fX1xMbGij0i6SA/f/6cgwcPIicnx9KlSxk9ejTp6enCiEFWVpZly5axfPly8X1JUxhHR0e6devG9evXSUxMFIo7Z8+eJSwsDAcHB9zd3VFVVSUjI4OCggI0NDSEyxe0382jR48WCg/Nzc0CZvKpMXnyZAwNDdm3bx9Pnjzhiy++YNiwYQQEBHDp0iV27NiBjIwM/fv3FxbKSkpKKCkpERcXJ7rKbm5uqKmp8ejRIx48eIC7uztjx45FRUWF3NxczM3NMTY2xsrKiurqasrKylBWVmbYsGGMHz9e2BgXFxcLzsv79++prq4mMzNTyARKkJD/KzqdvC5ZskRk7F5eXgQFBfHFF19QUVHRwfYV2l/sqKgoTp06xahRo+jTpw93795lzpw5VFZW8ssvv7BmzRpqamr417/+BYC3tzdmZmYYGRkJqzI/Pz8WLFhAv3796N+/P9ra2qSnp6OtrY2ZmRmFhYU8evSIxMRElixZQmtrK2fOnMHMzIx58+bx5MmTT16fxBqH9oPH2NgYHx8fQkND+frrrzlx4gRr166luLiY3bt3IyMjw549e3j48CF6enqoqKgIf2PJbUfCbsyfP5/s7GxWrlxJeHg40C6xYmtrS1FREYaGhixYsIB58+aJTuvSpUupqKgQFfdPP/1Ea2urcDX7J4LTfn5+mJiYdDB2sLGxYenSpejo6FBYWMj+/fspLi5m8eLFIpmUPMFbWlp4+fKlsFUcP348WlpavHjxgsuXLwPt0ARplPpxh27w4MHi+f7v0ZXkQCMl9iYmJhgZGREUFMTjx48/eX1SFfyxH7uRkRHNzc04Ojri4+PDy5cvycjI4PPPP8fb25vjx4+zbds21qxZg4KCAl999RUrVqzg3r17rF+/HgUFBZYuXUq/fv0IDw/nm2++IScnB2NjY3R0dNDU1GTHjh18+PBByOHs3LmT+vp6li1bxvfff095eTlpaWmMHj2arKws0T3ZvXv3P7LehPauVkVFRQdrUllZWbp06YKvry8eHh60tbWRm5srDjxXV1esra2ZN2+e0NVcsWIFhYWFqKioCLWGP//8k5UrV7JixQo2bdqEgYEBEyZMYPLkyWzYsIHz589z+PBhpk2bhoaGBpmZmWzYsAEdHR0WLlxITEwMf/31F5MmTRIdg87EwIEDxcWuo6ODkZERZ8+eJSIigqCgIM6ePcsXX3xBcXExDQ0NtLS0cOnSJfLz8+nXr58gOpSXl4uLQEokNm7cKPb1+vXrefXqFdu2bUNJSUn4x589e1boKO/du1cwdJWVlfnll1+YP38+Xl5egvjYWem6cePGMXz4cLy9vSkqKqJXr17o6uqKCVVAQICA23z99df07NmTkydPUldXR1xcHG1tbVy4cEEYLOzfv58xY8YIeTR7e3v27t0rxPGnTZtGSUkJCxcuxN/fn8LCwn/D20nWlTU1NSxevJi///4bHR0dVq5cyeeff86aNWs6tcZ9+/axceNGoD2ZkbrTX331Fa2trYSGhiIrK4uamhpXr15l7Nix/Prrr6xdu5ZvvvkGfX19YU9bXFxMaGgoQ4YMEYmOFM7OzkKQ/+bNm7x584a6ujqCg4MZO3YsdXV1aGpqUlpaSnFxsSj+V61axYABA3BxcelwXnxqlJSUUFlZyY0bNwSRZcOGDeJ3paWliYS4srKSvn37MnXqVHF+KCgoUFVVxfDhw4mIiMDR0VGogdja2go4XWZmJtCeGFVXV/Pu3TsuXrzIuXPn2L17Nz169CA5OVng9YOCgmhubhZ4YGlU261bt04b93x8x0g/K5kRvXjxgpcvXzJ69Gi6detG7969ycnJwdbWFnt7eywsLLC2thbFR3h4OCoqKtTU1AjMcn5+PmlpaYSGhiIjI8NPP/0kmOjr1q0jPDycrVu3MmzYMI4fP86SJUvYtWtXB5hVQEAAX3/9NTdu3GDNmjX/0X74/wpzc3NiY2MZOnQoJiYmQl960qRJjBs3jqqqKoqKinj37p1IZNeuXYuHhwdVVVUdGiVS0Ss1e96+fYuioiJqamo8f/4cU1NTAgMDUVdX5/bt2+jo6GBmZsaPP/5IVFQUx44dQ0dHh9jYWKGQceTIEQG9qq2t7dBR/5RIS0vjyy+/5Nq1axgaGnbAzUtKLR9L/UkmQ5WVlSgrK4vid+HChZiamqKpqUlUVBRPnjwR58pXX33FkydPMDc35+zZs5w4cYLa2lpqa2sZMGCAIPJXVVUJ45fp06cTGBhIa2srBgYGnZKq+0cOWx4eHvTs2ZOLFy9y48YNTE1N0dbWFqNPCZwM7WNE6cvx8fHBz89PsOkOHDiAq6ureBDDhg3D2NiYuLg43N3dmTNnjtjEampqgsAA7QLrQ4YMITs7m6ioKCFJ1KdPH7Kzs3n9+rWQf+ns2qZOncrz58+FXiu0v7SLFy+msbGRs2fPsmfPHtTU1Bg9ejROTk4cPXqUrKwsQkJCOHDgAJmZmfz222+kpqZibm7OvHnzBCmnurqa4OBg+vfvT1lZGY8fP8bBwUEYOUA70eGrr77i1atXBAcHY2dnR0ZGBufOnSMnJwcTExPGjh37jwgxkv95TU2NYKfq6+vz6tUrunXrhqGhIR4eHjx79qzDSxIcHCycd5qampCXl8fZ2RktLS2ys7OJjY1l2LBhJCcnU1VVhZ6eHpaWlvz99984ODgIvJSamprwSD506BBNTU3MnTtXaMylpqYK9qkk1dGZyM/PZ/Dgwejp6ZGZmUlOTg5aWloiWb9w4YLoCA4cOBArKytqamqEUDsgqnlLS0s8PT25cOECBw8eRElJiTdv3ojucn19PdevXxd6jrq6urS1taGiooKLiwsqKir4+PhgYGDA3Llzefr0KadOneLWrVsoKioyatQodHV1O0UqhHZmr2T9OGnSJEpKSgSud/z48bx69YqamhrKysrQ0dFBVVVVQFGkKl5HR4fMzEzKy8vp3r07aWlpVFRUcPDgQZqamlBQUBBkEiUlJdTU1ISXvKqqqiAi2tvbU11djbKysnA0CgkJITg4WJgz/G+HrE8JDQ2NDqPRjRs3cuPGDaZMmSLMIaRCUlKX8PT0JDY2loKCAnEmSGNHSYf4zZs3VFdXs3XrVmRlZXnx4gXZ2dmCYNbc3IylpSUGBgZcvXqV/Px85syZIz5HY2MjXbt27aDzGxMT02miyMfEF11dXb777js+fPhAWFgYmpqaTJ06lcuXL/P777/T1tZGr169sLKyory8nCdPnpCXl4eWlhYzZ85k6dKl4qyLiopCXV0dAwMDtLS0qKio4MWLF7x//x5nZ2e6d+9OfX09MTExwjBFSlKnT58OIMbrQ4cOZdiwYcJ6s7ORkpLCsWPHmDFjBg4ODri4uKCpqYmuri4XLlxg69atODs74+DgwOPHj4WcoJmZGeXl5aLgk6ABr169wtvbGxcXF4GLCw4OplevXkKGR15eXphMFBQUoKCgICx2R4wYITC/1tbWdOnSBSsrK7KyskhKShKwlE+N8PBwAgMDmT59Otra2ri5uYlJnJeXl2joxMXF0adPHzGGHTFihOiEFxQUoKWlhYGBAUZGRigoKGBqaoqTkxPPnz8nMzMTFRUVHBwcePToEVpaWowYMYK7d+8SHh7O+fPnsbKyIiwsjNbWVkaNGoW9vb2QnoJ28qOk5ytNOT81fH19BSa4b9++zJw5U2hoa2lp0bVrV9GRkwiE8+fPp2fPnuI+i42N5fLly8TGxmJvb09+fj7nz5/n5s2bQHvxoampiZ6eHlZWVlRVVbFnzx4ePHhAeXk5e/fuRUtLi4CAAL744gsyMzP58OED1tbWyMnJ4evrS3R0NPHx8f9m7f0p0dLSwsCBAxk4cCDq6urcuXOH0tJScnNzsbCwYN68eVRUVPD06VMiIyOZPHkyw4cP582bN6xevRp7e3u6du1KWloaz549Q11dnT59+qClpYW2tjYeHh5oa2sTFhbG7du3CQwMZMiQIURFRQliu4Q/d3R05PXr10yZMoXg4GDRJHv48CEFBQW8f/+e9PT0TvEI7t69y7Vr14B2UraHhwcAjx49wtXVFTs7O5HvKCsr079/fxobGzlz5gypqaloaGjQ0NBAaGgoBgYG2NvbU1payv79+0lNTaWiooLIyEgB/XNzc0NJSYnU1FQKCwuJjY3l5s2bTJw4keHDh/P06VMePXpE9+7d6d69u/icdXV1tLW1dTDC+P+LTievkhjylClTcHZ25s8//yQhIYHs7GyRvH4sLySBcbOzs8nIyMDFxYXJkycTERFBXl4e586dIy4uDgUFBZGgxcfHM2nSJOEgkZKSQlpaGhcuXODatWusW7cOT09PtLW1hSPSlClTBJg/MzNTiPL+N8ba/w5fX1/xZba0tFBZWcnjx48pLy/HwcGB9evX4+DgwNatW9myZQuurq589913vH37lsOHDzNkyBCBI42JiRFivGPGjOH3338nJSWFRYsWMXv2bLKzswV7/c6dOx18tePi4khNTcXT05OzZ8+ip6fHixcv0NbWJicnh++//57q6upOd0KgXZIiKyuLN2/e8OHDBwYPHixA2h4eHixbtoyRI0fSp08fQeZ6//69uCzd3d3R0dERo53a2lpmz57NixcvWLZsGWZmZsKJo3v37ixatIiff/6Z/v37k5iYSHFxMbKysmhra/Pjjz9ib28vfKurqqrw9PQUl43033cmQkND+e233wR5YfPmzfj7+7N27Vri4+NZuHAhdXV16OjoiGKod+/eLF++HAcHB27evElGRgZz5sxh5cqVYtpw584dzp49S0NDA+7u7qSkpFBeXs6aNWtQUVHB1NSUCRMmCEHx77//nn79+qGrq0trayuampo4OTkJR5+LFy/i5eVFaGgo8fHxnbKI/euvv/j1119ZtWoVa9eu5fXr15w7d46RI0eiqqqKu7u7kA0aOHAgzs7OBAcHU1ZWJr7bJ0+eCHOCbt264ezsTFtbGxoaGuzdu5e7d++K4uWXX37B1dWVVatWCem5GTNmMHPmTJEk5OXlYWRkhKqqKj/99NM/1luUQrKrhfau3V9//YWMjIywWGxpaWHkyJEdvjd/f3/8/f2pqqoiOTlZSK3l5OSQkZFBv379UFFR4e+//yY7O5spU6bQo0cPjIyMePr0qWBT29racu7cOaE0IZmRQDvhT1FRsQMJUFFR8R9h7aR1yMnJYWRkRHJyMmFhYYwbNw5XV1d2795NW1sbS5YsITAwkGXLlnH16lUaGhro27cv06ZNEzqo0N5ZjoyMxMnJCTk5OZ4+fUpKSopI9JqamsSZK1ldlpSUsHHjRpydnZk2bRq1tbUkJSUJWUSAv//+mxs3bnToMH1K9OvXjyNHjiAjI8P06dM76ConJiby4cMHfH196dq1K4WFhaJQ/bgonzx5Mhs3bmT37t38/fffjBw5EldXV7Zv346CggIzZ86kpaWFFy9eoKKiwrBhwxg9ejT6+vo0NDRw4cIF6uvrGTZsGIaGhvTu3Zv9+/dz7tw5vv32WwoLC1mxYgWtra3/hmH9byEnJ4e6ujoTJkxg/PjxyMjIkJKSwosXL7C1tcXExITm5mbU1dWF9nJ0dDR6enp4e3ujrq6OsbExt27d4sKFC4SFhQls/fXr14Ub1qRJk5CXlxeNkb59+zJr1ixevXpFRkYGly9f5uTJk0B7wS0llGZmZkKxRVlZmaampk5DlGbPni1wqdbW1kyfPh19fX3c3d2FyoiCggINDQ2YmppibW0tbIalkDRTof29joqKEprxFhYW+Pv7s23bNvT19QXO+/jx40yaNIkhQ4awe/duRowYwcGDBxkzZgxnz54lPz9fmEJcunSJOXPmiHO6MyRtaO9mjhs3Tuy7kSNHkpaWRlhYmNB1hXaolqurq1AlOHbsGLt27RLOZq9evaK8vJyuXbuycePGf9PbrqmpISMjQzRxpIZcXV0dvXv3RkFBAW1tbRISEgRp9u3bt5w9e5Zdu3ZRX18v7OQ7k7xKEEFPT0++/fZbLC0tBVxDurNfv37N9evXCQwMxNfXF19fX969e0dqaqqQ8UpOTkZJSQldXV3Kysp49uwZz549w9HRETs7OzEFGzJkCAMHDiQmJobk5GQ0NDSQl5cXutESHKO8vFyYHkgYbTMzs0+Ce3Y6eZXYq1paWvTt2xd1dXViYmIoLS3lxo0bdOnSRZCZbt26xe7du1FSUhKyK3/++ScRERFs3rxZuH+4u7tz9+5dHj58SEtLi0gAMzIyOHLkCIqKigwfPpzS0lIOHjzIpk2b8PDw4PHjx7x8+VJccLW1tYI1v2vXLs6fP8/ChQs7YLr+W3wMtgcErrWhoYHa2lrhWlNXV0dubi7GxsbIysry888/M2HCBMGgk+xI1dTU8PX1RV5enlGjRpGRkSF8fRMTEwVmSbr4JW9jHR0dFi1ahI+Pj2jnS65Qq1atIj4+nrS0tA4Eok8NyY87Ozubo0ePsn//fry8vOjduzcFBQWsX7+e4cOH4+XlBcDt27f54YcfkJWVZf78+QQFBXXAh6mqqgoZmkOHDmFiYiIsEHV0dPjmm28wNjZGV1cXa2trUlNTOXjwIAoKCoSEhDB+/HiRuCsqKnZ4KY2NjWlubu4U9KO5uZna2loUFRXR19cnNjaWoqIiFi1aREhICN9//z0nT54UL7C5uTmNjY0MGzaMkJAQbt68SXx8vJD6ys/PZ/v27Xh7ewsZsO3bt+Pi4sKOHTv417/+RWNjIyYmJqSkpJCYmIiRkRFqampER0fj5+cnOoXGxsZMnz4dMzMz7OzsOHz4MBs3bsTb27tTz9DQ0JBvv/1WHNJ2dnb8+eefnDlzhuXLl9O7d2+6dOnCkydPxOUlIyPTQY/Pzs6OyZMnc+bMGdLS0pg8eTKff/45DQ0N/PDDDyJxlTpUwcHBDBgwQCS/HxdbJiYmgqxUV1cnRNDHjh2LoqJiBwLOp4aEb3306BFRUVHMmjULOTk5Tp8+LbpY2tra5OXlcerUKdLT03F3d2f48OGYmZnRvXt39u7dy/Xr14UfuJKSEo8fP6ZXr15cunSJTZs2MXLkSPz8/PjXv/7FzZs3sbGxwdvbG1dXV9atW8e9e/dYt24dAQEBTJkyBX19fYqKiti2bRvGxsYsXbqUn3/+maCgoE6RC588eYK7uzva2tpUVlYKXVZnZ2ecnZ1pbGykqamJPn36sGbNGtTV1Vm3bp2AiHTt2hUTExMOHjwoYARSBzw3N1coUAQHB7No0SLu3LnD3bt3iY+PJygoiLVr12JhYSEKsHfv3rFp0ybk5OQwMzMTuFBoP8tPnDjRabWBBQsWoKqqys2bNzuw/qEdoyid5dbW1lRUVIhkxM7OjhEjRqCrq8uWLVswMDBg7dq1QmPUxMSEX3/9lYyMDDHJMzQ0pH///vTt21eMt5WUlIiMjBSmFIaGhqioqAiR+Q0bNqChoYG/vz8vX75kz549HYhh/y0cHByIjo4mJSWFlpYWvL29MTIywtvbm8zMTFJTU9HS0mLixInY29vT1NQkNM0NDQ2JiIjA3t4eY2Njhg4dSk1NDe7u7lRXV3eQJtPT08PZ2Zlr165x5coVVq9ejaWlJcuWLcPAwIALFy4QHR0teAYuLi6iuHr//j23b9/GwsJCwLY6E1JCV1BQwJ07d5CRkRETkcbGRmJiYpCRkWHOnDnMmTOH169f89NPPwmipKurKyoqKnzxxRfo6OhQWVnJmTNn+PDhA3PnzmXw4ME4OjpiampKfX09d+7cISwsDDMzMyZMmMDo0aOpq6vj3Llz4kxSVFQUxEsFBQUsLCwoKyvDwsLiP2pz/7eQzCE+Dnt7e65evdrhnLOwsMDCwoKkpCTmzJnDvXv3hDxXRkYGRkZGaGtrM2zYMJG4HjhwgPr6elH0v3nzhtOnT6OoqMjLly/FlCA7O5u0tDSCgoIYMGAAx44dw83NDRUVFcF7MTY2JigoiBEjRnDnzp1PXt+YMWMwMTERzpfwP/AyadoQEBDAhQsX+PPPPxk5ciTdu3fnq6++wtTUFFtbW+Lj48nJycHb25uhQ4fy559/oqysLPRg//rrL9ra2ujWrRvv3r1j//79KCsri/tPWVmZp0+fsm3bNiEn5+vrK+6T8vJyysrK0NPT+6QiudPJq3T5STgPSZg3NDSUpqYm1NXVaWhoID4+noSEBEH+aWtrE0lLcXExM2bMwM/PT2gSdu/enYSEBFRUVJg1axY2NjasXLmSzZs34+7uzhdffMG8efMoLS0lKiqKc+fOERsbi5KSElpaWkRHR1NZWYmxsTGBgYGoqqqSn5/P27dvO5W85ubmkpaWJuwEoV0EurKykmfPniEnJ0dgYCBr1qwhNzcXaMeJ6evrExQURFNTE48ePWL//v00NDTg7+9PWFgYVlZWWFlZ0bNnzw4iygEBAXTv3p13795hYGAgxOrd3d3FWDEnJ4fKykoMDAzo2bMngwYNIi0trdNdECkkoffExEQuXbpEQ0MDw4YNY86cOYLVamJiIpLXly9f8vbtW9HJqKmpQUlJiba2NioqKqiurmbkyJHU1NRw6dIlMaJKSEgQl9CIESOoqakRL+yPP/6IgoICe/fuFcl5TU0Nampq1NXVUV9fj7q6Orq6umJzf2pIMBZoB8wPHjwYRUVFMbpeuXIl1tbWlJWVoaSkJATg1dXV0dPTY+DAgUKC5ocffmD79u34+/sTEBCAqakpdnZ2wtbzs88+o6ioCDk5OXr27MmTJ08EaUFBQYGmpiZCQkLw8fERuNtJkyahrKzMixcvOHv2rHAY+W9ezh+Hm5sbCxcupLa2ltzcXMzMzPD09OSrr75CRUUFPz8/HBwcxIEH/1N4Qvv7K5G6CgsL2bRpEwEBAeJZDBkyhBs3blBUVERpaSkDBw5k1qxZaGpq0tLSIlz1JHJJc3Mz9vb2KCoqkpWVxe7du9HX12fs2LGoq6v/I8tGdXV11NXVSUlJoaSkhJUrV1JXV8fcuXOJjIzk+PHjqKmpkZ2dzYYNG6ioqGDBggV0794dMzMzZGVlcXR05Oeff0ZVVVW403Xv3l1ccnfu3OlAEIF2tYqMjAxhi+jg4ICfnx85OTksWrQIgEOHDhEZGYmPj4/4/gMDAzuVvJaWlnbAH5aXl2Ntbd3BVGXq1KmiW1ZWVsbQoUPJz8/H0NAQPT09Hjx4wObNm6mrq8PDw4NBgwYhKysrJlvu7u5s27YNJycnnj17Jn7v5MmT6dOnD9BOOvvyyy+JiIhg+/btmJubi+lAa2srCQkJVFZWdjrpgfaCaebMmdy8eZP169djZGQkJmqDBg3q4KzzcbS1tTF06FBGjRqFgYEBBQUFPH78GAMDA1pbW6mvr8fGxka80wYGBtja2jJ27Fjk5eV5/vw5zs7OouOjpaUlzE7a2trE3/3mm28wNzdn/vz57Nu3j5MnT3YqebWwsCA2NpZ9+/bx9OlTli5dypYtW+jSpQunT5/m/v379OrVi9GjRwsSigQdkFwJ4+LiBGFp2LBh6Orqio50WloaFhYW2Nvb4+DgwMiRIzly5AjXr1/nl19+4bPPPuPUqVNERUWhqKgo2OzwPworFRUVZGZmoqen94/gOwUFBcjKyrJ3716uXr3KkCFDhLxfRUUFVVVV5OfnU1VVJRzMrl69SlxcnOj+jx8/nq1bt4rE8uHDhzQ0NLBs2TLhLJicnExSUhL5+fkMHToUS0tL7OzsyM/Px8DAgNmzZ4smQFlZGa9fv8bIyIiuXbuSl5eHlZUVGRkZQou0M9GnTx9aWlqQkZGhubmZnJwc4uLihK50a2srpaWltLa2imLs1atXBAUF4e7uzsOHDzE0NOSrr77iw4cPQiGgpKSEtWvXUlJSIjSmTUxMuHfvHuHh4bS0tDBhwgQMDAxoaGgQ2GapyQEIEtPw4cOZPXs2I0aMAOhU8iqpb0C7zF5TUxP6+vqCLKylpYWMjAyWlpaMHz+eEydOEB0dTc+ePcX0JTY2luLiYr766it69+7N2bNn0dbW5qeffqKmpoYnT56gqKiIl5cXN2/eFBbEMjIy4j6Fdgctf39/kdzn5uYKd9SkpCQqKyuFHOf/FZ1OXouKisjPz0dBQUF0PCWiQt++fTE0NGT+/PlERUXx22+/ERISwvLly5kxY4bo7llaWpKQkMCdO3ewt7dn7ty5mJubs27dOqHplpGRQXV1NSoqKlRWVnL9+nVGjBjBvHnziIqKEpqMmpqaGBkZUVpairW1Nb179yY/P5/ffvuN3Nxc1q9f36mkICcnh/DwcDw8PETympKSwu+//05iYiITJ04Uh8P9+/dRU1PDzs6OS5cucfDgQTEirq2tZfXq1bi4uPDNN98QGhrK+fPnOzDp/fz8sLe3p62tjaampv8os1NfX8+aNWu4ePEinp6eTJgwQVRMUpeisyGNcyUCz5o1awSmz8TEhDVr1uDr6yt0CXNycti4caNgVkvPW0ZGhr/++ovz58/j4+PD8OHD8ff3p7q6mqKiIhYuXIimpiZ79+6la9euQh5DX1+fZcuWYWFh0QEkrqamRnNzM2FhYTQ0NBAYGPiPOssfY7oUFBRYtmwZDg4OmJmZER0dzePHj3F2dmb48OHIyMigpqZGZWUloaGhfPjwgRkzZojCYNWqVTg6OvKvf/2LP/74g3nz5gmrO0kRY9OmTRgbG/Po0aMOyYuk0ycvL8+mTZuYMGEC2tranDlzhsbGRoYPH86GDRsoKSmhX79+ndqnRUVFFBQUsH37dtLS0jh06BBffvkl8fHxyMrK8ubNG9GV+E8g+I8LH+lCkdjdkq2qnp4eRUVFVFZWsmvXLszMzBg/fjxycnIkJCTg6OhIVVUV+/fvx8jISBAUCwoK+Pbbb7G2tkZJSYmWlhb8/Px48ODBpz/Ej0KyZJbgQOvXr2fHjh0sXLiQQ4cO4ezsTENDA9ra2qxcuRILCwuB5R40aJDAqA8fPlwoJ1y6dIkePXpw8uRJ/vrrL27cuMHSpUsZM2YMS5YsITExUXSupP0uKWwcPHiQ77//nuXLl7Nlyxbevn3Lli1bSE9P71TXx9fXV+BINTU1mTZtWod/V1RUZOLEiWRnZ3P48GFkZWWZNm0aS5cu5cGDB9y4cYPMzEzGjx8vzF4aGxtFFy4kJIRly5bR0NDApEmTuHr1Kra2tpw6dQolJSW2bt1K165d6datG8nJyWRmZjJt2jSsrKzo0qULioqKREdHc/LkSRQUFJg/f36nJJY+Djs7O3R1dYmPj+fdu3fY2NiIQurjograk5jk5GSMjIwwNDQkPT2d6dOnEx4ezrRp0+jduzcJCQn88MMPODg48Ntvv+Hp6SngZzU1NcTFxZGVlYWzszOurq74+vqKIu7jM/jrr7/uUEB0RuoM2gsdb29vAgICSE9Px9raGnl5eXJzcykuLha2sf9bWrGpqYkPHz7g7u5Oeno6Z8+exdPTU0j7KSkpMX/+fBYtWoSlpSUqKiqUlJQwa9YsQfaRLv979+5RX1/PmTNnGDVqFDk5ObS2tor7wcDAgIkTJ3aqifNxREVFcebMGY4ePYqmpiZdunQR3Uh7e3t++OEH3NzcyMnJYc6cOdTU1PDTTz/h6urKgwcPuHz5MoqKih3ejUGDBlFeXt7BMcvIyAh5eXl69OghEsDc3FySkpL47bffcHBwENquR48eFTjTgoICHj58SFZWFlFRUeTk5HTasRAQ8Ifo6Ghh1PLrr7/i7u5OSUkJe/bs4dKlS6ioqNCtWzd27tzJqFGjiIqK4vr16xgbG9O3b1+SkpKYPn06mzZtws/Pj9mzZ/Py5Utu3rzJ999/z/r161m0aJHQdG5paaGlpYVZs2Yxc+ZM3NzcKCkp4eDBg/j7+2NkZCTMRaTEtbMhyTFK8A09PT1xnjU2Nv6bic1/es/d3d3ZvHmzILHq6uqSn5/P4cOHBZzp9u3bREVFYWpqSk1NDTk5OZw6dQoNDQ2WL1+Op6cne/bsEco4e/fu5caNG/z666/Y2NiQlJREdnY2vXr1+q9r6nTyKlUkH1enbW1tBAYGYmRkJADITU1NNDQ04OHhgbe3N/fu3eP9+/f861//wtHRkefPn3PixAmKi4uJjY1FQ0NDeLzX1tZy7949IiMjmTRpEl26dEFGRoaqqirs7OwoKCigvr6empoa8VA9PDwEDOHx48ekpaUREhLCtGnTOpUUJCQkYGtri6ysrOgEpqSkcPr0abp06cLgwYNpbm5mzZo17N27lxUrVjBw4ECioqK4c+cOJiYm/PDDD9jb2+Pq6sqbN2948eIF6urqJCcnY29vz8SJE4XXdWZmJpaWlowcOZKCggKeP3+Ora0tLi4uJCQkcOnSJaKiomhoaKCsrIzCwkIsLCyYMGECXl5e/8hNRBI679q1KxMmTMDb25uysjLy8/OxtbVFTU2NgoIC9u3bR3JyMtOmTRNYsMTERPLy8joQASIjI4mMjBQGBunp6Vy/fp3Y2FgcHR2pqKigvLyce/fuoaioyIgRI8SLU1RURG1tLaampigoKFBWViZsWSWtUumF+tTIzc1l69atTJw4EUtLyw4A/qdPn3Lnzh08PDw6XFo6Ojo4OjpSW1tLRUWF6IoYGRkxc+ZMIiIiiI2NFRaQEjZPSpTevXuHtrY2EydORF9fnwcPHmBubk5ISAjPnj1j165dqKqqMmHCBMrLy2lraxPOdIAggH1q6Ovrk5SUxMuXL4mIiGDPnj0MGzaM3r17o6ysjIqKCm1tbWhqaopLQ1ZWlri4OIG36tmzJ+rq6kyZMkWwfyUM2suXL4Vub9++famrq+PUqVOUlpYKS0NtbW0aGhqEJJzUVU9NTWXGjBkdZIf+Sdfu3bt3FBUV4ePjg6mpKQ8fPqSurg5fX1/mzJnDzp072blzJxoaGgLfl5ubS2lpKdHR0cjLy2Nra0t5eTmFhYU8ffqU1tZWKioqiI6OJiYmhiFDhtC1a1dKSkrQ1dWlT58+KCoqkpiYyNOnTwU0ysrKiqSkJC5cuCB0Z6Xue0NDA8nJyXz48KFT9qISHrKtrY2CggKSkpJQVFTE09MTVVVVodCQlJREdXU1lpaWomEwfvx4kpOT0dLS4ptvvukgLVNSUkJ6erqwK378+DE3b95EQUGBzz//XAjCS+S7J0+e8O2332JmZsaBAwc6WIgWFRVx8uRJ1NXVGTVqVKeTV8k608XFBUdHRxoaGigsLMTIyIjW1laBsZaetyRrJsFuAEGAlHDlampqVFRUkJKSQnV1NXFxcTQ0NJCbmyuk9R4+fEh8fDwDBgxg2rRpqKmpcf78eezs7PDy8iImJoY3b94QGBgoJjs9evRg165dAmf6KbFr1y5mz55N37596datm+iaSxjm5uZmqqqqhIReXl6eEMDX1tbG3NycgoICysrKhMGBjY0NRkZG9O7dm6amJqFCYGtri62trRj71tXVcenSJZKTk4WRRm1tLSoqKh0SRUtLSywtLampqeHWrVsdEsZPCUm3W0ZGBltbWwEZePfuHYaGhmLPx8fH89dff2FhYSFsks3MzEhLS6O6uprnz5/j7+9PUVERAwcOREm+G7D9AAEAAElEQVRJiebmZjGOdnJyEt3xuLg4Lly4QO/evXFzc6Ouro6TJ0/i6uqKkZERz549Ex3Zmpoa9PT06Nq1qyC4dTZ5lfapFK2trcjJyYnmip6eHrdv3yY2NpbAwEC8vb1FEaSnp4eysjL37t0TE1cLCwvev39P7969+eqrrzhw4AC3bt0iJSWFadOmMWnSJLS1tXF2diYpKYkdO3Ywc+ZMDAwMyMzMZP/+/ZSUlAjXKwsLC/Ly8jh27BiVlZWdnmRJTScJQibhXa2srNDW1hbFo76+PnPmzMHB4f9j77zDoyzW9//Z9N4raZCekIRQQwmE3nvvvS4eFAQpoggqAooIyiKi0jsK0nsNEFpICC2NhBTSe6/v749l50v0qInHc0R/ua/La+XdzbszO/POPPOU+3ZDS0uL5ORk9u7dS1FREU2aNMHPz4/ExEQuX75Mbm4uMpmMTz75BF1dXQYNGkRGRgZPnz5lyJAhoqYlNTWV5cuX4+Liwrhx44QX9vnz51y4cIHCwkKxn5qZmWFqair2/t9CnY1XTU1N1NTURJJxZWWlmCgHDx5k7969dO7cGU9PT65cuSKkB9966y0kSRL5Tm3btsXHx4eKigqSkpL4+uuv+fbbbzE1NcXX11dUuvfu3ZtRo0ZhZGSEsbExycnJKBQK9u/fL9p07do1Ro4ciZ+fH1FRUZSUlLBmzRrBY1kXZGRkMGLECG7dusXx48cZMWKEWERbtGhB06ZNOXPmjKhGVxmPKg/K2LFjRVHC9u3b2bJlC05OTowdO1Yocr3xxhvExsaKqmhbW1sMDQ35+uuvWbJkCfPnz0dLS4uvvvqKM2fO0KlTJz744ANatmyJnp4elZWVaGtrC+WrusLFxYXc3FyGDRuGh4cHH3zwAR9//DELFy7Ey8uLkpISlixZQkxMDMuWLauhT+7o6EhERASJiYk4ODgIbeP79++zceNG9u/fT1FREZmZmWhrazNq1CgCAwM5duwYkydPpm/fvuL0mJmZyYsXLzAzMxOnPlVxjIGBQQ1Wg7rA0dGRhQsXUlZWJkK/2dnZQh1u/PjxNWjCVB7KwMBAWrVqRWFhIWpqapibm1NYWEh2djYLFizA3NwcExMTQaDs7+9PVlYWQ4cOpbi4mD179hAUFERgYCAuLi6EhoZy5MgRUTRYUVGBk5MTH3/88S+oTr7//vs6VXN37tyZ4uJiRo4cSVVVFceOHePx48c0btyYDh06YGdnh66uLpWVlcJ7HRkZyXfffcf+/fsxNzdnzpw5TJ8+HS8vLz7//HPBWfjs2TNB5aaaeyUlJSxfvpyZM2cyYcIENm/eDCg9RFOnThXGk8rgerWY4o/i7t27HD58mAkTJtCjRw+h9FJcXExgYCA2NjZMnjyZ0NBQRo0ahaamJoMGDaKoqAgXFxeqq6uFB7VXr158+OGHXLlyhfv37wNKrt6uXbvy/fffs2zZMjZs2MD58+dZtGgR0dHRXLhwAVdXVyF3ePPmTWbNmsX27dtZtmwZN27c4NChQ7Rt25YvvviCjIwM1q5dW+v+qZ5dTU1NEXI2NTXlm2++oXXr1ly6dInz589jbW3NmDFjRIWwCnPmzKG8vPwXjCpjxozBzc1NFJgZGRmxZcsWevTowY0bN+jXrx/t2rVjx44dANy7d4/s7Gzi4+P58ssvmThxojBQVFGUjIwMIXLwR6Dib7a2tkZHR4eysjIhBw3KeoVz585hZGTEoEGD8PT0JCsrC1B693bt2kV5eTkmJiaUl5djZ2fHunXrOH/+PJMmTaKkpIRBgwbRokUL0tLSiIqKIioqCjMzM5YsWUJmZiYrVqwgKCiIL7/8kuPHj/Pee++xdOlSITyhEmyoi/GqqgAfO3YsgwYNEkajjY0NPj4+glT/+fPnnDp1ijt37qClpcWbb76Jr68va9euFfKct2/f5ssvv2TatGli3VIoFLz77rssXLiQ9957T3xvZGQkW7du5eTJk5iYmFBZWcnixYsJDw8X1GSFhYXk5+eLw/vJkyfZvn27OHTVFi1btsTFxUXQ1qn2oEePHqGjoyOMV01NTSwtLXF0dBRqjBEREdy+fZvKyko6depEWVkZ+vr6NGzYUBiG3333HWvXrmX+/PnC47l27VouXryIo6Mjffv2ZfDgwYSHh7No0SIheXzixAm2b9/OggULmDBhgvDIGxoa1slhBUpDSiU77eHhIebMq5LPDRo0oHPnzuzYsYPo6GjGjx9P48aNmThxIs2aNWPTpk3MmjWLSZMmcfz4cVxdXSkuLhYHFy8vL1JTU7l16xZ9+/Zl/PjxJCYmMnHiRO7evYu/vz+BgYF8/PHH5Obm8vnnn+Pg4EBBQYFI41q0aBEpKSkYGBiItILawMnJCUmSsLW1RVtbm5CQEF68eCEK21Vwd3dnzZo1mJiYIEkSX331FatWrQIQ9IuPHz/myZMnNGvWjJEjR3Lz5k0++eQTNm7cSFRUlKiP0NPTq5Ev/OqB6smTJ9y7d4/OnTsLTQBtbW3h/KlN8WudjdeGDRuio6NDSEgIDx8+pEOHDhgaGpKQkMDu3bs5efIkxsbGtGnTBhcXFx4/fkxaWhpFRUXo6uqyf/9+cnNzqaqqYsaMGTg5OfH9999z9uxZunTpQmZmJidPniQoKEjQn+zbt08UCoSEhAhuwClTpnDnzh3CwsIExZGBgYGQPQXqLBXXpEkT9PX1hVcJlJPW09OToqIinjx5gq6uLqNGjSI3N5devXpRXl4uJExfdXdXVVXRs2dPkaukSljes2cPFhYW2NnZERYWxpo1a7hy5QplZWWMGTOGNm3aiIK44uJiLCwsBP/tn4Ft27Zx9epVtmzZgp+fHzKZjIcPH4qE9ZycHKysrHBxcRHG3JEjR3B0dBSFMioDPiYmBnt7e5ycnLh8+bLY4Dp27EhRURGxsbFCl33KlCmEhISwcuVKJk6cSIMGDSgrK0NPT0+QhBsaGv7hXF4Vxo4dS2ZmJqdPn8bY2JixY8dy5coVPv30U4KCgvjggw8EB62vry+ampokJiYSHh6Opqam8OCDcr6FhYXRpUsXUU1ZWloqTsirV68WdCOqB87b25vRo0eTkpLCmTNnAGWYrFu3bmKzzsnJYfHixTRr1kyomtWFyxaUhXIDBw7ExsaG+Ph4DAwMsLOzo6ysjPv37+Pl5SUEEcLCwjh79ix6enp06dKFU6dOCUWniooKzM3NhRznl19+SVJSErNnz8bX15ezZ88SERFBfn4+I0aMYOHChWJRUlHBqNCyZUvatWuHjo4ODx8+JCQkBD8/vzoXpMH/Ue4dO3YMPT092rdvX8OAc3V1pX///jRs2JCxY8eSkpLC4cOHKSgoICwsDAMDA9TU1OjQoQNbtmzBzs5OFP6NHDmS+Ph4QkJCOHfuHK1bt0ZTU5Nr166JNBIVsX1JSQlJSUkYGhrSq1cvUlNT+frrr0lLS6NZs2bCOKhrPqFMJkNDQ0P8/pMmTRIUVi9evCA9PV3k3Kn6rSpoMTQ0FFyWmZmZ6OrqUlpayrfffouNjQ0TJkygoKCA0aNHY2dnx6effgooD64pKSkcO3aMY8eO0adPH3r27ElxcTEffPABmzZtwsTERBivVlZWLFiwAHV1dRo1alQr2cZXceTIEW7cuIGrqytz584Vnu9X01kuXLjAnTt30NPTo2HDhiKNwNLSUoTEVSFyldfc39+fIUOGkJOTIwqb1NXVsbCwoLq6WhQWqng7bW1tmTVrljhk2dnZ0a1bN0EPlJqaKoysukClyGVmZkZMTAzh4eHk5OTQrFkzHB0d6dq1K4WFhWzfvl1EVwICApDL5ZSUlLB48WKSk5O5ffu2YAEIDw/n+fPnSJIkcn9jY2NZvHix8Er7+fnRtWtXwWmel5cn5FEPHz4sPJs//fQTN27cwNTUFE1NTZEWdO/evTr108zMjGnTpvHs2TNh7DRo0ICTJ09y9+5dxowZg6+vL6tXrxbiG6D0+KnEEtq2bSvWjfT0dGG82tnZkZGRwaVLl+jcuTOHDh0SKUZ5eXn8+OOPQojCw8ODyZMn4+npSW5uLg8ePKBx48aigl2Vx11X4/Wnn37C29sbNTU1dHR0MDAwQFdXl/Lycs6fP09CQgJjx47Fx8eH9PR0tm/fTlxcHHFxccTGxjJz5kwhWtC/f38hu37y5EnS0tJo3rw5gwcPxsrKCjU1NZ4/f05ERAQPHjwgKysLFxcXbGxs0NXVpU+fPpSWloq5qooslZSUkJKSQkhISI3Ul9pgz549dOvWDUtLS8zMzGjZsiUymUw8g5IkUVpaSmJiIjk5OSKlqXXr1vTt2xdnZ2f09PSEp9/Z2Rk/Pz+R/vPDDz8IWWBJknB1dRWppc+fP2fixIk0btxYtEfF866jo4NMJqO0tBRDQ0OR2lMbRow6G68qWoNr166RnJwsCK1VOtODBg2ioqKC4uJixo0bx+HDh5kyZQpWVlaMGDGChw8fikpkVbXz8ePHyc/PZ8uWLYSFhdGrVy/8/f0ZM2YMkydPZvPmzRQWFhIQEMCJEyfQ0dFh6tSprF27liNHjjB69GjhZm7QoAEGBgaUlpYK3fm6QMUWoCpCKSoqEprM0dHRnDt3jlGjRrFnzx5xuiwoKKC8vBwzMzPxcIaFhdG0aVMmT55cQ8b1/v37bNq0iaZNm9K/f3+Ki4sJCwsjLCyM1atX884774i2ODs70759e86dO0d0dLQwXgsLC9HX1xeFC3VFcHAwx44dY+fOnSIf2dfXV1QdqiTwVOIPERERyGSyGsZzeXk5R44cITs7m0GDBtGwYUPi4+MJCwtj0qRJvPnmm+zevZuffvqJM2fOMH78eNatW8fMmTN599130dTUZMGCBdjZ2ZGTk0N5eTlaWlpCtrWwsBBTU1OMjY3rnDYQEBDA3r17+de//sXOnTtp1aoVmpqaPH78GAcHB7S1tdHQ0ODJkyfExcXRtWtX9PT0OHv2LDdv3mTx4sUiTSI2NpZjx44RGhpKr169aNWqlSgw2Lx5M1u3bsXGxga5XC4evOLiYuLi4kTOtpubG/369avhiTx37hyrV69m6NChDBs2jBEjRtTJeM3OzhbE/QMGDBBzLDMzE4VCwZ07dxg/frworFDlEs2ZM4dGjRoxcOBATpw4wZ49e4iKikJHR4eWLVtiYmLCtm3bsLa2Ztq0ady5c4fly5cDSlL9r7/+GhMTE/Ly8pAkSXjC1NTU0NDQQJIkcQhKTk7mwIEDVFdX1+BrrS20tLQICAigrKyMlJQUkpOTsbKyEh45S0tLoWoDypSWf/3rXzx8+JAHDx4QHx9P//79USgUWFpakpqaSmZmJjY2NnTt2hV7e3u2b9/OkydP2LdvH3379kVfX59PP/2U/Px8fH19RSU5wIcffsjSpUt57733+Oijj5g9ezbt2rUTykaq4tTaorq6Whyuu3XrRrdu3Xj27BmHDx8mIiKCgIAAJk6cKPTa1dTU0NTUpLy8nMjISHx9fSksLOT48eP06dMHOzs7jhw5QlJSEm3btiUyMpIjR44Irl1QGgNDhgxh165d9O/fn5kzZ/LOO+8wePBgbt26xY8//ljDW+Lr6yu4toE6sX6Akrbw22+/ZcaMGcyePVtw1FZUVNCpUyeqqqoIDw/nzJkzNGnShMaNG1NRUSEqrH/88UesrKzo0KEDGhoaXL9+HUNDQ8zNzamoqKCgoABXV1fs7e1p27YtFhYWGBkZMWPGDBYsWCCeSVWhn8r7M2bMGCZOnCg2ztjYWA4dOkR6erooVK0NFi1aBCgjdmfOnOHkyZOoq6sLTmQfHx9MTU3p1q0bX375Je7u7uI3jI6OriFtq6uri76+PkZGRhw6dAg1NTX69u3LW2+9xeeff87bb78t5sro0aOxsbGhffv2gl5r06ZNaGlpsWrVKpKTkwkMDCQxMZFdu3YBSu5q1T3qgsrKSnGYUCllaWho0KxZM0EVJZPJWLhwIZMmTSI5OVkUdKupqWFmZoaamhoFBQWCZ/bVaFpmZiYaGho8ffqUjz76iBs3bqCtrU3btm1JTEwUynNt2rRh586dInc3ICBACN6okJubW+dIHSjTIauqqtDQ0KCkpITnz5+TlJREcXExT58+xcTERHApb9q0iVOnTqGmpib2YBW1lArFxcV8/vnnhIeHM3jwYDp27CgKpLKysvj666+FfGq3bt2YO3cu9vb2VFRUMHDgQKqqqkSBs6amJnp6egQFBQkKsuTkZD7++ONa92/btm1Cil5fX1+kylRXV1NVVYWmpia6uroUFhayd+9erly5wowZMxgwYIBIlbtw4QLHjh3D1taWLl26YGlpKaJ1HTp04MGDB6SmpiJJEomJieJ7Ro4cyZw5c2jSpAmlpaVCwSwwMJA5c+Zw6dIlPv30U3r27ElVVRW5ubk1amF+DX9IpKCiooKWLVvStWtXHBwcePbsGeXl5QwZMoSBAwdSUlIiQlmxsbHk5OQwfvx4li5dyo4dOwgJCSEgIID+/fujpqYmqCKysrIwMjLC19eXc+fOERcXx+PHjwGlN0ilwhUYGMiECRMApVjBkiVLRB4nKA2rqKgo8vPz/zDXZHh4OBcuXKCgoID+/fszdepUHjx4gI6ODkVFRVhaWorTpba2NvPmzSMrK0t4fG1tbcnKyiIxMRFzc3ORLtG4cWPBibp+/Xry8/Px8fFh9OjR9O3bt4ahC8qTpsrjoaIZGzBgAAMHDuSnn35i3bp1NcjSa4O5c+fSo0cPCgsLOXjwIH5+fgQEBFBcXExsbCwuLi5oaGigpaXFhQsX0NXVFQ9uZWUlmZmZGBgYsHLlSqytrcnIyGDTpk3i4LF06VKcnZ2xtrbGw8OjBj1T3759yc7OFhKftra2lJWVce3aNTp06IC+vj7Lly9n165ddO3alWnTpv1hT+wnn3xCaGioIGD+5ptvhHdMtYnNmTOHcePG8dFHHzFr1iyePXvGmTNn8Pf3x9bWluTkZG7evImPjw+9e/eu4V2bPHkympqaZGRk4OHhIebDN998I2hEFi5ciJubG+np6Zw4cYLc3FxatGghqjpfJWiuC2QymVhsQamSkpqaSlFREWfPniU0NLRGJbe5uTm9e/euoSJkYmIiiiXDw8MJCQkhIiKC1NRUGjRowKlTpzh8+DCgpFpZuHAh4eHhbN26lcePHzNq1CimT58uQmtlZWV8++23xMbGMmLECBo2bCjSblTPcV2gr69PUVERgwYNws3Nje3bt7N+/XqKioro0aMHU6ZMqeGJVUkrvvHGGzx9+pSpU6cKmq3S0lK++OIL7O3tGTx4MPn5+aipqTF37lx++OEHoqOj6devH/379+fGjRtCPe3hw4fi/irBkoEDB1JUVMTAgQOJiIhg1apVmJubM378+Dr1T1UHoOI4Pn78OCEhIXTt2pVGjRr9wjNSXFyMtrY2zZo1o7i4mPLycvbu3cs333xDbm4uS5cu5aOPPmLx4sX069ePDh06cPjwYbp16yY8tmfPniU+Pl78tt9//z3Jycl069aNgQMHMmzYMFGVDNRZjenneOutt2jatClHjhxh6dKlTJgwAWNjY7766isOHz7MkiVLRFHZypUr0dbWpkuXLhw4cID33nuP/v37i8NuYmIiLi4u4vC4dOlSEhIShNqjKvVIlZupejaePn3K7t27KS4upkOHDvTt27dGqFRHR4cmTZowbNgwEhMT6+xdBuVc9fX1RVtbG2dnZ3x9fTl9+jQXLlzgzTffxM7OjgYNGtTYp1TcpRs3biQzM5P4+HiysrKEWpuOjg5Pnz4V6pV9+vTh7NmzWFtb1zDKP//8c3HQ19XVZdy4cXz77beEh4czevRoIU+qWmt++OGHOvXt4cOHuLm5ief81SJalcPjVZny2NhYli9fTn5+Pl5eXkLlbvbs2WRmZtKmTRsRCViyZAmrV6+murqahIQEUW3fokULfHx8hIpW06ZN2bFjhzBcHz58yPnz54mOjsbMzEzU4Hz11VccPHiwVgU/r0LlANPW1sbU1JThw4fz8ccfs2rVKvr168fEiRO5cOGCYELQ1dXlk08+wcvLi61btxIQEEBqairbt2/H2NiYoKAgevbsycCBA/Hx8eHu3bt8+OGHSJKEsbFxDUeFj48PPXv25OjRo3z//fe0aNGCiRMnCs9rRUWF4JZWzem6RmE7duxIbGws7u7uNGzYkJs3b/Ls2TNcXFxo1KiRuF+zZs148OAB69ev58yZM2zduhVHR0f27dvHvHnzSEtLw8zMjCtXrmBlZUVmZia5ubn07NmTwYMHs3//fuEM0NfX59mzZ7Rq1UocCOPj49m1axcjR47Ex8eHR48eibSau3fv8s4779CjRw8WLlz4u336Q2wDqlBWSUkJVVVVGBsbixCGynWsSiq+fv26sMBVE3PZsmXCG5Cbm8vEiRPJycnh0qVLhIeHU15eTkxMjNg4LCwscHNzE4nZ48ePx8/PT0iXzZkzh4SEBEJCQnB2dsbKyoq8vDxOnjzJzZs365S8nZKSQmVlpQhhqUJ7KqoJVVFASUmJKGzQ0tISJMYqqHK7nj17RnV1tajQ69y5M6ampkLlBZQnL5XWdFxcHJqamtja2lJcXExlZSWFhYXExMQQFxdHaWmp8Bbcv3+f+/fv19l4VZ3gHj9+THR0tAglJCcn10iULigoEPfOycnB0tJSUDPZ2tqKsOXRo0cxNjbGy8sLR0dHbty4QXZ2Ni1atGDKlClUVVVx9epVcnJyaN++PX379uXGjRtcuHCBgIAAcnNzKS4upqSkRBSm5ebmkpycTGJiYp2T75OTk8nPz0dbW7tGYdbw4cMBpSGQkpJCdHQ0ampqPHr0iODgYIyMjOjatavIj7W0tMTf35+BAwdib2+Pvr4+YWFh3LlzB2dnZ3x8fATXZHJyMvfu3SM0NFSEuQcNGsS0adOwtrbm+PHjfPbZZ1y+fJnPPvtM5G2pyJhVNE61haGhoTDA79y5wwcffEBZWRmjR49m+PDhNG/evEaY5tVNU/Xbu7m5CU+MsbExmZmZpKWlCdWf27dvExUVRcOGDfn444/x9PRkw4YN/PDDD5ibm2Nubo6amhoZGRmYmpqipaVFVVUVN2/eRFtbm3fffZcpU6Zw4MABvv322zr1D5QLaWhoKCkpKeTk5BAZGSkMdJWufVxcnHhOTUxMqKqqwt3dnbZt25KcnCwKIVR0djNmzMDR0ZFLly6RlZVF8+bNKS8vJy0tTchrqlgUZDIZ3bt3JzY2lqysLMrKysjMzKyhCnP16lWio6MFXVpdUFxczOnTp5EkCT8/Py5evIi6ujpt2rQR3k9ViF1PT08cgFU5hpWVlZSVlVFaWioKOLp06cLgwYNZvXq1UD9TeYjMzMxIS0sjODgYQ0NDBg8eTElJCYWFhZSVldGiRQthHFRUVJCamirCqEVFRXVOwQKEGtTChQt5+vQpY8aMoVevXhw8eJA9e/bQsGFD5s+fT69evdi9ezfZ2dmkpqYKhbgePXqIA2JZWZkwXFetWsWaNWvo1auXoE968OABxsbGwsjKyMggMzOT6OhoEhMTCQkJEWFZUBq1enp6ODo6Ymdnh5+fn9i/aovU1FShjNSkSRNxmCovLyc3N5eysjJevHghFNIkSeLcuXMsWrSI0NBQtm7dipOTExYWFpiamgqnR2hoKBcvXkShUGBoaMiGDRs4fvy4EN5ISEigvLyc+Ph47O3t0dTU5O7duzRv3lwY0bdv30ZdXZ3GjRsTHBxMamoq+fn5IsWuLmP4avFcSUkJ5eXlZGdnY2hoyKJFi4QwT3V1NaGhoTx8+JD09HQhsers7Mz58+eJj49HJpNx8+ZN1NXVOX78ONXV1VhZWQmKsPz8fAoLC0WkxcHBgU8++UQUc+3YsYPDhw/z9OlTbG1txfxWpW2pIjN1gcqjqSrc0tLSIjAwkIYNG9K6dWssLS35+OOPSU1NZcSIEcyYMYNTp04JzygoHV43btygefPmYr9XFVkfPXqUTZs2ie/T1dVFJpPRtGlTunfvTnl5uUhDUFdXx97ennbt2uHu7i7SToyNjRk/fjySJBEaGlqn/g0ZMoRbt24hSRLq6upkZmYSHBwsnGu2trZERUUhSRKjR4+mtLSU7du3c/HiRbp168bx48dJSUkBlIW/KvECFVJSUkhPTxeF35s3bxYHcFVxNiBqSJ4+fYqXlxc9evQAEA66mJgYJEn6hT3171Bn4/XChQuMHDmSuLg4du/eTWBgIB07dsTc3JwNGzawbt06kSQuSZLgWjx06JAoyFKFIcvKyjh16hStWrWiS5cuwpMYGRnJ4MGDMTc3Z8uWLWhra7Nq1SohvacicT506BDe3t74+PiIIq61a9cyceJEodZ1+vTpOhFrz5gxA1dXV4YNG8aMGTOorKyssWhra2tja2srTr4/h4qE2tDQEGNjY5o2bcrTp09FgRNAQkKCSES/fPkyN2/e5MqVKwQFBdGoUSNycnKQyWQYGhoSHBzMd999R1lZGYMHD2bBggVkZWWxdetWJEliy5YtXLt2rU5jmJOTI+T+VF4WSZKwsLAQm2ZRURGNGjWiUaNGbN26lYkTJzJ06FDmzZsnChFOnTrF1atXKS8vZ/ny5UiSxLvvvsvmzZvp2LEjH3zwAUFBQairq2NmZkZ6errwhKtUkE6cOIGrqyvdunVDW1ub5ORk5s+fz/z588XfGRoacujQoVr3LzU1lYsXL7Jv3z6srKz49NNP8fHxITY2FgcHByRJ4pNPPiE5OZmdO3cSFxfHqFGjsLW15Z133mHYsGHit+jbty9t27YlPj6ea9eucfToUR49eoSfnx/z588X+UCZmZm88cYbhISE4ODgwJdffinCLaD0OCsUCk6ePMkbb7yBh4cHDRo0EKHmulaPqhbqtLQ0bt68SXp6Or6+vvTr10+Qd/9axabKs6NadK9du8a6dev48MMP6dSpE3v37qWwsJCWLVtSUVHBw4cPefLkCZ6enowaNQpPT09sbW3x9fUVzCDq6up0796defPm0aZNG54+fUphYSEWFhbExMSwbdu2GuHr2kBVLDV16lQuXbrE4sWLiYqKIikpiaSkJPT19SkvLxeRClWemSrN5L333kNXV5cFCxbQrFkztm7dio6OjuBdjo+PZ9myZURERAgtdkmS2Lt3L8+fP6dXr17Mnz+fVq1akZaWRlZW1i/SdDp06MDevXtRV1fH1dWVn376qdb9a9q0qcjFdnNzY/Hixb/gN0xPTxeVvjKZjOfPn6OlpYWtrS0aGhp0794dXV1dOnToQEVFBbt27RJr47Vr1+jSpQsjRoxg9erVBAYGEhYWxqFDhygvLycgIIBu3boJ7smkpCTu3bsncv+Cg4NJTk7GxcWFrKysOqdFgNJD9vnnn/P06VPg/+bt+vXr0dTUZM+ePTx8+JDhw4cLD7iKNmr8+PGoqamJPaFPnz4YGxuzefNmUbxkZWVFRkYGCQkJ3L9/H1tbW+Gtvnr1Ko8ePaJNmzYsX76cxMREGjRogIaGBhEREYSFhdG4cWORznPu3DmWLl1aQ/f996Cvr4+xsXGNwllV/Ye5uTkzZszA2NhYcPQePXpUMI6Akqvz+vXrhIeH07VrV1auXCkYCM6fP09MTAzwfzmAnp6ewpjp1KkTzs7OrFixgsePH/Ppp5+ip6fHnTt3hBz3pk2bOHLkCKWlpcyZM4fhw4fz9ttvs2DBglr38VXngZqaGnl5eezevZsbN27QunVrFi1ahLGxMXFxcYK3+qOPPuL69escPXqU27dvM2LECL7//ntKSko4fvw4c+bMwdramtGjRwslTG1tbcrLy7ly5YoQ6xk6dCgdOnQQ+1RaWhrnzp0Tilpr1qxBX1+fwsJCjIyMmD59Ot26dWP79u217t+rMDY2FixDXbp04ejRoyQnJ7Nx40ZxsPnuu+8YMWIEY8aMYe3atQwdOpRNmzbRvXt3GjZsKCKXq1atEt5iQ0ND3NzchHFWUlJChw4dWLVqFW3atCEvL4+goCD69euHiYkJP/74I5999hlLlixBR0eHL7/8Ejs7OyZNmkR0dDSLFi2qUXT8e6iuriYgIABTU1NkMhn9+vUjNzeXCxcukJiYiKmpKe+++y7Pnj3j5MmTzJw5kz59+oh1fM2aNfTs2ZMff/wRExMTjI2N2bt3L2lpaejq6pKQkMCNGzfEGpGeni5EJlSHS1AWU7/99tuiHXPmzGHKlCmoq6sLNpHly5fTs2dPkfL2a6iz8RoaGkpMTAx37txBXV29RsPy8vJITk5GXV2dp0+fCkOlX79+mJqacvv2bZ49e8a3334rEp3v3btHYGAgkydPxtvbm06dOlFUVIS7uzvt27ensrKSiooKXF1daxDWHz58mM8++wwnJyd69OghFvhX818cHBzq7JUsLCzE0tKSqKgoioqKCAgIwNDQkJSUFKGl3LBhQ0A5iTU0NBg8eHCNB0gllRcdHU1sbKwIxVpYWAgarsLCQkH1kpWVxbVr10hMTMTKykp4yW7dusUPP/yAmpoaXbt2pUuXLpiamvLTTz+xY8cOOnTowIABA+psvP7444+sX7+eTp06sWjRImxtbamqqkJbW5uysjLy8/NrqFwVFhbWKOIIDQ3lm2++oaKiQnAZ2tnZCfYAUOYnNWrUSIgaqIQDDh8+THJyMpMmTaJHjx6iaEuVMyiTyfD19f1DKimvomHDhqSkpBAaGsrs2bMF80RZWRm6urqi0EhFLWViYoKvry89e/bEwMCAxMRESktLhVHfuHFjHj16RFhYGIWFhVy9epXAwEBsbW1FVXujRo0ICQkhMTGR/fv34+3tjZOTExUVFcTGxgpJY5VH2draGkNDQyRJqnMlt8oIUOW8qn6/+/fvC/qlpk2bUlpaytWrV7l37x5OTk6MHj0aPz8/3nrrLTQ1NUlKShKMIbdu3UJfX5/GjRtTXV1NZmYmmpqauLq6it/C0tJSzE+V5KqJiQkvXrzghx9+YMCAAbRv3542bdqIEJe+vv4v1GtqCz09Pby9vSksLBS6456eniLRX+Xh2LVrF8bGxvTr14+YmBgOHDiAra2t8IBPnDhRiH6oqlm//PJLofyVmJjIkydPKCoqorKyknbt2okcWC0tLVxcXHBxcSEsLIz09HRyc3O5c+cOjRs3/oUEZG3x5MkTevfujYmJCZGRkYSEhGBubk6jRo2orq4mPDycixcv4uDggK2tLQ8fPuTIkSN07NhRSGG7urpiZGQk0pU++ugjtLW1+eijjwR38KuGlbOzMyNGjODevXvcuXOHDh06YGtry/Pnz3n27Bnm5uZCIKRNmzYcP36cgwcPYmNjQ0BAANHR0XXq44ULF9i7dy+mpqZ07NhRyHt27tyZdevW8c4773D06FHs7e3Fb/HkyRPBB75u3ToOHDhA+/btSUpK4qOPPiI8PBwbGxuRHvbZZ5/RvHlzDA0N2bFjBy1atCAoKAgnJycSEhJo1KiREIkBZdGbSoZS5ckFpZFW1/1CldJUUVEhUr7y8/NFyPTUqVP07NkTfX19oYDWpEkTUZuholLU1dWtweFZVVVFYGAgycnJ5ObmsmLFClJSUmjZsiUKhYJdu3bh7u5OYGAgvr6+xMXFibYbGhoybtw40tPTGTBgAKWlpbRp04bx48ejra1dI6e5Nnjw4AF+fn4UFBSQm5uLurq6SONo1qyZiGxlZ2dz/fp1NDU16dWrFz4+Ply9elVEH1WRujt37gj6t0WLFpGbm0uXLl1wcHBg/Pjx6OrqEh8fT1BQEN7e3hgYGIj1w9ramq5duxIbGyuim5qamoJsPzk5uc5RLICoqCiePXtG27ZtRWqYik9ddUCZNWuWWFNUqqJOTk64urrSpk0bZDIZxcXFXLhwgfLyckJDQ3ny5AkFBQVMnTqVyZMnc+/ePVatWiWEAVQCACpHlwrNmzfnxYsX5OXlYWNjw+jRo7l+/Trvv/8+lZWVNbyZtYGamhr29vbi8K2hoUGfPn04ePAgp0+fFoJAwcHBfPrpp8yYMQN7e3t8fX1FbUPz5s2F+p5KrOfAgQNkZGQgSRIeHh54eXlhZGREXl6eKFIDJXNMs2bNsLKyEkXE1dXVxMfHk5mZiYuLCyYmJgQEBNC3b1/BWvNbqLPxamlpycKFC7G2tubdd9+twS/YoUMHNm3ahJubG9HR0YLjKzk5mf79+9O3b19OnTpFSEgIycnJGBsbi4rf69evs3PnTtatW4eXlxf37t3j2bNnzJs3j8TERNavX0+jRo0YNGgQOTk53L59m4SEBJ48eYKenh5vvfUW7dq1q0Gx0KtXL7Ho1xajR48WFdVHjx7lm2++oXfv3mRlZZGeni4kE0NCQnjnnXfw8vJi6NChqKmpoa6uTnFxsaCIuHv3rqiEzc3NJTIykqCgIKHKpNoIjI2NKSwsFOThKs3oCRMmYGhoyJkzZzAzM+PcuXNcuXKF0NBQNDQ00NbWruG6ry1yc3OJiIgQE0x1uABlvlJubq5Irr527Rr29vbs27cPIyMj8vPzOXjwII8ePRKHjqqqKjZs2EBISAheXl7861//omvXrjg6OlJYWMidO3dEQVh8fDyrVq1CT0+PRYsW4evry507d9i6dSuVlZXY2NiQlpaGg4ODOCTUFUZGRgwZMkSQ9as8K66uriK8NH36dFGtmpSUxNy5c2nXrh0GBgbExcVx9epVYmJiiIyMxNDQkJ49e2JqakrXrl05evSoyNXdvXs3P/zwA507d2bjxo0MHTqUIUOGsHfvXnJzc9m6dSvPnz9n69atdO3alSVLlnD06FEOHTrE+PHjMTc3p6qqqkbOWG3HMDU1FX19fZycnJg4cSIXL15k1qxZREVFYWpqysmTJ/Hy8uLo0aNs3bqVTp064ebmRlBQEOvWrSMtLQ19fX06depE06ZN6d27N7GxsXz88ccUFBTw3nvvYWZmxvLly+nduzfV1dXk5OSgo6NDdHQ0X375Jebm5rz33ns8efKE1atXU1ZWhlwur1E0ERAQwNSpU8nMzKxTH1UiAQsWLBDFlxkZGdy9e1dIC4My33fZsmW4urqKMNu6desICQmhW7dufPPNN2Iu5eXliQOwKqwlSZJQBquoqKBx48b861//omfPnpw7d44dO3YwbNgw9PX1RSHnzZs3WblypcgXt7S0rDNt3aVLl1i2bBndunUjPDycXr16sW/fPo4fP46trS2hoaE8evQICwsLcnNzuXfvHufPnxdGmAqq+V1aWoqJiQnPnj0jIiJC5F1WVVVRVlYmeHInTJiAhoYGe/fuJSoqirZt2yKTyfD09KRHjx6CXq1hw4aYmZlx6NAhJk2aVOeiQlAW5U6YMAFvb2+Kior49NNPhZiHo6MjK1euxN3dnfLych48eICRkRHdunXD0dGR27dvs3r1aho3bsx7773Hrl272LBhA7NmzeLDDz9k9erVnDhxgtjYWPr164efnx8LFy7kxIkTLFu2TESyVOkWKujo6GBmZkZ+fn6N6ETXrl1p3rw5q1evrlMfQZkHWlVVRXFxMT4+Pvj4+DBv3jwWLVqEgYEBffr0ITo6Gnt7ezZs2ICpqamgXnNwcOD9999nypQpVFdXEx0dTXl5OYMGDcLMzIy9e/cKVh3VHNTV1RVKUm+//TYTJ05ET0+P8vJy4ZFTjaGjoyNfffWV2KvrWgdy9epVfH19ycnJISEhQchkl5SU1Nj/TU1Nad68Oc+ePSM4OJioqCji4uIAZTRMlTKg2o9VB/u7d+8KhTAVx7mmpibOzs6Cj1dbW1uk6fXp0wcjIyOOHTvGW2+9xdSpU2nRogU6OjqsXLmS06dP14lGCpQHyaNHj9aQcVVx5jo4OLBkyRKys7OFiMV3333Hvn376NixI99//z2gdKjNmTOHpKQkevXqRfPmzZkxYwY5OTmYmpri4eGBpaUlcXFxnDhxgsLCQsH48aqzprq6Gn9/f1GQqaOjw4cffsi2bduYMmUKAwcO5IcffhBKdbWByhv86hoVHx9PZWUlMTExQlRJVYR37do1Jk2axLRp0ygrK+OHH36gtLSUQYMGiWKqN954A39/f9avX4+2tjaTJk0S+c0VFRWCoSA0NJTHjx9jYmIiUj9AmWYxe/ZsIbKjcgIMHz6cyZMnM2/evN/sU52N14EDB6KtrY2Hhwd2dnbs27eP6upqhgwZQvv27QkICEBHR0ckxr/99tvs3r1b5L8NHz6c/v37k5OTg62tLTdv3mTFihXcvHmTtLQ0XFxcmDJlCo8fP+bFixd4eHhQWVnJ559/TmVlJbt376Zv3754e3vzwQcfkJ2djYuLC61bt/4FN1jbtm3R1NSsk/FqaWmJoaGh2BhVBS4qaiuZTEZcXBznz59nyJAhdOvWTeQDlZSU8NZbb+Hn58c777zDxIkTSUhIoKqqSqQx3Lp1i127duHv78+CBQs4evQod+/epaKiQlAB3blzh48//pjIyEih7x0ZGcnUqVMF0b2zszNOTk5/qJjJ0tJSFK+oCNFVqKqqIiMjg4cPHwr6qgEDBqCmpsbRo0f57rvv6Nixo5iwKmN+xowZxMXF8eOPP9KgQQORMjBt2jRBTg5KWUoTExNxqMjMzOTEiRMcOXKE+Ph42rVrx5tvvom3tzfZ2dmCnLwuMDIyQk1NjSFDhggPVWpqKjExMdjY2IgTaHFxsfjsrVu3OHjwIAEBAfTu3Rt9fX3Onj3L7du3ASVd08CBA5kxYwb+/v58++23nDlzRoRM8vLyMDU1ZfDgwWzfvp0PP/wQNTU1EhMTRe5tq1atMDAwoEuXLkRHRwsPSEVFRZ3Vb7766iuKi4u5dOkSQUFBrFq1ipYtW4rDjI+PD82bN0dTU5Np06YJL7CKx1VVUKdCUlISurq6dOnShYEDB3Lo0CGKiopo3LgxI0aMQE9Pj9zcXEpKSkRFtyrXsqysDC0tLWxsbMR8+PHHHzl79iw9evQgMDCQ8ePH8/nnn9epj6p0ABWhtru7OzExMZw4cUJsMM+fP2ffvn0EBQVRXl7OypUradeunaC0srGxEYarKoRtamrKiBEjMDAwoGPHjsTHx4uwZ0ZGBhYWFsTFxSGTyQgMDCQ0NJTQ0FBsbGxEWo+9vT3Tp0+noKCAb7/9lk6dOgnvZ23Rrl078ew1adJEcPaqDP8OHTrg7u6Og4MDpqamQkBBkiSOHz+Om5ub8BwWFhYSEhLC3LlzefToEfPmzcPV1ZVx48bRuHFj8vLysLKyorS0lPT0dKysrNDV1eXBgwdERUWxbt06cnNzeeONN5gwYQJjx44lKyuLb7/9loqKihpCH3VB165dcXNzIzk5mUePHjF27FgaNWokUlaMjIyYPXs2ycnJlJeXo66uLjyIcXFxpKWl0aBBAwwNDXFwcEBDQ4MGDRpgY2MjohXp6emi2Hft2rUoFApOnTpVQ+J7zZo1PHjwgDlz5tCqVSsqKir48ssvsbKyQk9Pj/j4eLp06cLUqVPr1L+dO3cycuRIIQX9aoRh2LBhIlxcVlaGqakpjRo1Eo6Chw8f8vjxY5o2bSrU/jIyMrCzs6O0tJRdu3YRHx/P8OHDRd78pUuX8Pf354svviAiIoLRo0fz6aefYmdnx6lTpzh37hwBAQF4e3tz//59ysrKMDAwIDg4mKqqKuLj42tUxdcGrVu3FlSXXl5eaGtrY21tTZMmTdDV1SU3NxcTExMsLCx488030dXVJTw8vEbRTUpKCvv37yc7O5vMzEx8fX3R0NBgzJgx2Nvbs379ery8vGoUhlVVVdGwYUPU1NQ4ePAgwcHB2NnZMXr0aNzc3LC0tCQkJIS7d+8K47WiooLCwsI69Q+UqVS9e/fm6tWrnD9/nqlTp9YQYlKltEmSRIMGDfDw8KCkpISwsDC++eYbkpOTWb9+vXBCWFpaiudYJZseFxfHmDFjWLFiBe3atePUqVN88cUXrFy5EmdnZ6ZMmSLSf/T09FBTU6tR7KziE6/r+MH/SQUbGBiQm5vLjh07uHTpEra2tkJK3NHRUSgQqujeZDIZ1dXVgo5MZbiqCgoDAwOF86WyslIUoc+YMUMIrTRr1gwnJyfee+891NTUWL9+Perq6mzevJmbN2+K71ChtjRgdTZezc3NmT17Nurq6sTFxbF8+XLU1NQYPHiw8D4+fPgQBwcHrK2tGT9+PPfu3ePp06ds3ryZfv36CToqUFJTpaamEhISIq7p6+vTqlUrkRui0mq/du0aDx8+xNjYmOHDh9fIZa2srKS4uFhM4PT0dAoLC+ts3AUHB9OuXTsGDx7M4MGDReK9Ksc1KyuLI0eOYGRkxObNm5HJZLx48YIGDRqIZPjLly/TrFkzunbtyvvvvy9I8AG++OIL5s6dy5AhQ5DL5YL2Jjw8nFWrVtGzZ0/2798vErIDAwNJT09n//79JCQk0LRpU9q3b1+rhOZfg4qXztbWlvz8fMrLy4UhVVlZyZUrV8SiOnv2bHEo2LRpE9evX2f8+PFCnxuUho+1tTWNGjWiS5cu3Lp1i2PHjgkuX9WGX1FRgZ+fnyDkPnfuHE+ePOHJkycifK0iIFc9JCohh7ogIyMDMzMzUdxmYGAguD979+6Njo4OGzduJCMjg2+++Yby8nLBZKHy1L548UKwS3h6ehIWFkZsbCydOnXC1NSUL774grKyMoYMGULjxo1xdXUlLS0Na2trevfujZ+fn8grtbW1ZfLkyVRWVpKfny/I2lVQ0WnVBRcuXEAmkxESEkJ6ejr9+/cXKkwNGjRg7dq15Ofnk52djbe3txivixcvcubMGQICAmjWrBmlpaV88803HDp0SIT7MjIyePToEUZGRkIqFpR50SpPi4ODA7179yYtLY20tDScnJxYvHgxdnZ2hIaGsmHDBmJjY0UY6edE+rWBurq6MNSSkpJ44403cHd3p3HjxoKOZf369YSHhzNmzBixSTx9+pTBgwfTs2dPkb6jr6/PrVu3OH36NGpqajRq1IjS0lIKCwtp3bq1ID3PyMhAT0+P69evY2BgQP/+/WnatCkPHjxAW1sbJycnMjMz8fb2ZtKkSaSmpjJhwgRSUlIEmXdt0bdvX54/f46uri4WFhZ89tln4lkrKCjAwsICDw8P8WxaWVnRunVrQkNDiY6OFvy6lZWVnD9/Hj09PcaOHUt6ejo9e/bk1q1bIgyvmpfp6ekcP36cxMREAgMDuXXrFiNGjGDmzJmcPXuWTz75BHNzc/z8/Dh79ixZWVn06dOnzoa5Cjo6Onh4eJCSkoKVlRVTp04Vh1GVLKWK09TDw0NIZaurq9OjRw/at2+PtrY2CQkJ2NjYMGjQIJ4+fcrWrVtrrO0REREMGDAAPT09IUt69+5drK2tRZQiOjqa27dvY2VlxerVq9m/fz9NmjTBysqKc+fOkZ2dXYMWrDaIiIgQudxaWloUFxdTXFwsxFZUz11OTg4tWrTAwcGB4uJivv32Wz755BO0tLTo27cvpqamogimS5cuqKurc+HCBcEbOm7cOJo2bYqDgwMtW7akRYsWQjmtU6dOTJw4kSdPnnD//n3Ky8vJysoiMzOTiooKEhMTOXjwIOnp6WhqatZ5LFu0aCHGUmUERUVFcefOHVq0aCHmYXp6OpIk4ebmRvPmzenQoQOXL18W96moqMDe3p6GDRtiaGjI6dOn2b17N506deLdd9/F3NycsrIysrKyCA8PJz4+nh49euDl5cXmzZs5d+4c+vr6uLu707NnTzp37oyDg0ONSIS3t3edowOqsRsyZAiXL19m48aNBAYG4u/vL+yPsrIyjh07JqJ07u7ujBs3jq+++ooZM2YASmEKDw8P4eU8evRojcKqoqIiOnbsSJMmTfD19SU+Pp7k5GRu3brFkydP6NWrl0iBeJUmq7q6mvLycvT09JDL5UKNry7IycmhsrISS0tLKioquHfvHi9evKBv377069dPRKOqqqpwdXXFwMBApO8ZGRnRtGlTkpOTCQ0Nxd7eHisrKyoqKqiuriYoKIiSkhK+++47Dh48KNJW4P+4rwsKCrh27RoVFRWEhYWRlJQkhG4mTpwoDgovXrygvLy8VjLNdTZeDx8+zKVLl1i4cCGampoUFxcLPktQurwPHDjAkSNHUFdXZ/r06Wzfvp1Dhw4RFhZGXFycqKhUVexu2rSJBw8eiFyv58+f06pVK8zMzNDR0cHBwYGdO3eKnL4ffviBc+fOiRMDKD0PKvWvn376iffee48hQ4YIpZLaIiMjo0bOjKoCuFu3buTl5XHp0iUcHR1p3749MpmMn376icOHD+Po6MiQIUPYvn07n3/+OaNGjWL+/Pnid1LByckJBwcHkfehgpWVlaBvCQwM5ODBg5iampKQkMDatWtp3Lgx+/fv58KFCzx8+PA/Ml6PHj0q2iRJEgMGDBD5gKmpqVy4cIEHDx7w/Plzpk2bJj63ZMkS7ty5w8mTJykuLmbIkCE8ffqUQ4cOMXToUAYMGIC+vj7Ozs7s378fCwsLkUahOkGePn2a4OBgHBwcaNOmDV5eXly/fh0XFxd8fHzo0KGDoF8BZd7v119/XafT5t27d/H09OT27dvcvHmTAQMG4OrqSufOnXF2dqa8vJxTp04JKVpQhtgqKyvp27cvx48fFxRR06ZNY9y4cVy6dAl9fX20tbWFR6Bjx4689dZbpKamoqenh6WlJfv27eP06dNMmjSJoKAgwXmspaVFVlYWkZGR6OjoYGVlhbm5+R+mIgoICECSJEFVtWvXLo4dO4a9vb2gcPnoo4/YvHkzbdq0QS6XY2lpyd27d8nIyMDFxYUHDx5w8OBBtm7dKjibCwsLsbe3p6SkhAEDBtTYzFVjWF5eLrSyW7RogYWFhchHP3nyJEuXLqW0tJQZM2bQr1+/OufYvYpHjx5hbGyMsbExxcXFODo6MnbsWPbt28fOnTuFdOuWLVto3749H3zwAXfv3uXkyZNMnToVJycnFAoFe/bsoaqqigEDBjBmzBhcXV35+OOPiYiIoGvXrsycORNvb2/i4uJo0qQJsbGxHD9+XKjANGnSRFT5q/J8Qblh5ebmivzgukBFw+bp6YmVlVWNdefRo0ecPn2axo0b07179xrzpFmzZsLDnZuby5IlS7C2tmbZsmWAMufx/fffx8bGBkdHR3bv3s29e/fw8PDA2NiY3NxcoqOjCQwMZOHChSIXsXv37hw4cIDvvvuOt99+m2HDhnHgwAGqqqrQ1dX9Q2wDubm5GBoa4unpibu7u9gnVEUxeXl5fPHFF2RnZ7N27VohsqGlpYWJiQm7d+8mPDycqKgoLC0t6devnzhwrl69mp07d7Jlyxaqq6spKSlh3rx5REZGsmLFCqqrq0XawcKFCwUXa8+ePQV3r1wuF44GPT09sYnXFr169RIHDlUV9v3795HJZAQFBYmUjry8PCwsLDA0NKSqqorDhw+TmprK3LlzRfFZfHy8qI+wsrJi+vTphIaGcuHCBeEZ/uijj7hy5QqDBg3CxMSE7du307hxY2JjYwkMDBR7qKurKwUFBSL/PTAwUHjdXV1dOXv2bK37GB4eTpMmTSgqKiItLQ13d3fy8/M5d+4cmpqaIq/x+fPnbNmyhaioKFxcXGjTpg0rVqzg1q1bmJub07FjR1q3bi3C1w0aNBCMCRs2bGD8+PFkZWWxatUqbty4QadOndDR0cHGxoZ+/foRGBiIhoaGUGRq2LAhrVq1wsjIiJiYGM6fP09ZWVmNQtnaQpUL2qpVKyZOnEjr1q0pLy/nu+++o3nz5kI46PDhw+zZs4dFixYxZ84coqKi+Omnn5g6dSoLFiygoKCALVu2sGvXLiHFCkrlqvnz52Npacm2bdvIzs7Gzs6OuXPnIpfLUVdXr0GbqKenR3V1teDL1dHRISwsDIVCQUxMTA1p8drgyZMnXL58mc6dO9O6dWsWLFhAamoqfn5+aGpqirqWZ8+esXz5cjIzM1m6dKmIXO7atYsFCxaQnZ2NQqFgypQpJCQk8PjxY1E02qNHDxo2bIiJiUmN/N3Dhw/z6aef0rJlS1q3bs0XX3whuIeNjIzo2LEjjo6OHDt2jHfeeYfevXvXKnWnzsbr1atX2b17N5qamqxatYr333+fc+fOcenSJQYPHkxZWRmVlZWiEOLUqVMMGzaMNWvWcP/+fR49ekRoaCgmJiYcPHiQ4uJimjVrJizv9PR0oQ2sWrBzcnIoKioSuURNmzZl//79rFq1iqqqKhwdHRk+fLg4UcbExFBWViZCQnXBkCFDBHfp8ePH0dTUpGPHjoCyqMPGxkZs6KtXr+bWrVs4OTlRUlJCZmYmXbp04euvv2bAgAGEhoaSmJgoKnlVxVDTp0/Hzs6OrKws/Pz86NGjB3p6eqSnp1NRUSHUQgC+/fZbDhw4wOrVqxk+fDguLi7s2bOHffv20b59+z+kumVra8v9+/fR1tbG29tbGM3V1dVYWlrSv39/NDQ08PLyoqqqiqqqKiRJon379rRv3x4/Pz8iIiIYN24cRkZGREZGMn36dJHPoipuUaGsrAxtbW1BoXHkyBEWLlwoTqwqSqcGDRrUyP15/vw5OTk5v8jx+z2cPXuWcePG4e7uzoEDB1i4cCHTpk1j0KBBIpdTpRZlaGhISEiICI+PHj2ajz76SNyre/futG/fHmtrax48eEBeXh5aWlp07tyZPn364OTkhL29vdD+Li8vJzk5mejoaIKCgtDU1BTzuLKyEiMjI7S0tARliJGREeXl5dy9e7dOfZTL5ejp6WFhYUF6ejrz588nKSmJcePGiflqbm5Obm4up06doqysjGnTphEbG0tiYiIDBgwgLy9PeDMmTZpEfHw8ly5d4vbt2/j5+TFnzhzatGkjNkANDQ2ysrJ4/PgxkiQJehlAPNv3799HT09PUDCp+l4breqf4+bNm+jp6QnVO9X8UhW5VVZWMmDAAKKjo4Unbs2aNdja2grPr7OzM3Z2doImZsGCBeL5bdu2LY8fP8bPzw8LCwsGDx5MVVWVYA548uSJWHteLTJwdXUlKSmJnTt3EhERgZeXFyNGjKiz8RoWFkZaWpowNMLDwwFlRXlGRgZxcXEUFRVha2uLn58fVVVVJCcnk5ycjKGhIVpaWmzatInvv/+efv36iTSJyspKkVaRm5vLkydPqKqqEmtFRkYGurq6YuO6dOmSoD/s0aMH169f59ixYzRt2rRGQdMfga6uLurq6jV4SSsrK4XXVFWMk5+fL4RYDA0NOXfuHElJSQwbNoy+ffsKGj9Vjr6Liwvt27dHkiQiIiLw9PSkuLiY58+fY2FhQWBgoKACbN26NdbW1lhbW5OVlcWePXuws7NjzJgxdOrUCRcXF0EvVVeoDP+srCyhHGljY0N1dXUNwZrnz5+LPU7lVba0tBRe24qKCszMzGjQoAGXLl2iWbNmzJo1i7179zJ9+nRAmdvco0cPfHx8uHPnDhMmTBBFXmlpaSLX9fLlyyJvVEtLi8zMTEFJ9Edw5swZkeutiqDo6upiZmbGtWvXCA4OJjAwkC5dunDixAn279/P/fv38fPz41//+hcNGjQgJSUFJycnkpOTiYyMpFmzZnTu3Bl9fX327NlDUlISDx8+FKpWWlpaGBsbU1lZKdbbn0P1OUBw/Pr4+GBjY8OxY8fq1Mfc3FyhzObg4IBMJiMxMRETExNSUlK4ffs2jRo1YtSoUZiZmVFeXo69vb2geRs5cqRY686ePYuZmRlubm6YmpqSk5PD5MmTRfV8RkYG5ubmdOnS5RfOi1fXWpUoiQpPnjxhy5YtgJJ3W6VAWBu8ePGCwsJCUXegsqVU36nyqFdXV1NWVkZubi5RUVE8fvyY4OBg5s+fT0FBAcbGxjx//pzPPvuMs2fPoq2tjY2NDS1btsTNzQ03NzfKy8u5efOm8BivW7eOmzdv0r17d6ytrYW6W/fu3RkxYoQwkFV9NTAwqJXQRJ2NV319fSwtLbG1tcXa2poFCxZga2vLjh07SEpKYvz48fTt25fCwkLBDXr69GmGDh1K06ZNqaysxMrKCicnJ9auXcuKFSsYMGAAH3/8MQ4ODpiZmWFqair4L0HJx7du3Tr8/f354IMPBCXOhAkTBFdqw4YN8fHxIT8/n3bt2jFw4MAaZNu1Rb9+/SguLmbu3Llcv36djRs3Ck/gq1W99+/fR6FQ4O7uzttvv42amhqhoaFCbefMmTN8//33fPfdd/Ts2VP8Djk5OXTt2hUXFxfMzc2ZPHkyVlZWbN26lZSUlF9sgOrq6lRVVXHt2jXB3xkbG8u2bduIj48XCi91wZo1a4SKRaNGjdDR0SEvL4+8vDycnZ1ZtmyZIA43NzenoKCgxiHAyMhIeOFsbGwEjY8KL1684OHDh3h4eODk5IS2traQ21QVzLxaLakKRauoSGxsbEhISGD79u00adKESZMmCa9SbaDiIXRwcGDUqFF06dIFSZLo378/P/zwA+vXr2fixIl89dVXgJIsPisrCwMDAxwdHZk9ezbPnz8XYgygzL9LTk6mrKwMJycn3N3defHiBUlJSdja2or+DxkyhMDAQLKysoiKisLNzU28Z25uLgz07Oxsbt++zaNHj8jJySEkJKROXh+VR6e4uJidO3dSVFREp06datD8LFiwAGtrayZMmICRkRG9evUSVfUqz6Eq7PPVV18RFRXFyJEjefToEdbW1rRr107Q16iqeR8/foympqbw1IOS03nFihUcOXKEjRs3MmvWLMaOHcv69etp06aNyJmuK44dO8b48ePJzc0VogEqo6d79+707dtX0I01atQIQ0NDYVxOnz6dS5cuYWVlxaBBg5g+fTqbN28WbBigTFlq165djbwy1eFJX19fHM7s7e3R1dUlPz8fLS0tmjZtir6+PiNGjCAsLIwFCxb8IfnbrKwsvL29RRHH/fv3kSRJ5L36+vqKXEJ9fX1iY2M5fPgwP/74ozigq6mpYWJiQk5ODlu3bqVPnz5ibJKSkjhw4ADZ2dl07NhR5HZWVVUxcOBA2rRpw/vvv8/ly5f54osv8PHxIS8vj8DAQNq1a/eLPOw/IviiilSoflctLa0aOezq6uqsXLmSyMhIkpOTxfUff/yRrVu3oqenx4gRI7CzsyMvLw97e3vefPNNYRg2adJE5Nk9fPiQDz/8UByGS0pK6Nu3b4252qxZM44fPy5SiR4/fkxkZCQdOnT4jyIEcXFxZGZm0rRpU/z9/WsYVs+fPycxMbHGfjRnzhxKSkooKiri3r17IqXKycmJFy9eoK6ujoGBQY3UCJXh6O3tzdatW2s4LlRpSLGxsdy/fx9TU1OaNGmCq6ur4F9WjUFdx9HAwIB169bRq1cvunTpAihJ8seNG8f27dtZunQpy5Yto1OnTnz++edkZ2ezfft2IbNuZ2dHZWUlycnJbNq0iePHj6NQKBgxYoRgVWjXrh0aGhrk5OSgUChISUnh+fPneHt7C89yfn5+DY+eigPZ2NgYZ2dnJk2aJAy+uhqvFRUVqKmpYW1tLdI3mjdvztixYzl37hynTp2iQ4cOLF68uAYNYYsWLTA3NyciIkKQ/Y8YMQJvb2/s7OxwdnYWkQQVfs8zXF5eTmFhoaCPUiE1NRV7e3u6devG1KlTf7eg6VWoeGP/3R7zqqFobGzMe++9h7W1NVpaWhw4cEDsvd26dWPevHk8fPhQUK15enrWWNuPHDnC6dOnefLkCQ8ePBACBqq6pu+//154fv38/PD29hZ9DAoK4vTp07VO9ayz8WpjY8PChQtrKFi0atWKY8eOCU9L27ZthedUU1OTuLg4jh8/jpqaGk2bNhUPqLa2NhMnTqRly5Yi0V31Q74aQjM3N6dp06Z4enpSVFTEs2fPOH78OM2bNxf0TVeuXOHhw4d069ZNECYDda7iTkxMZOnSpezevRtQGjYqSbWSkhKio6Nxc3MjMzNTsB6EhIQwZMgQGjZsyL59+wT37K1bt9i/fz/NmzendevWaGtrEx8f/wvdXi0tLc6fPy8S1UG58djb2+Pm5kbbtm1FbpiTkxNt2rSpQY1SV6gM8OrqalHNqCJmvn37NhUVFTXSElSGzrFjx9i2bRv6+vrY2NiwYMECSktLcXZ2xsvLi8TERHbu3ElZWRmtW7fm7t273L59m27dumFiYoKLi4ugOXqVO1BV8W9mZoaRkREPHjzg8ePHNGjQAD8/vzprxr/KD9exY0fefvttzMzMKCsrw87OjrfeekvI8D5//pwzZ86QmJjIs2fPAOWG+N5775GUlISmpiZ37tyhtLSUli1bYmVlJTajZ8+eUVBQwMCBA0WOjiptokGDBsTExIgQor6+Po6OjlRWVvL48WOysrKwsrLCxsaGrKws7OzsuHTpUq37GBYWJjxmtra29O/fn2bNmuHq6kpKSgoRERF0796d8ePHCwlbFWG8mZkZPj4+BAcH8/TpU5FrppJwTktLo3PnzmJRUS282traODo6igKorVu38vDhQ0aNGsWoUaOwsLCgU6dOuLq6MmXKFG7cuCFyl/8I9ZnKE6zKC79w4QLt27cXcsQqmJiYMHbsWKysrAQVmru7O1OnTuXatWscOHCAd955h5SUFNLS0ti7dy8RERF06dJFbMZ5eXmiqEYlePDzPF0jIyOxLrm7uzNv3jwOHz5MVFQUX3zxhcgNrC0SEhKYOHEioCzeOXnyJPb29nTv3p2YmBgePHhA7969hUetpKSER48eUVhYiKurKzY2Nnh5eeHu7k51dTVGRkY1Nqfc3FyaNWtGixYtyMzMZMWKFeTl5TF06FB69uxJQUEBnp6eGBoaYmtrS1paGgUFBSLnEpQH0YyMDOFYqCs2b97MrVu36NixI+PHj0ddXZ2IiAguXryIqakpI0eOFApXqhqK0tJSUlJSmDx5sthn7t69K9JsUlNTiYuLw9vbG3Nzc1q1asVHH33E+fPnmThxIk2aNKGiogJ3d3dsbGyIiIjg3r17Qk1I9awaGhqSm5sr1kBQbr51gYr/WEVtpKL4Ua31sbGxSJJEmzZtsLKyoqioiKKiInR0dDA1NRWHw+rqaiFE0bp1a1EV3qFDBzZu3IijoyNWVlasWrUKS0tLpkyZQmVlJeHh4cI7fujQIbKysnB1dRVRkICAAOHx/fHHH3nw4IHwFtcWvXv3Jj8/v4bDwcbGBn9/f/T19blz5w5ffvml0LDftm0bbdu2pVmzZiISVVVVhb6+Pubm5lhaWqKvr09ZWRl3797F1NRUFAQaGRmho6ODo6Mj5ubmoobm008/5cGDB8ycOZNx48YJCjtVWpZKVvePwsTEhAcPHmBra4uXlxfq6uqCV1lDQ4PAwEDxfKvyUktLS4mKimL37t0cPHiQ1q1b8/nnn+Ps7CxSjF5FRUUFFy9e5NmzZ6irq5Oens6LFy/w9fVl8ODBWFtbo6GhIVIgVRLmqpC+ilbK2dm5ztSDKkouFVTRUFDW+dy5c0fYbKoiK3Nzc1q2bEnLli2RyWT07NkTHR0dLC0tGTZsGJmZmUINUIUDBw5w8OBB+vTpw4gRI0hOTmbhwoV4enryzTffkJSUxPTp0xk2bBjXrl3j/PnzogizZ8+edYqy1tl4VSlOvFp9qqWlxciRI0U1PigrxsrLy9HV1cXb25sff/yRhIQEWrRoQWJiIqtXr8bV1ZX169cDCLUudXV14elRwc3NTVSqlZSUsHLlSh49eoRCoRAhwGHDhrFjxw5AmQ9oYmJCRUVFnamkDhw4ILSU7ezsiIiI4PDhw6Ig5O7du5SVleHi4sKQIUPYtm0bS5cuxcrKivbt23P79m327NmDhYUFISEhlJeXC1d98+bNefLkiQjDjB07FlCmSvw8n0wljmBnZydy3lQFLKoDBChPaXWFJElkZmYKr5+Hh4c4AZ05c4Zt27axYsWKX1Te7t27l8OHDzNt2jQRms3JyWHx4sU4ODhw584dVq9eTVBQEMuXL+fKlSts3LgRXV1d+vbti4ODA507d+bWrVs1yN7j4uIIDg5m8uTJQhRBJpPx8ccfEx8fXyOMXxt07dqVxMREjI2Nsba2Zs2aNeI9lYY8KHkJHzx4gKWlJfHx8WhpaYkQiio36+nTp8THx+Pj4yM8Uenp6aIwIycnRzApgDJ8p6WlhampKfb29vz000/ExsYKfuC0tDQePXokOFdVB5aKioo6Ga/btm1j/fr1fPzxxyxZsoRGjRqRkpJCRUUFkZGR3Lx5U5Bj+/n5ic3Cw8NDbHbZ2dmoq6uTmprKsWPHRHVrp06dhMqUivYNlPNGFT5X6XM/e/aMYcOGMXz4cIYPH05kZCSxsbFMnDixRr70q5752sLb21tQrJSVlXH+/HlSU1OFpnlhYSG5ubk4OTnRr18/NDQ0hNEVFxdHVlYWxcXFJCYm4uzszKxZs7h9+zZbtmzh9u3bpKSk0Lx5c0xMTES+ryo0pjpES5JUwxuqrq4u8jXHjRuHm5uboD+rK4l/VlaWiNRoaGgQFxeHoaGh4CeNioqq4dFV8UwHBgbSu3fvf7tBvvp7u7q64unpiYaGBsHBwWzcuBE7OzsWLlyImZkZd+7cYcaMGTRs2JDc3FzKy8txdXWlqqpKeA41NDQEt+cfMV5PnDjBsWPHMDQ0FPK5ERER7Nixg5YtWzJgwAC0tLRIS0sjPz+f/fv3Ex0dzcqVK4V35+LFi5w/f54OHTqgo6PDkSNHePToEdOnTxeHo2fPnnHlyhWKioowMDCgV69eIrUiJCSE+Ph4BgwYgLq6Ordv38bR0VGoJqqKch8/flzn9B2V5Ka6ujp6enrcv38fUO5/Dx48ICEhgb59+4p8xufPnxMVFSX4O728vEQ6jEoy29DQEAsLCyoqKjAxMWHmzJmoqamRnJzM2bNn0dfXp3///hgaGopoQGxsLIcOHaJTp07069ePtWvXsmHDBlasWCEYF+7evcuhQ4dqRBpqg4YNG7Jo0SKhMKepqUlKSoqgTurfvz89e/Zk3rx5Ip1DleqQn58veLy9vLxYuHAh/fr1o2XLlhQWFopQdmRkJB4eHmhpaVFeXk5paSl6enoUFhZy+fJlrl27RnZ2NklJSWRlZQnuVRXKysrIzs4Wh4K6QiUgoKKpAuU8vXLlCu7u7oLburS0FHV1ddTV1UlJSSEkJITTp08TFxdXgwaqsrKSnJwcQc1oaWmJpqamEGsyMTFBR0eH1NRUhg4dKmiiCgsLqaqqEg6jhIQEUaitoaFBaWnpHxILKS8vF1zuqnC+al2/d+8eO3bsoFevXvj6+nL9+nWePHnC7Nmz6dWrF/b29oKiMyYmhokTJzJhwgRSU1OFca1aG6ytrWnRogXvvPNOjbzcoqKiGtRfT58+5cqVK2zdupXy8nKGDh2Ki4sLTZo0qXUEpM7Ga6dOnbC3tycjI4OwsDAqKiqwtbUlKChIVFMbGRlRXFzMjh07ePDggUgFGDp0KFZWVoIbs1+/fqSlpREdHc3Tp0/p3bu3CKvm5+djYGAgKu+SkpJwd3dHW1ubAQMG0K5dO1HJWVVVRffu3cnLy+PixYsYGxszc+ZMNDQ0uHr1ap36Z2FhIfgtLSwsqKysxM3NDUmSsLe3p7y8HH19fRwcHPjXv/5FRUUFjx8/JjU1FZlMRpcuXdDS0kJHR4dWrVoRGxsrlCcGDx5MYGCgMOxAyWnWunVrPvvssxoHAnV1dW7cuEFFRQUtWrTA1tZWyDSqQtnAHwrHqoiJ27dvj7+/Pzdu3KC4uJgWLVpQUVFBSkqKMLjPnDlDZGSk8AD7+PjQrl07jIyMMDIy4s6dO2IRdXZ25t133xWejdatWxMdHc2DBw+wsLCgdevW9OjRQ3AZ6uvrC4+6SrlMR0eHdu3a0bBhQzQ1Nbl58ya7d++uwVDxe4iKiiI0NBRfX98aVf2gNDyDg4O5dOkShoaG9OjRQ4QtVeMM/xcBaNCgAZqamiK1QSVa0L9/fxISEkQyvQoymUyMSXV1NS9evCAnJwcNDQ1hfPXu3ZtevXoJwzU6Oprr16/XaQxV7Byqw4unpyexsbFcvnwZNTU1OnXqhKWlJXl5efj4+Ijn6NWFwcPDg1WrVmFiYoKjoyORkZFERETw+PFj2rZtK0QxKioqeP78ORkZGaSnpxMdHc2jR49wcXFh1qxZonjo0qVL3Lx5EwcHhxpFdzKZ7A8Rhw8cOJAXL16Ig2xgYCAFBQUcOHCA6OhoqqurGTx4sNhYnj59yu3bt0Wh4DvvvIO6urroc0BAAA8ePMDOzo5Zs2aRl5eHXC5n/Pjx9OzZE0NDQyEZamlpibW1taDGO3r0KGZmZuLAkZWVxZkzZ4iOjmbo0KF4enqSn59fp0IYExMTli1bRocOHdDU1KRZs2bo6+sTExODq6srs2bNoqCggE8++YS4uDgaNGjAoEGDaNas2a/m17548QItLS0sLCwIDQ3l+PHj9O3bl1atWrFq1SqSk5OJjY0V3pbi4mJh5KkOJrt27eLy5ct07NiRoKAgGjZsWGPNqQtGjhwpIk8qNG7cmGnTpuHk5ISWlpbgnc7JyRFMLyoOy3PnznHx4kUaNWpEeno6e/fuxcTEhCZNmnD27FmRB9uzZ08KCwvx8/PDw8ND/D5aWlo4OjoK54hMJhMqXBUVFRQVFXHx4kWCg4NFruzRo0dr3T9vb2/U1dU5fPgwFy9epG3btvTo0YPS0lLKyspwdXWt4ZlKTk4WBaUmJiZcv34da2trAgICyMzM5OLFi7i4uGBqakpISAiXLl2iqqqKYcOG4eTkxLRp04ThUVlZKaTGjYyMGDhwoMh3Vxk9r1al9+rVC0tLyxoh7NpAldOqqanJgQMHCA4OxtHRURRqVVRUCAaa3NxcQaMEynW0TZs2Io9RlXsMyrXU19eXsLAwgoODsbW1RUtLi3379pGfn8+wYcNwd3cnLS1NSHt36tRJcN3q6OjUWHu1tbUF325d4ePjQ0pKClVVVSIipaKIUjGV2NjYCM9gWFgYV65cQV1dnblz55KVlYWZmZlIJ5AkiaSkJM6dOyeiCL6+vmJe9urVi7Zt23Lr1i0cHBxITk4W0vSv5pm7uLhgY2ODg4MDffv2xdDQUFC91QVLly4lJSWFHj164O/vT3R0NKampgQFBdGtWzfU1dVp2LAhjRs3xtTUlL179zJnzhxWrFiBr68vu3fvJiQkhH/9618i2n358mWOHj1KixYtmDRpkoikdOnSpUaBdXFxMZmZmcyfP5/Hjx+Tn59PfHw8HTp0ICcnh+joaFq1aoWLiwuVlZXIZLJa5bzKakusLZfL68bA/RpCoVD8qvvnn94/+Of38Z/QP/jn97F+nv6z+wf//D7+E/oH//w+1s/Tf27/6u62q0c96lGPetSjHvWoRz3+ItTa81qPetSjHvWoRz3qUY96/NWo97zWox71qEc96lGPetTjb4N647Ue9ahHPepRj3rUox5/G9Qbr/WoR20hk61AJitFJnP4D+/zNjJZBTKZ55/UsnrUFvVjWI+/A+rnaT3q8Zv4S3Je5XK5OTAI6AP4AnZAORABbAW2KhSKugtpv2aQy+UyYBIwHWgMqAORKPu4UaFQ1J3T4zWCXC4fCgQB/kATwBDYrVAoxv6V7QJAJlsNtADcAQugBHgOHAG+QpKy6ng/B5Rj9y2SNOdn78UDv8aunIYk2fzs87pADHAfSepbp3b8yXht56hM9rtrBJJUtzXi18ZQJpv48p6/hWok6f+UFl6jMYTXeBz/i5DL5eOAHS//OU2hUHz7lzVGJusDvAl4A+ZACnAP+BxJulnHe/0j1xoAuVwez2+0X6FQ2PzKe38byOXyX50LCoWibnPhNYZcLm8PvAW0BcyAbJTr8xcKheLkf/v768zz+idhGLAJ5aBeAhIAa2Aw8C3QSy6XD1MoFH/3arLtwDggHdgPFAFdgfVAh39AH5eiNFoLgSTgdTrdzwVCgXMof399oDXwATAdmaw1kpRYh/u9B2gDn/7K+3nAF//meuEvrkhSCTLZemA1MllbJOlGHdrxZ+N1naO/u0Ygkw2jbqfvXxvDMGD5r/xNe6AzcKrG1ddrDOH1Hcf/CuRyuQPwJcrn64+R0P5ZUB6U3wGyUB6OMwFXYAAwBJlsPJK0qw53/KeuNSrUvv1/M8jl8t+cC3K5fLxCoajLXHgtIZfLlwIfouzfcZTrtAXQFOgI/GON1yigP3DiVQ+rXC5fAtwGhqDcpH74a5r3n0Mulw9EuZnEAa0UCkXmy+uawAGUfZwAbPuLmvhnYC5KozUGpQe29hJR/30YIUmlv7gqk30MLAEWA/Ja3UkmMwbGABd+w+DNRZI+qEP7dgErX7bhL9lQXvM5KtaIGh5WmeyPrRG/NYaSFIbSgP13f6fylHzzb979y8cQXvtx/NPx0su8FaWB8CMw/y9rjExm8/L70wA/JCn9lfc6AReBFSjnSm3u949ca36GXIVC8cFf3Yg/G3K5vMZcUCgU6a+8V/e58JpCLpcPQ2m4ngcGKxSKgp+9/+8VVP5k/CU5rwqF4qJCoTj289QAhUKRCnz98p8d/+cN+3Mx+OXrWtVmAqBQKCpQnqwB/vU/b9WfCIVCcUmhUES/lh6df2e4KnHg5atbHe42CtBD6dH6cyBJL4BrwFBksj8uyv2f4fWdo5J0EUk69ovUAEn6o2tE3cdQJvNB6a1PBk78mza+DmMIr/M4/ncwB6U3fBJKD/NfCSeU++itGoYrgCRdAgoAyzrc75+61vz/ADEXXjVcQblXUve58NpBLperAauBYmD0zw1XEOvOfx2vY8GWquOVf2kr/nOocnee/Zv3VNeayeVyk/9Nc+rxEv1evj6ow990ffka/Buf0UYmG4tMtgSZ7E1ksk7IZOq/8XmA6yjDgx3q0JY/E3/XOfpH1ojajOHPMePl63dI0q/ljP7VYwh/33GsM+RyuRewClivUCjqpv3930E0ylzsVshkFjXekck6oKwDOF+H+/1T15pXoS2Xy8fK5fIlcrn8Tblc3kkul/9e+/8OEHNBLpfXmAtyufyPzIXXEW2BRijTAnLkcnkfuVy+8OU4tvlfNuSvShv4t5DL5RrA+Jf/PP1XtuVPgMoD0ujfvOf8yv97AiH//eb8fwqZbD7KnDhjlAVcgSgN11V1uEsgylNz1G98xgbY+bNrcchkk5CkK7/yN3devnZAmTf0v8bfb47KZH90jajNGL76PbrAWKAaZY7tr+GvHkP4O47jH8DL/WEnyvznJX9xc5SQpGxksoXA58BjZLIjKNMZXFCmvZzj/w5BtcE/da15Ff+2/XK5fJJCofi19r/2UCgU2XK5XMwFuVx+hP9sLryOaPnyNQ1lTYnvq2/K5fKrwFCFQpHx327I6+Z5XQX4ACcVCsWZv7ox/yFUC8Q8uVxuprr4cgF+tTjE9H/aqv//MB9YhrIqMhClwdMdSardwyWTaaEsFEr9jeKgrUAXlIuyPsoHejPQEDiFTNbkV/4u9eWrY63a8ufj7zhHxRqBJNVujajdGP4cwwET4NTvFPb91WMIf89x/CN4H2VByESFQlHyVzdGQJK+QJm6oQFMAxahLDhMBLb9Ip3g1/DPXmtU+M32y+XyX2v/3wIKheILfmMu/Dyd4G8Iq5evMwFdlJECQ5Rr8hmUh6OD/4uGvDaeV7lcPgd4G3iKsvjg7459KD03vVCewo6izBPpivIkFo0y7/IfR2HzWkFFHSOTWaMMeawC7iOT9UWSQmtxB/OXrzm/8R0/r1R/CMxEJitEOac/QEn79HNkv3y1+Dfv/S/w95qjMtkfXSN+fwx/iekvXzf/zuf+6jGEv9s4/gHI5fJWKL2ta187uiGZ7B2UBVEbgK9QGoqewCfAbmQyfyTpnVrc6Z+81gCgUCj+bfvlcvnvtf9vAblc/ptzQS6X+ysUitrMhdcVqvQOGUoPa/jLfz+Sy+WDUEYMguRyeZv/9nP6Wnhe5XL5bJSULo+BTgqFIvt3/uS1x8titP4oPX+pKDfbySir8wNRhhNASW1Tj/82JCkNSToMdEe5Sez4nb9QQeXh0fkD36oqLPq1PDPdn33H/xR/qzkqk9VYI5CkuqwRdRtDmcwb5UEnid+nfPlLxxD+ZuP4B/BKukAU/1eA9npAJuuIsoDlKJI0D0l6hiQVvzwYD0JZ7Pc2Mpnzb9xFhX/sWlML/F77X3vI5fKOvJwLCoVinkKheKZQKIoVCkWNuSCXy2szF15XqA5Wz14xXAF4GQ1RRcNa/bcb8pd7XuVy+VvAOpQnsC7/ALe6gEKhqATWvvxPQC6X66Ik9i8BHv3vW/b/MSTpOTLZY8AfmcwCScr8nc/nIpOV839ekbpANZf1f+V985997n+Ov8Uclcne4pU1otZhWBXqPoa1KdRS4S8fQ/ibjOMfhwFKsRGAUrn83zLcbZHL5VtQFnK99b9qGKAi/v8lTaAkFSOT3UZpuDTl3xfUvfr5f/Ra8zv4vfb/HfCrc0GhUBTL5fLaz4XXF5EvX3N/5X2Vcav7K+//afhLjdeXyc2rUHIsdnuV5uUfjnEoT9fb/1e0EvWogQYvX2sbRo0AmiKTGSFJ+XX4HlX15a8tVCpRh7A63PN/hddjjiqLYcQa8buHjV9H7cZQJtNB2fdq4Lta3Pd1HkN4XcbxP0MZvz4WzVAaA8EoN9b/dUqB9svXX6NAUl0vr+X9/n9ca+D32/93wJ89F15HXEXJ8uIml8u1FArFz/vi8/I1/r/dkL8sbUAul7+HclO6h9Lj+o8zXOVy+S849eRyeUuU/S5ESVhcjz8bMpnnS/Lwn19XeylSYAXcQJJqmwN5GeWz8stQiEzWGJnM7N9cd0KZ8wS/Tkrd+uXrXybu8FrPUZmsxhrxHxiu8FtjWBPDUBY2naylAttfPobwmo/jfwiFQlGiUCim/rv/gKMvP7b95bU/jx+1drj28nU6MpldjXdksl5AO6CU2osDXOafu9Y0frWg8JXrtWn/3wFiLsjl8hpzQS6X/5G58NrhpZ22HyV7z/uvvieXy7sBPVAqqP3X2aL+Es+rXC6fgHIxrUI54HP+TSgoXqFQbPsfN+3Pxjm5XF6CMtxZgFJzvDdKT8JghULxdz5lqpR9Br78p8pYbCOXy7e9/P9MhULxV6jf9AQ+RSa7CsSizPmzRqkC5owyL3BaHe73A8pigh78kqdvGLAImewSSoWjApRFMn1QerxOAp/94o4ymRrKqttIJOlhHdryZ+P1nKMy2S/WCGSyn38qHknaVss7/tYYvgpVoda/U9T6eRtflzGE13Uc//k4hHI+dQWeIJMdRrm+eKEMI8uARUhS1q/fogb+yWvNMGCRXC6vW/v/PqgxF+Ry+b+dCwqForZz4XXFPCAAePclf+1tlAINg1Cu19MUCkXuf7sRf1XagIqPUB0lhdG/wxX+/nKGh4CRKCuBdYEXKDkjVykUivi/sF1/FvxRyk6+Cmf+j1vyOX+NdON5lMZHO6AJSsqjIpQFHzuBDXUq+JGkm8hk94ExyGSLfpYHeQnwQBm6bIMyZysXZRhzJ7DzV2hvugJ2KCV2/0q8rnP0z10jfnsMlZDJvFAWONWmUAtenzGE13cc/9mQpGpkst7AbJS//yCUClnZKOfQBiTpbB3u909ea363/a+lWmMtoVAoquVy+W/OBYVCUfu58JpCoVCky+XyAGApyj62RnkQOQF8olAo/idc0rLa0x7Wox7/H0MmGwXsAQa/ZC34T+/3A0pPsAuSlPcf368ev4/6MazH3wH187Qe9fhd1Buv9ahHbSCTyVAWgyirt/+TB0cm80epTjIHSfrqdz5djz8L9WNYj78D6udpPerxu3gteF7rUY/XHsoNZDpwmP9jK/ijsEXJV/n1732wHn8i6sewHn8H1M/TetTjd1Hvea1HPepRj3rUox71qMffBvWe13rUox71qEc96lGPevxtUG+81qMe9ahHPepRj3rU42+DeuO1HvWoRz3qUY961KMefxvUmudVLpf/7ZNjFQrFL1jOVfin9w/++X38J/QP/vl9rJ+n/+z+wT+/j/+E/sE/v4/18/Sf2796z2s96lGPetSjHvWoRz3+PpAkqVb/zZo1S5o1a5ZUXV0tlZeXS8XFxVJVVZUkSZKUm5srPXr0SHrx4oVUWVkpZWVlSdHR0VJubq4kSZJUXV0t7dy5U2rVqpWkoaEheXl5SQsWLJB27twpnTlzRoqJiZFUuH//vrRp0ybpxo0b4lpBQYGUmpoq3blzR7p06ZKUmJgo3svPzxftSElJkfr37y8NGDBASk5OliRJkoqKiiRV22vTv1GjRklOTk7S5s2bJUmSpKtXr0qNGjWSAGnBggXie5OSkqScnBypqqpKqq6uliRJksrLy6XHjx9LT58+lSorK6Xi4mKprKxMkiRJCgkJkRwcHCR9fX1p7dq1UkpKihQZGSmdOnVKun//vlRdXS3FxMRIH374oTRq1Chp0KBB0rBhw6S5c+dKO3fulJ4+fSq++/bt29Lq1aul+/fvS1VVVbXq36t9XL58uSRJkrRz505pzJgx0rFjx6QPP/xQAqSFCxdKkiRJb7zxhtS1a1cpIyNDOnTokARIM2fOlH6OL7/8UgIkQGrXrp0UFRVV4zdS4ccff5RsbGykSZMmiWsVFRWiP59//rkUExMj5ebmSiNHjhT33Lp1q5Senl6nMUxOTpYiIiKk3NxcqaqqSoqKipJu374t5efnizmxYMECacSIEVJYWJgkSZJUVVUljR8/XgIkQ0NDad26dVJBQYGUn58vZWdnS5IkSffu3ZMsLS2lxo0bSzt37pSmTZsm9e/fX0pMTJTu378veXl5SWPGjBH9S05Olq5duyalp6dLkiRJ3333neTs7Cz6BkjOzs7StGnTpH379tWpjwkJCdL+/fulkSNHSqamphIgmZiYSP7+/lLjxo2lPn36SBcvXhRtKSgokEpKSqTS0lKpvLxczNsbN25Ibdq0kQBp0aJFUmRkpHTx4kXp6tWrUnl5uVRZWSnmd3h4uDR//nxp06ZN4r7p6enSmTNnpIMHD0rh4eGSJElSdna2tHHjRmnv3r1SQkKCtGjRIgmo8zxNSkoS8z4pKUkKDAyUWrduLZ7/vXv3Sv7+/lK/fv2k/fv3SzNmzJAA6Y033hDtW7FihQSIeffixQvpyJEjUkpKivhMWVmZVF5eLpWWloq+voqSkhIpJydH/Ltfv36STCaT9u/fL66p5khdxnDq1Knid1fh3Llz0v79+8W8lCRJysnJke7evSs9efJEKisrk4qKisR7O3fulNTU1GrMu/v370vFxcXi3xkZGeL/jx07JpmamkqjRo36RT+/+OILCZB69uwppaamSpIkSREREdKOHTukc+fOSaWlpXUeQxXKy8uloqIisVZLkiTduHFDmjFjhuTm5iYNGjRIrPl5eXnSs2fPxOf2798v6ejoSN27dxfXTp48KZmYmEgzZswQv4NMJpN8fX2ls2fPSpWVlVJkZKR04cIFKTMzUyosLJTWrFkjOTg4SK6urtL27dvFvYqKimqMe13GcNasWWIdS09Pl86ePSvl5eVJkiRJixcvlnR1daX169dLkiRJCQkJ0s2bN8V3ZWVlSVu2bJGOHTsmSZIkhYaGSvPnz5dWr14tXbt2Tdq/f7/UuXPnGvtRUVGRdOXKFSk8PLzGPHj1d42MjJS6desmAdKgQYMkhUIhffzxx9Jnn30mXb58WcrKyqpTH2fOnCmVlpaKsTlx4oR0+vRp8UxUVFRIp06dkjZs2CCtXLlS6tSpk+Ts7Cx99913kiRJUlpamvTTTz9J165dk7KysqSfo6CgQPyGkZGRkqWlpeTj4yPl5uZKlZWV0vfffy/dvn1bkiTlOvDll19KPXv2lJydnaWRI0dK9+7dE/c6dOiQtHTp0jrPU5VNU1lZKe6VlZUl7du3T+rUqZPUokULMU6v4vTp09Ibb7whvfnmm9L+/fvF2BcVFUljxoyRunbtKj169EiM/6xZs6SRI0dKR48elRISEqRr166JdVOSlGtNQUGBJEnKdWnlypVS06ZNpT59+gi7YOvWrZIk1W2enjt3TqqoqJC+++47acCAAdLOnTvFd65du1bsR61bt5aeP38uVVRUiDXoxYsXUmBgoDR27FipoqJC2rJliwRIvXr1klavXi21bt1amjp1qpgj+fn5UlRUlNj3JEmStmzZIpmYmEhubm7SkydPxHXV775v3z6pc+fOkqampmRoaCiNGDHid/tXZ3lYmUyGpqYmmpqa4lpKSgrffvstAQEBjBgxAjMzM0pLSzE2NhZ/4+/vj7m5OZWVlcTFxdGsWTN69eolPgOwefNmHj58SJs2bbC1taW0tBQdHR0MDAwwMDBg37597Nq1i6VLl2Jvbw+AoaEhAKdOneLSpUt07dqVwMBArK2tAdDT06tT/9asWcPVq1eRyWTEx8fj6elJ8+bNiYuLE5+JjIzk0qVLzJw5U1yLiYnhypUrnDhxgkaNGvH+++/X6Jurqyvz5s0jISGBpKQk5syZg4aGBkOHDsXf3x+A+/fvI0kSEyZMQF9fnx07dnDixAmSk5Oxt7fHw8MDAFNTUzQ0NEhJScHFxaVO/QM4f/48fn5+6OvrY2JiwubNm1FTU2Pu3LmMHTuWoqIi2rZti7+/PxYWFgwZMoRz585x8eJFFi1ahLOzs3jP39+fESNGsH//fh49ekR1dTUAYWFhFBcXY2dnB0BGRgapqalcvnxZtENDQ4Pjx48THx9Pu3btcHFxoaCgAGNjY2QyGR4eHmRlZXHq1Kk69c/Y2Jj8/HwKCwsxNjbGzc2N8PBwTp48Sbt27bC3t2fSpElERUVhbm5Obm4uN27cwNfXl2XLlmFlZUWPHj0wMDAAoKysjAsXLnDr1i0xXs2bN8ff3x8dHR3s7e0xMTHhnXfeobCwkP3795OVlUVlZSWdO3fG0tISgKSkJCoqKhg5ciQ2NjaEhITQqFEjxo0bR2BgIFeuXKl1Hx0cHMjOzsbT0xNJktDR0cHW1hZjY2P09PRo0KABtra24vPFxcWEhYXRpEkT8WwAtGjRgmXLlvH48WMCAgKwtbVFU1MTNTW1Gs84gJOTEzNnziQnJ4e7d+9iZ2eHra0t3bt3r/E5XV1dmjVrhp2dHQ4ODvTs2ZOSkhLKy8vrNI55eXl4e3sDUFpayowZM/D398fe3p79+/ezevVqHB0dmTZtGs7OzmhoaGBsbExRURE7duzA398fOzs7ZsyYwaxZswB4+PAhN27cwNPTExsbGyRJEmsawIsXL1ixYgW3bt2idevWTJ8+naZNm6KjoyPa9fbbbzNo0CCaNm0qruXn53P+/M+l6H8bzZo1Y9GiRYwYMUJcMzMzo6ioiNjYWMrLy/Hz86OyspLc3FwMDAzQ0tJCS0tLfL5x48ai/yrY2Njw1Vdfoaury7Rp07CwsKCgoIBPPvmE0NBQ5s6dS79+/bhz5w6HDx/m2rVr6OrqYm9vz/Lly2nbtq2YIx4eHjx69IgDBw5w8mRtFHN/ifT0dKysrMjMzOSTTz6hbdu29OrVi6qqKjZv3oyuri4ffvghbdq0AZRraW5uLra2tujo6ODk5MTw4cNxdXWlrKwMbW1tnJ2dWbFiBffu3WP06NF4e3uze/duzM3N6datGwCPHj1i//79TJo0CX19fTZs2EBSUhJvvvkm48ePB5Tjff36dczNzWnevHmNNbs2KCoq4uHDh/j7+2NpaUmnTp3Q0FBuq9OnT8fa2pr09HQOHjxIq1atMDEx4fr163h6emJsbIylpSUXLlwgODgYNzc3+vbti7W1NZ6engDcunWLixcv8uzZM/F9FhYWuLu7s2PHDs6fP8/cuXMxMzPjww8/xMfHh/nz57NhwwbWr1+PjY0NZmZmmJmZ4ezsjKurK0VFRXXqY3x8PNra2qI99+7dw8PDQ/RTTU2NJk2aYG9vT3JyMurq6mhqajJo0CBycnJ47733KCgoYO7cuYSGhrJt2zb09fUZNmwYQUFBGBgYiH3D3d2d69evs2/fPmbNmoWXlxcDBgzAx8eHxMRE7ty5g6GhITNnzqSyspL09HRCQ0PR0tLCx8eHli1boq2tXee5qrJpzp8/z44dO5gwYQJdunTB1dWVoUOHoqenh6WlJaGhoWRlZREQEICRkRFWVla4u7vTqVMnzM3NuX79Ou7u7jg7OzNgwAB27drFF198wfvvv4+9vT0ZGRkcOnSIbt264eDgQFlZGTk5OaIdubm5HDt2DBMTE7p27cqoUaMoLi7m+PHjZGZmMnLkSAYMGFCnvgEEBASgoaHB5MmTKS4u5syZM+jr6zNo0CBGjRpFcHAw165do0mTJujq6qKhoUGTJk0A5X46YsQISktLefr0Ka1bt2bLli3k5+cjSRJDhw7Fy8tLfJehoSEVFRVcv36dhw8fkp+fj7q6OrNmzSIlJYUlS5bg6elJ//79adasGbq6uowYMYIGDRqwZ88eDA0N6dy5M0ePHv3NPtXZeAUoLy+nqKgIU1NTAJ4+fcrNmzfR0tISC7HKgJXJZMhkMry8vBg/fjzPnj3D3d1dGK7p6emYmppy8uRJ3nnnHfEg6OrqkpGRgSRJODo6ApCQkEBkZCTJycm/aNOXX37JqVOn+P7778WmEhcX94sN+PdgbW3N6NGjCQ4OJjMzk4YNGyKXyzl//jyZmZkkJyezd+9eTpw4gY2NDQMHDiQzM5OnT59y4sQJDh8+TNeuXYXh9PjxY3R1dWnUqBFvvfUWJSUl7Nixgzt37ojFS4XU1FQiIyPp3r073t7eGBsbo6uri5OTE+bm5uJzFhYWjBgxgoqKijovRKBc1FevXs3UqVPp0KEDu3fvxsHBgbVr174Ud4FRo0YByk3ZyMiIwMBAgoODOXnyJKWlpaSkpJCZmYlcLmffvn20bduWiIgItLW1yc7OJjg4uEbfHB0d6dq1K0FBQeLa0aNHOXz4ME2bNqVVq1aA0qCdMmUKgYGB5ObmYmhoWOc+6uvri8VfBU1NTW7dukV6ejqTJ0/Gy8tLPHB3797lzp07dOnShcDAQAAyMzOJjo7Gzc0NTU1NvvvuOxISEvjxxx+xsrIClAtNZWUlqamp2NjYMHHiRG7cuMGyZcsICwujW7duYiOtrKzkyJEjZGRk8Pbbb9OiRQtCQ0MpLi4mMDCQqqoq6oomTZrw4MED1NXVWbp0KQBbt27F0NCQoUOHAlBdXU15eTnp6elUVlaSkZEhDJPCwkIqKyvp1KkTPXr0EPdVHQgrKyspLS0FQEdHRxjGsbGxJCcnY2ZmBkB2djZxcXHo6elhbW2NmZkZrVu3prKykoKCAoKCgggKCkIul9epf1euXEFfXx8nJydcXFwwMTERz0FWVhbFxcU4ODhgb2+PqakpgwcPZvDgwZw8eZJjx45RWVlJ3759mTx5MqB8vg4fPkxOTg5paWnIZDLu3r2LhYWFMMAjIyO5cOECMTExPHr0iG7duon15NmzZ+jo6BAQEEBQUFCNMUtISODJkyd16l9gYCC+vr4APHnyhOPHj6Orq4u/vz8JCQncu3cPT09PtLW1uXTpEqA0nE1NTSktLSUpKQk9PT2WL19e45D+4sUL7t69i7m5uWhjbGws33//Pd7e3rz77rukpqYyZMgQwsLC0NHRQVdXl44dO7JkyRJAOW8yMjKwsLCgSZMmbN68mUuXLolDQG0RFhaGlpYWVlZWFBcX89lnn2FlZcW5c+eIiYnBxMSESZMmiX1j3759BAcHY2RkhJaWFgEBAfj7+7NkyRJKS0t59uwZZWVl+Pv74+HhwbZt25g5cyYuLi5izaqqqkJdXZ2LFy+yf/9+SkpKcHZ2RiaTMW3aNL744gtAaYidO3eO0tJSnJ2dsbGxqXFIqQ08PDy4du0aAP7+/qipqZGcnIyOjg4NGzZk9uzZLF26lEuXLtGxY0dsbGx4/Pgxmpqaom+HDh3i5MmTzJ49mylTptS4v7m5OVZWVjXWHJVx8fDhQw4fPkzv3r1p3rw5oaGhXLp0id69e+Pt7Y1CoWD9+vXk5uYyY8YMMR7Hjx+vUx+bNm1KQUEBhoaGWFpaYmpqSnZ2Nk+ePMHd3R1jY2NsbW2RyWTExMTQqlUrOnbsCCgN3+fPn6OmpkZSUhKRkZEcOnSI8vJydHV1cXd3x9HRETU1NeLi4rCxscHNzQ0vLy/WrFlDbGws48aNQ01NTTz/pqamtG/fHg0NDYqLi3njjTe4ePEin376KY6Ojjg6Ov6hg1ZMTAyffPIJFy9epEGDBnTp0oXmzZvj5OREVFQUBQUFVFRUkJeXR1hYmOh77969sbOz49atW1y5coWSkhJcXFxo2bIlN27cICYmhqioKBo0aICJiQnW1tbCprl37x7FxcU0adIELS0tiouLSUlJ4f79+xgbG9O9e3eWLVtGUVGROMDr6upSWVlZp76pq6uLQ+TEiRN58eIFN2/eFI7CmTNnEhAQgIODgzhISJJEXl4eJiYmvPHGGwBER0ejq6vLmDFjxAG7WbNm4nuKiorIysri+vXr7Nmzhxs3bmBlZcWiRYuYMGECjx8/pk+fPjx58oQRI0agpaVFfn4+BQUFNG7cmA0bNiBJEjExMb/bpz9kvJaWlmJiYkJlZSXh4eGUlZWxbNmyGta3hoYGiYmJVFVVYWdnh5aWFsOHD6dhw4YYGBigoaHB/v37+eKLL8jNzaVBgwa0bt0aXV1dEhMTiYuLw9XVlfT0dKKjo7G2tmbs2LG0adMGPz8/QLnAqqkp03a7dOlCaGgoH3zwARoaGowbN47Y2FgOHTokPlMbDBkyhI4dO9KkSRNatGgBgL29PUFBQfz4449ERUXRoUMH2rdvz4YNG9i3bx8DBgzA2dmZcePG0b17d1q2bIm6ujpvvvkmR48eZe3atTRq1AhQeqVmzJjB8OHDefbsGcXFxeK7DQ0N+emnn0hPT6dLly7k5uYyePBgpk2bhq2tLeXl5eTm5mJlZYWJiQmgNBzqivbt23Px4kVhyLVq1Yrs7GxhuL6KqKgodu/eTXh4OI0bN2bLli14e3uzfPlyNm7ciKWlJe+//z5z5swhNTUVSZIIDQ0lLS0NdXV14uLiaNSoEW3btsXHx0d4zJcvX862bdsYOHAgvXv3Ft+nq6tLy5Ytadq0Kenp6VRXVyNJEhEREbXun+ohhf/byLy9vXnrrbe4fPkyH374Ifr6+vTv31+Ms7a2do0DwsOHD/n666954403CAwMpG3btlRUVNT4zJYtW9izZw/du3dn+fLl6OjoiLnctm1bRo4ciZubG9XV1fz000/Ce19RUQEoPW/Xrl1j3bp1XLx4EQcHh1r3cfv27UyYMIGsrCwiIyPF9Q0bNlBWVkbLli1xcnIiNzeXM2fOYGBgQNeuXdHV1RW/SUxMDEePHqWwsJB27drRuXNnDA0Nqa6upqysjJKSErHRNm/enAcPHrBu3TqSk5OZPn06zs7OZGRkMHXqVI4ePYquri7ffPMNY8eOJTs7Wxx0OnbsiKura6379uo4Ll68mI0bN2Jqasqnn37KkydP2Lp1K3K5HDs7O1atWsX169eZOXOm2KDbtWtHo0aNaNSokTBGysvLCQkJobCwkBYtWtCkSRN++OEH3n//fUaPHi2MV1dXVzZt2sTx48cpLS3Fzc0NUEZFMjMzMTEx4dy5cxQUFNCnTx/xXNvZ2dGvXz+2bNlS6/49f/4cIyMj7t69y4cffkh4eDiBgYEiqqGlpYWhoSGFhYXs2rWLgoICBg4cSIsWLaisrOTZs2doa2vj5uYm1rhnz55RUFDArFmzMDY2JiMjA1NTU9TV1Vm5ciXt27dHTU2No0eP8vjxYyZNmsSaNWtQV1fn3r17BAcH065dO9TU1LCwsEBdXR1PT086duxIUlJSncdw3759zJ49G1BuhhoaGiQkJLBu3TqCgoL44Ycf6Ny5MwBTpkzh/Pnz4jDl6emJpqYmeXl55OXloaenh52dndhcAfr27cvu3bvx91eqqF64cIHk5GT09fWFk+Po0aN07tyZDz74QBxkvv/+e1atWsXEiRNZvnw5paWlhIeHC0O0tnB0dCQiIoKysjJKS0s5dOgQUVFRtGnTBgsLC27evElKSgpeXl5oamqira1NQECA8GRqaGgwZswYBg4cKKJUAOHh4SxevJiKigq2bt1K7969KS4upqCggPz8fFJSUujQoQMtW7bEx8cHV1dX9uzZw+LFixk0aBA//PADPj4+7N+/Hx0dHfFszJw5k1u3btXpENKvXz8ePXpE69atRbQpLi4Oa2trjIyMqK6uJi8vj0OHDrFv3z66d+8ujFcLCwvWrFnD7du3uXjxIh4eHuzevZvr169TXFxMRkaGMOQePnzIBx98QEFBATo6OgwfPpygoCAsLCwA5f4YFBTE5cuX2bt3L+PGjUNbW5ucnBwSEhIoKCio09i9is2bN7No0SI0NDSYNGmSWLfV1NQ4f/48y5cvp1evXqxevRpNTU02b97M9u3bmT59Oh4eHsybN4/g4GDmz5/P4MGDqays5MCBA5SVlTFv3jzc3NzYs2cPmpqarFy5ko4dO3L27Fk++OADWrZsyZgxYwDlM9K/f38qKyvFHq+hocHs2bMpKytDV1dXXKsL0tPTuXDhgoiWzpkzRzjHLl++zN27d2nUqBFt2rRBR0dH7FHFxcWoq6sLh4abmxuLFy/m7t27zJ49m4EDB9b4nlOnTrFx40aeP39OaWkp5ubm9O/fX+zxrq6ufPrpp5iYmAjPbnR0NEuXLsXT05MPP/yQqKgo3n//fTEvfg11Nl5jY2NFqDojI4OMjAw8PDxE6DsvLw9DQ0PS09O5ffs2DRo0wNXVlby8PF68eEFAQAAymYzi4mJOnjxJSEgIdnZ2dOnSBW9vb54+fUpxcTHW1tZYWFigoaFBUlISRkZGNG3aVHhBqqurkclkYoK9/fbb2NnZMWrUKJYuXUqvXr3w8/MjODiY9PT0WvcvLS2NvLw8HB0dxcancmuHh4dz/fp1xowZQ+PGjbl79y5Pnjxh9OjRNGvWjICAAHGfvLw81NTU0NLS4tq1ayKE+fjxY7Kzs3F3d8fGxoaTJ09y5swZPD090dPTY9iwYez9f7T9ZXxW19a+gV5xd3f3hAABgiUQILinOBRtkSKFIoUihVIKFC2UosXdnQRIIEhIAiFGXIm7u50POc/8N+/e77vJ/p0zPu2y4UnWs9aac8x73HL5Mk+fPsXW1pbly5fT1NREZWUlampq6OvrU1FRQUBAAO7u7tjb23f2FuLh4cHdu3dJTk5GSkoKS0tLLC0tqa6uJjs7m+bmZqysrJCTk6OoqIiUlBTq6urw9fUVD9ywYcOIjIwkPT2dBw8eoKmpiZKSEkZGRlRUVJCTk4OsrCx1dXW0tLRQXV1NVlYWJSUlZGVlERUVhaOjIxMmTMDW1pbW1lbS09Oprq5GTk4OY2NjjI3/u2TEly9f0tDQwIgRI1BUVOTs2bNoamoyadIkpKSk+PvvvzEzM6OtrY3379/j7e2Nm5ubQLNMTU1RU1NDWVmZ69evC6RHTU2NU6dOYWVlRXV1NYGBgYIKIFlMJM/p2LFjxSj38+fPtLS0MGjQIGprazs8jwEBAWzfvh2gUxtKVVUVWVlZFBcXExMTw5YtWwTNwdLSkrS0NHR0dCgrK0NNTQ0FBQUKCgpQU1MTDbiLiwuvX78mLS2NhIQE7O3tsbKyoqSkhJaWFpSVlQUikp6eTkhICFFRUXh5eeHo6EhUVBTPnz9HXl4eU1NTTExMsLe3p6mpiT///JMXL14wZcoUVFVVqays7PR97NevHzk5OZw9exZZWVnu3btHS0sLiYmJ9OnTh3HjxvHmzRvOnz+Pv78/5ubm9O7dWzRrr1+/RlpaGgcHB7FO9O/fn2HDhqGhoYGamhrS0tLIyMiIn2lmZoaZmRlDhgwRf1ZQUEB9fT36+vooKCggLy+PtLQ0DQ0N4u/8c2z/pRUfH8/58+e5du0a0D4xGDhwIMrKyujr61NVVUVYWBjR0dH07NkTIyMj8Zw1NjYKtLWiogItLS0yMzO5dOkSJiYmzJ07l8LCQvbt24e1tTXffvutQHmhnQojAQKam5vJyckhKSmJ3NxcPnz4gIuLC126dBGHQC0trQ40lC+tz58/i0OZiooKy5Yt48OHDygqKtK7d28sLS1pamri0KFDpKam4uTkhIeHBz169BBNS2pqKmFhYTg5OeHq6gq0r/9VVVWC1iQpVVVVWlpayMjIwMrKCgsLCzIzM/nw4YNAXM+cOcNPP/2EsbExI0aMQEZGBhUVFUpKSsjNze3U9fXt2xcFBQXMzc2RkZGhpqaGqqoqampqkJKSIj8/n+rqaurr66msrERTU7NDk2piYtLhvyXV0NBAYmIinp6eYuOXPIPv37/n/v37fPPNNwJtBnB1dWXJkiUsX76ciIgI7O3t6dKlCzExMZw9e5YXL14QGhraqeuD9nciJyeHO3fuICsri729PUOHDhXvjWQfNjIyolu3bqioqJCeno6RkRGqqqp06dIFa2trZGRk6N+/P3Z2dvTs2ZOEhAQ8PDwAePDgAUFBQbx8+VIgtWfOnGHWrFkAhISE0NLSgrOzM21tbWRkZBAVFYWlpSW9evWiW7duglaXn5/f6WvU09Ojd+/e6OjoMHz4cGxtbSkqKqK6uprXr19TX18vgBRon9DKysqiqamJrKwsycnJaGpqCjpKVVUVGRkZ2NnZ4e3tzd27d/nxxx8ZO3asOEApKipiaGiIh4eHoAIpKCh0oAK2tLTQ2Ngo/qyhoYHk5OQOB7gvqezsbEHPSExMREZGBldXV5SUlFBSUqK1tRUlJSXMzMw6rIcaGhqkp6cTHx8vUGdJTyVZizIzM2lqakJdXZ2oqChBDbSwsGDZsmXMnTsXVVVVysrK0NLS4quvvqKpqYk7d+4wduxYPDw8cHJy4tWrVxw9ehQZGZkvas473bw+fPiQGTNm0NraSkFBAe7u7hgaGlJcXExmZibKyso4OTlRXV1NWFgYXbp0oX///kRFRfHs2TPGjh1Ljx49UFZWxsHBgSFDhogO/v379yQmJmJjYyMoCZLTx/8sCdLQ2NgoTrHDhg0TfJCWlhYMDAxYuXIl69ev/+Lru3nzJrq6uqJxrampwdTUlGnTplFSUsLDhw9paWlBQUGBmTNnoqamxpAhQ/6FnqCoqMj+/fv55ptv2L59Ozt37mTHjh3U1NTw/fffU1NTI9DVGzduAHDkyBGOHj1KS0sL586dIyUlhVOnTvHixQvGjBnDnDlzALh9+zZLlixh3rx5HD58+IuvTVJ1dXXid5RUaWkp2traJCUlER4ezrRp03B2dkZfX5/vvvsODw+PDjQALy8vunfvztOnT9m9ezevXr1ixIgRnD9/Hn19fVJSUtDS0hKcxYiICNauXUt8fDw+Pj6sWrWKQYMGiQ1YMla6desWhYWFjB07lsmTJ1NWVkZsbGynri88PJz9+/dz4sQJpk6dyo0bNwgKCiIkJITExERKSkqYN28e2tra7Nixg9evX3P69GlaW1sJDw+nvLwcDw8PTpw4wdy5c5k3bx579+5l/PjxLF++nIULFyIlJcXKlSv57bffMDc3Fy+bpImvrq4Wv4+JiQkjRozA2NiY3NzcDo2OhO8koRd8aXl5efHp0ydUVVVRVlZm27ZtWFlZsXTpUmbMmIGSkhKxsbEoKSkxYsQI4uPjuXnzJvb29owZMwZop1IsWrSIiooKpKSkkJWVJT09nczMTAwMDDA0NMTGxoaQkBDu3bsnuJR9+/alsrKSNWvWUFRUxNatW3Fzc6O6uhpVVVWKiopISkpCU1OTYcOGYWhoKOgHnakhQ4bQo0cPpk6dSlBQEHv37mX69OkkJycTERFB9+7d2b17N76+vpw7d464uDgGDx5MYWEhmzdv5sKFC5iamrJ48WLGjBlDv379kJGREWuKl5cXe/bsoaqqirdv3+Lu7o6Kisq//B5ycnK4ubmJDUZCSampqaG4uFjw8jtbmpqags+tqKjItWvXGDlyJPn5+ejr61NWVsbKlStJT09n79699OrVi9raWkpLS1FTU8Pd3R0pKSmUlJTEhh4XFyc2n+fPn3Pw4MEO3PzGxkbk5eWZOnUq+vr6PHr0iBUrVtDY2Mi3337L7NmzOXnyJPv37+e3334TzVFZWZlYNzp7jZLS1tZm9erV1NbW0tLSgoWFBQCzZ8/G39+flStXMn78eIH6S6q5uZmCggLRzEL7eqGhoUFjYyPNzc1iHenduzeqqqoEBgZiamrK8OHDOXbsGK2trcTExHD37l02bdqEr68vp0+fxsTERHCMi4uLO3191tbWmJiYICsri4yMDDNmzKCwsBAFBQVMTEzo3r07M2bM4PLly4wePVqgSZIx/P9Wrq6uPH78WDxXdXV1gruqoKDA06dP0dPTY+zYsR3+3YABA7hx4wba2trIy8tz7NgxLl26xNatW0lKSsLd3R0vL69O0ZTq6urw8PBgwYIF3Lp1ixMnTgjQpKysTFCK/Pz88PPzIzExkYSEBOrr68U0VlVVldmzZ4t9W0tLS0w7Xr9+zZEjR5CTk6NPnz6UlZVRWVnJmzdvGDduHHJycly8eJHAwEDmzZuHn58fLi4u6Ovr09DQwMCBA1FSUhKTw0+fPn3xtUlq4sSJjB07ljt37pCamoqWlhb5+fmEhobSr18/1q5dS2ZmJgEBAfTp04fx48fj5eVFVVUV2dnZ7NmzpwNSqKqqyo8//oiqqirJycmcPn2anJycDu9Dr169OH/+fAcNguSwKCkJf1hy+FZQUCAlJYWIiIhOXV9TUxPDhg1DU1OTwMBAwcE9dOiQ4O82NjbS0NDQgYKkoqKCmpoat2/f5vLly0A7l/v48eM4OTnR0NCAvLw8WVlZBAQEUF5ejqWlJRkZGRgZGTFu3DjxDFdXV4u+7syZM6xYsYK1a9fy888/s2/fPs6cOcO7d+8YMGAAZ86cERSm/6063bxWVlayY8cOevXqha+vr+C96erqUl1dLWBtU1NTGhoaKCwsREpKCjs7O1JTUzucGOzs7Hj//j2xsbHY2NigpqbGqFGjKCoq4rfffkNJSYlFixaho6PDlStXKCsro3fv3lhYWKCmpoacnBwtLS3ExsaKxWfy5Mk4OjqKccY/x/JfUqampoSHh6OgoICzs3OHzczS0hItLS1KSkpQUVFh1qxZtLW10dLSQk1NDUpKSkhLS3doqCXj6pycHCEKmDlzJo8ePeLly5eUlZWhoaGBpaUlSUlJ3L59m/79+9PY2Mj9+/eJiooiKipKbEBnzpxh165deHh4YGxs3CmRj6TU1NRYuXKlGCVJuI/QPsrOzMwkNDQUBQUFunTpQlVVlUCkVVRUaGtrQ1tbWyBFkZGRhIWFoaioiI6ODlJSUhQVFXVYnPX09CgtLUVWVpZBgwZ1aFwlTc+AAQOIiYnh1KlTlJWVMWzYMPLz8zl16tT/udD/z5KWlsbX1xdZWVna2tr48ccf0dHR4dKlS5SWliIvL0+/fv1wc3MjKysLTU1NSkpKKCgooKCgAENDQ6B94ejXrx9BQUFoaGigoaHBV199RWhoKPr6+vj4+IiJQ1RUFLdu3aK+vh4fHx9BbZF8jpqaGv379ycvL69DozN69Gjk5OTEYvmlVVJSgqGhIfr6+ri4uGBtbS1OxTY2NowbNw4bGxtSU1MFomZhYSEa16NHjxISEsKMGTPw9fUVC39CQgJnzpyhR48edOvWDV1dXaSlpXF2dmb8+PH07dsXaEeYR40aRUpKCkFBQYSFhaGjo0OPHj3Q19dnw4YNZGVlUVpaioGBgXgfOluamprMnj0bb29vwbuysrIiKipKNGJdunTB1tYWBwcH5OXlOXDgAMeOHRNo+bZt22hpaWHVqlVA+3iypKSEnj17MnLkSHbv3s3FixdZvny5GINdunSJsLAwFixYINA+Sfn7+5OUlMSYMWOwtLQE4NWrV52a8ED7oaatrQ1dXV3Wrl2LtbU1mZmZAhHW0dFh8uTJ3Lhxg3fv3uHq6oqysrJ4b/7ngdnDw4MhQ4YIpNPMzAx9fX1ycnIoKSkR4sTW1lYMDQ2ZOnUqOTk5hIeHY25uzoIFCwQiVl9fL94DgK+++govLy+uX7/eqWvMyMjg77//ZsCAAVhaWooGTFL5+fmUlJQImkm/fv3w8fHp0FwZGRmRmJjY4b2Ji4tDV1cXfX196urqOHXqFB8+fMDc3BwVFRVSUlKE7uDHH3/ExsYGAwMDCgoKWLFiBfPnzxeIZ3Nzs1Awd7ZBf/LkCYMHDxYHBom4WFLl5eW8fPmygz6hpaUFRUVFiouLefz4MQ4ODvTq1Yvk5GQOHz6Mm5sbCxYs6DBVkyB+0C5qMjMz63CwT0pKwtHREWdnZ9zd3Xn9+jU5OTn07t0bPz8/3r17x8yZMxk7dixBQUEkJSV98TUqKioiKyvLgAEDqKysFM+FhLpSXl5OXV0dSkpKyMjIkJubS21tbYfnJzk5mdzcXMzMzLC2tkZNTY3s7GyePHlCcXEx48ePF0JQc3NzsrOzCQ4O5sSJE9jY2FBRUSH4sBKqDrRPfyWI+cePH9HR0SE1NbUztxBon4KEhISI5z4tLY2SkhIsLS3x8/NDXl4eWVlZ4uLixP3V0dHh999/Jz8/nzNnzgCwdu1aZGVl2bFjh2hma2pqGDZsGDY2NhgbG3PgwAHCwsIYNmwYs2fPpqCggFOnTtGvXz+hCYmOjqawsBBnZ2eMjY2pqKgQYsKhQ4eipqbGzZs3v/j6JJqBtrY2amtr6dWrF126dEFTU5OioiJyc3NxcHCgrq6Oe/fukZeXx/Dhw3FycsLCwoJx48YRFxcn6DuS/UJBQYHc3FwePnxIaGgourq6uLm50dTUhJGRkaAfNDQ0iCY9OTmZ5uZmhg8fTkBAAMrKyqxdu5Y5c+ZgbGyMjIzMFwnt/yvO6+vXr3F1dUVbW5uSkhJSU1NxdHQUCzm0b679+vVDQ0NDXMjXX39NUVERTU1NyMnJCZL3qVOnKC4u5qeffkJdXZ1Lly6xe/duofSTk5MjICCAjIwMlJWV0dXVFR18Q0MDKSkpYvS2YsUKQSA+f/48d+7c6XCy+U/14MEDQkNDGTx4MLKysoIfCPDu3Tvu3bvH6tWrxYaWkpJCRUUFRkZGotGVlpamra1NLIq9evWiurqa1NRUtLW1WbduHcOHD2fr1q3cvn0bT09Pvv/+e27fvs3UqVP58ccfWb9+PYaGhhw9epSePXtiZ2dHZmYmu3btQllZGX9/f1paWjh48GCn75++vr5Ao6uqqlBQUEBVVZXm5mZMTEwYN24cL168ID4+HktLS9LT0zl58iRWVlZ88803aGlpUV5ezufPn7Gzs+Pnn3/G1tZWoI9FRUXU1NQIhSy0jy169uzJ6NGjWbhwITU1NYSFheHi4iJGfTIyMowaNYq9e/dSUlJCa2srOjo6nRbdeXp6snPnTvHfQ4cORVVVlffv34vmtbW1FUtLS3bt2iX+Xl5eHra2tgIRam1tpWvXrvz5559ioxszZgzDhw+nvLy8g3o+JyeHc+fOYW1tzZQpU2htbaW+vh4lJSUaGxupra1FWVlZjF4bGxuRlpZm+PDhDB8+nJs3b3aqec3KymLQoEFUVlairKzM1KlT+fDhAyNGjBAbQLdu3SgoKBDN+9GjR4H25u348eN8/PhRjIK8vb0xMDCgrq6Ou3fvUl5eztKlS8nKyqKtrY2VK1eKzTQnJwcTExPGjh1LQkICU6dOJSoqCjMzM3bv3s3UqVNxcnIiLy+Po0eP4uHhwbffftupewjtfCtZWVmmTZtGW1ub2Pz19fU7INWJiYnk5ubSs2dPoH3tUVNTY82aNcjIyLBo0SJCQkKA9sP3xYsXBd9Uwq0OCgpi6tSp4jMfP37MhQsXMDQ0/Jfm9dSpU9y4cQMlJSUWLFgAtB9egoODO6CD/6levnxJc3MzS5cu5dtvv+XZs2fk5eUxe/Zscf2jR4+mqamJyZMnc/r0aZ4+fYquri7FxcViWqKtrS0oSjNmzBAHhc+fP2NkZERDQwPv37/Hx8cHFRUVCgoKyMvLQ09Pj/nz5wuHGMn6ZWVlxZgxYzqMLy0tLbGzs+t08xoTE0NQUBA7duxg5cqVQDsNQ0FBAU1NTfT09Bg+fDhv3rwhJCSEK1eu0KtXrw6gwadPnygrKxOoXW1treD+Q/toMzMzk7/++gtoF1ENGDCAjIwMampqWL9+vTiUDBgwQKxTEkqThoYG7u7uNDY2dhrROnXqFLa2ttja2tLU1CQoRA0NDdTW1hIQECDukaRpl5GRQUZGBmlpaWJjY4Vg58aNG/zxxx8sXbqUlpYWpKSkRLOQm5srnE1qamqwsbHBysqKuro60tLSqKmpwcjIiNbWVu7cucOrV68wNDRET08PGxsb/vjjD6C9kTp8+HCn1lRtbW1aWlqYO3cuc+fOFY20rKwsSkpKvH37ltzcXMrLywU1qU+fPh1+RkVFBTdv3sTY2Jgff/wRaD+AfPPNNwwfPpwHDx4QHh7OmTNnxOSnqamJhw8fYmtri52dHZMmTcLLywtob5wrKipE4xUSEkJlZSXOzs7/1RTk7Nmz7Nq1i9WrV7N27Vr8/f2pqqriq6++Ql5enpaWFkFlKysrE+9YUlISMTExREdHU1NTw4kTJ4ToF9qffyMjI3HwPnz4sHgPVFVVmTFjBoGBgVy+fBkVFRXRvBYUFBAaGoqUlBTGxsZoaGjQ3NxMa2srlZWVnabUmZiY8O7dOy5fvkxVVRULFy4UNMdTp07x6dMntm/fTkVFBWvWrKG2tpauXbvi6OhITU0NU6ZMYfz48fj7+/PixQvu3LnD5MmTMTExITIykgsXLpCdnc3QoUPx8vLCyspKNLb6+voCfMrNzSU0NJQxY8awePFi1q5dy7p16wgPD2fNmjVoamqSkZHBw4cP/+M1dbp5TU5OZuXKlQwZMoS2tjby8vIICAjg5MmTTJo0CXd3d65du0Zubi7fffcdJiYm5Obmio76/fv3NDQ04O3tjbOzMzNmzKBXr17069cPbW1tDh06xG+//YapqamwwmlqamL27Nm8fPmSrKwsqqurRedfUFCArKws48aNQ1dXt8OpLCIiglu3bnWKS/j69WtmzpwpNqyAgABcXV0F70dCI5CUpIEzNjamurqa+Ph4WlpasLW1pbGxkffv3/Px40c+f/5MU1MTzc3NmJubM3DgQPr378/t27cJDQ3l3bt3YnG+e/cuxsbGTJ06lXnz5pGXl8eTJ0/IzMxkwoQJzJ49W5xMvLy8uHr1aqfuoQT9vn37Nrdv32bt2rW4urry4sUL6urq6Nu3LxMnTiQ/P5/w8HAqKioEx6m0tBQtLS00NTWFmKSiooK2tjaampqIjY0lPT2d0tJSzp8/T0JCAkpKSsTFxaGiosL06dOB9nGEnp6e2KRqampobGwkISGB/v37Y2Fhgby8PLq6usydO1eMLL6kJOigpPbs2cPTp0+xt7cXY33JifCf5ejoKO77rVu32L9/P0uWLGHatGlcvXqVX375hRUrVtC7d+8OFAoAHx8fdu/ejZqaGuXl5Xz33Xe0tbXxww8/oKqqKuxxJJ/f1NTUgbYxduxYnj9//sXXKGne3N3dxWd6eHjwxx9/cO7cOe7fvy/4Z/fu3RNUnjdv3rB9+3YGDx4sDgkS1GLgwIGiuS8oKCA4OFigiRKqw82bN5GRkUFbW5umpiby8vJYtGgRqampmJiYMHz4cAAuX77Mb7/9RkNDg+BJd7a2bNnCiBEjqKqq4urVq3z8+JHRo0ezadMm1NXVxd8zMDAQCI4ESdXR0eH9+/e4ubnx119/kZKSwrx581BQUODjx49EREQwaNAgunXrhqenJ1FRUfTu3RuA33//HRUVFbZs2UJoaCjTp09n7dq1AmX39fWlpaWFmJgYIiMjBfLbWbHP7t27AQSq37t3bxoaGlBTU+PEiRMcP35c2PQ0NzcTGRnJpEmT6NOnD5GRkYSHhzNr1ix+++033rx5Q2BgID/99BMAmzZtElzqVatWYWJiQmxsLLKyslhZWREeHs6dO3cYNGgQdXV1/Prrr1hbWzNy5Eju37/Pq1ev0NTUxNzcnKSkJPEddkZUCO2IT3Z2dgerwYiICN68eYOfnx/dunUTzdjIkSNxcHDgypUreHl5ISMjw8GDB3nz5g3e3t706dOH7Oxs2tra6NmzJ3JyctTV1REQEMDgwYMxNzdn69atGBkZMWPGDJ4+fcqvv/7KlStXGDlyJPLy8pSVlfHkyRPB0auurqZbt264u7sLm6WoqKgvvr6GhgbRpNXU1BAXF8eFCxd4/Pgxo0aNYvbs2UJs9899A9qbwl27dnH27FkGDhxIfX09e/fuZfLkybx9+5bDhw/z+fNnHB0dqa+vp62tDVdXVxITE4mLi8PZ2RkHBwdcXV1pa2tDWVmZyMhIAgICMDExwcfHp8OkMy0tjbNnz6Knp0d5efkXX2NpaSk5OTlCiPxPYa+DgwNpaWnY2tp20DvIy8t3mLZI9A3nzp1j7dq17N69Gw8PDxQUFPD39xfuIMrKysjLy6Ouro6JiQkNDQ1kZGRgbGxMS0sLAQEBNDQ0YGhoiLW1NZqamtjY2KCsrIyioiJqampISUmRmZn5xdcHMHDgQKSlpRk6dCh6enp4eXlRUlKCvLy8QJWhvWleu3YtOjo6bNiwgQMHDnDu3DnOnDmDtrY2v/32G87Ozty6dYvLly9TUFDAkiVLxME4MzMTOTk5pkyZwi+//IKsrCx2dnbCPkpSOjo6/zL5LS0t5ejRozx+/BglJaV/cdT5v6q8vJyHDx9y5MgRmpubkZWVFcBRU1OTQM9LS0vJzs7GyckJBwcHDh48yJUrVzh58iSurq4YGRnRo0cPnJycKC0tJTo6mqSkJCHmtLS0ZMGCBYJ+ZmJi0gFFVVRUxMzMTBwwtmzZQktLC/fu3cPX1xdra2umT5/O2LFjefr06f95TZ1uXm1sbMSNaG1txcTEBAMDA27evElZWRm9evXi3bt3NDU1kZyc3OHLLysr48GDB2hra+Pn50dNTQ2tra1MnjxZNJ2FhYX06tWLDRs2dPAzGzBgAJ6enkRHR3cQSlRVVREaGvovNkzQ7ncosWD60lJUVBRIbVRUFPn5+cKv0tPTkw8fPpCZmUlGRgZNTU2YmpqKBV1GRkacPCUITEZGBnv37v0XJWRDQwPffPMNZWVlxMTEYGhoiIKCAhoaGsTHxwvfXDc3N9zc3Dh+/Dj19fWsWrUKMzMzkpOTUVRUZMCAAZ1uXiVwfnh4OJ8+faKgoAB7e3vS09MpKSnBxsYGZ2dnlJSUKC4uxsTERAjlKisrxanexMSEhw8fcvXqVSGWefbsGffv3xf3qKysjLa2Nurr6ykpKSE8PJypU6ciJSWFnp4eaWlpGBkZoa6uztu3b3n37h22trbCZzUvL6/T/qDKysp8/PgRbW1tPnz4wPHjx6mqqmLFihUYGRlRVlbWYSSXnp5OWVkZzc3NHZ6Xt2/fYmZmRteuXXn06BFXrlwhMjKSHTt2MHjwYOTk5MjIyKC6uhpjY2MmTZoEwNOnT3nx4gUKCgrCfUBKSoqsrCysrKxQUVER74XEJuTfOT38X6WpqSlQo4aGBnFAnDp1KsbGxpw+fZrjx48L9HjAgAHk5+dz7949Pn78yPDhw/Hx8eHz58/s3buXkJAQFBUV0dLSQkdHh8jISA4cOICnpyeurq5UVVWRn58v3nElJSUSEhKIj4/Hw8OjA68yNjaWly9fUlxcjL6+/n+FhEC7QEVaWpqYmBgePXpERUUFI0aM6OAe0tDQICgrtbW1AhWeOnUqixYtoqioiI0bNwqXgn/Ww4cPcXR0JCwsDAUFBVpaWoTd3rZt25g0aRLbt2/nyJEjHWy+rK2tcXd3F6hP165d6dKlC5aWlp1SPMvKygqbL6CDcEdbW5u6ujp+/PFHLCwsmDBhAjo6OmRmZnLixAnBz5Qo2NPT07l48SKKiopCTAntzcWcOXNwdXUlMjKSxsZG1NTUyM3N5Y8//iAsLAwVFRUuXLhA3759sba2Jj09ncLCQvE9l5eXEx4eTlRUlBDQfGktWrSIhoYGZGRkRBMguVcS5LO+vp4ePXrw22+/AXDgwAHS0tKQlZXl6dOnyMrKsnDhQhwdHUlOThaenNXV1ezZswd/f3++++475s2bh4uLC5qamjg5OZGSkkJbW5vwSh08eDAPHz7k6NGjODs7M2LECCorKwkICKClpYXu3bt3oPt8SUlLS5OVlYWFhYVwRZGMnx0dHcU0ABDUrObmZnJzc1FTUxPiwpKSEiZPniyoLQcPHuTGjRtYWFjg5OTEhw8fSE5O5vr166IhbWlpEYe4zMxM8Rz17t2bHj16/MvE4MGDB0RHR7N06dJOjZwzMzOFSEfCsS0oKCAtLQ0lJSW8vb07HCahfV2Tk5Ojvr6ehoYGNDQ08PHxobS0lNOnT3PlyhUMDAzo2rUrycnJ3Lt3DzU1Ndra2lBSUsLNzY3hw4cTERHBlStXyM/Pp7a2FktLSxobG1FUVBQOJvfv30dWVpaZM2cC7RO0O3fufPH1AWICBu0UDQsLCywsLMjLy6OmpgZzc3Pk5eU5f/48Dx8+xNXVlbq6OszNzXFzc+Pnn3+md+/erF27lrKyMn7++WeCgoJwcXERa319fT1WVlZs2LCBr776CgMDA1paWujRo4dwNpJU9+7dO1hQNTc3i70wOzubysrKTjWvqampqKqqMn78eBITEwkJCeHixYssXLiQMWPGoKuri42NjdD3SGiJVVVV5OTkkJaWhqurKzU1NSgoKKCmpkZVVRVpaWmEhYUJX/YZM2ZgaGhIUFAQhYWFwrEE2umB2traDBgwgOrqatLS0rC2tmbv3r20tbWxf/9+IiMjmTdvnhDf/V/V6eb1n5uUtLQ0WlpajBo1iubmZnFiHz16NHV1dWzbtg1LS0shKmpoaCAkJEQoDN+9e8emTZv44YcfxPht4cKFrFu37t+aRSsqKtKrVy9evXpFVFQU7u7uZGZmcuTIERISEnB2dkZPT4+3b98KKsOlS5fYu3fvF19f165d2bdvn+CAjB8/HgMDAxITE5k8eTK9evXip59+wt/fn4MHDwpjbfh/5uwSVK68vJzKykpcXV0Fr0uy6ejp6eHs7Mwvv/wi/v3hw4epqKgA2m90ZGSkaKa+/fZbEhISyMvLw9/fn7i4OEaMGNFpJATaieIyMjJMmjSJbt26oaSkRGpqKnZ2dpiampKVlUVqaipqamp07969A0KopqbG5s2bKSsr4/vvv+f+/fvcuXOHP/74gzFjxrBlyxZevHiBtLQ0c+bMYcWKFXTt2pUHDx5w/fp1QRWB9hfq5MmTdOvWjXnz5uHh4UF4eDipqalISUkhLS3N7du3OXz4sLBe+ZLKz8/n7NmznD17Fm1tbVauXImnpyefP39GWVmZMWPGdODdpaWlcf78eVpbW4X3bd++fZk5cyZv375l+vTpwpIsISGB169f4+vrS2hoKFu3biUjIwNra2u8vb2FE8W8efMoKSlBU1MTFRUVhg0bxvPnz7l37x59+vQRFBtJuEV0dLQ43X9JPXv2jNGjRwuLn9bWVtTU1FBTU6NHjx6EhYXx22+/oaGhwZYtW5gwYQK1tbViGnLmzBnCw8MZN24cYWFhvH//nilTpuDr64uxsTHp6ek8fvyYwYMH4+vrK3hvQ4cOFU1Wt27dKC0t5eTJk6SmpjJ9+nRSU1P58OEDS5cuxc/Pj8uXL/9XTgMA69atQ11dHU1NTVxcXNDR0REm/hLEYO7cucTExLBx40YMDAy4evUqvr6+WFlZMWzYMB49esTixYuJi4v7l8/39/cXvHPJxqSrqyvCGgC+//57unbt2sHqy9/fn6dPn7JkyRKhBK+pqcHa2rpTqN3169dpbGykT58+tLS08OnTJ4qKiujevTt+fn44Ozvj6+tLZmYm27dvZ+bMmcIG682bN8yZM4fNmzcD0KVLFwYOHMiff/7Jo0ePmDNnDjt27EBHR0eMGK2trUWT0djYKFwmpkyZwpUrV9DT0yMnJ4epU6eybds20fxYWFiwe/dumpubuXLlSqfu4dSpU+nVqxe3bt1i8+bNDBs2DFdXVywsLDAwMEBaWpoxY8Z0ACQmT55MfX09KSkpjBgxAgsLC7FRm5mZUV9fz8uXL9m/fz9PnjyhoaGBmJgYAgMD2blzJ/r6+pSXlwvrsWHDhqGrq8vz588pLCwU7jAODg4UFBTw4MEDjh8/zrhx4xgxYkSnru/z5888evQIS0tLlJSUqKqqYsSIEcyZM+dfnGBycnKEi0l0dDQPHjwQvua3bt0S33dQUBCxsbGYm5uzdu1aZs6cyebNm9m/f38HJFVBQYGsrCwuXLjA3bt3GTFiBLNmzWLmzJn/Vq09bNgw+vbti729faea1/LycpKSkjo0qAEBAaxatYqpU6dy6NAhGhoauHPnDlpaWh2a2dzc3A4A1siRI5GTkyMoKIjAwEDy8vL46quv8PHx4cmTJ3z8+BEHBwdhO1leXk5eXh55eXn06NGD5cuXd3AvaW5u5siRI7S0tLBgwQLk5eX/V5H3l5YkuATaKUqpqamcOXOGhw8fkpiYiJubGyNHjiQ6OpqMjAyCgoJQV1dHVlaWo0ePEh8fT1FREUOHDhVi0YaGBmJjYxkxYgTy8vIEBQXx6NEj4azxf4VjtLa2cuLECZqbm/nmm29YuHAhcXFx3L1794uvqbW1lSlTprBw4ULh3iGhx3Xt2hUzMzNxKNy7dy9NTU20trYyd+5chg8fjr6+Pvn5+bS0tBAeHk5YWBiDBw9GUVGR1NRUPD09+euvv+jatSvnz5/nzz//FLRPybNQV1cngAyJVaPEO3jatGliov5P16b/qzrdvEpg9MrKSnJyciguLkZZWVl416mqqjJ58mSePn3K999/D7RDwxYWFty4cYPo6GjKy8u5du0az58/Fw2ZpMrLy/n48SNubm7Iycnx8OFDIVwoKysTynwLCwtOnDjBjRs3UFBQQEpKipiYGMzMzAgMDOTp06dMmjSp02kUXl5exMTEkJWVhYGBAaampmK8JOEtjR07lo8fP3YgpMfGxnbYKK5fv86VK1dobGzEy8sLFRUV3r17h7+/P/r6+hgYGFBVVUVcXBwfP35EXl6e5uZmhgwZwrNnz4SK9sqVKxQWFjJ16lQcHR3Zt28fAQEB9OvXj+bmZsLCwjp7C9HU1ERKSopu3brRpUsXPnz4ILi5gYGB3L9/ny5dujB37lwUFBTIycnhwoULNDY2kpubS01NDfb29qioqKCvr0/37t2Ff2+fPn1QVVWlurqagoICiouLeffuHUpKSvz0008dFjIlJSVev37N69evsba2ZuDAgWhqavLs2TP09PTw9PSkoqKC+Pj4TjWvkpOzvr4+np6egm/0119/0aVLF0aMGEFRURGJiYn0798fS0tLjI2NUVBQoL6+nsDAQHJycgS3V2KYLEk9mTNnDqqqqiQmJgpbkIyMDAIDA7G3t2fatGkMGjSIBw8eiE1ZVVUVHR0dmpqaOohRkpKSuHz5MllZWUyYMOGLr1FfX18kL6WmppKWlia+J2tra/z8/Lh586Yg50M7It21a1esrKyIi4ujpKQEZWVlfHx8hMCxqamJsWPHEhkZiZaWllCiQruYUUlJSVinjBw5Em9vb0HnKS4upqKiAjk5OTQ0NFBRUaFPnz5ikexsScasEs9Ab29vKioq2LhxI/3792f48OFoamri5eXFrFmz+PDhA7/++iu1tbVs3LiRMWPG8OuvvwqKyPfff4+7uzvv3r3jyZMnAr2wtLSkoaGBhIQEnJycGDJkCKGhocTHx/PNN98wevRoYb6to6ODm5sbsrKywqLp3bt3VFZW4ufn16nmdcCAAbx69Yrq6moBBEhS72pra/n48aPwrJWESGRnZ+Ps7CyeQ2jn+Nrb2/PDDz+IwJiePXvi4+NDRUUFb968QUpKCi8vL3EvDQ0N8fT05NWrV7S2tjJ69GgA4fcoEXfV1NSI6RrQ6eYV2pvmAQMG8OTJE8HTlaydra2tYrOqq6ujra1NrKESse+dO3f4+PEjU6ZMEZv/8+fPxebt6upKbGwsp0+fprS0lMGDBxMcHIyMjAy7d++mT58+NDc3c/DgQfT09Jg7d6743fT09MjOziY1NZXw8PB/a1v1f5W7uzutra18/PgRJycnfHx8yMrKEuNUExMTrK2tSU1N5f3790yYMAFFRUXCw8M5duwYixYtwsvLi8bGRuLi4jAyMkJXVxdnZ2fS09OJjo4W1mKmpqbo6upSXl5ORkYGGRkZ+Pv7C7GMkpIS5ubmuLu7Y2NjQ2lpKW/evEFGRobhw4d/EZr176q5uRljY+MOtActLS2cnJzQ09OjoaGBvLw8Mbl59+4dnz9/xtraWvA/ExISePHiBfX19QIUklyfoqIiU6dOFX7VvXr1Es+7tLQ0FhYWFBQUUFhYSGhoKH5+fmhqalJYWMjFixdFIlxAQAADBw78ryY9Hz9+pLq6GgcHB/T19UV4kpycHPHx8WzevJmCggKgnXMtoSUFBwdjaGjI6tWrkZeXZ8+ePeTk5LBo0SIWLFiAtrY2UVFRnDt3jtraWr755hu6d++Oq6srycnJREVF4eDggIaGBsXFxTx//pzS0lJKSkpQVVVl0KBBpKens2/fPqqrq8X6ZGZm1qnmVUL5CA0NJTw8HG9vb3R0dAgKCsLDwwMdHR2uXr1KdnY2q1atEs27kpIScnJyPH/+nGfPnvH582ecnJxwdHTkyZMnhIWFiRCRrl278urVK44dO0ZDQwO+vr7ifaqoqEBPT4+CggJu376NtrY248aNExaODg4O7N69m9ra2i+25Ot08/r69WtGjx7N27dvOX78ONLS0vTr14+uXbvSr18/8YKoqKigrq6OhoYGMTEx5Ofn8+bNG6SlpcnNzWXfvn0YGxszc+ZMVFRUqKmpQUVFhSdPnrB+/Xp27NjB+PHjuXz5cgfV7cKFC/npp59wcHDgxIkTfP78mQ0bNtC/f3+kpKTIy8ujpKRExIN2tnR0dPjpp5+wsLAgLS2NnJwc1NXVsbCwENGEixcvFoIbSZWUlFBcXIyRkRFRUVGsXbuWjIwMFBUV0dTUxNnZGScnJ3JyclBSUkJLS4ucnBz2798vxv7nzp3j5s2bzJ8/n9TUVEaMGEF2djZbt24lPT2dyZMnk5WVRf/+/Vm1ahXBwcH89ttvnfZfLCwsxMTEhIqKCp4/f05YWBgjRozA2dmZjIwMnjx5gpubm+AsVVdXk5GRwe+//y7sVyZOnAi0m3TPmjVLKCuHDBnCN998w/79+3n8+DFv376loqICX19frl69KkZb0I7+SA5BHz58oEePHujo6KCioiISodzc3DqM3r6kTExM+O6775gxY4YQdUg8hSXP5/Pnz3n58iVGRkbY2Njw888/Iy8vT1FREVu2bOHMmTPU19d3+H0tLS1Zv3698Musra3FxcWFzMxM8axJrK+ePXsm3hVJmZqaCu9DScXFxREeHt7pa+zduzdtbW2oqamhra1NcHAwxcXFYtRkYWHBli1bqK2t7cA9a25uRkNDg2vXrpGTk0N8fDyysrJ0794dDQ0N2traWLt2LY6Ojty+fZuSkhLxbyXI8MWLFzl58iSbN29m3rx5bNu2jby8PLS0tATvPDAwUKQ8/bfNq6SCg4N5+/Yt8vLy5OXlcfz4cXJzc5kyZYrgcAFcvXqV0tJS8V5K/AcB5s2bx/79+4F2lLKyshJTU1M2bNiApqYmsbGxXL16FW1tbTQ0NDh37hyvX7/GwMBA8JHLysqYOXNmh9F5REQEZ8+epVu3bv8Sk/uf6t69eyQkJKCuro6TkxM6OjqCH7Zt2zZ+//13Nm3axM8//wy0H4hv3LiBjY2NaArKy8spLCzE2toaZ2dnpk6dSkpKCn/88QcvXrzA1taW3NxcdHV1MTY2Fk2ogYEBQ4YMQVVVVYTB6OvrCweEnJwcQkNDRexwZ4Je/l1JIpUlCVSxsbHo6el1GI0qKSlRWFhIWVlZh6ZPckA0NjZm6NChNDY2iuhwLS0t3Nzc0NLS4tWrV9y9e5e7d+9iaGjIihUrxGQsOzub6urqfyuo69Wrl4gDlySZfWkNHz6chIQEbt68iZeXF/Pnz6ehoYHJkyeTk5PDrFmzRHJkfX09ubm56OnpUVlZSdeuXVm9ejUNDQ2MHj0aOzs7goKC0NLSYsKECTx48IC//vqLEydO4O3tzaRJk9DQ0MDf35+MjAxyc3OpqqrCw8OD2tpaqqurOX36NK6urixevJiamhqOHz+OrKwsXl5eaGlp0dDQ8G/5/v9XGRkZMXDgwA4CvhEjRuDr60ttbS3FxcXIyMgIoOjgwYOsW7eOqVOniuc0KSmJHTt2iEP6zZs3UVRU5MmTJwK8kgjBJKEVNTU1WFpa8ssvv1BUVMSzZ89YtWoVtbW1zJo1i19++YUzZ84IG7LLly8TEBAg9qbOVE5ODgUFBejp6QkLrvr6euTk5MjKyhKNq6KiIllZWVy+fBlZWVmxRzk6OvLp0yc+f/4s6APQTmnYtm0b79+/B9r3y+7du9O1a1fq6+sJCAggMTFRROvevn0bf39/ysvL0dPTo6SkBC0tLaSlpcnPz2fbtm3Iy8vj7e3dqeuThJDMmTOHkpISnjx5gqysLHfv3qWhoYGhQ4dy5coVnjx5Qq9evYQw7sWLF7x79074/NbV1fHVV1+xePFiFixYwJs3b/jll1+EXsDf3x9lZWV+/PFHsfd9/vxZoOFZWVns2rULR0dHkQIpcd7Q0NDAwMDgiyl0nW5eVVRUSE1N5dy5c/j7+7NkyRIWLFhAfX09d+7cEeMLDw8Pbt68SUxMDIWFhTQ2NjJt2jQmTJhAeHg4OTk5fPXVV5iamrJjxw78/f05evQofn5+ZGZm0traSn5+PmPGjCEzM5ONGzeSmJiIt7e3UF+OHj0aU1NT/Pz80NDQoKqqiqqqKoYOHUqXLl0Eh6WzJS0tjbKysnhoJV51Ep6V5IQoaWLKysrQ0dGhoaGBFy9eEBMTg5ubG21tbZSXl/PkyRNqamoYMWIESkpKQtUuyfdNTEzE0dGRSZMmoaioyPr16wU/0srKigULFhAdHc25c+eEl6CysjKfPn3izp07nY5sLC4uxtTUlHfv3rF06VLR8Pfq1Qs3NzcMDAy4c+cOJiYmeHl5iZNyVlYW2traHRYHycIvqerqar766itcXFy4e/cu7969w87ODikpKXbu3Imfnx+9evUiLy+Pffv2kZaWho+PD35+fgK5/fXXX5GVlSUlJQUjIyN27twpEPcvKQm6K2lcJWjx4sWLsbOzIzQ0VDSekgVT4uGppaWFgoKCsMyRZDLLycmhoqJCZWUlkZGRREZGkp+fT48ePTA3N6eyshJ5eXliY2OZN28eL1++xN7evoMqVENDg6ysLPF95eXlkZ2djaamZodN/Evq6dOn+Pr6oqKiQrdu3VBUVBRBEGlpaULF/c+qqqoSISNqamooKiqyY8cOsrOzWbx4MX369BHNurOzMzt37uT777/n3bt3TJ48WfCeIyIiyMzMJCQkRBhu//MApaWlha+vL8HBwbx8+RI9Pb3/CvWReEjOnz8fBwcHnjx5Qk5ODvPnzxeoI/w/EUV+fj67d++mpqZGJBJNnjwZLy8v8XtKxsvDhw8XYqiGhgaysrKEMLOoqIi6ujrq6upYsWIFJ0+epKysjJEjR1JfX09FRQWpqalYW1tjZmaGt7c3ERERQoD1pZWSkoKPj4+YKpw6dQpZWVlh3D179uwO93D48OEiNvvTp09C6OTk5ERTU5OYoEjS0CwsLPD29ha+qv8UTkgQzvnz59OzZ0/xrigrK1NcXExjYyP6+voEBQWJceA/DfG/tJqamiguLu6AqObm5jJ16lQWLlxI9+7dOX/+PG/evOG3335DRUWFGzdu0LdvX+zs7Jg7dy5aWlo4OjoyceJEZGRkBEjQp08fwsLCePfuHatWreLQoUMCKHF0dERTU5MrV67w+fNnamtrkZaWJioqiiVLluDs7MzgwYNxcnISPDwzMzPCw8M7dX0NDQ34+/sTEhJCQUEBXl5e9O3bl0OHDuHn58f58+dxd3fnhx9+wNHRkT179nDgwAEGDBjA8uXLRZJWTk4OkydPFp9ra2vL/Pnz2bdvHwUFBVhYWDBo0CDevn0rHBEkyYUeHh4iSc/Y2FiEAuTn5zNy5EicnJwwNTXl2bNn/Pnnnx1CHb6kXFxcqK+vF5MpCS9VRkYGBQUFGhsbxYG8tbWV0tJSlJWVSUxMFHuhBKyBdtH3tm3b0NTUZPPmzejp6XH06FECAgJwcXERa4mKioqg5RQVFZGdnc3jx4/ZsWMHcXFxIjHvl19+oa6uTgTNdPYeQntCZ1xcHK2treTl5dHS0iImZL6+vvzyyy98+vQJe3t7XFxcePr0KSdPngTaG/Pdu3fz4MEDysvLBQXy7t27zJw5swOIpqKiQl1dHW/evBFuI8eOHePPP/9k/PjxzJkzB11dXeLj4+nXrx8TJ07EzMyMLl268PTpUyIiIpg7dy4uLi7/IgD8v+ratWts2bKF+vp6tm3bJiwxjY2Nqauro6amhkWLFtG3b19qamoIDg7m8+fPqKqqMmvWLKSkpBg+fDgZGRk4ODhQVVXFN998g7a2Nmlpabx69QovLy/8/PwYPHgwPj4+AJw8eRJFRUXBR9bR0WHdunU8fPiQadOmsXXrVhwdHQkNDRWWaZIo9f9UnW5etbW1BYG3paUFe3t7FBUVUVRU5Pbt29y7dw9ZWVnc3NxwcHDg06dPyMnJidEytJ/aJB5qEvPdT58+kZaWxuDBgzly5AghISFER0eLpJmoqChGjRpF3759uXnzJmFhYfz888+oq6vT1tZGZWUl6urqqKmpdWgY/ptIQ4n6ztjYuMMYSWJH8+eff5KamsqBAwfo1q0bWlpaaGlpkZKSwu7du2lqamLWrFlkZWXxww8/iN/D19eXwsJCdu7cyfXr13F2dmb69OlCgV9VVSXQs+7du5OUlIS1tTU//PADgYGB3LhxQ4x9oR3t/W9SbyT2TQ0NDejo6JCXl4eMjAytra04Ojri5ubGixcvePr0Kd27d0dLSwtXV1eOHTsGIA4XRkZGIuJPVVVVmH1raWkxcOBA2trasLGxwdramo8fP3Lt2jXhdfv8+XPOnj0LtCOSko1VSUlJcJ3i4uJEAklnmtfm5maqq6vR1NSkpqaGjIwM+vTpg6mpKR8+fOD69ev06tVLNDRVVVXU1dWhrq6OlJQUfn5+SEtL8+HDB6SlpTEwMGDo0KEoKysTEhLC48ePhQ2RvLw85eXl9OrVi6FDh/Lq1SseP36Mq6ur8NEtKyujrKyM7OxsoZItLi4WfrYzZszA0dHx3/Iy/7e6ffs2Xbp0EUl0AwYM4M2bN1y9ehU1NTVGjBghFN6SLHRobzIltiVhYWHk5OSQnZ1NTEwMDg4O6OjooKCgwJ07d4S9VEFBgeAIp6amCt/a/Px8Xrx4gYeHB8XFxSQlJVFTU4OPjw9aWlpMmjSJsLAwsrKyvvi6/lmSZ8LZ2ZnS0lKBOh45ckT8LjY2NiQnJ1NYWMjIkSOZOXMmhw4d4vHjx/To0YO5c+cKcV1FRQVHjhyhvLycX3/9VXy+RMgi8WmuqakR15uRkUF2drbgSkvoSf7+/owaNYrBgwczbdo0goKC2LNnT6cOkl27dhWuESkpKXz69ImXL1/y6tUr1q9fLwSAmZmZlJeX4+7uzujRozly5AiXLl1i4sSJ2NnZUVZWJtTCdXV12NnZMW7cOEaPHi048RIOm6Q0NDRwcHAQY9KGhgYhrPkn/+7Fixe8ePGClpYWYeHVmZJYIv7TpzQ4OFg4iUhGvy9fvmTmzJn0799fOBSYmZkxbtw4gehFRUVx7949pKWlUVRUFObtksmChYUF7u7uwns7JSWF169f8/jxY/FZKSkp/Pnnn9y6dYv8/HwWLFggQkacnZ2xt7fvVAqVrKysSEpSVlamsLAQe3t7JkyYwI8//sjly5cFai2Zwn369ImhQ4ciJSXFoUOHSEhIEEhWdXU1CgoKGBoasnbtWkaPHs3Tp09paWnh/fv33Lp1S1CRNDU1cXBwQFFRkdevX/Px40fGjBkjdCnm5ub88MMPwg3h7t27PHr0qNMHZSUlpX8Zxf/TFkyC5hcVFREYGCh0Ec3NzaSkpAjvXcmeWFBQwM8//4ypqSlRUVFoa2uzatUqcfB6/fo1+fn5uLm5YWJiQktLCxEREVRUVGBgYEBCQgI7d+7EwsICOTk5wsLCOHfuHBcuXBDK9c6WrKwsHh4evHv3jlevXmFtbY2LiwtKSko4ODiwceNGnj9/jpSUlPAov3HjBuXl5eTn5/P8+XPh4CARMyUlJdHS0iJ8vCWaiOrqar799lvS09OZMGECNTU1vH37VgQC/fTTT+jp6SErK0t9fT21tbUMGTKEQYMGcf78ebZv305QUFCnxJORkZHk5uayZs0a8XzU1NTQrVs3LC0tUVNTY9iwYfj4+IjY8Pj4eEaNGiVEjEZGRsK3+e7du+zfvx99fX26dOnCnTt3iImJEQBHVVUVL168ICIigh49eogJoJWVFYsWLUJGRobvvvsOJycnNm3aRF1dHeXl5cJr+Uvi4DvdvEpUZ5KFVSIc0dXVFYueqqoq9fX1rF69mrdv37J582bRhEpiyiSNrLS0NOvWraOysrJDfKGLiwuvXr1i79696OrqijxgiWVMRUUF9fX1qKurU1hYSE1NDcrKyrS1tXV4WY8dO9bBf/ZLqrCwkP79+zNy5Mh/8VOTpGvV1dWRnp4ubha0817fvHkjAhv+aVouCSKQk5MjPDyc27dvU1RUxF9//SWQuB07dlBdXc327duprKxk9uzZODo6cvr0aQYNGoSGhgYWFhaUlpaKkeCVK1c6zUNramriyZMnGBgYcPfuXSoqKjA1NUVFRYVPnz6hpaXFN998g5+fH6ampiQmJpKVlcWQIUNobm5m5cqVqKiocOrUKWHWXlxczLRp0xg3bpwYC0pG2g8fPuTTp08C2QoJCeHjx48iyCIqKoqFCxcyePBgLCwsKCkpQVZWlp49e/5XsZulpaV8/PhRnE6dnJwEohgSEsK1a9dEZj20NyghISG4urrSt29f+vfvL8ZdBw8eJDAwEDc3NyZOnIi6ujqRkZG8ffuWtLQ0Ydjcq1cv8fO6d+9Ov379MDY25s6dO2zdupXPnz+zePFiYV+UkpLC+fPn6dKlC4sWLRLN+peWpqYm586dw8PDA2dnZ4qKirh06RIRERFs3LgRLy8v/vjjDzZu3IiLiwvLly9n7NixHTjHzs7OnD9/HmlpadLS0jh69Khws8jPz0dTU5MZM2awZ88eFBUVaW5uJiQkBFtbW+Tk5Pj48SN79uzh22+/RU5Ojj/++IMnT54wYMAArl27Rv/+/YVa/r8pSVNy+PBh9u7di76+vlh4T506xY4dO1i9ejWLFy/m0KFDojkbNmwYly5dwsjICENDQxITEzE2NkZRUZG5c+fS0NDQIQ1HMrnZunUr1dXVDBo0SNjxzJo1CzMzM+7du0d5eTkKCgoMGzYMRUXFDgK7f5fM9Z+qd+/eREdHEx4ejqKiIitXrkRZWZn9+/ejpKTEqVOngHbbtr179+Li4sKAAQO4ffs2OTk5+Pn58f79e06ePEmvXr3EfYiJiWHw4MEdxJySNbGxsZGWlhbMzMzEOxASEsL9+/dxcnL6lw1RgtxZWlr+S/rPl5QEVJCSkiI3N5c5c+ZQW1vLtWvX8PLy4tq1a0K0VlRUBED//v158OABFy9eZNq0acjLy7Nu3ToOHDiApaUl33//PXV1dYLjvW7dOl69eiXWC8m9nThxIitXrmTQoEEUFhbSo0cPcajeu3cvJ06cwNTUlLFjxwqxY2cz44cOHSqoQ5Lm+cOHD+zatQsTExOeP3+OoaEhycnJQsQ6aNAgDh48yE8//YSXlxfBwcEi0jk5OZl+/foJeoOzszPOzs5s376dffv2dXCzkPCbBw4cyIQJE/7Fk/ifPqtJSUkiba5Pnz7cunXri68xPDxcjIUlJfEc/efPaGtrQ0ZGBnt7e/r06YOenh5ZWVnCQm7OnDmEhISwdetWoH3aJdn75s2bh5eXFxkZGVy4cIFPnz5haWmJiYmJSFjLy8ujsrISFRUVYXvm6OjIuHHj8Pb2JioqitraWqysrDqtBTl27BjfffcdMTEx7N+/n379+rFo0SIRrQ3toUohISFs3LhRaAJ0dXXp3r07AwcOxM7OTgQ3PHr0iK+//honJydWr15NW1sbq1atQkdHh+zsbLFWxcTEsHfvXpYtWyZcTQ4dOiRAqc2bNxMaGsry5csZMGAABgYGbNu2TazFX1rTpk2jb9++yMjIkJGRIXj+2dnZwgLwzJkzhIWFsXDhQhYvXsz169e5c+cOV65cEetbXFwcERERyMvL07t3b1paWmhqaqKsrIzTp0+zcuVK3rx5w86dOzExMWHdunUUFxezc+dOxo0bJ8T6w4YN4+zZs8jLy/PixQva2tpwc3NDRkYGHR0dpk6dKta//6063bxqampiYWGBn58feXl53Lx5k4MHD7JhwwaGDx9OZGSkGHHn5eVRXV1NQEAAmpqawpGgrq6OadOmMWLECJELLTGkh3biviT+UF9fn8bGRvGQFxcX8/HjR7KysoiKihLpQPr6+oKDIqmLFy/y+PHjTqEhEvsGQCSESU4NRkZGNDc3069fP1xcXHB3d6e2tpYXL17g7+9PUVERU6ZMwcDAQIyHR40ahb+/P9nZ2Zw7dw51dXV69+5NUlISbW1t3L9/H1tbW5Hooauri7y8PDIyMkLJl5ycjJ2dnbjxr1694u+//8bMzIx+/fp19hZy6dIlYmNjGTVqFFOnThVBEpI87v79++Pl5SV4KqWlpeTn55OXl0dTUxNaWloUFxfz6NEjWlpasLOzE/elb9++Ii5TIsS4ffs22dnZ9OvXj6KiIsLDw3n//j1OTk64uLjw4cMH7t27h5KSEuXl5Zw7d04oFYFO2Q9Be1qKoqIihYWFAk2SVGhoKOnp6YL6kZOTQ2pqKq6urmLhz8jIoKqqioaGBtra2rC0tOxg4D5kyBCBQgMsX74cS0tLAgMDGThwIJMmTSI3N5dLly5RVFQkxG2SMU9FRQV//fUXSUlJDBw4EHNz8y9KFPlnSbz6tLS0kJKSIicnBw0NDby9vSkrK+P27dtkZGRgYmJCY2MjbW1tqKiokJaWRlJSEv369cPCwkIIyXr06EF8fDz3798X3w0gPCHLysr48OEDKioqrF69mg8fPnDz5k0SEhJYuXIlXbp0EWIgKSkp4uLi0NfXF6jZfxMPK5nKfP78mbq6Ory9vYVnbHJyMvLy8gIhlZeXJz09HR0dHezt7YXSu6SkhKqqKuGD+U8rtPj4eOTk5LC1taV3794CwdLQ0EBaWho/Pz9BBZA0FuXl5ejo6AgB0uXLl1FTU0NDQ0OMxr601NXVyc7O5v3792hrazNz5ky2b98ugkPS0tJQUFCgubkZW1tbYU8WGxuLlpYWZmZm6OjoCPRSXV0dNzc3hgwZIhq4uro6MSkxNzcXExKJF6eOjg5JSUlcvHgRBwcHrKyskJWVFQk7/9Oyp7MVFBREVVUVgwYNorS0FBUVFRoaGmhpaRH0LFlZWVRVVUWz/eDBA+bPn4+mpib9+vVDXV2d4OBgWltbGTFiBF9//TV37twhKysLR0dHBgwYgIaGBtu3bxfiShcXF9TU1DAwMBD3PCIiAk1NTVauXEl5eTnnz5+nuLhYABQZGRn/0Vvyf5a2tja6urodvIyjo6O5ffs2Xl5e6OrqoqysTExMjAAhRo0ahYqKCiYmJmzfvl1ct4R3GxsbKxA3U1NT9PT0sLS0pE+fPkRFRWFra4uTkxMZGRnioDNw4EAcHByIiIggLCwMAwMDcWhsamqitraWfv36YWJigrm5eaea16tXr4rrKCgowMzMTDTX6enp5OTkYGFhgZmZGWPHjqW1tRVFRUVaW1uRl5fH2NiYzMxMnj17xrNnzwRyrKenx6dPn+jfvz+urq44OjoSFRVFaWkppqamlJSUEBISQl1dnXhWAJycnBg9erRYW5cvXw7A+vXrUVJSYvny5Z22j7S0tERKSoqEhAQSExNJTEzEx8dHaBGKi4uFJWJCQgKfPn0iIyODiRMnsmbNmg5WV5cuXWLnzp1UV1eLFD9jY2PBv5aWlubnn3/m1q1bVFRUoKurS9++fQkNDcXf37+DzkASBZuZmUl0dDQxMTFMmzYNU1PTTjWvEsvNyMhI3r17h6amJo2NjTx//hxpaWns7OxYs2aN8Mp2d3dnwYIFnDp1infv3mFpaYmvr69wc7C0tCQyMhIzMzPWr18vhHURERG8evWK8PBwYbv44cMHzp07J9LZVFVVMTc3F2vU06dPhbtG165dUVRUxMPD4//3zWuvXr2Ql5fHxMSEkSNHUl5eLjKme/TogampKX/++SdDhgzh0KFDJCUlsW3bNv78809cXV15//49ycnJZGdnY2Njg5ubGydPniQuLo6ff/4ZBwcHlJSUqK+vZ8iQIdjZ2fH333+za9cupKWlha1DZmamGEXp6+uL//1PYUFnOCGSiouLw9ramra2NqGalCQlSZKuJIpXNTU1goKC+PHHH4mJicHOzo5Hjx6hoaHBiRMn6NWrF5s3b+aPP/7gxx9/ZPbs2SxYsIA9e/ZgYWFBamoqp0+fJiQkhFGjRrFjxw6gfUyjpKTEzZs3+fDhAxEREdTX1wtkWkpKitbWVl68eNEpeyVJ3blzh+bmZsrKynj27BkqKiqYm5vTq1cvevbsSffu3QW3T6IYd3V1JT09HTk5OQ4ePMjbt2+5d+8ePXv25OnTp3z69ImLFy8Ke5r169ejoqJCaWkpw4cPF2kbN2/epKioSETPSrhtvXr1olevXjQ3N6OlpUV9fT3p6ek4OTl1sOr6knr79i0rVqwgIiKCR48e4e3tLQjuampqomELCgri0KFD6OnpiWa0vLycoKAgjhw5QmRkJEuWLGHbtm0dGuB/NprGxsasXLmSrKws1qxZg5SUFFZWVmzZsoVr165x+fJlVqxYQUNDA4mJiRw+fJgTJ06QnJzMwIEDBdG/s+hkcXExa9euRVdXl6qqKhwdHQU/csmSJZw/f56tW7cSHx8vBDsA+/fvJzo6mjNnzlBTU8OyZcswMzNj3759bNmyBWdnZ1auXCn4aadOnRIBEf369WPz5s3o6OjQp08fjI2Nyc/PR0dHBz09Pfbt28eaNWswMTERHrfq6upIS0v/V4KfiooKampqWLhwIUuWLEFVVVXY2Cxfvpzly5djbGxMcnIyP/30E6ampuzbt0/8++rqanR0dMSh+H9WWVmZ4C6bmJjg7e1NWFgYwcHBzJ49W/iOlpWV8fnzZ9ra2sRnFhcXc/bsWa5cuYKpqSlr1qxhxYoVIiTgSyoxMRFtbW1xqEtJScHW1pYTJ06QmJhIdHQ0RUVFWFtbc/LkSSGsSk9PJyEhgdraWvr06cO0adNYtGgRS5cu5ciRIx2aaEVFRfLy8sjJyUFFRQVVVVUqKirEaHXevHm4ubkhJSVFWFgYf//9NxEREdTV1WFpadlhsvTP0f+X1qdPn9i2bRvdunXjyJEjwvpu0aJFrF27lunTp3Py5EkiIyOFHc/MmTNF8Im8vDyGhobMnj2bGTNmCAcbHR0dZGVlSU9PJz09na5duxIYGMgPP/yAvb09S5Ys4eTJk4wcOZKAgAC6dOnCgQMHUFBQ4NixY6xatQpzc/MOvq7Hjh1j586dnQI7QkNDiYyMpEePHqLR8fT0ZNOmTVy+fJnp06ezf/9+evTowS+//MKqVavYuXMnu3fv7vCsQvt+pa+vz+rVqzl06BBSUlIMGDCAMWPGMHHiRFxdXTl37hwODg5MnTqVkydPcvjwYRISEoTJfkpKCvHx8fTt21esKXJycjg7O9PU1CSAkc5UXl4eycnJ5OXliYOvJGY6MjKS4OBgYdso0Q5AuyCxoaGBr776iubmZpYsWSJSBCVRr4qKilRUVAh1fbdu3XBwcEBVVZW6ujpWrlzJsWPH6NGjBxYWFgQEBFBdXY2NjQ1ff/21oNDFx8cLH9j/xipLIi76p5itsrJSrDfKysqoqKjg7OwsxEw///wz0tLSHYRs0H7ojoyMZMGCBcyYMYO1a9eK56y1tRU9PT0mTJggeMg3b94kMzOT6dOns3Tp0g4UjSFDhmBlZcXkyZPJy8vj6dOnNDQ0sHHjxk5fI7SP/o2NjdHU1ERaWpra2loCAwOJjIykqakJaWnpDhHJkonl119/zdatW6mqqiImJobS0lJkZGSwsLDA1tYWeXl5mpqaeP36Ndra2mzevBkNDQ1OnjzJ48ePycrK4u7du6irqzN9+nQxjYH2xvrChQukpqYybNiwL46C73TzWlpaKrhhXl5euLm5oaamhoyMDJWVlcJ/LTs7G3d3d9zd3SktLeXIkSM8fvwYNTU1fHx86NWrFzY2NjQ3N/P69Wuio6PJz8/HwcGB9PR0mpubMTIyEslLkjGdmpqaIL9LmpqamhqCgoKEPYeE4zZlyhTU1NTEOOpLKjc3lytXruDu7o6ZmRkpKSkEBwejqqqKmpqa4AUCXLhwgYSEBJHuVV5ezvXr14WNUlVVFXJycqipqWFoaEh+fj7V1dViUfn48SMPHz7EycmJrl27iof21KlT2NjYMHDgQHx8fJg1axaxsbG4uLggLS2Nh4cHe/bs4c2bN5SXl3dIr/mSGjVqFCUlJcIuqV+/ftjY2FBWVkZiYiJ1dXWkpqZSVlaGp6cnZmZmqKmpERwcTFxcHDt27BCRq69fvyY8PFyM47Zs2cKlS5cwMDCgS5cuBAYGkp6eLsbbN27cID09nZ9++onx48cTGhqKjo6OGAdXVlaio6NDQEAAv//+O19//XWnbLKgfcNUVlbGwcFBeLBKSjLemTNnDp8/f+bt27cCTVi5ciXq6uo4OjpiZ2eHtLQ0AwcOFI2r5AWzsbHhzJkz/PHHH6SkpLBv3z7hO9rS0kJVVRVmZmaMGjVKbP6PHz8mNjaWT58+kZuby9ixY9m6dSu1tbWEh4d3Ou5v8uTJ6OrqkpGRwcePHwUqD+3N6z+53//8bGtra/HfgYGBPH/+HBcXFxFfO2nSJGGILS0tzb1793jx4gVeXl7079+f5uZmoZpesmSJ8Ku0sbHBxMTkf7Ua+uem9qXV2tpKSkoK7u7uHVwfSktLBTcX2tHV2tpakW7Uu3dvkeKSkZHBrVu3sLS0ZNy4cR02bldXV4qLi2lpaSEnJ4eMjAyxfvXs2RM1NTXi4+OZMWMGALNnzxbfXVZWlqDr9OvXD3t7e5Ez/6X16dMnoqKiMDY2ZsyYMdja2pKens7z589pamrCzc2Nrl27kpCQwNu3b7G1tUVfX1/wAh89eoSVlRVRUVHo6urSrVu3Dgd2ycbr7u6Oo6MjRkZGlJaWCmeK/v37o62tjYyMDIaGhkhJSdG1a1c8PT0JDAzkjz/+YPjw4UyZMgVAeFB3piSNjmTzh3YBzMuXL6mrq0NWVpbZs2cTFBREaGgoKioqLFu2TNjxSXiuknda4ikaEREhxFGSsBt9fX22bdsmeMSFhYXcu3ePZcuWoaOjw/379xk4cCDl5eUYGhoKC73m5mZevXpFTU1Np2OMJROW9+/fY2JigrGxMc7OzqipqZGQkEBCQgJz587Fz8+PLVu2MHXqVAoLC3nw4AFGRkbk5eURHByMgYEBvr6+IpVRcv/k5ORwdXUlPz+f6Oho7O3tGTNmDBoaGgwdOpSGhgZxzxsbG9HQ0OjQYB06dIiSkhJWr14t9pd/0tm+pCTWf7m5uRQWFgqu58iRI9HS0sLFxYXBgwcD7aNndXV1Jk6ciLu7O8+fPxeRxitWrODs2bOUl5fz9ddfs3r1avT09EhOTiYtLY2ePXvS0tJCUFAQbm5uWFpa0q9fP44dO8bnz5+xsrJCRkaGhIQEdu3aJQ7K8vLyNDY24uvr24EO1pl6+fIlqamp6Onp8csvv4jgHH9/f1xcXDAzMxP7dnZ2Nl26dGHlypWkpaVx8uRJvvvuO+rq6jhy5Iiwm0pNTcXe3l64mwQEBDBkyBA0NTW5ePEiN27cwM7ODi0tLQoKCtDV1RUe8bGxsbx7947bt28LOlp5eTmxsbEkJSWJ+/ulVVFRQUtLi/AZhvbJz/Dhw9HQ0BBiPBkZGRwdHcnJyeHPP//k48eP6OrqkpWVRXBwsJjESOLc09LSOH78OG1tbWhpaZGUlIS2tjZLly5FSUmJDRs2CIRYMvmRhCNJvuPi4mK8vb0xNzdHS0uLpqYmcnNz/+M1dbp5vX//Pt9++y3S0tKUlZXR2toqxD4lJSV069aN1NRUdHV1CQ0NxdPTk4ULF5Kfn8+DBw8YNGgQ8+fPF2O9Fy9eCNWbZHwSHR2NqqoqMTEx7Nq1i6amJnbt2kWPHj2E3cnXX3+Nvb099fX1BAcHc+rUKXJychg/frwgeru4uGBtbc2WLVu++Pr09fV59OgRKioqjBkzhurqat69e0dWVhaJiYmCwyVRbvbt25e9e/eSkJDAokWL2LBhA0pKSlhYWJCdnc3BgweZM2cO06dP58GDB5iZmdHY2EhwcDC//vorzc3NuLq6UllZiaqqKlVVVdy5c4fi4mK2bt0qEkr09fUFeqWgoICzszP19fUkJyd3unn9/fffyc7O5smTJ9TX1zN+/HgMDQ0JDw8XAqzm5mYUFRU7OAkEBAQID1iJMnHnzp2sW7eOW7duCRubN2/eYGlpyZMnT3jy5AnV1dXs3LmTmTNnUlRURFBQEAYGBiKStqCgQKB06urq+Pr6UlRUxIwZM5CXl+9086qtrU1DQwN6enpMmjRJjM2lpKQYP368aKQ+f/6MsbExBQUFnDt3Djc3N8aNG0efPn3w9PQU33dDQwOvXr3i0KFDhIWFsWDBAo4cOUJdXR2LFy/m119/xd7eHj8/P9H0SMzjAc6fP8/y5cvR1tZmxowZjBw5Eg8PD+zt7Xn69ClZWVmd4rtCewSuJKxDRUWlQ167q6srO3bs4PHjx1y7dg0fHx8qKyv58OEDPj4+dO3alYqKCtLS0nBxcaFPnz4UFhZiaWlJXV0dkyZNEp9nbW3NjBkzmDhxIlpaWrx+/ZqQkBD09fXp2rWrSLiSROnq6urS2NjYgQ/X1tbWqQOkpCoqKpCVlRWRxNCOApWXl3cYM3fr1o2NGzfy7NkzIiIiUFNTE6ECgYGBrF69muHDhzNy5EhkZGQoKytDSkoKTU1Nxo4dK4QwaWlp4me3trZSVVXFrl27+PjxI3PnzmXAgAGCq6auro6trS2WlpacPn2a8vJykR//pVVXV0dISAiTJ08WbgwHDx7k4MGDTJkyRSCA2dnZwhVi6dKlIjAiLy+PnTt3cvLkSdzd3Vm9enUHCx0pKSna2tpQVFQU9IrCwkJyc3Px8PAQaFNKSgrOzs4MGjSI7777DhkZGUaPHs306dPZu3cvbm5uODs7d3oCAu2TjhkzZmBhYYGhoSFFRUWYmJhw/fp14Z3r5+fHoEGDOHfuHAA//fQTioqK5OTksHLlSq5fvw60o8gS+omCggJDhw5l6tSpuLq6cvDgQfz9/QUyC+085Dlz5vDkyROCg4OBdj1Gfn6+SHOSl5cXFLQuXbowaNAg9uzZ88XXJyMjg5GREXJyciLlLj4+nqSkJDQ0NDA1NRVr6Pjx43n27BlHjx7lwYMH/yJCvXr1Kvb29iLIxtDQkJkzZ+Lu7s6ff/5JSEgIW7ZswdjYmLy8PHR1ddmwYQOVlZUkJiaioaFB//79BXIVExPDmTNnUFBQYN68eQJ1f/fuXafuoaSptLKy4rvvvuPnn3/m4sWLZGZmoqqqiqGhITIyMrx+/Zrvv/8eY2NjBg0ahJWVFa6urmzatImePXuybds2fHx8OHr0KD179hSNWn19Pbq6umhra5Oens63336LoaEhz549E4fUxsZGIWaD9ubuxYsXAviRAGVAB2Hil9a+fftoaGhg+vTpfP3110D7OHvHjh1YWFiwbds2zM3N+fDhAxcuXGDixIns27ePefPmsX37dvr06SM85l1cXP4lGCkyMpKkpCTc3NxoaGjgwYMHBAUF0dbWxtSpU0VYUFtbG+/fv+evv/4SiYAqKioUFRWJkKbMzMxOc3r/OTmU0LEkgk1oP8ApKCgI67l79+7x+++/iz4gKCiIvLw8xo8fj7e3t3BgSklJYc+ePWRmZmJpacmgQYNwcXGhqqqKwsJC1NXVsbKyor6+Hg8PD6SkpLh27RqmpqYMGjQIf39/CgoKWLBggaBeZGZmdkB//7fqdPOalJQkzPO3b9+Ovr6+UDyOHz+eTZs24ebmRkhICBERERgYGKCmpsa4cePw8fHByspKpKSkp6dz9+5dYRX1T9P/lJQUYmJiCAsLw8jICEVFRZKSkti3bx9RUVEsWLBAnD5evXpFZWUlgwcPpn///uJzcnNzO8218/b2RktLi/z8fEJDQ3F2duarr77i77//JjIykj179ogH0dPTk379+omm7tOnT0D72L+srExYZOjq6mJnZ0d8fDzS0tJkZmYSFxeHubk5kyZNwtjYmIsXL4pYP29vbzZv3syoUaOYOHEiCxcuZMiQIUB7IxAYGMipU6d48uQJZmZmQlzUmTI1NWXmzJmcPHmSDRs24O7uzpw5cwSqXFNTIziw0P7yZWVliSAKaOcBSnwRJYlYmpqa+Pn5sXTpUs6fP09iYiLTpk0TNjsSEc2hQ4dQVFTEy8uLgIAAhg4diq6uLrt378bV1RU9PT20tbXJz8/vdE61n5+fQNhaW1s5cOAA5eXlrFixQvBs7t+/z7lz51BRUeG7775j8ODB9OzZU3BJ/znmfvToEa9evRKbiiQ1SjJah/Ymz83NrcMzLClfX1/mzp1LYWEhHh4ejBs3jtTUVFasWEFycjJWVlY8evSoU9d4/fp1ysvL6d69u7Alef36Nbdv3yY+Ph53d3cmTJiAlJQUGzZs4OTJk2hqarJu3TpcXV2FgFBPTw91dXXk5OQoKyujqqoKWVlZQkNDCQsLo0ePHsyfP1/8XFNTUxwcHCgqKmLnzp0UFxczb948Pnz4gIeHBz/++COLFy/m3bt3hIaGChGD5LvrTCUmJtK3b180NDR4//49O3bsQFFRkU2bNnUQIykoKNC7d28ReywRFkmM3AcOHIi3t7fgw0v8hyVq17t377Jnzx62bdsmoivv37+Pv78/enp6nD59mv79+1NaWsrdu3dxd3fH2tqaW7duoa6uLmg+X3311X/kaf2zNDU12bJli6B7bNu2jfv377Nw4UIh7IP2g8qvv/4qQjbGjRtHUFAQycnJ/P3330hJSZGens6tW7fo3r27eD9bWlpEsEthYSGzZs3C3t6exsZGgSDfu3ePt2/fMmLECPr16yfeGxMTE7Zu3crJkydZtWoVS5cu7eBZ/KW1a9cu0tPTWbVqFd26detAPfhnTLKWlhZ+fn5cvHiROXPmYG5uLhBRaD+QTpo0CRcXF8rKyrh27RoBAQGMHDkSV1dXYVkloUlEREQQHByMhYUFq1evJikpie3btxMeHs7r16+5efMm6enpLFy4EE9PT77//nuOHTvG9u3bO9WkZ2dnM3bsWPr06UNdXR0bN25EVlaWSZMmYWJiIsIDoP0QbGRkxIoVK9DX1+fChQsdDnV1dXXk5+dTXFxMly5dmD59Os3Nzfz66680NjayefNmsdbHx8cL32h1dXXy8/ORkpISjevnz5/5+PEj8+fPx9fXF3Nzc+7du8eZM2f+Zcz9n+rJkyc8ePCAJUuWMGTIEPbs2cPq1as5fPgwBQUF2NnZERwcTFZWFhUVFVRVVXH+/HmWLVuGlZUVJSUl7Ny5Ey0tLRYuXMj333/P3bt3WbZsGV5eXjg7O4vxf2NjI4WFhZSWlpKRkcGAAQM4c+aMsHCrra3F09OTyZMnCzFXU1OTOCiXl5cLT9bO1KJFi6ioqOgg5CwqKhIewxUVFSxduhQVFRUGDx4seg9bW1sqKyvZt28fc+fO5aeffvqXZDVo7yusrKw4fvw4WVlZzJ49m2+//ZYnT57w/v37DpPXly9fisZ14MCBrF69WjTxmzZtIjo6uoO2p7P17yhcr1+/RkVFRehU1NTUcHFxISoqCk1NTaZOncqAAQMwNjbuQHFzcHBg06ZNXLt2jcrKSsaMGcPIkSO5e/cuhw8fpq2tjblz52JlZUVoaCi//fYbVVVVzJw5k7a2NpqamsjMzOTp06doaGhgZWWFhYXF/3+QV11dXZKTk/n06ZPgrkqyfyV+rpINS8INa25uFkpIWVlZkpOTefLkCY2NjSgpKeHk5ISCggIBAQF4eHhQUlLCw4cPiY6OFqbh27dvx8TEhOLiYjIzM0WcocRY3cnJiR49euDu7i4WYImtV2dK4vkXHR0tzJe7du2Kg4MDwcHBQvDj6+vLkiVLRAxuUFAQioqKODk5ISsrKxpZeXl5IayQREC+f/+e5uZmBg0axMyZM0lLS+PChQsYGBjg5eWFmpqayHU3NTXFysqK0tJSGhoaBEcoKiqK8vLyf2u6/Z9KwoPs3bs3Xbp0YcOGDTx8+JAhQ4ago6NDeHg4qqqq4nQF7aKp6upqWltbqaysFAK06upqzMzM0NLSoqamRowozc3NSU1NBWDBggXinujq6jJlyhRevXolTLwbGxs5cuQI9fX15OXlCfHUvn37eP/+vUBevrQkSIGsrCypqan8/PPPtLa2CiQrOTmZpUuX8vnzZxQVFfn6668ZO3ZshwxmFRUVSkpKuHnzJv7+/qirq9O3b19x/RKbKUVFRSZNmsSkSZOwtbXtMJbOzMwkKSkJFxcX9u3bx4kTJ3j58iWurq7Czsvc3Bx7e3vOnj3bIWr4P9WHDx9wd3dHRUWFuLg4MaIsKSkhPj6e6upqQeyXWLioqqri7++PpqYmixYtomvXrty+fRs5OTkx7q+srOTMmTMcOXKEkpIStm/fTlNTE9XV1aSnp+Pi4oKCggI6OjqEhITQ0tLCuHHj6Nq1K48ePaKoqIjy8nJevnxJTEwMRkZGtLS0CK5bZ0oSBFJdXc3jx4959OgRffv2Fc2pJIZRQlkwNjYWk5GmpiaSk5MxMzMTnEtJo6StrU1paSmvXr1CXV2dlpYWrK2thRDBz89PKJ6vXbsmnFUuXLhAQECAsM9xcXEhOTmZ4uJitLW16d69e6eaVy0tLXEovX//vkBwjh49CrQfmiTpV15eXuTm5hIZGYmzszP9+/cnPDyc8vJy7O3tSUhI4ODBg7S0tLB161YhhKqvrycxMZHU1FSGDh2KlZWV4N+1tLRw/PhxsrOzWbJkiWhok5KSsLe3Z+DAgVhYWDBs2DD+/vvv/8o3u7W1laSkJBISEoD2Q252djYlJSVC6NbW1oauri6mpqb07NmTPXv2iMOOgYEBmpqayMvL0717d7799luKiop49+4dnz594smTJzg4ONDS0oKOjg6PHj0iJiaGnJwc6urqiIyMZO3atUyePJmPHz8KAczVq1cpLy/H09MTT09PqqurefXqlZhOfGk9fPiQlStXYmNjQ2ZmpghIWLduHX369OHy5cuYmZlRW1vL27dvMTExoWfPnoLyc/v2bSwtLRkzZgyqqqrcvn1bTAYaGho4evQo4eHhrFmzBi8vL5qamjh58qSYJEkEY/9smJqbmyktLUVWVhYjIyPRbCQkJBAVFUW3bt2oqan54musrKwkJSWFO3fuMHjwYKSkpJg6dSpv3ryhoKBA7GuS/ai4uJjbt2/j4+ODoaEh9vb2giI3b948nJycWLZsmQCdunfvLiYDioqKuLm5CfqWiooKU6dOBdrpQhLx0NChQ4mMjOTp06c0NTXh7e0tPLgbGxu/+Nok9c9Y4NzcXAIDAwU15dWrV9y5c4fhw4czb948UlNTiYqKwsjICCcnJ0aMGEFycjIxMTEsWbJEHLqcnZ3R0dEhPT1dgHZv3rwhKCiIrl278v3336OmpsaDBw94+vQpVVVVqKioUF9fz8CBAzEwMOCHH34QXGp1dXU8PDyws7MjMzOTjx8/fvH1JSUliX6prq6O3NxcgVDHxcVRWlqKj4+PAKsMDAwYNGgQUVFR1NfXM2XKFOFKEBMTI1BaCXrbrVs3du/eTWFhIcXFxRQXF1NUVISFhQWjR4+mW7duwjJS8h3LyMggIyNDdnY20dHRODk5YWBggLq6+hfR6DrdvA4YMIDMzEx8fX0ZNWoUtbW1ghN56dIl/Pz88PDwYMqUKdja2opN8cOHD4JIXlNTQ2JiIjY2NixdupThw4fz119/sXbtWmxsbNDX1+fVq1eUl5czefJkioqKCAgIYMSIERw4cIDIyEh+/fVXZs+eja+vL97e3tTV1fH582cqKysFRK6rq/tfNXclJSXY2tri6uoq3Ab69evHmzdvKCwsZOPGjaxfv174RhYXF2NnZ4eamhq5ubkdNurGxkby8vIwMTFBX1+f7OxsIiIiUFRUxNbWVigyu3XrRu/evWlsbOTu3bsoKChw+vRpfHx8OHfunPBLGz9+PKNGjcLZ2ZmSkhLU1dXFZveldeXKFXbt2sXJkyeZOXMma9asISQkhPj4eK5evcrJkycZPHgwGzZsECIxd3d3zM3NSUlJ4dy5czQ2NtLY2Ii3tzcyMjJER0ejrq6Ou7s7sbGxnDx5kmfPnqGurt4hCtLFxYX+/ftTW1uLjIwM9fX12Nracv/+feTk5NDW1qa6uhojIyNmz55NZWUljx8/7pTdmeREp6CgQENDg/CClDQvkgx5aB9ZHTlyRNABPD09UVVVpbCwUNBRoqOjmTdvHoaGhnz69Ilx48YJJebJkydRVVUVQsJ/bgrBwcEsWLCAmTNncurUKdEs1NbW8sMPP3DgwAHU1dXJyMjg/v37nbqH06dPx9DQkJs3b3L48GGqq6uZPHkyixYtYt++fRQXF1NYWEhUVBQrVqxg3759VFRUcOHCBTIyMqioqBBTk3++I1VVVVy/fp2cnBzBwdu1a5ewoLG2tkZBQYGWlhY8PDwoKCggKysLW1tbXr16xcOHD1m/fj0pKSkMGDBARCOHh4d32nPZ0dGRkJAQAgMDxT1YvHgxOjo6PHjwgA0bNpCdnc2PP/7I2rVrSUxMFHGRY8aMYciQIWRmZqKvr99BZDd8+HDRbB87dgwfHx/69u3L77//zp07d5g5cyaurq7/cvCVlpYWNn/V1dWsXbuW8vJydu3aRVVVFYGBgZ26PhUVFf766y+ys7MJDw9HX19f8EsvXLjAN998w5w5c/D19UVBQYExY8YwbNgwgoODmT59Oq9fvxa8UUlJnoV169bh6OiItrY2s2bNQlpa+l8QIRkZGWpra8nMzKSgoECgTv/0jraysmLNmjXCfq6zdejQITIyMoSjSVNTE58+feL58+fU1tbSu3dv0ThUVFTQtWtX7t69y8qVKwkLC8PKykpERAcHB+Pt7c2FCxd48+YNrq6uyMjIcOTIEZSUlOjevTuhoaEUFRVhZGQkaCC7d+9mxowZTJkyhaKiIt6/fy8OdNra2jx48IC1a9eir6/P5cuXOX78+BdfX0xMDLGxsQwcOBBFRUV8fX0pKSnhw4cP9O/fn9mzZ9Pa2kpFRQV2dnaikSwvLxfJUp6enqxevVoENUC7SPD69euCR21tbU1LSwtTpkzh0aNHbN68WUwjNTU1xTNQXFyMmpoaXbt2RV5ennnz5nHixAlOnz7NokWLxOSkM4csyeQvKCiIrVu34unpiZ2dHcePHxcBBaWlpdy/f5+///4baG+gW1pakJKSwtnZmWnTpjF37lx0dHT4+PEjsrKywkHhn4JKCdgjsSD8Z0n2DEl64bt374QIzcLCgtraWmpra4XrSWfq6tWr4t2Tl5fn0aNHGBoacvToUS5cuMCtW7dwdnZGTk6Oy5cvk56ezty5czE0NGT48OGCQnngwAEKCgqwt7cXKPnTp0/JycnB2NhYoKsrV64kOjqaH3/8kRkzZrB792527dpFnz59WL9+PWvXrqWqqqoDStrS0kJNTQ1tbW2dDn05cOAAU6ZMwc3NjZKSEhHL3tDQwIABA5gwYYLYB0pKSkhISCApKQlA6DmgndK5ceNGioqKWLZsmfCoLygo4M2bN9y5c4fIyEhmzpwp3Igk04DFixeTm5vLzp07iYiIEO4JTU1NjBo1inHjxnVKFNrp5tXLy4vPnz93gNclVVtbS1hYGMnJyQwdOhQTExPxZ5mZmXh4eKCgoICNjQ19+/bFzc1NcA4zMzNJTk4mOTkZNzc3+vfvj46ODlZWVqKDX758Ofb29lRXV9OnTx88PDxQV1cnOTkZCwsLPDw8BGopyQeW3IAvrTt37iAtLY22trb40p2dndHV1UVWVpbq6moxKrx69SrPnj1DTk5OJL/U1dWhra2NqakpJiYmaGpqkpOTQ2NjI56envj6+goRl5ubG9LS0lRVVYlTiIyMDDY2NsI7VE5OjpSUFDIzM+nVqxeGhoYC4f1vS1FRkWHDhhEWFoampiZTpkzh+++/Fydsibjs+PHjWFtbM23aNAwNDdm6dSttbW2kp6dz//59HBwcRNqWxKDe0dGRt2/f8uzZM6BdPBQZGUlsbCxGRkZYW1t3GOseOHBA+IlKvu+Kigpyc3Oprq7G0tJSHJi+tP7puVlcXMzy5cuFLZHEVHvXrl1UVFRQUVHBmTNniIyMJCcnh4sXLwq3g7S0NOrq6tDV1aWyspKqqipaW1sxNDTE0dGRESNGkJiYSG1tLe/fv0daWlqMssLCwoiIiGDo0KEiNrR///4MGzaMp0+fEh8fz7hx41i2bBmWlpYsX74cf3//L75GycJoY2MjmhJfX1/hx9jQ0EB6ejq6urpCzCWxsomNjSU1NZXu3buzaNEiHj16xL59++jfvz9JSUmiyZSSkiI4OJjy8nIGDhyIlZUVNTU1aGpq0tDQgK6uLrW1teTn52NtbU1oaCiXLl3i0aNHKCkp4ebmhqysrOCHdrZsbGwICQmhsbGRwYMHM3ToUHGYkqT3QXsDUl9fT0tLizDEl/C6JIee/Px8goKCiImJYcqUKbi7u9O7d2927txJbGwsgwYNory8nPj4eMzMzCgsLKSyslIgZw4ODri5uQl3h6NHj3L16lW8vb0Fr7GzanwDAwMCAwO5ffs2ioqKDB06VNjO1dfXM27cOLp160ZlZSXNzc00NDQQGxvL6tWrSU5OFrSP+Ph4zM3NGTlypIh5lYyGlZWVO1hdFRYWIi0tTUtLCw8fPiQnJ4eamhoOHTrE4MGDhQVXWVkZAQEBaGtri/Q7SbPVmaqvr+/gEdrU1CR4cGVlZcjLywtTcsn0ysfHhwsXLvDs2TNevnxJQkIC48ePZ9GiRTQ2NvLw4UMqKysFt1riulBbWyveIclhUxJ5KeHWamlp0dLSgpaWFl5eXlhZWZGSkoKKigrjx48X6NKX1uDBg4Vzi4GBAatWrSI8PJySkhKCgoIwNjYWB0RdXV1yc3N5/fo1FRUVTJw4kR49euDs7ExmZqZwgPjqq6/o1q0bly5dAtoFU/Pnz0dGRgZLS0tGjRrFhAkTcHJyIjk5mYcPHwLtdk+GhoYdxJFqamrIycmhoKAglN6dpdIpKSnh6urKhw8f2Lt3L/fv32fLli2MHTsWaJ9U1dbWoq2tLbQZ3bt3x8rKCnV1dUaOHMmYMWM6OFesXr0aGxubf2nC5OXlGTZsGA8fPmThwoXMmzcPHx8fampqCA0NpbW1VdhpycrKMmvWLPGOKCoq4u3tjZSUlPjuvrQuX74sIpRjY2MZMGAAEydORE9Pj5EjRxIXFyecDoyNjXF0dMTAwICSkhKsra2xsLCguLiYx48fU1FRQXZ2Nn/88YdwTpL4YmdmZqKhoSFAgIcPHwphWnFxMVZWVvTu3Rt5eXlUVVU7HEzLy8tpbGxEW1u70wJYR0dHLC0t0dLSEt+VhoYGysrKwtItPT2dkJAQKisrhZjX0dGR7777Dn19fZqamsjJySEkJITi4mIaGhpEyMnLly/FvpGfn4+5ubkQEkqidhUVFfnpp58wMTHh/PnzHDt2DCcnJ9asWcPkyZORkpISB5bo6Oj/eE2dbl6Bf9u4Njc3i1NCWVkZT548YcSIEXz69IlTp04JLzdoRzAmTpyIoqIibW1txMbGCpsGJSUl3N3d+eWXX1BVVeXAgQPIy8uzadMmDAwMiIiI4PDhw5iZmbFw4UIiIiLYuXMn8vLyeHh4CNi9qKiIP//8s0Pqw5dUUFAQ7u7uREdHU1tby7hx45CTk0NOTo5u3boJFXxGRoZ4wNLT0wXaqqenh62tLUOHDmXhwoWoq6vzxx9/kJWVxcyZM3F0dBSxsRIRSmNjI/n5+URERGBjY8Pvv//OzZs3OXbsGJqamgwfPpzJkydjYGCAqqqqsHOqrq7G0dGx0/evd+/erFu3ju3bt7Np0ya2bNmCvb09ampqrFu3jhUrVvDq1SvOnj3Ly5cvKSoq4tdff6V///6cOHGCNWvW8OjRI5qbm5kyZQrGxsZs27aNBw8eMGDAAOFTt2zZMsaMGcOFCxeIi4sTpOzm5mZiYmK4desWt2/fJi0tjcuXL7NmzRpGjx6NhoaGiJadNGkSq1atYsWKFZ2+zvfv39Pa2sqmTZuQlZXl7du3lJaW0qVLF1xcXMQJ3cLCgmXLlvHmzRtu3brF/PnzkZKSora2Fj09PeTk5Hj+/Dn19fV06dKFhoYGbt26RWVlJZaWlmRkZHD+/HlSUlJYsGABampqfPjwAVlZWQ4dOiQaKFdXVw4fPsz8+fN5/PgxwcHB1NbWsnHjRsaNG9ep5lVSX331FaNHj+7gZxsYGMi7d+/w8fERjatklObg4EB1dTWBgYG0tLTQs2dPGhoaWL9+PR4eHvTs2RNtbW1hDF5TU4OdnR1+fn706NFDfI6UlBRv376lqqoKY2Nj3r9/L9JiLC0taWtrE1G1urq6lJaWdvrawsPDyc/PZ/To0QwaNEjENcL/s3BZvHixuF/q6urCMujz58/o6OiIA1F0dDQ7duwgNjaW0NBQHj16RF1dHVlZWSQnJxMbG0v//v0FqlpXV0drayu3b98mKyuLFStWMHPmTNzc3Dh8+DAPHjxg7NixzJkzR4xwx40bJw5tX1JycnL07t2bnJwcCgsL0dDQEDGuCxYsYPbs2RQVFQlhy+3bt5kxYwZ1dXUYGhqyadMmYY1kaWnJhg0bBPr/T/N4SeXn54sgl6NHj7J582ba2tpQV1fn3bt3PHv2DH19fSZOnEhTUxN//vknxsbGDBkyBBsbm//Vcuz/qv3797N//36xN8jLy+Pp6YmHhwfy8vI0NDTw4cMHQkNDSUpK4sOHD9y+fZvff/+dOXPmkJ6eTmNjI3v37hXCD1tbW6E7UFRUxM/PjylTpgh1d1JSkhCdWVlZsWfPHl6/fk1BQQFjxowRlof6+vro6urSo0cPxo0b91/ZDu7du1c4VLS2tgq7q8zMTIKDgwkPD8fb21s08BcvXmTz5s18/fXXwp7v1atX/Pbbbzx+/BgrKyt++uknbGxsyMvLQ0tLSwgNAVatWkV5eblwUDE3N+fkyZPcunULDw8Pli9fjoGBAQUFBdTV1XH27Fn09PQ6jNIlqPOXVnBwMMbGxtTU1GBgYCASLaHdMefYsWOUlZWJ2Nh/2i2qq6uLhKWysjIUFBTo2rXr/7ona2ho4Onpya1bt7hw4QJ6enr4+PhQUFDAu3fvyM3NFYfEb775hk2bNmFkZCQCRJSUlP4rPqidnR1xcXGsXr2a3NxcTp48Kd47NTU1sS/b2dlx4cIFIQ6LjY1FX19f0L+MjIyoq6vjxYsX/Pzzz+jp6XH16lW6devG1q1biY6OxtLSkitXriAtLc13332Hvb09hw4dYsWKFVRXV6OkpERubi5xcXHY2NgIPrDkIPI/EekvqW+//VZwuS0sLDA1NWX06NHIysqK7+zhw4cEBgZSX19PaGgo9fX1zJgxQ7hySNb68ePHc/LkST5+/MjMmTOZMGECOjo6zJo1i+TkZAwNDcXzAQhQrqKiAg0NDZYuXUp1dTXr169nypQpQlNRUVEh0skktMv/qzrdvN68eVMYhisrK3P37l2qqqpwdXUVSkCA58+fU1paSs+ePfHz80NTU5Po6GiePHmCtra2yP/Nz89n6tSpKCgo8O2334rsW0tLS2pqaqiqqiI2NlaYMYeEhJCZmUlsbCzx8fHo6OhgbW1Namoqu3btYvLkySLJqWfPntjb23dQEf/HL+T/yxMzMzNDQ0OjQ6rM+vXrUVVVZdOmTQQEBPDXX39hbW3N06dP0dbWxtPTk7dv35KSksKcOXPE+G3KlCkUFBQI9ElKSoqUlBTKysqwt7dHSUlJjHlaW1tRUlLCxMSEbdu24erqyg8//ICCgoJocCUIoKysrDB87kxJ7EYkKENwcDB3795FV1eXZcuWCRRHW1tbQPu//PILmzZtwsbGBkNDQ8G/VVVVpbm5maqqKiGQ8fT0ZMGCBRgaGnLjxg1yc3MZOnQokydPFifG1NRU8bDW1dURHBwszKeh3fstISFBnFo7U0+fPuX69evY2NiI/GVAnPILCwt58+YNBgYGQlymqqrKtWvX+PTpE0lJSSgpKdHQ0EBOTk4H9N7e3p7x48ejoaHB0aNHuXnzJo2NjSK4QZLKtGzZMh4/fszx48epqanB2dkZT09P2traGD16tBAourq6CpVyZ+r69evY2dmhra2NpqZmBzWppqYmvXr16mAbIy8vT3NzM3JycuTk5HDkyBGOHDnCd999h7m5ORs3bqShoYGioiJMTU0ZN24cnp6exMfH09jYKDZLyf2T2JlUV1eLUfrKlSupqqrC09OTiooKDA0NsbKyIjExsdM2UgC//PILRUVFYsrwTz7xtGnTcHR0FApWaDehP378OCNGjOC7776jqamJtLQ0mpubyc7ORk9PDy0tLQoLC5k/f77wv+3evTsuLi7k5uaSmZmJt7c3o0aN4ubNmxw6dIj37993oDzIyMjQrVs3Zs+ejYmJCbdu3cLa2rrTZv5xcXGMHTsWZ2dncZiQBFbU19dz/fp1HBwcxLPh7OzMjh07SElJoVu3bgwdOhQnJydhJ1hYWIiZmRmtra1s2bKF6upq+vbtK3xqe/bsyZgxY2hubu7QBPTr149hw4aRkJBAfHw8SkpKTJw4kb59sSLFYAABAABJREFU+4rgFKDT6VOAQHHv3LnDy5cvRcKT5DlSUFAQxvyS1B+Jd/aECRPw8vKid+/efPr0icjISLKzs0V8an5+Pm1tbWhra9PY2Ejfvn0JDAxk69atXL58mT59+jBp0iTCw8PFRFBLS4vVq1fT2tpKXFycaFAkjeuXID7/LAmievLkSe7cucP333/PkCFDsLCwYPDgwURHR7N792569+7N2rVrBVVK4n4A7chlRESE+D5OnTqFqqoqlZWVSElJ8eeff3L69GnMzc2xsLCgrq6OpqYmevfujZubG46OjjQ2NnL16lWRfGRgYCB8faHdwzY5OZmePXt2Gl3OyckRfsSGhobU19fTt29fmpubefbsGXfv3sXS0hINDQ0SExPR19fHwMCAx48fU1tby+zZs6mvrxdN34ABA3jx4gVnz55FU1MTLy8vESktKytLTEwMXbt2ZdKkSaiqqrJnzx5KS0tJSEggKChIHJDz8/O5ffs2kyZNEvcxMzNTWI11ppYtW0ZhYSF79+6lsLCQhQsXUlVVRb9+/XB3d+ebb77B399f9CKSvfCfiWY1NTXIy8sLW7qwsDBBCYR2ER208z337NmDlZUV3bt3Z9CgQeIzJPuplpYWxsbGHDp0iPLycnGgqaysJC0tTexpX1opKSnk5uaira1Njx49kJWVFQd7Cfd18ODBKCoq8vLlS1RVVdHQ0BAaGw0NDTEhXrFiBc7Ozvzwww8kJCRw48YNbt68ydKlS5k3bx73798XdAIJPcbJyUnsUREREaiqqvLLL7/g4OAg9j/J/y+xmvxP1enVaPv27VRUVLBnzx5GjRpFTU0N+fn5dOnSpcM4wsfHh6qqKoyMjBg/fjzZ2dmcOHGCvXv34u3tzbhx41BQUCApKQlVVVUMDAzQ0tJCX19fNIwSdeaLFy/YtWuX+GxPT0+ampq4efMm/fv/f9g77/Coqu39fya99056Iw0IJSShhITem3TpCsKAFSxYAa8KKIjAHZQmIFWadITQIXRCTyCd9N57Ob8/hrMvuXrvJX69F/WX93l8BmcmM+fM2Wfvtdd61/t2oVevXiKLd+fOHT766CPat2/PtGnTAHXp+lkh75pHjBghiNLnz5+nsrKS3r178+GHH3Lq1CliY2OxtbXFz89PpMzlbjlZXsvd3Z2wsDDc3d2FFaq8AOTm5nLnzh00NDRwcnLCyckJa2trNDQ0RKNQXFwcNjY2YlEyMTHhzp076Ojo0LNnT0xNTX9TI0xVVRXbt29n8uTJDB48mE8++YSvv/4aUHO45AaEkJAQQkJCWLVqFa+++ioAH330Ec7OzoSGhtKvX79GDlVFRUWcP38eU1NTPD092bJliyjByHJMcseok5MT7dq1E5Ifjo6OtG/fXripaWpqMmzYsF/N8v8nJCUlER8fT6dOncRNLmu56ujocOXKFT788EMKCwvZv3+/yKDZ29tTWlqKjY2NmFTv379PdnY2mpqa9OjRQ+gX1tXViYBBRuvWrRsF2oaGhuzcuZOMjAyGDRtGdna2IN2PHz8efX19iouLKSkpabKiwtGjR7lw4QL29vYEBgbSsWNHca5PB1Hl5eWUlJRgbW2NQqFg//79fP/999TX11NRUcGOHTv45JNP+Oijj7hw4QIbNmzA2dmZtm3bCn1DOQuZkZFBYmIiHTp0wNjYmIkTJxIZGcnu3bt5+eWX+fTTT3/1WE+dOtUkNxgZcpn66UyRnKEMCgoiKCiokaTKo0ePuHTpkqDmXLt2jVOnTuHu7k5paSlubm54eHiQn5/P0aNHKSgowNPTk9WrVwsHnMuXL+Pj48OkSZPo1q0blZWVYnMqIzg4mN69e+Ph4cGZM2dQqVQMHDiwycHr7du36d+/Pz4+PuTl5XH69Gmx+M+ePZudO3cyb9484RBlZGSEUqkUgd+hQ4eIiYnBy8uLe/fusXPnTnx9fQXlR86UyVaq8iZAS0tLbKStra2ZMGECY8eOpbS0lMjISJycnETTZHZ2tshyP4t8zT/j9ddfR1tbm7Nnz7Jjxw5RagZEdv/SpUtkZGTQpk0b2rVrx+3btzl69ChmZmZ89dVX2NnZ8dVXX/H5559TWFiIq6srPXr0EJrFLVu2FJt5uSHqhx9+4Pjx43Ts2FFkfdu2bUuLFi2ElWtAQAANDQ0UFRWhUCiE/XZTkZmZyc8//8zJkyfx8vLC09MTZ2dnUXFJSUkhMzOTcePG0bNnT3x8fKioqOCnn35i6NChWFlZCQtrX19fzp49S1xcHLa2tmhoaJCTk0NlZSWampqNRPRlebTu3btTVlbGihUr0NPTo6amBk1NTTIyMnB1deXcuXNs2rRJyDL+miLKv4O/v78I0p52EpP7O+QqlUKhwM7OjlatWqGvr09kZCRJSUmCApiamipoPVevXmXHjh34+vrSqVMnMcYePXpEXl4e4eHh9O3bl0OHDrFnzx7MzMywtrbG2toaLS0t9PT0iI+PR09Pj8DAQBG8HjlyhOPHjzfibT8LZMenBQsWMHv2bDIzM9myZQv9+/cH1BSfqVOninsuMjJSuHI9fvwYc3Nz9PX1MTAwELKX7733Hjo6OpSVlXHw4EEuXrwoxPzXrl1L69atWbp0KeHh4RQWFlJbW4tCoUBHR0fo9WZlZXHw4EFR/cjPz6e4uLjJwWtMTAxJSUmiQbSkpIS4uDiMjIwwMzPD1tYWX19frK2txYZVdgpdvnw5M2bMEE5pkiTRoUMH0fdRXFzM/fv3cXBwEFncrKwsioqK2LNnDzo6OmLuiYyMRKVSERoayqxZs7h06RJffPEFvXr1EnNDamrqfyfzeuvWLUxMTHj8+DF1dXUMHjwYSZIwMzPj2rVrdO/enRkzZtCjRw/Onz/P+fPn6dy5M9bW1sL+y9nZGU1NTQwMDLhx4wbvvPMOCoWC8PBw6urq+OSTT5gzZw6enp4EBgaSnJyMr68v586dIzMzEwsLC2bOnImDgwP379/nzJkzNDQ0iMW5pqaGtWvX/kvB9H8HTU1N0tPTG8ltJCYmsnv3bnR1denWrRv+/v6cPn2aRYsW8f3337N+/XqGDh3K7t27+frrr7GysuLzzz/H0NCQdu3a8fDhQ+7evUvv3r0FH1P24ba3t+fBgwdcvXpVZB23bdvG3//+d0C9Y/r666955513sLOzo1u3bqSnp4sGlN+SDWnVqhU2NjZidzNy5EhiYmLYtWsXP//8M1evXiUoKIhFixbRtm1b8V0PHjxAoVAQFhaGl5cXYWFhHDp0iKtXrzJz5kwWLlzIpk2bOHnyJEeOHBHZtqysLBHIyvJL27Ztw9vbmxs3bmBsbMzevXvp0KED3377LQcOHMDDw4N58+Zha2vb5POTNT2fLnMWFBRw584devXqRatWrXB2dqawsJALFy6ImyY8PBxtbW2x2PXv3x9PT08hDxcYGIirqyvXrl1j+/btout2x44dNDQ08NJLLzFo0CCqq6tZu3Ytjx8/5ssvv8Te3p74+Hjy8/NxdHREkiS++uorTp06xejRo5k2bVqTgztjY2P27dvHiBEjRLOIjDt37lBeXi784lesWEGLFi3o2LEj69evF5q1Xbt2Zc+ePaSlpXH58mW2bdvG3bt36dy5M1FRUezYsYOBAweKTeCSJUvYuHEjI0eOZMGCBSxZsoSVK1fy9ddfs2vXLt5+++1fdKTLWqaRkZFi4nxWfPDBB0iSRKdOnYQNc0lJiWhgAnXGrLS0lEePHuHu7s7+/fuJiIggJyeHTz/9VJgplJaWCs5aYGAgHTp04Pjx46Snp4tSl7zx2Lt3L7NmzcLAwIDVq1eLalFRUZHgqsvvTUpKIiEh4TdJgT0NWTd75cqVLFy4kFu3bgGNXa127tzJqVOnWLVqFa6uruzfv59169bRq1cvjIyM0NHRwcDAAC8vLzp16kR1dTV9+vTB3t6e69evN3Lu0dbWFtx3uWHK2NiYXr16kZGRwfLly9m2bRs+Pj589dVX2NjYNNmZCRDZ/gEDBgg5ORmxsbEcP36cyMhI6urquH//Punp6cTHxzNy5EjeeecdEZS8/PLL3L17l82bN5OcnMzgwYOZO3duo+acBw8esHr1apKSkpg8eTLZ2dniHt6zZw8+Pj5s3LiRJUuW8NprrzFz5kxqa2u5d+8eLVq0wNTUtFEF41mwZs0aVq9eTUREBNu3b+fy5cvs3LmTN954A11dXR4+fMjs2bNxcXFBoVDQunVrdu3axYoVKzh+/Djdu3cnKCiIXr16cfv2bcLDw5k9ezYnTpxg48aNODg48Pnnn+Pp6cnx48fZtm0b9+/fR09PDzMzM3JyctDW1mbWrFmi6UZDQ4PFixdz5coVhgwZQlFREeXl5XTp0oWxY8c2GgfPgqevmYzi4mLOnz9PZmYmlZWV3LlzBx8fH95//32GDx9Oeno6NjY2GBsbC0pP9+7dsbW1RaFQMGLECGxsbDA0NBRqHnKvhLwJnDx5Mrm5uQQFBWFiYiIcuO7evUtqairdu3cXklkyZOrNb8WkSZNo06YNUVFRBAYGYmZmRmZmJnv27BGymYWFhaJZcMmSJezbt49XXnmFyZMnY2dnx9WrV4mNjaVLly44OzuzdetWvvnmG1JSUoSiho+PDy4uLlRVVXHw4EGKiorQ0tLCzc2t0Qbhvffeo1OnTsTExLB9+3bCw8Pp1q1bk/n14eHhIksvn2dycjJr166lZcuWVFRUUF1dLSpUskThokWLuHHjBiNHjsTW1paMjAy+/PJLLCwsmDp1KoMHD2bJkiWMHTuWNm3aMGPGDF588UUuXLggstcLFy4kIyODn376ibVr12Jvb4+1tTXR0dE8evSIu3fvEhUVRUlJCePHjyczM5NPP/200Ub319DkyGfGjBmYmJjg4eFBdXV1oy7wadOm0b17dxwcHDh37hyff/45CoVClPbDw8MxNDREV1cXSZLQ0tIS0jvl5eV4eHiQmprKjz/+SHZ2NjNmzEBXV5cxY8ZQV1eHqakp586dw9XVVRgQ3L9/n5SUFNq0aUP37t05ffo0+vr6YocaFxfXpPPr0KGD2JnW1NSgo6NDYGAgFy9epLS0lKqqKsEfiomJ4cqVK6JBwtLSkkmTJmFsbExqaiqDBw/GwsKC77//nqNHj4rg58yZM1haWopJQUdHh6KiImEHefToUeAfvtnHjx9HS0uL119/nRYtWmBgYMCRI0fo0qXLb1JTsLe3F+5ltbW1BAQE8MUXX2Bubs6ZM2eEG86NGzeE84bsXnLz5k00NTWFFuvQoUMxMTHhwYMHWFlZ8eKLLxIdHc3WrVsxMzNj7NixREVFcejQIfz9/TE0NCQhIYHc3Fw6dOjArFmzqKqqEpO7sbEx5ubmovGgrq6OQ4cONen8NDQ0yMrKEvxWUJdsPvnkEyFav3DhQj755BP27duHra0tb775plhsEhIShHB2SEjIL7q0L168yA8//EDnzp3p0KED4eHhWFlZCe2/uro6oqKiyMjIoF+/foSGhtKuXTt27dpFUlISxcXFwv6zb9++6OnpNcqoPAv69etHbm4u3bt3F4Luctk5IyOD48ePY25uTosWLTA0NKS4uJja2lr8/PzQ0NAQmrSyM9ylS5c4d+4c9+/fp7y8XDQFPN3t6uzsTHJyMqdPn2bevHno6ekxZswYoqOjiYmJ4d69e3Tu3Jm6ujr27t2LkZERPj4+JCYmEhcX1+TgdcSIEZSXl2NoaEh5eTnFxcXo6OiITUleXh6GhobU1dWJLmP5epeUlBAbG4uuri5ubm5iYgb1ZjQsLExIZiUlJdGtWze6d+/O+fPnKSws5K233qJLly6MHDnyF/qmstyLiYmJcN0rLS1tstFEly5daGhoICsrCxsbG0aNGsWDBw84evSosKuVMz+gLi8fPnwYKysrXnrpJaqrq8Uc0bVrV8zMzDhw4IAI8P38/MRC2L9/f27evMnt27fR19fn/PnzVFVV4ebmJhrwZA3nH3/8kY8++ghQL3ryRuG3uKRNnToVZ2dnxowZw+jRoykrKxNNZe7u7ujo6JCRkUFJSQnu7u4kJiZSUlJCaGiouJYyRWnChAlkZ2fz888/c/ToUXx8fOjcuTNlZWUiQ7Vx40Z0dHQYN24cmZmZJCYmMnDgQDp37szt27e5dOmSKO+CukRZX19PSUmJsOFuCjIyMqiurqZfv3706tULMzMz7t69S0lJCZqampiZmdGnT59GfxMQEMBLL73EzZs3RXZ4+PDhxMfHc/nyZWbOnEn37t25cuUK9fX1QioqMDAQTU1NqquradOmDXfv3uX69etCMi85ORlbW1u0tbW5d+8ehw4dIjU1lcDAQOGe9FsE/EtKSsjKyhK28HJm0M7OjsePH1NUVISZmRmvvfYaEydORKFQ4O3tzeTJkwG1UoKBgQH9+vWjoaFBSNO5u7tz6dIlfvrpJ7S0tDh+/Di3bt0iJSUFTU1N4uLi0NLSorS0lMrKSnJycrCwsBANsxEREaIxsaysDEmS6NevH87Ozk1u2AKEu5eGhoao1mZkZLBp0yY0NDTw9fXF2dkZY2NjysrKhK55QEAAenp6ZGRkkJmZKZziDA0NhUxgTEwMVVVVhIaG8s0334g5TNbmrq2tJSIigoCAAIyNjSkoKMDMzIzWrVsTEBBAaGgoBw4cEBSDpm6WMzMzxf20ZcsW0RgvUxoMDAy4e/cuOjo6jBo1iuLiYv7+97+zfft2jIyMOHDgAAUFBRw6dIgrV64Aanvcjh07snXrVkBdSercuTOtWrXis88+E30OAQEB6OjosHPnTmHHPXjwYEpLS0V8COoqYXV1NZ6ensIl79+hycHr4sWLaWhowMjIiJqaGpKTk5EkCTc3NywsLLCwsGDNmjXMnz+fzMxMxo8fT5cuXcTANzMzQ1dXV/A1IyIi6Nq1K3FxcZw4cUJI+Ozbt4/r16+zYMECwsLCOHfuHBkZGZiZmZGbm8s333xDaWmp8CXv168fISEhvPrqqxgYGGBra0tWVlaTBYtlN6eEhAThPNOmTRvmz5+Pg4MD1dXVJCcno6WlRadOndixYwcnTpzgxRdfZO3atYB6V/rqq6+KbJicsTQxMSEmJoYVK1bQrVs3EbwWFxdjYGBAVFQUqampJCcnCymyjIwMfvzxR3bt2oW7u7sQUz537hzl5eWCW9JUyE0mMtfLyMiIQYMGMXToUFq3bo2ZmRknT57km2++wdfXl3Xr1pGXl8fFixcxNzfHz8+P8vJyzM3NGThwICEhIahUKn766SfBtZwxYwafffYZc+fOJTMzk6VLl5KSksL3338vJsPly5ezZcsW5syZw8CBAxk/fjwjR44UC+bixYvZsGGDsB98Fmzfvp3PP/+csWPHolKpAHX29+rVqyQkJNCtWzcGDx5MWVkZL774IocPH2bOnDnU1NTw7bffEhkZSXJysrAinjNnjvhsWftXDvSrqqp44YUX6Nq1q8hQ6+vr8+qrr7J9+3YWLVpEdXU1ffv25f79+6xZs4YFCxawadMm0tPTsbS0RJKkJls2hoWF0a5dO2xsbEhISGDz5s24uroyZcoU7O3tMTAwIDc3Fx8fHz788EOysrKwsrKiW7duPHr0SDjEGRkZMWTIEGxsbLh9+zb3798nJiaGsWPH8tlnnzXanLZr145+/fphbGzMw4cPadOmDdbW1qhUKrKzszE0NBRycXv27BH6k7+lAgLqjWd0dDR+fn4EBATQr1+/RlJkOjo6XLp0CUtLS5FFnjFjBpMmTaJ169aEhYVRWFiImZkZPj4+tG3blujoaMrKykhJSREmIvJYc3d3Z8yYMTg4OHDq1Ck2b95MXV2dWIRlZGRkkJeXh6urKz4+PvTv35+LFy/y8ssvN4lPKMvWaGtrix6C2tpaZs2aRU1NjdjIyXj55Zext7fn6NGjfPLJJ3Ts2JGNGzcSEBCAm5sbmZmZjBw5koSEBNauXUtYWBgJCQlC8SE3N5dLly5x9epVIeuVlpZGdHS0yMhcv36dTZs2AWqb6qlTpwII++CmQrbQbdOmDW3bthUa4QMGDMDc3JwRI0aIkqqmpiYWFhbo6ek1avB79OgRFy5cIDg4mHXr1vHOO++wfft2lEql4MlWVFSgo6ODm5sbFRUVbN68GSsrK4YPH463tzdff/0127dvp02bNqxduxYfHx/q6uqEfmxMTAwbNmwgKiqqSaYv3bt3Z+LEiYLe1LlzZxEkGBgYCNF3GZIkkZeXR3BwMJaWlkycOFE4aLm5ufHxxx8zfPhwhgwZwtChQzly5Aj79u1j2LBh1NbWYmxsLPjOMTExHDx4kG7duqGtrc3s2bPp3r07y5cvp0uXLuzcuRNJkoRG98WLF9myZct/zGj9M27fvs3Fixfp0KGDaB4CtWymTPGbN28eM2fOJC0tjczMTIKCgmjVqpUoIcsxg6x0AepN4Pbt29m0aROmpqYMHDgQFxcXNmzYQEBAAAsXLuTGjRt88cUXtGjRAmdnZ9LT0xk9erSw996wYQNdu3bFy8tL3DNdunT5TcGrpqYm33zzDdHR0Zw4cQJfX1+2bNlCeXk57733nrB9/+abb9DQ0GDixIlMmDCB6dOnU19fz/Lly1m6dCl9+/ZlzZo1aGlpUV5eTqtWrfD19RX32dMVwS5dupCVlcWtW7dwcnLCzMwMaNwAn5mZyePHj9HX1xeJs6a6pO3btw8/Pz/27NnDjz/+yDvvvCOcxGR4eno2Cqpll7CysjJWrVrFhg0bGplqyL03zs7OWFhY0KdPH3R0dMQcC+pGONlgQp7LsrKyuHfvHm3btqW6upq2bdsSFhYm3AH9/f1Zv369aBT7V2hy8FpaWioWIy0tLSwtLXn48CEXL14kNzeX2tpaNDU1mTlzJtra2vTp00dkB/X09BqVN7Oysrh//z6BgYG0bt1acNZk0rO3tzfFxcVERUURGxtLXl4eN27c4PLly9ja2oqmDS0tLdq1a/cLLdDq6upnIv4+jfz8fGFva2JiIjic8oSUmppKTU2N4NSlpKSIwEgmHufl5XH48GGSk5PFrnTMmDFigZg6dao41iNHjrBu3TqSkpLErlZXV5euXbvy+uuvs3fvXpYsWYKLi4vIopibmxMWFsbt27dFwNwUJCYmit2wDGNjY9FgIw/gwsJCDhw4ILopnZ2dhSi1u7s7enp6otxsbm5OSEgIJSUlBAUFCb3Cw4cPM2TIEAwNDUlMTOTq1as4OzsLzl18fDzr1q3j7Nmz+Pv7A+qb1cjICCsrK3r37t1kPmhxcbHQzZXh7e3Nu+++S0VFhRiP48aNIzExkbS0NI4cOUJVVRWGhob06tWL6OhooqOjuXDhAq1atcLFxUXYsGpra1NaWiqktp62JgR15jc0NBRtbW3Onz+Pu7s7tbW1XLp0iYKCAjp27Iienp7IGtTV1XH79u0mnaOBgYG4fqWlpfj5+aGpqcn58+fR1dVl8ODBgvelq6vbiMvn6+vLw4cPadGiBZ06dSI8PJy8vDxsbGzQ1dVFoVAQGhoqFqqMjAwOHz7M0aNHSU9PZ/jw4WL8pqenk5ubi4ODg/hdc3NzCQ4OxsnJCTs7O8aMGSOakJqCtWvXcvToUaZOnUpAQIDIEJ4+fZqIiAhMTEyEIsHXX39NQEAAiYmJbNu2jYqKCszNzUXnanBwMDNmzGD+/PmUl5cLKZ8ff/yR5cuXc/v2bR4/foyNjQ1t27altrYWZ2dnPDw8qKmp4eDBg2hqajJo0CB8fX25d+8eJSUluLm50b9/f86cOcOlS5eaFLzKYucjR47EwMCA06dPk5OTI/Qm4R/8LzMzM0JCQpg2bRqJiYksWrSIqqoq+vXrJ66Tvb09HTt2pHXr1iJb/NFHH7Fv3z769evHhAkT0NTUFJWdNm3aEB0dza5du3jvvfe4fPmyoCfNmjULIyMjLly4QMeOHTEwMBALUlPQq1cvdHR00NLSIj4+ntjYWMrKysTG187Ojjlz5tC6dWvRWCV3nIOa7hMZGYmdnZ0oJ3t6eoqMV1FREcnJyWhoaAjaT3FxMZ6enmhoaHD79m1OnDhBVVUVbdq04e233xbzcGVlpaAdtG7dmuLiYu7evduk4NXc3Fw0M9bX1wuZRfgHfScwMJDU1FQ2b96Mqakpb7/9NqCe+y5dukRaWhozZ85k2LBhXL9+XdhyvvzyyxQWFjJp0iRhm5qWlsaVK1dEk2tZWRllZWV07dqVd955h8uXL7Nq1SosLCwEL/Pq1atUVlaip6eHlZVVk21+NTQ0qK2tFRXJe/fukZmZSbt27fjggw/o378/7u7unD9/XtCfZMnHu3fvCr3adu3aCZMCUI9tX19fBg0aRENDA3369MHPz4/w8HAePHhAVFQUFy5cwNLSkl69etG2bVsqKioYOnQoNjY2KBQKYmJiRBZdR0dHqGY0FXLj6cCBA5EkiaNHj/L48WOcnJxo1aqVoFrIChkeHh5YW1tz6NAhKisrmThxIkFBQWRmZpKVlSXofLdv36a2tpaOHTtSXl5OfHw8GzdupLa2FldXV3r16sWIESOwtbXl0aNHNDQ00KFDB8zMzIR9eUNDA6+88oqoWicmJjZ5Lh02bJjghIeHh4vA9dSpU5w7d46OHTvSv39/qqurBbXspZdeQl9fn3v37nH8+HEAsT7Y2dlx6dIl3NzcGDZsmHANvXjxIv3792f48OHCun7u3Lm0bNkSAwMDJkyYIOblxYsXExAQwJAhQ4QqDsDVq1e5cePGfzynJgevO3fu5NVXX0VbW1sI0BoYGLB582ZOnDiBtrY227ZtY8SIEYA6UyWX3+vr6ykrKxO8otOnT4sLKdujVVdXY2try+zZs2nXrh2bN28WgtS9evUiJyeHxMREPD09mTt3Li1atODQoUNkZWXh7e2NJElUVFSgr6//m8j38gQ6ZMgQWrVqxfXr1wUZWXYP8fX1JSkpiStXrmBqaoqVlRWHDx9m8uTJrFq1CoCNGzcSHR2NsbExX331FZMmTQLUgYDM2cvMzGT16tUcOnRI2LwqFApSUlIoKiqiqqqK8vJy9PT0GDVqlHBgsrGxYciQIVy5coXp06cL56hnRXR0NNbW1hgbG4sdXk1NjeBLyULiFy5cQFdXl+LiYhGEGxkZkZ2dTX5+Pvn5+SxevJjDhw+zfv16JkyYIEqCISEhDBw4kHnz5vHzzz8TGhrK5MmT2b59Oy+++CIvvfQS2dnZfPzxx5w9e5aQkBACAwO5c+cO+/fvp7q6munTp9O2bVtUKlWTmu769+8v7DXLyspIS0vDyclJBNSgXmjy8vIIDQ0lJiaGO3fuYGVlxbhx4/Dz86O4uJitW7cSFRXFhg0bsLOzY9y4cXTs2JEWLVqIJiIHBwfBy5WtCvX19cnNzcXc3JypU6diampKRUUFfn5+VFdXCymxp4+lKY43MhoaGsS9ExgYyL179/jxxx/x9fUVdrxyA5zM0aytrUWSJIYOHcrQoUMBdbApuw+ZmZmJCoOcbdPQ0BBOY6AOSOR7OD09nffee4+2bdvy+eefo6GhQWVlJbNnzxZZZXt7e8LDw5t0DUF97WSxcxmyrJWs0rFv3z4ePXrEpEmT8PLyEk2ksoaoQqEgKysLPz8/fH192bt3L+fOncPb21vInJ0/f150BoeGhhIYGMibb74pgsJ79+6xe/duXFxc6N+/Pzo6Onh5eZGUlER9fb1oIJKtkp8VaWlpxMTE8OjRIyRJYvr06WIz5OPjQ1FREUuXLiUhIYGxY8cSEhIiuP2AaHaQNSfLy8v55JNPxLX54Ycf2Lt3L9XV1cTExGBtbS2aopycnAgNDWXDhg3cvHkTXV1dsrOzuX37NsuWLWPWrFm88MIL3Lx5kxMnTuDl5dXkoAcQix6og3VtbW0CAgIwMjLi0KFDJCcnM3HiRNq1ayfGo7a2NiYmJuTk5LBo0SJycnL4+OOPAYTk1ddff83kyZPZtm0b48eP5/XXX+fFF19kxowZXL9+XSgKLFu2DFDrk2/evBlnZ2ckSaK4uBh9fX0xr8m0BBcXl0YyP/8JsvOhrq4uNTU1QscW1BWgY8eO8f3332Nubi40pGUO+U8//YS/vz8WFhZs376dfv368eKLL7Jy5UqOHTtG3759cXNzE2ouRkZGeHl5iXsxOzsbXV1dUlJSqKioYPz48dTU1LBixQpGjx4tqnKSJGFjY4O2tjZOTk5N5rw2NDRgY2MjqqUPHjzg5MmTxMbGCuH7bdu2sXHjRiorK/H19RUZwqSkJG7dusXNmzc5deoUNTU1fPPNN4B6w9C6dWv69etHVFQUxsbGeHl54eXlxYkTJ5g4cSJZWVkEBwczffp0saGRObxys+HT1+vIkSNs2LChydnlixcv0r17d1555RUmTZrE1q1bycrKYtSoUUKrVabVTJkyhc6dO6NQKJgzZw5Hjx7Fzs6Ojh078vHHH4uN/cOHDzl48CCZmZnY2NjQt29fTp8+zaZNm9DW1mbcuHEYGRkRGhpKSEgI58+f5969e8L2VzZdCggIYP78+eJYZTmypsw3cqU0KChIbM7i4uKEsUxOTg69evUiJiaG+fPn4+vry9atWykrK+P9998Xrm95eXkkJiaSmZkpVHiCgoJwdnbm1KlTlJWVYWdnh7OzM1ZWVlRVVREfH09ycjKOjo689957jBs3jm3btvHKK6/g7OzcKHAF9T0uV07/HZocvOrp6dHQ0MDly5e5d+8ewcHBFBQUiBJMcHAwWVlZHD9+nMzMTB4+fIizszNDhw5FW1sblUrF9u3b0dXVFd3dt27dEheie/fuovGjpqaGe/fukZaWxpgxY+jRoweDBg0iLi5OdFPKnIkTJ06wdOlSLC0tGTx4sJgIm8olNDU1pW/fvtja2lJTU0Pbtm1JTk4mNjYWLy8vXF1dCQkJobq6mrKyMnJzc4VYukzsDg4OZuHChcJZq1OnTqSkpLB8+XL27dtH27ZtWbhwoXC6MDMz47vvvkNfX59ly5ahpaUldtrW1tasXr1auFKVlpb+piamp5GYmMgLL7xAjx49CAsLIz4+Hh0dHZHxiYuLY+vWreTk5DBo0CA0NDRE8K2pqSnI5e7u7oSGhjJq1Cg8PT1JSEgQC1x6erpwKFq0aBGampqMHDlSGD2cOXNG7LLbtGlDcHAwHh4eGBgYMHLkSNasWcOQIUOYNWuWkFV7VnTq1En8W85meXl50aJFC7HwL1++nFWrVlFVVcWECROYOHEiTk5OYsdsamrKxIkTefDggWies7KyomPHjgQHBxMYGMjly5fJzs4Wna/Lli3Dz8+P2bNnU1VVJWS0QkJC6NSpkxj7CxYsYNu2bSxfvhxLS0syMzPp3bt3o4X+P6G2trZR5kh+rrq6muLiYiEKLfOGZZw6dYra2lqRmTtx4gSXLl0iPz+f5ORksrOzyc7OxtXVlaFDh+Lp6YmdnR0zZ85EQ0ODO3fucPv2bS5cuCDoQMXFxSQnJ1NWViaMReTs/W/RJJQhq2FYW1uLbI+WlhYRERFcvXqVlStXcuXKFRwdHbl37x7Z2dkYGxuLMXX9+nWsra3Fpk+hUBAcHMyFCxc4dOgQnTp1ok+fPowfP56MjAz27dtHUlISjx8/blQezcvLo2/fvrRq1UpkeeRNeHV1NTo6OsyePZvw8HBWr179zOcXGhqKvr4+J0+eZN++fcTHx9OvXz+Rwb516xabNm3CxMSE+fPniyDuaZml+/fvU1dXx82bNzly5IjYICxZsoTPPvsMa2trXnjhBYYNG4abmxv19fXMnTuX0NBQGhoauHXrFnV1daL5UFYouHz5MnZ2dvTo0UM0h/yW5tCn4eHhQXl5OZ6enhgYGHD48GG2bNmCv78/ERERtG3blqioKBwcHPj444/Jysqiurqa4OBgDh48KCpzLVu2FE0+NTU1SJJEWFgY7du3F4HZV199xdy5c1m6dCn6+vq0bdtWlPYrKiowMzOjvr6eJUuWUFRUxLvvvkv//v3p379/kzZZcgYqLi4OS0tLse6A+l67desWP//8M++++y5r1qxh/fr1jBs3TlAclEoleXl5nDlzhu3bt+Pr68vo0aMxMTHhww8/BGD37t0i6zxlyhSKiop46623AHVZ9tKlS4SEhODu7o65uTnBwcFoaGjwt7/9jYcPH9K9e3emTJlCZWUlx44do7i4uEnX7fLly9TV1XHu3DlSU1NxcXGhV69eXLt2jZkzZ2JsbIyLiwvOzs6cPn0aTU1N0Z9SVFTEtGnT6N27N4sWLWLFihW4ubnx6quvigZAeZPVrVs3ysrKiIuLEzbHy5Yt48qVK0J55OTJk4LO9Le//Q0HBwdiY2P56aef0NPTw8TEhEWLFhEVFdWkc/T09KS0tFTQVkJDQ8WmOS4ujp9++omUlBR8fHwYOHCgmNfmzZuHn58fy5Yto1WrVrz99tuCSnHnzh1+/vlnEhMTGT58OMHBwSJWkBNE0dHReHt7i7J7UVERtbW15OXlYWpq2shwR4axsbGQuXpWjBo1iqSkJObMmcP48eMBdRZ1wIAB2NvbU1VVRUJCApqamsyePRsHBwcePnzIDz/8wMWLF4mIiMDW1pbvv/9efGaLFi1EZVyW4XN0dGTHjh2oVCpsbW357LPPCAsL48cff+SDDz5g9erVDB06VGysnjZbSk9PF7Ja3377LWfPnv2359Tk2cjX15eqqiqOHj1KVFSU0CqbOHEiI0aMoHXr1qSlpbFz505hOWplZSXkfOTmDlCL5cuLwo4dO8QuQ+5YlpUELCws8PX1xczMDA8PD4KCgpAkia+//hojIyMiIiKwsrLi7t27KBQKWrRoQevWrXF3d2+yOLqTkxM2NjYUFRVRXFyMi4sLLi4uxMbGCpqELG0jB+eytMeQIUPQ0dERjTTW1tYUFxdz8eJFDh48yOHDh8nKyuLo0aMEBQVhZ2dHixYthGVfQUGBaMCIj49n3759vP7660yePJn4+HgWLVrEoEGDRPDq4ODwC97Ks8DCwoKcnBxOnz4tnFcUCgV37twRndSampo4ODjQvXt3bt68KdxfnkZgYCC9evUSnL/Tp0+LbPeFCxewsLDAyMiI06dP4+XlxXfffUdYWBiLFy8mLy/vF+V2uTnH0tKS/v37s3fvXiIjI5kwYUKTzzEtLY3U1FShA1leXk5sbCy+vr5UVlYK3qMkSVRVVeHh4SE4RTKtwsjIiDFjxnDw4EEeP37MqlWrCAkJEdcM1KW/CxcuEB8fz+rVqxk2bBizZ8/GycmJmpoaLly4QE1NjWjmioiIYMWKFcTHx5OZmYmlpSWGhoYMGjSoScGrbJxx584dampq6NChgzCxKC4uJikpSWgyGhgYiGycnEVITU3l6tWrLFiwgMrKSjp06CAWftlKVO6w19DQYMiQIXh4eDBlypRGvthaWlr4+fnh6uoqAlYrKyvRDChLEP0WSTdZIionJ4fo6GhKS0vp1q0b1tbWpKWlUVlZSceOHWnfvj2xsbGi+uLk5ER+fr7QwpQ3M8ePHychIQFPT0/Ky8uJioqiVatWzJw5E3NzcyIiIli3bh0JCQmsWbOGoKAgrK2tCQ4OFlz4+vp6Hj16hIaGxi/cgZqambSxsaF3796kpqZSUVHBrFmzmDBhgshamZub061bN+zs7GjZsiUnTpwQwvay5e3YsWMFPcTMzIxt27ZRU1PDnj17KCkpwdDQkNDQULp160ZVVRX5+fn4+flhbW1NbW0trVq14saNGxw5coShQ4fy0ksvkZSUxJo1a0hKSmLMmDF4e3tTUlLCyZMnm3wNY2JiiI+Pp66uDnd3d1q3bi0WfisrK+zs7EhISCAiIoLRo0dTXFzMnTt3iIuLQ1tbGyMjI65cucK+fftEE6WcFTI2NiYqKoqePXsSFxfHhQsXiIiI4MaNG1RWVuLt7S2ynBUVFWIsywt/VFQUS5cuRU9Pj/Hjx+Pi4iKaUZ4ViYmJqFQqdHR0GDhwIBcuXKC+vl5IGj7NE+3Vqxe5ublMmjQJT09PBgwYIEx1/P39OXPmDJmZmSiVSvT19Xn55Zdp0aIFH3/8Mebm5kJqUXYqrKmpwcfHh7KyMo4dO8a9e/eYPn067777Lrdu3WLhwoU8fvwYa2trbt68KX6Dpor4GxkZCaqHkZERwcHBBAcHU1dXx6ZNm8jOzmb+/PmMHTtWzDVt2rQRVDotLS369+/Pw4cP2bdvn+ibkXV5VSoVFRUV9OnTh/v377NixQqGDRuGSqXC0dGRN954g5qaGkpKSli5ciWnT59m5syZwvXw2LFjnDx5Eg8PD9566y06dOjQ5OBVpnDJ8PPzA9SZ49OnT3P8+HEuXLhAz549eeGFF8T7ZG5vx44dxfjr37+/MPmRLZUjIyNRKBT07t2bwMBAEhIShEa3XB2TM5AFBQWUlZXh7OyMqakpdXV1pKamUlBQIFSCkpKSmnR+sbGxFBYWsm/fPmHmIlMBO3ToQEZGBj///DOamprMnTsXAwMDrl27xp07d7CwsCAoKIiSkhLRmzFlyhSxITp+/DhGRkaEhIQgSRInTpzg4sWLYkNjZ2fHa6+9JhKeN27coGvXrowbN46kpCQSExOxs7OjtrZWrFsDBw78/YNXuZP+2rVrPHz4EAMDA8zNzZk8ebLQz6utrRWdpDExMeTl5ZGSkkJISAihoaEUFhYyffp0+vfvT21tLeXl5UyfPp3y8nKMjY1FM5G2tjZlZWVoa2tTVVXFyZMn2b9/PzNmzMDPzw8bGxsqKyuxt7dHqVTi7u7O2bNnKSoqIjIykvDw8CZzXqurq7l06RLm5uaN3KtatmwpJl1LS0vhspSYmIizszP9+vWjf//+gh+3ceNGcSPHxsZSUVHB4MGD8fb2Fuemr6/P9OnTOXv2LCNGjGDIkCG89957ZGZmsnLlSry9vUWp5NixY5w7d07I2gD07NmT4cOHixL5s8LMzIzt27dz+vRpSktLGTRoEIWFhSxfvpyAgAAmTpzIsGHDePz4Me7u7sTGxoq/1dfXx9jYmNatWxMaGsrJkyc5ceIEL7zwAr1792bTpk1ERkZiaGgoJDHKyspITk6msrISS0vLRpqkT+Npk4vOnTuzf/9+NDU1G7nDPAtSU1OJjY3FysqKiIgINDQ0BP1CPocJEybQr18/oaN45MgRQkNDhVadXJru0qULe/bsYeTIkSQnJ/P+++/TtWtX4TtdXFzM5s2b0dbWJigoiIiICHEc/fr1o2vXrkJfFtQbh127dnHnzh3OnTtHeno6nTp1arIMkewb/re//Y3r169z6NAh/Pz8hLJAcXGxcG6SbRjNzMzo1KkTeXl53L17ly1btnD37l0cHR3R1dXFysqK0aNHM3r0aAYOHEh5eTmHDh3CysqKvn37UldXR0FBAd7e3iIYr66uFpkWGTI1QVtbm8LCQlJSUhqJ/D8r8vLyKCgooKamBjc3N6FJCIgGLQMDA27fvs2xY8dwc3NjwIABnDt3jg0bNmBlZcXUqVMpKytj/fr1zJ8/n5KSEoYPH05YWBgnT57k+++/x9ramrlz5xIWFkZ+fj6ffPIJBw4c4IUXXmDOnDlioyKfm+y69jTWrVvH559//gupsGfBqFGjBFWgtLSUkydPCqWLFStWiC7xp80yzM3N+fTTT+nZs6ewJX7llVcYN24ckZGR9OrVCxMTEyIjI3n//fepqalh8ODB+Pv7C2MTWS0mMjKSzz77jNzcXKZNmyZK1ceOHcPc3JxJkyYRHR3Nm2++2Uj94FkQGRnJO++8Q1VVFUFBQRw6dEhkpiZMmCAyqFVVVXTp0oVz584JmZ3x48ezYcMGoR8cGBgorKJfeeUVQO0cNG/ePJYtW8ayZcvYunUr77//Pjt27BANsUVFRURFRdG6dWtxLWVVF9m229vbm++//5633nrrP5Yrn8bPP//MoUOHeOedd+jfvz/z5s3j+++/x8XFhdmzZ4s5X4a/vz/z5s3D19cXhULBt99+i5mZGR988AF9+vRh06ZNbN26FQ0NDdzc3KipqeHLL7/krbfeQlNTky+//JJ9+/bh4OCAq6srLi4udOrUiYULF1JZWYmXlxf29vZUVFSwYMEC3N3defDgAZ9++ilt2rThjTfewMzMjA0bNjzzOY4cOZKsrCwsLS2xt7enpqaGyspKOnfuzNq1a7l16xba2trk5+czefJkQkJCqKqqIioqisuXLzNv3jz69OmDpaUlQUFBpKWlsXnzZtauXUtycjJdunTh/fffJzw8nLi4OKytrUXpvVevXuzevRs/Pz/S09Px8fEhLCyMadOmUV1dza5du4QRQufOnWnZsqWQmWsK5Njln9GiRQs0NTUpKSnBxcWFwMDAXzixPX78mKFDhxIZGclHH33EV199RXl5uciygnpNOn78OH379uW9994jLS2NpKQkvLy8fqG7Kze1y1nXyspK9u7dS3x8PD4+PkLLtyk4deoUxcXFbNiwgb179+Lm5oafnx937tyhbdu2ODg4cOLECe7evSssi4OCgkRjfG5uLufPn8fW1pYXX3yRzz77TDjzJSQkEBkZyfr16+nWrRuWlpb07NmT69ev8+abb7Jw4UJ69erFqlWrSEpKEvfD5cuXOXHiBDU1NXTp0oU2bdqISsKzbCKbHLx26NCBuLg48vLySE1NZfHixSxatEiUChsaGtDW1hYBiq2tLQ8ePBAOGT179qRnz54EBASIBcDKyupXB46TkxOTJk0STQv6+vr4+/sLjmCrVq2orq4WGaO+ffsSEBDArl27yM7OpqSkpMmWf5IkYWhoiI+Pjwg40tPT0dLSQktLS5TQjIyMaNGihbBL69y5M48fP+bkyZOiM79NmzYMGTIEa2trKisr8fPzw9zcnOLiYlHqcnNzo6ioiL179wodNh8fH3FDODk5cfToUWprawkNDeXRo0e4urpib2//m6xhQV16eeGFF/Dw8ODixYukpKSQnp4umiDk3bXs3CJLA0VERNCxY0cOHTqEiYkJw4YN4/jx45w9e5aAgADs7e25cOECN27cwNHRkczMTLFDVCgUgmcWGBjI0aNH2b17N5qamnTv3l1o4Mq8MUNDw0ZZ2aZAQ0MDR0fHRvwueSKor6+nurpaSLXAP+RQysvLGTNmDPb29kRFRfHdd98xdOhQevTowQ8//MDrr7/OtWvXkCQJLy8v4exmaGjIqFGj8PDwoH379hQVFbFq1SqMjY0b2drKmWVHR0caGhqIjIzkyJEjXLx4kd69ezfpHOPi4khPT0dfXx9ra2t2795Nnz59aN++PcnJydy5cwdLS0tcXV0xMDCguLgYQ0NDtLW1sbOzIy4uDnt7e1q3bo2pqSk5OTlkZmbSq1cvhg0bBqjNOZKTk0WmvqamhuHDh5OWlsaPP/4orIF1dHS4desWV65cITg4uFEGUltbm59++olr1679agns32HXrl2iSz0pKYlVq1Zhbm7OSy+9hIGBAZWVlTg4ONCtWzecnZ0pKSkhPT2diooKWrdujZubG8bGxuTm5mJkZES7du24du2asK1NS0sjNzeX+Ph48Z1Xr17l7t276Ovr4+fnx61btzh16hR+fn4EBgaKsiKoOYs1NTV4enqSkpLSZPmaTZs2kZSUxNSpU+nQoQOg7qw3MTGhsLCQ69evExISgpGRkfBQHzRoEAcPHhSSbt26dSMzM5OcnBxu3bpFdnY2DQ0NxMfH07JlS0aNGkVdXR2JiYmkpqYSEBAgGv2MjIwYN24cqampzJs3j4MHD9K/f39h8tGrVy+8vb1ZtWoVDx48EJnwpsDV1ZUxY8YQGxuLvr4+8+fPp0ePHvTp00csYvX19dTW1lJUVISdnR0hISFYWVkJfmhDQwMnT54UAvvywubq6oquri5nz54V9t03btwgPj5e8CwDAwMxNzfH3t6+keqFhYWF4Ap7eXlhZWWFl5fXL2Tx/hMCAwOZMGECY8aMwdbWlsDAQNzd3enZsydKpVI04t28eZPBgwfj6urKhAkT8PLy4uTJkyK79N133xEUFMTVq1dZsmQJ7u7uvP766+jr65OZmUlZWRmurq4ikaOtrY2ZmZmwIpcpHfX19aSkpGBgYMCQIUMAhM6vq6ur2Pw1BYWFhWIjcObMGdatW4etrS0ff/wxgwYNokuXLsyZM4eff/5ZKLM8HWA1NDRw4sQJDA0N6devH3PnzqWiooLFixeLbLq86ffw8BDXoKSkpJH8nYODA0qlkszMTK5evYqlpSX9+vVDR0cHKysrsV43VWEI1DQy2alQV1cXa2trRowYIXjzhYWFzJ49m+nTp3PhwgVu375N69atadu2Le7u7rz44ouAOskkWxO/9NJLpKWlERcXR3V1NY6OjhQWFhIVFYWvr69IAMTGxpKcnIybmxstW7ZEQ0NDiP1raWkJc4n8/Hxu3ryJjY1Nkw1R7OzshE58fX09rVq1IjU1lV27dpGbm4unpyfR0dE8fPiQ0tJSYZQ0cuRIPDw8+PDDDzl37hyTJ0+mR48exMfHU15eLnSac3NzRYKxS5cuvP766+Tk5HD48GHu3r1Ljx49hPyijo4O169fJyoqShg9mZqaimqWzKv+T86ov4nE5OXlRffu3bl27Rr79+8nNTWVKVOmMGDAAFEikcuVH374IZIkcezYMc6fP0///v2xtbUlOjoaIyMjfH19qa2tpba2VnQkP378WJTPP/roI86fP096ejqurq6iEaympgZ/f/9fcOrq6urw9PQUlp1NRVVVFVpaWhQVFYkMQV1dHXfu3BFuRqampoSFhdGmTRvRoV9UVMSmTZvYuHEjeXl5DBw4kNdee03olaWkpHDkyBHmz59PfHw8c+bMEb9V69atCQwMbLQDGzt2LDo6Oty7d4+srCxefPFFFAoFS5cu5fbt26Ixo6lixaBu2Nq+fTu9evVCS0uL9evXY25uzquvvipKkHIjAyDKwTY2NrRo0YKCggISExOxt7dnzpw5+Pv7i+7H0aNHExQUxKNHj9i1a5f4zqf1Qh0cHLh06RLbt28H1BuGAQMGAOogV9Y9zc/Px8TEpMkSPS1atPiX8kyampro6OhQUFAgdrdGRkYEBQUJLmf37t0xMjJi165dXLlyhUOHDtGlSxc+++wzRo0ahZaWFiNHjhSdpxMnThQLhfwdcjNK9+7dG+n5gjrwfPjwIQ4ODty8eZP9+/c32REmOTmZ69ev8/7772NsbMxbb73FhQsXmDdvHvb29ly6dIlWrVoRGhpKRUUFtbW1aGtrk5WVRW1trdAI1tbW5sqVK8TExIjmCFkZ4euvv2bQoEH0799fWBl/+eWXLFq0iOXLl2Nubk7v3r1p27YtkZGRXLp0CXt7e5ydnamvrxe/tazBKetVPiuysrKYPHky+vr6NDQ08O233+Ll5SUWhZUrV9KrVy/hYR8bG0t0dDR6enoMHz4cGxsbamtrqaqqEjz2r776ivPnz3Pt2jW0tLTw8fERMmxPd9XOnz+f1157jYULF7Jq1SqmTJlCixYtRMUgNzeXjRs3cuPGDSZMmMCwYcMICgri2LFjz3x+9+7d46uvvkJXV5d58+aRlJREbW0tgwYN4ujRoyxfvhxvb28mTZqEn58fgwYNwsTEhOrqao4fPy5cB3v06MHf//53du7cyciRI+ncuTMqlYqqqirWrFlDly5dRDY+Pz+/kVQPqKscwcHBgk6xZcsW0tLS2LZtG+Xl5QwaNIigoCD27t3b5Ka73r17079/fzQ1Ndm2bRuzZs0iKiqK4OBgjIyMqK+vF136ycnJ2NjYCM7bnj17WLZsGX/729/o3Lkzly9fJjk5GT09PRYvXszcuXNZs2YNH330ER9++KEQit+5c6f4fjc3N7788kuxOYiLi6OiooI2bdrQv39/Lly4ICooXbp0YcuWLcJt8FkwceJExo8fL4JHWetUS0sLAwMDqqurWbp0KRkZGQwePBgdHR0ePHggqGKOjo7o6ekhSRLZ2dn89NNPVFdXY2JiQu/evfH09BQUClDPrwUFBZw5c4aioiK8vb3F3FpaWkpsbCz5+flCzQXUG/e33377NzXcAXz77bcsW7aMuro6duzYwdatW2nXrh2vvvoqpqamQuEhOTm5UXVAkiTs7OwYMmQIZWVlbN26lYqKCkaNGgWok1ajRo3i/v37XLt2jdatW5OSkiJsnE1MTHj06BGpqak4ODgIndXTp0+zdu1axo0bJ8ajXAnT0tIiPDyc/fv3N+kcExISOHjwIICQv5P1u1NSUlAoFLRq1QotLS1WrlzJgQMHmDJlCq6urlhZWYlyfpcuXejUqZOIU9LT0zl16hTGxsYYGhoKK9W3335b6F5fvnyZGzdu8MILLwgqUm1trdBYNzc3p0+fPlhYWLB37146d+5Mv379OH/+/DOfX3R0NDdu3MDNzU3Md/fv3xdVZtma3sPDQzgHzpgxg7KyMt58800eP36Ms7Mz06ZN48GDB7z66qsYGhqioaFBbm4uoaGhjBkzhq1bt7J//35GjRrF1KlTmTp1KhUVFaJfIjc3F3t7ezQ0NGjdujXe3t5ivSgvL0dXV1fQUq5du/Zvz6nJweuJEyfo1asXixYtonXr1vz444/cuHGD9evXY2JiIgKywsJCNm3aRLdu3URjRGRkJNra2mhpaWFmZiY6ibW1tYmLi2Pv3r3s3r2b6upqZsyYwezZs7GxsaFHjx7cvn1biGz37t270Q65vr6eU6dOcfHiRerq6gQ9oaCgoFEA9SyIi4vj22+/pbKykmnTpjFhwgTh5CWXtbW1tX+RFZR/9CVLluDg4ICbmxvx8fHs3LmTPn364OLiQpcuXVi4cKEwXAA1NzQtLY1ly5Zx/vx5+vTpw5QpU8RCL9s0yjAyMuKHH34gKyuL8ePHC220puDFF18kJyeHzz//nIyMDFq0aMG4ceOwt7fn3r17bN68GTMzM+bMmYOuri4TJkwQJaA7d+5gamoqgiItLS1MTU2ZP38+bm5uzJ8/H2tra6ysrDAyMqJr165cunQJLS0tzp8/z4gRI0RTlr6+Prq6uvTv37/RJqSkpETI6Bw6dIjDhw83qfGnvLyc/Px8wbfU09OjvLwchUKBmZkZWlpaVFVVcfXqVTw8PIQj0aVLlzh69Kjw3549ezY5OTniux0dHamsrMTa2pphw4Zhb28vfouamhpWrlxJx44d6dq1K5s2beKNN95g3LhxvP766wwZMoT9+/cLq79+/foJLmN1dXWTxcOtra3x9PQUk52ssLBw4UIRcHp5eVFSUkJ9fb3YyMXExAhLYtlK9MGDB7i5uYnMkba2Njdv3uT06dOCWG9ubi42KK+++qoQD8/Pz2fIkCF07NiR2tpacnJyePjwIVlZWbRq1YqAgAA8PDx+k5lGcHCwWLQDAgLYuHGjyDq5uroycuRIcnJy2LhxI3V1dXTs2JGQkBB+/PFHVCoVXbp0YeLEiVhaWnLq1Cm+/fZbMeFra2tjY2PTqGynoaHBSy+9JDSHtbW18ff3Z+LEiYKStGnTJiwsLNDQ0MDGxoaRI0cyePBgYSXdlOB12rRpaGpqUlpaKnzeIyIiUCgUlJaWcvHiRS5evIi1tTUeHh4YGRnRoUMHPvnkE4KDg4XphZmZGT179qSkpISIiAjCwsKwtrbm8OHD7N69W2TXTU1NuXv3Lhs2bCAmJobS0lIMDAywtLRk3LhxODk5kZiYSHBwMP7+/pw7d47s7GyRWfwtqKysZPv27WLTNHbsWPz8/ATvVFNTk+LiYjQ1NfHy8iItLY3Tp08L6biJEyfyyiuvMHz4cFq2bMm5c+do2bIlkydPRkNDgxdffFGUImXuanBwMFZWVmzevJnIyEguXrxInz59qKys5NChQ9y9e5d27doREhLC8OHDhamHTIlqCh4/fkxhYSEtWrTAysqKgoICMX+Buom3U6dOWFlZ4e7uzrlz58R4feGFF9iyZQtGRkbY2dmxZ88eUWrOzc2ltLRU2P7K8nWZmZlcv35dODjJpiOlpaUYGxsLJZynaTyyuY6xsTH19fWi5+RZERsbyzvvvEOXLl0YOHAgjo6OmJqaiqqmvJnv2bNnI1rJtGnT6NSpE23btqWurg4nJyfS09M5dOgQAwcOZODAgXz00UesXbuWt99+m9mzZ9OpUydSU1MB9Zxz6dIl1q9fz+TJk0VzT8eOHdHU1CQ3N5dFixaJoKtHjx5iQ95UvPnmmwwePJi8vDwcHBxo06YN8fHxbNmyhYKCAoYMGcLJkyf59NNPOXPmDBEREXTq1ImlS5dSUVHBO++8g4+PD6tWreLMmTPk5OTQ0NBATk4ORkZGXLp0ievXr2NsbMyAAQMabS5eeOEFwdUHdaa6rq4OXV3dRhsOExMTBg0aRPv27ZtMMzM3N8fMzIz79++LKnBUVBS3bt0iODgYe3t72rVrR1JSEiUlJXTq1In33nsPb29v6urqeOmll8TxyI2IsgJUy5Yt8fT0FBuOkpIS/v73v+Pr6yuasOWMcUBAAHl5eVhYWFBfX8/GjRu5ffs2I0aMoHv37tTW1nLo0KFn6lVqcvB68+ZNWrduja2trZDy+Pzzzzl06BC7du1izJgx6OjoEB8fz+PHjzl16hRubm7Y29s3GtheXl4iOwNqnkdiYiK3b9/G1NSU4uJiMjMzsba2FhqHkZGRnDhxAjs7O7y9vamurqayshIzMzNatGhBZWUlN2/exMPDQwSc27Zta1JWKz09ncuXL1NSUiLck0CtHRoTEyOCobq6OszMzEQ2zcTEhK5du9K2bVu0tbWJjY3lvffeIzo6mkWLFvHuu++KJqiqqiq8vLyEb7q8aMXExHDu3LlGjj5Xr17FxsYGR0dHEhISSE9P59GjRzx69Ijs7OwmqykAzJ49m6KiIgYNGiQcPuQA+fz589y4cQN7e3vhigVq/qZM+n7ttdfo3Lkz586dE/q+ly9f5vLly6IJT97BgdqD/eDBgxw5cgQtLS2GDRsm/vtnaGpqNiovHzlyhG+//bZJcmApKSkiyJabU0xMTMRYe/jwIYcOHaKhoUEQ8w0MDPDw8CAxMZGUlBTatWsnun1lFBYW4uDgQEFBgcjcjRkzRphqzJ07F2dnZx48eEDLli358ssvGThwIEuXLiU1NZVjx46Jjs+nJ6/KysomdakDgtuWmJiIiYkJ/fr1IyEhge+//57S0lKCgoKoqanh5s2bYtKvq6sjNzeX6upqUlNTOX36NPv370dDQ4ORI0cSFhYmHFccHBzo0qULjx49EuW7qqoqMjIycHR0ZO7cuSLbYmNjI5oNdu3axfnz5/Hz8yM+Pp6ff/6Z2tpaRo0a1eTmSXm+KCoqoqysTDj0yddRbjY6deqUIP37+vqSkZHBwYMHqaurY/To0Whra/Pw4UPu3bsnymclJSXY2trSuXNnEVj7+fnh5+dHbW0tjx8/Jjs7mzFjxojA7c0332T58uWA2oBj+vTptGzZEm1tbWpqahpVF54F3t7eLFq0iCVLlrBu3ToWLFgg1CPOnz9PUVERrq6uGBsbc+3aNZKTk2loaGDEiBF06tSJ9u3bU1JSgrOzM15eXrRu3Zq8vDzc3Nx46623CAoKYt68ebz99tusXLkSHR0dbt68yTvvvAOoN9zV1dV06NBBBPn37t1jypQpSJLEuHHjqKioYNu2bRgaGgp5uKZg+fLlLFiwAFDTjrZs2YKDgwOgnlMTExPZu3cvtra2TJ8+HSMjIyorK4U++IEDB9i0aRMDBw5sRPUB9X3u7OzM4sWLycnJ4dChQ7i4uIj588aNG0RGRhITE8OlS5dISUlBpVIRHx/PjRs3sLW1JSgoCCsrK27cuEFMTEyTlVx27dqFSqXi448/ZsqUKWzevJlz584xYcIEQkJC0NbWFkkAUM89t27dEgoY3bp1E9JPubm5mJmZUVRURMuWLUlPT+fIkSOsXr2agIAAysrK2L17N6mpqejo6NCqVStRHZObxCwsLAgICKC+vl5IVFZWVnL9+nW8vb3x9/dv8nVMSkri6NGjKBQKFi9e3Gh9io+PJzc3l+HDh4vvevDggaCHyVST8vJy2rRpw5EjR0TWePz48fTp04c1a9Zw9uxZJk2ahIODAwcPHuTkyZPMmjVL0A/ke76wsFBsvLds2cKSJUsoKytj0qRJgm/e1PsQ1OZEnTt3pqamRlDNTp48yfHjxxk9ejSjRo3igw8+4PTp09jb27N+/Xrc3Ny4desWx44dY9q0abRq1QoDAwMuX77MrFmzAHW1rXv37iQkJJCTk8PKlStFA7IstWdpaUlwcLA4Rw0NDUGhq6mpIS8vT7iLyc2nTdV5lSkjn376KceOHWPs2LGUlZVRVFRETU0NLVu2ZOLEiWK+dnd35/PPPxfUhW7dupGfn8+GDRtYv349RkZGglJ3584dsrKy0NXVFWYr8v04depUbt++zYEDBwgJCWHAgAFCklNLS4sbN25w/vx5EQsoFArOnz/PnTt3ftFE989ocvAaHh7Oli1bRDd5WFiY2K1ev36dNWvWUFtbK6L1qqoqfv75Z7p27SoORi5hampqiuYsc3NzXn75ZREMyCWXsrIydHV10dXVZfjw4WInl5aWxokTJzAwMGD06NH4+fnx+uuvs3z5clFKl3+gpsDW1pbvvvtONGUcO3aM6Oho0tPTKSsr47PPPqOhoYGIiAjefvvtRoFxWVkZ77zzDhcuXEBLS0t0Gurq6lJUVMT69et58OAB7du3R09Pj6qqKoYNGyYC4M6dO7NlyxYht7Jp0yY+//xzampqGDRoEEZGRhw+fBhQZwHz8vJ49913hWVcU2BmZsaQIUPQ0NBoNGGPGDECf39/bt26xebNm4mOjsbf359BgwYxb948nJ2d6d69O1evXmXNmjXU19czYsQIXn/9da5evcr3338vmkNAXRqVZdGio6MbOXTIGomWlpbo6OggSRIaGhri99iyZQs3btwQjl3PiuLiYrKzs6mpqaGgoAB9fX1BPTh06JBwgpk4caLILCYlJREUFETPnj1/dWKQRetfffVVNm7cSP/+/UVgCoiJ5/Hjx0ycOJFVq1YREBDAsWPHeOedd/jiiy/o2bOnyM7KiIqKYtWqVURGRopS07PAyMgIhULBzp07SUtLY8aMGbzxxht4eHiI61lVVSU6ViVJ4urVq6J5Ts5KAYwfP55XXnlF+MhHRkbi5eWFSqXigw8+IDw8nJ07d2JhYcGHH36IoaEhy5Ytw9TUFAMDA/bs2UNoaCjt27cnLS2NqqoqxowZQ1JSEkqlEhcXF9atWyc65ZsKmW5TVFTE3/72N6ZPn86pU6dYu3Yt3bp147XXXuPKlStERUURExODp6cne/fuxcXFBV1dXcrKyhgwYICw0t21axeLFy/G3d2d8ePHN6KYxMTE8NVXX+Hk5CTE5GXIUkumpqYMGDCADh068PDhQ8FX/2cb0P+Ehw8fCl/x7OzsRvQYOTs2duxYBg4cyJIlS1i9erWg7vTt25chQ4ZQWFiIrq4ujx8/Fnzsli1b0qJFC7p27cqiRYv45JNP6NevH1OmTBF80RYtWrB8+XJyc3MpKSnB3t5eqFWAehF58803ycnJIT8/n8rKyibpn8rYvHkznp6eeHp6MnTo0Eacy4MHD/LRRx+RnJwsuNlt27bliy++wMjICBMTE1566SUUCsUv+NKyG56zszMzZ87ExsYGIyMjPv/8c8Et37NnD6CeV52cnNiyZYvgN3fq1ImwsDCqq6upqamhW7duhIeHo6mpKbRhnwWFhYUkJydz48YN+vfvT1ZWFjU1NTg6OmJpaUlWVlajqpGBgQE2NjaCknbgwAHRNBgaGspPP/0EqLNvcgXJ1NQUDw8PoRICamempxd3edPRqVMnNmzYQGVlJadPn8bPz0+U3GU6XFMpSnLD7q8lSg4cOMC5c+dYvnw5rq6uLFiwgMWLF+Ps7MyiRYtE89ujR49YunSpCLDlcVZTUyOqTnZ2doJi+PjxYwYPHkznzp3JyckR/R3l5eWcO3dObNqWLFlCTEwMBgYGv8n6Vsb69es5efIk5ubmjBo1ivDwcNzc3JgxYwYRERHCNdHQ0BAbGxvRULZy5UqGDRuGjY0NZmZm7Nu3jxUrVrBv3z4hdSVb9L7//vvCxCQjI4Ply5dz8uRJnJ2dGTVqFAMHDmxUoTp16hRr1qyhqqqK119/XawbsrNVU5CTkyMqcIGBgXTv3h2FQoFCoRC647JMn9x/lJOTg7a2tlg7zpw5w6lTp3j8+LFwGLW0tGTHjh1oaGiwevVq/P39uXnzJqWlpXh7e1NfXy+Uk7788ksmTpzI559/LuiHEyZM4N133xVjWVNTkxdffJGgoCDOnDnzb8+pycFrXFwcCQkJwu5NkiT8/PwYMGAA7u7uwr5VJsJXVlZy9+5dtm3bRmBgIO3bt8fe3l4ErQqFgpqaGvT19cWu4sGDB0iShIuLS6PgU84KASKtrqGhQWZmJvX19dy4cQN/f38CAgKoq6ujVatWvP76602yinta2qSuro4FCxYIK0V3d3dSU1Opra0V2WHZntPFxYWqqipKS0uFR7BseTdz5kx0dXUpLCykqqqKhoYG4QD0tGWaLB1VVFTEkSNHSE1NpWXLloJzY2pqSkBAAGFhYfTs2ZPjx4+zffv2Jgev9+7d48GDBzg5ObFq1SpatmzJo0ePePz4Md27dycsLIzDhw9z4MABTExMMDExQUdHh0GDBgm+3Llz57h06RKurq60bNkSZ2dnDA0NhRXhmTNnBNlcW1tblI7lG/DBgwckJycLzcfS0lIMDQ3R09MjPT1dOKq1bdsWOzu7Jtmn6urqkpGRAaiDdHlCSE5O5vLlyygUClxcXGjbti02NjbExcWxf//+RpzqmJgYYmJisLGxoUuXLmhra+Pi4sLo0aMpKSkhMjISMzMzMjIy0NDQwMDAgMmTJ/PTTz9x69Yt4Qzl4+ODUqmkrq5OTECJiYncvHlTcPcuXLjQpOsH6o2ZhoYGBw4c4OzZs0RERODl5SUsGQFx7WTVgerqavLy8oiOjhb2pm5ubgwfPlwErrIG7bx585g8eTKdO3dm48aNpKSkiKaIY8eOiWY0hUJBbW2tyKoGBgaSlZUlNB7btGlDQEBAk1U/QJ1ZKygo4MSJE8TFxQHqjOSQIUOEi01YWBje3t48ePCAo0ePYmVlxeLFi0VDg8x5dXR0JDc3l5s3b1JQUMCYMWPo1KmTWETLysq4ceMG06ZNIy4ujrFjx2JoaEh6ejqnT5+mQ4cOBAYG8t577+Hv7y+yTwkJCURHR+Pk5NTkcuWtW7cwMzOjc+fOFBcXc+TIEVxdXbGzs6Nfv35IksT48eNxdXUVQWdOTg5paWmCRybPH9u3b+eLL76gW7duNDQ0oKGhIZppxo0bx/fff8/jx4/x9PRk4MCBQtoQ1DJS8obf3NycvLw8DA0Nxb0aHR0tpK6aijZt2jBu3DgRABQVFYkgvbCwkMLCQtzd3QkODiY6OhoHB4dGig0eHh5iY/jo0SMuX74suHaampocPHiQpKQk3nnnHTp27Mjq1asFdxHUC/LUqVOprKwUi2G3bt149913hYW4iYmJCI6aWsnS0NAgIiICCwsLrl27hqenJ2FhYUIlRl9fnzt37ojMl7zZkEvusp+7rOAiVzAqKipYsWIFjo6O/O1vfyMxMZHz588TGBiIj48PISEhjQJ6AwMDrKyssLW1RVNTk/j4eO7cuYO/vz8GBgaiwlRVVfWrSi//Dv369UNXV5du3boB/7AWB3Xmdf/+/bRp04apU6eKJq36+vpGGd6bN29SX19PWFgYM2fOFHxPMzMzevToITZr2dnZuLi4iJKzTBOSTVwcHR0xMzPj1q1b9OzZE09PTywsLEhOThbva6pMFqi1dGXt3wcPHuDr6ysy/enp6ezfv5/Q0FChfHHv3j2uX7+Oo6Mj3bt3F9lehUKBg4MD06ZNY/LkySQnJ/PSSy8JHezExER+/PFHjh8/TkZGBoaGhujr65ORkUFCQgIGBgYUFhZy+vRpVCqVoNy9+uqr4lgNDAyaTBuQtX1tbW0xNzcXfSGmpqaUlpZSUlJCdnY2WVlZgvIYHx8vEmmHDx/mzJkzBAUFUVFRQWVlpWiua9euHQ0NDaK3o0OHDo3spLOzs8WmUY6BQN006efnR0ZGBrt378bQ0JCIiAhhuvO7B68bNmxg/PjxvP3229ja2tLQ0EBlZSUvv/wyBgYGGBoaIkkSCQkJnDt3TvAcvv76a1atWsVLL73EG2+8IXaeoL6h5Gzbzp07WbRoEePHjxedi/LNkpmZSW5uLn5+fmhpaTF69GgeP37MiRMnWLJkCTk5OSxcuJDAwEA0NTXFDrcpwatc0gJ1uVKWlQF11rlt27ZcvXpV6PPdu3dP7HB79+7NDz/8wNixY7ly5QpOTk6MGjVKlIyGDx9OVVUVeXl5ZGRkCDeq2traRq4nCxYs4M6dO8yfP58PP/yQwsJCIYb+dIf3b8ksA/z4448sWrSImTNnCmOCy5cvo1KpmDlzJv379+fmzZuA2l5y6NChJCcnk5eXh6WlJRUVFdy7dw+AAQMGEBERwenTp5EkidmzZ7N//34mT57MmDFjWLRokRDONzc3x9PTU4iqV1dX069fP/Ly8jhw4ACdOnXC3d2dAwcOiOxddnY2ly9fblLwWlZWJgT85Y3IzZs32bdvHzY2Npw6dUpYjSYlJXHmzBlu3rzJo0ePcHJyIjg4mLy8PL755hvat2/fyC7Szs6Ot956ixkzZqChocGtW7dEBmj+/PkolUquX7/eyDWkS5cuBAcHY25uTkJCAkuXLuXYsWPU1NQII4enaQTPCkNDQ6qrq5EkSSyMixcvxsHBQXAwU1NTWblyJR06dGDAgAFER0dTUlIieJN3797F09OThoYGVq5cyYIFC5Akibt371JXV8e7777L0KFD0dDQoKysjN69exMbG8u6detoaGjg5ZdfZuLEiWKiioiIID4+HqVSiZOTE6tXryYwMJCKioomn9/XX3/No0ePKC8vZ9KkSYSEhODi4sLdu3dxdnZm7dq16OnpkZOTw/bt24V8z9OZJVkPNyoqivnz53PixAnatWvHzp078fDw4MKFC+jr66Otrc2OHTtEkCx3OO/Zs4evv/6avn37MmPGDD7++ONGCiYODg6Cb9lUdO3aFTMzM3r16oW9vT2zZs3i3r17rFu3jrlz59K3b1/c3d25c+cOJiYmODk5MXXqVLp160ZJSQl5eXmC7lNQUCCc8KKjo9m9ezeHDx9m8+bNvPTSSyLrbGhoyIsvvtgogDEwMBDBa0NDg3BSks9TblT5Lfjkk0/w9vYW4+PpRTc4OJg1a9bQtWtXamtr2bZtWyPlh4KCAnbs2CE27Hfu3BFmKbNnzxbNSyqVCgMDA+bPn8+6devo2rUrhYWFODo6MmTIECwsLDh79iw5OTm0bNmSjRs34urqSl1dHYaGhoLznJyczJEjR5p0ftbW1mzevJl79+5x+/ZtwsPDReAK6gU6PT2d+Ph4FAoFDx8+JDMzU3TEjx07lq5duwodV9loY8uWLXz77beMGzeOl19+mYULF3Lnzh0++OADpk2bRnJycqNr4u3tjUqlatRzYmZm1mis1tXVUV1d3eSxunTpUsrKykSF4ulMshxM3r59m9zcXObPn8/kyZMpKSmhZcuW1NTUcPnyZXFOskSYnDn08fFh2rRpHD58mNjYWIyNjXnllVcE1ennn38WcYSMrl270qFDB2xsbCgtLWXHjh3Y2tqip6fHsWPH+Prrr3+hwfyf4ODgwMqVKzE0NCQzM7NRFWT9+vV8+umnfPzxx3z00UeAmpKiVCqpqqpixYoVzJ49m5SUFGbOnMmtW7f48MMPsbCwoLa2Fi0tLa5duybuc1mBp3PnzqxevZpWrVqRk5NDamoqV65c4f79+5w8eVJY7Zqbm5ORkSF0m5sauIKaZtbQ0MAPP/xAdHQ0vXr1Ep9TUVFBSkoKly5d4siRIyQkJBASEkLnzp0B9YYuNTUVf39/PvnkE2JjY9m2bRuZmZlCjSQ6Opp79+4REBBATU0N586dE+oJ8sbjtddeY+nSpY3G7dGjR3n11VcFjbFDhw7PPD6bPCMNHTqU9u3bc/36dfLz8xkzZozI2lRXV3P//n1KSkooLy8XAuaamppikdm5c6doiNHS0qKiokII5YM6aybLmxQXF1NZWQmopTeOHj3K6tWrUSgUvPPOO4wYMQINDQ2OHj1KQ0MDw4YNw8HBgdraWjQ1Nbl+/TrXr19v0vk9fvyYzMxMnJ2dsba25qOPPmLOnDncv38fb29vZs+ezdmzZzl79qwQjA4ICBC/AajNFywtLenQoQOampps2rSJBw8eMG7cOFQqFUePHuXatWusW7dO7NLl4PXhw4dYWFgwcuRIIaUhl44sLCwaLTqjRo3Cx8eHjRs3NukcO3bsyOjRozE0NCQvLw8rKys8PT1xdXUlPz8fbW1tPvroI9q3b099fT03b94UO/rKykrhPJafn8+AAQMwNjYW9nYHDhxg/vz5pKSkCGF6XV1dsrKy2LNnDw0NDQwePJjo6Gj27t1LamoqJSUlwjDB19dXCG/LDVFNFQ6/fv063bt3F78fqDMgXl5e+Pn5iUAxOzubTz75hOTkZCGzVltbS1paGkVFRYSGhgoJK3ly7tmzJ0VFRZw8eZIePXrg7OzM9evXiY+P55133hFZgxs3bnD79m2cnZ1F16hcsRg0aBD379/n3LlzODo6Cjmt/yQN8muYNm0agwcPxs/Pj4sXL4pOa3t7e9q0acPu3bs5c+YMnp6eGBoa0qFDBzIzM+nWrZuQEJJhY2PD5MmTcXd3p3///mKSkReCCxcuEBUVxZ07d6isrKSurk5wPuVN3IABAxg4cCCRkZFibAFNVoyQkZGRQXBwMAsWLBBBRmRkJEVFRaSkpFBeXs7169dp2bIlvXr1olOnThgbG1NYWCgMKkA9Blu1aoW+vj62tracPn2awsJCzM3NSUpKIiUlBQ8PD2bOnElZWRktW7YkPz8fFxcXBgwYgJ2dHRUVFeTl5ZGeno6pqSm+vr5UVFRw9uxZ0tLSCAkJadK5Pb1RDggIYOrUqWRlZQmnn4CAAJKTk7l58ybdunUTjWQy5BK8HCi89dZbhIWFkZqayt69e8nKyqKgoABjY+NGjmGyYsGpU6fQ1NTEzc0NOzs7sSE2MzOjvLxcXD9Jkti9e/dv0s/09/cXGWnZDaumpkbIKXbs2JGCggLu3LmDnp4etra2FBcXC/cyTU1N7ty5Q3FxMY8ePRKuZO3atcPR0ZH+/ftjbGwsyrHGxsbMnj37F8dhb28vpOTkkm9xcTF1dXWC9nblyhW2bNkiPutZMHz4cBwdHUlPT6eqqkr8zj/99BNGRkb07NmT1q1bi+9ycHAQpjBPIzMzk4qKCuLi4jh9+jTfffcddXV1lJSUoKOjQ48ePaiqqmLgwIHY29v/YjMhK23cv39fZGf19PTYu3cvDx48oKGhAU9PT6ytrZtsGFJRUUFkZCR9+vTBwcGByMhINDQ06N69O+Hh4SQnJ+Pt7Y21tTX6+vo4OTlRX1+PlZUV1dXVIjttbW1NdnY2O3bsIDg4WNgdu7u7M2zYMA4cOMC1a9d48803ATVf+vz58wwYMIBhw4aRkZHB+vXrsba2ZsaMGYB6w5GQkCCSX4GBgXTt2rVJyQ5QJyW+//57pkyZgr29PRs3buTSpUs4ODiQkpIi1uOKigoOHz5MZGQkAwcOxMXFBUmSWLVqFXl5ebi4uKCnp8fVq1eFwoempiYBAQH4+PhgZmZGQUEB2trajTbaNjY26OrqEh0djba2Nn369MHd3Z0NGzaQm5tLUlIS+vr6aGpqcuvWLQ4dOtSk8wN1leDq1atcuXKFDz74AGdnZxG42traMmzYMM6fPy+C+JCQECorKxk9ejQ///wz7733Hi4uLpibm3P48GFUKhWlpaWEhYWRkpLCwYMHGTJkiKA/yEGogYGBaLKUx+21a9eIi4sjPj6e8PBwCgoKCAkJEddRjvv+HZocvL722mtER0fzxRdfiAYmmddy9epVzp49S2JiIj4+PowbN05MDG3btiU6OhpdXV2uXLlCTU0Ntra2WFhYiMkE1NIq/v7+JCYmcvDgQczMzPDx8aG8vJyioiKhQ/bNN98QERFBQUEBWlpazJ8/n1GjRpGYmEhhYSH29vYcPXqUzz//nClTpjzz+WVkZJCfn4+enh6urq6Cx/bJJ59QX19PQ0MDenp62NjYYGlpKQR5Qb2I7Nq1i/z8fMLDw6mpqWHfvn289957AAwaNAgzMzPGjh1LQkIC169fx8PDQ0zuOTk56OvrM3PmTLHo//DDD6xdu5aRI0eK0kFiYqJwV2nXrl2Tg1e50/PkyZNs3rwZf39/XF1defvtt9HU1MTMzIywsDAMDQ2ZMmUKurq6fPnllyLo09fXZ9SoUWKjIHtn+/n5MXr0aNEx+/QiIGv9tW3blsGDB6OpqUlycjKrV68WlrNyqT8iIkKIOjdVjBnUpTi53CGrDPj6+uLr60tZWZl4X1JSEhcuXEBHR0dwGAsKCli/fj0aGhp88MEHGBsbU1FRwf79+zExMaFNmzZ8//33LFy4kK+++oo5c+bQtWtXbty4ITiMGhoaPHz4EBMTE3x9fUlOTmbHjh2CY+nl5SUW4xdffJG5c+dy584dvv3222c+RzlTJo/toqIi4WYnZ42dnZ0FHUOm5+jo6ODs7Ex6erooOZeVlQm3JvlebmhoEAYicpBUUVHBqVOnqKyspF+/fowYMUKM3ZMnT/L3v/+dmpoa5syZw/r16zl48CBnzpwRqgNNxcCBA9HV1SU8PFwErrm5uTg5OXH79m1WrVpFYWEhnTt3Zu7cuWIDXFdXJyhNcgnd399f8JPv3bvH7NmzSUtLY8GCBdy7d49Tp07x7rvvMnfuXJKTk0lJSaGqqoohQ4aIzVZSUhJxcXFkZGTQpk0bfH19KS8v5/79+xQWFjY5uJO5/3Lj6qRJkygvL2/UiHnt2jXS0tKExnJNTY0oM+vp6fHo0SPOnj1LixYtmDp1KqAuryckJODu7i5E+eXGPnleSUhIIC8vT2TtZZ60fL8ZGhqKilFWVhYbN27k8OHDTWqcBHVQ5ePjg7a2NnV1dVy7do3a2lqCg4MxNjamqqqK9evXEx0dTbdu3ejYsaPolLe0tKR169ZERUUJ44YlS5bQpUsXJEkiJiYGb29vEdDL6jVyCVfOHsvJk969e2NmZiaskw0MDEhLS8PGxgaFQiH4vU2Bk5MTDQ0NnD59msrKStEUt2jRIjp06EDPnj2FMyOos21y42t0dDS1tbXcvn2boqIidHR0xDiSqT9yOblHjx50796d+Ph44uLihOZrbW0tt27dYseOHRw5coSGhgYmT57MvHnz0NPT429/+xtHjx4F1PeTh4cHN27cECXeZ8GZM2f48ccfadmyJW3atOHy5cuUlpbSsWNHrKys8PPzo2fPnri4uHDq1Cnu3r2Lu7u7yI4+nU37+OOPWbNmDatXryYkJISkpCThLvXgwQMyMjKora3lzJkzzJs3j/DwcDGuf/jhBz7++GMiIiIYP348RkZG2NjYEBERIfi8jo6OogLWFFRWVvLqq69SWVnJ7NmzOXPmjFAAWbFihWiyWrx4Me+9954w1FAoFCQkJDB+/Hi8vb1Zu3YtqampDBs2jE2bNmFqasrw4cOZMmVKo2RKXV0dDx484NSpUzg5OREaGoqpqSm2trakpaXRs2dP7OzsaGhoYPny5UKVCdQ8408++aTJ9yKoA1hdXV0R3Jubm2NpadnIOGT37t1CaWbTpk0cPHgQDQ0N7O3tKS8vF5vLM2fOsGbNGhISEkhISCAmJoZOnTqhoaEhpOlAXZ1wcXHh+vXrgvoZFxfH7t27GTFiBPPnzwdodO8+iz5/k4PXxMREEhISGD58uOg2Pnr0KH5+ftjb2xMSEkKrVq3Q09MjLy8POzs7tLS06NixIwqFQvARd+/eTadOnZgyZYqYUGUZj/379xMTE4OrqyuDBg3CwcFBkOrnz5/PqVOn8PX1pbq6Gm9vb6ZMmYKlpaXI9sq7mfr6+iabFLi4uGBra9tIMqVPnz7o6upy+/Zt/v73v+Pq6io8gYuLiykvL8fBwYGSkhI2btwoAtTLly/z5ZdfimOUGz5APZH4+fnRqlUr0bABiEyHjNLSUjIzMxsJoO/fv58TJ07wxhtvNFncXkZ9fT02NjaUlJSwbNkyQkJCeOuttzA1NRVSLFFRUWhoaBAaGvqLzj97e3tatmzJmjVrOHr0KJ9++qmYsLS1tVEqlY24a127duWzzz4T3a69evUSxH2ZR/20Lm9+fj4qlQpAbA6eFTKX7+bNm0RFRREeHi6CJz09PSorK9HX18fBwYEPPvigEZ9PkiQOHz6Mubm5oK08fvyYdu3aoa+vz88//0xsbCwdO3bE0NCQ8vJypk6dip2dHdu3b6ddu3b4+/uLrLscjBgZGTW6/mZmZkyfPl2oWTSVT5ifn09DQ4OYdM6fP09MTAxhYWHY29vj5uYmpHtycnLQ0tLiyJEj7N+/n+LiYjp06EBtbS1Hjhzh+vXrhIaGiu7+H3/8kT179mBiYkL37t3p16+fsGaWJ3iZAyrD3d2djh07Ul5eTlJSkqBfXL9+nW3btokddVPg6upK165dCQ8Pp76+nq+++ori4mKUSqXYVJaVldGxY0cRuMI/StMypx7Ui4VMP/L29mbs2LF4eHgI5YibN28K2RhXV1chASd/zoMHDygsLKR9+/aCRwjqjOlnn31Gfn5+kzda3333HaNGjcLGxobCwkJiY2NFv4C7uzslJSVcunSJqqoqWrZsSXZ2NkuXLqWmpkYI0+/Zs4fo6GhhgwoIO0dXV1c0NTXJz88nLS0NCwsLwW3T0NCgVatW1NbWisa206dPs3PnTsLDwxkzZozIkpiamtK9e/dGDnjPiqKiIq5cuUKXLl2Ehmx5ebmQy5IkCQ8PD+zs7Gjfvn2j8nBJSQnbt28nLy+P4cOHCz58WVkZRkZGuLm58fDhQ9HdXl1dTWZmJvfv3yc/Px9bW1ucnZ2F5bNskvL48WO8vb3R1dXFyMiIe/fukZKSIqwpm4LS0lI2btyISqXCz8+Puro68vPzRdUF1NSd69evi2DP2NiYn376idjYWF544QXB4V6+fDm3bt2iT58+REREsHXrVoqLi8XvrlAouHHjBnV1dTg6OqKtrU1kZCQrV66koqKCMWPGUFBQwN27d7l165bgDsbFxQkbb21tbQICAgQt7FnQoUMHURWTJbu0tbXR0dEhOjqaO3fuCPUEd3d3qqqqcHJyEtxM+X6sqalBT08PHx8fEcxbWlqK+6ZTp06UlJSIZu5evXoxfPhwACEzOH78eMaNGyc+09LSkmHDhgkuuJGR0W+i8NTW1vL6668TFhYmqoPy2JQ1vC9fviy0lVu0aCHmlsLCQgYMGEDnzp3R0dFpxPV1d3dnwoQJODo6cvbsWdq3b4+RkRFaWlrU1NTg7OyMhYWF2GTn5OSwd+9eysrKBE3J3t6+UZWmqfa+AG+99RZ+fn6MGzeOvn37smvXLrGOPa1R7u3tLSqDs2bNwsnJiU8++QRXV1fatWuHJEno6OgQHh5OixYtMDIywtHREUdHR3x8fET1sry8HBMTEzQ0NLCysqK4uJgvvviCwsJCXn31VcLDw9HQ0GjUxyRf06c51f8OimcVuVcqlU1Xw/+DQaVS/ctf5K9+fvDXP8e/wvnBX/8cm8fpX/v84K9/jn+F84O//jk2j9O/7vk1XRCtGc1oRjOa0YxmNKMZzXhOeObMazOa0YxmNKMZzWhGM5rxvNGceW1GM5rRjGY0oxnNaMafBs3BazOa0YxmNKMZzWhGM/40aA5em9GMZjSjGc1oRjOa8afBb7NN+R2hVCq7Am8AnQALoAC4CyxXqVRNszv5I0OhWAi8A3ghSan/h8+ZAywCWiFJsb/T0f1mKJXKxUAHwBuwAiqBFOAnYJVKpWqacOIfDEqlUgFMAaYD/oAm8BD4Hvi7SqWqf46H93+GUqkcAXQDAoE2gDGwVaVSjX+ex/V7QalUTkZ9rf4dGlQqVdNta/5gUCqVjsBCoC9gCWSivg8XqFSqwud4aL8b/urrhVKpHAC8Dvjxj2t4A1imUqkuPc9j+73wVx2n/z/NNfD878XnmnlVKpUfAueAMOAYsBQ4CJgD4c/vyACFwhGFYgMKRQYKRTUKRTIKxXIUCvP//Me/+CwnYC6w5l8GrgpFVxSKPSgUmU++LxOF4jgKRf9/eqcKyAG+avJx/HfwJmAInAC+AbYCdcB84I5SqWy6qf0fC5uA9YAbsBNYC+igPtedT4LbPzM+BGajDl7Tn++h/FdwC1jwL/479eQ9R5/Lkf2OUCqVHqiDnCnAVeBrIBF1IHRJqVRaPsfD+13wh14vfgc8SQQcAtqhPr9vgJvAEOCiUqn8028o/+Lj9Bb/H8w18Me4F59b5lWpVI4EPgUigeEqlar0n17Xfi4HBqBQeABRgA2wH4gFOqK+wfqiUHRGkpqSUfwI0AW+/Bff9yHq3yIP9eSViTqL2Rb1QPjHLkaSKlEovgEWo1B0QpKimnJq/wWYqFSqqn9+UqlUfga8D8wDmmZ38geBUqkcCkwAkoCOKpUq78nz2sCPwAvAJGDjczrE3wNvAmlAPOoM7Onnezi/L1Qq1S3Ui8ovoFQq5UzWmv/V8fwXoUI9X72mUqlWyk8qlcplqK/xZ8CM53Rs/2f8odeL3wFKpdIOdYIjG2itUqlynnotAnXwsxDY8nyO8HfDX3ac/v8y1/xR7sXnknlVKpUawGKgAhj3zycPoFKpav/nB/bU1/PkBkOShiJJ7yFJ3VHvEluivsGeDQqFKfAicPJXs64KxdMDwR1JmoIkvY8kTUeSgoAPfuVTtwD1/AGCwl8LXJ/gxyePXv+rY/kvYPiTx6Vy4ApibH705H9f/Z8f1e8IlUp1WqVSxalUqv+vNPOUSmUAEII623z4OR/O/wlKpdId6A0kA3//p5c/AcqBCUql0vB/fGi/C/4E68XvARfU6/GVpwNXUN+jQClg/TwO7PfCX32c/iv8xeaaP8y9+Lwyr51Ql2F3A4VPeD4BQBVw9blyexSK/3SDTQcmoFDMQZLKn+ETxwIGqEvO//xdjQYCkvSLgYAk/XIgSFIGCsV5YAQKhRJJKnmG4/hfY9CTxzvP9Sj+b5C9IhN/5TX5uXZKpdJMpVIV/W8OqRm/E1558rj+z85bBro/eTyuUqkann5BpVKVKpXKi6jntBDg5P/64H4H/HHXi98PcUAN0FGpVFo9vVlWKpVhqLnoPz2nY/u98Fcfp/8Kf6W55g9zLz6v4DXoyWM2ak5Pq6dfVCqV54ARKpUq9399YDx1gyFJjW4wJKkUhaKpN1jPJ48XfuW1RgMBhaLRQECS/t1AuIiaUhCGmmrwXKFUKucCRoAp6gauLqgD10XP87j+j5AXELdfec39qX/7AJf/+4fTjN8DSqVSHxgPNADrnvPh/B5o+eTx0b94PQ71nOXNnzMo+COvF78LVCpVgVKpfBdYBjxQKpU/AfmABzAYdU/BK//6E/4U+KuP01/gLzjX/GHuxefVsGXz5HEGoI86wDNGHbj9jDog2/V8Du2ZbjBQ32DPgi6oSz6/9nn/PBAOoQ72lgNRKBRnUSj+Vano2pPHsGc8jv825qLOTL+B+pyPAb3/zAsK/9gUvKVUKi3kJ5VKpRZqEr6MpjfxNeN5YhRgBhxVqVS/XfnjjwPTJ4/F/+J1+Xmz//6h/FfwR14vfjeoVKrlqKlKWsA04D1gJJAKbPxnOsGfEH/1cfpr+KvNNX+Ye/F5Ba+yVIQCdZR+UqVSlalUqvvAMNQNJN2USmXoczi23+8GUyh0AFsgi1/34f2/DISsJ4/O//E4/gdQqVR2KpVKgbrUPhx1ZjJaqVS2e75H9n/CDtTdoR6osyFrlErlctSk/P78YyPzZy8F/f+G6U8ev3uuR/G/g6yI8WflNf+R14vfDUql8h3UVbiNqOccQ6A9aorSVqVSueT5Hd3/BH/2cfpr+KvNNX+Ye/F5Ba+ylluiSqW6/fQLKpWqEnXgBuoO/z8amnKDybIf/0q7rtFAQJJOIkllSFKjgYBC8WsDoeDJo9UzHMf/DCqVKlulUu1DXf6xBDY/50P6zXjCyxqMOquchVp5YCrq69IFdVkP1NJlzfgTQKlU+qGm66TxtIrHnxvyhtr0X7xu8k/v+7Phz7xePBOUSmU46v6HAyqV6i2VSpWoUqkqVCrVTdRrQTow50nT058Vf/Vx2gh/0bnmD3MvPi/O68Mnj0X/4nX5B9L/7x/KL/B73mCVTx71/sXrYiAgSY0GwhNJrJ+Bl1APhH/mv8q/TSV/QKhUqhSlUvkACPznBoQ/E1QqVR1qDbulTz//hMsUiPr3v/+/P7Jm/Eb8lZonZMjz6b+iMsmKH/+KCvVHxx95vfi9MPDJ4y+k6lQqVYVSqbyKOohty683kP4Z8Fcfp/+Mv/JcU/QvXv+f3YvPK/N6DrWQvZdSqdT5ldcDnjwm/8+O6B/4/W4wSSpC3UH6r4SX/y8DQf7MP3LWz+HJ41/lxn0aE1BvSn78C8j0/H8BpVKph/q6NaA2nvirQA54ej+RshFQKpXGQGfUm6w/a1PhH3m9+L2g++TxX/U4yM/X/A+O5b+Fv/o4FfgLzzV/mHvxuQSvT7JwO1FnNz9++jWlUtkL6IM6s3nsf390/7jBnkhZ/QMKxW+5we4C9igUJr/ymhgIT/ix/4x/NxB8njzeesbj+N2hVCp9nohr//PzGk9MCmyAqD+55d8vrptSqQxC3VhXhlo4vBl/DoxE3Vx35C/SPAGASqVKAI4DrsCsf3p5AWru5GaVSvUs0n5/OPzB14vfC+efPE5XKpUtnn5BqVT2Q73uVKE2z/lT4q8+Tv8Jf9W55g9zLz43hy3gLSAY+OCJjt1V1ELNw1Bn6qY9F+1MSUpAoTiOmrM5C1j51KvyDfbdM2q8ApxBTbrviNqI4OnvykOh2InaxOBj1FadaigU/2kghDx5fJ6OSH2BL5/IYySg5oDaonZqckfNE532/A7vd8EJpVJZCdxDrRrhj7pZqxq1u8iftYQHCBexoU/+V96IhCqVyo1P/p2nUqnm/o8P678FuXniT+9y8ytQog5sViiVyh5ADOr5NQJ1lejXzE7+TPhjrhe/H3ajXh96AjFKpXIf6vnTFzWlQAG8p1KpmuLs+EfEX32cyvgrzzV/iHvxedEGeCL7EYzatcoJeA21xuphoKtKpXqe0idK1OX4FSgUP6FQfIFCcQq1fV1Tb7A9Tx77/IvX30JtzfkBCsU5FIqvUCh2oe5yrwemPaEf/APqjHAP4CGSdK8Jx/J7IxL1zWmJWmHgbdSWqQWoA31/lUr14Pkd3u+C3agVIMajvlatUOv1+atUqp//3R/+SRCI2uJ2Ev8Yo+5PPTfi+RzW7wulUumLusnur9Q8IfAkq9UBdad6MDAHdcf6CiD0zx70/MHXi/8znjSH9ke9xjxAHQjMQZ2kOAL0UalU3zy/I/x98Fcfp/D/xVzzh7gXFb+u4NQMFAon1CXhvqiDs0zUDicLkKSCf/OXv/ZZN1FntZyQpF/yPxUKC9RZ12FAC9QZvgvAF0jSL+kJCkVv1F19byJJy5t0LM1oRjOa0YxmNKMZf2I0B6//CygUY4FtwHAkad/v8Hl7UJfmPZCkv4SsSDOa0YxmNKMZzWjGs6A5eP1fQKFQoJa6Ussr/V9+dIUiELUb12tI0qrf5fia0YxmNKMZzWhGM/4keG6c1/+voA5WpwP7+Id81G+FPfAR8O3/9bCa0YxmNKMZzWhGM/5saM68NqMZzWhGM5rRjGY040+D5sxrM5rRjGY0oxnNaEYz/jRoDl6b0YxmNKMZzWhGM5rxp8EzmxQolco/Pb9ApVIp/tVrf/Xzg7/+Of4Vzg/++ufYPE7/2ucHf/1z/CucH/z1z7F5nP51z68589qMZjSjGc1oRjOa0Yw/DyRJeqb/Zs6cKcn/VVZWSk/j9u3b0pgxY6QpU6ZIx44dk2JiYqT4+Hjxvvr6eqmhoUGqr69v9LcpKSnStm3bpE8//VQ6f/68JEmStHnzZkmhUEhmZmbS119/LSUlJYn3T5gwQTI0NJSOHz8uZWdnSwEBAZKJiYl05coVSZIk6e7du1Lbtm2l0NBQKSUlRZIkSTpz5ow47mc5vxs3bkgVFRWNjnPDhg2SnZ2dNHXqVPFcQUGBVF5eLtXV1Ynn6urqpPPnz0vZ2dmSJEnSBx98IAHSG2+8Id6Tk5Mj/qaurk6qq6uTampqpPr6evGeu3fvSjt37pR27twpXbt2TSosLJQkSZJqa2uloqIiqbS0VGpoaBC/7bOc39PneO7cOSk2NlaqqqqSKisrpYcPH4rvnj59uqSjoyMdO3ZMys7Olvz9/aXAwECpvLxckiRJfG9RUZEUGxsr1dXVSQ0NDZJKpZLc3d0lZ2dn6e2335bS0tIkSZKk7Oxs6c0335Q++ugjKS0tTcrKypJ+/vlnKT4+XpIkSXr06JH08ssvS127dpWOHj0qSZIk7dy5U5o9e7a0d+9ece5NuYYrVqyQFAqFBEienp6Sm5ubNHPmTCkvL0+SJEmqqqqSqqqqpF9DfX29uP719fVSUVGReO3ixYuSjY2N1LZtWzG+amtrpZKSEvFbVldXSzU1NeJ3klFbWytJkiRVV1dLMTEx4vl58+ZJgPTBBx806Rzl8fM0nj6vmzdvSv369ZMAycjISDpz5owkSZI0ZcoUCZB27Ngh/k4+F0mSpPv370sdOnSQACkwMFB69OiRlJeXJ/Xu3VsCJEdHR2nixInSkiVLpNjY2EZj4tGjR1JYWJhkaGgoffTRR9LcuXMlDQ0NafDgwVJZWVmTx+mKFSskQ0NDyd7eXvrhhx+k0tJS6csvv5QUCoUUFhYmPX78WJIkSSopKZFKSkrEOWzevFmaNm2a9O2330qZmZlSXV2dlJKSIt26dUtKSUmRMjMzpcjISOnTTz+VFixYIF26dEn8bU1NTaPf9OLFi9LOnTul27dvi2tYUVEh7sGGhgbxvCQ1bZz+8MMP0pgxY6S9e/dKkiRJqamp0v3796WamhopOjpa2rhxo/iNn77eOTk5UnFxsfibxYsXSx9//LF09OhRKTExUbz/+++/l3R0dCRA6tevn7RixQpp48aN0saNG6WrV69K/wnynHT37l1p4MCBkkKhaPI1zMjIkCRJkr755htpwoQJ0q1btyRJkiSVSiUBEiBt3bpVqqqqklQqldS6dWtpzJgx0sOHD6UrV65Izs7Okqurq3Tw4EFp4cKFEiC1bdtWrBc1NTVScnKy+B5JkqTS0lLp+vXr0urVq6WNGzdKBQUFUmlpqfTDDz9I27dvlyoqKhqd5+XLl6WXX35Z+v7775t8DWWcOHFCCg8PlwApPDxcSk5OliRJkqKjoyVnZ2fJ3t5eunbtmni/PJ9KknouTU5OlvLz8yVJkhqtPV988cUv1hAZmzdvlvr27Svt3LlTPHfw4EHpzTffFHOpJKnXKnlcV1RUSBs2bGjSOcbHx0tXr16Vdu/eLZ04cUIqLi6WampqpA0bNki2traSrq6utG7dOvF9T9+LMuLi4qSZM2dKenp6kpubmxjzkqSet+R1RF4Ty8rKGt2Ly5Ytk4YOHSp9/fXX0sOHD8W9kJ6eLn366afS9u3bJUlSj3mgyeM0NjZW2rlzp3Tq1CmpoKBAqq+vbzS/1tbWSsnJydIPP/wgzZs3T9q7d69UV1cn1dfXSw8fPhRzkSRJ0quvviopFArp448/Fs+lpKRIt2/flq5duyZFR0dLV65ckdauXSvNnz9fOnnypFRVVSU9evRIunTpUqPrL88xTz+3e/duadiwYU26hps2bZKqqqqkvLw86fbt21JZWZlUUlIi3b17V3zuzJkzpbCwMCk6Olo8J88B1dXV4rl169ZJQ4cOlY4cOSKeKy0tlerr66WMjAwpOjpaunbtmrRhwwZp3rx50sGDB6XIyEipS5cuEiDNmzdP/N2wYcMkbW1tafPmzeK5K1euSJGRkf/x/J6ZNiBDX18fPT09AB49esSFCxeoq6tj7Nix+Pj4YGFhQX19Pbq6uuJ9GhrqBK9CoRDPAdjZ2dGqVSu8vb3x9/cH4IUXXkCSJHJycnBxcaGyslK838LCgvLycg4ePIiNjQ0vv/wycXFxQjY1ICCAKVOmkJSUhLa2NgAuLi5NOj/5/Xfv3sXIyAhfX18sLS1paGjA0NBQvM/c3LzR3y1atIgbN24wadIkbGxsABg3bhzu7u4AxMbG4uPjg7W1tfgbTU1N5syZQ2VlJQsXLsTU1JSzZ89iZWXFoEGDKCgoIDU1lb1793LlyhXs7e2ZNWsW1tbWZGdnU1dXR4sWLZp0fgCtWrXCzMxM/L+VlZX4d8uWLenSpQs2Njbk5OSQkJBAVVUVu3fvxs7OjsePH9O9e3fc3d0xNTUlOTmZR48eUVlZyQsvvICZmRmtW7empqaGzMxMEhISCAoKIigoSByru7u7+E5Jkpg4cSLFxcVcuXKFH3/8EV9fX2bNmoWPjw8ARUVFTTo/V1dXRo4ciYmJCf7+/kiSRIsWLdDX1wdAV1eXW7duoVAoaNWqFdHR0WzduhVbW1vGjBkjxkBxcTGVlZWYmpoCYGBgQKdOnejXrx/Ozs7cvn2brVu3MnnyZPz8/BodQ3R0NJs2beLhw4cMHTqUV155BYC6ujpxXlFRUdTW1vL6668zfPhw1q1b98zneOnSJUJDQykqKiImJgYfH59GY9LOzo7Ro0fTqVMnHBwcSElJYdGiRbi7u/Pxxx9z9epVKisrGTlyJM7OzuLvjIyMGDt2LP3796dfv354eXkB8P777zN27FhatGhBbm4uDQ0NtGzZEoCMjAwkScLCwoKQkBC0tLQICgrC1dUVCwsL7O3tG907zwozMzPeeustTE1N8fHxQaFQ0KVLF7788ks8PT1xcnICoKGhgZkzZ+Ln58eHH37IhAkT0NXVxdTUFDs7OwC0tbWJjIwkNDSU9u3bU1lZycOHDzE3Nxdj8dChQ0RGRmJgYEBlZSVVVVV4e3vT0NDAqVOn8Pf355VXXhHjKDs7G1NTU/T09EhMTOTQoUNNOr/Q0FA0NDTEHOHo6MjBgwfZtGkTlpaWODo6cvjwYS5cuMDQoUMxMzMjPT0dW1tbysrKWL16NVlZWbRq1Yr6+nqysrLw9fUVnx8QEMArr7xCUlIS7du3JyQkBDMzM/Ly8rCysiIrK4vIyEhKS0sZMmQIDg4OFBcXk5+fj4mJCTo6Ojx+/JijR49SVlZGREREk6/hxYsXGTFiBMnJyfzwww9YWlrywgsvUFlZyYIFC/Dx8UFPT48zZ87Qtm1bPvvsM+rq6jAxMcHCwoIPP/yQwsJCrKys6NGjByYmJuTn57Njxw6WLVuGnZ0dERERhISEiO+sqamhpqaGFi1a4OjoiLGxMY8fP6awsBAHBwdx/Wpra6mrq6N9+/aYmZmxf/9+lEplk88RoGfPnpw/f54zZ85w5swZDh48yOzZs8WYyc3NJS8vjzVr1nDgwAF69+7Na6+9BqjnFS0tLQwNDamrq2PZsmVUV1fz1ltvMWnSJAwMDGjXrp34ritXrrB8+XJsbGyYOnUqcXFxvPTSSwQGBtKhQwd69erFqVOnuHv3Lq+//jo6Ojp89913eHl50adPHwYMGMC1a9ee+dzi4+Nxd3fH0dERXV1dtLW1qa2txcPDg0GDBlFSUkJQUJB4f0pKCps2baJNmzaMHTuWwsJCDvw/1v4zruqr6/aHv/ReN733JiIoICooqIjd2HsvMSaaaEyixpqoiTGWJJaoibEbo7ErFhRUVAQVEKRL7723TXle8N/rhPs6574kn2e+imRT1q+sNeeYY4x5/TrZ2dkMHjyY2bNnM3HiRFpbW9m3bx/q6uqsXLkS6DoTm5qaxH5x5swZwsLCGDhwIMuWLePNmze8evUKJycnoCsn8PT0xNjYGIC+ffuyfv36Hp8Z58+f59GjR4wcOZIhQ4YgLy9PcnIyKSkpDBgwABMTE6ytrWloaMDCwoKXL1/y8ccfM3ToUCZNmoSi4v9JpZqamlBQUOj2NSsrK6ysrEhMTKSgoAADAwNGjhxJSUkJ9+7d48WLF8yfPx95eXk++ugjNDQ02LJlC4aGhjQ1NaGqqkpbWxtZWVmoqKgQFBREcnLye6+vb9++qKiocO3aNaKioli0aBHu7u64u7vz6tUrjh07xsWLF/H29hbnXX19Pbt27aK8vJzZs2fj4+NDWloazs7OmJubExMTQ0ZGBkuWLEFTUxOAiIgIampqGDVqFCEhIaipqaGtrY2ZmRkTJkygb9++jB49murqahITExk6dCgmJibcuHEDqVTKokWL8PX1pbCw8L+uqcfJa0FBAUlJSbi5uaGrq0tubi6KiopMnDixW2IGXTexpaUFVVVVVFVVycvLIyIiAjk5OYYNG4apqSnu7u7i81KpFICZM2eK5POfMXnyZGpqaoiLiyMmJoZPP/2U4uJiDh48yJs3b5g2bRoLFy6koaFBPMw2NjY9Wl91dTWXL18mOTmZ4OBgXF1dkUqllJaWkpKSIj6XmZlJQ0MDvXv3BuDNmzeEhYUxd+5c8W95eXlmzpxJXFwcaWlp6OjooKGhQX19PWZmZjx48IDz589jaWlJR0cHSkpKdHR0IC8vj5qaGubm5oSGhrJz506ysrKYOnUqjY2NvHnzhmPHjuHo6Cg2wJ6Erq4uTU1NVFdX09nZ2e2+jRs3joCAALS0tIiOjsbFxYXi4mJu3ryJvb09lpaWtLa2is8/e/aMGzduMHToUFauXCnuW319PWfPnqWwsJAJEyZgYWFBdnY2+vr62Nra8vz5c8rKyggKChIb0cWLFzl37hxz584lJCSE8vJydHR0uiXa7xPOzs4i0frnpiorchobG8XfIi8vT2lpKXfu3MHFxQUfHx+Ki4uRSqVoaGiQlZVFY2MjQ4cOxdPTk3379mFjY0N9fT2fffYZEREReHt74+bmRklJCR0dHejo6PDixQsuXLhAcXEx7e3t9OrVC39/f9TU1Hj58iWPHz+msbGRRYsWdUs43jeuXbuGp6cnFRUVZGdno6uri56eHp2dnUilUkxNTZk/f774/Llz57h37x6bNm0iKCiIo0ePkpCQwKhRo9DQ0KCwsBAlJSWsrKxYs2YNALW1tSQmJtLR0YGbmxsDBgxAKpXS2NiIiooKLS0tvHjxgjt37uDh4cGMGTP4+uuvSU5Oxs7ODkNDQ/F+/JuwsbER75Ms/Pz88PPzo7m5mdraWrS1tbl//z6hoaEUFxfz+eefo6amxrRp02hrawOgvLycn3/+mfj4ePr164eKigo2NjZYWFigr6+Prq4ueXl5fPPNN90OdXd3d4YPH05ubi5HjhzB29ubpUuXAl2Fu2xfA3jy5AlJSUmiUH+fsLe3x97eHugqahQVFWlvbyc9PR0TExM8PDwoLCwkPz8fZWVlcnJyuH37NlOmTEFJSYnjx49TXFzM6dOnsbOzIyoqioaGBqBr7/X29sbb2xvoKjCMjY1RUFDAwMAAPT09UlNTuXPnDrW1tQQFBWFmZkZraytRUVFUVlaipaVFU1MT5eXlBAQE4OPjQ2hoaI/uoQx8UFRURFlZmfb2djIzM0lMTKRv3774+/uTlpZGfn4+bm5uIglNSUlBKpWK652YmIiuri4DBgzgzp07fPfddzx//hwfHx8GDhyIgoICDQ0NqKmpoaenR9++fWlraxNJkK6uLkpKSpSXl5OTkyMKVKlUipqaGs7OzlRWVnL48GE++uij915fUlISSkpKODo6snHjRtLT0wkLCyMnJ4fU1FRMTU2ZOnUqeXl5pKSkcPr0aeLj43F2dqazsxM5OTkyMjKIi4sTh31sbCzR0dEEBwfj7+/PqlWryMjIoK6uDi0tLVJTU7l69SqrV69m6tSpHDhwgBMnTjBixAjmzp2Lrq4uDx8+5MqVK4waNQpVVVX+/vtvXF1dCQkJEeDK+0ZjY6MoYhsaGlBRUUFeXh4nJycWLVpEXV0dtbW1tLS0oKKiwqlTp/jxxx9ZuHAhw4YNIzk5mbt371JWVsbChQuZN28eAI8ePeLhw4d4eHjQ0NCAhoYGubm5AKKgzsvL48WLF4wbN45Ro0aJd7WiogKJRIKqqip9+/YVaJyHhwceHh49LkJaW1uxsbFh0KBByMvL8+zZMyIjIzEzM6OwsJDW1lZUVFRwc3PDzc2NtLQ0jh07hq6uLtOmTaOjo4Pi4mLU1dUxNzenX79+9OnTB4CWlhYqKiowMjLCwMCA1tZWDAwMsLCwwMLCgl27dnHx4kUsLCwYNmwYb968QV1dXZzLsmIrKyuLJ0+eEBAQwNixY3u0RlkiraamRnV1NVevXsXIyAgjIyOeP3/Os2fPCAkJYfHixSJ5lRX4L1++xM/PDwsLC0pKSujfvz8tLS188cUXJCYmYmtry9ixYwFQVVWlpaUFBQUFzMzMGDduHO3t7Whra7N27Vrx99y9e5eYmBi++uorlJSU8PT05MqVK1hYWDBixAhqa2v/+5ree/X/X6SnpzNq1Ch++OEHpk+fztatWzl27Bjff/89AwYMYMqUKUDXZnn58mUUFRUZPHgwysrKHD9+nAMHDqCnp0dLSwuzZ89GVVWV9vZ2FBQUUFJS4tKlS9y7d48PP/xQbGStra00Njbi5+eHkZERoaGhAmVqbW3lyZMnPH36lKdPn7Jjx45/hUbK4ty5c+zevZuJEycyatQooKvyBCgrKxOfe/fuHefOncPPz48PP/yQn376ialTp6KiosLVq1e5c+cOjx49wsLCglWrVjFmzBjy8/O5f/8+jx494smTJ7S1tTF58mTmzZsnNpQRI0Z0Q5sVFRXR0tJixowZrFmzhrq6OtatW0doaCizZ8/+V2vs7OwkPT2dAwcOUFtby8aNG3F3d6eqqgpTU1Ps7Oy4e/cuJSUlAhFubGzEwcEBKyurbn9fU1MTeXl5qKqqdis4NDU1qaurIzY2FlNTUy5evMiff/7Jxo0bWbx4MWfPniUlJYUxY8YA8O233+Li4sL9+/dJTExk+/btGBkZsWLFiv9ANf9bKCgo0NnZSVNTkzggoAv5b2lpobOzk759+6KlpQWAk5MT27ZtY+DAgdTU1PDZZ59hamrKt99+y4MHD9i1axfbt2/nww8/xMbGhnfv3nH9+nVSU1Px8PDAycmJyspKTpw4gb6+PrNmzWLs2LEYGBjQ0NBAS0sLLS0t4u87fPgwsbGxbN++XSSuSUlJPVpjZmYmL1++xM7Ojt69e9PZ2dkNCWxvb+9qrfx/m9aAAQO6IfVLliyhs7MTBQUFfv31V27dusXcuXOZNm0aAHfu3OGHH34gNjYWY2NjzMzMyM7ORkVFhf379xMSEsLPP//M6tWrsbKyEvdIW1sbJycntLW1kUql5OXloa6uLhDQnoSmpibZ2dlYWlqioKAgvl5fX09paSkRERH8+eeflJaW8vHHH7NgwQKx0UPXu5OYmMiiRYuIiYkhODgYCwsLAFxdXVm4cCEGBgYoKCgQFhZGVVWV+N6+ffuyb98+Bg8eLBBVExMTVFVV+fPPPzl16hQ//fQTAHFxcQB89NFHHDly5L3XV1ZWhqGhIXV1dWRnZ2NkZMSQIUPE9TMwMGDmzJno6uqioaFBdHQ0GRkZoitlYmJCRkYGz58/R05ODkNDQ1G0/88k2szs/8xGke2dpqamLFy4kKamJvF9hoaG5Ofns2fPHpqbm1m2bJkogvLy8t57bbKYMGEC0NXdmT17Nh9//DHNzc1s3bqVP/74g8uXL/PNN9/g7e3Nw4cPcXZ2xs/Pj+zsbBISErC2tkZbW5v29naOHj1Kbm4u8vLyDB8+nDVr1uDg4CDWU1dXR0dHB1paWqioqKCioiLAAH19fUaOHEldXR3a2tri3dDW1hZ/6/z583F2du4RKrl48WKKiorYtWsX06dP548//uDixYtUVFRw//59oOt5raiooKOjg3nz5uHq6oqGhobYm1paWtiyZQtXr15l586drFu3TiS+0JW0HDlyhMrKSj788EPGjRuHvr4+0FVE+fr6cunSJSQSiSj0x44di6urKwYGBujo6LBhw4Z/9Q4C4t1OSEjg7du3jBkzBi0tLcrKyigoKKC0tJRnz56xYcMG1NXVqampwdfXFzMzM6RSKYGBgSQkJLBnzx7CwsJwcnKipaWF5ORkFi1axKhRo5CTk+PAgQO8ffuWJUuWiOT1iy++ICAggKSkJCIjI/H390cikXDhwgWGDh2Ki4sLZmZmNDQ0iH3+38TSpUsxMDBAS0sLqVTKkSNHMDY2Zs2aNYSHh7N27VpmzZrFkiVLAJg0aRJaWlr4+fnR2trK2bNnAfjggw/w8PCgsbGR/v37I5VKWb16NR0dHezYsQMTExPU1NQEUCc7pwB2796Nnp4ex44d+792jJubm+no6Oi2x71vnD17ls8//5xx48ahqanJmjVrOH36NIsXL8bd3Z29e/cSEBCAiooKRUVFFBQUoK+vz+bNm0lNTUVfXx91dXUGDRrEu3fv+P7770lMTBRrkMXEiRO7/d7/W8etoaGBhIQEysrKaGlpQUlJCR0dHdra2vjzzz95/fo1lZWV/3VNPU5eP/roI/bs2cPJkycJCAjAzMwMiUQiFi9LXl+/fs2OHTuwtrbG3d0dGxsbNDU16du3L0ZGRoJeAF0JkAx2bmho4M2bNxw+fJimpibxYMpeTGdnZ0pKSigvL6ekpAQDAwNCQkJ49OgRJ0+eZODAgcycOZPU1FQMDQ3/o73/38LS0hJnZ2fRwlFUVCQ4OJikpCSBkgD4+vpy//59iouLqa+vx9DQkIkTJxIVFUV7ezs+Pj68ffuW5ORkKioqRBuhra2N9vZ26urqGDhwIL/88ov4mZGRkairq2NkZCQO2YEDB2JhYcHw4cOBroNSIpEwZswYAgICqKmp6ektRE5ODhUVFRQVFamqqiI5ORlXV1d0dXWRk5NDKpWiqKiInZ0d48aNE99XVlZGXFycaBdXV1ejq6vL0qVL/6OlWF1djZ6eHr6+vtjb21NUVERzczMFBQW0t7fTv39/1NXViY2N5caNG3z33Xds2LCBwMBA2traiI6Opq2tjRs3bnRDvN8nZNfEwMCA+vp6cnJykEql9OrVSxxqGhoatLe3k5CQgLGxMVOnTgW6OgvR0dEEBQVhZWWFj48PKioqJCQkiJ/f0NBAQ0MD/fr1o3///tjZ2dHU1ISamhomJiZoaGigoaEh3oX29naBLskQ36VLlzJ69GgAHj58SElJSY/WmJCQwPbt29m+fbtAl6urq1FRUQHoluw1Njairq7OBx98gLa2NjU1NTx58oQBAwYgkUiorKzk5s2b9O/fH+hq/Xz//ffExcWhrKyMqqoqNTU1ApE+e/YsWVlZREREYGRkxIABA/D09BTfW1hYKAq/x48fY2RkJNbak2hoaGDfvn0EBgayaNEioKslWV5ejoqKCs3NzSQkJODu7s727dvF/8/Ly2PAgAEoKCgQFxdHZ2cnY8aMYcGCBdTW1pKRkYGDgwNOTk4UFhZSVlaGnp4eixYtIiIiAoCPP/6YwYMHi2s5depURo4cSXNzMw0NDUilUm7fvo29vT3p6ekMGTJEIC3vGy9evBDPu46OjkggtbS0RNEhJydHZWUlSkpKGBsb4+XlRXp6Ojk5Obi6ulJbW8vjx49paWmhf//+FBUVoaqqKlCsZ8+eoa2tTd++fdHT06O2tpb6+nqUlJQE0gNd70xzczNtbW1UVFRQWloKwIMHD1i3bh0SieS9Wnn/M2TJoZOTEzo6OkilUpqamnB3dycrK4vs7GwMDQ1xdnYmLCyM1NRU/Pz8cHJyIjk5mfDwcCZMmICzszNPnz7l4cOHBAUFsXnzZszNzVFUVEROTo6qqiqamprQ0tKitLSUuLg4evXqhbm5OZmZmZSWlnajFkDXoVtQUEBTUxMODg64urri6urao+TV2dmZiooKXr9+zfTp01FRUcHR0ZGTJ09iYmJCnz59uHz5MllZWXz99ddMmjQJXV1d8Z6+e/eOCxcuABAdHc3vv//Opk2b6NevH9AFphw6dIiysjImTpyIo6Mjenp6jB07lvLycvLz8/Hx8cHX1xfoQvBbW1sZMmQIQ4YMEX9ncHAwZWVlnD59usdnoqampti7qquriYuLw9bWFnV1dXr16kVtbS3Pnj0jKysLBwcHZs+eTZ8+fdDU1KSzsxN5eXlGjRrF48ePefjwIWlpaQQEBDB8+HDGjRsnkrFbt25x584devfujZubG0+fPsXExAQfHx9SU1O5cuUKtbW1qKioUFpayrlz5wgKCmLgwIFAV84BCDpRT0KGeBsZGVFbW4u5uTnq6uq8fPmSpKQkzM3NcXBwoK6ujgcPHqCjo8PMmTMBqKioEAWgjo4Offv2RVtbG11dXS5cuMDhw4exsbHh11+7hmJ2dnZiYGBAVVUVv/32G7q6uowfP57i4mIuXbrEwoULKSoqIjIyEg0NDTw8PNDT08POzg4FBQWePn0qkt/3DWNjY1HYWFtb4+TkxIsXL8jOzmbp0qXo6emJ/cLc3Bw3NzfU1NQEteCf8eeff4pkfe/evYwbNw6pVMrFixepr6/Hw8MDQ0NDNDU1xfsvLy9PR0cHRUVFPHz4kLNnz9LY2MiYMWPo1auXKLbr6upobGxEVVWV+vr6/3VNPU5elyxZwtixY9m+fTsbN25k48aNaGlp4eTk9B+0AVlyo62tjYWFBcuXL2fx4sXIy8sjLy8vsvK8vDzy8/OxsLBgyZIljBw5km3btjF69GicnZ2ZPn06QUFBohppaWmhvr4eqVSKuro6X331FeHh4dy/f5+7d+9SVVVFTk4OISEh3drG7xMLFixgzJgx7Nixg4kTJ/Ltt9/St29fjh07RnZ2tkgEdHR0WLduHW1tbXR2dvLmzRvKyspwcHAQm+SkSZPIz8+nurqa+Ph4zM3NmT17NqNHj2b16tXdrtfz58/ZtGkTOTk5fPPNN8yZMwfoehFlbXXoevAOHTqElpYWSUlJPHr0qKe3EABbW1t++OEHsrOzefv2LaGhoQwaNAg9PT0UFRUJCAigpaVFJGUAW7Zs4cGDB/zxxx8MHDiQqKgo1NTUmDx5crefXVVVRWJiomgla2hoEBAQwJw5c5CXl0dBQYEFCxZQVFTE2bNnRYJz9uxZcnJymDVrFqdOnaK9vZ2lS5eybds2FixY8N5rU1dXZ/DgwUgkEurr67l69Srt7e3Y2tqirKwsPpednc3x48fx9fVl5syZFBcX8/vvvzNkyBCBQA4ZMoSTJ0+SmJjIlStXCAwMxMPDAwsLC9ra2igsLCQ7OxsPDw8WLlzYrQrt6OgQ/C07OzvOnj1LYmIi48ePJzAwEOiiSoSHh4tk732jubmZe/fuMWLECPGMq6qq0tHR0S1xlV2PyspKcWDW1dWxevVqHBwcCA0NxdfXF1dXV9rb24mKiuLy5ctYWFiwZs0avLy86OjoQCqVYmVlRU1NDV988QWrV69m/fr1YhOSbVIZGRnExMRgamqKq6uraM3/m4iOjuby5cvdUENNTU0kEglKSkrIy8ujpaUlisrq6mpCQ0Px8PCgra2NsLAwsrKy2LBhAxMnTqS9vZ1Dhw7R3t7OJ598QkpKCnv37mXAgAEsXbqUkJAQJk2ahIqKCqamptTW1vLq1StKSkr46KOPsLa2prOzk8WLF+Ph4cGqVatISUlhzZo1InnvSTQ2NqKsrIympqbobrx+/ZrU1FSGDh2KtbU1165d48mTJ0yZMoUJEyZgampKWFgYiYmJSCQShg8fTkZGBkVFRcTFxZGdnY2SkhLOzs7ExcWxefNmJBIJ27dvZ9iwYZSUlBAWFoaZmZl4xtva2kQnSCKRCKCgurqa0tJSHj16xNixY/H39+fq1av/6l66urqSl5fH3r17sbW1ZePGjfz000+0tbWJZGPmzJkiabezs2PatGnEx8dTU1ODjo4Ozs7OPHz4kBkzZmBjY8MPP/xAS0sLGzduRE9PT3RSXr58yTfffMNnn33GjBkzOHbsGOfOnePnn38WSDB0vUMxMTEoKipib2//r5C7Y8eOUVxcTFlZGc3NzaiqqvLu3TvCwsIIDg7GxcUFiURCa2srI0eOpKWlhYMHDzJjxgzMzMzYsGEDsbGxLF68mLy8PO7evYurq6ugyyQnJ/P06VNmzpzJ999/L36vrM3+P587GTAhC1lxoKGhwd9//82RI0dYuHBhj9ZYVlZGbm4u7u7u+Pj4EB4eTlpamtAVmJiYiGdq48aNjBw5ktbWVtFtSk1NpaWlhaVLl6KkpER8fDyOjo64ubmRmJgo9i/ZeRgeHk5+fj5nzpxBT0+PzZs3M27cONra2vj4449xcHBg5MiRnDp1ihMnTnDjxg10dHRYv3499vb23QCh941r166xYcMG9PX12blzJ9u3b+fatWusW7cOV1dXjh8/jpKSEhcuXGDVqlV4eXnh5eUl8pvp06ejpqaGvLw8NjY2mJiYkJmZybVr1wDw8vICuvbHqKgo5syZQ3Z2NocPH6Z3797s27ePnJwcDhw4wLx588jNzUVVVZWJEycyc+ZM+vXrh5mZGW5ubpw5c4YTJ07wwQcfvPf6PvnkE6ALxZdxodva2mhoaBBJ7aZNm7hw4QIrVqzoBtT9MxITEykpKcHT05O5c+eyevVqAK5cucKiRYtoaWnBx8eHKVOmMGzYMNzd3cWZD13v3Nu3b0W3qrS0VOgKVFRUGDFiBLNnz6a1tZUNGzb8r2vqcfIaFRWFn58fGzdu5NatW5SUlGBvb88PP/xAW1sblZWVokWzZ88e2tvbxUOpra1NW1sbxcXFlJeXIycnR3FxMfv27aO0tJT9+/cDXcIFa2trmpubiY+Px83NDVNTU3R0dLC3tyc4OJjy8nIKCgpQUFBAS0uLFStWoKysLDhIs2bNYvjw4d1a3O8TL1++xNvbG21tbW7evImDgwONjY0kJSVhZmYm+CJqamps2rRJfF9+fj5aWlpYWFhQUFBAaGgozs7OBAQE0NTURFFRkRCGmJiYUFlZya+//kp6ejo6OjoUFRUJ1OefLebIyEji4uJoaGhg5MiRIjG+cOECcXFx/4oiERERQWBgIMrKyri7u1NeXs6pU6cIDw/ngw8+ICAgADU1NdTU1GhqaiI/P5/w8HCeP39OS0sL8fHxODg4YG1tTUVFBZGRkVRWVlJfXy+SQzs7OyEyuHjxImpqaoIXA3D79m2ys7ORl5dn4sSJREREcP36dXJycvjyyy+BLsRr7NixPW5XygRRgEBu+/Tpg7y8PI2NjZSXl2NlZYVUKiUyMpJXr15RUFDA6dOnefPmDbt27aJ///7cu3cPd3d3hg0bhr+/P6Ghobx+/Zphw4ahr6+PpqYmR48eJSAgAA8PD7S0tEhISBDcSkdHR2pra9HQ0EBFRQV7e3uePHlCdHQ0lpaWKCkpUVdXh5KSEllZWT1a4+rVq0lMTCQ/P58ffvgBdXV13N3dxfNx7949bt++jZ2dHatXrxZIfm5uLklJSUyfPp28vDyWLl2KiooKY8aMQVVVlcjISKysrBg3bhzBwcHi96WkpKCsrIyhoSFLliwhMzOTESNGiOeksbGRlpYWfH19aW1t5fr16zx//pzBgwdja2vb4/cQ4Pjx4zQ0NHTjWOvp6Ykq3c3NDWdnZ16/fs3OnTupq6tjzJgxAomJj4/n6dOndHZ2oqmpSWVlJSUlJSIhf/z4MZcvX+7WTpV1FQDu379PeXk5NjY2uLu7I5FIRILj4+ODkZERLS0tBAcHIy8vT1FRUY/W17t3b/G+xMbGcvDgQfLz85k4cSKmpqZ0dnZiYmKChYUFZWVlFBUVYWFhwQcffEBOTg4NDQ0oKSmRnZ3NjRs3ePz4MWPGjBFryM3NpaysDDk5uW4C1vLyciQSCdCF4B89epSKigrc3d0ZNGgQ06dPJzg4mPT0dKqqqlBUVKSiokK0sXsSJSUl6Orqoquri46OjuD2y5BC+D9aB4lEQnt7OxcuXMDDwwNXV1cUFRXJzc2lvb2dlpYW+vbti6mpKZmZmRQWFiIvLy+oALLE18LCgpCQEHJzc9m+fTtHjhyhqqqKmTNn8sMPP7BkyRKB7FhbW5OXl8fZs2dxdnb+DwDmv0V8fDze3t7d0L4pU6ZQW1tLZGQkJ0+exN7enhUrVuDi4oJUKsXV1ZWzZ88KAaJMeKmlpcXMmTMFQq6trY2Pjw8rV65k1qxZdHZ28uuvvxIXFydEo42NjdjY2GBkZERra6voYJ46dYqIiAiGDx/OrFmzABg0aJDgF/akm2VsbCwoLlpaWnh7e/PkyRMePHiAl5cXcnJyzJgxAwMDA/HuKSsri2fb2NiY3NxcbG1tWb9+PdnZ2eTl5XHlyhXk5OSIiIhAQUEBe3t7li9fTkZGBr/++isNDQ14eHjQq1cv0b3ZunUrYWFhQNf5MHjwYNzc3IiKiuLp06eYm5v/R/H+PqGhoSHQYltbW+Tl5Rk7diyxsbG0trZSVlaGmZkZLi4uhISEoKmpSVZWFhYWFkilUlFg5+TkYGVlhaqqKs+ePaO+vp6lS5cyduxYLl68yHfffUd1dTXt7e2kpKSQlZUlOoVBQUF0dHRw9OhRIYC1srJCU1Ozm9Dd398feXn592qty6KgoIArV66gqKiIt7c35ubmojva2NhIZ2cn3t7ePHr0iOPHj6OiosLXX3+NpqYmOTk5JCcn09bWhrq6OnPmzOHzzz8X5+z9+/dJTk5m5cqVSKVScQ3Nzc27FVLwf7pKso6siooKSUlJBAQEEBwczPDhw1FXV0ddXf2/rqnHyeupU6fw9PTExMSEhQsXIi8vT21tLXp6ekI1KWuN/5NQXFNTQ2xsLE+ePCEzMxMLCwvGjx9PW1sb9fX11NfXU1JSgq2tLe3t7djb2zNlyhRSU1Npbm5GQUEBTU1N8UK0tLSQmZnJ27dvcXZ2ZsiQIairq3PixAmMjIzw9fV974vwz7h+/Tre3t4MGjSIcePGUVxczPr163n8+DF9+/alX79+XLt2DWVlZQIDAwkICAC6Kt7m5mZqamp4+vQpu3fvxt7eHl1dXXr37o2JiYlAEGpqatizZw/Hjx8Hum5ofX09KioqBAYGdkOqUlNT+fLLL7GxsRG/69SpU6xYsQJFRUUmTZrU7cF+n0hKSsLf3x9FRUXKysrEtY2IiMDc3Fz8Huhqp+Tl5fH48WP8/f0xNjYmPT2de/fuMWXKFJqamvjhhx+IiYlBWVkZR0dHJk6cKBCBtLQ0/vjjD4HceXh4UF1dzdGjR2loaODw4cM4ODhgaGjIo0ePUFZWJiMjA3d3d6RSKUFBQUyaNKnHBPyWlhZu3brFjRs3aGxsFIr3kpISiouLsbKyoqGhgfLycoqKitDX16e+vh4jIyPk5eV5+PAhly5dws7OTnBgtbW1yc3NJSsrC1NTUyorKzE1Ne32jMXFxfHw4UOysrIYN24cvXv3pqOjg5aWFtzc3OjXrx8bNmxgy5YtbNmyhbFjx2JmZtajViUghHp//vknn332GSUlJYwfP57jx48jkUh4/vw5Bw4cwMHBAR8fH/z9/YEugZ2+vj7bt2/n4cOHTJo0CUdHR7744gsyMzOprKzk008/FS1s6EJefv75Z9ra2li/fj3+/v5cunSJ0tJSIZzIzMwkOzubsWPHYmpqyvDhw8nKyhLt6n8Tb9++BRBqfNl9VVNTo6CggJKSErS0tLh79y6bN29m4MCBoqBMT08XtJ34+HiOHj2KoaEhU6dOZcyYMSgrK2NsbIyvr283UaesAAsPDychIYH+/fsLlFzGq1NXVxeHkqwb09LS0uPkTk1NTfD94+LiuHLlinh/VFVVaW1txcLCgqCgIMGNkyEU5ubmSKVSdHV1cXd3Jzs7m5cvX3Y7uP38/Ni0aRNycnKicI6KiiIvLw8/Pz86Ojo4duwYBw4cAGDPnj2i1ayvr4+Dg4NAM/9t1NTUoKqqirGxMa6uriQkJNDZ2SlAjvr6eiorKwXH8d69ezx48EAkecbGxrS2tnL//n2xhzx+/Jjo6Gg6Ozvx9fUVCVtpaSlycnJCtPPTTz/x1VdfAV3856amJl68eMHcuXMFGuTl5UV1dTXbtm1j2LBhgp7yvvHbb7/Rq1cv1NTUqKuro7q6GktLS5YvX05WVha//vqraK1Cl+vFqFGj2L17N9HR0Tx+/BhlZWXGjBnDoEGD+O6774CuFrijoyPjx49n/PjxAFy+fJktW7Zgbm7OwoULUVBQ4PXr16ipqWFhYdHt3t+7d4/z58/j4OBAc3MzdXV1SCQSFi9eDMDvv//+3ms0NTXF1NSUFy9eUF9fT2BgIFpaWhw4cICbN28yZswYhg8fLsCp1tZW8fx2dHSgq6uLgoICZWVlODs7o6+vz4EDB0hMTOSrr75CQUGBhw8fMmLECPr06cOTJ0+or69n8+bNzJ49G1tbW6CrY9SvXz9u3brF8+fPWbt2LZs2bRIOBYMHD8bGxkbQEXsSc+bMEd1OQDyf33zzDfv27WPcuHGC9vH5558jlUrx8vKirKyMwsJCVFRUaG1tJTMzk7a2NhQUFCgoKGDIkCGsWbOGd+/eMWfOHGJjYzEwMOC3336jvr4eHR0d1NXVOXjwoBC4+fv78+7dO1GUyRwzGhsbKS0txc3NjYEDB/5XZPKfcfv2bW7evMmSJUvw9vbm1atXvHz5Ek9PT6qqqrCwsGDlypUEBgYyatQoHj58yObNm4Gud+fu3bvo6+vz+eefo66uLgrOjIwMLl++LLopCgoKJCcnY2ZmJorVmpoacQbIcr3FixezbNkysrOzuXfvHhMnThRUmerqapqbm//rmnqcvK5atQoFBQVu3rxJR0cH48ePJyMjgw8//JBFixbh7e1NTEwMZ8+eZdasWaLCVlVVpbOzk8zMTPLz88UD2adPH06cOMGTJ084efIk3333Hb169RKWRCoqKujp6REQEIClpSUtLS2sXbuWV69eMWvWLObOnSvUcSNGjMDd3Z0bN26wYcOGblXn+4aslRYSEgJ0JSN6eno0NTURExPD69evWbhwoUAmJBIJNjY23L9/nydPnvDNN98wfPhwGhoaRKUiUwlGRUWhrKyMiYkJioqKzJw5E3d3d9LS0nj06BGLFy9m3rx53Lx5k+PHj7No0SIGDhxI3759mTFjBh4eHmzbto3w8HCWLl1KVlYWJ06cYPny5T1a44ABA1BUVOSXX34hNDSUxYsX8+WXX/L69Wt0dHTEpiPjnpiYmDB58mQaGhrIzs6muLiYhIQEnJycUFNTw8zMjKqqKpSVlfHz82PBggXIyclx+fJl4uPjWbJkCfn5+SxdupRevXoxf/581qxZg4qKCg4ODkDX5hEVFcXx48dZv34927Zto6Wlha1bt4p78r5x9epVLl++jJ6eHjY2NqSkpJCeni4qZAUFBbKysnj06JFQgU6aNIn9+/cLesD169cpLy/H1NSUlJQUVFRUsLW1xdPTk0OHDvHixQt8fHw4efIk1tbWJCcnU1hYiKurK3JycuzevZvIyEh+//13srOzOXToEDNnzsTf3x+pVEpzczOPHz/mgw8+YMCAAZibm3P48OEerRNg+vTpPHv2jF9++YXHjx+LTWXEiBFCHXro0CEOHTrEwIEDmTBhAiYmJsTExPDq1SvWrVtHcHAw+vr6FBUVoaCg8B9qZENDQ5SVlTl8+DBRUVHcuXMHMzMzrl69SmRkJF9++SUVFRXcuXMHBwcHjI2NaW9vp7W1tcdI1v8MmfNEa2srERERqKmpMWjQILKysrh16xYuLi5oamri7OyMiooKd+7coaKigjNnzvDu3TtMTU0FKqKgoICysrJwIRg2bBitra2C6/vbb79x7tw5GhsbqampwcjIqFti+/LlS3799VeGDh3K0qVLGTFiBF9//TVnz55lw4YN3fjh7xOXL19m9uzZGBsb4+npyZ49ezA3NxdIcGVlJadPn6a4uJjly5cLxffOnTt5/vw5CxYsEJQdb29v7t69S0REBC4uLgQFBQm3gYqKCl69esXhw4f5/fff6ejoIDg4mKamJgoKCsTfI6NxvX79mgULFqCgoMD+/ftFQlteXt7T2wcgAAcdHR0uXbqEvr4+8+bNIz8/nytXrhAQEICpqSm3bt0iKytLtEllYWlpyQcffICSkhK3b9/m0aNHJCUl0draKlCy0NBQLly4wIwZMxg5ciTQheT6+flhamoqLHlsbGyQk5OjurpaPOcyp4KMjIwedwjmz59PW1sbVVVVPH36lPDwcOF2o66uzo4dO8RZAl0IWFhYGPn5+TQ2NrJlyxZKSkrIzc3tRr8yMzPrVjg0NzdjZGTEV199hZWVFV5eXqioqKCvry94ympqaqKQnjdvHl5eXkgkEn7++Wdu3rxJZWUlo0aNYtmyZT1ao8xFICIigoMHD3Ly5EmCgoIIDg7m1atX2NjYoK2tTUNDA6dPn0ZJSQl3d3ceP34sXIDGjRuHlpYWUVFR7Nu3j7CwMExNTQkJCcHV1ZXRo0cTGRnJkSNHePv2LUOHDuWLL76grKyMxYsXU11djZqaGu/evcPKyooRI0Ywfvx4FBQUKC0txdDQkNWrV3P//n2GDh0qrDf/TciKukGDBuHv709DQwOvX7/m6dOn+Pn5cffuXSwsLPD29sbQ0JDGxkaRMEulUt68eUNTUxPy8vL4+fmhrKxMfn4+5eXlTJ8+nZEjR3L58mUkEgnffvsteXl5XLx4kdraWiZPnoyjo6PYe5SUlETXpLS0lFevXpGTk9PjBF32HshAJdm7YWFhQUVFBcXFxcK69OjRo5SVlQm6oEQiwd7eXgCCaWlp7Nq1ixkzZhAcHMzq1asJDw9n3bp1PH36FBsbGzZu3IhUKuWvv/6iqKiIYcOG0bt3b2ElJwMkbGxscHV17da5eF93oR4nrzKoWJbE9OnTh9LSUhQVFUlKSuLly5dERERQXl5OXl4eysrKlJeXY2tri5ubG1OnTkVeXh5fX1+ampp4+/atoAS0traSlJREeno6UVFRWFlZ4evri6Ojo7hZHR0dgjLQ1tZGbW0txcXFtLa20rt3b8zMzOjfvz8PHz4kPz+/p8vD0dGRmJgY9PT08PPzw8bGBkVFReFJl5CQwEcffSS4P1paWqirq6OgoEBGRgZtbW3o6+t34xWdOHGCbdu2kZ2dDXTdnAULFogNub6+noCAAAYNGoSqqipxcXEkJCSgr69PTU0NdnZ29O/fn8bGRuE3uW/fPtLT0/8V57V3794UFxcTGxtLRUWF8EOUtZZlkZmZSVRUFIMHD2bkyJGiFW1paSkeZBlP2dbWVrSPZK3VmzdvUlxczKJFi3BxceHgwYM8ffqUGTNmEBgYSEFBAVFRUVhaWgo7sqamJlJSUtDS0qKuro7Q0FDRinrf0NDQQFNTE39/f7y8vAgNDaWqqoqysjIsLS0Fepyfn09bWxtqamro6upiY2NDXV0dL1++pLy8HEVFRTw9PcW10tDQwNnZmYaGBqKioujXr58gs1dUVNDY2IiFhQU6Ojo0NzcjlUoxMjKisrKSwsJCwcPeunUr33//PSUlJbx58wYXF5ceW0olJSUhkUhoa2sTFkOOjo4iMfP39xeJ8rx584iKisLOzo7Ozk5iY2M5ceIExsbGbNmyRfzMCRMmUF5eTmhoKOXl5airq+Po6NjtQE9ISOD48eOMGzeOq1evEh4eTq9evejVqxfu7u7Chmnq1KnCJxXg1atXPVofwMKFC5k7dy6Ojo7k5eWxf/9+DA0N8fDwwM7ODjk5OfLy8nB3d+fzzz8nPz+fv/76iwcPHggvU21tbczNzRkwYAAWFhbk5ORw9epVXFxcyMjIICUlBUtLS3R0dKiurkYqlVJWVkZmZiYpKSnd0JiTJ08SGhoq1NfKyspIpVJKSkp4+fLl/5Mn9v+KyMhI4RjSr1+/bsiDrq4uJiYmGBgYkJeXJwp06LIYiomJ4bPPPgO6RD8vXrzAxMSEly9fsn//fpqbm+nbt694xl6/fs2LFy/EvWxtbUVDQ4OpU6dy9epVOjo6BOXlxYsXgsd58OBB6urqUFFR6ea28r4hLy/fTURoY2ODlZUVenp6ZGRkCBFYR0cHJSUlSCQSIf6UtVQdHByEmDQ2NpbU1FSgSwRmY2NDc3Mzjx494uXLl93Uzm5ubmzatAmJRIKtrS3a2tqiS/VPlwEdHR1xLvU0KRgwYADQdR42NTWhrKzM48ePaWpqYvv27YKXKJVKUVJS4vXr1xw6dAh7e3smTpzIs2fPRNeltbVVIPGqqqqCG6qurs7Tp0+7WYO1tLRQXl6OgoIC2tra4vmQvf8jRoxgxIgRZGVlcf78eaqrq3n79i1v374VSPX7xo0bNzAxMSEhIQFdXV3R5paJwmQ8/8rKShobG8nIyODOnTvcvHlTdE19fX0xNjYmIyODp0+fAl1F8du3b3F1dUVHR4fbt29z584dACHyvXz5suhQAowaNYrVq1czfPhw8vLyOHz4MIWFhSJZz8/PZ//+/T1OXqOjowX1KjY2lt9//12IwC0sLHBychL70M2bN6mvr8fY2Jhhw4YJLU5ZWRlZWVm8fv2agoICampqRJteTU2NAQMGYGlpib6+PmPGjEFNTY1evXphb2+PmpoaxcXFXLt2jYqKCsaPHy/2HtkzYW1tTWpqKllZWeTl5XXTAvy36N27d7cz5p9FeUVFBaGhobS2tjJ48GAhro2Li0NBQQErKyumTZuGnp4eWVlZfPjhh0RERKCkpERwcDBOTk5ERkby448/Al0dqri4OFpbW7l27RqZmZmkpaVha2tLYmIiRUVF3Lx5Ex8fn27d6/r6ehobG6mvrxfP8f8WPU5ef/vtN/r168fs2bPJy8vjwYMHWFlZcevWLU6dOsW4cePw8vLixx9/xM3NjaNHj3LkyBFmz57NmjVruqmOk5OT2bx5M2FhYUyePFkIKxYtWkRycjImJiasXr0aOzs7zp07x8uXL5k+fTqnTp0SwobNmzeTnZ3NqFGjMDIywtjYGHd3d37//Xfk5eW78UffJ2SJ5rhx4/jhhx9wdnYWdisHDx4kOzub2tpa4uPj8fDwENyxcePGYWtri5+fH52dnURFRWFubo6mpibPnj0TiSt0HU4RERFkZmby5s0boGuziYuL48mTJygqKmJra8uhQ4dITk4W5PwBAwYwdepUcQ01NTVZvnx5jx0HUlJSePHiBf7+/qxevbrbQ/1Pa6nKykr2799PRkYGO3fupLCwkJKSEj744AOBErS1tWFjY8Mnn3zyH4KHkJAQHjx4wOnTp7GxsWHPnj3Cd3LTpk2cPn0aHR0dwfm6cuUKAJs3b2bq1KlER0fz9OlTodJ83wgODmbIkCEC8Vm2bBlJSUlkZGTQ3NyMnZ0dampqwhUgPT2dHTt2cPbsWdLS0njz5g2qqqrMnDmTFStWUFdXx5YtWwTP0N/fX5Dd//rrL1GhZ2Vl8csvvwhT+bVr16KsrIyHhwcHDhxAXV0dZWVlvvrqKyQSCZcvX6a4uLhHa5PFtWvXRAX/9OlTPvroI6ZOnUpDQwOlpaUCVVJSUuKrr77C0NAQBQUFvv/+e+7du8eKFSsEiV+GrNjY2KCmpsbmzZsJDQ1FQ0MDQ0NDlJSU0NfXx9/fH01NTcrKyvj999/F9Txz5gyffPIJCxYsEMnBzJkzMTU1RUtLizNnzvDXX3/9R3H032LDhg2iFd/S0iK8kysrK7G1tWXx4sWEh4fT2dlJcHAwVVVVnD9/HlNTUywsLHBwcCAjI4Nz585hYGDA9OnTUVVV5eDBg+zYsYOUlBSUlJRoaWnByMiIDz74gIULF1JdXc24ceNITk4WyPH+/fuJiYlh8eLFjB8/nvb2djo6Oli7di2zZ88mJiaGnTt3dkuK/lvIvHll8fz5827JGsDGjRuJjY2ltraWsrIydHR0WLZsGYsWLWLYsGHk5+czc+ZMkpOT8ff3F/6t69atA7ra9rJDaevWrUilUl68eCH2LRlXUab0joiIYOXKlSQnJ/P27Vt+/fVX5s2bR1tbG2PGjOkxBUSmNpc5mBw7dgwLCwthrRcYGIhEIkFFRYWxY8cKjn12djbPnz8nPz9fJPExMTHCBzQ4OJhNmzYREBBAVlYWxsbGzJkzp5u41c7ODnt7e3R0dCgoKGDXrl3Y2NgI66/m5mbk5OQwNjZm8ODBwgy+J3Hnzh1CQkKwsbFBQ0ODwYMHs3DhQurq6vDw8Pi/Xg8NDQ3MzMyYP38+n3/+OevWreOPP/4gLS1NtP7j4uJYt24ds2fPZuXKlWRmZrJp0yb09fX57LPP0NbWJiwsjObmZjZu3CjQ8dbW1m7m+La2tnz22WdMnz6dv/76i/DwcAoKCrp95r/Fixcv+O2335g5cya3b99GXl6eqqoq8SzIycnR1NSEiYkJI0eO5MCBA1y6dAnoArtsbGyIjIxESUkJDQ0NPvnkEy5cuEBycjKbNm3ixIkTFBQUCBGPjY0NnZ2d7Nq1q5sRv5aWFuvXrxfJTnZ2tuBiyvyNp0yZgqKiIs+fP3/v9UEXFU9TU5PAwEABoMk0EuPHj0dVVRUvLy8sLCyEVei0adPYtm2b2EfLyspITEwkPj6e5ORkamtrqa6uZvz48fj7+5OZmcnq1asJCwvj999/R1lZmW+++QZnZ2fWrVtHY2MjX3/9NbGxsULgJXtmZNdZ5htsYGAg6D7vE/Hx8eTl5eHh4dFtKA100QJev37NgQMHCA4O5sqVK0KcVlJSwieffELfvn2Ji4vjo48+IioqSnCs7969i52dHYmJiZibmzN16lTmz5/Pq1evuHXrlrD3unTpEh0dHaJ7mZmZycKFC9m9e7dw5cnIyCAyMpKYmBjhdf+/RY+T14cPH9LW1kavXr3w8PAgLS2NmJgYiouLUVRUxNHRkYqKCjIzM3Fzc6OpqYnXr1+L1lxtbS1//vmn4G/U1dWhqamJiYmJsEeRVfgff/wxCgoKpKSkYGxsLA4/JSUlzM3NaWpqwt7eHiUlJeFnB13tradPn2Jvb99jFbCioiLu7u6Ym5uLSri0tJTq6mrevXtHcXExqqqqWFtbU1BQIDi8EomECRMmYGhoyNWrV9m1a5cwPn779i36+voMGzYMV1dX0tPTefDgAXFxcYIHWldXR3R0NE5OTsyZMwdDQ0PCw8N58OABdXV1qKurI5FI8Pb2RiqVcuDAAf7++2/k5OS6CZTeJ968eUN0dDTbtm0TXNy0tDR8fHzIzMzk3bt3jBgxAmVlZRISEoSdlLa2NvPmzRNoQnh4uOA7l5WVoaSkRP/+/QVPbcKECZibmxMWFoaGhoYQbLW2thIbG0tRUZHg8RkaGhIQEED//v3Ztm0bgBjSkJCQIJLe94mjR4+ir6+PkpISbm5uODo6YmhoyMOHD4WheFFREeHh4ZSXl6OkpERaWhrR0dHiZ3h6ejJjxgzxe/X19QV5XyYg0dDQEK1o2XXdt28fAD///DOGhoY8fvyYnJwcoR6WbbJeXl40NzdjYWEhuNA9CXt7exQVFUWhM2TIECGeamtro7m5maqqKuTl5bu9AzLO7j+/JuMKygZL3L9/X3AHCwoKSE9PZ8yYMUybNk3Ytbx69YonT56In5mTkyP2gdzcXDw9PUUioaur2yOUQBYySgl0FWpBQUFIpVJxve3t7amurkZdXR1ra2usra1RU1OjqKiIrKwszMzMKC0tpaamhrq6OpSVlYVnbHNzM5qamjg6OjJw4MBuSY9EIuHmzZvs3r2b2NhYampqqK+v5+OPP2bs2LFiH1JQUBAdCx8fH1RVVXn58uV7r6+hoUG0r+/fv88ff/yBi4sLffr0ISEhgVu3bokBEjJe2MaNG5k8eTJxcXGEhYURGRlJXl4e9fX1REREiC7Gu3fvaGtrw8TEBFdXV8aMGSOKXk9PT6KiooiJicHHx4fhw4ejo6PDlStXBDI9duxY+vTpg7+/P42NjbS1teHo6Nhj6oCMLiYbnlFZWYmcnBz29vbCmkoWMvFpcnKyWFNVVRXt7e3o6+szePBgjI2NSUhIEAenTGgza9YsIcCqr6/n7du3KCkpCdFoVVUVLS0txMbGYmhoiJ+fn9AW1NfXExYWhrW1dTd7qfcJXV1dUfDLJh/a29ujoKBAe3u76D7JphLKJoSlpaXh5eXF0qVLmTFjBkVFRd2uhWwASExMDBoaGqipqeHk5ERaWhqbN2/GxcVFiK5UVFSEB7Hsv6Ermaqrq0NfXx97e3vWr1/PypUruX//vvCgfZ/o3bs3vXr1ElSke/fu8csvvwjxYFBQEGpqasKP3dLSkokTJ6KhocGkSZMYN24c9+7dY+fOnRgZGeHi4kJubq7QAairqxMREYGGhgZz584VE5jOnDkjOot2dnaEhIRQWFjI9evXKSkpoaGhgQkTJuDr60t+fj7Hjh3DxcWFuXPn9jh5tbOzo7q6mmvXrokO2eTJkwWqGhgYKPjm06dPFx06WZHZ2tpKYWEhvXv3xsjICAcHB969e4eHh4cQmPr6+tK7d2/U1dWxtbXl7du3nDhxAk9PTwIDA3n+/DmvXr0iODiYlpYWvvvuO0aNGoWnpyeJiYk8fPgQgDFjxvS4yxMXF8eXX37JyJEj2b59OwYGBtTU1AgxpaenJ56enigqKvLu3TuMjY2xsrJCW1tbJJG1tbXo6OgQHBzM+PHjUVJS4tatWyQmJhIeHo6uri4zZ87E09OTmzdv8uDBAywtLQU1oaamRlwjAwMDYmNj+eKLL6ipqRFFqMzubNSoUULA/v+KHievQUFBtLS08OjRIwYNGsTo0aP5/PPP2bBhA9u2bePOnTusXr2an376iUGDBgluq8yTLjQ0lPXr11NZWcmQIUP4/PPPCQwMRElJiSdPnrB161agC+FduHAhP/74I0lJSXz77beC83rs2DEaGhqYNm0agYGBdHZ28vz5c4qKirC1tSU2Npbly5cTEhLCmTNnerS++fPnM3v2bJSUlOjs7KS4uJiSkhKePXvGzp07qaqq4sSJEwQEBHDs2DG++uorqqqqGDp0KI2Njejp6XH37l0SEhIEVwYgICCAtWvXCg6wv78/zc3NHD9+HC8vL7Zv346+vj5ff/01cnJydHR0YG9vz6JFi8QYQy0tLVpaWjh//jw7duwQqF1Pk1cZ4lhSUoKJiQm3b98WIz3fvn3L1atXsbKywtLSEldXV5KTk3nx4gUrV64UdIhHjx7x/fffo6qqip6eHteuXcPAwICLFy9ibGyMsrIyTU1N+Pv74+Pj063Sf/nypWi9Ojk5MWnSJOHLKXvRpVIp9+7dQyqV9thc+8MPPxRWbFOnTmXr1q2CgyxLfP7880/RvjI2NkZPTw9HR0fy8/OpqqrC1dW1W/Xbp08fHB0duXTpEr///js5OTl89913TJ48mYyMDI4dOyZeNnl5eTQ1NSkpKWHp0qWoq6szZcoU1NTUSElJEeMWFy9ejFQqpaioqMcdAtkYZZkg5Z+qTllSa2xsTFtbm/ArBpg6dSq9evXqliy3tLRw584d/v77b7GGNWvW8M0333Dx4kUuXLjA/PnzmTp1quhC9O7dm/v37xMXF4eBgQEvXrzg0KFDgpz/xRdfYGtri6WlJWPHjmXw4MECDXzfkHHZ5OTk0NfXZ/369cjLy3fj0fbt25eOjg7xb2dnZ3r16kVcXBypqaloaWkxZMgQYcdTWFiIRCJhzpw5DB48mP79+wu0VMZLU1dXx8nJic8//5wdO3bw5s0bvvnmG9Gh+Of1/GcsWrSoR8lrU1MTycnJ1NXVkZ6ejoKCAi4uLpiamnL79m3Wr1/f7fMyH9nc3Fy++eYbbt68iUQiwcHBAQMDA7Kzs+ns7MTJyQlvb2969+7N8OHD6dOnD4qKioLXZm1tTXh4OAcOHGDu3LkMHz4cExMTJk2aRGhoKCkpKUyfPh0rKyuCgoI4fvw4+vr65OXlCUHR+4ZEIqGzsxNlZWXU1NT45ZdfUFBQ4IcffhDdAVlbVBaurq5UVFSQl5dH79698fb2pn///qioqAgg4MiRI4SGhlJYWMjx48cxMjKiqqpKCIMePHiAg4ODSF7d3NzYtm0b165dE21fGZf+3r173Lp1i/Hjx/e4iPT29hYdJ1n3SFdXV9gkhoeHU1RUhLm5OXZ2dmLaUkFBAadOneLhw4di9K3M+UBmjzhq1ChCQ0P57rvvOHnypBgEcOHCBeTk5LC0tCQvL4/o6Gh++OEHRo0ahYeHB/r6+sKf+e7duxQVFeHn50dAQACampq4ubn1KHmdN28e06dPJzU1laNHjxIREcGdO3doa2tDTk5OcHpzc3OJjIzE3t6eVatWCeso6LLrk9l+yUTdLi4u7NixAycnJwIDA0lMTGTEiBGMGjWKjIwM0YmTKf+trKz47rvviI+PB+C7774TPsXv3r3j6NGjBAcHdxMcv2+sWbNGIItJSUkcPXqU6dOnA1BcXExLSwttbW3CW/6rr74Sz3RNTQ0XLlxAVVWVWbNmiSLJwsJCnM1tbW04OTlx69Yt5OXlaW5u5vnz52hoaBAfH8+YMWOorKzE19eXHTt2cOPGDebPn09tba1wh/jjjz+wsrLC0dGxx8lreXm54MzKKG8GBgaoqqoKofzRo0exs7MTFJ2lS5eKjklLSwu6urrMmDGD2tpajIyMUFZWFuPhoev5P3fuHGlpaWI/KyoqQl5eHolEQk1NDerq6qioqGBhYUFCQgLZ2dkcPXqU9vZ2tLS0sLKywtPTkw8++OD//8lrcHAwjY2NdHR0iBaIbFa1TPE/e/Zswa3p27cvEyZMICwsjE8++YSRI0eyZcsWUlJScHV1ZcKECYJrlJmZib+/P9OnT0dbW5vt27dz9uxZVFRUiIyMFKbAMiW6DAGpq6vjxYsXvHnzBnt7e2xsbNiyZQutra099iWUHfyy0NfXp7y8nLa2Nvr374+1tTVDhw4FutCg6dOni5v49ddfU1VVhaGhIaNHj2bixInk5+ezefNmnjx5Qk5Ojkhee/XqRXl5OXZ2dujr64tDRk5OjpqaGrZv346amhqrVq0SSmHoSlJkYjYNDQ0GDRrE48ePe7RGPz8/FBQUOHHiBPX19fTp0wcjIyP27dtHfX29mOCirq7Or7/+SnJyMgYGBt1eGGtrawICArh37x6PHj2irq6OgICAbj6qcXFxwmQZuqZvFBQU4O/vLypvJycnXFxcurUIvvzyS6Kjo/Hz82P69OkYGBiIjex94ttvvyU/P58jR45w/PhxQkJCmDZtGk1NTbx584br169z/vx5oIt3VVpaSn5+PvPmzeO7775DKpWio6MjkqTGxkYyMzPJyMggISEBqVQqhlmUlJSwefNmzp8/j6urK+vXr8fOzo6nT59y4cIF0tLSWL16tVhfRkYGGhoaIpmSqZR7Gq2traipqXV7Vp8/f05ERAQODg6CwycbyVlZWYm8vDyDBg3C29sbTU1NIiMjefDgAYmJiVRXV3ezXtHW1kZDQ0OMA5Zxe2VUnKqqKnR0dLCwsMDU1JSIiAiRRH7xxRcMHz5cCNOUlJR61E6XhayAbG1tFSi6LGQcQjk5OVJTU/n1119pa2tj/PjxBAcH09DQwPnz51FUVGTJkiX4+Pjw7Nkz7ty5I1wQZFZgd+7c4fz588ydOxclJSVWrVpFbW0ts2fPZs6cOejo6IikpqGhgQsXLlBYWEhISAhNTU38+uuv4t89iZEjR4qBCzJrNZkoy8nJieXLl6OsrIy1tbVAtVatWkVMTAxRUVFA18FaWlrKsGHDmDt3LnZ2doLm4evrK4qarKwsfvjhBwYMGMC8efOwtrYmMzOThIQEgoKC0NbWZtmyZSxbtoycnBz+/vtvbt++TXFxMU5OTgwZMuRfmb/LnBk0NTUxNzcnJCSE2tpaKisrefPmDVFRUbi5uaGsrMzr168ZNGgQw4YNo7S0lMTERMaMGSM4sNeuXeP8+fPk5OTg7OzM8OHDMTMzY//+/bS3t+Pg4ICpqSnm5uYCZZY9JzJv8YEDB4rC9vLlywJpmzx5MmPGjKGxsbFH6zt//nw3XrSBgQGOjo5CmOvk5IS9vT1GRkZkZWVRUVHBtGnTxNhRWadm5MiRWFlZERoayvDhwxk6dCh79+5l9OjRNDU14ezsjEQiEUM7pFKp4N+HhoaiqanJwIEDqa+v548//mDQoEE4OjoKSpBEIuHMmTNcu3atx8M0oOvciY+P548//sDX15dDhw7R1NTEoEGDxGdaW1txdnbGzMxMiP+kUil79+4lPj6eCRMm8OrVK5KTk5kyZQpTpkwhLy8PBQUFRo0aRUtLC3FxcdjY2PD8+XOx53/66acYGRnx7NkzqqurgS6espubGw0NDezZs4f79+8zYcIERo4c+a+42dDVkWhtbaW2tlaI5V68eEFeXh6BgYEYGBjQ1NREWVkZioqKYk+oqakRmgJNTU3q6+tJSUnpRpOS7dOy6/LkyRNiYmLQ1dWloaGByspKPDw8OH/+PHp6eowfP57NmzeLcyIkJEQISf+Ne0tGRgY//fQTDg4O4v7I9uQHDx7w+PFj9u3b1+1ny8vLo6ioSHNzs+AyX7lyhZSUFOzs7PDz88PY2JhFixahpaWFvLw8N27c4K+//iIwMJDly5fz7NmzbrqcwMBABg8ezI0bN2hra2PAgAFs374dExMTOjo68PHxIS4ujk8//fS/rqnHyes/ib6y8PPzw9XVlebmZsrKyhg8eDCDBw8WhukffPCBEAKsWrVKJH//5FdWV1dja2vLokWLUFJS4rPPPuOnn37C1NSUMWPGkJqayt27dxkxYoSwroGu1vXPP/9MTk4ORkZGonU9Z84cnj9/zoMHD3q0vubmZkpKSkT7RU1NDSsrKwIDA5k5c6awEEpISCAnJ4cVK1bQu3dvDh06xPXr14Gu5Hrw4MHMmDGDjo4OsrKyOHv2LNevX2fAgAFoaGigqqpKbW0tP//8Mxs3bhSbbVJSEs+ePeP+/fvEx8dz6dIl/vrrL5GwV1ZWoqamxq5duzA0NBQTdnoSxsbGDBw4kHv37pGYmCimpMTFxTF8+HAhekhLS6NPnz5i0hB0Hd61tbVCUaipqcmTJ0+wtbVl6tSp3QqK+/fvU11dzdy5cykvLyclJYWUlBRKSkoEF9TDwwMVFRXB65UZfOfl5bFw4UJRsPQked24cSPQdXD++eefYuPw8vLi0aNHREdHY29vL7i2T58+RVdXl8DAQFHJFxcXCx8/VVVVqqqqiIqKori4mFGjRtGrVy+0tLS4ffu28Ph1cXERow7Xr19PZGQkxsbG+Pj4UFpaSnx8PI2NjULkkZWVhbKy8r/y6j148CBjx45FU1NTFBqKiorExsaKRFk22cva2lq0SGVtLtkhUlBQwLVr15BKpSxfvpxRo0Zx8uRJSkpKKCoq4t69e7x69Yp79+6JtmZWVhZhYWGUlJSICtzKygolJSW+//57Jk2aJK5hWloaampq/8ojVLaRyhKw6upq5OXl0dbWpr6+XoxO1tXVJT8/X3gHr1q1ChsbGzHr3tfXFzs7O1JSUoQDQkdHB7m5uSgpKbFjxw4SEhJYtGgRffv2RSqVEh8fL94/Dw8Pbty4gZ2dHYGBgcjJyYnugbKyMnFxcSQnJ1NeXt7tXflvsXjxYoqLi9HX1++mLO/s7CQgIOA/EKQnT54IrYG5uTljxowRokp7e3vhj9zS0kJ+fj7FxcXIycmRnp7OlStXxKhfmVAxKChIFLIFBQVUVFTg5uaGvb29MPAPDw8nOTmZ77//XnBFexIpKSkUFhair6+Pu7u7SPQyMjKIiIggLS0NY2Nj9PX1u9nj5OTkkJWVJZ7X5uZmIiIixDSqefPmceDAAUpLS9m8eTOVlZVCwaysrNyNFiMbzyrjmk6aNInKykp++OEHzpw5w9ChQ1m/fn2P+a7QldxMnTpVTDX753h0GV+yo6OD1tZWqqqqKCoqQlNTk8mTJ2NsbExDQwPnzp0jPj5eiJWsra0ZMWKE6BzJzhyZ565sT5R9TU9PDyMjI+EA8vz5c2xtbXF3d8fV1RVtbW3c3Ny4e/cuf//9NwoKCj0eHCKVSikoKMDd3Z3Vq1eLPEAmtP3rr7/o7Oxk0qRJpKen88033zB37lzU1NQ4d+4cpaWl7N69GysrK9FF6du3L9u3bycjI4Nly5YJwWF8fDyFhYVYW1szb948tm7dyrVr17h8+TKWlpZMnToVBwcHqqqqWLJkCZcvX2bYsGF8+umn/9raTTaMx8fHh9zcXDIzM3nx4gXXrl3DyclJAEiy6XOtra20tbUJ/qjsbK6vr6elpYX29nYxbrq2tpbc3FxBJSkvLycuLo6KigoxWdHJyYnvvvsOOzs74Rcto881NTUhJyfHrFmzully9iRUVVWFvaLMt1YWtbW1pKSkcPToUZYvX46qqqqYVicb36qurk5DQwNpaWnk5ubS2tpKaWkpQ4cOZdOmTSIRLigooKWlhWnTpokpmrW1tYK+VVpaSmFhIRoaGtjY2DB69GiGDBnSrfNy584dfv75Zz766KP/dU09Tl6hKzGRoT6ZmZncu3ePtLQ04VEoi2fPnqGmpsaQIUPYsGGD4CrJQk5OjqKiIkxNTZFIJPTt21fYQsg+t2DBAtatW0dRURFqamp0dnaSlpaGRCLBwMCAly9fcvXqVby9vfntt9+wsLAgMjKSzz77DAMDA6ZMmcLPP//83mtTVVVFV1dXzIaXk5NDT0/vP6qdnJwcTpw4gbKyMr179xZt548//pjg4GCuXbvGwoUL6devH/PmzSMwMJDLly+zatUqMVKwvb2dK1euMHbsWIYNG8bFixf58ssv+eSTT9i+fbsQjUyZMoUXL16gqanJ6tWr0dHR4fDhw0RHR/PZZ5/9q+k+sglh9+7dExNKli5dKvxAExISiIqKoqKigoEDB4pDub6+nlevXjFy5EgUFRUZPHgw2traZGVlkZWVJVTJx44d4+XLlxQUFHDu3DkmTpzIkSNHuHr1KseOHWPcuHHs2bMHU1NTGhoaKCgowNTUFF1dXdauXUtTU1OPkaz/GbNmzcLZ2Vm0DvPy8ujVqxfe3t5IJBLi4+O5ePEi48aNEzO2AfFM19fX079/f7y9vXFzc6Oqqors7GxcXV1xdnbmzZs3tLa2smfPHmHPtGXLFjo6OoiMjAS6Ku5z585x584d4aHb3t7O4cOH+fPPPxk/fjyff/55j9d2/Phx9uzZg7+/PytXrhRm3WvWrMHX11dMJ4uLi+PYsWPdrIegy/fPxMRETCk6deoUhoaGfPPNN6xevZqIiAguXrxIQkICNTU1gs7z6aef4uLiws2bN8nMzKS6upoBAwawbds2gYTJory8XByW//P3v0/8s53c3t7OmTNnMDAwYMaMGbx9+5bbt2+zePFi7O3tOX78OBs2bODWrVusXr0aPT09zM3NCQoKwsXFBQUFBWEmr6WlJZSwFy9epKWlhRUrVgjx1nfffce2bduIiIhgypQpBAYG4uXlJQZAzJs3Dzc3N4yNjZGTk2Pv3r2C6nPjxo33Xp+Kisr/dYZ5U1OTsDz6+eefKS8vZ8uWLQQEBDB9+nQuXryIv78/H3/8MVZWVsTFxXU7tJuamkhISOD169e8ffuWN2/eoKioyLBhw5BIJJw4cYK2tjYCAgIYMGAAnZ2dPHz4kBs3biAnJ4eamhoNDQ1iPGNxcTHp6ek9vn/Q1ZJPT08XKnUZp9TExIQJEybQ1tYmfJ7Hjh2LiooK7e3topiU8Z5lw0ygi1L26NEjTp06xdChQ5kzZw6lpaXY29ujra1NZmYmr169YsSIEejo6PDjjz8SERHB1q1bBfCho6PD7NmzcXR0RF9f/18lrgDLly+ns7OTrKwsIW588+YNCxYsYNiwYezevZuCggLKysro1asXERER7N+/n7y8PH7//XeOHDnCtGnTOHjwoCjQZTS6L7/8ElVVVQ4dOgR0DbKIjY1l1KhRuLm5ceXKFU6ePMmyZcvw8vLi3r173L17FwcHBzGoolevXsI+b/z48VhYWGBpacmpU6fee42VlZViIMDYsWOxsbGhra2NrVu3UldXh6KiIr/99htWVlZ4e3vz7Nkz4WKyefNmli5dyu3bt0lISCApKUnw8Ts6OvDz80NHR0egr/r6+hgYGBAQEMC8efNEcjhx4kRSU1P5/fffMTU1Zc6cOaxYsYI///yTbdu28emnnwrf538TV65cYcaMGUyePFl4tt6/f5/s7GzhdpOSkkJkZCRubm64uLiIAkBRUVFY8MnLy2Ntbc2HH36IqqoqSUlJbNmyhfT0dJycnKirq6OjowMPDw+RAA8fPpwNGzbw9u1bvLy8kJeXZ9q0acybNw9TU1MSEhLE4I758+ejoqLSY05vv379SEhIwMzMjMbGRnJycggPDwe6qKCurq7s2rWLffv2CUGorq6u2Ieam5vx8vLi2LFjKCkpERUVxeHDh0lMTOzWNZ0xYwbLli3DxcWFjo4OevfuzZAhQ9DR0WH37t2cOXOGp0+fsm3bNrZu3cr58+cZN24cO3bsEDQ9X19fTp8+zbNnz/7XNf2rCVs2NjbCyujBgwds2rSJ8vJypkyZIirrlJQUysvLCQkJQU1NDQMDA8rLy+ns7KS9vZ3k5GSqq6tRUFDg5cuXaGtri5a6bOqRh4cHc+fORVtbW2T2MksVeXl5DAwM6NOnD0FBQSxcuFCgfrdv3+bly5fMnz+/x3zQuLi4bslgZ2ensOSSTWZSU1Ojf//+ODk5kZ+fT0ZGBklJSejq6uLi4oKbmxvx8fGcOnWKp0+fsmjRIrGZhIeHk5SUxMCBA1m8eDH19fWkp6fT0dHB+fPnUVVVZfDgwfj4+PDLL7+wcuVKampquHXrFhYWFlRXV6Ojo0NlZSXPnj0jMTGxx8mrDOWUGQlfvnwZLS0t1qxZA3Ql5qdOneLBgwcC2evXrx8aGhoYGBjQq1cvYmNjSUlJ4e7du6irq6Ovry8oD9XV1dTV1VFTU0Nubi7l5eWkpaWJg2rWrFl89dVXmJqaUl5ezvXr11FXV6d///7Y2toKb17ZAAtZQfO+UV5eTnFxMdnZ2Tg7O2NjY0NGRgYXL16kV69eol0ss3FzdHQUiXJMTAwvX76koqICMzMzrK2tUVJSIjc3Fzk5OSZOnCjap1lZWSgpKaGrq0tTUxOpqamC86irq4urqysSiYSWlhY6OjpwcXEhICAABQUFYVDe3t7OokWLetwKknUGZAhITk4O6urqIsGSCWO8vLyws7OjuLiYX3/9FRsbG6ytrSkqKqK6upr09HT8/f0pKytDIpGIGd0hISE8efJEoGHV1dVs2bIFXV1d5s+fT2BgICdOnKCmpkZYnmRmZnLmzBkcHByYNGkSbW1txMbG4u7uLiaW9STa2trERKaXL1/y+vVr+vTpQ1tbG2VlZVy4cIHY2FiOHDmClZUVISEhwitXTU2NX3/9VYwkhi6zdSMjI5EQnz59midPnuDs7IyysrJQwi9atIjvv/+eXbt2ERkZia6uLkOHDqW6upoLFy7Qq1cvIUAFuiWgPUlef/rpJ1xcXDA3NxcT28rKygSVJyEhgc8//5y2tjYGDRpESEgIjo6ODBgwACsrK0pLS/Hw8BAJmaw9r66u3g219vHxQUlJiYqKCjGnvaOjg1evXgmxa2trK3l5ed3U3bIwNDSkvr5e8Pd7EmZmZmRmZtLZ2Sn4nhKJBE1NTdESraqq4s2bNzQ2NhIXF0dubi4BAQGCX//8+XNycnLo06cPX3/9NVZWVhw6dIitW7cKnqS6ujotLS1iD5LNWffx8eHatWukpKQI9F8qldLY2CiESM3NzTQ1NYlhLD0JGZ1GV1eXxsZGFBQUePHiBQoKCoJ2JDv/NDQ0CA4O5vLly1y9ehVlZWVmzJghfDahC4HT0NDgxYsXXLlyBQcHB1HEySgYRUVFODs7k5+fT0FBgRCBamlpYWBggIqKCsnJyejo6HTzzLS3txfUr54kr+rq6qiqqookrrGxkT///JNXr15RVFQk/MxltDdlZWX69u0r9knZeOpLly6RmZmJnp4eKioqyMvLk5aWRmJiIo2NjQwZMkQ8yy0tLSQmJhIREYG7uzt9+/blk08+4fz587x+/Rp1dXWmT59ObW0tbm5uZGdnExoaKkSZPY3w8HCkUikeHh7MmzePyMhI/v77b4E2DxgwgPr6ejEOt62tjczMTOzs7FBRUUFFRYXa2lrevXuHhYWF4IG+evWK6OhocnNziY+PFxPzCgoKyM/PR1VVlfXr1xMUFMSNGzdE/uHg4EB9fb0QicmuR3x8PHp6eqIged8oLS0lMjISS0tLATC8ffuWvLw8PD09CQkJITU1leLiYpGENzU1CXRY1vGytrZGS0sLX19f5OXliY2N5dKlSwQFBWFgYCCAk5iYGBobG/H19UVPT4/i4mImT55MdnY2kZGR1NXV4ezsTEtLC6GhoYSEhODl5UVFRQW+vr74+vr+/z95ffjwIWvXrgW64GaZJyQgrKGgiyvat29fkZVfvHiR69ev8+GHH4qJMrq6ukgkErZu3UpbW5tIYj755BPi4+NxcnLq5vclg/Z9fX1FQjNgwABOnz6Nubk55eXlTJw4kerqao4fP46Pj0+PRzb+8ccf7N27FwUFBcGXkrXU/6m8MzQ05LfffqOyspK3b9+SkpJCWloaW7ZsoaWlhQ8++AB5eXk2btzIhg0bcHFxEW3yxsZG8TLKbJg2bNhAQECAqLAAobyMiooS5ukff/yxsKkaO3YsI0aM6JFlBnRtPq2traSkpHD58mWgC02/fPmy8OrMy8sjKyuL5cuXM2HCBDQ0NGhsbBRKyZycHL744gtKSkrQ1NRk4cKFeHl5kZSUhKurK6tXrxaHgZ+fHxoaGnz44YcEBASwf/9+tLW1KSsrE4j8mDFjRDu9ubmZnJwc4ZPaU6N7qVRKZmYmT548wcbGBj8/P9ra2sjIyOgmbLK2tmbZsmXk5uZy7do14flqb29Pv379cHJyQldXl/T0dL788ktqa2s5d+6c+H6Z8nnZsmW8efOG2tpaoKsSHz58OEFBQejp6WFiYoKLi4vwn4UuwZ4s+YuPj39vY2ZZ+Pj4sHXrVszMzCgrKyM1NRWpVIpEIsHS0hJ1dXV+/PFHMeXk8OHDog01ceJEDA0NuX79OgcPHmTt2rWcO3eO5ORkvv32W2xtbZk7dy7jxo3j/v37okKvqalhwYIFaGho8MEHH2Bvb09GRgYSiYRXr16xYcMGUlJSWLVqFZMmTRJc246Ojn9FG1BRURH+o9HR0ZiZmdGvXz8UFRVpb2+noKCAzMxMFixYwDfffNNtjPC4ceMYMWKESFyhKxmOjo4WPGwZqpeamsq+ffuora3FxMSE9vZ2hgwZwpdffsm2bduEUOunn35i3bp1jB49ml27dqGvr09xcTFGRkZIJBJiY2N7tL4tW7YIQdvIkSPR1tYmNjaWtLQ04uLiKC0tpa2tDR0dHeGukpqaSk1NDSkpKTx58oRHjx7xxRdfoK2tLfZEZWVl+vTpg6GhIXp6epiamhIdHc2YMWOws7Nj/fr1PH/+nGXLluHm5sZnn32Gra2tQPxaW1tpaGggLy8PExMTZsyYQXt7Oz///HOPJxba2NiQnp5Or169GD58OPLy8oLDLKOMRUVF8ddffxERESEsBf/p/hAeHk5UVBS1tbXCHzs9PZ3z58/z888/8+DBA5ycnMS0rYaGBpycnCgtLeXx48dYWlri7u4ukDIlJSUx+jonJ0e8Lzdu3GDt2rX/tV35z0hKSsLNzQ09PT1qamp49uwZFhYW/PXXX0KsrK+vL3537969+f7779m5cydHjx7l+PHjgleor6+Ph4cH586do6ioCF9fXyZNmiSKrd69e2NnZ4eOjg5ycnLMnTuX8ePHi3syYMAA2trauHDhApWVlejp6XUrsv5tyCyj1NXVKSws5NatW6L7FxERQWhoKKNGjWL+/PnIyckhkUiYPHkytra2Yuz2ixcvxM9rbGxEX1+fzs5OTp48SXR0NFVVVUgkElEMREZGikE8QUFBIjcYMWIE9fX1NDc3M3r0aBwcHJg5c6YQcD979oywsDAWLFjQozVWVFRw6dIlcV5cuXJFWHe9fPmSESNG4OXlhaOjI5mZmcLDdvbs2ejp6WFlZUV+fj4pKSmcO3eOI0eOAF2Ip5ubmxhLbm1tjZubG3FxcUL/IRMuDhkyhPb2dkaPHi3AlMrKSjHMID8/n7S0NOzs7BgwYECPCuWwsDDhty4DZEpLS3n58iW3bt3C3d1d7NsqKipoamry7t07rl69SmJiItbW1piYmNDa2oqOjg6+vr4sX76chIQErl69Sl1dHUuXLgW6uoJbtmxh1KhR7N27l+PHj7N//362b9/OgwcP2Lp1K1FRUezdu5f+/ftz4sQJ1NTUiImJ6aZr+G/R4+RVT09PzLnW0NCgoqIC6FL5/tOgXnZD8vLyhMnwxx9/TEFBATdu3BAtvdraWszNzYUa/NGjR0JNWFNTw5UrV5BKpbi4uIiDSFVVVUwo0tXVFXCzDOXz8vLCx8eHhoYGNmzY8F/9wv4ZMtJ2dXU1BQUFuLq6oqKigo6OjiC679q1i87OTtatW4eRkRHXrl0TM6MfPXrE2bNn6d+/P1paWoJg7urqypQpU+js7KS8vFwkavn5+SQnJ1NVVYWtra1IXAsKCjA3N0dHRwc7Ozu++eabbv6N0N1KqCeRmprK69evkZOTE8bJsmsssxSSTYMaNGgQhoaGwjasrq6OpqYmJBIJX3/9NQcPHiQ1NZXs7Gx0dHRoaGigT58+6OnpMWLECM6ePUt9fT02Njb07t2bZcuWiTGC+/bto6CgAE9PTzw8PDAzMyM5OZmff/6ZpqYmVqxY8R/Tnt4nTE1N8fb2FjOkGxsbMTc3Z8KECcLaprW1VSSyUVFRbN68mYkTJ/Ltt9+KefFVVVWkpqZy6NAhMU/722+/ZeDAgVRXV9O3b190dHSEKlJmVdPe3i54z7W1tUJsUVxcTGZmJp6enowcOZLZs2ejrq6Omppaj9uWubm5oq1raGiIvLw8FRUVYiIddBV7e/bsITIyEolEIpKWO3fuoK+vT0NDA6qqqkgkEnR1dRkwYABycnJIpVLy8vKE162fnx+5ubns3buXsrIy7t+/j6+vr+BEyWggISEh9OvXD3t7e969e0d8fDxv3rwhNjb2X91H6Do4ZYb9FhYWgtYiE/wBDBw4ECMjIzHKV2bzcvjwYZSUlJgxYwYODg4oKioSHR1Na2srVlZWWFtbY2pqKpAsCwsLOjs7qaqqQklJCVdXV16/fs3z588ZMGAA/fv3Z/z48YIrfenSJVpbW1mwYAG6urrvZaz9z+jo6CAgIEDY30VHR3P37l0ePHhAc3MzhoaG9O/fn5EjR6Krq4uSkhKjR49GKpVy7NgxMfZTxvFWUVEhMTGRd+/e0dLSgqurqygaLCwsGDp0KP7+/lhZWXH+/Hlqa2vR1NTEzs5O2JzJBH1SqZQnT56goKAgQIji4mKSkpJ6tMavvvqKoqIidu3aJfbvyMhIOjs7Bers7+9PU1MTioqKFBQUoKKiwq1bt8jNzWXixIkMHToUDQ0N7O3tUVZWpr6+noaGBtrb22lpaeHt27e4ubmRl5fHp59+iqurK2vXrsXU1JSoqCgMDAyorKzk5MmTuLu7M3LkSCEs/aca3NPTk1WrVvUI1bp8+TJhYWGMHDkSJycn+vfvT0tLCxKJhPb2dtLT00UiqampSWxsLBEREYKjXFpaSllZGUZGRnh7e1NZWcnvv/9Oc3Mzq1atQiKRsHfvXry8vAgKChKCH0DYHAGC0pSdnY2Xl5fQnGzcuJGamhoWLVrUzT2lJ3HlyhVu375NVlYW+vr6+Pn5MXPmTDQ1NZk1axYmJib4+fmJs18mOoQu5H306NGUlZXx7t07Ojs7MTExYdOmTYJDPmbMGHR1dYmIiKCwsJDAwEB8fX2ZPXs227dvJzw8nEmTJglvY5kftcyxobW1leDgYPFzejolDbpoLPb29nh5eSGVSiksLERTU5MhQ4Ywfvx4MeI2Ly+PM2fOUFRUxNChQ8WoVJnVlExFL+O7Pnz4EAsLCzo6OsR+mZOTQ3l5uXDlkVmfrVy5kgkTJhAZGcnx48dRUlIiJydHjAOWTfo0MjLqMdgh00XIqC3Q1TXIy8sTqL9UKqWiokLkOXl5edTU1JCTk8OVK1fw8vJi6NChhIaGcuTIEU6fPi0oedHR0bx58wY7Ozs6Ojqoqqri3r177Nmzh5MnT5Kbm8uRI0fo168fQ4cOJTs7m7dv3zJu3Djc3d2pqKggJydHnIOyvOl/ix4nr2PHjhVTSGRTrWR8JAMDAyoqKoS1DXS10Y4fP87HH3/MvHnz+PPPP4mPjxforaKiIosWLcLMzAx7e3syMzPR19ensrKSqqoqjh8/TlNTE+vXr++mWK6qqiI+Ph51dXWhVjc3N2fWrFnC6+/EiROcOHGiR5W0rFX1119/kZyczJw5c3B3dxd+n/X19Vy4cIGqqiomTJhAZ2enMG6Wtedqamr47rvvxPjRVatWsWnTpm6uAdDFYTp//jxqamps2rSJwMBASkpKMDY2xtjYuJv/p2xajqxFBF2tgH8iie8b9fX1lJaWMnbsWPz8/EhNTRV2KrKHJyAgQHgjFhYWYmFhgbKyMg0NDbx8+RIrKytWrlyJnJwcK1eu5Pz587x79w4nJydevnyJn58flZWVaGlpkZeXx+TJk/nyyy9RV1enrKyMHTt2kJ2dzbx58xgzZozgKhUWFhIdHY2pqangO/U0KWhpacHExIR58+Z1+7psRnhHR4dQ4QJiJKqpqalAMQwMDHj9+jW//PIL165dA7qQ1suXL3Py5Emgaxa8r68vfn5+JCYmMnbsWOLj48nMzMTJyQl3d3cKCwupq6tDT0+PN2/eUFBQgLW1Ne3t7bi4uGBvb/+v0JGysjLWrFnD8uXLGTt2LBKJpNs0o8rKSj777DNOnz4NdKF8W7du5cyZM0RERIiiYfLkyZibm3Pz5k3s7e0F7SAuLo6oqCi8vLyYOnUqt2/fRiKRUFZWRlVVFY8ePRL3JS4uDltbW7755hvc3d2pqqoiLS2N/Px8JBIJBQUFbNmypcdz42UUI0NDw//gP2dlZaGqqsqBAwfEvPbm5mbWrFmDpaUlpaWl/Prrr9TX1wuhUWVlJTk5OUgkElRVVdHX18fT05OhQ4eyePFiJBIJz58/JzMzk9raWu7fv8/atWuprq7mzp07+Pn5CcHQq1evOH/+POrq6syfP19YzZ04ceK91/fJJ5+wc+dOoCsZr6iowMDAAGVlZWFwPmvWLMaNG4eenp7grcqSW+jypywpKcHKyoqmpibq6+t58eIFkZGRTJkyBXd3d969e8eNGzcYOXIkgwcP5vnz51y4cAEtLS02bNiAm5sbq1ev5unTp8ydO1fYNsmGjEilUoYPH46pqSkrVqzo0T2UeVPKJmk9ePBAjBGW0by0tLQYOHAglpaWgkqwYMECtm/fjqurK1OnThXDX1pbW0lOTiYlJUW0HidNmoSlpSXXr1/n/v371NfXC4ufgQMHUlxczNmzZ/npp58YNmwYQUFBqKioCGrNP6/tsGHDerTGgoICNm3axBdffMEPP/yApqYmhYWFJCUloaOjg7y8PJmZmTQ3N6Orq8vx48cJDQ1l27ZtYna8LPLy8tizZw/Z2dm4uLhgaWlJWFgYR44c4dNPPxWuC7W1tSJpUlVVRU5OjqqqKs6dO4eWlhYbN25EXl6e1NRU/v77b4qLi/Hw8MDFxQU5Oblu4pj3ifj4eDGx0sbGhnXr1okOUmNjoxjHK8sLZHqRjo4OlJWVWbhwIY2Njd2sFW/duoWNjQ0nT54U+99XX30l9toRI0awbt065OTk2L59O/fv3ycrK4s///xTFByykeKXL18WegVjY2PGjx/P3r17e7TGkJAQJkyYAHRxvI2Njfnqq6/44osvxJ4qswJLTk5m4MCBLFq0CHl5edra2ggODhbXVVFREXl5eS5cuEBKSgq5ubk4Ojri4OBAdXU1jY2NomC7e/cuTU1NWFhYiPHSR44cITY2VnjCSyQS+vXrJ/xxS0tLe2wfuWDBAurq6nj79q2gf9y7d4/U1FSGDx8uBgncuHGDxYsX4+npiY6ODqNGjUJbW5u3b98ilUpxdHQUA0SuXr0qKB0y4e/8+fNZsGABd+/e5cqVK3z77bfo6emhpqbG8+fPWbhwoRhy1N7eLp4ZiUQibPWAbkXa/yt6nLzK+CSyaRKjR49m/fr1qKmpceTIEcLDw1m6dClTp04FuuaHyzg827dvx8/Pj9GjR1NfX09GRgbV1dWYmZkJvmtwcDC///47p06dEjYmqamp/5HAGBkZMWzYMJqamrqNjs3KyhJI1vtk7/+vyMrK4vnz54wYMaLb16VSKatWrSI/P5+nT5/y5MkTwZPq7OzE19dXVBnNzc34+PiIiRj/M5SUlNDS0iIwMJDp06cLVSl0vQBSqVRQJVauXMncuXMZMmQIhYWF7Nmzh7CwMKRSaTf3hfeJPn360K9fP9GOj4yMJD09HR0dHVGd37p1i4cPH+Lj4yMUtND1UAUFBfHs2TOOHTsmHBagCyWzsLDg77//ZtWqVVRXV9OnTx+8vb0JCQmhs7OTv//+mz179lBcXMysWbMYPXp0N5K9k5MTX331Fbq6uuKa9dRKKiEhgby8PDH7GrqKHRnXTcZdkhVDM2fOZNCgQSQmJhIdHS14Or6+vgKJ/v7775kwYQLbtm0TfLHOzk4sLCzo378/Dg4OzJs3TyQOsvaHmZmZ4P9aWlpiZWVFe3s70dHR5OTk9Gj4wj9j9uzZXL16VVB2SkpKePHiBVKplIyMDG7evClMtIOCgtDS0hKHgGxylrOzM42NjaSlpZGTk0NCQoKgUsg6A+fOnSMsLIysrCzKy8vR0NBAUVGRxsZGzMzM8PPzo7q6mtjYWNasWcPmzZvx9/fHzs4Ob29v7OzsyMzMpK2trccG948ePSIrKwtHR0eBuEJXsmxoaMjhw4dFezA2Npbr168zaNAgLC0tMTIy4vvvv0dLSwtLS0s6Ozv5+eefqampITAwEDU1NRwdHVm/fr2gLz1+/Jhbt26RmppKTEyMoK/I3Alk0dTURExMDE1NTTQ1NRERESFapj2JJUuWiP+2srISgpfhw4dTWVmJoqKisCyTbeYPHz4U79yECRNwdnbm448/FgrfBQsW0NbWxqtXr1BUVEROTo63b9+yf/9+7OzsiI2N5fXr17x7947x48eLaTeytm5NTY14L8zMzISVj6yQ6GkcPHhQFIeHDx/myZMnGBgY4OXlhaGhIWFhYTx+/FjY6Rw+fBg3Nzd2796Ng4ODaL0DYmx4e3s7FhYWREdHExwczM6dO9m6dSt37txh5syZ9O/fn7Vr12JhYcGCBQswNDQU6mlHR0cUFBS4evWqoFv89NNPYgLS33//3aP1yVAsmcXWvXv3CA0NZdq0aaKLZmFhQVRUFI8fP8bAwICvv/6aDz74gNbWVkpKSjA3N0deXp7ExERRHHl4eKCoqEhWVhZAN7pGe3u7GEUuEzsbGxszfPhwrK2tRRfmwYMHwq9XWVmZDRs2UFJSIpLN941p06bh5+fH27dvsba2xs/Pj9bWVq5cuYKpqakQ8xYVFVFQUCBU942NjUId//btW5qbm2lubqaiooIff/wRTU1NTp48iVQqxd/fn5aWFp48ecKsWbN48eIFe/fupU+fPpw5c4bZs2eTkZEhnsHbt29jamrK3r17ReIKXQXsv7HlkyWu0NXBmDZtGo6Ojt3AIZk3rayzJ+sk/NOusK6uDhcXF5YuXSrQV19fX8aPH4+BgQHv3r1DWVkZJycnLly4IFDiwMBATp8+TUJCAqqqqqxevRpHR0f2799PZWUlysrKJCYm8uWXXwp7wJ5EYGAgT5484eHDhxw5coSSkhKSk5NRU1MjKSmJ48ePY2dnx/Dhw3ny5AllZWWMGjVKdH779+/P69evhY/v0aNHUVBQIDExEXd3d+Tk5ITPtIqKSrfuRVBQEEOGDCEqKorXr1+TnJzM0KFDsbS0JDw8nIiICCZOnIiVlRVycnI0NjaKJPZ/i3/lNiCzkpCTk6Nfv34i6UpLS+P+/ftCFdrZ2YmzszPOzs5cu3aNK1euMGzYMDFJKzw8HAcHB4YPHw5AYmIi5eXl9O7dm82bN2NgYMCxY8coLCykvr5e2KnU1NRgbGwsuGiyg0VeXh4lJSWam5tpb2/H1dW1x8mBVCqlrq4OBwcHYZr7z9DT02PgwIE8f/5c3CyZkf/jx4+Fma+1tTVycnIMHDiwWxUhU2/7+/vj5OQk+JkNDQ1IpVJevXol5tX/M+GVJRMxMTHCYL+qqqrHqCR0eXiWlpaiq6tLbW2tUBjX1NTQ0tJCZmYmcXFxZGVloaOjQ1JSEg0NDQIVtrW1RVdXlytXrpCXl4eDgwMuLi707t0bV1dXXr16RXt7O9bW1owfP54+ffpQVFTE6dOnRbtyzpw5wsNQlpzKEo3/SbjvqZhJWVmZgoICjh07hp+fH25ubujo6JCens7Tp0+F6TV0OQvU1dWho6MjJoqVl5djY2MjRIXq6up0dnZiaGjI1KlTiYiIoLa2loCAAGxsbKisrKS5uZng4GCCg4P57rvvePr0qZhRLpFI/sOxQjYtJyUlBXNz8x4LC3V0dHBxcaGxsZE3b96IQq2trY3k5GSys7Px8PBg2LBhqKurc+nSJeENqqury6JFi7CysiI3NxcDAwN0dXVJTEwkNjaW0tJS1NXV8fT05OrVq6Snp2NsbExHR4fgsA4dOhR9fX10dXVxdHQkJiaGY8eOsWzZMrZv386kSZMYPXq0EOgAPUbtiouLSUxMpKOjQ1hxxcbGCq9MFxcXgQLk5eXx4sULzp8/z6RJk1i+fDn9+vWjrKyMFy9ekJqaikQiwdPTU9BjFBUVhR1VS0sLt2/fFjwymeACEJOFoCtJKSkpwdTUFH9/f4qLi6mqqurWEXnfkFk7NTY2UltbK7iAMvP8f16H1NRUamtrSUpKQklJSYz7zczMJDIykpaWFmxtbenXrx+WlpZ8+umnaGpqEh8fT2hoKLm5ueTm5hIREYGuri5ubm5YWFjw9OlTysrKGDZsGNXV1fj4+JCfn09lZSWZmZk0NTVhZ2f3fy2+3ydk9zwsLIwTJ07Q3t7O+PHjBVhRVVVFXFycAAAmT57M7t27GTt2rKBDyOLWrVv8+uuv2NraimSxvr6ed+/ekZWVha+vL+fOnaO1tZXdu3eTkJDA0qVL0dXVxdzcnHHjxjFo0CCam5tJTk4mIyMDHR0d3rx5g7m5uWiP/3PS1X8LTU1NBg8ezOzZs6msrOTbb7+ltraWTZs2AV3PkZOTE8OGDaOoqEig39DlWxsWFoa/vz8TJ05EVVUVU1NTYdMXHh4uPEVlPswaGhrk5OSIzs0/zxZZd6K+vp4bN26gp6cnrv+hQ4fYv38/QI8pPLKWuKxzBV05gGzqpWxcempqqhBjNTY2iqlKJSUlyMnJ4enpSVxcnLDTlJOTY+HChVy6dEmc86qqqqirq/Pu3Tvu3buHoaEhS5cuZe3atbx79w4rKyueP3/OkSNH+PjjjxkxYgSNjY3cuXNHTHP6N84R7969E5032V5dVVVFZGQkBgYGODs7Y21tLd5ZmUYkLy8PeXl5gSi7ubkJJxKZHeP48ePFVEojIyPRNdDR0cHDw4OQkBD69u3Ljh07SE9P59ixY8ydO5eoqChhrSYz97exsRGjqXsSioqK9O3bl59++kmg20OGDGHYsGF0dnaKsedDhw4lIiKCpqYmlJSUkEql2NjYYGNjQ2trK+vXr2f+/Pl8++23AGIq5YABA5BKpUJwKtOLtLW1UVVVRWNjI9OmTcPX11cg+d7e3mRlZQk0WZZrvS+vvsfJa0xMDGfPnsXV1ZXx48d3M6UfNWoUqqqq9OrVC+g6EGQPkrm5ueDLQlcC5efnJ8RXDQ0NrFq1ivDwcD755BN++eUXNm/eTEZGBg0NDcI6q729neLiYpqamrp5zamoqGBsbMzGjRuprq4mJycHGxsblixZIji07xMPHjyguroaT09PQR6X+UXKKq0//viD0NBQlixZwocffkhZWRkRERGcOHFCtFp3796Nnp6emP8uiwsXLnDy5EkOHz7M6NGjhbG8jKtz9OhRzM3N+frrr4Wfn2yqUVFREatWrSIlJYWtW7cyevRoampqBKf4fSM8PJyDBw8yYcIEli9fzqJFi2htbUVZWZnLly8TGRnJ0KFDWbFiBQ8ePOD27dvU1dURERGBsbEx+/bto1+/fly/fp3Lly9TX1+PnZ0dhoaGtLS0MGTIEFauXCloJM+ePePGjRs8fvyY+vp6QkJCWLFiBb169eLBgwfExsZiY2PDkCFDRNUsGyn5T8HN+4aHhwfm5uasWLGC/fv3s3//fkaOHImenh6lpaVoa2sLWsuBAwfYt28fLi4u7N69m6CgIH766SeOHj0qrklzczOff/454eHhLFq0iNmzZ4vRvtDVVpOJtaDrQP7ll1+QSqW4u7vz+eefi2RZhqR7eHjg7OzMzp07Wbt2LcuWLevRGi9duoSXl5eYWic7FKVSKb6+vqxYsYKCggLu378vJl/9M3r16sWkSZMoKytDKpWiq6srrIv+iXYtX76cjz/+GENDQ3bu3MnXX38NIIzYy8rK8PT0ZObMmUyfPp0lS5awbds2hgwZgkQi4fXr15iamop3qSfh7u4uOLxRUVFCJLFixQphxbJgwQKys7PZvXs38vLyYiJRVFQU5ubmREREkJ+fz5o1a9izZw/QhVJXVFSgoKAgCiUZWqCvr0/v3r2pqakRgo3KykqB+MjG8VpaWlJRUSEcVTQ0NP4V1w66iq27d+9y+PBhPDw8OHjwYDeHDXl5eVavXi24gs7OznzxxRdcvnwZCwsLJk6cSN++fXn37h3z5s1j4MCB7Nixg7S0NKZOndrN5kpVVZUlS5YgLy8vvCaHDBnCxo0b0dHRoaqqitDQUHGYDxw4UPjZ/puQUZ8aGhowNzcnMDBQ+AA3NzczdOhQvL29Wbx4MefOnePixYssWbKEI0eOCDRMtv+1tbWRlpZGWloa8vLymJiY8DQILJ0AAQAASURBVPr1a1avXo2Dg4MQriorK/Ptt99iaGgoAI4BAwYIL+TOzk6mTp3K0KFDMTY2JiwsjFmzZuHl5cUvv/wirKneJ6RSKd9++y0DBgwQvs0ODg5ijOnZs2f59NNPGTt2LLNnz+5mFenm5kZKSgplZWU0NzcTFBTEr7/+ykcffURMTIxA4dra2nj69CmrVq1CXl6eXr16MWfOHJG4yqYZySgk9+7dw9TUVCSzSUlJxMTEAIjJXO/evXvvNcpGCQ8fPlwk9rq6ukJzcf36db7++msUFBTYt28fQUFBJCYmUlpaio6ODoqKiigoKJCbm8v58+eJjo5m3bp1YvKauro6Fy5cICsrCxcXF3R1dQV//s6dOxw5coQBAwawe/duAI4dO8bjx48FXWjv3r1cv36dHTt2CNpJT+PgwYMiIZPF3bt32bVrF6NGjWLnzp3d6Bbh4eGsWrWKgoIC8bURI0bw22+/AV2USltbW9ra2qirqxOOEVFRUezfvx9ra2tmzpwpaJGRkZGYmZkxefJkRo4cybNnz4QgatSoUdTW1uLu7s6NGzeora1FTU2NDRs2vPf6EhIS6N27t8jHPvnkE3788UdKS0uprq7GwsJC7DmBgYFkZ2dz48YNjI2NRWdXdsY9fvxYIK6yIlQikfDBBx9w5MgRysvLWbFiBUuWLOHzzz8nNDSU5ORkDh06xPjx46msrCQsLIyMjAy0tLRwdnb+V5qIHievt2/fRlVVFXl5ebKzs5FIJMIs3MfHB1NTU1GdyC6UrPrS0tISpGeZZYumpibPnj3j0qVLqKiooKGhwaFDh9DX12fUqFGMGzdOvJjQ1bY2MjISiJ2WlhYqKio0NzfT2dkpkLu8vDy0tbUxNDTsUfKqo6NDZ2cnGRkZ1NfXCzP6wsJCSkpKePr0Kc+fP8fLy4vly5ejqKiIiYkJvXv3xt/fn507d+Lq6ir4K/369euWOFRWVpKfn090dDT+/v6EhISQnZ3N1atXkZeXF6T/6upqTp06hZmZGYGBgWLEWp8+fcRIVdnB29PkNSwsDBsbG4FKJyUl0dLSgru7u+B+yirH6upqysvLefLkiRgyEBcXh5eXF56entTU1HDgwAFMTExQUlLqNova3t4eHR0dUlJS8PPzw93dnatXr5KVlUVjYyOamprk5eWRmpqKubm5mIMue0lk41T/OaHjfUMikeDi4kJlZaVQah89ehSpVMrYsWNJSkr6/7F31uFZnenW/8Xd3YUYEUICCUlIsEBwdytSNC1F2lKghpQWKkxpaUqB4u7uEFyTABFIQtzd3d7vj8x+DpnOmZKeOdM587Guq1do8mZn7/d95H7ue91rERERQVNTE+7u7hgZGdGhQwfs7e3p2bMnMTExQGszlNT9XVlZKbJQaWlpfP311zg6OorO6B9//JEXL15w5MgRwYG0sbEhLi4OeXl5PD09KS0t5e7du3h6euLn58fQoUPJyMgQnMDXhTTGJEcYPT09KioqKC4uxs7ODjs7O1paWigqKqKyslJonEoak9LBz9DQkGfPngnHrqqqKs6ePUtTUxO6urrU19cLxQIfHx/mz5+PkZERz58/x9nZmaFDh4rMebdu3Th06BDffPMNK1asoFevXmhpaXHhwgWOHDnS7s/Q3t4eLS0tZDIZNTU1GBoaiuASWg8JNjY2GBsb4+npydixY2lsbGTFihWEh4ejp6eHj48PnTt3prGxUZiEvErPgdYs0r59+4iKisLY2Bhvb2+MjY1RVVXlwYMHZGRkiMyqZEogBYQDBw4UG3p7GkOhVeC+oaGBoKAgXFxcePjwodButrW1Zf/+/aiqqvLo0SMuXLjAyJEjxWe7bNkyDh8+TFlZGXJyctTW1pKcnExsbCyxsbHIZDKsra1FsKSrq4uxsTErVqxgwoQJLFu2jEuXLjFw4ED8/PyEqsO1a9fYvHkzMpmMr7/+WtCmTp061SYb/brYsWMHixYtwtPTEx0dnTYUJ6nx08DAADs7Ozp27IiFhQUvX76ktLSUuro6sddI73V2drZoppHGhba2Nk5OTqSnpxMREUH37t2ZMWMG5eXlHDt2jMDAQFxdXamtrUVFRQUtLS20tLRE8GViYsKDBw/+0CGrpKSEW7duic/liy++4OrVq3z33XfcvXsXOTk5URWRxk5iYiJBQUE4OjoyceJEoqKiSE9Px8PDA19fX9555x0+/vhj8vLyqKurQ0dHB319feLi4nj69Cljxoxh1qxZ1NTUcOrUKRQUFIQCzfHjx/nLX/7CxIkTsba25tixY8TExGBsbCz2xdfhE76KzMxM7t+/j0wmE81SZWVl3Lp1i6KiIh48eEBycjJdunQRwYy7uzsFBQVtghJ3d3e0tLTQ0dFh27Zt1NfXo62tja2tLXl5eaioqODs7CxoZM7Ozpw+fZqvv/6a0NBQcegpLi6mrKyMvXv3YmVlhaKiojgsh4eHi0C9PbCzs0NDQ4PGxkaysrIwMTFBR0cHOzs7IS1VV1dHdXU1BgYGYh3q0qULpqamPH/+HHNzc1HulipXenp6QnaqqKiIO3fuUFJSwqBBg0Ry6uLFi7x48YLAwEC8vLz49ddfuXPnDqampvTt25cRI0bg7OxMaWkpUVFRVFVVCUrK6+Lbb79l4cKF+Pj4oK6uzrJly1BRURHxkkSBampqIioqii1btvD8+XMmT54s5mznzp1ZtGgRx44dY9KkScyfP1/QbTIyMoD/svTOzc0VusTQqo5TW1tLdnY2nTp1wtbWlvLycmJiYqitrW0TI0VHR7+WrnS7g9f6+no++ugjbty4wf79+xk/frzYvKXy2d/yFXR0dFBVVRWcSgUFBSGv4ejoyCeffEJ8fDxXr16lrKyM3r17s3r1apqbmxk5ciROTk5tMnBmZmZt3LmgNTvxaipd4rm1l4fWtWtXlJSUxAb4+eefM2DAAKqqqpg/fz7Pnj1j/fr1wq3iVZ9zLy+vNlJK0LqhSZtabm6u8Auvra2lpaWFDz74ACcnJ9atW4e7uztbtmwBWk99U6ZMoXPnznTv3h1FRUWUlJTYuHEjtbW1ZGRkkJub+4es4qSymtRc8O2331JSUsKcOXMYNGgQ3t7e3Lp1i8uXL+Pn5ydKpgoKClhbW7cpq8XHx1NcXExaWhr19fWEh4cTHx/P1q1b2bp1K9OnT2fQoEEMGjRIcLX2798vBrujoyPy8vIEBwdjZmZGc3MzKioqIuNw7NgxVq9e3a6mOwkLFizg888/R15enrNnz3LkyBHRgHf48GEePXrE/Pnz+eGHH4SaAsCoUaMIDg6msLCQ5uZmcnJyePz4MYaGhtja2oqAYvXq1SgqKoos87fffkt6ejry8vJs3rxZSIfs3r2bs2fP4uDggImJCYcOHeLHH3/k3LlzdO3alR9++IGIiIi/q7H532HNmjViE6qurubixYtEREQIq2FJ7HrSpEnCbhlaOXmVlZWCk7R3717Onj2LgoIC9fX1PH/+nKSkJBwcHOjYsSPPnz8XcjWzZs1ixowZREZGcvr0acaOHUuHDh2IiIjgypUr9OvXD1dXV95//32CgoJ4+fIlZ86cITc3l6VLl7b7M1RXV8fKykrodfbo0QN1dXWxFhgYGLB9+3ZqamrE95YvX05RURE//fQT3bp149dff8Xc3JxPPvmEESNGMH36dNauXdtG73Xz5s189dVXQGvAXFxcjL29PcOGDUNLS0vQHiRI5d7g4GBBefojuHv3LkeOHOEvf/kLbm5udO7cmaKiImG1+OjRI86cOSO6gSV9SUVFRcaMGSMayL7++mtKSkpQUlISpb6tW7cyf/58vv32W/bv38+JEyeEnqOKiorIshgaGlJWVsaNGzc4f/48L168QCaToaurKwK53Nxcvv32W+7du8fcuXPb9YyJiYm0tLRga2uLmZmZyKICQptV4hXa29uzZs0a0Xgok8morKwUGqfu7u58++23NDY2kpqaSmxsrBCIf/ToERs3bqS6upqvv/6aTp06sXnzZj777DPWr1/PokWLcHNz+7uHRElB4W8pYq8DJycntmzZgry8PCtWrMDf35/o6GhRtp8yZYrQlX7x4gUHDx4Uyiw2NjaiRB4eHo63tzejR49m5syZyMnJsWzZMgoKCggKCiIgIICHDx8KHdzr169z/fp1duzYwbx58wTVpLS0lJcvX3Lv3j0aGxv5+eefsbW1Zfr06TQ2NvLLL7+0+6Ds4uLCoEGDsLS0FHtZWloaq1atoqCgAH9/f+bOnYunp2ebPfjvuXhZW1vj6elJz549uXnzJhUVFaSnp+Pj44OtrS3q6urExMTg4OCAsbEx+vr6QoYuPj4eFxcXQVXMy8ujurqahQsXIpPJuH//Ph9++CFPnz5l3rx57XrGBQsWAK3apwUFBWhoaDBw4EB69+79m74JPT09AgMDOX78OHJycqiqqtLS0kJxcTFVVVWi2iBpqkpra1paGoqKivTu3bsNBSM6OprY2Fj09fW5fv0627dvp0uXLuzdu7eNxODjx4+ZOnUqdXV1bVSHXgepqak8fvyYUaNGsWDBgjY83ZiYGAoLC+nVqxcZGRksX75cqHS8WoVzdXXlL3/5C0pKSnzzzTfs3r2bpKQkzp8/T3x8PIqKiixZsgQdHR1WrVolFHp+/PFHZs+eTWRkJJGRkfTu3VusLSNHjuTAgQN07dpVJCWOHz/O5s2bxWHlv0O7g9dx48ahp6cnuEavlsSLi4vJzMzE0dGRgoICrl27hoeHB+7u7qxYsUII6mdnZ9Pc3IyGhgYqKipMmTKF/Px8cTr29PREQUGB4OBgXF1dKSkp4ebNmzx9+hR9fX0GDRqEra0tjY2N7Nu3j5ycHGbPno2RkRHJyclkZGTQu3fvdgeu8F9e2C4uLiQkJIhrSFI7mpqaoklk1apVREREMHnyZJ4/f055eTlffvklGhoaXLlyhYMHD2JkZMTAgQPp2bOnkMaQyWRoaGiIyd2lSxfh4iNBW1uboqIioYl45coVDhw4wEcffYSzs7NQPPgjLlQS18TGxoaKigp69epFQUGBWHjU1dXp2LEjTU1NorHpnXfeYdy4cZiYmKClpcXz58+5e/cu6urqfPbZZ8TGxnL9+nVBC2lqauLatWvivSotLeXWrVuie10qowcEBBAQECBO2y0tLaKLtrm5WTT+tAeSju2rPD1DQ0NReo2Ojsba2poPP/xQTE7JNUSSUUpMTCQuLo7x48fTu3dviouL2b9/P/Ly8kyfPp3333+fwsJCduzYwYkTJ4RJQ69evZg9e7YwWoDWjJGxsbE45IWEhPDs2TPBV9bS0qJLly7tyk5KTZCGhoakpqbyww8/UFlZycqVK3F2dhZlKkl1A1oPfQUFBdTV1QlB7OPHj3PlyhUh7l1ZWUlTUxPx8fHk5eWhpqbG8OHDee+994T0lr6+Pr169eLkyZM0NzfTt29f0UltampKfX09EyZMoGvXrmhoaODv7y8C+fZCEseurKwUHc6AkPlSUFAQY+fGjRuii1mSN/vqq68YNWqUyM6+ePGC0NBQmpqaCAkJwcfHR4xZaOUwJiQkUFBQgKurK/PmzcPJyQkdHR1BI5GsPSW6kKOjI01NTe2mDeTn5/PgwQMWL17M0KFDMTMzw9fXV5RaBwwYgKurKydPnuTmzZukpaWJTPvevXvJzs4mOztbzNvGxkY+/PBD/Pz8SE9Pp3v37nTu3JkrV66I92fDhg2MGjWK2bNn4+Pjw/nz5/nkk0+wtrZmxIgRTJs2TWTEdHR0OH36NPfu3cPd3Z2AgIB2N09WVFRw9OhRxo0bR3V1NRs2bEBRUVE4BT5//lw0YEld/68iJiaGs2fPUltby7hx43BycuLIkSPk5OQwdOhQcnNz+frrr8nKysLLywsnJyeqqqr49ttv2blzZ5vMraqqKrdu3eKLL75gxowZODk5sXz5cq5cucLnn3/OjBkz2mgFvw7mzJmDrq4ujY2NXLp0CRUVFezs7Pj2229RVVUVlZrk5GQ2b95MYmIigwYNwtfXl/z8fHbv3s3XX38t6Cfe3t54eHgQEBCAs7Mz5ubmBAUFCZ4utBqSfPPNNyLDGBUVJfRm/fz8WLlyJb6+vqipqZGcnIyOjg4eHh7Y2dmhr68vJOZeF6amphgZGbXpcDc1NWX8+PFUVVUREBBAly5dyM/PZ//+/SLwMzAwICsri7Nnz2JmZiZoIIWFhUL68uLFi6SlpeHj40OnTp1ISkri+++/59mzZ4SFhfH2228LB8eSkhKgVf/cw8OD/Px83N3dUVNTo6KiglOnTmFoaMgPP/zQbkk3aDW30dHRQUVFheLiYlF9kWBmZkZtbS07duygf//+WFpacuvWLU6ePMk333yDkZEROjo6/OUvf0EmkzF58mSsrKzIyMigsLAQHR0d3NzcOH/+PF999RWLFi2iT58+NDQ0EBUVRUxMDEOGDGH8+PGMHz8eQ0NDNm3aRFJSEh9//DEBAQFMmDCBkpISXFxc2jVWP/30U6FgIUGiBKqrqwtdehUVFXFQ6du3r2jWvnXrFtra2nTu3Jm33nqLsrIyXFxcUFVVRVlZGVVVVYKCgigvLxfavUZGRsydO5d3330XaD2c1tXViaoftCY2m5ub2/QMZGRkCNvcf4R2B6+dOnUiMjKSlJQUfHx8RFYuMzOTnJwckZ2qra0V3Yc6OjrY2tpiZGREU1OT6JCvrKwkKyuLkSNHCt2yffv2YWNjw6xZs+jduzeRkZHcvXuXhoYG4XmvqamJra2tcI2Jjo7m4sWL9O3bl/z8fBobG8Xpp70dsllZWVhZWeHt7Y2hoaFwJJEs2y5evMjNmzfR1dXlyJEjpKSk0NDQwLNnz1BSUmLAgAEMHDiQoqIioqKiUFZWFvJDUje+pqZmm9JlRkYG+vr6VFVVUVZWJuxphw0bxpAhQ1BUVOTu3btcvnyZnj17ikYZV1fXP6Td17NnT86ePSsCD0lSKjExUWTdbGxsaGlpoby8nMzMTIqKitrYWdbW1gr6xOTJk7G0tCQ2Nla830ZGRvTp00f8zejoaK5evYq3tzd9+/alvr5elBgUFBQoKipCSUkJHR0dlJSUhIC4xENrryOMuro6eXl5lJSUiA5ZPz8/srKyyMnJEaXKlpYWrl27xoULFygvL8fZ2ZnMzEyOHDnCnTt3UFJSYty4cezcuZNz585haGgoMoCTJk0SjR61tbXMmDGDCRMm4OTkRHNzMwUFBULqacCAAdTU1JCdnc3gwYOZMWOGaIKSHM/ag8uXLxMfH4+NjQ2JiYlER0fj6OiIn5+fkNFRUFCgrKyMEydO8PDhQxwdHdHQ0BAZsPv373PlyhVRobCwsBBdrbm5uYKzO2bMGAIDA9m8eTOHDx9m7dq1jBs3jm+//ZaLFy8yevRobGxsOHDgAFu3bmXUqFGEhYUJy1SpotDehq3S0lLRnCkFqBLfS0NDg5aWFk6cOIGJiQkBAQFERkby7bff8uuvvzJz5kzOnj3Lpk2bqKmpYezYsQwfPpwdO3bw4MEDNDU1MTIyQlNTk169eqGurs6NGzcwNDSkU6dOQocwJCQEd3d3SkpKSE1NxcHBAXd3d+zt7Tl8+DC5ubmi3Njepi03Nzf09fV5+vQpOjo6uLq6EhQUhIqKCoqKiiLzMHr0aEJCQkSwXlVVxaNHj4iIiBCUrbKyMjQ0NDAxMaFHjx4oKyuLbLvkAiQpsDQ1NQlb1A0bNvD06VN+/PHHNuoHMpmM8PBwfv31V7Kysvjuu+/o1atXuz9DKZBuamqiubmZffv2UV9fz9tvv42Ojg75+fl06NBBVJCqq6tFpkomk2FsbMyLFy84efIkhYWFvP3223z//feUlZUxf/58tLS0ePnyJZqamixatIigoCBu377N9u3b8fPzY/jw4aIHA1rXuB07dtCtWzeh16yrq8uCBQt+k2F/Hejp6TF37lwePnzIvXv3MDIywtvbG3Nzc1RUVESmsqmpCRMTE7y9vYV0W3l5OTk5OTQ2NqKhoYGSkhJ5eXl4eHhQWlpKfn6+0IGOiooStA1JTcfPz4/m5mY6dOhAdHQ0mpqa9OnTR6y7RUVFjB8/noaGBjQ1NbG0tOTLL7/k888/b9chRJLhKy8vp7y8XGTl/5ZiIblOGRoaivdSTU2NpqYmoR/98OFD9u/fj7KyMqamppiamgr9YMk+NTc3l1u3bgl95bFjx1JRUUFJSQmPHj1CXV0dS0tL7OzshJTk9evXuX37NgMHDuTdd99t9zgtKCigpqYGa2trFBQUiImJ4eLFi1haWmJpaSnik8ePHxMZGYmOjg49e/Zkz549/Prrr+jr6/PJJ5+IJMC9e/fIzc3F0NCQJ0+eYGBgQGBgINra2ly/fl04hwUGBtKrVy+hXS9xQ01NTXn06BEbNmygrKyMgIAAxo0bx8aNG8U9S4fS10G/fv2oqanhyZMnmJiYYG5uTm1tLbt372bUqFHCvltPT080G0LrfLx//z6XL19GXV2drKwsioqKcHd3Z8SIEZibm2NgYEBMTIyQhcvJycHOzo6ZM2eyePFioLWJUPq8pYRnS0sLI0eOxNXVVejFNjU1CbrQ76HdweuNGzf46aef0NfXF40TUVFRHD16FAMDA4YMGYKCggKamppMnTqV8+fPs3r1alpaWkRXeo8ePRg0aBBfffUVH3/8MdOnT2fMmDHcuXOHI0eOIC8vT2NjI8+ePRMDY9q0aRQWFnLv3r02JOl58+bRu3dv4cu7ZMkSJk+eTE1NDXl5ee0W89XW1iYjI4PS0lI0NDTa8Nj09fV5/vw5w4YNY9iwYaxdu5abN2+yceNGunTpwpo1a+jcuTOFhYX4+fmxfv16AOHnDa2yGXV1dRgaGgrXkoKCAu7fv099fT3l5eV0794dXV1dVq9eLUpZw4cPp2vXrnTr1g0jIyMGDx7cJhPVHnTo0IGQkBDRDPfq80mZj7y8PCIiInj69Kn4Wl9fz4wZM/jyyy+F7ty2bdt48eIFS5YsYcKECVy/fp2ysjLeeeedNqURf39/LC0tOXfuHP369aOoqIihQ4cyYcIECgoKRKObdDovLy8nNjYWc3NzAgIC2hW8SqXITz/9lDt37ggN02vXrmFpaYmvry9hYWF89NFH9OzZk9LSUq5cuYKmpiZdunTBy8tLBAWxsbG8ePGC69evY21tTZ8+fTh37hzbt29n+PDhrFixgmnTppGRkSHMDW7cuIGWlhY1NTWiCcHMzIxff/2V+Ph4Pv/8c1EiiY2NpaysrI2j0OsgJiYGe3t7AgICsLS05NmzZ8jLy5OamkpVVRUZGRk4OTnh7OzMzz//zOHDh7l58yY1NTUEBAQwduxYLl68KCg+NjY2FBcXk5WVhZycHLq6urS0tJCcnMzHH38sGmC++uorPvroI6A1qOrcuTMWFhZiYx08eDBvv/22qFjk5uZiYWHRrmeTsGfPHvbs2cPSpUuF9F5+fj7Gxsbo6OjQ2NgoeICurq6MGTMGHR0dEfS5uLgwa9Ysli1bRn19Pd999x0ZGRnY29vz9ddf07lzZ6qqqvDw8MDFxYWLFy8iJyfHRx99RGpqKp999hlnzpzByMgIOzs7YfH84sULocDg4eEhGoFUVFSIjIx87efz8/Njzpw5aGlp0aNHD0xMTNDQ0PhNc5SVlRWbNm2ipaWF5uZmdHR0mDt3LsHBwZw5c4YTJ04ArdWFc+fOcfLkSXR0dJg9e7bImru5uYlAHVrl8dasWUN+fj4fffQRo0ePJiMjg9OnT6OgoEC3bt2EIH1KSspvMqKviylTplBcXIyioiJGRka4ublRX1+PkpISNTU1woxBgrq6Os3NzaIHYuzYsUyZMoWTJ0+Snp6Oo6Mjw4cP58mTJ+jo6GBmZsaVK1d4/vy5KLG6uroyevRoOnTo8BvlAKlkraSkhIKCAlu3biUtLe3vlrhfBwcOHBCWrFOmTMHIyIj79+/z8ccf06VLF6GYYGZmxpIlS9psyjo6OoSGhjJs2DCx3r18+ZKgoCCampqE9evTp09F1hFaG2reffddbG1tSU1Npbi4WEjYSYiIiODQoUPo6+uLLKyE9tptS5nr9evXc/36ddasWSOoEK/CysqKqVOntnkvDQwMmDdvHlVVVYSHh7Njxw7i4uKAVgqBJEOXmJjI1q1b8fHxYdq0aSQnJzNjxgz69OnDihUrsLS0JCsri2PHjnH16lVUVFQYMGAAb731Fra2thgaGuLk5EROTo6wiG4PDA0Nqa2tFRQBdXV1Ll26xMOHD/nggw8YMmQIa9euJTw8nAULFmBnZ8eRI0cICQlhwIAB3Lp1iy1btjBnzhwmTZpE//79KSoq4uXLl5ibmwsL9w4dOvDZZ5+xaNEiFBUVRT/IoUOHGD58OPHx8ZSXl2NqaoqVlRVfffUVzc3NKCsrk5eX1259Vwnr1q0jOzubffv24ezszPHjx3F2dsbLy6tNNvbVwLGsrIzQ0FDu3LnDoEGDsLKy4qeffhI6zXp6ekydOpXx48fz/PlztmzZwpQpU/jpp5/EfJUOh1JFT01NTbievpqNh9ZA+fbt21RXV78W9/wP2cMeP36c/v37i6ykqqoqampqdOnSBQMDA1JSUsjLyyMgIIC33nqL+Ph41q1bh5ycHN9//704lUkbkCTDFBUVJTQhv/76a8zNzbG3t2fBggWYmJiIrK30+xUVFWhra+Pt7Y2npydXrlwhLi6OlpaWNtqI7YGpqanIhr3Kg4TW7HJ6ejrQynUaPnw4WlpaHDhwgOnTp7cp4UsbHiCE6+3t7YWUhL29vZCEkGRRmpqaBCfI1dVV3H9zczNeXl54eXkJAXgtLS3Bf/oj6NixIx07dqS0tJSSkhL09fVFmV0yCkhPT6eurg5lZWWhtpCSksL27dtxcXGhoaGB6OhooqOj8fX1Zfr06XzwwQccOHBA8NKkrJ6BgQEdOnTA3NycoqIimpubhZWjxOmTnEhOnjzJrVu38PDwENau7cGZM2d4+fIlERER6Ojo8OjRI65du8b27dvp3r07wcHBHDhwgDt37ogARJI0c3V1xdPTEzs7O9GoV1FRIQI1yapQcoxJSUkRlpqSpE1MTIwQo87NzeX+/fs0NDTw6NEj7O3t2wRzL1684MWLF226kF8HkouUkZGRkFcqLy8XvtKJiYnU1dVhbm6Ol5eXaL66fPky6enpVFZW4uXlxZgxY8jKysLIyEgE0q9C0nQtLy9n2bJlInDdtGkTPXv2FJzPqKgonjx5wpQpU4TJyNOnT4VJRXs1XqH1MKWqqsqFCxdwcHAQ9ozQSg25fv260E3My8sTwSq0SqBNnToVPT09qquriYmJoUuXLgQEBNCpUyd8fHzacBw1NDTIz88X2YmXL1+KRkJtbW2RGZTJZKSlpZGTkyOu9UeRnZ3N+++//3dlqMrKykQPQVFREU1NTSJQzs7OJjk5WXDoPD09hSpDeno68fHxANy7d49Lly7h4+MjDDRiY2NpbGzk66+/5vLlywwbNoxFixahq6tLcnIy2dnZwlQjMDCQBQsWUFhYSEVFhbhue1BeXk6HDh2EFeXbb7+Nu7u72IRNTU05e/Ysurq6dOvWDW1tbdHsKPmxJyYmMmDAAGENamNjQ25urpjPenp69O/fX2ThiouLSU5O5sWLF+Tl5eHm5iYah7y9vfnggw9EUNvc3IyVlRVycnIkJydz//79dj1fUVERZWVlBAUFiSD84sWLREZGtjmQ1tTU8PjxY5SVlVFQUCAxMZGGhgb69+8vzAeysrLIzc2loaGBwMBA3nrrLe7cuUNZWRmFhYWoqKjg6+uLl5eX4GIbGBiwbds2srOzxXhOSEhg586dxMXF0a1bN3R1damqqhLOiu2lDeTn56OsrEx8fDzPnz8XNBuZTEZZWRmqqqpkZWWhqamJu7s7dXV1XLp0iebmZtHhfuLECbZu3UpBQQFDhw7FyMiI7Oxs4uLiqK+vR1lZmYKCAiIjI4UhhnQwLSoqwtLSko4dOwpJQ1VVVUpKSoiMjERXVxcfHx9WrFhBdHQ0t27daneALsnfQWsAV1FRIVyxpCrvjRs3iI2NJSAgAAsLC+Li4rCyssLPzw8FBQUePXrE/v376dixI9XV1WRnZ+Pm5iYUEM6ePYu+vr4wCbh37x47d+5k8uTJDBs2jN27d3P58mXRvGRmZsb48eOB1vUgNjaW+Ph4NDU1210lWL9+vYi11NTUKCgowN7enjFjxhAbG8s333yDpaUlOjo66OnpYWNjQ1ZWltDhHzt2LOrq6kKJQ3IEDAwMFE1tysrK+Pr6EhwcjLKyMvfu3RN8djMzM77//nuePn3KpEmTRCPow4cPqaioEG6VioqKdO3aFS0trd9tEG138GpoaIipqSk6OjqUlZWhra2NnZ0dc+fOxdjYmObmZj755BOio6PZunUr/v7+rF69mocPH/LgwYM2AeWECRMYPXo0RkZGxMXFkZKSIlwXbt++jYmJCZMnTxYl9qysLJSUlET33/bt22lqauKDDz5g4cKFqKqqkpqayrFjx36jldgemJubY25uTnV1dRtOryQ6PHDgQCHbkZeXh5eXV5sNqKWlBTk5OZF9+umnnzhz5gxBQUGoqqpSXl7ehohdUVFBVVUVBgYGODk5tdHvkxprFBQUkMlkXLhwgdjYWCorKzl79iyFhYW/cZJ6XTQ3NwsZEwm1tbXEx8fT1NREly5dsLe3p7Gxkbq6OkxMTIiKimL58uXk5+eLZq6srCxOnz7N+PHjmTNnDg0NDaxdu5Zr167xwQcf0L17d8rLy6mqqsLa2pqtW7eKEoKioqLwFjc2NiY1NZUVK1ZQUlLCuXPnsLS0FJqOr4tbt27x448/8sknnzB79mxWrVolFBkSEhLYunUrBgYGDBw4UAR/ISEh5ObmCukQeXl54fzTqVMniouLKS0tRUtLi4kTJ9KjRw9qa2s5ffo0YWFhmJmZ8d133zFu3DhUVFTYsGEDCQkJGBsbk5ubS1paGv7+/ixZskScwqE1q1FRUdHu4NXf35/09HTBszMyMiIoKAg9PT1Onjwp7F2bmppESUxfXx9NTU327t1LTEwM7777Lt9//z15eXns379fKCy8iuHDhzNr1iyUlZUF9/iLL77g008/Zc2aNSKDXFlZSUpKiuCAlpeXEx8fj5KSEiUlJcTGxrY7azBlyhT69+/PO++8w+DBg1m3bp0Y66dOnWLr1q00NDQwatSoNhUWKQvt4eHBs2fPWL58ueDBAiQlJbFx40ZsbGxE46VMJsPc3Jy4uDgmTpwo5npgYKDoSq+qqkJVVZVevXq1kQGU0N5D1vnz50XgInHbpTUjNTVV8FwfPXpEYWEhy5cvZ+bMmVy/fl04AXbt2pWRI0cKS0s3NzccHBw4e/YspaWlnD59Gh8fH8rLy1m5ciUnT54UUnG9e/fm7bffFu9dx44d+fDDD4U7laampvA5b25u/kNSYGfOnGHgwIHs3buXx48f89lnn7WxD3VwcOCbb74hKyuLzZs3C3MPZ2dnjIyM6NevH2lpacIidf/+/Rw/fpzs7GwuXLhASUkJ5ubmfP3116J7+8SJE3z33XcUFhZiZWXFxo0bhfa4pGRibW1NcXExy5YtQ0NDg2XLlnH58mVCQ0Pb1Vg4ZcoUABGgrV69GlVVVXbv3t1GWSE/P593332XnJwcunTpwsuXLykrKyMjI4NZs2ZRWVlJS0sLOjo6Qs4vLCyMkydPsmfPHp4+fYqhoSH9+vVDUVGRX3/9lRkzZmBvb8+RI0d49uwZw4cPx9ramsePH6OhocHMmTPx8PDA1dWVrKwsNm3axP3795kzZ04bnvfv4fHjxzg6OoomQSkrJrmT1dfX8/DhQ7S0tBg+fDhXrlwRXOAhQ4aQkJAg9JOnTp1KWFgYmpqabN68mbt37yKTyQgICCApKYnU1FROnz7NyJEj+fHHH7GxsREHDTk5OWbNmsXs2bNRUVHh5cuXFBYWUlNTg66uLp6eniKzvm7dutd+PoALFy4wbdo0FBQUaGhoIDs7G39/f9555x1BA+vXr5+oHACMHz+elStXcujQIZGNnTp1KjExMbi4uDBs2DAxv48fP868efPw9/dn7dq11NTUsHr1aq5fvy708qdOncqQIUP+bslcV1cXNTU1fvjhBxobG4W6xOtCRUWF3r17M2LECPr164eRkZHIij569Igff/yRkJAQxowZIyp3ysrKvPXWWyJDm5iYSM+ePfH398fT05OKigquXbvGhAkTeOutt0QVDlodOjt27Ngm43/8+HFu377dxvTou+++IyIigh9++IEhQ4bQt29fXFxcMDAw4P333/+Hz9Tu4DUwMFDwBRsaGrh16xYymUyIfWdkZHD+/HnKy8sFr0bqTnvx4gVPnjxh5syZomQGrQHg2rVrOX36NMbGxnTr1g0zMzOSkpLYuXMnLi4uODo6snLlSrp06YKioiKbNm1i5cqV+Pv7M2fOHFRUVOjQoQPW1taUlJSwePFi9PT02iU4Da0nnIqKCrHRS/qNcXFx6OvrC3cUCRoaGhQWFnLw4EHhLqKtrc3EiROxtLSkvLycHj16UFhYSExMjCDVP378WHCSPDw80NfXp2PHjgwZMgQzMzOhLSk1MTQ3N1NcXIy7uzvp6ekcO3aM4uLi3ziAvQ7Ky8vR0tIiLCyMFy9eMGfOHFRVVdm+fTsmJiZMmTIFNTU15OTk2rhfQesGV1ZWRn5+Pv369WPjxo3CenH27Nl8//33QmhbsmXs27cvOjo6NDU18ejRI9EkJgUFrxK4JYqIJHMEtFGaeB307t2boqIi3nnnHUxNTdv8viSBoqmpSUtLC7GxsTQ1NdHU1MTZs2cxMTHB19dXCDPfu3ePkpISfH1925Q3pRJybm4uWlpabWxe4+PjSUxMRCaTCV6rRElQVFTks88+Q1dXl3nz5jF27Fh8fX3R19fn7Nmzr/2M9vb2pKWlcfDgQerr61mwYIHIDkpBR3R0NAcPHiQqKoohQ4bw7rvvoqqqysOHD3n27Bnnz59n1qxZWFhYEBERQVpaGgBjx47FxcWFqqoqxo8f38a+Vprbn3zyCV27dhVuTVVVVXz44Yfo6+sLbvedO3fYuXOnKOP+kSYKIyMjXFxcOHLkCCtWrMDc3Bw3NzfOnDlDeHg4AwYMYOLEiZiampKVlSUqN5aWliQnJ/P48WNMTU2FkUhqair37t2jpaWF69evExsby5o1a3B2diYkJIS4uDjKy8vx9fWlY8eO1NXVERERIcru0JqNlhblW7ducfToUUaMGNGG4/06aGhoYO/evaiqqgqr5379+mFtbU1VVRVHjx7l7t274vUnTpzA0NCQa9euIS8vT6dOnYQm47NnzzAxMWHw4MEsXryYd955h+joaOzs7CgrK0Mmk9GlSxeioqJEmblPnz5tqD11dXW/yeg8fvyY5ORk+vXr94c4oSYmJsjLywsJpQcPHlBQUIClpSWdO3dGS0uL0aNHk52dLd5fict8584dAgICGDRoENnZ2ZSXl5ObmyvKzp6enmhra5OSksKuXbvIzMwkPDycsrIyBg4cyKNHjygpKWlDjbp16xYXL16kpaWFYcOGERISwtatW5kxY4Y4mLYH0py7f/8+S5YsIS0tjaFDh4rA9d69e5iZmeHg4MDEiRPZtGkT4eHhuLi4MGDAAIyNjXn69ClmZmaEhISQmZnJwYMH6datmwiWpGxwRUWFMD1wdnbGzs4OZWVlAgMD21C+pOpOQECAyHxpamrSr18/evXqhb+/f7uUTUxNTdHV1SU4OBg1NTXBpZakKhUUFDAxMRF0AUVFRYqLi4Ueu6RuMHz4cJYuXSqaIp8+fYqLiwsuLi44OzuLRMWTJ0/w8/MTCgA1NTV89NFHmJmZCVv5+/fvk5uby9ChQ1FSUiIrK4udO3cSFBTUhqb3usjLyxNNrpIZxKsyiCkpKXTr1o2KigpycnIEjzwhIYFz584xfPhwnJycxOFzxIgRjBgxguzsbE6fPs3u3buFm+GGDRtQUFDg5s2bQqMeEIYqPj4+yMnJ8fz5c5qamujYsSPq6urCsltHR6fdB0kvLy/WrVvXphqgr68vFJC8vb0JCgqie/fuyMvLs3v3bk6cOIGzszPKyso0NjaipaXFBx98QHR0NHfv3qW5uRlzc3Nyc3NxdHSkW7duyGQyioqKMDQ0pLS0lE2bNpGRkYG2tjZdu3ZlwoQJInlTUVGBi4uLSFxJkPqofg/tDl69vLxEBqayspKbN29SWFiIubk5jo6Owur1/v37REdHC/H9gIAArK2tOXjwoLAelUq0n3/+ubA8HDZsGBMmTCAxMZH169dz/PhxKisr+fnnn0Wp++rVq9y8eRMlJSW6d++OlpYWV69eJSUlhdmzZ5Odnc2XX35Jeno6w4cPF5na14HUmGFsbCyySpJzmJubW5vFHlpLf5GRkSQlJVFQUEBGRobQGYRWDu2UKVOwt7fn119/ZcKECfTr149JkyaxYcMGOnfuLETA9fT0REBXVFQkNOxaWlqoqanB2NgYY2Nj4ark6urKBx988LsnlL/3jDo6OqLb3NXVFZlMxo8//sigQYPE9aRsoOSAo6enR15eHhoaGvTq1Yvg4GBMTEyYPXs2p06d4tixYygrKwtOYnl5uSB7jx07VnSfrl+/ns6dO7N69WqCgoLQ0tJCTk5O8PmWL18OtGadMzMz2xgAvA769OkjMi0lJSUEBgZy9+5dXrx4ga+vL0OGDOHQoUNcvnwZLy8v0tLSuHv3LhkZGVRWVhIbG4utrS3m5ubk5+dz9epVkpOTGTVqFAYGBsKVTEtLC39/f+EG19LSwvHjx/npp5/Iy8vD2tqawsJCCgoK0NLSQlFRkXv37vHzzz+LzUzSIm6vlbGcnBwmJibo6uqKhVeCuro6FhYWVFVViY3D1NSU/v374+Xlxc2bNzl79izFxcWiS9nExEQYiaxcuVJkwAoKCgT149mzZzx79gxfX1/BQf3www/59ttv6du3L+fOnWvD18zOzmbz5s1YWFj8oSYKaM2IDhkyhPj4eI4cOcKnn37KihUrcHBwwM3NjUGDBokqRnJyMk+fPiUgIAA1NTUuXryIvLw833//PfX19fzlL39h7969Qq/2+PHj/Pzzz1hbW/Pxxx9jb2+Pk5MTjo6O9O/fH2VlZSGdY2pqiqWlJc3NzRQWFooscmxsLD/++CPl5eXiAP+68Pb2Zv/+/ZiYmODk5ERNTQ2xsbFYW1uLbD20qlFUVlby5MkTduzYgZWVFadOnWLIkCEkJyczZ84cnjx5Qr9+/bCwsBBNJr17925jb/nJJ5/w4YcfcuvWLeLi4tDW1hbi5dAaNMbHx6Orq4uuri4ZGRlcunSJlJQUdHV1/1BQMHLkSBQUFLCzs6Nbt24sWrSIAwcOiIyWuro6o0ePpqGhQWS05OXlOXjwIA8fPuTYsWPY2dmxaNEiWlpaCAkJobm5mcjISAICAggMDKSwsJDjx48LSku/fv0YM2YMEydOJD09vQ09xMTEhOrqaqKjo8Vek5eXx9KlS5k+ffofaiyEVkqZkZERxcXFODg4kJ+fT0VFBS9evKCxsRE7Ozs+++wzbGxs+Omnn5g/fz4zZsygrKyMlJQUYQf74sULYmNjUVBQICgoiMzMTBF8a2pqUl9fj6urK0OGDEFFRYX6+vo2DTaAKEtLePnyJdHR0VhaWgqnxvZA2u9rampoamqivr5eqF40Nzejq6vbhgOrpKSEn58ft2/fJj8/n9GjRzNx4kQGDRqEoqIitbW1rF27lrt37zJixAicnJxITk4WTb537tzhyZMnonm4paWFs2fPIi8vz+jRo3n58iVTpkxhyJAhgt8eHh7O4cOHqaio+EPj1MLCAiUlJRISErh+/Tq6urrIycnx6NEjnj9/jpycHD4+PqKcbWhoiIWFhZB0e/jwIYqKiowdO5ZPPvmEsWPHUl1dzQ8//MC5c+dwdnZm5syZPHr0iKNHjwKtQZq1tTWBgYGkpaWxceNGysvLRfNUcnIylpaWaGlpUVBQQHh4OImJiQwbNoxevXpx7969134+V1dXkdhLTEzEwcGBuro6TE1NWbRokRgzdXV1groSFxdHREQEp06dws/Pj7feegsXFxdOnDjB3r178fLyomPHjiQkJAg6j0RxefDgAXfv3mXbtm0UFRWhpqbGjh07BA3i+fPnFBUV8cEHH6CtrU1aWhoPHjzA3d0dTU3N16pitTt4lbhBZmZmaGlp0adPH9LT08VpTEVFhVmzZhEdHc2HH37IwoULeeedd7h+/To3b97Ez88PFRUVLl26xC+//EK3bt24fPky0KrR+OWXXwJw+/ZtGhoaCAkJwcDAgClTpjBs2DDmz5+Pq6sr06ZNY+bMmbi7u1NZWYmamhqenp6oqanh7OzM119/zc6dO3+TOfw91NTUoKCg0CbdLfG/XtVUzczM5Ntvv2Xv3r0oKiri5uZGjx498PT0xNHRUaT+q6qqBJdXClyhNaPk6OhIS0sL2dnZVFVVtSnfGxsbo6amJhrXpEEsEaoXLFiAlpZWu8vN8F/2a++8847IsKmrq7N27Vr09fWJiIgQ0mB37tzh+++/58yZM2hqamJmZiboItevXxdasdOmTSMoKIhjx46JSSx1l3766afk5+czb948Ro4cSXJysjBh2L17Nz179mTq1Kno6Ojw4sUL7t27R1xcHIWFhcK/uz14+PAhISEhVFRU8OTJEwIDA5GXl2f9+vWUlZWRmJhIamoqtra2zJ8/n7q6OvLy8hg8eDBeXl6cP3+e8PBwpkyZwqxZs3j48CHXrl3ju+++w8PDg8zMTO7du4eNjQ1eXl4UFhYSHh7O5s2biYmJIT8/X8itSJxkTU1N1NTU8PPzw9zcHAcHB6ysrMR11dTUfiOe/3uwsLBg4cKFFBQUUFlZSWJiIo6OjpiZmeHi4kLHjh3p1KkTUVFRYtxpa2sLX2lTU1Nu377N48ePaW5uZsuWLXh4eLQh8EdERHDr1i3c3NwICQlh6tSp7Nu3j8WLFzNu3DhhHnL16lX27NnD5MmTxdgfMmQIv/7662ufpP8W9fX1tLS04Ovry8qVK0UQbWtry9ChQ5k1a1abEpu6ujpycnKipC9JXElrU79+/ejTpw8aGhrk5ubi7u7O2rVrycrKYurUqbS0tODm5kZmZiZr1qzB1NSUyZMnM23aNNGI8+LFC+zt7QWH2N3dndWrV3P+/Hl8fX3bFRxINCE7OzuxeSgqKhIVFUVkZCTe3t588cUX6OjosH79eh4/foyKigqTJk0SCib29vYsXLiQbt26CcHxqKgodu3ahbOzswjEpGYPKbvbr18/oqOjReDz008/YWFhQV1dHbt37+bevXtUVFTQt29fZsyYQVxcHHv37m23b7yioqJYs6RubnV1dZydnVFXV6elpYXt27eTl5fHpEmTxHq9ZcsWrl69yt69e2lubqZnz544OTnh5OTE9OnTOXPmjAgGP/roIzIyMrh16xZr1qzB1taWtWvX0rNnT5YtW0Z8fLzQIZ40aRLOzs7CRry4uBhnZ2f279+Pp6dnu55NQnNzM8HBwXTp0oUXL15w9OhRevfuTXBwMAsXLhQJCUBUWaSKWVNTEx06dEBRUZETJ06wZcsWBg8eLOSFNDQ0WLJkCeHh4aL/w9XVlQsXLnD8+HHs7OxYtWqVuP6r2ubFxcXs2LGDU6dOkZ2djUwmw9fXl6VLl7b7GauqqlBTUyMhIYE9e/agoaFBaGjobxqiN23axMWLF8nKygIQzYWvUijU1NTo0aMHioqKaGtrc+PGDR48eEDv3r1xdXXl5cuX5OXlER8fj4ODA5qamuzZs4eHDx9y5MgRzp4926bae+XKFZ48ecKyZcvo379/m4bu14UkdXj79m1+/vlnHB0d6dixI3fu3OHmzZvo6OiwevVqrKysOH36NHfv3qVXr16iiqGmpoapqSkuLi7IZDIOHTrE2bNnyc7OZu7cuUydOhVonQ87duygrq5OaHxHR0czbtw4bG1tWb16tdjv3NzcRMxhbGwsqIk6OjrtXlM9PDzYuXMnGRkZPH78mNzcXAYPHsyHH36IoaEhkZGRvHjxgkePHvH06VMCAwP59ddf+fbbb4mKiiI6Olq4mCUkJACt/Ro7duxAS0sLCwsLnJ2dUVNTIzMzk9TUVNTV1Vm4cCFWVlbCoAFa6RZmZmZER0eLde/MmTPcu3ePzz//HBcXl9dqEG138BoTE4OysjLV1dWoq6v/xs1HIllLE8jZ2RlHR0dOnTpFbGwsu3fvpqCggPPnz/PkyRN69OiBra0tLS0tovkjMzNTyFT89NNPNDY2MmzYMHbs2EFQUBCBgYGYm5sLUeD6+nq6dOlCQ0MD5eXlooHFx8eH48ePt8sKLyEhgTt37hAcHCwWHWtr6zan96ioKHbu3MmBAwcoKSkRhGVnZ2cGDBhAbm4uR44coV+/flhaWnL//n3i4uLEInP8+HE0NDRYsWKF0IRVVVVtU5aTCOwVFRWoq6ujoaFBUVER0dHRdOjQgc6dO3Pp0iU+/fTTdmWWoXVBrKurw9vbG29vb86fP4+urq6Qjrl+/bpY4E+fPk1UVBSdO3fGzMyMiooKVFRU6Ny5MxoaGvz0009ER0dz6dIlZs6ciaurKydOnEBLS0u4pqirq3P9+nVycnIICQlhw4YNPHnyhD179ojMgtRskZOTwxdffEFaWhrOzs7Y29tTWVnZLgHx5ORk4V3v5eWFvr6+cD/Jz8+npKQEFRUV/Pz8GDduHA0NDejq6gp743Xr1nHu3Dk8PDzw8vKib9++XLp0iT179qCrq0taWhp1dXX069cPExMTTp06JTyepZJ9ZWUl9fX12NraoqysjI6ODubm5vTr16/Nweju3btcuHABXV3ddpUsa2trhQe3oqIijx49QkVFRRw6bG1tRXlm8+bNlJWViaA7KyuLfv36oaKiwoEDB3j27JmweJWanwwNDZHJZJSUlAiPcim4jomJYd++fXTq1In58+dTUVHBsmXLWLFiBerq6kycOJHc3FyuXbuGqqoqJiYm7c4sAyJrmJ2dTW5uLhMnTsTR0RFXV1cqKyuF1a4EKysr8feMjIzo2bMnBQUF5OfnY2hoKPhnly9fFjbUzs7OrFy5kp9//hl9fX369OlDYmIiFRUVaGho4OzsLLKsUjbU2NhYiJH7+voKn/b2Ot3V1dUxY8YMoqKiiIqKYvLkyWhqahIVFYWmpiZTpkxh3LhxREREEBsbi7a2NnPmzMHLy4uEhAS0tLQwNzcX6ifQmgletWoVp0+fplevXkydOhUtLS1qa2spLS2loqKCzMxMAgMD6dSpE5qamly5coW7d+8ybtw4rKysuHPnDmfOnEFXV5cffvhBmHrs27fvD5mFqKqq8uTJE+Li4pgyZQouLi7iZyUlJXz44YeUlZXRp08f7O3tSUpKwtzcXHRmGxsbC+tX6X1TUlISc0ui7owaNYpp06aRk5NDaWmp4GQ2NDQIG2tvb2/s7e3R09OjpqaGRYsW0dzczA8//CDk/toDSZKxvr4edXV1hgwZQk5ODpcuXUJOTk7sIYmJiWRnZ+Pq6ircF7OyssjMzBQyQc+ePePevXui6gGIfxsYGAgJqrNnz7JmzRrRlX7ixAnMzMwwMjJCSUkJAwMDNDQ00NTUFJSplpYW0tPTqa6ubrduttSkbGNjQ0FBAX/5y19QU1MT1cWioiI0NTV5+PAhGzZsIDU1Vfxuc3MzqampBAQEUF1dTUZGBjKZDG9vb0GVunTpEqWlpUJu0s/PDxsbG3R1dbl9+zbq6ur4+vrSqVMn1q9fj66uLl988QXTpk2jsrKSFy9eoKqqKiiNfwSZmZm0tLQQHR1NTEwM7u7u1NbWCnfHYcOGoa6uzvHjxzl16hTdu3enU6dOZGVlUVtbi5ubGzY2NmzYsIETJ05QVlYm+kQkuplEWZKa7SZNmoSNjQ27d++mqKiItWvXCqe98vJyQkJCKC8vF05lEydO5NatW8jJyYkA8nXRtWtXfvnlF5SUlPD29ubhw4dUV1dTUlJCREQEGzduJDMzU1ByunTpwsSJE9vI2ikoKKChoYGlpSXy8vJUVVXx8OFDoLWKFBAQwO3btzl69Cg9evTgvffea3NoWbhwIbt27cLAwAB1dXVycnJ4/vw5GhoaXLhwgevXr2NmZsb8+fNfq8/lD0llLVy4EPgvz2mAJ0+esGvXLnbt2kVFRQV+fn78/PPPgh8aGBjI8OHD0dXV5fHjx9TV1WFvb8/YsWNRVFRk586dnDp1iuvXr3P58mWSkpIYN24cFhYWqKmpsW3bNjIzM4XCQUFBAVu2bEFXV5e3334bNTU1ZDJZmzKZjo4OFhYW7QpeIyMj+f7775GTkxNC+n+rO/bJJ59w4cIF3nnnHbS0tNi+fTsXLlygoqKCixcvig7Rn3/+mSlTpuDg4EBhYSF5eXkcO3aMjRs3MnPmTEaMGMH9+/d59uwZfn5+dO/eXfyNzMxMDh06hIeHByNHjiQ3N5fw8HBsbW2F1urjx485depUuzcUyU5XeiZJOgZaM+sSFSM7O5ubN29iZ2fH7t27sbOz49q1a1y7do2hQ4fi7+9PTEwMt27dIjIyEl9fXyZNmoSCggKffvopL1++FDaXSUlJTJs2jaSkJA4fPoy2tja1tbWYm5u32czs7Ozw8fHBwcGByZMnCyvW9vAlJdK7kpKSyDKrqamJZp/MzEysra2pq6vj+fPnQne3vLwcVVVVli5diqenJ5GRkXzxxReiye7VwFWSirOzsxNlIDc3N+zt7QkPDwday0KrVq3Cw8NDlF7r6+vbBFxjx45FT0+v3Ztmbm4u9vb23LlzhytXruDs7Iy7u7uYj686o0gNP3V1dTx48ID4+HjMzc1RVFQkIiKCoqIi5OXlxeIxb948Ro8ejaamJj169MDPz0/QQB48eCA0j6XGjY8++oiamhrhuBIdHc3mzZuFZM3mzZtFuag9aGlpoaWlhUOHDvHo0SNmzJiBh4cHMpmMhQsXEh4eztq1a4UhhLq6uiiBSygvLyc7O1ssoh999BFhYWGMHTtW8JYlubCSkhLS09Pp3LkzAwYMoF+/fpSWlnL58mW6du3KqFGjcHNzIyMjQ2SFpDk0f/58pk6dKuTxXgeSUsD333/PkSNHcHJyonfv3ujr6xMcHIynpydZWVl8+eWXVFdXM3z4cPr06cODBw/YsmULM2fO/M3B9eTJk4KC5ePjI2gcNjY2yMvLc+fOHZYuXYqXlxdr165l06ZNXLlyheLiYoqLi0UHO8DSpUtxd3cXhjSvrq3tRV1dnVjzX0VhYaEwWZDWoH379rFt2zZMTU2ZN29em0NdY2Mj48aNo6SkhM2bN2NqasqXX34p7MZ/+uknbG1tOXLkiFCCkNaBH3/8UfCXz549i4GBAYWFhdy8eRMVFRWWL1/eppnsdRAfH0+3bt348ccfuXDhAmFhYcyZM4eAgADx3kvNnnZ2dm2qKy0tLVRUVPDy5UscHR0JCgri4sWLbNiwgYyMDPbu3Yu6ujovX77E0tISU1NTvvvuO3744QcANmzYwKRJk1i3bh1hYWEMHjyYJUuWiDGhoqLC3LlzCQkJoaysDCMjIyoqKjh8+HC7njEzM5Pm5mZsbGwwNTVFVVWV2tpaEhISMDU1FQ2+kZGRotER/quXYfXq1dy+fZvevXsTHh7O3bt3GTx4MI6OjiJDJzVtl5SUtJnTixcv5ty5c0ydOpUZM2Ywfvx4Ro4cibOzs2iqDQ0N5eLFi2zfvp2hQ4eKsnt7UFBQQFNTEzo6Ovj6+hIaGioyuOPGjWPXrl0cPnyYvXv3Aq2SV5aWlshkMpqbm9HW1qa6uprw8HChniNdNzQ0FFtbW6qqqoiMjMTT05NNmzbh6urK7t27kclknD59Gnd3d548ecK4cePw9/enX79+ZGZmcuLECUaMGEG3bt04ffo03377LcOGDSM4OPi1n8/V1ZVZs2ahoqIi9ttLly6xZMkSHj9+jLa2tmjGz8/PJyMjg+PHj5OZmYmzszP6+voMHjyY/v37ExMTw9atW4mKihISblK/zq1bt6irqxPGS69Ckho7duwYRUVFYo6Ul5djbW2Nrq4uP//8M2FhYaI36B+h3cFreHg4RkZGdO3aVQSSkZGRbNq0idjYWDp06EBzczNBQUEik1peXt7mRuLi4ggMDKRfv37o6uoyfvx4TE1NSU1NZdeuXcI5pKysjIMHD+Lv7/8bHktBQYGQ2JAWCSlQKSkpEZOovVlJOzs7hg8fLtLZpaWlPHnyBGVlZdFwpKSkxPfff8/ChQs5cOAABQUFQGtG51Vr3EuXLolMCrQu1Hfv3iU7O1tQHC5fvkxkZCSrVq1i4MCBwuELWqkT6enpmJqacufOHdEUIMHHx4f33ntPKBK8LiQbSfivzAH8V2lIEg//5ZdfKC0tRVNTk4KCAuzs7AgODubkyZNs27aN8vJy4YQRHh5OSEgIRUVFHDx4UHgT+/v709TURGlpKS4uLuJ91dHRoV+/foLkn5iYiImJCfb29nzxxRfk5ORgZmYmXD3aE7xKZW/JvcXJyQktLS2Ki4sxMzPD09OTWbNm8fjxY06cOMHt27dRUFBg3LhxzJw5E3l5eSG6v2fPHgDmzp3LypUrqaqqoqamBjs7O4yNjYVtrCRvpquri4eHB3Fxcbi4uGBnZ4eXlxf29vaUlJSI8SGTyaitrRU87nXr1rVL9qywsBBNTU1SUlKora0Vk//V5w8PD2fr1q1UVlYK+RYpw//48WMhAu/h4YGWlhYvXrwQ5Hypg/dvKw4bN25EWVmZIUOGCDkpW1tbevbsiZqaGg8fPuTGjRvo6+vTqVMnqqqqMDc3b7fesvSMenp6QkZFei4poxUREdHG6lJyqklNTcXKygpfX18cHR0pLCwkMzMTRUVFKioq6Ny5M0OHDiUpKYnLly+TnJyMi4sL8fHxFBUVsWzZMtFMGhkZSUREBFZWVujr6+Ps7ExiYiIHDhxgxowZIisrvWftgbQ2+fn5UVtbS0NDA9evX+fIkSMMGDAADQ0NTpw4QVZWFmPGjGH8+PGCfqWrqytK7DExMaSnp/Py5UuOHTsmri+TycTaKB1qrK2tkclkHDhwgMrKSmHzm5qaSllZGQYGBowfPx43NzdR6oyNjWXQoEFMnz6dGzdutOsZMzMzOXPmDBYWFri7u7Njxw6gtXnH1NRUmLHIZDJBSejduzcHDx5ETU2N0NBQlJSUOHPmDKampjg4OKCtrU1sbCy3b99GJpNx5swZGhoa0NbWRkVFhYaGBpqamoRcnIaGBuPHj8fIyIjw8HAePHhA3759ef/99+nTpw9KSkoYGhoKHcr2QBrX9fX1JCQkcPnyZQICAsTBrqSkhPv372NsbIytra1wi3R3d0dVVZXIyEhycnJwd3fHy8sLGxsbUlJSkJeX5+bNm6irq6OlpYWPjw9GRkZtGvgkS25oDYQlfXVJweTJkycUFxfj6upKYGAg0EpTWLJkyW8Oef8IUVFR3L59WzSdbt26le3bt3P79m2srKwIDAwUvSKdOnXi1q1bAAwdOhQ7Ozu++OILoe+am5tLZmamKHvX1NRgZGSEnp4eaWlp5OXltVH4CQkJISUlBQUFhTal8tLSUhISEnB0dERNTY3g4GAyMzPZsmVLG1OK14W/vz/KysqEhobi7++PiYkJpaWljBw5Emtra44ePcrJkyfF6+Xl5SkrK8PV1RVjY2OKioowMDBg+PDh6OjoUF1dTVJSEnV1deTk5IhstKWlJZMnT6a8vJwdO3ZQUFDAgAEDxHipra3FzMwMKysr0bCtra1Nfn4+Hh4eQjJs48aN7Qpe6+rq8PT0pKGhgStXrmBmZsbDhw85d+4c0BoTODg4oKamRnFxMcePH+fRo0fIy8ujo6NDYGAgRkZGREdHiz1H2uOl+9+5c6doVi8rK2P//v10794dHR0ddHV10dTUZOjQoSQkJNChQwemTZuGvr4+aWlpjBs3Di8vLy5dusSJEydE094/QruDVzU1NcLCwhg3bpyQmUlISODq1asMHjyYn376SViD3rt3D3t7e5EpBARnbOHChVhYWJCTk4OmpiYDBw4U14+IiKClpYVHjx6hq6uLkZER9vb2YiGWyWQ4Ozvz8ccfC6kn6fQuWZypqqqioaEhmsReF/7+/kydOhVVVVUqKytFIFZXV8fZs2fJy8vj66+/FtlnSXBXVVUVDw8PYmNjhcXt48ePOXr0qChhxsTEoKWlxVtvvUVAQADl5eVcvnyZpqYmunfvjoGBgWi8UVNTw8rKisLCQo4cOUJ8fDzy8vJt9Ov69+9PcHCw+Bz+CKTA9dWDQF1dHfPnz+fEiROEhISgoqLCF198wdq1a+nQoQMJCQlcuXKFiIgIoUlXVVXFd999x9mzZ8XiNGXKFHR1dVmxYgVKSkp8+umnDBo0CGjd7KXANT4+nsePH+Pm5oa3tzfW1tZkZmaKZhIpQ9Ye1NbWsmXLFk6dOsXbb7+Nvb09ly9fxtDQkM8++wx3d3dMTEy4ffu28GCWyP+5ublik5CTk0Mmk9GtW7ffZA83bNjAuXPnCAoKQl1dnTt37qCmpsakSZNISUkRChNmZmbY29ujo6MjgteWlhbB65FKa69ynn8PjY2NZGRk4OPjg4+PD01NTcK4QHKfWrVqFc+ePWPLli34+vpy6dIl1NTUcHBw4PTp05SUlBASEkJwcDAuLi7Y2NhQX19PVlaW2BSbmprEfWZkZHD37l3s7e2RyWRER0fz008/AbB161Y++OADZs+ezcmTJ9m+fbuwu/0jlAHpfVFSUqJXr17iFN/Q0EBVVRVLlixhwYIFJCcni8YOqRrz7NkzBg8ejLu7Oy0tLaSlpVFeXs7AgQPZtGkT8vLyyMnJsXHjRpYtW4apqangmRkYGDBgwABxDx07dsTNza1NA0F8fLzofpdw9OhRzp49+5vM4j+ClOWbO3cuM2bMICUlhW+++UaYakBro53k3FZTU8OPP/5IXl4eQ4cOxcnJifz8fC5evMjevXtJTk5uY4mdnZ1NY2MjysrKNDQ0IJPJ8PT0ZNu2bSxYsED83tSpUzE3NxeZpgEDBtC/f3/k5OSEI13Xrl3x8/Nrd/C6c+dONmzYwJo1a3BxcWHnzp1kZWXRp08fTE1NsbOzo3///igoKAh+X48ePYTbmaSfuXfvXmxtbXn//ffZvHkzmzdvZs2aNeTm5mJra0uHDh0ICAhg3rx5PHnyRHB9ly5dSp8+fdDV1cXW1paKigq++uornj59yo4dO/juu+/47LPPxDhvbw+BtDaFhobi7e1Nfn4+Z8+epU+fPoLupaGhIbLZZ86cYe3ataxYsYIpU6bQ3NxMYmIiJSUlXLt2jerqarZv386AAQM4c+YMpaWljBgxQmS933//fezs7Hjrrbf44YcfiI2NJSQkhFOnTtG1a1fRtZ2dnc3Fixc5d+4cPXr0YN26dUIm79Xs6Ougvr6eZ8+e8fDhQ7p06YK/vz/R0dE0NTWJwFvSL71w4YL4PUlT+/bt25w4cUJYhjo6OqKjo0NWVhYVFRXk5eWRmpoq7JcPHjyImZkZAwcOFFSAVzPWFRUVwnHs4cOHuLu74+/vz/z581mxYgULFy5sdzVSohSZmZmhpqbG3r17aWhoYPr06Zw8eZJx48ZhaWnJhAkTqK2tJSoqioSEBEJCQnBwcCA2Npa0tDQGDhxIx44d2bp1K3V1dfj5+TF37lxu3rzJ+fPnWb9+PUOHDmXmzJk8ffqUX375RSTmmpubRem9sLCQly9fYmBgwLvvviviG2jdO/42q/l7uH79OkOGDOHs2bO8//77pKWltTmolZSUkJ+f/xuuaUZGhtDjv3HjBlu2bKG0tFQchiWDhWPHjjFz5ky++uorNmzYwPTp01m6dClbtmwRe76E9957D0VFRXENSVvfw8ODCRMmMHjwYDZv3vy7z9Tu4HXx4sUUFRUJng60NjQFBAQwZswYFBQURHdpXl5eG87PpUuXhFpBYWEhxsbGtLS0sG/fPrS0tJgyZQqTJ0/mzp07bN++HXV1dXr16iXK9xs3buTGjRtMmTKF0aNHtwnkJN7I4sWL0dDQIDs7+w85+0gTu6GhgaSkJOHzHhcXh4ODA6NHjyYtLY1vvvmGPn364OfnR1hYGLq6uigpKXHv3j3U1dUxNTVl/fr11NXVYWFhga6uLps2bcLb25uNGzdSWlrK8uXLqa2tFVq3gLBKTUlJEbxEaLXlNTY2FvJR0Gq5GhER0e5nPHXqFNu3b2fQoEHMnTsXaF0QpOC1pqaGBw8eAK0lk169enHz5k2KiorQ1tZu46xUWVlJeno6WlpaqKioMGTIEIyNjbG0tCQ3N5cbN25QWloqsjkHDhzg9u3bjB8/XkzapKQklJSUhHD19u3biYuLY+DAgejp6f0hfUnpXl7lEnfp0gUbGxvU1dWFm0d6ejpmZmaEhoYK7byGhgY6duyIhYUFjo6OaGpqCn7XypUrycjIYODAgZiamvL222/Tp08fkpKSSElJoUuXLgwcOJDLly/z4MEDjIyMhL0iIJQzdHV1xXt/7do1HB0dSUlJee3nk5eXR1VVVUjBbd++XXQDv3jxgoMHD2Jra8uGDRvw9vYmNjZWmAYoKCiQlpZGfn4+gwcPxtfXV8wVdXV1tLW1RSAt6cWamZmRkJBARUUFTU1N9OjRg969e5OVlcXTp0+FuPxPP/2Eu7t7m+zH9evX2bt3b7t1XqXMZFhYGGVlZbz33nvEx8ezfPlyxo4dy5w5c+jcubMIOJKTk0lNTcXf35/u3buzZ88eNm/eTEVFhdBlfvWAIC8vT11dnaCCGBoa0rlzZzEXW1paRDUHWrUgv/nmGywsLPjmm2/o1KkTNTU1nDx5koyMDAYMGPC7wtqvQldXV5geSJv3sGHDGDlypCjt9e3bFy0tLY4fP467uzszZ85k/fr1nD17ltGjR9PU1MRXX31FaWkpAwYMICkpiYyMDCZOnMj06dNpamoS8/r58+fY2toSGBjIpUuXOHnyJKampty4cYPLly+jr6/PlClTMDU1FUGwnJwcV69epa6urt1BD7Rm7ebOnYulpSVPnjzB19eXESNGiIy+hoYGtra2KCoqYmxszJ07dzhx4gTvvvuu+Kyys7Px8PBAV1eX9PR0nJ2dGTJkCHV1dRw6dIj6+nqCgoJYtGgR0KpFLi8vj6amJh07dkRXV5ecnBw2b95McXExGzZsQF5eXjh+Qeu6b2Rk9Bt3s9dBfX09Dg4OODg4cPv27TbjRuKhS4ejyMhIXr58SXx8PIqKiixdupQVK1YwfPhwsrKyBLdTUVGRAQMGoKioiJKSEhcvXqSoqIgpU6YwatQovLy86NatG9evX6dXr16/CRAMDQ3p2bMnOjo6yMnJiQ56fX19li5dKtb314HkVqagoMD69evZu3cvHh4eLF68mJs3b7J582a+/PJLzM3NBT82KCgIbW1trl69KmS5pAN8aWmpcPJLTU1tY5ogZQZv3brFgAEDBK/ZwMCAtLQ0nj59ytChQxkyZAjh4eEcP36cCRMm4Ovri4KCAiNHjvxDh+UHDx5w584dzMzM0NXVFcY9kquikpISTk5OQg/83XffFYoVAwcO5MMPP+TYsWN069aN4uJinj59SkhICGvXrqVr164MHDiQsWPHEhISgqKiIsHBwXh5eYmms8LCQi5dukRwcDBmZmaYm5uzcuVKunbtypw5c1BQUODy5cuCljR16tR27f3Xrl3jp59+wsvLi2nTpnHo0CHU1dWZPn06ubm57N27l/j4ePz9/YVTaGNjI4cOHeLQoUNs2LCB3r17M3r0aE6fPk1BQQE2NjZs2rRJVEcXL14sbKznz5+Pvb09BQUFnDx5koaGBkEJVFZWFtbTb7/9Nr179+bWrVs0NjYye/Zs3n77bTQ0NEQG/79Du4NXyd60uLiY3NxcTE1NhbtIQ0MDGRkZmJmZiXIotC4+0oldEp+uq6vDzMyM+vp6Nm7cSEJCAlZWVvTs2ZPRo0ejqKiInp5eGwJ2cnIyly5dEllaqQyqoKDArVu3OH/+PObm5kycOBGZTEZKSkq7S3nV1dU8fvyYmpoa5OTk8PLyEv7T69evF97UGzduZMeOHUyfPr2NNImLiwv5+fnk5+fj4+MjStD5+fnU1dUJjbtt27Zx6tQpbG1t6dGjhwjEMzMzBcfIysoKR0fHNqfOjIwMjIyMUFNTIzIykh07drSrBASt2oOSTJSEqqoqlJSUhAbqwIEDSUpKwtvbmw4dOtChQwcKCwtRVlYWQRe0ZjgTExPJzMzE0NBQpPqrq6tZu3atkPxqbGzk559/5vz58zQ0NNClS5c2VJBHjx7RrVs3rK2tiYiIELacSkpKbWSg2oOZM2cyefJkwcPp3r27yPbW1dWhqKiIs7Mz/v7+rFixQnzf2tpaVAte3RRu3brF4cOHSUpKQlVVlcWLF4vsWWVlJf3798fT0xNLS0tcXFwwNzdnwIABlJWVcfPmTXr27ElxcTHr1q1DVVWV4OBg5OXluXXrFn379m1X8Co5PEHrvHjy5AlOTk4YGhoSHR3NxYsXWb58uThk3rp1iwsXLlBWViZ45F5eXqiqqhITE0NjY6NwSZH0DgGhMSyVXy0sLOjevbvIOO3atYuYmBhKS0t58eIFHTt2ZN68eVy9elVkzp89e8bZs2eF+9XroqWlhatXr/LNN9+grKzMhAkTUFZW5uXLl5w8eZLJkyejoaEhDga5ubkkJSUxceJEevfuzePHj3n69CnQSsHp2rUrzc3NFBQUoKioSFVVleDyNjQ0MHz48DYC2vX19aSlpQlNx/j4eJ48eYKXl5fgU548eZK9e/cybNgw5s2b1y6ZpZs3b9KrVy+ePn3KhQsXCA4OFuNNUlqQl5cnPz+fI0eOUF1dzYwZMzAxMeH8+fNcvHgRBQUFMc5Gjx4t7LRXrVolxnBFRQUymQx5eXni4uLQ09PD0NBQUCOOHj3K/fv3hdSNVM5vamoS/QIFBQWieaU96NWrFwsXLiQxMZHr16/z2WefiTU9MTGRvLw8MjIyhEpDVFQUGzZsoKCggLCwMNG5rKmpibm5OXV1dSQmJtK1a1c++eQTHBwcmDp1apu+hvj4eLp27YqHh4fYg549e8YXX3xBr169+OWXX4DWQKmkpITCwkLS0tJExaI9aGlpEQmG6upqrKysaGhoICcnBz09PSorK0lOTqa6uhpnZ2dhFS3RrVRUVBg5ciQXLlwgKytL7G3S5yat/ZcvX2bv3r1kZGSwYsUK7OzsmDBhAidPnhSHvPz8fHJycnBwcMDQ0JABAwYwYMAAqquruXDhAurq6vTo0QOgXcGrvb099vb2xMTEcOjQIWJjYwkMDMTHx4dbt25x7do1nj9/jrW1tTDXcXR0JDY2lvv37wvdT0mTt7y8XFRki4qKyMnJwdLSUihTyMvLU1tby5kzZ8Tn4ejoKOTHgoOD6dSpE7GxsTx8+JDOnTuLQ6BUiWqv3NlXX33FjRs36NixI5MmTaJbt25CqWTy5MnCjAIQNCmJxyzRBCoqKnj48CENDQ2Ym5vzwQcf0LVrV+EMKs3tiooKevToQWNjI5WVlejr62NgYICWlhY3btzAy8tLrMmv7n3l5eWkpKTg7+/PiBEj2hW8GhgYcPfuXaHYNGnSJPLz8wkKCiIpKYmqqirh4ufk5ESnTp0wMjISDmnbtm3Dw8ODjRs3MmzYMObMmcMnn3wi+MVOTk5s2LABaF27evbsKarNZ8+epaSkpI1a08WLF9m3bx89e/ake/fuXL58mSdPnuDj40Pnzp2ZMGHCPz94vXHjBtu3bxf2nR999BGBgYF07dqVn3/+mS1btrSx/9q2bRvff/89gwcP5osvvkBJSYnq6mpB5m5paRGyGhL8/Pzw8fEhOTmZL7/8kiNHjrBmzRqWLVtG7969hWPTgQMH0NPTw83NDXV1dfLz8/n444/R1NQkJCSEnTt3smTJEqZPn/7az9e7d2/q6+u5c+cOBQUFQiw5Pz9fBHvz58+nX79+ohmtvr4emUyGqqoq7u7uZGVlcePGDYYMGcL8+fP5/PPPiYuLY9myZRgbG/Pee+8JDkxVVRW1tbWoqqqKU86oUaMICQnh6dOnPH36VNjO5ubmsmrVKnJzc5k2bRp9+vTBwMCAixcvtuszlCxtpfuXgk8p21NeXs6ECROoqqoCWrtNGxoa0NDQaCPUHx8fj7KyMs7OztjY2FBVVUV1dTXKysrIy8uzaNEivLy8+OGHH/joo4+Ql5dn2rRpDBkyRHiYKygoUFlZycaNG7G3t+fdd99lyZIlJCYmsnPnTnbs2EHnzp3bbcNZU1MjOv/l5eVRUFBo47mtqqrKhAkTUFBQEE0bHTp0QEdH5+86nDx9+pSsrCw2btwoshkqKioUFRVRVFRES0sLQUFBaGpqUlVVhaenp1jIT548ydq1a1m2bJlYFNPT0zl16hRaWlpiI2sPoqKiRKCVmpoqbG6trKxYt24dDg4O7Nmzh3HjxjFkyBBqamqoqamhrKyMsrIypk2bxogRI5DJZJw9e5bz58+zZMkSwcsrKSkR2WdJeio4OFh41L8qUN65c2fRQNS9e3f69evHixcvSEtLw9rampkzZ+Ls7CykUl4Xhw8f5tSpU/Tp04exY8eKe9m/fz+1tbVcvnyZe/fu0a1bN1H1SUlJ4fjx40ycOJEZM2agp6fHgwcP2L9/P+fOneObb76hX79+4v+1tLTQ0tIiKCiIuXPnCkOG8vJynj59yt69eykuLmbw4MH07t0bPz8/ysvLuXTpEo2NjZSUlODv7/+HqC0HDhwgKCiIHj16YGRkhIODA5cuXeKbb76he/fuLFy4UPiDf/bZZ9y9e5dRo0YxdOhQPv74Y1atWoWSkhJ79uzBxcWFw4cP4+DgwPDhw9uIft+6dYuamhpCQkIoLS1l9uzZVFdXs2TJEkaOHElISAgWFhZUV1eLwDIlJYW1a9fS0NDAe++9R8eOHUlMTBSc1deFVL61tLQUsofQunZ89NFHPHz4kHnz5ongwNvbm/nz55OWlsY777yDkpISaWlp4n2eNGlSm6YqDQ0Nmpqa2LdvH5qamowePZr09HRRBpWko7S0tPD19W1Tbj179iyWlpb4+vpiZWXFypUr2bVrFxMmTHjt55MOTqmpqWRnZ6OlpUV0dDQnT55ES0sLOzs7MjIysLCwYNasWcycORMVFRX2798vePSBgYHcv3+f9evXo6ioiLW1Nc3NzSxfvhwvLy8WLFiAsbExhYWF/Pjjj+KwaGtry65du3B3d2fbtm2sXbsWExMTVqxYgYeHBxoaGhgbG6OhoYGHh0ebMdEexMTECPrT2rVrhQtbQkKCkLrs1q0bdXV19O3bl9raWuGG6eLigoWFBU+ePBFULFVVVaZMmYKfnx9eXl7IyckxcOBAmpubRaBbXl7O2bNnuXLliiinu7u7iywftPJhfXx8xHiQKHB/BNIeGhAQwIQJE4QesKRB/ioUFBR4++23GTNmDL169aK6uhpra2smTpzI1KlT0dfXp76+nh49elBTU8PPP/9MZWUlU6dOpUOHDhQVFXHgwAHKy8sZMWKE0I8dPny4MDzp2LEjP/74I5aWltTX16OiokKPHj3EXH91L3sdSA5Y0jolyc5Ba+VcWvtjY2N5//33qaioYPny5QwbNox169YxePBgcRAcOnQoW7dubaNa8WqvT2VlJXfv3sXc3BwPDw9MTEy4f/9+G9nS0aNH4+zsTP/+/amqqkJXVxdDQ0PRMPs6aHfwKi8vz+PHj0lPT6e2trZNSVfarOPi4ujXrx9ycnKUlpZSXFyMgoKCyC7m5eVRWVlJp06dkMlkfPLJJ6SlpaGvry8CGn19fZSVlUlNTeXly5eoqKigq6srxOeTk5NJT08XgYYk5FxbW4umpiaqqqrY2dm1u/NQRUUFJSUl0Ujl4OAgsmgZGRnIy8vj5+eHn58fOTk5REZGYmRkhLq6ugjIS0pKOHv2LD4+PvTr14/k5GT+8pe/UFNTQ3FxMZqamjg5OdGlSxfc3d3FIJCyXTk5OeI01NzcTEVFBdra2mhrawvh64qKCmxsbLCxsWl38FpQUCAC10OHDrFx40YGDRpEcHAwZWVlbNq0CT09PQYOHIi+vr4oPUqGCfLy8sTExPD48WOsra2xt7dHVVUVXV1dDh48iJKSEqNHj0ZNTY2xY8dy9+5dnj17ho+PD59//rnICIWHhws72oCAACIjI7lz5w6enp588803bN68mRcvXrRxBXkdFBYWiiA7NjaWI0eOoKamJuRMysrKePLkCXV1dTg6OuLm5kZtbS1VVVXo6enR3NxMTk6OcP0xMDBAVVUVW1tbDAwM2gQqV65c4cKFCzg4ODBjxgxhURwREUGHDh3w8PAQG+m5c+dQV1dnwIABpKSkUFFRgYKCgmjeaA8qKyu5evUqdnZ2mJqa0qdPH+Li4khOTubtt99m1qxZZGVlsWrVKmJiYvD396dTp07Ex8cLnmFwcDAlJSXU1dUJdyJ3d3csLS2xs7NDTk6OlpYWwY1SVVWlvr6e5ORkoXMrHXjU1dVRVlamoqKCuLg4wsPDMTU1ZdSoUWKctjd4TUlJwdzcnAULFoi5JcniqaioEBERQUVFBY8ePcLHxwc3NzemTJmCmZmZ4ELOnj2b4OBgmpubiYuLo7a2FnV1dXx8fDh37hxxcXF07tyZ/v37Y2xsLNzndHR00NHRIS4uTvjUjx07FgUFBY4ePUp8fDx+fn6MHj1aSDK1F56enshkMgwMDERDTWVlpfBVlyg5ZmZmBAQEEB8fz9WrV5k6dSpjx44lOjqao0ePkpKSgqamJpqamgwbNgwnJyfq6upQU1MjIyODR48eoaCgwMCBA1FXVycjI4PMzEyePn1Kx44dBWdQQmlpKSdPniQ8PBwHBweMjIzQ0dHBx8en3cFrUlISZmZm6OnpYW1tzaeffkp1dTUhISG4ubmRlZXVhifs5+eHp6cne/fu5f79+zg4OBAUFER0dDTx8fFs3ryZwMBAunfvLihW3bt35+7du/zyyy/o6OgwYcIELC0tOXr0KO+88w5Lly7F1dUVb29vwsPDkZeXx9bWto2zj46ODp07d243p1fiuF65cgVra2vGjh1LZWUlN27cEEoqJiYmgjuvqqqKj48Pixcv5vr169jZ2bFs2TKKioqE0kRERIRoWlZQUCA+Ph4dHR2mTJmCk5MTt2/f5sqVKyxatIjevXtTWlrKjRs30NTUJCAgACUlJdHYp6enxzvvvIOzszNJSUls3779tYMDCZKNrZGRkVAxiYiI4N69exgaGooDwYMHD4iJiaGpqUlQOxQVFbl586agVTx8+BBlZWU6dOhAx44d0dDQICoqitraWtzd3XFychLjeeHChQwYMICXL1/i7e0tmpoAQfOR1gHpEA20aeJsD5ydnRk8eLBoDJOTk6OoqEhkv5OSkmhoaPhNJ3xzczPDhw+npaVF8H8l5OTkCKOd3Nxc4QIqVbMMDAzacE/9/f2xtramurqa3NxcLC0tBZXFxMQEExMTnj17JsbH6+Jv5T7Lysqorq5GV1e3jcLI06dPhRFRUVER9+/fx8rKSsQL9+/fx8XFRVA5pUY1yR0PWveJ58+fc+nSJXr27Em3bt0YOHAgMpmMgoICod0tue5lZWUxYcIEFi1ahLW1NbGxsa81D9sdvHbt2pWvvvqKW7duoa+v30aAedKkSQQFBXHhwgW2bNnCiBEjWLhwId7e3iQlJXHnzh0CAwNFmT8lJYVRo0aJyVtVVUV6erp4IxUVFVm8eDHKysq/6VZWUVHBxsaGrl274ubmJugBy5YtEzaNffv2JSgoSFjKvS4SExOFC82rHtCFhYVioFVVVbFt2zbU1NSYP39+mw9PSUmJ4uJiLl++zOzZs5k3b54oM3t5eXHkyBGcnZ2FnqYUFI4ZMwZfX18OHTrExYsXhRyRVDrR0NBg5MiR9OzZk8GDB7frmV6FtAlqaGiwa9cu7t+/LyZsQkICe/fuFXanrwZqeXl55OfnC4MKaQJKqK2tpa6uro2QuUwmY/ny5SxZsgR1dfU2E7u6ulpkAI8fP85XX33FoEGD2LZtG+PGjaN3796kpqZiamrKZ5999trPd+/ePYYPHw60Lv7Pnz9HJpMJpy6JG11eXs7+/fvF4aG0tFQcwPLz89m/fz+qqqrCzCEqKorZs2djaWnJnj17UFBQwMrKiry8PEpKShg2bBiWlpZoamqyceNGioqK+Oabb+jZsycTJ04kPz+fzMxMBg0aJLjFysrKWFtbtzEGeB1YWVmxevVqpk6dyuzZs3n69Cnbt2/nyZMnZGRksGrVKlauXImFhQWrVq3iyZMnzJgxg1mzZpGXl4eysjIpKSnY2toyceJE8vLymDBhgihRSxw9aQGF1uySZMpha2vbJpPTp08funXrhqOjI1FRUZw8eZLKyso/ZKLx6jWdnJzajJnY2Fh++eUXunfvzpw5c3B2dubUqVNcvHiRLl26sG3bNmHYkJWVhZWVFRYWFuzcuZOcnBxiYmJITU3F09OTwYMHc/78eeTl5dHX1+fBgwc0NjYyZMgQ9PX1cXV1FeXnOXPm8OLFC1atWoWysjILFixoV7fv38OcOXN+0yAxbtw4Bg8ejIqKCoqKim02Fjc3N1auXCm4w2vWrEFZWZnp06czevRotmzZItQilJSUePDgAbt27aKmpobevXuTlpZGUVER77//vjhY5efnc/36dby8vIQI+ldffcWvv/5K//79GTduHAkJCSQkJLTboADg+++/F+XE1NRUtmzZgrq6OrNnz+bLL79kwoQJImPW3NyMoqIiWlpaTJgwgeDgYEEXAMSYliyn3d3d6dGjBytXrmTPnj0kJiYKbWYvLy9OnTolHNSkDugbN25w48YNfvjhB5HtlTJbEydOpH///qxevfq1ny86Oppt27bx4MEDJkyYgIWFBVpaWrx8+RJnZ2cmTZpEYmIiGRkZYo9ITU0VmSp1dXW+/PJL1q9fz8cff8zSpUt56623BCfZ19dXOPa9//77dO7cmUePHglZNWgNOBwdHXn//ffx8vKiqamJ7777jgsXLlBVVYWfnx9OTk6cO3eODz74QDiRvS66deuGm5sblZWVHD58mDNnzqCqqkpAQAAPHz7k6NGj9O/fn6ysLE6cOIG9vT3vv/8+NjY2ohnXwcGBVatW8fLlS/bs2UNhYSHQulcePnyYJ0+esH79ejw8PJg1axZ1dXWcOHECf39/qqqqxNhLSkoiNTUVNTU11NXVuXfvHkePHsXd3Z01a9agp6fXhkP7utDX16d3795taIrl5eW8ePECT09PTE1NaWxspKCgoI0Ob0NDA+rq6gQGBhITE8PmzZvR1dVl1KhRmJqaoq+vL4J4KbhWVFTkww8/pK6uTmR2pT3ewsKCCxcu8Msvv/D5558zatQoQbcqLCzkwoULbNu2TXyur4vMzEyqqqpE9jQ5OZns7GyCgoLQ0NCgoaGBTz75RNhlDxs2TFAlKysrWbp0KUpKSty+fZvc3FzR3FxdXU1BQYE4oAIiS7xr1y7WrFnDqFGj+PDDD4HWeCA7O1v0VkjXcHV1FevPtWvXWLRo0e823bU7eD1+/DiDBg0SkXhdXZ2w/9LQ0MDOzo6+ffvy/PlzdHR0UFZWJjg4WGQ1qqurBU/2VfHvgoICnJ2dRQZK8vydOXMmL1++5ODBg1hbWwuen+QXr6ioiJycnCgnSZqADQ0NXL16VagBtAfm5uYsX76clJQUVFVVqaqqEuT/6upqcnJyyM3NpVOnTtja2rYJXKF1ETY2NiYyMpLw8HB69+7NqFGjOHr0KJaWliIgNDU1ZfPmzdTX14tShbW1NV5eXpSXl4uTpry8PMeOHSMyMhJDQ0P69u0rFvRXfbtfFz169CA1NRUjIyMGDRokNo9169YhLy/PlClTsLOzo6amhr1795KQkCCEpSXeTmxsLGfOnMHFxQVlZWUiIyOprKxk+PDh1NbWsnr1alxdXRkzZkwbzu7BgwcpKCjgvffeY8iQIUyePBlbW1vh0uHo6CgOKhoaGm1O26+Lx48f8+DBAxYtWkTHjh159913SUhIENfV1NTE19cXRUVFrKysyMzMZN++fVhYWAh5oLq6OsLDw3FzcxOT6vbt28TFxaGuri7MMKytrRk+fLigVUCre1qvXr0oKyujS5cu1NbW0tLSgrGxMX369KFr167k5+fz6NEjEby2V0pK6sSWTtOHDx8mNzdXcCLv37+Pv78/s2fP5u7duygoKDB8+HBUVFTYtWsXly9fprq6WixmN27cICcnh/Lyck6fPo25uTn6+vptxrbUHa6rqysyDM3NzcLjWkKnTp0YMmQIurq6omteErNuD6TF+d69ezQ2NuLj40NMTAy7d+/m+vXr9OnTBwcHBwYMGMDSpUu5f/8+gwYNIj8/n+fPnxMQEICLi4vgJGpoaGBmZkZLSwupqalERkbS1NQk+HZJSUkoKyuLCkhERASdO3dm5MiR6OnpER0dzYULF5g/fz5eXl7s3buX7OxskW37PY7W3+LJkyd07dpV0DlMTExQV1ensrKyjWKKhG7dutGtWzeSk5OFEouVlRWDBg2iR48eIkMjVbju3bvH5s2bmTx5MoGBgTx//py0tDRGjx4tGvQkzWdJbu/mzZt8//33NDY2EhAQwIgRIygoKOCzzz4T/N/2wMrKShz4pfVccn9raWkhIyNDrIcKCgo0NjZSX18vDDh2795Nenp6m8x6bGws5eXlolLi7e0trFMlHv3jx4+FUkN2djZ79uzB3d2dWbNmUV1djZycnNC1ffnyJTdu3KBbt25tGmJfB7W1tbz99tsMHz6cDh06YGhoiLm5OR9++KGYE3fv3iUlJQVPT090dXVpampi8eLFODg44OHhwaNHj/Dz86OsrIwrV65gYGCAi4sLN2/eRF5eHgcHB0pLS9m5cycODg7Y2toyYsQITE1NKS4uxtHRkcbGRuLj4zEwMMDa2pqBAwdSUlJCbW0t9fX1nDp1isLCQmH0ERkZ+drPqKysjL6+Purq6mRmZhIREYGHhwcODg4oKSkJ2pO3tzcLFy7Ezs5OVNesrKzo2rWryJp7e3vz1ltvoa2tLaoDkhSUZCzR2NhIY2MjcnJywq5UW1tbuLPdvn2biIgIQkJCsLKywtbWVti0An+osfCDDz4Q1QAJhoaG2NracvfuXRoaGgQV48svv0RJSYn+/ftjbm6Otra2sHfX09PDysoKBQUFYmJiyM3Nxc3NTcy3O3fu0NjYKA4eu3fvxtzcnL59+1JfX4+SkhIKCgpMnTqVxsZGsb43NTUJYwJJf/rVxNHvQUdHh+TkZI4dO0Z1dbWYTxKnVoqnOnXqJAxPlJSUxHjNzMzEzc0NX19fbt68KRRDFBQUOHXqFPHx8Xh7exMSEiKcHfv164e8vHybxnkDAwMUFRV5+vQpSUlJookwNjaW4uJimpqaKCsrY/bs2b/7TO0OXo8dO4arqyv6+vpUVVW1sUeTtCsdHR1xcnKipaWFhoYGFBUV2zQV1dXV4eLigpqaGtXV1axZs0ZYMkrka0lUGVrL8FeuXKFjx45tbBTV1dWFosHw4cMZPny4yMBWVVVx+PBhdu3a1S7ZjPr6ejQ0NBg7diwNDQ3Exsby/Plz3Nzc0NDQEGVhLS0tBgwYIIJtye1HGgz6+vrEx8ezdevWNm4xRUVF4rUJCQmsW7cOFRUVcRhoaGigV69eKCoqttFgvX37Nrt27WLMmDG4uLiQnZ2NlZXVHwru5syZQ05ODgYGBowYMYJ3332XH374gZ07dzJo0CC++OILoPWg8umnnwqP9V9//RVVVVXy8vI4deoUMTExGBkZcevWLTZs2ICDgwNLliwhNjaWrVu3MnbsWMHLlBQUHj16JEqJY8eOFXIv27dvR09Pj0OHDonFWmrUaC9tQF5enrVr11JVVcWPP/7IuHHjhBQYtAZhW7ZsAVoFxBcuXMi+fftYuHChCF6lBjR/f380NDRITEzk2bNnQqxe+lyUlZUZN26c4EU1NjYik8n47LPPxN/bvXs3CQkJjB07VmR5CwoKKCgoQFNTk6KiojZd7a8DAwMD5syZQ//+/YWhhbq6OqtWrUJHR4fjx49jbGyMqakpgwcPFmXbly9fir+tqqqKsrIyFy9eZPfu3QQGBorXSJy8V4NqLS0tpk6dip2dHa6urtTU1LQpq9XX19Pc3Ex1dTVz584VGdPY2Ng/VMpLTk7mzp07RERECMe2wsJC3N3dqa+v59y5c8ybN4+SkhKys7O5fPkyu3btQk5OjuDgYGbMmCEOHqdPnyY7O5shQ4ZgZmbGli1buH//PkFBQQwcOBAtLS3RIKOiokJiYiL379+na9euIqNQUlLCW2+9JaTpvv32W8rLy/H39yclJYX9+/e3aYL8PezatQsvLy8hZSUF0Hv37sXe3p6pU6ciJydHeXk5ioqKqKqq0tzcjJaWFuHh4Rw4cAA3Nze2bduGlpYWTU1NFBQUiKBJovu4uLjg4OAglBCksVZdXY2SkpKgDERERIjA9dVqgLGxMY2NjVy6dKndEkTz5s0ThwFLS0s+//xzsWb+8ssvnD59msmTJwveYnp6OsrKymhqapKbm8uuXbu4fv06Hh4ehIWFsWfPHqHxqqenJxruXFxcxFg9c+YM27ZtY/78+QwYMIAlS5awb98+du/eLYLTAwcOcO7cOcaOHYuKigpxcXHk5+e3EZh/HeTl5TFz5kyRQW9paRHBN7QmZi5dukRhYSFvvfUWCgoKODk54ePjg7W1NUVFRXh5eTF37lxOnz7NhQsXePvttxk9ejShoaFkZGQQFhZGYWEhK1euBGDWrFlMnjyZpqYm6urqsLS0JCcnh9GjR2Nvb8+9e/fo1KkTbm5upKenc/nyZc6dO8eoUaP44osvyMzMbFfwWlVVJbJzXbp0QV5eHisrK1xcXHB0dMTZ2VnYTfft21ccaGUyGWpqakybNo1PP/2UFStWMHPmTH799VcAQaMYN24cOjo6ODo6Ymtry8qVK2lpacHAwIDY2Fhyc3NFLGBubo6SkhIXLlzA19eXRYsW0aNHD5KSktDS0qK0tFTorrcH06ZNw8zMDDk5ORoaGmhoaEBTUxNnZ2euXLnCnTt3cHV1RU1Nja1bt1JdXU2HDh3Q1NQUMYiWlhbdunXDyckJZWVljh07RnJycptyfUREBJWVlXh6elJQUMDFixdxdXWlb9++qKioiEBdS0tLyHHW19cTHx8vtMil+dOepjRtbW1sbGxYvnw5cXFxHD58GGdnZ4qLi0lNTcXOzo4lS5ZQU1NDfX098vLy5OXl4e/vj0wmw8TERMgWSg6LxcXFdOvWjaSkJE6dOsXTp0+xsLAQCZHg4GAhOyjFhurq6hgYGIjkoo6ODt7e3iQmJrJp0ybq6upYsGABW7Zs+d3na3fwKk2a77//nsTERPr27StSyJs3b+bhw4d89NFHuLi4cPz4cUpLS5k8eXKbzTkuLo6jR4/SuXNnrK2tSUpK4sqVK8hkMgIDA1FTUyMgIEAMWBcXFyZNmsS5c+dYsGABM2bMEHZklZWV4rotLS3IZDLBywwJCWl3GeHIkSM0NjaSmZmJlpYWvXr1wtTUlCdPnqCoqEjHjh3p0KGDyABJMmGSMLRkB9fc3ExDQwN37twhKysLa2triouLhW2cmpoaSkpKzJo1C21tbVGuaGlpQVlZmdLSUj7//HMcHBx49913hZFD9+7dyczMZMeOHfTs2fMPBa8Sif9VcwOpVPkqH+rmzZsicF28eDHTp0+nsrKSdevWERsby7x58xgwYIDo3jYwMKC6ulrwlV6VU2toaEBLS4vJkycTExMjHMnefvttbG1tOXnyJJ6enoKG8uLFC8rKykT3bnsQFBREUFAQ9+7d45dffmHu3Lki+yZlWyQcO3aMwsJC3nvvPRYvXkxtbS3btm3j4cOHzJw5U2Sarays8Pb25tmzZyITDb/1Et+3bx+1tbVi4bl48SJXrlyhV69e4kRbUFBAeno6urq6yMvLCzHr9kA6QMJ/STrFxsby1VdfMXbsWDp37iwWCclvOyMjAwUFBYYOHUplZaXIeFlYWDBu3DhhvJCamiq835WUlKitrRU0Gin7Cq2ZvbKyMgYOHEh1dTXnzp0TgaOzszPl5eWcOnWK9PT0dntxQ2tZ/NmzZygqKmJhYUF+fj4WFhZ89NFHGBoaUllZydq1a0lKSmojj+Pp6fmb8WdhYYGGhgb6+vrCNnjWrFnY29vTv39/Xrx4QUJCAvn5+dTW1mJpaUm3bt3w9/enurqa9evXk5WVxdy5c3FxcRENGNJGrqmpycyZM3ny5MlrP5+npydycnIoKiqio6NDU1MTJiYmBAUFERsby8qVK4V5gcR9t7CwYPTo0Xh5eXH37l2SkpK4ceMGQ4cORSaT0djYSGlpKXp6egwaNAhdXV0RnHbo0AFXV1f09PQ4c+YM58+fZ/To0cJM5vDhw1y7do1+/fqJzKCkKiMddv4IpDlSVlbG48ePKS0tRVdXFz09PYKDg4XlaG1tLdra2nTt2hVLS0tUVVWZPHmy4EtK49Xd3R1DQ0OUlJSoqKigvr5eBNqbNm0S2svSxllQUEBNTU0bbqGXl5fYO0xMTBg2bBjy8vLtbmo6dOgQWVlZBAcH06VLF9TV1Xn+/DkvXrzAw8MDa2tr5syZQ35+vjjkaWlpkZKSQkJCAvr6+uKA5ePjg6KiIu7u7shkMmbPni243lpaWnTt2hV7e3smTJiAu7s7ycnJohmsrq6OpqYmSkpKqKysRENDAwUFBQ4fPixkm6T3428bkH4PTU1NNDU1UVVVhZaWltCFVlZW5tmzZ2RnZ4v7lDieUnOOqqoqampqgir1Krdaug9jY2MMDQ1JTk7G0tISPz8/wZ9PTU1FTk6uzT3b2dnRtWtXcUiTek6kZvD2rqXQqqseFRVFfn4+GhoauLi4iKpT9+7dMTY2Fg26/v7+on/l4cOHQkM4OTmZHTt2oK+vT+fOnUVS4tV5I6kPAMIQpLa2ltjYWMzNzTExMaGxsZHw8HCSkpLw8/PDw8MDGxsb4QD5RyD1Hg0fPpwRI0aIBmhtbW2Ki4vJycnB3NwcTU1NGhoahLqMvLw85eXlbVQ4fH19SUhIIC0tDW1tbfr160fnzp2pra1tQ397VcpUisskmJubY2VlxbNnz9DV1SUwMJCCggJ2797NlStXXsuUSO7VLrF/hNDQ0Nd74b8xwsLC/ttZ+5/+fPCf/4z/Cc8H//nP+Gac/mc/H/znP+N/wvPBf/4zvhmn/7nPJ/+vvpE3eIM3eIM3eIM3eIM3eIM/itfOvL7BG7zBG7zBG7zBG7zBG/zZeJN5fYM3eIM3eIM3eIM3eIP/M3gTvL7BG7zBG7zBG7zBG7zB/xm8CV7f4A3e4A3e4A3e4A3e4P8M2i2V9c9CaGjodOD3vAZbwsLCFP4Ft/O/gtDQ0DTA5r/5cX5YWJjpv/B2/lcQGho6GFgIuAIGQC4QCWwICwu7/2fe2z8DoaGh64GugBNgCNQC6cBJYFNYWFjxf//b//4IDQ2VA2YAcwA3QAFIoHVu/hQWFtb8J97ePx9ycquBpYAjMlnm/+A67wPrAA9ksvh/0t39j/CfPBdDQ0PHAD2BzoAnoAXsCwsLm/Jn3tf/Gt6M0/+T+P9gvzAARgKDAQ/AAmgAYmjdM3aEhYW1/PdX+Ofhz8y8PgVW/Tf/Xf/ray78KXf2z0U5f/8Zv/0zb+qfgb9O1LOAN3AR2AhEAcOBu6Ghof8JG8tiQAO4Quvz7QOagJVAdGhoaPt8Xf/9sAv4FbADDgFbAWVan/XQX4PbPwetAo8zkZN7gJxcJXJyNcjJPUFO7j3k5Np/qJWTswI+ALb8bkAgJzcVOTnZX/+b9XdeEQYU8G8yj/8/mIufAO/SGrxm/7m38ncgJzcYObnLyMllISdXi5xcCnJyR5CT8//9X/7Ntf77cSonNwY5uR+Rk7uNnFzFX8fn3n9wtTfj9F+L//T9Yiyte0Q34CHwPXAMcAe2AYf/VXvGn5Z5DQsLe0prAPsbhIaGSqevLf+q+/lfRFlYWNjKP/sm/tkIDQ01pXWBzQc6hYWFFbzys960HkBWA/9oYf2/AO2wsLDfqF6HhoauBVYAy4HXtzr5N0JoaOgIYCqQCviGhYUV/fX7SsBhYDQwDdj5J93irr/eXwGtgXU10JfWTaEHcnJjaZ9cyqeACvDNP3xVa/DwI1AFaP7d18hktcjJbQTWIycXgEx2rx338U/F/ydzcTGQBSTRmoEN/3Nv5xXIya2nNUtaTGuGrQhwoDUgG42c3FvIZO157//ROP2E1sxzFa3vh8s/vNKbcfqvxn/sfvFXJALDgHOvZlhDQ0NXAI9o3TNG0RrQ/q/i347zGhoa6g740Xq6Pvcn384b/PewoXX8PHx1EQIICwsLByoBoz/jxv6Z+HsL0V9x+K9fHf9V9/K/gFF//fqdFLgChIWFNdK6gQIs+JffFYCc3Aj+K7B2QyabhUy2kNbM20n+K7B+3evpAJOBa/8w69pq5bOD1kBk8+9cdS/QzJ+/Gf3Hz8WwsLDwsLCwl2FhYf9e2o5ycq8GZK5/HafLkMnGAP0BOVoDste93u+N08W0lqS1gdf16n0zTv9F+A/fLwgLC7seFhZ25m+pAWFhYXn813rZ619xL/92wSsw969ff/0P4duphIaGTgkNDV0RGhq6MDQ0tHdoaOj/WR7vK3hJK9fFNzQ01PDVH4SGhvaglZN29c+4sX8Rhv71a/Sfehf/M0ic65S/8zPpe96hoaG6/5rbaQMRWCOTicAameyPBtYTAXVaM7j/CO8BfWjlAVf/w1fKZDnAbWAMcnLa7biXfzb+f5+LfyZEQIZM1iYgQyb7IwHZPx6nMlk4MtnLdlUc3ozTfwf8J+wXvwfJb77pX/HH/jTawN9DaGioGjAFaKGVP/GfAFNgz998LzU0NHRGWFjYzT/jhv4ZCAsLKwkNDf0I2AA8Dw0NPUlrtqoDrWWFK/zXQeT/PEJDQz+gtYSsQyshP5DWhWjdn3lf/0NIQaHd3/mZ/Sv/dgEe/O/fThu8VmCNnJwuMlnZa1yv71+/3vlvXyEn15HWz3MjMtkt5OT6vMZ179KaaehBK5fvX47/3+bivxlEQIacnGGbg5acnBSQnWzH9X5/nP4xvBmn/0L8h+4X/y1CQ0MVgbf++r8X/xV/898t8zoO0AUuhIWF/fEOy38f7ACCad2INWjtzvsFsAUuhIaGev55t/Y/R1hY2Pe0ZsgUgdnAMloJ3ZnAzr8tDf0fxwfA58AiWheii0BIWFhY4Z95U/9DSJvYktDQUH3pm39diFa98jq9f+ldtaI9gfXrIJDWLFji3/2pnJwirYfMDFq5aa+Lx3/92qMdv/NPx/9nc/HfBzJZCfARYAI8R05uC3JyXyEndxi4TPsDsn88Tv843ozTfy3+E/eLf4R1tDZtnQ8LC7v0r/iD/27B65y/fv3lT72LfxLCwsJW/ZUjkh8W9v/YO+/wrKp07f/Se++9BxJCGjUQCB1CLyIBAQEFJHQUFBUQUemCoFEsFGnSu/TeSSUJ6b333tv+/nh915hxzgzxzJk5Zz7u6/KKvHWvd6+9172e537uJ6QuJCQkNiQk5B1kO08NZBWI/2cRHBy8CjiJrKDHCRlB74YsMnY4ODh4y7/v6P65CAkJMQ8JCVFAthGZiIxARQYHB/v+e4/sv4VfkDl6OCGLhHwfHBy8E1kh5UhkUSWQ6eX+1RDEGgUFQax/I5kdI9YKCqrIyEXB30m3rgV8gFlIUn0HjrPgt7+2HXjPPx3/P12L/+sgSTv5O4TsD3KC/wovN0//LF7N038h/kPXi7+J4ODgJcC7QAKyOoV/Cf7XkNfg4GB3oA+yCspf/82H8z8NubD537oL/u8gODh4ALAZOB8SErIiJCQk7TeCHoHMBy4XeDc4ONjx733O/zX8thE5AwxD5lH487/5kP40fhPdj0UWJShAduOZg+wa9EeW0gNZtf+/Gu2I9W8RrZ38OWJt9Nvf8r/5rIJCT2TR1u1IUkd9Jst++2v8d1/1P4j/X6/F/zVQUPi7hAwFhZclZH9/nv738Gqe/hvwn7Re/C0EBwcvROb+EgcMDAkJKfsHb/mn4X8NeeU/r1Dr70FOBrT+rUfx38Po3/7+wbImJCSkDplthiKyaNZ/HEJCQjKRXbBd/rr44P8SQkJCWkJCQraHhIR4h4SEaISEhOiGhISMQDY2b2Qm2y/+5QcmSf9MYi2PpKr/4Zm/yAWS+EshWEeg8Vff8e/A/9fX4r8VCgoD+I2QIUkrkKQ0JKkOSWpHyFBQeBlC9l/P0/8+Xs3TfyP+U9aL3yM4OHgZ8DUQi4y4Fvz9d/xz8b+CvAYHB6sjW5zakBmm/6dDblz9t4pR/q9A7be//1Ulrfzxpn/Bsfy7YPnb3//EzdYMZIvo8d+ss/71kKQWJGk7kuSNJGkgSbpIUseJtaygq4m/RLZ+D21k1kNuQMPvGhNIyDRrAD/89tjOv/F++Wf+O7V6r67Ffx/+S0KGJHWMkP39efrfxat5+u/Hf8x68Vvh3Q5kmbCB/w6t8v8K8opMH2SATOz7n1CoRXBwcJffF8H87nE7ZLsV+L9txnz/t7/zgoODrX7/RHBwcCDQF2gA/m2m2P9dBAcHd/7NWPuvH1f8zXTaFHgUEhLyP5Hm+5cgODj4D9Y5wcHBPZAJ8GvoiEflvw6CWP9mnfUyiAEs/oZVUCOyDfPf+i/yt9c8+O3ff0tSIC8Yi3rZg/8fwH/8tfi/GP9sQvZfzdP/Ll7N0/9h/P+wXgAEBwevQbY+hAODf+8R/q/E/xarLHmh1n9CRy05JgMfBAcH30ZmtF6NTA81CtnC+yv/S1r2/UmcRObJNwSIDw4OPoMsveuGLBqhAHzwf7yX8whga3Bw8D0gFVmq2gxZhx9HZOOd++87vH8KrgcHB9cjS/1UA12QaUobgYkhISH/vuyAgoIuklT1V4/9WWJ9B5kOsSe/95KUFWf9rfavoKDwCbKI2QEk6b+y7uv9299/Z8en//hr8bducON/+6ecIPgFBwfv/+3/S0JCQt77Fx8WyAjZImAeCgp7kKS/tK5VUPgzhOwOf2ue/vfxap7+z+M/fr0IDg5+E9l9txXZ3F8SHPyH3hcZISEh+/+nj+XfTl6Dg4PdkGnY/tMKtW4DnZAtfn7I9K0VyKI4B4GD/+u6xXQAISEhbcHBwSOBhUAQMn2XJrLCgF+BXSEhIdf+jYf4z8ANZBuqvshaMuojM65PQnYOd/0rBer/QziJ7PxNR6aLy0PmsbwpJCQk4994XADXUVD4L4k1ktQRYn0KWUXscP5ZpEBBQRGZFV4ikhT7T/nMP4H/T65Fb/7YUc2Rv9imZSLTR/+r0Y6QoaDwNwkZkvSyhOzvz1NZ57nxv/1LkHgUFPb/9v8lSNJ7f/WeV/P0X4P/H9YLuXWhEjIbsL+Fu/wLWoor/PMdOV7hFV7hFf4JUFBYiWyRc+IvxPoqsAlJyvgTnxeBbMG3QZL+se5MFnldB8z9m5FXBYVhvx3P8t/skl7h/0coKKjwF0Lmzl8I2TNgF5LUMUL29+bpX+bkf4VMJMn+r97zap6+wn8cXpHXV3iFV/j/AwoKU4EjyKK2Z/4Jn3cKWUrQCUmq/G9/3iu8Aryap6/wCi+BV+T1FV7hFf7/gIKCArKiKw3A+79lBK+g4A1EAEuQpK//watf4RVeHq/m6Su8wj/E/xa3gVd4hVd4hf9ZyEjAPOAMf7Gt+bOwQOYL+90/euErvEKH8GqevsIr/EO8iry+wiu8wiu8wiu8wiu8wv8ZvIq8vsIrvMIrvMIrvMIrvML/Gbwir6/wCq/wCq/wCq/wCq/wfwYv7fMaHBz8f15fEBISovBfPfefPj74zx/jf8L44D9/jK/m6X/2+OA/f4z/CeOD//wxvpqn/7njexV5fYVXeIVXeIVXeIVXeIX/O5Ak6aX+W7BggbRgwQLp7bfflmpqaiRJkqS6ujopLCxMioyMlIqKiqTm5mapvr5eqq2tleSIi4uT9uzZI125ckU8FhYWJm3YsEE6duyYeKympkaKiYmRqqqqJEmSpKdPn0q7d++W7t+/L9XX17d73YYNGyRAAqRly5ZJhYWF0oYNG6QePXpIN27caPfa1tZWSX7sLzO+mpoaqaCgQKqurpb+GqGhodKRI0ekxMRE8VhbW5skSZJUVFQkpaSkSOXl5eK5goICKTk5WSouLpba2tqkqKgoacyYMZKWlpb0ySefiNclJSVJ9+/fl27duiXl5+dLkiRJERER0oABA6SgoCAx/szMTGn27NnSsGHDpE8++UTauXOntGnTppca3+/H6OPjI/3yyy+SJElSRkaGZGVlJXXu3FnKz8+XWlpapP3790uPHz+WJEmSGhsbxXFOnjxZ0tbWlk6ePCkey8rKkvLz89udcznu3Lkj7du3T7p//76UnJwsRUZGShkZGeI3k6OhoUHat2+fZGFhIRkYGLT7/NbW1g6fw7lz50pNTU3tvqO5uVnKzMyUqqqqpLa2NiklJUXMtW+//VYCpEGDBklxcXFSc3OzeM/06dMlZWVladu2beJ8z5w5UwKk3r17S4sXL5b69+8vBQUFSfHx8eKYJUmSCgsLpQsXLkgZGRmSJEnSli1bJBMTE6l3797S7t27pR07dkje3t6Svr6+9Pnnn3dojKWlpdKpU6ekIUOGSAMGDJDu37/fbrxtbW3SixcvpPDwcKmurk48Xl9fLzU0NLT7faqqqsS/CwsLpblz54rra/fu3eJ1BQUF4tqvr6+XBg4cKAHS1q1bpbKyMnFey8vLpcDAQPEZa9askZqamjo8T+XjaGlpkaqrq6WysjJxLOvWrZMAqW/fvmLsNTU1YhwZGRmSi4uL5OrqKn7/pqamdtdnYmKidPbsWSk6OrrdPPlrtLW1SUVFRdJPP/0kbdiwQSosLJTy8/Olvn37Srq6utLBgwfFaztyDtesWSMB0sKFC8X7b968Ka1evbrdZ8bHx0sfffSRtGXLFqmlpUWSJElKS0uT7OzsJGdnZyk1NVWSJEmqra2VsrKypMjISGnPnj3S6tWrpZ07d4p5KX+N/DPkqKurE9eCJEnS4sWLJUCysbGRpk+fLm3YsEHKzc196fH9fowlJSWSJEnSsWPHpKCgIGn69OmSn5+fpK+vL61du/YPv/XPP/8sde/eXVq/fr104MABydnZWfLy8pKys7Pbve769euSurq6NH36dEmSJGn37t0SIOnp6Un79u0T963a2lrp+++/l/bv3y/FxMRIK1eulFRUVKTly5eLz3r69Kl0/fp1MTc6cg4BydraWnr8+LFUW1srTZ8+XRo0aJCUlZUlSZJszsmvGUmSXWvy+3laWpoUEBAgDRw4UMrJyRHHm56eLp04cUKaP3++tHv3bjGW31+zv7+H7tq1S/L29pYGDBjQbt60trZK+fn50pIlSyRAmjNnjniuI2OUY+LEiZKKiop04sSJdueiublZWrt2rfT6669LYWFh4vEhQ4ZI6urq0vnz58Vj1dXVUnNzs5SUlCTFxMRIDQ0NkiRJ0rNnz6QPPvhAGjFihDR79mzp9OnT4ncrKCiQ9u/fL61evVravXu3FBUVJX6LxsZGqa2tTaqvrxe/a2NjY4fnaVtbm1RSUiLduXNHWr9+vTR79mxp69atUlFRkfjMiRMnSj179mw3xvv370v37t1rd/38nq8UFhZKR48ela5duybV1tZKubm50oULF6Rz585JcXFx0pMnT6SxY8dKXbt2lcLDw6WKigpp9uzZ0rp16yRJkqTLly9LLi4ukrGxsaSnpycBkp+fn3T8+PE/dQ7lKC8vl/bv3y8tX75cevz4sdTU1CStXr1a3LO/+eYbqa2tTXr48KG0a9cuKSIiQjp58qQ0fvx46ezZs1JTU5P09ttvS/b29oJzyde99PR0qUuXLpK3t7cUGRkppaSkSN9884309OnTPxzH5cuXpQsXLojf0szMTAKkWbNm/cPxdbg9bJcuXdDS0qKmpoabN2+iq6uLu7s7JiYmACgryz4yNjaWq1evUl1djZ+fH8OHDxef4eDgwJgxY3Bzc6OoqIhNmzZRX1/PmjVraGtr46233mLv3r0MGjSIMWPGkJyczMaNG+nTpw+LFi3io48+QlNTk5ycHEaNGoWpqSljxoyhtLSU3bt3s2PHDkxNTZk8eTKBgYEdGl9dXR2NjY2YmZlRUVHB/v37MTY2Zvr06XTv3h1NTU3Mzc1paGjg8ePHGBoa4u7uTnp6OmVlZTg5OQFQUVFBeXk5nTt3BqCoqIht27aRkZHB+++/z8KFC8V3GhgY0NjYSGNjo7D08/HxYdu2beTn55Ofn4+DgwO2trbMmjWLtLQ0bGxsUFNTo7m5mczMzA6NccWKFXTv3p24uDgePHjAa6+9ho2NDbm5uaipqfHmm3/pwqisrIwkSSgoKLB27VpGjRqFkpISsbGxGBgYAKCvr4+6ujoADx48oLm5mYEDBxIQEICjoyO7d+9GSUmJpUuXYm5uLn6PR48eceHCBXJycpAkCVtbW7S0tAgLCyM2Npa6ujqGDBnC0KFDOzS+8ePHU1tbS11dHRcuXOD+/fu4u7szd+5cdHR0AGhqahLHPHnyZHJycjA3N0dbW5vS0lJ0dXWpra1FU1MTZ2dnfH19AZkF42uvvYaVlRUvXrzg5MmT5Ofni+dWrVqFt7c3AKampowePZrW1lZaW1sZPXo0qamp7Nmzh5qaGtatW8eGDRuIi4ujd+/e/PLLLy89RkNDQ7p06UJAQAD6+vr4+fmRm5vLrl27sLe3Z8GCBbi7uxMeHs7Dhw8xNDTEy8tLjPn3SEhI4MGDB9TU1FBRUUFxcTETJkzAw8MDKysrMjMzsbOzw8zMjKamJiIiIsjIyGDmzJn06dOH1NRUIiIiGDx4MGfOnOHcuXMMHDgQf39/7t+/j6amJioqKh06hyCbI6ampigpKaGtrQ1AfX098fHxeHp6sm7dOhITEzl37py4DuUoLCxESUmJhIQEduzYwWeffYa2tjb6+vpUVFSgp6eHq6srTU1NbNmyBUVFRb744gu0tbVZtGgRV69eZfTo0SxZsgQvLy8MDQ0xNjZGW1sbU1NT6uvr0dHRwd3dnZEjRwKQk5PTofE5OTkxfvx4MbcA/P39qaurIzY2lkOHDjFy5Eg6derEmDFjiIqK4qeffkJDQ4PQ0FDU1dUZOnQojo6yDqmamppoampiY2ODkpISLS0tJCYmcvjwYUaNGkXv3r3R1NSkpKSE27dvo6GhwejRo9HQ0ACgurqauLg4bG1t+eijj/D09MTJyYnCwkL27t1LcXFxh89hSUkJRkZGXLhwgV9++YVPP/2UrVu3cuvWLZ49e8bWrVvp2bMnAQEBAPTp0wcVFRWsra3R1NRkyZIlWFpaYm1tTUxMDGlpaYwbN45evXrh4ODAjRs3OHXqFL169WLq1KkcPXqUuXPnEh8fzyeffIKmpiaurq7o6+vj4eGBk5MTzc3NWFhYiGO0t7entLSUR48ekZbWkY7D0LVrV1auXEltbS3ffPMNRkZGjBo1ChsbGwBUVFRQUFCguroaHR0dcf+Rf++QIUOoqqoS14empiaRkZE8ePAAc3NzvLy8xJqqoKBAXFwcOTk51NXVoaysTHp6Ojdv3sTDw4NRo0ZRWFjIjBkzGDlyJFOnTsXc3Jzhw4eL1587d47Bgwd3+Dw2NzczcuRIvLy88PT0bPdcVFQUVVVVmJmZiesU4KuvvuL7779n+/btZGRksHjxYvG8i4sLpaWlJCQkoKOjg6WlJQEBAfTu3Zv+/ftTWVnJ6dOn6d69O25ubowYMQIDAwMMDQ0pLS3lypUrDBo0CC0tLYC/eV/rCNra2sjMzOTixYtERUXh6+vL2LFjMTExITY2lsuXL+Ph4cHgwYNJS0tDRUUFT09P/P39SUlJYdGiRTQ2NjJ9+nT09fWpra0lICAABQUFioqKsLe3F9enJEno6OjQ0tLCixcv6NKlCzY2Nuzfvx9XV1eCgoJ48uQJEyZMICAggAULFrBq1SpaWlr4+OOPmTlzJtra2ty+ffulx/f8+XOcnZ3R0NBAUVERfX19zM3NiY2NpaamhtbWVhwcHOjevTseHh5MmzYNBQUFQkJCOHnyJF999RU6OjpkZmbS2NiIiooKOjo61NXVoampCYCioiyRb29vT8+ePTlw4ABvvvkmU6dOZfLkyTg5OZGbm8vXX39NUlIS3bt3p0+fPuL+Z2RkxDvvvIOioiK9e/fm7Nmzf3dMHSav8os+MTGRwsJCvL29MTMzAyA6Ohp1dXVcXV1RVlbmu+++w93dnU8++QSA1NRUjIyM0NXVxdXVFVVVVUxNTXn48CHl5eWsXr2agoICTp48CYCtrS12dnY8ePCA69evU1dXx6JFi1BQUGDBggVoaGhQWFjInTt3GDBgADt27GDatGkcPXqUzp07Y2trS2vrP+4C+Xvo6+sLIl5ZWcnJkydRVlbG29sbfX19CgoKcHd3Jy4ujo8++oi+ffuydetW8vLy+Omnn6iqqmL8+PFUVlbS1NQkPjcuLo6TJ0/i5+fHmjVrACgrK6OtrQ1jY2OMjY1paWkhLy+PvLw8LCws8PX1JSoqiocPH5KRkUHfvn3p378//fv3b3fMJ06c6NAYp0+fTn19PR9++CGpqamsW7eObt268ezZM8LDw/Hw8EBVVZXa2lqUlJRQUlLCyMgIDw8PrK2t2bFjB9euXWPy5Mm4urqSn5+Pvr4+ubm5xMfHY2pqKghvSUkJLS0tKCoqUl5ejrm5Oc3NzRQWFpKSksKjR49ISEgAYMGCBcycOZOYmBi2bdtGUVERZmZmHSavcjJRXl7O8+fPOXz4MP369WP27NmA7EZsa2tLc3Mz+fn5aGpq8tlnn4n3t7W1UVtbS0pKCgYGBvj4+FBWVkZVVRXq6uqMGTOGMWPGsHz5cs6fP4+qqipKSkocPXoURUVFvv76azQ0NEhNTUVfXx81NTWMjIxwc3Njx44dvHjxgqamJgYMGICxsTGjR4+mpaWlQ+S1traWTp068fHHH4vHbt68yY4dOxg1ahQLFiwAZAQ6Li4OZWVlFBQUaGpqIikpCR0dHezs7AB49OgRK1asAMDKyoqpU6cyf/58nJ2dycvLIzExkerqajp37kxxcTH379+nsbGRd999l4aGBt577z1SUlIYPHiw2JC89tprjB49mqKiIqqqqjp0/uSQX7t5eXnU1tZia2tLeno6cXFxjBs3jokTJzJnzhxOnDjB4MGDcXd3p7q6mszMTJKSkjAxMSEhIYGvvvqK/Px8fvjhB3R1dWlqauLixYsMGzYMDw8PFBUVOXfuHNOnT6dbt24kJydTVFTE6dOnee211/Dy8qK1tZU+ffpgbGwMyEj03LlzKSsrIzc3F0NDww4voCNHjmTgwIEYGRmJz1RXV2fIkCFUVFTw9OlT9PX1GT16NL169aKqqoqNGzdSU1MjSHOnTp1ISEjA3t6e1tZW6uvrMTY2pmvXrmhpaVFQUEBhYSFhYWEAeHt709jYyK1bt7hx4wYvXrzg/fffB2Tku6mpifnz56Ojo0NzczMqKirU19dz8uRJDh48yNy5czs0RjkpMzU1Ffc5c3Nzpk2bRmtrK2fOnEFDQ0OQSg0NDYKCgsT7f0/sw8LCePDgAXp6eujp6dG1a1fy8vKorKxEkiT69OlDcXEx8fHxxMfHEx4eTu/evVFSUqKgoABra2ssLS0ZO3YsjY2NlJeXC0LU1tbGzZs3iYmJQUlJ6aXHt2zZMmbMmMGhQ4fEfBk5ciQ1NTU0NTXR2NhIXl4eysrKODk5oa2tTWNjI0pKSjQ0NDBlyhRaW1sFqW1ubkZbWxtPT08sLCxobm7m1q1bdO7cGWtra/T09Hj+/DkJCQno6upSUVFBQUEBnp6eBAUFcfnyZT744AM0NDSYOnUqINsQubm5kZSURGVlJRkZGR06h2lpaejq6vLWW2+Jx6qqqmhqaqKqqorKykp8fHywsLDA3t6e6upqqqurcXd3Z926dQwaNIitW7fi4+ODv78/ubm5aGlpoaysTGtrK42NjTg6OmJlZQXIAgsJCQlUVlby4sULjIyMMDMzY+zYsQBkZmaSlpZGdHQ0jo6OGBsbi423jo4OhoaGHRofyDZuBQUFlJSUYG9vz5w5c3B1dQXg119/JT09nc2bNwOy4IiKigonTpxAV1eXK1eucPfuXRQUFFBRUaG0tJS2tja0tLTw9/enU6dOZGZmoqWlRWZmJvn5+bi5uVFeXk5CQgJjxozBzMyM999/n5KSEubNm0dZWRkbN24kMDCQefPm0dLSwuPHj3nrrbewt7fv8Pjq6uoE0ZfDy8uLtrY2zM3NqaiowMDAgLfffpvJkyejr68PyAipra0tioqKGBsb06dPH6qrqyksLKRHjx5oaWnR2tpKRUUFNTU1KCgooKamxpw5c6iurubixYuEh4czf/58MW+eP3/O5cuXOX36NBs3bhQbVzs7Oz755BPa2tqIior6h2PqMHmVE41u3bqhqqoqbrwgWwQfPXrE3r176dy5M507d8bNzQ2AZ8+e8d1337F48WJ8fHyIjo7Gy8sLJSUlQkJCyMjIwNbWlpqaGj755BNKS0vFTczf358ffvgBNzc36uvr2bhxIyUlJWzfvh1VVVWSk5Pp3r072trarFq1isDAQHr06EFSUhKPHj3q0Ph+HyHS0tJi2LBhxMXFsX37dqKiojA0NMTBwQElJSWam5spKysDZIv+8+fPuXTpEosWLWLVqlXtdqiamppoaGigpqYmHmtsbKS4uFgsiMrKyrS1tVFfX8+5c+fYu3cv5eXluLi4ALLd07Jly8T75YvLn8GjR4+Ij49HQUFBnENPT08+/PBD5s2bh7a2NkFBQUybNg1jY2MKCwtRUFDg7t27XLhwAT09PUxMTLCysqKoqIiPPvqI1NRU5syZw7hx4wBYsmQJ9+7dY/v27XTt2pW9e/cSGhrKzJkzMTExYdiwYQQEBLB8+XIePnxIYWEhvXv3pnfv3tTW1hITE0OXLl3+1PhAFuGfPXs2PXv2xN7eHhMTEyorK2loaMDMzIzk5GTmzZuHg4MDe/fuFe9TVFQUu8zk5GSePXvGgwcPGDJkCCtXrhRzWn4tzJ07F09PT3744QdevHjBxx9/TFpaGmFhYVhZWTF//nzeeecdADQ0NPjss89obm5ud+20tbV1aGy//vorY8aMaUeYPD09+fbbb0UkDsDMzIwePXqIDMCnn37KiRMn+PDDD0WEvaCgQLz+tdde46233kJXV1eQd0dHRy5dusTZs2fx8/MTpFtJSYmmpiY0NDSorq6mvr6epUuX4ujoSElJCcnJybi4uGBqatqhsckh3yhv27aNo0ePMmPGDGbOnEnv3r1pamri9OnTHDlyBGVlZbHhvHr1KqmpqaipqWFtbS0ircePH6elpYVjx45hamoqFsfp06eza9cuBg8eLK6lAwcOEBERQUtLi4iiV1ZWiu8A2SZ34sSJHDp0iEmTJrF48WIWL17c4THKFzmAmJgYDAwMcHFxYfr06RgbG7ebI/Lv9ff3Jzg4GGVlZXbu3MnkyZMZN24cK1euRFFRkcTERFxcXDAzM2PSpEkYGRkRERHBBx98wMCBA1m3bh3Dhw/nu+++44MPPqCoqIhVq1aJeQ0yAjFnzhxsbW354osvmDdvXrt58rKQ/2YffPABDg4OXL9+nebmZpYsWcKMGTPEJrKmpgYNDQ0RxZH/Ns+ePRMb/La2NpSVlUlISEBZWRldXV0mT57MxIkT+frrrzl9+jQLFy5kyJAhpKWlYWFhQWtrK3Fxcfz0009iw+jj48OZM2e4cOECO3bsoE+fPuTn52NhYUGfPn348ccfX3p88g2xjY0Ns2bNws/Pj9raWm7cuMHjx49FRsnb2xsDAwPa2tpQVFSkubmZ+vp6WltbRXYLZOuPfLPe0tLCqVOnePr0KS0tLVhbW2NlZUW/fv1wcHDA09OT6upqioqKKCwsBCAwMJBjx461WxckSSInJ4dOnTphb29PXl5eh87hV199JQIuIMsqXr58mVu3buHn58ekSZPw9vZGSUkJNTU1njx5wp49e7CwsGDChAns2rWLs2fPsnLlSuzt7fHz8xPRv6FDh2JmZibWsmfPnrFkyRKcnZ3Ztm0bT548YdasWQQHBzN69GhARnLs7Oz47LPPWLt2LUuXLqWiooJt27YRFBTEBx980KHxgWyj7Ovri46ODmpqanTq1Ek85+/vz9ixY9HV1eXChQvcvn0bHx8fcnJy+Pnnnzlw4AAfffQR3t7efPjhh9y/f5/u3buL4JWrqyvbt29n2bJllJeXo6uri5qaGlpaWvj5+dG/f3/s7Oz4/PPPCQsLY//+/TQ1NXHw4EFB2FeuXMmFCxf49NNPGTZsWLsN3svg99d2a2srzc3NaGlp0bdvX3R1dYmPj+fRo0e0trZSVVWFoaEheXl5vPfeexgZGaGlpUVbWxva2tpcvHiRtWvXMm7cODZs2ADATz/9xOHDh6mvrxfBnU2bNvHmm29SXl5OTEwMzs7OuLi4sGXLFkxMTDh+/DjXrl3Dzc2NHj16YGkp68dx69YtwsPD/+GYOkxeExMTuX//Pv369aNr164cPHiQnJwcsfPy8PBg//79aGpqMnz4cNzc3AgLC+OHH34gPT2doqIiQBbm37lzJ5aWlkydOpVu3bpRWVlJUVERwcHBFBUVcffuXe7cuUPXrl0ZP348gIiIlZWVkZGRgZubGxMmTODmzZtUVVWhqakpIoeWlpaMHDmSI0eOvPT4YmNjSUpKolu3btjY2ODr60ttbS3V1dVoa2ujra1NU1MTTk5OzJs3D1VVVdLS0rh//z7Z2dmALOIn3/3l5eXR2NjItWvXKC8vJy8vT6RhjYyMhPyirq4OBwcHPDw8ABm5TE9Pp7KyEkNDQ5SUlLh8+TK5ubkMHz5cRIIbGxs7egqpqqrC3t6ed955h6SkJK5fv87s2bNRV1dnwoQJXLp0SZBqe3t7cnNzOXHiBHZ2dpSUlBAZGSlSBABqamocO3aMsrIyNm3aBEB8fDyxsbFoa2tTXl5OUlIS9fX1YqFWU1OjS5cuKCkpcfjwYTZu3MiwYcPEZy5btkwQoo7ebENDQ8nOzqZLly706NGDHj16iOeysrKQJAkzMzOys7NJT09HW1ublpYWlJWVCQ8PFwuZkZER2traIh2soqIiUnggI4ZDhgxh3bp1aGpqcurUKZKSkgAZyWhpaSEhIYHnz5+TkpKCqakpNTU1YqcJMgJcXV0t0owvi/LyctTV1SkuLubevXv07NkTb29vQbba2tqoqKhARUVFEFeQnXsjIyMR5ZAkSURxx40bx/r161FXVyclJYUXL17Qp08f7OzsRBbD2NgYOzs7QTJSU1PJzMykoaFBEMYFCxbw5MkTXrx4gbq6OhYWFtTX13dofHLI01o6OjpUV1fj7OyMuro6x44dY/r06bS0tBAcHIy1tTUgS0e2tbUhSRKDBg3C3t6ey5cvExUVxenTp3n33XeZO3cuPXr0IC8vj+fPn+Pl5cWMGTNobGwkKirqD9G/2tpaTExMiI6OJjQ0FHt7e5F6NTIyQl1dnUePHtG3b98Oje327dsi/enu7s6pU6eIiooiMDCQCRMmMGLEiHav19DQwMfHh86dOwv5jYGBAampqdTV1aGnpwfIIvAXLlzAx8dHHKe1tTWnTp3i1q1bODk5oaWlRWBgIJGRkSLD0tLSQnR0NA4ODkJKUl5eTrdu3Zg0aRJHjx5l9erVHRpjRUUFDQ0NmJiYMHr0aCIiInj27BlJSUm4uroSEBAg5oZcviCHPIoeERFBXV0dNTU16Ovr4+TkRKdOnejevTs6OjrExsYSExNDZWUlZWVlGBgY0K1bN/E5vXv35vbt2/zyyy9IksT8+fOxsrIiOTm53bz08fFpt/F72fEZGBi0kz7Io62lpaVYWlqip6eHkpKSIN/ya0dbW5vc3Fza2tpwdnYGICkpibCwMDp16kS3bt0YPnw4paWlKCgoUFVVJaRdvXv3BmRR0WHDhpGfn09ISIggWnKUlJRQVFREW1sbSUlJJCUl/dZ99uXh4OAgAiwgu7e1trYSExODnZ2dmHdylJWVcenSJaqqqqivryckJERkvszNzfHx8eGbb77h+fPn6OrqMnToUMrKyrCyshIZotraWsrLywUBLC8vF5+flZVFXFwcjY2NuLm5ERUVxfXr14mJiRGSsY4iJSWFXr16iesqPT2dpKQknJ2d6dOnDyC7F92/f59evXrRv39/kpKSKCgowMfHh+7du6OqqoqysjJ2dnbMnDmT/v37U15ezuHDhwkPD8fS0hITExNKSkqQJAlzc3NcXV1RUVFBSUkJV1dXDAwMGDRoEH379mXRokW0trayd+9e7O3tUVBQQFNTk6ysLLKysjo0vrS0NK5cuYKPjw+BgYEoKSmhrq6OJEk0NDRQX1+Pvr4+9fX1ZGdni01nc3MzRUVFWFpaYmZmRp8+fcjNzeX69evtZFKmpqbk5uaSlJSEnZ0d06dPx9bWFicnJ86fP8+PP/7I1KlTCQwMxMPDg6+++oqAgABiYmKoqKgQ4zp27Bj5+fn069fvH8ohO0xenZyc2LZtGzo6Onh7e3Px4kWOHz+OlZUVV65cYejQoUybNo2bN2+yceNGLCwsOHr0KAkJCVhZWVFZWQmAu7s7a9as4fz58xgYGDBixAhu3Lgh0u4RERGsXLmSgoICAgMDha5WVVWVjRs3tou2GBsbEx0dzebNm9HR0cHExAQ1NTXmzZvH3LlzO0Ret2/fzi+//MKePXt44403uHLlCmFhYWzevJmvv/6a/Px89PT0UFZW5s033yQ3N5dr166JyJ2XlxeTJk1CU1OT5ORkjh07RmRkJPfu3QNopwtSUlLCxMSEq1evcvjwYaEzBBg1ahSDBw/m+fPnQt/24sULtm3bxq1btzhz5ky7G0pHoKuri66uLk5OTqSnp3Po0CH279/P22+/Tb9+/bh79y55eXkiZRceHs69e/dYsWIFPj4+fPnll2RkZIh0cF1dHd26dUNbWxs7OztSUlIICQnhvffeo0uXLqxatYqCggJ27dolUhUtLS00NzejpKSEnZ0d3333x+6F8uhnREREh8Z37tw5vv/+exYtWsTatWvbPWdoaEh+fj5paWno6Oiwfv167O3tBSl9/Pgx33zzDUOGDOGTTz5BWVmZ5uZmBgwYwJtvvtkucv7aa6/R0tKCiYkJly9f5vbt2/Tq1YtNmzahra1NREQEcXFxFBYWcv78edzc3OjSpUu7iHlaWhoRERF/ICr/CPJdqlxLaGZmJghwU1MTqqqq1NXVCW2viooKra2tvPvuu6ipqWFubk5tbS3nz58nIyMDd3d3Ro8eLSK5BgYGDBw4EF1dXSRJwt3dne7du2Nubi4Ivvz1qamp5Ofnk52dLaQIvXv3pq6ujsrKSlJTUzuUipUjOTmZpKQkZs6cydq1a5EkSRyfPBq1fPlyvvzyS5qamiguLsbLy0tkaLS0tIiMjCQnJ4fc3FyKi4vZtWsX2dnZ/PTTT1hZWbF3715iYmKYPn06ampqFBQU8NVXX9G3b1+WLVsm0rgA9+7dY/HixSxbtkyQwsGDB3P37l2OHj3Kjh072mka/xFSU1O5ceMGGRkZdOvWjRs3bhAVFcW1a9coKyvj008/BRDXiY+PDw0NDdy8eZPc3FxmzZrFG2+8gZaWlpgPIIt2HjlyhOrq6nb6xgMHDrB+/Xrmzp3L5MmTRdS6oaEBY2Njfv31V3788UcmTpzIlClT2LJlC2vWrOHdd9+lpqamnRb+ZSHXwBsbG2NjY8O6detQU1NDXV1dRCH/mrSCLOqop6fHlClT0NHRYevWrSQnJzNq1CjMzc2xtbXF1taWo0ePcvLkSXr37k2fPn04ePAgd+7c4bvvvhOkytPTk82bN6OpqUlrayvOzs7s3LmTlpYWzMzMaGtrw83Nrd21/bK4dOkS06dPbzeGlpYWLC0t6d69Oz4+PsTFxVFUVPSHyDLINluqqqqALAPy7bffsnPnTnr06MHVq1cFETc1NSU6OpqlS5fi5OQkslj79+9nzpw5ODo6Mnv2bDZu3Mi3337L6NGjaWpq4vbt2zg5OREQEMDGjRv5/PPPWbJkSYfGOGPGDBG8kRNfb29vAgMD20Uo5ZDrbOXSBrk846uvvkJXVxeAPXv2kJCQwPHjx7GwsBAZNl9fX65evcqZM2f4/PPP6dGjBwcPHmx3XR07doy1a9fyxRdfsGHDBjZv3kx+fj7z589nwIABogahI8jKysLFxUUEnS5dukRZWZk4rqSkJC5duoS2tjZffPEFSkpKVFRU8Nlnn9HU1MT69es5ceIEPXr0YM2aNbz55psoKyvz/PlztmzZQq9evdi/fz9paWkcPXoUHx8f3NzcqKioaBcIysrKIjc3l7KyMurr6zl16pSQa6xevZrNmzdTV1cn+MTL4vz586xfv54lS5a0qwNqaWmhqakJKysrFi1aREtLC0pKSmhpaaGlpcXHH38sIr5yKdrkyZPp06cPZ86cYe/evQQFBTFw4EAWLFhAREQE3t7e7a6l2NhYYmNj220UVVRUmDp1KpMmTQJkHOLatWtER0czcOBAJkyYwPXr1//umDpMXt988022bdvGnTt3ABg3bhwWFhaYmZmRlZVFRkYGnTt3FoUdFhYWdO/enejoaLKyskQKMTk5mW7duuHo6EhOTg4HDhygoKCAPn36YGBggK6uLj169KC2tpYZM2YIoqqioiIWyLt373L79m0aGhpQVVVl7NixPH78mMbGRvz9/amsrOT777/v0PjOnj2LtbU1Xl5elJWVcerUKQoKCkhLSyMgIAArKytycnKorKzEysoKXV1dysrK8Pf3x8XFhcTERMLCwhg8eDBZWVmcOnWKzMxMHBwcGDFiBMHBwSIVqKioiKamJn369KGsrIza2lquXLlCjx49xGssLS0xMjIiIyMDVVVVDAwMcHd3byc16CiuXLnCnTt3GDlyJP3792fNmjX89NNPLFq0CFtbW6ZNmyaIa2hoKOnp6UycOBFnZ2dUVFT48ssvaW1tpWvXrmIcX375JaamphgaGpKVlSXOrbz4zcnJCS8vL0BWeCA/nzU1NYSGhvL8+XOSkpJEylRfX5+rV68SFRXVYd2yi4sL/v7+YiMAfyn+MTU1RVFREVVVVRwdHenRowfPnj3j5MmT9OnThwEDBnDr1i3q6uowNDRkwIABdOrUqV2Bx/3793n27Bm2traYmZmxZcsWbty4wWuvvcaSJUsE2fH19cXT01NoopycnESEsKamRmQJGhoaOiS+B9lCt2nTJqqqqhgzZgw1NTXs3buXxMRE+vXrx+jRozEwMCAzM5OamhoMDAzERkGOmJgYHj16RGhoKKqqqjx69AgjIyMxL21tbQEZwQ4JCcHIyIi5c+cK4ivXaNrY2PDixQs+//xznJycUFRUxM7Ojh49euDg4ICFhUWHIwUg2+jZ2tq2uxG2tLSIzdyaNWt47733AFBVVeXhw4fk5eUxcuRIoQvz8PCgT58+qKmp8eDBAxISErhy5QpXr15FkiTi4uLapea7devG7NmzefDgAevXr2fMmDEijaurq8uCBQvaFZ+qqqqiqqrK0KFDUVNTe6l0lxw+Pj688cYb6OnpYWlpKX5zAwMD+vXrJ15XUVGBgoICxsbGDBkyhCdPnnD27FlcXV0ZOXIkc+fOZffu3WzdupWVK1cyYMAAqqqqSE1N5cSJE/z6668YGxuzdetW1q1bR15eHp06dRK6Nvl8bW1txdPTk969e6OiooKfnx+2trbcuHGD+fPnk5qa2rETiOz+ERoairu7O4sXLxbzr6ysjJKSEkxMTCgsLCQ2Npbc3FxAtnEyNzenZ8+egEwbnJ2dLQoPnzx5wrVr10hOTqahoYGxY8cybdo00tPTuXjxIuXl5WRkZIh7+MmTJ6mpqWHevHlYWVmhoqIi6jTkkJPpjhZsaWlpERoaipeXF+Xl5fzyyy88evQIHx8fgoKCUFFRISoqirS0NBEtTU1N5fTp0xgbGzNr1iwUFBSIiYnh4MGDJCcnC1K4f/9+wsPDUVRUZOfOnejp6REfH09ERATOzs6MGDGC7t278+jRIzIyMqisrKSlpYVDhw5RUVGBnZ0dBgYGmJqa0tTUhKamJn379sXPz4/Lly+/9BgvXrzIiRMnUFBQIDAwUGxMu3bt2k7WJS9K69atG5s3b0ZZWZnMzEx27NiBsrIyAQEBNDU1cePGDerr6xk3bhxmZmaYmpqKQrX79+/j7e1NS0sL2dnZ9OzZU1yf8s/39PQkMDCQ6Oho9u3bh42NDYsWLUJRUZGampp2RWMvi549e6KiosLevXu5ffs2/fv3Z9myZYJsyyOkOTk5KCsr4+npiYKCAnp6ejx9+pSLFy9SX19PeXk5RkZGguSXlZWJwi4NDQ3i4uJ48uSJiDDHx8dTUVFBVFQUffv25caNG4LPyLOq5ubmGBgYUFBQwOeff87w4cMZP348N2/efOnxyYt4Z86cSVNTEyEhIdTU1PDxxx+joqIixvnXsLOzw8PDAxMTE4qLi8nKyqJTp05YWVkxaNAgEhISyM7Oprq6Gj09PWbPni3mq46ODlOnTmX69OlYW1uTl5cnigu1tLRQU1MTm75vv/2WrKwspk6diq6urqh7+nvoMPPR0tLi7bffpqCggKKiIvr06cO0adMA2LhxI/fv3+frr79GV1eXSZMmcf36db777juqq6vZs2cPOTk5xMbGcvv2bbp06YKfnx/Pnz8nMzOTESNG0LlzZ1GtPnDgQECW2mxsbKS2tlbsjFJSUti0aRNXrlwB4PTp03z66afcu3cPTU1Nunfvzvbt25k/f77YMbwMPD09+eCDD/Dy8iI3N1c4Ijx9+pShQ4dibm5OXl4e9fX1GBgY0NLSQteuXenXrx8xMTGEhYUJLamchPfs2ZMlS5YwbNgwlJWVqa2tRVFRETU1NZqamvD19cXX15dNmzaxcOFCPv74Y6GlAtmFVVZWRn5+PsHBwUJI3tDQ8KeqLB89esTmzZspLy8XxV9qamocOXKE8vJyWlpa+PDDDwkPD2fx4sW4ubnxxRdfEBMTw7Vr15g4cSJ+fn6ATB5QXl6Ora2tKDqTp6+PHTtGcnIyy5cvx8HBod0xV1VViQn84sULVq1aRXNzMxMmTGDGjBmkpqayb98+SkpKOqx7ffPNN3nzzTdpa2sTUU75pklFRQULCwvq6urE65uamnjx4gVmZmb4+/vz0UcfUVJSItLVBgYG5ObmilT7/fv3+eijj1i0aBEjR45k3759NDQ0sG/fPqysrKitreXx48eYm5vj4eGBp6cnFRUVmJmZtdtlt7a2Ymtri5WVFcHBwR2KTlZUVPDDDz/w3nvvsWDBAp4+fcr69espLCwURFtLS4tOnTqhoKCAJEk0NTUJfV1paSlqamp4eXmRkJDAjRs32LRpEykpKbzxxhs4OzuL305VVZWrV69SWlpK//798ff3x9zcnOvXr5OUlISvry+tra388MMP4vgcHR2ZPHmyqBb/Pfl/WcglOvJFC2RFRRkZGUyYMIEePXq029iUlZXx3XffUVxczLp16wDZ/GxpacHFxUWQtYSEBFavXo2FhQWGhoYoKCjw66+/UlNTg7e3NzNmzKC1tZXdu3ejrKws0r5+fn7MnDmz3TGWl5eTnp6OgYEBb731VofI64gRI/5uxF2uTVNQUBDjlFfKd+vWTdwLlZSUuHfvHmfOnKGhoYE1a9YwduxYMjMzOXXqFBcvXkRBQYHevXszadIk9uzZQ1FRETk5OSILAwitmvy3jIuLIzAwEBMTE1Fc0dGCLSUlJdLT0+nRo4fQ7hcVFQnNt7zK++jRo5w6dYrGxkb8/PwIDAykqqoKFxcX7OzsmD9/Pvb29hw4cIC4uDgyMjKIjo5m1KhRDB8+HBUVFaysrNi0aRMxMTFERETg6uqKrq6u0J+6u7vTq1cvMT55oaWKigqKioooKCiIOfKykBf7GRgYoKenx/nz54U0o62tjZSUFKKjo6msrKSkpARLS0tycnLYuHEjzc3N2NjYMGDAAA4fPswPP/zA2LFj2bVrFw0NDYwZM4bQ0FA6depEVlYWdnZ2zJgxg++//56vv/6aoUOHsmjRIoKDg/n++++FK465uTnJycm0tLQwfvx4NDQ0ePbsGcOHD2fp0qUAHSKv3377Lc+fP6ehoYGoqCgmT57M8OHDxe/b2tqKkpISOjo6NDU1kZWVhYqKCjY2NkiSxIULF4iKimL48OGUlZURGhrK2LFjeeONN9pJkr777ju+//571NXV6d27N7a2tu3kVCoqKlRXVzN8+HCGDx/O2LFjWbhwIZcvX2batGl8/fXXFBcXi9R/RyDfVF29epXz588LjSvISLOioiIeHh4UFhZy5coVtLW18fb25uDBg3z//fe4urrS0NBAfn4+P/74I4WFhejp6VFZWcmMGTNQUlLiq6++4urVq0RGRgrpnaqqKg0NDezdu5eBAwdiampKr1696NevH7q6ulhZWfHFF18wdepUrl+/ztSpU0lISGgnPXsZDBs2jFmzZgGyYMQ333wjnHM6d+5MVVUVkiT9QQKyYsUKVq9ejaqqKoWFhWRkZFBWVka/fv1wd3fHzc2NtLQ0Dh48SFxcHJ9++inW1tbcvn2bxMREsV5MnjyZDRs2kJubi4eHB2pqajx79gxvb2+qq6tJTExEXV0dHx8fUlJSuHTp0t/MyPweHSavu3fvZunSpXTv3p3Y2Fi+/PJL1NTUCAwMxMbGhsmTJ+Po6ChSXXK93/Tp09HS0mLnzp0YGBiIC/Pbb79l2rRpvP3224CsKOn27dvMnz8fDQ0NysrKWL58OcnJyXh4eLBw4UK8vLxoaGgQBTNr164VYu7fV+IXFRUJ0vSy+Pzzz0WhlY6ODjt27KCgoABVVVVBAKysrCgpKSEvLw87Ozv69u3LxYsXef78OfPnzycoKAhtbW3Mzc1Zvnw5WlpaInrzww8/EBISwhtvvMF7770nhPry401LSyM9PR2QReeUlJTQ0NDAwMCAR48ecfv2baZMmcKECRNQV1enoqKio6eQQYMGYWJiwsCBA6mqquLnn3/m3r17LF++HHd3d6ytrUlJSRHFArm5uXTp0oWnT59y8uRJTp8+TXBwsIhs3Llzh4SEBLy9vZk9ezZdu3YVVfz9+/cX50Cewm5qamLlypXk5+fzxRdf8Nprr1FbW0tzczP+/v4kJSURERGBoqIiVVVVpKSkCE1YR5CSksKzZ88ICAjAxsaG+vp6NDQ0aGpq4tGjRzQ3NxMYGIi/vz+dO3fm+PHjPHnyhMDAQIYPH05lZSVnzpzh2bNn1NTUMHPmzHb6WUmS8PHxYdKkSRQWFgo9b1hYmKjQBZlrxpAhQ8QGRG65JIeCgoIoYnxZDBs2DF1dXRHN9vT0ZPz48dy6davd6+SE+OLFi1y8eJHhw4czYcIEjI2NUVVVxd3dHV9fX7Zu3covv/zCzZs3mTdvHtbW1lRUVKCvry/SvZmZmSI9nZaWxqZNm0hMTOStt96if//+hIWFCTulpqYmIiMj2bx5MytWrGgX8X1ZnDp1im+//ZYJEyaIYihlZWUmTZokUq0XLlygsLCQfv36MWTIEFRUVHj69CnvvvsuLi4uxMXF8fDhQwYMGMCIESNoa2sjPT2djIwM9PX10dbW5uTJkyQkJGBqair0vIaGhiIt/eLFCz777DOMjIy4efMmGhoa9OjRAxUVFcrKyigoKKC8vFxIov67OHjwIKWlpfTs2RMnJycRJTx48CD79u2ja9euBAcHi5RtXV0dffv25eHDh6xdu5b09HR27dqFnZ0dU6ZMwd/fn6ioKH788UeSk5N5//33ycrKYv/+/QwbNqydRhLgxx9/5Nq1a0yZMkW4UFy8eJFHjx51+H7TpUsXBg8eTL9+/VBTUxOWgPJNXnJyMuXl5TQ2NorfLzs7W2yUc3Nzef/993nzzTdFyjUoKIgrV66Ql5fHN998w8yZM5k9ezZTp07FxcWFBw8eiM35ihUrOH78OJs3b+b8+fMoKyvj4+PDoUOH2LdvH+7u7kyePBlfX19Rh9AR7N+/HxsbGyEf+vjjj3n99dfp0aMHysrK6OjoMHnyZAoKCtpJ5ry9vbl9+zbbt2/nzp073Lt3D319fYyMjEhMTOTZs2ekpqYybNgwNmzYwNOnT9m1axfjx4/H2dmZzz77jM2bN6OgoCA2qCUlJZSUlPDpp5+Kwj01NTVaW1vR0tIS2vffu+C8DEaMGMHatWtJSkoiLi4OZ2dnkX148OABBw8eZNq0aVhbW1NYWMjmzZtJS0tj1KhRKCgoCO2ivb098+fPJzs7m6SkJFJTU7GxseHWrVscPHiQU6dOAQiSrKur2845QF1dvV2wZsGCBXTr1g19fX1RjNfRzcdfY82aNfTr14/Hjx/z8OFD6urqiImJQVdXl6VLl/LGG29w+PBhfv75Z+7fv8/JkyfJyclh+fLlqKiosH79ei5dukRRUZHQ56uqqtLU1ISenh7Tpk1j4MCBHDp0iJycHBobG1FXVxfZN39/fz755BO8vb25evUqT548wcXFRbjcPHjwgO3bt9O/f/92mcV/hOrqap48eSJcK7Zs2cLNmzdZvXo1iYmJWFlZ8dlnn4nNXW1tLVpaWu3kGmZmZnTq1ImmpiYqKyupqqoSxYeVlZWkpKRQUFCAn58f06dPF7KRgoIC7ty5g6WlJd7e3mhoaBAdHS02RH369GHt2rWcO3eODRs24Ovry2effcbnn3/+d8fUYfKan58vokdKSkrcunWLrKwsHBwcCA4OFq+7d+8eZWVllJaWcvHiRZYtW4aXlxdqamrk5uZSXV1Nbm4uz58/p2fPnlRWVlJbW0t8fDwaGhrcvXuXuro6Dhw4wK+//oqysrIgkStWrKC1tVWIf+Xfm52dTU5ODlpaWjQ3N9OlSxe0tbU7pIHx9/cX/6+rq0vnzp3p2rVru4iZsrIyTU1NlJSU4OTkhIGBATk5OTx//pwePXpgZWVFTU0NlpaWotAMZOL52NhYCgsLxUX4+8mho6ND165dBSFRVVUlPz8fBQUFoqKiiIqKIikpCUVFRQYNGoS6uvqfulgHDBjAgAEDAEQxlq6urqgorays5NixYyQkJODs7Iy2tjZ37tyhvr4ec3NzMjIyOHnyJCUlJeTn5/Prr79SX19Ply5daGlp4ciRIzx69Ii3334bb29vIiMjef78OWPGjMHIyIiGhgZSUlLIycmhtbUVc3NzYddTVVXF9u3biY6ORk9PDwMDg3a//ctAXl0bFhZGXV0dLS0twF8KQlRVVSkoKCAuLg5FRUVxI05MTCQxMZHu3bsDsptleXk5L168IC0tjU6dOomqSLlnqLm5OZ9++ikPHz4kKSmJoqIiEhISaGho4NGjR2RlZeHn54eVlRWKioqUlJSgp6eHgoICeXl5wvbnzTff5N13333pMXp6euLp6UleXh4FBQWYm5szYcIEnj9/LtLsT58+BaBXr17CXzY9PZ0JEyaIyuCKigqKiorE+729vYWkQ19fn8LCQmpra5k8ebL47mfPnnHo0CHy8vIwMTEhJydH2IjZ2Njg7OyMnp4eFRUV5OXlCWLYUdy/f5/w8HAmTpwIyOQujx8/ZujQobi5uZGXl4e6ujq6urrk5eUxZMgQZsyYgYaGBufPn8fKyoqGhgYiIiKora2lW7du9O/fHw0NDerq6jAzM0NNTQ01NTUyMjJEQYuysjK+vr4oKioKT9guXbqQnZ3N4cOHGTRokCji+L0tXEd9XuV2SpIkCdK0a9cuVq1ahY+PD7169Wq3WNfU1PD48eN2WsO0tDQcHR2Flnn79u2kpaWRl5eHq6srWlpa9OzZEz09PZYuXUpCQoKoKTh9+rRYAFNSUtDU1MTU1JTs7GyR0pckiRcvXjB69GhGjx7d7h7/MvD19aWyslJs1tTU1LCxsaG2thZlZWXU1dUJDQ0lKyuLnj17Ul1dTV5eHidPnhQauY8++oioqChSU1Pp3Lkzffv2xcLCAgsLC9zd3blw4QLu7u6MHz+e9PR0jh49SmJiItevX2fChAk4ODjg7e3N/v37KS8vZ9myZZSWlvL8+XOeP3+Oi4sLvr6+pKamdlg2IEkSfn5+qKqqUl9f3y5jCLSz+qusrKSxsRETExPWrl2LtrY2ly5d4sqVK6ioqPDRRx8xaNAgzp8/z88//4yjoyNr1qzBycmJd999lwcPHvDGG2+wcuVK1NTU+OGHH9iwYQPu7u4EBQUJm6/c3Fw6d+7czmbMx8cHkAWHqqurOzTGWbNmYWxsjJubG4GBgSLzV1FRQUhICNevX6exsZG33npL2ABWVVWxd+9eqquraWpqwtjYGGVlZYYPH46mpiYrV67k4MGDFBcXU1pays8//wzIskUuLi5YWFgIj+nw8HBRJ6GlpUVZWRnKysoEBgYSGBjIvXv3OH/+POPHj0dZWZnS0tIOjU9+blRVVfHw8KBz585s2LCBrVu3ijnYs2dPmpubaWxspLm5mbCwMKKjo4V/t1yq07lzZwoLCwkNDRXeus+fPwdg+PDhjBs3jrFjx2Jra8vdu3cxNDSkW7duJCYmsnXrVkpLS7GysiIjI4NPP/0UNTU1PDw8hHOLm5sbxsbGXLt2rUPktaysjEePHlFWVsbIkSOZMGECKioqzJ07l4KCAkpLS4mPjxd6VXmtR11dnSicU1NTE4QcZAT32bNnPHz4kPr6esaOHUunTp2EA5OPjw92dnY8fvyYpKQkli9fjo6ODt9//z2RkZGMGTNGaL4dHBywtLQUWVp5BujvocPkde3atZiYmJCfn09qaiqffPIJDg4O7ao7QeZrGh8fj6GhIU1NTRw6dIiqqioWLFjAixcvuHfvHmPGjOGjjz5i7969wg9z3759zJ8/n23btrFy5UpAtsPy8PDgypUrHDhwgNzcXBYuXMj7778v7KoMDQ2Fd6mqqirfffcdM2fO5NChQx0ir4mJiWJhyMrK4uzZsxgaGjJ16lQRxZL7mj1//lzoaydMmEBVVRUXL17k7t279OjRg6CgIEEE2traUFVV5Z133iEoKEjoReWQJIk33niDsWPHikYHysrKVFVVcf36dY4fP05ZWRmBgYFMnDjxH4bU/x5iYmKoqamhV69emJiY8Pbbb7fTFR44cIDjx4+joqLCtGnTcHBwoK2tDRMTE6ytrWlubqa2tpbY2FguXryIoqIiGzduZMGCBURFRfHdd99RUFAgouk7d+4kMTGRIUOGALL0z+eff46amlo7Y/m0tDRu3rxJTk4OWVlZlJaW4urqyqBBgzrkTRgTE0NUVJRwm/jrVAjICHxDQ4OwC1JWVkZfX59evXoJeYA8o6Cvr8/58+eFnZWpqSlOTk7iN1NUVMTd3Z28vDxSUlK4deuW0ElXVlaybNky0ThDS0sLTU1N0tLSuHDhAl27dmXQoEF/+nzKo/IgS6mnp6czbNgwGhsb2bx5M+np6Vy/fl1Ev+UWaW5ubuTk5LB582aOHDmCp6cnu3fvxsvLi1u3btHQ0EDnzp3JzMzk4MGD+Pj4MHPmTCoqKtixYwc3b97kgw8+YMiQIWzatIkzZ84AMsuUfv368dNPP5Gbmysi9H/G4N7KyoqLFy/Sr18/CgoK+OGHHzh9+jRffvklq1atYt68eXTt2pWKigqys7NFpHjw4MH07t0ba2trLly4wPHjx0lMTGT37t18+eWXwtM3MzMTNTU1li1bxu3bt/noo4+wt7dn6dKlHDt2jB07dvDGG29w6NAhQObDOmTIEKFdBFnUvK6uThj6Hzt27KXHl52dLeY4QEZGBlFRUZiamjJ48GB69uzZTkri7+/PBx98IJwQvvvuO0pKSoTX74QJE/D19cXFxQUTExMSExPZt28fxcXFREVF0dDQQNeuXencuTM3btygrKyMpqYm4uPjWbJkCerq6uzbt4/169fz/PlzKioqeOuttzh79iyffvopixYt6vA5bG1tpaCgoB0Jr6ur49atWwwdOhQXFxdu3bpFbGwsJ0+epK6uTixchoaGwq1m586dTJ06lUuXLpGVlcW8efNoamqif//+XLt2jeLiYpYtW8aNGzdoa2sjICCA2tpaxo0bJxxP8vLy8Pb2pqGhgREjRlBZWUl4eLhoALN9+3Y2bNjAG2+88dLj27FjB0ZGRlRWVhIaGkpVVRXm5uY4Ojr+wW9UT0+PxsZGGhoaGDBgADo6OiQnJ5OQkEBraysDBw6kX79+PHv2TEh+zpw5w+LFi4X0IjY2Fj8/P5YsWYKmpiarVq3i1q1bTJ8+nStXrnD//n3eeOMNZsyY0c5WEWRR0r179/4h0v6PkJ2dzSeffIKlpSXvvvsuCgoKFBQU8OGHH3L06FEAfv75ZzIyMhg4cCAffPABVVVVbN68WdwXamtr+eGHH0R2LSYmhvj4ePLy8rCxsUFXV5eqqipqa2tRU1MTa+SJEyd499132zWWsLGxYcaMGSLQJPdnzcvLQ1tbu8M+tvAXg/379+/T3NzMokWL0NfX54MPPmD06NF8/fXXZGZm8tNPP1FQUIChoSF6enr06tWLHj16oKCgQGNjI4MHDyYlJUW4QlhYWAjyevXqVWxtbZkzZw6TJk3C19eXmpoaBg8eTENDAzExMTx48ID9+/eTnp7OkydPmDFjhggcfPHFF4SEhNC3b1/u37/Pzp07X3p8rq6u2NjYoKenR2trK9nZ2ZSVlTF//nyR3Xnx4gV79uzh9ddfF42Y9PT0KC8v59ChQxQXFzNp0iSRRdHS0kJJSYlvvvkGa2trNm/ejL29PadPn+bzzz+na9euTJ48mREjRuDh4YGOjg6VlZVs2LABLS0tVq5ciZWVlSjcNDMzQ11dnfT0dAYMGNBuE/i30GHy6uDgQGNjI6GhoVhbW4vd3blz53j69KkwVn748CEuLi50794dT09PETl98uQJeXl56OjooKenR0NDA21tbairqwsfUXk1avfu3QkLCyM5OZnOnTujpqZGTU0NdXV1ODk5YWdnx5EjRzh58iSrV6+mR48eeHl5kZSUJDRiv6/CfRlcuXKF69evU1RURH5+vuj+UVZWhra2NhoaGmhoaKCsrMypU6eE+Xznzp1ZtmwZR44c4dy5c4SFhREZGcnYsWPx9fXF1tYWXV1dtLS0ePr0KefPn6eiokJ0thg6dKhYxBobG0U0rWvXroSHh5OZmSk644wfP154s124cKGjp5B9+/bRs2dPodOpr6+nubmZnJwcqqurCQsL4+HDh4DMPcHd3R1nZ+c/3IzlvqmNjY107dqV0NBQDh06RHJyMu7u7tTU1HDt2jWuX7+OoqKi2PFraGgIAlBQUIAkSWhpaZGSkoKqqirTpk2jtLSUiIgITE1NGT58OHv27Hnp8cmJqIODg4hMJycnc/v2baqrq4V7xYABA9iwYYMoJlJRUcHIyKidlKOyshI9PT0mTpwoiLa1tTWzZ89ut2HT09NDS0uLBw8eEBkZ2c4Ts7GxUWywtLS0aGlpwdbWllGjRnHv3j02btzYLuL/spAkqZ38QFVVlWHDhtGtWzfU1NRwcHAQm4muXbsK14fExETc3NxITEzk9OnTaGtrM3/+fAwMDPjhhx/4+eefUVZWZvr06Xh6etKlSxfOnz/P+fPnMTU15fbt2ygqKjJ06FC6du2KlZUVCgoKjB8/npEjR2Jubo6vry/u7u5CG/1niiiMjY1F4ZKenh7dunUjPj5e2Mzo6emRm5tLdHQ02traGBgYoKKigrq6uiD0mpqaWFtbU1lZyZMnT/jll1/Q09NDRUUFPT09ERFubW1l0qRJDB8+HA8PD+FI8ftIo7OzM506deLevXucPXsWc3NzSkpKiIqKwt7evp2X4sugvr6exMREysrK6Ny5M7W1tfTv318QzLa2NuGle+/ePR4/foyioqKwBjpy5AiVlZVoaWkxZMgQdHR0cHFxQUNDg+zsbKKjo4mKiuLq1aviOw0NDQkPDycuLg4bGxscHBzERrSuro6MjAyMjY3p0qWL8LY2MzPjxo0bf8qC6NSpU1RWVmJvby+iPzdu3EBPT090bDMwMGDSpEkEBARQXl5OYGCg0FYOHTqUjIwMYmNjGT16NI6OjhQUFPDs2TNevHiBs7Mzc+bM4datW0RHR6OkpCQyQA8fPvxDgwwFBQUsLCxwdXXF3t6ee/fuCfJhbm7eYX29fFOorKxMZWUlFRUVlJSUYGZmhoGBATU1NaSmphIZGUlFRQW9e/cW14S7uzvvvPMO8fHxODs7U1hYyL59+ygvL8fPz4/i4mIuXrxIZWUly5cvx9PTk8OHD3P37l1WrFiBtra2kCLcvn2b7OxsoqKiiIiIEAGYwsJCYVsVERFBfn6+sPN7WVy6dAl1dXUcHR0pLy+nrKyMqKgoNDU16d27NxUVFTg4OIhsgaKiIqGhoe1IpDxDcuHCBc6fPy9qDuTHP2vWLNTV1bl//z719fWoqqri4+NDcnIyRkZG+Pj4oKOjw7Fjx/Dy8mLChAkUFxdz4cIF1NXV8fX1paqqCl1dXbp168ZPP/3UoTGWlJSI4lJ5g5MlS5aIZgpVVVXU1dWJTUlubi5GRkZMnDgRS0tLbt26JRq1uLq6Cu95MzMzevfuzfXr11FSUsLU1BQbGxsRyNiyZQuJiYnY2tpSWlpKTU0NsbGx6OrqCr2oHJaWlnh6euLn5ye4wsvCwMBAZHdSUlIIDw9HS0uL1atXiyCMhYUFoaGhgsjLN5z29vaoq6tz48YN7t69S8+ePZk0aRKjRo2ioaFBWGLJP7+1tRVXV1dRoCYPJISHh3Pq1Cl8fHzw8fEhPDyc/fv309bWRnBwMAEBARw8eJBvvvmGmpqafzimDpPXtrY2CgoKMDMzE5549+7dY968eRQVFeHq6kpJSQmNjY0MHToUCwsLSkpKmD59Oi4uLowdO5b09HRWrVpFWloaP//8My4uLhw8eFBotfbs2cPmzZv59ttvWblyJTdu3ODGjRuiQnzWrFk4ODggSRI3b97kxo0b+Pr60qNHD3bu3El8fDylpaWoqKgQEBDwUpVrcqiqqrJ7927i4+MxNzdn//79Iq2cl5fXLkImL1qLjIykd+/eGBoasnz5cszMzFi0aJG4ERkbG4vK7a1bt7Jx48Z2N9UBAwbg6+sriPalS5eorq5mxIgRmJmZMWvWLGJiYvjyyy+FHghkO7n333+/QwVpgGgmYGRkxMWLF/n4449xcnJixIgRuLm5tTN3v3TpEm5ubu2ImjxN6uHhgampKc+ePePcuXPcvXuXiooKAgICCAwMpK6ujhs3bqClpUWPHj0EoZBDrp1RV1fH3Nwcf39/YSXz4sULzp07h4eHR4f1rk5OTlhYWAi5AMiiB7t376a8vBwtLS3c3d1RVlamT58+lJaWCs3t7du3mTlzprj5X7lyhUePHjFr1ixxHPb29ixcuBBlZWXRFU1NTU1UyMqJq76+PgMGDGDw4MHtOujIvVadnZ354Ycf2Lp1a7tOWS8LeUcX+fnw8/OjV69ewoFi3bp19OrVizt37mBvb8/nn39OfHy8OD4DAwN69OjB2LFjmTNnDrt372bFihXid0tJSeH48ePMmDGDK1eucO7cOUxMTHBzcxPpJblP36pVq3j33XcxMTEhPT2doUOHoq2tLY7tv6pm/XsoLy8XxSBqamq89957BAcH09bWhqGhIbW1tcydO5cnT57w9ddfC6J76tQpIiMjxXmXV7GDLLJSWFiIg4MDM2bMwNTUlB9++IHQ0FAWLlyIu7s7169fx8zMjBMnTohNlFwP2dbWxtmzZ/nuu+/Q19fH3t6etLQ04Z3ckXbUhYWFokVkS0sLgwYNwsnJicePH5OTk0NiYiIeHh5kZmby8ccf8/TpU9Hxpq2tjZqaGsrKylixYgULFy5k9uzZPHv2TBiC29nZMXr0aMrLy3n27BmA0PFVVVUxcOBAunTpgoGBATNnzhTRGJCll7Ozs5k3bx6zZs3ixx9/ZPHixR2+10RERDBy5EiGDx8uHDIePnzImDFjBElZsWKFWKRVVVXZuXOn6ErVqVMnUc8gt5VzcnJiz549HD58mLS0NL744gtSUlKwtrZmwoQJVFRUiG6Henp6vPXWW5SWlgpHm99nVhQVFcnPz8fR0ZHhw4djYWEhtJcvA3lDCE1NTdzc3LCxsRERKwUFBZSVlTl69Ci7du3CwMCAdevWCfJaWVnJpEmThAPJihUr2L17N7Nnz8bT05OvvvqKhoYGduzYwbJly8jLy+PUqVOcOXOGyMhI4ZAAUFpayty5c6mpqaFnz55Mnz5dnG85QQoICGDgwIHtPFNfBnV1dXz55Zdoampy7tw5QkND6du3L9u3bxcd9fz9/YW8R15I+nsPcgMDA/z8/MjJyRFzUY5OnToxYMAAhg4dyrNnz9i3bx9JSUmivfrKlSuZOHEi1dXVVFVVCTlgSkqKcBeRB9Gam5s7NDY5kpKScHBwwNnZmdraWh49ekSfPn2YN28ea9asYcOGDXz++eesWrWKkydP8uLFC6ysrESL9ujoaMrLy5k4cSJ9+vShtbWVlpYW1NTU8PHxYeLEicTGxmJpaSnm39OnT/n+++8pKCgQ+lJ7e3tRHNqnTx9sbGwoLy9HQUGBWbNmMWvWLA4cOEBQUFCHOonJM8qtra00NTVhYmKCqampqB0AWatjd3d3lJSUxH1bfv7lQYHY2Fji4+M5d+4cH374ofCNLS0t5cyZM7i6utKrVy8mTpxIamoqCQkJFBcXU1tby6JFi8jMzOT48eP06NGD9957j6+//lpc45aWlrz22mtMnDiR2tpaISX8r9Bh8rp+/XreeustOnXqxJMnT8Rubvr06Tg4OIhuNjExMTx58oQ7d+4I/crAgQPZt28fO3bsICIiggEDBjBr1iyePn1KSEgIIEvJKigoiJ7xgYGBmJqacvz4cdFuT178kZqaip2dHVOnTqW5uVkYX7u5uVFYWIi+vn6H/SUHDRpEQ0MD0dHR2NvbtyNOlpaWtLW1cffuXdLT01m2bBklJSX8/PPPbNu2DV9fXwIDA9HU1GTAgAEkJycLm6XS0lL27t3L2rVraW5uRl1dHVtbW7KyskSkJCIigoMHD9Lc3ExbWxv79u1j2bJljB8/ns8++wxTU1MaGxuZOHEiLS0tooNUR9G3b19KSkoA2cVeXFwsopWtra3o6uqydetWysvL2bt3L7GxsaKV6s2bN3F3dxeFS0+ePOH06dOYmJiIY5F7bcoXYW9vb2bNmiWqQOVRewsLi3Y+gb/3QOzfvz+XL1/G09Ozw44KkiRhYGAg9IRyS5MxY8aIiI/ck3Pt2rUEBATwxRdfoKGhwYQJE9r50VlaWhIaGip20IaGhoKINTQ0iKYT5eXlpKamcv78eUCW2rKysiItLY3s7Gzh6yrvaJafn8+uXbuIiori/fffZ9q0aezateulxxgXF0dKSgpeXl7iepC38pVLLnx8fHj99dfp378/JSUlFBcXo6GhIQoS/f39mTlzJg8ePGDOnDmoqKjw3nvvoa+vT2ZmJvX19WRlZVFSUkJbWxudO3dmzJgx9O3bFxcXF2xsbNi3bx+HDh1i2rRp7SQy8o1KTU3Nn/JdBITnYEFBAWFhYQwaNKidxltLS4sbN27Q3Nzczlz+559/5vz586JRRE1NDa6urrz11lvC61MeMa6srMTFxQVvb2+8vLyorq4mISGBgQMHiuKvx48fC4u71NRUOnXqxJw5c8TG1M/Pj/T09HYduF4G8v7lLS0tGBgYoK+vT1lZGZcvX0ZDQ4PAwEDa2tq4deuWiJa1tbX9zbSompqaaNDQ1tbGsGHDMDQ0xMbGBhcXFx4/fiwMwMvLy0V3Ozs7O5SUlJg/f77IDkiShI2NjXB0UFdXZ9y4cRw/frzD53DSpEli42tiYsLixYtpaWkREcV169b9oc5A3j5c7jIRGxsr+pzPnj0bMzMzzMzMSEpK4vz589y/f5/MzEwkSUJRUZGGhgaxAQsMDGTp0qUUFRWRmZmJkZGRuM+UlJTw7bffoqGhwccff4yamlqHM1m/l5lFRUVRVlaGhoYGXl5eqKuro6GhwenTp2loaOCTTz7B1NSUYcOGMXDgQN5//32h5WxqaqKtrQ0PDw/Gjh0r2g137dqVKVOmALJMxOrVq9HS0hLyFF1dXUaOHElrayvJycn4+vqycOFCBg0aJKRe06ZNo7a2lu7du+Ps7Ex2drZw6XkZyGVIly5d4vjx4zg4OODv74+amhr9+vWjqKionef4gAEDWLp0KRcuXCA9PZ2GhgaKi4tFa18XFxdaWlpwd3dn+PDhoq5CLmXT0tIiIyODc+fOkZqaSkFBAampqcIlZf/+/Tx+/JjZs2eLgmg5bt++zTfffCMI4suitraWBQsWiEKr31fzJyUlkZGRISKL9+7do6qqCn9/fzIyMjh8+DCPHj0iICCgnQ/1119/TdeuXVm9ejUKCgocPnwYKysr6urqiI+PJywsDGdnZwoKCsT3W1tb8+WXX6KhofGHjn2SJHH06FHefvttWlpaOrSRfPjwIW5ubqJ7ZH5+PhkZGdy6dYubN2/S0NDAggULGD9+PI2NjRw/fpzo6Gjs7OwoKCggJCQEd3d3jhw5wo4dOwgNDRX30ZCQEC5cuEBlZaVYJwFxDdfX14vWsbW1teIeOnToUCEbuH//Po8fP8bR0ZFx48a9lF92h8mrPEwMssjM5s2b8fLyEnYhILPJOXXqFM+ePaOiogJJknj48CEDBw7E19eXbt26CfHuwoULiYuLEz6X8g4hjx8/5ty5c0yZMoWhQ4eSn5/P/fv3RWoGZAu4rq4unp6eFBYWcvLkSXr06EHfvn0xMzOjtra2w/6SnTp1akeoIiMjuXHjBs7Oztjb29PY2EhiYiL6+voEBQVx7do14TV59epVbty4Iex1ZsyYwciRIyktLeXrr7/ml19+wcDAAF9fX6HfGTVqFMbGxpw5c4a7d+9SWlrKgAEDqKmp4dKlS7S1teHt7Y29vT3vv/8+tbW1NDU1oaSkxLhx4xg3blyHiyjGjx8vwvL9+vXD29sbLS0tqqqqSE5OJjU1VehNfvrpJ4qLi1FRURGdY35PFMLDw3n69CkbNmzgtddea/c9CgoKODs706VLF7y9vamoqCA2NlYYdsu/U5IkLCwsUFZWpq6ujrS0NNra2ujWrZsoGukIcnJycHZ2brerlCQJV1dXUTT27bffkpqaytixY3F3d8fDw4MhQ4awdOlSUVgnTy97eHhw8eJF6urq+Pjjj0WqsKysTPR0lkfB5F2A5Lq57du3c/jwYSZOnIitra2Iip44cYItW7bw5ptvsnHjxg53oKqtrSUnJwdtbW2sra1RUlKitbWVyspKHjx4QHx8PEVFRQwfPhxzc3PKy8vJzs4W6Z3q6moaGhpwcXFh3759hIWF8eOPPwp9VXR0NOfPn+fJkyeoqKjg4+PDsmXLGDRokDiGmpoasUAWFxeLzmQODg6kpaWhra2NqampqELuKLS0tKioqBA3NktLS3x9fQWpKSkpISgoiLCwsHbFUg4ODqKzl4aGhiD5gwYNEj7NjY2N1NXVYWFhIfTPILPRqqurE4Um8i5l8giXkZGR0BLKdc3ynu4KCgoduharq6vx8vKisbGR7Oxs2traCA8PJzExkcGDBwu5Un5+Pp07dyYiIoLm5mb69++Pvb09L168IDQ0FCsrK+E5Le8oV1RUJM63k5MTw4YNIy8vj2fPnjFy5EhmzZol7tetra04OjqK61reBrJPnz40NDRQWFiIhoYGW7du5cCBAx06h3KDdXn18pQpU+jUqROLFi0iICBAzKe4uDihoZMbt8tlGI8fP2b37t28/vrrgpSEhYXh4uJCQEAAR44cIS8vj8rKShISEtDR0cHf35/y8nIqKirIz8+ne/fuLFmyhJKSEtHnXUlJSRTPamhoIEkSCQkJHeqyFRsbC8hSrnLS/PsCU7mrRf/+/QkMDCQ0NJSoqCh69uyJoqIi5eXlPHjwAG1tbbp3706fPn0YMmQINTU1TJo0idraWsLDw6mvr0dXV5fhw4djaWlJZmYmT548oaqqChUVFVH4oqCgQFZWluji2K9fv3aewSArpOkIefX19eXu3busW7dOuIzI791yC6+amhoePHiAk5MTLi4urF69mqysLOLj4wFZNkxuz2ZlZUW3bt14/fXXGTduHCoqKmJDpqWlRa9evbC3t+fChQvU1tZSWVnJ+fPnRXdOkGVBBw0ahIqKCnV1daipqVFXV8fp06e5desWM2bMeOnxgUz/Lm+U8/bbbwuOAzLOo6ioiIqKComJiRw4cICuXbsycuRIoqOjOXHiBDU1NUyYMEGsVREREVy9elXcSwoLC7l27RqNjY1ER0eTkpKCi4uLcLXJzs4mKCiITp06ceTIEdLT08nJycHc3JzCwkKsrKy4f/8+CxcubNe2+mURHR1Namqq8BpXUlLi9OnT7NixQ8xRb29vlJWVycrK4sCBA3+IkHt6ejJ58mRqa2tRUFAQGzT5vE9PTxcbidraWp4/f46Ghob4LdetW8fp06d5/vw5ZmZmjB07lrFjxyJJEtu2bePYsWPiPibPTvw9dJi8/r47R//+/YVMICIiQnRzmTRpEp6enqIdrJ6eHj4+PpSWlnLz5k2+/PJLQBYhMTIywtzcnNGjR/PkyROioqIwNjZm3bp11NTUsH37dkpLSxk8eDDKysoUFRWJhfv58+dERUVRX1+Ps7Mz6enpfPjhh4wbN45Vq1Zx7tw5Ibh+WchP5O8jPM+ePeP69et4e3vTvXt3QYCam5tFswY50tPTRVRz8ODBODo6smnTJnbu3ImzszObNm2ia9eufPfdd4SGhoouTWfPnsXW1pZ169ZhamrKixcvsLe3JzExkU8//ZSJEyfS0NBASEgI+vr6nDx5ssNt/uTQ0dERmhljY2O8vLxEdCsjI4PExET27t1LXV0dqampuLi4UFpaiq2tLf369WtXADV69Gj09fX/5g1fTo4mTZpEQkICX3zxBc7Ozrz55ps8e/aMyZMnk5GRwbx589iwYQO6urpoamrSpUsXDh8+zNKlSxk5cmSHW1KmpqaKiLk88pqRkcHmzZupqalh0aJFLFiwgAMHDrBnzx4MDAyYP38+nTp1QklJCTMzM2JjY3njjTfo3bs3r7/+uih+CQoKEuRVLvNobm7Gzc0Nf39/VFRUhIOGiYkJ4eHhPHnyhC1btvDee+9hb29PaGgotbW1fPnll4wYMYLMzMwOie9BthgoKCiQnZ3NhQsXcHBwwMvLCz09Paqrq4mLi0NNTY20tDTCwsKwt7fngw8+QEVFhZaWFr766ivh0bpw4UIMDAza2cxFRkbyxRdfEBgYyObNmzE1Nf1DBDwiIgJra2uOHz9OcXExjx49YtKkSbS1tfHpp59SUVHB4cOH0dLSEk0DOgJNTU3WrFlDbm5uuw1fdXU1586dQ0lJiU8++YTnz5/z3XffkZeXx5IlS/j000+F+F9PT4/ExERyc3M5duwYnp6eoinFsmXLeP/993n27BnffvstgwcPRktLi9TUVGxtbfHz86Nbt26oqKgIe6Hfp+rMzc1FkcmfuRblVkJhYWFcuHABIyMjrK2tmTVrltBeamlpieKjnJwcmpubCQoKYt68eSQkJHDgwAGx0EVGRuLj40N6ejqzZ8/GxMSEEydOAAhNZ58+fRg5cmQ7CU9bWxt1dXUi2iEvoOratSuampqkp6dja2vbYZ3d7/H76Ji3tzdHjhwR6fIvv/ySkydPinbZ5eXlTJkyBXt7ezQ1NRkyZAhmZma4urpy//59VqxYgbGxMZcvX8bIyIg1a9ZQWVmJsbExJSUlGBkZ0bt3b2F3dP36dXr16sW4cePEbwiy87dlyxbRdhdkKe+NGze+9LgePHjA7t27effdd0UQQ44jR45w/vx5pk+fjo6ODsHBwejp6XHlyhV8fX1F1FUu9TEzM6Oqqkq0lX3nnXd4+PAhx48f5969e9jZ2VFdXU2vXr1YuHAhjY2NREZGcvr0aaGZLCoq4sSJE6xbt67dffPPmvcDQpMrL/IsLCzkzp07JCYmYmxsTP/+/VFXV6eoqEhI6cLCwnj8+DEgi8CtX79enKsnT54wefJkBg8eTHR0NA0NDX/Q/Ovr6zNu3DimTJlCfX09jx8/JiQkhMePHzNt2jRmzZrF9evXGTduHKNGjUJNTY0TJ05gZmbG5cuXO9RVE2TR1fHjxwvv5d9fz7q6urS1tVFYWIihoSF1dXWipqZz5874+/tTX1/fzpZz3LhxdO7cGQcHB3R0dOjSpQvvvPOO6GhoYWGBl5cXkiShq6uLvr4+jx49wt7ent27d5OTk8Pp06fZt28furq6fP/993Tu3JklS5aIrIjcHehl8dprrzFo0CC2b9+OpaUlOjo6ZGRk0KVLF3bs2AHA4cOHuX//fruNAsCWLVvw9fVl7dq16OjoCC/i8PBwPvvsM7y8vHj69CmNjY00NTXx8ccfc/LkSWGdKXeacHR0pKqqCmNjY+Ej3traSlBQEObm5mRmZoqisn+EDpPXqqoqysvLsbe3x8zMjIULF5Kfn09LSwu5ubloamqirq6Oh4fHH6wcysrKRApEbnMVHx9PXV0dPj4+mJiYUF9fL26SZWVl6Onp0adPHxYtWkRsbCw//vgjt27dor6+HlNTU4YOHYqjoyM2NjbU1NSISk1VVVV0dHQ6bLMk91YbOnQoQUFB2NnZ0blzZ+Li4ggNDSUmJkYI/k1NTfHy8mLy5MlcvHgRFRUVunfvTnl5OaWlpTg5OaGpqYmRkRFeXl6iyhAgICAAPT09bGxsSE9Px9HRkaVLlzJ8+HBiYmKIjIwUTQ5OnjzJ0aNHRVqyR48enD59GlNT0z+Vkk1ISCAxMREtLS0eP35MeHi4cGuwsbHB09OTqqoqrK2tWb16NSUlJezcuZO5c+eKm0xrayspKSmYmZmxfPlyQEYUU1NTRcvFiIgISktLGTp0KBERERw9epQNGzbg5OTEpk2bhE9v3759RSpeTjY1NDREb+mO4ty5c6ILmdyI3MbGBiMjI06fPo2+vj7GxsZkZWVRXFyMh4cH48aNE++vqanh0aNHFBcXY2lpSd++fRk+fDj29vZYW1vT2NjI9evXcXNzE+dYU1MTVVVV/P39yc7OJjMzk9zcXPLz81FSUkJVVZW2tjZyc3PJyspi+PDhQqd19uxZysvL/9A68u8hPT2dy5cvI0kSXbt2FfIYJSUlevXqJRos1NbWUlNTQ3Z2NmFhYfj5+REaGsrNmze5c+eOaCJhbW3NrVu3UFNTw83NjebmZvr27UtQUJA4B7GxsSQkJNCpUyccHBxECt7T05P6+npSU1MpKysjMzOTgoICqqqqePjwIT169CA0NLTD51FXV5evv/4ac3Nzhg0bRmlpqbAWS09PJy4uDg8PD0aOHEloaChXrlzBzMyMCRMmsGjRIm7fvk14eDgVFRVER0dz6dIl/Pz8hF/kixcvuHbtGjExMcIGx9LSEn9/f5ydnSktLSUjIwNDQ0NxTzpx4gRZWVn06dMHPz8/TExMuHLlirA76gh8fX1paGhAU1MTJSUl7ty5w6BBg1i8eDFqamq0tbWhpqYm2vTKfWXlOk03NzcWLFjAw4cPqa6upqamhrS0NC5evEhRURGGhoY8e/YMIyMj7t69i5aWFv379xeZJXmVb1tbG1VVVYK8Xrp0iV9++YVZs2bx5ptvoqOjQ0tLS4c73YHM+SM3N1fMmZqaGqKiolBTU8PW1pbm5mZ+/PFH4uPjhe5UXlleVFSEsrIyRkZGDB48mHPnzrF161aeP3/OiBEjOHToEFlZWSLDoqCgwLBhwxgwYABGRkaoqanRqVMnrK2tKSsr+0NgQltbWwQ2YmJiOhx1BRl5kWuW5cV7cqJ/4sQJzp49y6hRo5g6dSp79+4lKiqqXTr4952+5FkcecMEa2tr/Pz8OHPmDJmZmWRmZtLY2EivXr0wMjJi3rx5FBcXs3//fuLj40V7U319fWHlVldXR1JSkrBvTE5O7rDzR05ODoMHD2bnzp1s3ryZtrY2EhIShHG/fAx6enrCPSE9PV0U+wYEBIh1v7i4GCUlJaHZ/PXXX8nIyEBPT4+amhry8vLo2bMnNjY2aGlpERYWJmQr48aN4/HjxygoKODg4CCahxQVFaGrq4uzszP+/v74+/t3mLx6eXnxxhtvCAJaWloqsmSWlpYEBgbi7OyMgYEBQ4YMobCwkIsXLxIQEMDixYuJiIhAWVlZzEV5EwP5OpiVlYWRkRFOTk5UVFTQs2dPunXrhiRJjBs3jsjISHbv3k1iYiJfffUVPXv2FDUzcneHTp06sX79ekpKSjrkCQ4wceJEHj58yIMHD/j1118ZOXIkVVVV6OvrM3bsWIYOHSokS56enpSUlJCcnExjY6OQZ0RHRxMXF0dQUBC9evUS0odBgwbh6OgoAnwNDQ3ExcWRk5PDiRMnUFRUFEVa8kYl8JduiUpKSvj6+jJjxgzS09Nf2pu/w+R127ZteHp6YmJigomJCYMHD8ba2lrsVBoaGoRNhHxnLUd5eblIz2zfvh03Nzfu3r3Ltm3buHr1Kr1792bTpk2Ym5sze/ZsTp06xVdffcU777wDIIoi7ty5Q3l5OcuXLxemuiUlJcK2Qr7YBgYGcuvWLbZt2/bS40tKShIRDEVFRQwNDRk7diyjRo3i8OHDrF69mqKiIry9vfniiy+YMmWKEKKHhobSv39/goODqa+vF4vBrFmzmDJlCubm5mRlZYlKxFGjRhEWFkZtbS1btmwRZD8kJESkMBwdHUWVflVVFWfPnsXZ2ZkVK1Zw4sQJ+vfv3+EK2ZSUFNGNSa4NGzhwIF5eXqioqIhqWfmNfePGjaxfvx4lJSU2bNgAyAqqfvnlF9zd3UVxQENDA1lZWSgqKqKurk5GRgbh4eE8ePBAkGx5ZaPci+/IkSO8/vrrAKJ/NsjkDCdOnEBfX1+kbF8WN27cwNbWlsmTJwvbsV69enH58mW2bdsmUkrjx49n/fr1QgMKspv9zp07KS4u5tSpU/j5+VFfX8+MGTOws7PDzMyMgwcPsmHDBt566y3ef/99oRHNyMjg/v37ogtUcnIyubm5jB8/nvfff19EdHV0dNqZofv7++Pn58f69etfeoyXLl1i/fr1zJ8/n7Vr1wJ/Sc3KZSbV1dVic7F7927mz59P//79CQgIwMLCAgUFBZ49eyb8Zaurq4Wx/dixY5kxY0Y7Qpafn88333xDz5492bx5M927dycqKoojR47g6upKv379KCwspKSkhOXLl1NcXMy+ffuYOHGiaEzSEdTW1oosgbq6OuHh4aIVs7+/P+np6ezfv59ly5bxxRdf8Mknn4juf0uXLiU1NZWvvvqK+vp6mpqaUFBQQF1dnZUrV4rK7c2bNzNmzBgOHjyIgoKCuLYLCwvZs2cPp06dYsyYMYwYMYLIyEjefPNN6uvr+eSTT0Sxk4aGBt9++y25ubnMmTPnpcenoqIiPGWNjY3ZvXs3lZWV1NfXo6am1i76061bN9zd3UlKShKSk3nz5uHu7i6izNXV1Rw4cIDy8nKOHDmClpYW+/bt4/Tp05ibm7NgwYJ29jPyjb2iomK7gjoFBQV0dHSwsbERxvbNzc1/qhV1VFQUp0+fZtSoUbz99ttoa2uLiNI333zDtGnTsLGxIT4+ng8++EB08Hr69Cl37twRHdJKSko4cuQILS0tfPPNNzg7O7NkyRKSk5Px8/OjsrKSmpoapk2bRkBAgCguDAoKYvLkycKP2tLS8g8ENTMzk6VLl3L79m08PDz+kGb/e1i5ciWvv/46bW1tbNu2jc2bN/PGG2+I1PLZs2eJj49HWVmZK1euiO5UH374IatWrQJkhK6iokLo0X+/iZVLDmJjY3nx4gXx8fHCv3nfvn2sWbOGuro6QkJCGD58OHPmzGnnsnLs2DFxT8jJyWH//v1cu3atQ9eivMDLxsaGFStWCJlD7969/+Dm4+zsjIaGBmZmZrzxxhvCS1mOwMBAunfvLkiMvJPhmTNnOHDgAHV1dRw8eBAbGxsePXokitD27NkjOjsePHiQ9evXM3XqVEJCQjh9+jTKysrCkrEj91E53nnnHVpaWkRQZe7cuaioqHDq1CksLS358MMPRcesmTNnsmvXLhYvXiy6X8mzXCkpKZSUlHDt2jVSUlIoLi4W0WpFRUVcXFwwNzenrKyMxsZGJkyYgIaGBl9++SVHjx6lubmZhQsX4ubmhouLC9u3b8fJyald17CQkBA2btzYoXqXnj17snv3bi5evMiNGzeoqKjgxYsXNDQ0UFFRQX19Penp6aLD4PPnz7l8+TKjR48mKChI1D5s3bpVnDs3NzeUlJS4efMmurq6vPbaaygoKFBWVoarqyvPnz8nPT2d9evXY2BgwMqVK3n77bdFEE5ZWRkLCwsqKipobGwUHtDAS635Hb4beXt706VLF/GFJiYmNDY2EhYWhq2tLba2tmhra3Px4kXhYWhoaCisoxYtWoS9vT3h4eGUlpbS3NyMi4uL8GmUG5qPHz8efX191NXVOXHiBBEREbi4uDBu3DgaGxuprq6mtLSUO3fu8ODBA2xsbHjzzTfFcX7//fd4eXkJcvuyUFVVZe3atfTv35+WlhaKi4uFHlNLS4u2tjbMzc1xc3Pj0aNHKCsro6GhIfSwXbp0EdEheaSqX79+YvJduXKF7777joEDB9K3b18iIiJwdHQUxPXOnTvExMSI48nNzcXExITOnTszdOhQ8Vs7Ozsza9YsrKysRIXwy6K2tpbc3FxhbxIZGYmHhwdOTk5cv36dw4cPExgYyJAhQ8jIyKC4uBh3d3eePXvG6tWrhRebfD7I+zXLKz8dHR1pbW2lT58+uLu74+7uLo7xiy++QFFRkVGjRjFs2DCsrKy4efMmlZWV9OnTRxB+U1PTP2VsDzJ/0FOnTtGpUyecnJwoKytDV1cXHR0dpk2bRmJiIioqKsJVQC6ZkBunu7q6Mm/ePPH9Ghoaos86yG7i48ePp7a2VmjLKisreeeddygoKMDNzY2YmBgaGxtZvXo1c+bMEdEJOzs7Hjx4wC+//ELXrl1ZtmxZu2KHl4W+vj6vv/66IP6A6GdvY2MjCoDkUFNTIysri5aWFhwdHbG3txfp8OLiYlEZHB0djaKiIvX19VhaWqKpqUnPnj1xc3OjU6dODBw4sF003NvbW9ygo6OjMTIyEqbsERERLFy4kNra2j9lsxQeHi6qs42NjcnNzRWWegMHDsTR0VFY9Mk9iK2trcViqa2tLaJ9KSkpgijK9VTyrmc6Ojq0trairKyMqakpv/zyC/v27ePx48dUV1eLFrBGRka88847ohHDkydPsLS0FNdiYmJih8Yn36i1trbS2tpK7969BaEFxEKel5fH0KFD6devH46OjvTu3Zvq6mpxfuVyDnnLabkbRENDg4gmDxkyhO7du6OkpERVVZWIzGtqaqKiotJukzJt2jTGjh1Lz549yc3N5e7duzg6OormHR1BQEDAHwhMz5492bFjB5s2bcLKyooVK1awcuVK4QN96NAhUeyTmJgonFl69uzJnDlzGDhwIBUVFUycOJEnT55QUFAgZC/dunUTnptmZmZYW1tTV1eHoaEho0aN4vTp07z11ltMmDCB0aNHU11dzVdffUVERARubm7MmDGjQz6h8mYJgChC9vLyQklJiRUrVmBoaCgkGtra2ixYsKBda2qQnX8TExNxPmNjY7ly5QotLS1YWFigra3NsGHDUFFREU4zIOuElp2dzYMHD6iqquLmzZsispeVlUVkZKQw9s/IyKBr165MmDChnQvAy2Dfvn1ERkayYcMGHB0dSUpKQkVFBUtLS9LS0ti7dy8eHh4EBQWJDVdFRYVovwxw/fp1YmNjGTBgAD4+Ply/fl107Zo0aRLe3t6MGzeO+Ph4MjMzqaiowNzcnKCgIB48eMC+fft48uQJqqqq5OXlYW9vT1tbG+fOnePHH3+ktbWV4uJimpub/+Ar/LKQt87Ozs7G1NRUEEhNTU0hlVNXV2fIkCGcOXNGFKRPnTqVbt260dLSwoEDB3j69KmwkMzMzBR6ekBkUB48eICxsTEzZ84kPDyc48ePY2Njw4YNG3BzcyM6OppffvmFvn37Cn1rQUEBOTk5NDQ0tGsa8zI4efIk9vb2IhDQq1cvHj16JFraamhokJ+fz927d7GysmLMmDF0795dNHrJzc2la9euWFhYkJ2dzcOHDwkKCsLV1ZW8vDxOnDhBWloagwYNorCwkKamJhEwkGeY5Y2ddHV1ycrKIiMjQ3Ab+f1Bfu97mTnaYfIqT3lcuHBBiN8lSSIyMpI7d+4wfPhwXFxc0NPT49ixY8TExODl5SXMfb/66iva2tqYO3cu6urqfPTRR7i5udHQ0EBJSQlfffUVd+/eJTg4mHHjxrFp0yY++eQTQBYBnDNnDtbW1ty8eZPExETOnDnD/fv329kqXL58WaT//9rn7x9Bbmyvrq5OcXExR44cEalIS0tLFi9eTP/+/amqqmLlypX89NNPzJkzR1hb/L7YKysri/v375OQkCDIkNz77MWLF7x48QIDAwMcHR2pqakR+iU/Pz+GDBkiunj4+fmxY8cOjI2NhaH6ypUr+eKLLwA6XLDVpUsXNmzYwOuvv46rqytnz55FWVlZ9CF/+PAhOTk5HD9+nLCwMPr168e6desIDQ0VLdt69uzJxx9/zJgxY3j69Cnfffcd+fn5wvtXSUmJWbNmiQW6pqaGzp07k5CQwIcffsiDBw9wdXVl1qxZnD17tl1kU0FBQdjoKCoqkp2d3aHxDRgwgHv37gnCpKqqSnp6OnZ2dtjY2IgWxS0tLdy5c4ebN2/y9OlTkpOT6dGjB2vXrsXU1FRYeRkYGKCsrCw6Rjk7O/PWW2+xb98+vv76a1avXi26yXXq1Ilx48ZRVlZGZWUlEyZMwNnZmby8PFpbW3n+/Dm7du0iPj6ecePGMWjQIFGc0BG89dZbLFmyhLa2NqEdam5u5sWLF5QDKQmfAAEAAElEQVSVlYkOavKiivz8fCZPnsyiRYtwdXXl559/pqWlBV9fX0aNGoWioiK3b9/m+fPnZGRksGXLFpqamvD390dBQQEDAwNsbW1FlLehoYGqqioh3YmMjOTXX3+lS5cuWFtb09TUJDZmUVFRf1ovKY8KNzY24ujoKBYYkG1w+vbty+PHj1mzZg1aWlrs2LGDQYMGUVtbi66uLlOmTKGxsZEzZ84QExNDZWUlxcXFGBkZ4ejoyMKFC9m2bRsLFixgxYoV6OnpcfXqVe7cuSN63aenp5Oenk5QUBAHDhxAVVWV0tJSzp07R0VFBaNHjxb6s45ci3FxccTGxtLY2IiBgYEgKvLxKSoqcuLECW7duiVaqmppaTF48GA0NDSorKwU514ekVNTU8PX15empiZu375NTU0NQ4YM4bXXXhO6Y11dXZqamigsLMTExOQPTTzc3NyERjU0NJSLFy8yfvz4ds0ZXhbW1tZYWlq2kxzIPbHz8/MJCwtj8ODBYoHes2cPCxYsQJIkNDQ0xP3DwMCA5cuX8/rrrxMSEkJKSgoLFy5kypQprF27luzsbHr27CkcJnR1dSksLCQ8PFx4O8tJ0969ezE1NWX06NGicHX69OlMmTKFfv36degcyq2HVFRUWLRokWjk0NLSgo6ODsuWLaOtrY3GxkaUlZVFkcrvIbdgA9n1euTIEb799lsqKiowNjbG09OTcePGsXTpUs6ePSsKf+SaXg0NDTEHdu7ciY2NjSg4nTdvHnV1dRw6dIjXXnuNtWvX0qdPnw5Z8xUVFfHzzz/TvXt3Fi9eLNYxkLUs/vzzz0VbdJBJ7w4ePMjgwYN55513KCkp4eLFi8THx1NbW0tBQYEoBgVZVP+1114jKCiIyspKPv74Y6Kjo/nwww/ZuHEjT5484fPPP2fr1q2ArFHS+vXrRQMDuZTm008/ZcaMGXz88ccdriEAmXWjfGMu5w1Tpkzh+vXrfPbZZ/Tu3ZshQ4ZgYmJC//79uX//frsAQVlZGU+ePOHBgweYmJgwevRo+vXrx5UrV0TxldwxQe73feHCBQ4ePEhKSgobN24UWcxffvmFb775hpKSEiZPnoyysrJwbZg2bVq7zqIvg19//ZXOnTszZMgQIf3r1asXP//8M3Z2dkiSRFtbG7GxsYSEhLBgwQICAgKoq6sjJydHdPYCmY1eUlIS165dE77iBw4cYNasWcycOZN+/foRGRlJeXk5AwYMEI0Q5OdJTU2N9PR0vv76a0aPHi2u/erqaiGhepmmPR3PAyGL3N26dYv09HS6d++Oh4cHixcvZsKECfz000/s2bOH1157jdzcXK5evUpFRQWLFy+mtraW0NBQfv75ZxoaGoSNz5kzZ4iIiBD9oH/88Udu3LjB6NGjhXeqJEkiiurh4UFraysxMTH4+fnh7+/PjBkzaG1t5fLly9TU1LB06VL279/P3LlzGTly5EuPTV1dnQ8++IBly5ZhYGDA9evXycnJoXv37vTr1w8nJyeSk5O5dOkSSUlJeHt7ExAQgLe3N/X19e2qFEeOHElbWxtbtmwhLS2NH3/8keHDh4sdqrxHe1FREZ9//jnffvstkiTx448/0qVLF9Ge9d133xXpmbfeekt0vOjdu3e7DlUvi4CAABEdA1nhiLxhwpgxY2htbeXgwYOi2rC6uhpfX1/R8Sc7O5tx48aJ1FOvXr14//33OXToEJ9++ilPnz5l1apV7bQrPXv25Pvvv2f+/PnEx8dz9OjR/0fbX0Znda1t//Av7u7uCkSACCGBBElwKV6sUKBYoaXQIgUKFEqF0pYCxYsGtxIo0uAREkgIEE+Iu7vn/ZCx5kPu/Tz3Jv2P9xxjj92xu5Nc61przXnO4zxEcJ779OlDQEAAERER7Nq1C3t7e5YtW4aRkRHXr1/n7NmzPYrBNTQ0ZN26ddjb21NXV4eioiIODg60traSnp7OP//8Q0xMjLB0ys7OJi4ujtraWp4/f8769etRU1OjqalJCEUkRFiKDH316hXR0dGC6+3q6squXbsYN24cCgoKZGZmcvDgQSZOnMgff/zB6NGjOX78OIsWLRIpM6NHj+bYsWPcuXMHX1/fHqEFUnMhiWvGjRuHiooKMjIyIs/86dOnPHjwQETZ9urVi969e9PQ0EBaWhpWVlasW7eO4cOHU1VVxezZs7l9+zbff/89SkpKjBo1CgcHB5KSksjPz2fEiBF4enpSXFzMtm3bOHHiBCEhIRw+fJg+ffpw584dLl68KDi83t7ebNu2jSNHjgg3kZ6UlNCWn5/P8+fPcXNzE6r+n376ibt37zJixAgMDAx4+vQpFhYWBAQEoKioSFxcHLdv36aiogJra2uRFnb48GEUFBTYvHkzSkpKPHz4kDt37vDmzRtSUlIYPXo048ePZ8qUKURHR3PixAl0dXWZO3cuTk5O7NmzB3V1dezs7OjVqxfGxsY94iq/W0OGDKGlpUWgjoWFhcTHx9PQ0ICvry8qKir07duXkpISTExMMDIyQkFBgfT0dJ49e0ZWVhaBgYH069ePhw8fsm/fPjw9PQkJCUFRUZGysjKRcNTR0cH8+fPFOqKvr99NaNbU1CSevzNnzpCcnMwnn3zC4MGDhWPEv6nffvuN8PBwvv76a7y9vTl+/DiPHj3io48+IiAggOjoaH799VeqqqoYNWoUampqTJ8+ncTERBwdHRk0aBD19fU8efKECxcuEBERQWZmJjk5OZSUlDB//ny2bNnCL7/8IvYMJycn8Uyoq6tjZGREe3s72dnZqKqqsn37drEnaGhosHr1amRlZQkPDxfj4vctKejDzc1NNKWtra1cuHCB1NRUvL29GTVqVDfk+X9WTU0N169fF9zr8vJyrK2tiY+Pp6ysjPDwcCZMmCDoZ5s2beL27dvY2dkxdOhQNDU1KS8vp7OzU3AuJ0yYgIGBAb169UJJSQl3d3dycnI4c+aMEFa/bx09epS8vDysra0pLi7GyclJrD+SE4kkeGtpaeHSpUs8fPgQS0tLMjIyuH37Nrm5uYKy8vjxY4KDg5k5cyZpaWnU1NSICaeWlhaxsbFERUVhb2/P2LFjycnJISAggD59+qCjo8OHH34IdHHGN2/eLHi+bW1tDBw4sMeWddBFNfv555+xt7fHzc1NADr9+vUjLS2NjRs38uuvv4rpgLu7OxMmTCAkJISamhp27tzJ8+fPCQgIQFZWlsjISBQVFRk5ciQaGhpCBHX//n0cHR2ZPXs2mpqaHD9+nLKyMn7++Wdx8Pnjjz8IDQ3F1taWgQMHCjTS2toaa2trCgoKROP/vjVjxgxMTU2FxWVdXR3u7u7ExMTw5MkTPv/8c/r3789XX33FhQsX+PzzzwkMDOTTTz8Vrh+5ubnIyckxZswYLC0t+eyzz/jjjz84ePAgQUFB/Pnnn9y+fRsdHR2ampqwtbVlyZIlYjp4/fp1QRdUVlampqZGHGpra2uJi4vD2dn5vSeu/8oqKyUlBSUlJRQVFYmMjBQjb0dHR968eUNycjLBwcFMmTIFBQUFNDQ0BM9w165dqKio0K9fPxYuXEhLSwuhoaFkZ2eLk6/UXMTExPD555+zfv160fVLi6zk5Tp79mzx96VUHD8/P/r3709iYmKPvQkzMzN59OgRw4YNY+jQofTp0wdDQ0PxQoSFhXH06FHS09MZPHgwn332WbdGsKKigvz8fGHiP2bMGL799luOHTvGhAkTGDt2LJ9++ilWVlbo6+uTnp7O5cuXOXPmDLW1tdjb25OVlUVSUhKpqakEBgaKBw66uG/SqWjVqlU9iqOUSsqzl+yE1NTUUFdXp7W1FXNzc5YvXy5SbHR1dVm6dKngorzLJ4qLiyM3N5f+/fszadIkTE1N+eSTT3j58qUwgpdUi4aGhgQEBPDZZ5+xePFi9u7di66uLk1NTXz33XcsXLiQNWvWEBoaysSJE9HQ0KCzs1OkAUkChPcpDw8PMRrOzMwUBH8FBQUSEhL47bffyMrKQkdHBwMDA/r168eCBQu4efMmKSkplJWVoaKiIizZpJOpmpoaFhYWFBUVdSPMX7x4kZkzZ7JkyRJBF5GM8fPz84mLi8Pf35+qqioUFRWxs7Pjyy+/pH///pSVlSEnJ4eGhkaPDLZrampQVlYmOzubhoYGkR1eUVGBjo4OcnJywj/SwMAAGxsbcQ+zsrKIiopCWVmZIUOGCJpLcXEx1dXV5OTkYGxsjKenJ3Z2dty5c4eHDx+Snp6Ov78/KSkpnD59mtraWtrb24mLi0NNTY329nZUVFSE6rhPnz7CJF/yv+1Jubu709bWxsuXL4mKiiIuLo5FixZhYmJCe3s7ERER9OrViyFDhiAvL4+srKw4sUv+iy0tLQQGBuLi4oKGhga5ubkcOnRI2E2Fh4fT0tJCbW0tjx8/FuiJuro6ubm5WFpaMm7cOL744gtSUlLYv38/1dXVrFq1isDAQOTl5YXg6V1rtvep4uJijIyM6NWrFyYmJiJJT5reFBQU0L9/f9zd3RkxYoRoGCoqKnj06BH379/H1NSUwMBAZGVlefXqFebm5mJUKycnh6qqKtnZ2ezZs4devXoxcOBA3r59i5GRkUBi6+rq6OzsFM3r0aNHiYqKol+/fjg6OqKqqkpMTEyPE8Sgi0969+5d/Pz8RASlNIWBrgakqqqKiIgIevfuzcKFC3F0dOTs2bOYmJiIDT05OZk///wTFRUVrKysSE5OFgEZf/75J7179+bp06fcuXMHR0dH3N3dhYOCdJ15eXno6enh7e2Nra0tDQ0NNDU1iYY+Li6Ow4cP98g/MywsjNevXwtuPcDDhw+5desWxcXFdHZ2oqSkRGdnJ6mpqejo6ODp6UlbW5vIdE9MTOTgwYNERUVhbGzMsmXL8Pf35+TJk0RFReHs7ExtbS1lZWXo6+vj5+dHZGQkXl5e7x3Z27t3b9LT07l79+5/WCD9t5KCN0pLS0lJSUFDQwN3d3egC/jo06cP3t7e1NfXc/DgQZ4+fYq5uTmffvoppqamnDt3jo6ODg4fPoyuri6///47FRUVTJw4EX9/f16/fs3atWtxd3cXoigpgvTSpUuUlpaKABToei+qqqqws7MT7keSl6jUA/S0bty4watXr/Dy8sLT05OioiIePHiAnp4eLS0t4jCRnp6OsrIyly5dIjU1FUNDQxQUFPjnn38oLS3lhx9+YNy4cWzfvp26ujrKy8sxMTFBQ0OD2NhYoAv8MzMzIzs7mzdv3jBnzhxxH69evcr69etpbGzkq6++Yvr06bS0tJCRkSGAmNTU1B5bD0qC5NzcXN68eUNZWRmDBg1CT0+PsLAwrly5wsmTJ/nggw/Q0tJi9OjRvH79GmVlZebPn09SUhI1NTXCAlJag0tKSmhoaGDEiBHMmzeP0tJSkpKSKC0tZcKECUydOpX29nZ+/vlnMjMzGT58OGVlZSgqKjJp0iTR2+Tn59Pe3i4O04mJif/1mnrcvEpK0PXr15OUlMTRo0c5duwY/v7+TJ48mY8//pgXL15w/vx5hg4dyqxZs0hLSxMG2F988QUBAQG8fv2aFy9eEBsbS3Z2NvLy8jQ2NgrFaHx8PPn5+fz++++CDC8rK0tmZiaurq7IyMiQl5dHZ2enaF61tbWZMWMG1dXV3LlzB2VlZb7++useeb1mZGSwZcsWAgICaGlpYdGiRdjZ2SErK8uxY8dYtmwZra2tTJw4ka+++qobF1I6dd66dUs0cpJyHrqoFqampjg5OaGhoUFjYyP79u0T0aezZs1i2LBhnDt3jlu3bgm+S2pqaje/NB0dHTw8PFBVVf1X/pl37tzh3Llz+Pn5sXjxYoEyvrv5GhgYMGvWLMaPH/8f/q3QdVD48MMPSU5OZtmyZaxduxZfX18uXLhAfX29SAZpbm7uhpo2NTXR2dlJS0uLSHp6F7lSUVFh2rRpqKqqcunSJVRVVVmwYMF7PcxSvesRp6ioSGJiIp2dndja2qKqqsqQIUOYOHEidXV1bNq0CXNzc7755hsRnfr111/j4eHBxx9/LPwyJZ9bKap48ODBpKamUlhYiKGhIa2trezevZuGhgaioqKIjo6mb9++rF69GgcHB+7cuYO9vb3wvpNERCtXrmTevHlcv369G5/tv9X+/fv57LPPmDRpErW1tWhqaoqmUfo+JUqChoYGCgoK4j50dHQITlJdXZ1odvbu3cv+/fuBLn7Vxo0bmT17Nk5OTlRUVJCUlERWVhYVFRV4e3uzcuVKAgMD+eeff/juu++orq5m+fLlIrpREqV5eHj0aPrxP8vS0pL29naOHj1KTk4Oe/fu5YsvvsDDwwMzMzOBCsrJyQkRkqT8lagf0lSkvr5epBENHToUGxsbbG1tefHiBdC1sVy9epWXL19y7do15syZw/z580lJSSEnJ4cdO3agqamJoaGhQERaWlrQ1tYWdlrvW0+fPkVRURETExMSEhIoKCigT58+uLm5UVRUxK1btygvLxecX0DYCsnKylJRUSEoBrq6uhgaGvLBBx+goKDA2bNnSUlJYdmyZSLFJz09XYwF582bJ2hHDQ0NdHR0iOmCiYkJVlZWODg4UFpaysyZM3n69GmP07Wga8Q7depUYmJiOH36NEOHDiUgIABVVVVqa2vJzs5m/fr1wlmls7OTkpIS8vPzxfebk5NDYmIixsbGBAUFkZGRIX7//fv3WbZsGb169aJv3778/PPPpKam8uOPPzJ79mwSEhIoKytDV1eXQYMGce7cOXbu3MnEiROZMmUKeXl5lJSU4OrqysiRI2lra+sRJ/T+/ftMnz69mxCuo6OD9vZ2Jk6cSGBgIH/88YcIIBk7dixv3rzh8ePHtLa2snLlSlRUVAQP1tjYGGdnZxFcsXr1aqZNm8bx48cZMmQIK1euxMzMDAsLC8EbfF8bOnt7e2xtbUUg0PvWs2fPaGlpoaSkhPT0dBoaGiguLiY4OFjEpRoZGfHixQuOHTtGTU0NX3/9NV5eXsJBoLGxUdzPkSNHMnz4cK5evcpff/2FkZER58+fF2mb8+bNY9q0aZiZmXH//n0aGhpE43r8+HEKCgpYtGiR+Hw3b97k6tWrwt/a3t6+G6D0PtXU1MSRI0dEyqOrqysPHjwgNDQUc3Nztm/fzh9//IGDgwM6OjpCxJaUlETv3r2ZPHky6enpmJiYYGhoyPfff8/JkyeF+8S7pvumpqYcPHhQTKeCg4PFv1NSUhI+8YaGhmIduHz5MteuXUNGRoYvv/ySDRs2/NcEqv9ZkiiypKSErVu3UlNTw9y5c3nw4AHm5uZClzN06FC+/vprdu/ezf79+8WkfPHixYKeFhYWxsqVKwkICEBPTw8ZGRl27NhBZGQkJ0+eBLrWkdbWVo4ePcratWvx8vLC29ub8PBw9PX1mT17Ntra2rS2tqKtrY29vT3y8vLcvXv3vcCOHjevGhoa4kb4+PiIXPG+fftiYWEhbLIUFRXR1dWlpqaGxsZG0tPTMTU1FcEBRUVFNDQ0oKenx8iRI0lMTOTQoUN4enri4eGBqakp169fp7KykmPHjiEnJ4eDgwMyMjLCxqK8vJz09HQqKiro06cPvXv3RkVFhaSkJL766iuGDx/Oli1bBG/ufUpfXx9TU1PU1dVpaGgQvEvoUuFKaMSnn34qBAwSGpydnc39+/dpbGzE09OTBw8ecObMGYqLixk3bhxubm40NTWJl1hqsqXy9PTE2dkZOzs7Bg8ezIwZM3BxcaGwsFCc7DMzM0lLS2PVqlVYWFj8K7GPrq4ubW1tpKenCwRSR0en26Ld0tIifDIfPHjAixcvcHNzo2/fvkRHR3PlyhXMzc2xt7dHQUGBBw8e4Ovr243zC10IYXJyMn369EFZWRlDQ0Phx2hra4u/v7/gaGVmZmJnZ4euri5FRUUUFxeL76MnzeuTJ0/w8vJCSUkJExMTCgsLBarp6uqKtra2MEeX0sUyMjLo06cPxsbGfPLJJ92sq5SUlFi0aBEyMjJcuXKFt2/fCu6lkpISenp6JCYmcvr0aaDrcDF06FDmzJnDpEmTqKmpESk07yI0NTU1woP0fxsr/t/KzMxMvPTa2tq8fv2aV69eCQsWqSRldX19vdjoHBwcBFdMGtu8ePGCjo4OxowZg4qKCm/fvqWoqEjkd0+dOpU9e/Zw8uRJXF1dWbp0Kdra2oSGhhIVFcWjR48EiiU1zVVVVVy9ehVlZWVmz579H57I/62krPKqqiru379PTk4OR48exd7enkWLFonY5rKyMo4ePYqysjJLlizB0tISExMTVq9ezY0bN0hPT0dBQYFRo0axaNEiLl26xPXr1zl+/Di+vr4ivWrkyJE4Ozuzfv16wbOeMWMGOjo6FBYWoqur2+27ldYHCbHsaTSlNE3IyMjgxYsXWFpa4u3tTWdnJ5mZmRQXF1NQUEBdXR2lpaXd1N1+fn6sXLmSN2/e8NNPP5Gdnc2iRYsICAggPDycnTt3Iisry7BhwwQqpaysTFBQEFlZWURGRnLgwAFmzpwpLPNKSkpwc3Nj1apV5Ofn4+joKIIcoOvA1NMGVooFbW9v5/Hjx8JiDbocBTIzM7tFQHd2dmJvb8/o0aPJz89n/fr1PHjwgGfPnqGpqYmsrKzw362qquLcuXNcvHiR5ORkzM3NycrK4vfff2fo0KHo6ury9OlT/P39Bec6NjaWjIwM1NTUUFZWRltbm8TERMzMzBgyZAimpqY9SroLCAhgzpw51NbW8uzZM7y9vTE1NUVZWRlzc3NcXFwIDAzk1q1byMnJoa+vz4sXL3j06BEAn332Gd7e3iIow8jIiPDwcPLz88nLy2PAgAHU19fz6tUrXr16RWFhIUOGDGH06NGUl5cTERHB9evX6ezsxNLSkpqaGtra2hg/fryY7OXl5dG7d2/k5eW5ePEiP/30U48OkzIyMjx58oRHjx4hLy9PcHAwzs7ONDQ08PLlS5SVlbGwsMDR0RE9PT309fWprq7m0qVL5Ofns3LlSuGEMXfuXKytrZk1axYPHjzghx9+wN7ensWLF/P8+XOUlJQoLS0lLCwMLS0trKysMDc359atWzx9+pSamhpGjBghDsZSmMrr168xNDREQ0PjP2LI36c++eQTQX14+PChiDh/+fIlCQkJuLu7M3LkSHFtlZWV6OjoUFxczMGDB7lz5w7a2toibMbV1RU/Pz8qKyvx8PAQrjlBQUE0NTWxYcMG1NXVuXLlCu3t7fz2228sWrSIPn36ICsrS0lJCaWlpRw9epTLly8jJyeHh4cHBgYGODk59dgCtLKyEiUlJUaMGCGCdNLS0gQd84MPPkBRUVEEwCxduhQNDQ2ePHnCs2fPKCkp4fr16/Tu3Rtra2u0tbVF4I30WYyNjfHy8qKjo0P0Rrt37yYzM1N4NZeWlqKpqYmxsbEA9RQUFLq5KcjKymJhYfFfhZM9bl4bGxtFg5iSksKgQYOEvcnt27eJiYkhMDBQkIKfPXvG33//jZmZGcrKyoSGhvLkyRMsLS35/vvvmThxIvfv3+fzzz8nOTkZGxsbzMzMePTokfABbWlp4ejRo/Tp04e+ffuSkZFBW1sb9fX1JCQkcOvWLT7++GOBwBYVFVFZWUlDQ8N7EX/fLR8fH/bu3cvChQvp168fFy5coLi4mC+//JKPPvpIoJCSkKC1tVUglhoaGtjb2+Po6MisWbPYt28fUVFR9OnTRyTKSHnH0HXTzM3NefPmDdBlK+Pp6cnatWvR09NDWVmZpKQkcnNzsbW1FZzNjo4Oxo0b9x9Ci/ctPz8/dHR0RJZ5Q0ODIEpDl9ggPDycyMhItLW1efPmDbdu3WLPnj04OjqyY8cOQckYOnSo8DWVYkklv8HGxkbi4uJ49OgRaWlpTJ8+HS8vL0aNGkV0dDSjR49m1apV6OnpcfLkScrKyrCysqKgoADoWjSl1K+e1JkzZwQ/WvJBVVZWprOzE2dnZ6ytrYmMjMTIyIhPP/2UY8eOMXXqVBYuXMjPP//M7du32blzZzdUe9iwYdjZ2fHy5Uuys7NFolNzczOvX78WggtjY2MxBtLQ0ODOnTuYmpoyYsQI7t27x5YtWxgxYgQ+Pj5oampy6NAhDh061CMBBXSlnTx9+pSQkBDKy8tZu3YttbW1nD59GhMTEzo6OkQcpqamJnV1dWRlZdHZ2YmNjQ2bNm0SfpLPnz8nISGBUaNGMWDAAGF3Ul9fj5ycnGiYgoKCePPmDdOmTWPEiBF88cUXYqM3MDCgqamJK1eu0NTUxJ9//klVVZVwfRg/fnyPm9eqqio0NTVJTEzsJtpbv349KSkp7N27FzU1NZKTkzlx4gQWFhaEhISQk5NDfX09mzdvpm/fvsyYMYPGxkbGjRuHg4MDlZWVPH/+nPz8fMEd69WrF7/++ittbW2cPXsWQPDYoetZfDdqurS0FHV1dXEQlQ6D/6by8vKoq6ujra2N5ORk4SQQHBxMZGSkaCzV1dW7WRMFBQVRVFTEvHnzGDRoEH/88QcNDQ2EhoZSW1uLoqIi165dIz8/H3V1dYyNjenfvz9Hjhxh9uzZrFu3DhMTE8aOHUtsbCzNzc3CdL2iokJM2S5cuMC6devYuXPnv7o+6FpXHR0dhdBPU1MTd3d3KioqRBrjzJkzhfrY0dGRhw8fsmrVKjGRqKmp4fLlyxw+fJgPP/yQ58+fU1lZyd9//83r169F2pXk9nHz5k1evnzJ3r17CQgI4MaNG7x+/RonJycxbbC2tkZfXx9VVVXq6+uFi8r7ljR5e/jwIfHx8VhYWGBoaIiVlZXg902cOJGQkBAR3Xz06FEePHggmi1jY2NGjRpFaWkpcXFxRERECHtEKapcso80NzcXkz81NTWio6PZuXMn+fn5fP7559TX1xMdHY2joyMDBw4U76evry9///232Kt7Ul5eXpSXl3PkyBEqKipYvnw5lpaWpKSk8OrVK2xtbcUEYNSoUZiZmfHq1Su2b9+OtbU1t2/fRk5OjoULFwpAZ+vWrfzzzz+sXr0aGxsbTpw4gbq6OikpKXzxxRfs3r0bXV1djhw5gp6eHjt37iQxMZFLly51C1OxtLSkX79+uLu7M3nyZAwMDKitre0xKik1rvv37ycmJgZVVVW8vLwYPnw4K1eu5Pz58/zwww8i+KGqqgplZWVevHjBjh07uHfvHgMGDBC9QGdnJ4MGDRJ7tLy8PO7u7nh5eZGWlsbu3buxt7fHwcGBy5cvs3//flxdXfH09ERbW1vEGUsesWvWrOG7775DTk6OO3fuiFCB9y1p8rhkyRKampqIjY1FR0eHS5cuoaenJwKJMjMzhUPUsmXLmDBhAo8ePeL8+fPExMSIiPvRo0dz8+ZNnj9/zuTJk6mvr+evv/7C0NBQeNkfOnSIFStWMHfuXG7evEl8fDyxsbH4+vpiZmZGbm4uSkpK/8FxDQoKYtCgQaxcufJ/vaYeN69Pnjzh4MGDXL16FVdXVzZt2kRJSQm3b99GXV0dJycn/vrrL168eMGiRYvo6OjgzJkzFBUV4e7uLmwjcnJyUFVVRUlJSWwKM2bMYOvWrWhoaHDv3j3xNyXLF1VVVXR0dHj79i0vXrygqKiI0tJSlJWVu6lZHR0dWb9+/b9SOJuYmPD27VsqKyuRlZUlKyuLzMxM0QSrq6tTUFAgUKx3U0uMjY1Zu3YthYWFJCUloaGhwaZNm/D19WXAgAHCBqelpYXY2FhiY2MxMzMT/nGSuvtdwUBxcTEPHz7EwMAAS0tLBg0aRGlpqXgpeqrEhy6f1wEDBjBgwACqqqq4cOECKioqjB49Gnl5ebZu3SriA6UkEMm6qr6+HisrK7Kzs4U1i7W1tRhjpaWlcf78efLz84Xva2JioojwHDx4MIsXLyYkJARLS0sR96irqyu8ZoOCgkhISODRo0c0Nzf3OApPOuBIxvPSoUayQ5LI4q2trdja2lJRUUFycjK5ubm0trby008/CeeM9vZ2Xr9+TVhYGAoKCsTFxREUFMTy5ct58OABe/bsoaOjA3l5efz8/OjXrx+DBw8W/FI9PT2MjIyQlZWlrq6OqKgompqasLe3R09Pj7Fjx9LY2Nhj1G7Xrl3CwF1KOikqKuLixYsCldHS0qK5uZm8vDxh2J6RkUFeXh5+fn6CX6SlpYWqqir5+fk8e/YMCwsLjI2N0dXVpbW1lYiICJGesmLFCiEiWLFihUiCgS4+tBQ6Ul1djY2NjYhz/Z+JLe9T1dXVwjNQcoj45ZdfuHXrFgkJCbS2ttLS0kJiYiKLFy8mMDAQAwMD9u7dS2trKyNHjmTs2LFiBOnq6kpycjI1NTV8+umnaGtrU1FRQXFxMebm5rS3t2NpacmpU6e4ePEiSUlJQsxTU1ODiYkJQUFBeHp6Ymtri6KiIoWFhYLH2VM/4sbGRtrb29HT06O5uZnff/+dpqYmxo0bx6pVq8S9MTMzw8DAgKysLFatWoWPj48wfQ8ODmbDhg34+flha2vL48ePMTExYfPmzbS0tBAdHU1QUBAuLi4oKSmRl5cnJg9WVlZ4enpSW1sr+KHS2lNSUtJt1Ll+/XpcXFx6LBRpaGgQFI53N6nGxkYMDAwICQkRe4C2trbwyJSRkcHQ0JBFixaRlZVFcXExkZGRwnYHuizr1q9fz0cffcSZM2e4deuWCEDx9/cnPT2dqKgorly5wrhx4/D09MTFxYXTp0/z6tUrPvvsMz755BOxhj9//lzwEt+3Dh8+zLlz57Czs2PQoEGoqanR0tIiUhgbGhooLCxET08PbW1tHBwcWL16NWpqajx8+JA9e/ZQXl6Oj48P5ubmnDt3Dm1tbYyMjCguLiYtLY2PPvqIpUuXEhsby5YtW7h586bQOjg5OdGvXz/x+/38/DAzM+P69eusWLGC+Ph4Ro4cSUtLiwBVemoj9eDBA/r374+XlxehoaEcPnyYpqYmmpqa6NOnD9ra2vz222/Ex8djZ2fH4sWLqaurQ05OjszMTC5duoSioiJaWloEBQWhpKREa2srd+7cISsri/r6em7fvs2kSZNwcnJi6tSp1NbW4uTkJA7TnZ2d6OvrC3T50KFDBAcH06dPH6ZMmUJoaCiPHz/mgw8+6Pbcvm8lJCSwefNmmpqaGD58uLg+W1tbHB0defr0KZ999hnt7e18+OGHgoLl5+fHt99+y7Rp0zAyMhIUPMkiqrm5mQMHDlBTUyN0Pw4ODmzbto0HDx7wySefoKurK2KU3759y7p164iLi6OgoAAXFxcWL17Mhx9+iJycHI8fP+bYsWOUlZV1M/z/byVN3sLCwqipqWHevHndxN6qqqr06dOHjIwM4TksLy9PdXU1hYWFjB8/nnnz5lFbW0tHRwd5eXmYm5vTu3dvWltb2bdvH7t27WLkyJFCuCgdVgsKCpCTk6Nfv35iPYP/k1ApTWfT09MxMDBg+PDh74Us97h5ra2tJTk5mba2NhobG0WT8eDBA7Zu3cqUKVPIyckhNDQUfX19YRECiFN1R0cHaWlpxMbG4uHhwYkTJ2hubmbNmjXY29sLmxEFBQWhFJc4XWVlZdTU1NDS0kJzczPGxsYMHjy42zivd+/ePW54pIqLi0NGRkY0OpJ6sbi4GHV1dSoqKnj16hWdnZ0YGRmJhS8zMxM1NTWMjIyoqqri1KlT9OvXTwickpKSCAsLw9nZmd69ewsVfb9+/Rg0aBAPHz6kpaVFpLy8G6coUSSam5spLS2loaGBlpYWKisr/1VT8Pr1azo7O+nfvz+FhYXExcVhamqKjIyMGGEqKCgwYcIEZsyYgYmJCbNmzSIpKQlNTU22b9/O119/zXfffUdCQgI3btwAurhepaWlXLt2rVt2tpTiExUVJVBtRUVFXr16JZD2AQMGMHToULEopKWlcfbsWYyMjHrsqBASEsLFixcpLi7G3d0dKysrlJWVkZeXFznTcnJyYqQuGbJramry/PlzVFVVMTMzw9vbG3Nzc5GClpmZiZaWFhMnTmTUqFG0tbVx4sQJqqurGT16NF988QUdHR0ijc3Ly6sb/7a+vp7m5mahYp8zZw4jR45k5MiR3Lt3TzSB71NPnjwhMDBQxD6OHz+emzdvsmvXLn799Vfc3NxEw/FuhYWFiVGfl5cXzc3NGBoa4unpyZUrV7h//77wFNXX10dBQYHk5GRWrVqFlZUVs2bNEpF+dnZ2rF69mlevXjF48GBhoyVRKySrqvT09B5b1kHXelFVVSVESdCFgCYlJREcHIy2tjaZmZl0dnbyySefCO5ffn4+N27cwN3dnaVLl7JixQq0tLRQUlKipqYGAwMD3NzchCczICx6tLW1+eKLL1BRUWHlypU8ePBACBqlZlVdXV0cSurq6rh58yaKioriM75vSQdiKff8zp07+Pj44ODgQGFhIY2NjWhra/PBBx8ACMRlyZIlonmtqqoSNl2VlZUUFRXRv39/RowYgZycHK6urtTU1KCkpERhYSFnzpxBR0eHoKAgYXJeWFhIYGAg5ubmdHR0CG9naTTb0tKCrKwsc+bM6XHzKqWwVVZWUlVVJZoQKRRBQUGhW7rd27dviYiIIDw8nGHDhvHjjz/S1tbGxo0bcXFxYcaMGWIkqaCgIAIFJLFiQ0MDjY2NKCsrC1HRy5cvef78OcHBwXzwwQdcuHCB5ORkMR2R1OuNjY09jlA9f/68cJSREMH6+no8PDyQlZUVFJDbt2/Tu3dvBg4ciLq6Os7OzoSFhQnvUjU1NUpLS+ns7BQJU3///TeDBg1i/fr1ANjY2FBTU0NDQwNv3rwRNLklS5ZQUlIikPUhQ4awf/9+gVhraGjQ0tKCq6ur4CP2xGYpLy+PwMBABg0aRGhoKBcuXCAqKoodO3bg7+9PR0cH69at48aNG/j7+zN27FgBwly4cEH4lpuYmODj40NpaSnbtm0jKiqKhQsXkpiYyJQpU1izZg3ff/89c+bMYfz48eLdlJyJZGVlUVBQEO9Ke3s75ubmpKen8+LFC4GG9vQ9hC7B1q1bt7CwsCA4OBh1dXWRxBcUFMSxY8coKipi37599O/fH0dHR5E2amVlhZ2dHWpqasjKytLU1CSmqzExMXz11VciSW/KlClYWFiwePFiCgoK2LZtG+vWrWP16tVcv36dhw8fsmnTJuFS4+bmxogRIwCIiIjg2LFjFBcX4+vrKwTF71MvX76ksbGR69evi+RKaV/Nzc2lqakJY2Nj7OzsRHBRQ0MD3377LVFRURw+fFhwc2NiYkhKSsLd3R1NTU1Onz7N+fPnRarpq1evcHBwICsri7FjxzJo0CDa29uRk5NDXV1dgDX19fUYGhqKWPjk5GQePHiAsrJyt33z/1U9bl4dHR25fPkyOTk5gjthamqKi4uLSHr64osvcHR0FDZZy5cvZ+DAgSgqKvL48WPU1NSE+i47O5tr166hpqZGWloampqaXL58mfLyclavXs3IkSMxMjLiwYMHnD59mrS0NGxtbRk8eDB6eno4ODgwYMAAHBwc6OzspKamplvj19OKjo6msbFRjG2mTp3K9evXuXbtGvr6+nh4eAj0MyUlBVVVVdTU1Dh06BA3b94UIxUZGZluiTQRERH8/PPPeHt7M3fuXCEE6uzs5KOPPsLLy4vr168zfvx4Nm3axEcffQR0jcAsLCxoaGjgwIEDnD9/HkdHR7755hssLS17HEkJXYjF5cuX2bFjBzo6OgQGBjJixAhhWL5mzRrBRXpXxGVkZCTGbf369ePUqVOCJ9va2squXbuIjY3l5cuX3f6ehEi1traKDfvq1avcu3cPFxcXzMzMuo1DCwoKuHTpEtA1zrW2tu5REENeXh7R0dGoqamJkaBUe/bs4dSpUyxdulTYnvj5+XHkyBFhdL9z507u3btHSkoK5ubmrF69msbGRkEjSE1N5bPPPsPMzIz58+dz//59/P39CQgIICUlhe+//57CwkIsLS27xT9KhtD19fUUFxd34xgPGzasR83r/v37MTY2Rk9PDy0tLTZs2IC7uzvfffcdWVlZZGVlMXny5G4hHVlZWYSHh4vraGxs5Pbt2xgZGTFgwABGjRpFRkYGPj4+3bjUvXr1QkNDQ4yxJOP37du38/LlS1atWiVS8KDrRP3tt99iamrKjh07GDRoEDk5Ody8efO9rw+6JhmVlZU8ffqUrKwsgoODGT58OCdPnhTvuK2tLf369SMpKUk0rz4+Pty4cYOVK1ciKyvLggULBNoUEBCAu7s7SUlJPH78GF9fX/T19dHS0iIqKorY2FiePHmCu7s7Tk5OjBkzhr59+woz+urqasLCwnjw4AGOjo7i/hoYGODt7f2vXBUuXLjAnTt3GDlyJMeOHcPIyIh169Zx9epVtmzZIqxmMjIy0NTURE9PT8Td5uTkCA9XSREsjZMlM/Dr16/T1NTEtGnTmD59utj0pVJTUxMc8NraWlRUVHB2dhbvjZycHM+fP/9X4lApRvru3bucP3+et2/fsmrVKj7//HMyMjK4cOECY8aMoXfv3uTl5aGlpcWsWbN48eIF9+/fJyMjQ9BhbG1tGTFihFhDdHR0qKqqIjc3FzU1Nfr378/p06dZsmQJf/75p/D6VVVV5e7du7S3t+Pj48Pp06f5+OOPSU9P5/jx43h5eeHg4ICXlxfW1tb8+uuv7319U6ZMISEhoRuqLC8vT3p6OioqKlhYWDB8+HDa2trYsmULWlpaBAYG8uLFC7KyshgwYAAuLi7ExMSQn5+PmZkZ1dXVuLu78+uvv3YTgpmYmHD69Gkx+ZOXl8fS0hJ7e3thFyXVkiVLsLW15dy5c+Lw/m9LUpi/29g3NjaKZEJZWVn8/f1JTEwkISGBX3/9lb59+/LPP//Q0NDAV199hYaGBrt27WL79u14eHhQV1fHkiVLmDdvHrt27SIsLIz79+9TVVWFtrZ2N0pcW1sbI0eOREdHB11dXZydnRkwYACxsbHCDk+ivzg6OvY4hAG6vIe/++479u3bx7fffou5ubmgEkDXwcHf358tW7ZgY2NDa2srL1684OLFi9y7d4/m5mZmzZrFV1991e17UlJSQlVVlaamJq5fvy6i7KGLluTu7i4OWYmJiTx58oScnBzs7Oz48MMPuyXf2djY8Pnnn1NZWYm8vDynTp167+uLi4tj9uzZ/PPPP+zfv59vvvmG4uJiNm3axJs3b5g3bx5Llixh06ZN4vmVLM+0tLS67Qeurq6Ul5eTlJTEmTNn+Ouvv3BxcWHnzp307duXS5cu8cEHH2BjY8Mvv/yCq6srpaWlYqowatQoEhISBO1w0qRJ9O7dW4g6tbW13yvlrsfN640bNwgJCenmFTd48GCg64GWzOWlRiA4OFjAyCUlJWRmZjJhwgShrkxNTRXil9OnT7N7926ioqKwtLTE3d0dRUVFzMzM8PPz4/r169TU1DBs2DAWLFhAaWkpCgoKwnYF6IakdHR09PilHTVqlOCiQtfCPXToUH788Ufy8vJwdHRERUVFpHt1dnYSEBCAgoKCGJsPGjSIOXPmUFdXJ+xw1NXVkZOT49WrV0RGRgoD/by8PFpaWkRow+nTp7s1jDIyMkLk8/z5cyIjI6murhajEamZ7EmZmJigpKREVlYWampqjBs3Tix8Ukpaeno6ERERDBgwACUlJYqKigSvCbqUqxMnTsTV1ZUnT57w5MkTjh8/Lrh2o0ePxsHBgczMTOLj41FVVWXatGmMGTOG6upq4Q/4bnN38+ZNKioqsLKyYsyYMaipqTFixAiCgoKEGvx9SuLd9unTBwcHB7Kzs7G1tUVZWVnYl7y7wLi6ugpqASBM4/X09HBxcfkP5LewsFAg5MHBwRQUFBAeHo6WlhbJyck8fvyYuLg4FBQUWLRoEUZGRjQ1NWFiYsKYMWOoqKjA09NTNOwVFRVkZ2f36B5Kp2Apn15K75FEUs7Ozri6ulJcXExERARGRkZoampSUFAg/CRVVFTIyckhNzcXHx8f+vTpQ58+fcjNzRXG+Pr6+sTFxWFra0t1dbVoYCTbsYaGBubMmQN0cd69vLzQ1NTkyZMnwt9ZT0+vm//x+1Zrays6OjpYWFjw9OlTtLW18fb2Fnz6zs5OZGRkhC3e1atXqaurE9OYhw8fsmbNGgYNGoSbmxutra2kpaVRW1tLa2srlpaWVFdXk52dTWZmJgEBAaSnp/PgwQPKyso4ffq02KAzMzMxMDDA1NSUxMRErly5IhC0gQMHduNR9rRUVFTw8fHhu+++E++DvLw8DQ0NItJUUVERPz8/PD09hb2M5KYQHR0tstO9vb2prq4mPDycgoICKisriYiIwN7enoEDB4p1LTc3Fz09PVRVVdHU1CQlJQU1NTXMzc3F2iK5J8jJySEnJ9ej5Kl3S1lZGQUFBdTV1TE3N0dNTY309HR27drFqVOnUFdXp3fv3hgaGoq1b/ny5URERKCsrEx5eTm2trbCxkfyy/T19UVTUxM5OTn8/PywtLSkrKxMrDeSo0dVVRVPnjwRv2fQoEFs3LiR3bt3i4NxZWUlurq6Pb6HX375Jc+fP8fQ0FBEft6/f5/U1FQcHR2ZNGmSEHWamJigoKBAZWWlSAZzcnISNJyysjLhK66srMymTZtQVVUlLi4OVVVVnJycxDqVlZWFjIwMqqqqwrnh7du3vHr1CllZWQwMDLCysmLevHnCzaCiokJwp3tSkpuJq6sry5cvJzY2lqCgoG5Rnl999RV2dnZMmTKFU6dOUVJSQlhYGNBl0zRy5EgsLS15/fo15eXlGBgYoKqqSlZWFurq6oSEhHTbh16+fMn169fp378/I0eOFJ+5s7OT/Px86uvr6dOnDzk5OYSHhwvKwoQJE/6VYMva2lpMOC5dukRrays1NTXcv3+fuLg4Pv30UyZPnizocfX19WhpaaGoqEh+fj51dXWcPXuW6upqJk2aJHoie3t7vv/+ey5evIiioqKYZlRXV/PixQusra3p7OykrKwMe3t74Y4CXQEfzc3NlJeXIysrKw7QEse7J6Wvry8O9/b29mhraxMREcH58+eJiIhAR0enWx917949/vjjDywtLfnkk0/Q1tYmLy8PeXl5jI2NxTtcVVWFg4MDH330kZigDBw4UDT0GRkZuLq6YmBggJycnBDyq6urc/fuXbKyshgyZAg6OjqkpaWJfuF9aHQ9bl5//fVXdu/ezQ8//NAtjhW6FuHo6Gg2btxIeXk5u3btEhD+yZMniY2NZcqUKUyfPp2GhgYqKytFVOf9+/d59uyZEEjk5OSwb98+bt26xbJly5gyZQpz587F3NyciRMnYm5uTmZmJjU1NTg5Of0HAik1rZL4531LMkZvbGwUm6Oqqir+/v6iMX/y5AmPHz8mJydHIILjx4/H2NiYAQMG4OTkJLzZamtr0dfXx9nZmREjRpCXlye4fFJlZWWhoaHBmjVrmDlzZjfleUVFBQUFBXh4eDB69GiGDx9OR0eHaCR7ypWErgQyY2Njvv/+e8FZgq4Trry8PElJSUyfPp2amhpu3bqFs7Mz2tragq+cm5uLiYkJ8+fP5/r160ydOpX6+nqBVoeEhLB3714sLCxIT09n+/bt6Ojo8Nlnn6GtrS2sitTU1Lpd64EDB3j06BFXrlxh6dKlBAcHCyeEnpSzszN6enq4urqiqKjIo0ePKCwsxM/Pj7lz5+Lp6SlGjyUlJdTX14tAhYqKCv744w/q6uqYO3cuHh4eIuZOQUGBhoYGnJycmD9/Ptra2uTk5JCamkpcXBy3bt1CW1uburo66urquHXrlmjskpKSsLW1JSgoiIqKim6RgUpKShw5cqRH1yjdK4m3KtXy5ctZsGCBUIF+9913rF+/nmXLlvHzzz/j6enJs2fPhJhEskOqr69HQ0OD+vp6rl27xunTp0lNTUVRUZGmpiZaW1sZM2aMGI0qKCiwc+dOnJ2dUVRU5I8//mDLli3s3r2bCRMmEBAQQHx8vGhGemojBV1RymPHjsXd3R1zc/P/65RBUv26urpy7do1Nm3axO7du0WAQnJyMmlpabi5udHS0sKBAwcoLCxk7dq1ojFdunQpubm5fP311yJhydbWVvz7lJQU1qxZg6enJ5s3b8bDw4OwsDBCQ0MJCQlh6tSp/zrKGOCrr76ipaWlW4O/bds2pk2bxr59+zh69CifffYZy5cvF8IubW1tHB0dycvLo7y8HGVlZaysrFBTUyMxMZGGhgaBSgUHB/PJJ59gYmJCS0sL+fn5NDY2iuZD8kqVkuOgy1fVyMhI3D83NzccHBzYsGFDj65NTk4OKysrJk+ezOTJk9HU1CQvL49jx45x/vx5EaABXc14XV0dsrKyDB8+nNGjR6OlpYW5uTmhoaFi892wYQO3b9/mm2++Yf78+WJ9cHV1ZceOHaIp/+WXX3j48CFFRUVoampiYWFBQUGBsF766aefcHFxQVFRkezsbOrq6sR38r5lZWUl/jkuLo6nT5/y6tUrNDU1MTEx4caNG4JL/9lnn9G/f39qampEKEZOTg66urr4+flRWlrKoUOHgP9jKfjkyRO+//57li1bhpOTE+vWrePly5f89NNPwtmlvr6e3Nxcbt++TWlpKdXV1Tx79gxTU1O+++47+vfvz+vXr7l48SL19fXd7B3fp3755Rc2bNhA3759sbKyoqOjQ2gxNDU1BWpvb2+Pvr6+AAd8fHyIjo5m2bJlzJs3j7Vr1yIvL8/ly5eJiIggPj6eixcv4uPjw44dO7o5sWRmZrJjxw5mzJghfGYTExOpqKjg999/559//uHYsWOsX79eUNV+//13PD09mT9/fo+uD7re8b59+/L5558zadIkHjx4QEBAAAkJCXz++ecsX76czMxMvvjiC5qbmwkJCWH48OFs376dJUuWUFBQwL59+9izZw/Nzc2iedXQ0GDBggX07duX169fi3f86dOnIsiid+/eTJkyhZEjR2Jra9ttHSgpKUFWVhZTU1NKSko4ePAgBw4cQFlZuUd2YOPHj6e6upqNGzfy4MEDZs+eTV1dHQsWLBC0xXfDHVpaWqivr2fevHksWLCA4uJiYQsmlY+PDy4uLnR2dnZD/b28vLhx4waHDx9m2bJl4hlesmSJ6O+kFLz8/HyOHDmCjY2NoCRpaWmRlJT0X6+px83r+PHjSU5OJiUlhXPnzpGZmUlLSwteXl4YGBhw5MgR7t69C3Qtik1NTWzcuJGffvoJQFh0SCdGMzMzYffR3NzM2LFjcXV15cSJExQWFuLh4YGvry9KSkpMmTIFS0tLHj9+LJRt7wqccnNzOXz4MAYGBsL0t6fG4VIKxMyZM5GRkeHatWskJiYydepUwQdJSEgQUaMS17aiogJNTU369OlDa2srZ86cESKo+vp6MUr39vbGysqqG19FTk6O/Px8dHR00NfXp7S0VPw7Z2dnXr16RUJCArGxsaSkpNDa2so///wjQiB6WqtXr8bDw4Pw8HB0dHSE32Lv3r25evUqmzZtQk9Pj8mTJxMTE4Ompqawf4GuE2FlZSVXrlzh6NGj4vfKyMgwffp0Vq9eLTaB1NRUrKysaG5uJjQ0lH79+gl+kDRCd3NzQ15enrlz59LU1MT+/ftpa2sTY/2enjJVVVWpqamhsLBQeLJKlmdOTk5ikZS8C//55x9qamqYNGkS5ubmODg4oKamhoeHB3Fxcdy7d48JEybg4OAgEtGysrIoKioiKSmJjIwMITTLyMjg4cOHuLi4sGTJEmRlZUlMTKSoqEjEe6qpqZGdnc2tW7fw8vISp+J/Y64tIyNDXV0df//9N4aGhgwaNIjW1laOHz9OZ2cnbW1tjB49Gm9vbxQVFRkzZgxKSkqiEfD09BQ0nvz8fFJTUzE3NxcbnnTI0tbWFggjdCEgTk5O4v2KiIgQnoTTp09nw4YNvHjxQiAN76L271tFRUUcPnwYb29v0UhKHtLOzs589NFH6Ojo0NnZyf3790lMTGTMmDEMGTIES0tLDhw4QFRUlBA2KCkp4e/vT1ZWFtXV1VRVVVFWVoaHhweurq4CATE2Nqaurk54PCYmJorAhoyMDJSUlJg8eTIFBQW4urqKxvVd0ej7Vnt7u7CJSUtLIyYmhmHDhmFoaEjv3r356KOPRNoUdI1ui4uLxXjV3t5e2DIBQo0PCKRUsmL67rvvuHv3LitWrGDSpEl0dHRw/PhxYmJiMDIyoqSkhKVLl4pkoQEDBogABwMDg3+FaHV0dFBWVia+o6KiIi5cuEBCQgIzZsxg4sSJ9OrVi/j4eO7evcuFCxfQ0tLijz/+wM7OjuvXr9PQ0MD06dPp7Oxk+/btlJWVsXDhQvr06UNSUhKPHj3i2bNnuLq6snjxYlRVVUlNTe0WJKKpqSmAidOnT2Nvby+aory8PBITE5GTk6Nv3749ur66ujqsrKwEr9/MzAxbW1tMTEx4/fo127dvJysri6FDhwruoqamJkFBQdTW1jJlyhSRJCgvL8+ff/7JixcvCAoKQk1Njfj4eG7cuIGysjJ5eXnC8UGi4Bw8eJDIyEjq6upISUlBVlZW+BD37t1bIMnNzc1kZWWRm5vbreF+n1JQUKCmpkZMo6ALjZVS0/z9/SkuLiY0NJQ+ffqQmJhIREQEc+bMwcPDgwMHDoipZUVFBSdPnkRGRoYhQ4agqqoqwgnu3bvHkydPsLa2pqGhgWHDhiEvL8/PP//Mq1evqKurw8HBQdhvfv/99xQXFzNw4EDxbBYVFQkNRk+quLhY2ESVlpZy/vx58vLymDx5MlOnThVBJGZmZsjKygp+q6TJ0dHREbHo7wbq1NXVUVRUhK6uLiEhIbx9+5bExEQx3U1NTaWjowM5OTmSk5M5f/48H3/8sRjTSx74UqjB8ePHqa6uZsqUKd0AkP9WpqamtLa2IisrS35+Pvfu3UNNTQ0fHx+2b9+OgYEBp06dIjo6mvXr14tYbTc3N9rb28V3L32u1tZWsZe9e60XLlxAU1OTSZMmoampSW5uLidOnGDZsmVYWloiKyvL0aNHOXXqFI2NjQQEBNCvXz9cXV2pr6/H0tJSBOf8t+px8/rHH38AXYb7mzZtIj4+HhcXFyoqKnj9+jXh4eGoqKiwcOFCqqurWb9+vTA+d3Jy6rYAtrS0IC8vz5AhQwgPD+f+/fvY29uzdu1aampqOHbsGIsXL8be3l6ki/Tt25fdu3cTHR3NL7/8gouLi7Dv6uzsJDQ0lNbWVoYOHYqLi4vwKOzJ9Umja3d3d27cuEF5eblAmTs6OoRl17tVWFhIQ0MDcnJyPHz4kO3btzNmzBimTZvGs2fP+PPPP+ns7GTEiBEMGTIEWVlZ7ty5Q1VVFfX19VRVVZGUlMTbt2+xtLRER0eH1tZWtLS06NOnD7dv3+bUqVPk5+djYmJCSkqKUCv/m4qPjxfcr/j4ePFQPnv2jNTUVA4cOMDcuXO5dOkS165dY/r06eLeSQER0oLbq1cvCgsLMTU1ZdGiReK7+fjjj4mNjWXevHlkZGSwdOlSFi1axIEDB3j8+DFXrlxh9OjR1NXVoaamxgcffEBAQIBINDp//jxOTk49FqUVFRWJZBPoQuElqoL0H+hCN8rLy4mPjycrKwtHR0dcXV0FWgpdPEPpxOzg4IC8vDy6uro8efKEu3fvIiMjQ2BgIFu3bsXf358TJ07Q0dHBggULmDBhgmiSjIyMRErU5MmTkZWV5c2bN7S0tDB+/HimTp3aIyuikpISampqsLS0FDQGqS5evMgnn3yCoqIiP/74o3CTgC6O6KJFi0TDJP23FN3c3t5OSEgI48ePx9vbm3379pGXlyeikaWwETk5Oerr6wVyPnToUJ49eyaUpD4+PvTt21fwvnvqYyv9zMmTJ6moqOjWvH7//fcMGzZM8MKvXbvGxIkTGTx4sLDjqq2tFWJI+D9I9ZQpU6irq+Pp06ecOnUKFxcXFi1aRHV1NcuWLRNevdbW1nz33XcADB8+nLVr12JgYCAaBOkQ3tHRIagb71ppvU9JwiLoaqBu376NmpqauFf19fW4u7sLpKy2tpa8vDzS0tKQlZXF29sbQ0NDQTUoLy/nzz//FMITqaHq1asXjY2NhIeH8/LlS/Fe1NbWsmXLFlRUVIiIiODt27f4+/tjZGQkIk0lmkVLS8u/suZLTEyktrYWQ0NDCgsLGTVqFPHx8Xz11VcsX74cExMTamtrSUhI4OjRo+I5zs3NRUtLi927d6Ojo8PEiRM5ceIEGzduZMuWLUKkdufOHS5fvsydO3fQ1dUVgrA///yTyMhI8Tmkd7epqQk1NTXRTMfHx/Py5UuBJvbUKqulpQVdXV1kZGTo27cvvXv3Fvf01atXxMXFAV1NyF9//YWmpibm5uaoqqoyatQoJk+ezNOnT1m0aBFBQUGEhoZ2m2jKy8ujoaFBUVER0dHRmJub4+/vT2VlJY8ePWLDhg3U1dWJ2FANDQ0GDx7MwoULBUpWWVlJaWkpurq6qKio4Obm1iPfbOk9Ky0tFejcnTt3SEpKYurUqSgqKrJ+/XpOnTrF7NmzkZOT4969e/Tp04dJkyaRk5NDa2srpaWlAgmfNGkS27ZtE82PJOD+448/aGxsZO7cuezevVt8Ny0tLdjY2AgKkhQBXV5ezsmTJ1mzZg2AED31tHR0dASocPr0aSoqKvjyyy9ZuXIl8vLyvH79GltbW7y8vCgpKaG8vFz4PFdUVPDXX39hYWHBF1980U3rUlVVxenTp+nduzfTpk0jISGBp0+f4ufnh5eXF+Hh4TQ1NVFWVsapU6cIDw9n4sSJ4uclOhB0TZHz8/OZPXs2P//8c49Ed9D1LG3YsAFtbW127tyJq6srYWFhmJiYUFxczA8//EBFRQUzZ87E19eXNWvWkJeXR0VFBTY2NsjKygrkVFqjmpubaW9vR1VVFXV1dZqbmzl16hRPnjyhsrJSCJ7T0tKwtLQkNzeX0NBQ7t+/j4GBAUOHDhW87iFDhjBo0CDMzc27fYf/z+vp0dW/U7W1tWRkZGBpaUlISAgVFRWEh4cDXcje1q1bKSwsBGDHjh20tbXh5uYmFuKOjg5SUlIEn3Xz5s1ERETw4MEDpk2bhqurK0FBQVRXV3Pjxg0ePnzIiBEjGDp0KHPnzmXMmDGMHTtWZHrPmTOHMWPG8NNPP/HLL7+wdetWZs+e3eNkn1GjRmFubs6DBw/Yu3cvHh4erF27FlNTU16/fk1WVpbYNN6tsWPHiuaupqZGpGTU19eLhtDb21s0ppMmTeLx48ccPXqUuLg4NDU1cXJyQlNTEzMzMxITE5k3bx79+vVj3759hISEkJ+fz5QpU7C1tRWijYiIiB7fuxMnTtDe3i5sT7744gt8fHwoLCxk6tSpuLm5cevWLUpKSli2bBkPHjwQlIU1a9ZQXFxMamoqq1evZujQodja2gqrJknd3tTUREREhOCGSi+gVDo6Otja2grudGJiosgkP3PmDL///jvbtm1jwoQJjBgxgosXL7739eXm5jJ8+HCx0H777becOHECFxcXVq9eLcjgktjDyMgIJycnIW6SnCw0NDSYPHkyysrK/PHHH0RERPDrr78SGBhITU0Nd+/epbOzk2XLluHq6squXbvIz89nwYIF2NrakpWVhZGREX369KGjo4O9e/cSFxeHpaUlQUFBjB49mtbWVhoaGnosMti8eTOlpaX07duXAQMGEBISIhBlQ0NDHB0dSU1N5ebNm0yfPl0sNm/fvqWhoQEFBQUhyJH8+lxdXXFzc6OmpgZ1dXVmz57N/fv3yc3NZerUqeJE3bt3b/bs2dOtmZk8eTIhISHdfJWlQ0JnZ+e/Ql5rampE4pRUEtogKysrRlu7du0C6HZQffr0KUlJSbi4uODv74+6ujrt7e0kJSVRWVmJra0tvr6+4hpevnzJ1atXxc9Li+7z58+5fv06enp6hISECC4/dDUkFRUVmJubY2BgIHjs71t///03EyZM4NSpU5w+fZqgoCA++ugjFBUV+euvv3jz5g1ubm4EBgZSWVnJX3/9xdOnT4U4LC8vT8RT3rp1ix9//BFnZ2c2bdrEtWvX0NLSYuXKlYwcOZL29na+/vpr2traBDKkqKjIggULsLCwEPScY8eOoa2tLQIgqqqqaGtr+9e0iKdPnwp+tqKiolDAf/DBB9TU1LBjxw5h6P7FF18QExODubk55ubmFBYWYmtri7e3N0pKSoKWJCXzQZd/6datWxk6dChRUVFcunRJUBFcXV1pampiwIABmJqasmHDBszMzBgzZgy2trZcunSJkydPYmFhwejRo0lLS+P27dvdRI7/rd4VssjKyorGtbS0VEx6UlJSKCgooLCwkEePHtHW1sarV68oLy/n+fPnpKSkUFxczKVLl5gxYwajR4+mra2N+Ph4tLS0uHTpEioqKrS2trJ8+XJkZWU5fvw433zzjXDJsLW15dtvv6WkpAQbG5tuNkpNTU0kJiair6/PsGHD8Pb2Fl7G71PvvlfV1dXcvHmT6OhotmzZIvypJa/yuro6YRXo6OhIfX097e3t3Lt3j40bNzJ16lTu3LmDtbV1N9ROR0eHDRs24OrqyqeffkpBQQEGBgb06dOHXr16UVFRwbhx4wRKLU179+zZ0+1++fr6oq2t3aPrgy5LQ8lhaNy4ccycOZPGxkZCQ0PR0tISSVLQBRz8z8RCJycnjIyMuvk+S5HVTU1NQiswfPhwKioqRLCGk5MT9+/f582bN9ja2rJ9+3b69+9PUVER4eHh1NXVif1K0p38z730fUo6rFhaWrJgwQLh5Srd26amJrZt24aqqmo3i9F3hZ3JycksXboUT09PsebW1dUJaiXAvHnzcHBw4NKlS9y7d4/6+nr69esn+LSWlpasXr0aTU1NSktLUVVVJSUlhV9//ZWmpiZ+++03kbb636rHzWtmZibV1dV8++23NDY2cvbsWby8vFi4cCEKCgoEBQVhYmJCeno69vb2/8GLTU5ORk5ODnNzc4qLi/nnn38ICAigtrYWe3t7qqqqCA0N5e3btyIJRllZmeTkZNGpS+Me6EKZLly4QF1dHWPGjGHcuHHU19fz4YcfkpKS0uPm1dvbG29vb/755x/CwsL48MMPRVMgnXwk8YaMjAytra0i47e8vBx7e3vs7e1ZunQpgYGBqKmpCXS1trZW+MPq6OgwbNgwXr9+jZubG/b29sjKygqbCskgvqCggIKCAkxNTf+DyxMREUFMTEw3vsn71JgxY9DR0SE5OZnr16/j6emJoqIiZ8+excfHh6lTp3L58mUOHTqEl5cXZWVlZGRk4ObmRllZGW/fvsXHx0fYWbx8+VLwb6TPr6ysjI+Pj+CRjRs3jtbWVgoKCnj58iWGhoYMGzaMmJgYsSnV1tbi7e2NjY0NwcHBrFy5EkVFxf9rPO3/Vs+fPxeiltu3bxMWFiaCDh4/foylpSVWVlYCDfDy8hLGyiUlJaioqFBVVSWoFGPGjOHOnTtcuHBB5GmPGzeOGTNmEBkZiYuLC3FxcaxevZr+/fvz448/UlpaKhJJ/Pz8kJWVxcbGhsrKStHUvWtj1VP6x8WLFwWPU0NDAy8vL1JSUrh27Rp+fn6EhYUxb948oqOjSU5OFs3H1atXSUlJ4dNPPxXUjqamJtra2oR/aWJiInV1dbS0tPDixQvq6+vFwUKKL4QuREeyTFFQUKC6uhpZWVna29spLS0VIjUlJaX/4Oa+TxkbG9O7d286OzspLCzExMQEa2trPD09mTRpEoqKihw7downT55gbm7OsGHDqKqqorq6mhMnThAaGoqjoyP37t1DXV2dpqYm9u3bR1NTE19++SVaWlq8fv2axsZG2traWLRoEaGhodTX1+Pg4ICbmxu5ubk8efKEDRs2oKGhwaeffgp0HZBKS0tRVFSkvLycxsbGHvu8xsTEMHHiRMHHDAkJEcIUOTk5YbNkb2+PpqYmCQkJnDp1Ck9PT6ZPny4mHKWlpSK4ITQ0VGzwEt8OupqOvn37oqqqSmFhITIyMhgbG4uG9sGDB+jq6jJt2jQRDOLg4ICTkxNJSUk0NzdTVlbW43toYGAg+OTPnj0jJCSEwMBAvL29uXnzJg8ePKChoYEhQ4awYMEC8Xnb29uJjIxkxowZWFpaEh0dzatXr5CRkSEsLIydO3cyffp0TExMcHFxwd7eHm9vb5FGNGLECCEqrK6uJi4ujsTERJYsWYKPjw8NDQ3C8rC1tZW7d++SlpbWTUD6PiUBFqWlpaipqaGqqkp8fDy7du2ivr4ePz8/GhoaKCsrE/7HGRkZREVFkZyc3I0+1traytWrV4mPj6eyspLi4mKWLVvG4MGDUVBQICMjA21tbbKzs3n06BHV1dUYGhry0UcfYWlpycGDB8nMzOTmzZvCFUdWVpaXL1/S2dnJuHHj6N27d4/GzdBFiZORkRHTwLdv39K3b1/xLty7dw87OzuUlJTQ0tIS/tlPnz4VqWrBwcHU1dWRm5srnofy8nIRuy2N4t3c3Bg2bBiamprIy8vTt29fjhw5wvnz54XnemFhIcbGxsyfPx8fHx9ycnLIzs4W7h+GhoY9bl6rqqpQUFDAzMxMTI+OHz/O/PnzCQkJEWKu4uJiOjo6kJGRobi4WCjx3z3ESJNg6DqAS+EXEnItcWsLCwsJCAggNzeX169fM2HCBMaMGQN0NZtZWVnY29uLddrNzQ0fHx/a29t7DHY0NzeLOHBzc3NhD9fS0oKioiJWVlZYWVlRX1+PiooKbW1tFBUVkZWVJcR/d+7c4dWrV92EXaqqquJg1djYiKamJr169eLOnTvk5+cDXbxf6TuV+MJubm4cOHBA/I2///4bHR0d8vLycHZ2Fj3B/1Y9bl5///13Xr9+TVJSEoqKigQEBKCoqEh9fT3r16/n008/5fPPP+eHH34gLCysm1JbGlNpaWmxbds2mpqaBIdJOgn06tWL1NRUbt26BXQhOsHBwSQlJSEjI0Nubq64mY8fPwa6suw7OjqIjo7Gx8dH8Pny8vJ6vOA+ePAAPT093N3dmTlzZjdl5tChQ8nMzCQlJYXbt28LtXxDQwPr1q3j1atX/Prrr4waNQpTU9NuTWVVVRX37t3DwMAAZWVlzMzM0NHRYePGjXh7e6Oqqkp0dDR//fUXxsbGBAcH8/fff5OdnU16ejqampqoq6tTVlYmggJ69eqFv79/jzmhv/zyC2vWrOGLL75gyZIlWFlZkZaWxp07d7hy5QorVqzgl19+4fbt26xbt05kT0tiA1dXV6GUX7p0KZcvX+b8+fMMGjSoG9xvamqKmpqauAfz589n8eLFfPTRRxw4cABTU1NBHJd8cWNiYkhJSSE5OZnBgwfj6Ogo7vP7VmxsLEePHiUnJ4fKykpmz57NkSNHKCkp4dq1a+zatYsVK1aIeyQtPPn5+SQlJQmu7d69ezE1NWXFihX89ttv2NnZce3aNSwsLJg4cSJDhgzhxYsXnDx5EgUFBRwdHQkMDEROTg5jY2MMDAxEqs+AAQOYNWuWMMwHhPcd8N755FINGDCAbdu24eHhQX19PfHx8Wzbto2//vqLU6dOMXXqVHx9fcnLyxO8t9zcXGJiYsjOzu7muzpmzBgCAwOFytzV1ZVz587xzTffkJycjLW1tXAeCA0NRUdHh9LSUsaNG0dHRwc3btwgJSWF2bNnM3LkSH7//Xc0NTUpKipCWVm5W/RfT6p///6C46qrqysSs2bNmiXoAFITNnjwYHFYPHv2LKGhoUBXQ/Cu40hbW5tImDl69Chnz55l7ty5bNu2jSFDhgiUX4qklaJj7e3tBd/37du3xMfHM2zYMDQ0NEhMTCQzM1Pc1/ctQ0NDcnNzGTVqFCNGjOjGzw8ODsbd3Z3KykqBhEiNlTQmBgQdJyUlhY0bN2JkZCSMxd9FzF69esXhw4cpLy/H19eX4cOHi/uSmprK0qVL0dXVZf78+URFRZGdnc2PP/6Im5sbpaWlpKen/ysLQmnTX79+PdevX+err74SZu39+vXjyJEjREVFER4ejq6ubrfPJE0uwsPD+e2334SIIycnhz///FMEvkRGRuLg4MCYMWP4+OOPRVSqFOe7aNEiXrx4wfr164Wl2/Pnz4Vp/6NHj1i5ciUmJib8/PPPPbZ0gy5evoKCAv7+/rS2tvL3339TVlYmrB7r6+tJT08X0dy5ublUV1czbNgwysvLiYuLw9/fnylTpnD16lWSk5Nxd3dHTk6Obdu2oaioSFVVFXl5eWKaI4XpxMbGoqioKEQvd+/eFdSna9euERkZyZQpUwSNoKdJaaWlpWRnZ+Pg4ICxsTFTpkwRyO7OnTv5+eefWbNmDbt372bfvn0cOXIEGRkZLCwsCAwMFNGreXl5bNq0iS+//JLRo0ezYMEC9PX1aW9vF1zVO3fuoKioKGKLoYuXf+DAAdGQTpgwgXHjxpGWlkbv3r2RkZFh6tSp/8rRRKr/meKYm5vL/fv3AbpNmIyMjDAyMiI+Pp6rV6/St29fsV9I67nUKGppaVFTU8OjR49ob29nxIgRhISECGcP6FqfgoKCMDAwwM7OTvyO/v37C46oVB4eHkyfPv1fuZrY2dkhJyeHmpoanZ2dxMbGUl1djY+Pj1h3vv32W/Ly8vjyyy+xtbUlKiqKffv2kZiYiKGhIYMHD+bQoUNCjAb/hz7Q1NREamoqb968IT4+vht1Q9rj0tPTSU9PZ8SIEZiYmODt7U1paSnm5ub8+eefKCsrIyMj8x8BKf+v6nHz2t7ejoyMDBMnTsTOzo59+/ahoKDAvHnz8Pb2Jj8/H01NTby8vCguLsbOzk4o7mtqavD29sbT0xMDAwMUFRW7WWuVlpYKA3VfX1/Gjx/PBx98gKOjI05OTiQmJpKamkpnZydqamoir3zs2LEUFRVx9+5dbt68iaamJrt27aKsrExwdN+3DA0NMTExYdSoUUIoIsXQSn6y//zzD9evX+fLL7/EyMgILS0tHB0dKSsrEzC7trY2qampRERECAEbIMaWHh4eNDQ0iEz4cePGoaqqirKyMhoaGsLCp7m5GXNzc5Fvnp+fj4KCgvD3HDNmTI+bVwUFBTIzMzExMUFdXV1YmDk5OVFZWYmysjKmpqbMmzeP/Px89PX1xQOrpqZGbm4uUVFRwpfR3d2d33//nZSUFEaOHIm5uTmRkZE8evSInJwcwsLCCAwMpL6+nsjISBISEnj79q1IbWltbcXV1ZW2tjYePnzIw4cPsbe3Z/r06ZiZmfWY86qgoICRkREaGhoYGhoyY8YMoKspKysro6CggJaWFlRVVQkMDOTZs2ecOnUKIyMjlJSUOH78OFlZWSgrK9Pa2srr16/p3bs3K1euRFlZmTdv3qCjoyOcIHbu3ElwcDCnTp3Cy8tLRLG2tLTQ2dlJVlYWpqam4lQtlSTUe/z4cY9FFKtXrxZiQQlZkkaVYWFh1NfXk5qaSlNTEydOnGDVqlU0Nzfj6OiIpqamQH3Pnj2LnJycQDBsbGzQ0tLCwcFBnJwNDAwEmhofHy88QJ2dnbuFkOjr66Orq4usrKzgQBUXF4s40J5WZmYmhw8fJj09XVCTXFxcWLp0Kffv3xfjwwULFqCkpISKigoKCgqiyQkJCWH58uXk5uYKgejYsWPJzMwUQiLoOlTn5OTQ2dlJbm4udXV1xMXFkZeXh6amJuPGjWPkyJHIyclx+fJlUlNTKSgoICYmhiFDhjBs2LAeB2lA1/O4d+9eVFVVRSBGc3MzMjIyODg4YGZmJsQympqajBkzhoKCAszMzCgoKCAzM5MzZ87Q2trKtm3bWLBgATk5Ofz000+oqKhgZGTE48ePCQgIoLKyUvB5BwwYIEbqUnjH1KlTaW5upqqqisbGRuHuUFRURHp6OsrKygIx+zf19OlT3rx5I54VaTJnZGREXl6ecJ2prKzk5MmT1NXVoa+vz40bN4iKiqK2thYdHR3a2tpobW2lqKiIn3/+WXxeT09P2trasLW1xcPDQ3iOp6enIysry4wZM0TjevXqVbKzs5kzZw46Ojrie5L8bXvavHZ2dvL8+XOePn1KWloaXl5erF+/nh9++IFbt25hZmaGu7s7hYWF3L59G319feTl5VFXV6e1tRUnJycRyysvL09mZiYKCgr4+flRVFTEb7/9hqampqBfODo6MmLECFpbWwkNDSUlJYWhQ4cyb948qqqqqKurE6l+mpqa+Pv7i7Xi/PnzIm72fUtNTQ1tbW309PRQUVHpRkmoqanBzs6OMWPGYG5uzqtXr8S6MXv2bMaPH09RUREFBQWYm5uzYsUKsrOzaW1tJTMzk+LiYpSVlWlqaqK+vl44u0jotZGRETU1NSgqKmJvb09+fj5DhgxhypQprFixgjdv3ogpmK6uLvX19f/K01ayGrOxsaG8vJzffvtNpF3NmzeP9vZ20tLSqKurQ1dXl8ePHxMdHS0mfNeuXePVq1di0lNTU8Off/6Jj4+PQM1fv35NSUkJT548wdXVFQUFBUpKSpg4cSLz58+noaGBiIgIbG1tMTMzE2tmVVUVly9fprKyEh8fH2EV2JN6d/0tKCiguLiYsrIympqaMDU1JTU1ldTUVLS1tUXDbGxsLMSUUvDA6NGjUVBQID4+Hl1dXXFgaGpqQkFBgc7OToqKigRlVIrA7ejoQE9Pj8bGRgoLC9HQ0MDZ2RkjIyOsra0FFaK4uJimpqb3atB73LwuWbKEuro6+vfvT05ODpMmTUJfX1+o806ePMn06dMZMGAAt2/f5vbt22LML8X9SaeO8vJykcCgo6PD9u3bhVfswoULu43JJZ+wd7806ctQUlKisbGRQ4cOsWXLFiZPnsyhQ4c4ePAgy5Yt61Ge86BBg8RGJ6GLxcXFvHr1CkNDQ8FB+p8xgmvXrkVFRUUIU1JTU/nxxx85cuRIN76fvLw8FhYWWFhY0NzczOHDh8WIvU+fPkLBHRERwfTp04VoTFVVlYSEBOzs7LohKv/mtCnxlE6ePElkZCSenp44ODgQHByMubl5N47h119/3c3mqLa2lt27d3Pv3j3GjBnDd999R01NDcOHD+frr7+mX79+wtrm6dOnyMvL8/TpUxYuXCiEH8OHD8fQ0BBZWVn27dsnBC/R0dEAjBw5Ei8vL5EgY2dnx5kzZ977+uzt7Zk9e3a3RaympobIyEhsbGyYNGmSoDfY2NgQGRnJxYsX+eqrr3BycmLt2rUkJSVx4sQJ/P39SUtLE3F4n3zyCbdu3WLv3r3U1tZiaWnJmzdvaGxsFAjZnTt3iIuLEzZm0kJUWVmJtrY2zc3N4rNFRkZy8OBBsYm+b0n2NGlpaYIz5eDgIBKVDh48KBwRfvzxR9LS0pg6dSr6+vrIyclRXl7OqVOnWL16NRUVFQQFBaGlpcWgQYNYvHgxxsbGDBs2jCtXrlBbW4uxsTGZmZnMnz8fLy8vLl++zLFjxygvL0dNTQ1/f38ePnzYDSmQnDOys7P/lVI9JSWF9PR0/Pz8uilwlZWVefToETt37mTRokVMnz6djIwMampqhKWMuro669atY+DAgfz4448kJiYya9Ys4R7Q0tJCSEiIiEScO3cuCQkJ1NfX09nZKTbRwYMH8+233+Lo6Mjvv//O2rVr8fLywsXFhd9//51bt25x+/btf8UJVVRUJCoqiocPH2JkZMRXX32Fq6srWVlZ5OTk0LdvX+rr62ltbcXBwYF+/fqxZ88eYdf366+/Ii8vz4EDB3BwcKCpqYk9e/YQExMjfDUl/1oPDw+BoM+YMQNtbW1aW1upra0VoSfQhQRJ4TMyMjI8efKE169f4+vrS//+/bu5i/Skxo0bJzaoJ0+ekJKSQkdHBw4ODsI/UldXl7CwMOEZKgl51dTU2LRpE0VFRVy+fFkgrgkJCRgYGDB79mxcXV1JS0vj2rVrdHZ2MnDgQF6/fi1EobNmzQK61Pk//vgjc+fOFc+kuro6R48eJTU1lZycnB5dl2RLlZqayvPnz0lOTmbHjh18/vnn1NXVsWnTJiwsLPDx8eHs2bNCkGZgYEBtbS0PHz5k/vz5/Pbbb9y5c0cg1YGBgbi6upKSkoKOjg6Ghob4+voycuRIcVDq7OykqakJQ0ND9PX1GT58OG5ubiIRrrGxETU1NbEu3bhxg5s3b/LBBx/0SCshjdL/b9SfZcuW8emnn2JiYiKa0XfvubOzM+PGjRNUBw8PD65du8bBgweJiIjAxsYGExMTdHV12bZtG52dnRw8eJBz585x7do1ampqsLa25tChQ3z33XfcuXMHAwMD1NXVmThxIjY2NsyePRsLCwvu3r2Lmpraexnc/8/y8fEhNTVVJD0lJSVhZGTE8uXLhVI/KyuL2NhYEhMTiY6OFsBVQ0MDf/75J1evXkVJSYnm5mYUFBRYvny5AMCkVLR79+6Rn5+Pj48Penp6vH37VlAPmpubqamp+Q/U8dq1a6xZs0b4OP9/qZycHJqamvD19aW9vZ2//vqLTz/9lIqKCn7++WdhlVdRUYGvry/+/v4MHjyYTz/9lIyMDKKjo9HQ0OD58+cMHDgQ6Op1Kisr8fT0xN3dHU9PT5KTkykqKmLo0KH0798fWVlZdHR00NbWFu4KqqqqWFtbd9sz9PT0kJeXfy8heo+bV4nv0NLSQkpKCqtWraK+vp7jx4+joaHBxIkTMTU15datWzx+/BhnZ2fB55PiCRMSElBTU0NHR0co0IqLixk/fjyBgYEUFxdz48YNsrKyGD9+vDg1FhUVkZOT0+3CJLN1NTU1QkJC0NTUpLOzU/hb9rSePn3Khg0b2LhxI66urnz77be8ffuWtWvXCouKuLg4pkyZQmBgIKmpqWzcuJFFixYxdOhQzp49y5kzZ9DV1eXhw4d0dnZiY2ODgYEB8fHx6OjoYG9vD3SdaKdNm4aioqIgPEsQft++fVm2bBmGhoYCmrexsREPdmtrK5WVlf+KvC2ViYkJ5ubmODk5YWJiQnR0tEDrvL29KSgo4MiRI2hoaDBhwgTy8vLYsGEDjx49wsHBAQ8PDzIyMggPDxeImMTDs7a2ZsKECSLa9vLlyzQ3N7Ns2TI2b96MlpYWWVlZVFZWIicnJzavmTNnYmxs3G2h7KmKW09Pj/LychITEwkPDxeBDM+fP2fChAk4OjqioaEhfHwlGyk7Ozt0dXVZvXo1N27c4M2bN7i7u2Nqasq+fftQUlJi+fLl5OXlcfHiRVxcXNi2bRvt7e3ExMSwePFiUlJS0NbWZuTIkZSXl3PmzBnc3d2FZ62EdsXExLB//34MDQ2ZPXt2j9K1pKqoqBD57X///TeysrKMHj2aDz74gLq6Os6fP8/du3dpa2vj6dOnxMTEoKCggJKSEjExMUCXyETKGYeuhLmMjAwMDQ2F8jorKwttbW2RKPbuoeDd509KkomLi8Pc3FyIgGpqav4V5zU4OJj29nasra2FZ292draIKV65ciWmpqakpaWhrKyMpqam4JfX1dWxZcsWMa50cnKipqaG69evc+DAAZycnPD29qa2tpb4+HiioqL+Q1Rmbm7OgAEDxObf0dFBfX095eXlLF++nBEjRhAaGsqKFSuwsrLqUdY4dPH/ly1bhp+fH01NTfTv359evXqhq6tLbW0tTU1NmJubd/u+pfXB39+ftrY2LCwsBCe/uroaXV1dhg0bho+PD2pqauLdsbGx4cCBA7x9+1YcyiXnjYyMDI4dO0avXr2YMWNGt4OGkpISiYmJqKmp/WtnE0A4alhYWBAeHs6VK1eor68XsahPnjxBU1NTBIS8efOG/Px8PDw8+Pjjjxk5ciSRkZHExsZSWVlJnz59mDhxIi4uLri7u2NpaSm4hVIYgOTyIaFj0EX5kBKZoKsxSElJ4cMPPxTTv55UXFycSCPcvHkzMTExXLlyhZaWFnx9fQkLC8PQ0JDY2FhxmFVWVu72dyS6i2TtZWFhwebNm3FycqK5uZmZM2cSGxuLrKxsN0FkbW0tzc3N4pmoqKhAQ0ND7CWFhYX89NNPqKurs2DBAtTU1Bg8eDAzZ87sUfMqIyNDTU0N165do7q6mmnTpmFgYMDr169RUlISz72+vj5bt27lq6++IiEhgR9//BFfX18SExMpKytj7dq1fPzxxyQmJvLjjz8KEaGWllY3J4NFixYBXTSu6upqIbpUVlZm4sSJ5Obm0t7eztixYxk7diy3bt1i6dKlZGRk8OGHH4rEqp7U1KlTiYyM5NtvvyU2NhYrKys8PT2JjY3F2dlZoN1VVVUcPHiQ3NxcCgsLiYqKIj8/X6yVzc3NBAUFsWTJEqKjo9mzZ4+YJMfHx5ORkSFit318fAgJCcHZ2VmIdiVqR0FBAd9//z03b95ETk6O4OBggoKCBE2rp/71UhkYGJCdnY2CggL6+vrMmjWL77//XtiPSVVeXi7WAQlcLCsro6WlBSsrKxobG1FVVSUpKYm7d+8iKysrhHPu7u5izYqOjhZA0atXrygoKGDAgAFoamqKprW5uZn6+noxeYb32/N73LzW19dTUVHBuXPn6OjoYPHixaSnp7N161YGDhzI3LlzefLkCZcvX0ZPTw9tbW3hn6aqqsqdO3e4f/8+NjY2IjYyMjKSkSNHEhoaipKSElu3bmXz5s1ERUV1yylWVlbuxjOVXsCAgACUlJRwcXHBxcWFyMhItm/fDtDjnOOYmBjOnTsnOIDXr1+ntbVVLOJxcXGoqKgwZcoUAM6cOcPly5fx9fVlyJAhPHv2jKioKHx8fDAwMKC8vBwPDw/Mzc1RV1cnICBAcHZNTEyEHQ90cdmk3F8dHR22bt0q/nclJSUx4peRkcHAwOBfK4BjYmKwsbERSnU1NTUqKyuBLg6dhoYG3t7eJCUlsWPHDiZMmMBnn31GREQEjx49ArqQ5kmTJrFkyRIOHTrE3r17mTt3Lu3t7bx+/ZqFCxcyffp0rl+/Lu6rRBNob28nOztbROtZWFgwdepU+vfvL0ZpEjlfV1e3m7DpfcrGxoY3b95w5MgRHjx4gI+PDyoqKtTU1PDs2TOePHlCYGAgKioqdHR0CJFdXV0d0MXT09DQYNmyZTQ3N7N582ZcXFz4888/KS0tJS0tDX19fT7++GMh9DI2Nuajjz7i7du3BAcHM3LkSLKysrh27RqKioqiAZJezvz8fMLDw0VEYkdHB8+fP+/RdaqqqlJVVUV5eTkaGhqkpqZy4sQJfHx8mD9/Pmpqaujp6eHk5ERFRQWhoaHk5+eLTVBFRQVdXV0cHBxob28nMzMTGRkZsrKyRBMhke0vXLjARx99xJYtWwC6BTe0tLQgJydHS0sLOTk5QnUtLy+Ps7MzHR0dIhShJ2Vqasry5cu7JfclJCTw/fff8+mnn7Ju3TpOnTrF5cuX2bhxI6ampmI8KSsry/3798nLy2PZsmUC0SorK6OsrAx1dXXi4uJoaGhAW1sbX19fYmNjMTY2xtfXl4yMDKqqqrpx3vPz87GwsGDSpEm4urri6uqKjIwMc+fOpaWlpcfm6GlpaXzwwQdiLYGuBvndZqu1tVXkokPXQv/27VvhwSi5tlhYWGBkZMSIESO4fv06jx8/ZuLEifj6+tLa2kp2drYYO0MXAiM9H4WFhezfvx8HBweGDx8uEHOJnymlX/2bhK3y8nK0tLQEjQe6EPWwsDASExPp7OykoqKC+Ph4EhISCAgIYMiQITx48AAVFRVxID516hRlZWX069ePV69eoa2tzcqVK8UGW15eTnt7O6ampqI519LSQkFBgZiYGAwMDNDV1WXo0KECma2srOTAgQNiajF69GgBLLxv3bt3j7KyMubPn8+MGTMIDg5m//79REdH4+fnx/jx44WYUUdHR+wBEv9vypQpIn5VS0uLgQMHsmnTJrFvVVZWYmhoKCI73xU8eXl5UVtbi56eHnV1dULMZGdnh7a2Njdv3iQiIgJtbW3mzJkjLIl6+i5K4/zMzEyysrLw9fVFTU2NgoICMd5tb29HU1NTcLc//vhjYWEmVWhoqOCiS59f8p6VwjcmTpyIoaEhX3/9NQ0NDeK5T05OFvZ3LS0tnDt3jj59+qCoqMjx48e5desWGhoayMrK9tj1A7oadD8/P3755RfevHkjBJFXr14VzjrQRfVxcnKiqqoKOzs7Ll68SGVlpRAYSetBSEgIK1eu5OHDh8ybN4+Kigri4uKwt7dn4cKFmJqaYmVlha+vrwD3pKmtFFbx22+/AV0OCj/++CPm5uZClyJRMd+3KisraWhooKOjAw0NDSH4UlZWZsqUKZw9e1asdTk5OaSkpAghV1tbG+7u7lRXV2NsbCzWS6kfqKqqwsvLSwAzT548EbSU+Ph4nj17JiZcL1++FALU+vp64VSgpKQk3GNaW1v//2OVNXnyZMrKypg7dy6+vr78/vvv1NTUsHTpUurr69m5cydOTk5s376dtrY23rx5w8OHDxk1ahT6+vqCi6qrq8u5c+c4ceIE+vr6LF68GCUlJVJTU7l8+TIDBw7k559/FjB5bm4uzs7OWFhYICMjQ1xcHGlpaejq6tLc3Cxu/D///ENcXBzr1q1jwIABWFpasnbt2ve+vuDgYPz9/SksLOSvv/5i48aNVFZW8ssvv6CsrMxff/2Fo6MjBQUF7Nixg6qqKg4fPsz48eNpaWlh1KhRDBkyBAMDA86dO0dycjLp6en07duXUaNG/a+nwri4OO7cuUNtba2wbpJERRJCsnfvXvT19f8VqizViRMnsLS0ZOTIkeKkJycnx+jRoxk7dix1dXU8f/6ct2/f8u233wqBha2tLZMnT8be3l5s1FKUnaamJrW1tcydOxc1NTVOnjyJhoYGDQ0NPHv2DCsrK6ZMmUJ+fj6TJ0/G0NAQDQ0NwT1VVlYmISFBjDXCw8N5+vQpc+bM6fGoZNiwYXR0dDBv3jwmTZqEs7Mz5eXl2NnZoaysjJ6enkACZWVlxYjD3NxcNLHnz58nLS1NEPlnz56NiooKe/bsoba2lnXr1rFq1SrxN/v378/x48cpLi7G0NAQW1tbbG1tOXv2bLfkEsnT1t/fn5MnT6KtrU11dTVBQUE9bl6VlZXJyclBR0eHXbt2ERcXx6ZNm1i3bh06Ojr07t0bOzs7IQ6cPn06+/bto7m5mblz5xIREcG2bduwtrbm/PnzNDY2Eh0dLezcmpqa0NDQ4Pbt22zZsoW///5biCYkCzRpYy4rK8PExESImt4t6YTe0zp48CArV65ERUVFnNLr6upEAw5dp/mkpCRBn5Fs6IYMGUJlZaUwvZbqiy++wNvbm/LyclpbW9HX16d///48efKEqKgo1NXVWbFiBREREezfv5+ysjLu3bvHr7/+SlVVFfv27RPcZWnTXbt2rbAG6mlSmiSukxIDCwoK8PX1FYv3X3/9RXJyMtOnT8fW1pb29nZ+++03rl69ioODg1D5fv/99wQHB5OdnS0oANJ7c/jwYXbv3s3Ro0cFX+6ff/4hOjqaWbNm4e/vz8WLF3nz5g3Jycni56RN8tNPP8XR0VHw2HpSGzZsYPLkydja2vLs2TNu3LghnqG3b9+yZcsWxo8fz+DBg7lx4wY3btxgzpw5fPHFF/j5+eHj40NoaCiff/45gwYNYtu2bZibm4tmV+Lih4WFsX37dlJTU9mwYQNbt26lra2N8+fPU1hYSFFREYsXL2bgwIE4ODhgZWVFVlYW8fHxyMnJMWDAABQVFXtMb0lKSmLz5s2MHTsW6DrEStaQP/30E9OmTeObb76hX79+DBw4kKamJpYvX462trbw9Jae5dmzZxMYGIiHhwfQ9Wz/9NNPlJaWMn36dCZPnoySkpJoEiZNmkRAQADq6uooKyujr6/P/fv3BcXC3d2dDRs2MGDAAPE7peehJ1VdXY2pqSlffvklDx8+JDY2lrS0NDw9PcUkVtJkSHSPkydPcvz4cf7++2/y8vK6/T4TExOOHj2KiooKixcvJjs7m+HDh3P48GEuXbrE3r17sbGxEY0rdIFExcXFmJqaUlhYyJdffkl+fj4hISEEBwczadIk1NXVMTMz67H7DiB0DUuWLMHFxYWgoCAcHR2Fh2lbWxv19fXk5OQwbtw4Nm3ahJKSEl999RXx8fFoa2vzzTffYGBgwMOHDzl8+LBY/83Nzfnqq6+ALqusL7/8Eugatzc2NormVU5OjpycHDZu3MiJEycA+OSTT1i7di3m5uZkZ2fT0NCAo6MjHR0d5Obmvvf1bdiwgczMTMaMGSMCnGJjY/n7779RV1fn4sWL9O3bl/T0dC5cuICCgoJ4ZkxMTNi8eTN5eXndHFXOnTtHZGQka9asYdKkSSQnJ7N27VoyMjKYPHkyNjY2hIaGkpCQQHNzM3379kVNTQ0ZGRnhaW9vby+AndLSUhISEv5DbPr/qh43rw0NDbS2tjJw4EA8PT1F+oe0cN68eRMzMzPxx6uqqti/fz8xMTGMGzdOWN1Al92PhoYGW7ZsITg4WPCxpPg7aRE9ceKEILZLQi2JiK6trS3IyBEREcybNw83NzeRsvGuWOp9KiQkBAUFBaKionj16hVjx44Vo8V3RTdSxvDIkSMJCQmhpqaGnTt3YmdnJ/hVktCgqKgILy8v4Z1YVFREUVERLS0tNDQ04OHhIQReBw4cQE5OTpiES8p16KIZmJmZkZWVxe+//46Tk9O/Ql/79etHe3u7eBA7OjqEn6OZmRmdnZ2UlJTg4eEhYlSvXLmCvLw8+/fv76a+NDAwEFzNN2/ekJSURG1tLeHh4QwZMgRTU1NMTExEAyJZhkmnTldXV2pra4mNjUVBQQFlZWVhRSItyj0tqVmUEm0A7t+/T0pKCv3798fNzQ1lZWVaWlpQUFDg3r17hIWFiTH0ihUrOHbsGJqamkLVDl1IYGBgILKysujr63Py5EmRRuTo6EhAQAClpaVCbaqhoYG9vT15eXk8f/4cY2Nj5OXlSUhIQFlZGS8vL7EgSmhRT8ve3l54V44ZM4bi4mJOnz7N5cuX2bNnj1jIJRsyKWfexcUFT09PcnJyUFJSoqqqCisrK5FPnZycjK6uLoaGhsyfP59Hjx5RUlJCSkoKdnZ25Ofnk5GRga2tLaampgIdLywsFCb60n2vra391wb3L1++FKrrpKQk2traWLduHX5+fiQlJREWFkZycjJbtmxhy5Yt6OjoCO9gqVJSUoiJiRE8Xmtra2JiYsjJyWH06NEoKyvj5OTElStXMDU1xd/fn169eonx5LVr1wgLC2PatGni/Y+Pj+fYsWOYmpqK7G+gR82rkpIS1dXVpKWl0dLSQnp6urhXmpqaXLt2jT///BMFBQWhG1BVVcXGxobOzk6ys7Oxs7PDzs6OsrIyrly5wvfffw906QvKy8u5f/8+jx49oqWlhXv37uHs7ExRURHJyclUV1cL14mgoCB8fHx4/fo1TU1NGBgYoKamRnl5uYgh/jfPaFJSEt988w3Tpk1DX1+fp0+fUlVVRWBgoBiVuri4CIFYSUkJbm5ujB8/HltbW6BLoDR+/HhhUq+qqsqLFy/YsWMHOTk5zJ49GxcXF/T09FBSUqKuro6Kigq0tbUxMjLi6dOnhIeHM2HCBOzt7YU4UkFBQdzn8PBwYbjfkxoxYgQTJkwAutZ1yfKxtLSUvLw8ioqKKC4upk+fPowcOZLOzk4BYEifIyEhgcTERNFkJiUlERcXR0tLC4mJicTGxuLm5iaauZKSEkG1srKyQk5OjtLSUi5evEhUVBQGBgYoKCjg4ODAtGnT0NXVJSEhgdLSUhobG8nIyHgvZEsqyd/cz8+PESNG8Nlnn9HR0cGUKVPo7Ozk7Nmz6Orq4uvrK0ABf39/rK2t6dWrF5GRkYKHbm9vT1BQEF5eXkRGRqKvr0/v3r3x9fXl8OHDREVFceXKlW7AgGS7p6OjQ0dHB1paWhgaGpKfn09BQYFIVfv/Uvfv36e+vh55eXl8fX3R0dFBWVm52+T27du3QiQuUXW+/PJLVFRUaGhoQF1dHT09PYqKisjIyGDhwoXi5wcPHixEwFLQi6WlJcnJyWRmZmJjY4OnpyfNzc3C4QSgd+/eWFhYkJOTQ35+Pl5eXnh4eJCcnNyj5jU+Ph41NbVu8cclJSWEhYUxatQoQfeTBHm9e/cW4vOioiKcnZ27WWSVlZVx4sQJqqqqxM8ePHiQBw8e4OLiItw1qqurqa2tpbW1VQAM7e3tQgT8999/Ex4ezsyZM9HV1aW0tJSOjo73imnucfMqGdxLF7ZkyRLRBJmbm7Ns2TIyMjKEQbiOjg719fVcunSJ8+fP4+3tzfTp0zEyMiIzMxM7OzuBBkiWJpqamiLN5saNGyQmJmJjY0N8fDzV1dXMmTNH2FO8W7m5ucjJyYlF79SpUyxcuJB58+a99/VJpyBfX1/s7Ox4+/YtsrKyrF27thuRWkNDQ9irAOzfv59vvvkGHR0dTExMGDp0KIqKisjIyNCrVy8MDQ1pbW2loqKChIQEoqOjyc/Px9DQUJwWZWRkhLmxo6Mjw4YNEze8vr4eY2NjkTy1fPlyOjs7xYmuJyWNOSUuimSkfOnSJWpra+nbty9OTk706dNHXNuqVatYsWKFQBikkpeXFw+or68vp06dYv369Xz77beCg/nmzRuRHjJlyhQWLFiAoaGhSInZs2cPiYmJrFq1SpwKAwICqK+v77HvIiCa33d5ltevX+fy5ctoamqirKxMQ0MD4eHhtLe38+bNGzo6OtDV1aWxsVE0EQEBAUyaNIn29nZ2795Nfn4+CxcuRF9fn40bN3Lw4EFsbW25fPkyFRUVrFmzhgcPHggHDEl4Fxsbi7W1NbNmzcLW1paSkhIiIiIwNzdn+PDhODk59ZjDJPF1JUNzSfS2Z88egoKCyMrKoqysTCC7hw4dEnGH/v7+YiT+559/cvDgQVatWsXnn3+Ov78/d+7c4dy5c1hYWDB37lxsbGw4evQohYWF6OjoIC8vj4qKCqGhocjJybF582ZxYLh16xZnz56lrq4ODw8P/Pz88Pf3F99TT2rq1KmkpaVhamqKhoYGCQkJNDY28uGHHwoKjYSU7dmzBzk5OXbv3t3td2RlZbF9+3bOnTuHr68v5ubmODs7k5OTQ2FhIXV1dSgrK6OoqMjatWvFWqajo8PXX3/Nw4cPKSsr45NPPhGuFdXV1URGRqKtrU2vXr3+VXoYdFECRo0aRb9+/ejo6EBRUVGsq7/++iubN2/G2tqaVatWdVP6f/7554wePZrMzExMTU0xMjLin3/+YcWKFSINTRLs7d69G19fX3bt2kVUVBQTJ04kNTWVoKAgli5d2i3KUkVFRVgPQZdw8vnz59y5cwd3d/du/9/3rX79+rF7924CAgL45JNPUFFR4fXr10yePBkrKysKCgpob2+npqaG+fPnY2Zmhp2dHeXl5bx+/RpXV1f69evHlStXePnyJTU1Nejp6eHs7My9e/e4f/8+M2fOxMvLi5s3b9LY2IicnJywjtqxYwfp6em8evWqm6cqdDnCTJ06lUOHDrF161bKy8uFd+n71rtpfDo6OlRWVrJ161Zu374t1kNbW1uqqqoYNGiQOORUV1fT3t6Ompoa58+fZ/v27XzzzTds3ryZS5cucebMGRYsWMCcOXOwsLAQ7gmAML2Pi4tDT0+PqVOnkp+fz65duzA0NOTatWtYW1sLq8C4uDhOnTrF1atX0dLSYtWqVd0S+f5bFRcXi7Gym5sbmpqawof1999/5/PPP2fLli0CnJHK3NychQsXMnfuXKqrq5GXl8fc3JyGhgZWrlxJbGwsmzZtYuLEieKalJWVBYdUeuY1NDREE6iuro65uTm//fabEE2924hLjW5Pq7a2lk2bNtHZ2SnSOf9nSZSBd3nHI0eOxN/fXwRelJaWMnHiRA4cONCtAfv444+xsrLi2rVrbNmyhU8++QRXV1eUlJQ4duwYJSUlfPvttwwfPpyZM2fy6tUr6uvrOXr0qJiKSu9fY2NjjxpXgFmzZjF69OhurjaSSPjdA5uuri4jRowQFAJpGurr69uNpiBpJ3R0dFBVVSUmJoawsDAWLVrEwoUL2bx5M3/99RfQ5Weurq5OVVWVmDZI3rgbNmzg4cOHODk5ERQUhJWVFWpqamIi/L9Vj5vXdy8+LS2NyMhIwb+Uk5MT6GhGRgaPHz/G1NSU8ePHk5OTw4MHD1BWVmb06NHCNDwxMZHt27ejoqIioPI5c+bQu3dvoWQeN24cOjo6rFmzhmfPngk0LDIykidPnohscldXV7Zv346DgwPNzc00NTUJns/7VltbGwUFBVhaWmJgYICKigolJSUilKC+vp7du3fT0dEhIgpjY2NRU1Nj9OjRhIWFMWHCBDZt2oSLiws//PADVVVVHDp0iKqqKnx9fRk4cCDe3t5kZGRgbW0tGmA/Pz82btxITk4OlpaWYiNraWkhLS0NHR0drKysMDU1ZcSIEejr6zNkyBAyMzN7dI1Pnz7Fxsammx2FgoICFhYWNDY2oq2t3W1DljLhpRdaapzg/4h0nj17xpIlS+jXrx+jR49m586dvH37VnCH8/PzKS0txcLCQvhhNjU18fDhQ8GjfdfV4N9YD0kljeESExMFOjV06FAUFBTEsyOlZeXk5ODi4sL8+fMF0j9//nzs7e3FibK6uhotLS1UVVXFy9WvXz+xoTs7OxMXFyeU2L///ju5ubm4urqir6+Pj48PRkZGaGtro6amhr29PbW1taioqKClpYWiomKPxTAyMjJ0dnZ2Q6YLCgqor68nODiYgoICDh48iLy8PLNmzUJBQYETJ05QVlaGnZ2daCIk2xRvb2/h3qGoqIinpydKSkrExcWRnZ2NiYkJ+vr64rlwdnYmODiYtLQ0bt26hbW1Nbq6uri5uVFSUsKhQ4e4f/8+Q4YM6bGHrVRDhw4V1njKysoMHDiQu3fvcuDAAYKCgujbty8//vgjBw8eFPf59evXPH36lMLCQmbMmCFUrd7e3owYMQIlJSUqKiowMDBAX1+f7Oxszpw5Q319PTNmzEBTU5ObN2/Su3dvLC0t8fDwQElJCU9PT3R1dTl58qSgXqxYsUIgsR0dHT02DtfQ0ODRo0eoqKjQr1+/bj6qhYWFVFdX069fP9EgPX78mMTERD766COhrv/222+xsrLCw8OD4OBgjh49SkVFhUBKXr58KXynP/jgAw4fPkxJSQlv377F3NyclpYWkpOTsbKy6ib2kapv376UlZWRkJAgOOE9qdbWVtHAKCoqMmHCBAYMGCAOpRKClZKSQllZGaampmhqapKdnc2VK1e4evUqVlZWaGlpoampiY2NDVZWVkKRrKKiwsuXL6msrCQ7OxsXFxeRVAhd/PfW1lby8vKEIKW9vV3ExI4cORIFBQVBS+tpElxeXh5hYWF4enoSEBCAmZmZ8Al3d3dHX1+fjo6ObgIVKZlNmkw4OzszceJErKys6OzsxM/Pj8zMTHJzc+nXrx9ff/11Ny6ujY0NioqK/P333yQlJeHr64uNjQ1z5sxBVlZWAB6WlpaUlpZiZmbGwIEDOXXqFFVVVT2+xgEDBqCqqkpLSwu5ubkMGzZMrOGampp88MEH9O/fn4qKCi5dugTAzJkzUVVVRU1NTYizpcrKyqKkpARbW1vx/igrKzNjxgz8/f2pq/v/sXfeYVVeWdv/0XvvHamiICIKiIodFXuNGks0seSoMZqYamK6GnuMJLG3JPYeey9IUREpAgrSe+/9+f44OfsLM5l3ZN6ZSeLLfV25CIfjOXs9z372Xnute92ril27dlFUVMSUKVPo1asXzc3NQl5RSUkJb29vevfuTUlJCT/88AO6urqMGTOGzMxM0SK6LVBRUeHSpUuiiMnR0ZHExER27NhBU1MTL730EgEBAQAiUFBXV8f58+cpLy/Hx8dH6BV7e3sLxzUmJoa0tDS6du3K4MGDUVFRIT4+XjxLbm5uVFZWEhkZSUpKCoMHDxZFisrKyqirq2Nqaoq9vT2NjY1cvXoVPT2936Vn/U+YP38+ysrKXL9+nYsXL9K7d2+Sk5OJiYlpFSBKSEjgxo0bPH78mJaWFrHOm5qaEh4ezsmTJxk8eDADBgxg7dq1ZGdniwzxlClTeOWVV3B0dGTEiBHEx8fj4eHBmDFjUFJSIjU1lcLCQqFmdPv2bWxsbJg4cSL19fUUFhaiq6sr5v4/Q5ud1/r6ehGduHDhAm+88Qaenp4ivJ2Tk4Orqytqamr8+OOP+Pj4sHTpUkxMTPjqq6+EFJObmxvh4eGcOnWKgwcPis/v378/ISEhQktScdqIi4sTunXW1tY0NDSwbds2du3axbBhw/j000/p0aMHjo6OFBUVoaysLDq2tKUHsIIfVVdXh4uLC7q6upSXl/PgwQN8fX2RJIlffvmFtLQ0JkyYIPhXw4cPRyaTMWPGDH788Ue+//57tm/fLirXly1bRmpqKnZ2dnTt2lVU0ykirYqJ0rFjRyIjIykvLxckf4WW5s2bN4XO5tatW0Xqu63YtWsXffr0YeTIkaipqREdHU1tbS0TJ04UzsmFCxdISkqib9++zJ49m2HDhqGlpYUkSSKtCXJHVllZudWCqKWlRY8ePbC2thYbhZubGz169GjVSerRo0dcvnxZ/P7bVnTFxcVoaWkJ57itUHQnys7OxsPDQ6TVQX7NFQUT6enp+Pn5CZ1ZkPfyfumll4iJieHx48e4ubkJubXc3FwaGhqYO3cuM2bMEN2jGhoacHR0JC0tDQ0NDR49eoSDgwOLFy8Wi0NjYyNqamrieQH581RSUvIvSUkpDlMKpyc2NpaNGzcik8kYNmwYjx494uHDh7zyyitMnTqVy5cvk5KSwpMnTwgKCqKsrIx3332XXr16sWvXLkDOXevVq5eIdMTGxnLp0iXS09NF5baTk5Ogxzx9+pTXXnuN8PBw5syZw5o1a3B2dhY6gorn93k6pvwe3NzcBK/a1tYWHR0dXn31VQYPHsypU6cICAjA19dXzKsrV66we/du6urqGDp0KAEBASxevJjm5mZxzZubm+nduzfKyso8fPiQLVu2kJubS+/evYXjUFJSwrRp03BwcMDQ0BBzc3NSUlIEN9bW1raVU654VtsCOzs7duzYgYaGhlBUUSAwMJA33nhDdK4DePDgAT/99BOmpqaMGDGCM2fOcPz4cUCu1/v9999TWVnJhQsXuHbtGv379+fdd99tJf+0ZMkS0tLSsLKyEg1QKioqMDMzQ09PTxyiFJuzlpYWQ4YM4fLly+KQ2RYopI9ALlenoqKChYUFzc3NVFZWoqmpiaamJkZGRkRFRfHo0SMGDBiArq4uurq63Lt3jx9++IHi4mI++OADMS9tbGxYvHgxJSUl7Ny5ky1btpCWlkZQUJBoFa7QCNXS0sLW1lZEmFRUVISdtra2vPLKK4C8IO/u3bttsu/mzZtcvXoVQ0ND+vTpg76+vsgexcXFcebMGbp06SLmXnJyMrm5uTg6Ogo62LRp05g2bZrIGA0YMAB3d3c2bdpEXl6eOITV1NRQU1ODqakpNjY29OnTh9u3b5Oamkq/fv1YvXo1T58+5fTp00I2T1dXFzMzMzp27CgaT7S1cY+ioPXZs2fk5+cLfV6QB5pmzJhBS0sLmzZt4uuvv2bEiBHMnDlTCPR36tQJJycn6uvriYmJITMzk3nz5uHl5YWamhoZGRmkpaVhY2PDqFGjKCkp4cyZM/z888/o6uri5uZGVFQUDx8+ZNiwYeJZ7NKlC01NTdy+fRsjIyOh3JOent4m+wChBOHj4yM6OsbHx7Nt2zbU1NTo2LEjnTt3RktLq1WdxqZNm3jw4AF37tzhrbfe4pdffmn1/Y2Njezfv5+IiAg++eQTRowYQUhIiKDrqKioMGTIEMErBvn+NHr0aMHbV9wvRXOkjh07tjkLoqDsbd68mWPHjtG3b1+am5tFca4Cjx8/ZsuWLSIg9uGHHwqay9OnTwkNDSUrK4sBAwYwbdo0UbjbrVs3EeyRJImpU6cydepUSktLRf1ESkqK4JWHh4fz448/Mnz4cEaMGEF6ejp3796loaGBO3fuiLbt/xPa7LxGRUWJD7979y6SJBEbG8sPP/zA6NGjxQnR2NiYfv36iahi3759KS8v58SJE1y+fBknJyfRCjAmJgYzMzPc3d3p0KED5ubmlJWViShAeno6GzZswMjIiO+++47g4GBRhQlyvsrixYsBObE7KSmJd999919KOV+9epXS0lIcHR0pLS2lvLwcFRUVHB0dycnJEa1HJ02ahIWFBY8fPyY3N5fKykqUlZVZvXq10CC8c+cOPj4+opVeTk4O/v7+rWQgEhIShEi/Ih3h4uJCY2MjOjo6wnH19PQkKyuLU6dOUVxczJw5c6ipqRGarW1B7969sbOzw8TEhJKSEg4cOEBTU1OrKuekpCRxotTX18fKyory8nLKysooLCwkMjKShIQEcnJyWLRoES+//DJPnz7lwIEDPHjwgKCgIDp37owkSQwbNgwHBwdMTExQV1cXBXY6OjqiCvm1115jxIgRYlNRV1entLRULPZtwf3797l165bQLdXQ0BBVo0FBQfj7++Pq6sorr7wiHI7Q0FBqamoYPHgw06ZNQ0tLC0tLSyE/o4CWlpZIU/026unu7i6KpnJyckS07rcprd867orqfoXodVvnanp6+t81NsjLy+P69euis41MJiM+Ph4zMzOMjIx48803RdEDyKPbr7/+OtXV1Vy5cgUXFxc0NDSQJEmM1d7enl69euHm5kZYWBgbNmyge/fuQglDIapeX19PSkoK3333HZqamvTs2ZNu3bphbW1NXV2d0PBtC6Kjo4W4tYIz29LSQocOHUhKSuKTTz6hb9++eHt7i3XG2dmZl19+mebmZrE+eHh4UFxcLNo5/va+2dvb4+zsTG1tLfX19aioqBAUFERxcbFQSTEwMCAlJYXc3Fz69++PpaUlHTp0oFevXjx9+pSdO3fSqVMnwXV/XtjZ2TFr1iw6dOjAhQsXOHfuHFpaWrz88sv4+/uL7A/IsxS6urp069YNZWVlysrKGDJkCNXV1RgYGODo6IgkSbz++uut+rCDvGvgL7/8Qv/+/enatSurVq0S3azi4+N5+vSpaDhiZmaGj48PNjY2rdYpxcbUVurHvHnzAHnU+Ny5c7z00kt4e3tz//59fvjhBwAWLlyIj48PAQEBourc2NiYwYMH4+3tLToaKSSZYmJihDaxopBVU1OTadOmERISQllZGcuXL6dnz54MGTKEFStWkJub2yqNq3DoO3fujJKSEufPn+fgwYPU19e3qeBH4dD8XqbI0dFRiMCDfD7Hx8ejr6//u1QTSZJISkrC3d1dOHLq6uriPly8eJFTp07RrVs3Fi5cSFBQkOANK6DInrS0tAgdWSsrK3x9fXn55Zepq6ujS5cuonvU8+DRo0dC2cfMzIy8vDwMDQ1Fu2GQrz1NTU3COcvMzGTXrl1ERkaydOlSnJycUFZWFlxcOzs70W52//79XL58mTlz5gi5QkWRn7e3N0+ePKGpqQkXFxfx7JqamtLY2Iiuri4TJ04U1B9ra2tGjRolIsDPi6amJpSUlHB2dhY2OTo68vbbb4vMiJqamoi6KjBw4EDs7OzQ1dXF0dGRjRs3UlZWJjplNTQ0EBUVRUlJCU1NTairq6OsrNxKxWTSpEl4eXnh7OxMQUEBlpaWgl967do1Ll26xOTJk/H19WXEiBGUlZWRkpLSJvtqamq4e/cuTk5O+Pv7k5qaiomJCfPmzSMwMJCEhASsrKzw9vZm4cKFJCQkYGlpKbj2IG9Pu2zZslaSgL/HEVccekFOTXjy5Al37twhJSWF7t27C96yl5eX8BcdHByIiYkhLi4OCwsLfH19/+lBUul5UwgymaxtuYY/IUJDQ/+h2OSLbh+8+Da+CPbBi29j+zx9se2DF9/GF8E+ePFtbJ+nL659yr/3Yjva0Y52tKMd7WhHO9rxZ8RzR17b0Y52tKMd7WhHO9rRjj8a7ZHXdrSjHe1oRzva0Y52/GXQ7ry2ox3taEc72tGOdrTjL4N257Ud7WhHO9rRjna0ox1/GbRZKuvfBZlM9gqw65+8rSU0NFTln7znT4kX3T4AmUymBMwC5gKdARUgCbndW0JDQ9umvP8XgUwmmw7s/fXXOaGhoW1rFv4ng0wmSwMc/sGf80NDQy3/i8P5t+P/gH2v8IKvNQAymWw10B1wA0yBWiAdOAF8GxoaWvzHje5/B5lMZgKMBYYDXoAN0ADEIr+3u0JDQ1v+8Sf8dSCTyWyBz4ChgAmQi/wefhoaGlr6Bw7tf40XeY4q8GfZ9/8w5xV4CHz6D/7WBxgAnPuvjebfj4e82PYB7AGmAwXAQaAaGARsAoJkMtnE0NDQF6oiUCaT2QGbgSpA95+8/a+EcmDj77ze9rZKf068yPY95MVfawCWAA+AS8jXHB0gAPgEmCuTyQJCQ0Pb1jfzz4OJwHfIHblrQAZgAYwDtgPDXoT1VCaTOQNhgDlwEkgE/IDFwFCZTNbrL+7gvchzVIE/xb7/hzmvoaGhD5Evun8HmUymUKfd+t8az78bL7p9MplsDPIJ/AzwCw0NLfr1dTXgEDAemAns/oOG+G/HryfOXUAxcAx4+48d0b8VZaGhoZ/80YP4D+KFte9FX2t+A/3Q0NC/a7cnk8m+BD4A3geev53inwvJwCjgl99GWGUy2QdAJPL1dBzQNvX9Px9CkTuub4SGhm5WvCiTydYjd/y+BOb/QWP7d+BFnqN/qn3/T8d5lclknshPKtnAL3/wcP7teIHsG/frz3WKCQwQGhraCHz066+L/uuj+s/iDeRRrFnIT5vtaMefFi/QWgPA7zkFv+LQrz9d/8Hf//QIDQ29GhoaevpvqQGhoaF5wPe//trvvz6wfyNkMpkTEAykAVv+5s8rkK+p02Uymc5/eWj/NrzIc/RX/Gn2/T+SNvCPMO/XnzteUM7ki2KfgieY+jt/U7zWTSaTGYaGhpb9d4b0n4NMJvMAVgGbQkNDb8pksgF/9Jj+zdCQyWTTAHvkm8gj4OZffI7+Fi+6fb+HF2Wt+WcY+evPR3/oKP5zaPz1Z9MfOor/PRRr5sXfcdIrZTLZHeTObQBw5b89uP8wXpQ5+qfZ9/9UzqtMJtMCpgEtyHk+LxReMPsUp64Ov/M3p9/8f0cg/D8/nP8cZDKZKrAPOQ/tgz94OP8pWCK38bd4JpPJZoWGht74Iwb0b8aLbl8rvGBrTSvIZLK3kfPNDZAXx/RG7hSs+iPH9Z/Ar2vPjF9/Pf9HjuXfAPdffyb/g78/Qe68uvEXd15f4Dn6p9n3/2y0gUmAIXDuBSA1/x5eJPvO/PpzqUwmM1a8+Oti+9viEaP/6qj+M/gY8AFeCQ0Nrf2jB/MfwC5gIHIHTwd5tfMPgCNwTiaTef9xQ/u34EW37/fwIq01f4u3kaeZ30TuFJwHgkNDQwv/yEH9h7AK8ATOhoaGXvijB/O/hMGvP8v/wd8Vrxv+54fyH8eLOkf/NPv+nyryilx6AeQby4uIF8m+A8gjO8OABJlMdgqoQV516Iz8FO0K/KXTlTKZzA95tHVdaGjo3X/2/r8iQkND/7ZSPQ6YL5PJqoC3kFfKjv1vj+vfhRfdvn+AF2mtaQWFtJlMJrMAApE7eNEymWxEaGjogz90cP9GyGSyN5DPz0TkRTIvOpR+/fmXVlSAF3qO/mn2/T9N5FUmk3VCfpOzgLN/8HD+7XjR7PuVszQK+QkzD/niOhu5fb2RV+SDXE7jL4nf0AWS+f9k9P9LUBSKBP2ho/jP4YW070Vba/4RQkND80NDQ48jTzWb8P+1l//ykMlkC5BLDyUA/UNDQ0v+4CH9O6CIrBr8g7/r/837/vJ40ebon2nf/zNFXl/04oIXzr7Q0NAmYN2v/wn8yrfrilygOf6/P7J/G3SR868A6mSy31U42SaTybYhL+R68781sP8SFAvQX7b695/gRbXvhVtr/ieEhoamy2SyBKCrTCYz/W0V9F8RMpnsTWAD8gzBwNDQ0L9sAOBvkPTrT7d/8HdFJf4/4sT+ZfEizdE/y77/p3BeZTKZJnIPvgXY8QcP59+OF92+38F0QBPY86uExl8V9fzj+9UNOQ/2NvJF+UWkFPT89efvVZa+CHjh7Ps/uNYoYP3rz7+0sy6Tyd5FnmJ+CAz+Kzs5v4Nrv/4Mlslkyn+jZ6sH9ELu+PylC3z/B7wQc/R/wH913/9TOK/Iu4sYAWdewOICeEHtk8lk+qGhoRV/81oP5ItvFfIWgH9Z/Fqc9drv/U0mk32C3Hnd81duDyuTyToDuX+blpTJZA7At7/+uv+/PrB/E150+34HL+pa0xF5o4m8v3ldGfgcufB92F+5vahMJvsI+Zp5H3lxz4tAFRAIDQ1NkclkF5Gn0Bcg71SowKfIMyA/hIaG/iU1tP8vzFH48+z7fxbnVVFc8CJ0gfk9vKj2XZLJZLXI01uVyPschyCPWI4LDQ19YSJaLzAmAu/JZLJryLumVCIn3g9Hfoo+C6z944b3v8aLbt/f4kVda4YCa2Qy2U0gBTm3zgLoi1yiJw+Y88cN738HmUw2E/mm3wzcAt74HZpSWmho6O7/8tD+3ZAhbw/7jUwmGwg8BvyB/sjpAh/+gWP73+KFnqO/wZ9i3//Dnddfxd9784IWF7zg9h0BJiOvPtQCcpBrSq4KDQ1N+wPH1Y7nxzXk+os+yNPoOkAZcjrEPmDfX7yf+otun8ALvtZcRu6Q9wK8kcspVSN3ePYB3/zFI5UK3UwV5PJKv4cb/MXbbf8afe2O3FEfitzpyQW+AT79i9/DF32OKvCn2PeVJOmFWLfb0Y52tKMd7WhHO9rxfwB/GqmsdrSjHe1oRzva0Y52tOOfod15bUc72tGOdrSjHe1ox18G7c5rO9rRjna0ox3taEc7/jJod17b0Y52tKMd7WhHO9rxl0G789qOdrSjHe1oRzva0Y6/DNqd13a0ox3taEc72tGOdvxl8Nw6rzKZ7C+vqRUaGqr0j/72otsHL76NL4J98OLb2D5PX2z74MW38UWwD158G9vn6YtrX3vktR3taEc72tGOdrSjHX8dSJL0XP+9/vrr0uuvvy49fvxYUqChoUEqKioSv8+cOVPS0NCQtm/fLkmSJEVHR0uXLl2SmpqaxPsbGxvF+1taWqTm5mZJkiSpvr5eqqqqEn8bN26cpKmpKR08eFC8Vl1dLUmSJBUVFUlpaWni/fn5+dIbb7whARIgzZgxQ2poaJDKy8ulQ4cOSYqxP499H330kbRjxw7p3r174nsPHDgg6erqSiNHjhTfWVZWJpWVlYn3LF68WDIwMJBmzZolrpHCNkmSpBs3bkh2dnaSlpaWNGnSJGn06NHS22+/LVVVVUkPHz6UbGxsJEBatGiRJEmS9PjxY8nW1lZydHQUY3n48KEUFRUlPXnyRFzT2tra57LvtzZ+/vnnkiRJ0i+//CKtXbtWamxslCIjIyUXFxfp7bffliRJks6ePSu9+eabUmxsrLBhx44d0vLly1u99uzZMyk1NVWqqamRJEmS6urqxM+goCDJ0NBQioiIkMrKyqR58+ZJy5YtE//2ypUr0rBhw6Q5c+ZIlZWVkiRJUlRUlGRhYSF5enpKWVlZ4rPacg+/+uor8R35+flSbW2t+D01NVWKiIgQny1JkpSVlSWdPHlS+umnn6SHDx9Kzc3NUkVFhXTv3j0pPj6+1ft2794tnT59WmpoaJAkSZIaGxul5uZmqba2VlyD0tJSacaMGVL//v2lmJgY8e8rKirE/7e0tEgpKSnS+vXrpddee03avHlzm2yMjY2Vnj17JsXGxkoxMTFSYWGh+Ozz589L+/btkyRJktLS0qSAgACpd+/e4honJydLNjY2kqurq5SSkiLsyMvLE58RExMjbdy4Ubp586Z4raCgQCooKJAkSZIqKyulQYMGSYD06aefivdMnjxZAqT33ntPvKZ4Nts6T69cuSJJkiRlZmZKV65ckXJyclpdP0mSpISEBGnatGkSIA0bNkwqLy8X9ijuR0JCgjRp0iQpICBAzMXBgweL9eKbb76Rdu/eLVlaWkq9e/eWiouLpWfPnklvv/22dODAAfGdGzZskPT09KTZs2eL71E842fPnpVmzpzZpnv47NkzSZIk6eOPP5b8/f2l69evi2t///596W8RGxsrfffdd9KPP/4o5tL9+/elRYsWSTt27BDvq6mpkUpKSqSamhqpoaGh1by7fv26ZGtrKwGSlpaW9Pnnn0vx8fFScXGxeM/hw4el119/XVq/fr0UHh4ubG1oaGjzPVRg06ZN0syZM6XIyEhx/xTz8bcoLCyUEhISpOTkZOnEiRNSz549xX36+OOPW9lYV1cnVVdXSxkZGVJKSop07Ngx6Y033pCOHj0qSZIkhYaGSkFBQVJkZKSUkpIiubm5ST179hTrQWZmplRbWyudPn1aMjMzkwDJ0tKyTffwwYMH0rlz58TndezYUXJxcZGOHDkiTZs2TVJXV5eOHj0qlZeXSwEBARIgOTo6Sn5+ftK0adOk6OhoYVN+fr4UFhYmbdiwQVqzZo1069YtKTc3V1ynqqoq6cCBA9JPP/0k5nZDQ4N04MAB6eLFi1JNTY20fPlyCZBWrlwpSZIkffPNNxIgGRgYSJs3bxbf1RYbFWhubpaqqqparTWff/655O7uLu3du1e8Vl5eLlVUVEiRkZHS9evXpdLSUmFfbm6ueF9tba2UlZUllZSU/N08qKurk+rr68X7li1bJq1YsUJqbGyUDh06JKmqqkojRowQe3BhYaHwD+rr69s8TxcvXiwB0vTp08V8r66ulpqbm6X6+nqpqKhIys3NldLS0qT09HRx/Z88eSJt3rxZWrBggbR169ZWz9pvfR1JkqRbt25J/v7+kr6+vrRu3TrxenV1tXhvSUmJdOLECbHHXr58WXrttdekr776SkpOTpYkSb723rp161+6h4rrU1ZWJu6LYqz79u2TXnvtNWn06NGShYWFBEjz5s0T625ZWZmUk5Mj5efnS9evX5fefPNNadGiRdKjR4/E52zevFl68803W61fv33O6+vrpZqaGvEM1tTUSLdu3ZKWLFkieXh4SB07dpTef/996c6dO//Uvja3h21qaiIpKQkDAwMsLS0xMTERf5s0aRJmZmbk5uZy7do1OnfuTMeOHVFRUQFATU1NOMxKSkriP0mSUFZWRl1dHYDMzEw0NDTo2bMn3bt3b+VoA2RlZZGZmUmnTp1wcnLC3NwcV1dXhg0bhpOTE7a2tixdupTq6mo0NTXbZJ+Xlxdqamo8evQISZLo3r07OTk5VFVVoaSkhI6ODgAVFRXo6+uLf/faa6+hpKRETk4OUVFRqKmpcfbsWaKionj11Vfx9vbmrbfe4tmzZ/j5+aGjo0N9fT137tyhqKiI+fPnY2FhgZ6eHjKZjKysLKZOnUpdXR2bN2+mX79+GBgYsGfPHiIiIhg2bBhLly6lY8eObb2FqKurk5SUxN27dzl16hQpKSkUFxdTUFCApaUlLS0txMTEkJWVhZ6eHgBXrlxBVVWVnj17UlZWJj4rLS2NQ4cOMWTIEEaPHo2GhgYAysrKjBs3jsDAQAwNDYmOjiYnJwcHBwfxb93d3ZkzZw7KysrU1taiq6uLj48Pn332GdHR0YSFhTFx4kTxmc+L7du3k5ycjI+PD4WFhdy7d49OnTrx0Ucf0aFDBzp06EBLSwuPHj0iIiKCq1evkp+fz8iRIwkKCqKpqQk9PT18fX3Zvn07a9eu5c0336RLly44ODhQW1sr5rKqqvwRUsyzsrIyEhISGDhwIObm5nTq1EmMq6ysjJycHPT09LC2tsbJyYmxY8diYWGBiYkJCQkJz22jp6cnVVVVmJqaUlVVRU5ODo2NjVhZWWFjY0N4eDhz5syhubmZnj17EhISgq6uLkVFRfz8889YWVmJ5wWgsbERCwsLnj17xv79+9HR0SEwMJBnz57x0Ucf0a1bN/z8/DA3NwdAV1eXXbt2sXXrVq5cuYIkSQwcOJBOnToxatQounbtKsY6aNAglJWVqa+vb9N91NPT48qVKwQEBDBgwABqamqorKxET0+PhoYGfvnlF5KTk7GysuKzzz5j+vTp6OvrExsbS1RUFMOHD0dLSwsPDw/efPNNKioqMDExoaCggLFjx2JoaIizszPTpk2jsLAQS0tLmpqaaGpqwtHRkaCgIBwdHQHIyckhMTGRyspKdu/ejbGxMR988AFGRkYAdO7cGX9/f2JjY5/bvvDwcBITE1FVVWX8+PF4enqSn5/P5cuXsbGxoVu3bq3e7+LiQmNjI5qamiQkJHD79m1UVVWZMGEC2dnZLFu2DDs7O7y8vDAyMsLV1RU1NTUxVwH8/PzYtm0bO3fuJDc3F2tra2xtbVFVVRXXdsKECZSXl7NixQqOHz/O4cOH0dfX58aNG226f79Fv379sLGxEb8r1v5du3bh4+Mj5ouJiQlKSkps3bqV8PBwQkJCkMlkpKSk0NLSws8//4y7u7u4NvX19ezbt48TJ04gSRL9+vWjb9++ADx9+pSSkhLMzc1RU1MjOTkZPT096uvrqa+v58SJEzg7O+Pp6cn69evZvn072dnZbbLLx8eHsLAwPv/8c54+fUr37t0xMTHhzJkznD59Gnd3dwIDA9HX18fMzAwrKyvmzp2Lh4cHkiRhaWkpPktTU5OIiAhWrVqFJEnMnTuX+/fvk56ejp+fH35+fmhpaRETE8PatWvR09NDT09P7H+qqqr069eP6upqWlpauHz5Mvb29rzzzjtUVlb+S3sFwKNHj7Czs2PPnj0kJCTw9ttvY2pqCsjnU319PUlJSYSHhxMQEIC+vj75+fk0NzdjYWGBiooKTU1NqKurU1VVRUNDA+rq6tTV1bFr1y7Onj2LhYUFo0ePxtPTk+rqatTU1MTer6SkhIuLC2ZmZqiqqjJgwAAWLVqEh4cHBgYGAGI8ycnJhIWFtdnGqVOnoq2tzbVr13jnnXdYt26d2OvV1dVRUVFh8+bNFBQUsGTJErS0tABwcHAgODgYc3NzOnTogJaWFhcuXODu3buMHz8eXV1ddu7cSZcuXejfvz/GxsZUVFSQl5fHxYsXuXbtGkFBQQwbNozs7Gw2btxIfHw8lpaWYo3T0NBgzZo1qKiocPToUWxsbOjduzc//fTTc9t38+ZNfvnlF8aPH4+fnx9VVVWsWrWK9PR0xo0bx/jx4xk4cCC2trbU1tbi4eFBTEwM/v7+WFlZAWBgYCCud1VVFZ06dcLY2BgvLy/xPQMHDiQkJETsK4WFhWKPVFzL30JdXR0bGxsCAgLQ0dFBQ0OD3r17t3ou/hHa7Lyampry7NkzdHV1AbkTl5WVhbm5OSEhIYSEhLB06VJWrlzJmjVrxGZXUFCAlpYW2traqKio0NzcTFVVFc3NzWhra4vNv6SkhMePH9OxY0c8PDzIz8/HxsYGDQ0NdHR0yMvL45tvviEnJ4d33nkHJycnKisr6datG1OnTsXY2Jjbt28zePBgNDU1mTVrFnV1dc9t34ABAzh37hypqano6OhgZWWFiooKpqamqKioUF5ejoGBAXZ2dgDk5+fT0NCAp6cna9asYe7cuZw7dw5bW1uqq6uJj4/nyZMn9O3bl8WLF1NfX09dXZ2YBHv37iUjI4OpU6eKG/7111+jpKTE8ePHSUhIICQkhIaGBubNm4e2tjZ5eXmEh4dz//59PDw82noLiYuLQ0lJiYqKCvT09IiOjgZg5MiRjB07FoCkpCRyc3OpqamhqKiIhIQEevXqRbdu3YiLiyMuLg5zc3O2bNnCkSNHcHV1FZ9fUFCAubk5ixcvBuQHnqysLEaNGoWTkxMVFRVoa2tjbW3N2LFjKS8vJykpiYyMDHx9fZk7dy4lJSWcOXOGsLCw55rIv4WJiQn379/H1NSUlpYWIiIiqK6uFvPg8ePHNDc3U1tbS1xcHCdOnKC+vp7g4GCsra1RUvr/FJsHDx5w6NAhevXqRZcuXVBWVqaxsVEswPn5+VRUVGBra4uWlhaZmZlkZWXRp08fOnToQE1NjXh4L1y4QFhYGKNGjaJv377U1tZiZmbG1KlTATh58uRz21hVVYWOjg5KSkqoqqpSWFhIeXk5xsbG2Nvbo6Kiwvbt23F0dOTSpUu4uLgAcObMGcrLy5k4cSLdu3cnOzsbMzMzsRhfu3aNEydOMGbMGAICAmhqauLzzz9n48aNLFy4kHfffRcDAwOKi4uxtbVl4sSJ3L59mwMHDqChocHQoUOZP38+ZmZmlJaW8vTpU3r37s3IkSORyWRtuo/19fVkZ2fz5MkTTExMuHPnDmpqagQFBZGVlcXNmzd59uwZvr6+TJ48WTiaGzduJCIiAn19fSZMmABAz549AflG3NjYyOuvv87rr78uvuvZs2fk5eWhqalJdXU1IH8eAKqrq3n48CHa2tq4uLjw9OlTdu/eTf/+/QkJCaGkpISoqCixgbblHpaUlCBJEvb29ujp6ZGXl0dTU9PfXQdlZWWam5txd3dHW1ubK1eusGPHDjw9PXnllVfQ1NRkzZo11NbWEhISgq+vL6qqqjg7O6OlpYUkSTQ3N6OlpcXQoUPR19cnLS1NOFZNTU1kZGSgrq6OhoYG48ePZ+/evQA0NzcDkJiY2Cb7FP9WRUWFLl260KVLF6qqqigrK6OiooKzZ8+SkpIiDngtLS0oKytjYmJCbGwsp06dYtiwYUybNg2Qz92rV6+ioqKCl5cXzc3NJCYmCufJyMiIcePGiYCKYlONiIggOzsbR0dHunfvTmlpKY2NjdTU1PD48WN8fHyYNm0arq6u7Nmzp802mpubc+jQIcrLy3n48CHGxsb069cPbW1t3nnnHXR0dIiLi2Ps2LEsXLiQ4OBg8W8Va1JzczOnTp3iwIEDgPxwWlpaSkxMDLm5uWhqauLp6Ym7uztKSkrcv3+fQ4cOoaWlxfLly3F0dBQHyIEDB7Jy5UpWrlzJxo0bGT16NCkpKRQVFVFbWyue9edFbm4uGhoaXLt2jatXrzJgwADc3NwA6NOnD6ampqxdu5avv/6aRYsWYWRkRHR0ND4+Pq0cZkNDQ6qqqkhLS8PNzY2MjAz27dtHcnIyAH379kVJSYlHjx6RmppKSUkJISEhqKmp0alTJ7KysoiJicHb25v169cD8mcjLy9PBEXCw8M5d+5cq6Da80BxOJg9ezY//PADnp6eLFy4kJKSEoyNjdHU1OTChQvExMTw0ksv4erqSnNzM7GxsaiqqhIUFISlpSX19fV8/fXXXL16lYCAAIYOHSrm55gxY5g+fTrV1dUoKSkRFhZGUlISXl5eNDQ0cO3aNa5fv05JSQnPnj0jLS2Nuro6PDw80NPTo7GxkaqqKjIzM9u87+/bt4/t27eTl5eHn58f1dXVxMbGcv78eWpra+ncuTOenp7CUQ0ICCAzM1P83tLSQk5ODgCWlpY4OTmhqqpKcXExubm5Yo+2trYWAa+HDx9y6NAh3N3dmTlzJiAP4CgrK6OlpYWamhoqKioioDRw4ECKi4vF3PpnaLPzamxsTEtLC9bW1hQXF/Phhx8SERGBTCZjzpw5gPyBzM/PJzs7G29vbwDu3btHTU0N/fv3x8TEhJycHOrq6rC3txeRtZaWFoyNjQkICCA7O5utW7eyY8cOZs2axYoVKwC4fPkyu3btwsLCQkQLzp07h4aGBoGBgYD8BNu/f3/c3NyYP38+GzdufG77YmNj2bp1KwEBAQQHB6Ompoa9vT1TpkwhJiaGpUuXsnjxYrp06QLAjz/+yJEjR1i3bh1+fn4UFhYSFxfH4sWLee+99xg3bhy1tbViYQZ48uQJHTp0wMTEhIkTJ3L58mWuXbtGZWUldnZ2fPnllxgZGaGiokJRURG2tra4ubnRt29fevbsyfz582loaMDGxoaWlpa23kLOnz8PyCNi48aNE46slZWVcKDr6urIzs4mOTkZGxsb/P39hXNgb29PcXEx0dHR3L9/H6CVg9nc3Cw2LUBEBAYMGMCZM2dYuXIlAwYMwMfHh5SUFDQ0NHB0dCQ6OprDhw8zbtw4jI2NGTRoELt37+b69evC+XoebNq0SWz0LS0t9OvXDw8PDywtLVm5ciVr167lww8/ZOnSpVhYWIgDgZGREZWVlejr65OSksLFixfp2rUrU6dORV1dnWvXrmFsbIy3tzeqqqqkpqayd+9eTp48SVBQEOvXrxdRr3v37nH+/Hl0dHSYMGEC2traJCQkEB4ejp+fH8eOHWP79u1MnDiRpUuXtvkehoWF4e3tjbKyMk1NTWKjrquro6mpCX9/f1555RUMDQ0xMzMD5NFVRYTQ0tKSyMhIvvnmG/r168ewYcMA6Nq1K1999RXa2trk5+fTu3dvPvvsMyZOnMi3337L2LFjcXV15euvv+bGjRu4u7vz2muv4eHhgZqaGsbGxuL7Hj9+zPbt2xkxYgTjxo1rs42pqan07duXO3fucOTIEVRUVLC0tCQ6OpouXbowc+ZMSkpKOHnyJPPmzWPOnDmMGTMGe3t7Dh06xJEjR3Bzc8Pa2pqcnByKiopElOq3iIyMZMGCBeTl5eHp6SkyPAC1tbVIkkSnTp2wsrLCzc2Nn376CSMjI7FJf/DBB5w/f17Ms+eFi4sLDg4OfPzxx/z000+YmpoycOBAJkyY0MqBVVNTo7KykoyMDOrq6nBzc6Nr1668++67REVFERoaiq+vL6tWrSIyMpKsrCzy8vJwdXWlrq6OlpYWdHR0UFVVJSkpiY0bN1JfX8+4ceOEw62qqoqTk5P4XkNDQw4cOICWlhaGhoZUVlZibW3dpuwAyB3/32aodHV1OX78OG+99RZ2dnZ89tlndOvW7e+cqlmzZlFRUcG6desoKSnhgw8+YMSIEdjZ2WFra0tGRgaHDx/G1dWVt99+m27duvH06VP8/f0B+cFg0KBBdOrUiQ0bNhAeHs6wYcMYO3YsVVVVKCsrM2DAAJqbm8U1UDzbMTExz23ft99+y9ChQ1m9ejXq6uoYGxsD8Mknn6ClpYWDgwPbt28nJycHmUxGhw4dWv37jIwM0tPTqaysZPPmzURGRvL555+zfPlyMjMzuXTpEi0tLXTt2hV7e3saGxuxtrYmODiY4OBgnj59iqWlJc3NzTQ0NIhr+OTJE65evcrTp0/x8vLC2dmZ9PR0rly5gru7e5vuoaenJ1paWixatIhx48aJvQ8gJSWF69evU1dXR21tLRs3biQ5ORlVVVVWr17dKgMDYGRkRFlZGampqdy8eVM4RO+88w4TJ07ExsYGLy8vNmzYwIYNG6ipqWHSpEkkJSWxYsUKbGxsWL58uThYVlRUcOjQIYyNjRk/fjzjx4/HycmpTVHJ32Ly5MkUFxezb98+9u7di5OTEytWrMDDw4P+/fsDUFRUBMjXt1WrVlFaWspHH32EpaUlJSUlpKWlAVBTUwPIg1GKYJODgwOrVq1CT08PDQ0NXnnlFQwMDKiqqsLd3Z0PPvgAZWVlEeBTUVGhoKCA6OhoTExMmDlzJocPH2bWrFltCuooDp4XL15k/fr1jBs3jk8++URkUsPDw0V2Q0NDA1tb21b3+d69e5w+fZrCwkJCQkIYNWoUNjY2PH78mLt37+Ln50eXLl0IDw+npKSEiRMnUlVVxS+//MKTJ08ICQnBzMyMuLg44uPjcXFxYeDAga3GWFdXx61bt5Ak6bnmaJud14KCAmxtbQGorKzkzp07xMXFce7cOQICArC3t2f69OkMGjRIOEIA2traVFRUUFZWhpqaGmVlZRgYGAjHtbS0FE1NTbS0tIRTGhsbS3V1tUjTNTQ0sHXrViRJYurUqfTp0wcAfX39VikpU1NT3nvvPezs7P5usfhnWLhwIfHx8fj6+mJoaAjIIzA+Pj5ERUWRkJDAzZs3cXZ2RkdHh9zcXO7evUt8fDw9e/akvLyc6upqcXooLi7m7Nmz3L17l2HDhuHg4ICNjQ3FxcXo6+uLSMjBgwdZt24d2traDBw4EF9fX1JTU7l06RJmZmb4+fkB8kivsbExnp6ebb11At27d0dXV5fevXu3ukcKPHjwgF69ehEYGIi9vT36+vr4+fmRnZ0toqr6+vpUV1fj6+tLY2Mj4eHheHl54ejoKE5raWlpFBcXY25uLiLVR48e5cyZM3Tu3BkTExPCw8PR0dGha9euODg4cPbsWS5cuEBISAjW1tYMHz6crKysNtmniLJlZmZSU1NDcHCwmGdqamp4e3uLDdXR0ZE5c+bw9ddfExkZiYeHB0FBQSgpKaGrq4uzszPOzs5cvXqVyspK5s6dK75HS0sLXV1dEhMTycvLY/DgwYwYMUK89ujRIzFHFdfd2NhYpGRycnK4e/cu0dHRVFRUtMnGpqYmGhoaMDAwID8/n+joaJydnXF3d0dTUxN9fX2mTJmChYWFiJypqanh7u6OJEkie9DU1CSiRXV1dRgbGzNkyBAAYmJiUFVVxdfXlyVLllBbWyuiyNra2kRGRlJTU8OaNWuwsLAA5Au7ghakr6+PpaUlGRkZ5OXltck+xXc4ODiQlpZGdXU1RUVFPH78GCUlJWxtbfHx8QHkz8TPP/9MWFgYU6ZMYcCAASJToKysTFRUFCkpKZibm9OtWzf09fVFiry8vJyPP/6Ye/fuAbTKgNTW1orDjKOjI46Ojvj4+JCRkcGDBw9oamrCxcUFLy8vrl27Rm5ubpuc14KCAvr164e3tzfXr18nPz8fQGSTsrOzMTU1pbKyksjISFpaWujevbtwRGfOnElFRQWrV69myZIlvPXWW/Tq1Ytt27ZhbW2Nu7u7mOeKTMGTJ09ISkrC0NAQAwMDdHV1yc3NFalKT09PcnJyiI2NFZmyvLw88vLyxOG7LVBswpWVlWI9dXFxISAgAFVVVZSVlQW1oba2lpKSEvT09Bg8eDCNjY0sWrSIffv2ERQURO/evUUwBORRt/j4eOzs7LCxsUFZWZlbt27x5MkT0tLSmDBhAm5ubqirq5OWlkZqairq6uooKytz8+ZN6urqmDFjBqqqqkiSxNOnT0Wq+Hnx448/EhERwaeffoqTkxPnzp2jsLCQGTNmiPd4eHhQXV3NqVOn6NKlC/b29tTU1HD27FmRBh48eDCBgYG0tLRQXV1NSUkJdnZ2zJ49u9X3xcTEkJiYiImJCX369BEBG0BkjBITEykvL8fT01MEEEC+XpWXl7eZvqPYWxUZF0VkDeTPe319PX5+fhgaGgr6QEFBAUePHsXd3R1jY2OePn2KiooKnp6eeHp6kpaWxv3792loaKBv3774+/sTFxdHaWkpnp6eBAUF8e2334qo7JUrV8jOzsbIyIjy8nIeP36Mh4eHcPAqKioEra+tKXWQZ16MjY0JDg7GxMSE999/n0uXLhEVFYWbmxsffPCBiAI3NDSQl5dHdXU1qqqqNDU1CUe1qqqKbt260dDQwOXLlzE1NUVdXV3QJoqKilrt37du3eL27dv4+fnRo0cPevToQWFhISUlJa0cuP3795OcnExzczPXrl3jxo0bvPTSS89t35AhQwgMDCQ1NZXKykqMjIwwMzMjMjKSpqYmLCws0NXVJTo6mrS0NPr27YurqysJCQlcvXpV7IX29vZiPqioqJCens727dspKyuje/fuuLu7k5KSgqqqKmVlZTx69Ij8/HxxKG5sbGT79u24u7vTvXt3DAwMxAFbU1MTd3d3wsPDefjw4T+1qc3Oa2RkJPX19Tg7O2NkZMSECROoqqoiNTWVqKgovLy8hPOg2DRBvnErJlh9fT329vYidZ6VlYWKigpGRkakpKRw7tw5srOzCQkJ4fz586SlpfH5559TWFgIwNixY0UYGmDw4MGtHlJHR0dsbW3/pcU2Pj4eoFXaQUVFBQcHBxwcHGhsbGT16tXs2rWLhQsXCudY8f0uLi4YGRmho6NDbGws48ePJzc3lwULFhASEgKAlZUV2traFBYWCt7StGnTqK+vZ/Xq1ezYsYOgoCAGDRpEXl4eqqqqIto5ffp0iouLuXDhAtbW1m22D2DFihVkZmb+bvro9OnTXLx4kTFjxvzuySg3N1ccOjw9PRk7dixJSUl88803PH78mE2bNgnnLCwsTJwwdXV1uX79Ovfu3UNJSQkNDQ2UlJQYMWKEOMm6uLgwderUVvfS29ubFStW8Omnnz63fdnZ2Rw/fpxjx46hqanJ9OnT6dChA8+ePcPf35833nijFZUkISGB/fv3o6GhQceOHbG1tcXJyQknJye+/fZbpkyZgrGxMW+99Var77GysuKVV16hrq6OqKgobt++TVNTE7q6uiI65u3tjba2Ni0tLYwYMUJs1tbW1lhYWJCens6OHTu4e/euiBo9D3r06IGBgQHq6uqoqanx1ltvYW9vz9mzZ5EkiatXr2JoaIiLi0urDfnRo0ckJycTFBREp06dWLlyJV988QUTJkzAxsaGN954g44dO4po35IlSwD5oc7Pz4+WlhYaGxtZunQp/fr1o7m5GXV1dUpLS0lJScHY2FhEsjw9PXn//fdJTEwkLi7uuW1ToF+/foA8nWhkZMSOHTu4ffs27u7uraKnvr6+/PDDDyL9bGBggEwmo2/fviQlJbFz5040NDR48803MTQ0pLm5WdCU9PX1RfZiwYIFvPPOO+JztbS00NTUpKGhgcbGRsEdTUtL4+LFi0ybNo0+ffrw9ddf07t3bwoLC0Um4nkQERHBpEmTePvttxk8eLBw7gBu3LhBWFgY06dPx9TUlKioKIyMjBgxYkSrz3BxccHJyUmMTfF8du/evVXEs7i4mKdPn6Kvry+uh2KNe/bsGcuWLWPAgAGsW7eOq1evMnPmTJEJq6qqwt7eHldXV5F9eV40NjZSWFgo1nqQp/N/+uknzpw5w/3797Gzs8PR0ZHHjx+Tk5NDly5d0NfXp2fPnnz//fcoKSm14tWBfH1++eWX2b59O/PmzcPOzg4/Pz8qKys5deoUVVVVWFpa4u3tzbx584iIiODChQv07NmTd955h927d/P999+jr6/P7NmzUVJSwsTEhNra2jbZ5+Pjw3fffUd5eTl+fn6EhoZiamrKgAEDRJBn6NCh6OrqMmrUKAYPHsyePXs4efIk7733HoBIO8tkMmJjY3nllVc4cuQImzZtEnuG4lqmpaWxadMmYmNjef/99/nggw/E3xVBofT0dGxsbLC3t2+VserYsSOdO3ducw2BAt999x3Hjh1j165dIhjRqVMnunbtSn19PQYGBqiqqtKrVy/27NlDbm4u27ZtQ1dXl5KSEmxtbbGzs8PMzIzExETS0tJE1HjNmjWEh4fTo0cPTpw4gZ2dHcHBwXTu3Fk8n7a2tnz77bd07tyZffv2ERERQXBwMDNmzEBZWVnMMYUj2RaEh4cLipGnpycymYzMzEwSExMpKSlBTU0NCwsLzMzMhPPu4eHBhg0bqKurE8+ug4MDgwcPJjU1lSNHjvDdd98BsHz5cj755BPOnTvH7du36dSpE0+fPmXatGmCy+3m5kZDQwMbNmwgNTWVcePGMXjwYIyMjJg2bRo7duxg7NixODg4sGDBArFvPg+WLFlCS0sL+fn5orbm1KlTrFu3jsDAQD777DMAzMzMePDgAd26daO5uZl169Zx7NgxQkNDeeWVV1p9piJoEh0dLdYFxSEf5MFNAAsLCxHQkiSJ+Ph4VFRURIarsbGRiooKweW9du0aK1asYP78+f+jTW12Xp8+fcq3337L5MmTmTt3LitWrKCiooKff/6ZvLw86uvruXr1KpGRkaIIQcFrVfBkf4uWlhaamprEzY+MjOTYsWN07dqV3r17k5ycTExMDN26dRNRE0tLSy5dukRoaCh+fn707duXmJgY7t69i6enJ4MGDWoViW0LxowZg6OjI8HBwWRmZnL06FGSk5Pp2LEjurq6FBQUoK+vz5gxY+QX8NdI1NKlS8nOzmbQoEFYWlqKE+jgwYOxtLRk3Lhx6Ovrc+XKFa5du4aFhQXDhw8X9IusrCz69++Pnp4eU6ZM4erVq8THxzNq1CgGDBhA586daW5uplOnTjQ2NgoS/J07d9pso7q6OhMmTODq1at899139O/fn/79+1NUVCQ4vJcuXaKoqAhXV1fs7e0xNTXF2dmZu3fvsmbNGjw8PBg1apRwdEDO/fLw8CAvL4+FCxdiZmbGl19+SYcOHUhNTaWiogI/Pz9qa2spLCwkIyNDfLbiWipSIUVFRWzevJnHjx/j6+vbJvsUHMw7d+4QFBSEuro69+7dY926dSgrK7Nq1SomTpwIwLlz5zh9+jReXl7k5uYSHR0tUtyJiYl8++23ZGRkoKysTHZ2tli4e/TogbKyMmVlZYSEhNCvXz8R0dDR0cHJyQkLCwvhOCoKloqLi4UjYGFhwc2bN0lNTRUHs+eFqampePhNTExEKnX9+vWUlpZy/vx5unbtipubG42NjVRWVpKcnExqaio1NTUoKyvj4uKCuro6SkpKZGVl0djYSK9evVBTU+P27dvs3LmTw4cPo66ujqmpKTY2NuK5am5uFs4lwMcff8ypU6dYtGiRiFw2NDSgp6eHra0td+/ebZN9Cht/y5n86KOPiIuLw8XFBVtbW+rq6vjggw8oLS3liy++wMbGhmfPnqGhoYGfnx8xMTF8+eWXHDlyBJBv3k5OToKr1qNHD/T09Hj//fcZOHAgS5cuRUVFhbCwMMrLyxk0aBBqampoaGgQGxtLVlYWKSkp1NbWMn36dDw9PSkqKuLGjRtoaGgQEhLSJufVxcWF3NxcrKysRESxsbGRpKQkvvjiCyIiIgQVwd/fn61bt5KVlcWQIUPEwVIR2Xd1dSUnJ4ft27dTVVXF2LFjaW5u5uzZs3Tq1AlnZ2fKyspobGz8OwfU2dmZvn37imfz9OnTtLS0oKury8yZM8nLy+P+/fvEx8e32XlNSkoiMzNTHOoB7t69S2JiIoaGhgwZMoTa2loOHDjAkydPcHBwEIdqIyMjBg8eLKLGCsTFxdHS0oKnpycjRoygoKAAXV1dunTpgrq6Oo2NjaSnp2NpaYmSkhKBgYGEhISQlJREcXExWlpazJ8/n8uXL7N69Wq0tbWZPHkyfn5+f1dQ8s8QGhqKnZ0dGzdu5PTp09jb27Ns2TLhuN67d4+SkhJu3bolUuKqqqoYGBjQr18/bG1tmTZtmojEeXl58dZbb/Huu+8ik8lYvHgxb7zxBioqKqiqqmJlZcXQoUOxtLSkvLycTZs2kZKSgqGhIYsXL8bExIQhQ4Zw7tw5wsPD8fX1FYc6xfVvK3bu3En37t2xt7enb9++rYJCZmZmrWoEACZMmEDv3r0pKCjg0qVLnDhxgs6dOzNixAhKS0tZunQp+/fvx9LSkqlTp1JWVsbOnTsB+UEqOTmZXr168frrr2NtbU1zczMDBgxg2LBh9O3bl+joaHbt2oWpqSkBAQGCV1taWkpDQ4PIArUF9+7dY/jw4bS0tFBSUsKoUaMwNTXlyJEjjBo1ChUVFVxdXcnLy8PMzEzsU4oDooInr66uTteuXdHS0sLOzo4+ffoIxzctLU1QjwwNDbG0tBT0RldXV86dO8fmzZtJSkrC2NiYX375hYyMDCZOnIiDgwOjRo0iLCyMTp06MWnSJFauXPnc9in2od9Gzbt06cKIESNaHQxNTEwICQnB1NSUpqYmnJycmDlzJi+//DIAGzZsoKKigk6dOnHp0iUOHz4sDkknTpwgMzMTTU1NJk+eTJ8+fVi3bl2rbElcXBz29vYEBwcLn09DQwMbGxvKysr46aefePLkCZMmTfqnNrXZea2srOTWrVutIh+2trbk5ubS0NCAhoYGP//8M/v378fT0xNXV1du3bqFqamp4L+Ul5ejqqoqokYODg4oKSlRWlpKfHw8WVlZODs7k5eXR05ODm5ubqxduxZPT0+ampq4ceMGJ06c4OTJk6SkpIjK/gMHDuDl5YWKigpjxoxBV1e3zSmS48ePA/Io47Fjx9i8eTPPnj3D1dWVjIwMmpqaWLdunVicNDU1MTAwoKysjO+//54PPvgAe3t70tLS8PHxETzg8vJyrl+/zrfffsvly5fx8fHBwcFBpJq2bt3KlClTmDt3Lp9//jkffvgh+fn56OrqsnDhQkCeJtu4caNYYB8+fEhxcXFbbyFXr17Fy8uLvXv3smfPHnFfUlNTMTc3Z9iwYfz000/8+OOP9O7dm4kTJzJixAjU1dWxtrZm7969ZGVlsXz5cpycnPD396dbt268+uqrABw4cIDIyEhkMlmrNKquri6zZs1CRUWFW7dusXfvXqZNmyY2xNzcXCwsLFBWViYuLo5du3aRmZnJ6dOnmTVr1nPb5+bmxpAhQ+jZsydjx44lMDCQ2NhYvv/+e+Lj45k5cybOzs7o6enx2WefYWRkxOrVqzl+/DjXr18nNjaWlpYWvvjiC5KSktDU1MTGxoawsDBUVVWZMmUKBgYGJCQk8PDhQ1HIBrTi+gIiYidJErGxseTl5aGtrY29vT3V1dVUVlairKws5tPzIiMjQxQp6Orq8umnnxIZGSmeDWVlZQYNGkRjYyMHDx7k9u3bgkdsaWlJVlYWERERdO/eHW1tbXR0dBgwYIBwThMTE9m9ezeSJFFXV8eGDRu4e/cu27ZtQ1VVVVQyjxo1CpAv4vHx8b9b1FNZWdmq4r0tUFFRISMjg/LychwcHAgICKChoUFc29u3b1NUVERdXR0FBQX8+OOPDBw4EEdHR7Zs2cLhw4dF9PTIkSMMGjQIf39/ysrKOHv2LMOHD8fPzw83NzeUlZVJSUkRPELFmLOysjh58iShoaHk5uYyevRoli9fjqurK9988w2LFy9mxowZfxcV/WeYN28eJSUl5ObmYmhoiJaWFo2NjTx+/Jjy8nL09fV5/PgxwcHBGBsbk5KSwvHjx9HT0xPOq6L40MXFRRR9PHv2jAULFtDc3MzNmzcpLS3F2dkZDw8PCgsLaWpqEqlyBYVkzZo1wl5FpmTt2rXMmzcPkDtp/4raQHp6OtXV1TQ2NorXTp06xapVq5g3bx5jx47l/v373L59WxRUKQ6zlZWVIrpkbm6Ojo4O5eXlHD9+nJKSEhYtWkTv3r3p3bu3+OySkhJaWlpISUlBR0dHPI+dO3fGw8OD9PR0iouLcXJy4vTp0/Tp04cPPvgAb29vPDw8/o6j+Tx4//33iY2N5dy5c3z33XciWhobG0tMTAzbt28nMzOTUaNGMWzYMFRVVRk6dChDhw4VnyFJkkiLT506FS8vL4KDgzl69Chz585FR0eH0tJSXF1dBYXs0qVLLFmyhPj4eDw8PBg2bJjIeqakpBAZGUn//v1paGgQhVCKKHpbEBcXh5mZmahb+C0VT+G41tfXo6SkhLq6uuA5W1paYm5uzrVr12hoaMDExIS7d++yf/9+QB6ldHd3p7i4mM6dO1NcXMyUKVOwt7cXagOK9VOxb4B8n2psbCQ3N5ewsDAcHR1JT0/n/Pnz2NjYMH78+DbfQ2VlZUEnio+Pp7a2VswtBZVDXV1dHBabmprE2BSRQ4U/k5GRgY+PD4MGDWL06NHiGkZERODi4iIohfX19SxevBgfHx9qamrYvn07586dw83NDSMjI1GEmJmZib6+PiYmJuzYsaPNtoE8kKCmpoaSkhI1NTXU1dXh6OgoqBkbNmygtLSUbt26CbUOVVVVli9fLrJUJ06cEEoYXl5eREdHo6mpyfvvv8/QoUM5f/48X331lagTGjJkCEuXLqWmpkYURxYVFeHm5oaBgYGgbin8mZMnT7JgwQJef/11QkND/2mBb5udV2VlZTZt2tTKW1fQAxTh+oULF+Lo6EhgYCC3b99m8+bNvPTSS7i5ubFp0yY2bNiAk5MT8+bNY8aMGaioqFBfX8/t27d58uQJVVVV3LlzBxUVFeGIenp6UlJSwrFjx7CxseGtt94iMDAQU1NTUUCjcAby8/PFYvmvRHxATh/Izs5m4cKFVFRUkJCQQFBQkEjf79+/n1GjRjFo0CC+++47JEkiLS2NzZs3Y2VlxcqVK/Hx8SEhIYEnT55w/fp1Ll26hJWVFe+//z4ZGRls27aN6OhoMjIyuHXrlvhvzJgxzJo1i127dolrW1ZWxvbt2xkzZgwuLi4UFBRgbGxM165duXz5cpts09LS4t133+Xnn3/G0tJSnFyLi4upq6ujb9++ODs788MPP3D58mVaWlrw9fXFwcEBbW1ttLS0qK2tZfXq1SxYsACZTIanpyePHz9m6tSpFBUV8d1337Wqqm1qaiIhIQE3Nze8vLzIyckhMjJSPBh1dXXs27eP69evo6Ojg6urqyjaUBT4PS98fHwEH1IBhbN+9uxZMjIy2Lt3L5GRkYSHhzN37lwRzUtLS+Orr76ib9++qKmpERAQQGpqKjExMXh6ejJjxgyRXrK1tUVJSUk4kY8ePUJLS6vVwU5NTY24uDiSkpJE1ERbWxuQF7nl5ORw+vRplJWV27RxZmZmiu9tamqiS5cudO/enc6dO5OYmEhubi79+/fHwcGBZcuWkZmZyc6dOxk3bhwFBQWUlpby/vvvk5uby1tvvUV0dDT79u3jo48+4qOPPsLNzU3wuxR4+vQpe/bsoUuXLjx79ozt27dz8eJFVq1axeLFizEwMKClpYXi4mJMTEzEoqSjo0OfPn3aJCMF8sLC3r17c+rUKXbs2IGtrS2mpqaUlpYydOhQBg4cyEcffYSVlRXOzs4cO3aMnTt3YmhoiL+/P126dGHx4sWMHTuWp0+fClk6JSUlxo0bJygh/v7+ODs7c/PmTbS0tHj//fdF0VltbS2XLl1i165d5ObmApCXl0daWhqurq5069aNHj160Llz5zbZBvK11NTUFJlMRnx8PF9//TX+/v64u7uzbt066uvrOXPmDN7e3piYmAhptUWLFgFyis/rr79OdXU1ly9fxtfXVxTiFRUV4eHhwYgRI4iIiODIkSN/J0FTX1/PjRs3aGxsbOV4L168WBTpKPjL8+fPp0ePHuzatatNNlpbW2NmZtZKIm/MmDFIksSzZ8+YP38+Hh4eTJo0SRykADZv3kx8fDyTJ0+mZ8+exMTEEBMTQ3R0tKg5+FsVmfr6er755hsuXrwo1pUDBw4wcuRIUal96tQpZDIZBw8exMbGho0bN4rizSVLlrRas54Hy5YtQ01NDR8fHz766CM8PDxITU1lyZIlaGtrM3v2bD766CP27t3LnTt3sLS0bJVJ2rZtG9XV1Xh6erJ3715Roe3l5cXKlStJSUkhOTkZFRUVcnJy8PT0FBFUY2NjBgwYwIgRI4Sk4+eff87du3dJSUlhwoQJDBw4EHV1dR49esSnn35KeHg406dPb5ONH3zwAZIk8e2335KZmcmqVav+7j2ff/45KioqfPrpp0K2bcqUKUyePJlBgwbxzTffMGXKFAICAjh+/Dju7u5ERkayZ88ezM3N+eqrrzAyMqKpqakVZU/hIP42IDBy5EiUlJQ4ceIER44cISIigsrKSh48eCCUGNoKBWVLT0+PzMxMYmNjBWUqPDycd955hwkTJvDmm28C8sKnM2fOYGpqyqRJk3B2dubo0aPs378fa2trIWPZ2NjIrVu3KCoqQl1dnbNnz7Jy5UpUVVXFwSogIAAvLy+CgoLQ0NAgIyODS5cuAdC/f3/Mzc25evUqubm59OvX71+qd/mtDOmOHTvYu3cv06dP59NPPyU+Pp6lS5diY2MjaH5mZmZ4eHiIiO2VK1coKytjx44dxMbGcvnyZcaMGcPLL78sDtJz585FRUWF/Px8cUB6/PgxmzdvpqKiQrw3IiKC5cuXc+/ePZYuXUqPHj0ENWTJkiVMmTLluWxqs/PatWtXIaekQP/+/fH29iYyMpKYmBghOwGIB9bMzIzi4mISExMpLCyksLCQKVOmiEkZHx/P8ePHuXHjBvn5+WKjeOmll0TIOjo6moiICMzMzHjttdda8dO8vLzo2rUrt2/fxsTEBG1tbWpra3n27FlbTaS8vJySkhJ69OghUqN3794V0eWHDx+SmZlJQ0MD1tbW4mLX19dz5coVTE1NhaTU22+/LXh2mZmZ+Pv7M3/+fM6dO8enn35KVFQU9vb22NnZkZmZydmzZ7G3txeLb1xcHJGRkVy5coVDhw7R3NzMlClTqKmpoaqqqlVE43nRvXt3bt68SUhICFOmTMHKykoUo1lYWIj/Fi9ezPbt26mtraW8vJzs7GxWrlxJSUkJqqqquLu706VLF/EwPX36lFu3bjFhwgRmz57No0eP2Lp1K+PHj8fZ2RkvLy/S09NRV1fHyMgINzc3EeVSRMfOnTsHyKU6bt++LeZHW2SWoqKihDafsrIyOjo6okp3+fLl1NfXM2zYMO7evUufPn0YNGgQp0+fZt++fZSVlZGVlUVhYaGQYSkoKADkPFNFwVZ4eDgmJiYisnz+/HkePXqEt7c3dnZ21NTU0NzcjJmZGUZGRjQ2NtLU1CSisCCPWtTW1pKVldXmBUkhP2ZiYkJDQwP19fVYWVkxePBgPvzwQ/bt24eZmZkoguzZs6egQxQUFJCQkMC9e/eorKykpaWF+vp6Nm/eTFlZmeBZKuaWQiZMX18fDQ0Nnjx5wrNnz0hPT0dJSYl79+7Rr18/5syZw/79+3nzzTcJDAxk3LhxmJubt6IbtAW6urq0tLRQVVXFw4cPBYlfoRgQGBiIn5+fSBNGRETw7Nkz8vPzUVZWZuHChSQnJ2NiYkK3bt3w9PQkKiqKS5cuMWjQIEAuv/TkyRM6derE8ePH0dXVZfDgwfTu3Zu0tLRWVdxOTk7069cPc3NzEhISsLS0xNramg8//JCGhgbCw8PbbKPiXirkgRROt7W1NeHh4dTW1vLo0SMAJk6cyCeffALIHdcFCxYIXdKIiAgMDAzo1asXJiYmYv3o27cvNTU1JCUlCT6nQhtXT0+PsrIy8vLyyMrKQltbW0iP+fr6cvHiRb799lv69euHl5fXv+S8enl5CS5iZmYmkiTh7++Pv78/y5YtY+3atbz++utMnz6dlJQUPD09UVJS4qeffiI8PJwRI0agoaHBmTNnePjwoSjmUcjgKZ5TW1tbSktLuXnz5t8FLJ48eYK/vz8uLi5kZmZy6NAhSkpKWLduHSEhIdTV1XHhwgVBmWoLjh49yrNnz5g+fTrLli0D4Pr169y8eZOgoCAGDx4MyA9wo0aNYs+ePYSEhNC9e3euXbvGtWvXkCSJyspKqqqqqKio4Ntvv2X48OFoa2vj4eFBcXExSkpKGBsbizR1U1MTGhoazJ07V6wdly9f5sGDB4SFhaGuro69vb04VCUlJYliWxcXlzYdJE1NTWloaKCqqop79+7x888/8/LLLwtH58mTJ6xfv57a2loCAgJ48uQJZ86coVOnTkyePJkRI0Zw5MgRoqKi8PT0FJS72NhYrl27xrBhw0QGJyEhgeLiYjFnVFVVSUtLEz6Duro6vXv3Zty4cdjb2/Puu++ydetWoRTx4MEDVq1a1UoG73mgeN7y8/OpqqpCkiTu3r2Lrq4uGzduJC4urhXnMzk5WWi229vbc/r0aVauXElVVRVBQUEiIBQREcGrr76Knp4eL7/8MtHR0Zw6dQqQO8p1dXXk5eXRvXt3Fi9ezLNnz0R0V8EVLSgooLm5mZKSEq5cuUJ9fX2bqXRlZWVCW7e0tJSsrCzhYykCMCNGjKBfv35kZ2fT0NCAjo4OLS0t7Nu3j19++YWAgABCQkLQ09OjtrZWROILCwtJSEjA2NhYZJpB/ryfOXNG8H7nz58v1Gvq6up48OABjY2N1NfXExERgZeXl6hlUhSv/k9os/OqWPR/C19fXz7//HPef/99Jk6cyE8//SQEhv38/Ojfvz8tLS3U1NSwbNkyevfuzbNnz1pJMURFRXHv3r1Wg9bV1eWll14S7xs4cCDW1ta89957vPvuu/z0008i1VVfX4+bm5vQY1UUkdjb2xMVFfXc9j19+pR79+7RoUOHVgU0qqqqfP/999y7d49PP/1URD9+i4qKCn744QcRFVi7di23b99m/fr1DB8+nE2bNvHkyRMOHDhAfn4+5ubmFBQUkJubi52dHTNmzMDMzIxLly7xyy+/APLK/xkzZtDc3CycPAsLCzQ0NFi/fj3nzp37O+mffwZjY2PefvttXF1dMTAw4Pr16xw/flzISylQXFxMfX09dnZ2mJubc+LECbZs2QLAsGHD+PTTT+nRowcgX3SUlJTYsWOHWEQUFZtlZWV88803jBkzhjVr1vDpp58yY8YM3N3dOXToEDk5OUyaNIkxY8awatWqVpqs/woUh6vm5mZRIZ6fn09GRgazZs2iT58+YmGfPHkyJiYmHDhwQEjkzJkzBysrK7744gvhHHh6ehIYGEhtbS3ffvstGzZsYPbs2SxZsoTw8HDCw8Pp2rUrrq6uJCUlce/ePdTU1ISkyPjx49m5cyeXL19m9OjRYvGxt7dn1qxZBAYG8uDBg+e2UUdHh4sXL9KxY0e6du3aiqs3cOBAioqKiIyMRFtbm+nTp4tIdFFREbt27WL37t106NCBCRMmUFZWRlBQEGVlZWLBvHHjBpIk0bt3bw4cOCDoA8bGxvz000+kpqbSs2dPunbtSmxsLJ07d8bMzIzs7Gz279/P/v37iYiI4OuvvxZaz22FIh3cv39/3njjDVHcM2XKFEaOHElhYSFbt24lLy8PHx8fqqur8fDwaKW3mpWVxZo1a+jTpw/+/v4kJyezefNm+vbtS2NjI126dBHyZnp6elRWVjJt2jRUVVVxcHDg008/ZcyYMaipqZGTk8PAgQPp1q0bCQkJHDx4EG1tbXr27MnNmzeZM2eO0Ox9Hly5coWBAwfyxhtv4O/v30r54/vvv2fbtm0sW7YMPz8/lixZIlQ3CgoKePXVVyksLMTf359Vq1ZRWVlJaGgoPXv2ZMGCBa3kvvr06YOfnx8mJiaEhYWxevVqBg0axKJFi/Dz8xM6xTt37uSLL77g448/5pVXXhFRyNTUVIyNjf+lA4jCCTl37hx3796lX79+IiqjpqaGpqYm1tbWnD17lo8//lhEgxQRYm1tbbKzszl8+DAeHh589dVXgDyQUVVVxdOnT0UBnkIzuaCgQBTewv/Pvk2ZMgV3d3e+//57Ll++zOTJk9mxYweTJk1i4sSJFBYWtvkAsnTpUtasWUN0dDQHDhxg8uTJTJo0CRsbm1YRRHd3d9544w0iIyP56quvsLS0pEePHqxatYrk5GROnTpFYGAgc+fO5fjx44wePRpVVVWGDx/OpEmT6N+/f6t53dzcTOfOnamsrCQiIkLQag4ePEh4eDhvvvkmp06dYty4cZiZmVFWVsZLL73ExIkTsbW1bVMw4PDhw5ibm/PBBx/Qt29fPvroI06dOsXu3buxs7Pj8uXLIkP46quv0qdPH1auXCloZHp6enz99deoqKjw4MEDXnrpJWpra0lPT8fAwKDVnqOtrc3Vq1dJTU1l0KBBqKurc/XqVfbs2cPNmzdRVlbmiy++4P3336d79+506dKFq1ev4urqyvr16zl58qQ44LUFCQkJfPnll6iqqvLee+8xfvx4rly5wqpVq9DQ0OCnn35qVTwXFBREr1696NGjBw0NDXzyySc8e/aMM2fOMHDgQOrq6tDU1MTZ2RkzMzOioqLYvHkzbm5uYk8wMDDAxMREyGAqoNhzlixZgrKyMmfPnmXMmDGMHj2a7OzsVqL/z4utW7cKneBXX31VqAmAPBPi5OSEu7s7GhoaODs7C8m36OhooqKiRFMPRc3HkCFDUFZW5uLFi1y+fJk9e/agpqbG3r17GTBgACB3ijt06EC3bt2oqakRBZE6Ojq4u7uL7PSzZ8+oqalplZ35LTf3H6HtVwFExVpZWRnHjh2jvr6ebt268e6773L27Fl2795NbW2tcBLS09MpLS0VaVFPT0+++OILTp8+LRae9PR0dHV1mTRpEra2tpw9exZAVNTHxcWJoqE+ffpw9uxZvvrqK8aPH4+Li4uINCjSfSDf4NtakR8aGsrly5cZNGgQHh4e6Ovrc+HCBdauXUt8fDwDBw7E0tKSuLg4VFRU0NXVxdzcnPLycrKysigvLycnJ4f4+Hhu3LhBS0sLBgYGWFhYYGNjw/Xr1zlw4ADV1dXU1tYKKaOysjKSk5PFibpr167U1taSnJxMWVkZDg4ODBo0iB49eohqUTc3t+eSlPhbFBQUoK6uLmS+rl69ioaGhhClP3z4ML6+vlRVVTFr1iyCg4OxtLRk2rRpHDx4kOvXr1NfXy82mJycHB4+fIi7u7twys6cOYOuri5BQUEkJiaKdPPPP/9MdHQ0HTt2pGfPnqioqLBhwwaSk5MZN24cV65c4eTJkzQ1NXH9+nVUVVWFjNHzQsGjiomJIS8vj4cPH1JfX48kSdy7d4/+/fvz0ksv0atXL+7evcu9e/fw9PQU1bI+Pj7U1tbi4+ODnZ0dPj4+ovvUunXruH//PkZGRsTFxfHZZ5/R2NjI0KFDGTt2LA0NDezfv5+amho6dOggonqNjY3i1PtbDU9FpLZnz55tcl41NTXp3LkzOjo6ItVaUFDA+fPn6dKlCxMnTmTNmjUkJSWxZs0aEZ3ZvXs327dvp6KiAjs7OxwcHMjKysLS0pJOnTrxySefYGRkhKqqKi+99BJvv/22cFoUcjKDBg0iPT2dgoIC7ty5Q0pKCllZWbzxxht4eXnRvXt3UlNTcXR0xNjYGEmSuHnzZpvuIcgL73x8fIQubUpKSqsKanNzc5qbm0W3u+HDh2NmZkZLSwuZmZnY2dmJKMGRI0dIS0vDxMSEzp07c/PmTZKSkrCwsGD27Nl06dKF0tJSHj58iJGREbdv36agoICsrCwRGdqyZQthYWH07NkTHx8f9u7dS2pqKkOGDMHNzU1U1D4v1NXVaW5uFvJBCjx9+pSUlBS8vb1F45WKigrq6uoIDw/nxx9/FAV+48ePp1+/fqSkpIhGCb/tAhgdHY2FhYWIBJWXl1NTU0NhYSGNjY2t+IsqKiqkpaXx7rvvoqqqyrRp0wgODqa4uLjNnQp/i7q6On744QcSExNFoeSFCxe4evUq/v7+2NraUlhYSENDg5C5Cg4Oxt7enm7duvH48WMSExNJTk7m4sWLBAcH4+PjQ1xcHJmZmeKadejQAVdXV7p06UJqaiqSJKGurk5FRQV3797F0tKSfv36sWTJEq5fv06nTp2EI33t2jXu3bvX5hoCJycnlixZgo6ODioqKpw+fZqRI0cKubnDhw9jZWVF7969+fzzz7l8+TIXLlygsbFRaNampqZSUFAgJIMiIiJobGwU/OdLly5RW1uLo6Mj6urqaGpq4urqioaGhugoFxMTw+zZs1FXVycoKIiQkBASEhKwsbFBRUWFqqoqtLW1UVVVbbODrqSkhLa2NiYmJowaNYqtW7dSVFQkCuv8/PxYvny5kL6aMmUKY8aMITk5me+++w5DQ0NRt6HoyPhbZGRkkJqaipOTE9bW1hw+fJj8/Hw++eQTnJycyMnJwcTEBB8fH1RUVNDR0RGpfUXB8vDhw+natSt1dXUie9cW3Lx5ExcXF5ydnRkwYACGhoZ0794dCwsLRo0aRUhICImJiRw7doxhw4aJGoe8vDx++OEHvL29kclkIkhQU1NDeHg4paWlzJgxA11dXa5du0Z2djZjx45l3LhxDBgwAGVlZcHdLSgoIDMzkzfeeAMlJSWqq6tFgTjIueiKA25bpRUfPnxIQ0MDnTp1EsHAY8eOcfLkSebPn0+XLl24du0aGRkZTJ8+naamJs6dO4e2tjbjx49n9+7dXL16FUA0B3F3d6epqUk0kjIxMWHnzp3cv3+fkSNH0rFjRwYMGCAKzN3c3Lhw4QIXLlxg7NixIsiUmZmJu7s7NTU1bNq0ic6dO/9ukPRv0WbnNS8vD2dnZ9GW77PPPkNVVZWvv/6a6dOnM2bMGBYvXsy2bdtwd3dHXV2dw4cPY2NjI5zXiIgILl++TFJSEsnJyXTq1ImGhgYCAgIYN24cLi4u1NTUcO/ePVFwpZg43bt3Z8GCBQwaNEhosio6wfy2EYDCCWwrOX3Hjh1UVFTQ1NRE//79GTlyJCUlJVy+fJm5c+fyww8/iOKqKVOmMHPmTDQ0NDA3Nyc5OZnVq1eTl5eHt7c3lpaWZGZmEhoays2bNwURXFVVladPn6Kuro6/vz/6+vqcOXOGw4cPo6GhwWuvvUZISAhhYWHk5+dTVlaGlZUVtra2raKsQ4cOJTg4WPBwnhfFxcWkpqYKHVZTU1NefvllfH19OXr0KFu3bsXd3Z1Zs2YRGhoqoji6urrs3r2bMWPGcO/ePc6dO8ecOXMwNTUlMDBQqEmkp6djZWXFN998Q0VFBQsWLBBdgBQRVUWka/To0YSHh/PRRx/R3NzMihUr8Pf3Jzo6mitXrogig7YIMitSK1u2bGHr1q0iKlFTU0NsbCx3797liy++wNjYmFWrVqGurs7atWsxNjYmOTlZkM43btyIs7MzOTk5fPvtt5w5cwZDQ0PGjh3L+PHj2bZtGxcuXGDu3Llis4qNjUVdXZ2+fftib29PWFgYly9fxsTEBBMTE4yMjITMjGLjdXNza/NpuqioiJ49e7b6dwkJCRw4cABlZWWmTZuGnZ0diYmJraglkiSJKn41NTUePnzI6NGjeeutt1pJ6AQHBzNo0CDhtERFRVFWVoaxsTEdO3Zk+fLlvP7668IpjY2NJTo6mj59+nDjxg0RpQW5E6pY+NqCH3/8UWRwrK2tMTc3/zt5t3fffVdIr9XW1mJjY0NSUhIPHz5ERUWFHj16CG72zz//zJYtW1i4cCETJ04kKSmJ/Px8ESXx8/Nj0qRJDB8+nC1bthAaGiq4WPr6+jx69Ihr165hYmLCK6+8wsCBA3nw4AHKysqMHTuW4OBgPvroo+e2T5EerKysFPrWaWlpnD9/nv79+zN48GBxDT/88EMqKiq4efOmOLAqqp8PHz5M165d+fDDD1s1LXn8+LFI9ymcVy8vLz766CP09fWpqakRmrEgl/4ZNGgQly5d4p133sHGxkY0lfnfZEI0NTXR09MT3ekkSeKXX34hPz+fESNG4OHhgZKSElVVVdTW1pKUlESfPn2YOnWqkINTNA+YNGkS+/fvZ8SIEZSUlFBVVYWWlhb37t3j6tWrZGRk8PjxYyRJEo6OkpKSKPRydnbmiy++QFtbm/r6etTV1fnpp59YvHgxRUVFDBky5He1r/8RkpOT6devH127dqW0tJSdO3dy/Phxxo4dy40bNzh+/Lhw2EFOh+rTpw8aGhrU1NQICa+kpCQSEhJobGwUjpqhoSGZmZns3r2bCxcu4O3tLST2fH19hTqNr68vhYWFHDt2jNraWgIDA5k9e7Zo911RUYGysjJHjhxh/fr15OXlCSre82DMmDGCvqXouNfc3CycKl9fX9E5UUtLS2Ra1qxZw/bt25kyZQrjx49HS0uLBw8eoKOjg7q6OgYGBhQWFpKTk8OzZ89wcnKiuLiY7Oxs4uPjuX79Orm5uSIa6ufnJ57VtLQ0duzYQUxMDFOmTMHX15eTJ08SGxtLcHBwm2SkQO4YHj16FH19fRFFtrW1Ze/evUJjftmyZURFRYlsI8D06dOJjIzk8OHDBAcHc+XKFfT09FBRURGNlfbu3St00+vq6rh//z5qamrCV1Fope7atYuhQ4eyZ88esrKy+OSTT/Dw8GDMmDEUFRVx4cIFBg4ciKqqapsLYJ2cnERGs7GxsVWEWqEctGrVKh49eiSK1H788UdmzJhBcHAwBw8epHfv3ixYsIDo6GguXrzI6NGjGTFiBNra2qI97qJFi3jnnXfIzc3ls88+w9jYmKFDhwqedmVlJU1NTYLClJubS3FxsTiMbt++nfHjx/9nnFdFNfjnn3/Opk2bCAwM5JVXXsHBwYG4uDiKi4txcXGhrKyMCxcu4ODgQL9+/bC0tOTmzZv8+OOPVFdXM378eEpKSrh69SphYWEEBgbStWtXMjMz2bNnj+DMKCKpAwYM4Ouvvxbk4q5du9LS0sKTJ09obm6mpaWFLVu20NDQgL29Pd27d6dDhw5tFp22srJi8eLFeHh4YGZmRnl5OZ07d2bjxo1YWFhw7tw5Hj58SOfOnenVqxc2NjaUlpYSERFBQkICffv2xcvLC0NDQ3bs2EFUVBR37twRJ0RF7/nOnTsLTlBZWRlPnz7FyckJX19fKioq2L59O0VFReJBSklJISUlBXV1dSorK7lw4QKWlpatKm2fF3p6ekyaNInExERSU1Pp1KkTHTt2pLi4GGdnZ6ZOnUpsbCy5ubn4+vry6NEjIf9iY2NDeno6zc3N6OrqigpThWJAS0sLpaWlonGEtbW10Hurq6ujY8eOLFu2TIite3h48OWXX3LmzBmio6PZtm0bc+bMwc3NTThiL7/8MleuXGmTjRoaGixdulSc3K2srFBTUyMyMpK6ujrRIGL+/Pno6uoKJ0FXV5c9e/Zgb2/Ptm3bAHnaccuWLZiYmPDGG2/Qo0cPfvjhB+7cuYOhoSEDBgzgwYMHbNmyBVtbW+H8glzgW9H04N69eyQnJzN48GCePn3Kxx9/TJcuXViyZEmbiwzS0tKIi4sjODgYNzc3bty4QUREBCNHjkRPT48rV64QGBhIjx49RPtSY2NjRo4cKQrmFJ25FBXKP//8M+Hh4cyZM0dEAq9fv86pU6cwMzMjODhYpIENDAwYOnQoenp6ODo6kpeXx9atW1FRUWHYsGEiGhwXF0dqaiqmpqZtlgObPHlyq4I+TU1NKioquH37NklJSXh6egpOYU5ODiUlJaINaWNjIyUlJeIedOzYkZycHDp16oSJiYngwq9YsQJJkti1axejRo0ShUuKVJri8Kuurk6XLl24efMm169fFx2OampquHTpkuD2/ivQ1dWlvLycJ0+eUFlZibe3N6WlpZw9exYTExO6du2Ko6MjRkZGuLq6YmZmhrGxMXZ2djx79ozHjx8jk8nEwTY1NZX169eTkJCAv79/K36cra2tULZoamri6tWraGtr06NHDyoqKkTG4PXXX6dXr15CrSIpKamV5M3zQsH93L59O5s3b2b79u2YmJjg6OjIe++9R9euXfH39yczM5NHjx6JiK8ioFFdXY2FhQUrVqzgwoULFBYWkpSURFFREUlJSaipqWFgYEBYWBi//PILNTU1mJmZCWkuAwMD9PT0UFNTw9TUlODgYDE3i4uLeffdd4mJiRE6u22NvI4dOxZbW1vByXV3dyc/P5+QkBB0dXWZP38+AwYMEIWZ1tbWojuUgnKSmJjIiRMnsLa2ZsKECXTr1o2UlBQOHTrE06dPxXcpAhg5OTmsXbuWxYsXM2zYML766it69erFSy+9RHR0NGfOnMHJyYmsrCy2bt2Kk5MTDg4O5Ofnk5yc3Ob2sAkJCVhZWVFeXo6WlpaILqanp3Py5Emam5sZMWIErq6uYg41NjbSsWNHZs6cSUhICI8fP+bHH3/k8uXLdO/enZdffhkfHx9yc3MpLS0lOzubVatWkZ6ezsCBA1mxYgXOzs6Eh4dTVVUlHOLf6jP37t2bfv36MXfuXGJjY5k6daooRG2r8/ryyy8LZ/znn3/mwoULTJgwQagFpKen4+bmxvDhw8Wac/DgQTp16oSdnZ2IFg8cOJCSkhK+/PJLbt68Sd++fXFwcMDAwICgoCByc3NZtGiR6ORXVlZGhw4dGDRoEGfPniUyMpJbt27h7+/P3LlzMTQ0xN3dHRMTE0JDQ1m9ejXvvPNOK6WK50G3bt1ITEyktLSUlpYWevTowZgxY1BVVcXb2xs1NTVeffVVoqKiUFZWxtHRkXHjxhETE0NcXBwdO3YUflFdXR0RERE8fPgQf39/EV3NyMgQAY/09HR2797Nq6++2kqibcyYMYSFhXHr1i3mz5+PtrY27u7urYoMR48e/VzP4b/UYUtfX5+SkhJMTExYvnw5ffr04cyZM3z11VeYm5szbdo0rK2tRRqme/fuqKurc+rUKaKiohg1ahSLFi3i9u3bnDhxAkNDQ1xdXWloaODKlSscPnxYNDJQyIAoulLs2rWL0NBQfHx8qKurw87OTnSwePToEYcPH6ZHjx7Y29vToUOHNoujv/nmm0Ict7GxkSdPnojCJAV/VdE/XOGw1dXVCeHob775RmyA58+fx9zcXHTpKS8vR0dHh86dO+Pk5ESfPn3o378/JSUl1NfX06lTJ5ycnPjggw9EasfMzIzGxka0tLQwMDBAR0eHhIQEDh06hK2tbZvapipQVFSEu7u70HdVCMwr6Apdu3bl/PnztLS00NDQQHZ2No8ePeLixYvY2Njg6ekpRNDj4uLQ1dVFT08PExMT0Zu8ubmZxsZGqqur6dGjB/fu3UNTU5O33npLdI1RFDUNGDCAAQMG8P7777Nz5066deuGnZ0dLS0tBAYGCv7R80IRTTMyMhLFASA/9SnuTUxMDMnJyaLIQtHDuqmpicGDB1NXV0dYWBg2NjZERETg7OzMpEmTePnll/nll19Ey2FPT09xUDtx4gRjx44VJ+rs7GxKSkpwcHAQrfKSkpKYN28excXFHDlyhLq6OjQ0NJ6L4/O393DLli1icbt37x7V1dW8++67NDQ08Msvv2BnZ4ebmxvh4eGEhYWhpaVFjx49Wi18ikWirKyMQ4cOkZiYyOTJkwF5lDYyMlIUwBkYGGBsbIyJiQmNjY1MmTJFdBL65ptv+OabbzAwMBCtZi9cuMCePXuE7ExboSia0tHREYdYRbpMIYOXlpaGJEmkpKQIJ1CSJCoqKsSBBOQKFNra2qirqxMZGUljYyMLFizgk08+YeXKlRw+fFg4Fbt378bExET8rsCoUaNEcdP58+eZPXs2/fv35+DBg1y7dq0Vb+15UF1djba2NkpKSlRWVrJq1Sp8fX354IMP+P7773n99dcZOXIk69evF1QtxUHzxo0bqKurU1VVxfXr1wF5ZzkTExPS0tJEpyc/Pz/Ky8uFLE1xcTFVVVU4ODhQXV3N2bNnMTY2pnfv3uTl5XHnzh3efPNN8Vzcu3eP3NxcTp8+zY8//tjmTfOTTz7h22+/pVOnTsybN4/Zs2eTmJjIwoULMTIyIisrCw8PD8rKykThlSJKnJmZiY2NjXC4x44dS21tLXfv3uX69euUl5fTsWNHURSppaVFRUUF2dnZ1NTUMGzYMPz8/Lh79y5qamq89957GBoa0tTURGxsLPv27ePIkSNCGhDkMl6K9tnPAwVP78iRI6SkpAh1mlWrVuHq6ir4f/n5+UIqacCAAUL2y8DAAEdHR3x9fYW2KcgPzGFhYSQlJYm2s4q9Q0dHh7Nnz5Kens6uXbt47bXXRAOA7Oxsnjx5ImgF2dnZouHDsGHDqKys5PPPPycsLOy5bbx48aLonqmsrExaWppQP0hMTKS4uJg+ffpQXFzMDz/8QEtLC6+99hoLFy4U2Zzbt29z6NAhqqqqCAwMFIENRTb29OnTrFu3jrKyMk6fPi3m2aNHj2hpaSEjI6OV+L2xsbFQA2hpaeHmzZvi4PXb5hzPi379+lFZWUlaWhqZmZkiEKerq8vAgQNxdXVl3bp14v0HDx4UDSNAXsh+7tw5Ll68iJqaGvn5+bi6ujJ+/Hiqqqp49uwZ/fr1o0+fPmItrK2tFY6dh4cH3t7eXLx4kddee421a9fy6quvkp2dzdOnT/H09MTX15fvv/+e9evX/52azj9Dz549UVdXJzExkfr6egYPHiyucUNDA+np6UyaNIlJkyaJNP+kSZNYvnw5Fy9e5OuvvxbFyd7e3qKt/bZt25DJZOLQtHjxYqZOncr48ePZsWMHI0aMwNHRkYaGBkpKSrC0tMTf359nz55x6tQp0d68oKBAND16XrTZef32229ZtWoVq1evZt68eZiYmHDs2DFWr15NRUUF/fr1o3PnzlhYWIhmAps3b6Zz586EhIQQHByMg4MDTU1NbNu2jYcPH/LVV18xaNAgDh48iJmZGdu3b+fBgwccPXqUjz/+mLq6OsaOHSvkuRYuXIi9vT11dXV06dKFoqIirKysGDFiBNu3byc+Ph4dHR2uXbvGlClT2tRX/bfpFGVlZZEOKSwsxNzcnLlz53Lw4EEOHjxIXV0dy5Ytw9zcXDh5H374Ic3NzYKMLZPJsLKy4tmzZxw6dIgOHTowduxY7OzshEivsbEx/v7+pKamUlxcTI8ePdDU1OTJkyfk5ubi5ubG0KFDee2110RqMSkpCScnpzY7PQC//PILn376KevWrSM4OJjr168LWTBAtLlUVlYWvKmzZ88SHx+PqqoqgYGBolWvTCbD0NCQOXPm8Morr6Cnp4eRkRGampooKytjaGjIypUrGTp0KDk5Oa3apSoUARQICAhAS0sLS0tLqqur0dHRwdnZuc32nTp1ivDwcEaNGiVOzk1NTa24psnJydy6dQtzc3OsrKy4c+cO+vr6DBw4kIsXL7Jr1y7mz59Pp06dWL58OatXr6akpIQbN24Ix9XW1hYTExM2bNiAg4MDe/fupbq6mnXr1jFmzBgsLCy4cuUKK1asoKSkhMjISOzt7SkoKKCkpESQ9gEhJP68MDc3p2PHjtTX11NbW0twcLBw7NTV1Rk2bJjgbXp4eNDQ0MCOHTs4cuQIS5cuZejQoZSXlzN//ny8vb1Zvnw5mzdv5uHDh+JAVFxczIABA8S9XrBgAV27diUgIICgoKBW7QkV1zY9PZ36+no0NDQoLy/n9OnTVFVVkZKS0mYHduvWrWzcuJFFixaJuamIdGtqalJaWsrWrVspLS3l1VdfxdXVlaNHj/LZZ5+hrKzM5s2bxXe6u7uLghddXV1mz54tWmsqIg15eXlicxg5cqRwXhUZEF1dXby9vcnOzub27dv06dMHV1dXFixYwIoVK9i5c6dwvJ4HLS0tQiezqKiIs2fPUllZKaSJQL7B6enpteKcKsai6BPf2NjIuXPnWLJkCX5+flhaWrJp0yYSExO5c+cO77zzDkFBQQwdOlTQEjp16oSFhQVhYWFiU7KwsBBFFiB/RhRFtkVFRXz99ddtun8g55IOHz6c77//niFDhrB27VquXLlCQkKCoI6NHTuWyZMns2bNGgwMDGhubqa6uhpbW9u/6wbV3NyMq6urUMNQtJY1MTHB1dWV8PBwfv75Z0pLS4Xg+tGjRzl//jzjx48XKd+rV69SXV3Nli1bxBoB8gNKW5zX0NBQZs+ezdKlS4Ver6GhIYcOHeLixYuCZuXj48OiRYta9as/c+YMN27cEB2UPD09BX+7Z8+e7Nmzh4iICE6ePMmPP/5Ifn4+HTp0IDAwkKqqKs6ePYuWlhZnzpwhJCSE7du3s3v3bubNm8fSpUuFAH12dja2trbMnTuX0aNHExgY2CbnVRHtt7e3JyMjgy+//JLm5maWLFki1jaFhm5SUhKmpqatWr+DPFNjaGiIqqoqWlpaHDp0SHDx582bJ5z36OhoERl/8uQJFRUVdOnSBRsbGyRJoqWlpVUxYl5eHvPnzxeRW39/f5KSkp7btt9CodU6cuRInJyc2LBhA4MGDWLFihUixZ6Tk8POnTuprq4Wh3yAt99+m3Xr1jFz5kxGjx7N6tWrMTIyorq6midPnlBbW0v//v1b6Z4rIuCxsbG8++67Qh6rrKyMffv2YWJiIgJIFhYWjB8/Hl1dXT7//HP69etH//79n9s2Kysr+vbty5o1azh37pygm4C8CcWGDRv45JNPmDJlChUVFWRlZaGnpyey37+l0ri6umJkZMTJkyf5+eefsbW1RVdXFwsLCxEwUFFRQUNDQwRy1NXVkSSJbdu2CW35jz/+mLCwMNFZrS2OK/wLzmtycjIrVqxg0KBBdO3alaKiIuLj45EkCUNDQ1paWqisrERTU5NHjx4RFhaGJElMnTpVyEElJiZiYWGBtbU13bt3Z9CgQXTo0EH0fu/WrRvDhw/n7t27hIeH8+WXX+Lo6MioUaNEFMDQ0BBfX1/Kysp46623+OKLLxgyZAizZs3C1NRU6I62lUuoqqpKamoqRkZGGBkZoaKiQlZWFgkJCQwfPhw3Nzdqa2vZt28furq6QvD7ww8/FJ2JFJ2G7OzsiIiIwNDQEGNjY3JycrCwsCAgIAALCwuePHnC+fPnqauro6amhuzsbJSVlUU/6CdPnpCYmIiVlRWWlpaiejU9PZ1Hjx7Rt2/fNtMiQO6UFBYWkp6eTlVVFRkZGYSFhWFubk5gYCDm5uaiD/revXuRJAmZTMa0adMAubLDuXPnaGxsxMbGhrq6OnJyckR6wcjICF1dXQoLC6mtrcXe3h4nJyfCwsI4fvw4kyZNokOHDlRVVVFTU4ORkRHFxcXExsZSVlZGQ0MDZmZmdO3aVfTTbgsUtAV7e3uqqqr48ccfqa+vFxH1TZs2sX37dtLT04mKimLixIn06NGDmpoa7t69i7u7O5WVlZSUlODi4iJS6EePHuXw4cNcvXoVAwMDvvjiC9TU1Jg2bRqSJDF+/HiKi4vZsGGDEGNWVFimpqYC8oWpqqpKFM4oHu7fchWfBzNnzmTQoEGcO3eOo0ePinsDckqB4toq5k1ZWRkXL14kLy9PaEUqnFkFD0oxFgXlwdDQEE9PT7S1tSkvL2f9+vU8fPgQR0dHDAwMOHz4MIaGhvTr148OHTrQoUMHCgsLOX36NBMmTMDT05OBAwcKLlpbnVdJkmhsbCQhIYGUlBRArh5gaGiIpqYmt2/f5ty5c2hpaYmiM5B3jEpPT2fr1q1kZmbi5eWFtrY2NjY2GBsbY2xsTGBgoHj/hAkTMDAwEA7BkydPyM7OFo6GoaEheXl5aGho0L17d5SUlMjLyyMuLg5XV1eUlJR48OAB165da5PzCghH38XFhcDAQHGvbG1t8fT0FGuFwvZ9+/Zx6tQpampqyMvLo2PHjsyePZuysjKqq6tJSUnB39+fHj16MGLECJSUlDh58iTXrl2jsLAQY2NjtLW1SUxM5Pr160Ii68iRI+jq6oqmHYpiRyUlJW7duoWamlqrzfp5MWrUKO7fv8/169cZMmQIDg4OTJw4kX379tHU1ISlpSXGxsZUV1eTm5uLsrKyaBBRUVHBqVOnsLKyws/Pj+vXr3P16lUmT57cShO5traWtLQ0lJWVCQ4OxtTUlJiYGOzt7SkvL8fIyKhVRbuqqiqenp6YmJgQEBCAnp4eGRkZ1NbWik5Jz4uoqChkMpmgqyg62/n5+XHz5k1mzZolePS/jZZpampSX1/P3r17CQoKYuPGjZSXl/PKK68IbqGii5ienh55eXkUFhbSsWNHevToIbiCubm53LhxAycnJ6ZNm8b8+fOZN28eP/30Ey4uLnTs2JEOHTqgqqqKs7Mzzs7Ov9tI5H/Cb537GzdusG/fPnx8fHB1dRWHKoW2+sCBAzE2NhZrSUlJCTk5OSQnJzN37lxyc3NJSEgQDS+uX7/OwIEDGTNmDK+++qqoPG6c9QABAABJREFU+1DcJy8vL1HYpqSkJNqKFhQUYGBgwNWrV4mIiKBPnz5MmzaNyspKNmzY0Cb7QL6nZmZm8vjxYxobGzE3N2f8+PGYmpry6NEjzpw5w4gRI6ioqCAxMRFPT0+8vb1paGgQHeksLS05f/68qAkARPcwZ2dncR2Li4vFvpeQkMDChQuJiopCX1+foKAgsrKyhLqJYu0qLi7GzMxMqBycPHmyzTbq6enh4uJCYWEh+fn5lJaWcvHiRbZu3YqysrLYxy9evMiJEydobm4WzS/s7e0pKioiMTGRbt26IUmSKIY+ffo0o0aNws7OjtzcXNEKGRABOoW8ZkVFBfHx8Tg7O9OtWzd0dXXR1NQUe0NDQwO3bt2ivLz8n9rTZuc1KCiIjz76iC1btjBr1ixRWODp6UloaCinTp2iT58+1NXV8e6775KWlsaePXuws7OjurqaSZMmUV5ezt69e1m5ciWzZ89GWVmZ6upq+vfvLyIRurq6zJs3T/TqVlVVxc7Ojpdeeonhw4cTEBCAhoYGn3zyiRBGXrNmDV9//XWrAoSrV6+KSNnzIDs7W/BAFSF9KysrLCwsxEkpJCSEwMBANDQ0qKysRFVVlQEDBtCtWzcOHz4suqA8fvyY7du3c/fuXXR0dEQ1qSLapq6uzp49e4iLi6Nv37707t0bFRUVEhMTCQsLE1X2ubm53LlzhylTpqCjoyPGoeCSthWKaJGinaanpycxMTF8+OGHzJw5Uzx4iYmJnD17lqSkJPbv38+5c+dwcHDgtddeE86Bog9zdHQ0RUVFrVIhjx8/JisrCycnJy5cuMDGjRvx8fGhd+/e6Ovrk5qaSnV1teDbXrx4kXv37tGtWzemTZvGsGHDqKura3PLRnd3d0FdSU5O5uOPP8bd3Z2FCxdy+/btVgVu4eHhBAUF4efnR0ZGBqtWrSIyMhJra2s++eQTXnvtNQDeeustvvnmG1RVVdHQ0MDOzg4vLy+8vLyEXMjatWuZNGkSb731lhDsnzRpEi+99BJhYWHMnz+fjIwMEhMThX6swlEMDQ1t8320sbEhLy+P27dv4+XlJTiJp0+f5sGDB6I9M8gjYIoorI6ODvv372f79u2AXKA7OzubpUuXcvfuXY4dOyaKwWJjYzEwMGD16tWC6ztx4kT69u3Lm2++SXx8PB06dCAgIAAbGxtu377NypUrBR973759fPfddxw4cKDN9slkMoYPH86dO3f45ptvRPZDS0uL8PBw7t+/j4ODA97e3qL5xIgRIxg/fjyPHj1i5syZ7Nu3jxkzZrBw4ULR2aampoampiaxwdra2mJvb09mZiZmZmai+l+RFVBVVRVdBJWVlRk6dCgaGhrExcWxf/9+UlNT/6U2zcrKyqIroZ6enqhaNzAwwMbGRgj3KxAZGckPP/wg0ul5eXkEBgaybNkyDAwMSEtLQ0lJqRX3dvLkyXh4eHD58mUSExMZNWoUCxcu5NChQ7z55pvU1dWJ9qXvvPMOK1as4OHDhyQmJjJ69GiuXr3KqFGjhLj80qVL22Tjpk2byMvLw8jISBwGFB2mevTogZ2dnaiHWLx4MR06dODYsWOAXN1i3rx5BAQEcPToUQoKCtjx/1h776iqzq1v+6L33kEQEFA6KAIiIiBgNxZUNPZeYkliTawxGqPRWKImamLvxt4rigUVFQWRItKl917X9wdj3294zvO+RzK+OcYZhyCw99prrXvNe87fvH5//omtrW2b5FVNTY3Lly9z6tQpFi5cKNrP586dY9u2bQQFBbFu3Tp0dXVFtbZv3758/PiRo0ePoqWlRY8ePbh+/TrXrl1rM5Dz3+Kfm5WcnBzWrFmDjo4OCxYsELiusrIy8TPFxcXo6+u3qXDLEsCXL19y7949dHV1uXfvHrdu3cLS0lKYKsgqr42NjRQVFfHhwwdycnIwMzOjqqqKyspKHBwcOHbsGKtXr2bKlClMnz6dESNGtGml7927t13nUBaFhYXCiMXAwICkpCRUVFQ4evQoGRkZ+Pv788UXX2BsbCyGRGtra9m0aRN6enosW7aMN2/eCM4ptFokyyqpJiYmAlsHYGNjg6mpqajg1dbW8v79e9LS0pCTk8Pc3JwOHTqwZcsWevbsCbSuoydOnPhs0L0scnJyOHbsGPfu3RNUko0bN3LlyhW+++47Ro0axW+//caUKVOYMGGCWDuioqKEoUZTUxM2NjYoKCjw/PlzvL29BY9bNrsCrdfr8+fPuXPnDufPnxf6+19//ZXw8HAePnxIWVkZwcHBmJiYUFpaSmFhIZcuXSI3N5devXoxf/581q9f/9nHl5GRQceOHRk2bBj9+vWjubmZX3/9lU2bNom8pVOnTrx8+ZI//vhDyBZTU1MxNDQkKCiI8vJyjh07xtWrV7GyshIzDDJGe21tLaWlpdjY2DBu3DgxQF9UVERJSYmgTowePZr4+Hhu3ryJo6MjCxYsEO9TSUmJp0+f8ssvv/xX7GC7k1cHBwfGjRsndKa//PILXl5ejBo1CicnJ+Li4sRF19zcTF1dHZmZmaJFYmNjw9u3b5k7dy5nz57F3t6ee/fusWbNGkaMGCFa7GFhYUyaNImQkBBSUlKoqalhzZo15Obmsnz5crE7mz59Ovr6+uzcuZN169Zx4cIFamtr+eabbxg8eHC7SuvQOtVcUlLChQsXUFJSIjQ0VJTMU1NTaWlpEb70R48epaWlBTc3N1E1jIiIQF9fn927d3P48GFUVFTIyMjA0NCQiIgIQkNDqa6uRlVVFUVFRXx8fDAzM8Pe3h41NTXi4uK4evUqxcXFhIaGYm1tTW1tLcrKyty6dYuBAwcyZMgQgej6N9Hc3Iy5uTkpKSl8/PiRgIAAFi1ahKWlJU+ePGHVqlWMGzeOzp07ExgYKAYkvvrqK6qrq4mPj8fGxkYYUdja2lJZWSla8C0tLdy9e5fm5mYx5JOVlcWYMWMICgqia9euxMXF8fLlS1xdXTEzM0NOTo5+/frRqVMn0d5VUVH5j7bh50T37t0FIk1JSYkxY8ZQWlrK7t27qaioYNiwYejo6GBkZIS8vDxOTk7Ck9nb21votGWJa0JCAmpqanh5eZGcnIy6ujrm5uacOnWKxMRERo8ejbq6OgcPHkRLS0vo1j59+oSamhq6urr079+fffv28fvvv3P48GGR2E6bNg1Jktqt01q7dq3Q9iorK/P1118zatQopk6dSlBQENnZ2bx48QILCwusra3p06cPubm5JCYmUlBQQM+ePcVkeUtLixDoyx6C0KrJrKioEBKQoUOHUllZKYaYvL29cXZ2pmPHjrx7945nz54BrWxiGa9ZS0uLkSNHthk8+dxIS0vDxsaGjh07oqurS1xcHNbW1kIvp6mpiZqaGhYWFpiZmdG1a1cMDAyor68nMzOT4cOH4+DgILRs1tbWvH37VgxulZeXs2DBAh49ekSnTp0YM2YMc+bMEUkhtGqj6+vr8fb2JiEhgV27djFlyhQGDRqEqakp48eP5+jRo+jq6jJv3rw20pT/FhoaGtTX1wv9ooybC633aJcuXcQQVlpaGsXFxYwYMYL6+npaWlpExfGPP/5g7ty5QhMoi6SkJG7fvi38yWX4LT09PQoLCwVBQEZ0OXv2LAMHDqRDhw6Ym5ujqqqKg4MDEyZMoGfPnv8Kl2Vtbf0f70tBQYHq6mrMzc1F9dvFxYX+/ftz584d5s2bx88//0znzp0Fh1lRUZGysjIqKioEFkyG2goMDERVVVU4MPr4+FBbWysGgG7evImBgQEnTpwgKiqKiRMnCq6urItgZWXF69eviYmJaVfympycTGRkJIGBgULXCq0yoK5du6KnpycGUN68eYOysrIYVLp//z4dOnQgMTGRsWPHYmhoyPTp0+nRowempqb079+flpYWWlpaUFdXx8bGhps3b5KZmUlQUBCenp5cu3YNOTk5dHV1BTvd3NycqVOncvDgQYG9k+lri4uL293lkdlqBwUFMWrUKKqrqzlx4gQTJ05k8uTJmJqacuzYMW7cuIGlpSUDBgwQ67YM09WhQwfMzMyEcUtOTg7W1tbY2NgQFRUlZFS+vr6kp6cLXJiDg4OoyqWnp7Nu3To+fvxIWFgYAwcOxM3NjYCAAPFe7e3t291+BoR9uKOjI8OGDePUqVN89dVXFBYWYmhoiL+/P48fPxYGRB06dKC5uRkNDQ2cnJzEzIGKigqXLl3i/v37otDWt29fnj59ypIlS+jVqxeqqqrs27ePO3fuCHqLh4cHQUFBAvlXV1eHoqIif//9t+hamZmZ0dTUhLu7e7uHQ+Xk5GhoaEBLS0tIDa2trQkPD8fb21vI85qamnj9+rX4LAcPHoyRkZHAVvr4+PDgwQPB1p01axY+Pj7Iy8sLlmtNTQ0fP34UuZGhoSGGhoZivkOmYT958qToPDU3N4vNbZ8+fUhISPjvByXzt/5v/5s9e7Y0e/Zs6e3bt5Iszp8/L5mamkpdunSRLly4ID158kQ6fPiw9P79e6m8vFw6cOCANHToUMne3l5SVVWVZs2aJUmSJN2/f1/S1NSUZs6cKVVWVkqzZs2SAMnX11davny5tGLFCunatWvidT58+CB9//33kqqqqqSqqiodOXJE+p8xd+5cadCgQVJBQYF0//59SVVVVZo8ebIkSZIke++fc3ySJElVVVXSwoULpd69e0s3b94UrxEdHS29fPlSkiRJevr0qaSqqir5+vpKDx48kAYNGiRpaGhIUVFRUmpqqtShQwcJkPr37y9NmzZN2rZtm1RWVib+VktLy38cQ2xsrDR58mRJQ0NDCgwMlD58+CD+7eHDh9LVq1el3Nxc8b26urrPPr5/HuOiRYukPXv2SDNnzpTGjBkj3blzR/zN6dOnS/Ly8tLBgwclSZKk06dPSwsWLJC+//57qXfv3hIg2draSrt27ZLKy8ul6upq6f3791JWVpb4G3fv3pVWr14t3bhxQ3yvqqpKfF1TUyNdvnxZOnv2rFRSUvIfn4Ps86mrq5Nqa2ulurq6dp/DlpYWqbi4WPy98+fPS8rKytKYMWP+47UeP34szZs3Tzp37tx//FtycrI4DzExMZKFhYWkr68vTZ48WTIyMpJUVVWlv//+Wzp27Jikq6sr/n5dXZ108eJFKTIyUkpMTJTq6+slSZKkvLw8ydHRUXJ2dpY+ffokSZIkNTU1SfX19e06RhUVFQmQtm/fLkVGRkru7u6ShYWF9P79e0mSJKmxsVEKCAiQTE1NpSNHjkiFhYXSrl27JA8PD+mrr76SmpqapKdPn0rGxsZScHCwON78/HzpxIkT0uXLl6WPHz9KcXFxUlRUlJSdnS0VFRVJL168kB4+fCi9f/++zed79uxZSVdXVwIkZ2dnKSoqSvzbnTt3pEOHDrX7Ov3pp5/EdSO71v/n13fv3pX+/PNPKT09XXzP19dXkpOTk6KioqS6ujpp+fLl0l9//SVlZmZKs2fPliIiIqSCggLp3bt3kpGRkQRIdnZ20osXL9qc+7KyMmno0KHSqFGjpKqqKunChQuSoqKiNHr0aPEzq1evlpSUlKRZs2ZJycnJ7b5OJUmShgwZIgHSn3/+Kb63fft2afr06VJMTIwkSZL04MED6fnz55IkSdKrV6+kH374QVq+fLkUHBwsaWtrS8uXL5caGhqk9PR0KTU1VZIkSdqzZ4+kpqYmLVq0SPzdT58+SdevX5fGjRsnriEzMzMpMDBQ8vDwkHx8fKRjx479x2ddVlYmnTt3rt3nMD8/X2pubpaqq6ulhoYG8f6XL18u7d69W8rNzZWqq6vF6504cUJydnaWNmzYIP3P2LRpk2RjYyPNnj1bmjx5sgRIw4YNkxoaGqQjR45IgARIampq4mt9fX3pyZMnUnl5uTR9+nTJ19dXOnLkiNTQ0CCVl5dLT58+lSoqKiRJkqR169ZJqqqq7TqH1tbW0vr166WmpiapqKhIGjRokARI/fr1a3MPZGdnSydPnpSioqKklJQU6euvv5bk5eXF+wSk+fPni+dCY2Oj1NjYKJWXl0uVlZWSJEnSu3fvJC8vL8nNzU169+6dJEmS1NzcLG3fvl3atGmTeDZUVVVJtbW14rUbGxvF183NzdKDBw/adYyhoaESIP3888+SJEnSmTNnxHtfvny59OzZM2n06NESII0cOVKKiooS921paal0/Phx6fr161Jtba308uVLafjw4ZKqqqqkoqIi2djYSI6OjlJ4eLgUHR0tSZIkXb9+XQoNDZV8fHykrVu3ivf+5MkTydraWlJVVZVWrVol5efni+OtrKyUGhoapJSUFCkyMrLd1+n8+fMlRUVFae/evZIkSdKiRYvEedm5c6dUVlYmbd68Wfryyy+lxMTENtdlTU2NuB4BSUlJSVJVVZVCQkKkBw8eSJLU+hw1NDSUHB0dpeHDh0u6urqSh4eHdOHCBenWrVvStm3bxP0t+9zOnTsneXh4SIA0ceLENrlXY2Pjv1prmpqapNraWvE8kqTWtUV2TyQlJUnOzs6Svr6+dObMGUmSJKm6ulo6fPiwOJbLly9LQUFB0vr166Xm5mZJkiTp9evX0v79+6XTp09Lv//+uzRo0CBp1qxZ4posLy+X3r59K8XFxYnnniRJUkVFhfTp0yfxfmRrhCT997ym3ZVX2dBUTEwMr169YsmSJXTv3h13d3ch8J0/fz7QymCsqqriwoULhIaGivZ9YGAgN2/e5OLFi/Tq1Yv4+HgUFRVpamqipKQEdXV1du/ezQ8//CAyeZkV2/Dhw9s4c507d46zZ8/i4ODA6tWrMTIyEl7Jrq6u7aqEQGu1zNzcnOnTp/PmzZs2riZOTk5CE9XU1ERdXR2pqano6OgIoPKtW7fo3r07a9as4fDhw7x+/Ro/P782pXFAyCP+Ge7u7gwYMIDo6GiUlZXbGC7IZAzy8vI8evSIXbt2ERYWxuTJk9t1fNCq8VNUVKSqqorCwsI2KIuRI0eKKkheXh43btxATU2NCRMmMGLECD58+ICnpycqKircvHmTiooK/Pz8RFv1zz//pLGxET8/PyorKwVvMDw8nBEjRhATE8PNmzcJCAhgxIgR4rOUJKkNu66yslK4NP1zavxzQ2bFKguZjer/xquU8TONjIza7NqfP39ORUWFYM6pqKiISqS5uTkqKiqCr6ipqUlVVRU6OjqUl5dz8+ZNnj17xvjx47GzsxPXoYmJCfv37yc/P19A7RUUFNoMrn1O7N27F01NTTGMuH//fmJiYtrYKqqqqpKXl8eff/5JUlISGRkZjBw5kr59+5KWloaRkRFHjx5lx44dhIaGcvjwYczMzITTmAyVlJ6ejr6+PqampoICoaGhITSCGhoaeHp6smfPHnR0dHB1daWqqorvvvtO2D8uXbq03XB0FxcXLl68yO3bt+nYsaPovCxZsoSwsDDGjx9PcHAwKSkpba7h4uJiJEnizJkzlJWVUVRUJAwnQkJCBHPZ09OTY8eOERUVhb6+fhuHF9nQxIULF9DW1iYjI0OwpT9+/Mjff//NsGHDxPkNDAwUCKr2hsx+WPb/0CrzuHDhAr6+vnTr1q1NdSk+Pp4jR47Q3NyMj4+PcNuaPHkyxsbG+Pr6EhcXx40bN9DR0WlzXHfu3OHu3bt4eXkxe/Zs3r9/j4GBAQMHDuTw4cNMmzaNn376CXt7e7p3786nT584f/486enp7WIty0JmJLFv3z6uXr2KhYWFALMbGBigoKDQ5j6NiIjA3t5e6Az79esnZGCNjY1UVVWRnZ0tPqsnT54QGxvbBo0kY0gGBgayYMECgYKbM2cOFRUVwvDi9u3bQos7Y8YMvv32Wzp37sz9+/fbdXyyzpOBgQG7du1CQ0ODU6dO4efnJ6qGVVVVWFpaoq2tTUJCAsnJyaICamZmxtSpUxkxYoR4Lnz8+JGVK1fSrVs3lixZwpMnT1i+fDmFhYWUlJQwcOBAjh07Joav0tPTmT59OmlpaSxZsoTp06cTFhZGQUEBqamp4jOQk5PDzc2tXTKeefPm0bNnTxoaGjh8+DCqqqocP36c8vJy4RzVp08fBgwYwIkTJxg2bBjdu3dnzpw5hIWFMXz4cFJTU3n48KHoXJmYmJCRkUFaWhrdu3dn8ODBwtEyMDAQOTk5CgsLhdQHWuU9y5YtE8NPMnOg06dP8/TpU4HM/DfIOlVVVQ4cOCCGUGfMmIGioqIwV5KhAV1cXOjQoQONjY3CYElNTU10JUJCQgQ+zcLCQuRLMpLEgwcPSEhIoEuXLnz99dd88cUXvH37locPHwq0H7TSGS5fvoyZmRmSJHH69GnKysrYs2cPZmZm/8plC1qlKVlZWULmBYghTkdHR7p06cLo0aNRU1MjPDwcaEW6BQQEiO5gWFiY6Ci/fPkSd3d34uLiWLduHU1NTWhra/P+/XtB+pDZBfv6+iInJ8eFCxeYNGkSy5cvR0tLi4qKCsFijo6Oxtrauo1G/f8W/+4TAFatWsX169e5cOEC/v7+FBUVoampSW1tLQkJCVRXV2NoaMisWbPIy8vDyMiI6upqWlpaBDw8KyuLO3fuiAd7dnY2dXV1SJJESUkJLS0twqscWsX/siSwoqKCJ0+e8NtvvxEVFcX333+Pnp4eVVVVmJubC4zGP/VGnxOy4SknJycxAV5fX09iYiJqamptdHPu7u707t1baA3v3bvHiRMnsLOzY+rUqejr6zN8+HDu3LnD4MGDsbGxoaioiPz8fIqLi7GwsMDd3Z3CwkLS0tLw9fUlPDycFy9esGfPHhYtWsTChQvp2LFjGy2pzKVET0/vXyWvskVCR0eHzMzMNi5kwcHBgmP34MED/vrrLzp06MDChQvx9PQUQwfnz5/n119/FU5P0PpQXblyJV9++SVr167lzp07wgu9sbGRHj16cP/+fbZu3YokScJur6WlRehaa2trBbqjsrKS9+/fC7e2z42EhAScnJwoLi4mLy8PfX190tPT6dGjB9bW1hQXFwvck5KSEnJycqINJ4v79+9TWlqKg4MDjY2NIpHv2bMnpqamYiL40aNHYmCxW7duREREoKOjIwYVmpqaRHL69OlTGhsb8fHxEW212tradnMXAQYNGoSCggJv376lrq5O4Mug1UUpISEBZ2dnzMzMcHBw4OnTp6SlpTF79mw8PDwYN24cBgYG/PbbbxQWFjJ37lxu3brF+PHjBXZIV1eX3NxclJWVsbCwIDc3lxMnTuDg4MDgwYMpKCggNjZWQMptbW2pra0VU+5Xr17l7du3/4oPCq1i/7Vr1xITE8OoUaOoqKggISGBq1evEhsbi5OTE926dROtUVnMmjWLnTt38vfff3Pz5k00NDQwMzMjJCSE4cOHY29vz6+//srDhw+ZM2cOfn5+xMfHU1ZWJjaMJSUl5ObmYm9vj5OTE/Ly8mhoaPDjjz9y6tQpsrOz+fjxo3DlkX3u7QnZou3r60tdXV0b7J2HhwcpKSmCkpGVlYWioqJo51dWVpKXl4ednR0TJ07kjz/+4Pz58wQHBzNkyBCysrJwcnIiODgYR0dHsrKykJeXx8TERLhadevWTcgjmpqayMjIQENDg+zsbDEBLNO2KyoqsmHDBmFR255QUFAQEoaOHTvSr18/fHx88PLyEp93TU0NlZWVGBoaCk5xXFwcVVVVREREUF1dzZs3bygsLCQlJQVvb290dXXR0dHh5s2bZGdn4+LiQnl5OYaGhvTq1Yu5c+eK9To5ObkNmun58+ekpqbS1NQkkE9dunRh5MiR7UpenZ2d6dOnjzBosbKyYs2aNSQlJfHq1Suys7Pp0KGDkDW8ePGC1NTUNtfKwIEDWbduXZu/W1RURFRUFDU1NUydOlWgB5uamqisrBTuS5Ik0dDQQH5+vtBOKigokJeXR1paGps2beLDhw8sXryYsLAw4VnfnpCRNyIjIzl27BihoaEiyYuOjhamEaNHjxbuW9evXycgIECgCXV0dEhKSkJXV1foUzMyMsTxy5B7r1+/RltbW5i+yEKGxZw5c6b4now1Wltbi7GxMdHR0WJAs73Omn369BF2yFVVVdjb2/PTTz9RWlpKXl6eGHSVzRDU1taipKREZWUlJ0+eFDptmZudm5ub0KG/e/dODDFZWFhw/fp1MaAos2Z/8OBBm6Tb2NgYNzc3JkyYQFVVFRs2bBCYPjMzM3Jzc9t1fLJQU1NDS0uL0tJS8Xra2to4ODiINW7EiBF8/PiRV69eYWxsjKamJhYWFuIaVFZWJjQ0lL///pvY2FiBLZSTk0NRURFNTU2UlZXJy8vj+vXrxMXFkZSUJCQtMie6rl27EhISIt5HSUkJpaWlYsjrv0W7k9c///yT0aNHC93Enj17aGhoID09HTU1NTp27MjcuXPR1NQU7i0//vgjo0aN4uDBg5w4cQJJkpg7dy69evXi8uXLfPXVV5w/f15cJNBaHZShU5YuXcq+ffuIjo6mqKgIQ0NDEhISWL16NTY2Nty6dYvY2Fj8/f3p3r073377rQBOp6SktOv4bGxsyMrKoqGhQTxMXrx4wZQpUxg2bBg///wzVVVVXLp0ic6dOwuP6BMnTrBkyRI0NTWRl5enpaUFPT09XFxcePDgAQsXLuTbb7+luLiY77//npycHHx9fTl79ixxcXEsXryYOXPmMHv2bGxsbKisrGTfvn0YGBiwcuVKysrKePbsGUFBQfTv358///yz3e5h/zPs7OwwNzf/v+7iZHBv2QTi27dvefXqFRUVFURHR/PixQuMjIyIj4/H19dXbBRqamoA2lR8NDQ0cHBwICAggM2bN7N582ZUVVWZNWtWG1tNGaNUU1OTMWPGYG1t3a6HCbTuLrt06cKFCxfYvn07np6eDBo0iDlz5iBJEm/evMHR0VG8rru7O25ubuK/9+/fT15eHgMGDKBjx45ERUVx+/Zt9PT02Lx5MxUVFZw+fZqmpiY8PDzE5uzLL78UrE8HBweys7NJTU0VSeW+ffs4f/48P/zwA/PmzRPvV5Kk/7US//+KFStWkJOTw+vXr1FUVCQ8PJxJkybR0tLC7t27efToEaNGjWLr1q0AnD59mrt379LU1MSzZ8+IjIxEVVWVFStWMHbsWKysrOjUqZNw55KXlxcuRd26dUNHR4fbt2+zdu1aPD096dKlC3Z2doLxC61VsM2bN/Pw4UM8PDwYOHAgw4YNQ0ND419ZNt69e1fY+e7ZswdtbW1sbGzYsWMHL168YOPGjejr6xMYGNgGhzd8+HDk5eXZvn072dnZeHl5ER0dzbZt21i7di3Ozs68ePGCAwcOcP78eWxtbdHR0WHYsGHY2dkhJyeHpaUlkyZNYuTIkejp6YlrQ7a4V1VV/UdHQPoHwudzYunSpURERBAREUGfPn2wtLQU9JL58+czcuRIampq+PHHHzl//jwhISFs2bKFkSNH8u7dO9auXcu9e/coLy8XWksZuL2+vp7q6moUFRV5+PAhV65coVevXuIBvX37dpYvX87mzZtRUFBg+vTpHDx4EFdXV4KCgujQoQP5+fmoqakxefJk4bbVHowUtM4JyCy9a2trCQ0NJTQ0lJaWFnHd5Obmik3ekSNHWLVqFVlZWaioqFBUVERMTAwXLlzg6dOnAIKysGvXLqKiovj5558xMTHhm2++ob6+HgUFBYKDg8Wm4saNG1y9ehUlJSUmTZqEm5sbNTU12NraMnv2bLS1tXn69CmVlZVtDB0+J5SUlEQC3tDQgLKyMl26dOHSpUucO3eOy5cvM3HiRJSVldm3bx8PHz7E1dUVJSUlHB0dsbKywsHBgTdv3uDk5CSq0F27duXu3bs8evSIEydOMGLECH755RdxnV++fFls/mXdso8fP+Lm5saWLVtoamrizp073Lhxg/T0dGJiYli3bh3Tp09vtzuTLGRs8H+6PMqwVjI9fU5ODtBaPfX19RU/p6amhrW1NVZWVigrK6OsrMyTJ0+oqKgQxY+0tDQ2b96MmpoaU6dOFRsrWZv4f8b58+d59eoVK1asICAggPfv3wuzl/agwKA1eQXaJPfl5eXcvXtXWIXLOg9NTU2i4LBy5UrBerWwsODWrVukp6fj4+ODmpoaRUVFVFVV0dzcLMwItLW1+eGHH1i2bBl+fn5tiAylpaXo6emJuQ0DAwNUVFTo1KkTkiRhbW1NYmJiuy3TZcfm6uqKvb09MTExxMTE4OXlxdChQ+nWrZsoqDg5OfHw4UM2bNhA586dCQ0NRUlJCUtLS3x9fWlububt27eYm5vTrVs3DAwMCA0Nxd3dHTk5Od6+fcv27dt5+/Yt169fZ9KkSWzduhUDAwMMDQ2ZNm0amzdvJiIiggkTJvDrr78iLy+PtrY2vXv3/myb7XYnr8ePHyc3N5fu3buLHfXly5cZOHAg+vr6YuHQ0NAgPj6e2tpa8vPzKSgowNjYGF1dXV6/fi3QLREREUyePBktLS3U1NSQl5dHVVWV0aNHC6H/H3/8IXYdd+/eZfTo0ejr6zNw4EDGjRuHra2tQGZ4eXlhbW1NU1MTFRUV4ub63Dh58qR4OEPrjn3z5s2kpKTQ0tJCQkICO3bs4ODBgwwYMIBHjx5x8eJFXr9+LSaUP336JOwKP3z4gIaGBnZ2duTl5YlqDrQSFXbu3Mnt27eFNZqqqqqw0tTW1sbJyQl1dXV0dHSQl5cX+KZJkya199SJePv2rbiQZJ+PDJ2lq6uLnZ0d9fX1fPr0ibFjx/L8+XN+/vlnGhsbqa2tFe0ub29vxo4di7e3N5cuXeLkyZNYWlpSV1fH3r17BRf3+vXrNDc3c/nyZaqrq8UNePPmTWbNmkVjYyOXLl3CxsYGa2tr5OTk0NPTw8rKiuLiYp49e9Yue0pPT0/k5eW5ceMGiYmJmJubExISgrKysrA5raioEDeJjGYBrfDpn376CS8vL5YtWyYm7rW0tIiIiMDKyoo7d+5w//59srOzUVRUpKCggL59+9KrVy9yc3O5du0aKioqDB8+vI3sxNLSEnd3dyH2lw10qampkZ6e3q5zaGZmhr6+Po2NjcLs4fbt29y/f19gVIKDg0lKShLVU9kgWXx8PLNnz8bW1lY8eP39/cUC+s9Wnbm5uUgyevbsyYgRI4TkREFBQSzop06dYvHixZSXl9OvXz+CgoLw9/cXJAkZKqw9YW1tzeTJk5kyZYpIFG1sbLC1tcXR0ZG1a9eyd+9e7t+/j7KyMmFhYSgqKoohodzcXFRUVPjyyy9pamrizJkzTJgwAXd3d3r06IGcnByxsbHExsaiq6vLhAkTaGxs5MmTJ5ibm7f5HKBVytLY2Ii+vr6QZxQUFCAvL4+hoeFnVwxkUV1djbe3N2pqapSVlREbG8vOnTupqqqif//+eHl5UVtby927d8VDLCkpibKyMuTk5Bg2bBi3bt0Sieu8efOEZKulpQVdXV3Bqi4qKhI4sdraWsrLy4mLi+O7775DU1OTDx8+EBoayogRI7CwsEBdXV24FQ4cOBALC4t/xZSWdYt69+4tOh//jJqaGm7dukVRURHe3t6oqqri5eWFra0tpqam3Lt3j1OnTlFcXCwY0DJm8tOnT3n79i1v377F2tqavn374unpiZmZmdjYy2zCZRPwsnZvWVkZHz9+5Pnz57i4uKCoqCgoC+0JDQ0NcnNzxVpy7do1rK2tcXJyEo5FkiTx/v17gRf08vLC3t6e5uZm7OzseP78OWPGjCEgIIBly5ZhbGyMuro6jo6O5OXlsWDBAhQVFZkxYwZr167l3bt3GBsbk5WVRUpKCnZ2dnh5eQmKhoKCAuXl5RgZGTFp0iT++usvMjMzefDgARMmTGj3EGxUVBRPnz6lrKwMR0dHNDU1kSSJd+/eUVBQgIODA3JycpSWlvLll19SVFTEiBEjRPJZW1vLp0+fxGdfUFBAcnIy8vLyWFlZcevWLT58+ICBgQGdO3cmKSmJe/fuYWVlJRBZampqJCcnc/HiReGsFxgYSGZmJvfv38ff3x9HR0ccHR05c+ZMu44PWlFf5ubmbcg2cnJyaGlpcevWLa5du8bkyZMJCwsTEq+6ujqsra2ZMWMGISEhxMfH8+OPP1JcXIyZmRkfP34UDO7379/z7NkzfH19CQkJ4dmzZzx79ozQ0FBRobWwsODNmzdtPtuuXbsyePDgNnxYfX19HBwc2pWgx8fHi6rx8+fPSUtLQ0lJiaamJry8vIRluayS36FDBwwNDbl37x6PHj3CxsaGsWPHoqurKzjqCxYsEPezlpYWHTt2RJIkQaSA1m66sbGxkK3I4ssvv+TFixdcunRJbJ5lx/jixQsxNPb/inYnr+rq6qxfv54dO3Zw+PBhdu/eTXp6OiEhIRgYGIibR2YXtnv3bj58+MC0adNYtGiRONAhQ4Zw+/Ztpk+fzrp16zh06BDwf9qo//Rj//jxI7a2tgLqXl1djZ2dHUuXLhU3opqaGiNHjmTGjBlAqybXzMyszUn/nLh27ZpglBUWFvLDDz8QGRlJjx49sLOzIyoqikePHlFfX09ycjJPnz4lLy+PRYsWMXPmTM6ePUt6erpgiNbV1fHHH38wY8YM7t69i5KSEhcvXkRbW5uHDx8yc+ZMEhMT8fHxoaWlhRkzZmBkZMTw4cPx9vYW71+GlGlvhe5/i9TUVFRVVdtM87969YqffvqJoUOHsnDhQhISEigrK2PJkiXCLMLa2hofHx9iYmIwNDRk8+bNBAQEUFpaysKFC4mKimLgwIEUFBQwd+5cvv32W2bOnImamhoXLlxg/fr1mJiYiERUX18fVVVVEhIS+PPPP3F2dmbx4sWMGDFCLCIZGRkoKSm1K3mV3aQynMn48eMFmUHWYv7nIiWrTMjJyQkNs8ziTtYyl117T5484eDBg8TFxbWpBqirq2NmZsbdu3fZt28fAwcO5Msvv2xzvubNm8fixYtFsiBjQvr7+5OZmdmuc7hy5UqglWkr29hcvnyZtWvXAq2Tou/evRMV8WnTprFnzx5qa2spKioiKCioTZtKkiSePXtGWVkZ+vr6IulWUFAQU6BmZmYcPHiQkpISqqurhT4cIDMzk6ysLCIiIjh8+LCo2BcUFGBiYoKxsTFHjhxp1zGOGzeOL7/8so0euKmpifr6emxtbRk7dixJSUkkJydz+/ZtOnfujKOjo0Dq1NfX4+7uzuDBg9HX1+fhw4ccOXKE2NhYjh49yt69e/nxxx9ZuXIlWlpaWFlZkZ6ezrJly3BzcxNIoZqaGpSUlNDS0hLIG0lqtXaU/gUpQhYeHh5tJCPJyclCrgKtm1s7Ozu++eYb5s+fT11dncDIFBUVMXLkSAwNDdm3bx+9evVi+fLlGBgYUFBQIDzke/bsiZOTE8rKyhw8eJDly5ejqqrKyJEjGTRoENu2baO2tpYDBw4IZ7SdO3dSUlKCjY2NsKCtr69vd1USEJsOGVFE9tlJkoS8vDwKCgrk5+dz48YNsrOzGThwICdPnkRZWZkPHz4wadIkHj9+LJzbFBUVefz4MRcuXBB65IqKCsrKyvjjjz+YNGkSQ4YMEd0MRUVFunfvjouLC2pqaqK9L2OnbtiwgfDwcGbOnEl2djZRUVHtPkZZK7esrIyzZ88CsGnTJgwNDenduzfFxcXCOEdJSQkrKyv69esnUFnv3r0jKSkJSZLo27cvAQEBbSxs6+rq2LdvH3Z2dsycOZNHjx4xbdo0MjMzmTp1KuPGjRMFkQsXLnD69GkCAgKYNWsWQ4YMoVu3bvz111/4+vr+q2v13Llz7NmzB2VlZaZNmyY6kgkJCWhqahIYGEj37t3p0aMHPXr0oKqqCnV1dWpra0lKSiI1NZXKykpUVFRITEwkNjaWu3fvCpvua9euoayszIYNG1i1ahWPHz/m06dPbTZLeXl5HDx4kM2bNxMYGEjv3r3p168f5ubmghCyc+dO8vPzP29S/X/Er7/+yubNm4FWmWBjYyPa2tp07tyZzMxMbt68ibe3N2FhYcjJyQktp4eHh0AvNjc3C2e+RYsWce/ePRISEhg2bJhAa8rJyWFkZMS2bdvarN0NDQ0UFRXx6tUrzp07x7Fjx2hoaGDevHn4+/tjaGgouL7GxsZ4e3tz8ODBzz6+yMhIXFxciI2N5eHDh1haWqKqqsqzZ8+Ehhhaq7OSJAlnrEWLFnHz5k309PSora3l6tWr7N69m7y8PIYMGfIfroIPHjwgPj4eExMTtLS0qKysJDk5Wfy7zK2ze/funD9/nqlTp7Jt2zacnJxErrN3714OHjzI9OnT/5/H1O7kNSwsjMTERNHecnFxITExkVOnTjFw4EDRKpZZovbt25fg4OA2Np0dO3bEwsICNzc3jI2NuX37NtnZ2RgaGgpe6JAhQ3BxceHQoUP8+OOP1NTUMGvWLHr27ImGhgZ5eXmcPn0aIyMj+vfvz7hx44T2aMOGDRw+fJjFixczderUdh3f6tWr0dDQ4NGjR+zbtw8bGxvmzp0rKlpDhw5l3bp1XLt2jVOnTgn/apn2Sltbm/r6eq5evSr8iGUJtZeXF127dhULiKGhIYMGDWLVqlUMGTKEpUuX8uLFCzw8PBg8eDDXrl0jPj6eRYsWCf9haL25mpqa0NDQoKqqqr2nEHd3d6ysrNoAufPy8njw4AEfP36ka9euYuG1tLREXV2dmpoa+vbtS3NzM19++SVqampiiGT16tVERkbi7+9Pnz59OHjwoACQd+3alXPnzlFSUiKA7p8+fQJab/aMjAyMjY0F001LS0sklo2Njfj7++Pr68sPP/zw2ccnSRKvX79mwIABhIeHt9FP2dnZ0dDQ0AYzlpWVRWRkJO7u7nz99desWrWKY8eOsWXLFkJCQujXrx9Xrlzh+++/p6ioiKamJpycnHBzcxNV1L59+6Kmpka3bt1YsGABzs7OpKWlcfPmTQBGjx4tEsJXr15x9epVSktLMTU1paCgAHd393YNUchA0mPGjBF64LCwMH744QesrKzQ0NBg3rx5QsohM8WwtLRET0+P48ePEx8fj66uLkOGDMHb2xtPT09SU1N58+YNzc3NooWWkpLCnTt3sLGxYd68eXTo0IH6+vo2renw8HAMDQ2JjIxk9erVTJw4ERUVFa5cuSK8tNsb9fX15ObmYmpqKlp5VVVVVFdXY2RkRN++fZGXl+f169c4OzuLTcuHDx8oKytj0aJF9OjRg+zsbGJiYrCxsWHSpEkEBgaKoc8pU6bw6tUrqqurSU5OJisrS1RF3NzcmDRpkkh4AJFI/9P5BlqtcH/++ed2mRTExMQwePBggdAxNDQUHGRbW1sxFKqpqYmSkhJqamq4ubnh4uJCfHw8jY2NBAQE4OHhIVz+qqqqaGhowNzcXKAK1dXVMTIyElVmgNDQUDw8PHB2dqalpUXo3KFVrpGUlESPHj2wsbFBXl6e8vLydgP8Ac6cOUN4eDhycnLU1dWRmJhIc3MzDg4OaGlpoaKiQmBgIIWFhbx8+ZJXr14xcOBAlixZgp2dHWvWrGHOnDmkpKSgpaVFv379UFZWFvpOmaucJLVaGWtqamJjY4OBgQHFxcWkpaVhZmaGjY2NuKaVlZUJDAzEwMCAV69eYWNjI/A9Ghoa7Nmz57OPLyMjA0VFRSRJ4vr169y7d4/OnTsL6VRsbCwVFRXo6Ojg4+PD7du32b17N6ampiJ5HTBgAFpaWsLnXUFBQVT5bWxs+P7770lLS+Pjx4/cuXOHEydOiGFiWbtWFjJDnZEjR4rveXt7o6SkJAZPZQOZ7Ynu3bvj4eFBaGgokiQJ5ysTExPq6+vFYBIg7pe4uDgOHz5MZmYmXl5edOvWjaSkJGFVbWdnR3FxMZ6enowdO5aRI0ciJyeHv78/ZWVlortRXl7Ojh072LdvnzAgqqmpQV1dHTc3N1asWMHx48eZOXMmrq6uhIWFtXuj/Msvv1BfX8+UKVPw8PCgrq6OkydPCgvT1atXt5m7yMrKYunSpWhpaTF9+nRMTU3Zv38/hYWFfPjwgefPn/Pp0ycSEhI4dOgQXl5ejB07ts1aoqenx8GDB7GwsCA0NBRzc3MhiwwNDcXGxoawsDBhThQfH8/27dvR1dVl4sSJ7Tq+srIy9u3bh4uLC3PmzBEdYmNjY0xNTUU+98+qvKWlJbNmzaJHjx7U19dTV1dHcXEx8vLyQtP66dMn8vLyqKiowNLSEkNDQwYPHkxlZSU9e/YkJSUFAwMDoqKi6NSpE2/evOH58+cYGxvTrVs3xo8fL/BZsrCysvqsjXK7k1cfHx9Wr14tuHixsbGkpqaSl5eHmZmZSF719PTw9/dvM20pq+BERUURGRmJlZUVrq6uXLp0icOHDzNq1Cjev39PdHQ0bm5uBAYGUltbKx7Aurq6Yjf2/v17Dhw4gKurK+Hh4ejq6mJlZUVSUhLx8fGkpKSIQa/2hJ2dHaWlpWzatImCggLWr1+PsbExKSkpxMTE0Lt3bzHw0NTURGBgIAsXLmT79u3s2bOH4cOHi3bPoEGDRKu2qKgIBQUFAevevXs3SUlJzJgxQzxIKyoq0NDQwNLSUjADa2trcXFxQU5ODmNjY8EmlV1k7aUpQKs2p7i4WOzu09LSeP/+Pba2tjg4OJCUlERBQQEaGhrCMW3w4MH4+fmRnZ2Nm5sbioqKJCQkCF4hIKriysrKqKiooKenR1paGhcvXqSyshJ/f38KCwtpaGhAW1sbZ2dnCgsLsbKyauMQlZGRQUtLi2hdyHRUnxt3797lyZMnBAcHi+tPNhzzT8cP2XCg7GGqqamJgoICcnJypKens2fPHqqqqhg0aBCJiYniOHv06MEXX3yBj48PDg4OovpYU1NDWVkZ/fr1Q09Pj5SUFM6fP4+ZmZm4DnJycrh69Sr5+fl07doVGxsbysrK2ixqnxNPnz7lr7/+QklJCX9/fxobG4mNjWXo0KF06NCBmpoacV2tWLECZ2dnPn36hKOjI56enmzcuJGzZ88Ka9Q+ffqgpaWFoqKisInt1KkTvXv3Ji8vj4cPHxITE0O3bt0YPHgwxsbGKCoq0tzczLt373Bzc8PGxoYHDx7w66+/Ym5uTr9+/SgsLCQ1NfVf8XovXLggtJqzZs1CTk5OTJwbGhqira2Nrq4unp6eompYUlJCcnKy2DTX19fzxx9/8PHjR3r37k3fvn3FdZ+fn09SUhKWlpaiJWlsbEz//v2F3aqKioqoAKSnp9PS0oK+vj4qKiptJEnv3r3jyZMn7Upem5ubuXPnDgEBAfTq1YuOHTsK0w5ZGw9ak/iamhqqq6upra1lxowZvH79mqioKDp27MicOXOor6/n4cOH4nc7dOjQZhhQVuWSRXp6Ot7e3qxcuZLExER2795NeHg45ubm9OjRg5qaGnGvWFpaUl9f/6/c/K5du8agQYNEN00mCVJVVRWsWnt7eyIiImhsbGT79u08fPiQ9PR0du/eTUhICHPnzmXZsmU0NTXRpUuXNtVRfX194ahXW1vLvXv36NixIz179kRbW5vc3FwqKytpamoSxySTJnXs2BFjY2PS09O5fPky7u7uYgP0uSEbivz777/Zt28ftra2zJ07lw4dOpCQkEBcXBz29vaiQ5WdnU16ejoHDx5EkiQCAwNFu/t/RmNjI926daNbt27Ex8dz8uRJjh07RmxsLJaWlvz4449iCCsrKwtjY2NR+CgrKyMrKwt9ff02A1CJiYn8/fff7TrGPn36MGPGDPEeCwoKqK6uxsLCos31Xl5ejry8PFpaWsIuvbq6Gn19fdzd3encuTOPHj0iJSVF0HPS0tIwNTUVA6jV1dXIycmhpKQkElQtLS3q6uqwsLDgyy+/ZO7cuairq/P+/XuxoXFwcGDRokXU1dXRo0ePdiev0Npx0NTUFHSB58+fc+LECRYsWCDsYWWbH3l5eRQVFUlJSWHdunW4u7sLjTi0bhDevXtHTEwMpaWlWFtb4+3tLXiohYWF/P3331y5coXg4GBCQkKQk5PDwMCAvn37MmfOnP+Q2FRWVnLnzh0UFBTamJd8TkRERHDjxg2Kiopwc3MTZij/DNkAc1NTE0+ePCEvL4/BgwczdOhQ9u7dS2pqKo6Ojri6uvL8+XNMTU1RVlbm2bNnFBcXM3To0DaOlAEBAZw6dYry8nIaGhooKSnh48ePvHz5EgUFBUHqGDZsWBsddUREBEFBQRw/fvz/eUztTl5VVVWJiIhAUVGR+Ph4YmJikJeXZ+zYsQwcOJCmpiZKS0vbYJ4uXrxI586dsbCwYM+ePfz000+UlZVRUlJCZmYmFRUVBAQEMGfOHPT19Xn58qU4cQsWLMDNzU1AjWVTs3Jycnz//fdYW1u3EaDb2NiwaNEiwsPD6dq1a7uBzNu2bePNmzdil6murk5jYyMrV67kzJkznDx5kj179oihDmjVAWdmZqKjo8PLly9RU1MjODgYXV1dnj59ipeXF42Njdy4cQMfHx8BZr5y5QphYWGi9XHmzBkMDQ25desWvr6+rFq1SmiVGhsbmTJlCgoKCjQ0NAiN5r9pA71+/ZpXr14xaNAgGhsb2bp1K+/evWPPnj2EhYURFxfHqlWruH//fht48oMHDzA0NOT7778nJSWFX375BR8fHzZt2sSGDRu4cuUKdXV1mJiYYGdnJ2DG8fHxQGuL+8OHDygqKjJz5kwWL15MTU0N7969w9HREUNDQ2pra5kwYQIGBgYcOnSIyMhIvvvuu3ZV7iRJoqqqqg1pIi0tjczMTGHBefHiRQ4cOICtra1ovZ04cYK+ffuioKDAixcvAIR22dnZGXd3d968eYOBgQEhISEoKSmRkZGBubk5tbW1bN26ldu3bxMUFMSaNWuwt7dnzJgxbeDuWlpa9O3bl5aWFjp16oSRkRH5+fns2rWrXefwq6++wt/fn4aGBnbu3Mn58+dpbGwUHYv6+nrGjBnDunXrsLe3p76+XuCE5OXl2bhxI/b29pSVlbVBIFVXV/PkyRNSUlLo1q0b3bt3FxpEeXl5AgMD27S6Zfq6ffv2oaamRlhYGKNHj8bFxQUlJSX69etHY2MjHTp0aHfFJzU1lfT0dD58+EB1dTUzZ85EWVmZ/Px8oWvftWsXxcXF9OnTh/z8fJYsWUKXLl1Yvnw5gCA+yB4QBQUF1NXVYW9vT0pKCjt37iQ9PR0tLS0SEhKwsLBg1qxZlJaWEh0dzZEjR+jbty/a2trs37+fs2fP0rNnTxYsWICVlRV5eXm0tLQQFhaGl5dXu6rn69ev56uvvqKurk4MYCQlJbFr1y6GDh3KsmXLgNak4OXLl0RFRYl7JyAggEuXLvHo0SOmTp2KioqKaPPL4p+uPhoaGvTu3ZsnT56QkZFBXV0dXbt2xdzcnNevX7NgwQKio6M5fvw4S5cuJSgoSJiQmJqatnsYTRb/HNpRUVHB2dkZRUVF6uvrSUhIICsrC11dXRwcHPjmm2+wsLDg/PnzfPr0iQsXLtCzZ09xv5mamhIXF9cGuSYzcJGRBuLj47l//z4lJSV07NiRgIAACgoKxMNSJpU5e/Ys58+fp7KykrS0ND59+sTo0aOFhfTnxvfff4+cnBzHjx/nxYsX7N+/nyFDhlBSUkJ5ebmYpm5qasLb25vu3btTUVHBpk2bWLBgAd988w1hYWGkpaWhq6srBoeANnKZ9PR04uLiUFdXF4QNmaZ04cKF3L9/n71799KrVy8MDAz46quv+P7771mwYAFLly4FWj3s169fT0hISLvQfD4+Pm2e58bGxmRnZ3Pr1i2Cg4NRV1cnJSWF+Ph4evXqhby8PNHR0WhpafH999+jo6ODnp4eWVlZ5OTkUFJSwqNHj7Czs6O8vJwjR46Qk5PDsmXL6NWrFykpKaSnpws7W3l5eb799luGDBmCmZmZ2DTu3LmT+/fvc+XKFTp16sSPP/5IU1OTQKW1Jzw8PIiNjRUVc2i1xa2pqWmTKMqGl1VUVDhx4gT5+flUVFTg4uJCSUkJr1+/xt/fHzc3N44dO0ZdXR1jxoyhW7duFBQUoKqqSlRUFCtXrqSpqYk1a9bQv39/sSGQk5OjS5cuAu2Ynp6OJEmYmppSVVWFh4cHLi4ufPHFF+K5+jlhZ2fHV199xbx581i1ahVr164V8siSkhIxnJ2ens6dO3d49uyZME6C1k1PQ0MDLi4u3Lt3j/z8fCwsLDA0NBQbUSUlJaKjo1FUVMTf35+6ujqOHz+Oqakps2bNQltbm1OnTnHlyhXk5OSYOXMmhYWFPHnyBBsbGzFgaWlpib29/f//yauWlpZ443Z2dnh6elJfX09QUBDKysrCQQNaq0Nbt26lpKSErVu30tTUxIkTJygrK0NNTQ1XV1dKSkrE7z19+pSwsDBCQ0OpqKigqKgIJSUl9PT0ePfundD/1NfXY2FhQWBgoHhfcXFxpKSk0NDQIHiw0LpTak/ExMSgoKDAvHnzMDIy4vjx4ygpKTFy5EjS09P58ccfAejXrx+Ojo6kp6dz8+ZNunTpQo8ePbhx4wY1NTWMGDGCly9fsn37drZu3YqdnR3nzp0jKSmJdevWERAQwO3bt/nzzz+JjIwU4uuioiKKior4+uuvmTp1KtevX+enn35CWVmZJUuWtJ40RUWUlJRobm7+VzdqXV0d8vLyAodkbm5OeXm5KN27urrSpUsXnj59SktLC926dUNVVZUZM2ZQWVnJu3fvREXOysqK/v37U1lZiZaWFr6+vrS0tAhRvqWlJV988QXa2tqUl5fz+vVrtLS06NWrl7hOcnNzyc3NRVdXlwcPHlBQUICtrS1aWlrU19e3WxphZmZGRESEQF9duXKF+/fvC8mAzAe+tLSUpKQkampqsLCwoGPHjmK40MrKCisrKwICApAkibq6OlH1r66uRkFBAXV1dbGJiI6OZvfu3UK3duPGDUxNTQkPD6eqqoorV66Qnp6Oi4uLuG5lOl6Z+0h7z2GvXr0oLCwkPT0dZWVl9PT0hDVhU1MTU6dOxcbGhtLSUuFEFR0dTUZGBqNHj2bDhg0AbToUjY2NuLq64uLiwoABA7C0tEReXp4OHTogLy9PVVWVsBqVWRW/e/eO8+fP09zczMaNG0UVFPhXbFBZeHp6Ym1tLTRslZWVYlhKRUWFuro6FBQUxNeZmZnEx8e30crl5OTQ3NyMtrY2jY2NxMfHo6GhQZcuXURl3NfXl4kTJ3Lz5k1Onz5NWloanp6emJubY21tTU1NDVZWVmITUFNTI/BpFRUVwlnOzs6uXcmrnZ0dFhYWlJeXt9H5JyUltRlwa25uRk1NTSDMLCwsKCoq4t27d6SnpzNlyhR69eqFpaUlp0+fBqBv376isiJJEioqKjg4OAi+5j9xQtXV1aI6evr0aZEAXblyBUNDQ3x9fcUms70RHh7eZrPz4cMHzM3N0dbWxtHRkczMTNF9sbKyYvHixURERHD37l0uXrzInj176NmzJ99++62wHtbW1mbo0KG8evVKaMVl593Z2ZlRo0YJiY6GhgYWFhaoqam1KXIoKysLLb3MoldBQaHdVtSyjoKDgwPv3r2jvr6esrIycnJyhFZe5ueuqqoq1qSYmBgaGhrw8PAgIyOD1atX079/f/r06UNzczO//fYb+fn5BAUFCSanv78/ubm5PH36VFSwzMzMUFZWRpIkkXg5OjrSu3dvGhsbRfclLS2NM2fOIC8vT2hoqBgK/pxoaGjgxYsX2Nvbo6urS319PadPn+bOnTskJCRgb2/PgQMHUFRUxNvbm6qqKh48eICvr68Yerxx4waPHz8WGKqUlBSysrKwsbEhMTGR69ev4+fnR0BAAGpqauI5n5GRIaq8/3zev3z5kvz8fFRVVXnw4AEGBgYYGBjQ0tLyr3BugYGBfPjwQXTACgsLUVBQYPny5dTW1gq3v5KSEkHlmDBhAi0tLTx69AgDAwOsra1RV1enurqazMxMhg0bho+PDx8/fhQ0JGjtliorK9OpUycx3K6hoSEsXKH1efL999/j7+/PmjVrkCSJ2tpa3N3dCQwMbDfLNikpSSA5FRUV25CAZIOdgKiSdu7cma5du1JfXy+GrkxMTDAzM8PLy4sXL15w8eJFIV8cOnQopqamnDp1itjYWPLz83n58iUPHz5k0KBBosjWuXNnPDw86NWrl8BwycnJCZc/aJVk/XMT8X+LdievkiTx9OlTOnfujKurK/PmzSM2NpbIyEgKCwtxcXHB39+fjIwMvvrqK169esXEiROxs7OjqqoKCwsLYmNj8fHxYfjw4TQ1NXH79m0hNHd2diY4OBh3d3eqq6u5e/eu8EJeunSpaC9XVFQI71xo3T3Ipv4HDRrE6tWrhUC6PfHDDz+goaEhuLSPHj0S+hwZJmbdunV88803XLt2jby8POzt7VFXVxfgbBnA98GDB8TExFBeXk5zczMpKSm8f/+esLAw3N3dCQ4OJiEhQWBejh49yuvXr5k+fbqYGk5MTERFRQVbW9v/WFjLy8vFcEd7okePHnh5eQnP6OXLl/Pw4UOuXbtGbm4uffr04aeffhLDMrJ2kb29Pbdu3eL58+cMGjSIFStWCN7ciBEjGDx4MOXl5Vy8eBFDQ0M6dOjA5MmT8fT05O3bt/zyyy8UFBSgpqbWhlMnS3gvXbpEbGwsmzdvFvqsfv364ezsLMT0nxONjY107doVaNX6/PDDD2RmZrJz507MzMyoqalh/Pjx9OjRg5cvX9LS0kJdXR3h4eF069aNiooKamtrUVVVxdramrKyMoGfkn3u8fHxBAQEiOGF5ORkcnNzWbp0KYsWLWLevHm8ePGC8+fPIy8vz5w5c8jKyqJXr16cPXsWY2NjkpKSUFBQwMXFhfnz54tk8nNi/fr1aGlp0b9/f6ZMmUJERAT19fUoKyuTnJxMWlqaqHLk5ubi7e1Nc3MzW7Zs4fr16ygqKgqTCB0dHXEvderUiRUrVqCmpoaOjg75+fmkpKRQUlJCWVkZSUlJREZG8vz5c1paWjAxMcHe3l7oFz9+/EhGRgZ6enr/0aZub8joATKNt7q6urDzlZOTQ1VVle3bt6OkpCR0W1OnTiUrK0sA7s3NzamvrxeVIFdXV7Fwy6rOU6ZMYcqUKbx48YK4uDji4uJYuXIlW7duRVVVVWg9J06cKCr3tbW13L9/H3Nzc7p3787Nmzf5+++/24UhunnzJnfv3m3DwwwPD8fJyUlUIWTnx9vbGycnJ5GQ1tbWiirTq1ev6NWrF/X19WzcuJGsrCxu3rwp7gEZvD0nJ0cke7KN4/nz56mtreX48eM8ePCAcePGYWNjg4uLizCXOXbsGC9evGDDhg1t3tfnxD8JDJWVlRw7dgxtbW0WL14stKd1dXVoaGgIWZmlpSXOzs4cP36c27dvY2ZmxnfffUd0dDRv3rxhwYIFLFq0iP3793PkyBE+ffok1tjly5cLfGF8fDx5eXk4ODiIwTGZHeXAgQMJCQmhsbFRDBZ26NChDWv3c6KsrAxdXV0WLVqEpqYmu3fv5sSJE0ydOpWxY8dSW1vLlStXiI+Px83NjU6dOqGtrc3EiROZNm0apqam3Lp1C21tbfHaBw4cYOHChSgqKlJXV4ezszOenp4YGRmJCjm0SlVGjx7Ntm3bSEhIENpIgCVLlrBo0SLRXt+0aRNubm7s27ePDh06tCt5ff/+PXfu3GHcuHHo6upy+/Ztbt68SWVlJZGRkRw8eJD3798THByMnJwcNTU11NXVia7npUuX2LZtG3V1dQwYMICIiAhu3bpFXFyc4BYXFxcL/bhMO6mkpMS9e/dEBXPKlCn07duXJ0+esHv3bgIDA/n9999JTExk06ZNKCoqEhQUJDiy7QlbW1tsbGxQUVHh3LlzbN68GSMjIzF8eu/ePfT09NDQ0EBeXp78/HwePHjAw4cP2bZtG5aWlkyePBk9PT127dpFZWUlV69excbGhnHjxmFoaMjDhw+BVvJG9+7dSUtL49y5c/Ts2RNHR8c2CeXbt2+5d+8e5ubmyMnJiUGvxsZGkpOT201vGT16NJmZmYSHh7Njxw5heQ//Z7AZWjvXRkZGyMnJoa6ujiRJmJmZMXfuXOrq6igrK8Pd3Z3Q0FD27dvHlStX+Ouvv8QmSWY0kJycTHNzMyYmJm0q1yEhIVhaWmJgYEBdXR2enp7Y2NigqalJc3Mz8vLyYgPw36LdyeupU6fw8PAQrVBVVVVUVVU5dOiQ0A0tXboUIyMjoQn88ssvxe5i3LhxNDU1kZmZKZyx3NzccHZ2FrgYWRJTXV3Nq1evgNYBAxmjEFpbKrLJaEAMJvj4+NCpUyeKioqwsLBoN9Punyc1IyMDLS0tcnJy2LFjB+fPn0dVVRVfX1+RrJaVldHS0sLp06dpaGgQN9iLFy9Ekt6nTx/xEExLS2PLli0CgdWjRw9cXFwwNjamb9++9OvXT0ySQytzbd++fW2OPT8/Hx0dHTQ1NdttwgAIykBiYiJycnJ07tyZgIAAcnNz21RyZdqVuLg4zpw5g729PcHBwVRVVfHkyRPs7OwEIiYrK0vAiDMzM+ncuTN+fn6i3Z+dnS00o3V1dXz48IEXL15gY2ODoaEh8vLyZGdno6mpKR7k6enpwtO7PZGVlcXjx49FW19OTo4ePXoIfI6s7dStWzecnJxoaGgQ17Ps/Kempgr9tZycHF5eXmzfvl24br1+/ZqysjKsra0xMDDg3bt3QgN04cIFMamenJyMnZ2dqKpFRUWxZs0aRowYgZ6enqgSttedqXPnzlRXV6OrqyvO54cPH3j48KGgbDx//lzwhBsaGnj16hWqqqpMmzZNaOBOnjyJurq6aCHJ0F3QugNubm5GTk6OmJgYrl+/TnZ2Njo6OvTo0QMVFRUBfjc0NBSJh6KiIhUVFTx48ICXL1+Kwc72RmNjIwkJCQLDImt1/nMT9882uampKWPGjBEVQtnC26NHD5SVlXFycmpTBezXrx8mJiaYmJhw/PhxwRENDw/H09NTtN2rqqrYuHEjXbt2FQ5s2dnZ3Llzh27duomHdkZGRruSHwsLCywtLcXw3OLFi/Hw8KCoqKjN4i27XouKikhMTMTKygo1NTXWrl3L2bNnBVrG09OTH3/8kQcPHpCfn09JSQn6+vooKipSW1vL8+fPBUf75MmTpKamEhkZSVlZGU1NTejq6tK1a1fev38vBrtsbGxQU1Pj+fPn3Lp1S2i3Pzc+fvxIbm4uLi4uogJ89uxZ3r59y9SpUwkMDGxTKc/NzeXNmzcCMaimpsb79+85duwY1tbWTJgwgaSkJH7//Xf8/Pzo1asXr1+/JiEhQbQvZUmRzFFPNtQFrWtfS0sLHz58oKmpic6dOwtDmszMTO7cudOu4/vtt98wMDBg1qxZjB07lg0bNlBbW4uOjg5jx45FTU2NTp068eTJEx4+fIgkSQwfPlxct69evSIjI4O1a9eipaXFnj17iI6OZvz48Xh7e2NlZSXcuGJjY4mLiwNaTUqCgoJEwi8z1ElISOC3337D1NSUoUOHoqqqyv3797G0tGTixIn/ygWusLAQPz8/Lly4wNatW7G2tmbq1KnU19eTk5ODo6MjY8eOZciQIZibm2NiYkJ4eLhY+3V0dMSQZEhICJqamjg5OXHz5k1evHhBc3Mz1tbW6Ovr09LSgiRJ4j6VUXnS09PJz88Xzn6enp6Eh4djZGREXl4ekiRhZGSEvb19u6vn0KrPlNEp9u/fLza7LS0tZGRkcOnSJRwdHenWrRsTJkwQYP9Dhw5RWlqKkpISqqqqyMnJCTTgtGnTiIiIEAzahQsXMnz4cAICAtDX16e2tpb169fz888/M3LkSIYOHUpZWRk3b96kpaWFbdu2kZGRwW+//cZXX31FcHAw586dazeZBlq5wQ4ODlhYWBAZGcmhQ4eora0Vw70WFhaEhYWhra1NQ0MDUVFRyMnJifcqi9jYWJ4/f05WVhYhISEEBQUJUgH8H5KIjGOspaVFp06dqKurQ1VVVXTZHz9+zNu3b8UaLAuZpvhz9PXtTl5zc3OFnkyGrWlsbMTQ0BAdHR0x+DBz5kx2797d5nerqqpQVlbG0NCQZ8+e8f79eyIjIzlw4IBw2Dh8+DBr1qwhMzNTJJ6BgYGcPHmyze5ZQ0OjzcCEtbU1U6ZMEUgUWbS3rZ6TkyN2O506daJHjx7cu3ePxMRE1NXVsbe3Jzs7mwsXLnD8+HEeP34sfrdLly4sXboUbW1tjhw5QlVVFW5ubpSVlYnBK9kA08WLF7G1tWX37t2YmZlx6dIlunbtKqZEy8vL0dbWJjAwkOLiYpSUlKitrRVfy1wynj9/3q7jk4XMwKGsrAxlZWVsbGyEa0pzczMfPnzA1NQUHR0dTpw4wU8//cTmzZtZtGgRV65c4ejRowwYMEAkvWfOnGHXrl3k5eUJOoAMRv727VshQYDWB0htbS2vX78WQPuuXbtiYGBASkoKiYmJGBsb8+zZM5SVldvowD4nMjIyROV6yJAhwq6vvr6e9PR0jIyMBErnn1Psss3Avn37BHvy/fv3WFlZsWvXLkaPHs3p06e5fPkyCQkJXLlyhcrKShwdHXFzc2PEiBHcunVLuOWEhITg5OSEhYUFy5cv59dffyU3N1fILgICAlBSUkKSpDZtk8+Jf9oN19fX8/r1a9auXcuNGzcYNmwY33//PWZmZujo6BAUFERVVRW5ubkMGDCAMWPGAP+nwjNmzBih07tz5w4ODg507NgRPT09OnTogLKyMps3b+bjx48EBARgY2ODsbExI0eOFEL7qqoqJEkSwxoPHz5k165d3L9/n9DQ0H+FWYqLi+POnTuoq6vj7++Pq6trm8T6nxUD+D+bMll7Dlo3ubLrp7a2lsuXL1NSUkKfPn3EoMyVK1fYsmULb968YfDgwRw5coTi4mIuXbrEkCFDKC0t5dSpU5w6dUokOzIphSRJVFdX4+XlxZw5c7h169ZnH5/MsScqKooffviBbt260atXL54+fYqRkRHBwcFtfv7u3bt89913fPHFF/z++++MGTMGfX19tmzZwpkzZ/D09GTAgAG4urry6tUrXr9+Te/evVFUVBSEDWtrazIzM4VcRlFRkQ8fPrB27VoWLFjA+fPn2blzJytXrsTa2lpQQP6tHeXjx485f/4848aNY+TIkfTu3ZsDBw7w/PlzDA0NRSu4sLCQ2tpaUlNTefDgAdHR0ejq6rJu3TpiY2NZs2YN69evZ//+/URERLBz504GDhxIjx49xPmVVZ737t3LwIEDUVJSoqCgADMzM5qammhsbERNTY3a2lpiYmJ48+YN3bt3F1PuHz58aLcu+9OnT9y4cQMHBwd8fX0ZMWIEx48fx9DQkJiYGFxcXASw/t69e1RWVlJSUoKZmRlJSUn88ssveHl5ERoayqZNm1i6dCnTp08Xm9/79+9z8+ZNDh06xJs3b0hJSaF3794cPnwYPT09JEkSE+rQmgzLDH9Wr15NREQEM2fOFNXo9sqToPXcDxkyhHv37nHo0CG2bt3KqFGjxN+TbfxlkhoVFRW8vb2pr6+nubmZ3r17C6TSx48fxXNRR0eH48ePi4R82rRp4p6WJbE1NTW4uroKOVdsbCwjR44UdAyZa+eUKVPEWtTetRRaCTzu7u4kJiYKCd+gQYME8qumpob379/TrVs3QQ+C1nVPXl6er7/+mqFDh3L9+nXBeL1//z6+vr78/vvvnDlzhoiICIqKigSlJyUlhbS0ND58+MC2bdsEfWHHjh2MHTuWX375hZ9++okdO3bg5uaGg4MDioqKWFhYtCmyfU6sWbMGKysrDh48KAxuZGFmZsa8efPw9vamsrKSX375hejoaHx9fTExMRGM1paWFjEEWV9fzzfffCM6pBUVFaSnp1NcXIyOjg4hISH4+fnR1NSEhYWFuEbq6up49uwZ7969E5xxZ2dnDA0N21i6f05Hud0rkozV+s8XcHR0ZNWqVUybNo2SkhLU1dXblMChFcV07tw5Tp06RUNDA/7+/jx69IimpqY2Ay0yh4qBAwfi7OzM33//TUVFBZmZmSJ5lemMZIM5ampq/6sXbnx8PO/fv2/X8R04cIAVK1aI17G0tMTb2xtXV1cCAwNRUlJCV1eX+Pj4Nonr7NmzGT9+PPHx8fzxxx/cunULXV1d4uLiGDlyJDY2NgwePJhevXqxc+dOsrKyKCoqwsTEBDc3NwoKCsQD/scff+Tjx49s2bKF0tJS5syZIxBVXl5eoop19+5d1q5d22bn87kh0xKrqKj8B7GgoKAAOTk5of+ZP38+bm5udOnShfT0dHJycujbty+DBg0iMjKSDRs2oKCggLW1NXl5eWhrawusiLy8PPLy8vj5+WFtbc2VK1fIysrCyMiId+/esXv3biIiIvDz80NeXp5Dhw4RFRVFv379MDAwwMLCot3DIo2NjcLo4uuvvyY1NZWsrCxUVVW5ffs2x48fp6ioiMmTJzNz5kxhsLBixQoGDBjAw4cPRQXG2NiYpqYmNm/ezF9//UVZWRkFBQVt/NVdXFwYOHAgpqamfPXVV0Brm+af+sdJkyZRVVXFmzdvCA0NFQ9XQBhCtCf+OUn+6tUrLl68KGQNiYmJFBYWCj0VtG5IXFxcKC0t5dy5c7x+/ZqNGzcKL+qmpiaOHj0qkuJ169aJ+6CkpIQrV67g5ubG7t27uXXrlki2ZA8MmYawoKCAW7ducfz4cd68eYO3tzdffPEF7u7uXL58ud3n0dvbG319fYyNjSkqKhLX5f8NmF9TU4OCgoKQgmhpaSEvL09ubi7btm1jx44d2Nvb4+zsTIcOHUhMTMTMzIxhw4bx6tUrHj16RFRUFHZ2dmhpaZGbm4uDgwPbtm1j27ZtjBkzhsWLFzNu3DhWr17Nhw8fqK+vx8DAgKCgoHYlrxcuXGDo0KF8/fXXwsxBBgQPCAigqamJ3377DRMTE8aMGYOcnBx5eXltJBhycnIYGhqirKzMlStXePbsGTk5OYwdO1YkdSkpKVRXVxMREYGHhwdPnjzB2tqaHj16UFRUJMxDvvvuO3R0dIQWVldXV1Sfe/fuzYoVKyguLm7XOXz79i2XLl0S3RQFBQWcnZ0ZPXq0WNeOHTvG9u3baW5uZubMmfTt25c3b95QWlrKpEmTyMzM5PLly1y6dImxY8eye/dubt++3aZiA63rdd++fUlLS6OpqYlz586Rnp6Os7MzJSUlbNiwQQz/9O/fX2DjZAxSX19funbtynfffffZxyfbHLx//x4dHR2++uor4Qy5ceNGvvnmG7Zu3YqXlxdubm7cvn2bgwcPkpKSgoqKCn5+fvTp04cHDx6IjpuVlRUtLS2sXbuWP/74AxMTE3R0dMSzTKZv/+f5j46OZvHixXTt2pW//vqLuXPnkpaWJqqe0KoTvX//fhsb7M8JWeclPDycsLAwDA0N+fjxIyYmJmJ92bdvH3v27MHIyEjQFmTzLn/88QeWlpYsWbKEU6dOMWfOHJYuXUrHjh3brHv/7DbEx8ezfv16TE1NmT59OkOGDCEvLw93d/c2572+vp6OHTsKecqzZ8/aPJfbG126dGHDhg3MmzcPAwMDmpubcXNzY9asWcTHx/Po0SOxOZ4/fz5nz55FVVUVf39/FBUVuXDhAo8fPxY4q2+//RZoLcBt2rSpjW2tbLLfyMiIRYsWMXDgQNTV1fH09BTXepcuXVizZg1v375lz5491NTUtOnCfm68evUKKysrfHx8hGTn5MmTPHz4EE1NTfr160d2djbLli3j6tWreHh44O7uzuPHjzlz5gwTJ07E3d2dvn37igJeXl4ev/32GxUVFSgpKVFaWkpycjKNjY1UV1ejo6ODk5NTm7kHmWFQz549UVNTIy0tjV9++YWmpiZGjBhBQEAAR48eZcOGDW00zv9btDt57dChA2lpaWLBi4iIEBqJlpYWfH19kZeXp6ysjE2bNqGpqUlERAQtLS0kJyfz6NEjdHR06NSpEz4+PkiShLm5OXV1daxdu5Zjx46hrKzMwIEDCQoKQk1NjTdv3hATE4OioqJ4KJmYmNCxY0cxQCabKJUNIEFrC6W9Nmo5OTnEx8ejr69PTk4OKioqDBs2DEmSiIyM5MGDB+Tm5qKtrc24ceNE23Xo0KHY2toyadIkAeXt0qULycnJlJSUkJKSQseOHQkNDWXz5s08efJEoIYAsYP59OkT27dvp6WlheXLl1NRUcGbN2/Q1tbG0NBQUBgqKys5e/YsHz9+bHfyeu/ePVpaWjAyMsLNzU1oE5uamsQwnZmZGbW1tSQnJ6Onp8fIkSNFO9HPzw9XV1ehrUtPT0dXVxczMzO++OILQkJCqKyspLi4WAxfubm5UVRUhIqKCvn5+XTv3l0443Tq1AkVFRXi4+P5+PEjKioquLi44Ofn969cfWxsbJg/fz79+/fHxsZGtN1k1aOWlhax6CYmJvLmzRvy8vIoKipCXl4eT09Prly5ArQ6T9nb23P+/HmePHnCkCFDMDExEW1VIyMjvL29sbOzw9DQkFmzZtGrVy+Cg4MpKioiLS0NLS0tOnfuzIgRIzAzM0NRUZG3b98KFyFVVdV2o7Jevnwp2JXy8vI4OjoycOBAnj59iqmpKenp6ZiZmQntqa6uLt27d+fNmzfcuXOHqKgobG1t8fb2ZvLkySgqKgqUWHNzM8nJyTx79gwfHx+UlJTo1q0bpqamlJaWUllZSU1NDQ8ePCA4OBgFBQUxhCBDqF2/fh1nZ2f27t3bbqMQWWhoaIhNUEVFBSdPnkRbW5uIiAigtXuQmppKfX09enp6dOrUSXRjEhIShDWpk5MTZWVlpKenU1dXh7u7O15eXkKHPXnyZFasWEFhYSFXrlwhOjoaZWVlNDU1xXDjgAEDaGhoYMGCBWRlZQEIzqFsKKW95I+8vDwyMjIE3D01NZVLly5RXFxM165dkZOTQ0FBgVevXtGlSxfU1dXbMGqhtSpWUlIiJBV37twhPT29TXXo/PnzZGdnM2nSJAYNGiQ4mTKnpLlz5wota1JSEvv37wdaJRkyPFnXrl1xc3MTHY3PDdmAnYyhW15eTkREhKjolpaWcuHCBSEPy8nJYfbs2TQ1NXHq1ClevXpFXV0denp63Lt3j61btzJ69GiGDBlCZWWlaDPKqj6+vr6CcHD37l3U1dUxMDBATk6OzMxMsSEGRAVMNhdRUVEhNqSfGz179hSa4sbGRkxMTASdoba2lvj4ePbu3YuNjQ3a2tpkZ2dz9epVcnNzmTp1qtjs3r59Gx8fH/T09GhqamLt2rVcv36d/Px88vPz6dGjB7Nnz6a6uhp7e3vy8vLQ0NCgoKAAPT093r59S2JiIu7u7gQFBbF8+XL279/f5tnw22+/cePGDUEf+NywsrISkPugoCAaGhr4+PEjkiTRqVMnSkpKiIqK4vXr13h4eAhHrYSEBIG6rK6u5sSJE2RnZ1NWVkZ8fDyFhYUMHDiQa9euYWJiIiD8ZmZmnDx5ktOnTzNkyBAGDx78H+9JVvHV19cXGE6ZrvufMpHPjZSUFBQVFVFUVBT4QCUlJSF3HDRoEFlZWdy6dQt5eXmeP3/Ozp07ARg8eDDdunUjJydHVO7r6uoICgrCwMCAqqoqtLW1RSIri/T0dGpqalixYoW4r/Lz8wkJCSE9PZ2vvvqKwMBAxo4dy759+zh58iSKior07Nmz3RX0Bw8e0Lt37zZYtr59+zJ27FgGDRqEp6cn79+/p7i4GG1tbVxdXQWTvbS0VLxeZmYmWlpa+Pn58eDBA86ePUt0dDQdOnTAzMyM9PR08vLyuHbtGl5eXuJezMzMpK6uDl1dXby8vMQ9J5upaG5uFig9DQ0NKisr/+sxtTt5XbFiBbq6umzbtg1JkggNDaVDhw4sXryYO3fuMGHCBBYuXEhcXBzHjx9HXV0dPz8/3N3dCQsLo6KighcvXnDv3j1qa2uFV25aWhplZWVims3FxYXOnTszZ84c6urqRGVh3bp1ZGRkMGHCBPbs2YO6ujrv3r3jp59+QkFBgSVLlojkVV1dHSsrq3Y5bvj5+bFhwwYSEhJwd3fnm2++EYlOcnIyO3bsoKGhgYiICH799VfmzJnD5s2b2bFjh3joQ2vLQVFRkbKyMnx8fGhsbOTPP/+kvLycnTt3Mnr0aIqKisTUpUwDpaCggJ+fHzU1NdTW1tKtWzeuXr0KIAYwUlNT2bt3L6WlpXzzzTeUl5e36xzOnDkTf39/Jk+e/B8P3H8mUomJicybN4/s7GxGjx5Njx49xCRyTEwM48ePx8zMjMmTJ3Pq1CmuXbvGokWLCA4O5vHjxxw4cAAFBQWh5Xvz5g3m5uYMGTIEPT09unTpIlrr1dXV5OTk0KFDBxYtWtTGWKC9YWFhwbBhwzh69CgbN25k6tSpzJkzh/LycpycnJg/fz4aGhoUFhby/v17IiIimDFjBiUlJTx8+JBp06ahq6vL2rVrKSgoEBVvWZvz8uXLnDp1irq6OszNzbGwsCAvL4/m5maRWB08eFBUjSZPnsyWLVvo3Lkz5eXlzJw5k7q6OtatW0d4eDiNjY3tZmhqa2u3mbD28fERlRDZQNHq1aspLi5mxowZjB8/HmidcB85ciQBAQGYm5vj7OwspvUHDx7MhAkTkJeXZ+fOnYwfP57+/fuzbNkyTp48yaZNm/jiiy8YMmQIN27cICcnh8OHDxMaGir0xPr6+nzxxRfcvn2bTp06/evEFWhDmcjNzeXAgQOC4CCz7f36669JTExk2LBhLFmyBA8PD6C1apiTk0NdXR0ODg44OjqKiW5ZQpyamsqtW7dwcHAgKChIXCvGxsY8evSIV69e0a9fP/EeOnXqxIEDBwgKCiI7O5vZs2dTW1tL586dhY1le2L48OFoa2sLCYss+V6zZg0ZGRkcOXKEefPmcerUKb7//nvc3d3ZvHmzMIWRGV/ExsairKzM/PnzRfX1n9WpnJwcwe79/fffcXJyYsuWLezatYvQ0FAWLlzIx48fSU9P5+rVq0L7O2LECLp37y7kYf+G1RsSEkJ+fj5xcXH8+uuvRERECBpFfX09MTExbR7EsrUsJCSElJQUtmzZQkFBAdra2igpKbFmzRo2b95M//79BVoLWqfZX79+zXfffSe6ft988w21tbVik7dq1Sqhn29oaCA6OhorKytRENi7dy+7du1qQ8v4b5Gens6zZ89wdHREQ0ODmJgYli1bRkNDA6NGjeLSpUts3bqVTp064efnh6GhIQYGBowfP54pU6YArQl8WFgY8+fPp7q6mqVLl1JTU8Nff/3FuXPnhHHO+vXrUVNTo6mpCTk5OSIjI/n7778pLS0V9Jq3b98yf/58fHx8OH36NBkZGVy/fp2Kigqio6PJy8trN73F3NyclpYWvv/+e6ysrPjpp5/w9PSkpaWF6upqtLW1WbJkCRMnTsTCwgIrKysaGhrYu3cvysrKuLq6kpGRwdKlSwUX+48//uDDhw989913/PXXX2RnZ7Njxw6GDBkiHKfc3Nz+w8EpLy+P+vr6NhXMnJwcFBQUBB3GxcWFbdu2tesYKyoquH//Pk+fPiU9PR0dHR1GjRrVBp0WFhbGzZs3WbJkiaiuTp48mVWrVqGmpkZ1dTXGxsZkZGRQX1/PypUriYyMZMyYMQI7B60dpejoaG7cuIGhoaEYMNu9ezd//PEH8+fPx9/fn5s3b4qNsWzSPzc3l+joaAYMGNCu4+vatauo1svC1taW/fv3iwKRlZUVf/75JwUFBZw6dYqff/6ZoKAgFi9ejJ6eHtu2beP06dM0NTUxe/ZsJk+ejJaWFiNGjBDsYVk3sKCgQJimvHr1itOnT1NRUYGvry9BQUGiUy7Ld7y9vUWiO2zYMJycnNi+ffv/85janbw+efKETZs2kZeXJyDBMTEx/Pnnn8LibP369bx8+VJglGQLe0hIiNCY7d27l+TkZGJjY1mxYgWBgYHCRi0tLU3oI//Jl1NXVycjIwOAy5cv07VrV1xdXYmMjCQjI6ONtgJa5QympqbtSl59fX15/fo1JiYmeHh4UFxcLNwnvLy80NTUpKSkhMuXLxMcHIyDgwMKCgoiwfT19WXo0KF8/PiRM2fOUFpaiqWlJY6OjqipqZGSksIPP/wg7GBfvnxJQkICHTp0YNq0aTg4OIgdquzC7dq1K4mJicK8oaGhAS0tLUaNGsXgwYMFQPlzQ6a1kyXMWVlZyMnJCV1oTU2NYCIqKyvT0tKCpaUlfn5+KCsri4tRVVVVgJr19fUJDQ2lS5cuNDU1oaOjw5AhQ0hOTmbr1q0CjxUaGirkH+bm5mhqatLS0kJLSwtDhgzB39+fgIAA4uLiiIyMxM7Orl0PE2jdZAwfPpzHjx8TGxvLtGnThL+5bHCpsbFReJBXVVXx+PFjzp49i7e3N6GhoXzzzTe8fv2aGzdu8ObNG5YtW4aamhqJiYns2bNHcDInTpyIk5MTHTt2FIvL+fPnuXv3rpi2tLa2FguHi4uLGOoxNzfn6dOnvHjx4j+8n/9b2NnZoaSkhJKSkuh0VFRUYGRkJFzo9u3bx/v37ykrK0NVVRVHR0cBSpckCWVlZR4+fEhRUZEYfpR5bZuZmZGamsqOHTvQ1tZm3bp1zJ07l1OnTtHS0oKnpycdO3bkxo0b6OnpUVVVRUxMDJ6envj4+LB582ZOnz7NN99887/aCH5OVFVVcf36dfr370/Hjh0pKysjOjqaX375hcWLF4shR5mu8MOHDyQmJuLr6yu87mXfc3FxwcnJiZycHO7cucO7d++IiooShgOAcLCSvXZcXBwDBgygsbGRkydPYmpqKrR2BgYG+Pj48OTJE3788UfCw8P/a5vrf4ZsyCM/P1/A2H19ffHx8WlTiQ8JCeHUqVOCDCBzVPr999/FEFBcXBw7d+4U0hdZyKrS0Dos+OTJE5ycnMS66urqioaGhpiQ7tWrF/Pnz28jY1JUVOTdu3ftlrZAK8R/5MiR3Lt3DwUFhTbr+cuXLzl27FgbbquWlhZZWVm8efOG69evU1tbS79+/bC0tOT169ccPnxYdHVkU+pnz54lOTkZR0dHnj59yt27d2lpaaFv375iDZWXl8fDw4P6+no2b95MTk4Onp6eYuAUEDaz7QkZ+1tJSYkvv/xSbIyuXbvGiBEj8Pf3F+xZQ0ND+vTpQ319PQ4ODlRWVqKrq4uenh56enpUVFRw5coVLCws8Pb2xtbWlq5duzJjxgwGDx6MnJwcd+7cQVFRkcDAQLp27cqTJ0+or68XDli1tbUcPHiQwMBAOnbsiKqqKlu2bOH9+/dieNHNza1d5zI6Oprz58+Tk5ODkZERt2/fRl5eHgcHBzQ0NGhsbBRYsH92cP45Za6goMC0adPE87mhoYHHjx8TExNDr1696NChg7ATNTY2pmvXrkIPWVRURFZWFkeOHCE6OpohQ4bwzTffAK0IMH19fXFdGRoatpvtDq3Du0+ePOHy5cs0NjbSuXNnmpqaePToES0tLdja2tKpUyeGDBnC77//DrTmF1OmTEFXV5fa2lpu3bol5HOZmZnExcVRVFTEiBEjRIHO0tKSmpoaoqKiMDExYcaMGWhra7NixQrWr18PwPPnz4mIiGhjAKGiosLIkSOprKxkwIAB7R5KMzMzE9dWbm4ud+/exdfXV8zYyBizsuHFq1evkpSUREtLC9OmTcPY2Jjk5GSxsXV1dcXIyIiUlBQ0NTXJzs7m+fPnDB06FBUVFZKTk5GXl8fIyIgnT55w5swZVFVV6dmzp9DryjY/jo6OQuJ07do1mpubP2tIu93Ja/fu3fH29sbb21s4YDx69EiI5319fdm6dSvZ2dns2bNHPLRKS0vR09PDxsaGnj178vDhQ+Tk5KisrBTa15kzZ+Lr68upU6faALZl8U8epQxd9fjxY8zMzJg6dSpubm5ttK/W1tbY2Njw119/ffbxWVlZsWHDBkEHuHLlCpcvX+aLL74gICCAjRs3snPnThITE9m4caOAD0PrVOWGDRvo1asXa9asERWFpKQkXF1dmThxInfu3GHt2rW0tLTQv39/rK2tefnyJSdOnKCuro4dO3agrq7eZmo5MjKSvXv3Ul9fz7Jly+jevTvfffddm1Z4e+Lo0aOoqKgIFEt6ejq1tbUCq1RTU0Pv3r0xNjZm48aNVFdXExAQgIKCApmZmWzcuJGGhgbmzJnDvXv3OHDgAMOHD2fGjBkoKSlRXFyMn58fQUFBfPjwgbCwMBobG5k1a1abadfS0lJu376Nuro6/fr1Y+jQoWRnZ3PlyhV+/vln0tPTWb58ebuT17y8PNTV1QkODubt27dt2kgyCDu06rd//vln7t69y9dff011dTXW1tYUFhZiZGQkXD527Ngh7DTnzJnD/fv3MTU1ZeXKlQwdOlRsbqA1ofjhhx+YPXs28fHxYgIaWvWYubm5bNmyRVQqd+/ezeXLl9sghT4nVFRU6NKlC3JyclRXV4tEXebHbWNjw9dff83atWuJj49ny5YtODs78+HDB7EgGxkZiZZ/RUUFDQ0NmJqa4unpiYeHB2PGjOHYsWPs37+f4cOH4+npyW+//SaOw8DAgDFjxtDc3Mzly5eJiooiNzeXMWPGEBgYSHJyMrNmzSInJ6fdiR0gBr/MzMwEczUxMVGwWQMDA/nuu+9E92Dnzp0sWbKE2bNns3XrVmxsbKiurubDhw9A62K5f/9+wUK1s7PDz8/vf904NDc3o6uri4aGBg0NDWRnZ1NcXCySVzU1NVauXMmJEyeYPHkyJSUlQvrzuREVFcWgQYMwMTGhsbERSZJwd3fn0qVLbXTo2traTJkyhXnz5rF9+3ZOnjxJ3759GTx4MDExMSxevJjY2FhWrlyJpqam8FrPzc0lOTkZdXV1QkJCSE1NJTk5WRiBDB8+HE1NTTIyMigsLMTCwoIRI0YwZswYSktL2wzE1dfXExkZ2a7jg9ZktGfPnvj5+dHY2NgmsXj8+DGHDh1q8/NlZWVUVlZy9OhRUeSYNm0aANevX0dFRYXU1FT69euHhoYGP//8M5s3b2bNmjUsXLiQgwcP8vXXX4v7bsaMGW3uz8OHD7N06VL69evHggUL2rgYBQYGoq6u3q5p7tevX1NYWIgkSZw5c4Zp06axefNm9PX1xeCQp6cnP/30EwMGDMDKyorU1FRh3hIYGChmGL799ltOnDjBkSNHCAwMZM2aNRQXF/PLL7+gpaXFpUuXmDx5Mp06deLSpUtCY19bWysqkZaWlqxYsUIMcJmYmBAYGEh8fDz9+vVj8eLFVFRUCOzj58SjR48Ex3r06NFERESwefNmIiMjsbW1pbm5mcjISKHjdXd3x8nJCW1tbSoqKqiqqkJBQaGNMUK/fv14//493377LefOnaN///6UlpYycOBAJkyYgKWlJdHR0dTU1BAdHc3t27fZsWMH0LohkpOTo7S0lHfv3tG5c2eRvKalpbWbGCGLXr164e/vT15eHtu2baNr164cP36c7Oxsxo8fT4cOHUSiHhcXJ2SL9fX1/Pbbb/z000+UlpYKDGZ2djbe3t7Y2NhQX19PVlaWQG21tLTg4+ND3759OX/+vEhcw8PDWbJkSZtOnGzQ2NbWlnHjxmFgYCDoNZ8bOTk5HDp0CD8/PzQ1NTl48CD37t0jKCgIQ0NDVFRUxLwStFoKa2lpkZKSwpgxY5g1axaSJKGoqIitrS3a2tqsWrVKFPqgtQvh6OjIjBkzePLkiZABaGtr0717d2xtbenevbu4F+Xl5QUir6WlhbS0NDZt2sSDBw+wtrb+r8/9dmc+BgYGTJkyhXXr1omWTY8ePdi/f7/QL4wcOVJ4cANCcyirALx8+ZLIyEgsLS1ZtmwZSkpKZGVlceHCBTERK3u4Q6u+89SpU/zyyy8ABAcHM3r0aOTl5amrq8PW1hZHR0eRrVdXV1NSUoKRkVGbSuznhKwKc/nyZa5fvy5YgJMnT6ZHjx6MHz8eNzc3Xr16hYGBAaWlpbx8+RJXV1cGDBggNEYLFy6kS5cuFBQUYG5uTk1NDdeuXaOxsZFVq1YJQkNQUBDDhg3j4sWLaGpqcvToUeLj4wV6SbY4yL6WJeeyQah/Uw2RXTAVFRVoa2vj7+/PpUuX2LhxI2ZmZnh4eLB9+3Y6derEhAkT+PDhA2vWrGHUqFG4urqyYsUKtm3bxrlz55CTkxMt/nv37tGrVy+8vLyQJImMjAzevn3L7NmzcXBwEBWjxsZGamtrqa2txcPDQ9iSQiuK4++//6a8vJwhQ4YQFhbWbgtcmTf25MmTBYx+zpw51NTU0NzczKhRo4QrT2lpKaqqqowaNUpoqWX2pi0tLSgrK1NWVsazZ8+E25iysjKjRo0S0+Cyie3jx4/z/v17Vq1axaxZs0RCWlVVxfDhw7l8+TKDBw9m37594r06OjqiqqqKq6trmwrUf4v09HQqKirw9PREQ0ODkJAQwUHV0NBASUmJ6dOn061bN9atW8eFCxd49uxZm79RXFxM586dSUtLE2YeeXl5XL9+HWh9wAQHB/PixQvmzp3LkCFDmDVrFklJSVy+fJkpU6YgJydHdHQ0qamp9O7du83mZMaMGQKD829CRug4ceIEcXFx1NfXM2vWLAIDA3FycuL9+/ccPHgQS0tLZs6cKSx/ZdWzgoICXr9+jZ2dHSoqKrx7965NQlZQUIC1tTWGhoYCOSQLXV1dbGxsUFRURENDg379+rFv3z769euHra0tw4cPFxKFoUOHtjtxBQQaSF5eHiUlJcrLy9HR0RFrVmNjI/n5+WKCe/bs2airqxMeHo6CggJz5sxBSUmJ8PBwHj16RIcOHfDw8KCyspKDBw8SGRkpbHxlyKzIyEjmz5/Pvn370NTUJDk5mb/++gs/Pz+UlJQ4ePAgM2bMEGu1zP/cxcUFVVVVUXVqT8g+V9k9LnM2k2kGZ8+ejZKSEjt27ODGjRssWLCAKVOmYGxs3Kb61L9/f4yNjcVQiQyVlZaWho+PD9CaKE6YMEHozGWWl7Kwtrbmhx9+YMSIEf9R3dHQ0GiX8xS0tl41NTXR1tbGxcWFd+/eoa2tzaRJk0TVMCoqiri4OHR0dIQ97cCBA3n79i2RkZGUlJTg7u5Onz59qKurIy0tjaNHj/Lp0yf09fUpKChAS0sLCwsL+vbtS1lZGbdv36Z3795tBuygdSbF2NiY/Px8cW3179+fsrIyOnfujJyc3H/Ygv63cHNzY/bs2QKTFhcXR15eHsnJydja2qKqqioSNCUlJcFolfGZVVVVxXt88OAB6enp+Pj4MG3aNKKionj06BHZ2dkoKysLNri+vj4DBgzg+PHjREdHY2BgwNq1a6mpqSE4OBglJSW0tbXJycnh+PHjBAUFMX78eKqrq9s9pA1w6NAhgoOD+eGHH6iqqhJDUbIpfxktQqYb7tixI8OGDaNjx46Ulpby6NEjMcDepUsXFi5cSEVFhaAD5Ofnk56ejoaGBi4uLnh4ePDw4UOmT58uPo+QkBCmT58uZC+FhYX8/vvvvHjxAjMzM7p06cLdu3eF42F7orm5WXR6+vXrh4WFBWfOnGHKlClMnDiRESNGYGRkJDZ6Q4cO5cWLF2zevJmUlBS+/fbbNjxvOTk5hg8fjoODA9HR0Tg7O+Pk5ERkZCRVVVUsXLgQeXl5bty4QVlZGQcOHMDAwIBnz54xYcIEnJ2dWbJkCb179yYnJ4eWlhaePXvGgwcPANpw4P9v0e7ktaamhnPnzqGqqsqyZcuEmNfBwYHi4mIyMjLaJK7x8fFtNJ2NjY18/PhR+FTPnDkTaE1wZ86cSU1NDYsWLWrjFx8TE8PTp09pamrC0tKSwMBAhg4dirGxcZv3JtvpykTWiYmJYriiPdHY2Mivv/7K69evGTJkCE1NTVy8eJHS0lJmzZqFj4+PWCzfvn2LlpYWXbt2FQttTU0NampqmJqaYmBgQP/+/cnLy+PEiRM0NDSwePFiXF1dgVZ2owz6W1dXx+7du7l//75AYDk6OvLDDz8QHh4u/rbMQ1nmd97eKCgooKamBnl5ebS1tZGTk6OsrIxTp04xbdo07OzsWLduHenp6aLVdubMGeLj4zl//jxubm6MGTOGUaNGoaenR3h4OCkpKcTFxREWFoapqSlpaWns27ePsrIypk+fLiZcX79+TUVFhbCmbGhoENWY+Ph4UaWePn064eHh/4FD+pyQaWdkDNTy8nLOnTtHbm4uc+fO5aeffgJaN0VHjhwhLy+P8PBwvLy8eP78OT/++CNv3ryhS5cu2NvbU1JSwsuXL7lx4wYRERGsWLECOTm5Nlq9goIC4uPjCQoKEot8SkoKkiRx69YtHj9+TFNTE4mJibx7904MiwQGBv4rWsTz5885cuQIfn5+zJgxAwMDA7y9vUXiI3twyc6zqakpKioqQjNnaGhI//796dq1K/fv3xdyAHl5eXJycnjx4gUDBgxgypQpTJgwAX9/fzF16uPjQ11dHfn5+WRnZ7Nz505sbW0FiaSpqYlPnz6hoKDA9OnTUVRUbHelAFo3yp6enqKF3LVrV8aOHUuvXr2Ij49n9erVnDt3Dm9vb8EL1dLSonv37sLSOSMjgxMnTghpg5+fH3p6emIwxMrKivz8fBobG9HX18fU1BQFBQV69eqFvb29aN87OzsLB7jy8nLs7e2Jj49HU1OTdevW0bFjx88aMvhnyKaW8/PzkZOTE+tZbm4uLS0tWFhY0KFDB6Kjo7l37x4dO3Zk/PjxgnH9xRdfoKamRlFREc3NzcJ4IzMzk6dPnxIVFUWnTp0wNzfH0NAQCwsLTp8+zYsXL2hqamLZsmUcOnQIeXl5pk2bxt27dwkJCeHs2bNcvHhRrGGyjfI//cc/N2Qt/pqaGuzt7VFSUiI/P1/IrBwdHVmwYAH19fU8e/YMXV1dOnfuTOfOnQkLC+PEiRPs27ePAQMGYGFhIfjasm7K4MGDGTx4MLW1tcIdTpYUQyuRRlYZ1dPTIzQ0lNDQUEpKSkhNTUVHR0dUKWXV9fZEREQETU1Ngqbw559/8vLlSxYsWCAsN69du8b9+/dJTk4WGyFzc3OUlZW5d+8eqampODs7ExERQUREBFOmTCEtLY1169ahrKzMrl276NGjByNHjuT48eM8fPiQhIQE3rx5IyxiKysrBXlHV1dXPG+rq6uJiYmhpKSE4uLi/9ikfU6MHDlSOFbKSBWurq5iyC8zMxN7e3uxmftn6OjotLn3a2trqaioQE1NTRRuzp8/LwgaRkZGbaQb1dXVVFdXM2zYsDZWwzU1NTx69Ii7d+8SFRUlhuR0dXVxdXUV9t6fG/fv32fw4MHinmxpaaGpqalNx2jJkiWcP38egAkTJghcmGyDCaCpqdlmaLClpYU7d+4QGxuLrq4uJiYmYlD72rVrvHv3junTp/Pjjz+iq6tLbGwspaWleHh4YGRkxKdPn3j06BFLlizB0tKSc+fOkZGRweLFi9t1fNbW1syZMwcLCws8PDzw8PCgU6dOzJw5k/v37zNixAjRxZPlFEOGDKGxsZFz586Rl5cndMg6Ojp07NiRBQsWUFdXJ+aMBgwYwMqVK/n222/R1NRk7NixbfBp0Jpb3b59m0+fPrFgwQKBH5W9x86dO6OhocGAAQP+673Y7uRVQ0ODM2fOcOLECaGpsbS0xMLCQkzHbd26lZ9//pmffvoJd3d3UQmC1lag7ELU1NSkurpalMgNDQ158eIFT548oXfv3sjLy3PmzBnS09MZNWoU8+bNo6KiAhMTk/9IXKFV7F9XVyeqtrKWmgws/jnx6dMnUlJSCA8PJyIiAhUVFTIzM/niiy/a3Dw5OTmsX7+e2tpaRowYgZqammCzJiYmsm3bNo4cOYK9vT0qKioEBwdz6NAhvvrqK6ZOncq+fftwd3dn7dq1NDc3s3v3blRVVZkwYQIhISFcvHiRDRs2oKamJhJlaN0hpqSkMGDAALy8vNqwbj83lJSUhIOYDLD86dMn7O3txUSiiooKjY2NXL16leXLl/PHH3+wZs0avvjiC7Zv305oaCiHDh1i2bJlHDx4kDFjxjB58mSsra0pLy9HV1eX8ePHExsby5UrV6irq6NHjx68evVKtIC0tLT4/fffaWpqYv78+RgYGGBnZ0d4ePh/oNbaEzJGXU5ODvfv3ycgIIAhQ4YIa1pZVFdXc/bsWe7fv0/Pnj05ePAgfn5+mJiYUFdXR2xsLLNnz8bX15c///yTsWPHMmfOHNGWk5eXp7i4GAMDA/z8/OjcuTM1NTW8ePGCGzducOrUKT59+sSIESP4+++/UVRUpLS0tM2xtXfIRxa5ublcv36d69evc/r0aQICAggLCxNmA3V1dWzcuFEwZ4cPH8769evR1dUlISEBZWVlOnfujI6ODo6OjgwbNoyWlhb+/vtvduzYQVVVlWjFKSoq8ttvv5GVlSWut969e3P58mW2bNlCcnIy5ubmYvBIkiTWr1/Pw4cPCQoKYurUqe3G80Br8lpfXy+6H2VlZaLqc+DAAa5fv05wcDB//PEHdnZ2xMfHExoaiomJCY8fP+bmzZtt/l6nTp148OABNjY2zJo1S6DfEhMTef78OQUFBTg5OTFs2DCMjY0xNjamvLycFy9eiArk8uXL8fDwwNHRUXBDraysKC4uFiYc7Q2Z89yff/6JoqIiGzduRF1dXWyyNDU1SUtLY//+/Rw9epSIiAisra15/fo1UVFRFBUVoaysjJubG5WVlUJWJKvmKyoqCo1yYWEhR48e5eDBgyQlJTFhwgQxlCLbKN6+fZuBAwfy66+/im5JbGxsu1rNsrh27Rq///47hoaGfPXVV/Tu3VtA/eXk5OjWrRvFxcWUlZXxyy+//Ec19NWrV1RVVYnuTkZGBiNGjKBDhw5tflZNTU10kv4Z2dnZREVFoaKiQmhoKEpKSty8eZNly5bR1NTE9u3bCQ4O5smTJ6ipqREeHt4umZlsEyqLQYMGkZ6eLu5rBQUFUXGW6QkbGxspLy8nLi4OKysrLCws2rhjNTU1oa+vj7+/P2lpady/fx9FRUWhT+zWrRvm5ubo6emJ33v58iWbNm3C1dWVn3/+GWiVYOzfv59du3bx6dMnlixZImQv7QktLS3Kysr4+++/iY2NZcqUKUyaNAklJSUhq5O5z/0zZAQG2SS5vLw8/v7+eHh4UFBQQFNTE9OmTaOuro7r168TFhbGzp07hU45KiqKkpISnJycREenoKCA0tJSIduLi4vjq6++YvHixaipqaGtrU2/fv3anbwOGjSoDYxfXl7+P3SlqampAMybN48ffvgBaE3cjx8/TnNzM/PmzWPw4MHCMMbOzg55eXnWrl1LQkICu3btEvfg48eP0dLSYuPGjULGJhv2y83N5ccff2TEiBFs2bKFYcOG4enpiZqaGpqamu2WmEGrnOR/bj5tbGz4+eef21x7BQUF/Prrr2hqajJnzhx+/fVXlixZQlxcHGVlZWhrawt0IbQOeH/zzTeoqKigra3N0qVLUVRUZOHChXz48IFNmzZx48YNxo4dy6RJkxg2bBjHjh2joaFB2MLKEls/Pz82b94stLeyTvv/LdqdvJaXlxMaGkpzczOxsbGizZGSksKMGTNwdXVFT0+Pu3fvikqEbJGRJAkNDQ0xeZednc3ff/+NnZ0dioqKovVgYWFB8//H3nmHR1ml7/8z6b33kAopJCGEQCCBhN4JvXdERRgBRVFBUVCwYRcYQBTpIDWAht5rQk8F0nvvvb6/P8Y5P7PrrsR1ZfWb+7q4hmQmM+fMe95znnI/99PURFNTEw4ODrRv376F8LgKWVlZLSJ5v0wxqWQcWmsc1NTUEBUVhYaGBj179qRdu3Y0NjaSmZlJQ0ODMFaysrJISEggKysLV1dX7O3thVFibGxMZWUl+vr6WFhYCK6uyjt5+eWXuXPnDp6ensTGxooOKCEhIRQWFmJrayu0EI2MjEhLS0NdXZ3z589z6dIl7OzsWmjb/R7cu3ePa9euidR9x44dWbp0KT179sTExIQXXniBkydPCj5Lnz59GDVqFEePHuXy5cs4OzszatQoIiMjRYs7leetirSbmppibW3NsWPHyM/Px9fXl6CgIO7du8e2bdto164d+fn5+Pj4iHS3mpoaV65cIS8vT/B+Wyt9Mm3aNN599120tbVJTU2lsrKSESNGiCYMKlRXV9OtWzcuXLjAtWvXuHv3LqGhoSLqb2ZmRv/+/Rk0aBDV1dXcv3+fr776itraWtauXYuRkZFoc5eYmCjajdbV1REfHy+oHw4ODri7u/+Tw9XY2Eh9fT1NTU2tlsry9vamX79+xMXFiUNMNUY/Pz9RaKevr4+BgQEdOnSgubkZGxubFrp7zc3NtG/fnvbt23PmzBkSEhLo1KkTY8eOxdvbm/j4eOrq6ujWrZsowHj8+DFRUVFERERgaWmJl5cXnTt3JjU1FUdHR06dOsXly5d5+PAhurq6TJo06XdF0I8fP46pqSlWVlaEhoZSV1dHTU0NDx8+JDc3l379+gnawKlTpygsLOSll14iOTmZTz75hLy8PMG97dGjB3V1ddTW1pKZmUlJSQlaWlqicGbPnj1Czs7IyIiUlBRu3bqFv78/+vr6HDlyhKSkJCZPnkzv3r1b3HsqofjWNkRRQVWIun37dlGJ/MsWl4WFhTQ0NFBYWEhtbS3du3cnLS1NbO4BAQF4enpSXl5ObGwswcHB+Pj4iHlER0eTk5NDz549efHFFzExMeHy5cvY2NhgampKSkoKBQUFREVFMX36dB4/fkxRUREffPAB48aNY9CgQZiYmLSaggXKw03VGKCgoEAYMSo5ns6dOwvt58mTJ6Onp8f169dxdHQkKipKtFJWBTj8/PwwNjbGysqK6upq7t69S2pqKoGBgWL/r6ioQENDg6KiIh48eEBxcTHOzs40NTWJxiOqoimVGoalpaUItLTGeNXV1RWZK0BosmZlZWFubk5paSnV1dVoaWkxZMgQsaclJCRQX1/PkCFD0NTU5MyZMxgbG5OZmUl0dDRaWlqEh4dz5coV7t+/34KWkpOTg4GBATExMdTV1TF48GDMzMwoKioiPDyc0NBQQkJCKCoqEml6ExMT3NzcfpeznJmZSVRUFNXV1YSGhopgyi/HqmofXVFRQWNjI46Ojqirq/+qQkV5eTkfffQRhoaGKBQKPD09+fjjjxk9ejTu7u6Ul5dz/vx5ZDIZZmZmmJmZ0a5dOyoqKvjwww9RU1MjJCRERH6nT58uDDA9Pb1WS9aBspA2KioKW1tbLCwsqKqqoqysDDU1NXR1dbl//z7dunXD399ftKi/ceMGO3fu5OrVqxgYGNCzZ0/hHNy7d49z584RHx+PhoYGVlZWPHjwgBEjRqCmpoaGhgbTp08XUmkKhUJ0v3v48CFTpkxh9+7dTJo0iYEDB5KcnCyi9kCrM64qB9fJyYmqqirefvttLCwshKZxTk4OVlZWou22nZ0dJiYmJCQkkJ2d/avasqWlpVRWVooitMbGRnr27Im3tzezZs0iMjKSI0eOUF5eTrt27bCxsUEmk/1q06Fjx46hpqb2q7Jo/wqtNl4tLCz48ccf6dixo+gLHxYWJjT1ANauXcu8efNatG78NaH5+Ph40tLSCAgIEK0ye/XqxTPPPIOenh5ZWVn06NFDbFzFxcXU1dWJjikXLlzg448/Ji8vj2XLlonN6+jRo8ydO1dIcqg4fE8CR0dHjIyMWLlyJT/88ANhYWF06NBB6LD5+fnRs2dPunXrxsGDBzl8+DB37tyhuLhYvIe9vT3r169HkiTRPleFIUOGsG/fPvz8/NDW1mbZsmWYmJjwzTff8MUXX1BZWUlNTQ0BAQHMnTsXY2NjduzYQUJCAu3ataN///4MHDiw1ZyXXyI/P5/Dhw+zceNGIYExadIk0Su9oaGBsWPHMn78eMzNzUlLSyM+Pp7AwEBmzZqFvr6+SDEvWbKEZ599toX39kuZHj09PaZPn05NTQ11dXV4eXnxxhtvMGnSJBITE9myZQtjxowBlJ6tKlIzevRovv/+e/Lz89m9e3er5peSksKsWbN4++23sbW1Ze3atezatYsTJ06IsVVXV+Pq6sratWtxd3fn/PnzWFlZIUkSFhYWDB06lGeffRZ/f3+ampqYP38+NjY2TJo0iYiIiBapt8bGRrZv386GDRt45513hPdsY2PDnDlzKC8vZ8WKFfj6+oqK2/r6esF11NLSavWh0q9fPzp16kR5eTn29vZC9WPbtm34+/uL+cvlcgwMDDh8+LDoorJo0SLs7OyoqalBkiT09PRoamoS+sPfffedMPT3798vNJRVVJeNGzeyceNG5HI533zzDRoaGuKQ+u6779i6dSsmJiYsX76c8ePH/67uWgAHDx6kR48emJmZ0aFDB+FYPH78WBholpaWXLhwgSlTphAaGsrcuXO5ePGiiL6PHz9eZHP09PRE+9uffvoJY2Nj0dpW1VFsyJAhQips48aN7Nixg4kTJ6Kurs7Vq1dRV1fH39+fnj17UllZSWlpKe3atcPLywtra+tWdby7c+cOXbp0YfLkydTV1fH999/T3NxM165d6d69O5GRkdTU1HDnzh2srKxYu3YtvXv3Rltbm507d4oU6aeffkr37t3JzMykoKCAoqIiEd0zMDAgOjqakpISBgwYQO/evfHz80OSJEpKSvjkk0+EvNukSZNYsmQJgYGBXLx4kVmzZnH9+nW+/fZbhgwZwuLFi1ut8zpo0CDc3d158OABNjY2IsuzYcMGfHx8eP/99/Hz8xNFP/fv3+fRo0d069aN4uJiEcWsrq7G3NwcGxsbEhISROvj3bt3C71e1f6vq6uLhoYG2dnZpKam4uvrKyKkKlWCHTt24OvrK6Jrbm5uNDU1tVpGKiYmBkdHR4yNjcnOzub27dvU1NSI6GFiYiIFBQWYmpq2OA/t7Ozo1KkT6urqQsGnvr4eJycncnNzyc3N5eWXXxbFY6psYnJyMllZWejp6bFx40Zu3LjBhg0bGDFiBKNHj+bo0aOEhYUJQ11fX59Zs2axePFiunbtiiRJrdYIVemo+vn5iT3g3r177NmzB3d3d+bPn091dTXnz5+nvr5eFJL+GlQdDPfu3YurqyuFhYW4urry8ccfY2JiQlVVFR988AHZ2dlMmDChhRpEY2OjMOJ69+7NmDFjePDgAZmZmTQ1NYmM4e9BTk4ON27coH///lhaWlJYWEhxcTHGxsaEhYXx4MEDJk2aRFBQELdu3WLNmjVkZWWJinwbGxtqamoEb93NzY1p06ZRUVHB2rVrqampYf369WzdupXp06czadIkUQvwyiuv8OWXX/LNN9+wZcsWhg0bRkJCArNnzyY2NlaoxHTo0EEYx62lt2RmZvLo0SPmzJlDc3MzV69eRZIkFi9eLBwhVZDljTfeEOekXC7nxIkTbN++XWT1VA1yTExMRL2HhoZGi+Dd0aNH+frrr5kzZw5jxoz5p8LM4uJiqquradeuHSUlJbz99ttUVFTg5eX1xLZNq43XRYsWERMTw4kTJ4Se5vjx4+nXrx+RkZHExMTg4+MjNpKdO3dy5coVpk+fTp8+fYiIiODmzZtYW1ujrq5Or169hPer6qOrEvY9f/48qampQnhZVR2fn59PWloaP/74IzExMYDScu/evTsWFhZER0cTHBzM8OHDGTlyZKuM14SEBEaNGsXHH3/MpUuXeP7552nfvr2Q4LG2tkaSJNTU1DA2Nhbk8rNnz4oquYEDB4rNJiEhAWNjYxHxcXBwIDQ0lPT0dO7evcvgwYMJCAgQ+o0qHTeVVy5JEgcPHqSuro5Ro0YxceJEJEnizJkzGBkZtaAUPCm0tbVFRXlzc7PYIDQ0NDA0NKSqqooHDx4IbTmVkPjw4cP/qTLb3Ny8heEKylRZZmYmGhoa2NjYCD6YSkHCwcGBmTNncujQIS5fviz4U/n5+Tx69AhHR0fGjh2LqakpP/74I/v27WtVQcwrr7xCdnY2mZmZosPOsGHD0NHREXIo3bp1Y/z48YCSI5ubm4utrS36+voMGzYMPz8/xowZg7q6OoWFhYCyGGTatGlCG1XFtxo/fjwzZswgPz+fu3fvolAoMDIyQi6X06FDB8rKykSnsLKyMtHj+Zf4ZdekJ4GWlhZ2dnaiGFB1kH/11Vc899xzzJo1C21tbRFFnjZtGpcvX+bbb78lNjaWd955h27duoliuNLSUry9vfH09GwRobazs8Pc3LyFxJG3tzejRo1i6tSp/6QdGBsbS0REBEuXLuWDDz4Qv29tGg+UnCuVgaqpqUlOTg4NDQ24uLi0UBWxsLCgd+/eFBUV8dVXX1FcXMySJUuYNm0aOjo6fPrpp+zevRsXFxcWLlzIzJkzSUhIYOvWrUiSRL9+/Zg/fz51dXWYmJjQ2NiIn58fY8eOpaioiHv37tG7d28MDAxwdHQU90t2djbx8fEUFhbi5+f3T/fBb8Hd3R01NTViY2NFUcbcuXPx8PDgyJEjfPXVV7i4uNCtWze8vb1bVKY3NjbSq1cvETG1tbXFwcGBdu3akZSUxN27d9HR0RGyWCUlJSKAUF9fL6JTqmgPKKMzquh63759mT17NvX19Tg7OxMTE0NUVFSrr6G6urrQdFbtiaq909LSEgcHBzQ0NNDU1CQhIQETExPU1dW5ffs22traTJ8+nb59+9LQ0MCBAweIiooiKCgITU1NtmzZwuPHjwkMDMTQ0JCkpCQcHBzQ0tKisbFRZL9+aQBlZ2ezfft2unXrhrq6OlFRUZSVldGuXTtu3LhBUlJSi8zEb+HUqVNMnTpV7PEKhQJDQ0PWrFlDc3Mz8fHxBAcH06tXL/z9/cnKyuL06dN4eHi0SL0GBgaioaGBj48PISEh/PTTT0RERODq6sqYMWPo2bMnSUlJpKWlYWNjg5OTE3369EFfXx8vLy/y8vK4evUqRkZG9OvXj4cPH3L69Gm6devG/PnzRUpcJpO1aJ/+JPD09MTY2Jhjx45x7tw5xo0bh6mpKR07dsTPz09Ifdna2qKjo4OHhwdqamo8fPiQU6dOkZiYiK2tLe7u7hQWFpKXl8cLL7yAJEm8++67DB06VBhGqm6MR44cES25Bw8ezKFDh/jpp59EFlY1n86dOwtt0i+++AJbW9vf1R7WxcUFmUyGhoaGaPygcvCtrKzo1q0bwcHB6OvrY2xsTIcOHfD29sbS0pKMjAyCg4MJDg6msbGRpqYmsrKy8Pf3x9ramoCAAAChd3zz5k0GDRqEtrY22dnZ6OnpsWTJEsaOHYu5uTnr1q3j1VdfJS0tjUePHtG/f3/69u1LZGQkq1atwtvbu9U66B07diQvL4/Tp0+Tk5NDSEgI1tbWQupKVRAGLYNPo0aNora2lqNHj1JYWIiXlxfOzs5CEk2SJMzNzVu0J5Ykia5duzJp0iQiIyOpq6tj8+bNlJaWYmdnx/jx43n48CGbNm3CxsYGf39/xowZQ3p6Olu3bsXKyuqfuuf9GlptvGpqatKlSxdWr17NkSNH+O6775g7d67opKLqvKHy0K5fv87OnTvp2LEjffr0ISkpic2bN2Nra8vLL78sKrarqqoICQlBTU1NtH3Nycnh888/x9vbm27dutG+fXvMzMwoLCwUuqeqMWlqavLNN9+gqalJSEgIy5cvF20iW4MDBw6wYsUKFixYINq/GRgYEBAQwKuvvoqHhwcFBQVio1TRBTZt2sTJkycJCgrC2dkZbW1t9u3bx9WrVxk/fjz9+/enurpa3Bjp6enExMSIqnfVQZ+RkcHq1auRyWSi5ebgwYNp3769MOCOHj3KqVOn6Nev3+8yXlUi2R4eHjx+/Fh4TKrKXDU1Nb7//nuKi4v59ttvxaGoErg2MDAQUTuZTNaC39Xc3ExOTo5oOAH/32hVSW2pqakhl8sZMGCAOCC/+uorjIyM6Ny5M++9956giVy5coWEhIRWGa+fffYZAO+88w6nTp1ixYoVIh2xf/9+vv32W5577jlhvKpSI48ePRKC8+rq6tTW1grRf1Uf6lmzZtG/f38aGxvZs2cP4eHhuLq6MmvWLLZv384777zDBx98wDPPPCMI/bq6uqxcubLFGOvr65EkCW1tberr6wWf6kmRnp6OjY0NDx8+5OrVq8TFxREWFgYgDFaVgHrXrl3p0KEDb7/9NvHx8Vy6dImsrCy6deuGhoYG5eXlmJub88UXX/zT2FTXQdUbXl1dnWnTpjFu3Dh0dXVF/3JV1kVLS4uQkJAWaabw8PDfpYrxS+O3qqqKkydPCu1ff39/4RB4eXmxYcMG1q1bx/79+1t0Lrpx4wbFxcWiiMzY2BhfX198fX25dOkS69evR19fXxSkPHz4kPLycmbNmsWsWbM4cOCAuIdnz54t0m9NTU1oaGigrq5OdnY27dq1a3VaXcW/3rt3LxcvXmTr1q1CHiYpKYmIiAhcXFzw8vKipKSErKwsYRioaBxnz57ltdde48GDB6JQSVXVrq2tjbOzs+iKpHJArl+/Ljq/eXt707FjR+Lj43F0dBTVxuXl5SxZskQYCQsXLmTDhg2iGPFJkZSURFxcHHZ2duK92rdvz4oVK7CyshIZDFdXV1xdXenfvz8nT55k48aN1NTU8Prrr9OjRw9yc3NZuXIlycnJnD9/Xhifvr6+7NixAw0NDW7duoWmpiaOjo6iUFfFO1QhOjqaAwcOiC5zquY4ZmZmJCQkUFdXJ6S5ngRlZWXCEW1sbOTKlSu4uLigr69PamoqDx48IDQ0VNRdXLhwgcOHDzNu3DjBEfXx8RENaFQYPnw4GzZswNXVleeee47KykqhS2xra4u2tjazZ88W1+PChQtcvHiRMWPGMGLECH744QdKSkoICAgQ33tFRQWGhoa/SwfV1taWc+fOceDAATQ0NFi4cCFz585tcQ4EBga26E9/7949tm/fzr1797C0tKRr164YGhoSFBTEkiVLSExMJDQ0lIcPHwq1FF1dXVEoNHPmTIKDg7GzsyMsLIx9+/Zx5MgRQkNDKS4uxszMTHR0UldXF+fQL9UlnhT29vYYGRmRkZFBeno6Li4uaGlpoaWlJc4JUJ6RXbp0EU5eeXm5oN6pOKVXrlyhoKCAxYsXY2pqytWrV7G2tmbixIloampy8+ZNnJ2d8fHxobKykmeffRYXFxdR2DZkyBBMTEw4fPgwfn5+Qm60qKiIzz//nLFjxwr+85NCpe2+ceNG0dxFVXRaXV0tuO15eXkkJyeLDNOUKVMYNGgQb775Jjt37mTmzJn4+PgISczKysoWFKqGhgYuXbrE6dOnmTp1Krt27WLr1q08++yzgLKl7pQpU2hoaOD8+fNkZWXx1ltvsXLlSvLz83n77bc5dOjQE533rTZeN2/eLCSeVCk8Vb9fLy8vUVFZV1dHSkoK7u7uLFiwAEtLS3JycggICGDgwIFcunRJRLTS09MFr0eVwtTR0WkhCK6KajQ3N2NhYYGRkRFlZWU4OjryzjvvCO01Y2NjBgwYIDbFX9OL/Xe4d+8eX3zxBZ6enqKHdlFREcOHDxfezrVr1wgLC6O5uRkdHR1qampo3749K1euxMTEBGNjY7S0tNDV1RVpYTMzM+rr66mqqqK+vp6goCAqKirYsGEDzs7OgrTt4OCAjo4OFy5cYN26dQwcOJBBgwaJUPonn3zCzZs3GTFiBAMGDGh1O0P4/xQOVVtTU1NTysrKKC4uFh5oZmYmd+/e5f79+4wZM0Z0DKusrCQiIoLbt29TUlKCgYEBGhoa5Obm0tjYKKLubm5uouXfF198gba2Ni+99BKOjo5izB4eHsyfPx8DAwPRYWjatGnCU62trf1dahEqTJ8+HTs7O8rKyoR264wZMzA1NRVRF19fX9FicMuWLZw5cwYzMzPR4Q2U0QpNTU2cnZ1F4YCamhpTpkzBwcGBrKwsQdAfN24cenp69OjRAy0tLerr6/+pulfFFUtLS8PY2FhEi1qDzMxMbt68iYmJCb6+vujp6aGpqYmurq64b1T3yenTp4mPj8fIyEg0DFDxxYB/kiLbunUr9fX1PP/88+jq6lJfX8/atWspKCho0XI3JycHX19fAgICiIyMZNu2bWhpafHZZ5+JzkyXL18mNjb2VwssnxSJiYlkZ2cLx1GhUBAcHMzYsWO5ffs2OTk5DBo0SIjZqxyV3NxcIiIisLGxYcyYMTg6Orbo+KU6TOzs7EhPTxfdllSRm5qaGsE/t7OzIyMjA4VCIbhnNjY2hISEUFdXx7Fjx7h8+XKrCyhjYmLw9PRES0urBbVq4sSJuLi4EBwcjKGhIQ8ePKC2tpa6ujrKy8upqKjAw8ODHj168Oyzz7aQ+zI3N0dPT4+kpCSysrJEtMTExET0gi8uLkYmkzF8+HA6deokqGC1tbVUVVXx6NGjFum739NyE8DU1JQOHTqI6y9JEu3ataNdu3aEh4cTFhZGUFAQQ4YMEffZwIED2bZtG3FxcaLYycrKimnTptHQ0ED79u2xsrJixYoVGBkZiZR/VVUVZmZmgjKhoaEhuHtXrlzhxIkTpKSksHjxYtzc3GhubiYhIYEHDx6IjlgdOnRo1Z7Tv39/wVdXSTeqHJvExMR/4i87OzszefJk0QyjqalJ3Pvp6enExcUJKaPAwEBhGKirq4uOeNHR0ezcuZNevXoJw8rBwYGPP/4YTU1NTp8+jZaWFkuWLBGfXVNTg56eHlVVVRw6dKjV1zEjI4MRI0bg4OBAQ0OD2O90dXVFq9aamhoiIyOxsrISa27EiBEMHjwYLS0t0tPTSUtLE5JSHTp0YMaMGcKJu3XrFsnJyUyePJnx48eTl5eHtrY2ERERdO/enU6dOol6GX19fb744gsiIiLw9vZmzJgxwjlTyf61BuHh4Zw/f54BAwbg7+/P6dOnqa6uZsqUKYK2WFdXJ1o2g7L9cFhYGEVFRXTu3FnQoywtLTEwMEBfX58bN27wwQcf4OrqyiuvvCIcj1u3bolo9Z07dzh48CBmZmZMnDgRIyMjbGxscHNzE4WuFy9eZP369airq7fIOj0pfllY7OTkJAxtTU1NcZ9/9913XL9+nfHjx4tGJ48fPxZSZWPHjhVtq0Fpl+Xk5LBnzx5MTU1F6+moqCj27t2Lvr4+ixcvZuLEidy7d4/q6mr69etHQkICDQ0NLF26FJlMhrOzM5cvX6apqYkRI0aITMqVK1f+7Zxkv8ZF/TXI5fIne+H/MBQKxb8kFv7d5wd//zn+HeYHf/85tq3Tv/f84O8/x7/D/ODvP8e2dfr3nV/rS4Db0IY2tKENbWhDG9rQhqeEJ468tqENbWhDG9rQhja0oQ1PG22R1za0oQ1taEMb2tCGNvxl0Ga8tqENbWhDG9rQhja04S+DNuO1DW1oQxva0IY2tKENfxm0Wirrj4ZcLg8BXgZ6AmZAMRANfKlQKMKf4tD+EMjl8nbAe8BQwBzIAcKAdxUKRclTHNp/BXK5fCaw4+cfn1coFN8+zfH8J5DL5ebAWGAE0AmwB+pRrs/vge8VCkXrRRP/B/F3XqdyuTwVcPoXT+cpFIonV6X/K0Amew94HXBDkn6/1pxM9irwEdAJSXr4B43ud0Eul08A+gB+QGfAENitUChmPM1x/VGQy+VzUO4p/w7NCoVC/Tde8z+Lv/s1VEEul48AXgK8+P976R3gc4VCceNpju2PwP/KfvpUjVe5XL4CWA0UAj+ivMgWQBegL/CXNl7lcnl74DpgBRwFHgLdUS7soXK5vJdCoWhdn7f/YcjlcgdgHVAJGDzl4fwRmAhsRLkuLwDpgDUwDvgWGCaXyycqFIq/dNXj/5F1WgZ8+Su/b10/0P82ZLIWzh+S1DrnTyZzAJYC37QwXGWyOTyBcYQk/dI4UgCvAJ8Coa0axx+PFSgNnkogE/B8usP5w3EfePdfPBcC9AeevFXk/yb+7tcQuVz+MUrHsQil818IdABGA+PlcvkshUKx6+mN8A/DU99Pn5rxKpfLJ6I0XM8C4xQKRcU/PN/6Nhn/e1CgNAgWKxSKdapfyuXyz4ElwPvA/Kc0tj8UcrlchvJwLAIOozxA/+p4DIwCfvplhFUul78JRALjURqyrVf9/t/C/4V1WqpQKFY97UH8WygNz//U+Xsb0AY++Yff36e1xpEk1SCTfQV8jEzWE0m6/jvH9EdgCUqDJxFl9O7CUxzLHw6FQnEf5TX6J8jlclW07ps/azz/Jfytr6FcLrdBee7lAb4KhSL/F8/1A86jzG79HYzXp76fPhXOq1wuVwM+BqqBaf9ouAIoFIqGP31gfyDkcrkrMBhIBTb8w9MrgSpgplwu1/+Th/bfwmKUB+AzKOf2l4dCoTivUCiO/yM1QKFQ5AKbfv6x758+sD8Q/wfX6f8mlG1rVM7fpt949b96D2NgOnDun+gCknQfSVr1q/9A1Rbs14yjXUATIP9dY/qDoFAoLigUioS/epajtZDL5T5AIJAF/PSUh/Mf4f/ANXRCaVNF/NJwBeXcgQrA8mkM7O+IpxV57Qm4AAeBkp85Ij5ALRD5d+CFoDTkAE7/ivFTIZfLr6E0GgKBc3/24P5IyOXyjii5cV8pFIrLcrm8/2/9zd8AKueq8d++6n8f/1fWqbZcLp8BOKI0yKOAywqFonX9o/97UDl/ffn/16S1mIrSEP3hif9CJvv3xpEkZSOTXQEmIJPJkaTf1ye2Db8XL/z8+N3/0Fptw68jAWVNRHe5XG6hUCgKVU/I5fLeKDm+YU9pbH80nvp++rTUBgJ+fswD7qLku36EkkNxXS6XX5LL5X91D0XVgPjxv3g+4edH9z9hLP81yOVyDWAnSj7om095OH8Kfp7zrJ9/PPk0x/IH4P/EOgVsUK7T91HuM+eBBLlc3udpDgoAmUw4f0jS5f/gnQb+/Hi1FX8jjCMk6V8dPNdQUhF6/96BtaH1kMvlusAMoBklx74N/8NQKBTFwBso6yLi5HL5N3K5/EO5XL4fOA2c4f/fb391PPX99GkZr1Y/P84HdFFuuoYoo6+nUG6SB57O0P4wGP/8WPYvnlf93uS/P5T/Kt5BWWA3R6FQ1DztwfxJ+AjlWg1XKBSnnvZg/kP8X1in3wMDUG64+iiVIzYDzsAJuVze+amNTCb7I52/YJSpyX/liPzjZz+pcXTr58c24/XPxSSU990JhULx+1Uj2vCnQaFQfImyDkIDeB5YhrLwNwPY9o90gr8o/if206dFG1BVtMqACQqF4sHPP8fK5fKxKDffPnK5POhvQiH4Nch+fvzL8n/kcnl3lAfuZ3/j69QCcrl8MfAqyor8mU95OH8G/vLrVKFQ/GOhUgwwXy6XV6K8lqtQSqI9Daicv2Ak6fc7fzKZFsqITwJP3vNbZRz99BuSWrk/Pzr+7vG14fdg3s+Pm5/qKNrwxJDL5a8DHwBfA+tR3juewIfAbrlc7qdQKF5/ikP8j/G/sp8+rcirSjcy+ReGKwA/R+9U0azuf+qo/lioIlbG/+J5o3943V8Kv6ALPEZZ4fy3h1wufxH4CogD+v2cJvqr42+9Tn8DqsKopxNRlMmE84ck/afOn/nPj63R5H1S40i1zi1aNaI2/G7I5XIvlLUhmfzFJSP/r0Aul/dFWYh+TKFQvKJQKJIVCkW1QqG4i9KYywJe/blI9u+IP3U/fVqR10c/P5b+i+dVG7Duf38o/zWo5vivuIJuPz8+WYrvfw8G/P+51crlv1qMvEUul29BWcj18p81sP8G5HL5y8AXKL3MAX+T9A/8/dfpv4PqGv75Sgr/ny7wRzl/qqitzhN+fmuMI9U+/H+FFvS/gLZCrb8eVFrI/yQBplAoquVyeSRKI7YLkPxnDuxPwp+6nz6tyOtllFXabnK5XOtXnvf5+TH1TxvRHw/VAh78szSYgFwuNwR6oTwMbv7ZA/uDUAd89y/+3fv5NVd//vkvTSmQy+VvoDRc76OMuP5dDFf4+6/Tf4egnx+fxkGicv46ArXIZJL4p5QoA9jy8+++/M13k6RSlJXO5r/xShWepFBLBdV7/p3W/f8s5HK5DkpKUjPK/bMNfw1o//z4r4rNVb+v/xPG8jTwp+6nTyXyqlAoCuVy+Q8oNQnfQdl5AwC5XD4IGIIyTfmXreRWKBRJcrn8NEqZoRdRio+r8C5K72SzQqH4S2qi/kzveO7XnpPL5atQepfb/8rtYQHkcvnbKIWl7wCD/yZUAYG/+zqVy+XeQM4/Xje5XO6EkpMGT0c0XOX8/Rr8Ud4/V1FGxp/U+YsGuiCTGf1bSSuZrLXGkaoT0v0nHEcb/jNMBEyBH9sKtf5SuAIsBObJ5fLNCoUiS/WEXC4fhjIQUIuym+FfEv9L++nTbA/7CtADeOtnDbRIlCK/Y1GKYj+vUChKn97w/hDIUS7Ur+Vy+QAgHuWc+6FMF771FMfWht+AXC6fjdJwbUK5MS3+FXpEqkKh2PYnD+2Pxt95nU4Elsnl8gtACspq/PbACJQp9nCU7U//XCiLs37V+UMmW8XPzl8r28NeBLqirBU4+29eJ4yj3yjUUiHw58en1hFJLpePAcb8/KOqd3qQXC7f9vP/CxUKxd+hqx/8fy7yX72jVgv8H7iGB1HedwOBeLlcfgRlwVZHlJQCGbDsL95q+39mP31qxqtCociXy+U9UEZdx6LcICtQCmV/qFAo/vJpyp+jWt1QGkBDgeFADspKxHf/blG8vyFcfn5UB17+F6+5BGz7Mwbz38LffJ1eQKll2wVlWksfJdf+KkrO6c6/UcefQyirfYfw743XJzeOZDI1lLI4j5CkmP90gP8B/IDZ//A715//AaTxN2hJ/XPDl2D+noVafvyNr6FCoWiWy+XDUWawpqC0a/RQFjyGA18rFIrTT3GIfwT+Z/ZT2ZOrqrShDW1oQxv+61BGXlcCz7cy8goy2V2UUS2HX+WyKhsixKE0jpx/k+8qkw1Gqf6yBEn6slVjaUMb2tCG/xLajNc2tKENbfi7QCabCuwBxiFJR/6A9zsE9AHaI0l/R7m0NrShDX9BtBmvbWhDG9rwd4FMJkNZ4KUL+LWiYcGvvZcfyvbdi5Gk9b/x6ja0oQ1t+NPwtKSy2tCGNrShDX80lMbqPOAIYPcfvpstSg3aTb/1wja0oQ1t+DPRFnltQxva0IY2tKENbWjDXwZtkdc2tKENbWhDG9rQhjb8ZdBmvLahDW1oQxva0IY2tOEvgyfWeZXL5X95foFCoZD9q+f+7vODv/8c/w7zg7//HNvW6d97fvD3n+PfYX7w959j2zr9+86vLfLahja0oQ1taEMb2tCGvw4kSXqifwsWLJAWLFggHTt2TJo/f7505MgRSYX8/HypqqpKkiRJqq2tlZYtWyb1799f2rJli1RWViZJkiTV19eL12dkZEgbN26Uli1bJn333XdScnKyVF9fL+Xn50sZGRnSvXv3pC+//FJauXKlFBERIf7uhRdekABp9erV0j/i4sWL0rZt26Tk5GRJkiSpuLhY+uijj6Q5c+ZIqrE/yfxiY2OlTZs2Sd7e3pKLi4t06NAh8RmzZs2SAOmzzz4TvysuLpYaGhqkhoYG8bvLly9LL774onTs2DEpOjpaCgwMlCwsLKTIyEhJkiTp3r170tatW6XIyEipqKhI+vzzzyUdHR0pMDBQioyMlGpqasR7ff3115KNjY303nvvid9VVlaK/zc1NT3R/H45x+XLl0uSJEl1dXXSzZs3paKiIvF+tbW1Un19vdTc3Cw1NTVJjY2N4nPi4+OlL774Qpo+fbr04YcfSvn5+ZIkSeI13377raSjoyOFhIRItbW1kiRJUlZWlrRy5Urpww8/lLKzsyVJkqSqqirpyJEj0jfffCNdu3ZNKikpkerq6qTGxkYpLy9PioyMlK5fvy6Vl5dLkiRJ1dXVrbqGKjQ3N0vNzc3/9PM//r6srEyKjY2VTp8+La1du1aaNWuW9Pnnn7f4nlXf1+nTp6Xt27dL169fF9f9/v37Ym5Hjx6V5s+fL924cUOSJEl6/PixWBvTp0+XAGnTpk2SJElSdHS0WK/Z2dm/a47379+Xjh07JsXHx4vfLV26VLKwsJC2bNki/SMmTJgg6erqSsePH5ckSZJKS0ul0tJSqbGxUdq/f7/06aefSj/99JP0zjvvSJaWlpKtra00depU6aWXXpJef/11afPmzVJcXJx4v+rq6hbfU//+/SVTU1MpOjpaio2NlSwtLaWBAwdKkiS1ep2OGjVKunXrlrh26enp0qZNm6S5c+dKO3fulMLDw6V+/fpJfn5+0r179yRJUu4zeXl5YjyFhYVSeHi4uPckSRLrurKyUiooKGgx/l/uU5IkSe+++670zDPPSA8fPpQkSZJqamqkwYMHSwEBAVJiYqKUnp4ujRgxQlqyZMkTz1H1mosXL0rl5eXStWvXpIEDB0qA9Mwzz0gVFRXStWvXJBMTEwmQ/Pz8pLt374oxjR07VnJ0dJSOHTsmfrds2TLJ09NTmjFjhrRlyxZp7969UklJiSRJkjRz5kxJR0dH2rZtm3j9F198IfXo0UN65plnpJ07d0qHDx+WIiMjpaamJvGaX94jKrT2Gg4bNkwCpP79+0uzZ8+WNDU1pYEDB0olJSVSZGSktGTJEik6OlqqqamRPvzwQ2n//v2SJEnSjh07pCFDhkj79u37pzHk5eVJxcXFkiRJ0oMHD6Tvv/9eiouLkxobG6XvvvtO0tXVlQDp/fffF6+5fPmyJEmS9M0330gWFhbSzp07paqqKqlPnz6Sra2tlJSUJEnS79trioqKpIEDB0q6urrS4cOHW4y1oaFBunDhgnT8+HFxFkqSJP3www9SWFiYJEmSdOHCBcnGxkaaMmWKeL66ulpqbGyUysrKpAsXLkhr166V1q1bJ0VHR0upqanShQsXpLi4OKm+vl5KTk6W7t27J+Xm5koJCQnSxYsXpYyMDPFeqv1ZhdTU1FbNcffu3dLkyZOlrVu3ijm98cYbkru7u/TSSy+J971x44bk7e0tAVK/fv2k5cuXS+vWrZPOnTsnZWZmtlhbv0RjY6NUXV0tFRQUSKtWrZIAacyYMVJjY6O0bt06CWhx/uXn54u1WVFRIZ0+fVoKCwuTMjMzxWtau05LS0vF31ZWVkrh4eHS6dOnperqaqmiokIqKCiQJEmSkpKSpKCgIAmQAOmLL74Qf7d//35xz86bN08qKiqSCgoKpC+//FL65ptvxPwbGxvF+PPy8qSIiAjp2LFj0pkzZ6T4+HipurpaXKfBgwdLgPTyyy+Lz1m+fLlkY2PTqmuYkpIiXbt2TUpOTm5xrkuSJN26dUvauXOnFBUVJR05ckQaMWKEuNaLFi2SZDKZtHPnTvH6wsJC8f+KigopIiJC2rlzp3TgwAEpNTVVfIcqzJs3TwKkPXv2SJIkSVu2bJHeeOMNsT/FxcVJtra2kq+vrzhHT548+Zvza3V72A8++IBHjx5RW1uLt7c3bm5uWFpaiufV1NQYOXIkXbt2pX379mhrawNQUVGBmpoaJiYmGBkZYWVlRXJyMqampri4KLtwbt68mdzcXBYtWsQLL7xAWloa+vr64r3nzZuHhoYGd+7cYceOHUyfPp1Hjx5x/PhxvL29GTp0KPHx8Tx+/JiQkBDeeOMNioqKePvtt594fq6urmRnZ6OmpkZVVRU6OjoAZGdn4+Pjw8cff8zo0aMBaG5uxtTUVIw9OjqatWvXEhISQkNDA/r6+lhaWjJ58mRSUlLEa/38/Ni6dSt79+5lxYoVjBw5kvT0dDQ0NJAkifT0dOzs7DAwMGDatGkAaGhokJaWhpOTE3FxcURERDBgwAA6duzY2kvIZ599RmxsLB4eHhQWFpKZmYmPjw/z58/H3d0dgMTERIqLi/Hx8UFPTw81NTU8PT0xNDSkubmZM2fOkJCQwMqVK3F0dGTjxo1s3bqVadOm0bNnT65evcqAAQNQV1envr4eQ0NDbG1tAdi6dSvh4eHimpmYmIixNTU1cenSJbS1tenRowcAurq6rZrfxx9/zIgRI/Dx8RHXSU1N7WcJTOVn1NXVoaenB4CRkRFFRUXs27ePiooKJk6ciL+/PwkJCWhra6OmpsbFixf54YcfKCwsZNy4cQQFBZGcnExcXBwaGhqoq6tTUlJCfX099vb23L9/H3t7e9zc3MjOzmbXrl3o6enx9ddf069fPwB8fHzYvHkzp06donfv3q2aY2FhIQBff/01N27c4IsvvsDT0xOAyZMn06VLF/z8/Fr8zZ07d9DX12fEiBFUV1fz9ddfs3fvXoYOHcrKlSsZO3YscXFxaGpqAkrHViaT4ebmhq2tLZqamlRVVXHnzh3S0tLo2bMnWlpaREZGUlpaioaGBj169KBfv34YGxvz+PFjunbtSp8+fVo1NxWGDh2KoaEhtbW1nD9/nvXr11NcXMycOXOYPn06V65c4ebNm9TU1FBUpGwXrqmpiZWVFUlJSXzxxReUl5cTGhqKk5MT0dHRGBoa0q5dOzQ0NNDX10cmk4l1AHD9+nW2b99OZmYmLi4utGvXDoBFixYxZswY5syZw0cffcS5c+e4dOkSBgYGjBs3ji5durR6fvb29hgaGuLt7c3IkSMxMDBg6tSpGBgYEBsbS2lpKZqamjz77LNoaGjQ1NSEuro67733HgcOHGDPnj1kZmYyadIkXn31VczMzDh8+DDl5eW8+uqr4r6aPXs2Tk5OeHt7A3Dr1i0uX75MZmYmDg4O1NbWYmFhgaurK2pqahw5coT09HQmT56MhoYGBw4cwN7enlGjRrV6js8//zy+vr7ExcWRnJzM5MmTmTNnDiYmJgQEBFBTU8OhQ4ewtrZm4MCBpKSksGDBAqytrQkODua7777j0aNHvPPOOxQUFLBv3z7at2/P8OHDAcjNzeX27dvo6emho6NDaWkpffv2xdHRESsrKy5evIiFhQX29vZER0ejpqbG66+/TkBAAHp6eqxcuZKioiKsra2B1u81paWlmJmZMWPGDBwcHDAwMODHH39k69athISEsGTJEvr06cPatWtRKBQMHjyYF198kXHjxhETE8Pt27fJzMxk9uzZDBo0CID4+Hhqamrw9/fHyMiIyMhIdu/eTfv27enWrRsdOnSgvr4eOzs7NDU1sbGxQU9PD2tra6ytrSkoKGDlypVYW1vzxhtvkJ+fz+rVq3F0dGTFihU4OTm1ao7u7u4MHTpU3Mfp6elIkkSvXr0YMmSIeJ2NjQ3vvfceMpkMR0dHLC0taWpSNnAzNjYGIDo6mgcPHmBiYoKzszPW1tZYWlqiq6uLrq4uzz//PLW1tbi4uFBfX09AQACvv/463bp1E59jZmZGdnY2lpaWGBgY0Lt3bw4cOMBrr71GY2Mjrq6utBaFhYXk5eXh7u5OXl4ea9euRUtLC3d3d8zMzLh37x7u7u6YmJgwY8YMnJyccHBwoGvXruI9hgwZwqpVq6irq2PcuHGYmZmRn59PY2MjOTk5RERE0LFjR/Lz88nMzMTAwAB3d3e8vb2pra3l2rVr3Lx5Ezc3N4qKirhz5w4uLi5MmDCBsLAwrKysWL58OYGBgVy4cKFV87OyskKSJBwcHFBTUybca2pqKCgoQEdHBx8fH4qKirhw4QLR0dFYWVmhr69PTEwM+vr64kwA0NLSEv83MDDA1taWiooKjI2NsbNTqvOp7LaCggKCgoJQV1cnMzOTffv2YWxszKJFi8T+ZGhoyLx583BycsLS0pKioiKam5t/c06tNl5v3ryJpqYmP/74I83Nzbz66qv4+vqKL0NLS4uePXv+09+lp6dTWlqKn58fhoaGeHl5YWNjIxba3r172bp1K8HBwXh4eIhJqTYkNTU1/P398ff3p3PnzixdupRu3bpx5coVli1bxssvv0xoaCi3bt3i/v37dO3aFT09PWpqalo1Px0dHQYOHMioUaO4dOkSlpaWSJLE5cuX6dq1K/379wegpKQELS0t9PX1ycjIIDw8nHPnzmFkZMSKFSvE6wBefvll8f0AVFZWkpiYyJUrVygqKqJ379588cUXVFVVoampSUZGBrGxsdjZ2eHg4MCiRYvYunUrX331FW+99Rbt27fn6NGjREREiE2hNZAkiRMnTvDo0SOam5tJSEigoKCAfv364e7uTlVVFTExMTQ0NNC+fXv09PQoKiqipqYGfX19+vXrJzZoa2trVq5cSUpKCubm5nzyySeYmJiwefNmjIyMCAgIoG/fvlRWVlJRUUFBQQHnz5/nxIkT3L9/X2z6dXV1aGtrY2hoiJGREfX19eTk5GBvb091dXWr5hcfHy+M/vr6etTU1JAkidLSUpqamtDX10dfX5/a2lry8vJwcnLCw8ODzMxMLl26xLBhwzAxMSEhIQFTU1PMzMy4ffu22DAGDhyIm5sbUVFRXLx4EXt7e3R0dCgrK6O2thYbGxvKysrIyMjAwcGBa9eucfLkSebOncuMGTNajDUlJYXw8HBhqD8pCgsL0dfXp6KigpKSEvEdNTY2YmdnR+fOnZHJZDQ0NFBVVcXt27dJT0/nhRdeoFOnTjx8+JDdu3cTHR1NcHAwoHSQOnToAEDHjh2FgaBCfX09GRkZxMXFIUkSTU1NqKmpUVtbS3R0NA4ODrzyyitYWFgAkJeXxwsvvED79u3FIdYaLFiwgLq6OmJiYrhw4QJxcXGoqanR0NCATCajd+/eTJkyhcTEROEYpaam4uzsjJmZGbdu3SIvL49Jkyahra3N7du3sbW1xdjYGHV1dXR1ddHT06OgoAANDQ1MTEzIycnh5MmT5OTk0L9/fzp27Ii2tjYPHz7kwoULzJkzhy5dutCuXTvkcjmGhoZs2LCh1UYPQIcOHWhoaMDY2JjFixezePFiQOlsxcbG4uTkxJw5cxgxYgRVVVVERkYSGBiIj48PHh4ezJ49m6NHjzJs2DCcnZ2ZPn0669at4+HDh6xcuRKA5ORkfHx8GDBgAACPHz/m/v37ODg4AMqgwvXr1xkyZAjm5uYAREVFkZaWxrhx42hsbCQyMhInJ6ffZbyOHTuWsWPH8sknn3DlyhWWLl1K586dKS8vF07l7t27sbGxYdq0acTFxbFp0ya+/vprFixYwJkzZ9i3bx/z5s2jsLCQ27dvi/UFYGJigq+vL0ZGRmRkZKCmpsarr77KgAEDSExMZM+ePXTu3BlbW1suXryIubk5ixcvRltbm/r6erp164aWlhbq6uo0Nja2uqfDp59+ilwuZ/bs2UybNo3jx4/z3nvv8eDBA3GOZWdn8+DBA6KionB3d0eSJDQ1NXFycuLkyZPY2dmJfUF1j2lra1NQUEB6ejopKSno6uri5OSElZUVOjo6uLm5UVxcTHV1NZaWlujo6JCZmYmlpSUODg7k5OQQHR3N/PnzKS8v5+TJk4SEhIhgTGvg7OwsjMfy8nIeP35MYGAgXl5etG/fnsrKSrKysmhqaqJfv37o6elRVVWFTCYT363qc+Pi4jh8+DA9evTA398fY2NjsrOzKS8vR0NDA0dHRz788EPx2T169GixNzY1NREeHs61a9cICgpi+PDhpKamcvfuXc6dO0d+fj6g3DtaA5lMRmVlJYBwmIuLi4mPjyc/P5/jx48ze/ZsQkNDkcvlyOVy8bfV1dVUVVVhbGzMSy+9RGNjIxUVFYDS0PPy8kKSJAwMDLh69Sr79+/nwYMH9O3bl7fffhsTExN69+5NamqqsHV++OEHLl++zLfffsuECRMYO3YsO3bsYOLEiYSEhJCenk5cXNwTz09PTw8XFxeam5tpbGxEQ0Np+qmpqeHm5oa2tjZ3795FW1sbb29v7OzsSEtLIzk5ucXrQWk/NDQ0UFpaCoCDg4PYT1TfhaGhIVVVVRQWFhIcHEyXLl2IiIigsbGRcePGoaWlRVJSEoWFhdjZ2bFq1Srx/jdu3ODOnTu/OadWG6/vvvsup0+f5tq1axw+fJipU6cK41VdXR11dfVf/bvc3FzS0tLo0KEDhoaGaGtrCyP3hRde4NixY7zyyiu89tprAKxdu5b79++zZMkS4aGrUFBQQEFBAerq6iKaWV5eDkBQUBCurq5YWFjwzTffsG7dOkJCQlo7Tby9vYmJiaGurg6ZTMbQoUPF3NLT09HS0sLU1JTjx4+zZcsWhg0bxsKFC/noo4/EQlN58ypkZmZy8OBBrl27Rl5eHjNmzGjhJaq8lfbt2wO0MNqKioo4efIkM2fOpEuXLqxZs4bt27ezcOFCbGxsWjW3jz/+GGdnZyIiIkhOTubFF1/E29ub+vp6YmJicHd3p3///qirq6Ovry88pp9++olOnTrx8ssv88YbbyBJErW1tUiSxAcffEB6ejoymYzHjx/j5uYmFvTgwYMpLi5GXV0dBwcHhg0bxpEjR8jNzaWqqgpQGk7Z2dnY2dkxb948srKyiIyMpKamBi8vr1bN7+233xafrXrvR48eceDAAWxtbXn22WcBSEtLY9u2bYwcOZKePXvSpUsXTp8+zdy5c3nvvfcYOXKkiF5OmzaN5ORkzp8/L963U6dODBs2DCsrK+zt7YmJieHBgwfU1NQQEhKCi4sLjx8/RldXl7feektELtLS0sjLy8Pc3JwRI0YQGBhIz549W9zAvwU7Ozt0dHR46623KC4upn379pSUlHD16lW+//57ZDIZr776Kurq6qxcuZKmpiY+//xzOnXqBCgzDKtWrWLVqlXo6emRkZGBmZkZGhoav+r13rhxg5iYGKytrenevbtYc7W1tXTr1k1Esn4ZxVQZWYaGhpSV/b7Ootra2ly4cIHy8nJ27dpFfHw8H330ETU1Nbz++uts3ryZqKgovLy8OHXqFDt37uTFF18kKCiInTt3EhkZiYeHB7a2tgQHBwujW09PT0QTNm/ezMOHD1m8eDGhoaEYGBigoaGBq6srsbGxyGQyJkyYQMeOHcUe8ODBA9LS0rCzs/uPmlglJyeLAwSUhuv8+fMxMDBg+/btJCYm8v333zN48GDhZIAywrx69WpSU1NFBMPc3JyGhgYArK2tuX37NtOnT2fu3Lm88cYb4vvs3bs3wcHBHDt2jDVr1qCpqSmySbW1tfTv3x9DQ0McHByorKxk8ODBFBYWcunSpd89z2eeeYagoCDU1NSIiIjg0qVLXLt2jbi4OAoLC3F3d+fYsWMUFhayYMEC+vTpg4aGBh9//DHx8fEUFhaio6PD7NmzMTExobKyEgMDA7p3746fnx9aWlpUVVWRm5sr1qCZmRk1NTWEhYVha2uLra0tHh4eIhuYkZHBsmXL0NTU5L333hPORGtw8OBBMjMz2bRpEzo6Oty+fZuSkhKWL1/OqlWrqK2tZefOnQBs2rSJ0NBQQBmxzcvLw8vLi86dO4v309LSYvDgweTk5PDRRx8BMGvWLBYvXkxlZWULwz08PJxbt26xdOlS9PT0WL58ORYWFrz//vt88cUX3Lt3D319fYyMjNi8ebO491uLX0bdDA0NsbCwQFNTE0dHRwoLC4WxnZaWJgx3VYajR48eTJw4UZxzurq62Nvb4+vrK6J0J0+eZPXq1djY2PD222//k9OsQllZGeHh4bz//vvExsYyf/58SkpK2LFjBwUFBUyZMoVbt25x48aNVs/R1tZWfLeWlpasWbMGCwsL3NzcePXVVzl48CCDBw/+1b9NSkri1KlTWFtb4+Xlxf79+7l06RLLly9n9OjR+Pv7Y2Fhgbq6OmfPnhXrwcTEhMbGRvE+w4cPF2NISUnh8ePH1NXVYWxszPbt2zl69CgPHjzA2dkZNze3Vhmvv4Rqf9fV1RWZJUmScHd3Z+rUqeTl5TFo0CDU1dU5ceIEaWlp1NfXA1BVVUVdXR3p6el8+umn1NXVsWHDBszMzAA4f/48ubm5wsnW0dEhLy+P5uZm+vTpIxy6H374gWXLljF27FixzlWIiopix44dLaL6v4ZWG69Tp07lzJkzaGpq0q9fP9TU1MjIyKCiogIzMzNsbGzIz8+nrKwMe3t7sZGYmpqirq6OgYEB6urqGBkZAcrNOzs7G09PT0aMGEF9fT2ff/45ly9fJiAgQHwpqshGdHQ0ISEh2Nvb4+7uTlpaGvb29uIGMzc3x9zcnOLiYm7duiU8oCfF1atXSU1NpbKyErlcLgxzSZLEpmdqaoqhoSEA586d4/jx4zg6OjJmzBisra3JyckR47158yaZmZno6OgQHx/P5s2bSUtLIzAwkOeff15sXJIk8eDBA4qLi/H09BQGbG5uLsePHyclJYVBgwYRERFBfX09Ojo6VFRUiFR4azBnzhxMTU3p3r07cXFxIl1VWlpKc3MzWlpaVFZWikhwU1MTTU1NlJeXC892yJAh2NvbY2JiIqKOqampZGdn4+LiwoABA5DJZMTFxXHnzh00NDTo378/1tbWTJs2jbNnz5KdnY2BgQGgdHxUm1liYiIxMTHU19djZWUlvvcnhZmZGSdPnsTJyUnQKjQ1NfH09Gxh6Dc1NWFiYsKdO3dobm6mS5cudOzYkfj4eE6cOMFLL71EeXk5Z8+epW/fvpw7d46TJ0+SlZUlKByqG6y0tFSk2R0dHUWU6ty5c2hoaIhDKysri7y8PKqrq9HU1BSOVV1dXavmaGRkhCRJLQ4+UEZeT58+TVVVFUuWLMHBwYGsrCycnZ3F4XXmzBn8/f3p0qULZWVlfPnll6Snp7No0SJhrN+5cwdDQ0Pat2/PrVu3eO2117hz5w6hoaFkZWXh6uqKv7+/oAxVVVWRk5NDSkoKubm5mJiY4ObmJg6t+Pj4Vs1PhebmZm7dusWtW7eYPHkygYGBmJubs3nzZuzs7Jg4caJI3bm4uBAcHExkZCSgdGRVNBhQZlVUKbPc3FxMTU3Jzc3l1KlTXL16ldGjR9O9e3dCQ0Oprq4mJycHDw8PnJycqK+vRyaToa2tTXV1NeXl5QwcOBBfX1/q6urIzMzkwYMHrZrbwYMHsbOzw93dncrKSu7evcvWrVtF2rJTp07k5ubS3NwsDNczZ84QFxeHr68vwcHBLaLaVVVVTJkyBUmSUFNTo7q6WjyvohyoUsYFBQXU1dXh6upKz549GTlyJKCM/PXo0UOkBnNyctDQ0CA+Pp6YmJh/GZz4V1ClTe3s7AgODub27dvExMQgSRJ1dXU0NjYyduxYevbsSV1dHV27duW5556joKCA0tJSAgMDCQwM5Ouvv6ZLly4io5WSkkJhYSGampqUl5dTXV1NfX09Li4uODg4UFxczPnz58nKyqKxsRFLS0sCAgKwtrampqYGXV1dmpqaSEpKwtzcXHwvrTVe+/btS0xMDFu2bKFPnz7Y2dkxevRogoKC0NLSoqmpiXbt2gnnTRUMUdHEOnfuTHFxMT/++CNmZmZin1AoFHz++edMnDiRoKAgmpqaePPNNykuLmbWrFl069aN+vp6ampqqKioEGn35uZm1NXV8fDwwM7OjtraWszNzRk7diyZmZns2LGjRQr+SaClpUVmZiZ1dXWCKufs7Iy6ujo1NTVoa2vj4eFBY2MjmZmZpKam4ufnR0NDA3l5eSJAkZmZSbt27ZgxY4bYL2xtbdHX10dHR0ecqXl5eairq9Pc3IxMJsPExESc7xYWFvj7+6Onp4e5ubmYq5+fH0OHDhX3hSqK+qRQfX/p6elUVVWJTAUogxTdunXj4cOHJCYmYm1tTWJiInp6enh4eODs7MyhQ4fIz8/n9ddfp7q6mqysLLKzswGlI9nQ0MC1a9fIycnB19eX8vJy4SRWVVVx9epVJEkiICAAHR0dnJycGDNmjDgfHRwceOaZZ7hw4QLGxsZ07tyZo0ePPvH86urqaGhowMDAAC0tLVJSUkhPT0dHRwdPT0+MjY0xMDBoQX+KiIjA0tKSUaNGCWpnTU2NSO1funSJ1NRUQkJCmDt3Lvfu3SMjI4N27doJZ1xLSwsrKyuqq6tJTk4mNzcXGxsbSkpK0NHRwdfXtwUNAZRBj186af8KrTZer1+/TkFBAUuXLmXp0qUkJSXx6aefoq6uznPPPYeVlRXHjx8nISGBBQsWiE3By8sLHR0dsfmZm5sTHx9PamoqK1euxNbWlujoaBYuXMj9+/d5++23WbJkCaDcUDQ1NcXBv2TJEgIDAwGl0RcSEoKdnR3l5eUYGRmRnp7O5cuX6dOnD0uXLuWrr7564vmFh4fz5ZdfsmjRIubPnw8oD/IbN27g7e1Nv379xE0GiP9v2LCBxsZGJkyYQEBAAEZGRjx+/Jgff/yRw4cPU1NTg42NDZIkoa+vj5+fXwuusEwm48aNGxw9epQpU6YwZ84cQBkVWrVqFW+99RbLly/n448/FimRt956i82bN/POO++06hqqIrz29vZYWVlRXl4uNgnV971//36Ki4uZOnUqLi4uPPvss0yYMAFNTU3U1NTIzMzE3d0dLS0tGhsbmTp1KrGxsezduxd7e3tAuQmdPXuWNWvWYG5ujoODA9bW1mhra4tUu8rIVx2uJSUlPPvss9TX17Nz5046dOjA48ePWzW/jRs38sknn/Dqq6+yYsUKMVdXV1eqq6uJjo6moaEBX19f3njjDdasWcOUKVN45513OHv2LCtWrMDExARDQ0N27NjBypUrWb16NTNnzmTo0KFcvnyZR48eYWJigrGxsXA8CgsL6d27N7169QKUkfPCwkISExOpr6+nb9++2NvbY21tTUVFRYub9vdEtUpKSkhJSUFTU1M4WYGBgSxcuJDi4mLs7e1xcHDg/fffFx72J598wuXLl3n//fcxMzNj6dKlfPvtt2hrazN27FhhvGpra1NbW0tZWRklJSVkZWVRW1vLTz/9xMGDBzExMRF82X379nH48GGMjY0Fh7KyspLu3btjZ2dHXV0dycnJrZ5fVlYW1tbWuLi4sH//fp5//nk+++wztm/fzurVq5HL5VRVVfHCCy8ASm6eu7s7b775Ji+99BJvv/22MMouX75MUlISEyZMwNDQkAcPHohUn4ODA35+fmJvysvLQy6XU1RUxLfffouRkRGjRo3Czs6OH3/8ET09PSwsLBg+fLgwKtesWYNCoeCZZ5554vnt2rWLZ599FgsLC1JSUnj++ecpLy/nyJEjwtEICAhg0qRJgHIfWrJkCbGxsfTr148xY8YQGhqKq6srjx8/JiMjg5dffhl1dXWuXbuGtrY2e/bsEZFKNTU1EUyIiooC4P333xcGEyD47aCkpsTHx3Ps2DGOHDnSwrh6UqiMy4yMDIyMjHB3d8fHx4fGxkYGDhxIeno6lpaWuLi4YGBgIGhQUVFRlJaW0rVrVx4/fkxYWBilpaXC2UtJSSE6Opr09HQiIyO5efMmXl5erF+/HhsbG2pqakQUdObMmUyaNAlJkiguLhb3nbOzM0eOHEFXV7cFz7s1eOONN4iMjBRBmBdffJHjx4+zcuVKfvrpJzZt2sSMGTM4cuQIS5YsoX379nzyySctIsDh4eE899xzPPfcc4SGhhIWFsaaNWsA6N69OwDfffcda9euBZRZuMWLFzNgwACCg4OxsbHByMiIjz76CA0NDbS0tCgrKyM/P78FTeCrr77is88+44MPPmjVHHNzc8nMzCQmJgY1NTVRywDKQIHKIPL39+eHH36gtrYWPT096urqMDIyErSro0ePMmTIEIKDg1m/fj27d+9myZIlTJ48me7du1NbW4u7uzvq6upERERw4cIFunfvTv/+/cnMzCQ9PZ3u3bszaNAgcnJyqK+vx9bWlpkzZ5KRkSFoQcOHD2f16tWtmiMoI7t79uzh8ePHzJs3j8DAQCoqKpg1axb9+/dnw4YNfPrpp7z++uvY2dmRkJCAh4cHWlpa5OXlUVxcTK9evXjhhRdYtGiRiFaCMtK4ZMkSZsyYwe3bt6mrqxP348aNGwUnWRXdLS8vx83NDX9/f/EeampqBAcHt6gReVLU1tYK47W6upozZ85w+PBh9PX1mT17NiNHjqSpqUnQA/bu3cuCBQuYMmUKCoUCNTU1kpOThc3i7OzMsGHDOHnyJFevXuXhw4dUVlYyaNAgsefm5eURGxtLSEgIpqam/PDDD8TExLB27Vrmz5/PiBEjWthSKvTv3x8bGxu2bdv2b+fUauP19u3bTJs2TRhMJiYmXL58GTU1NVxdXamrq+PQoUNcuHABHx8fYbxqa2sjSRJlZWUYGBiIzcLW1lYcmJWVlYwaNYqAgABSUlL4+uuvGTVqFM7OzoBycVlbW4vCA4AuXbrg6OgoorqgjBbExcUxePBgEaZ+UowePZqMjAzKy8u5fv06QUFBeHh4UF5ezsWLFzlw4ABWVlZYWFgI0vw333xDSkoKgYGBIuK2ePFivLy8mDBhAocOHSI1NZXi4mIR1QgJCaG2tpYtW7ZgZmbG8OHD8ff3p7S0VERd09LSaG5uZtGiRUyfPh19fX369+9PWFgYhYWFdO7c+Yk8lH+EavOurKykoaEBSZKIiYkhJSWFoKAg2rdvL6LZKo/LwsJCfFZ0dDSJiYk4OzujpqbGmTNnaGhooH///mhpaVFQUEBiYiKampq4uroyevRo6uvrRYQoIyNDOEGqiKO6ujp5eXmcPn0aIyMj+vbtS4cOHYiKivrNRfyPsLCwwMTERBSJuLq6kpSUxOXLl7l16xaampoEBweLjUFNTY2srCxu377NvHnz2LBhg6BAqNbVkSNHyMnJobS0FAcHB3x8fNi/fz/Z2dkEBATg4uKCsbExTk5OaGlpcfbsWYqLi4XHvmjRIt544w3efPNNAEF3UUH1PT8pKisrkclkmJubExkZyc6dO+nSpQsTJkxgwYIF7Nmzhy1bthAYGEjv3r3Fhvf48WNyc3MpKipCJpPRv39/EW06f/48DQ0NjB49WhS7AQwbNozPPvuML774gqtXrwLKYqqAgADu3r3LihUryMrKYvr06Whra5OXl4exsTGurq5ic1IV8bUGBQUF2Nvb895772FpaUlWVhYeHh507NiRefPmoaOjIyglZWVlXLp0iaSkJLKyshg7diwjRowAlIf2999/T11dHcePHyckJARfX18sLS0pKSlhyJAhDBs2jKqqKtauXcvNmzeJjIykffv2PHz4EA0NDezt7bGwsOD06dPExsZy5coVBg4cKIxXX19fUYj3pHB3d+fu3bv4+/tjY2PD888/j7a2NoGBgTQ2NnL79m3hpH/++efcvHmTgQMH0r9/f/Lz80lMTBTUoqNHj3LixAk2btyIh4cHW7duJTY2lg0bNggqhOp70tDQwN3dHVdXV1xcXMjKyuLIkSPY29szduxYABHRUzmYKi5ba6Fad1lZWZSUlODi4tLCoMrIyMDa2lpw2wsKCoRzm5WVxYEDB7h16xb6+vpkZWXxwQcfkJKSQkJCAnV1dRQXFwvnNioqijNnzgiecp8+ffD09BTRJNX9AkrHz9TUFCcnJ/Lz81mzZg29e/dudeFkXl4ekydPJi8vDysrK2QyGfX19dy7d4/k5GQ2bdoEKO+Xo0ePUlxcTGpqKi4uLsJ49fT0ZMKECSKL4ufnx/Lly6mrq6Nv3740NTVhYGDAwIEDsbGxoUePHtTU1GBsbCy+39LSUkxNTUUmzsjICHV19RYOcv/+/SkrKyMnJ6dVc9y1axf9+vXDw8MDHR0dXFxciIqKYvfu3YSEhBAaGkpSUhKNjY14eHjQ0NDAli1b6Natmzi7a2triYyMFEESfX19nJ2dRaDjH/e/jIwM1q5dy9ChQ2nXrh3Xr18nLCyM3r17M2vWLMFxBzh27BiJiYl4eXkxdOjQVs3tl1BXV+fWrVtcuHCB4OBgOnToQGZmJn5+fnh6ejJ16lRu3rwpskn6+vp899133L59m759+xIcHCyCBKqMT11dHRcvXmTr1q00Njbi6emJpqZmCyrGmTNnyMnJwcnJib59+4r7ulevXoJvb2Njg4mJCbq6uiIg1hr+sqamplhvMpkMOzs7hgwZQk1NDfv27SMsLIwFCxYQEBDAuXPn2LNnDz169OCZZ54RzqyKqgbK9TZt2jThWISHh5ORkYGHhwfp6ekkJSWxc+dOsrKyuHv3LpaWlsTExFBbWyscHwcHB+7evcvJkydFoKeqqorZs2czcODAP9549fDwEJG/7Oxs0tLS6NevHz4+PmhpaVFdXY2Ojg61tbX8+OOP+Pv74+XlRX5+Pjk5OSLUX15ejrOzs4i8VVVVYW9vz8svv0x9fT1Tpkxh06ZN1NTUCL6Wu7u78AxUHrKVlRXm5uYUFhYKj09DQ4O6ujpBKG4NVATxLVu2sH79eqqqqhg0aBD9+vXj8uXLbNy4ER0dHXr06IGlpSUjRoxg5syZAOKiqP520aJFzJs3j+eee47ly5fj7OyMq6srfn5+TJo0ierqau7du4eamhoDBw6kR48e6Ovr4+7uTklJCSdOnMDDw4OpU6cik8lobm6mb9++REREkJaWJgzo1kLFsyktLcXExEQ4E2FhYWRkZAgFhObmZurq6qitrUVTUxM9PT3S09P59ttvsbS0FOT6AwcOsGXLFp577jmuXLnCtGnT0NTU5Pnnn2fs2LGEhoaSkJBAREQEjx49oqmpSVATVFXzAEeOHCEvL481a9aIjfyjjz4SXuCTom/fvnh5eXHlyhVOnjzJmDFjSEtLY9WqVeTl5TF06FCmTJkiXq+lpYWZmRn6+vqUlpa2UCJwcnLCy8uL6Ohojhw5AsCXX35JSEgI4eHhfPTRRzzzzDNs3LgRbW1tcnNz2b9/PydPnhQbWkFBAbt27eLMmTOMHTsWd3d3amtrReqysbFRbPJPCpVyh6mpKTo6Onz99dfcuXOHPn364OjoSE1NDSdPnqSwsBBPT09xyI0ePboF92jChAlMnToVgIkTJ/L222/Trl07AgICqK+vJz8/Hzs7OwYNGkRsbKxQUZg/fz7m5uYkJyejq6tLv379kMvlZGdn09jYyPTp04X6QVpamtgAW4OioiIqKiowNDQUEUVA3Ad9+/YFoLi4mFOnTvHuu+/y6NEj3n33XZYvXw7A/v37USgUwsB5+PAh1dXVzJkzh5KSEk6dOkX37t0ZOXIkhw4d4vPPPycvL4958+Yxf/58wTsLCwujtraWZcuWsX79eoyNjXF2dubChQtYWFgwcuRIZs+e3aKQ47cwfPhwrly5wsOHDxkwYABLly4Vz6mihqBUB3j//fcJCAhg//79FBUV8dFHH9Hc3Ex9fT3Z2dkijZ6QkICRkRG1tbWkp6czbdo01q1bx+zZswEE11dDQ4PKykpSU1M5evQoBw4cICAggMGDB6Ovr09TUxN5eXmkpKQgSRJ9+/b9p/Tek0Amk2Fqairu91+m5S9evMhPP/0k1kl8fDwFBQUMGTIEIyMjDAwMuHLlCmpqasyePZvMzEz27NlDTEzMPxXiamtrU1dXx5o1a8jLy+Ojjz5i2LBhAMJprq6uFpHJX9Ifzp8/z8qVKxk2bFirjdfvvvuOzp07Y21tLc4kDQ0NzMzMWhS4NTU1sW3bNsrLy7l//z4FBQUYGBhQUlKCo6Mje/bsAZTnmr29PWvWrGlxz/j6+vLhhx/i4+ODuro68fHxZGZmivtaQ0ODyMhIdHV16dixI5qammhpaYkzGZRO6ODBg5k/f34L4+m3kJKSwjPPPIOFhQXa2trIZDLS0tLYvXs3ampqhIaG8ujRI/Ly8vDw8GDPnj28+OKLzJo1S0SONTQ08PHxISIigoqKChYsWCAMvOzsbNLT07l+/TpOTk6MHz8ePT09mpubqaqqory8nLt373L06FGOHj3K1atX2bFjBwYGBsTFxfHiiy+ioaHB2bNnAVpNFVTBwMAAHx8fGhoaROo6NjaW06dPExwcTM+ePenRoweFhYVYWFhgYGDAuXPn+OGHH1i7di1z586lrq6OhIQEbG1tMTAwID8/n0uXLuHs7MyECRNE9sbGxkbQN9zc3DAyMhIR3v79+1NbW4uOjg7Z2dlkZmaKglJA8Gaff/75J55bfX09xcXFGBoaYmlpKTIoDx484NChQ8TFxTFp0iSqqqoICwujffv2fPnll4AyUNLc3CyonqpMbdeuXdHV1SUnJ4empiYOHjzIzp07uXHjBqampmRnZxMbG8vly5cxNzfH19eX0NDQFsWt69ev5/vvv28xVhMTE7G3/zu02nidNm0a6urq7Ny5kxUrVqCurs7bb78tolh6enq89dZb+Pv7c/78eSFp1dzcTHl5OS4uLhgZGVFeXi42kOrqam7dukV8fLzgR73yyitMmDCBe/fusXXrVubOnSsM119Wv126dIlDhw7R0NDAqFGjGDBggOA0/VpI+rdw5swZBg0aRGhoKGZmZi1kRYYNG4aBgQEymQwHBwd0dXVF9DQtLY3ExETy8/NF+io6OpoZM2bwwgsv8ODBA7Zs2QIojQQNDQ2MjIx49tlnadeuHcbGxty9e5f9+/cLztT48eM5cOAAn3zyCQMHDhTfsZaWFp6enoIn11rMnDkTb29vJk6cKDxFQ0NDevbs2YITqqamxgcffMDVq1fx9/enV69ehIeHs2XLFiZPnsyKFStEUZpqwyguLhabyC+J9ypuYWlpKdOnT2f9+vVERUUhSRJ37twhKysLfX19evfu3UL+q7UcNFCuieeffx4bGxuuX7+OTCbDz8+P559/nsLCQsFtVI3LysqKN998k2HDhpGTk8PGjRuxsrLixRdfFIe7lpYWw4YNw9fXV9BJvL290dfX5/HjxyQnJ9OxY0du375NWFgYXbt2FRXEo0ePZv369WzatIkxY8YwceJEXnvtNdTU1NiwYQPh4eFMmDChVXP8ZWGUjY0NK1euJCMjg6amJhE99fX1FdJ0Kn7hL9O+qk1w8eLFdO3alWHDhlFUVERUVBSJiYls375d8GVVh4m/vz8xMTGsWbOG9u3bExAQwK5du9DQ0MDf318Ux6gMkh9//JGvvvoKS0vLVqe7MjMzee+99zA2NhZ8QjMzM/z8/MS627t3L0eOHKGoqAg7OzsmTJggskILFizg/v37LFq0iKamJsLCwtDX12fFihWYmppy4MABNm/ejJ6eHqNGjcLDw0PsKzY2NnTp0gU7Ozuqq6tF8aIkSYSGhjJ58mR69erF5cuX+f7775k2bVqroz6pqanMnDkTZ2dnSktLhWRUaGgogYGBJCcn09TUhLW1NUuXLsXHx4f6+nq2b9/Orl276NSpE+Hh4WhoaNC9e3fmzJmDsbEx5eXlLFu2DC8vL44dO8aqVatITk7mtddeExHYDRs2cOrUKcaPH8+4cePw8fEhPj6es2fP4uzsTHV1NefOnUOhUJCTk8PChQtZtmwZ77//fqvmqIJK4eOXUBU1qg5xS0tLrK2tRfTQ0tKSGTNmCDmouLg4oRYREREhChxtbGwwNjbm0aNHSJLEmTNnePfdd8XnqKurU1ZWxvTp07G1tWXDhg3iIAblvj5q1CiOHj1K//79xdp9EuTn53P69Glu375NdnY2S5YsYdSoUYSFhYn3+eabb6isrOSVV17ByMgIHx8fwbf+5JNP0NbWFqn8iooKXn75ZbS1tVEoFMhkMgoKCjhw4ABJSUm4ubnRr18/XFxckCRJOHcGBgY4OzuTmZnJ1atXuXXrFrW1tQwbNgwjIyMePnyIiYkJDQ0NJCUltWqOCxYswNbWlpSUFGpra/Hx8WHkyJFIkoS1tTW1tbUYGBgInrWTkxNTp07F0dGRsLAwoqOjMTY2ZsiQITx69IiffvpJFGZv3bqV5cuXI0kSpqamDBkyRMiBffnll/Tq1Qs3NzfCwsLEeOLi4qipqRGFlRMnTkRPT08YRbW1tU88t3/E5MmTGTdunAieVFVV8cYbb6Cnp8fx48exsrJixYoVZGdn8/rrr/Paa6/h7OzMvXv32LdvH1OmTMHNzY2EhARR1P3iiy9iaGhITU0NJ06cIDU1lYEDB4rPfPXVV5k8eTLZ2dlERUXh6+srIpx2dnbY2Niwc+dOjh49So8ePZg6dSojRowQwZQnwePHj7l8+TK+vr6CmhAVFcXBgwfx9/dnwYIFdOzYkZycHAYNGtSikPz+/ftCOadbt24YGRmJ+6epqQlTU1N69+7NnTt32Lt3L3FxcezevZtu3brx4Ycf8v3335OVlUW7du3IycnhypUr4izIzc0FEAXvlZWVxMTE8MILL/xmrUurjVdVAVVqaqpIvaSnpxMVFYWtrS2mpqZ07dqVrl270rlzZ3bv3s3bb7/NpEmTGDVqFDo6OlRXV4vJNzY2IpPJKCsr49tvv+Xu3btYW1uza9cuAgMDhSSUl5cXgYGBZGdnC/1R1QVYt24d9vb2jBgxgrS0NCRJYuzYsaIasjVYt24dly9fZu7cuYwfPx5AGMPdu3cXRo8K169fJzw8nPj4eLKzs6mpqeH5559nxowZfPXVV7z88st4eXkxfvx4EhISKCkp4e7du3h5eVFSUoKVlRVWVlbk5+dz8+ZNkpOTOXbsGEFBQVhaWpKTk8OaNWsYO3Yshw8fFhIoQUFByGSyVnnQKqjSuipenLOzs+D+/TKdvW3bNt577z1A6blVVVURFxeHmZkZRkZG3Lt3jw4dOghdT1BGKidOnEhSUhIaGhqUlJSI6sGmpiYcHR0xNTXF1NQUX19fCgoKOHHiBImJiTzzzDMifaTiwLq5ubVa3iUmJoZHjx5hZWVFr1690NDQwNLS8p94UJWVlZSVleHl5YWdnR12dnYUFxejo6ODpaWlSCuamZkhSRKTJk0SXOSrV69iZGTEli1bSEhIEMb7nTt3OHDgAF27dhXRraamJsaOHcv9+/fZu3evKDQB5doqLi5utZGu8swfP34ssgO/hOoehP/v7Glrawu+r7+/PzKZjEuXLlFcXMzOnTuZO3cu7u7uHD58mLNnz5KYmIiamhoPHz6ksbGRQYMGMWrUKLF2vvnmG1577bUWUjaPHz/m1KlTVFdXixR0Y2Mj169f/5dVxP8K+fn5REdHY2dnh5qaGomJiXTv3l2olJw6dYrvv/+eBw8eEBgYyKuvvioiZ3fu3OH8+fN07tyZhQsXAso0la+vr5ADUxV15Obmkp6eTnR0tIgu3r9/nzt37ojvMDExkfv379O3b19CQkKE8Zyfn8/u3bv5/vvvhWH4pNixY4eIDqoc+IKCAhobGxk5cqQ4QIyMjBg0aBCGhoZER0fz8OFDnJ2dGThwIObm5ty/f58OHTrg6elJZGQk9fX1DB8+nF69etHc3MzevXs5fPiwkIkCpWLKlStXGDlypJC66dixI7GxsRQWFhIVFcVnn30mtGadnZ1/VzAAlNe/pqaG2tpampubkSQJPT09sZ8mJCSQnp4u6GMPHz6ksLAQExMTzM3N0dTUpKysjA4dOgiaiLOzM6dOnaKxsZFRo0aRnJxMXl4epqamDBgwgDNnzuDj40OHDh0wMDDg4MGD3L9/H21tbVFtXVhYyIMHD2jXrh2ffvoplpaWHDlypFWGXWpqKrt27eLBgwfo6+uTl5eHj4+P4OaWlpaSnJzM48eP8fLyok+fPuIMVVNTEzKF9+/fx8/PT9R2REVF0bNnT2bOnMmjR4+4cuWKkOp79OgRO3bsEI7WrVu30NbWxtfXF2tra06dOsW+ffsoKSnB1taWkJAQKioqiI+Pp7KystXGXUBAAKDcq1JSUigtLcXNza1FZFlPT4/GxkYRlZwzZw6urq7cu3ePzz77jObmZhYuXEhRUREJCQls3rwZf39/3njjDQoLC7G2tmbo0KGYmpqyefNmgoKCxF577949DAwMhHM9fvx4Qf9wdXVl1qxZLQp+f1lL0loUFxeTmZkJKKXsdHR00NLSIj8/n6ioKOzs7IiMjCQ6Oppp06YxZcoUunTpgq+vL+fPn8fKygobGxtu3rwpMgiVlZWUl5djaWmJu7s7urq6ghoIyuxxU1OTCBo0NzcL47m6upqoqCiSkpIoLS3F0tKS7t27C772kyIyMpJTp06J7y0zM5P9+/dTWlrK/Pnz6dq1K83NzaSlpYnrqjqTnJycyMjIEAXd5eXlPHz4EFNTU9zc3EQQUmWI9u3bV2gPd+7cGR8fH2JjY0lKSkJLSws1NTUGDRqEjY0NkyZNwtLSkjfeeEPc29evX2fr1q2/mW1ttfGqwqxZsxgyZAgWFhakpqYSFhaGg4MDo0aNEl/QyJEjuXXrFqtXr8bLy4tp06ZRV1dHbGysuCFkMhkVFRUtqvNUPE+VJqepqSlffvklzs7OwrhSLQAVD7N79+54e3uTm5uLoaEhfn5+5Obmsm/fvlbNy8bGhk2bNmFubi70Wf8dvLy8WLZsGaD00kpLS0VKNigoiHHjxrFr1y7Wr19PXl4eMpmMF154QaSqf2nkDB8+nHfffZcffvhBRJtVkVHVhm5lZYWrqyuampro6Oi0qKZ+UuzevZvs7GyWL1/OunXr2Lx5s4hSmpub07FjR9LS0jh27BimpqZ4eHgQEBBAQUEB3t7erFq1ipiYGEaNGsWgQYMIDw8XKQ5XV1c2bNhAXl4eTU1NbN++nc2bN2NiYsKHH34o0gF3794VKa7g4GDU1NRaRENUjkBjY2OrqRE+Pj589dVXDB8+nNDQUJHKMTMzE2sTlNXn7dq1E1XkoHTO3nvvPWEw9+7dmyNHjrBgwQIOHjzIwIEDuXr1Ki+++CJyuZzVq1dTU1MjDpKamhqam5s5cuQIXbp0QVNTk5KSEgwNDZkwYQJz5szBzMxMGK9z585l4sSJODo6smjRoieeY2ZmJh06dGDXrl2cOHGCTz/99FebAdTX19PQ0CDG9/XXX7N//362b9/OmDFjCA8PZ//+/Vy4cIGxY8fSrVs33nrrLdLT03nttdcIDg4mJiaG6OhoXFxcGD16NEuWLOHKlSuEhYUxevRoOnTowNKlS3F3d6e+vp4LFy5w4cIFUlNT+fzzz+ncuTM//vgj0dHRrbqO9vb2HDhwAD8/Px49esT69esxNDQUczE0NKRLly4EBgYSGhrawrF0c3Pj2LFjyGQycnNz0dXVZdiwYS1SVmPGjBHKIWfPnmXLli2kpKSICNa+ffvw9PQkPz+fBQsWoK+vz7ffftuCZ96lSxdmzZqFQqFgwYIFrZLlKy4u5ocffmDEiBG0b9+eTZs2sWbNGp599lkmT56MQqEAlGnbw4cP4+zszPjx4/nss8+orKzE1taW0tJSwY89c+YM9+/fx9XVFT09PaqrqykqKqJz587o6elx8OBBsrKymDRpklBu+GV1sZ2dHba2tlRVVXHjxg1KS0sxNjZm3759qKmpCe3Y1kJdXZ3Hjx8THx8vGrEYGhoSGhpKfX09K1eupKSkhG3btqGhocG7777Lw4cP8fT0RFdXFxMTE4KCghg4cCBaWlrU1taSkJDAhAkTCAkJISAggCtXrjB06FBGjx7NuXPnWLp0KTNmzGDZsmV8/vnn7Nu3j/fff5/x48eLez07O5v58+dja2vLTz/9xDfffMPMmTPZu3fvE88tKiqK8vJypk6dyqRJk4Thoio2tLKyEkU2KsfAy8sLf39/zMzMmDhxIhUVFYLDqaury44dOzh58iQ//vgjt27dolOnTnh4eAjj9R91N1evXk16ejrbtm3Dz8+PPn36YG9vT35+Ps3Nzbi4uAgHXKV13RrpuoaGBhoaGujUqROGhobs2rWLDRs20KdPH5577jk0NDRITU0lPj6e8vJyoqOjiY+P580332T48OF4enoSERHBhx9+KO6/L774Quzv3t7ebNq0ieDgYK5evcqECRN4+PAhI0eOJCIigpdfflnsVaAMvqggk8kE9e73SoGB0smorq5m8+bNHDx4kBkzZrB48WI8PT3Ztm0bDQ0NaGlpUVhYiFwuR09PT0RPc3JycHZ25vHjxyxYsICqqioCAgKYO3cuAFOmTMHAwIDDhw8L7v8vzzQVpUylnPLTTz9RUFDAoEGD+Pzzz9m2bRtLly5lxYoVQtc+Li6uRfT2Seanovo1NTUJvf6ZM2cKB72urk5ITEqSRGFhITY2Njg4ONCvXz+RlV21ahWbN2/mzTffFKoCN27c4Pr167z44ou88MIL7N27lzfffFM0eVBRaezt7VFXVyc7OxsbGxtmzpzJwIEDhZ1z6NChJ7bZWm28pqamkpeXR6dOnURKXZIkoqKiBBG7urqa1NRUCgoKMDU1ZeHChdjZ2RETEyOkjyIiIujQoQNmZmbExMRw7tw5DAwMeO655+jevTsnTpwgJSWFKVOmUF1dLSKADg4ODBkyhBMnTmBhYUF5eTnLly+ntLSUw4cPi4jkN998IwrJWhMRmTlzJklJSS04VaqmATY2Nvj4+Ah9UysrK0xMTFqQ5rdu3UpSUhJTp07F2NhYpGwtLCzw9PSkpqZGSPmAMoLg7+9PZWWliH5MnjyZhIQEUUD11VdfCYkeCwsLOnTo0EKrrbWwtbVFkiR0dHTIzc3l3LlzQn4kOzubw4cPY2RkxOjRo5k2bRpaWlqiyKe0tFSIv5uZmVFVVSWMVjs7O3bt2oWVlZVITZw9e5aHDx/i5+cnDNeHDx+iq6srOEOqqEF4eLiIvI8ZMwYTExMhZt5apKenk5qaCij5cGVlZaxduxYvLy8WLlwoeH8aGho0NjaSl5eHvr6+OGjPnDmDJEksW7aMwMBASktLuX//PtevX6ddu3Z06tSJoqIikX0AhCbtzJkzMTU1pbCwUERudXR0CAgIaCFtVldXh4mJCTKZjCtXrrRqfqrrrqWlhaWlJerq6pSWlrJv3z40NDSYNm0aenp6aGlpCf3ee/fuIZPJmDRpkoj+eHl5MXbsWNavX09sbCzFxcVcvnwZUHLAVCmkhIQE0dVGTU2NPn36UF5ezuHDh7lw4QIaGhqsX7+eoKAgfHx8qKiooLq6mr1799K7d28WLFjQKj4oKItcVOPs2rUrq1ator6+nqSkJAwNDXFycmLevHmikYQkSaSlpYl70sjISDRw0NTURFdXl5qaGuLi4iguLsbW1laoA+zbt4+ysjKcnZ0ZN24c2tratGvXTjSCOHv2rOiIBXD48GEMDQ0ZNGgQvXr14uuvvyYmJqZVxuszzzyDk5MThYWFIhIzefJkzp07R3V1tVBZcXV1xcvLC1tbW+F8PX78mCtXrpCdnU1paSkGBgZkZmYSGRlJZGSkKIRSNafw9PQkKCiI3NxcVq9ezYwZMwTvu7q6mrq6OkpKSoQh1adPHxYsWMCgQYMYOnQoiYmJZGVltbpAVCUfp8p++Pr6cufOHU6ePCnOkKioKGJjY7l+/TqjR4/G2dmZO3fuEB8fj7u7Ox4eHujr6wtjrLGxkY4dO2JjY0NRURGnT5/G0dGRkJAQmpqahB5wTEwMMpkMDw8PhgwZwpQpU1qkIi0sLJgxYwZpaWlcvHiRkSNHEhIS0irj1dfXF319febMmSMCCTdv3qSqqqqFcebp6UlJSQk3b95k165dJCYm0rdvX0aMGCF4wY2NjYJPWFFRweXLl0WKVlWAZmdnh5ubG+vWrcPb25uqqirMzMxoaGggOTkZPz8/oeqTlZVFc3Mz2traWFlZAUrZpvHjx7N169YnnmN1dTUZGRm4urri6OhI9+7daWhooLGxUTQOiYuLo6qqisbGRu7du8eRI0eoqqpizZo1vPrqq+zdu1coBGhpaQk1nsLCwhaFj+3atcPCwoLq6moSExMpLy+nY8eOItty+/ZtamtrBcf41q1bohB8+/bt2NjY/K4i5tWrV4ui8gEDBtCuXTsMDAxERg6UzqaRkRFdu3YVFJiIiAgiIyPx9vYmPz+fiIgIbGxs8PDwYNu2bVy8eJHMzEyxz5w5c4affvqJESNG4OTkRHV1tbAHQkNDkSSJyZMnExUVRZ8+fSgsLCQ1NVXUFBUXF5OWltbqc9/Hx4fBgwfj6+uLuro6np6epKWlcfz4cZqbmwkKCmrxnqdPn+bgwYO4uLgwZMgQ8R2orpGOjg53794lPj6eqqoqDhw4gIaGBmPHjqVTp06iDuHq1atUV1fTo0cPQYfZsmULN2/eRC6XM3r0aGG4qpR9KisrheH/79Bq4zUhIYFr166hrq5Ot27duHz5MmlpaYwYMQINDQ2io6PR19fn1KlTbNq0iYkTJ/LVV18RHh7Onj17WLx4MXp6eqxbt47g4GBmz55NUlKS4G65ubkxZ84c0SZOR0eH69ev88MPP/Do0SNyc3OFwbtv3z6ef/553n//fd555x2+//57Bg0ahLa2NitXrqS0tJTXXnutVdQBCwsLZs+eLb5QUBacqHT8goKCAGXVrupGBCWJeePGjbz55psMHjyYadOmUVRURExMDP7+/jz//PNoaWkRExODkZERZ8+eRV9fnx49erB48WJkMhkxMTFERkbi7u6Op6cnKSkpGBkZiVTfL7sUqYyg36Pzqur4Mm3aNEaPHk1ZWRmampq8+uqrnDx5ksuXLzN+/HiGDh2KJElcvXqVhIQEampquHHjBvv37ycoKIhnn32W/Px8tm3bxhtvvEF5eTlbt25FS0uLPn36oK2tzYgRIzh48CC2trYkJydTUlLCrVu3mDt3LikpKcybN4/g4GC2bNnC+fPn+fLLL4XGnYrL1lrcuHGDwYMHt9AzzMrK4scff6SpqUlEPVXXLy8vj/z8fLp06UJBQQGrV68mLCwMNTU12rdvj4eHBxYWFuTk5GBhYUFwcDDnz59n9+7dHDt2TDQqePz4Mf7+/kybNk3wv1RFE7+GhoYGbt26JW7y1rT6VVXpjh8/nrlz52JnZyfkeIYMGcJzzz0HKLMYJSUlHDhwgNOnTzNv3rx/knNSSWJ98sknlJeXo6amRnNzM6+//jrt2rXD3d2dy5cvU11dzbJly8Q1GTFiBLm5ucyfP59Hjx7R0NDAwIEDiYiIQE9Pj/DwcFauXElsbKyQ+WkNVIarqho3NDQUQ0NDzp8/j66urqAIqJzJ+Ph4ioqK6N69O3V1dRw9epTq6momTJggOMIymYySkhLCw8Px8PDA09MTDQ0NjI2NGTp0KK6urkydOhUzMzPhNDU3N+Pt7U23bt2QyWQkJSVx7949HBwcRFrdw8ODpKSkVs1v4cKFqKur09TUJIw8Z2dn9uzZgyRJNDY2oqmpibGxMVOnThXpuQsXLrBu3TpOnjyJlpYWo0aNYsqUKXTs2JGkpCRu3rzJtWvXcHR0FNms6upq3nzzTQoLC5k2bRrHjh0TPOvq6mpMTEy4ceMGP/74IwMHDmTcuHGEhISI4k4LCwtWrVrF+vXrWzXHlJQUXF1d8fb2FqlQOzs70bXPycmJLl26EBsby6FDh+jduzdr1qyha9euXLx4EUdHR4YNGyYkiVRduaytrUlPT+fs2bNERUXRt29fSkpK+Omnn0QmqH379tTW1hIaGkr//v1b7J9VVVXY2dmxcuVKzp49ywcffMCdO3da1SgE4LXXXuOnn34iNjZWGK9BQUEYGhoKuSiVWkLXrl2pq6vj2rVrHDt2DG1tbaH12dzcjIaGBpmZmbz77rscPnwYUGaHIiMjMTAwoEePHiIFq4pWz58/n/fffx9JkggLC+PevXt06dJFONS/pHqo+LHdunVrlfHa1NREaWkp586dE3q5quBEWloaUVFRaGtrY2dnh76+vjB0wsPD8fT0ZMGCBUycOJHS0lKuXr1KY2Mj/v7+5OXlsXXrVnJycjh69CijR4+mrq6OwYMHi+K3QYMG0adPHxoaGti4cSMff/wxY8aMoWfPnty/f5979+4xbtw4SkpKWLp0KQUFBaIJTWuwc+dOtLW1WbFihZDeUynhNDQ0kJ+fj4mJCWZmZi0aC9y6dYuIiAj69OmDubk5dnZ2LFiwgMDAQCZPnsz58+c5cuQIw4YN49GjR6xevZqGhgZmzJhBY2Mj27Zto66uThRfqRxPb29v0ZLd399fSDweOnSIYcOGsWbNGkGHehIEBQVhbW0t5uTj48OtW7dYvnw5GRkZwq5RITs7m61bt2Jvb4+GhgZ+fn5UVFTg7u7OtGnT0NfXR6FQiFS/ym5TGcB9+vTh9ddfZ9GiRRQUFDB27FjGjBlDeno6aWlpQhPbxMRERJCNjIywtLRkwoQJrF27lhdffPHfzqnVxmtJSQldunSha9euJCYmsmzZMmxsbBg1ahTR0dEsWbIES0tLhgwZwty5c6mtreXjjz+mqqqKzp07o6WlxYkTJzh48CDa2trMmDEDW1tbtLS0KC8vZ9++ffj5+TF48GCRuu3Zsyc//vgjhw4dIikpCQ8PDx4+fAgob04tLS0WLVqEkZERpqamGBsbs3z5ciwtLfHw8ODbb7994vnt2LEDOzs7UbGtq6srtOMcHR3F6yRJIjw8nC5duuDk5ISuri52dnasXbsWa2trLl26hLq6OjNmzODatWvs2LGDwMBA6urqsLGxYeHChRgaGgodxdGjR2NmZsYPP/yAmpoaU6ZMwcPDgwMHDvDpp5+yaNEiPDw82LdvH4mJiSxdurSFbm5roJJ7CgoKEu13VSmBiRMnYmpqSufOncnNzRUFG+3bt0cmk2FmZibklfbt28e4ceMYOnQomzZt4uTJk3h7exMUFER8fLyQGNm2bRuXLl1i8+bN5OXloaenx+eff86ePXtITk7Gy8sLLS0tXn75ZcrKykSRCihvstakR0BplI4cORIXFxeKior4/vvvOX/+PIMHDxbKEKA8tCVJorKyUtzUKlHmuro6vL29adeuneiQVVxcLNIqKt5OYmKiaJdnZGSErq6uSOmpIv6pqakkJCTg4uIiuvioDGcTExMhm6MyNFqDXxq8pqamPPvss8ybNw+A7du3ExYWxsKFC3nnnXfo2bMnYWFhpKamMmvWLLS1tTly5Igw8Lp06SK4u6oWjbdv32b48OEMHjyYxMTEFp+tpqbG2LFjSU9PR1NTk9raWrS1tYWhOGjQICorK0VUqbV4+PAhJ0+eFJqfFy9exN/fn+HDhws+aEZGBjk5OdjY2FBZWUlsbCyVlZV07NgRKysr4uPj+eGHH4TQuI6ODp06daK2thYtLS3u3LlDVFSU6F3+Sz6duro6Fy9eFNqEKs5uc3MzXl5eope9jo4Oc+bMoU+fPq0qoKyrqyMiIoKAgACxVurq6lrIAMXFxXHu3DkqKioICgoSafKJEydiZWWFra0tQUFB5OTk8ODBA0aOHElgYCDbtm0jPT0dZ2dngoKCmDt3Lh06dKBDhw4sXLgQKysr8vLyRDOQAQMGYGJigra2tnC2qqqqOH78OI2NjYwfP77Vne5AeQhmZ2eLyNpnn31GTU0NCxYsIDo6mi+//BIPDw8WLVrEzp070dTU5Pvvv2fChAlUVVXx1VdfERcXh0KhEHy5r7/+mpycHKZPn87y5cu5ceMGX3zxBVu3bmX48OGEhYWhpaWFk5MTtbW1XL16VeiTAi0cWNUBfvv2bSwtLVvdLMTe3p6cnBzeeustYmNjefHFF1t0VtTW1iYlJUVElVWFnKdPnxZcbUNDQx4+fIi9vT1mZmYt9oHU1FRSU1NZsmQJ06dP58yZM/zwww+UlZXRsWNHevXqJRzZu3fvkpiYiIODA2+99RZDhgwhIP3PjhAAAQAASURBVCCA2tpakpOThWJMa8+Mffv2MXjwYNLT0zl+/Di+vr6MGzcOOzs7cfYZGBiQlZVFVlYWfn5+rFu3joaGBnR1dUlMTMTOzg4TExNCQ0NFPYOjoyN1dXV8/vnnfPXVV5iZmYkIY15eXgtZpri4ODIyMnBxcaF9+/ZUVVVRVFSEtrY21tbWWFtbM3HiRIqKiggODub+/futmqOqODwxMVG0Ks/MzBSUx9dffx1QrmeVEgYog1apqanMmzePkJAQAgMD6dWrFzKZjBUrVjB79mzBaz969KhoK92tWzfy8/PZsWMHZWVlomXy7du3WbBgAQsXLkRDQ4OMjAyhCGBqasqtW7fw9/dvtXqLquVsbW0tvXr1okOHDowePZr8/HxOnTrFlClTGD16tFCe8fb2Zvny5djY2NCrVy9qa2s5fvw4paWlBAQEoKam1sJZHzt2LC+++CJRUVG8+eabWFpakpaWJvRsVdJn+vr6guJlbm7egn89ZswYAPH9/RZabbyqqgZV0NHRwcHBAUNDQ6qrq7l9+zagDIG/9NJLHD58mFmzZjFjxgxGjRrFiRMnRCHAnTt3+Oabb3B1dWXZsmUcPHiQu3fvsnjxYlasWCGqtVXh+hdeeEH0pD9x4gSZmZmUlZWRkJCAm5ub0NAsKChg8ODBeHp6tlp0+urVq9jb2+Pk5ERWVhYxMTEYGBj8k5ejqalJTk4OGRkZDBo0CE9PTyFHs2vXLl599VWWL1/OSy+9RFFREatXryY6Oho3Nzdqa2tFO83bt2/z008/ic5BxsbGnDp1inbt2tGxY0dqa2vZvXs3zs7OWFhYEB4eTmpqKpMnT8bNzY2UlJTWXkLs7e1F9KypqUn0Ba+pqWkhRP7tt9/y6aefoqurK4oiVAZLQkIChw4dIigoCDs7Ox49ekRpaSnLly/Hzs6OO3fucOHCBaEP+PjxY1566SW0tLQYP348J0+eFBxIW1tbwXFbvnx5i0ilnZ2dkGJ5UgQGBorIeWlpKd988w35+fl8/fXX9OnTR2yeJiYm1NXVYWpqiqamJomJiZibm/PMM8+I6KQkSTQ3N+Pm5kZ9fT3Xrl0jIyNDtEi1sbER0SAXFxeys7O5desWjo6O6OjocPbsWfbt20dVVRVz5syhQ4cOgrIgk8nw9PQU0b/WpNWbmppEhFQVofulfNTDhw/58ssvyc3NZcmSJairqzNkyBDWrFlDYmIiI0eOFBvogwcPxGYFysOqe/fu5OXloaurS1ZWlpBxUhlWtbW1aGhoYGBgwEsvvYSRkRFaWlqUlpaKKIWlpSUTJ06kvr7+dxmvW7ZsEW0Ls7OzRUcXJycnXF1dSU5O5r333kNdXZ2PPvqIkJAQUlNT+fbbb+nRowevvPIKFhYWfPzxx5SUlAhOrOoQzcvL4/3332fdunWAcgO2s7OjQ4cO+Pj4UFdXR1RUlOgYBMrD6sqVK0KHsaamhlu3bmFnZ8eAAQNadQ3Pnz9PTEwMxcXFLYxHFWWgvr6esrIyTpw4wYkTJwgODubs2bMYGBgwatQocdCAsmo7Li6OPn364OfnR1BQEIWFhUyfPp0JEyYI4x7glVdeEX934cIFQRtQcQZ9fHwoKyvj/fff5/79+4SGhhIfH/+7siCpqamcOnUKY2NjTE1N2bBhA1paWjzzzDNUV1fz+PFj5syZg5ubG5GRkURERJCVlSUKcDdu3EhkZCRJSUl06tSJ5ORk1q1bR2ZmpqCoBAUFsWrVKh4/fszSpUvFPRAfH8+lS5c4ePAgWlpaaGpq0rNnTzQ0NFBXV6ewsJB169aJM2vgwIGt7uaXnp7+/2j7z/gsq22NF/6n94T0XkghnfQGCaGFEjrSi4AoIoI0FQsqFkRRREBEQEB6J/RA6CGQkAIkpBPSe++9vB/yu+cme529N/E9Z3xbSw3cee5nzjGucRUyMzOFt3hBQYFAPWtra8nKyiIrK0sIV4cMGcLEiRPp7u4mLS2N9vZ2CgsLuXv3LoGBgQwePBhXV1diYmKwtLQU3NQxY8bg5OTEl19+SW5uLkZGRvz6669ioHr8+DFKSko4OjoKT25LS0sRElFYWIiOjs6/AjsaGhqwtbWlpKSEjIwMMjMzGTBgADNnzkRJSUkAPJK1npR0J9Xhw4fZt28fU6ZMESEmmZmZaGtr4+/vz8yZM7l+/bqwUFRUVKStrY309HQKCgoEjcbY2JgPP/wQT09Pcf5JnFcPDw9x//6b+vnnn3n06BH37t3j+PHjLF68mISEBE6fPs2YMWPEnSEJKtXV1SktLRWerJWVlcjIyBAYGEh9fT21tbUMHDhQ0B3u3LlDU1MT8+bNE7+bCxcuiHvzww8/FH6/X375JVpaWiLuWFFRkcePH2NqairoMv3Vgbx48YInT56QmJjIgwcPWLJkCUFBQWzYsAElJSV27dqFg4OD2HZ7e3uL87KlpYWEhARKS0t5+PAhMTEx6OnpYW1tjaKiIj4+PoSGhmJiYiI8sF/39Pb392fAgAFcu3YNX19ffvvtN6CXuywBPYWFhSgqKjJ16lTa29sFOPm/Vb/NF1+3jlJRUeGbb77hyy+/RFZWlqCgID7//HNsbW3Jy8sDwNPTkyVLljBy5EhevXrFH3/8QV5eHu7u7uTk5PDpp5+SlpYmJujZs2eTkZHRJ0P+6tWrjBw5kv3796OgoICGhkYfEvvs2bP7kHxjYmJYtGgR33zzTb+b14kTJ6KpqSlSpI4cOcK5c+f6/DsFBQWoqqoSEhLC/fv3CQgIEGTyhw8fsnDhQtLS0sRk8sEHHzB79mygt7GWlZUlNjaWpKQkpk+fzsqVK9HR0UFJSYlZs2bx8ccf4+7uLlwTTp48ibm5OWFhYejp6TFlyhQyMjJYuXJlH7/SNy1ZWVkx8dTV1bFz507xsh45ckT8e3Z2dowaNQolJSUhuJGshyoqKjhy5AgtLS2MHj0aExMToqKiRNa7urp6H3GUlNBUX1+Pubk5q1ev5vTp0xw+fBh1dXVmz56NsbExa9as6WOG3tDQ0McW6k1KSviA3nXnhx9+yOTJk4WX4OvrQzk5OQwMDLC0tOT69ets2rSpD/IhRcFK/ozh4eFCiS8hrq87BXR3d1NVVUV5eTnh4eF8/PHHnDt3TvhuxsTEAP9F93jdtLm/1dXVRWVlJfn5+cITFHoPxXnz5mFnZ8eNGzcYNmwY8fHxbNy4kdGjR3P37l1BqZAMv0+cOMGzZ8+Ii4vjzz//xM7OjrCwMLS0tPj+++/p6urCxMQEGRkZHj9+zMOHDykoKEBZWRk9PT0xcGzdupVFixaRkZFBdXU1W7du5Z9//vlXHqH5+fksXLiQCRMmMH78eHbv3s348ePZsGEDoaGhfP311xw+fJjLly8LL8vJkydTVFTE8ePHBVJjZGQkKAipqakCHS0uLu7Db0xISGDjxo1MnDiRjRs3Iisry6pVq/D29ua3335jyZIlbNq0ia+//ppdu3ZRUlJCXFwc69at6xdPUqqysjJmzJhBbGwsEydO5Pr16wIdO3ToELt27UJPT0+s92tqaoTrwq5du0RUM/TSR9atW8eLFy/49ttvUVdXZ//+/axevZp79+4xc+ZM9uzZ8x+uFkFBQfj6+qKmpiaiPzU1NWloaCAuLk6ovB89etQnMvNN69WrV4SFhXH27Fk0NDSERdzixYuprKzk3LlzjBw5EmNjY3bs2MGvv/7ah6pw+fJldu3aJbySf/31V6ytrZkzZw45OTl8/fXXTJs2DTMzMz744AOuXr3K0qVL+frrr/n0009FRr2GhgaLFy/uI4pUUFDg7bff5p9//uH06dP93vBA7/lhY2PD2rVrhUd5dXU1gECQ6+vr+f7775k7d65Yq2pra2Nubo6cnBzPnz/n5s2bPH36VARDKCkpERAQwPfff8/evXvx8/Pj1atXVFRUAL3K7tfPjfb2dubPny9W3pcvXxbZ85qamnR3d/+rzQ4gNjn6+vpiQJYM9JOTk9myZQv379/H2tqakJAQ4eYhlbu7O7q6uiQnJ/P48WNu3brFkydPhDWmhNp1dnby8uVLpkyZwqRJk0QokKysrEjqKywsFMl43d3dgj/9eoKfNIz0pzQ0NBg7diyrVq3CxcWFiIgI6uvrWbt2LVZWVuzbt4/s7GxsbGxITU1lxYoVhIaGcvv2bRobG7lw4QKpqalA79CyZs0aRo4cyWeffUZ2drYIV9DS0uKPP/4gODiYH374oc+w1NPTw5gxY9DS0iI9PZ3t27czcuRIjhw5wsCBA2lubmbZsmW8/fbb4rx703r58iWLFy9GVlaWQ4cOCT0I9J4d4eHhrFy5ktbWVgoLCwWyW1BQwN9//83169eFQ0hXVxfl5eUsWrSIhw8fsn37dtTV1Xn27BnKysqMGTOmj+Wmk5MTn3zyCVu3bhUOEtDLv9bV1SU/P58ZM2YI8OTmzZuClvK/Vb+R19bWVtLT07Gzs8PU1FSoGqXM3Tlz5oiVXmlpKaqqqvj5+ZGVlcXjx49RUFBg+fLleHh4EB0d3WeiV1RUZMaMGSgqKvY5SPT19QWHbtCgQcKqxsfHh1OnTpGenk5kZKRo5HJycigpKaGlpaXf8PqcOXM4fvw4UVFRaGlp4ezszIABA7h//75YIauqqooGNygoiNraWh4+fEhdXR23b9/GwsICGxsbzMzMePXqFQ0NDfj4+IjghKamJsEfkTxDofdFsbCwEPSEtrY21NTUGDduHImJiaSnp7Nw4UIUFBQICwvj7t27/bbngV7Pxdd/L1evXqW8vBwtLS26urpobm5GVVUVW1tbzM3NiYyMpKGhQVBFCgsLycjIYOvWrdja2hIWFkZ9fb34IkpKW8k9oKenR0RsGhkZMWXKFOFZ29HRgYyMDFFRUZSWlvLXX39hYGDAhg0bUFFREV62/eH2SgNWZ2cnWlparF69mry8PGEVoqioyJMnT4iLi2PixIkip7unp4eKigpiYmKYPn060Ntg5OXliRVHa2srMTEx5Ofns3btWqHUrKiooK6uTogJKioqyMjIwMrKCjc3N6EAzs/Pp6OjAycnJ3R1dYWRdX+zuKWLS2rGBg8eLOyyzp07x7Nnz1i5cqXgGcbFxXHr1i3effdd9PX1OXHiBNra2owfP140Y/Hx8aSlpQnltpOTk3jePXv2CNVsU1OTEJtB78EoIyNDVVUVMTExdHZ2YmZmhqysLJmZmdjY2PyrkIK3334bDw8PMSysWrUKR0dHzpw5w7Nnzxg7dizTpk2jsbGRK1eusHLlSrS0tASPXktLS4RjyMrK0tbWRnNzMzU1NbS2tvLq1SsUFBSwtLRk3rx56OnpcevWLXJyctDT0xOijJCQEK5evUpCQoIQ2FlZWQmqR2lpKVevXu23wX1mZiZLly4Vca7Pnz8XSJokRrKwsODtt9/mxo0bAuUvLS0ViXCBgYHIyMigpaXFmDFjuHDhAjk5OcKcPjs7m23btvH8+XOxIcvOzhardG9vb2E7eP36dW7evMmaNWuws7Nj4MCBwg4nOzv7Xw1ZcnJyyMjIUFhYiJaWFh988AEZGRns2LGD3Nxc8bzt7e3Ccq25uZnz58/T0NCAn58fZmZmHDt2jKNHj2JkZMS6desICgoiLCxM2N/99ttvBAYGMmHCBCoqKliyZAny8vKkpaUxYMAAvL29xVmek5MjEvH+e8PaX7BDS0uL6dOnM2fOHIyNjSkoKBCoWHt7O7KysgwbNkyosqVKSEigvr6eefPm8fLlSyIiImhvb2fixIlMnjyZrKwsZGRksLCwENZFSUlJfSgJv//+O7KyslhaWoq0qq6uLh4/fsydO3doa2sjPDycjo4OEhISRAJcf5vY0tJSKioq6OnpYcGCBWKrkp2dzb59+zh+/Dh2dnaoq6szY8YMEVIUERGBrKwsoaGhuLm5ceHCBU6cOIGcnBxDhgyhra2NvXv3ClGiRDOwt7fHy8uLX3/9lcbGRvz9/fH39ychIYErV66QmZmJg4MDVVVVFBYW4uTkJDa/7e3t/0oHEhUVxZMnT5g3bx6+vr5cuXIFeXl51q1bJ7Qo0oYtNjaWhIQEurq6aGhooKSkBBMTEyIiIsjKyqKiooKuri4KCgp4/vy5SNSysbGhvLycyspKOjo6kJOTQ0lJCT8/P3x9fZk7d67gnkrgyOTJk9HU1KSoqIiCggLxLvTXM7uxsZHBgwezaNEiGhsb+zTN3d3dtLS0CH699LOrq6uJjo4mPj6e7OxsDAwMxH0lRc1KNDozMzMKCgq4desWKSkpaGpqUlZWhqmpKd7e3iK+vL29XQRyTJs2TQT1tLe309zcTG1tLXV1dW+0qet389rR0UF6ejpKSkrCkzMsLIybN2/i4ODA9OnTmTJlClpaWigqKpKenk5cXByXLl3CysqKzz77jHHjxtHc3ExISAjKysooKCjw4sULMjIyUFVVZevWraJz7+zsFMkgkl+si4sLe/bsITQ0lKioKLZs2SKQlfLyckxNTbl+/XqfiMs3LUVFRdTV1QkPD8fKyoqvv/4aQ0NDjh8/zrVr1xg1ahTjxo2jvb2dtLQ0li5dypo1a1i6dClLly5l27ZtHDhwAOj1G01ISODmzZtkZWXR0dFBZWUlKioqLF26VCjqJEW9kpKSINVDL18qNjaWlJQULCwsBHormfuvWrWKKVOmiBzsN63Xv9zy8vIMHTqUwYMHs2zZsj4ehxJa2NjYKMyRJXuflpYW0tLS8PLy4sCBA/z4449MnDhRKPrhvwRRMjIyTJgwgREjRqCmptbHEquzs5M5c+YwcuRIbt68KdTrVlZWzJs3DzMzM8rLy/sc2m9ar9vJSP6z0krviy++4OnTp3h5eYl0q7feeovJkycLPpW2tjby8vI0NDTQ3t4u1mH379/n+PHjuLq6iuY1NzeXZ8+e4eXlhb29PdHR0ejr67Njxw4GDx5MXV0dWVlZPHv2jOTkZMrKypg2bRpycnKoqKhQUFDQ7+eDXnrAxYsXRYyhvr4+I0aMoLS0tE/C3KxZszA1NeX58+eMHTuWp0+fEhwczPDhwzE1NeWzzz4jLCyM2tpaAgMDqaur45tvvmHt2rV8//33LF26lH/++YetW7cyadIkZGVl0dDQEFGY0ip92LBhgoenqKjIDz/88K9QV+hF0MvLy/n1119JTU3F3d2doKAgvvjiCyoqKpg+fbqIbP3pp5/Izs7m559/Zs2aNYK3FhUVxcOHD5GTk6OmpgYbGxs0NDRQUlLCxsaGdevW4ePjQ3BwMN3d3YSGhiIvL99HsKmpqck777wjRAZOTk74+fmho6ODhoYGGzZs4PHjx3z33Xf9OnOam5spKirCx8eHDz74oE/s9ZQpU4T4VBLPycrKinxzKysrqqqqyM/P72MoHhAQwIMHD0hPT2fz5s14e3tTVVWFrKwsAQEByMvLk5qaymeffUZVVRVbt24V3/n4+HgOHz6Mi4sL7u7ujB8/nrS0NOrq6hg7diwRERFs27atX5+hoqIio0aNEtaI0OsDuXv3brKyspg2bRp79+4VegCJM33nzh327NmDhoYGjo6OFBUVUVdXh4+PD5aWlqipqaGiooKtra3gaaekpKCkpCTiVVVUVOjs7OTq1asYGBiwc+dO9PT0uH//PjU1NWKAft16qr/OJhoaGsyfP1+o+Y2MjMSgtnjxYqZPny7uSWklC710jRcvXvDOO++IePN79+6RkpLC6NGjUVBQ4PDhw8TGxhISEoKKigqmpqYoKSmJM+zGjRukpKTw448/smDBApqamvjqq6+Eknv06NH8/fffbNu2TcSbAv3SgECvEj80NJTg4GAhUrx9+zbXr1/n0aNHVFdX8+TJEzo6OtDT02PcuHEoKytz7Ngx4uPj0dPTw9/fH1VVVQoKCjAyMhJc/Z9//pmYmBimTZsmdB1SLVq0iPr6eoyNjVFVVcXFxYXExEThCqCuri5sHPX19enu7kZVVVU0Sv2pu3fvCjeTzz//HFdXV5KTk1FVVWXo0KG4ubmhra1NYmKi2JQsXryYL774gmPHjuHj44OWlhabN29GTU2N9957j2+++QYjIyNMTExobW0lKysLLS0tvvnmG7766iu+//57fvvtN0aNGsXOnTv7/H1GjBjB0KFDxV3p4+PT52x5fXv4JmVoaEh9fT3z589n2LBhfTYwR48eZdu2bXz//feCHimlarm4uNDV1cWtW7d48OABRUVFqKioYG1tLYT7o0ePRkdHB3Nzc+Lj4zl9+jT6+vosXrwYZ2fnPp9pQkICq1evxtHRUfiAGxgYcPz4cfT09NDU1GTUqFGcOXNGNLn/U/W7eZXIukePHqW1tZWQkBCGDRuGhYUFenp6fRTe0qVva2uLp6cntra2Ap1QVVXFxMRETAApKSlUVFQIg9v6+noiIyOxsbHB0dGRuro6rK2tMTAw4OnTp2zZsoWwsDDmzJnDli1bePr0Ke3t7XR3d4tpPS0tTfDZ3rTKysowMzNj2rRpdHZ2CusLFxcXvLy86Onp4d69e6ipqaGvr09hYSF37twhKyuLcePGMXToUKB3cmppacHCwgJTU1MePnzIy5cvgV4OiOQg8NVXX5GZmcnp06fF32HdunXo6OiwceNGvLy8CA8P7zMp6ejoMG7cOLy8vP4VGpKSksKhQ4f68PQkdPv1MjU15dNPP8XDw4OioiI6OzsZOnQoDg4OXLx4kUWLFgnurYKCAtnZ2X0QROl3YGVlJfi83d3dJCYmirACaY1mamqKm5sbz549E42ioqIi3t7eTJs2jcePH7/x8+Xm5pKamoq3tzdaWlrCtiU0NJTi4mLOnz+PhYWFWG9IB8HrDcvVq1eJj4/Hzc0Na2trzpw5w8WLF5kzZw6//PIL586d4/bt2ygrK/Puu+8ycOBACgoK0NfXR11dHR8fH5qamsRlpaWlJfw6fXx8MDAwID4+HkNDQ4yNjfv82W9SqampNDc3IyMjIxDd+Ph4xo8fj4+PjxBFxsXFYWdnxzvvvCOm+JcvX+Ln54ednR0nT54kICCAqqoq9u3bh4yMDFu3bhUKbHt7e8GPamhoQF9fX2xKioqKhLG/tO7y9vYWMcKSoAjot8cr9Jqxp6Sk8OzZM3p6esSUL8UvSpY4gwcPFulbkhCnpKREhBL8+OOPmJqaIiMjQ1tbm1Dye3h44OHhQXJyMt999x3l5eUsWbIELy8vXr58yenTpxk2bBjq6uqcOHECNTU1vvnmmz5WPDY2NixZsgQ7OzseP37cr0jqjz76CGNjY7y9vbGzs8PExIQ7d+6Itdno0aPp6uqisLCwz7kKve+qjo4OlZWVolkqKSmhqalJWMANHDgQPz8/4uPjUVJSEk3ugAEDRNjE6z6vI0aMoKamRryLo0ePxsbGRjR0rxurv2nFxMQQGBjYp3m1srJi5cqVPH78+D8QSWngff/99+no6BANnPTfSbHjkl3fwIEDKS0tJS4uTtinOTk5ISsri5mZGRs2bMDb25umpibCw8OFcEj6DHt6ejh79iy3bt0iODhYXKhvWlLIDPQiVQMGDBCfhyQkam1tJS4uTvyuc3NzKSwsJCcnh08++YQlS5bw3XffsW/fPj7++GP27NlDcHAwsrKy1NTUiDNSX1+fjIwM9PT0WL58OadPnyY2NlaIzKQEOGtra5GW6OrqyqRJk/Dy8qKurk7EHPenrK2tCQwMxNzcXIiq8/Pz0dPTw8bGRtBw0tLSeP78OcHBwRQUFJCRkUFOTg6bN2/miy++QE9Pj5UrVzJgwABsbGyorq5m2LBhIowmICCAzs5ONm/ejKysLF999ZUIHLh58yYPHjwQCXuKioqEhoYiJyfHy5cv6erqws3NDRUVlT58yzetkpIS3nrrLUxMTKitrUVHR4eAgABxJ0oDg7RNGjJkCObm5sydO5ecnByCg4Px8fEhISGByMhIiouLxbBQXV3N8ePH6erqwtHREVtbW2Fh2NDQwKFDh7C1tUVPT4/i4mIcHBwIDg4Wz97Q0ICrq6vYHjo5OfUBZt6kgoKCaGtrQ0VFpY/wfN++fZw/fx4PDw9cXV1pbGwkMjJS9HaSRZ+bmxtqamqcPXuWGTNmMHPmTM6fP8/q1avx9vZmypQpKCkpoaSkxAcffMCIESMwNDQkLy+vz/umpaUlAlhed0x6XXhsbGwsqGz/W/2rkIIBAwZw584dkpKS8Pf3Z8SIETg6OlJcXCwOn+rqauLi4rCysmLVqlWMGDGCp0+fkpubK5C5uLg4cnNzCQwMFEIDRUVFenp6ePz4Mc3Nzdja2pKRkcGmTZuQk5Nj1qxZHDx4kOLiYgoKCsjJyRGr87q6OkFmzsjI4M8//2T//v39ygCW1vnTp08nOTmZMWPG0NnZSVRUlMik//LLLzE3N2fNmjWcPHmS1atXM3fuXA4dOkRlZSVffPEF1dXVzJs3j2HDhlFdXc2NGzdQVlZGU1MTDw8PGhsbKS0t5cqVK5SVlREfH4+3tzdlZWWEh4fT2NhISEgIfn5+WFtbk5qaytWrVwkODsbQ0JDm5mZhqN7fCgsLY/v27fj6+uLp6YmjoyPy8vIiWrS7u5uuri40NDQYNmwY3d3d7Nu3j1u3bqGgoICfnx+DBw/m5s2bfPfdd8ydO5d33nkHe3t7MR1KjU1LS4tIygGIjIwU/CRtbW06OjqoqakhISGBnTt3Cm/A122QFixY0K/m9cGDB9y5cwdtbW08PT1JTEykuLgYc3NzXrx4we3bt1m+fDlTpkwB/gt5KSsrQ09PDzk5OTo6OtixYwchISG8/fbbpKenc/fuXTw9Pfnkk0/Q0tLio48+4tdff8XGxoaJEycyffp0ysrK6OjoYMCAAbi5ufHjjz/i5eXFokWLKCoqEo4FRkZGJCQkUFxcjIaGRr+R5cjISOHXZ2hoyN27d8nMzCQoKAgVFRW0tbVJS0sjLS2NiIgIOjs7+fLLL/uIuhISEti8eTM7d+4UAomZM2fi4+NDfn4+8F9N508//STsmKBXiR4REUFrayuzZs1CV1eXzs5Owaeurq6mpaWFgQMHkpWV9a+a1+PHj+Pm5oa7uzutra10dXVx7949vvnmG3x9fYVzREdHB++//z52dnZ0d3dz7949MjIyGDt2LPb29oJLBb3UnKKiIkpKSvD29hbuJ5IBf2NjIwcOHOD+/fscOHBA0Aok2x+pkZAEJ1Ls7YQJE5g4cWK/BFvm5uZ0dXWJhKvc3FxOnDjBwYMHSUhIoLu7Gzk5ORGlbWZmJmy1ZGVlUVVVFRdRRUUF165dY//+/SQnJ6OgoICPjw/jx4+nvLyca9euCYQyMDCQgICAPoNvd3c3EydO7BMfLCXh/f9T6enpuLm5iW2StGGSIpIlW6Wenh4UFRXF+ePm5sZvv/2Gv78/V69epbm5mYEDB6KhoUFSUhLZ2dl0dnZSU1NDR0cHVlZWGBkZYWFhQXt7O9HR0bS3txMYGEhgYCBPnz5lypQpuLq6cvXqVdFgysjIoKqqysmTJ6muru636Efi8aupqYntn5SQJdGRjh8/TkVFBQMGDMDR0ZH6+npcXV15+vQpp06dQkVFhYMHD6KsrMzq1au5f/8+vr6+BAQEkJCQQF1dHVpaWpSWllJfX4+mpiZDhgwRZ9XrnuRvvfUW0dHR5OXlYW1tzZQpU8Q5FxUVRU5ODtOnT++XVZYUtQ2924Lk5GRMTU15//33OXXqFGfPnsXAwIDhw4eTlJTE33//jZubGyNGjCApKYmrV68KcdyMGTPo6uoiOTkZRUVFfv755z5/Vk5ODqdPn6ampoYxY8bg5+dHeXk5n3/+OYmJiSLoQKK2+fv7s337dsrLy/H09OTFixf88ssv/b4XBw0axJ49e4Ded9bAwEDcWeXl5ejr64uo3uLiYu7du8fq1avx8fHhvffew8rKCkNDQ3bt2sVPP/3Eo0ePhKK/uLiY1NRUcnJyBFf1+fPn3L9/nwEDBlBbW8uXX36Ju7s75ubm5OTk0NXVxVtvvYW8vHyfTWx+fj6Kiop9fFffpCQqXWNjoxjwjx07xpo1azA2Nmbv3r34+vqSnJzMP//8g5WVldCOSOfA3LlzqaqqwsvLi8DAQPLy8rhx4wYRERFcvXoVgLVr17Jr1y7k5OSEf/PrwIy5uXmfd6+mpoaWlhbh1iMjI0NXV9cbIcv9bl73799PaWkpQ4cOZeHChRgYGHDv3j2uX7/OpUuXsLe3548//sDIyEjQC+zt7VFXVyclJQV9fX3RvObn53PhwgWsra1FRGl+fj5tbW3Y2dmJSV9HRwdVVVVOnz6Nl5cXp06dQk5OjmXLllFdXc3OnTsF8gO9L1teXh6hoaH4+PgIkcyblBSXCqCrqyv4KeHh4QwaNAhlZWVMTEyEgnP06NGcOXMGe3t7FBQU0NXVFSswqQG7evUqBQUFfPfdd4wfP57Y2Fjee+895OXlWbBgAQ0NDXz44YfU19czZMgQVq1aRXV1NT///DOmpqZYWVkRHx8veGuamppCQf269dObVlxcHN9++y1Tp05FV1eXmzdvYmBggKenJ6dOneLMmTNMnjyZoUOHcu3aNe7duycUlBEREejq6jJ8+HAMDQ2prKzEw8OjD8E6KSlJBEQEBARgY2NDWVkZz549E+rE58+f8+OPP5Kamoq6urrINJZ8RQFhGzZz5sx+PV9UVBR6enpiEpw/fz5lZWVYWFgIE+z09HTk5OSYOHGimGI/+OADSkpKOH/+PKNHj8bFxYWbN2+irq6Oq6srDg4ONDY28tlnn1FTU8Po0aOxt7fv03impKRw48YNtm7dysCBA3n69Cl///03T548YcmSJTg7OwuvZFdXVxQVFXn58mW/15WSpczAgQOpq6ujqKiIsrIyIiMjcXd3Z+3atXh7exMTE0NDQwOvXr1iz549rFmzBnl5ebG5AMQ6fNWqVSxfvpwrV65w+vRpxo0bx6xZs4BexEFas+bk5HD37l2ysrIYP348urq6PH36lG+//RZvb2+++OIL3N3dSUhI4PLly4IH3N+ys7PDx8eHrKwsjh49yvz580W8ZWFhIX/88Qfjx4/HxsYGc3NzSkpKuHnzJuXl5fj6+gqOWXh4OGZmZowaNUo0iXv37mX+/PkYGhoya9YsNm/eTFhYGHJycjQ1NTFt2jRqamoEb3HPnj2oqakRExMjzgQrKyt6enrExdbfWrx4sRiGZGRkOHz4ME+fPmXatGm0tLSwYcMGPDw8MDAw4NixY+jq6jJp0iQCAwNRU1Ojs7NTIEMPHz7k22+/FdGW0vClqqpKcHAwzs7OfVDh+vp6jh49iq+vL/7+/iLa8fVLsaCggMbGRqytrfutwpcqODiYxMREwceWlZVFR0fnP36mjIwMly9fxtTUFAcHB06cOEFCQgLLly9n0aJFJCYmiujNv/76iy1btlBSUgL0XsxjxozB3t6eGzdu0N3dzeDBg/usKz08PFi7di0DBw78D/61j48PK1as6DdnGXqpFm+//TYzZ84UA1BCQgJfffUVJSUlaGlpCYu5+vp6fvrpJwYPHsz48eM5fPgwgBDPLF26FGVlZSGM27NnD/v27RNolba2Nn5+fmRnZ3Pq1CkmT57Mt99+y7Vr19i7dy/vv/8+3d3dHDhwgMzMTMFxlcrb25tBgwZhYGDQr+a1rKyMI0eOCDBl9uzZIiFSXV2d6dOns2rVKjo7O/nggw8EpW3gwIGcPn2a0tJSUlNTRZP95MkTsrOz/yNqHXpFep9++ilhYWEsX75cUC6ys7Px8fHBy8uLW7ducfHiRRYvXsy4ceOYPn26cCnIzs6moqKi383r6/HaRkZGIiDn7t27VFVVidS6Cxcu0NTURGFhIY8ePSIgIIBhw4aJoVZGRoYNGzZw9OhRTpw4QXFxMe+//z4ODg7s3bsXNzc3HBwcuHLlCmpqapw8eRIdHR0B6jU0NHDhwgUaGhrEvSQBgjY2NrS1taGurt7vobKpqQk1NTUB9C1fvpyrV6+K9DfJ9tPFxYVx48ZRX19PXV2d2FA0NjZSUFBAdXU1v/zyC1FRUYwZM4atW7dy+fJlDh06BMCjR484ePCgcEsJCAjA29uburo64uLiUFRU7PM909bWprGxUdyzkqfvm4T29Lt5/frrr3F0dGTfvn3Y2tpy8OBBfvnlF6qrqykvL6e2tpbMzExqamq4dOmS+EsBuLm5iTVRfn4+qampdHV1kZiYiLu7O6qqqmhoaIg8+FevXtHd3Y2ioiKLFy+muLiY3Nxcuru70dDQoKSkRKw1ofdwUFRUxMzMjNbWVoyNjcWF86ZlZWUlLoSuri5WrFjBkydPKCsrIzc3FxMTE7ESNjQ0REFBgVGjRgmiv2QaLlVeXh4xMTEoKyszcuRIXFxcSE1N5dSpUygpKfHzzz9jYmLCs2fPiI2NxcPDgxUrVtDZ2cnMmTN59eoVo0aNEpwvOzs7ioqKOHHihPCqlCb+Ny1fX182btwI9PJynz59yrBhw1BUVKSzs5P09HScnZ0ZNGgQubm5wmdTsmSqra3F1dVV2IBIP6e1tRUHBweRAqajoyNWZZLIx9nZGXNzczIzMykvL6e1tZXGxkZxgGtoaJCTk0NmZianTp3qs9Z803Jzc8PT01McfC4uLmK4gF7O4qJFi9i0aRPfffcdn3zyCdD7RcrMzCQ2NpbQ0FCWLFnCqVOnaG1txcPDA1VVVc6fP8/t27fx9PTko48+wsXFhaqqKqKjo5GVleXhw4e8evWK/fv3C7uzjIwMMjIyUFRUxN/fn4qKClRUVPD29iYnJ4fw8HCBir1pvW5Fo6KigoaGBh0dHRgYGKCvry8GPn9/fxobG0XcZ2FhISoqKjx69IjCwkKmTJmCnJwc5eXlzJ8/H0VFRdFMnT59Gjs7OxEgMmTIEOHneP/+fXJychg0aBBDhw4lPj6eyMhItLS0BKJnZmZGfX09PT09/2rlPGPGDFRUVPD19eXp06fExsaK90RVVVWgdVJVVlZSWloqxJS3bt3i9u3b5OTk4OnpKdaAenp6JCYmUlJSQkNDA0FBQQQGBvLOO+/w+PFjqqursbKy4tNPP+XBgwdkZ2czduxYenp6RECCq6srCgoKtLe309XVJVKR+lOJiYkEBATQ1NQkUDgLCwu2bdtGSkoKf/zxhxC+Xb58GXV1dQIDA4VOQHqf29raaGpqEpxWDQ0NYdH0559/8tFHHxEaGkppaamg5dy4cUMk97S3t1NVVUV7ezva2tr09PSQkZFBRUUF5ubm4jsvofH9qaVLl3L27Fni4+OFBaGenp7ISJdS7U6dOsU333zD5MmTWb9+PampqRw6dAg7Ozvc3d3x8vKitraWp0+f0tHRwdixY0lLS+PJkyeUlJTg4+ODn58fZ86cISoqitDQUAYPHkxHRwdFRUWYmZkJi7CXL18KWkVzczOpqalCQJmUlNSv53v16hVNTU19hF4KCgp0d3dTUVGBsrIyQ4cOpaqqSjh5zJkzBw0NDZYsWUJtba1Ys5ubm4twkfDwcL7//nsqKipQUlISufAmJia8fPmShIQE3NzcmD9/PpcuXeLChQuEhIQgLy8vKBLbt28XnHY1NTVaWlro6uqiqqqqX8+YkpJCWloaJiYm+Pv7ExQUREFBAT/88ANdXV1s3rwZBwcHYmJisLOzQ0ZGhtjYWFRUVIRRv4+PD2pqauTl5dHU1ISFhQWtra1ERkbS1taGlpaWsF9avHgx5ubmfPjhh2LAht5z29DQkGvXrnH69Gnk5eUZN26csLFramqio6ODyZMni8HmTcvFxUV8jpJgSdrQSJukoqIiamtrGTBgAE1NTTx69AhHR0dxz1RVVVFRUSFsM1taWsjMzCQ7O5vBgwcze/ZsTExMePHiBXl5eSgoKGBmZoaLiwtOTk5CUGpsbEx3d7cQFkqxtEpKSgL466+wUEFBQdh9Xb9+ncjISAIDA9mxYwcvXrxgx44dbN++nXXr1rFw4UIuXbrEnj178PX1ZezYsTQ1NREbG8vNmzcBRPrdyJEj8fb2prq6muzsbHJyctiwYQOurq7MnTsXNzc35OTk+gCLRUVF6Orqis9dX1+ftLQ0Ojo68PDwQF1dvY97zv9U/8ptYNiwYdja2tLa2iqQ2G3btuHp6UlCQgJPnz4lOTmZhw8f0tnZKXgv8+bNA+DKlSts27YNQ0ND0Zjt3r2bd999F21tbeLj4zl48CAxMTEMGDCAuXPnMmnSJH788UeOHj3K8uXLMTAwYP369QJ5TE1NpaGhAU9PTxQUFLC1tSUqKqqPJcSblIGBAT09PeKXt379elpaWsTBLicnh6GhofDQu379Oh9//DGLFy8WRsbSagd6p1Z/f38KCwu5fv062dnZIgJVTU2N+Ph4Jk+ezNGjRykqKhKk9oaGBj7//HPMzc0xNjZm8ODBqKqqoqqqioyMDPr6+hQUFHDjxg3xe33T2rBhA9C7urh69Sqenp6iGXrrrbdwcHAgJSWFnp4efvzxR9zc3MQ61MTEBA8Pjz7JLdBL6r979y6ff/4569at+4+1hrm5OQMGDEBVVZXu7m6GDh3KkCFDUFRU5M6dO/z1119kZmbi4uLCq1evRB69g4PDf9j7/F81f/581NXVhXF+cnIyzc3N+Pj4iAk5MDCQiIgIvv76axobG/nqq684cOAASUlJ5OXlcf36dSwsLPj555+RkZER/196ejrTpk1j9erV4iDp7OzkxIkT/PPPP6xcuZLPP/+cjRs3kpCQwJ9//smWLVu4cOEC4eHhFBcX4+Hh0Uck8+LFC3EAvmlJiUzQS3VpamrCzs5OCHSuXbuGubm5SEbR0NBAQ0MDExMTFBUV2bNnDyUlJUKYVlRUxMOHD4WX6qJFi/Dx8eHIkSMsWrQIa2trDh06xLBhw7C0tGTAgAEkJSWxf/9+TE1NmThxIoMGDeqz0jM0NERfX5/m5uZ/5TYgfVYuLi5s2bKF+vp6tmzZwpkzZzA2Nmbp0qWoqqrS0tKCsrIyzs7O6OjoiOHh8OHDuLm5sWXLFgwMDATNSfKmNjc356uvvsLNzU0Edfj4+JCZmYmOjg6ampoEBQVx//59pk2bhpeXF6tXrxaIXk9Pj/gcOjo6+n2h7Nu3j6CgIG7cuCHir9966y2hhFdVVcXd3Z3s7GwePnyIgYEBo0aNQkVFRUTHvq4NOHHihEBr2trauHXrFidOnOD333+noqKC9957j6SkJJYtW4a7uzsnTpwQn2NKSgpDhgxBRUWFAwcOcOXKFebNmyc2KocPH+bGjRv9fk89PT2xtLTku+++Y/HixXzzzTcMHz6czs5OFBUVkZOT4+HDh2zbto3MzEwSExORl5dn+/btODk58fDhQ65fvy7CBz744APs7Oz48ccfMTQ05P333+fZs2dkZ2fj5+dHfX096enpHD58GHd3d4Fq1dbW4u7uTnFxMYcOHWLEiBEYGBiwe/du/vjjD1RVVUWqkcQ1fNOStnJSBQUFcfToUcrLy9HV1cXS0pLS0lJOnDjB2bNnuXz5MsuXL2fnzp2oq6tTX18vuM21tbWUlpZy6tQpKioqcHd356233uL27ds8ePBADBDa2tq0trbS0tLCiBEjhIvE6NGjCQsLY926daxbt44pU6awa9cuDAwM2LdvH5cvX+73fWFjY4Ofn18fTURMTAxfffUVa9euxcHBgYiICG7fvs2mTZuIj49nxowZjBw5ko0bN/LZZ5/R2NgoxGzSClvavkVFRTFs2DA++ugjLC0tkZOTw9/fn+PHj7N7926B6knJdnJycoI7KlVubq7QUgQEBLB58+Z+PSMgKIvQe6abmpoyZcoUXrx4QXNzM56enujp6ZGXl0dUVBSXL1/Gz89PcPFzcnI4fvw4wcHBTJ06leXLl3Pu3Dm++OILhg0bxr59+4iOjuabb77hxYsXqKurs2DBAhwcHGhvbycuLg4jIyMWLFhAXV0dP//8M4sXLxb9Q2VlJSNHjkRWVrYPVeRNnw16+5nw8HDWrFkjLNCkXuTXX3/l66+/5ptvvkFeXp4///yTrKwsxo4di6GhoXhO6A0UyM3N5YcffkBLS4uJEyeira3NuXPnSEtLY8KECYJaYGNjg7y8PMHBwdTU1KCnp0dBQQHFxcUEBASgpKSErKwsXV1dyMvLCwDy/6p+N6+ffvqpePkl0cj48eOFcr6xsZHNmzfT0NDAjBkzyMzMFMEDBgYGBAYG4uTkhJeXF97e3sydO5e8vDxevXolItD27dvHgwcPhKedqakpBgYGNDY2kpiYSEdHB9bW1n0ODG1tbTIyMrh69Sp+fn7Cr1X6GW9a0nRSX19PeXk5rq6uQnQjla2tLW1tbTx+/JjDhw9TU1MjUBwNDQ00NTVpbGxEXV1dHKCRkZHCD66srIyFCxfi6elJWFgYf/zxBwsWLODtt9+murqajz76iO7ubkFYTkpKQltbGyMjI0pKSjh+/LhAXf57E/kmpaCgQExMDMePH8fQ0LAPUqytrS0U9eHh4WzYsAE3Nzf8/f15+vQp1tbWwsw8NzcXLS0t5OXlGTRoEE+fPhVrWxsbGwIDAwVHUkFBoQ9CbGRkRE1NDTk5OSgrKxMaGiqy442NjfHx8cHX1xczM7N+N68vXrzA19cXBQUFOjo6yMvLE+h/fn4+6enpBAcHc+DAAfbv39+n8WhpaUFJSYnS0lIaGhoYNWoUMjIy6OnpER0dzfDhwxkzZkwfgrkkzDAxMWHs2LF4e3szZ84c9PT0mDp1KgoKCigqKoqs88bGRpHuVVVVhaKiYr+9bMvKysjJyeHOnTsUFxfj5OSEkpIS586dIycnBzU1NfT09Ghvbxd8Own9zMzMJCMjAzk5ORGYkJ6eTlJSEt3d3WLaP3fuHEVFRSxcuBBfX190dHTIycmhs7OTkSNH0t7ejoKCAioqKkJI0d7eLp4lJyeHxMRE3Nzc+t30QK+lj46ODvr6+ujr6wuUVF1dneHDh/fZkFRWVqKvry/s+548eYK1tXUfjm99fT3QO4CrqKjg4eEhrGnS0tKwsLDA3NyctrY24U07e/ZsrKysRESn1Lju378fV1dX/P39Af7XGOD/qfz9/QkPD+f999+noKCAd999l2nTplFRUcGJEyeorKzEwsICb29vvvnmG7q7u0WakoKCAkVFRZSWlqKurk5DQwOXLl2is7MTJSUldHR0cHZ2Zs6cOaxevZoff/yRwMBA4ef8+vtWWVnJlStXaGhoYNq0aYIX/Pr3VRIB9RfRamtrQ19fHysrK0Ejg156lrTlkZwydHR0mDRpklhVvvfee+jq6gogwNzcnMmTJ2NlZYW3tzdGRkZ8++23HDp0iMzMTKKiopg4cSIODg44OzsjLy9PR0eHuDcKCwtpaWnBz8+PkJAQuru7OXLkCAUFBdja2uLr64uysnK/AlEk9xhZWVk6OzuFhZCEBgJimJs+fTpNTU0kJCQIa6nnz5+jrKyMg4MDRUVFIqRFQ0MDZ2dn1NXV6e7uZuTIkULIrKmpiZ2dHdbW1rS3tzN58mQGDRokKCPe3t5s3bqVr776Cmtra9F0FBYWcv/+/X7FUEMv4il9JjU1NURHRxMREUFwcDD29vacOHGCZcuWYWVlxdatW3FxceHAgQPIysr+h+drbm4ulZWVODk5YWVlxcSJE1FVVcXJyQl/f3/B4ZXidJcsWcL58+dxdHQkKCiIa9euoaGhwb59+/psn6Q44H/jMASIeFpADIaamppoamry9OlTHj58SHBwME5OTsLd5/nz55w4cQIjIyNsbW25ceMGO3bsEFqbt99+G2dnZ7EBsrOzw97enhkzZqCurs7t27cpKyujrq6OkJAQzMzMMDY2xt3dnYyMDKKjo1FWVsba2hoHBwfKyspoamoS0cP/pl6+fElaWhpdXV3k5eXx+PFjYdGlr6/PnTt3+Pjjj/H39yckJKRPIFVAQABffvml4PmHh4eTnp4uotgHDRqEjY2N8AC/ePEiAwYM4MaNG+jq6jJhwgQhbpSRkRHftebmZlxdXbGyskJfX5/a2to3Okv73byuWbNGICIDBw7kww8/FJ6CqqqqPH/+nJKSEry8vNi6dStlZWUEBgZSVFTEu+++y5kzZxg8eDCffPKJUKFZWlpiaWlJYWEhFy9e5NGjR+KgjYyMpKioiPPnz3P//n3a2to4duwYb731FidPniQ8PJwFCxZga2uLnZ0dn3/+OVevXsXNzY3BgwdjZ2fH+vXr3/j5ysrKMDExITs7m6SkJBQUFMRBVFNTI9DXtLQ0Fi5cSHNzM2vWrMHR0ZFHjx4xdOhQNDQ0RMMrJyfHixcvhPdZaWkppaWlODk5MXPmTK5cucKtW7e4desW58+fR0VFhQcPHuDv7091dTW1tbWcOnWK4cOHY25uzo0bNwgLC6OzsxM/Pz+GDBnSb/VoRkYG8fHxmJmZ4evrS0dHByUlJaSnpzNkyBDU1NR49eoVly5dEp6nAQEBGBgYICcnR25uLpqamjx48ABzc3NGjhzJokWLMDQ0JDY2lt27d9PY2Mgvv/wiDsrXV4TQy2H6+++/OXv2LD4+PkycOJHCwkJyc3NRVFTE3t4ee3t7Hj9+3G/T6YMHD2JjYyPsmoKCgsSXJjw8nEuXLrFixQomTpzIuHHjBCq4bds2Hj16xMKFC3FzcyMhIUG8i3JycgQEBFBfX09cXByRkZFMmjRJND+rV6/mo48+EhftjBkzhCGzZDi/YsUKZs2aRVRUFLt378bGxgYTExNCQ0NxcHAQQRdvUuXl5fzzzz/s27dPxDPLycmxa9cu1NTU+Omnn3B1daW6upq2tjYaGhqET+H9+/f58ssv0dDQ4J133iErK4vY2FisrKwYPnw4dXV1JCQkUFlZyeLFi4Xg6eXLlzx8+BArKyumTp3KlClTkJGRQUZGhujoaG7evImLi4sw1U9JSeHPP/9k6tSp/RIySVVXVyc+t6qqKjZt2oSysjJbt24VUYlGRkYiplV6Pug9p9auXUtlZSXJyckMGDBATPMJCQnk5+fT0tLC3bt3GTlypIiMhd7htLKyksuXL+Pi4kJoaChz584VFJYff/yRL7/8knfffVeohP9NnT59mhUrVtDQ0ICWlhbW1tZi3RwWFsajR48wNjYWLi2VlZXiv21qaiIqKgpzc3OGDx/On3/+yYcffoiMjIzg6i9cuJAlS5YwdOhQIiMjSUlJYcaMGVy8eJF9+/bx+++/M2/ePAwMDGhtbeXRo0cit97W1rYPODBp0iTGjRvH6tWr+/WM0qAwffp0hg4d2meIiY2NJTExUXhcdnd3/0c8q+S3DDBq1ChGjhwphGwA48aNQ11dnb/++ounT5/y5Zdfim1cU1OTCHZobW3l5cuXODg4CH5jUVGRaDa//fZb5s2bR3d3d78y4xUUFNi8eTMzZ87ss7aXGtquri727t1LY2Mjy5cvZ+PGjTx+/JjBgwcTExPDzJkzcXV15fr162ITNm3aNEaPHk1qaipRUVFERUXx559/iiCeqqoqEUMtXfJGRkZkZWURHR1NQEAA/v7+/PXXX/+PqnQdHR0RpPAm9bqXuOTBq6+vz88//8zLly9FlK+CgoJYdUdFRQn3n4qKCgwMDJCRkSExMZHbt28zdepURo0axcqVK1m0aFGfWO3X+eMxMTG4ubnx+++/o6OjI+g7X3/9NYCwrFRSUupj89jfCg8PZ/z48YI619DQIIa369evc+jQIYKDgwUoJtXZs2dJSkoSqWmS3+nq1asxNzfHwsJCUCrefvttzp07x/r165GTk+P27dsAwjEJEHZxcnJywmJRskuztLTstzZCKmn7OHz4cPT09Hjy5Albt24lNzeXkpIS1q1bx4gRI1BQUKCqqgo7Ozth+SmVn58fnp6ePH36lNOnT1NYWEhISAjr1q0T32t3d3exLS8rK2PJkiVi2ywJNQHxu5G245L7DfSCFm+CLPe7eZWaMTU1NaytrVm2bBlnzpxhxowZ+Pj4MG3aNI4ePSoQmI6ODiZNmkRZWRleXl7cuXOHiIgIqqqqaGtro7W1ldraWhwdHRk3bhwhISGYm5sTEBCAtra2+EJKSU5+fn44OTkhIyODi4sLly5dYv78+ezbtw83Nze+/fZb8YuC/1o9vmlJUWhXrlyhpqZGHHTt7e3U1tYKorS8vDxqampkZ2dz48YNRo4ciZaWFr///jsaGhosX76cgoICfv75ZwoLC3FxcaG4uBg5OTnGjBmDvLw8ycnJjBo1CgMDA3Jycrh8+TIACxcuFBd0amoqvr6+ooH28fFhypQpVFVV4ezszPDhw/ttB3b27Fns7e1F9vf27ds5e/YsZWVlQnwwcuRIsrKySElJ4c6dOwwcOFC82GfPniUzM5NXr17x2WefAb2JLlFRUSxZsoQpU6aItbVUUuMaERHB/fv3MTc3Z9CgQUydOlVYaLW3t5OXl8fevXuF1+bZs2e5ePGiyId+k7K1tUVOTk4YHUsNEPSqsiMjI6mpqUFDQ4Pg4GDxzwYPHoympqZYBXt4eBATE8PRo0eFCjo1NZX09HQaGho4efIkY8eOFasd6B1wfv75Z9rb2/nwww9FIsvriWuBgYECKQoJCemDfL9pSUERnp6eLFy4EA8PDzo6OlixYkWfNb1kJK2hoYGsrCzt7e2YmZmxZMkSSktLycjIEKI7bW1toqOjycjIYPz48axatYr6+nrBFZSaQzc3N9G0StXT00NeXl6fhsfKyoqZM2fS0NDAvn37+v2MVlZWyMvL09jYyMmTJ7l9+zYmJiYkJibi4+Mj4n2lkvK7c3JyWLJkCYaGhhgZGTF//nzKy8tZvHix8P2srKzE1tZWOGv8d+Q0KCgILS0tdHV10dfX5+uvvyYuLo7PPvuMGzduoKmpSVVVFcXFxejp6XHnzh1+//33Pu/8/1VFRUXY2Njg4eGBj48P6enpHDt2jGnTpvHRRx8JJxepVFVVBbcsOzsbNTU1cS5YWVkxa9YsDAwMKCgo4NKlSxw9epTGxkaGDh3KxIkT+yBVY8aMISoqSkQff/755zQ1NWFra4uGhkYfPjv0Di7379/v5yf4XxZDAwcORFNTk3v37pGQkEBZWRlqamp4e3uLpkNWVpbc3FzOnj3L9OnTcXFxITw8nIKCAoYMGcKrV6+Ii4tj9OjRAk1/8eIF9+/f59atW9TU1NDW1oanpyc9PT24u7sTGBiIvb09gwYNwtjYmOLiYg4cOCBy1ydMmMCQIUMICAjg3r17FBUV9ev5Zs+eTUpKSp97pqamhmfPnglPYWtrayHsKyws5NWrV3R2dlJRUUFhYSGFhYWMGjWKzMxM5OXlmTRpEk5OTn2iv19PVHo9uRB6hXXp6em8fPmSuLg4bt68iaysLFZWVvj6+pKdnc3Fixe5cuUKAwcOZNCgQf3SgcjJyQnHA1NTU5YsWYKFhQU6OjrIy8tjaWmJmZkZ9vb2/PnnnyxZsgQnJyfxOykpKaGxsVGktwUHBwtRmsRpdXZ2JiwsjJSUFGbOnElPTw/79++nubmZtWvX4uzszOXLl4WuZtmyZXh4eJCVlcXz58/R09Nj0qRJuLq6/itxqCT6gt6h+fDhw3R3d2NoaMiTJ09obW0VXvXLly9nwYIFlJaW8vnnn/PixQvc3NzYs2cPK1asYN68ecTHx1NeXo6/vz8eHh7Exsair6/P3r17OXToUJ9EsLKyMl69eoWZmZkYyqSoWBUVFVpaWvjhhx+ws7PjrbfeIjY2lk2bNvXxhf6/6sKFCxw6dIi1a9dy8OBBXr58SWRkJABffvklmpqajB07Fl1dXe7evSuCKA4cOMDNmzfZsmULNjY2nDt3jn/++Ye0tDQqKioYPHjwf2zVJIep0tJS8fzS1k96j6S7w8DAAEVFReG68OrVK1paWvp4V/9P1e/m9dmzZ8IGRPoDuru7efToER0dHWzcuBF3d3eKior4/vvvyc3NZf78+cycOZOmpibefvttLly4APQeaJ2dnRQUFODo6Ch4dlKjIrkOSOu87777DldXV8LCwkhPT2fGjBm89957zJ49m23btnHkyBFmz57N7Nmz6enpEeb//SldXV3i4+Npb2/HwMBAZEsrKioKwrmxsTGOjo58/vnnrFy5kvv371NcXIyVlRUREREoKiqybNkyHjx4wN69e3FwcGDUqFGEh4eLiLXS0lJkZGSYP38+ysrK3L9/n6qqKsrKyggJCRHWJNKF09TURF1dHS4uLri4uIjL6998USsrK3nvvfcwNDQkIiKCpKQkIbgqKytDQ0ODhQsXMmzYMO7cucPp06eJiopCTk4Oe3t7WltbycnJQVZWViRPPXz4kDt37rBs2TImTZrEW2+9BfSudNva2sSao6SkhKdPn6Knp8cHH3wA9F5Af//9NxkZGcjIyPDo0SNkZWUZOXIkxcXFfRCnN6kNGzYIWoXkA6ilpYWBgQHBwcECUZ49ezZnz54lKCgI+C/F6YsXLzA0NMTAwICGhgZu3bolklsKCgrQ1NTEwsKClJQUrl27JsIjampquHz5MgkJCdy+fZvU1FSuXbvG9OnTuXHjRp/maNCgQdTW1tLY2ChEAP2p9vZ2PD09mTFjhmg0uru7mT17NgUFBeTl5VFYWIiZmZloqOrr6ykuLmbEiBGEhoaSm5vLsmXLSE9PZ/z48QIBysjIYNCgQfj7+7Nz5062b98O9PIXzc3NiY6OxsDAAG1tbWRkZKisrOTJkyc0Njb24bZK72pUVBTHjh3rN+/11atX2NvbU1paipqaGjNmzKCyslJQb8aOHSvQEYn7+fz5cxQVFcnIyBBJdFlZWRQXF7Nv3z4qKysF6jR58mSxqmxraxPvqby8PCEhIYSEhIjm2MHBgcLCQr777juqqqqYMmUKo0aNEmiuhJpJ7/Sb1PDhw5k8eTKOjo60tLQwb948Xrx4wezZs5k+fTrTp08XKULSClNVVZXbt2+Tnp7O/PnzxfcqNDSU0NBQKisrOX78OGVlZcTExBAWFsbo0aNF+qBE9bGyshKKbMkjUxKgSYlvr58vJ06cYNOmTf16Pui9mFtbW0WwQHR0NL/99hsqKiqsWrUKHx8fqqurUVJSQl5enr/++oudO3fS0dGBsbExly9fJjc3F21tbcLCwjh58iR6enqieU1NTRXZ9ioqKqSkpAiR8Oeff860adPE966pqYmysjKuXbvGlStXUFZWJjIyEh8fH0pLSzl79qz4zrxpOTk54e3t3WeQk1B7R0dHMcxL9fz5c5KTk5GXl8fc3Jzx48cTHh7O48ePUVdXZ+bMmYwbNw41NTVGjBjB2bNnAYiIiBCDkpGREZ6ensL9RkFBgZqaGnJzc1FTU6O2tlbYPn3//ff4+Pjw4MED4dwiDeVvWlLyUmdnJ01NTXh4eAhPWVlZWRYuXEhJSQlJSUnExMRQX1/PmjVrsLKyoqOjQ1jdPX36lMLCQoyNjamrqyM7O5srV65QUFCAhoaG8M0OCgqiuLiYyMhIPvzwQ6ZNm0ZUVBTffPON2ODdu3ePGzduAL1Icm1tLbt37yY0NJS33377jZ9NqmHDhgnLRGVlZUpKSnjw4AHGxsYYGhqKhMSuri7Gjx+PgoKCsCEsLi5m2bJlqKuro66uLihW9vb21NTUUFFRwejRo5k7dy6PHj3qExIhKytLdHQ0K1euREZGBj8/P5YtW4auri5DhgxBX19fJJHl5+ezYMECOjs7iYmJ6VfzqqSkREtLCzExMXz00UfY2dlx/vx53n33Xaqrq5GTk8Pc3BxZWVkePHhAXFwcoaGhPHr0SCQzVlZWMn/+fPG5d3d3c/78eSZPnsy4ceOA3jtQTU3tP3jVEydOpKCggPz8fHR1ddHW1kZRUbEP2HH37l0ePHiAt7d3n0H7f6p+N68SKvU619LFxYWvvvqKpKQkTp06Jdbphw8fRllZmSNHjgC9fNjnz58DvTY4K1euREdHh9LSUmxtbfuY50q/8PHjx/fhtkn2LdJhMWbMGC5evMiFCxfYsWMHH330ETIyMqSkpBAbG9sHdXvT0tDQ4N1336W7u1twCt966y00NTWJiorCzs4OV1dXpkyZQldXl3BNePToEQMHDsTZ2RlFRUUMDQ0ZOHAgtbW15OXl4ezsTHt7O69evcLFxYVhw4ahrKxMbm4uhw4dYuzYsYwePZpbt26xYsUKNmzYIMjtP/30k+BESXynf1sWFhbid+rq6sqCBQtEfK2Pj4+41CwtLXnnnXfEl6W+vl6gIDNmzMDMzEyYmEuBCjdu3MDQ0FCsWLu6ukQjCQhrDsm8HnpFS2fOnEFFRYURI0YIVBt6I+SmTZsmpsQ3qdf/vK6uLtatW0dpaakQyKxcuZLFixdTVlZGVFSUaF4TExNpampi8ODBYlU2dOhQIU6sqakRCSPq6upkZWVhamrKiBEjyMrKYt26dXh6erJ69WqysrJISkoSKvCPP/5YpHEdO3aM5uZmZs6cyZMnT/jiiy8EZ/xNy8zMTHCqpEpNTeXGjRvo6ekxatSoPvnS6enp3Lt3D319fYF0tbe3k5ubS0FBAbGxsSxevJiVK1fy7NkzLl26xPr169HR0eHUqVMYGBiQkJDAsWPH+OCDDzhz5gybN2/GycmJ06dPs3PnTmRkZPDx8RH0Gqn8/Pzo6enh5MmT/XrGnTt38vHHHzNo0CD09fWFx2J6ejrx8fG0tbWxePFi6urqWLJkCcnJyXz11VcsXLiQ3NxcFixYQFFREZs2bcLW1pYLFy6IZgAQfFHobX6fPXuGiYnJ/5hk4+/vz4wZMwRtZ9iwYejo6JCXl4e9vT1nzpzh3r17b/x8UuAL9K7Xpfjp4uJizMzMKCoqYsuWLdTW1rJx40axrpTeT2ngaWlpESjXn3/+yfHjxxk6dChNTU28ePFCbCBSU1OJjIwkJCSkz+dTVlbG1atX6e7upqenh0uXLlFWVsbGjRvFENpf3rlUBw8e5MiRI+zdu5dhw4ahqqqKubk5n3zyCatWraKhoYFjx45RW1uLk5MT5eXlQG/ykoaGBpMnT6ahoYGKigqcnJw4deqU+DsBIpDGxsYGNTU1IiMjefr0KWZmZkIQCr32gF9//TW+vr58/PHH5OXlkZSUJD5/ZWVl5s6dS0dHB+fOnXvj54uJicHR0ZEBAwaIn1VYWMjZs2dFKuHrmglnZ2cMDAywtramrq6OoKAgHBwcGDFiBCYmJrS1tdHe3o6xsTF///23ECtGREQQGRmJoqIi9fX16OnpsXr1ajZu3CjCCFJSUvDx8cHIyIiwsDBKS0vp6upi7NixaGlp0djYiK+vb5+1d3+qsLCQGzdukJ+fz+DBg4WPclpaGidOnCAjI0MII+fNm4e1tTXvv/8+Y8aMEffc+fPnqaysRFNTk6lTp/LFF19w7tw5tmzZgpWVFRs3bmTEiBHk5ubi6+srgKz79++TlpYG9FrMjRw5krCwMIqKivjss89QUVFh586d6OjoCE1Gf+rcuXNMnDiRAQMGMGDAAFavXo2fnx+vXr3CxMQEX19fzM3NkZGRITs7m7i4ODIyMhgxYgTz5s3D3NycyspK3n33XRITE1myZAlqampERESQkJCAhoYGenp6bNmyBQ8PD7Zu3UpeXh7u7u5YW1uLhNHi4mKCgoIYMWKEEA4qKSnxySef0NbWhqysLCEhIdy7d49jx4698fPNmDGD0NBQNmzYgK+vL1evXsXDw4Njx45RXl4uNpCysrIMHTpUCK6///57RowYwe3btzl9+rRwYxg+fLhw+vjggw/47rvvmD17NioqKiQlJQn0VOLoQy9VoKOjg8uXL9Pd3U1QUBBOTk4CbdbV1aWlpeWNo9L73bza2dmhoqIimgvobV7l5OQEIdzX1xclJSUmTJhAY2MjFRUVaGpq0tLSIuyypInw9YqIiKC+vp6goCDBn83JyREijPr6ep4/f05jYyMaGhpERUWJgIPq6mqysrKEBZO0dpdWnm9a586do7u7G09PT4yMjGhubiYpKYmIiAhsbW0ZMmSI+PKrqqqyYMECoFedmJiYKJJIenp6cHV1JTQ0lN27d3P16lUsLS2xtrZGR0eHOXPmiGZdMtTW09MT66RXr16RkpKCpaUlOTk57Nu3j/LycgIDA7GzsxP51P1VxkKvl97Vq1cZMmQIlpaWyMvLCyGRFIAgIYxSJKEkdpGXl0dLSwsfH58+6TheXl54eXlx7tw5rl69ysuXLwkICBCxdNCLgubl5dHR0SGI/BcvXuTrr7+mtLSUb7/9lkmTJnH06FHRaEl8y/40r4cOHcLU1BRnZ2eePXtGXV0d6urqYuBZsGABL1++FAiwlEUuXWi5ubl4enqirKwsuKIS7UFBQQF9fX3c3d0F3xV6L+mUlBQ+/fRTAgMDuXXrFjt37mTfvn0sWbIEV1dXlJSUSEtLo62tTQgppM/x4sWL/foMpYSy6upq2tvbRVLQvn37mDVrluDbSlx06B3KXresevLkSR/T7D179uDs7IyHh4cYSAICAgSyrKqqyrfffgv0XiYdHR1oaWkREBAgxF4WFhbiXaqsrERLSwttbW2CgoL63bxCL7d34MCB5Ofnc+XKFQYNGsSkSZNITk5m3bp1IrUmJycHY2NjgQAkJyejoqLCpEmThJWej48PjY2NHD16FGNjY/z8/ATqra2tLZTpVVVVmJiYYGZmhqqqKnV1dcKj+uOPP8bZ2ZnY2Fiio6Pp6elBRUVFmPv3p3ktKiqiqKiI7u5uuru7GTt2rBD+3L9/n+joaNLS0rC1taW9vZ2cnByePHmCgYEBISEhYkhTUVERDhNSxG9xcTGtra0oKCjQ3NxMfX09paWl6OnpMWDAACoqKigtLcXa2lqcZ2fOnCE+Pp6GhgYGDx7cZ2v1+tq6P9XT0yPQ4KysLB4+fIi3tzerVq0CevmNZ86cIScnh48++oi5c+fS1dXFw4cPaWpqYvz48dTU1DB//nxCQ0OZPXs2TU1NHDhwAA8PD3x9fbGzs6Ojo4N79+6Rn58vLv/6+nqKioowNTUVWeuysrIMGzaMTz75hA8//JDt27fzwQcfoKenJ4bY/jSvMjIyQuQplaKiIlZWVjg6OqKsrCysxywsLBg4cKBYs+rp6TFy5Eiqqqrw9fUV3OlTp05x+fJl5s6d22eQcnBwQF9fn/T0dGRlZcXw0tnZSVlZGQEBAQwcOJCGhgaWLVtGc3OzCOiRvMfLy8v7HS3a1tZGdXU11dXV1NTUEBMTQ1tbmwCWJOsze3t7pkyZQnx8vPAvlZWVJSIiguzsbJqbm7G3t0dLSwslJSXhGCAJpEeMGCF8pSXLve7ubp48eSK8qKH3HJs+fTo9PT388MMPwk4yNDQUExMTYcvUn4qMjBR3eV5envicJDtKaciU/LSTk5MpLi5mwYIFYrP1888/8+TJE4YMGcK0adMwMjISd48EoknOKPr6+uTl5VFZWcmyZcuYPXs2mzdvpri4mPr6enFXSYPytGnTkJeX5/nz57S3twtQ601LsqRyd3fnwoUL7Ny5k2+//RZHR0csLCxE7+Xv7y/OUOm7s2DBAmxsbMjPz0dBQYHff/+d4cOHEx0dzTvvvENubi7btm1j7ty5KCoq0t3dTVhYGCYmJixatKhPj2Jubo6LiwsXLlzgwYMHTJgwQXyWra2tIvXyTc6bfjevurq6DBgwgKqqKnHwd3R0kJKSQnFxMfLy8pSUlDB8+HCOHTvG9evXiY6ORl1dHSsrK8HJ+++Na1FRER999BH29vaEhIRQWlrK7t27KSkpEVOIrKyssKeprKwUAhIHBwehXFRQUODMmTNcvXqVmTNn9lF9vkkdPHiQgIAAUlNTMTIyIjAwkJKSEt5//31mzZolEkEk01/xi5SXx8vLi9zcXBobG+no6MDQ0BAHBwfMzc3FKnf48OEsW7asD+ViwoQJWFpa8tNPP/Hzzz+zadMmvvzyS+7du8etW7fQ19fH0NBQJH0A3Lp1C11d3T6JOG9aqqqqREZGoq+vj6WlJXl5eRw8eJBXr14xZ84cQkJCeP78OTIyMowePVoYmMvIyIhB4cGDB1hYWIhDW1Jozpgxg7Nnz3L48GHa29sF+tXc3IyhoSGHDh3i/v37HDt2jODgYE6cOEFhYSF6enrMnz8fCwsLnj17xvPnzxk+fLj4uf2pvXv3EhwczPXr10XMYFBQkEBh5OTk+Pzzz6murhYxffLy8sIT9fTp04SFheHn50dqaioXL15EXl5eJNo4OTmxePFixo8fT0tLC7t37yY+Pp7FixeLdYdkCH/gwAEMDAwYOHAgqampKCoqigP61q1bWFlZ8e233wqrpDctifcmKytLZWWliFFVVVUVB1tzczNZWVnY2Njg4ODAwIEDxedVU1MjONhGRkYoKytz9OhRMjMzuXbtGl5eXvz999991qGJiYkCxRs1apRAmgICAoSlmUS1kGzy/rtRen9qw4YNNDY2EhcXx9GjR/nrr7+YMWOGUFfX1NRw9OhRPv74Y9atW4epqSnFxcWsX79eIG1SRCP0omtqamoMGzaMjRs3EhQUREZGBqWlpTg4OAiB6N9//42CggKrV69m8ODB5Ofn88svv2BoaMju3btZsGAB1tbWLF++HDMzs34hIK/XhQsXyMjIwNjYmOHDh4vBuKSkhLt37yIrK8unn36Kt7c3aWlprFq1isjISL7//ntGjhzZ52dJAqxhw4bx9ttvc+XKFRFHXV5eTnl5Od7e3qioqKCgoMCTJ09ITk6mqakJf39/QR+5d+8eM2bMYMeOHX0SuP4t8jp58mRcXFw4ceIES5cuBXptdiR0vqenh9LSUsrLy3F0dGT8+PGMGDGCixcvig1BTEwM4eHh4n//8MMP/PTTT6xatUpEWm7fvl2IXmbOnImBgQEKCgrk5+ejqqqKvb09Fy9eFGe2kZERHh4ewpLqk08+EaBDf0oSkMF/bSWdnJz44osvxHD/6tUrKisr+9gHSmi5n58fly5dYuXKlaxevZqAgABiY2PZvn07165dE8NMcHAwH3/8Me7u7uJiHzRoEN3d3Wzbto3W1lZWr17Nq1ev2LFjB0FBQcIKSarnz58TFxf3H3fv/1XFxcVkZ2ejo6MjUsoUFRWFwGro0KGsXbsWHR0d/P39+f3337l79y4LFy7Ex8eHuXPnEh4ezq+//srHH3+Muro6KioqNDU1cebMGSIiInBxcemzRSouLiYuLo6Kigqqqqr6CHgkG8uSkhKeP3/OihUrWLJkCdOnT0dLS4vo6Oh+PR8gBofm5mbi4+Opq6tj8ODBAjXv7u7mypUrtLS0MHz4cExMTHj06BGtra3cvn2b6Oho1NTUuHbtGh4eHuLcnDRpEurq6mLAWLVqFZcvXxZ3UW1tLQYGBsLlQ9qcSbVr1y4SExMxNTVlyJAhXLhwgaNHj2JhYdEv2sCDBw+IiIjgrbfe4r333mP//v38/fffvP/++4SFhbF06VKCg4MFIFNbW8vLly9FnyWJWZ2cnDAyMhIi+6SkJLZs2SJSsSStihTV/bpgUOqZAgMDiY6OZvv27UJ7Ulpaio6ODtOmTaOqqkqI2f636nfzKqU9GBgYiEQbZWVlDAwMUFdX5969ewwZMkRwkiTbpQcPHjBo0CCcnZ0pKSnh4MGDIi5NogO4ubmxatUqtLS0KCoqQk9PDxMTE/T09Hj48CEVFRWYmpri5+dHfn4+J06coKSkhMWLF+Pl5SWaHB8fH1auXCnM8PtTGhoa+Pj4iC94Y2Mj4eHh5ObmsnXrVhQUFPjss8+Ql5fn7t271NbWoqamRmpqKsXFxfj7+4t1lby8PCtWrMDa2prbt2+jrq7O8uXLMTEx4eDBgyQlJQnriUePHnHlyhWgF8k2MjKisbGR27dvM2zYMObOncvChQsJCQmhp6cHLS0tjI2N+33YAgJZkxAXKXXq3r17lJeXo6WlhbKyMrW1tRgbG/POO++gpqaGra0tBgYGhIWFUV5eTkVFBbW1tTx//hx3d3csLS159OgRGRkZzJ49W/DslJWVsbS0REtLCyMjIwoLC7l06RI1NTUCUVVQUOCPP/7A0NCQYcOGsXjxYpycnPjnn3+Ii4vrV5bzokWLsLOzo7y8HDU1tT7pKS9evBBiv9eHD+nvGRgYSFtbG8+ePePp06fC0qqiooKKigqhsP/+++9RUFBg9OjRKCkp4ezszJQpU0hLS+Po0aOUlZUxefJkPDw8cHZ2xsXFBTMzM9LT07l+/TovXrygpKSE+fPnY2dnR3BwMHfv3n3jZ3x91SInJ4ecnByJiYmUlpb24Rfn5ORgYGCAmpoaFRUVZGRkCFpGeXk5ZWVlODo6Mm/ePKqrq0lMTGTbtm2sX79erHwuXLggRELu7u50d3fj5eVFV1cXd+/e5e7duzg4OAjkora2lmfPnqGjo0NDQ4NIV+lv2djYUFFRQUlJCc7OzkyaNAk3Nzc6OjrE0Cb5OlZWVnLv3j32798vstb/+usvzM3NhcH9P//8w5EjR/D39ycgIAAZGRmRxqempoa5uTl+fn4kJyezY8cOioqKOHDgAAMGDKCoqIjIyEgWLVpEQECAOINevHjB4cOHWbt2LQUFBf16vqKiIjw8PLC2tsbS0lLwd7W0tLC0tMTJyUmcQ6WlpcjJyTF9+nTBoYyJiUFdXR0XFxdUVVUpLy8nOztb8F8rKipITk4WZ9PrtkVubm4CAZNqzpw5yMjIsGLFCtFoSQKLt99+Gycnp37H/DY0NDB58mTU1dXF309HR4f8/Hy0tbWRlZVl+PDhNDc3i8FPQ0ODUaNG0dLSQlpaGvHx8QQGBuLu7k5HRwempqYMHToUNTU18V26ffs2ampqDBw4EC8vL7S1tYVW4vz582hra/fhnlpbW7Ny5Uru3LmDvLy8aAj7m5RWW1tLbW0tDg4O4r81MzPDzMyMsrIyEhIS0NPTw9vbuw+S3d7eLqgelpaWImhg6dKl5OXloaysLAzhAWH/+N+ruLgYIyMjjI2NGTBgAN3d3cjIyJCamsqJEyeoq6tDX1+f4cOH4+joiI6OTr/TmV5PkDM2Nhb+1lKpqKgIOzxZWVlUVFSoqKigoKAANTU1sY63sbGhqqqKxMRE6urqaG9vp7GxkXHjxqGvr9/n+ZSVlXFzc6OlpYWXL1+Kxsfe3l405fb29kyaNImenh7h2HLlyhWuXLnSb+eBsrIyNm3ahLW1NYGBgVhbW1NRUcHdu3fx9vbGxsZGuBBIdKzbt28TGRmJgYEBzs7O4vyrr6/n1q1b4rttbW3N33//zb59+1BVVWXs2LE8fvwYKysrkRK6YcMGzM3N+eGHH/oIoCZMmCDs+2prazE3N8fMzKzfPq9SkyxZebq7u6OsrCzcaEJCQpgzZw6lpaX8/fffODg4MG3aNI4fP8758+dZs2YNGhoaXL58md9++43i4mJCQkJ47733CAgIoKenh4KCAvT19amrq8PX1xdra2s0NDQ4e/YssbGxLFq0SIjsCwoKWLZsGTU1NSKMKDg4mOLiYnbu3El0dPT/GVDU7+b1v9fNmzdxcHDg008/JTs7mzt37vRByjQ1NZk8eTIHDx7k0KFDzJs3j7a2Ng4fPkxaWhqKiooUFRXh4ODAmTNncHV1paenh/DwcGxsbFi4cCFpaWksW7aM8vJydu/eTXBwMMnJydTX11NfXy8u8JqaGhQVFRk3bhzjxo0jMjKSM2fO9Ot5hg8fzuzZs5GRkSE/P59ff/2V2NhYtLW1qampYceOHYwdO5bBgwdz8uRJysvL8fHx4cyZM+Tn5zNs2DBx6dfV1YmMcScnJzQ0NARidurUKeLi4pg6dSoODg7CiFnyiO3u7kZLSwtDQ0NkZWXx8vJCR0eHzs5Oenp6GDJkCAYGBv/KOsPGxgYbGxuampqAXhRi+fLlKCkpMXz4cOzs7MjKyqKoqIjCwkKsra2ZPn06hoaGNDQ0YGJiQkdHB8+ePWP79u2CI2loaMjmzZtRVVVl/fr1yMvLk5ubi66urljlhISEICcnR3t7O2fOnEFGRgZDQ0PU1dX5/fffGTBgAHv37hXo5OHDh9m/f3+/hCL//d99Hb1VUFAgKysLBQUF7O3t6ejoEDYv0tp7yZIluLu7s3//foYMGcI777zDt99+S3NzM++++y7x8fGcPn2aiIgIRo8ezYQJE2hvb8fGxoYvvviCX3/9lfnz57N79260tLQoLy+nvr5emM+///77REZGMnXqVOrr60lISGD06NH9al57enro6uqipaUFHR0ddHR0mDx5MkVFRaIpz8vLo7a2Fi0tLXJycvjzzz9paGjAxcWFhoYGHj9+TEdHBx0dHQwaNIgpU6aQmZnJBx98wPr169m1axcaGhrCTF5KhNHU1BQr0fDwcLZu3cqoUaOYNm0aampqpKWlIScnh4WFBerq6pSWlv6rdCZJ3OLi4sLKlSv7WBipqKgIa6jGxkZKSkqIjIwkMzNTCCsiIyP55ptv+OWXX4iMjOSLL74AehvempoaNDU1qa+vp7W1lezsbOTk5DAxMWHFihXcuXOH69evExUVxezZs5k6dSp79+7ln3/+YdCgQbS3t+Pv78/NmzdJTk6mvLy835ZZzs7OLFq0SHyeEqoNiEQi6BUAqampMWvWLNHUVlVVERMTg56eHg4ODgwePBgHBweePXtGZGSkaHLT09O5efMmTk5OmJubM3DgQLq7u+ns7MTe3h4ZGRl6enro7u7G19cXX19furu7aW5uRklJCS0tLXp6egQtqD82UtA7LDo6OjJy5EiGDh3KxYsXhZcwIOKbOzs7hbVSXl6e4BVGRkaipKTEjBkz0NPTIyMjQ7wLp06d4ujRo5SUlODq6srXX39NaGhoHxP39vZ2duzYQXp6OteuXWPkyJGCtzdjxgxh6yatg/vLBy0sLBR0BHt7e7q7u8VZ8+TJE65fv467uztz585FS0tLOFQoKyuLM7GkpESEzvzzzz8sWbKEzZs3ExUVJdT4r4vIGhoaUFFRobq6moaGBqZMmSIoBO7u7ixbtoyff/6ZHTt2YG1tzYYNG1BTU0NFRQUlJaV+3xnSNkdqYCsrK+ns7ERPTw95eXlkZGRob28XHqRqamooKiry+PFjqqqqWLFiBZMnT+bMmTP89ttvZGRkoKSkhJeXF1OmTGH27NmYmZmJ905ZWRlDQ0MGDBggmlh7e3saGhpwcnISLiOSqFLyV4desOnevXv9bl6fP3/OrVu3WLdundiKxsfHc/PmTVpbW7GxsWH06NFUV1fT09NDSkoK2dnZIsxA0jNAL/0xOjoaRUVF8bOSkpKIjY1l//79vPvuu2zatInq6mpmzJjBkSNH+Ouvv/jhhx/EsFpVVYWOjo6w+ZScXt577z0cHR15/PhxvwKYdHR0WLp0KXv27OHLL79k48aNYnsj0TU0NDSIi4vj+PHjTJw4kWnTphEbG8v9+/dZu3Yttra2bN68maKiIjGITpw4kYkTJ5KYmMiRI0fo7OwkICAADw8P8c6Gh4dz9OhRgoODMTIyYs+ePQwaNIi9e/dy4cIFjh07xvDhwwWn/dixY9TX1/+/37y+rphWUlJiypQpIu1DIiJLJGsp8g56LVNevnxJbm4ujo6OwvBXmmgkHtaFCxc4d+4c58+fZ8qUKaxcuZKGhgbS09OxsrISaJ6FhQWjR48WyKpkhv26olmaRiVe4ZuUlJaTlJTEwYMH6ezsZPny5QwYMICamhoMDQ3x9PQkPT1dcI+cnJzYvXs3eXl5fVTjx48fZ8+ePZiamuLq6oqMjAwBAQGMHj2abdu2cenSJQ4dOoSxsTGTJk2ioaGBwsJCUlNTGT58OMOGDSMoKEgkV5w6dQo3NzfGjBkjfq//JrkoLS1N5LJLptcmJibMmzdP+LKWlJRw+/Ztbt++TXt7O62trXh6euLs7ExlZSX5+fn8888/PHv2DOg1vpdSUp49e8bu3btFXOjPP//Mixcv+P777xk6dCg//fQTDx48YNu2bTg6OmJubo6KiorwA/7rr7+orq5m8uTJjBo1Cnl5ecFLfZM6e/Ysenp6AmXQ09MTF4rkcJGSksLp06eJiYkhKSkJMzMzPvvsM6ZOnUpXVxdFRUV4e3vj5uaGl5cXo0aN4sGDB8InFnqRr/379/cJY5DcKRwcHMTlJDX4a9asEV6ZQUFBIsJWRkam3wb3T5484cmTJygpKTFq1CghInz77bextbWlubmZ4uJicWmVl5eTlJTEhAkT8Pf359NPPxWKVQMDA27evImbm5sQ5d27dw9HR0fhhwu9osGIiAjGjRvHW2+9hbq6Oi0tLTg7OwtRW1xcHGlpabi6ujJ27Fjk5OTQ0NBARUWFH3/8sV/PePXqVbZu3crKlSv/g/6TmprK4cOHKSoqYvDgwQQGBrJhwwZWrlwp4mETEhLIzc1lx44dQjTq6+vLO++8g66uLpmZmbS1tWFlZYW5uTmdnZ3CIHvVqlWMGzdOUDCWL19ORUUFZ8+epampieHDhzN48GDc3d1ZsGABBgYG/eYSvn7hSdzJ9vZ21NTUxLqysLAQRUVFxowZw+HDh/nyyy+5cuUKCxcuxN/fH3V1daqrqwUi6uDgQFNTk9hsSQ3x0aNHCQ0NRU9Pj/Pnz5OSkoKnpyfDhw9HX1+flpYW0QDcvHmThw8fMm3aNHx8fJCRkeH48eM8efKkX88Hvc2UtDVRUlIS9B2pSaytrRXuK5cuXRKJb4WFhRw5coScnBzB1Tty5AiNjY2cOXNGJBHevHmTgQMH4ujoSEBAgLCDO3/+PM+ePePx48dCJPzXX3+Rm5uLvLy80C9IZWpqyq5du7h+/Xq/AjWkRLY7d+5w7NgxvLy8GDdunEBzo6Oj2bt3Ly9fvmTbtm0kJSWxaNEi3nnnHTZt2sSpU6f46aef0NXVZcSIEfj4+Ih1tbGxsXBzkVbERUVF5OTkYGJiIsziS0tLqa2txcrKCgUFBYYOHYqbmxsVFRVMnjxZIJV//fUXYWFhAhh405I4rhIF6OuvvyY7O5v9+/cLEZORkZH4nIcMGSJ8WaUt0K1bt4Tvu5mZGevXr6ezs5MjR45QV1fHhx9+yM6dO3nw4AG//fYbsrKyrFmzBmdnZ3788UdcXV2Ji4tj48aNPHjwAA8PD/Gd/vvvv1FVVeX9999nxowZ/dJHSCUnJ8eyZct47733aGtr46effiIvL4/Q0FB6eno4ePAgc+bMYeDAgZSUlJCSksKwYcMErej333+no6ODJUuWMGbMGFxcXCgqKuLGjRvU19cjLy/PnDlzRH/w2WefcenSJXbt2oWmpiYXL17E09NT/H10dXX7gC6v3/MdHR08evSojxjq/yrpXnr58iX37t3rIxCWl5cXLkM+Pj789ttvpKWlsWbNGv766y8AfvnlF9ra2oSVXEBAAB0dHfz555/89NNPJCcnk5+fz9ChQ3F1de0j6JcoOcXFxTx+/Jjp06cLa8mhQ4eip6cnnl1VVZV58+a90X3f7+Y1Ly8PJSUlFBQU0NXVFauYuro63NzccHNzA/4r616yX3r8+LEQbQ0YMIDly5fT1dXVxxfx6NGj/Pbbb+KwkRAfa2trgoODMTExobi4GF1dXTIyMpgyZQqNjY0oKSn1aQA6Ojro7OxEU1OTwMBAUlNT3/j56uvr2bZtm1gBTpgwoc+6SSop11dFRYWQkBA0NDRwc3MjPz9fWG5oampSV1dHXV0dRUVF1NfXU1NTw7Rp03B1dcXU1BRdXV2UlJS4evUqrq6u7N27V5C7pfVEVVUVBQUF5ObmCrPn11XS/a0TJ06gp6eHrKwsmpqauLi4YGJiIsj00mekqqpKVFQU1dXVmJubi0syNTWVzMxM2tvbMTc3x8bGhtraWnp6epg5cyZDhw5lwoQJPH/+HFtbW3R0dISiubCwkKlTp1JXV0deXh6lpaUoKCgwd+5c5syZw9OnT3n33Xf54IMPiIyM5OOPP+a7774TfrJvUikpKVhYWFBXV0dzczMqKipCxWtoaCiQx1u3bpGbmytQF+hVl+/YsYPk5GRWrFiBm5sbnZ2dqKmpoampyeXLl8W7ITVJ0mfR0dGBmpqaEDVCr5iiurqaJ0+ecOfOHUaOHClWoK+bf/e3MXj58iVff/019fX1LFmyhE8++UR4JUtlZmYm0qdqa2sJDAxkwoQJDBw4ECcnJ6Kjo9HT08Pf3x8NDQ3+/vtvUlNTqa+vp6enh99++428vDy+//57dHV1sbe3Jz09XSDl0Ivi6+joiJX08+fPiY6OZtSoUcjJyZGdnU1FRcW/UgDLyclhZmbWp5koLCxEVlaWtLQ0YmJiiI+PR1ZWlhUrVqCpqUl5eTmPHj3Cw8NDbG0khMHPzw9HR0cyMjLw9vZGQ0NDUEiMjY1JSEjgxo0bODo69knmgl7kQlpzPX36VAhWvLy80NLS+g+HhTcpJycn0tPTUVVVxcLC4j/S8qShUUdHBzk5OdTV1amrq6OgoEAI1VRVVamsrCQ7O5v29nbxXp09e1bYXTU1NeHp6Sm2PxKdQFNTkyFDhiAvLy/+bKmBf90nGXottq5fv94ncedNytfXt8//lugIMTExPHz4ED09PebOnUtnZyeXLl0iPT0dT09PSktLRVLcggULcHV15e7du0RGRvLTTz8xefJkHj9+TGtrq+CpV1dXs3r1alpbW4mKiuL06dPIy8vj7u5OZ2cnt27d4vHjx8yePVs8x8OHD9HQ0MDR0ZG2tjYyMjL61bxKUaWpqaliFdzW1iZSIEeNGsWrV694/vw5SUlJ5OfnM2DAAJSUlCgoKCAzM5POzk7GjBnDt99+i4aGBs+ePePMmTPU1dWJwAMVFRW6u7spLS2lvb0dKysrZGVl0dDQoLi4mMzMTKqrq3F3d0dWVpZly5YxYcKEPmKZ3NxcYmNjGT16dL8+w9TUVOrq6tDQ0BADg4GBgWio0tLS0NPTE2eek5OToBa0tbXx119/cebMGbS1tXFycmL58uXMmjWLoqIifvrpJzIzM4UHeHFxMd3d3bS0tJCRkdEngKehoYHIyEiSk5NxcHDg5cuXNDY2EhERQUNDA9bW1gwePJitW7eyf//+fj2jlpYW3t7eqKmp8fz5c27fvi18yCVBUnNzs2hmg4KCxLuspaVFSUkJ165do6mpiS+//BIjIyNu377Nvn37aG9v54MPPuDdd9/l1q1bzJs3jyFDhggQxcvLC09PT7HlkJInq6qqxLYuJycHTU1Nurq6+P7777l3716/tpGdnZ0UFRWhra3NyJEjRRNdWlpKSUkJSkpKvHz5Ejs7OyZOnIixsTEff/yxoPvFxMRQV1eHmZkZmzZtEuEDe/fu5fHjx5SVlaGrq0t7eztZWVnCczkzMxM7OztWrVrF5s2bOXDgAIsWLRJDmZROGR0dLVynPv/8cwoLC/8jJOG/V7+b123btuHk5MSwYcP6mCVLJu6SujA5OVmsDiSy/YQJE+ju7iY/Px8/Pz/k5eVFHCv0XrYWFhY0NTUxYcIEVq9ejaysLA4ODpw8eZLTp0+zbNkyFBQUGDNmDJMnT8bU1JSWlhaamppoaGhATU0NGRkZ5OTkMDQ07DeipaKiwtatW1mwYAHfffddH5uTe/fuceLECdatW4ejoyNr1qyhq6sLDQ0NwsLCiIuLY968ecjLy9Pd3U1oaCjDhg0jLi6OO3fu0NLSwtChQ8XPKy8vR1lZWaS/TJ06FU9Pzz42Ug8ePOD27dtYWlqye/dutLW1+6gpU1JS+vsRkpiYiJKSErm5uZiYmGBpaYmxsTHt7e00NDSgqalJaGgotra2vHr1Cnl5ebEGuHXrFitXrqS8vJz333+f9evX093dzeXLlzl16hRz587FwMAAFxcXSktLefvtt1FWVsbe3p5Zs2YRGRnJO++8Q2NjI0lJSUBvjKienh7KysqC8P/777/z5MkTYmNj+20LJmXeq6qq0tXVRUlJCU+ePKGyspJRo0bh6uoqUJqQkBCqqqowNTUlNDSUsrIywsPDRSCFvLw8NTU1/PDDDzx8+BBtbW2xAndxcREilJycHCIiIsjLy0NXV5eCggLhP/ndd9+JOMoHDx4I8Zo0fZaXlwtR3JuWjIyMGFyuXbsmFPWv1/Dhw0lLSyM8PFykaamqqtLU1MS2bdswMzNjx44dDBkyhDVr1nDmzBmOHj1KXV0dysrKlJeXs2fPHhISEtixYwcdHR0YGRlRXFwsnD4iIyNZt26dyK1XV1enoqICOTk5Wltb+eKLL8jIyOCjjz7q1/NBL19+0aJFfYQuycnJPHv2DFdXV/bv309SUhI6OjpoamqSnp7OrFmzePHiBcHBwQLxUlZWZtKkSYwfP55ff/2Vmzdv4uPjg4ODg3j3oBdxfPXq1X8Y9Evl6OjIb7/9xsaNGyktLcXX1xd5eXm++eYbbG1tBS3hTUtWVhZ9ff3/kbcuJyfHgAEDhH/u6NGj8fT0RFVVFUVFRcrLy2loaBDbE0tLS4qLi8WwWVxcjIGBAQsWLBC2hIDIHTc1Nf0Pe0JZWVkCAwPFcC3VokWLCAoK4vTp0/16xv+nSkpKYs2aNTx58oQ5c+YIHnlhYSGZmZmUlJQgJyeHq6srn3/+uRDdSc30wYMHuXXrFgYGBowfP564uDji4+PJyspiypQpIgmoo6ODkJAQRo0axb1799iwYQOtra0EBwcLV5UffviB1NRUvvrqKxYsWMDQoUM5evToGz/LjRs3xCZCGv61tLRoa2vDxsaGjRs38tlnnxEdHc3Bgwdxdnbmzp07VFVVER0dzciRI5k/fz5KSkpoaGhQU1PDoUOH2L17t1jvm5mZ4erqKjjkqqqqfZA4Ly8v5OTkOH/+PLGxsbz//vtYWFigpqbGzZs3ycnJYcSIEXz88ceMGzcOGxsbIW57k9LW1qa9vZ21a9eSmprKW2+9xU8//YSOjg67du3i4sWLrFq1iqlTpwK9tm/SvSl56/r4+DB79mxsbGxEk6ukpERISAg3btzgwoULTJs2jaCgIHR1dQX30dzcXLjfNDY28uuvv2Jvby+idZuamti+fTt3795l/fr1TJgwoV/PJpWenh7Hjh0Ta+9t27bR1dVFe3u74KDv37+fBw8e8Ouvv/Y5k7S0tDh8+DC7d+9mx44dxMfHM2TIEEpLS8nMzMTIyAg1NTW0tLSorq7m5MmTnDx5kgULFrBlyxZOnDhBQEAA27dvZ+zYsYSFhXHgwIE+Aqo///yTM2fOYGRk9K8oWC4uLrx48YJRo0YJK9PffvuNFy9eMHnyZKZNmwb8F8fd0dGR33//HU1NTYqKijh27BgtLS289957gptua2vL119/zaJFiygvLycuLo6wsDCePn3K2LFjSUlJ4auvviIkJISVK1eKtLDY2FhKSkpESlpdXZ1Il3R1dcXAwOD/m4Sturo6tLW1hUAgKyuLuLg4YVrv6ekpxBDbt28nPDwcHx8fNm3ahJOTE+Hh4SQlJeHm5oaGhgZFRUW0tLTw6tUrzpw5Q2xsLF5eXmzZskWY97e2tjJu3DgmT54sJmUXFxdxuEqRiBInp7W1VXy5+4uGZGVl0dbWhrm5ufhvm5qauHbtGhs2bCA3N5e4uDh27dolrFW6u7sF/6S9vV1M/ebm5gQFBZGVlcXLly8xMzOjurqa+/fvM3z4cAwNDfnyyy9FYpmxsTHGxsbk5uZSX1+PpaUldnZ2xMTE4OPjI1bTGRkZxMbGYmNj8688+xwcHDAyMsLOzg4DAwMGDx4M/Fc+e3d3N4qKigwePJjBgwfT3NzM3bt3MTMzIyQkhPXr13Pq1CmMjY1pa2ujoqKC+Ph4bt++TWNjI1VVVdTX17N9+3bmzJlDdHQ0p0+fpr29HT8/P0pKSsjPz8fIyIjg4GDGjx+PoaEhGRkZ2NjYiLXL8ePHMTY2fmPfN6mqqqowNjYWl525uTnp6elcuHCB+Ph41q5di5eXF35+fty+fRsHBweBFGRmZgqenWRQr62tzT///COagmnTppGXlyeGDun3qKWlRWJiItnZ2Xh4eFBRUcGZM2cIDg5mxowZ3L9/n8OHDxMSEoKnpyddXV00NDTQ0dHxH03E/1X19fXMnTuXtLQ0/P39xar1+vXrlJeXM2HCBDw8PHB0dOTVq1fo6OhgampKR0cHcnJywjLo888/Z8uWLSJbfMKECcLgXOKwJicn88EHH2BpaSloCVLyi7KyMmZmZjx79owrV65gaGgoDLuTk5PR0dHBw8PjX9Fb1NXVBaLR1dVFSEgIPj4+qKiooK2tjYODg1iTl5SU8OjRI7FmU1ZW5uXLlxQWFtLV1cXTp0/R1tYmMDAQCwsLcblKNlwJCQnEx8cLcZ1UERERtLa24uLigrW1Ndra2gQHB9Pd3Y2Li4ugEvU3ZAL60qqqqqq4evUqcnJyjB49GiMjI2RlZYW9lbKyMsrKyiQmJmJkZISjoyN6enqcPXuWgwcP0t3djYGBgRBdSoibZBKvo6NDbGws+fn5TJgwQTQQVVVVVFRUoKOjI9C0oqIiIfCoqKggLy8Pb29vzM3N/3Xzeu7cOQoKCggMDCQlJYX8/HyUlZXx8/NDR0eHyspK0aw1NDRgbm4uBozMzEyysrIYM2YMAQEBDB06lJiYGL799lvGjRsnXBscHR2pqKigvb1dgBxZWVnMmTOHWbNmoaqqSnFxMX5+flRVVXHx4kUMDQ3R1dVFVVUVIyMjjIyM+tW8fvXVV1RWVrJgwYI+7400PEurXykVsb6+nidPnpCTk0NjYyOBgYGiEcrPz2fXrl0iMXHEiBEMHjyYyspKHj58SGNjI8OHD0ddXZ2rV6+KNLGBAwdiZmYmuKDS4C3xiCsrK2lpaRFblpKSkn59dgoKChQUFNDU1ERgYCCffPKJGISSk5O5e/cuw4cPF81rRkaGSP+zsrIiNDSU7u5unJ2dxT+TON0+Pj5UVVXh5+cn7NMk0at0F0Bv85adnc2xY8fQ0tKioKBANOU2NjbIyMjw3Xffcf/+/X4LJ6XftbT90tXV7QPMPX36lJKSEmxtbXF1deXly5dkZmZSVFSEgYEBoaGhaGtr8+mnn5KTk8OtW7coLCzE39+f2bNno6GhQXt7u3BzsbW1RUZGhlmzZuHm5saLFy84d+4cL1++RE5Ojq1bt9Le3s748ePR0NDg8ePHaGlpMWLECOGx2l+KkqenJ42NjeJzW79+PdevXxchMuXl5bz99tsCGJOXlxdb9IEDBwpNS2BgIHV1dfz1119oamri7e1NbW0tiYmJJCcno6SkhKWlJW1tbUIsaGRkhI2NDfPnz+fp06ckJiaK4BhLS0uam5txcnISPHAZGZk3ug/73byGhoYKz7GoqChu3LjBw4cPycvLEx6gCxYsoKWlhefPnzNo0CCuXbuGvr4+paWlpKSkoKysLDgNxsbG5Ofnk5iYyOXLl6mpqRFmtrW1tRw5coSuri68vLywtrbm8OHDtLW1iZdLEoNIXrBS/ZvLEnoJ3ytXrhSNIvQiBdu3b6eurg5DQ0MSExNZv349J06cwNbWFllZWZYuXSp8PE+cOMGhQ4dobW3F3NychoYGamtrkZGRQUtLCz8/Pzo7Oxk9ejQbN26ksrJScIN6enpISEgQOckDBgzA2dlZcFYAMV3PmjWLf/75p9/PuHDhQuzt7WlpaaG+vl782a+XNKRAL6do7dq1rFmzhm3btrFs2TK0tLR4/Pgx27ZtEyhqfX09lZWVQu0tqS+PHj0qGqK5c+cyduxYkR4ye/ZsTExM6O7uFmlaBgYGmJiYsH79epHk0Z86deoUixYtQkFBgbq6OnR0dNDV1WXQoEFkZGRw//59HBwcKCsr4/LlywwYMEBYVTU2NmJkZIS2trZQYre3txMcHExYWBgFBQWMHz+e2bNns2/fPnx9fdm5cycLFy5kzpw5HDt2jOzsbMaNG4erqyvz5s3j3r177Nmzh7KyMtG0v27bZWJi0i/+EvQOGvv27UNdXZ3W1lba29s5e/YsW7Zs6ZPp7uzsLC4P6Bsa0d7ejpGREaWlpaxatYqEhAQ++ugjEVO8d+9e9PX1SUhIIDQ0lObmZn755Rfs7Oxob2+nuLiY8ePHM378eHbt2sWKFStYunQpmzZtoqmpifLycjZv3iw48f2lRrS1tfHbb79x9uxZjIyMGDhwIGPHjiU4OJiHDx9y9epVAgICUFFR4fnz5xgaGnL//n00NDRoaGigqqpKDDKxsbGcOXOGY8eOCZP7np4ezMzMuH37Nnfv3kVbW1usj5WUlKioqOD8+fM0NzdjYWFBbW0t0dHRGBoa4ufnB/RSRz799NN+uWFI9fDhQ5FEU11dzXfffYeioqJAW9rb23n58iVKSkqiqVq2bBlz587l4MGDQC8a+ejRIzo7Oxk6dKhoyjs6OqirqxOD9fXr1/nhhx/o6upi8ODBDBo0iM7OThISEmhra8Pb2xvoHdSvXr1KRUUFxsbG1NbW8ueffzJy5Ejef//9fj+jVBcuXODkyZO89957IqDFxcWFNWvWAL0AhLOzs6CMSQPBnTt3uHDhAmlpaRw4cIDp06fj6elJUVERw4YNw9fXVyCPtbW17N27F+hN9CktLeWrr75CU1OTjz76qI+afcGCBVy9epW9e/cKH2MJwe5PVVZWcuXKFYyNjUXkqVQNDQ1kZmZSX1+Pp6cn77zzDv/88w8zZ85EQ0ODDRs29DnbqqqqBKfQysqKzZs3ExAQQH19PcHBwURHR4sIz08++YSGhga++uor0ahKcaLSM+jq6grjeOilDcTExJCVldWvZywqKiIiIoIFCxb8h2+6JCp83bXixo0bJCYmIiMjg62tLT4+PpSXlxMREcGhQ4eEuFXyZA0NDeXdd98Fet/n9PR0wsLCePnyJQoKCixZsoT8/Hxu3bpFREQEWlpa7Nq1i2HDhgnf6u7ubpYtW0ZsbCzff/99v7+PkyZNYsiQIWKYrKysRFtbW1Cf6urqWLVqFcOHD+fkyZOCl/v670NRUVGgs4mJiXh5eQmA688//+SHH37AysqKX375hdDQUDo7OykuLmb06NFMmzaNV69esWnTJjIzM1m4cCFBQUHk5uby/Plzli5dipubm0is/O9/9v9VnZ2d4myIiIjgyJEjmJqa8s4773Djxg3WrFlDR0eHEGRKQzkghPiqqqpMnDiR3Nxc/vjjDwoLC7GwsKC+vl5YQ77//vvMmTMHBQUFAgMDWbhwoejVRo0axe3bt3n27BmFhYUkJCTQ3NyMlZUVc+fOpa2tTXxub9K/9fvEtbW1FRevoaEh9vb26OjooKenh4WFBV1dXezcuZPr169jaWnJN998g76+PhkZGaxevZqysjImTJhASUkJurq6gjvr6urKpk2bRDbxjh07iIuLY8KECYSEhIiHkiLYpEg5FRUVmpubOXPmDAoKCowbN07w70pKSvplOA29HoFBQUEYGxtTUFBAXFwcz549Y/To0fz444+Ympry4MEDnj17JpwVLC0txYFhaGjI+PHjsbCwEBePvb09GRkZ7Nmzh9raWu7evSt87qZMmSLWllJus5OTE69eveLDDz8kISEBeXl5oRKWJu+WlpY+DW1/SuIfpqWlERkZiba2NkVFRTx79oxRo0bx3nvvoa2tTUFBAWFhYaSmpvLxxx/j4eFBWlqa8EhUU1MTDVlVVZUQCUn1448/kpSUhL7+/4+98w6Pqtre/2fSe++9h4SEhECAQOgdQlVEkI4ojFQBRQUVQQRsKDIiiEqTXoNICxACoZcQShrpIb33en5/jLMvUe/3En9e2837PDwT5kwme5+9z95rr/Wud1kyaNAgzp8/z65du0Q5WAcHB7777jscHR2ZOHEiDg4OJCcnc+jQIbS1tfHy8sLZ2bnZwvg0CAkJwcHBAUNDQ+7du8eCBQvQ1dVlxYoVeHh4cOLECRYvXoyhoaHQ9O3bty8jR45kyJAhbNy4EV1dXVxdXbl+/TqRkZFMmzZNZEqmpaUxYMAAURno1q1bTJw4EYB169Yxc+ZMsVEOHDiQc+fO8fnnnxMUFMRzzz3HN998Q2RkJPPnz29xZECFIUOGNKsOpKGhgZ+fHzNmzBAyZq+++ipdu3bl3XffRUNDg/r6em7cuIGOjg4uLi54enqyevVqTp48KSROzM3NWb16NdbW1sJ716FDBxYtWoSZmZnQrkxPT28W2lGFfb/++mt69+4tBMhVJ/kn6TdPiy5duvDKK69gbW2Nrq4uzs7OlJaWcurUKTIyMujTp49YGFVV4VTcTUNDQ+7cuUNjYyNLliwhJyeHs2fPsmnTJjIzM5kzZ45YIPX09BgyZAiglMxZsGABBQUFGBoaYm9vL/hoKpFuVSGGy5cvk5mZiYuLS4s0F1V48OABcrmcpUuX4ujoKKSBVBtyQ0MDTk5OPHjwgC+++IJ9+/ZhaWnJ0KFDAeWhOj8/nyVLlhAVFUVsbCwhISGsXr0aLS0tdu7cSWxsLFVVVUJgXhVZAWWylMpToqIqNTY20qZNG9q3by9KAe/du1fIxv1WjB07ViS4ZWdno6Gh0cy7Ymdnx/z589HX12fXrl1CCaWyshJnZ2fq6+tZs2YNX3/9NSYmJqIiEygPgKdPn2bv3r0UFRUJXrAkScyaNYv8/HxWrlyJnp6e2PALCwspLS0VVZtA6W1qaQ7BBx98gKWlJZaWliLr/eHDh1y8eFGoQNy5c4cHDx4QEhJC//79mThxIgUFBXh7e4ss+6NHj9LY2MiQIUN4/PgxMTExhIeHExISIvYWFTdRlchlYGAgEgrr6+t/IVyvoaHRzIhTlXktLy9vUR9VIXtVKc+UlBTS09NxdnYmLi4OQESu5s6dy48//ohcLheGG/yLItO/f3/xc2NjI23bthUUh3v37nHhwgUcHBwYNWoUn376qSgV3KtXL4KCgqisrOTEiRNkZmY2q57p6OgolGBaqk4DSieanp4ed+/eJSMjQxSXKC8vF1n/WlpaPHr0iODgYF5//XWys7OFOkBqaipOTk6oqanRu3dvrl27xq5du9DT06NDhw4kJSUJCkVjYyNHjx4lMjISOzs75s2bh56eHu3ataNnz56UlJSQnZ3NwoULadeuHUFBQbi5uZGXl0dlZWWLONkqREREsH37dtq0aUPbtm2ZM2cOtra2dO3aFQ8PD/T19YmMjOT+/fu0a9eO3r17Y2BgQGxsLIcPH8bBwQFzc3NiY2Pp1q0bH3/8MfPnzxcKSy4uLtTU1BAWFkaHDh3IyMgQdL/s7GzeeecdXnjhBXr27En//v1FlcSHDx9SVVUlSl+rOPlPo7zTYuNVW1tbJCS5uLiQk5ODqakpXbp0EZNJxUH58MMPRQLJu+++y8mTJxk4cCB2dnZcuXKF6upqPD09SUhIQJIkRo0aJU4+KnmT8ePHi8Gqra0lOzub8+fPU11dTffu3fHz88PMzEzUwHZzcxPG640bN4RQ99NixIgR5OTkoKamhpaWFuvXr0dfX5/w8HBkMhnZ2dmiasnRo0e5evUqBgYGmJubU1tbK5QDhg0b1ux78/PzqaysZNu2bdTX1xMXF8fZs2cxMjKiS5cuokqOhoaGKDe4Zs0abty4gba2NhYWFmRnZ9PQ0ICnp6coE/tbUV9fz9mzZ4mOjhb6jYcOHUJTU1P0b9euXezYsYMRI0awYsUKQFl/WDUxVQZaU1MTs2fP5tGjR4SEhBAYGMjly5c5ceIEDx8+ZNOmTcyYMYMNGzawevVqIYeiKg3Z0NBAp06d8Pb2xsLCgurqapKTkwFlyL6lVcQGDRokRNV1dXXJzc0lNzdXEML79+/PN998Q1VVFc8++yz37t1jw4YN3LlzB01NTcLCwoTMh0Kh4PDhw5w+fZoPP/yQGzduYGVlhampKb179+b+/fvC8MnMzKSmpoa+ffvy+PFj6uvrGTt2LHl5eezatYvQ0FCmT5/O7t27uXTpElOnThUSbC0VgTc3Nyc1NRUjIyM0NTUpLCwkMDCQzp07k5qayquvvsrZs2fJy8tjyJAhQotPtZnp6OhgYWHB5MmThVzTgQMHiIyMFKflwsJCampqsLe3Z/HixYDSW3nhwgWys7OFAkBpaSnV1dW4uLiQmZnJxo0beffdd/H29gaUkYInEy+eFuXl5QQFBdGhQwdhqEdHR7N9+3b69esn/n5SUpKIlFRXV6OmpkZ+fj7FxcXIZDLc3d0ZNWoUL7zwAgMHDuTjjz+mQ4cO+Pr6Eh4ejru7O8OHDweUigrbt2+noqKCkJAQFi5ciK+vr5ABUlFsHj16JGTWrl+/LuTsWgIDAwMUCgXe3t7MmTOHYcOGcfv2bSEPpq+vT4cOHUhMTGTfvn1YW1uzceNGOnfuTHJyMlu3bqV9+/bMnTuXu3fvolAoeOaZZ4SucUBAAOfOnSMnJ4e4uDhGjhxJ+/bthZFjYWEhykIWFxcjSRJmZmYiYqKqwuXo6IiOjg53794VXryWoKmpiW7dujFs2DDU1NRIT08nIyOjmXdFX1+fjh07Cj6nqkTu4MGDcXd3F5nm169fZ9GiRTz//PMUFRWRl5eHrq4uO3fuZOvWrYwaNQpdXV1SUlIYO3YsHTp04OLFi8ydO5eMjAyampqYNGkSzz77LPfv32fbtm3o6uoyceLEZjzGp8Xzzz+PJEnU19cLp05tbS1xcXHCix4UFMSjR4+ETvmmTZt4/PgxOTk5lJaWcuXKFfbv309wcLA4KKmiju3ataNt27Z07txZVNTLz8+nR48e2NraCkkolcZrZWWloFmpqamJe2xiYiKik1paWhw4cOCp+1hRUSGUKqqrq4U+u2oMbWxs0NXVFeWpHR0dWbBggfhdVfSrS5cuguevgiqCAcoqg7m5uTz33HMMHz4cb29vvv32W65evcr8+fPx9/fn6tWrVFRUMHjwYMFNr62tFU6tvn37Cu99S1BSUkJ8fLxIoLOwsKCiooKqqiratm2Lm5sbkZGRxMbG0qlTJyGxBkqPfVNTk/Bo19TUYGdnR1JSEmfOnMHS0pKOHTvi5eWFrq4uX331FWfOnMHIyIglS5Zw7949HBwcsLOzY+bMmRQXF7N8+XLOnDnD9u3b6dKlC5GRkWzevBkvLy/GjRvX4ufw5MmTHDlyhNraWqZPny6iDfX19Xh6erJq1SrmzZvHF198Qa9evQgJCUFfX5+cnByKiooIDQ1FT0+P9PR0unTpQr9+/QgODubkyZMMHjyYiRMnUlNTg4GBAZqamsJmy8vLY/78+fzwww/4+fmJ9UaSJFG166uvviImJoZhw4axdOlSGhsbmx0q/x1abLza29uLDbC8vJy7d+9y8OBB9PX1Wbx4MT179mTlypWMHz9eNLShoYGhQ4fSoUMHunbtSlFREeHh4Tx69EhkPV+6dAknJye6du1KYGAgCxcupHPnznzyySdERUWxZs0aCgsLWb16NSUlJfTr1094c1R8MFWJR1Bqi5WWljJ9+nQRSnoapKens3PnTqZPn46RkZFQLZDJZJw8eZJZs2bx0UcfMXr0aIYPH86OHTs4cOAAwcHBQpdMpVeoal9+fj61tbV88MEH6Ovr8/XXX9O/f3+hf/vBBx/w+uuvExISIniatra2fPDBB6SmpmJiYoKLiws6Ojrcv38fdXV1Xn31VXR1dX+T9zUpKUkIzasSxFJSUkTJ16tXr3L48GEiIiKErt6RI0fw9/enc+fO1NfXN/PCqLh5tbW1vPDCCwwfPpxvv/2WlJQUITtVUlLC5MmTmTp1Kk1NTTx48ICqqipWrVolMidVWagjR44kPT0dFxeXX6U0/CfExsYSGxsrvEhbtmxh3759LFiwgAkTJjBv3jxWr15NbGwseXl5QnbltddeY9asWVy5ckXQMVTZ13FxcXTs2JH33nuPiooKJEkSUl4BAQGkpaUxYsQI8vLyCAkJ4dGjR7i6urJw4ULc3Ny4fPkyCQkJBAUF8dlnn5GdnY2dnR15eXlcu3ZNKEs8LY4fP87WrVsZOnQow4YNIzU1lerqanx8fMjNzSUzMxNPT09CQ0NFBMDNza3Z5lFZWSlExUEZHoyJiaFt27bo6upy9erVXyTunD9/nsTERFE8pKamhoyMDHr27En79u05efIktbW1IgmpqamJ+Ph4UbO+Jfjggw84d+4cL774okiM8/X1ZdKkSSJbfPbs2cTExLBnzx7s7OzQ0NBg37596OnpERISQkxMDJ999pnQLTx//jy7d+/m9OnTvPnmm8JzqUpC8PLyEqLpEydOFB4lPT29ZkUt7OzscHd3JyQkhPT09BYnhoJSZmnSpEnY2toSExPDzZs32blzJ7dv32bx4sXCoO7QoQPr168Xouc1NTU8ePCAfv36Ce9Wu3bt+OKLL5p52jw8PPDw8GDSpEkcPXqUr7/+Wmy6qsQMUHqbFy1ahKOjo5Aza2xs5MyZMxgaGrJq1SqRWBodHd3iftbW1hIeHk5JSQnTp0/HycmJF198kerqaiGqr6rO4+vry6pVq7h06RI6OjrCOFPJL8lkMsGTKywsFKoLS5YsoXfv3jQ2NuLk5ISvr68wRjt06MDixYsJDw9n27Zt3Lhxg3nz5vHNN98wZ84cVq9eLcpgthTx8fFER0fTuXNnMVd8fHyYMWMG9+/fZ/fu3XTo0OEXUm92dnaUlJTw9ttvc/z4cfT19bGwsCAuLo4ff/wRUEYB9fT0iI2NZfTo0ZiYmJCQkMD169extbUVnMQnoSoRrCrmYGpqipeXF/379xdh4J49e7bIeK2vr+ell14SKi1ubm6oq6sjSRKLFi0iLi6OhIQEIa+kksoEpfPg5wlmvwaVXKaqkiEgstJVcnv5+floaGg0i64CzagXKrvh+++/f+r+gZK2U1FRQefOnUWUUxXFOXz4MAcOHGDo0KG0bduWN998k+DgYD7//HNAeZB1dHTk2LFjrF69mpEjR7J69WomTpxIamoqjo6OjB8/Hj8/Pz755BMOHTqEh4cHS5YsYdiwYRw8eJBvv/2WhQsX4uHhIagj/v7+Qinl4cOHGBgYEBISQmJiYospWE1NTWzatIkOHTo089BramoSFxdHamoq/fv3F0V6VAUZHBwcCA4Opr6+npycHG7dukVERASNjY3CcXnq1Ck0NDSE+hIoI3FHjx5l7ty5NDU1sXbtWsaNG0dSUhK3bt3Czs5O8LnDw8PJyckReQOmpqZMmTJFyHT9O7TYeDU1NaWyspL8/HzU1NTo3r07hw4d4ocffqCsrIwLFy4QFBQkdLtU3p4nF4bk5GSRJaynp8fDhw+5e/cud+/e5cyZM2zcuJHBgwfj5eXFtm3bhKGjqhHs5+fHiBEjhEfO1dWV5557jsrKSjw8PCguLqagoABnZ+dffcD/L3z00UeUlZXx+PFj7OzsmDZtGvX19WRmZpKRkYGFhYUoLqCmpiZORU+GmyorK8nKysLMzAxjY2MKCgqEZ8jDw4P6+nr69etH3759USgUnD59mqCgIMGZSktLo7a2ltDQULGpgvKwkJaWJqTAfl4h6mlRWloqymSq4OXlxcCBA2loaODKlStUVFTg4+ND3759MTMzo7i4mOLiYhEKMDY2FlVPIiMjiY6OFmTy6upqLl68SEhIiPCCFhcXi402Ojqa27dvC81ROzs7hg0bxrlz53juuecwMDDAzs6OtLQ0dHV1m6kvPA1UCTyNjY24ubmJ7Oz8/Hxu3bpFSUkJbm5uaGhoCL60qgrM4sWLiYmJ4dSpUwwYMAAfHx8sLS0pKyujoaGBmpoakWSlWkAzMjLYt28fBgYGNDU1kZKSIgoe2NraCjFvFUVAlQgHyufD398fZ2dnwWN8GlRXV4tDlSRJQqYkLy+PrKwsQkND8fX1RU9PjwcPHmBra0tQUBAFBQVcvHgRf39/EZ4GZaKaqhKPSjJIlZBQWFiItrY2V69eJTY2VsiNmZqa0tjY2CxRpV+/fqSnp5Oeni4MpAEDBvDjjz/y6NGjFo1jeXk58fHxlJWVCW3DmpoaYYDl5OQIwfSIiAgmTpyIpqYmDQ0NpKamMnDgQNq3b8/+/fvZtWsXTk5OdOjQgYCAAL777jthFDwZhuvTpw96enq4u7uLyIaKn5+QkEB6ejr+/v7Y2tpy9+5dGhoaxFrX0iQKNzc3Xn75ZTw9PYVIeklJCRcvXmTIkCEimuXp6Snacv36ddLT03F0dBQyVFlZWSJ6ZWdnh5OTkzj0qTQ627Rp02yNevz4sSgOc/z4cVHitmfPngwcOJDHjx8Lb3KPHj2orq4WclAtha6uLgYGBqIstK+vLyUlJeIAAMoQd0NDA5WVlVRWVuLp6UlaWhpff/01bm5udOvWDTs7O3JycjAyMsLIyIiSkhKqqqrQ09MTyXvFxcVkZWUJD6WlpSV2dnaMGzcOLy8vFi1axNmzZwkNDeXZZ58VxXVU5Y1bOoaJiYkUFRVx7949mpqa0NXVFeWYZTIZkZGRzcL0mzZt4s6dOyxZsgRfX1/09fWbeexUXsSBAwcybdo0ZDIZt2/fxtfXV0jflZSUYG9vj6amJgkJCUJqytzcnLS0NBHC9vHxEVzg8+fPY2pqipWVVTPD72kgSZJ4xrW1tQVdA5R66x07duT777/H1NRU6LAfPnwYW1tbkRyniuCA0suvGufGxkbhpBg+fDgRERGsXbuWwMBA+vXrJ2QqVWvSpUuXBN3A1tZWJASlpaVx+/ZtPDw8CA0NbbHxamJiIrSai4uL0dPTo6SkhIcPH7J//37U1NQICQmhsbFR6Jrm5eUJw9zExESoTNy5c4fbt2/j4uJCSkoK9+7do3///ri6upKRkUFZWRnz588XWqsq6br79+/j4eHB4MGDBUUrKSlJzM/Jkyejq6tLWloa9+/fJz8//6n79/zzz4v9Pj09nbi4OOFNDQ8PZ+fOnaxbt05EU2/evMmlS5c4f/48lZWV9OjRAx0dHU6fPs2VK1dwdHQkJCQES0tLCgoKuHTpEpIkifFPSkrixIkTWFtbM2bMGORyOYAoGauq9GViYkLnzp3JyMgQXOahQ4c+lbRii43X3NxcysrKyMrKom3btgQGBjJz5kzOnTvXzJhSVYJSJYeo6j6DMlw1dOhQ3N3dUVNT4/bt25w/fx5Q1sJWcbokSWLLli3o6elhbm5OY2Mjs2fPFlxXFTQ1NRk7diz19fUYGBggk8kYNmwY9fX1LS6jFhUVxbhx4zAxMRFkcVVxhWHDhjF27FjBHxk2bBgeHh7Y2Ng0C/uamppiaGhIaWkpZWVlzcJRqspDqtBOv379ePjwIXV1daSmpuLi4iKyo2/cuIGbmxvm5uZUVlaipaUlyp5eu3YNDw+PX5Tqexq0adPm356E1dTURHnc5ORkYmNjMTMzY/DgwdTU1BAfH4+lpSVmZmbo6+tz/vx5PvvsM6qqqsRJ+fvvv2f79u3MmDFDhCdUWLlyJR999BFz5swRXkBVIYgnDxpJSUls376dxsbGZtqlTwMtLS309fUZOnQoOjo6Igt0y5Yt9O3bl5qaGu7du0dDQ0MzAy40NJQjR46we/du4Tk0MTGhTZs2BAUFkZ2dzerVq2lsbOTZZ59FS0uLtLQ0nn32WdTV1dm4cSOBgYGi8oqLi4vwyDk6Ogo6RF5eHgYGBnh5eQlvSEsxevRo+vXrJ7LFDQwMUFNTo6SkhMDAQPr06YOmpiY//PADGRkZgjf8ySef8Omnn7Jx40bR99TUVAoKCujYsaMwkm7fvo2Ojg4FBQUcPXpUUBNUiYSqDezX5pGTkxMxMTFERUURFhaGtbU1YWFhXLt2rUV9XLhwIXK5HB8fH1JSUpg5cyaGhoZiPhgaGrJhwwaSk5M5c+YMERER9O3bFycnJ5Ho4OHhwfDhw4mPjyc8PJz169dz+fJl8vPzmTp1Km+++Sbm5uYUFBRgYWGBiYmJSGbKzs4WFfwMDQ3Ztm0bW7ZsYe3atQwcOJAlS5aQkpLCjz/+iIuLS4sKaYBynVDxlZ/UzZwwYQKGhoaEh4fTvXt3vLy8KCgoYNu2bdy9e5chQ4Y000+tq6tj48aN/PjjjyxZskRIdm3atAmFQsHkyZP59NNPOXnyJJs2bWLSpEloaWmxZ88eysrKiI+PF9+1c+dOrKysaN++vTAcVPNKpYX8WzBmzBj8/f359ttveeutt6isrGTp0qXN+qGhocGtW7cIDw+nW7dulJeXs2jRIjp37szBgwc5fPgwixcvZs2aNbz00ku0adOGgoICJEkiPT1dZCmnpKSwcuVKysvLmTZtGqNHj0ZbWxtXV1emT5/OmTNnOHr0KJmZmUyZMkXIzBUVFbWYvtOuXTt69erFyZMn+frrr/H29iYsLAxHR0e8vb2xtrampqaGxsZGcnNzOXPmDPv27cPLy4v58+fz9ttvC6WdlJQUhg8f3oxDqKuri7+/P+np6eTm5uLu7k7nzp1pbGwU1fnWrVtHZWUlU6dOpX379ri6ugrjApS0nX379pGamkq7du2ELNLTIjs7m5s3bwrN659HGVTqHypn0pEjR3j77beRy+V07tyZ06dPk5aWxty5c0WVr7t373Ljxg1KSkpE6VsnJye0tbVZuXIlHh4ehIeHC4NXW1sbKysr4ZlWlQgeNmyYoEGsXr2aoKAg1q5d26L+AcLR9MUXX5CWlsbo0aNF+fbg4GB27dolDlhffvklurq6mJmZoaGhQZs2bYTncePGjfzwww+8/PLLFBcXk5ubS01NDVOmTCE0NJSioiKAZvKPenp6WFpaCg/y6NGjCQkJ4dq1axw8eBBDQ0NmzpzZrJzwpEmTWL58+VP3T2W4VlRU8ODBA2JiYmhsbMTb25uCggLq6uqaqVCYmJhw4cIFPvnkE8zNzXnxxRcxMTHh6NGjTJkyhffffx8LCwtKS0vR1tbm/Pnzgv8MygiArq4uu3btEn1VzZ1+/foJHre2tjavvfYawcHB7N69G7lczoEDB1AoFP+xTy02Xnft2sWYMWPo1asX6enp7N+/n4iICPr160eHDh24efMmjo6OaGpqNpOPUYWGkpKSKCoqwtjYWIjI9+7dWxDe+/XrJ8IGlZWVzYyL0tJSGhoauHfvHklJSRQUFKCtrY2fn98vtBlV+oiqakhPiyFDhqCnp9dMnsnV1VV4rMrLy0Umnmqhe1Js/vjx4xgYGNCjRw80NTXZs2cPDx48oF27doSFhTFjxgzc3d05duwYN27cYMyYMZw/f56UlBRSU1PR0tLCxsYGPT09vv/+e+zt7Zk+fToODg4iC1pVMODYsWPs3r27Rf2Df2WIxsXFkZSUREBAgOAaV1dXi+s+Pj7cuXOHqKgoCgoKcHBwQF1dvZnkxu3bt7l8+TK9e/cWXFl9fX0mT578q0angYEBXbt2FQeUnJwcEZZ6MnkpKCiIpKQkPv/8cy5cuNDMA/2fsGbNGnJycujZsyceHh74+fnh5eUlPNuampqUl5dja2sreNpVVVWcOXOGrKws3NzcRFi6uroaa2trXFxcaGhoIDk5GZlMJg5iWVlZgpes8tqoHtarV69y/fp1evbsib+/P7GxsezatQtPT0/GjRuHlpYWN27cIDw8nLy8vBbVVVdRZVTVsS5fvoyGhgY9evQQwvOAkFM7ePAgt27dIjU1leeff55u3bqRk5PDV199hba2NhMmTGhWgtLFxYXy8nLU1NQoKCjgzJkzVFdXM3z48GbJScXFxURERJCenk5dXR25ublYWFgwYMAA8vLyWLp0KUOGDPm32qn/F5708BgZGfHCCy8QERHB2LFjmTp1KoMGDUJfX18kEhQWFpKenk5NTY3wnOzfv59z584xePBgUV0rKSkJNTU1dHR0uHLlCm5ubjQ2NhIbGys0DnV1dbl79y7Lly/H3d2dVatWYWtrS1FREdnZ2RgZGdHU1CTCjdByhZMn18ebN28Kw2fSpEkkJSVx4cIF7O3t8fLyorq6Gi0tLTw8PETijAqurq6EhoYKvjUon6s7d+4QHBzMuHHjsLGxYciQIcTExIhDW8eOHXn77bdJTEzkxRdfJCQkBENDQ/FsP5lkp6Oj00w+6Gmxb98+bt26xSuvvEKbNm0wNDQUmckq2sKdO3dISEhg1KhRwgCSJIm2bdsybtw4kVASHByMv78/J06cEFrNqr2ipKQETU1NJEnC1dWVzp07s2PHDj744AMyMjJ45plnsLa2Zty4cfj6+jJ//nzWrFnDo0ePRGlMVaSkJTA3N0dfX18kEzo6OgqNYx0dHcFFVfEnO3XqRGJiIl999ZXIFVi9ejXOzs7U1NQwYsQIfHx8SEtLE4mhRkZGrFy5kj179rB06VLGjh0riqO4u7uLbH4HBwchLbV9+3Zu3LjByy+/TKdOnbh16xb19fW0bdu2xcomFy9e5KWXXmLhwoVCHePYsWOkp6czfPhwzMzMuHTpEtnZ2Tg7O+Po6Ei/fv2EcyI7O5uTJ09iYWHBxIkT0dPTIzAwkISEBK5evUpJSYmQ8eratSuzZ89GR0dHRA/q6+tJSkoiLy+Pnj174u7ujqamJh07dsTOzo7jx49z+PBhGhsbMTMz+00l0+FfRVFU/H0NDQ3CwsKYMGGCmPsxMTHNeLqNjY1oa2sjSRLGxsYMHDhQqD9ERUUJr/uVK1cYNGgQ77//Po8fP27mqFFTUyM7O1v0d//+/dy4cUNwRAsKCti3bx8PHz5EV1eXJUuWtJhmdvHiRVJSUjA1NcXb2xtnZ2ciIiLYvHkzenp6LF68mPbt2wvdfUdHR9q1a8eLL76IoaEh6urqIuLTv39/4ZBTPa/Dhw/HxsaGxMREMjIycHd3FwnTVlZW1NfX88UXX5Cbm8vixYuF8VpbW4udnR2ampriwKCvr/9UicwtNl5V1TRAeeJ/4403KCgoYMmSJXh5eQnviip5QaUFqRJVP3fuHFVVVbRp04YHDx6QnJzMuHHjmDdvHqCcqCovrYGBAQ0NDairq4v6yRcuXODQoUNcuHCB2tpaOnToIConqcJ/qk3kzp07YqF8Wjz77LNcvnz5F5xOKysrPvzwQw4dOsSLL77ICy+8gJWVlZCaUoWgv/32W0xMTPD390eSJCH10rZtWwICArCzsyMsLIz169dz/vx5AgMDCQkJwcrKijNnznD9+nUGDx5MSEgIly9fxtDQEE9PTzQ1NamqqiIvLw8rKysCAgLYtWsXa9asaXFm5ZNjmZqa+m8Tv1ShnkOHDvHVV18xY8YM5s6d2+zkbWxsjLe3N+3btxdG/IgRI4TX5ucC7PPnzxfyONnZ2aLKjq2tLWpqakKX09nZmeeff56YmBjWrl3bIuNVdWA5ceIEgYGBwhNVW1tLeno6xcXF+Pr6igOUsbExenp6bN++nf379/Ptt9+K71JlJWdkZODt7c348eMpLy8XhTVU4fhbt26xZ88e3Nzc0NfX59SpU6xfv56EhASsra3x9/dn7969bNmyhQ0bNojF8ODBg0JUuyXjWFtbi7q6ulAR2LJlC6WlpUJazczMDJlMhqurK97e3mzbto3IyEjmzJkjwlXr16/n3XffFUoPgMjQV4lzBwQEUF5ezs2bN5HJZLRp00YYN6A0Gn744QcSEhLQ1NQUBldYWBi6urps2bKFpKSk32S8JiUlYW9vL6Txli1bRkBAAGPHjqWyslIcjpKTk9HV1UVLS4vc3Fzq6upwdnbG0tKSI0eOsG/fPry9vZkyZQrDhg3j008/pWfPnsTHx3P69Gmef/55+vfvT05ODg8fPsTa2hp7e3s8PDxISEjgzp07zJo1i759+zJs2DChLjJ9+nTS0tKEMaCKMrUEqk0uISGBfv36MXz4cJycnCguLhYVd0DpuZ8xY4bghoLy2aqrq0MmkyGXy4VOZlxcHDt37qRjx45irCsrKzE1NaVXr17iO0NDQ4Ug+Lx580RoWFVhrampSczzysrK36QYERUVxfr169HT02PZsmW0bdsWa2trdHR08PLyorKykm+//ZbY2Fj8/Pzw8/Nj6tSpQm0kODiY2tpaysvLCQgI4MKFC7z55pusX78eY2NjfH19ycrKEtnQVVVVmJqa8vrrryNJEm+88QYnTpygY8eOWFlZoa6uTlBQEMHBwURFRbF//34OHjyIu7s7K1asaHEkq7KykpSUFJydnYXcmAoqPq+amhrq6uqUlpbSt29f3NzceOutt1ixYgVt2rRhyJAhvPvuu1RVVWFhYUFJSQkNDQ0YGhoKR4Iq/HzlyhWGDBmCoaEhtbW16OnpMWDAADQ0NJqVF92xYwcXLlzA3d2dIUOG0KZNG1GWvaUoKiqiqKiomX5qdHS08IyGhYWRkZHBqVOnmDNnDqGhoaItKsk+IyMjrl27hpWVFcOGDcPY2Jhhw4ZRVFTE5cuXReJuaGgoq1atorCwkJycHPT19VFTU+PevXsimetJlYGCggIePHiArq4uixcv5rnnnmtxURsVVJXO+vTpg46ODvb29sIALysr49SpU2RnZyNJknj/4cOHYj8xNzdHkiQ6deokDgxffvklly5dYuTIkYwaNQqZTEZVVVUz59i1a9e4cuUKjY2NFBYWsmLFCu7du8fevXsZNWoUFy9e5O233+bcuXOAMrLVEpksgEOHDlFdXS1KiYNSrSQyMpKRI0eK6ENFRQWamppoaWnRt29f+vbtS1NTE1FRUdy6dUuoQ6hstIqKCpqamjAyMqJTp07s27eP2tpaJkyYwOnTp3nhhReYPXu2iDBs27aN3r17C96tym7S09PD1taWDz/8EPil3fBraLHxOnDgQKqrq4Ub/6WXXqKxsZGRI0diZGRERkaGWMxVHCtdXV3Ky8s5deoUZ8+exdfXFyMjIyGLFBAQIPiQKs6ahoYGkiRRUlJCbW0tlpaWwgOWk5NDTk4ONjY2DB48mC5duohqTCNGjCA3N5dPPvkEfX19Jk2aJCo5PQ2SkpLo0aOH8G6oKodpaGgI3sqgQYOaPUB1dXWUlZVx+PBhrly5IjK7VVI3o0aNYvTo0QQEBFBcXMzevXtxcnJi0KBB7Nu3DyMjI0aOHImenh6nT5/GwcGBDh06MHHiRLKyskTmfX5+Pnp6euJvt2/fXpy0W4L4+HhiYmJQV1enR48eaGlpCY+isbExOjo6gmMcHByMl5cXUVFRovwpKPmIGhoa9OrVi5qaGiIjI1m7di1z5sxpxiFsaGhAU1OT4uJi8vPzm4XSVRVIVLqkJiYmohpZ3759GTVqFLNnz8bc3Fzcg6eBygjU19cXvLe6ujqWLVvGjh076NGjBxs2bKC0tJT33nsPV1dXZs+ezaxZs0SZXBUqKyuJjY0V2rAzZ84kNzdXGBAaGhpoampiaWmJr68vpqamlJSUUFBQgL29PR06dBDZ36mpqb8wAry8vHj++edbbBioxOtVkkMWFhZkZmYSHR0t1Cuqq6vJzMzEzc2NiRMnoq6u3qy8Z2BgIMuWLWuWTFJdXU14eDgWFhaCp25oaCiq46nkjerq6tDS0sLMzEwkqqlCQirue0NDA8888wympqYiCaUliImJYceOHXTs2FFwsUJDQ1mzZg1nzpzhtddeE5W7VJ7nuXPn4ufnR3p6uqB3uLm5UVJSwpo1a3B1deXo0aPY2NgQFRWFtrY2pqameHp6Ym9vzw8//MCuXbsYOnQoPj4+Qjnl1KlT2Nvb89JLL+Hk5MTjx4+FEoLqmXiaBfdJnDlzhvDwcBwdHRkyZAg2NjbCk6GaT096yZ6UjKuoqOD8+fMcOHCA2tpa3n33XfGcbtmyhY4dOwr5tqamJg4dOsTVq1cJDg5mzJgxVFVVsW/fPlxcXJg0aZIwXA8fPkxmZiYdO3YUvLOrV69y5swZYci2BG3btqV3796CHhMYGMjo0aOJi4sjJiZGGD2qUrigTFR5kp976tQpjh07xgsvvECPHj149dVX2b59O8ePHyc8PFx4yMzNzZvRyUaOHElWVhbq6uqUlZVRW1srknBUChRt2rQhNjaWY8eOcenSpV/QnP4TDAwMqKura6YPK0kSpaWlYt+SyWQUFRVx5swZ3N3d6d+/P5qamty6davZ86Q6/GtpaeHt7Y2Ojg43b94UGevr16/H3d1d0FPu3r0rDof9+/cXNIG8vDyCgoIICAjAz8+PrKws7ty5I57zlqylgChe8mQkzdvbm+joaPLy8lBXV+eVV14hMDCw2b5469Ytjh49SmVlJWFhYdjY2FBZWcmRI0cICQnBxsaGl156iczMTI4dOwYoS6JraGiwY8cObt26Rf/+/Rk3bhwhISHcv3+fGzduCENaQ0MDExMTQd3w8fFpVm6+Jbhw4QLp6ekMGzYMU1NTPv/8cwoLCxk9ejQZGRns3LkTmUyGvb095eXlmJub4+npyblz54iKimLu3LmEhoY2i54FBQUxffp0wsLCCA4ORiaTER4ezoMHDxg4cCBaWlps3LiRXbt2AUp7SU1NjSlTplBZWYm3tzdnz57lzp07jBw5Eg0NDVHSvKVwcHAgPz+/WXXOjh07smzZsmb80srKSuLi4sThHZS87urqamG4qqJyqmdYVUDG3d2dgIAAMT+NjIzQ19cXSeXTpk3DwcGhWTRdJRWnKrH74MEDGhoaniqKJXvaBVcul7dsZf4LQqFQ/Nu47D+9f/DP7+M/oX/wz+9j6zz9Z/cP/vl9/Cf0D/75fWydp//c/v22MlStaEUrWtGKVrSiFa1oxZ+Ap/a8tqIVrWhFK1rRila0ohV/Nlo9r61oRSta0YpWtKIVrfjboNV4bUUrWtGKVrSiFa1oxd8GrcZrK1rRila0ohWtaEUr/jZosVTW7wW5XC4DpgIvAW0BdSAe+BbYoFAoWlan7y8IuVz+LNATCAQCAENgp0KhaHkR7b8o5HK5A/AeMAgwB7KBw8ByhUJR/Cc27XfB/8IYqiCXy7sD84GugBlQBMQC6xQKxfE/sWn/X/hfGMP/kT6uAToCXoAFUA2koVxvvlAoFIV/Xuv+//G/sCc2g0z2HvAa4IkkZfynj/8f37MQWA34I0lx/+njfzTkcvlEYNtP/52hUCi+/jPb83tALpcPBeYBvvxr378JfKJQKC7/EW34Mz2vW4EtgCuwB9gMaAGfAXt+epD/7lgKzEa5oWT9uU35/SGXy91RTtipwDXgUyAZ5aS+LJfLW16S56+Hf/QYqiCXy5cCF4AewAngYyAcMAV6/Xkt+13wvzCG/wt9XADoA6dR7hM7gQbgXeCuXC7/bSKffx38tfdEmcwBmewbZLLHyGS1yGSpyGTrkMn+czmkX36XI7AI2PQLw1VZwnAaMtkVZLJyZLIqZLLbyGRzkcl+TWxYAeQBH/2GXv1X8dOcXA9U/KfP/l3w0yHyGBCEcq/4DLgFjAAuyeXyP+TA/Kd4XuVy+UhgIpACdFIoFAU/va8J7AWeASYD3/0Z7fsdsQDIBJJQekXO/bnN+d2hAKyAuQqFYr3qTblc/gnKvr8PzPyT2vZ74Z8+hsjl8jHACuAMMFqhUJT/7HrLS0f9tfCPH0P+N/popFAoan7+plwufx94E3gDkP/hrfod8JffE2UydyAa5Xp/BIgDOqF0VAxCJuuGJLXE870M0AY+/JVrW1HeizyURnwl0A+lkdQDmWxMs4ogklSNTPYZsAaZrCuSFN3S7v038NNh41ugEDiI0lj/W0Mul9ug7Ecu0E6hUOQ9ca03cBZlJHbHf7stf5bndfRPrx+rHlIAhUJRj3JSA8z5w1v1O0OhUJxTKBSJCoXiH6dHJpfL3YABQCqw4WeX30G54EyUy+X6f3DTflf8k8cQQC6XqwFrgCpg/M8NVxDP5d8W//QxhP+ZPv7CcP0Je396/fU6138P/NX3ROGoQJJGIklLkKQ+KKNt3igdFU8HmcwYeAGI+BWv60j+ZcS3RZJeRJLmoYwoHOZfRvzPsQNo5K91eJkL9EEZmaz8k9vye8EZpd149UnDFZRrEFAOWP4RDfmzjFebn15/rU6d6r0guVxu8sc0pxW/AX1+ej2lUCianrzwkwF0CdADuvzRDWtFi9AVZZjyOFAsl8uHyuXy1+Vy+Ty5XB7yJ7etFa14Ggz76fXp64D/9fDX3RNlsqdyVCCTPa2jYhzKvWHPr1wTRjySJIx4JOn/NuIl6TEQBTyLTGb0i+t/MORyuQ9KHu5nCoXiwp/dnt8RiUAd0Ekul1s8eUEul/dAybU/80c05M9K2FJNStdfueb2xM9tgCv//ea04jfA+6fXhH9zPRHlgucFRPwhLWrFb0HwT6+5KHlL/k9elMvlF4BnFQpF/h/dsFa04tcgl8sXAQaAMcoErlCUhuvqP7Nd/5/4K++JwlGBJDVzVCBJ5chkl1Cu9V14urW+30+vF3/l2lMZ8chkJkhSyc+uX0LJz++BkpP5p0Aul2sA24F0lHSWfwwUCkWRXC5/HfgEeCCXyw+jpEW4A8NR8tFf/iPa8md5XlUT61W5XG6mevOnQV/+xOdaTgRvxR8F459eS//NddX7Jv/9prTi/wNWP73OBHRRbiyGgB9wEuVGsO/PaVorWvGrWITS4zcfpeF6AhjwNz9g/ZX3xKdxVIDSUfE0CEUZXv6172uJEf9zXP/ptcdTtuO/hbeB9sAUhUJR/Se35XeHQqFYh9JDrgHMAJYAY4AM4Luf0wn+W/izjNfdwI8orfUHcrl8k1wuXwfcAYbwr4fhnyUN8r8FVWbsP5aD9w+BKntXhtLDGqFQKCoUCsV9YBTKJKCerRSCVvxVoFAobBQKhQyll240SqPmtlwuD/pzW/b/hb/ynvj7OSpkMi3AGsjh12vTCyMemczsid97GiM+56dXp//Yjv8S5HJ5J5Te1o//KMmoPxpyufw1YD/K5EF3lAogHVB6xnfK5fK1f0Q7/hTj9SeO5HCUJ+gclATtaSg3ylCUbmhQZhu24q8J1YJl/G+uG/3sc634a0KlxZusUChinrzwk9fg5E//7fSHtqoVrfgPUCgUuQqF4hDKkLU5/9LS/Nvhb74ntsRRoZJP/Hca4M2MeGSyTchk63g6I77op1eLX7n2X8cTdIEE/sXP/UdBLpf3Qpnge1ShULyqUCiSFQpFlUKhuIXS2ZEFLPwpofu/ij+tSIFCoWhAqSX58ZPvy+VyXZSZhdXA/T++Za14SsT/9PrvQkWqzN9/F2pqxV8DqnEs+TfXVZuM7n+/Ka1oRcuhUCjS5HL5AyBQLpdbPJmt/3fCX3hP/D0dFaowus6vXpWkJmSy4SgluCb+9K8epUzXZOALlHvLrxnxqjXqzwrVG/Cv/bBGLv9V4YPNcrl8M8pErvl/VMN+R4T99PoLKT6FQlEll8uvoTRi2/PrvOXfDX/F8rATUU7svX93iZ5/OFSTd8BPcksCcrncEOiGchFpTbj7a+MCSqF3T7lcrvUr1/1+ek39w1rUila0HHY/vf4TqWZ/9p74+zkqlElWdfzLA/trn2lAkj5GkgKRJF0kyQhJGgQ84P824lXf+Wd5p2tRFpn4tX+3f/rMxZ/+/3elFGj/9Prv5LBU79f9txvyZ5aHNVIoFGU/ey8YZcZoBUqh21b8RaFQKB7J5fJTKEN2r6CsIqLCcpQ8mK8UCsU/Rd/uHwmFQlEgl8v3oNRdfBtlpSYA5HJ5f2AgSo/KiT+nha1oBcjl8jZAiUKhyPnZ+2ooC2xYAdF/55LUf+E9UTgqkMnUmikOyGS/xVERC7RHJjNCksr+46f/BZURv/Un6ayfQ5XEdacF3/m74Sea1Yu/dk0ul7+L0hu59W9eHjYKZSW/l+Ry+VcKhUJU85PL5YNRzoUalJ7y/yr+NOMVOC2Xy6uBeygzD9ui5LTUoqzy8191Of8R+Klqysif/quSAAmRy+Xf/fRzgUKh+DtX3ZCjnKSfy+XyvsBDoDPQG+Up/K0/sW2/C/4HxhDgVZTj9tZPWn3XUIpRj0LpyZqhUChK/rzm/f/hf2EM/wf6OAj48CfptkcoOaDWKKuJuaHkic7485r3u+CvuSdK0iNksv/oqECSntZRcR5lgk8nfk0T9NeMWpnsaYx4lab4P7G63F8F+1GOWT/goVwuP4Ty2fNBSSmQAUsUCkVLqq39JvyZxut+4HlgAkquymPga2C1QqFI/RPb9XsikF9WA3HjX5IfafyNS8b95H3tiHIxGYRyoc0GPgeWKxSKov/r9/8mCOQfPIYACoUiTy6Xd0bpdR2FchMoB34APlAoFH936kcg//Ax5J/fxzPAJpSenQCUme2VKA/J24HP/wHrzV95TxSOCmSy/19HxQFgIcqozq8J2p9GJvu3RjyS9EsjXiZTA/oC8UjSvRa0pRUtgEKhaJLL5UNQHmKeR7lf6KFMljuO8jk89Ue0RfbrahWtaEUrWtGKVrSiFT9BJnPkX44Kc5SOisPAciSpZQcHmewWygiBI5LU+LNri1EaRu78y4g/CaxGklL/zfcN+OkzC5CkdS1qSyv+lmg1XlvRila0ohWtaMUfB5lsHPA9Sk/qod/h+w6gpJC4I0mt8oz/A2g1XlvRila0ohWtaMUfB5lMhjLjXikD9v9jiMhkgShLW89Fkr74XdrXir88/opSWa1oRSta0YpWtOKfCqWx+hJwiH/JnP1W2KIsCrDx/7dZrfj7oNXz2opWtKIVrWhFK1rRir8NWj2vrWhFK1rRila0ohWt+Nug1XhtRSta0YpWtKIVrWjF3wZPrfMql8v/9vwChUIh+3fX/un9g39+H/8J/YN/fh9b5+k/u3/wz+/jP6F/8M/vY+s8/ef2r9Xz2opWtKIVrWhFK1rRir8PJEl6qn+zZs2SZs2aJdXV1UkqFBQUSMuXL5dWrFgh5eXlSZIkSVFRUdL69eulI0eOSLW1tZIkSVJxcbEkSZIUHx8vOTo6Sn5+flJkZKT01ltvSWpqatLbb78tvvOjjz6SNDQ0JDMzM8nf318CpN69e0v5+fmSJElSUVGRlJmZKT6/d+9eafjw4dLGjRul06dPS6NGjZKmTZsmlZaWSllZWdILL7wgqdr+NP377rvvpKioKKmiokJKSUmR5syZI+no6EiAFBISIs2ePVtatGiR9M4770jh4eFSbm6uJEmS6KskSdLHH38sAdLgwYOlkpIS0e7S0lLxmc8//1x68cUXpVu3bon3mpqapPv370sTJ06UBg0aJF2/fl1cGzlypARICxYskA4fPiytWLFC2r9/vyRJ0lP178k+SpIkxrG8vFz68ccfpaSkJEmSJGnFihWSiYmJ9NZbb0kKhUIyMTGRunTpIlVWVooxP3XqlHTq1CkpISFBqqurkxobG6Xy8nKpqKhIKi8vl6qrq8X319bWSsnJyaIf77//vgRIXbp0kWJjYyVJkqRr165J69atkw4dOiQ+991330mamppSv379pPDw8BaNYV1dnVRfXy9JkiQ1NDRIpaWlUllZmdTU1CT6/uR4NTU1iWsFBQXS66+/LgESIL3zzjuSJEnS48ePpaFDh0qANHnyZNG/S5cuNevfo0ePpAsXLjSbo42Njc1eVaipqRE/p6WltaiPqvEqKyuTYmNjpZiYGCkqKko6cuSIFBcXJzU2NkpZWVlSQUGBJEmSdO7cOWnOnDnSvn37xN+cMmWK6GNtba00a9YsMW9v374t/Rx1dXVSdXW1JEmSVFVVJc2dO1caMWJEs88WFxf/Yq5//fXXUlhYWIvnaVpamnTmzBnpwYMH4rtqa2ub3cdLly5JS5culXr27CnGbPny5eL6qVOnpOeff17asGGDJEmSVF9fL8XFxYnnsqmpSdwjSZKk/fv3S4GBgdKGDRukuro6acmSJVKnTp2aPYtP9i0lJUXas2ePFB0dLUnS0z2Lqs9cunSp2b3NycmRsrKyxLMmSZJ0/Phxafv27dLjx4/FexkZGVJaWpoYi5+36fLly1JgYKD09ttvS01NTdKqVaskU1NT6csvvxSfmTFjhqSlpSW9++674r1Hjx6JefTGG29Ijo6O0qBBg6T09HRJkiSpoqKixWO4aNEiqaamRjp58qQ0d+5cafPmzdLcuXMlTU1NaerUqdLPsW/fPqlnz56SQqEQ71VUVPzi2cnNzZU2b94sHThwQFxTPcN5eXnSqVOnpGvXrknl5eVSWVmZ+L0PP/xQAqTFixeL98rLy8V6IUktG0NHR0dpzpw5zebHhQsXpHfeeUf68ssvxfeeP39esrCwkPz8/KS7d+9KkqScyw0NDeL3nhzP9PR06fXXX5fWrVsnPqPq561bt6TBgwdLxsbGYs4HBARI165dky5fviwFBARIgOTs7CyFh4dLe/fulZycnCQzMzPp448/ljIzM1vURxU++ugjaejQodLGjRul8+fPS7Nnz5ZMTEykXr16SYmJiVJlZaW0bNkyacGCBWJti4+Pl9q0aSMFBweLOaxak1UoLi4W62lycrLk4eEheXp6So8ePZIkSblONjU1SWVlZc3u80svvSQB0ty5c6WKigpJkpTPd2NjY4vn6Zo1ayQbGxtp2LBh0pkzZ6RHjx6J7zx//ry0detWKS8vTyoqKpImTJgg7vu6deuazaOamppmczUrK0vav3+/dOrUKWn//v2So6OjZG1tLSUmJkoPHjyQ7O3tpdDQUOn06dPSkiVLpOeee076/vvvpQULFkjW1tbSe++9J76rrKxMqq6ulhoaGqSGhoYWjaFqT3jw4IEUHx8vSZLSVgsMDJQWLFgg/RxbtmyR1NTUJA8PD+nChQuSJEnS9evXpVmzZkmbNm0Sn1Otozdv3pSGDx8uAZKjo6P0448/SoWFhdLmzZulKVOmSOvXr5fS09OlmpoaaevWrZK1tbUESGvWrGl2ry5fviz20//UvxaXh42Pjyc5OZn27dtjZmZGcHAwurq6WFpaUlioLGf78ssvo6GhwYYNGzh9+jQhISG8/vrreHl58f7773Pu3Dm+//57IiIi0NPTw9HRUXy/sbExI0eORF9fn7y8PGJjYzl37hwbNmxg+vTpWFpaoqurKz6fnp5OVFQU7u7ujBkzhnfeeYdHjx5x9OhRvvrqKy5evMisWbOeun9NTU24u7ujr69PU1MT/fv3Jzw8nNTUVNTU1Jg0aRLp6ekUFBTQu3dv9PX1SUxMxMDAAFtbW+rr6+nYsSNff/019vb2REVFER4eTk1NDUuWLMHIyAiA/Px8Ll26hLq6Oq+99hpubm7IZDKqqqowNTXFzMyM6upqqqurefDgAe3ataN3796MHTuWR48eceDAAZKSkrh27VpLh5AdO3YwYcIEADQ0NLCyssLMzAyA4OBg3njjDWbPno2enh61tbVUV1eLe25ubo6hoSE1NTWYmZmhqakJwPXr10lNTcXf35+OHTuKv1VbW0tcXByff/45cXFxuLi48O2332Jvb4+fnx8AycnJrFq1innz5jFy5EgAAgICWLFiBbdv3+arr75qNkf+E1RtAigoKGDVqlVIksTrr7+Ovb19s+vLli1DT0+PN954A1COv5eXFwEBAcTFxVFTUwOAra0tfn5+/PDDD1y4cIG0tDQ8PDxwcHDAyclJ3IPNmzeTm5vLpEmTeOaZZwDIzs7GzMxM3EO5XI63tzfz5s2joaGBt956i65duz51/wAePnzIhx9+yLFjx/D09OTTTz8lNDSUtLQ0ZDIZampq2NnZiT5ZWFjg4+PD2bNnycjIYNiwYTzzzDNoa2vTs2dPtLS0GDNmDMbGxgwfPpzAwECqqqqQJIn6+noKCgrQ09MT36mrq8vo0aMBCAwMpKioiD179gDg4eFBQ0MDrq6ueHl54efnh7a2NtHR0S3q49ixY2lsbOTdd9/Fx8cHQMzHGzdusH37dq5evYqjoyMDBgygS5culJaWMmDAAADCw8OJjo5m5MiR4j0NDQ28vb3FuCrlJuHx48fY2dlhYmJCXFwcCQkJaGpq8vLLL+Pv74+/vz+PHz9m7969+Pr6iu9ramoiJyeH4uJi6uvrW9S/mJgYduzYwfjx4wkNDSUuLg4dHR3s7Oy4ceMGX3/9NQEBAUycOBEDAwPxe+vXr+fGjRssWLCAsLAw6urqSElJQVdXFxcXFwwMDJgwYQL9+vVDJpPR0NBAly5dxDMvl8vZvHkzoHzOVGhoaCAuLo7w8HASExN55plnmD59unj29PX1W9Q/gLfffhttbW309PTQ0tLCzc2NgoICGhsbsbGxAaCwsJDz58/Tt29fBg4cKObcnTt3cHBwwMLCAoALFy5w5swZjIyMcHNzw87ODhsbG8rLy9HR0aG2thaZTIahoSF9+/ZFTU0ZWHxyXPT09NDW1ubIkSOoqanR2NiIsbExgwcPFvO0Jfjoo49wcnIiJSWF7OxsOnXqxOPHjzl+/DgdO3ZEQ0O5xTo4OPDiiy9iY2ODq6srAAkJCcTFxWFoaEhQUBCWlpZUVFRw6tQpCgsL6dOnD6WlpaxduxYPDw/xvDk4ONC1a1eqq6spLi7G1NSUmTNnEhwczI4dO4iJiUFbW5uVK1cyaNAgdu3ahUwmIzAwkO7du4u1/mmxe/durl+/joODA6NGjSIuLg41NTVefvllJEliw4YNDBs2jEWLFtGpUyeuX7/OggUL6N+/P926dWPTpk1ERkayZcsWunfvTs+ePcU+CGBiYiJ+NjQ0ZNq0aairq4u1Rltbm+TkZMzMzOjYsSNxcXGsXr0aY2Njtm/fTklJCTt27KBHjx5inWgpnn32WXR0dLh37x4ff/wx9fX1hIWFMXPmTLp27Yqvry+WlpYkJCQQExMDgJ+fH926dRPfoa6ujra2NjU1NZSXl2NpaYmdnR2DBg3i3XffZf/+/Xh7exMcHMz69espKytjwoQJaGlp8cUXXxAREYGamhrq6up06NCB999/n6CgIGpqamhoaEBHR6fZ3tUSODo68vjxYwoLC8nJyeHUqVNcvHiRyspKHj16xLlz5+jdu7f4vJWVFStXrsTBwQFra2uKioowMzNj7Nix5ObmcuzYMQICAsTaEBgYyPPPP49MJuPu3bssWrSI4cOH4+PjQ1paGhcuXKBbt244OjoSGBjICy+8AEBRURHjx4+nsLCQgQMHsmDBAmQymbAl/y+02HhNTU3l/PnzaGtrM3DgQHr37k1MTAwRERGkpaVhampKbW0tUVFRrFixgry8PPT19Tlx4gSDBw9m4sSJODs707NnTwA2bdrE5MmTqampITc3lxEjRvDcc8/xww8/cPDgQbp168b9+/d57733qK+vZ+XKlYByEysqKqKxsZHAwEA8PT0xMzPDzMyMyspKFi1axOXLl2nTpk2L+hcbG0uvXr0A5WLt5+fHiBEj2L17Nz169CA4OJjAwEBiY2MpLCykuLiYmpoa8QDKZDJ69OhBjx49uHz5Mh988AHh4eG0bduW2tpa8Xc6dOhAQUEBOTk5XLhwAVNTU2JiYjh16hSBgYHC8D148CDt27dn8uTJuLkpy5THx8djZWXFnTt3+Pzzz5k6dWqL+njlyhWGDRuGsbExAEFBQQA0NjYycOBABg4cKPo2f/58ca2xsZGmpiZcXFxobGzE0NAQUE7AlJQUysvLMTU1FeOjra2NtrY2xcXFnDx5kqSkJN577z2mTJlCSUkJmZmZODg4UF5eTkNDA7m5uTQ1NaGmpkZgYCCBgYHs37+fvXv3tqh/iYmJAHh6elJYWMjt27cxNjYWm++VK1dwcXEhNjaWiIgI2rRpQ0VFBQYGBjx+/BhXV1defvllEhMT8fLyEt87btw4Tp48iZGREaWlyiIuKsM1Ly+P+Ph4SktL0dHRwdzcXPyesbGxMFyjo6M5dOgQjo6O9OzZk9u3b/PDDz+gp6fXoj5WVFSwY8cOKisrxaEJwNnZmZqaGhoblRUXb9++TXR0NP7+/owYMYK8vDyio6Pp168fYWFhuLi4UF5ejiRJ9O7dm969e1NeXk5+fj6WlpYAVFdXExkZSV1dHcOHD8fe3p6CggJcXV1F/7ds2cJrr73G6NGj8fT05PLly5w4cYJXX32Vzp0707lz5xYbr1euXEFHR4f4+HiGDBkCKA2se/fuERkZSUJCAoaGhvTq1YtFixahpaUlfjc7O5sDBw5gYGDAyJEjxaZSVlaGiYkJOjo6NDY2kpWVxZ07dzA0NMTExAR1dXWGDx+Oubk5DQ0NuLi44OLiAsD58+c5dOgQkiQJ47WhoQFHR0cqKipISkpqUf8eP37Ml19+iZ2dHaGhoZiYmIhxjIiI4LvvvmPmzJmUl5dTUlKCg4OD6NutW7eEoVVQUEB+fr64ZyYmJrzyyivo6OgAUFJSgomJCYmJiZSUlBAREYGDgwNyuRyZTMbx48cxNTUVDoMjR47Q0NDAihUr8PPzIzc3l+rqamFMtASGhoakp6ezb98+JEkiJCSEdu3akZqaioWFBfn5+URGRnL//n3atWuHp6cnY8aM4cKFC8JIUBmvERERrFixAoDVq1ezaNEi1NXVxd960vAsLS0lNjaWrKwsLCws6Ny5MwYGBrRp04bhw4fz6NEjDh48SGJiIjKZjAcPHiCXywkNDW1R/5577jkAiouLycnJoby8HA0NDeHMUMHJyYkPPvgAUK6lDQ0NJCYm8v7772Ntbc3WrVtFH65fv46VlRUDBgwQh5TCwkIePnzIhAkTcHJyYsKECbRt2xZ1dXU6d+6MtbU1oFwXevTowYQJE8RhxdfXl1deeYWOHTsSHBzcov4BHDp0iCNHjvD1118zYcIEtm7dSl5eHvb29gwaNIgtW7YQFxdHdHQ0X3/9NbW1tYwfP56rV6/y448/0r17d6Kionjrrbd47rnnxN4fHx+PmpoahoaGyGQy9PT0sLCwEI4E6ScZz4KCAq5cuYKFhQV9+/bl8OHDbN++neXLl/PCCy+wdetWbt68SYcOHQDletVSuLm5MXfuXDZt2iQOdhUVFXTr1o127dqJZ0lfX58+ffrg7OxMnz59MDY2RpIkZDKZWON1dHSoq6vj9u3btG3bFn19fRwdHSkqKmLx4sUMGDCAkJAQJEni22+/5ezZs2JeBwYGcu7cOSwtLVm4cKG4D9nZ2aipqWFmZoahoSEFBQUt6l9ycjLx8fHIZDLU1dXJysriwoULZGdno6OjQ3JyMjY2NqirqyOTyejSpQthYWHi91NSUrC1tcXNzY0jR45w8OBBJEnC0dGRpqYmqqqqGDduHOPGjSM8PJy1a9dSUFCAt7c3HTp04MaNG8Lg9fb25uOPPwZg7dq1rFmzBlA6nQYMGECbNm0oKyv7j31qsfGqr6+Ps7Oz2Nju3r3Lnj17qKuro2fPnnh6erJnzx7ee+898vLyGDx4MCtXrhQDqqWlJSalp6cnM2bMAJSbv5qamvje48ePExERgUKhoKioiFdeeYXz58+LdlRXV6OtrU1YWBjBwcF4eHiI77l69So2Nja8/fbbTJo0Sdyop0FDQ4MwRNPT0/nss8+orq7ms88+Q5Ikvv/+e0aOHImpqSlvvfUWlpaWrFy5UhgfGhoalJaWsnz5csLDw9HR0WHatGmMGDECT09PQLmwhoaG0rlzZzIzMwG4ePEib775JikpKRw6dAhnZ2fmzZuHJEmMHz8ebW1tPvroIx4+fIirqysLFy7knXfeISEhocXe1/79+3PlyhXMzc2xt7fH1taW0tJSamtrsbKyAmD+/PkkJiayb98+HB0dKSgooLi4GGdnZywsLGhqahJeK3V1dby8vNDW1sbd3V3cR21tbbS0tHB0dGTZsmU4ODhgamrK5s2b2bdvH1ZWVixZsoQXX3wRDw8P9uzZwxtvvMHkyZPx9fWlrKxMLPotGcOlS5dy9epVXn31VaZOncratWvR0NDAxMSEvXv3MnPmTIqLixk6dCgLFiwgMDCQ/Px8CgsLadOmDdra2sLDb2FhITzPLi4ubNq0CZlMJg4ST84bCwsLXnzxRdq1ayc2E0B4zXbs2EFkZCTLli3j8ePHjB49Gnd3d1566aUWGz69evVi8+bNaGlp0a5du2aeaR0dHaqqqvjxxx9Zv349N2/eZM6cOfTo0YNJkyYJD3lhYSHff/89enp6hISEAJCWlsYrr7yCtbU1W7ZsAUBNTY1jx46Rnp5OdXU1lpaWREdH09jYyOuvv467uzuVlZUAWFtb06tXL+GhlsvlLerXk1i1ahVBQUHY29uLMaiqquLmzZvY2tqydetWcZB60nAFMDIy4p133sHIyKiZUXPu3DnMzc3p168fx48f57XXXqNdu3aEhYVx8uRJ1NTUePXVV9HX1+fixYu4ubkJA93CwoLevXsL411HRwd9fX06depEY2Oj8Ag/LUaMGIGbm5vYdNu1aycOHSEhIUybNo3Hjx8zadIkGhoaWLJkCQMHDuT9999n0KBB9O3bF1BGBZqamkhJSeHBgwfo6OgQEhKCjo4ON2/eJDo6mitXrhAfH89zzz3H5s2b6dGjB5IkMWXKFA4cOMCMGTP48MMPcXJy4vjx45w7d46oqCju3r3Ld999x6BBg1i7dm2Lx3DBggUcO3aMpKQkwsLCKCwsxMHBgWeeeYYvv/ySqKgoxo8fzzvvvANAZmYmGRkZqKmpERwcLNYjgLq6OgBsbGzw8vJqZrg+iaysLObMmcOPP/6Ip6cno0aNwtTUlHbt2hEYGMi7775LdXU1KSkpHDx4kNOnT3Pz5k3u3LlDp06dWtS/rVu34ufnR2BgIGZmZmhpaVFRUcGUKVNo3769+JyqrUVFRRQUFODl5YWbmxt3795FT09P7B+ampoiAgJKz/j8+fNZuXIl7777LiUlJbz++uvNDlUqREdH065dO8aMGQMoDzm2trZ06NBBeOQBMceeFr169WpmEE6ePJlNmzaxcOFCfH192bdvH8nJyRgZGVFbW0vXrl3ZsmUL9vb2lJWVsWnTJpYtWwb8y3ufkJDA8uXLefjwIQYGBvj5+fHCCy80OzyoDhX3799HJpORnp7OmjVrsLCw4Ntvv+XcuXMMHjyYMWPGsG7dOtTV1blz5w5paWkt6p8K2dnZSJKEn58f9+7dw87OjqqqKr766iuioqKYNm0agwYN4o033iAlJQVzc3MsLCxobGwUHnYVjIyMuHHjBpcvX0YulzNr1ixcXV1F/9544w18fX0BZcROdV979OjBjBkzOHHiRLP7UFtbS2VlJZqamhgaGooD3dMiJyeHdu3aoa6ujrW1NaNGjaKiooIvvvgCNzc3evXqxYoVK7h06RLbtm3DxcWFM2fO4O/vj7W1Na6uruTl5ZGQkICpqSkjR46ktLSU/fv34+bmhrOzs5hfw4YNo2vXrhQXF2NpacnixYvx9/fnxIkTzJs3j1dffVVEH2xtbZk4cSIODg7CCzt48GCWLl36H/vUYuPV0tKSvn37UlxczJo1a4iMjKSpqYm+ffsKr09xcbF4GMvKykhPTxfezJKSEhISEpg6dSrt2rUjIyMDR0dH7O3txeJUVFSErq4uYWFhjBkzhqqqKk6fPi02EUCEoczMzMQkKCkpYdOmTSQnJzNmzBiCg4PFielpoaGhIR6wxMREPvvsM0xNTXnjjTewsLDg5MmTVFdXi82yvLycsrIyEWIvKirixIkTXLt2DQ0NDUaNGsXChQvFYlRdXU1TUxOPHz/GxMREhNi/++47KisrhWe3qqoKAwMD+vbtS3BwMJGRkbz++us4OjryzjvvCM9P165dW2y8NjY2snz5cp5//nmeeeYZvvvuOxISEpgwYQJWVlbk5uZSWFgoDHFHR0dqa2uxs7MTp8uamhpxb42NjUlPT+fOnTtkZ2czZMgQ9PX1qaqqorq6mu7du4u5cOnSJcLDwzl9+jSGhoZMnToVPz8/evXqRUREBDExMTQ2NlJXV8eBAwewtLQUnuGnhYGBAZqamujq6mJoaEiXLl3IyMjg7bff5saNG1hYWFBaWoqamhq9e/fGwsKC9PR04S1WoaKiAg8PD9FnY2PjZp6LsrIydHV10dTUJCsriyNHjuDi4oK7uztJSUlkZGRgYWFB27Ztyc3N5e7du9jZ2SGXy8nPzyciIoLg4GBmzZrFmjVrePz48VP30cbGhnHjxgHKU7FqXPPz8zE0NERfXx9vb2/09PSoqKggMzMTSZIoKyvjzp07WFtbCy/3k17ixMRE4uPjuXr1Kp988gkTJkzg1KlTnDhxgpqaGnR1damtrRVGWkNDA9OmTcPJyYlp06bxzDPPkJGRQWlpKa6uruJZio+Pb9EYAgwePJiKigqcnZ3FGKSnp2NhYYGbmxv6+vpcv36dhoYGfH19SUtL4/bt27Rr145OnTphaWnJzp07SU5OZsqUKTg4OHDkyBEKCwsJDAzEyMiIhoYGzM3Nqa6u5ssvv8TNzY0VK1agrq7Opk2bKCkpEetOnz59sLW1RVNTk7q6OgoLC39Be2oJTExMRNQkPz+f6upqjIyM0NfXp0ePHrRt25bIyEgOHTpETEwMa9asIScnh8mTJzN+/HgePnzIsWPHMDAwICAggNLSUrE2qULmmZmZ+Pv7Y2pqioGBgVjf8vLyuHHjBuXl5Xh6emJgYEBmZiZGRkaEhYVhY2ODmpoa0dHRPH78GCMjI3FYbQk2btyIs7MzU6dOxcbGhlWrVjFw4ECCgoJoaGggPDwcmUwmDK7MzEwePHhAv379cHZ2BpTzWl1dnSFDhmBsbEyfPn0IDg7m3r17xMfHo6mpiSRJmJubY2ZmxtmzZ7l48SI1NTXExsbi6emJp6cnMpkMGxsbsV906NCBoKAgOnbsSGpqKhoaGqSmpraofxkZGZiZmdHU1ER9fT1OTk4EBgYSEBDAnTt3uHv3rvA0f/DBBzQ1NQmPWlFREZMmTUJTU5PLly/j4uJCXV0d7dq1Q0NDQ0SD5s2bR0VFBSdPnsTW1lbsqYmJiRgaGhIcHIyZmRkGBgYUFBTw4MEDKioqRIjZ1tZWPOO1tbUUFxe3qI8jRowQ0UAVbt68ybfffsusWbNYtGhRs8/b2toKr++DBw+4desWBgYGdOrUiZEjR9LY2IilpSW+vr5ERERQXFyMo6OjMH6qq6uRJAk9PT3q6+vR0tKib9++lJaWsnfvXnr27Im3tzfp6ens37+fCRMmiMPBtm3bOHfunDiMPy0qKiqorq6mW7duGBsbc/36dUaNGkVoaCjffvst+/btw8HBgUGDBmFtbd3MOQGQm5tLYmIiWVlZGBsbY2ZmhqurK+Xl5cIrPGzYMEEzGj58uLg/N27cYPTo0Xz66acYGhpy7tw5DAwMqKqqorCwkAMHDmBnZ0dYWJiwq3JyclrUvzt37tCvX79m740ZM4asrCxmzpyJu7s7jo6OeHp64ubmhiRJnD17lqNHjzJmzBjatWtHXl4e6enp+Pr64uPjw44dO0hMTMTFxUXMrytXrpCUlISZmRlOTk7o6OhgbGzMpEmTMDEx4datWzQ0NABKG8LHx4d+/fpha2vLrl27OHLkCPX19SKq+3+hxcargYEBjo6O7Nq1i3Xr1pGTk8PLL7/MlClTSE1N5eLFi/Tp04eBAwcye/ZsLly4wKBBgzh79ixdu3bl1KlTgifz6NEjvv/+e3r27EmXLl3Q0tIiJSWFvLw8FixYgIeHB+rq6ujp6fHFF18043uojEfVBgzKDSAtLQ0fHx/CwsLYtWsXH374If3793/q/lVXV4sHxszMTHgP6+vrMTAw4JlnnqG8vBxzc3M2bdrElStXOHnyJKGhoRgbG3Po0CEKCgpQKBR4enpSU1MjDFdQcgW1tLS4evUq8fHxjBgxAl9fX7y9vdm0aRMBAQFYWlqSk5PDK6+8wuDBgwGlJ7qpqYlFixa1mCbwc5w/f57Lly8zbtw4zMzMOHLkCHfv3mXKlCkAmJqa8sUXX6ChoYG2tjYFBQVicQTlg1NQUICnpyfa2tpIksTRo0fZs2cP58+fx8LCgq5du3Lz5k2qq6sZMGAAKSkpjB8/noqKCkJDQxk0aJAIE6ng6OiIpqam4ENZWFhQVVXFgQMHWtS/t99+G0mSmnG7zp8/z4oVK+jVqxeRkZHY2Nhw+/ZtEY5RbQqqEKumpiZqamr/ZwhKJpOJOZmbm8vu3bspKSnhm2++oU2bNuKEbG1tjYuLC2PHjhU0FnNzcw4cOICVlRUaGhp06tSJw4cPP3Ufc3JysLGxYd26dZw8eZJly5bRtWtXHj9+TG5uLj179sTPz4+lS5dSWVlJYGAgGhoa7Nmzhw8++IC33nrrV+dSaGgou3fvZsOGDbzxxhssXboUc3NzwRG9f/9+s5DOt99+y9atW1m0aBFfffUVdXV1bN++HRMTE0aNGoWVlRWZmZncvHnzqfumwuHDh/n8889ZvXo1L730EhkZGTQ2NjJq1CgiIyPp2LEj2dnZhIWFcfjwYX744QdmzZrFW2+9RadOnVi3bp3w+AQGBuLg4EB+fj5nz54lLi6Onj17cubMGfLy8jh58iRlZWXCc2ZoaIiRkZHgZYLyYOvh4YGWlhYNDQ1UVVWRm5tLRUUFRkZGLaZ+HD9+nLlz5wLKsPPBgwcxNzfnmWeewczMDHNzc0aNGsXgwYOJjIxk3rx5TJkyBSsrKwYPHsznn3/Oxo0b0dLS4pVXXiEgIIA2bdrg6uqKubk5lZWVInKjch6Eh4czffp0YmJihDHZu3dv7t69y6ZNmzA0NKRTp06MHz8ePT09Hj58KHi/qohZS9C/f38++eQTPDw8uHXrFn379uXBgwccPnyYKVOmEB4ezqFDh5g2bRoff/wxXbp0EVxWgEePHlFdXY2fnx/du3ena9euqKurU1VVxWeffcbu3btRU1NDV1dX8Pe9vLwYMmQIV69epbCwEEtLS7S1tbl//z7FxcVYWFiI59bZ2ZlZs2ZRWFjIgwcPBFXhabF06VKqq6v56quvxL0KCgpCJpNx5coVkpOTee2118jLy2Pr1q107doVDw8Pjh07xvfff8/cuXNxdXVl7dq1JCcnExwczP3793FychJrhbq6OtOnT0cul2NlZcWjR4/YvHkzmzdvxtjYGIVCwfjx42nXrh1yuZxt27YxZ84cQVMoKSlBX18fTU1N1NXVefjwYYv6aGJiItYpVZ83bdoEIKgs/w5OTk588cUXgh6g8vqqeLo6Ojo0NDQwYsQIwVfV1tamqamJmpoaXFxc8PDwQF9fHzMzM2bPno26ujqSJDF27FgCAgLQ1NSkqKiI8vJyEhISuHPnTouNVwMDA2Ewqqmp4e7uLhwVKkP151EAlQ2iooBs3bqVvXv3Ultby6RJk1i2bBnW1tZER0cLA7aurk7YK7GxsXz66af4+vqycOFCjIyMaGpq4r333hOeyVdeeYUdO3bwwQcfiPXl0aNHZGRktKh/Dx48ED/n5+cLj//mzZuF4fnaa68JewugR48eLF++nD179jB79mzmzp2Lj48PiYmJ7Nq1i3PnzmFra9uMv3z06FEx7yZNmsQnn3wiHELDhg1jyJAh4hCso6PTjGfes2dPduzYIfr+n9Bi49XIyAh1dXWCgoLo1asXu3fvpra2FktLS9TV1Xnw4AFt2rRBT0+P6dOnU1ZWRlVVFStXriQ4OBh/f3/s7Ow4fPgwDQ0NtGnTBkmSKC0txdjYGBsbG7KyssjOzqayshI9PT18fX2bnfpUBqvqRA4IL4SmpibTp0/H0NCQpKQkkpKSWmS86urqCm9Rhw4d2Lx5MzY2Nnh6elJcXMz+/fvx8PCgd+/e4rMxMTEYGxsLL6kkSbRr1058X1paGoWFhVhbW2Nvby/C7NHR0bz66quEhYXx9ttvizaojIMuXbqQmJjImjVr+PTTT9HR0RF8IVBOwpZumKDcUPT19enXrx86OjqEhoYSEBAgaA2qxApJkpg4cSJ2dnasXbuW4uJiPv30UzIyMmjXrh3V1dXY29uTmJiIt7c3zz77LAYGBsTExJCXl0dMTAylpaXEx8cTFRXFlStXAGXoaNKkSXTt2pW2bduKdmlpaVFcXExpaSnOzs506dKFpKQkwS99WlhYWKCvr8+xY8eIiopi2bJlTJw4kZKSEkGTAH7h0W1qahKLq7e3N0VFRZw+fZrt27dTX19P3759mT59OjKZjJqammb3PiwsjPfff59XXnmFhIQEOnXqhLe3N1999RWampp89dVXIjx87do16urqCAkJQV1dncrKSgICAlpkvNbX15OamkpRURHW1tbCC25qasqjR48IDw/HyMiIxsZG5s2bR/v27amqqsLFxYX58+czaNAgkpKSOHbsGD4+PoLu0djYSIcOHVi+fDmgNE4zMzPp1q0benp6REVFERgYyJAhQ4iOjubs2bM0NTXx+eefY21tzbBhwxg8eDCDBw8WHsvi4uIWb5igNCysra05cOAAkiTh5OQkDnOnT58mOzsbUC6S6urqGBoaMmbMGJGE1KVLFxHZ8Pf3x9DQkLlz52JmZtaMI5yfn8+JEycwNTWlW7duYgMLCgrC2dmZxMREvv/+e9q2bcuzzz4LKA0KZ2dnUlJSeO+998jIyGiW8PA0aGpq4uLFi4SGhuLl5UViYiIPHz4UB4rk5GSOHDmCg4MDffv2Zf369Xz99dccP36c7OxsdHV16d+/PxYWFpiZmeHs7Ez37t0pLy9n+/btZGZmYmhoyL1796ioqCAsLEzQCQDs7OxwcHCgoaGBhIQEUlNT6dWrl6AjQPOErt9ivM6cOVNQuqqqqhg6dCguLi5IksTIkSNZsGABn376Kd9++y0DBgzg+eefx8nJiatXr3L79m1qamrE71dXV5OUlERKSgo3btwgOjoaDQ0NNDU1yc3NBZRhd5XHTkdHh86dOzNp0iT8/f2JjIxslvSSnZ2NoaEhBgYGODg4kJqa2mLjFZRrfPv27cnIyODKlSvY2dlhaWkpDvf19fV4eHjwySef4OPjQ0NDAxEREURHRzN48GAcHBxo06YN/v7+6OjoCP7r+vXrMTU1RU1NrZl3v66ujk6dOlFRUSHWrGvXrnH58mXu379Pjx49BEdcdU9UhqcqoaYl0NPTo7Gxkbt374o5CMroj76+PqdOneLatWskJCTg7+8vEqeMjIyEUZiXl0daWprwep87d47IyEg6derUrK1lZWUYGhqioaFBfX29cPzs37+fkpISxo0bR11dHT/++CMODg707NmThIQEkpKSsLCw4Nlnn8XHx0fQmJ4WWVlZREREcPjwYZycnHjjjTdobGzkyy+/JC8vjw0bNjR7Li5cuEBERASdO3dm5MiR+Pr60q1bNzQ0NKisrMTCwoITJ05gY2ODqakpkiRx79499PT0BOXM3Nwcb29v+vTpg5GREUlJScTGxoqk5bq6Ouzt7ZkxYwZhYWGUlZVx7NgxTE1NGTx4cItyQTp16kRWVhb29vZYWlri7+9PXFwcjx49Ql1dHR0dHTIyMkhLS8PY2JjAwEBcXFyEPWZvby/G4uLFi3z00UdkZGQwZswYHj9+jLGxMfHx8ejp6dGnTx9SU1Oxt7enqamJhIQEDhw4QGNjI3379qVDhw6oq6uLyIIKdnZ22NnZcevWLRQKxX/sU4uN10ePHnHq1CnCwsLYtm2bSGhRJXnk5uZy69YtQkNDGTlyJCNGjODBgwdMmDCBW7duERkZiba2NuPGjSMwMJAvv/wSUBqfqhCempoaS5cupaCggE2bNuHr64skSeTl5WFlZYWamhqSJInXrKws7t+/j5qaGv379xcet7q6umY352kgk8kEv66oqIhBgwYJHu6WLVvYsmULgwcPJigoCGNjY/T09OjYsSPOzs4ihFNdXS1OZo2NjVRWViKTyZp5GXv06IGWlhZz587l4sWLpKam4uLiwp07dygsLMTT01MYYKp75OPjQ1VVlfgOPT2935QB3KdPH7p164a2tjYymawZMVzleQTlAnPs2DEGDBhAfX09ly5dYt26ddTW1mJjY0NhYSGHDh3i4cOHzJkzh+XLl5OcnMzmzZsJDw8HoLKyks2bN4swloaGBlpaWvj7+xMYGChCCAAnT57kxIkTdO/enXbt2gneqYGBAUePHn3q/t27d4/OnTtz8OBBtm7dire3N9OmTWPOnDmUlpaKEJ9qvEtLS6mqqsLS0hI9PT1xaGrXrh3nz59n+/btgNKD0a1bN3x8fASvFJSbqrm5uUiAuXr1Ku+//z4ABw4cEGFgUGZWZ2dnU1paSl1dHf7+/lhaWrZ4HG1tbampqeG1115DTU1NbE6urq5oaWmxYcMGPvroIwICAti7dy+urq5ERETg4eHBSy+9BChDbMuXL2fcuHGMHTuWsrIyDhw4gLGxMSEhISxZsgQtLS1iYmIYNGgQ9+7do6amhv79+7NixQq+/PJLzp07Byg3yI0bN2JpacnEiRPFfdHW1kZfXx8jI6OnyiB9ElOnTiUoKIg1a9awfft23nzzTXGtoaEBU1NTli9fLkLOYWFhIiMboF+/fvTq1YuioiJqamqorq5m2LBh9O3bl8uXL5Oeno6trS179+7l0qVL2Nra4uPjg6mpKTo6OhgaGpKSksKOHTvYsmULPXr0IDQ0VHgFNTU10dfX5+7du6SlpVFTU9MiA/a5554jPT2drKwsiouLcXd3R0NDQxx0r1y5wocffoiOjg7btm1jwIABDBgwgHXr1nHnzh1eeuklodhRXl4uQm03btwQ11577TUOHDjAihUrCA8Pp1+/fjzzzDP06tWLkSNHYmRkxPHjx7l16xbdu3cXc0NFG3oyavRbaAO9e/fm4sWLXLhwASMjIzZs2ICxsbFI7v3kk0+wsLAgIiJCePdB6ZXevXs3vXr1omfPnujp6REdHc327dsFR9DFxUUcqo4cOUJxcTG9evVCW1ubXbt2UVNTI7w4WlpadOjQgaqqKqqqqtDT08PW1lZQ1QDBi28JYmJi8Pb2pmfPntjZ2REREcGFCxcYPnw4/fr1o7S0FG1tbTQ1NZk2bZowrEtKSkhLS2PHjh1YW1szadIktLW1qa2tZd26daSkpJCfn4+7uzu1tbXU19ejrq5OfHw8dXV1TJo0iRdffBGAH3/8kSVLlnD58mVefvll1q1bByjXXpVhooomNjU1/YIf/jRQV1dn586dwnANCAggKCiIpKQkoqOjSU5OJjY2lu3btzNixAiWL19OQEAAubm5REdHEx0djaamJvPnz0dbW5s1a9Zw//59hg0bBiif54qKCnH/a2pqhGOqsrKS48ePc+fOHWQyGR07dqSuro74+HhqamqwtLTE0tISc3NzYRi2lGv/wQcfsGHDBkAZpXnrrbe4efMmGzZsICQk5Bffl56ezsGDB4VX1szMjJCQECZMmICGhganTp3imWeewdjYmAsXLmBra8uKFSvQ1NTk+eefx9HREVNTU15//XXR3zNnzlBZWUlubi42NjZkZmby4osvCm7zhQsXOHLkCO3bt2fgwIEt6t+UKVPIz88nJSUFFxcXrKysSElJYffu3QwbNoxevXpx5MgRoqKimD17NsXFxcTGxjJkyBBeeeWVZonLFhYW4gB879498vPzSUhI4MSJE4wcOZKIiAjRp7i4OK5fv865c+c4ffo0p0+fZvPmzXh5eYkkbVNTU6qrq8Vac/PmTY4ePfqLvJKfo8XG69GjR1EoFDQ1NTF+/HiWL19OUVERWlpafPXVVygUCl577TVCQ0OFO9nV1ZUZM2bQ0NCAg4MD+vr6vPLKK9TX11NfX4+mpiZeXl7s2LEDTU1NKioquHz5MoAInbz44ouUl5ezevVqISsFSo7F1atX8fT0FEbYkSNHePfdd7GysuLIkSPs37//qftXXl5OeHg4t2/f5tatW/j4+KCrq8ujR4/w8/Nj8eLFnD9/nuXLl/PJJ5/g5+cnNhDV305LSyM0NJT27dsjk8manVqeRJcuXfjuu+84evSokFzx9vYWxHd3d3dGjx6Nnp4eBQUF+Pj4NMtgraioICsrq4UjCAqFAnV1dYKDgwUftb6+nrNnzzbjmDo5ObFr1y6RTd3U1ERYWBg1NTX06dOHTp06cfDgQQ4fPkzfvn3p06cPMpmM5ORkbt++jYmJCdra2lRUVABKT+ekSZMICwvDycmJ8vJyoqOjKS0t5c6dO+zevRugmSpDSw8foAxlVVZWMmPGDOzs7Dh48CDr16/H1taWl156iaFDh/LgwQO2bNnCzZs3MTIyYuzYsUybNg2AJUuWUFVVxdq1a5k/fz52dnbU1NSQmZnJa6+9xoQJExg7diw3btzggw8+wMDAgM6dO+Po6Ei3bt2ENFtpaSnvvPMOenp6YiHW19fHxcWFqqoq4aH5LVCR4VV40itmb29Pr169+OCDD7h//z6VlZVUVlZy5MgR4bELCQkhMDCQiRMnEhQURFlZGRcuXGDfvn1UV1ezb98+goODWbRoEdra2mzZskVIYalChV27dmXu3Ll4eHjQo0cPKisruXLligiFenp6YmhoiKWlJcOGDePzzz9vcT8DAgKYN28eaWlpwnMNMHfuXDp16sS9e/eE9NuTm3Jqairbt2/H19eXkSNHsnbtWg4ePMjRo0extbXl4cOHbN++nU6dOomQWnZ2Njk5OeJ7CgoKeO+998jNzWXJkiVkZmYydOhQXnjhBV599VUA3N3d+fDDD4mIiGixcWdnZ4eVlRWzZs3i+vXrLF26lNDQUI4ePUpiYiImJia8/PLLv3gGhg4dSlJSEt7e3uI9leEaGxvL4sWLqampwd/fnzFjxlBZWYmxsTEODg48evSI06dP4+rqSpcuXQDlIV9bW1sYEt988w0ffvghI0eO5N133xVhvd/iedXV1SU/P5+ysjJ8fHzEOqhK/mvTpg2zZ8+mW7duzXIaqqurUVdXp23btiLxqWvXrsJw09bW5sGDB0KmzM7ODgMDA9LT03n8+LEwhGNjY5k2bRrPPvssS5cu5dGjR7z55puMGDGC8ePHo6WlRWFhIfr6+ri6umJiYsLt27efun8ffvghgwYNYtCgQdjb29OtWzdx+AHlfmJsbMzly5dZtWoVU6dOZfTo0UKVxdraWuQvgDJk3qtXL7y9vamoqGDXrl1s374dHx8fJk+ejLm5ueAeqjzShYWFaGlpMXnyZEH9evz4Mffv38fKygp9fX2Ki4uxt7fHzs6OoUOHEhsb2+Kx9PDwoFu3bnTu3Jk5c+YgSRILFy4kOjqalStXYmxszHPPPceRI0fEfn7q1CnMzMwYOXKkyDqPiorC1taW1157jQ4dOlBdXc3GjRsJDQ0VofrKykpMTEyorKwkISGBoUOH4u3tTWpqKgYGBnTs2FE4HvT09JqFrlvqdQWE4ern58dbb72Fnp4eurq6LFy4sJnhVldXR0lJCba2tqxevZpRo0YBygjV1atXGTVqFH369CE+Pp6KigoaGhpwdnYmLS1NhNOvXr1Keno6Q4cO5cMPPwSUxruPjw/m5uYYGxvT0NAg8npAGaUJCAjglVde4bvvvqNPnz7Ci/000NHRwdrammXLlnH58mXGjx9P586dGTBgAM7OzshkMrp16yb46Ldv3+bHH39k5syZdOrUiW+//ZasrCyWLl3KyJEjkSSJ0aNHk5ubi62tLbq6umRnZ1NUVNTsb0ZGRmJoaMisWbMwNzenvLxcHBhNTEyEgyw5OVmoZIwfPx5TU1POnj37f/apxcartbU1hoaG3L17lx49epCZmYmTkxNmZmYEBATg4+PTLMsyJiaGhoYGZs6ciYmJieAQTpgwQegKGhsbc+nSJVatWkV9fT09e/YkMDAQbW1tbt++TVJSEt988w1dunT5xUJuampKWVkZ9+7do1OnToLP1NDQQFBQEH369GmR8Wptbc2jR4+4cuUK58+f59SpU+LaoEGDmDZtGmlpaWzatAkPDw+RdWdvb09CQgKffPIJ0dHRjBkzhjlz5tCpUyeMjY15/PgxmZmZ2Nra4ujoKLiWvr6+Qrlg+/bt9OnTh8mTJ+Pg4CCI7E+e+p70VObn5/Po0aOWDiGrVq0iJCRE0AQALl26xJUrV/D39xcPhYoeoqOjQ3V1NYGBgbi5uVFZWYm/vz96enoMGjSIsrIy6urqiIiI4OTJk0RGRpKbmysMAR0dHSGF9vjxY+rq6qisrCQqKorvv/+eoqIitLW1hXHekofy16CSxQoJCSEkJISZM2fyww8/cOfOHfr06SMSbh48eEBcXBwhISGCz3T27FkhN1RVVYW5uTmTJ0+mvLycVatWcezYMRobG+nevTuHDh3ixIkT2Nvb06ZNG+HVUVNTw83NTWgWl5eXc/78eaytrfHy8sLJyYmKigpxKKmvr28x/ePQoUP07NlTeBT9/f1RU1MjJycHV1dXBgwYwIgRI0hISBD0FpXRduLECRE6Umka5ufnEx8fT2xsrFDAsLa2Rl1dndTUVI4cOQIoDzRt27aloqKCq1evYmRkxMSJEzE2NqagoIB9+/Zx+/ZtKioq0NXVxdbWFnt7e7HRtgQlJSUYGhoKqS1Qcot1dXVFEs6KFSvYuHEjTU1N9OjRA0NDQ8zNzdHX12flypXU1dXx2WefUVRURG5uLjt37iQ4OJjo6GjU1dWFZqgK6enppKSkYGVlxapVq/juu+9o3749s2fP5t69e2zbtq1ZNrOZmRljxoxhzJgxPHr0qEWqGKDcaEtKSoTsjJ6eHnFxcWRnZzNq1CjB3autreXIkSPU1tYSFhaGp6cnFRUVXLp0CVNTU1xdXYmPj2fFihXcuXMHQGiljho1Shg1W7du5fTp0yKhBpRG6fDhw7G1taWqqorLly+Tl5dHXl4eZ8+exdDQEDc3t2b836fF559/zv3793nmmWcYMGAAVVVVJCYmCieGii/cs2fPZkZHt27dcHV1FUmJt27dwtHRkdmzZwNKzreOjg6HDx/m8uXLqKmpUVtbK+gpqqiYSsXj/PnzLFy4kOrqam7duoWlpSXjx48HlFQ4TU1NscG3BDExMXh6ehIXF4efnx/+/v6AUvUmKipKHBrs7e2Jj4/nyy+/xNHREX19fbp06SI4z6BMVtPW1mbChAkkJycTExMjvIvR0dEYGxuzZMkSHB0defDgAQUFBZibm6Otrc3QoUOZMGGCoA3duHGDqqoqYdxpa2uLiOSTh4SnQUVFBfn5+ZiZmSGXy+nXr59YLwcPHowkSdjb2+Pq6sqUKVPIzs5GW1ubu3fvkpCQQJs2bWjfvj2hoaH8+OOPFBYWMm/ePKEP/cUXX/D48WMsLS0xMzNDkiScnZ1RV1fn+++/58aNG3z++edoa2szZ84cTp06xZgxYwR39Ek8fvyYuLi4FvUPlBSIXr168e6774pDoUrf+UmoPMR+fn6CynH06FG++eYbCgsLqa+vZ8+ePURERGBkZMS4ceN4+PAhOTk59OrVi/Pnz3Py5ElAGTk4ffo0Xbp0QV9fX1ACa2tr0dDQwMbGhvz8fK5evYqTkxO2trb06NGD9PR0Ll++3OJ9UuV5v337Ni4uLgwdOlTYapIk0bFjR/T09CguLmbz5s1ERETQvXt31NTUWLt2LXFxcXh5efHcc88xZMgQwsLCuH//Pjdu3MDIyIg2bdpgZGREXV0d5eXlHD16lNraWp599lns7e0xMTHhxo0bwoZTSWuWlZVx+PBhzp8/z8iRI7G0tOTZZ5/9/Y3XF198kW7dulFWVsYXX3zBV199xYABA9izZw+TJ09mxIgRzUIvVlZWqKuri/e0tLRE2EY1QMuXL+eLL74AlNZ6bm4u/fv3p6ysjDfeeEMkF0yePFk8NCrNUW9vbyZOnIhcLmfLli189dVXDBkyhO7duzc7BTwtBg4cSE1NDTY2NhgbG4tNW0dHR/She/funD17ljfffJOPPvoIX19fPDw8KCwsJDk5mYaGBnbt2oWhoSHOzs6Ympqybds2tm7dKgoplJWVcejQIby8vBg9ejQffPABs2fP5uDBgwwZMoSgoCDOnDlDeXm5WGRV/VaFiPPz81sssQTKh2bBggV069aNxsZGkdxkY2NDQUEBsbGx2NnZERkZye7du/H39+ett97CxsaG6upqZDIZ2traNDY2MmTIEHr37k16ejpnzpzh/Pnzgn8GNAvLpaam8v7777Nz507efPNNtLW1SUpKwsrKitdffx1nZ2dKSkoE//K34uHDh81UAVT6o42Njfj5+YlElsmTJ/PWW28JLtPXX3/NmTNnmDp1KmPHjsXc3JxHjx5x6dIlwe9U9X3btm1CzmT69OmCIyqXy3n33Xf56KOPRDg7MTGRu3fvUlNTg7e3Nw4ODhQWFpKQkEB1dTWOjo6/kL35T/j444/ZsmULTU1N9OnTB29vbxobG4mKikJdXR0nJye6desmEn9AyXXu2rWryC5vaGjA0tKS8vJycnNzsba2xszMjMzMTPr06cPixYuJiooSBoS3tzdz586ld+/elJSUsHPnTjQ0NHjzzTe5d+8eo0aNwtPTkw0bNmBiYkJJSYkI6f0W/DyEW1VVRVNTU7P3li1bhoWFBa+//jr+/v7ieTU0NKRt27bcvn2bK1eusGLFCiZOnMinn37K2rVr6d69O2+//bZIEvH29iYlJaUZR+vTTz8FlAt7cXExfn5+HD16tJmCyZPeyJbO2zt37hATE8NLL72Eh4cHOTk57Ny5ExcXF55//vlmc1jFnTxz5gyenp60b9+epKQkLl68KHj1ly5doqCgAA8PD+rr69mxYwcXLlzgww8/FHqk5eXluLq6imznlStX8sMPP7Bz505A+YwOHz6cmTNnUl9fzzfffMPRo0eZOnWq8By1BKtWrSI3N5dBgwYByoS/xMREsaalp6eLzezu3bvo6OjQvn17evXqhb6+PhoaGiKh67333mPOnDlERkayceNGRo8ezciRI8nMzCQhIaEZN15VVAKUa7e/vz9XrlzB0tKSVatWkZiYyPbt2wkLCxNhyye5oU+LPn36EBISgpOTk5ivSUlJbNu2DUmSxBrg5OREbGwsr7/+OqNHj2bcuHFCLx2URpGhoSE6OjpYWlpSX1/P6dOn6du3LytXrmThwoWsW7eOPn36EBoa2sxwCQwMpLCwUHjfnZycuHfvnnAMBQUF4evrK4zXlnrQt23bxs2bN4X6zZNezhkzZtClSxdee+01cnJyWLFiBWFhYeTl5VFcXMzLL7/M5cuXSUhIICAggC5duoikwjt37giK0QsvvCDm6tChQ1m1ahWg5Fdu376dqVOn0qVLFwoKCoiJieHq1au/mpSloke0FJs3b8bf318oXKgQGxuLmZmZyLlR0S4qKys5ePAg+/fvF86O/v37C5WSyspKPvnkEwYOHMju3btxc3Pj+PHjbNmyhePHjzN58mT09fX5+uuviYqKElJxdXV1JCYmYmdnh5mZGZaWlmhpaTWL3E6YMIHg4GA+++yzFvdzzpw5jBgxAmtr62ZRXFDKlx07dozw8HChYPTZZ5+hpaUlDgRz5szh8uXLtG/fnm7dulFfX8+WLVvw9PRk7NixPPvss9y/f5933nmHyspK3n//fXHvcnJyMDU1xdDQkMzMTGJjY+nXrx+vvvqqOJj/WmGRf4cWG6+5ubnCWm9oaODhw4dkZWXx5ptv0qVLFyoqKkhPT8fOzo77m2w8AAEAAElEQVRnnnnmFzdIlc2m4laqPKUqT5C/vz8FBQVcu3aN4uJi1NTUGDlyJAEBARgbG3Pv3j38/PyIjo5mx44dzJgxg44dOzJ16lTef/99kcRx//59qqqqWlxNJDAwkLKyMhwdHXF0dKRv376UlJTg6uoqkhdUlWuOHTuGTCbD0tKSqKgofvzxR0ETcHd3x9vbm6amJtTV1XFwcMDBwQENDQ2amppwcHDAxMSE2NhYgoODcXR0ZOnSpULL1czMTFSOKSgowNTUlNLSUmE8gXLhP3369H/khvwcCoXiFw9+u3btMDIy4uLFizx+/Bhvb28htfQkF0xXV1cYsOrq6pSUlHDr1i3hbezZs6fwIKlCcsnJydTX1wtxf1WITyVj1alTJxHCtLW1JSMjg4KCAsrLyykqKmoxH7S+vr4ZGdzNze0X96ht27biem1tLTk5Ody6dQuA8ePHi/7W19djYmKCh4cHJiYm4gG7dOmSqBimSuJR0SP09PTYu3cv2tradOnSBTc3N4qKivjmm2+IiIigd+/eNDU1iQzUoKCgFh+0EhISxM+ZmZkMGzZMSOZcvXqVyspK+vTpQ4cOHbh69Sq3bt0iKyuL4cOHNxObr6+vJzc3l8rKSuzs7BgzZgwuLi70798fTU3NZhxrS0tLEeLU09MjKCgIDQ0NsrOzycrKws7ODi8vLyGervLwNDQ0tJjvCspwqLa2thgnlSoEKENv9+7dY/r06cyaNYtLly7R0NBARkYGdXV1/PDDD0ycOJEZM2ZgYGCAjY0NJSUlgqPVv39/AgICyMrKQk1NDW9vb5KTkykvL8fOzo7q6mpcXV1JSUnBwcGB+/fvExoaKhLAVPJ4qo2yuLi42aHtaVBTU4MkScLbp5KKCwoKIisrS3jAnZyccHd3x9fXl4aGBjIzM0lNTeXq1auYmJjg7OxMREQEt27d4uWXX+b555/n+PHjbN68mfT0dDZs2ICjoyMhISEMHTqU48ePc+HCBYqLi/n4448pKSkRKiGgjDCpkppiY2NJT0//zQfKWbNmce7cOXbt2kVubi4ODg4YGBiwd+9eGhsbsbW1bSZPp6amRkNDQ7PNWqVbe+PGDd544w0OHTqEhoYGM2bMoHPnzhQWFrJhwwbq6uoIDAzE1NSU7Oxs9PX1GTx4MObm5ty6dYsTJ06wfPlyJk2axMaNG1m/fj2SJPH888+LggZPm+mswqeffvoLD6Aq36Fbt254enry9ddfU1NTI4ogfP/991RUVIh+q6pkPdlnVWEaExMTysrKxHp77NgxLCwsqKioIDk5WShgODo6kpWVhbOzM5qamly/fp3Dhw8zffp0wbdXoaX0lqamJiRJwtTUFBcXF3R0dHj48CFxcXGMGjUKf39/fHx8qK2tFc+HlZUVVlZWeHt7o6Ojw/Xr10lISCA4OFh426KiojAwMMDCwoLExET27Nkjkp3i4+Nxdnamc+fOYg5funRJULg+//xzzp07h5OTE+rq6vj4+BAQECD4xC2FSpC/tLSUjIwMysvL+eGHHzhy5Ag+Pj4sW7YMf39/6uvr+eGHH4T9opKCsrS0JCMjg6SkJNTU1JgyZQoLFiwAlPvCtm3bkMlkdO/enVGjRmFvb090dDQuLi706NFD0Mpyc3MxNjYmISGBvLw8goODsbW15d69e6SkpGBvby8kAluCqqoqGhsbcXJyEuuyKuqjOiQaGxvj4uIiaJC3b98WCYzOzs4YGRkRGxvLunXrCAwMpH379lhYWIhE17FjxwJKql9ycjLm5ubikJWWloaGhgbt2rXD3NycgoICZDIZd+7cQV1dnddff10UQoLmVTL/HVpsvK5bt46PP/4YNTU1+vbtS9++fTl27BjTpk1rdjL39/cXotCAqEJRUVGBTCbD2NiY2tpaYmNj8fHxYcOGDfTs2RMDAwM2b97M3r170dfX5/vvv2fw4MEcO3aMzz77DEtLS+bMmUNaWhp79uwhLi6OyMhIxowZQ+/evUlJSWHKlCls3bqVl19+mT59+rSofwYGBujr64tMv27/j7W/jI/yWtv/4W/c3V2JhyghQIJDkGDFtcVdC4UKlOK0SKFQaEvxFtcAwYMGQiDEIG7EPRP3PC/yzLrJ3vu+N+nvf77Z/ex2JnPNNdda5zrOQ3r1Eg3kx19o79696dmzp/CflJrCS+H3AwcOCCVvc3Mz06ZNY+zYse2ZvP9/heznn39OWlqaiF7z8PDg119/5dKlSyIFS4rItbS0CC6stIqLi7lz506n4m+B/9VGxNramtbWVkpKSoQa/vz58x1OQW1tbR3Qr4sXL7Jt2zYcHByYP38+S5YsQUVFBU1NTYGiHz58mJiYGHx9fRk6dKjYCIuKigTlRFp1dXVERkaSnp5OTU0Nb9686aA4/pTy8/P7jyOlj0tDQwMVFRV+/vln0tLSxOnQxcUFiUQimlcbGxvBu66uriYuLo6ioiJUVFS4e/cu9fX1tLa2UllZya+//sq4cePYtGkTU6dOZcaMGYSEhBAYGIi+vj4VFRUUFxeLRrW+vh5LS0tcXFw6rXKWkZERCIp0TCMN7bh79y5paWn07t2b/Px85s6dy9OnT4F2NNPd3V00gQoKChQUFBAREYG1tbXwEL158ybr16/H19eXHTt2sHXrVtFMQvshdPPmzcjKylJRUSFU6i9fvuTatWsEBASIKcnbt2//0YaSn5+PgYGBaF4/RozCw8M5duwYCgoKzJgxg9OnT5OQkMDdu3fZvXs3JSUlrF+/Xmwgly9f5sCBA+Tn57N27VqmTJnChw8fuHbtGtra2vTs2ZMnT56QlpaGvr4+Hh4eqKurc+HCBczMzP5N7a2urt7h85SWlnbaHF16sNm/fz8XLlwQcdvZ2dmcOHGCrKws+vXrh5+fH21tbbi4uODn50dycjInT54kIiKCPn36YG9vj5+fH8rKyvTr1w9zc3MMDQ0ZM2YMtbW13L59mxUrVnDp0iVUVFQoLS0lNDRUCITU1dV5+fIlDg4OdO/evcM6N3PmTKZOnfqPXE0Avv/+e2bOnMmoUaN48OABN27cwNrammnTppGcnMyKFSuwsrLC3NwcAwMD8dxWVFQIv3Cpe8VPP/3EV199BbSn3UnH7wsXLiQuLo7Xr18zcuRICgoKuH//Pj179mTRokUkJSVx+vRpAMH1VFFRQSKRcO/ePXGoqa2t7RBt/Sn1n9YZGxsbli1bhqamJvX19Zw7d4779++TnJyMv78/48aNIycnh82bNzNp0iRB35K650jddHx9fXn58iW///47BQUF9O/fn4yMDA4cOICMjAxXr15FIpFw4MABZsyYIf6+RCIhMjJS0DM+/v//k/biv9Vnn30mOO1tbW0kJiYSHR1NXFwcCgoKBAcHs2fPHjFRraioIDU1FTk5OeTk5JCVlaVPnz5iHW1ubiY2NpYePXowb948Xrx4waZNm1BRUREgwa+//oq7uzvjxo0jODiYtWvXcvr0aaZPn46GhgY7d+7k7NmzKCsro6mpyfLly3Fzc6OoqEgIhv5JycjIUFxczPnz57l8+TJFRUWUlpYKw/6MjAx++OEHHB0duX79OmPHjuWHH37g/v37Ap1cuHChUMtXV1fTo0cPQkJCRF8yY8YMjhw5Qnx8PMuWLRPASkVFhVhn7t69K/RD48eP5969exQVFTFu3DhOnDjB9u3bO7Xvq6io/BvirqysjLKysvjNGRkZiWS2v//+m9mzZ9PU1ISSkhJ+fn40NDSQkpJCfX09MTExREdHCwHpx7G8mpqadO/eXVhNSilrQ4YMEdMBqf/5uXPnREyug4ODcD35lElkp5tXiURCdXU1Fy9e5PXr1+zdu5fg4GC++uorEhIScHFxoaioiLq6Op4+fcq1a9coLi6mf//+wj5CKuBKTEzkhx9+QCKRsHTpUrHZ9ezZk5UrV+Lg4CCscTIzM3n58iXq6uoEBQURHBzMgQMH2L17NwMGDODQoUM4ODhw+fJl7ty5g5+fH/369ftHY3UZGRmsra2JiYnhzJkztLa2ivFqTU0NZmZmNDc3C0N96UlYQUGBpqYmcnNzxaIhLy9PZGQk9vb2HcanBQUFGBkZ4ebmJk6dgwYNwsLCgilTppCTkyNuYEFBgTjlfTzW+m8N2v9WW7ZsITAwEDs7OyIjIzlz5gympqZ8++232NraYmNjw507d9DX1xf53I8fPyYvLw8nJydMTU2Jj4/n9u3bQtxw//59qqurRdSktIyMjKivrychIQFlZWXxcJqbm4uG9NGjRxw7dowePXrg6uoq+H/29vbIysry5MmTTl2f9Dt68eIF0dHRDB06FGtra+Lj49m7dy9KSkrs2bMHOzs7nJ2duX//Pjk5OSI57Pbt21haWtLW1kZ9fT0lJSWUlJRgaGhIv3796NGjBz179hSjOWl6yejRo8UCPX36dLp27YqPjw85OTls374dOTk5li9fjo6ODq9fv0ZOTo47d+4gkUg6jZ4fOHAARUVF8vLyMDQ07GAHFxAQQHp6Ovn5+Vy+fFk0rkuWLGHu3LlCPBAQEMCECRPIzs5m165dzJ49m7Fjx1JQUEBKSgqPHz8mKysLJycnxo4di4uLi2gk5eTkxD+rqqqKiYeLiwsVFRUsXrwYDQ0NRo4cSWpqKjExMZ9kPP1xubq60trayrFjx3j//j1BQUEYGhpy/fp13r9/T3BwcAcHD6ki3cDAAH19fY4cOYK6ujqLFi2isLCQx48fM3HiRKH6zcrKwszMjG7dutHQ0MC7d+94+/YtN27cYP78+QwePFhMD6TjxI/DOeB/Rqo+Pj6MHDlS0BY+tQwNDQUq5eTkJHiAFy9epL6+nvr6egoKCrh27Rr19fXMmjWLgQMH4uHhwf379zl9+jTPnz9nxYoVzJ07lxcvXvDzzz9TW1srDmQ6OjpkZGQwffp02traxDMrbVy1tbUFMi5tXBMSEsjPz8fBwUGsZfHx8Z26NmjnkPfv35/vvvuON2/eYGdnh6GhIcOHD6elpYXs7OwOhvrSamlpEWbv0ho4cKCw1rp//z6LFi0SjV///v2F8l2KiknT0SwtLdm5cyc5OTl4e3tTUlJC9+7dmTlzJo8ePeK7776jqqqq0wpuQPxGli9fzqBBg0hNTUVJSUmsc2/fvmXSpEnMmDEDGRkZ0tLSePfuHbGxsbS2tgr6hkQioaioiIaGBpKSksjNzRWb/vDhw3n79i3p6ekYGRkxfPhwWltbuXfvHjk5Of+WmNXa2iomMdKmQqrmbmtrE8l5n1pSC6Nnz54JlwA7OzuGDh2Kk5MTdXV1ApBpaWlBW1sbRUVFvvrqK5KSktizZ48QNsH/uDqYm5sLgVppaalIrDp69CjHjx+na9euBAQE4OTkxJYtW/j999+Jj48Xfs/Q/jzKy8ujo6ODvLw8FRUVJCYmdhpBf/v2LQ4ODoK76ePjg4qKCrq6uhgZGeHs7Ex1dTV3794lPz8fPz8/NDQ0SE9P5/Tp01RUVGBsbMyYMWOE28OrV6+IiIigV69enDhxggcPHlBRUcG6des4evQow4YNw8LCgocPH3LgwAHmzZsn6DWZmZmkpaWJMJ2AgACqqqrw8fGhoaGh0/GwMjIyyMjIUFNTQ1lZGRYWFh0S6mRlZbl58yYNDQ306dNHNKkTJkxgyZIlhIaGcuDAAerr69HU1BR2nqmpqairq1NQUMD+/fsxMTGhS5cuKCsrIysrK4STioqKYkqVmZlJfX09TU1N+Pr60tzcLAAxaQLn69ev/yvHvtPN64gRI9DU1CQ6OprffvsNT09P5s2bx+rVqzuMaqU2D3fu3EFbW5uAgABkZWXJyMgQTUFcXBw3btxAW1ubnJwcMjIysLGxoVu3bnTt2lU0ZwkJCURFRaGnp4ezs7OwxZg2bRp1dXUsX75ccBfPnDmDvb09v/32Gy4uLh3MeT+l8vPzhcWKg4MDf/75J9nZ2cLQ/ObNm0yePFmYykvFEQ4ODnh5eQloX3otFRUVpKWl8ebNGzw9PenatSsqKirihFpaWioa7uzsbFatWoWGhgYaGhpERUURFxcnFi03NzcsLS2FT+K7d+86jNw+tZ4+fYqtrS1KSko8ffqU69ev061bN8FPlcbA5ebmYmlpiZKSkkBCMjMz+fDhAydOnBCc3eHDh4tEm6SkJPz9/WlubqaiokLwZjMzM0lMTOTMmTM4ODiwadMmMWYoLi4mISEBLy8vTExM6N+/P2lpaWIx6NGjB5cvX+7UNZaUlPD999/z7NkzVFVVsba2pqGhgfDwcBITE4XycuLEiZiampKQkEBcXByNjY2UlZVRVlZGUlISra2ttLa2kpaWhr29vRAOSV0ydHR0UFFRQUZGBjs7OxITE4WQTSqK2bNnD+fPn2fhwoXMnj0baPf4k473oqOj6dWrV6eu71+tWyQSCVlZWaipqWFnZ4ebmxsvXrwgJSWFvn37Mn78ePGaxMRE7t27R3NzswiQqK6uFiOex48f09zcTN++fTl37hx37txh165dws2jqakJWVlZqqurBZKTnZ1NTEwM06ZNo2/fvvz4449ER0eLRvr69etMnTq1U9coHZW+f/+e58+f4+HhQUVFBS9fvsTLy4v169eLABEFBQXevHlDQUEBtra2tLS0cPHiRe7cucPMmTPx8fFh2rRpjBs3TjRK0u+ppKSE2tpalixZQkhICGfOnKG2tpYvvvgCPT09ysrKSElJEYtyTk6OWGzj4+PZv38/gwcP/ke58QDdunXj0aNHyMjIkJmZSWtrKxoaGkgkEqytrcU69vTpU44dO0ZAQAALFy6kvLycPXv2iNzxoUOHCuElIPw8/f398ff3JzY2lidPntDc3CwmHuXl5eTn5xMdHc2DBw+wsbHBzMwMWVlZ3r9/T1paGr6+vigoKPwj9PzcuXP06tWLsWPHMnbsWJ4+fUpOTg5z584lMDCQ6OjoDpMdqUWSlKctTSiSSCSMGjUKLy8vCgoKiIyMFGtfTEwMcXFxVFRUEBkZiaamJlOnTqVv3760trbi5uZG165dycvLo7S0FGVlZZycnFi3bh1tbW3i2XZ1de0giP2UunfvHoBozurq6sjPz0dVVZX79+/z8OFDxowZw5AhQ3j58iUhISE8ffpUTLB0dXUpKSnh6NGjVFVV4e3tTUVFBS9evKCqqoply5aJYJzU1FTGjx9Pz549Afjyyy+5ceMGcnJyNDQ0UFFRQU1NDba2tkLYVltbS1ZWlqAK1dXVdXpPlN6XzMxMsU6amZnRvXt37O3taWxsZOfOnZSUlDBr1iyxx0kpVh+PxDMzM7GxsRGj6YyMDBoaGhg7diyAENGWl5eTnp7OnTt3MDY2Fnz8Xbt2iWfP0tISU1NTgoKCGD58ONA+Cu+sfkD6vUjpadra2kycOBE1NbUOAJE0tjg4OJgJEyZQX1/PrVu3ROO6ZcsWsb5nZmaybt06iouL8fHxoWfPnvTs2ZNhw4YRGhqKjY0Nc+bMobi4mNOnT3Pr1i2sra1F8yptmKVTOqkFZ15ennivztiBVVVViQOMhYWFsGxUV1fH2tqa4uJicXD/6aefxNoRFBSEl5cXFy9epKqqCmgPE6qqquLDhw9oampy7do1oqKiOHbsmIiOhXZ3IV1dXVpaWsjKyhLiwry8PKKiotDV1RValD/++ENESOvo6BAaGvpfw5g63bxKk1pmzpyJn59fB7j4+PHjvH79mt27d6OnpyfGaHPnzmXSpEntf1BeXiRXJSYmoqyszIoVK5gwYQJJSUkilSgtLY1nz54xYcIETE1N0dfXJyAggFGjRnXIn541axYGBgZcvHiR3bt3o6amJtRtQKcVeX///TfHjx9n27ZtjBgxgtmzZ1NYWIiTk5PwtGxubmbFihWMHTuWRYsWcePGDRF5u27dOry9vTvwVAwMDMjMzGTRokWYm5uzd+9eHB0daWtrY/369Rw8eBBlZWWsra0JCQmhpaVFiJ9qa2tRUlKitLQUS0tLpk+fjqurK0+fPiUiIqLT0anQjrzKyclRXl6Oq6srP//8M3369BGBA3fu3MHKyopevXoJhwjp2CgiIoI//viDR48eoa6uLviimzZtwsnJiYqKCtLT07GwsODNmzccPnz43yIX/1Vc4e3t3SG2UcrvPXHiBIMHD2bEiBGdal7v37/Pnj17xMZy/PhxFBQUMDMzY+XKldy8eZPDhw+TmJjI9u3bGT16NCNGjCAqKora2loaGhp49OgRiYmJAqFRU1OjpqYGRUVF7t27x8WLF3n27Bk+Pj5oaWmRkJDA999/z8uXLxk3bhzLly8XSK66ujqTJ0/uQGHp06cPVlZWBAcHY2BggLW1NUePHu30vZTW1q1b+e233/Dz8+OHH36gZ8+eYjxrbm4u7F7CwsJ49+4dixcvRl9fnxMnThATE8OSJUuEiCYjIwN3d3ehDj937lwHlw+po0JjY6MYFTo5OWFoaChoNBs3bkRHRwd7e3vi4+M7pHJ1pqqrqxkzZgwDBw7EwcEBJSUl7OzsMDY2Fid5BQUFIaSoq6vj3LlzaGlpdaCxeHl58c0333SYCkiVtYcOHaKlpYUNGzaIvPnjx4+LsJHs7Gzhbd2zZ0927tzJgwcP2Lp1K7NnzyYtLY3Q0FBmzZrVwWnlv9WVK1cYM2YMn3/+OXl5ecIDsbW1laKiIqAdsejbty/9+vXjypUrZGZmoqqqip6eHps2bcLBwYHS0lJx+FmxYgUtLS2EhYUREREBtKO7UpTy2LFj7Nixg/T0dDHSbWxsJD09XSC28+fPR1tbGwMDAxobG9HV1cXQ0PAfNa9LliwRTWZlZSWnT5+mqamJDRs20K1bN7S1tcW4VWrZlp2djY+PD0VFRUybNo3a2lrhL/rs2TMGDx7MmjVrcHZ25siRI3z11VfU1dWJ36g0L71Hjx7i4JGbm0t2djampqYdrA2nT5/OqFGj0NTU5OnTpzx69KgDIvXf6vz588LGCNq9uGNiYvjrr78EVeD169ds3bqVhoYGLCwsmDBhAufOnSM9PZ3GxkZKSkrYu3cvKioqBAYG4uvri4uLizDpv3fvHrGxsdja2orDMyDsju7evYu/vz+ZmZkiqUxaqqqqGBgYiANbS0sLM2fOFN7hn1K5ubmkpqZiZGTEjz/+KERR0qlHS0sLz58/582bN8JaMiEhgeXLl2NnZ0d1dTVbtmzh0qVLJCQkMH36dP744w+gPQ2xtLSUlStXUlxczE8//SQAIU1NTfLz8zlz5gzh4eFcvHixA2VNVVWVUaNGMWvWLJE8pqamxoQJE7hw4cInXx8gEPyMjAxKS0txdXUVPvLNzc00NTUhkUjo06cPkyZNQkFBgVevXqGvr88vv/yCi4tLh3tz/fp1wsLC0NbWFpPA77//ntDQUPHPAQEBVFZWsnDhQvr27cuJEyeYN28eGzdupHfv3ty7d49r167h4uLCyJEjeffuHWvXriUgIED4w35qnThxglu3brF582Z8fHzYvXs327dvx9PTkyFDhuDl5SWs8qT0T0dHR27evMmNGzdQUlJiwYIFqKioUFNTQ21tLRoaGujq6vLu3TvCw8OBdv52ZGQkkydPZvbs2aioqLBlyxZOnjzJmjVrmDt3Ltra2pSXl1NVVcXbt2/Jy8vjypUr+Pr6EhwczMKFC9HQ0BDv+b9Vp5tX6eLv5eXVYaGurq4WXBgpyjh06FAmTZrEV199RWFhIW/evBF2VtDOE6uvr0dNTQ0zMzNkZGR49OiR8ItsbGzEysoKHx8fZsyYQXl5OYaGhmhqalJbWyu860aPHk1dXR0pKSkEBQWxZs0alJSUyM3N7TQPrbq6mrS0NK5cuYKOjg7v37/Hzs4OS0tL1q5di5qamtjkLSwsmD59Ou/evaO+vh4LCwu6devWYcyWmJjI9OnTBWVCUVFRJG5cvHgRRUVF+vfvT0tLCy4uLhgZGREREcH79++FStbAwICcnBzy8/N58uSJUOiOHz8eNTU10tPTO3WNTk5ONDc3C5ROelKtrKwkISEBQ0NDunfvLu6TFAFTUFAgLS2NO3fu4ODgwJo1a7h37x5nz56la9euDBo0iLa2NjQ0NFBQUOD9+/fk5uYyfPhwgR49evQIV1dXfHx8qKmp4fTp01hbWxMUFERlZSWPHj2iZ8+emJqaIpFIuHnzZqfta9ra2mhraxPCuhcvXpCYmMiaNWuYM2cOPj4+fPfddxQVFVFVVUVbWxsJCQn4+PggKyvLnTt3eP78OeXl5WhpaQm6hoGBAWZmZhQXF9PU1CQ2mhcvXhAWFsatW7dErGhTUxM1NTVkZ2eLaEs3NzfKy8t5/vw5ysrKDBw4EGtrazIzMzuNLD958oRevXohJyfHixcvqK2tFaK7qKgorKysRJpYRUUF0dHRJCUlceLECdTU1NixYwcaGhps2LCBpKQkkXqXlZVFTEwMw4cPx87OjmXLltGlSxeRhNba2irQ1o9pAJqammhqatLc3ExDQ0OHRl1XV7fDqP1TS7pRGRsbY2xsjJWVFbKyspiamtLU1ERdXZ0QeEiDGqSN0LBhwxg5ciQtLS28fv0aMzOzDr6o0I4wS5spT09Prl+/joGBAatWrSIsLIzs7Gy8vLzQ1NQkNDQUWVlZMS4ExHt+//335ObmCkT4U0s64bC3t2fatGm8f/+eiIgIDAwMMDQ0REtLC0dHR5HW5+7uTkJCgmjS1NTUmD9/PtBOkXn48CGTJk1i+/bt3L9/n/Pnz6OhoUHfvn3R0dGhqKhI2FE1NzeTkZEBtD/f/v7+uLu74+DggKGhIerq6nTr1o3q6mpBmfgnKm6pY4ednR2pqalirSoqKkJbW5vQ0FAuXbqEnZ0d06ZNIzc3l6ioKNTU1DA1NUVLSwt1dXVUVFS4ffs2u3fvpkePHvj4+PD48WMyMzPx9fUlOjqa4uJioH0KJm1QNTQ0OH78OM+fP8fS0lK4jcTGxpKfn4+/v79oFKXWhUlJSZ98fVI3AWl9bHFkYGCAlZUV8fHxwuprzJgxeHh40NDQQGZmJo2NjRgZGeHu7o66ujqOjo5CLCyt8PBwWlpaSElJ4eeff6Z79+4CIe/atSspKSkdRFhSykdubi6DBg3C2NiY7Oxs1NXV0dHR+Tf7p/9W5eXlVFZWCveSf63W1lYaGxtpamqira1NUIoUFRWxsrKioaGB169fA+1Noo6ODhcuXBDNvEQiYd26dWICIg1gaWxsREFBAT09PeGMIg0DamtrY8CAAQQHB9Pa2kpUVBTV1dW4u7tjYWHR6eZVSulrampCXl6elpYWSkpKSElJEeNraQLizJkzycrK4ujRo5ibmzNhwgQMDQ2pr68XB2hdXV0CAwMFZ/3KlSts2rQJgB9//FHYqzk5OdGtWze6detGXl4elZWV6Onp0dTURGJiIsnJyWzevBl/f39kZWV5+/YtDx8+FL+nT62oqChCQ0NpaWlh165dAlGOjo5GR0eHuXPnYmtri6GhIQkJCZiYmNCzZ0927NjBu3fv2Llzp+jjzp49S2NjIwMGDEBFRYXjx4+LPTopKYn4+HhUVFQEkFFZWYmcnJzoHV1cXDh//jxv3rxBVVUVDQ0N6uvruXnzJk5OTvTt2xdfX9//75vX/63U1NRYuXIlM2bMEFY8q1evFuOKlStXcv78eQ4ePCisd6QP3JkzZ5g0aRLm5uZkZWWxbt06/P39mT59Oq9evSI3N5cvvviCtrY2YmNjKS0txcTEpANPSmp27eXlJU76YWFhhISEiBHUp1SPHj2YNGkSZWVlLFmyhJiYGIKCgujevTs9e/bEysqK8vJyysvLKS0tJTExET09Pdzc3OjWrRulpaUigUK6mdfV1eHj48OpU6cwNjZGRUWFjRs38uDBAzZv3syePXt49OiRGGcpKSnh6OiIh4cHKioqwt4mNjaWDRs2kJOTw88//4yDgwPZ2dmdtrD5888/mTt3Lo6OjlRVVfHy5UtSUlJoaGjA29tbhCtIKzMzk6tXr5KTk0N0dDStra0EBAQIIcfZs2f54YcfePfuHZs2bRILQWNjI4GBgXzxxRf06NGDlJQUQkJCMDExESr4NWvWMGbMGIKCgjhx4gRbt25l7969TJ48mWXLlvHdd9+JeNNPLX9/f/744w/Mzc2JiYkRXntJSUmUlZXh5eXFoUOHBHpw8OBBLl68yOrVqxk+fDhPnz4lNjYWd3d3ZGRk2LNnD6GhoTg4OHDkyBECAgJwdHREV1eXjIwMvvrqK96/f8+3337L6NGjMTY2RlNTk7a2NoyNjVFVVUVfXx8lJSUyMzNZunQpZmZm+Pn5UVRUxOTJk3n9+nWnCPjXrl3D1dWV4uJiCgoKWLlyJQYGBrx+/ZqMjAwKCgrE9OHIkSPU1NRgYmJCfn4+JSUl5OXl0b17d3R1dZFIJJw5c4Y//vhDJNhIVd++vr7o6upSWVlJZmYmRkZGYlH6uKRUC319fcEHd3R0FM/ev1pcfUrJysqirq7OnTt3KCoqYsKECcI6ydTUlMGDBwuPYSn/t76+ntWrV4vggAULFgil99y5czu8/4MHDzhy5Aj79u1j1qxZLFu2jIqKCv7++298fX158OCBQAc1NDTIzc1FQ0NDmM1LeXWOjo788MMPREZGCnumTykdHR0OHDjApEmTCAwMZNq0aRgaGgoUW0FBAXd39w5CG0dHR8Eli42NpWvXrigrKxMaGsrOnTuprq5mwYIFDBw4EFNTU4yNjdHV1eXDhw8sWLBAID9GRkbCHcHKyoo9e/YIxw9pWVtbi5H+x6l0naldu3ZhZWXFpEmTsLOzY9SoUairqwvHGGmaVGVlJba2tuTm5pKQkMDLly/54osvuHDhgmj+Lly4wLNnz3j27BkXLlzA19eXhQsX8t1337F3716RwNbc3ExNTQ0aGhrU1NRw+/ZtCgoKWLhwId26dePJkyfMnz+fmpoatm3bhqenJ3fu3EFPT48FCxYIkd+nlJQe9q/Vs2dPdHV1xWQyNzcXGRkZwYn39PSkqalJhDf8/fff1NbWYm5uTkNDA5WVlejq6iInJ0fPnj25c+cO+/fv5+LFiyxZsoSvv/5a/K1evXpx7do1QUW4f/8+mzZtQk1NDU9PT9TU1Lh48SLOzs4MGTKk0+JQCwsL9PT0OkwtPi45OTl69OiBqakpPj4+wt1l+vTpvH//ngMHDrB06VI+++wzcZieMmUKlZWV/P3332RnZzNjxgx0dHT4+uuvaW5u5vLlywJ4GjZsGBMmTODNmzckJyejoaGBj4+PaHJv3bpFbW0tffv27SBQ+ydlZ2fXIdlLGl5RWVnJw4cPRXiStrY2ERERXL9+naioKLy9vfHz88PLywtTU1NGjx6Np6enOERJD0S7d+9m1apVTJkyhejoaEJDQ8XhcMaMGaJfev/+vZhYStd4b29v1q9fz6pVq7hx40an9gvp7/Du3bucOXOGL7/8EicnJ3bs2CH826EdaNi2bRvOzs60tLRw9uxZkpKSxO/WyMiIrl270tbWJt7T1dUVDQ0NqqqqOHbsmPi80tS/1atXs2jRog77hpaWFomJiSKF9c6dO5w/f5558+Z1CKv4v6rTzauUX1ZaWipU2bq6usjIyGBlZYW2tjYKCgooKCiIG1FYWEh5eTk2Njbo6OiQmprKn3/+iaKiIj///DPx8fH8/fffrFmzhgkTJpCVlUVTUxMNDQ00NjaSkJDA8ePHcXV1xczMTPjMSa18pAuDv78/CgoK3LlzR3gGTpw4kfv373/y9amqqlJQUEBLSwve3t7Y2tpib29PXFwcSkpK3Lx5k6dPn9K3b1/mzp2Lq6srDx8+xNPTU9htNDc3CyTWzs6O8PBw9PT0xCIXHR2NvLw8/v7+vH37FgsLC/r27UtFRQVPnjxBSUmJkSNHoqCgwIMHD3jx4gWrVq2iW7duKCkp8erVK/Ly8jqIKTpT+vr6gt/T0NDA/v37SUtLY8SIEVRWVhITEyP8aaE9xez7778XDYi2trZoUMzMzOjXrx9hYWHcvXuX5cuXi78zbNgwMjMzRcJTly5dWLVqlaAM6OvrM2bMGLy9vYmLi+Po0aMUFhaKz6aoqIiCgoIItvjUSkpK6pBpP2DAABElqaSkhKysbAdeVE1NDXFxcezatYt3794hLy/P/Pnz8fT0xNjYmIcPHwrrosmTJ7Np0yZhGWVqakrPnj3p27cv8+bNEwijRCJBUVERbW3tDn6lenp6eHl5YW1tjaKiImFhYQKV6EypqamJA4z0sHH58mViYmIE3ePw4cPcvn2bLl26MG/ePMrLy0lNTaW6uhp9fX0UFRUpKytDQ0ODoKAg6urqaGhoYODAgQwfPlzYuoWHh/PgwQOGDBnCxIkTycnJ4aeffqK1tVVwkqViECUlJSorK8nJyRFUBSmK8k+qurpaiPf09PRITEwkKyurg32WNFq0traWL7/8ElNTU1JSUujWrRs+Pj4cPHhQiI1iY2P58OEDwcHBzJgxg9jYWMHnnjx5Mnfv3mXLli14enoyevRoIS6xtbUViA+0I0g3btygvLyc4cOHExQURFBQUKd4aNevX+f69eviNyT9/ZSVleHv74+pqSlPnjwhJiaGcePGYWFhIRCTuro6qqurSU5OxtLSEgcHB0aPHt3B6D83N5cjR44wffp0vLy8WLp0KW/fvqWgoIBhw4YxePBgHj58SHZ2Nunp6Whra5OQkEBmZiZdunQhODhYAAGysrL/CD2XRgOXlZXh4OAguJjQjtYHBwdTVlYmNv6ioiJBC5EKgczNzYVlm1QAkpiYyDfffIOZmRn37t2jpaWFoKAgHj16RGlpKXl5eRgbG6OtrU18fLwYBUM7TzUxMRF7e3uxptna2mJkZNRpDYFEIhHZ783NzaSnp1NXV0e3bt06iAk/9kaV8leTkpJ49+5dhylXS0uLeFbS09Opra3lzZs3QghobGxMQECA2FslEokQfErBHFtbWyH+tbCwoLCwUExES0pKOk3/0NLSEvZNUmvH9PR0Tp06RY8ePZgzZw7r168nKiqqgzVmamoqUVFRLFu2jLt374rDdExMDE5OTsjIyIipyO7du0X8u4WFBQYGBjx79oyWlhaKi4tRV1fH1taWgwcP4uDgIPbau3fvoqys3CEWurM2UtAeqWxvb09zc7NAw3V0dEQjq6mpyahRozA2NsbQ0JCuXbsybtw4tmzZQmhoqOAvS8MDpk+fLhrXq1ev8urVK/r37091dTVff/01t2/fpry8nK1bt/Lll19iYmJCVlYWqampmJqakpOTg5+fH126dGHChAm0tbVRVlYmkqr+Gyr5r9WnTx+WL19Oeno6Xbp0EZohLS0tHjx4wJYtW/Dz82PQoEFi33/y5InwrT9x4gSGhoZCCA/tiHx2djaurq74+/tTVVWFtbU1sbGxyMjIcP/+fQYNGiSE+GfPnqW6upo5c+YIwbOrq2uHRDpAhKL8N252p5tX6eKtp6eHnp5eB/sFqc2Bk5OT2FyKi4vJzMwkODhYRBIeOnSInTt3MnPmTJYvX05mZiaPHz/mw4cPWFlZsX//fm7cuEF0dDSGhoa8f/+eX375hfHjx4vTtTSFQkVFBUNDQ4qKimhqaqK0tJTDhw9z9epVFi9ezLx58zrVvEZGRpKamoqdnR1Tpkxh4MCBQHvDefLkSQ4dOkR9fT2VlZXMmDEDZ2dn3N3dOyxOEokEBQUFoc4OCwsjMjKSIUOGcP36dc6fP893332HnZ0dAQEB/Prrrzx8+JDm5mbCwsJwdnamtraWvLw8jh8/TnJyMn379sXT05OGhgahIpeqaTtbffr0EeK6iooKwsPDUVJSYsiQIcjJyXH+/Hn8/f2FEra+vh51dXUqKyvR1tYmMDCQlpYWwW12c3NDSUkJBwcHYYPV1NSEu7s7pqamLFy4kKNHj7J792709fV59eqVOMGdOHFCCMAAJk2ahLOzM6Wlpbx69YqgoCA0NDQEf+9T6ujRozg7O6OmpibywT09PRk7dixqampiZGpkZISmpia9e/fm1q1bPH78mNzcXBYuXMjUqVOxs7NDVlaWvn37YmNjw9q1a4mIiBBxuPn5+YSHhzN58mTMzMzERtjU1MTt27cpKioSdmeNjY3Iy8tTXV0tRvLKyspYWVkxb948Ro8eTUhIyCdfo46ODmfPnhWn+23btvHtt98CiM8bFhbGnTt3WLx4seB0DRgwgKSkJEpLS8nOzqatrY1p06YJCyKp155UCHXhwgW++uorEf0XFBTE+/fvOX/+PHV1dZiYmAiBhp6envASNDU1FVyvpqamf9T4VFRUUFFRgZWVlRhLaWtrM2DAAIHuq6qqkpWVRVhYGJ9//jlLlixhx44drFy5koMHDzJu3DiOHz8uLM0eP37MjRs3MDAwoHv37uzbt49Tp04RFhbGjBkzREPeq1evDv69Xl5eHdxCcnNzef36dQdRh9Tn91NLKlaVrpWKioq4uroKGysbGxuuXbvGmzdvRDMi/V7U1dU7UDOkFjdSIeWYMWMoKCjgwIED5Obmcu7cOYYOHcrGjRtFAMGkSZPo0aMHK1euZPHixRgbG2NpaUltbS0WFhYYGxt3sI7q7CES2jPVtbW1kUgkJCQkYGxsjLq6OvX19Xh4eHTQL0B7QpKNjQ3y8vI8ffqU+Ph4vL296du3LzNnzuTmzZtUVlYSHBzM+PHjuXXrFmPHjsXa2povv/yS/v37k5OTQ0xMDDY2NmRmZmJhYYGWlhb5+fmYmJgI/1ErKyvs7e1FxPfHNoSfWlIrSPif9CUpzx3a98uUlBTa2towNzenra2Ny5cv8/r1a1pbW5GXl6eoqIisrCwUFBTo2rUrGhoaqKur09jYyIULF9i+fTvV1dUYGRmxatUq4UUupeokJCTw+PFjfH190dbWpn///gQGBopmNicnBzk5OaKjo2lubhaCms5US0sLGzduJC8vj7Nnz6Ktrc3169fJz89nzpw5Yv3/mFoSFBTEy5cvef36NbNnz+azzz7jwYMHlJaW8scff1BXV4eHhwf29vY8f/6cwsJCQkJC8PT0pFu3btjb2/P48WOhPH/48CFnzpxh8ODBwmP+5cuXopGF9mnrP4lMz8rKwtfXl5KSErKyspCTk8PIyEjoFmRlZTsAM1Jhb7du3cjMzMTV1ZWSkhIePXrUwf3h8ePHrF27lrq6Onr16sWpU6f48OEDY8eOJScnhz/++AMdHR127txJbGwsp0+fZty4cfTo0YPt27cLDvHz58/Jzc0lMDCQGTNmMGzYMDZs2PDJ1+fr6ysmaoBw5BgxYgSRkZGsX7+emTNnClDm0qVL7Nq1i5SUFFRUVHj//j3379/HyclJPM9SNNnOzk6sjbq6uigqKvL8+XNh5fb5559TV1dHdHQ0paWlBAUF4ePjw5w5c7CxsREOTlKq0JQpU5g2bdp/BQL+n2kDH4+XlZSURIKCtBQVFZGTkxO80aamJgYPHszevXt58uQJK1asYPHixXz++ee0tbXx5MkTKioq0NfXZ/jw4SQmJtLQ0ICNjQ0mJibCC0/qUaikpCROhkVFRcJ6IzExkZCQEJqamjpFwM/OzhYRi9evX8fc3BwnJycMDAzo3bs3ysrK3Lx5k5iYGEaNGsW4ceP47LPPqKqqYuHChbx584YBAwawYcMG5OTksLGxwdzcnLi4OJYvX87hw4eRl5dn2bJlqKmp4eTkxNmzZ9m4cSOjR49mzJgxIoFJ6nIwf/58AgICqK2tpbq6WrzO0NCw0+pYaLfwuHr1KnPnzhX3S1tbW2xUb9++JSQkhOTkZDw9PfHz82Pr1q3cuHEDXV1dpkyZQl1dnaAKGBgYMGnSJHGClPI6g4ODBVoWFxeHo6Mjzc3N3Lp1i2HDhgkuX2xsLBcuXGDMmDEsWbKEt2/fcubMGbp3705QUJCIyPvUqqiooKioCBsbGxobG/nw4QPKysrioFVTUyOUxjt37kRFRUUIihobGwWCYGJiIjahmTNnoqurS1xcHHPnzkVOTo6TJ09y4cIFTpw4gZmZmUgm09HR4fbt2xw/fpwbN27QvXt35OXlRVP+119/YWVlha2tLYMHDxYLRmea16SkJObOnStUulJLOCMjIxQUFJCVlWXdunWCbyytq1evcuPGDTZs2EBbWxsrVqxg1KhR4t/LycmRmppKWFgY9+7d48WLF8IGKzQ0lN27dzNw4EBOnTpFSUkJdnZ2aGlpkZWVRXR0NE5OTjg6OiIvL49EImHjxo3IyMgQFhbGyZMnP/n6AGEPd/HiRXEA9vT0FCbXZWVlqKqqEhAQgJGRkVBh+/r6cvv2bT7//HNUVFRwd3dHTk6Os2fPoqioiImJCTt37iQoKIhJkyaxevVqXr16xd69e4mNjeWzzz5jxIgRYn1RVlZm1KhRmJqaCr9TOTk5pk+fjrW1NXJycly7do0jR450iofWt29fBg8e3KEJ7dKlC42NjRgYGCAjI8Pw4cMxMTEhLS0NFRUVrK2t/y157OMKDw8nJSVFoD8KCgpcvXqVRYsW4eLiwrNnzwA4ffq08JaWGrubmJgwa9YsoH3TvXbtGnJycnh5eZGTkyNe25nS1dVFR0cHPT09zp49y7fffouMjIxYNz+uly9fEh8fL0RiTU1NHQJKBg0axI0bN/jtt99obGzkt99+o7S0FAsLC+FmsnPnTsrKypg/fz6zZs2iW7dufPHFFzg4OFBUVER9fT1Lly4lNDSU0NBQVq1aBSDoX51Ng5OORqVlbm7eQWEvIyODra0txcXFFBcXExYWxoULF0Ri5NSpU3n06BG7d++md+/egk6QlJSEqqoqXbp0wd/fnzdv3mBjY4NEImHPnj28e/eOKVOmsGjRIpE89fHvoqmpCRkZGWFhZWhoSM+ePRk0aBB9+/btlP1gfHw827Zt48yZM8Kr3dPTUzgdALx584bS0lKxlgGMHj0aIyMj7t69S3x8POHh4ZSVlTF58mSMjIz48OEDlZWVREVFsWPHDqZOncq4ceMEx1Tqeyz1/zU0NGTevHl4eXkhLy+Pu7s72dnZvHr1ij/++IOUlBR69OjBuHHjOo1MSkEXfX19VFRUOtCc/pMl5ePHj7l06RJz5szB29ube/fu8fz5c4YOHSpU8q2trWRlZWFlZUV0dDSPHz/G2dmZb7/9luHDh7N//36ePn1KQkICTU1NBAcH09TUhIODgzjUnTx5kvPnzzNw4ED69u3LmzdvkJWV7fTE9V+vQWq/Ce2iyrq6OoyNjYmOjiYnJ4fTp0+Tnp7O6NGjGT9+PAYGBnh4eKCtrc2ePXs4deoUc+fO7dBgSve206dPI5FIqKio4OrVq2RnZ7N69WrWrl1LWloajY2NSCQSnJ2dUVJSQlFRkZkzZ/L+/XuuXbv2yZH3nW5eFRUVaWlpITU1lcLCQvT19XF2dkZGRkbkS0szyWtqaqiurha5tq2trSIi09HRkYaGBtauXUt+fj7Hjh0jPT2d77//nvj4eHbt2sXnn3+OgYEBcnJyuLi4CBheqv6T8kGzsrKEBYShoSHLly+nT58+7N+/n5SUFMHX+JRydHRk4sSJKCsrc+7cOfLz82lububmzZsMHz6c0aNHs2DBAvr160dUVBQDBw6kX79+5OTk8MMPPxAVFYWZmRkJCQnCnsnExARFRUXevHkjPv+zZ8+EkXhLS4tANaRpKPn5+UL5Kl0QHj16RHR0NHZ2dgL5u3LlSmdvIfn5+Xz48IG8vDx69+7NoUOHhIF4//79cXFx4ZdffuHIkSN4eHgwadIkdHV1CQ4OxtXVVYwNCgsL+fHHH1FTUyM4OBhLS0vS09N5+fIlmpqavHz5Uowp6uvrOX78ODk5OTQ3N2NhYUFERAS+vr7U19cL3o3U79DMzExc9/+1Wf+nmjhxoqBo1NTU8PjxYwA+//xzHB0dhdNCS0sLtbW1pKamEh0djaysLJ6enkgkEt69e4eXlxcKCgp8+PABe3t7Ro0aJRq9xMRELl68SHp6Ojk5OXTt2pX6+voO91hXV1eIMpydnenfvz8yMjLk5eXR0NAgkJ6XL192Op3JwMCAOXPmAO2bi5QX3b17d4F+eHl54erqSnp6Oo8fPxYouZmZmbBNCQgIEO8h/Q4qKyu5deuWaKadnJywtrbGxMQETU1NWltb8ff37zBdOXDgANevX6d///6sX78eQ0NDNm3axM8//8zEiRPp3r17p5tXaDfSLigoECJQT09PFBQUePfuHYmJifTu3ZuuXbuKtSEnJwdlZWX8/f05fvw4Ojo6zJw5E1VVVXJzc+nXrx92dnb8/PPPnDp1SoxYraysGDZsGDU1Ndy9e1f45hYUFGBgYCCQ6499C8vLy4XgtK6ujtTU1E41r8OHD8fDw0OMUxsbG9HX1xcZ5y0tLTg4ONClSxfRqEkThaRoXUFBAaqqqgQGBlJfX4+5uTnp6ek8efIER0dHJk2axOPHjzuoy93c3ITF15IlS5gwYQL6+vq4u7sL+zppKpVUnNjW1vaPggrS0tIwMDAQqXopKSlUV1eL77qtrU0EZWRkZJCdnY28vDyGhobCyqu6ulqkUEm9cH/55RcuXLjAt99+y+XLl9m0aROnTp2ia9eu2NrakpCQALQj83379sXFxYXY2FhiYmKE6DAgIEA0nhkZGURFRXUqDAXg5s2beHh4YGtrK0zfpZWenk5RUZF4dnJycqioqMDc3Fw01dL/LjQ0lJSUFPr16yfSl4qKivD39+fMmTM8efKE/fv3s3XrVvH+UucfaB/hJiYmYmpqipGREUVFRcjLy2NhYSFAj6CgoH+EupaWliIvLy9EYjdv3qRHjx5CRNnS0kJaWhqvX78mMzMTHx8frK2t8fT0xMHBARMTE/766y+eP3+OoaEhGhoaxMbG0tLSwqxZs3j06JHwtu3bty9NTU1ERkZSUlKCs7OzePYCAwMJDAwkLS1NJG0OGzaM1NRUjh8/DsCECRPo3r27mOR9akknS3p6elhaWqKjoyM8vlVVVdHS0qKyslKM1CsrK0Xypp6eHnfv3uXDhw+sW7cOIyMj4uLiUFZWpmvXrvj6+gpLMA8PDz777DNh55abm4ufn59ww/mYViO9rpiYGMaOHYunpyfx8fHC0rEzVV5eTmxsrLDd7N69O0lJSSQnJzNixAh++uknIiMjuXTpEg4ODvTq1QsjIyMWL16Mu7u7mBwCHfZPaUVFRXHr1i0uXbpERkaG4OVL/WWlAq7W1lYuXrxI165dhYc/tB/aly1bRmJi4icnwP0j5FVGRoZ9+/Zx8uRJxo0bx549e4Rlwt27d/H29sbe3p53796hpaXF6NGjxUP98cPdvXt3jIyMOH/+PMnJyZibmxMfH09JSQmPHz9m2LBhQs33cUk3KCmcvnv3boKDgzvA+p6enhw9epScnByRk/wpJR2V+/j44OnpiZWVFbt37+abb76hpaUFNzc3DAwMCAoKQllZWfi6mZubc/DgQWpqamhoaODly5dcuXIFJSUlwaUaMGAAEomEDx8+EBsbi4+PD3Z2dqxYsQJ9ff0O1IOmpiYuX75MUlISly5domvXrkRGRlJdXY2trS11dXX89ttv7Nu3TyiOO3ON3bt3F/ykgIAAKioqWLhwIXZ2dgwbNkz8MGNiYoiJiUFbW5t169YJE/WWlhYWLVpEUFAQbW1tODg4kJSUxLBhw/D29ubnn3/m2LFjHDx4kGnTpuHv7y+y4v39/WloaOC3334Tp2Vra2vOnTvHs2fPmDdvnhjhfJy686n1MZL44sUL3r9/T5cuXQRhXEFBgbVr1wovXynnVMpb8vLyol+/flhZWfHHH39w+fJlxowZw/Lly2lububgwYMcPHhQiIikjbKTkxOrVq0iPDycBQsW8P333xMdHS3GPd7e3oLTpq+vT5cuXUSSSX19facI+B//t5mZmeTn55ORkYGCggJTp06lra2NsLAwkpOT8fHxQU5Ojr179/Lw4UOcnZ3ZsGGD4BrHxMSQkJBAREQEampqdO/eHWdnZ6Hm9/f3Z8yYMQQGBgLtatnt27czb948xo0bx+vXr4VdXFlZGVlZWVRVVVFRUYG/vz9ZWVnMmDGj0yEF0H4ImDhxIkFBQR0EIwkJCVy8eBE9PT2B4GdnZxMeHk5mZibq6uqsW7dOpPxJbb3Mzc1paWlBQUGBpKQkmpubqays5P3792hra9PS0tJh7GhsbCwQ+/LycgoKCnB2diY3N5evvvoKZWVlfvvtNyZNmoS1tXWnGnRFRUViYmJQVVXFzc2tQwBJaWkpqampdO/eHRkZGSH+lH72iIgIIfSE9uTD5cuXs3jxYjQ1NYmJiWHfvn2oqal1sKobPnw4P/zwA3/99RfHjh0TCG1wcDCPHz/m4cOHuLi4iGhhaYStlD95+/btTt2/pqYmnjx5gpeXVwfE3sXFBV1dXeFOoaGhwcCBA/Hx8UFRURFra2uSkpI4fPgwRkZG9O7dmzdv3vD111+L6Ghp+fr6MmzYMEJCQpg/f75QpG/dupXx48eLyPKuXbty6NAhNm7cyJQpUzhx4oR4HocMGcI333zDqlWr/g0R/r/q1atXPHz4kKlTp9KnTx8h8gE4deoU+/btY/ny5axfvx45OTlsbW1xdnbuIPKSTs9SU1M5ceIEy5Yto7q6mj179jB+/HgGDhzImDFjOHz4sHjNrFmzGDZsmBBgHjlyhJMnTzJkyBB++eWXDu/f0tKCrKzsfxRafkp17dqVgwcPoqSkREREBFu3bmXFihWoqamxfft2li5dyoQJE3j79i0LFy6ke/fuHDp0CD09PbKzs8nPz6dXr1706tVLuEtoamoyb948fvzxR8HTLiws5OrVqxQXF1NYWIiCgsJ/dJoJDw/np59+Yt68eSxZsoSlS5eiqqpKZWVlh4aoM3Xz5k3+/PNPjI2NWb9+PZ9//jkVFRU8e/YMfX19Bg4ciI6ODnV1daioqDB27Fi6du3K1atXmT9/PhkZGXh6ehIVFSW8l3///XecnJyIjo5GSUmJKVOmkJCQwNy5c/n1119xcnJiwYIF/xGcuX//PgcPHsTLy4t9+/bRpUsX2tracHNzw8nJicrKyk451ISEhLB69WqKi4uZMGECQUFBhIWFMXnyZLZu3cpXX31FSUkJ79+/Z+rUqTg5OQlva2i39mpoaODHH39k+fLldO/eXfgm6+npER8fz759+7C2tmbJkiUkJSXR0tLCwoULRU916dIlIdBcuXKluFfS9NX+/fsTEhLyyWDVP2pepQjV69evMTExEYtuRkYGCQkJwrfSyMhIZBs/e/aM6OhoevTogYaGBrdu3eLVq1f4+flRUVFBQUEBjx49or6+HhUVFUJDQ8nLy2PYsGF4enoKhKytrQ0vLy+BGJWUlGBiYoKdnR1tbW3cv3+fZ8+e4ejoiKura6cVstKGTgrL//HHH9y5c4fhw4fT0NDAd999R1RUFD169GD9+vXU1dXx66+/0rNnzw5q3Rs3bhAfH09hYSH29vZ4eXnh7u5OTk4OEomE6OhoYmNjmT17doebVVJSQlpaGrGxsfTu3RsdHR0iIiIEkuDu7k5QUBBZWVnIyMj8o1QYaepMdHQ09+7dQ05OjsLCQtzc3EhISODYsWMiV1pqNVRZWUlZWRmhoaE8efKEoqIiJk2axOjRo1FUVBTemHp6epiZmREaGsqtW7coKCggKyuLwMBAtm/fLgQz0gjBrKwsXr9+jY2NDS0tLSJ15erVq5w6dYrhw4f/V7Pif63k5GRu375NZWUlycnJKCsrY2pqKpoQJSWlDt+bubk5Xbt2JTY2lpycHKZOnSrsZGxtbdHU1KSlpYWmpibKysqIj48XfNalS5eira1NU1MT9fX1wmTbzMwMe3t7jIyMSElJwdnZmaSkJMEvlronaGtr06NHj04nphgbG1NUVCSytaVoa3JyMnl5eSLN58OHD0ybNg05OTm2bNlCZmYmmZmZzJs3j6ysLDZs2MDr16+xsrIiNzdXNJ2fffYZI0eOFApbGxsbevXqRUlJCZGRkTx79kz4UWZnZ+Pi4oKXlxddunRBQUGBwsJCPDw8sLOzY8uWLZw+fbrTMcaAQI/+FdG0t7enX79+QnhXVVVFfX09Xbp0oa6ujrS0NDQ0NFBWVha2PdKSpsgEBgaSn58vEDkp3eHDhw8cPXpUUGmkaWuZmZkCFbCzs8POzo6srCyKi4vR1dXF39+/U82rjY1NB8RdVlZWRCIfOXKEzMxMZs+eTVBQkAhtkR7+dXR08Pb2JiMjg8bGRoGGREREkJmZKegrOTk54jpMTU05dOgQpqamZGdns2/fPq5fv87nn3+Ojo4OCQkJ/PHHH8ydO5evv/66w2GhoKDgH6UVenh4YGpqipycHMrKyvj4+HT491IKmLQ+HtvLycmJIBQFBQWePHnCvXv38PDwYObMmezZs4dLly7h6OgomnhfX1/09fV58+YNT548wd7eXlCAoH2y1qtXLwwNDSktLUVFRUWsv4aGhp2mDbi4uJCSkiIExsXFxSLKW0o509LSEnS3+vp6srOzgfbfkLy8PH5+fixcuFDY6mlqamJjY4ORkRGPHj1i27ZtyMnJYWJiwtKlS9HV1RV6BVVVVdzd3fH29ubJkye4uroK8dfDhw9xcHDA3d2dsWPHkpSUxMmTJ4W6/VOrsrKSuLg4goODCQwMZOjQoYSHh6Orq0tjY6NoPiZMmEBJSQne3t7CDuzt27eoqKgQEBBAXV0dYWFhFBQU8PLlSwYNGoSbm5vQzlRUVAgrSemhRk5OjqamJhHbrK+vT2ZmJnFxcdy9e5clS5YgIyPDnDlzKC8v58GDB51OZIR2QKW6ulo4l0htr/T19Tu4FVVWVhIeHs6AAQOE3VVGRgba2tr069ePq1evCj/42NhYqqqqeP/+vTh01tbWEhERwY8//kj37t3F3urh4YGzszMuLi7COcXMzIwxY8aIvUhqneXj4yOmNZ9aaWlpIpXv4sWLfP3114wbN46IiAghHtPS0sLLy4v4+HhsbGxE43r69GlSU1OxtLQkPDwcVVVVEhIShDAd2gGh5uZm8vPzyc/PR09PjwEDBojGVSpG69KlC+7u7tTV1XH16lWxD4eGhqKoqEhwcLBwkPhv9Y85r3PmzGH69OnIysqioKBAcnIy5eXl6OrqYmpqSpcuXdDW1han0L179wqTXGNjY3bu3ElBQQHjxo1j6dKlVFVVce7cOZ48eUJdXR11dXUUFBQQHx+Pr6+vUPq3tLSIeLu6ujpcXFwYM2YMampqFBYWcuzYMS5duiRcELp06dIpfkhqaqoYHaWkpPDdd99hY2PD33//TWxsLAMGDAAQ4QCPHj3i8OHDVFRUdCDvS/3npHnb7u7u/P3336SlpVFWVkZhYSGXLl0iKCioQ/MqJyfH119/zfv37/ntt9/4/fffOX78OLNmzUJdXZ1du3bRpUsXTp06RZ8+fdi6davgbXWmCgsLuXHjBuvXrxf38+rVq+zZs4dvvvmGqVOn8t1331FcXMzr169pbm7m/fv3HDlyRCDAb9++JSkpCS0tLX7//XfMzc25cuUKSUlJjBkzhurqajw8PHj69Cnm5ubs3LkTU1NTli9fTllZGVZWViQlJfHw4UOg3VZn4sSJXLp0iZUrV9LW1iYiYjtT9+/f54cffsDAwIAePXqIRVKK/EmbWCl/S15eHldXV2JjY4mPj+/Ad/Lw8GDnzp3o6OgIJGD+/Pn06NEDPz8/XF1diY6OJjU1VYyJ6uvrxYacn59PbW0tr1+/5ujRozx48ICBAwcKxeewYcMYNGgQdXV1rFu37pOv8ebNmwwePBglJSVcXFzo2bOnWDSlyOH48eOFv2N+fj7u7u5ER0dTWFjI5MmThYAM2pteqcDj3bt3qKqq4unpybt370hJSUFPT4+EhATCw8ORSCQMHz5cxNxqamry1Vdf4eHhgbKyMs3NzdTW1opJQlRU1D8yuP/XamhoQEZGBkVFRQYPHsygQYOQl5enpqaG3NxcmpubMTMzw9zcnBMnTrBx40bc3d05e/YspqamVFdXi9hRaL//RkZGKCoqkpaWJmKgLS0tOXfuHE+fPuXXX39lxowZxMXFUVJSImg9ADt37qS1tfXfok0/tQIDA//Ngqq4uJiQkBAuX74s0oK8vb1xd3cnPz+fiIgIDA0NCQgIICAggHXr1lFRUYGamhovXrxg7969NDc3s2vXLnx8fGhrayMkJISioiLRwEI7ci2NQj58+DAjR44Uo/v/1KQ+evSIa9eu/a92Sf9bKSkp/a/NkrTpkZY0lU9PTw8ZGRlaWlrQ0NDAyMhI5K8DLF++nDFjxvDw4UOio6PZtWsXsbGxGBsb8/vvv6Orq0vfvn25c+cOERERnDt3DmNjY2pra+nTpw/9+/fnl19+4euvvxZIIbQ/L1I3kU+tL774QhxspRt3bW0tDg4OzJ49W9hCShPKLl68SEhICOvWrRNpSo6OjuzevZu2tjYRq+nk5MSAAQM4f/483377LRYWFixcuJDVq1eTmprKwYMHUVBQYNiwYeKzDx06VCi7v/76ax49esTatWsZPXo0ffr04cmTJ9y8eVNMCz+1Tpw4wZYtW/jyyy/Zvn07y5cvZ/To0cjJyYlnCdqnnYcOHRJgltQjtWvXrqiqqhIaGipcdqytrYmKiuLx48ckJyejpaXFZ599Jq4nMzOTnJwcbG1tkZWVJTU1leLiYgIDAwUn9uMGrq2tjeLiYk6ePMndu3cFd/tTa+rUqSIBUDqlkYp1P95/6uvriY+Px8DAQEx8AJYtW4abmxuXLl0CEDTB8vJy/P39efXqFZcvX6Zbt2589tlnnD9/np9//hldXV0KCgpQU1Pj6NGjBAQEkJ2djbe3NxMnTqSoqIiMjAwRI7tt2zamTJnCxo0bO3V9qqqqXLt2je+//54jR44IGtZPP/3ExIkT2blzJ6dPn2b06NH8+OOPlJSUsGDBAm7fvk14eDjLli0jMDCQkJAQvvjiC/Ly8tizZ4+4B/b29nz++ef8/fffXLhwgeDgYNFH5efnExcXh5eXFytWrEBJSYlLly4REhKCubk5Li4u3L9/n8zMTBHqcPLkyf/oKfxxdbp5jY2N5cqVKwQGBgqhQUNDA3l5ecJg2NHREQ0NDbKzs9HX10dVVRUvLy+qq6vR1NREXV2dkSNHIicnh6OjI8+ePaOtrY0hQ4bQ1NREWFgY/v7+zJo1i4KCAioqKjA1NRVjiJycHOLj4zE3N++QMCVtLOTk5AgJCUFJSYnRo0d3yopo5cqVgn9haWnJ999/T0VFBfn5+SgoKLBy5UqR73vgwAGgXcwjFYR06dJFoAuOjo4YGRkJIZSpqSl1dXVis3rx4gVr1qzhiy++EFwzaQ651Ax41KhRfPHFF6iqqiIjI8PgwYPJysri+fPnmJiY/CMVN7Q3ySoqKtjb21NXV8eYMWNQUlISDb9UCPTgwQMSExMZMWIEBQUFKCoqMnToUIyMjKiqqiI3N1eILAICAjAzM+Pdu3dCAGVsbExSUhJnzpzByMiI+vp6ysvLKSwspKKiAj8/P1RVVSkpKSE3N5cnT55w4cIF5OXlmThxYqdGeNJyd3dn7dq1aGtrY21tjby8PNbW1uJhaGlp4dSpU4SHh9Pc3IyOjg7l5eVAu9irsbGRsLAwfvrpJwYMGNAhFlVBQUEoN6GdU1tZWUlraytGRkYsWLCA0aNH06VLFxHzKeUnWlpaMm/ePHr27ImzszP19fWkpaVRVVUlBAOfWi9evBCJKLq6ukydOhV1dXXu3r0rmimppdmOHTvIy8vDwMCAYcOGcezYMXFinjRpEunp6bx69YqGhgYhGImLi+Pt27e4urqydetW3NzcOH36tPCItLa25sGDB2hoaDBjxgzRAMTExBASEkJlZSUjRowgMDCQuXPn0rdv305nqt+6dYvXr18TEBAg+MJSMacUkYF2KpKioiL379+npqaGefPm4e/vT0VFBTExMejq6lJUVMT69esZMWKEUCcnJSXR2NhI165dCQoKYt++fTQ0NGBqakpLSws1NTWCPnP27FkRqRwVFcXp06dZuXJlB0S4sw26NPyjvr5emNpraGjQq1cvnJ2daW5uJjs7m7y8PNzd3Xn79i3ffvsts2fPFiILOTk5gZBEREQwePBgnJ2dxRokIyPDwIEDKS4uRkNDg2fPnomox3379mFkZISWlhZ5eXl4e3vz1Vdfoaamxv379/Hx8UFVVZXk5GRqa2sJCgri1atXnbrGX375hdjYWNatW4eDgwNr164lMjKS77//nj59+vDhwwcOHz5MVVUVU6dOpVu3bjQ0NKCsrIylpSX79u0TaWo2NjbMnz+fPn36oK2tzZAhQ3B0dBQJfbGxsWJas27dOh4/fixQuw8fPqCvr09eXh7v3r2jtrZWHLak9U9sB+Xl5ZGXl0dJSYmysjIyMzNRU1MT646UJ9zc3ExqaiqXLl2ira1NABZFRUWkpqYKsaGU26umpkZkZCRVVVUsWLBAOLycPHlSJB6OHDkSiUTCpk2b0NPTE048Q4YM4c6dO7i7u4tgjurqapqbm+natSv29va8ffv2k6/x0aNH+Pn5dciat7CwID4+Hm1tbWRkZGhsbOT27dti8tTW1saIESOEY0dZWRmampqMHTsWHR0dtLS0hDD05s2b6OrqdnC2sLa2xtjYWNwfS0tLgYDKy8sLXia0x29XVFQwffp0PD09/xHyGhYWxvPnzxk7diwuLi6UlZVRUVGBs7MzycnJIsLb3Nyc7t27o66uTnl5OQoKCjg4OAjrQT09PT58+ICWlhaampoMHDiQIUOGsHv3boEu6unpCSrP4sWLKSkpITo6WlgLmpqaihRSWVlZHj9+THV1NXfv3qWqqorm5uZP5oVKS0tLC1VVVb799lshqs3KyuLRo0fo6enx66+/ivCldevWcfbsWRYtWkRqaioBAQGCMubh4cHw4cORk5PrENBha2vL/PnzcXFx4e3bt2hra1NUVMSbN2/Iy8sjLS0NTU1NysvLMTY2ZsiQIWhpaYnf1IABA6irq8PJyYnW1laGDh36X0XanW5eX716RWRkJIWFhSJ2saGhAXV1dWF7UF5ezqtXr5BIJMLvrnv37lRWVmJsbMyAAQMEcTwyMpL9+/eTm5vLqlWrhMH73LlzmTVrFteuXUMikTBjxgwAtm3bxuvXr1FQUBBfdkNDA2VlZZiYmNCnTx+6dOlCt27dUFNTY8CAAZ1qXqUUhsjISJEHn5+fz/Xr13F2dmbPnj1Au9H/sWPHmDRpEitXriQ+Pp5bt251eAAdHByQkZEhJyeHtrY2unfvzjfffMOxY8coKysjJyeH27dvExcXh6WlJT169CA7O5vBgwdz7Ngxrl69ysaNG1mxYgXBwcEUFBSQl5dHeHg4Wlpa1NTUCDpBZ0tfXx9LS0umTZvGqFGjBC+wrq6OCRMmICcnx8OHD1m5ciU1NTUYGRnh7e1Na2urSKbx9fXl5cuXXLp0iXHjxgkBUUFBARoaGkJoYWpqSnp6OuvWrUNdXV0EMcjJyeHh4cEXX3xBY2MjFRUVnDt3juTkZGbNmiU4Xp21sJES+z8uqbeiNIs7JCREiN3c3d1xc3PDwsKChoYGwsPDqa2t5eXLl+jq6ooIVGmSjLShUVFREdfR1tYmUDto36xkZWUxMTFBW1sbCwsLpk2bBvxPEwztNJFLly51Osa4tLSUlJQU0fQ6OztjYWEh6DTSevv2Ldu3bxd8MB8fH8aMGcPbt2/p0qWLsLnKyspCW1ubCRMm4OrqyvHjx3nw4AFz5swRIoKKigokEgmRkZFiTKusrIyFhQXOzs4YGBgQFRXFpUuXyMrKoqGhQTh1dDbVB9ot5168eCGaCgUFBRFpmp6eTnZ2Ns7OzhgaGlJWVkZGRgby8vLIysri4OCAr68vBgYGVFdX8/vvv/P777+jrKwsmteSkhLhbVtSUkJjYyN5eXm8fPkSVVVVsRbV1taKjVRq5/Pq1Svi4+OxsLAgNzeXwsLCTo/yoJ1nHRsbS2FhIb6+vpibm4u1sampidDQUIF2pqSkkJSUhJycHC0tLaxatYqkpCT279+Pg4MDpqam+Pv7ixF5VVUVTU1N5ObmUlNTQ3JyMnv37iU0NJQZM2awbNkyAGFV2NDQINZz6dhU2sQPGDAAKyurTjevly5d4tmzZ/To0UNwcd+/f09FRQUlJSX8/PPP7N27F1tbW5YsWYKcnJwQpBkaGgrKUH5+Ptra2syaNQtbW1uys7NRU1Nj2rRpBAcH4+3tzaBBg9i7dy9Xr17l5MmTzJ8/n/LychGwYmlpycWLF1m+fDlfffWVCCMoLS2lsrKyg0vAp1ZSUhJFRUW4u7tjbm6Oubm5sMuC9ijl4uJiEXcuXX/k5eXJysoiNjaWsrIyEeEqLy+Pjo4OmZmZFBUVMXDgQCG2+/vvv5kzZw4aGhq8evUKZWVlZGRkuHPnDrW1tfTv35/6+nrevXuHmpoa8+bNw9LSkmfPnvHrr7+irq7O3Llz8fT07FQClZubGxs2bBB0hMbGRt68eUNkZCQZGRn4+/sLKsDp06cFLeJjZFJGRgZXV1fR+EF7kIOWlhbv3r0jMzOzA4UmNzdXgA3Nzc04OzuLNVNFRUVoUvLz8/nll19oampi6dKlbNiwARUVFfEZPrVCQ0PZtWsXNTU17NixAwUFBTE5ev36tYiLnjhxoqAHVldX4+rqKmw7lZWVGTlyJEpKSujr6zNo0CAxje3duzehoaE8e/YMKysrDAwMCAgIYNWqVaiqqvL06VMhdldVVUVNTU0kh925c4fExETMzc3ZsmULw4cP7zR/2dLSkpqaGrS1tZk9ezYtLS3s27ePEydOMGXKFBYsWCDWdysrKwoLCzl06BD9+vUTwsKIiAjy8/NZt24dZmZmtLW1kZ6eLvyU9fT0RHDB999/z507dxg7dix1dXW8ePECVVVVNDU16du3r+ARV1dXo6qqytixY2lubiY2NhZ9fX0+//zz/++b16KiItauXUt6ejqPHj1CVlaW7t274+joiKGhIUlJSTx//pzGxkbGjBkjNvP79+9z9uxZvLy8OtifKCkpERAQwI0bN/j7778FOtW3b1/u3bvHkiVLhLdZQUEBp0+fRkVFhdGjR1NdXY2MjAxVVVUUFxeTkJCAoqIi7u7uLFu2jLNnz7J8+XIxKvuUko7l8/LyiIuLw93dHRMTE4YMGSJOy62trcKEXtrIuLm5oays3EGtKj0dbdq0iby8PM6fP8/48eMZPnw49fX1hIeHM3PmTHJzc/nyyy+FDdC4ceOE7+eHDx+4cuUKBgYGJCYmkpKSgoGBAQsWLOiwOPyTys7OpqCgQGyORUVFeHl50djYyMWLFwXvxNraGolEgo+Pj9gwoqOjuXz5Mr6+vty7dw9bW1txilJRURENXVVVVYcHrbq6mp49ezJ+/HhKS0sJDw+nra2NqVOn0tLSIu7nx6PG0tLSTl1XcXExpaWllJWV4eLigra2NpGRkaxdu5apU6cyf/78DoiLiYkJCxcuZMyYMezbt49Dhw4xefJkbt26xYcPH9i2bRvBwcH4+/tTV1fHgwcPaG1tJSgoCCUlJfT09IiIiKClpYW+ffsKDrFEIsHFxQUVFZUO13Pq1Cn09PQYNWoU/fr1Q0NDA1lZWWGk/ymlpKTEmDFjmDBhAqtXr0ZVVRVFRUXRvDY1NREdHc3NmzcFyvrgwQMGDx4siP779u3j8OHDODo68ttvv2FgYIC+vj4ODg44OTkRExMjTtfSBLgTJ05w+fJlFi9eDLSP0Y4dO4aamhrffvstM2fOFGJNa2trVFRUqK2t5caNG526h9AuLNTV1UVVVZWioiLU1dUF+lJZWUlNTY2wOYuLi8PJyYlJkyahoaGBRCIhODiYkpIS9uzZIw4qb9++5e+//8bMzAwrKyu0tLQ4deoUf/31l4ij/OWXX3B1dWX27NlIJBIyMzNZtmwZb968YceOHcjKynLo0CHc3d05d+4cX3/9Nfb29uzcubPT1yhF5JKSkkTzA+0bRWRkJE5OTsI2x8PDg2PHjjFx4kTy8/O5ffs2mZmZXLx4kTVr1mBhYcGbN29QVlbGy8sLiUTClStXiIiIQENDAxMTEwoKCsTfllpknT59mocPH5KWloaWlhbTpk2jf//+YgP91+StzpQ0JKStrY07d+4wZcoUdu3ahZmZGX/++Sf79u0DYPLkyR3ie/Pz84U4taqqitjYWOTk5MR3IZFISE5OFg2V9LAhpT5s2LCB1atX07t3b/r06dMhAvtfEfLU1FQWLVpETU0Nfn5+orn6lDp27BjHjx9nxYoVrFu3jsDAQOGfDO3j7KysLG7fvk1aWhpfffUVjo6O7Ny5k19++UWIq5YuXcqgQYP48ssvaW5uJi0tjc2bN3dIGpJOGqqqqnjy5IkAAa5evcrVq1c5ffo0jo6O3Lp1CysrK9EM7Ny5kxs3bhAQEICKikqnaS5LlizpELjQ0NAgXB1u3rzJypUr0dfXx8/Pj/3795OamkpeXp5Y09zc3NDR0REc1o9r1KhRPHv2jF27donrq6io4Pnz51hbWwvx3cdOF1ZWViIE4P3797S1tVFTUyOmSzNmzOjgyvAp1bt3bxQUFISTjoqKirjmsrIyoqOjO0TNt7a2oqyszJgxY+jXrx9qamqoqKgIwXNbW1uHwAY9PT0xcZRIJIwZMwZHR0eePn1K//79cXNzY/v27SQnJ7N69WoCAgKQlZXl6dOnXL16FQMDA2bNmsWiRYs6fcCCdnH8x6+Tk5NjzJgx+Pn5UVVVxc8//yxSzUxNTUlNTUVXV5cFCxZgaWkpfrtpaWn8/vvvmJmZcfjwYW7evMn69evF5E1aN27coK6uTnCR3717R48ePejRowf6+voiKlpLS0u89saNG6xZs4aRI0eye/fu/3pNnW5e+/XrR48ePVBSUhJemoAwVlZQUCAnJ4fKykoUFBSorq4mIiKCkpISgoODxThLmqIlLy8vbnJhYSFeXl74+PhQXl5OfHy8UPteu3aNhIQEtLS06NGjB97e3iKe8/Xr18I/zNTUFFtbW7S0tLh58ybXrl3rlFDEw8NDwN5WVlZIJBKamppE81FWVkZERATZ2dkYGhp2eKhsbGx4/fq18KodMWKEiNMsLi7mt99+w9vbm7a2NgG/Hzp0iKtXr1JYWEhaWhpGRkb4+Pigq6uLt7c3Z86cISoqCmtra3FycXBw6OAN+U8rNTWVhw8fMmrUKOFFV1xcjIqKCqmpqejo6LB06dIOo35TU1MsLCxobGwkMzOTyspKtLS0hB1Zc3OzuH5A3BdodzXo1asXAwcOJCAgAIlEQmxsrAiY0NXV5fPPP8fFxYWCggIePHhAr169OqQGfUpdunQJU1NTkfe+cOFCIZhobGxERUWFRYsW8e7dOxoaGjoo6RMTE3n+/DmhoaEsWbKEwsJCfv31V2G/9OHDB27evElycjJPnz5l3rx5ODs7Exsby+bNm4mKimLBggXExcURGxtLXV0dSkpKIvjiYxPn/Px8BgwY0AGt/9Tq2bMnV69e5fHjx4wcORJPT0/a2tp48+YNjo6OqKurExISwvHjx1FVVaWtrY2mpiZiYmLEiNrCwoLy8nLCwsIYMmSIcGlISEhAT09PNK6HDx/m5MmTODs7Y29vT//+/Tl48CCZmZkkJCSI1K6qqiqUlZUxMjLi3bt3NDY2oqysTH19facPINJ70bNnTxQUFITtirRKSkpIT0/Hzs5OWO+9fv1aCEGkosQdO3ZQX19Pv379mDJlCrdu3WLq1Kl88cUX/Pnnn8jKynL16lUePXqEmpoaDg4OJCcn4+joyIQJE4iOjubatWsUFBSItDgphx3ax6dSs/uPN6tPLek4vLGxsUPTlJubS0VFRQcB0cfWSA0NDQwdOpScnBzc3d1RU1NDTU2N69ev09raysCBA5FIJJw+fZro6GiRFCj17C0rKyMuLk5w2aV8aW1tbRITE3n79i1aWlo0NDSQkZGBvr7+P7o+Nzc3Zs+eLQS3Dg4Ogifp5+fHtGnTkJeXx8jIiEuXLuHm5oaNjQ1aWlpChS9FJKWOC1JEXllZWTgWSJFoMzMzbty4wZkzZwgLC+PXX39l7Nixgreorq6Or68vkZGRAhSQHkZLS0t5/vx5p0SwlpaWqKmp/ZvfuZRfr6amJgJZtLW1kZOTIzExkdLSUtzc3Bg4cCARERHcuXOHt2/f4ubmRnFxMa2trWJSc//+fYqKioD2MXNdXZ2gfbi6ujJw4EBWr17NvHnzePjwIf7+/mhoaJCenk5hYSEODg4EBQWhq6vLy5cvO9WcQ/sEMTExkbKyMnR1dbG0tBTooIWFBU1NTbx48QJTU9MOvP3i4mJqampIT08XlBhoB02ePn2KrKwsbm5uDB48GB0dHZEGpq2tjbm5uQCjpI4DGRkZYkLUo0cP8f3r6elRUVFBSkoKHh4eHegNn1ojRowQNCxppLuysjLv37/nzz//pLi4uIPos7i4GCMjow4Hzn+tAwcOUFBQwPTp05GXl8fAwIDc3FzKy8upq6sjPz+fhoYGAgIC0NHREQj9x59fXV2doUOH0qNHD5ydnXn+/LkIuOlMfXzol8ZuGxkZiah7OTk5DAwMSEpKIiEhAX9/f4KDg9HW1ubOnTsC5FJXV6esrIza2lokEgl6enri0Nna2kpxcTH37t0TiZpKSkqCoy+dkkH7ASUuLq7DxDE9PV1w3T9FaN/p5lX6o5GOBD8mbEsTd6Ro4t27d1mxYgUlJSUsXbpUWDolJyfz7t07LC0tkUgkPH/+XKT3WFtb8+LFC5qamli2bBkrV64UJ9tu3bpx8uRJLC0taW1tRUVFhaKiItFweHh4iDiys2fPcu/evc5eHocOHeL7779nzZo1QswUHx9PdnY21tbWaGpqYmxsjIKCAk1NTR1+0OfPn+f48eOEhYXR1NTE1atXmTVrFmvXriU1NZU1a9awatUqFBUVWbZsGTNnzmTMmDEMGTKE8vJywZGUItNSt4bExEQsLCyYMGECTU1NIl71/7X09PQwNzdHT0+PxsZG3r9/T1JSEl27diUwMBBnZ2e6du3KkydPuHHjBg8ePGDcuHGcPn1aGH6npaXh7OwsTmf79+8XHnsf56fb2NiwZ88eunXrRk1NDSkpKZSXl+Pu7k5bWxvJyclYWVlhYmLCiBEjuHPnDn/99RcSiaSD8fWnVFlZGTNmzODRo0f8/vvv2NnZMXnyZDw9PQUKGRAQwLVr14RVkbTGjBnD77//TmZmJn369EFFRQVlZWVKS0u5f/8+GRkZpKWl8fDhQx4+fIisrCw7d+5EX1+fx48fo6WlxZw5cygpKSExMREDAwMiIyM5c+YMM2bMYN++fUybNo3ffvuNr776CicnJ3766acOQqBPqdGjR2Nra8uDBw+Ij4/H09OT0tJSTp8+zYABAwgODhbRkdDeRLS0tBAaGsrjx4/x9PTE29tbWPB8/fXX9O3bFycnJ3755Rfs7e1ZtWoVFy5cYOnSpaioqFBSUsLz589ZtGiRGDlLn42WlhZevnyJRCIhJCSE0NBQBg4cSM+ePdHX12fy5MnExcV16hq3bt3K8uXLRTiI9N5BOzUlPDwcfX19HB0d6dmzJxcuXGDt2rX8+eefTJkyhZSUFPGaqVOnMnPmTOLj43n58qUQxkiT5qCdv1xfX8/UqVOZO3cubm5upKamcuHCBTZt2sSUKVP49ttvRQ44tB8irl+/jrKy8j8SbpWUlAje5seq+wEDBuDn5/cfBVIFBQUUFRWxevVqjI2NO/x+P/bfjY+PF4bfpaWl1NbWCuRVQ0MDd3d3FBQUGDx4MGfOnMHJyYnVq1fz8uVL/vzzT1xdXamtrWXNmjV07dqVX375pdPXV19fz5MnT+jXr59II8rNzcXFxYXevXvj4+PDoUOH2LNnDzk5OYwcOZKlS5fi7e0t1kFlZWV8fX3R0tKiurqa3bt3k5aWxuLFi+ndu7ewnluxYgUKCgro6upy5swZAOLi4rCxscHZ2Rl9fX1B8wkLCxNo/Pjx47l06RK3bt3q9DVKeZfS/42NjaW2tlZs0m1tbVhaWuLo6EhOTg7r16/n7NmzzJw5k19//RWADx8+oKCgIBxcJk+eLGhyRUVFFBQUUFtbi729PZ6enqiqqpKamsrPP//MX3/9haqqKj179qRbt25s2bKFwYMH07t3bz777DMCAgIYPXq0UHAnJSWRk5PTqWssLCzkxYsXREZGYm9vz4wZM5CVlRUinJ9++okFCxZw9OhR+vfvL9BxAwMDcThISUlh0KBByMrKUl5ezp9//snDhw9xcnLijz/+4JtvvuGPP/5g69atrFu3Djc3N+7evUtLS4sYvTc2NpKVldVhHZDG0ldWVvLhwwdKSkr+q9DnP1ViYqIAYOrr63n79i3v3r3j6dOnREdHi78vrf/kedzc3NzB7u78+fNERkbi5uaGv78/M2bM4N69e6SlpXHq1CkGDx7M5s2bxe98+PDhDB48WExvCwsLGTZsGGvWrEFFRYWLFy+ydu1a/Pz8OtiCfmpJm0JpI/v06VN++OEHBg0axA8//MDSpUt58+YNMjIyeHt709TUxM6dO7l37x6jRo1i165dgtaiqqoqkvqkE2lZWVnOnz/P+fPncXBwELQAFxcXNm7cyIcPH0hNTcXJyQkrKyvBVYf252TgwIE4OTlhZGT0SeFLnW5eo6KisLCwIDAwkJiYGDZv3oy6ujozZszoMJ5XV1enuLgYExMTXFxcRGpDUFAQDg4OyMrKcvPmTR4+fEhJSQl9+/bFyMiIsLAwqqqq6NOnj4C5c3JyyMzMxM3NTYgToP3mamhoMH36dBGE4OnpSVFREWfPngXajek7U5GRkQQEBPD27VuOHz/OF198gZubG9nZ2VRUVKCjo4OXlxfl5eU8efKE4uJiLly4QEpKCu/fv8fR0ZFhw4aRkZHBL7/8wvbt2xk3bhy9e/dm+vTpfPjwQcQRVlRUEBYWhpWVVYfrKi8vFxuZjIwMxcXFpKenC0NvfX19MjIyUFJS6hQlQlrbtm0TCOjw4cNxd3enubkZPz8/fH19sbGxQUNDQ4xNhgwZQnFxMXJyckKEoKWlRUREBF5eXpibm3Px4kV27NhBXFwcBgYGgr8nLy+Pqakp48aNE4uQmpqaEGV069aNpqYmCgsLycjIEOhOU1MTjx49wtvbu9NIwdixY4WdhzSFCdoX0/j4eN6+fSsieKOjo1FTUxNohZubG/fv32fjxo2cPXsWf39/pk6dSnJyMtu2bcPe3h5DQ0M8PDzQ1dVFRUWF48ePk5qaysyZMxk1ahTy8vJoaGjg5OSEjo4OlpaWHZBNaN/s5s2bR1paGmFhYZ1WcSsrK4v7de7cOdatWyc2OGdnZwoLCzEwMEBFRUUY6EvNy9va2sjIyCAsLAwvLy+GDBmCjIwMhw4dQlFRkbKyMkpKSti+fTvbt2+nublZIG9PnjwRIpoJEyaI37J04lBbW4udnR3jxo0TojTofNAEtKOaqqqqAuHX1dUVAiklJSXa2to6HB6HDx9ORkYG165dIzw8nMjISNzd3YUK+++//xYBBdJ1oaWlhcmTJ1NdXc3NmzdFcpmvr6/gSdfW1uLm5saUKVNE4yoNApAe2K2trTtEZX9KLVu2jPz8fObNmydCEerr62lqaiIqKoqCggICAwORkZER362+vj6xsbG0trYyadIkVFVVefHiBRERERgbGxMYGChoDdevX0dPT4+qqiokEgmNjY0YGxvj5ubG3LlzRbPt4uLCnDlz6NOnD5999hmNjY0C1c7KyqK8vJza2tpO3z9oF3L89NNPbN26leDgYHr37k1RURG3bt1CX1+ftrY2Tpw4IQQsd+7coa6ujq1bt+Lk5MSZM2eoqqoSm7U0WrZLly7iwPf7779ja2uLhYUF169f59mzZ2zduhUTExPa2trIzc3Fzs4ONTU11NXVyc3NxcTEhH79+pGens7IkSOxtbVFXV2d5ORk4SjzKXXgwAEaGxuxtbXFw8MDR0dH7t27x7Fjx+jevTsuLi7k5uYiKyuLra0tU6ZMobi4WFiyWVpaYm9vz5w5c4TF4+jRowVVQxppa21tjZ2dHeXl5URGRhIXF4etrS1mZmYoKysLzUdgYCApKSkYGhpiYWEhOPHKysoitv0/eaf+X5WXl4eVlRV1dXWoqamJMb2MjIywr5JSUqRN+8mTJ4mKisLR0RF7e3vq6+u5dOkSAwYMoGvXrixevBgjIyOMjIxITk7mzp07HDt2jNraWrFmvnr1ipCQEKqrq1myZAmOjo6oqKjw8OFDNm/eLFLhFi1aRElJiQAWPqY4fGpNnz6dUaNGsWrVKtra2ggNDSU5OZkxY8Ywb948nj17RmRkJBs3bmT69Onie62urhY0OalPqqqqqqDH9e7dW1AON27ciKmpqRDWycrK4ufnR21tLSdPnhTg3a5duygsLGTatGkdpnLS57KyspJJkyZ1+hrl5OQ62H75+PgwYcIEYmNjOXDgAPPnz+9gZaegoMDQoUPF4etjSmRmZibW1tbU1NSwcuVKMWHR0tIiJiYGExMT+vbtKw4w0C7elia/ycnJoa2t3cH5RV5enrKyMvF9/rfqdPP69OlTEQmmpqYmOKhSSxBpDnBjYyMWFhZMnz4dExMTVqxYwdy5c9m/fz9z587F3t6e1NRUrl+/Tu/evRk7dixRUVFCzZyYmAi0PzjZ2dl4enp2QKfy8vLEA+vh4YGBgYEgyUskEpEsYmho2KnM8Z49e7JkyRK++eYbFi5cSGtrK7NmzcLCwqID4unv74+amhppaWk8fvyYv//+G2VlZQ4cOCAU8q2trfzxxx+cOXOGNWvWsGTJEr744gvRjBUWFjJ//nwqKyvZsWMHfn5+NDU1dUiuyM/PF4if9GHIyMjg+fPnmJqa/qPm9fz585SUlDB+/Hj8/PyQlZWlra1NjCWlkbpSgVJ9fT2DBg2ipqaGoqIiTExMRB6xubk5lZWVXLlyRSyoQUFBqKurIyMjI05gVlZWNDY2ishHaSKStKytrTucbFtbW1FSUiIrK6vTaSLSMYa+vj5qampiVApw4cIFzp8/LyxXwsLC6NatmxjDtLW14ejoyJw5c2hpaWHOnDkMHjyYiRMnChcMqXp98ODBmJqasnfvXiwtLTl58iRqampcunQJHR0dli9f3gFNg/ZxSVVVFW5ubvz0009cvXqVmzdvfnIknrTKy8tRVFRETU0Nd3d3vvnmG9TU1Pjmm28wNjYmMTERd3d3VqxYwalTp8jJyRHewLKysmhoaIjD0xdffEHv3r3Zs2cPKSkpQsgiXWQtLCwYOXIk3t7eDB8+nNu3b3Po0CHk5OSEK4WioiL29va4uLh0OqXof6u5c+ciLy/Pu3fvqK+v78D/Mzc3Z8yYMeJA1NDQwMCBAxk4cCBbtmwRU5Nz584xYcIEtmzZwubNm/npp58EaiyRSEQyn5ubG01NTWRnZ/P48WNGjx6NhYUF4eHh1NfXc/HiRdzc3Kirq0NRURFjY2Py8vLYvHkz9fX19O7dW6Bln1ohISHk5ubSrVs30bwqKyvT0NDAtm3buH//PleuXGHQoEHs3r2b+/fvM27cOCwsLNDS0iI6OlrQQw4ePIiRkRGnTp3C29ubxMREXr16hZ6enhAJWVtbY2tri6OjI2pqatTW1lJRUYG8vDyrVq0S6V19+vQRKV8VFRVMmjSpA2WhM1VZWUlERASVlZUUFhYydepUNDQ0mDt3bgf+rdTh5OnTp4SGhuLh4UGPHj3YsmULTU1NBAUF4eTkhEQioVevXoLDeuLECXbs2EG3bt148OABv/32Gy4uLoSGhqKnp0dISAiKiooCHJAmpi1YsIB58+Z1+KyZmZmdPkQeOXIEaPdsHTJkCEpKSmhraxMeHo6lpSUuLi7k5+cTFRUl7N0GDRrE5s2bWbFiBevXr8fHx0dMGp2cnCguLiY6OpouXbrg4eEh/lZpaSnnzp0jMjISa2trpk6dKjjuSUlJ3LlzBz8/P06fPt3hMxYXF5OUlISJiQn9+/fvNPKqra2Nl5eXoKpJBchSr+qkpCRcXV1FwIREIiEjI4N9+/ahra3N7t27MTQ05MqVK6SlpbF27Vo+++wzsU+eO3eOffv2UV1djaOjIzt27Oiw5kdFRdHa2sqKFSuwtLREXl6ejRs30trairW1NSEhIfj6+hISEiIEmJ0tKYjx2WefYWZmRlVVFXV1dQQEBODo6EhgYCA9e/bk4cOHDB06VDSvtbW1Yj+vrq4mPDyckpISAgIC+O6771BXVxe0Nzk5OUH5gPY1rLGxkb/++ouTJ0/i6uqKvLw8f/75JxKJhBEjRgi6G7Qf2LW0tISOozOVn59Pbm4uxsbGGBkZUVNTI6YVq1atYunSpdTV1bFmzRqgfXqpra0thHEf17179ygrKxMc+9OnT+Pp6cnUqVNFuMmjR4+4cuWK8PqWJkpKRXBNTU00NjZSVlYmepiKigru37+Pr6+v4B7/X/WPOK/SE7uxsTHr1q1DUVHx38ydDQwMRBoVwKJFi9DV1e3Am5LG6kkvzM/Pj/Lycq5du8a3335LeHg406dPZ+bMmUyfPh1XV1dKS0vFuGXt2rVIJBK2bdsmTrXQ7v82a9YsduzYIbzLPrWkvJexY8cSHx/P1atXUVRUZNiwYejq6ooGDtoX3O7du2NpacnNmzfJzMzk1KlTDB06FBUVFbZu3Yqvry+ZmZncu3ePQYMGdUARVVRUaGhoICwsTKSw9O/fv4PASSKRUFlZiUQiEfziDx8+CAPqjzf0T62pU6fS0NDAhQsXiIiIEMiDVJVdUlLC/Pnzqa+v55tvvsHKyooff/wRDQ0NHjx4gJWVFR4eHmhqahIeHs7JkydRUVFh37592NjYkJWVRVRUFHV1dRQVFRESEkJpaSnm5uZMnjxZGBcDHR7Oj1E0W1tbgoODuXfvHq9evcLV1bXT17l3717c3NzYuXMnb9++Zc2aNTQ0NJCYmCjoCV27dkVXV1eMe54+fcqtW7d49uwZlpaWgkyenZ2NtrY248ePp7i4mDVr1vD27VtGjBiBhoYGw4YNE5zDTZs2sXHjxn9rXH/66Sdu3LjBggULmDx5MqWlpbx48YKCggIRD/yp9csvvyAvL8+0adNwc3Nj7969FBcXC+6dnp6eiEIFuH37NgkJCUJF/tlnn1FbW8u5c+c4fvw40dHR1NfX4+XlRU1NDU+fPgXavRs3btyIi4sLenp66OrqMn36dMLDw/nw4QPXrl2jT58+uLm5CXRLWv86RutstbS08PDhQ3R0dBg4cCAmJiYUFhaSmJiIoaEhPXr0oLa2lrdv3yInJ4e7uzsyMjJ89913NDc388MPP3DkyBG6du0quF76+vrk5OSwdOlSPDw82LhxI1euXOHatWucOHGCgoICJk6cyM2bN1myZImIn5bG5i5btgwvLy+WL1/OnDlzePDgAQ8fPhQ+z9J44E+p77//nuLiYkHFkrpQaGlpUVxcDLQv6LKysuJ9L168yHfffceQIUNQUFAQtoMPHjwgMjKS7Oxs/P392bdvHwUFBVy4cEGM4uvq6rh9+zaXL1/mt99+w9ramuHDhzNkyBC6dOkiDqwuLi7Ex8ezefNmysrKGDVqlLBy6mwdOHAAFxcXTE1NmTlzJiYmJrx//140rt7e3gQGBjJ27FgCAwM5duwYMTEx3Lx5k4qKCrS1tdHU1OThw4ecPHmSzMxMJk6ciJqaGl9++SVnzpwRG7OKigpBQUGsXLkSWVlZNm/eTEREBJs3bwbg+vXrREVFsWzZMmFNKK36+npmzJiBt7d3p1LEVqxYQUFBgViHi4qKUFRUZPny5RgZGdHa2iqmPJGRkXTp0gV5eXlmzZrFhQsXxBoh9UKFdiHlnTt3OHDggFh/8vPz2bhxI6dOnWL06NEsW7YMJSUlkpOThcXS2bNnhXcsIFwjGhsbUVVVxdraGjk5uU7T6f4VySwtLaWmpgYLCwtiY2N59uyZSI+UCo8XL16Mnp4ev//+O8+ePRP7xZs3b1i8eDH29vYMHToUZ2dnRowYwblz59DQ0CA5ObmDD63U/P63337D0NCQKVOmYGlpiYWFhYgRX7lyJYGBgUyYMIHi4mJxvztT58+fp6WlBXl5eVpaWhgxYgSnTp1i2bJlLF26FGdnZ7y8vDA1NRWH88rKSqqqqgTaLP28RkZGuLi4oK6uLgIJKisrsbe376Cgr6io4MSJEzQ0NNC3b19evXpFRkYGixYtEtctRedlZWVpbW1lyJAh+Pr64uHhwblz5z75+h4/fsz27duxtrZm3LhxqKqqirXG3t6ejRs3Ct/p6upqQb346aefSE1N5euvv8ba2prLly/z7NkzvL29qaqqwtXVlV9//ZXm5maKi4tRUlJi4sSJVFRUkJSUxMGDB/nw4QPq6upkZmaipaUlklPl5ORISUkRlA1PT08+//zzT+bWd3pncXNzo62tDYlEgra2NgsWLADaES0TExMCAgIoLi4mMzMTIyMjCgoKaGxsxMHBgQ0bNnR4L01NTeTl5YmMjMTGxobFixfTo0cPzM3N+fXXX8nNzaV79+7ilC2t/Px8CgoKiIuLIy8vj9u3b+Pl5UVQUBB6enqCj6qlpdXBB/ZTysrKioqKCnx8fLh69SqbN28mLS1NnMgLCgqEqEnKrwoICOCrr77i0KFDKCsrc/v2bfz8/DAzM2PGjBkcO3aMx48fY2xsjLu7O5WVlSgqKtLW1sb48eN5/vw5L1++5MyZM8KkuaqqivT0dLKysvD09GTGjBliZKquri54PlLLos7U4sWLaWpqYs+ePTx9+hRfX19sbW1FY6CqqoqZmRm5ublERkaSk5MjEFMrKyuxmDU3N3P37l1KS0vZsmULjo6OnD9/nsTERLy9vVFWViYlJYWsrCyePXsGtDdV0uZVqu6uq6sjJSWFwsJCdHV1cXR0xM3NjXHjxvHq1Svev3/fqea1sLAQeXl59PX1Wbt2LY8fPxYKYB8fHwICApgwYYI4qHxchoaGPH/+XORwS8VG0uS3uro6nJ2d6dWrF8+fP+fYsWMEBAQIhCQmJgaJREJCQgLe3t6kpaVhb2+PhYUF2dnZvHr1Cnd3dzw9PYXKvKqq6t8a3f9Wt27dwsnJidjYWCwtLcUBLSEhgZqaGjHe1tPTo6WlRVwDtMfYBgYGUlFRwYMHDygpKaG0tJSBAwfi4eEh0qq0tbVZtWqVoDtIPUfd3NwYO3YsV69epaysTIzMbt26JeJ1JRIJJSUlonn9J3zQ0tJSmpqaOoih6uvraWhoQCKRkJ2dLe6LiYkJFRUVyMnJoampyfLly3n//j0pKSncvXsXHx8fjh8/zpAhQ3jy5Anh4eFifKqurk5LSws5OTnIyspiYGDAq1eviImJwcPDg+rqam7dukVLSwtlZWWCHmBoaMjKlSuJiooSiENnvGylFjSAiKmVjvVmzJjBxYsXheBz2bJl/PDDDyIzvnv37mLKBe1N4uHDh0lISBA8XqnfdkBAgBiFx8XFCQeFmpoavLy8SEtLE0EHrq6uyMnJkZOTw4YNG9DW1haIsnQq1pkyMTFhxowZBAQEiO9baj3WtWtXvv/+e+Tl5UXCUmNjI7KyskI0N2zYMDQ1NYmLixPWecOGDaO1tZWbN292mKp4e3uzZ88ekdZ369YtXr58ycCBA9HU1BQhM+PGjaOxsZFz587h4uKCu7s7ysrK2NraYmtr26nm9ccff6SwsFBYZEnFt0FBQaioqKCqqoq+vj4DBgzg/v37gkscEBDAihUrxPchnbZFRERw69YtgfBDexxqVFQURUVFYq1MSEhAIpHw5s0bPvvsM1paWnB3dyc1NZUbN24QGBgo/GS1tLSEjVtVVRWhoaGdEjVpaGjQ0tJCamoqGRkZwiIT/ifaNiEhgRcvXnD27FkREz579mxMTEyEp+yAAQN4//49jx8/FsmYBgYGgmNpZGREQEAAycnJnDhxQriLSCQSFBQUSE9PRyKRoKGhweeffy4aqMWLF1NVVcWaNWvQ09P7R84mI0aM6HDQHjlyJFlZWaxdu5bm5ma+/vprxo4dS2FhIdnZ2SJx8uPJp56eHsOHDyc9PZ2UlBSRMBYbG0tlZSWampqYmZmRkZFBTU0NaWlplJaWMnXqVBH3XlFRIZrvrKws2traBLhjbm7OsGHDcHZ27jTyWlBQQFVVFXl5eRQUFGBpacm7d++oq6tj6tSpYhJaVVXVIZTh8ePH3L9/nwEDBmBpaUlDQwOGhoY4OjoKeoSVlRVKSkpiStbU1MS8efMoLi4mIyODoqIiFBQUyM/Pp6ysTLy/vr4+BQUFIlLcysqKfv36UVNT80mJk51uXp8/f46/v38HTsKTJ09YtmwZixcvJiAggB9//JH79+9z4sQJnJycOH/+PGVlZf+mqs7LyyM5OVl8uVIV/oYNGxgwYAB6enqicX379i06OjoiO/fChQv8+uuvQiAmtdPR09PjzZs3rFmzhi5duvDXX3/x9ddfd+oapRutrKwsq1atQkZGRiBaFRUVQvmfmJgo+E7jx48X/E9DQ0Mx9qiqqkJHRwcbGxsxmlZWViY5OVmM6MaOHcvx48c7jHPi4uL48ssv0dLS4uDBgwL5KCkpwcLCgqlTp/L8+fN/tKFIJBJMTExYt24dMTExwknBzMyMb7/9FgMDA+Tl5TE0NGTFihXilAZ0aNIePnyImpoa+/btw9TUlMzMTFavXi3StNTU1KiqqkJDQ4MDBw6wfPly8vPzxaYrXZyTkpLYuHEj165dw9XVld9//10IEKQoWkhIyCdfX319PcnJyfj5+aGlpcW1a9coKSlBT08PFRUVbG1tBVrxr+Xk5MSuXbt48uQJampqgivo5eXFo0ePuH79Ohs2bODmzZvMnDmTK1eu8OzZM65fv469vT2LFi2iS5cuvH37llGjRhETE8PMmTM5evQo+/fvx8XFhR9//JGGhgaRoX3q1KkOVJFPKVNTUwIDA0UMoxS9NTY27oDuSw84Hz58ANqnBX379qWmpoaQkBBKSkoYM2YMGzduJDMzk7KyMoYPH46dnR3Xr18XYx5op/IcOnQIMzMzpk2bhpeXF6qqqjQ0NPD777+zadMm5OTk+OGHH1i4cCGlpaUsWrSoA52kM+Xu7o6zs3MHAYaVlRVWVlYcOXKE/fv3M378eMaMGdPhdVJUeM2aNZiYmFBfX4+ysrJQBQ8dOpSQkBCBdC1cuBAZGRlWrVqFjo4OX3zxBenp6axYsUIgL+fOnaOpqYkdO3Z0+E4A8f7/LyUrK9vhADNv3jyCg4PFoXnjxo3Mnj2bsrIy0Yh8vMn4+flhbW3NmjVrsLS0xMrKCk1NTfz9/TtwHIcPHy48oqWK/piYGBQVFbG0tMTMzAxDQ0PxGmVlZZFd/vPPP3faX/Kvv/5CXV2dsLAwIiMjCQ4ORlNTUyBvvr6+bNu2jb///pv+/fuTm5tLZWUljo6OeHh40NbWRn5+PhKJBHl5eZqbmyksLBRCkKSkJKA9dWvx4sViOiUnJ8fKlSvZvXs3hw8f5s2bN4wcOVKY5t++fZu7d+92mBi+f/++0/QdeXn5Dmrzuro6jh49yq5du1i6dCnLly9HVlaW5uZmBgwYwLlz5zhw4ABtbW3C4URGRoaCggKeP39ORkYGc+fOZejQoVhbW7N3715++OEHVqxYwc6dO2lububGjRv07duXKVOm4OXlxcuXL3F2dubUqVMcPHiQ6dOns3DhQrZt2/Zvn1dGRqYD7/FTStpASS23jh49Kp4BqbBu0aJFhIeHM3ToUKqrqxk2bBhr165lyZIl9OrVi6ysLCwsLISQDBCOHfv37+fAgQMsXbqUpUuXsmPHDkaPHs2HDx84d+4c1dXVzJgxg+XLl6Pw/2PvvMOjqrq3fU/KpPfeSSUJSQgpEELoSA0dadJRkBFFFAsWQAFBkFcpxgKCIEhT6YQiJXQChBAghZCEFFJI75M63x/j7B9R1ER5X9Avz3VxDZkzc+bsvc9Ze9VnaWoikUjo3LkzwcHBqKmpUVJSIgxKCwsL5s+fL1KemosvvviCl19+ucl7zz33HO3atUNXVxd3d3dqamq4evUq+/bto7Kyknbt2gkqUFWuromJCRcuXGDHjh3MnDmT559/ns6dO1NaWoqLiwupqaloaGiwd+9ewQri4OBARUUFzs7OaGhoCF5xW1vbJikQ7du3x83NTbA2tATOzs7s2rWLrKwswU/bq1ev39BSamlpiX25uLiYV199lWHDhqGhoUFsbCxdu3alb9++6OrqUllZSUREBJ9++ikzZsxg6dKl7N+/n+3bt7NgwQJmzZpFQUEBxcXFGBoaik6pDyv8qlSg9PR0cnJyRLOP5kQiW6y8lpSUoKmpKZQZuVwuqBEUCgUFBQVUVlaira2Njo4OUqkUGxsbzMzMRMWjjo4Offv2JSQkhI4dOxIdHY1UKhWbroWFBQEBARQVFXHgwAHOnDnD7du36dSpE+PHj8fW1pZu3bqRlJQkKo3z8vKEML969Srnzp3j8uXLgpC8JVDlLd64cYNx48ZhaGjIl19+iUKhYPjw4YJPUBVmqKur4/r165w9exY3NzeGDRuGoaEh1dXVJCUl0aZNG7HgoAyPx8fHk56eTq9evRg/frygDKuurkZHR0e03VWRrjc0NFBaWiqoJORyOX5+fnTu3JnPPvusReOLjIwkOztbdCICRGtCY2NjLl++LJLhZ86cKULBKjLsjh07kpGRwblz5+jatau4GQ8ePEj79u1xcnLiwoUL2NvbC4ojlTe9X79+Yp0KCgowMTFBTU0NS0tL3NzccHd3F4aCmpqayAVsifJ6584ddHR0uH37NpWVlaJrkqWlpaA2UZGLW1tbC8F04sQJioqK6NOnD2+88QYZGRlizsePH8+gQYMwNzcnMTGRxsZGZs+eTWNjI/v27WPZsmVMnz4dJycnxo4dS319Penp6ULxiomJISAggBdffJH58+ezYcMGFi1axPDhw4UXrCV4/vnn6dChAzY2NtTU1PDVV1+hqanJO++8I7wU1tbWmJmZMWHCBDw9PWloaCAvL4/Tp09z/vx5weU3btw4/Pz8qKiooKSkBDc3N9zc3NDW1ubHH3/k7t27vPDCC6LVck5ODtXV1aKI4+233yYjI4OJEyfy/fffs2rVKgYOHCjoXe7du9ckd6+5eFixqK6uFvckKBWNQ4cONemWVVpaSvv27dHT06O6uprGxkahWKiiAyr+aVVFdGNjI1FRUYKmrmPHjnTp0gUbGxvRllFfXx97e3ucnJzw9vYmLi6OH374QdCxNTY2cuLECb777rsWjS8qKoq0tDRcXFzo1q0b+vr61NfXC4J2lYGl6jzn4+Mj5rG8vBxNTU2RxmRmZia8Gir6G6lUire3N9u2bRPPu7OzM5cuXaK8vBxra2tMTEywtLREIpGIrj6gpCCaOXMmNjY2ODo6Ul9fz8CBAwWlVnOhr69PXl4e169f58qVK1y7dg1dXV0GDRrEuHHjqK+v5/DhwyQnJ4vUkz59+jBy5EhcXV358MMPuXLlCiEhIbi5uZGYmMiaNWuIi4sTRZHGxsZMnjxZ5LWqaKeCgoJ47733ePnll9m6dSuWlpYYGRkRExNDfn4+PXv2bELVo/IUtQQSiaRJeoy6uroo5GxsbOT8+fNkZ2djZmbGmDFjBDXYjz/+SFRUFAEBAdjY2FBcXIxcLqdHjx6C6B2UyoSPjw8DBw7Ew8NDKOe2trY4OTlhZmaGVCoVxaF9+/bl4MGDwugpLy9nz549GBgY0K1bN8zMzJg+fTpbtmxp9hgzMjJwcnIiODhYeO5u3rxJZWUlISEhtG3blk6dOqGnp8f8+fO5c+cOK1euFIqXtbW1oGICJQvNvXv3hNHn6ekpmINUCAkJISQkBDU1Nc6fP98kXdHe3h49PT20tLTQ19dn6tSpovFDTk5Os7x2v4aFhQW5ubncvn1bpKkNGTKkCSVleXk57u7ulJWVcefOHe7du8eFCxfo0qWLiEaWlJSQlZWFlpaW2L9Vz2xpaSmJiYnk5uaira2NhYWF6ESpr6/P4MGDUSgUqKmpkZ6eTnx8PPb29rRt21akFKnm8GHGheZAR0eHoKAg8vPz2bx5M23atBFpnaqxeHp6CmU8LS0NqVRKnz59AGW0Ozs7u4mhdujQIY4ePYq6ujp2dnZUV1eTnp5OamoqcXFx9O/fH3NzcwwNDZtQnt26dYuysjKCgoKQSqWYmppy/fp1CgsLsbOzE1HpP0OLlVcNDQ2ysrKwt7cXOVQSiUTkRFy5ckW0hVN1Y+ratStSqZS8vDx++uknGhsb8ff3JyQkhJUrV7JixQosLS2xtLSkoaGB3bt3C+5IVR6IsbGx6Eai4s0bP368sABVbWhVCqWenh6VlZWMGzeuxb2cQZk/tG/fPszMzFBXV+fdd9+ld+/egjHg+vXrtG/fXiz2wYMHWbNmDebm5lRVVTF16lR0dHTw8/NDIpGgqanZJMx39epVjh49irm5OVOnTuWZZ57h1q1bpKWl4e7ujpeXF9OnT+fGjRscOXKEq1ev4u/vT1hYGPfv3yc2NhYHBwcRvmkJ7t69y7Jly5DL5SxZsgT4v4YKhw4dYvHixWhpaYn8IpXy+sUXX3D69Gk+++wz+vTpI7re3Lx5U3hhf/rpJw4cOMCzzz4rSJsvXrxIp06dxIavugZVRy9nZ2dWr16NhoYGtbW1VFRUUFlZiZ6eHsXFxcTFxbVofMeOHWPJkiUUFxczZ84cUaC1detWHB0dqa6uZvPmzeTn54viQy0tLUHAP3fuXFasWIGjo6PII1T1GgclW4Oqovnrr78WpNyqEJqq1bGKp/Hq1atkZGSIMJeHhwfR0dH88MMPTJo0iQEDBggPUnPRp08fIczz8vKorKxEXV2dtLQ0NDU1uX37NqDMHZ41a5YIzc6dO1cQw5uamuLt7U1VVRU5OTlCoKoqnIcPH85XX33F+++/j5eXFwMHDmTGjBmCHQRg69atrFmzhqlTp7J+/XratGnDypUriYuLw8fHh507d5Kbm4upqakIkzYXN2/e5Nq1a/j5+REQECAUBLlcTmZmZpPQamRkJCUlJfj6+goFNjIyEoVCQUhICJGRkaKIq76+HktLS+zs7ERxVGJiIj/99BOdOnVi7dq1WFhYiMjE/v37RdFhVlYWhw8fJiYmBn19fUFTdPv2bSIiIlr0PN6+fZu1a9cyePBgUYyal5fHvXv3RBc7QNBC+fv7c/ToUTQ1NUU3KG1tbQoKCjh+/Dg5OTlYWFgISrDMzExu3LiBQqEgLi4OU1NTXFxciImJ4fr16xQUFDBhwgQR1amqqhKeVX19fWbMmCHyYDU0NHj22WdbrLyquFT9/f3Jz8/n0KFD+Pr6smjRIqysrDh37hyZmZnY2dkxf/58goODiY+Px9vbm+zsbFEPoa6ujqurK4mJiWRkZLB//3569uzJzJkz8fHxaeINz87O5p133uGll15i6dKlDB48mHXr1vGf//xHdEhctmyZeD6rqqqQSqWi0lpVLNwcNDY2iihkQ0MDurq6zJ07l0GDBlFTU8MPP/xASkoKjY2NIjQ6duxY9uzZw+rVq5k2bRqDBw8mPz8fFxeXJoorKFNLVO3BHzx4QGlpKXPnzuW9994jPj6erVu3MnDgQKGsOjg48M033+Dh4UF9fT2nT5/m5MmTgDKiqGq20hLlVVWcM2vWLIYOHcqqVatYvXo1Hh4evPLKK3Tv3p2lS5dSVFSEiYkJfn5+9O7dWzxf586do7q6mj59+qCtrU1dXR0nTpygurqacePG0bdvX7p27SocQao0PSsrKzw8PMjNzaW0tFTsn6rce1WhMSDGf/DgQfbs2fObVMM/g6p6/8033xS5rqomNKWlpRQXF6Orq4uXlxdeXl7cvHlTGL22traYm5tTWlrKiRMnsLa2Zt68eUJpra2tJSEhgRMnTrB3716ys7NFROSnn34iLy+PgIAASktLMTU1RVtbmwcPHnD8+HHat2+PlZUVVVVV1NbWCudOS9PMVPv7gQMH2Lt3LwMGDBDFfvv27ePs2bNMnz5d6DMpKSkUFxcTGBiIi4sLNjY2GBgYCEOttraWlJQU/P39+eKLL/Dx8RENDoYPH87du3d58cUXRUctVTpkXl4ely9fxsjISOhCKk5dVTOKNm3aYGRkJJrp/B5arLweP36cs2fPMnDgQAwMDETv8LFjxxITE8OpU6cYNWoULi4u7NmzBxMTExGqUVErtW3bVlAkaGtr07ZtW2xtbamvr+eHH37gP//5D56engwdOhQXFxfU1NSwtbUV1beWlpYUFBSQmZlJ+/bt6dixo/Bq1tXVERoaSkREBHfv3m2SE9UcqIjce/bsSXh4OL1796aurg4DAwMMDQ1JS0vj+vXrNDY2ioq4iooKvLy8mD17NnZ2dmhqanLo0CEGDRokbrLvvvuO06dPM3ToUHx9fUlPTyc5ObkJX5yrqyuZmZloamoKblFLS0v8/PxE6z0DAwPat29Pt27d+PLLL1vU5k8FExMTFi1aRGlpKe+8847g+1RXV8fR0VGErGxtbTl06BDDhw/H3NwcW1tbqqurUSgU2Nvbi2pdlUfM0tKySW5SaWkp+vr6eHh4YG1tzf79+0lLSyMzM5PRo0fTr18/kVaggioslJGRwe3bt4mPj29xH+eUlBS0tLSwtrbGzs5ONL5QnUddXV20wns4hOHj48OpU6e4ceOG6AxTXFzMTz/9hJWVFZaWlly7dg0NDQ1hOJWUlLB69WoMDQ0xNzcnIyODsrIykUOUk5ODq6sr7du3Z926dezbt4+AgACCg4M5efKkyN9SkUE3Fw8ePMDe3p6zZ89y4cIFgoODsbOzIy4ujpKSEtzd3XF0dCQ+Pp7vv/9etIWdN28eDx484OTJk8IjlpaWJjowXbp0ibNnzzJs2DCkUilvvPEG7dq1w8bGhpycHGJjY2nXrh2NjY18/fXXbNu2jdGjR+Pg4MDy5cuxsLAQPH8q/BXScFB23ykuLhb3qEpZV3G+1tXVNSn80dLSEh6vjIwMfH19uXPnDv/5z38oLi7mtddeIyQkBE9PTxHml8vljB07ltzcXNTU1Ni9ezebN2/G1NSUuro6LC0t6dSpkwitGRgY0K5dO1xdXUWTktTUVG7evImhoaGgfGoOrly5glwuF96Mu3fvcuPGDZydnbG3txcbha6uLpMmTRKpSt7e3sKg1NTUFOkwKnYQlSfE1NSUsrIykpKSyMnJ4c0332T06NEMHz5cGG0Pt7RVhQJVyrG+vj4JCQmiocZfaTRhYWGBp6en6ECkoupS5e8fOHCAvLw8hg4dKoqeVN5QW1tbli9fTkxMjNjc+vTpQ15ennCAqFhuTp06xc6dOxk2bBgdOnRg9uzZWFpakpycjJ+fH15eXiQkJKCmpsbEiRObFGypZLC+vn6L2Qb27Nkj6PHU1NQIDQ0V7TJB2VjCyckJR0dH7O3tuX//Pvv27cPU1JT169czYsQIsrKyOH/+PCkpKWRkZIj0hbCwMMaOHStkVHV1Nf369RNFoklJSaxfvx5DQ0OGDBlCY2Mjpqamokizrq6Odu3aoampSUFBgWgD/VcI7ktKSjA1NRVNK5KTk1EoFHz11VfEx8fz4osvYmZmRllZGXV1deKezsrK4uLFi8TExHDhwgWmTJmCh4cH4eHhHDhwgE2bNtG/f38hLysqKgQzSnl5Od988w3x8fG8//77+Pn5ERsbi6GhoYicFBQUNInQlJWVtYhdSIXa2lqkUikzZswQxa4qwzUvL4+QkBBCQ0NFcZaLi4uILFdUVPDdd99RWlqKu7s7bdq0wd3dXRhUa9asIT09na5du/Lmm29y/fp17t69S2NjoyicXrx4MfX19fTp04dJkyZhYmJC9+7dqampEc2BsrOz+fHHH7G2tv5NG/A/g4+PD3l5efj4+IiCORWSk5M5cOAA3t7eor4hMTGRdevWUVNTw5QpU5gxY4ZgGVIoFEgkEvr27YumpqZYO2tra0aNGsUzzzzDsWPHRLe1goICwc6Sk5NDjx49RJRELpejpaVFSEgIJ0+eZM+ePfTs2bNZTZharLxWVVUJ3kWpVMqDBw8YOXKkuLgLFy4Id7GxsbEIc8fHx1NfX8+LL76Inp4eUVFRnD9/ngcPHlBVVYWdnR0WFhais9TQoUMZMGBAk99WFVWYmJiIcFN5ebm4kSsqKlBTU8PPz69J61SVoG4OoqKiKCsro0+fPnh4eAg6h+HDh2NoaMidO3dISEgAlEqbVCrlypUr9OzZUxSvpaWliU1Q5XZ/8OABaWlprF+/XlBHDBkyBDs7OxobG0XOr2rTv3TpEocOHaJ///4MHDgQMzMztm3bJkIrKgtp27ZtQoA3F3V1dSxcuJBXX32VZcuWMXXqVCH8HBwchHfizp07TJ48mejoaJYtW8bYsWOxtLQURXAq8mxra2uhaJw5cwa5XE6XLl24du0a5ubmzJkzB3t7ezZv3syGDRswMTFh8ODB6OjooKOjQ0JCAvX19ZiammJnZ4euri4mJiYUFRVRV1cn2vU2F97e3oIGafTo0QQFBYn7C5QPTFBQEIWFhWRnZ4vf6tevHw0NDRw4cIAtW7bw3nvvYWZmRkpKCtu2bRPn/+CDDxg3bhwPHjzg0qVL2NraEhwcLFIPsrOzMTU1pba2li+++EJ0U4uLiyMxMZG3336bdu3asXz5cgoKClBXV2+xgrd3715mz55NdHQ0J0+eZNWqVfj4+LB161ZMTEzo2bOnaEpw+PBhsrOz6dWrF/b29nz//fds2bKFDRs2kJ+fT3FxsdjktbS0RGvK3r17i39VVVVs3ryZK1euoKenR35+vshx3bBhA4mJiUyaNIlp06aJ5+D+/fsYGxuLUFJLoerspArJ5eXlYWZmhoaGBp07dyY6OlpY7w97Lvfs2YOpqSmjR4/m7NmznDhxghEjRoiWgxkZGUJhUVGaKRQKxo8fz4kTJ+jUqRNSqZSLFy8KDsP8/HwKCgpwc3NrUuhXVVWFr6+vUIZaImt0dHR49913GTFihGDBUFX7a2trU11dzdq1a6mpqeH1118XHK9paWmC/qq4uBg9PT1cXFxIT0/n8uXLxMTEoKmpyeTJkxk0aBAXL15k6dKllJSUcP/+fXx8fLC3t6ewsFB4s2tra2loaBBKcVlZGUeOHOHUqVOUlZWRmZlJcnJyi7oVgpJ68P79+2hqaor2kKD0WEZHR6OpqcnQoUOxt7fnxIkTIrpx6dIl6uvr6d69O/7+/hw6dEj0PP81VJGwjIwMEhMTGTFiBGvWrOHkyZOsXr0aHx8fFi5cKFoIqzyu1dXVaGhoiAYBD6eeNRdXr14VG76uri6urq5NihPbtWsnqM0Azp07x48//sjIkSN5/vnnAaVDSBWdUfW9z8zMZN26dRQUFPD++++jo6ODvb09I0aMEMpnWloahoaGlJaWkpeXh5WVlchjVlNTQ0NDAwcHB1G8mZ+fz8WLF1tMJaXaa06dOsXx48fx8fEhPDycjIwMvvnmGyIjIzEyMmL8+PHcv39fRA10dXUxNjYWfL7JycmcPHkSOzs7rKysCA8PZ82aNezfvx9HR0eRanfz5k1ycnLQ0NAQTB/e3t6Ym5sTExNDYWEhbdq0wdLSEgsLC1GRD0pjqaW84KAsvBs9ejRhYWGEhYVRVVXFJ598wvr16/Hy8iIsLIykpCTi4+Px8/PD2toaV1dXJBKJ6FYnlUp58cUXxTPV0NBAVFQUycnJuLi4MHr0aEBp0MhkMu7fv0+vXr3Q1NTk+PHjNDQ0EBcXx759+5g9ezZDhw4Vkcznn38eW1tbvvjiCzIzM0WtUHNhbm6OpqamkE8qWlFQNp66d+9ek9xXVUv43NxcPvvsM3r37o2NjY2g2NPV1RVRptraWmFoGxsbY21tjY2NDUVFRXz22Wci5UDF8SqXy8Xvq7yuoJSlS5cuZdu2bWzatOlPx9Ri5XXevHkkJyfz3XffcfbsWfz9/UWoo7CwsAkXqqp/vWpzVoWgMzIyWL16NcePH8fS0pKgoCD09PTQ1dXlmWeeoXv37k1ok9LS0igqKsLJyYnly5ejrq4uQigq3rfq6mqKioqadPz6Kzh9+jQzZ87k6tWrfPjhh+jo6JCVlUVubi6rVq0SCsDhw4e5ceMGbdq04e7du01+19nZmeDgYD766CMWLVrE3LlzeeONN3j++eeZM2cO3377LRMnTuS1117j3r17DBgwgAcPHrB8+XLBMbd582YRzqqurqZTp07Y2to2qTJUhRJbyjhw5coVDh48yP79+wEICgpCU1OT3bt3U1ZWJoRqVVUVCQkJokK+f//+zJ49GxMTE3bu3MmSJUvQ0NAQ1DOWlpbU1NQgk8kEncu1a9cEX55UKqVDhw4YGxs38cxduXKFzZs3M2HCBKZOnQooH7bw8HBBJ3bx4sVmjy88PJz4+HhCQkJwdXXl4MGDpKenExYWRn19PVevXiUgIICKigrWrl3L4cOHcXZ2ZubMmejq6hIbG0thYSETJ06kQ4cO+Pr6cunSJUBJqWJubs4HH3zAiBEjCAkJ4aWXXsLAwIA1a9YglUo5ePAglpaWPPPMMxgbG7NhwwaOHj2Km5sb27ZtE4rWzJkzW7xZqhAfH09DQwPu7u4iPwmU1FYqS3j79u3cunWLZcuW/cZSnzRpEs888wzFxcXs2LGDhQsXMmjQILp06SKK8NauXcs333zDyJEjSUxMpLq6muHDh2NnZ8eePXvIyckRFvTQoUP5/PPPycnJ4dSpU9jb2yORSISn/VEdaf4MmzZtwsrKigEDBpCfn8+SJUvQ0dHhvffe46WXXsLV1bVJt6t9+/bx8ccfi2cPlBvvhg0bGDRoEKCkpzpx4gTLly9vMie1tbVkZ2fj7OzMypUr8fT0JC0tDWdnZ1JSUpDJZKLjjCr3b9++fWhoaLSY31WFvn37CpaI8vJy/P390dbWFsI8JyeHr776SuTjPvPMM9TV1aGvr09ubi6bN2+msbGRvn37kpKSwq5du8jJyRGeJ21tbXr37k1jYyMdO3ZER0eHkJAQPv/8c06fPo1UKmXRokX07NmT/Px86urqRLi1rq6O2NhY4QGcOnUqCoWiRc8hKJW11atXM3jwYMGuoOqG1NjYyJQpU3B0dGTbtm1Mnz6dgQMHsmzZMpKTk/n+++8ZNGgQxsbG7NmzB2tra7y8vJqEhBctWsTGjRt59tlneeONN5o8TyUlJRw7dgxXV1fGjBnzG3osVYrExYsXRbTvrbfeatH4Hm4uo66uLkK/Kty+fRsLCwuMjIyoqqrCz8+P5cuXo1Ao2Llzp2BEkEgkWFlZ0b9/f+bMmcPJkycZMWIE58+fF9fZ2NgoFGOFQsHIkSOFYa7af1T1EWpqapSXl3P16lVcXFxEfnpiYuJf5mGurq5GLpczYcIEAgICBOPD1atXSU9PB5RphQ+nx5mZmREWFkZQUBDq6upER0ezZs0annvuORwdHZk4cSKZmZkiKlZWVsaOHTtIS0vjrbfeYsuWLZiZmeHs7ExdXR1VVVXcvHmTgwcPMm3aNACRAjF16lTBkdvStIH79+/Tr18/Fi1axOTJk4mJieHbb7+lpKSEUaNGMXjwYNavX8+NGzdwd3cXnm8VldvEiRNFyqIKL730EqdOneLtt98WBhMg2FkSExPp06cPEyZMYOzYsejp6ZGUlMSNGzdEDUR0dDTbt2+nc+fO9OzZE1NTU7766ivOnTvXIqdVbGxsE1pNNTU1wdwwZswY+vbt24QSLTw8nK1bt/Laa69RVVXVhAJRV1dX5HNXVFQQGBiIsbEx8fHxJCQk4OnpSYcOHXj55ZeprKzk7t27ol4oLi6O2bNnY21tzbp165p4zVWNZ9LS0nj55Zf/1LvcYuVVVcyh4gdr166daKvm4uKCt7c3x48fp7GxETMzM4yMjNDR0cHY2Fg8eCrPyeHDh0lNTaVfv37Y2NgQGRlJcXExNjY21NfXo62tLQjXL1y4gK+vr+ByfdhKaGhoQEdHR1hfoFS8FApFi0MIKkv50qVL3L59G3Nzc2pqakhJSeGLL74QAr5Tp06cPXuWhIQEUdShovExMjIShR/V1dXiQTIyMmLs2LGYmpoyatQonJ2dkUgkYqP46quvKCoqIioqim3btonuOPn5+VhaWiKVSlFTUxNFXXZ2dowePbrFymtubi4zZsygurpa8FXm5+dz6dIlNDU1KS4uFi3gxo4dy8WLF4mNjSUgIEAonQ4ODlhYWFBcXCy8d3Z2djg6Oorij8DAQK5fvy68xR07dhRe8oeh8tJfuXIFfX19jIyMkEqlghKkpZ4ClaUvkUjQ09PD29tb9F3Ozs5GKpXi7++PQqHghRdeIC8vj7y8PEpKSmhsbMTW1pbnn38eX19famtrBTWMKj91y5YtbNmyBQsLC3r27CkYFPT19SkrKyMnJwdbW1tMTEzIzs7m1KlT9OrVi48//hhra2thiapy7HJyckhOTm7RGAMDA1FXVyc0NBR9fX2RnuLj40NVVRV79+5lyZIlVFRU0K1bNyF8bty4IQrJwsLCRJOPW7duCcJtPz8/BgwYQGxsLPv37ycuLo4HDx7QqVMnBg8eTFVVFZmZmYByQ1NVhk6YMIGzZ8+SlJSEg4MD+fn5rFmzBjU1tSbCu7l4mEpKxcagauJhYmLCmDFjmoTpb9y4wcWLF+ndu7cYr5aWlmAjyMvL49SpUzQ0NAjqtYsXL2JiYoK5uTnjx48XNHwPtz1U5dCrIkMxMTF88MEHnD59mt69e9OlSxdBRt8S6OnpsX37dnx9ffHx8cHAwID8/HyRG2liYsL48eOJjY1FIpHw4MEDrKyssLa25tatW3z55ZdYW1szaNAgCgsLSU5ORk9Pjy5duhAfH8+9e/cEOf2KFSsIDg4WuWiXLl0S9GKgTB84efIkly9fJjg4GH19fcLCwrCwsKBv377CI9pS5fWVV17hxo0b1NfXi/VUOTicnJxE2kJoaCiOjo7cvXuXkydPolAocHZ2pqCggIaGBuzt7cnMzGT+/PmimMbBwYHGxkaMjIwICwsTDBlff/017du3JykpiaFDh/Lss88CCENKpXyoPHQNDQ1IJBKMjY1b7LVTFSNVVVUhl8uF4rp3717y8/Pp2LEjVlZWKBQKUcjj4eHBgwcPuHjxIunp6ejq6ooqbhXPsuoekEql/PzzzyKyo6uri1QqFY6Ah3OsVWupum81NTUpLS0lNTWVhoYGvvjiC3744QdBRN9cJCYmirqDzp07Exsbi7m5OY6Ojrz++uts3LhRGMw2NjZIpVI0NDQoLCykpqamSUMaExMTrl27Rl5eHo6OjiKH9N69exgYGGBraysMx9u3b2NnZ4e6ujoVFRWcPHmS06dPY2trS/v27UlLS+PMmTOUlZVRU1PD4sWLRYSppbCzsxOpMgA//vhjk+I9iUSCpaUlnp6e2NjYiCgwKAvQVMwJ165do6amhps3b3Lp0iXBRKSpqUlRURGmpqbcu3eP69evk5ubi42NDcHBwUI3CgwMREdHh9raWgoKCkhNTaW4uFik7IwZM4Y7d+5w9+7dFo0vISGBwsJCcnNzkUgk9OrVS6TuVFdXU1tbS05ODmVlZVRVVRESEkLv3r3ZunUr+/btIzk5WTAEeXl5UVdXx/bt20lLS2PlypVYWlri4eHBjRs3iIqKIicnRxSs5eTksH37dgwNDcnOzqawsJAOHToIxfX06dN4eXkREBDABx98wMGDB5vF9fqXGcRDQ0N/Q1w9YMAANDU1WbFiBcuXLycoKIjZs2fTo0cPweNnYWGBnZ0db7zxhihaCQ0NxdXVlTfeeIPTp0+jra1NmzZtRNV3UFAQKSkp3L17l0uXLhEcHIy6urqwxB62ClTQ1dWloKCgxRuKiuR50KBBdOzYkfr6egwMDEhISOCtt95iwoQJbNy4kddee40FCxZQWFjI5MmTsbKyEnQuoNyY5s2bx+uvv46BgQF1dXWkpaUJD2Zubi5paWk4Ojry+eefs3r1ag4fPkxkZCS1tbU0NjZSVVWFmZkZtra2HDhwgOPHjzN+/PgmFslfyUMbMGAA3333Hc899xwrV64ElAqtvb09rq6uIu/Lw8ODiIgIvv32Ww4cOEBqaqr47U6dOvHNN98gl8sxNzfHwsKCqqoq7t+/j6OjI1paWrRv357JkyeLvt/waOL6gQMH0qFDBz788EMRWunTp4/oqtNSahdVi9+6ujp0dXUZP348lZWVote96r5VpWqAUnipCjVWr14tujDt2rWL8vJy1qxZg729PdOmTePo0aMEBgaSmppKXV0dH374oWBFKCgooH379qL976FDh9DX1xeKa2lpKZs3bxYVwnp6ety5c4dt27a1iNBfFbo2NzcnKChIbPLq6urs3buXDz74gPz8fEpKSpg2bRrJycksXbqU27dvs2TJEtq1a0dFRQUeHh6EhITQuXNn9PX10dTUxNjYmO7du4vK1O+//x5TU1OhwKha/oJy4384h87JyYnOnTujoaEhQmCqcOffgbm5OQsWLEChUDSJcpSUlIiN3s/Pj549ezahhqqvr+fWrVvC2Nq4caPwhEVHR/PZZ5/RpUsXXnnlFWbOnMmePXuYP38+sbGx9O/fn5UrV+Lm5sb69esxNTVFIpHw0UcfceDAAdEmuLKyUnimW4ILFy7w8ccf8/7774uCh++++w5TU1N69uyJl5cXCxYsEAVLVVVVYq51dHTQ09PD2NgYR0dH0dbZ0tISX19f1NTUSE1NZfv27YwcOVKQ3RsbGzNkyBCeeeYZfH19m1QPq7ofjR07ljVr1jBt2jQyMjL+Uq94FVRUfuXl5Zw9e5YuXbrg4OCApaVlE7rFtm3bcvjwYU6cOEFcXBwhISH85z//ETy+CoWCdevW8cEHH7B3717Ky8uZO3cu7777LrNmzcLKyoqkpCTWrl3Lzz//jL29PTKZjFWrVqGvr09iYiKTJ08WFHWDBg0SBq6KH1b1Oy2Bqk1qTEwMFRUV9O/fn5iYGKZMmULHjh154YUXAOV9qGKZuXTpEkFBQcyZM4dp06Zx7949kTJVWVnJmDFjOH36NFOmTMHc3JwlS5Zgb2/PxIkTCQ0NbRKVfPg60tPT0dHRwdDQEDU1NbS1tRk8eDCpqamCvkv12Zbg66+/Zu3atURERDB06FBGjx7N8uXLOX36NGPHjhWUZlVVVWhpaeHk5ERpaSmXL1+mpqaGAQMGiPu2TZs2tGnThrq6OnH+kpIS0tLShLNK1Qhmz549bNq0SdBfZWVlERUVxaxZswgMDOSdd97hq6++YteuXWhpaTFw4ED8/PzYsWMH8+bNa9EYg4KCGDdunMgXfthhcvz4cby9vRkwYAC6uroYGhpSXFyMvb19EyWruLiYixcvivau7777Lu+99x6g9KDeuXOHIUOGCCYhqVSKRCLhxIkTXLhwgY4dO9K3b1/69u1LfX099+7dw8HBgREjRghnna+vL6tXr6ahoeGRVGi/ByMjIz744AMuXbokUvhUyuu2bdvYu3cvHTt2xMvLi8zMTNLS0hg3bhy+vr4oFAq2bdvG+vXr8ff3Fzy0KSkpREdHU1RUBCh1rsDAQEEVdvv2bVEDcunSJfbs2UOfPn1YvXq12EtOnTolOgUGBQWxYMEC5s6dS0lJCcuWLfvDMbVYeb169Srnz5+nvLwcU1NTrKyscHBwwNfXF319fYYNG0Z6ejqGhoZ4eHjg6uoqPApFRUXU1NRQV1dHYWGh2DRV3IPPPPOMIEe3t7cnMDBQsAj07t2b7Oxs9PT0qKiooKioiNTUVHx8fDAyMuLUqVPs3r0bd3d3xo8fj5WVFQUFBYIgubm4ePEivXr1QldXt4l39+7du+jq6uLs7IydnR3W1tb06tVL9GdWzY27u7tQptPS0sjOzhYUFJqamiQmJhIZGUlMTAwaGhqEh4cTGhrKW2+9hZ+fH0ePHiU3NxczMzM6d+7M5MmT0dDQ4Pjx41y8eFFw0f3www/I5fK/ZGW+9NJLokuHCmZmZoSHhwsvcVxcHB4eHmhra+Pk5MSlS5fw9PSktraWyMhItm/fjr+/Py+++KKw9IuLi0lISCAzMxN7e3t8fHyahLFVFENXrlxBR0eHLl26iGIfGxsbhg4dytGjR0lLS+PkyZO0a9fuN53bmoOYmBiuXLnC5MmTadeuHQcOHCAhIYEBAwYIxTUyMpIVK1aQlJQkujVpamrSsWNHobiuWLGCM2fOMH36dMLCwkhNTRUFcgYGBgQHB9OuXbsm89itWzc8PDyIjIwkLi6OsLAwBg4cKDiOVZ3SDAwMkMvl6Onp4ejoSOfOnbly5Uqzx6irqys88FpaWuzYsQNtbW1mzpxJUFAQEydOxNjYmIKCAk6ePImtrS0SiUQ0hrC1tcXMzAwtLa0mRTvwf+FUS0tL+vbtK0Jj1tbWXL9+HQMDA4YOHYqJiQk5OTkcOXKEs2fPoq2tLRRXUG5Us2bNwtzcHC8vrxZHCLKzszE3NxdsHap7ISEhockYHmYcebgYFJRCW11dXTQWUYVMt2/fLjalhxuZDBkyhGvXrqGuro5EImHHjh306NFDtG6+evUqEomEefPm4ebmRteuXTE1NeXmzZuiK1ZzkZ+fj6+vryh8VbFdBAQEiG5It2/fJj8/X9xrKsXFysqKN998U3BQqzaFnTt38tNPP1FUVERwcDCNjY1CNtbX1+Pl5UV4eDhOTk7U19dTVFQkOIJrampErYFqDR+OZuXl5bVofADz58/H3d2dS5cusXDhQvr168fUqVNF4Ut1dbUw0vX19Rk6dCiurq7o6+s3SaEA5cYdGBiIpqYm7du3x9zcXFAMNjQ0UFdXh6+vL0VFRQQEBDBgwADhSfvhhx+Ijo4G4Msvv6RNmzYi8qGpqdlEiW8JVJGo+vp6jh49ytGjR6mpqeHZZ58VFeyqAh1/f39CQ0O5efMm586dIysri169egmvHShpFENDQ3F2dubZZ5+lvr6euLg4oqOj0dHRwdTUVIR/z549S3p6Op07d8bV1VXkg6upqZGZmYmRkZFQtNasWYOGhgarVq1ixowZvPbaa80eo6+vLwMHDiQ4OBhLS0vCw8OJjo4WdE1eXl7s37+fa9euifoMTU1NPDw8SE5OZvXq1bi4uBASEsL169dJTExk5MiR2NnZ8cMPP1BUVET//v3R09Pj+PHj7Nu3j5ycHBwcHHBycsLLywsXFxcsLCzo2rUr9+/fZ+XKlVy6dInAwEDBLjJ16lTc3d3/UoqSyml14cIFdu7cSUBAALt37yYmJgZbW1vatWvXxCg2MTHBwMCAH374gcTERLp06ULnzp0JDQ1l8ODBFBcXC4cGwIkTJ9iyZQs5OTk8//zzrFq1iu3bt7Np0yYR6XRwcBDRQlDuyZ06dUJHR0d0aUtMTMTDw6PFEQIfHx+6d++OsbExNjY23L9/X0SnL1y4wKlTp0R77RMnTogcf3Nzc9HUpri4WOhepqamNDY2YmxsjKWlJWVlZXz22WfY29szZMgQbG1tWbp0KQUFBTg6OhIaGkp1dTUhISH06tWL3NxcPv30U+rq6kQaSlJSEsePHxeRlD9Di5XX27dvs2jRIkpKSjA0NKRDhw6MGTNGKCh1dXXMmTOHOXPmkJGRgZqamuC9KysrIyYmhnPnzlFeXs64ceNEHlJtbS3vvPPO75IL+/r6iodcRcH1sNfnwIEDfPHFF3h5eQl6idraWsGj1lwcPHiQvn37AoiOOzdu3GDv3r2EhYUxaNAgLC0tyc7OZuTIkaKN248//ijCdiqB/9lnn7Fx40bee+89Fi9ejLOzM/v27eO1115DS0uLoUOHcunSJRoaGujZsyezZs0iNDSUu3fvoq+vT0BAgHgQVd3CTE1NuXDhAvPmzaNz585/KRxraGjIM888I6hGJBKJKBhSV1dHLpcTHR3N7du3GTVqFElJSTQ0NGBsbExJSQk7d+4U/9TU1Jg3b56wJjU1NYVQ8/X1RV1dXXQjyc7O5v79+6KDTVpamshFVHW/+uSTT/j000+RSCQEBQURHBzcpM91c2BiYsL69evp1asXrq6ufPrpp9y4cUN4/8rLy/nyyy+FMqWvr4+6ujpjx44V3b++/fZb3nvvPQYMGCDCzrm5uXTo0IHk5GShkKkU17S0NBEmrK+vZ+bMmSQnJ/P111+LtBpVjvbDCoEqPOrs7Nwi5TUrKwtra2t0dHTIzMzkq6++Qk1NjREjRuDh4cHbb79NXV0dOjo6LFq0SHxPT0+PCRMmMGLECOFlqKioEGkHD9Nv5eTkYGhoKLxH8fHxwpM6ceJEOnXqREZGBkuXLhUdv6ysrISC6Ovr22IO4l/j1525srKySElJEQUTKu8BKOWCoaFhk4pxVZV6Tk4OxcXFgp5p+fLluLq6snbtWsELK5fLMTIyEvRxly9fZteuXfz0008UFhaSn59PXFwcgwYN+k3Dhfv377e4Z7ybm5to27phwwY2b95MbW0tenp6aGtrEx0dzeLFi0lLS2P+/Pk4OjqKjmn6+vpMmjQJuVxOSUkJRkZG9O3bl8jISJGm0759e/r27SuI8QHee+89Ro4cKbgkjY2NKS0tJSoqSjSAAaVSqa6uLkK2CoXiN80ZmgOVdyg3N5ejR49y+fJl0TxExQ6hynVT5Qx6e3uTmZnJ8ePHqaqqwsPDA0dHR2xtbZkzZw4uLi7iubt58yYJCQn4+fmJwizVcwbK/ejs2bMUFRXRvn17wSRy/fp1obwWFRWRn5//m/blzYHqOkxMTMjLy2P79u2CFtDe3p709HQWLVpEeXk5y5cvx93dna5du/L1118THR3NJ598IqIoKqXgnXfeQS6Xc/36dbKysgSbTn5+PidOnMDR0VFE+m7evImDgwOurq5NFPDKykrhqb98+TL19fWMHz9eGOYtwdSpU5k6dSoNDQ3U19cLr6YqlUcul3Pv3j0KCgqEIaKrq4ubmxvGxsZ8//333Lp1C01NTTZs2MDhw4dxd3fHwsKCkydPIpFIePHFF5FKpVy+fJkjR45QU1PDqFGjmDlzppjjuro6nJyc+PTTT1myZAljx47l9ddfF3uWigKwvLy8xWNUYeXKlURGRrJ582ZGjRrFqFGjKC8vF/uwyvmmr6+PhoYG0dHRbNy4kYyMDEHhuXbtWkDZCOPatWsEBgZib29PWloap06d4o033uDZZ59FW1ub6dOnk5+fz9y5c+nXr5+g1FQx+qhYcvT19bly5Qpr1qyhU6dO4jltLlxcXFi+fDmg3HMOHTrEzp07aWhooLi4GF9fX4KCgrC1tRVpaCo5KpVKCQ8Pp0OHDly8eBGJRCLacXt5eeHq6sqePXtYuHAhU6dOZdq0aYSHh5OWloaRkRHdunXj9ddfF3tMbm6uoCR79dVXhfPg2rVrvP3220ilUhYuXPinY2qx8pqeni6oeCZNmkRNTY24Wc+dO0dsbKyY2N27d1NcXMxbb70lPE0//fQT+fn5TJo0iU6dOlFTU4OWlhb19fVic3kYKuUKEHkZKg+opaUlmZmZnDlzBhcXF9544w3kcjlFRUXU1tbi5uZGfX19izg0e/bs2aSbVkREBLm5uQwYMIAhQ4ago6NDRkaGoIXKyspiyZIlpKWl0bVr1yZWX3FxMdA0TGNnZ8fAgQNp06aNoDyRSqWCgqugoIBevXphY2NDbGysUFrHjh3LtWvXOHDgALt37yY9PV3wQLYUn3zyCaWlpXTv3l0wOuTn5/PgwQPatm0r8mr37t3L5cuXsbGxYfHixfTq1Uvky9jb22NoaEhKSgovvPACM2bMoFOnToSEhHDv3j3Bj1teXs6yZcuorKxkwoQJvPLKK9jb25OSkkKnTp1ESkBeXh43b96ktraWOXPmCJ4/GxubFofyevXqRWNjI46Ojujo6DB16lQSEhJEWFdDQ4ORI0fSrl07TE1NycvL486dO1y8eJG2bdvStm1bvL29mT9/vtjgQOmJfPfddwUf3enTp9m3bx+DBg1CU1OTW7duYWRkRNu2bRk7dixZWVlCca2urqa8vBxtbe0mHH3Z2dlUVlY2KfxoDoyMjIThlpiYSGZmJm3atEGhUIiCP0tLS0aNGtWkiEVfXx9PT09R6HTq1Cnu3r2LnZ0d9vb26OvrCx7Bh7mVg4KCqK6u5qeffhKeXVB65iZMmEBRURG3bt1qEVXUn6G+vp7ExESRQ21sbIyOjg7u7u6CyaSqqor6+np0dHRwdnZm2LBhTQoPUlNTRWtmlSdEZe23bdtWeDmKi4tFWFVVDBYcHExVVRU1NTXY29ujUCiwsbFpojCr5JOqqYPKu9ccuLm50bZtW+Lj47l+/Trl5eV4enoyatQo/Pz8qKmpYcSIEWhqatK1a1e0tbVRKBSialcVGlY1zoiLixM5rw0NDYSGhuLv7y9o59q0acOgQYPQ1dWlvr5eeNRVCqPqXv3++++5ceMG06ZNw9LSkgMHDmBqavqXGr7cvHmTyMhIGhoaWLFiBdbW1kilUpKTk3FycsLAwEC0c7awsODnn3/m2LFjdOvWDScnJ7Zu3UpUVBRz5szB19cXR0fH33jWVbyQqr8fPq5iKwkLC6OgoEC0n9bW1iYpKUl49ED5LLY0l1CFyspKgoKC8Pb2pqioiK+++kow65SUlBAXFyd4oJOSkgRV0sOyTU9Pj/r6es6ePcvx48dJTk4WuaCqZjm7du0iLy+PRYsW0adPH6RSaZO0KpUR4OnpSXJysmizvmLFCnR0dFi8ePFfIvFXXfe1a9fo168flpaWgjZJKpXSpUsXKisrf2PgmJubI5PJOHLkCNu3b6exsZH333+f4OBgNDQ0GDZsmCjg09PTo1+/fri7u3Pq1CkSExNFeo6NjQ2ampp06tSJadOm4e/vT8+ePfHw8EAulzfpUPhwSkJLIJfLmTlzJm3atCEyMhINDQ169+5NVFQUUVFRDBs2jG7dupGVlUV+fj7Ozs5MmzZNFKK9+eabjBgxQlBIXrlyhdTUVJYuXUp4eDiLFi1qIpt69erFkiVLuHbtGl5eXtjY2FBeXs62bdswMjISaQwq501ubi7Hjx+npqaG5557rkVje5huUiKR0LNnT3bv3s1PP/3EnTt3sLGx4ciRI/z4448kJiY28RqrUv3s7OwICwvDwMAAdXV1xo0bJ5oxWFlZMXPmTOHouXr1KrW1taLD2sN7nra2Nr169cLJyUk4CkHJEvTqq6+ipqaGv7//n+ptkuYqBjKZrGUaxFOIiIiI3yUM/bePD/79Y/w3jA/+/WNsvU//3eODf/8Y/w3jg3//GFvv03/v+P4aT08rWtGKVrSiFa1oRSta8QTQbM9rK1rRila0ohWtaEUrWvGk0ep5bUUrWtGKVrSiFa1oxT8GrcprK1rRila0ohWtaEUr/jFoVV5b0YpWtKIVrWhFK1rxj0Gr8vq/gkTyIRKJHInE4c8//IfneR2JpA6JxPMxXVkrmovWNfzno3UNW9GKVrTiH48nVrAlk8kkwFRgBtAOUAeSgE3A5xEREQ1/8PX/LSSSicCWX/56AYViQwu/74BybBtQKB7NEi2RdAVeBUIBU6AIuAl8hkJx+KHP6QB3gesoFC0nXvwvQyaTNZmriIiIls3V40Zz5/XPz/P7ayiR3AOcHvEtgDwUCutfff6pXEOZTPa7cxUREdH8uXpcUJIT/q6MQKFomYxoznP4f5/942f+KVpDmUw2BeWc/BEaIyIi1P/kM081ZDLZx0AQ4AGYA9VAOrAXWBcREdHyXtlPOZ46efo3IZPJ7vEHsjIiIsL6d479I/CP0mv+Ap4mWdPiJgWPEZuBicADYCdQCfQBVgPdZDLZsxEREU+eCkG54a0FKoCW9WT7P7wPaAErf+c33gMWAwXAQSAHpXDuAPQA/k9xUCiqkUhWAx8jkYSiUFz4i9f02CGTyR7HXD0+tGRe/xx/vIZQCnz2iPcrfvPOU7iGMpnscc7V48Ifyggkkmdb2MHiz9ZQieY880/XGsYCH/zOsa5ALyDyf3Y1/z3MBWKA4yjvCT0gBFgEzJDJZCERERGZT+7yHi+eOnn6+NB8WfnPwz9Dr/nriOUpkTVPRHmVyWTDUC5wGtAxIiKi4Jf3NYFdwEhgMvDtk7g+AaXnZxNQCPwEzPsL5zACngNOoFD8VrBKJM+iVBp+BkagUJT/6rjmb74DW4GPABnwxBUfEBbn35urx4m/Nq+/d64/XkMlSlAoFrXgCp+aNZTJZE3mKiIiovxXx5s/V48LEskwHpIRKBQFv7z/12RE89awpc/8U7GGERERsSg3ld9AJpNd/OW/X/+vrue/CMOIiAj5r9+UyWRLgXeA+SjX4h+Pp06ePl6URERELHrSF/G48Y/Ra/4GniZZ86RyXkf88rpKtcAAERERdSi9IwAv/8+v6rd4BaUlMRWlBfVXMA7QRWmFNYVEogZ8DFQB43+jYAEoFL/tdadQZANngVFIJC1vOP7fweOYq8eDvzqvv4/fX8O/iqdkDWUyWZO5+rXiCuK5/F9DyAihuIJq3f6KjGjuGjb/Pn5K1vD3IJPJfFB6Ju8Dh57w5fxtPEpx/QW7fnltWY/lpxtPjzxtRXPxT9FrHjuehKx5UmkDqryW1EccU70XIJPJjCMiIkr+N5f0K0gkXsByYDUKxRkkkl5/8Ux9fnk994hjoYAz8ANQjEQyCPAB5EA0CsXFR3xHhfMow7ndUIZ5nxhkMpmYq4iIiDMymeyvztXjwt+Z10fhj9ZQBS0kkgmAI8rNJg448yd5mU/DGjaZK5lM1mSuIiIiWjpXjwvNkhFIJMYoFCXNON+fr+Ffe+afhjX8Pcz85fWbf3qu3Z9g8C+vcU/0Kh4TnkJ5+rihJZPJfiMr/wX36NOv1/z38D+XNU9KeVVZJc6POOby0P89gUv//cv5FSQSDeA7IANlOOrvIAwoB+484ljwL695KHO5fH91HWeAUSgU+Y/47pVfXp/opimTyR7nXD0u/J15fRT+aA1VsEY5Dw8jDYlkKgpF1O9852lYwz+cK5lMdgYYFRER0dy5elx43DLij9fwrz/zT8Ma/gYymUwHmAA0Av/oIp9fQyaTzUOZA2qEsoArDKUCtPxJXtfjwFMqTx83HikrZTLZ1IiIiN+Tlf8EPN16zX8JT0rWPKm0AZWQf00mk5mq3vzlwX04Gdjkf3pV/4cFKAtVpqBQVP/ls0gkUsAKyP2dwhLLX15fBHRQeocMUHq+jqLcEHf/ztlzf3l1/MvX93gg5ioiIuKvz9Xjxd+Z16b48zUEZW5ab5RCWQ+lAvgV0AaIRCJp/zvfexrW8PHN1eOFkBFIJEJG/KJktkxGNG8N/+oz/zSs4aMwGjAGIv9NRUy/YB6wECUzRhhwBOj7BAys/waeRnn6OPGHslImk/2erPwn4GnXa/5beCKy5kl5Xneg1NQHAPEymWw/ypy7PoArkIwyf+l/H0aQSDqitHhX/YXw8q9h9str8e8cV9FJSFB6Am/88vdtJJLhKL1E3ZFIOj/iWop+eTX/m9f4lyGTycRcPcHw8qPwd+b11/izNQSF4tfVl7eAF5FIKoDXUVZDD3/EN5/4GvKruYqIiBBzJZPJxFzJZLLO/+M1biIjkEj+joz44zX8e8/807CGj8KMX16/eqJX8V+Aik5JJpNZoUx7WQ5cl8lk4RERETFP9OL+Bp5iefrYEBER8UhZKZPJ/kxW/hPw9Oo1/108EVnzRDyvERERjcAQlBZ0LsoKvWlAFkpLWsXX9+B/emH/Fzq8w/8lWP8dqCxn7d85rtpMUx9SsJRQen+O/vJXx0d8V+dXv/E/xUPhrcc1V48Tf2def40/W8M/wpe/vHb7neNPdA1/gZirhxRXAH7x/LRkrh4fFIrHKSN+fw3//jP/NKxhE8hkMm+USl0WT4bi7H+CiIiIvIiIiD1AX5QGypY/+cpTi6dcnv4v8Gey8qnHU6vX/BfxJGXNE+N5jYiIqAdW/fJP4Jf8CX+Um8Ht//Fl6aMkwAaQI5E86jPrkUjWoyzqePUPz6ZQlCCR1PJ/np9fI+mX15LfOa5SLHQecUx1zif1IDSZK5nskQw162Uy2XqUhQev/q8ujL83r03x52v4R1Ctjd7vHH/SawiPc64eNxSKR8qIXxoE+NNcGfHHa/h3n/mnYQ1/jf9fCrUAiIiISJfJZPGAv0wmM3+40vsfhKdZnv4v8Gey8h+Bp1Sv+W/iicmaJ9mk4PcwEaWHZPMToOipAb75nWMBKHORzqHc8Jsb1rkJdEAiMUShKPvVsTNAPeCORCJFoaj91XGfX17vPeK8qraUsc28jseN/8ZcPS78nXl9FP5oDf8InX95fVT1KTz5NYSH5komk0kjIiL+7lz9LyBkRAsoz35vDf/uffw0rKGATCbTRjk/jfz+uP6NsP3l9Z+qrD/N8vR/gT+Tlf90PEm95r+CJy1rnpjyKpPJDCMiIsp+9V4wyvylCuDD//lFKUPKzz/ymESyCKUA2dzC9rCngUCUYdeff/V7BUgkO1GSpy8A3nvo954B+qHsRnLkEecN+eX1VAuu5bHhl5DyI+dKJpMt4pe5eiLtDP/evD4Kp/m9NZRI2gE5KBRFv3rfCVj3y19bf+e8T3QNASIiIgpkMtkj50omk/2VuXp8eJSxIJH8VRlxmket4d9/5p/4Gv4Kz6IsCDn4byrUkslknijJ7XN/9b4aygYblsCFiIiI389Nf4rxVMvTxwSZTNYOyImIiCj61fvNkZX/CDyVes1/D09U1jxJz+txmUxWjTJhuxxlH+CBKC3QEREREf8WC+xHlIno/fi14qPEa0An4F0kkm5ANMrez8NRehFe+A2PpZKEvzeQhEJx67925f9stHxefx9/tIbPAm8jkZxC2VmlHGVy/iCUlvZh4JPfnPHpWkMxVzKZ7JFz9YR4CY8jkfyujEChaImM+LPnsOV4utZQBVXxxL+ho9bD6A+s/IW6LQVl/qAV0B0lDVEu8MKTu7xWNAPPAm/LZLKWycp/Fv5/0WvgCcuaJ0WVBUpSdAOU1XmvoaTM2AC0i4iIOPpHX/xHQVm9fB14DolE/RHHH6BUHD4FHPi/ziqHgK4oFI+iKeoD2PF/Se6t+DX+2rz+3rn+aA1PAXtQcvuNR3kvd0cZ4psMhD8ibQGeojWMiIj4w7mKiIh4ElRZ8AcyAoWiZTLiz57Dv4anZg1BkNuH8e8s1PoZ5SZphrKT0Rso220WoaQhahcRERH/5C6vFc3An8rKR6Qt/dPw/4Ve8zTIGsnv0x624rFBIhkHfI/SW7TnMZzvR5QPvSsKRenfPl8r/hyta/jPR+satqIVrWjFvwKtyuv/AhKJBGWSvbLi8O9MukTij7IT0isoFOv+5NOteFxoXcN/PlrXsBWtaEUr/hV4kmkD//9AuUnOQBkysf2TT/8ZbFDyAD4Vocr/b9C6hv98tK5hK1rRilb8K9DqeW1FK1rRila0ohWtaMU/Bq2e11a0ohWtaEUrWtGKVvxj0Kq8tqIVrWhFK1rRila04h+DZvO8ymSyf3x+QURExCN7P8K/f3zw7x/jv2F88O8fY+t9+u8eH/z7x/hvGB/8+8fYep/+e8fX6nltRSta0YpWtKIVrWjFPwYt7rAVERFBY2Mj8+bNY+vWrfTq1Yvnn38eLy8vjI2N0dPTA6CmpobTp0/z3nvvcfXqVZYvX85bb71FXV0dubm5ODg4kJqaSnx8PJ6enri4uJCXl0dBQQG6urro6upiY2MDwJEjR5g4cSIFBQU8//zzvPjii1RXV3P+/HlsbW2ZOHEiAMXFxdy+fZuUlBQ0NTXp2rUrtra2vPzyy80e34gRI4iPj8fd3Z0BAwYAsGHDBl544QWef/551q9fT2pqKj/++CNBQUH07NkTgDfffJOVK1cCsHTpUt566y1iYmLYsmULNjY2mJmZkZSURFBQEOPHj6eoqIh58+axadMmevbsyQ8//ICpqSmFhYWoq6tjbGwMQG1tLcXFxdy/f5/r16+TlJSEl5cXPXv25MGDByQmJnLp0qUWraG2tjYrVqzg1q1b7Nq1Cw0NDa5evUpkZCTjxo3jlVdeITExkczMTJ577jlcXFwASElJ4YcffmDXrl0EBASwbNkyzM3NxXUqFAoePHhAXV0d8fHxbNq0iby8PGQyGePHjwegsLCQ+vp6LC0tkcvl3Lp1i+LiYlxcXHBxcWHPnj288cYb9O3bly+++ILPP/+cl19+mVmzZjV7fG+99Rbr169n6dKlWFpacvjwYdq0acPKlSsxMzPjjTfeACAvL4/r16/Trl07HBwc+O6777hy5QozZszAx8eHzMxMjIyMkEgkbNu2jfv37zNlyhRcXV0B2L17N9nZ2QwcOBB3d3cUCgXV1dVoa2sjl8vR1dUFYN++fXz77bd06dKFvn37cunSJU6ePImDgwPDhw8nNDQUAJlM1uwxmpmZsXjxYk6cOMG8efMoKiqiX79+9OnTB2dnZ9q1a4euri5Xrlxh0KBBeHp6cuzYMbS1tdmzZw/79u3D0dGRadOm0aZNG+rq6vj555+pqqqic+fO2Noqi/FjYmIoLCzEyckJDw8PAObOncvGjRtZunQps2fPBqCkpETcswqFgrq6OqRSKY2NjcTFxZGdnc3BgwebPT6AF198kaKiImxsbLC2tgbAyMgIgI8++oh33323yeenTJnC+vXrKS8v5+TJkzg7OxMQEADAunXrWLFiBY6Ojrzzzjv079+frKwsbty4gZOTE35+fk3Ode7cOW7dukVoaKg4Fh8fz9GjR7l48SJXr16lsLCQYcOG8fHHH2NtbU1dXR1z5sxp9vjGjBnD5cuXcXd3Z/jw4QCsXbuWV155hbFjx7J9+3YA0tPTMTAwwNTUVHy3traW+Ph4zp07R15eHi4uLjzzzDPY29uza9cuPv30U7y8vIiIiEBbW5vCwkK2b99OQEAAoaGhrFy5kg8++IA33niDhQsXArBp0yb279/Ps88+y/jx42loaCA9PR17e3ukUinQsnsUYOTIkSgUCs6fP098fDzt2rVj1KhReHt7U1tby7Fjxzh8+DDe3t6MHDmS06dPM2HCBBobG+nTpw9ffPEFbm5u3L17F7lcjqOjI5WVlWJvWLVqFfPmzePll19mzZo1gHIfMDQ0RF1dnZqaGtLT03FwcEBHR4cDBw7w6aefMmrUKDGWqqoq1NXV0dDQQCKRiHu6OVi3bh1qamrid/fu3UtJSQldu3bFzc1NPBNpaWmsW6dkVJs4cSL+/v7I5XIePHiAhoaGeN5U5zExMRHnX7p0KS+99BLvvfceRUVFfPzxx+zcuZP09HR0dHT46aef6N+/P5GRkdy8eZOOHTsSEhKCtrY2oNyLNTQ0UFdX5+bNm3z++efimpsDmUzGkSNHqKiowMTEBAsLC/r374+pqSlff/01M2fOBOCFF15g8eLFWFlZUVlZSVVVFebm5kgkEurr65HL5ejr6wNQUVEh/n/06FE2bdpEeHg4EyZMoK6ujry8POzt7QGorKykoaEBQ0NDAG7dusXNmzfp0KEDnp6eZGRkUF9fj4ODA5cvX2bt2rWYmZk1e3wA3t7ePP/882LOQCkDFixYQGhoKEuWLAGUck5dXR0DAwMA9u7dS1xcHEOHDqV9+/bU19ejoaFBZWUlPXv2JCEhgcjISMLCwgC4ceMG6urq2Nvbi3ujtLRUyLWff/6Z4cOH4+bmxunTpzEyMiIqKoo1a9bg6OjIu+++K/bcljyLERERAFy5coV79+7h7++Pu7s7AN999x3nzp0jPDycwYMHA7B//35WrlxJVlYWI0aMYM6cOTg6OgIQFRUFQPfu3UlOTmbs2LHExMSIZzAlJYURI0ZQW1vLoUOHcHFxoba2lvLycrEuaWlpXLt2DW1tbdq1a4eNjQ1SqRSJRPILo+Gfj+8vtYdVU1MjMTGR/Px8DAwM6NOnD6Bc7ISEBIyMjHB2dqa6ulpcWKdOnQDQ1NRER0cHAGNjYzw9PXF2dqakpISzZ89iaGhIp06dyMvL4969e/j4+ODv78+bb77JsWPHkEgklJeXY2pqSnV1NV9//TUXL17k7bffxtHRkXbt2qFQKHBzcxMCriWoq6vD09OT2tpakpOTcXd3p0ePHsyfP19shPn5+Rw/fpwNGzYwd+5cnnvuOfz8/OjQoQPW1tb06NGD8vJydu3axY8//ohMJqNfv37o6elx6tQpkpKSCA4OpkOHDpw6dYrz58+zZMkSZsyYIZQIAwMDhg8fTnJyMu+//z6JiYlYWFhgbm5Ohw4dMDAw4JtvvmHr1q1CyW4uxo8fj4aGBj4+PkgkEqqrqzE0NKSxsREfHx9MTExwdnbG19cXFxcX7t+/z5dffomNjQ39+/cnODgYPT09pFIpsbGx5Ofn88wzzwDg4OBAVlYWvr6+LFq0iGvXrnHq1CkuXLiAm5sbaWlp1NXVIZPJ8PHxobi4mNzcXNq3b4+amhpaWlqkpaVx7NgxHjx4wJQpU2hsbCQxMbHZ49u5cyceHh4sWrQIdXV1NDU1kcvl9O7dGxsbG0pLS4mOjiYvLw9/f3+qqqrYuXMncrmcPn36oFAoUCgUODg4UFpaSmxsLC4uLujr67Np0ybMzMzo0KED9vb2ODk5CcVKIpEIhVVXV5eamhpiYmKQy+XMnDkTZ2dn1NTUsLe3p0+fPpibm2NlZdWitVPB1dWVmJgY6uvrGTlyJFVVVbi7u+Pr64uXlxf19fUcOHBAbOg9e/akoKCAkydPcujQIbp3705YWBi5ubnU1NRgamqKnZ0d2traYiMtKSkhLy8PhULR5Fl68cUXcXV1Fc80QHl5OZmZmdjZ2WFoaEhxcTHm5uaoq6vj7++PlpZWi8d46NAhoqKiaNu2LWPHjiU4OFgcGzZsGOrq6ty4cYPKykocHBwYMmQI1dXVlJSU4OHhga+vLwBxcXEcP36czMxMMjMzOX36NAMHDkRfX5+ff/6Zbt264efnR0pKipjbsLAw8vPz+eabbwgKCmLMmDFUV1cTFxeHmZkZ8+fPF0aYymAvLW1ZnwILCwtsbW1p166deK9bt258/vnnNDY2curUKfz8/HBycgKUsumLL76gXbt29O7dG39/f7KysmhoaBBzvGzZMo4cOcKAAQOYOnUq2trapKWlsX37ds6cOYOenh6hoaHCIF21ahWBgYGEh4fTp08ftmzZwooVKygtLWXAgAHicwcPHiQ+vuUNrN544w2Cg4Pp2rUrdnZ2HDx4kEOHDhEYGIivry+FhYXU1dVhbGyMjY0N48aNo6qqisLCQhwcHDh37hzZ2dnY2dlx+PBhrl69yowZM7CxsaG2thZLS0s+/vhjgoODuX//PpmZmZSVlREUFISpqSlaWloUFBSwfv16MjIysLKyYtiwYRgbG7Np0yY0NDTw9PRscm+1BCtWrMDFxYXRo0djYmJC9+7dSUtLw8vLS9wXAIaGhgQGBtLY2CgUFW1tbRwdHUlJSeH9998nOjoaFxcXnnvuOaHsDB48GENDQ/Lz89m3bx9t27Zl9OjRWFlZERUVhbOzMx06dADAx8cHAwMD6uvrWb58OaWlpbzwwgt4e3sDUFRUJJTC7OzsZo/x3r17BAUFCaU6MDCQ3NxcPvvsM+7evcvcuXMxNjbGz8+PoqIiNm/ezKlTp5g7dy59+/YFQENDA319fS5fvsyyZcsICAigc+fOxMfH09DQwJtvvimMY01NTfT09Ni5cyfGxsaEhYUJxRWUesby5ct5/vnnee+994RSBRAWFkZNTQ0//vhji9ZRX19fKK6lpaUcOnSIuLg4unTpQq9evcTnVApnbGwsH3zwAXv37qVnz54sWLBAjLOurg5NTU1effVVCgsLadu2LQD19fU4OjoKw0QFDQ0Nrl27xrZt2zh79izDhg1j5syZ4j5RU1OjW7duBAcHo6+vz+7duzl+/DgaGs1X3xISEti4cSM7duzA3t6eDz74AHt7e65fv05DQwODBw8W8w/KezM4OJjZs2djZmbG8uXL8fHxQSaT0b17d27cuEFZWRm2trZMmjQJR0dH2rdvDyjlp4eHBxkZGULRlkqlTQwKBwcHnJ2dm1yjQqFAIpFQVVVFTk7On46pxcpramoqLi4u+Pj4cPfuXeExAKUn6+bNm2hoaHD//n2MjIwYPnw4Hh4eQgm6cOECUqmUXr16YWpqKrwJjY2NaGhoYGRkhLGxMbW1teTn51NWVoadnR1vvPEGI0eO5MSJE9y8eRNLS0vMzc3R1tbm5MmTeHt7M3v2bExMTAgICEAulwNQUFDQovFZWloSGBhIamoqFy5coKGhAU9PTz766CMAGhoayMzMJDc3lzt37pCQkICBgQGDBg2ivLwcHR0drK2tycrKorq6GldXV9zc3GjTpg1t2rRh06ZNbNiwgWXLlvH2228jkUj45JNPyM3NFd85deoUAI6Ojjx48ICYmBiKiopQKBT06NGD4OBgDAwMMDQ0FNZpSxAUFERZWRn19fX4+vqipqZGSEgIkyZNoqGhARMTE9zc3FBXV3bR/Oyzz/jkk0949dVXhTUkl8vR1tbG0tKS9PR0oqKi8PLywsLCAiMjI/T19ZFIJNjb27N27Vri4+MZPnw4169fJzExkeDgYHx8fLC1taWmpkbc2CqlXl1dnbq6OvT19Rk1apSwfJuDlJQUZs6ciba2NlFRUUIp6d27t/A4XL9+HalUire3N5cvX2bnzp2MHj2aIUOGUFVVRXJyMo6OjsTFxVFUVMSwYcNISUnhnXfeITMzk6+++ooZM5StnRsbG6msrEShUFBbW4umpiYGBgbk5uYSGxtL27Zt6dWrF7du3SIhIYGBAweip6cnvgeI1+ZiyJAhnDlzhvLycoYMGfIbz2F9fT0HDx7k9u3bTJkyRXhtIiIiiIuLY9asWfj5+bF161bOnj1LWFgYAwcOxMzMjLq6Om7dukVeXh4aGhpYW1sLpbCqqgonJydmz55NUVERubm5WFtbo6WlRX5+PsbGxpiamlJaWsrly5dxdHTE398fLy+vFo0PlAqxpqYmN2/exMzMjDZt2mBjY0NDQwPe3t54e3uTnZ1NTU2NEIR37twRxpfqXrh69Srt27dHIpFw4sQJrl27xvXr1ykuLkYul9PY2AgovdlpaWmkpKRQVVXFuXPnWLNmDX5+foSGhmJqaoqlpSWdOnVixIgRTa61srKS+/fvt2h8Li4uODk5oa6uLiIX7du3p3379pw4cYKoqChqa2vp168f5eXlbN26lcTERKHMAnTq1InOnTtjZmZGbW0tZ8+eJTo6mnHjxuHg4AAojYC9e/diYmKCra0tCoUCW1tbunbtSnR0NN9//z2mpqa4uroyZcoUoegGBwfTpk0bQBkxKSwsbPEaFhQUoK6uTnh4OMbGxly9epV9+/YRHR3NmDFjmDx5Mu7u7uTn5xMdHY2Pjw/Tp08HlMrWxo0bqaqqwsDAgIqKCjIzM6murhZr3a5dOxF527x5M++//z7Ozs7Ca11RUUFMTAy7d+8mPT2dOXPm8Morr5Cens6GDRuE3CksLMTMzIw7d+60aHzLly9n9OjR6OjoEBwcLCJIANXV1VRVVaGpqYmZmZmIPqmOVVdXk56ezs6dO1mzZg3V1dV4enoyZswYQLnXODk5MWnSJNasWcPGjRt54403CAsLIzAwkNdeew1QGjX5+fnY29vj4ODA4cOHOX36NGVlZXTv3l0or7du3aKkpITevXvz3XffNXuMLi4ueHt7k5KSQnV1NQYGBuzbt4/FixczevRo/vOf/wBK5SM7O5uUlBR+/vlnOnToIJRX1Xpu3ryZyMhIcnNzOXbsGOfPn6dz586MGzcOfX19ofhlZmaSmJiIv79/EyNAhZKSkiYy8+zZs8jlctzc3Ojdu3eLldeEhARycnKwsbGhsrKSW7duYW5uzrx58wBlpCMhIQEHBwdMTU3JyMjg4sWLAOTk5LBz504GDx6Mrq4umpqagHIvKysrE3uOhoYGxcXFXLt2DSMjI9q2bYuhoSFlZWWcPHmSvXv30tDQwOjRo4VBcvnyZUpLSxk7dqxwdOTl5XHr1i38/f2bPb6DBw/yySefAErjIDo6msrKSrS1tenevftvFElDQ0OcnZ3p1asXNTU1XLx4ke3bt+Pp6UmvXr2EolpbW8uoUaPo3r07DQ0N3L9/n4KCArp164aenp7wtufk5KCpqYmFhQUSiUTod6o98MGDB1hZWeHo6EhqaipJSUl/OqYWK69JSUk4OzvzwQcf8NJLLwnlqba2Fm9vb1xdXTEyMiI1NZXLly+jp6eHs7MzpaWlfPLJJ6xfv54uXbrg5+eHgYEB1dXV1NXVYW5uLjYEuVyOlZXVb7xSLi4uqKur89JLL1FWVsbixYvp0aMHhw4daqLVZ2dns3HjRhoaGoSl1FyovKsuLi7I5XKqqqooKipqErKzsrJixowZ6OnpibQBExMTQkNDWb58OUeOHGHatGnC+i0uLhbfbdu2LSdPnhTvzZ49G3d3d7y9vamsrCQuLk4okaoQw+rVq2loaEBfX5/AwEChTLz88stMmjSJDz74oEVjvHXrFj/99BMPHjygY8eODBs2DENDQywtLX/z2cjISM6ePYujo6Pwrh4+fJicnBymT5+Ora0tffr0YezYsaSkpPDhhx8yfPhwqqur0dXVxcTEhPnz51NVVYW3tzc3b94kNjZWrK2Pjw/Ozs5CgbCysmLEiBEYGxtjZ2fHvn37WLly5W+Usz/CSy+9hJGREZGRkfz8888MGDDgN9+fPHkypaWlwsM6Y8YM4QHT1dWltraWI0eOUF1dLQSJoaEho0aNora2lm7duolzJSUlUVNTg5aWFnFxcaSnp9OtWzc6dOjA+PHjhQW9efNmLl++TKdOndDT00NNTU2En7Kyspo9PgAtLS0aGxtJSEhAKpWK8VVUVFBfX4+xsTEymYxevXrh4OCApqYmEomEkJAQTE1NhdU+cOBAfvjhBz755BPc3Nzo3Lkz3377LSkpKUyfPh13d3fy8vLYvHkzq1evpqioiI8++oiXXnqJjIwM8vLysLa2xtLSEl9fX2prla3JPTw8uHjxIq+++ipjx44Vxl9L8Prrr1NRUcF3331HVVWVeAbz8/OFQqCpqUlGRgZyuZzy8nLKysqEtQ9Kj0rHjh3p378/tra25OXlsWPHDmQyGZqamgwbNkx4HIyNjdHW1mby5Mnk5OSI36upqaG8vFxEgO7fv98k1AdK+VdUVNSi8T0comxsbERNTY2CggKuXLmCuro6U6ZMoaKigpdffpktW7bQvXt3PvroI5ydnUlKSsLCwgILCwtxDqlUyn/+8x+++uorVqxYQXV1NXPnzhXRrQEDBtCvXz9AeY8vXLgQV1dXTp8+zYwZM+jYsSNfffUVkydPJjExUShhjY2NTJgwgYqKCubPn9+iMf70009NvJAfffQRxcXF7Nq1C0tLSwYMGMD9+/d56aWXWLVqFYMGDaJ///7k5uZy9+5dgoKC6NGjB1paWkybNo1JkyZhY2NDXV1dk7GD0puTmZlJRUWFUCA0NDTo0aMHtra2pKSkMGTIEACcnJyYPHkyNjY26OnpkZOTw0cffcSePXta5IV1cXHB3d2diIgIMjMzWbVqlZjjAwcOcOLECXr37s3o0aObfC8+Pp6DBw+yfft2SkpKGDRoECEhIbRr14727dujUCioqKgQ95iWlhbq6uqUlZX95hp2797N9evXmThxInp6eqSmpjJ27Fjc3d0pKyvjq6++Qk9Pj7Zt29KnTx/09PRapLyqlF8HBwfkcjm5ubnExcVhaWlJly5dxOfi4uLw8fFh0aJFhIaGNvGWRkZGMnfuXNq2bcuOHTs4efKkSKO4ePEigwYN4q233mLkyJGAcj8dMWKEMMAeRrdu3XjnnXfo3bs3crmcZcuW8eGHHwLwwQcfCC9oS3D69GnMzMwIDQ3F2NiY6dOnN3EMVVdXs3DhQuEl79atGwcOHEBNTY2YmBiWLFnChg0b2LBhgzAuDx48SHJyMuPHjxee9H379gmj4+2332bBggU0NDTg6OjI1q1bycvLY+vWrWhpafHKK68glUpJS0trEuWaPXs23bt354svvmj2+GpqaujatSteXl64uLiISOacOXMwMDCgrKwMLS0tESErKytj7969HD58mG7dujF8+HAOHTrECy+8wIIFC5g8eTKg3G+0tLRwcHAgKiqK999/n+rqaubMmcOwYcO4e/cuixYtIiEhgeHDh/PKK6+I+V68eDGxsbH06dOHWbNm4eXlRVJSEufPn6empuZPx9Ri5VUVPiwtLaWoqAhdXV2MjIwoLi4WIUNQhsTu3r2LgYEB2tra1NfXI5FIsLS0xNXVVdyUOjo66OjokJuby/Xr14WgzcvL4+LFizg4OGBmZoZEIsHJyQlbW1uysrIoLCzE3d0dCwsLduzYITZNgNu3b3Pjxg3u3buHkZGRUD6ag4yMDG7fvk1YWBje3t4cPnyYGzduMHjwYJG/ExgYSNeuXQHIzMxk9+7djBo1Cjs7Oy5cuEBGRgadO3fGy8uLrKws1NTUhEU5YsQISkpKKC8v5+rVqwQFBdGvXz/y8/O5du0abdu2FVbNtGnTKCkp4fPPP28Stq2rqxNC7ezZsy1dQs6cOcOyZcuwsLDAz8+Puro6KioqKCwsRKFQYGdnh7q6Ovfv36e8vBwHBwcMDQ2pr68X+WHJycl8+eWX9O7dm8LCQvT19TE0NKSyshJ1dXV0dXVFHuSoUaPEbwcFBTW5litXrlBfX4+TkxMNDQ0kJSXh6elJ3759kUgkxMTEcPv27RYpr6rPXrx4UdxDqtSWlJQUkpKS8PPzE0qLvb099vb2NDY2itCYmpoae/bswdPTk2effRYAPT094WVQoaCggNLSUpydndHR0WHlypUcOHAAPz8/tLS0yMzM5N69e/j6+hISEkJhYSF79+6lTZs2VFVV4efnh7OzM2lpaS1awytXrhAbGwsow0pRUVHExsYSFxdHx44dmTlzpvDiFRcXc+TIEU6ePElsbCympqYiMmFqaoqtrS379u0T3y0vL0dNTU3kRBUVFbFw4UKqq6uxsLBAX19fKOylpaXs3buXjh07Ymtri1wuF/lshoaG6OvrU1RUREVFRYvGB0pPqEKhYPr06RQWFnLo0CExZ6oQ5dq1a7l16xZ9+vShXbt2yOVybt68iZWVFTo6Ojg5OWFlZUVycjLHjh2jb9++zJkzh+vXr3P48GGysrKEAZGUlMSXX35JSUkJAQEBBAcH88wzz2BiYiIMu9raWuLi4jhx4gQWFhbo6elRWVmJsbGxCA82F7du3UJNTQ1jY2ORqpGbm0t2djZ+fn5YWVkRHR3N5cuXsba2pmvXrri4uKCrqyvyymtra4V3r1+/fnh6evLpp59y/vx59u3bR3h4OM7OzowZM4bevXuL31bJGFAq0QYGBiQkJLBp0ya6d++OhoYG6enpGBsbY2FhIVImWgo3NzfOnj1LY2OjyJOMiIjAzMyM+vp6Tp8+jYGBAaGhoSJqlZmZyerVq8nLyyM8PFwYIw8ePBCyVE9PTxjA5eXl4hzTpk3jwYMHpKWlYWFhgbq6Oj4+Pvj4+AAQHR3Nxo0bUSgUIn3N398fc3NzCgoKyMzMbJHyOmHCBEJDQ0lISCA9PZ2SkhJx7IsvvuD06dP0798fUIa7N2/ejK6uLqampiQmJtLQ0ED//v1Zs2ZNE2WvsbFR3Jf19fW4ubmhqamJiYkJhYWFyOVyCgoKiI2N5ejRo2hra3Pv3j0RKVHJ3Pfee4/Tp0/z3HPPYWlpKdKoWoLo6Gi8vLwwMDBAKpWipqZGeHg4Hh4eODo6irHfu3ePwsJCevXqJZQbUOZsHz9+nLq6OsaPH8/w4cMxMTEhPj4eDQ0NMjMzyc/PF3nHoFSUHRwcyM/P58SJExgbG+Pq6kp5eTn79u0jIyMDXV1dpFIpubm5AFhbWwtFu6XQ09OjsLCQLVu2oKOjw6hRo6iqqiI1NZXu3btjbGyMu7s7GRkZIrpmb2+PjY0N9fX1GBgY0NDQIPI1k5KSOHnyJPr6+iJ96dy5cyQnJxMQEEBRUZHwQNrY2NClSxdsbW25fPkylZWV3L59m+zsbFxdXYXBkJqaSkZGBjY2NiIi0lxMmTKFkSNHYmRkRHl5OVeuXEFNTY07d+6Qk5PD7du3cXR0JCwsDAMDA/T19fH392f//v2YmJiwaNEivLy8eP7551m5ciW+vr4EBARgbGws7nknJyd8fHwoKysTCrxUKuX8+fPExcU1kT+FhYXk5OQgl8sxMzOjd+/eaGlpUVFRQUFBgXBm/RFarLyqXNXvv/8+hw4dIiIigmHDhmFlZUV+fr74nEKhEHmCKq/h22+/zZw5czAyMvpNvsZ3333HW2+9xbx581ixYgUHDhzghRdeYNCgQSxatEjclPX19QQHB2NoaIiNjQ0//vgjq1at4tVXXwXg5s2bpKamMnz4cO7cucPt27dbNL7jx4/z3XffUVZWxpAhQ0hNTSU7O7tJG/SHk91/+ukn1q1bh4aGBv369cPFxUWEFCIjI0lPT+fjjz9GU1OTGzdu4OnpyYYNG5gxYwbPPvss69evx93dnY8//hgDAwOGDRsGKB/4qqoqrl+/zvLly1m8eDGGhoYkJCSgq6uLk5MTX375JS+//DIvvPBCi8ZYVFSEXC6nX79+IvSt8gZ7eHiIPFiVACkvL+fzzz/nypUrDBkyhH79+gmP0KxZsxgyZAivvvoqHTt2RE1NTSStP8rrrfJQglKRfP3112nbti3z58/n0qVL/Pzzz0ycOFEoy0OHDmXIkCF88803LRojKMM2SUlJHDp0CD8/P3r16sXFixeZNWsWHTt2ZMWKFQQGBorPp6amIpVKxQZx48YNDAwMxL36KKGvr6+Pm5ub2GA1NDRQU1PDzMwMuVzOpEmTRHHhyJEj8ff3Z+nSpaKw5+uvv8bNzY309PQWjW3//v1s3ryZBQsWMHToUFasWMH7778PgJ2dHaD0Fty8eZPKykouXLjA6tWrqa2txdramueff16cSyqVCuGrrq7OK6+80iS/saGhAYVCgZaWFkeOHCEgIICqqip0dXWRSCQsXryYixcvsnz5crS1tTl9+jRFRUVYWlqyd+9epFJps8JAv8Z3333HxYsXWbBgAV5eXrz44ovcvHlTGGwSiYQzZ85QVFTEa6+9RlhYGJcuXeLq1avcuHEDKysrIUS3bdvGihUrWLJkCa+99hrffvstU6dOZdOmTXTr1g0bGxtmzZrFtWvX2LdvHz169KC2tpaCggIsLS3R0NBgx44dbNmyBUtLS1xcXDh8+DA///wzoMztVHncmouffvoJY2NjunbtKoxTT09PPD09ycrKYvv27Vy+fJkxY8YwYcIEqqqqiIyMpG3btnh7e3P8+HHWrVtHVlYWY8aMafL7+/fvJyEhgbt379KmTRvCw8NFAd3D8mvatGncu3ePVatWkZWVxbRp06iqqmLkyJH4+fkxZswYLCws+Oabb1i6dGmTNLHmYOnSpaxbt46goCB0dHTo3r07ZmZmvP/++8yePZsRI0awbNky3nzzTfGdiooKsrOzuXHjRpNN7IcffuD06dO88MILIkrX2Ngo8sy1tbVZvnw5ly9fJjo6WhQxgnKz3LlzJ5s2beLq1asi6ldfX8+IESNEGpCtrS2pqanNHl/Hjh3x8fHhvffeE4WnoCwyTklJwcTERNyDCxYsEClhI0aMoF+/frz55pu0bdtWjEGFh9dIQ0ODwMBAvL290dbWFpHNjRs3EhkZKaJnLi4uKBQKodhkZmbyww8/oKOjQ//+/TEzMyMyMrKJ4dIcbNy4URjtqr28W7dudOnShdu3b5OWloaWlhYaGhrs3buXrKwsJk2aBCijoB9++CGNjY3s2bNHOBYCAgL49ttvKS8vp76+HkNDw98oZAUFBaxatYqjR4/Sv39/Bg8eTExMDCtWrKCkpETk98+bN48uXbrQoUMHoSi2FOHh4Xh6erJ//37279/PjRs30NbWpqKigrKyMiZOnMj8+fOZOnUqTk5OxMXFsWnTJqqqqujUqRMrVqzA09MTc3Nz5HI52dnZeHh4EBISgpGREWfOnGH27NkMHTqUa9euIZfLOXbsGNHR0fTp0wczMzNef/11jhw5Qnh4OB06dOD8+fMEBQWJ3OBdu3Zx8OBBqqur6dOnT5PIzZ/B3t6e+vp6YmJikEqlTJgwgXPnzvHCCy+Qk5ND7969KSoq4ubNm7i6utKzZ0+WLVvGsGHDKCoqwsLCgvDwcJYvX8727dv55JNPeOedd/Dx8SEvL4/q6moCAwMJDAwUxqOqwLJr167ExcU1Sf+wsrJi2rRpuLu7Ex4eLnQCJycngoODuXXr1p+O6S8VbIFy0zY2Nm5SiGFiYiJyIRUKBeXl5Xz99ddUVlYye/ZsBg4cCCiF065du4iNjRUemdzcXLp37052djYLFiwgKyuLnj17YmNjQ1ZWFm5ubujq6qKjo8OECROwtLQUVYw+Pj506NCB2tpatm7dSkZGBgsWLKBfv36cOXOGCxcuNHtcqpzZyspK0tPTCQgIQEtLi+PHj9O3b19MTEw4cOAAjY2NjBkzhokTJ6Kjo4OnpyfV1dWieCc1NZW2bdvSvXt3OnToQExMDF9//TVhYWGMGDECdXV17t27x+bNm+nbty8WFhai0u+bb77hwIEDuLi40LZtW9asWcORI0d49913CQoK4vz587z//vuUlJQIr2BLUFxczLx584QCdezYMc6dO0doaCheXl5oaGg0MS48PDwYMmRIEw9qUVERYWFhPHjwQChLqpvzzp07nD9/XhSpqZSahQsXUlNTw6effkptbS1qamp4enrSuXNnpFIp+vr6dOnShZCQEECZl+rr64u2tnaLlFdV7pKqmKG4uJgrV64QFRUlPL0nT55kxowZTJo0CXd3d6qrq9HR0RHhmby8PJHjqMLt27fZtWsXJiYmPPvss7Rp0wZtbe0mQuTDDz9k2LBhXLp0iQULFnDr1i1GjRpFTU0Nurq6pKSk4OLiwuDBg9HW1qZHjx5IpdIWFzTt2bOHoqIiCgoKxNwBdO3alWnTpgHKyvVly5ZhZ2dHx44dGTNmDCUlJdjb2wsPVkpKCkVFRTg7O4tCAg0NDfz8/ERo3MfHh2PHjnHnzh0kEgmVlZVirTt27Ei3bt3Q0NCgoKBAFBVqa2vj5+cnNuWWhtRV61hRUcGiRYswNjamc+fOTJ8+HTc3NwAMDAwYMWIEdXV1wqg2NDTEwsJCbIYPHjwgNTUVDQ0NpkyZ0iT9x9PTk5KSEo4dO8awYcN47rnnGDFiBD169KCuro7NmzcL5oXs7Gy+/PJLoqKimDp1Kh4eHkJxHT16ND179iQzM7NF4/Py8sLU1BQvLy/hsdHQ0CAtLY07d+5gbGzMxIkTMTIyIjk5mXv37olUnMbGRoyNjQkMDKRLly6CQWPFihUUFhYKBgSVN0ilDMXHx3P//n3U1NQ4d+4c27dvx8vLizZt2uDt7c2oUaNISkoSBRWqdCwjIyM6d+7c4jW0sLBgypQpXLx4kXfeeYc5c+YwduxYbGxsCAsL4/bt2yL8v2PHDvT09Bg8eDCLFy/mzJkzTZS49u3bc+fOHfH5o0ePIpVKxdyrcuzDw8P58MMPSUtLE/OakJDA3Llzqa2tZfbs2ejo6LB//35qa2sJCwvD3Nwcc3NzMjIyWqS8urm5oa+vj76+PteuXaOyshJdXV2sra159dVXuXv3Ltu2bePYsWOEhobi7OyMQqHA09OTwYMHY2Njg1wuZ8mSJSJcraOjQ1VVFTU1Nairq4vnW/WMAyJfv6ysDBsbGwwMDHB1dRVFr6CMalZUVFBdXY2enp7Ys7du3dqiNQwPDxfPcV5eHuvXr8fCwgKZTIafnx8NDQ0iCuTr68v169c5d+4czz33HNbW1qIYWOUpl8vlGBoaNvE0q9bzwIEDQqacOXNG7BXdu3enXbt2qKmpMWvWLCFPMzIycHd3x93dnZKSEvbu3dviOhdQygLV+nh6epKYmCgMfWtraxISEkhJSUFHRwc3Nzc6duxIXl6eyOtXpQWooIrM3rhxgyVLlhAVFUVxcTGFhYWieHT9+vVUVlYSERFBYGAgJ06cIDExUcicW7dusXfvXtq3b4+9vT3Dhw/HwcGBoqIitLW1W5Rq9uabb2JsbIxUKiU4OJjKykp+/vlnUfvRu3dvrKysePDgAfb29ty7d487d+7Qvn17URwplUqZNWsWpqamHD58mOTkZIqLi1m3bh0PHjxg/PjxBAUFERMTw/nz55k0aRI9evQQxtKWLVuYNGmSqC24cOECgwYNwsDAgF27dnH79m2R6mZsbPynz+FfVl5ffvllpkyZIqzKhoaGJlQYoEwtiImJIS0tjdDQUKG8xsfHCy/bzZs3AWUF886dOzl06BALFy7kpZdeYuPGjcTExJCUlCS8XvX19XTq1EkoDBYWFkyYMIGwsDBRVNLQ0ICenh6Ojo4MHDiwRcrryJEjGTlyJHFxcdTX1xMaGkp1dTXz5s2jsrKSqVOn8v3337N3714MDAwYOHAgM2bM4MKFC1y6dAkrKyvc3d1JSUnhueeeY86cOVy5coWlS5cSHx9PVlYWJ0+eFGGt3NxcGhoaeOutt0SoXZU/NWLECLp168aVK1e4c+cOCxYs4MSJE2hra7N7926mTp1KREREi+lr7O3tefnll9HQ0CA1NVVQSL366qtoaGgQHx+PVCrFxcUFNTU1unbtKh7G+/fvs2vXLoqLi3n55Zfp0qULOTk5HDlyhLq6Ovr27cuJEyf44IMP0NPTY+DAgZw6dYri4mKmTZtGeXk5W7ZsITk5mZdeeolly5aJDVKVY5SRkcGlS5eora1tQinSXKSkpIgqcE9PTxHa3rt3L927d2fx4sUcPnyYU6dOkZeXR2hoKAEBAaJgCZSb0sSJE5tQ2GRlZXH48GG0tLTEpqOhoYGDgwMaGho0NDRgbW1NWFgY3377LUeOHCEoKIhXX30VExMTvvnmGy5cuMDs2bN57733KCsrQyKRUFFR0aLKUVAWFubk5KChoUFeXh4BAQHs2rVLKMUlJSXExcVRUlJCSUkJY8eO5b333hPfT0pKYtu2bURFRVFZWcnYsWNp3749jY2N1NTUoFAoMDIyQi6XI5VK6dq1K8bGxuzZswcvLy9hNNXV1fHGG2+Ql5dHTEwMbdq0ESHa0tJSsZm3JO1DBXd3dwYOHMibb77J5s2b+fbbb0UxiyolRZVDpboWNzc3PD09UVNTo6GhQeRsh4SENBk/KBUAbW1tcX+pCoVAWaS4f/9+HB0d8fHxYefOnZSXl9OvXz8hWIcOHcqCBQsIDg4mNze3xdX4KpaIwsJCUeR469Ytjhw5gr29PWPHjgWURRvz58/Hy8uLr776ColEglwux8XFhVmzZqGvr4+6ujqFhYXs2bOHu3fv0rdvX3r37i2KaFRpWtra2pw4cYK4uDiqq6vx8PAQm7WHhwcvv/wyjY2NODg4YGlpKZTHiRMnMnHixBbLmmnTpmFubs60adPYtm0b9fX14pihoSEzZ86kY8eOREZGIpPJcHNzo2fPnujr6xMQEEBJSQkVFRVIpVI8PT1566238PDwEHmXNjY2wvuamZmJqakpd+/epb6+nrq6OvFbcrkcY2NjAgICWLVqFVKplHHjxpGfn4+TkxNyuZyampoWp7cUFRVhYmLCnj17iIuLY/z48djb2+Pv74+/vz83btxg9OjRFBUVcejQITp27AgovYqqaM3PP//Mjz/+SLdu3UQqg1wuFwWQv1byFAoFjo6OzJw5k+nTp7N7924SExPx8vLC2tpaKBqFhYUYGBggl8spLS3F0tKSbt26sXnz5t+c848QFhYmnFK1tbXs3r2bwsJCfHx86NatGz4+Ply5cgUHBwcGDBjA/v37GTVqFEePHhWRofT0dPbt24e/v7+Yg+LiYjQ0NER6xK5du9i4cSO3bt2irq6OzMxMbGxsBHOJhoYGISEhwrlx+PBhjh49KugBz5w5wyeffEJpaanYr5oLAwMDDAwMBOtFZGSk2L9UHuXNmzdjZWWFi4sLzs7ODBkyhPDwcMEwUFVVJVgLKisrKSsr48SJE5w+fRobGxuCg4O5dOkSX331FVKpVKRu/fjjj2hoaNC5c2dRRHr58mVSUlLIysoiIyODsWPHEhgYSEhICBoaGigUCl566aVmj++zzz4jICCA6dOnY2RkxMaNG9m+fTsmJia8++67TJ06tcnnV69ezYcffohMJmPx4sVIpVLq6uoErZuzszPR0dGkpqZy9OhRsZ4ZGRkUFxcTEBAgotUSiUQwE23fvp3Zs2dTU1PD0aNHCQ8Px9vbmy+++IJr164xYMAArKysCAkJYcuWLX84pr+kvFZUVGBjYyNCJMePH+fcuXMEBgaKhPjS0lK8vLxYu3YtGhoawlsCiLB/eHg48fHxxMTEEBwcjEQiETlOqhtUR0cHZ2dn9PT0qKur48iRI4I+JjY2li1btpCfn0/79u3p0aMHU6ZMIScnRyghKmHQUri5uYnk+PLycmJjY7l48SJDhgwRxVbTp09n5syZ3L17l7179+Lu7s7ixYtxdXXllVde4eOPPyYnJ4fDhw8L/r38/HwOHToEQOfOnfH39xdeZVAqbhMnTqSmpkbQYq1evZqJEyeSnp7OjRs3GDFiBAcPHiQvL4/o6OgWj61///5CWaqsrCQ1NRV1dXUkEglxcXGMGjWK5ORkZs2axfLly4Wg+89//sPu3bsZPXq0oMtQKBR069aNAQMGkJGRQVRUFPv27SMvL4+UlBT09fX55JNP2LVrFxEREejq6jJq1CgcHBzo2LHjb/j4ampqePXVV4mPj2fu3Lkih7ElqKys5Nq1a/j6+lJZWcnChQs5fPgwPXr04JVXXiE0NJSwsDA2btxIVFSUKOp4WMFSbT5JSUkcPnwYfX19nJycWLVqFXfv3uXcuXN8/vnnuLu78/bbb+Pt7Y26ujpffvklhw8fJjAwEC8vL44cOUJUVBR+fn4MHjwYHR0dUXkfFRXFrl27BNtDS/Dxxx9TVVWFtbU1lZWVWFlZiSKysrIytm7diq+vLxERESgUit9UprZt25bdu3fz7bffMmXKFFGI8/bbb3Pw4EHmzp3L9OnTSU9PZ/78+WhoaNC3b1+eeeYZrKysOHLkCMeOHRO8xY2NjURGRtKnTx/atm0reFL79ev3m0rW5kIulwvFcfHixYK1QiaTPZJip7lIDAABAABJREFU7NdpHd99950oLLl586ZgelDNhbOzM2+99ZYIca5bt46SkhJmzZrFhAkT6NixI2FhYVy5coUtW7bQpUsXXnvtNd5++22++eYbzp49i5+fH59++in37t3jueeea9H4SkpKuHXrFt999x23bt0S9FGurq5N6Hlyc3MZNWoUnTt3Fp5EbW1tGhsbuXbtGpcvXyYzMxM9PT2RpvLtt9/y6aefIpVKKS8vp3v37oJWyNDQkAEDBmBra8vnn38ueLcrKytZu3YthoaGzJgxQ0SR/g4yMjKIjIxEW1ubJUuWEB4eTmZmJgsXLiQqKorBgweL6NmCBQvQ1tamuLiYzMxM5HI5HTp0ID09ndWrV5Ofn8/QoUMFPd3kyZOpqKhAIpFgZmbGgwcPmDFjBjdv3qRdu3bk5eUxbtw47O3tCQgIYNu2baSlpfH1118zePBg3N3dOXv2LDt37qRfv3507doVf39/4VFvDo4dO0ZUVBQSiYRx48YJw02VO9++fXuGDBnC5s2bWbt2LTNmzCAgIKBJUaGXlxcLFy5EW1tbRI2MjIyoqan5Da0SIO4BUHrqu3btyunTpzl9+jSdO3fGwcGBS5cusXTpUpKSkhg2bJhIS1EoFAwcOJBz5841e4yvvvoqYWFhDBs2DFtbW5YtW0Z0dDS3b9/G3t6eNm3aMHjwYHGtqnS0zZs3s2XLFpYsWUKPHj04e/YspaWlpKSkEBUVRXl5eRP+7hkzZmBsbExWVhZXrlzB2dmZTz/9lLq6OmJjY1m6dCkdO3ZER0eHmJgYYZTdu3cPa2trgoOD6dmzJ1evXm322FTw8fGhsbGRrKwsduzYwYEDB+jWrZvQZ3x8fBg+fLgoMN65cyfbtm1j8eLFtG/fniVLlpCfn8/KlSvJzMzkrbfeoqSkhI4dOxIUFEROTg6xsbFkZWXRo0cPnnvuOQwMDDh79iyFhYUcOXJEFNQZGhqybds29u/fz9ChQxk5ciQ5OTns2LEDTU1NnnnmmRanfixduhQbGxsGDBhAVVUVd+7cwd7ennfffVfIv4ehq6tLWVkZ586dIzMzEwcHB9LS0ti4cSOxsbEUFRWRlpaGgYEBkydPplOnTly9epVPP/0UUDojHRwc+PTTT9HV1eXAgQMcOXKE8vJyQGkMSyQSwsLCqKqqIiAgADc3N8Gh3hy0WHnNy8sTG4eKl6ukpERUZqsWW5UvCUorU1tbm7q6OoqKiigvL8fKykrQLpSWlpKRkSEqaN3d3QVVj7q6Ou7u7qSmprJu3ToR/nFwcODYsWNCO/f09KRHjx4itKWy8FuqvEZGRqKlpYWnp6fwutXU1NCmTRuKi4u5dOkSoaGhpKenU11dzffff09OTg6VlZXo6OgIxejgwYMcO3aMyMhIkVZQWlqKlpYWHh4eFBcXY2Zmxrhx4wTDQU5OjihGUeUKJSQkMHLkSD744AMOHz4slM7evXuzfv16Pv/880dSifwRsrOzRXjX0NAQTU1NTp48yZIlS1BXVxfhz3PnzvH9998zbdo00tPT2bJlCw0NDcycORO5XM6sWbOwt7fn5MmT2NraIpVK+eSTT4Sn+969e+Tl5REWFoZUKmXDhg1UVlYyevRogoODRXgrOzub8vJy2rZtS15eHnK5nNraWiorKyksLGzxGhobG3Pnzh3atm2Lu7u7qCJv06YNFhYWgsnCy8uL999/n5qaGuRyOffv3+fBgweCj08qlRITE8OZM2fw9/dn7Nix+Pr64uHhQXZ2NvHx8SQlJREaGipysk+fPs3Zs2dZuHAhgYGB1NTUsGfPHgIDAwkNDRV0OTt27GDcuHEAhISEMGHChBYp6T169Hjk+yUlJRw4cEDMs0pxzMjIYPXq1ejp6TFt2jShMLu4uFBQUCByjG7cuMHt27c5evQonTp14ujRo+zbtw8jIyPCwsKwsrLiypUrfPrpp6Snp6OlpUV6eroggvf396e0tJT//Oc/VFRUiNxEVa5fS1BYWEh8fDze3t4sX76cPn368OOPP4oc+/r6esrKyoThl56eTmVlJQEBAcTExPDJJ58ID+batWvZunUr2dnZospZQ0MDMzMztLW1SUlJYffu3dTW1jJlyhTs7e0xMjISRPexsbEYGxtjbm5Ojx49SE5OJj4+nsTERNFopKUFW7GxsVRWVgpjKy8vj5CQEJFXeuvWLY4ePYqrq6tI8UlLS6OiogK5XM7FixdJT0+noaGBmzdvYm1tzcsvv4yNjQ1Llixh9+7dyOVy7ty5w82bN/Hw8KBr164MHDhQyJwjR46QmppKXV0d9fX1ovjG3NxcFPOVl5dTW1vbYuJ3UHrH3n//fcaOHSuI0k+cOMGOHTsEXVR5eTm+vr6ibqGgoIDr16+jpqYm8o0tLCzYunUrhw8f5v79+8yYMQNDQ0OqqqpoaGhAQ0MDU1NTioqKRFOM0tJS6urqRPpWnz59OHnyJAsWLGDfvn0EBwcLqrWSkhJqa2uFQ6a5aGhoYO/evXTp0gUbGxsSExMpLS3FwMCA6OhoMjIysLe3JzAwkK1bt7J161YWLVrE6NGjcXBwQF9fH3t7e/Lz84mKiuL8+fP07dtX5EHX1dWRkJDAvXv30NLSws3NDR0dHQoKCiguLhZ53XZ2dnzzzTckJiYyY8YMtLS0RK66XC7n3r17tGvXjvLycsaPH98i5TUjI4PKykpyc3MxNzdn8ODBDB48mMOHD3PixAlcXV3p0KEDlZWVxMfHY2lpyYcffoibmxv/j7b3jK6yWvt+f+m9915ISO8EQggJPXQQpEpRQYoUARFEUVQE6SCIgPQiiEqvEnoChDRCSEhI772XlZ6cDxn3fMn2Oe9D9jjn+rL3UMfKmuue95xX+ZeKigp8fHwEKVvS7ywrK6OqqoqnT58KdZegoCD69evHpUuX2LdvH3Jycnz44YeYmJjQ1NTEvn37uHnzJo2NjRQVFeHj44OVlZVYpwRFAXos6yYl3jU1NRQUFAhIlpS4OTg4YG5u3g0+ER4ezsOHDzEyMiIvL08oQkRHR3P16lUsLS356KOPMDQ05NChQzx//hxtbW2GDRvGgAEDsLa2Jjg4mBcvXvD06VNiYmIwNjZm0KBBvHz5kmvXruHt7U1QUBC5ubmcOnWKFy9eEBMT02PsuQQrAlBQUKB37970799f3EfJycnIy8uLM8zR0ZE5c+agpqZGTU0NVlZWREVFsXXr1m6fq6ioiLa2No6OjrS1tQlCb0hICI2NjRw+fJiAgAAWLlxIUFAQd+/eJTY2Fj8/P2Ee1dnZyc6dO2lvb6e2tpa6urp/YcD/p+hx8nr69GmhfdbR0YGCggJubm6EhIRga2v7L0LArl27OHHiBMuXL2fOnDniMvTx8SEwMBAnJycsLCyws7MjMjKSq1ev8uTJE27evImHhwdHjhxBU1OT7777jiNHjqCmpsaECROIjIzk4cOH4u9UVlYKrT5AHGg9jdGjR2Nra8u+fftE8ipJ5ISHh3Px4kWmTJnC8uXLKSoqoqqqClVVVWQyGbq6uuLCO3DgAKmpqZibmws9TclZRTpk4uPju6kIvC29U1payoULF2hraxMYy9mzZ2NnZ0deXh6nT58mJSUFd3d3srOze7TGHTt2CAFpFRUVTExMePPmDbt27WLhwoXcu3cPS0tLrl69yq5du/j+++8ZOnQos2bNYsKECairq5OcnExLSwuKioqCoFVdXU1qaqqoruLi4tizZw/Dhw/Hzs6OVatWkZ+fT1JSEg8fPmTYsGEEBARQUlLCvn37CA4O5sMPP+TChQtcuHCBwsJCKioqurEU3yUk8mBKSgr9+vXj6NGjWFlZsWfPHlHtSb+3r68vFy9e5PPPP8fa2holJSWhUtGnTx+RKGhoaAiHM1tbW+ECdP78ee7fv4+1tTUODg6sWLGCpUuXigpyy5YtrFq1ig8++IDPP/9cuPfk5uYCYGhoyJ49e8Sh/a6Rk5NDeXk5Tk5OAqrT2NhIeHg4ZmZmDB8+XLgiSX/vxIkTWFpaEhAQgLu7O3369GHBggXs37+f4cOHM3PmTKZOnYqNjQ1paWl8/fXXdHR0sHbtWqZOnUpzczNr167l77//BmDIkCFoa2sTFhaGoaEh8+bNQ1dXV1xS5ubmAgv43XffdRPjf5cwNjbmyJEjDBs2TEh6ZWZmiq6UkpISbW1tVFdX09rayvnz5wkLC2Pu3LloaWlRUFCAgYEBTk5ODBgwgDNnzpCTk0NlZSWtra08ffpUQHjGjh3L119/jbm5OWZmZpw6dYro6Gjmz59Pa2srampqPHz4kLNnz/Lpp58ycOBAPvvsMzIyMtiwYQMff/zxO8m7vB2tra0MHjyYkJAQpkyZQnx8vNg3DQ0NXLx4UZhrQBfU4/jx42RnZ5Obm0tMTAyjRo1i//79WFpaEh0dLTDQ8+bNY9myZaSnp7Nx40auXLnC0qVL+eabb1i0aBHQVehMmDCBtLQ07t+/z8CBAzl+/DgHDx4kKSmJ6upqzM3NBXnlv0leNTQ0BP5cCgMDA0aOHImlpSVz587F0NCw29ktTeXS09O5cOECvr6+rFu3juLiYvbu3SvE+e/fv4+hoSGfffYZioqKpKSk8N5772FgYNAN17lixQoGDhzIq1evkMlkTJo0ib179xIREcHGjRvFM34XhvN/xoABA5gxYwampqbcvHmTS5cuMXjwYLZs2cKdO3f4/PPPCQ0NxdXVldu3bwNdTYHGxkaCgoIYO3YsqamprFy5ksjISHR1dWlubsbNzQ19fX3i4uJYvnw5UVFRQplGIu6mpKQQEhLCmjVr0NPTIykpiRs3bmBnZ8fcuXPZtWsXFRUV3Lp1Cx0dHZYsWSLc/HoSe/fuRSaT/ev5Dxo0iIiICFEsyGQykpKS8PX1Ze7cuaIYgS7+wv79+7GxsWHw4MGMGjWKmzdvsnXrVm7fvo2qqipXr15l+PDhYjL74sULwsLCmDVrFnPmzKG4uJgDBw4gJyfHsGHDhExeQEAAcnJyvHjxQhQ9/214enqyYcMG5s2bh4KCgsDIt7e3U1xcLExcli9fzsCBA6msrOTNmzfMnTsXT09PVFVVUVBQIDQ0FAsLCzIzMzl06JBwwTQxMeHq1ascO3aMoKAgtm3bxsiRI7GwsGD8+PHEx8fTr18/lixZgrq6ulDEsba2Ztu2bTx9+lRI9f23IS8vz9ChQ8Vn3717l4sXLzJq1CiRvOrp6TF06FChGpOVlcXz58/FZ8jJyeHm5kZFRQXbt28nPDwcd3d3FBUVKS0t5c8//wS67p3Gxkb+/PNPgoOD0dTUFDBCSQFImiR0dnZy6tQpwQn536LH2d3Lly85cuQII0aMwNramvb2drS0tFixYoVI9mJiYrh7966wE62pqcHExARlZWUsLCzQ19fHwMBAjEegK4M3NDTE2NgYFRWVbl1aHR0dhg4dSnx8PNXV1YSFhXHlyhVxGAQEBNCvXz9u3rxJeno6AQEBjBo1iqKiIi5fvtyj9c2YMQMzMzMSExORyWT4+Pjg5OSEpaUlcXFx3Lp1i8GDBwsg9/8UjY2N3cSqoct1YsqUKUycOJGgoCCCgoI4ePAgu3fvFg4/L168IDc3l7Fjx2JmZsa8efMEju5tGbKcnBwSExMxMzNjwoQJ/Pzzzz1aY2VlJZcuXcLc3FzY4rW0tKCtrc2MGTPEAbd06VIiIiJ4/PgxVlZWomgpLCwkMTGRJUuW8PLlS5YvX86qVavQ1NREXV0dFRUVlJSUSEpKor6+HmtrazEGdXJyIj8/n8LCQiEL8uTJE9LS0gTbVE1NjSlTpnD9+nVUVVV7XISoqqri7OxMUlKS6Nx9/PHHPHjwQFhlFhQUkJubi5+fH8+ePePatWvExcUJ6SPpmY0aNYrq6mqePHnCmzdvcHBwYMCAATg6OtKrVy/U1NTIy8vj2bNnqKqqinVWVVUJZYURI0Zw8OBBDh48SP/+/fHz82Po0KFs3LiRcePG9XgEBF3Vc0xMDNeuXUNbWxtdXV3a29sxMTFhyJAhyMvLs3PnTh48eEBgYCB6enpi37a0tFBYWEhcXBwvXrygtbUVFxcXAgICsLa2Ji0tjYaGBrS0tAgNDeXDDz9EU1OTPXv2iMR10aJF2NjYEBkZSVVVFYGBgTg4OKCjo0NeXh6jRo0Sh1llZSXOzs49XqO9vT3p6elUVlaSm5uLsrIy2traaGhoiK699M89PT3x8vIiPj4eFRUVNDQ0hNlJZ2cn48ePF25NK1asoLi4mIyMDDF29vT05MMPPxR/29ramvDwcPbu3YumpibTp0/H1NQUBwcHioqKePbsGdnZ2YSGhgqC3P+kwfl/CyUlJeFS895772FiYsK1a9d49uyZGHVL5gHQ1amNiIgQ5iSvXr3izp07/PHHH6xevVpIPN27dw91dXWx14KDg7ly5QplZWViCmBlZSUc5nr37i3UGUxNTfHy8uKPP/4gISFBWJzm5+d3u7zeNcaPH09AQACmpqbCPllFRYVZs2YJs5vm5maKioqoqalBWVlZYN9tbGyIiori0qVLfPjhh7i4uLBy5UrGjBlDbW0tz58/Fy5dCQkJ/PzzzzQ3N+Pr68uCBQvEBSrtSyMjI968eYOBgQGTJk0S50NcXFw3mEZPoqamhr1791JQUMDx48fR1tbG09MTbW1tevXqRUhICMHBwXh7e5OZmcmzZ89IS0sjIiKCuLg43NzcsLW1xc/Pj+zsbNTU1Hj+/DnHjh1j4MCB/P777wIaFhMTQ25uLkOHDqVv375kZGTw4MEDVqxYgbe3t5iCRkZG4uXlRWFhoZiS/vHHH/j6+hIUFMSLFy96tEZJOWHIkCHdCMLq6uqMGDGC3r17ExMTQ1paGgYGBri4uNDZ2UlMTAyJiYkYGRlx+/ZtYfbi6+vL69evSU1Npby8HG9vb4EbrqurIzAwkNWrV3Pnzh0hK6mlpcXMmTNFJ1lLS0u4Vb4teya9G28rH71LVFdXk5aWRklJCQ4ODv86kxUUFLC1teXNmzfk5ubi4eGBj48PxcXF5OTkdNNhVVVVFfqsRUVFdHZ2MmDAAGxtbdHT0yM3N1cQ8kpKSjAyMsLDw4Np06aRmJhIfX09GhoaotFRUFBAYmIiioqKjBo1CiMjI16+fMmhQ4feeX1FRUVoamrS2dmJpqZmN0mxO3fuEB0d3Q0n3NraSlNTE0pKSkRGRgqi89dff014eDiPHz8mOztbmDZYW1tjZWWFn58fz58/548//hBTJUm55a+//iI/Px9nZ2f09PQoKyvDyMiIhoYGwsPD+fnnnwW35211p/+36HHy6uTkxKZNm2hoaOCzzz5DJpMJVj50dWN/++03Dh8+DMDw4cNZtWqVyLIlW0rJa1kKCR7g7e3N7NmzcXNzIzo6WoDuJdHlO3fucOfOHWJiYlBWVqZv376MHj0aQ0NDLl26xLlz55g+fTqjRo3i1q1bLFmyRHQa3iXOnj0LwIYNG/jpp5/44IMPWL16NRoaGvTq1QtjY+NumrJvSz9J8bZcVHNzM9u3byc3N7eb5Bd0kc2+++47Lly4wPz583n06BFhYWHCX3vLli2Ul5cLn24prKysCAoKor6+vsfi9gATJkzg+fPnQlR69uzZjB49GhUVlW6Eu5ycHGbMmMHcuXOFGHVVVRWnTp3C1dWVuXPnsm7dOrZs2YKXlxczZsxAUVERDQ0NLC0tycrKorOzs9uam5ub+eCDDxg2bBgPHz7k5MmTtLW1MWPGDAYOHCiY7MrKyowbNw45Obl32shvh4SxrqysJC0tTTh3HDx4EGVlZXJycvjjjz/Q19dn6NChfPDBB9y4cYOCggKRuDo7O/P+++8zbNgwobWbkpLCmjVrBK5NIr7Y2trS2tpKbW0tBQUFotCQnpmzszPffvstERERnD59GnV1dSErIsXbe+pdwszMDGdnZ27dusWVK1eQk5Nj3rx5fPnll8jLyyOTyXjy5Ak3btwgNjaWb775hh9//FGQAm/fvs1vv/3G69evmTFjhsAq/fPPPwIeIhkM1NXVsX37djZs2ADAoUOH+Pjjj9mxYwdXrlwBuiYF2dnZeHp64u3t3Q0zGRwcTHBwMCtXruzRGh0dHXFzc0NNTY2srCxGjRpFW1ub+JstLS1CScDe3p4JEyYIEfaioiJGjhxJZ2cnra2tolty8OBBbty4QWlpqbC69Pf3x8TEpNu7LLFk58yZw/379zl8+LA4wyZNmsSdO3f44YcfhOB4bm5uj0eVurq6PHv2jH79+mFpaUl1dTV3794lNzeXVatWdZOPgq7uj0wmIygoSIzlrl+/zhdffEFbWxtffvml+C5Pnz7l5cuXuLi4kJ6eLj6jrq6OlJQUtLS00NfXR09PD2tra+zt7VFWVhaj0pKSEi5cuCBGws+ePWPz5s1i779r9OrVSyTfra2tFBcXo6CggI2NDVpaWpSUlIixr4S7l6Z3kuGGhOf84osvhGRTdHQ0ZmZm3ZLi8PBwWltb6dWrF4cOHcLPz48NGzYQFxfHsGHDMDU1FVbBP/30E2vXrmX8+PHMnTuXJ0+eYG1t3ePu66NHjwgNDaWiogIHBwfmzJkj7sKBAweK6VZBQQH29vZCf7yzs5Pq6mpKS0uxs7Pjl19+YcmSJdy7d4/Tp0+zZ88erl+/LvgVmpqatLW1UVpaCnQRphUUFNizZw8pKSnCsU9FRQU9PT0OHjxIXFyckF5LSUkREzGp6fOu8cUXX6CpqYmJiYno/ML/gQ3a2toKsqq9vb1oYp08eZL9+/djaGiIi4sLY8aMYd68ecjJyfHzzz9z/PhxpkyZwrFjx9DU1GT58uVs3LiRrVu3MmLECKFmo6CgQFNTE5aWlqxdu5bY2Fh27NjB9evXhQQUgI+PD8bGxigrK/eIpA2Qnp7Ob7/9xp07d4ScobTXpeRZXl4eU1NTUlJSBMFRIohK2tbQlWxeu3YNgI8++ohdu3bh7OxMa2urcD7z9vamV69ewopcTk6OTZs20dLSgpqamiDdQVczTOpi37hxQ0ArexKmpqbdsNLS3wSEHv3bd7+mpiZNTU3cvn2bN2/eoK2tzUcffSQmJs+fP6e+vh6ZTMa8efP45JNPMDIyQldXl+zsbLKyssRdOn78eIKDg1m0aBHx8fFcuXIFPz8/Uew3NTVx8OBBsS+1tbX//0leJ06cSGFhoViolpYWMpmMvXv30tbWRkNDA7m5uTg7OzNw4ED27duHiooK58+f5969e2zatElUDj///DNycnJ89NFHBAUFCcKFvLw8TU1N1NbWCt22X375BSUlJebMmYO3tzcpKSm4ubmJyuDChQu8efMGCwsLlJSUOHbsGBEREYLZ+K4h4ZSk0ZW8vDyJiYm4u7szcuRInJycmDBhAp2dnfz22294e3vTr18/bt26xe+//86SJUvo37+/GIOpqKhw4cIFYclZWVnJ559/TlNTEwEBAcycOZP09HQiIyNRV1dn1apVeHh4UF1djZycnAD2S9ZrWlpa5Obm8uDBA548eYKDg0OPL5TevXvj5+fXzctYGgldv36dkydPUlFRgaqqKkZGRrz//vviwMrOzsbb21t0KiQ/eQsLC+Li4kQyYWdnJ5ydkpOTycvLo7CwkKFDh+Ln5yc6SxLO7D8xnBJD8b8JCb/k4+Mj7E7b29sFUaq4uJjg4GA6Ojqora0lODiYW7dusX37duE806dPH9Et1NXVFUTAtytsaXSTnZ3N8+fPaW1tpaWlhaFDh3YbsdnY2LBo0SK8vLxQVlbGxcWFjo4OtmzZwt27d3F1df2X3ej/Fnfu3BHJlOQ0NWLECCFbpq6uzscff4yVlRXm5ub06dNH4Ih0dXW5cuUKRUVFbN26lTFjxojPNTAwEJZ90uH27NkzvvzySzo6Ovj777+ZPHkyKSkp3To4KSkpyGQydHR0GDRoULepRE9lwKR4G0ZTUVEh5HikRD8rKwtDQ0NSU1NZs2YN06ZNIyQkBOhK7r/66iuRAEGXrJe033R0dHjz5g1FRUWMGDGCQYMGcfXqVUGcOX36NA4ODoSGhgoPekAwrVevXi0S188//5yioqIeP0NXV1eUlZUJCwujuroaCwsLVq5cSV5eHnp6eiQmJuLk5ISSkhKtra1kZmYik8nIysqisbFRXNAzZsygqamJmTNnUlxcjIWFhUjIY2NjxTvZ1tYmzmVJHk5SbZHeNWkqVlVVxdWrV3Fzc8PAwIDXr1+L0WBP4s6dO5w7d44hQ4Ywe/Zs7O3tMTU1paCgAA0NDRQUFMSERvrOUgJZUlJCR0cHNjY2BAYGYmVlxcOHD3F3dycpKYlXr16hp6eHqakpI0aM4LvvvqOiooJFixahqqpKQEAAs2fPFt/59u3b7Nu3j+rqaiorKzExMeH777/n8OHDXLlyhcGDB3dzQ3yX0NbWZseOHbx8+RJDQ0OhhgF0U0nJzMyksbGRsrIyOjs7mTFjhtB4jYmJobi4mD59+vD+++8TGRlJVFQUBQUF9O/fnzFjxlBRUSFGz9XV1YSHh1NZWUlLSws///wzenp6FBQUMG7cOGbMmEF6ejp6enr0799ffGb//v1pb2/H39+/R7Jua9euxcfHh4CAAGHy4Orqyueff05UVJQo7N6eXBQVFREQEICamprAgqqpqVFSUkJ0dDRHjhwBunTZi4uLcXBwwNLSkubmZq5evYqfnx8GBgZCqrCmpkbsVcn6GroUYN6ezJmamnZr9LxrSF1iFRUV1NXViYqKQk9PDwsLC/Ly8oiIiKC9vR0nJyecnZ1pa2ujo6MDZWVlAWOqra0lLS1N4Pv79evHokWLxD2ipKSEra1tN4dJOTk5MjIyePHiBUFBQeLcPH36NDdu3GDPnj04ODhgZ2cnFEagS7e6J/F2UZiens62bdvw9PRk6dKlfPTRR7S1tYnv1N7ejrOzMyoqKuzdu5c3b96wbds2AgMDOX36NPX19WzatIlLly7x5MkTduzYQf/+/Rk2bBj29vaUlJSIxFVHR4fq6mpiYmJ4/fo1RUVFvHr1Cn9/f2F6pKKiwgcffEBdXR1VVVW0t7f//2NSoKenx/r167tl6dbW1uzbt09sqC+//JITJ05gYmKCnJwc5eXl7Nmzh5cvXzJ69GgGDhzIjh07BCNa8qaWorOzE5lMJkaycXFx7Nq1iwEDBrBw4UIsLCwYNWoUjY2NFBYWEhsby6NHjyguLhYHoLQRJ02a1CNMqKQFefDgQaFveffuXczMzAQDHbps3jZt2sSgQYMwMDAgMTGRyspKMb54+vQplpaWaGlpYWxsTO/evcnMzOT+/fucOHECY2NjJk2axCeffMLjx4+5ffs2I0eOZOTIkdTW1nLlyhUUFBRwcXHBzs4OLS0tkZg0NzcTERFBcXExtbW1Pb5Q5OXlhXh3S0sLdXV1GBgYIJPJuH79On///TcODg4oKChw69YtcnNzGTlyJEpKSmhpaQkyU0NDA05OTuzZsweAc+fOCVyZi4sLISEhZGVl8eTJE3Jzc7Gzs8PR0RE7Ozt0dXWFPz10XVRtbW1oamqiqKgonJoaGxv/qyS2oaEBRUXF/5G9aGpqytixY7v9s969e4tDsHfv3gwaNIj29nZKSkrQ1tYWEkFXrlzBxMQELy8vhg0bxvXr1+ns7KS4uBhNTU369OmDgYGBcCzT09MTY30JpwVdOq179+6lpKQEoNul9y7x8OFDBgwYQEhIiEjYpJBIZ2PHjhXrbG9vF9V8eHg4r169wtHRkdDQUF6+fMnhw4cZMmQISkpKQqM5KSmJyspKOjs7cXd3F5qv0NVxkixUpXdVQUGBwsJCgeVWUVGhoqICGxubHneW4f9Y3Uq4PSsrK4YMGYK1tTUFBQU8f/4cf39/ampqOH36NLdu3eLcuXMEBARQW1uLkZER7e3tYuwqjU2DgoIoKChg+/btVFVVkZ+fT2lpKRkZGUJB4+jRo/zwww98/PHHDBs2DEVFRSF1tmrVKiZMmADA7t27uXnzJt7e3j3uvKqqquLu7s7Tp09JS0vr5hn+zz//cPnyZYYPH06/fv2Ij48nMzNTWKtKsWzZMvbu3cvjx4+FTXRQUBC7d+/G0NCQFy9eUF5ejpycnHgWUhKgoqKCTCZDXl4eRUVFlJSUaG5uFu45V69e5dy5cxgaGtLc3NxjYqi0jjNnznSz2kxPT8fY2Fhc1O3t7ZSVlVFYWCiSAegqwEpLSxkyZAjHjh2joqKCDRs2cOHCBUpKSkhPT8fBwYHW1lb09PT46quvxHkhuXB98sknODo6UldXR2RkpHB5TEtLA7qUV4yMjNi4cSPJyck9xoRaWFgItnZISAjFxcVCh1Yi6BYUFJCfn9/Nac7Hxwdvb2/KysrYvHmzsE/9+OOPu8lYVVVVoaGhISZsPj4+ODs7c+nSJR49ekR+fr7omklqP66urnh4eAhSj9QI0dXVRUFBgWHDhnHx4sV3XuOWLVuQyWRkZGRw4cIFMd2U3LF+//130tLS6Nevn+j0x8XF4eLiwqxZswCQyWRcvnyZBw8e0NjYyIwZM7h06RIpKSksXLiQzZs3izG8trY2CQkJuLq6CmKmlCzKy8tTXV2Nn58fL1++FNM66WyTeBg9DUnSb+TIkYwYMYKqqipycnLEOVZcXEx2djZycnK4u7uLpFomkwkDl/r6esLDw3n58iW6uroEBgaioKAgDFo6OztJT09HXl6ekpISNDU1qa6u5p9//uH169fIy8uLAjg3N5dLly7h6OjI999/z7p16wTc7dmzZz2GflRUVAj8rrq6OmFhYfzzzz/4+flhaGhIa2urSPolzLCdnR3+/v6oqanx3nvvIZPJuHTpEjNmzBAE0idPnghJMKnR6OHhQVRUFPX19TQ3N1NcXIyOjg76+vrU1taKxFZfX184j06ZMoX+/fvzyy+/kJKS8k6KHz1+yomJicJrWgoHBwcmTpwoklcfHx9MTU1JTEzk559/FqzkhQsXIi8vz5EjR0hNTWX27NlCZggQnSslJSU2bdrEgwcP2LlzJzKZjLVr1+Lh4SFwEvn5+axevRp9fX1Gjx5NQEAAly9fJjo6Gnd3d+bPn09ubi5hYWE96vz079+fwYMHi0taVVWV0tJS4uPjBXHi5MmTbNq0SRCnbty4wdKlS/njjz/Q1tYmIiKCzZs3Ex8fj4+PDyEhIXz99dfY29uTnJyMt7c3kydP5v333xcyL9OnTxdySZIYvKenJ52dnTx69AgvLy+BCZWUFfLy8hgxYoSwx3vXkPByjo6OQgUCuja1oaEhtra2bN26FTU1NUaPHk1ubq5IulRVVYmNjUVOTg41NTWhOWhjY4OVlRUdHR20tLRgZWXFyJEjSUtLIywsDGNjYz7++GNaW1vZu3cvffr0EYlVbGwsO3fuFJqrtra2FBQUcOfOHZ48eYK9vX2P3IuKi4tJTk5GRUUFe3t7jIyMuiXA/wn1yMnJYcWKFVy+fBldXV2++OILZs+eTV1dHeHh4VhbWwvdup07d5KZmcmGDRsIDAzk66+/5s6dO/Tq1Yu5c+eKynj79u3ExsYyZ84cRowYQWtrK/Ly8oJhW1JSwubNm4X9po+PD+fOnXvnNXp4ePD06VMGDBggdBKlOHnyJGFhYXz77beCnKagoICCggI7duzg1KlT2NnZ4eTkxMKFC7l69SrQRapoa2sTxARTU1M6OjoIDg7mr7/+4ty5cyxfvpwxY8bg6+uLnZ0dycnJ9O/fH21tbR4/fsy1a9cEA15DQ4Nnz55hYWHxr2LhXeLx48fIZDJOnjxJUlISixYt4quvvgK6HKTi4uLw8fFhwIABDB06lCtXrjBmzBhWrlyJt7c30dHRJCQk0NDQQEREBC4uLkRERKCmpsbKlSu5fPkygwYN4tixY5w+fZoPPviAqKgosrKyaGtrIz8/X4iW5+fnY2JiwpIlS/D19RWjvDdv3rBu3TpRnP434erqipWV1b8gRebm5kK/taSkBCUlpW6GGB4eHiI56OjowM3NjYKCAgYMGCD2t4+PD6qqqvTv35+6ujpiY2NZtmwZ77//PlOnTiUtLY3y8nIGDhxIeno6T548wd/fnxUrVhAVFUVqair5+fmEhISgpqZGY2Njj9bm4ODAqVOnmDZtGuXl5Sxfvpzm5maB1+vo6MDV1RUNDQ0SEhLIyMhg/PjxwulOIm02NDRgYGDAzJkzuX79OhUVFUJy7+nTp4wcOZLW1lbWr19PdXW10IOVvq+WlhaLFy8WSi5v8xHq6uooLS3F1taWvn379mjk/LYdrLa2tkjIW1tbqaqqwszMjF69elFVVYWampow8jl+/DjJyck4ODiQn59PU1MTMTEx+Pv7C/1P6Jpo5OTk0NnZycCBA1m5ciV9+vThypUr3YqY2bNnC43ZjIwMADFZy8zM5Pz583h7e/9XRhPPnj3j66+/FvbtGzduZPTo0bS3twuTkO+//16QOaVn/vTpUwwNDbGxsUFdXV00SPz9/UXyOmnSJPLz83F3dxeGN6GhodjY2PDo0SOUlZUFSbm4uBhzc3MMDQ355ZdfcHR0pKSkhL///puCggJhGNRTq21AqIv06tVL6K0WFBTQ3t5Or169WLZsmYB5JCQk0KtXL+zs7FBUVKSurg5tbW1aWlqEaoVMJuPRo0fk5OQIcqWuri5Lly7l+++/R15envv37/PVV1+RkpLCxIkTxXSnsrKSPn368M0335CZmcnhw4eZO3euIPZJHKMDBw688/ok7oeBgQHm5uZ88sknnDp1ig8++ICOjg7s7e2FnKmcnBxlZWXk5eWxcOFC1NXVaWxs5NmzZ4waNUpgcSVJsj179uDj48OJEyfw9PRk69atbN68mUuXLtHU1ISnpyfjx4/n3r17lJeXC0lH6C5v2NraiqurK48ePeLq1av/spL/z+hx8mphYYGKigqJiYk8ffoUV1dXfH196du3Lxs2bCAzM1PYgzU0NAhQ+fDhw1m2bBn29vY0NDTQq1cvfH19MTMzE+1iKysrgXHU0NAgODiYX3/9FU9PTxYuXEhubi4bNmzg008/RU1NjcePH1NWVoajoyOTJk2ipqaGzMxM+vTpQ2BgINbW1ty7d69H6/v1119RUVEhNjaWmJgYDAwM0NXV5ejRo1RWVoqqTPp+TU1NyMnJCRvVmzdvcujQIV69eoWSkhJWVlZMnToVHx8foEu5oLKyEltbW2pqaoT/uoqKirCjrK2txcXFRSTQFRUVPH78mBcvXqCgoEBmZiZ2dnYCq9pT4XBfX1/S09PJy8vD1tZWHLjl5eWkpaWJsXG/fv347rvvSEtL4+bNm4wePVpg86SD+PDhw6xfv573338fMzMz/Pz8yMjIEAewJL/Tq1cvgoODkclkPHv2rFt3QZLKun//Pvn5+SxcuBBtbW3hlPJ21+ZdQl5eHnV1dWQymejElJeXk5SUhL29PVZWVshkMvLy8oRpgkTse++993jvvfdQVlZGQ0MDe3t72tvbefjwIQ8ePKC2tlYoD0jkIellf/36NRYWFkRHR1NYWIiamhrt7e2igyj5kaurqzNmzJhuyUpPu3aSvV9+fj4WFhaUlJRgbm6OhoYGxsbGtLW1kZaW1s35paOjg2vXrpGYmMiaNWswMzMTF2BoaCjt7e3k5OQwcOBAxo4dS//+/SkuLsbd3Z3evXsze/Zs9uzZw4sXL1izZg2+vr64ubnh6OjI8+fPBRZVXl4eLy8vtLS0ePPmTbeqvidRXl5Obm4usbGxdHZ2dvOcj4iIID09nfLycjw8PBgzZgxv3ryho6ODjIwMsrKyuHz5MpWVlZiZmaGoqEhZWRmHDh3CzMyMmpoaoUkrQQFWrVpFnz59xKEp6VFCF5zCx8dHTD/q6upobW1l6NChovOmrq7eIwmiqKgooSUr+ZlDF6bd19dXFEwVFRVoaGhgYGCAiYkJioqKhISEsHz5cjEJkslkTJs2DTs7O0aOHImWlhaJiYkUFhbi4eEh2LtXr17lypUraGpqMmvWLGGbKu0bicTp6urKqFGjiImJwc/PjylTpuDk5MRvv/3Wo2c4YsQIMf2QyWSCICfJLsnLy2NmZoaZmRnl5eUC+wpdkAMFBQVMTU3FbyCZxqioqODu7s7du3e5dOkSRkZG2NnZUVhYSH19vZBp7OzsJDU1FR0dHbS1tRkzZgzt7e3ditfKykr69evHxIkTu0Gp3iXs7OyYPn06hYWFWFhYcP/+fYYPH46+vn43u9NevXoJGaGqqiqSk5NJTk4WSi45OTnY2Njg6elJUVGROF8ky+3Xr1+LpoUEtZA0s6UJiwRVev36NTU1NcLIQyaTCdtqiYvRk0hMTCQjI4Pm5mYGDRr0L7OPjz76iDt37nDjxg1OnjzJ0KFDsbS0JCUlhWvXrmFraysaSZWVlWhraxMTE0NLSwvjx4/Hw8ODkpIS4uPjxTvQr18/1NXVKSwsFJjt+vp6UlJSsLW1pX///tTW1hIXF0dSUpLYP5aWlv+VKkZZWZmY+kHXhFmCn+Xm5tLW1ibMCe7cuUNSUhLm5uaoqKiIxkhpaSnp6ekUFBQAXbhRaSKlpqYmDFzeVkNQVlampqaG2NhYZDIZ0DUR8ff3x9/fnxs3btDZ2Ym2trYwiXBzc+uxDW5cXBxXr17FzMwMX19fRowYgbe3N1evXuXQoUPk5OQwZswYRowYASDcxAIDAwV0sqysjJqaGh49ekR7ezuJiYlCQrKhoYHCwkIGDBhAnz59ukG+WltbKS0tJTc3l7y8PDFVzs7OxszMDCUlJR49eoSxsTH+/v48efKE6Ojo/++TVymh2r17N8eOHWPTpk1YWlpSVFTE3LlzUVZW5osvviAmJoYDBw6wZs0anjx5IkbT0GVS8OjRI44dOyYybAlQr6ysLEYEHR0dbNq0SSR+hw8f5ujRo4IQsn79elauXMmPP/7ITz/9xP3792lubhaboLq6mpCQkB5V0tKhtnnzZsLCwtiwYQOdnZ1cvHiR1tZWpkyZwooVKxgyZAjKysoCrH737l3mzZvHP//8g6KiIsOGDWP27NkMGTKkm6C6hYUFdXV1bNmyRdi8mpubk5OTQ3FxMTY2NgwYMKCbE42Ghga3b98WnTlra2vGjBnTzbq0J6GoqIizszOlpaXU19ejp6dHY2Mjv/32G0+ePKGgoIBvv/2Wjo4Ovv76aw4ePMiCBQtYsGAB3377bTeYgry8PI8fP+bx48cEBwfj5uaGuro6jx8/FtaBFRUVYnxgamoqXIGgqws6btw4+vTpw7x580hKSsLDw4Phw4djb29PS0sLoaGhrF279p3XZ2ZmhpGREZWVleI3ioiIYOXKlUydOpWtW7ciLy/PoUOHuHHjBjk5OcJ+b/r06WKfSt3v2tpaFi1aRGRkJMuXLyckJIRnz55x9OhRYmJihFPMy5cvsbGxISgoiFmzZuHn54eCgoK4MOTk5AQx5u0oKysjISGhx8+xf//+Qoe0ubmZ6OhotLS0GDhwoCAuvR2JiYkYGxszYcIEoSzw3XffoaOjQ3BwMCkpKWRlZdGnTx/BGD5//jzR0dGCHb59+3a++uortm7dysaNG8X4KDk5GeiaCmzatEkwVy0tLYWOY0/D09OTjo4OJkyYgI6OjlAPiIqKorm5GXNzcwwMDITG8rp16wgODiY1NZWzZ8/i5OREXV0d+vr6TJ8+XSgmdHZ2cvDgQfr27csvv/yCpaUlnp6eNDQ0UFVVJQoXKbl//vw5ffv2xdPTk6ysLLy8vDA2Nmb//v3d1tVTKbDff/9dYPLr6uo4d+4cqqqq3YTbJdx7r169SExMxMrKimHDhjFlypRuphp6enoYGxvj4OAgcPL37t1j7969LFy4UJC/JKKHhMfMy8sTijDr1q1j+PDhdHZ28vz5cwIDAwkNDe2mFNLTMDY2prS0FE1NTaytrTl79qxgdUvnkBQhISFiiiBBQAwMDHjvvffQ19cnKyuLyMhIQViV1t3a2iqUQ44fPy4KR0CYNERERCCTyYRu5tsREBCAhYVFt2TzXWPMmDFChuvGjRucPn2akpKSbs5v0FXEq6qqoqenJ/Cm+vr69O3bFzk5OeEp36tXL0JDQzEwMMDX11c8r2vXrtHZ2Ymenh737t3jxo0botv1n++59Jza29upqanB09OT7du3C8OVnip/TJ06lWHDhom//5/R0tLCuHHj6Ozs5M6dO+Tl5REUFMSECRNITk5my5YtwoVJV1eX6Ohovv/+ezEm1tfX5/z585SUlFBeXs7q1asZO3YsR48exdjYmOPHjwsVovDwcG7fvs3Vq1cFrGnatGkMGDCAyspKdHV1e4xbhi4d6vr6+v+RKHT//n0eP37MokWL6Nu3L8bGxlRUVHQryDs7O4mPjyc8PJzOzk5UVVUZPnw477//vkg6JQhZdXU1JSUlDBgwgDt37rBkyRJOnz5NXFwcwcHBaGhoUF5eTk1NjYBJQVcBtH///m6J4buGgoICv/zyC01NTXh4eLB161ZGjx4tJquSvj10QeMaGhqYOXMmVVVVVFVV4e7uTkZGhnAYHTNmDObm5pSVlbF161aMjY3R19cnPz+fP//8k6amJoyNjVFVVeXcuXP8/vvvQkt8w4YN7Nq1CxMTE8aMGYO1tTVZWVnY2Njg4uLSranzf4seJ69paWncvn0bBQUFdu7cyezZs4VAtKTl19rayqVLl3B1daWsrExUvDo6Oty7d4+ff/6ZV69eCeFlQ0NDqqqqyMzMxMHBQVQ/urq6InF99eoVFRUVDB8+nKysLPGgfX19iYyM5Ny5c3z00UeoqKiIKi8mJqbbmO1dIjU1ld69ezNmzBhkMhnp6ek0Nzfj4+PTrd399sURFhZGXV0ds2bNYsiQIYLsVFZWxp07d8RY2NTUlMbGRjIzM0lKSqKwsBAdHR3Gjh2LhYVFt8tB2kh//vknR48epbi4mNDQUMzMzDAxMcHW1pb8/Hwh+tyTSExMJD8/H19fX/T09AgLCyMhIQFtbW3mz59PVlYW+vr6jBo1SigmFBQUCJzY5cuXuXv3LsOGDaN///7MmjWLM2fO8PjxY+Gn/fz5c7y9vZkzZw4rV64UOoDQ1cWKjIykuLiYwMBAjI2NMTMzIzQ0lPT0dAoLC4EuMlhxcbHAhb5rSIXP20LHOTk5ZGdns23bNuzs7DA0NEQmk6Gurk5zczP5+fnY29sLzFtubq7Q4JVGXo6OjvTt21eMYjds2EBVVRWmpqZYWVkJdYxPPvmEgICA/xGu0tTUxNGjR5HJZIwbNw5bW1vx/vQk9u7dK/QBNTQ0cHd35+LFi2zdupVx48aJbnx6ejpHjx5FR0cHLy8vIbGTkJBAe3s7rq6u6OnpYWhoSFBQEJqamoSHhwvB6tbWVn744QeOHj3Kjz/+yLx58zAyMuLUqVNCqxYQnS/pUPz777+Ji4tj8+bN4jfsaXh7e+Pk5ISXlxdycnKiy2hsbMyYMWOwsrIS76GxsbGAvNja2tK7d29KSkq4f/8+ycnJeHh4YGZmxrfffkt2draw+c3MzKSgoAA5OTkKCwv5448/iI+PZ9CgQcyYMYOlS5dSWlrKr7/+ypAhQ/j000+JiooiJydHCI2/efNGwCx6EsnJyXz77bcsX74cFRUV4Uuvr6/P69evOXr0KB4eHnz44YdYW1tjZ2dHYmIiFRUVXLlyhXPnzqGrq4ufnx8WFhb4+vpSU1NDVlYWdnZ2jBo1ijdv3vDXX3/R1tbGV199xQ8//ICBgQG1tbUcPXqU69evU11dzV9//YWCggLjx4/nyZMnZGZmsnjxYsaNGydsft+2W33XKCkpQUdHh8bGRtTV1dHU1MTHx4dXr16hoKBAfn4+T58+pb6+nsmTJwNd76+pqSne3t788ccf/PnnnxQVFREbG0tGRgarV68WXc62tjbWrl1LR0cHubm5Qjnh0qVLGBoaMnDgQFxcXKioqBCcBMl0oaGhAQsLC8zNzTE3NxfYw56EnJwcWlpaqKqq4urqip2dHUVFRSxbtgwPDw+mT5+OtrY2TU1NtLW1MW7cOJYuXcqlS5eIiIjg2LFjTJo0iUmTJvHs2TM++eQTpkyZwrRp06iqquL48ePk5OQQHBwsiggvLy9WrlyJqakplZWVJCUlUVFRIaYddXV1mJubIy8vLxRlJD3m77//nk8++aRHa9TR0flXwpSXlye6qOrq6jg6OjJ37lzk5eWFt32/fv1wd3cXeN3FixejqqoquvchISFiumBiYoKFhQVeXl7Iy8tjZ2eHuro6rq6u9O/fn9evX/PixQtSUlJQVVVFR0cHc3NzfHx8GDlyJP379ycvL49ffvmFJ0+eiM77u0ZLSwt37twROOGmpiby8/OFmkBxcTHq6urk5+cTFhaGtbU1CgoK3L17lz///FPwHN5m0IeFhREQECCItRUVFZSWlqKjoyMkJQEWLlyIsbGx6DTm5+eTlpaGtrY2Ojo6ArNubGwsJj89hQpOnjyZ27dvc+PGDVpbW8WE4fr169jY2HD69GlmzZpFamoqu3btQk5ODlNTUywsLESn2M/Pj6lTp1JaWoquri61tbUkJSVx5swZXFxcsLCwICwsDA0NDSZPnszs2bO5cOECx48fp7Ozk0GDBtGvXz+qqqooKyvDwsICNzc3LCwsRNGdk5ODn58fv//++/86xepx8nrkyBG2bdvGihUrBNu2uLhYEA0KCwsxMDDA1taW27dvExUVRUNDAzY2NjQ0NLB//36uXbuGg4MD69evR01NjaKiIjEOqKyspLa2VmxgOTk5nj59Kljgfn5+pKSkcPr0aSZPnsyYMWNITk6msbGRX3/9lYaGBtra2lBWViY6OpqCggKxed4l5s+fz6ZNm/j444+ZMWMGmzdvJicnh7Vr1xIaGkprayvV1dUClL9x40a+/fZb5s+fL+TBMjIyuHbtGgcPHiQlJYWAgAC+//57TE1NhRyVsrIy1dXVXLhwAR0dHYEjqa+vJz09XYzUpHH1mjVr+PHHHwHEGDYuLk7gjHsSSUlJ3L9/HwMDA9TU1Lh16xbV1dXs3r0bHR0dSkpKqKurE13LxsZGNDQ0hCLAzZs3OXz4MPn5+Rw7doxjx46hqKjIiRMnyM7OpqamRjwDe3t71q1bR3Nzs3gJJChBUVGRAL+XlJRQUlKCra2tgJ4YGxsLp5GeRE1NDRUVFcjLy4sOr5eXF/b29mRmZnL27FkmTZrE8OHDMTMzEwny25ezvr6+qMIVFBRYunQpqampQojexcWF4cOHC9md+vp6Xrx4wXvvvceCBQsoKiri4cOHBAcHY2FhIXC25eXlYi9LpB9NTc0ed0MOHDhAUVERoaGh4rl0dHTw8uVLNDU1RfKamZnJwYMHsbW1FYlqSUkJYWFhvHjxgqysLEpKShg9ejQrV66kubmZZcuWERwczPXr11FWViY7O5vs7Gz27duHu7s748ePp6mpiZcvX/LPP/8QGhqKi4sL06dPx97enpycHH788UdqamqYN28evXr1EiD9noTUsZYK2ObmZjo7O+nduzeOjo6UlZWRmJiIsrKyYK++efMGBQUFHBwcsLW1RUNDg7a2NgoLC1FVVWXw4MGcO3eOCxcukJWVRVlZGaWlpdTW1vLixQvq6uq4c+cOMpmMGTNmoKWlxciRIzl06BBNTU307duX2NhY7t69S0VFBYMHDxb7rKeqCgoKCmzcuBFNTU3WrFnDxIkTaW1tRVlZmcjISH755RdsbW0xNjZm9OjRmJiYUFRU9K/3wc7Ojl27djFx4kQuXbrEwYMHmTFjBt7e3vz6669MmzaNDRs2YGBgwMKFC1mxYoUQ5wcEI/z169cUFBSQnJyMo6OjKN4k04meWDdKERkZKcg9ErFIV1dXjD1fvnzJvXv3aGxsxNvbG19fX+Tl5fHx8cHOzo60tDSuX79OQUEBZWVlyGQyrl27xu+//86jR494//33mT17NgkJCdy7d49p06bx4sULPv/8cwYNGsTAgQNRV1dn4MCBokCorq7m9evXVFRUdCO8Xr58mYMHD3brfP9vkZubS0REBPHx8QQFBTF79mzu3r3L5MmT8fT0FJASCRYUEBDA2LFjUVZW5tatW6Jo2LZtGykpKezevRsPDw9GjBhBeHg4q1atorq6mp9++kkkryoqKqxcuZKcnBxBehoyZAjm5ua8ePGCs2fPMnjwYCEh2dLSgqqqKq9fvyYzM7MbTvddo7Ozk+bm5m7NoIyMDGxtbbGzsxMuklpaWnR2dnL27FmuXr0qSJs+Pj58//33qKmp4e3tjb+/v1B/aW1t7aZUMHfuXPH/i4uLUVZWpqmpiZqaGoyNjTE2NhamKm9DynR1dTl8+DA3btzokTwmdOUVEhxAItvm5uaioaGBn5+f4KMkJiby8uVLcT88fPiQw4cPC1m0IUOGCHLl48eP+emnn3BwcKC9vZ3z58+L81NbW1sYrfTt21dMYMrLy4mPj8fIyAgHBwdevnwptH2hq5suQWl6EjKZjLlz5+Li4oKnpye9evXi1q1bLF68mCFDhgjTnbNnz1JaWkpdXR0nTpxgyZIlQmFHQUGB5cuXY29vT35+PsuXL6egoABNTU3k5eVFcdGvXz/69++Po6MjN2/eFDDQzz77jIkTJwL8j/CV+Ph4tm/fjru7O4sWLfr/PnmVKrC//vqLxsZGmpub8fT05JNPPqGurk6M15cvX06fPn04ffo0+/btE9m3r68vVlZWjB8/nqFDh4oOVFVVFbNmzaKlpYXly5eTmJiIq6sr8vLyomquq6ujvb0dAwMD7OzsMDExYdq0abi4uKCrq0tRUREXL16kV69eLFiwgNraWk6cONGj9YWHh7N06VJu374tuoHZ2dmio3rt2jXa2tqwtbWloqJCyGJERESwatUqVFVVUVNTQ0NDAy8vL968eUNkZKRwXvHz88PNzY379++joKBAnz59GDhwIM3NzYSFhfH7779TUFAgpEn8/f0ZOnSo6Eo8fvyY5uZmhg8fTp8+fWhpaenmJvMu4eXlhbq6Om/evOHly5e4u7vj6+srnm1RURFbtmzBxMSEtWvXEhISQkFBgThstm7dKtQICgsLcXd35/jx44wZM4YzZ86QlZXFoEGDusEL3r7YFRUVmTRpEqmpqbx+/Zpt27Zx9+5d3NzceP/997G3txdEC1tbW0JCQnpkL6qpqUlHR0c34sOgQYM4d+6c0HMcN24c6enp/P7777i4uLBnzx6CgoJoampCVVUVTU1NYS+poaGBk5MT8vLy5OXlCU2/5cuX8/777zNp0iQOHDggRoPQRX76/vvvCQ0NFQ4wgwcPxtLSUgD2LS0tKSkpISEhocfJa79+/UhNTRX6u5JF8YYNG3Bzc0MmkwlR/x9++EEUTOXl5WhoaNDc3MyTJ0/E79ra2srKlSsxMzOjpaWFhIQEnj9/3o2E1NbWxt27d0lJSSEhIYEZM2YQEBBAQkICJiYmLF68mOPHj3P58mX8/f357LPPsLCw4M8///yv/MZv375NSkqKMMdYuXIl2dnZ7Nq1C2NjY9auXcuJEyeYMmWKwO4+fvyYzZs34+Liwq5du8QelOwjx48fT9++fXF3dxd6jEOGDEFBQYGnT5+SkpKChYUFLi4uZGVlUVtbK4Szg4ODkZeXx8/Pjy1btggJoLa2th5fJtDlrubo6ChIC3379qWiooL29nbGjx9PaWkpu3fv5ueff8bJyYn6+nqePHkCdClmDB48mIcPH5KVlcXt27cZO3YsCgoKAo8rxXfffYejoyMxMTEMHDhQEKSkmDRpEh9++CHKysq8efNGnOkSgcPIyIjq6uoeyStJERcXJxIOqRh8W0LKzs6ODz74QDgUvh26urrs2bOHmTNn8uTJE/Ly8igtLSU6Olp0np4/f85HH31EU1OTsJwuLi4mKytLaIBKRhmSFbCcnJwgJspkMrFH/pukTjKskOx5oUvXWILTqaqq0tzcLKyfX716RUlJCUVFRZiYmFBSUkJSUhK6urps3rwZf39/evfuTV1dHaqqquzfvx9lZWWioqJwd3enpqaGvn37MmbMGNzd3QWcRSpg09PTOXz4ME1NTcItUoqAgADWr19PSEhIN7LXu4ScnBxKSkoCs6ympoaHhwcdHR20t7cLDsPVq1epra1l3rx5REZGsnPnTsrKykTyNnfuXJHQQ1ej4W3+w3/G/fv3OXjwIMOHD+ebb74RMmItLS3/o/rF6tWrcXZ2FiPqdw1vb29++eUXzp07x5gxY9iwYQO+vr48f/4cDQ0NATXp1asXs2fPxtzcnPb2doYNGyamH87OziQkJHDlyhWePHlCZWUlMpmMzZs3iw6uVIi3t7ejpKT0LzcwAwMDgoODxW+ipKSEtbW1SNIjIiLo379/jxV4Zs2aRf/+/YWGfkJCAhUVFfzwww+oqanx1Vdfcf78ebS1tVm5ciXq6uokJSV16/Dm5OQQFRXFokWLhE0xdEEHrays0NXVxdbWFicnJ54+fcr169dFAmpvb9/N+KG6ulrAm6Sor6/n6NGj2NjYvBP2vMfJ64gRI6ioqODJkyeCMers7Mzw4cMxMDBAXl4ed3d3xo0bh6WlJcnJyVhaWgqwvoeHBwoKCgJikJmZSUlJCQoKCgK7FBYWRltbm8CJqKqqYmJigpGREWVlZcIO0sbGhsrKShobGxkzZgyqqqoUFRWhpaVFQEAA5eXlPbLchC5NzoSEBPbs2cOCBQtoamrCzc0NbW1trl+/zldffYWioiLDhw8XiVVQUBBlZWXcuHGD1NRUoGtEIulnnj9/nosXLzJt2jRcXV0FHsbHx4dBgwbh5uZGVlYWf/75J5cuXcLGxoaSkhKePHnCwIEDGTVqFNDVGTh58iTQVcmPHTuWwMDAHievknD13r17uX79Olu2bMHb25v29nZ+//13Tpw4wYMHDxg0aBBqamr4+vpy//59Ll26hJaWFh4eHgQHB3P16lViYmLE4W9kZISamhpubm7MmzdPVIuvXr0SckuVlZVUVlbSu3dvjI2N+fHHH7l69Sq2trb069dPkMKkcHJywsnJqUfJq7y8fDfQfkpKCh0dHd0qXOiy27x06RLu7u6CpNXS0sL9+/fR0dERJgLl5eVcvHiR4uJiMZqtqqqipaUFeXl5Lly4ILTrnJ2defXqFWfOnBEEIgUFBTw8PKisrBQ4N+nFl/ZvTy/O5cuXc/fuXUxMTGhvbyc9PR1LS8tuVrrFxcW4urqKrkFbWxv//PMP0dHRQp9YW1ubzMxMXF1def36NaWlpaLo2rx5My0tLdja2grFhkOHDvHw4UP09PT48MMPqaio4OTJk3h4eDB58mQqKyvJyclh3bp1Yl80NjZSWlraY+hAe3s72dnZXL9+HW1tbV69ekV9fT13794lPDxcXMBtbW2CjPDmzRsKCwuprKwkPDycyZMni+/R1NREU1OTYBW3tbUhJyeHjo4OioqKtLe34+3tzbRp03BwcOD06dNkZGQQEBAgDACga2Ta0tJCe3s7VlZWKCoqUlxcLGA17xru7u4MHDiQ4cOHA10JgoKCAg0NDRgaGvLll18SFhYmhO0bGhro6OjA0NCQLVu2EBoaytmzZzly5AjOzs4oKiri4eEhHA3b29tpamrCxcWFH3/8kV9//ZX79+9jYWFBQEAAM2bMQFdXlwkTJuDq6oqRkVE3aJQE89HX16esrIyrV6/+V253paWlKCsrY25uLvD/UmEo4a2laGtro7a2VthsKyoqoqmpia2tLUpKShgYGGBlZUVGRgapqamCwFpfX4+Dg4MgOYWGhgozHOh6z5qamujVqxc6Ojp4eHgIByBJhH7AgAEiyXzXSElJ4cmTJzg5OeHp6Slw/dIkrbCwkISEBLKyskhKSqKoqEhoWEtOTM7OzsLZaezYsSgpKaGoqCjIMy0tLTx8+JCcnBwBvbt48SIbN24U5KmSkhLU1NQoKCigd+/e4pyrqqqipqYGW1tbzMzMupGS3jUaGhpEwS5NsjQ0NLolHzKZjJs3bxITE8OkSZPo27cvkZGRwulqwIABFBcX8/fff+Po6Ci0fqOiolBRUSEkJEQkN2VlZaiqqlJTU8Pjx4+prq4WJOx+/fpx+fJlGhsbSUtLw83NDQUFBVJTU6msrMTV1ZVPP/20xyRmLy8voZ5y8eJFOjs70dXVpaOjQ/BPJJOQt5VvBg0aJAqHkpISrK2tCQgIQFVVlc7OThISEvj7779ZsmSJkMGS5KGgC6aopqYmYA51dXUCe6ujo0Pfvn1pbm6mrq6OR48ecf/+fZKSkgQO9l1D0nv28PDA2dmZ5uZmvL29BenxxIkTFBUVMW3aNObMmYOqqioxMTHd1ADk5OQoKCjg9OnT+Pj44O7uzv379wVxbsyYMUyePJmWlhb279/PH3/8ASDsghsaGnj58iV5eXmYmpp207BXUFCgoKAAZ2dnVFVVRZH+f4seJ682NjYsWbKEVatWcenSJVavXk11dbWQlRk/fjzGxsYUFxezfv16/vnnHwYOHMinn36KhYUFp06d4sqVK0L2pbW1VeCU/vrrL6qrqwXIuW/fvvj7+1NRUUFWVhbBwcEoKSmxdOlS0tPTBUj6888/p7q6mqVLl/LBBx90Y26/TZZ6l/jhhx84cOAAUVFRVFZWoqKiwtSpUwGEFAZ0YX+XLVuGu7s71dXV6OjokJ6ezvr167l16xb37t3DyspKeFQ3NTURFxfH69evSUlJ4cMPP2T8+PE8f/6cixcvoqSkhJKSEgEBAcyfPx8XFxcuX77MnTt3ePPmDcnJyVRXV+Pv709SUhIzZszg448/5ujRoz19hCLk5OSEFS90dTE2bdpEamoqc+fO5ZdffkFTU1OIC58/f57ff/9dYJBSUlKE482ff/7J8uXL0dHRYfjw4d3A7Lt370ZVVZWdO3eSmprK3r17CQgIoL6+nqtXr+Li4sKFCxdwcXHpRoDp7Oykvb39vzpspcpVJpPx66+/kp+fz5o1a0Qi9+LFC+7fv4+xsTH5+fls3LiRjRs3Ii8vz6ZNm1BSUhKOHydOnOCbb77B1NQUExMT1NXVuXPnDi9evCAhIYHi4mKmTZvG9evXKS0tZc2aNYKgIJPJ0NLSEmPf+/fvc+TIESwtLfn8889xcXHByspKwBHeNczMzAgKCsLAwEBMNN52UAFEJ0jC9kq/o3Tpf/DBB6xbtw5NTU1SUlI4f/48//zzD7m5uTQ1NfHPP/9gaWlJSEiIELyPiorC09OToUOHcvv2bZYvX05OTg6hoaFYW1vz+eefM2rUKIqLi3n16hUeHh7MnTuXfv36sXfv3h6tcezYsXh5ebFv3z7S09NZsmQJQUFBAgcJXdjfoUOHsmjRIsLDw1m4cCEnTpxAW1sbJSUlSkpKxBkQERHBX3/9RVRUFGpqapiYmFBfX09ZWRlKSkoMGDCANWvW4ObmxqZNmzh8+DDz58//1xj57Nmz7NmzB2tra3755Rf69evH33//zZo1a7qNP/+3GDlyJB0dHd2KNSlxkWLw4MGYm5tTV1dHUVGRmMTMmTMHOTk5Jk+ezLBhwwT2V0pMDQwMUFBQ6DbmnTp1KvX19aioqODr6yvcBJOTk/nwww/x9fXlp59+IjMzkytXrhAQECAw4Pfu3ePw4cM9GqlDVxeyT58+QpVD6t69fv1aYP4lvBx0QZri4uKYOXMmCgoKrFy5kuPHj2NnZ0dbWxu9evXi119/pbW1lTlz5mBvb89PP/1EWFgY9+7dIzIykoCAACHcL4XkZiSFhPGWrEYBhg0bhomJSY8K5ZycHNLS0hg7dqyAp0nJSWRkJGfPnsXQ0JDi4mIePHiAkZEREyZMICMjg5SUFPr27cvw4cNJSUlh7969ZGZmsmDBAsaPHw90+c6vW7cOJycn0tPTMTExEW55UnFx8uRJfvrpJ4GL3b9/P/7+/rS0tPDll19iY2PDV199RVxcHD/88INwa3rXSElJ4fnz54JM9j/FmjVreP36NT/88AN9+/YlPj6e1NRUxowZw3vvvce8efMAWLVqlTBscXBw4O7du5SVlTF79mzWr19P7969MTIy4pdffuHq1atYWFiwadMmQd5UUFBg8uTJwhSgpaWF0tJSjh8/zsmTJxkwYAA//fRTj9YHiGbaunXrxH3/8uVLPDw8xPv55MkTSkpKGDVqVDede+iaROfm5ookuKWlhfz8fNTU1ER+I4UkwP/ixQsWLVrEgAEDxD0aERHBkSNHcHNz45tvvkFZWRmZTMYff/zBrVu3ePHiBXl5eWhoaHTrYP9v8dNPP3HmzBnCwsIEbEOSGZNMXuzt7XFzcxNdXU9PTxQVFWloaCAvLw8HBwfWrVvHN998w86dO9m4cSNXrlxh2rRpJCUlMW7cOJydncnJyenWjFm8eDGzZ8/mzJkzhIeH89FHH3VTEpDcIJuamti3bx8uLi7k5OQII4v/t+hx8trR0YFMJsPe3p6lS5diY2PDrVu3yM7OxtnZWYwp8vPz2blzJ6qqqmzdulXYmerq6lJfX9+tSzFgwAAyMzPZv38/I0aM4IcffqCwsJD8/Hx8fHzEKKy6upr6+nqGDx8ugOkymQxzc3MePXokZLxUVFTIycmhV69efPbZZ4SFhb3z+qKjo2loaCAyMpKnT5+yfv16HBwcyM7ORkFBQVirSg5SWlpaaGlp0dzcjKGhIRs3bkRXV5dz587x6NEjvvzyS3R1damoqGD06NGUlJSQnJxMTk6O6JrU1dURGhoqmMV+fn54eXlhampKWFgYNTU12NvbU1dXJ4gPkyZNEuDynkZtba1wa/nkk09wdnbuxjicM2cOO3bsELIuqampeHl50dLSQlpaGs3NzVhZWWFnZ4e2tjZnzpxh0aJFNDQ04OLigqamJgcOHOD27dviEvX09EReXl7omj58+JDm5mYCAgLo37+/uLCbmpo4duwYurq6jBkzhqysLCHB9K6hra1NR0eHkKTx8PAgICBA7M26ujpOnjxJeXk5u3fv5t69e/z444/k5OQwZMgQCgoKKCkpYcOGDTQ2NooCwcvLi4aGBp48eUJERATPnz8XVXljYyOPHj3i1atXvHr1Skh1FRQUkJWVJSAZpaWlXLp0CW9vb9E1efsCfdeQCgpLS0sUFRVRVFSkpqaGmpoa5OTkaGhooLq6mqamJmGikJKSAnSNiSXjkPT0dFatWoWrqyvR0dHCv37QoEFYWlpSUFAg5KhGjhyJu7s706dPx8bGhokTJ5KTkwN0dfMlrV8rKyueP3/OrVu3ePXqFRMnTuwxLAL+j5/44MGDga5OpaWlJc7OzixevJhevXoxevRo6urqcHBwoLOzE29v724XbGxsLElJSTQ3NxMZGUlMTIwgkDQ3N2NtbY2JiQm6urp4e3uLJDArK4v8/HxBpCspKSE/Px8zMzMMDAxwcnJCV1dX6DqamJgIQtm7hpeXFxkZGZw6dYrW1laGDBkixmXV1dXIy8uzevVqMjMz+fvvv7l16xbGxsYMGDBAFCo2NjZAF17sn3/+ITg4WGh5trW1CaktRUVFDA0NRbcjIiKCvLw83NzchC6wnJwccnJyXL16VVixSsmrrq7uv1j67xLu7u7/Gg8qKyujoqJCUlISDQ0NgohSWlrK/fv3SUtLEx1MbW1tgVWHrnslPDwcS0tLXF1dcXJywsjICF9fX54+fcr+/fvR1dXF2dmZmpoadu3ahZ2dnTgr09PTSU9PF8xm6Or8lJeXo6mpybBhw3qUvAYHB1NUVCTE5t82Ijl27BiHDx/G1NRU2NgOHTqUb7/9lpqaGi5fvoxMJsPAwIDs7GzOnTtHeXk5CgoK2NvbU1BQwIoVK0hJSWH27NmiCLOwsOCLL75g4cKFlJaWsn79evLz85k6dSrTp08Huvb29evXqaurE4WBmpoa9vb2opP+rqGmpoaBgQHNzc1cunSJ1NRUTE1NCQkJobS0lKtXryKTyZg0aZJQBLh06RJRUVFCOUb6Ti4uLowfP560tDSSk5Px8/MTHflLly7h5uYmNM2trKzo1asXNjY2pKen8/fffwtrYS8vL9F91NPTE3JjERERTJkyRZwZ7xqSbJORkRFGRkYcOHAABQUFFixYAHQ1Z2JjY3FxcaGxsZHOzk5ycnIE2fzNmzeio19dXU1SUpLopLe0tJCRkcHu3buFNbhkhBQVFUV6ejrTp0+nb9++wgggMzOTdevWCfUlU1NTYdoEMGXKlB6tz8vLCxMTE5SVlYUkYmZmJsXFxbi5uTF69OhuXVboek8fPHjAuXPnqKioYOPGjWJynJycTFtbG8HBwaxYsYKIiAg8PDx48OABf/31l8gv+vTpg6WlJU+fPmXHjh10dnaydetWoKsgNjc3x8XFBVtbW/T09AS+9l3kznqcvL569Yq7d+8SGBjI+PHjGTduHFZWVkRFRfHy5UuRIEiOF1JnKT4+nrt372Jpacns2bPZtm2bcBtJT08XjHJPT0/69OnDpk2bOHDgAHp6esyaNQstLS2OHTvG8+fPWbBgAYMGDSIxMZH+/fvz7Nkz1q5dy6RJkxg8eDALFizA2toaFxcXHB0de5S8Hj16VOAt9fT0CA0NxdzcnLCwMGxtbTl+/LgY/7wdJ0+eRCaTsWzZMubOncuFCxeQl5cXY4Wamhp0dHSwt7dHJpNx9uxZwfR1cHAgJiZGWIxOnjxZVHDvvfceurq6KCkpkZ2dzZdffik8rSVCRU/j+fPn3L59m379+okK/9GjR2RkZDBr1iwhqyN1Duzt7VmwYAGLFy8WkA2JsHbnzh127txJS0uLgEFUVVVx5coVmpubsbGx4fjx4+IwcXV15aeffuK3334jNzeXgQMHkpOTw65du1izZg2ampocPXoUFRUVQkNDkclknDlzpts4/F1CJpNx4cIFMjMzmTVrVjf8bUVFBXJycjg7OzN58mSsra25dOkSp0+f5vbt21hZWWFjY8OuXbuor69HXl6eLVu20KdPH65evUpmZiaOjo60tLRQUVGBv78/ra2tzJ8/n9raWhwdHfHy8iI1NZW0tDTS09NJTU3F09MTd3d3wR5XUlJCJpMRGxvbY5mempoaEhISsLGxwdramtLSUkpLS+nduzcKCgokJiby+PFj7OzsCAwM5Pjx4/zyyy9s376dHTt2sGzZMg4cOMCDBw/Q1dVl8uTJosOgoqLC+vXrGTJkCGvWrOHo0aMCL1VZWYmOjg75+fkiIbe0tMTHx6cboadfv350dHRw/PhxWltbu5Ew3jXCw8OF5mxAQADh4eGkpqYSHBwsLoU9e/ZQVlbG2rVrcXJyEjbKkh6qnJwcR44cobCwEAUFBaqrq9HU1GTq1Km4ublRV1cnZLhaW1t5/fo1ZmZmoiiRyWTIZDLu3LkjNCuHDBnCvn37qKysRENDg87OTsaOHYuxsTHnz5/v0RpLS0u5cOEC5eXl9O7dWySvjY2N4v1WVVXl1q1bREZGYmZm9j9qAp86dYrdu3ezc+dOkbxKiZCmpqbwh5c6sffv32fDhg3Y2dmJKUnv3r1pa2sjLy+v27gUuhzgJkyY0GOdV3Nzc+Gj3tnZSUtLi9BoPXXqFPfu3SMwMBBPT0/Cw8Opra3F1NSUc+fOibNgxYoVfPTRRzx+/BgPDw/OnDmDqakpAQEB6OjocPToUTFmjY+PJyIiAmdnZ86dO8fnn3/O2LFjGT16NCoqKiQnJwv+gZS85ufnk5eXh7W19f8oBfV/C+l8//TTT/nmm29QVVUlJCSE6OhoYRZQXFxMZWUldnZ22Nvbo6uri66uLrNmzeLYsWOEh4djY2PD4sWLefDgAZGRkfj4+NDW1oaOjg6hoaEoKiqydetWfv/9dxQUFNi6dSs2NjbU1NSgp6dHVVWVgBlAl9xRVVUV69evF9JDb2tYSxJ37xJSkZCZmcnu3bs5cOAAI0aMwM/Pj9OnT/Prr79y8uRJZsyYIe4+U1NTQd6tqqpCV1eXY8eO4ebmxvnz5zl58iRxcXEsWLAADw8P8vLy+Omnn4iKimLlypVCuzYyMpJHjx7x/Plznjx5QnZ2Nu7u7ixcuJCZM2cK4pT0369du5Zt27b1OHl9/fq1GN3HxMQILkh7ezuxsbFcu3YNe3t7RowYgZGREZmZmWJyYG9vT0hIiNBhjo+PJyoqirFjx4oOY2pqKqdOncLCwoKCggJiYmKEi1RtbS0HDx7E29sbR0dHIQsmFagaGhpMnDiRlpYWLl68yNixYzl+/HiPoBEXL15k586dqKmpiTNHXV2dGTNm/CtRlJzMoEtJ6fjx4zg6Oopuant7O/Ly8kIVaO3atXz88ccUFRWxZ88eYV1rb2+Pu7s7V69eJSwsjPT0dAYMGICioiJv3rzhzJkz9O/fHxcXF5ydnYU17Ltqgvc4eb127RrPnj3rVk17e3ujqalJQkICDx48YPDgweIwyc3N5fDhw8TExPDw4UMGDx6MhYWFcLIyMzNj27ZtlJSUMGbMGJGcVVVVoaWl1c3j1tXVFTU1NSwtLSkvL6eiokIkJdKYWFdXV1SfNTU1Ynz7rrFs2TIKCgqEZqLEind1dRWaewEBAaJTWFRUxN69e1FTU+PTTz8Vlq7ffffdv1xcvvjiCxwcHISXsLQWmUzGrl27xPheqoCuX79OXFwcw4YNE85TK1euJDw8nIMHD1JcXExdXd2/iA7/W0jSK5IWZ1VVFeXl5Tg7O3dzYElMTCQsLIxhw4YJvOLbf6utrQ1ra2vWrVvHwoULycvL482bNxQXFzNw4ECampoYMGCAwDJJ4zRNTU1mzJhBdHQ0qqqq2NjYYGlpiaGhIe3t7UyYMAFdXV309PRwdnZm6tSpPRLx37lzJyNGjKC5uZlnz56RmJiIo6OjOAz09fXx9fVFQUGBo0ePYmBgwI4dO9i3bx/x8fGUlZUxduxYhgwZIvykJ0+eTEpKCg8ePMDR0ZF58+Zx584d9uzZQ0JCgtD0u3btGhkZGSLpSkhIQFdXV/x+7u7ufP3112RlZfH8+fNuB15PIjAwEE1NTeLi4nj58iX+/v54e3sL3K65uTn9+/dHX18fHR0dhg4dip6eHu+99x7Nzc1UV1ejoaHBlClT6OjoEG4306dPp62tTVhXFhcX09LSQklJCTk5OSQkJHDmzBkaGhqYMGECQ4YM4cKFCxw+fJi2tjbRCXNycsLPz08QK3rS6ZGivLycp0+fEhgYiKGhIWZmZsIFrri4mJMnT9Lc3MzAgQPFGE9BQQELCwsqKiqEJNSzZ8/Izs4Wv42RkZHA5aempnLy5Emampr44IMPUFNT4/Lly+Tn5zNx4kQGDBhAYWEh165d46+//gK6ij+JsDht2jRUVFRISEjg5MmTPZLmO3bsGDU1NYSEhAg7ZSnMzMzo7Ozk999/59SpU8JisqioiLKyMjo6Onj06BEKCgoEBwczf/58NDQ0xBkFCIF0ae8lJCSgrq6Og4MDgYGBLFy4EDMzM5qbm7l8+TKxsbF88803FBcX8/777+Pr6ys+y9HR8b8ymnibkNLU1CQMBqRxaGJiIosWLaK0tBQPDw8hz2ZjY0NpaSmxsbEYGhqyYsUKvvjiC1RVVamvr6ewsJDm5mYsLS2xtrbm6NGjZGVlsXDhQgICAti5cyf37t1j+vTphIaGiu/h6uoqdCulkDgVPcURvh3z58/H1NSUpKQkrl69yo0bN7C1tWXfvn1UVVVx/fp1srOzuXHjBi0tLVhbW/Pw4UOuXLki7sCxY8dSWFiIq6urIAV7eXnx7Nkznj17RktLiyCh/v333/j4+GBkZMTFixc5fPgwe/fuJTs7m2nTpjFlyhRRKEDXWf3f2PtKoaCggLm5OYMHD0ZZWZl+/frRq1cvBg8eTEFBASkpKXz//fcicZEs2Q0MDNDX10dbWxsvLy/u3bvHq1evcHFxYfXq1ZiYmAglmpkzZwJ0GykHBARQVlbG9u3bRddRMkE4fPgwERER6OnpMWPGDPz9/YWNeWVlZY/Wp6mpSV5eHrq6usjLy+Pr64uxsTHV1dWYmpqycOFCXF1dxSTGzMys2/1uamoqoGj37t0jJiZG2AFLdr07duwgIyOD+/fvc/fuXVpbW9HX18fa2horKythjdy7d28sLS1FHiA9QysrKywsLKiqquLvv//u0foKCwuFy1tnZyceHh5YWFiIxFUiNsbGxgpY3+LFixk/fjwdHR0MGDCAwMBAysvLiYyM7JbgQldDKCEhgerqajENNDMzIykpiVevXgmuwaBBg4TZwYABA4Q2dkVFBfn5+ZSVlYk98r+9jz1OXqurq1FXV++mo9bZ2YmDgwOlpaXCbtDIyAgDAwPi4+M5deoURkZG6OjocP/+faALc/TDDz8QEBDAlStXKCsrY8uWLeLHDAwMxMfHR3Tc2traxPghIiKChw8figMoNzeXp0+fik0GiAs5Li6uR+uTmM1SZ/HEiRPk5eUJVnd9fT1NTU3CD/jChQtERUUxYcIEkdDr6OiwcuVKqqurBd4wOzuba9eu4eLiwooVKxg3bpxwvcnMzBSjaAcHB9zc3KiurubixYtcu3aNtLQ0AS2QOlozZ84UOrkff/xxj9aoqqoqJCuqq6tJTExEX18fR0dHfHx86OzsFC4X5ubmODk5CVkPSQqtvr6eN2/eYGBgQL9+/cjNzRWyJk5OTgwfPlxIu/z555/U1tbywQcfoKSkRE1NjWB+JyYmoqSk1E3jVhqnS4n5xo0be1Rlvnr1ikGDBtG3b1/evHnDxYsXuXfvHqampmhpaQl4SWFhIffu3WPx4sUsXryYzs5O5s+fj5ycHEOGDGHlypXiM8+dO8fhw4dRU1Pj448/JigoiJSUFOrq6sT46/Tp0+Tm5jJnzhxKS0sxMTFhwYIFaGhooKamRn5+PqamplhaWtLa2srDhw8xNTXFw8ODly9f9ugZSqPIjIwMIiMj6devnzjkOjo6hN6pFBMnTmTixIlifO7j48Ps2bMZPHgwz54949q1ayKZha4x9L59+zhz5gwqKiqoqqpSUFDA8+fPiYmJwdbWlsmTJ+Po6Mjr16+JjIwkMjJS+HrPnj0bR0fHbglZT6O2tpbY2FgKCwsZNmyYwCtDlxPe9evX2b59O0OHDuX58+fcuHGDkJAQMdIPCwvjt99+E1MSBQUFLC0t0dLSIioqSjCEJaKou7s7JiYm/Pnnnzx8+JD33nsPe3t7sWekTmhCQgKPHz+md+/eDB8+XEBLjh8/3iNMaHZ2NhYWFowePRonJyc6OzsF4VRTU1OQB9+eHPXt25eAgAAaGho4fPgwubm5/PLLL3h7e7Nx48Zun/+2NmdtbW23i2rYsGEMGzaMvLw8kpKSRLdzy5YtKCoq8sUXX3R7J9va2v6r5DUiIgILCwssLCxQVVXt9hmhoaFcvXqV4uJiNm/ezK1btwS8xMfHh5aWFpYuXUpnZyc///wz6urqootbV1fHs2fPROPkp59+IiUlBXd3dyF0L3V9FBUVkclk1NTUCCOA5uZmMjIyMDQ0xMjISIzkJVe/d43c3FxUVVXx9fXF29ubuXPnCgLt0qVLBXGro6ODLVu2CL3pyMhIbt26BcCoUaNEI0EmkxEUFEReXh5jxoyhubmZ58+fU1tbi66uLpqampSXl3P06FHa2tr49ddfcXBwYPbs2YwfP566ujomTpyIkpISubm5tLe3Y2tri6qqKg0NDcJmuCfR0NCAkpKSOB+kM6K5uZlJkybRp08f1q5dyx9//IGmpqZw+LO3txfnpJWVFYMHD+bly5ccOXKEb775BhsbGzIzM3n9+jUODg64uLgIrPrr169JSkpi8ODBjBs3juTkZNauXYupqSmBgYEEBwfz+PFjrl+/LlwfT506xZw5c/jxxx97TNiSmmWSFbi5uTltbW0YGBhgYGCAkZERtbW1YoLa1tZGbm4uWlpaZGdnc+zYMeLj49HX16e0tJT8/Hzy8/O5cuUK9vb2rFixgtmzZ2Nvb09RURG2trakpaXR2NiIl5eXmIC2tbUREhKCqamp4HtISaK8vDwuLi5kZ2dz4MCBHpmGODo6kpmZSV1dHYDQBAaEE5v09yWVlw8++ICAgAACAgJEMWJoaMigQYNEMwC6pjgnT56kvr4eOzs7fH19SU1N5cGDB+Tn56Onpyd07ltbW0XzTIIItLa2UlRUhI6ODu3t7SQlJXHv3j0++uij/+uaepy8Dh8+nKSkpG5EKKnCkzJ5Q0NDURXHx8fj7OzMkiVLxOj/r7/+ory8nAcPHmBqakpzczPq6urdunqDBg0S9mrNzc1UVFRgbm4OIMhaklf50qVLSU5OZtWqVQQFBZGWlsbu3btRVlZm9uzZHD9+/J3Xd+PGjW6kiw8//JCMjAyuXLmCurq6cMw6d+4cmzdvpnfv3nz22WfExsYybtw4PvroI8EqzMvLo6ysDF9fX7y8vDh16pTwmH877O3tOXDgAHfv3qWzs1Mw0UNCQgTe5e2q2dHRkf379wvf9p5ai7493lVUVMTe3h4zMzNxOALs2rWLO3fusG3bNj799FM6Ozupra1FU1NTwAb09PR4/Pgx27dvJz4+HldXV2bNmiVG2VIcPHiQ0tJShg8fjo2NDTExMfTq1UvY5RUWFnL79m3BxIf/8xIFBAT0WHD6s88+w8HBQSTMUie+rq6Ouro64uPj+fPPPykuLmb06NGCTJCUlISSkhJfffVVt8QVurpkDx8+5MSJE0L94W2ClMRStra25ty5c8ybN499+/axZMkSBgwYIHDOkn+6qakp/v7+6OrqCiKKhDftSUgaqxL2ERDdP4mBrK2tTWdnJ1FRUXR0dNCnTx9CQkIE7rq5uRkLCwuh2fvee++hoKDAs2fPAIRJx4QJEzA3Nyc0NBQ/Pz/c3d3p6Ojg008/Zf369bS2trJo0SJSUlIYOXIkjo6O3L9/H3Nz8/8K8xoTEyPMBN5///1u/278+PH4+vqKMbuRkREPHjzgwIEDbN++nZCQEH7//XfRofD09CQwMJD+/fsTFxfH33//jYmJCTt37hQdK1dXVxITE8VzuH37Nq9fv2bYsGGsXr2ayZMno6GhIeTSrK2t6ejoYMeOHaSkpDBjxowerW/+/Pmoqqpy79499u/fj42NDYGBgfTu3VtImy1cuJCqqiouX76MtrY2n3/+uRB+l6TMduzYwYcffoijo2O3fSDF06dPqaysZOzYsUAXJEGaHO3evZumpiY2b96MlZUVkyZNoq2tjcjISKGV+Z+M6J7ElClT0NHR4euvv2b27NkoKyvT2NiImpoakydPFoYw2dnZhIeHd9snCgoKTJ06VYi6NzU1cePGDdGlHTZsGPLy8ty7d4/Ozk5MTU05cuQI4eHhQFfXT1pneXk5z549Y8SIEejp6fHkyROOHz/O8OHDBfElOjq6xxOQuLg4UlJSWL58OXJycqII3b17t0hcoevM9ff3JzAwkE8//ZSCggIcHR1RV1dn1apV6OjocODAAQ4dOsTnn3+On58fW7dupaWlhbNnz1JVVcVff/1FcnKykLp78eIFu3fv5ssvvxQwDICCggJOnjzJ6dOn8fb25scff8TLy4tz585x7NixHheUL168wNPTUyQrra2tJCQk0NjYKDqU/fv3F7jRUaNG0adPH7S0tAgLC2Pbtm3Exsby5ZdfsmLFCnx8fFBSUiI/Px8lJSWxL48ePUpsbCyjRo2ipKSEM2fO8OLFCzZv3syaNWuwsrJi0aJF/PHHH4wcOZJPP/0UZ2dnevfuTXx8PL///rtIsnoaEoxGShR1dXXFOZqcnMzGjRuJjIxk7ty5rF+/ntjYWBYsWCBsi/Py8rCwsGD+/PlUVFSQnZ0tZKYyMzNZvnw5p0+f5ssvv2TmzJk0Nzeze/duGhsbhYatVKBIZkuSDJmULxgYGDB48GAaGxtxc3Pj3r1777w+Jycn7O3tMTc3Jzc3l5iYGHR1dfHy8uqWdzk6OrJt2zbKy8spLi4WE+3PPvsMNTU1/vjjDzZv3iww5osXLxaauMrKysJhMy8vTzRrli9fjqOjIxcvXuTFixcMHz5c5DjQNWmWGpG2trZ8/fXXzJgxQ7zH/2/R4+R13Lhx9O7dG11dXVEFSx2ftw/OlJQUGhoaGDx4MGvWrGHkyJFAV1LS2NhIbW2tcK4oLCwkNzeXu3fvMmvWLLKzs4UsSmtrK/Ly8iJxBRg4cCAmJiZoamqSm5tLbm4uo0aNYuPGjULyRldXl8DAQPz9/XuUvF65cgVfX19sbW1pbm6moaGBvXv3snfvXt577z1xQUmSFpIrk+TS87Y+mampqbiEtLS0ROcY4NKlS+Tl5Qlx6dTUVIqLi7G1tcXExAQdHR1mz54tbD5VVFQEjtjQ0FBYu0muUT2Jvn370tTUJMTV32ZOtre38+DBA6qrqwkNDRUHuyTv8vama2lpoa2tjaamJoqLi0Xl5ejoiIaGBunp6Zw+fZry8nLReQgNDUVFRYXz58+joKCAl5cXWVlZJCQkiEOsrKyM2NhYOjo6uHnzZo9d0iQtvZcvX5KYmPivkayDgwMpKSkYGRnx8ccfo6ysTEdHBzExMUJ7V/otcnNzSUpKQkFBgUGDBolRUUtLC5qamgIHbGhoyJ49e3BxcaG1tRU3NzeeP3/OkSNHSEtLE85cNTU1xMTEEBwcjLu7O0VFRRw/frxbV/Fdora2lo6ODuzt7cV3kkaKkopHbm6ucNspKysTBEipEAoLC+Pp06dMnTqVPn36kJGRwYEDB0hJScHf3x9LS0tUVFTw8PDA29sbLS0t0U3Pzc2lqKgIU1PTbkSeUaNG0dHRIXCTxsbGpKamCnxUT6Kuru5fl1F5eTm6urr06dNHPKe2tjZycnJQUlISxBglJSVGjBjB5cuXqampwc/Pjw0bNqCjo0NUVBQFBQU8efKE4uJiLC0tBd63vr4ef39/7t69i7e3tyhQLCwsUFdXFwL6UuTn53Pr1i00NDQEdu9dQyrw9uzZQ1RUFF988UU32I6cnByOjo7MmDEDOTk5Yb7R1NQk3LAePHiAsrIytbW15OTkEB8fj5KSEv7+/mJ6VFxcTFxcnPjtWltbCQ0NRVtbG3Nzc4ETNTU1ZdasWZw9e5a2tjaqq6tRVVXl0qVLNDU1ifezJ1FcXIySklK3gr2iooLOzk6srKzo7OwUe7K1tZWqqirR6VdQUOhmMHP37l0iIiJQVVVFRUWFxsZG7O3tMTQ0xMPDg+LiYnJzc4VKzZAhQ2hoaEBDQwMlJSXRZU9MTOT48eM8ffq0GzQiNze3xzbNkra4m5sbY8eOFeoPEqO/pKSE0tJSLC0themFZFP79rOGriSxurpayGjp6+ujr69PSEgIlZWVlJWV4erqSkNDA1lZWchkMoqLi7l+/TpBQUHiPczIyKCwsBB9fX2hBX7o0CE2b95Mbm4umZmZosHyLmFgYCCSGIkA2d7ejpGREY8fPxbkHxUVFUpLS2lra8PR0ZGioiKKiopQVVUV5Odp06bh7e3Ns2fPePjwoThPsrOzycvLo7y8nOvXr5OQkEBkZCQGBgYUFhZibGxMXV0dwcHB9O3bF21tbbS1tYUWsZeXF01NTVRVVf1XTQAzMzO0tbVpa2vj9evX6OvrY2lpSV5eHgcOHBDW7Hv37mXevHnY2dlhaWlJfn4+5ubmWFtbi+9VU1PDhAkT0NfXx9jYmLi4OM6cOcPr169pb2/H0dGR5cuXk56ezl9//cX58+cpKyvj119/xcnJ6V8Ex7q6Ol6/fk1zczMjRoygsrKyx6Yv/v7+IoeytrYmISFB2KcbGxtTWVkpXLzmzp1LS0sL2dnZYjLb2NjI69ev2bNnD9OnT0dHR4eYmBgiIyMZMmQIEyZMoKWlhZycHB48eEB5eTlDhgxhzJgxzJkzh5aWFqKjo+nduzfDhg2jqamJPXv2YGRkxJgxY6isrOT+/fu0t7czZ84c+vXr9/998qqjo0OfPn2orq6mvLwcfX39f3USX716xYULF2hoaBBORtDVMfXy8uL06dNCvy86OlpcupLYdnp6OhYWFigrK6Orq9stYYLunUMfHx9+/vlnfHx8RJXt7OzMd999h7y8fDfSwbtEv379ePjwISNHjkRBQYGvvvpKyPK8PYadMmUKY8eOJScnh8uXL6Ovr8+ePXu64WDe7lRUVVWRn58vnGUePnxIdHQ0QUFB1NXV8fXXX5OSkkLv3r3x9/fHz88PeXl5wRSVrOekjndCQgLR0dH/lWe8goLCv8SRpdi0aRO//fYbCxcu5JtvvgG6YCGdnZ3dJHxSU1OJiorCxcWFAwcOcPnyZVavXs2PP/6IsrIyS5YsYfPmzZw+fZoffvgB6IID1NXVsWHDBi5fvsxvv/2Gqqoq/fv3p2/fvri6utLY2Mi1a9fQ19dn3LhxHDp0iO+//17AHN4lJLJJeno627dvJzMzk48++oiff/4ZLS0t3N3d2bNnD4AYnUi/dXh4OJGRkULwXSJdffbZZ+jq6grm+sCBA+nduzcmJiYMHDiQhIQEpk+fTmpqKrq6uly7do3JkyezbNky/vnnHz755BMMDAwoLi7m7NmzyMvLiymBpGPak5Au+/r6epSUlMSFL+GmFRQU0NXVJSsri7S0NDGe1tHRobq6mkOHDlFZWclnn30mMMkrVqzAxMSEy5cvk5eXx7hx4xg/fjyWlpbdusxnzpxh//79LF68WBQ3Uofg22+/ZcKECYSHhxMbG4u/vz9paWls2LBB7P13DcniUiJQAv8aPUPXu3X//n2cnZ3Ztm2bkAibOXMmLS0tQq9ZW1ub+Ph47ty5Iz4rKSkJmUwmyFfKysosXryYFStWCJmcpqYm7t+/z/nz56mvr2f58uWiGLK0tBTSRefPnxfs/HeNsrIycRFJo2Mpmpub2bZtG83NzezYsUPoT8tkMj7//HN2797Ny5cv0dbWxs7Ojrq6OiZNmkRKSgoXLlwQyauZmRlycnJ8//33VFdX895772Fra4u/vz+rV6/m1q1brFy5EltbW9asWSOIhxIRMCkpiQcPHhAREdENU/susWzZMtEhk9akp6fHmzdv+O2337h79y5qamrMmDEDZ2dn6urq0NDQEOdTU1OTSH61tbXx9fVlwoQJots5fPhwNm7ciJeXF//88w9jxoxh2bJlyGQyGhsbhVKNmZkZZmZmVFdXExsbS0tLC4MGDeqWQNra2uLt7U1sbOw7r09dXR1VVVUKCwuRk5Njw4YN3YTdJftUCwsL5OTkOHHiBPv372fBggViLFpWVkZRUREbNmxg1apVXL16laSkJD744AO0tbX59ddfiYuLw97enuDgYJKTk4mNjcXNzY3FixejoaFBTEwMjY2N9O7dG3t7e7Zt24aKigo6OjqEh4ezbds2cnNzxaSzJyER29LS0oiPj0dBQYF+/foJonZ4eDjh4eHCLlpOTo68vDxevXqFlpYWGzdupKSkhA8//JBNmzYJ10EzMzPa29spLS2lpqaGkSNHsnDhQo4fP86xY8eALn7C5cuXOXz4MNXV1Rw9elQkvG+Hnp4eK1eu5ObNmz0iaEvxxRdfICcnx82bN8nLy2PgwIG0tLRw+vRpHj16JP47FRUVqqurcXd35/bt2yQlJWFpaYmRkRERERFs2rSJ0tJSZs2axcyZMzExMaGmpobVq1ejpKQkoEempqZ89NFH3L17V5xf+fn5AgpQW1sr7gRp3ZaWlqxZs4aYmBgOHz4scoOePEMpzM3NhTpNcXExtbW13XIXZWVl7OzsePnyJY2NjXz77bfCXvjLL7/E3NycgoIClJWVsba2xs3NTUAJc3NzMTExETbHenp65OfnM23aNFEsnjt3jm+++YZhw4ahqanJhQsXBKdAXl6eZcuW/a9r6nHyWl9fj6qqKhoaGiJJKCwsJDMzk9raWtLT07l58yb5+fkEBgbi4uJCWloaioqKmJubC/LAnTt3iIiIICcnB3NzcwYOHEi/fv3Q09MT2phGRkYoKirS1NTEkSNHSEpKQl1dHR0dHYGjCAoKwsXFhZiYGD755BNqa2uFn3V+fj7Jyck9Wt8nn3zC/fv3UVJSwtLSkpEjR6KqqoqLiwtBQUEUFBSgoaGBnp4eenp6tLe3c/jwYRoaGkhMTBTacxYWFsJ/uW/fvqirq9PQ0EB6errQNjQyMsLW1hZ9fX0++ugj1q5dS2pqKjNnzuTnn38mJCSEGzduEB4ezvjx4wkJCeHixYskJCSgqqrKlStX/qtx5cOHDwkJCUFOTo6qqirhwWxtbU1SUhIFBQVC966wsJD09HThLiR1f83MzNDS0qKtrY3S0lISExOprq5GUVFRVJTa2tp8+eWXLF68mJKSEtLT0wkICBCsTUl029zcHFNTUwGpMDc3x9jYGHV1debOnSswUO8aEozC2tqa3r17k5mZyYsXL6ipqUFLS0u8cP8Z/1kkAYJQJkEFZDKZ6Kbb29sTFhbG+fPnqa6upm/fvujq6gqBdIBFixbR3Nws8IbR0dH8/fff7N27l+DgYDw9PfHz8+t2QL5LSL/Vr7/+ytGjR5k5cyarVq3qhmeTlAFcXFxQUlKiuLgYHR0dWlpaUFdXp0+fPiJxPXDggID6jBo1Ci0tLQIDA9HT0xNjpYKCAo4dOya0K9/WJ5USZC0tLby8vMSY88KFCzQ2NhIYGCjwVu8abW1ttLW1deu+Slji1tZWUlNTyc7OprS0FCsrK5ydnVFTUxMGJ0VFRcTHx9Pa2kpYWBgLFiygrq6OsrIy9PT0hDOftrY2+fn5REdHo6ysTGBgYDdCT3R0NOvWrRNdOSsrKyGcb2BggLq6On379uXXX3/tUfJ6+PBh+vbty48//sjz58+JiIjg4sWLyMnJsXHjRoyMjLhy5YpQGZk4cSIxMTHdsG5vu9ZI430PDw8xDcvLyxNi59JEa8iQITx8+JDr168za9Ys1NXVycnJ4c2bN6irq7N7924xRdPV1WX06NGkpKSQnp7e4+T1bW1fCS+ooqIidFeNjIx47733sLa2Jioqivb2dqytrYmNjWXLli20tLQwZ84cJkyYgIeHB1ZWVmhra2NjY4OdnR2PHz9m27ZtyMnJMWrUKKqrq/nmm29oampi5MiRDB06VExuLly4gJycHP3798fNzY329nb69u0ruj7m5ubMmzevR8mrh4cHmzdvJjw8nB07drB48WKB7aupqenWRUtPTycxMREtLa1uSjGSsoRUbOTl5REZGSmk9q5du0Z0dLRg/D979oyUlBSCgoLEXmhpaSEqKor6+nqUlZUxNjYmIyNDJJx9+/Zl2rRpeHh4CCmyd42cnBxevHiBiooKrq6uKCgo0Lt3bxQVFRkyZAg5OTlYWVlRXFxMbGws5eXl3Lx5k9zcXMaMGSMk5JYtW8bXX3/N48ePgS5t1evXr2NmZiY4I3p6ekyaNInq6mrOnz/Pw4cPxfg5KCgIJSUl0tLSePLkCVFRUejq6jJu3Dj69++PiooKI0eOxMbG5n/VCP3PkApib29vOjs7KS0tRV5eHg0NDWxtbVFWVhbdc8nIKDk5mSFDhojn9vTpUwoLC2lsbOTx48c0NDQQEhLCwIEDhQRfeno6169fF2frsGHDqKmpwdfXlzt37pCWlsaECROoqKggPT1dqDlJHWhJtvD9998XsK53CakYrKmp4fnz50RFReHk5MSAAQNEJ186z3Nzc0Wi3adPHx49esTNmzdpaGhgypQpnD59mqysLKArCS4pKWHXrl0CAhIQEMBvv/3G9evXRdNJSUlJJK7Pnz8nPDyckSNHMmHCBHF2Dxs2DAsLC1paWv7Xriv8F8mrkpISVVVVdHZ2YmxsDHSN8nbu3El0dDQ6OjqoqanRv39/Jk6ciIGBgRBXllr8169fZ86cOWJEtG7dOubMmSMSprer4cbGRu7du8fdu3d58uSJANTLyckRGhoqbNyuXLkiNqzUwYyMjCQ/P79HJAo9PT0BSG9oaGDGjBmiQn7z5g2vX7/Gzs5OXOjZ2dk0NTXx4MED0aE1MTHB3t5e6PWZmZkRGBiIgYGBaPnPnz9fEAmgS+RZV1eXRYsWkZqaysOHD/H39yc+Pp69e/diZ2cnktn4+Hg++eQTevXqxYsXL3r6CDly5Ih42RsbG0lKSkJVVRVra2sGDhwoxib19fVs27aNjo4O/Pz8hE+8ZOU4YcIECgsL+fXXXzl48CB2dnasW7cOVVVVoqOjGTZsmBg1amhoCL3Uzs5OJk2aJCxvc3JyxFjTwsKCkSNHCjckfX19Fi1axPLly995fdI0YPDgwSgpKeHi4iLMBaCrM9va2ir+V6pwJe3Ct2W5JKvVFy9eoKSkJIwypLFqTEwMW7duxdfXl3v37qGrq0t7ezuNjY20tbURGBgoVDMyMzN5+fIlMpmMnJwcTp8+zdq1a5k6dWqPD1voStLj4+OJi4ujsrISZWVlZsyYIVQbpMrYwcGB4uJiIQgeFBTUrbLdsmUL69atA7rG/hMnTsTExESoCwQHB+Pl5UVSUpKo+Pfs2YOfn59gnUqdtdbWVoHTzs/P59y5cyxevJiff/65xyQKPT091NTUaGpqIjExEQsLCzQ0NFBXV0dOTo7KykqOHz+OtbU1W7duJT8/nx9++IGRI0fi6enJ+vXrhctLfX09586dw8bGRozmfHx86NOnD/Ly8qipqZGcnMzz588pKCigoKCAoUOHoqio2A3/Bl0XgYqKithP7e3tqKqqMm3atB6t79mzZ8ybNw8vLy8CAwOZP38+165dA2DIkCFC+zEzM5MTJ04wadIkhg4dipGRkXD4kgquW7ducefOHcaNG8fkyZPR19enoqKC0tJSVFRU6NevH8HBwYLEtWfPHg4ePMitW7dwdXXF3NyczMxMLl26REBAgJDLe/PmjYAoaGho9NhFTNLEVFNTQ0dHh6amJhQVFdHR0WHx4sW0trZia2tLRkYGZ8+eRVNTk0GDBokiDxBdIR8fH/T09GhqasLExITt27fz5ZdfsnbtWkaNGsWUKVMICwsTI96ysjK8vb0xMDDg6dOnHD16FGdnZ0aNGtWtUE1JSeHs2bP4+vr2uHNubGyMpaUlx48f588//8Tc3JyZM2eKYrGyspJevXqRmZlJRkYGgwYNYvLkyXh7e4t3x8jIiKqqKqqrq1FTU8PFxQU1NTVKSkrIyMhAW1sbZWVlIiMjiYuLE9O26upqMfHQ19dn0qRJApe6detWjhw5gpWVFdOmTePrr7/G0NCQhoYGbGxseuTKmJmZSUJCAkFBQd3uZgmCYWpqKrgKYWFhREdH097eTnBwMC4uLiQkJODp6clXX32FiooKX331FRoaGjQ2NpKVlcW0adNYuXIlp06dYuvWrWzYsIEFCxbwxx9/iIbHb7/9Rn19PUuWLCEhIQFHR0cSExNRVVXtJhHW1NTUDdbzrtHU1ER7e7uAEOXn59Pa2oqFhQXGxsbk5OQwaNAgMR2JiIjgt99+o7W1lenTp7N3717i4uKYO3cuL1++5NSpU1y+fJmFCxdibGwsSM9hYWE8ePCAu3fvoqysTK9evfjiiy+Euc+1a9cYN24c8vLyHDp0iLKyMj755BP69OlDTk6OeHc++OCDHiWvtbW16OvrU1dXR3p6Oq9fv0ZJSYm6ujoMDAzEdKOgoECY88ycORNNTU3MzMw4d+4cWlpaHDx4kKCgIObPn09rayuVlZU8ePBANCYk6NPFixeJjY0V0DKp4fD06VPOnDmDp6cnc+fOFfbbS5cuFRParKwsCgoK/tc19Th5VVFRQUlJiczMTJG86uvrEx4eTnV1NV5eXqxbtw5nZ2chFWFra0t5eTnHjx8nJyeHmJgYOjs7hQ5qSEiISFzfjgcPHrBx40bU1dVZuXIl69ev5/r168TGxvLq1Stu377NmzdvGDt2LA4ODmzatAmZTIavr6/Aw0qC5O8ap0+fFpqUf//9tzgs5OTkMDMzw9PTsxt5qrq6GiUlJSZPnoyPjw+ampqiMysZCrz9wks4JikePnxIfHw8urq6mJiYiAPb2dkZAwMDpk6dip6eHubm5rx69YpRo0aJy9nf35/Bgwf3qFMAXTgtSYJMQ0NDXIgymYyBAwfi5uZGYGAgjx8/5ujRozQ0NBAYGMj06dNRV1fn5s2bohI2NzcnICCAjIwMnJ2dhS6tiYkJtbW1vHr1ChMTE7FXoKv6exskbmNjg6qqajdZNFVVVcLDw7l37x5v3rzpkf5ibW0tenp6wvpz0KBBtLe3k5iYiJOTE1paWuTk5JCcnExraytOTk7o6emJSYGEW25tbcXQ0JC6ujrWr18v9PgMDAw4ffo0Ojo6AnstdfHq6ur45JNPsLe3F8WHqakpU6dOxcrKitDQUGxtbXnz5g21tbXY2tpSW1vLhAkTemTG8NNPP3Hy5Ek+/PBDbt++zZdffsny5csFuUBXVxdFRUWePn1KSkoKBgYGaGpqdtt7TU1NfPvtt920O6urq6mqqiImJkaQECU2b1NTE2vWrMHb21tY5/4n/OTu3bskJCRgYWHB2LFjGTRokOha9zTGjBmDnZ0d2dnZxMXFYWVl1Y0o6ujoyPjx44W6wIsXL0hKShJ4T2dnZ5SVlbGwsGDChAlYWFiQkZFBdna20OKVvr+GhgaBgYEkJyezfft2NDQ0+OKLL1i9ejUeHh6cOnWK+fPnExUVhZ2dHe7u7lRVVf0/7J13WJTX1vZ/Qxt6r9KkSG9SBA0iKvZu7L0dk4wa042mGXtiYhKTjBqNGjXGEnvvGhVRURRFRRGUJlU6DHW+P8bZR1JOIG/e4xs/7uvyGpkZmL3n2c/eq9zrXsyfP587d+4QHBzM2LFjRdeqpuC1114Tn29tbc3ChQsJCgrixo0bVFdXU11dzZw5c3BycuLUqVOcPn1aVI2r9URffPFFdHV1uX79OmlpaXTs2FFcY7VUmJpC8nQ/dHUHq3379vHTTz9RU1NDx44dGTBgAOXl5QwdOlRkk0pKSli4cCHTp09vtgMyevRorK2tWbJkCaampixatIg7d+4wd+5cfHx8RNcrJycnpk2bRkJCAhs2bCA0NJSlS5fy9ttvC4qV2ihROxIODg4MGDCApKQkERkMCQlh7dq1VFRUEB8fLyhrHTp0EIUyy5cvJzAwUNRhmJub4+7uzsmTJ5vNzb5//z5HjhwRlLCnWyCri40ePHhA586dGTNmDH379sXAwIALFy5QV1dHREQEt27d4ptvvsHe3p4uXbqQnJyMUqlk0KBBtG3bVvBbTU1N6dKlC4GBgVRWVlJcXCzmFBMT06hAbN++faSkpDB27FgmT54smjsUFBQIffWmIiQkRIjkq1FSUsIrr7zCgQMH8Pb2pnv37tjZ2VFSUiK4qIMGDUJDQ4Pdu3dz/fp1xo4dy8yZM2ndujWamprk5ORw+/ZtEZi4fv0669evx9bWFjMzMzIyMjA2NmbWrFlCwm779u04OjoyZswY6uvrefToEa6uriiVSvbs2cOVK1caZYSaip9//pm1a9cycOBAXn311UYc+Pbt2zfikAO89NJL+Pn5YWdnR25uLg4ODnTo0IHg4GDee+89QEVp7NChAydOnGDu3LlUV1cTFhaGp6cna9asEZ0Zs7KyhESaOvqooaFBfX09J0+exMDAgMePH4tC39u3b7N///5mzU+pVFJSUoJUKqV///5ERUURHx/P559/LtpUq7VoDx06hL6+PuXl5YwbNw5ra2vmz5/Pzp07WbFiBWPHjuXatWt8+eWXrF69GgMDA9q1a0ebNm1IS0tDoVAwYcIELC0tBV1BqVTyyy+/cPnyZcLCwkTzh08//ZTjx4+zefNmrK2tycvLw9raGhcXlz/dS5ttvKo7n3h6enLr1i1ReRgTE0NxcbHQnywrKyMzM1N0LqmoqGDfvn3s2rULgLFjx2JraytC82rcunVLEPFramooKiqirKwMc3NzESlRKpWcPHmSJUuWcOXKFXJzc3nttdcacTZAleJtTrEWqELagYGBlJSUcPr0aXbu3ElpaSmg2uSGDRuGubm5SPt4eHgwZMgQQkNDxXMlJSVCHBz+LUel/u7c3NzIysrixIkTnDlzRkimvP/++0LuJj09nYcPHxIQEEBAQAAZGRncvXuXF198sRH/MCQkpNnGa8+ePcVBpu4tXlBQwHfffYeDg4Oo7Pb09KRr164i4nzjxg0sLCxwc3MjJSWFw4cP07NnT/r27YuxsbHowR4UFESXLl3Ytm0bhw8fFpFsdWtKdYV9Tk4OBgYGwggEVRSrsLCQ8vJyqquruXv3Llu2bGlW9Hz16tX06tWL6upqYmNjycjIwMjISBwu6sKb+vp6lEol9+7do7CwkJKSEpydncV6VHN8dXV1RUFBZmYm1dXVZGVlYW9vz+uvv05ISAgPHz5k27ZtrFmzhnPnzjFjxgwqKiq4ffs2DQ0NgjYQEBCAmZkZkZGR1NXVkZqaSl5eXrO7M+nq6gqVjqCgIKKjo7l16xY5OTnCOVBHTEJCQoTUlZGREe7u7ujo6Ii+1KNGjRLOgra2NhKJhLt373L16lWGDx+OhYUFN27cQEtLSxyQah50dXU1eXl52NnZoaOjQ3V1NSUlJaKABVSZmeZG7ADhRBgYGKCpqSmkaerr67G0tMTNza3RutDQ0BBNRdS8KYVCwfXr15kwYQKBgYHI5XKOHj1KWFgYtra2ovJdQ0ODwsJCKioqcHV1xcXFBS0tLQ4cOEBERASenp78+OOP/PDDD0gkEkGTAUQE/unDranzO3fuHHp6eoSEhODv709JSYnQQjUwMMDT05Nx48aRnZ3Njh07KCkpEddfoVBQU1ODpaUlmZmZ6OrqUlhYyJ07d6itrRXdiJ7eXxUKBZWVlejo6BAZGUlmZqbgCHbo0IE333yTa9eucebMGe7evUtZWZkQJG9uMROoqrirq6sJDw/Hz8+PXbt28fDhQyZPnoyPjw8SiUQYHMHBwdTW1rJq1SpcXV2ZNm0ajx494saNGyJrp9akVkf4nZyc6N+/P59++im7d+/G399fZMq2b98uDPPu3bszZswYrly5wsyZM5FIJI2KiKVSKfHx8Zw5c0bILTYFZ86cIT8/n1atWtGmTRvREEA9VnVmzsDAgO7du4ssj5rOoaurS1FREevXr8fX1xcfHx/27dtHZmYmXl5eQn/UycmJHj16MGDAAEFJ2r9/Pz/++CO5ubnExcVhamrK6NGjkUgkjBo1SujEqh0EAwMDCgoKftNg58/w4MEDsrOzhUFXVlbGmjVrOHXqFKWlpRQWFlJTU0NBQYEo5urQoQN2dnbU1taKRzWPU51xU0OpVBIbG0tRURFt2rRh3759FBcX4+TkxNtvv42fnx+VlZVcuHABJycnJk6c+Jssh1qfNC0trVn1EWpcvHiRuLg4BgwYAKgCPCkpKXTs2LERVaa+vl7UmrRp00ac+eqWsqCiNhkbGzNp0iTCw8P56quvuH79Op06dcLKyors7GzatGmDqakpDQ0NbNu2DU9PT95//31sbW3JysoiISGBF198kZqaGsrKyrC2tsbS0pLs7GyOHDnCL7/80iz1DwsLC9FwRR1dLigo4OOPP8ba2pry8nIePHjAnj17SE9Px8rKiiNHjlBQUEBISAhOTk60bt2ao0ePiqYVnp6eQpt51KhRWFlZcenSJe7du8eUKVMwMTGhqKgIXV1dampqOHjwIA8ePBCtcEFl7xUWFnLv3j3atGnD3bt3m6xJ3Gzjdfny5SxatAgDAwNKSkoYM2YM1tbWrFq1Cg8PD5YvX86kSZPQ09MjIiKCjIwMbt26Re/evfHx8RHGq6WlJbm5uYLLExYWBsClS5c4ceIEMTExjB8/nq5du7JkyRKhrblw4UKMjY3p2rUrLi4uZGdnY2lp+RvDFWDAgAGEhIQ0q9exo6OjKK6JiorivffeE5zJS5cusX79euzs7PDx8cHCwgIXFxfBO8rOzmb9+vXExcXh4OAgUu3JyckcPnyYu3fv4u/vT3BwsODtPF2MovZsT506xcaNG3nhhReYMGGCEF7X1dX9Tf/6v4KJEyeiqakpNGgB4R0OHDhQGK9OTk6sWrWKzMxM7t69y86dOwkJCaFv377U1dUxZcoU9u7dK9oT7t27l3v37jF16lT8/Pzo1q0b+fn5gl+q5osComBPLZqsbmCQn5/PhQsX0NDQIDw8nOXLlzNs2DBRZNMUfPvtt1y8eJHIyEgKCws5c+YMLi4uDB8+XBRo6evr07lzZ0xNTTl8+DAbNmwgLS2NAQMGCPkQ9Xetra3NgAEDyMnJwdLSEmdnZ0aPHi0M0qioKL788ktBYTl37pzQunN1dRUp9eLiYs6cOUNZWRnV1dXU19fj5+eHt7d3szi9AK+//jo9evTg448/Zt26dcycOZP79++LFGt1dbWgf8yYMYOEhASmTp1KREQEtra2lJSUkJ+fz/Tp0/Hz86O0tJSBAwcK0XwLCwtu374tijv09PQaRe7UrUQLCws5fvw49vb2dO7cmaCgIKGVWFdXx5o1a4iNjRXGR3Nw6dIltm3bRp8+fYiKiuKnn35i586duLm50aVLF8LDw0UFrUKhwM/PT3AZ6+rqMDc3p1evXtTV1QkusFpeSkNDQ3T/CQkJoba2lp9//pnMzEy+/fZbOnXqRHZ2NosWLWLz5s28++67BAYG8sEHH/DKK6/w7bff8u6777Jo0SLy8vKYMWMGH3744W8O5v+Er7/+mkWLFglppKNHjzJ8+HCKi4sb7VnV1dV06NBBaJMGBgZiYmLC8ePHmTdvnmhZa29vL7iCau3fOXPmNPpMXV1dLl68yNatW0lISEBXV5fAwECys7PJycnh4cOHBAUFsWrVKs6dOydadP7444+MGzeu2Wl1mUzG0qVLkclkhIWF4eXlxejRoxtxivPz80UxqrOzMyYmJsybN4/Q0FCGDx/O559/DqhoMgcOHBABiWHDhmFkZMSdO3ewtLQkLy+PlStX0tDQwJtvvsmgQYPYu3ev4IeCat+JiopqNI/du3cLhYU+ffo0a37qosfExEQhTA8qIyc6OpqDBw9iaGiIk5NTI/6rmvP4NMzMzLCwsEBXV5cbN24wceJE4cy/++67TJ48mYyMDGJjY4mMjKR///6EhoZiaGjIgQMHWLRoEQcPHmTDhg3IZDIiIiL45ptvuHr1KnPmzKF169aiqEZN4WoKlixZwqlTp/j6669xd3dn+vTp7Nu3j1dffZXo6GiMjY3x8fERfM/U1FTS09M5efKkMLqfnmt1dTWJiYmilfi2bdt45ZVXmD59Olu3buWdd96hoqKClStXEhMTQ1ZWFpqamkycOJG2bdv+7l6SlpbGqVOniIiI4O2332bBggXNuo51dXXMnz+fmTNnUlNTw4ABA5BIJEK5QK1aUV9fz0cffcTRo0fx9vZm+fLljRQxLl68iJ6eHu3ataO2tpadO3dy8eJFxo8fz5tvvsnixYtZv349s2bNIioqigMHDlBVVUWPHj2wsrKivLyc9957D1NTU9577z00NDR49OgRnp6eHDp0iCVLlhAeHs7ChQtZuXJlk+fX0NAg9Obz8/MJCAjA2tqawMBA4uPj+emnn7CzsyMsLExklWpqakQDCnXB4NSpUykqKmL06NFIpVKGDh1KYGCgyPao24rr6+tz6dIlbt++Tb9+/ZBKpdy6dYtr165RVFQkOPUfffQRdXV1wvGPjIxk7ty5yOXy38gj/hrNNl61tLQ4ceIEXbt2FbzWzMxMNDQ0BG8SVCmA/Px80ZPa0NCQ8ePHs2jRIlH4s2LFChQKRSNtvZ49e6KnpyeMKi0tLXr37s28efMoLS0lMjKS+vp6GhoaGDNmjDBa1bJW6gIvNV+ludqE+fn5xMfH4+LiwooVK3BxceHOnTscPHhQHIBOTk7CcElISCAnJ4cBAwYIHTR1et/IyIiMjAz09PSwtrYWXJPi4mLROs/S0hIbGxvMzMzw8PCgpKSEa9euoaurywsvvICmpqYgrKsv8OPHj1EqldTV1TVKtTcVlpaWomgHEIUitra2eHl58ejRI+7evUt6ejrR0dEEBwdjaWmJl5cXVVVV/PzzzyQmJuLp6Sm8LKVSSWJiIsePHyc1NZV169YJLVh1a04LCwtOnjwptPyePsA0NTV5/PgxN27cQCqViqYWenp6DBw4sFnGq6urK/b29kKHtKSkBCcnJ6FSce7cOXR0dARPKyEhQQieR0dHs2fPHnbs2MHw4cOxt7fnwYMHdO3aFSMjI3EAubq6kpiYyN69e1EoFCQmJmJra8vYsWMFMf3pdp/79+9n8+bNaGpq0qNHD0CVclRX7TY3lffLL7+QlZVFSkoKtbW1hIeHN0qXqWWGsrKyOHbsGGfPnkVXVxdPT09atWolojCpqakYGBhw8+ZN0V42PDyc8PDwRi0TraysRIvP2tpakca0t7fH09NTFOK0bt2a2tpazp07x40bNzh27FijPaA5OHDgAGZmZqJCWt35xtbWlmPHjrF69WrGjh3LyJEj0dXV/V1JtfDwcDw8PCgtLeX777/n3r17BAUFoampKUS01ZEGY2NjQkNDhapIfn4+Xl5e6Ovro6Ojw+PHjzlx4gQ5OTl4enqKDdja2prOnTs3u8pZrVWtdm5yc3NxdXVFKpVy//59vv/+e6KiosR7PT09GTNmDN27dyclJYWEhAQUCgVpaWmkpaWRk5ODrq4utra2BAYG0r59ezHua9euUVlZKZQTVqxYAagKstq1ayecyNTUVMzNzcnNzSU5ORktLS06dOhAeHj4X5I7i46O5vvvvycvL4+zZ88yd+5c3n33XUDF+T1z5gwWFhZ0795d3Kva2tokJCSQkpKCh4cHPj4+IkL83XffcfPmTTQ0NJg2bRpZWVnExcXRtWtXWrVqxeLFi1m4cCEhISEMGjSIHj16CM7p48ePcXJyom3btpw+fZqzZ8/y+PFj0fK5V69eLFmyhG+++abJ8+vQoQPu7u4oFArBSXVycqJVq1aiSKempoaMjAzMzc3JzMzk3r17hIWFYWxsjEKhYPXq1Whra4vxnjt3jl27donqffX36ODgwLlz57h48SJaWlqUlJSQl5cn7gF1UWpJSQkWFhbo6emhpaXFnTt3+Omnn/D09ERfX5+QkJBmGa/qc8HZ2Zn6+nry8/OxsbFh4sSJ4h5ITExEqVTy+uuvs3//ftavX8/jx4+ZNGkSBQUFnD9/ntraWlHlvmvXLnR0dBg4cCBXrlzB1taWAQMG0LZtW1xcXNDX1xf7ZFlZGV5eXtja2tK2bVsePHggOJHqinupVEpUVBT9+/dvJKvZVAQGBhIZGcn+/fvZv38/lpaWODk5sXTpUhQKBWVlZVhaWtLQ0ICBgQHu7u6YmJhw9epVcU6pM4vTp08nJyeHc+fOsX79eh4+fEhwcDAHDhxgzZo1pKen0717d1xcXDhx4gQeHh5YWVlRXV3NggULKCsrY8SIEVhZWbFhwwYSEhKYOHEi58+fF9Fn9dpqKnbv3k3Hjh0xMzMTAQkfHx9mzpzJSy+9xOnTp/nqq68YM2YMW7Zs4csvv0QqldKlSxd0dHRISEjg2rVrhIaG4u7uTlBQkCgIDgkJwd7envLy8kbZ5qKiItE+Ozs7m7KyMiQSSaOz7mmpOlAFAEtLSxspSv0Rmm28du/enfj4eKRSKZGRkXz++efcuXOHmzdvkpKSgo+PD+vWrWP79u2sXLkSLS0tgoKCMDY2Ji0tjWnTpuHq6ipeAxpJPtja2jJ8+HCOHj3Kzp07GThwIKampkyfPh13d3csLCz45JNPyM/PJzAwEH9/f8rLy6msrBS8SnXPeHWKqTk4ePAgAEOGDGnEw7W2thY8F7Xnl5mZyccff8yRI0f4+eef6d+/P3Z2dty4cUOkgcvLyxk2bBidO3fmyJEjnD17lpKSEszNzdHW1qZdu3ZYWlqiVCpxdXXF2NiYbt26ERYWJgxzLS0tockGqs1QLSf2V1oa3r17F2tra3R0dCgoKGDbtm1UVFSwYMEC+vXrR3JyMtu3bxe8x759+9KpUyecnZ25d+8egwYNwsPDg927d7N//34mTJiAr68vYWFhHDhwgNLSUmEYq9tzhoWFoaWlxcmTJ1m4cCGampqNjFeAI0eOkJCQwMiRIwW/7ddt6JoCdYRALR0VHh4uOLZnzpzh8uXLorsHIIrepk+fzuDBgxk+fDiXL18W7VZTU1Px9fXFxcVFSFEBoiMRqNoYjh49WnBB1RrIoOrSpu641r17d8LDw3F2dubixYuiyvXp6uOmQC3VNHv2bGbPno2RkZHoXV9dXY1UKmXYsGHExcUxcuRISkpKWLJkCWPGjEFPT4+amhpSU1PZsGEDOTk5wqGMioqitrZWFHup0zfqFKc64gr/bikYGRnZyIkqKChg7dq15OXlCb1NHR2dZgvASyQS3n//fZKSkvjuu++IiIgQ3eSmTp3KoUOHGunjZmdnU1lZ2UjVRCqVYmtrS2pqKsnJyURFReHp6SkKasrKyli1ahXBwcH861//olWrVhw+fJjPPvsMU1NTunfvLoo0Fi1axAcffMCrr77KF1980eg6R0dHs2rVKk6dOtXk+b3++uvMmDEDPT096uvr6d27N2PHjgVUqifTpk1jw4YNDB06lH379lFUVESnTp3Q0NDA1NQUPz8/bty4ISrHMzMzuXXrFt7e3kycOFHsDVu3bhVNVuzt7cnMzMTExISSkhIcHR2RSqU4OTnRq1cvIiMjiY2NZd68efzyyy9IpVJ+/PFHpk2bhlwubzbnNTU1VTj9alF0Nfbs2cMPP/zAyy+/LIyg9PR0IXYP8NVXX7Fp0yYsLCwoKSkRGYp27drRpUsX0QRn+PDhtGvXTmS41KnehoYGvvrqKxHt8fT0xM7Oji+++IILFy5gamqKqakpvr6+9OrVq1HavylQp4vVXe3UXNvu3bsLHn9UVBQKhYKDBw9SVFTEF198wfjx4xkwYACvvPIK27ZtIygoSKSs1ZXcwcHB5Ofnk5GRQWpqKp06dSInJ4fk5GQ2b97MxYsXefDgAVpaWowcOZJPP/1U0EpOnTpFVVUV77//Pnfv3uWzzz4jOTmZPn36NIsWATB37ly0tLTQ19cXDp2bm5vYl/fv38/o0aPx9/fn6NGj2Nvbc/HiRQwMDKisrGTfvn0iA/D666/TvXt3oaIQGxtLTEwMH3zwAQEBAZSXl+Pg4ICtrS1FRUWYmZnRpk0bsbeByphVyzSqbYd27dqxdOlSqquriY+Pb9b8QOVYr1u3jmXLlmFra8vRo0eRSqV069ZN0JXKyspwdXXlhx9+EEG0VatWIZfLcXNzEzUgNjY2GBsbc/nyZZFN3bRpExs2bKCmpkbI75WWloqiZFAV2V29epUFCxbQrl07YmNjmTt3Lnl5eVhYWAjZz9LS0mYrt6izwQ4ODkKz1cfHh86dO9OxY0fu3bsnaiLUxVVaWlo4ODgwevRoevXqxUsvvcTSpUuFg/fdd99x8uRJOnXqhL29PYaGhlRXV4s2t126dEGpVKKjo0NRURHt27cnJCREBFnUUo/qqPzt27c5cuQIXbp0YcmSJUIr+Y/wl9rDDhkyhCNHjrB582Z69epF7969sbW15fLly2KD1dHRITk5GTc3N15//XVu3LjB1q1b2bRpE35+fujr6/P+++/TunVr+vbtS2ZmJl988QVFRUXY29tz5MgRSkpKaGhoICIigj59+tC2bVvMzc1F9bF6MRcXFzdqhainp4eenh5VVVXU19c3a35KpZLly5c34tRYWloSERGBtbU1xsbG1NTUsHPnTtasWSP4qrNnz2bHjh0UFRXRunVrDhw4QFpaGq6urgQEBGBiYsKwYcPw9PQkKyuLiooKobUIKu6HOlVtZWXF3r17WbRoEb169WLcuHGkp6dz4cIFOnToQHFxMdeuXcPa2vovtWw8cuSIIEyrZYNiYmLo2rUrUqkUBwcHJk2ahJ+fH0lJSTx+/BhtbW3Ky8s5duyYEOO2sLAgMjKSV155BV1dXfz9/Rk3bhydO3fGwMCA27dvc/DgQRwcHMQmExMTQ0NDQyNjLS8vj82bN7N161a0tLTw8/MTxuuPP/7It99++xsP7T9BbRQXFxdTVlbWKPpuZ2dHTEyMOEQvX75Mly5diI6ORiqVsm7dOtHUwM3NDVtbW8FNUovfp6amcurUKSorK4Xm3a1btzh9+jQ2NjYEBgYikUhISUlBLpcLQwdUUfuSkhJ0dHTo2LEju3fvRi6XC23S5mDo0KHMmzcPLS0tSktLOX78uKh+VkcPIyIiRAFi//790dfXZ/fu3WzYsIF79+4JSSX1Nc7IyOCNN94gLi6Ou3fvMn78eAYPHoympia5ubmcOXOG0NBQvL29RZ9rAwMDoVXao0cP2rdvT0VFBadPn8bBwYGYmBicnZ2bbfgMGTIEqVTKli1b+PnnnxtpFQ4cOBBfX19efPFFcnNz+eyzz9DS0qJTp04sW7aMrKwsFixYgJWVFZ9++ikKhYKRI0fi4eHRqPFJXl4ec+fOJSMjQzilERERaGhoCIMjKyuLESNG0KFDB/r27Ssi9qDqsJSQkEDv3r0ZOnRos4xXbW1tYdgplUqRzQEE193Q0BCJRIK/v78QgAfVHqfm92ZnZ/PgwQPBe719+zabNm1i9OjRGBgY8Msvv3D+/HlmzZqFTCYjOTmZ0NBQIWSvLqhU94V3cnKiT58+dOjQgfPnz3PkyBHRWKC5qKurE33gX3nllUZ8RD8/P8aOHYudnZ2oB5BIJCgUCgoKCnj8+LFwioKDgwkNDcXDw4O0tDReeOEFwdfX0NCgY8eOaGpqMm/ePEEhyc7O5oMPPuD8+fMEBQWRm5uLp6enSE2eP3+empoaDAwM0NLSEoVUfwU6OjrY2tri5OTE7du3GTx4MLa2tpSVlYnUs5rnWlNTw65duzhw4ICo+l+xYgVubm7MmTOHH3/8UVxj9f7+ySefUFpayuPHj8nNzRVdr9577z3s7e1JSUnBzs5OtC41NTUVWRYnJycyMjJIT0/H1dVVBGiaiqc1qAsKCoRO7s2bN3n06BHLli2jtLSU8+fPM2TIEOrq6qiurubChQts3boVKysrwdFOSUnhzTffFPtTTk4OBQUFIovk6OhI7969KSkpEWtdnaU1MDBg3LhxJCUlsXDhQsaMGSPoHzY2NtjY2BAXF8fGjRubff2uX7/OsmXL8PX1Zc6cOeTm5nLnzh0GDRpEVlYWjx8/FvecmoKiqamJo6Mjubm5hISEoK+vL2oe1PJ07733HoWFhRQVFZGRkcGpU6cwMDDg8uXLmJqaEh0dzePHj9myZQu1tbW8+uqrtGvXjoKCAtasWUO7du3o27cvTk5OKJVKQkJCiI2NZdasWc2aX+fOnWnVqhUnT57ks88+IyMjg08//ZTJkyczb9480tPTWbx4MXfv3iUqKoolS5aIouKysjICAgJ4/fXXGTt2LJs2bUJbW5u4uDjy8/O5fv06t27d4tatW0JJQw11gNLd3Z358+dTUFAggiegqlNQ0xdbtWpF7969GzV6+k9otvF65coVoqKiSEtLY8WKFaxYsYLVq1czdOhQ9PT0SEpKwtHREW9vb6ZOnYpEIkFDQwMtLS1qamo4cOAABQUFjBs3jmHDhgkD9N69e8TGxnLt2jVsbGwoLCzE3t6e+vp6LCwscHd3JzU1lYqKCvr27SuKQRQKBSYmJkgkEqFBCioaQU1NTbNTCKNHjxYyQlVVVUgkEiwtLUW6uKqqirNnz/Lzzz9z+fJl7OzsRDRj+/btuLq64uTkJIodcnJyOHr0KOPGjUNTUxNPT89G0Qd1Sl3t8atb4aalpXHo0CEcHBwwMTFBU1OTO3fuYG1tjZubm+hO9nvapE25hk9Hyvz9/bG1tRXfnVoRwcXFhaSkJFq3bk1VVRU//vgj6enpzJ8/HxsbG/bv34+vry9yuZzMzEwuXLiAv78/VlZWlJWVcfr0adLS0oTYufpmjY6OZuXKlSxevJgJEyZQXl4uikE0NDRYv349tbW19OvXT3Cmm2O8KhQKlEol586dIyUlhZCQEGFQurq6oqWlRWZmJllZWWhpaTFmzBgKCgr4+uuvycvLY8GCBSJtUVRUJLq2qdfYjh072L9/P5MmTRKG4dy5c/nuu+/Q1NRk1KhRGBkZUVhYKKpCHRwcGDNmDAEBAaIwyMDAgNjYWFasWIG/v3+jTlV/hiVLlogN7MKFC+zbtw8LCwu8vb1p3bo1DQ0NFBYWoqury9y5c8XvqSW+zpw5g7+/P5988glHjhzho48+ws3NDTs7Ow4ePEhqaiomJiZCSi0gIICUlBT27dvHw4cPmTZtGhUVFdy4cYP4+HgMDQ3Fxurn50dMTAytW7fm2LFjxMXFCa5xcxAaGsqOHTvYsmULVVVVjUj8wcHB9O7dG1BxYw8dOkRwcDBmZmbk5uZy8+ZNpFIpRUVF7Ny5k4iICBFBLS0tpa6uTvQO79+/v0g/Ozk5YWhoKIyso0ePsnz5cry9vYmOjqZDhw6UlJRQU1MjeMP19fWkpKQI2bumQr2B6+jooKGh0UiYXM2JVEdP+/btS1FRETk5OSgUCqysrOjRowcxMTE8ePCAnTt3sm/fPpGe37p1K7Gxsbz88suUlZWJvdDc3Jz27dtjZGREUlISxcXFtG3bVhjk6kjeG2+8Aaicu9GjRxMfH8/ixYubLUNUVVVFZmYmM2fOFHrUN2/exNfXlzFjxgCqboMHDx5k5MiRREVFceHCBRISEhp1SdTV1RVcZjs7Ozw8PCgoKMDGxobo6GgqKiqor69v1AVsx44dJCYmCtkxc3NzoX7SvXt3unfvzp07d6isrBRSamvXrm1WSlatc52RkYGHhwd+fn5oampy//59Tp48KVLCkZGRtGnTBkNDQ8LDw9m5cyd3794FVDUIdnZ2nDt3jlu3bon0vFrP28nJSXTiGzRoEL169eLmzZv079+fSZMmUV5ezpYtW3j48CGhoaH07t2btm3bCv6p+jPUUMugNRWpqak0NDTg7u6OjY0Nmpqa3Lx5k3379qGnp0dhYSGOjo5oampy9uxZKioqhFOmVkTQ19fnyy+/pF27dtjb29OpUycePHiAt7c3mpqa3L59G3d3d7y9vUXnPPX9IZVKefz4MSUlJYIuV1hY2KjZQlZWFmZmZjx69Eik75sDAwMDrK2tee+99xg2bBgzZ86ksLCQdevWoaury5EjRwgJCWlkB2hrawtOuI+PD+fOnWPFihWik12vXr3o27dvI2WdgwcPsnv3bhQKhWiccfbsWTIyMhoZfocPH6a2tpbBgwc3KgYDVYbl888/bxa/3tXVVRRpqVsYHzhwgPbt2wvd9Tlz5nDixAlmzpyJnZ0de/bs4fr161y5coX27dvTtm1bpk6dyurVq3nzzTeFulBDQwPXr1/n4cOHnDlzBnd3dwwNDUlOTubYsWPY29vTtWtXDAwMRGc0NZ6uo9DX18fOzk7QC/4MzTZezc3NmTNnDrdv38bT05OSkhI+//xzNm/eLKJONTU1aGpq0rNnT1avXs2HH35IVVUVoaGhTJ06VURiUlJSSExMxNraGisrK+bNm0d5ebngSaj7Vevp6eHs7MyqVav46aefmDVrlui7XVNTg1QqJTs7m4aGBtzc3CgpKSE2Npba2tpmp4Gerl7W0tJCS0tLhLd1dXWFvIetrS2fffaZ0FOUSqWUl5dz48YNrKysRNXutm3b+Oqrrzh27BghISH0799fRAazsrIYMmQIbm5uwgNPT0+npKSEqVOnMmDAAGxsbCgoKEBfX59OnTphamqKtbU1MTExon92c4weUKkhPH78GHt7eywsLGhoaKC8vFwYwsXFxezZs4eGhgb69euHpaWlEOEPCwsjOzubNWvWcPPmTaEPamJiwv79+1m0aBG2trZERETQtWtX3N3d+eWXX0hKSmLUqFF4eHjw4MEDNm3axNWrV6mvr2f48OFis4iNjeW7775jypQpODo68uabb7J3716hodsUfPzxx/Tv3x9NTU1SU1M5fvw4dnZ2vPDCC3Tq1InMzEzkcjlGRkZ89NFH1NfXs2PHDiwtLYV+rhpxcXHi5lULcicmJlJdXS1oHatXryY2NpaxY8cKYeklS5bg7u5Ov379SE9PZ/To0bRv3x4NDQ1qa2sFHUGdBm1ue9hp06YBqoi9TCbj2rVrzJw5U0Qna2pqOHToEEZGRgwaNEj8njrFWFBQQERERKM2fD169GDmzJk4ODhQVFRE3759KSws5MSJE2RnZ6Ovr4+Pjw979+4VRSDdu3cnMTGR1q1b07NnT1auXMlrr73G4sWL6dmzJ7/88gtyuZx9+/Y1u4vYvXv3OHr0KBoaGqJfuhpqJRN1wdu7776Lnp4enp6efPvtt5SXl+Pu7k5JSQnLly9vJNUmkUg4d+4c3377Lbm5uYJOsXTpUn7++WcGDBjArFmzRHYoNTVVRO91dHSwsrISTkdQUBBTp05l+/btQgqpqVBHq9XO/dMd7KysrIRGqxpmZmbCSFNDU1MTNzc3ioqKfiPsHRsbi5ubG+Xl5dTU1PDDDz+go6ODn58fOjo66OjokJWVha+vL6BK26n3k48//hhACPnb2trSq1evZrW/BQQXV32Az549mxs3bjSS+qmoqKCmpkbsP0OHDqWhoYGGhgZiYmLo2LEjxcXFzJkzh59++kl0xqqqqiIrKwuFQsHDhw/R1dUlNDRUHIje3t4ikqUuqt20aRN79+7FwsICT09Pqqqq8PHxwdbWlrt373L+/PlmGa8//vgjX375Jb169WLRokWASuh+165dPHr0iNraWgwMDAgMDBTr38vLS2jvTps2jerqasaMGYOdnR0LFizAz8+P1atXM3/+fEJCQpg6dSpnz54lNjYWT09PRowYQXFxMQcPHuTzzz/Hw8MDExMTUZyqLsTZvXu36Di3bt06ke1qblOUyspKMXZzc3PWrFnDsmXL2LdvH/r6+vTu3VvQynJzc1mxYgUnT55k0KBBfPDBB6KZR7t27WjVqhVKpZKIiAhcXFwwMjJCIpFQWlqKrq6uoCIBItKvoaHBO++8I6KxNjY2zJ8/nwEDBlBRUcH8+fO5du0affv2FXKEp0+fbvL8QGXQx8TEcPr0aaZNm4abmxuvvfaaCK61a9euUdGZUqkUDXXUTnVxcTHm5ub4+/vz2muvYWVlxY0bNwgNDRVrW50tedpoU2dm1euurKyMdu3a0bp1a2JjY1mwYAGjRo0S542+vn6To5Nq7Ny5k9mzZzNkyBCMjIyQSqXU1dXx/fffY2Njg4eHBxs3bsTb2xs7Ozuys7NJSkqiTZs2QjO/oKCAyMhIioqKuHHjBmPGjOHFF1+ktraWIUOGoFAomDZtGps2bWL16tWiiU5ubi5DhgxBX18ff3//RrQVdeMSUAXVVq9eTZs2bZqkLtRs4zUyMpLk5GQiIyMJCwsjOTmZb775hlOnTuHs7Cxax6qhloUyMzNj0KBB9OvXT7z2zTffcPz4cd58881G3UL+CK1atRLelTpyZWxsTGVlJbq6umJx5efnk5CQQGZmpui21FSoDwhtbW2xwNRFKoWFhSL1M3z4cMGbfPqGO3v2LDo6OoSHhxMYGMjly5dJSkriwYMHFBYWcvPmTXr27MnYsWNRKpXC4168eDEvv/wyOjo6xMbGYmNjw5gxY0hISODNN99k7Nixjaoas7KyuHr1arMPE1Cl69RpfG1tbVxdXQUPxs/PTxTiqLttWVpaYmpqKqIuCxYs4PTp04JWcOHCBQ4fPsz58+fR1tamtraW0NBQYVR//PHH3LhxQ0jTaGho4O/vT2ZmJidOnMDT01PIaVlaWvL48WO+/fZbIU3V3J7qZ86cwdvbm8DAQNq1a0d5eTnGxsa4ubmhr69PdnY2JSUl4gCwsLAQh7O1tTXp6emUl5fj6uqKmZmZoEuUlpZia2srNF3VEZGlS5eSkZHB3LlzheGflJRERESEaLerFtlX00RAxZOrr68X30dzusHl5eURHx/PhQsXcHd3x8nJiZqaGtavX0+PHj2ws7MjODhYpOTURTj5+fmkp6cjkUjE9//w4UNiYmIYPHgwLi4ufPjhh+Jz1GLnXbt25aOPPsLBwYFt27axa9cuunfvzssvv8ysWbOwtrYW96e6m1pdXR1ubm7CuGqu8bpv3z5Onz5N165dGT58uKBFdOzYES0tLS5fvoyhoSH6+vqUlpaira2NiYkJ2trapKSkUFNTg4+PD/379wdUEXn1PV1aWkp2drbgifr5+eHq6krHjh2xtbXl5s2btG7dGldXV1xdXamvr6esrExIymzatImDBw+ip6cn6Cm/VzD2n1BWVsaFCxeEJrC+vj7FxcXk5eVRVlYmpLy2bdvG3bt3ad++vWigoTZU/Pz88PDwoGfPnpw8eZLCwkLB9ywtLWXPnj08fPhQ/Ky+Dnp6ejg6OmJiYoKDgwP379/nvffeE7qSycnJ5Obmsn//flxcXJg0aRK+vr7CqG0q1CoJnp6eZGRkkJubS3p6Op9//jlhYWGUl5djY2ODhYUFe/bsITAwEC8vL0aNGsXBgwe5cOECAQEBmJqa0rlzZ06dOiU4l5mZmeTl5WFra4ulpSW6urqUlpYKjWP1fvngwQMePHhA69at8fDw4MSJE0IVwNvbG5lMhpOTk+CRNwcXLlzg3r17jaJgFy9exNDQsFGzE3VNiIuLC8HBwURFRWFqasqYMWMoKytjwYIFmJubi8BGdHQ0urq6FBQU8ODBA6GzrU63m5qacufOHbZv387o0aN5/fXXhSyTWjXG1tYWCwsLUTWubo8bGRnZLOPVxsYGExMTjh49iq2tLQEBAXz88cfs2LEDHR0dJk6cKMb9+PFjIYv1NH2poaFBdOuTSCTY29v/YXvTc+fOIZVKCQsLo76+XlDkqqqqOHbsGEqlkrFjx2JmZkZaWhr79+/n7t27dOnShQ4dOtDQ0NBs41VfX1+I7ycnJ3P69GlBI8rPz8fKyoq6ujoR7dfX16eyshILCwtB7XBzc6NXr17079+fLl26UFVVxcWLF6mtrUVPT4/ExERSU1NxcHAQEda0tDShHw+qdaKjoyOKfauqqti/fz9JSUm4urrS0NBA9+7diYyMbKTP/WfIy8ujqqoKBwcHJk+eDKiM7eTkZHR1denTp4+Ilufk5JCUlERwcLA4s+/cuSO6D5qZmXHlyhVefPHFRipPeXl5FBUVoa2tjY2NDQYGBjg6OpKXlwcgNM3lcjleXl4EBAQ0cthLSkq4fPmy2Jf+DM02XtUt9ExNTXF2diYoKIisrCy+//57UWlWVlZGRkYGjo6OdOnShcOHD4sLosbly5d58OCB4HiqkZaWJhb+0xwwgPHjxzNixAjBBVJX3RsbGzfiUBoYGODk5ER+fn6TOjU8DTXZX1tbm/r6ehERsLa2prCwkLq6OqKjowVfTltbu5FHFhAQgJGREUqlUoiXqz3CS5cusXLlSnbs2EF6ejrvv/8+O3fu5J133mHOnDkoFAreffdd7t69K/i/t27dYsOGDdjY2IjNeP/+/SxYsAB9fX1WrVrV7Bv1aSehpqaG0NBQHj16xOnTp6moqCA8PJyYmBi8vLy4ceMGDQ0NwnAtKyvDwcGBV155BX9/fw4ePMibb74JqPicCxcubOSlqpUf6uvrSUtLE21oV6xYwZkzZ9i8eTMHDx6kvr6eTp06ERAQwKJFixgxYgT79+8Xlf/qm6gpCAkJQalUYmRkxJAhQ4RIvno9qSuQf/75Z1auXEl0dDSffvopmpqaFBYWsmfPHurr6+nTpw8RERFUVFQwY8YMjh07xrp163jppZc4c+YMOjo6WFpa0qdPH06fPs2DBw/w8PBg1qxZIpqlPlA//vhjcnNzGxmv7u7ueHl5cfLkSVFo0VSoU/t+fn5s2bIFTU1Nli9fjkwmY9iwYaxfvx4/Pz+hwFFfX8/du3dZvnw5Bw4cQCqVoqOjg7GxMZMnT2br1q2NGhiAqoHG5s2bSUlJoVu3buIe69mzJ+np6aKw5GmO0yuvvCIqZevr6wkODuaFF14gKyuLTz75pFlzzMnJEX3Gw8PDGT58OAkJCfz0009ERUXh5OSEubk5Z86cEVHgTp06sWLFChYtWsTbb78tomFKpRKpVIpEIhFdeXr16kVRURGnT59my5Yt9O/fn1GjRgEqncesrCwSExNFpEOdgVi5ciWbNm3CycmJuro6tmzZgq+vLydPnhSf1xScO3eOr776in79+ol1ce7cOXbs2IG/vz8jR44kLy+PtWvXcuTIEYYMGSIMotzcXGbPno2zszN79+4lKiqKrVu3Cgfr4cOHbN68mfPnzwMqp3zOnDnCSayqqhIc09LSUr766isSEhKwt7fHysqKw4cPU1BQQGFhIWFhYURERPwlfv2YMWMYM2YMly5d4vr160ydOpXg4GAWLlxITk4OXl5e7Ny5Ex0dHd555x1sbGxYvnw59vb2xMfHs2nTJq5du8bmzZsZOnQoYWFhoqDk0qVLaGtr4+/vL/R/f4+Xu337dgoKCpgzZw4hISEMGzZMyAz5+vri7OyMtrY248ePZ+rUqaLTT1NgbW3N0qVLBSWluLiYLVu2sGfPHmbOnMlrr73GlStXmDJlCvfu3WPBggXMnDmTPn36cPPmTRoaGjAyMmLq1KmUlJSwefNm7t+/j6+vL2PHjmXt2rVMmzaN6dOns3TpUkB1RsXFxZGbm0uHDh3w9/fHwMAAAwMDLC0tOXr0KJ6enrzyyisMGDBAdIUE1dnYXAqPmZkZWlpanD17lqysLFatWoWBgQGdO3duZHDn5OTw3XffceDAAYBG1LTc3FxOnDjRyAErLi7G1NRUXDOJREJFRQUzZ86kVatW7Nu3j6tXr/Lyyy/j6+uLhYUFW7duJSgoSNSkqDt9Wlpa0rt3b9Fs56/gypUrQtNdTVmAf3N+KysrRdajvLycrKwsrKysxL5pbW1NRESEsIP09PSIjo4GVBmylStXcv/+ffr160dwcLDo3KiO/t+8eZObN2+KtQTQrVs3QkNDSUpK4uLFi/j7+zc76gowaNCgRtFeUNExpk2bJgqoLl++zK5du1AqlXTt2rXRmRsSEoK5ublo152cnExycrIwXtetW8fXX39Nt27dmDt3Lnp6ejx69IjPPvuMiooKfH19MTc359y5cwwdOhRTU1PWrVtHRESEKDD28vIS0o1NQbON1+vXr3Po0CFeeOEFXFxccHBwwN/fn9raWpKTk6moqCAgIIA7d+7wySef0KNHDxFtTUlJwdLSUoStp02bRk5ODrGxsSQnJ4s+twYGBqI9XmxsLMbGxkRFRVFRUUFeXh4BAQFkZWUxe/ZsAgMDefPNN8nOzubYsWN06dIFR0dH+vfvT2BgIAUFBWzfvr3J8zMzMxMeiIaGRqMN29bWFgcHB4yMjMjMzGTGjBloaWkxYsQIMjIyKC8v59VXX0VDQ4NLly6Rl5fHwIEDheEXExNDXV0dBw4caORxzJgxg/LycjQ1Nblx4wYvvPACNTU1JCUlYWtry6xZs0hOTmbevHlMnTqV5ORkLl68SEREBMOGDWu28Zqdnc3bb79N165diYqKEhGR1q1bc+vWLfbs2YOtra2QGbpx4wYnT54kLCyMjh07MnbsWPG9pKSkMGTIENELOS0tjcDAQKysrLh//z67du2iX79+9O7dm927d7Nq1SrBr+nUqRMODg4sXLiQLVu2oKOjw+DBg9HV1aVdu3bU19fz008/CSOpqRgyZAjm5uYYGxsLCaWSkhJWr14torFt27bl5s2bojhk2bJlTJ8+XRRnlZSUCLWCI0eOcPv2bUxMTLCwsMDCwoLo6GiuXbuGvr4+I0aMoFu3blRWVgr930uXLnH8+HFiYmLo37+/iESePHmSkJAQ4Vl27dqV2tpaUWDSVFRWVhIdHd3IqBgwYABxcXGCH5yZmcnNmzdp164d5ubmhIeH07NnT9EzXVNTk4CAAGJiYsQG/ODBA3bs2CEaAfTv35+uXbs2yphMmTKFtm3bIpFI2LVrl0h/BwUF4efnJ3hhtbW14qBUV5M3By4uLoSFhWFhYSGyHQqFgjNnzuDh4SE2XQ8PDwYNGoSNjQ2ZmZk4OTkxdOhQWrVqRUZGhigYUUNbW1vQCCwsLLC2tmbTpk3s2LEDe3t7wUVTt0yUSCTC8XF0dMTY2FgczLa2tgQFBYlOTs3B6tWryc/PbzQ2TU1NsrOzuXXrFmVlZURGRjJ16lR8fHy4fPkyM2bMEJxza2trjh07xltvvcXcuXMbfcf379/H3Nyc7t27c+3aNbp160a/fv2oq6vjyy+/xNzcnIEDB5KSkkJsbCwODg5s3LiRR48esWHDBlauXMmwYcOYOHGiUJporuoHqIyAbdu2Cem8999/n+nTp6OpqYlMJuPOnTskJSUxZMgQevfuTV5enpDxi4yM5ObNmxw7doypU6cyf/58Ecm7ePEiZmZmhIWFCX55YWEhbm5uVFVVsW/fPi5dukRtba3ooHXx4kUsLS0ZOXIkXl5eon2zVColLS1NNK5oDtSFxGrDwMDAAAcHB6E0UFZWxokTJ8jMzKRjx444OjqSmZkpIm3vv/8+aWlplJSUUFpaKjiC6o5IOTk59O3bl/v377NhwwbGjRsn9mR9fX18fX3p0qULoOJJpqSkMGXKlEZZrqeNAfXZ1hwUFxdjaWnJhAkT2LNnD3PmzMHKyophw4Y1qt/Q0tKiTZs2vPzyy+jq6oqMB4CRkRHOzs6Ulpby888/c/LkSXJychgyZAgjRoxAQ0ODGzdu8MEHH3D16lUyMzOFxnJSUhJRUVG4ubnx6NEjDAwMhIGopjQ83X7+r9SBXL16lU2bNjFw4EBat25NWloa165dIygoiPv373P69Gns7e1FgZihoSGmpqacPHmS8+fPU1JSQmBgIF26dBHqCKWlpRgYGFBYWMjnn3/O2rVrGTZsGNHR0aSkpJCWloa1tTUSiYT9+/ezb98+7Ozs6NOnDwqFgu3bt1NTU4OnpydSqVRkDk+ePElsbGyz5ufp6Sm4ymqbasSIETg4OJCbm8snn3zCw4cPsbKyQltbm7Nnz3L//n1MTExo27atCHitWLGChQsXUlRUhJGRER06dMDExEQ4zZMnT0ZPT49169aRlpbWyBG8d+8eiYmJDBo0SFB1FAoFhYWFVFVVYWRkRI8ePTh79myTMgPNNl6PHz/Ol19+SWVlpRCRVXtz6v65NjY2pKamsnnzZuFJ1NXVERsbS9u2bfH19cXX15eAgAAUCgWdO3cWVW7u7u5YWlqKat+zZ8+KCO6FCxfYsWMH8+bNo6amhsOHD1NaWsr06dP58ccf+eyzz/j666/FAePv709dXV2zjNenI7gSiaSRt6KpqSkO45ycHK5duyZkr/Lz89HS0uLBgweiNa6bm5swXNXFZNOmTRMtN0FVoOXo6IhcLmfbtm2sX7+eV155hXHjxrF//36RPpg4cSILFy7EzMwMQ0NDjI2N/1IbPFClANatWycqjGNjY8nMzKRDhw7k5uYKgXR1UdCNGzdYt24d5eXlREVFidZ+EomE8PBwkdY/e/YsnTp1IiEhgW3btnHkyBG2bt3KvHnzcHR05IcffiAtLY2LFy9iZ2fHxIkTcXNzY+DAgezevbsRAf/Ro0cUFBTQuXPnJntiagQFBYliIzV++eUXli9fzoABA2jXrh23b9/GwcGBYcOG8e233wqx5NmzZ+Pv749CocDR0ZE9e/bw2WefAarCtoKCAuzt7cU1z8/Pp0+fPo2kt6qrq7lz5w4ZGRlC73H9+vV8//33HDlyBFNTU2FghoeH065dOwwNDZulZevl5UW/fv2QSCSi4YG9vb1oqVdSUsL69espKSnB29sbc3NzDA0NmT59OtOnT+fcuXMolUrh5asln9SpZj09PRYvXiykqQBRtObj44OPjw/3799n586dHDp0CAMDA6qrq7G0tERfX19oVKoly5qr+gGq9opqTjsgRMr37NnD+fPnefHFF9HS0sLa2pp169aRnZ3N1atX6dy5M5MnTyYnJ4fi4uJGfFf1PMrKynj8+DGWlpYYGxszZMgQYfz369ePPn360Lp1a5FFUEcHGhoa6NKlC3fu3OHhw4fU1taKezw/P79Z83vw4AGDBg1qlK4ODg6mT58+LFmyRGiiLl68mMGDB7N48WI+/vhjbGxseP/995kzZw7Tp09n7969tG7dmrfeegtQOZTx8fGiQUVhYSEWFhZoaWmxceNGZs2aRb9+/fDw8GD79u1cuXKFJUuWCJrPli1bKCoqIiwsTDz3a0WXpmLjxo2C12ljY0OPHj3w8/PjlVdeITk5mTVr1ojs2OTJkykvLxcyZy+99BIxMTG89dZbog3lF198wbVr17h58yb9+vUTTte+ffsoKytj2LBhonvcmjVrMDU1ZdeuXURHR7N//36OHj1KZGQkkyZNEnt5amoqN27cICUlpdnGq/q+V68PtV6rlZUVL7zwglAyGDt2LB999BFSqZRTp04RHh7OCy+8IPjgoIrwhYSEIJPJSExMZNKkSUycOJHt27fzwQcfMH78eBQKBVOnTqVHjx6iCNbIyIjLly8zfPhwfHx8hGLCnTt3MDIyEun5vLw8iouLf5PR/DOcO3dOZKuio6OZPHkyZmZmQimiurqaBw8eYGBgwNChQ0VhHqgi/HV1dfj5+eHn50diYiJffvklu3btQqFQoK2tLaLf3333nWiRrVQqmTt3LrW1tVhZWTFx4kRsbGyE3rqaK6nWz3VwcBBtk9UqBc1BRkYGurq6TJ48WXCO4+Pj8fPzIy8vj127duHk5ISxsTHBwcGiK2RqaipffvkloHJk1N0K1XKD1dXVPHz4kJs3byKRSOjSpQt+fn7s3r1baPQqlUp2797NvXv3aNWqFfX19ZSXlws6Xnh4OK+//rpY69u2bWPr1q2Nvuc/g9rxPHnyJD/99FOjZhxLlizhyy+/pG/fvowbN47S0lI2bNggMkpqLW+1jru6M2ZlZSVxcXF4e3vTq1cvhg8fLrI+P/zwA0VFRQwZMoSAgACKi4sZPnw4jx49Ys+ePaJA9Pbt22RnZ/Po0SPRHOj8+fPs2LHj729SUFBQwOzZsxtFGkJDQ1m8eDE1NTVis/P19eWTTz4hNjaWTz75RKSh1VVpaoMnOTmZsLAwYY2re1v37NmTHj16MGzYMBQKBaDqZd6jRw+Rrv34449RKBRs2LBB6EqmpKRw7do17t27h4ODQ7ObFMTFxeHj44OBgQEKhQINDQ3hyd28eZOHDx/SsWNHPD09mTdvHrdu3RKFT+r5JCYmik2jsrKSS5cuceDAASoqKujZs6fwSKurqykuLhZpsLi4OPbv34+7uzv+/v5069aN5ORkjhw5gouLCwsWLKBDhw7cu3ePmJiYv8TRAlUxyJQpU4QmaUBAgDBakpKS6N69Ox4eHrRt25bs7GxR9ai+Zjt27OD69et06dKF9u3bN/q7JiYmKJVKampqMDU1pb6+nri4OFGNGxAQgL+/P3FxcRQVFTFz5kz69++PmZkZCoWC3NxcwS/S09Ojb9++VFZW8ssvvzR5fupDVh390NDQwMPDg3/961/U1NSwZ88erKysCA4ORl9fX0T00tPTWbZsGSEhIaKSPTc3F1tbW5HWULdU9fLyom3bthQUFFBRUcGjR49ENK6oqAhfX1/8/f3FhqNUKikvLyc9PZ1r167h5OSEmZlZs1uKqqGO4qpbaqq5iuoIqba2Nt7e3qJr0YULF9i2bRsjR46kXbt2REZGivtKPWY1zWbIkCHY2dk1aotYVFREVVUVVlZWVFVViW467du3x87OrlEXuoKCAoqKimjbti1jx479Uy77H0EtSq5WDKmvr8fOzo5+/fpx7do1Jk6cSHp6OkOGDGHGjBlCo/Xw4cOEhYURExODra0t9+7dQ1NTUxSzqaWkjhw5gre3N0uXLsXe3p4pU6YQFRVFWFgYsbGxHDx4UDQQ2bRpE7t378bd3Z2wsDBGjhxJXFwc58+fZ/bs2UyaNKnZ6bwJEyYIyS81r97GxoZhw4YRHx/Pxo0b+eqrr4iIiGDAgAFMmTKF+vp6MY/OnTvzySefkJWVRUhICAqFgoyMDNFO1dPTU3Tt0dTURENDQ3RIcnBwwNjYmKFDh2JiYsLWrVvR1tYmPDyc9957j9jY2EZRtby8PG7evNnsaxgbG0tUVBRxcXHY2dlhbm7Ow4cPOXnyJCYmJnz//feNpMfUETW18oKbmxu9e/fm0KFDFBQUUF9fj6urK2VlZY2MsOrqagoKCigrK8Pd3Z0BAwagra2Ns7OzcH7DwsLIycnh0qVLKBQKoqKihMRVSEiIkFf8K8jPz29USZ2RkUFWVhbu7u6iO6J6X5JKpVRVVWFubs6ECRNwdnbGyspKFNP17NlT6HiqNXzV1CZ1gY2bmxuurq7o6OhQUVHBw4cP0dDQ+E2jkrt372Jubo6enh4nTpxg165djQo4m4IjR46IdrzqtqTqLnygyrBs3bqV27dv079/f2FUbd26lVOnTjFq1CjRbMPCwoKBAwcSGhpKZmYmycnJvPXWW9jZ2dG6dWtmzZrFpUuXhORcr169GDVqFNnZ2aSnp/Paa6+RmprKrFmz0NbWFkWxvr6+GBsbk5eXJziWzUFxcTF9+vQRayUiIoLy8nLq6+tFhnPTpk2sWrWKuXPnimsZEhLC+++/T0FBAR07dhSGtVrf2NLSEh0dHd59913B0X733XcxNDQkOjpa2BZqjVh7e3uqqqrQ1NSkd+/eWFtbi5oMNbp164a1tXWzNOzV58zVq1e5e/cu//rXvygoKOCnn34iPT2d2bNnExMTQ0BAADU1NYJO2Lp1a1EDkJmZyaBBg+jatSsSiQQbGxs0NDTIy8vDxcVFrAc9PT3eeustdu7cyQcffMCcOXPw8vLCwsKChIQEFi1axFdffYWlpSUPHz7kl19+EU6MmZkZ7du3b3Q2/REkTdXuk8lkzRf5+z8GuVz+h/oLz/v84Pmf4/MwP3j+59iyTp/v+cHzP8fnYX7w/M+xZZ0+v/NrPompBS1oQQta0IIWtKAFLXhGaHLktQUtaEELWtCCFrSgBS141miJvLagBS1oQQta0IIWtOAfgxbjtQUtaEELWtCCFrSgBf8YtBivLWhBC1rQgha0oAUt+MegxXhtQQta8P8PJJJ5SCQKJJLmaej99u+8iURSi0Ti9TeNrAUtaEEL/ll4hvvpMy3YkslkfYCZgA9gATwCrgDL5HL5hWc2sL8JMpnsEyAU8AAsgSrgIbAb+EYulxc+u9H9zyGTyYYAnYAgIBAwAn6Uy+VjnuW4/rchk8nGAhue/PgvuVy+5lmO538CmUwmASYCUwFfQBNIBtYB38rl8uZ3F/i7IJH87vpCqfxr60u1wSYDa1AqX33qeQtgENAH8AfsgRrgBqrvYR1KZcOv/pYekAIkoFT2/Uvj+Zshk8kcgHlAT/69n+4GPpbL5UXPcGh/C2Qy2QPgj1q15crl8uZ1GPg/hud9fmo87+sUQCaTdQReAzoA5sBjVPvJl3K5/OAzGZRE8h/tEZTK5tkjf7Sfql77j+cKSmX9r97f7P30mUVenxh2+4Fg4DDwFXAVGACcl8lkz4MB9DpgABxDNb8fgTpgLpAok8n+Z97Ks8f7wHRUxkXWsx3KfwdPrtnXQPmzHsvfhB+A7wEXYCuwGtBBtV63PjFunxX+7vX1ASAFlv7q+aGo5h0OXAS+BHYAfsAaYNuTzfjfUCqrUH1HfZBIOvwNY/sfQSaTuaFy/CcCl4AvgFRUwYELMpmseW2V/u+iBPj4d/599iwH9TfiuZ7f/w/rVCaTvQ/8AkShsm0+B/YBZkD0sxvZf7ZH/kL09I/2U/iTc+Xv2E+b3WHr74BMJrMF3gJygQC5XJ731GudgZOoPLNNz2J8fyOM5XL5b1pFyGSyhcAcYDYg+6+P6u/D60AmKo+pE3Dq2Q7nfxdPDLl1QCGwE9Ua/sdCJpMNBMYCaUA7uVxe8OR5bWAb8CIwHlj/jIb4960vicQEGA2cQKnM+NWrd4H+wIFGEVaJZA6qA/ZFYDAqg/ZpbAIWobqHm9ds/O+HHLAGXpXL5V+rn5TJZMtQfY8LgZef0dj+ThTL5fK5z3oQ/4t43uf3XK9TmUw2FJgPHAcGy+Xysl+9rv1MBqaCMUrlb1tXSSTNt0f+034qkQzkqXMFpbLgyfN/dq40az99VpFX5yefffFpwxVALpefAsqAv9Y38/8Qfs9wfYJtTx7b/MHr/wjI5fJTcrn8nlwu//9FLPhVoAuqqEHFMx7L34HBTx4/VxuuAHK5vBaVVw0w478+KjWUylMolff4e7hNIwF9VFGAX3/OSZTKfb+hBiiVOcDKJz9F/87vZQNngSFIJMZ/wxj/EmQymSvQHXgAfPurlz9CtVbHymQyg//y0FrQAoHnfZ3KZDIN4BOgEhj1a8MVxN76bPB7hqsKf8Ue+eP99KlzRRiuqs//z+dKM/fTZxJ5Be6h4pS1k8lklk8fnDKZLAoVt233MxrbfwP9njwmPtNRtKDJkMlk3sAS4Cu5XP6LTCbr8qzH9DdAzaFL/Z3X1M8Fy2QyU7lcXvzfGdL/GmKePJ5r5u+pD5u6P3j9PCrDNgoVDepZQL0Wj8rl8kYGuFwuL5PJZOdRGQ0RwIn/9uD+ZkifUMqcUBk7icAvz5Sb/ffieZ7f875OO6BKk/8MFD2p6fEDFMCl/8N1PH/FHvlP+2mTzhUkElOUyuJfvd7k/fSZGK9yufyxTCabBSwDbslkst2oUrFuqNJ3x4CXnsXY/jcgk8neAgwBE1SE6UhUC2XJsxxXC5oGmUymBWwE0lGlV54XqJ1Gl995zfWp/3sBcf/7w/lfRSSqjM7dJv+GRKIFjHvy0+E/eNflJ4/P0nj1fPL4R3O7h8oo8OCfaRQ8DVtU9+LTSJPJZBPlcvmZZzGgvxnP8/ye93Ua9uQxF1X9jv/TL8pksl+AIXK5PP+/PbBGkEj+DnvkP+2n/5Nzpcn76TMr2JLL5V+iCi9rAf8C3kVVOJEBrP81neAfjrdQpUVeQ3XRDwPdn/kibkFT8SHQFpggl8urnvVg/kaoN4c3ZDKZufrJJ8b6x0+9z+y/Oqq/GxKJDmAD5DSTgrAEVeTkIErlkT94T86TR6f/wQj/pzB58ljyB6+rnzf93x/K/yrWAV1RGXgGqIyDVUBr4JBMJgt8dkP7W/C8z+95X6fWTx5fBvRQRSeNUO0hR1AZZNufzdAa4XftEZTKptkjf76finMFicT8qd9ryrnS5P30WdEGkMlk76Ai5y4HvkE1aC9gMfCjTCYLksvl7zyr8f2dUEucyGQyG1SphSVAgkwm6yuXy68+08G14D9CJpO1QxVt/fz/cNrnr2ILMAbohSoDshcVXysGVRbkHioe1D89ZamuYG66DI9E8irwJnAHVfHBH+Hxk0fLvzSy/w7Ulb3/aG66XC7/+FdP3QRelslk5aiu1VxUkmf/SDzv82sC/unrVPPJowRVhPX6k5+TZDLZIFRRyk4ymaz9Mz1LlEpVWl8iaWSPIJH0Ralsij3yZ/tpo3MFiaQ550qT99NnEnmVyWTRqIjNe+Vy+RtyuTxVLpdXPjHkBqGSxXnzCcH7uYFcLs+Vy+W7UKVGLPi3VmgL/g/iKbrAXf5NNH9u8IR31h+VJ56DykibhKrCPxIVlQfgn54FUUfLdZv0bolkGirZlltAZ5TKx//h3Xq/+oxnAXXEyuQPXjf+1fueN6iL6qKe6Sj+9/C8zO95X6dqYy71KcMVgCcZO3X2pt1/dVR/BKUyF6Xyr9gj/3k/VRW+/tVzpcn76bOKvKpFaH8jfSOXyytlMtklVEZsW36f9PuPhlwufyiTyW4BQb8uWGvB/ykYouJfAShkst9VEVktk8lWoyrkeu2/NbC/C3K5vA6VDuHnTz8vk8n0UOmrVgFJ//2R/Y1QKouRSGr4d8TgjyGRvIZKe/Im0BWl8s8Md/XffJYGfvKTR48/eF1dRdx0vu8/C+rv/h9Zpd4EPC/ze97XqXp+xX/wutq41fuD158NlMqHSCS3gCAkEstGCgG///4/30+Vyt89V540Iwjij8+VJu+nz4rzKn3y+EdyWOrna/4LY3lWaPXk8Z+ekn2eUY1KaPn3/iU8ec+5Jz8/b5SCsag8623PVN7l78MNwO4/SrBIJLNQGa7XUEVcm2KQqtsZXvsfju9/AnUQoPsTuR4BmUxmBLyA6rD4pxfd/RHaP3l87gIdT/C8zO95X6e/oFIlaSOTyXR+53W/J48P/msjajqaa4/8+X76+xDnyhPprF+jyfvps4q8nkXVOWeqTCZbJZfLRfccmUzWC9UiVvDshb//MmQymRcqwemcXz2vgUrE2BqIfV7a4T2PeJLqmfJ7r8lksrmoMgM//MPbwxrL5fLSXz0XhooHVY6qWcjzgNNACKqU3fHfvCqRfIBqrldQFS/8J6rA04h48vjMGnTI5fL7MpnsKKr03zRUHeDU+BhVxG6VXC7/x2oTy2QyX+CRXC5//KvnnVHVTMA/uKnN8z4/eP7XqVwuL5DJZFtRifd/iKpDIAAymawb0AMVJeKPlEv+9yCReAHFT7Srn36+kT2CUtlUe+Q0/3k/NUapLP3Vc005V5q8nz4r4/VnVBOOAW7LZLJdqLgR3qgoBRLgXblc3rxeu/+30BNY+kQe4z4qnocNqk5Brqjm+69nN7z/OZ50aBr45Ee1tlt7mUy2/sn/C+Ry+T+6C9X/Bzgmk8mqUKXJy1D1oe6NKuo8WC6XP7toj6pTy8AnP4n1hUSy/sn/C1Aqm7q+dqAqeunBrzdbiWQ8qs20HpVj/Sq/6l4IPECpXP+r39NAVR2ejFJ5s4nj+N+CuivNcplM1hW4jardbWdUadj3nuHY/g4MBd6VyWSnUHXuKUNV/NEHVSTnIP/sFqrP+/zUeN7X6Ruo5vPeE836S6iaMg1Ctb/86xlpZvcEliKR/F32yB/vpyocQyL5w3MFpfK350oz99NnpfPaIJPJeqPyvkagurD6qCrNDgLL5XL50Wcxtr8Rx4HvUEWRA1HJf1SgukE3oppjU6M7/1cRhKrN29Nw5d9abg/5h7dQ/f8AP6O6B8eg4mJlA2uAJXK5/MEzHBf8netLqbyARJIAjEYieRel8un0mFqPUBOVfMzv4Qy/bWcYA9ijamv5TPEkqhWKygjvieqgeIRKzeXj52CvOYVKJ7QtqjS6ASpu4TlU++nGf3inv+d9fsDzv07lcnmeTCYLRxV1HYQqklgGHAAWy+XyZ0WJ+FN7pBnZpj/bT+E/nCsolQ/+4K82az+V/D2dF1vQgha04P84JJKRwGZUnv+uv+Hv7UAVuXBDqfynVki3oAUtaEHz8Yz30xbjtQUtaMH/H5BIJKgK61QVr/+TzU8iCULVRedVlMpv/uTdLWhBC1rwfOEZ76fPrMNWC1rQghb8V6HaXKcCu/h3de1fhR0q7d+Vf/bGFrSgBS147vCM99OWyGsLWtCCFrSgBS1oQQv+MWiJvLagBS1oQQta0IIWtOAfgxbjtQUtaEELWtCCFrSgBf8YNFkqSyaT/eP5BXK5/DfijWo87/OD53+Oz8P84PmfY8s6fb7nB8//HJ+H+cHzP8eWdfr8zq8l8tqCFrSgBS1oQQta0IJ/DJrdpMDAwIDPPvuMCRMmsG7dOgA2bNjAjBkzKC0tJSwsjKqqKm7eVDVIGDx4MD/88AOGhobk5OQwe/ZspFIpH3zwAfb29uLvpqamsnHjRvz9/enQoQOffvopO3bs4LXXXmPEiBHk5uaio6ODj48PAAkJCSQlJeHs7EzHjh0BVfGbRCKhsrKSx48fo6Ojg7m5Oa+++mqT57d06VJOnDjBp59+SkVFBZ999hldu3YFICsrS4z55MmT9O3bl5CQEE6cOIGOjg67du3ixo0baGho4OjoiJeXF+Hh4QCcOXOG/v37ExQUxJEjR9DV1eXTTz9l3bp13LlzB4D333+f+fPnU1paSnJyMq1bt8bKygqAiooKDAwMANi6dStTpkxhxIgRrF69GplM1qxr+Oabb6Kjo4Oenh6WlpYAPHjwgAsXLuDo6EhkZCQAtbW1KJVKdHT+3aZZqVSKfxoaGk/UMlTP19bWoqmpiYaGhrgWSqWS+vp68bxCoaCqqgpdXV309PQAqKyspLa2FmNjYyQSCQ0NDWhoqPyq9PR0srOz2bBhQ5PnN2DAAPbs2UPHjh0ZOXIkANnZ2WRlZWFpaYmLi0uj9+fl5ZGbm4uZmRkODg7i+erqarS0tNDU1BRzLCgoIDMzk2PHjrFixQocHR354Ycf0NPTY9GiRTg4OPDyyy9TVFREamoqvr6+WFtbA7Bp0ybu3r1Lnz59xLrYsmULx44do3v37pw5c6bJc5TL5b95rrq6mri4OFatWkVOTg4zZsxg0KBB4nNu3rxJx44d6dGjB6C6565fv46zszPBwcG/+XvZ2dls3ryZkpISBgwYQEVFBStWrKC8vJzBgwcTGRmJh4cHAJ9++imzZs1i/PjxzJo1i8TERLKyshg/fjwWFhYoFAreeOONJs8PoGfPnty5cwdPT0/S0tKYO3cuzs7OHDhwAAcHB7FOLl++zOjRowkPD2fjxo1UVFSwb98+vL29CQwMBOCll17iu+++4/PPPxfjyM3NxcLCAi0tLVJTU+nfvz/19fUcOHAAV1dXysrKWL9+PQBDhgzBzs4OpVJJSkoKjo6O6OrqcuzYMYYNG0ZxcTGvv/46CoWiyfNbtmwZtbW16OjoIJVKf/c9VVVVNDQ0oK+vL+61yspK9PX1ATh37hybN29mwIAB9OjRg0WLFvHee6omRfPnz+fNN9/k7bff5ttvv2Xx4sW8++67ACQnJyORSHB1daWqqopLly5RXV1N165dkUql5ObmMnnyZLKyspg/fz59+/alpqaG1157rVnXcNiwYURHR5Ofn09ycjJ2dna4ubkB0Lt3bw4fPsyBAwcICQlh6NChSKVS9uzZg56eHjdv3qSmpgaFQkFWVha6urr4+vri6qrqUXHz5k2++OIL0tPT+fTTT3Fzc2PChAkoFAo2btyIUqlk3bp1mJubY2FhwYULFygqKsLFxQVra2sMDQ2xt7cX+93MmTNZvnw5r7zySpPn99lnn6Gnp4dEIiEnJ4fPP/+cwsJCJkyYQFRUFAANDQ0A1NXVoaWlJfbHmpoa6urqMDAwoKSkhJdeeoldu3bxySefiO/5/v37VFVVYW9vj5mZmdhLQXXuJiQk8NprryGVSnnjjTews7Pj888/p6KiguvXrxMUFERZWRmHDx+mVatWdOvWDaBZZ8bMmTO5desWbm5uBAQEAKq9obi4GB8fHxQKBb179+bq1at8+eWXeHp68sUXX3D58mUGDRrErFmzMDAw4MiRI+jp6dGrVy+xlgEKCwvR1dXFwMCAtLQ0OnfujKmpKUePHkVPT4/t27cTFhaGv78/N27cQKFQEBQUhLa2NjU1NeTm5qKpqYmlpSXa2tpUV1c3e68ZNWoUL7zwQqNxnT59mrFjx5KZmYmtrS3t27dHS0uLmpoaunTpQtu2bdmxYwclJSV8+OGHVFdX89FHH+Hj48NHH30k5mZqaipUpLS0tMjKymLatGlcuHABDw8PHjx4QGZmJmPGjGHKlCnk5OSwYMECbt68yfz583n/fVWX2bKyMgwMDGhoaKCiooLZs2c3eX7m5uZ88MEHSKVSMjIyWLx4Mc7Ozrz99ts8fvyYvXv34u3tTfv27cXvqM+7srIyjIyMhC2yaNEizp49y+LFi7G2tqZfv35cvXqVN954g88//5z09HQGDhxIXV0d+/btw9nZmdraWh4/foyNjQ0A33zzDYsWLWLChAl8+OGHZGZmcu7cOdzd3YmMjKSyspK33vrP/Weabby++uqrtG/fHicnJ/Fcnz59SEtLo6ioCFdXVyorK7lz5w5GRkZMnDgRQ0ND7t+/z8aNG2ndujUvv/wyNjY2nD17lkOHDvHKK6/g6upKly5d0NbWxtbWltGjR9OzZ0+6d+/O/fv3eeONNwgKCmLZsmUAuLq6kpWVxenTpzl//jy9e/fGw8ODhw8fUl9fL4zc5uLQoUN8//33eHp6MnbsWPz9/SkuLgbAxMREvK9Tp05s3LiRhoYGLl26xLlz59ixYweampr07dsXX19fGhoauHDhAmFhYXh4eDB79mxMTEzE5tOzZ08sLCzIzMzEysqKgQMHAmBsbExYWBigMlq3bdtGQUEBYWFhBAUFERkZyTfffMOpU6eYPHnyHx58f4Rdu3bx6quvoqOjQ1VVFdra2jg6OqKtrU1VVRVZWVkYGRlhbGwsxpCWloatrS2WlpaNbvCdO3cSHx/P2LFj8fb2Fs+r3yORSIQhWldXh66uLrq6uty8eZPS0lI6dOggDuI5c+ZQUFDAsmXLMDQ0BMDe3h4nJ6dmGa9Hjhyhe/fuREREiOd0dXWxtbXF3NwcgKKiIiQSCaampujq6mJkZCQM19dffx1HR0exAS5atAiJRMLYsWNxcHDAysoKFxcXCgoKiI+PZ8WKFTg5OdGmTRv69++PsbExGhoaPHr0SFxrgODgYDp06CAO35UrV3Lu3DkCAgLw9fVtlvF6+/ZtDh48iJ6eHqGhodjZ2eHo6CgOk2vXronPrq2tpaqqCltbVYfVlJQU9PT0MDQ0pGPHjqSkpDB//nyuXr2KnZ0d3bp1w9DQkPPnzxMfH4+Pjw/a2tro6uri4eGBtbU1Y8eORVtbm9u3b7Ny5UqqqqrE35g0aRKjR48mIiKCGzdu0LZtW+GoNAe6urpcvnyZL774AqlUSu/evZkwYYK4Tup1FRYWhlwu58iRI7z//vsMHDiQ9u3bc+bMGe7fv0/fvn2ZPn06QUFB+Pv7c+7cOXbt2oWOjg4ff/wxANbW1iQlJQGq9Q5gZGRE165duXv3Lnl5edjZ2SGRSLCwsCA1NRVPT0/8/f2ZP38+lZWV+Pj4cPDgwSbP7+TJk3zzzTcMHTqUUaNGceLECc6cOYOXlxdBQUH4+vqK762srIySkhIsLCzE/QLg4+PD0KFDKS0tZdOmTZSUlNCvXz9sbGzo2LEjCoWCjh07oq+vT7t27cTvtW7dmsLCQrS0tDAyMiIgIEAcTgcPHmTNmjU4OTkxZswYWrVqRXl5OSUlze/DIJVKOX36NGZmZnh5eWFqaipe69u3L+bm5hgaGqKhocHQoUMxNjYWc9bR0cHW1hYNDQ309fXR1NQkPT2dFStWoKmpSa9evfD39+fRo0dkZGQQGBjIkCFDSE9PR6FQYG9vT1BQEMuXL8fU1JTXX38dLS0tNm/eTE5ODsHBwVRUVJCVlYWtrS1Dhw4lICCAK1euNHl+T18LW1tbZsyYQVpaGubm5sLJUK/Tp4MAVVVVaGho8PjxY06dOsXmzZvZunUrgHB2AVq1akVRURH3799HQ0MDb29v8f24urrS0NBAVVUVpqamDB48mKtXr/LVV18REBBAQEAA+vr66OvrM2LEiGZfOzX09PQYNGgQmZmZHD9+nMDAQFq1aiXmk5eXh5aWFq1atcLNzY327dsLgzsgIAAbGxsuXbrEDz/8wKRJk5BIJGzatIldu3YJp0ONBw8e0KVLF1xcXJBKpRgZGTF48GA0NTWpr6/Hw8Oj0Xmno6ODo6NjI6NeV1e32XM8duwY7du35/Hjxxw5coT8/Hxu376NiYkJ3t7e9OrVizZt2ghHs1WrVmhpaREVFYWenp4IiEybNg13d3cAtm3bxpUrVxgzZgz+/v7is+zt7Xnttdfw9vamsLCQwMBAEYRTn1lWVlYcPnwYW1tbEbgyMjJCoVAQHx9PaWlps+Y3atQo8b05Ojoil8s5fvw4EydOpLa2lldeeYX27dtTXFzM22+/jbOzM++//z5WVlYYGhpSU1Mj/lb//v0JCwsjICAAiUTC5MmTCQ0NpXPnzgA4OTkxadIkiouLMTMzA0BbW5tbt25x69YtAgMD6dKlC6ampgQFBaGrq4u7u7u4T6DxffVHaLbxqq2tTYcOHbCwsABUG72JiYnwNH4PdXV1/Pzzzzx8+JAZM2YI6/vLL79k586dKBQKli1bJiKoDQ0NuLu7ExISAsCBAwe4fPlyo6iYUqkkIiKCa9eusXXrVszMzPD09CQ3N5f79++jo6ODm5sbVVVVzZpfeXk5DQ0NtG/fnujoaEDlPWVkZGBqaio2joaGBl588UUePXrEli1bWLlyJRkZGYwdO5ZJkybRqlUrzp49y9mzZ6mvrycyMlJEPdS/r95gQBVNUSqVKBQK6uvrRZT18OHDbNy4UWzEoFr848ePp6ysjC+++EJE0pqK9PR0qqur0dHRoaysDB0dHUxNTbG3tyc9PZ3MzEwcHByE8Zqbm0t+fj66urqYmZlRU1Mjvofc3Fzi4uLw8/MTxmtaWhqamppYWFhgYGBAVVUVRUVF6OrqYm5uTlVVFYcOHSIrKwstLS18fX358ccfWbduHXV1dYSEhDB16lTq6+uprKxEW1u7WfPT19cXnl9sbCxt2rTByspKGK719fUkJSVx584dbGxs8PLyok2bNgDEx8ezY8cOLCwshAd4/fp17O3tuXfvHgqFAnNzc3R0dBg2bBgPHjxg6dKl2NrasmXLFpydnUlJSaGsrIy2bdsilUpJSEjg1KlTBAYGiij++vXr2b17Nz4+PgwePFhseE3F7du3uXLlCtbW1nh5eYlrZWVlRZs2bTh8+DDJyckAKBQKoqKiMDU1JTMzk6SkJMzNzWnbtq3IiDx48IC9e/dibW2NpaUl/v7+5OXlceXKFerq6njppZcIDAxEIpHw8OFDFAoF2traFBYWsnHjRvr3788bb7zBkiVLuHr1KqGhoURERHDw4EFu3LgholvNgVQqpby8nJycHAICAnjnnXcICgqivr6e8vJyDA0NSU9Px8XFhZiYGC5cuMCHH36IoaEhb775Jlu2bOHUqVMcPnyYTp064e/vT1paGmvXrmXTpk1ERUVRU1ODjo4OV65cwcvLCxcXF2HE3bt3j9atWwuHID8/H4lEQkFBAXV1dVRUVGBra8v06dPFmJtjvB46dIizZ88SFRWFQqEgKSmJDRs24OPjg729vTAO7ty5Q2lpKRKJhKKiIhwdHTEyMqK6uhpzc3M6d+7MuXPniI+PJzg4mE8++QRQOS0PHz6kV69eDB8+HICCggLy8vKwsLCgVSuVNOP169eJj48nKioKOzs7fvjhBw4dOsT27dvp27cvoDIqLl++3OxrmJSUxObNmxk5ciT/+peqdXp5eTk6OjpMmjSJzp07c+fOHVJSUsT3ePv2bbS1tXF2dkZbWxsNDQ1x765bt441a9YA4OXlRUxMDE5OTtjY2KChocGoUaMafX63bt04dOgQJSUlWFlZUVRUxIMHDzA1NcXBwQETExOys7NpaGigQ4cOREZGNst4VUdTa2trqaioEA6h+iBWZwcqKirIycnBwsICExMTLl26RFxcHJqammRlZREfH4+enh7du3cXxpza+NXT0yMlJYXExEQaGhoIDQ0FQFNTE01NTRQKBSYmJgwZMgRLS0vWrl2LlZWVMCays7NRKpWYmJg0O9ABqii9hoYGcXFxpKWl0apVK6ysrLC0tKSsrIzy8nImTJhAYWEhJSUllJeX06VLF+rq6sT3cPfuXfbt24eVlRXdunXj6NGjHDp0iGnTpuHm5kZmZianT5/G0NCQ+fPniwxnSUkJ9fX1aGtr09DQQE1NDWVlZVRUVFBYWIiGhgaurq5i/1MqlTx8+LDZc6ypqRHZwqtXr7J//37c3d2ZN28eAwYMEIZxfX29ODu1tLSE0VpdXU1JSQnt2rVDV1eX3NxcZs2aRXZ2NsOGDQNUZ+W9e/fw8fEhOjqa6Oho7ty5g6GhobBtMjMzqaurIzo6mi5duojvICcnBwMDA0pLS8nJySErK6tZ81Ofb0VFRejr6yOVSsnLy+Po0aMUFRURHBxMx44duXfvHidOnAAgIiKCmJgYqqqqKCgooLS0FBsbG/z8/PD09BQZhacDaOosqvpeVhu9ZWVlJCUlcebMGXx9fenfvz8jR45EU1OT2tpa6uvrsba2FkZrdXX1n86p2cbrW2+9RUlJCe+99x4RERFUVlaSlpaGn5/f775foVBw9epVPD096d69O23bthWvqTekH3/8kXbt2gnvUJ0K3LdvH2fOnEFPT49Zs2YxePBgbt++zYkTJ7Czs+PFF1+kT58+pKSkUF1djVQqJSoqisLCQmbPnk1YWBhDhw5t1vx69+6Nt7e3CHOrU06g8jArKiowNjYmIyODHTt2UFVVhaGhIcHBwbRt25a33npLHApOTk4MHDiwET1CjaysLMzMzDA0NCQuLo5Zs2YRFBTE0qVLG3mO5eXl6Orq8sILL4iUjxojR44kODiYTZs2NWuOgYGB7N69m6ioKJydnQEoLS2lpKSEoqIi4fGqYW9vj76+PsXFxdy/fx9LS0thvPbs2RM/Pz/s7OwAyMnJ4YsvvuDcuXPMnj2boUOHEh8fz507d8RBqKenh7e3N/n5+SxfvpyHDx+io6PDRx99hKamJsuXL0cul/Pee+/h7u7e7Bt14sSJ4rszNTUVxogaDQ0NJCcns337diwsLHjzzTcBSExM5MKFCyxbtoxbt24xbtw4fHx8mDdvHn5+fpw9e5Zly5Zx584d2rZty5AhQ/Dz82P79u1UVlZiYWHBrl27eO+99xg4cCCLFi0C4OjRoyxYsIA5c+bQpk0bPvjgA86ePcucOXN48cUX0dTUFNG+pkJHR4fp06djbm6Oo6OjcHYABg4ciIaGBpmZmfz000/06dNHHIgKhYK6ujqsra3F7/j5+bFgwQJ69+5Namoqtra2dOnShfDwcAoKCkhOThZRt3bt2rFp0ybWrFnDBx98QGRkJOfPn6ekpITq6moGDx5Mt27dRAQhPDy8UaS+OaisrMTb25sePXoQFBREWloaJ0+exNbWln79+lFTU8PPP/+MnZ0dY8aMEQfY7du3SUlJ4fbt2ygUCi5duoSmpiaXLl1CX1+ftm3bsnz5cuzt7bl79y6nT5/m4sWLDBgwgNdeew1bW1s++ugjNm7cyKJFixgxYgS6urocPXqUAwcOEB4eLiLPFRUV1NfXi89uDioqKvj+++/p3r07EokEb29vXn31VbFXgip6ExcXR+fOnbGwsOD+/ftUV1cTEBAgDlKpVIqPjw96enqN1rq2trZwHtXjO3/+PF999RVDhgxBJpORmprKW2+9xfHjxwkKCqJfv3507NiR7t27N8qkaGhokJOT0+w5bt68mVOnTuHl5SWeKy0tpby8HA8PD7y9vUlKSiI9PZ2IiAgyMjL4+uuvCQoKYsqUKUgkEmEgAkRFRfGvf/2La9eukZiYiKenJ3369PmPRtl7771HXl4e165dY9OmTVy7do3x48cTHh6OVColPz8fLS0t0tPTmz1H9djKysrYtWsX+/btIzo6WqT9y8vLMTY2FsZ5WFgY8+fPp6CggGPHjhEVFcWQIUPo1asXtbW1uLm54enpSU5ODvHx8Tg7O+Pv709AQADp6enExcVhZ2eHvb09V65cYcuWLcyZM0cENtq2bcuECRPQ19enpqaG+vp6Nm7cyObNmxk4cKDINDQHsbGxvPHGG3Tv3p23334bW1tbMe/6+npsbW0ZNWoU8fHxLFy4kG3bttGrVy8uXbqEjo4OnTp1Etfv9OnT5OfnM3XqVHr37k1oaKjImFhZWfHOO+80Oi/Xrl3LuXPnmDFjBtHR0WzdupWtW7eSn59PTU0NQUFBzJgxQ9gVJ0+eZMeOHc2eY+fOnQX1YPTo0XTq1EmsT1AZlYWFhcTGxnLmzBleeOEFZsyYAaic3IyMDLKzs6mrqyMyMpK7d+9SUFCAubk5rVu3BlTUpT179jBx4kRWr16NpqYmXl5eXL16lcTERG7fvs3x48fJyspi2LBhgi5gYmLCmjVr0NbWZujQoXh6epKRkdGs+X399dfMnDkTExMTvvjiC7755huCgoL46quvOH36NKtXr8bU1JQpU6Zw6NAhZs+ezZgxY+jTpw/9+vWjsrISV1dXHB0dOXPmDMePH2fAgAGEhoZy+/ZtbG1tRbQ4OTmZWbNmCYdHoVCIDHNOTg7a2tosWbIEPT09Zs6cSXBwMAcOHODRo0eMGjWqyU5Ws41XMzMzpFIpFy9eBFQGqFQqJTMzEwsLC6qqqkhMTERTU5OAgACys7N5/Pgx/fr1EwdIXV0dHTp0YN68eZiampKVlUVycjJHjhwhOjoaqVSKQqHg8uXL3Lp1i+HDhzNz5kyMjIy4f/8+33//PQqFAlNTUwICAhg8eLCI5gLk5+eTlZWFr6+vuGmaCmtra6ytrSkuLubUqVMUFhYSGhpKUFCQMGJBZQDduXMHqVTK8OHDCQwM5OrVq5w7d47S0lJ8fHyEYfj48WMyMjKwtrZGKpVSU1PD48ePATA0NBS8NhsbGxFtUXvsHTp04MqVK9TW1pKcnMzjx49RKBT4+vpiaWkpjInmwNvbm8WLF3P58mXefvttHB0dqaioID4+Hn19fUJDQzEwMKCgoICamhpatWol0ndZWVnCUK2ursbFxaURh7Suro5Hjx6RkJDA/fv3ARV1wMjISKTDsrKyMDExwdjYmNOnT1NQUMD48eN5+eWXAVVaOz4+nqysLC5cuEBcXFwjp+fPoI64m5qaYmJiQmpqKjU1NeIAVUdy1Gm1qqoqUlNTuXTpEk5OTgwYMIDs7Gy2bNmCvr6+cMw8PDxwdHQkOTlZROEGDhxIdna2WLM5OTl4eXkJ4wNUETAXFxeKiorYvn07Fy9epGfPnkyZMoW6ujrmz59Phw4dmn0N1Qbpo0eP2LdvHxKJhOjoaNq3b4+XlxcLFizg4MGDODo6EhISQkZGBhoaGvj7+4t1po5C6+np8eKLLwJw4sQJEhISaN++PTNmzGDXrl0cPXoUX19fpFIpISEhnDt3joSEBCIjI3FyciI7OxtdXV1xiObk5FBTU4O9vT2ampqCetMcuLq60rt3b2JiYmhoaCA8PJz4+Hjmz5+PkZERdXV1GBoaUlRURF5eHn5+fowcOZIOHToImsfevXs5ePAgSUlJSKVSzMzMaN++PYGBgTx69IiXX36Z1NRUXnzxRYYPHy6oFdra2mhpaXHp0iXhVO/YsYMNGzZgYGAgsgE5OTmUlpZib2/fKN3bFHTp0kVEZaqrqwkNDRUOHsCpU6coLS0VKcuUlBTy8vJE+lJ9DUtLSzE3NxfBgLq6OvLy8mjVqpW4V9VwcXHB1taW8vJywTPT0tKie/fuKJVK0tLS6N27t3A+ysvLOX36NAcOHGiUBmwqrK2tiYyMpF+/fuK5+vp64eBfvnyZ48ePY21tTXR0NGlpaSQmJpKYmIiTkxM9e/akoaGB48ePY2FhQdu2bZk7dy47d+7k6tWrJCQk4OzsLKgN9+/fFwd769at8fT0xMLCgsLCQgoLC3FycqJt27aMGjVKUJPUY7l9+zZ79+5t1vzUgYa6ujr09PRoaGjg1KlTWFpaEhwc3IjiYmVlhbu7OwYGBpiZmeHu7s7gwYMbpZTVMDExQVdXl5SUFIyNjXF2dmb06NHs27ePtLQ07O3t8fLywtHRkcTERPT09KitraV9+/Z06dIFhUJBbGwslpaWgp5QVFTUrLmpYWpqSn5+vjgHQBVJ09XVFTSQkpISzp8/T3FxMe7u7piamlJfX8+jR4/Iy8ujX79+zJo1C1DR4p7OxFy5coX4+HimTJmCv78/9+/fR19fHzs7O3F/q7nkBgYGBAUFkZeXx3fffUdCQoLgn968eZPY2FhBMWgO6uvrqa+vR0tLi5CQEEJCQqirq+PatWtkZ2djZGSEgYEBly9fZuvWrSQnJzNq1CgsLCxIT0+npKSEgwcPsnv3bt544w2GDh1KTEwMV65c4ejRozg6OtLQ0IC5uTlZWVl8//33eHh4kJ+fz6NHj6ioqKCgoEBQENRrViqVsnbtWn7++WcGDhyInZ0d+fn5XL58uREF58+QkZFBSUkJ5ubmmJqaUldXxwsvvMCwYcOoqqpixYoVXL58mSlTpuDp6clbb73FokWLBC/byckJNzc3lEoliYmJJCUlERMTQ01NDXfv3qW4uFjM7fLlyxw7dgwdHR3Wr19P27Zt6dixI9nZ2eKMWrt2LRcvXsTS0hJnZ2fWrFnDvXv36NGjByYmJjx48OBP59Rs43Xx4sUYGhrywQcf8NZbb/Hhhx/SvXt3kX5TKpXEx8eTnZ2NsbEx5ubmWFtbo6mpSVVVFcuXL6ehoYHg4GDs7OyYNGkSJiYmlJWVcfToUcrKyhg0aBB9+/alTZs2KJVK9PX1xSZhb2+PtrY2165d49KlSxgZGaGhoYGLiwvV1dWsXr2aW7du8cYbbxAdHS02qOZCzYWUy+XY2tqydu1aceOqxzFnzhy0tLSwtramtraWK1eu8NZbb+Hr68u2bdswNTXl0aNHJCUlYW1tjaOjo/j9p6NlnTt35siRI+Iwero4y9bWljZt2rB//37mz59PbW0tr776Ku3atePWrVscPXq02XNTUxN27twJwEcffYSxsTF1dXXU19cLI11t0Hl6etKtWzesra3R1dUVof3i4mIUCgUGBgaCW+Xg4MD48eNp3bq1oES0a9eO0NBQNDU1uXXrFjt37iQzM5PS0lKcnZ2ZOHEiY8eOFeNbvHgxhYWFHDlyhLVr13Lz5s1mGa9KpVI4LVVVVRw7dgyJRIK7u7somIiMjKR79+5oaGhw//59bty4gZeXl9hU6+rqmDFjRqNrZm1tzWuvvcbw4cMpLS2lVatWWFtbs2LFCm7fvk12djYhISFMnjxZXMvLly8THh5O+/btuX//PtnZ2SxcuFAYip9//jnLly9v9jpV82br6+v5+eefmTVrFq1btyYkJAQbGxvMzMzw8fERUZ+kpCRycnKIjo5uRFF49OgR69evJysri2XLlmFvb09qairbtm2jZ8+evPHGG1haWjJhwgSOHj3Kvn37GD9+PFFRUWhqavL999+zZMkSunbtysqVqs5+27ZtIzc3l1atWgmDobkcLQBPT0/hGO3cuZPExESMjY1FUYGmpiYjRowQxS+BgYGsWrWKhoYGTExMmDdvHq6urixZsoTQ0FDeeecdbt26RVlZGaDiue3du5eRI0cyd+5cQJVdKS8vZ+rUqYwaNYqzZ8/yzTffYG5uLtKRTxdlmZubY2tr2yjy3VQMHjxY/F8qlTY6jDZt2sTevXsZN26cyLhkZ2djZWX1myivsbGx2H9BVRTyRwdbQEAAa9as4dq1axw8eJCamhoWL15MUFAQcXFxHDhwgIyMDGG8Xrt2jVdeeYXMzEzCwsJEynTS+toAAQAASURBVLqpWLp0KZqamsJATEtLA1ROe2lpKdu2beO7776jXbt2jB49mqioKLp06cL8+fP5+OOPad++PQqFgi+//JJWrVrx3Xffoa+vT1BQEBkZGaSkpHDgwAE8PT0pLS0lNjZWOHILFizAx8eHNWvWcOnSJaZMmcKECRP+cKxGRkb4+PgQGxvbrDmCytkZNmwYo0aNYuPGjXz77bd06tSJxYsXA//mGarPEEdHR0aMGNHoXlQ7Jy4uLtjZ2Qnj586dO1haWmJgYEBoaCgZGRlUVFQQExODv78/y5YtY9KkSbi4uLBo0SIiIiJ49OgRmZmZYs8aMmRII85tczBy5EhBKVHj6f2qsrKSr7/+mlu3bjF79mzhuJuZmZGZmUl5eTn29vYsWbKEurq6RnUAAHZ2dgQHBxMYGCh49MXFxQwZMoR//etf9OjRQzhm3bp1E0WoiYmJxMXFYWpqytmzZ5k0aRIdO3Zk4cKFzJ8/v1lzvHLliqB0gWqdHj58mLi4OEJDQ0WUddSoUSQlJeHm5iayberARFlZGVVVVdTX1xMYGCgynC+99BKzZ8/mm2++wcnJiXPnzvHhhx8SHx9PSEgIXbt2xdfXl6CgIMzMzJBIJKK+5rXXXuOrr74iIiJC1MQkJCRw7do1QWtsCt555x2RLR07dixdu3YVEeHr168DNDrrgoOD2bZtG0VFRejp6WFubk5ZWRkHDhzAxMSEt99+G19fXxFpVgcPtbW1MTY2Jj09natXr7JlyxZcXV3x8/PDwcGBmpoaBg4ciI6ODhcvXkQqlXL//n1u3rwpbL2KioomBeSabbyeOnWK7Oxs8vLyaNeunYguqm8MfX19wsLCuHv3Lunp6dTW1mJkZER2djapqak4OjoilUo5ePAgFy9eJC8vj3nz5uHp6UlRUVGjIhdPT0/xubW1tSgUCtLS0ujZsyeDBw9m8uTJpKamcvz4cSorK4mMjMTKyoqIiAj69ev3l/g9NTU1VFdXo1QqcXFxQSaTkZSUxLJly4Qn7+Xlhb29/W8ijl5eXowaNQpvb29R0FZRUYG/vz/5+fmsXLmSNm3a0LVrV3EzZmdnk5KSQnp6OhkZGbRp04YhQ4YAKiPO1dWVUaNGcf78efLz8zEwMKBz584YGBgglUobFZE1FQqFgjFjxpCQkIC2tjb37t0TxSe1tbXifebm5uzatQulUomZmRmhoaEYGxvT0NBAYWEh2traSCQSysrKqK6uFkZt3759CQ4OFhu1em2kpaWJtE9paSkWFhY4ODhQVlbGo0ePcHFxEZ5bTk4O1dXVdOzY8XcjE/8J1dXV6OrqUl1dTWpqKm5ubpSWlrJv3z5cXFzw9vZulF718/PDxcWlUXo7LS2NjIwMUU0PKr6gQqHA0tISMzMz0tPTKS8vx9XVFR8fH27dukVWVpZwWPLy8ujQoQO9evUS3LWAgABhGOzYsYPk5GTGjBnT7LWqVnG4du0aJSUljBkzhp49e+Lu7k5VVRUJCQlER0fj7OzM7du3OXr0KFVVVZSWlgpuV2pqKnFxcbi6uuLq6sry5cspKyvDxsaGoKAgtLS0kEgk4hpdunSJhQsXsmjRIrH2pVIpjx494siRI3zzzTfo6+sTHx8v1olUKv1N1qKpuH79OoGBgVy8eJEzZ84wevRounTpgq+vL/X19dTV1YlIoDqFrq6Q1dPTE7zkjIwMQkJCsLKyolOnTpSWllJbW4ulpSVTp07F399ffCe3bt1iz549jBgxgvDwcPT19fnxxx8pKSkRh2NmZiYffvghL774olAziI2N5ZdffmnW/PT19SksLKS+vh6pVCqiP6DKHnh7e7Nz504ePXrEuHHj6NChA3Z2dty5c4ddu3aRlJREp06dGDNmDFlZWaxfv57S0lKmTp2Kt7c3BQUFvP/++9TU1NCuXTu0tLQICgoiNDRUVGlHR0fj7+/PyZMn+fLLLykqKsLX15eCggIOHjzIli1baNu2LWPHjv1Lhp36QNy0aRPnz58XBXfr1q3DzMwMPz8/TExMSEhIID8/H09PT/r378/SpUuJi4vj1VdfFSlcdVQfwMbGhrt375KZmUlDQwMnT54kLi4OqVSKk5MTHTp04IUXXqCsrIxffvmFoqIicVatWrWKvLw8evbsiYeHB6dPn+bIkSN07dqVMWPGNGuOhw4dolevXo0i0gMGDKCgoAAzMzOqqqrQ19fH1NSUx48fs3//foqLixk8eDBubm588cUXaGpqMmHCBFJSUvj+++/p0qWLUDwICQnhzp07rFu3juzsbPz9/Wnfvr0wRJRKJWFhYSKatnfvXtauXYuWlhYRERG0adMGbW1tcb+qqQTNgTobCao9UL1XGxoakpiYyNq1a7l79y4vv/wy3bt3p6GhgU8++QRfX1/69OnD8ePHWbBgAVZWVkyaNAk3Nze2bt1KSUkJgwcPxtzcnIaGBnbu3ImWlhZ2dnZYW1uTm5uLs7OzOEvz8vK4deuW4H16eXkxfvx4+vbty44dO0hJSaF3796/yTY0BX5+fuKcys/P5/HjxxgZGREUFNSIPhMTE4OlpSVaWlqYmZmRnZ1NdXU1dnZ2jB8/XhTOnj17VmQey8rKiI+PF+oAkZGR3L59m7KyMkxNTXn48CFXr17F0tISIyMj9uzZQ5s2bYiKiiIgIICYmBiGDRuGra0tycnJ6OjoMH78+GZxe9XfiUKh4MKFC5SXl2NgYIClpSUODg5ER0cLXizA2bNnqa2tJTQ0FHNzcx48eMC3337LlStX6NmzJ8OHDxdnlvrcV2fxEhMTcXR0JC8vj5qaGu7fvy/UMG7cuIGJiQkDBw7Ezc1NqGH069cPKysrjIyMOHHiBEePHv1DKqoazTZex40bR3FxMZ999pngCqqlLrS0tJBKpXTq1InQ0FDOnj1LVlYWVlZWJCcnY2pqyuLFiyktLWXOnDl8++23GBgYiE0jIiKC6upqGhoaqK+vFxEOIyMjtLW1yc7OFpIial7M5cuXUSgUpKenU1dXJwoTQGVQqiUqmgp1Om79+vWUl5cjk8m4fPkyPXv2pLy8nI8++ggdHR1ROGFiYiIKrcLCwujVq5cwvtUpFFBJnsybNw9nZ2cCAwOxtLQkNzeXw4cP89NPP3Hy5El0dHR49dVXGTJkCKdOnWLu3LkMGDCAQYMG4e7ujlQq5ccffxQel4ODA5MnT25WgQGojNLevXszatQosrKyKCwspLy8HC8vr0bfl0KhwMbGhvr6eh4/fiyKu6TS/0fbf0dleW7rG+hF7733Kk2qIqCCKFawYC+xG000S6MmUaOJscSYLI2xJkZj713sBRUFUQREOgLSRHrvHc4fjO/ZYa+1f0vWOWeOscbeY2038JX3fecz531ft8K/bUb+jrQxNjYWTlglJSWqq6uJjo7m4cOHpKenC9RQWloa6enpNDU1sWnTJhQVFdm+fTspKSls3LiRSZMmCQnHx5ZkSp+QkEB7ezvDhw+nuLiYK1euUF1djampKQoKCj2+HxL9ouRCrKio4NChQyQnJ4sTeUlJCUePHsXAwIBJkyahqKgoNgySNd+JEye4c+cO0G0oGTRoEPLy8sjIyODu7i5+fmhoKGfPnmXatGnMmjWLc+fO9eozzM/Px8LCAk1NTQYNGsTcuXPFwzksLIykpCSGDh2KjY0N+vr6eHp6UlFRQVFREZGRkfj6+lJYWMilS5eYPn06kyZN4ssvv+TGjRv8+uuvTJ06VXzmEtmPRPZgbGwsBPlBQUGcPXuW3377jRUrVjBw4ECWLFmCoaEhRUVFNDU1UVRU1Ot1M3RPW11dXens7MTY2JhJkybh4OBAS0sL9fX14tqTkpJCRkZG6Bo1NDRQU1NDS0uLtrY25s+fT2trK+Xl5ejq6tLa2kpMTAy6urp88cUXnDt3jlWrVvH9999jYmJCSUkJDx48wNvbG0NDQ0aMGEFXV5donmbNmsWPP/6IpaWlaF6PHDnC8ePHe4VZ6urq+pfrqKGhgaamJgYOHIi3tzcjR47k6tWr2NraMmzYMKysrAgPDxdrtvr6embMmCFWnDk5Obi5uWFnZ0doaCgnT56kubmZ0tJSIYdqamoSLufBgweTn5/Pt99+S0xMDJaWlgwaNAhpaWkOHz5MY2Mjjx49Qltbm7i4uP9qKgndRivJRiwnJ4dFixaxaNEijh49SmFhISdPnhRNlaenJ9999x0bN27k1KlT1NTUcP78eZSUlMT9JC4ujuvXr6OlpcW4ceNoamoSq8aJEyfyzTffoKqqKvSPffr0ITQ0VOhEraysMDMzo6ysjGPHjnHz5k2am5vFVO9j6/r16wQEBKCgoEBTUxNdXV2oq6uzevXqHv9OslbesWOH2Dg5ODhw584dpKSkWLhwIfr6+jQ0NAismLS0NH369MHBwYFLly4Jbf3IkSORlpbm9evX5OXl4enpydSpUwkPD2fXrl28fv0aX19fTExMaG5uprOzk87OTmRkZP6r6Wtzc7MYQkkOXIaGhqiqqnL27Fn27t3L1q1bmTBhAgDLli3j8OHD7N+/HyUlJW7evCkmaV5eXjg7O5OVlUVUVBR9+vShtbWV9+/fEx8fj56eHr/88gtWVlbiuW5mZoaUlBSysrJERUWxZcsWmpub2b59u5CaycnJMXPmTMzNzXsMYD62JFNN6Da96unpCcP436ujo4O+ffsK2VBOTg41NTWYmpoyceJE9PX1ef78Ob/99puQVlpaWuLh4SH06YmJiaiqqooGNTQ0lNDQUAICAqiqquLbb7/F3NxcTJMXLVoEdG9C37x5g5ubG7Nmzeo1IrOpqYmEhASuX79OREQEM2fO5JtvvmHw4MG8e/eux6Hm/fv3nDhxggULFvDpp5+Sk5PDlStXyM3NxczMjOrqagwMDKiqqkJOTg4ZGRmePXvGixcvSEpKwtLSEk1NTWxtbfnw4QMhISEMHjwYFxcXCgoKkJaWxsvLCwUFBbq6upg8eTKmpqaoqKigqqqKp6fnf8QO9rp5VVJSYsGCBWKMDt2nzzt37mBsbMyMGTPw8vJCRUUFLy8vcnJyKCgooLy8nL59+wLday4dHR1mzJjByJEj6dOnD3l5eVhYWKCgoEBNTQ27d+/m6dOnwhzh7OyMvr6+eEDn5+fz3XffISsryxdffIGFhQWNjY09/ta8vDyio6N7+xKBbtfw5cuXxUNSQUEBFxcXPD09+fDhA9evX8fMzIwBAwZgb2+Puro6ZWVlREZGUlFRgYGBgWBndnV1ERkZSUNDA1FRUUyYMIHx48fT0dFBbGwsLS0trFy5UnAB161bR0xMDIMHD8bMzIyff/6Z5ORk1q1bR3BwMNDNd9TW1v6vkGB/x5yZmJigp6dHQ0NDD2fsuXPn+PDhA19++SU+Pj7U19dz7Ngxmpub+eabb4SLtLCwsMdKcNasWQwYMICdO3cSGhrK+fPnmTFjBmPGjEFaWpr29nY0NTVFY/D06VOqqqpob2+nvb0dAwMDPv/8c5qbmxk+fDjh4eHcu3evx0rjYyo1NRVVVVV0dHQoLi6mvb2dadOm0dLSQnNzM/X19cjIyJCQkMCFCxcoKipi4cKFjBkzBuhugM3MzLh16xZBQUGcPHkSZWVlUlJSyM3NZdmyZWhoaGBvby8clpqamsIlOXXqVMaPH09dXR3p6elCX1tWViZOu+PHj2fw4MFA90GrN5WXl4eCgoJAjBw4cIDm5maCg4PFGvmPP/7g4MGDGBsbM3z4cExMTHj06BGJiYk4OzuLKWlCQgJ1dXX4+/sTEBDA8OHDUVZWprOzUzjaP/vsMzQ1NXny5AlNTU2UlpZSXV2Nuro6wcHBREVFER4eTktLC5MmTUJTU1M44H/55Zf/Sr4jcdi7ubnR1tYmGj0FBQVx6v/7tLyxsRENDQ08PT1RU1MjMTGR9PR0oft78+YNVVVVJCUl8ebNG0xMTNDW1ubWrVt0dHQIBu7ixYsFk1hRURFLS8se7ldlZWX09fV7bD16w3eVlGRD8PdSUVERDYa0tDR//PEHL1686DGZHzhwIMuXL6eoqIiAgAChoVy+fDm6urrk5uYyfvx4ZGVlOXr0KObm5lRVVSEvL4+JiYlgHSspKSEtLY2+vj5ffvkl6enpeHl5ifvD9u3bBV4uKipK4HR6UxLT6w8//EBraysWFhbioFZUVATA8uXL0dPTE2tM6GZet7W1sXXrVkE3qaurY/r06XR1ddHY2EhNTQ1aWlr079+fBQsWYGBgwLZt27h8+TKWlpbU1dVx+/ZtdHR0aG9vZ+PGjSgpKbFq1SomT55MdnY2e/bsoauri71795KdnU1QUJCQ5HxMGRkZUVhYiI6ODi0tLejp6VFfX09+fr6Y2LW2tlJcXIybmxv+/v4cP36c/fv3M2/ePJYsWYK6ujqKioqYmJjwzTffoKOjQ0FBAZGRkYJGsmzZMvr164empqa49zo5OQlpzoEDB7h79y6ampocPHiQfv36UVpaysWLF8nMzERLS4sxY8b0mF5/bF25coWLFy8yffp0gY+UbA5LS0uB7okkdK/fCwoK+OGHH1iyZAmZmZk8ePAAgPXr1wv9+OjRo3FycsLKyoqioiKGDx8uNiQSnbCioiLq6uoUFhZiZGSEtrY2U6dOpaamhsrKSiEB2bJlC11dXRw6dIgbN24wbNgwIVnrTZWUlIghxP9VEh+GkZERXl5e4u9SU1MTE/LU1FSam5upqKjA0tKSH3/8kTlz5gBw+fJlzp07h5mZGba2tuTm5qKoqMiqVauYNWsW2trafP/99zQ2Nv6L0VVHRwdnZ2fBZu9NHTlyhIsXLzJs2DBmz56Nl5cXZmZmyMjIUFZWRnl5uaAHAIwfPx5lZWWxoRw2bBjz5s1j69atyMvLo6Ojw82bN/n9998xNzdHT0+PrKwsNDQ08PDwoLCwEFNTU77++mvi4+NZuXIlysrKLFu2jEmTJhEfH8+3336LtrY2vr6+qKioiENHQEAAPj4+/7/nvK5fv140rtevXyc3N5cXL15w5coVoHutICMjQ//+/dHW1qa8vBxpaWn8/f2FQ7KkpISpU6eiqqpKc3Mz0tLSZGRk8OzZM0aPHo2BgQENDQ08e/aMmpoa/Pz8sLGxQV5envz8fNLT07l16xbx8fEMHz4cR0dHoTmT8PMkE8L/xiHb1taGl5cX8fHxnDhxAicnJ9auXcsXX3yBoqIiz58/Jyoqira2NjQ0NMQHbGpqyrlz58jMzCQwMJCGhgbev39PSEgIV65cEQ/AmJgYDA0Nsbe3F43F3w8DP/zwA/n5+Tx9+hQDAwM2bNiAsbExwcHBvHv3jgsXLgi26n/TvBobGwvHr0R6IAkIAMTDsLCwUGgVVVVV0dDQICkpiUOHDgnx+N8vJIkr3djYGE1NTaqrq7l9+zaAkIuYmppSU1ODmpoaLi4uyMnJkZCQQGZmJleuXGHChAl8/vnn4mf+9ddf3L59u1cTrWfPnqGsrEzfvn1RVlYmPj6e2tpabG1tUVZWRk5ODlVVVXFzP3ToEHJyclhaWtKvXz/09fUZMmQIX331FWvXruXNmzdig5CVlcX79++5ePEiAwYMEE7v9+/f8+DBA4yMjLhx44aYQuzdu5fQ0FAaGhpE4ztz5sweaLGOjg4sLCyIior66NeYkpIi2LXS0tKCTThixAjs7e3FyvLRo0dUVVUJnE11dTVJSUlkZWUJbm9CQgIRERHs3LlTrJe6urpQVVUVTaeamhqfffYZ0I1Q0dfXp6ioiPfv32NoaEi/fv1wcXFh9uzZQm+pqqpKYWEh79+/77X0A7on14mJibi6ujJkyBAaGxvJzc1FRUUFGRkZampqhAlCovF1cnKioKCAkpISVFVVkZeX59q1a1RVVWFsbCwaNi0tLSIjIwXJQk9Pj8jISOTl5TEyMsLc3Fw8xCRNak5ODqdPn6apqYmxY8eSmprK0KFD0dHRwcbGptfSj9bWVhISEmhubkZGRoauri4B8ZcYOPT09JgxYwZlZWVkZWVhZGSEnZ1dDzmLhNUs0cbKyspSX1+Pubk548eP70EOge6mWYKgqq+vR1ZWVjxc29vbiY6OpqSkBDMzM/F7Xr58SXZ2dq+b12vXrjFz5kz8/f1pamqioaFBGG0lU2s1NTUWLFiArKwsGRkZlJSU4Ofnx5YtW7CxsREHjmvXrnH//n3xsyUMzvLycjQ0NFiyZAnJycncu3ePLVu2iHv/1KlTUVdXp7m5GSMjIz755BOx+bl//z7u7u58+eWXJCcnM3369F41r7a2ttTX14u1fFpaGvHx8cK4KkGaSfjIkolwS0sLlZWVaGlpYWJigoKCAgYGBkI7eOPGDU6fPo23tzeTJ09GT08PPz+/HgcmSdBMYWEhZ8+eJSoqirFjx+Lv709dXR0XL14UWDANDQ3q6+vF5Lq3n2FYWBj+/v4APbYFkr/n3LlzaGtrU1paytdffy0wXWpqahgZGeHo6MjKlSuBbhyhh4eH8Bc4OjpiaWlJUlISLS0tJCcnC6SisrIyOjo61NXVicO6BKxvZGREUlISW7ZsEduwhoYGXr161evm9eXLl6SkpNCnTx88PDyE/lJOTo6CggIKCgpwdXVFTU2NmpoaGhoacHV17fH8S0tLE6Em7u7utLa2UltbKwYvVVVVbN++nfj4ePFzPnz4gLe3N/369SMuLg4rKyvxPkl+ZmNjI4aGhpiYmPxXMkHo3gJnZGQQGBiIt7e3CMmBblmDrq6uODy+e/cOaWlpEfAjKS0tLTFllfRYcXFxPHz4EHt7e2bOnMn48ePJzs6mvLycMWPGMGTIEJSVlTl06BAASUlJfPnll+Tl5XH9+nUh0/T396eyspLc3FwRePSfqtfNq2SUfuLECYEkkrjx4+PjhdFD8u8aGxuxtLSkT58+VFRUsHjxYszMzLh58ybh4eGsWLGCyZMn06dPH6Hr+fbbb5kyZQrXrl2juLiY/Px8pKSkyMzMZMOGDVy/fp3Ro0dz+vRp5OXlOXfuHH5+fjg4OIiLWdIojR8/XgQbfEyVlpZSUVHB8uXLmTZtGidOnKCzs5PFixeLh9ngwYPR1NSkrq6uh4kLYNKkSXR0dGBkZERERARnz54lPz+fkpISWlpacHZ2Zvny5fj7+6OgoIC0tPS/nPSCg4MpKSnBxcUFaWlp1q9fj56eHs3NzaxatUrArP8uMO9t1dXVifQWHR0drK2thfZIWlqaqVOnYmNjw9KlS9m8eTMHDhxg/vz5YjJ64sQJbt26hb6+PvX19Zw+fZri4mL++usvcQofOnQoK1euJDExkZCQEAYMGMCgQYOoqanpwVgtKioiJCSEvLw8ZGVlCQwMFIeRj4EV/+8KCQlhy5YtQvwtIyNDSkoKV65cwd3dXaxhJDcbBwcHVq9eTUREBGPHjhUGpODgYIHacnZ25vHjxwKH8uWXX9LS0sLo0aO5cOECeXl5/PHHHwwdOlQ0rtXV1djZ2fHw4UPBBLazs2PYsGE99DwyMjL4+vqKz/Vjqra2VhjgsrOz+f7773F3d8fOzo7Y2Fg0NTXZunWr0M+FhYUxZcoUbGxseP/+PaWlpWhqahIUFMTEiROZMGECNTU1Qmf279b82tra2NjYiAesgYEB6enp3L9/n6amph7mIviftfi8efOYOHFiDx7qx5SJiQkXLlxAWlpaTIqLioooKCgQrEMpKSm8vb3FRqKrq4tvvvmGiooK/vrrL7y9vfnll1+Ijo5m5cqVTJs2DUtLSxITE9m9e7c4dKuoqJCcnExcXBwqKirMmzfvX8DuT58+5ddffxWIn/Pnz9PU1MT27dt7TN0/tjIzMzl79iyRkZFiWjN//nz27NmDuro69+7d4+HDhzg5ObFw4ULR1P49gU5CIQHE9E9DQ4PLly9z7949FixYQJ8+fRgzZgyKiooUFBTQ2tqKoaGhkARJJsCysrIkJSWJ1DdNTU2++OILli1bxqpVq/D19RWpih9bcXFxuLq68vz5c3Jycvjss8+YPn06UlJSPe6dEoPlnTt32LFjB2vXrmX16tXMmzePp0+fsmnTJtLS0rCwsKCoqAh1dXWGDRuGsbExt27d4uHDh1hYWBAQEICtrS33798Xzau6ujpeXl7o6+uTnp5OSEgIK1asQE1NDTc3Nz58+EB0dDReXl5cunTp36bX/V+lrKzcg3QjQR1u2LCBJ0+esHv3bhYtWiQatc7OTqZOnYqrqytJSUl88cUXqKiocO3atR6NiaKiIpmZmfTr1w8pKSlu3rzJrl272Lhxo7i/PnnyhMLCQlxdXdm4cSO//vorGRkZTJs2TbCBlyxZwrJly1BTUyM5OZk7d+78Ry3h/67m5mY+++wzsZX6e0matwMHDlBdXS2Y15LS0dFh/vz5ZGZmsmPHDsLDw6mrq2P//v097hXW1tZkZ2dz584d7t+/T01NDe3t7SxevFgkOKWmpuLk5ERpaSkfPnxAXV0dfX19wY2VmCx37dolUis/tmpqasQWKi4uDi0tLcEMvnnzJps3b+b7779nxYoVLFq0iLy8vH/ZJrW2tqKhoUFNTY04FFdXV/PgwQNkZGR4/fo1hYWFQPfzNy4uDuhuak+dOsXjx4/p27cvd+/eFUOECxcu8PLlSwIDA5k+ffq/xW5+TE2fPp3Bgwf32G5Iyt7eHl1dXTw9PcnMzOTHH3+kvr6e7777jv79+1NdXc3evXs5efIkJiYmtLa2Eh0dzZgxY/j555/F9mDNmjU0Nzdz6dKlHiFB1tbWrFixQjS00L092rNnD6GhoZiamuLl5YW2tjYXL17kxIkTNDY2igPQ/1W9bl5v377NmTNnSE5OxsLCAiMjI0aNGoWxsTEPHz4kNTWVnJwcwYFzd3enqqqK4uJiUlJSCAgIwMTEhLCwMHbv3k1iYqJ4KGVlZXHjxg2MjY3FGq64uJiIiAgWLlxIWVkZ169fB7qnfO/fv0dWVpawsDAePXrE3LlzGTduHMbGxuLG1Vv4uyTNJTIyktbWVmbNmoWWlhbx8fE8ffpUPNgcHR05fvw4ly9fFloyAwMDVq1aJSaYiYmJ3Lt3j/79+zN//nyqq6vx8vISU46/V3NzM8+ePePDhw+MGzcOGRkZjh8/jqmpqQghqK+vx83NjSdPnlBWVkZ4eHgPtM7H1osXL/Dx8UFNTY3Y2FiysrJoaGjAzMyM2tpaysrKhBtQssr/O9d1ypQpZGRkkJSUxPDhw1FVVeXFixcUFBQwduxYMjIyBA9z3bp1XLhwgZKSEhwdHZk4cSKWlpb8/PPPHDt2jOHDh2NlZUVQUBC1tbW8fPkSDQ0Nhg4dSmZmJhEREb1+fZ2dneJhqKCgwOXLl3ny5AmOjo49pgYdHR0oKSkxZ84c5s2bR15eHkeOHGH37t1YWFigp6cnGtGwsDCuXLkiSAJpaWkUFBQIiYyWlhZ9+/YVkpJRo0ahqalJYGAg8vLyREVFUVRUhLKyspC+tLW18eLFC5Fc1ZuaM2cOJiYmLF++nJiYGO7evSual6SkJFxdXXFwcMDBwYGqqioePXrEvXv3sLa2ZuHChTQ2NhITE8OoUaOEhvrPP/8kPj6ebdu2UVpayrFjxxgwYADe3t7cvn2b2tpaRowYQWFhITdu3EBPTw9paWnu379PeXk5tra2PHv2jLKyMry8vPDw8EBdXZ309HRCQ0N7/TlWV1fT2dnJ8ePHsbS0FOB+CTRbYgbT0NDgxIkTqKqqitAQgEePHtHZ2Skm2qNHj8bCwoL4+HgiIiKEKaOuro7379+jr69PbW0t1dXVwtTU0tLC69evycrK4sqVK5ibmzNr1ixGjhwpZBUfPnzAyMioxzTjY+rx48e4uLigrq4uUgkl947W1lZhKpPEgkJ3k33jxg1evnzJuHHj8PX1RUlJSTQFEs1qa2sr9+7d49q1azg4ONDa2kpERARlZWWMGTNGfHaDBg3C3Nyc/Px8MZG1s7OjqqoKTU1NDA0Nha54wIABvW5eJQ8gyXtta2tLaWkpz549E5PXv5e7uzuGhoY8fPiQAQMGYGFhwaVLl8R938PDQ0wW6+vrqayspKWlhUuXLlFfX8/48eMZNWoU06dPFw/esrIyHj58iKKiInJychQVFREXF4e5uTlbtmwhJyeH5uZmMRXuTY0YMUIEHezatYsPHz7w2WefYWpqirm5OX379u3RcEgQc6ampvTr14++ffsSExNDTEyMaEqhW9o1YMAAtLW1iYiIYN26dbx9+5Zbt26JfyctLY2NjQ0eHh54eHgwbNgwAgMDBYFm1qxZTJs2TUyF3717x4kTJ/7t8+f/VXPnzmXs2LG0trYSHx+PkZERBgYGdHZ2EhAQQGFhIXfu3CExMZHz588zefJkmpubuXPnDjU1Nfj6+uLk5MThw4eJjY1FUVGRsLAwVFRUqK6uprKyEjk5OdLT04mKiiIpKQlFRUWWLVvGgAEDyM/P59ChQ9TU1GBnZ4eqqirZ2dkkJycTEBDAli1bUFVVFQE3Pj4+vYqEB8Q18csvv4iDfmxsLMnJyZw4cUJolKH7oCUxbdXV1ZGWlkZUVBS3bt0SPOyysjLMzMxwdXXlw4cPvHz5EmdnZ3bs2EFKSgr19fVAt8a9traWjo4OZsyYQUtLC6tXr2bBggUirjYmJgZ5eXlhai8sLBSN78eWubm5kANJsFlmZmYiDVJJSQlFRUX69OmDl5cXV69e5dy5cxgZGaGkpCTeW19fX2pqarh58yZGRkaMHz+ef/zjH1RWVnL9+nXa2tqoqqoSaDYJRUXSeHd0dAgz1rJly0S/YGpqKqRqBQUFHyXD6nXzGhUVRVhYGGPGjOH8+fP069ePpqYmSkpKsLa2Jicnh9LSUs6dO0dQUJC4+f7888+UlpayevVqFBQUWL9+PSkpKdjb2/PmzRuys7MZNmwYZWVlfP755z1Os0VFReTk5JCZmYmGhgZycnKYmJjwj3/8AxUVFaysrKirq+OPP/6grKyMsWPH/guY/mNLV1cXXV1dVq1aJWL73NzcWLlypTCDDBkyBDk5OR48eCAmN5L/3z59+oiG8u3bt9TU1GBubs7y5cvFqjUjIwM9PT1hKJFEb965c4fQ0FBOnTqFiYkJS5YsQV5eHm9vbzQ1NVFVVWX9+vUMGjSI7777juLi4l6tmiV1+vRpvLy8UFdXx83NjfDwcGJiYoiLi6NPnz6kp6ezc+dOYRD7Oz5KVlaWb775hoSEBJFe1traSkVFBS9fvuTChQsUFBRw6dIl1q5dy+bNmxk8eDCZmZmYmpoiJyfH+PHjuXr1Km/evOH27dscPXqUTZs2ce7cOZ4+fUp9fT1lZWXcu3ePtLS0Xj9QPDw8xGSqoKCA06dPIysry/Hjx+nTp4+YXGlra2Nvby9WFJJp4507d8T0ed68eXR2dnLw4EEyMjI4cuQInp6etLe3C20zdN8cFixYwObNm5k7dy5//vmneEhIpqo3btygoqJC6FslmK7s7Ox/CaD4TyV5IKanp5OQkEBiYiLDhg3j3r17aGpq9jAbrF+/Hm1tbX755RcCAwOZMmUKqamp1NTUiFVgR0cHhw8fRlZWFjk5OR4+fMj69evZs2cP3t7e7Nq1i46ODmbPnk1MTAxr167Fz8+PYcOGERYWRm5uLl5eXiKnW1tbG3d3d2xsbLhy5QqXLl3qdXPX0dHBuHHj2L9/P7/99hsjRoxgxYoVInJSTU2NgQMHUlhYyJEjRwgJCRHvraKiIi9evBBTSQly582bN/zwww+8fPkSfX19rKysxOFNUVERHR0dgfaRl5cXK9mQkBDs7e357rvvGDp0KMrKyixfvpy0tDRCQ0MxNDRk+/btPe4H/6kyMzPZt28fSkpK/OMf/yA6Oho9PT2xrhw7dizjxo2jq6urhx7t8uXLXLp0CScnJ3x9fbG3tyciIoLm5mY8PT2Rk5Nj1apVXLp0CegG+ysqKpKXl0ddXR21tbXk5ORQVlaGh4cHjo6OmJmZUVlZiYmJCRMnThRSBjk5Odrb23n//v1/hTsbOXIkFRUVzJ07V9BjIiMjuXnzZg/zUF5eHkZGRgwYMEBkpx8+fJjm5uYerurU1FTc3d1RV1fn8ePHKCsrM3z4cFxcXHj58iW3bt2iubmZuXPn4ubmRkxMDC9fviQyMpLKykpcXFzw8PBAU1MTdXV1Ro4cKbY7v/32G6dPn+6VNEIyLf3666+5du0aR44cEbQYDw8Pjh492iPlsaioiN27dyMrK8uOHTs4evQoBw4c4NGjRzQ3N4tnh6amJvPmzSMxMZEff/xRTOwSExO5evUqgYGBYvMmSZtTUlJizJgxPHv2jM8//1yg6yRVXl7O+/fvBWP8Y0uyPn758iUVFRXY2tpSVVXF06dP0dXV5Y8//qC6uprt27ezY8cOKisrWbhwIbGxsVy8eJEzZ84wa9YsrK2tcXR0JC0tjbS0NJ48eSImpNbW1mhpaQlGr7u7O6tXr8bQ0JDY2Fiys7PR1dXF2NhYyN4kchgfHx9BWFBRUelxrfSm+vfvj6GhIc+fP6ekpIQjR45w9uxZBg4cyOnTpzEzMyMnJ0eYViXvy6NHjzh48CAfPnzo8fPmz59PUFCQCCQaNmxYjwjUsrIyEQktCShJSEggODhYGKYmTZokWNLV1dUoKChw4MABbt261SspXVNTE21tbairq6OrqyuaSw0NDWRlZcnPzyc5OVlshu3s7AgPDyc+Pp6goCA2bdokBkK3b9/m1KlTrF+/nqFDh+Lv78+9e/f47rvvsLe3Z+jQocTHx5OZmSlIP5JDZHp6Ojdv3mTIkCH88ssvmJubo6+vj6ysLO3t7QwZMgR1dXWBXP1/Va+b188++wxnZ2fc3NzERa6goICysjImJib069ePxMREbt68SVhYGF9//bUQGf/xxx8UFhYyaNAgVFRUGDlyJG/fviU9PZ3GxkaWLVvG69evefLkCVpaWvz444+8f/+ewsJCbt68ybVr11BVVWXbtm34+Piwfft2Tp8+TWNjIz/++CNycnJs376de/fuiRv3sWPHevsSgW7BcktLC6dOneLDhw/Ex8cD3Rdy//79kZaWFuYYMzMzTE1Nqays5MaNG2JK8PTpUwARraavr09YWBhnzpxh3LhxfPHFF8K12N7eLtzL5eXlVFZWithWyYpX8uWVk5Nj1KhRQvTd2+mkBGo/adIkdHR00NTUJDs7m8bGRgYMGMDs2bPFaVDSuCYlJWFkZERHRwf79u0TawXonibcu3cP6JaQzJw5EyMjI9TU1IiIiCA3N5fy8nKkpKTQ19fn/fv3aGtr4+LiInRrCgoKGBkZ0dzcLJKC7O3tWbduHTY2NiKy7mNKYoCQ3FBdXFxYtGiRQIH8feUqiXctLS2lq6sLPT09ysrKuHXrFtXV1VRUVKCqqoqWlhbm5ubcv38ffX19zM3Nyc3NJTIyEnd3dzo7O8nIyKC9vR1lZWVu377NmzdvaGpqYtSoUUycOJEVK1YQERHBhQsXcHd3F+v6yMhIYYD42Hrx4gUJCQlinVRQUCCMAJKY5du3b9PZ2cmECROwtrbmw4cPHDx4kJycHOFe19DQIDk5ma+++oo3b96gqalJRkYGZmZmrFu3jmnTpqGqqsqQIUN49eqV0BzOnDkTKSkpXrx4QW5uLrq6ugwePFhge6SlpSkrKxM3JIl7tjc1cOBALCwsBODeyckJW1tbrK2t0dfX5927d1y8eBFdXV3mzp1LaWkpoaGhKCoqsnbtWhwdHfH392fDhg24ubnR0dGBlJQUY8eOZcCAARgbG2NqaiooBdnZ2SQmJqKlpSXWa5JrUlZWlmnTpuHn58fJkyeJjo7m008/Fdf81KlTmTVrVq+aVzs7O+Lj4xk4cCBGRkYEBwdTUVFBeXk5xsbGAl+WkpLC119/TX5+Pj/88AORkZFMnDixh4lxypQpJCUlCZ62paWleCCUl5cTGBjIoEGDyMzMJDo6moiICIEzg259cllZGcXFxZiYmKCoqMjJkydpbGxk8eLFPUyevan4+Hi0tbV7aAPt7OxYs2aNOGBJsFzZ2dlYW1sLSkdOTg4KCgq4urqioKDA6dOnuXz5MnFxcRgaGqKmpkZBQQF37txh6dKlTJw4kaNHj5KcnMybN29obm7m3bt39OvXj0GDBnH69GmSkpI4efIkEyZMQF5engcPHqCjo8OgQYMoKysTn8fHlmTL1NXVxY8//tiDVy0Juvh7UI6dnR1z5szB1NRU+D1kZWV59eqV0MRL4n9tbW15+PAhjx49YsGCBVhbW7N7924OHz7cgxN9+/ZtrKys8PLyQlNTk8OHD7N48WLxO5ubm1FQUGDYsGFoamri7OzcK7qJZCuoqKjI2LFjkZKSIiQkhF27dtHS0sK6deuYOnUqGzduRFpaGldXV6ytrfn222/R1dUVwwdzc3Nmz57Nb7/9xu3bt8WhxNDQkHHjxnHjxg2qq6vx9fVl7ty5xMTE0NHRgaenJ3v37iU6OppHjx5hZ2eHp6dnj6HG3yUXf28QP7YkvYauri5TpkwhNDSUlpYW1q9fLzTSgOCtS2g9ampqyMvL069fP8aPHy8Cftra2nBychKm7fT0dK5fvy6QkvX19eTm5pKdnS2kUFlZWcjIyIjDmLKyMnZ2duzYsYO4uDiUlJTQ1dVl6tSpODk59eowGRYWRlxcHAsXLsTExARnZ2dxUHB2dqatrY0LFy5gaGjI4sWLGTVqFNra2uK7K/mfkr5AcqjYvXu3GNotW7YMPT09YQJPT0/n1KlTpKWlCZOlhPNcX1+Pu7u7SC+EbsmXo6MjHh4eIjTp/1W9bl5nzpzJzJkz6ejoIC0tDVVVVZEcJS8vj6qqKu7u7mRlZXH37l0iIiIwMDAQ4uRLly7x7t07vL29qa6uFpPDwMBABg4cSFtbG+7u7kyePFmcQn/44QdxohswYAA2NjYYGhri7u7O6dOnKSoqEqaRkydPkpubS2pqKh0dHYSHh/daN9nV1UVwcDCKior8+eefREZG0q9fP7Zv387o0aNpb2+nuLiYOXPm9FjBVFVV8csvv7Bv3z6am5sxNzfHx8eH5ORkfvrpJ7788ktyc3N5+fJlD9dneno6VVVVDBs2DF9fX9LT04mIiBDrdMlKWVlZWeicRo8eLSZZvV3l2dvb89dffyEnJ8e4ceOoq6tDXV0df39/tLW1UVJSEjGCaWlpHDt2jLq6OoEJe/78OVlZWcyZMwcjIyNUVFTw9vYWWe9eXl54eXnx7Nkz/vrrL9LS0hgyZAi2trY8evSIx48fY2try4oVK8RDqLKyktLSUpycnMSEdty4ceI70JvmNTU1FQ8PDxYuXMizZ8+4e/cugYGBQHfTJ9FtamtrC4TO7t27MTExwdbWFh0dHd6+fUtERAQRERGMGDGCCRMmoKenJ9JOXF1defLkCZWVlWzZsgVnZ2fq6+sZPny4gGZLNKw5OTn4+fmho6ODvb0958+f59GjR+ImHxwc3GukmwRJMm/ePFxdXTlz5gw1NTUEBQUB3c7Z1tZWAXx+8eKFuKnHxcXh5uYmqAIRERFirT9w4EBhRli6dKkwRa1evZrKykqKi4tpaGhg1KhRpKenU11dzZgxYwgICGDmzJmYmZlRU1NDVlYWr169EnGsHh4evW5eJd/7qVOnMnPmzB5NQFdXF/n5+Tx69IhBgwaxePFi5OTkhJZ66NChPTRTFy5c4N27d0yZMkUg/iQliZl98uQJBQUFAjvVt29fTE1N/0Wr++LFC44fP05sbCzu7u4YGxuLQJXelI2NDV9//TUjR44U11tmZiYvX74kICAAOTk5jh49SkdHB9u2bSMpKYnz58/j5+fH119/zYcPH9i9ezfDhg3D3d2dIUOGcP78eZEtbmJiwnfffSfQWwYGBsTHxxMeHk5TU5OgbkhKQpAwMTGhuLiYc+fOUVdXx/Dhw7Gzs+P9+/e9en0A0dHRwtCYkpKCm5sbnp6eIuygo6ODqKgoLl++TFhYGIqKiixcuJBBgwbh7OyMi4sLurq6NDY2Mm/ePHR1dTl//jwlJSVMmzaNqKgo4uPjsbe3Z8GCBTg5OREaGoqqqipPnjwhLy+PGTNmCDd7Tk4OSUlJJCYmIisry4kTJwRJJigoSEhOPrZ+/vlnOjo6+OabbwTep6GhAR0dHe7cuUNYWBgzZ84UJBlPT08CAwNRUFCgoKCAgwcPcvbsWaqrq7G2tubu3btUVVWhqqqKsbEx0dHRdHV1MWzYMEaMGEFERAS1tbUkJCSQlJTEhg0baG1tJTw8nOPHj+Pp6cm3335LTk6OcIVLJF9/N+r0pnk9dOgQN2/eZMqUKfj5+fH27VseP35MeXk5TU1NXLlyBXl5eSZMmMAvv/wCdKOWHB0d2bdvn/g5dXV13LhxQ0S+SwYyP/zwA8uWLcPY2JgNGzbg4uKCqqoqYWFhJCYmsmzZMpycnNDQ0GD//v1UV1fj4+ODtLS0kNcoKioiJSVFV1dXj0n3x9a5c+d4+/Ytu3btYvLkycTFxVFVVcW8efOEga+srIyamho6OjqQkZERRIHKykpsbW3x9fWlf//+//agV19fT2pqKklJSZSUlFBdXY2ysjJaWlqUlpYKGYClpSWffvopw4YNE3hQZWVl/P39qaioIC8vjzFjxjBv3rxeobIkHpJHjx4xYcIEtLS00NLSIikpCScnJ9zd3Xn8+DFRUVE4OjoyfPhwsWGUlMS7IgnJqKioICMjA4C+ffvy7bffAggjYnJyMlevXkVaWpqxY8dSUlJCXV2d4LuWl5cTExNDnz59UFRUpKGhQXxX/3eQxb+rXjev79+/x9zcXDjO4uPjMTY2FpGTbW1tyMrKMn36dAIDA/nw4QP79u1j165dYp1lZmbG/v37yczMBLqh9kuWLCE3N5eEhATs7OxQV1cnLi6OiIgI9u7dS21tLbKysnh4ePDs2TN27txJeHi4OElK8CA7d+6kvLyc7du3U1ZWhr+//7+M8/9TSUlJcffuXZ4+fcr06dPZsGEDmpqaQoD8/fffk5yczKVLl1BWViYtLY1ffvkFbW1t5s+fj66uLmvXrmXMmDGsWLGCTz/9lGvXrrF8+XKCgoKIiYkROiTJ6kBOTo4xY8agoaHB06dPuXfvnjgFSkpeXh4rKyusra17rZH8e/Xt25ewsDDq6upob2+nsLAQJycnZsyYwd27d9m0aRM//vgjDg4O7N27l0OHDmFmZkZgYCDBwcFcv36d3bt3s2vXLmbPns3EiROJiopiz549/P7770hJSYkghcjISEpKSoRRQ1tbm6dPn9LW1oaHhwdubm68e/eOiIgINDU1mT9/fo+Yzfr6+l4xXqFbJx0QECC4j5KbT0JCAtu2bUNJSUlkZZ89e5bZs2cTGhpKQUEB48aNo2/fvty+fVtox16/fi20eJKmVZJKoq6uLlaZEjLBjRs3hBREMkmWpLHo6+vz1VdfkZiYSEREBHJyckJr3JuaM2cOqampZGVl8fjxYxobG/Hy8qK2tpa4uDhKSkpE8t3y5cu5du2agPaPHDkSV1dXMa0YMGAAK1euRFtbm1mzZtGnTx9evXrF/v37efz4MX5+fvz222+4urri6urKgQMH+Ouvv7C2tmb+/PkMGDBAvMeJiYnEx8ejoKCAt7c3Wlpa3Lt3j9DQ0F678evq6lBTU/u36JrGxkbhupeSkuLx48eUlpayatUqysvLRVNWX1/PsmXLOHPmDGpqatjb2/eAjkO3BuzNmze8e/cOWVlZvL29uXr1KidPnmTPnj09on4BFi5cSFtbG+Hh4bS2trJhwwZsbW1JTk7u1eurrKwkJiZGxPxC9/3g4sWLrFu3DgcHB4KCgpg3b57QqC5atIj+/fvT2NjI5cuXuXjxIi4uLly+fBl7e3tiYmL48OEDwcHB+Pv7M3DgQIKCgjAwMOD+/fs8ePAALS0ttLW1hbtXUkZGRkJuZWhoyC+//EJmZiaxsbHs27ePJ0+e9CrVB7pXsRIdoLa29r98ll1dXRQVFYn3rrm5mcbGRkJDQ6mursbBwYGCggKSk5NZsWIFy5Yto729naSkJKZMmcKCBQt4/PixeA9HjhyJr68vHR0dyMnJcevWLVJSUigvL+fNmzcoKiri7e3NixcviIiIQEVFhX79+tHV1YWfnx+///67IKR8TGVlZbFp0ybRjB8/fhw5OTnc3Ny4desWly5don///qJ5VVZWFteBtLQ0T58+FZ+Bn58fjo6O/Pnnn/8iBysrK8PIyIitW7dy8uRJlixZQkxMDIqKimzduhVApDatWrVKNP5LlizpAZ//b+rKlSu8efOGyspKXr16RVtbGyoqKnz77bf4+Pjw4cMHLl68SENDA7NmzSI/P5+xY8cyceJEkXSVm5vLpk2bOHXqFNLS0sJ4JgnxAVi6dCmampr89ttvFBYWMmXKFLKysli2bBlz585lxIgRgsf69+lqW1sbCgoKyMjI0NDQ8F+lTu7cuZOKigocHR1xcnLi+PHjnDhxgtWrV7Nw4UImTpyInp4e3t7efP755/Tv35+ioiIuX74sDkCZmZlcu3YNRUVFkRjX3t7OxYsX0dDQ4LPPPuPNmzc8fPgQc3Nz/Pz8qK2tZf/+/TQ0NLBkyRJ0dHT4448/yMjI4LPPPuPOnTtkZ2ezY8cO1NXVOXnyJKqqqnz11Ve9en3+/v7Y29uzaNEi/vzzT65fv46uri67du2iq6uLNWvWsHDhQqqrq3v4QiRNZGtrK3FxcZw/f57c3Fzk5eXFM8vOzg5jY2Pi4uLENjUsLIw//viDzs5OpkyZwp9//inIPxJKTkNDA4mJiYJ17Orqip+fH8rKyh81COh18xoSEoKxsTHjx4/H3t5ewMHb2tqQl5dHTk5OrMIBAYNvampi8ODB7NixA+jGZWRmZjJ9+nSOHTuGiooKGzduZNu2bejq6uLi4sLNmzfFRGLkyJE4OzuTk5MjOnhDQ0OGDh2Kr68vjx8/Jj09nZaWFhISEjh79iwaGhr8+uuvHDx4sLcvk5KSEjo6OpgyZYpw/rW1tXH79m3OnTtHSUkJx44dY/ny5TQ2NnLq1CmgW+ciEdRL8tZXrlzJq1evMDQ0pKqqCktLS6GvLCkpEVoUSeyjJDRAR0eHlJQUZGVlUVNTo6urC0VFRZSUlEhISMDAwOBfaAcfU52dnXz++ecMGjQIWVlZnJycKCsr49GjR4SEhFBTU0NpaSnS0tKCk9vV1SW+rHp6enzyySfs3r2bS5cuYWBgIOD0iYmJnDlzBk1NTZqbm/Hx8REuzgcPHpCQkICsrKzII5eTk0NTUxMbGxvs7OzEhVNYWEh6ejpJSUk9Jm4fU5MnTyYhIQFtbW2Cg4PJzc2ltLSU9PR0VFRUaGpqEhoyPT09du7cyU8//URra6s4PTs7O+Pk5ERISAjQPSHq16+f+E9UVJRwwbu7u4uLNi8vj5ycHIYOHcqyZcuETEaydqqvrxer72vXronVaG9vuIaGhhgaGiIlJcXDhw/x9/fHz8+PpqYmOjs7sbGxoaWlhWfPnhEZGQl0H1qCgoKYMWNGjyAHZWVl9uzZ0+PnS0IUoButFhERgYWFBR0dHbx+/RpZWVkmT57MpEmTKC8vF9OICxcucO3aNZYtWyZW721tbZSVlQl+48dWVlaWAIIXFxcTFhYmeJW2trYC+l1eXs63335LR0cH3333HZqamrS2ttLY2EhkZKRoBBwcHAgNDRVrdMnfJwk5MDU1xdnZmfHjx4vmJikpCR8fH6qqqmhoaMDOzg4/Pz8sLS25ePGi0NjdvXtXSGc+thobG/nkk0/o37+/eC1+fn4EBgaKqbbE7ALd10R1dbVAHmlpaeHq6iqm5WlpaeJzlpWVJSUlhfT09B5mm6KiImbPns20adO4fPkyUVFRbN++nTlz5oiJUWZmJi0tLXh4eODi4sLmzZu5c+dOr1nE0E1mkcSbSj7/qqoqurq60NbWpquri5aWFkxMTHBwcGDZsmVYWFiwYsUK4uLiuHnzJioqKsIYp6KiwsSJE/H19cXX15euri7q6urE4UkyQNHQ0GDSpEk0NjZy5coV3r17J/6m8vJyMb1zcXHBwMBAPKSDgoJ61bx6enqKZrShoQFtbW2BSLKwsGDo0KFC29vV1YW0tLTAFkVHR2NnZ8eLFy/o6upCQ0OD+fPniyQ8HR0d8vLyKC8vF9tDZWVlgTiD7mZfEgpibGzM+vXrBXZNW1u7x7NYwtLureZVEoTx9OlTTp06xeDBgzl48KBoOpWVlTE0NCQpKYmuri6eP3/ew3DT2NjIvn37xDPS1taWqVOnCuqBBG8mOVjv3LmTGzduYGhoSGdnJ2lpady/fx9ra2u8vb2FqVHCYZbE0ufm5iIjI/NfOfL/t/HZ3t6eefPm4ezszMOHD7l+/Tpjxoxh4MCBNDU1oaGhQWVlJc+ePaOoqAhLS0s0NDRITEwkMTGRI0eOkJiYiJWVFdeuXcPGxgZXV1c8PT1FVCp0y06am5sxNDRkxowZqKiosG/fPqKjo+nTpw+HDh2iqqqKRYsW4ePjIza3/821aGhoiI2NDY8ePeLBgweMHj0aLy8v7t69y969e5k8eTJDhw5FQUFB3I+kpKQE0SQ2NlZolDU0NIS8Z9y4cbS0tBAfH4+0tDTu7u7o6elhbm5ORkYGKioqVFZWit6lq6tLmEH19fXJysri5s2bNDY2is/hY3BuvW5eKysr2bFjB0VFRaxYsQJbW1tUVVV7XCTQnQbx+++/4+bmxurVq1FUVCQ8PFxEPv71119MmDABExMTcXNKSUkB6PEwBLCysmL//v28ePGCCxcusHjxYrZs2UJ9fT1FRUWYmpoyZ84c4uPj2b59O5cvXwa6G97ewtElv/fTTz+lvr6+h67m8ePHXLp0SSRkSfRp/fv3Jzg4mBs3bnD79m0hJE9NTSU2NpZx48YxdOhQamtrOXbsGI8ePRI3W2dnZ5EHrKGhQUtLC4WFhbS1taGnp0dsbCx79+5FWlqavn37oqOjg4qKCjY2NgQFBf1XzWtVVRUrVqygs7OT/Px8+vbty7lz51iyZAm2trYcOHAALy8v3r17h5+fH9nZ2SgqKoqGOzY2Fjk5Ofbv38/mzZsZO3Ysu3btYuHChWKtLoHAjxkzhuzsbA4ePMjx48dRVFTE0dGRwYMHi3ADXV3df4n0u3//Pps2bWLgwIEcOHCgV1OtgIAAAfSurq7m+PHjJCUl0a9fP9atWyfMPhLjlpubGwcPHhTmOTk5ORwdHcU6NiwsrMcaun///nR1dVFQUICSkhJWVlYUFxfz888/c+/ePWxsbAgODsbX15fGxkbx4CkrKyMvLw8nJyeUlZUJCgqitbVVsJJ7U3v37mXlypUMGzYMMzMzwXJsbW3Fzs6Orq4uvv76a3bv3g10Z9rb2tqSnp5OcnIynp6eREdH8/XXX9O3b1927dolVkvwP9D91atXs3btWrZv3y7QMcuWLePOnTsYGhpSXFzMxYsX8ff3p1+/flRWVpKTk9Pj9D569GjGjBnDpk2bevUaJQ8l6G4MJMD6ixcv9mga6urqREJaaWkpHh4eIpXPxsaGQ4cO4e7uTmlpKZ9//jkPHz6kX79+onk1Nzdn2rRpSEtL09jYiIGBAVu3bhVmoWvXriEjI4Ozs7N4cJqZmfHNN9+QnJzMoUOHOH/+PGpqar3C1zk4ODBr1iyKi4t59eqVMBJt2rSJ8ePHk5GRQVVVlUgGq6io4Pz58yJOsV+/fsjIyKCnp8fr16+5d+8efn5+IiUqIiKCvLw8nj9/jq+vL25ubpiamuLn54empqbQ6e3btw8/Pz/Mzc3p7OzkzJkzlJaWMmXKFGRlZamtreXTTz9l9uzZ7Ny5s1efoaKiIs7OzuIAKiEXSB5OUlJSmJubExwcjLOzszA7OTs7ExcXh7y8PFu3bmXYsGFISUkRGxuLgYGB4HgmJCSQk5MjGvwbN24QGxuLp6cnWlpadHZ2CpC+ZBOSkpLCtGnTWLJkCdA9LPhvUpmgW2Zz8eJFmpqaGDlyJDNmzKCkpAR5eXnxnauqquLx48fCSFlRUcEvv/zC8+fPWbVqFdu2bePQoUPU1taiqKjI8uXLmTJlCpqammzYsIE///xTaIZ//PFHEhIS+OabbwT3NjQ0lLlz5/Lpp5/i7e2NkpISKioqKCkpoaqqKu5zsrKyyMjIiIP7x9bo0aNZt24d69atIzs7m0mTJonG9dmzZyQlJbFgwQJKSkr46quvBNrL0dGRnJwcvv76a+ED0dDQEJsDSYWGhrJhwwYuXLjAnDlzGDx4MImJiRw6dIgxY8bw3XffCWZ8VVWV8AckJycjJSUlpqDXr1/H3t5ehMr8f1vm5uasX7+en376iZkzZ3Lt2jUCAgKoqKggOzsbY2NjSktLkZWV5bvvvmPx4sXcvHmT1atXi/7Hzs5OyKhaW1tZsGCBoAe9f/+eM2fOiMCc7du3o6ury6hRo9DR0aGhoUEc+lRUVNDQ0GDKlCmkpKQQEhLSg07xn6q8vJzi4mLWr1/PsmXLiIqKIjMzky+++AIzMzO+++47Xr9+zYwZMwRuTnJ/ra2tJTQ0VAxYPDw8WLRokRgASCbeDQ0N4v7o4uLCV199RXl5OTdv3iQ+Ph5dXV0UFRVxcnJi6NChBAYGoqamxowZM0hISKC6urpXxI9eN6+ysrIUFBSwb98+rKysGDdunGig3r17R3FxsQD06unp4e7ujr6+Ph4eHmzevJkBAwZw7Ngx5syZg6OjI//85z/ZtWsX/fr1IyAgAH9/f2pqaigqKqK1tZW1a9dia2vL3bt3uXr1KtbW1ixYsAApKSnU1NSEOxq6HYrW1tb06dMHf39/XF1dhWnqY6umpgYNDQ2hCQEENsbS0pLAwEDU1dVF015bWytSoiQ53SYmJqxfvx53d3csLCx4+PAhBQUFWFpakpOTQ3JyMnV1deJ3Sly4kt+fmZlJQ0MDjx49wsjICE1NTfr27UtnZyfPnj2jb9++zJ49GwsLC+Gm7k1paGgQExPDu3fvyMnJQVtbW8QOKisri6mzra2tWHH/fb0led8lQQASnIeE+zt16lQuX75MRkYG7969IykpCej+0vfv3x8nJye8vLzE35ObmyuiRG1tbTEwMCA2NpYPHz4gKyvbQ0bwMbVjxw48PT2Rl5cnMzOTiooKnJyc8PHxEes9SbW2tv7bmM6mpibS09ORkZERYGdJdXZ20t7e3mMidvjwYUJDQ8UaUnL6V1ZWJiEhgZMnTwqeq5aWFmZmZigrK4v/2Nvb9+qz/Pnnn3n16hW//fabwMF1dnaKg+DRo0c5fPgwgDANPHjwgKamJhwdHQkPD+fw4cOkp6cTExNDQ0MDNjY2TJgwQVyLkjjAM2fOCL3qgAED2LRpEwYGBkIX6eDgIH6Huro63t7eYtJcVlYmdE69LT09PTG10tXVZf78+YSEhPDDDz8wb948Jk+eLOKcN27cSHFxMdXV1Tx69AgPDw/69OmDra2teH8keu7y8nLa2tooLy/n8OHDmJmZERAQgJ+fH/fv3yc+Pl4kVxkYGFBSUoKuri7W1tbIyMiIXHApKSl0dHRobGwULFWJCeJjys3NDT09PTQ0NLh37x6XL19GV1cXQ0NDzMzM0NPTIycnh6KiInR1dQkKChJT18bGRnEAPnnyJNu2bcPMzEwc3LOystDT0+Obb76hvb2dI0eOoKqqira2NqGhofj6+lJXV4evry/y8vI4OjqSnJzMli1bqKurE5Grb9++RVVVtUf8cG9LVlZWNNLe3t5ijd3R0dGD63z16lWePn2Kj4+P0FdqaGgwdepU8VB89eoVNTU1AlpvY2ODtrY2MTExnDhxggsXLuDj48OgQYNISkriwYMHeHl5MWLECJSUlKiqqqKjowNjY2MSEhJwcnJCR0eHpqYm6urqeq1blpKSwtHRkezsbO7evYujo6OQhEE35zQ9PZ3KysoeGfCqqqpUVFRw7949goOD2bp1K5aWluIALbl+zM3NaW9vZ9euXaJpaWtro66uju+++w5PT0+uXbvGq1evGD9+vGiM/nc1NjaK5qK3krM1a9agpaWFvLw8GhoaWFlZ0dTUxI4dO3j16hVffPEFNjY22NjYCEmNRJqjoaFBamoq0H3v0NXVJTMzkz///JPo6Gjq6uoE2q+8vJyzZ8+K77qysjLz5s0jMDCQuro6kSooeQ9PnjzJq1evWLJkieDhJiYm9jqEAbqbu/z8fCIiInjz5g2qqqqMHz+eJUuWoKGhwZs3b0Q88d81qhKKjiQpccKECcjJyYmJucSArq6ujp2dXY/7YFZWFsrKyixatIja2lp27tzJhw8fGDhwID/99BPOzs74+/uTl5cnvjuzZ88WspLeNK8NDQ2oqakJWoOtra1gKsvJybFo0SIqKipQUlISW5vS0lK8vLzo7OwUQUKGhoasWrWKefPmUVdXx5s3bzAyMhJDSMl7mZqayp07d3j//r3YOGhqagoUl52dnQhKSk5OxsrKiqqqKo4cOYKLi8tHIU573bxmZmYiKyvLu3fv+OOPPzA0NBQNQVlZGRUVFUKrJBHwSuJRoXuFeOjQIT58+EBWVpZYJbx9+5aTJ0+Kh+Dw4cPJzs7m1q1baGtr4+/vz7t371i1ahUtLS10dnYiJSUlcuM7Oztpa2vjl19+EaLx58+f8/z58169PjU1NWRkZGhra6O9vb3HxPHv3EzJf3f+/Hlmz55NV1cX/v7+jBw5EgcHByZPngx0N6OHDh2itLSUn3/+GS8vL27fvt1Dh5uVlYWmpiY6Ojro6Ojg6ekpcpEHDBjAp59+irW1NWFhYaLJ0NPTo7W1VeiGe1PKysqEhITQ2dlJQ0MD8fHxTJw4kYsXL/L69WuuXr2KiooKAQEBvH//nurqaqSkpGhoaAC6m+2Ghgbhzl+2bJlAPXV0dFBTU0Pfvn1JTk4WqJgJEyZw7ty5Hl9wSZWXl3PhwgUUFRXFOqFPnz44Ojr+Wxbkf6rNmzfT3NxMV1cXCgoKfPfdd+ImVFRURFlZGaqqqlhbWyMvL09OTg4pKSlC0wTddIUTJ05gZGTEnDlzeqDXiouLeffuHf3790dBQYE//viDU6dOYWhoyKRJkwgKCupxenzx4gX79++nX79+TJgwQdzAJEkiknSd3jSvzc3NnD9/HhcXF9avXw/8jw5s3759rF27Fug2WI4ePZq7d++KSUVxcTHnz58nPT1duJrfvn1Lbm4u6urqoiGwtbXl9u3bXL9+HQ0NDVauXMmPP/4oDHYS6sTfNaGTJk1ixIgR2NjY0NHRQXV1NW/fvhUr7d6Unp4eXV1dYtry7bff4urqyowZM6ioqMDd3R0HBweMjIwwNjamurqaiIgILl++zN27d1m+fDnu7u4UFBRgbm5OTU0Nurq6uLq6kpuby7Vr19i9ezfBwcH07duXmpoaXr16RVFRETIyMmzYsAE1NTUxcZaUsrKyaKaUlZX56quv0NbWRkdHp1cmCklIAHRPcl+9esWTJ0/Q1dUVwPNZs2aJKZeNjQ3r16/n2bNn4voJDw9n/fr1FBUVMWzYMMrLy6mpqSEhIYFJkybh7u7OzZs3WbNmDRkZGSgpKeHq6srNmzeF1tnCwoLS0lJ27dpFZGQkq1atYvny5VRWVtLa2kpnZyfV1dX/NX4QurWgN27c4K+//hLNq2RrJicnh56eHuHh4aSkpFBbW8tXX30lGMt1dXV0dnaioaGBt7c3jx8/5tatWwwbNgwjIyOampq4ceOGMFt5eHgQFBTE9evXkZeXZ+zYscyaNYukpCRMTU1xcHDg1KlTHDhwgM8//xxPT0/R8PS2eU1OTmbz5s3ExcVx6NAhoqKimDRpEn369EFOTk4Yd62srMR3Rl9fn6CgIPF8qq6uZsuWLQwZMkRcnwYGBkhJSWFhYYGmpiZRUVG8evUKNTU12tra2LZtG1u3bmXixInEx8fz+++/U19fj5GREX369BGvR9IMKysro6io+C8R6h9TkoO9JD2zuLiYCxcucPHiRUaNGiVWveXl5Xz66afIysoKd3lqairBwcFkZGSIoKHk5GRiY2OF0djf35+FCxcSHR3NiRMnkJeXZ8aMGcyaNYtBgwbR3t5OV1eXSA2UJOxJhibQrfcdNWoU9+7d448//uj1d1VLS4usrCxiYmI4c+YM0I1ZPHLkCGvWrBH/rrS0lPr6etLS0sRQRkNDQwyjnjx5QldXF0uXLgW60aI1NTU4ODgICaTk8Cnxr1hYWNDV1UVOTg579uzh9evXREZGMmDAAIYNG0ZXV5fQjcvKyjJs2DDxuz+2JAfPkpISDAwMkJeXp7W1lY0bNzJ58mTOnz/f49+np6cTHx/PnTt3qK6uFrQlRUVFjIyMaG1t5cSJE6SlpQkDbFNTE3l5eUI6eOvWLaB7qCiJQreyshIm78bGRu7cuUNeXp7gx165coXMzMwe1I7/q3rdvEZERNDe3o6enp5YzZaUlIgG7H9jRurq6oTm6PPPP2fMmDFER0ezefNmnJyc+O2338jJyeHDhw8kJiZia2tLSkoKJSUlFBQU8Pz5cyZMmMDKlSuJioqiuLiYzZs306dPH6ZOnSpc+5GRkeTk5DBv3jzxu319fdHW1ubAgQMf/fokU9xjx46RmprKsmXLcHBwoKGhQSRvODo60tLSwpkzZ/j111/FDa+mpkbcoMrLywkJCRGRc8uXL2f48OEiESgsLExMUiSrzh9++AFHR0f279/P4MGDqa+vZ8yYMZiZmXH//n0KCwuZP38+OTk5rFixgvHjx/cwdH1spaenM3jwYFxdXWlubiY9PV3o3fr374+KigoFBQV8/fXXHD16FH19ffbs2cPAgQMJDQ2ltrYWHx8fkcOupqYmkFo//vgjysrKzJ8/HyMjI3Ha9/Pz67GWzs3NpbGxEXNzc1xcXOjXr5/AhamoqPDJJ5+gpKQkkDK9qfHjxwtUWktLi4i2hW7px65du8jLy2P58uUCQfTXX3+hpaWFjIwMbm5uaGtrExQUhL6+PiYmJkhJSQmeooODA1ZWVly6dImHDx9SX1+PhoYGpaWlAvQM3Q2mrKwsXl5e7Ny5EzMzMzw8PMTfKdETFRYWcv/+/V5RMebPn4+bmxulpaVs3LiRkSNHClPI39eCbm5uTJw4kbFjxzJ27FjCwsKIiYlh8ODBAhxtb2+PgoICr169Ij4+nvXr1yMtLS2wLH9v+GtqaoiLiyMyMlJEfq5ZswYbGxv27t3b4/pvaWlBS0sLKyurXpsmJfXu3Ts6OjrEqtDf358VK1aQnp5OYmIiDg4ONDc3s3fvXjo6OnB3d0dFRYVDhw5x7tw5AfJXVlYW3zkLCwtevHjBmzdvsLKyEn9zZGSkODTevn0bPz8/gR2D7s+ztbUVWVlZEYShoaHxX0c2NjY2iqmqra0to0ePFvGLW7Zs4f79+xgbG4sV+fnz57lx4wbe3t5MmzaNnJwcCgoK2LFjByNGjEBeXp5ff/2VtLQ0VqxYgZOTEzExMWRnZ6Onp0dGRobgPaqqqmJmZiYeaocOHaKrq4srV64waNAgoFt3Nn78eBobGzl9+jQ7d+4Uuvz/5rVK2JKSkuium5qaqKioYOnSpTg6OmJvby801wEBAbS3t/Py5UsmTpyIl5cXZWVllJaWoqurS0xMDCtXrhQoxpaWFnE4HDdunAgQ2LFjB0+ePMHMzIwJEyYIPfz/dob/7zz5/1SSJKV+/frxySefkJSUxOnTp6mvr2fixImC/tHW1tajMa6rq6OqqgoVFRVSUlJYsGAB8vLyjBs3jr1793L79m127drF9OnTUVZW5tdffyU9PR1DQ0Oqq6vJzc1lxYoVjBgxQtA2rKysKCgoIDMzk+DgYGRlZUlLS6O8vJyAgACkpaVRVVVl7969vXqNEm1p//79BXHC09OTgwcPMmDAAAAuXrzIhQsXcHNzY926dSgpKbFjxw6ioqJYs2YNQUFBLF++nOTkZExMTMT7Bt0N1YsXL0Tj19LSIvTmQ4cOZerUqQL1l5+fj4+PD6ampvz8888YGhqSkJBAXV0d9vb2VFdXk5eX12tNqIyMDJaWlmzZsgULCwt++uknEU//d4xhfX29wHtKSllZGVVVVdLS0vjhhx/IyMjg+++/58svv8THx4ctW7b08G1I5FDKysriv5eSkmLdunUMHz6cJ0+ecPXqVUJDQ9m2bZuQ+UgOIj/99BOBgYH/0nD+p0pOTqa+vl7IZLq6uti1a5eYGv+97O3tsbe3Z+nSpRw6dAglJSXh2bly5QrV1dXk5+fj4uIiUhvnzJlDcXEx48aNEzSIZ8+eie1NeXm5eO1+fn4EBAQQEBBAU1MTzs7OdHV1ifvL/18mr15eXgIOPmPGDPFLGhsbqaqqIj4+npaWFszNzTEyMhJMwb59+7Jo0SKRR2xkZMSsWbNYvXo10I2qePjwIcePH+fDhw9UVlbS1tbGrl270NXVZfny5SxfvpyNGzfy6NEj+vTpI1YrcXFx3Lt3T3DzTE1NaW1txczMTKx2e1t5eXliVO7g4ICUlBSRkZG0tbUJWPGSJUvo6urCwsKCvLw83r17R35+PjY2Nvz+++/89ddf9OvXr8dqV7JWvnnzJg8ePBCA3ujoaP78808R5xgUFISSkhLy8vJ0dHSwd+9eUlNTuXTpEiYmJhw5coTa2toekoOPrffv3wv9YUlJiYjWbG9vp6OjA11dXSIjI3n48CFSUlJ89dVXLF26VOjhFBUVyc/PF6Y7FRUVEhMTKSgooLCwkBEjRmBgYIClpSUODg5iAvHmzRucnZ3p6OhARUWFkpISmpubUVZWZvLkyeImUV1dTUpKCiYmJjg6Ov5bt/n/q8aOHcvTp08pLS3Fx8enx7pTRUWFmpoaqqqqBKS5oaGBmzdviuxqOTm5HutmSamqqoqpe0VFhfgMp0yZwqhRowRLLzc3F0tLS6Ez69+/v2Ba1tbWcvfuXWRlZRk8eDAqKip0dXX9i2b8P9Unn3yCt7c3p0+f5sqVKz2aLDMzM5EWlZWVxbt373B2dsbOzo6XL1+Sl5eHnZ0dn3zyiXh4Z2VlCc1nfHw8tbW1GBoa4uDggJeXF21tbUhJSXHt2jWqq6uxtLRk9OjRpKamUlxcLIgKioqKREZGYm1tjbm5OR0dHbS3t/9XE59nz56hoaGBtbW1mMBqaGiIfPD379/T1tbG48eP2bBhA+rq6ly9epWhQ4cSGRlJWVkZhYWFXLt2TUTKGhsbM3HiRAYMGEBHRwfR0dHIyMhQXl4uuIIaGhoMHz5c/N8l2ll1dXXa2tq4f/8+jY2NDB8+HHl5eRISEjA3N+91mt/bt2/p6OhATU0NfX19ERgB3TrDlJSUHu9bamoqISEhwvARGhpKYWEhwcHBGBoa8vLlS+Lj48U2rKSkhK1bt/LmzRv09PRwc3PDwsKCwMBAnJ2dMTQ0pLy8nISEBAGf19XVFRNz6J66ycvLo6WlRWFhYa+b1+joaBQUFOjfvz8mJiai2YFuKUhtbS0//vgjmZmZrFixguHDh1NYWCiQim5ubjg5OSEjI0NcXByKioqUl5djYGAg0Gg5OTlMmzZNQNsfPnzIiRMnhLFr5syZQnOpqKhIQkICK1asEOvz+vp65OXl6ezs7PXkVUZGRlAxnJ2dKS4uJjU1laqqKlJSUjAzM8Pa2hpZWVmkpKSorKwkPj6e6OhoLCwsRLpkQ0MD+fn5fPjwgfr6enGIge4m/O3bt3R1deHk5CSGGRERESQmJvL111+L2E11dXXq6uooKCggJyeHW7du0djYSGNjI56enqSlpfH69eteeUHCwsLw8vLCz89PNJcFBQVCuy/B6WVmZhISEkJ1dTWbN29GT08PdXV1DAwMMDc3x9nZWTRQbm5u2Nvbo6yszP379zl9+jTQ7Vews7MjISGB9PR0CgoKaGhoIDc3l/z8fLq6ukhNTaWsrAxDQ0MmT54sTHetra1oaWkREBDQawNsRkaG+D6sWbOGmJgYIU38e1VWVvL48WNaW1vFGn7s2LFYW1uTkZFBRUUFdXV1FBYW8vbtWxwcHHrcmyVTZHl5edG4xsTEkJqaire3N+7u7kRGRpKWloa0tDR3796lo6ODwsJCWltbCQwMxMDAQEiGPraePHlCW1sbysrKZGdnk5+fj4WFhYjAbmhooKmpiZqaGsrKytDT0xPmXw8PD0aOHEl5eTnHjh0jPDxcUEx0dHQoLCzk6tWrvHv3Dnl5eQwMDAQnNjExkZycHJEsJ9nelpSUMHnyZDQ1NamqquL169eCaPSx1evmdceOHcLV//cL3crKivDwcFatWkV1dTXr1q1j06ZNaGhoYGlpyeTJk1FXV2fmzJkkJiayb98+AR+H7qZYkrqRn5+Pubk5qqqqvHv3jpCQECHkHz9+PP3792fkyJGoqKhw7tw5Nm3ahLW1NX5+fhw5coRnz54hJSXF0qVLe52nDt0fpCTVSjIdU1ZWxtHRkdLSUqF9kWg55s2bJ/hnioqKpKamcvHiRYyMjPj111/FQ+3Vq1fk5uZiZGSEj48PQUFBzJkzBxkZGcHSe/HiBe7u7ujq6orJh46ODu3t7ZSVlVFZWUlgYGCvJ3V/L8lK5enTp5w8eZKvvvoKFxcXZGVlOXv2LBcvXkRRUZHPPvuMYcOGCVdoXFwcJiYmDB8+nFu3bjF79mxmzZrF1q1b2b17NydOnGDDhg1Mnz4dQER4NjU1Ca3aqFGjGDlypNDYXbt2DS0tLWGeANi+fTuxsbFMnz79P+Yb/7vKysrCxsYGY2Nj/Pz8emR5Dx8+nJMnT/LhwwexliwpKQG6T3v/12Ggra2NhoYGPnz4wNGjR7l48SKJiYkYGRnR0tKCrKwsrq6uZGZmsnXrVhYsWCAmoX+v9PR01q9fj5qaGmfOnEFFRQVnZ2dWr17dqw2BhYUFiYmJ1NfX4+/v3yOz2sXFhYkTJ/Lw4UPu379PdnY20tLS1NbW4uTkhK6uLgcPHqS1tZUdO3aQnJzMiBEjKCkpYeTIkQQFBZGfn8+tW7d4+fIlI0eOZMOGDcjIyPD06VO8vb0ZNWoU4eHhvHjxgt9++41hw4bR3t7OnDlzePbsGbt378bc3JzGxkaePn1KRUXFR782SZ0/f56ff/4ZdXV1mpubaWtrEw90d3d3TE1NSUpK4ubNm8D/JOQA/OMf/2Ds2LFkZ2czffp0YdppbW3F3t6emTNn0t7ezuHDh2lpaWHUqFEUFhaiqanJrl27WLRoEQUFBXz++ecUFBRw+PBhBgwYgJqaGufPnychIYHa2loqKyv56aefmDVrVq8DUSTJO/8uEWjatGkMGDCgh3Nagguys7MTGs2kpCQuXrwo5FzTpk0TjfyLFy+Ijo6mtLSUhoYG9uzZIx5WdXV15Obmcu7cOQwNDVm7di03btxgxIgRjBs3jm3btqGqqkpDQ4PYhFhYWPR62hMVFUVISAjz588X61fJBgO6p65Pnz4VMdVGRkakp6fTt29fdu/eLVbSZmZmPH36lGvXrgHdPMySkhIGDBjA6dOne2gJExMTOXz4MOHh4Tg5OfHo0SMAVq5cyYoVK1BWVhYGUUkjIS0tTUFBQa+/p8bGxigoKFBYWMjp06cpKChgzJgxODs78+jRI9atW4ebmxvr169HXV2dEydO8OOPPzJ27Fjmz5/P/v370dfX5+jRo+L+GxAQwD//+U9xf8/IyODevXvk5eWxevVqRo0ahYODAzNnzsTFxQUtLS3u379PXV0dI0eOxNLSkr1797Jx40YUFRWxt7fn/v375ObmYmBgwPr163slUaqrq+P27dt4e3vzySefcPbsWdauXYuGhgYzZszgs88+Y9asWUhJSfH5559z/fp1Bg0axKJFi5g8eTIVFRXC4FtTU8O9e/cYNWqUIA9NmjSJkJAQfHx8OHz4MIaGhqJ5Mzc3p6uri1evXqGrq8vAgQNFaENTUxP/+Mc/mDVrFnJycoSHh1NQUPBfYSQfPnyIsrIydXV1hISEYGRkJNjcf6+2tjZBehg+fDgLFy5kwIABQl64efNmjIyM8PX1/bdhCbKysmJDKzkIJiUl8dNPPwnDbUpKCj4+Pvz888+0traybt06oqOjmTVrFpMmTeLWrVts27atR4rif6rQ0FBWrVpFaWkpRUVF+Pn5oaCgwM2bN8WQKCMjg8uXL/P06VORJrps2TIRYX758mXevHmDi4uL6OeePHnCsmXLUFdX58KFC3h4eFBcXExeXh7Jycm0t7cLaURBQYHgwv79UHD8+HH279/PiBEjOHTokBii/KfqdfMqIyPDyJEjycjIICIigsePH6Orq4uUlBTZ2dlYWFhQXV1NdHQ0ZWVleHp6Ymtri6amJmVlZcjKyjJq1CjRuEqctLa2tkyfPh0ZGRmqq6txcnLi7du37N69m3v37nHs2DGBzVi6dCkqKiq0trZSU1PD2LFjhZPNyMhIPNhsbW3/q4mPlJQU1tbWaGhooKurK5r0gIAAZGVlkZeXx87Oji+//BJdXV2Cg4ORl5ensrISDw8Pbty4QVpaGoGBgeJCOnDgAEeOHMHJyYlBgwbR0tJCVlYWioqKyMjIkJOTg5SUFKNHj8bJyYmHDx9y9+5dSktLWbduHV988YWA+UL3OrihoaHXLnVApHLdunWL2NhY9u/fz44dO9DU1OT8+fM8ePCAefPmsXDhQjIzM7l9+zbS0tJcvXqVhoYGkeIzYsQIpk+fLh4EZWVlxMXF8ejRI4qKikRKSU1NDWFhYeKCkOhjDQ0NMTExQUdHh9raWqqqqrh16xb19fUEBgbi5OQkDkq9KWdnZ/T09ISzUVNTk6SkJAoLC/H29u5xEg4LCyM2NpaFCxcyd+5cEa7R1tbGkiVLhL4zJCREYMWKiorElE5BQYGXL18SFRWFlZUVampqWFhYCJ1iXV0d6enpWFlZoaOjI1BMnZ2dIlr239E6/lMZGhrS0tKChoYGNTU1pKWlYWxsjKqqKiNHjqSjo4MnT56IuFYAU1NTgUerrKzk6NGjmJubo6ysTGtrK9AdAfndd98hJSVFXl4e9fX1fP755wwdOpR79+4RHh4upCAnTpwgIiJCpPfIysri7OxMWVmZWHW3tbWhpKSEk5NTr0MKJJxY6J6YSVLTrl69ire3N87OzoSHh1NeXs6mTZtYunQpampqhISEEBUVRVdXl5iIvXv3Dnt7e6ytramqquLkyZMUFRUxbdo0SkpKuHTpEsXFxXzyyScsWrQI6I7glUyvMzMzxdRQVVWVzMxMvv76a3x8fAgMDMTR0ZGXL1/26vWpqKgI6Q0gDqhycnLCWAHd36GOjg7BtZXU0KFDKSwsJCoqCiUlJXx8fASVwNTUlA8fPoimfeHChUyYMEEYXurr68UaWYKtGzBgALa2tqirqyMvL4+UlBRv3ryhs7OTwYMH4+fn1+vmdcKECUhLS5Oamsrly5cJDg6msbGRiIgI3N3dMTIy4vjx4yxatIiYmBiSk5Pp06cPZ86cQVtbm5CQEFpbW5k+fTpDhw7l2bNndHZ20tjYSHp6Og0NDXR0dFBbW0tnZ6dYi2ZmZpKZmYm7uzvLli0TiJ6kpCQGDRpEQUEBdXV19OnTR7z/ioqKvZa3SIyhWVlZxMbG0t7ejra2NtbW1owfP57IyEguXbqEkZERX375Jf7+/iIRS09Pj/b2drHql/x+FRUV8fm8ffuWQ4cO8eTJEzQ1NbG1tUVZWZnGxkYCAgJwcHCgqamJixcvUlJSIgzHkutUSUkJaWlp9PX1kZeXx8TEpNfTZW1tbeLj4+nq6sLU1BR/f3+B+PPy8hLvn5eXl9Df6+jo8O7dO2pra1FXVxfG1F9//RVra2va29vJycnBysqKc+fO8euvv5KSkkJERAQLFizA09NTkCmgWwKoqqqKrKyskBgCIrXxyZMnbN68WeCbelvW1ta8ePGCEydOcO/ePRQVFTEwMODNmzc0NjbS1NSEr68vzs7ObNu2jffv3zNx4sQepikzMzNmzJhBXl4ep06dwtXVlX79+lFSUkJaWppgDEtkRrm5uTx48IDffvuN7Oxs8XPs7e3ZunWrYCrfvn2b/Px8hg8fLjjw0dHRvWpevb29hY5aYi4HRJS3goICT5484eDBg7S0tGBtbY21tTVNTU3cvn1bBA/t27cPBQUF0XhLtrQeHh5iWKOmpkZ5eTlWVlZiy6Wpqcnx48fJyMhAVVWV5uZmbt++zcCBA1FVVSU3N5erV68ye/Zshg4d+lHP/F43r7/88gtr1qwRjMlz586JB/nu3bt5+fIlV69eJSEhQTwQNTU16ejoQE9Pj7Nnz4oTSVdXV4/YQCUlJQICAlBSUkJbW5vOzk6hQ4yNjSUyMpLU1FQ8PT3p06ePOAUsXbqUlJQUUlJSBH+2s7OTpqamXjcF8D+GDCkpKSFuhu6HluRi0tHRESfHgoICwSpVUVFBXV0dWVlZqqqqKCgoEBD1hIQEjI2NMTExoampiYcPHwqtx7Nnzxg/fjzbtm0Tv0vCVNPX12fSpEkEBAT0+DtTUlJ6bUiDbtlAREQEjo6OzJgxgxs3brBs2TKmT58uPrMpU6bQ0dHB0qVLiY6OZvz48ZSUlBAdHU1MTAz/+Mc/OHbsmGA1Dho0iMmTJ3Pz5k1Onz4t3ncpKSmBMWpoaOiheVNQUGD8+PHC3CRxUS5dulSswc6cOfMfY+L+d02ePJmuri5h5MvPz+fVq1dkZGRQU1MjJsPR0dGsX78eW1tb/vjjD9TV1dm6dSubNm3Czc2NKVOmoKamhpSUFPv27aOmpobff/+dIUOGCJzQ+/fvkZWVFWzJ4OBgvvzyS/E+HzlyBENDQ2E8U1JSYtOmTSLkA7qxcpLpYW/KwsKCzMxMHjx4IGJalyxZgrKyMn5+fvj4+Ai+pYuLi2D41dTUMGnSJN6+fcvOnTuZPXs2W7ZsYevWrcjKyqKjo0Pfvn1ZsWIF5ubmeHt7k5iYyPnz53n+/DmPHj1i3759aGho0NTUxJ9//omsrCwrVqzg+++/Z9WqVWJqZGhoyMKFC5GRkel18yqhV0geyNA9QVi+fDkLFy7kjz/+EGu58ePHi6lreXk5d+7c4c6dO/j5+TFx4kTk5eVRVlZm8ODBhIaGsmjRImbNmsWpU6c4fPgwK1euFGi31tZW5OXlaWlpYcGCBaSkpNDZ2SnWw7NmzSI+Pp74+Hjk5eU5cOAAbW1tvcZI+fn59dBYysrKoqSkJDYBknvj3w1i8D+4KW1tbUaPHo2Ghgb+/v7IysoydepULl26xPnz51FUVERVVZWFCxfy22+/UV9fz40bN1BQUMDKygpLS0tBbuns7MTT05MHDx7Q2toq9Om6urqEhYXR0tIiDp29KUtLSxHO8ueff2JgYICPjw+vX78mMTGRdevW4ezszE8//URwcDCmpqZERESgra1NdnY2y5YtE5IKAwMD3NzcRNykmpoar1+/5tatW3h5eYnGWxK5LCEczJ8/H3V1dcaOHcvBgwdZu3YtMjIyVFRUMHfuXLFtkWiYe1MSs7KOjg7+/v7U1dWRnZ2NtrY2Tk5O7NmzhxUrVhASEsKoUaPo378/Dx8+5MWLF4SFhaGkpERGRgaTJ09m3rx5Qm/5559/cvLkSWRlZQUxx87ODlVVVUpKSkhKSiIjI4PFixcL7N67d++4e/cur1+/xs7Ojq+++kowxMeNG4eXlxc1NTWsWbOmV+xsOTk5YQ62tbXFx8cHNzc3YZYGxHBg1qxZQqY1ZcoUwsLCOHnypDjMOjk58euvv/LFF18wd+5c9uzZg6enJxs3biQoKIiffvqJvn374ujoyPbt29HT02P16tVoamrS2dkpKETBwcH0799fHDTDw8OJiorC09MTBweHXn2GgAiVkMhlmpubefHiBWZmZjx48IDo6Gj++c9/smDBAtasWUNBQUGPrYikSYfuQdWvv/7Kd999R79+/aitrRVeofb2duEPCQsLY8OGDT24u0ZGRqxZs6aHDnXHjh2sX79eDIn+m55GEu6gp6cn5HmS+HeJrO/t27e0tLRgYGDA8ePHGTJkCMuXLxdYuX/+85/4+vr2SOVTVFRk3LhxWFhY0N7eLvwAAwcORFdXl9evX+Pv74+WlpY4+NrZ2dHR0cH9+/cFJi89PZ20tDTx/n+MPKnXzevz588ZOXIkEyZMYMqUKcKVpqWlhYODA0pKSsyZM4f+/ftjZmZGTEwMd+7cwcfHhzFjxohTqrq6ulhf79+/n5CQEExNTbG2tqa6upr3799TWVmJj48Pfn5+uLi44OjoSEFBgWB09u3bl8ePH7Nz506cnZ2ZMWOG+Dvz8/ORlpbukf/9MSVZadnY2KCgoEBJSYk4aWRmZnLnzh1KSkqYMmWKmMQ8ffqU3bt3Y2lpiaOjI+PGjePRo0ccO3aMoKAg6urq0NTUZNasWYwaNQozMzPmz5/PzJkz8fLyErGMra2tYhrW1tbG559/LvK7JZNg+J+sakNDQ7y9vXuk5HxMnTx5EgMDA2bOnImdnR1v377l5cuXmJmZMW3aNObMmYO1tTWpqak4ODhQWlpKTU0NQ4cOZejQoaSnpxMXF4e5uTkeHh7U1dXR3NwsDg25ubmkp6eLmD5JQ6yoqNgDIyORXkhq8eLF9OnTp4cey8zMjNzc3F6xCZOSkoSRTzKRmTx5MnV1dVy4cIElS5YwZ84cDA0NmThxIpaWluJicXd35/vvv6ewsJDr16+zatUqtLS0qK2tJTc3l8ePH+Pp6SmaM2NjY4KDg7GwsEBVVVVodl6/fs3ixYuJj4/n888/p7GxkRcvXnD27Fm8vb0ZPHgwlZWVgorwv7VV/6liY2M5f/48rq6uBAcH88svv7Bq1SouXLjAzp078fX1ZfPmzQwaNIj8/HwhsG9ubsbKyoqAgACMjY25fPkyx44dY8iQIXzxxRe4uLhgZmaGlJQUY8eO5caNG/z000/ExMSgoaGBm5sb8fHxNDU10dLSwpo1axg9ejRPnz5l8uTJbN26FWdnZw4cOEB5eTmbN28WesLeVkZGBn369EFDQ4O2tjZevXrFwYMHaW5uFjd8JycnFBQUuHXrFn379mXkyJEsXrxYaHAlwOy0tDRkZGSEEeHDhw+Csfz69WsANmzYQGBgICdPnkROTo6JEycye/ZssrKyBDheTU2NQYMGsWvXLmJjY8nNzWXHjh3Y2dkxfPhwEbP7MfXvHkKampo8ffqUkJAQFBUVWbBggUj2a25upqmpiZycHMrKysQEThKD/erVKzH9PXHiBCNHjuTMmTPCNJSRkUFoaCidnZ2MGzfuXyQylZWVZGdno6+vL5pXSSNQWVnZaz4odK9jHzx4gKGhIbt27cLBwQF5eXlmz57N8ePHCQ4OxsXFBX19fSE5MjAw4PXr1/z000+MHj2aKVOm0NraSnl5OW5uboJzLUnoU1RUJDQ0VFA2Bg4cyKFDh5g0aRLp6emsXbsWLy8vDA0NGTZsGE5OThw5coTbt29TWFiIp6cnHz58wNvbm4EDBwrc2MeUZDNnZGREcHAwHR0d4v6opaWFkZERR44cYe/evezcuZMZM2YwatQohgwZQlxcnHhYm5ubY2FhQX5+PsXFxdTX1+Po6Ehra6s4zFhZWdHe3o6BgQGBgYH885//5ObNm8ydO5dFixbh5OSEoaEhffv2paCgAHV1dXx9fXuE4mhoaGBmZkZRUdFHv8bKykoePXpERkaGiNROTk4mNDSUjIwMQchxdXXtQVlpaWmhqqqKq1evMmbMGOTk5Hj8+DFv3ryhb9+++Pn58fr1a96+fUtbWxtGRka4urqiq6tLeHg4T548YciQIVRXV5Oamkpqaip+fn5MnjyZfv36iU0TdHOsFy9eLL7rva1r164xYMAALCwsCA0NJSsri7FjxwoDdWlpqRjI3bp1i6ysLAYNGiS0q87OzjQ1NREeHi5kWV5eXhQVFdHY2ChkWYcPH+b333/n008/RU1NDU9PT8Fsf/z4MefPn+fAgQPIyckxZcoUWlpaaGxsFKEGycnJAkfam5L4GIYMGSIGa8ePH6ezs5Px48djamqKr6+vkHhduHBBIAAlRILc3FwOHz7MoEGD8PPzIywsjPv374twCQllQjKUKSws5Pjx40hJSYmtOnQPXebNm4esrCzFxcVUVlYyZcoUZGRkkJWVpaio6KP49b1uXg0NDVFQUKC4uBhpaWkWL16MpaUlL168IC8vT0wtJJw3yRpZchN88eIFb9++7YGSyszM5MmTJ0D3Rezq6kp0dDQNDQ388MMPrFq1Skw/oftikqy8qqurOXDgABMmTBBf3KtXr3LhwgX8/f17rXktKirCyspKTH937dqFjo4O//jHP8Tfn5ycLHBd+vr6lJWVUVtbS0ZGBrm5ubi7u+Pv78+bN28ECmzgwIFs3bqVzs5Orl+/jpOTE7NmzQK6J5D+/v7885//5OzZs7i6unL06FE8PT3JyMjg2LFjQuMkJSVFTU0N6urqmJubY25uzsWLF3v1GltaWoRj3tramnHjxgk0kmT9m5SUhKamJidPniQnJ4enT58ydOhQrKyshLns/PnzlJWVoaWlxd27d1FQUGDPnj3o6elx8OBBQkJCyMnJobGxEScnJ8aMGYOLi4sQhGtqapKXl0dBQQEaGhoCF3b37l2SkpJYsmQJ/v7+aGhoCGbpx1RUVBR2dnYoKytTUVEhVnmSeMr8/Hzq6urw9/fn22+/FVgXZWVlJkyYgLW1Nbdu3aKkpISYmBh0dXXx8/MTCLUHDx6Qm5uLioqKOIn/3VTW2NjI7du3BV5EYk77OzKqpqaGnJwc2tvb8fDwICAgQPz7j6nbt2/z+vVrgoKCGD58OFFRUcTExBAVFUV4eDi+vr7Y2NiwdOlSpKSk2LBhAwcPHsTX15dZs2YJegZ0a35v3rzJp59+2oMTqaysTGZmpkCeGBoaYmRkRE1NDfn5+QwZMoR58+aJPPmQkBDGjBmDk5MTr1+/5tWrV//CyO1NSUwtCgoKVFVVcfbsWVJSUvD19e2RiHPv3j1Wr16Ns7Mzr169wtnZmZ9//hlAfF5hYWHk5ORQX1/PmjVrBE7vzJkzhIaGYmZmhra2Ng8ePODAgQO4uLgwffp0FBQUMDU1JTc3l7a2NoHokzhlw8PDGT16NBMmTODixYu9al7T0tKQk5NDV1dXJNLV19fT1dUltP/+/v74+PgQHh4ucHzFxcUkJiYiKyuLoaEhpaWlXL16lejoaBFWIUmm2rhxI3JycpSVldHR0SFMIIaGhv/yoD979izbt2/niy++YOPGjdTW1lJXV4eDgwNRUVHiXtabOnToENeuXWPTpk0sXrwY6J74WFlZ0adPH3788Udu3ryJmZkZYWFhQru6Y8cO8vLy2LNnD35+frS3t9PW1oaXlxdSUlKkpqbS3NyMr6+vkAWEhYVx9+5dIacYMWIEbW1tYgo/depUvvrqK8zNzUlJSSE0NJS7d+9y7tw5WlpaWLZsmTCvfmxJHtQSNrjkf4+NjeX169eMHj0aRUVFfHx82LBhA48ePSI2NhY9PT2mTp3K06dPaW9vZ+bMmZSVlfHrr78CiDSljIwMcfDLzs7m/PnzzJ07l8GDBzNw4ECOHz9OQUEBpaWlQpI1cuRIPv/8cw4dOsSgQYOwsrLi1KlTPH/+HHNzc3R1dXvVvCYmJhIWFoahoSFeXl60trYSHh7OyZMnKS4uRkNDg4CAgH8hDc2bN4/Ozk4RwuHr60tkZCQHDx7kt99+Y9asWWzYsEFcq6NGjWLjxo1CzywhgWhqapKVlUVcXBwBAQGYmpoKfJqkgoODGT58OG1tbWJo0puSEHygmxyRkpKCs7Mz+vr6LFy4kKNHj6KoqMjDhw+5efMmUVFRPH/+nIEDBzJ8+HDk5OSoqKigubmZgQMHMnjwYNGs/T2A58mTJ1y+fJmBAwfi7e1NYGAgNjY2BAYGYmRkRFRUFFFRUSQlJTF37lyOHz/O9evX2bZtG9bW1vz4449ER0cTHBwshkIfU+/evUNZWZnHjx9ja2uLlpaWCFJ4/vw5ISEhLF26lNbWVq5evSqCV9asWSPihy9dukRISAi6urp4eHhw+/ZtYmJiWLx4MYaGhjQ3N5OZmSkkc9nZ2Tx8+BAPDw9mzJghZFBubm4Cr3jt2jXy8/OZNGkS5ubm1NXV0dDQ8FGvrdfNq7OzM15eXsKwsmHDBlxcXNi6dStlZWXMmTOnR6M5evRorK2tRTNrbW0tEoFycnLIz8/niy++QFFRkZ07dyItLc3PP/9MTk4ODx8+7BGvJ0kK0dbWprm5mZaWFoYMGcL+/ft59uwZW7ZsYcKECbS1tdHa2iq+PL2prq4uMf7Oy8vjypUrqKqqiinlsmXLCA0N5dWrV9y9e5exY8cye/ZshgwZImLikpKSSElJQVdXl40bN3Lw4EGkpaVpbm4mMTGR7du3Y21tTVJSEq9fv6asrAx1dXUhExg6dKhYR+Xm5nLkyBEcHBywtLTEycmJgoICPnz4gJubW6+jUwH++c9/oqSkhIaGhkB3SfRn+fn5AmY/duxYAKHXlEwnraysCAoKoqamBjMzM/H32NjYiJXRkiVL+OSTT8jIyOD333/H29ubr7/+msePHzN79mxmz57N/Pnz6dOnDwcPHmTfvn1UVlZiYmKCubk5/fr1E6/tf2fR/6eys7MjIyMDY2Nj9PX1yc7O5tChQ+Tl5WFoaMjOnTvFBSap+vp6lJWVaW5uZu3atVRVVbFmzRoRmTt9+nR+/fVXIiMj2bBhA9AdxiD57v695OXlGT58OCYmJsjJyaGlpUVBQQFDhgxhzpw5qKmp8fLlS96+fUtmZua/mAI+piSneIkGcvbs2Zibm9PS0sLEiRNpbW3lwoULqKurM3HiRHFyHzBgAH5+fiQnJ/PmzRtKS0uFIUdfX5+uri66uroECmrJkiV4e3vz+vVrYmJiePnyJSUlJZibm7N27VoUFRWZOXOmYE1+9tlnAHz//ffs2LGDNWvW8NVXX4m1VW9q4MCBgoMrLy+PlZUV/v7+DBkyhEmTJtHV1cXvv/8uHjqqqqqimTh9+jRPnjyhb9++2NvbY2Jiwr1791i7di1paWnCXJWTk4O5ubm470i0dD4+PmK63tTUREZGBlpaWmhoaPS45oYMGSIYv70tJycnLCws2LNnDxMmTODp06dIS0vj6+vLlClTuH79OoaGhlRWVvLbb78J3rWjoyPV1dWoqKhgaWlJdXU1VlZW1NbW4urqKsIGLly4gLGxMQ4ODhgaGuLh4cHTp0/JycnpcVAqLS2lpKSEJ0+eUFxcTG1tLY8fP+aXX35BU1NTYIN+/vlnZs+e3avXGBQUxLRp04iOjub777/ns88+o76+niNHjmBnZ8fVq1f5+uuveyTRAaxatYoPHz7w5s0biouLCQwMFFO22tpaDh48SGxsLMuXL2f37t0sWLAAa2trLly4wIIFC4RpOCQkhNDQUH766SceP37MnTt3WLZsGWvWrMHc3Jy7d++Kpvy/8Uc0NTXR3NyMkpKSuA9oaWnh7e1NbGwsDx48wM7OjqioKDo7O1FUVBQTd1NTU7Zv305lZSUVFRWcO3dONF4lJSUsWrSIkpISof+LiYkR1+AXX3zB5MmTGT16NNra2gI3NWfOHOTk5KisrKSgoIBnz56hqqrK2bNnCQ0NxcPDgwEDBvxbM9H/VXl5eSgqKopJv76+Pl988QWjR4/m/v37lJeX/1t6gaenpwg1kvy+cePGUV9fT0REBOHh4T2oABJKxObNm0WsuKTx++STT7CxsUFWVlY41yV+Guj24mhoaBAfHy+u4d6U5B4i+VlZWVkUFhYyZcoUvv32W8aOHcvt27dJTExk2LBh1NTUcOPGDaysrHBxcaG9vV1M3w8ePMjmzZv5/vvv/0Xqt379embOnImlpSVZWVm8evWKw4cPc/fuXRYuXMihQ4d4/fq1iHw+efIksbGxlJWVARASEoKysjLTp08XPNqPqalTp1JXV8eECRPEYWL69On8/vvvJCQkiH+3aNEihgwZwu+//87Ro0e5dOkS8vLygkqzefNmISUCmD59ukBD3rt3j4SEBGpqavD19RVbaEkvY2ZmxujRo0UKYWpqKoqKivj7+4vnk7KyMmpqah+Fx+x152Nubo6WlhZ6enoYGhqira1NXV0dVlZW9OvXT6ybSkpKBDtN4oRubGxEV1dX3PwzMzN5+fIl7u7uDBo0iNmzZ6OqqkpLSwujR49m6NChyMjIiNWYvLy8MBy0tbVRXFyMvb09VlZWqKqqcvnyZbKzs4XxwMbGptfrSgUFBRQVFSkqKiIsLIx+/fqJ1SR0m7Yk8GV9fX0cHR17CKePHj3K06dPcXR05JNPPsHJyYmnT58SERHBN998g6GhIdbW1igpKXH//n2BsRk0aBBeXl6UlJQIll9OTg4HDhygpqYGKysrpKWliY+PJzMzE0tLS6Gh6W3Nnz+f9+/fi5vi31f5OTk5GBgYUFNTQ2xsLImJiSJ5xsHBAQ8PD5SVldHQ0CAnJwcVFRVcXV35/PPPSU1NZf/+/bi4uNCnTx/09PSwtbVl0aJF6OnpCY1pTEwMffv2Zf78+UD36l1GRobS0lL69OnD6tWrMTMz4+rVqxgYGPxbDt3/q2xsbLhz5w6urq74+vri7u5OamqqyFeurKwkKiqKuLg4ysvLGTRokBDeS1biCgoKxMbGcvv2bZKSkvjkk0/Q09MTE1MpKSkCAwNF45mQkICpqalI61FUVCQgIABra2uysrK4ePEiqqqqKCkpCS33qFGjxIq2tyxbyTpRMq12c3PrEejQ2tpKbGwsNTU1uLi4MGrUKL766iukpaV5/vw5urq6LFiwgNDQUOzt7UXDGx0djbu7u/i+Q/c10d7ejpKSkkicev/+PSoqKqiqqvLhwweCg4NZtmyZ0IoFBASwadMmTExMiIiI+K+mdhYWFuJeIUHgaWlpERQUhIqKCnV1dbx79w5VVVVsbW3FBDw1NZVff/1VTCcfP37M2rVrqa2t5cGDB+IQKUm30tbWpq2tTZhKi4qKejyMOzs7sbCwQFpams7OTtTU1Ojo6ODs2bNoa2szbdo0gB7syo8pPT09scGRlpYWEHk9PT1WrlzJoEGDcHd3F3i+iooKoqOj8fLyElOu+vp6sYGRVP/+/cnJySEvL08cUiUGjcDAQHFdSUpTU5OMjAxGjhzJoEGDMDIy4s6dO0RHRxMYGIi2tjZ2dnZCt9ib8vX1xd7enqKiIiIiIjA3N+fVq1fs3r2bMWPGcO/ePQwNDdmzZw+RkZEMHToUVVVV8fr27NnDmzdv8PLyoqWlhZcvX9LR0cH48eNRUlISGDYJQeDJkyfiEDxw4EDxut+/f09aWhp5eXkCizRjxgz69+8vosv/G61kUlIScXFxeHp64unpKegM6urqIuhEwtzt27cvzs7OyMvLU1RUxOvXrxk1ahTy8vJER0djbW2Nj48P1dXVNDc3U1RUJMIodHV10dbWpqmpibKyMqKjozEyMhJbDSkpKXJzc4mNjcXW1pYRI0ZQXV1NbGwsZ86cIScnB0VFRdzc3HrNsrWwsGDlypUYGBjg4eGBiYkJWlpaAoElOdjeu3cPOzs7pk2bhpGREZGRkWKCKBkWSEKIJk+eTF5eHtDdWEm2dVu2bBHX76RJk3j16hXnzp1j8ODBwoiVmZlJUVHRvyVD3L9/n1OnTgmz08dWW1sb7969E7i4kpISKisrGT58uLiGKisrqa2tRVNTEwUFBZG6+feAi/T0dGJjYyksLOTFixdCu11VVYWxsTEtLS04OjoKSoVkG5eWloaLiwtffPGFuM4KCwvx9fXFyckJbW1tioqKxPvQr1+/XjWv0G2kGjp0KC9fvuTatWsYGhqyevVq9PT0SE5OFs8maWlpgfSqqamhpKSEhoYGfHx8xGauo6ODhQsXYmFhQWFhIWVlZRgYGODn5yc2nkpKSsyYMQNTU1NevXrFixcv0NPTo2/fvkA3FcjExERIICoqKlBWVhYpX/+pet28urq60tLSwpQpUxg3bhxSUlKYmJhw8eLFHiJbiUnr7yWZPkoeDAoKCsTFxXHixAnGjRvH0qVLCQ0NZdq0aXz22WcioUsCHf77+F1JSakHHmjIkCH07dsXOTk5NDQ0xPqpt82rJFkrNjZWANj/3pwWFxcLUHJwcHAPjmxxcTF79uxBVlaWbdu2YWhoyL59+8Sq+MGDB8yaNYvLly+joqLCs2fPKC4upn///sKtfPz4cS5fvsypU6coLS1FXl6eTz75hNWrV2Nqasrt27fp7OzEyckJRUXFHuLp3pSxsXGPiNqGhgbu3LmDg4MD06ZN48yZMyJAorq6Gm1tbb755hvhKMzLy2P79u0EBARw9epV+vfvz40bN/jyyy9xcnJixYoVxMXFUVhYyLp164TOLSYmBktLyx4IrEGDBnHnzh2KiopwcHBAU1OT27dvM3/+fObNmycE7h9b79+/Jycnp4fe+ZNPPmH69Ons2LGDCRMm0NTUJC7QTZs2MWLECIqKiigpKeHs2bMkJiayePFiCgoKcHNzIy4ujhkzZpCZmYmqqipDhgwR37Hc3FxaWlpE8/H8+XNev34ttGBNTU0UFxdz7949vvvuO6ysrPj666+ZOnUqBgYGPHz4sIdo/2OqtbWVsWPHitSr/12ysrIMHz6c1NRUsrKyBJpm+vTpTJ48mSNHjrBy5UqWLl1KVFSUSI7R09OjoaFBNK8HDx4UP3/o0KEEBQUJ/W98fDwDBgzgxo0boolfu3YtUVFRhIaGoqen9/9h77zDo6DStv+bSe+9905CSEJIIRBKgNB7lSogCEQQREEExBUVQVFA1oDSBZFepEivoYYECKGkk957r/P9Mc6RrLpLfFll/XJfl9dIpp0zpz3nKfctjN3p06eL4ornxYkTJ5qFcdXU1DA2NhaFEmpqaixcuJB58+ahoaEhZISVlJRwd3cnJiYGS0tLkUu/bds2cnNzBXdpaWkpUqmUGzduYGVlxYEDB8jKymLUqFEkJSWJ79XW1sbf35+amhoRzSkqKuIf//gHurq6wuC6efNmi/p37949KioqhNe2c+fOIgfa3t4eOzs7IaH6xRdfcP78ee7cuYOVlRVWVlbExcURHx/fTI4Y5PvswoULqampaXbhB/nFbtmyZc1yE1VVVfH29hbr7Pjx4wB88sknDB8+HGNjYyEQ8Mknn7Soj+np6bi5uTF+/HgmT54MIPasuLg4UQxmbW3NkydP0NXVpX379sKLOWXKFCoqKrh//z6rVq0iPj6eNWvWsHjxYhYvXkxxcTGamprU1tZy8OBB4uLi8PHxYc+ePbi6urJv3z4SEhIICQnh7bffpra2lvT0dCQSiZAPnj17Nn5+fiJnv6Vj+P3336OsrIyfn18zIZb79+9z79499PX1GTRoEDdu3MDIyAglJSX27NnDoUOHMDQ0pFOnToLCqqqqik8++YT4+HgmTZpEQkIC3333HZaWlsyaNUsoK4I8hS06Opru3bvj4uKCo6Mj2dnZqKurM2PGDHr06MHcuXNJSUkB5HvgvHnziIuLE2l6z4P+/fuLUHNVVRWpqans27eP+/fvo6WlhVQq5dq1a0JFs6amRnClbtq0iQ4dOgjjtaKigsrKSszMzITx2qNHD6ZPn46+vj6ffvop+/fvp02bNixfvpynT5/y9ttvs2TJElHMrKurK9iFnkViYiJRUVHExcW12HjduHEjoaGhwpOr4LC1sLDg9OnTIrXBxMSEtWvXCiaLZ9fdjz/+yLp16+jVqxcrVqzg4sWLjB07lidPnmBqaopUKhX5qocOHcLBwYGuXbuKKMizkeLq6mr09PT44osvRGol/CJ9Xl9f36L+lZaWkpWVxQcffEBiYiJjx47FwsKCH374gYcPH/Lmm29iZWWFl5cXJ06c4PLlywCEhIQwbdo0zMzMhLCBRCIR8u7p6elCmVFxuaiqquL8+fOi0LW4uJjY2FiuXr1Ku3btqKysxMDA4FcRAIW6KfDfMV4VRNrFxcUcOnSIxMRExo8fj6enJ/fu3WPdunUMGTKkWZhQcRt9drJVVFQQGRlJfn4+Pj4+uLu78+jRI65evUpmZiY3btwgLy9PUHwoNLcnTJhA165dMTAwQFlZmYqKCmpqajA0NBSHQHFxMRs3bsTR0bFZEdfzoKCggOjoaBwdHQkICCAnJ4f4+Hisra2JiYnh8uXL6OvrM2TIEBH6z83NpVOnTmRlZdHQ0ICWlhbZ2dls376dNWvWCK7UM2fOYG9vLxZI7969BQsDyDlsJRIJS5Ys4cmTJ9jZ2TF16lSGDRsmPAjBwcFYW1uLwf0jIZLa2lrU1NQwMDAQodfdu3ejrq5Ov379uH37NocOHSIlJQULCwtcXV0xMzNrZsT7+PiI/CkF/P39GTFiBO7u7jg6OnLgwAF++uknPDw86NGjB4MHDyY0NJSRI0eKUENeXh4NDQ3Y2dmJlIMLFy4QHh6Oj49Ps9zG54VCbq53796UlZWxadMmbGxsGD16tEhH0NfXp1evXujr69PQ0MBnn31GSUkJbm5u6Ovr4+npyeDBgzly5AhpaWmkpqaK4ooJEyYI6dAzZ86goaEh6LfOnj3LqVOn8PHxQUdHRyiUjRgxgrZt27Jnzx5xcGppaZGens6uXbt+ddH7TzAwMKBjx44iBHPu3DkSExMZPnw4pqamgqtYoSGtoGAKDQ2lurqaiIgIOnbsiKmpKa6urhw/fpzHjx/j5eXVrCLV1tYWf39/UlJSyM7O5vLly7Rp04YxY8aIDczAwICIiAju3LmDiooK3t7ezJo1C21tbSHk8Ud4Xnfs2CHWlouLCyNGjBAV1Y6OjrRp00bkUYF8n1HMpSVLltC9e3dhuJaVlXH58mW0tLREpEFNTY3MzExKSkqEtKyCu1VRJAPyg+Tq1avY2NjQrl070tPT2blzJx06dBAeriNHjnDixAmR9/g80NLSEu2Pi4vDyspKFO4VFxeLdCJzc3NUVVXp168fN27c4MSJE4Jvuk+fPlhZWZGens7evXupr69nxIgRuLq6kp2dzbfffktNTQ1mZmZCWnrs2LFoaWnR2NjImTNnUFFRoVu3blRWVnL06FHi4uIYPXq0KBT74osvcHd3/0PFMApHheJisXPnTiIiIliyZIng/kxJScHc3FzwOquoqHDjxg3q6upEzvsnn3zClStXhJdSVVWVwsJCpFIpXl5eqKmpiYrv2tpa7t69KwohO3TogL+/v9irFGpFlZWV1NbWCuPSyMioxTRSOjo6QujkXxEWFoabm5tIEQoODha/oYuLC3369MHe3p6YmBh27NjBO++8g4uLC9bW1pw5cwZbW1usra2JiIjAzMwMXV1dlJSUMDc3x97entTUVDIyMsTeIZVKmxlTTU1NmJub4+/vLzhJHRwcBI3e8+JZYYmamhpiY2OJiooSQiE6Ojr4+/tjYWFBfn4+jo6OKCkpMXnyZOLj49myZQt1dXUMHjwYbW1tLC0tWbVqFVevXhWcotevX2fatGlYWlpy6NAhKioqePDgAUZGRsyaNUvwE+/fv5+NGzdiaWnZzEA9fvw4x44do7GxkaVLl4ow+/OiS5cuuLq6CvakoKAgwXize/duLl++jKGhYbPCo8zMTDIzM4mMjCQqKoqoqCgGDhzImDFjxOWwZ8+ehISEEBkZKVhzlJWVRYQyODgYGxsbtLW1RR1QdHQ05ubmWFpaIpPJiIqKQk1NjeDgYLGOWprismXLFhwcHETKgOJSvG3bNrZs2cK9e/d44403UFNT4/LlyygrK7NgwQLKy8tZt24dq1atEn0qLCzk3r17nDlzBktLS6ZNm0Z9fT0//PADjY2N6OrqEhkZydmzZ6murqZbt274+/tjY2MjRHAUkfva2lpyc3PR0dERaUOKtLX/hJYnTCJ3GS9atIhvv/0WHR0devbsiaenJ3v27GH79u3NvJEKLV2QG00K466pqQk1NTX69OnDwoULycnJoXv37pSUlLBu3ToMDQ2JiIhgwIABJCQkcObMGTIzM1FTU8PV1RUDAwPhOTM2NhYGMsDRo0dZtmwZQ4cObbHxquB1VKQKnD17Fi0tLWbOnIlUKqW0tJSePXvi4eHB+fPnOX/+vKC/UpCEV1dXEx0dzYkTJ9DR0eHdd9+lT58+fPrpp4IySktLCz09PbFZymQyqqurMTMzY/z48QwYMAAfHx+8vb2FprOKigpmZmbCaD958iSPHj1q8fgp1JJUVVVJS0tj3759In0jKiqKx48fi8Trt956i2HDhqGmpiY2e1VVVQwNDfn444+becP19fVZtmyZkDwsKSkRXLRBQUHMnTtXzIPa2loRGnvw4AE6OjoMGTKEtLQ0li5dSk5ODhs3bqR3794tTo0wNjamT58+IpT2+eefY2FhQUhICCEhIaxatQonJyfh/d23bx+ff/45Xl5e+Pv7c+jQIby8vAgPD6dTp05CZ9nY2JiOHTsyduxYnJ2duXv3LpmZmc0291u3bpGRkcH8+fNpaGhgzpw5GBsb8+6779KtWzdB26Qwcp4+fUp+fr6QEX5eBAcH89VXXwEIQQGFFwTkh6pC0q+kpITz589TXl7OzJkzeeWVV+jZsyc//fQTJ06cwNbWFiMjIxE2KigoID09HWtra6ZNm8Zrr73Gxo0bWbx4sRBZWLFiBSD3/jx48ICDBw+Sn5/Pp59+ipmZGVOmTBFqNC4uLjQ2NjbLK3seHD58mMOHD/PZZ5+Jy1txcbEQXXBzc0MikVBSUkJGRoYoYgR53rOjo6PYE06ePMmGDRvQ19enrq6O0NBQbt++LSqo6+vrCQsLE3PtWa5IhXxvr169aNeuHWfOnOHq1avMnTtXHHCVlZUtNnwUv2NdXR3p6emoqKgIY+/u3bvExcXRpUuXZvm0dnZ27N+/nxs3bginAcgFHTZu3EiHDh3EfL1y5Qrr169HQ0MDW1tbYmJiaNeuHSEhITg5OVFTU8PJkycxNjamW7duREVFsXr1ajp27CgM1++++47w8HD69+//h4xXqVRKVFSUSGVYvXo16urqnDhxAmNjY+bPny9yewcNGiTyQfPz80XxjaLAsmvXrnTo0AGZTMYnn3zCvXv30NLSIiQkBH9/f0xMTBg3bhzbt29n7NixzJ49m/Xr14vxqaurQyqVoq+vj7KyMmVlZezfv5+mpiZBdN/SMfTw8BDpYQpkZ2ejp6eHn58f7u7u9OrVi6SkJI4ePQrI918vLy9xMT979ixffvklhYWFbNy4EU9PTxGJq6urw8TEBCsrK1G5bm1tja+vr7iEnTx5kvv379O9e3fMzMyorq7mzp07pKenM3z4cJYsWYK9vb0wup41cJ8HjY2NSCQSZDIZWVlZIv2isbERAwMDPDw8mDdvnrjMFhcXU1VVJULbw4cPJzw8XPCUOjg44OTkhK+vL05OTpw9e5YdO3YwePBgoaSZmZnJ+fPnMTIyIjw8HJDvNYsXLyYxMZE+ffqIC0N6ejrnzp3j1q1bTJ48mXnz5hEWFtaiPg4bNgyQr8mDBw82q4kwNTVFXV0dV1dXgoKC6NatG9988w2XLl3i1KlT3L9/nx07duDv789HH32Evr4+R44cwdLSUtDoffTRR+Tn59OxY0cMDAxYt24dHh4eXLhwQTivQG4vpaSkYGpqSmNjIxMnTuTQoUN89913wkGiqFNoCRITE/Hy8mLZsmXcuXOH7777Dnd3d1555RUePnyItbU1fn5+IuI0efJkVqxYwQcffMDy5cvx8vJi5syZoo2RkZFs27YNb29vhg8fTm5uLh9++CFxcXG4uLgIEZ3q6moGDx7MtGnTiI2N5eTJk4DczlLwxUulUjE3FUbr89Qrtdh4HTFiBA0NDYKXcsiQIdjb21NWVoa3tzdffPEFgwYNIiIiguXLl+Ph4cEXX3xBQUEBK1asICEhgWHDhjF9+nTmzJkjciwuX75MWloaISEh4kfavXs348aNQ1tbmzfffBNlZWWkUqkImzQ1NYnNTktLiydPnrB7924iIiIYMWKEUNFpCSQSCWPGjGHPnj2cOnWK0NBQ3n77bSQSCe3atUMqlYqNyszMjK5du2JiYkJjYyMFBQXCS+ng4IC1tTWVlZX07NlTVGgXFRXx4MEDOnbs2GyAJBIJ33//PdeuXeONN97A399fCASYmJjQt29fNDU12b59Oz/88APl5eXo6uri5OQkcm6eF+np6cTFxYkq/OXLlxMbG0tycjKurq4MGTKEixcvUlNTg6enpwg7RkdHs3DhQpKSkoRijoJtoby8nIaGBhITE4mNjeXUqVNcvHgRZWVlAgICxIFz/fp1ysrKqKqqEvRpT5484ezZszx48ICxY8eyaNEiYmNjSUtL4/jx480M5OdBYGCgyOtqampi8ODBwqMIcq/Hs3m0/v7+zJkzBxcXFywtLUlKShIesAkTJvDo0SM+/fRT2rVrx9dff01DQwMLFizA2NiYGTNmiM9VFDa4ubmRlZXF7du3ycnJIScnh2PHjuHs7ExDQ4MwDEAuZWtjY0NiYuJvem9+D4qDr66ujkePHtGzZ09R8amAwjuvr6+PmZmZMGz19fVJT08nPz+ftLQ0bG1tGTNmDMOGDUNDQ0PI51pZWQm+Y0X7OnbsKLwgERERzfK7b968yZ07d7C0tGT06NG4ubkJg/z8+fMtGMHmUEgh7tq1i+joaObMmUNNTQ1bt26lT58+Itlf4RmorKxk37591NTU0K1bNzw8PPDw8GDatGnY2NigoaHB559/zsWLFwU1Tm5uLqNHj6aiooJ33nmHJUuWAL8cxD169BDrPjQ0VBQVNDY2oqSkxIwZM+jQoUOLVLaqq6uZOnUqgYGBjB8/Hmtra/Ly8jh9+jQpKSk4Ojo2o1C7efMmFy9eRFNTkw8++IDg4GBSUlJYv349//znPzE0NGTEiBHi9+jcuTObN2/G3t6erKwsVq1aJdaok5MTtbW1QlpTRUUFX19f3njjDXx8fGhqauLHH3/k3r17vPvuu3Tp0uUPVXGfO3eOzZs389577zFp0iRmz55NfHy82MMXLFiARCLh2LFjbNy4kfj4eDp16oSlpSXm5uYiSjJhwgSR+yuVShk3bhzp6ens27ePvXv38uOPP/L6668zd+5c4dFVqPmAnBO7TZs2ZGdn8+TJE/r06UNjYyMXL14kNzeXjh070r59+xb3T1tbm5CQELFHbd++naamJiZOnEhcXBwbNmwQNQG5ubksWLBAfL+CCcfKyoo2bdqwY8cO8vLyWL16Ndu3b2f58uWCS7tHjx74+/sLx0VVVZWgTvzoo4/Iycnh5MmTpKen89prr+Hk5MTWrVuF/OaxY8fw8PDA1dW1mbH0PFAYU7q6uujp6VFcXCwKrSZNmsTHH3/cLEUrMTGRXbt2MWvWLNq0acNHH31EWlqaiDLcunWLW7duoa6ujqenJ59//jnR0dGsXLmS/fv3s2vXLqysrDA3N+fhw4ecP3+e3NxcIiIiCAwMJCwsTEjN7tu3D1NTU3HRVihx/hFUVFTQo0cP3NzcRJRRJpMxbtw4OnfuTGNjI/7+/tja2mJmZkZTUxO3b99GS0sLY2NjsrKyhKDL8OHDsbOzo6CggI8//pjU1FTGjBlDXl4eGzduBH4R0wH52k5MTBTe9oSEBJYtWya4UZ9N8VN4X1sCb29vXF1dmTJlCmPGjBF5+nPmzCE/P5+2bdty4cIFofKYmJgo6A9NTEyIiYlh4MCBaGtrM2nSJCZOnIi2tjaHDh1i+vTpzcRWEhISkEqlIiKguGQp6oEUNs3p06dpamqib9++SCQSCgoKSEhIwNLSspmk+++hxcbrlStXkEqlIm/xrbfeEmFwBfUTyCdoVFSUyEu9evWq8BQ9efIEV1dXcdtfs2YNd+/eZdSoUQQGBhIZGYm/vz+9e/fm3XffRUVFhR07dojP/u6770hISGDgwIGoq6sL6iVnZ2du375NdnY2y5cvb3GuJMgPK0dHRwoLC3ny5AmvvvqqUGbR1NQUlXPFxcU4ODgIz0dNTQ0FBQWCD7GqqoqgoCAx0YqKimhoaEAqlZKdnU1mZia1tbVUVlbi7OyMhoYGGhoa5OXlcerUKaysrNDX16e2tpbLly/j7e2NtbU1Bw4cEMIEr7/+Om5uboKI/nlRWVnJlStXADl5cdeuXTE1NUVJSUmoiFhYWHD37l3hCbp37x4//vij8BQ+ffpUGIgmJiYoKytz6tQpNm3aJIoDFAntysrK/PDDD3z55ZeAnHJJwWXYv39/sQlIpVKWLl0qWAtmzJiBvr4+H374YYv6p6GhQX19PSoqKri7u/Ptt9+SnZ3N9evXqaqqQk1NjcjISNTV1TE3N8fBwaFZ0ZqJiQlPnz4lOjoaX19fVqxYQZs2bUhLS6OyspLbt29z69Ytxo8fLzafuLg4njx5gqWlJSYmJpw/f55bt27h5eUl8nwePXpEaWkpOTk5wjMYFBREUFAQBw8ebJGBp6j8TUpKwtLSkrZt2yKVSikvL+fy5ctUVlbi5uYm8nIV/KYg5/ts164dampqokhFEfLT0NAQFHSpqak4ODiQkZGBioqKyF3Lzc3lxo0b3L59G0NDQ4YOHSrmzrhx44iMjGTOnDnMnDmT2tpaTp06xZEjR1p8yVKkVpSVlQkaJC0tLRFxKSsr4/bt2+jq6qKvr09ubi7JyclkZGSIwpyKigpsbGzw8vIShRAK3mBNTU26d++Or68vkZGRWFtbY2lpKcQGamtrqaioQF1dnfLych4/fizYMGxtbTly5Ahffvklnp6edO7cGT8/vxYZr97e3oKAXWFwHjx4UKQ8TJ06Vfwd5GHKs2fPMm7cOOHxPX78OOHh4SIMrshHLi0tpb6+nnHjxok9586dOxQUFIgLv6GhIa+//jqpqami4PC1114D5PvVkydPcHBwYOrUqX+I1QR+UUaTyWSoqanh7+/PnTt3WL16NcOHD8fFxUV4gRMSEqioqMDMzIwePXqIML+pqWkzCjeF58nf319cjuLj47G3txeROQcHB2GA3L9/n+zsbPFvBe+xiooKOTk5pKSkCOOgpTmvSkpKwnA9cuQI3377LUOGDEFFRYWtW7eybt06Xn/9dQYMGEB4eLigwiotLcXY2Jj+/fvTq1cvvv32W2bPni3ouxT1JIqxUFNTw9LSkidPnpCWloa1tTUWFhYUFBRgb2+Pjo4OCQkJPHnyhLq6OkExBXIKtF27duHt7c3cuXObeYmfB01NTaKeRV9fHxcXF9q2bUtWVhb29vYibUJFRQVVVVVu3bol0qPWrl0rUg1LSkqIiIjg9OnTJCUlYWdnR9u2bTE2NqZ3795cunSJbdu2sXDhQt544w2sra3Jyclh9+7dPHr0CAcHB2bMmCE+7/jx4/zzn/9k1KhRfPXVVyJCUVpa2qL+gTwUXldXx5QpU5rliEskEtq3b9/sYlNSUoKRkRHjxo0jPz+fx48fExQURFFRET/++CNGRka89dZbAKxevZp169bRp08fxowZw9WrVzE3N8fOzo5OnTpx/vx5VFRUSEtL4+nTp1hbWxMYGMjmzZvZtm0bAG+++aYwNmNiYtDR0WlWcPk86NevH7a2tqLuICkpSVARzpgxA5BzkytqB9LS0li4cCHvvvsunTt35vvvvxc5/TKZjM2bNzN79mysrKx44403yMnJYeDAgfTq1Qt1dXWMjY05duwYly9fpri4mLKyMiorKykoKODixYt07tyZ0tJSQRGoiPopIrzPc1Fu8Y60c+dOCgoKqKurw9ra+nct5B49erB//358fX1RUlLi1q1b4rmUlBTmzZuHs7MzsbGxPHnyBDMzMxYtWkRmZibvv/8+ixYtonv37syfP58HDx4I/liQ50SWl5fTs2dPKioq2LVrFyNHjhQk+xcvXqSoqIjKyspmtF3Pg6KiIk6fPi1uKBEREfj7+4tb1cKFC9HU1BShlLKyMiQSCTo6Ojg6OvLdd9+xbds2TE1NWb58uZgYikMgJyeHhoYGzp49S2pqKtXV1VhaWhIUFMSECRNwdXVlwoQJHDt2jHPnzvH666/z2WefkZ+fj62tLW3atKG4uJjFixczatQo0tLSBGfl86KpqUmE2zw9Pfn222+5ePEi7du3p6mpibS0NBobG+nevTv29vZcuXKFDRs2CD7PpqYmIU2qgLa2NuXl5airqzN48GAmTJiAuro6R48eFXQfBgYGfPzxx4SEhPDDDz8gk8nw9/enoKBAeJEVUFDE2NnZ0b59+2aXl/+E+/fvNwvlg3wDX7x4MXPnzuW9997jq6++EvQ/FhYWFBcX09DQgImJCZqamkRFRXHixAn69esnCseuXr3K/Pnz0dPT4/PPP2/mvdXT00NbW1voY1dVVdG2bVvee+892rZtK1gs7t69y7vvvouenh7r16/H3Nyc+/fvt9irlZWVhZGRUbNCCG1tbXR0dDh16hSbN29myZIlzJs3T4y5oqjK2NiYadOmCfljgD179ohw2VtvvYWpqanIPw8ODmblypVs3ryZTz/9lJ9++olRo0YxfPhw3N3dRQTB2dlZCJOsX7+e+vp6Jk+ejIWFBf369RNKQc+L+Ph4UlNTmTdvHk+ePOGjjz7C0tKS9evX06FDByZNmsQPP/zA0qVL6d27N1evXmXTpk1MmDCB2bNnk5KSQllZWbOigJSUFDIyMpg6darwhO/fv5/PP/+cJ0+eNJMOVlJSwsbGRnhPDA0NcXNzE/RkQ4cOZcOGDbz66qv06NFDcEE/LwwNDenYsaOowAa5PK9ChU5huFZXV6OhoYGNjQ0dO3ZsxiygUJQ6evSo4LD9+OOPaWpqwtXVlV69emFlZUVaWhoFBQW4u7v/inquvLycZcuW4ebmJlQDDQ0NmTp1KsXFxdy/fx8LC4tm+cXPi3HjxjFy5EhsbW0pLi5mzZo1fPfdd5iamlJVVYWWlhanT58mPT0dT09PXn31Vfr374+hoSHFxcU8ffoUNTW1ZgbXtm3bOHjwIMHBwQwePJj169djYmJCUlISK1euJCIigu7duzNixAiRVqbIu9bW1mbIkCGYm5uTlpZGYWEhSkpKIse7pYUwirm/ceNGVq1ahbGxsWAAsLe3R19fn1u3bvHpp5+Sl5fHyJEj0dTUJD8/n7Nnz+Li4kKHDh3o0qULH330kaCX++GHHwgNDSUgIIDbt29TUFDAgwcPxPgo1M7U1NT44YcfiI6O5ssvv0RHR4ezZ89ibW1NTU2N0KPX0NDgzJkzPHjwgLfffrtFfXy2PiExMVGohBUWFrJt2zaGDh3KuHHjBI+vsbExAQEBIt1NQ0NDREPWrl0rCqEHDx4s5pe3tzcrVqygb9++zJgxg8OHD7Ns2TK8vb2pr6+nbdu22NjYNJv7MpkMc3Nzunbt2iy1pqVsCiA3yp+XWnPPnj3k5ORgY2MjbJCkpCS8vLwYM2YMHh4e/PDDDyQkJHDv3j1R3O3r64uXlxejR4/GyMiIrVu3MmrUKAYPHsy6detEWh7Iz1N3d3cGDRrEqlWrAHl6yGeffYaHhwfvvPNOi/r37NotKipiwYIFHD58GFdXV1avXs2gQYP4xz/+wbBhw0hNTWXv3r3s37+fadOmYW1tTWxsrHj/vn37KC8vZ/369QwbNgxdXV0WLFjA3bt36du3r0jZKCkp4enTp6SlpaGtrc23337Ll19+ycKFC+nZsyfLly+nsrKSPXv24O3tja+vL6ampjx48OC5lENbbLwqbvw1NTWCPeDGjRvcv38fmUyGk5OT+O/ZH8zQ0JCQkBDs7e15/PgxN2/eJDMzk2nTplFVVYWrqyu+vr60b9+e9PR0IiIikEgkglfw4cOHwuOno6NDYGAg1dXVXLhwgW3btnHhwgX69OlDfn4+bm5uVFdXs2bNmmaFF88DLy8vES6vqqpi5cqVREdHi9t1QkIC3t7e4tC/ePEi+/btY+HChdjZ2XH37l1ATgkSGhoq8v6qq6sZMWIEHTt2JD4+nuvXr6Onp4etrS1KSkoiwTwgIIC33nqLffv2sXr1ary9vQkNDRV8cePGjWPUqFEiX/PZxfy8ePLkCf379xdccsXFxaJIycrKitraWqysrESf9fX1CQkJoW/fvr/6vh9//JGUlBRCQkLo06cPBgYGWFtbC+MxIiICZWVl3Nzc6NSpE87Ozujp6TFjxgyRezVmzBiRC6WAtrY2o0aNasbz+7xQGI8PHz7k6NGjpKWlkZycTK9evZg3bx6GhobcvXuXwsJCPD09SU9PZ9y4cQQFBYnDIT4+nr179xIZGYmpqSmhoaFkZGQI6TuFV19RfakI2ZeVlaGlpUXHjh2xtLTEz8+P8vJynjx5Qtu2bbGwsKBt27YiLHb27Fk+/fRT4U14XmhqaqKmpkZaWhq5ubkiAgCIiu1nVVievalraWnRt29famtriYmJ4fbt2/z444/ExsZiY2ODTCb7VZU6/CKFmZGRwbFjx3jjjTcwMjLiwYMHwvhYtmwZZmZmHDp0iLi4OBobGwUNXEuNVwVFlYImqWfPnhgYGAgeYm1tbdzc3EhJSeH27dukp6cL8Q1F6k5hYaEwSCorK0XeoLe3t4gq6OrqimLSy5cv8/nnnzN69GhxMS8oKMDJyQl9fX3y8vJwdnYWBnFgYCDt2rXDwMCgxXRnvr6+LFmyBFVVVeLj45FKpXTt2lV4KBUpVQqPtY6ODiEhIbi7uwu6t8bGRlasWMGwYcPYvn07mZmZFBYWkpOTg4aGBoWFhUKR0Nramo4dO2JhYcGDBw/EPqCkpCRUDQsLC9HX1yc5ORkXFxdMTU2bhflbivr6esEuUFNTQ1VVFRKJBCcnJywsLGhqasLNzQ01NTX8/PyE8l1VVZUIJzs6OuLv74+Ojg4pKSnExcVRX1/PwYMHycnJYf78+ZiYmBAZGcnmzZsB+PDDD4WnVcHOcOHCBWpra4UKXkVFBTk5OWLPAp5LU/1ZpKamkpiYSHJyMt7e3vTq1Ut46bp168by5ctFxMbIyIjBgwdjY2PD6tWruX37NqmpqXTo0IGoqCjOnTtHYWEhenp69OrVS5wp8fHxVFZWoq2tLT5bsQ/r6OhQUlLCqVOnOHHiBObm5vTs2ZPhw4dTWlqKqqoq7du3p0OHDkRGRlJUVPSbnKz/DhKJRDDpxMXFMWvWLAIDA7G0tKS0tJSLFy82yxG1t7dn0qRJghLMxsaG1NRUbt68KZh3HB0dsba2RkNDg0ePHlFRUYFEIqG4uBg/Pz8ePnzI9u3bcXd3p2PHjkydOrUZQ0ZlZSXm5ubMmDFDpF+sX78eiUTyh4p8FVEWZWVlQV0YHR1NRkYG3bp1E5Rgd+7cQV9fn0ePHnHw4EF69OjB66+/znfffUdTUxMDBgwgNTWVL7/8kqamJuFZTE1NJS4ujoqKCgwNDVFVVWXUqFH8+OOP2Nraoqenh56eHlFRUTQ2NtKlSxd2795Nbm4ue/bsEVLz/v7++Pn5NSuUfh4oUhY7dOiAoaEhnp6eXL16FTMzM6qqqgS3vb6+PrGxsUgkEoyNjcnPz6eiokJE2g0MDAgPD+enn36ib9++ImVt6tSpzJkzhy+++AIvLy/y8/PJzMxkzJgx9OrVS+yXr776KocOHSIwMBAHBwe2bdvGypUrhXOqsLCQM2fONJOR/z202HhVeN2kUimqqqrU1dVx+fJlNmzYgLu7O6NHj+bp06dcuHCBgQMHCgNIR0eHwYMHExYWxpkzZxgxYgQBAQGi8KOkpER4j8LCwvj888/ZunUrc+fOxdfXl8TERNasWUNRURFvvPEGkyZNIj09XdCAnDhxgpMnT+Lq6srcuXNp27YtP/30Ezt27GDWrFnP3b9n8yWPHDnC1atXcXZ25osvvsDZ2ZknT57Q2NgovCVXrlxh48aNIm/NwsJCFAk5OjpSWlrKJ598Ql5eHh4eHvj5+eHq6oqurq6gz8jPzychIUGkS8yaNQs3NzdGjBiBp6cnP/30EyBPnG/fvr1I1m5qampRnqQCycnJIsVDWVmZsLAwNDU1kUqlou+KSkegWcgV5IeQ4rC/ePEiGzdu5PPPP2f27NnY2dlRUVFBfn4+Bw4c4M6dO4wfP17IlG7evJni4mLmz58vjFdlZWWRMK+Al5cXbm5uGBkZtdgbYm5uTmJiIjt27GDDhg0A9OrVi2+++UYY58rKyvj4+FBWVsbZs2eJiIholrfVtm1bkbOsKGizsbFh06ZN4uBQhK+VlZWRSCTY2dlRX1+PkpISSkpK1NTU8ODBA27cuEFMTIyoBu7YsaPo782bN4mNjW2xbrxiIz948CCPHz/mrbfewt3dnZSUFAYMGMDbb7/9m0a/glrIwMCAyMhIPv30UzIzMwkICGDIkCF4enqio6ODqqqqqEBXQE1NDW9vbxGaz8vLw9LSkk2bNvHw4UPeeecd+vXrx5o1a5g0aRLV1dXNjOqWYt68eaxZs4b33nuPWbNmidD1hx9+SHR0NJGRkYSGhmJjY8PHH3+Mu7s7mzZt4u7du2zcuJHBgwfj7u4uCtCsrKzo1KmT8OhJpVI8PT3p06cPrq6uvPHGG0LIwNjYmClTpog82zVr1uDs7Ex0dLRIpwB5wY5Czaquro7Dhw8/d/88PT3x9PTk/v37xMbGYmRkxIABA4R04r9CT0+PkpIS8vPzqampIT8/HyMjI+zs7HB2dqZt27bExMTw6NEjSkpK6NSpE8OGDUNLS0vkSSrSmM6ePcuJEycwNTWlU6dOvPLKK2hoaKCvry9o0JSUlHB0dMTV1ZWqqqo/tNdcvHiRQ4cOMWbMGMaOHcuqVavo0KEDTU1NdO7cmS5duiCVStm1axcnTpzg2rVrjBgxgn379gl6IoXhmZmZiZGREVOnTqVv376cOnWKy5cvM27cOPT19YmLiwMQkuLwy+WyoqKC5ORkSktLhTiEiooKGhoaSKVSKisr0dfXbzH1YGxsLJGRkfTp00dcfBUGsKurKy4uLqioqJCRkcHNmzextLTE1dWVgIAACgoKyMjIYMuWLaxZs4aHDx+ioaHBmjVrRMSusbERFRUV6uvrcXd3JzQ0VLAsKPr35ptvsnPnTkB+jo4aNYopU6awbNkyxowZQ1xcHNeuXeOVV16he/fuqKmpieKx54GCv/TRo0fk5OT8ZpToWaeGp6enUIdUpGMYGRk1Mz7z8vLE3xVjNWjQIG7evCkK+Hr16iUuHMHBwc3er6WlhY6OjlDaunTpEosXLyYoKOhXUbfngcJD2LZtWwwMDDh79iyzZ88mNTWVjRs3MmPGDA4ePMiTJ0/48ssvKS0tZf369QwZMoSlS5eipaXF8ePHOXDgADExMaSlpTF69GhAblQrpHqPHj3KzZs3WbduHT169BBF17Gxsairqwu+cwX93VdffSUKnWfNmiUiQC2FQlZWRUUFLy8vli9fzuTJkykrKxPFfBcvXuSrr77i3Llz6OnpERISgqurq6iBcHd3p02bNjQ1NbF27VoSExMZNWoUR44caaaq1bt3b6qrq+nbty/vvfeeSCtVjNuzPNOHDh0iLS1N1CatWrVKcI3/J7TYeE1ISMDc3JzMzEyKioowNTWlbdu2zJw5U/BWTpo0iVOnTqGsrMyUKVMA+WZZUlLCvHnzGDhwIOPHj+f+/fu8//771NbWio07Ly+P48ePo6SkRFBQENevXyc5ORkHBwemT59ObGwsZWVl3Lx5E3Nzc4YMGYKbmxvx8fEUFxeL6kczMzPGjBkjeCufF8XFxdTU1GBtbY2zszONjY1oamoSEhKCqqoq4eHhPHjwAFtbW2QymZCRKywsJCMjg8WLF3P+/HmOHTuGoaEhJiYmDBo0iGvXrpGUlISrq6uoAn/2N62oqMDa2pr8/HxB1zV48GBRsHb58mWuXbvGlClTBM3NvXv3WkTNo4CzszPZ2dnY2tqipqYmPGylpaXcvn2b3Nxc/P39m+VI3rhxA5lMhpWVFWZmZsKYnTFjhmAuUKR2KHImr1y5QnJyMkOHDsXX1xdfX19u3rzJmTNnuHXrFtra2kKzWkHFZWlpSUNDA/r6+sJAaGnRXVNTEw8ePMDa2polS5bQ0NBAZWUla9euxd3dXcyRmJgY3nrrLVHc8Gw49ZVXXkFZWZn09HRMTEwwNjYmODhYeC2OHz/Oo0ePBH2SnZ2dMPoUqKur4+bNmygrK9O9e3d2797N119/TefOnTEwMMDPz4/27dszZ84cOnbsSHp6eov6WV1djZ2dHY8ePWLp0qXo6ekRFBTE9OnTAbnXe9euXSK3s3379ujo6Ijxvn//PocPH6ZNmzbMmzcPJycnwWoB8pDos9zNysrK4tDp2rUrjY2NHDx4kP3792NnZ4dMJmPr1q3ExsYyceJEUZh2584dHjx40KK+AYLmy8DAQOR/K4wRFxcXIQqgpaUl+E+fpalzc3PD3d1dqPmpqalhamqKgYEBtbW17Nmzhxs3bjB9+nQcHBwIDAwUF8UbN25gYmLCihUryMnJYcGCBSgpKeHg4MAnn3xCVVUV48aNa+Yxb2mEQAFFMUVCQgIJCQnIZDIRtTp8+DCZmZm88cYbWFpakpqaypo1azAxMeGdd95BVVWV7777TqQz7Ny5k6ioKN57771mFyJtbe1mHjdvb280NTVxc3NDRUUFPz8/VFRUxMWrTZs2olDu9OnT5OfnN+PVfl44OjoKWWnFv0NCQjh69Ch5eXnCCGvXrh2ff/45c+fOZceOHULBR1G0dv/+fTp37syYMWN4+vQphw4dwsLCgnbt2jUzxF5//XVmzZolDB2JRMLy5ct58uSJCOkqhGGsra0ZMWIEqampPHr0CKlUSllZWYv6V1VVJfZqBRT0jc+mVVlbW9OtWzfhEJg2bRohISFs2rRJhIVNTExYvHgxHTt25N69e0RFRXH48GEaGxsFC45CCCUqKopLly6Rnp6OhoYGPXr04NGjR7i4uODv7096ejpbtmzho48+ory8nE2bNjFnzhzU1NRa7EU/evQo1tbWvPPOO5iYmODu7k5ERAQff/wxBgYGQvXp9OnTdO7cWcwzV1dXUlNTRZ/d3Nx45513cHR0xMvLi7KyMnR0dITDRKGg5efnh7q6Ov379+enn36isbGRY8eO8fDhQx49esSCBQsYNGgQpaWlfPDBB8J7PXz4cPz9/VvMpgDyeaKsrIyenh5ZWVn885//FDy0K1eu5MmTJzg5OeHi4kJERIQImyuYPWbOnEl+fj67du0iPz+fvn37MmzYMLGHuru7ExQURHZ2NsePH2fy5MmsW7eOYcOGYWNjw7Fjx4TSJcgdZ3fu3EFdXZ3169dTUlJCfX09+/fvF8WMLUFmZiaenp5s3LiRsrIyvvnmGxwdHYmKiiI6OpoOHTqgr68valE0NDR44403sLCw4MCBA+Tn57N7925kMhkTJkxg8+bNvPPOOxw9ehRTU1M+++wzzp49y48//siBAwdwdnbm1VdfxdnZmczMTA4fPoxUKmXChAmYmZlRXFzMqlWr0NLSYt68eRw/fpzly5eTkpJCu3bt8Pb2JjIy8t/2qcXGq2KAFTeEe/fuYWNjw6JFi5BIJCQlJVFVVSUkYBWQyWQ8evSIPXv20KFDByoqKgR1Sk1NDb6+vvTv359bt26xdu1aVq5cycyZM9mwYQOnT59m5cqVYoKOHj2aLVu2sGPHjt/0CpaWlmJiYkK/fv3o169fi2gzFLmsIPdude3aFXV1dRG2cXNzIzo6mgMHDlBTUyM21LZt22Jrayu41BQhgXPnzvHRRx9x/fp1pFIpsbGx4hDMyMhg//795ObmMnnyZDw8PITWfWZmJnfu3BGhL0Ul6YMHD7CwsEBJSQlXV9cWhypBXoVcUlJCaWmpMLBVVVWRyWQUFxeTlZVFXl6eMF4jIiL49NNPcXJyYunSpXh5eVFVVUV2djYuLi58+eWXZGRkcPnyZWxsbGjTpg3Kysp07doVb29v4X1LT08XRlRubq6o8n7y5IkI4QUEBKChoYGRkZFQP2ppoU9aWhpRUVEEBweL6tP9+/fz6quvYm1tLTbx+Ph4SkpKcHJyEp4nQKiK2NjYCC5YkKcjVFRUcO3aNQ4fPkxxcbGgbEpNTSUzM1Pk8RoZGZGUlMTNmzcJCQlh5MiRglfzwYMHnD17Fl1dXUJCQujXrx9SqZT9+/c/dx9lMhkaGhoMHz4cqVTKu+++S2ZmJtbW1pSUlKCkpCSKO1RVVfHz80NXV7dZ/qeVlRX29vZ06dJF5BvX19cjlUqpr6+nvLwcZWVlcdOPi4tDX1+f0NBQ/P39uXDhglBNeeWVVzA1NRXrtW3btiLEuWvXLn788UeRcvS8UIQDGxoayMnJISkpCVNTU5ycnIiKihL8oDU1Nfj4+GBoaEhtbS2FhYWYmpoKI11ZWRlbW1sxrsbGxiKCtHPnTs6fPy8uwSNHjuTx48c4OTmhoqKCvb091dXVgsPR2NiY5ORkTp061SznOT8/v8WhvJSUFGH05+XlCcnrxMRElJSUKC0tJS4ujvz8fCIjIwkICBDMAAUFBZSUlJCUlCQOQSsrKxITE4mOjhY8kKWlpchkMmHUV1dXY2pqSs+ePQVHcF5eHurq6mhpaQmBBJBfvs6dO8fly5exsLAQxmxLEBwcTHBwMFVVVUIJq7GxkfT09GZpKXV1dRgYGBATE0N+fj5SqRRXV1eCg4MF+f3w4cOZM2cOc+fOZe/evbRp04ZevXrRuXNnrl27hp+fHzNmzGjmtSksLOTQoUPU1taKUO7mzZspKSlh8uTJTJkyhdjYWLS1tcVv1RIYGhqK1AoFKisrycjIQElJCUtLS8zMzFBVVcXExISamhqRDlJaWioKZ9XV1Zk2bRoODg4cOHCAb775hvz8fNTV1enTp49Ij7G1tRWFWqdOnUJDQ4N9+/ahrq7O4sWL8fT0ZNy4ccyYMYO1a9cyYsQIdHV1SUpK4quvvqJdu3YiWvm8UFdXx8/Pj7q6OnHeFBUVER0dzYQJExgyZAiRkZFcuXIFFxcXQcFoYWGBk5OTSBnQ0dFh5syZzQSESktLhfzzhx9+SFVVFfX19TQ1NfH+++8zZcoUUlJSePjwIVeuXOHx48eYm5ujqalJUVERWlpaPHjwgC5duvCPf/wDa2trcfluCczNzbG1tRVrQFNTEy0tLZycnAQVl6KIbNq0aWhra/P111+LlD+FvaGQcl+yZIlIs1J4lquqqhgzZgxqamqsWLGCLVu24O/vj7W1Nfb29sTFxYnfJiUlhU8++YTevXtz+vRpQF6stWjRImQymXBQPC88PDwIDg7mwoULbNmyBVVVVUaPHk1ubi5aWlo8ffqUwsJC7OzsiIuLE5L3FRUV6OjooK2tTWZmJvn5+UyZMoXXXnsNiUTCa6+9Rn5+PjExMQwdOlQw+Tg4OAjqtBs3bpCamoqbmxs5OTncvXuXpUuXEhcXx44dO+jXrx9jx47l7NmzqKioMGjQIOzt7V+88ao4yLS1tQkMDOSzzz4TeSyK/M9hw4bx3XffNbt5Lly4kOPHj7Nv3z7efPNN8vPzGTlyJOPHjycmJobGxka0tbUZO3YsTk5OIqewd+/euLq6NtN/LygoICYmRniBnoVCKKCl1XgKKN63d+9eDhw4QJ8+fRg5ciTGxsZIJBLmzJlDv379SE5OFtKOurq6tG3bViR8Kwzg0tJSIiMjad++vcj1LCoq4tq1a2zfvp2ffvqJtLQ0evfu3SyEnp2dDfxS+aqoyq+uriY3N5eLFy8SEhKCjo5OMyqd54Wenh42Nja89dZbXLt2TaigKAyTf/UgmZqaEhgYiIuLixiXq1ev8tZbb4mEcmtra5KSkvj+++/R19enS5cuDB8+XPyeMTExrF69moCAAGbNmkVqaiq3b9+mV69eGBoakp6eTnx8PLW1tXh6eiKRSDh//jwWFhYtZo2orq4mLy+PJ0+eCE7dHj168O2332JjYyOS5T08PBg9ejQ5OTm88cYbzJ8/H09PT6G3bmdnx86dO9HX1+fbb7/l4MGDBAUFUVBQQEREBCEhIUyZMgUjIyPOnDnDihUrePz4MePHj+fdd9+lvLycpKQkVFRUGDNmDCNHjhQpH+bm5mhrayORSJ67UOBZPFuU0LlzZz777DNSUlLQ1dXl6dOnuLq6MnbsWLp160Z9fb0oeElPTyc2Npb27dvTr18/Dhw4QFJSEhcuXBBSzuXl5WzYsIGoqCjmz5+Pr68vn3zyCQ8fPhQe2i1btrB69WqUlJSYP38+/fv3p7KykrFjxzJu3Dhx6WpsbBTchX8UqampHDlyhJMnTxIYGEj//v2F7nZlZSWzZ8/m66+/pqKiAjU1Nbp164a9vX2zS63CgAgLCxPqRY2NjTx69Ijo6Giys7NFUVpycrIwOhRKXc9W/c+cORNfX1/hqW9oaPhDXteCggIcHBxYv349+/fv57XXXhOSyW+++SZnz57lww8/ZNKkSWzdupWLFy+ycOFCtmzZwrFjx1i8eDEXL17E1NQUc3NzNDQ0BKd0QUEBX3zxBaqqqrzyyitkZ2cTFhbGjRs3WLRoEQsWLADg8ePHZGRk0LZtW0HSL5FIqK6uFilgK1asYNCgQTQ1NbVYklIBhea8tbU1jY2N+Pj44OjoKHLtVFVV6dOnD/7+/nh5eeHs7ExKSgq7du0S6QAPHz4kISGB7t27CwUfCwsL5s+fz5o1a8jJyaGsrExE4EBeVT158mT8/PwwNzfnwIEDIio4ZswYvLy8MDc3R09PTxiULYGZmZnIH9+9ezc2NjaoqKiIfHslJSWWLVtGhw4daGhoQEVFBalUyoYNG1i8eDElJSV07dqVnj178uDBAzZu3IixsbFIlXJ1dWXx4sWiIl1PT0/IvC5YsABbW1uRwjVv3jxqa2u5d+8eV69epaamhvr6elxdXVm0aBFLlixh4MCBLeZbVlw6V69ezc6dO1mzZg2DBw8mIiJC5MsbGhoyfvx4amtrmT59OmfPnuXbb79l4MCBPH36lCNHjuDt7d2MJlAqlZKcnExTUxMuLi4i71MhoqNQuFJIwIeGhlJSUsLOnTsZP348EydOFMWueXl5SCSSZpfzlkBJSUnszXp6evzjH/9g+PDhyGQyamtrhXCLQgWysbGR7777jkuXLqGjo8OXX36Jq6srffr0wdvbWxiuCiQlJYk80UmTJqGhoUFiYmKz3PlBgwaxbt06du3aJf7/zJkzzJ07l3Xr1olir7KyMjp27Mi5c+eeu38KQ3LZsmU4OjqyePFiMd86dOggaLKqqqpYt24dgwcPFkb86NGj8fDwICgoCFVVVdq1a0dRURHBwcHcvHmTyspKzp49y/Dhw+nTpw+vvfaaKJKUSCSCpcba2prbt2/zzjvvEB0dTUhIiGjX2LFjBRuKgh/+P6HFxquBgQElJSXk5eURHx+Puro6UqmUq1evcurUKUpLS0UxCshvG7W1tZiZmWFiYsL27dvJz89HR0eHuXPnEhwcTFNTExEREchkMhwcHLC3t6eoqIiioiJR/JWYmCg6ptiIEhISsLW1FdW/TU1NIs2gTZs2eHt7/yEj9uzZs4LLcuLEiYIO6fz58zQ0NODk5ETv3r3F658+fcrFixcxNDQkNDSUQYMG8fXXX/PgwQP27t3LN998g7W1NePGjaN9+/aEhoZy7do1VFVVBQfpDz/8gJeXF7q6uixZsoTKykrhCdTW1sbT05PHjx+jqamJsbExOTk56OvrtzjMBXJjWOGFU8iWglynW8FlZ21tLRazgij9WX651NRU6uvrmymZODo6oqmpiZmZGZ6enhQXF4tc0eTkZKqrq0VOmaOjI3Z2dsJw8/T0FAocPj4+pKWlsW7dOnx8fFpsvAYGBlJQUEBeXh4HDhwgICAAd3d3JkyYIF5jbm5OQEAAY8aMISoqSkgPTp48mW+++UaoLh06dAgNDQ3Cw8O5f/8+AQEBKCkpCao2xaWquLiY27dvU1NTg5aWFubm5pibmzN27FhKS0vJz8/H0tKyWTGBgiO0rq5O3K6fFyUlJdy6dQstLS2Cg4OFjGpaWhr19fVCcUhxCN69e5fi4mJBWaQQoejQoQPV1dWcPXsWIyMjpFIpFRUVbNiwgbS0NHr27Im+vj4rV66kvr6etWvXiqiKIqRbV1dHYmIiLi4ujBs3TrQxNTWVixcvoqam1mKvK8jnqZaWFmpqauTk5HDhwgUuXLjA48ePUVZWpnfv3iI6YGRkRE1NjVBJUxiWhYWFFBcX4+zsLPTIm5qayM3Npbq6GjU1NSQSCW5ubigpKaGnp0f79u1JSkoiKiqKgIAAMWY1NTWiOFFR9AO/RKNaCoVmuIaGBg4ODs08mzKZjMbGRkpLS6murkZVVZXMzEzi4uJo06YNvXv3Ztu2bdjb2/Paa6+hoqLCoUOHCAsLo2PHjiKFKScnB1NTU1xcXLC1tSU1NZWCggLi4+MxNzenoqICVVVVodeu8Dzev39fcHcPGjQIoJlkbkthaWlJREQEq1evxsXFhblz5zbLh/b29iYqKgoXFxcRLQkKChJ8ovb29mhra5OUlETPnj2RyWR8/PHH6Ovr07t3bxGqPnfuHMeOHcPPzw8LCws8PDzEAQkIMRR3d3eRjtTY2EhERATOzs7PxS/5LMzMzLCzsyMjI4Pbt29z+fJlOnToQPv27amurubSpUvcuHEDFxeXZik4ioJnkJ+pzs7OIo85MDAQIyMjoqOjGTBgAAEBAWRnZ3PlyhXq6uro06eP2F+KiorYtm0bampqjBw5ElVVVRISEujduzedO3cmMjISR0dHpk+fLrhgW1qwBXKGn1u3bmFhYSEuaq6urvzwww/cu3ePN998U5z5xsbG6OnpcezYMaytrYVKX2RkJJqamkybNk2kGSi4WxXGnmKuFxYW8ujRIzQ0NPD09GyWx5qdnc2jR49QUVHBxsYGZWVlLCwsqKqqori4+A85dO7fv4+2trbYQ0AemVLYIyBPn7t9+7bYE0+fPk1MTAza2tpcuHCBbt268cYbbwhPrba2NlZWVhgYGIiIdFZWluA0Vez9IPdOKpiLMjMz8fHxYevWrSxbtoyrV68KVbHk5GSRXtcS3Lp1i/Lycnr06CHOw7KyMjGW9vb2GBkZYWlpyaBBg8R+ptgffHx8RNE4yFMdNTU1he2Vm5srVLjmz58PyB0sjY2N6Ovri8tkUFAQdnZ2FBUV0a5dO06cOCHULNu0acP27dtRV1d/rmjrHyLvy8rKElQ069evp1evXly8eJFOnTphamrKvn37mD9/PvPmzRMb5ldffcWOHTuorq7GysqKSZMmoa+vz9GjR3n33Xepqamhf//+ODo6kpOTw4MHD7CxsRGe3ps3b3LgwAFMTU2ZPn06pqamXLhwgdu3b4sfUCqVIpPJuH//PtHR0RQUFLS48vCnn34SDAfQXGP3zJkzrF27FkdHRyZNmkTnzp3p2rUr9vb2LFiwgHPnzrFz504GDhzIrFmzWLFiBatWraKsrAwLCwtMTEzEDTMsLIzJkyfTrl07Ll68yKuvvkpmZib9+vVj+fLlv7q5Xbp0ievXr/PKK6/g4eFBfHw8d+7cabYhPi8aGhq4e/cuU6dOZcCAARw5coQJEyaQk5NDSUkJDg4OgocREDd9FRUVEUpUUlLiu+++o23btuJzjY2NmTBhgih8WrlyJWvXrqVv377MmjWL999/n7KyMh4/foynpydKSkqkpKQIg1dxQIGcEeHatWt/qH+2traMHz9epCOoq6uLUJ0CgwYNEsa5s7MzCxcu5MaNG7zzzjvcv39fvE6hJmJgYMDgwYN5/fXXuXPnDgcPHmzGCal43sXFRXD8AUyfPl3QxSigyCtSbIpSqbTFxuvJkydZs2YNI0aMaGbcW1tbCxaQbdu2sX//fkFZoqmpyapVq5g2bRpPnz4lJSUFBwcH9PT0BF8j/GI0gtwoLy4uxt7enuzsbJKTkzExMaFz58706tWL2NhYdu7cSU1Nza/0xNPS0jhy5Ah2dnbMnDmT7777rkV9fPjwIX5+flhaWtKuXTvBD3z69GlWrFghaMByc3O5evUqRUVF2Nra0q5dOxHJUMhMpqam4u/vz7p163j48KEo0vPy8mLu3Ll06tSJqKgoYmNjhff9gw8+YPHixbz//vsAPHr0iIiICLp06SJSIhRRFqlU2mKOUMUB0LdvX0EzlJWVxcOHD5k9ezZz5sxh+/btrFu3jpkzZ6KlpcX169cpLS3Fx8eHlStXIpFIqK2t5YMPPuDChQvo6+szbtw4rK2tCQkJYefOnZw+fRorKyu++OILsrKySElJoaamRsh6PksnphAMuHfvHgsWLCAwMJD8/HwR+m0pFCFVe3t7+vTpw9dff01BQQHLly//1euOHTuGqalpM6L51157je7du2NsbCz4nzU1NenWrRva2toi3UGBdu3aUVZWxrVr1/D39/9V4YeCHrC2tlYYObdv32bevHkMGTKEtWvXtqh/CplLDw8PsrOz2bhxIwkJCYwYMQJ/f38GDBjAli1b2LJlC3PmzBHnyVtvvUXPnj1ZtGgRMTEx+Pr6MnnyZD744APU1NTIysoiKChI8DDfvXuXI0eOUFVVRU1NDRMnTqSgoIC3336b7777TlANtWnThh49etCjRw9iY2OZM2eOoKj67LPPmDlzJllZWS2SFd+xYwebNm2ib9++LF26FJBH0nbv3k1MTAyenp7NcjA/++wzXn31VVasWMHatWvZuHEj3bt3FzRZr732Gunp6Zw4cYLU1NRmtQaKfTI9PZ0ffviBhoYGRo4cSe/evWlqaiI5OZlBgwYxYMAAtm7dytixY5k4cSKDBw8Wqpt/BNHR0UJQJiUlhcrKSnr16tWMVqy4uBgjIyMcHR0xMzPD1NQUGxsb7ty5w7Vr10Qx7uPHj/noo49EGpKlpSWWlpb4+/vT2NjI7t27+fTTT/Hw8KBTp07cvXuXY8eO8dprrzF27FjU1dWpra0V4xgdHc3nn3/Onj17APjggw+Es6IlYwhymit7e3tmz55NYWEh27dvp2vXrgwZMoRvvvmGjIwMMQaNjY2kpqYKWelnoaAZVMDR0ZF169bh7u7eLG0jPz+fe/fuIZPJCA4ORkdHhwMHDrBx40Z27tzJhQsXGDNmjMjZX7p0KSUlJejp6XHw4MF/26c/ZLwqONFkMhl2dnYiJ0bhoayqquLw4cMEBwdja2uLoaEhd+7cEVWKOjo63L17l5SUFLS1tQkNDcXQ0JCEhATq6+uxtrbGw8NDSKDW19djZGRE//79UVNTE9yxw4YN4/bt2+zcuVOElvz8/HjzzTdJSEggLy+Py5cvt6hvJ0+epHv37oKi59kqynHjxnH//n1Onz7N9u3b0dLSwtfXl6amJrp27Up+fj47duygTZs2othL4RldvHgxnTp1Ys+ePWIBBgUFAaCiosLAgQOJjIykoaGB8+fPC5qN27dvc/fuXQwMDHBxceHUqVM8ePCAHj160KFDh99MnfhP0NPTo6amRoSSJRIJzs7O1NXVsXbtWlJSUsTEjIiIEJQXIDcUbt26ha2trWh/ZmYm9fX12NvbY2NjQ1NTE1u2bGH//v2oqanh6OgoiuiampqIj4/n/PnzqKmpYWhoSFFRETk5OXh7ewPyYqi9e/cyefJkQc7cEkRERBAcHExAQIDI55NKpdTW1pKTk4OSkpKoQt+5c6eQM7WysmLXrl0MHDgQLy8vtLS0kEgkpKamMnjwYFHZrqKiwqJFi5oVsPj7++Pk5ISNjQ11dXVs2bKFhw8f0qVLF/E7qampUV9fT0NDA6WlpaKorKKiAjs7uxaF1k+fPk337t0ZN24ctbW1rFu3jsTERGbPno2Xl5eQM9TV1RVGR01NDYWFhYD8pp2Xl0d5ebngoT1z5gxSqVSkA12/fl1UZq9fv15sYjU1NbRr1w5tbW3s7OyEBLRCm7q8vBwdHR3h+XJzc8Pf37/Fxuvp06cJCAhAIpEQHBzM8uXLyc7ORiqVUl1dzc6dO+nZsyeWlpZCoCQrKws7OzthvCrCj5WVlSK3zsPDg/nz53Pv3j0+/PBDRowYASDyTZ2cnLC2tqZv3760b99ezJPc3Fw6d+7M06dPuXLlCiYmJoIV44+EK1NSUtDT0+PJkycYGBjQv39/DAwMMDY2Fh7lIUOGkJCQINZqQ0ODUKgzMTEhPj6ekydPitSt3bt3A/JIhqGhIf379xee8qSkJGQyGZ6eniINCuRUYSUlJSL8fOzYMfbv38+7776LkZERkZGRgpO2pXLUd+/epampie7du4uCnczMTLKzszEwMBACCYo0qtGjRxMREUFUVBSJiYlC3UvR92dV40JCQsRBuWHDBlJSUnjttdcYPnw40dHRREdHc/PmTerq6kSudH19vXAmKJCVlcXTp0/ZsWOHiLg9L7S1tUUbvL29qa2t5eLFiyxatIhNmzbh5OQkRAhu377N2LFjRXGXrq4uI0eOJD8/Hy0tLU6cOIGRkZEotEtPTxcFPwoBHEWxbkxMjCh8bdu2LbNnz8bV1ZW0tDTi4+Pp1asXnp6eKCsrc+7cOU6dOiVSNVpare7k5ESPHj0oLCzk+PHjgodXoQbVt29fnJ2dKSoq4unTpygpKaGmpka/fv3IzMwUIgnp6emCLaempoaOHTsSHBxMYWEhS5cupUOHDoKFxcfHh0GDBnH58mVu376Nra0tTk5OaGtrC0PZ29ubR48eCYdIYWEhHh4ef6gaX1EU6uPjQ25uLklJSbRt2xYdHR2ePn3KpUuXsLKyEmpQqamppKWl0a1bN2xsbPjggw/Iz8/nq6++Ijg4WIieqKmp8eTJE5ydnUWkQSENbGdnJ/Kgvb296devn1iDt2/fpqKign79+uHr68u9e/cAOeeuoli2JWjfvj3q6uqkpqaKaMr169d5++23uX79Ol26dMHQ0FCcaadOneLo0aPN5NEBkbqo4MAGhCjR66+/LvLY9+zZQ2lpKW3btqW8vJxdu3axcOFCPv30UwYOHEhwcLBQ8/Py8mL//v1oaGgwZswYcY78J/wh49XS0pLZs2cTFxcnFq7CcFWEKh0dHcUPbGZmRs+ePblz547o7JMnTzA3N2fKlCm8++67gFwAISkpidDQUJSVlcnJyeHMmTOoq6uzaNEiEapTHJb6+vqoqKjw2WefERsbi4WFBV26dKFbt25069aNHTt2cPXq1RapwzQ2NnLo0CEAQQ+Tl5eHqqoq3t7enDp1ioULF/Lo0SO8vLxETt+cOXPo06cPM2fOZNWqVaxcuRJdXV20tLRYtGiRKD7Zv38/K1euREVFhaCgIJKSksjJyeGtt95CQ0ODc+fOcejQIe7du0eXLl3Yv38/ly5dYufOnUyYMIEJEyZw6NAhIUn4R9IijIyMRLi7traWoKAgsWHW1dUJpoSkpCRWrFghkqg1NTVRV1fHysoKXV1dSktLUVFRITc3t5mH9ODBg2zcuBFra2s+/fRT+vfvj6qqqgiTu7q6cvPmTRoaGpg0aRJpaWmcO3cOS0tL6urqWLBgAVVVVdy8eRMLC4sW36bPnTsnKE8MDAwEXYuamhqZmZmkpaXRv39/6uvriYmJwdjYmB49ejB27FhRFW1tbU19fT3379+npKSELl26CMoPIyMjMZ4KKJLaQb7x7Nq1i0uXLrFr1y7eeOMNxo4di52dHRoaGlhbW6Ours6NGzeE0syIESOE+s7zQCKRsGrVKqRSKXFxcXzzzTdUV1czYMAA2rZtK/gOHR0dmTx5skh+T0pKIiIiAj8/P3R0dJBKpUilUuzs7Lhx4wZpaWl07NiRgQMH0q9fP6qqqtDR0cHKykp4FhWGWlNTEwYGBs28E01NTcKjZWFhwbRp00Tub0uRk5NDXV0dampqWFhYMHToULHPzJ8/n8WLF/PJJ5+wePFifHx8kEqlZGZmNpsvjY2N1NfXU1JSQkpKCm3atOH+/fs8ffpUqAWB3OC2trZGWVkZZWVlxo0bJ1IgLl26xHvvvUf//v1ZuXIlJ0+eFNrkFhYWIvLTUnJ0BefjF198wc2bN9m5cyevvPIK7du3p7i4WNQVKEjvKysrsbS0FEbY1atX2bVrF/fv38fX1xcXFxcSExPZsGEDnp6edOrUiaFDh+Ls7ExhYSEfffQREomEJUuWoKysLNZjeXk5aWlp6OjooKSkhKamJiUlJezdu5fk5GRkMhl9+/ZtsYIYyNNbHj58SG5uLgMGDGDOnDmUlJQQExPDjRs3yMzMZOPGjcJz1aNHD6qqqti7dy/37t2jU6dOgtavqqpK7DONjY3U1dWJ8ycyMpLjx4+Ly4TiwP/mm2/IysqiT58+9OzZk+zsbJKSkggODhaXZUVKlEJ5ryV4NqpjY2NDnz59+P7779m8eTPGxsYsX76cTp06sWvXLrZt24ampib9+vXj3LlzHDlyhBkzZuDr68vJkyeZNm0aOTk5fP755wQGBnLnzh3Ky8sJCgrCwcGBdu3aoauri66uLpmZmZSWlhISEsKoUaNESPf69etCtalz584MGTIEbW1tIeluaGgovLnPC0XRnYJQf9euXYwbN46wsDAKCwvFWdLY2Mj169eFIqRiX5g0aZLgeFZcRBQKVSAXePjkk08YOHAgHTp0wMrKCiUlJfr164eenh7R0dHU1taioqKCubm5SC3o2rWrUD7csWMHGRkZTJo0SXCgtwTdu3cXjiqZTEZTU5NIaVPka5ubm4s1fvv2bW7cuIGdnR1OTk7k5eXx4MEDFi5ciIuLC+Hh4YBcZvXo0aPCPnFxcaF79+7NolRubm706tWrWfF1aWkpZ86cwc7ODlNTU8zMzKisrGTnzp0EBga22HhV5DlnZGSICFthYSFNTU00NTWRkJCAq6urCO8r8mHV1dWF8aqIINbU1Ih9wdzcnIaGhma/V1paGj/++CPZ2dmMGjUKc3Nz6urqiI2N5ZNPPsHf35+EhAScnZ156623GDx4sLAnO3XqhI2NzXMVorfYeFUUwCjcw88WKih+8Pj4+GaShyDPJdTV1RWu4J49e+Lr64tEImHv3r3C++fs7CyMTTU1NRoaGqirqxOhofLycq5fv055eTlSqZQrV65QWFhIcHAwQ4cObeayfvb7nxcKj8ejR4/YvXs3oaGhNDQ0sHfvXgYPHszAgQOZOHEit27dwtHRET09PVEdaWxszOTJk9HS0hKE4+Hh4c1yRfr164eSkhI+Pj7Co6yjo0NUVBQODg5CqlXhhfPz88PX11eEhidNmsTNmzdJS0vDwcHhDyeog3zyPnz4UFTJl5SUcOfOHdTU1IiJieHSpUtcuHCBjh07CsNFU1OTLl26CGqshoYGLC0tm4XFHRwceO2117C3tyc0NFSMieKwlEqltGnTBk1NTVRVVUlNTeXkyZPCMG5oaMDY2LiZd6Ql6Ny5s1hIUqmUoqIipFKpMBjPnz8viPoHDx5MXV2dmHNBQUGUlZXx8OFDkQf1LNWPoujiWVRUVHDjxg2ioqKws7OjY8eOfPTRR6xatYrjx49z48YNXnnlFUFW7ejoiLGxMQ4ODlRVVQmpx5Zg2LBhIj+xtraWKVOmYGpqipeXF/fu3aOgoIA+ffrg4eHB0KFDycjIoLi4mHPnzpGRkYGPjw8+Pj60b98eFxcXmpqaGDp0KAUFBeL2r6SkhI6ODjU1NezevVvQwvXq1UuIGSiS8kG+6Ss0rRMTE4XqXFxcXLNUjOdFz549yc/PF6kQCQkJqKiooK+vT79+/cjKyhJFWSUlJWhpaeHj4yPSBAICAsjNzWX//v1ER0cTGhoqJJVXr17N1atXuXfvHubm5rRv3x5vb+9fKXKB3EM2btw4ccGTSqV4eHjQvXt3PD09xR7YUuNVX18fb29vpk6dip2dHVKplIaGBioqKsjOziYtLY2EhATs7e0JDAzk9u3bQoylT58+tG3bli5duuDv7y9SJZKTk0lMTMTIyIg2bdqIcJ+enp5Yt3p6eshkMrKzs7GwsKCmpkZwePr7+/PKK69gY2ODhoYGJiYmghlGocneErRv317kyisuFfr6+ri6uhIdHU1xcTE9evSgb9++uLq64uHhgYaGBosXL+bChQvs27eP7OxspkyZgoGBgdhrlZSUmjklxo8fj729PbW1taJfo0aNorS0lG+//ZaMjAxMTEwIDAzk8ePHaGhoCGo/FxcXpk+fjpqamnj+efEsY4KhoSFvv/02ZmZmPHz4EEtLS4qKisjLy8PBwYHZs2cTGhpKbGwsR44cIT8/X6z7mJgYXF1dmTx5skiJ6NGjB2ZmZkLUwc3NjfPnz6OqqsrEiRMZNWoU9+/fp6CggMjISMFA0rdvX0E5GBoaSrdu3ZBIJJw5c4a4uDgRRWspxo0bJ1QeQX7eK/LuO3bsiLq6Opqamjg4OODn5yfOhJEjR6Kjo4OLiwv9+/f/1ec6OTnRpUsXkUeakpJCcXExAQEBODs7ExoaiqWlJbGxsURERKChoSHSBEpLS4W0tpWVFdeuXRMFzy2BwnC9fv068fHxDBs2TBh5zs7OInqXkZGBtbU17u7uQvWutLQUS0vL3yzaNDQ0REtLi6amJtLT07l//z6qqqq/4jUHhAy1VCrF0tKSnj17oqGhgbKyMu+88w4NDQ2CT/WPnvuXLl3i0aNHTJo0CTs7OyZNmkSbNm0wNTVlz549PHjwgKCgIMzMzJg8eTJZWVm8++672NnZ4eXlRfv27WnTpg319fXs3r2bhIQE2rRpw9ChQ1FWViY2Npa7d+8SGhpKQUEBsbGx5OXlif0zNjaWuXPnoqenx/vvv8/EiRMpLy8XOdwaGhoUFBQ8Fw+x5HmpQcLCwlrGIfISIjw8/HdPl797/+Dv38e/Q//g79/H1nn69+4f/P37+HfoH/z9+9g6T/++/fvjbrtWtKIVrWhFK1rRila04k/Gc3teW9GKVrSiFa1oRSta0Yq/Gq2e11a0ohWtaEUrWtGKVvzPoNV4bUUrWtGKVrSiFa1oxf8MWo3XVrSiFa1oRSta0YpW/M+g1Xj9syCRLEciqUEisfk/fs7bSCT1SCQtI+v7M/D/Qx9b0YqXHa3r8H8frWPYilb8W/xlBVthYWGTgW3/4WVN4eHhSn9Cc/49JJKJgEIeaDoy2eYWvt8GiAM2I5O9+Tuv6QLMAzoBhkAR8ABYi0x28pnXaQCJwF1kspZp3/77Nv53+iiRGAHDgAFAO8AKqEPet23ANmSypn/5rP9OH1uI/6k5+gIRFhbWbC6Eh4e3bC68ZAgLC5MAU4DXgbaAEvK5ug34Ojw8vGWM3y8ScnLY320bMlnL2vb763AyzzGXkcl+mcsvyTpUICwszBpYDvQFjIBs4AjwYXh4ePFf1rA/awx/eX4AMBfw4JffIQr4Epnsxr+89qUZw5d6Hb5AvLTz9AXiZejjX+l5vQd8+Dv/Xfj5NT/9JS17FvKNZD1Q8X/4lPcBNeDz3/mOpcAVoCtwCvgCOAYYAN2bvVYmqwbWAQOQSDr9H9r07Pf/N/s4CtgEBAK3gLXAQcAT2Azs+xW7+3+jj38M9/hfmKMvEGFhYS9iLrxs2AFsARyAvcjnoyryObb350P1pWxbi5UPfn8d3qOlc/nlWYeEhYU5ITfQpgC3gTVAMnIj7kZYWJjRX9i8P2sMQSJZBRwHfJGfFeuAaGAIcA2JZEKz179EY8jLvQ5fCF7yefpC8LL08Q/Jw74IhIeH30O+of4KYWFhitvjt39We34T8k1nG1AIHALe+QOfoQeMB84jk6X/xvOjgI+Ac8BwZLLyf3le5VfvgV3ACiAMuN7iNjX//P92H+OBwcCJZh5WiWQx8ok/AhiO3KB9Fi+uj38Q/xNz9AXi58Pj/zYXXjKEhYUNBSYCKUBAeHh4wc9/VwH2IZ9/rwLb//TGSSTN2oZMVvDz3/9Y2/7dOpTJ7vE7cxmJ5N/N5b98Hf6McMAUeDM8PHy94o9hYWFfAm8BnwAz//RW/ZljKJGYI1+TuYAXMlneM8+FIL+ELEc+Zs/iLx/Dl3odvli8nPP0xeKl6ONLl/MaFhbmCXQEMoETf3Fz3gR6IL9hVP7BzxgLaCK/aTaHRCIFVgFVwLhfGa4AMln9b/wtC7gKjEQi0f2D7VLgv9tHmewCMtmxX6UGyGQ5gEJvsvtvvO9F9vGF4iWboy8SL2IuvGwY/vPjF4oDEyA8PLweuYcLYM6f3io5RNuE0QOKNf9H2vb76/D3IJH8+7n8EqzDsLAwR6A38BT4+l+e/gD5XJ0YFham9Sc3Df7cMbRDfmbfama4yr/vIlAOmPzqXS/BGPJyr8MXgpd8nr4QvEx9fOmMV2DGz49b/uJcNHdgJbAOmezK/+GTev38GPEbz3VCHkI5CRQjkQxAInkXiWQuEknQf/jca8hDS13/cMv+nD7+OygM84bfef7/3sf/Dl6OOfoCERYWJuZCeHj4/2UuvGww//kx+TeeU/zNNywsTP/PaU4zPFfbkEj0n/Pz/sg6FHP53+Rm/tXrsMfPj2fCw8ObXYLDw8PLkbdPE7kR/mfjzxzDBOT1AgFIJMbNnpFIugI6yCN4v4W/egxf5nX4ovAyz9MXhZemjy+V8RoWFqYBTACakOdD/jWQSJSBnUAasPj/+GnByG/E8b/xnP/Pj7nI85aOIzcg1gLXkUguI5H8+iYtR+TPj39sM/rz+vjvvn/Sz/869Tuv+r/18b+Al2aOvkCEhYW9yLnwskHh5XH4jeccn/n/v6Ia+0W3rWXrUF7M8zxz+a9eh24/P/5evxJ+fnT9E9ryr/jzxlAmKwLeBcyAR0gk3yKRfIpEsg84A5zll8vIv+KvHsOXeR2+KLzM8/RF4aXp40tlvAKjAX3gp/Dw8F/nh/55WAa0Byb/nPD+xyCRqCLfaHL4bVoH058fZwIayG/dOsiLmU4j32j2/86n5/z8aPsHW/dn9fH3sBJ5P08ik53+ndf8X/v438DLMkdfJMRcCA8P/+Nz4eXE8Z8f54eFhRkq/vizwf7hM68z+FNbJYdoGxKJaNvPF7uWte2PrUMxl38zH/8X/NXrUO/nx9LfeV7xd/3/flN+hT93DGWytchD8MrAdGAR8qLYdGD7r9IJfsFfPYYv8zp8UXiZ5+mLwkvTx7+sYOt38PrPj9/8ZS2QSAKQe5+++BXtSMuhqLr7PeoIBS2NBBiJTHb/538/RCIZhvx20w2JJOg32lL086MxLcWf28ff+v43gbeBJ8iT+H8Pf7yP/z389XP0BSIsLEzMhfDw8P/rXHgZsQe5d7Ef8CgsLOxH5DnmvQAn5J4CF+CvSP9o1jYkkv9L21q+Dp9/Lr+M6/BZKKrU/wrexz93DCWShciLr74C/oncKG0DfAp8j0Tig0y28Dfe+VeP4cu8Dv8s/JXz9M/Cn9bHl8bzGhYW5oE8BzQDeQ7on49fQunx/JJE/n+Bwoul/jvPKzap5GcMVznk3lCFRzLgN96r8S/f8Xz48/v4r9//BnJqlEdAyM+hsN/DH+vjfwkvxRx9gXgmXeBFzYWXDj/nZQ1GXqWdg/yyNBX5GAYjZ1YA+D2P1X8P8iLGF9W2lq7Dlszlv3odKrw5er/zvO6/vO7Pw585hhJJd+QFvj8ik81HJktGJqtCJotGzqWdCbyNROL4G+/+S8fwpV6HLw4v7zx9cXhp+vgyeV5fhiIYbX7J1ajht+n5NiGRbEJe5DTv336aTFaCRFLHLzfqf0Xcz48lv/O8wrjV+I3nFJ/Z0sX+Z/fxF0gk85BzwsUCPf9NiEuBP9rH/xZehjn6ItFsLoSFhf3WazaFhYVtQl7INe/PatiLRHh4eANy7uQvnv37z/nLPsgP9Id/fssAmew32/ZzPqoPz9u2lqxDOZ6nUEuBv3odKvbJ38ujc/n58flz7l8k/rwxVIgMXPyN91YhkdxGbsS259eFUX/1GL7c6/DF4OWepy8GL00fXwrjNSwsTB35TawJOYnxX4Xaf/P9vsg3hQjkA/i8IdYHQHskEl1ksrJ/ee4K8kp7FyQSVWSyun953vPnx6e/8bmKxPZ7z9kOBf7sPsohkbyLPM/1HhDajFbm9/FH+/jC8RLN0ReJ/8Zc+F/CRORerh0/U/a8TBBt+026vN/Gf16HABJJS+fyX70OFcZa77CwMOmzVc5hYWE6QGfkhs/Nv6Jx/wYvegzVfn78vSJexd//9RyBv34M/x1e5nXYEvyvztOW4KXp40thvCJPODcAjv+lRTDyUP2033xOIvkH8sN8RwulUy8BHZCH/pvTmMhkBUgke5GTUi8Dlj7zfaFAH+Tu99+qxldQUfz6Fv7v8Gf3Uf657yMnz44Cev+HVIFn8cf6+N/ByzFHXyB+Ls76zbkQFhb2D36eC38DeVjd8PDwsn/5mz/yy1QF8rn51+C3jBSJ5I+27RL/bh3+AjGX/0OhlgJ/6ToMDw9PCgsLO4OcX/IN5ApwCnwIaAHfhIeH/zXcxH/eGF4FZgOvI5F8g0yW+cz39UNuONTw20IEf/le+lKvwxeAl36evgC8TH18WYxXReHA30at6BkcRF6c1IffPlDmI5dOXfIzV99t5GTUw5Anr09HJitp9g65uEFPIA6ZLPa/1vLnx+/3USJ5Ffmm1Ih8833zN1IVniKTbf+X971sffw7z9G/O86GhYVVI09XKUeuq94fued5eHh4+G9xT/5pbUMi+d22IZO1pG3/aa9R4Pnn8suzDhXqUF+FhYX1BB4j3zdDkIcol/yFbfuzxvDAz3/rBTxGIjmMPH/UHXlKgQRYhExW2OxdL88Yvszr8EXhZZ6nLwovRR//8oKtn8nRg/mbFMH8CvJq/rvAeCQSpd94Pg/5wK8BbPhF5egE0AWZ7LeosnoBVvyiUPXX4t/3UcHrpwTMQ67C8a//Tf6NT31p+vi3n6N/fxxATkE3AfllsR1yXtO24eHhv0fT9mfhd9v2byjkfhv/aa8BhTBJS+byS7EOw8PDkwA/5PKhgcgNPCfkVfdB4eHhhb//7v86/pwxlBeH9UcuwfkIuYPjbeRe1ZNAH2Sydb/xqS/FGPJyr8MXgpd8nr4QvCx9lLSMmrMVfwgSyVhgN/Jb+OEX8HkHgW6AEzLZy1G5+P9DH1vRipcdrevwfx+tY9iKVvxHtBqvfwYkEgnyghd5VeX/5UeXSHyQq3G9iUz2zxfSvheB/x/62IpWvOxoXYf/+2gdw1a04j/iL08b+P8C8s3ndeAwYPl//DQL5Jycf3UIqDn+f+hjK1rxsqN1Hf7vo3UMW9GK/4hWz2srWtGKVrSiFa1oRSv+Z9DqeW1FK1rRila0ohWtaMX/DFqN11a0ohWtaEUrWtGKVvzP4Ll5XsPCwv7n8wvCw8N/UwsV/v79g79/H/8O/YO/fx9b5+nfu3/w9+/j36F/8PfvY+s8/fv2r9Xz2opWtKIVrWhFK1rRiv8ZtFhhy9fXl/z8fPr27UtmZiYTJ06koaGBEydO0LVrVwBKS0spLy+nrKwMbW1tAO7evcuhQ4eIiYnBxcWFV155hcDAQEpLS4mMjCQnJwcNDQ3y8/NRUlJi0qRJAHzwwQdYWlqyatUqGhoa2Lx5M66urvTo0QOAsWPHsmfPHv7xj3/wwQcfcOrUKXbv3k1AQABTpkxBS0uLsLCw5+6fj48Pq1atwsXFhbVr19KmTRuqqqrYvHkzUqmUwYMHY2trS0VFBTKZDB0dHQCuXLnC999/j76+Pi4uLtTV1VFdXY2JiQkuLi4YGBjw9OlTzpw5Q11dHdOmTcPHx4dbt25RVFREv379AKiurub111/n3LlzjBo1irlz5+Lk5ERRURE1NTUYGxujrKxMZGQkFy9epLKyksLClnECr1mzBjU1uUx2VlYWq1at4vLly3Tq1ImZM2fi5eUFQG5uLnFxcWJcd+zYwe7du5k+fTqdO3cmIiICgE6dOmFkZIS6ujoAERERnDt3jp49e9KlSxdiY2OJjY1FS0uL8vJy6urq8PHxwcfHB4CbN2/y1VdfUVlZyahRoxg0aBCFhYWcP3+ehoYG2rdvz3fffffc/QsPD+f69evcu3cPQ0NDevbsiYmJCRkZGVRVVeHg4ICKiop4fVlZGVpaWigpKZGfn8/q1atRU1Nj+fJf1ApjYmK4cuUKGRkZ+Pv707lzZ6qqqsjJycHc3BxHR0dKSkpYv349UVFRvPbaawwaNIjMzEzU1dWpqqrivffeIy0tja1bt+Ls7MypU6c4f/48np6eDBgwgGXLlj13H4cPH063bt3Yvn07N2/eZOnSpTg4yPUgEhISyMjIoKmpiaKiIpKSkmhoaCAoKIiePXuSm5vLRx99xOXLlwkKCmLQoEG4ublhZGSEkZGR+I7i4mJUVFSQSqXk5uairq6OhYUFALW1tWzZsoWmpiaGDRtGQUEB58+fJygoiKCgIKqqqsjMzMTGxkb0/5133nnu/gGMGzcOR0dHLC0tKSkpYfv27SgrKzNz5kyUlZVpaGjgyZMn1NTU0NDQQHp6OnFxcairq9O2bVvatGmDhYUFDQ0NJCYmUlJSgpOTEzY2NgA8ffqUmzdvkpiYiL6+Pk5OTpSXl5OamoqdnR39+/dHW1ubjIwMfvrpJ65evYqamhq9e/fGzc2NuLg4Tp06RXl5OV27dqVTp05s3vz8Sro3btxAQ0ODKVOmMGXKFJSVlUlLS6OgoABjY2Osra2RSn/xLxQUFBAZGUl5eTnnz5/n22+/RSKR8Mknn2BpaUl6ejqdOnWiQ4cOZGZmkpmZSUlJCcnJyWRlZSGVSjEwMEAmk/H06VP09PQYOXIkZmZm/Pjjj0RFRaGvr4++vj5qampoaWkJliZjY2NMTEw4ebJlGh3h4eHi/xV7vJ6eHvX19URGRnLhwgWysrIYO3YsXbp0ITMzk08//RQ/Pz8mT54MQH19PampqRw/fpyUlBT69+9P7969f2aUkuPIkSPExMTQtWtXfH19ycjI4OnTp6iqqmJra4urqysAp06d4vjx44SGhjJkyBBKS0spKCjA2toamUxGbm4uq1ateu7+denShQcPHjBhwgQcHR1Zt24dVVVVvP/++ygrK1NdXY2GhoZ4/aZNm9i8eTPa2tp4eXmhpqaGl5cXY8aMQUnpF02CNWvWMH/+fIYOHcrhw4c5fPgwW7Zs4fPPP8fd3Z0FCxZw6tQpvL298fLyIicnh4cPHxIYGEjnzp05evQoT548YdGiRfTu3RuAZcuWcebMGTp16kRNTc1z9/Grr75CWVluKlRVVXH58mXy8vIwMzMD4PHjx6SlpWFlZUXHjh2RSqVERUWRkpKCnp4eTk5O2NnZYWBggJGRETo6OjQ0NKCjo4OSkhKXLl0iMjKSbt26ERAQwL1797h+/Tq2trYMHDiQmpoa3nzzTXJyclizZg1OTk5s2LCBc+fOERgYyNChQ4mNjWXTpk0EBATw4YcftujMV/zeijOxtLSUu3fvYmdnJ/bU8vJycdbX1NSwefNmbt26hZ+fH05OTty7dw8dHR26devG48ePefToEcOGDcPX15fk5GRkMhlOTk7i+9auXYuWlhZTpkwhKSmJ8+fPExISgpOTExcuXKCpqYm+ffsilUrJzMzk/PnzlJWVoa6uzo0bN4iOjiYoKOi5+zdy5EiSk5Pp3bs3tra2zZ47fvw4WVlZTJo0CXV1dbZu3YpEImHkyJHU1NRw584ddHR08PHxQVtbm6dPn3Lu3DkSEhLw9vZm+PDhqKioEBMTQ21tLWlpaZw/fx4PDw+mT59OVlYW27dvp7KyEjMzM3R1denYsSOurq5ERUVx+rRcn6JTp0707t0bVVVVgP84hi02Xvv27YuZmRlNTU1cvHiR0tJS2rRpg52dnXhNZmYmmpqaODk50dDQwP79+/nggw8oKyvj7bffRl9fnwMHDmBsbExgYCCzZs0iIyOD69evExsby8iRI1FWVmbp0qV0795ddGbDhg3Mnz+fBQsWCONVcZgaGBhQWlrKV199xU8//YSHh0czA+V5UVFRQXJyMrW1tURHR9OmTRtUVFTw9fUlLS2NxMRE1NTU0NHRoampSbxv3bp1/Pjjj+zcuZNXXnmFiIgIPvvsM+rr6xkxYgQqKiocOnQIJycnVq5ciba2tjDMnoVUKkVVVZXy8nLS09MpKSkBoKioiPLycszMzMjMzGTDhg3s2LEDqVTKjBkzWtRHxSIFOaXgoEGDGDFiBO3btxcLFMDMzAxTU1Px7+7du9OuXTv09PS4ceMGx48fx9jYGAcHB0xMTMTrfHx88PDwwNDQkOrqauLj40lLS6OxsZE7d+5QUVGBvr6+MF6rq6txdXUlKCiIPn36AKCnp4ejoyMRERFER0e3qH/Z2dncuXOHrVu3YmlpiY+PD/r6+ly/Lpf8tra2bjY3VFVVqaioQFNTExMTE1asWEF1dTUymQyJREJTUxMHDx4kOzubd955B1dXV54+fcrp06dpbGwUxr3i0C8rKxMHa15enjCuEhISqKysRE1NjdjYWKZMmYKXlxeff/55i/oH0KNHD6RSKZMnT2bSpEnNxtTFxQUnJyciIyMB6NWrFwYGBmK+Kisr06FDBy5fvsymTZvIzs7m3XffRU9Pj5KSEvT19amoqCAzMxNbW1tUVVXJz8+nqakJc3NzJBIJUqmUsWPHYmBgQGNjI9988w27du1CVVVVGK8FBQVYWVkBNDvAnxft2rWjpKSEyspK9PX1mTt3LrW1teIgVVJSwsrKCgMDA0B+gfz4449ZsGAB/fr1IyMjg8TERDw9PSkpKeHUqVN0795dGK+3b9/mww8/JCkpieDgYDp06EB0dDT37t1j2rRpjB49GgBdXV3Gjh3L1KlTaWxspKioiA0bNrB8+XK6du3K7t270dDQ4NixYy3u440bN/D19RVGYmlpKUVFRWhpaTUzXEG+N8XHx7Njxw7u3r0LyNfotm3bSEhIQEdHh02bNqGnp0d6ejqHDx8mNzeX7t27s26dXHhp+/btvPbaa4wePZpt27bR0NDAyZMn8fHxYdiwYVhaWqKurs7x48dZvHgxjo6ObNiwAQsLC86cOdPi/j0LHR0d7t69i62tLcbGxuzatYuNGzeyfPlyunTpAsj38S+//FKsz9LSUp4+fUphYSFdu3Zl0qRJGBoaUl9fT0NDg5hXFy9e5Pz589jb22NtbU1kZCSmpqb06NGDxsZG0YaYmBi+/vpr9PX1GTJkCBUVFRQUFODk5ERycnKLx/DMmTNs374dgBUrVvDuu+9SVFQkDFFVVVUqKyvR0tICwNHREalUyoULF4iOjmbevHl4eXlRWFhIY2OjOM88PDwA+T4IcPnyZU6cOMGcOXPQ0dFh//79pKamEhsby/fff4+FhQWLFy9m+vTp4uKRm5uLs7OzaOugQYPQ1NQkIyOjRX2sqqpCR0cHiUQiLoLbtm1DX1+fdevW0aVLF0aNGkV4eDhHjhyhX79+dOrUiTFjxrBmzRqGDRvGlClTqK+vp6amBmtrayQSCfr6+gBERkayePFiZs2aRUBAAD4+PpSWlnL9+nWMjY3p2LEj48eP5/79+2IPmzVrFqdOneK9996jurqavn37MmjQILHftBSPHj0SZ7FMJiMrK4vS0lJsbW1RUlJCQ0NDnAfq6upMmjSJqVOnoqmpyfXr1/nmm2/Q0NBAX1+fc+fOsWvXLpSUlFBVVeXkyZM0NTWxaNEiANLS0ti4cSPq6ur0798fNzc3HBwcUFVVJSkpicOHD6Onp0evXr2ELbBmzRpsbW355z//iZeXl5hzzwuJRCLWzb8iKCgIQ0NDJBKJGAsHBwdGjRqFiYkJHTt25O7duyQnJ9O2bVtMTU3p2rUrw4cPx9DQUHyOlZUVJ0+epLi4mLfffhtXV1eKiorQ19fn448/BuSGv5KSkljf+fn53Lt3j4aGBkxNTQkODkZVVbXZmv09tNh4PXjwIHPnzgVg6tSp2NjYYGFhgYWFBZGRkZw+fRoPDw+GDx8OIDwyaWlpmJiYMHToUFRUVLh27Rrx8fF07dqVfv368c9//pO5c+diYWHBq6++ytChQ+UNVFbm0aNHfPTRR3z11Vc0NDRgbGwMyCdcSkoKPXr0wM3Njbq6OkJDQ+nduzfjx4/np59+Yu/evWKRPA9MTU0ZOXIkQ4YMoW/fvuzatYutW7eiqqrKgAEDCAgIQFNTE01NTUDuUV6/fj0Ahw4dYtCgQQCYmJjQr18/NDU18fb2pra2lsGDB+Pp6Ym2tjaNjY2Ul5djYGBAXFwcy5YtY9CgQfTv35+CggIqKytp3749HTp0AORGrWIhRUVFce7cOdzd3Rk8eDBlZWUtHUZKS0upr69HW1ubXr16ib+XlZVx4MABjh49iru7O6+++ioREREcPXqUxYsX06lTJ2FQjh07Fnd3d6RSKbW1tTQ1NVFZWYlEIhEGhUwmw8XFhXbt2mFoaIi/vz9Pnz6lbdu2ADx48ICKigoGDx4s/vYsPD09MTMzIzb2+SW5b968SWBgIPn5+dTU1KCvr09eXh4PHjzAz88PVVVVdu7cSWJiIrNnz8bExITk5GSqqqrw8/NDSUkJLS0tPv/8c5KTk/Hw8MDDwwNbW1suX75MaWkpLi4u+Pj4UFhYiJubm/huLy8vzM3NGTBgAAAODg5kZ2ejpqbGxIkTSU1N5cKFCxw9epScnByampo4evSoONxagmcPxU2bNnH+/Hl69epFu3btqK+vR0tLC2dnZyQSCTKZTBhD6urq+Pj4MGvWLHJzc/Hz88Pf3x+Q38JPnTqFpqYmI0aMwNPTEwB/f38OHTrE22+/jZeXlzBcARobG+ncuTM6OjpYW1uTl5cnxlphaFZWVra4f0lJSfj6+rJlyxaioqIIDw9HXV2d2NhYKisrCQwMFN5+kF9KdHV1RV/Kysp4+vQpnp6ewjCtra0Vr8/KyiInJ4eBAwcya9Ys0tLSyM7OxtXVlS5duojDSldXV7xHSUkJc3NzXFxc6NixI927dxcHZrdu3bh169Zz92/JkiVcv36drl27is08IyODTZs2ERISIuZVSkoKT548QVNTEy8vLwYMGEBgYCAhISHo6emxdetWEhISmn22p6cnU6ZM4e7du8hkMiIiIrC2tkZNTY25c+cSGhoKILyDX3/9NQMHDmTOnDmA3CvdrVs3Bg0aJAwqhaetJfjxxx/Zvn07U6dOxc/Pj927d6Ours7SpUtxdXXF29ubIUOGALBw4ULq6+tZs2YNIHeC7Ny5E4lEwogRI5oZYnV1ddTX16OqqkppaSmhoaF0796d0NBQlJSUcHJyEnvTs5cAPz8/3nnnHeH8sLKyora2VqxJRQTqedG7d2+0tLR+5YS4dOkSISEhKCkp8cUXX5CQkMDq1avp3r07ffr0wcjIiO7duzNgwAC0tbU5ceIEBw8exNLSkqVLl9KnTx/27t0rjBmX+Y49AAEAAElEQVRfX19WrVpFRkYGqampTJo0CRUVFerr63n48KFwBigusZ06dUIikSCRSCgvLycpKQk1NTVGjhxJZmYme/fufe4+VlVViTWgq6vL9OnTaWho4PDhwyQmJtKuXTumTJlChw4dCAgIoKysjI8++oisrCzmzJnDoEGD6NChA0pKStTW1qKpqSkisiDfWzw9PZud0926dRMOBMW/AwICqK6uFq9RzKlhw4ZhbGwsjPU/Qv957tw5vvnmG3r37s3w4cMZN24c27dvZ9CgQSxevJjg4GCOHz/OwYMHee+994QnH+TOghkzZiCTyXB1dcXMzAwTExPS0tJYtmwZCQkJSKVSbt26hYGBAfX19XTt2hU/Pz/h5FA46MzNzenduzdpaWncu3ePgIAA2rRpw9ixY7l79y5xcXH07NkTfX191q5d+9z9CwkJAWDXrl1MmDCB6upqxo4dyzvvvCOibfn5+Xz//fdoaGgwevRoMUaRkZEYGRnRpk0bQG4IV1ZW8tNPP1FbW0vXrl3p2LEjpqamDBw4UDj3QL6PXLlyBSsrK0aNGoW6ujpr166luLiY0NBQrKysGDduHNra2tjZ2VFSUkJeXh7379//j31qsfH68OFDsrKysLCwoKSkhE6dOonN+8KFC1y+fBl3d3fx+pSUFExMTDAxMcHR0ZG6ujosLCzo3bu3WBCLFi2iuLiYzz77jFdffVXcKrZv387Tp09JTk5m3759gHyz6dq1K7W1tRw6dAg9PT3Gjh2LpaUl5eXlzJ07V2xWBw4c4IcffmDWrFnP3T8/Pz+MjY1xdXWlqqqK+Ph4Ll68CMhTJp7dQAFh2L3xxhvCcL1z5w4qKipMmjSpmVESGBgIQFNTEzdu3EBHRwcDAwNu3LjB4cOH8fT0xNDQEHd3d2JjY+nfv794r5aWlphkenp6tG/fnilTpjB8+PAWh0gUn6FAaWkpVVVV1NbWivDT6dOniY+Px9vbm8ePH3PhwgV8fX2xs7Pj2rVrlJeXC4PuWUilUpSVlcWi1NTUpF27dtTW1lJaWkr37t2FQfPo0SNyc3NxcnISnoaysjLy8vJQU1PD0tISfX39FnvtMjIyGDZsGF5eXqSnp2NmZkZqaipWVlY4ODggk8nIzs4Wt2sTExNqa2vF75uamsqWLVvYunUrmZmZ+Pv7880332BkZMQ///lPMjIyWLJkCUFBQdTU1AhPi4GBAX379gXknvKysjJsbW3Fpjx79mzS09PZt28feXl54jLy/vvvo6Sk1KIwUG1trZhbFy5c4IMPPqC6uprAwECSk5MpLCxkyJAh2NjYcPv2berq6ggMDERFRUUctooDt7q6msbGRjQ1NdHX1+fOnTvk5+eLDahTp04oKyujq6vLpUuXUFNTE4dkYWEhOjo69OnThz59+pCVlUVycjL19fUYGRlRV1f3q8PqeXHkyBHs7Oy4f/8+e/bswcfHh9GjR/P06VPRd8XcqKqqQl9fnwULFqCjo8Pjx4+5dOkSFRUVwpCZO3cuDQ0N4vM9PT2ZOHEigwYNIjQ0lJiYGPz8/PD29gbk6Rfq6uooKyuTnp6OkpISHh4eaGho0L9/f1RUVKiqquLx48c4OTkJI+95MXLkSEaOHEllZSX19fWoqKhQWlrK4cOHKSkpEYakkpISubm52NvbExISQkhICNXV1ZSWlmJoaIiLiwsaGhrcvHlTrLuioiI8PT3x9/cnJiaGjRs3UlFRwSuvvMKXX34pfjNNTU3c3NyIiYlBIpEwZcoUampqMDc3Z/To0SLycvjwYZKSklo8hufPn+f48eO0b98ee3t7ysvLAfn+06ZNG1xcXKiqqiImJoaDBw+ioaFBcXExBgYGVFdXc/fuXfT09MQlJTc3F1VVVXFxUkQ1Bg4cSG1tLXfv3kVDQ4Pg4GAAkpOT0dLSwsTEBKlUSo8ePYThqrj8qaioEBERwZ49e8jLy2uR8dq/f38CAwOFMwPknrWUlBQcHBxQVlbm4sWLJCYmkpqaipmZGUOHDmXq1Kli71SkfT169IizZ8/i4eHBvHnzGD16NFevXiUiIoJhw4bRpk0bdu7cSXFxcbOUpuzsbOrr60X0q6mpiYqKCjQ0NFBRUaG8vJzs7GzMzMxwdnbG2dm5RcarwjEhlUppampCVVWVfv36YWVlhYmJCTKZjFGjRjFq1ChA7oFevXo1H374oUiFyszMRFdXV8ynoqIiKisrkclkKCsr849//AMPDw8aGhooKChAIpGIvVQmk1FdXU12djYJCQloaGjg6enJkCFDxMXnp59+4uDBg4wcObKZ/fG8KC0t5ezZs8hkMgYNGoSKigrFxcWcPn0ad3d3LCwsWLduHZcvX2by5Mm4urqSnp4uooZLly5t9nl9+/ZlyJAh/Pjjj+jo6NC2bVvOnj1LZWUlAQEB7NixQxiDxcXFNDQ0IJFIMDY2ZsSIEYA8HePBgwdoaGjQo0cPDA0NiY+Px8XFpcV7TVZWlgj537x5EwBbW1tGjhyJk5MT8fHx7Nq1i5qaGj744AOxl1+9epXCwkLs7e2FgV1aWsrDhw85efIkjx494vr167z22mv07NkTHR0d8vPzqaiowMLCAmdnZ5YsWcKZM2eQSqX07t2bmzdvcvnyZXR1dZkxY4Y493Jzc8nOzqawsJCqqqr/2KcWG69Tp05FT0+PdevWsW7dOqytrXn33Xfp27cvw4YNw8PDA29vbwoLC7l8+TJ6enrMnDkTHR0dzp8/z6lTpxgxYgT9+vVrZpTMmDEDBwcHRo4cCcDWrVv58MMPGTBgAK6urmhpaVFZWUm/fv2wtLRETU2Nfv36Cc9eSkoKhYWFODo6Ul5ezqeffkpGRgYLFy4UG+bzQJHjunTpUsrLy5k1axZbt27lq6++avY6heETEBBAeHg4ycnJTJ8+ncrKSjw8PIQH4LfQ2NiIhoYGmZmZ1NTUYGpqyubNm4XxO2vWLIKDg5sZys+GuUNCQjAwMGiWqtESKA4HBbZs2UJ8fDxBQUEEBAQwceJEQkJCqK+vx9bWlm7dujFw4EC2bt3K2LFj6dGjB3Z2dqxYsYLAwECmTJkiPksxwZ9FdnY24eHhHD16lNdff53Zs2eLcF1AQAC6urpic0xLS2PcuHFYW1tz9OhRlJSUWrTRgtzbmZqaioqKCsrKyuTl5aGnp8fQoUORSCRUVVXx+uuvU1VVRV1dHbGxsdjY2GBsbExFRQVvvPEGJ06cwNfXFy8vLzQ0NLh37x49e/Zkzpw5JCYmcv/+ffz9/VFXV+fzzz/n6dOnrF27VhxI8+bN48mTJ2zdulV4LwFsbGxEikZOTg5Xrlzh1q1bwqB/XijWzuHDh1m5ciXGxsa8/vrrwvjIzs4W4XFFvuNveSQyMzM5dOgQysrKvPLKK/Ts2ZMvvviC1atX8+2333LkyBFeffVVxo8fj6GhIRMmTBCeTUCExhQwNzenpKSEy5cvU1VVhaenJx07dmxR3xTIyMhg6dKldO7cmQ4dOrB3717Onz/P4sWLRV42yD0Gc+fOxdXVlVmzZrF7924+/fRT7OzsMDIy4sSJE7z11lsMHTq02Zrs1asXbdu2ZdeuXRw4cIBRo0Y1i0Lk5ORw//59zp07x7Vr1+jbty///Oc/0dDQQEtLi/r6ek6fPs3WrVtxcXFp9t7nwaNHj/Dw8CAtLY1Lly7Ro0cPdHV18fb2prGxkZs3b9KxY0dsbW3p27dvs/Grq6tj+vTptG/fnuXLl9OvXz8uXbqEiooKGRkZTJ06FTs7OzZt2oSXlxd9+vThyZMnwnhoamoiISEBZ2dn3N3d2bRpk/BSGhsbi30YoKSkhH379nH8+HEmTpzYoj7q6Ojw3Xff4eXlhUTy/1h7z6iur6z9+0PvvXcQpIsooqKogL2LGnuPPfaWqImaaBJr7L232CsWVFREbIiAgNJ777235wXrd/7hnrnvkVnPXmvWzEQjfts5+1z7KlLMnDlTTDdiY2O5c+cOhYWFTJ8+nc2bN6OrqyvebR0dHYYOHUplZSXh4eHcvXuXgoICxo8fL9YvRUVFFBUVycnJ4eDBg2zfvp3Zs2dz+vRpwsLCWLBgAQMGDODnn39uAySkp6cTGhoqGryampo2qPy3Vnp6OmFhYdja2mJoaAiAhYUFampqhISEEBYWRpcuXZgyZQpSUlKkp6djbm7eZtyqo6ODr68vhoaGxMTEYGtrKw4zvXv3RkNDg5SUFBITE7GxsRHrSUNDA0lJSaiqqrYBEaSlpUlISKC8vBxbW1uMjY3FGvvflLS0NPX19SgqKpKamsqff/4pRsEKCgrU1dW1oS31798fIyMjoVtJTU3l6NGjaGtrM336dIyNjblx4wY//vgjZWVlzJ8/n99//x1dXV0CAgL49ddfcXZ25ujRo0Dr4XrLli08efIEfX19ZsyYgb29PfHx8eTn5wPw999/c+nSJVRUVMQ+2p7q378/nTt3RkFBgVOnTvHy5UtkZGTYvn07hYWF+Pj4kJ6ezowZM3BycsLf359ff/0Vb29v/vjjj3/7Z0omop6ensyfP5/m5mYqKirQ0NBoMw0oKSkRVIGBAweKfd3BwYF169Zx7tw5hgwZwqJFi9DQ0ODDhw+kpqa26/rWrFmDtrY2PXr0ICgoiKKiIhoaGoiMjOTatWuEhoaiqqrKrFmz8PHxwd/fnwMHDtCjRw9mzpxJQ0MDWVlZmJiYiOvasGED7969Y8uWLYKP+/TpUx48eMDq1auZO3cu6urqWFtb09zcTHx8POPGjWPnzp3cv38fCwsLAWq8f/+ehIQEunXrho+PD4WFhf9xitXu5lVLSwsVFRUaGxspKCjAwMCA8vJyKioqsLW1FXB6aGgoJSUluLu7Y2ZmhpWVlRgrSsZhtbW15Obm0tjYSIcOHVi4cCEAr1+/JiAgAH19fcGZWLlyJRoaGtjZ2VFeXo6urq4YqUMrMilZEIKDgzl16hRubm6sW7eOX3755Zuvr7GxkcbGRvH3cnR0pHfv3nz8+JHa2lpB3DY0NEROTg4HBwd69OiBv78/169fR1dXV1Ap/jnSlCxG0NqIamhokJ2dTUlJiUBYCwoKuH37NkOHDmXEiBHA/0MHNDQ0xOndyspK8EULCgra+wi5dOkSOjo6QnwXERFBSUkJGhoa4tQq+fObmpqQkZHB2NgYPz8/vnz5IhrO169fi8UDICIigurqanJycgDo27cvzc3NbN++nQMHDgikqqKiguLiYkpKSvj8+TMdOnQQ6L25uTlOTk40NzcTEREB0G5aRPfu3YmKiuLRo0fk5OTQt29fhg0b1maBT0tLIycnB2Vl5Tbo6JMnT6iurmbgwIF8//33eHl5UVxcTEJCAqWlpbi4uPDs2TNOnjzJypUrMTMz49SpU1RUVLB+/XrMzc3x9/cnMjISdXX1Nhyj6OhoDAwMsLS0xNLSkrt372JnZ4e7uzvNzc2Cx/gtFRkZydevX/n48SPjxo1jxowZGBoaEh0dTVNTk0APHz9+zJkzZ7C3txd84tzcXF6/fo20tDQGBgaoqqoSHR3NlStX6NmzJ3JyclhbW/Pp0yeysrIICAggPz+fjh070rFjRyoqKggJCRGjvtLSUtLT09HS0sLMzAxHR0eBrLi6ugqhUXtr2LBhPHnyhIEDB2JgYEBKSopAOf8p1jl69ChXrlzB3d2dLVu20KlTJwoKCigoKEBBQQFtbW3u3r0r+HZ1dXWoqanRvXt3jIyMOH36NHFxcWK09vjxY6qqqnBycqKiooJXr15RWVmJsbGxmFiUlZUhLy9PZmYmb968ISEhoV2IHcCbN28oLS3l69evVFZWUlJSgqmpKXPnzqW5uZnq6mrCwsIELausrIzo6GgcHBwoLi4Wa8KLFy9IT08Xo0hDQ0NUVFS4ceMG9vb2rF69mtGjR6Onp0daWhqmpqbo6enR0NDAgwcPsLa2FusNIESklpaWODg4oKmpSY8ePYiJiWn3M3RxcRHc4by8PMzMzMSGpaOjg5WVFS9fvsTExISLFy+Kf6+srAwtLS1GjBghhJEPHz4kMjISc3NzIYBtbm7Gzs6OoqIiWlpacHFxQVVVlfDwcEJCQlBXVxfc+8bGRqqrq2lqahKHW8n//vDhA2VlZe0+RBYXF1NYWNjmMKWlpYWWlhZycnKEhoYKyoyUlBRycnI0NzeTm5uLmpoaKioqFBYWkpqairu7uxDuJiYmoqioiKmpKS4uLnz58oVnz54xf/58MRFZsmQJISEhAkT69OkTlZWV9OvXD2tra9LT09HU1BS8fcm15eXltesa1dXVxV5mZWUlxIqPHj0StIn6+npBg+rRowc9evQgNzdXiHEKCgq4f/8+RkZGTJ48maioKMrKylBRUcHd3V1QASsqKoiPj+ft27dYW1uzZs0apKSkiIiIIDIykj59+jB58mRkZWX5888/OX36NGvXrmXgwIFkZGS0ofi0pyTfPsC2bdu4ceMGRkZGzJo1i+rqas6cOQO0Chd1dXUpKSnh/fv3baZlwcHBWFlZiQZvxIgRWFlZMWrUKEGDBMjIyODKlSuCpqatrY2joyPKyspkZ2eTmJiIsrIydXV1aGtr06FDBz5+/Mh3332Hh4cHdXV13Lhxo43O5D+VpqYmdXV1yMvLC345IASYXbt2RUlJSXybzc3NGBgY4ObmhqWlJTk5OWRmZiInJycEjv369cPDw4P379/T1NQkfo+SkpLo8SQ6k3Xr1gkk3dzcXKxxLS0tfPnyhbdv3+Lo6IiDgwO1tbU8ePDgP15Tu5vXP/74g9WrVzN79mwxOpMIVf5Ztra2dOjQAW1tbfLz86msrKRHjx5tblxBQQH5+fk0NTWho6MjEK5bt25hY2ODm5sbISEhVFVVsWLFCqysrKipqSEzM5O8vDxMTEzECUaiYoPWRdHa2pq6urp2b5qFhYXY2tpy/fp1ioqKiI6O5v3792IEnJWVhb29PdLS0m1engEDBghxl4aGxr9wGP+neExLSwsHB4c2De7evXs5fPgwBw4cYObMmQBi7CojI0N4eDibNm2iY8eOXLx4EQ0NjTbjqm+tly9f8ujRI9zd3Rk1ahRubm4YGhq2eTZ1dXXIyMggKysrmhUtLS0WLFhAr169qKurY+LEiaLZfffuHadOnSIlJYXo6GikpaVZu3YtGhoaXLp0CS0tLW7duoW3tzdNTU2oqanx+fNnFixYQM+ePcXioK6uzpUrV4iIiODJkydYWFgwZ86cdinVJeKkoKCgNkpJOTk5MW755ZdfiIyM5ODBg6JxvXbtGqmpqWzZskWMyqH13XJwcKCkpISgoCDOnj3L+/fvefjwIf369RPvQ3FxMX5+fgQEBLBmzRpGjRrV5vnExMQQEhLC1KlTycnJ4cWLF3To0EE4drSneb1z5w579+5l2rRprFu3Dmg9vf7222/Y2dmxZcsWNDQ0CAgIwM/Pj4KCAurr61FQUCA/P5+1a9eirq7Ow4cP8fT0JCIigk2bNrFy5UqUlJRwcHBg6NCh2NrakpeXx+3bt5GTk6Nbt24kJSUJLl+PHj24desWlZWVfP/99+Lv1717d4HIvn79mt27d7fhBn9LjRkzhn79+onvbPXq1ZSVlYl72tLSQlBQEA8fPgRaUbjGxkYGDBjAiRMnmD9/PioqKixcuJCMjAwmT55Mhw4dGDt2LF26dKF79+4A4lu1sLAgMzOTrVu30r17d8aPH09OTg5Tp06lT58+gsdcXFyMoqIi48aNEzQbHx8fZsyY0S5xob6+Po8ePcLFxYVJkyahqqpKfn4+3333nQAFHj16REREBP369aO0tJR3796RmZkp+PgPHjzg2LFj2Nvbs2fPHnGv7ty5w9KlS/nll18wMDBg2rRpxMbGEh4ejoeHBzIyMlhYWBAeHs7Hjx8xNTUVyOH27dsJDAzk9OnT4vuePn06Y8eOZfv27e16hpLRKLRSBbKysoiNjUVVVZXp06fj5ubGxIkTCQ4OFi4Pzc3N1NfXA62brq6uLjo6OlhYWAhdxevXr3n16hWqqqrMnz+f4cOH8+eff/Lnn38SFRVFaGgohoaGXL16FT09PUpLS0lKSqKoqAglJSX09PTEenf//n2ioqIAvkko8s9yd3fHxcWlzSRLwpU2Nzfnhx9+YOzYsUJ/IXG/SE9PF/f77du3rFmzhuHDhwu+r6amZps9w8zMDFdX1zaIXU5Ojjjgt7S0sHTpUpqamggKCkJTUxN1dXWkpaUpKysjNDQUPT09LCwsSElJadc1/nMNk5KSYs2aNTx58oTff/+djx8/8scffyAvL09tba1A95WVlfnrr78ICAjg0KFDuLq6CsBCTk6Ovn37IiUlxdy5c8VBG1pRyt9//50DBw6wf/9+HB0dGTx4MKampmhoaLBkyRKxLoeEhFBZWUnHjh2ZPHkyY8aMaQOm/Lc1fvx47ty5Q1hYGJcvX2bv3r0EBAQwfPhw7t69yy+//EL37t0ZOHCg+D4qKiqoqqoSnFx1dXUxYfzn/ZOM4qOjo3n48CENDQ2sWrWKLVu2AAiK5P79+6mqquLcuXMEBASwb98+YmJiGDlyJFZWVjg4OFBYWPjN13TkyBGKi4t58OABhw4dYsqUKWhra9OrVy+8vLxQUFDg5cuXvH37lpycHDp16sT+/fvFFMTIyAgZGRlSUlJobGxEU1OTuLg4NDU1OX36tPjm3Nzc2LZtG9bW1jx69IjFixfTtWtXrl+/jqysLHFxcdy+fRtLS0uGDRtGXl4e7969Q1NTUzS3Bw8eZNOmTW0muv+u2t28Snhkt27dQkdHhydPnlBRUcH48eNJSEjgyJEjjB07ViwMWVlZJCYm0q9fPyorK7l69SrKyspMmzYNMzMzzMzMKC0tpbS0lJKSEnR0dOjfvz+3bt0iIyODgQMHMmXKFIGaKSkp0bFjR6D1dNDU1ISUlBR1dXWEhoaSmppKRkYGDg4OBAcHs3bt2jZN2X8qyYICraes48eP8/btW6ZNmya4KK9evSItLY2qqioxBhg3bhyWlpbi362urubChQukpKQwd+5cLC0tuXr1KmVlZUyfPl3YEhUUFFBYWIicnJxAIt6+fYu+vr4gfmtpaZGXl4e/vz+xsbHExsYSEhLCwIED/yuhz5QpU4BWUZm1tTUdO3bE0NAQHR0damtrBZorseWSl5dHSkqKzMxMwY+srKzk2bNnBAUF4enpydu3b3n8+DEKCgqi4QgKCiI2NpZOnTqxYcMGcbqVjG7d3NyIiYkhJiaGbt26MWjQIFJTU5GTk6OgoAANDQ1cXV3b3aBnZWXx5csXnJyc6NmzJz169EBbW1sgZW/fvqW5uZmBAweKSYGEw9uvXz/xDtTW1nL58mXy8/OZMGEC1tbWQpwwePBgLCwssLOz4/Dhw9TW1gp7KE9PT8H/+mclJiYSExODj48P5ubmAiWTl5f/t3SL/6vMzc2RlpYmMzNT2OK8fPkSS0tLhg4dioqKCjU1Nbi5uTF//nzs7e3FfXR2dmbmzJkEBgZy584dli1bhqurK9bW1tTX1wsqhZWVFSNGjCAzM1PQZhQUFEhOThauHC0tLezbt49u3boJxOvgwYN0794dCwsLYSGzfPly/P3923WNmZmZ4pvKz89HX18fNTU1mpqaqKmpQV5eHmtra3788UeSk5MxNjamuLgYfX19hg0bxtatW5GWlqZv374kJSVRXl6OhYUFQ4YMaYOUbd68mcTERDp06EBVVRVeXl5iqmNhYcH06dMFX72mpoaioiKxBs2fP184Y7T3GXbu3JnGxkZ8fX1FU/JPdw/JyK2oqIj8/HwKCwvR1NQUa2FZWRmZmZnY2try008/oaysTFhYGIWFhQwaNIi5c+dy8+ZNnj17hqWlJfHx8ZSXl1NWVoaxsTF6enpMnz6dyMhIYfkGrSiURHTx9u1b7t69y8CBA4XIqz3l6OhISUkJqqqqgpbQ1NQkpmSOjo6sWbOGY8eOsXv3bjZs2ICRkRE6Ojqimc3Pz+fcuXO8efMGNTU1EhIShHMHgJ+fn5iCSTjNvXv3biOqUVVVRV9fn9raWiorK9sgrJ6ensyYMYMXL178i8PDfyqJePfz588UFhbi7e1NfHw8V65cYdy4cbi4uDB79myeP38urllWVraN+C05OZmEhATu3r3Ln3/+iaKiIhoaGjQ1NREXF8eXL19QVlbG19dXUIEAvv/+ezp27MinT5+4cuUK4eHhDB48mPLyctTU1Hj16hUyMjLY2dnRpUsXCgoKCAkJaTc9oqCggOzsbEHNq6urIzs7m86dO4sJHbQCVtnZ2Xz9+hVNTU309PQYOHCgsOHbuXOneD4TJkzAx8eHz58/c+nSJYyNjenZsyd6enrMnTsXExMT7t69i56eHjU1NUL05OLiQk1NjVCzL1y4EGVlZUGp+G/pEYMGDaKiooLTp0/j6OgokGANDQ2xV+/bt48TJ06we/duhg0bxrp164iKiuKvv/6ib9++DB48mNraWqKjo2loaKBjx45trAdbWlooLS1FWloaS0tLzM3NBVjXqVMnxo0bR4cOHfDw8OD58+cEBQVx6tQpgWaHh4ezePFi1NXV0dPTa1fzCqCtrc3AgQN59eoVHz9+pHfv3kLjIJkKmpqa8uTJE968ecN3333XhiKmpaUlBNnZ2dnCds3T0xMTExOmTZtGU1MTpqammJubY2RkxNKlSwX3G1oP/levXkVdXZ3a2loxfXVycsLPz4/Y2FiePXsmHHz+r/qvrLLevHnD48ePhSeqgoIC3t7eREVF8ezZM6ysrETDKCHYd+rUiczMTC5cuEB9fT2jR49GR0eHiooK5OXl0dDQoKKiAnV1dczMzLh48SIfP35k2bJlmJubk5ubS0VFhdg0qqurkZOTE6fTyspKXr9+jZ+fH2ZmZsLr7+XLl+1qXuvr6wVB/e3bt1RWVjJgwACmTp0qRlWnTp3i4cOHaGpqYmlpiY2NDba2tm1GD7m5uVy+fJmQkBAGDBiAnp4et27dAmDevHlA6+YcHR2Nqqoq3bp1Y/Xq1YwZM4bNmzezceNG5s6dK2ywIiMjKSoqQkFBARsbG2JjY3FycsLY2Li9j1AIRd69e0dSUpL4GCT3VVFRUdhq5OTkYGRkJHgwHz58IDExEVlZWcLCwsjKyqK5uVmoXZubm1m0aBF9+vRhyZIlvH37lj179givQQnnC1rFfA4ODuTm5hIbG4u0tDTBwcG8e/cOLy8v/vrrLzQ0NAQK862Vn5+Puro6q1evplOnTm1+7fz58/j7+zN37lz69+8PtDYkampqdOrUiZqaGmpra1FUVKSqqoqIiAgePHhAU1MTq1atQktLi8mTJ/+LiCwtLY2UlBQGDBgguMoSlEEyitHW1kZVVZXc3FwsLS2ZMWMGDQ0NNDc3txmDf0t16dKFxYsX4+fnJ0ZSo0ePZufOnYKu0NTUxJQpU5gyZQp1dXVkZGTQ0tKClZUVv/76K58+feLixYv4+fnRp08fgTpZWlqiq6tLbW0tqqqq9O7dmwEDBvDp0yd8fHwwMTHhyZMn+Pn5ISsrS3R0NO7u7jQ2NuLv78/Zs2d5+fIlenp6REdHM2/ePJYsWdLu5vXu3bssXrxYCHSysrIEDUBy/42NjRkxYoQQCkIrgp6ens7s2bMxMTEhPj4eY2NjMc1oamqisbFRoCSjRo0SP7OlpUVw2BobG0lJSRENsZWVlTg8t7S00NDQgLS0tPhz27tpSugjkgODkpIS0tLS4oCopqaGu7s7VVVVxMTEoKurS/fu3QXasXXrVszNzQUgkJ2dzdq1a2lubsbU1JTOnTuzc+dOPn36xLNnzzAyMqJz587k5eWhoKCAkZERcnJyuLu7i/evsbGRpUuXsmzZMurr6/npp5/Yu3cveXl5/1XzWldX1waVtLKyEqLJxsZGmpqa6NOnD1+/fhVekPv27UNWVla8j2lpady6dYuYmBgsLCyEGwu0ghlxcXGcPHmSpKQkysrK6NmzpxD4SoR2xsbGmJqaCqsnyfU2NzejpaXFnj17yM7O5sqVK/+VMO3JkyeUlpbSo0cPysvLuXr1KgkJCfz9998sWbKExYsXi8atvr6ejx8/kp+fj66uLqmpqSgpKeHh4SF4zRJa3qtXr4iKimLkyJGicZVw+CWCpT/++EOgWdOnT0dPT48PHz7w5MkTAVBoa2uTmJhIeno6Xbt2bde1ycvLk5CQwMmTJ4V4ecyYMVy4cEFYRlZVVaGoqIidnZ3wVJ41axaqqqp8+PCBuro6evfu3QaISEhIYO7cudTV1bFz506gFTCQlpamT58+gkJRVVUlaDuKiorcvXuX48eP8+OPPzJjxgxu377N1atXWbBgQbtG6f+sZ8+eAa37k7GxMVVVVUJsBK374vjx4zE0NGT69OlUVlayb98+UlJS2Lt3LyYmJnTr1g1FRUWSk5MJDQ3F3t6egQMHCkGwrKysGI0HBASgqKiIu7s7ERERHD58WAhBPT09+eGHH1BWVub+/fuEh4dz8uRJTE1N2b59OwoKCqxcubJd1xcUFISHhwdGRkaMGTOGzMxMsS/dvXuXmzdvcuzYMby9vdm3bx9v3rzhxIkTnDx5UgAxsrKyWFlZERcXx71793j27BmlpaV07tyZjIwMqqurKSkpYdOmTcTExDBu3DhWrVpFQUGB4MtaWVnh7e3NtWvX2LZtG25ubri7u6OmpsbBgwd5/fo1s2fP5rfffvuPvuftbl7Xrl3L8OHDCQoK4v79+/j4+FBdXc3y5ctxcnJi//79lJSUcPv2bXr16oWLiwv5+flkZWWRmZnJ7Nmzsba2RkFBgQMHDnDr1i2+//57ZsyYgbq6OsXFxURFRTFx4kTGjx9PeXk5x44dw8DAQPCyTp06xdevX5k+fbpQTEs8YysrK9HS0sLT0xN7e3t69+7dLo7P1atX2bt3L+np6fTu3Ztx48bRu3dvZGVlKSgoICAggKdPn1JSUsK0adMYNGgQMjIy//LRyMrKMmXKFIYNG0bHjh1pbm5m7Nixws7k3Llz7Nmzh3HjxvHDDz8I+oC1tTUNDQ0UFRXh7u6OjIwMLS0tlJSUMHjwYGbPnk1hYSFfvnzhzZs3wpKsPZWZmYmpqSnv3r3j4MGDXLx4UZDEJehAfn6+4MJ2794dKysrli9fTnBwMNnZ2RgaGnLw4EGKiorQ1tbG1dWVjx8/8vvvv3Pq1CmhFu3Zsyc+Pj7U1dXx9OlTHBwcKC8vZ8uWLbx48YKVK1cyb948ysrKuHbtGpWVlXh4eDBr1izBL2zvKE9RUZE5c+b821+TqJwliJ6kaYBW7uTNmzfZt28fnTp1QkdHh6lTp2JtbU1GRgbr16+noaGBiooKLC0thcXHmTNnyMnJYfbs2aJxffXqFQUFBXTp0kUsEr6+vnTo0IGIiAgaGhro06cPcnJy5OTktEtUCK2LUdeuXYmJiSEvL4/vvvuOTZs2oa6uLhT/NjY24meXlpZy//59YmJi8PDwYMaMGbi5uWFvb8/+/ftZvny5cAaZNGkSnTt3RkdHBxMTExQUFNixY4dQkAYEBBATE8OVK1dQVFQUwraEhARcXV1Zvnw56enp2NraMnbsWD5+/Iivr2+7FbL/PLRIDqplZWUoKiqiqqpKS0sLJ06c4OXLl3h6egp1/vv377l58yZ9+vTBxMQEW1tb0ajGx8fz+PFjPn/+THJyMnp6eixZsoR+/foBrc2MZDLQ0NDAixcvuH//Pm5ubqxdu1aIZdLT07l9+zZ6enpMmzYNoN2onaTWrFlDdHQ0x48fFyEM+vr6HDt2DBUVFSorK6mtrcXBwQEdHR3u3r3LkiVLqK2tFe9pZGSkmH75+PiQk5ODo6Mj06dPp7m5mYyMDHx8fITq+a+//iImJgYZGZk2nrbBwcHo6+vj6OiIvLw8M2fOxMzMDFlZWR4/ftzua3vz5g0DBw78l8PZly9fiI6ORlFRERsbGzp06EBtbS1nz56ltLSUTZs2iVGzZCR+7949Hj9+TE1NjbB/q6mpoaSkRPgpQ+vzX7FiBTNnzsTT07ONs0pjY6MI2ygvL+f27dtoa2szatQojI2NhW1je6qhoQFDQ0MxFTAxMWHixIltrJ8k/t0BAQHcvHmTN2/ekJubi6qqKvb29vzyyy94e3sLMEZGRoaSkhKgVX/Qu3dvysrKhF+mxBs6OzsbX19ftLS0uH37ttAH9OjRg6qqKszMzCguLubs2bPIy8szcuTINmP6byldXV08PDz48ccfgVbw4/jx44J729jYyJUrV2hubmbChAloaWkRHByMnZ0dqqqqnD17lkuXLjFu3DgWLlyIkZERUVFRXLp0CVVVVZYvX86ECRNIS0tj7969JCQkiN8LrbSeX3/9FWVlZXHgq6iowN/fn8WLFzN27FjWrFmDgoJCG21Je+rChQtoaWnRs2dPSktLGTJkCI6OjkJH8OjRI9atW0fv3r3R19cXug6JbRj8P32IpqYmNTU15OXlUVVVJawYCwsL6dOnj/DJ1tTUZM6cOVRUVJCeno6uri4NDQ2kpKTw9u1bkpKS6Nu3r6CfNTY2smXLFhQVFenYsWO7RFuampo0NTURHh5OamoqvXv3Fr82bNgwbGxs8PLyoqSkhK9fvwKtk52TJ08iJycnnASys7O5fv06x44do7y8nPj4eJqamhg2bBgBAQHk5uYSFhZGUFAQDx48wMLCgm7dutG9e3ekpKQwNjZm8+bNIuDFx8eHtWvXAq0Iv46ODj4+Pt/kTtPu5tXKygobGxsSEhJobGzk559/Jj8/X3h0rV+/nujoaJ4+fUq3bt2QlZXF2NiYz58/Iy8vL/h59+/f5+DBg1RWVrZZ9A8dOsTr169Zs2YNgwcP5vTp00RERDBu3DgRjPDw4UNkZWXboF9qamr06tULZWVlHj16xO3btxk7diybN29ul5VUQ0MDNTU1VFdXC5/ThoYGduzYQXZ2NmZmZowaNQo7O7s2PEwJ0lVZWYmCggLm5ub/YtElUV/m5eUREBBAXl4e6enphIeHo6enh7a2tkDlNDQ0KC4uBlp5RhLPTDMzM8rLy4Xo5H9zNPi/ys/Pj2HDhpGWlga0orpubm7k5eXR0NCAlpaWGA9BayNraGiIiYkJFhYW+Pv7k5iYyPjx44UlDbRu/FFRUbx48YLMzEzOnj0rUkWuXbvGixcvBK8zICAABQUF0QyUlpaSmpqKm5sby5YtEwrbjIwMgbZ/a5WWlhIRESFMtSXPQ5LsYWRkRHNzs/CJhFb+1P3790lMTOTJkycC8VVXV6d37974+/vz6NEjPn/+LBqhpKQkwS+VnIoBQQXR19cXKHNTUxP6+voMHDgQbW1tcnJyyMvLw8DAACMjI/EsvrUePnzIzz//zMqVKxk9ejQ2NjZt0PP8/HwxnpSSkqKkpITy8nLCw8NJTExEXl6eSZMmISUlhYKCgtj4bW1tcXNzY+zYseK7TE9Pp7S0FEtLSzp06ICCggIJCQk8fvwYOTk5evTogY2NDXJyctjZ2aGmpkZdXZ1Atu/evcuyZcvaiIK+pXr06CGS6iT0nPT0dN69e4e3tzdqamq8ePGCGzducOPGDTQ0NOjcubOgCCQkJNCzZ0/xXcbHx3PkyBEuXrwonmHPnj3beEfm5eXR0tKCiYkJzc3NBAYG8uXLF0aNGiWmO71798bCwgJFRUUyMjLIyMjAzMzsvxI0lZaWEhsbK5ALCUXoxYsX2NnZsWzZMgwMDNDQ0BBhGklJSeJ5SVxLgoKCKCgoYMCAAWzcuJFOnTpRUVEhqCNubm7o6+uTnZ1NbW0t8vLyfP36ldzcXGHhM2DAAKSlpamoqCAzM5PGxkY6deokmp3IyMh2X19VVZU4EJSXlwt1uuTvpqysjJGREUOGDCEpKYmLFy+SmZlJbm4uxcXFBAQEoKyszMiRI0lOTubmzZtYWVkxcOBAYmJiROIYtFIuhg8fTnFxMV+/fiUnJwdtbW3Cw8NJSEhg7Nix2NjYIC0tTWlpKWFhYezfv5/a2lpaWloYPXp0G+rXt5acnBy9evWisLCQ5uZmTExMWLNmjdiA4+PjUVNTw8jISDQyeXl5qKqqoqmpiZubGzNnzmwzRZPYSA0bNgxTU1OglYss4Y7PmDGD4uJi7t+/z5QpU5g3bx4tLS1ER0fz8uVLARpAK9UvMTGRYcOGtbtxBYRV0urVq4Urxz/dElpaWkhOTha+rGZmZlRVVXH69GmMjIzQ0NDAyMiIwMBABg4ciK6uLqdOneLjx49cvHiRESNGkJ2dzYEDBzh+/DjNzc2EhYWRmprKkCFDcHZ2ZtSoUTQ3NxMaGkq3bt2YP38+UVFRHDp0CHt7e+H0IQk0aW9J0NS8vDxiYmJQVlZGTk6O7OxsUlNTqaur4/nz55iZmTFz5kxSUlK4c+cOvr6+wiM6Pj4ea2tr7OzsaGhoQEFBQUwd9PX1KSsrE8Lf169fi2b5f5ZEmFlVVcWxY8fw9PQUiXGSKVt7RXfS0tIoKipSXFxMbGwsBgYGNDQ0kJqairGxsRCbpqamMmnSJD59+iSAmvfv3+Pm5kZjYyNXr17l/v376OrqYmNjQ01NDVeuXCEuLo7ffvuNYcOGMWzYMAYOHEhYWBhhYWEYGxuLSQu00g+WLVtGfn4+MjIyQpQ+bdo0bt++TUJCwjeFhbS7eX379i19+vRh0KBBYkynpKSEvb09YWFhHDlyhMGDBzNnzpw2L1HHjh3FyCApKYkbN27Qp08fVq1ahbOzMy0tLTx58oRPnz4RGhrK+vXrxc+aOXMmsrKy7Nu3j7Nnz9KrVy9Wr179L56rTU1NhISEsHXrVmpra1FRUWnDyfmWmjRpEj4+PuTn54uR8+fPn7l48SJGRkbMnj1biH/+WXJycuTl5fHkyRO0tbX/1436zp073Lhxg/79+/PDDz9w8OBBJkyYgIGBAVVVVRgbG7Np0ya0tbU5efIknz59EokXEuW6uro648ePb5OG1Z4yMzPj06dPzJ49m1mzZvHkyROmTp2KiooK1tbWYrRnZWWFtra2EBn4+flx5coVoqOjKSgo4MqVK8ydO5chQ4YQGhrKqVOnBF82KiqKr1+/iuZVUVFRJKipq6uza9cuBg8ezKtXr4SRs4aGBitWrBBODAsXLhQHovZUeHg427dvF8rU0tJSYmJiGDFihHCJ+OcJff/+/fz222+sXLmSPXv28OOPP7J27Vr69euHuro6hYWFODk5MXLkSGxsbLh06RLQuikUFBRgY2PDgAEDxPsusSQxMDD4tyiAm5ubCKmQVHtCGKD1m3N0dERHRwdNTU3WrVuHjY0NBw4cwMbGBnl5eSIiIvj48SMuLi7Y29szaNAgiouLBb9806ZNBAcHM3LkSN68ecPTp0/5+vUrlpaWonGtr6/nxYsXbN++nU6dOnH27FnMzc1ZtWoVS5YsIT4+nqdPn9LY2IiNjQ2vXr0iKCioDed3zJgx2Nvb/4vd3H8qicr206dPaGho0L9/f6E6T0xMZNCgQTg4OGBubk5FRQU///xzG0TD0dGRqKgo4uLisLe3x8DAAC0tLTQ1NenZsyejR4/Gx8dHfOeSjUrSREhGtzY2Nqxdu5aYmBgmT57MDz/8wPr161m0aBHx8fFoamry7Nmz/8pRQVVVlT179lBRUYG+vj5GRkZcuXKFOXPm8Msvv2Bpacm0adNQVFQUXM8OHTowb948Tp48SVxcHNCqPHd1dUVXV1eIpPz9/Xn79i3jx4/HxcWFV69e8fbtW7p168aWLVsYMmQICxYsIDU1lTlz5vDzzz+zYcMGlJSUyMjI4OrVqxgbG4tD9z95wt9a7u7upKSkEBkZSXV1NR4eHlhbW9OlSxchwlFXV0dHR4cff/yRSZMmISMjg4yMDA8fPuTBgwdoamqSnZ1NbGwsRkZG+Pr68ssvv9DU1MTevXv5/fffgVaEbuLEiWK02bdvXxobG/nzzz/F/5dEOT99+pSAgAARLzxv3jyysrLa7Zmdm5uLtrY2cnJygvYBCPGwREDV1NTEggUL6Ny5M7t37xaHW4mTzD+bQWhtCI2MjAQ39u7du4LOIi8vz40bN8jKyiI0NJScnBw2bdrE4sWL2bZtG2PHjmXDhg2sXbuW9PR0UlNTWbdundgLMzIy2nWNW7duZd++fSxfvhxXV1dWrFjB1atXuXbtmnBPMDQ0FA2furo6JiYm3Lhxg/LycpYuXcqSJUsICAjAw8NDpKApKCiIBvvnn3/Gz88Pa2trEYm6Y8cOHj16xNKlS5k0aRIfPnxg//79eHp68uOPP7Js2TIxtv/y5QuzZs0S3PT21o8//khQUBBdunTBzMyMp0+fUlpayowZM/juu+9wdHQkMDCQ4uJixo8fT2BgIMePHycjI0NQG6urq4VKX5JCKtmzJbzZU6dOicnk3Llz/+3fxd3dnUmTJhESEiL2eFNT0zZgXXt1IH5+ftja2jJkyBAUFBSEgDAtLY2ffvqJFStWkJWVRUpKChs2bMDU1JTExESuXr2KvLw8DQ0NfPjwgatXr9LY2Mj+/fsZMWIET548Yf78+dy7d48nT54QERGBnZ0dmpqa2Nvbs2vXLmxsbPj8+XMb16ChQ4fSoUMHFi1axMCBA7ly5QpycnJcv36d3Nzcb9rz2928SkjCdnZ2+Pn5cf/+fTIzMzEwMMDMzEyYp2tqalJQUEBMTAzNzc3o6+tjZ2eHjIwMaWlpGBkZMWzYMJydncVJS2KFJeF5lJWVMXr0aNEk+/n5ifGYjY0NxcXFvH37ll69eqGtrU1KSgp79uyhtraWPn360Lt373ZlOAOioTAxMREIVkZGBosXL8bZ2RknJyfy8/MJCAggMTERAwMDwYWRJEF9+PCBDx8+YGJiQktLC3Z2dpiYmPD+/XsWLVpETU0NU6ZMwcPDg59++omysjLKysqAVrGRqampsBjy9/fnyZMn9OnTB2lpaXGy1NfXp6Kignfv3rX3ETJixAjS0tIwNDRERkaG5ORk0tPTUVNTw8rKiqamJu7evYuWlhYLFy4UFi+amppUVFQIZW5zczP5+fkEBwfj7+9PSkoKtra2AqnbvHkzBgYGwlpLMo7o27cv/fv3R0lJiaSkJPLz80X8YFRUFOHh4dy6dUvEUbYX8WlqasLa2prY2Fj8/PwYMGCAOA0rKSmho6NDcXEx2dnZGBsbY2JigpeXFw4ODmhpadGpUyeUlJRwcXHhwoULJCQkiHhKCcc5MTGRuLg4lJWVxeHi5s2bKCsr0717d0xNTSkuLiY0NBRtbW26desGtJq2f/z4EWdnZ3HAOXToEPv3728Xp9De3l6MQ01MTOjQoQMvXrxg0aJFbNmyBXNzc4qKioiKikJZWRkzMzO0tbWZN28e8vLyZGVlERISIqIiJYbweXl5IulMYi30z/AGSWKVBA3q0KEDycnJ5ObmChN2d3d3KioquHXrFp8+fcLBweG/Qnwk5vW1tbV07NiRhoYGbG1tmTlzJlFRUdy/fx8lJSU2b95MfX09165d4/3793h6erJo0SLRCL5//x4dHR2cnZ356aefsLOzw9jYWFiHff78WXg1jxgxQiQIKigooKmpSWRkJPv37xcHgIyMDJ4+fUr//v2FKEhiWt6e6E1JFO//5GU7ODiwa9cutm/fzqtXr4S4KjAwkOfPnwsqUadOndpEOnt6evL+/XtCQkLo3r07CgoKBAcHU1VVxZgxY0hNTRXcbnV1dQYNGsSdO3fYs2cPwcHBpKSkiGASZWVlDAwMhBC2qalJmOm3p1RVVdm/fz8nT57E3t5efAeKioqCw3n9+nWKi4uZO3duGz5mcnIyWVlZvHnzhoKCApycnHBwcMDY2FisR+vWrePNmzfC49bT0xMVFRWUlJTaTF4iIyNZtWoVv//+O1ZWVujr6+Ps7MymTZs4ePAgOTk5fPjwod3Na3NzM8HBwTQ1NWFubo6CgoLgVMvLy1NdXY2VlRUfP35k3759jBgxos0hQGLhVVdXJ8bJsrKyopnNyMjgxo0bbN26tU3AQ21tLRkZGZSUlKCpqSmaXE1NTZycnHB1daWuro7NmzeTnZ2Nl5cXVVVV/P3332Ki960lJSVFUVEROjo66OvrY2ZmRkREBL///jubNm1CRkaG4uJiPn36RLdu3ejatSuOjo4sWLAAZWVlCgsLaWlpwcPDA1NTU6SlpZkzZ46I2C4pKUFfX585c+YIh6LU1FRCQkIEEhoVFSWEaNB6qJaTk6O4uJjU1FSuXLnCtGnThCdte2vXrl20tLTQpUsXOnXqhL+/P+np6aioqIi1TlFRkZqaGkFRrKurQ19fn+TkZKqqqtDR0cHY2Jja2lpSU1PFlCo6OhoVFRWampp4/fo1Hz58QE5Oji5duqCvr4+JiQlZWVnExcXh5uaGt7e3+JbPnDkjKF46OjqUlZWhoaHRbuDqzZs3rF69Gmil7Dx9+pS8vDwhTouIiCAkJITg4GABKEkcn96/fy8s/T5+/MiAAQPE3qWtrc3MmTMJCAhoY5toYmKCm5sbI0aMIDY2ltevX6OpqYmzszMFBQXo6emJJjckJITCwkJ0dHSoq6tDXV0dJyen/7jvt7t5ldy0yMhILl26REBAAJWVldjY2LB8+XKWLFkCtMLaDx48wM/Pj+zsbDw9PZk5cyadO3emY8eOVFZWisXxxYsXgtD9z3SM3r17t+FKSThzkkXv1atXJCYmCqGUxATYwsKCM2fOYGNj0yZR51vq+PHjHDhwAGVlZWFi7uTkxIIFC1BUVKShoQF/f3+2bdtGamoqvr6+zJo1C2j1I1VSUiI9PZ1t27ahra0tuCJfv37lyJEj1NTUoKCgQFxcHI2NjW2aaykpKRwdHcnOzsbV1ZVRo0ahqKhISEgICgoKeHl5tbHW+vz583+dNy5JLsrLy6NXr174+vpSV1eHkpISiYmJYkEfMmSIGEd37dpV2NooKCiwc+dOHBwchDVLnz59xFgyPT1dpHB0796dqqoqZGRkGDhwIKdOnSIrK4uzZ89iYWFBQEAA6urqXLhwgfDwcMLDw8UprVOnTm2u+VvKxsaGFy9esHXrVvz8/Jg4caJQqdbX1yMvL09ycrIwBJcI2G7dusXBgwfx8PAQKEdDQwO//fYbcnJyIgRj0KBBIinE0NCQyZMnExwczMqVK6mqqmL9+vX06NGDkJAQsaC7uroiKyvLly9fWL9+PQMGDKB///58+fKF33//ndzc3HY1rxIOEbSOYQ4dOsTp06eFAOLMmTPo6OiQl5dHZGQkxcXFqKmpiY0zLi4OBwcH7O3tSU5OFqimi4sLOTk5dOjQAVlZWTQ1NfHx8WHHjh20tLT8SzBGfX09PXv2JDo6mtDQUPr27Yu9vT3379/nxIkTBAYGUl9fj7e3dxvbpG+pT58+8fLlS8aMGSOSdKC1UVRXV+fYsWOkpqYyffp0Fi5ciKmpKUeOHKFv377Y2toSFRWFv78/aWlpdOvWDW9vbzQ1NRkxYoSIgq2urubYsWOcOHECaD2US5Kn8vLy8Pb2JjQ0lF9//ZWNGzdy6tQpDh48yMaNG2lsbBQezRJXgtDQ0G++vpqaGjQ0NNqscZKwDk9PT7Zs2cLixYu5du2aQF9fv35NcXGx4CFaW1vz9etX+vXrR21tLStXrqS0tJSHDx/SoUMH8vPz+euvv0hNTWXRokX07dsXeXl5GhsbkZWVxdXVlcOHDxMYGCgiMsePH4+Pj48IvIiNjWXTpk0EBQUJFPZb6927dzx48ICysjLS09OprKwE/l9QSnV1NYcOHeLLly9069ZNNLfQivQ6OTlRWloquLE6OjpUVVURGRmJh4cHzc3NdOvWjcDAQKqrq0lJScHZ2Znw8HBUVVXx8fERfO4rV64ArcmNrq6uAonU09Nj3rx5bbix31qpqam8evWKjh07itASaOWsJiUlCfpMdXU1c+fO5f79+zx9+hRZWVlKSkp49+4dsrKy4ruqra3FwsJCoM179+7l4MGDbfYxSXpWYWEh+fn5eHh4oKWlRXx8PObm5jx69Ah1dXUyMjIIDw8nKiqKdevWUVpaSnh4OCNHjmzXmurr64uOjg6XLl3i5cuXTJ48mYSEBM6ePYuuri4//PADNTU1Iupb8h9vb2+qq6v54YcfyM7OZtWqVeTl5VFYWCg4wRMmTMDU1JRbt26hpqZGRUUFTU1NaGpqUl1dzbVr1wRYMnbsWIYNGyb+7g8ePBA0tIkTJ4qUxv+GSufl5YWmpiZ9+/ZFX1+fMWPGMH78eOEwBK2NmoyMDFJSUpiamorAjsLCQh4+fCj0AtnZ2YSFhaGmpoa2trZoWCXWZZ06dSI+Pp4LFy4QHR2Np6cnjY2NBAQEEBQURHFxMfHx8SIu2NPTU/CH/5t3FFrR+qCgIPLz83n+/Dm6urrs3r2biRMnoqSkxOvXrykvLycyMpInT55QX1/PX3/9hYqKCmpqaigrK2NsbIyNjY2gGEgcEaZOnSoS3woLC8nNzRW0ridPnnDkyBGePHlCU1MTLi4uGBkZUVlZSUZGBsOGDWPy5MmiqZ0yZQrGxsb06dNHfK//W/1X8bCXL18W3I9Ro0Zx9epV4uLiyM7OFr/PwMCAT58+ce/ePYA2XrBlZWWEhYXR1NQk/CQlvpXV1dVs3bpVWEmoqakJ6H369On0799fdP3W1tZ07txZ2EXp6elx+PBhwblVUVFpY331LZWZmUlxcTHFxcUEBgYybdo0qqurWbx4MT179mT+/Pl8//33VFZWEhYWxrx581BVVeX58+ecOnWKXr16sXPnTt69eyfGWPb29hw9elQohn/99VdUVVUFf668vJzY2FhmzZrFqlWruHv3LgcOHGD8+PH06tVLvDT/szQ0NHB0dCQoKKhd17hhwwY6deqEoaEhVlZW4lAgGUtYWlrSuXNnjIyMBGfn7t275OTkoKury5EjR9DR0cHAwICvX78KWyuJKlpDQ4O1a9diaGiIg4MDzc3N6OjoMGHCBDw9PTEwMKCmpgZnZ2dcXV1Fczxv3jzi4+PR1tamS5cu2NvbY2pqioGBQbvI6aqqqsjLyzN79mxkZGRIT08XjfnZs2cFZWXGjBmoqakRHR1NaWmpMGUOCQkRCvp+/fpx9uxZZGVlBRe5rq6O+vp6Bg8eLBbM1NRUgbpt3boVDQ0NjI2NmThxIk5OTgJtnT9/Ph06dCAuLo6///4baLVbaq8/oSTBTdKMQ6t1jpKSEs3NzYSEhJCamiq8Bzt06ICpqSmBgYFcv36drKwscQj08/MjNzcXX19fnJycWLFiBc7OzmzcuBEVFRVUVFTo0aNHm28pNzeX+vp6pKSkUFZWxsvLi8rKSi5cuEBsbCwdO3Zk0qRJ9OzZk+LiYkxMTEhPT2/XNUZERHDv3j309PTEATEmJoaTJ0/SpUsXJkyYwNKlSzl58iTz5s1DR0eH0NBQcZh98OABd+7cQU5OjmfPntHU1IStra2w73NwcMDT05OpU6cKtLm0tJQ5c+ZQV1cnhG1jxozBz88PGRkZbt26RWFhIcOHD6dLly6Ehoaya9cuEYjSnpJ8d/Hx8Xz9+hVdXV2sra2Rk5OjtLSUFy9eEB8fj6GhIf3796eiogJra2s8PDzo1KkToaGhHDlyhISEBNzc3KiuriY6OloEHsjLy/Plyxeg9RDm5OSEvLw8UVFRYiz99u1b3r9/T0VFBQkJCUhJSbXZ/CVNY01NjVD4t6dCQ0Pp1asXQ4YMEYhdeno6rq6uaGlpoayszIoVK4iIiBCIWVNTE4GBgaSlpTFo0CB69+5NYGAgp06dwtnZmalTp+Lo6MjLly+5d++eUMBnZmayaNEifH19GTBgAB06dABaI79/++03bt68KZwi/ln9+vVj0aJFyMnJcfPmzXZd34kTJ7CwsMDMzOxfvM4TExMpKCigY8eOYlL28uVL7ty5w3fffYeWlhaDBg3i8+fPPH/+nKSkJGEBV19fT0VFBfX19SxdulQcvv38/IQXaGxsLNCaRilRsg8ePFgIl+Lj4xk1ahQKCgrcuHEDQOgm2hNuI0Fq4+LiOHPmDC9evGDatGksXLgQDw8PpKSkmDJlCmPHjsXNzY3o6GjOnz/P8ePHhefr/PnzcXd3Z+vWrQQFBQlbrNjYWCE6VVNTa4Mo1tbWUl5eTk1NjWhYJf/9+vVrlJWVOXbsGIqKipiYmIj39r9pXv/880+am5u5c+cOt2/fZsaMGW2of2lpaWzfvh1DQ0M2b95Mbm4uu3fvZujQoQwaNIhJkybx8OFDrly5grGxMd7e3hgZGREbG0tCQgIhISFYWFgwY8YMhg4dyo4dOwgLCxPeqEOGDKFv3768fv2ajRs3CjrQ7Nmz8fHxaXPYuHTpkuCdfmtZWFiwatUqevbsyaxZs1BRURFiT4l3vqGhIdu2bRN83Tdv3mBhYcHKlSuRkZHB0tISJycnLC0tqampIT09HT09PQwMDCgsLOTYsWMkJCQwbNgwJk6cCMC+fft49OgRjY2NHDt2DAsLC3766SdUVVVRVVWlX79+2NjYCMDLxsamjT3X/1Xtbl5ramq4evUqixYtEuRhc3NztmzZ0kYV/vfff4uFwMDAgD59+ggPw5ycHF6/fk1OTg5Dhw5FUVERe3t7zp49i4KCAjNmzGgzPmpsbBT+mRL4vaKiAhcXF+rq6oTfpLW1Nb6+vmhqarJ582aAdo+BvvvuOyIjI0WCUN++fQkLC8Pf35+SkhLmz58PwNSpU8V4saSkhFOnTvH+/XsGDBggcp4lY1f4fzGaAwcOZPHixRQWFhIbG0t1dbVAX2xtbYWS8smTJwQGBrJ7927mzJlDU1OT2OAk97FDhw6Ym5u3u3n98OED1dXVTJkyRYih/mnr1NTURO/evamsrBTpKZmZmZw4cYKOHTuyY8cODAwMhLWFgYEB8vLyREZGkp6eTufOnenevTu+vr5iIXF1dWXVqlXCpLhPnz5MmjQJaD3MSDjK+vr6FBYWoqenJ55dU1MT58+f/+brk5GREaltW7Zs4cKFC4SEhNCnTx/y8vJ4+fIlXl5eItXryZMnXL16la1btzJmzBiuX7/O9evX8fX15Y8//hC8LEkFBweLZCJJ82pmZoazszOJiYnCf7VDhw4sXrxY8EutrKzYsGEDI0aMQEdHh5cvX+Lh4cH3339PSUmJsGX5lpKVlaWmpgYlJSXq6+uFyOC7774jPDyc27dvU1dXh729vVDNVldX8+7dOz5+/IiioiIFBQWCdmJpacnZs2eRkpKiV69e5OXl8euvvwIIX8y8vDxqa2sxNjZGRUWFkJAQMeqS3KOtW7dy9+5dzp07JxYwSbX3W9TT0xNcOklduXJF8BynT5/OnTt3eP36NYmJicJjUMKZkxi4NzQ0kJCQgLa2NlJSUoSFhfHgwQPGjh3LlClTsLKywt3dHQUFBb5+/cqZM2dISUkhMzMTY2Njpk2bRq9evQTnTldXly1btqCtrc2HDx8ICgr6r5N9ysrKREJhSUkJFhYWQo396NEjzMzMWL9+PePGjePevXu0tLTQo0cPvLy8CA8PJzc3l9LSUmpra1FXV2fs2LGUl5djaWkphDapqamoq6tTVFTE69evuXTpEr6+vsyePZuKigqOHTtGaWkp0EpZSEpKokuXLsjLywtnB0ncbHuruLiYJUuWCFeYkydPUlFRgbm5OU1NTURERODl5dXGNUVGRobIyEjKysr48ccfKSkp4fDhw4SEhKCjo4OKigqysrIUFhYSHh4u+OKKioqkp6eTl5eHkZGRWMvq6+vx8fH5l++4qqqKL1++kJqaiqWlJW/fviU1NbWNB+t/KmlpaXx8fIRbRWZmJrq6uigqKiItLU1YWBjV1dW0tLRgb2/P58+fOX36tJhCKSsro6GhgaqqKjExMbx8+bLNNG7ChAn89ddfAAK1vnHjBiEhIWhoaKCkpERCQgJPnz7Fw8MDBQUFysrKRIDD6tWr8fb25scff+Tjx4/Y2dmRnZ3dLkW+5AAief6pqalERUVx5coVlJSUhH7AxcUFGRkZEhISxCTD0NAQf39/QRuS+L9mZ2fTrVs3FixYwPHjx5k1axZr1qwRPUVMTAx+fn7ExcVhYWFBXV2dEG5KnBo8PDz+raZFcp/aUxKLs40bN/Lu3TumTp0KICYUFhYWhIWFkZ+fz7hx44iNjeXQoUNkZWUxaNAg9PT08PT05MWLF8TExGBlZQUggkeKioro3Lkz+vr6NDY2CgS1pqYGAwMDQWHq1KkTYWFhxMXF0bNnT7y8vNDR0WmDvIeGhnLnzh1hufktJZmoTpgwoc0Uq6WlhfDwcJSUlBgyZIjYE2/fvs3t27fx8PDAxMQEeXl5ioqK0NfXR1FRETk5OSGiKykp4dy5c2zbto3m5mbKysowMjISgMns2bN5+vQpaWlpHDlyRFDmJOBJTU0Nz58/Jzs7Wwgmv+UZtrt5HT58OIqKim04bJqamoJkDK1emhKkpEePHmzdupXOnTvT0tJCXV0dZmZm9OrVC39/f2bOnMn69etxdXVl/fr1BAcHExkZiYaGhhD7yMrKUlVVJZCfixcvUllZyfjx4/Hz82Pbtm3MmDGDrVu3Aq3k5rVr17Z7TAmtZsV9+/bl/v375Ofnk52djbu7O0+ePEFGRobnz59z+PBhrKys2LNnD0VFRcyfP19w7yTNtERs8uOPP9KhQweB1kkafF1dXczNzdmxYwdaWlps2bKFsrIy5s6di4eHB8ePH+fOnTs8ePCA5ORkEhMTaWlpYfny5UJZKUlMam/t2rULOTk5KisrCQ0NxdraGlVVVeEuIOFdZWZmEhkZyeDBg/H19eX+/fvcvXsXXV1djIyMuHbtGjIyMhgZGZGamkpZWRlOTk7U19dz+vRp9PT0xKKupKRE165diY2NFSIMyWaSnp7O69evKSgoIC4uTvzMPXv2AO0/SWtqarYxIR89ejQ1NTU0NDQwevRonJ2d2/DOJEr569evU1tby9ChQ3F3d6dTp07/dsOWlpbmxYsXnDhxguzsbDZv3ky/fv3EWExKSoqAgADh+5eRkYG/vz9ycnIkJSWRnZ2NkZGRECsC7eah+fv7o6mpSe/evQVSJZlySEY9Xbp0oW/fvjg4OBAZGSlCJA4dOoSUlBSXLl0SzWtqaippaWm4uLhw8OBBampqxAYnOSVLvrWlS5cybdo0Hj16xLVr1zh37pz4e40bN46BAweKZyvhdf43NWLECDw8PMQo2c/Pj9TUVJYtWybG9atXr8bX1xclJSU8PT15/Pgx4eHhXL16VWS+p6enY2RkxIoVK+jUqROXLl3i7Nmzwl3jypUr3Lhxgx07duDo6Mgff/zBhQsX+PLlC9OnT8fPz4/Tp0/To0cP1q5dK2y2JKbff//9d7uFodDa6MTHx6Ojo0OnTp2Ijo4mLS0NMzMzvL29qaioIC4uDnV1daKionjz5g2hoaF8/vyZ8PBwHB0dhR2dJLL7hx9+QEFBQQhEzp8/z86dO0lKSuLvv//m48ePBAQEoKWlxezZs5k2bRqFhYWsX7+e2tpaYmJi+Pnnn3n69Cnr16+nc+fONDQ0MHz4cKZPn/5fHUD++a15eXmJA/OJEyf4+eefmTBhQht7quLiYgwNDenRo4cYaUZGRuLt7c369et59+4dp0+fZsSIEfz444+oq6sTEBCAi4sLixcvxtHRUQS9dOnSRdhq/U+7Lsn6FxQURGZmJhkZGVhbW7ered24cWMbBCw2NhZZWVmRMJeRkcGrV69QUVGhpaVFjFIzMzPZv38/5eXlTJw4kTlz5pCenv4vdmQSuyxo/eYzMjJwdHTE3t5e0H4UFBREPKuamho6Ojr06NGDhoYGNDQ08Pb25vr16xw4cIArV65w6tSpf3HC+b/KzMyMc+fO0aFDBy5fvkxwcLBIS3J1daW+vp6tW7dSVlbGypUr2/jk/vDDD6JXKCkpYeLEicybN4+6ujqamprYsWMHZWVlXLlyBUtLS9G8StxYXF1d8fb2pqCggGnTphEYGMiwYcNYtWoVqqqq3L9/Hy0tLeHlXlFRwfPnz7/52v5ZjY2NjB07Fnt7e2EZZWxsLNavS5cucfr0adatW4elpSVHjx5FTU2NR48e0aVLF2xsbLCxsWHx4sVcuXKFy5cvY2pqSlpamlDW379/n4iICPLy8lBUVERdXb0NFUBJSUk4LqSlpREVFSXEqRJ+/dChQ3FxcWkXRam4uJiDBw8K71xJSUlJCecACSi2bNkyzp49i4aGBi9fvuTKlSt4enqSlpbG+/fv8fX1ZcuWLUILUV9fL3RIf//9N/fu3ePevXtMnjyZ9evXM378eGJjY9m4cSO3b9/G19eX1atXs2HDBtTV1SkrK+PDhw+oqqoydOhQFBQUCAkJ+Y/X1O7m1dnZWQgMJLZQnTt3xsDAgJycHC5evMirV6+wtbVFSkqKgQMH0qlTpzbJMfb29kyfPl0gXKqqquzYsQNpaWnq6uqorKwUY5O4uDgSExOxs7NDQUGBxsZGTpw4QXl5OSNHjqRr164YGhq2QX0lGezQfuNwiZGzJF1IgvooKipSWlpKWloaRUVFqKurk5yczPv37/ny5QsjR47EwcEBPz8/Dhw4wNixY4mLi6Ouro53794JDmdeXp6w+xg1ahRBQUHY29sze/ZsFixYwOPHjxk4cCDff/89/fr1Y9y4cSIf2tLSsk0z9U9j9vaUubk5urq63Lt3j6CgIKZPn/4vDgrGxsakpKTw5csX7Ozs0NPTo1OnTgQEBHD9+nWqq6upr69n0KBBdOvWjaioKAoKChg9erTwcHNwcKBfv37k5OTQ1NSEkZERubm5REVFtRG2FBQUkJOTQ3h4uLC3aWpq4uXLl/+V6E4SG5qZmYmCggIeHh5CQe7g4CCy4ePi4pCXl8fMzIw+ffpw+PBhnj9/zsWLF8XhC1rRsZcvXwprr7i4OGF5cvv2bfT19YVdlJqaGp8+fRKn7fz8fOrr67GwsKCpqYni4mK+fPlCbW1tG2FBfHx8u65RgnjKy8uTm5vbZnw6bdo0Ro8eLZLTAJGUVlVVhbS0NO7u7pibm1NXV8f169dxdnYmJSUFJycnunbtSkZGBvHx8SgqKgq7r4yMDEJCQggKCmLo0KEoKSlhbm7eJva1W7du5ObmEhAQQEhICKWlpUyYMOFfFs1vqX/y34ODg/n06RPfffcdI0eOBFoXZEdHR4F+19XVkZWVJRLHJCEe6enpdOzYUaxbdXV1aGpq0rVrVxQVFSkqKuLt27fiW7SwsMDGxoasrCyKi4uFIEVVVVVY4iUlJSEtLY2DgwPe3t7k5eUJGsi3lpSUFEZGRqipqREXF8eLFy/Iz89n9uzZjBs3jlGjRnH79m3++usvqqqqsLOzw8vLSySjvX79WljVScSIksjbiIgIzM3N6du3L9ra2vz888+cO3cOaWlpevfujbGxMZGRkbi4uNC1a1f09fWRl5enf//+3Lhxg2vXrjF48GA6d+6MnJwcVVVV37Sh/M/q1q2bmKoUFxeLJrukpIT09HQsLS0xNDTk+fPnpKWl4erqSteuXUVTICcnR0lJCd7e3mzZsoXu3buzYMECPn/+zMqVK7G2tiYgIICvX7/i4OCAvLw8xcXFwtheXl5eOABIkvUkjaWqqiq2trY8ePCAN2/eAAjA5FsrKyuLpKQkMR5vbm7m3bt3XLt2TaQVhoeHC+R17NixNDY2iu8IWt9jdXV1qqqqsLKyQk9PDxUVFQoKCkSAxrVr1/jll1+QlZWlZ8+euLi4MGrUqDb7wfv370lKSqKxsZGWlhZSUlKIioqiX79+WFpaIiMjQ25ubrufYffu3Xn+/LlwVBk+fDgXL14kIyMDV1dXFBUVMTQ05OnTp2zYsEHoM9auXcuwYcNobm7mzJkzfP36Vbh7hIWFoaWlxeDBg/nll18Ed1lSMjIyKCsr06VLF5ydncnKyhIAhLOzs0Dyz58/L8bbklS/9ozTJRUREYGGhgYLFizg/fv37N27l8TERLZt20ZsbCyJiYmMGDGC7du3i+/2yJEjABw7dkwAOtAqNA0KCuKvv/6ia9eulJaWYmRkRF1dHWfPnqWiogIHBwc2bNiAmZmZ2OPevn1LeHg4VlZWwtYtJSWF4OBgLC0t6dixI1JSUgKlbU/zWltbK+K7s7Ozyc3NRUtLC0NDQ9EUSwKYHjx4gLu7O15eXkRERJCTkyO4+JmZmW3oQ1FRUdjb22NiYkKnTp2oqqoSYTSGhobie2pubhbWcY2NjcKVAhCgnpaWFkZGRrS0tHzTZKDdnU9AQIAQlkjSYNTV1TE1NeX48eMcOnSIn376iTNnzlBXV8fDhw958eIF/fr1E5A0tIouXFxciI+Px8jIiJCQEDZu3IiCggK3bt3CxMSEiIgIfv31V6SlpYUps0RpW1VVRX19PW5ubjx9+pTExEQRISmpf3fa/k915swZDhw4gK+vLxcvXgRa0ze+//57LCws+PPPP7l9+zYtLS2oqqpiaGiIh4cH7969Izo6Gi0tLaSlpXnw4AGjRo3iwYMH3Lt3j507d4qFIzU1FVdXV4yNjTl69CjNzc3ExMQIzrCE/6ilpUWHDh0Eb83X17eNF6BkpN/e2r9/P0uXLqWiokKkiUHraVeSLDJ48GCMjY15/Pgxd+7cEbwWiUl0dnY28fHxdOnShR49euDv709kZKRIjIJWukhTUxPPnz+noqICb29vkpOT+fLli6BTNDU10dzcTKdOnTA1NcXExISePXuSnZ1NSEgISkpKYqH61iorK2P79u34+/tjaWnJ9u3bxQg7OzubsrIyCgsLycrKIj09naamJmEoXVVV9S8LvKKiIoWFhYSFhfHs2TPevn1LaWkpAwcOxNnZmSNHjrBv3z4GDRpEVVUVZ8+eBVrV6tXV1XTr1o0lS5agqKjIgAEDkJeX5+nTpzx69Ijy8nJ69erVbmNtLS0tsdhLONNSUlKcO3eOGTNm0NjYKJKIWlpacHR0RFZWlhUrVnD58mVOnDhBnz59OHr0KIMHD0ZGRoYePXqQnp7OxYsXiYmJoUePHiLKFloPPa6uriQlJQl7tTlz5rThYycnJ3P+/HlCQkLIyMjA2NhYoO//TUVFRREQEEB5eTmDBw/Gw8ND/JokYlDCB3v48CGLFi0SvsQGBgbiWf7TczMwMLDNnyUJKairq+PQoUOcOHGC5ORkPD09+fnnn4Xt1+3bt9m3bx89evRg2rRplJSU4O/vL8z1P378yOTJk7/52iROFxkZGbx58wZ/f38hInNzc8PS0pKIiAhxKPH29mbJkiX88ssvBAUFtRkllpWViU27srKSly9foqqqyrx583B2dmbNmjX88MMPGBgYsHXrVgoKCti6dSu6urpCRLpw4UKWLl2Kubk5J06caMMNvXPnDmvWrPlf7X3+t+revbuYnEhLS/Ps2TPi4uKwtbVl8ODBrFu3DnV1dfz9/VmwYAFTpkzh/PnzxMbG8vvvv5OUlMTMmTNZunQp3bt3p7KykqKiIhQVFYVoKTAwkObmZoqLi/n111/p0qULO3bsEO8ttDb3ERERNDc3C+6vrKwsampqbbjcOTk57ZrYLVy4EFtbW/T19enbty8DBw4kMTGR48ePi7x2W1tb4uLiqK2txcvLiy5dunDo0CHBa0xPT+fHH3/EyckJd3d3GhoaUFdXZ9GiReLde/fuHQkJCcjKytLY2Eh0dDRqamqiIQkLCyMnJ0ccNKqqqkhKSiIzM5OcnBzU1dUJDAwEYOnSpe0SMltbW2Nubi4QyOvXr1NSUiKoHjIyMsLCavbs2RgbG+Pn5ycOtbdv3+bevXskJiaSmpqKhYUF1dXV2Nra0rNnTxwcHDh37pyY/En2BB0dHXHwMDEx4fDhw9TX17dpTidOnEhgYCDnzp3j3LlzbNmyhc2bN7f7IBkcHMy4ceOQk5NDS0uLr1+/CkT00aNHbNu2jeDgYBwdHdHW1hZia0VFRUaMGIG8vDwlJSVER0fj6OjI0KFDuXLlChcvXsTZ2ZmJEyeKg01FRQXDhw9n8eLFAr1sbm5GXl6ewMBA1qxZw/Lly0XstgTJrqysFCP79tY/bbbq6+u5dOkSUlJSLF26VHBYV6xYQVxcHPv37xcAQWZmpnAbkkSuSwIO3r9/T2JiIkZGRuKZtLS0MHDgQHr27MmiRYtQVlbm/fv3HD16lGfPnuHg4MC4cePagENaWloi0lxyH7p16/b/v2Br48aNfP78malTp6Kvr09UVBQ5OTmCAPzTTz+hp6dHZWUlqqqqjB07lsDAQOEplpGRIUQQ69evx9ramhkzZpCfn09iYiLOzs6iyZWRkaF37944Oztja2tLXl4ed+7cEXyUU6dOYWFhwahRo3BzcyMpKYnr16/T3NzM4MGD2yBC31ru7u6MGTMGDQ0NLl26RENDg8gGnzRpkvDolGyGlpaWvHv3TixEvr6+9OzZU/i2SklJMW3aNBITE9mxYwelpaV4eXmRl5dHWFgY3t7eZGdns337dpqampg9ezZ5eXnMmDGD5uZmrK2tOXXqFA4ODhQVFbFr1y4cHBzw9fUlLS1NoLLtKYnoyNbWFlNTU7p27UpycjKHDx/GwsKCZcuWAYisewmSER4eTn5+PnPmzKF///4kJSWhoKBAUVER9vb2lJaWCrsdU1NTvLy8ROKInJyciJytqanh06dP4hk7OTmhrq6OiooK1dXVhIaGkpWVRZcuXUTGfHtKSUmJvn37CuGQl5cXDQ0NbN68mfLychYsWED37t359OmTMLkvLS3F3d2dKVOm0LVrV5KSksjLy8PY2BhLS0u8vb1JS0vj0qVLQjy2ePFi8c9v375NfHw89vb2AsUeMGAASkpKKCoqMmHChDZhHCNGjEBJSYnHjx9z7949gR5+a0nCJKD1kDBr1iwcHByEAvb169cUFRWJRaGhoYELFy6QmJiIiooKgYGBuLm5oaysjL29PV++fMHAwIDy8nLCwsLIzc0Vyk9JOTk5oaioyIsXL7C2tmbKlCkAfP36lVevXqGrq4uGhgbu7u7U1tZiZGSEjY2NQK7bW58+fRKWOHZ2dnh4eJCVlcX+/ftxcHBg9uzZyMrKkpOTg4KCAvLy8ri6uvL06VOam5tpbm7Gzs5OoM7Z2dkUFxcLVCM8PJw//viDDRs24OrqyqtXr0RKl4KCAg4ODigpKREaGkptbS1fvnzBysoKFxcXDA0NBaonUdG3VwmckZHB169fUVRUpFu3bsyaNYvU1FQcHR1JSkoiLCysjf9vSkoK4eHhVFVVUVtby+zZszl48CDDhg2jqKiIs2fPkp+fj4ODgwhn+Pz5M507d8bT05PTp08LP1rJxpuSkoKNjQ07d+7E1taW4OBgVFRU2LdvH2PGjKG6upodO3YQFBTEkCFD2v0M/0kZaWho4O3btzQ2NjJr1ixsbW3Jzc2lqakJS0tLfv/9dz59+sSkSZPQ0NBgxowZlJWVceHCBfr27SsoKBJbsw8fPvDp0ye+fv1KXV0dubm5dO/end69ewtUp7y8nPPnz5OVlYWXlxeOjo6iKS8qKuLQoUNCsxAbG8tff/3VJub7P5WGhgZxcXEUFxfTt29fDAwMWLx4sTjAu7q6EhISwuHDh0lPT+fmzZtkZWW1mbT069cPV1dXpKWliY+Pp7y8HC8vL9G4SrQFlpaWIiBEYlPY2NhI165dhVjI09OT3bt3o6WlRXR0NHFxcZSVlZGamsrgwYOZMmUKQ4YM4eDBg998jZJ7GRERwcqVKwkMDGT06NFCoJibm4uhoSFDhgwRe4OdnR3p6enMnz9fRFLr6+tjaWmJo6Oj0DfU19cTHR1NTk4OTk5OaGhokJiYiIKCAoMGDSIvL4/bt2/TrVs3wSMtLCzk3LlzDB48GGdnZ5YvXy4OIba2tu2eYkHrRFQCfDk7O7Ny5Uqqq6v5+PEjmpqauLi4sGLFCszMzJg2bRq9e/cWh2ZTU1NOnz5NcXEx3t7edOvWjY8fPwpNggQMMjMzw9LSksLCQoYNG0Z2djYnTpzA2tqaCRMm4ObmhoeHB6WlpTg7O1NWVsb169d5/fo1M2fORE1Njbt373Lr1q1/CWn6T9Xc3CzWAhUVFTHV+PPPP4HWfViS5NarVy+Sk5N58eIFAwYMwNLSkri4OG7cuEFFRQVGRkbY29vTsWNHysrKCAwMRE9PDx0dHdzd3amsrCQkJIQ7d+4IofuXL18oLy9HQ0MDDQ0NLly4QEFBASNGjGDYsGGC9iGpb7m2djevklGExJstLS2Nv//+Gz09PdasWYOvry+HDh3i+++/Z/HixfTr1w8vLy/u378vTMolsLuNjQ3r169HQ0MDOTk5Fi9ejJ6enrCqsbe3x9jYWJxO1q1bx4ULF7hw4QLe3t4iejIzM5M//vgDRUVFzpw5Q3h4OFu3bmXBggVCif2t5evri6+vLyEhIezZs4enT58yePBg7t+/L3xOf/nlF1RVVVm2bJnwuITWhbqqqgpLS0uGDBmCv78/x44dY+XKlcyePZurV68KfumDBw+EMW95eTlBQUFoaWlhZmbGx48fBffpu+++Y9u2baioqJCRkcHevXsJCgoSI6p/Ojx8a0mSwXR0dNoER4SFhbW5X69evSIjIwNpaWkqKyupq6vDxMSEHj164OHhgYeHB0FBQXz+/FksHhJl4cCBA4Uvnp2dHVZWViJtTV5evo3ARVZWVpwmS0pK2LdvH1JSUmKBlaC031p6enqsX7+e0aNHU11djYGBAQ8ePODvv/+mV69eYnwsifGTiFVGjRrFihUrAAQNQnJ/tLS0MDAwaPNRNTQ0ICMjI95PaEVpBw4cyKJFi8RiK1EQA4IWo6OjQ//+/QkODubChQtt0tq+pTQ1NYXTgIKCAps3bxb853PnznH06FEUFRUFMnDp0iVOnjwp1OqBgYFUVVXxyy+/UFNTQ2xsLB8/fsTKyophw4aJVKN/VnR0tMiFl5hy5+bmcuzYMUJDQ+nZsyfDhw/Hy8tLGObLy8tz8uRJzpw50yaS8FuqvLwcb29v0QwDvHz5ksePH1NdXc3s2bOBVp7bhQsXcHV1FdGF+/btIycnB3d3d9zd3enSpQvS0tLY29uLVJs7d+6wefNmmpubWb58OSdPnhQ/+7vvvkNKSorFixeTkZGBu7s7gwYNolevXtjY2Aj3CQm1QeIoIRGJfUt9/PiRR48eMWLECHx9fQWPFxD0nIqKCsaMGUNJSQlv377l7t27KCgoIC0tTWpqKhcuXEBDQ4M3b94IY+/Ro0eLRLBLly4RERHBzJkz6datG8+ePWPZsmWoqKgwZ84cBgwYQO/evbGxsRGOL5KUO4AjR46wdetW5s+fz7Fjx9rNeS0vL6e5uVnw0G1tbVFSUhIRm+fOnSMmJoYJEyawbt06tm3bxubNm9m7dy/Lli1j/fr1bN++nYiICJSVlZkxYwYjR44kLi6OzZs38+LFCzF96tixI4cPH8bZ2ZnU1FSUlZWprKzkxo0bJCcn891332Fubi7GnmVlZTx//hwbGxsmTJjAy5cv2b17d7uu79ChQzx+/FhYGtXW1tLU1MSiRYvElNDU1JT6+nqOHDmCn58ffn5+beLEDQ0N+fPPP8nKymLjxo2CIgKt1o3Lli3D3t6eefPmERoaSkpKiriH2dnZdO7cGVVVVfLy8sjIyBDuPNbW1jg7O9PU1ER6ejqamppoaWn9V9QBaEVQJeitvLw8FRUVKCgoICcnR2RkJIqKivz+++8iJnfdunU8e/aM6dOn06NHD3Jzc3F1dWXo0KFtQmJOnTrFhg0bWLNmDbt27RLrmMSpJjo6Gj09PYGkBwUFERAQQElJCTNnzhRWh9AaUNNeATMgNDmNjY0iUOLz588cPXqUfv36cfz4cdasWSOESb179xbJUBIPYWtra+bOncuXL18IDAxESkqKmTNn0r9/fwwMDNDW1hZetNXV1WzcuJF9+/Yxc+ZMJkyYgJKSEsuXL2fVqlWiMf7y5YvgvVpYWHDz5k0uX76MiopKu2zr6uvr8fPzw8rKisbGRiwtLSkvLxcKfykpKdavX09RUREXL17kyJEjlJaWkpGRweTJk/n8+bPwcpeXl2fcuHEoKSmhoaHBpk2bqK+vZ9WqVQwYMAA5OTmePn1KfHw8AwYMwNbWlunTp6Onp8edO3fYsmULVVVVqKqqCpoTIOwc5eTk/sUR5N9Vu5vX1atXM3z4cBwdHamursba2pqVK1fS0NDApUuXSElJwcvLi65du7Jo0SJGjx7Nli1b6NKlC0OHDmXYsGGUlpYyefJkJk2axG+//UZERAQRERFMmzZNiE8GDx4sboK8vDy9evUSi9S+fftQUlJi8uTJeHt74+XlBbQ2Dj169CAxMZFLly5RUFDQrlM0tHIJ09LSaGxsZPz48QwcOJCOHTsKBCEqKork5GT8/Pw4fPgwM2fO5Pz58+Tm5uLn50dWVhaZmZkoKiri5eUl/CLt7OwICgri69ev7Nq1i7///puOHTvi6upKQ0ODQH4uXbrUxjbp+fPnrF27lh9//BELCwuOHDnCrl27hAvBxo0bRTZwe+ufQigzMzNWrFiBoqIiwcHBRERE8ObNG1JSUsjNzUVOTg5vb28mTpxIr169aGxsJDs7m5aWFhQUFEhNTeXx48dUVVUxYcIEFi9ezNu3b9m3bx+zZs0SHGRnZ2f27t0rstQzMzN5+/YtWlpauLi4oKioyPz580lPT+fJkydkZWW1ES18S0kaTkdHR0pKSli8eDEfPnzg+++/F24RaWlpXLt2jcTERKZNm8bgwYPR1NTkwYMHgnwvGYcUFxdz4MAB3r17h6enJ5qamrx7944TJ05w584drly5gqGhIX/88QfPnj3j9OnTjB07VjSvUVFRyMjIoKuri4KCAjU1NdTW1iIlJYWbmxubN2+mR48ebYQO/6mGDx9Oeno6ycnJ6OjoCITaz8+Pc+fOCX5iZGSkOClPnTqV0tJS/v77b2F1lZ6ejpubGzU1NQQGBvL161cRSSmh3RQXF3Pp0iVOnDiBuro6GzduZPLkybx79469e/cSFxfH9OnTGTlyJK9eveL06dPMmDFD8DErKiqIjIxsd/MqUaPKysoKQWHv3r05fPgw8P88UaWkpLh8+TLh4eG4urri5OSErKwsb968QU1NjSlTpjB06FBkZGRELGPXrl2F+fhvv/3G7du3hWekr68vzs7OPH/+XKQRmZqakpmZyd27d5k0aRLdunVrM77r0qULmpqa7WpeKyoqcHZ2Fly5f5ZEvKilpUWXLl0oLS3l8+fP1NfXM2TIEOFMERAQwObNmwVnE1oRa0ls9+vXr1FQUODRo0doaGgIm6zKykrOnz/PkCFDsLGx4caNG5w8eRJtbW169+5NbGwsb9++JSYmht27d7dL2fzPun//Po8ePWLYsGFMmzaNSZMmcfjwYebMmYOXlxdeXl5IS0uze/duMWG6ffs2w4YNo6CgQBwsk5KSuHz5MpWVlbi6uhIWFsaHDx8oKChAVVWV77//niVLlggKS2NjI2VlZWhqarJq1SqCgoJ4+fIl9fX1wslGT0+PX375hfr6eu7du8eNGzeE7eK3lpubGy4uLuJd2LNnDzdu3EBfX5/u3bvTp08fXF1dmTZtmghsKCwsZNGiRZibm7N3716x7ksSzyTPOSMjQ3icjh49miFDhvD8+XM0NTXZvXs3w4YNo7i4mJaWFqZMmcLgwYOJiIhg7dq1JCcn07t3bwEOWVlZkZCQwJs3b9o0zt9aFRUVeHl5oaGhgbS0NM7OzmKd1dHRoba2VlhdJSQksGHDBqSlpXn16hVubm7cu3ePu3fv8vDhQ968eYOsrCzjx4/H2dlZNGr+/v5s374dU1NTsrOzSUxMxNTUlIULFwr7uISEBOTl5RkyZAjp6encuXOHgQMHUlVVxZMnT5CXl8fb25uwsLB2Xd+oUaPIyclh+fLl1NfX8+DBA0xMTPjw4QOVlZVMnDiRw4cPs2fPHp49e8adO3fQ0dGhS5cuwpc8Pj4ePz8/ysrKaGxspLS0FFNTUwYOHMjXr19ZtGgRkydPZsCAAXz69ImcnBx++OGHNl6ykumjpH7//XcOHDjA9u3b2bt3LyoqKkyfPp1evXq1K7zH0NCQ8+fPk5aWxg8//MDu3bt5+PAhf/zxB7a2tgwfPhxtbW3u3LnD5cuXMTY2Zs6cOaioqAj/7sOHD3Pz5s02NLDw8HCx18TExFBYWEh6ejq7du1CVVWVS5cuCfcgRUVFPn78KA6PZ8+eZfz48URHR/PXX38JQbqkJ/pP1e7mtXv37piZmZGSkkJWVhbW1tZi8X306BF3797lp59+wtnZmSdPnghScf/+/ZGXl6dPnz4EBwcjJSUlzKaPHj1KQUGBOJFdu3aNqqoqtLS02LlzJ5WVlWzevJnp06dTU1PD169fiY2N5eeffxZ/r8bGRnR0dPjtt99wcnLi5s2bZGRktDuk4Pbt25w6dYolS5awcuVKoPWEHh4eTn19PWVlZTg7OwtkrqmpiQEDBoho1T179gjfUH19/TZecbq6uiK3uHPnzowZM4ampiY+ffokBGc5OTnIysoKbousrCwfPnzgzz//ZNGiRXTu3JnNmzfz008/tfEWbU9FR0fj4ODQxqnA3t4ee3t7kpKSuH37NklJSeTm5vLhwwegdfMeNWqUyKuvqKigurqauro6MjIyCA0NFfYWTk5OdOvWjaysLMrKytq8iJIPNTs7m6dPnxIdHU19fT2Wlpbk5OTg6urKkCFDKCgo4MCBA8THx6OiotIuU+1/Ls45OTkEBweLpktaWpqSkhJ27dolLGuWL1/OpEmTuH79Og8ePMDS0hITExPBwdLW1ubFixe8fv1aNC6hoaEEBASIn7N+/Xpmz56NoaEh79694/jx4zg4OKChoYGLiwtFRUVoamqKzTEhIYHg4GDc3d3/1yjh/6uKiopoaGhAU1OTlpYW0tLShMq8b9++4jolm0CnTp1wdXUlICBAHEZ8fHwEod7T05PY2FgyMjIoKirC1NRU8MUbGho4deoUX758oXPnzuJAePXqVR4+fIiHhweTJ0+mY8eOPHjwgKSkpDZcbFtbW+Gj2p7S1dXlwYMHYhyloKAgBD4tLS2ChhETE0N5eTkvXrwQyJu3tzfXrl0jPDycoUOH0tTURGxsLMeOHSMtLQ0fHx+RDy7J+JZQn7y8vDA3N6esrIySkhIsLS0ZPHgwQUFBZGVliRhMQKSS9ezZUxxWvrXy8vKEHysgvDf19PSEL7GpqSmysrLExsZSWlqKtLQ05ubmIgWutLSUQ4cOUV9fL8awmZmZHD9+HECEhzQ0NHD+/HlBw9DR0cHW1lZktL98+ZLS0lJ0dXVRUVGhsLCQpKQkrK2tWbRoEUpKSu3yBpWUJG0oNTWV2tpaqqqqeP36NcHBwaiqqrJ06VJcXV2Jiori8uXLAk2TlZXl+fPnJCYmoq6uTnl5OU+fPuXdu3fMnTsXbW1tIVbt2bMn/fr1E76ur1+/5tWrVzg7OzNmzBjGjBmDoqIi/v7+woJI8n5JVPeHDh3C39+/3RqC4uJiysvLyc7OJiEhgZSUFOFjnpWVhY6ODtbW1piamrJkyRKsra1JTU1lwoQJ6OjoIC8vz/Xr18UhycfHBw8PDwoKCpCXl8fNzU1EcFdXV5OZmYm2tjbe3t7o6OggKyuLlJQU6urq6Onp8fXrVzIzM0lNTcXQ0JD3798zePBgysrKCAoKIjU1lUGDBrXrGpubm1FTU/u3dmOxsbGUlJRgbm4upmkXLlzg9u3bzJ8/XxxgO3TogKqqKi9evBAHrZiYGNauXYurqytTp04lOTmZI0eOsHTpUnr16kV4eDhfv37F0dGRjh07CkTO1tYWKysrgoODCQ0N5fr165w5c4aYmBjBJW1vycvLC1u+iIgIHj16hIuLC0OGDBHTOXNzc37++WeGDBkimuMnT54IdF1OTo7NmzfTp08fNm7cSHJyMg0NDcTFxbF3717OnDmDhoYG/fr1IyMjQwizoXU/laSmvXz5EiUlJTw8PKirq0NDQ4O8vDzKy8uF0t/Q0LBd1zl48GCys7OFEM7W1hZpaWlev34tXA8aGhpITk5GUVGRpUuXMm7cOIqLizl79izR0dEMGzaMoUOHkp+fT3h4uPAyHzVqlEhQlYhOJ06ciLu7u6AqffnyRSTE2dnZMWnSpDbhUs+ePaOuro6ZM2cCtKHY/W/V7ub1xYsXPH78mKamJjp27Ch8uQDWrl0rrIgAjh49ioyMDAoKCqiqqpKUlMTRo0cxMjJi7969DBo0iFevXgl0ICEhAWhV0UlGMY2NjaipqZGeno6Pjw9Xr17l7du3/0IHaGpqQlZWFj09PRYuXIinpydlZWXo6+vz4sWLb76+lpYWioqK2gi9QkNDaWhowN7eHjMzM6qqqnB1dcXDw4MPHz6wfv16Fi9ezIABA4iNjSUtLe1fmq3k5GRmz55Nc3Mzf/31F+7u7mRlZQmRW0lJCa6urnTp0oWUlBQCAwOpra1lxowZzJs3j8OHDzNp0iSOHz9O37592bx5M8uWLePMmTMMHz68Xc/w+PHj7Nmz599aUCUlJVFRUcHgwYOxtLQUY6LFixdjZGREYmKiUNXb29uTlpZGZGRkm41N0lCPHj0aY2NjgaD9szZu3MjNmzcZMWIE8+bNE3wnSTU2NjJy5EjheyuxzfqWkrz4NTU1ZGRksG7dOhwcHMQ/l9hVSUbRz58/R0dHh/Lycjw9PUVk8cuXL+nXrx/a2trY2dnx+vVrrl69SqdOnURDrqmpybFjx4QgbOjQofj5+Ql08sCBA9jY2LQRKwKCKvMtJ8x/V+fPn2f16tU4ODgIv0orKyt69eolEBErKyuGDBlCY2MjDx484Ny5c+Tn5/Pdd98xYMAAhg4d2obOMGvWLN6+fcuZM2ews7MTi6OMjIw4EEgI/S0tLVy7dg1NTU2mTJlCYWEhr169wsLCgsuXLwsErK6ujjFjxjB48GD279/frmt89eoVW7ZsYdCgQUJc9fr1a27cuMHw4cMZMmQIHz9+5N69e/Tt2xdAhC8MHToUZWVlPn/+zNu3b2lpaREm/rGxsURGRorDyfLlyxk5ciRXr14lKSkJVVVV4Y87f/58ysvLSUxMFKlT/zTRDg8PZ+3atXz//ffs3LmzXdcn4bx17NiRrl27kp6eTn5+PkOGDBFUGoljQkxMDNC60AcEBAhkX11dnWnTplFXVyfWDUmpq6sza9YsQSdYvnw5V69epaGhgW3btjFhwgQxLVi7di3u7u5s374dS0tL/vjjD/r06cPLly+5f/++MCdvbw0ZMoSuXbuiq6tLVFQUp0+fpqKigvHjx+Pg4MCTJ0/o0qULhw8fZuLEiezcuZMhQ4bw66+/4u3tzdOnT9scEisqKnB0dMTFxYW3b99iZmbG+PHjCQoKIjg4mI0bN1JcXMyOHTuYOnUqY8aM4cWLF9y/f59hw4aJg2JTU1Ob9W/RokWEhIQIke63VkhICNu2bePNmzeYmppy+PBhduzYwdevXykpKcHKyqoN1Wjo0KGUl5eLb9TX15chQ4agpqYm9gyJiwe00le8vb3JzMzk2bNnaGpqYm1tTVhYGI8ePSI/P59p06aRnJzMkiVLkJeXZ+/evbi4uAgP20OHDlFRUYG9vT29e/cW7/231v/VSBw9epSLFy+ya9cu0Yi5u7uLtWTKlCls2LCB7t27c+vWLSZPnizU6O/evWPUqFFs3ryZixcvsmHDBk6cOEHfvn3p3LkzlpaWbNy4kZSUFLZt28a4cePo3r278Kn19vZGQ0ODvXv3iu/jn4Lt9tS5c+eYNWsWly5dEoERzc3N/PDDD+jr6yMtLS38oiUcZYn1VWVlJb6+vmRmZnLnzh06d+4saGCPHz9m9uzZwpJQWVmZ3NxcevTo0QZkCQwMpKioiLq6OjIzMykqKuLOnTsEBwdjZGTEb7/9hpGREWFhYRQWFrY7fMnLyws3NzcKCgpEEIS9vT1btmxBRkZGuFYsXLgQR0dHcR+1tbVRV1dn4cKFzJw5k61bt5KamsqSJUuYNm0ay5YtY/To0VRUVFBWVkZpaSl37tzht99+Y86cOYKatGTJEh4/foy+vj537twhLS2NsWPHsnTpUsaPH8+SJUuIi4sT+8a3CO3b3byqq6sLyxNJcsjbt2/x9/dnypQp9OvXj+zsbD5//iwQjwcPHqCnp4eJiQmhoaFUVVXh7e2NoqKiGKtXVlYSGRlJTU2NWKw6dOggUIPMzExOnjxJ//798fHxobi4mJ07d6KlpcWsWbNQUFDg/fv3pKSkMHLkSOG7eO3atXZdX21tLZaWlkRFRfHhwwfMzMyQkZGhpqZGWJh4eHgIlXpOTg7Pnj0jNzeX6dOni9SowsJCIiIiKC0tFbnzSUlJDB48WGx+WVlZlJeXY2dnR11dHXZ2djQ0NLThsfbq1YvOnTujqKgoeIl9+/bl06dPpKSk/NuR43+qTp06ISMjQ2JiIhcvXqSoqIgxY8bg6elJU1MT0tLSWFpaYmNjQ1paGp06dWLx4sXcv3+fDRs24OjoSN++fZGTk0NRUZHhw4eTm5tLTk4O0LqAJCQkEBoaSlpaGhMmTCA5OZnbt2/TtWtXIXixsrKia9eueHh4oKSkRGNjI+np6UhJSaGiooKbm5sQfLWnSkpKuHPnDs+ePUNGRobhw4djZ2dHfX099+/f58OHD3Tq1AllZWUuX74s4mq3b98uoiUzMjLo2LEj5eXlPHz4UKTZQCtqqqqqSmVlJS0tLWRlZZGdnY2CgoLgAfXr1483b97w119/iZFyQUEBVVVVGBkZYWRkhJmZGbW1tQQHB7cb1bKxsREc7OTkZLp06YKcnBz379/n0KFDNDY20r9/f/F+ODo6IiUlRXp6Ora2tri6uqKurs6HDx/IycmhX79+aGlpYWdnx/v37zlx4gQZGRlMmDCBpqYmhg8fLnxJJW4KAB4eHnh5eXH37l02bdrEzp07xQL06tUrzMzMBCLW3lqxYgWpqaltLHRKSkqoqqoiNjYWOTk5nj9/TnV1tUj3CQkJ4cKFC+jq6rJy5Uri4+P56aefqK2tZc6cOXh4eFBVVUW3bt2EqHTfvn0Aglu5fv168vLyePHiBXPnzsXFxQVVVVVxHZ8/f+b169fMmzePwYMHc/36dRFc0Z7q0aMH79+/58OHD6LJ8fLyQkpKitjYWEJCQujfvz/du3dn1KhRHDt2TJiASxoACwsLrl+/TpcuXYTXqUTEJKGpBAUFUVJS0mYcKQEMMjMzcXBwoFevXri4uBAVFSUoPtCKAiclJQl3lfaWqampoGekpqby5csXOnTowObNm9HW1ubvv//m+vXrTJgwgZEjR1JcXMyff/4pLNrmz59PWlqayLU3NjYmNzeX1NRU9PT06Nq1K7a2tiQnJwtRaOfOnXFzc8Pd3Z3GxkbRXG7atAlAhAZUVlZy9uxZFBUVmTNnDnv27MHGxqZdnNAPHz4IJHHq1KkYGRkhLy//LylBOTk55Obmoqur2+YwLwlWCA8Px8bGBmNjY75+/crnz5+FUFRVVZXg4GD8/f3p3r07M2bMoKGhQRjiS3ialZWV9OzZEycnJ6SkpET8ukTo5uvrC9Dm+/2Wkog4bW1tMTY2prCwUKjLBwwYQHh4eBtq16hRoxgxYgSWlpZcuXKFjh074uzsjKamJrNmzUJLSwsLCwuio6N58OABy5YtQ1tbGx8fH6qqqti3bx/e3t5YWFjg4uLyL/xHeXl5wZnt2rWrEDX26dOnXf61/6x169ZRUVHB0qVL6d+/P48ePeLmzZssWbKEUaNGUVFRIfyg6+rqGDt2LJaWlqSkpBAQEMDnz5+xt7fH29sbBQUFXr16Rb9+/ejbty+urq6EhoaioKBAcnIyhYWFbay+rl69irKyMiNGjBBOGLGxsVRUVKCurk7nzp2ZNm0agAiFkKCY31oS0V5UVBQ1NTW4uLjQo0cPunXrRnR0NBcuXEBPT4/OnTszevRoASAOHTqU77//nmPHjrFz506UlZVpamrCysqKTp060dLSIhpvMzMz9PT06NmzJ+rq6tTU1HDr1i1aWlrw8fERkdZaWlocPXqUoKAglJSU6NOnD8OHD2+Tlvot3u7tbl7nz58viPDa2tpAK9ImSZvYvXs3nz59EqeXsLAwwsLCWLNmDTNnzhT8pAULFlBcXMz48eMZOXIkz549IzExkcLCQhQUFBg2bBhLliyhvLyctLQ0KioqePr0KeHh4djb21NYWMjevXuxs7Nj1qxZZGRksHPnToqLi9HU1GTo0KGC2N0eawkNDQ08PDzIzMzk0aNHIgLv06dPJCYm0rlzZ3R1dbl69Sp79+4VI+9Hjx4RGBjI1q1b8fDw4OrVqwQGBlJaWkpjYyMGBgbMmTMHHx8f0RhHRkYKizFlZWVOnjwp0BuJZ6MkGUdFRYURI0bg5ubG/fv32bp1Kz179uT8+fP88MMP7X6G0JpWJMkkrq6upm/fvigoKPDlyxesra2ZPn06Bw8eFOM5ie/rmzdvxIZ/9OhR5s2bR0REBCEhIcKi6MmTJ/zxxx/U1tbi4OBAY2Mje/bswcvLiytXrvDnn3+ycuVKVFRUhOVNYmIi2dnZqKio0LlzZ2RkZEhJSSE5Obld13fz5k2WLVtGbW0tXbt2FQLA0aNHU1lZSVxcHHPnzmX8+PHExMQQFhZGcHAwNTU1tLS08PLlS5EgcvfuXUGMV1VVRU5OjurqaqqqqlBSUqKsrIzVq1fz5csXTpw4wYULFzhy5AibN29mxowZTJgwgaNHj6KqqoqWlpYYDw4ZMkScpv38/Hj8+LHY5L+lJOOVu3fvUlZWhp2dHZmZmaxZs4aEhASUlJQEFSU4OJiKigrWrFnDjh07ePDgAebm5nTv3p24uDisrKyEc0F1dTVOTk6EhISwfft23rx5g4+PDwoKClhZWbVR8kpES83NzcKS6+vXryItqqWlRYjZJCP69lRqaipycnJtHCdGjRrF6NGjuXXrFnv37kVTU5Nhw4bh7u6OpaUlHTp04MSJEzx79ozly5djaGhIXl4eCgoKjBw5EjMzM5ycnBg1ahQdOnQQY+KMjAw+ffqEnZ0dvXr14u+//+a3335DSUmJn376qU0Dvn//fm7evImGhgbTp08XYSsTJkxoYwHzn2rUqFFYWVlx8eJFjh07xoIFCwRKl5OTQ21tLbKystjZ2bF//36Kioq4fPkyTk5ODBkyhMuXL6OkpIShoSFycnIMGjSIjh07Ym9vj7+/P83NzZSXl7Nr1y7BS1NXV6e5uZnz589z5coVVq5cyZIlS4DWRmr79u3Iy8vT3NxMXl4eGhoaTJs2rV20nX/WP+0Kra2tGTNmDLKyspiamqKpqYmNjQ27d+/m+fPnXLp0iZkzZzJx4kQxFenZsycnT54kOjpapO9t3bqVsLAwZsyYgbm5OSUlJfTs2VM4digqKrJ69WoGDBhAY2MjjY2NKCgokJOTIzzB1dTUKC8vFx6vHz584JdffmHTpk3tGscqKipiZWXFzz//zJw5c/j777958uQJS5cubTNJkpaW5suXL6iqqmJsbIyMjAwNDQ1iLY2KiuLPP/9k/PjxXL58mb/++otu3brx4MEDDAwMePnyJRERESxevFg0xioqKrx//543b97g4OCAv78/jY2N7N+/n/T0dNzd3RkyZAhubm5t6HMfP35s1zN89+4djx49YuDAgRgbG6OrqyvW1JEjR9K/f3/S0tIICwvDxsYGdXV1pKWl8fLywt/fvw1lyMjIiJkzZ2Jvb09cXBxJSUlCsHf16lVmz57N0qVLBRK6atUqtm7dKigDEmBD0txIKFC2trbs2rXrm6NF/2cVFBSwbNkympub6dmzJ58+feLVq1eYmJhgY2ODgoICFRUV5OTkUFhYSEhICI2NjZiYmCAnJ0dQUBA1NTVCi7Bjxw4x5Tpy5AhdunThwIEDlJSUiHU5Pj6e27dv4+/vj5WVFXPnzsXT0xN3d3c+ffpEc3Mze/bsabMv9OjR47+Kv42JieHEiRO8efMGJyenNs/k1KlTHDx4EAsLC3bv3s3YsWOpra0VoT2+vr4cPHiQmTNnsmHDBjHBqaurY8WKFRw9ehQnJycmTJhAQUEB2trarFmzhvDwcMaMGUNjYyNnz55lzZo1xMXFsXDhQt6+fSsmai9fvsTOzg43N7d2HZDb3bxKUDBJ4wowduxYampq+PjxI+fOnaNPnz54eHjwxx9/EBkZSbdu3cQNHzduHF++fGHz5s2cP3+eVatWceHCBc6dO8ft27eRlZXl2LFjjBkzBjU1NVJTUwV3sGfPnuTk5FBZWUlNTQ3jx4/HycmJrKws/vjjDwIDA1m1apW44TU1NUyaNKld5trTpk0jIyODzMxMZGRkKCoqQlVVVYzQP378iKenJwYGBmRlZQGt1h0S79lz587h5+dHaGgo+fn5qKiotPHDzcrKIiUlhbS0NMEVcnV1ZdCgQYJuATBjxgy8vb3p0KEDzc3NTJ06lerqahQUFEhMTGT06NEsXLiw3T62/ywJUbuqqoqpU6ciLy/Phw8fePDggUC7ZGVlhVGygoICmzZt4sOHD5w5cwZojSq0s7PD2NhYkPgl0aSSl1NOTo6Kigp+/fVXevXqJX6+ZDRRUlLCy5cvRTqZxBD7l19+wcrKqt2CrUePHtG9e3d69epFhw4dSE9PF6OyYcOGCZsWKysrdu3axaZNm3jz5g0jRoxgzZo1+Pj4iPSXf9IVDA0NRRweIGyYQkNDSUxMFNGIEkXwiBEj2Lx5MykpKTQ2NuLr60tGRgZ37tzB39+fHTt2YGpqioODA3Jycu0WGUjM26Ojo1m1ahUVFRVMnTpVICOSUXpQUBD6+voiTSkuLo5r167R1NTE6NGj23inKigoMHbsWHx8fKirqyM+Pp5Hjx6RkZGBh4cHhw8fJjU1lcDAQAwNDXFzcyM7OxsfHx86duxIYmIip0+fZuLEiUJICbQ7aAIQTWP37t2Fs4LkfVdWVqa0tJRevXoxatSoNo3CuXPnuHfvHocPHyYqKgozMzOMjY1JTEzE1dUVa2trcnJykJGRQUlJifDwcK5du8batWtF7reFhQUrVqwQCElSUhLv3r0jMzMTAwMDvv/++zZouaPj/8fee4dXVW3f35+T3ntPSEJCQioJAUIvoXekSZEu9UhREIUrVUQQpWsAaSq9SZUinQQSIJRAQiqQ3nshPfv943jWJVbi6/eq/DKex+fIadnr7L3XmmvOMcfwoKysrF7jUxpGtGvXjoKCArKzs8nKysLU1JSOHTuioaFRx9xBmbHT0dFh2rRpdO3albKyMrHxuHTpEkePHqW8vLwO1eLp06ecO3eOQ4cOCevUAQMG0KlTJ+Fi9XNFj9raWiFfB4omMKW8XX0QHR1Nbm4urq6u2NraMnHiROLj40lMTBQb9JkzZ4oyOygCwocPHxIcHMzIkSNxcnLCycmJM2fOcPr0afT09OjXrx86OjpERUWJ+SUkJAQtLS1qa2sxNjYWcj4ffPAB169f5969e5iamoqSvLW1NStXrmT9+vUcPHhQBJ31wZAhQ8TGcdOmTZiYmDB58mQMDAyEWs38+fPp3r07Hh4eVFdXo6KiQkREBOfOnaO4uBgTExO6dOmCu7s7kiSJJrWwsDCWLVuGnp6emG+V7l9KPW4fHx/at2+PiYkJVlZWxMbGcvLkSXR0dBg8eDBmZmZUVFQQFRXFw4cPKS4upk2bNoSGhr7yGK9fv06rVq24desWMTExzJs3j/LycpYuXYqtrS3vvvsu7u7uhISEMGXKFLKysmjevDmdO3cWAZkSSnOfZs2a0bNnT3bs2MHatWvF5r9Xr17MmzeP1q1bc+fOHS5cuCDUYaqrq6mtrUVTU5O0tDTu3r1LZGQk48aNY+DAgeK8nj59ul7nEBTl8qtXr4pNhSRJuLi4MHr0aDw8PHj27BmOjo4sXrwYAwMDIiMjiYqKomXLlvj6+rJy5Uru3r1LZWUlffv2JSAgoI7rnr+/PwMGDKBnz544OTmxadMmkpOThRJDUFAQ9+7do3fv3mhqatKuXTuioqLqbJrz8vJE3FXfNdHJyYmBAwcKecyXjy0jI4Pa2lrs7OwEH1ypSXvw4EGmTZvGnDlzGD9+PGvXrhWZ/XPnzrFr1y68vLyYNGkSOjo63L59m3PnzpGcnIyxsbFQM+nbty/V1dVs3ryZkydP0rJlS3bs2IGlpSW3b98WtsFKJCUl/eGY6h28SpIkrCOrqqooKCjAxsaG8ePHY21tTUREBE2aNMHKykqUcFavXl1nIbOzs8PKyooOHToIzl2jRo0wNDTE19eX8ePHi4Yu5clLSUnB3t5eZHosLS1Zt24d6urqJCYmEh4ejq2tLW+//bbQJG3atCnjx4+vV/CqqalJy5YtRfAWGhpKUVERtra26Ovrc+fOHXr16sVbb73F2bNnOXDgAAYGBsKFRzkpKO0AS0pK0NfXJz09XZSelSWd/Px88vPzWbt2LX5+fmJHpqamRsuWLet4w5ubm1NdXc3du3dp3ry5EAv/8ccf63sKhZ/6sGHDfuE/n5+fj6qqah1e1PXr17l27RqTJk2iU6dOuLm5UVxcTFpaGmVlZSxduhRdXV0CAgIwMDBg7969JCYm0qtXL6ZNmyZcaJSl6pSUFLKzs4XDR2RkJJmZmbRo0QJdXV127tzJ119/TUBAAB06dBDdwa+KiooKNm7ciKenJ9HR0VhaWmJlZUVpaSkmJia4ubmRnJxMYWEhXbt2xdjYmBEjRhAXF8dnn30mdqW7du0iOztb6BZnZmbi6ekp9GqVXZcxMTGUlJRw+PBhUVJRZvQ6d+7MpUuXuHnzJsbGxmRmZpKVlYWNjY3gLSm7ruuT8UlPT6e6uloENB988AFVVVV8/vnndfhQISEhlJSUCI1WBwcH2rRpQ0VFBa1ataJt27bo6upSXl6OiooKNjY2WFtbI5PJqKysFE5Sx48fFzzY58+fo6amhru7O87OzkRHR9O5c2d69OjBkiVL2Lx5M2ZmZowaNYqMjAxsbW3rCMa/KpQahEooNUGzsrI4ffo0Ghoa+Pn5icA1ISEBAwMD7O3tGThwIIcOHSI6OpqZM2cSEBBARkYGRkZGFBQUcO/ePdEQ9fnnnwvbTCXNolu3bqKxpaamhhcvXhAUFMSTJ09YuXIlnTp14vHjx1y8eFHoHdaXExoXF8ejR48YOnQolpaWXLx4kXv37tGnTx+6dOlCeno6Dx8+FAG0Ugw/LS2NgoICUUoEBb+7sLCQM2fOoKenx9KlS2nSpAn5+fm4uLiIbE5mZiajRo3iww8/RE9Pj0ePHpGcnEyzZs149OgRe/bswcHBQUgB2djY4OTkhEwmq7dkHSCCsbS0NCwsLDAxMcHBwYHY2FhycnKwtbVl0KBBuLm5CSOUZ8+ecfz4cbKzs4mOjhaZpzNnzvD1118zceJE2rdvz6FDh3j48CGtWrUiKChINAe3bduWHj16kJubi4uLC/3798ff319sKjU1NZEkCTU1NTp37owkSSQkJBAeHs6KFSuYPn36K49P6ebYp08fzp8/z6ZNm8T9Fx8fz+3bt3n69Cndu3fHz8+P2tpaZDIZMTExREZGYmVlxejRo2nTpg16enpUV1cLDuHFixf55ptvROLHz89PVDKePHlCUVERnp6eNG7cWBjW3Llzh2bNmjF48GCx5qanp3P79m1u376NgYEBb7zxRr2CV29vb0aNGsWoUaNYtWoVnp6ewshCqcWulLPLzs7m2rVrXLt2jfXr14sNdFJSEmpqaiQmJpKWlkZ0dDTW1ta0a9eOdu3akZKSwuzZs7l8+TJDhw7FwcGBCxcuCFMkVVVVXrx4ga+vL/n5+Zw4cYIrV67g4ODAG2+8IdwC79+/L6pb9YG/vz+mpqb4+/vTpEkTxowZQ0ZGhog/nJycyM3Npba2lubNmwv1ID09PV68eIGbmxvBwcGi30WZ4FLqKRsZGTF06FBatGhBREQES5cuRVtbm5kzZzJs2DAWLVrE4cOHSUtLY/LkyaICePfuXXr27Im5ubkIXF9W4XhVmJiYCOtdUMylSt71wIEDqaysZNy4cULXOzs7WwSQwcHBQm//o48+ws/Pj7S0NE6dOkW7du1E74NSDSI8PJzDhw8zc+ZMwSFXJlguXryIn58fH374Ifr6+sTGxvL8+XNSUlLExl1PT6+OlOZvod7Ba21tLdnZ2VhYWJCfny86JTt27Ii7u7voGk9PT2f69Ok4OTnVSeV/8skn7Ny5Ey8vL9FIsHz5ci5evMh7771HQEAAQUFBZGVl0aJFCyHx8eGHH3L58mXatm3LvHnzhMsXKHhf06dPJykpiZycHOzs7Ni1axfGxsb1zkxu3LiRjz76SJTKLS0txYLWvn17LC0tRcDQpk0bXF1dcXNz47vvvhParMOGDaNp06ZCbeFlfoqenh5eXl5UV1fXcdw6cuQIt27dAhQ7zJdvwOLiYvLy8tDU1MTY2FhwCsPCwjh48GC9S3rZ2dncvHmTvn37/kI2RekTD4ryUqtWrfD29qampkZ4lN+8eRNtbW3eeecd4uPjWblyJRUVFWhoaDBnzhxqa2tZtWqVIIPPnj0bOzs7kR3X0dHBysoKNzc3mjZtKiRtfHx8BEVj7dq1TJkyhaVLlzJy5Mh6jU+5633w4AGbN29GJpMJ/vWTJ0+Ij4+nRYsWImPl7OzMqlWr2LFjBz/++CNvvvkm/v7+DBkyBBcXF+7evcvWrVvF7zNv3jxKS0s5fPgw33//PcbGxjx+/Ji3336bMWPGcPjwYVHONDY2xtnZGVtbW+RyOXfv3mXx4sVCKkwJJV/4VWFtbU1+fj7R0dEUFhaybt06EhMTuXLlijAP+Oabb9iwYQMeHh4iMFaqDSxcuJCBAwcSFBREQkICjRs3pnHjxtja2iKTyfj+++/ZunUr48aNY9WqVYwePZrMzEyR/e/bty/u7u68ePGCyMhIwsPDycrK4u7duzx79oxZs2axceNGdHR0+Oijj+rd4fxr2LRpk3CGycvLw9HRUZSZlEHSo0ePuH79Ounp6QwfPpxVq1Zha2srFqEtW7bw4MEDRowYIe7j3NxcACZPnkx2djYzZswQAXF1dTVqamp4e3vTu3dviouLBQXC29ubmzdvMnv2bJo1a8aRI0dEhuxVoK6ujrq6utjo+Pv7i7+blJTEqlWrKC4uJigoiJUrV/LWW29RWVnJoUOHuHDhAgEBAWLzr62tzfDhw8nNzUWSJGHC8P7772NkZIShoSH37t1j8ODBfPrpp9y9e5c5c+Zgb28v9LfDwsL49ttv8fDwICYmhrNnz+Lj41OHq67Uf31VWFpa8uLFizo8RR0dHaytrbG1taWmpoZjx46RnJzM1KlTCQsLY9euXTg7O7NgwQKsra1FEJuVlYWenh5RUVFCrcPc3JxGjRrVUQlo3749s2bNwszMTFAvLCws6Nu3Lzdu3OCzzz4jMTFR6E03atRIrEWRkZHk5OTUa4wAnTp14tmzZzx48IDo6Gjc3Nz48MMPGTx4cJ3sWU1NjTBEsbe3F/0NRUVFQmVG2b2dkZFBUFAQlpaWjB07ln79+onGGhcXFzZv3sz777+Pt7c3b775ptB1bd26dR3esqOjIx07dqR9+/YUFBQIvvSrQukap0yuKI0m/Pz8cHNzQ1VVlcDAQKqqqti5cyfbt29n1apVHDt2jGbNmvHgwQM2btxIRUUF06ZNY+TIkeTl5XHmzBm6d++OlpYWdnZ27Nixg2vXrrFt2zYOHjxIcnIyEydOxNHRka1bt5KRkSESD+fPn6dZs2aMHj2a6Ohodu/ejaWlJS1atKBbt251zD1eBUeOHMHIyIjHjx/j5eXFlClT2Lt3L9OnT+edd97hjTfeIDMzkxkzZmBhYcHatWsZP348mzZtYu7cudTW1jJ27FjRUCaXy7GysmLcuHF06dIFBwcHcnNzuXHjBnfv3kVLS4v09HTee+89wfXNzMwUDXDdunUTlYW9e/cyf/78Os6m9ZV0u3fvHoWFhWIeXrNmDZWVlaxevZrRo0fTpEmTOs1uSUlJSJLEmDFjmDVrFo8fPyY5OZlBgwZRWlrKwYMH8fHxYdGiRaIab2RkxKRJkwgICBANdaDYpI8ePZrHjx+LjKu5uTlr1qzh0KFDwlEuOzsbFRUVFi9e/EqJnHoHr0+ePBFpfFtbW0pLSwkLC0NdXZ0OHTpgbm7O/fv3qa2tZcSIERQXF3P69GksLCx4/vw5mzZtIjs7GxcXF6qrq7l37x7ff/89lZWV+Pv7Y2JiQlpaGllZWaKb/eLFi9y8eZOioiKuX78uJtCqqiohvty3b1+Sk5PJzs5GS0tLSHoo5ZteFSoqKiJwLS8vF6K+wcHBNG/eHH9/f1JTUzl+/DjW1tbMmDEDdXV1tLW1iYuLIz4+HlNTU9555x06dOjAJ598Qnp6uvBdd3Jyom3btiIbrKWlRVVVFatWrcLR0ZHhw4eTkZHB5cuXAZg2bRo2NjZIkiRuXiUSEhJwcnKqt1HBunXruHHjBtevX2fy5Mm4u7sjk8nQ0dER5gO3bt0iNTUVe3t7WrRoIXiH9+/fZ/369WRnZ2NqaiosZkGhKXrz5k1sbGwICAjg6tWrfPvtt3Tq1AlXV1eRAQCFJMyQIUPw9vYmPDyc+Ph4Lly4gImJCaWlpdjb29OoUaM6cl6viqFDh1JRUUFgYCC7d+8WmXGlG5Obm5vQ4C0rKyMqKgoNDQ2aN29Oenq6KK326dOH9u3b4+TkRHp6OjY2NsJVJi4ujrVr1/L06VMGDBiAJEmEhIRgZmZWp8EoPT0da2trtLS0MDMzo6SkRNAYlEFYfn6+UNp4VTx+/BgTExNSU1PR0NCge/fugCI7peRqZWVlCRtMJe/78ePHhIaGEhUVJSTJLl68iImJCf369ROqCNHR0QQFBSFJEjY2NlhYWKCmpkZsbCxOTk6iFGhqasqbb77J/fv3uXDhgmhWU+r9ubq6Ultb+0qi0z9HREQERkZGFBUVERoaSnR0NCoqKpSXl+Pg4ECrVq0oLi4mOztblL3i4+MJDAykvLycadOmCeeWgoICQkJC+O677ygvLxdOZJIkMWvWLLS1tTl9+jR3794Vmqa5ubnCg1vJ5fL39xcmCUruXkFBAZaWlrRs2bJewatSNurMmTN069aNfv36UVNTw507dzhx4gS6uroUFxcTHx9Pbm4u1tbWTJs2DRcXFyIiIjh58iTdunXDxMSEiIgIEhISGDhwoDiHjx49Ijg4WAR2Sr3RuLg4zpw5Q05OjuCRKqkVTk5OIoOiLKGeOXMGGxubepcqQRHw+Pj41Ok7KCkpEcdUVlYmNkQ2Njaoq6tjZmZGs2bNhOd6TEwMixcv5unTp5iamoqsoZmZGd7e3sTFxZGXl4e2tjYaGhrExcVx/fp1oThRW1tLeXm54L5KksSDBw94/vw5tra2zJ8/v04Fqj4VkPDwcJo0acKkSZNwc3MjKiqKR48eCWc+IyOjOhzFgoICSkpKsLa2xt7ensrKSrEJ9vX1Ff0IqqqqIkCprKzE2toaR0dHsTYZGRlhZWXFw4cPKS8vp2PHjjRq1AgPDw80NDR4+PAht2/fRkdHB19fX7Fmg6Jhqz7zak1NDXfv3kVfX1/wXs3NzVm2bBlubm5oampy5coVQXvx8PDA3d2d8PBwhg4dKrKEmpqa+Pn54eHhQV5eHjExMVRUVJCYmMjz58/p3bs3Q4YMISwsTCRvVFRUUFFRwdnZGS0tLaqrq9HQ0KBv376MGzcOPT09Fi1axMmTJ+nTp0+9nQqVKC8vp6ioiNTUVLKysnB0dERVVZWEhATOnz+PmZkZ3333HSkpKaSkpLBkyRI2bdqEqakpXl5eguPbvHlzdu/ezblz54S0n5aWFmFhYYLb2b17d5YtW8Ynn3zC8ePHOX78OG5ubrRt21ZQFgsLC7GyshLaucpqYE1NDYaGhuI6eFUYGhqSmJhIbW2tkO4CmDJlCj4+PsJ6Wamd3bRpU3r06IGnpyd5eXlER0fj4+ODi4sLwcHBREdHC1rX3bt3uX//vuDcK+ljSk3pwMBAsV6NHz8eExMTUQkoLS3FwcEBc3NzVFRUyMrKIjg4WCTKfg/1Dl737dvH6tWrAUXwaGFhwYQJE+jRowcqKiqEhISgo6MjFtOjR48yb948qqqqcHJyEsFkcnIy77//Pra2tkybNo22bdtiaWmJJEn07duX8vJyIiIi+Prrr8nLy2P69OlUVVWJXTQoMhdZWVmEhITg6elJixYtKCws5PHjx6KLVplde1UotV0rKytFRjM0NJQ1a9Ygl8vp27cva9as4cSJE8IhCxSyUObm5vTv35+rV6+ycuVKevfujaenp2j++vzzz0lKSiIhIUEYEbi5uZGRkUFGRgbdu3dn586dZGRkMGnSJD7++GPS09OFOPzPs8jdu3ena9eudfRuXwVbtmwBFPJdNTU1zJs3T1wsSm6hv7+/oIe8LCtjYGCAlZUV2dnZbNy4UWR+jIyMqK6uFqWiCRMmMGXKFMGDHj16NBs3bsTQ0JDNmzfTqlUr4YqSkpLC0aNHOXToECkpKcJm76uvvqqTQXhVODk5UVhYKMSQlY0ZlpaWjBo1imnTpokMl7a2NrW1tRw/fpwHDx7g7+/P9OnTsbOzIzY2ltjYWDp37oynp6co2d27d49hw4YJLcXevXvj6OhIly5dftFZb2VlJX7TNWvW0L9/fz7//HOuXbsmbuTU1NR6Wxnv2rWLd955h4CAAGEXqnTTSkhIIDs7m4kTJ9KrVy+uXbtGQkIClpaW+Pj4CC3mFy9eMGvWLEpLSzl06FCdjNPYsWPx8PBg8+bN9O7dm5YtWzJt2jQ8PDxESUc50RkaGuLm5kZWVhbdunXDw8ODgoIC8vPzMTc3x8rK6k9xsx8+fIi7uztfffUVISEhzJs3T5giGBoa0qhRI8LDwzl69Ch2dnaYmpoKS9y8vDxu375Nu3btUFdX58iRIyxYsIDS0lK6du3K5cuXiY2NpXHjxrRv357+/fsLXWgjI6M6i0RycjJffPEFRUVF2Nvbk5CQIKxImzRpwsSJE4Vebn2QlJTEkSNHKC8vJzw8nOrqalJTU9m5cyeWlpa8//77ODk5YWRkVId20bVrVzw9Pfnmm28wMDCgV69enDhxgpUrVwoDgOLiYlRUVBgxYoQo3a1fvx4LCwv+85//4OLiIsqSys2OUlbt/PnzWFlZsXr1atTU1AgMDGTLli2YmJj8gmb0R7hx44a4z5VQUVEhOTmZhIQEEZArrYUNDQ2Ry+V1gt3i4mLu3LlTh1OsoaHB8uXLUVFRYevWrVRVVdG0aVPS09M5efIkJ0+eZPbs2axevRptbW2SkpI4fPgwvr6+/Oc//8HKyorTp08zZcoU0fz4Z3Do0CEWL16MpaWl8HS3tramurqaU6dOcf/+fUELAkUQoaenR1pamtAV1dTU5MCBA6SkpNC3b19ycnLYunWrsBzPz8/n2rVr2NnZERAQIMrHZmZmjBgxgr59+zJq1CgkSaKqqorY2FjWrVvHnj170NbW5t1338XS0hILCwuqq6sZOXIkx48ff+Uxvvfee8LcQyntpaTIKCsTU6ZM4fDhw8Li2NHRETMzM54/fw4o5uQ9e/aInofy8nLByb5w4QJbtmwhOjqad999l08//RQDAwOWLl3Ktm3bMDU1pU2bNoJaYW9vz+TJk9HQ0BCuTPr6+pSXlxMbG1vvhBUoOK/BwcEYGRkRFxfHjRs3qKmpITAwkOjoaFasWEFkZKSgSwYFBdG3b1+2bt3KjRs32L9/P8HBwRQWFuLi4sKYMWOIjIzk6NGjHDhwQFAGly9fLvRys7KyhAJGeXk5b731FgMHDhS68tnZ2fTr1w8/Pz9RzleqbtQXLi4uNGrUSCTnDAwMhObzy1DKonXq1ImMjAz27dvHJ598Qrt27UTjcnJyMiUlJSITv3XrVu7cuYOlpSWNGzcmNzeXWbNmce3aNbp37465uTkzZsxgwIABVFZWMm3aNMrLy5kwYQIdOnRATU1NNLWXlJQQGBjIggUL/jCArXfweurUKVxcXLC3txc7JLlcTqNGjTh8+DBLly5l/vz5+Pj4AIjIuqCggNraWtTU1NDU1CQnJ4fo6GgaNWrEO++8U6dZycDAAH19fW7dusWXX35Jhw4dBBk+IiJC/Gig4MpeunQJBwcHZDKZsMDLz8/HxMSk3vawqqqqBAcHY2ZmhpOTExkZGTx69EgsWqdPn0ZHR4dRo0aJDIfyBm7Xrh0ff/wx9+/f5/LlywwZMoRGjRrRqFEjdHV1iYuL48KFC1y9ehUrKyt8fHyoqqrC3t6eXr164enpSUhICD4+Pnz++ee4u7sTFBTEjBkzxASpLJ9MmzbtT8lkgaIZTLmLbdy4cR0dP2W37JtvvimkVUJDQzl48CCDBg0iICCAgwcPsnTpUu7du4e9vT0uLi7k5eURFxeHhYUFtbW15ObmMnnyZMzMzIRNa/fu3WnXrh2bN28WN2NwcDC3b9+mWbNmPHnyhLy8PEARDOfk5GBiYvKnmn00NDQYOXIkycnJBAcHk56ezsiRI0XmdO3atWRkZLB06VJBVbC0tKRVq1bo6Oigo6ND+/btefHiBVVVVZibm5Oens6JEyd4/Pgxb731lghUExISuHTpEubm5nTu3JmamhpOnDhBSkoKo0ePxtzcXASXnTp1Ii0tje3bt7N161Y6duxIr169aN26Nd9+++0rj69bt26CPqKczCorKzlx4gTq6uoMGDBA6B5LkiSyOG+88Qb79u0jPj6ew4cPs3z5csaOHSsUC5RQXrPKjn8LCwt8fX2xsLAgIiKC8+fP06VLF6ysrDhw4AAVFRWMGTNGLGovW+b+WTx9+pSWLVsyYMAAPD096dGjBw4ODqJ0CoqO3du3b3P8+HESEhIARfnfwcGBkydP8vHHH/Phhx/i6upKkyZNhFzZuXPnMDExwdramr1799KxY0dhNwsKXrhyg5OcnExsbCwxMTF4eXnh7OxMy5YtMTU1JSoqioSEBNTU1Oq9aJqamhIQECC0k9PT0zEwMGDIkCE8ePCAmzdvCv92UPCXIyMj0dXVFU2kyqDW3d2dHj16EBMTw8GDBwkPDxfGKkOGDBENdNnZ2bi6umJgYEBycrKQ0FLafffv31/YRivn8DZt2vDkyZN6JwIATp48ibe3t9DWHTRoEM2aNcPDw4PAwEBKSkr44IMPMDQ0pLq6midPnmBhYYGTkxNVVVVcv36dqKgo5s6dy+XLl4mIiCAgIIC5c+fSrl077t+/z4gRI9DW1kZbW5tLly4RERGBgYEBt27dYu7cuSxatEgoYRgZGdG/f3+mTp1K8+bNRRn1k08+4dSpU3WaF18FPj4+gmalzPyCIkOmrLYopRa1tLTE60o+pI6OjljvQEFb+OGHH+o0aLVu3RpbW1skSRIl2tOnTwtlGmVTLPzXcMPMzIwxY8bg4OCAo6MjYWFh+Pr6YmNjQ48ePeoVvD579kw4xzVt2lTcJ0lJSZSUlODh4YGhoaEo12/fvp3o6Gg6dOjA4MGDMTQ0pEuXLiJwvXv3LleuXMHb25u+ffvSvHlz4d6lxJAhQ9i6dSspKSmcOXOGH3/8kTZt2jBz5kwqKir45ptvcHR0pGfPnuzZs4fly5ezbds2PD09GT16dL0tYo2NjYmNjcXY2Ji0tDT279+Ph4cHEydOxMzMjB9//JFu3boxduxYSktLGTt2LOnp6ezcuRNjY2MuXrzI9evX8fPzE5qlM2bM4OrVq4CiSt2zZ08kSeLixYv06NGDxYsX4+LiQnh4uJjfNDU1sbCwoFevXqSkpAi+96JFizA0NGT+/PlER0ezZs2aetEFd+zYQZ8+fdDV1cXExIRPPvkEW1tbsYk9fPgwvXv3ZtCgQYAioaRsYBsxYgSurq48fPiQsLAwfvzxRzIyMvjhhx9o1qwZzZs3p1mzZsIqu7y8nObNm/Pw4UNhkvGf//yHJk2acOHCBc6dO4eZmVkde9uysjK0tbXR1dVl5syZop/q91Dv4NXZ2ZnTp0+LJgYTExOKiooARUny6dOngkMGCv5nx44duXXrFjdu3BA7F+VnsrOzuX//vpigldmcY8eO8e233wp9QWUAY2pqWqcMk5WVRZMmTeoIQbu4uIjO5Po2GYSHh/Pw4UNMTU2Jj48nLi5OZEEiIyOJiIhg+PDhoolI6SClqqqKsbExM2fOJCsri5s3b3Ljxg1BX7CxsaFbt27cvn2bhIQEpk6dSosWLfjmm29wdXVl/fr13LlzhzVr1tCjRw+mT5/OunXrWLZsGcuXL8fHx4cpU6Zw+/ZtoqOjRcNWfR1hQKEtV1FRIUpHL2c0Hj16xKFDh3BzcxPB67Fjx4TAfEBAAB4eHnz66aekp6eLsvCuXbto1KgRAwcO5M6dO5w+fZoOHTrg7+8vunGLioqEtIm1tTWlpaVs2rQJS0tLFi5cSH5+PpGRkYwaNUpMsKampvU2YQDFQtK9e3cSEhKIjo7G0dFRZNULCgo4cuSIkDJRdjwrz+eSJUsoKytj0aJFIjjIz89n+/btLF26lDZt2nDx4kX09PRITExk6tSponGuefPmeHh4cPnyZa5evUqbNm2ENZ4yIzFy5Eg0NDQYMWIERkZGLFu2rN7j69evn6BsKDUXf/jhB7744gsCAgLEuSspKaFZs2Zig9KsWTOWLFnChx9+iI6ODiEhIbi6uuLl5VVno3f9+nXu379P+/bteffdd8XzKSkpgni/YsUK7OzsWL16NU2bNhXC3MqMt66urtjY/Rnk5+fTtGlT3Nzc6pg5KJvLqqurhYNZYmKioF64urryxhtvCD3YkpISOnfuzM6dO5k8eTI3btwQm4aEhAS2bdvG8ePHMTY2Fk0NNTU1gupQW1uLubk5CQkJaGtrM2TIEKEC8OOPP3LkyBG6detWb8OJli1bCrpQSUkJ586dw8fHh1atWrFmzRo+/PBDvL29xdyor6/Ps2fP+PLLLzE1NWXPnj1iwRg6dChDhw7l0qVL7Nq1i3PnzonJf8uWLYJjreSanT9/ns8//xwLCwuGDBmCoaEhFRUVqKuriwCutrYWUGx2lQtNfd2LTE1NSU9P5/vvvycoKAhXV1eaNWtGo0aNMDAwIDw8nNjYWBo1asTJkycJDw8XFYzHjx+zY8cOvLy8WLBgAXp6ejx8+JD27duLTKaJiQmDBg3Cw8OD8vJyYSZjY2PD119/zY4dO+jRowdDhgyhb9++VFVVUVFRQUVFhdhAh4aGsmPHDhITE4mIiKiX3NmIESPEmlVTU0NkZCS1tbV4e3vTs2dPevbsSWZmJnl5eZibm6OhoSHmW2UGtWnTpsyfP5+4uDh27twppKwcHR0ZPHgwffv2xcbGBhsbG4yMjIiNjeXo0aOEhoZib29PSEiIqFAp79v+/fuLtSc+Pp579+7x7NkzLC0t6y21NGHCBEJCQsjLy+P8+fNMmzYNHx8foqKixLpbXV2Nk5MTGzduxM3NjXfffZfOnTvzySefAIrseU1NDRkZGRw/fpzPP/+cxo0bY21tTfPmzVm6dGkdOb3Y2FgqKyuFskBYWBjZ2dkMHz6c4OBgFixYIH5fUPS9KOeE+gr4A0I5yMDAAB0dHaqqqigtLeXFixfU1tZibW1N9+7dRUV53bp1fPDBBzx8+JB58+Zx7949WrZsyZAhQwBFU7qzs7MIXv/zn/8gl8v54IMP6Nu3L1u2bGHy5MmMHDmSfv36ic1LVVUVlZWVlJeXi+TY7du32bZtG15eXowdO5Zr166xe/fuemnaLl68mOvXrzNr1izatm2LXC4X18Hp06fZunWrSDQpn/vxxx/56KOPWLFiBYWFhUydOpXDhw+jpaXFgAEDUFVVRUNDg6lTp4q1o7CwEFtbWz799FMGDx7MF198gZOTk0i0qKur06hRI8zMzHjw4IEwZTp//jwmJiZ069aNyspKunXrxrFjx353TPVeVRYvXkxMTAzV1dWYm5sLTbdr167h7u7Od999J+QWampqsLKywsrKiu+//574+HgmTZokpCKSkpLQ0dHh2rVrwlJVaRsWFBREfHw8TZs2xd/fnyNHjuDk5ET//v2RyWQ8ePCAqVOn4u3tzbJlywgPD2fGjBn069ePnj178vTpU+7evSu8oV8VSoHdb7/9lsjISAICAujduzcmJibU1taira0t5EpAEfjduXMHJycnkZmwsLBg8ODB5OTkEBsbS21tLWlpaTx9+pSamhq8vb156623aNasmejsl8lktG7dmuHDh5OcnExiYiIODg689957mJiYCMH+OXPmUFJSInZkf0Y/E6jDeVIKH7948YLWrVvz5ZdfMnbsWCorK1myZAlBQUHMmjVLcPoyMzPx8/OjV69e4ju6dOkiOHPZ2dmoqqpSXl6OoaEhO3bs4Pnz58hkMjw8PFiwYAEdO3ZEV1dXZOtsbGwwNjambdu2omRw+fJlysrK6qV/Cgoeo9K21sbGhtWrV+Pp6SkadNTV1fn0009JSkoiNTVVNFiAoqyno6PD119/TVBQEJ999hkDBw7E2NgYIyMj9PT0uHPnDuPGjcPNzU3ovSqxY8cObGxsaNq0KaampuJaqampEYururo6GhoamJub17mW6oN9+/Zx+vRpZs6cib+/P/PmzSMoKIgJEybg4eHB8ePH8fT0FLzBl3+bAQMG0LhxY44dO8aMGTPQ0tKiWbNm6OjoUFRURFZWlsjwGRoa4u/vDyh4vtOmTRMT8pUrV/D19WXmzJm0atVKZAJUVFSora0V/D4DA4NX6h79OZRUmdDQUM6dO8fs2bMxNTVl3759HDlyBDc3N8aOHcvcuXMZOHAgZ8+eRUVFRQSWkyZN4unTp6Kr1svLS/A2x48fz9tvv01eXh4dO3YUepMWFha0a9eOsrIyYdChq6srpF/Gjx9fx9vb1dUVb29vbGxs6m00oTSrAMV1Z2FhIfQ5Z8yYIfSET548Sbt27UQQd+LECaKiouokCZSb0e7du5OVlSWaclxdXdHU1CQxMRF9fX0RMHXu3Jm4uDiMjIyE24+y4VW5kVFRUaG4uPhPlSmVmD9/PrW1tfTv35+2bdvWUQ5Rum+1aNGC+/fvc/jwYWxtbWncuDG3bt3i6NGjODk5MWDAALKzswkPD6e8vJwNGzbg5+dHjx49hMJNcXExOjo65Ofns3//frGRGDhwIK1btwYUgWZ6ejrJycmcOnWKyMhI/P39sbKyYsSIEYSFhYlF9lVRWFhIdHQ0np6e6OnpUVhYSFlZWZ2NoNJeVUNDg6NHj/Ldd9/Ru3dvsRFwdHRk1qxZzJs3jyNHjiCTyVizZg1vvfUWxcXFpKamisBVGSC3aNGCQYMGoa6uzrlz59i5c6dIuBQXF4tNzcub9/T0dFatWlXv8zl06FB0dXUFlzwrKwtJkvDw8BAbnJc3qC1btmTZsmVCtUFZoVValJ46dYrq6mqKiorqJE7u3r1Lbm4uvr6+pKenU1xcTElJiaAW6uvrc+DAAe7cuUOnTp1wd3cXSZ+KigomTpxIRUWFqK7VB82bN6dx48Y0a9aM1NRUXFxc8PHxQUdHh8ePH3PixIk61J1x48bRokULoqKiSEpK4o033hBrYE1NDbGxscyfP59mzZoRGBgoAsVGjRpRXV3N/PnzhbB/Xl4ejRo1on///kRERDBv3jyaNGnC119/DSjmwaNHjxIeHo5cLkdfX59du3bVS6/X0tKSAwcO4O/vL7i1ubm5eHh44OTkJJIsJSUlREVFUV5eLuRKi4qKhBUsKPp0/vOf/+Dr60tlZaUwysnMzMTW1laoo7Rq1Yq5c+cK2+zCwkL09PQ4dOgQ27dvZ8iQISxfvpxBgwYRHR3Nd999h5OTE+rq6shkMvE9v4V6B69+fn5iMVMiPj6ezz77jFatWgnCeUFBAZIkYWxsTHV1tZAymThxIn379qWiokJYqd68eRNdXV2eP3+Ok5MTXbt2xdbWFisrK/r27Yu3tzeRkZHk5eUJ7lxubi7FxcVChufixYvExMQwadIkVFRU2LdvH7dv3xYiwvWBh4cHycnJBAUF8dFHH4kJv3HjxmJyq6qqIjc3l/j4eOF4oZzolY1jdnZ2uLq6cv/+fbZs2cLRo0cxMjJi2LBhQoRc2Sn7+PFjvL29GTlypCirNGvWjBYtWogGtYKCAlxdXVFXVyc7O5vi4uJ6jw0UmYYHDx6go6NDixYtROCmLBEooRTw7t27N8uWLePOnTuMGjWKZ8+e4evrS1lZGd27d0dNTa2Oll/Lli2RyWSkpqYSExNTp+FLuVtOT08nPj6egQMHAooJ3t7ens6dO4vyjVK0uL6ZO5lMRllZGVVVVbi6uuLo6IiBgQE1NTUUFRVhbGxM165def78OR999BEWFhasWLECfX194uPjadeuHcnJyZw7d47AwEA8PT1xdnZm0KBBrF27lpKSEsLCwkTprXnz5syYMYPo6GgeP37MkiVLmDFjBnPmzAEUk3J4eDitW7cWYtuVlZXMnj0bLy8vEdDWB8+fPxe8bOUC5+npyXvvvUd1dTVfffUVxsbGInhViopXVlZiZGQkpFyuXbvG7du3uXfvnhAy19LSEpWO7du34+rqSocOHXjy5Anp6emYm5uLTUplZSXLly8Xx5Wbm1uHMqAMHP8MHBwcBLVDmdmeN28e+fn5XLhwgQsXLtCkSROhSqK8TwoLC7l+/Tp6eno0atRIBBJKBRMHBwcxMRYVFTF06FAA9uzZQ1RUFL6+vlRXV1NWVoaamhpVVVVcu3aNgIAA+vbtS25uLlu3bhU6qz4+PnTo0KHeUllK56OMjAxCQ0N59uwZJiYmZGVlYWFhwbJly9i8eTNLly7F39+fxYsXo6qqipOTk3D8A8U5qqmpYdy4cairqwsHRKWG6NWrV8nLy2Po0KGYmJgQFRXFtWvXqKqqwsXFRXyPUu+2VatWTJkyBT09PXR1damoqKC8vLwOXetVoaWlhampaR1XqZKSEjQ1NessTk2aNKFdu3ZCIioqKgojIyOWLl0KKDrcLSwshKTX7Nmz2bp1K66urmhra6Ovr09ubi6HDx/m2bNn6OnpMWXKFPz8/Hj+/LmgRdjb25OUlMS+ffu4f/8+lZWVfPbZZ/j7+3P16lVSUlIE/eRVcPr0ab7//nuaN29Ov3790NbWRiaTkZycLAwRlN7xoJAoOn36dB2VF2XJtEmTJrRu3Zo2bdrQvXt3ysvLSUtLo7i4WDimKZsVAwICMDIyorS0lAMHDogyuYGBAS1btkRNTY0nT55w7949GjduTOvWrYmIiODYsWPIZLJ6icEr1Vpat27N06dPMTY2pra29he23xEREZw9exZHR0eh3nD+/Hl27txJhw4dRAOUsmL3/vvv12mwevDgAcePH6dRo0aoqamhr6+PmpoaNjY2Qo88JCQELy8v5s6di5aWFp9//jlXr17F2NiY5s2bo6urW2/lFkBQZOC/Gsfl5eXk5+dTWVkpKCxdunShWbNmlJaWYmZmJpRdlFDGOkqd85qaGm7dusWzZ8/Izs4W1saPHj0SDU+Wlpb06dOHQYMGoaOjQ3p6ulirDAwMcHd3x93dXUjIde/encGDB9creJ05cyaBgYFC0mrz5s0EBQXRq1cvCgsLMTY2RkVFhYcPHxIXF0ePHj3w8vIShko9evRg5syZREZG0rZtW6ETq9QOvnnzJnFxcUK+r6ysjOLiYrFxVErDtW3bFmtrazIyMrh27Ro5OTkYGhri5+fHqVOniIiIEA2Kf3nw+u233woP45eRnJxMTU0Nffr0EV3iyl1ZXl6e4LOcOXNG8ClPnjzJt99+i56eHm+88QZRUVFoaWlRU1PDW2+9hYWFhfB59vHxEVmqyspK3N3dOXfunIjqlY1erVq1oqioiIiICKytrVm8eLFoMHsVKF08lAHGy40mZWVl4qbPzc1l7dq1ODk58eabb3Lz5k3279/P5MmThWzS5MmTWbFiBRUVFRw9ehRAdPWuXbuWJ0+esGDBAvz8/Dh//jxxcXEMGTKEVq1aoa+vT3Z2NsnJyTRq1IiqqioeP35MeHg4iYmJqKmp0bFjxzr6ua+K9PR0bt26JTQBP/roI3x9fesEUMobbunSpaJUcv78eeF2FRcXx4wZM5g2bRoffvih+O1KS0txdnbG2dmZ2bNns3HjRjZv3lynAx8UpcywsDA2bdpEkyZNKCgooE+fPpiZmbFo0SJqa2tZsWIFAwYMENfRq6KyshIdHR1RblWKojdp0kRkx3Nzc/n22285d+4cw4cPR0NDg8TERC5duoSnpyd79+4lNTWVt99+m8GDB3P9+nUMDQ3JyMjA2tqa8+fPc+PGDWbMmEF4eDizZs1i8eLFfPzxx2zdupXjx48zadIkQMHr/fzzz5kzZw7e3t4iy969e/c6EkL1wbRp04RCBMC2bdsEr1VNTY0hQ4YInVBbW1uxWP6cXrNv3z5++OEHdu/eLfzB33//fRITE9mzZw8PHz7k+PHjREdHY2VlxZ49e8jIyBDXh7m5ObGxsSJI/nm2Tslz/zPw8fHhhx9+EBnNTz/9FD09PXr37k1cXBxff/01169fR1tbm/j4eLy9venYsSPffvstixcvBmDu3LksXrwYLS0tysrKWLZsGTKZjLCwMD7++GOSkpIYPXo0AwYMoEmTJoIuYGBgIOgYyuyQcg6Li4tj9+7dXLhwAXNzcwoLC7GwsKg3vz42NhZ/f38CAwNZtWoVw4cPZ86cOXWy1MnJyYSHhxMeHs61a9eEnvTIkSNp164dwcHBfPTRR7zxxhtMmDCBDRs2iMyTmpqa6Mzv0aMHenp6PH78mC+++ILvvvsOLS0tNm/eLCpl4eHhHDhwgKioKJo1a0bXrl1RUVFBU1NTGMPUFxs2bGDFihXi31VVVaioqPyigc/AwIA5c+bw2WefMXfuXAYMGMBnn30mXvf29qZNmzY8f/6cRYsWcfr0ab766ivGjh1L//79AQWdRNnk9MMPPwiN8a1bt2JhYUGfPn2YMmUKNjY24pps1qwZNjY25Obmcv36dY4fP/6LBrPfQ1pamrCirqqqokuXLuTk5HDv3j28vb3p0aNHHW6ih4cHPXr0EIt6YWGhcIFs3749EyZMQENDg40bN7Jy5UoGDRrExx9/zLVr1/jiiy8YP368KO2GhoZy7do1HB0dmTx5Ms+ePaNVq1a8/fbbYk7t16+fSL54eXkxZ84cMjIyOHv27CuPUQkTExPxXZWVlcJwQWnCc+3aNY4cOSICmJiYGI4dO4anpyeDBw8W67KXlxdyufwXzX+ampo8ePCABw8eYGlpSe/evfH19aW2tpbVq1djYGBAv379hHYsKDL7U6ZMYd26dQQGBjJq1Cg2btxYb3pLWloasbGxtGrVChUVFVRVVQkKChKVmI0bN3Lt2jXu3LmDm5sbkZGR7N+/nzfffJPevXuLc5mamoqrqyvV1dXs3buX8+fPo6mpKYLjpk2bMnr0aHJzc0lNTSUhIYE33nhDrBWmpqasWrVKUFuU+PLLLzl27Bg9e/bE2Ni4XjENIKxn9fT0uHHjBhEREURHR5OcnCwadZXmBd26dcPOzg4VFRWMjIxEFcPZ2Zldu3ZhZ2dHeXm5oPotXLgQLy8vLl26JOgX169fp7q6mv79+/PkyRMhraWsNCm5/GpqatTU1DBq1Ci0tLTE5mXkyJHs3Lnzd8dU71Vl6dKlxMfHM2PGDOzt7YmOjubBgweMGTMGMzMzcnNzMTExER64oCijGxoaoqWlRceOHTExMeHp06c0btyYBQsWMGLECJo0acKNGzeEu4WtrS0TJkwgPz8fDQ2NOrpmGhoawjKvvLxcyG6dPXuW9PR04Ynco0ePeoujK8XZNTQ0KC8vZ/369SxcuBB9fX3CwsJISUnB2tpa8MN8fHwwNTWltraW9PR0ioqKcHd3x9/fn6dPn7JlyxZOnjyJkZGRoDQopTCUKfvKykoyMjLq7GSV6XPlJKuuro6NjQ2xsbE8evSI7OxsvL29/1Rmy8zMjLfeegtzc3PU1NREpiwsLAw9PT3MzMzIyMhARUVFZJrLysq4fv06oLjwevfuTU5OjtCvMzAwoLq6Wiy8SsFhFxeXOo0sUVFR7Nq1i40bN+Lt7S3Gp+Qm6+vr4+joSG5urrh5X24oexUog4jU1FTCw8OpqKjAzs5OXI81NTWiZLpw4UL69OmDpqYmGRkZSJIkghRbW1vatGnD8uXL+eCDDxg1ahT/+c9/RGNG27ZtWbp0KcnJyUIPeO3atchkMsFJ+vLLL4XU1tatW2nbti2dOnUSJZo/U04HRUbz6dOnYlJ8/vw5z58/F247jRo14vbt2xQVFdVxUykqKiI2NpagoCDRKOHh4YGrqyvnz58XGY/GjRszcOBA8vLyOHXqFHv27OGdd94RmTAjIyOSk5PJyMhg3bp1+Pr6MmnSpDpNPRERETx69AhHR8c6zmqvipYtW4omG319fezt7bG2tsbb25tFixbh4OBAfn4+mZmZVFRUcOzYMbZs2UJFRQW+vr4YGhri4uIiLFFramoEj6ykpEQ43d2/fx8fHx+8vLwwMTFBU1OzznzTuHFjVq9eTXFxMZcuXcLR0ZHRo0ezfPlyZDIZCxcuREdHp15NMKDYQJWUlGBlZSV8wu/cuUNkZCQWFhY8ffpU+NC3bNkSFRUVYmNj6dWrFxMmTBDnsn///qIJ8+WgUF1dXcg4KaXBlPNM7969hVyTEu3ataN37960b9+eNm3aIJPJKCwsRFdXF3V19Xrfh6AISFJTU8nLyyMrK4uuXbvW2aiVl5cTFBSElpYWzZs3x9DQkBYtWiCXy9HQ0ODixYtcvXqV8ePH07RpU9TV1YWmtKamJi9evODGjRuYmpqSkJDA9OnTsbW1xcTEhCtXrhAZGYmmpiZWVlZUV1cLesXMmTMJCgoSfPqqqiq0tLTqBAyvAgcHB3r27Imbmxtt2rQhNjaWw4cPU1ZWJubVwsJCgoKCyM/PJysri+7du+Pt7U1ZWRmlpaVYW1tTWVlJamoqz549o7a2lvj4eOzs7Ojbty92dnbo6+tTWlpa57q8e/cusbGxDBw4EHd3d+7evYu6ujr29vbIZDKMjY1JTU1lz549pKenM27cOJFEqG/wKkkSoaGhpKWl4ePjU4deUVNTQ15eHj4+Prz//vuYmZkRHBxMSEgIzs7OonG3uLiYpk2bilggPDxcNFknJSUJZyw3NzfkcjkdO3bE19eXoqIi1q5di6qqqghcv/zyS+7cucPUqVPp0KED06dP59tvv2XPnj31broDhWpEeXk5Tk5O2Nvb07VrVyRJora2FicnJ7y8vESW38zMjLZt23Lp0iWOHz9OaWkp/v7+SJIknM4A7ty5w6lTp1iwYEGdDG2nTp24fv06qamp1NbWYmhoKOYlNTU1unTpgq6uLrm5uVy9epXLly9z7949XFxcaNOmDQUFBaSkpNRrfLa2tmhoaJCamkpNTQ0BAQHY2dkJ/XgNDQ0kSSI+Ph5/f39UVFQICwvj6dOnQrnH2tpaUKa0tLRwcXHBwsKCpk2bkpCQwM2bN4VUllI7ulmzZqipqaGnpycSKLW1tWLDr1xrVVVV8fDwYMeOHTg4ONCiRYu/PnjV19dn9erV4qK8e/cucXFxzJkzB1NT0zoBQkVFhQhOcnJy0NDQoGPHjqioqHD06FGMjY1Fqe/Fixc4Ozujra1dh1D+8mL4ckYnNDSUYcOG0bNnTw4cOICenh5Xr17l6tWrwotXeUHUFxoaGrRq1Yrvv/+ew4cPk5+fj1wuJyUlhcWLF1NWVkbr1q3ZunWrCAzMzMxo0aIF+fn5ODk5cfLkSTZt2iR2gN27dycwMJCnT59y4sQJBgwYICSuHj9+LFxLXoa9vb2Y6JVuY8qsplJC7M9AXV2d3r17i+5HVVVVnjx5wpkzZ/D09GT48OH079+fM2fOcP78ed58801MTExE5nvkyJGiqSE/P5/a2lpSUlJERuPatWvs37+fLl26iGBHiXPnzvHFF19gYWHBuHHjxPm1s7MT4tfbt2+nqqqK+Ph44XD1Z3DmzBkiIyOZNGkSvr6+QkKqcePGtGnTBj8/P8GvAUVTnY6OTh0eqr+/P3369BHac0uXLuX8+fO8/fbb9O/fXzRbpaWlidL86tWruXbtGidOnGDOnDl06tRJ6N6uXr0ac3NznJ2dRWDm5eVV7071HTt2cODAAdauXUurVq2YNWuW0GY1MTGhsrKS7OxsampqhF0sKBah+/fvs2bNGtzd3fH29sbU1JRBgwYxaNAgwsPDWbp0KRYWFnz44YfEx8fzySefCMcVZam7Xbt2VFZWcunSJS5evIiBgUEdLdfq6mqeP38ujEX+TPAKMHr0aI4ePUpVVRUfffSREEy3s7Pj/fff59q1axgbG9OqVSs+++wzFixYwNSpU9m2bRuguD6V17iNjY1wWaqpqaFz585kZmbStWtX2rVrJ0rtOTk5aGtriyyTjY0Nb731FlevXiU+Pp5u3boxfvx4vvvuO/T19ZkxYwbPnz9nyZIlr6RPqITSee/tt99m1KhRnD9/nv379xMZGYmDgwO1tbXk5OTg7e3Nt99+i6WlpWjq8vT05OzZs6ipqbF+/XqxCCjltebPn09paWmdTB0oAoPFixejpqaGiopKnXOmVAPR0tISgarSR/7P8l4XLVpEbm6usBi2tbWto1WtpqbG48ePuXTpEi1btqRLly6cOXMGfX19UlJS+OCDD8jMzMTb2xtNTU0OHjxIfHw8rVq1onPnziQnJ/PJJ59QXFzM3LlzWb9+Pffv32f48OFER0fj7+/PqlWrRPOSkg6jbJRRVtKsrKyYM2cOLi4uPHny5JXH165dOzw9PfHy8qK0tJT169cLzqSyKnj//n22bt1KREQEvr6+9O/fX1R6jI2Nxb2xevVqFi5ciLGxMfPnz+fs2bNiDbO2tmbmzJl1pAO9vLxQVVXFwsJCqO0cP36cFStWMHLkSDw9PTl//jwff/wxlZWVGBgY1Ms97GUo7UCDg4NF5zj8V1rR3NxcHOuzZ884f/68UCJQzq/6+vp06dKFixcvsn79eoqLi+nVqxeNGjXihx9+IDg4GGNjY9avXy+ymcoqyDvvvCPWinPnzrFw4UJKSkq4ffs2hw8fxsfHhyVLljBr1izGjBnzq9Xh38OzZ8/w8fERVT6lvXJNTY2IYdq0aUN1dTXV1dXo6uqyevVqhgwZwqRJk9i9e7do1lLC1NSUIUOGMHz48DrPKzVrlXh5U6jUg/fz88PKyorZs2dz6tQpduzYwZgxYwgNDUVFRYXmzZsLWtqrIDQ0lB9//BEHBwd69OjBoEGDKCwsFFKHpaWlbNy4kdDQUJycnGjUqBHXr19n3759PHjwAEDwct9++21atGjBtGnTRKymbFQsKSkRTe9KGUpXV1feeecdscapqKiIKmezZs0EdTAyMpLg4GAKCgrE3/w91Dt4PXz4MPv27ROp4MaNG6Otrc2+fftwcHCgQ4cOmJqaCtHf9PR0wsLCyM3NpaioiClTpjBq1Ci8vb3R0tISXZ62trb0799fNOdcvHhR/ABKj+pGjRpRWlrK3bt3OXbsGF26dGHkyJGoqakJnlZmZiZTpkwRN5JS1eBVcfXqVQICApg5cyYFBQUsXryY5ORkTExM6Nq1KykpKWzYsIGUlJQ6QZWFhQXW1taiLFtVVYWxsTFNmzYlJiaGxMREvvzyS65fv87FixfFCQNFSczS0pKdO3fy+eefM336dNEMFR0dzY0bN0hISBC6rl26dKGkpISrV68KUnd98OTJE4KDgxkyZIiQeyooKKBDhw5iYdHQ0MDLy4vQ0FCxwHXv3h0zMzMRuC5YsIAWLVowfPhwdHR0iI+PR1dXl/Pnz7N9+/Y6wXhiYiIWFhb4+/uzefNmIVz+3XffERAQgJeXFz4+PsLkARQOUadPn643NeLFixdkZGTg7OwsiP2gKPdWVVWJRaW0tJQNGzZgamrK7NmzhazZy45oLi4udOzYkXbt2mFnZ8eBAwc4deoUtbW1dRZhJZn9+fPnhISEMH78eNEklpKSgpubG0+fPkVdXZ2CggI0NDRwdnYW+rbKMuKrIjo6GiMjI7766isMDQ0FRygxMRE9PT1UVVXp2bMnISEhfPLJJzg7OzNu3DhhwazM9AUFBQkZHn9/f3x8fBgxYgSampq0bt1a2DHLZDJ8fX3R1NSktLRUuAH16dOHsrIynJ2d0dTU5OTJk9y4cYMxY8bg7+9PeXk59vb29aZ+KKHkvCm5fkrk5uaK7mLlojZu3DgKCwtF2TwnJ0eYZCgbypQC7s+fPycqKgqZTCYyHYCgsjRu3JilS5diaGhIdHQ0gYGBuLq6MnHiRCIjI9m1axedOnVi7NixIoveoUOHes03ys5vTU1NNDU1GTVqlLB+9PT0pEOHDvTq1QtLS0vBDQwICCAzM5Nnz55ha2uLkZERoaGhxMTE4O3tTUBAAEOGDOGzzz6juLgYVVVVvvnmG+7fv0/btm1555130NTU5NatW4SFhYlu+Q0bNjB06FD8/f25d+8eGzZsYNWqVfVulvw1mJqa4ubmRlBQEHPnzmXYsGG8+eab6OnpkZmZSZMmTdDS0sLExITmzZuLQDksLIy2bdvi5OREixYtqKmpoUWLFnTo0AFdXV2CgoLYvHmzaHLr2LEjqqqqQpEFFNnJlxMgSqmipk2bivlJuSFzcnJi9OjR9dLNbtSoEaamppw8eZKoqCg8PT3Zv38/ampqODs7C4OEpk2b4u3tLaxFjYyMUFFRqUM18fLyon///mRlZVFcXExMTAzBwcHExcXRunVr+vfvX0c2UJk0sLe3R0tLC1dXV2pqati+fTuGhoZ4eXnRtGlT5s6di6mpKTdv3qRr166iRP2qqKqqIioqCh0dHcaPHy9oZJ988gkGBgbMnj0bDQ0N4uPj+fbbb4UebWhoKN9++62wFm/ZsiU5OTmcOnVKVPGUdq9xcXG0bNmS/v37U1FRwfPnz6mqqmLHjh1ERUXx4Ycfir6KgoICevbsKZwSlYo7b775Jk5OTjx69EjQR14VQ4cORVtbm+DgYIKCgujfv3+d60apIatUeVA6XinjHOUmKDY2lr1791JZWYmJiQlLly7F2dlZWBu///77dOrUCVtbW9zd3VmyZAnDhg0TihV6enp1nK7efPNNzMzMRIXAzc2N8vLyetPM3n//fXJzc5k6dapYq14e39OnT6mtrUVLS4vY2Fh0dHRo3LixaOzW1NREVVWVY8eOCZUANTU1dHV1cXJyQkdHh88//xw3Nzf09PT48MMPMTQ0FHO2rq5unaqBn58fWVlZ7Nmzh5MnT/Luu+/i7u7O7NmzcXZ2rlMt/C3UO3j19vZm9erVfP/992RmZjJy5EiuXr3K8OHDsbKy4urVq5iamgre6L179zhx4gSFhYWAYtFNSEhgyZIlxMTEsHLlSiIjIxkxYoSwEwNF0BkSEkJ+fj79+vUTGVtNTU2Ridm/fz+6urpUVVXh4OBQJ5DLzMx8ZY/cl/HNN99QUFDA4MGDWbBgAQYGBuTn5+Pp6YmBgQHr169HX1+fxMRE4c1dU1NDo0aNROCanJzM6dOnyc3NZdCgQZw/f55Hjx7x0UcfAYoLISEhgdTUVNHQYGFhQWVlJRcuXKBFixYieC0tLaWwsJBHjx6RlJTEixcv6N27N15eXty5c4cbN27Ue4xpaWksWbKErKws1qxZIwLtNm3aoKKiQmlpKSoqKri6ugouY05ODq6urrRt2xZJkti2bRtfffUVffr0wd/fX3QqK60oraysxK5M6SKl3NwoJ6FHjx4RERFBenq6UDcoKyujpKSECxcusGbNGvLz80lLS6tX5qegoICcnBwaN26Mo6MjL1684MmTJ1RVVQmdRFBkRAIDA/H29mbixImi6UN53ModoIeHB4MGDSIhIQFvb2+qqqqEzmliYiLPnj3D29sbMzMzfvjhB/bs2cOkSZMEF+/27dvcvHmTdu3aMXLkSBFcW1tb4+DgwJ07d/6QnP5zDBkyBHt7e8aPH8/Dhw+5c+cOPj4+3Lhxg1u3bjFkyBDMzc2pra1l9+7d5OTkCLkjZ2dn3nvvPdTV1dHX1+f+/fvCxalPnz4iu6l011JuVpTXhfI6T0hIoLKyUmQW7t+/z/79+8nPz6e4uBhLS0uGDx9OXFycyITWB0+ePBE8u4CAgDrd/MomNXV1dVEKa9KkCZ9++ikAly9fZtu2bSIIr6qqEp3mL1684M6dO4KfFR0dLXjHOTk5PHr0CEBMtgkJCWzZsoUBAwYwatQovvvuO9avX0/37t3R1tbmxYsXNG7cmE8//VRIrr0KzMzMxAKiLGcPGjQIKysrPDw88PLyIiEhgefPn4sNtPJ+UGZfiouL2bhxI1u3bsXS0pLFixdjYWGBh4eHmJuioqI4d+4ct27dws7OjqFDhxIcHMzatWupqamhQ4cOJCUlcerUKQwNDQkMDOT48eO0bt2aGTNmkJeXh7GxsZBAqw9KSkooLS3F1dWVTp06ceDAAW7fvi2k3HJzc+nQoYPIchcWFgpdZgcHBwIDA8V3Kfn0oGjuCQ4OJikpCXV1dT7++GOaN2/Ojh072Lx5s3CjMjU15fTp00iShJmZGVFRUaSkpGBiYiKCV319ffH7K4+jPnj48CFbtmwhMzOTzz77TDSnKnsmmjRpgpOT0x8akSgzfTdv3iQ6OpqHDx+iqqqKi4sL+vr6yGQyce+9ePGCR48eCecjJUxMTPDy8hIJgJfnW6X2b30bmvbu3cuRI0d48803haHD8uXLWbZsGW3atGHs2LEYGxsTGRnJtm3bGDZsGBMnTuT8+fPCMt3V1ZWWLVuK9UFTUxNra2uqqqpITk5GQ0MDuVxOnz59OHLkCGFhYeL6v3nzJg8fPhTjGD58uJijlFDS+AICAmjRogULFiyo1xi7dOlCUlISFy9eJD8/n1atWmFkZCTkxXR0dLhy5Yrgb1tbWwsjE3t7e2H1npWVRXh4OMXFxcyfP19cr6GhoVy8eBE/Pz/8/Pzo3r07Dg4OtG7dWoj019bWoquri7a2Nnl5eeTl5dG0aVOsrKy4ffs2Li4uODs7k5CQwMmTJ+s1vrCwMLp27SquzczMTHJzc9HV1eXZs2fCFc7Dw4OKigpycnLqyHC6urpiZmZGSEgIoaGhgktvZGTEgAEDmDhxYp34TZlwUja95efnU1paKoytmjRpwsCBAzl9+jR79+7F399fSLABr+QaWu/gdePGjcyZM4chQ4YIfpBSwNjIyEhktdTU1DAyMsLT05Pnz5+TlZWFlZUVgwcPFkRtHR0dlixZQmlpKZIkER0djaqqKk2aNGHw4MGCx6rMTCi/d+jQoaITFhRld6XHNSCym4MHDxYn61WhqqrKpEmTiIuL44MPPmD27Nk8ffq0joDyxIkTRTk7IyODkpKSOhwgU1NTtLW1iY2NFdq3GhoaNG3alFatWmFnZ0dlZSVfffUVXl5e9OvXD0NDQ+bOnYuvry85OTlcvHgRHx8f0anv5OTEvn37WLlyJXfv3qVv374EBATg6urKrVu36jVGJycnvL29RSCnrq4ubtT8/HzKy8sFlwUUjlJff/01Y8aMwcbGhmnTppGens7hw4d59OgRvr6+2NnZsXDhQgwMDBg5ciT+/v4iM6n0oQcFD2jv3r34+PgwcOBApk+fzsaNG+nSpQvOzs5MnDiRgoICjh07JmSNsrOz6xW8Km0mQ0JCWL16NdHR0bRr145p06bh6OhIQUEBWlpaNGnShPXr16Ouri64PRUVFVhZWbF//37279+Po6OjWECVvDhllqeiooJly5Zx/vx5fHx8GDRoEBYWFrRv355z587RqFEj4Rb36NEjunXrRp8+fdi0aRMnT57k008/ZeDAgTRv3hw9PT0uXbr0ymNU6ht26dJFlA4BEdAo4eLiwrJly4RQ+tOnT8nIyKBZs2Yiq5adnU1KSgpPnz4lLi5OlCZra2tFIH/x4kWCg4Nxd3dn5MiRAHz88ceiA1ZTU5MtW7Zga2vL4sWL62Tszp49y8KFC+uln6n8m8ePH6dz584EBgZSXV0t7DhNTU0Fj+rWrVt88cUXjBkzhs6dO/PNN98we/ZsxowZw6ZNm1BTU+PQoUMcOnSIsrIyjI2N8fX1xcPDAwsLC3R0dDh48CAuLi5YW1uzceNG7OzsRLnQxcWFCRMmEBoayuDBgzEyMhLmKO+99x47duzA1dW13pzQn9uGRkZGCndCLS0tbty4wZUrVygrK6Nly5Z4e3tjaGhI27ZtxYZVX1+fmTNn8uTJEw4cOMDgwYNF9tXFxQUbGxvkcjm9evXinXfeYfv27QwdOpQPPviAyspKYmJicHNzY82aNRw8eJA333yTzp07s3XrVg4fPszKlSvp1q0bAwcO/FNZ2H379nHo0CGGDx/OO++8Q9++fSkqKhL8UjMzszqb78jISM6cOYOTk1Odcmt4eDjGxsa8ePGCL7/8ktOnT+Po6EivXr0wMjISCjj79+/n+fPn7Nq1izFjxvD48WNWrlwp6EsTJ05k7ty5dUxxVFVViY+Px9nZud5OcAUFBRQXFzNy5EjKysp48OABISEhWFpa0qFDB7y8vHBxcXkle+TY2Fg2bdokGiEdHR0ZOHAgQ4YMqdPbUFNTww8//MDt27eFxFpsbCw//vgjBQUFrFy5sk7mKj09nf3792NoaMiJEydo3bo1c+fOfeUxBgUFce7cObp16wYo3P2UdCkLCwuuXbtG//796dChA7t27aKmpoYzZ84IBQRtbW3KysqQJAl7e3s++eQTwYt99OgRT58+RUtLS3CThw4dSnh4uLCg/fDDD4UjlNLu+ufQ1NQUXfRK+lt9UFZWhqamJt26dRNN4ocOHWL37t289dZbjBs3TlhQt23blgEDBqCiokL79u2pqKhg/fr1JCUlMXXqVNavXy/oRUqMHDmSVq1akZGRQVhYGH379uXixYvCne+TTz4RAfHz58/ZuHEjR48epUuXLjg6Oopkyfr160lISGDdunX1GuOUKVMYMGAAnTp1Ii8vj/fee49jx47Rpk0bxo0bR69evbCwsKC8vFwY+xw5ckTYuT9+/Fg00NvZ2eHi4iLiCD8/PywtLX9B8ausrCQ0NJQDBw5w5MgR8vPzadOmDVOmTBHx0vjx4/Hw8KgzloiICGbNmiUqpr+Fegev+fn5FBUVUVhYSGFhIV5eXnTs2JE33niDjh07iiAzJycHS0tLvLy80NHRwc7OjqKiIjw9PVFRUaGyshIbG5s6TUpffvklwcHBzJw5EwcHB0aMGMGtW7fYv3+/KFsaGBjUifAfP34sOoRfvHhBeXm5kNBS6qvWB61btyY8PLxOsGpsbCw4vCoqKjRu3FgE6aBY5ENDQ0lISBAWh0qbvvDwcEDRcDFnzhxBc7h48aLgdcTGxqKnp0eTJk0YMGAA169fp7y8HCMjIyoqKggNDcXAwIBx48Zx69YtsrOzef78Oe3ataNdu3b1Dl4dHR3ZtWuX2BUWFBRQUFBATU0NxsbGmJqaYmhoSE1NDTExMWzfvl1oppaVlXHmzBmqq6tZt24d1tbWInhRTvzK36eqqoqsrCzs7OxQVVXlyJEjzJo1i8zMTCZMmMDbb7+Nubk5vXv3JikpCSMjI4yMjLC2tmbYsGE4OzuL66S+ZSBzc3OR1Xz06BEJCQnMnTsXFRUVQU1o3LgxDg4OSJIk3K0MDAzYunUrR44cQV9fH7lcLhbXpKQktm7dSqNGjbh8+bJYREGxw0xMTGTx4sXMnj2b5cuXs3jxYtLT08nIyKBTp04MGzaMkpISvvnmGzIzM5k9e7boClZWJl4VaWlpZGZm4ubmhr6+PpcvX6ZPnz6YmppSVlbG3r17ycvLo2/fvnTs2JGioiKWLVvGgwcPhKafjY0NtbW1uLu7Y2BgQFlZGbm5uejr64vM+dWrV3nw4IFo2jl37hxZWVnC4EBLS4vU1FTR3Kbk/4HivlByZV+mWLwqHjx4IORp3NzcePHiBffu3atTfgIFN1xfX5/w8HD09fVFo8jEiRPFQqeUFVNXV8fBwQEfHx969OiBsbExu3fv5ssvv0RXV5f58+eLjHliYiKqqqo0bdqUTZs2MW3aNA4cOMCyZctYs2YNmzZtori4uI5tcH3w8OFDSkpKaNu2rciSFxQUCHmq27dv88MPP6Crq4u3t3ed3zApKQkVFRXs7OzQ1dUVDVkPHz4kKyuLW7du4ejoKDztmzdvjpOTEzExMezdu5cxY8Ywa9YsHjx4IKSslLSdAQMG0LJlS+7cuSNkqzw8PP6UBe6TJ0+4evUqTZo0YcaMGUIaTlVVFRUVFWxsbCgqKqKyshIzMzNMTExo0qQJrVq1AhRZb6UuaP/+/ampqSEpKYmqqiq6d++Ov78/L168QCaTERMTQ9OmTWnevLnoeDc0NMTc3FwsvJ07dxbXZ1hYmJjXy8vLsba2rpdrESiqKsbGxqJStnfvXnbv3o2BgQHW1tbibykbUmtra0WWsKSkhMTERMrLy3nx4gUXL14kIiKCrKwsqqursbOzIyUlhZs3b4pMekVFBadPn2b79u2EhobSvXt3rK2tefr0KatXr8bLy4sPPvhAcGodHByIi4vj8OHDmJiY4OvrS3x8fL3G2LNnT6qqqvDy8iI5OZnr16/j6OjIqFGjRHe+0n1OWfb/+uuvMTc3Z/ny5Xh4eKClpcXRo0fR0dHBwcGBgQMHoqamxqZNmygtLaWkpEQcl9KQQYnnz5+L9fbhw4fExMSgo6ODhoYG2trawmnOyMiI1NRUYmNj6x28ZmdnY2trK/odoqKiOHjwII8ePWLChAlIkkRGRgaGhobMmDFDxCCdOnWiurqa48eP8/DhQ5o0acLIkSNxcnLizp07pKWlCVqcl5eXoNapq6tTW1tLUlISNjY2aGtrI0kSKSkpqKioCB6zm5sbNTU1PHz4UDhXRkREcOPGjXqNUVmRAYQEoI6OjqCbvDy3GBoacuPGDTIyMmjdujVNmzbl8ePHREVF0bZtW5YsWYKfnx8//PADBQUFggL68OFD7t27h52dnaj61NbWYmxsjL29PVVVVejo6AjFAaU9bevWrUWvwLVr1zh06NAr9YDUO3hV7rjeffddQeht06YN3377rcj45OTkCGcKFRUVHB0dBRdl8uTJ6Ovrc/jw4Tp6kGVlZQQFBREXF0dAQIBoWIiJiRFp6pYtW9KrVy+srKzEibC3txeZ2ZqaGlRVVenbty+SJJGWllbv4NXHx4fTp09jY2PDixcvuH79OjKZTIjq/9oOWkVFhe+//57PP/8ca2trhgwZIhy+lDAxMcHFxUUspp07d6ZFixYUFxeTlZXFo0ePCAoKwsDAACcnJ3FzbN68mY8++ojJkyezbt063njjDe7cuUNWVhalpaV1zAZeFZGRkUyZMgVQlO1OnjyJjo4OAwYMqBMYPHjwgIkTJ/LixQvWrVuHs7MzWVlZDBgwQDQjffjhh1y9epWoqChSU1MpKysTgX9YWBiqqqr4+/sTERHB/PnzyczMpHHjxnWyKgMGDGDgwIFCekVPTw8fHx+GDBlCVVUVZWVl9SoDRUVF4e7ujo+PD2vXrqVHjx5UVVWRmppKdnY2P/zwAwEBAWJCvHv3LllZWbz55pvU1NTw0UcfUVxczMGDB8Xueffu3RgaGjJ06FAiIiIYN26cCKhHjRpFQUEBjx8/JiEhgdGjRzN16lRWrFjB9u3bCQgI4LvvvsPBwYEHDx7w5MkTfHx8sLCw4MyZM0yZMuUXpP4/whdffCE6Vauqqrh//z4ODg507NiRK1euiGAmJSWFNWvWcPPmTTZv3oyOjg4jRoxAXV2dU6dOkZCQQNOmTenSpQva2tpkZWXV4VN9//33REREsHHjRqytrXnrrbeYM2cOampqtG3blsGDB4vy99tvv01ERATh4eF4eXmRnZ3N1atX6datG3PnzmXlypX1GmNycjKAuOd0dHTqlF6V3cB2dnasWLGC0NBQgoOD6d27N6tWrcLExISSkhJSUlLo2LEjvXv3JiMjg/z8fFxdXcX8o7SETElJwdHRka5duwptVx0dHfr374++vj5z586lY8eOIqO2detWZDIZMpmMs2fPcuHChXqN7/r162zatIk5c+awaNEiunfvTnZ2ttBq1dDQwNjYWCQBlLh8+TKZmZnCIezIkSOYmZmxf/9+QJEZmz9/Ptra2vTv35/ExES+/vpr2rZtS2FhIZs3b+b+/fvMmzePLl26CJtLV1dXtmzZwsWLF9m2bRuTJk1i4sSJHD9+HEtLy3pTW+C/1sXKrLQkSQQHB6OlpSW6wiMiIoiKiqJ169bY2dkxYMAALC0thU1nREQE7dq1E0mQtWvXUlBQgLGxsUgs5Ofno6KiwnvvvSeoTsHBwVy5coVevXrxySefCI4eKILOY8eOkZWVhY2NDX5+fpSWlta7MS0tLU1IjYGiwVBppfkyp1BpTFJaWkpaWhrR0dEkJSUJG86oqCg6dOiAXC4Xtpo3b97k+PHjqKio8O233zJmzBgOHjzIjh07BC82KCiIyspKHBwcBFf06dOngCLQ09DQoHXr1owePZoNGzYwfPhwOnToUKfx648wcuRIRo4cKTbow4cPZ+LEiXh7e2NiYkJpaanQiAZFpc3e3h5PT0/RKBcREcHHH3/MkSNHcHV15ZtvvmH69OnCiVL5Gyk3b8o56OOPP2bHjh3s3buXTp068c0333D48GH8/PzQ09PDxsamjq3zokWLmD17Nl988UW9zqO5ubmohFRXV3Pw4EFSU1MZM2YMQ4cOpaKiQhhAvBwDaGlp0b9/f7755hvCw8P56quv6Nu3LwYGBmzZsoWoqChRMQkKChLGJAUFBdjb23P+/HlUVVVJTk4mKSkJU1NT7O3teffdd5k5cybGxsY8f/6cixcv4u7ujo6OTp3f+lVhZmYmZEBNTU1Zs2YNS5cu/QVVRqktrHQV7dWrF87Ozly/fp3z58/j6OgoKAEHDx7kxo0bIoHp7e3NgwcPSEhIoHfv3jg6OtKxY0eaNWvGvHnzKCkpoba2VqgxaGhocOXKFfLy8nBzc+PJkycsX74cOzs7Tp06VUdi79fwpwQYy8rKKCsr49mzZ0ydOpWvv/5aOFOVl5ejqamJmZmZkP8wNzdHT09PyCaEhIRw7do1hg4dKqgBK1asICwsjICAAGxsbLh9+zYHDx5EX19f8KN8fX1xcHBg3759wjb05QBYTU0NNTU18vPzRQq7vg5GjRs3xtLSkuvXr7Nt2zaSk5Pp06ePmGgLCgrYt28foaGhaGpq4uHhgaqqKjk5Ofj7+6Onpyf4VLq6upSUlBAZGYm6ujq6uro8ffqUmzdv4ufnJ6R5lBO7Ur/15UYnmUxGp06d6uikOjo6YmJi8osM1Kti165dlJSUIJfLUVFRISoqitLSUuzs7EhKSiI+Pp7JkyeLEoKtrS0dO3YEFDfrhAkTaNWqFc+ePeP27dtkZGRgbGyMs7Oz+L1LS0vF7jkuLo6oqCgGDRpEbW0tHTp0qDOe2NhYIiMj6datG9bW1ty+fZujR4+iq6vLwIED67jyvApSU1NJSkqiV69edO/endOnT5OcnExlZSUHDhxgx44dhIeHC6OI5ORk3N3dBbXh7bffRkNDQwSut27dErvE77//nqVLlxITE4O7uzvz5s0jMjKSZ8+eMWjQINGIp6KiQqdOndDT08PX11dstmxtbZk5cybNmzfHwMCA+/fvk5GRUe+GJmWZ9NatWyQmJtKxY0exE9fT06NNmzaEhoaSnZ1Neno6FhYWTJgwAXNzc8aMGYOenh4hISF8/PHHDBw4ULhSvdwsAAp9UDMzM8LDw7l48SI1NTUMHjwYOzs77t+/z+PHj3nrrbcoLS0V3NrevXujqqqKqqoq1tbWtG7duo6+7KuisrJSZO2VMDY25sKFC9jb2+Pu7i5e09XVpVu3btTW1uLj41OHQ6nMjpqbm4sMp4qKCmfOnOHKlSs0b96cadOmsXjxYo4fP86SJUtwdHTE2tqaGzdukJmZSb9+/WjZsiUtW7bk1q1bLFu2DB0dHd58802R3bpy5Yq4T14F+fn55OTkCJ1FQJTdoqOjBf9u2LBh+Pr6kpqaytatW6msrGTy5MmiQqKtrc358+epra3l7bffZtKkSaSlpVFSUsKDBw+E9mTHjh1JSUlh3759WFpaIpPJiIiIICwsDDU1NV68eMGuXbs4cOAANjY2vPfee2hqahIUFISuru6fkspSypw9f/6cx48f4+zszNOnTzly5AgmJiZ4enoSHR3NnTt3RODar18/IePXunVrPDw8MDQ0FHxlV1dXcX5LS0vJzMxERUUFBweHOg1QeXl5uLi4iEz61atXhbyckgutbPzT0tKiqqqq3rSBLl26YGhoyIsXL4iJiaF58+b4+/vTsmXLOtkjDQ0NITpvYWHBp59+SnBwMNOnT2fOnDmcOnUKOzs72rRpI6oniYmJ1NbW0qJFC9q0aUNiYiLr1q0jPT2duXPn8uOPP3L9+nXS09Pp2bMnQ4YMoba2FktLS9TV1UlLSxPmDEOHDkVVVZV79+5hb29fLze4S5cuERUVJayLzczMqK2tFWvvzw0Pbty4weXLl8WGPDMzk/T0dAICArh06RKxsbFkZWXRtm1bli9fzp49e7CxscHT05OKigqMjIx4/vw5e/bsYffu3RQXFxMYGMitW7fQ09Nj5syZ2Nrakpubi42NDe7u7mRmZnL69Glat24tqg31QUFBAXfv3kVLS4v8/Hyqqqpo3bo1nTt3FlrcvXr1okOHDjRu3JjLly9z9uxZBg8eTIcOHVizZg0nTpzAysqKkJAQJEnCwcEBMzMzIiIiyMvL4/nz58I8xc/PT8h+nTt3jq+++orp06fTrFkzcnNzefTokdDKz83N5cMPPxSUhk6dOrFkyZJ6ncPr169z5coV/P39GTBgwC8sdJWUjNDQUHbt2oWfnx9TpkwhMjKSzZs307VrVz777DPy8vI4ceIEV65coby8nOnTp4uKjKqqKoMGDSIxMVFIZerr66OpqUlRUZFIFkVERKCnp4ejoyN+fn48ffpUWM36+fmJOOCPUO/gtaCggLS0NN566y1AEX2/++677Nu3D2dnZyFAXVNTQ2lpqeDa6enpkZeXx9SpU7l16xYJCQkUFBSgra3N5cuXCQsLA2Dw4MH4+voya9YsvvzyS9asWcP8+fPF35ckiYULF3Lv3j1at24tbiDlxACK8t2tW7fo06dPvS9kY2NjLl26xNq1awWX0dTUVEzc+fn5nD17VhDRtbW1cXZ25p133mHFihWUlJRQVVUltFIlSUJXV1foTcbGxnLx4kWqq6tFNkXJ11WWykDR6JCamsobb7whmkBKS0uJjIxEQ0MDT09P4dZUX+Tk5LB9+3Z8fHxo164dFRUVgnoQFhYmCOctWrSgc+fOVFVVcePGDXr27Cmyospgfvny5UycOJFJkyaxatUqZDKZkDTT1dWlqKiIH374AVVVVdasWVOHVqLE999/zyeffCLO9ddff82uXbsAxYakvsGrvr4+oaGhqKmp0a1bN9Gl++jRI5KTkyksLOTOnTsUFBSgo6NDx44dRfbkxYsXjBo1SkhLBQcHEx8fT/v27amqqmLp0qVEREQAsHPnTtzc3NixYwdPnjxhw4YNeHl5UVZWxtWrV9HV1WXChAlkZWWxdu1afHx8GDBgACtXrhTlSS8vL0F2v3z58iuPUck7TUtLIykpCRcXF7Ggt2jRghUrVvDo0SNMTU1RV1enRYsWbN++nfz8fLHYKCW1XibmKzV7a2pq0NDQYODAgbRp04Z+/foRFhbGjBkzCAwMpKysjDZt2hAUFER1dTVhYWEsWLCAXr16CX6hlpYWnTt3RiaT1Vs/ExSC7tbW1nUk727duiUE6JWcqLKyMiFf06NHDwBRhTE0NKS8vFxw0w0MDDA1NUWSJPbv38+BAwfYv38/CxYs4ObNm4SFhYkSb+fOnQkNDeXx48f4+vrSuHFjJEli7969bNmyBVBktmfMmIGNjU29PdWVzkW/JiOmzKC9nPE8deoUmzdvRi6X1+Elv/XWW9y6dYvJkyeTnZ3NggULWLRoEVFRUSQmJuLq6ioCOC0tLcaMGUPXrl2pra1l3rx5lJaWsnfvXiIiIpgxYwYymYyvvvqKoqIiYmJiqKioqHc5XQkll7GwsFCYhzg7OxMZGUlqaiq6urqYmZmRnJxMXFwcubm56OjooKuri62tLd26dSM/P5/g4GDOnj2LTCZj8ODBYv5RZqycnJxE4KpsvuvZs6c47uDgYEaNGkVFRQXr1q1j5MiRgheal5dHUlLSn6piKelRERERFBYWkpGRgZWVlWguVma7srOzycvLw8DAACsrK9TU1MjLy8PV1ZU333yTSZMmERwcTF5eHjY2NgwbNoysrCwMDAzo3r07TZo0ISwsjJKSEtq3b8+8efNo3769kLGrra1l7NixlJSUoKuri6ampmhCSklJwc7Ork4zYX1E/Ldv387hw4f5+OOP6dSpE4WFhTx58kQka2pqasjNzRUb36dPn7J9+3ahh/rDDz+goqIi7pPPPvtMVFW6dOlCly5dkCSJBw8eUFRUhKWlJY8fP2bNmjV06NCBSZMmsWPHDr777jsOHz4s1s3MzEyRLLly5QrvvvsuAwYM4MCBA/U+j2FhYezbtw9DQ0P69u3L0KFDefr0Kc+ePeP69et07tyZadOmifd/9913rFu3DlVVVTp06CCcIwEOHDhAUFAQ8+fPx9LSkmXLlmFmZkafPn344YcfOHz4MCtWrBDB68GDB7lw4YKQBwsPD2fz5s0iqdSlSxc++OAD9PX1hfTU8uXL63UOHz16xNGjRzE0NGTAgAGAIpbR1dVFJpOJeyczM5PQ0FBcXV3R1dXlyJEjfPHFF2zevFlk2pUqQNu2bWPy5MmAIgGlTKrV1NSwf/9+UlNTGTx4MFevXmXfvn28+eab+Pv7ExISgrq6OqNHj65jMW9oaMjq1auFQscfod7B67Nnz9DR0cHX11cQ5i9fvszixYuZOnWqEOCNjIykZ8+eonvt4MGDhIeHY2try+jRozEwMCAhIYGcnBzc3NyYNWsWurq6oiNaKcL78whcJpPRv39/0tPTReAqSVKdHXfjxo3Jzc3l8uXLQuT7VaGhoYGVlRX9+vWjefPmuLm51ckcGRsbM3r0aLy9vYVwt7GxMd26dROLbHV1tWhYGzlyJG3atBF8LkdHR95444062dVfc+ZR2gq+vHDX1NRgZGSEpqamKKv8mRLCvHnzKCsrw9vbWyzs4eHhmJiYMHDgQLp3705kZKSQmSkuLmbdunWUl5cLWSwlevToQUVFhVgM79+/L2S2cnJyhK+2Us+xSZMmGBkZYWZmRlVVFZmZmVRWVhIQEECrVq0oKCgQjVrDhg1j+PDh9Q58zMzMaNeuHc+fP2f37t2iuaeoqIgePXrQvn174L+e4y1bthQ7+atXrxIdHY2vry+dO3fGyMgIY2NjwZkbNGgQnp6euLm5kZuby9KlS0lMTKRbt24imKqtraW6uprHjx+zbt06nj59yo0bN2jZsiXGxsZ1rHQ7duyIs7Oz6HyvD9LT04XRQ0xMDLdv36Z169ZkZ2fz8OFD0VzwcmYkPz+fEydOoKamRklJCUuXLmXAgAFUVVWxbds2IiIiePvtt/Hx8REbIz09PcFHGzlyJCUlJWzYsAEnJycGDhyIpaWlaAJo0aKFyF6Vl5eLMuyf6VQfP348VVVVmJiYiCbM1NRUHB0dKSws5OjRo/Ts2VOoATg4OAh6SVpaGrdu3aKmpgZnZ2fhGFNWVsaLFy9QU1PjjTfewNHRkRYtWqCmpsaMGTOEJbKVlRUGBgb07NmTkpISmjZtSkpKCjt37uTs2bMYGRnRq1cvOnfuLATpx40bR0hIyCuPLyUlhZ49e9bZYGdkZBAZGYmamhoLFy7EyspKZDaUIvDt2rXj0aNH7NmzB3Nzc2bPns3ChQuxsLAQwYSqqiru7u5oaGiIRquKigoSEhKoqqqiurqakpISZDKZkMFp0aIF77//PmpqarRv3x51dXUsLS0JCAgQAX99YW1tLST4lJUYHx8fli9fzqFDh8jKysLLywtra2vy8vKQJAl1dXVUVVWprq4mJCSEK1eucP/+fW7duoWpqamQlcvLy6OsrAxHR0ehOqGrqytoS+Xl5aJBz8DAgN69e1NTU4OlpSVZWVloa2tjYWEhql96enr1HmNQUBB79uzB1dWVyZMnY2RkREREBHfu3MHe3h47OztCQkLIyMgQQQMonN+aNm3K5cuXBTWlQ4cO3Lp1S3TNFxQUcP78eb755huGDRuGq6srK1euRENDA3V1dTp27MjcuXPJzMwkJiaGNm3acOvWLdauXSv4wLa2toJjrMyy11fEv02bNtjY2IhysaamJqampmLtqaio4Mcff8TOzo4uXbqIRmAlBcDPz09koS0tLXF0dOTBgwccPnxYcKmrq6vJzMwkJSUFCwsLnJyc+PDDD2nVqpXglZaVlYnAdf/+/djb29fhqJaWlgpd5/oiJiaGy5cv06VLFzHvp6am8uOPP1JUVCTE+ZXo3LkzixYt+tWNp7K6On/+fHR0dIiJiSEtLY2pU6cybNgwbty4weHDhzE3N6d9+/ZMnjwZJycnbt68SU5OjtBxTkxMpFmzZnTu3Jlr167x6aefIkkS06ZNq9P38yowNzfH3d29Di0mPz+fpKQkYWoDClOBDz74gEaNGpGamkq7du2YNWsWpaWlREREYGZmxsCBA2nWrBnt27cnLy+PPXv2UFRURMeOHSkpKeH7778nLi6OESNGUFlZiba2Nunp6Xz55ZcMGDBABMFKRRH4r7Opuro6Dx8+5Pvvv//DMcle9UTL5fL6XxH/MAQGBv5mTeh1Hx+8/mN8HcYHr/8YG67T13t88PqP8XUYH7z+Y2y4Tl/f8dWfxNSABjSgAQ1oQAMa0IAG/E145cxrAxrQgAY0oAENaEADGvB3oyHz2oAGNKABDWhAAxrQgH8NGoLXBjSgAQ1oQAMa0IAG/GvQELw24K+DTPYxMlk5MlmjP37z737PPGSyKmSy+tsyNaABDWhAAxrQgP97/I1r/t/OeZXL5R2Bd4F2gAmQBzwGNgQGBp79Gw/t/zfkcrkMmAhMBTwBVSAG2A18FRgYWPM3Hh7IZP2AOYAHYAqkA/eAdUjSq2v+KL6rEYqx7UCSZr/0vCkwGOgHeAO2QCWKc7wb2I0k1f7su7SBeOABktT/T4zsL8M//hz+hXid78WfQy6XjwW+++mfUwIDA3f8ncfzV+N1HJ9cLv/N+SowMLB+89U/DHK5fAKKOeX3UBsYGKj6B+/5R0MulycADr/xcmZgYGD9xJL/BfjH3Isy2WdAS8AVMAPKgETgBPAlkpRbz+/79TX/v6/bAR8Dvfnv/XoCWI4k5f/svfVe8//WzKtcLl8E3AA6AeeBtcBpwBjo8vcd2V+Gb4GdQGPgELAd0AA2Aod+Coz+Higu5DOAH4rffiNwHxgE3EQmG1PPb1wMaAKf/+z54SjG3Rq4DWwAjgFewA7g8C9sbSSp7Kfj6YdM9kshvf8t/rnn8C/E/wP3ooBcLm8EbAb+2ED7X4jXcXxyufx35yu5XF7f+eqfhofA8t/478pP7zn3txzZX49Cfn2c9fN0/RfgH3YvvgfoAhdR3D/7gGpgGfDoT2RPf2vNB5nMGcXGciJwB1gPPEOx+Qz5Kan1X/yJNf9P2cP+FZDL5cOBFcAlYEhgYGDxz15X/9UP/ksgl8vfAMYCzwH/wMDAnJ+eVwcOA0OB8cA3//ODk8msgPeBTKAZkpT10msBKCbLj4G9r/h9hsBbwGUkKflnr8YCA4Ef6mRYZbL/oLiohwJDUAS0L2Mv8CkgB2692sD+Wvyjz+FfiNf9XnwZP202dgO5wPco7oPXBq/j+ORyeZ35KjAwMOul1+o/X/0DERgY+BBFAPsLyOVyZVb56//V8fwfoyAwMHDZ330Q/9f4B96LBkjSL62rZLKVwH+AhSjW2z/G76/5AIGABTAbSdr80ufWoQiiVwLTf/aZeq35f0vmVS6XqwCfAS+A0T9fLAECAwOr/ucH9tdiyE+Pa5VBD4hxLf7pn7P+50elgAOKc3+7TuAKIElXgWLAvB7fNwrQQZGZrAtJuoIknf4FNUCSMoCtP/2ry698Lg0IAoYhkxnU41j+SvyTz+Ffgv9H7sWXMRvoiiIjUH/br38+Xsfxifnq5cAVIDAw8M/MV/8ayOVyL6ANkAr88DcfTgPqh3/WvfhrgasCh396dKnHt/32mi+TOQE9gQTgq5+9uhTFbzEWmUz3Z8dXrzX/78q8tkNRhj0K5P/EZfICyoE7/3b+0k9Qcnee/cpryuf85HK5UWBgYMH/5pAE4lDwTv2RycyQJBGYIZN1AvRRcFNeFd1/egyu53Eog6Lf8ri9iSKw7YSiZPi/xj/5HP5V+H/hXgRALpe7A6uBjYGBgTfkcnnXv/uY/kq8xuMT85VcLjd7eSMpl8v/zHz1b8K0nx53vkb8es2faB72KAKZR8CN12h8/7Z7Uelb/Kgen/m9NV851h9/JWlVjEx2E0Vw2wa4/LPPvvKa/3cFr61+esxEwVvyfvlFuVx+AxgWGBiY/b8+sL8Qygm28a+85vTS/7sBof/3h/MSJCkPmexDYB3wBJnsBIrShjOKEv9F/jtpvgo6oMh+xL7yJ2QyNWDcT/86/xvvuvvT498VvP5zz+Ffh/8X7kXkcrkasAdIQlEie63wOo8vMDAwTy6Xi/lKLpef4P/ffPWvgFwu1wbGALUo+gNeF1ihuFZfxnO5XD4xMDDw+t9xQH8l/vH3okz2PqAHGKJo4OqAInBdXY9v+b01v+lPj78VD8ShCF5d+WXw+spr/t/VsGXx0+N0QBtFFK+PIuNzAcWBH/l7Du0vg/KHnyuXy02UT/50YS9/6X3G/9OjUkKSNqAoi6sBU4AFKJqrkoFvfkEn+C3IZBqAJZBB/aQrVqM432eRpAu/8Z6Mnx7t6/G9fyX+2efwr8H/C/ciwBKgOTAhMDCw7O8+mP8DvNbjCwwM3MDvzFc/pxO8JngTMALOBQYG/hqv8N+I3UA3FAGsLorN8jbAETgnl8t9/r5D+8vwT78X30dRvn8XRRB6HuiJJL1aguKP13zDnx4Lf+MblM8b/cprr7zm/12ZV6XchwxFVif8p39HyuXywSgi9s5yubztv7hseRDF3SUUywABAABJREFUrrkPimzBKRS8wu4oMgZxKDgmf0+pRCb7AAU5ehPwJYqLxg1YBexDJvNFkj54hW9Sdg3m/+676v7t2cA8IBpFQ9RvIe+nR7NX/u6/Fv/sc/jX4LW/F+VyuT+KDMjaf+sYfg+v+/gA5HL5785XcrncNzAw8FXmq38Tpv70uO1vPYq/EIGBgct/9lQEMF0ul5egWBOWoZBW/FfiX3EvSpKCDieTWaKgja0GHiCT9UeS7r/CN9R/za8LpULPrwW+r7zm/12ZV+Wgn720WALw005FmYnz/58e1V+IwMDAWhQlrfdRTLRjgUlACordjlJT7X+fMZDJuqBo0jmFJM1Fkp4hSS9+unAHo2gOmPcT8fqPoNxZar3i334HhSTGEyAAScr7nXdr/+xv/E/xjz6Hfx1e63vxpRJeLP9tsntt8LqPD0Aul3fhp/kqMDBwbmBg4LPAwMAXgYGBdeYruVz+KvPVvwJyudwDRWCRArxWGsu/AWXzbqe/9Sj+f+Bfdy9KUiaSdBxFCd+U/2rR/hH+aM1XZlYNf+N1g5+972W88pr/d2VeY356LPiN15ULqvZvvP6vQGBgYDUKvcy1Lz//E5fJF8UJivzfHxlKEeCrv3hFkl4gk91BsSg059eblV5+fwEyWSX/3Y39NmSyd1HovUUA3V6BmqD8zr8tOPwHn8O/Cq/7vaiHglsFUC6X/6oSzHa5XL4dRXPFu/+rA/uL8LqPD35nvgoMDHwhl8tffb769+B1bNT6PSjneN3ffdc/G//Oe1GSEpHJngC+v2jg/vX3/9Gar1xTXH/jdaWqwa9xYl95zf+7gtcbKDrMXeRyuUZgYGDlz173+ukx4X96VP87jEWxa/n2b5Ih0vzp8bfkZZTP//y8/BYeA82RyQyQpKJffYeiQWw1Ci3DHn94gyigtIp7+IrH8b/E330O/yq87vdiBQqTiV+DH4qAJxjFhPvPLPP9Pl738cFfP1/9oyGXy7VQzC+1/Pa5fd3Q9qfHf/Pm4998L9r89PiqG6XfW/OVm8yeyGQqP9N31wfao0j6/FqT8yuv+X9L8BoYGJgjl8sPoRC5XQIsUr4ml8t7AL1QpJR/qwv9XwG5XG4QGBhY9LPnWqEI4kpQCGv/HQgCZgJTkcm2IUmp4hWZrA+Ki6ucVzcHuAa0QFFavvSLV2WyxSjGeg8FMfz3qAIvo81Pj7/MEP+P8A8+h38JXvd78Sfqw+Rfe00uly9DsaB8+2+1T33dx/cTxHwll8u3BQYGivlKLpf/mfnqn47hKJpAz7xGjVrI5XJPID0wMDDvZ887oOAxw7/baOKfey/KZG5AwU/66i8/r4LCoMYCuPUL29bfxjV+a82XpKfIZD+ioCO8g8JhTInlKLLr25CkX9O+feU1/29z2ALmorAM/egnrb47KMSoB6OI/qf8i7Uzlbgol8vLUJTJiwFPoC+KHdqQwMDAv2uXeRTFBdcdiEImO46C0+mOokQnAxbUw+v4GAqyfS9+fiHLZONRBHg1KBah2fzMDRZIQJK++dnnVFB0pcYgSRGveBz/F/innsO/Ev8v3IsN+Peiznwll8t/db4KDAysnzf7PxfKRq3XxVFLieHAArlcfhWFa2ExisbXfiiqWGd5DS1i/yHoDXyOTHYDeIqiX8MS6IxC9jEDhYrHq+K313wFlC5Zm5DJugFRKNaYABR0gY9+8Yl6rvl/V8MWP0mbtEbBgWzEf90ofgA6BgYGvg7yPEdRyA6NQREgeKPQ6/MMDAz8LXmo/3so0vh9Udi0PUERpMxDses5C/RCkjbW4/tCgAfAW8hkqj97VamRqopCmmPpr/w34Ve+tTtgy3+J/H8X/pnn8C/E/yP3YgP+pfipcfJ356vAwMBXn6/+wfhJ3L4Dr2ej1lXgOIo1YTSK+bQzilL6eKD/r9CWGvDX4BKKzZApCsm5+SjszfNQZEM9kaQnr/xtv7/mK7KvCg3Zb1CsLfNQbFQ2AW1/IzFWrzVfVj9pzgY04Dcgk40C9gNDfupg/P/7fcdQTGzOSNJv6cU1oAENaEADGtCA/zX+5jW/IXhtwF8DmUyGgoSu6ML//3NhyWS+KNyeZiNJX/7BuxvQgAY0oAENaMD/En/zmv+30QYa8JpBceFORVEWsvmDd/8RrFHo5P3dlIEGNKABDWhAAxrwc/zNa35D5rUBDWhAAxrQgAY0oAH/GjRkXhvQgAY0oAENaEADGvCvQUPw2oAGNKABDWhAAxrQgH8NGoLXBjSgAQ1oQAMa0IAG/GvwyiYFcrn8X0+ODQwM/IU6vhKv+/jg9R/j6zA+eP3H2HCdvt7jg9d/jK/D+OD1H2PDdfr6jq8h89qABjSgAQ1oQAMa0IB/DyRJeqX/ZsyYIc2YMUPav3+/pKWlJQGStbW1tGfPHkmJDRs2SAEBAdK2bdukrKws6fHjx1J+fr6UmZkpde/eXZLJZNKhQ4fE+3NycsT/FxQUSLdv35bS09MlSZKkkJAQaf/+/VJubq4kSZIUHR0t3b9/X7z/4cOHUs+ePaWpU6dKpaWlkiRJUnl5uVReXi7eU1NTI9XU1EjKY3+V8b148UKSJEkaOHCgpKKiIu3atUs6duyYZGBgIDk6Oko3btyQJEmSqqqqpKqqKvG3MjMzpatXr0pHjhyRHjx4IFVUVEhJSUnS4cOHpV27dolxbNiwQQKkmTNnis9WV1dLVVVVUlhYmLRnzx7p/Pnz0pUrV6QDBw5Ip0+fliorKyVJkqS0tDSpX79+EiC1atVKunnzppSZmflK43t5jPfu3ZN+/PFHKSgoSPrss88kCwsLydvbW7p+/bokSZJUVlYmFRYWiuO7efOmtHLlSunw4cPSjRs3pHXr1klbt24V76murha/myRJ0o0bN6T169dL6enpUn5+vjR27Fhpzpw5Unl5ubRt2zbJ3NxcWrFihVRcXCx99dVXEiAB0rFjx6SysjJp4cKF0vDhw6WkpCRJkiSpoqKiXudwz5490uTJk6UnT55I+fn5UteuXaWmTZtKT58+lSRJkkpLS6Xjx49LZ8+elUpKSsT5rKyslGpqaqSCggIxlmnTpkmAtHv3bkmSJOnq1aviGjh16pTUqlUrqXnz5tLp06frnF+ZTCatXr1aysjIEN91+vRp6cKFC+L6bdu2reTr6yvt2bNHys3NrdcYFy1aJAHS+PHjxfdv375d0tTUlMaOHSueU94PiYmJ0qlTp6RHjx5JL+P58+fStGnTJBMTE6lr167SsmXLpLFjx0qGhoaShYWF9Pnnn0uSJEmVlZXSqFGjJEDavHmzJEmSNHz4cElLS0v8HqdPn5YePnwoVVZWSiEhIdKVK1ekiooKSZIkqba2tt7X6UcffSSdPHlS2rhxo7RixQopPDxcHLfye5WPkiRJZ8+elWbMmCGdPXtWqq2tlW7cuCGtWrVKOnjwoJSYmCjV1NSI8y1JkrRlyxbJyclJ2rBhgyRJkpSSkiKNGDFCcnNzkxYuXCglJydLxcXF4v0fffSRuBZqamqkHj16SBYWFlJMTIz4retzDt99911p0KBBkq2traShoSG1bdtW+vrrr6W8vDzxNx8+fCiFhIRI2dnZ4rna2lpJkhTzmyRJUklJiTR48GAJEOdLeW6zsrIkSZKk7OxsacGCBZKRkZHk5uYm5u2oqCjpnXfekaysrMR9OG3aNOn+/ft17oOcnBzp4cOH9T6HI0eOlFRUVKQRI0ZIsbGxUlxcnLR8+XLJzc1NAqSOHTtKQUFBkiQp5h0llNc3IC1ZskSqqqqSfvzxR2ns2LHSli1bpLCwMOmLL76QpkyZIu3atUvKz8+XJEkxVy1dulTasGGDVF1dLRUUFEjNmzeXmjRpIiUkJEiXLl2S9PT0pN69e4vfcdOmTZKVlZXUunVracmSJfU6hx988IEESB988IE49oyMjDrX2cGDB6UNGzZIiYmJkiRJUn5+vlRYWCjV1NTUub5mzpwpaWtrS/v375ckSZL2798vffzxx1JqaqokSYp7ePbs2dKiRYukoqIiSZIk6dNPP5UAydHRUQoLCxPXx6lTp6SNGzdKu3fvlu7cuSPWyMrKSunIkSP1GuPHH38sSZIkrV+/Xuratat0+/Ztqbq6Wpo6daoESMbGxtK2bdukAwcOSJ06dZImTJhQZz2QJEnasWOHpK2tLQ0bNkw8l5KSIp06dUo6f/68mKfi4uKkli1bSk2bNpW+++476ccff5QmTpwode3aVVq+fLlYEyRJkmJiYqRbt25JoaGh0tWrV6ULFy5ICQkJUnV1db2v04qKCunZs2fS/fv3pQsXLkjHjh2TEhISJEmSpK+//lpydHSU3N3dpaZNm0qANHjwYHHMFRUVde7Z/fv3S9OnT5dCQkIkSVLEMjt37pSuX78uPXnyRDp58qQ0duxYSVtbWzIyMpJWrFghPvvs2TNp586d0vnz5+v8fqWlpdKBAwekkSNHSmvXrpVevHhRr3P41Vdfib8XEBAgde3aVXrvvffE/FBYWCh5e3tL7u7uUlJSkhQTEyNNnDhROn36tFh/NTU1pc6dO0sLFy6U9uzZI6WlpYnjS0tLk+Li4qTU1FTp66+/lqysrKTmzZtLz549kyRJMTcuXLhQevfdd6X4+HjxOWVs8zLi4+Olmzdv/uH4Xpk2oMSpU6cYOXIkFRUVODk50axZM/Fajx49cHR0pLi4mJCQEBo1aoSmpiYqKipMmTKFIUOG0LZtWwBiY2N58eIFpqamAOTk5LBhwwbi4uIYNmwY48ePB+C9996jcePGLFu2DID09HSsra1JT0/n4sWLdO/eHR0dHQCysrIICQmhSZMm+Pn5oaKiQnJycr3GV11dDcCGDRto27Yt169fJzU1FV9fX3r16oW1tTUVFRVoamqKz2RlZZGSkoKVlRWdO3f+SbsXNDQ0cHZ2xtfXFxUVRZK7UaNGzJ07V4xvz549HDp0iKZNm9KzZ088PT0pKChAkiQCAgKwtLQEIDk5mWvXruHo6Mh7773HgAEDaNeuHVlZWfUaH/x/tP1leFVX268Pn3F3d3cXSAiBJEBwCA7FChRKcYqWlgrQGygVSqF4saKlOCRI8CCBEJIQ4u7urv8POdZ4mn3vdz+kx/FeX1oIWWuNOeca45KfQHh4OD4+PlhaWvL8+XPKysooKysjJyeHqqoqIiMjGTJkCJMmTQLA3t4eLS0turu7aWtrw9PTEzk5OWRkelzhZGRkuHTpEgUFBSxYsIBBgwbh4+ODsrIyjx49IjIyEj8/P5qbmykrK6O8vJzKykpUVVWZP38+u3fvJiMjg7i4OEJCQqirq6O9vR0jIyNxHfsalZWV5OXl4eTkxKpVq8jKyhLXUlpamsjISK5du8aAAQP48ssv8fT0BKClpUXcK4BRo0ahq6uLg4MDDQ0NSEtL09XVRUlJCYaGhixcuBAtLS0CAwMBWLVqFVZWVkRGRmJgYICBgQHFxcWcOXMGdXV1wsLCyMnJYceOHbx48QIvLy88PDzQ1tbu0/psbW356aefen3/ioqKaG1t5fXr1yQmJuLq6iqe07t373Lu3DmWLl2Km5sbAFlZWaSlpeHv78+IESNwc3NDVlaW2NhYPDw8MDIywsfHBwA5OTmCg4M5d+4cv//+O0pKSri7u+Pv78+gQYMAsLS0REdHBzk5Ofz9/YmPj+fRo0fY29tjaWnZ53tYUVGBtbU1VVVVtLa2irU2NDTQ0tKCrq4uhYWFyMvLY2JiQmBgIC0tLXh5eSElJUVgYCBycnIoKyujp6eHtLQ0KioqdHV1IS0tzciRI2ltbeXOnTs8fvyY4cOHM3fuXEpLS1FWVqa1tRVVVVXxeRYvXoydnR01NTUsX76c7OxsXFxcKCwsxN7evtee8CHx6aefkpmZSUtLCy9fvsTFxYWPPvoIVVVVHj58yPnz5+nfvz+ffPJJr9+TkpIiLy+P/fv309TURFhYGJ9//jnz589nyJAh4t/p6+uL/9fV1WXKlCk0NTUhJSWFubk5AI6OjowePZq///5brHHRokVoaGhw//59bty4QWVlJZMmTWLevHl9Wh+Ar68v4eHhqKmpYWxsjIKCAqGhoXh4eFBVVYWbmxu+vr40NTWxfPlyrK2t2bx5M1OmTKGyshIHBweWLVuGrKwsrq6uLF26FH9/f3Jycjh79iz6+vosWbKEe/fucf36dYYMGcLy5cvR1dUFQEVFBXNzc/T19bGwsCApKYmGhgaUlJTEPh0YGMh//vMfLly4wPfff8/ixYs/eH2bN2/GxsaG0tJS9u3bh4GBASNHjkRFRYW7d+9y8OBBvL292bx5s/idrq4uNDU1AXo9M/Hx8TQ3N5OcnExtbS1Pnz7lwIED3Lhxg5s3b2Jubk5VVRXHjh1DQUGBL774gkmTJpGUlISUlBRaWlrk5uZy7NgxDAwMGDt2LAoKCujo6KCoqAhAeXm5uPcfGitWrAAgMzOTjIwMSktLkZGRYfTo0XR0dODh4cHYsWOJiooiLS0NExMTlJSUaGhoIDMzEw8PD1RUVGhubqa8vFxcg8jISPT19Rk4cKC4DsbGxsyaNYuuri4CAgLQ0tKitbWVnJwcHBwcMDMzA6C2tseASVFRkfr6elRUVPD29kZdXb1Pa5PEkydPGDZsGHFxcaxevZrk5GQWLlzIjz/+yKJFi1BSUuKLL76gsLAQKysr5syZQ0dHB0+ePCE7O5uwsDAA8vLy0NLSYvTo0VRXV/Py5UsMDAzQ1dWlvLycpKQk7t+/z7Vr12htbSU4OJi2tjauXr3KhAkTsLKyQkZGhlevXvHDDz8QHx+PnZ0d69atY8aMGSgpKSEjI9PnM7GqqoqVK1fS2dmJubk5jo6OvH//nm+//ZZ169Zhbm5OR0cHycnJvHv3jtGjR7NgwQKqqqrIyspixYoVjBgxgvLycry9vVFVVeXQoUPo6uqyfPlycnNzWbp0KSNGjGDhwoWoqqrS0tIi9qDXr19jZ2eHpqamyBsATp48SVJSEuPGjSMkJAQADQ2NDzoP+5y8mpqa8uOPP/b6u9bWVmRlZXF2dsbZ2Zk1a9ZQVFTErl27UFJSQklJicmTJ4sPXVhYSHZ2dq8HrampierqamJiYlBXV+eTTz7Bzs6OtLQ07t+/z7Bhwxg4cKBIVC0sLLC0tKSpqYnk5GRUVFQ4ePAgGRkZDBkyBFNTU7q6uoiPj+/T+h49eoS/vz9WVlbMnz+fkSNHEhcXx6xZs5g8eTK2trZAT5JTU1MD9Bzs9vb2dHZ2UlZWRnd3N2pqaiJ5qayspLa2FmNjYyZNmiSSwsLCQi5fvsz9+/dRUFDA0NAQDw8PqqurSUlJoaqqSiRc58+f5/bt20ycOJHJkyejpqYG9D6gPjRev37NvHnzMDU1JTQ0lNOnT2Nra4uzszNHjhzh8OHDeHl5ARAVFUV1dTVDhw6lrKyMiooK/Pz8UFZWpqurC4Dc3FyuX79ORUUFo0ePRl9fn9raWmpra6murkZGRoYHDx6wZs0a8vPz0dfXF5u3kpISmzZt4scff6S6upr4+HhcXFywtrYmLy8Pa2trOjs7+7Q+SfIpKVzGjx8P9CQ9ACUlJRQXF1NQUEBaWhrp6ek4ODjQ3d1NfX09urq6IkEdPny42Jg6OjrQ09OjsrKSqqoqPD096devH9BTwGRmZqKlpcWgQYN6rfHNmzfExsYyY8YMDAwMuHv3LvHx8WhqajJr1iyRTPYlvL29e/1efn4+0tLSGBoaUlZWxu7duxk9ejTjx49HTk6O/Px8Hjx4gImJCZMnTxbXSVFRER8fH+zt7ZGVlaW2tpbBgwczcuRI5OXlqayspK2tDXl5eUxNTTEwMCAlJYXExES2bduGqqoqbW1tyMnJ4erqyvPnz3ny5AkjRozAzMyMd+/e0dXVhbFx3zWsvb29cXV1paamhoyMDO7du4ednR0ZGRlYWFigrq4u9hIvLy9cXV2ZOHEira2t1NTUoKqqir+//3+9bltbGxkZGbi6urJq1SoyMzP5888/mTFjBqNHjwZ6Eueuri5aW1uRkpKira0NMzMzPv74Y6ZNm8bFixdZuXIl48aNEwloaGhon9bn5OSEk5MTAEOGDGHcuHEiWQ4PD+fhw4eiMKipqSElJQUfHx/k5ORQUFAgIiKC7OxsfH19mTVrFg0NDTQ0NNDU1ISMjAxaWlpISUmJe+jj4yOKkfLycoqKijA2NsbQ0BA7OzvU1dUJDQ3Fx8eH4uJidu7cyevXrwEYOHBgn+8fQGNjIzo6Ojg5OaGiogKAj48P8vLyNDY2iu/qnTt3uHbtGu7u7qxZswYPDw/2799PW1sbNTU1onCUfN/i4uJobm5myJAheHl5cfbsWc6fP09YWBi6urrU1dWRkZGBoqIia9euxdTUFIDOzk7Gjx+Pl5cXBQUF6Orq4uXlhZeXF52dnbx69apP61NWVubTTz/l+vXrHD58mJqaGpSUlBg7dixPnjzhxo0b+Pn5AT0FdXFxMZaWltTV1dHS0oKamhpycnKUl5djYmKCpaUldnZ25Ofn8/79e6Bnv05OTkZeXp76+noaGhqorq5GVlYWGxsbTExM6O7uxtTUlISEBJ4/f86YMWOwtrYGevam6upqysrKaGxsxMrKqk9rlOxjBQUFlJWV0dbWBkBYWBjDhg0T99Xa2pq2tjaam5tpbm4mOjqaJ0+eYGRkhL6+PpaWluL+xcfH09jYSP/+/VFVVaWsrIzHjx+joqLC6tWrxb2SkZFh7NixnD59mujoaIyMjLCzs6O9vR17e3sAkpKSqK+vp62tjcrKSnEu9yVOnTpFR0cHr1+/pqioCICMjAwePXrEhAkTGDNmDGfPnkVbW5tjx47h6+tLS0sLERERVFdX079/fxQUFIiLi8Pd3R1LS0tu377Ny5cvmTFjBoaGhlRUVJCTk0NXVxcjRozA1dUVPz8/WltbKS4u5u7duwwZMgRzc3OkpaWJjo7m4sWLaGpqYmdnx+zZs8VZ1NdwcnJi8uTJVFZWkpaWxoABA1BRUeHChQvcuHGDFStWMG/ePP7++2+ampqAnqIuJiaG9+/f4+rq2uu9q6qqOHv2LG1tbYwcORLo2TOfP3/OjBkz+Oijj8S/jYqKorCwkIkTJ6KpqUlRURFVVVW0tbXx+PFjYmJiCA4Opq6ujkePHqGmpiYS2f9X9Dl5Xbt2ba8/V1ZWUl1dLTordXV1REREUFJSwq5du8S/k2xS1dXVNDc34+vrK7qunZ2dqKqq8sUXXzBlyhQ6OzvJysrC1dWVkydP8vPPPzNnzhxmzJjBjh07xM34+OOPefDgARMmTCAtLQ1NTU1+/PFHBg4cyJMnT5CTk6Nfv36Eh4d/8PpOnDhBSkoKoaGhIiGAnkqxurpa/Lvc3Fz27NmDoaEh33zzjfj7X3/9ldLSUj7//HPs7OwA2LRpE2lpafz666+iwwdgaGjIkiVLmDFjhnjgAbS0tOjo6GDZsmWMGjWKdevWoaKiQmtrK7q6uqSmpvLnn3/i6+vLkiVLPnhtkvD39xdJsZeXF/v378fGxgYjIyMeP36Ml5cXLi4uQE+id/r0ae7fv4+3tzeenp4oKSkBPff05s2bPHv2DBcXF4YMGYKysjIrVqzg5s2brF27ljFjxhAQEMBff/3F8ePHmT9/PitXrkReXp7Lly9jaGjIgAEDOHLkCDk5OVRXVzNs2DCKioo4ffo0ZmZmItn60DA3N2fSpEniwJJERkYGOjo66OnpMXXqVFxdXRkyZAiDBg2ipaWF9PR0pKWlxbXR1dXtVeHKysri5OREYWEhcnJyyMnJ0dXVxcWLF4mIiCAvL4/i4mJ0dXX56KOPGDduHOXl5RgYGLB8+XKRqNjZ2XHkyBEMDAywsbHp8/0DRAdCEpLDLDg4mJSUFC5fvszDhw/Jzs5myZIljBs3jtjYWF6/fs2XX37J/PnzsbOzw9LSkoMHD7JkyRIaGxsZMmQIAQEBVFVV8fbtWzo6OggODsbR0ZGoqCgaGhoYMGAAM2fORFVVldraWnJycvDw8ADg77//5uLFi3R2djJz5kyGDh1Kfn5+n4tIQBRQBgYGFBQUMGfOHAYOHMiXX36JsbExiYmJ1NTUiMR80qRJ4ppHR0eL6cL/GYqKipSWliItLY2zszNffvkl06ZNE93z6upqurq6ehWG8vLyREdHs2PHDq5du0b//v2ZO3cuPj4+ZGVl0dXVRWNjY5/W19DQgKqqKsOHD8fX15fu7m46OjqQlZVlwYIFjB49GisrK86dO8fOnTuxsLDg3LlzyMnJYWBgwJgxY1BXV2fEiBFcvXqV7du3Y2NjQ0hICCoqKqKI/+OPP7h//z7r169n2LBhQM+B/8cff+Dp6YmZmRmamppERUXx3XffYWdnh7Kysij+5s+fz6xZs/6V++PFixfJzs7utXfW1dWJpsSzZ8/o7u5GT0+PxYsX4+PjIzqiHR0d7Nq1i0uXLqGhocGQIUNQUFDg+fPnAOzcuZPx48dTX1+Pj48Pf//9N2FhYcTExLBmzRqMjY356aefcHZ2pru7m5KSEoKCgnBycuLEiRNs2LCBpUuXivs+Y8YMLCwsuHr16gevb+DAgbi7uzNhwgTWr1/PgwcPSEtLIzMzk5EjR2JnZ8ewYcO4d+8eK1asIDQ0lN27d3P+/HkuXLjAN998Q79+/dDQ0GDq1KnMnz+fkJAQsrKyxMRn4cKFDBw4kNbWVsaNGyeKFegpxJ48eUJTUxPr1q3D19eXtWvXIiv7P0d7eHg4ly9fxsfHh7lz59La2tqne1hQUICMjAzFxcW0tLSIpgX0JMaamppoaWnR0tJCVVUVBQUFlJeX09TURFJSEteuXcPFxYWdO3eKYtLW1hYjIyN0dHQoKytj5cqVXLhwARcXF7y8vDAyMuL58+fIyMigoKDA+fPnefz4MXV1dcyfPx8HBwfxGZSVlUlPTycqKoq///6bsrIyRowY0ac1dnR0MH36dLy9vdm7dy9WVlaoqqrS1NTE999/T1JSEqGhoSxcuFA0juTl5Vm0aBHl5eUUFBSQn5+PmZmZ2HOCgoLQ19enuroadXV1HBwcqK2txdzcnIEDB6KmpkZGRgaGhoa0t7dz8OBBrl69yldffYWpqSlr165l4sSJPH/+nIMHD/LkyRN27tzZ5ykdIM7Q3NxcTp06RXx8PP379+eXX37BxMSE5uZmQkJCsLGxwdzcXOxNvr6+SEtLs2fPHqytrVm3bh3Qs89LSUlhZ2dHRUUF/v7+hIeHk5CQwMuXL4mNjcXPzw8nJyc0NTWpqakRz6SxsTFv3ryhoKCA4cOHs2LFCvr37098fDwvX77EyspKFET/r+hz8tra2io6hXp6erS2tpKUlMSrV6+YPn066urqzJw5k/DwcO7du8e4ceNQVlZGVVWV8vJy9uzZQ1dXFwsXLkRbW5uMjAy6u7sxNDTE0tKSoKAgWlpaeP/+PW1tbdjb2/P1118TGxtLdnY2ycnJlJWVkZGRwcCBA9HS0uLw4cOoqKgwb948Pv74Y6SlpXnz5g0aGhp97vi0tbXx6tUrlJSUsLe355NPPmHIkCGYmJjQ2tpKS0sLioqKtLW10dXVRUNDAwkJCWhpafHw4UO6uroYPHiwSJzi4+NpaWnByspKdI3b2tpITk4WUAGAK1euEBMTw5w5cwBob2/n4cOHyMvLs3btWgHRcHJyIiIigmPHjvHw4UNmz57d11uIra0t//nPf9DV1WXYsGFi866rq6OkpITu7m4uXbqEuro6ZmZmSEtLc/z4cVpaWhg6dCgdHR10d3fT3t5OQ0MDdnZ2LFiwAOg5rC5cuIC+vj5+fn5YWVnx+eefk5OTA/SMoLy8vGhsbOSXX34hLy9PVNoZGRmEh4cTEhKCnZ0dL1++pLy8vM+dVzU1NUaPHi2+5I8fP6axsRE/Pz9RMM2YMYPm5maqq6uRlpZGWVkZBQUFYmJiKC0txdPTE21tbdrb28nPzyctLQ15eXl8fHwwMTER79XR0UFWVhb379+noKAA6OlAmJubY2ZmRlVVFU5OTr3Gz1ZWVlhZWREfH8+7d+9EstCX0NTUpK2tjaSkJKKiosjMzERHR4fJkyfT3t7OxYsXuXLlCn/99Rfjx4/H19eXVatWce7cOZqamnp1J5SVlXn+/Dnd3d3ExcWhoKCAmpoaCQkJdHR04OTkhJ2dHdra2oSEhLBlyxa8vb05fvw4ly9f5qeffhLXIi0tjba2NnFAGhkZYWRkRF1dXZ/WBz2VfGtrK1ZWVri6unL9+nVUVFTw8fGhvb2d169fC2hDdXU1JSUlNDQ00NbWhrq6OoqKijQ0NIh7Z2JiQklJCU+fPiUnJwdnZ2cMDQ0xNDQUSVFNTQ3q6uqYmppSUlIiOlXS0tIkJyfz9OlT/P39Wb9+Pbq6urS0tIgOV2ZmZp/WJ+lgycvLo6CgwM8//0xbWxurV68WXVkJ1Ka2thYTExPk5eVpbW3l+vXrDBgwgHHjxgE9CYYEvqCmpkZ3d7d41iMiInj06BHTp08Xf/7rr78wNDREW1sbeXl5/Pz8SElJob29nba2Ntzd3Zk2bRq5ubns2LFDFHR9jUGDBqGjoyMgQNDTCKiqquLJkydERkYCMHXqVDw9PdHQ0CAzMxNXV1eqq6s5duyYgGeYm5vT1tZGe3s7GhoamJmZUVZWxvv373tBrP558Er24dzcXJFUqKmpISsrS3NzMwoKCnR3d/PkyRP09PQYPnx4n5LX6OhoampqmDVrFkFBQTg7O/Po0SNqa2sJDAwUe+uzZ8/Q0tKiX79+yMrKcv36dW7evImdnR39+vVDXl5eTOSg55mQwO4MDAzIzs5GT0+Pjz/+mJycHEpKSrCyskJKSgobGxvu3bvHxYsXWbp0qeiEScLY2Fg8x1ZWVhQXF/fpHlZUVKCrq8uIESNQU1OjpaVF7P/t7e28f/+ewsJC7t69i5OTEyEhIcjJyeHh4cGMGTPQ1NTE1dUVf39/UlJSuHfvHg4ODpibm9Pa2sqDBw+oq6tDX18fe3t7iouLkZWVpbKykvLycpSUlPDy8qKyspJ79+5hbm6OqakpWVlZxMfHY21tjY2NDWlpabS0tIhOcV9izpw55OTkMH36dHEGV1dXU1lZSWpqKs+fPycsLAw1NTUePHhARUUFU6dOFd/TI0eOYG1tjZeXF+np6Zw7d46ZM2fi7e3NlStXeP/+PVOmTGHEiBHk5OSQlpaGkpISNjY26OrqEhMTQ1VVFerq6igoKFBVVUVMTAwDBgxAUVGRX375hcLCQtG862t3ub29nVu3bhEbGysgHSUlJfTv319AbKKjoykqKsLNzQ0VFRUSEhJoaGggPT2d8vJyNDU1SUtLo7i4mLi4OCZPnszs2bNxdnYGQFtbG1NTU9FZbWxsREpKCkVFRXJycrhx44aYLrW3t5Oenk6/fv3o378/0DPBdnBwQF9f/4MaAX1OXn/55ReePHmCtrY2s2bNwt/fn9LSUq5du0ZJSQlr1qzh66+/xt3dnd9++4379+/z/fffCwzEnTt3KCsrE+Oq4uJihg8fjqqqKm/fvkVKSgovLy98fHxobGyko6MDExMTbty4QXp6Or/++iuHDx/G1taW8+fPs3LlSiZOnEhnZ6fYnJqamhg1apToEPYl5syZQ2xsLC4uLoSEhODm5kZZWRlmZmbIyclRXV2NkpISDg4OfP/995SUlHD37l1+/fVXAA4ePChGj0+fPiU5OZmJEyfi4eEhkh7J+Cc3NxcHBwdev37NggUL8PX1FV8cNTU1PvroI0JCQpCWlqaxsRE9PT0x3ocest3Dhw/7vMbS0lK2bduGnJwcO3fuxMHBgcLCQrZv386lS5coKysjLi6OjIwMjhw5wkcffcSLFy+ora1FXV0dOTk5qqqqaGpqwsvLS1TBkte1sbHh0qVLonDw9/fn9u3bNDU1iWugoqLC7NmzRZcF4OXLl9y+fZuPPvqIIUOGEBYWRl1dHRoaGn1aX1NTk4CkVFdX88svv6CsrCzGupLuVlNTE4cOHcLExIRPP/0UR0dHHj58yI0bN3B1dWXRokUYGhpSVFTE+vXr6e7u5vjx42L0JbmXISEhREZGUlBQQFhYGHv37sXMzIyOjg4xFgRE4QNw48YNFi1axLBhwzh9+nSf76HkvU+ePMmvv/6KoaEh69evJzg4GF1dXfz9/cnNzaW6upr6+nqgJ5GwsbFBXV1ddA+gJ3FoaGhg2bJlSElJiaRozpw5XLp0CRkZGQwMDFi1ahUfffSRuIe//fYbKSkpoiMXHx+PiYmJOKj+Gf8Gi5aUlERgYCBqamrMnj0bBwcHAdtJTU2lubkZfX19/P39GThwoLi+enp6WFhYICMjw+PHj/nll1/Q0dHB29ubBw8ecOXKFdTU1Pjpp59QU1MTXbHU1FRmz57Nrl27MDIy4sGDB8TExODg4MDQoUPFKNba2hoVFRUiIyORkZEhLCwMGRkZcZ0/NP7ZQamtrSUyMhIpKSnR1Y6NjcXS0pKFCxcydOhQnJyckJGR4ZtvvuHq1ausWrVK/P6UKVMICQmhq6sLGRkZNDQ0xP4nuT96enpERUUxb948TExMuHz5MpaWllRXVxMQEMD06dORlZUVY+Xx48eTlZVFXl4eGhoa4tntS/zwww+iExcdHY2VlRX6+vqMHTuW8vJyjI2NcXFxwdLSkuTkZLKysggODhZ4bUVFRVRVVdm3bx/BwcEAfPzxx6SmpnLnzh2ampro379/r05NcHAwnp6eaGpq0traysOHD2ltbe3VhR86dChTp07F2dmZ27dvs2zZMgYPHszx48f7tL49e/bQ2dmJlpaWuMZDhw7t1fkEGD58OAMHDhTfHcnPs7OzKSgo+K8pEfTsYxEREdy7dw9vb28WLlzI5MmTefbsGd9++y2TJk3il19+YcuWLTQ2NnLgwAEAli5d2ut1hg0bhqGhoZjylJaW9mmNjo6OyMjIsGXLFlJSUvj777/ZsWMH8+fPx97eHm1tbXbu3Mn79+/ZvHkz8+fPF79rbm5Od3e32OdPnz5NZGQkGzZsQE1NjatXr1JTU8PevXsxNTWlrq6O7u5uMVGIiYmhoaGBr776iilTpvDdd99RXl5OYWEhP/74I5cvX+b48eMEBgZiZ2fH+PHj0dbW5ttvv+3TGocOHYqvry96enoAHDp0iPLyckaOHMny5ctFM+S7775jz549hISEMHHiROTk5MjMzERJSUlMKw8fPsxPP/2EkZERtra2SEtLU1BQQFNTE8rKypSUlLBy5Ur69evHH3/8wZs3b9i4cSNBQUFiirtnzx6++eYbRo0aRVBQkLjOkkng//l8/W9x8OBBtm/fzsSJE9m/f7+4F/PmzePzzz8nODiY27dvC5iElJQU6enp7Nq1CwMDA9auXYu7uzt37tzhzZs3ODo6EhAQIHKRy5cv880334h7BP/DHyopKSEpKQl5eXns7OzElEmSCCsoKODm5oaFhQVGRkYC/3zx4sX/55r6nLw2NzcTFxcHgImJCf379ycoKIj09HQOHDhAbW0tW7ZsYcyYMWzevJmysjJxoV+/fo2vry8mJiYiYWptbUVeXl7g0JqamnB0dERJSQkVFRUuXbokOj6GhobEx8ezaNEiPD09xVjezMyMhw8fcu3aNWbOnImenp7oZEku4IdGWFgYFhYWyMrKEh0dTWZmJiYmJmIsKvliQc9YWVdXl+LiYvz8/EhPT+fmzZsoKyvj6uqKhYUFubm53Lhxg+TkZJYsWYKCggJ5eXm4u7ujqKjI9evXuXXrFtOnT2fEiBECX2hiYsKSJUtwdnamvb2d7OxsAZgfP348ERERJCQkkJKS0tdbiLGxsQDh+/n5ISUlxf379zlw4ADW1tZMnTqVAwcOkJGRga6uLjY2NtTW1tLU1CSSHmlpaUpLSykrKyMpKYnCwkL2799PcnIyVlZWvHv3jvfv3/PgwQOMjY359NNP0dLSIjw8nMjISFauXCkOyezsbJ49e4a6ujqjR4/mzp07JCUl4eTkJMYWfQkFBQVkZWXJy8vj/v37eHp6kp+fz8qVK5k7dy4DBgygra2Ne/fuISMjQ1lZGQ8ePGDIkCFMnjyZ8PBwoqOj2bBhA9CD85asXYKzunPnDlFRUWhra9Pc3NwLX2tmZsbt27f566+/WL58Od7e3rS2tpKRkSFGZXJycjg7O4uq899ES0sL/fr1Y8mSJZiZmWFvb09dXR26urpYWVlhY2PD69evRRdUQUHh/4p3KykpQV5ens8//xxHR0fRzTM1NUVTU5NTp06hoqLC/PnzMTEx4d69e/zxxx8MGDCA+fPnc+bMGVpaWlBXV8fIyEiMoaGHYPny5UuePn3a5/UZGBiIYtHQ0FB8rri4OHJzc/Hy8hJQDFVVVdHdVlRUFPh6NTU1EhMTycrKEmROSfGYlJSEnJwc9+7dIzU1Fejp/tfW1mJkZISHhwc3b96kpKSEkJAQ9PT0xOHW3NxMbGwsDQ0NuLq6/itS2vHjx6msrGTatGmYmpoye/ZsampqUFFRoby8nOrqavT19VFRUcHV1RXo2X+6urqwtbUVHRPo2YsVFBS4du0a7e3toosXHR2Nl5cXOjo63Lt3D1VVVUaMGEF7ezt//vknoaGhotCQrE2SMDk5OdHe3s6BAwfo16+fIJn2JV69ekVdXR3v379HQUEBbW1tAccICwsjICAAY2NjOjs7xfSjrq6Oq1evcv/+fZKTk5k/fz7BwcG0t7fz7bffMm7cOPEdzsrKwtLSkubmZt6/f09iYiLNzc04OjpiZWVFa2srjY2NPHv2jCtXrjBq1CimT58uOqLQ8/xnZWX1Kug+NAYMGMDff/9NZmamIBRKipKysjKio6Nxc3PDwMCArKwsQZiZOXMmtra2+Pr6kpOTQ0REBOrq6qI7rqOjQ0FBgeiw3b17l/r6eoqLiwkPDyc3N5c3b97Q0dGBhYUFZmZmREREiBG3jY0NiYmJFBcXM3fuXGbMmEFaWhrff/89DQ0NGBoafvAa09PTBb7e0dGR1NRUqqurxdRPW1ubwYMHExgYKCaf0IP1T05Opq6ujoEDB+Lg4ICFhQW+vr4MGDCA5uZm/vrrL3x8fERinZeXh5ycnHhGrK2tBWHN1taWL7/8UkCmHB0dmTRpkvizgoICtra2fT7zAVJSUjAyMiI1NZXo6Gjy8/MxMTFBWVkZfX19nJycUFdXp7q6Gk1NTaSkpKipqRH7/+DBg8nJyWHXrl0kJyfz9ddfC67F+PHjaW5uRk5OjhcvXnDt2jUcHBywsrLi0KFD7N27l/fv3zN37lzxeSoqKvDy8iI0NBRXV1fu3LnDlStX6Ojo4KeffhLn0IdGTk4OLS0tve57U1MTt27dIiYmhh07djBkyBDs7OxoamqiqakJS0tLRowYIYjoGRkZ/PHHHzQ0NLBixQpkZGSIiorizZs3rF+/nvb2dr788ksAEhISuHv3LoMHD0ZfX5/AwEDKy8tFI6q8vJwbN24IYresrCwKCgofBBeQRJ+TV0nSWFxcjJycnGCBrlq1ipiYGPbv38/gwYNxd3fH19cXKysrzM3NuXLlCn///TfLly8nICAA6Om0Sbpx9fX1FBUVIS0tLQ6enJwcnj17hoqKCm5uboLZJhlZNDc3i8914MABwsPD0dHREV+q6upqURF/aEgS0bdv33Lt2jWKi4sZPHgw3t7eqKmpoaamJogG0tLSdHR0EBoaSmhoKC9evGDu3LmcOnWKPXv28Mknn+Dt7c3333/PgwcPGDduHFpaWoI52dzczO3bt5GRkeH7778XMAo9PT2MjIyQkpISo7+srCyePn3KhAkT8PDwYOTIkTQ2NpKdnd3XW4i7uzuTJk2ivb1ddAVlZGSQk5Nj5syZbNu2TRQKkpGlmZmZqLKgZ8N/9uwZf//9N1FRUXR3d6OoqIiamhrZ2dm9Rleqqqq8f/+e0NBQwsPDefr0KZaWlqxcuRKAxMRECgsLWbNmDQYGBnz88cfs2rULT09Pvvvuuz6D1CUb7cGDByksLOTAgQMkJycTEhJCaWkply9fpqCgAC0tLb755hvy8vK4evUqqqqqoiCrqKgQ5AoDAwM+/fRTurq6aGpqoqKigjNnznDhwgXa2tpQUFAQCWJHRwft7e2cOHGCixcvMmzYMLy9vVFQUKCmpobi4mLc3d0ZOXIkoaGhNDY2/pd6xYdEbW0tDQ0NjBkzhpkzZwL/A/toaWkhJydHHGySYqujo4PGxkbU1dVpbW0VnbTY2FgSExOZOXMm/fv3F5+ns7OTBw8eiAJE0lH5888/xfd50KBBDBkyhLdv37Ju3TqxGf0T43758mVOnz7dZ3z25MmTKSoqIiMjA2tra+Tl5Xn37h3h4eE4OTkRFBQE9CTxkudXsjf8s9utr69PVlYW+fn5LFq0iP79+/PTTz8RFxfH06dPe3WFq6urOXfuHMuWLUNFRQVLS0uKioooLS1FXV1ddJEkxKh/HrT/hIZ8SNy8eZPr16/z6tUrdu7cyfLly3v9XHKgd3R00NzcjKKiInJycnz99dc0Njb2gpokJiby119/cfXqVYyMjJCTk6OiooLIyEjs7Oyws7Pj5s2bBAYGsm3bNs6dO8emTZsIDw9n69ateHh4iHU8fvyYy5cv4+Xlhbq6OgUFBQwYMKDP0Bbo4RB0dnZSXV2Nvb097e3t4meqqqpoa2sL9YexY8fi4eHBX3/9xQ8//MDLly/F+hsbGzlz5gw7duzg5s2b7N+/n8DAQAwNDcnOzhZKKDdv3uTq1asYGhoyZcoUpk+fzqBBg0hOTmbPnj2UlpYyZswYVFVVxb1UVlZGQ0PjXxWSEhz5P7HrkvXExMRQWFhIUFAQ9fX1HD16FFVVVb7//nvGjh3L2LFjxb179+4d0tLS2Nvb4+XlRWFhIYaGhlhZWdHd3U15eTkxMTFUV1dTVVUF9EwzXrx4ga6uLh4eHoSFhREVFcXvv/+OqqqqIKjq6OgwadIknj9/zp9//omZmZl47w+JyMhIHBwckJeXp6CgAFVVVfT19cXzICUlJQr95uZm0awqLi7m0KFDYrK4a9cuJk2ahJGREU1NTWRlZdHW1oaysjLNzc388ccfnD9/nq+++koUArm5uVRUVHD79m0cHR1ZvHixSMD+qeAgibS0NJKSkvp0D+F/yFl//fUXnZ2dfPfddwI3W1JSIng5oaGhGBoaCgUTAFdXV5qbm9m3bx+7d+9mwYIFbN26FeiZHmloaIiO+6tXr5CTk+PYsWNUV1czfPhwUlNTUVFRIScnh6ioKNTU1JgzZw7btm0DeiBBkunJjRs38PX1ZePGjX1a34ABAwSpXhKampqYmZmRn5/PzZs32b17N8bGxty+fZu7d+8SFhYmCJ7Z2dns27ePJ0+eYGxszLt370hOTubly5fEx8fT3t6OiYkJ5ubmlJaWsmrVKh49esSYMWP48ccfmTlzJvn5+WKvLSoqoq2tDW9vb3GvJWTHDz0L+5y8FhUVsXfvXhQUFJCRkRE30NbWlt27d5Obm4ucnByxsbF4eXkxbNgwuru7uX//Pi9evGDhwoXitTo6OtDU1EReXp7m5mbu3r0rxifNzc0cPHiQ169fExIS0isJ3bVrF3FxcWKUp66uzrZt2wgODuavv/5i586deHt7s2HDhj7jX65du8aqVavw9PQUmDtTU1NaW1tRU1OjtraW3377jTdv3jBgwABcXFyws7PD0dGRAQMGsGnTJk6cOMGbN2/w9fXF2tqao0ePUlhYiIyMDK2trSgpKbFt2zbKy8sZM2YMpqamHDlyhKamJoKDg8VotLq6WmDF6uvrKSkpEddn27ZtvHnzhilTppCVldXX28jbt28pLi7G2NgYT09PvL29WbFiBTY2NuTl5aGvry/Y4vr6+uzZs0dIrFRVVYmNMCYmBujBkK5btw5ZWVm+++47gRuzs7OjvLycQ4cO8fjxY+bMmYO/vz+3bt0iKiqKb775hnHjxjFixAgxEpGsPy4ujgMHDvS5IyInJycYr7KysoJRf/ToUW7cuMHWrVsZNmyY2JzMzc2xt7dn1apVSElJsXLlSjw9Pfnhhx8wNzdn6tSpDBs2jIiICNavX4+UlBTd3d04OjqSkJAgEldNTU0BE1i6dCk+Pj6iYwY9XcDKykoyMzMxMDBARkaG58+f8+DBA6ZMmdKnNdbV1aGnp8ft27fJyspi0qRJWFpaoq6uTm5uLqmpqZiZmTFs2DDs7e1JTEzkzJkz9OvXj0mTJqGoqCjG7D4+Ppibm9OvXz/q6+vZs2cPSUlJqKqqkpqaire3N8HBwUJtYtSoUTg7O/Ps2TMePnzIsGHDWLJkCb6+vlhaWvb6rra3txMUFISDg4Ng8X5oKCkpoa+vT2VlpUiGW1tbaW9vF/sO9Gx6mpqaVFZWUlpaKrrLcXFx3LhxAyUlJQIDA4WigkR67+nTp/z888/MnDmTp0+fsm/fPq5fv86FCxd4+fIl1tbWhIaG4ujoSGRkJImJiUycOBFAKIrY2tqKPSYxMbFP65s4cSIJCQlcvHiRhoYGjh49+n/F6KekpLB9+3acnZ3ZvHkzCgoKYoNvaGjg4cOHvHjxgpKSEgYOHIicnBw3b94UWMLMzExCQ0MZP348Ghoa3Lhxg9zcXPz8/JCTk+O3335DS0tLyOPt3LmTwMBATp8+TWlpKTNnzvwvua4Pjblz59Le3k5ycjLt7e3U1NRQV1dHV1eXgDVIOj0SvsG7d++QkpLCwsKCwsJCXrx4wY4dOwgKCuLMmTNcv36db7/9Fnd3dxoaGqirq2PmzJk4OTlhamqKqqoqmpqaGBgYYGZmhr6+PkuXLsXCwoLk5GQOHz6Mm5sb2tra1NbWIisry4kTJ5CSkuoTuRd6noN/TpGgZ8J4+PBhFBQUWL16Nerq6qirqzNx4kQhVSaJtrY2TE1N+eKLLwTJtb29nSFDhjBy5EiUlZX566+/UFFRwdnZmZKSEioqKlBXVycnJ4crV64we/ZsFixYwLBhwzh69CiRkZHY2toyYMAAVFVVsbe3p7u7Gy8vLw4cOICmpiZPnjz54DWqqakJkpaioiITJkwAEPueZD3l5eXcu3cPTU1NQkNDGTt2LNnZ2eTm5lJYWEhhYSHt7e2cPn2aqKgoPD09mTx5MtbW1nz33Xf89ttv2Nraimv5559/UlhYyLBhw5g8eTL3799n3bp1eHl5sXbt2v8rLNDJyQl5eXnu37/fp/s4atQo4uPj+eWXX8jNze11jwwNDSkvL2flypVISUmxd+/e//r9e/fuUVFRwYIFCzA3N2fbtm3k5+fz+vVrOjs7WbhwIZ999hnz5s2joaEBNTU1CgsL0dfXJzMzEz09PdFRX7hwoZj0xsTEsHfvXoyNjTl8+DCdnZ3Ex8czaNAgfH19P3h9tra2QpGitraW+vp6jIyM2LVrlyj+3r59S1JSkthDpaSkxPulpKTQ2NiIjY0N2traxMfHk5iYiImJCbt27aK4uJjz58+zefNmjI2NxXT+1q1bBAcH4+TkhI6ODtHR0bS3t6OqqsqWLVt6TUBqa2t59+4durq6YqL2/4o+J6+dnZ29mHwSMo0EKzdgwAChFZqeng70VB9paWnk5OSwfv16jhw5gre3NzU1Ndy7dw89PT0yMjKIiIjA1dVVVK4aGhoEBQVhYWFBTEwMfn5+NDQ08PjxYx49ekT//v1RU1NDRUUFBwcHlJSUePToEe/fv+8FLO9L1NfXU19fj5qamsBISsDFurq6aGpqCpkoJSUlioqKuH79OgYGBsyZM4cFCxagpqbG/v37uXfvHuvWrSMwMJDKykqUlJSEpuPvv/+Onp4eX3/9NWZmZvz666+8fPmS7u5uLCwsUFJSoqKiQowzKysrMTc3p6mpiaioKC5duoShoSH29vaCfduXePjwIQUFBbi7u2NkZISzszPr1q3j/v37XLhwAWtra8aMGSMIWW5ubrx48YKDBw/i5OSErKwsJSUlQI9s2aRJk0SV9vnnn6Ovr4+BgQH6+vr8/fffPH78mJSUFDIyMnB0dCQvL69XUpKWlkZycjKqqqo4OjqyZMkSnj17hrS09L/qLktwyceOHeOnn35iw4YNTJs2jaamJvbv34+2tjaenp68e/eOwsJCSktLqa6uxtjYmOnTp1NZWcl3331HWVkZkyZNIjk5mQsXLtDe3s706dPx8PBAWlqahIQEoKf6Hjt2LDo6OlRWVjJ48GAGDx4M9HRipKSkcHJyoqmpiRcvXiAtLY2/vz/19fU8evSoz53XtLQ0zMzM2L17N0+ePEFdXZ2FCxcKCIerqysGBgZYWloiLy/P27dvuXDhAjIyMmKkLCsrK4ozBQUF/v77b+Li4sjKyuLhw4eCFPLbb78xduxYMjIy2L17N7NmzeKjjz5i0aJFvH79mpcvX4oublpamtBdbGlpQUpKiqFDh2JlZfVfWLz/LXJzc7GwsBAjfkmRKOk6p6amoqysjKamJoqKikhJSQnGc0dHBxUVFSgqKjJ48GD8/PxQU1Pj0aNHtLW1MWHCBLS1tTl16hRVVVWiE5aSkkJ8fDypqalYWFiwadMmzM3NOXnyJImJiQwYMABDQ0O6u7txc3OjqamJ58+fo6Ki0otR/yHh7+/Ppk2b+O2334iLi+PcuXMsXLiQ7u5ukpKS6OzsxNjYWBwudXV14u+bmppwdXUlISGBAwcOkJ2dzcSJEwVO/OzZs+jo6KCvry9gJAsWLCAiIoJ169bh7u7OypUriYyM5PTp02Ka808JPm1tbQICAkTiGh0d3af1AWIPHTJkCKmpqdTW1lJaWiogXy0tLdy4cYNHjx6Rl5fH27dv6e7uZunSpRgZGbFz504yMjIoLCzExsaGgIAAurq62LVrl+AZqKioEBgYiLKyMo2NjQLiIIE55OXlYWRkxJw5c3j+/DnLly9n6NChfPLJJxQXF6Ojo0NQUBDNzc19SuqgJymQKDhIIikpiWPHjjFt2jTs7e3p6uri2bNnvaTUJATDgoICLC0t0dfXp6GhgTdv3tDW1oazs7MY4VZXV6OmpoaUlJRQwmhoaKCgoIBHjx6Jw97c3Jzhw4dTU1PDjBkzxIRTAt3z8PAQSVFf1hkcHIyioiLd3d2CuJWbm8vx48fR0dFh6tSpaGhokJycTH19vfi30KMbXF5ejpaWFmZmZqSkpBAXF0dxcTHDhg1j6dKlxMXFsXv3btrb21m7di22trZERUXx9u1brK2tBayls7OTw4cP09bWJrR6JYTb3Nxc0tLScHFx6QWn+dBQUlLC39+fFStWcPfuXQDxffPy8kJDQ4OcnBzu3r2LtbU1U6ZMobi4GCUlJaqqqkhMTGTBggUEBgayb98+AcuT6ILHxcUhLy+PvLw85eXl3L59m/r6ekaNGoW6ujpxcXG0t7dja2sriIcJCQkcPnyYBw8eYGdnx7Jly3B1deXGjRucPHmyT8lrYmIit27dYtWqVWhoaPDkyRNKSkpYtGgR0JPjHDlyhKKiIoYMGcKQIUNobm7m+PHjREVFYWhoiLq6uoBHSUtLExcXh5aWFuPHjyc2NlZABiRNBwnkRQIVuHHjBidOnCA4OJgNGzaIAkFCsNTX1xcY2A+JPiev/2REQk+HVDIue/36NampqQQFBWFmZsaTJ0/Yt28fdnZ24mGOjY3l1KlTeHt7U1VVxa+//kp9fT3W1tYoKCiIakpBQYE1a9agoKBAeHg4P/zwA+PHj2fevHn8/PPPREdHExAQIN57z549vHnzhunTp7N9+3aKi4vR0NDoM15y1qxZtLS0iItoYWFBQ0MDhYWFov2/bt065s+fj5qaGs+ePePs2bMcPXqUp0+fcvnyZbS1tcnJyRHwh++//57nz59z7tw5GhoaOHz4MNLS0gQEBHDr1i1CQkLYtWsXe/bs4fjx49TX1zNnzhzq6uoIDw+noKBAaDA+f/4cQ0NDdu3ahYuLS58wIpIwMTFh/PjxtLS0oKqqKh4WIyMjkSyOGDECd3d3UlNTkZKSoqKigt27d/P8+XP27NmDl5cXdnZ24rPduHGD+vp6hg8fjpOTE9988w1GRkakpaVx48YN8d7Hjx/n7t27eHt7s3PnTpydnXn9+jXjx4+npKQECwsLDh8+zP79+4XE0j/hIR8SFy5cYPr06YKR3tHRwbRp07C0tMTS0hIrKytu3rzJzZs3BVu4f//+LFu2TGw6tbW1eHp6Mn36dGxtbdmyZQuJiYkcOXKEhQsXCjFwSbi4uPDZZ5+JMfnQoUMFC13CYJeXl8fY2JioqChyc3Px9/dn6tSpZGdni7HYh8a7d+8YMmSIYKzb2NjQ0NDAp59+ir29PceOHcPGxkZcOw0NDRwdHXt1XGVlZZGVleXRo0ccPnyYmzdvMmLECNavX4+trS3btm2jurpajJry8vI4deqUENfesWMHcXFxvYg8ly9f5vXr1wQEBBAQEEBHRwfl5eV9vocAx44dY8uWLdTW1vLkyRM6Ojrw9vZm6NCh/PHHH9y6dYsxY8YIiIqurq6AqGRmZmJvb4+bm5tIUCQFV1NTE7KysowZM0ZInT1+/JgxY8YwZ84cCgsLqaiooF+/fiKZmzNnDpGRkbx48QINDQ0sLCwYOHAge/fuZcuWLSxevJjPPvvsfyUZ/DNu3LjBvHnzBFmioKCAP/74g5aWFh4+fMjr16/x9PTks88+Y8eOHRQVFfHbb79x8uRJ8R2rqakhOjqaqqoqKisraWlpwcTEhLlz5zJ27FhUVVUF7EpDQwMFBQUaGxupqamhtLSUpqYm3NzcWLVqlYCfbNiwgdOnTzN27FgB7Tlw4ABHjhz5v+rm/r+iq6uLrq4uFBUV8fDw4PXr11RUVIjktaOjg8uXLwuTBOjp7gUGBmJiYsLmzZtRU1Nj0aJFpKWlsWnTJoYOHcqyZctYsmQJ3d3d+Pr6UlpaKqS37OzssLCwEK8XHh6Oqqoqs2fPpqurS0xkHB0dcXR0pLKyEvifBObatWsfvD4zMzOhR/rPz6+uro6VlRUVFRVs2bKFhw8fcvbsWTEivXbtGjU1Nfj5+ZGRkcHKlSt58eKFkA5qamrixx9/JDExEX9/f2pqanpp0HZ1ddHd3U1mZiY///wznZ2dfP311xQUFPD48WNBbtu7dy/p6els2bJFmBj0lTxpYGBAV1cXpaWl6OvrIyMjQ15eHocOHUJGRgY1NTXGjh2Lu7s7tra2YipbX1/Ps2fPkJGRwdbWFmVlZRwcHNi0aRPV1dWimE1NTaW9vZ2FCxcyb9483r17J5QL/gk/09PT48iRI6ipqQlcsURb9a+//uLRo0d9hkRIQgIxXL58OVOmTKGlpYU9e/Zw5swZAgICWLNmDd999x0mJiZ8//33fPXVV2hoaNDS0oKFhQUbN24UXUQJrMPBwUHwESTmIb/++itnz54lODiYwYMH09bWRn5+PgYGBnz22WfCJGXx4sU8e/aMjz/+GD8/P7788kvmzp3L06dPGTduHBEREVy4cOGD1/fmzRvOnz/PhAkT8Pf3Jzk5mffv34vkVU5OjvHjx9Pa2iomrGVlZbx69YrY2FgGDRpER0cHhYWFjB07luHDh1NcXMzt27f59ttvqaioEO8lgVaqq6szcuRIIdN18uRJHj16xNKlS3t1tiU5nJKSEp6enigqKn6QOk2fk9d/Mq1ra2spLi5GWVkZFRUViouLaWhooLm5GWNjY3x9fUlISCA9PR11dXUGDx6MjIwM6urq3Lt3T3RBSkpKCAgIYO/evdjY2CAtLU1iYqKQN3JxccHKyorKykqKiopQV1cXbXBJSMYa5ubm2NraYmtrKw72voSVlRVdXV38+OOPpKSk8OWXX+Lv74+lpSW3bt2ipaVFMGTl5OQICAhg/fr15ObmUldXh6KiIv3798fKyoq4uDj+/PNPdu/eTVVVFRcvXsTQ0BAVFRWsra1JSUnhxo0b7N69m5UrV+Lo6MjBgwcpLS1FXl6eJ0+ekJaWxsSJE/H09KSuro76+nocHBz+tT4o9DwkktE8/A8buauri8LCQu7cuUN1dTUbNmwQWpslJSWCPZ+fn09DQ4MgKb17905IZDx69AhbW1txyDk6OmJubk5wcDBBQUGkpKSQkJDA8OHDGTp0KHl5ecTExBASEkJxcTHe3t4i6ZNI4fRVUSEyMpL8/HySkpLw8/PD19eXqqoqzMzM0NXVxdjYmOjoaKSkpAgNDUVXVxcZGRlkZWV5/PgxtbW1PHjwgIaGBhobG0lOTkZdXV2I2Hd0dBAZGUlISAimpqacOHGCpqYmTE1NsbCwoKCggLy8PIGNkgDSJde6s7OTAwcOiC7whg0bePDgQZ/WqKurS0dHB6tXryYxMREdHR1OnDjBs2fPxGdWUFCgoKAAW1tbzMzMmDlzpoDDPHr0CG9vb5ydnYW0C8D06dPp378//fv3Jz09nZcvX7Jv3z78/f2JjY3F29tbQFckUmu//PILbm5uhIaG4uvrS3x8PEZGRmhpaRETE0Nra+u/wktKiDhqamo4Ojr26qi4ubkJSSdJyMjIoKKigrq6Oi0tLejo6FBXVyc6BAMHDmTgwIG0tbVhaGgoxN6fPHlCY2MjtbW1TJo0iVWrVhEVFUVKSgoff/wxn332GaNHj2b48OE8efKE2tpaNDQ00NXVFXJGampqfcbXX7x4kc8//xwtLS1mzpzJ9u3bOXHiBFVVVcjLy+Ph4cGYMWMYMGAAFhYWtLe3o6ioSFdXF+3t7YKAZ2NjI6ZdVlZWTJo0ieDgYHFA/FPlQpI0xsbG0tbWxqxZs9i4caP4nkNPQmlmZtarU9jZ2dlrz/jQkJaWpru7m+LiYnJzc8V/4+PjmThxInp6enh5eZGbm4urq6so8iRaj1OmTMHZ2ZmAgABiYmJobGwURE6JDOHEiRO5ceMG169fx9bWFkNDQ37//XdevHiBp6en6Pq1trZSVlYmtCwloampSVdXF7du3eqzHrFEBkjiciUp2rZu3UpTUxMHDx4kNTUVW1tbWlpaxO8VFRWJaWVSUhIPHjygra0NPT09Bg8eTGNjIzNmzKC2tpavv/6avLw8qqurBRlSIscFPXusoaEhiYmJwjExNzeXoqIiqqurkZKSorm5WWix9rWh8+LFC7S1tXF1daWiooJTp07x+PFjhgwZIiZ3srKyAq4hiT179vDLL7+goKCAl5cXDx8+JCgoqJcawY0bN7hy5QqfffYZGzZsoKysjH379gmDGAUFBV68eIG+vj42NjaiK9nW1ibWUVdXh4yMDF5eXujr6/dZxxZ6TF5qa2vR19fH1NSUnJwcLCws6N+/Pw8ePKCkpITffvuN/fv3o6enJ3KBlJQU5OTkRJF7/Phx/vjjDzQ0NJg9e3YvRZCysjK++OILWltbWb16NTo6Ohw8eJD6+npOnjwpkjyJI2NjYyMaGhp88sknyMvLExERQUFBAQ4ODgQFBfUpeR04cCBZWVk8f/4cOTk5DA0NUVNT4+zZs5SVlQl1I2VlZYqKinj69Cnx8fHExcWhq6tLYGAg8fHxAqIoka2rqakhPT2dyZMno6+vT3Z2NomJiWJaKi8vz927d4V81sSJE3FyciI5OZmLFy/i7e3NmDFjKCgoIDs7GysrK8zMzHoVg/+/os/J6z9DSUmJjo4OgY8bMGCA0OmrrKxk6dKlyMnJcejQIYyNjfniiy8YNWoUiYmJ7Nmzh2vXrolERyKcLycnR01NDdu3b+f169f8/PPPjB8/np9//pmrV6+ya9cu6uvrMTU1xc7OjpaWFtzc3Pj8888pKSnppakmAeX3NaSlpcnMzOTmzZtMmTIFf39/7OzsuH79Or/99hvNzc0MHTqUsLAwxo0bx9ixY1FWVqayspLOzk5UVFSYNm0aJ06c4OzZs3R0dKChocHdu3cJDQ1l0aJFXL9+nevXrwMInJfEzWbs2LHY2dkJVuisWbPEiFdOTq5X1dJXDVTogSBIiGDQc1hJ5K8kxLnLly+jp6eHiYkJ+vr6GBoaEhYWhqamJjExMdTW1grYgIRsMWnSJNLT00lJSUFeXh5vb2/q6+sxMTHB1taWlStXUllZyf3797G3t+fBgwecOXMGKysrjh8/joKCAi0tLb02n9TUVOLj4/uEezUxMWHDhg0MHz6cAwcO4ODgIJInCebO0dERf39/5s2bJ1jiS5cuZenSpb1gKNevX8fe3h5DQ0MGDx5MZWWlkGj56aefRPJRUFBAVVUVenp6eHh4oKysjKKionA3MjQ0FBaOEydO5MWLFxw9elSQHQcMGNAnCRuJc9b06dMJCwsjLi6O58+fC5zStWvX0NfXR1ZWFnV1dczNzXF2dkZBQYGbN2+yfv16hg8fzsmTJ8VrrlixQmBvc3NzGTRoEJmZmezevRs1NTW8vb0JDQ0VRCnoeXa///57fH19CQ0NZdiwYZibm6OgoMCbN294/PgxgwcPZsCAAfz5558fvD7oIWzV1dWhqan5X6NZAwMDPDw8BDEL/kcCTaJJKyFdvn//nqlTp6KrqyvG7woKCqSlpZGSkoK1tTVpaWlERETQ1NTE4sWLaWho4M6dOyQmJiIjI4OLiwsWFhYMHjy4FxF08uTJODg4CE3gvoTEkUiC9TYxMUFGRoauri7mz5/PV199hbS0NOnp6Vy9ehUdHR1WrFjBuHHjaGxsxN7enoqKCqEq0dTUJHRB/7lHNDY2iuS1s7MTTU1NmpubycjIEKLw0DNFU1JS4scffxSJcmdnJ52dnSxfvpx58+YJYk5fQkZGhpiYGJKSkrC1taWpqYm///6b6upqNm3axJdffslnn32GiooKCgoKtLe3IyUlhaysLHv37qW1tZXKykr09PQ4duwY+vr6lJSUMHLkSPz8/DAwMODs2bPIysqyYsUKzM3NWbx4MX///Tdz5szh888/F2vU1tbG398fIyMj3r17R2ZmJm5ubtjY2IhnuS/EQhUVFXR1dfn999+5fPkymzZtYvHixaxatYpPPvmE+/fv88UXX/DZZ5/1+j1PT0+ampro6OhAXV2dwMBAHjx4wPXr10ViM3r0aAwNDfnkk0+IiYlBSUmJoKAgWltbyc3NFQXqrl27GDduHKdPnxaYUxUVFYyNjfnmm28EPKutra2XuP+HxtOnT3FxccHX15fy8nKBvbx//z5WVlakpaVRW1srOmidnZ3ExMTw7NkzAaWJiIggIiKC2tpaQcCNjIxk7ty5ODo6cuDAAbS0tLhw4QJnz54VikMlJSW8ePGCwMBA0bBpa2tDVlZWmHq4urpiY2ODvr4+Ghoa1NXV8cUXX/RpjVZWVuTm5pKQkEBzczMWFhbMnTuXuXPnsnjxYjGZWr16Nd9//z1r1qwhJyeHH374gZycHAoLCzlx4gTffPONgIJ4e3uL1+/q6iIhIUHoc1tbW1NTU0NVVRUDBw4UiWtWVhYpKSmYmpqSmpoq7N/nzJnDiBEjaGxsJCkpqc8FyJQpU5gyZQozZszgiy++4MiRIwQFBbF27Vp++eUXLC0tcXJyIiAggD/++IPff/+dqqoq2tvb6devH8rKynR2dlJVVSVcRCUT29mzZwuS/NatW4WyjKGhIXl5eWzatAk5OTmWLFnCggULSE9PZ9myZbx69Yo9e/YgJSVFcnIyz549E86MHyJz2ufk9fbt2+Tl5dG/f388PT3FSPGf5C1Jh9TR0VFowbW0tIhWv6urK4MHD+b06dMkJiZiamqKlpYWv/76K4qKioJtmZGR0WvcKEl6JfABifVhZ2ensMaUuLkMGTLkXyWvEm/iCRMmiMNfEosXL8ba2pqEhARsbGzo378/kZGRvH37lilTpuDu7s7XX3+NjIwMy5Yto6mpSeDE1NTUGDhwoJBNkpGRQVdXl4iICC5fvkxcXByWlpZs3bpVeD1v3bqVI0eO8OmnnzJ+/HgCAwNJTEzk9evX6Onp4eDg0OcDE3rgHTk5OeTl5WFmZkZYWBjGxsbo6uri4+PDrl27cHd3F6xBLy8v5syZQ1dXl2BL+vv7s27dOmRkZFBSUsLIyEgIqVdVVXH79m0ePHhAS0sLcXFxyMjI8NNPP1FUVCSehba2NuLj43nx4kUv+MmoUaMEftbExARdXd0+VdMLFiwQXXAJRhl6CDx3795FQ0ODkJAQGhsbBQN22LBhfPLJJ1RVVaGtrS0wrSoqKqSlpfHnn3/i7u6Oq6ursK6dPXs2CQkJwnpPYtmZn5/P7NmzkZaWJj8/n9TUVPz9/bGwsEBDQ4N58+bh4uLC69evqamp4dChQ/j5+Yli5kNCXV2dtrY2ioqK0NDQwMHBQSTpGhoaBAQE4ObmRkFBgfA3hx483p49eygpKeHRo0d8+umnaGtrc+nSJQEJ2rBhA3/99Zdg+Lu6ugqh/nv37hEXFyc6D6Wlpfj4+JCfn8+4cePYsWMHrq6u/PTTT2zevBltbe1eyW5fIj09HQUFBWpra+nu7hZWraWlpURERAgIzUcffcT48ePp7u6moqJCTDfCw8N58OABI0aM6HU4PHz4EG1tbdzc3Fi3bh13795l3759pKam8vjxY0pLSxk0aJAg5zk4OPQ6LP7ZYZWYMLx+/Zrbt2/3aX3/ZAwrKCgwbdo0zMzMKC8v59NPP0VKSoqTJ09y7NgxJk+eTGhoKCoqKuIQv337NmfPniUrK0tYWE6aNElgzCRJtuTeHz58mKioKGbMmEFXVxf5+flcunSJ3NxcBg4ciKmpqZiuyMjI0NzcTElJCVpaWsjLy/dZTQF6Eh8JUcvDw0NIKpmbm/cqPLS1tbl8+TKKiopCJxt6zpV3796xevVqpk6dypo1a2hra+PBgwdYW1uLTpyamhpOTk5ij62rqxOmFhKTEhcXFxwcHNDR0UFRUZG8vDxevXpFbW0tVlZWzJo1S0AIPjQk0wBTU1OhHCKJzMxMcnNze00HJPvL6NGjiY6OZvfu3aSnpwtLzsLCQn799Vc+//xzoZktuQ7d3d1oaGiIhM3Q0JA1a9YwduxYMjMzOXLkiJBO/OfzKrn/GRkZlJWV9dke1tzcHCcnJ7q7u1FSUuI///kP0tLS1NXVcfr0ad6/f8/QoUMFo14CMXFxceHcuXPU19eLBsTgwYOFykN2djZGRkYEBgb20skFRBdawl5/8eIFBQUF9O/fv5cmroQM98/4N5rSampq2NjYEBcXR2pqai93vcWLF2NlZYWnpyfJycm8evWKgIAAvL290dDQICEhgaamJnx8fBg4cCB37twhODgYNzc3amtr+fPPP5GTkyMoKIhdu3Zx/vx5QYq8dOkSAM+fP8ff3x8lJSUyMzPx9/dn2bJl6Onp8dtvv1FRUdHL9lxaWrrX9+dDw8vLi8TERJEUDx06lIyMDNTU1Kirq+PBgwc8fPiwVyPl9evXgsgGCNLhjh07GDBgAKamprS0tJCamkpubq4oEAcNGiQsly0tLfnss89QUlIiPj6etrY25s+fL3DpDg4OyMrKCpz2h0zN+5y8RkREcOTIEdatW4enpyfS0tJCDxJ6xqI1NTVkZWXR3d3NkCFD8Pb25u3bt+Tn5wvs3Zw5c3jy5Am3b99GQ0OD9vZ27t+/T2ZmJqNGjaK6uhpFRUVxkaGnG2RoaMiYMWOE53dLS4tIMEtKSgRsQPJl+GcH4kPi/v37jB49mgkTJtCvXz9qamqEwL6lpaVgUUoenLNnz7JlyxYyMjKEO4uxsTGbN2/uBbEIDAxk2bJlNDc38+jRI2bPns28efOYPHkyly9f5v3799ja2mJsbCw2Mok96blz5wToPjs7m3v37tHe3o6vr++/Sgxyc3N5//69SJj9/PwEy3n48OGi6pFo0FZUVDB06FDKy8vJzc3Fzc2N0aNHC91NgC1bthAdHc3mzZsJCwsjPz+fp0+fkpaWJpiHGRkZ5OXlUVNTQ05ODoMGDcLJyYm3b9/yww8/AIjuFvR00iSSTn1JXk1NTfnll1+EBJeKigrZ2dmcO3eOmpoaPvroI2Gpee7cOd6+fSuMMc6fP9/rtZKTk7l58yZZWVno6elRWVlJSEgIH3/8MSdPnuTs2bPs2rVLgOerq6uJjY3F1NQUf39/ysrKkJaWpqWlhbKyMiFf069fP/r160dERAR37tzps+WfpGNXUFBARkaGYOS+fPkSPz8/cQ27u7sFLrq0tJStW7cSGRkpusVHjhxh/vz5InE9f/48t2/fJjc3l9zcXKZNm8a6devQ1NTk+vXrPH78WEgYQQ/p6MSJE1y9epVvvvmGoKAgXF1dKS4uprW1FWtr6z673EkiNzcXHx8fysrKSEhIoLOzEx0dHcrLy8nOziYpKYnMzExsbW0ZPHgwhoaG4tmVdBFnzZrFmjVrgJ7EIDw8XJBVZGVlGTRoELKyskhLS2NiYkJhYSEpKSksXLhQWGEnJyeL/aSrq4vOzk7R+ZGWlqapqamXZeaHhqOjo9hH5OTkaG9vx8vLSyQXRUVFHDhwgLq6OsaPH4+Kigp1dXVUVlYiKytLY2OjsFadN2+e6GiVlJSgo6ODlpaWkD2Lj4/n2bNnpKamYmpqytChQ4mLi2P79u2cPHmS+fPns3z5crS0tHj//r3oeFtZWYm9XbIv9SUkhWtYWBgmJiZ0dHQgJSUlOjUS3drIyEiuXLmCk5MTgwYNEl1fRUVF8vPzSUlJEQTgnJwc2tvbe+nqDh48GGNjY6HxOW7cOCwsLIiOjiY2Npbm5mbc3NxEsQE9TZa4uDji4uIICgrC0dGR/fv394lYWFdXR1VVFVpaWqxdu5aBAweKnw0aNIiEhASuXLlCv379kJOTo6mpSbifubq68sMPP3DlyhWkpaXR0tJCS0sLRUVF0tPTMTQ0pLKykoaGBi5dukR0dLTA6zY3N4upHyDWCD2J6z8nchICdHl5ObGxsX3u2g0ePFh0bHV1dZk8eTLFxcXcvHmTPXv2UFVVhbm5uZiONDc3k5WVxejRo5kxY0av12ptbaWgoEA4KEksUyV7sJOTExs3bqS1tVWsITQ0VIyw/fz8xHoVFRVxdnamtbWVuLg40tPT0dbW7hOR6Z+hpKQkXCUl/IPu7m4cHBxEF3X37t2sWbOGuXPncvLkSczNzVFWVhbi+7t27cLV1VWw9CVOWV5eXjg6OmJsbExERATnz5+nqKiICxcuUFtby5UrV2hqahKE7tDQUFasWEFERATz588XGq0ODg6oqan1eU9taWmhsrKSkSNH4uvrS3t7O0lJSUKyMTo6msjISDIzM9HQ0MDd3V0UQtbW1gJ6Aj0NgMLCQiwsLPjkk0+Ii4tj165dvHnzBgUFBcaMGYOWlhbGxsb4+fmxYcMG0aWVEJxPnDghyIMSuIC5ubkg6X6ICUOfk1cJpvWfFnOpqalYW1ujp6cnxj0yMjIYGhqKSkpaWhp1dfVeF33z5s18/PHHYoP86aefOHPmDGfPniUvLw/osU2trKwUG+6MGTMEJhIQ47C2tjYUFRUZMmSIELyFvievEpH3mpoaWltbsbW1JSYmhi1btpCQkEBISAgLFixgxowZyMrK4uLigpubG2fOnCE+Pp4ZM2YwdepU6uvrhZWkj48PmzdvRlZWlpycHCHPAggMyahRo2hra+P333/H1NQUGxsbTp8+TVdXF9euXSM1NZWMjAzCwsLQ0tLiyy+/RF9fn4CAgD7Lu0jUBaysrCgrK6O6upq8vDza29tFpb9lyxbOnDnDggULWL58Obq6ulRWVrJo0SLa2tr+C64gWZfkEB81ahTd3d1kZGSI9/z++++pqqpi9erVPHr0iKSkJGbNmsWWLVsEHk1yeGVlZbF3716ys7ORkpLqZS/5v8Xjx4/x8PDA1dVV6LrevHmTjo4OJkyYICx5w8LCOH/+PE1NTdTV1fWCUkji1KlTnD9/ng0bNjBjxgweP36Muro6+/btE64y/8TPzZw5ExMTE/744w+OHz/OggULmDp1Ku3t7Wzbto2LFy9iamqKsbEx8vLyDB06lI8//pjLly/36R7u3buXtWvXEhgYKBjorq6ubN++HVNTU7q7u7l37x5dXV2MHDmSpKQkli9fzsOHD5GWlqa9vb2X/M3169f5/fffycvLY8OGDTQ2NnLz5k3Gjh1LSEgIFy5coKysjI8//piSkhKePHmCvLw806dPx8HBgc8//xxbW1vx/Hz11VeMGzcOJSWlXtqCfYnQ0FDU1NREkp6amkpnZ6fA11ZXV1NcXIyKiooYvUtCWVmZ2bNni0SwuLiYffv20dLSgq2tLYmJiWzbtg1ZWVlaWlrQ09MjNDQULS0tIa0EcPToUZ4/f87GjRtFB1ai7yqBaMjKyuLu7o6MjAwREREfvL6jR48yb948lJSUqKysZO/evejo6LBx40akpKQoKytj8+bN+Pr6Cm1LSZJnamrK4sWLGTNmDMnJyeKwvXLlCmlpacyePRsTExPS0tLYtWsXLS0tzJ8/XxCITp8+LRyFqqqquHnzJqampkyYMEEonUiSY0n0NemBns6OxHQFehwa4+Li2LhxIx4eHlRXV7Nx40Zyc3NZvXo1o0ePFt2qzs5OJkyYwLhx4/jrr79QV1eno6MDfX19Ro4c2cuyNjAwEEtLS+rr6zl27Bjx8fFCSWP06NH4+/v/l1OfhoYGb9++FdrM/ybOnj3Ljh07mDZtGjt27Oh16K5Zs4aOjg727t1LTEwMR48eFdawI0eOxMjIiODgYK5cuUJXV5eAlJmamhIZGcn27dvJzMxEUVFRSImVl5cLe+empib09PTw9fXFxsaGxYsX4+3tTXt7OyoqKqLLK5lQamhoEBgY2Etm7kPi/9wXFy1aREtLC0uXLmXVqlVcvXq11zTi008/xcHBgdjYWI4fP860adNQUVEhPj6e7OxsoRFbVFTEnTt3aG1tpaamBldXV5ycnFi9ejUdHR28efMG6BnpT5gwQWg2//bbb/z888/MmjWLqVOncurUKV68eIGbmxsNDQ3s37+/1578IdHV1cW7d+8oLy8XOuvQkz+Ul5cLPWAzMzO0tLTE87J582bc3NxEISWRHNy/fz/Hjx/Hzs6OWbNmMWHCBLq6unj58iVSUlIYGhoKYuvChQsJCgoiMTGR33//nfLyckGkyszMpKWlBT8/PyZNmkRnZyeGhoZ4e3tz6NChD15fdHQ0b9++Zfz48SJpzMzMpKurSxTQx48fp6mpie3bt5OdnU1aWhpTpkwR73Ps2DEuX75Meno669atw9bWlsDAQDw8PNDU1KS+vp4JEybg6urKjz/+yKNHj8QUWfL6ErlMyWf48ssvBZkReiQ3/f392bNnz/+6pj4nrwMGDCA7O1t0diRt4WPHjuHm5iaszLy8vHptLlZWVsjLy5OQkICioqIgO1hYWIgWsaurKwMGDGDXrl1AT1fHy8tLsKL79esnDseWlhZu3ryJuro6ISEhQobin4BxCQauL6Gnp0dBQQHV1dUoKCigq6tLUFAQAwcOJD09nfT0dJKSkgSuZeLEiSgrK/PZZ5/R0NDAvHnzcHJyorKykq6uLqZOncrcuXPFeKm0tFQkBk1NTbi4uODo6MjAgQNJSUlBV1cXa2trOjs7KSwsREtLi6FDhwqNQk1NTezs7BgzZgwjRozoc8cOICgoCA0NDcrLy0lMTKS2thY1NTVxHwoLC4mKisLS0lLI0UBPBTZy5EiePXtGQkICFhYWeHl5Cfm0hw8fsmvXLkaPHi0KmaamJjQ1Ndm4cSPjxo3j7NmzSEtLY2tri4uLC+/fv8fDw+O/3Hvevn3LgQMHUFFRYcGCBR/kdSwJCYlCUVFREAK7urrw8/MjMDCQ6upqsrKykJGREbJvVVVVlJaWCktJiTxaYWGhIGG4urpSV1dHVlYWb9++RU9Pj4CAACGZ9vTpU6ZPn05QUBCrVq0iPj5eYATl5OQElEFFRYWLFy/S3NxMR0cHM2bMID8/v09j53fv3vHy5Uv8/f1Fctjc3NyLeFNfX09HRwc1NTWCzAGI8WN3dzeNjY2ikEhJSSEoKIjZs2cLMqJkBHv27Fmio6NZvXo1I0aMICQkhGHDhiEvL8/x48dxdHQUo/m0tDTq6urw8/NDSUmJrq4ukpOTP3htkpDoLGtqaqKgoEB0dDQeHh4Ck5iTk9Ory/Lq1SuysrLw8PDAyckJXV1d3r59S2lpKfHx8SgrKzNo0CCampp49eoVMTExqKio4OPjg5+fn9DWlMSPP/4o7t+8efNE9+mfhZuMjAwyMjI0Njb22Xbz1KlTogMpIYxJS0tTVFSEiYkJqqqqWFpaUl5eTlpaGsrKysL1Jisri0ePHhEUFCTuueS5/qeBi5SUFCoqKpiYmDB48GCam5s5f/48ERERVFVVoauri729Pebm5mIEa2xsjIKCAqmpqbx58wZ7e3uMjY3/ld225NmUFJHPnz9HSUmJnJwcPDw8kJWVxdDQkMLCQjGyl1jb3r59GwMDA8aPH9+LPCbBDb569QpZWVl0dXVJTk6mvLwcOzs7NDU1KS8vp7GxUdjAQs9otqSkhODgYLS1tdHS0hLi7RJokYQE9aFRWFiItrY2VlZWvRoSpaWlODs7M3/+fDIzM2lubhYkP3d3d16/fk13d7eY6JSXl/Pq1StGjBghOpgSBRclJSUaGxtpbGxEU1OTjo4OGhoaxHN39epVSktLMTMzw93dnc7OTkxNTUWnNzMzk/r6ejw9Pf8VcVJXV5f29nakpaU5efIkly9fJiAggMDAQAIDA/H29sbQ0JCamhqSkpIICAhg/PjxVFVV8dtvv1FeXk5ISAjv3r0TCagE/iJRxLC2tiYqKoqLFy9SUFDAmDFjMDAwEIW2RKYSeoooZWVl1NXVqaio4OXLlygoKDB27FiOHTvGrVu3+myIkpWVJaYU6enpHD58mICAAAGXSEhIwNnZWfAocnNziY6Oxs/PT1iCx8TEiO+zBAImIUJJEricnBwMDQ3Ztm0bycnJ3L9/HwsLC4YNG0ZSUhINDQ0EBgair68vDCFmz54tFAv+bVfZ1NSU/Px8wsPDcXBwEFbhkjA3N8fLywtlZWXGjRtHZGSk6NZCTzPgo48+on///sTExAiJvczMTNasWSOscSWFigTaIXne/ikfJskTnz59yvnz5wUcSYJhzs3N/f8PbGDcuHEEBweLxLS6upr8/HyOHz+OsrIyS5cuZdGiRb0SV+ip3hISEoSswsyZM0W1EhAQgLW1NS0tLRQVFTF27FhMTEyYNGkSvr6+qKio0NHR0cs7PC8vj9WrV2NnZ0dgYCBycnKCBQw9D6OysnKfbPCgB3sWExODk5OTEMqVkBi2bdtGZWUlBQUFlJaWis8/YsQI5s2bJ8R8JYK8ixcvRlZWVlSlEi/vwsJCvv32W+rq6li3bh0uLi68efOGwMBAJkyYILrJX331FeHh4Wzfvp1hw4YRFBTEgwcPyMrKYtWqVTg6Ov4rK7x/6q5dvXqV4cOHi8/Y1NSEtrY2J06c+C8ZroaGBt6+fcurV6+Ezq2cnByurq7MmDEDBQUFFi5cyI0bN5g1axZPnz6lra2N3bt3M2/ePCIiIgQZ5q+//hKM5n379v1X8irBcTo7O7N06VJ+/PHHD17fgAEDaG9vJyMjg5SUFBwcHBg+fDh2dnZ0dnby5MkTnjx5QktLi7A3lkjeSATgIyMj2b9/v8Bx/vrrr1y7do2ff/4ZAwMDhg8fTn5+PhMnTuTy5ctUVFTw888/U11dzWeffSZsFP9ZPC1YsICvv/4aLS0tdu3axaZNm3j8+DGPHz8mNDS0T8mrjY0Nn3/+OZ9++qlg7+bn55OXlyekgiZPniykykpKSpg3bx4XL14UYz57e3sePnxIcnIynp6e7Ny5E319fW7evEl3d7cYQ0uwfC0tLfz555+sWbOGZcuWoaCgQGJiIocPH8bd3Z0BAwYAPb7ghw4dYsqUKRw4cID29naePXv2wWuTxOHDh7GxsSEkJISqqiru378vOoEPHjxg06ZNrFixQhwYf//9N7/++ivffPMNmzdvJiYmhk8++YSioiLmz5/P7t27UVRU5N69e6SlpWFpacnXX3/NsGHDKCoqor6+XmgO3rlzRySuhoaGvYpEyT2VjGOhB49/8+bNPq1PosELCGtQiXIB9CRp27dv5/z589jY2PDJJ58wb948vL29SUxMZNKkSRw4cIAbN26gr6+PqqqqIKqqqKjQ1taGra0tBw8epKysjFu3bqGlpcXRo0e5evUqy5YtE4ou3377LYGBgaLgl+gzSxQmxo4di6enZ5/vocRAYseOHRw6dIh58+axceNG9PT0xM+2bdtGeHg427ZtIz09na1btzJx4kQKCgp4+fIllZWVgmVvbW2NtrY2KSkpokM9aNAgHj58SHl5Ob///rvAsGdkZAi8aVJSEp999pnohA4dOhRNTU2+/vprpKWlRWLUV0OUAQMGsHz58l544LKyMnbu3Cmc+Q4fPkxLS4toYPj4+BAREcG2bdtoa2sT75mTk8PatWuxtLRkyJAhnD17Vkw6N2zYwI0bNzA0NEROTo6uri4mTJjA3LlzWb16NYcPH8bb21vIJwYGBqKqqsrVq1dJTU0lJCTkXyWukpCTk+PgwYOcPHmSkSNH9jIbkjiTvXjxgo0bNzJixAg2b96Mubm5uM81NTXo6elhYGCAk5OTcKgaO3YsmpqadHZ2sn79eu7cucOaNWt49eoVW7duxcLCgs7OTkpKSqitrcXCwoKFCxcyfvx4TExMKC4uJiwsDC8vL0aMGMHLly/7xB2QRFJSEsOHD0dVVZWnT59y9+5dfH19WbFiBf7+/ujo6NDZ2YmWlhbTp0/nxIkT7N69m82bN2NkZMTx48dRVFRk0qRJvfZ8e3t7GhsbRfKqoKBAV1cXhoaGzJgxg++//14UhQMHDuTHH39EQUGB6upqcnJyBD9i8eLFvH//Xsi49dVFzMbGBgsLC6ZPn863337L0aNHheEK9CS3u3fvxsjISOQfcnJyREZGsmDBAlxcXAgMDCQkJEQozpibm1NUVMTRo0fp168fI0eOFDnDmjVrUFdXR1FRUWC4JbF9+3b+/vtvnJycWLx4Mf7+/piYmCAvL8/NmzcpLCwkLS3tf11Tn5NXAwMDDAwMqKys5NKlSzx79oycnBxmzpwp2sf79++noqICIyMjKisrqa+vJzQ0lLq6OsFE27NnD87OzmhoaNDa2oq8vDwKCgoMGzaMiRMniuQ3JSWFhoYGfH19hShxREQEFy9exMzMjLlz56KsrExOTg6nT58WLkCdnZ3MmjWLoUOH9ml9VVVVwsc4NzeXkpIS8vPz0dfXZ/Dgwejo6BAfH8/q1asxNDQUbl5GRkYcOnRIJLajR48Wo4u2tjZiYmKoq6vDyckJBwcHOjs7ycjI4IcffmDVqlVYWlqio6NDeno6nZ2duLu7CxyeRCpKS0tLXBfJmLAvHcl/Rl1dHYWFhSgoKIgRSWZmJp2dndjb22NiYkJUVBS//fYb3t7efP7553R3dxMREcHjx4+BHmxddnY2s2fPJiAggIkTJ/Lq1StevHhBTk4OxsbGhIWFMW/ePKAH2+Ll5YWLiwuNjY1ER0czaNAgzMzMKCkp6VVoODs788svv6ChoSG8qz804uPj8fDwQFdXF11dXXR0dEQHqK2tDW1tbaZNm0Z5eTmvX78W2D6JK5empiZNTU1cuXIFLy8vTExMaGtrExuUn5+fOAiuXLnCvHnzGDZsGDNnzsTKyoqSkhJmzpyJg4ODwAE5Ozv3Im588cUXyMrK8scff7B69er/YiP/b6Gvr8/Lly/Jyclh4MCB2NvbU1lZyZ9//kliYiIff/wxK1euRFVVld9++w1VVVV++uknxo4dy549eygsLERPT4+pU6diZmYmVDUKCwuFnIuxsTH+/v40Njbi7+9PSkoKSkpKwu62srKSW7duMW3aNAYPHkxFRQWZmZlkZmbS2NhIfHw8xcXFWFtbM3r0aGJjY/u0Rg0NDZ4/f46NjY3Q55WYLWhoaKCvr8/WrVspLy/n888/Z8KECeTk5IgRtYaGBsrKyrS2tgr7YughATY2NiIlJSW6jnp6esyfP599+/YxZ84cYmNj0dTUZMCAAXzxxRdYWVnR3t5OZ2enOGz+mbxqaGhgbGzcJ8LPwoULxe/r6ur2IqBK/i4oKAhlZWXk5eWpqKjg6NGjeHt7U15ejq+vL+rq6tTU1KCvr09XV1cvfdN/xt27d/nPf/5DWFgYw4cPZ/z48WzcuJGGhgb09PSERqXk4JWXlyczM5MrV65QU1PTC9/el5AcZg4ODigoKPDu3TtKSkpE4d/U1ISysjKjR4+mvr6eM2fOsGrVKr744gvB2v/ll1/w8/PD09NTcA709fVJSkqirKyM+vp64fR348YNhgwZgrq6ei+2d1lZGVJSUhQVFXH79m2srKywtrbG0dFRjNmBPsssWVpaIiMj0wtSUVFRQW5uLtevX+f169fs3bsXd3d3Ll68SHFxMR0dHfz555+0tbUhJSVFYGAgmpqawlTn6tWrtLa2MmrUKDGyDw0NJTU1lcbGRsrLywUOPC8vj4EDByIjI4OFhQW5ubmC/d7V1cXJkyfR19fniy++oK2tjZ07d/ZqAn1ISDCJ3t7eJCUlkZeXx5s3b9DQ0KCiogJtbW38/PzEmfHs2TM8PT159uwZhYWFzJo1i87OTi5evEhoaGgvG94rV66gra2NmZkZqqqqGBgY0Nrayrt379iwYQMzZ85k6tSpODo6UlpaSkpKChYWFuJsNTU1ZerUqRQXF/PgwQMsLS359ttve3FlPiQSEhIYN24cjo6ODB8+HB0dHZqbm4mNjRVclH+GpqamcIrT0dHB0NCQiooKamtr0dTUZPDgwcjLy+Pu7i7c1qqrq7l79y6pqam8fPmS27dvY21tjYuLCyNGjMDHxwcXFxe+++47cnNz+eqrr4AefkR2djZv375l0qRJBAQEkJSU1Etf+0NCVlYWJycnqqurRWf00aNH4hn57LPPxGtKdOo9PDzE9O3SpUu8evVKdKhHjx5NfHw8e/fupbGxkbCwMMrKysjPzxeE68TERB4/foy/vz/Tp08nIyOD33//nZcvX7Jjxw6Cg4Npb2/nzZs3mJubY2xsjJGR0Qfdvz4nrxKmYEdHh5CTsre354cffsDAwIC2tjamTZvGtWvXUFVVRVVVlbKyMl68eIGlpSX29vakpaVRUVFBU1MTAwcOFML4Pj4+qKmpic07NTWVGTNm0NLSIiSLZGVlOXr0KGVlZb1En0+fPs3Ro0eFPa2Pjw8aGhp9FvFPT09n0aJFZGdnc+bMGdrb22lvbxfgfgkz+927d7x7907gXZqamiguLqa4uFhgWiRfbonWrYaGBn5+flhYWPDxxx+zZs0asrOziY+PZ/ny5SQnJ7N//34cHBx6jQ2/+eYb0aGRHDLd3d1i/NvXKC8vJzo6GicnJwIDA3F0dKSmpobY2Fi0tbWFdNC2bdu4e/cuurq6yMnJUVBQwPv374GeMYPERSkxMRE1NTXc3NzYvHkzJ0+eJDIykiFDhogK/cmTJxQXF/PJJ5/Q2dkpYBbXr18XgtqdnZ00Njby5s0bpKWl/7Wf+vXr13F1dUVPTw9dXV2B7ZSQAAIDAwWBQbJhdnV1CQ9pyUEiYSRXVVWJ7siBAwcoKChg2bJlPH/+nPPnz3Pu3DksLCxYu3Yt6urqgphoaWkpVDPs7OyQk5OjurqauLg4zMzMWLp0Kd3d3fz444/88ccffRoJNTQ0oK6ujqamJtnZ2djb21NbW8vdu3cpKSlBWlqaWbNmUVNTQ0VFBe3t7Tg7O+Pj44Ompibr16+noaGB1atXM3HiRLq7u4mPj+fkyZNUVVUhJSXFzZs3cXZ2xszMDCcnJ4KCgrCxsRFj2j179pCXl8fWrVvFZhUZGUlHRweenp5Cngr4V/AWiZuWlpYWHh4eLF68mD///JMXL16wadMm9uzZw6xZs9ixYwf9+vUjMDCQgIAAoadpZWXFli1bePPmTS+b3q6uLqZNm8bjx485deoUzs7ONDU1kZubK7SB3dzc2LhxI/369SMgIEAkdXJycuI57erqEvbDjo6OWFlZ9eow/G9ha2srXvf58+ccPnwYfX198R1vb28nICBAdMAlUk4///wzEydO5JdffhEFX0dHBwoKCkIKDP5nwnL16lX27t1LVlYWcnJytLW18fLlS0EeLCsrIzExsdc1kljwOjg4CJWMf+qUfmg0NzfT2dnJxIkTKSkpYevWrSxatIirV69iY2ODsrIyhYWFmJiYMH36dPLz89myZQvW1tYsWbJEkDUTExPJy8sjPz8fOzs75OXlcXFxoaysjNjYWJSUlFBTU6OiooLbt28TFBTUC+YwaNAgDh06xPXr16mrq6OoqAhra2sqKyt5/vw5WlpahIaG9tnprqGhQSRr/fr1o7CwkNbWVkJDQykpKSEzM5O7d+/y/v17tm/fLrgc7u7uBAUFIScnh4WFBdOmTSMkJISuri7WrVvHoUOHMDIyEt1uFxcXZs+eTXR0NLW1taioqAjVj/HjxzN37lwA7ty5w6FDh7hy5Qrd3d28fPmSQYMGUV5eTkZGBteuXePt27d9KpavX7/OkiVL6N+/P8bGxoSGhvLo0SO6urrQ0NAQ+1ldXR0eHh7U1dVx7do1Ll26hIqKCoMHD6auro4bN27w/v175syZA/QkNhJ3OQnMYfjw4axevZqoqCg2btyIrKysgH00NzeTl5dHc3Oz0Flvb2/HyMiIy5cv88cffzBv3jy+++67Prv5SZyydHR0mDx5MpMnT6akpITIyEiSk5MxNDTsVaBIJltKSkrU1NQwadIkYULT2trKgAEDKC8vF2emhAQJPaL8aWlpQolo2bJlAr726tUr4uPjsbGxwd7eXlwniU7ulStXiI2NFbbufY1FixaxatUq9PT0ePHiBUuWLBHTSYk+vYS0am5uzvLly5k9ezaPHj3ip59+4tatW+Tl5TF06FBmz56Nra0td+/eRVlZGR0dHUpLS8nNzcXExARZWVnu37+PlpYWM2bMYPr06bx7946oqCjhcAkIrdjCwkIxEfkQl7Q+J69Xr14lKCgIAwMD5s2bJxxrampqMDAwQF5enq+//ppRo0aJLmZzczP/+c9/ePToEevXr8fFxUW4YcyfPx89PT3KysqIjo7m2rVrxMbG4urqSlZWlhCNlmzy0tLSrFmzBgsLC9zc3ACESLS8vDyffvopw4cPx9nZ+YP8cf/PkHROKioqSElJEbilyspKdu/ezaVLl3B1dWX9+vVoaWlhaGhIUlISjo6OjBgxgjt37vDq1SvKysq4e/cu+/fvF5aoErIV9CShH330EfLy8ixduhQZGRlsbGwICwsTLiYSu1JJ/FMTsq2t7b8q/g+NCxcukJCQgLe3t+hyS0Dh8fHx7Ny5k4aGBnx8fJgyZYqQfXr69ClSUlJs2LCBCRMm0NTUhJOTE11dXXz77bdUV1ezfPlyqqqqhCTVy5cvCQ8P58SJE0DPgZ2dnU1xcTFycnK91nf9+nVu3rxJQkIC2trajB07loULF/YZa+fm5iZEjqWkpJCRkSEpKYmjR48yfvx4goOD+fHHH4mNjeU///kP1tbWQgZET0+PhIQEXr58yeDBg5k6dSry8vK8e/cO6Bkruri4COvOxYsXC9z2tm3bmDlzJtbW1ly+fJlXr17x9ddfExwcTFlZGSYmJqKiNjMz48yZM6xfvx49PT3q6uoEu/NDQkFBgTNnzmBoaCiS3oqKCkpKSpCXl2fDhg3o6OjQ1tbGN998g7S0tHhWAgMDWbhwIQkJCQLXlJWVxc6dOykqKuLLL78UG0pFRQXW1tZC9sfDw4OjR49y69YtNDU1kZWVZcGCBXz++efMnz8fU1NTYa/s5uYmtHIPHjzYix3+IfH48WOmTp0qNrnhw4djbGwsSFOqqqps3bpV2KdKQlFRkdraWqKiopCVlWXlypUYGhpSVlYmfOI3b95M//792bJlC+np6cydO5c1a9YITVc7OztSUlL4448/CA8PZ+PGjUI+RzLCVFNTE9huyT3pSzx9+pTZs2fz/PlzVqxYQU5ODsuWLRPdNglhy9TUlG3bttG/f3/Wrl3L06dP8fHx6TWpkOyPd+7cYd++fTQ1NTFz5kwmT56Mj48PkyZNwsbGBh8fH6SlpXs9a69eveLbb79l/vz5vdyJxo8fz6hRo4QhRl8759CjTnP37l2mTp1KaGiokEc8fPiwUBgxMTEhLy+P5ORkTE1N+eGHHygoKOC7777DxcWF9evXc/HiRXJycsjJySErKwt3d3dxnbq6uliwYAGbNm2ivLyckpISgRWVhIyMDP7+/ri5uQn/9O7ubtra2rh8+TIPHjzg559/FonVh0Zzc7Movu/du0deXp4QqB83bhxSUlK4u7sTHh4uEtfQ0FAOHz4sfOyzsrIEREVStFtbW4vGS319vTDqGTRoEEVFRXR0dGBgYICysjIZGRkiCbawsKCjo4MbN26gqqqKlpYWb968YcqUKYwdO5Yvv/ySW7du9WmNBQUFYu8wNTUlLCyMZ8+eUVdXx/DhwykrK2PFihWoqKhw9OhRysvLWb16NdXV1cyYMQMLCwuqqqoYPHgwN2/exN/fn+DgYPr168dXX33FiRMnxGdycXHB29sbb29v9PX1hTHGtWvXePz4MWPHjsXLy0sQ87q7u5kxYwa2traC9PtvIiwsDDU1NVFsqaqqYmhoyPjx43n9+jWXL1/GxcUFGxsbOjs78fLywtbWlj179vDy5UtmzpwpHOoyMjK4ffs28fHxQj/V19eXzs5OgoODCQkJEU0feXl5oa196tQpHj16xOLFi5kwYQIA3377LeHh4UyZMoXt27eTkJBASkoKmpqaQme9LyGZzHR3d3Pu3DlSUlIwNDTk119/xdbWlmPHjvHs2TMyMzNxdnZGVVWVN2/eCBviTz/9lObmZrS1tcWE69tvv0VdXV007ezs7MjJyaGqqkpAJqKiokhNTcXX15dTp05x7do1Jk6cyLRp05g/fz6DBg0iLy+PsrIyamtrP2g60OfkNT09nbKyMvr169erQ3rgwAHCwsKEFqa3t3cvpn9JSQlnz56lvLwcAwMDVq5cSVZWFjExMQQEBGBubk5sbCwJCQmCRKSrq8vAgQPp37+/SEZUVFQICgqioaGB9PR0FBUVKSgoQE9Pj3HjxrF161ZUVFQoKysjKiqqz611iYyElJQUwcHBjB8/Hn19fSwtLfHx8SEqKgoHBwe++OILtLW1KS8v5+LFi6irq/Ppp5+ir69Pbm4uKSkp4oYWFBRQW1uLra2tICGoqqpy9OhR0VksLy9HVlZWVGCdnZ2Ul5cTGRmJtLQ0dnZ2vcbnkrFtYWFhX28h0NM5lQh8Q8+BL9HUe/DgAc3NzfTr1090MLq7u7GysmL06NFYW1vT1NREe3s7SkpKwm0rOzuboqIiFBUVUVNTo7KykmfPnnHr1i3hxiUnJydGcz4+PsL/GBAe9jExMZiZmeHj40NkZGSf2bGysrJkZGT0quCio6O5d+8e7u7udHV18f79e8LDw/noo4+wtrZGS0tLbPwnT54kIiJC+Dl3dXVhaWlJ//79WbVqFZ6enly+fJlnz57Rv39/Jk2axKFDh9i9ezfl5eWcOHGC1tZW3r9/j6qqKsrKysIy0N7eHmlpad6+fSvIahJYRV+6BRIXrOrqaoqKijA2NsbMzAx/f38mT54suhXa2toCE5uYmEhLSwtmZmZMnjwZZ2dn4uLiuHDhgpB7GjRoEGFhYdy+fZtLly4RHh7OgAEDuH79OikpKeLAbGhoQFZWlo6ODgoKCnj16hVjxozB1taWqVOnUlpaKhx90tPTiYiI6DOJQkdHR+j+VVdXC+e81tZW0tPTqa2txcHBAVdXV6qrq4mKisLU1BRLS0saGho4cuQIdXV17NmzR2AFa2pq6OzsFIYREpxweXk5Z86cwcPDg+bmZqSlpYWpw5s3b3j+/LnYo6ytrYXd4z+jr4YhEqWP1NRUmpqacHZ2RllZmZiYGHx9fTExMRHwLAnWLygoqJc8Xk5ODs3NzUhJSdHW1kZdXR1lZWW8fv1aWG5qaWmxceNGIfgvKysr3Mba29upqKjg8uXLtLW1ERQUhJqaGvX19fj7+4ukODc3919ZUTc2NpKfny8KcXNzc6qrqzEyMuLFixfIycnh6+uLjIwML168YMSIEcyYMYOjR49y+fJlkUxKDC4kxNX4+HhcXFywtramubkZfX19NDU1xYEKPUlXZmamODva2trEdwQQWrcSSa7k5GQyMzP7tL6amhp8fHyEO9+pU6fw8/Nj4sSJyMjIUF5ejoaGBp6engwZMgQjIyNOnz4tftfAwEBwOqCneSIppCV6pWpqaqipqdHd3U17ezuGhoa9rKQlhNbdu3dTW1tLeno67e3teHp60tLSQkREBNnZ2YSGhjJ58mSCgoL45ptvPniNrq6utLe3IysrS2VlJZ988gnBwcE0Nzfj4+NDU1MT//nPf8jJyWHBggV0dnaKRL27u1u4/uno6GBvb09ubi4nT55EXV2dL7/8koCAAGbMmMHTp0/F8y5RFpLcx2XLllFYWCgk/SRaxC0tLcjIyDBs2DDWrl2Ltrb2vzLukTh2Ssh2EikzdXV1ZGVlqa6uRlVVtZeqiZqaGrGxsYSHh4vP2t3dLdQuJMZNurq6tLW1YWxszJAhQ8RkJTQ0lM7OTkHmbWxsREVFpVdDKj09nby8PGGq4+/vT319PRUVFX3igUikCyUuaMXFxcjIyGBnZ8eCBQsYOXIkeXl53L17l2vXrqGoqIipqSklJSXcuHGDEydO8PHHH7Np0yagRyVg69atLF26lMDAQGpra3n06BGOjo64ubmRlpZGQ0MD7u7uZGdnc/DgQaCHM7Vv3z48PDw4duwYe/fuxcrKipEjR2JpaUlMTEwvTdv/V/Q5edXU1GTr1q3U1dWhp6cn2POSSkVBQYHNmzdTV1cnJBaioqKYMGEC7u7uzJ8/n9LSUv766y+Sk5NZtWoV8+fPZ/PmzTg4OAjwu5ycHGZmZqJTFx0djZKSEvr6+vz888+cPXuWCRMmiM6tRPZFYlP70Ucf8fjxYwIDA0WH9kNi2rRp4qZKDhPoUTeQaL++f/+e2NhYhg0bRnd3NwUFBeTk5PDRRx9x6tQpTp8+zebNm5k6dSpHjx5l8+bNnDt3TmgKVlRU8MMPP4jO8KVLlygsLMTDw0McTJKx9r59+3j58iVr165l/fr1vT7ru3fvevldf2iMGzcODQ2NXsoMEq9sNzc3VqxYwatXr7h+/TpHjx5l0KBBLF++nCVLluDl5cW3337LvXv3MDAwwMfHBxMTEwICAti4cSPBwcHk5OSgoaEhOlOdnZ1oaGggKyvLJ598goODAydOnKCsrEwYScTExODu7s6mTZs4duwYDg4OzJw5k7Nnz3Lw4MH/0gv8f0V4eDjPnv1/7L1nWJXX2u/7m/TemfSOdAQUKRbEXtFgb9HYktiNJhp7jLEmajTGRJNoYozG3nsXFUUUQaT3Jr1I7+cD+xlb3vUWydnn2nu/x/u68kHXAueY43nGuMu/PCQkJAQjIyNev34t7P4kbc6ff/6ZPn36EBkZSWNjo2DKS4zZ1NRUYYU4dOhQPv30U7744guMjIxQU1OjsbGRR48eceHCBZSVlYWWrZSYz5gxQ+j3ZWVl4e3tjaWlJRoaGixYsKBdN+OfhJ+fH7m5uWzfvp3CwkLWrFlD79692bx5syhI6urqRAHZ1NTElStXSEhIIDg4mJEjR+Ln5yfUQnR1dVm5ciXa2trcuXOHgwcP8urVK7Zv346Ojo7o1L1584b58+cLokhFRQWnTp2ie/fuPHjwACsrK+bPnw+0Jcvh4eG4ubnxww8/dJhkILnk5OTkkJ+fLzrMCgoKwqpy7dq15ObmsmrVKjw9PUUxJ0lNPXnyhJ9++onFixfj4uLC6tWruX37NkuXLuXhw4eiY/vq1Su+/fZbBg4ciIGBAV26dMHc3JxNmzbx7Nkzbt68yZw5c8jPz2fv3r3tkleJ5NTR/QwODiYpKUl0I+Li4oiKiuL8+fPo6+vj4ODA6dOn+euvv3j8+DG3bt3C3d2dWbNmia5rbGwsP/zwA9evX8fPz49du3bxxRdfMG3atH/pXsTFxZGYmEj//v3p06cPN2/eRE1Njb///puJEyfy6tUriouL0dLSoqysDAMDA/F+mpiY/Id42v8sJF1J6RKTyWSEhoYyb948Tpw4werVq1m1ahUzZ87k888/F80GS0tLRo8ejaurK48fP6ampgZ1dXWRzEri+MOHD2fIkCHcvHlTTFSkTugvv/zC5s2bUVBQQFtbm7q6OqZNm8aePXvEnh86dAhHR0fWrFlDQUEB27dv79D66urqOHz4sJgKSDqWzc3NhIeHM3PmTLp27cr06dPZsGGDKMZiY2O5fPkya9aswdvbux0s5cSJEyQnJ4sJpxQFBQVs3ryZxsZG9uzZI2xt4+LiUFVVRV1dXYx8p0+fzpIlS/j6668BhLJPc3PzO41k346hQ4fS0tIinNokDLpE4qyrq2Pt2rWcOXOGOXPmUFNTI9yVjh49SklJCa9fvyYyMpKFCxcyZcoU9u7dy7lz5/D19WXgwIEcOHCA69ev8+DBA3788UeuXr1Knz59RNdaeq/fFub38/NDTU0NNTU1VFRU+OSTT6iurhbJf0ejrq5OKJzI5XJqampISEigtbWVoUOHtiuMpHBxcRGj7pKSEnbt2sWJEydQU1Pj8OHDdO7cmcWLF3P+/HkCAgLIyMjg77//FgVic3Mz7u7ujBs3jjlz5nDx4kUWLFjA33//zaFDh/jzzz85d+4cGhoaIrnV1tbusGHIsWPHSExMZNiwYYIQP3PmTEJDQ8nNzeXrr78mISGBzMxMzMzMyM/P58WLF/j4+KCtrU1LS4so7OLi4ti8eTPQ1vRatmwZly9fZsaMGSxevJjNmzcjl8tpbW3F3Ny8XY6SkZHBli1bmD17NmFhYcybN0/Irbm6ugpddjc3N86ePfufrqnDyWtKSgpVVVVCmNfDwwOZTEb//v1xdXUVtnFRUVE4OjrSo0cPsrKy8Pf3x9bWlt69e4uOjSRia2pqKqRdVFRUBMYO2l7yffv2icPUyMiI+/fvk5qaio6ODvb29jQ1NVFSUoKmpibNzc0kJSVRX18vpJw6wsiXRlGSzZzUvQkJCcHJyQkjIyPq6uoEIQXa8Ev6+vpoaWnR0tJCcnIymZmZVFVVYWtrK8aJbm5ulJaW8vjxYzZs2CAA6A8ePMDd3V3Ij0HbhW1ubk7//v2FpAu0CaZXVVXRrVs3TE1NMTIyIiMjo0N7aGZmRlFRkcAsyWQycfEqKipib28vbClTUlLIyckRSVlAQAAuLi7CQ/v69ev4+/szY8YM/P39SUhIoLi4mDFjxogxTOfOnencuTPJycm4ubnh6enJuHHjhE/548eP2b9/P/7+/oLoFBsbK9ycJBmOdw0XFxfkcrkY8+ro6NCpUydycnJITk7m9evXmJmZMW3aNA4ePMidO3fQ0NBgyJAh1NbWUl5ejqmpKcHBwaipqfHw4UPMzc1xdXUVQu1eXl6sXr2affv2cefOHcrLywkODiY0NJSWlhYMDAwwNjbm1KlTAv/r7e2Nubk5fn5+jB07VnznEgmxI1FSUkJxcTHm5uZoaWkJPFVwcLCQHZKe5QsXLnDw4EHi4+NxdHSktraW4uJiYUupoaGBgoKC6NR8/fXXKCoqMn36dK5fv05MTAxKSkrMmTOHYcOG4e3tTVpaGsHBwVRWVlJfX09RURGNjY3cvHmTmpoaAgMDefPmDRs2bKBfv37/CIeWk5NDUVERzc3NFBcXc+DAATFhkfb10KFDVFdXM2nSJPz8/FBVVaW5uRkTExM++eQT6uvruXTpEhoaGuzYsQNoUw+QfMHV1dX59NNPKS8v5+7du1RXV7Ny5UpKS0vFlMXU1BRTU1OGDBlCY2MjeXl5/PDDD6ipqWFnZ0fPnj1RUlKiuLi4Q+uzs7Nrp1ErdUbs7e25d+8eZ8+eZenSpUybNg1jY2PmzJnD33//zYkTJ9i6dSuDBw+mtbWV69evA23j/4cPH6KkpCTw9r///jv+/v7cuXOHwsJCevTogZaWFtnZ2Tx58gRfX1+8vb1ZvHgxcrlcjNMVFRVFIitBb2JjYzu0Pmg7TyVokJ6enoBKRUZGitGkBKVSV1fnzZs34nzV0NCgsLAQS0tL5s2bx9GjR3n48CGffPIJ06ZNY/369airqzNmzBjS09M5c+YMly9fFsmru7s7AwcOJDc3l9raWlRUVITttqRWcPv2baZMmYKJiQmmpqa8evXqnZjOUri7uxMZGcm9e/fIycmhe/fu9O3bV7jfJSUlkZSUhImJCTt37gRg27ZtnD9/XnTX/60yz9ChQ6mqqkIul1NXV8fr16+xs7OjpaWFs2fPUl5ezscff0xQUBB5eXmYmZkJS803b95gamrKlClT8PDwEFAdSTqsurq6ww5U/97kS3J4qq6uFlhVExMT0tPTqaqqYujQocLI4MKFCwIv7efnh6enJ3l5eURERPDs2TMGDhyIo6MjpaWlXL58WRCUJSOZnTt3YmFhwdKlS3F0dKSsrIxLly7x+PFjzM3NGTJkCD4+PtTV1XH//n1RQHQ01NXVcXFxITMzEy0tLRoaGqiqqsLZ2RkzMzMeP37Mq1ev6NOnj9Cal7TMb926RU5ODjdu3AAQkouvXr0iPDwcQODMZTKZgKH16NGDsWPHIpfLyc7OJjIyEmtra8zMzKiqqkJPT49Ro0aRk5NDVFSUMH3pqHOohOmX7HqlBgDA6dOn+eabb2hsbMTFxYVly5Zx7949/v77b86dOye03iUisI2NDfPnzyczMxMlJSWqqqowMzNj7NixgiQpmR1oa2sLyVMXFxe8vb1FgSU5YKakpLBlyxYmTJiApaWl4E/8V9Hh5LW+vp7Vq1cLyQSZTEZpaamomFtaWhg5ciRVVVXcvn0bR0dHRo8ejbKyMsXFxezYsUP8jJGRET/99BOmpqY0NzeTmJjIsWPHqK6u5uuvv8be3p7Vq1dz7tw5QWAyMzPjgw8+YNWqVfj5+SGTycjOzhbasdAmvXXt2jV0dHSor6/vEImirq4OVVVVZDIZT58+ZdWqVVhaWgo5nujoaJycnFBWVub69eu0trYyfPhwYWxw+PBhLly4gKamJvr6+pw6dYrHjx9jZGTEmDFjUFNTIyEhgRcvXjBv3jxaW1uxtLRkxIgRggH49OlTCgoK6N69O/Pnz6e5uVlcHkeOHMHU1BR3d3csLS2xsbERTNt3jTt37nDt2jX69u3bDuMG8OzZM6KjowkMDGTNmjVMmzaN+vr6dpaCu3bt4tNPP+Xy5cu8evWK7t274+/vT1JSEosXL8bY2JhffvkFJSUlVFRUqK6uRkVFhYqKCs6dO0dmZma7g1XqjCooKDBq1CicnZ2Jj4/np59+olevXly6dIl58+a98/pGjhyJtbW1IGppamri6enJo0ePqK2tJT09XTDRp0+fTkZGhhiH+Pv709TUhJ2dHZs2bUJFRYUff/xRGEG4u7uLTlv37t3FxaqoqMiXX37JoEGDaGho4OnTp5SWlmJiYkJ5eTnHjx/n+vXrDBo0CFtb23ZdOnV1de7cudMhu7/s7Gw8PDzw8vKisbGx3WGmpaUlCGYpKSl89dVXPH/+HFNTU/z9/YW3uxSdOnUSP5+QkCBICyNHjmT16tVs3boVT09PPv74Yzw8PDh//jzh4eEsWrSIN2/eCDmZlStXcvbsWfbs2cOlS5dQV1fnxYsX/2Ig8K7xxRdfoKOjw7hx49DQ0OD27du0tLTg6+uLmZkZ9fX1ApsqFYhqamo8ePAAHR0dpk+fjouLCzt37mxHGLt69Sp6enqUl5cTFBQkbFrnzp2LXC7Hy8uLmzdvMnPmTMzNzVm2bBmDBw8Wcm4rV65k4cKFQJvnuL+/P83NzR2WA4uKihIdXKl4HzJkCBoaGuJCqa+vZ+XKlQwdOpTVq1ezdOlSYmJiWLZsGZ07d8bOzg5TU1OBf1u/fr2weK2uruaTTz7BxcUFPz8/goODmTRpEqqqqvz555+sWrWK3r17880337Bx40bU1NTEc+ni4tJOa/H+/fvcvXu3o1soEtTW1lb09fWZPXs2d+/eZevWrfj4+Ah5sbi4OOLj4/H09MTR0RENDQ0ePHhAQ0MD06ZNY9OmTRQUFHDgwAFsbW2Ry+WCsGNgYMD48ePJzc1FJpNx/vx5tLS06Ny5MwcOHKCqqkpMCqXu2eHDh7l9+zbQBntbs2YNM2bMYMGCBUKP8l3CyckJDw8P9u3bJ7CrUvLs4+PDihUr2Lx5s7DEfPjwIatXr8bV1ZWBAwdSVlbG06dPhRujpqYmK1euRFlZmaamJh49esSbN2/E+Wtqaoqampp4fxUVFRk+fDiampq8fPmSpKQknJycxPsswbLq6uooKyv7R9ap/15IZ6uGhoaY7nTu3Jlz584JV0SpqbVu3Tqio6MxMjKiqqqKixcvkpiYKJRbpEhMTBSFg62tLaNHj2bnzp2UlpayfPlycY//8ccf7N27l4iICExNTfH09BSW8hcvXuT169cdVqiRIj8/n6SkJIqKirCwsMDNzQ0jIyNqa2vZv38/8fHxuLm5ieQ1KSmJjIwM8vLycHNzw8vLCy0tLerq6li0aJEg10lhbGyMvr4+CQkJaGpqMn/+fPr27SumAhJRXOrQS1FeXo6mpqY4xzpqvtS3b1/09PQECeztkAyKoA0K0blzZ6EHLWnPDh8+nMLCQg4dOsTHH38spurl5eWoqanRo0cPAgICUFNTo6CggEOHDmFsbMzy5cvFs66rq8vw4cPR1tbm6NGjbN26FQMDA0aMGMGtW7dIS0tj06ZN77ymDievq1atauf7C+2ZxNXV1YwaNQpDQ0MSExPR0NAQF0tlZSXW1tY0NTXx4MED4uLisLOzo0+fPpiamuLj44NcLuf+/fs8fPgQDw8PVq1ahYKCAlevXuW3335jzJgxfPPNN+38ve/evSta4Y2NjSgrK4tE4G0nsHcNiWluYmLCnDlzaGxsJD09HWjT9ZMSye+//x4bGxuBWdTT00NfX58xY8ZgaGhIYGAgpaWlBAYGClxaXV0dwcHB9OvXj8rKSq5du0aPHj2YOnUqL1++ZMOGDdTW1jJs2DA0NDTQ09MjKSmJBw8eUFpaipubGyNHjkRDQ4Pjx49z+/btDo8rL1++THh4uADDQ9sD/Mcff/Ddd9/R0NDA/v37cXV1bedUIgljq6ur4+rqSmNjI87OzkLYvba2lqioqHaJblVVFREREYLlGhQUhJmZmRjjSQeYjo4OJiYm4tny8fFh48aN9OrVq8Mv6t27dzE1NcXLywtTU1PKysqoqKgQFb6Ojg63b9/Gy8sLKysrvL292b59O6mpqeIlb2pqEsWEJApvaWmJqqqqeLElG0BlZWU8PT0FXllFRQUDAwNGjRqFsrIySUlJREZGYmRkJBypIiIiOHHiBD179mTkyJHMnj1bkNreJSQSU3JyMtXV1e2YpxLLPDw8nI0bNxIbG0u3bt345JNP6NGjB87OzuI7ffToEUpKSnh4eFBZWUlJSQk9evSgT58+KCkpMXz4cHJyctDQ0ODq1atcunSJ2tpaevTogY+PD2VlZfTs2ZPg4GBsbW0xNTUViiTSHr79nHUkcnJyqKqqws3NjYkTJ/LZZ59x5MgRVqxYwaxZs+jSpQszZswgJSVFQAoSExNZu3YtLS0tHDlyhMDAQKytrUXSsnLlSn777TcmTJhASEiIcPqRGO/Kysrs2rVLaGxqamrSrVs3LCwsKCsr48KFC5iZmTFhwgT+/vtvYmNjqaqqoqioSCRD7xoREREcP34cJycnPvjgA3r27MmLFy84fvw42dnZfPHFF5iZmYnPNnv2bKytrfn444+pqKggKSmJXr16sXz5cv766y9evHhBZWUlysrKzJw5k8jISG7cuEFDQwPjx4+nU6dOgsTk4eHB7Nmz28GjWltbiY+Px8zMTJDxXrx4IdRdgoKCOiQFBm3dcUmZQSqo7O3t8fPzE9hT+J+6ztLlOmTIEGFnqqOjQ2hoKHv27MHNzY3Lly9z8OBB8XPNzc1CskhDQ4OYmBgePHhAS0sL/fr144MPPvgXZraEX5ek7R4/fszNmzfFO/+ukZiYiKenJxMnTqR79+7tIGqSYsOMGTNoaWlh6dKlyGQyli9fTteuXenTpw/q6upcuHCBadOmMXv2bHr27Mm9e/e4ePEi48ePx93dneTkZOLj48nMzMTX1xdXV1c6deoEICSLCgoKOHLkCGfOnKG+vp79+/ezZ88eMXqV1AIkgk5H4tGjR/z+++80NTUxcuRIhg4dKu7X/Px8IdcoTRnfJi6OHDmSxsZGFixYQH5+Ps+fP2fFihUcO3ZMKAxBWwfTysoKS0tLkpOTuXPnDk+ePMHJyYnPP/9cqNYUFhYSHR1NS0sLPXv2JCQkREhvubi4MHHiRJKTkwWM613jzp07/PLLLyQnJ6OqqopcLqd///5CxUFdXZ3g4GBhlZuamsqvv/6KkZERx48fJygoiPr6enFnxsXFERoaSl1dHR999BETJ07k5s2bnD59mtLSUr788kv69++Puro6jx49Ijc3l27duuHm5taOx/Ly5Ut++uknMjIyGDFihHi+OmpH7e3tjZWVlWimnDt3jtTUVGQyGRcuXBB7FRAQwN69e8nJyWHixIno6elx//59oX7x5ZdfIpPJWL16NYMHDxb43SNHjhAdHc2SJUtQUVHhxo0bwlTJ39+fhoYGLl++jIKCAvPnz8fPz49bt25hamoqkuW0tDS+++479u7d+07Fxz+SysrJyUFPT0/gLurr6wXzXU9PDz09PTw9PYmOjubNmzdCjNrGxoZjx47x/PlzcnNzOX36NPX19ezcuZPFixejra3N2LFjsba2FpVNt27dmDdvHnl5ecTExFBbW0tMTIyAC5w/f56ffvqJmpoaYVZQX19PQUEBUVFRYpz6rqGioiLIDx4eHnh4eFBfX8+JEydISEhg7NixaGpqCuFlMzMz3rx5g46ODmVlZYSEhPyLJqKNjQ1Xrlzht99+IyMjg169eokR5oYNGwRLLyYmhrCwMJqamnB1dcXW1pbjx4+LKsfExITZs2cL7Nn58+f566+/OkyEyc/Pp7i4uN1FJOmu1dbWYmtry927d1FWVmbAgAHiApL0JpuamkhLS6OmpgYrKytBiCguLsbY2JiGhgaioqIIDAykpaWF69evc/36dby8vBg3bhxdu3alpKSE+Ph47OzssLCwwMLCgoyMDBISEjAzM8PGxgYzMzMqKiooKirq0PpevXpFRkaGEDS/c+cONTU1TJw4EUVFRRobG0lMTCQ7OxsdHR0aGxsZO3YsXl5eKCoq4u3tLWR5rKys6N69OwEBAcIzfO/evRw+fJgePXrQv39/evToIbBn0uUrJbLQNrLJzc1FRUVF7F1hYaEg40n4044kr1I8f/6cZ8+e8fr1azG+lsh8UVFRpKamoqCgQN++fZk5cyaAMPxISEggLi5OOKu8zSJtbm6mtrYWNzc3Jk2axNGjR9m0aRP6+vqsX79edOzV1dXZu3cv0EaI6d69O3Z2doIAJnUo/wmxcNSoUbx8+VJgp8zNzUlOTmbixIm8efOG06dPs2DBAiIjI0XnUnK8iouLIyIigg8++EB0mzIzM3n8+DFqampMmDBB4Mt//fVXbt26RXNzMwUFBdy/fx+ALl26sGvXLiHHt2/fPk6fPs3333/PggUL8PT0pKioSJBETE1NycnJeef1WVhY8Pvvv3Pjxg0sLCywt7cnIyOD7777ju7du7NmzRpqamq4evUqnTt3plu3bgwaNIg9e/aQlpaGhYWFgHekp6eLCYy7uzsaGhooKSmho6PD7NmzhWuT1GEZMWIEI0aMaPd5JI3q/Px8goKCUFRUJCkpid9++43AwEDGjBkjMJTvGlIyGBcXJ+Sp7O3tWblyJYAYo0pngARRcnBwYPLkyVRXV/PixQu6deuGpaUl8+fPJysrSxQKnp6eqKqqcuvWLQ4dOkS/fv2wtrbm0aNHVFZWkp6eLvgJISEhmJqa0tTUxMSJEwU7PCkpiVevXnH8+HEBC3rXKCoqoqGhAR0dHczMzMSZAW3KD0+ePOGzzz6jqKiIkJAQOnfuLOBmUtTW1hIbG0tMTAyWlpZs2bKF8PBwJk2ahKGhIYaGhsTFxVFbW0ufPn0wMzMjPT0dQ0ND0Tiqq6sjIyODgoICFBUVuXnzpiCJLlq0SDgl3rx5s8M6r9HR0dy4cQNlZWU6deqEu7u7KEhVVFRQVFQU0ALpbJHIVJJF78CBA4V5gFwux9TUFHNz83aqMJJ4v1RsxsbGMmnSJNH1CwsLo6ioCDMzMyFnJSXx2dnZtLa24uLigoeHR4eT14SEBM6ePUtTUxPBwcGYm5tjZGQksMhVVVXtzpIff/yRLVu2MG/ePEGOTUpKwt/fH2VlZaF9KyWq1tbWJCYmkp+fL/Szu3XrxrVr1zh37hxeXl5CfWP9+vXs2LGDyZMnExUVxZkzZ6irqxNkLX19/Q6fp62traKAV1JSorS0VJAVMzIysLKy4ptvvsHCwoL+/fvz/PlzPv/8c7p168apU6dITk7G09OTyZMnC/WVAwcOcOXKFby8vHj9+jXbtm3DyMiIzz77jICAAMrKyqirqyMzM5NHjx7x5MkTCgoKRKE3atQo1NXV6dGjB25ubpw4cYJHjx4JIvh/RbbvcPLap08f5HI5a9asEQYA0qj93/5jXl5eXLlyhb///pvZs2ejqKjIhQsXOHr0KHK5XOAoJb1BaKvepMSltLSUDRs2kJiYyJgxY5gwYQLXr19n+fLlXL9+nQEDBoixyA8//EBISAgDBgwgKyuLGTNmYGpqyvbt2wXm5F2iuLgYuVzernpUVVVFU1OTP/74g7t37zJ//nycnZ3ZsGEDGhoaNDU1ERsbK+RA/m3Y2dnh6OjIihUrePPmTTsMp5+fH+Hh4Tx58oRhw4Zx5coV1qxZQ1lZGd7e3u2S7759+7bDH3XUDUYKCwsLrl+/LvAv0Nah9vDwIDQ0FH9/f9auXcvDhw9xc3OjqqqKY8eOMXToUDw8PLh58yZ3797F29sbOzs77t69KypiuVxORkYGP/zwAyYmJigrK5OXl4ednR3ffPMN3t7etLa2isRXW1ubxsZGzp49y9q1a9HT0+P333+noaGBZcuWUVxczCeffNKh9Y0ePVrY6JaXl1NfX4+urq44KMvKyujSpQvJycls2bIFFRUVlixZgqenJ83NzQwcOFC8QBIkRkNDg4KCAj7//HPBFh4xYoSQNJGgFC4uLixdulRYiQICH15QUEBaWproPK1duxZ7e3saGhq4du1ah9a4Z88ePvnkE8aPH09paSkLFy7E3t6eRYsWCQWAQYMGCfzb2bNn+eKLL4QW3+LFi6mqqmLFihWi+yFJl6mqqtLQ0EBdXR0GBgZYW1uLJHL58uUCQiOpHEhx+/Zt3N3d6datG7///ju3bt1ixowZFBYWCoxpR6JPnz4EBwe3m/QUFhYKTLMUlpaWfPXVV/j7+zN9+nR++uknLl68iFwuJyIigsOHD5OZmYmDgwNjx47Fw8Oj3VjO1NRUTDiioqLE30lMWikGDhyIt7e36PLOmjWL2tpaVFVVsbS0ZObMmaxfv/6d1zd58mQht3Ps2DHc3NwYMmQI3377LefPn2f58uU4OjpiamrK7du3uXjxIsbGxgQEBDB8+HDRPZewZVJkZWWxceNGZDIZQUFB4oIH/gWaIukrOjs7C6H4Q4cO8fTpU6ZOnYqfnx9ffvml6Kr/07h37x43btxg5MiRojEBbYWdJE+UkpLCd999x7Nnz1izZg1Tpkxh4sSJ5OfnY2JiQkREBGFhYQQFBeHt7c2jR49EYVFcXMybN2+4cuUKvr6+ODs7M27cOOzs7Pjqq6948uQJnTt3xtTUlPT0dAFBg7bzPTc3l8TERDFZe9eQFEokwlGvXr0YNWoUJSUlxMbGoqenJ/RflZSUiImJ4dmzZ3Tt2pXXr1/zxRdfoKyszI4dO8jLy2P27NmYmpqKdUjh5uYmJA2vXbvGH3/8QWBgIIsWLQLa7mBbW1v69++PoqIiFRUVKCkpMWTIEEFGhbZkXzKZeddoampi586dWFpa0tjYSHR0NJmZmfj7+/+LfrOSkhK5ubmiqC4qKkIul+Pt7S1cvrZt28b9+/exsrLi888/p1OnTiQmJvLnn39SXl7O9u3b6d27t7CBBbh48SLnz58nJCSEIUOGoKioiKmpKdXV1Vy6dIlff/2VpKQkunfvLrqlHYnevXuzb98+9PX1cXd3F1NUaDNpSEhIwMrKSuBELS0tUVFRISUlhf379/PkyRPMzMxYt24dgMDiT5w4EWtra54+fco333xDQEAAs2fPFudSt27dhAmDFDNmzODChQusXLmSvLw8evfuTc+ePenbty+NjY2Eh4d3uKFTWVkpoBxaWlpMnTpVaNPr6+tTVlaGhoYG+vr6bNy4ka+//ppTp06RnZ3N2LFj+frrr3nw4AFff/01zs7OfP/99xw8eJD169dz+vRpli5dioaGhmh8rFmzhlWrVmFqakpYWJjI03R1dbGwsCA3N5cnT54wYsQIHBwccHBwoLq6mqFDhwoZvDVr1vyna+pw8pqXl4dcLicyMhItLS1sbGyQy+WCHf/48WPhb9yrVy8qKyvZunWrsD+Ni4vDzMyMjz/+mDdv3ohOpBQNDQ1iVF1aWsrZs2dRV1dn1KhRmJiY8PjxY5KTk0lOTqampgYXFxfGjx8vhPelkXBeXh79+/dvN/Z+l5BEkCV5i8zMTJqamjAyMhLSQpL+pHSJQ1v3OSMjgytXrmBlZSWID4aGhqioqODr68usWbO4fPkyhYWF/Pnnn2L0bmJiQm1tLUpKSri7u6Ojo0NVVRXm5uZ88MEH3Lx5E21tbRYvXoydnR3V1dW8fv0aLy8vNm3aJGSo3jV8fHx4+fIlffr0AdouEBMTE1avXo2trS0xMTEoKCgQHBxM586defHihQDRV1VV8f3333Pt2jV8fX0FVrelpQUHBwcsLS25f/++wAsPGDBAjM9bW1uF/ebbY4Hc3FxycnJoaGgQShNFRUXk5uaioaHR4T2UiBmAcISqr68XTEYp8dHU1OTq1atYWFiIcUxtbW07sfYnT56QkZHBsGHDUFJSEp0ZqXsgCdbHxcURFhZGfHy8OOSMjY3p0qULGhoavH79WiQ6FRUVyOXydvZ8HYVGXLt2jZkzZ6KsrCyIDdAGxJeYnrq6utjZ2TFgwABaW1vJy8vD0NCQiooKgaOTiq3Lly/j6en5745rrK2tsbGxwc3NjY8//lj8vbm5OS0tLdy+fZv4+HhsbW2xtLREJpNhb29PVlYWd+7coba2Fjs7uw4fuGpqamIvMjIy2LZtG3l5eXz00Udoamqyb98+fH19CQsLY9++fVy+fBkdHR0sLS2xt7dHSUmJ8vJyQeh0cnJi2rRp4kIsKSkRov4ymQxXV1d0dXWJjo7G3Nyc169fc/nyZbF+iYzQ2Ngo9hDacOJAu4LlXULS9Hzz5g1RUVFUVFSgqqrKokWLBLNcXV2dXbt2CZm9a9euoaWlhZOTE69fv6aurk68M1JUV1cLCJaSkhJnzpwhKioKS0tLQXp1c3NDRUWFgoICKisrBfRIX19fdPbq6+uFY1FxcfE/MimQQklJCRsbGywsLHjy5AnPnj3Dx8dHEFGTk5PF55BMBAAxyYO2EX1qaiqTJ0/G1NSUoKAgioqKKCgowNXVFScnJ9LT08nOzmbUqFFCnSU+Pp5Xr14JYlRGRgbl5eU4OTnR0tLC48eP8fb2ZujQofTt25cTJ06887rOnz+Pp6cnqamplJSUUFFRQUFBAa2trQwaNAgNDQ0yMzNJTk5m+PDhFBUVkZycLKZPZ8+exdDQkPnz59PQ0ICCggKrVq3CxcWF2NhYjh07hq2trShC3rx5g1wux97enqioKJYtW4abmxu1tbUUFhbS1NSEra0tISEhBAYGinNQcrH8J6oRWlpaokiHtkK9vLyc3r1709rayvHjx0lLS2PAgAH4+vrS0NDA0aNHKS8vx9PTU7x/kntSZGQkV65cQU9PT5A4ExISkMvldOvWDVtbW2EGkp6ezrNnz7h37x5WVlYEBwfj4OBAS0sL0dHRnDhxgp07d1JXV4erqyuPHj0iKipK3G3vGm5ubsKFUUpWJVvosrIyFBQURONImthJyhRRUVGCeFZcXCxc1crKytDW1qa0tJQLFy7Q0tLCF198QVBQEFevXuXo0aOkp6fz+++/Y29vz9OnT1FXV8fDw4PAwEA2b96MkpIS33//vTAqgTY3sIqKig6tT8ImNzY2ihzHw8ND3FXXrl0T+scDBgzg1atXfP7556Snp+Po6MiYMWM4fPgwJ06c4KuvvmLRokUUFxfzzTffCAjV2xNgfX19mpqaqKqqwt7enokTJ7Jx40YaGhoIDw8nMTGR48eP8+rVK/T19YWmvBSSE+t/Fh1OXiMiItDX12fNmjVs27aNBQsW8NVXXwFw6dIl5s6dS21tLUOGDMHPzw8tLS0yMjL49ddfiYyMpLy8nCFDhrB06VK0tbUpLCxsB2hWU1OjrKwMfX199PX1mTZtGpqamlhYWNDU1IS1tbUgW0RFRdGrVy/RbTp//jybN2+mrKyMMWPGCE24joSamhrR0dFoamrS2tpKcnIy0Kb/umzZMsrKynj16hVRUVEoKSmJzpOZmRmdOnVi3bp1omsYEBBAfX09SUlJGBkZsX37dvr168e+ffu4ceMGLS0tWFtbM2TIEMFm/OWXX8jMzMTb25uEhAR8fHz48ccfaWxsFEnc06dPOXToEK6urqxYsaLDLG4fHx80NTXbaWgOGTIEXV1d1q9fz5YtW1iwYAHbtm0DEAeDZDggOYNERkbSqVMn+vXrh46ODhoaGpiZmdG5c2fWr1/P33//TUpKCmfPnqW5uZlVq1bh6OgoqlNow+6YmZnx0UcfMX78eJSUlITL2h9//CHwox2JI0eO8OLFC2Gb6uzsLIws7OzsxGWopqbGokWL2nXZ3/alBsQBqaqqygcffMCxY8f4/vvviYyMJDc3l+PHj5OSkiKSe2n0+ezZM5ydnXF3d0dFRYWkpCQsLS3F6EaSPZFi+PDhghT2LtG3b1+UlZWpqamhoKCA77//HjMzM5SVlYXqxrFjx4iOjmbChAkEBQVhbGxMbW0tGhoabN26VeAA161bx969e9m2bZvQhJUsAKEtyR87diytra2CrCbFq1evmD9/PiYmJhw6dEjIiE2YMIHXr1/z4sULbGxs6NatW4dl3W7fvo2TkxMqKirU1NTw8uVLzM3NGTFiBOHh4SxcuJCmpiaRcGdnZ/Phhx+ioqKCpaUlw4cPZ9iwYSxfvhwFBQXRQYe2IsXQ0FBYHt+8eZOvvvqKcePGsX37dmJjY7l69apghS9btgxtbW3q6+vJz88X/2ZsbCy//PILzc3NDBkypEPrkxy9bG1t6devnxjpA2IsW1tbS25uLtOmTcPe3p5Dhw7x6tUr8vLyyMrKQkdHB0dHRwoKCsTPurq6cujQIeEX/9dff6GqqoqSkhIWFhYEBweL0V3Pnj2prKxs9w4MGzaMpqamdu59/0RNQYrm5mZGjRrF2LFjqampYcOGDfz888/MmTNHJK8GBgaYm5vj5OREXl6eeE/efg4lVyVJPcbKyoqCggLS09MZN24c3t7erF27llevXiGTybh16xYGBgZMmDABa2trVFVViY2NFZbmf/75JwUFBTg7O/Pxxx/Ts2dPWlpaOpS8Hjx4kI8++ohp06axYMECysvLaWxsxMLCAn9/f6qrq/nrr7+4ceMGlpaWfPjhh4KkZ2JiwmeffcbBgwcZPnw448aN48iRIxgaGpKXl8enn34qSIBfffUVH374Ifr6+gwfPlwYDmzevBk9PT1cXFyEfbO9vT02NjbtpnSqqqpUVlYKPeGOxNskr6amJmxsbLCzs0NJSYkLFy4IGcOIiAjOnDlDZWUlubm59O3bl+3bt1NcXMz333/PyZMnmTZtGl988QVaWlrCorqyspKWlhY+/vhjmpqaWLp0KRUVFXz88cdkZ2cLF8YZM2aIxFtBQQF1dXUyMjKoq6ujd+/eHDlyhN9++421a9d2OHmVIikpiS1btnD16lW8vb1ZuHAhXbp0wdXVFXV1dSorKzl9+jQymYw+ffqgqKiIi4sLs2bNwsbGhpKSEmJiYlBTU8PU1FTgdyVJMGmSI91Bjx8/FhyNkydPkpuby549e7CxsaFnz54UFBRQWlpKaWmpuAc7deqElpZWhybKEsQzPj6eEydOCH7HrFmz0NDQoH///jx9+pSnT58KZ1Q/Pz8iIiLYtm0b165dE7Ak6VyQCuZjx47h4uIi8kBo02WOi4sTZK0+ffoQGxtLYmIiJ06cQF9fHysrKyIiIpg8eTK//fabgNotW7aMX375hYkTJ/6na+pw8iph+hoaGigtLW3HcpYEs6FNskdi0i9fvlyQOC5evMiZM2fQ0NBgzZo1QtQ/PT0dDw8P5HK5wOo0NTWRm5tLVVUVsbGxmJubY2hoiK2tLXFxcVRWVpKdnU1paSk2NjbisIiLi6OxsZHk5OR/8ST+r8LDw0No7UkevZK1p9QFsLKy4uHDh8TExAi87fbt23F2diY6OpqEhAS2bNkCtB0ae/fupaysjBkzZqCpqYmtra0Qy5YklaDtkHB1dcXZ2VlYyLm6uorxVkVFBbq6uqKb+/jx4w5jeqU12tnZ8ccff5Cens60adPEZSFJRkmjegmftWDBApYvX054eDjz5s2jU6dOPHz4kOHDh+Pl5cXx48cpLi5m8eLF9OzZk06dOnHz5k0iIyP56aef6Nq1q7CDvHnzJg0NDWhoaBAYGIiqqqooVt4OLS0tioqKSExM7ND61NXVOXv2LA0NDeJ5laxZw8PDqa6uRltbW8jawP9MJtXU1IRLjIuLi5C6UlNT44MPPkBJSYkPPviA58+fo6ysjK2tLQkJCaLI8fPzY+XKlTQ0NBAXF0dsbCyurq5YWVlx584d7t+/z/Tp09vJulVXV5OWltahNS5evBiZTMaPP/7I/fv3Wbp0qZCXi46OJisri4aGBiGL9vr1a7HH0jskRUFBAcXFxdy+fRtra2vS0tKorq7G3d0dBQUFysvLMTY2Fs5ijx8/JisrC3d3dxITE9HU1ERTU1OQCJSVlXn8+DHV1dVCmeOf6BHv2LGDqKgotm3bhpubG8uWLcPExARXV1dKSkpoamqivr4emUxGQEAA5ubmAiNaUVEhmLA9e/YUmM/a2lpevXqFg4MD6urqyGQy4UwmPeuJiYnI5XI8PDw4fPgwr1+/FtjdlpaWds52zc3N2Nvbo6Gh0WEr49TUVDQ1NcU5pq+vT3p6Ordv3+bRo0d4eHiQm5vLlStXUFdXF5J8d+7coaysjF69eqGmpsbBgweF+5WamhqOjo7Ex8eLEaFMJqO1tZWBAwcyduxYnJ2d0dTUJD8/Hz09vX+BH0lF1YsXL6irqxPn0dvJ9buGpJQiybaFh4djaGjI559/jqKiIgcPHmTChAkYGhrS0tKCpqamOO8KCwspLS0Vxh4xMTHC3nXChAkoKipiYmIiyLu+vr4Cr//s2TOys7NRVVUVZDVAnNmSE5O9vT3du3dHRUWFwsJCHj161KH1zZkzh759+4quu6RyEh0dLeA3L1684OTJk7i6uuLv7y8SF2NjY1atWsWLFy+4ePGimIxAm3yRsbExAwYMwNzcHDs7O+GYBQizjC+++ILo6GgePXpEVVUVgwcPZvDgwbx+/VpIofn5+dHa2kptbS3V1dUdllaUXPPy8vJE8+ltqEVwcDAlJSXY2tpy7949ysrKmDp1KsHBwWKPPvnkE2FJbmxszIoVK0hLSxP7bmtrS1JSErt37+bq1asAbN68GRsbG8rLyxk/fjxmZmZ8//33qKmpCRWN0NBQ5HK5cI7r3LkzM2bM6ND6oA2WUFBQICYst27dIjExESUlJTFhOXXqFGVlZXTv3p2qqip27txJZGQk48aNY/Xq1UDbO6OmpsbMmTPJyckR0zaJI5CUlMSOHTvEpExdXR1bW1vU1NRITk7mwoULBAcHM2vWLObNm8eZM2c4evQof/75Jx4eHvTo0QN/f3/8/f05dOhQh9YoqRU9e/aMTp06iYaft7c31tbW9O7dm/z8fIqKiqioqMDMzIxPP/2U169fc+7cOQAhfTp37lx0dHRYsWIFWVlZREREEBoaipGREaqqqqioqAiY1Y0bN7h16xY9evRg0aJFpKWl0dzczMaNG4mLiyMrK4vExES6d++OtrY2Ojo67aaf/1F0OHmVolevXmhra7frNri6urJ69WrGjBmDl5cX0Ib3lBK56OhooqOjefXqFXv27BGJbXNzM6mpqaL6fhuE/uTJE16/fi2walZWVjQ1NdHQ0EBzczPZ2dncuHGDgIAAOnfujJubGxEREWzevJnKysp/JKzt7OwssIE9e/YU+qwpKSlYW1ujoqJC7969SU1NZdu2bdy5cwcfHx+GDx+OpaUlhYWFAs8rednfu3ePoqIiunXrhqGhocBlQVvSHx0dLQ51gLS0NHbu3El+fj6ffvop6urqZGdn09DQgL29PUuXLmXDhg2sWrWqw5hQaLug7ty5w4ULF/Dx8REPy/Tp08W4LTw8nCVLlhAaGsqyZcswNTWlsbGRgIAAxo0bh7OzM25ubigqKnLlyhUBRfD19WXAgAHExMTw8OFDNm7cyObNm/nqq6+4fPkyc+fOxcTEhKVLlwq8NLSNayScpb6+PomJiRw9epTs7OwO4XslJYfU1FRu3rxJQEAAFhYWODg4cOzYMU6fPo2lpSVqamr4+Pigr68vLuy0tDQuXrzIq1ev6Ny5M6WlpWhpaWFoaCiY2FeuXEFNTY2+ffsSGBjYTkJIIiZK8ejRI6ysrLC3t+fIkSMcP34cDQ0Nxo8fj6KiIlVVVVy4cIEzZ860g8/8VyHBDDIzM3n48KHAiZeUlPDbb79RX1/PunXrMDQ0ZO3ateTn59O5c2dUVFQoLy/nzZs3Ipk1NzdHT0+P6upqYeVbWloqnn25XE6XLl0wMDBAVVWVuro6IiIiSE1Nxc7OjpkzZ9LS0kJBQQF2dnbk5eVx5swZTExMCAoK4tWrV+zfv7/D9qmZmZncvXuXS5cu8dFHH7UjQr548QI7OzvMzc3F9z179mwCAwPZtGkTq1atQltbm9zcXEEUCQoKIiEhgYyMDCFZA21nlLa2NpGRkYSFhZGYmCi85ouKioR7nIuLC+rq6u3MPSQIjK+vL46OjuLfepcoLS3FwsKCly9fkpqair6+PvHx8Zw5cwaZTIaTkxN6enpEREQQERGBt7c3np6ehIeHo6GhQWhoKBoaGgIj3r9/f+zt7UlPT2fdunUMGDCAkJAQ6uvrSU9P56OPPhLKINeuXaOoqAh/f3+R2FVWVqKhoYGioiLV1dUkJCTw5s0bDA0N0dfX77C4PbTBzIyNjVFTU6O0tFTAxAYNGsSJEyc4cOAA2trajBkzRiRHDg4ONDU1UV1djYGBgSgU4uLiOHPmDFZWVqIbqKenJ6BIycnJxMbGUltby7179zAzM8PBwYEHDx5ga2uLh4eHIBJBG6550KBBDBkyBJlMxqZNmzh48CCTJ09+5/XNmTOH5uZmampqRPHy/PlzLl68iI6ODurq6gJHraCgQF5eHo8fP8bY2BgHBwfU1NSYMWMG9+/fF2dQVVUVXbp04eOPPxYycxIpGNq6vYsWLWLJkiVs27aNDRs2cP36dSZMmMD+/fvR1tZm+/bt3Lp1C1tbW1F4aGtro6amxq1btzq0h/r6+mhra6OqqkpLSwsVFRWoqalRUlLC4MGDxZ0VExPDli1bcHR0ZPny5SgpKREZGYmZmZngsshkMpqamnj58qXQmjYzM8PHx4eVK1eKxHX69Om4ublhYGBAQEAAKioqhIWFsWHDBtzd3QVkauzYsYwdO5Zbt24REhLChAkT+O233zo8jUxKSiI+Ph4vLy/mzJmDmpoaRUVFgg/w008/MXfuXDp16iTO/5MnT1JZWSkmzU5OTtTV1TFo0CA8PT15/vy5cFGU4vvvvxcEbGdnZ4YNG0ZAQABNTU3U1dXR0tIiJOp69uzJn3/+KbRjnz59ytmzZ5k1axZLlizp0PrevHkjuEVBQUEsXLgQFRUVjh49SlRUFNbW1igqKgriZG1tLa9fv8bT01NAHySuyJ07d3jx4gXbt28Xn+P48ePMmjVL5Fy///67kIyTHApHjx5Nz549qampobCwkJCQEEaNGkVVVRWnT5/m7NmzQp5x9erV/+Uedjh53bdvH5988gnTp08nLi5OdDYbGhoICAhg8ODB7cZNUtIRHh7OrVu36Nq1K15eXqiqqooHw97enrKyMnbu3ImVlZXocujo6DBmzBhhraqqqoqfnx/29vbExsaiqKiItbU1fn5+ArgPCOmSwsJC4uPjO7S+Y8eO4erqSnBwMEOGDBEdKgMDA6Kiorh48SI9e/bE19cXBwcHVq5ciZWVFZGRkVRXV9OrVy9cXFy4fv06mZmZ1NfX4+3tjYmJCXZ2dqirq9PQ0CASoU6dOnH79m2++eYbnJ2dOXnyJJqamujq6nLnzh1evXrFnTt3+PLLL/Hx8REJgLm5OZ999hnGxsb/eJy3fPlyOnXqxLlz58jPz2fmzJntLqjCwkIeP35MaWkpdnZ2VFVV0drayqpVqzh58iQymYzRo0fj7+/PgAEDsLS0FBdDaGgoYWFhPHz4EH19fTESePDgAcnJyfj6+jJ48GDy8vJ4+vQp/v7+2NnZUV5ezowZMzAyMuLzzz9HWVmZM2fOdAiEr6ioyMKFC/njjz/49ddfMTQ0xMfHh65duzJy5Ej09PQwNzenZ8+e7bq9mzZt4vr16wQFBfHRRx9RWlqKTCYTe33z5k3mzp1La2srn3/+Ob169eL27dv88ssvAEyZMgUFBQUGDBhAU1MTPXr0YPjw4aiqqpKSksLIkSNRU1Nj3bp13Lt3j71792JjY0NVVVU7YtC7xIEDBwgODsbPzw8NDQ26dOlCZmYmkZGRyOVy+vbti42NDTU1NXh5eWFgYCDsKuPj4zExMRHJa0JCAuXl5XTp0oXhw4dz8eJFIdLfrVs3RowYga6uLkVFRVhbWwv8XWNjI2VlZRQUFGBubo5cLufChQvExsbStWtXBg8eLNQ/unbt2mGR+5CQEMaNG0dKSgpTpkzB19cXPT09Tp06JfRBfXx8MDY25vXr1yKhX7lyJfr6+lhYWODs7CwY4Tdv3hTyMK9eveLu3bvExsZiYGDAl19+SWxsLJGRkRgbGxMVFYWKigqjR49GR0eHuLg4oqOj8fLywsXFRYzhEhMT2bt3b7vu3rtGXFwc3377LV27dsXe3p6jR4+KDqqPjw9qamrtrC6Li4vFmBTaziRHR0dGjhyJoaEhw4YN49y5c4LUNH/+fIyNjYmMjCQ8PJzffvuNx48fExERQV5eHkOHDhW4a+lMkjCRmpqaDBw4UChZvM1s70g8efJEmCNIVshXrlxhw4YNGBoaMnPmTIqLi4VLW11dHT/88IOAU719l0yePBl9ff125JbU1FS+/PJLsrOz0dPTa8fkb21tpV+/fnTv3l2MfDt37sz+/ftpbm6mrq6O/Px8rK2tcXFx4cCBAx2eZH333Xfk5OQwatQoLC0t2b17N9euXRMYytu3b/P48WPRxJHO+JcvXzJ+/HhGjhxJaGgoWVlZ5OTkcPPmTby8vNoRCqUOsoaGBvfu3WPTpk1UVlZy9+5ddu7cKRzD5s2bJ5ybNDQ0GDBgQLvJE7Tdqb6+viKhfpeoqqqisbERW1tbDA0NBUls//797SBEMpmMK1eu0KtXL+F0+csvvwgOiYmJCTNmzEBdXZ09e/YQFRXFrl27RKd96NCh2NjY0LVrV+rq6ti7dy/W1tbi7FdSUsLBwUGQXCXbcknrPTIy8t8lTL9L9O/fH0dHR/Ly8igsLBTwJH19fY4fP87ixYuBNmz2ggULCAwMFITigoICtmzZgo+PD+PHjxeTADMzMyorK9tZLEv4+BUrVjB16lRhVJSbmytI2lLSBwiI3vTp0zE1NWXz5s1s3769w2eNjo4OAQEBeHp6IpPJRKHl5+cnFDjOnTsnIF+BgYHo6+uzatUqqqurmTlzJgYGBvz666+kpaUxePBgevToIX7/sGHDOHHiBNeuXcPZ2Zng4GCqqqpYtWoVKioqwlFz9OjRpKWl4eLiQmNjI/b29shkMjHl64i1b4eT1wcPHtClSxehSdba2ioOgsrKSpKTk9HU1MTU1BRdXV0MDAzIycnh+PHjpKens2LFinbCxEVFRZSVlfHkyRNiY2MFYF9HR4eamhqhTSi9hI6OjoSGhlJZWUl1dTU2NjbCGejFixcYGhrSqVMnxo0bB7RVKx0ZBd2+fZvr16/j6emJv78/ra2t6OnpiUqksbFRVMjJycl06tSJjRs38uOPP3Lv3j2++OILDAwM+Pnnn8nJyREA9JqaGpqbmzE3N8fS0pLi4mKuXbvGmTNniIiIENXWo0eP6N69O5GRkZiYmJCbm4uWlpZwo4A2SZu8vDy8vb2Fv3BHIisrC1VVVXx9ffH19RUv6PDhw4VuoqKiIl27diU0NJTs7GyuX79OWloaampqVFZWCsyug4MDoaGhzJ49W+iEVldXk5KSQkJCgkhwJZyVtra2EEtXU1MT2pJ5eXkEBwcTFxdHZmamEFQODQ3l6dOnHVpfYWEh/v7+BAYGUlNTQ05ODj4+PkBb98POzo6FCxeio6NDamoqGhoaAnvV0NDAqFGjBB60pKSExsZGqqqqiI+P5/nz54L9KeEly8rK+PDDD1m1ahXPnj1j27ZttLa24ujoiL+/PxkZGVy6dImpU6fy+eef8/TpU6KiokhISKBTp06MHz8eNzc3IZb/LpGeno6vry8BAQGEhISI8XNERARdu3YVMlCnTp0iJSWFvn37ChZyRUVFOziNvb093t7eBAQEYGdnh4ODA0lJSRgYGGBpaYmenh7q6uriApRGYZLd5L1799DV1cXS0pKsrCxhQCJNH6SuZEeT1xEjRjBlyhTWrVvHX3/9xdGjRxk5ciQ5OTnC3crR0RELCwsqKys5dOgQFRUVDBo0SJAHmpqacHZ2pqmpiefPn1NYWEhtbS3R0dEcOnSIhIQExowZw4cffkhtba0Q+5dIoaNHjxYFyNq1a7l8+TKzZs0SWsaNjY00NTX9owJSQUGBly9f0rt3b8aMGSPsKW1tbQkODsbCwoK8vDzOnTvHixcvkMvluLu7U1RU1M7XvWfPnnTu3BlXV1fu3LnD4MGDhRTfyZMnuXLlCvn5+Zw8eZKTJ08K3dRu3boRFxcn4AVdu3ZFUVGRxMREamtr8fb2plevXly9epW4uLgOF1jQNuGR8MpeXl6oq6tTVlbG2rVrmTdvHnPnzhWmLWZmZjx9+pR9+/axcOFCkbjev38fHR0dvL29RRertbWVsrIywsLCSEhIoKysDE1NTby8vCgoKEBdXZ1hw4Yxfvx4AaeBNnWAt//8ySefsGvXLhYuXEjXrl3FOfGusXr1aurr6/Hy8iIoKIji4mJyc3P59NNPkcvlnDx5EkDAvaQudHJyMj/++CPFxcUMGDCAXr16cfnyZS5fvkxdXR3du3envLycFy9eYGRkRFBQEFVVVXz11VekpKQgl8upra3l66+/pq6ujokTJ6KmpkZ8fDyPHj1CV1eXkSNHYm5uTlVVFWlpaSgpKeHo6NjhNb6dgN25c4cbN24IsquHhwdVVVVictetWzehKPP48WPCw8MxMjIiPz+f8PBw/Pz86NWrF9XV1VRUVIhusuSKJU0Rt2zZwpo1axg4cKBIXrW1tVmwYAG+vr7o6uoSGxtLcnIyPXr0wMbGhkGDBpGXl/ePJAclF8ht27bx6NEjpk2bJuAC+fn5GBoaCge8rKwsJk2aJAjbM2bMENAdSdnhwYMHPHv2DCsrK5EoSuenRCJ2cXFBSUmJ7Oxs3rx5Iwx9njx5Iu5LSWXil19+QVFRkfDwcBISEjosdxYVFUVdXR36+vpoaGjQ0NCAsrKy2Lfq6mpu3bpFWFgYubm5LF26VBTpsbGxdOnSBU9PTxITE1FQUGD8+PH4+/tTVFTEsWPHMDAwYPjw4VhZWQno6KFDh9i9ezfTpk0jMDCQL7/8ktOnTwNthXhkZCTm5uYMHTqUWbNmCchMXl6eSNr/s+hw8iqXy5k2bRoLFy7k008/FdaBOjo63Llzh507dwptSCcnJ2QyGYaGhoSEhFBaWtoOy5CUlMSBAwc4deoURkZGzJs3j379+okOSmJiIvv27UMul9OjRw8hxSXJTxw/fpympibhxnT79m02btzYrirp2rWrELR+lwgODuaXX37hwIEDuLq68umnn2JjY0NycjJqampMnz4dIyMjnj9/zowZMwgKCmL79u0EBgZSXV0tlAakDrS5uTnffvut6M4tX75cvIyHDh3i119/RUtLi927dzNq1Cji4uJYvXo1paWlLF68mMDAQJEESPH06VO+/PJLJk+ezNq1azu6hbx584ba2lpMTEyor68XYzmpoyNJxUidBEkrMSsri+HDh/Ppp5+iqqrKzZs38fT0FC+ltrY2ra2t/PXXX3z77bekpKQIxmZcXJzALc6YMYOcnByhiWhnZyfcvLy8vFi1apVgt7q7u7NmzRr+/PPPd16fxGj28PDAxcWFsLAwLl68iKWlJX///TcRERGio7Z06VKys7PZs2cPn332GSNHjmznYR0fH88333xDRUUFLi4ufPbZZ3h6ehITE0NSUhKamprs2rWLoKAgzM3NxXtQUVFB165dkclk5Obmkpqayq1btxgzZgzHjh3jwYMHpKen/4vLzLtGSEiIGFVKxZS2tja+vr5Cr7Suro7IyEh++eUXUlNT6d69O46OjiLhkorENWvWMH36dDIzM1m3bh2RkZHY29szaNAgysvLOXnyJL169RLJy7Fjx7h16xaffvopffr0oWfPnsIMpHv37igoKDBr1ixOnjzJuXPn2hVeHYl/2+lTVVWlZ8+efPXVVygoKNDS0oKRkRFNTU3U1tayZcsWjh49yvHjxxkwYADFxcWcP38eBwcHAgIC8PPzQ09Pj0ePHpGQkCCwq7GxsULjU2LISiHptg4YMIALFy7wyy+/tOvu+Pr6cvDgQfT19TssHO7v78/ixYvx8fHB1taW1atX4+3tzR9//IGqqqpQdrCxsWHJkiUYGRkxdepUgoKCSE5OxtTUlLq6OgoLC7l79y719fX069dPKGc8e/aM2bNnU15ejpaWlkgydu3aRd++famtrWXy5MnEx8ezd+9e0dHcunUrjx494tChQ0IAvqOXpRRDhgzB39+fixcvcuLECcaOHUvnzp0F3h/axOWl5sTjx49JS0sTZ1JCQgIbN25EXV2defPmMWDAAKBNvH3v3r2oq6tz5swZYSkdGRkpCnNLS0uUlJRoaWkRv6+6ulpYqELbmXfo0CEePHjApk2bOHr0KLt27Xrn9XXv3p07d+6IomfXrl1Mnz6dHj168OjRI2xsbFBXV6empobx48cza9YsPvzwQxQUFPjqq68ICwtj0qRJDBw4ED09PV69esXu3btZvXo1FRUVDBs2jN27dwNteOuUlBSgDSKjqqpKYmIiH374Iba2tuzatYvnz58TEBCAr6+v4KM8efKElStX4uTkxObNmztsxCBJLG3dupWDBw8SGhqKoaEhS5Ysoaqqirlz52Jra4unpyebN2/G0dERmUxGSkoKurq6fPrpp3h7e/Pw4UOUlZWFG2FTUxPe3t5CgqmpqYnu3btTUlLCzz//DCC6mNAG0ZEmfNDm7pSZmYm5uTl9+vTBz8+PGTNmMGfOHEE87Wjo6OhgbW3djhPw4YcfEhgYyLNnz8SUTDLYCA8PF2TdlpYW0tLShNJOYWEhn376qcDbS42riIgIli1bRmlpKcOHD6dPnz7k5eWRkJDAH3/8wbp164Q73vfff09FRYW4k+fOnUtzczN9+/btkJbtqVOn2Lt3L3p6enh7e6OkpETXrl1ZsGABGhoatLS04Obmxs2bN/n888/Jz8/n22+/Zd++fTx9+lTwcj7//HP09PSIjY2lpKQEJSUlTp8+zZ07dwgICBBa4Z988gkqKiqioB43bhw5OTn4+fmJKVxYWBjdunUTpk5SbNiwgQMHDghd8v8oOpy8uri4cPny5X93vFJSUkJ6ejp2dnbY2dlhZGQksv2+ffsKyQgzMzO6dOnCkydPOHHiBFpaWixZskSI/UqRnZ3NvXv3UFBQYOPGjRgbGwtiTd++fUlOTsbIyEhgXyUQPsCVK1e4fv16O7endwnJVUJDQ0NgroyNjamoqMDe3l6M1QsKCkQlrayszLBhwyguLubw4cO4uroSGBgoqsq3L7WnT59y8eJFhg8fzsCBA6moqEBfX18oI9jZ2fH777+joKDAvn37UFNT4/Dhw9TU1IjLrLGxUbBl/0niY2xsTFFREYWFhSQlJTF27FicnJwE9OLatWvIZDJ69OiBpaUllpaWODs7U1dXR1paGq9fvyYoKIhp06aRlZXF8ePHaW1txcfHBxsbG/T19cXzkZ+fj6ampmD71tTUUFJSQklJCWZmZqioqGBrayvG98bGxsL6EdoS7Y46iPn7+1NSUsLTp0/JyMhAU1NTdM979+6NXC7nr7/+Iisri6tXr9KpUyeePXvGs2fPaG1txdTUFJlMxuXLl8nJyaFLly68ePECfX190aHbtWsXsbGxTJ06VRQjt2/fxsLCQnQ9pWhubkZLS4vm5mbKy8tpaGgQI+Ho6GhiY2PbHdLvEiUlJfzxxx9MmzYNR0dHTp8+TXJyMiNGjEBDQ4Pc3FysrKzo06cPT548oaWlRVxmrq6uvHjxgvv37+Pj44OFhQUGBgacPn2av//+m6KiIhobG4W5iIWFhbCvBEQyKiU0KioqmJqakpCQgLOzMzY2Nvj5+REXF8fhw4cZP378P9IklhjD0ufu168fQUFBeHh4tHsm3rx5Q25uLg0NDTQ1NfHjjz9SXl5O165d0dLS4q+//uLevXsMHDiQ1tZWQeRatGgRurq6nDp1ihMnTmBoaCh+v7T2t/dFwka+rb8pkTjftsl811BXV6eurk64XlVWVnLq1ClOnTpFfn4+o0ePxtnZmYkTJ1JUVISJiQmBgYF4eHiQnZ2NjY0NWVlZlJSUCFkiqcA4f/48Bw8exMfHhyFDhmBgYMDdu3dpbW0VF+GDBw8ErErCIv7yyy9ERUXh6uoquruSWHtWVlZHtxBoK0Kqq6t59uwZrq6udOnShW+++Yampiays7Opra1FRUVFPFe2tracPn0abW1tjIyM6Nu3L9HR0ezevZvExETmz5+PjY0NlpaWKCsrizOwc+fOHD58GEtLS/G8Pnr0iMTERFxcXFBQUKCqqkpYpVZXVzNgwABqa2upqqpCX1+/w3Jn27Zt48SJE7x8+ZLDhw8zZcoUoRxRVlbGxx9/jJubG/v372fnzp1ER0ezdu1aunfvLvDx2traQufb39+f2bNnC/jDrVu3OHbsGE5OTuKyd3BwYPDgwaioqNCvXz8CAwO5d++eUEWR7JOzsrKwsLBAV1eXlpYWmpqaOvyMAsKIp6qqCldXV0aNGoWWlhbx8fEoKCjg6enZTvII2hpTWlpafPzxx3zwwQeoqKjg4OBAfn6+cN+ToqqqCkdHRx49esTGjRvF30+bNo1OnTpx9uzZdhC+1NRUUlNTkcvlTJ06Vbw/mpqaTJo06R8/p9CWqCYkJKCgoEBaWhoaGhqYmprSrVs3unXrRn19PdnZ2Zw7d464uDhqamoYPHgwpaWlhIaG0qtXL3bv3i0+w+XLl9HX12fq1KlYW1szYcIE4uLiSEhI4OHDhyJBMzc3x9vbW3REbW1tUVRURC6XI5fLiY6OprCwkF69ev0jvWU3Nzd69epFWVkZ8fHxAiomNQK1tbX58MMPUVNT48iRIwDinurVq5fAoCclJXHs2DGB2+7cubMo3B4/fiz+vcrKSrp27YpcLufevXtkZWUxatQofv75Z4yNjdmyZQthYWGYmpqKM/bly5c8ePCA4uJihg0b9l+uqcPJa21tLTt27BCah29LmdjZ2REaGsqUKVOEBEpRUZHApVRWVrJ9+3YcHR05cOAAmpqaqKqqMmfOHJG41tbWiofRwcFBYDSkB6mgoEAcRE5OTlhZWeHo6Mjo0aPp2rUrgYGBJCYmsmTJEiEsLDH93jWGDBlC//79aWpqEo5bfn5+YnSSn5+Pk5MTZ86cEd1gaXy3bNkywsPD8fHxQUdHh9zcXHx9fYW/89WrV7l//z67d+9mzpw5LFiwgISEBGGV2tzcjJ6eHjKZjOrqah4/fsysWbMIDQ0VyauVlRWjR48mLCyMHTt2dDjxkWxY09LSaG1tZf78+aIjfvv2bS5cuICVlRXm5ua4ubmhoKBAdXU15ubmnD17lv379zN58mR+/fVXnj17xvjx41FTU+PHH3/Ezs6Obt26MXDgQA4fPoyenh5eXl6isjp8+DDh4eGMHj1ajK6bmppYtGgRhw8fRlFRkcOHD5OWlsbUqVNJSkri6NGjHVoftDHqr127xt27d9mxYwc9e/YkKyuLRYsWUVVVxdSpU7l06RIjR45k8ODB3L9/n6NHj2Jra0toaCgpKSksWrSIkJAQDh06RFhYGM+fP0dFRUV0UdPT0/Hz86O+vp7CwkJRLEkXYF5enrAOdXBwYOjQodTX1/Pll1+ip6fHhg0buHPnDhs2bGDgwIEdWt+9e/e4ffs248ePp6amhl27dpGQkMCIESMEeQvaOrQ+Pj60tLSI97S1tZXS0lLhRJeVlcXjx495/Pgxurq6lJaWUl5ezp07d/jmm29Eci69x1OnTmX8+PHtlEbKy8tJSEggPDycbt26ceDAAR48eMBvv/1GQ0NDh6Et0EYUaWxsRElJib59+9KvXz+am5s5d+4cFRUV+Pr64uHhQVFREWlpaXh5eWFnZ8fp06eJiori0qVLBAYGsnbtWkH+mzp1KjKZjLKyMszMzBg+fDglJSVcu3YNY2Njhg8fTkhICLq6ujQ0NKCiokJFRQURERFoa2uzbdu2dsSzoqIiwsLCBFu3I3Hp0iV27dolCuyVK1eKkWdiYiIrVqzgyy+/xM/Pj2XLlolxnIaGhhgrSsmDurq6SFyfPHnCqlWrsLKy4vTp06LQ0NXV5ciRI4wYMQK5XE5QUBAzZ86kd+/eODs7s3r1arZu3cqcOXOEa1p5eTndunWjoaGhw+L20FZYSM5dzc3NNDU1oaioSL9+/SgrKyMtLY2bN28CbUzmbt26ERkZyYkTJ8jMzOTAgQMsX76cK1euMGPGDO7cuYNcLmfcuHFMmjSJc+fOsWfPHhwcHITdrr+/P+Xl5airqxMZGUlFRQUZGRmYmJiIZyQqKork5GRsbGzYu3cvmpqa/2Lg8C4hQa+GDh3K3LlzsbCwoE+fPjx48EDgB6HtTvnhhx/ECDk8PByZTMacOXPQ19dn586deHh4MGPGDJGsQ1sD56OPPkJPT4/evXszY8YMPD09hY6zhoYGERERnD17VpjMjBs3jsrKSqH+4+HhwZ49e9DX18fc3LzD7kzFxcXcu3eP0aNHs2bNGrKyssjKyuKbb77B0dGR+vp6Dh06REtLCxYWFpSWlnLlyhXc3NwYMGAAjY2NFBUVYWho2G6qVVtby9OnT/Hy8mLAgAGsWbNGrPvvv/9m/PjxfPPNN0yfPp3Vq1ezdOlS8d1dv369ne1vRUUFWlpajBw5Em9vb+FW9a4RGxtLp06d0NTUxN3dnadPn5KUlIRcLqesrAwXFxcxRZs6dSrh4eFYWFjw008/MXToUDIyMtDW1kZLS6udtFhSUhLr1q0jIyODn376SRiv1NTUoK+vT21trVAWCgwMFM9LY2OjKDRqa2vJyMgQTRCg3dn7LjFp0iTR/fz999/FxFfKtYqLi1FWVmbWrFnivFdRUaGxsRFlZWVhFb1s2TLRaT506BAKCgoUFxfj7e1Nly5dyMjIIDw8nMjISJ4/fy5c07p3786AAQNE8096D96ecqWmpnLlyhWGDRvGrFmzWLBgwX+6pg4nr9nZ2YJQ1draipKSEo2NjaSkpGBoaMhnn332L6YDBQUFmJqaUlpaSklJCWpqajQ1NTFgwADCwsK4ceMG6enpNDY2kpqaiqqqKrNmzWLgwIGCYXf58mX++OMP4SJia2uLhYWFuKQloLNcLhcgaGiTeEpPT3/n9V25coWnT58yYcIEMcp6m+nZ0NCAtra2qH6ysrK4dOmSgEksWrSIZ8+eUV5eLjbKwcEBZWVlsrOzxWg+Ojqa0tJSjh8/ztmzZ+ndu7cQIl6xYoX43Tk5OcyaNUtYGUJbYubp6cnjx4+F7E9HQyaTCZkcuVxORUUF+/fvp7a2lmHDhgn7XwUFBe7fv8/PP/8sRhvQVrSoqamJLk5dXR1VVVUoKyuLrp67uztffvllOw9zLS0tIfou/VxLSwv9+/cX4++ePXtSXl6OoqKiYGH+W/3V/yzu3r3LqVOnUFFRYdu2bXTu3FlIJ0VERBAfH4+xsTE//PADAwcO5Pr169y5c0fgl83MzATRLD4+nvXr15OTkyOA7Q0NDcLP+/Lly8JYorGxkfr6evG8vHr1iiNHjtDS0sKkSZNE99HNzQ1HR0c0NTXx8/PD3d2d3Nzc/9IO7+0YMWIErq6uWFpakpiYyIABAxg0aJD4XlVUVHjx4gUtLS2i0IQ2q8iEhARmzZol2PeSrFZZWRlaWlpMmjSJ/Px8GhoaRDd+9+7dZGZmCrkqKYHLycnh8OHDNDQ00KtXL1FQSvuYl5eHqqqqcFjpSBw4cIADBw4wePBgjh49SklJCUVFRZiamvLy5Uvu3r3LxIkTcXNzo3///iQmJlJaWipwvb/99hu6urpCai0hIQEVFRWsra05ePAgV65cITIykubmZkaMGEFwcDDjx48XSYzE9JYmDm+vWwpVVVW0tLQEtrojIekYNzQ0UFRURGBgIAYGBoIAmpCQwKtXr3Bzc6O6upq6ujrMzc3bJVlyuZzBgwe30ww2MDBg4MCBdO3aFT09PcLCwoiOjmbIkCEUFhZy5swZ3rx5w9atW9tpYQ8fPpyWlpZ2jkwS3ENVVbXDsoPQllzLZDKUlJRQVFQU2H5oG9GqqqoK9y43NzdiYmJQUVGhf//+gsBTU1NDVVWVwAQ+fvxYyBVKNqgSLlNSD8jMzOT169fEx8cLzeWZM2dibGwsLtTY2Fj27NmDv79/h9nbb0dNTQ2hoaHC4AUQGPC6ujpkMhlPnjyhqamJmJgYAZVLT0/nzJkzODo6CrmrBw8e4O/vz/Xr16mvr+fIkSPcuHGD3r17s3z5cmFuUF5eLr4/PT09+vTpw+TJk3F1dUVFRQVDQ0MUFBSIjo7GyMio3YSuI4oY0Cbb9ejRI1avXo2KigqOjo5ERESQkZFBTk6O2FsrKys0NTUpLi5GVVVVYEYVFBQoLS1FSUkJfX19EhISOHbsGLdv38bR0ZGffvoJRUVFMclZsmQJ48ePBxCTEklabfHixYwdO5bKykoOHDggpBttbW3FVPafKAydPXuWR48e4e7uzrBhwzA0NKS6uprKykoMDQ15/fo19+/fZ/369eIOHD9+PIMHD0ZRUZFr164RERGBgYEBSUlJwqFLyj2kvXr27JmARMTHx3Pt2jVUVVUxMDAQJL3t27fT1NTEkiVLRN4gcVNaWlrEM9WRKCoqIj09HUVFRXx9fQVMQFVVlfPnz/Prr7/i4uLC559/LvZNMjOwt7dHWVlZ2MUPGjSI+vp69u/fLwqhhQsXMnfuXF6+fMnOnTu5d++eOPOHDBlCSEgISUlJQlf21atXODk5tYORurm5MXnyZORy+TsZL/0jqawXL17g5OSEuro6ioqKlJaWkpWVhYqKCubm5pSUlIhDXdL9AsQIo6KiguLiYuzs7PDy8uLixYtcunQJKysrqqqqyM/PF4xJPz8/bGxsOH36NMePH0dXV1eQCyRAf2trq9BthLZq58MPP2TIkCFMnDixQ12flJQUTpw4gYKCgtBua2hoEDqMmpqalJWVoa6ujoKCAufPn2fdunWCaNCnTx/69OkjcFYWFhZcunRJeEO7uLhQX1/PqFGjhBPJ06dP8fPz48KFC2RmZjJjxgx8fX2pq6vDw8ODKVOmUFdXJ8ZAhoaGyOVyBg0aJJyAOhJ1dXU0NTWhpqbWTtMxPj6eXr16/YvYek5Ojuh+ShI+Xl5ePH36lPDwcNTV1fH09BTYnpKSEhoaGpg6dWo7FzJowxRbW1tjYmJCS0sL+fn5mJmZCXZqSUkJXbp0ERe0XC4nJCSEK1euvPP6Dh48yKFDh4TDV1paGunp6WhoaHDp0iXu37/PN998I0SQf/75Z/Lz8/nkk08YO3as0BaeN28et27dEuLLPXr0wMjIiISEBAFRMTAwoLi4GHNzc8aOHYuBgYEodCRXKSMjI2EJrKGhIaRlysvLycjIYMSIEVRUVLwTSF2K7t27ExgYyJkzZ4S+riSJIzloRUVFkZaWRkFBgdjTsrIyXr58ia6uLiYmJiIRV1RUxMnJiaysLKG/6+zsTLdu3SgoKODq1asCP/jmzRsiIiIICAgQesp2dnZizF9RUSFEtceOHUt2dvY/GuUVFxcTHx9Pnz59MDAwEC5BDg4OaGtrc+zYMaHaERISgoWFBWfPnsXW1paMjAzh5y792cXFhZCQEJycnDhy5Ahnz57l4MGDjB49mg8//JCePXsKPeCGhgYMDQ1RUlJCWVkZe3t7mpubyczMRC6Xi7NGUVERTU1NMXbvSLx+/Vq466moqIgCtaioSKhhSO5NERERGBsbi8JAYuWqqKiITjq0FYdyuZyPPvoIgKtXr/Ljjz8KfeKQkBCioqLw8vISieuTJ0/Q1NQkMDBQdG/r6+tpaWmhurqa8vJyNDU12xVB7xpaWlq4uroyfPhwEhMTUVNTEwWrhoYGHh4e7S6w/Px8CgoKmD59OpMmTaKpqYk9e/Zw+vRpsrKyUFJSwszMjGfPnrF27Vpqa2tFM8PJyYlVq1ahrq7OgwcPKC0tFclSWVkZq1evRiaTIZPJMDMzo3///uzYsYPr169jaGgobF07Ei9evEBFRYXZs2cDbXqhZWVl9O7dm/Lycs6ePUtVVZUg4slkMmJiYjA1NUVFRUXYJpuYmPDmzRtOnTpFz549BbZXgv64urqKkbyhoaGYZNXX1+Ps7IyzszMtLS3t+BGKiorIZDKSkpLEXVJeXt4hRjcg9j8pKUnoYtfX1zNr1ixaW1txdnYmNDQUBwcHqqqqaGlpwdHRUTQ2pLOlsrKS/Px8nj59yokTJ0hMTMTNzY2GhgZkMhkNDQ04OzuLZ7CmpgYfHx+mTZvGH3/8wU8//USXLl0ICgpiyJAh7N+/n7CwMAIDA7G1tUVTU1M0x/5JPHv2jCtXrvDkyRN++OEHevfuTWJiosgtnj59KhLXb7/9ls8//1ww6iUlkzdv3qCqqoqjoyM6OjpkZmaKMzMjI4P79+8DbVMlExMTITcoNeEOHz7MmjVrhCaqsrKy+G5UVFQ61MR5O2JiYrhw4QImJib4+/u3IyWnpqZy4cIFIiMj6dy5MyNHjqSkpISsrCycnZ1RVlYmJiaGN2/eiMYatCXkn332GYAwBvHx8cHFxUVMaTw9PbGwsCA6Oppjx46J78/FxYWJEye2mzg6OTlhZGTEuXPnhGTafxYd/iY8PDzEaCYkJASZTIaamhrOzs5igwoKCjA2NqZv377tOhVSC76yspKysjLkcjkymYx169Yhl8vJz88XVnIXL16kV69eqKur88knnzBo0CAh+l5YWCgS15aWFlpaWlBXV6exsZHp06dTXFzMvn37/lEFFhwcjJ2dnRCQl77Q0tJSweg+cuQIqqqqTJ06FT09PUpLSzl48CCqqqps3boVHR2ddpi8I0eOcP/+ffbs2cOuXbuorKwU/t5ffPEFurq6eHh48OWXX7J//368vLzw9fVt9xJ+88033L17l6+//pq+ffvSv39/IVnU0ZGs9BL6+voK7JGDgwNr1qzBwMCA5uZmamtrUVNTQ0lJCSsrK9GhVFZWJigoiMrKSqZOnUpCQgK9evXis88+E6PM0NBQnJyc2knaSNHQ0CB0NuVyOTo6OoK4sWrVKm7dusUff/wh5EJ0dXUJCgrqUPLa2trKwoULKSws5KOPPhLdekdHR+bMmUNISIh4caENWxkZGcnt27epq6vD0tISGxsbMY6FNv3X0tJSduzYIRKxkJAQvvjiCywtLQU+7+1wdHRk9erVogsD/5MM19jYyO7du3n8+DFdunRhwoQJHUpeJVev69evY29vL3DV8fHxHDhwgObmZoKDgzE0NGTVqlWEhYWxadMmDh06RHh4uBhVW1lZERsbS0pKCp07d0ZdXZ0TJ07g7e0tSA9yuZwVK1aIz56amkpdXR3V1dVYW1uzfPlyMaXIz8/n3r17+Pn5YWBgQFZWFklJSf8I87ps2TJGjhzJjh07GDFiBIsXLxaHnYeHB506deLvv//mxo0bjB07lhEjRmBvby8w4dJn//7774WtsvQ59+/fLzDnfn5+9OjRg5aWFm7dukVqaiqdOnUSEySZTEanTp1QU1NDV1dXQKUUFBTIysrizJkzODk5dZiN37NnT5Fk6erqkpeXx3fffUd+fj4DBgxg/PjxaGhoEBMTg6qqajvZKGkvqqqqCAsLIywsDEVFRWH6ERERQXNzM15eXixcuFAk1yoqKqxfv150USWXJoCNGzeyYsUKcVnm5eVx4MABjh49ypQpU9i0aVOH91AKb29vPDw8SEhIEOoBb09kpNDU1MTQ0FAkWEpKSigpKQk8XVNTE507dxa6o7W1tXTr1o2pU6e2O2/Ky8uxsrJCWVkZHR0dysvL/4VQZ2Zmxq5duzh8+DA///wzy5cvF85Y7xqnTp1iw4YN4s9eXl5iYnXnzh2uXLlCcHAwy5YtY9q0acTGxqKpqYmrqyvDhg3js88+o7S0lMGDBzNx4kTq6upIT0/n0KFDDB06FC8vL1xdXdmxYwd//vknH3/8sUhiCwoKyMzMxNfXl4qKCg4dOoSVlRWjRo2itLSUuLg4nJ2dqaioYNmyZRgZGTFr1ixGjhxJXFzcO68xNDRUfN/SGFlXV1eMrhMTE7l69SqKiooUFxejoqKCsrKymFxA2zuko6NDYmIi2dnZ9OrVi6lTp9KvXz9BJhw2bBiWlpbk5uby+PFj4d7o7OzMiBEjKCwsJCsri7CwMGQyGYsWLaK5uVk0BqCtmSCR2joSo0ePxsXFhZkzZxIWFkZ2djZeXl507txZPIvTp0+ntLSU5ORkcT8dPHiQn3/+mdmzZ/P5559z+PBhamtr8fHxITMzE11dXcrKyjh48CAPHz5kypQpvHz5EgcHBzIzMykuLqZ79+40Nzczf/58zp07x5IlS/joo4/E/a+srMxXX32FlpYWW7dubTdledfw8PAQzQ1dXV2RLEMbGXXatGnCOKi1tRV1dXUMDAwwNDSkrKyMy5cvI5PJ6N69uzh7Fi9eLJLQv//+G3Nzc6ZOnSoKMWg740pKSoRdsEwmw8rKitDQUHE3S1FQUMDdu3fJzs7Gzs5OTDH+o+hw8mphYUFqairW1tYiQdPW1haX0507d8R4PC0tjfr6euLi4tDS0iIvLw8XFxecnZ2F2YCenh6mpqb/cmBYWlpSXl5OTEwMxcXF9O/fn5aWFo4dO8bQoUOBNp3E169fiwfp2rVrPHnyhDdv3nD79m2mT5/eYQawp6cnnp6enDp1ikWLFhEcHMy0adMETEDqqjU1NaGlpUVAQAD9+/cnMzMTe3t76urqKC0t5fnz56Itb2Njw8iRI4XVrZKSEr/99ht6enqEhoaK71HybpZkmx48eCD86RsbG2lpaREvko2NDTk5Oe0E8t810tLS2L17N+PHjxfJqzTu0dXVpbq6mr1791JeXs6KFSvo1asX8+fPJysrS4xRbGxsBElHwrRJ/uQSyBvaDraYmBjq6+uFvaaamppICt9mlBsZGQltPCkMDQ07jEVrampi5cqV3L9/n7Vr1woZHj8/P/GflPzZ29sTEhKCkZERGzZs4O+//2bq1KmMHj0amUzG8+fPcXJyYvjw4airqwsyTbdu3di2bZu4MPPz83nw4AF6enqoqakJcXbpgo6OjhYEjdraWsLDwwWJ6vnz5+3Ylu8S1dXVoptsYmJCVlYWHh4eQjquvr6eQYMGUVZWJtj1kZGRosqXiq4HDx7w9OlTysvLKS8vJzk5GS0tLXr37i3siFNSUsR+xsbGUlBQgJWVFaqqqigqKmJubs6LFy+Ii4sjNzcXJycn5HI5L1++FKLybxsMvGvk5OQIW0tp5CVFRkaGeLbgf2KnPDw88PT0FOSfVatWtfMFv3fvHrW1tfj7+zNx4kRSUlIwNzdHVVWVgoICqqqqxM9KXQ7J/a25uVkUylI0NzdTWVnJ8+fPhZj4u8aKFSv44YcfRCGVlpZGSkoK1dXVNDU1CVxY586d0dXVRUlJSZwVkkpIfX09VVVV3L59m4qKCjp16oRMJmPnzp1oaWlx/vx50dlMS0sjKSlJ4A7LysowMjLC1NSU4uJiWlpakMlkZGVlERkZia2trYC4/NNuVkxMDDk5OcjlchoaGnj69Ck2NjbizAwLC8PR0VG8J9JE6W2i7ZgxY3j48CH37t3D19dXwEAGDRpEVlYW+fn5REZG8ubNGwFNMDMzQ1VVlejoaJSVlTEwMKCoqAhXV1fCw8OFnuqIESOwsLBg1KhRFBQUdHidJSUlPH78WJDSrKysBPk0OTmZW7du0bt3b8zNzTE3N8fd3V3sraurK+bm5iQnJwuIBEBgYCDPnz/n6tWr9OnTBxUVFSGpKJFfY2NjOXXqFI6Ojvj5+VFSUsKWLVvQ0tLC3t4euVwu3LRycnIEWUsahXckJH11QEwXvL29+fjjj0lPT8fS0lK4JNrZ2VFTU0NWVpbYQwkSJclNNTc3M3XqVMGLgbYOvYSBlaTiDA0NycnJoaysTEwJoqKiCA8Px97eXkwXAFGcGBgYdFgDFdqggZWVlfTr10+sGRAFanNzMx4eHhw8eJD79++TlpZGeHg4f/75J927d2fz5s2oqKgwdOhQ7ty5Q319PcbGxpiYmFBQUMCDBw8oLCxEX18fa2tr4uPjaW5uFgWvpAErWcxLNsjSO3/lyhUKCwvx8fFh5syZAn74rmFiYoKJiQmNjY0UFhairq5OamoqUVFR6OnpsXHjRlpaWqipqRGuaCYmJgBC69nHxwdFRUWSk5M5d+4clpaW2NnZsXTpUrZs2cKOHTvQ19enX79+TJkyhYqKCgYPHix0XSWnSemZkRJXaUpdV1dHXl4etra2jBgx4n998qqhocGcOXPaZe5vh6+vL42NjVRWVpKSksLDhw/ZvXs3lZWVuLq6sm3btnYEqp49e7Jr1y4uXLjA+vXrxQU1ceJEBg8ezLVr11BRUcHIyIgJEyYQEhKCiYkJz58/Z8qUKWKMkJGRwYsXL1i4cCF3794VtmYrV67s6BKBtg27evUqV69eJTMzk++//15UklOmTBFOQ5Jgvb6+vnjBL168yPLly1FVVWXChAn07t0bJycnNDU1qa6uZsOGDezcuRNbW1tsbW3p2rUrKSkpeHt7M2/ePGEBKbmMnD17lq1btwpXEin+/vtvNm7c+F96AP/bKCkpITU1tR1w/9y5c6xbt47169fz0Ucf8ezZMy5cuMD48ePx8vLC1taW3r17C+C9NGpdu3YtO3fuZMmSJfTv3x8jIyPU1NTw9vYWmMedO3cSHh6OgYEB69evFzIv0sspxcqVK1m6dKkApQP/iEQhVZdjx47FxMRESNJ88MEH4oUsLy+nurpaWAIGBgayfPlyoqOj6dKli3i+s7KyuH79ukh2xo0bx6tXr7C0tGyHAYyNjWXHjh0Cj/zixQtsbW356quvyM3N5ezZswwYMAAbGxvu3bvHmzdvmDt3Lr6+vmzfvp3du3f/C1zjPwsvLy8sLS3Jzs6mublZFFe6urrtDnUtLS327dtHYmIily9f5ujRo7i4uIjiZNeuXejq6jJgwABu3LhBYWEhW7duFQnfoUOHyM3NZcqUKSgqKnLp0iV0dHTo378/SkpKFBQUcOLECb799luysrJYu3at+NnIyEgyMjIE3KKj0aNHD9TV1Rk6dCgHDhxoxwQ/ffo0K1asQE9PjwULFrQjSaipqTFhwgQmTZokxq/Qlmju3r2b27dvM2PGDBwdHcnOzqZPnz6Ym5tjYmJCr169UFRUbJegSlFWVkZZWZnwdZcMA0aPHs3t27c5fPhwh9Y5cOBAAgMD0dbWFs5ymzZtwsjIiIyMDC5fvizEwiXs59tRX1+PoaEh/fr1486dO8TFxeHh4YGKigq6urpoa2uLAgTalDzS09M5efIknp6eDB8+XKi8lJSUiCT61q1b3L17l3nz5jFt2jTGjx//jzDL0IYJP3/+PFpaWgIyNnfuXBQUFDh37pxwCpSSV3Nzc1xdXdvtp6mpKd999x0WFhbk5OQwdepUISloaGjIt99+y8GDB7GysqJfv37MnDkTLy8vUVDZ2trSr18/9PX1OXPmDMuWLSMlJYVOnTqJwqB79+50796d6dOnd0gn1NzcnAkTJuDm5sacOXPanQkymYz6+vp2UASpI1lUVERNTQ19+vQRcCtoe67j4+NRVlZudw5Kxe2rV6/48ssvuXTpEiUlJQLaJkEEUlJSuHjxIqtXr6auro6vvvqK0tJS1q9fT2BgIHFxcWzfvr1Dbne3bt0SSZbUbbW3t2fz5s2iEVFaWoqGhgbq6uqkp6cLLGxzc7MwFOrbty9GRkZYWFgI6aW3Cd8XLlzgwoUL7Nq1SxRcd+/eJS4uDgUFBTEpNDU1bffdQFvz5d9KSnYkrl69ys6dO5kxYwZbt24VOHRjY2OhXFNaWkq3bt0ICgpi27ZtYry/detWkRvo6enRr18/cnNz8fDwQFtbGw0NDYqLi0lPT6eoqIiZM2dy8uRJQkNDhe7py5cvmTdvHj169EBZWZmamhrKy8sxNzdHW1ubsWPH8uOPP7JmzRoaGhqEjnVHo7a2FkVFRXJzc9mzZw/79+9n2LBhQgVAgn1I8ebNG/Ly8tDW1hbFVVNTE5cuXeLu3buMGzeOH374AblczoIFCygoKCAwMJDAwEBSUlIwMzMjMDBQ2PvGxMSwfft2bt68iampKcHBwaKBZW5uzpQpU1BTU3unSV2Hk1d3d3fh/nTlyhVmz56NpaUlp06dwtzcnL59+9KlSxeho+ji4sLw4cNFdSklrjExMdjZ2Qn3o61bt/LkyRMWLVrE8OHDycjI4OTJk7x584aAgADRhZAe2jNnzoiXvKWlBXNzcwIDA+natSsuLi4UFhaSmpoqPHk7EtXV1YwcOZKsrCz++usvQagyNjYWVaBMJuPw4cPi8xUVFQmLTz8/Pz788EMOHjzIpk2bcHZ2JiQkhJKSEmEnFxAQgI+PD1paWsLoQZKZgjaHnQ8++ABlZWUxJvD09GTOnDkcPHiQkSNHkpaW9o/Gsenp6cyYMUN0sKENxJ+VlcX69euxt7dn2LBhNDU1cfjwYZKTk9HX12fy5MnU1NS0A+PPnj2by5cvk5iYyIULF1iyZAn6+vo8e/ZMWPvNnDkTMzMzIbkkHVY1NTUUFxejra2NsbFxOy3QpqYm8vPzReHSkZDUD6DNCu+TTz4RhA9oMzGQy+V4enqipKTE8+fPiYmJwcHBgfnz57eDfISEhIiOZEZGBra2tqJI2bt3L4mJiXz66ac4OjqKbnhZWZmQGJPWN2DAAIyNjYXTXFBQkOhGPXr06N+FWPxnUVBQgImJCYaGhgIPlZ+fz9mzZyktLUUul6Ompoafnx9OTk4EBASIrqijo6PoRvXv3x9jY2N69uwpZN+k5DMsLIxbt24JP/KbN2+ya9cuhgwZIg5Pqdh0d3enS5cuAvcKbYLlklf9285H7xrSeFSy4X07PD09CQoKIi0tjcLCwnY4vtevX9PU1CRgLNKo882bN7S0tKCrq4uRkRFlZWWi2yHF25OA5uZmIiIihD6q9F1Lo+8zZ87g4+PDwoULsbGx4e7dux0aWebl5aGgoIC+vj5KSkokJSUJ8lJ2draAnCxdupQhQ4aIMxDaOkPSe2RgYMCUKVPIy8sTuNQ1a9agqqqKjo4OLS0tFBYWYmpqSkBAAK9fvxYwlrCwMBobG+nbty/Nzc2sX79eSOHV1NQQFhaGtrY2Li4uHZ5iQVtyYmtri4mJCcbGxuTl5XHz5k2eP39OSkoKY8eObQe3kDC9T548Yf/+/VRWVhIaGioKdHV1dXR0dOjcuTPdu3fHzc2NzMxMwdr29PQUOpZSYj948GCGDx8uEmZpjxYsWIClpaXQoB44cCDOzs4dSl7V1dXJzMxERUWFbt26YWJiQlRUFOfOnSMxMZE5c+bQp08fKisrxbMHbVPC69evY2FhgYqKCjk5Obi4uNC5c2d27tzJixcvuHr1Ki4uLmhra+Pt7U1kZCQeHh44OzuLLl7Xrl158OABL168YNy4cTQ3NwuZMH19fS5cuAAg3h8LCwtevXrVIfyylZUVZWVlYvoQHx+Pvb09BgYGvHz5kidPnjBmzBjU1dW5fPmyUNuRElQbGxsxNbSxsRFaynl5eejo6FBfX09UVBRmZmasWLGiHYlQKgbU1NRoaGgQXXVok3o7efKkgEOYmpqSkZHB8ePH33ltUkjNiTFjxghyklTAmpqaYmNjI0i60IbPHDhwIFOmTMHd3V3YuAYFBTF69Oh2RhjQVji6uroKHWNpTD979mzc3d3p06dPOxvZ/Px8cnNzaWlpwdLSkm+//VY0QSIiIjqcvDY0NNDc3IyOjg5lZWXs3r2b+/fv079/f2xsbDhy5Ahdu3YV7+L169e5fPmyKLBjY2PZsmULsbGxBAYG8tFHH2FgYIC7uztyuZxJkyZRW1vbjjzu6OgI0A7mIClQ7Nixg6VLl/Ltt98yZswYGhoaePPmjXhm3uUc7XDyKr1827dv5+HDh4SGhmJkZMSdO3ewtLTE29tbEDS6detGYGDgv5B2UlNTiY6O5vXr1wwaNIjQ0FDi4yM06EcAANYlSURBVONZtWoVZmZmDBw4kBs3bvDFF18AMGvWLLp16yYqA0k2wtTUVFxw6urqBAUF0drayoABA/Dw8ODJkyecP3++Q1VmXV0dmpqa+Pv7C7yr5Bb14MEDmpub8fHxQVNTkydPnqCsrIydnR0XLlzg0qVLTJ48mU2bNrF27VqMjY2ZO3cuL168EFjfgIAAZs+ejbOzc7tNdXZ2pqSkhNjYWGFt+fPPP7fT5svMzCQqKoonT56gpKREnz59GDJkSIfwoNCWcCxbtgxzc3Oqq6u5du0aLS0t4iB59OgRy5Ytw9nZmTFjxvDdd9+xYcMG4UpVUlJCfn4++vr62NrasmTJElavXo1cLmfMmDFYW1tz9epVjIyMsLS0ZObMmcyYMQOZTNZO4qO+vp4XL15gZWWFsbGx8HiXNBBfv36Nurq6SJTfNUaMGCGkP3R1dQVzFdoSEk1NTRQUFMRz8fz5c7799lumT58uxuP5+fmCuOTi4sL27dtZsWIF8+bNEy/4uXPnePjwIX379mXkyJGC4KWiooKVlRVOTk4YGBigpqaGkZERYWFhXLlyhbq6OlHFRkdH09TUxMiRIzvk0vT8+XMGDBiAkpKSSMozMzP55ZdfeP78OWZmZvTr1w9lZWWMjIwwMDBg9OjR7ZjkQDsAvqSKAW1ElIiICGxsbEQ3ICMjg/Ly8nbyJgCjRo1q58Pe1NQk2Kzu7u4UFhZ2eKQOiK5EWVkZmZmZgu3f3NzMgAEDGDBgAN9//z2JiYmUl5eL77S4uJiYmBhiYmKwsLAQFrV1dXWMGjWKCRMm0KdPH+Lj4ykrK2tXNEm+7ZKPe2JiIunp6RgaGmJmZoa5uTlxcXFcvHiRmzdvoqmpiYqKCl26dKFLly4dwp9L06Jhw4ahr6/Py5cvSU5OxsnJifr6enJycoiKihJkH6kbVVFRgaampkgmFRUVBVNZ0vN82045OjqaoqIimpqasLS0FOdxbm4uixcvRl1dHXd3d27dusWGDRtYsmQJM2fO5NSpU6xZswYHBwc2btzYDlv4riERqSRSTXx8PPPnz+f27dssXLhQGAJI6iLa2tqkp6dz8OBBDhw4ALRN+4YOHUpjYyPnzp0jNDSUgIAAbGxsUFNT48svv2Tq1KliPC1p50p642VlZaIglVzj5s2bx4IFC6irqyMhIUEYtnS0eydpBg8aNEhMP6Kjo9m6dSuurq4sXrwYX1/ff/m9WVlZXLhwoV1He9GiReLOi46OZv369fz111+i+Hd1dWXEiBH07t2byZMnU1hYSH5+PmfOnKGyspKJEyfSpUsXca+Ul5fj4uJCbW0tCQkJuLi4oKKiwsCBAzt01kyYMKHduy2Rs11cXNi3bx+HDx/G1NSUHj16sHnzZmG0IBG63y58lJWVcXd358WLF8LpLyYmhocPHzJw4EAxKZEKzbcbV3l5edy+fRsPDw+8vLyIjY3lyJEj6Ovr4+XlRUhICDdv3uT3339vZ7H6LjF48GAGDx4MtBW7UrS2tmJhYSEkwCQ+z6BBgwgODkZPT4/ExETOnz/PzZs3qaysxMbGRjgaSjALJSUlWltbcXd3F1OGkydPMnnyZEJDQ4X9rCQVWldXR1JSElVVVVhaWqKurs7kyZOF015HpbLq6+vFc9HQ0MCpU6eE0VN9fT3Lly8nISFBQL4iIiLYtWuXcMBSUFDg+vXrVFdXY2dnx7Rp05g2bRrV1dVERkaiq6srbIMlSTwFBQUxEZBIa9AG7bKwsCAqKorU1FSgbRocHx+Pt7c3BgYGgrPwn0WHk9dHjx5x5coVoVMpYXiGDRuGXC4nNzeX33//neTkZGHVKkVjYyONjY3I5XJhTXjx4kV69+7NrFmz0NHRIT8/nwsXLmBqasr48eM5duyYkAqxtbUlPT0da2trxo4dS9euXbGyskJFRYXy8nJycnIwNzfHwMAAMzMzUYFev379ndcndZLi4uKIj49n0KBBTJ06VVwmUktbWVlZSMvY29szbtw4dHR0SE9PZ9++fYwePZqBAweyfft2srOzsbS0xNXVlU6dOmFvb9+O/FJVVSW0UAsKCti2bRsGBgasW7dOjNUlW9p58+YxdOhQPDw8CAgIQFtbu8PJ67Bhw0RF29LSgrKyMn379mXgwIGCKVlVVUV2drY45CTslpeXl5AiUlJSwsjIiBEjRmBsbEx9fT1GRkbIZDKCg4NxcHCgpaWFkydPkpWVRUBAAM7OzkLGpba2lpSUFBoaGujSpYuQO5EYsTo6Ou3Gh+8a8fHxXLp0CTc3N+HU9fb+Kioq8vDhQ6DN21lZWRkHBwfxneTm5vLzzz9TXV3N7NmzcXV1pXfv3jx48IBly5axdOlShg4dyvz58+nRo4d4xrW0tHBwcKCoqEg4sjk6OpKbm8svv/zC3bt3MTc3Z/To0YI4NHjwYHR0dDrsqW5lZUVNTQ1qamriYjE3N2fWrFkkJSVhbGyMu7s75ubm5OXlCTeqt6O2tlaw6aHNOSs9PZ3evXtjYGCAv78/Dg4OVFdXs27dOtLS0vj6669RU1Nj2bJl6OnpERAQQFBQUDv4R0lJCadOncLQ0JDx48djYmKCu7t7h2ya3w59fX2hDwq0k4mZOHEiz549E8lBYWGhGPu/LcsUHh5OUVER3t7e2NjYUFBQgKqqKuPGjaOlpYUHDx6gpaWFvr6+qP4VFRXx8vLC2tq6nTC4o6MjkyZNEo5l/4RAAW3QDwUFBS5cuEBhYaHQSG5ubsbb25vVq1ezaNEiYmNjycnJEcnr1atXuXbtmnBxGzFihPjfLl++zOvXrxk8eDBWVlbk5uYSERHBtWvXqKqqYvLkyUybNg1o624GBgbSpUsX1NTUsLS0ZPXq1aLYq6ysxMnJib59+2Jtbf2PBO4BgXO1tbXF1dWViRMnYmNjw4gRI8T/R0NDA2VlZZ48ecLJkydRVVVl1apV1NTUCBWImJgYCgsLBYkHENAjc3NztLS02L59Ow0NDcybNw9LS0vy8vL466+/xMjXzMyMTz75BC0tLbZt28bdu3fp0qULM2fO5OnTp3z77bcdmmY1NzczceLEdlOsgIAAvv76axISEoQu7b81y2lqahL4XukOfXu64OXlxfz584mJiWHr1q2oqamxcOFC0dGT1FlOnjyJgYGBUNuQoCxSsr527VpSU1O5ffs2tbW1uLu7M336dL799tt3XuPbHX9lZWWsra1FkRAUFCRwpo2NjXh6elJVVUV6ejoFBQViD6SkTnLr0tfXp7W1VViMBwUFUVRUxNOnT4XcV2FhIU1NTYLcXFlZya1bt3j06BHjxo3D0tKS+fPno6KiQmRkpGDTz507t0OENGibPCooKGBra0tzczNPnz6lqqqKwMBAwccxMDCgrKyMuro6AZGAtnN/6NChDBw4EFNTU548ecLp06cZP368SKKLi4vR0dERz1ZWVhbl5eUsXbq0nWNfQUEBYWFhgi9UWFgozChCQ0PR1NQkKyurQ/sHbWeydE6pqqoKmUUNDQ1RHN66dYvLly8zbNgwBg8eTGNjI+rq6sLM5ocffhDTpwcPHuDh4UF6ejoXL17EwsJC3IMVFRXcu3ePqqoqXFxcsLe3R11dndbWViIiIrh69SpyuZxvv/0WW1tb7t69i56eHrm5udy8eZPu3bu/U6Ese9cMfu7cuR1L9f8PjL179/6Hp+9/9/XBf/81/ndYH/z3X+P75/S/9/rgv/8a/zusD/77r/H9c/rfd30d8918H+/jfbyP9/E+3sf7eB/v439jvHPn9X28j/fxPt7H+3gf7+N9vI//3fG+8/o+3sf7eB/v4328j/fxPv6viffJ6/t4H+/jfbyP9/E+3sf7+L8m3iev7+N9vI/38T7ex/t4H+/j/5rosFTW/2chk30NLAM60dqa/f/i9ywFtgCetLYm/C/6dP8o5s6dKwOmAx8D7oAikAgcBH7cu3dv83/y4/9XxNy5c4cBiwA3wBB4DTwDduzduzf8f+dn+18Rc+fO3Qr4Ak6AEVALZAJngT179+4t+Y9/+v/8+P/JM/rffQ8NgVBgGOAJWAANwEva9vHg3r17O+4w8H9Y/HffR4C5c+daAl8Dg/mf5+lZYP3evXvL/jd+tP9PYu7cuR8Ch/7HH2fv3bv31/+dn+f/bfz/4RmF/zOe03/WeZXJtiKT3UImy0Ymq0UmK0Umi0ImW4dM1jGT9rbfZwV8Duz/l8RVJstAJmv9D/7L/3d+216gEPjuH6zsf3X8AfwG2AHHgF8AFWAXcOx/JA7/18b/eFH/H/bOOzyqau3b96T3TnrvgUAKJSEkkBC6tADSpSiCDAiieASxKyoHBREMAkpHem9CKKEHCCT0QEghvfc+Sfb3xzjrM8fje4jH18Kb+7pyTTIzmdlr1pq9n/WU33MECAR+RDmum8Aw4JJcLp/4P/z734V5gD4Qg3J824BG4APgtlwud/jzDu134Zleoz/xrM/h8yjnLQi4CnwF7AV8ge+AXW3z+NdHLpe7odz4TwWuAcuBVJTOgSs/bVKeGX6ar5VA1X967t+IZ3qNwl9nnf5Wz+s8lEZKDEpDUR8IRjlB05HJglvpPX0X0AZ+TXm3HOUJ+V/55aKXpFpkshXAEmSyECTptymj/5fI5fLhwAtAGtAtOjq66Kf7NYFdwEhgMrDxzzi+/xa5XG6NcsORD3SKjo4u+NljEcAZlDuzrX/OEf5uGEVHR9f9651yuXwx8DawEHj6tkp/IZ71Nfozntk5/IlHwFDg6M89rHK5/G2UF5eRwAiUBu3fmWd9HqMBS2BOdHT0StWdcrl8Gcpr7mLglT/p2H5XftpMbQCKgX0oryXPAs/6GoW/yDr9rTmvRkhSMJL0IpK0AEl6FUnqCnwK2KKcoKdDJjMGJgCn/weDtwxJ+uDf/Pyad3Ur0MSfu0hUDZq/VBkFANHR0QqUxjrAq3/4Uf1+OKFcP1d/brgCREdHnwUqgXZ/xoH9nvy7E9FPqBpoe/zK438HnvU1Cjzzc0h0dPSZ6Ojow/+aGhAdHZ0HfPvTn+F/+IH9zjzL8yiXy12BfkA68M2/PPw+UA28IJfLf1s7t78ec4DeKL131X/ysfxuPMtrFP5a6/S3Ga+S9HtO0DhAD2XI8vdBknKAC8AoZLLW9xf9fVD1k0z9N4+p7guUy+Umf8zh/O4ko8yr6yaXy1v0HZXL5T0BQ+DUn3FgfxBDfrq9/acexX/Hs75G/xPPwhz+J1SN2hv/1KP43+VZmMfeP92e/DebkErgEsrrZPAffWC/N3K53AdlXcqK6Ojo83/28fxBPAtrFP5C6/T3Ltj6LRPU56fbi//Dc7SRySYCjigt+9vAeSTpfyomuYTS29ATZV7mH43Kk+Xybx5z/dnv3kDc//7h/L5ER0eXyOXyt4BlwH25XH4AZQjIDWUIMwaY8ecd4e+LXC6fDxgAxigT8kNRrsPP/8zj+i95ptfov/KMzuGvIpfLNYBJP/354595LL8nz+g8ev10++hXHk9G6fHyBE7/IUf0v8BPa3ILkIEyjP5M8oyuUfgLrdP/zniVyX6PCQpFGWL+tQ8DlB6iLf9yXxoy2VQk6dyv/M/1n27/LOP1CEqv8utyuXxHdHR0CYgv74c/e57pn3BsvwvR0dFfyeXydGA98PLPHnoMbPzXdIK/OfMBq5/9/SMwJTo6uvBPOp7fg2d+jf4Lz+Ic/k98jrJo61h0dPSJP/tgfkeexXk0/um2/FceV91v8r9/KP+rvAcEAKHR0dG1f/bB/C/yLK5R+Aut0/9W53U+yjyH11AaoT8C/ZCkp5sgmUwL5QTn8et9ajcAkSgNWH2UUjBrAGfgODKZ36/8n0qJwPGpjuX3ZwdwHKUn8r5cLl8rl8u/AhKBQSh3KKDMzf1bIpfL/wHsQVnQ44ZyfjqjDDlvk8vl//zzju73JTo62jo6OlqGch2OQOmZTJDL5YF/7pH9Vzzza/TnPKNz+G+Ry+VzgDeAJJRFec8M/5fm8Weo1CL+tv3c5XJ5N5Te1i+fBRnF/4n/o2sU/sB1+t8Zr5JkjST9YoKQyZ52glSSCr+uCyZJHyJJZ5CkfCSpBkm6iyS9gjJcrYtS4eDfUfLTrcWvPP6/yk/5IENRGvh5KC8gLwJZKA19ld7b39I7KZfLw4ElwKHo6OjXo6OjU6Ojo2uio6NvotSczAbe+CnB+5khOjo6Pzo6ej/K0Ig5/1+j8G/Hs75Gf41naQ7/HXK5fBZKmZ77QITKo/6s8YzNo8pjZfwrjxv9y/P+VvwsXeAR/78Y9JnnGVuj8Bdap79Pzqsk5QP7kcluolycm1GGq/4TqrCBzm94129RehZ6/srjuv/yHn840dHRjcCXP/0I5HK5LuCP8tju/fFH9rsw+Kfbs//6QHR0dI1cLr+G0ogN4N8XBP2tiY6OfiKXy+8D/nK53OLn1fp/J57xNfo/8qzM4c+Ry+WvodRdvAtEPmOpO/+WZ2QeH/506/krj6uKoP+n9Lq/Mgb8/7HVyeX/VghonVwuX4eykOu1P+rA/giekTUKf6F1+vu2h5WkJyh3+x2Qyf6zx1OSylBWrP8WUVvVSfnXJBnM/+V5fyVeQGmw7/pJlujviPZPt78mh6W6v+EPOJY/C9ufbp+JsPq/8Cys0afhmZnDnwool6NM+4j4v2C4/oy/+zyqnAD95HJ5i+uyXC43BHqg3Ej+XQsn61E2Q/l3Pwk/PefiT38/qykFf/c1Cn+hdfq/0R62tRN0BwhAJjNCkipa8T7df7r9Na+e90+3ia14zd8VuVxuFB0dXfEv93VFWUhRhVLE/+/KBWA2MF0ul6+Jjo7OVj0gl8sHolzEdcCf0iTi90Aul3sDZT/pZf78fjXgY5RCzZf/zm0bn/E1+n9iDgHkcvm7KOfqBtDvWUsVeNbnMTo6OkUul59EGV6ehbLzlIoPUTpp1kRHR/8tNVF/Ks6a9u8ek8vlH6CM0G36O7eHfdbXKPy11mnrjVeZzBtl04C8f7m/xQQhSU87QbEoi3y68a+6oDJZByAXSSr5l/udgFU//fVrHZxUOmO/CGv/gcTI5fJalCG8SpS94weh3IWOiI6O/juH0/egnK8+wAO5XL4fZd6kD8qUAhmw4G/ey3kAsFQul58HUlDmgFoBvVDmd+fRUmXh78izvEbh/8AcyuXyySgN1yaUm8o5/yYsmx4dHb3xDz6035Nnfh5RNtW5DHwtl8sjgQcoW/5GoAzDLvoTj62N/8z/hTUKf5F1+ls8rwOApchkv9cE7UWZu9qfX4raPw8sQCY7i7KFZSXKyujnUIY0jwG/7LKlNKQjgYdI0t1WHMvvzR5gLDARZQ5uDspe459HR0en/4nH9V8THR3dLJfLB6HcfY1Fmd+qh7JQ7hjwdXR09Mk/8RB/D04Ba1F6kf1Qyn9Uo/yCbkE5xr+7h+uZXaM/8X9hDlU6veoolV/+Hef4e7f5febn8SevVheUG5EBKDeRucDXwId/9/H9H+CZX6Pw11mnsl9XqPq1/5D5AjNRTpA9LSfoKPD1Lzyl//k1b6JULHBo0XhAJuuFskduAP9fKqsMZSrAFmDLv5XYksn6ASeAeUjSV606ljbaaKONNtpoo402/rK03nj9XzkK2TjgB2AEkrT/d3i9vSg9wW5I0t9SWqSNNtpoo4022mijjV/yVzFeZSgrDJXyPP/NQclk/sBNYA6StOo/PLuNNtpoo4022mijjb8Rv69U1m9FaaxOB/bz/9UKfis2KEWQv/1vD6uNNtpoo4022mijjb8Wfw3PaxtttNFGG2200UYbbTwFfw3PaxtttNFGG2200UYbbTwFbcZrG2200UYbbbTRRht/G55a51Uul//t8wuio6Nlv/bYsz4+ePbH+CyMD579Mbat02d7fPB/Y4xttNHGn0eb57WNNtpoo4022mijjb8PkiQ91c/MmTOlmTNnSiouXLggHT16VKqpqZGysrKkbdu2SYWFhVJdXZ0UGhoqWVpaSsnJyVJdXZ20evVq6datW1JNTY00btw4CZAAac2aNZIkSdLNmzel9evXS1lZWZIkSVJTU5MkSZJUWFgoLViwQJo9e7aUnZ0tSZIkVVdXS3369JHU1NSk5557Tho2bJikpaUl2dvbS//85z+l/Px8SZIkqb6+XmpqapKam5ulnx37fxxfc3Oz1NjYKNXU1IixPn78WFqxYoV08OBB6ddobGyUysvLpbq6OnH8kiRJtbW10rJly6SFCxdKT548EfeXlpZK69atkxwcHKTg4GDp8ePHkiRJUk1NjbRs2TJp3Lhx0qeffio1NzdLkiRJr7/+uuTp6Snt2bNHvEZZWZkkSdJTje/fzWFERIRkZGQk3bx5U7pz547k4+MjzZkzR2psbJS++uorSUtLS3J2dpaioqKkN998Uzp8+LD07bffSt7e3pKnp6e0ZcsWqbGxUYxfoVBIjY2NUnNzs9TQ0CBVVVWJ97p37560dOlS6fDhw7/47Hbt2iX5+/tLixYtEvetWbNGAqSxY8c+9Rj/dXySJEk5OTnS1KlTpenTp0ulpaWSJEnSwYMHJTs7O2n48OFSdXW1tHv3bkkmk0kvv/yy+L9NmzZJCxculI4fPy7uq66ulmpra1u8fl1d3S/GI0mStGHDBiksLExyd3eXevbsKb311lvSoUOHpJ07d0pTp06V+vfvL82cOVNavHixtH79eunx48etGmNsbKx05swZqaCgQGpoaJDu3LkjZWZmSpIkSQkJCdKKFSukuLg4cTyVlZXi2Ovr66Xi4mLx2Ny5cyVA+vjjj8V93333nTR9+nQpIyNDKi4ulry9vaXu3btLtbW10jfffCMZGxtLP/74o5SRkSG1a9dO6tKli1RbWyvFx8dLJiYmEiANHDhQHFNtbW2r1+m9e/ek/fv3S5mZmVJtba10+PBhaf/+/eL7lZ2dLeXk5EhlZWVSdXW1OPabN29KUVFREiD16dNHys3NFeMuLy8Xz2toaJDKysqk8vJyqba2tsX3dsuWLdKIESOkzz77TMrIyBCfoeo5qampkpeXl+Ts7CylpqaK/2vNHCYlJUmfffaZ1KNHD3FOjIiIkO7cuSNJkiQVFxeL462rq2sxxtu3b0vz5s2TwsLCpOnTp0uHDx8W54p79+5JL7/8shQdHS01NDRIFy5ckFauXCnl5+dLOTk50tdffy3duXNHKisrk8LDwyULCwvxnvHx8dKtW7ekgoICKTY2Vrpw4YIYc11dXavncO3atVK/fv2kAwcOSM3NzdKWLVukpUuXSpWVlWIsquOWJOU57eDBg9LQoUPFZzJw4EBx/q+qqhLzKUmSdOPGDembb76R4uLipKamJunatWvSwoULpfnz50unTp2S/pUzZ85IH374oZSZmSkVFxdL3bt3l3R0dKQNGzZI5eXlUmZm5lOPse2n7aft58/7aXV72MePH5OcnExTUxPt27dHV1cXOzs7PDw82LVrF3l5eQQHB9O9e3c2b94MgJubG05OTkiSRGhoKPb29nTp0gV1dXVWrFiBk5MTAwYMwMbGBgA1NaVDWF9fnxEjRlBfX4+xsTEAjx49Ij4+nubmZp577jlSU1M5ePAgGhoa+Pj4UFJSgpGRETo6OgDU19e3anwymQx1dXV0dXUpKCggLi6OnJwcOnbsSEREBADvvvsuT548Ydq0aVRXV3P06FEiIyOJiooC4OLFi3z00Uf069eP+fPnM2fOHLZv386hQ4fw8fEhICAAY2Nj7Ozs6NOnDx4eHri5uQGgq6uLu7u7eF58fDzbt2+nrq6O77//ntDQUHGsqs+ktWRlZWFvb8+SJUt4+PAhlpaW1NTUMHfuXHr06IG6ujphYWHMnj0bY2NjPD090dHRoaamhtzcXAICAoiMjGTMmDHk5ORw7do1unTpgpOTEwAKhQI1NTX09fXFe7Zv3x4XFxdqamrEfcnJyXz//fdIksTy5cuxtLTk6tWrqKur06lTJ9atW0dsbCwTJ07EyMjoqcc3adIkmpubGTlyJFFRUaxdu5ZvvvkGuVzO66+/ztChQ3F0dOThw4fo6enRvXt35s2bh729PdnZ2RgYGBAWFkZgYCC1tbVs376dO3fu0LNnTwYMGEBBQQErV64kNDSU/v37A3Ds2DE2bdpEeXk5/v7++Pj4MH/+fHR1damrq0NDQwNbW1sMDQ1xdXUlJycHLS0tvLy8MDIy4vbt262aw7q6Ojw9PdHV1UVTUxNfX1+OHTvG/PnzcXBwYPr06Xh4eIjnGxgYiN+1tLQwMzMTf48dOxY1NTXU1dWpqqrCwMAATU1Ndu/eTWFhISEhIWhqamJnZ0dDQwOhoaG88sor6OnpYWtry6FDh2hubkZHR4fOnTuzZMkSZsyYwfHjx2lubgaU543WcvnyZXx9fbG3twdg8ODBrF27lueff57+/fszffr0Fs+/cuUKy5cvx8DAQLzvjRs3yM/Px9raGnV1ddLS0lBXV8fa2pr6+nr09fXF9+idd96hqqqKZcuWMXbsWBQKBe3atcPKygqAmpoaCgoKcHZ2xtzcnNmzZxMfH8+SJUsoKCigrq4OZ2fnpx6ftbU1wcHB1NbW4uLigo6ODgqFgmXLltGvXz9Gjx6NmpoaJSUlpKenY2ZmRnNzMzt37uThw4eEh4djZmbGsWPH6NChw09y2XD79m3WrVvHgAEDmDlzJqGhoSgUCnR1dWlqasLT0xNfX18AoqOjWbhwIXPnziUiIoKhQ4fSqVMnAHr16kVCQgJLly7FyMiI3r17t3oO3d3dCQ0NxczMDJlMRu/evTl16hTffPMNTU1N5Ofnk5aWhomJCWPHjmXQoEEMHToUSVJmHTx58oRBgwZha6tUUNTX1xfnlU2bNpGbm8uAAQPw9/cXn2nXrl3R1NQU6+bn+Pv74+TkxMOHD7l69SpeXl6MGDGCHj160NTURENDQ6vH2EYbbfzxtNp43b9/P8uWLWPevHkMHjwYgMLCQjQ1NVmzZg23b98mNjaWXr168f7777NixQr69euHh4cHISEhyOVy8VqbNm3i1q1b+Pr6CsM1Pz+furo6jI2NMTExoWvXrgA0NzfT2NhIUlISMpmMHj16MGnSJJ48ecKhQ4fQ09Ojurqauro67t+/j4mJCba2tsKIfVpycnIwMDDAyMgILS0tzp49S3l5uRhrUVERR44cobS0lMGDB1NUVMSJEydoamoSxuuDBw+4desWlpaWAKirq9OtWzd27dpFdnY2kZGRAAwcOFBckEpKSjA1NaWuro4BAwagqakJwLp169i0aRNvv/22uAjdv38fd3d39PX1qaqqau0Ukp+fT7t27ejatStubm48efIEIyMjZsyYAUBDQwOBgYEEBga2+L+HDx9ia2vL+++/Ly6UX375JadPn2b+/PlMnjwZgOzsbMrLy7G0tMTa2pqGhgZKS0sBaGxsFK9XUVHBvn378PLyYv78+Whra7Ns2TLu3bvHvHnzmDZtGpWVlbz++uvMnDnzqcenmh8vLy+ioqLQ0NDA2NiYu3fvEh0dzSeffCIMzPLycuzs7Pjyyy8pLCwkMTGRxsZG2rdvT/v27UlOTiY+Pp69e/eSkZGBjY0N9+7dIzY2lsbGRmG8mpubc+/ePe7du8eJEyfYt28fQ4cOBaCkpAQdHR3q6+upq6vD29ubgIAA1NXVAeUGKzs7u1VzmJGRId5bRXNzM2fOnKFXr15iI1FUVERjYyNqamrU1dVRW1uLnp4eDg4OAFRVVREcHExwcDAHDx7k2LFjjBw5EktLS5qbm9m/fz+ZmZkEBQXRo0cPADp16kSnTp2IjY1l3759hISEIJPJuHHjBoGBgQwcOJDRo0dTUVEhjIGfb2SeFjc3N4KDgykrK0OSJExNTXF0dOTq1asYGBgI47W5uRk1NTXi4+M5fPgwQ4cOJSoqivLycq5fv862bduwsbHBwsKCkpISzp49KzYo3bt3B+DEiROsX78eKysrnjx5gouLC1OnTqW+vh4tLS0AysrKuHbtGqmpqfTp04fZs2dz9+5dhgwZQnp6OtbW1q0yXo2NjQkPD8fY2BhjY2NcXV1JTEwkLCyMvLw8xo4dCyg38xYWFuTm5rJ9+3ZWrFiBq6srixcvRltbm7i4OH788UfGjx+PhYUFHh4eBAcHo6urS05ODra2tkRERFBdXY2hoSH9+/cnNzeXmpoafHx8WLVqFb169WLv3r08//zzKBQKioqKsLGxob6+nnPnzmFoaIiXl1er5zA4OJhOnTqJ84WtrS1du3bl7bff5sSJE9TW1gLg6+tLnz59xJrR1tbmxRdfpEuXLtjZ2ZGbmyvGYmNjw5UrV/jhhx/o3LmzMFyvXbuGq6urOA/funWLDRs24O7ujp+fH3p6epiammJqasru3buJi4tjypQpjBgxAoC0tLQWm+s22mjjr0urjde0tDTy8vLIysoC4MKFC+zbtw9TU1NMTEzo0qWL2CW//fbbnDt3jt27d+Pg4EBISAgA9+/fZ82aNRgZGfHqq68KryMovXaXL1/Gy8vrF8ZTaWkpMpmMQYMG4eLiIoyM2bNns2zZMjZs2MBnn31GZWUlH330EUFBQcyZM6dV4zt69Ch+fn5069YNExMTvLy8yMrKIjU1laqqKu7du8esWbNwdXWlQ4cO1NbWYmFhQUpKCv/85z+xsrLCycmJkydPYmdnR1lZGRkZGVRVVfHSSy8JI11F586dycnJISUlhbS0NMzMzOjTpw8A33//PUePHqVXr15ERkaSlpbGhx9+iJqaGkuWLKGpqYkzZ860bgJ/es/CwkLef/99Hj58yIIFC2jfvj1XrlxBkiSCg4P/7f95eXm1uIC9++67rFixAkAYpwDt2rXDyMgITU1NKisruXXrFmvWrOHatWuMHDmSzz77DIAOHTrw9ttvs3PnTqKiohg+fDiOjo7cu3ePPXv2YGNjQ48ePVi6dCmpqalPPb6PPvqInJwcsVFasGABycnJfPDBB1y9epXg4GBGjhzJmDFjqKqqwtLSkk6dOtGuXTv8/PxoamoiNzeXa9euoaWlxahRo+jVqxdHjhxh7NixBAQECK9qbGws4eHhBAUFsW/fPqZNm0ZCQgLp6emkpqYSHx+PsbEx/fv3p6mpiV27dhEXF0fHjh0ZO3Ys9vb2ZGVl0b59ey5fvvzUYywqKmrxd1paGh06dCAmJoakpCR27NghvOi7d+8mOTmZmpoazp07h7OzM9u2bcPR0ZHCwkJycnLw9PQkPDwchUKBuro6tra2jBkzhpMnT1JcXExDQwP6+vrCkAM4f/483377LYaGhtjZ2QFKz1f//v35+uuvKS0tJT4+HoVCgY+Pz1OPTYUq0rF582YuXLjA5MmTCQwMZMOGDcJzXFtbi0KhwMjIiMjISDZu3EiHDh2wt7enoaGBhw8fsmLFCnR1dfnwww+JiIjg5s2bfPHFF0iSRPfu3Tl48CDz589nyJAhvPbaay2+o/X19chkMrS0tJAkicrKSuGJBeV3YsmSJejp6WFhYSGiTa0hLy+P1NRUXF1d8ff3Z9GiRejp6SFJEjKZDBMTE0xMTIiJiWHFihV4enqyefNm7OzsSE1NpX379pw7d463336b2bNn07lzZ65cucLevXvZunUrw4YNw8vLi/v37+Pr6yvW7cKFC1m2bBkjRozgu+++o7GxEUdHR3bu3MmPP/5Ir169cHZ2ZtSoUbi6utK5c2f27NnTqrFpaGiIc4EKU1NTevfujaOjI+3atcPT05OOHTtiYGDAoUOHWLt2LVeuXGHatGkMGzYMSZKYMWMGhw8fZsiQIUycOJGamhq8vb0ZNGgQADExMWzdupWXXnqJnj17Aogx6urq8u677zJz5kzU1dW5ffs2PXr0YNCgQVRXV3PmzBlMTExwc3PDxcWl1fPXRhtt/PG02nh1dXVl4sSJDBo0iOvXr/P++++Tk5PDP/7xD+bPn8/JkydZunQps2bNws/Pj/fee4/58+ejofH/3+rw4cN8/fXXDBkyhI8//hhQek+ysrJITEykqKgIZ2dncfJubGxEQ0MDU1NTunXrhpeXFw4ODhgbG5OWlkZiYiLp6ekYGBjQrl07amtrOXbsGCdOnGi1x6d37964ublRUVHB3bt3sba2JiIiAh0dHb744gsuX77M6tWr6datm/gfZ2dntm/fzjvvvMOgQYMYMWIEtbW1GBsbo6mpSWZmJo8fP6ayspKUlBRyc3Opr6+nY8eO+Pn54ejoSGpqKhcuXMDMzAxPT09qa2vZv38/V69eZfjw4dTV1VFVVYWamhrt2rVDV1cXdXV14dFoDarPs7S0lPz8fIyMjNDW1kZDQ0N46UDplVNXV6e8vJz8/Hzq6+upr6/nyZMnJCcn8/jxY7p27YqBgQENDQ3ExcVhZmaGrq6u8OyB0ivZ3NxMTU0N1tbWANy9e5eHDx/SpUsX7t27x6pVqwgKCuKFF15AT0+PzZs389FHHzFx4kTeeOMNZs2a9dTjk8vlYgz79u3j9OnT+Pj44OHhQU5OjvCqa2trU1paSk5ODu3atcPExER4y7W1tbl06RJ+fn7CO5eVlcW6desYMmQIw4YNIzs7m1dffZXTp08zd+5cYVQcO3aMu3fv8v7772NoaEhgYCCZmZk4ODhgZ2fHsWPHOH78ODY2NvTr10+k4LSGHTt24OrqSv/+/UlOTmbv3r3Y2NgwZMgQjIyMePz4Mfb29mhrawPKkLe9vT0dOnTg/v37fPDBByxatAg3Nzc2b97MokWLGDZsGBMnTgSU4d6JEyeSk5PDkSNHMDY2Jjg4mKKiIuzt7Xn8+DF5eXmoqalRXl6Ovr4+1tbWGBoaoqWlRVVVFUeOHGHFihX06dOHd999t1XjA7h58yalpaVcuHCB+Ph4PDw86NmzJ3379gWUhqWuri66uroAwlsOUFlZybBhw2hqamL79u0UFhaK1x0+fDgffPABO3bsoHPnzsTFxeHg4MD7778vNt5VVVVoamqSlZVFU1MTbm5uaGtr4+rqioODA2VlZeTk5GBoaMjo0aMB5QaiNVy5cgVfX1+Ki4vZt28fcXFxjBgxgtdee61FxKiuro5Lly5x8uRJQkND+eCDDwgKCgLAwsKCvn37oqamRm1tLQUFBSgUCnJzc0lOThaRrPz8fLZt20Zubi4DBw4kISEBLS0t7t69S1RUlNgoAJiYmFBRUcGnn37Kc889xzvvvIO1tTX5+fmtnULU1NQoKioiPT0ddXV1vLy8MDAwECkKTk5O1NTUUFFRQUFBAffv3+fOnTs0NjaSn5/PiRMnKC4uJikpCVBeOzIzM/Hx8aGyspIffviB1NRUFAoFNjY2nDlzBiMjIzp27IipqSkODg6oqalRU1PD7du3UVNTo6KiAhcXF4yMjIiPj6e6uhpLS0syMzO5f/9+q8fYRhtt/PG02njV0tJi3bp16Ojo8Pnnn3P27FmCg4MZNmwYxsbG7Nq1i61bt5KWlsaGDRvo3bs3+/bto7y8XLyGo6Mj0DIftby8nFOnTlFTU0NAQACenp4oFArh8SgpKREeFisrK/T09ADlBWD9+vUAjB8/Hnt7e3JycjAzMyM/P5/PPvtMhJGeBpUXeMOGDezevZuxY8cyfPhwQHkRuXnzJufPn29hvILywuXo6Mjzzz9PSUkJkydPpm/fvnz//fd07NiRGzdu8Oqrr5KcnIyOjg6SJNGzZ0+++uor2rdvj5ubmzh59+3bFx8fH8zMzJAkibNnzxIVFcULL7xAt27dyMvLQ0tLCy0tLSIjIzlx4kSr5nD79u2MHTuWbdu2kZWVhampKYBI0VAoFOTl5aGhoYG1tTXFxcVcuXKF06dPc/LkSSoqKujevTvffvstnTp14ty5c5w4cYLNmzfj4eFBWFgYVlZWwkvn6OjIBx98QHNzMw4ODty/f5/ly5dz+fJlQkJCCAkJYd++fXh7e2NlZUX//v2Ji4tj/fr16Ojo4Ofn16rxVVVVYWRkxMaNG7l69SrLli3D1NSUPXv2YGJiwvnz54XnrrS0FHV1dfT19VtsBMzMzJgwYUKLvOKgoCCWLl3KgAEDAGWe6/79+9m/fz/nzp1j1KhRzJw5kxdffJHXX3+dwsJCJk6ciJ6eHnv37mXUqFGMGjWKK1euEB8fj46ODoaGhpibm7fwaD4Nt2/fZsGCBVy5cgUXFxdycnI4cOAAO3fuZPTo0UyfPh1tbW0UCgV2dnY4OTnRr18/TExMWLJkCQsWLKCmpoYdO3ago6PDnj17yMrKokOHDnh7e6Onp0dISAjm5uaA0oNmbm5OQ0MDGRkZZGZm4unpyaeffkpISAi1tbUUFRXRpUsXFAoFb7zxBhs3bgSUHrD6+npMTExaNcbx48fTrVs3fHx8iIiIwMXFhSdPnqCvr4+enl6LuamurhYb1UePHlFeXk7Xrl2ZNGmSSM1RYWBgQHh4OEeOHGHRokW88sorvPnmmy3ygFU5whoaGlRVVVFVVYWjoyMWFhYUFxdz/Phxzp07R2RkJA4ODly5coXo6GgMDQ2fenw3btygU6dOhIeHc/78eVauXElycrJY9yru3LnD5MmTsbe3F1EsFUZGRvTq1Ut87unp6cydO5fdu3djZWXFRx99hJ+fHzk5Ody7d49Tp06xa9cu3n33XeFV37dvHz4+Pjg5OaGvr8/gwYMxNjZm8ODBnDlzRmw8Dh482Kr5A+VGOTk5mffee4/CwkK++eYbevbsib29PfX19RQUFLBv3z6OHj2KTCbDycmJpUuXEhwcTFVVFYcOHaKxsZHXX3+dffv2iciChoYGSUlJVFVVsX37dr7//nuioqJ47bXXOHHiBDt27GDSpEmEhoair69PWVkZly5dwsPDg27dunH69Gni4uLo168f/fr1A+CDDz7g3LlzvylK0EYbbfyxtNp43bFjB7q6uvj6+qKnp0evXr1QV1dn586ddOnShf79+2NsbIyWlhYFBQXY29uLPLDMzExkMhkFBQUEBATQr18/GhoaOH36NDExMfTu3Vvklv6clJQUjh07RmZmJtra2mhpaWFtbY2dnR2VlZXMnz8fS0tLRo4cCSiLnnx8fITXoTV8++23ZGdn88knnwDK4h/VMZiZmfHiiy+KEKnq/uXLl1NbW8vnn39OUFAQ5eXlTJs2jZs3b/LBBx+IMHzHjh3x9PREQ0ODgwcPEhMTw6JFi9i/fz8ODg4oFArOnDnDnDlzMDc3F54cVUEBKDcPKuMfWhbiPC2WlpbCq616rbt373Lo0CEGDBhAYGAg165d4/r160ybNg13d3d69OjB4sWLqaiowNnZmU8//VQUdhgYGKCtrY2ZmRmBgYF06dIFUKaHHD16FEmSGDBgAK6urmzevFmErL29vdmzZw+2tra89NJLgDI/1MzMDCcnJyorK4mNjW11EYWuri75+fk0NjYSFhZGWFgYAFevXsXV1RVTU1P27dtHaWmpeN+mpibU1NSorq7mm2++wcPDg6ioKB48eMAXX3zB8OHDGTJkCJ07dyYvL48tW7awdu1a8Z7Z2dlIkkRqaiqFhYW0a9dOFHRdu3aNHTt2sHfvXsaPH09kZCTDhg3D3t4eNTW1VudlA8ydOxdNTU3c3d1xdnbGzc0NPz8/1NTUGD16NHp6epw6dYply5ahUCgYNmwYpaWl1NTUYGtry8SJE9HQ0ODTTz+lsrKSl19+meDgYAwMDGhqagKUudozZszA1NQUGxsbevbsKTxwmZmZmJiY0KdPH2xtbcnLy+PWrVsivzkpKYnu3bszfvx47ty5w+bNm5k6dWqrxhgQEICBgQEjR47Ez8+PjIwMrl+/jouLC66urgCsWrWKpKQk5s2bh5ubG7m5uZSXl6OpqcnZs2c5ePAgjx494o033gAQBpSJiQmBgYEYGxvTr18/zMzMKCsr4+rVq/j7+2NlZUVBQQEmJiY4OTkJD7aBgQEFBQUcO3aMXbt2UVpaSufOnTE2NqZv377ExcU99fhUBWOqwtS6ujo6depEU1MTDx484OHDh0RGRmJhYUGfPn3Exh2UxY7btm1DW1ubuXPnig3oRx99xOrVq/H39+fll18W30VTU1MmTJhAZWUlWlpazJ49G0tLS3788UfmzJlDREQEL730Er169cLKyoqwsDDmz58PKD2x5eXlrd5ggTINa+vWrZw9exZQnhN69uyJiYkJtbW15OfnExAQwM2bN1m3bh3+/v68++67IgLy6NEj9PT0GDp0KAEBAdjb22NiYkK3bt2orq7m7Nmz1NTUIJPJSExMJC4uDh0dHfGdUq0TKysrSkpK8PLyQl9fH0tLSxwdHenYsSOgPO8/ePCAsLCwX6TktNFGG389Wm28xsfHc+XKFaZMmcIbb7xBt27dWLt2LRs3bqSxsZE5c+aI0KNK0qCyspKSkhIKCwspLS2lubmZ8ePH8/LLL9Pc3MzSpUuJj48XHs6GhgZSU1Px9vYGlIbBZ599Jk4qOjo61NXVoaOjw5tvvsmSJUtEmBiUxktwcDCmpqY4Ozu3yoCdN2+e8Aj7+fnRq1cvysvLOXDgAJ07dxYhQhW7d+9m3bp1vPnmmyKUZ2xszHvvvcfy5cv56KOPuH37NvPmzWPjxo3CM7Nw4UI+//xzbt++TVxcHMHBwdjb22NsbIy2tjbZ2dkUFRURGBjId999h0wmo7S0lLt372JsbIyXlxfa2tqiKrc1qAp9Ll++jLa2Np07d+bBgwe88847pKSk8PHHHxMbG8uRI0fo27cv7u7udOzYkYCAAGpqali+fDnh4eEAnD17lsePH6Orq4urq2uLnLF//vOfbNq0CZlMxvXr19HR0eHIkSMoFAoiIyPR1NTkxIkTXL58mdLSUrS0tMjJycHExARzc3OMjY0JCgoSodynJSsri+LiYoYNG0a7du0ApddcZaieOXOG119/ndraWjw9PQkLCxPFU6q11qFDByIjI7l06RLr16/H3NycIUOGAMrQ5YoVK9DU1CQ8PJy0tDSef/555s6dS3x8PN9//70w3EBZIFdaWsqjR48oKipi9erVIi9PVbDS2nn86quvxO+SJJGRkYG3tzf29vZoaWlx6tQpli5dysmTJwFEDqUqv2/t2rU8evSInj17YmZmxu7du+nSpYtIKWlsbKSxsZHu3bvTvXt3GhsbaW5upqGhgfr6elxdXamrq6OiooL6+np27tzJ999/j5GREb6+vnh7ezNgwACef/55Tp48SU5OTqvGB8qc6pSUFMzNzamoqODatWsUFRWJzUhBQQHfffcdRUVFTJs2TXyeXl5e6Onp8dVXX4mc7MjISLp168bXX3/Nd999x5AhQ3j//ffR1tYmJyeHnJwc8vPzsbW1xdLSkoaGBmpqajA1NUVLS4vq6mrU1NSQyWRUVFSgpqZGQ0MDeXl5GBgY4OrqioeHR6uMV2dnZ2pqasjOzkZdXZ2lS5diZWVFY2Mje/bs4cGDB5iamtKrVy82btzIxYsXOXfuHH379kVPT4/9+/dTUFDAsGHDaN++PaWlpTx8+JCgoCDWr18vUihUChJTpkxhypQp4v1LSko4ffo0CoWCiooKKioqyM7OFhGun6d6FBcXExwczLVr11o1h3fv3uXIkSOAMsddFbGSJIn8/HycnZ2Fc+P48eOisFH1nl26dMHS0hJNTU2sra0ZNmwY2tra2NnZYW9vL77TX3/9NXPnzgWgb9++lJeXY2VlRV1dHQ0NDRgZGYn0n8bGRjp27CicCjExMWzfvp3evXvz/vvvtygqbqONNv6atNp4nTZtGhcuXGghtyJJEg8ePPhFeFcmk/Hdd9+xdOlSoqKiWLRokZAHUlVDV1RU0KVLF6qrq/n+++/58ccfSUxM5MKFC4wcOZKNGzdiaWkpDFcNDQ28vb1JSkqirq6O3bt30759e0aOHCmKAgwMDBg3bpyobP/uu++eenyffvopCoVCyNh4enpSUlJCSEhIi/EdP36cNWvWUFpayttvv82AAQN4/PgxaWlpJCQkkJubi66uLsuWLaNr1654eHgI7w3AmDFj0NbWFiHfL774gm7duvHyyy9TWVkpin/69+8vwtnZ2dlcu3YNU1NTkc/4W3JeVagK6Jqbm9HW1mbMmDE0NzezatUqMjMz6d27NzY2NkiSxPXr1xkxYgRdunTh7NmzNDc3M2LECHx8fHj06BH19fUkJydz5coVDAwMKC8vZ9OmTYByfZw6dYqysjImTJjAyJEjiYmJYdu2bWhpaVFTU8OiRYuIiIigR48eqKmp4evrS3R0tMhvbA3//Oc/GTVqlDBcFQoFDQ0NwhvTu3dvPvzwQ1asWMFLL73EvHnzhJqBytgrKytjz549mJub8/rrr9PY2Mjx48exsrLi+PHj3Lt3j6VLlzJ+/Hg++eQT4ZXS0tKiuLi4RUi7qamJYcOGUVtbS2BgYIsCRVW+Znx8fKvGmJOTQ1NTkwgh79y5k+PHj6Orq0tlZaUYZ+fOnYmNjaVDhw50796dBw8eiJxrNzc33N3duXnzJp999hkRERH069cPT09P4uPj2b9/P35+fowfPx4NDQ1OnDhBdHQ0AwcO5JVXXhF5iebm5hQXF/P48WMmT57MjBkz2LhxI1OnTmX16tW89NJLLFu2jOXLl7dqjLdv38bHx4dTp05x6NAhGhoaGDx4MBkZGezbt49jx47RtWtXhg0bhqmpKXfv3qWxsVF42wIDA/nnP/+JTCYjIyODwMBAHj9+TJcuXRg8eDBDhw6lurqaOXPmEBsbyyuvvCIiP1paWtjY2FBYWMi5c+c4evQoycnJdOjQgXHjxjFx4kQUCgWBgYEiX3LJkiWtGl+7du2YPXs2x44dIyQkRJynMjMz0dXVZeDAgcIzCMpK/aqqKlFAJ5fLKSsro6SkhOLiYurq6li+fDnV1dU0NzeL6Mq/i87cvn2bEydOMHr0aBYsWMCTJ09oaGggJyeHGzduYG9vz8CBAwGlykhmZqY4Z7cGPz8/4UFftWoVPj4+pKamMm3aNPr27cvChQupr6/n6tWr/OMf/yAiIgJLS0tu377NjRs30NfXx9vbm5KSEh49esSNGzfIy8sjISGBuro6Dh48iKurKxUVFYAyB3jQoEGcPn2aY8eO4eTkhLu7Ox4eHmhoaPDo0SPy8vLw8PAQaSa+vr7MmjVLXM/aaKONvz6tNl4/+eQTEhISWkjCqLwzgCju8fT0BJSGS0NDA5aWlsLrWFlZyc2bN+nQoQNGRkb079+f69evs3nzZrS0tMRJ+tKlSxw/fhxnZ2fGjRvH9u3bsbe3p3fv3gwcOJCYmBiam5vJy8sjOzsba2tramtr0dXVFSHt1jJv3jzxe0FBgQgBd+/enaysLO7duyd0OmNjYxk9ejTvv/8+oMzt09bWJj8/n/Xr1zN37lwRKn306BH6+vq0a9eOR48ecfr0aVEU09jYyHvvvYe+vj5GRkZcu3aNuro63nzzTQByc3OJiYkhPj6e7OxswsLChCH881zip+XRo0c8fvwYNTU17Ozs0NDQoKmpCScnJwoKCqitrSUsLIz+/fvTvn177t+/z4kTJ/Dz86Oqqor333+ftWvXcvXqVTQ1NXn06BH29vbIZDKR7+zg4EBYWBi1tbVkZWWRl5eHjo4OgwcPJioqitu3b4sLTkFBAXl5ebi5uQkv68+lulqrEWpgYCC8KtXV1Whra2NkZERTUxPx8fFoaWkxefJkOnbsyLBhw9i5cyeRkZHcv3+f6OhodHR00NfX59SpUwwcOJBu3brx/fffk5iYyIsvvoi3tzfe3t4YGRlRVlZGZmYmWVlZJCUlcfv2bSH1A0r5nuLiYsaPHy8kffLz87lz5w7e3t5oampSVlZGbm5uq8a4cOFC3NzcmDRpEhYWFtTV1ZGXl0d5ebl4LZVhFxoaioeHh7iAnz17lr1796KmpoaHhwf3799n3759VFRU4O/vL/LNc3NzKSsro0uXLnh6emJkZER9fT03btwgLS0NFxcXkUKj8o75+/vTvXt3Dhw4QG1tLefOnSMqKuo3VXFfu3aNrl27cuLECfbv34+vry+dO3dGkiTWrFlDYmIie/fuZfDgwaSlpZGWlkZAQADV1dU0NTXRu3dvoU16+PBhDh06hLu7OyNHjhQeQH19fTw8PLh37x7l5eVcvnwZHR0djIyMsLe3R11dncLCQh49esT9+/exsLDAxsYGFxcXzMzMqKqqIisri3379nHz5k0xx0+DQqEQ+e9lZWVkZWVRVVXFli1b0NHR4fnnn0dfX5+rV6+yadMmwsPDGT16NA8fPiQ1NVVI2y1YsIBLly7x1ltvYWdnx61bt4iPj+fOnTt07NgRFxcXNDQ0UFNTExv8goIC1NTUsLa2FjJv9+/fx9TUFAsLC9TU1Hj06BGampo0NDTg4uLyb3VT/xPJycn4+Pgwfvx4kUu6fPlyrly5QpcuXcjPz+fMmTOUlJTw+uuvCz3n8vJyGhoaKCkpwcrKCnt7ey5fvszGjRvx8PDAyMiIxMREZs2axaxZs6ipqSEwMJBevXrh6upKXl4e9+/fp6SkhICAAHR0dMjLy6OoqAhLS0tMTU2pra0VG01VRO23SA+20UYbfzytNl7NzMzo3r072traNDQ0UFRUhImJiSigys/PRyaT0dTUhLq6OsOHDycsLExILD148ID58+dz8+ZNvv76a8aOHcuDBw+IjY0FYObMmYwZMwZLS0vOnj3LDz/8QP/+/VmzZg2urq4sXboUNTU1BgwYQGNjI+3atWPWrFloamqSkZGBrq6uKDL5LRQVFWFhYcH+/ftZu3YtQUFBvPvuu6irq7Nx40aOHDnCvHnzGDlyJCYmJi1kc3r27CnUANq1aycKAb744gtu3rzJjBkzKC0tZfHixULKKCIiAjs7Oz766CNmzZrFF198Qf/+/fnHP/4hXjchIYG1a9dy6dIlvLy8GDNmDPr6+jx58qRVYUoVN2/e5K233iIjIwN/f38+++wz0tLSiI6OJjQ0lCVLltCuXTsRvlONMz8/X1Tjamlpcf78eS5evEhsbCwrV66kT58+3Lx5k5ycHPr27csHH3xAZmYmEyZMAGDkyJEUFBSwZs0aIiIikMlkvP/++zQ3N7Nw4cJfSKOB0usTExPTqvG9//77wquiqamJQqFAQ0NDNMU4fvw4e/fupXfv3mzYsIEffviBTz75hOvXr4uqZk1NTdTV1dmyZQtpaWk8fvxYGLL+/v5kZmby3XffsXLlSu7evYu/vz979uzhzJkzJCYmMnToUNLT07l06RLNzc0tJMZU+aKamprk5ORw4cKFFuvoaYiNjcXKyor6+noMDAzERby2tpY1a9bwySefsHz5ctLS0liyZAkeHh5IkoSfnx/m5uasXbuWAwcOUFhYiJWVFX5+frzwwgsEBAQASjF3lcTYkydPsLGxoXv37kJzOCoqildffVWEbVVevsuXL9OjRw8iIyNxdXXF2dkZHR2dFmkOT8ugQYNwcnISnsORI0fStWtXbt++ja+vL5aWlshkMrFhVoWSy8rKKC0tbdHYQpWvfOHCBQoLC0lOTsbMzAwtLS0WLFjAgAEDWLJkCf379xfV8FFRUfTs2ZPhw4fj5+dHRUVFixz+zp07c/HiRTZu3Ii1tTVbtmzhyy+/fOrx3bhxg6VLl/L2229TUFCAu7s7MTExHDhwAHd3d9LS0rCwsGDjxo2sXbsWExMTRo8eTU5ODomJiQwcOJCsrCwOHDhAv379KC0t5csvvyQ2Npa5c+dSXFzMiy++yNChQ3nnnXdavLeqOcrixYvZsmUL6urqeHh4EBERwXPPPYetrS1nzpwR3u7WNAn5OStXriQkJIQuXbpQX1/P8OHDSUpKYtOmTXh5eXH06FGsra2ZN2+eeI/q6mr8/f1xdHQkOTkZGxsbDAwMKCwspKysjAEDBrBw4UJqamoYP368GN+hQ4c4e/YsGRkZDBgwAFNTUy5fviwMUgsLC2QymfiuFRYW8uOPP2JsbMzzzz8P0ELSq4022vjr8ptyXlVFAE1NTWhra1NZWUlGRgb5+fkYGxsL74MqP87KyoqHDx8SHx/PhQsXOHfunJB/MTc35/DhwwBERUUxa9Ys0RnIyMiIw4cPc+PGDcLCwqivr6exsVFI5ty4cUMUwwQHB2NlZdXiJHvz5s1WG3c//vgjwcHBnD17VqQwdO/enYiICMrLy8nKykJHRwcTExNGjhzJ7t27WbVqFR4eHnh5eVFbW8uJEyeor68XOWd79+4lLi6O0NBQXFxcuHjxIgCXLl3ilVde4auvvsLNzQ1fX19OnDiBp6cnzs7OpKen09TUROfOnRk1ahR6enr4+vri7+9PaWkpP/zwAydPnvxN1bGqooZOnTohSRLq6uqEhobSu3dvEW7Pyspiz549NDc307lzZ/T09MjMzKRr164EBwfj4+PDuXPnqKqqEgL81dXV6Orq4unpiYODAzY2NowdO5bq6mpeffVVmpqaOHDgABcvXqSwsJCIiAjkcjldu3YlPT1d5OoNHz4cDQ0Namtr8fb2bpWEjcoD2qlTJwICAqioqEAmk6Gjo8P48eOpq6tj69atmJqaCmH0t956Swj2P3z4kKqqKhQKBbdv3yY/Px9vb2+mT5+Op6cnZ8+e5c6dO9y/f18YyYWFhVy9epWcnBxKS0vZvXu30JBt3769SFkoLCzEyMgIa2trCgoKWLVqFefPn2/h8X8a/P39kSSJiooKqqqqyM/Px8TEBDMzsxb5387OzqKYR5ViYmhoSFFREXfv3hXP69mzJ+Hh4WI8hoaGQnoqMTGRW7duoaury507d7hx4wa3bt3itddeE98DQ0ND8X23tLTE09NTbN7Onz/PunXrRHOOpyUyMhKZTMbgwYOFLm5aWhorV66kpqaGYcOGCRF9VdOO/Px8rKysMDEx4eLFi6SmpuLk5ISVlRXJyclcuHCB1NRU7t+/z+nTp3FwcCAyMpKSkhJiY2OFssCJEydITk5GTU2NkSNHttgQq6IWrq6uhIaG0tjYiLq6eot0kKdh9erV2NvbC5UUlbc7ODiYyMhImpqaWLZsGceOHaN3794inaO4uJj6+no++eQTtLW1mThxIra2tnz66ad88cUXqKmpMWHCBA4cOMD169dFjnBtbS1ff/01Hh4ejBgxAicnJ1xcXLC0tMTS0pKQkBCCgoJwcHCgtraWnJwc6uvrycjIQEtLq9X5rqDcgISFhWFmZsbjx49pbGwkKipKeDoLCgro1KmTSLNRKBQt1qCqMUR6errwRpeUlPDkyROcnJz49NNP0dbWJjg4GEtLS65fv87JkycpLy8nMjKS4OBgjh49Sl5eHn369MHExISdO3fSqVMnfHx8cHNzIzs7W3Qd/HlqVxtttPHX5b8yXjU1NTE3N6ekpISsrCwUCkWLSvjs7Gz27dvHyZMnKS0txcDAAB0dHYYPH46VlRXGxsYcOXIEPT09Xn31VSHarkJlCKWkpHD48GGSk5Px9PTEw8OD5uZmbt68yY4dO9ixYwfr169n6tSpKBQKFAoFenp6PH78mKVLl4rcraehqamJlJQUevToQWZmJgcPHmTHjh307NmTCRMmoKOjI0TMT5w4wXvvvcfDhw+ZMmUKAwYM4MyZM6xZswYADw8Pxo8fj5ubG3FxccTExGBqair0EtXU1Dhy5Aj6+vqsXr2aV155BX9/fywsLMjKyiIlJQVTU1Pc3Nx47bXXmD59OjKZDE1NTeLj47l06RKxsbGtNl59fX1ZunQpnTp1wsrKiri4ONzc3Ni+fXuL/LiysjKio6OpqKhg9erV9OvXD0dHR9GVKjQ0FF1dXdq1a0dTUxMnTpwgPj5ehMGTk5Px8PDgs88+E/OvqanJjBkzGDp0KLdu3WLHjh1CaPy9995jy5YthIaGYmFhQc+ePYWRtm/fvqce38svv0xtbS3vvPMOXbp0oampiYSEBDp27MjgwYMJDw9n7ty5fP311yxdupSAgACR/xsaGkpOTg7x8fFkZWVhYWFBv379mDx5sjC+Dh48yK1btxg1ahSDBg1i+/btnD9/nvLyckJCQrC1tSUlJYWEhAQ+/PBDkUJTU1MjvPLNzc0kJSWRnJxMcXFxq9M/3nrrLRITE4U3av/+/cL7qPJUv/rqq8yaNYuqqioqKiqEcSWTyejQoQM9e/YkLi6OhoYG9u/fz6BBg0RXJ1X6DYC3tzdXrlxhzZo17N69W3jkq6qqWL58OX369MHT0xMvLy/RfvPn5OXlCY9ua1AZ2z179hQG+L59+9i2bRs+Pj74+vqKnF8XFxfu3r3L1atXGTp0qDD8zp07x5AhQ0QeOSgNfzs7OzIyMjh69CjvvPMOZWVl1NXV0b9/f0JDQzlz5gxnz55lz549+Pr6tvCc5+XlUVZWhpGRERYWFgQHB3PlyhWxCX9a0tPTmTBhAk1NTbzwwgs8fvwYGxsbRo4cSbt27Thy5AibNm1CV1eXpUuX4uvrK1pFV1RUsHz5cp577jl27tzJuXPnhBfc0dGRQ4cOiXWg2kRv3ryZAwcOEBISIhQ9pk2bxksvvYS2tjbGxsZIksTt27e5c+cORkZGIjx/7do1zp49Kwzhp2XVqlViM+Xu7s6xY8eoqqoiNzcXPT29X+S0/9zzWVdXx5MnTzh8+DDp6ekMGDAAFxcXVq5cyY4dO9i/fz9dunRh586d7N+/nwULFpCUlERSUhLz589nw4YNjB07lujoaNasWcPFixcpKSnh888/Z/DgwXz88cdERESIc1MbbbTx96HVxqskSaxfvx5vb298fHyEJJaqSxEow+QqSZT09HRRBDN27Fh69uyJl5cX5ubmlJeXixNHt27dRE5scXGxELaPi4vDyMiIvn37YmNjI8JiiYmJbN26FVCGBIcOHYpCoWDlypWisrxbt268+OKLrconVOV6jR49msDAQEpKSkQTBH9/f0xMTDhw4ADLly8nISGBhw8fAkpJlt69e7foBDV37lwOHTqEvr4+oaGhxMbGUlZWJh5XhZP79+8vLs7GxsY8efIEW1tbXFxcuH37NmfPniUiIkKE1RsbGyktLcXU1FQUp7SGDh064OHhQWVlJQ8fPhQ5yfr6+qLqHsDGxoZ58+Zx8uRJEhISGDt2rNic7N69Gx8fH3r27Mmbb76JhoYG9+7dIywsjPz8fBwcHFroepaUlPDtt98yYsQIvLy8mDlzJrdv3xYG4YMHD+jevTs6OjokJydz48YN4dVShfKflrq6OqZPny6q/c3MzCgvLxf6pAkJCdjb2xMQEICGhgYODg68/PLLHDt2jNraWqZOnUpwcDCffPIJurq6zJw5U+R0gzK/s0+fPrz66qt069aNmJgY0YkpKCiI3r17k5ubi6WlpfBi/7z5g0KhQCaT4eXlxVtvvUVeXh6Ojo6tKtoKCQnBx8eHs2fPkpiYiJOTkzBSPDw8qKuro7CwkM2bN2NhYUFmZiYKhYJp06bh6+vL7Nmzsbe3Z/PmzRw5ckToZRoYGNChQweSkpLIysoS31cfHx+mTp1Kr1692LZtG7GxsXh4ePDKK69gYGBAx44deeONN4SsnWpDUlJSgoeHBytWrODDDz9s1TzW1tZSXV0tUpJAufGaM2cOjo6OooOYCkmSSE9P59133+XevXscP34cULah7tu3LzNnzsTIyAgvLy+xQdq4cSOvv/46AMOGDWPLli0YGhpiZmZGdXU1mZmZvP/++6KAavTo0YSGhnL27Fk++OADbt26hbGxMQMGDKBz586tGp+zszN9+vRBS0uLixcvoqGhwbBhwwBlWsj8+fOpqKhgypQpIprVq1cvNm/eLDpd3bp1iy1btlBUVISZmRklJSWkp6eTnp7O5MmTGTBgADdv3qRv376EhISwZs0aoaZQWFhIRkYGDg4OQppKJpNx+/ZtUlNTGT16ND4+Ply9epWCggIGDx7c6k3W/fv3aW5uprm5mYCAADQ1NWlubmbSpElYW1uzZMkSbG1tqa+vp6mpifXr13P69GmmT59O7969hSLBxIkTyc7OZufOndjb29O/f3+0tLRobGzk/PnzvP7665SVlbFs2TICAwP5/PPPefjwITo6Onh6enLy5Enefvtt+vTpw7hx41qkKKnOvdCW89pGG38XWm28Ojk58eTJExobG0UhgyRJIkRYWFhIVlYW8fHxPHnyRGgGqjrc+Pn5tWgTW15ejqurK4aGhhQWFlJeXo67uzugNEJUnj1V7qKq6tTCwgJHR0eCg4PZsmULWlpafP/997zxxhs4ODjw4osv4uzszLvvvtsq6RNNTU3OnDmDu7u7CI9nZmaKk7uZmRkHDhzg3LlzLbqGGRsbY2hoiLOzM0FBQSQlJVFUVMShQ4cIDw/H2tqajIwMmpqa0NXVpbCwkPbt2/PZZ58xZMgQGhsb2b59OwcOHKCiogK5XE5UVJTwDqmpqYkTbmlpKQEBAWhra9OxY0fS09NbNYcymQxtbW2WLl3K+fPnhaGfmJhIbW0tjo6O6OnpYWtry2uvvUZYWBjbtm3jxIkTeHl5UVlZyd27d1m9erUI64Ky+KWkpARQGhl5eXk0NTVhbW3Nw4cP+eGHH0hLS2Pt2rWMHz9eGJcHDx4kNjaWGTNmMHPmTE6cOCHWS2FhIYmJia0a36hRo4RBkpKSgomJCZ6eniQlJbFw4UISEhLYsmWLkGYDpcf1/PnzHD9+XBQthYWFoaOjg6mpKbm5uZiZmaGtrU23bt3Izc1FTU2NsrIyccHLyMhAR0eHsWPHtlgboFTJUN2n8i5paGjg7++PmpoaxcXFrRpjU1MTenp6WFpaoqWlRd++fX8R8nzhhReIjY0V3r3Tp0+jpqbGp59+io6ODhYWFqKqXk1NjZKSEu7du4e9vT1paWmcPXsWc3Nz0SLZycmJ3r17U1BQwI0bN5g+fToTJ05EkiQsLS15+eWXkcvlPPfcc3z++ee89dZbmJmZCTH634IqV1klXeXh4cHnn38OILoyqT4HZ2dnXF1d2bt3L9euXcPe3p7y8nIqKysJCgoS3fwkSSInJwc1NTV69uzJlClTRLtkVai6ubmZkJAQdHV1KS0tJSUlhUuXLhEWFoaNjQ0BAQGsXr1apAANGjSI7t27s2XLlqce20svvSRyUS9evCjOMaCM6uTk5DB69GjGjx9PeXk5xsbGODo6kpeXR2ZmJqA0tj755BMh85SYmMiGDRsApXE8duxY7t69S3x8PHK5nE6dOgmPZlNTEzdu3CA+Pp6hQ4fi4eHB48ePiY+Pp6CggNzcXHx8fAgKChIygK2VkTp27BgODg4tjMX9+/dz48YNvLy8yMnJwdbWlubmZmJjY0VhZP/+/YWMX48ePWjfvj1vvPEGsbGxrFu3TkijHTlyhJiYGAoLC3F2dsbDwwM7OzsuX76MTCZDoVAwbtw4njx5QmZmJk1NTaKeoKKigt27d2NoaEi/fv1QV1dvdXFoG2208efQauO1sLCQSZMmiYKhy5cv4+Ligra2NmlpaSJ/r1+/fowZMwZ3d3cWLFjAnj172L9/P7169RLGa2xsLCtWrGDq1Km4u7vzzTff4OXlxdKlSykpKeH8+fO89tprlJeXM2HCBOLi4jA0NGTSpElERkYyfPhwnJyc0NLSIj8/n507dwJKL9dvLdpqbm7m6tWr1NfXM3ToUAwNDRk6dKh4vcTERHR0dIT8SlNTE6mpqezevZsrV66Qm5tLTk4OHh4ejBs3DktLS9avX8+DBw945ZVX6NevH4WFhRQUFODj4yNyPRcvXsy5c+dEGNjc3JyoqCjCw8OprKwUnpekpCRqa2sJCAjA2toaLy8vFi9e/JvGqmoPq66ujqmpKT4+PsybN49Tp04xevRoYSR06NCBjh07sm3bNiRJEsLuGRkZ/Pjjj/j6+uLs7ExjYyMKhYKgoCC8vb2ZMWMGMTExbN68maCgIMLCwjAyMhIavSquX7/Od999h6urK97e3vTv318U/tnY2BAcHMzly5efelwuLi5cu3aNH374gaSkJN566y0iIiLw8PCgb9++ODg4iLzqn9OxY0dOnz7NihUriIqKYvLkyRgaGnLr1i1OnTqFr68vY8aM4cmTJxw5cgRNTU2ioqJEeLuwsJCioqJfGK6/xoEDB8jKysLOzq7VbYz/+c9/UllZycCBA/9tYw9QSmXZ2dkxcOBAfH196dWrF9HR0XTr1o3u3bujUCg4ffo01dXVhIWFERgYSFBQEF5eXqIph5mZGQUFBaxdu5bY2Fh69+6Nnp4eUVFRmJiYkJiYiJWVlUilUXmaFyxYgJubm+goNnPmTNFE5GnR1tYWqQv5+fmcPHkST09PYUgtX76cb7/9Fj8/P7744gt8fX0JDw9HoVDQ1NSEu7s7WVlZXL58uUVXqvT0dGbNmkVSUhKjRo3ilVdeoVu3bqKBysaNGzlx4gS2trZMmTKFyMhIUaC3cOFCJk+eTEREBDNmzBCyf6Ghoa1upvFzZYLOnTuLdaTSwe7Vqxf29va4u7ujqalJUVERCQkJVFRUiGK9du3aiRSQ0aNHY2RkhLu7O4sWLWLt2rUMGDCAuXPnMmDAALS1tVm5ciU7d+7E2dmZ8ePH069fP+rr66muriY+Pp67d++SmZnJo0eP2LRpE2pqakLT+bfQr18/LC0thSpFXFwcBQUFLFq0CD8/P/EZZGZmsnfvXpycnJg7d65IJwgMDKSmpobt27dz7do1evbsKToBNjQ04OTkxJw5cxg6dCjXr18XXmhra2vRqKJ9+/asW7eOkpIScnNzefz4Me7u7ujo6LBu3Tpyc3MxNDTE29u71Y6ANtpo48+h1cbrt99+i5ubm8h3tLKyQldXl+rqaurr62lubhY5naqOPYWFhairq+Pi4kJJSYmo3j5w4ADq6uoYGBhQWlrKgwcPePLkCfb29ty8eZOkpCSmTJmCm5ubCO2oq6uTm5uLkZGRuIg1NDRw8+ZNQkND8fX1RUtLi9WrV9O9e/cWOolPQ15eHr179xadmEApVbV161aqq6upra1l8uTJpKWl8eOPP2JhYcHQoUP54YcfuHDhAgBdunShT58+wvunyhN8/fXXf+EdS0hIEN24zMzMGDZsGMePH2fnzp2EhIQwZ84chgwZgkKh4NChQ2RkZKCurk5KSopobNBasrOzuXDhAurq6kRFRYlcSH19fQYNGiQ6E6nCc8XFxVy/fl20Eh0+fDg6Ojrk5OSQlZUlhPYVCgVmZmbo6+sjSRIODg7CqDU3N+ezzz5DS0tLyANVVFSgUCiwtLSkR48eaGtrU1tbK+Sn9PT00NbWFp74p0VPT48NGzZw7do13NzcRNhZXV2dF198kaSkpBah6JycHIqKinB3d2fevHmcPn2a9PR0Bg8ejImJCTU1NWzevJnLly+TlJQkOp+ZmJhQVlZGYWEh2traDBkyhNLSUt588028vLxwcXGhubkZXV1d0YCioaGBzMxMrl+/TmpqKjY2Nujo6LTaM3nq1CnOnDnDvXv3sLOzw9LSkpSUFJqbm0Xh4sCBAwkJCcHZ2RltbW2GDRtGZWUlkydP5s6dO2IMvXv3pm/fvri6umJubk51dTUWFhY899xzwnBR5TBbWVlha2tLfn4+urq6ODo64uLiQnp6upA8ioiIIC0tjcOHDwt5MlXDkdZQXl5OdXU19vb2mJmZYW1tTXJyMqWlpaSlpRETE0NpaSl6enqiUNPCwoJx48a1eJ3nnnuuhWFZVVVFY2MjxsbGmJubU1hYKGSlKisrSU9P5/Hjx6SkpAiZKFdXV1xdXfnoo49EvmZGRgZhYWH069ePiooKli1b1qrx+fj4iPNmXV2d2CCrqanRsWPHX5y7amtrSU9PR01NDWNjYx49eoS7uztjxowhIiJCfAZTpkwhJyeHgoICsrOz8fHxwdLSku3bt7Np0yYKCgrQ0tKivr5eaJvu3LmTR48eYWNjw8CBA+nQoQMKhYKMjAwSEhKoqqriyZMnrZtAELnOKSkpXL16ldTUVEJCQoSEmUqKUEdHBzMzM3r16iW6GtbU1JCTk0NCQgJXrlwhJCSEHj16YGpqSnV1Nerq6rRr147Gxka6du2Kra0te/fupaioCJlMRlJSEoWFhTQ2NjJo0CCsrKxISkpi+vTpDBs2jKCgINzd3dHV1aWuro66ujqx+WqjjTb+2rTaeI2Li2Po0KGsW7eOoUOHigtXZWUl3t7emJiYMGbMGCorK1m+fDk1NTV88cUXuLq6snXrVmpqali4cCEHDx7E29ubjz76iEGDBom2hdu3b+fzzz+nuroagG+++YaZM2eyadMmUlJS+PLLLzl16hR6enq8+eabIvTp5eUlCrMOHz7MCy+8QGBgoOiw87SopIXs7Oyora3l8uXLbNmyhb1791JXV8fUqVMZPnw4dXV1XLhwgcGDB/Pmm2+KDjnOzs7MmTNHdFAC5Qn854VsoAz7qrwNN2/eBOD5559n3rx52Nvb8+WXX3LgwAGGDx+Oo6Mj27dvZ+vWrYSFhZGTk8O2bdt45ZVX+Oc//9naKWTnzp189tln9O/fn8WLF+Pk5ERzczNqamoMHz6c9u3bM2bMGL788kucnZ3R0tLiwoULKBQK1NXVOXPmDNnZ2YAy11dVMGZmZkZ4eLjIRVu0aBGvvvqqEFH/uTdcJpPR3NzMgwcP8Pb2ZsSIEdjb25OVlUV0dHSL6m1VgdDTYmBgQGNjIy+//DKTJk1CT0+PpqYmysvLKSkpQUtLq0VhyLVr1zh06BBDhw5l+PDhDB48mBs3blBYWIiJiQnu7u44OTmxY8cO4uLi8Pb2JioqigkTJlBcXIyOjg4DBgxg1qxZnDp1isWLF+Po6Ejnzp3Jzc0V7Vg7duxIXFycyNWeOXOmyHE8cuQICQkJTz3Gbt26cebMGQ4dOkR+fj7vvfceJiYm3L59G09PT3r37k11dTXV1dU0NjaKTdPEiROxsLDg5ZdfJisri0mTJjFr1ixRJHjz5k2KiopwdnYW3q+mpiaCgoIYMmQIw4cP56uvvmLXrl3Y29uLdKGVK1eyePFiRo8ezZkzZwBlw4/Jkyczbtw4YmNjmTVrVqvm8cmTJ9y+fRsPDw+6d+9O3759uXLlCtHR0Rw5cgR7e3u+/fZbJkyYgKampugO9q/o6uoKDy6Ap6cn69atE4Vl06dPJy4uTkjFBQcHU1dXx4MHD9i1axe5ubmcOHFCGIe5ubkcPnyYH374gYCAAPr27Ut2djaHDh1qlc6ran1v376du3fvMmnSJBFev3v3LsXFxXTs2BEzMzNA2aSgZ8+eJCQk8OjRI0C51r29vbGyskKhUHD16lUqKipEu9z6+nqWLFnC8uXLqaur44UXXiAqKoqysjLKy8tFK93k5GRyc3Pp1q0b3bp1Q19fn6amJnJycrh06RK7d+/m9u3bPPfcc62aQ1Wr2w8//JALFy7w4osvCsP11q1b3Llzh+7du+Pm5sasWbPIysoSKRKlpaXI5XIqKyv56quvCAoKorKyksrKShGpiIuLY8WKFXTp0oWFCxfyzjvvcOfOHXbv3s327dtFIZ6vry+Ojo5kZGRw9uxZcUwffvghRkZGaGpqIpPJcHNz44cffmjVGNtoo40/nlYbryq9T319fZEfeubMGXFSMzU1xc7ODnNzc3r16kVTUxNxcXF07tyZzp07U1lZSWhoKGpqalRWVnL9+nXs7Ozo3r07kydPpqamhqSkJIKCgujSpQsPHjwgLi5OFDYtWrSI9evXU1lZSV5eHhYWFtTW1uLg4EBZWRkxMTFcunSJgQMHUlBQwMSJE+nRo8dTj6+goAA7OzuamprYu3cvlpaWzJo1C1tbW7Zu3UpsbCydO3fGysqKGTNmMHDgQKytrUVxha6uLiEhIeLCeOfOHfr06UN2djZvvPGGyNtTaQ66uLjw5ZdfolAohDj84MGD6dChA8XFxcLgl8lkTJ8+nYCAAHbv3i3aVv4WMjIyhHdCdZwnTpzg+PHjvPLKK7Rv3x5fX19OnTqFsbExYWFh/OMf/2DZsmUkJiYKw9XHx0eIvYPSU/JzA/Xu3bskJiZiZmaGqakpt2/f5tixY2LjERgYiIuLCwqFQniQ7e3t6dmzZ4uOWK2Vr2loaMDd3Z2QkBDhYd21axe7du2ic+fOvPTSSy2KNDQ0NIiJieHJkyf4+Pjg5eUlim8ePHjA+fPnuX37NmZmZjQ2NopiqIKCAjw9PZk9e7ZoL6qjo8Po0aNxcnLC3NycoqIiXFxccHJyIi8vj5KSEvr06UP//v3p2LEjKSkpHDhwoNVpAzNmzMDc3Jy3336bu3fvIpPJ6NatG1VVVZiZmSFJEnfu3BFdoPbv38/BgwdZv349AwYMYM6cOXz//feEh4cLNQQTExPOnDnDrl27mDBhAkZGRjx58oQlS5ago6ODXC7HzMyMoUOHkpubK9rlAgwcOBAtLS0RDQEYN24cSUlJlJaWCoO9NaipqdHc3Cw8+4BIUSkrK6OsrAwHBwexESkrK8PQ0JADBw6QkpLCqFGjcHNz4+DBg/z4449oaGgQFhZGcHAwRkZGlJeXk5KSgoaGBl5eXpSVlXHnzh0aGhro378/48aN4+zZsyIP1tHRkQkTJlBeXk5RURF9+vShffv2pKenY2BgwJAhQ0Qu6tNSU1PDsWPHOHXqFC4uLgQGBlJRUSEM1KSkJPz8/HB2dhZpQqrCVlDWIKgMZkmSSEhI4O7du/j5+SGXy0U6l6pQVNXg5caNG2zatAlzc3MGDx7M4MGDSU1NRUtLiwcPHuDo6Ii9vb2QklLJXbWWjIwMmpubSUlJIT8/XxSYxsXFkZSUhIODg/CKOzs7c+3aNVasWME777yDnp6ecFSo1pWhoWGLdt83btwgNjYWJycntLW1KSgoQKFQ0KNHD44fP87jx485evSoKDb18PBg7NixeHt7M2zYsFbrK7fRRht/DVptvH7++eccOHAAAwMDsrOziYuLo6qqSlRSa2tri51rU1MTampqosq4rq6OpqYmZs+ezezZs3nnnXdYvHgxubm5oppbXV0dLy8vOnTowPjx49HW1mbdunV89tlnZGdnM3v2bObNm8etW7dEiEdXV5eEhAQ++eQT9u3bx9ixY9m+fTvHjx9n0KBBrTJeg4KCkCSJdevW8cMPP/D666/Tr18/unbtKsTdN27ciFwu5+uvv0ZLS0uEm7799lvy8/OprKwkMzOTnJwcoTSQkZHBsmXLhFaiSuuwd+/eolDj7NmzxMTEEBQUJEKfU6ZMYdOmTcybN49Ro0YBMHjwYNzc3H7RjvdpsbS0xMjIqIUaQFZWFt988w337t3j3XffpX///iJPDZTFP3l5eaLHu6mpKe3atRMSMw8ePODBgwcEBASIbkoLFizg6NGjzJ07l8jISI4ePcrhw4cxMjJi+PDhBAYGYm9vLzoiyWQyGhsbCQ8PFwVOjY2Nrfa8qrxKd+/eFQoYlZWVHD16FF1dXZGfqWqkoaqWz8zM5JtvvmHy5MnCeFVd5FNSUujcubNop7p161auXr3KypUrGTFiBLGxsbz++utERkaK3Ov6+npRcATKDYIkSfTq1UuEhLdt28aePXuYPXt2q8bo7OzM/PnzcXBw4Ny5c+Tn51NYWCg8oQqFgkePHonvSFFREZs3b8be3p5FixZRX1+PiYkJjx8/5siRI7i5uYninH/84x9ic3bs2DFWr16Nrq4uHh4eTJgwgeDgYIKDg0UVeWNjI35+fgQGBiKTyaivr6esrAwXFxc2b97M22+/zaRJk0QL3qelvr4ehULRQsZIV1eXMWPGkJCQwJkzZ7hz546QtXN2dkZTU5ONGzdy6tQpAgMDhS7vunXr0NHRoampCQMDA4qLi1m+fDk5OTmsWrWKMWPGcPr0ad5++20MDQ15/vnnCQkJaSHlZGBgwPTp07l58ya6uroMGjSoRS7twoULW13QlJeXh6WlJa6urtTU1JCXl4eWlhYeHh6Ul5fz+PFj0f1OhYuLi0hZycnJISMjAxsbG06dOoVCoRBFkbt27eLFF19s4Y0uLS0FlJ2vHjx4QHBwMDKZDH9/f8zNzUlKSiIhIYE7d+6I8fXs2VNEklo7vqqqKjp16sT8+fOJj48Xr1NRUUH79u3p1q0blZWVIg++vr6e4uJiSktLcXJyIiwsjLS0NO7evYuvry91dXViPLW1tZiYmDB06FBeeOEFdHV1hbd1wIABjBo1ilu3bqGlpUVqaioVFRUMGjRIdGlTfTeampqoq6tDXV29RS5+G2208del1cbr6NGj0dDQYOnSpZSXlzNo0CB69+79bzuT3Lx5E0dHR6ysrGhsbOTcuXPY2dkJo8nBwQELCwvs7OwoKiri4sWLbNu2jatXr5KQkIC+vj5vvPEGixYtYv/+/ZSUlHDy5EkhC/RzmZxdu3axb98+evToIQqN+vfvz5kzZ9i9e/dTj2/mzJkoFAqcnJx4/vnnsbKy4vHjxzx69AgvLy8WLVrEwYMHSUhIoG/fvuTm5vLDDz8QFhbG0KFDsbKyIiMjg1dffRVHR0dWr14NKLUX165dy7Bhw3jy5Al1dXV0796dyspKHjx4IBQVTE1NSU1NpV27dpibm9OhQwdsbGy4fPmyCG37+vpiZ2eHqalpCy/E02JpaYmjo2OL/C5nZ2deeOEFtLS0UCgUDBs2DD8/P44dO8bWrVuxtLTEwsKCVatW4enpyYYNG1i7di19+vQB4Ny5cyK0Wl9fz+rVq0lNTRVyRqWlpbzwwgu89NJLGBkZYWhoSEZGhihWqqur4+rVq1y4cIHS0lIGDx5MaGgou3fv5quvvhLawk9DTU0NZ8+ebXHf8OHDhWyP6kJYVlbG4cOHkSSJjz76iLy8PNGCcuvWrRgYGODm5sa0adO4dOkS9fX1Yr2C0gBQdUTT0tIiISGhRXqIlpaWKMKpra1FXV2dtLQ0Dhw4gJ2dHeHh4XTr1o0+ffoQEBDQalWF0tJSxowZg62tLQsXLuTEiRNs375dfAagLF6sqqpi1KhRVFdXiza/mZmZWFhYiHBwcHAwsbGx+Pv7o1AoOHz4MBcvXsTOzg4dHR1qa2v59ttvW+RWVlVV8fDhQ27evMnVq1epq6tj/Pjx9O3bt4UR8Prrr6Ourt5qRYWkpCTOnj2LtbW1uK+oqAgbGxvefvttJkyYgK+vLxUVFTQ3N4tzkKqZyZ07d+jZsye9e/fGxcUFT09PoUxgampKVlYWJSUlNDc3i/k8cuQI3bp14+LFi5w9e5aGhgYCAgIYMWIE+vr6GBoa0qdPHzQ0NLh//z45OTktvM2t4eLFi7i7uzN37lyioqIwNTUVYw0ODkZNTQ1bW1ucnZ3FhguU7bjHjRvH6tWriYmJYdSoUTQ0NFBRUUF4eLj47M+dO8e1a9eEV1KhUIiOaY2NjTg4OIiUn6ysLNLS0nBycsLCwoLy8nJqa2t/UVzZWlTSWuPHj2fMmDHinK3aZIHSm1pTU0NVVRXdunUjKChIRAOmTJnChg0bmDdvHr169SI8PBxvb2+qq6upqqqib9++RERE4OjoiCRJ9O/fn4SEBBISEoiIiOD06dNs3bqV77//nqKiIt555x2srKx46623SEtLY8eOHTQ2NjJy5EhcXV2Jjo7+zWNto402/jhabbzq6ekRGBjI2rVryc3NZfDgwQQGBrJz504yMjLEiaSkpIT6+nrq6+vJz89n9+7dJCcni2R8SZJITEzE3d2dXr16UVdXx7Zt2zh//jyOjo6imCExMZHw8HBeeuklcnNz+fHHHzE3N2+hqXj//n3u3LlD165d+fbbb3FycqKhoYG0tDQ6dOjQKuO1rKxMFC2AMuy1d+9esrKymDlzJu7u7ri6uhIbG0tcXBwZGRmkpKTQrl07IiMj0dHRYc+ePTx8+JBhw4Zhbm4uZGf8/PzYvXs3//jHP/Dx8aGiokLk9dnZ2dG5c2dR2ZyamopCoWDGjBm4ubmJ/Mht27Yxfvx4Efb+LRcWW1tbxo0bR3BwsLivT58++Pn5cf/+fTQ0NNDW1sbCwoK7d++KkG+XLl3Yvn07zs7OdOjQQfQPr6ioIC0tjZSUFB49esTGjRvZtm0bwcHBLF26lNraWpqbm4Whm5aWxqFDh2hubhadflRFXLdu3eLChQtYWloSERGBnp4e9+/fb5XxamRkhK2trVgj+fn5xMbG0r17d9TV1amqqqK5uZnKykqKioowMDDAz8+PLl260LlzZ7Zs2cKxY8cwNzdn2LBhdOnShRdffJE1a9Zw4MABoT2pyvVWFT91794dmUzGw4cP8fLyorm5GXV1dfLy8rh58yZZWVnCU3/kyBHu3bvHjBkzGDNmjDByn5bjx4+jp6dHr1696NChAxoaGjx+/JgrV65gYGDA3r17sbGxoX379jQ0NGBmZsZrr72Gurq6MCY1NDS4fv26+Iz2798v1DUUCgWpqanU1NTQsWNH0tLSxHcblN8TmUxGWVkZq1atEt26nn/+ebS1tTl37hyxsbEMGDCAnj178vHHH7faa6cqPCssLBTtZ1XGXUhIiFAtAVrITHl5efHgwQMaGxuFMoLqmH8ebVi4cCFHjhyhvLycs2fPsn79ekCZixkfHy+M2tmzZzNt2jTS09OJiYlh0KBBeHt7c+nSJU6cOIG6ujpdunQRz39ampubsba2xtraWhiRFRUVPHjwAFdXV5F/qmpnq62tTbt27ejYsSPjx48Xm/mkpCTU1dXFZ2VjY0NUVBTp6emUlpbS1NSEt7c37dq1w8HBgbq6Otzc3FBTU0OSJB49esTt27exsrISRuPPqampobCwsEX6xtNy79490tPTcXBwwN7eHh0dHSoqKqipqRGNEtTU1NDV1aWiogIjIyMaGhq4c+cOWlpahIeHU1VVxe7du8XGxcDAgLq6OqysrLCyshJ53erq6jg4OHDr1i2WL1/O888/z6xZs7h8+TJr164lPj4eNzc3Ro8eTWVlJRcuXGDjxo3o6enx4MGD35QW0UYbbfw5tNp4bWpqwtPTky1btpCenk5KSgqXL18WYvpLly5l2LBhTJo0CW9vbwwNDbl48SLfffcd5eXl4kKSl5fHuXPnyM7ORl9fX1SHWllZsXPnTqGvGhsby9WrVwkKCmphVKrYsWMHK1asoHv37nz++eeoqalx/fp1NDQ0OHnyJDt27GghMP+f+OKLL0RVPCgr0b28vBg8eLCoeg8NDcXa2pri4mL09fVxdXVFQ0ODJUuWsHXrVjQ0NPjmm2+EjumiRYu4fv06S5cupW/fvvzwww+iQ0x4eDhz5syhtrZWyFCp8sDU1NTQ0NBgxIgRfPfddxw/fpyUlJTWTtkvsLKyYu7cuS3yLGUyGZaWlhQUFPDo0SMuX76Mjo4OPj4+2NnZkZ2dTXx8PB9++CHvvfce6urqdOrUiZSUFLZu3UphYSEGBgacO3dOqC6oFAVUBkd8fDwnT55k9erVZGVl/ULmycXFhXHjxtG+fXs6dOgAKD2mx48fFx7Fp0ElH+bt7U1xcTETJ07k1KlTvPzyy7z++uu4ublRXFxMU1MTY8aMoaysjMTERPz9/bGxseGVV14hIiICQ0PDFmHhPn36sGHDBnJzc3nllVfo378/tbW1XL9+nebmZuRyOcnJyaxZs4bhw4eLEGl5eTl37tyhuLiYPn368OGHH3Ls2DFee+01Zs6cyb59+37Raeg/ce7cOV577TVA6blatWoVZWVl3Lhxg+XLl5ORkcHXX3/9i9SS6dOn06FDB1JTUzl9+jRaWlpERkbi4+PDihUrqKur45NPPqFXr15s3LiRJUuWoFAoeP/990VqQ3p6Ovr6+rRr1w5dXV3u3bsHKFU1oqKiuHbtGnPmzOHhw4c0NjYSGBj4mzoY9evXD09PTx49ekRsbKwoJPo59fX1LXKiFQoFHTp0oKmpqUW1/nfffcfq1av5/PPPxWf96quv8sorr/DNN98watQooVH88zSVSZMmsXLlSgAuX77Mtm3b0NXVxdfXl6lTp/LJJ5+wdOlSoqKiRHeyp0XlsVUpJmhra3Px4kWmTZvG6NGj+eqrrwCEh9DMzIzRo0fj6elJ586dWbJkCdOmTaO0tBR3d3caGhrYt28fdXV1fPTRR/j6+nL16lWOHTuGJElERkbSsWNHmpubcXJywsHBgf3794sGBL/mQS4sLBS5tK0lJSWFNWvW0NDQwNChQ/Hz8+P8+fNcvnyZadOmCYUGmUyGsbExFy5c4L333iM3N5dJkybx2muvIZfL6dOnD4aGhiI3XrVpLy8vJykpCScnJ4yNjSkvL2f//v0kJCSQlpbGw4cPhfoNwLp16/D392fVqlV4e3uzcOFCbG1tWbVqFaGhob9JUaGNNtr442m18drQ0IC6ujpOTk44OTkxffp0MjIymDlzJt26deP777+nrKxMFO+oqanRrl07tLS0SE9P5+DBg4SHh2NjY0NoaCinT59GT0+P5uZmysrK8PT0FB7BixcvinByTEwMw4cPx9fXlyNHjlBdXc2IESOwsrLCxcWFPn364Ovry6FDhzh9+jS2traisKg1WFpaivzdM2fOcPLkSdq3b09wcLAoQAoLC8Pd3R1ra2tkMhn6+vpcvXqVpKQkGhoaePHFF4XhumXLFrKysoiMjGzRJjQvL09cRAwMDIRcWHJysgh7NjU1YWpqipqaGi+88AJDhgyhQ4cOHDhwgPPnz2NlZdUi/Pa0FBcX8+DBAzp27Iimpia3b99GkiR8fHxwcHAgKyuLR48eYWtry5gxYxg4cCBbt25lzZo17NmzB01NTVxdXbGysuLatWtcvXpVVCer1AOee+45CgoKWLBgATY2Nvj6+qKtrU1xcbEIHV6+fJn8/Hw8PDwoKyujtraW8PBw+vXrx8OHD9m1axfBwcGEhYW1ynj18PAQXpSqqiqCgoLEha+yslJEBUxNTTEzM8PBwYGMjAyOHTuGkZERERERQksyJydHaFOWlZUxZswYDA0NGTx4sDDK161bx/bt2xkxYgR9+/alY8eOmJqakpeXJxp2qCr2fX19KSoq4vbt2yKM3tjY2Oriu/T0dPH+GhoaQvJIkiRCQkLo3Lmz6LgFcP78eerq6ujXrx+9e/dGoVBgamrK3Llz6d27N3Fxcdy4cQM1NTXU1NTQ1NSksrJStHSuqqoSzUG0tLRE0ZC6ujpTpkxh/Pjx9OnTh6amJr799lvat2/PxIkTcXd3JyUlRVTWt4aKigqcnZ2xs7Pj7NmzbNu2jYKCApqamvD39yc8PBxjY2MePHjAjRs3RNX6hAkT8PT0FJ/Jnj17+PLLL0lKShL5u507d0ZXV5eHDx+ydetWSkpKCAoKYvjw4aSnp4vNzNtvvy0+1+3bt4tN+quvvoqamhru7u5s27YNHR2dVuXWg7I+QNXMxMPDQ3iaAwMDOX36NKtWrWL27NmigUhVVZVIjdDV1RXn4J+TnJxMTEwM8fHxouAqICCA2tpaunTp0sL4t7e3R1NTE21tbbHeL1y4QGVlJbq6ujx+/FjIdjk6OlJaWkpOTk6rxujh4UHnzp1pamoSBYwNDQ106NBBzI8qd1pDQwNDQ0OxaQwICKC4uBgbGxt8fHxIS0tj7969+Pv74+bmRmZmJg8fPkRNTU1EsO7evYumpibjxo2jqKiI48ePCxm68PBwunTpwqFDh7Czs6OqqooOHTrQu3dvUXyoygluo402/tq02niVyWTC+FCF8+zs7OjRowcWFhaMHj2a69ev09TURGFhIVZWVvj5+dGjRw+uX7/OV199hZubG7Nnz2bSpEl4eHjg5uZGbm4umpqauLu7I0kSixcvZsOGDaxevZqGhgYmTJhAfHw8ixYt4tixY9y7dw8vLy8iIiIIDQ0lLy+Px48fo62tjampKU+ePCE8PJwvvvhCeKiehrfeeguA1NRUbt26xb1794RXYPfu3ezdu5eXX36Zd999VygGgLIgqGfPnrzxxhvCg7Fx40YOHTrEhAkTmDhxIqA0iDdt2oS6ujpBQUGiPau7uzt6enrk5OSwZ88eysrKCAgIQFdXl8bGRoKCgnjuueeIj49n9erVnDx5En9/f2xtbVs7haSlpfHll1/y6quvMnjwYO7evUt2djbOzs6iWYG+vj4GBgZYW1uLC6CXlxenT59GkiRu3rzJ9evXRU6buro6ZWVl6OrqMnr0aORyOWvXrmXOnDkkJiZSWFjI888/z+jRoxk6dChLly7l0aNHHD58mHbt2gntxrKyMlxdXWloaGDHjh2kpKSwcOHCVo1PFXpUhRHff/99cdGPj4/nwoUL+Pn5tchPtbCw4OHDhyLf2NfXl8ePH5OamkpcXBxfffUVxsbGbNiwoYVoe0VFhbjg7du3j7CwMFFYFx0dzZ49e9DR0eGll15i5MiRFBYWMnv2bPbv3w/ABx98wMKFC6mpqRGG0tOgpqZGbm4uNjY2NDc3I0mSqKbv0aMHjY2NNDY2iufX1NQQGxsrdFnPnTuHvr4+EydOFAU+VVVV+Pj4sHnzZrZs2UJZWRmDBg2itraW6OhoDhw4wMcff0zfvn1pamoiKSkJNTU1Pv74Y5EH/M477/DgwQM+/vhjkSZSVlb2mzyvMTExREVFoampia+vL9HR0Rw8eBBQhvxVMmMHDhzgo48+Yvjw4Wzfvh1TU1N69+6NhoYGu3btYsaMGWhra9OzZ0/2799PWloa+/fvR19fn3nz5nH37l2sra3F2EC5aVEZ6vX19Rw6dEgI2P889UBDQ0PIarU2Z/ncuXOcOXOG0NBQrKyskCSJ0NBQjhw5wowZM5gzZw5qamrI5XKmT59OQUEBFhYWv/p6zc3NBAYGkpqaysqVK/nmm2+ETJ+7uzs1NTW/8Fyrq6tjYmIi0rtOnjyJtrY2VVVVrFu3Djc3NzZv3oy3tzdeXl4izeRpmTBhAhMmTEBPT4/S0lIuXrxIeHg4YWFhIvWpqalJfD9DQkL48ccf0dXVJTU1lX379nH+/Hl8fHxYt24d+/fvZ/78+YwZM4YbN26IYrYDBw5w9epVgoODef7558X6rKysFA1hoqOjcXBwYO7cuSxYsAB7e3s2bNgg1qnKmdBGG2389Wm18VpaWtqiWnvEiBHExMQwZ84cpk6dSt++fYmMjCQpKUlotYKyfaqKxYsXk5KSQmhoKCNHjsTExIS7d+8SHBzMwIEDkclkhISEoFAoiIyMJDc3FxcXF/Ly8oRnz83NDWdnZ0DZblNVQWxjY0NYWBjl5eWikOa3UFVVhYGBAX369CEsLAw9PT1yc3Opq6tjzZo1hISEMGrUKDQ0NIQgv6+vr/CGZWRkUFVVxYgRI5g4cSKNjY2888477Ny5ExcXF8LDw3n8+DEbN27E2dmZDz74AC8vL9HlSVtbm/79++Pq6srFixeJjY1l2bJlXLlyBT09PebNm8eAAQOwtLTkypUrrRqbQqHg3r17JCYmiupblZcclIV0Tk5OlJWVidzJvn37Mn36dAYPHszNmzdZvHixkA9avHgxlpaWxMbGUlNTIxoODB8+nJycHIqLi3nuuecICQnh+vXrXL9+ndmzZ5OamspXX31FZWUl0dHRWFpakpiYSF1dHS4uLgwZMgRHR8cWYb+nnTtJksTFcc2aNVhZWTFixAi6dOkicjlVqFpMqpo2uLq6kpycTFxcHPr6+vTo0YOqqipiYmJYvHgxiYmJeHp6cv/+fbKyshg+fDjTp08nOzubhoYGzp07R9euXXF2dqaurg4TExMhKaanp8eIESOIi4sjNzeX9u3bo6Wl1eJ4ngZnZ2cuXbqEvb09dnZ2ItVEFaq3sLBAX19fSIW1b9+eixcvkpSUhKmpKaGhoZiYmGBkZMTDhw95+PCh+OzOnDlDbm4uMpmMgIAA9PX1USgUWFhYiNzSpqYmNDQ0cHd3x9zcnMuXL7Nnzx60tLQYOnQoBw8e5NGjR7z00kuYmJj8pnxJc3NzsrKycHR0RF1dHT09PUxNTYmKimLKlCmA0lN47Ngx6urq2LFjB+Xl5bz99tuEhoaKz9vJyYns7GxheOXm5lJbW4upqamQSurYsaNIVQFabAorKiqwsLBg/PjxVFVVMWjQIPFYZWUlGRkZ6Onp0bFjR44fP/7U49u0aRNPnjwR7/vzvGe5XE59fT1HjhxBR0eHF198sUVeb2NjI3FxcSgUCvz9/TEyMkJNTY327dszbdo0SkpKWLNmDfHx8fTu3Vs85+TJk6xbtw5dXV3s7OyIjY1FJpOJOoOQkBAMDAwoKSmhsLAQFxcX0WCitXJuQItmIBoaGgQHByNJEjU1NdTU1GBraysM14yMDCwtLdHV1eXOnTuiCNHOzg5PT08ePnxIXV0d3333HVVVVSKStWHDBrZt24aDgwMffvih6Op46NAhrK2tGT16NGPGjBF5xSNHjqSxsZHm5maKiopEowTV+a+NNtr469Nq43XDhg1MmTKFdu3aYW1tzcCBA8nPzyc6Oprm5mbhuTAyMiI7Oxtra2t0dHTQ0dHB3t4eCwsLTE1NuX//vujqc/nyZa5cucLkyZPx8PAgPT2d8PDwFl1Ypk6dSl5eHtra2rz66qviRJ+Xl4exsTGmpqYttDtVZGRktGp8OTk5WFlZ4e3tjb29Pfr6+iKnbvz48Tx+/Bg7OztkMhnV1dUYGxsLcWuVhEtWVhZFRUUMHz5c5Gjt3buXnTt3oq2tTWhoKDU1NWzdupW8vDwcHByE0WtgYMCoUaNQKBRCzqpnz57ExMRw4MABACIiIujevTt9+vT5TSdcSZLEXKipqeHj44OjoyMVFRU0NDQIFQKVAefg4EBISIi4eOno6ODi4kJqamoLr7IqheHKlSusXr2aXr168dlnn7V47zVr1nDo0CEOHz7MrFmz2LNnD+fPnxctG83NzWloaMDa2pqpU6e2emyglLdSrZ0rV66wadMmzMzMcHd3x87OThR8qKiqquL69euMHz+e/v37A0pvYV5eHr6+vkRGRhIZGcn69ev54IMPhNGza9curl+/ztdffy1yuX/44QdiYmKwtrZm0KBBNDU1UVVVha6uLpWVlRgaGjJx4kRsbGwYMGAAmzZtIiQkhFu3brVqjHV1dVRWVlJfX09DQ4PQ8SwvL+fo0aNUV1czevRoQkNDqaysJDk5meDgYPz9/bGyshIGmEKhoKCgQBTC2NnZoaamJqTwrl27hpmZGZMmTWLq1KlCekxLSwtnZ2ex5s+dO0diYiKffPIJgYGBDB8+nFWrVlFQUCAaRbSWrl27UllZCSg94y+88AJDhw5l8ODBGBgYUFtby86dO0lOTsbGxob8/HxOnDghojGgbMG6YMECofUqSVKLeenatStZWVlYWFjw5MkTYbSmp6cjSRJmZma0a9eOsLAwgoKCqK+vJy8vTxR/mZqa4ujoSGRkpNhMPy1GRkb06NFDSMs1NjaSm5uLmZkZfn5+REdHM2PGDNavX0+HDh0ICgqisbFRyJGpNhD6+vqoq6sLKUKFQoGXlxe+vr48ePBAdELT1tbG0NCQpKQkqqqq8Pb2Ji0tTXSY8vDwaNE2ediwYTQ0NFBSUoKuru5Ttz3+OVVVVTQ0NHDx4kWam5sZNGgQhYWF/PDDD7i4uIgoxd27d6mvr0cmk5Gfn8/XX3/NpUuXcHV1RSaTERMTI14zLy+PjRs3MmvWLOrr69m2bRugNK5Vut+3bt2irKwMhULBunXrxHpQRRMGDRrEw4cP2b17N5mZmYwbNw57e/tWbyLbaKONP4dWn41WrFhBVlYWEydOFNW+w4YNQ1tbW+xsQRmCKSkpITU1FXt7e3r06IGNjQ3+/v4YGxtTVVUlcp6++uorKioqmDt3Ljdu3GDq1KnMnTuXmTNnkpqaSkxMDBYWFujp6WFiYiIM14sXL5Kdnd3CE/JzioqK2LRpU6vGp66uTm1tLQYGBr+oPp0wYQKBgYGoq6tjbW2NmpqaqMJtbm7GwMBANG8wMDBoYUyHhIRw4MABGhsbSUhIYNWqVeTl5eHt7c306dMxNjYmNzeXxMREevbsSX5+Pm+88QYmJiYsXLiQKVOm0LVrV6HrOX/+fM6ePcvixYtbNT5QNmKwtrZuUVlcWVkpRPolSeLIkSNcuXKFPn368Nxzz6Gurs7+/fvZuXMnZWVlREREIJfLRetUVRckUDZmeO2113jjjTf49NNPAaWxVVRURFVVFfD/Q+yrV69m5cqVzJkzh/HjxwtD+L+R6Ll58yaRkZGsW7eObdu28eKLL9KpUyc2bNjAkydP6N69uzBuAYYOHYqHh0cLSSaVJujPPfcBAQGsXbuWXr16oa6uLvRc33rrLaqrq/H398fOzo727duL1xoyZAjl5eU8efIEmUwmiohUkltHjx7l3XffZfjw4a0aY2ZmJi+++CK+vr6UlpaKjnWhoaEkJyezadMmevXqRVxcHP/4xz/Q1dVl06ZN4rhU3ag0NTUxNjYWXreOHTuSkJBAaWkpdXV1HD9+HJlMRu/evYXhquLnG6cZM2YQHByMhYUFOjo6rF69ms8++4y1a9eSk5PDJ5980qrxgTInVPX5q6urExgYyLVr17h+/ToRERFoaGigpaUlquv9/f2pr68X5yFVOLpz5844OzszevRoysvLxcb6yJEjnD17FjMzMzp16iTkoXR1dTl06BAHDhxgzJgxvPTSS0J3WE9PTxRPjhkzhqCgIDZu3IiPj0+rvcuqzmampqaUl5ezadMmNDQ0hCqDhoYGw4YNo6KiAi0tLUpKSkQ0S09Pj4CAALS1tdHU1KSiooJbt25x9OhRLl26JPI8Q0JCGDBggGgO0L17d7Zt20ZFRQWAaMMcGRkpjkul7ADKc+iXX36Jj48P06ZNa/UcfvPNNwQHB1NWVkZzczN1dXXo6emJFuMA8+bN4969eyxduhQ9PT1iY2Oxt7cnJiYGX19fvvvuO1599dUWr1tVVcWuXbtQU1NDJpMhSRJlZWXs2rWLsWPHsnr1ar7++mvy8vJabJx+3mmtXbt2jB8/npSUFM6cOYOZmVkL73YbbbTx16XVxmv37t1xcHDA1taWyspKLl++jKOjI+PGjaOuro49e/YQGBiIq6srZmZm4gKjKnJqbGxEkiQMDAyoqKjg8ePHGBoaYmJiIi5MoPSYSpIkPHHbt2/H1dUVU1NTjh07RmpqKhoaGoSGhmJoaMiTJ084c+YM/6+98w6L8kr78D30DgLSq4hYUBAUBBGxx95iTRRjd4wasyYxRmPirhsT0zRZbDHWGEtiVyxRNCJNxYJKEaR3adLrfH+McxKy2Y34JdG4731dXqMzw3gO85bnPOd5fr/q6mpsbGywsbFBV1cXDw8PcnNzH3t+qm3ExMREUlJScHNzw8rKitLSUvT19enatWuzwEqhUHDo0CFycnLo1asX/fr1Q11dnTt37pCTk0OPHj3Q0dHBxsaGhoYGKisrsbGxwcPDg8bGRry8vCguLubKlStUV1fj5uaGvr4+BQUFREdH4+joiIWFBSYmJsIn3MHBgcjISCorK0VmqiUYGRkxfvx4MjMzOXLkCN26dROBiKp5oqKiAjMzM/r27Ssyz01NTaSnpxMVFYWvry8BAQEcPHiQzz//nNdffx0/Pz8UCgXx8fG4u7ujp6dHSkoKtbW1aGlpYW5uztSpU0lOTmbbtm2YmJjw6aefsnDhQpYvX97se9LU1KS2tpbMzMxm5SePg2qb89ixY1y8eFHIgl26dImdO3dSWloqVCvS0tIoKirCw8MDNTU1Hj58iJ6eHvr6+ri7u9O6dWthkZmdnU3fvn3R1dUlPz+ffv36kZ6ezo0bN3j77bfp0KEDH374Ib179waU9qbZ2dkYGRnh4OCArq4ujY2NgDI4fv3114mNjcXGxoaOHTty6tSpx55jz549xeIvKysLhUJBfX09cXFxHD9+nBs3bvDw4UOsra2pr6/HwcFBBK5hYWFYWlqKhq6uXbvi4eEhglOVLaimpiY3btygoKCgmavT7du3xZxU+s0eHh706dOHsLAwLl26xIwZM1iyZAmHDx8mNTW12c8/LhoaGjQ1NZGZmUl4eDiXL18GEDWKCoUCLy8vXF1dmTlzZjOt6QcPHtDU1IS+vj4NDQ0kJCQAysWEhoYGW7Zs4cCBA2hraxMUFESXLl2oq6ujpKQEXV1d7O3tMTIyEtcw1e+ltrYWFxcXLC0tOX78OLW1tcyfP7+Z5vTjYmlpSVlZGa1ataK+vh5QfpenT5+mbdu2qKurM2TIEGFvrBqbqu61urqasrIyTE1NMTIyQl1dnc2bN1NSUoKXlxe6urpkZmbStm1bDAwMSEpK4urVq/j6+v7bQiQ3N5d79+7h6OiIhoaG0PLdvHkzn376KWPGjHmi4NXExAQzMzNSUlJITU0lPT2dzp07M2bMGOAn2TyFQoGJiQllZWXcvHmTXr16CXm8Nm3aMGnSJCIiInB0dOTFF1+koKCANWvW0NDQgJWVFSUlJeTn55Obm4uxsTFubm64uroSFRVFYWEht2/fRkNDAysrK+HE1dTURJs2bbCysmLv3r1ERET86u6dhITEs0eLg9cNGzZgamoqbAc3b96MnZ0dr732Gvv37+fLL7/kvffeo02bNs1WvI2NjaIT9uLFi+Tm5mJnZ8eYMWNYvXo1OTk57NixA0NDQ06cOIG1tbWQjvLx8eHrr7+mqKgIhULB2bNnqa+vZ+vWreIGvmnTJrFF3bZtW4YNG8bLL7/MiBEjWhQUqNi4cSM7duxg4cKFTJ06lezsbMrLy6mqqiIuLg5vb29GjBghGqxqa2tF5rGwsJAbN25QWVmJvb09Li4uxMfH87e//Y2HDx8ye/ZsXnnlFRwcHDh27BinTp0iMDCQBQsWiAxJU1MTL730Ep06dWrWIJKfn4+BgQHfffcdGhoaT1Q2UFVVRZcuXVi1ahWnTp1i8+bNTJw4EU1NTSoqKmjVqhUvvvgiVVVVGBoa0tTUhJqaGmPHjsXa2pr58+cTFRVFREQEOTk5tG/fnl69egEwffp0amtrOXDgAJaWlsTFxdG6dWvRbT5w4ECio6PZsGEDBw8eZNasWXh4ePDVV1+JBiOVPqq6ujoXL17kxIkTzbKiv4Wqc1hVsrFmzRo6dOjAokWLKC4u5vz582J7cP369URGRjJ79mzGjBmDjo6OyFr17t0bLS0tEhISSElJ4dy5c+zYsQMLCwshpv7GG2/w3XffERkZiZWVVbPsm2r708/Pj0WLFlFWVsbFixdxd3fHzc0NNzc3ysrKUFdXb3E9oaoJ8dKlS2RnZzN8+HByc3OZMWOGcHEzNDTE39+fQ4cOiXPxq6++Ijo6mjlz5ojPsre3FzXpTU1NZGVl8fDhQ+H3rqWlJYJuUC7samtrmTx5Mrm5uaxYsYLAwEDWrFnD9evXWbVqFSkpKbRr104s6H6e8WoJampq7N69WzSzDRs2TBxr6urq9OnTB3Nz82aBa25uLqWlpZiammJgYIBMJuPAgQNcvXqV7du34+3tTVxcHOXl5UydOpXhw4fT0NBAQUGBWAyOGjVKZJJVqCStxowZQ0BAAGvXruXYsWMAzJw5s8WlEWfPniUxMRFPT0+GDBkiLHtDQkJE8ycog3R1dfVm1ssAMTExJCQk4Onpia+vL506dUJfXx+FQsGOHTvEcX379m1eeOEFvvrqK9auXYuBgQGrV69m4cKFgLJ0ZMeOHejq6jJt2jSMjIxobGykoKBAlF09SXAOiOPshx9+ICUlpVk3/7179wgLC2PgwIG4ublRVFTE5cuXSU5OxsDAgN27d5OQkIC5uTkfffQRxcXFFBUV0adPH+7du8euXbtIT0+nXbt2xMbGoqGhwZAhQ7CysiIxMRENDQ2GDRvGrVu32LNnD/fv36dv375MmTIFCwsL6urqqK6uRk9Pj/79+5OVlcWJEyeaqXRISEg8m7Q4eFVXV+fHH39kwIABODs7M2TIEHFzcXZ25q233sLW1pazZ8+SmppKZmYmCoUCTU1NNDU1KSoqEjqgWVlZrFq1Sgh1x8XFYWpq2kxW5/r168hkMj788EPOnTvH3r17qa2tZfbs2fTp0wdQXnxtbGwYPXo09fX1eHt7C7vP1NTUFs0vJyeH0NBQrl69SkVFhahTHThwIOrq6pw7d449e/ZgYmLCxYsXycnJISkpidGjR9O5c2dKS0spLi6mQ4cOREZG8u233zJlyhQRUIeEhPDRRx8Jdy5VraO3tze3bt3i0KFDjBkzhk6dOglry6KiIuFOs3PnTi5duoS/vz+zZ8/+r93H/4nPP/+c27dvU1RUxIsvvijqPM3NzcnPz6e+vh51dXUR0DQ2NlJVVYWenh7+/v4MHjyYkydPcvbsWXr27EmnTp24desWkyZNEqUGqiDc3NwcFxcXSkpK2Lx5M9bW1syaNQsXFxcKCgpE0KHKeNfW1pKTkyPqADMyMggLCxN2uS1BS0sLY2NjPDw8sLW1RUtLi1dffRVXV1eSk5M5dOgQ//rXvzAzM8PAwEDMV2UTqcoWtm3blrFjx5Kbm8v69evR0dER9rnJycnCZWnx4sV0796d+vp6NDU18fHxYeTIkZSXl/PVV1+xf/9+qqqq+Oyzz2jTpg03btygtLSUjh07PlE94cWLF0lMTBTWxXFxcZSVlWFiYsL8+fOFScPPA39VWcPPg4iMjAzhBGdiYkJ2djY2Njb06NGDxYsX09DQ0KyBqXv37ty5c4fQ0FCSkpJwdXXF3d2dtLQ0YmJiKCsr44MPPsDHx4fAwMAW6Sz/GqrfjUoy6dixY7Rt25aAgABsbW1pbGxk2bJlGBgYMGfOHCwtLampqREBs0wmo3379lRUVJCQkEBmZia5ubm0adMGNzc3DAwM0NXVpV27dpSVlXH16lXc3d2xtrYmJyeH06dPY2xsLLKF165dIzIykkGDBglN4TfeeIO5c+e2aF76+vrY2to2U73w9/ensLCwWQCVk5Mj1A+MjIy4desW9+7dw9jYmIKCAj766CNRwjBx4kRqamro0KED1tbWXL16lbt377JhwwahDFJRUUF8fDwAR48eZe3atQwdOpSFCxeKcgE1NTVMTEyYNGkSZmZmdOnSpcUmDD9HlaVXnedpaWl89tln5OfnM2/ePDw8PNi6dSv79u2jpqaGGzdukJKSgrOzM4MGDcLOzg4rKyvOnDnDwYMHiYyMpKysjFGjRjFt2jT27dtHfHy8WLCqq6uLa2uXLl3Iyspi7969nDp1iszMTCZMmICTk5NQwXBwcKCsrIwff/xRCl4lJP4CtPiO+f3337Nt2zYiIyN59913mTFjBnV1dXz00Ue4ubnx6quvcvz4cRYvXiy26kBp1Tp16lQCAwOprq5mz549zJo1S2RRHj58SHBwMPCT53xmZibffvstnTp1Ijg4mIyMDMrKynj11VdZt24d8JMqwKuvvvpv/vChoaEcPHiwRTI9qgA5KCiIQYMG8fHHH/PNN98QHByMjY0N9+/f5/z589y4cYOEhARsbW0ZMmQIU6dOpXXr1ty5c4eKigosLCzQ0dHh2rVruLm5MW7cOBYsWICRkRHz588XwuegtKRdunQpn3zyCevXr8fJyYlevXpha2vLpUuXuHXrltDuvHPnDidOnODEiRMYGRn925wfh9LSUr777ju2bNkitgKTk5Oxt7cXN5f8/HxqamowNTVFT09PZJVKS0vx9/envLyciooK2rRpg7OzM6+//rpQPXB3d6esrAxjY2Nh7HD58mV27NjBgAEDmDp1qiiBAOWN7N69e6JJ7udd1zU1NaIZqaWkp6dTWVnJK6+8IhZEtra2BAcHM23aNOEctmjRItE4Ul1djampqQiqVfNwdXVl1qxZJCQk4ObmxqJFi6itrWXt2rVER0eLxhs9PT0aGhrIy8vDysqKSZMmcfXqVZYsWcLFixdp3749lpaWJCYmEhwcTEFBAf/4xz9Ew9fjcvHiReLj4+nevbsoZamoqGDJkiV4eXnh5eUFILaj1dTUUFdXZ/DgwQwcOJBbt26Rk5ODjY0NoaGhbNiwAS0tLTp27Cgy3/r6+ri5uaGrq4uZmRkKhYK6ujocHBywt7dn7dq1VFRUsH79evT19Vm7di2JiYlYWFhQW1tLWloaxsbGBAQENPu+H5ekpCScnJwwNDRk6dKlzJ49m4SEBBYtWoSHh4eomQwNDWX9+vV0796d119/XdiqqrLFenp6LFy4kIiICA4ePEhSUhL29vZCsL+2tlbUOmZmZpKQkICRkREuLi5ERERw/vx5OnToQF1dHZqamqxatYro6Gj27t3L8OHD+eKLL0hLS2P79u289NJLjz2/F154AVBe+7Kzs0XtcYcOHZoZJVRXV7N582b09fXx8/Pj5MmTVFdX89FHH9GmTRu+/PJLDh48yNy5c0VvQUlJCebm5mzatIm3336bDz74QNS/RkZG4uHhQVVVFTt27OD27dt8+OGHyGQyampqqKysxMzMDC0tLQYMGMCAAQMoLi4WZhQtoaGhgaqqKgIDAxk0aJBQrlA1gbVt2xZvb28KCgrYuHEjmZmZyOVyNDU1qaurY+bMmXh6egKwdetWtm7dSnV1NTk5OZSWlqKtrU2bNm3w9vamtLSUnJwcvLy8aNu2LadOneLMmTMsXLgQLy8v7OzshEygoaEho0aNEgsIUKpbSFJZEhJ/DVocvJqamuLs7My3336LgYEBr7/+OvPmzePIkSN8/fXX3L9/n6ysLJEpMDQ0xNPTk1mzZok6Qx0dHYYOHSpuaKrMgru7Ozo6Oqirq7N9+3auX79O9+7dsbW1Zfny5fzwww9MnDiRGTNmAMrtS4VCIWoc4afuVlNTUwYNGoSLi4twqnkcXF1dCQ4OZsSIERQUFHD06FHRkAXKTn+VQkBdXR2jR49m6NChlJeXc/nyZczNzWloaODw4cNUVFQwatQounTpIrYyu3fvztatW1m+fDnJyclMmTKFDz/8EIDRo0fTrl070XAyZMgQNm/eTF5eHt7e3lRWVpKZmQlAcHAw/fr1E65ALeGjjz5CQ0NDBK7Tp08nPj6e7777TlzIVVv+K1aswMfHh1dffZXbt28TFRVF3759MTExYdu2bURFRdGmTRsGDx6MgYEBPXv2xNXVlQcPHohMZmpqKrW1tfzzn//ExcVFlCEA3Lp1i61bt5KYmMjMmTOFTJeKurq6Fs9PhUKhEB73I0eOFG5MDx484McffwRg6NChjB49mqysLKKiolAoFAwePBhNTU0ePHjA+fPn0dXVZfDgwdjY2DBy5EhsbGyEdFNQUBA3btwgOTmZNWvW8MYbb2BlZcX58+e5ffs2HTt2xMjIiP79++Pm5ibkv3bv3s2tW7cAcHFxabE15alTp5g8ebJoAKurqxNOVqp6RVAuNjQ0NNDV1RVbv+rq6nTt2pWjR4+ybt069PT02LNnD46Ojhw7dozt27dz6dIlYRzi6OjIP//5T/T19YmMjMTZ2VnUHqoy9Pv372fZsmV4enpy5swZjI2NWbp0Kfv376dz585Ck7Ul3L9/n3fffZfa2loWLFiAs7OzkOqztbWlrKyM7OxsIiIimDdvHr169RLnqba2drMAsLa2lgsXLrB9+3YsLCyYOXMmPj4+1NTUCBe13bt3c/fuXYYNGyaaGZ2dnZkzZw729vacPn2ao0eP4uTkxIABA4iMjCQiIoK//e1vQpXk5MmTLZ7n7t27OX36NLNmzRKOczk5OVRWVuLu7k5dXR2XLl0iNzcXNTU12rdvT4cOHXBycsLJyQlvb29CQ0PZuHEjLi4uoulRxYABAzh16hT79+9n9OjR7Nq1i7KyMt5++218fX155513aGpqYu7cucTExPDmm28yceJErly5gr6+Pp07d0ZfX5+rV6+2eG4aGhpUVVU1y/6rapW7dOlCVVUVurq6fPnll6Snp9O+fXuWL1+Ojo4Oly5dauZwd+TIEa5cucKwYcMYPHgwa9euZd++fdTV1VFeXi4Waipqa2sJDQ0lNTWVnj17YmdnJxRcjI2NycjI4F//+he6urq89957TJgwARsbG1F2IyEh8ezS4uDV398fCwsL9uzZQ1RUFAcOHBCuPBoaGty5c0doD/bp04fevXsLIXWVa1O3bt2aedWbmZmhp6dHfX09Ojo6VFdXs2LFCrKysoiLi8PBwYE5c+ZQUVHBZ599hqenJw0NDWIF39DQgJ2dHdXV1WRlZWFsbIypqSl1dXXNrCMfhx49egiHr4KCAhwdHdHR0RFblxYWFgwdOpTAwEC0tbXx8PCgpqaG7du3U15ezpo1a1AoFISGhmJsbMzIkSMxMjJi+/btnDt3DrlczoQJE7h+/TqbNm3i5ZdfFtvTMpmMwMBAjI2NefjwoagnVTWoFBYWChmiRYsWtfSrE7zxxhvi76GhocTExNCxY0f09PRITU3lhx9+oF+/fhQVFREWFiYyVRcuXCA7O5uBAweKm1lDQwOTJ09m4MCBDBw4kLKyMuGuBnDjxg22bt2Krq4ur732mth+VrkihYWFcfToURoaGhg/frz4Pag6nt3d3X/Vb/23yMrKol27dgQFBaGvr09mZqbYUlTJJcXGxuLp6cnt27e5efMmp0+fxsrKClNTUzp37szBgwfZvHkzjo6OdO7cGScnJxoaGjh9+jQuLi507tyZ2bNnk5OTwyeffML169dFt/qFCxfYsmULAOPHj2fatGksX75cjE9bW5uhQ4fSqVOnJ8r2lJaWisC1trYWQ0NDYc4AykXcwYMHqaioYPz48aLBMDMzUwQEWlpapKamYmZmho+PDy4uLrRv355Tp06JgFy1rX7o0CGys7MJCwvDy8uLN998kzZt2ogO7+3bt9OtWzfmz58vLGlffvllzp49+0RNhaA0lLh+/Tq2trbk5+eTnp6Ojo4OixcvprS0lM8//5zo6Gi8vLxYu3at+LmysjK0tLTEAqmgoICVK1eyceNGjI2NWbx4sXDAUxEdHU1ERAROTk7CZKSwsBBXV1exGIiMjCQpKYng4GB69erFF198gUKh4O2330Ymk1FaWtri4LWpqUlkOlX62aA8flXXHFNTUwYPHiy0sVXlCzU1NezZs0fIljk7O9O2bVvy8vIoKCjg4cOH2Nvb06VLFyZMmMDdu3cxNjZm+PDhHD58mP379zN79my6dOlCaGgo4eHhVFZWimtmVVWVcIczNTXF29u7xSYF5eXlouE1NzdXNKLdvn0bhUKBnp4et27d4vr16zg5OdGvXz8qKiowMjKiU6dOInGQlpaGra0tnp6eQh3k9u3bXL58mTt37tDQ0ICbm1uzMioXFxf69+9PRUWFMJjo0aMHpqam1NfXExMTw507d1BTU+PWrVu8+OKLuLi4SMGrhMRfgBYHrwYGBnTt2hU/Pz+io6NZs2YNp06dwsTEhPXr1zNw4EC+//57wsPD6dSpk6hLfeONN4iJiWHFihUiGFOhra3dLMg8efIkWVlZgPLG4+7uzhtvvEF9fb2wMVRZYm7ZsoXNmzczePBgXnvtNSFlBcrmlC1btrTYtlH1/545cwYjIyOxxZacnExqaiqOjo74+PjQ2NhIYmIip0+f5tixY7Rp04ba2lp0dHR47bXXqKysFKUDCQkJyGQyCgsLyc7ORltbm65duzarIwsJCeHChQusW7cOW1tbZs6cib6+PkeOHEFHRwcDAwPmz58vtvafFJVawo8//si1a9dYtWqVuCH+85//ZN26dQwfPpzhw4czcOBAIiMjWbJkCUVFRfTq1Yu7d+8SHh7OrVu3RFkAKLOo7733Hu3bt2fx4sXk5OTwwQcfcPHiRUpKSrh06RKrV6+mb9++aGlpcf78eQ4fPkxJSQlBQUGi1iw9PZ26ujpcXV3p2bMnb731VouyPhcuXODkyZN4e3uzfPly6urqePjwIQ0NDWhqamJlZcUXX3zBpUuXOHDgAB999BF5eXnk5uZia2vL4cOHOXHiBEePHuX+/fuYm5uLwPfMmTOcOHGCxsZGNm/eDCCsQRcuXCjmoDp+QWmDa2FhgaenJ9bW1ly5cgUzMzP27t1LXV0d9+7da3FDjK2tLbGxsXTq1EmcOzU1NVRVVWFqaoqamhoHDhwgOTkZf39/cVOXyWRkZGRQU1NDr169uHDhAosWLWLw4MEcOHAADw8PHB0dhVvUypUr6d27N2+99ZYos9DQ0ODSpUt4e3uzZ88e/vGPf9CjRw9OnjwpNIJBuYsxadIk2rZtK6xwW0JUVBSzZ8/GxMSE/Px8Lly4wNChQ+nYsSNr165lzZo1uLi4NGs+A0Rtp0q7eNOmTWzcuBFQypotXry42ftPnz7NqVOn6NevH2PHjgWUtfb37t2je/fuIngdPXo07u7uosyiV69eDB8+nJKSEv71r38RGxvbLAB9HJqampg3bx7q6urNmto6depEU1OTqBN99913efjwYbOFzvvvv8+aNWsApePY+++/j6amJtu3b+fvf/87RkZGLFq0iKCgILy8vPjHP/4hdrvc3Nzw9PTkgw8+4MqVK7z11lucP3+enJwcZDIZ1dXVBAYGit+Pv7+/KPFqCaGhoYwfP549e/bw3XffsWHDBlq3bs306dO5cuUKHh4e1NbW0q5dO95//33S09OZNGkSHTt2ZM6cObi4uBAdHU1KSgpjxoxh7NixnD59mvPnzzNmzBjee+890tPTuXnzplA2UNG1a1e8vLywt7cnOjqad999l4SEBNzd3Tl//jw2NjasW7eOuro64uLiuHbtmqgTl5CQeLZpcfD6cymR3r17c/78ea5du4aNjQ3FxcVcv36d4uJitLW1m2Vc/Pz8hKsLQFFREcnJycK+TyaTiayXtrY2b7/9Nnp6eiLrNn78eLENffDgQSwsLIQA+9WrVzEwMGD58uVkZWWRlJSEgYGBEOBuKffu3WPp0qXEx8fzxhtv4O/vz9dff82OHTuwt7dn1apVtGvXDnV1da5fv05MTAw6Ojrk5+czd+5c+vXrx5QpU8TnffPNN3z//ff4+vqiUCjIysrCy8sLT0/PZlnFhIQEYXGrksgqLCwUDmPGxsbid5CRkUFERMQTlQ1UVVWho6ODpaWlkARSWYw6ODgQFBSEk5MTenp6mJmZkZqaSk1NDX369GHQoEGEh4dz5MgRsX185MgR4uLi+P777yktLUWhULBq1SouX77MjRs3MDExoa6ujqioKKZOncr27dvp1KmTaFTp1asXq1atEoLx1dXVohTkzp07XL58uUUZ9AcPHqCrqyskdFR2k5MmTSI9PZ24uDgCAwPp06cP169f56uvvhJbjurq6pw8eVI0+vn5+TFgwAC++eYboqKiiI6OBpS10fPmzcPCwgKFQsHf/vY3YdARFRVFp06dsLOzw8DAgLi4OC5evEiXLl0YO3YsOTk5REVFkZ6eTs+ePfHy8mrWLf84tGvXjjNnzvDgwQMCAgLQ0tJCU1NTlB9UVFTg6upKq1atmtnEKhQK8vPzaWxspF27dujr6zNs2DDRbFVfXy/867W0tMjKyiI5OVk4LWloaGBhYSF0gevq6rC0tKSqqoqwsDB8fX1p1aoVRkZG1NTUYGdnh6Gh4ROJv2trawtDDQ0NDdEZrpqHmZkZc+bMYeTIkaLzXrVTolpsREdHc/ToUSwtLZk4cSL9+vUjMTGRu3fvCnvrvLw8HB0dmwUuKukmNTU16uvrqaurE/JppaWlxMfHM3bsWLFICA8Pb7FihKqxLycnh/j4eKG93KpVq2ZlJA0NDWhpaVFZWcnhw4fJz88nPj6eEydOiPdcu3aNixcv0r9/fxwdHXFycqKurk4YWLRq1Yp+/fphamrKw4cPsbKyYvTo0UKqUCXvdvDgQcLCwhg6dChTp06lb9++QuGlpUYaoMxWV1RU8M4771BaWkp4eDiDBg3CycmJmzdvis+sqqpi2LBhpKamChc+Jycn0Uxqa2uLnZ0d0dHRogxswYIF+Pj44OPjg4eHBxoaGs0WD0ZGRmhpaVFfXy+uo5mZmRQWFhIQEMCECRPo1asX1dXVvPfee3z66acsXbq0xXOUkJD482lx8BobG4uZmZno0H7//feZNGkSe/bsEQYGqhv3iRMnUCgUzJgxgzFjxjBq1CihpXnlyhWioqKIj48nIyNDiGVPnz6d1157jWHDhgkh9aampmbZpW+//RZNTU26desmnGN8fHzQ0tLi2rVrzJ8/H4Bly5bxwQcfCFmhx6GsrIzr169z7tw5NDU16dq1K6ampnz33XdkZWVRUVHR7Ebs7OxMjx498PDw4NatW3z//fccO3aMqqoq5syZQ0NDA/fu3SMjIwMvLy+0tbXR19fH399fZKlqa2u5d++e8DNXddrv3buX6urqX9XILCoqYvPmzYSHh7dYf1EVALi5uaGhoUFwcDCrV69m165dLFiwgJkzZ6Krq0t2djbXr1/Hzs6ONm3a8P7772NnZ8cnn3yCs7Mz/fv3Jzs7Wwjst2/fnr///e/k5OSIWkVDQ0O6detGdXW10Er94IMP+Oqrr5g+fTppaWmYmZnh7++Puro6lZWVKBQKMdaYmBi+/vpr5s2b99jz8/HxoXv37uTl5fHBBx/w9ddf89JLLzFx4kTi4+NZt24dRUVFBAcHM3HiRMLDwzl06BAODg507txZbDF6enry0Ucf4enpydy5c/nmm2+wtLSkR48eXLt2jY0bN2JkZERwcLDQzTx06BDHjx9n8ODBognsyJEjnD59msbGRqqrq0XWdM2aNSxYsID169e36PsDcHR0JCUlheTkZKytrWnbtq1YqKmCohUrVlBdXU1FRYVoPKutraWmpgY3NzfxWZMmTWLSpEnU1tZy6dIlLCwsRNOPqjxgx44drFq1isjISG7cuCG2cFXazR9//DETJkxgzpw5IhtYVVVFRkYGrVq1ala7+LgMGTKEw4cPY2FhwdSpU2lsbBTOaL6+vixfvpxRo0ZRU1PDmTNnOHnyJD169GDKlCmi1EAlqzd9+nSmTZtGfHw8GzduJC0tjYsXL9LU1ERISAjz5s0jJiaG69ev079/f7y8vGhsbKSpqUkopahQaRyDcsFZVFTE0qVL8fPz4/XXX3/s+am+p23btgl94HfffZfAwMBmmfiSkhK2bt3KoUOHuHXrFjU1NRgaGjJ69GiGDRsmGpOuX7/Ohg0bGDt2rFiYlZeXi4VETEwMJiYmDBo0CB0dHbp3786BAwdEQ9TevXtZtGgRdXV1Yoetc+fO9OvXj/379/P3v/+9RechKBcB8+fPp6amRqg5NDU18c033wi5q3Xr1lFYWMiZM2fEYtzZ2RltbW2qq6tFOUxsbKwoy3Bycmq2WHBwcEBHR4eysjJ0dHSQyWTcuXOHI0eOkJ+fT3l5ucj+19TUEBAQIDLJqutSSUkJK1eufGJnPwkJiT+PFgev48aNQ19fnylTpojaSZVhgYODA7179xYyUqqtt9raWqqqqqisrGTAgAFUVlYKX++goCBGjx7N3r17OXLkCGFhYWL1e/jwYUpLS+nXr58I6JKTk+nevTuWlpZUV1fTrVs39u3bJ7bDBg4ciJOTE1FRURQXFzdzSHocMjIyKCgoYNasWZibm5OQkEBERAS9evXC398fDw8PDA0NefjwIUZGRvj6+mJtbc2DBw8YMGAAwcHBHDlyhM8//5wjR47g7+9Pu3btmDdvHu7u7hQWFpKfny/qudLS0qisrMTb21to1u7btw+ZTMb48ePF+K9du4aamhpmZmYYGRlRUVGBvb19M2ecx0XlnvXPf/4TGxsbYmNjqa6uFh3XqiDI1taWt956iwkTJmBsbIyzszMKhYKhQ4dibm6OjY2NkAfq0qULBw8exMXFRTQT5ebmYmNjg7W1Ne3atWP+/PkcPXqUxsZGdHR0sLa2ZsaMGezZs0dYYbq5ubFr1y5u3rzJmDFjGDx4MIWFhS2an4ODA9XV1aIxJCMjA0dHRyEwP27cOHx8fADlsbt06VIGDx4sBN8NDQ25cuUKhYWFYpH2+eefY2hoSFRUFFFRUYAyK+vh4UFWVhYHDx5kwoQJJCYmcvny5Waub0OGDMHf35/k5GRSUlKwtLRk0aJF2NnZER8fz/Lly0W97+OisiNOTU2lrq4OXV1dbt68yfr16+nRowezZs0ClDslmZmZ1NTUiLr0Xy6GVIsZPT09RowYQZcuXQgJCRF1pPr6+qSlpdGjRw/8/PxE+YWuri66urrExMRQV1fH1KlT6dixI1euXCEwMFB8zz8vLWkJQ4cOFQ1KoMyKqxqxevfujYeHB6GhoYSFhQmd5cDAQHEt2L17txDlNzQ05NixYxgZGdG3b18yMjJEll9VVpSSksLVq1eF8cnPA8iqqirKysrIyMggMTERAwMDevXqRevWrQkKChIBYEsoLS0VdexDhgwhJiaGQ4cO0bFjR9LS0oiNjWXkyJHIZDLOnDlDTEwMampq9OjRQyzGwsLC2Lt3L8bGxsyYMUNknEG5bZ6enk6rVq0oLi4mPj4eHR0dBgwYICxjVdvssbGxFBQU8Mknn2BkZISamhqpqanY2dnRqlUrXnnlFaysrFp8Lnbq1AlXV1f69+/PzJkzxQJEU1OTjh07IpfLcXV1paSkBG1tbWJjY+nZsydDhgxh9uzZaGlpsX37do4dO4a7u7uwcK6rqxNjb2hooKmpifv375OSkkKvXr3Q0dHh/PnzfPzxxwQGBhIYGCjO2/79+9OjRw9SU1OFJNc777xDYWEhdXV1wgVQQkLi2aXFwev9+/cxMDBoJo5/+PBhLl++zMyZM5k9ezaVlZUsWLCA3NxcZDIZu3fvJjIyktatW+Pn50dVVRWHDx+mpqaGt956i5EjR+Lj40NVVRVt2rQRgW5KSgqVlZUkJiairq5ORUUFDQ0NvPnmmwDCNeWFF17g9u3bPHjwAC8vL7Zs2cLrr79OcXHxE22rt2nThlmzZqGpqcnatWtJSkpi5syZQq+ytrZWWDWamZnh4OCAtbW1yM6o7FVDQ0OpqKhg2bJl+Pn5kZmZyYULF4R7VWlpKZGRkRQXF9PY2MigQYMoKCgQbjTa2tqiS1uhUFBZWUnHjh3R1tamVatWzJgxAwsLixZn7h48eEBsbCyhoaEMGTKE9957jzt37hATE4OHhweFhYXo6Oigr69PbW0tNjY26OnpoVAoaGxsJCAgQDQABQYGkpCQwIIFC3BxcaG2thYfHx9eeOEFKioquHr1KsXFxXTt2hVnZ2f69etHdHQ0ycnJmJub4+npKfRWzc3N6d27N6dPnyYtLQ1PT0+CgoIICgoSlpmPw8mTJ0Vj2ezZsxk0aBB5eXloaWkJ//bKykrhHKXaekxNTeX+/fs0NDSgr69PdHQ0a9eu5Z133sHFxQW5XM7FixfFMbJjxw6sra1ZsmQJqampmJqaEhAQwLlz55rVvJaXl1NSUoK6ujpqamro6uoKf/WVK1eyatWqFruImZmZYW5ujoGBATU1NaIsY9euXWRnZzN27FhMTU0pLy9vlvWUyWRoamqK7XJVdlxXV5fi4mJMTU1xcnKiU6dOODs7Y2lpSfv27dm0aRNxcXG8++67ODg4EBERgYGBAVevXuXy5ctMmjSJbdu2UVtby759+7hx4wba2tpYWVmRnZ0txO5bQuvWrUUWrLGxEYVCQXV1tdiFUVNTY926dURHR7N8+XJhpwzKZq+PP/4YLS0tpk2bRl5eHuHh4aIMSJURbtWqFVZWVty7d4+bN2+ipaX1b1Jt+vr6oqH01q1bHDhwADMzM5ydnenatauQEWtp0JOZmUl8fDwTJkygT58+jB8/nqysLFq3bk1hYSEJCQl0796dzp070717dyorKxk2bBjjx48XmfOqqipKSkqYPHmyMGkpLS0lMzMTY2NjUSOrUCiwtrYWZRCqYwiUCYG4uDhsbW0ZNGiQkBYMDw8nOjoaT09P0cjakvMQlNcHW1vbZo5uKurq6rC3t2f69OniOVUJkp+fH2ZmZiQmJhIeHs7169fp1q2bUGNQzQl+0gFWlT4VFxdjY2NDZWUljo6OyOVy+vTpQ0lJCUlJSYwaNYqCggJxLgcEBDRbbLZ0jhISEn8+LQ5eVbqprq6u4jktLS0MDAxEBkdfX19IaEVERHDgwAHRoTxw4EAuXboktv8ePHgAKIOBnTt3UllZiZqaGqamprz11ls0NDRw4MAB5s6dS/v27Xn//ffF/3vt2jXU1dVJSkpiw4YNpKen89VXX+Hv78+ePXv45ptv2LRpU4vm5+joiL29vbhB+vn54ejoiLm5udjmUzWYqcwKXn75ZTQ1NYmPj+eLL74gMTGRPn36YGJigqWlJZaWlpSWlpKUlISuri7dunXDzs6OqqoqSktLOXjwIAsXLsTc3JyXXnqJl19+mR9++IH58+ezdetWtm3bRrdu3YSuISiF83V0dMTvsSW8+OKLdO3aFR0dHbS0tHjzzTc5fvw4CxYsICAggE8++YS6ujo+/vhjvvvuO2QyGaNHj2bmzJlCzBsQjWldunRh3bp1nDx5kuXLlwuNUQMDA7p3705FRYU4Nlq3bo23tzdbtmwhJiaGmTNnMmzYMCIjI9mxYwcRERGkpKQ0Wwy0lHnz5uHi4oKrqyuOjo7C8lL1u2tsbGT16tXk5eWxdOlS2rVrx4MHD2hoaKC8vJz169cTFhYGwI8//si5c+cYPHiwaPzy8fFh5cqV4hx4+eWXRQmIn58fU6dOFe49urq6XLp0iffff5/x48f/W02dt7c31tbWmJmZiVrTx0HVGOjq6sq1a9fYsGEDlZWVrFixgsjISCE6/0tzBx0dHSGbtWPHDlavXs3kyZNZtmwZkZGRbN68mbZt2+Ll5cWSJUuEaUdsbCytW7emqqoKR0dHjh49yvDhw6mpqWHu3LliF0ZbWxtfX18ePnxISUkJVVVVbNiwgU8//RR/f/8WfY8PHjwQzYnZ2dlUVlY2q5svLCwUUmD+/v4icI2KimLt2rXk5eXh4OBAhw4dGDBgAL6+vmIMeXl5eHp60rlzZ+7cucM333xDXl4egYGBzXZrfh7IVlVVcffuXbp16yayl2lpaTg4OKCmpibOi8elqKiIuLg4evTogZubm7BiVlNTw93dnXHjxgk701deeYUXX3wRBwcHFAoFDx48ENvjvXv3btZlX1FRwYQJE/D29mbXrl2A8po8aNAg9PT0xM5KZWUlN2/exMDAgJEjR7J7926GDh3KvHnzmDhxIi4uLmRkZGBoaEhmZibnzp1r0fwAYdO6efNmjh49ytKlS8X/r6rl/Tl9+/YVJVjz5s3j2rVrODk58dlnn+Hg4EBMTAxdunQRc6+vr0cmk6GhoUHbtm1p27Yt8fHxXL58GS8vL15++WWhyqFq7kpKSiImJgZNTU2GDRuGs7Mzd+/excXFpcXqNBISEk+HFgevo0ePJiMjg6amJqqrq9HU1CQwMBBHR0cqKiqIjY3F0dFRbIGrq6uTl5fHgAED6Nu3L6DsBvf09KR169ZoaGiQk5Mj6pecnZ1RU1Pj6tWrNDU1iWL87du3Y2BgIOxKVQoHjo6OZGRkCGMD1baWubk5JiYmJCYmtmh+qs7iyspKmpqaCAwMJD8/n6ysLLHdFRkZSVhYGK1bt8bBwYHS0lJMTEzQ1tYWNYFLly5l5syZNDU1ceXKFb799lvu3LnDK6+8wiuvvIKamhrJycl4eXlRVlZGfHw85eXlIpM7ZswYjhw5IppfQJn1vnHjhtj61NHReSIZIlWAoSIvL0/YN6osUUF5w7OxsaGkpEQ0wqm2Gi9dukRycjKTJ0+mb9++bNy4kVu3bomM7MmTJzEzM8PX1xd9fX1RyyqTybC2tsbV1ZXa2lp0dXWxsbHB2dmZvLw87t69S15eHv7+/jg5OVFSUsK3337bovmZm5vTpUsXNDQ0aGxsRCaTCbUIlVSPqmFqxYoV1NbW8vXXXwsHJ3d3d+7cuYO6ujpOTk5CkkihUPDiiy+yatUqkc3Mzc0lICCAmpoazp07h76+PqNGjaK8vJzKykpqa2uJjIwkJSWlWcf93bt3uXLlCnl5eXz44Yf06NGDzz777LHnqFAohGoEwAcffEBQUBB79+5l586dBAcHCwWJnJwc9uzZg4GBgSh1gJ8yVRoaGmhpaWFubk5qaiq3b9/Gx8eHmTNnUlFRIeSRVA5erVu3ZtCgQYSGhuLk5CQyfuXl5RgaGuLm5sa5c+cICwsTzz3JIktLS4u6ujoOHjzItWvX6N+/Pz4+PuK6Y2FhgYWFBTk5Oc2Cjq+//pqDBw8CSgMKlUKJyjErJycHAwMDkQm8d+8excXF+Pj4MGbMGIyMjLh//z4FBQXCeOLKlSts3boVmUzGxx9/jLq6Ol999RUnT57knXfewdvbu9mW/eMgk8kwMzOjoqICmUzG9OnTOXPmDJs3b8bd3Z1u3boJu+K6ujratWuHsbEx169fZ//+/eTl5dGqVSvGjRtHz549qa+vJysri927d6OpqUlhYSE7duzA19cXc3NzoR8NymtweHg4xsbGosZdT0+PhIQEsWtQVlZGY2Mj+vr6REVFERIS0kzi8HFRU1NDJpNx/fp1sY2vr6+Pg4MDurq6FBYWUlBQgK2tLa1atcLQ0JADBw4IhQgbGxuhXXvgwAFqamoIDAwUyQRQHuMq0xRXV1dhqWtvby92JjQ1NTEyMhI7gOrq6hQUFHDixAnS0tIYPnx4s8yuhITEs0uLg9cLFy7w7bff0rFjR8aOHUurVq2wsbHBxsaGixcvcuzYMfr27SuK4fPy8rC1tcXd3Z2mpiaWLl3KsWPHGDFiBMOHD6dz584YGxuTkJDAN998w6BBgwgICGDnzp3s2rWLXbt2MWzYMLZv346Ojg4KhYL9+/eTlZXFhAkTsLe3x8PDg3bt2qGnpyeCydDQUDIzMwkICCA8PPyx51dXV0dNTQ0ymUwE1Hp6ejg6OopawXfffVdsu/v4+AjN2TZt2vDFF1/w9ddfc/v2beLi4vDx8eHatWscP34cUF5ks7KySEhIID4+nhEjRjBu3DhhUakycjAyMuLrr79GW1tbCOYfO3aMkJAQOnTogLe3N6ampk/kOb5161Z8fX3x8/MjJyeHyZMnExkZyauvvsqCBQtoaGigoaGBV199lcWLF5Oens7t27d5+PCh2FpOS0tj0aJFnD17lm3btrF161ZKSkpwcHAQUkIjR44UQbJMJmuWxVJtT2ppaZGTk4OWlhZDhw6lVatW7Nu3D2NjY9TV1Tl69Cjz589vUaPIkSNHRKZX1XBTW1vLtWvXaN26NcbGxvj7+2NlZYWxsTEPHjwQphrdunXDy8uLvn37kpmZKRyL9u/fT0pKCsHBwSJwLS0tFd3NZ86cQS6XExQUxO7duzE0NOT27dscOnQIIyMjdu/eTU1NDdHR0fj6+pKcnMyrr75K3759OXLkSIu/Q1W2CZSLkbKyMhITE2lqasLLy4uJEyfi5uaGQqFg586dvP3224DSGlgVvL7wwgtCBxcgKCiIrVu3snfvXuFqZmBgwLJlyzh79qxotgGl2sGuXbuaSRP9XNkjOzub3NxcLCwsmDRpErq6usIY4nFRKZucPn2a48eP07Nnz2bqCYaGhuI7/LnknGo3Z/jw4aKZUMX58+cBZe0+KHdvqqurGTlyJN26dRM6xEePHiU2NpZly5bR0NDAwoULiYqKYvny5airq9PQ0MDmzZtJTk7m3XffbdG8VLRr1w5DQ0OhLGBjY4OGhgYLFizAzs6Of/3rX/Tt25esrCwuXLhA27ZtGTFihNi1CQ0NpXPnzsycOZMOHTqgUCgYO3YsFRUV7N69m7S0NKZNm0ZQUJCQdVNx7tw51q5dy/jx4xk+fDhWVlb07NmT8PBwEfyplAhAuVj6pQnA46BaYM2ZMwcvLy9WrVrFe++9h5+fHytXrmTAgAE0NDSQnJxMUVGRUD34+a5LTU2NaN5VvV8lI6YqgYmIiCAuLo4+ffoI2b3du3ezevVqxo8fT+fOnTlx4gQ1NTVMnz4dExMTkpKSmDt3LmFhYbRv355p06Y9kU2zhITEn0+Lz9TExETs7OywsLAQ1qHl5eVs27aNK1eu4Orq2qwhpLCwkOTkZOLj44Xgt7u7e7OOXVB6qtvb21NfX09eXh5OTk4EBgaK2lpVkFBVVUVqaiq5ubncvHmT4uJi1NTUxNYQwM6dO9m2bRtBQUHMmzevRcFrfX09TU1NYgtS1Zil2jrbtGkTlpaWjBs3jkuXLuHi4oKZmRlhYWHExsYyYsQIxo8fz/r168nLy0NXV5empiZkMhkDBgwgKCiIM2fOsH37doyMjBg1ahQKhUJISg0YMABNTU0hZ5Sfn09FRQW6urq0b9+eF154QdQjAk9knRoXFycyKOrq6vj5+WFjY0PPnj2xtbVFQ0MDDQ0N6uvrOXXqFElJSVhbW4u6u5MnT3Lw4EE8PDzo2LEjVVVVImMCytKAESNGCEtWUGayf/jhByoqKtDX1xc2o927dxc35bZt29KmTRvho56enk59fX2Lm5lUGbDy8nKRpTMxMaG8vJwVK1ago6ODkZERo0ePJi8vjwcPHtC3b1969uwpajaLiooYPXo0Tk5OVFdXExwcTFNTEwUFBRw8eJCqqiq8vLzEcdLQ0EB+fn6zGmtdXV0sLCwYMmQI9vb2HD9+nL1792JnZ4e3tzfjx49vVn7TEsrKyrC0tKSurk6UC6jE+BsbG2nfvj3V1dVcvHgRa2tr5s2bR1FREQ8fPiQiIoLOnTv/qiZpYGAgFy5cEDWun332Gb1792bfvn3U19fTrl077t+/z+7du0UN5eXLl/H19WXOnDnCH75Vq1bMnDmTvLw8YmNjKSkpabZ4eRxUmfLBgwcLi1pQ1jjm5+dz/vx5unfvzpw5c+jXrx/l5eWEhobi7u6Om5sbtbW1rFy5Ej09PYYPH07//v3x9fUlLi6OrVu3cu7cOdLS0pgzZw4DBw4URgiOjo7i/NDX10dLSws/Pz/s7OxwcXHh2LFjHD16lIcPH7J48WI8PT3Jzc3l008/bdH8XFxcsLOz45tvvuGHH35gxowZTJ48WSghXL58GWdnZ+zs7Gjfvj1qampUV1fTunVr+vXrR2ZmJl27dhUZ5NWrV9PQ0MDs2bPx8fHB2dmZUaNG4e/vj52dHQUFBWhqatKqVSvc3d2xsLDgwoULrF69mn79+jFx4kRAWXZw9uxZzMzMhNZrVFQUCQkJou7/cVHteujp6YnvqqioiKamJhITExkwYIBo6vzwww/Zs2cPU6ZMoVu3brz//vsUFBRgamrKwYMH6dOnTzMdYdViKTw8nPLycvz9/XFzc6OoqIjDhw/z9ttvU1JSgo+PD66ursLAQ7WT5eDgIOr3+/bti5eXl1j0SkhIPNu0OHjV19dnxYoVzZ47e/Ysy5Ytw8nJiVdeeaWZDI+NjQ0RERFkZmbSo0cPZsyYQXJyMsbGxhQWFmJoaIiamhpWVlbMnj2b4uJiMjIymDJlipCdKS8vp6mpCWNjYzQ1NTEwMOD27dvcv38fW1tbnJ2dqayspHv37pSUlFBRUYGBgQF2dnbNMkOPg66urshElZWVER0dTfv27XFwcODzzz9n3759HDp0CDs7O3x9fQkLC+PAgQOEhYXx97//ndu3bzN8+HACAwNFcOPp6cnq1auZPXs2ZmZmrF27lsuXL+Ph4YFCoSA7O5vDhw9TXV2Np6cngwYNorKykkOHDpGRkUHXrl0ZOHAgEyZMYMKECQBCu/BJ7FM9PT0JCAggJyeHlJQUVq5ciZqaGj/88AOhoaGMGDECUAq1L1iwgLS0NJYvX86kSZPIzc1lx44dlJaWsmnTJlHfWlVVhba2NjKZTDiolZaWirrP/Px8QkNDyc7OxsjIiPLycjp06ICtrS0ODg44ODiILE23bt2E9mWvXr2YOXNmi5ooVM0zcXFx1NTU0KVLF+zs7OjUqRNbt27l1q1bvPvuu3h6epKRkYGampqY88aNG4XV6LRp08jMzGT//v307t2brl27cvLkSQ4dOoSpqSlGRkYicNDU1CQoKKhZXaeFhQXBwcFia//cuXNERkZy69YtBg8ezNatW0lKSiI8PFzUcT4uqu9dtSBYtmwZUVFRDBw4EDU1Nd58802qqqrIyclhyJAhBAcHA3Ds2DGuXr2KmZmZOE+LiorEeaIaT0JCAgkJCfj4+DBnzhyRqQSlpNLKlSsB5flSXV1NY2Mj48aN4969eyQlJdGvXz88PT3Jyclhw4YNnD9/vsUySwkJCTg7OzN+/HjGjx9Pfn6+eO3bb79l3759zJo1Syhu7N+/nzNnzjB37lz69OnDRx99JEox9PT0GDZsGK6urjQ0NPDFF19w4cIFAJGNP3v2LBkZGUydOpWAgAACAgJExk8VmMbExPDWW29x4cIF+vTpw9SpUwH44osv2LJly785d/0W2traXLx4kaNHj6Knp8fLL78s6sZTUlIoKyvD2dmZIUOGCHtjgH79+lFfXy+OvzfffJO1a9fy+eefC/c9mUzGnj17ACguLiY8PBwtLS369OnDmDFjKC4u5rPPPuPcuXPiPAbl1nxcXBxDhw4Vz+Xl5TXTC35c6urqhFKDlZUVw4YNw9vbm3PnzqGuri6uD/X19SIL7uvry+TJk0Vy48KFC8TExHDt2jVeeOEFAFGCdPPmTe7du4ezs7MwxDl+/DhLly7lwYMH9O/fH0NDQwoKCsRCOyIiAldXVywtLVm1alWz8f5cpk9CQuLZpcXB671798TfVVm4q1evMmvWLCFTo7pZA3Ts2JEXX3xRdL3W1NTg6OiIrq4uJ0+e5MKFC/j5+TF9+nQ0NDQwMTERLkEqIiIi2L59O+PGjWPMmDHU1tYSFhaGubk5b775Jr6+vpw6dYpNmzYxefJkpkyZQpcuXZr5aT8uqkxvTk4O58+f59KlSzQ0NODs7IympiZLlizBxcWFq1evkp2dTWZmJvPnz+f+/fuA8qZqaGjI5MmThQuXl5cX/v7+IkDo37+/yPIVFBTg7e3N3/72NxITE0WmwsLCAm9vb5ydnXFxcWmmaZiWlsbHH39M586dRTDbElQ3hVOnTrFv3z4mT55McHAwnp6ebNiwgVOnTiGXy+nYsSOLFi0iKSlJ1CubmJjw0ksvoaGh0eyGl5SUJEwlCgoKuHPnDjY2Nri4uJCenk5BQQG9evUiISGB3Nxc3NzcCAwMbLa4UOk07tixg4KCAkaOHNlsIfS43Lt3D1tbW65evUpsbCxz5szB3Nwcb29vZsyYQVFREUOHDsXa2prGxkacnJwA5U17y5Yt9O3bl8WLF9OqVStRb/j9998TGRmJnp4eo0ePpqGhgaioKI4fP46Ojg55eXmoqak1C0JVmejGxka+/PJL9u3bh5qaWrM65bS0NDZu3Ejr1q1bVAKiKl1ISUkRgay+vj7l5eXY2toyfPhw7O3tuX37NuXl5SJjFRQUhImJibAlVdUjqsjOzhZ14kuWLGHUqFFkZmZy+PBhGhsb8fb2RltbGz8/P5ycnHB3d6e2thZLS0shIeXr60tFRQUlJSWYmZkRHBz8RBnmNm3aNBubpaUlt27dYs+ePZw/f56Ghgaio6OblfWMHj1aZE0HDRpEdnY2FRUVzVz2HB0dmTp1Ku3atRNueQqFQqguZGdniwaoX24jt2/fXhwv6enpbNiwQRgjLFu2TGgEPw4XL16kd+/edOjQgYiICOFcl5aWhrq6OgMGDBA7LECzul59fX2MjIxobGykvLxcmGqoyh7gp+MvNzeXtWvXcvfuXTp16oS5uTk9evRg7NixQvavZ8+eNDY2UlZWRpcuXSgvL2fnzp3k5uby0ksvMWXKFExNTUVJxuOiUp0ICwujqKiIcePG0bVrVxFUNjU1sXPnTi5cuMCkSZNwd3enc+fOze4h2tra2NjYNNvlOHbsGGfPnsXGxobBgwdjbGxMdnY2tra2dOzYkYULF6KpqUmXLl3Iz88nKioKIyMjsrOzyc/PZ+DAgcJN7ec8SYAuISHx5yN73JWmXC7/yy9JQ0JC/uO+5fM+P3j+5/g8zA+e/zlKx+nzPT/435ijhITE00Ptt98iISEhISEhISEh8Wzw2JlXCQkJCQkJCQkJiaeNlHmVkJCQkJCQkJD4yyAFrxISEhISEhISEn8ZpOBVQkJCQkJCQkLiL8NTsxORy+UfAt2AdoA5UA2kA4eBL0NCQor+808/+8jl8mnAtt94W1NISEjLLbKeIeRyeRrg+B9ezg8JCWm5XtkzxPN+nP4acrl8CrDz0T9nhYSEfPU0x/P/4X/lPGyGTLYKeBNwRaHI/H98zt+ANUBnFIqE32l0T4RcLjcDRgNDgc6ALVAHxKH8freFhIQ0/edPkJCQeJ54ml54i4FY4CxQAOgDPYD3gNlyubxHSEjIk194nz43gPf/w2u9gL5A6J82mj+WMuDzX3m+4k8exx/B836cNkMul9sDX6D87gye8nB+D27wLJ+HSiHbV4DZQCdAHUhEGZD9C4WisYWfZw8sATb/ZuAqkzVbpKBQ/HKREgK8DnwMDGvROH5/xgEbgFwgDMgALIExwFfAYLlcPi4kJETqQJaQ+B/gaQavRiEhITW/fFIul68GlgFvA49vq/SMERIScgPljfPfkMvlkY/+uvnXXv8LUhoSEvLe0x7EH8RzfZz+HLlcLkMZNBUBB1EGQX9p/gLn4Q5gCsqF0T6gEugPrAMCkcnGtdD2aQWgDaz9r+9SBrn/fZGiUFQjk60DPkQm80ehiGjBOH5vkoARwImfZ1jlcvkyIAYYizKQ/f7pDE9CQuLP5KnVvP5aQPCI/Y8en8z0/RlHLpe7o8zcZQMnnvJwJH6D/7HjdCHKTOQrKIOo55Zn4jyUyUahDFxTgU4oFDNRKBYBnijLUsYCwS34PGPgJeDcf826KrO9qkXKxt/41N1AI095gRYSEnI+JCTk2C9LA0JCQvL4aQ5Bf/rAJCQkngpPM/P6nxj+6PHWUx3FH8ecR49bQ0JCWrYl+OyiLZfLXwYcUAY9t4Afn6P5/RrP1XEql8s7oKxvXBcSEvKjXC7v+7TH9AfzLJyHYx49foJC8ZPvqkJRj0y2AhgFLAC2P+bnTQL0UGZw/xuqRUrQo8f/jEKRg0x2CXgRmUyOQvHwMcfyZ1L/6FHydpWQ+B/hqQevcrl8CcptK2OUjTEBKAOCNU9zXH8EcrlcF3gZaEJZp/W8YAXs+sVzqXK5/JWQkJCLT2NAvzfP83Eql8s1UH5/GShLIZ5rnqHzUNXMeP9XXlM954VMZoJCUfoYn9f/0WP4f3yHTCYWKSgUPyKTPc4i5TLKQDcQOP4Y7//TeHTsTn30z1NPcywSEhJ/Hs+CVNYSYCXwGsqA4BQwMCQkpPBpDuoPYjxgAoQ+R00+24B+KG/E+ig7gTcBTkCoXC73eHpD+115no/Td4GuwLSQkJDqpz2YP4Fn5TxUZVudf+W1Nj/7e/vH/LwAoBxlfei/I5M96SLlyqPHwBb8zJ/FGsAdOBkSEnL6aQ9GQkLiz+GpZ15VUkpyudwS8Ed5Mboul8uHhYSExD7Vwf3+zH70uOmpjuJ3JCQk5Jed3LeBuXK5vAL4G8qu/NF/9rh+b57X41Qul/ugDGQ+CQkJifyt9z8nPCvn4XGUW/2vI5PtRaEoBlRB5s/Pq1a/+UkymRbK7vt7/6XBS7VICUChaMkiJe/Ro0MLfuYPRy6XL0R5jUlAWTssISHxP8KzkHkFICQkJD8kJOQQMBAw4ycJl+cCuVzeEWXQkwWcfMrD+TNQNVE8i9maJ+Z5Ok5/Vi6QhLJL/bnnGTsP96KU6XIB7iKTbUYm+xylOsIQ4N6j9z1OTa7Zo8eSX31VJhOLFBSKli5Sih89mrfw5/4w5HL5fJSKDHeBPiEhIcW/8SMSEhLPEc9M8KoiJCQkHeUFqZNcLn9mLpa/A89Cg8ifScGjR/2nOoo/iOfkODVAab7QAaiRy+UK1R+UJRIAWx499/nTGuTvzLNzHioUTSjln5agzG5OAaajDKwDUKoBwE/n0n9DlUnV+bdXfioXeNJFiu4v/o+nilwufw34EuUuT59HigMSEhL/Qzz1soH/gM2jx+ciyJPL5Toob0xNwNanPJw/C79Hj7/WjPK88Fc/Tmv5z8ejF8ot5nCUovl/+ZKCZ/I8VCgagE8e/fkJmUwXpWRWNXDnMT6nFJmsjp8ysD9HtUgBqEEm+7VP2IJMtgVlI9drv3hN9ZmPE0T/ocjl8rdQluzcAAaEhIQ8+O8/ISEh8TzyVIJXuVzeHqWwfd4vnlcD/g5YABEhISG/vgX212Mcyrq1489RoxZyubwTkPvLLTu5XO6IMjMCSp3IvyTP+3H6qDlr5q+9JpfL30MZvO74K9vD/oK/0nk4BWUWdQcKRf1vvfkRcUBXZDKjX0ha/X8XKaqGsRuPOY4/BLlcvgJYBVxD2SwplQpISPyP8rQyry8Aa+Vy+Y9ACsrtMUugN8ou2zxg1lMa2x+BqkHkeXHUUjEOWCqXy8NQCq2Xo6zfG4ryxnsSpbXkX5X/teP0eefZOw//PdAEmaw7yuxiBcpg7XG5AHgDPsAP4lllc9avLlKQyd7j0SLlV+xhVfR49BjWgrH8rsjl8mCUv4tG4BKwUC7/N9+EtJCQkO1/8tAkJCSeAk8reP0B5Q2kJ+CBUramEmVN1i5g/fOyqn4k/h7As9Eg8nsTBrihvPn5oaxvLUWZxdkF7PqLe43/zxynzzvP8Hl4FpmsGmX9ZjnQCWWzVi0wBoWiJWU336Psvh/Ez4PX/w8ymRpKKbxEFIrbv8tnPhkqOTF1lHJ1v8ZFHt/QQUJC4i+MrGW22RISEhISvxsy2RvARJQ7FrpADnAaWINCkfYEnxeLUnPZHoXit2uxlZnXlcCsX828ymQDH41nMQrF5y0ej4SEhMQfgBS8SkhISDwvyGSTgD0os7aHfofP+x5lmYwLCkXZ//vzJCQkJH4HpOBVQkJC4nlBJpOhbLpSqhX8fy7wMpknEAssRKH48jfeLSEhIfGn8czpvEpISEhIPCHKYHU2cIifpNyeFGuUurAbf+uNEhISEn8mUuZVQkJCQkJCQkLiL4OUeZWQkJCQkJCQkPjLIAWvEhISEhISEhISfxmk4FVCQkJCQkJCQuIvgxS8SkhISEhISEhI/GWQglcJCQkJCQkJCYm/DFLwKiEhISEhISEh8Zfh/wDi1LqRaz5JSAAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 864x1652.4 with 200 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "score = model.evaluate(noisy_test, [clean_test, class_test], verbose=0)\n",
-    "\n",
-    "pwk.subtitle(\"Accuracy :\")\n",
-    "print(f'Classification accuracy : {score[3]:4.4f}')\n",
-    "\n",
-    "pwk.subtitle(\"Few examples :\")\n",
-    "classid_test  = np.argmax(classcat_test, axis=-1)\n",
-    "pwk.plot_images(noisy_test, class_test, range(0,200), columns=12, x_size=1, y_size=1, y_pred=classid_test, save_as='04-predictions')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 18,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:38:02.889992Z",
-     "iopub.status.busy": "2021-03-14T21:38:02.889525Z",
-     "iopub.status.idle": "2021-03-14T21:38:02.891911Z",
-     "shell.execute_reply": "2021-03-14T21:38:02.892397Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "End time is : Sunday 14 March 2021, 22:38:02\n",
-      "Duration is : 00:02:23 656ms\n",
-      "This notebook ends here\n"
-     ]
-    }
-   ],
-   "source": [
-    "pwk.end()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "---\n",
-    "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.9"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/AE/05-ExtAE-with-MNIST==done==.ipynb b/AE/05-ExtAE-with-MNIST==done==.ipynb
deleted file mode 100644
index 3a2ce3fcf3cc2d193f62b4fc0c611e615b9b5144..0000000000000000000000000000000000000000
--- a/AE/05-ExtAE-with-MNIST==done==.ipynb
+++ /dev/null
@@ -1,16910 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
-    "\n",
-    "# <!-- TITLE --> [AE5] - Advanced denoiser and classifier model\n",
-    "<!-- DESC --> Episode 5 : Construction of an advanced denoiser and classifier model\n",
-    "\n",
-    "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
-    "\n",
-    "## Objectives :\n",
-    " - Building a multiple output model, able to **denoise** and **classify**\n",
-    " - Understanding a more complex **advanced programming model**\n",
-    "\n",
-    "The calculation needs being important, it is preferable to use a very simple dataset such as MNIST.  \n",
-    "The use of a GPU is often indispensable.\n",
-    "\n",
-    "## What we're going to do :\n",
-    "\n",
-    " - Defining a multiple output model using Keras procedural programing model\n",
-    " - Build the model\n",
-    " - Train it\n",
-    " - Follow the learning process\n",
-    " \n",
-    "## Data Terminology :\n",
-    "- `clean_train`, `clean_test` for noiseless images \n",
-    "- `noisy_train`, `noisy_test` for noisy images\n",
-    "- `class_train`, `class_test` for the classes to which the images belong \n",
-    "- `denoised_test` for denoised images at the output of the model\n",
-    "- `classcat_test` for class prediction in model output (is a softmax)\n",
-    "- `classid_test` class prediction (ie: argmax of classcat_test)\n"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 1 - Init python stuff\n",
-    "### 1.1 - Init"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:38:06.150388Z",
-     "iopub.status.busy": "2021-03-14T21:38:06.149908Z",
-     "iopub.status.idle": "2021-03-14T21:38:08.755342Z",
-     "shell.execute_reply": "2021-03-14T21:38:08.754761Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<style>\n",
-       "\n",
-       "div.warn {    \n",
-       "    background-color: #fcf2f2;\n",
-       "    border-color: #dFb5b4;\n",
-       "    border-left: 5px solid #dfb5b4;\n",
-       "    padding: 0.5em;\n",
-       "    font-weight: bold;\n",
-       "    font-size: 1.1em;;\n",
-       "    }\n",
-       "\n",
-       "\n",
-       "\n",
-       "div.nota {    \n",
-       "    background-color: #DAFFDE;\n",
-       "    border-left: 5px solid #92CC99;\n",
-       "    padding: 0.5em;\n",
-       "    }\n",
-       "\n",
-       "div.todo:before { content:url();\n",
-       "    float:left;\n",
-       "    margin-right:20px;\n",
-       "    margin-top:-20px;\n",
-       "    margin-bottom:20px;\n",
-       "}\n",
-       "div.todo{\n",
-       "    font-weight: bold;\n",
-       "    font-size: 1.1em;\n",
-       "    margin-top:40px;\n",
-       "}\n",
-       "div.todo ul{\n",
-       "    margin: 0.2em;\n",
-       "}\n",
-       "div.todo li{\n",
-       "    margin-left:60px;\n",
-       "    margin-top:0;\n",
-       "    margin-bottom:0;\n",
-       "}\n",
-       "\n",
-       "div .comment{\n",
-       "    font-size:0.8em;\n",
-       "    color:#696969;\n",
-       "}\n",
-       "\n",
-       "\n",
-       "\n",
-       "</style>\n",
-       "\n"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**FIDLE 2020 - Practical Work Module**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Version              : 2.0.20\n",
-      "Notebook id          : AE5\n",
-      "Run time             : Sunday 14 March 2021, 22:38:08\n",
-      "TensorFlow version   : 2.4.0\n",
-      "Keras version        : 2.4.0\n",
-      "Datasets dir         : /gpfswork/rech/mlh/uja62cb/datasets\n",
-      "Run dir              : ./run/AE5\n",
-      "Update keras cache   : False\n",
-      "Save figs            : True\n",
-      "Path figs            : ./run/AE5/figs\n"
-     ]
-    }
-   ],
-   "source": [
-    "import numpy as np\n",
-    "from skimage import io\n",
-    "import random\n",
-    "\n",
-    "import tensorflow as tf\n",
-    "from tensorflow import keras\n",
-    "from tensorflow.keras import layers\n",
-    "from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard\n",
-    "\n",
-    "import os,sys\n",
-    "from importlib import reload\n",
-    "import h5py\n",
-    "\n",
-    "from modules.MNIST          import MNIST\n",
-    "from modules.ImagesCallback import ImagesCallback\n",
-    "\n",
-    "sys.path.append('..')\n",
-    "import fidle.pwk as pwk\n",
-    "\n",
-    "run_dir = './run/AE5'\n",
-    "datasets_dir = pwk.init('AE5', run_dir)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 1.2 - Parameters\n",
-    "`prepared_dataset` : Filename of the prepared dataset (Need 400 Mo, but can be in ./data)  \n",
-    "`dataset_seed` : Random seed for shuffling dataset  \n",
-    "`scale` : % of the dataset to use (1. for 100%)  \n",
-    "`latent_dim` : Dimension of the latent space  \n",
-    "`train_prop` : Percentage for train (the rest being for the test)\n",
-    "`batch_size` : Batch size  \n",
-    "`epochs` : Nb of epochs for training\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:38:08.758981Z",
-     "iopub.status.busy": "2021-03-14T21:38:08.758512Z",
-     "iopub.status.idle": "2021-03-14T21:38:08.760136Z",
-     "shell.execute_reply": "2021-03-14T21:38:08.760614Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "prepared_dataset = './data/mnist-noisy.h5'\n",
-    "dataset_seed     = None\n",
-    "\n",
-    "scale            = .1\n",
-    "\n",
-    "latent_dim       = 10\n",
-    "\n",
-    "train_prop       = .8\n",
-    "batch_size       = 128\n",
-    "epochs           = 20"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Override parameters (batch mode) - Just forget this cell"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:38:08.763973Z",
-     "iopub.status.busy": "2021-03-14T21:38:08.763503Z",
-     "iopub.status.idle": "2021-03-14T21:38:08.768104Z",
-     "shell.execute_reply": "2021-03-14T21:38:08.767612Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/markdown": [
-       "**\\*\\* Overrided parameters : \\*\\***"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "dataset_seed         : 145\n",
-      "scale                : 1.0\n"
-     ]
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "**\\*\\* Overrided parameters : \\*\\***"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "epochs               : 30\n"
-     ]
-    }
-   ],
-   "source": [
-    "pwk.override('prepared_dataset', 'dataset_seed', 'scale', 'latent_dim')\n",
-    "pwk.override('train_prop', 'batch_size', 'epochs')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 2 - Retrieve dataset\n",
-    "With our MNIST class, in one call, we can reload, rescale, shuffle and split our previously saved dataset :-)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:38:08.924922Z",
-     "iopub.status.busy": "2021-03-14T21:38:08.924424Z",
-     "iopub.status.idle": "2021-03-14T21:38:10.021828Z",
-     "shell.execute_reply": "2021-03-14T21:38:10.022327Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Loaded.\n",
-      "rescaled (1.0).\n",
-      "Seeded (145)\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Shuffled.\n",
-      "splited (0.8).\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "clean_train shape is :  (56000, 28, 28, 1)\n",
-      "clean_test  shape is :  (14000, 28, 28, 1)\n",
-      "noisy_train shape is :  (56000, 28, 28, 1)\n",
-      "noisy_test  shape is :  (14000, 28, 28, 1)\n",
-      "class_train shape is :  (56000,)\n",
-      "class_test  shape is :  (14000,)\n",
-      "Blake2b digest is    :  ea9e754e59993275b45e\n"
-     ]
-    }
-   ],
-   "source": [
-    "clean_train,clean_test, noisy_train,noisy_test, class_train,class_test = MNIST.reload_prepared_dataset(scale      = scale, \n",
-    "                                                                                    train_prop = train_prop,\n",
-    "                                                                                    seed       = dataset_seed,\n",
-    "                                                                                    shuffle    = True,\n",
-    "                                                                                    filename=prepared_dataset )"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 3 - Build model"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### Encoder"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:38:10.027393Z",
-     "iopub.status.busy": "2021-03-14T21:38:10.026903Z",
-     "iopub.status.idle": "2021-03-14T21:38:10.984023Z",
-     "shell.execute_reply": "2021-03-14T21:38:10.984555Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "inputs    = keras.Input(shape=(28, 28, 1))\n",
-    "x         = layers.Conv2D(32, 3, activation=\"relu\", strides=2, padding=\"same\")(inputs)\n",
-    "x         = layers.Conv2D(64, 3, activation=\"relu\", strides=2, padding=\"same\")(x)\n",
-    "x         = layers.Flatten()(x)\n",
-    "x         = layers.Dense(16, activation=\"relu\")(x)\n",
-    "z         = layers.Dense(latent_dim)(x)\n",
-    "\n",
-    "encoder = keras.Model(inputs, z, name=\"encoder\")\n",
-    "# encoder.summary()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### Decoder"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:38:10.991526Z",
-     "iopub.status.busy": "2021-03-14T21:38:10.991042Z",
-     "iopub.status.idle": "2021-03-14T21:38:11.045171Z",
-     "shell.execute_reply": "2021-03-14T21:38:11.045650Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "inputs  = keras.Input(shape=(latent_dim,))\n",
-    "x       = layers.Dense(7 * 7 * 64, activation=\"relu\")(inputs)\n",
-    "x       = layers.Reshape((7, 7, 64))(x)\n",
-    "x       = layers.Conv2DTranspose(64, 3, activation=\"relu\", strides=2, padding=\"same\")(x)\n",
-    "x       = layers.Conv2DTranspose(32, 3, activation=\"relu\", strides=2, padding=\"same\")(x)\n",
-    "outputs = layers.Conv2DTranspose(1, 3, activation=\"sigmoid\", padding=\"same\")(x)\n",
-    "\n",
-    "decoder = keras.Model(inputs, outputs, name=\"decoder\")\n",
-    "# decoder.summary()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### AE\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:38:11.050833Z",
-     "iopub.status.busy": "2021-03-14T21:38:11.050361Z",
-     "iopub.status.idle": "2021-03-14T21:38:11.101463Z",
-     "shell.execute_reply": "2021-03-14T21:38:11.101934Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "inputs    = keras.Input(shape=(28, 28, 1))\n",
-    "\n",
-    "latents   = encoder(inputs)\n",
-    "outputs   = decoder(latents)\n",
-    "\n",
-    "ae = keras.Model(inputs,outputs, name='ae')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### CNN1"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:38:11.110234Z",
-     "iopub.status.busy": "2021-03-14T21:38:11.109760Z",
-     "iopub.status.idle": "2021-03-14T21:38:11.147251Z",
-     "shell.execute_reply": "2021-03-14T21:38:11.147726Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "inputs    = keras.Input(shape=(28, 28, 1))\n",
-    "\n",
-    "x         = keras.layers.Conv2D(8, (3,3),  activation='relu')(inputs)\n",
-    "x         = keras.layers.MaxPooling2D((2,2))(x)\n",
-    "x         = keras.layers.Dropout(0.2)(x)\n",
-    "\n",
-    "x         = keras.layers.Conv2D(16, (3,3), activation='relu')(x)\n",
-    "x         = keras.layers.MaxPooling2D((2,2))(x)\n",
-    "x         = keras.layers.Dropout(0.2)(x)\n",
-    "\n",
-    "x         = keras.layers.Flatten()(x)\n",
-    "x         = keras.layers.Dense(100, activation='relu')(x)\n",
-    "outputs   = keras.layers.Dropout(0.5)(x)\n",
-    "\n",
-    "cnn1       = keras.Model(inputs, outputs, name='cnn1')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### CNN2"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:38:11.155683Z",
-     "iopub.status.busy": "2021-03-14T21:38:11.155213Z",
-     "iopub.status.idle": "2021-03-14T21:38:11.192512Z",
-     "shell.execute_reply": "2021-03-14T21:38:11.192024Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "inputs    = keras.Input(shape=(28, 28, 1))\n",
-    "\n",
-    "x         = keras.layers.Conv2D(32, (5,5),  activation='relu')(inputs)\n",
-    "x         = keras.layers.MaxPooling2D((2,2))(x)\n",
-    "x         = keras.layers.Dropout(0.3)(x)\n",
-    "\n",
-    "x         = keras.layers.Conv2D(64, (5,5), activation='relu')(x)\n",
-    "x         = keras.layers.MaxPooling2D((2,2))(x)\n",
-    "x         = keras.layers.Dropout(0.3)(x)\n",
-    "\n",
-    "x         = keras.layers.Flatten()(x)\n",
-    "x         = keras.layers.Dense(50, activation='relu')(x)\n",
-    "outputs   = keras.layers.Dropout(0.3)(x)\n",
-    "\n",
-    "cnn2       = keras.Model(inputs, outputs, name='cnn2')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### Final model"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 10,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:38:11.198642Z",
-     "iopub.status.busy": "2021-03-14T21:38:11.198160Z",
-     "iopub.status.idle": "2021-03-14T21:38:11.297523Z",
-     "shell.execute_reply": "2021-03-14T21:38:11.297994Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "inputs    = keras.Input(shape=(28, 28, 1))\n",
-    "\n",
-    "denoised = ae(inputs)\n",
-    "\n",
-    "branch_1 = cnn1(inputs)\n",
-    "branch_2 = cnn2(inputs)\n",
-    "\n",
-    "x        = keras.layers.concatenate([branch_1,branch_2], axis=1)\n",
-    "\n",
-    "classcat = keras.layers.Dense(10, activation='softmax', name='cnn')(x)\n",
-    "\n",
-    "\n",
-    "model = keras.Model(inputs, [denoised, classcat])\n",
-    "\n",
-    "model.compile(optimizer='rmsprop', \n",
-    "              loss={'ae':'binary_crossentropy', 'cnn':'sparse_categorical_crossentropy'},\n",
-    "              loss_weights=[1,1],\n",
-    "              metrics={'cnn':'accuracy'} )"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 4 - Train\n",
-    "20' on a CPU  \n",
-    "1'30 on a GPU (V100, IDRIS)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 11,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:38:11.469017Z",
-     "iopub.status.busy": "2021-03-14T21:38:11.302147Z",
-     "iopub.status.idle": "2021-03-14T21:38:11.470753Z",
-     "shell.execute_reply": "2021-03-14T21:38:11.471246Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "# ---- Callback : Images\n",
-    "#\n",
-    "pwk.mkdir( run_dir + '/images')\n",
-    "filename = run_dir + '/images/image-{epoch:03d}-{i:02d}.jpg'\n",
-    "callback_images = ImagesCallback(filename, x=clean_test[:5], encoder=encoder,decoder=decoder)\n",
-    "\n",
-    "# ---- Callback : Best model\n",
-    "#\n",
-    "pwk.mkdir( run_dir + '/models')\n",
-    "filename = run_dir + '/models/best_model.h5'\n",
-    "callback_bestmodel = tf.keras.callbacks.ModelCheckpoint(filepath=filename, verbose=0, save_best_only=True)\n",
-    "\n",
-    "# ---- Callback tensorboard\n",
-    "#\n",
-    "logdir = run_dir + '/logs'\n",
-    "callback_tensorboard = TensorBoard(log_dir=logdir, histogram_freq=1)\n",
-    "\n",
-    "# callbacks_list = [callback_images, callback_bestmodel, callback_tensorboard]\n",
-    "callbacks_list = [callback_images, callback_bestmodel]"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 12,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:38:11.475638Z",
-     "iopub.status.busy": "2021-03-14T21:38:11.475149Z",
-     "iopub.status.idle": "2021-03-14T21:40:18.750642Z",
-     "shell.execute_reply": "2021-03-14T21:40:18.751140Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 1/30\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      "  1/438 [..............................] - ETA: 40:42 - loss: 3.0709 - ae_loss: 0.6933 - cnn_loss: 2.3777 - cnn_accuracy: 0.0781"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  7/438 [..............................] - ETA: 3s - loss: 3.0134 - ae_loss: 0.6537 - cnn_loss: 2.3596 - cnn_accuracy: 0.0868   "
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 14/438 [..............................] - ETA: 3s - loss: 2.9189 - ae_loss: 0.5747 - cnn_loss: 2.3442 - cnn_accuracy: 0.0945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 21/438 [>.............................] - ETA: 3s - loss: 2.8550 - ae_loss: 0.5211 - cnn_loss: 2.3339 - cnn_accuracy: 0.0999"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 28/438 [>.............................] - ETA: 3s - loss: 2.8103 - ae_loss: 0.4844 - cnn_loss: 2.3260 - cnn_accuracy: 0.1041"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 35/438 [=>............................] - ETA: 3s - loss: 2.7762 - ae_loss: 0.4580 - cnn_loss: 2.3181 - cnn_accuracy: 0.1098"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 42/438 [=>............................] - ETA: 3s - loss: 2.7468 - ae_loss: 0.4380 - cnn_loss: 2.3087 - cnn_accuracy: 0.1172"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 49/438 [==>...........................] - ETA: 3s - loss: 2.7193 - ae_loss: 0.4223 - cnn_loss: 2.2970 - cnn_accuracy: 0.1256"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 56/438 [==>...........................] - ETA: 3s - loss: 2.6919 - ae_loss: 0.4094 - cnn_loss: 2.2825 - cnn_accuracy: 0.1350"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 63/438 [===>..........................] - ETA: 2s - loss: 2.6648 - ae_loss: 0.3988 - cnn_loss: 2.2661 - cnn_accuracy: 0.1448"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 70/438 [===>..........................] - ETA: 2s - loss: 2.6383 - ae_loss: 0.3898 - cnn_loss: 2.2486 - cnn_accuracy: 0.1545"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 77/438 [====>.........................] - ETA: 2s - loss: 2.6119 - ae_loss: 0.3821 - cnn_loss: 2.2298 - cnn_accuracy: 0.1644"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 84/438 [====>.........................] - ETA: 2s - loss: 2.5855 - ae_loss: 0.3754 - cnn_loss: 2.2101 - cnn_accuracy: 0.1742"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 91/438 [=====>........................] - ETA: 2s - loss: 2.5594 - ae_loss: 0.3695 - cnn_loss: 2.1899 - cnn_accuracy: 0.1840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 98/438 [=====>........................] - ETA: 2s - loss: 2.5339 - ae_loss: 0.3644 - cnn_loss: 2.1695 - cnn_accuracy: 0.1937"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "105/438 [======>.......................] - ETA: 2s - loss: 2.5089 - ae_loss: 0.3597 - cnn_loss: 2.1491 - cnn_accuracy: 0.2031"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "112/438 [======>.......................] - ETA: 2s - loss: 2.4845 - ae_loss: 0.3556 - cnn_loss: 2.1289 - cnn_accuracy: 0.2122"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "119/438 [=======>......................] - ETA: 2s - loss: 2.4607 - ae_loss: 0.3518 - cnn_loss: 2.1089 - cnn_accuracy: 0.2211"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "126/438 [=======>......................] - ETA: 2s - loss: 2.4375 - ae_loss: 0.3484 - cnn_loss: 2.0892 - cnn_accuracy: 0.2297"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "133/438 [========>.....................] - ETA: 2s - loss: 2.4150 - ae_loss: 0.3452 - cnn_loss: 2.0698 - cnn_accuracy: 0.2381"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "140/438 [========>.....................] - ETA: 2s - loss: 2.3932 - ae_loss: 0.3423 - cnn_loss: 2.0509 - cnn_accuracy: 0.2463"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "147/438 [=========>....................] - ETA: 2s - loss: 2.3720 - ae_loss: 0.3397 - cnn_loss: 2.0323 - cnn_accuracy: 0.2542"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "154/438 [=========>....................] - ETA: 2s - loss: 2.3513 - ae_loss: 0.3372 - cnn_loss: 2.0141 - cnn_accuracy: 0.2619"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "161/438 [==========>...................] - ETA: 2s - loss: 2.3312 - ae_loss: 0.3349 - cnn_loss: 1.9963 - cnn_accuracy: 0.2693"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "168/438 [==========>...................] - ETA: 2s - loss: 2.3118 - ae_loss: 0.3328 - cnn_loss: 1.9790 - cnn_accuracy: 0.2765"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "174/438 [==========>...................] - ETA: 2s - loss: 2.2956 - ae_loss: 0.3311 - cnn_loss: 1.9645 - cnn_accuracy: 0.2826"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "181/438 [===========>..................] - ETA: 2s - loss: 2.2772 - ae_loss: 0.3292 - cnn_loss: 1.9480 - cnn_accuracy: 0.2894"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "188/438 [===========>..................] - ETA: 1s - loss: 2.2594 - ae_loss: 0.3274 - cnn_loss: 1.9319 - cnn_accuracy: 0.2960"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "195/438 [============>.................] - ETA: 1s - loss: 2.2420 - ae_loss: 0.3257 - cnn_loss: 1.9163 - cnn_accuracy: 0.3024"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "202/438 [============>.................] - ETA: 1s - loss: 2.2252 - ae_loss: 0.3242 - cnn_loss: 1.9010 - cnn_accuracy: 0.3086"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "209/438 [=============>................] - ETA: 1s - loss: 2.2088 - ae_loss: 0.3227 - cnn_loss: 1.8862 - cnn_accuracy: 0.3147"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "216/438 [=============>................] - ETA: 1s - loss: 2.1929 - ae_loss: 0.3213 - cnn_loss: 1.8716 - cnn_accuracy: 0.3206"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "223/438 [==============>...............] - ETA: 1s - loss: 2.1773 - ae_loss: 0.3199 - cnn_loss: 1.8573 - cnn_accuracy: 0.3264"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "230/438 [==============>...............] - ETA: 1s - loss: 2.1621 - ae_loss: 0.3187 - cnn_loss: 1.8435 - cnn_accuracy: 0.3320"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "237/438 [===============>..............] - ETA: 1s - loss: 2.1473 - ae_loss: 0.3175 - cnn_loss: 1.8299 - cnn_accuracy: 0.3375"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "244/438 [===============>..............] - ETA: 1s - loss: 2.1329 - ae_loss: 0.3163 - cnn_loss: 1.8166 - cnn_accuracy: 0.3428"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "251/438 [================>.............] - ETA: 1s - loss: 2.1189 - ae_loss: 0.3152 - cnn_loss: 1.8037 - cnn_accuracy: 0.3480"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "258/438 [================>.............] - ETA: 1s - loss: 2.1053 - ae_loss: 0.3141 - cnn_loss: 1.7911 - cnn_accuracy: 0.3530"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "265/438 [=================>............] - ETA: 1s - loss: 2.0920 - ae_loss: 0.3131 - cnn_loss: 1.7788 - cnn_accuracy: 0.3579"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "272/438 [=================>............] - ETA: 1s - loss: 2.0790 - ae_loss: 0.3121 - cnn_loss: 1.7668 - cnn_accuracy: 0.3627"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "279/438 [==================>...........] - ETA: 1s - loss: 2.0663 - ae_loss: 0.3112 - cnn_loss: 1.7551 - cnn_accuracy: 0.3674"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "286/438 [==================>...........] - ETA: 1s - loss: 2.0539 - ae_loss: 0.3103 - cnn_loss: 1.7436 - cnn_accuracy: 0.3719"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "293/438 [===================>..........] - ETA: 1s - loss: 2.0418 - ae_loss: 0.3094 - cnn_loss: 1.7324 - cnn_accuracy: 0.3763"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "300/438 [===================>..........] - ETA: 1s - loss: 2.0299 - ae_loss: 0.3085 - cnn_loss: 1.7214 - cnn_accuracy: 0.3806"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "307/438 [====================>.........] - ETA: 1s - loss: 2.0184 - ae_loss: 0.3077 - cnn_loss: 1.7107 - cnn_accuracy: 0.3849"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "314/438 [====================>.........] - ETA: 0s - loss: 2.0071 - ae_loss: 0.3069 - cnn_loss: 1.7002 - cnn_accuracy: 0.3890"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "321/438 [====================>.........] - ETA: 0s - loss: 1.9960 - ae_loss: 0.3061 - cnn_loss: 1.6899 - cnn_accuracy: 0.3930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "328/438 [=====================>........] - ETA: 0s - loss: 1.9852 - ae_loss: 0.3054 - cnn_loss: 1.6798 - cnn_accuracy: 0.3970"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "335/438 [=====================>........] - ETA: 0s - loss: 1.9746 - ae_loss: 0.3046 - cnn_loss: 1.6700 - cnn_accuracy: 0.4009"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "342/438 [======================>.......] - ETA: 0s - loss: 1.9642 - ae_loss: 0.3039 - cnn_loss: 1.6603 - cnn_accuracy: 0.4046"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "349/438 [======================>.......] - ETA: 0s - loss: 1.9540 - ae_loss: 0.3032 - cnn_loss: 1.6508 - cnn_accuracy: 0.4083"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "356/438 [=======================>......] - ETA: 0s - loss: 1.9440 - ae_loss: 0.3025 - cnn_loss: 1.6415 - cnn_accuracy: 0.4120"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "363/438 [=======================>......] - ETA: 0s - loss: 1.9342 - ae_loss: 0.3018 - cnn_loss: 1.6324 - cnn_accuracy: 0.4155"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "370/438 [========================>.....] - ETA: 0s - loss: 1.9247 - ae_loss: 0.3012 - cnn_loss: 1.6235 - cnn_accuracy: 0.4190"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "377/438 [========================>.....] - ETA: 0s - loss: 1.9152 - ae_loss: 0.3005 - cnn_loss: 1.6147 - cnn_accuracy: 0.4224"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "384/438 [=========================>....] - ETA: 0s - loss: 1.9060 - ae_loss: 0.2999 - cnn_loss: 1.6061 - cnn_accuracy: 0.4258"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "391/438 [=========================>....] - ETA: 0s - loss: 1.8970 - ae_loss: 0.2993 - cnn_loss: 1.5977 - cnn_accuracy: 0.4290"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "398/438 [==========================>...] - ETA: 0s - loss: 1.8881 - ae_loss: 0.2987 - cnn_loss: 1.5894 - cnn_accuracy: 0.4323"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "405/438 [==========================>...] - ETA: 0s - loss: 1.8794 - ae_loss: 0.2981 - cnn_loss: 1.5813 - cnn_accuracy: 0.4354"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "412/438 [===========================>..] - ETA: 0s - loss: 1.8709 - ae_loss: 0.2975 - cnn_loss: 1.5734 - cnn_accuracy: 0.4385"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "419/438 [===========================>..] - ETA: 0s - loss: 1.8625 - ae_loss: 0.2969 - cnn_loss: 1.5655 - cnn_accuracy: 0.4415"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "426/438 [============================>.] - ETA: 0s - loss: 1.8542 - ae_loss: 0.2964 - cnn_loss: 1.5579 - cnn_accuracy: 0.4445"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "433/438 [============================>.] - ETA: 0s - loss: 1.8461 - ae_loss: 0.2958 - cnn_loss: 1.5503 - cnn_accuracy: 0.4474"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - ETA: 0s - loss: 1.8404 - ae_loss: 0.2954 - cnn_loss: 1.5450 - cnn_accuracy: 0.4494"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 11s 12ms/step - loss: 1.8393 - ae_loss: 0.2953 - cnn_loss: 1.5440 - cnn_accuracy: 0.4498 - val_loss: 0.7627 - val_ae_loss: 0.2283 - val_cnn_loss: 0.5344 - val_cnn_accuracy: 0.8233\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 2/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.9900 - ae_loss: 0.2347 - cnn_loss: 0.7553 - cnn_accuracy: 0.7656"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  7/438 [..............................] - ETA: 3s - loss: 0.8974 - ae_loss: 0.2312 - cnn_loss: 0.6662 - cnn_accuracy: 0.7859"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 13/438 [..............................] - ETA: 3s - loss: 0.8829 - ae_loss: 0.2306 - cnn_loss: 0.6524 - cnn_accuracy: 0.7858"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 20/438 [>.............................] - ETA: 3s - loss: 0.8796 - ae_loss: 0.2301 - cnn_loss: 0.6495 - cnn_accuracy: 0.7859"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 27/438 [>.............................] - ETA: 3s - loss: 0.8771 - ae_loss: 0.2298 - cnn_loss: 0.6473 - cnn_accuracy: 0.7859"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 34/438 [=>............................] - ETA: 3s - loss: 0.8758 - ae_loss: 0.2295 - cnn_loss: 0.6463 - cnn_accuracy: 0.7858"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 3s - loss: 0.8740 - ae_loss: 0.2291 - cnn_loss: 0.6449 - cnn_accuracy: 0.7857"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 48/438 [==>...........................] - ETA: 3s - loss: 0.8717 - ae_loss: 0.2288 - cnn_loss: 0.6430 - cnn_accuracy: 0.7859"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 55/438 [==>...........................] - ETA: 3s - loss: 0.8707 - ae_loss: 0.2285 - cnn_loss: 0.6422 - cnn_accuracy: 0.7861"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 62/438 [===>..........................] - ETA: 2s - loss: 0.8695 - ae_loss: 0.2282 - cnn_loss: 0.6413 - cnn_accuracy: 0.7865"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 69/438 [===>..........................] - ETA: 2s - loss: 0.8683 - ae_loss: 0.2279 - cnn_loss: 0.6404 - cnn_accuracy: 0.7870"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 76/438 [====>.........................] - ETA: 2s - loss: 0.8676 - ae_loss: 0.2277 - cnn_loss: 0.6399 - cnn_accuracy: 0.7873"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 83/438 [====>.........................] - ETA: 2s - loss: 0.8672 - ae_loss: 0.2275 - cnn_loss: 0.6398 - cnn_accuracy: 0.7876"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 90/438 [=====>........................] - ETA: 2s - loss: 0.8667 - ae_loss: 0.2272 - cnn_loss: 0.6395 - cnn_accuracy: 0.7878"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 97/438 [=====>........................] - ETA: 2s - loss: 0.8662 - ae_loss: 0.2270 - cnn_loss: 0.6392 - cnn_accuracy: 0.7881"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "104/438 [======>.......................] - ETA: 2s - loss: 0.8654 - ae_loss: 0.2268 - cnn_loss: 0.6387 - cnn_accuracy: 0.7885"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "111/438 [======>.......................] - ETA: 2s - loss: 0.8646 - ae_loss: 0.2265 - cnn_loss: 0.6380 - cnn_accuracy: 0.7888"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "118/438 [=======>......................] - ETA: 2s - loss: 0.8638 - ae_loss: 0.2263 - cnn_loss: 0.6374 - cnn_accuracy: 0.7892"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "125/438 [=======>......................] - ETA: 2s - loss: 0.8628 - ae_loss: 0.2261 - cnn_loss: 0.6367 - cnn_accuracy: 0.7896"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "132/438 [========>.....................] - ETA: 2s - loss: 0.8619 - ae_loss: 0.2259 - cnn_loss: 0.6360 - cnn_accuracy: 0.7900"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "139/438 [========>.....................] - ETA: 2s - loss: 0.8610 - ae_loss: 0.2257 - cnn_loss: 0.6353 - cnn_accuracy: 0.7904"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "146/438 [=========>....................] - ETA: 2s - loss: 0.8601 - ae_loss: 0.2255 - cnn_loss: 0.6346 - cnn_accuracy: 0.7907"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "153/438 [=========>....................] - ETA: 2s - loss: 0.8591 - ae_loss: 0.2253 - cnn_loss: 0.6339 - cnn_accuracy: 0.7911"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "160/438 [=========>....................] - ETA: 2s - loss: 0.8583 - ae_loss: 0.2251 - cnn_loss: 0.6332 - cnn_accuracy: 0.7914"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "167/438 [==========>...................] - ETA: 2s - loss: 0.8576 - ae_loss: 0.2249 - cnn_loss: 0.6327 - cnn_accuracy: 0.7918"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "174/438 [==========>...................] - ETA: 2s - loss: 0.8568 - ae_loss: 0.2247 - cnn_loss: 0.6321 - cnn_accuracy: 0.7921"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "181/438 [===========>..................] - ETA: 2s - loss: 0.8560 - ae_loss: 0.2245 - cnn_loss: 0.6315 - cnn_accuracy: 0.7924"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "188/438 [===========>..................] - ETA: 1s - loss: 0.8552 - ae_loss: 0.2244 - cnn_loss: 0.6309 - cnn_accuracy: 0.7926"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "195/438 [============>.................] - ETA: 1s - loss: 0.8545 - ae_loss: 0.2242 - cnn_loss: 0.6303 - cnn_accuracy: 0.7929"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "202/438 [============>.................] - ETA: 1s - loss: 0.8537 - ae_loss: 0.2240 - cnn_loss: 0.6297 - cnn_accuracy: 0.7932"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "209/438 [=============>................] - ETA: 1s - loss: 0.8529 - ae_loss: 0.2238 - cnn_loss: 0.6291 - cnn_accuracy: 0.7935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "216/438 [=============>................] - ETA: 1s - loss: 0.8522 - ae_loss: 0.2236 - cnn_loss: 0.6285 - cnn_accuracy: 0.7937"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "223/438 [==============>...............] - ETA: 1s - loss: 0.8514 - ae_loss: 0.2235 - cnn_loss: 0.6280 - cnn_accuracy: 0.7940"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "230/438 [==============>...............] - ETA: 1s - loss: 0.8508 - ae_loss: 0.2233 - cnn_loss: 0.6275 - cnn_accuracy: 0.7942"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "237/438 [===============>..............] - ETA: 1s - loss: 0.8501 - ae_loss: 0.2231 - cnn_loss: 0.6270 - cnn_accuracy: 0.7945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "244/438 [===============>..............] - ETA: 1s - loss: 0.8494 - ae_loss: 0.2230 - cnn_loss: 0.6264 - cnn_accuracy: 0.7947"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "251/438 [================>.............] - ETA: 1s - loss: 0.8487 - ae_loss: 0.2228 - cnn_loss: 0.6259 - cnn_accuracy: 0.7950"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "258/438 [================>.............] - ETA: 1s - loss: 0.8479 - ae_loss: 0.2226 - cnn_loss: 0.6253 - cnn_accuracy: 0.7952"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "265/438 [=================>............] - ETA: 1s - loss: 0.8472 - ae_loss: 0.2225 - cnn_loss: 0.6247 - cnn_accuracy: 0.7955"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "272/438 [=================>............] - ETA: 1s - loss: 0.8465 - ae_loss: 0.2223 - cnn_loss: 0.6241 - cnn_accuracy: 0.7957"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "279/438 [==================>...........] - ETA: 1s - loss: 0.8457 - ae_loss: 0.2222 - cnn_loss: 0.6236 - cnn_accuracy: 0.7960"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "286/438 [==================>...........] - ETA: 1s - loss: 0.8450 - ae_loss: 0.2220 - cnn_loss: 0.6230 - cnn_accuracy: 0.7962"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "293/438 [===================>..........] - ETA: 1s - loss: 0.8443 - ae_loss: 0.2219 - cnn_loss: 0.6225 - cnn_accuracy: 0.7964"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "300/438 [===================>..........] - ETA: 1s - loss: 0.8436 - ae_loss: 0.2217 - cnn_loss: 0.6219 - cnn_accuracy: 0.7966"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "307/438 [====================>.........] - ETA: 1s - loss: 0.8429 - ae_loss: 0.2216 - cnn_loss: 0.6213 - cnn_accuracy: 0.7968"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "314/438 [====================>.........] - ETA: 0s - loss: 0.8422 - ae_loss: 0.2214 - cnn_loss: 0.6208 - cnn_accuracy: 0.7970"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "321/438 [====================>.........] - ETA: 0s - loss: 0.8416 - ae_loss: 0.2213 - cnn_loss: 0.6203 - cnn_accuracy: 0.7972"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "328/438 [=====================>........] - ETA: 0s - loss: 0.8409 - ae_loss: 0.2211 - cnn_loss: 0.6198 - cnn_accuracy: 0.7974"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "335/438 [=====================>........] - ETA: 0s - loss: 0.8403 - ae_loss: 0.2210 - cnn_loss: 0.6193 - cnn_accuracy: 0.7976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "342/438 [======================>.......] - ETA: 0s - loss: 0.8397 - ae_loss: 0.2208 - cnn_loss: 0.6189 - cnn_accuracy: 0.7977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "349/438 [======================>.......] - ETA: 0s - loss: 0.8391 - ae_loss: 0.2207 - cnn_loss: 0.6184 - cnn_accuracy: 0.7979"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "356/438 [=======================>......] - ETA: 0s - loss: 0.8385 - ae_loss: 0.2206 - cnn_loss: 0.6179 - cnn_accuracy: 0.7981"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "363/438 [=======================>......] - ETA: 0s - loss: 0.8379 - ae_loss: 0.2204 - cnn_loss: 0.6174 - cnn_accuracy: 0.7982"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "370/438 [========================>.....] - ETA: 0s - loss: 0.8373 - ae_loss: 0.2203 - cnn_loss: 0.6170 - cnn_accuracy: 0.7984"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "377/438 [========================>.....] - ETA: 0s - loss: 0.8367 - ae_loss: 0.2201 - cnn_loss: 0.6166 - cnn_accuracy: 0.7985"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "384/438 [=========================>....] - ETA: 0s - loss: 0.8361 - ae_loss: 0.2200 - cnn_loss: 0.6161 - cnn_accuracy: 0.7987"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "391/438 [=========================>....] - ETA: 0s - loss: 0.8355 - ae_loss: 0.2198 - cnn_loss: 0.6156 - cnn_accuracy: 0.7988"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "398/438 [==========================>...] - ETA: 0s - loss: 0.8349 - ae_loss: 0.2197 - cnn_loss: 0.6152 - cnn_accuracy: 0.7990"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "405/438 [==========================>...] - ETA: 0s - loss: 0.8343 - ae_loss: 0.2196 - cnn_loss: 0.6147 - cnn_accuracy: 0.7991"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "412/438 [===========================>..] - ETA: 0s - loss: 0.8337 - ae_loss: 0.2194 - cnn_loss: 0.6143 - cnn_accuracy: 0.7993"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "419/438 [===========================>..] - ETA: 0s - loss: 0.8331 - ae_loss: 0.2193 - cnn_loss: 0.6138 - cnn_accuracy: 0.7994"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "426/438 [============================>.] - ETA: 0s - loss: 0.8325 - ae_loss: 0.2191 - cnn_loss: 0.6133 - cnn_accuracy: 0.7996"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "433/438 [============================>.] - ETA: 0s - loss: 0.8319 - ae_loss: 0.2190 - cnn_loss: 0.6129 - cnn_accuracy: 0.7997"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.8313 - ae_loss: 0.2189 - cnn_loss: 0.6125 - cnn_accuracy: 0.7998 - val_loss: 0.6181 - val_ae_loss: 0.1951 - val_cnn_loss: 0.4229 - val_cnn_accuracy: 0.8583\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 3/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 4s - loss: 0.6586 - ae_loss: 0.1967 - cnn_loss: 0.4619 - cnn_accuracy: 0.8281"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.6728 - ae_loss: 0.1921 - cnn_loss: 0.4807 - cnn_accuracy: 0.8315"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 0.6852 - ae_loss: 0.1922 - cnn_loss: 0.4930 - cnn_accuracy: 0.8310"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 22/438 [>.............................] - ETA: 3s - loss: 0.6884 - ae_loss: 0.1925 - cnn_loss: 0.4959 - cnn_accuracy: 0.8316"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 3s - loss: 0.6907 - ae_loss: 0.1923 - cnn_loss: 0.4985 - cnn_accuracy: 0.8321"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 36/438 [=>............................] - ETA: 3s - loss: 0.6924 - ae_loss: 0.1922 - cnn_loss: 0.5002 - cnn_accuracy: 0.8326"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.6937 - ae_loss: 0.1921 - cnn_loss: 0.5016 - cnn_accuracy: 0.8327"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 3s - loss: 0.6944 - ae_loss: 0.1920 - cnn_loss: 0.5024 - cnn_accuracy: 0.8329"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.6956 - ae_loss: 0.1919 - cnn_loss: 0.5038 - cnn_accuracy: 0.8329"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 64/438 [===>..........................] - ETA: 2s - loss: 0.6965 - ae_loss: 0.1917 - cnn_loss: 0.5048 - cnn_accuracy: 0.8331"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 2s - loss: 0.6971 - ae_loss: 0.1916 - cnn_loss: 0.5055 - cnn_accuracy: 0.8332"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 78/438 [====>.........................] - ETA: 2s - loss: 0.6975 - ae_loss: 0.1915 - cnn_loss: 0.5059 - cnn_accuracy: 0.8333"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.6975 - ae_loss: 0.1914 - cnn_loss: 0.5061 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 91/438 [=====>........................] - ETA: 2s - loss: 0.6974 - ae_loss: 0.1913 - cnn_loss: 0.5061 - cnn_accuracy: 0.8335"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 97/438 [=====>........................] - ETA: 2s - loss: 0.6974 - ae_loss: 0.1912 - cnn_loss: 0.5062 - cnn_accuracy: 0.8335"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "104/438 [======>.......................] - ETA: 2s - loss: 0.6974 - ae_loss: 0.1911 - cnn_loss: 0.5063 - cnn_accuracy: 0.8335"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "111/438 [======>.......................] - ETA: 2s - loss: 0.6974 - ae_loss: 0.1909 - cnn_loss: 0.5065 - cnn_accuracy: 0.8335"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "118/438 [=======>......................] - ETA: 2s - loss: 0.6975 - ae_loss: 0.1908 - cnn_loss: 0.5066 - cnn_accuracy: 0.8335"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "125/438 [=======>......................] - ETA: 2s - loss: 0.6975 - ae_loss: 0.1907 - cnn_loss: 0.5068 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "132/438 [========>.....................] - ETA: 2s - loss: 0.6974 - ae_loss: 0.1906 - cnn_loss: 0.5067 - cnn_accuracy: 0.8335"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "139/438 [========>.....................] - ETA: 2s - loss: 0.6971 - ae_loss: 0.1905 - cnn_loss: 0.5066 - cnn_accuracy: 0.8335"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "146/438 [=========>....................] - ETA: 2s - loss: 0.6969 - ae_loss: 0.1904 - cnn_loss: 0.5065 - cnn_accuracy: 0.8336"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "153/438 [=========>....................] - ETA: 2s - loss: 0.6967 - ae_loss: 0.1903 - cnn_loss: 0.5064 - cnn_accuracy: 0.8336"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "160/438 [=========>....................] - ETA: 2s - loss: 0.6966 - ae_loss: 0.1902 - cnn_loss: 0.5064 - cnn_accuracy: 0.8337"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "167/438 [==========>...................] - ETA: 2s - loss: 0.6965 - ae_loss: 0.1901 - cnn_loss: 0.5064 - cnn_accuracy: 0.8337"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "174/438 [==========>...................] - ETA: 2s - loss: 0.6965 - ae_loss: 0.1900 - cnn_loss: 0.5065 - cnn_accuracy: 0.8337"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "181/438 [===========>..................] - ETA: 2s - loss: 0.6964 - ae_loss: 0.1899 - cnn_loss: 0.5065 - cnn_accuracy: 0.8337"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "188/438 [===========>..................] - ETA: 1s - loss: 0.6963 - ae_loss: 0.1898 - cnn_loss: 0.5065 - cnn_accuracy: 0.8338"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "195/438 [============>.................] - ETA: 1s - loss: 0.6963 - ae_loss: 0.1897 - cnn_loss: 0.5066 - cnn_accuracy: 0.8338"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "202/438 [============>.................] - ETA: 1s - loss: 0.6963 - ae_loss: 0.1896 - cnn_loss: 0.5067 - cnn_accuracy: 0.8337"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "209/438 [=============>................] - ETA: 1s - loss: 0.6964 - ae_loss: 0.1895 - cnn_loss: 0.5069 - cnn_accuracy: 0.8337"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "216/438 [=============>................] - ETA: 1s - loss: 0.6965 - ae_loss: 0.1894 - cnn_loss: 0.5070 - cnn_accuracy: 0.8336"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "223/438 [==============>...............] - ETA: 1s - loss: 0.6965 - ae_loss: 0.1893 - cnn_loss: 0.5072 - cnn_accuracy: 0.8336"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "230/438 [==============>...............] - ETA: 1s - loss: 0.6965 - ae_loss: 0.1893 - cnn_loss: 0.5072 - cnn_accuracy: 0.8336"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "237/438 [===============>..............] - ETA: 1s - loss: 0.6964 - ae_loss: 0.1892 - cnn_loss: 0.5073 - cnn_accuracy: 0.8336"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "244/438 [===============>..............] - ETA: 1s - loss: 0.6964 - ae_loss: 0.1891 - cnn_loss: 0.5073 - cnn_accuracy: 0.8335"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "251/438 [================>.............] - ETA: 1s - loss: 0.6963 - ae_loss: 0.1890 - cnn_loss: 0.5073 - cnn_accuracy: 0.8335"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "258/438 [================>.............] - ETA: 1s - loss: 0.6963 - ae_loss: 0.1889 - cnn_loss: 0.5074 - cnn_accuracy: 0.8335"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "265/438 [=================>............] - ETA: 1s - loss: 0.6963 - ae_loss: 0.1888 - cnn_loss: 0.5074 - cnn_accuracy: 0.8335"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "272/438 [=================>............] - ETA: 1s - loss: 0.6962 - ae_loss: 0.1887 - cnn_loss: 0.5075 - cnn_accuracy: 0.8335"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "279/438 [==================>...........] - ETA: 1s - loss: 0.6962 - ae_loss: 0.1886 - cnn_loss: 0.5076 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "286/438 [==================>...........] - ETA: 1s - loss: 0.6962 - ae_loss: 0.1886 - cnn_loss: 0.5076 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "293/438 [===================>..........] - ETA: 1s - loss: 0.6961 - ae_loss: 0.1885 - cnn_loss: 0.5077 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "300/438 [===================>..........] - ETA: 1s - loss: 0.6961 - ae_loss: 0.1884 - cnn_loss: 0.5077 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "307/438 [====================>.........] - ETA: 1s - loss: 0.6961 - ae_loss: 0.1883 - cnn_loss: 0.5078 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "314/438 [====================>.........] - ETA: 0s - loss: 0.6960 - ae_loss: 0.1882 - cnn_loss: 0.5078 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "321/438 [====================>.........] - ETA: 0s - loss: 0.6960 - ae_loss: 0.1881 - cnn_loss: 0.5078 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "328/438 [=====================>........] - ETA: 0s - loss: 0.6959 - ae_loss: 0.1881 - cnn_loss: 0.5079 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "335/438 [=====================>........] - ETA: 0s - loss: 0.6959 - ae_loss: 0.1880 - cnn_loss: 0.5079 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "342/438 [======================>.......] - ETA: 0s - loss: 0.6958 - ae_loss: 0.1879 - cnn_loss: 0.5079 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "348/438 [======================>.......] - ETA: 0s - loss: 0.6957 - ae_loss: 0.1878 - cnn_loss: 0.5079 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "354/438 [=======================>......] - ETA: 0s - loss: 0.6957 - ae_loss: 0.1878 - cnn_loss: 0.5079 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "360/438 [=======================>......] - ETA: 0s - loss: 0.6956 - ae_loss: 0.1877 - cnn_loss: 0.5079 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "366/438 [========================>.....] - ETA: 0s - loss: 0.6956 - ae_loss: 0.1876 - cnn_loss: 0.5080 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "372/438 [========================>.....] - ETA: 0s - loss: 0.6955 - ae_loss: 0.1875 - cnn_loss: 0.5080 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "378/438 [========================>.....] - ETA: 0s - loss: 0.6955 - ae_loss: 0.1875 - cnn_loss: 0.5080 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "385/438 [=========================>....] - ETA: 0s - loss: 0.6954 - ae_loss: 0.1874 - cnn_loss: 0.5080 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "392/438 [=========================>....] - ETA: 0s - loss: 0.6953 - ae_loss: 0.1873 - cnn_loss: 0.5079 - cnn_accuracy: 0.8334"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "399/438 [==========================>...] - ETA: 0s - loss: 0.6952 - ae_loss: 0.1872 - cnn_loss: 0.5079 - cnn_accuracy: 0.8335"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "406/438 [==========================>...] - ETA: 0s - loss: 0.6950 - ae_loss: 0.1872 - cnn_loss: 0.5079 - cnn_accuracy: 0.8335"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "413/438 [===========================>..] - ETA: 0s - loss: 0.6949 - ae_loss: 0.1871 - cnn_loss: 0.5078 - cnn_accuracy: 0.8335"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "420/438 [===========================>..] - ETA: 0s - loss: 0.6948 - ae_loss: 0.1870 - cnn_loss: 0.5078 - cnn_accuracy: 0.8335"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "427/438 [============================>.] - ETA: 0s - loss: 0.6947 - ae_loss: 0.1870 - cnn_loss: 0.5078 - cnn_accuracy: 0.8335"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "434/438 [============================>.] - ETA: 0s - loss: 0.6946 - ae_loss: 0.1869 - cnn_loss: 0.5077 - cnn_accuracy: 0.8335"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.6946 - ae_loss: 0.1868 - cnn_loss: 0.5077 - cnn_accuracy: 0.8335 - val_loss: 0.5698 - val_ae_loss: 0.1738 - val_cnn_loss: 0.3960 - val_cnn_accuracy: 0.8690\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 4/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.6587 - ae_loss: 0.1712 - cnn_loss: 0.4875 - cnn_accuracy: 0.8203"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.6297 - ae_loss: 0.1719 - cnn_loss: 0.4578 - cnn_accuracy: 0.8384"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 0.6377 - ae_loss: 0.1734 - cnn_loss: 0.4643 - cnn_accuracy: 0.8398"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 22/438 [>.............................] - ETA: 3s - loss: 0.6437 - ae_loss: 0.1741 - cnn_loss: 0.4697 - cnn_accuracy: 0.8388"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 3s - loss: 0.6454 - ae_loss: 0.1744 - cnn_loss: 0.4711 - cnn_accuracy: 0.8382"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 36/438 [=>............................] - ETA: 3s - loss: 0.6473 - ae_loss: 0.1746 - cnn_loss: 0.4727 - cnn_accuracy: 0.8378"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.6481 - ae_loss: 0.1747 - cnn_loss: 0.4734 - cnn_accuracy: 0.8376"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 2s - loss: 0.6482 - ae_loss: 0.1747 - cnn_loss: 0.4735 - cnn_accuracy: 0.8380"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.6482 - ae_loss: 0.1748 - cnn_loss: 0.4735 - cnn_accuracy: 0.8384"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 64/438 [===>..........................] - ETA: 2s - loss: 0.6477 - ae_loss: 0.1747 - cnn_loss: 0.4730 - cnn_accuracy: 0.8389"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 2s - loss: 0.6477 - ae_loss: 0.1747 - cnn_loss: 0.4730 - cnn_accuracy: 0.8393"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 78/438 [====>.........................] - ETA: 2s - loss: 0.6478 - ae_loss: 0.1747 - cnn_loss: 0.4731 - cnn_accuracy: 0.8397"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.6480 - ae_loss: 0.1747 - cnn_loss: 0.4733 - cnn_accuracy: 0.8400"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 92/438 [=====>........................] - ETA: 2s - loss: 0.6481 - ae_loss: 0.1747 - cnn_loss: 0.4735 - cnn_accuracy: 0.8402"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.6484 - ae_loss: 0.1746 - cnn_loss: 0.4737 - cnn_accuracy: 0.8405"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.6486 - ae_loss: 0.1747 - cnn_loss: 0.4739 - cnn_accuracy: 0.8407"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "112/438 [======>.......................] - ETA: 2s - loss: 0.6486 - ae_loss: 0.1746 - cnn_loss: 0.4740 - cnn_accuracy: 0.8408"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "119/438 [=======>......................] - ETA: 2s - loss: 0.6487 - ae_loss: 0.1746 - cnn_loss: 0.4740 - cnn_accuracy: 0.8410"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "126/438 [=======>......................] - ETA: 2s - loss: 0.6487 - ae_loss: 0.1746 - cnn_loss: 0.4741 - cnn_accuracy: 0.8412"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "133/438 [========>.....................] - ETA: 2s - loss: 0.6486 - ae_loss: 0.1746 - cnn_loss: 0.4740 - cnn_accuracy: 0.8413"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "140/438 [========>.....................] - ETA: 2s - loss: 0.6485 - ae_loss: 0.1745 - cnn_loss: 0.4739 - cnn_accuracy: 0.8415"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "147/438 [=========>....................] - ETA: 2s - loss: 0.6483 - ae_loss: 0.1745 - cnn_loss: 0.4738 - cnn_accuracy: 0.8416"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "154/438 [=========>....................] - ETA: 2s - loss: 0.6482 - ae_loss: 0.1745 - cnn_loss: 0.4738 - cnn_accuracy: 0.8418"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "161/438 [==========>...................] - ETA: 2s - loss: 0.6482 - ae_loss: 0.1745 - cnn_loss: 0.4737 - cnn_accuracy: 0.8419"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "168/438 [==========>...................] - ETA: 2s - loss: 0.6481 - ae_loss: 0.1744 - cnn_loss: 0.4737 - cnn_accuracy: 0.8420"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "175/438 [==========>...................] - ETA: 2s - loss: 0.6481 - ae_loss: 0.1744 - cnn_loss: 0.4737 - cnn_accuracy: 0.8421"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "182/438 [===========>..................] - ETA: 1s - loss: 0.6481 - ae_loss: 0.1744 - cnn_loss: 0.4738 - cnn_accuracy: 0.8421"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "189/438 [===========>..................] - ETA: 1s - loss: 0.6481 - ae_loss: 0.1744 - cnn_loss: 0.4737 - cnn_accuracy: 0.8422"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "196/438 [============>.................] - ETA: 1s - loss: 0.6481 - ae_loss: 0.1743 - cnn_loss: 0.4737 - cnn_accuracy: 0.8422"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "203/438 [============>.................] - ETA: 1s - loss: 0.6480 - ae_loss: 0.1743 - cnn_loss: 0.4737 - cnn_accuracy: 0.8423"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "210/438 [=============>................] - ETA: 1s - loss: 0.6480 - ae_loss: 0.1743 - cnn_loss: 0.4738 - cnn_accuracy: 0.8423"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "217/438 [=============>................] - ETA: 1s - loss: 0.6481 - ae_loss: 0.1743 - cnn_loss: 0.4738 - cnn_accuracy: 0.8423"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "224/438 [==============>...............] - ETA: 1s - loss: 0.6481 - ae_loss: 0.1742 - cnn_loss: 0.4738 - cnn_accuracy: 0.8424"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "231/438 [==============>...............] - ETA: 1s - loss: 0.6481 - ae_loss: 0.1742 - cnn_loss: 0.4739 - cnn_accuracy: 0.8424"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "238/438 [===============>..............] - ETA: 1s - loss: 0.6481 - ae_loss: 0.1742 - cnn_loss: 0.4739 - cnn_accuracy: 0.8424"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "245/438 [===============>..............] - ETA: 1s - loss: 0.6481 - ae_loss: 0.1742 - cnn_loss: 0.4739 - cnn_accuracy: 0.8425"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "252/438 [================>.............] - ETA: 1s - loss: 0.6480 - ae_loss: 0.1742 - cnn_loss: 0.4739 - cnn_accuracy: 0.8425"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "259/438 [================>.............] - ETA: 1s - loss: 0.6479 - ae_loss: 0.1741 - cnn_loss: 0.4738 - cnn_accuracy: 0.8426"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "266/438 [=================>............] - ETA: 1s - loss: 0.6479 - ae_loss: 0.1741 - cnn_loss: 0.4737 - cnn_accuracy: 0.8426"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "273/438 [=================>............] - ETA: 1s - loss: 0.6478 - ae_loss: 0.1741 - cnn_loss: 0.4737 - cnn_accuracy: 0.8427"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "280/438 [==================>...........] - ETA: 1s - loss: 0.6477 - ae_loss: 0.1741 - cnn_loss: 0.4736 - cnn_accuracy: 0.8427"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "287/438 [==================>...........] - ETA: 1s - loss: 0.6476 - ae_loss: 0.1740 - cnn_loss: 0.4735 - cnn_accuracy: 0.8428"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "294/438 [===================>..........] - ETA: 1s - loss: 0.6475 - ae_loss: 0.1740 - cnn_loss: 0.4734 - cnn_accuracy: 0.8428"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "301/438 [===================>..........] - ETA: 1s - loss: 0.6473 - ae_loss: 0.1740 - cnn_loss: 0.4733 - cnn_accuracy: 0.8429"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "308/438 [====================>.........] - ETA: 1s - loss: 0.6472 - ae_loss: 0.1740 - cnn_loss: 0.4732 - cnn_accuracy: 0.8429"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "315/438 [====================>.........] - ETA: 0s - loss: 0.6471 - ae_loss: 0.1740 - cnn_loss: 0.4731 - cnn_accuracy: 0.8430"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "322/438 [=====================>........] - ETA: 0s - loss: 0.6470 - ae_loss: 0.1739 - cnn_loss: 0.4730 - cnn_accuracy: 0.8431"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "329/438 [=====================>........] - ETA: 0s - loss: 0.6468 - ae_loss: 0.1739 - cnn_loss: 0.4729 - cnn_accuracy: 0.8431"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "336/438 [======================>.......] - ETA: 0s - loss: 0.6467 - ae_loss: 0.1739 - cnn_loss: 0.4728 - cnn_accuracy: 0.8432"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "343/438 [======================>.......] - ETA: 0s - loss: 0.6466 - ae_loss: 0.1739 - cnn_loss: 0.4727 - cnn_accuracy: 0.8433"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "350/438 [======================>.......] - ETA: 0s - loss: 0.6465 - ae_loss: 0.1738 - cnn_loss: 0.4726 - cnn_accuracy: 0.8433"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "357/438 [=======================>......] - ETA: 0s - loss: 0.6463 - ae_loss: 0.1738 - cnn_loss: 0.4725 - cnn_accuracy: 0.8434"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "364/438 [=======================>......] - ETA: 0s - loss: 0.6462 - ae_loss: 0.1738 - cnn_loss: 0.4724 - cnn_accuracy: 0.8435"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "371/438 [========================>.....] - ETA: 0s - loss: 0.6461 - ae_loss: 0.1738 - cnn_loss: 0.4723 - cnn_accuracy: 0.8435"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "378/438 [========================>.....] - ETA: 0s - loss: 0.6460 - ae_loss: 0.1737 - cnn_loss: 0.4722 - cnn_accuracy: 0.8436"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "385/438 [=========================>....] - ETA: 0s - loss: 0.6458 - ae_loss: 0.1737 - cnn_loss: 0.4721 - cnn_accuracy: 0.8437"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "392/438 [=========================>....] - ETA: 0s - loss: 0.6457 - ae_loss: 0.1737 - cnn_loss: 0.4720 - cnn_accuracy: 0.8437"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "399/438 [==========================>...] - ETA: 0s - loss: 0.6455 - ae_loss: 0.1737 - cnn_loss: 0.4719 - cnn_accuracy: 0.8438"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "406/438 [==========================>...] - ETA: 0s - loss: 0.6454 - ae_loss: 0.1737 - cnn_loss: 0.4718 - cnn_accuracy: 0.8438"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "413/438 [===========================>..] - ETA: 0s - loss: 0.6453 - ae_loss: 0.1736 - cnn_loss: 0.4716 - cnn_accuracy: 0.8439"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "420/438 [===========================>..] - ETA: 0s - loss: 0.6451 - ae_loss: 0.1736 - cnn_loss: 0.4715 - cnn_accuracy: 0.8440"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "427/438 [============================>.] - ETA: 0s - loss: 0.6450 - ae_loss: 0.1736 - cnn_loss: 0.4714 - cnn_accuracy: 0.8440"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "434/438 [============================>.] - ETA: 0s - loss: 0.6449 - ae_loss: 0.1736 - cnn_loss: 0.4713 - cnn_accuracy: 0.8441"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.6448 - ae_loss: 0.1736 - cnn_loss: 0.4712 - cnn_accuracy: 0.8441 - val_loss: 0.5350 - val_ae_loss: 0.1692 - val_cnn_loss: 0.3658 - val_cnn_accuracy: 0.8798\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 5/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.5898 - ae_loss: 0.1712 - cnn_loss: 0.4186 - cnn_accuracy: 0.8359"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.6026 - ae_loss: 0.1719 - cnn_loss: 0.4307 - cnn_accuracy: 0.8542"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 0.6077 - ae_loss: 0.1707 - cnn_loss: 0.4371 - cnn_accuracy: 0.8520"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 22/438 [>.............................] - ETA: 3s - loss: 0.6127 - ae_loss: 0.1704 - cnn_loss: 0.4423 - cnn_accuracy: 0.8519"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 3s - loss: 0.6140 - ae_loss: 0.1701 - cnn_loss: 0.4439 - cnn_accuracy: 0.8521"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 36/438 [=>............................] - ETA: 3s - loss: 0.6122 - ae_loss: 0.1699 - cnn_loss: 0.4423 - cnn_accuracy: 0.8527"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.6101 - ae_loss: 0.1697 - cnn_loss: 0.4404 - cnn_accuracy: 0.8534"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 3s - loss: 0.6089 - ae_loss: 0.1696 - cnn_loss: 0.4394 - cnn_accuracy: 0.8538"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.6079 - ae_loss: 0.1694 - cnn_loss: 0.4384 - cnn_accuracy: 0.8543"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 64/438 [===>..........................] - ETA: 2s - loss: 0.6073 - ae_loss: 0.1693 - cnn_loss: 0.4380 - cnn_accuracy: 0.8546"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 2s - loss: 0.6069 - ae_loss: 0.1692 - cnn_loss: 0.4377 - cnn_accuracy: 0.8547"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 78/438 [====>.........................] - ETA: 2s - loss: 0.6063 - ae_loss: 0.1691 - cnn_loss: 0.4372 - cnn_accuracy: 0.8549"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.6060 - ae_loss: 0.1690 - cnn_loss: 0.4371 - cnn_accuracy: 0.8550"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 92/438 [=====>........................] - ETA: 2s - loss: 0.6062 - ae_loss: 0.1689 - cnn_loss: 0.4373 - cnn_accuracy: 0.8550"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.6062 - ae_loss: 0.1688 - cnn_loss: 0.4374 - cnn_accuracy: 0.8550"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.6059 - ae_loss: 0.1687 - cnn_loss: 0.4372 - cnn_accuracy: 0.8552"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 0.6057 - ae_loss: 0.1686 - cnn_loss: 0.4371 - cnn_accuracy: 0.8552"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "120/438 [=======>......................] - ETA: 2s - loss: 0.6054 - ae_loss: 0.1686 - cnn_loss: 0.4369 - cnn_accuracy: 0.8553"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "127/438 [=======>......................] - ETA: 2s - loss: 0.6051 - ae_loss: 0.1685 - cnn_loss: 0.4366 - cnn_accuracy: 0.8554"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "134/438 [========>.....................] - ETA: 2s - loss: 0.6048 - ae_loss: 0.1684 - cnn_loss: 0.4364 - cnn_accuracy: 0.8555"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "141/438 [========>.....................] - ETA: 2s - loss: 0.6046 - ae_loss: 0.1684 - cnn_loss: 0.4362 - cnn_accuracy: 0.8556"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "148/438 [=========>....................] - ETA: 2s - loss: 0.6045 - ae_loss: 0.1683 - cnn_loss: 0.4361 - cnn_accuracy: 0.8556"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 2s - loss: 0.6044 - ae_loss: 0.1683 - cnn_loss: 0.4361 - cnn_accuracy: 0.8556"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 2s - loss: 0.6042 - ae_loss: 0.1682 - cnn_loss: 0.4360 - cnn_accuracy: 0.8557"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 2s - loss: 0.6041 - ae_loss: 0.1682 - cnn_loss: 0.4359 - cnn_accuracy: 0.8557"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 2s - loss: 0.6040 - ae_loss: 0.1681 - cnn_loss: 0.4359 - cnn_accuracy: 0.8558"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 1s - loss: 0.6039 - ae_loss: 0.1681 - cnn_loss: 0.4358 - cnn_accuracy: 0.8558"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "190/438 [============>.................] - ETA: 1s - loss: 0.6038 - ae_loss: 0.1680 - cnn_loss: 0.4357 - cnn_accuracy: 0.8559"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 1s - loss: 0.6036 - ae_loss: 0.1680 - cnn_loss: 0.4357 - cnn_accuracy: 0.8559"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "204/438 [============>.................] - ETA: 1s - loss: 0.6035 - ae_loss: 0.1679 - cnn_loss: 0.4356 - cnn_accuracy: 0.8559"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "211/438 [=============>................] - ETA: 1s - loss: 0.6034 - ae_loss: 0.1679 - cnn_loss: 0.4355 - cnn_accuracy: 0.8559"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "218/438 [=============>................] - ETA: 1s - loss: 0.6032 - ae_loss: 0.1678 - cnn_loss: 0.4353 - cnn_accuracy: 0.8560"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 1s - loss: 0.6030 - ae_loss: 0.1678 - cnn_loss: 0.4352 - cnn_accuracy: 0.8560"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "232/438 [==============>...............] - ETA: 1s - loss: 0.6029 - ae_loss: 0.1677 - cnn_loss: 0.4352 - cnn_accuracy: 0.8560"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "239/438 [===============>..............] - ETA: 1s - loss: 0.6028 - ae_loss: 0.1677 - cnn_loss: 0.4351 - cnn_accuracy: 0.8560"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "246/438 [===============>..............] - ETA: 1s - loss: 0.6028 - ae_loss: 0.1677 - cnn_loss: 0.4351 - cnn_accuracy: 0.8560"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "253/438 [================>.............] - ETA: 1s - loss: 0.6027 - ae_loss: 0.1676 - cnn_loss: 0.4351 - cnn_accuracy: 0.8560"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "260/438 [================>.............] - ETA: 1s - loss: 0.6027 - ae_loss: 0.1676 - cnn_loss: 0.4351 - cnn_accuracy: 0.8560"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "267/438 [=================>............] - ETA: 1s - loss: 0.6026 - ae_loss: 0.1675 - cnn_loss: 0.4350 - cnn_accuracy: 0.8560"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "274/438 [=================>............] - ETA: 1s - loss: 0.6025 - ae_loss: 0.1675 - cnn_loss: 0.4350 - cnn_accuracy: 0.8561"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 1s - loss: 0.6024 - ae_loss: 0.1675 - cnn_loss: 0.4350 - cnn_accuracy: 0.8561"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "288/438 [==================>...........] - ETA: 1s - loss: 0.6024 - ae_loss: 0.1674 - cnn_loss: 0.4350 - cnn_accuracy: 0.8561"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "295/438 [===================>..........] - ETA: 1s - loss: 0.6023 - ae_loss: 0.1674 - cnn_loss: 0.4349 - cnn_accuracy: 0.8561"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "302/438 [===================>..........] - ETA: 1s - loss: 0.6022 - ae_loss: 0.1673 - cnn_loss: 0.4349 - cnn_accuracy: 0.8561"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "309/438 [====================>.........] - ETA: 1s - loss: 0.6022 - ae_loss: 0.1673 - cnn_loss: 0.4349 - cnn_accuracy: 0.8561"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "316/438 [====================>.........] - ETA: 0s - loss: 0.6021 - ae_loss: 0.1673 - cnn_loss: 0.4349 - cnn_accuracy: 0.8561"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "323/438 [=====================>........] - ETA: 0s - loss: 0.6021 - ae_loss: 0.1672 - cnn_loss: 0.4348 - cnn_accuracy: 0.8562"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "330/438 [=====================>........] - ETA: 0s - loss: 0.6020 - ae_loss: 0.1672 - cnn_loss: 0.4348 - cnn_accuracy: 0.8562"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "337/438 [======================>.......] - ETA: 0s - loss: 0.6019 - ae_loss: 0.1672 - cnn_loss: 0.4348 - cnn_accuracy: 0.8562"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "344/438 [======================>.......] - ETA: 0s - loss: 0.6019 - ae_loss: 0.1671 - cnn_loss: 0.4347 - cnn_accuracy: 0.8562"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "351/438 [=======================>......] - ETA: 0s - loss: 0.6018 - ae_loss: 0.1671 - cnn_loss: 0.4347 - cnn_accuracy: 0.8562"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "358/438 [=======================>......] - ETA: 0s - loss: 0.6018 - ae_loss: 0.1670 - cnn_loss: 0.4347 - cnn_accuracy: 0.8562"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "365/438 [========================>.....] - ETA: 0s - loss: 0.6017 - ae_loss: 0.1670 - cnn_loss: 0.4347 - cnn_accuracy: 0.8563"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "372/438 [========================>.....] - ETA: 0s - loss: 0.6016 - ae_loss: 0.1670 - cnn_loss: 0.4347 - cnn_accuracy: 0.8563"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "379/438 [========================>.....] - ETA: 0s - loss: 0.6016 - ae_loss: 0.1669 - cnn_loss: 0.4346 - cnn_accuracy: 0.8563"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "386/438 [=========================>....] - ETA: 0s - loss: 0.6015 - ae_loss: 0.1669 - cnn_loss: 0.4346 - cnn_accuracy: 0.8563"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "393/438 [=========================>....] - ETA: 0s - loss: 0.6014 - ae_loss: 0.1669 - cnn_loss: 0.4346 - cnn_accuracy: 0.8563"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "400/438 [==========================>...] - ETA: 0s - loss: 0.6014 - ae_loss: 0.1668 - cnn_loss: 0.4345 - cnn_accuracy: 0.8563"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "407/438 [==========================>...] - ETA: 0s - loss: 0.6013 - ae_loss: 0.1668 - cnn_loss: 0.4345 - cnn_accuracy: 0.8564"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "414/438 [===========================>..] - ETA: 0s - loss: 0.6012 - ae_loss: 0.1668 - cnn_loss: 0.4345 - cnn_accuracy: 0.8564"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "421/438 [===========================>..] - ETA: 0s - loss: 0.6012 - ae_loss: 0.1667 - cnn_loss: 0.4345 - cnn_accuracy: 0.8564"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "428/438 [============================>.] - ETA: 0s - loss: 0.6011 - ae_loss: 0.1667 - cnn_loss: 0.4344 - cnn_accuracy: 0.8564"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "435/438 [============================>.] - ETA: 0s - loss: 0.6011 - ae_loss: 0.1667 - cnn_loss: 0.4344 - cnn_accuracy: 0.8564"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.6011 - ae_loss: 0.1666 - cnn_loss: 0.4344 - cnn_accuracy: 0.8564 - val_loss: 0.5388 - val_ae_loss: 0.1609 - val_cnn_loss: 0.3779 - val_cnn_accuracy: 0.8746\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 6/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.4705 - ae_loss: 0.1580 - cnn_loss: 0.3125 - cnn_accuracy: 0.9062"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.5583 - ae_loss: 0.1606 - cnn_loss: 0.3977 - cnn_accuracy: 0.8771"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 0.5577 - ae_loss: 0.1604 - cnn_loss: 0.3972 - cnn_accuracy: 0.8743"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 22/438 [>.............................] - ETA: 3s - loss: 0.5578 - ae_loss: 0.1605 - cnn_loss: 0.3973 - cnn_accuracy: 0.8735"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 3s - loss: 0.5590 - ae_loss: 0.1607 - cnn_loss: 0.3983 - cnn_accuracy: 0.8727"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 36/438 [=>............................] - ETA: 3s - loss: 0.5623 - ae_loss: 0.1607 - cnn_loss: 0.4016 - cnn_accuracy: 0.8713"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.5645 - ae_loss: 0.1607 - cnn_loss: 0.4038 - cnn_accuracy: 0.8702"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 3s - loss: 0.5656 - ae_loss: 0.1608 - cnn_loss: 0.4048 - cnn_accuracy: 0.8694"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.5663 - ae_loss: 0.1608 - cnn_loss: 0.4055 - cnn_accuracy: 0.8690"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 64/438 [===>..........................] - ETA: 2s - loss: 0.5665 - ae_loss: 0.1608 - cnn_loss: 0.4057 - cnn_accuracy: 0.8687"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 2s - loss: 0.5663 - ae_loss: 0.1608 - cnn_loss: 0.4055 - cnn_accuracy: 0.8685"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 78/438 [====>.........................] - ETA: 2s - loss: 0.5663 - ae_loss: 0.1608 - cnn_loss: 0.4055 - cnn_accuracy: 0.8683"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.5664 - ae_loss: 0.1608 - cnn_loss: 0.4056 - cnn_accuracy: 0.8682"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 92/438 [=====>........................] - ETA: 2s - loss: 0.5663 - ae_loss: 0.1608 - cnn_loss: 0.4055 - cnn_accuracy: 0.8681"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.5665 - ae_loss: 0.1608 - cnn_loss: 0.4057 - cnn_accuracy: 0.8680"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.5671 - ae_loss: 0.1608 - cnn_loss: 0.4063 - cnn_accuracy: 0.8678"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 0.5676 - ae_loss: 0.1608 - cnn_loss: 0.4069 - cnn_accuracy: 0.8675"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "120/438 [=======>......................] - ETA: 2s - loss: 0.5681 - ae_loss: 0.1607 - cnn_loss: 0.4074 - cnn_accuracy: 0.8673"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "127/438 [=======>......................] - ETA: 2s - loss: 0.5686 - ae_loss: 0.1607 - cnn_loss: 0.4079 - cnn_accuracy: 0.8671"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "134/438 [========>.....................] - ETA: 2s - loss: 0.5691 - ae_loss: 0.1607 - cnn_loss: 0.4084 - cnn_accuracy: 0.8669"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "141/438 [========>.....................] - ETA: 2s - loss: 0.5694 - ae_loss: 0.1607 - cnn_loss: 0.4087 - cnn_accuracy: 0.8668"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "148/438 [=========>....................] - ETA: 2s - loss: 0.5697 - ae_loss: 0.1607 - cnn_loss: 0.4090 - cnn_accuracy: 0.8667"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 2s - loss: 0.5698 - ae_loss: 0.1606 - cnn_loss: 0.4092 - cnn_accuracy: 0.8666"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 2s - loss: 0.5700 - ae_loss: 0.1606 - cnn_loss: 0.4094 - cnn_accuracy: 0.8665"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 2s - loss: 0.5702 - ae_loss: 0.1606 - cnn_loss: 0.4096 - cnn_accuracy: 0.8665"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 2s - loss: 0.5702 - ae_loss: 0.1606 - cnn_loss: 0.4096 - cnn_accuracy: 0.8665"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 1s - loss: 0.5703 - ae_loss: 0.1606 - cnn_loss: 0.4097 - cnn_accuracy: 0.8665"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "190/438 [============>.................] - ETA: 1s - loss: 0.5704 - ae_loss: 0.1606 - cnn_loss: 0.4098 - cnn_accuracy: 0.8665"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 1s - loss: 0.5705 - ae_loss: 0.1605 - cnn_loss: 0.4100 - cnn_accuracy: 0.8665"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "204/438 [============>.................] - ETA: 1s - loss: 0.5706 - ae_loss: 0.1605 - cnn_loss: 0.4101 - cnn_accuracy: 0.8665"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "211/438 [=============>................] - ETA: 1s - loss: 0.5707 - ae_loss: 0.1605 - cnn_loss: 0.4102 - cnn_accuracy: 0.8665"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "218/438 [=============>................] - ETA: 1s - loss: 0.5707 - ae_loss: 0.1605 - cnn_loss: 0.4103 - cnn_accuracy: 0.8665"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 1s - loss: 0.5709 - ae_loss: 0.1604 - cnn_loss: 0.4104 - cnn_accuracy: 0.8664"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "232/438 [==============>...............] - ETA: 1s - loss: 0.5710 - ae_loss: 0.1604 - cnn_loss: 0.4106 - cnn_accuracy: 0.8664"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "239/438 [===============>..............] - ETA: 1s - loss: 0.5711 - ae_loss: 0.1604 - cnn_loss: 0.4107 - cnn_accuracy: 0.8664"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "246/438 [===============>..............] - ETA: 1s - loss: 0.5712 - ae_loss: 0.1604 - cnn_loss: 0.4108 - cnn_accuracy: 0.8664"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "253/438 [================>.............] - ETA: 1s - loss: 0.5712 - ae_loss: 0.1604 - cnn_loss: 0.4109 - cnn_accuracy: 0.8664"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "260/438 [================>.............] - ETA: 1s - loss: 0.5713 - ae_loss: 0.1603 - cnn_loss: 0.4109 - cnn_accuracy: 0.8664"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "267/438 [=================>............] - ETA: 1s - loss: 0.5713 - ae_loss: 0.1603 - cnn_loss: 0.4110 - cnn_accuracy: 0.8663"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "274/438 [=================>............] - ETA: 1s - loss: 0.5714 - ae_loss: 0.1603 - cnn_loss: 0.4111 - cnn_accuracy: 0.8663"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 1s - loss: 0.5715 - ae_loss: 0.1603 - cnn_loss: 0.4112 - cnn_accuracy: 0.8663"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "288/438 [==================>...........] - ETA: 1s - loss: 0.5716 - ae_loss: 0.1603 - cnn_loss: 0.4113 - cnn_accuracy: 0.8663"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "295/438 [===================>..........] - ETA: 1s - loss: 0.5716 - ae_loss: 0.1602 - cnn_loss: 0.4114 - cnn_accuracy: 0.8663"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "302/438 [===================>..........] - ETA: 1s - loss: 0.5717 - ae_loss: 0.1602 - cnn_loss: 0.4115 - cnn_accuracy: 0.8662"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "309/438 [====================>.........] - ETA: 1s - loss: 0.5718 - ae_loss: 0.1602 - cnn_loss: 0.4116 - cnn_accuracy: 0.8662"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "316/438 [====================>.........] - ETA: 0s - loss: 0.5719 - ae_loss: 0.1602 - cnn_loss: 0.4117 - cnn_accuracy: 0.8662"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "323/438 [=====================>........] - ETA: 0s - loss: 0.5719 - ae_loss: 0.1602 - cnn_loss: 0.4117 - cnn_accuracy: 0.8662"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "330/438 [=====================>........] - ETA: 0s - loss: 0.5720 - ae_loss: 0.1602 - cnn_loss: 0.4118 - cnn_accuracy: 0.8661"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "337/438 [======================>.......] - ETA: 0s - loss: 0.5721 - ae_loss: 0.1602 - cnn_loss: 0.4119 - cnn_accuracy: 0.8661"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "344/438 [======================>.......] - ETA: 0s - loss: 0.5721 - ae_loss: 0.1601 - cnn_loss: 0.4120 - cnn_accuracy: 0.8661"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "351/438 [=======================>......] - ETA: 0s - loss: 0.5722 - ae_loss: 0.1601 - cnn_loss: 0.4121 - cnn_accuracy: 0.8661"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "358/438 [=======================>......] - ETA: 0s - loss: 0.5723 - ae_loss: 0.1601 - cnn_loss: 0.4122 - cnn_accuracy: 0.8660"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "365/438 [========================>.....] - ETA: 0s - loss: 0.5724 - ae_loss: 0.1601 - cnn_loss: 0.4123 - cnn_accuracy: 0.8660"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "372/438 [========================>.....] - ETA: 0s - loss: 0.5725 - ae_loss: 0.1601 - cnn_loss: 0.4124 - cnn_accuracy: 0.8660"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "379/438 [========================>.....] - ETA: 0s - loss: 0.5726 - ae_loss: 0.1601 - cnn_loss: 0.4125 - cnn_accuracy: 0.8659"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "386/438 [=========================>....] - ETA: 0s - loss: 0.5726 - ae_loss: 0.1601 - cnn_loss: 0.4126 - cnn_accuracy: 0.8659"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "393/438 [=========================>....] - ETA: 0s - loss: 0.5727 - ae_loss: 0.1601 - cnn_loss: 0.4126 - cnn_accuracy: 0.8659"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "400/438 [==========================>...] - ETA: 0s - loss: 0.5727 - ae_loss: 0.1600 - cnn_loss: 0.4127 - cnn_accuracy: 0.8659"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "407/438 [==========================>...] - ETA: 0s - loss: 0.5727 - ae_loss: 0.1600 - cnn_loss: 0.4127 - cnn_accuracy: 0.8658"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "414/438 [===========================>..] - ETA: 0s - loss: 0.5728 - ae_loss: 0.1600 - cnn_loss: 0.4128 - cnn_accuracy: 0.8658"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "421/438 [===========================>..] - ETA: 0s - loss: 0.5728 - ae_loss: 0.1600 - cnn_loss: 0.4128 - cnn_accuracy: 0.8658"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "428/438 [============================>.] - ETA: 0s - loss: 0.5729 - ae_loss: 0.1600 - cnn_loss: 0.4129 - cnn_accuracy: 0.8658"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "435/438 [============================>.] - ETA: 0s - loss: 0.5730 - ae_loss: 0.1600 - cnn_loss: 0.4130 - cnn_accuracy: 0.8658"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.5730 - ae_loss: 0.1600 - cnn_loss: 0.4130 - cnn_accuracy: 0.8657 - val_loss: 0.5219 - val_ae_loss: 0.1578 - val_cnn_loss: 0.3641 - val_cnn_accuracy: 0.8791\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 7/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.7227 - ae_loss: 0.1550 - cnn_loss: 0.5677 - cnn_accuracy: 0.8359"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.6180 - ae_loss: 0.1555 - cnn_loss: 0.4625 - cnn_accuracy: 0.8679"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 0.5974 - ae_loss: 0.1567 - cnn_loss: 0.4406 - cnn_accuracy: 0.8680"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 22/438 [>.............................] - ETA: 3s - loss: 0.5884 - ae_loss: 0.1567 - cnn_loss: 0.4317 - cnn_accuracy: 0.8671"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 3s - loss: 0.5815 - ae_loss: 0.1567 - cnn_loss: 0.4248 - cnn_accuracy: 0.8675"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 36/438 [=>............................] - ETA: 3s - loss: 0.5766 - ae_loss: 0.1567 - cnn_loss: 0.4200 - cnn_accuracy: 0.8678"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.5727 - ae_loss: 0.1567 - cnn_loss: 0.4160 - cnn_accuracy: 0.8681"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 3s - loss: 0.5698 - ae_loss: 0.1568 - cnn_loss: 0.4131 - cnn_accuracy: 0.8684"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.5677 - ae_loss: 0.1568 - cnn_loss: 0.4110 - cnn_accuracy: 0.8687"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 64/438 [===>..........................] - ETA: 2s - loss: 0.5660 - ae_loss: 0.1568 - cnn_loss: 0.4092 - cnn_accuracy: 0.8688"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 2s - loss: 0.5646 - ae_loss: 0.1568 - cnn_loss: 0.4079 - cnn_accuracy: 0.8690"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 78/438 [====>.........................] - ETA: 2s - loss: 0.5632 - ae_loss: 0.1568 - cnn_loss: 0.4065 - cnn_accuracy: 0.8692"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.5620 - ae_loss: 0.1567 - cnn_loss: 0.4053 - cnn_accuracy: 0.8693"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 92/438 [=====>........................] - ETA: 2s - loss: 0.5610 - ae_loss: 0.1567 - cnn_loss: 0.4042 - cnn_accuracy: 0.8695"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.5602 - ae_loss: 0.1567 - cnn_loss: 0.4034 - cnn_accuracy: 0.8695"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.5595 - ae_loss: 0.1568 - cnn_loss: 0.4027 - cnn_accuracy: 0.8696"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 0.5587 - ae_loss: 0.1568 - cnn_loss: 0.4019 - cnn_accuracy: 0.8696"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "120/438 [=======>......................] - ETA: 2s - loss: 0.5581 - ae_loss: 0.1568 - cnn_loss: 0.4013 - cnn_accuracy: 0.8696"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "127/438 [=======>......................] - ETA: 2s - loss: 0.5575 - ae_loss: 0.1568 - cnn_loss: 0.4007 - cnn_accuracy: 0.8697"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "134/438 [========>.....................] - ETA: 2s - loss: 0.5571 - ae_loss: 0.1568 - cnn_loss: 0.4003 - cnn_accuracy: 0.8697"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "141/438 [========>.....................] - ETA: 2s - loss: 0.5569 - ae_loss: 0.1568 - cnn_loss: 0.4001 - cnn_accuracy: 0.8697"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "148/438 [=========>....................] - ETA: 2s - loss: 0.5567 - ae_loss: 0.1568 - cnn_loss: 0.3999 - cnn_accuracy: 0.8697"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 2s - loss: 0.5567 - ae_loss: 0.1568 - cnn_loss: 0.3999 - cnn_accuracy: 0.8696"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 2s - loss: 0.5566 - ae_loss: 0.1568 - cnn_loss: 0.3998 - cnn_accuracy: 0.8696"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 2s - loss: 0.5565 - ae_loss: 0.1568 - cnn_loss: 0.3996 - cnn_accuracy: 0.8696"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 2s - loss: 0.5563 - ae_loss: 0.1568 - cnn_loss: 0.3995 - cnn_accuracy: 0.8696"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 1s - loss: 0.5562 - ae_loss: 0.1568 - cnn_loss: 0.3993 - cnn_accuracy: 0.8696"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "190/438 [============>.................] - ETA: 1s - loss: 0.5560 - ae_loss: 0.1568 - cnn_loss: 0.3992 - cnn_accuracy: 0.8696"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 1s - loss: 0.5559 - ae_loss: 0.1568 - cnn_loss: 0.3991 - cnn_accuracy: 0.8696"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "204/438 [============>.................] - ETA: 1s - loss: 0.5558 - ae_loss: 0.1568 - cnn_loss: 0.3989 - cnn_accuracy: 0.8696"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "211/438 [=============>................] - ETA: 1s - loss: 0.5556 - ae_loss: 0.1568 - cnn_loss: 0.3988 - cnn_accuracy: 0.8696"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "218/438 [=============>................] - ETA: 1s - loss: 0.5555 - ae_loss: 0.1568 - cnn_loss: 0.3987 - cnn_accuracy: 0.8696"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 1s - loss: 0.5554 - ae_loss: 0.1568 - cnn_loss: 0.3986 - cnn_accuracy: 0.8696"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "232/438 [==============>...............] - ETA: 1s - loss: 0.5553 - ae_loss: 0.1568 - cnn_loss: 0.3984 - cnn_accuracy: 0.8696"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "239/438 [===============>..............] - ETA: 1s - loss: 0.5551 - ae_loss: 0.1568 - cnn_loss: 0.3983 - cnn_accuracy: 0.8696"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "246/438 [===============>..............] - ETA: 1s - loss: 0.5549 - ae_loss: 0.1568 - cnn_loss: 0.3981 - cnn_accuracy: 0.8697"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "253/438 [================>.............] - ETA: 1s - loss: 0.5548 - ae_loss: 0.1568 - cnn_loss: 0.3979 - cnn_accuracy: 0.8697"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "260/438 [================>.............] - ETA: 1s - loss: 0.5546 - ae_loss: 0.1568 - cnn_loss: 0.3978 - cnn_accuracy: 0.8697"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "267/438 [=================>............] - ETA: 1s - loss: 0.5545 - ae_loss: 0.1568 - cnn_loss: 0.3976 - cnn_accuracy: 0.8697"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "274/438 [=================>............] - ETA: 1s - loss: 0.5543 - ae_loss: 0.1568 - cnn_loss: 0.3975 - cnn_accuracy: 0.8697"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 1s - loss: 0.5542 - ae_loss: 0.1568 - cnn_loss: 0.3974 - cnn_accuracy: 0.8698"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "288/438 [==================>...........] - ETA: 1s - loss: 0.5541 - ae_loss: 0.1568 - cnn_loss: 0.3973 - cnn_accuracy: 0.8698"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "295/438 [===================>..........] - ETA: 1s - loss: 0.5540 - ae_loss: 0.1568 - cnn_loss: 0.3972 - cnn_accuracy: 0.8698"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "302/438 [===================>..........] - ETA: 1s - loss: 0.5539 - ae_loss: 0.1568 - cnn_loss: 0.3971 - cnn_accuracy: 0.8698"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "309/438 [====================>.........] - ETA: 1s - loss: 0.5538 - ae_loss: 0.1568 - cnn_loss: 0.3970 - cnn_accuracy: 0.8698"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "316/438 [====================>.........] - ETA: 0s - loss: 0.5538 - ae_loss: 0.1568 - cnn_loss: 0.3970 - cnn_accuracy: 0.8698"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "323/438 [=====================>........] - ETA: 0s - loss: 0.5537 - ae_loss: 0.1568 - cnn_loss: 0.3969 - cnn_accuracy: 0.8699"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "330/438 [=====================>........] - ETA: 0s - loss: 0.5537 - ae_loss: 0.1568 - cnn_loss: 0.3969 - cnn_accuracy: 0.8699"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "337/438 [======================>.......] - ETA: 0s - loss: 0.5536 - ae_loss: 0.1568 - cnn_loss: 0.3968 - cnn_accuracy: 0.8699"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "344/438 [======================>.......] - ETA: 0s - loss: 0.5536 - ae_loss: 0.1568 - cnn_loss: 0.3968 - cnn_accuracy: 0.8699"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "351/438 [=======================>......] - ETA: 0s - loss: 0.5536 - ae_loss: 0.1568 - cnn_loss: 0.3968 - cnn_accuracy: 0.8699"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "358/438 [=======================>......] - ETA: 0s - loss: 0.5536 - ae_loss: 0.1568 - cnn_loss: 0.3968 - cnn_accuracy: 0.8699"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "365/438 [========================>.....] - ETA: 0s - loss: 0.5536 - ae_loss: 0.1568 - cnn_loss: 0.3968 - cnn_accuracy: 0.8699"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "372/438 [========================>.....] - ETA: 0s - loss: 0.5536 - ae_loss: 0.1568 - cnn_loss: 0.3968 - cnn_accuracy: 0.8699"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "379/438 [========================>.....] - ETA: 0s - loss: 0.5537 - ae_loss: 0.1568 - cnn_loss: 0.3969 - cnn_accuracy: 0.8699"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "386/438 [=========================>....] - ETA: 0s - loss: 0.5537 - ae_loss: 0.1568 - cnn_loss: 0.3969 - cnn_accuracy: 0.8699"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "393/438 [=========================>....] - ETA: 0s - loss: 0.5537 - ae_loss: 0.1568 - cnn_loss: 0.3970 - cnn_accuracy: 0.8699"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "400/438 [==========================>...] - ETA: 0s - loss: 0.5538 - ae_loss: 0.1568 - cnn_loss: 0.3970 - cnn_accuracy: 0.8699"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "407/438 [==========================>...] - ETA: 0s - loss: 0.5539 - ae_loss: 0.1568 - cnn_loss: 0.3971 - cnn_accuracy: 0.8699"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "413/438 [===========================>..] - ETA: 0s - loss: 0.5539 - ae_loss: 0.1568 - cnn_loss: 0.3972 - cnn_accuracy: 0.8698"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "419/438 [===========================>..] - ETA: 0s - loss: 0.5540 - ae_loss: 0.1568 - cnn_loss: 0.3972 - cnn_accuracy: 0.8698"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "426/438 [============================>.] - ETA: 0s - loss: 0.5540 - ae_loss: 0.1568 - cnn_loss: 0.3973 - cnn_accuracy: 0.8698"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "433/438 [============================>.] - ETA: 0s - loss: 0.5541 - ae_loss: 0.1568 - cnn_loss: 0.3973 - cnn_accuracy: 0.8698"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.5541 - ae_loss: 0.1568 - cnn_loss: 0.3974 - cnn_accuracy: 0.8698 - val_loss: 0.5079 - val_ae_loss: 0.1566 - val_cnn_loss: 0.3514 - val_cnn_accuracy: 0.8851\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 8/30\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.5181 - ae_loss: 0.1444 - cnn_loss: 0.3736 - cnn_accuracy: 0.8672"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.5025 - ae_loss: 0.1477 - cnn_loss: 0.3548 - cnn_accuracy: 0.8758"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 14/438 [..............................] - ETA: 3s - loss: 0.5088 - ae_loss: 0.1492 - cnn_loss: 0.3596 - cnn_accuracy: 0.8763"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 21/438 [>.............................] - ETA: 3s - loss: 0.5156 - ae_loss: 0.1502 - cnn_loss: 0.3654 - cnn_accuracy: 0.8765"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 28/438 [>.............................] - ETA: 3s - loss: 0.5173 - ae_loss: 0.1508 - cnn_loss: 0.3664 - cnn_accuracy: 0.8775"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 35/438 [=>............................] - ETA: 3s - loss: 0.5180 - ae_loss: 0.1513 - cnn_loss: 0.3666 - cnn_accuracy: 0.8782"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 42/438 [=>............................] - ETA: 3s - loss: 0.5180 - ae_loss: 0.1517 - cnn_loss: 0.3663 - cnn_accuracy: 0.8785"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 49/438 [==>...........................] - ETA: 3s - loss: 0.5187 - ae_loss: 0.1521 - cnn_loss: 0.3666 - cnn_accuracy: 0.8786"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 56/438 [==>...........................] - ETA: 3s - loss: 0.5195 - ae_loss: 0.1524 - cnn_loss: 0.3671 - cnn_accuracy: 0.8784"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 63/438 [===>..........................] - ETA: 2s - loss: 0.5206 - ae_loss: 0.1526 - cnn_loss: 0.3679 - cnn_accuracy: 0.8782"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 70/438 [===>..........................] - ETA: 2s - loss: 0.5220 - ae_loss: 0.1528 - cnn_loss: 0.3691 - cnn_accuracy: 0.8780"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 77/438 [====>.........................] - ETA: 2s - loss: 0.5236 - ae_loss: 0.1530 - cnn_loss: 0.3705 - cnn_accuracy: 0.8777"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 84/438 [====>.........................] - ETA: 2s - loss: 0.5249 - ae_loss: 0.1531 - cnn_loss: 0.3718 - cnn_accuracy: 0.8774"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 90/438 [=====>........................] - ETA: 2s - loss: 0.5260 - ae_loss: 0.1532 - cnn_loss: 0.3728 - cnn_accuracy: 0.8772"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 97/438 [=====>........................] - ETA: 2s - loss: 0.5271 - ae_loss: 0.1533 - cnn_loss: 0.3738 - cnn_accuracy: 0.8769"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "104/438 [======>.......................] - ETA: 2s - loss: 0.5281 - ae_loss: 0.1534 - cnn_loss: 0.3747 - cnn_accuracy: 0.8767"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "111/438 [======>.......................] - ETA: 2s - loss: 0.5287 - ae_loss: 0.1534 - cnn_loss: 0.3753 - cnn_accuracy: 0.8766"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "118/438 [=======>......................] - ETA: 2s - loss: 0.5292 - ae_loss: 0.1535 - cnn_loss: 0.3757 - cnn_accuracy: 0.8765"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "125/438 [=======>......................] - ETA: 2s - loss: 0.5295 - ae_loss: 0.1535 - cnn_loss: 0.3760 - cnn_accuracy: 0.8764"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "132/438 [========>.....................] - ETA: 2s - loss: 0.5299 - ae_loss: 0.1536 - cnn_loss: 0.3763 - cnn_accuracy: 0.8763"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "139/438 [========>.....................] - ETA: 2s - loss: 0.5302 - ae_loss: 0.1536 - cnn_loss: 0.3766 - cnn_accuracy: 0.8762"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "146/438 [=========>....................] - ETA: 2s - loss: 0.5305 - ae_loss: 0.1536 - cnn_loss: 0.3769 - cnn_accuracy: 0.8762"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "153/438 [=========>....................] - ETA: 2s - loss: 0.5308 - ae_loss: 0.1536 - cnn_loss: 0.3772 - cnn_accuracy: 0.8761"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "160/438 [=========>....................] - ETA: 2s - loss: 0.5312 - ae_loss: 0.1537 - cnn_loss: 0.3775 - cnn_accuracy: 0.8760"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "167/438 [==========>...................] - ETA: 2s - loss: 0.5315 - ae_loss: 0.1537 - cnn_loss: 0.3779 - cnn_accuracy: 0.8759"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "174/438 [==========>...................] - ETA: 2s - loss: 0.5318 - ae_loss: 0.1537 - cnn_loss: 0.3781 - cnn_accuracy: 0.8758"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "181/438 [===========>..................] - ETA: 2s - loss: 0.5321 - ae_loss: 0.1537 - cnn_loss: 0.3783 - cnn_accuracy: 0.8758"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "188/438 [===========>..................] - ETA: 1s - loss: 0.5323 - ae_loss: 0.1538 - cnn_loss: 0.3785 - cnn_accuracy: 0.8757"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "195/438 [============>.................] - ETA: 1s - loss: 0.5325 - ae_loss: 0.1538 - cnn_loss: 0.3787 - cnn_accuracy: 0.8757"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "202/438 [============>.................] - ETA: 1s - loss: 0.5326 - ae_loss: 0.1538 - cnn_loss: 0.3788 - cnn_accuracy: 0.8756"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "209/438 [=============>................] - ETA: 1s - loss: 0.5327 - ae_loss: 0.1538 - cnn_loss: 0.3789 - cnn_accuracy: 0.8756"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "216/438 [=============>................] - ETA: 1s - loss: 0.5329 - ae_loss: 0.1539 - cnn_loss: 0.3790 - cnn_accuracy: 0.8756"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "223/438 [==============>...............] - ETA: 1s - loss: 0.5330 - ae_loss: 0.1539 - cnn_loss: 0.3791 - cnn_accuracy: 0.8755"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "230/438 [==============>...............] - ETA: 1s - loss: 0.5332 - ae_loss: 0.1539 - cnn_loss: 0.3793 - cnn_accuracy: 0.8755"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "237/438 [===============>..............] - ETA: 1s - loss: 0.5334 - ae_loss: 0.1539 - cnn_loss: 0.3795 - cnn_accuracy: 0.8754"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "244/438 [===============>..............] - ETA: 1s - loss: 0.5336 - ae_loss: 0.1539 - cnn_loss: 0.3796 - cnn_accuracy: 0.8754"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "251/438 [================>.............] - ETA: 1s - loss: 0.5337 - ae_loss: 0.1539 - cnn_loss: 0.3798 - cnn_accuracy: 0.8753"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "258/438 [================>.............] - ETA: 1s - loss: 0.5340 - ae_loss: 0.1540 - cnn_loss: 0.3800 - cnn_accuracy: 0.8752"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "265/438 [=================>............] - ETA: 1s - loss: 0.5342 - ae_loss: 0.1540 - cnn_loss: 0.3802 - cnn_accuracy: 0.8752"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "272/438 [=================>............] - ETA: 1s - loss: 0.5344 - ae_loss: 0.1540 - cnn_loss: 0.3804 - cnn_accuracy: 0.8751"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "279/438 [==================>...........] - ETA: 1s - loss: 0.5346 - ae_loss: 0.1540 - cnn_loss: 0.3806 - cnn_accuracy: 0.8750"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "286/438 [==================>...........] - ETA: 1s - loss: 0.5349 - ae_loss: 0.1540 - cnn_loss: 0.3809 - cnn_accuracy: 0.8749"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "293/438 [===================>..........] - ETA: 1s - loss: 0.5351 - ae_loss: 0.1540 - cnn_loss: 0.3811 - cnn_accuracy: 0.8748"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "300/438 [===================>..........] - ETA: 1s - loss: 0.5354 - ae_loss: 0.1540 - cnn_loss: 0.3813 - cnn_accuracy: 0.8747"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "307/438 [====================>.........] - ETA: 1s - loss: 0.5356 - ae_loss: 0.1541 - cnn_loss: 0.3816 - cnn_accuracy: 0.8746"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "314/438 [====================>.........] - ETA: 0s - loss: 0.5359 - ae_loss: 0.1541 - cnn_loss: 0.3818 - cnn_accuracy: 0.8746"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "321/438 [====================>.........] - ETA: 0s - loss: 0.5361 - ae_loss: 0.1541 - cnn_loss: 0.3820 - cnn_accuracy: 0.8745"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "328/438 [=====================>........] - ETA: 0s - loss: 0.5363 - ae_loss: 0.1541 - cnn_loss: 0.3822 - cnn_accuracy: 0.8744"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "335/438 [=====================>........] - ETA: 0s - loss: 0.5365 - ae_loss: 0.1541 - cnn_loss: 0.3824 - cnn_accuracy: 0.8743"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "342/438 [======================>.......] - ETA: 0s - loss: 0.5367 - ae_loss: 0.1541 - cnn_loss: 0.3826 - cnn_accuracy: 0.8743"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "349/438 [======================>.......] - ETA: 0s - loss: 0.5369 - ae_loss: 0.1542 - cnn_loss: 0.3827 - cnn_accuracy: 0.8742"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "356/438 [=======================>......] - ETA: 0s - loss: 0.5371 - ae_loss: 0.1542 - cnn_loss: 0.3829 - cnn_accuracy: 0.8741"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "363/438 [=======================>......] - ETA: 0s - loss: 0.5373 - ae_loss: 0.1542 - cnn_loss: 0.3831 - cnn_accuracy: 0.8741"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "370/438 [========================>.....] - ETA: 0s - loss: 0.5374 - ae_loss: 0.1542 - cnn_loss: 0.3833 - cnn_accuracy: 0.8740"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "377/438 [========================>.....] - ETA: 0s - loss: 0.5376 - ae_loss: 0.1542 - cnn_loss: 0.3834 - cnn_accuracy: 0.8740"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "384/438 [=========================>....] - ETA: 0s - loss: 0.5378 - ae_loss: 0.1542 - cnn_loss: 0.3835 - cnn_accuracy: 0.8739"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "391/438 [=========================>....] - ETA: 0s - loss: 0.5379 - ae_loss: 0.1542 - cnn_loss: 0.3837 - cnn_accuracy: 0.8739"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "398/438 [==========================>...] - ETA: 0s - loss: 0.5380 - ae_loss: 0.1542 - cnn_loss: 0.3838 - cnn_accuracy: 0.8738"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "405/438 [==========================>...] - ETA: 0s - loss: 0.5382 - ae_loss: 0.1542 - cnn_loss: 0.3839 - cnn_accuracy: 0.8738"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "412/438 [===========================>..] - ETA: 0s - loss: 0.5383 - ae_loss: 0.1542 - cnn_loss: 0.3840 - cnn_accuracy: 0.8738"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "419/438 [===========================>..] - ETA: 0s - loss: 0.5384 - ae_loss: 0.1542 - cnn_loss: 0.3841 - cnn_accuracy: 0.8737"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "426/438 [============================>.] - ETA: 0s - loss: 0.5385 - ae_loss: 0.1543 - cnn_loss: 0.3842 - cnn_accuracy: 0.8737"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "433/438 [============================>.] - ETA: 0s - loss: 0.5386 - ae_loss: 0.1543 - cnn_loss: 0.3843 - cnn_accuracy: 0.8737"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.5387 - ae_loss: 0.1543 - cnn_loss: 0.3844 - cnn_accuracy: 0.8737 - val_loss: 0.5048 - val_ae_loss: 0.1610 - val_cnn_loss: 0.3437 - val_cnn_accuracy: 0.8882\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 9/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.5073 - ae_loss: 0.1601 - cnn_loss: 0.3472 - cnn_accuracy: 0.8828"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.5440 - ae_loss: 0.1573 - cnn_loss: 0.3867 - cnn_accuracy: 0.8654"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 0.5291 - ae_loss: 0.1557 - cnn_loss: 0.3735 - cnn_accuracy: 0.8663"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 22/438 [>.............................] - ETA: 3s - loss: 0.5228 - ae_loss: 0.1551 - cnn_loss: 0.3677 - cnn_accuracy: 0.8686"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 3s - loss: 0.5188 - ae_loss: 0.1548 - cnn_loss: 0.3640 - cnn_accuracy: 0.8704"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 36/438 [=>............................] - ETA: 3s - loss: 0.5167 - ae_loss: 0.1546 - cnn_loss: 0.3621 - cnn_accuracy: 0.8720"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.5159 - ae_loss: 0.1543 - cnn_loss: 0.3616 - cnn_accuracy: 0.8733"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 3s - loss: 0.5164 - ae_loss: 0.1541 - cnn_loss: 0.3622 - cnn_accuracy: 0.8743"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.5163 - ae_loss: 0.1540 - cnn_loss: 0.3624 - cnn_accuracy: 0.8753"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 64/438 [===>..........................] - ETA: 2s - loss: 0.5172 - ae_loss: 0.1539 - cnn_loss: 0.3633 - cnn_accuracy: 0.8758"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 2s - loss: 0.5187 - ae_loss: 0.1538 - cnn_loss: 0.3649 - cnn_accuracy: 0.8761"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 78/438 [====>.........................] - ETA: 2s - loss: 0.5201 - ae_loss: 0.1538 - cnn_loss: 0.3663 - cnn_accuracy: 0.8763"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.5213 - ae_loss: 0.1537 - cnn_loss: 0.3675 - cnn_accuracy: 0.8766"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 92/438 [=====>........................] - ETA: 2s - loss: 0.5221 - ae_loss: 0.1537 - cnn_loss: 0.3684 - cnn_accuracy: 0.8768"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.5227 - ae_loss: 0.1537 - cnn_loss: 0.3690 - cnn_accuracy: 0.8769"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.5232 - ae_loss: 0.1537 - cnn_loss: 0.3695 - cnn_accuracy: 0.8771"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 0.5237 - ae_loss: 0.1537 - cnn_loss: 0.3700 - cnn_accuracy: 0.8772"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "120/438 [=======>......................] - ETA: 2s - loss: 0.5241 - ae_loss: 0.1536 - cnn_loss: 0.3705 - cnn_accuracy: 0.8773"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "127/438 [=======>......................] - ETA: 2s - loss: 0.5244 - ae_loss: 0.1536 - cnn_loss: 0.3708 - cnn_accuracy: 0.8774"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "134/438 [========>.....................] - ETA: 2s - loss: 0.5246 - ae_loss: 0.1536 - cnn_loss: 0.3710 - cnn_accuracy: 0.8775"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "141/438 [========>.....................] - ETA: 2s - loss: 0.5248 - ae_loss: 0.1536 - cnn_loss: 0.3712 - cnn_accuracy: 0.8775"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "148/438 [=========>....................] - ETA: 2s - loss: 0.5249 - ae_loss: 0.1536 - cnn_loss: 0.3714 - cnn_accuracy: 0.8776"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 2s - loss: 0.5251 - ae_loss: 0.1535 - cnn_loss: 0.3716 - cnn_accuracy: 0.8776"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 2s - loss: 0.5253 - ae_loss: 0.1535 - cnn_loss: 0.3718 - cnn_accuracy: 0.8776"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 2s - loss: 0.5255 - ae_loss: 0.1535 - cnn_loss: 0.3720 - cnn_accuracy: 0.8776"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 2s - loss: 0.5256 - ae_loss: 0.1535 - cnn_loss: 0.3721 - cnn_accuracy: 0.8776"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 1s - loss: 0.5258 - ae_loss: 0.1535 - cnn_loss: 0.3723 - cnn_accuracy: 0.8776"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "190/438 [============>.................] - ETA: 1s - loss: 0.5260 - ae_loss: 0.1535 - cnn_loss: 0.3725 - cnn_accuracy: 0.8776"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 1s - loss: 0.5261 - ae_loss: 0.1535 - cnn_loss: 0.3727 - cnn_accuracy: 0.8776"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "204/438 [============>.................] - ETA: 1s - loss: 0.5263 - ae_loss: 0.1534 - cnn_loss: 0.3729 - cnn_accuracy: 0.8776"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "211/438 [=============>................] - ETA: 1s - loss: 0.5265 - ae_loss: 0.1534 - cnn_loss: 0.3731 - cnn_accuracy: 0.8775"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "218/438 [=============>................] - ETA: 1s - loss: 0.5267 - ae_loss: 0.1534 - cnn_loss: 0.3733 - cnn_accuracy: 0.8775"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 1s - loss: 0.5269 - ae_loss: 0.1534 - cnn_loss: 0.3735 - cnn_accuracy: 0.8775"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "232/438 [==============>...............] - ETA: 1s - loss: 0.5270 - ae_loss: 0.1534 - cnn_loss: 0.3737 - cnn_accuracy: 0.8774"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "239/438 [===============>..............] - ETA: 1s - loss: 0.5272 - ae_loss: 0.1534 - cnn_loss: 0.3738 - cnn_accuracy: 0.8774"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "246/438 [===============>..............] - ETA: 1s - loss: 0.5273 - ae_loss: 0.1534 - cnn_loss: 0.3739 - cnn_accuracy: 0.8774"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "253/438 [================>.............] - ETA: 1s - loss: 0.5275 - ae_loss: 0.1534 - cnn_loss: 0.3741 - cnn_accuracy: 0.8774"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "260/438 [================>.............] - ETA: 1s - loss: 0.5276 - ae_loss: 0.1534 - cnn_loss: 0.3742 - cnn_accuracy: 0.8773"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "267/438 [=================>............] - ETA: 1s - loss: 0.5278 - ae_loss: 0.1533 - cnn_loss: 0.3744 - cnn_accuracy: 0.8773"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "274/438 [=================>............] - ETA: 1s - loss: 0.5279 - ae_loss: 0.1533 - cnn_loss: 0.3746 - cnn_accuracy: 0.8773"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 1s - loss: 0.5281 - ae_loss: 0.1533 - cnn_loss: 0.3747 - cnn_accuracy: 0.8772"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "288/438 [==================>...........] - ETA: 1s - loss: 0.5282 - ae_loss: 0.1533 - cnn_loss: 0.3749 - cnn_accuracy: 0.8772"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "295/438 [===================>..........] - ETA: 1s - loss: 0.5284 - ae_loss: 0.1533 - cnn_loss: 0.3751 - cnn_accuracy: 0.8772"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "301/438 [===================>..........] - ETA: 1s - loss: 0.5285 - ae_loss: 0.1533 - cnn_loss: 0.3752 - cnn_accuracy: 0.8771"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "307/438 [====================>.........] - ETA: 1s - loss: 0.5287 - ae_loss: 0.1533 - cnn_loss: 0.3753 - cnn_accuracy: 0.8771"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "313/438 [====================>.........] - ETA: 0s - loss: 0.5288 - ae_loss: 0.1533 - cnn_loss: 0.3755 - cnn_accuracy: 0.8771"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "319/438 [====================>.........] - ETA: 0s - loss: 0.5289 - ae_loss: 0.1533 - cnn_loss: 0.3756 - cnn_accuracy: 0.8771"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "325/438 [=====================>........] - ETA: 0s - loss: 0.5289 - ae_loss: 0.1533 - cnn_loss: 0.3756 - cnn_accuracy: 0.8771"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "331/438 [=====================>........] - ETA: 0s - loss: 0.5290 - ae_loss: 0.1533 - cnn_loss: 0.3757 - cnn_accuracy: 0.8770"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "337/438 [======================>.......] - ETA: 0s - loss: 0.5291 - ae_loss: 0.1533 - cnn_loss: 0.3758 - cnn_accuracy: 0.8770"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "343/438 [======================>.......] - ETA: 0s - loss: 0.5292 - ae_loss: 0.1533 - cnn_loss: 0.3759 - cnn_accuracy: 0.8770"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "349/438 [======================>.......] - ETA: 0s - loss: 0.5293 - ae_loss: 0.1533 - cnn_loss: 0.3760 - cnn_accuracy: 0.8770"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "355/438 [=======================>......] - ETA: 0s - loss: 0.5294 - ae_loss: 0.1533 - cnn_loss: 0.3761 - cnn_accuracy: 0.8770"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "361/438 [=======================>......] - ETA: 0s - loss: 0.5295 - ae_loss: 0.1533 - cnn_loss: 0.3762 - cnn_accuracy: 0.8770"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "367/438 [========================>.....] - ETA: 0s - loss: 0.5295 - ae_loss: 0.1533 - cnn_loss: 0.3763 - cnn_accuracy: 0.8770"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "374/438 [========================>.....] - ETA: 0s - loss: 0.5296 - ae_loss: 0.1533 - cnn_loss: 0.3763 - cnn_accuracy: 0.8769"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "381/438 [=========================>....] - ETA: 0s - loss: 0.5297 - ae_loss: 0.1533 - cnn_loss: 0.3764 - cnn_accuracy: 0.8769"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "388/438 [=========================>....] - ETA: 0s - loss: 0.5298 - ae_loss: 0.1533 - cnn_loss: 0.3765 - cnn_accuracy: 0.8769"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "395/438 [==========================>...] - ETA: 0s - loss: 0.5298 - ae_loss: 0.1533 - cnn_loss: 0.3766 - cnn_accuracy: 0.8769"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "402/438 [==========================>...] - ETA: 0s - loss: 0.5299 - ae_loss: 0.1533 - cnn_loss: 0.3766 - cnn_accuracy: 0.8769"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "409/438 [===========================>..] - ETA: 0s - loss: 0.5299 - ae_loss: 0.1533 - cnn_loss: 0.3767 - cnn_accuracy: 0.8769"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "416/438 [===========================>..] - ETA: 0s - loss: 0.5300 - ae_loss: 0.1533 - cnn_loss: 0.3767 - cnn_accuracy: 0.8768"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "423/438 [===========================>..] - ETA: 0s - loss: 0.5301 - ae_loss: 0.1533 - cnn_loss: 0.3768 - cnn_accuracy: 0.8768"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "430/438 [============================>.] - ETA: 0s - loss: 0.5301 - ae_loss: 0.1533 - cnn_loss: 0.3769 - cnn_accuracy: 0.8768"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "437/438 [============================>.] - ETA: 0s - loss: 0.5302 - ae_loss: 0.1533 - cnn_loss: 0.3769 - cnn_accuracy: 0.8768"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.5302 - ae_loss: 0.1533 - cnn_loss: 0.3769 - cnn_accuracy: 0.8768 - val_loss: 0.4798 - val_ae_loss: 0.1539 - val_cnn_loss: 0.3259 - val_cnn_accuracy: 0.8928\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 10/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.5939 - ae_loss: 0.1446 - cnn_loss: 0.4493 - cnn_accuracy: 0.8594"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.5102 - ae_loss: 0.1503 - cnn_loss: 0.3599 - cnn_accuracy: 0.8795"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 0.4971 - ae_loss: 0.1507 - cnn_loss: 0.3464 - cnn_accuracy: 0.8839"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 22/438 [>.............................] - ETA: 3s - loss: 0.4951 - ae_loss: 0.1508 - cnn_loss: 0.3444 - cnn_accuracy: 0.8846"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 3s - loss: 0.4970 - ae_loss: 0.1508 - cnn_loss: 0.3462 - cnn_accuracy: 0.8839"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 36/438 [=>............................] - ETA: 3s - loss: 0.4986 - ae_loss: 0.1509 - cnn_loss: 0.3477 - cnn_accuracy: 0.8835"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.4993 - ae_loss: 0.1509 - cnn_loss: 0.3484 - cnn_accuracy: 0.8833"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 3s - loss: 0.5000 - ae_loss: 0.1509 - cnn_loss: 0.3491 - cnn_accuracy: 0.8833"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.5007 - ae_loss: 0.1509 - cnn_loss: 0.3498 - cnn_accuracy: 0.8833"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 64/438 [===>..........................] - ETA: 2s - loss: 0.5012 - ae_loss: 0.1509 - cnn_loss: 0.3503 - cnn_accuracy: 0.8834"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 2s - loss: 0.5017 - ae_loss: 0.1509 - cnn_loss: 0.3508 - cnn_accuracy: 0.8835"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 78/438 [====>.........................] - ETA: 2s - loss: 0.5021 - ae_loss: 0.1510 - cnn_loss: 0.3511 - cnn_accuracy: 0.8835"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.5025 - ae_loss: 0.1510 - cnn_loss: 0.3515 - cnn_accuracy: 0.8836"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 92/438 [=====>........................] - ETA: 2s - loss: 0.5030 - ae_loss: 0.1510 - cnn_loss: 0.3520 - cnn_accuracy: 0.8836"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.5038 - ae_loss: 0.1510 - cnn_loss: 0.3528 - cnn_accuracy: 0.8835"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.5046 - ae_loss: 0.1511 - cnn_loss: 0.3535 - cnn_accuracy: 0.8833"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 0.5052 - ae_loss: 0.1511 - cnn_loss: 0.3541 - cnn_accuracy: 0.8832"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "120/438 [=======>......................] - ETA: 2s - loss: 0.5058 - ae_loss: 0.1511 - cnn_loss: 0.3547 - cnn_accuracy: 0.8830"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "127/438 [=======>......................] - ETA: 2s - loss: 0.5063 - ae_loss: 0.1512 - cnn_loss: 0.3552 - cnn_accuracy: 0.8830"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "134/438 [========>.....................] - ETA: 2s - loss: 0.5068 - ae_loss: 0.1512 - cnn_loss: 0.3556 - cnn_accuracy: 0.8828"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "141/438 [========>.....................] - ETA: 2s - loss: 0.5073 - ae_loss: 0.1512 - cnn_loss: 0.3561 - cnn_accuracy: 0.8827"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "148/438 [=========>....................] - ETA: 2s - loss: 0.5077 - ae_loss: 0.1512 - cnn_loss: 0.3565 - cnn_accuracy: 0.8827"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 2s - loss: 0.5080 - ae_loss: 0.1512 - cnn_loss: 0.3568 - cnn_accuracy: 0.8826"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 2s - loss: 0.5084 - ae_loss: 0.1513 - cnn_loss: 0.3571 - cnn_accuracy: 0.8825"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 2s - loss: 0.5086 - ae_loss: 0.1513 - cnn_loss: 0.3573 - cnn_accuracy: 0.8825"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 2s - loss: 0.5088 - ae_loss: 0.1513 - cnn_loss: 0.3575 - cnn_accuracy: 0.8824"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 1s - loss: 0.5090 - ae_loss: 0.1513 - cnn_loss: 0.3577 - cnn_accuracy: 0.8824"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "190/438 [============>.................] - ETA: 1s - loss: 0.5091 - ae_loss: 0.1513 - cnn_loss: 0.3578 - cnn_accuracy: 0.8823"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 1s - loss: 0.5093 - ae_loss: 0.1513 - cnn_loss: 0.3580 - cnn_accuracy: 0.8823"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "204/438 [============>.................] - ETA: 1s - loss: 0.5095 - ae_loss: 0.1513 - cnn_loss: 0.3581 - cnn_accuracy: 0.8823"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "211/438 [=============>................] - ETA: 1s - loss: 0.5096 - ae_loss: 0.1513 - cnn_loss: 0.3583 - cnn_accuracy: 0.8822"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "217/438 [=============>................] - ETA: 1s - loss: 0.5097 - ae_loss: 0.1513 - cnn_loss: 0.3584 - cnn_accuracy: 0.8822"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "223/438 [==============>...............] - ETA: 1s - loss: 0.5099 - ae_loss: 0.1514 - cnn_loss: 0.3585 - cnn_accuracy: 0.8822"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "229/438 [==============>...............] - ETA: 1s - loss: 0.5099 - ae_loss: 0.1514 - cnn_loss: 0.3586 - cnn_accuracy: 0.8822"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "235/438 [===============>..............] - ETA: 1s - loss: 0.5100 - ae_loss: 0.1514 - cnn_loss: 0.3587 - cnn_accuracy: 0.8822"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "241/438 [===============>..............] - ETA: 1s - loss: 0.5101 - ae_loss: 0.1514 - cnn_loss: 0.3587 - cnn_accuracy: 0.8822"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "247/438 [===============>..............] - ETA: 1s - loss: 0.5102 - ae_loss: 0.1514 - cnn_loss: 0.3588 - cnn_accuracy: 0.8822"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "253/438 [================>.............] - ETA: 1s - loss: 0.5102 - ae_loss: 0.1514 - cnn_loss: 0.3588 - cnn_accuracy: 0.8821"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "259/438 [================>.............] - ETA: 1s - loss: 0.5103 - ae_loss: 0.1514 - cnn_loss: 0.3589 - cnn_accuracy: 0.8821"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "265/438 [=================>............] - ETA: 1s - loss: 0.5104 - ae_loss: 0.1514 - cnn_loss: 0.3590 - cnn_accuracy: 0.8821"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "271/438 [=================>............] - ETA: 1s - loss: 0.5106 - ae_loss: 0.1514 - cnn_loss: 0.3591 - cnn_accuracy: 0.8821"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "277/438 [=================>............] - ETA: 1s - loss: 0.5107 - ae_loss: 0.1514 - cnn_loss: 0.3593 - cnn_accuracy: 0.8820"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "283/438 [==================>...........] - ETA: 1s - loss: 0.5108 - ae_loss: 0.1514 - cnn_loss: 0.3594 - cnn_accuracy: 0.8820"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "289/438 [==================>...........] - ETA: 1s - loss: 0.5110 - ae_loss: 0.1514 - cnn_loss: 0.3595 - cnn_accuracy: 0.8819"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "295/438 [===================>..........] - ETA: 1s - loss: 0.5111 - ae_loss: 0.1515 - cnn_loss: 0.3597 - cnn_accuracy: 0.8819"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "301/438 [===================>..........] - ETA: 1s - loss: 0.5112 - ae_loss: 0.1515 - cnn_loss: 0.3598 - cnn_accuracy: 0.8818"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "307/438 [====================>.........] - ETA: 1s - loss: 0.5114 - ae_loss: 0.1515 - cnn_loss: 0.3599 - cnn_accuracy: 0.8818"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "313/438 [====================>.........] - ETA: 1s - loss: 0.5115 - ae_loss: 0.1515 - cnn_loss: 0.3600 - cnn_accuracy: 0.8818"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "319/438 [====================>.........] - ETA: 0s - loss: 0.5116 - ae_loss: 0.1515 - cnn_loss: 0.3601 - cnn_accuracy: 0.8817"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "326/438 [=====================>........] - ETA: 0s - loss: 0.5117 - ae_loss: 0.1515 - cnn_loss: 0.3602 - cnn_accuracy: 0.8817"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "333/438 [=====================>........] - ETA: 0s - loss: 0.5118 - ae_loss: 0.1515 - cnn_loss: 0.3603 - cnn_accuracy: 0.8817"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "340/438 [======================>.......] - ETA: 0s - loss: 0.5119 - ae_loss: 0.1515 - cnn_loss: 0.3604 - cnn_accuracy: 0.8816"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "347/438 [======================>.......] - ETA: 0s - loss: 0.5120 - ae_loss: 0.1515 - cnn_loss: 0.3605 - cnn_accuracy: 0.8816"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "354/438 [=======================>......] - ETA: 0s - loss: 0.5121 - ae_loss: 0.1515 - cnn_loss: 0.3606 - cnn_accuracy: 0.8815"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "361/438 [=======================>......] - ETA: 0s - loss: 0.5122 - ae_loss: 0.1515 - cnn_loss: 0.3607 - cnn_accuracy: 0.8815"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "368/438 [========================>.....] - ETA: 0s - loss: 0.5124 - ae_loss: 0.1515 - cnn_loss: 0.3608 - cnn_accuracy: 0.8815"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "375/438 [========================>.....] - ETA: 0s - loss: 0.5125 - ae_loss: 0.1515 - cnn_loss: 0.3610 - cnn_accuracy: 0.8814"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "382/438 [=========================>....] - ETA: 0s - loss: 0.5126 - ae_loss: 0.1516 - cnn_loss: 0.3611 - cnn_accuracy: 0.8814"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "389/438 [=========================>....] - ETA: 0s - loss: 0.5127 - ae_loss: 0.1516 - cnn_loss: 0.3612 - cnn_accuracy: 0.8814"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "396/438 [==========================>...] - ETA: 0s - loss: 0.5129 - ae_loss: 0.1516 - cnn_loss: 0.3613 - cnn_accuracy: 0.8813"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "403/438 [==========================>...] - ETA: 0s - loss: 0.5130 - ae_loss: 0.1516 - cnn_loss: 0.3614 - cnn_accuracy: 0.8813"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "410/438 [===========================>..] - ETA: 0s - loss: 0.5130 - ae_loss: 0.1516 - cnn_loss: 0.3615 - cnn_accuracy: 0.8813"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "417/438 [===========================>..] - ETA: 0s - loss: 0.5131 - ae_loss: 0.1516 - cnn_loss: 0.3616 - cnn_accuracy: 0.8812"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "424/438 [============================>.] - ETA: 0s - loss: 0.5132 - ae_loss: 0.1516 - cnn_loss: 0.3617 - cnn_accuracy: 0.8812"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "431/438 [============================>.] - ETA: 0s - loss: 0.5133 - ae_loss: 0.1516 - cnn_loss: 0.3618 - cnn_accuracy: 0.8812"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - ETA: 0s - loss: 0.5134 - ae_loss: 0.1516 - cnn_loss: 0.3618 - cnn_accuracy: 0.8812"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.5134 - ae_loss: 0.1516 - cnn_loss: 0.3619 - cnn_accuracy: 0.8812 - val_loss: 0.4913 - val_ae_loss: 0.1549 - val_cnn_loss: 0.3364 - val_cnn_accuracy: 0.8875\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 11/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.4567 - ae_loss: 0.1536 - cnn_loss: 0.3031 - cnn_accuracy: 0.9141"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  7/438 [..............................] - ETA: 3s - loss: 0.4937 - ae_loss: 0.1518 - cnn_loss: 0.3419 - cnn_accuracy: 0.8944"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 13/438 [..............................] - ETA: 3s - loss: 0.4962 - ae_loss: 0.1517 - cnn_loss: 0.3445 - cnn_accuracy: 0.8889"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 19/438 [>.............................] - ETA: 3s - loss: 0.4995 - ae_loss: 0.1517 - cnn_loss: 0.3478 - cnn_accuracy: 0.8866"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 3s - loss: 0.5000 - ae_loss: 0.1516 - cnn_loss: 0.3484 - cnn_accuracy: 0.8859"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 31/438 [=>............................] - ETA: 3s - loss: 0.5014 - ae_loss: 0.1516 - cnn_loss: 0.3498 - cnn_accuracy: 0.8853"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 37/438 [=>............................] - ETA: 3s - loss: 0.5018 - ae_loss: 0.1515 - cnn_loss: 0.3503 - cnn_accuracy: 0.8847"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.5021 - ae_loss: 0.1515 - cnn_loss: 0.3506 - cnn_accuracy: 0.8844"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 49/438 [==>...........................] - ETA: 3s - loss: 0.5023 - ae_loss: 0.1514 - cnn_loss: 0.3508 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 56/438 [==>...........................] - ETA: 3s - loss: 0.5022 - ae_loss: 0.1514 - cnn_loss: 0.3508 - cnn_accuracy: 0.8838"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 63/438 [===>..........................] - ETA: 3s - loss: 0.5020 - ae_loss: 0.1513 - cnn_loss: 0.3507 - cnn_accuracy: 0.8836"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 70/438 [===>..........................] - ETA: 3s - loss: 0.5019 - ae_loss: 0.1513 - cnn_loss: 0.3506 - cnn_accuracy: 0.8836"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 77/438 [====>.........................] - ETA: 2s - loss: 0.5014 - ae_loss: 0.1513 - cnn_loss: 0.3501 - cnn_accuracy: 0.8837"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 84/438 [====>.........................] - ETA: 2s - loss: 0.5013 - ae_loss: 0.1513 - cnn_loss: 0.3500 - cnn_accuracy: 0.8838"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 91/438 [=====>........................] - ETA: 2s - loss: 0.5014 - ae_loss: 0.1513 - cnn_loss: 0.3502 - cnn_accuracy: 0.8838"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 98/438 [=====>........................] - ETA: 2s - loss: 0.5019 - ae_loss: 0.1513 - cnn_loss: 0.3506 - cnn_accuracy: 0.8836"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "105/438 [======>.......................] - ETA: 2s - loss: 0.5024 - ae_loss: 0.1512 - cnn_loss: 0.3511 - cnn_accuracy: 0.8835"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "112/438 [======>.......................] - ETA: 2s - loss: 0.5028 - ae_loss: 0.1512 - cnn_loss: 0.3516 - cnn_accuracy: 0.8833"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "119/438 [=======>......................] - ETA: 2s - loss: 0.5032 - ae_loss: 0.1512 - cnn_loss: 0.3520 - cnn_accuracy: 0.8832"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "126/438 [=======>......................] - ETA: 2s - loss: 0.5037 - ae_loss: 0.1512 - cnn_loss: 0.3525 - cnn_accuracy: 0.8831"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "133/438 [========>.....................] - ETA: 2s - loss: 0.5040 - ae_loss: 0.1512 - cnn_loss: 0.3529 - cnn_accuracy: 0.8830"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "140/438 [========>.....................] - ETA: 2s - loss: 0.5044 - ae_loss: 0.1512 - cnn_loss: 0.3532 - cnn_accuracy: 0.8829"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "147/438 [=========>....................] - ETA: 2s - loss: 0.5047 - ae_loss: 0.1512 - cnn_loss: 0.3535 - cnn_accuracy: 0.8828"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "154/438 [=========>....................] - ETA: 2s - loss: 0.5049 - ae_loss: 0.1512 - cnn_loss: 0.3537 - cnn_accuracy: 0.8827"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "161/438 [==========>...................] - ETA: 2s - loss: 0.5050 - ae_loss: 0.1512 - cnn_loss: 0.3538 - cnn_accuracy: 0.8826"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "168/438 [==========>...................] - ETA: 2s - loss: 0.5051 - ae_loss: 0.1511 - cnn_loss: 0.3539 - cnn_accuracy: 0.8826"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "175/438 [==========>...................] - ETA: 2s - loss: 0.5052 - ae_loss: 0.1511 - cnn_loss: 0.3541 - cnn_accuracy: 0.8825"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "182/438 [===========>..................] - ETA: 2s - loss: 0.5053 - ae_loss: 0.1511 - cnn_loss: 0.3542 - cnn_accuracy: 0.8824"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "189/438 [===========>..................] - ETA: 1s - loss: 0.5054 - ae_loss: 0.1511 - cnn_loss: 0.3543 - cnn_accuracy: 0.8824"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "196/438 [============>.................] - ETA: 1s - loss: 0.5055 - ae_loss: 0.1511 - cnn_loss: 0.3544 - cnn_accuracy: 0.8823"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "203/438 [============>.................] - ETA: 1s - loss: 0.5056 - ae_loss: 0.1511 - cnn_loss: 0.3545 - cnn_accuracy: 0.8822"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "210/438 [=============>................] - ETA: 1s - loss: 0.5056 - ae_loss: 0.1511 - cnn_loss: 0.3545 - cnn_accuracy: 0.8822"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "217/438 [=============>................] - ETA: 1s - loss: 0.5056 - ae_loss: 0.1511 - cnn_loss: 0.3546 - cnn_accuracy: 0.8821"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "224/438 [==============>...............] - ETA: 1s - loss: 0.5056 - ae_loss: 0.1511 - cnn_loss: 0.3546 - cnn_accuracy: 0.8821"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "231/438 [==============>...............] - ETA: 1s - loss: 0.5056 - ae_loss: 0.1511 - cnn_loss: 0.3546 - cnn_accuracy: 0.8821"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "238/438 [===============>..............] - ETA: 1s - loss: 0.5056 - ae_loss: 0.1510 - cnn_loss: 0.3545 - cnn_accuracy: 0.8820"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "245/438 [===============>..............] - ETA: 1s - loss: 0.5055 - ae_loss: 0.1510 - cnn_loss: 0.3545 - cnn_accuracy: 0.8820"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "252/438 [================>.............] - ETA: 1s - loss: 0.5054 - ae_loss: 0.1510 - cnn_loss: 0.3544 - cnn_accuracy: 0.8820"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "259/438 [================>.............] - ETA: 1s - loss: 0.5054 - ae_loss: 0.1510 - cnn_loss: 0.3544 - cnn_accuracy: 0.8820"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "266/438 [=================>............] - ETA: 1s - loss: 0.5054 - ae_loss: 0.1510 - cnn_loss: 0.3543 - cnn_accuracy: 0.8820"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "273/438 [=================>............] - ETA: 1s - loss: 0.5053 - ae_loss: 0.1510 - cnn_loss: 0.3543 - cnn_accuracy: 0.8819"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "280/438 [==================>...........] - ETA: 1s - loss: 0.5053 - ae_loss: 0.1510 - cnn_loss: 0.3543 - cnn_accuracy: 0.8819"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "287/438 [==================>...........] - ETA: 1s - loss: 0.5053 - ae_loss: 0.1510 - cnn_loss: 0.3543 - cnn_accuracy: 0.8819"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "294/438 [===================>..........] - ETA: 1s - loss: 0.5053 - ae_loss: 0.1510 - cnn_loss: 0.3543 - cnn_accuracy: 0.8819"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "301/438 [===================>..........] - ETA: 1s - loss: 0.5053 - ae_loss: 0.1510 - cnn_loss: 0.3543 - cnn_accuracy: 0.8818"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "308/438 [====================>.........] - ETA: 1s - loss: 0.5053 - ae_loss: 0.1510 - cnn_loss: 0.3544 - cnn_accuracy: 0.8818"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "315/438 [====================>.........] - ETA: 0s - loss: 0.5054 - ae_loss: 0.1510 - cnn_loss: 0.3544 - cnn_accuracy: 0.8818"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "321/438 [====================>.........] - ETA: 0s - loss: 0.5054 - ae_loss: 0.1510 - cnn_loss: 0.3544 - cnn_accuracy: 0.8817"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "328/438 [=====================>........] - ETA: 0s - loss: 0.5054 - ae_loss: 0.1510 - cnn_loss: 0.3545 - cnn_accuracy: 0.8817"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "334/438 [=====================>........] - ETA: 0s - loss: 0.5054 - ae_loss: 0.1509 - cnn_loss: 0.3545 - cnn_accuracy: 0.8817"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "340/438 [======================>.......] - ETA: 0s - loss: 0.5054 - ae_loss: 0.1509 - cnn_loss: 0.3545 - cnn_accuracy: 0.8817"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "346/438 [======================>.......] - ETA: 0s - loss: 0.5055 - ae_loss: 0.1509 - cnn_loss: 0.3545 - cnn_accuracy: 0.8816"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "352/438 [=======================>......] - ETA: 0s - loss: 0.5055 - ae_loss: 0.1509 - cnn_loss: 0.3546 - cnn_accuracy: 0.8816"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "359/438 [=======================>......] - ETA: 0s - loss: 0.5055 - ae_loss: 0.1509 - cnn_loss: 0.3546 - cnn_accuracy: 0.8816"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "365/438 [========================>.....] - ETA: 0s - loss: 0.5056 - ae_loss: 0.1509 - cnn_loss: 0.3547 - cnn_accuracy: 0.8816"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "371/438 [========================>.....] - ETA: 0s - loss: 0.5056 - ae_loss: 0.1509 - cnn_loss: 0.3547 - cnn_accuracy: 0.8815"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "377/438 [========================>.....] - ETA: 0s - loss: 0.5057 - ae_loss: 0.1509 - cnn_loss: 0.3548 - cnn_accuracy: 0.8815"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "384/438 [=========================>....] - ETA: 0s - loss: 0.5058 - ae_loss: 0.1509 - cnn_loss: 0.3549 - cnn_accuracy: 0.8815"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "391/438 [=========================>....] - ETA: 0s - loss: 0.5059 - ae_loss: 0.1509 - cnn_loss: 0.3550 - cnn_accuracy: 0.8814"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "398/438 [==========================>...] - ETA: 0s - loss: 0.5059 - ae_loss: 0.1509 - cnn_loss: 0.3551 - cnn_accuracy: 0.8814"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "405/438 [==========================>...] - ETA: 0s - loss: 0.5060 - ae_loss: 0.1509 - cnn_loss: 0.3551 - cnn_accuracy: 0.8814"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "412/438 [===========================>..] - ETA: 0s - loss: 0.5061 - ae_loss: 0.1509 - cnn_loss: 0.3552 - cnn_accuracy: 0.8813"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "419/438 [===========================>..] - ETA: 0s - loss: 0.5062 - ae_loss: 0.1509 - cnn_loss: 0.3553 - cnn_accuracy: 0.8813"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "426/438 [============================>.] - ETA: 0s - loss: 0.5063 - ae_loss: 0.1509 - cnn_loss: 0.3554 - cnn_accuracy: 0.8812"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "433/438 [============================>.] - ETA: 0s - loss: 0.5064 - ae_loss: 0.1509 - cnn_loss: 0.3555 - cnn_accuracy: 0.8812"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.5065 - ae_loss: 0.1509 - cnn_loss: 0.3556 - cnn_accuracy: 0.8812 - val_loss: 0.4797 - val_ae_loss: 0.1522 - val_cnn_loss: 0.3275 - val_cnn_accuracy: 0.8908\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 12/30\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.6796 - ae_loss: 0.1505 - cnn_loss: 0.5291 - cnn_accuracy: 0.8203"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.5710 - ae_loss: 0.1498 - cnn_loss: 0.4213 - cnn_accuracy: 0.8581"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 0.5511 - ae_loss: 0.1490 - cnn_loss: 0.4021 - cnn_accuracy: 0.8646"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 22/438 [>.............................] - ETA: 3s - loss: 0.5419 - ae_loss: 0.1487 - cnn_loss: 0.3932 - cnn_accuracy: 0.8675"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 3s - loss: 0.5357 - ae_loss: 0.1486 - cnn_loss: 0.3871 - cnn_accuracy: 0.8697"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 36/438 [=>............................] - ETA: 3s - loss: 0.5310 - ae_loss: 0.1485 - cnn_loss: 0.3826 - cnn_accuracy: 0.8710"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.5280 - ae_loss: 0.1485 - cnn_loss: 0.3795 - cnn_accuracy: 0.8718"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 3s - loss: 0.5250 - ae_loss: 0.1485 - cnn_loss: 0.3765 - cnn_accuracy: 0.8730"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.5223 - ae_loss: 0.1485 - cnn_loss: 0.3738 - cnn_accuracy: 0.8742"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 64/438 [===>..........................] - ETA: 2s - loss: 0.5202 - ae_loss: 0.1485 - cnn_loss: 0.3717 - cnn_accuracy: 0.8752"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 2s - loss: 0.5181 - ae_loss: 0.1486 - cnn_loss: 0.3695 - cnn_accuracy: 0.8761"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 78/438 [====>.........................] - ETA: 2s - loss: 0.5160 - ae_loss: 0.1486 - cnn_loss: 0.3674 - cnn_accuracy: 0.8769"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.5144 - ae_loss: 0.1486 - cnn_loss: 0.3658 - cnn_accuracy: 0.8776"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 92/438 [=====>........................] - ETA: 2s - loss: 0.5129 - ae_loss: 0.1486 - cnn_loss: 0.3643 - cnn_accuracy: 0.8782"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.5117 - ae_loss: 0.1487 - cnn_loss: 0.3630 - cnn_accuracy: 0.8788"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.5106 - ae_loss: 0.1487 - cnn_loss: 0.3619 - cnn_accuracy: 0.8793"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 0.5098 - ae_loss: 0.1487 - cnn_loss: 0.3611 - cnn_accuracy: 0.8797"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "120/438 [=======>......................] - ETA: 2s - loss: 0.5090 - ae_loss: 0.1487 - cnn_loss: 0.3603 - cnn_accuracy: 0.8801"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "127/438 [=======>......................] - ETA: 2s - loss: 0.5084 - ae_loss: 0.1487 - cnn_loss: 0.3596 - cnn_accuracy: 0.8804"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "134/438 [========>.....................] - ETA: 2s - loss: 0.5078 - ae_loss: 0.1488 - cnn_loss: 0.3590 - cnn_accuracy: 0.8807"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "141/438 [========>.....................] - ETA: 2s - loss: 0.5072 - ae_loss: 0.1488 - cnn_loss: 0.3584 - cnn_accuracy: 0.8810"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "148/438 [=========>....................] - ETA: 2s - loss: 0.5068 - ae_loss: 0.1488 - cnn_loss: 0.3580 - cnn_accuracy: 0.8812"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 2s - loss: 0.5064 - ae_loss: 0.1488 - cnn_loss: 0.3576 - cnn_accuracy: 0.8815"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 2s - loss: 0.5061 - ae_loss: 0.1488 - cnn_loss: 0.3573 - cnn_accuracy: 0.8816"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 2s - loss: 0.5058 - ae_loss: 0.1489 - cnn_loss: 0.3570 - cnn_accuracy: 0.8818"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 2s - loss: 0.5055 - ae_loss: 0.1489 - cnn_loss: 0.3567 - cnn_accuracy: 0.8819"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 1s - loss: 0.5053 - ae_loss: 0.1489 - cnn_loss: 0.3565 - cnn_accuracy: 0.8820"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "190/438 [============>.................] - ETA: 1s - loss: 0.5052 - ae_loss: 0.1489 - cnn_loss: 0.3563 - cnn_accuracy: 0.8821"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 1s - loss: 0.5051 - ae_loss: 0.1489 - cnn_loss: 0.3562 - cnn_accuracy: 0.8822"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "204/438 [============>.................] - ETA: 1s - loss: 0.5050 - ae_loss: 0.1489 - cnn_loss: 0.3561 - cnn_accuracy: 0.8822"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "211/438 [=============>................] - ETA: 1s - loss: 0.5049 - ae_loss: 0.1489 - cnn_loss: 0.3559 - cnn_accuracy: 0.8823"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "218/438 [=============>................] - ETA: 1s - loss: 0.5047 - ae_loss: 0.1489 - cnn_loss: 0.3558 - cnn_accuracy: 0.8824"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 1s - loss: 0.5046 - ae_loss: 0.1490 - cnn_loss: 0.3557 - cnn_accuracy: 0.8824"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "232/438 [==============>...............] - ETA: 1s - loss: 0.5045 - ae_loss: 0.1490 - cnn_loss: 0.3556 - cnn_accuracy: 0.8825"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "239/438 [===============>..............] - ETA: 1s - loss: 0.5045 - ae_loss: 0.1490 - cnn_loss: 0.3555 - cnn_accuracy: 0.8826"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "246/438 [===============>..............] - ETA: 1s - loss: 0.5044 - ae_loss: 0.1490 - cnn_loss: 0.3554 - cnn_accuracy: 0.8826"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "253/438 [================>.............] - ETA: 1s - loss: 0.5043 - ae_loss: 0.1490 - cnn_loss: 0.3553 - cnn_accuracy: 0.8827"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "260/438 [================>.............] - ETA: 1s - loss: 0.5043 - ae_loss: 0.1490 - cnn_loss: 0.3553 - cnn_accuracy: 0.8827"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "267/438 [=================>............] - ETA: 1s - loss: 0.5042 - ae_loss: 0.1490 - cnn_loss: 0.3552 - cnn_accuracy: 0.8828"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "274/438 [=================>............] - ETA: 1s - loss: 0.5042 - ae_loss: 0.1490 - cnn_loss: 0.3552 - cnn_accuracy: 0.8828"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 1s - loss: 0.5041 - ae_loss: 0.1490 - cnn_loss: 0.3551 - cnn_accuracy: 0.8829"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "288/438 [==================>...........] - ETA: 1s - loss: 0.5040 - ae_loss: 0.1490 - cnn_loss: 0.3550 - cnn_accuracy: 0.8830"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "295/438 [===================>..........] - ETA: 1s - loss: 0.5039 - ae_loss: 0.1491 - cnn_loss: 0.3549 - cnn_accuracy: 0.8830"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "302/438 [===================>..........] - ETA: 1s - loss: 0.5038 - ae_loss: 0.1491 - cnn_loss: 0.3548 - cnn_accuracy: 0.8831"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "309/438 [====================>.........] - ETA: 1s - loss: 0.5038 - ae_loss: 0.1491 - cnn_loss: 0.3547 - cnn_accuracy: 0.8831"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "316/438 [====================>.........] - ETA: 0s - loss: 0.5037 - ae_loss: 0.1491 - cnn_loss: 0.3546 - cnn_accuracy: 0.8832"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "323/438 [=====================>........] - ETA: 0s - loss: 0.5037 - ae_loss: 0.1491 - cnn_loss: 0.3546 - cnn_accuracy: 0.8832"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "330/438 [=====================>........] - ETA: 0s - loss: 0.5037 - ae_loss: 0.1491 - cnn_loss: 0.3546 - cnn_accuracy: 0.8832"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "337/438 [======================>.......] - ETA: 0s - loss: 0.5036 - ae_loss: 0.1491 - cnn_loss: 0.3545 - cnn_accuracy: 0.8832"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "344/438 [======================>.......] - ETA: 0s - loss: 0.5036 - ae_loss: 0.1491 - cnn_loss: 0.3545 - cnn_accuracy: 0.8832"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "351/438 [=======================>......] - ETA: 0s - loss: 0.5036 - ae_loss: 0.1491 - cnn_loss: 0.3545 - cnn_accuracy: 0.8832"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "358/438 [=======================>......] - ETA: 0s - loss: 0.5036 - ae_loss: 0.1491 - cnn_loss: 0.3545 - cnn_accuracy: 0.8832"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "365/438 [========================>.....] - ETA: 0s - loss: 0.5036 - ae_loss: 0.1491 - cnn_loss: 0.3545 - cnn_accuracy: 0.8832"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "372/438 [========================>.....] - ETA: 0s - loss: 0.5036 - ae_loss: 0.1491 - cnn_loss: 0.3545 - cnn_accuracy: 0.8832"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "379/438 [========================>.....] - ETA: 0s - loss: 0.5037 - ae_loss: 0.1491 - cnn_loss: 0.3545 - cnn_accuracy: 0.8832"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "386/438 [=========================>....] - ETA: 0s - loss: 0.5037 - ae_loss: 0.1491 - cnn_loss: 0.3545 - cnn_accuracy: 0.8832"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "393/438 [=========================>....] - ETA: 0s - loss: 0.5037 - ae_loss: 0.1491 - cnn_loss: 0.3546 - cnn_accuracy: 0.8832"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "400/438 [==========================>...] - ETA: 0s - loss: 0.5037 - ae_loss: 0.1492 - cnn_loss: 0.3546 - cnn_accuracy: 0.8832"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "407/438 [==========================>...] - ETA: 0s - loss: 0.5038 - ae_loss: 0.1492 - cnn_loss: 0.3546 - cnn_accuracy: 0.8832"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "414/438 [===========================>..] - ETA: 0s - loss: 0.5038 - ae_loss: 0.1492 - cnn_loss: 0.3546 - cnn_accuracy: 0.8832"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "421/438 [===========================>..] - ETA: 0s - loss: 0.5038 - ae_loss: 0.1492 - cnn_loss: 0.3546 - cnn_accuracy: 0.8832"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "428/438 [============================>.] - ETA: 0s - loss: 0.5038 - ae_loss: 0.1492 - cnn_loss: 0.3547 - cnn_accuracy: 0.8832"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "435/438 [============================>.] - ETA: 0s - loss: 0.5038 - ae_loss: 0.1492 - cnn_loss: 0.3547 - cnn_accuracy: 0.8832"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.5039 - ae_loss: 0.1492 - cnn_loss: 0.3547 - cnn_accuracy: 0.8832 - val_loss: 0.4778 - val_ae_loss: 0.1535 - val_cnn_loss: 0.3243 - val_cnn_accuracy: 0.8937\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 13/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.5327 - ae_loss: 0.1528 - cnn_loss: 0.3799 - cnn_accuracy: 0.8594"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.5202 - ae_loss: 0.1508 - cnn_loss: 0.3694 - cnn_accuracy: 0.8769"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 0.5223 - ae_loss: 0.1503 - cnn_loss: 0.3720 - cnn_accuracy: 0.8778"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 22/438 [>.............................] - ETA: 3s - loss: 0.5211 - ae_loss: 0.1502 - cnn_loss: 0.3709 - cnn_accuracy: 0.8788"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 3s - loss: 0.5170 - ae_loss: 0.1501 - cnn_loss: 0.3669 - cnn_accuracy: 0.8804"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 36/438 [=>............................] - ETA: 3s - loss: 0.5124 - ae_loss: 0.1499 - cnn_loss: 0.3625 - cnn_accuracy: 0.8815"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.5079 - ae_loss: 0.1497 - cnn_loss: 0.3582 - cnn_accuracy: 0.8825"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 3s - loss: 0.5046 - ae_loss: 0.1495 - cnn_loss: 0.3551 - cnn_accuracy: 0.8829"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.5028 - ae_loss: 0.1494 - cnn_loss: 0.3534 - cnn_accuracy: 0.8830"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 64/438 [===>..........................] - ETA: 2s - loss: 0.5017 - ae_loss: 0.1493 - cnn_loss: 0.3524 - cnn_accuracy: 0.8833"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 2s - loss: 0.5005 - ae_loss: 0.1492 - cnn_loss: 0.3513 - cnn_accuracy: 0.8836"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 78/438 [====>.........................] - ETA: 2s - loss: 0.4996 - ae_loss: 0.1491 - cnn_loss: 0.3504 - cnn_accuracy: 0.8837"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.4988 - ae_loss: 0.1491 - cnn_loss: 0.3498 - cnn_accuracy: 0.8838"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 92/438 [=====>........................] - ETA: 2s - loss: 0.4984 - ae_loss: 0.1490 - cnn_loss: 0.3494 - cnn_accuracy: 0.8839"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.4980 - ae_loss: 0.1489 - cnn_loss: 0.3490 - cnn_accuracy: 0.8839"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.4977 - ae_loss: 0.1489 - cnn_loss: 0.3488 - cnn_accuracy: 0.8839"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 0.4974 - ae_loss: 0.1488 - cnn_loss: 0.3485 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "120/438 [=======>......................] - ETA: 2s - loss: 0.4971 - ae_loss: 0.1488 - cnn_loss: 0.3483 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "127/438 [=======>......................] - ETA: 2s - loss: 0.4969 - ae_loss: 0.1488 - cnn_loss: 0.3481 - cnn_accuracy: 0.8841"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "134/438 [========>.....................] - ETA: 2s - loss: 0.4967 - ae_loss: 0.1487 - cnn_loss: 0.3480 - cnn_accuracy: 0.8841"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "141/438 [========>.....................] - ETA: 2s - loss: 0.4967 - ae_loss: 0.1487 - cnn_loss: 0.3480 - cnn_accuracy: 0.8841"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "148/438 [=========>....................] - ETA: 2s - loss: 0.4968 - ae_loss: 0.1487 - cnn_loss: 0.3481 - cnn_accuracy: 0.8841"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 2s - loss: 0.4969 - ae_loss: 0.1486 - cnn_loss: 0.3482 - cnn_accuracy: 0.8841"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 2s - loss: 0.4970 - ae_loss: 0.1486 - cnn_loss: 0.3484 - cnn_accuracy: 0.8841"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 2s - loss: 0.4971 - ae_loss: 0.1486 - cnn_loss: 0.3485 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 2s - loss: 0.4972 - ae_loss: 0.1486 - cnn_loss: 0.3486 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 1s - loss: 0.4973 - ae_loss: 0.1486 - cnn_loss: 0.3487 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "190/438 [============>.................] - ETA: 1s - loss: 0.4974 - ae_loss: 0.1486 - cnn_loss: 0.3488 - cnn_accuracy: 0.8839"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 1s - loss: 0.4974 - ae_loss: 0.1485 - cnn_loss: 0.3489 - cnn_accuracy: 0.8839"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "204/438 [============>.................] - ETA: 1s - loss: 0.4975 - ae_loss: 0.1485 - cnn_loss: 0.3489 - cnn_accuracy: 0.8839"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "210/438 [=============>................] - ETA: 1s - loss: 0.4976 - ae_loss: 0.1485 - cnn_loss: 0.3490 - cnn_accuracy: 0.8839"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "216/438 [=============>................] - ETA: 1s - loss: 0.4976 - ae_loss: 0.1485 - cnn_loss: 0.3491 - cnn_accuracy: 0.8839"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "222/438 [==============>...............] - ETA: 1s - loss: 0.4976 - ae_loss: 0.1485 - cnn_loss: 0.3491 - cnn_accuracy: 0.8839"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "228/438 [==============>...............] - ETA: 1s - loss: 0.4976 - ae_loss: 0.1485 - cnn_loss: 0.3491 - cnn_accuracy: 0.8839"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "234/438 [===============>..............] - ETA: 1s - loss: 0.4976 - ae_loss: 0.1485 - cnn_loss: 0.3491 - cnn_accuracy: 0.8839"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "241/438 [===============>..............] - ETA: 1s - loss: 0.4976 - ae_loss: 0.1485 - cnn_loss: 0.3491 - cnn_accuracy: 0.8839"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "248/438 [===============>..............] - ETA: 1s - loss: 0.4976 - ae_loss: 0.1485 - cnn_loss: 0.3491 - cnn_accuracy: 0.8839"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "255/438 [================>.............] - ETA: 1s - loss: 0.4976 - ae_loss: 0.1485 - cnn_loss: 0.3492 - cnn_accuracy: 0.8839"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "262/438 [================>.............] - ETA: 1s - loss: 0.4976 - ae_loss: 0.1485 - cnn_loss: 0.3492 - cnn_accuracy: 0.8839"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "269/438 [=================>............] - ETA: 1s - loss: 0.4976 - ae_loss: 0.1485 - cnn_loss: 0.3491 - cnn_accuracy: 0.8839"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "276/438 [=================>............] - ETA: 1s - loss: 0.4976 - ae_loss: 0.1485 - cnn_loss: 0.3491 - cnn_accuracy: 0.8839"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "283/438 [==================>...........] - ETA: 1s - loss: 0.4975 - ae_loss: 0.1485 - cnn_loss: 0.3491 - cnn_accuracy: 0.8839"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "290/438 [==================>...........] - ETA: 1s - loss: 0.4975 - ae_loss: 0.1484 - cnn_loss: 0.3491 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "297/438 [===================>..........] - ETA: 1s - loss: 0.4975 - ae_loss: 0.1484 - cnn_loss: 0.3490 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "304/438 [===================>..........] - ETA: 1s - loss: 0.4975 - ae_loss: 0.1484 - cnn_loss: 0.3490 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "311/438 [====================>.........] - ETA: 0s - loss: 0.4975 - ae_loss: 0.1484 - cnn_loss: 0.3490 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "318/438 [====================>.........] - ETA: 0s - loss: 0.4974 - ae_loss: 0.1484 - cnn_loss: 0.3490 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "325/438 [=====================>........] - ETA: 0s - loss: 0.4974 - ae_loss: 0.1484 - cnn_loss: 0.3490 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "332/438 [=====================>........] - ETA: 0s - loss: 0.4974 - ae_loss: 0.1484 - cnn_loss: 0.3490 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "339/438 [======================>.......] - ETA: 0s - loss: 0.4975 - ae_loss: 0.1484 - cnn_loss: 0.3491 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "346/438 [======================>.......] - ETA: 0s - loss: 0.4975 - ae_loss: 0.1484 - cnn_loss: 0.3491 - cnn_accuracy: 0.8841"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "353/438 [=======================>......] - ETA: 0s - loss: 0.4975 - ae_loss: 0.1484 - cnn_loss: 0.3491 - cnn_accuracy: 0.8841"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "360/438 [=======================>......] - ETA: 0s - loss: 0.4976 - ae_loss: 0.1484 - cnn_loss: 0.3492 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "367/438 [========================>.....] - ETA: 0s - loss: 0.4976 - ae_loss: 0.1484 - cnn_loss: 0.3492 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "374/438 [========================>.....] - ETA: 0s - loss: 0.4976 - ae_loss: 0.1484 - cnn_loss: 0.3492 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "381/438 [=========================>....] - ETA: 0s - loss: 0.4977 - ae_loss: 0.1484 - cnn_loss: 0.3493 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "388/438 [=========================>....] - ETA: 0s - loss: 0.4977 - ae_loss: 0.1484 - cnn_loss: 0.3493 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "395/438 [==========================>...] - ETA: 0s - loss: 0.4977 - ae_loss: 0.1484 - cnn_loss: 0.3493 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "402/438 [==========================>...] - ETA: 0s - loss: 0.4978 - ae_loss: 0.1484 - cnn_loss: 0.3494 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "409/438 [===========================>..] - ETA: 0s - loss: 0.4978 - ae_loss: 0.1484 - cnn_loss: 0.3494 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "416/438 [===========================>..] - ETA: 0s - loss: 0.4978 - ae_loss: 0.1484 - cnn_loss: 0.3494 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "423/438 [===========================>..] - ETA: 0s - loss: 0.4978 - ae_loss: 0.1484 - cnn_loss: 0.3495 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "430/438 [============================>.] - ETA: 0s - loss: 0.4979 - ae_loss: 0.1484 - cnn_loss: 0.3495 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "437/438 [============================>.] - ETA: 0s - loss: 0.4979 - ae_loss: 0.1484 - cnn_loss: 0.3495 - cnn_accuracy: 0.8840"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.4979 - ae_loss: 0.1484 - cnn_loss: 0.3495 - cnn_accuracy: 0.8840 - val_loss: 0.4731 - val_ae_loss: 0.1512 - val_cnn_loss: 0.3219 - val_cnn_accuracy: 0.8948\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 14/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.3784 - ae_loss: 0.1452 - cnn_loss: 0.2332 - cnn_accuracy: 0.9141"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.4647 - ae_loss: 0.1489 - cnn_loss: 0.3159 - cnn_accuracy: 0.8961"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 0.4746 - ae_loss: 0.1490 - cnn_loss: 0.3256 - cnn_accuracy: 0.8933"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 22/438 [>.............................] - ETA: 3s - loss: 0.4819 - ae_loss: 0.1487 - cnn_loss: 0.3332 - cnn_accuracy: 0.8908"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 3s - loss: 0.4846 - ae_loss: 0.1483 - cnn_loss: 0.3363 - cnn_accuracy: 0.8894"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 36/438 [=>............................] - ETA: 3s - loss: 0.4852 - ae_loss: 0.1480 - cnn_loss: 0.3372 - cnn_accuracy: 0.8887"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.4857 - ae_loss: 0.1478 - cnn_loss: 0.3379 - cnn_accuracy: 0.8881"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 3s - loss: 0.4857 - ae_loss: 0.1476 - cnn_loss: 0.3381 - cnn_accuracy: 0.8879"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.4865 - ae_loss: 0.1475 - cnn_loss: 0.3390 - cnn_accuracy: 0.8877"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 64/438 [===>..........................] - ETA: 2s - loss: 0.4872 - ae_loss: 0.1474 - cnn_loss: 0.3397 - cnn_accuracy: 0.8875"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 2s - loss: 0.4873 - ae_loss: 0.1474 - cnn_loss: 0.3400 - cnn_accuracy: 0.8876"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 78/438 [====>.........................] - ETA: 2s - loss: 0.4874 - ae_loss: 0.1473 - cnn_loss: 0.3401 - cnn_accuracy: 0.8876"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.4879 - ae_loss: 0.1472 - cnn_loss: 0.3406 - cnn_accuracy: 0.8876"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 92/438 [=====>........................] - ETA: 2s - loss: 0.4881 - ae_loss: 0.1472 - cnn_loss: 0.3409 - cnn_accuracy: 0.8876"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.4881 - ae_loss: 0.1471 - cnn_loss: 0.3409 - cnn_accuracy: 0.8876"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.4880 - ae_loss: 0.1471 - cnn_loss: 0.3409 - cnn_accuracy: 0.8877"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 0.4881 - ae_loss: 0.1471 - cnn_loss: 0.3410 - cnn_accuracy: 0.8876"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "120/438 [=======>......................] - ETA: 2s - loss: 0.4882 - ae_loss: 0.1470 - cnn_loss: 0.3412 - cnn_accuracy: 0.8876"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "127/438 [=======>......................] - ETA: 2s - loss: 0.4884 - ae_loss: 0.1470 - cnn_loss: 0.3414 - cnn_accuracy: 0.8876"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "134/438 [========>.....................] - ETA: 2s - loss: 0.4885 - ae_loss: 0.1470 - cnn_loss: 0.3415 - cnn_accuracy: 0.8876"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "141/438 [========>.....................] - ETA: 2s - loss: 0.4885 - ae_loss: 0.1470 - cnn_loss: 0.3416 - cnn_accuracy: 0.8876"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "148/438 [=========>....................] - ETA: 2s - loss: 0.4886 - ae_loss: 0.1470 - cnn_loss: 0.3417 - cnn_accuracy: 0.8876"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 2s - loss: 0.4887 - ae_loss: 0.1470 - cnn_loss: 0.3418 - cnn_accuracy: 0.8876"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 2s - loss: 0.4887 - ae_loss: 0.1470 - cnn_loss: 0.3418 - cnn_accuracy: 0.8876"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 2s - loss: 0.4888 - ae_loss: 0.1469 - cnn_loss: 0.3418 - cnn_accuracy: 0.8876"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 2s - loss: 0.4888 - ae_loss: 0.1470 - cnn_loss: 0.3419 - cnn_accuracy: 0.8875"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 1s - loss: 0.4889 - ae_loss: 0.1470 - cnn_loss: 0.3419 - cnn_accuracy: 0.8875"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "189/438 [===========>..................] - ETA: 1s - loss: 0.4889 - ae_loss: 0.1469 - cnn_loss: 0.3420 - cnn_accuracy: 0.8875"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "195/438 [============>.................] - ETA: 1s - loss: 0.4890 - ae_loss: 0.1469 - cnn_loss: 0.3420 - cnn_accuracy: 0.8875"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "201/438 [============>.................] - ETA: 1s - loss: 0.4890 - ae_loss: 0.1469 - cnn_loss: 0.3420 - cnn_accuracy: 0.8875"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "207/438 [=============>................] - ETA: 1s - loss: 0.4890 - ae_loss: 0.1469 - cnn_loss: 0.3421 - cnn_accuracy: 0.8875"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "214/438 [=============>................] - ETA: 1s - loss: 0.4891 - ae_loss: 0.1469 - cnn_loss: 0.3422 - cnn_accuracy: 0.8875"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "221/438 [==============>...............] - ETA: 1s - loss: 0.4891 - ae_loss: 0.1469 - cnn_loss: 0.3422 - cnn_accuracy: 0.8875"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "228/438 [==============>...............] - ETA: 1s - loss: 0.4891 - ae_loss: 0.1470 - cnn_loss: 0.3422 - cnn_accuracy: 0.8875"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "235/438 [===============>..............] - ETA: 1s - loss: 0.4891 - ae_loss: 0.1470 - cnn_loss: 0.3422 - cnn_accuracy: 0.8875"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "242/438 [===============>..............] - ETA: 1s - loss: 0.4892 - ae_loss: 0.1470 - cnn_loss: 0.3422 - cnn_accuracy: 0.8875"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "249/438 [================>.............] - ETA: 1s - loss: 0.4893 - ae_loss: 0.1470 - cnn_loss: 0.3423 - cnn_accuracy: 0.8875"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "256/438 [================>.............] - ETA: 1s - loss: 0.4894 - ae_loss: 0.1470 - cnn_loss: 0.3424 - cnn_accuracy: 0.8875"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "263/438 [=================>............] - ETA: 1s - loss: 0.4895 - ae_loss: 0.1470 - cnn_loss: 0.3425 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "270/438 [=================>............] - ETA: 1s - loss: 0.4895 - ae_loss: 0.1470 - cnn_loss: 0.3426 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "277/438 [=================>............] - ETA: 1s - loss: 0.4896 - ae_loss: 0.1470 - cnn_loss: 0.3426 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "284/438 [==================>...........] - ETA: 1s - loss: 0.4896 - ae_loss: 0.1470 - cnn_loss: 0.3427 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "291/438 [==================>...........] - ETA: 1s - loss: 0.4897 - ae_loss: 0.1470 - cnn_loss: 0.3427 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "298/438 [===================>..........] - ETA: 1s - loss: 0.4897 - ae_loss: 0.1470 - cnn_loss: 0.3428 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "305/438 [===================>..........] - ETA: 1s - loss: 0.4898 - ae_loss: 0.1470 - cnn_loss: 0.3428 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "312/438 [====================>.........] - ETA: 0s - loss: 0.4898 - ae_loss: 0.1470 - cnn_loss: 0.3428 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "319/438 [====================>.........] - ETA: 0s - loss: 0.4898 - ae_loss: 0.1470 - cnn_loss: 0.3429 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "325/438 [=====================>........] - ETA: 0s - loss: 0.4898 - ae_loss: 0.1470 - cnn_loss: 0.3429 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "331/438 [=====================>........] - ETA: 0s - loss: 0.4899 - ae_loss: 0.1470 - cnn_loss: 0.3429 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "337/438 [======================>.......] - ETA: 0s - loss: 0.4899 - ae_loss: 0.1470 - cnn_loss: 0.3429 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "343/438 [======================>.......] - ETA: 0s - loss: 0.4899 - ae_loss: 0.1470 - cnn_loss: 0.3429 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "349/438 [======================>.......] - ETA: 0s - loss: 0.4899 - ae_loss: 0.1470 - cnn_loss: 0.3429 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "356/438 [=======================>......] - ETA: 0s - loss: 0.4899 - ae_loss: 0.1470 - cnn_loss: 0.3430 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "362/438 [=======================>......] - ETA: 0s - loss: 0.4900 - ae_loss: 0.1470 - cnn_loss: 0.3430 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "368/438 [========================>.....] - ETA: 0s - loss: 0.4900 - ae_loss: 0.1470 - cnn_loss: 0.3430 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "375/438 [========================>.....] - ETA: 0s - loss: 0.4901 - ae_loss: 0.1470 - cnn_loss: 0.3431 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "382/438 [=========================>....] - ETA: 0s - loss: 0.4901 - ae_loss: 0.1470 - cnn_loss: 0.3431 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "389/438 [=========================>....] - ETA: 0s - loss: 0.4901 - ae_loss: 0.1470 - cnn_loss: 0.3431 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "396/438 [==========================>...] - ETA: 0s - loss: 0.4901 - ae_loss: 0.1470 - cnn_loss: 0.3431 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "403/438 [==========================>...] - ETA: 0s - loss: 0.4901 - ae_loss: 0.1470 - cnn_loss: 0.3431 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "410/438 [===========================>..] - ETA: 0s - loss: 0.4901 - ae_loss: 0.1470 - cnn_loss: 0.3431 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "417/438 [===========================>..] - ETA: 0s - loss: 0.4902 - ae_loss: 0.1470 - cnn_loss: 0.3431 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "424/438 [============================>.] - ETA: 0s - loss: 0.4902 - ae_loss: 0.1470 - cnn_loss: 0.3431 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "431/438 [============================>.] - ETA: 0s - loss: 0.4902 - ae_loss: 0.1470 - cnn_loss: 0.3431 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - ETA: 0s - loss: 0.4902 - ae_loss: 0.1471 - cnn_loss: 0.3431 - cnn_accuracy: 0.8874"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.4902 - ae_loss: 0.1471 - cnn_loss: 0.3431 - cnn_accuracy: 0.8874 - val_loss: 0.4699 - val_ae_loss: 0.1528 - val_cnn_loss: 0.3171 - val_cnn_accuracy: 0.8971\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 15/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.4244 - ae_loss: 0.1498 - cnn_loss: 0.2746 - cnn_accuracy: 0.8984"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  7/438 [..............................] - ETA: 3s - loss: 0.4511 - ae_loss: 0.1475 - cnn_loss: 0.3037 - cnn_accuracy: 0.8944"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 13/438 [..............................] - ETA: 3s - loss: 0.4705 - ae_loss: 0.1471 - cnn_loss: 0.3234 - cnn_accuracy: 0.8891"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 20/438 [>.............................] - ETA: 3s - loss: 0.4728 - ae_loss: 0.1471 - cnn_loss: 0.3257 - cnn_accuracy: 0.8904"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 27/438 [>.............................] - ETA: 3s - loss: 0.4772 - ae_loss: 0.1471 - cnn_loss: 0.3301 - cnn_accuracy: 0.8906"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 34/438 [=>............................] - ETA: 3s - loss: 0.4783 - ae_loss: 0.1470 - cnn_loss: 0.3313 - cnn_accuracy: 0.8912"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 3s - loss: 0.4768 - ae_loss: 0.1469 - cnn_loss: 0.3300 - cnn_accuracy: 0.8923"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 48/438 [==>...........................] - ETA: 3s - loss: 0.4757 - ae_loss: 0.1468 - cnn_loss: 0.3289 - cnn_accuracy: 0.8928"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 55/438 [==>...........................] - ETA: 3s - loss: 0.4754 - ae_loss: 0.1468 - cnn_loss: 0.3287 - cnn_accuracy: 0.8933"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 62/438 [===>..........................] - ETA: 3s - loss: 0.4759 - ae_loss: 0.1468 - cnn_loss: 0.3291 - cnn_accuracy: 0.8936"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 69/438 [===>..........................] - ETA: 2s - loss: 0.4762 - ae_loss: 0.1468 - cnn_loss: 0.3294 - cnn_accuracy: 0.8937"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 76/438 [====>.........................] - ETA: 2s - loss: 0.4766 - ae_loss: 0.1467 - cnn_loss: 0.3298 - cnn_accuracy: 0.8937"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 83/438 [====>.........................] - ETA: 2s - loss: 0.4769 - ae_loss: 0.1467 - cnn_loss: 0.3301 - cnn_accuracy: 0.8937"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 90/438 [=====>........................] - ETA: 2s - loss: 0.4772 - ae_loss: 0.1467 - cnn_loss: 0.3305 - cnn_accuracy: 0.8935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 97/438 [=====>........................] - ETA: 2s - loss: 0.4774 - ae_loss: 0.1467 - cnn_loss: 0.3307 - cnn_accuracy: 0.8934"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "104/438 [======>.......................] - ETA: 2s - loss: 0.4777 - ae_loss: 0.1467 - cnn_loss: 0.3310 - cnn_accuracy: 0.8933"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "111/438 [======>.......................] - ETA: 2s - loss: 0.4779 - ae_loss: 0.1467 - cnn_loss: 0.3312 - cnn_accuracy: 0.8932"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "118/438 [=======>......................] - ETA: 2s - loss: 0.4780 - ae_loss: 0.1467 - cnn_loss: 0.3313 - cnn_accuracy: 0.8931"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "124/438 [=======>......................] - ETA: 2s - loss: 0.4779 - ae_loss: 0.1466 - cnn_loss: 0.3312 - cnn_accuracy: 0.8931"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "130/438 [=======>......................] - ETA: 2s - loss: 0.4777 - ae_loss: 0.1466 - cnn_loss: 0.3311 - cnn_accuracy: 0.8931"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "137/438 [========>.....................] - ETA: 2s - loss: 0.4777 - ae_loss: 0.1466 - cnn_loss: 0.3310 - cnn_accuracy: 0.8931"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "144/438 [========>.....................] - ETA: 2s - loss: 0.4776 - ae_loss: 0.1466 - cnn_loss: 0.3310 - cnn_accuracy: 0.8930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "151/438 [=========>....................] - ETA: 2s - loss: 0.4777 - ae_loss: 0.1466 - cnn_loss: 0.3311 - cnn_accuracy: 0.8930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "157/438 [=========>....................] - ETA: 2s - loss: 0.4778 - ae_loss: 0.1466 - cnn_loss: 0.3312 - cnn_accuracy: 0.8930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "163/438 [==========>...................] - ETA: 2s - loss: 0.4779 - ae_loss: 0.1466 - cnn_loss: 0.3312 - cnn_accuracy: 0.8930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 2s - loss: 0.4779 - ae_loss: 0.1466 - cnn_loss: 0.3313 - cnn_accuracy: 0.8929"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 2s - loss: 0.4780 - ae_loss: 0.1466 - cnn_loss: 0.3314 - cnn_accuracy: 0.8929"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 2s - loss: 0.4780 - ae_loss: 0.1466 - cnn_loss: 0.3314 - cnn_accuracy: 0.8929"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "190/438 [============>.................] - ETA: 1s - loss: 0.4781 - ae_loss: 0.1466 - cnn_loss: 0.3314 - cnn_accuracy: 0.8928"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 1s - loss: 0.4782 - ae_loss: 0.1466 - cnn_loss: 0.3315 - cnn_accuracy: 0.8928"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "204/438 [============>.................] - ETA: 1s - loss: 0.4783 - ae_loss: 0.1466 - cnn_loss: 0.3317 - cnn_accuracy: 0.8927"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "211/438 [=============>................] - ETA: 1s - loss: 0.4784 - ae_loss: 0.1466 - cnn_loss: 0.3318 - cnn_accuracy: 0.8927"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "218/438 [=============>................] - ETA: 1s - loss: 0.4785 - ae_loss: 0.1466 - cnn_loss: 0.3319 - cnn_accuracy: 0.8926"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 1s - loss: 0.4787 - ae_loss: 0.1466 - cnn_loss: 0.3321 - cnn_accuracy: 0.8926"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "232/438 [==============>...............] - ETA: 1s - loss: 0.4789 - ae_loss: 0.1466 - cnn_loss: 0.3323 - cnn_accuracy: 0.8925"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "239/438 [===============>..............] - ETA: 1s - loss: 0.4791 - ae_loss: 0.1466 - cnn_loss: 0.3325 - cnn_accuracy: 0.8925"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "246/438 [===============>..............] - ETA: 1s - loss: 0.4793 - ae_loss: 0.1466 - cnn_loss: 0.3327 - cnn_accuracy: 0.8924"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "253/438 [================>.............] - ETA: 1s - loss: 0.4795 - ae_loss: 0.1466 - cnn_loss: 0.3329 - cnn_accuracy: 0.8923"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "260/438 [================>.............] - ETA: 1s - loss: 0.4797 - ae_loss: 0.1466 - cnn_loss: 0.3331 - cnn_accuracy: 0.8923"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "267/438 [=================>............] - ETA: 1s - loss: 0.4799 - ae_loss: 0.1466 - cnn_loss: 0.3332 - cnn_accuracy: 0.8922"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "274/438 [=================>............] - ETA: 1s - loss: 0.4801 - ae_loss: 0.1466 - cnn_loss: 0.3334 - cnn_accuracy: 0.8921"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 1s - loss: 0.4802 - ae_loss: 0.1466 - cnn_loss: 0.3336 - cnn_accuracy: 0.8921"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "288/438 [==================>...........] - ETA: 1s - loss: 0.4804 - ae_loss: 0.1466 - cnn_loss: 0.3338 - cnn_accuracy: 0.8920"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "295/438 [===================>..........] - ETA: 1s - loss: 0.4805 - ae_loss: 0.1466 - cnn_loss: 0.3339 - cnn_accuracy: 0.8920"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "302/438 [===================>..........] - ETA: 1s - loss: 0.4806 - ae_loss: 0.1466 - cnn_loss: 0.3340 - cnn_accuracy: 0.8919"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "309/438 [====================>.........] - ETA: 1s - loss: 0.4807 - ae_loss: 0.1466 - cnn_loss: 0.3341 - cnn_accuracy: 0.8919"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "316/438 [====================>.........] - ETA: 0s - loss: 0.4808 - ae_loss: 0.1466 - cnn_loss: 0.3342 - cnn_accuracy: 0.8918"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "323/438 [=====================>........] - ETA: 0s - loss: 0.4809 - ae_loss: 0.1466 - cnn_loss: 0.3343 - cnn_accuracy: 0.8918"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "330/438 [=====================>........] - ETA: 0s - loss: 0.4811 - ae_loss: 0.1466 - cnn_loss: 0.3344 - cnn_accuracy: 0.8917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "337/438 [======================>.......] - ETA: 0s - loss: 0.4812 - ae_loss: 0.1466 - cnn_loss: 0.3345 - cnn_accuracy: 0.8917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "344/438 [======================>.......] - ETA: 0s - loss: 0.4813 - ae_loss: 0.1466 - cnn_loss: 0.3346 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "351/438 [=======================>......] - ETA: 0s - loss: 0.4814 - ae_loss: 0.1466 - cnn_loss: 0.3347 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "358/438 [=======================>......] - ETA: 0s - loss: 0.4815 - ae_loss: 0.1466 - cnn_loss: 0.3348 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "365/438 [========================>.....] - ETA: 0s - loss: 0.4816 - ae_loss: 0.1466 - cnn_loss: 0.3349 - cnn_accuracy: 0.8915"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "372/438 [========================>.....] - ETA: 0s - loss: 0.4817 - ae_loss: 0.1466 - cnn_loss: 0.3350 - cnn_accuracy: 0.8915"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "379/438 [========================>.....] - ETA: 0s - loss: 0.4818 - ae_loss: 0.1466 - cnn_loss: 0.3351 - cnn_accuracy: 0.8914"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "386/438 [=========================>....] - ETA: 0s - loss: 0.4819 - ae_loss: 0.1466 - cnn_loss: 0.3353 - cnn_accuracy: 0.8914"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "393/438 [=========================>....] - ETA: 0s - loss: 0.4820 - ae_loss: 0.1466 - cnn_loss: 0.3354 - cnn_accuracy: 0.8914"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "400/438 [==========================>...] - ETA: 0s - loss: 0.4821 - ae_loss: 0.1466 - cnn_loss: 0.3355 - cnn_accuracy: 0.8913"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "407/438 [==========================>...] - ETA: 0s - loss: 0.4822 - ae_loss: 0.1466 - cnn_loss: 0.3356 - cnn_accuracy: 0.8913"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "414/438 [===========================>..] - ETA: 0s - loss: 0.4823 - ae_loss: 0.1466 - cnn_loss: 0.3357 - cnn_accuracy: 0.8912"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "421/438 [===========================>..] - ETA: 0s - loss: 0.4824 - ae_loss: 0.1466 - cnn_loss: 0.3358 - cnn_accuracy: 0.8912"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "428/438 [============================>.] - ETA: 0s - loss: 0.4826 - ae_loss: 0.1466 - cnn_loss: 0.3359 - cnn_accuracy: 0.8911"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "435/438 [============================>.] - ETA: 0s - loss: 0.4827 - ae_loss: 0.1466 - cnn_loss: 0.3360 - cnn_accuracy: 0.8911"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.4827 - ae_loss: 0.1466 - cnn_loss: 0.3361 - cnn_accuracy: 0.8911 - val_loss: 0.4796 - val_ae_loss: 0.1503 - val_cnn_loss: 0.3294 - val_cnn_accuracy: 0.8921\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 16/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.3747 - ae_loss: 0.1433 - cnn_loss: 0.2314 - cnn_accuracy: 0.9297"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.3993 - ae_loss: 0.1445 - cnn_loss: 0.2548 - cnn_accuracy: 0.9213"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 0.4169 - ae_loss: 0.1447 - cnn_loss: 0.2721 - cnn_accuracy: 0.9142"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 22/438 [>.............................] - ETA: 3s - loss: 0.4333 - ae_loss: 0.1450 - cnn_loss: 0.2884 - cnn_accuracy: 0.9082"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 3s - loss: 0.4446 - ae_loss: 0.1452 - cnn_loss: 0.2994 - cnn_accuracy: 0.9040"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 36/438 [=>............................] - ETA: 3s - loss: 0.4504 - ae_loss: 0.1453 - cnn_loss: 0.3051 - cnn_accuracy: 0.9012"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.4535 - ae_loss: 0.1453 - cnn_loss: 0.3081 - cnn_accuracy: 0.8996"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 3s - loss: 0.4560 - ae_loss: 0.1453 - cnn_loss: 0.3106 - cnn_accuracy: 0.8984"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 3s - loss: 0.4581 - ae_loss: 0.1454 - cnn_loss: 0.3128 - cnn_accuracy: 0.8974"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 64/438 [===>..........................] - ETA: 2s - loss: 0.4598 - ae_loss: 0.1454 - cnn_loss: 0.3144 - cnn_accuracy: 0.8966"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 70/438 [===>..........................] - ETA: 2s - loss: 0.4612 - ae_loss: 0.1454 - cnn_loss: 0.3158 - cnn_accuracy: 0.8960"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 75/438 [====>.........................] - ETA: 2s - loss: 0.4624 - ae_loss: 0.1455 - cnn_loss: 0.3170 - cnn_accuracy: 0.8956"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 82/438 [====>.........................] - ETA: 2s - loss: 0.4637 - ae_loss: 0.1455 - cnn_loss: 0.3182 - cnn_accuracy: 0.8951"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 89/438 [=====>........................] - ETA: 2s - loss: 0.4647 - ae_loss: 0.1455 - cnn_loss: 0.3191 - cnn_accuracy: 0.8947"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 96/438 [=====>........................] - ETA: 2s - loss: 0.4655 - ae_loss: 0.1456 - cnn_loss: 0.3199 - cnn_accuracy: 0.8943"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "103/438 [======>.......................] - ETA: 2s - loss: 0.4662 - ae_loss: 0.1456 - cnn_loss: 0.3206 - cnn_accuracy: 0.8940"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "110/438 [======>.......................] - ETA: 2s - loss: 0.4668 - ae_loss: 0.1456 - cnn_loss: 0.3212 - cnn_accuracy: 0.8937"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "117/438 [=======>......................] - ETA: 2s - loss: 0.4674 - ae_loss: 0.1456 - cnn_loss: 0.3218 - cnn_accuracy: 0.8935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "124/438 [=======>......................] - ETA: 2s - loss: 0.4679 - ae_loss: 0.1456 - cnn_loss: 0.3223 - cnn_accuracy: 0.8933"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "131/438 [=======>......................] - ETA: 2s - loss: 0.4684 - ae_loss: 0.1456 - cnn_loss: 0.3228 - cnn_accuracy: 0.8931"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "138/438 [========>.....................] - ETA: 2s - loss: 0.4689 - ae_loss: 0.1456 - cnn_loss: 0.3232 - cnn_accuracy: 0.8930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "145/438 [========>.....................] - ETA: 2s - loss: 0.4694 - ae_loss: 0.1456 - cnn_loss: 0.3237 - cnn_accuracy: 0.8929"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "152/438 [=========>....................] - ETA: 2s - loss: 0.4699 - ae_loss: 0.1457 - cnn_loss: 0.3242 - cnn_accuracy: 0.8928"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "159/438 [=========>....................] - ETA: 2s - loss: 0.4703 - ae_loss: 0.1457 - cnn_loss: 0.3246 - cnn_accuracy: 0.8926"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "166/438 [==========>...................] - ETA: 2s - loss: 0.4707 - ae_loss: 0.1457 - cnn_loss: 0.3251 - cnn_accuracy: 0.8925"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "173/438 [==========>...................] - ETA: 2s - loss: 0.4711 - ae_loss: 0.1457 - cnn_loss: 0.3254 - cnn_accuracy: 0.8924"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "180/438 [===========>..................] - ETA: 2s - loss: 0.4714 - ae_loss: 0.1457 - cnn_loss: 0.3258 - cnn_accuracy: 0.8923"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "187/438 [===========>..................] - ETA: 1s - loss: 0.4718 - ae_loss: 0.1457 - cnn_loss: 0.3261 - cnn_accuracy: 0.8922"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "194/438 [============>.................] - ETA: 1s - loss: 0.4721 - ae_loss: 0.1457 - cnn_loss: 0.3264 - cnn_accuracy: 0.8921"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "201/438 [============>.................] - ETA: 1s - loss: 0.4724 - ae_loss: 0.1457 - cnn_loss: 0.3268 - cnn_accuracy: 0.8921"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "208/438 [=============>................] - ETA: 1s - loss: 0.4727 - ae_loss: 0.1457 - cnn_loss: 0.3271 - cnn_accuracy: 0.8920"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "215/438 [=============>................] - ETA: 1s - loss: 0.4730 - ae_loss: 0.1457 - cnn_loss: 0.3273 - cnn_accuracy: 0.8919"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "222/438 [==============>...............] - ETA: 1s - loss: 0.4732 - ae_loss: 0.1457 - cnn_loss: 0.3275 - cnn_accuracy: 0.8919"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "229/438 [==============>...............] - ETA: 1s - loss: 0.4734 - ae_loss: 0.1457 - cnn_loss: 0.3277 - cnn_accuracy: 0.8918"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "236/438 [===============>..............] - ETA: 1s - loss: 0.4736 - ae_loss: 0.1457 - cnn_loss: 0.3279 - cnn_accuracy: 0.8918"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "243/438 [===============>..............] - ETA: 1s - loss: 0.4737 - ae_loss: 0.1457 - cnn_loss: 0.3281 - cnn_accuracy: 0.8917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "250/438 [================>.............] - ETA: 1s - loss: 0.4739 - ae_loss: 0.1457 - cnn_loss: 0.3282 - cnn_accuracy: 0.8917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "256/438 [================>.............] - ETA: 1s - loss: 0.4740 - ae_loss: 0.1457 - cnn_loss: 0.3283 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "263/438 [=================>............] - ETA: 1s - loss: 0.4741 - ae_loss: 0.1457 - cnn_loss: 0.3285 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "270/438 [=================>............] - ETA: 1s - loss: 0.4743 - ae_loss: 0.1457 - cnn_loss: 0.3287 - cnn_accuracy: 0.8915"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "277/438 [=================>............] - ETA: 1s - loss: 0.4745 - ae_loss: 0.1457 - cnn_loss: 0.3289 - cnn_accuracy: 0.8914"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "284/438 [==================>...........] - ETA: 1s - loss: 0.4748 - ae_loss: 0.1457 - cnn_loss: 0.3291 - cnn_accuracy: 0.8914"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "291/438 [==================>...........] - ETA: 1s - loss: 0.4750 - ae_loss: 0.1457 - cnn_loss: 0.3293 - cnn_accuracy: 0.8913"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "298/438 [===================>..........] - ETA: 1s - loss: 0.4752 - ae_loss: 0.1457 - cnn_loss: 0.3295 - cnn_accuracy: 0.8912"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "305/438 [===================>..........] - ETA: 1s - loss: 0.4754 - ae_loss: 0.1457 - cnn_loss: 0.3298 - cnn_accuracy: 0.8911"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "312/438 [====================>.........] - ETA: 0s - loss: 0.4756 - ae_loss: 0.1457 - cnn_loss: 0.3300 - cnn_accuracy: 0.8911"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "319/438 [====================>.........] - ETA: 0s - loss: 0.4758 - ae_loss: 0.1457 - cnn_loss: 0.3302 - cnn_accuracy: 0.8910"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "326/438 [=====================>........] - ETA: 0s - loss: 0.4761 - ae_loss: 0.1457 - cnn_loss: 0.3304 - cnn_accuracy: 0.8909"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "333/438 [=====================>........] - ETA: 0s - loss: 0.4763 - ae_loss: 0.1457 - cnn_loss: 0.3306 - cnn_accuracy: 0.8908"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "340/438 [======================>.......] - ETA: 0s - loss: 0.4764 - ae_loss: 0.1457 - cnn_loss: 0.3307 - cnn_accuracy: 0.8908"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "347/438 [======================>.......] - ETA: 0s - loss: 0.4766 - ae_loss: 0.1457 - cnn_loss: 0.3309 - cnn_accuracy: 0.8907"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "354/438 [=======================>......] - ETA: 0s - loss: 0.4768 - ae_loss: 0.1457 - cnn_loss: 0.3311 - cnn_accuracy: 0.8907"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "361/438 [=======================>......] - ETA: 0s - loss: 0.4769 - ae_loss: 0.1457 - cnn_loss: 0.3312 - cnn_accuracy: 0.8906"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "368/438 [========================>.....] - ETA: 0s - loss: 0.4771 - ae_loss: 0.1457 - cnn_loss: 0.3314 - cnn_accuracy: 0.8906"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "375/438 [========================>.....] - ETA: 0s - loss: 0.4772 - ae_loss: 0.1457 - cnn_loss: 0.3315 - cnn_accuracy: 0.8905"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "382/438 [=========================>....] - ETA: 0s - loss: 0.4773 - ae_loss: 0.1457 - cnn_loss: 0.3316 - cnn_accuracy: 0.8905"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "389/438 [=========================>....] - ETA: 0s - loss: 0.4775 - ae_loss: 0.1457 - cnn_loss: 0.3317 - cnn_accuracy: 0.8904"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "396/438 [==========================>...] - ETA: 0s - loss: 0.4776 - ae_loss: 0.1457 - cnn_loss: 0.3318 - cnn_accuracy: 0.8904"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "403/438 [==========================>...] - ETA: 0s - loss: 0.4777 - ae_loss: 0.1457 - cnn_loss: 0.3320 - cnn_accuracy: 0.8903"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "410/438 [===========================>..] - ETA: 0s - loss: 0.4778 - ae_loss: 0.1457 - cnn_loss: 0.3321 - cnn_accuracy: 0.8903"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "417/438 [===========================>..] - ETA: 0s - loss: 0.4779 - ae_loss: 0.1457 - cnn_loss: 0.3322 - cnn_accuracy: 0.8902"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "424/438 [============================>.] - ETA: 0s - loss: 0.4781 - ae_loss: 0.1457 - cnn_loss: 0.3323 - cnn_accuracy: 0.8902"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "431/438 [============================>.] - ETA: 0s - loss: 0.4782 - ae_loss: 0.1458 - cnn_loss: 0.3324 - cnn_accuracy: 0.8901"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - ETA: 0s - loss: 0.4783 - ae_loss: 0.1458 - cnn_loss: 0.3325 - cnn_accuracy: 0.8901"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.4783 - ae_loss: 0.1458 - cnn_loss: 0.3325 - cnn_accuracy: 0.8901 - val_loss: 0.4680 - val_ae_loss: 0.1512 - val_cnn_loss: 0.3168 - val_cnn_accuracy: 0.8965\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 17/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.4106 - ae_loss: 0.1414 - cnn_loss: 0.2692 - cnn_accuracy: 0.8984"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.4701 - ae_loss: 0.1443 - cnn_loss: 0.3257 - cnn_accuracy: 0.8867"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 0.4741 - ae_loss: 0.1446 - cnn_loss: 0.3296 - cnn_accuracy: 0.8892"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 22/438 [>.............................] - ETA: 3s - loss: 0.4736 - ae_loss: 0.1445 - cnn_loss: 0.3291 - cnn_accuracy: 0.8905"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 3s - loss: 0.4716 - ae_loss: 0.1445 - cnn_loss: 0.3271 - cnn_accuracy: 0.8919"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 36/438 [=>............................] - ETA: 3s - loss: 0.4694 - ae_loss: 0.1445 - cnn_loss: 0.3249 - cnn_accuracy: 0.8930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.4671 - ae_loss: 0.1444 - cnn_loss: 0.3227 - cnn_accuracy: 0.8938"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 3s - loss: 0.4658 - ae_loss: 0.1444 - cnn_loss: 0.3215 - cnn_accuracy: 0.8944"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.4651 - ae_loss: 0.1443 - cnn_loss: 0.3208 - cnn_accuracy: 0.8948"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 64/438 [===>..........................] - ETA: 2s - loss: 0.4651 - ae_loss: 0.1443 - cnn_loss: 0.3208 - cnn_accuracy: 0.8950"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 2s - loss: 0.4647 - ae_loss: 0.1443 - cnn_loss: 0.3204 - cnn_accuracy: 0.8951"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 78/438 [====>.........................] - ETA: 2s - loss: 0.4641 - ae_loss: 0.1442 - cnn_loss: 0.3199 - cnn_accuracy: 0.8952"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.4638 - ae_loss: 0.1442 - cnn_loss: 0.3196 - cnn_accuracy: 0.8952"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 92/438 [=====>........................] - ETA: 2s - loss: 0.4636 - ae_loss: 0.1442 - cnn_loss: 0.3194 - cnn_accuracy: 0.8951"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.4635 - ae_loss: 0.1442 - cnn_loss: 0.3193 - cnn_accuracy: 0.8949"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.4634 - ae_loss: 0.1442 - cnn_loss: 0.3192 - cnn_accuracy: 0.8948"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 0.4635 - ae_loss: 0.1442 - cnn_loss: 0.3193 - cnn_accuracy: 0.8946"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "120/438 [=======>......................] - ETA: 2s - loss: 0.4636 - ae_loss: 0.1443 - cnn_loss: 0.3194 - cnn_accuracy: 0.8944"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "127/438 [=======>......................] - ETA: 2s - loss: 0.4638 - ae_loss: 0.1443 - cnn_loss: 0.3196 - cnn_accuracy: 0.8942"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "134/438 [========>.....................] - ETA: 2s - loss: 0.4641 - ae_loss: 0.1443 - cnn_loss: 0.3198 - cnn_accuracy: 0.8941"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "141/438 [========>.....................] - ETA: 2s - loss: 0.4643 - ae_loss: 0.1443 - cnn_loss: 0.3200 - cnn_accuracy: 0.8939"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "148/438 [=========>....................] - ETA: 2s - loss: 0.4645 - ae_loss: 0.1443 - cnn_loss: 0.3201 - cnn_accuracy: 0.8938"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 2s - loss: 0.4647 - ae_loss: 0.1443 - cnn_loss: 0.3203 - cnn_accuracy: 0.8937"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 2s - loss: 0.4648 - ae_loss: 0.1444 - cnn_loss: 0.3205 - cnn_accuracy: 0.8935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 2s - loss: 0.4650 - ae_loss: 0.1444 - cnn_loss: 0.3206 - cnn_accuracy: 0.8935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 2s - loss: 0.4651 - ae_loss: 0.1444 - cnn_loss: 0.3207 - cnn_accuracy: 0.8934"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 1s - loss: 0.4653 - ae_loss: 0.1444 - cnn_loss: 0.3209 - cnn_accuracy: 0.8933"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "190/438 [============>.................] - ETA: 1s - loss: 0.4655 - ae_loss: 0.1444 - cnn_loss: 0.3210 - cnn_accuracy: 0.8933"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 1s - loss: 0.4656 - ae_loss: 0.1445 - cnn_loss: 0.3212 - cnn_accuracy: 0.8932"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "204/438 [============>.................] - ETA: 1s - loss: 0.4658 - ae_loss: 0.1445 - cnn_loss: 0.3213 - cnn_accuracy: 0.8932"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "211/438 [=============>................] - ETA: 1s - loss: 0.4660 - ae_loss: 0.1445 - cnn_loss: 0.3215 - cnn_accuracy: 0.8931"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "218/438 [=============>................] - ETA: 1s - loss: 0.4662 - ae_loss: 0.1445 - cnn_loss: 0.3216 - cnn_accuracy: 0.8930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 1s - loss: 0.4664 - ae_loss: 0.1445 - cnn_loss: 0.3219 - cnn_accuracy: 0.8930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "232/438 [==============>...............] - ETA: 1s - loss: 0.4666 - ae_loss: 0.1446 - cnn_loss: 0.3220 - cnn_accuracy: 0.8929"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "239/438 [===============>..............] - ETA: 1s - loss: 0.4668 - ae_loss: 0.1446 - cnn_loss: 0.3222 - cnn_accuracy: 0.8929"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "246/438 [===============>..............] - ETA: 1s - loss: 0.4670 - ae_loss: 0.1446 - cnn_loss: 0.3224 - cnn_accuracy: 0.8929"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "253/438 [================>.............] - ETA: 1s - loss: 0.4671 - ae_loss: 0.1446 - cnn_loss: 0.3225 - cnn_accuracy: 0.8928"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "260/438 [================>.............] - ETA: 1s - loss: 0.4673 - ae_loss: 0.1446 - cnn_loss: 0.3227 - cnn_accuracy: 0.8928"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "267/438 [=================>............] - ETA: 1s - loss: 0.4675 - ae_loss: 0.1446 - cnn_loss: 0.3228 - cnn_accuracy: 0.8927"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "274/438 [=================>............] - ETA: 1s - loss: 0.4676 - ae_loss: 0.1447 - cnn_loss: 0.3230 - cnn_accuracy: 0.8927"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 1s - loss: 0.4678 - ae_loss: 0.1447 - cnn_loss: 0.3231 - cnn_accuracy: 0.8926"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "288/438 [==================>...........] - ETA: 1s - loss: 0.4679 - ae_loss: 0.1447 - cnn_loss: 0.3233 - cnn_accuracy: 0.8926"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "295/438 [===================>..........] - ETA: 1s - loss: 0.4681 - ae_loss: 0.1447 - cnn_loss: 0.3234 - cnn_accuracy: 0.8925"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "302/438 [===================>..........] - ETA: 1s - loss: 0.4683 - ae_loss: 0.1447 - cnn_loss: 0.3236 - cnn_accuracy: 0.8925"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "308/438 [====================>.........] - ETA: 1s - loss: 0.4684 - ae_loss: 0.1447 - cnn_loss: 0.3237 - cnn_accuracy: 0.8925"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "315/438 [====================>.........] - ETA: 0s - loss: 0.4685 - ae_loss: 0.1447 - cnn_loss: 0.3238 - cnn_accuracy: 0.8924"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "322/438 [=====================>........] - ETA: 0s - loss: 0.4687 - ae_loss: 0.1447 - cnn_loss: 0.3239 - cnn_accuracy: 0.8924"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "329/438 [=====================>........] - ETA: 0s - loss: 0.4688 - ae_loss: 0.1448 - cnn_loss: 0.3241 - cnn_accuracy: 0.8923"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "336/438 [======================>.......] - ETA: 0s - loss: 0.4690 - ae_loss: 0.1448 - cnn_loss: 0.3242 - cnn_accuracy: 0.8923"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "343/438 [======================>.......] - ETA: 0s - loss: 0.4691 - ae_loss: 0.1448 - cnn_loss: 0.3243 - cnn_accuracy: 0.8922"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "350/438 [======================>.......] - ETA: 0s - loss: 0.4692 - ae_loss: 0.1448 - cnn_loss: 0.3244 - cnn_accuracy: 0.8922"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "357/438 [=======================>......] - ETA: 0s - loss: 0.4693 - ae_loss: 0.1448 - cnn_loss: 0.3246 - cnn_accuracy: 0.8922"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "364/438 [=======================>......] - ETA: 0s - loss: 0.4694 - ae_loss: 0.1448 - cnn_loss: 0.3246 - cnn_accuracy: 0.8921"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "371/438 [========================>.....] - ETA: 0s - loss: 0.4696 - ae_loss: 0.1448 - cnn_loss: 0.3247 - cnn_accuracy: 0.8921"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "378/438 [========================>.....] - ETA: 0s - loss: 0.4697 - ae_loss: 0.1448 - cnn_loss: 0.3248 - cnn_accuracy: 0.8921"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "385/438 [=========================>....] - ETA: 0s - loss: 0.4698 - ae_loss: 0.1448 - cnn_loss: 0.3249 - cnn_accuracy: 0.8921"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "392/438 [=========================>....] - ETA: 0s - loss: 0.4698 - ae_loss: 0.1448 - cnn_loss: 0.3250 - cnn_accuracy: 0.8920"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "399/438 [==========================>...] - ETA: 0s - loss: 0.4699 - ae_loss: 0.1448 - cnn_loss: 0.3251 - cnn_accuracy: 0.8920"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "406/438 [==========================>...] - ETA: 0s - loss: 0.4700 - ae_loss: 0.1448 - cnn_loss: 0.3252 - cnn_accuracy: 0.8920"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "413/438 [===========================>..] - ETA: 0s - loss: 0.4701 - ae_loss: 0.1449 - cnn_loss: 0.3253 - cnn_accuracy: 0.8920"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "420/438 [===========================>..] - ETA: 0s - loss: 0.4702 - ae_loss: 0.1449 - cnn_loss: 0.3253 - cnn_accuracy: 0.8919"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "427/438 [============================>.] - ETA: 0s - loss: 0.4703 - ae_loss: 0.1449 - cnn_loss: 0.3254 - cnn_accuracy: 0.8919"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "434/438 [============================>.] - ETA: 0s - loss: 0.4704 - ae_loss: 0.1449 - cnn_loss: 0.3255 - cnn_accuracy: 0.8919"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.4704 - ae_loss: 0.1449 - cnn_loss: 0.3255 - cnn_accuracy: 0.8919 - val_loss: 0.4816 - val_ae_loss: 0.1514 - val_cnn_loss: 0.3302 - val_cnn_accuracy: 0.8918\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 18/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.4617 - ae_loss: 0.1452 - cnn_loss: 0.3165 - cnn_accuracy: 0.8984"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  7/438 [..............................] - ETA: 3s - loss: 0.4794 - ae_loss: 0.1404 - cnn_loss: 0.3390 - cnn_accuracy: 0.8825"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 13/438 [..............................] - ETA: 3s - loss: 0.4721 - ae_loss: 0.1407 - cnn_loss: 0.3313 - cnn_accuracy: 0.8837"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 20/438 [>.............................] - ETA: 3s - loss: 0.4614 - ae_loss: 0.1414 - cnn_loss: 0.3200 - cnn_accuracy: 0.8873"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 27/438 [>.............................] - ETA: 3s - loss: 0.4586 - ae_loss: 0.1417 - cnn_loss: 0.3168 - cnn_accuracy: 0.8897"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 34/438 [=>............................] - ETA: 3s - loss: 0.4554 - ae_loss: 0.1420 - cnn_loss: 0.3134 - cnn_accuracy: 0.8919"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 3s - loss: 0.4550 - ae_loss: 0.1421 - cnn_loss: 0.3128 - cnn_accuracy: 0.8927"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 48/438 [==>...........................] - ETA: 3s - loss: 0.4562 - ae_loss: 0.1423 - cnn_loss: 0.3140 - cnn_accuracy: 0.8930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 55/438 [==>...........................] - ETA: 3s - loss: 0.4581 - ae_loss: 0.1424 - cnn_loss: 0.3157 - cnn_accuracy: 0.8929"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 62/438 [===>..........................] - ETA: 2s - loss: 0.4593 - ae_loss: 0.1425 - cnn_loss: 0.3168 - cnn_accuracy: 0.8929"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 69/438 [===>..........................] - ETA: 2s - loss: 0.4599 - ae_loss: 0.1426 - cnn_loss: 0.3173 - cnn_accuracy: 0.8930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 76/438 [====>.........................] - ETA: 2s - loss: 0.4603 - ae_loss: 0.1427 - cnn_loss: 0.3176 - cnn_accuracy: 0.8933"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 83/438 [====>.........................] - ETA: 2s - loss: 0.4606 - ae_loss: 0.1428 - cnn_loss: 0.3179 - cnn_accuracy: 0.8935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 90/438 [=====>........................] - ETA: 2s - loss: 0.4608 - ae_loss: 0.1428 - cnn_loss: 0.3180 - cnn_accuracy: 0.8937"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 97/438 [=====>........................] - ETA: 2s - loss: 0.4610 - ae_loss: 0.1429 - cnn_loss: 0.3181 - cnn_accuracy: 0.8938"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "104/438 [======>.......................] - ETA: 2s - loss: 0.4612 - ae_loss: 0.1429 - cnn_loss: 0.3183 - cnn_accuracy: 0.8938"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "111/438 [======>.......................] - ETA: 2s - loss: 0.4614 - ae_loss: 0.1430 - cnn_loss: 0.3184 - cnn_accuracy: 0.8939"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "118/438 [=======>......................] - ETA: 2s - loss: 0.4615 - ae_loss: 0.1430 - cnn_loss: 0.3185 - cnn_accuracy: 0.8939"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "125/438 [=======>......................] - ETA: 2s - loss: 0.4616 - ae_loss: 0.1431 - cnn_loss: 0.3186 - cnn_accuracy: 0.8939"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "132/438 [========>.....................] - ETA: 2s - loss: 0.4619 - ae_loss: 0.1431 - cnn_loss: 0.3187 - cnn_accuracy: 0.8939"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "139/438 [========>.....................] - ETA: 2s - loss: 0.4622 - ae_loss: 0.1431 - cnn_loss: 0.3191 - cnn_accuracy: 0.8939"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "146/438 [=========>....................] - ETA: 2s - loss: 0.4626 - ae_loss: 0.1432 - cnn_loss: 0.3194 - cnn_accuracy: 0.8938"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "153/438 [=========>....................] - ETA: 2s - loss: 0.4630 - ae_loss: 0.1432 - cnn_loss: 0.3197 - cnn_accuracy: 0.8937"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "160/438 [=========>....................] - ETA: 2s - loss: 0.4634 - ae_loss: 0.1433 - cnn_loss: 0.3201 - cnn_accuracy: 0.8936"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "167/438 [==========>...................] - ETA: 2s - loss: 0.4637 - ae_loss: 0.1433 - cnn_loss: 0.3204 - cnn_accuracy: 0.8935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "174/438 [==========>...................] - ETA: 2s - loss: 0.4639 - ae_loss: 0.1433 - cnn_loss: 0.3206 - cnn_accuracy: 0.8934"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "181/438 [===========>..................] - ETA: 2s - loss: 0.4642 - ae_loss: 0.1434 - cnn_loss: 0.3208 - cnn_accuracy: 0.8934"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "188/438 [===========>..................] - ETA: 1s - loss: 0.4644 - ae_loss: 0.1434 - cnn_loss: 0.3210 - cnn_accuracy: 0.8933"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "195/438 [============>.................] - ETA: 1s - loss: 0.4646 - ae_loss: 0.1434 - cnn_loss: 0.3212 - cnn_accuracy: 0.8933"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "202/438 [============>.................] - ETA: 1s - loss: 0.4648 - ae_loss: 0.1434 - cnn_loss: 0.3214 - cnn_accuracy: 0.8932"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "209/438 [=============>................] - ETA: 1s - loss: 0.4650 - ae_loss: 0.1435 - cnn_loss: 0.3215 - cnn_accuracy: 0.8932"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "216/438 [=============>................] - ETA: 1s - loss: 0.4652 - ae_loss: 0.1435 - cnn_loss: 0.3217 - cnn_accuracy: 0.8931"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "223/438 [==============>...............] - ETA: 1s - loss: 0.4653 - ae_loss: 0.1435 - cnn_loss: 0.3218 - cnn_accuracy: 0.8931"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "230/438 [==============>...............] - ETA: 1s - loss: 0.4655 - ae_loss: 0.1435 - cnn_loss: 0.3219 - cnn_accuracy: 0.8931"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "237/438 [===============>..............] - ETA: 1s - loss: 0.4656 - ae_loss: 0.1436 - cnn_loss: 0.3220 - cnn_accuracy: 0.8931"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "244/438 [===============>..............] - ETA: 1s - loss: 0.4657 - ae_loss: 0.1436 - cnn_loss: 0.3221 - cnn_accuracy: 0.8931"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "251/438 [================>.............] - ETA: 1s - loss: 0.4659 - ae_loss: 0.1436 - cnn_loss: 0.3222 - cnn_accuracy: 0.8931"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "258/438 [================>.............] - ETA: 1s - loss: 0.4660 - ae_loss: 0.1436 - cnn_loss: 0.3224 - cnn_accuracy: 0.8930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "265/438 [=================>............] - ETA: 1s - loss: 0.4662 - ae_loss: 0.1437 - cnn_loss: 0.3225 - cnn_accuracy: 0.8930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "272/438 [=================>............] - ETA: 1s - loss: 0.4664 - ae_loss: 0.1437 - cnn_loss: 0.3227 - cnn_accuracy: 0.8930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "279/438 [==================>...........] - ETA: 1s - loss: 0.4665 - ae_loss: 0.1437 - cnn_loss: 0.3228 - cnn_accuracy: 0.8930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "286/438 [==================>...........] - ETA: 1s - loss: 0.4667 - ae_loss: 0.1437 - cnn_loss: 0.3229 - cnn_accuracy: 0.8930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "293/438 [===================>..........] - ETA: 1s - loss: 0.4668 - ae_loss: 0.1438 - cnn_loss: 0.3231 - cnn_accuracy: 0.8930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "300/438 [===================>..........] - ETA: 1s - loss: 0.4670 - ae_loss: 0.1438 - cnn_loss: 0.3232 - cnn_accuracy: 0.8930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "307/438 [====================>.........] - ETA: 1s - loss: 0.4671 - ae_loss: 0.1438 - cnn_loss: 0.3233 - cnn_accuracy: 0.8930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "314/438 [====================>.........] - ETA: 0s - loss: 0.4673 - ae_loss: 0.1438 - cnn_loss: 0.3235 - cnn_accuracy: 0.8929"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "321/438 [====================>.........] - ETA: 0s - loss: 0.4675 - ae_loss: 0.1438 - cnn_loss: 0.3236 - cnn_accuracy: 0.8929"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "328/438 [=====================>........] - ETA: 0s - loss: 0.4676 - ae_loss: 0.1439 - cnn_loss: 0.3238 - cnn_accuracy: 0.8929"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "335/438 [=====================>........] - ETA: 0s - loss: 0.4678 - ae_loss: 0.1439 - cnn_loss: 0.3239 - cnn_accuracy: 0.8929"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "342/438 [======================>.......] - ETA: 0s - loss: 0.4679 - ae_loss: 0.1439 - cnn_loss: 0.3240 - cnn_accuracy: 0.8929"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "349/438 [======================>.......] - ETA: 0s - loss: 0.4680 - ae_loss: 0.1439 - cnn_loss: 0.3241 - cnn_accuracy: 0.8928"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "356/438 [=======================>......] - ETA: 0s - loss: 0.4682 - ae_loss: 0.1439 - cnn_loss: 0.3242 - cnn_accuracy: 0.8928"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "363/438 [=======================>......] - ETA: 0s - loss: 0.4683 - ae_loss: 0.1440 - cnn_loss: 0.3243 - cnn_accuracy: 0.8928"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "370/438 [========================>.....] - ETA: 0s - loss: 0.4684 - ae_loss: 0.1440 - cnn_loss: 0.3245 - cnn_accuracy: 0.8927"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "377/438 [========================>.....] - ETA: 0s - loss: 0.4686 - ae_loss: 0.1440 - cnn_loss: 0.3246 - cnn_accuracy: 0.8927"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "384/438 [=========================>....] - ETA: 0s - loss: 0.4688 - ae_loss: 0.1440 - cnn_loss: 0.3247 - cnn_accuracy: 0.8927"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "391/438 [=========================>....] - ETA: 0s - loss: 0.4689 - ae_loss: 0.1440 - cnn_loss: 0.3249 - cnn_accuracy: 0.8926"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "398/438 [==========================>...] - ETA: 0s - loss: 0.4691 - ae_loss: 0.1440 - cnn_loss: 0.3250 - cnn_accuracy: 0.8926"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "405/438 [==========================>...] - ETA: 0s - loss: 0.4692 - ae_loss: 0.1440 - cnn_loss: 0.3252 - cnn_accuracy: 0.8925"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "412/438 [===========================>..] - ETA: 0s - loss: 0.4694 - ae_loss: 0.1441 - cnn_loss: 0.3253 - cnn_accuracy: 0.8925"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "419/438 [===========================>..] - ETA: 0s - loss: 0.4695 - ae_loss: 0.1441 - cnn_loss: 0.3254 - cnn_accuracy: 0.8925"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "426/438 [============================>.] - ETA: 0s - loss: 0.4696 - ae_loss: 0.1441 - cnn_loss: 0.3256 - cnn_accuracy: 0.8924"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "433/438 [============================>.] - ETA: 0s - loss: 0.4698 - ae_loss: 0.1441 - cnn_loss: 0.3257 - cnn_accuracy: 0.8924"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.4699 - ae_loss: 0.1441 - cnn_loss: 0.3258 - cnn_accuracy: 0.8924 - val_loss: 0.4756 - val_ae_loss: 0.1498 - val_cnn_loss: 0.3258 - val_cnn_accuracy: 0.8944\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 19/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.5274 - ae_loss: 0.1426 - cnn_loss: 0.3847 - cnn_accuracy: 0.8750"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.4904 - ae_loss: 0.1460 - cnn_loss: 0.3444 - cnn_accuracy: 0.8775"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 0.4806 - ae_loss: 0.1448 - cnn_loss: 0.3358 - cnn_accuracy: 0.8814"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 22/438 [>.............................] - ETA: 3s - loss: 0.4712 - ae_loss: 0.1442 - cnn_loss: 0.3270 - cnn_accuracy: 0.8855"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 3s - loss: 0.4673 - ae_loss: 0.1440 - cnn_loss: 0.3233 - cnn_accuracy: 0.8871"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 36/438 [=>............................] - ETA: 3s - loss: 0.4657 - ae_loss: 0.1439 - cnn_loss: 0.3218 - cnn_accuracy: 0.8877"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.4644 - ae_loss: 0.1439 - cnn_loss: 0.3205 - cnn_accuracy: 0.8882"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 3s - loss: 0.4629 - ae_loss: 0.1439 - cnn_loss: 0.3190 - cnn_accuracy: 0.8889"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.4618 - ae_loss: 0.1439 - cnn_loss: 0.3180 - cnn_accuracy: 0.8896"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 64/438 [===>..........................] - ETA: 2s - loss: 0.4612 - ae_loss: 0.1438 - cnn_loss: 0.3173 - cnn_accuracy: 0.8901"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 2s - loss: 0.4607 - ae_loss: 0.1438 - cnn_loss: 0.3169 - cnn_accuracy: 0.8904"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 78/438 [====>.........................] - ETA: 2s - loss: 0.4602 - ae_loss: 0.1438 - cnn_loss: 0.3165 - cnn_accuracy: 0.8907"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.4599 - ae_loss: 0.1437 - cnn_loss: 0.3162 - cnn_accuracy: 0.8909"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 92/438 [=====>........................] - ETA: 2s - loss: 0.4598 - ae_loss: 0.1437 - cnn_loss: 0.3161 - cnn_accuracy: 0.8911"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.4598 - ae_loss: 0.1437 - cnn_loss: 0.3161 - cnn_accuracy: 0.8913"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.4601 - ae_loss: 0.1437 - cnn_loss: 0.3164 - cnn_accuracy: 0.8913"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 0.4604 - ae_loss: 0.1437 - cnn_loss: 0.3166 - cnn_accuracy: 0.8914"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "120/438 [=======>......................] - ETA: 2s - loss: 0.4606 - ae_loss: 0.1437 - cnn_loss: 0.3168 - cnn_accuracy: 0.8914"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "127/438 [=======>......................] - ETA: 2s - loss: 0.4609 - ae_loss: 0.1438 - cnn_loss: 0.3171 - cnn_accuracy: 0.8914"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "134/438 [========>.....................] - ETA: 2s - loss: 0.4612 - ae_loss: 0.1438 - cnn_loss: 0.3174 - cnn_accuracy: 0.8914"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "141/438 [========>.....................] - ETA: 2s - loss: 0.4615 - ae_loss: 0.1438 - cnn_loss: 0.3177 - cnn_accuracy: 0.8914"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "148/438 [=========>....................] - ETA: 2s - loss: 0.4618 - ae_loss: 0.1438 - cnn_loss: 0.3180 - cnn_accuracy: 0.8915"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 2s - loss: 0.4621 - ae_loss: 0.1438 - cnn_loss: 0.3183 - cnn_accuracy: 0.8915"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 2s - loss: 0.4624 - ae_loss: 0.1438 - cnn_loss: 0.3186 - cnn_accuracy: 0.8915"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 2s - loss: 0.4627 - ae_loss: 0.1439 - cnn_loss: 0.3188 - cnn_accuracy: 0.8915"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 2s - loss: 0.4630 - ae_loss: 0.1439 - cnn_loss: 0.3191 - cnn_accuracy: 0.8915"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 1s - loss: 0.4632 - ae_loss: 0.1439 - cnn_loss: 0.3193 - cnn_accuracy: 0.8915"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "190/438 [============>.................] - ETA: 1s - loss: 0.4634 - ae_loss: 0.1439 - cnn_loss: 0.3195 - cnn_accuracy: 0.8915"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 1s - loss: 0.4636 - ae_loss: 0.1439 - cnn_loss: 0.3197 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "204/438 [============>.................] - ETA: 1s - loss: 0.4638 - ae_loss: 0.1439 - cnn_loss: 0.3199 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "211/438 [=============>................] - ETA: 1s - loss: 0.4640 - ae_loss: 0.1439 - cnn_loss: 0.3201 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "218/438 [=============>................] - ETA: 1s - loss: 0.4641 - ae_loss: 0.1439 - cnn_loss: 0.3202 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 1s - loss: 0.4642 - ae_loss: 0.1439 - cnn_loss: 0.3203 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "232/438 [==============>...............] - ETA: 1s - loss: 0.4643 - ae_loss: 0.1439 - cnn_loss: 0.3204 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "239/438 [===============>..............] - ETA: 1s - loss: 0.4644 - ae_loss: 0.1439 - cnn_loss: 0.3205 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "246/438 [===============>..............] - ETA: 1s - loss: 0.4645 - ae_loss: 0.1439 - cnn_loss: 0.3206 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "253/438 [================>.............] - ETA: 1s - loss: 0.4646 - ae_loss: 0.1439 - cnn_loss: 0.3207 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "260/438 [================>.............] - ETA: 1s - loss: 0.4647 - ae_loss: 0.1439 - cnn_loss: 0.3208 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "267/438 [=================>............] - ETA: 1s - loss: 0.4648 - ae_loss: 0.1440 - cnn_loss: 0.3209 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "274/438 [=================>............] - ETA: 1s - loss: 0.4649 - ae_loss: 0.1440 - cnn_loss: 0.3210 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 1s - loss: 0.4650 - ae_loss: 0.1440 - cnn_loss: 0.3211 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "288/438 [==================>...........] - ETA: 1s - loss: 0.4651 - ae_loss: 0.1440 - cnn_loss: 0.3212 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "295/438 [===================>..........] - ETA: 1s - loss: 0.4652 - ae_loss: 0.1440 - cnn_loss: 0.3212 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "301/438 [===================>..........] - ETA: 1s - loss: 0.4653 - ae_loss: 0.1440 - cnn_loss: 0.3213 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "308/438 [====================>.........] - ETA: 1s - loss: 0.4654 - ae_loss: 0.1440 - cnn_loss: 0.3214 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "315/438 [====================>.........] - ETA: 0s - loss: 0.4655 - ae_loss: 0.1440 - cnn_loss: 0.3215 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "322/438 [=====================>........] - ETA: 0s - loss: 0.4656 - ae_loss: 0.1440 - cnn_loss: 0.3216 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "329/438 [=====================>........] - ETA: 0s - loss: 0.4657 - ae_loss: 0.1440 - cnn_loss: 0.3217 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "336/438 [======================>.......] - ETA: 0s - loss: 0.4658 - ae_loss: 0.1440 - cnn_loss: 0.3218 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "343/438 [======================>.......] - ETA: 0s - loss: 0.4659 - ae_loss: 0.1440 - cnn_loss: 0.3219 - cnn_accuracy: 0.8916"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "350/438 [======================>.......] - ETA: 0s - loss: 0.4660 - ae_loss: 0.1440 - cnn_loss: 0.3219 - cnn_accuracy: 0.8917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "357/438 [=======================>......] - ETA: 0s - loss: 0.4660 - ae_loss: 0.1440 - cnn_loss: 0.3220 - cnn_accuracy: 0.8917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "364/438 [=======================>......] - ETA: 0s - loss: 0.4661 - ae_loss: 0.1440 - cnn_loss: 0.3220 - cnn_accuracy: 0.8917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "371/438 [========================>.....] - ETA: 0s - loss: 0.4662 - ae_loss: 0.1440 - cnn_loss: 0.3221 - cnn_accuracy: 0.8917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "377/438 [========================>.....] - ETA: 0s - loss: 0.4662 - ae_loss: 0.1440 - cnn_loss: 0.3222 - cnn_accuracy: 0.8917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "383/438 [=========================>....] - ETA: 0s - loss: 0.4663 - ae_loss: 0.1440 - cnn_loss: 0.3223 - cnn_accuracy: 0.8917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "389/438 [=========================>....] - ETA: 0s - loss: 0.4664 - ae_loss: 0.1440 - cnn_loss: 0.3223 - cnn_accuracy: 0.8917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "395/438 [==========================>...] - ETA: 0s - loss: 0.4665 - ae_loss: 0.1441 - cnn_loss: 0.3224 - cnn_accuracy: 0.8917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "401/438 [==========================>...] - ETA: 0s - loss: 0.4666 - ae_loss: 0.1441 - cnn_loss: 0.3225 - cnn_accuracy: 0.8917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "407/438 [==========================>...] - ETA: 0s - loss: 0.4666 - ae_loss: 0.1441 - cnn_loss: 0.3226 - cnn_accuracy: 0.8917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "413/438 [===========================>..] - ETA: 0s - loss: 0.4667 - ae_loss: 0.1441 - cnn_loss: 0.3227 - cnn_accuracy: 0.8917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "419/438 [===========================>..] - ETA: 0s - loss: 0.4668 - ae_loss: 0.1441 - cnn_loss: 0.3227 - cnn_accuracy: 0.8917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "425/438 [============================>.] - ETA: 0s - loss: 0.4669 - ae_loss: 0.1441 - cnn_loss: 0.3228 - cnn_accuracy: 0.8917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "431/438 [============================>.] - ETA: 0s - loss: 0.4669 - ae_loss: 0.1441 - cnn_loss: 0.3229 - cnn_accuracy: 0.8917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "437/438 [============================>.] - ETA: 0s - loss: 0.4670 - ae_loss: 0.1441 - cnn_loss: 0.3230 - cnn_accuracy: 0.8917"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.4671 - ae_loss: 0.1441 - cnn_loss: 0.3230 - cnn_accuracy: 0.8917 - val_loss: 0.4782 - val_ae_loss: 0.1529 - val_cnn_loss: 0.3254 - val_cnn_accuracy: 0.8951\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 20/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.5867 - ae_loss: 0.1447 - cnn_loss: 0.4420 - cnn_accuracy: 0.8906"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.5009 - ae_loss: 0.1438 - cnn_loss: 0.3570 - cnn_accuracy: 0.8882"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 0.4827 - ae_loss: 0.1432 - cnn_loss: 0.3395 - cnn_accuracy: 0.8932"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 22/438 [>.............................] - ETA: 3s - loss: 0.4774 - ae_loss: 0.1430 - cnn_loss: 0.3344 - cnn_accuracy: 0.8946"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 3s - loss: 0.4759 - ae_loss: 0.1430 - cnn_loss: 0.3328 - cnn_accuracy: 0.8953"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 36/438 [=>............................] - ETA: 3s - loss: 0.4756 - ae_loss: 0.1431 - cnn_loss: 0.3325 - cnn_accuracy: 0.8954"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.4756 - ae_loss: 0.1431 - cnn_loss: 0.3325 - cnn_accuracy: 0.8953"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 3s - loss: 0.4751 - ae_loss: 0.1431 - cnn_loss: 0.3321 - cnn_accuracy: 0.8952"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 3s - loss: 0.4746 - ae_loss: 0.1431 - cnn_loss: 0.3315 - cnn_accuracy: 0.8952"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 64/438 [===>..........................] - ETA: 2s - loss: 0.4742 - ae_loss: 0.1431 - cnn_loss: 0.3311 - cnn_accuracy: 0.8951"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 2s - loss: 0.4738 - ae_loss: 0.1431 - cnn_loss: 0.3307 - cnn_accuracy: 0.8950"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 78/438 [====>.........................] - ETA: 2s - loss: 0.4735 - ae_loss: 0.1430 - cnn_loss: 0.3305 - cnn_accuracy: 0.8948"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.4734 - ae_loss: 0.1430 - cnn_loss: 0.3303 - cnn_accuracy: 0.8947"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 92/438 [=====>........................] - ETA: 2s - loss: 0.4730 - ae_loss: 0.1430 - cnn_loss: 0.3300 - cnn_accuracy: 0.8947"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.4726 - ae_loss: 0.1430 - cnn_loss: 0.3296 - cnn_accuracy: 0.8947"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "105/438 [======>.......................] - ETA: 2s - loss: 0.4725 - ae_loss: 0.1430 - cnn_loss: 0.3295 - cnn_accuracy: 0.8946"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "111/438 [======>.......................] - ETA: 2s - loss: 0.4724 - ae_loss: 0.1430 - cnn_loss: 0.3294 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "117/438 [=======>......................] - ETA: 2s - loss: 0.4722 - ae_loss: 0.1430 - cnn_loss: 0.3292 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "123/438 [=======>......................] - ETA: 2s - loss: 0.4721 - ae_loss: 0.1430 - cnn_loss: 0.3291 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "129/438 [=======>......................] - ETA: 2s - loss: 0.4718 - ae_loss: 0.1430 - cnn_loss: 0.3288 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "135/438 [========>.....................] - ETA: 2s - loss: 0.4716 - ae_loss: 0.1430 - cnn_loss: 0.3286 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "142/438 [========>.....................] - ETA: 2s - loss: 0.4714 - ae_loss: 0.1430 - cnn_loss: 0.3284 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "149/438 [=========>....................] - ETA: 2s - loss: 0.4712 - ae_loss: 0.1430 - cnn_loss: 0.3282 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "156/438 [=========>....................] - ETA: 2s - loss: 0.4710 - ae_loss: 0.1430 - cnn_loss: 0.3280 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "163/438 [==========>...................] - ETA: 2s - loss: 0.4708 - ae_loss: 0.1430 - cnn_loss: 0.3278 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "170/438 [==========>...................] - ETA: 2s - loss: 0.4707 - ae_loss: 0.1431 - cnn_loss: 0.3276 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "177/438 [===========>..................] - ETA: 2s - loss: 0.4706 - ae_loss: 0.1431 - cnn_loss: 0.3275 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "184/438 [===========>..................] - ETA: 2s - loss: 0.4705 - ae_loss: 0.1431 - cnn_loss: 0.3274 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "191/438 [============>.................] - ETA: 1s - loss: 0.4704 - ae_loss: 0.1431 - cnn_loss: 0.3273 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "198/438 [============>.................] - ETA: 1s - loss: 0.4703 - ae_loss: 0.1431 - cnn_loss: 0.3272 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "205/438 [=============>................] - ETA: 1s - loss: 0.4702 - ae_loss: 0.1431 - cnn_loss: 0.3271 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "212/438 [=============>................] - ETA: 1s - loss: 0.4702 - ae_loss: 0.1432 - cnn_loss: 0.3270 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "219/438 [==============>...............] - ETA: 1s - loss: 0.4702 - ae_loss: 0.1432 - cnn_loss: 0.3270 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "226/438 [==============>...............] - ETA: 1s - loss: 0.4701 - ae_loss: 0.1432 - cnn_loss: 0.3269 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "233/438 [==============>...............] - ETA: 1s - loss: 0.4700 - ae_loss: 0.1432 - cnn_loss: 0.3268 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "240/438 [===============>..............] - ETA: 1s - loss: 0.4699 - ae_loss: 0.1432 - cnn_loss: 0.3267 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "247/438 [===============>..............] - ETA: 1s - loss: 0.4698 - ae_loss: 0.1432 - cnn_loss: 0.3266 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "254/438 [================>.............] - ETA: 1s - loss: 0.4697 - ae_loss: 0.1432 - cnn_loss: 0.3265 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "261/438 [================>.............] - ETA: 1s - loss: 0.4696 - ae_loss: 0.1432 - cnn_loss: 0.3264 - cnn_accuracy: 0.8946"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "268/438 [=================>............] - ETA: 1s - loss: 0.4696 - ae_loss: 0.1433 - cnn_loss: 0.3263 - cnn_accuracy: 0.8946"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "275/438 [=================>............] - ETA: 1s - loss: 0.4695 - ae_loss: 0.1433 - cnn_loss: 0.3262 - cnn_accuracy: 0.8946"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "282/438 [==================>...........] - ETA: 1s - loss: 0.4694 - ae_loss: 0.1433 - cnn_loss: 0.3262 - cnn_accuracy: 0.8946"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "289/438 [==================>...........] - ETA: 1s - loss: 0.4694 - ae_loss: 0.1433 - cnn_loss: 0.3261 - cnn_accuracy: 0.8946"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "296/438 [===================>..........] - ETA: 1s - loss: 0.4693 - ae_loss: 0.1433 - cnn_loss: 0.3260 - cnn_accuracy: 0.8946"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "303/438 [===================>..........] - ETA: 1s - loss: 0.4693 - ae_loss: 0.1433 - cnn_loss: 0.3260 - cnn_accuracy: 0.8946"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "310/438 [====================>.........] - ETA: 1s - loss: 0.4693 - ae_loss: 0.1433 - cnn_loss: 0.3260 - cnn_accuracy: 0.8946"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "317/438 [====================>.........] - ETA: 0s - loss: 0.4692 - ae_loss: 0.1433 - cnn_loss: 0.3259 - cnn_accuracy: 0.8946"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "324/438 [=====================>........] - ETA: 0s - loss: 0.4692 - ae_loss: 0.1433 - cnn_loss: 0.3259 - cnn_accuracy: 0.8946"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "331/438 [=====================>........] - ETA: 0s - loss: 0.4692 - ae_loss: 0.1433 - cnn_loss: 0.3258 - cnn_accuracy: 0.8946"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "338/438 [======================>.......] - ETA: 0s - loss: 0.4691 - ae_loss: 0.1433 - cnn_loss: 0.3258 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "345/438 [======================>.......] - ETA: 0s - loss: 0.4691 - ae_loss: 0.1433 - cnn_loss: 0.3258 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "352/438 [=======================>......] - ETA: 0s - loss: 0.4691 - ae_loss: 0.1433 - cnn_loss: 0.3258 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "359/438 [=======================>......] - ETA: 0s - loss: 0.4691 - ae_loss: 0.1433 - cnn_loss: 0.3258 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "366/438 [========================>.....] - ETA: 0s - loss: 0.4691 - ae_loss: 0.1433 - cnn_loss: 0.3258 - cnn_accuracy: 0.8944"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "373/438 [========================>.....] - ETA: 0s - loss: 0.4691 - ae_loss: 0.1433 - cnn_loss: 0.3258 - cnn_accuracy: 0.8944"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "380/438 [=========================>....] - ETA: 0s - loss: 0.4691 - ae_loss: 0.1433 - cnn_loss: 0.3258 - cnn_accuracy: 0.8944"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "387/438 [=========================>....] - ETA: 0s - loss: 0.4691 - ae_loss: 0.1434 - cnn_loss: 0.3258 - cnn_accuracy: 0.8943"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "394/438 [=========================>....] - ETA: 0s - loss: 0.4691 - ae_loss: 0.1434 - cnn_loss: 0.3258 - cnn_accuracy: 0.8943"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "401/438 [==========================>...] - ETA: 0s - loss: 0.4691 - ae_loss: 0.1434 - cnn_loss: 0.3258 - cnn_accuracy: 0.8943"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "408/438 [==========================>...] - ETA: 0s - loss: 0.4691 - ae_loss: 0.1434 - cnn_loss: 0.3257 - cnn_accuracy: 0.8943"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "415/438 [===========================>..] - ETA: 0s - loss: 0.4691 - ae_loss: 0.1434 - cnn_loss: 0.3257 - cnn_accuracy: 0.8943"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "422/438 [===========================>..] - ETA: 0s - loss: 0.4691 - ae_loss: 0.1434 - cnn_loss: 0.3257 - cnn_accuracy: 0.8942"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "429/438 [============================>.] - ETA: 0s - loss: 0.4691 - ae_loss: 0.1434 - cnn_loss: 0.3257 - cnn_accuracy: 0.8942"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "436/438 [============================>.] - ETA: 0s - loss: 0.4691 - ae_loss: 0.1434 - cnn_loss: 0.3257 - cnn_accuracy: 0.8942"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.4692 - ae_loss: 0.1434 - cnn_loss: 0.3257 - cnn_accuracy: 0.8942 - val_loss: 0.4754 - val_ae_loss: 0.1505 - val_cnn_loss: 0.3249 - val_cnn_accuracy: 0.8949\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 21/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.4496 - ae_loss: 0.1418 - cnn_loss: 0.3078 - cnn_accuracy: 0.8984"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.4302 - ae_loss: 0.1388 - cnn_loss: 0.2914 - cnn_accuracy: 0.9005"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 0.4377 - ae_loss: 0.1396 - cnn_loss: 0.2981 - cnn_accuracy: 0.8997"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 22/438 [>.............................] - ETA: 3s - loss: 0.4458 - ae_loss: 0.1399 - cnn_loss: 0.3059 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 3s - loss: 0.4519 - ae_loss: 0.1403 - cnn_loss: 0.3116 - cnn_accuracy: 0.8961"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 36/438 [=>............................] - ETA: 3s - loss: 0.4534 - ae_loss: 0.1406 - cnn_loss: 0.3127 - cnn_accuracy: 0.8959"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.4542 - ae_loss: 0.1409 - cnn_loss: 0.3133 - cnn_accuracy: 0.8959"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 3s - loss: 0.4543 - ae_loss: 0.1411 - cnn_loss: 0.3132 - cnn_accuracy: 0.8961"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.4541 - ae_loss: 0.1413 - cnn_loss: 0.3128 - cnn_accuracy: 0.8963"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 64/438 [===>..........................] - ETA: 2s - loss: 0.4540 - ae_loss: 0.1414 - cnn_loss: 0.3126 - cnn_accuracy: 0.8965"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 2s - loss: 0.4538 - ae_loss: 0.1416 - cnn_loss: 0.3123 - cnn_accuracy: 0.8967"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 78/438 [====>.........................] - ETA: 2s - loss: 0.4540 - ae_loss: 0.1417 - cnn_loss: 0.3123 - cnn_accuracy: 0.8967"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.4541 - ae_loss: 0.1418 - cnn_loss: 0.3123 - cnn_accuracy: 0.8968"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 92/438 [=====>........................] - ETA: 2s - loss: 0.4542 - ae_loss: 0.1418 - cnn_loss: 0.3123 - cnn_accuracy: 0.8970"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.4546 - ae_loss: 0.1419 - cnn_loss: 0.3127 - cnn_accuracy: 0.8970"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.4550 - ae_loss: 0.1419 - cnn_loss: 0.3131 - cnn_accuracy: 0.8970"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 0.4553 - ae_loss: 0.1420 - cnn_loss: 0.3133 - cnn_accuracy: 0.8970"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "120/438 [=======>......................] - ETA: 2s - loss: 0.4555 - ae_loss: 0.1420 - cnn_loss: 0.3134 - cnn_accuracy: 0.8970"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "127/438 [=======>......................] - ETA: 2s - loss: 0.4556 - ae_loss: 0.1421 - cnn_loss: 0.3135 - cnn_accuracy: 0.8971"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "134/438 [========>.....................] - ETA: 2s - loss: 0.4557 - ae_loss: 0.1421 - cnn_loss: 0.3136 - cnn_accuracy: 0.8971"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "141/438 [========>.....................] - ETA: 2s - loss: 0.4558 - ae_loss: 0.1421 - cnn_loss: 0.3137 - cnn_accuracy: 0.8971"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "148/438 [=========>....................] - ETA: 2s - loss: 0.4560 - ae_loss: 0.1422 - cnn_loss: 0.3138 - cnn_accuracy: 0.8970"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 2s - loss: 0.4561 - ae_loss: 0.1422 - cnn_loss: 0.3139 - cnn_accuracy: 0.8970"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 2s - loss: 0.4562 - ae_loss: 0.1423 - cnn_loss: 0.3140 - cnn_accuracy: 0.8970"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 2s - loss: 0.4563 - ae_loss: 0.1423 - cnn_loss: 0.3140 - cnn_accuracy: 0.8970"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "175/438 [==========>...................] - ETA: 2s - loss: 0.4564 - ae_loss: 0.1423 - cnn_loss: 0.3141 - cnn_accuracy: 0.8969"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "181/438 [===========>..................] - ETA: 2s - loss: 0.4565 - ae_loss: 0.1423 - cnn_loss: 0.3141 - cnn_accuracy: 0.8969"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "188/438 [===========>..................] - ETA: 1s - loss: 0.4565 - ae_loss: 0.1424 - cnn_loss: 0.3142 - cnn_accuracy: 0.8969"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "195/438 [============>.................] - ETA: 1s - loss: 0.4566 - ae_loss: 0.1424 - cnn_loss: 0.3142 - cnn_accuracy: 0.8969"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "202/438 [============>.................] - ETA: 1s - loss: 0.4566 - ae_loss: 0.1424 - cnn_loss: 0.3142 - cnn_accuracy: 0.8969"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "209/438 [=============>................] - ETA: 1s - loss: 0.4567 - ae_loss: 0.1424 - cnn_loss: 0.3142 - cnn_accuracy: 0.8969"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "216/438 [=============>................] - ETA: 1s - loss: 0.4566 - ae_loss: 0.1425 - cnn_loss: 0.3142 - cnn_accuracy: 0.8969"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "223/438 [==============>...............] - ETA: 1s - loss: 0.4566 - ae_loss: 0.1425 - cnn_loss: 0.3141 - cnn_accuracy: 0.8969"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "230/438 [==============>...............] - ETA: 1s - loss: 0.4566 - ae_loss: 0.1425 - cnn_loss: 0.3141 - cnn_accuracy: 0.8969"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "237/438 [===============>..............] - ETA: 1s - loss: 0.4566 - ae_loss: 0.1425 - cnn_loss: 0.3141 - cnn_accuracy: 0.8969"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "244/438 [===============>..............] - ETA: 1s - loss: 0.4567 - ae_loss: 0.1425 - cnn_loss: 0.3142 - cnn_accuracy: 0.8969"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "251/438 [================>.............] - ETA: 1s - loss: 0.4567 - ae_loss: 0.1426 - cnn_loss: 0.3142 - cnn_accuracy: 0.8968"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "258/438 [================>.............] - ETA: 1s - loss: 0.4568 - ae_loss: 0.1426 - cnn_loss: 0.3142 - cnn_accuracy: 0.8968"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "265/438 [=================>............] - ETA: 1s - loss: 0.4569 - ae_loss: 0.1426 - cnn_loss: 0.3143 - cnn_accuracy: 0.8968"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "272/438 [=================>............] - ETA: 1s - loss: 0.4570 - ae_loss: 0.1426 - cnn_loss: 0.3144 - cnn_accuracy: 0.8967"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "279/438 [==================>...........] - ETA: 1s - loss: 0.4571 - ae_loss: 0.1426 - cnn_loss: 0.3144 - cnn_accuracy: 0.8967"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "286/438 [==================>...........] - ETA: 1s - loss: 0.4571 - ae_loss: 0.1426 - cnn_loss: 0.3145 - cnn_accuracy: 0.8967"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "293/438 [===================>..........] - ETA: 1s - loss: 0.4572 - ae_loss: 0.1427 - cnn_loss: 0.3146 - cnn_accuracy: 0.8966"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "300/438 [===================>..........] - ETA: 1s - loss: 0.4574 - ae_loss: 0.1427 - cnn_loss: 0.3147 - cnn_accuracy: 0.8966"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "307/438 [====================>.........] - ETA: 1s - loss: 0.4575 - ae_loss: 0.1427 - cnn_loss: 0.3148 - cnn_accuracy: 0.8965"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "314/438 [====================>.........] - ETA: 0s - loss: 0.4576 - ae_loss: 0.1427 - cnn_loss: 0.3149 - cnn_accuracy: 0.8965"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "321/438 [====================>.........] - ETA: 0s - loss: 0.4577 - ae_loss: 0.1427 - cnn_loss: 0.3150 - cnn_accuracy: 0.8965"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "328/438 [=====================>........] - ETA: 0s - loss: 0.4578 - ae_loss: 0.1427 - cnn_loss: 0.3151 - cnn_accuracy: 0.8964"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "335/438 [=====================>........] - ETA: 0s - loss: 0.4579 - ae_loss: 0.1427 - cnn_loss: 0.3152 - cnn_accuracy: 0.8964"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "342/438 [======================>.......] - ETA: 0s - loss: 0.4581 - ae_loss: 0.1428 - cnn_loss: 0.3153 - cnn_accuracy: 0.8963"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "349/438 [======================>.......] - ETA: 0s - loss: 0.4582 - ae_loss: 0.1428 - cnn_loss: 0.3154 - cnn_accuracy: 0.8963"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "356/438 [=======================>......] - ETA: 0s - loss: 0.4583 - ae_loss: 0.1428 - cnn_loss: 0.3155 - cnn_accuracy: 0.8963"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "363/438 [=======================>......] - ETA: 0s - loss: 0.4584 - ae_loss: 0.1428 - cnn_loss: 0.3156 - cnn_accuracy: 0.8962"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "370/438 [========================>.....] - ETA: 0s - loss: 0.4585 - ae_loss: 0.1428 - cnn_loss: 0.3157 - cnn_accuracy: 0.8962"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "377/438 [========================>.....] - ETA: 0s - loss: 0.4586 - ae_loss: 0.1428 - cnn_loss: 0.3158 - cnn_accuracy: 0.8961"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "384/438 [=========================>....] - ETA: 0s - loss: 0.4587 - ae_loss: 0.1428 - cnn_loss: 0.3159 - cnn_accuracy: 0.8961"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "391/438 [=========================>....] - ETA: 0s - loss: 0.4588 - ae_loss: 0.1428 - cnn_loss: 0.3160 - cnn_accuracy: 0.8961"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "398/438 [==========================>...] - ETA: 0s - loss: 0.4589 - ae_loss: 0.1428 - cnn_loss: 0.3161 - cnn_accuracy: 0.8960"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "405/438 [==========================>...] - ETA: 0s - loss: 0.4590 - ae_loss: 0.1429 - cnn_loss: 0.3162 - cnn_accuracy: 0.8960"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "412/438 [===========================>..] - ETA: 0s - loss: 0.4591 - ae_loss: 0.1429 - cnn_loss: 0.3162 - cnn_accuracy: 0.8960"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "419/438 [===========================>..] - ETA: 0s - loss: 0.4592 - ae_loss: 0.1429 - cnn_loss: 0.3163 - cnn_accuracy: 0.8959"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "426/438 [============================>.] - ETA: 0s - loss: 0.4593 - ae_loss: 0.1429 - cnn_loss: 0.3164 - cnn_accuracy: 0.8959"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "432/438 [============================>.] - ETA: 0s - loss: 0.4594 - ae_loss: 0.1429 - cnn_loss: 0.3165 - cnn_accuracy: 0.8959"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - ETA: 0s - loss: 0.4595 - ae_loss: 0.1429 - cnn_loss: 0.3166 - cnn_accuracy: 0.8959"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.4595 - ae_loss: 0.1429 - cnn_loss: 0.3166 - cnn_accuracy: 0.8958 - val_loss: 0.4756 - val_ae_loss: 0.1514 - val_cnn_loss: 0.3242 - val_cnn_accuracy: 0.8952\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 22/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 4s - loss: 0.5022 - ae_loss: 0.1453 - cnn_loss: 0.3569 - cnn_accuracy: 0.8672"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  7/438 [..............................] - ETA: 3s - loss: 0.4509 - ae_loss: 0.1415 - cnn_loss: 0.3094 - cnn_accuracy: 0.8937"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 13/438 [..............................] - ETA: 3s - loss: 0.4451 - ae_loss: 0.1412 - cnn_loss: 0.3039 - cnn_accuracy: 0.8938"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 19/438 [>.............................] - ETA: 3s - loss: 0.4430 - ae_loss: 0.1412 - cnn_loss: 0.3018 - cnn_accuracy: 0.8938"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 3s - loss: 0.4443 - ae_loss: 0.1412 - cnn_loss: 0.3031 - cnn_accuracy: 0.8935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 31/438 [=>............................] - ETA: 3s - loss: 0.4447 - ae_loss: 0.1413 - cnn_loss: 0.3034 - cnn_accuracy: 0.8935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 37/438 [=>............................] - ETA: 3s - loss: 0.4451 - ae_loss: 0.1414 - cnn_loss: 0.3037 - cnn_accuracy: 0.8936"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.4453 - ae_loss: 0.1414 - cnn_loss: 0.3039 - cnn_accuracy: 0.8936"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 49/438 [==>...........................] - ETA: 3s - loss: 0.4455 - ae_loss: 0.1415 - cnn_loss: 0.3040 - cnn_accuracy: 0.8939"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 55/438 [==>...........................] - ETA: 3s - loss: 0.4454 - ae_loss: 0.1416 - cnn_loss: 0.3038 - cnn_accuracy: 0.8942"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 61/438 [===>..........................] - ETA: 3s - loss: 0.4453 - ae_loss: 0.1416 - cnn_loss: 0.3037 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 67/438 [===>..........................] - ETA: 3s - loss: 0.4452 - ae_loss: 0.1416 - cnn_loss: 0.3036 - cnn_accuracy: 0.8947"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 73/438 [====>.........................] - ETA: 3s - loss: 0.4455 - ae_loss: 0.1416 - cnn_loss: 0.3039 - cnn_accuracy: 0.8948"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 79/438 [====>.........................] - ETA: 3s - loss: 0.4455 - ae_loss: 0.1416 - cnn_loss: 0.3039 - cnn_accuracy: 0.8950"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 3s - loss: 0.4455 - ae_loss: 0.1416 - cnn_loss: 0.3038 - cnn_accuracy: 0.8951"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 92/438 [=====>........................] - ETA: 2s - loss: 0.4454 - ae_loss: 0.1417 - cnn_loss: 0.3037 - cnn_accuracy: 0.8953"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.4456 - ae_loss: 0.1417 - cnn_loss: 0.3039 - cnn_accuracy: 0.8953"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.4458 - ae_loss: 0.1417 - cnn_loss: 0.3041 - cnn_accuracy: 0.8954"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 0.4462 - ae_loss: 0.1418 - cnn_loss: 0.3044 - cnn_accuracy: 0.8954"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "120/438 [=======>......................] - ETA: 2s - loss: 0.4466 - ae_loss: 0.1418 - cnn_loss: 0.3048 - cnn_accuracy: 0.8953"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "127/438 [=======>......................] - ETA: 2s - loss: 0.4471 - ae_loss: 0.1419 - cnn_loss: 0.3052 - cnn_accuracy: 0.8953"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "134/438 [========>.....................] - ETA: 2s - loss: 0.4474 - ae_loss: 0.1419 - cnn_loss: 0.3055 - cnn_accuracy: 0.8953"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "141/438 [========>.....................] - ETA: 2s - loss: 0.4478 - ae_loss: 0.1419 - cnn_loss: 0.3059 - cnn_accuracy: 0.8953"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "148/438 [=========>....................] - ETA: 2s - loss: 0.4480 - ae_loss: 0.1420 - cnn_loss: 0.3061 - cnn_accuracy: 0.8954"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 2s - loss: 0.4482 - ae_loss: 0.1420 - cnn_loss: 0.3062 - cnn_accuracy: 0.8954"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 2s - loss: 0.4484 - ae_loss: 0.1420 - cnn_loss: 0.3064 - cnn_accuracy: 0.8955"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 2s - loss: 0.4486 - ae_loss: 0.1421 - cnn_loss: 0.3066 - cnn_accuracy: 0.8955"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 2s - loss: 0.4488 - ae_loss: 0.1421 - cnn_loss: 0.3067 - cnn_accuracy: 0.8956"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 2s - loss: 0.4490 - ae_loss: 0.1421 - cnn_loss: 0.3069 - cnn_accuracy: 0.8957"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "190/438 [============>.................] - ETA: 2s - loss: 0.4491 - ae_loss: 0.1421 - cnn_loss: 0.3070 - cnn_accuracy: 0.8957"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 1s - loss: 0.4494 - ae_loss: 0.1421 - cnn_loss: 0.3072 - cnn_accuracy: 0.8958"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "204/438 [============>.................] - ETA: 1s - loss: 0.4496 - ae_loss: 0.1422 - cnn_loss: 0.3074 - cnn_accuracy: 0.8958"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "211/438 [=============>................] - ETA: 1s - loss: 0.4497 - ae_loss: 0.1422 - cnn_loss: 0.3076 - cnn_accuracy: 0.8958"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "218/438 [=============>................] - ETA: 1s - loss: 0.4499 - ae_loss: 0.1422 - cnn_loss: 0.3077 - cnn_accuracy: 0.8959"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 1s - loss: 0.4500 - ae_loss: 0.1422 - cnn_loss: 0.3078 - cnn_accuracy: 0.8959"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "232/438 [==============>...............] - ETA: 1s - loss: 0.4502 - ae_loss: 0.1422 - cnn_loss: 0.3079 - cnn_accuracy: 0.8959"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "239/438 [===============>..............] - ETA: 1s - loss: 0.4503 - ae_loss: 0.1422 - cnn_loss: 0.3081 - cnn_accuracy: 0.8960"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "246/438 [===============>..............] - ETA: 1s - loss: 0.4504 - ae_loss: 0.1422 - cnn_loss: 0.3082 - cnn_accuracy: 0.8960"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "253/438 [================>.............] - ETA: 1s - loss: 0.4506 - ae_loss: 0.1423 - cnn_loss: 0.3083 - cnn_accuracy: 0.8960"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "260/438 [================>.............] - ETA: 1s - loss: 0.4508 - ae_loss: 0.1423 - cnn_loss: 0.3085 - cnn_accuracy: 0.8960"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "267/438 [=================>............] - ETA: 1s - loss: 0.4509 - ae_loss: 0.1423 - cnn_loss: 0.3086 - cnn_accuracy: 0.8960"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "274/438 [=================>............] - ETA: 1s - loss: 0.4511 - ae_loss: 0.1423 - cnn_loss: 0.3088 - cnn_accuracy: 0.8960"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 1s - loss: 0.4514 - ae_loss: 0.1423 - cnn_loss: 0.3090 - cnn_accuracy: 0.8960"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "288/438 [==================>...........] - ETA: 1s - loss: 0.4516 - ae_loss: 0.1423 - cnn_loss: 0.3092 - cnn_accuracy: 0.8960"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "295/438 [===================>..........] - ETA: 1s - loss: 0.4518 - ae_loss: 0.1424 - cnn_loss: 0.3094 - cnn_accuracy: 0.8960"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "301/438 [===================>..........] - ETA: 1s - loss: 0.4520 - ae_loss: 0.1424 - cnn_loss: 0.3096 - cnn_accuracy: 0.8960"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "308/438 [====================>.........] - ETA: 1s - loss: 0.4521 - ae_loss: 0.1424 - cnn_loss: 0.3098 - cnn_accuracy: 0.8960"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "314/438 [====================>.........] - ETA: 0s - loss: 0.4523 - ae_loss: 0.1424 - cnn_loss: 0.3099 - cnn_accuracy: 0.8959"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "320/438 [====================>.........] - ETA: 0s - loss: 0.4525 - ae_loss: 0.1424 - cnn_loss: 0.3101 - cnn_accuracy: 0.8959"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "327/438 [=====================>........] - ETA: 0s - loss: 0.4527 - ae_loss: 0.1424 - cnn_loss: 0.3102 - cnn_accuracy: 0.8959"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "333/438 [=====================>........] - ETA: 0s - loss: 0.4528 - ae_loss: 0.1424 - cnn_loss: 0.3104 - cnn_accuracy: 0.8959"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "340/438 [======================>.......] - ETA: 0s - loss: 0.4530 - ae_loss: 0.1425 - cnn_loss: 0.3105 - cnn_accuracy: 0.8959"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "347/438 [======================>.......] - ETA: 0s - loss: 0.4532 - ae_loss: 0.1425 - cnn_loss: 0.3107 - cnn_accuracy: 0.8959"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "354/438 [=======================>......] - ETA: 0s - loss: 0.4533 - ae_loss: 0.1425 - cnn_loss: 0.3108 - cnn_accuracy: 0.8958"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "361/438 [=======================>......] - ETA: 0s - loss: 0.4535 - ae_loss: 0.1425 - cnn_loss: 0.3110 - cnn_accuracy: 0.8958"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "368/438 [========================>.....] - ETA: 0s - loss: 0.4536 - ae_loss: 0.1425 - cnn_loss: 0.3111 - cnn_accuracy: 0.8958"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "375/438 [========================>.....] - ETA: 0s - loss: 0.4537 - ae_loss: 0.1425 - cnn_loss: 0.3112 - cnn_accuracy: 0.8958"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "382/438 [=========================>....] - ETA: 0s - loss: 0.4539 - ae_loss: 0.1425 - cnn_loss: 0.3114 - cnn_accuracy: 0.8958"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "389/438 [=========================>....] - ETA: 0s - loss: 0.4540 - ae_loss: 0.1425 - cnn_loss: 0.3115 - cnn_accuracy: 0.8958"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "396/438 [==========================>...] - ETA: 0s - loss: 0.4541 - ae_loss: 0.1425 - cnn_loss: 0.3116 - cnn_accuracy: 0.8958"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "403/438 [==========================>...] - ETA: 0s - loss: 0.4543 - ae_loss: 0.1426 - cnn_loss: 0.3117 - cnn_accuracy: 0.8958"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "410/438 [===========================>..] - ETA: 0s - loss: 0.4544 - ae_loss: 0.1426 - cnn_loss: 0.3118 - cnn_accuracy: 0.8958"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "417/438 [===========================>..] - ETA: 0s - loss: 0.4545 - ae_loss: 0.1426 - cnn_loss: 0.3119 - cnn_accuracy: 0.8958"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "424/438 [============================>.] - ETA: 0s - loss: 0.4546 - ae_loss: 0.1426 - cnn_loss: 0.3120 - cnn_accuracy: 0.8958"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "431/438 [============================>.] - ETA: 0s - loss: 0.4547 - ae_loss: 0.1426 - cnn_loss: 0.3121 - cnn_accuracy: 0.8957"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - ETA: 0s - loss: 0.4548 - ae_loss: 0.1426 - cnn_loss: 0.3122 - cnn_accuracy: 0.8957"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.4548 - ae_loss: 0.1426 - cnn_loss: 0.3122 - cnn_accuracy: 0.8957 - val_loss: 0.4762 - val_ae_loss: 0.1505 - val_cnn_loss: 0.3257 - val_cnn_accuracy: 0.8958\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 23/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.5216 - ae_loss: 0.1428 - cnn_loss: 0.3788 - cnn_accuracy: 0.9062"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.5110 - ae_loss: 0.1414 - cnn_loss: 0.3696 - cnn_accuracy: 0.8938"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 0.5069 - ae_loss: 0.1420 - cnn_loss: 0.3649 - cnn_accuracy: 0.8913"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 22/438 [>.............................] - ETA: 3s - loss: 0.5025 - ae_loss: 0.1421 - cnn_loss: 0.3604 - cnn_accuracy: 0.8901"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 3s - loss: 0.4982 - ae_loss: 0.1421 - cnn_loss: 0.3561 - cnn_accuracy: 0.8899"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 36/438 [=>............................] - ETA: 3s - loss: 0.4944 - ae_loss: 0.1422 - cnn_loss: 0.3521 - cnn_accuracy: 0.8904"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.4909 - ae_loss: 0.1423 - cnn_loss: 0.3486 - cnn_accuracy: 0.8911"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 3s - loss: 0.4877 - ae_loss: 0.1422 - cnn_loss: 0.3455 - cnn_accuracy: 0.8918"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.4846 - ae_loss: 0.1421 - cnn_loss: 0.3425 - cnn_accuracy: 0.8926"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 64/438 [===>..........................] - ETA: 2s - loss: 0.4819 - ae_loss: 0.1421 - cnn_loss: 0.3398 - cnn_accuracy: 0.8933"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 2s - loss: 0.4801 - ae_loss: 0.1421 - cnn_loss: 0.3380 - cnn_accuracy: 0.8937"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 78/438 [====>.........................] - ETA: 2s - loss: 0.4785 - ae_loss: 0.1421 - cnn_loss: 0.3364 - cnn_accuracy: 0.8939"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.4773 - ae_loss: 0.1421 - cnn_loss: 0.3352 - cnn_accuracy: 0.8940"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 92/438 [=====>........................] - ETA: 2s - loss: 0.4765 - ae_loss: 0.1421 - cnn_loss: 0.3343 - cnn_accuracy: 0.8941"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.4756 - ae_loss: 0.1421 - cnn_loss: 0.3335 - cnn_accuracy: 0.8941"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.4748 - ae_loss: 0.1421 - cnn_loss: 0.3327 - cnn_accuracy: 0.8941"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 0.4742 - ae_loss: 0.1421 - cnn_loss: 0.3320 - cnn_accuracy: 0.8941"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "120/438 [=======>......................] - ETA: 2s - loss: 0.4736 - ae_loss: 0.1422 - cnn_loss: 0.3314 - cnn_accuracy: 0.8942"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "127/438 [=======>......................] - ETA: 2s - loss: 0.4731 - ae_loss: 0.1422 - cnn_loss: 0.3309 - cnn_accuracy: 0.8942"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "134/438 [========>.....................] - ETA: 2s - loss: 0.4726 - ae_loss: 0.1422 - cnn_loss: 0.3305 - cnn_accuracy: 0.8941"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "141/438 [========>.....................] - ETA: 2s - loss: 0.4721 - ae_loss: 0.1422 - cnn_loss: 0.3300 - cnn_accuracy: 0.8941"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "148/438 [=========>....................] - ETA: 2s - loss: 0.4717 - ae_loss: 0.1422 - cnn_loss: 0.3295 - cnn_accuracy: 0.8942"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 2s - loss: 0.4713 - ae_loss: 0.1422 - cnn_loss: 0.3291 - cnn_accuracy: 0.8942"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 2s - loss: 0.4709 - ae_loss: 0.1422 - cnn_loss: 0.3287 - cnn_accuracy: 0.8942"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 2s - loss: 0.4705 - ae_loss: 0.1422 - cnn_loss: 0.3283 - cnn_accuracy: 0.8942"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 2s - loss: 0.4702 - ae_loss: 0.1422 - cnn_loss: 0.3280 - cnn_accuracy: 0.8942"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 1s - loss: 0.4699 - ae_loss: 0.1422 - cnn_loss: 0.3277 - cnn_accuracy: 0.8942"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "190/438 [============>.................] - ETA: 1s - loss: 0.4696 - ae_loss: 0.1422 - cnn_loss: 0.3273 - cnn_accuracy: 0.8943"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 1s - loss: 0.4693 - ae_loss: 0.1422 - cnn_loss: 0.3270 - cnn_accuracy: 0.8943"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "204/438 [============>.................] - ETA: 1s - loss: 0.4690 - ae_loss: 0.1423 - cnn_loss: 0.3267 - cnn_accuracy: 0.8944"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "211/438 [=============>................] - ETA: 1s - loss: 0.4687 - ae_loss: 0.1423 - cnn_loss: 0.3264 - cnn_accuracy: 0.8944"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "218/438 [=============>................] - ETA: 1s - loss: 0.4684 - ae_loss: 0.1423 - cnn_loss: 0.3261 - cnn_accuracy: 0.8944"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 1s - loss: 0.4681 - ae_loss: 0.1423 - cnn_loss: 0.3258 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "232/438 [==============>...............] - ETA: 1s - loss: 0.4679 - ae_loss: 0.1423 - cnn_loss: 0.3256 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "239/438 [===============>..............] - ETA: 1s - loss: 0.4676 - ae_loss: 0.1423 - cnn_loss: 0.3253 - cnn_accuracy: 0.8946"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "246/438 [===============>..............] - ETA: 1s - loss: 0.4673 - ae_loss: 0.1423 - cnn_loss: 0.3250 - cnn_accuracy: 0.8946"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "253/438 [================>.............] - ETA: 1s - loss: 0.4671 - ae_loss: 0.1423 - cnn_loss: 0.3248 - cnn_accuracy: 0.8947"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "260/438 [================>.............] - ETA: 1s - loss: 0.4669 - ae_loss: 0.1423 - cnn_loss: 0.3246 - cnn_accuracy: 0.8947"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "267/438 [=================>............] - ETA: 1s - loss: 0.4667 - ae_loss: 0.1423 - cnn_loss: 0.3243 - cnn_accuracy: 0.8948"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "274/438 [=================>............] - ETA: 1s - loss: 0.4665 - ae_loss: 0.1423 - cnn_loss: 0.3241 - cnn_accuracy: 0.8948"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 1s - loss: 0.4664 - ae_loss: 0.1424 - cnn_loss: 0.3240 - cnn_accuracy: 0.8948"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "288/438 [==================>...........] - ETA: 1s - loss: 0.4662 - ae_loss: 0.1424 - cnn_loss: 0.3238 - cnn_accuracy: 0.8948"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "295/438 [===================>..........] - ETA: 1s - loss: 0.4661 - ae_loss: 0.1424 - cnn_loss: 0.3237 - cnn_accuracy: 0.8948"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "302/438 [===================>..........] - ETA: 1s - loss: 0.4659 - ae_loss: 0.1424 - cnn_loss: 0.3236 - cnn_accuracy: 0.8949"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "309/438 [====================>.........] - ETA: 1s - loss: 0.4658 - ae_loss: 0.1424 - cnn_loss: 0.3235 - cnn_accuracy: 0.8949"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "316/438 [====================>.........] - ETA: 0s - loss: 0.4657 - ae_loss: 0.1424 - cnn_loss: 0.3234 - cnn_accuracy: 0.8949"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "323/438 [=====================>........] - ETA: 0s - loss: 0.4656 - ae_loss: 0.1424 - cnn_loss: 0.3232 - cnn_accuracy: 0.8949"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "330/438 [=====================>........] - ETA: 0s - loss: 0.4656 - ae_loss: 0.1424 - cnn_loss: 0.3232 - cnn_accuracy: 0.8949"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "337/438 [======================>.......] - ETA: 0s - loss: 0.4655 - ae_loss: 0.1424 - cnn_loss: 0.3231 - cnn_accuracy: 0.8949"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "344/438 [======================>.......] - ETA: 0s - loss: 0.4654 - ae_loss: 0.1424 - cnn_loss: 0.3230 - cnn_accuracy: 0.8949"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "351/438 [=======================>......] - ETA: 0s - loss: 0.4653 - ae_loss: 0.1424 - cnn_loss: 0.3229 - cnn_accuracy: 0.8949"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "358/438 [=======================>......] - ETA: 0s - loss: 0.4652 - ae_loss: 0.1424 - cnn_loss: 0.3228 - cnn_accuracy: 0.8949"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "365/438 [========================>.....] - ETA: 0s - loss: 0.4651 - ae_loss: 0.1424 - cnn_loss: 0.3227 - cnn_accuracy: 0.8949"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "372/438 [========================>.....] - ETA: 0s - loss: 0.4650 - ae_loss: 0.1424 - cnn_loss: 0.3226 - cnn_accuracy: 0.8949"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "379/438 [========================>.....] - ETA: 0s - loss: 0.4649 - ae_loss: 0.1424 - cnn_loss: 0.3225 - cnn_accuracy: 0.8949"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "386/438 [=========================>....] - ETA: 0s - loss: 0.4649 - ae_loss: 0.1424 - cnn_loss: 0.3224 - cnn_accuracy: 0.8949"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "393/438 [=========================>....] - ETA: 0s - loss: 0.4648 - ae_loss: 0.1425 - cnn_loss: 0.3224 - cnn_accuracy: 0.8949"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "400/438 [==========================>...] - ETA: 0s - loss: 0.4648 - ae_loss: 0.1425 - cnn_loss: 0.3223 - cnn_accuracy: 0.8949"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "407/438 [==========================>...] - ETA: 0s - loss: 0.4648 - ae_loss: 0.1425 - cnn_loss: 0.3223 - cnn_accuracy: 0.8949"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "414/438 [===========================>..] - ETA: 0s - loss: 0.4647 - ae_loss: 0.1425 - cnn_loss: 0.3223 - cnn_accuracy: 0.8948"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "421/438 [===========================>..] - ETA: 0s - loss: 0.4647 - ae_loss: 0.1425 - cnn_loss: 0.3222 - cnn_accuracy: 0.8948"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "428/438 [============================>.] - ETA: 0s - loss: 0.4647 - ae_loss: 0.1425 - cnn_loss: 0.3222 - cnn_accuracy: 0.8948"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "435/438 [============================>.] - ETA: 0s - loss: 0.4646 - ae_loss: 0.1425 - cnn_loss: 0.3222 - cnn_accuracy: 0.8948"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.4646 - ae_loss: 0.1425 - cnn_loss: 0.3221 - cnn_accuracy: 0.8948 - val_loss: 0.4787 - val_ae_loss: 0.1505 - val_cnn_loss: 0.3282 - val_cnn_accuracy: 0.8937\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 24/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.3864 - ae_loss: 0.1423 - cnn_loss: 0.2441 - cnn_accuracy: 0.9141"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.4229 - ae_loss: 0.1431 - cnn_loss: 0.2798 - cnn_accuracy: 0.9018"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 0.4349 - ae_loss: 0.1433 - cnn_loss: 0.2916 - cnn_accuracy: 0.9002"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 22/438 [>.............................] - ETA: 3s - loss: 0.4390 - ae_loss: 0.1435 - cnn_loss: 0.2955 - cnn_accuracy: 0.8991"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 28/438 [>.............................] - ETA: 3s - loss: 0.4380 - ae_loss: 0.1433 - cnn_loss: 0.2946 - cnn_accuracy: 0.8996"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 34/438 [=>............................] - ETA: 3s - loss: 0.4367 - ae_loss: 0.1431 - cnn_loss: 0.2936 - cnn_accuracy: 0.9002"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 40/438 [=>............................] - ETA: 3s - loss: 0.4357 - ae_loss: 0.1430 - cnn_loss: 0.2927 - cnn_accuracy: 0.9008"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 47/438 [==>...........................] - ETA: 3s - loss: 0.4343 - ae_loss: 0.1429 - cnn_loss: 0.2914 - cnn_accuracy: 0.9015"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 54/438 [==>...........................] - ETA: 3s - loss: 0.4337 - ae_loss: 0.1428 - cnn_loss: 0.2909 - cnn_accuracy: 0.9020"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 61/438 [===>..........................] - ETA: 3s - loss: 0.4333 - ae_loss: 0.1427 - cnn_loss: 0.2906 - cnn_accuracy: 0.9024"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 68/438 [===>..........................] - ETA: 2s - loss: 0.4331 - ae_loss: 0.1427 - cnn_loss: 0.2904 - cnn_accuracy: 0.9026"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 75/438 [====>.........................] - ETA: 2s - loss: 0.4329 - ae_loss: 0.1426 - cnn_loss: 0.2903 - cnn_accuracy: 0.9027"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 82/438 [====>.........................] - ETA: 2s - loss: 0.4330 - ae_loss: 0.1426 - cnn_loss: 0.2903 - cnn_accuracy: 0.9026"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 89/438 [=====>........................] - ETA: 2s - loss: 0.4330 - ae_loss: 0.1426 - cnn_loss: 0.2904 - cnn_accuracy: 0.9026"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 96/438 [=====>........................] - ETA: 2s - loss: 0.4331 - ae_loss: 0.1426 - cnn_loss: 0.2905 - cnn_accuracy: 0.9026"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "103/438 [======>.......................] - ETA: 2s - loss: 0.4334 - ae_loss: 0.1426 - cnn_loss: 0.2908 - cnn_accuracy: 0.9025"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "110/438 [======>.......................] - ETA: 2s - loss: 0.4338 - ae_loss: 0.1426 - cnn_loss: 0.2912 - cnn_accuracy: 0.9024"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "117/438 [=======>......................] - ETA: 2s - loss: 0.4342 - ae_loss: 0.1426 - cnn_loss: 0.2916 - cnn_accuracy: 0.9023"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "124/438 [=======>......................] - ETA: 2s - loss: 0.4346 - ae_loss: 0.1425 - cnn_loss: 0.2921 - cnn_accuracy: 0.9021"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "131/438 [=======>......................] - ETA: 2s - loss: 0.4350 - ae_loss: 0.1425 - cnn_loss: 0.2925 - cnn_accuracy: 0.9020"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "138/438 [========>.....................] - ETA: 2s - loss: 0.4354 - ae_loss: 0.1425 - cnn_loss: 0.2929 - cnn_accuracy: 0.9019"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "145/438 [========>.....................] - ETA: 2s - loss: 0.4357 - ae_loss: 0.1425 - cnn_loss: 0.2932 - cnn_accuracy: 0.9018"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "152/438 [=========>....................] - ETA: 2s - loss: 0.4361 - ae_loss: 0.1425 - cnn_loss: 0.2936 - cnn_accuracy: 0.9017"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "159/438 [=========>....................] - ETA: 2s - loss: 0.4365 - ae_loss: 0.1425 - cnn_loss: 0.2940 - cnn_accuracy: 0.9016"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "166/438 [==========>...................] - ETA: 2s - loss: 0.4369 - ae_loss: 0.1424 - cnn_loss: 0.2945 - cnn_accuracy: 0.9015"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "173/438 [==========>...................] - ETA: 2s - loss: 0.4373 - ae_loss: 0.1424 - cnn_loss: 0.2949 - cnn_accuracy: 0.9014"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "180/438 [===========>..................] - ETA: 2s - loss: 0.4377 - ae_loss: 0.1424 - cnn_loss: 0.2953 - cnn_accuracy: 0.9013"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "187/438 [===========>..................] - ETA: 1s - loss: 0.4381 - ae_loss: 0.1424 - cnn_loss: 0.2957 - cnn_accuracy: 0.9012"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "194/438 [============>.................] - ETA: 1s - loss: 0.4385 - ae_loss: 0.1424 - cnn_loss: 0.2961 - cnn_accuracy: 0.9011"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "201/438 [============>.................] - ETA: 1s - loss: 0.4389 - ae_loss: 0.1424 - cnn_loss: 0.2965 - cnn_accuracy: 0.9010"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "208/438 [=============>................] - ETA: 1s - loss: 0.4393 - ae_loss: 0.1424 - cnn_loss: 0.2969 - cnn_accuracy: 0.9009"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "215/438 [=============>................] - ETA: 1s - loss: 0.4397 - ae_loss: 0.1424 - cnn_loss: 0.2973 - cnn_accuracy: 0.9008"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "222/438 [==============>...............] - ETA: 1s - loss: 0.4400 - ae_loss: 0.1424 - cnn_loss: 0.2977 - cnn_accuracy: 0.9008"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "229/438 [==============>...............] - ETA: 1s - loss: 0.4404 - ae_loss: 0.1424 - cnn_loss: 0.2980 - cnn_accuracy: 0.9007"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "236/438 [===============>..............] - ETA: 1s - loss: 0.4407 - ae_loss: 0.1424 - cnn_loss: 0.2984 - cnn_accuracy: 0.9006"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "243/438 [===============>..............] - ETA: 1s - loss: 0.4411 - ae_loss: 0.1424 - cnn_loss: 0.2987 - cnn_accuracy: 0.9005"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "250/438 [================>.............] - ETA: 1s - loss: 0.4414 - ae_loss: 0.1424 - cnn_loss: 0.2990 - cnn_accuracy: 0.9005"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "257/438 [================>.............] - ETA: 1s - loss: 0.4417 - ae_loss: 0.1424 - cnn_loss: 0.2993 - cnn_accuracy: 0.9004"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "264/438 [=================>............] - ETA: 1s - loss: 0.4420 - ae_loss: 0.1424 - cnn_loss: 0.2996 - cnn_accuracy: 0.9003"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "271/438 [=================>............] - ETA: 1s - loss: 0.4423 - ae_loss: 0.1424 - cnn_loss: 0.2999 - cnn_accuracy: 0.9003"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "278/438 [==================>...........] - ETA: 1s - loss: 0.4426 - ae_loss: 0.1424 - cnn_loss: 0.3002 - cnn_accuracy: 0.9002"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "285/438 [==================>...........] - ETA: 1s - loss: 0.4429 - ae_loss: 0.1424 - cnn_loss: 0.3006 - cnn_accuracy: 0.9001"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "292/438 [===================>..........] - ETA: 1s - loss: 0.4432 - ae_loss: 0.1424 - cnn_loss: 0.3009 - cnn_accuracy: 0.9000"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "299/438 [===================>..........] - ETA: 1s - loss: 0.4435 - ae_loss: 0.1424 - cnn_loss: 0.3012 - cnn_accuracy: 0.9000"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "306/438 [===================>..........] - ETA: 1s - loss: 0.4438 - ae_loss: 0.1423 - cnn_loss: 0.3014 - cnn_accuracy: 0.8999"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "313/438 [====================>.........] - ETA: 0s - loss: 0.4440 - ae_loss: 0.1423 - cnn_loss: 0.3017 - cnn_accuracy: 0.8998"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "320/438 [====================>.........] - ETA: 0s - loss: 0.4443 - ae_loss: 0.1423 - cnn_loss: 0.3020 - cnn_accuracy: 0.8998"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "327/438 [=====================>........] - ETA: 0s - loss: 0.4446 - ae_loss: 0.1423 - cnn_loss: 0.3022 - cnn_accuracy: 0.8997"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "334/438 [=====================>........] - ETA: 0s - loss: 0.4449 - ae_loss: 0.1423 - cnn_loss: 0.3025 - cnn_accuracy: 0.8996"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "341/438 [======================>.......] - ETA: 0s - loss: 0.4452 - ae_loss: 0.1424 - cnn_loss: 0.3028 - cnn_accuracy: 0.8996"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "348/438 [======================>.......] - ETA: 0s - loss: 0.4454 - ae_loss: 0.1424 - cnn_loss: 0.3031 - cnn_accuracy: 0.8995"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "355/438 [=======================>......] - ETA: 0s - loss: 0.4457 - ae_loss: 0.1424 - cnn_loss: 0.3033 - cnn_accuracy: 0.8994"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "362/438 [=======================>......] - ETA: 0s - loss: 0.4460 - ae_loss: 0.1424 - cnn_loss: 0.3036 - cnn_accuracy: 0.8994"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "369/438 [========================>.....] - ETA: 0s - loss: 0.4462 - ae_loss: 0.1424 - cnn_loss: 0.3038 - cnn_accuracy: 0.8993"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "376/438 [========================>.....] - ETA: 0s - loss: 0.4464 - ae_loss: 0.1424 - cnn_loss: 0.3041 - cnn_accuracy: 0.8993"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "383/438 [=========================>....] - ETA: 0s - loss: 0.4466 - ae_loss: 0.1424 - cnn_loss: 0.3043 - cnn_accuracy: 0.8992"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "390/438 [=========================>....] - ETA: 0s - loss: 0.4468 - ae_loss: 0.1424 - cnn_loss: 0.3045 - cnn_accuracy: 0.8992"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "397/438 [==========================>...] - ETA: 0s - loss: 0.4470 - ae_loss: 0.1424 - cnn_loss: 0.3047 - cnn_accuracy: 0.8991"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "404/438 [==========================>...] - ETA: 0s - loss: 0.4472 - ae_loss: 0.1424 - cnn_loss: 0.3049 - cnn_accuracy: 0.8991"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "411/438 [===========================>..] - ETA: 0s - loss: 0.4474 - ae_loss: 0.1424 - cnn_loss: 0.3050 - cnn_accuracy: 0.8990"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "418/438 [===========================>..] - ETA: 0s - loss: 0.4476 - ae_loss: 0.1424 - cnn_loss: 0.3052 - cnn_accuracy: 0.8990"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "425/438 [============================>.] - ETA: 0s - loss: 0.4478 - ae_loss: 0.1424 - cnn_loss: 0.3054 - cnn_accuracy: 0.8989"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "432/438 [============================>.] - ETA: 0s - loss: 0.4480 - ae_loss: 0.1424 - cnn_loss: 0.3056 - cnn_accuracy: 0.8989"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.4481 - ae_loss: 0.1424 - cnn_loss: 0.3057 - cnn_accuracy: 0.8988 - val_loss: 0.4727 - val_ae_loss: 0.1501 - val_cnn_loss: 0.3226 - val_cnn_accuracy: 0.8946\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 25/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 4s - loss: 0.4353 - ae_loss: 0.1408 - cnn_loss: 0.2945 - cnn_accuracy: 0.8828"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  7/438 [..............................] - ETA: 3s - loss: 0.4350 - ae_loss: 0.1410 - cnn_loss: 0.2940 - cnn_accuracy: 0.9037"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 13/438 [..............................] - ETA: 3s - loss: 0.4397 - ae_loss: 0.1407 - cnn_loss: 0.2989 - cnn_accuracy: 0.9042"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 20/438 [>.............................] - ETA: 3s - loss: 0.4393 - ae_loss: 0.1405 - cnn_loss: 0.2987 - cnn_accuracy: 0.9044"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 26/438 [>.............................] - ETA: 3s - loss: 0.4414 - ae_loss: 0.1406 - cnn_loss: 0.3009 - cnn_accuracy: 0.9033"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 32/438 [=>............................] - ETA: 3s - loss: 0.4423 - ae_loss: 0.1407 - cnn_loss: 0.3016 - cnn_accuracy: 0.9026"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 38/438 [=>............................] - ETA: 3s - loss: 0.4428 - ae_loss: 0.1408 - cnn_loss: 0.3020 - cnn_accuracy: 0.9023"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 44/438 [==>...........................] - ETA: 3s - loss: 0.4430 - ae_loss: 0.1409 - cnn_loss: 0.3020 - cnn_accuracy: 0.9020"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 3s - loss: 0.4429 - ae_loss: 0.1410 - cnn_loss: 0.3020 - cnn_accuracy: 0.9017"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 56/438 [==>...........................] - ETA: 3s - loss: 0.4429 - ae_loss: 0.1410 - cnn_loss: 0.3018 - cnn_accuracy: 0.9016"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 62/438 [===>..........................] - ETA: 3s - loss: 0.4430 - ae_loss: 0.1411 - cnn_loss: 0.3019 - cnn_accuracy: 0.9013"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 68/438 [===>..........................] - ETA: 3s - loss: 0.4432 - ae_loss: 0.1411 - cnn_loss: 0.3020 - cnn_accuracy: 0.9011"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 74/438 [====>.........................] - ETA: 3s - loss: 0.4432 - ae_loss: 0.1412 - cnn_loss: 0.3021 - cnn_accuracy: 0.9008"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 80/438 [====>.........................] - ETA: 3s - loss: 0.4431 - ae_loss: 0.1412 - cnn_loss: 0.3019 - cnn_accuracy: 0.9006"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 87/438 [====>.........................] - ETA: 2s - loss: 0.4430 - ae_loss: 0.1413 - cnn_loss: 0.3018 - cnn_accuracy: 0.9004"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 93/438 [=====>........................] - ETA: 2s - loss: 0.4430 - ae_loss: 0.1413 - cnn_loss: 0.3017 - cnn_accuracy: 0.9003"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "100/438 [=====>........................] - ETA: 2s - loss: 0.4432 - ae_loss: 0.1413 - cnn_loss: 0.3018 - cnn_accuracy: 0.9000"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "107/438 [======>.......................] - ETA: 2s - loss: 0.4435 - ae_loss: 0.1414 - cnn_loss: 0.3022 - cnn_accuracy: 0.8998"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 0.4438 - ae_loss: 0.1414 - cnn_loss: 0.3025 - cnn_accuracy: 0.8995"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "119/438 [=======>......................] - ETA: 2s - loss: 0.4443 - ae_loss: 0.1414 - cnn_loss: 0.3029 - cnn_accuracy: 0.8993"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "125/438 [=======>......................] - ETA: 2s - loss: 0.4446 - ae_loss: 0.1414 - cnn_loss: 0.3032 - cnn_accuracy: 0.8991"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "131/438 [=======>......................] - ETA: 2s - loss: 0.4449 - ae_loss: 0.1414 - cnn_loss: 0.3035 - cnn_accuracy: 0.8989"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "137/438 [========>.....................] - ETA: 2s - loss: 0.4453 - ae_loss: 0.1414 - cnn_loss: 0.3039 - cnn_accuracy: 0.8987"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "143/438 [========>.....................] - ETA: 2s - loss: 0.4457 - ae_loss: 0.1415 - cnn_loss: 0.3042 - cnn_accuracy: 0.8985"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "149/438 [=========>....................] - ETA: 2s - loss: 0.4460 - ae_loss: 0.1415 - cnn_loss: 0.3046 - cnn_accuracy: 0.8984"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 2s - loss: 0.4463 - ae_loss: 0.1415 - cnn_loss: 0.3048 - cnn_accuracy: 0.8983"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "161/438 [==========>...................] - ETA: 2s - loss: 0.4466 - ae_loss: 0.1415 - cnn_loss: 0.3051 - cnn_accuracy: 0.8982"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "167/438 [==========>...................] - ETA: 2s - loss: 0.4468 - ae_loss: 0.1415 - cnn_loss: 0.3053 - cnn_accuracy: 0.8981"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "173/438 [==========>...................] - ETA: 2s - loss: 0.4470 - ae_loss: 0.1415 - cnn_loss: 0.3055 - cnn_accuracy: 0.8980"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "179/438 [===========>..................] - ETA: 2s - loss: 0.4472 - ae_loss: 0.1415 - cnn_loss: 0.3057 - cnn_accuracy: 0.8980"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "185/438 [===========>..................] - ETA: 2s - loss: 0.4473 - ae_loss: 0.1415 - cnn_loss: 0.3058 - cnn_accuracy: 0.8979"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "191/438 [============>.................] - ETA: 2s - loss: 0.4474 - ae_loss: 0.1415 - cnn_loss: 0.3059 - cnn_accuracy: 0.8979"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 2s - loss: 0.4475 - ae_loss: 0.1415 - cnn_loss: 0.3060 - cnn_accuracy: 0.8979"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "203/438 [============>.................] - ETA: 2s - loss: 0.4476 - ae_loss: 0.1415 - cnn_loss: 0.3061 - cnn_accuracy: 0.8978"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "209/438 [=============>................] - ETA: 1s - loss: 0.4478 - ae_loss: 0.1416 - cnn_loss: 0.3062 - cnn_accuracy: 0.8978"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "216/438 [=============>................] - ETA: 1s - loss: 0.4480 - ae_loss: 0.1416 - cnn_loss: 0.3064 - cnn_accuracy: 0.8978"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "223/438 [==============>...............] - ETA: 1s - loss: 0.4482 - ae_loss: 0.1416 - cnn_loss: 0.3066 - cnn_accuracy: 0.8978"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "230/438 [==============>...............] - ETA: 1s - loss: 0.4484 - ae_loss: 0.1416 - cnn_loss: 0.3068 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "237/438 [===============>..............] - ETA: 1s - loss: 0.4485 - ae_loss: 0.1416 - cnn_loss: 0.3070 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "244/438 [===============>..............] - ETA: 1s - loss: 0.4487 - ae_loss: 0.1416 - cnn_loss: 0.3072 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "251/438 [================>.............] - ETA: 1s - loss: 0.4489 - ae_loss: 0.1416 - cnn_loss: 0.3073 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "258/438 [================>.............] - ETA: 1s - loss: 0.4490 - ae_loss: 0.1416 - cnn_loss: 0.3074 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "265/438 [=================>............] - ETA: 1s - loss: 0.4491 - ae_loss: 0.1416 - cnn_loss: 0.3075 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "272/438 [=================>............] - ETA: 1s - loss: 0.4492 - ae_loss: 0.1416 - cnn_loss: 0.3076 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "279/438 [==================>...........] - ETA: 1s - loss: 0.4493 - ae_loss: 0.1416 - cnn_loss: 0.3077 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "286/438 [==================>...........] - ETA: 1s - loss: 0.4494 - ae_loss: 0.1416 - cnn_loss: 0.3077 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "293/438 [===================>..........] - ETA: 1s - loss: 0.4494 - ae_loss: 0.1416 - cnn_loss: 0.3078 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "300/438 [===================>..........] - ETA: 1s - loss: 0.4495 - ae_loss: 0.1416 - cnn_loss: 0.3078 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "307/438 [====================>.........] - ETA: 1s - loss: 0.4495 - ae_loss: 0.1416 - cnn_loss: 0.3079 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "314/438 [====================>.........] - ETA: 1s - loss: 0.4496 - ae_loss: 0.1417 - cnn_loss: 0.3079 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "321/438 [====================>.........] - ETA: 0s - loss: 0.4496 - ae_loss: 0.1417 - cnn_loss: 0.3080 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "328/438 [=====================>........] - ETA: 0s - loss: 0.4497 - ae_loss: 0.1417 - cnn_loss: 0.3080 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "335/438 [=====================>........] - ETA: 0s - loss: 0.4498 - ae_loss: 0.1417 - cnn_loss: 0.3081 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "342/438 [======================>.......] - ETA: 0s - loss: 0.4499 - ae_loss: 0.1417 - cnn_loss: 0.3082 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "349/438 [======================>.......] - ETA: 0s - loss: 0.4499 - ae_loss: 0.1417 - cnn_loss: 0.3083 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "356/438 [=======================>......] - ETA: 0s - loss: 0.4500 - ae_loss: 0.1417 - cnn_loss: 0.3083 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "363/438 [=======================>......] - ETA: 0s - loss: 0.4501 - ae_loss: 0.1417 - cnn_loss: 0.3084 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "370/438 [========================>.....] - ETA: 0s - loss: 0.4502 - ae_loss: 0.1417 - cnn_loss: 0.3085 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "377/438 [========================>.....] - ETA: 0s - loss: 0.4503 - ae_loss: 0.1417 - cnn_loss: 0.3086 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "384/438 [=========================>....] - ETA: 0s - loss: 0.4504 - ae_loss: 0.1417 - cnn_loss: 0.3087 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "391/438 [=========================>....] - ETA: 0s - loss: 0.4505 - ae_loss: 0.1417 - cnn_loss: 0.3088 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "398/438 [==========================>...] - ETA: 0s - loss: 0.4506 - ae_loss: 0.1417 - cnn_loss: 0.3089 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "405/438 [==========================>...] - ETA: 0s - loss: 0.4507 - ae_loss: 0.1417 - cnn_loss: 0.3089 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "412/438 [===========================>..] - ETA: 0s - loss: 0.4507 - ae_loss: 0.1417 - cnn_loss: 0.3090 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "419/438 [===========================>..] - ETA: 0s - loss: 0.4508 - ae_loss: 0.1417 - cnn_loss: 0.3091 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "426/438 [============================>.] - ETA: 0s - loss: 0.4509 - ae_loss: 0.1417 - cnn_loss: 0.3091 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "433/438 [============================>.] - ETA: 0s - loss: 0.4509 - ae_loss: 0.1418 - cnn_loss: 0.3092 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.4510 - ae_loss: 0.1418 - cnn_loss: 0.3092 - cnn_accuracy: 0.8975 - val_loss: 0.4729 - val_ae_loss: 0.1499 - val_cnn_loss: 0.3231 - val_cnn_accuracy: 0.8942\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 26/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.3185 - ae_loss: 0.1413 - cnn_loss: 0.1772 - cnn_accuracy: 0.9297"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.3629 - ae_loss: 0.1393 - cnn_loss: 0.2235 - cnn_accuracy: 0.9248"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 0.3706 - ae_loss: 0.1392 - cnn_loss: 0.2314 - cnn_accuracy: 0.9238"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 22/438 [>.............................] - ETA: 3s - loss: 0.3858 - ae_loss: 0.1393 - cnn_loss: 0.2465 - cnn_accuracy: 0.9196"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 3s - loss: 0.3988 - ae_loss: 0.1394 - cnn_loss: 0.2594 - cnn_accuracy: 0.9160"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 36/438 [=>............................] - ETA: 3s - loss: 0.4073 - ae_loss: 0.1395 - cnn_loss: 0.2679 - cnn_accuracy: 0.9134"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.4140 - ae_loss: 0.1396 - cnn_loss: 0.2745 - cnn_accuracy: 0.9111"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 49/438 [==>...........................] - ETA: 3s - loss: 0.4181 - ae_loss: 0.1396 - cnn_loss: 0.2785 - cnn_accuracy: 0.9096"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 55/438 [==>...........................] - ETA: 3s - loss: 0.4214 - ae_loss: 0.1397 - cnn_loss: 0.2817 - cnn_accuracy: 0.9085"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 62/438 [===>..........................] - ETA: 3s - loss: 0.4243 - ae_loss: 0.1398 - cnn_loss: 0.2845 - cnn_accuracy: 0.9075"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 68/438 [===>..........................] - ETA: 3s - loss: 0.4266 - ae_loss: 0.1399 - cnn_loss: 0.2868 - cnn_accuracy: 0.9067"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 74/438 [====>.........................] - ETA: 2s - loss: 0.4284 - ae_loss: 0.1399 - cnn_loss: 0.2885 - cnn_accuracy: 0.9061"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 80/438 [====>.........................] - ETA: 2s - loss: 0.4300 - ae_loss: 0.1400 - cnn_loss: 0.2901 - cnn_accuracy: 0.9056"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 87/438 [====>.........................] - ETA: 2s - loss: 0.4316 - ae_loss: 0.1401 - cnn_loss: 0.2916 - cnn_accuracy: 0.9051"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 94/438 [=====>........................] - ETA: 2s - loss: 0.4331 - ae_loss: 0.1401 - cnn_loss: 0.2930 - cnn_accuracy: 0.9047"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "101/438 [=====>........................] - ETA: 2s - loss: 0.4345 - ae_loss: 0.1402 - cnn_loss: 0.2943 - cnn_accuracy: 0.9042"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "108/438 [======>.......................] - ETA: 2s - loss: 0.4358 - ae_loss: 0.1402 - cnn_loss: 0.2955 - cnn_accuracy: 0.9038"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "115/438 [======>.......................] - ETA: 2s - loss: 0.4368 - ae_loss: 0.1403 - cnn_loss: 0.2966 - cnn_accuracy: 0.9035"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "122/438 [=======>......................] - ETA: 2s - loss: 0.4378 - ae_loss: 0.1403 - cnn_loss: 0.2975 - cnn_accuracy: 0.9033"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "129/438 [=======>......................] - ETA: 2s - loss: 0.4386 - ae_loss: 0.1404 - cnn_loss: 0.2983 - cnn_accuracy: 0.9030"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "136/438 [========>.....................] - ETA: 2s - loss: 0.4394 - ae_loss: 0.1404 - cnn_loss: 0.2990 - cnn_accuracy: 0.9028"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "143/438 [========>.....................] - ETA: 2s - loss: 0.4400 - ae_loss: 0.1405 - cnn_loss: 0.2996 - cnn_accuracy: 0.9026"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "150/438 [=========>....................] - ETA: 2s - loss: 0.4406 - ae_loss: 0.1405 - cnn_loss: 0.3001 - cnn_accuracy: 0.9024"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "157/438 [=========>....................] - ETA: 2s - loss: 0.4411 - ae_loss: 0.1405 - cnn_loss: 0.3006 - cnn_accuracy: 0.9022"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "164/438 [==========>...................] - ETA: 2s - loss: 0.4415 - ae_loss: 0.1405 - cnn_loss: 0.3010 - cnn_accuracy: 0.9021"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "171/438 [==========>...................] - ETA: 2s - loss: 0.4419 - ae_loss: 0.1406 - cnn_loss: 0.3013 - cnn_accuracy: 0.9019"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "178/438 [===========>..................] - ETA: 2s - loss: 0.4423 - ae_loss: 0.1406 - cnn_loss: 0.3017 - cnn_accuracy: 0.9018"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "185/438 [===========>..................] - ETA: 2s - loss: 0.4427 - ae_loss: 0.1406 - cnn_loss: 0.3020 - cnn_accuracy: 0.9016"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "192/438 [============>.................] - ETA: 1s - loss: 0.4431 - ae_loss: 0.1406 - cnn_loss: 0.3024 - cnn_accuracy: 0.9015"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "199/438 [============>.................] - ETA: 1s - loss: 0.4434 - ae_loss: 0.1407 - cnn_loss: 0.3027 - cnn_accuracy: 0.9014"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "206/438 [=============>................] - ETA: 1s - loss: 0.4437 - ae_loss: 0.1407 - cnn_loss: 0.3030 - cnn_accuracy: 0.9013"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "213/438 [=============>................] - ETA: 1s - loss: 0.4440 - ae_loss: 0.1407 - cnn_loss: 0.3033 - cnn_accuracy: 0.9012"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "220/438 [==============>...............] - ETA: 1s - loss: 0.4443 - ae_loss: 0.1407 - cnn_loss: 0.3036 - cnn_accuracy: 0.9011"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "227/438 [==============>...............] - ETA: 1s - loss: 0.4445 - ae_loss: 0.1407 - cnn_loss: 0.3038 - cnn_accuracy: 0.9011"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "234/438 [===============>..............] - ETA: 1s - loss: 0.4448 - ae_loss: 0.1408 - cnn_loss: 0.3040 - cnn_accuracy: 0.9010"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "241/438 [===============>..............] - ETA: 1s - loss: 0.4449 - ae_loss: 0.1408 - cnn_loss: 0.3041 - cnn_accuracy: 0.9010"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "248/438 [===============>..............] - ETA: 1s - loss: 0.4451 - ae_loss: 0.1408 - cnn_loss: 0.3043 - cnn_accuracy: 0.9009"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "255/438 [================>.............] - ETA: 1s - loss: 0.4452 - ae_loss: 0.1408 - cnn_loss: 0.3044 - cnn_accuracy: 0.9008"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "262/438 [================>.............] - ETA: 1s - loss: 0.4454 - ae_loss: 0.1408 - cnn_loss: 0.3045 - cnn_accuracy: 0.9008"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "269/438 [=================>............] - ETA: 1s - loss: 0.4455 - ae_loss: 0.1409 - cnn_loss: 0.3046 - cnn_accuracy: 0.9008"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "276/438 [=================>............] - ETA: 1s - loss: 0.4456 - ae_loss: 0.1409 - cnn_loss: 0.3047 - cnn_accuracy: 0.9007"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "283/438 [==================>...........] - ETA: 1s - loss: 0.4458 - ae_loss: 0.1409 - cnn_loss: 0.3049 - cnn_accuracy: 0.9007"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "290/438 [==================>...........] - ETA: 1s - loss: 0.4459 - ae_loss: 0.1409 - cnn_loss: 0.3050 - cnn_accuracy: 0.9007"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "297/438 [===================>..........] - ETA: 1s - loss: 0.4461 - ae_loss: 0.1409 - cnn_loss: 0.3051 - cnn_accuracy: 0.9006"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "304/438 [===================>..........] - ETA: 1s - loss: 0.4462 - ae_loss: 0.1410 - cnn_loss: 0.3053 - cnn_accuracy: 0.9006"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "310/438 [====================>.........] - ETA: 1s - loss: 0.4464 - ae_loss: 0.1410 - cnn_loss: 0.3054 - cnn_accuracy: 0.9006"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "316/438 [====================>.........] - ETA: 0s - loss: 0.4465 - ae_loss: 0.1410 - cnn_loss: 0.3055 - cnn_accuracy: 0.9005"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "322/438 [=====================>........] - ETA: 0s - loss: 0.4466 - ae_loss: 0.1410 - cnn_loss: 0.3057 - cnn_accuracy: 0.9005"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "329/438 [=====================>........] - ETA: 0s - loss: 0.4468 - ae_loss: 0.1410 - cnn_loss: 0.3058 - cnn_accuracy: 0.9004"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "336/438 [======================>.......] - ETA: 0s - loss: 0.4469 - ae_loss: 0.1410 - cnn_loss: 0.3059 - cnn_accuracy: 0.9004"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "343/438 [======================>.......] - ETA: 0s - loss: 0.4470 - ae_loss: 0.1410 - cnn_loss: 0.3060 - cnn_accuracy: 0.9004"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "350/438 [======================>.......] - ETA: 0s - loss: 0.4472 - ae_loss: 0.1410 - cnn_loss: 0.3061 - cnn_accuracy: 0.9003"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "357/438 [=======================>......] - ETA: 0s - loss: 0.4473 - ae_loss: 0.1411 - cnn_loss: 0.3062 - cnn_accuracy: 0.9003"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "364/438 [=======================>......] - ETA: 0s - loss: 0.4474 - ae_loss: 0.1411 - cnn_loss: 0.3063 - cnn_accuracy: 0.9002"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "371/438 [========================>.....] - ETA: 0s - loss: 0.4475 - ae_loss: 0.1411 - cnn_loss: 0.3064 - cnn_accuracy: 0.9002"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "378/438 [========================>.....] - ETA: 0s - loss: 0.4476 - ae_loss: 0.1411 - cnn_loss: 0.3065 - cnn_accuracy: 0.9002"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "385/438 [=========================>....] - ETA: 0s - loss: 0.4477 - ae_loss: 0.1411 - cnn_loss: 0.3066 - cnn_accuracy: 0.9001"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "392/438 [=========================>....] - ETA: 0s - loss: 0.4478 - ae_loss: 0.1411 - cnn_loss: 0.3067 - cnn_accuracy: 0.9001"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "399/438 [==========================>...] - ETA: 0s - loss: 0.4479 - ae_loss: 0.1411 - cnn_loss: 0.3068 - cnn_accuracy: 0.9001"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "406/438 [==========================>...] - ETA: 0s - loss: 0.4481 - ae_loss: 0.1411 - cnn_loss: 0.3069 - cnn_accuracy: 0.9000"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "413/438 [===========================>..] - ETA: 0s - loss: 0.4482 - ae_loss: 0.1411 - cnn_loss: 0.3070 - cnn_accuracy: 0.9000"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "420/438 [===========================>..] - ETA: 0s - loss: 0.4483 - ae_loss: 0.1412 - cnn_loss: 0.3071 - cnn_accuracy: 0.9000"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "427/438 [============================>.] - ETA: 0s - loss: 0.4484 - ae_loss: 0.1412 - cnn_loss: 0.3072 - cnn_accuracy: 0.8999"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "434/438 [============================>.] - ETA: 0s - loss: 0.4485 - ae_loss: 0.1412 - cnn_loss: 0.3073 - cnn_accuracy: 0.8999"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.4486 - ae_loss: 0.1412 - cnn_loss: 0.3074 - cnn_accuracy: 0.8999 - val_loss: 0.4771 - val_ae_loss: 0.1505 - val_cnn_loss: 0.3265 - val_cnn_accuracy: 0.8954\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 27/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 4s - loss: 0.3996 - ae_loss: 0.1448 - cnn_loss: 0.2547 - cnn_accuracy: 0.9062"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.4086 - ae_loss: 0.1426 - cnn_loss: 0.2660 - cnn_accuracy: 0.9075"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 0.4148 - ae_loss: 0.1421 - cnn_loss: 0.2727 - cnn_accuracy: 0.9052"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 22/438 [>.............................] - ETA: 3s - loss: 0.4186 - ae_loss: 0.1418 - cnn_loss: 0.2768 - cnn_accuracy: 0.9047"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 3s - loss: 0.4213 - ae_loss: 0.1416 - cnn_loss: 0.2797 - cnn_accuracy: 0.9048"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 36/438 [=>............................] - ETA: 3s - loss: 0.4242 - ae_loss: 0.1415 - cnn_loss: 0.2827 - cnn_accuracy: 0.9046"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.4268 - ae_loss: 0.1413 - cnn_loss: 0.2855 - cnn_accuracy: 0.9041"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 3s - loss: 0.4282 - ae_loss: 0.1412 - cnn_loss: 0.2870 - cnn_accuracy: 0.9040"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.4291 - ae_loss: 0.1411 - cnn_loss: 0.2879 - cnn_accuracy: 0.9040"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 64/438 [===>..........................] - ETA: 2s - loss: 0.4304 - ae_loss: 0.1410 - cnn_loss: 0.2894 - cnn_accuracy: 0.9038"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 2s - loss: 0.4319 - ae_loss: 0.1410 - cnn_loss: 0.2909 - cnn_accuracy: 0.9035"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 78/438 [====>.........................] - ETA: 2s - loss: 0.4330 - ae_loss: 0.1410 - cnn_loss: 0.2921 - cnn_accuracy: 0.9033"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.4340 - ae_loss: 0.1409 - cnn_loss: 0.2930 - cnn_accuracy: 0.9032"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 92/438 [=====>........................] - ETA: 2s - loss: 0.4350 - ae_loss: 0.1409 - cnn_loss: 0.2940 - cnn_accuracy: 0.9030"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.4358 - ae_loss: 0.1409 - cnn_loss: 0.2949 - cnn_accuracy: 0.9028"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.4365 - ae_loss: 0.1409 - cnn_loss: 0.2956 - cnn_accuracy: 0.9028"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "113/438 [======>.......................] - ETA: 2s - loss: 0.4371 - ae_loss: 0.1409 - cnn_loss: 0.2962 - cnn_accuracy: 0.9027"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "120/438 [=======>......................] - ETA: 2s - loss: 0.4377 - ae_loss: 0.1409 - cnn_loss: 0.2968 - cnn_accuracy: 0.9026"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "127/438 [=======>......................] - ETA: 2s - loss: 0.4383 - ae_loss: 0.1409 - cnn_loss: 0.2973 - cnn_accuracy: 0.9025"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "134/438 [========>.....................] - ETA: 2s - loss: 0.4387 - ae_loss: 0.1409 - cnn_loss: 0.2978 - cnn_accuracy: 0.9024"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "141/438 [========>.....................] - ETA: 2s - loss: 0.4391 - ae_loss: 0.1409 - cnn_loss: 0.2981 - cnn_accuracy: 0.9023"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "148/438 [=========>....................] - ETA: 2s - loss: 0.4394 - ae_loss: 0.1409 - cnn_loss: 0.2985 - cnn_accuracy: 0.9022"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 2s - loss: 0.4398 - ae_loss: 0.1409 - cnn_loss: 0.2988 - cnn_accuracy: 0.9021"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "162/438 [==========>...................] - ETA: 2s - loss: 0.4401 - ae_loss: 0.1409 - cnn_loss: 0.2991 - cnn_accuracy: 0.9020"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "169/438 [==========>...................] - ETA: 2s - loss: 0.4403 - ae_loss: 0.1409 - cnn_loss: 0.2994 - cnn_accuracy: 0.9020"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "176/438 [===========>..................] - ETA: 2s - loss: 0.4406 - ae_loss: 0.1409 - cnn_loss: 0.2996 - cnn_accuracy: 0.9019"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "183/438 [===========>..................] - ETA: 1s - loss: 0.4408 - ae_loss: 0.1409 - cnn_loss: 0.2998 - cnn_accuracy: 0.9019"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "190/438 [============>.................] - ETA: 1s - loss: 0.4411 - ae_loss: 0.1410 - cnn_loss: 0.3001 - cnn_accuracy: 0.9018"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "197/438 [============>.................] - ETA: 1s - loss: 0.4413 - ae_loss: 0.1410 - cnn_loss: 0.3004 - cnn_accuracy: 0.9017"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "204/438 [============>.................] - ETA: 1s - loss: 0.4416 - ae_loss: 0.1410 - cnn_loss: 0.3007 - cnn_accuracy: 0.9016"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "211/438 [=============>................] - ETA: 1s - loss: 0.4420 - ae_loss: 0.1410 - cnn_loss: 0.3010 - cnn_accuracy: 0.9015"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "218/438 [=============>................] - ETA: 1s - loss: 0.4423 - ae_loss: 0.1410 - cnn_loss: 0.3013 - cnn_accuracy: 0.9014"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "225/438 [==============>...............] - ETA: 1s - loss: 0.4425 - ae_loss: 0.1410 - cnn_loss: 0.3015 - cnn_accuracy: 0.9013"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "232/438 [==============>...............] - ETA: 1s - loss: 0.4427 - ae_loss: 0.1410 - cnn_loss: 0.3018 - cnn_accuracy: 0.9012"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "239/438 [===============>..............] - ETA: 1s - loss: 0.4430 - ae_loss: 0.1410 - cnn_loss: 0.3020 - cnn_accuracy: 0.9011"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "246/438 [===============>..............] - ETA: 1s - loss: 0.4432 - ae_loss: 0.1410 - cnn_loss: 0.3022 - cnn_accuracy: 0.9010"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "253/438 [================>.............] - ETA: 1s - loss: 0.4434 - ae_loss: 0.1410 - cnn_loss: 0.3024 - cnn_accuracy: 0.9010"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "260/438 [================>.............] - ETA: 1s - loss: 0.4436 - ae_loss: 0.1410 - cnn_loss: 0.3026 - cnn_accuracy: 0.9009"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "267/438 [=================>............] - ETA: 1s - loss: 0.4438 - ae_loss: 0.1410 - cnn_loss: 0.3028 - cnn_accuracy: 0.9008"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "274/438 [=================>............] - ETA: 1s - loss: 0.4440 - ae_loss: 0.1410 - cnn_loss: 0.3030 - cnn_accuracy: 0.9008"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "281/438 [==================>...........] - ETA: 1s - loss: 0.4442 - ae_loss: 0.1410 - cnn_loss: 0.3032 - cnn_accuracy: 0.9007"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "288/438 [==================>...........] - ETA: 1s - loss: 0.4444 - ae_loss: 0.1410 - cnn_loss: 0.3034 - cnn_accuracy: 0.9007"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "295/438 [===================>..........] - ETA: 1s - loss: 0.4446 - ae_loss: 0.1410 - cnn_loss: 0.3036 - cnn_accuracy: 0.9006"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "302/438 [===================>..........] - ETA: 1s - loss: 0.4448 - ae_loss: 0.1410 - cnn_loss: 0.3038 - cnn_accuracy: 0.9005"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "309/438 [====================>.........] - ETA: 1s - loss: 0.4450 - ae_loss: 0.1411 - cnn_loss: 0.3040 - cnn_accuracy: 0.9005"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "316/438 [====================>.........] - ETA: 0s - loss: 0.4452 - ae_loss: 0.1411 - cnn_loss: 0.3042 - cnn_accuracy: 0.9004"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "323/438 [=====================>........] - ETA: 0s - loss: 0.4454 - ae_loss: 0.1411 - cnn_loss: 0.3044 - cnn_accuracy: 0.9003"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "330/438 [=====================>........] - ETA: 0s - loss: 0.4456 - ae_loss: 0.1411 - cnn_loss: 0.3046 - cnn_accuracy: 0.9003"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "336/438 [======================>.......] - ETA: 0s - loss: 0.4458 - ae_loss: 0.1411 - cnn_loss: 0.3047 - cnn_accuracy: 0.9002"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "343/438 [======================>.......] - ETA: 0s - loss: 0.4460 - ae_loss: 0.1411 - cnn_loss: 0.3049 - cnn_accuracy: 0.9001"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "350/438 [======================>.......] - ETA: 0s - loss: 0.4462 - ae_loss: 0.1411 - cnn_loss: 0.3051 - cnn_accuracy: 0.9001"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "357/438 [=======================>......] - ETA: 0s - loss: 0.4464 - ae_loss: 0.1411 - cnn_loss: 0.3053 - cnn_accuracy: 0.9000"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "364/438 [=======================>......] - ETA: 0s - loss: 0.4466 - ae_loss: 0.1411 - cnn_loss: 0.3055 - cnn_accuracy: 0.8999"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "371/438 [========================>.....] - ETA: 0s - loss: 0.4468 - ae_loss: 0.1411 - cnn_loss: 0.3057 - cnn_accuracy: 0.8999"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "378/438 [========================>.....] - ETA: 0s - loss: 0.4470 - ae_loss: 0.1411 - cnn_loss: 0.3059 - cnn_accuracy: 0.8998"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "385/438 [=========================>....] - ETA: 0s - loss: 0.4472 - ae_loss: 0.1411 - cnn_loss: 0.3061 - cnn_accuracy: 0.8997"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "392/438 [=========================>....] - ETA: 0s - loss: 0.4474 - ae_loss: 0.1411 - cnn_loss: 0.3062 - cnn_accuracy: 0.8997"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "399/438 [==========================>...] - ETA: 0s - loss: 0.4476 - ae_loss: 0.1412 - cnn_loss: 0.3064 - cnn_accuracy: 0.8996"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "406/438 [==========================>...] - ETA: 0s - loss: 0.4477 - ae_loss: 0.1412 - cnn_loss: 0.3066 - cnn_accuracy: 0.8995"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "413/438 [===========================>..] - ETA: 0s - loss: 0.4479 - ae_loss: 0.1412 - cnn_loss: 0.3067 - cnn_accuracy: 0.8995"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "420/438 [===========================>..] - ETA: 0s - loss: 0.4480 - ae_loss: 0.1412 - cnn_loss: 0.3069 - cnn_accuracy: 0.8994"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "427/438 [============================>.] - ETA: 0s - loss: 0.4482 - ae_loss: 0.1412 - cnn_loss: 0.3070 - cnn_accuracy: 0.8993"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "434/438 [============================>.] - ETA: 0s - loss: 0.4484 - ae_loss: 0.1412 - cnn_loss: 0.3072 - cnn_accuracy: 0.8993"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.4485 - ae_loss: 0.1412 - cnn_loss: 0.3073 - cnn_accuracy: 0.8992 - val_loss: 0.4794 - val_ae_loss: 0.1491 - val_cnn_loss: 0.3303 - val_cnn_accuracy: 0.8947\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 28/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 4s - loss: 0.5150 - ae_loss: 0.1442 - cnn_loss: 0.3708 - cnn_accuracy: 0.8594"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  7/438 [..............................] - ETA: 3s - loss: 0.4506 - ae_loss: 0.1396 - cnn_loss: 0.3110 - cnn_accuracy: 0.8946"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 13/438 [..............................] - ETA: 3s - loss: 0.4429 - ae_loss: 0.1404 - cnn_loss: 0.3025 - cnn_accuracy: 0.8987"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 19/438 [>.............................] - ETA: 3s - loss: 0.4426 - ae_loss: 0.1404 - cnn_loss: 0.3021 - cnn_accuracy: 0.8985"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 25/438 [>.............................] - ETA: 3s - loss: 0.4430 - ae_loss: 0.1404 - cnn_loss: 0.3026 - cnn_accuracy: 0.8981"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 31/438 [=>............................] - ETA: 3s - loss: 0.4440 - ae_loss: 0.1404 - cnn_loss: 0.3036 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 37/438 [=>............................] - ETA: 3s - loss: 0.4439 - ae_loss: 0.1404 - cnn_loss: 0.3035 - cnn_accuracy: 0.8979"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.4440 - ae_loss: 0.1404 - cnn_loss: 0.3036 - cnn_accuracy: 0.8978"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 49/438 [==>...........................] - ETA: 3s - loss: 0.4446 - ae_loss: 0.1404 - cnn_loss: 0.3042 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 55/438 [==>...........................] - ETA: 3s - loss: 0.4451 - ae_loss: 0.1404 - cnn_loss: 0.3047 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 61/438 [===>..........................] - ETA: 3s - loss: 0.4458 - ae_loss: 0.1405 - cnn_loss: 0.3053 - cnn_accuracy: 0.8974"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 67/438 [===>..........................] - ETA: 3s - loss: 0.4465 - ae_loss: 0.1405 - cnn_loss: 0.3060 - cnn_accuracy: 0.8972"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 73/438 [====>.........................] - ETA: 3s - loss: 0.4470 - ae_loss: 0.1405 - cnn_loss: 0.3065 - cnn_accuracy: 0.8971"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 79/438 [====>.........................] - ETA: 3s - loss: 0.4476 - ae_loss: 0.1405 - cnn_loss: 0.3071 - cnn_accuracy: 0.8970"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 3s - loss: 0.4482 - ae_loss: 0.1405 - cnn_loss: 0.3077 - cnn_accuracy: 0.8969"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 91/438 [=====>........................] - ETA: 2s - loss: 0.4487 - ae_loss: 0.1405 - cnn_loss: 0.3082 - cnn_accuracy: 0.8969"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 97/438 [=====>........................] - ETA: 2s - loss: 0.4494 - ae_loss: 0.1405 - cnn_loss: 0.3089 - cnn_accuracy: 0.8969"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "104/438 [======>.......................] - ETA: 2s - loss: 0.4500 - ae_loss: 0.1405 - cnn_loss: 0.3095 - cnn_accuracy: 0.8968"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "111/438 [======>.......................] - ETA: 2s - loss: 0.4505 - ae_loss: 0.1406 - cnn_loss: 0.3100 - cnn_accuracy: 0.8967"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "118/438 [=======>......................] - ETA: 2s - loss: 0.4510 - ae_loss: 0.1406 - cnn_loss: 0.3104 - cnn_accuracy: 0.8967"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "125/438 [=======>......................] - ETA: 2s - loss: 0.4515 - ae_loss: 0.1406 - cnn_loss: 0.3108 - cnn_accuracy: 0.8966"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "132/438 [========>.....................] - ETA: 2s - loss: 0.4518 - ae_loss: 0.1406 - cnn_loss: 0.3111 - cnn_accuracy: 0.8966"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "139/438 [========>.....................] - ETA: 2s - loss: 0.4519 - ae_loss: 0.1407 - cnn_loss: 0.3112 - cnn_accuracy: 0.8967"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "146/438 [=========>....................] - ETA: 2s - loss: 0.4520 - ae_loss: 0.1407 - cnn_loss: 0.3113 - cnn_accuracy: 0.8967"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "153/438 [=========>....................] - ETA: 2s - loss: 0.4520 - ae_loss: 0.1407 - cnn_loss: 0.3113 - cnn_accuracy: 0.8968"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "160/438 [=========>....................] - ETA: 2s - loss: 0.4520 - ae_loss: 0.1407 - cnn_loss: 0.3113 - cnn_accuracy: 0.8969"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "167/438 [==========>...................] - ETA: 2s - loss: 0.4520 - ae_loss: 0.1407 - cnn_loss: 0.3113 - cnn_accuracy: 0.8969"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "174/438 [==========>...................] - ETA: 2s - loss: 0.4519 - ae_loss: 0.1407 - cnn_loss: 0.3112 - cnn_accuracy: 0.8970"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "181/438 [===========>..................] - ETA: 2s - loss: 0.4518 - ae_loss: 0.1407 - cnn_loss: 0.3111 - cnn_accuracy: 0.8971"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "188/438 [===========>..................] - ETA: 2s - loss: 0.4516 - ae_loss: 0.1407 - cnn_loss: 0.3109 - cnn_accuracy: 0.8972"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "195/438 [============>.................] - ETA: 1s - loss: 0.4515 - ae_loss: 0.1407 - cnn_loss: 0.3108 - cnn_accuracy: 0.8972"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "202/438 [============>.................] - ETA: 1s - loss: 0.4514 - ae_loss: 0.1407 - cnn_loss: 0.3107 - cnn_accuracy: 0.8973"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "209/438 [=============>................] - ETA: 1s - loss: 0.4514 - ae_loss: 0.1407 - cnn_loss: 0.3107 - cnn_accuracy: 0.8973"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "216/438 [=============>................] - ETA: 1s - loss: 0.4514 - ae_loss: 0.1407 - cnn_loss: 0.3107 - cnn_accuracy: 0.8973"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "223/438 [==============>...............] - ETA: 1s - loss: 0.4514 - ae_loss: 0.1407 - cnn_loss: 0.3107 - cnn_accuracy: 0.8974"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "230/438 [==============>...............] - ETA: 1s - loss: 0.4514 - ae_loss: 0.1407 - cnn_loss: 0.3107 - cnn_accuracy: 0.8974"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "237/438 [===============>..............] - ETA: 1s - loss: 0.4514 - ae_loss: 0.1407 - cnn_loss: 0.3107 - cnn_accuracy: 0.8974"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "244/438 [===============>..............] - ETA: 1s - loss: 0.4514 - ae_loss: 0.1407 - cnn_loss: 0.3107 - cnn_accuracy: 0.8974"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "251/438 [================>.............] - ETA: 1s - loss: 0.4513 - ae_loss: 0.1407 - cnn_loss: 0.3106 - cnn_accuracy: 0.8974"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "258/438 [================>.............] - ETA: 1s - loss: 0.4513 - ae_loss: 0.1407 - cnn_loss: 0.3106 - cnn_accuracy: 0.8974"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "265/438 [=================>............] - ETA: 1s - loss: 0.4513 - ae_loss: 0.1407 - cnn_loss: 0.3106 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "272/438 [=================>............] - ETA: 1s - loss: 0.4513 - ae_loss: 0.1407 - cnn_loss: 0.3106 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "279/438 [==================>...........] - ETA: 1s - loss: 0.4513 - ae_loss: 0.1407 - cnn_loss: 0.3106 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "286/438 [==================>...........] - ETA: 1s - loss: 0.4513 - ae_loss: 0.1407 - cnn_loss: 0.3106 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "293/438 [===================>..........] - ETA: 1s - loss: 0.4513 - ae_loss: 0.1407 - cnn_loss: 0.3105 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "300/438 [===================>..........] - ETA: 1s - loss: 0.4512 - ae_loss: 0.1407 - cnn_loss: 0.3105 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "307/438 [====================>.........] - ETA: 1s - loss: 0.4512 - ae_loss: 0.1407 - cnn_loss: 0.3105 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "314/438 [====================>.........] - ETA: 0s - loss: 0.4512 - ae_loss: 0.1407 - cnn_loss: 0.3104 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "321/438 [====================>.........] - ETA: 0s - loss: 0.4512 - ae_loss: 0.1408 - cnn_loss: 0.3104 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "328/438 [=====================>........] - ETA: 0s - loss: 0.4511 - ae_loss: 0.1408 - cnn_loss: 0.3104 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "335/438 [=====================>........] - ETA: 0s - loss: 0.4512 - ae_loss: 0.1408 - cnn_loss: 0.3104 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "342/438 [======================>.......] - ETA: 0s - loss: 0.4512 - ae_loss: 0.1408 - cnn_loss: 0.3104 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "349/438 [======================>.......] - ETA: 0s - loss: 0.4512 - ae_loss: 0.1408 - cnn_loss: 0.3104 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "356/438 [=======================>......] - ETA: 0s - loss: 0.4512 - ae_loss: 0.1408 - cnn_loss: 0.3104 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "363/438 [=======================>......] - ETA: 0s - loss: 0.4512 - ae_loss: 0.1408 - cnn_loss: 0.3104 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "370/438 [========================>.....] - ETA: 0s - loss: 0.4513 - ae_loss: 0.1408 - cnn_loss: 0.3105 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "377/438 [========================>.....] - ETA: 0s - loss: 0.4513 - ae_loss: 0.1408 - cnn_loss: 0.3105 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "384/438 [=========================>....] - ETA: 0s - loss: 0.4513 - ae_loss: 0.1408 - cnn_loss: 0.3105 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "391/438 [=========================>....] - ETA: 0s - loss: 0.4513 - ae_loss: 0.1408 - cnn_loss: 0.3105 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "398/438 [==========================>...] - ETA: 0s - loss: 0.4514 - ae_loss: 0.1408 - cnn_loss: 0.3106 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "405/438 [==========================>...] - ETA: 0s - loss: 0.4514 - ae_loss: 0.1408 - cnn_loss: 0.3106 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "412/438 [===========================>..] - ETA: 0s - loss: 0.4515 - ae_loss: 0.1408 - cnn_loss: 0.3106 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "419/438 [===========================>..] - ETA: 0s - loss: 0.4515 - ae_loss: 0.1408 - cnn_loss: 0.3107 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "426/438 [============================>.] - ETA: 0s - loss: 0.4515 - ae_loss: 0.1409 - cnn_loss: 0.3107 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "433/438 [============================>.] - ETA: 0s - loss: 0.4516 - ae_loss: 0.1409 - cnn_loss: 0.3107 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.4516 - ae_loss: 0.1409 - cnn_loss: 0.3107 - cnn_accuracy: 0.8974 - val_loss: 0.4727 - val_ae_loss: 0.1495 - val_cnn_loss: 0.3232 - val_cnn_accuracy: 0.8956\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 29/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.4357 - ae_loss: 0.1387 - cnn_loss: 0.2970 - cnn_accuracy: 0.8828"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.4482 - ae_loss: 0.1393 - cnn_loss: 0.3089 - cnn_accuracy: 0.8945"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 14/438 [..............................] - ETA: 3s - loss: 0.4524 - ae_loss: 0.1395 - cnn_loss: 0.3129 - cnn_accuracy: 0.8928"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 20/438 [>.............................] - ETA: 3s - loss: 0.4523 - ae_loss: 0.1396 - cnn_loss: 0.3127 - cnn_accuracy: 0.8929"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 27/438 [>.............................] - ETA: 3s - loss: 0.4530 - ae_loss: 0.1397 - cnn_loss: 0.3133 - cnn_accuracy: 0.8931"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 34/438 [=>............................] - ETA: 3s - loss: 0.4533 - ae_loss: 0.1397 - cnn_loss: 0.3137 - cnn_accuracy: 0.8935"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 41/438 [=>............................] - ETA: 3s - loss: 0.4531 - ae_loss: 0.1397 - cnn_loss: 0.3134 - cnn_accuracy: 0.8941"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 48/438 [==>...........................] - ETA: 3s - loss: 0.4524 - ae_loss: 0.1397 - cnn_loss: 0.3127 - cnn_accuracy: 0.8948"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 55/438 [==>...........................] - ETA: 3s - loss: 0.4520 - ae_loss: 0.1397 - cnn_loss: 0.3123 - cnn_accuracy: 0.8954"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 62/438 [===>..........................] - ETA: 3s - loss: 0.4515 - ae_loss: 0.1398 - cnn_loss: 0.3117 - cnn_accuracy: 0.8960"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 69/438 [===>..........................] - ETA: 2s - loss: 0.4515 - ae_loss: 0.1398 - cnn_loss: 0.3117 - cnn_accuracy: 0.8963"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 76/438 [====>.........................] - ETA: 2s - loss: 0.4514 - ae_loss: 0.1398 - cnn_loss: 0.3116 - cnn_accuracy: 0.8966"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 83/438 [====>.........................] - ETA: 2s - loss: 0.4515 - ae_loss: 0.1399 - cnn_loss: 0.3116 - cnn_accuracy: 0.8967"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 90/438 [=====>........................] - ETA: 2s - loss: 0.4519 - ae_loss: 0.1399 - cnn_loss: 0.3119 - cnn_accuracy: 0.8968"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 97/438 [=====>........................] - ETA: 2s - loss: 0.4521 - ae_loss: 0.1400 - cnn_loss: 0.3122 - cnn_accuracy: 0.8969"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "104/438 [======>.......................] - ETA: 2s - loss: 0.4523 - ae_loss: 0.1400 - cnn_loss: 0.3123 - cnn_accuracy: 0.8970"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "111/438 [======>.......................] - ETA: 2s - loss: 0.4524 - ae_loss: 0.1400 - cnn_loss: 0.3124 - cnn_accuracy: 0.8971"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "118/438 [=======>......................] - ETA: 2s - loss: 0.4524 - ae_loss: 0.1401 - cnn_loss: 0.3124 - cnn_accuracy: 0.8972"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "125/438 [=======>......................] - ETA: 2s - loss: 0.4524 - ae_loss: 0.1401 - cnn_loss: 0.3123 - cnn_accuracy: 0.8973"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "132/438 [========>.....................] - ETA: 2s - loss: 0.4524 - ae_loss: 0.1401 - cnn_loss: 0.3122 - cnn_accuracy: 0.8974"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "139/438 [========>.....................] - ETA: 2s - loss: 0.4524 - ae_loss: 0.1401 - cnn_loss: 0.3123 - cnn_accuracy: 0.8974"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "146/438 [=========>....................] - ETA: 2s - loss: 0.4524 - ae_loss: 0.1402 - cnn_loss: 0.3123 - cnn_accuracy: 0.8974"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "153/438 [=========>....................] - ETA: 2s - loss: 0.4524 - ae_loss: 0.1402 - cnn_loss: 0.3122 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "160/438 [=========>....................] - ETA: 2s - loss: 0.4522 - ae_loss: 0.1402 - cnn_loss: 0.3120 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "167/438 [==========>...................] - ETA: 2s - loss: 0.4521 - ae_loss: 0.1402 - cnn_loss: 0.3118 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "173/438 [==========>...................] - ETA: 2s - loss: 0.4520 - ae_loss: 0.1402 - cnn_loss: 0.3118 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "180/438 [===========>..................] - ETA: 2s - loss: 0.4520 - ae_loss: 0.1403 - cnn_loss: 0.3117 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "187/438 [===========>..................] - ETA: 1s - loss: 0.4519 - ae_loss: 0.1403 - cnn_loss: 0.3117 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "194/438 [============>.................] - ETA: 1s - loss: 0.4520 - ae_loss: 0.1403 - cnn_loss: 0.3117 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "201/438 [============>.................] - ETA: 1s - loss: 0.4520 - ae_loss: 0.1403 - cnn_loss: 0.3117 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "208/438 [=============>................] - ETA: 1s - loss: 0.4520 - ae_loss: 0.1403 - cnn_loss: 0.3117 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "215/438 [=============>................] - ETA: 1s - loss: 0.4521 - ae_loss: 0.1404 - cnn_loss: 0.3117 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "222/438 [==============>...............] - ETA: 1s - loss: 0.4521 - ae_loss: 0.1404 - cnn_loss: 0.3117 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "229/438 [==============>...............] - ETA: 1s - loss: 0.4521 - ae_loss: 0.1404 - cnn_loss: 0.3117 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "236/438 [===============>..............] - ETA: 1s - loss: 0.4521 - ae_loss: 0.1404 - cnn_loss: 0.3117 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "243/438 [===============>..............] - ETA: 1s - loss: 0.4522 - ae_loss: 0.1404 - cnn_loss: 0.3117 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "250/438 [================>.............] - ETA: 1s - loss: 0.4522 - ae_loss: 0.1404 - cnn_loss: 0.3118 - cnn_accuracy: 0.8977"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "256/438 [================>.............] - ETA: 1s - loss: 0.4523 - ae_loss: 0.1404 - cnn_loss: 0.3118 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "263/438 [=================>............] - ETA: 1s - loss: 0.4523 - ae_loss: 0.1405 - cnn_loss: 0.3118 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "270/438 [=================>............] - ETA: 1s - loss: 0.4523 - ae_loss: 0.1405 - cnn_loss: 0.3119 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "277/438 [=================>............] - ETA: 1s - loss: 0.4524 - ae_loss: 0.1405 - cnn_loss: 0.3119 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "284/438 [==================>...........] - ETA: 1s - loss: 0.4524 - ae_loss: 0.1405 - cnn_loss: 0.3119 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "291/438 [==================>...........] - ETA: 1s - loss: 0.4524 - ae_loss: 0.1405 - cnn_loss: 0.3119 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "298/438 [===================>..........] - ETA: 1s - loss: 0.4524 - ae_loss: 0.1405 - cnn_loss: 0.3119 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "305/438 [===================>..........] - ETA: 1s - loss: 0.4525 - ae_loss: 0.1405 - cnn_loss: 0.3119 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "312/438 [====================>.........] - ETA: 0s - loss: 0.4525 - ae_loss: 0.1405 - cnn_loss: 0.3119 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "319/438 [====================>.........] - ETA: 0s - loss: 0.4525 - ae_loss: 0.1405 - cnn_loss: 0.3119 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "326/438 [=====================>........] - ETA: 0s - loss: 0.4525 - ae_loss: 0.1406 - cnn_loss: 0.3120 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "333/438 [=====================>........] - ETA: 0s - loss: 0.4525 - ae_loss: 0.1406 - cnn_loss: 0.3120 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "340/438 [======================>.......] - ETA: 0s - loss: 0.4525 - ae_loss: 0.1406 - cnn_loss: 0.3120 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "347/438 [======================>.......] - ETA: 0s - loss: 0.4526 - ae_loss: 0.1406 - cnn_loss: 0.3120 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "354/438 [=======================>......] - ETA: 0s - loss: 0.4526 - ae_loss: 0.1406 - cnn_loss: 0.3120 - cnn_accuracy: 0.8976"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "361/438 [=======================>......] - ETA: 0s - loss: 0.4526 - ae_loss: 0.1406 - cnn_loss: 0.3120 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "368/438 [========================>.....] - ETA: 0s - loss: 0.4527 - ae_loss: 0.1406 - cnn_loss: 0.3121 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "375/438 [========================>.....] - ETA: 0s - loss: 0.4527 - ae_loss: 0.1406 - cnn_loss: 0.3121 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "382/438 [=========================>....] - ETA: 0s - loss: 0.4527 - ae_loss: 0.1406 - cnn_loss: 0.3121 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "389/438 [=========================>....] - ETA: 0s - loss: 0.4528 - ae_loss: 0.1406 - cnn_loss: 0.3121 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "396/438 [==========================>...] - ETA: 0s - loss: 0.4528 - ae_loss: 0.1406 - cnn_loss: 0.3122 - cnn_accuracy: 0.8975"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "403/438 [==========================>...] - ETA: 0s - loss: 0.4528 - ae_loss: 0.1406 - cnn_loss: 0.3122 - cnn_accuracy: 0.8974"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "410/438 [===========================>..] - ETA: 0s - loss: 0.4528 - ae_loss: 0.1406 - cnn_loss: 0.3122 - cnn_accuracy: 0.8974"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "417/438 [===========================>..] - ETA: 0s - loss: 0.4529 - ae_loss: 0.1406 - cnn_loss: 0.3122 - cnn_accuracy: 0.8974"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "424/438 [============================>.] - ETA: 0s - loss: 0.4529 - ae_loss: 0.1407 - cnn_loss: 0.3122 - cnn_accuracy: 0.8974"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "431/438 [============================>.] - ETA: 0s - loss: 0.4529 - ae_loss: 0.1407 - cnn_loss: 0.3123 - cnn_accuracy: 0.8974"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - ETA: 0s - loss: 0.4530 - ae_loss: 0.1407 - cnn_loss: 0.3123 - cnn_accuracy: 0.8974"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.4530 - ae_loss: 0.1407 - cnn_loss: 0.3123 - cnn_accuracy: 0.8974 - val_loss: 0.4790 - val_ae_loss: 0.1499 - val_cnn_loss: 0.3292 - val_cnn_accuracy: 0.8946\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 30/30\n",
-      "\r",
-      "  1/438 [..............................] - ETA: 3s - loss: 0.3257 - ae_loss: 0.1361 - cnn_loss: 0.1895 - cnn_accuracy: 0.9375"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "  8/438 [..............................] - ETA: 3s - loss: 0.3536 - ae_loss: 0.1388 - cnn_loss: 0.2148 - cnn_accuracy: 0.9189"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 15/438 [>.............................] - ETA: 3s - loss: 0.3688 - ae_loss: 0.1388 - cnn_loss: 0.2300 - cnn_accuracy: 0.9162"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 22/438 [>.............................] - ETA: 3s - loss: 0.3770 - ae_loss: 0.1390 - cnn_loss: 0.2380 - cnn_accuracy: 0.9152"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 29/438 [>.............................] - ETA: 3s - loss: 0.3868 - ae_loss: 0.1392 - cnn_loss: 0.2476 - cnn_accuracy: 0.9131"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 36/438 [=>............................] - ETA: 3s - loss: 0.3936 - ae_loss: 0.1393 - cnn_loss: 0.2544 - cnn_accuracy: 0.9112"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 43/438 [=>............................] - ETA: 3s - loss: 0.3982 - ae_loss: 0.1394 - cnn_loss: 0.2587 - cnn_accuracy: 0.9100"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 50/438 [==>...........................] - ETA: 3s - loss: 0.4019 - ae_loss: 0.1395 - cnn_loss: 0.2624 - cnn_accuracy: 0.9091"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 57/438 [==>...........................] - ETA: 2s - loss: 0.4050 - ae_loss: 0.1396 - cnn_loss: 0.2654 - cnn_accuracy: 0.9084"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 64/438 [===>..........................] - ETA: 2s - loss: 0.4076 - ae_loss: 0.1396 - cnn_loss: 0.2679 - cnn_accuracy: 0.9080"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 71/438 [===>..........................] - ETA: 2s - loss: 0.4097 - ae_loss: 0.1397 - cnn_loss: 0.2700 - cnn_accuracy: 0.9076"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 78/438 [====>.........................] - ETA: 2s - loss: 0.4118 - ae_loss: 0.1397 - cnn_loss: 0.2720 - cnn_accuracy: 0.9072"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 85/438 [====>.........................] - ETA: 2s - loss: 0.4135 - ae_loss: 0.1398 - cnn_loss: 0.2738 - cnn_accuracy: 0.9069"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 92/438 [=====>........................] - ETA: 2s - loss: 0.4149 - ae_loss: 0.1398 - cnn_loss: 0.2751 - cnn_accuracy: 0.9066"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      " 99/438 [=====>........................] - ETA: 2s - loss: 0.4162 - ae_loss: 0.1399 - cnn_loss: 0.2764 - cnn_accuracy: 0.9064"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "106/438 [======>.......................] - ETA: 2s - loss: 0.4175 - ae_loss: 0.1399 - cnn_loss: 0.2777 - cnn_accuracy: 0.9061"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "112/438 [======>.......................] - ETA: 2s - loss: 0.4186 - ae_loss: 0.1399 - cnn_loss: 0.2787 - cnn_accuracy: 0.9058"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "118/438 [=======>......................] - ETA: 2s - loss: 0.4196 - ae_loss: 0.1399 - cnn_loss: 0.2797 - cnn_accuracy: 0.9055"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "125/438 [=======>......................] - ETA: 2s - loss: 0.4208 - ae_loss: 0.1399 - cnn_loss: 0.2808 - cnn_accuracy: 0.9053"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "131/438 [=======>......................] - ETA: 2s - loss: 0.4216 - ae_loss: 0.1400 - cnn_loss: 0.2817 - cnn_accuracy: 0.9051"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "137/438 [========>.....................] - ETA: 2s - loss: 0.4223 - ae_loss: 0.1400 - cnn_loss: 0.2823 - cnn_accuracy: 0.9049"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "143/438 [========>.....................] - ETA: 2s - loss: 0.4230 - ae_loss: 0.1400 - cnn_loss: 0.2830 - cnn_accuracy: 0.9048"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "149/438 [=========>....................] - ETA: 2s - loss: 0.4236 - ae_loss: 0.1400 - cnn_loss: 0.2835 - cnn_accuracy: 0.9047"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "155/438 [=========>....................] - ETA: 2s - loss: 0.4242 - ae_loss: 0.1400 - cnn_loss: 0.2841 - cnn_accuracy: 0.9046"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "161/438 [==========>...................] - ETA: 2s - loss: 0.4248 - ae_loss: 0.1401 - cnn_loss: 0.2847 - cnn_accuracy: 0.9044"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "168/438 [==========>...................] - ETA: 2s - loss: 0.4255 - ae_loss: 0.1401 - cnn_loss: 0.2855 - cnn_accuracy: 0.9042"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "174/438 [==========>...................] - ETA: 2s - loss: 0.4261 - ae_loss: 0.1401 - cnn_loss: 0.2860 - cnn_accuracy: 0.9041"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "180/438 [===========>..................] - ETA: 2s - loss: 0.4266 - ae_loss: 0.1401 - cnn_loss: 0.2865 - cnn_accuracy: 0.9040"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "186/438 [===========>..................] - ETA: 2s - loss: 0.4272 - ae_loss: 0.1401 - cnn_loss: 0.2870 - cnn_accuracy: 0.9038"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "192/438 [============>.................] - ETA: 1s - loss: 0.4277 - ae_loss: 0.1401 - cnn_loss: 0.2876 - cnn_accuracy: 0.9037"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "198/438 [============>.................] - ETA: 1s - loss: 0.4282 - ae_loss: 0.1401 - cnn_loss: 0.2881 - cnn_accuracy: 0.9036"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "205/438 [=============>................] - ETA: 1s - loss: 0.4288 - ae_loss: 0.1402 - cnn_loss: 0.2886 - cnn_accuracy: 0.9034"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "212/438 [=============>................] - ETA: 1s - loss: 0.4293 - ae_loss: 0.1402 - cnn_loss: 0.2891 - cnn_accuracy: 0.9033"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "219/438 [==============>...............] - ETA: 1s - loss: 0.4298 - ae_loss: 0.1402 - cnn_loss: 0.2896 - cnn_accuracy: 0.9032"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "226/438 [==============>...............] - ETA: 1s - loss: 0.4303 - ae_loss: 0.1402 - cnn_loss: 0.2901 - cnn_accuracy: 0.9030"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "233/438 [==============>...............] - ETA: 1s - loss: 0.4308 - ae_loss: 0.1402 - cnn_loss: 0.2906 - cnn_accuracy: 0.9029"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "240/438 [===============>..............] - ETA: 1s - loss: 0.4313 - ae_loss: 0.1402 - cnn_loss: 0.2911 - cnn_accuracy: 0.9028"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "247/438 [===============>..............] - ETA: 1s - loss: 0.4317 - ae_loss: 0.1402 - cnn_loss: 0.2915 - cnn_accuracy: 0.9027"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "254/438 [================>.............] - ETA: 1s - loss: 0.4321 - ae_loss: 0.1402 - cnn_loss: 0.2919 - cnn_accuracy: 0.9025"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "261/438 [================>.............] - ETA: 1s - loss: 0.4325 - ae_loss: 0.1402 - cnn_loss: 0.2923 - cnn_accuracy: 0.9024"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "268/438 [=================>............] - ETA: 1s - loss: 0.4329 - ae_loss: 0.1402 - cnn_loss: 0.2927 - cnn_accuracy: 0.9023"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "275/438 [=================>............] - ETA: 1s - loss: 0.4333 - ae_loss: 0.1402 - cnn_loss: 0.2931 - cnn_accuracy: 0.9022"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "282/438 [==================>...........] - ETA: 1s - loss: 0.4337 - ae_loss: 0.1402 - cnn_loss: 0.2935 - cnn_accuracy: 0.9021"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "289/438 [==================>...........] - ETA: 1s - loss: 0.4341 - ae_loss: 0.1402 - cnn_loss: 0.2938 - cnn_accuracy: 0.9020"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "296/438 [===================>..........] - ETA: 1s - loss: 0.4345 - ae_loss: 0.1402 - cnn_loss: 0.2942 - cnn_accuracy: 0.9019"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "303/438 [===================>..........] - ETA: 1s - loss: 0.4348 - ae_loss: 0.1403 - cnn_loss: 0.2945 - cnn_accuracy: 0.9017"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "310/438 [====================>.........] - ETA: 1s - loss: 0.4351 - ae_loss: 0.1403 - cnn_loss: 0.2949 - cnn_accuracy: 0.9016"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "317/438 [====================>.........] - ETA: 0s - loss: 0.4355 - ae_loss: 0.1403 - cnn_loss: 0.2952 - cnn_accuracy: 0.9015"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "324/438 [=====================>........] - ETA: 0s - loss: 0.4358 - ae_loss: 0.1403 - cnn_loss: 0.2955 - cnn_accuracy: 0.9015"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "331/438 [=====================>........] - ETA: 0s - loss: 0.4361 - ae_loss: 0.1403 - cnn_loss: 0.2958 - cnn_accuracy: 0.9014"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "338/438 [======================>.......] - ETA: 0s - loss: 0.4363 - ae_loss: 0.1403 - cnn_loss: 0.2960 - cnn_accuracy: 0.9013"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "345/438 [======================>.......] - ETA: 0s - loss: 0.4366 - ae_loss: 0.1403 - cnn_loss: 0.2963 - cnn_accuracy: 0.9012"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "352/438 [=======================>......] - ETA: 0s - loss: 0.4369 - ae_loss: 0.1403 - cnn_loss: 0.2966 - cnn_accuracy: 0.9011"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "359/438 [=======================>......] - ETA: 0s - loss: 0.4372 - ae_loss: 0.1403 - cnn_loss: 0.2969 - cnn_accuracy: 0.9011"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "366/438 [========================>.....] - ETA: 0s - loss: 0.4375 - ae_loss: 0.1403 - cnn_loss: 0.2972 - cnn_accuracy: 0.9010"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "373/438 [========================>.....] - ETA: 0s - loss: 0.4377 - ae_loss: 0.1403 - cnn_loss: 0.2974 - cnn_accuracy: 0.9009"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "380/438 [=========================>....] - ETA: 0s - loss: 0.4380 - ae_loss: 0.1403 - cnn_loss: 0.2977 - cnn_accuracy: 0.9008"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "387/438 [=========================>....] - ETA: 0s - loss: 0.4382 - ae_loss: 0.1403 - cnn_loss: 0.2979 - cnn_accuracy: 0.9008"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "394/438 [=========================>....] - ETA: 0s - loss: 0.4385 - ae_loss: 0.1403 - cnn_loss: 0.2981 - cnn_accuracy: 0.9007"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "401/438 [==========================>...] - ETA: 0s - loss: 0.4387 - ae_loss: 0.1404 - cnn_loss: 0.2983 - cnn_accuracy: 0.9007"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "408/438 [==========================>...] - ETA: 0s - loss: 0.4389 - ae_loss: 0.1404 - cnn_loss: 0.2986 - cnn_accuracy: 0.9006"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "415/438 [===========================>..] - ETA: 0s - loss: 0.4392 - ae_loss: 0.1404 - cnn_loss: 0.2988 - cnn_accuracy: 0.9005"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "422/438 [===========================>..] - ETA: 0s - loss: 0.4394 - ae_loss: 0.1404 - cnn_loss: 0.2990 - cnn_accuracy: 0.9005"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "429/438 [============================>.] - ETA: 0s - loss: 0.4396 - ae_loss: 0.1404 - cnn_loss: 0.2992 - cnn_accuracy: 0.9004"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "436/438 [============================>.] - ETA: 0s - loss: 0.4398 - ae_loss: 0.1404 - cnn_loss: 0.2994 - cnn_accuracy: 0.9004"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "438/438 [==============================] - 4s 9ms/step - loss: 0.4399 - ae_loss: 0.1404 - cnn_loss: 0.2995 - cnn_accuracy: 0.9003 - val_loss: 0.4829 - val_ae_loss: 0.1500 - val_cnn_loss: 0.3329 - val_cnn_accuracy: 0.8960\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\n",
-      "Duration :  00:02:07 273ms\n"
-     ]
-    }
-   ],
-   "source": [
-    "pwk.chrono_start()\n",
-    "\n",
-    "history = model.fit(noisy_train, [clean_train, class_train],\n",
-    "                 batch_size      = batch_size,\n",
-    "                 epochs          = epochs,\n",
-    "                 verbose         = 1,\n",
-    "                 validation_data = (noisy_test, [clean_test, class_test]),\n",
-    "                 callbacks       = callbacks_list  )\n",
-    "\n",
-    "pwk.chrono_show()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 5 - History"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 13,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:40:18.768383Z",
-     "iopub.status.busy": "2021-03-14T21:40:18.766707Z",
-     "iopub.status.idle": "2021-03-14T21:40:20.528912Z",
-     "shell.execute_reply": "2021-03-14T21:40:20.529422Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE5/figs/AE5-01-history_0</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgwAAAGdCAYAAAB+VCt0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABXQUlEQVR4nO3deZxbVf3/8dcnyex7O91bStlKWcsOAqV1AQUVFRQRFBBEv/mCCm4/BZWvIAiKIEpE/IqIQAVU3PALilpadmihbC0tdKF7O519n0nO74+bZDLTzJ5MMjPv5+ORx03OPffOSUiZ95xz7rnmnENERESkL75MN0BERESynwKDiIiI9EuBQURERPqlwCAiIiL9UmAQERGRfikwiIiISL8UGERERKRfCgwi0iczu9vMnJktyXRbRCRzFBhERESkXwoMIiIi0i8FBhEREemXAoOIpIWZfczMHjWzXWbWZmabzew+Mzuyj2Mmm9kPzew1M2sys1Yz22RmT5vZ98xsdpJjzjSzv5vZDjPrMLNqM3vTzBab2TnpfZci44fp5lMi0hczuxu4AHjCObdwAPV9wK+Bz0SLwkADUB59HQEuc879vMdxs4FngGkJx9VHj7No2X855+5IOOb7wLcSTtMA5AD50dc7nHNT+2uziPRPPQwikmpfxwsLDvg2UOGcqwBmAg/h/X/nZ2a2oMdx38ULC28BC4Bc59wEoAA4FLgO2B6rbGZ7A/8v+vIGYJJzrtQ5VwBMAc4GHknHGxQZj9TDICJ9GkwPg5kVAVuBUuAHzrlv9tjvB5YAJwHLnHMLEva9AcwDPumce2AA7foE8ACw2jk3bxBvSUSGQD0MIpJKp+KFhXbgpp47nXNh4Nroy5PNLHG4oD66ncbAxOqXmVnhENoqIoOgwCAiqRSb0LjSOVfTS52lQGeP+gB/j25vNLPbzWyRmRX08bOeA6rxAsYzZnapmc0ZasNFpG8KDCKSSpOi2y29VXDOtQK7e9QHuBH4C5ALBIF/A/XRKyS+ZmblPc5TA3waqAUOA34BrDOzbWb2GzM7ZfhvR0RiFBhEJB3yBnuAc67NOXcmcALecMazeBMnY6/XmNnhPY75O7A3cCnwIN78ial4ky6XmNmdw3gPIpJAgUFEUmlXdLvHegkxZpYPTOxRP84596xz7hvOuROACuBc4B283oj/TVK/zjn3S+fcOc65GcDBwC+juz9nZmcM+d2ISJwCg4ik0orodn8zm9FLnQVAoEf9pJxzTc653+H1IAAcFb0So69j3nDOXYrXQwGgoQmRFFBgEJFU+gfe1Qs5wNd67oxeVvnt6MtlzrnEdRVy+zhvS6wa3hyH/uonHjPo4RER2ZMCg4gMVI6ZVfb1wLuc8vpo/S+a2VVmVgwQ7XFYjLcGQwS4usf5XzOz683smFgYMM+xwE+jdV5IuPriv8zsMTP7lJnFL8U0s3Iz+xawMFr0WGo/BpHxSQs3iUifEhZuGohFwDLgLrovDZ24xHMEuNw5F+rxc2qBsoRj6oASvN4KgCrgPc65V6L1vwzcknCKJqCDriWoAe50zn1+gG0XkT4E+q8iIjJw0cWZLjCzv+DNPTgKbzGnbcATwM3OueVJDj0TOA1vjsNeeMs7twOr8NZouMU5tzOh/v1AI/BevMsqpwHF0Z/zAvAr59xfUv4GRcYp9TCIiIhIvzSHQURERPqV8cBgZt80s4fMbJ2ZOTPbkIJzPhg912spaKKIiMi4lw1zGK7HWw9+Bd0nKw2JmX0QOIuuS6pERERkmDLewwDs65yb6Jx7H96yrkMWvXwrBNwO7OynuoiIiAxQxgODc25dCk/3fbxek57Xd/cpGAy6YDCo2Z8iIiK9yIYhiZSILu5yGXCuc67ezIZyGoUGEREZLwb1izLjPQypYGYBvJvN/MM59+AgjrvUzF5MX8tERETGhjERGPDWrN8f+O/BHOScu9M5d3R6miQiIjJ2jPrAYGb7Ad8Bvp/i+RAiIiISNRbmMNyMd1nmw9HwEBMAcqNlTc65bRlpnYiIyBgwFgLDbGA68Hov+9cCjwAfHOyJOzo62Lx5M62trcNo3viTn5/PzJkzycnJ6b+yiIiMCqMqMERvYVsGvOOca44Wf5XkCz6FgFbgSryb0Qza5s2bKSkpYe+992aIV12MO845du/ezebNm5kzZ06mmyMiIimS8cBgZp/G6yUAmIQ3jBBbR2Gjc+63CdVvwLvN7iJgCYBz7vFezvsjoNE59/uhtq21tVVhYZDMjIkTJ7Jr165MN0VERFIo44EBuBg4pUfZtdHtE8BvySCFhcHTZyYiMvZkPDA45xYOou6FwIUDrLv3kBqUZYqLi2lsbMx0M0REZJwb9ZdVioiISPopMIwSzjm+9rWvccghh3DooYfywAMPALBt2zYWLFjA/PnzOeSQQ1i2bBnhcJgLL7wwXveWW27JcOtFRGS0y/iQxGhx2rWPpO3cj337jH7r/PGPf+Tll19m5cqVVFVVccwxx7BgwQLuv/9+TjvtNK666irC4TDNzc28/PLLbNmyhddeew2A2tratLVdRETGB/UwjBJPPvkk5557Ln6/nylTpnDKKafwwgsvcMwxx/DrX/+aa665hldffZWSkhL22Wcf1q1bx+WXX86jjz5KaWlpppsvIiKjnALDKOFc8htpLliwgKVLlzJjxgw+/elPc88991BRUcHKlStZuHAht99+O5dccskIt1ZERMYaDUkM0ECGDQDaOsJs3NUAQG7Az96TS1Ly8xcsWMAvfvELLrjgAqqrq1m6dCk//OEP2bhxIzNmzOBzn/scTU1NrFixgtNPP53c3FzOOuss9t13Xy688MKUtEFERMYvBYYUC/i71iDoCEdwzqVkXYKPfvSjPPPMMxx++OGYGTfddBNTp07lN7/5DT/84Q/JycmhuLiYe+65hy1btnDRRRcRiUQAuOGGG4b980VEZHyz3rq6x5NgMOgAQqFQt/JVq1Yxb968QZ3LOcdb2+vjQwj7Ti3F7xt/Iz9D+exERGREDeqv2fH3myzNzKxbL0NnWIFMRERGPwWGNAgk9Ch0RocFRERERjMFhjQI+Ls+1rB6GEREZAxQYEiD7kMS6mEQEZHRT4EhDboPSaiHQURERj8FhjRQD4OIiIw1Cgxp4FcPg4iIjDEKDGmQbT0MCxcu5MUXX8x0M0REZBRTYEiDxDkM4Yjr9T4QIiIio4WWhh6oS94/4Ko+4IDBnPt/H+1z90c+8hE2bdpEa2srX/rSl7j00kv5xz/+wXe/+13a2trYd999+fWvf01xcXG/P2rx4sVcf/31OOc444wzuPHGGwmHw1x88cW8+OKLmBmf/exnueKKK7jtttu44447CAQCHHTQQfzud78bzLsSEZExRIFhFLjrrruYMGECLS0tHHPMMZx55plcd911PP744xQVFXHjjTfy4x//mO985zt9nmfr1q184xvfYPny5VRUVHDqqafypz/9iVmzZrFlyxZee+01AGprawH4wQ9+wPr168nLy4uXiYjI+KQhiVHgtttu4/DDD+f4449n06ZN/PKXv+SNN97gxBNPZP78+fzmN79h48aN/Z7nhRdeYOHChUyaNIlAIMB5553H0qVL2WeffVi3bh2XX345jz76KKWlpQAcdthhnHfeedx7770EAsqWIiLjmX4LDFQ/wwY9ba9tpr65HYApZQWUFeUN6ccuWbKExx9/nGeeeYbCwkIWLlzI4Ycfzvve9z4WL148qHP1NpeioqKClStX8thjj3H77bfz4IMPctddd/HII4+wdOlS/vKXv3Dttdfy+uuvKziIiIxT6mFIk8SJjx3DuLSyrq6OiooKCgsLWb16Nc8++yytra089dRTvPXWWwA0NzezZs2afs913HHH8cQTT1BVVUU4HGbx4sWccsopVFVVEYlEOOuss7j22mtZsWIFkUiETZs2sWjRIm666SZqa2tpbGwc8vsQEZHRTX8upknipZXhYVxa+f73v5877riDww47jLlz53L88cczadIk7r77bs4991za2toAuO666zjggL6nWk6bNo0bbriBRYsW4Zzj9NNP58wzz2TlypVcdNFFRKI3yrrhhhsIh8Ocf/751NXV4ZzjiiuuoLy8fMjvQ0RERjfTJX8QDAYdQCgU6la+atUq5s2bN6RzNrZ2sLW6CYCivBxmTCwaZitHl+F8diIiMiKs/ypdNCSRJgFfwuJNusW1iIiMchqSSJPEW1x3jtAtrj/60Y+yfv36bmU33ngjp5122oj8fBERGbsUGNLEn9DDEI5EiDiHzwbV+zNoDz/8cFrPLyIi45eGJNLEzLr1Mgxn4qOIiEimKTCkUfd5DJpcKiIio5cCQxr5u81jUA+DiIiMXgoMadTtNtfqYRARkVFMgSGNEld7zLYehoULF/Liiy9muhkiIjJKKDCkUfdJj+phEBGR0UuXVQ7Qob85NG3nfvWCV3vdd8899/CjH/0IM+Owww7D7/dTWlrKiy++yPbt27nppps4++yzWbJkCddccw2VlZW89tprHHXUUdx7773YAC7lXLx4Mddffz3OOc444wxuvPFGwuEwF198MS+++CJmxmc/+1muuOIKbrvtNu644w4CgQAHHXQQv/vd71L5UYiISJZSYMhir7/+Ot///vd56qmnqKyspLq6miuvvJJt27bx5JNPsnr1aj784Q9z9tlnA/DSSy/x+uuvM336dE488USeeuopTjrppD5/xtatW/nGN77B8uXLqaio4NRTT+VPf/oTs2bNYsuWLbz22msA1NbWAvCDH/yA9evXk5eXFy8TEZGxL+NDEmb2TTN7yMzWmZkzsw2DPL7CzL5kZv8ws01m1mJmb5rZnWY2K03NHhH//ve/Ofvss6msrARgwoQJAHzkIx/B5/Nx0EEHsWPHjnj9Y489lpkzZ+Lz+Zg/fz4bNmzo92e88MILLFy4kEmTJhEIBDjvvPNYunQp++yzD+vWrePyyy/n0UcfpbS0FIDDDjuM8847j3vvvVe3uhYRGUey4f/41wPVwAqgfAjHHwfcDPwL+BlQBRwCfB74hJm9yzn3xnAb2dewQW+cc7y1vZ7YDb72nVrWbQXIgRyfbEghLy+vW51k5X6/n87OzgH9jGQqKipYuXIljz32GLfffjsPPvggd911F4888ghLly7lL3/5C9deey2vv/66goOIyDiQ8R4GYF/n3ETn3PuArUM4fjUw1zl3mnPuRufcr5xzVwAfBsqA76WysYNhZt0Wbxrsao/vec97ePDBB9m9ezcA1dXVKW0fwHHHHccTTzxBVVUV4XCYxYsXc8opp1BVVUUkEuGss87i2muvZcWKFUQiETZt2sSiRYu46aabqK2tpbGxMeVtEhGR7JPxPw2dc+uGefyGXsofN7NqvN6GjAn4fXREg0JnJEIu/gEfe/DBB3PVVVdxyimn4Pf7OeKII1LevmnTpnHDDTewaNEinHOcfvrpnHnmmaxcuZKLLrqISPROmzfccAPhcJjzzz+furo6nHNcccUVlJeXp7xNIiKSfay3LulMMLPXgGLn3N4pOFcZsAt4xjl3Sl91g8GgAwiFQt3KV61axbx584bVjm01TTS0dAAwtbyQ0sLcYZ1vtEjFZyciImk1qDsiZsOQRLpcDeQAv+mtgpldamZpXb3In7h4UyS7Fm8SEREZqDEZGMzsbOArwGPAr3ur55y70zl3dDrb0m156Aws3vTRj36U+fPnd3s89thjI94OEREZ3TI+hyHVzOx04D5gOfAJN8wxl96uVBioTC8P/fDDD4/4z8ymYS4REUmNMdXDYGbvB/4IvA6c6pyrH8758vPz2b1797B+AXZbHnoc3IDKOcfu3bvJz8/PdFNERCSFxkwPg5mdBjyMd5nle51zNcM958yZM9m8eTO7du0a8jk6wxF2N7QB4PcZjbvG/i/S/Px8Zs6cmelmiIhICo2qwGBm0/DWVnjHOdecUH4q8CdgDfAe51xKFizIyclhzpw5wzpHa3snX73RmzOQ4/fx12++f1hDHCIiIpmQ8cBgZp8GZkdfTgJyzezq6OuNzrnfJlS/AbgAWAQsiR5/NPBnvMtDfg18oOcvZOfcvelqf3/ycwMU5QVoauukIxyhvqWDsnFyaaWIiIwdGQ8MwMVAz3USro1unwB+S98OAWL9/Lf0UidjgQFgYkk+TW3eiohV9a0KDCIiMupkfNKjc26hc856eSzsUffCaPmShLK7+zjenHMZ7/+fWNI1b6G6sTWDLRERERmajAeG8WBiSddNoXY3KDCIiMjoo8AwAiYWd/UwVEWvmBARERlNFBhGwMTSrsCgHgYRERmNFBhGwMRiDUmIiMjopsAwAhInPSowiIjIaKTAMAK6XyWhOQwiIjL6KDCMgAnFefGbjtc0tmXkJlQiIiLDocAwAgJ+H+VF3jwGB9Q0qZdBRERGFwWGEdJ9LQYFBhERGV0UGEbIBE18FBGRUUyBYYRUKjCIiMgopsAwQhLXYqhSYBARkVFGgWGEJK72WK05DCIiMsooMIyQxPtJ7NYdK0VEZJRRYBghiVdJVNUrMIiIyOiiwDBCuq/2qMAgIiKjiwLDCCktzCXg89Z7bGztpLUjnOEWiYiIDJwCwwjxmekmVCIiMmoFMt2AseaN3W/w57f+zPam7Rw66VAuOfSS+L4JJXnsqGsBoLqhlRkTijLVTBERkUFRYEixbU3buH/1/QC0R9q7BYbEKyW0FoOIiIwmGpJIsalFU+PPtzdt77avsjRxSEJrMYiIyOihwJBiUwu7AsOOph3d9k3QWgwiIjJKKTCk2IT8CeT6cgFo6GigqaMpvq/bHSu1FoOIiIwiCgwpZma9Dkt0uwFVo4YkRERk9FBgSIPeAoNucS0iIqOVAkMaDKiHoaEV59yItktERGSoFBjSYErhlPjzbU3b4s8L8wIU5PoBaO+M0NjaOeJtExERGQoFhjTo69LKbnet1LCEiIiMEgoMadAtMDT3CAylCgwiIjL6KDCkQWJg6LkWw8TihNtcKzCIiMgoocCQBj2HJBInN+oGVCIiMhopMKRBSU4JhYFCAFrDrdS11cX3JQaGaq3FICIio4QCQxqYGdOKpsVfJ85jSAwMVVrtUURERgkFhjTp7UqJbstD634SIiIySigwpEnvgSFhSEJ3rBQRkVEi44HBzL5pZg+Z2Tozc2a2YYjnOd3MnjazJjOrjp5zToqbO2BTipIv3jQh4SqJ6sY2whGt9igiItkv44EBuB54N/A2UDOUE5jZx4C/AQXA14AfAguAp8xseoraOSiJt7lO7GHIDfgpK/TuZhlxjtom9TKIiEj2C2S6AcC+zrl1AGb2GlA8mIPNLAf4KbAJONk51xgt/z9gOXANcGkqGzwQfa32OKE4j7rmdsC7tDJxmEJERCQbZbyHIRYWhuEUYDrwv7GwED3vy8AS4JxoqBhR3RZvau6+eFNlt9Ue1cMgIiLZL+OBIQWOiW6fSbLvWaAUOGDkmuPpGRgiLhJ/3e1+ErpSQkRERoGxEBhicxS2JNkXK5sxQm2JKwgUUJZXBkBnpJPdLbvj+yYkXlqptRhERGQUGAuBoTC6Tda339qjTjdmdqmZvZiWVkH3xZsS5jFUlqiHQURERpexEBiao9u8JPvye9Tpxjl3p3Pu6LS0ih5XSvS22qPmMIiIyCgwFgLD1ug22bBDrCzZcEXaJa7F0PviTephEBGR7DcWAsML0e0JSfYdD9QDa0auOV0SJz4mLt7UbXloBQYRERkFRlVgMLNpZnagmSXOSXgC2AZcYmbFCXUPBxYCDznnOka2pZ7e1mIoK8zDZwZAfUsH7Z3hEW+biIjIYGR84SYz+zQwO/pyEpBrZldHX290zv02ofoNwAXAIrw1FnDOdZjZl4AHgGVm9ku8SymvAHYB3037m+hF4hyGHU1dazH4fcaEkrz43SqrG9qYWpF0XqaIiEhWyHhgAC7GW3wp0bXR7RPAb+mHc+4hM2sBrgZ+hHfFxL+AbzjnMjJ/Afpe7XFicX48MOxubFVgEBGRrJbxwOCcWziIuhcCF/ay729495PIGlMKp2AYDseull10RDrI8XmLTlaW5PFmtF6V1mIQEZEsN6rmMIw2Of4cJhZMBPBCQ/Ou+L4J3dZi0KWVIiKS3RQY0qy3xZsSL63UlRIiIpLtFBjSrLd5DJUKDCIiMoooMKTZlMKExZsSVnucoLUYRERkFFFgSLPeehi63bFSy0OLiEiWU2BIs95We6ws7T4k4Zwb0XaJiIgMhgJDmiUGhsTFm4ryAuQFvI+/tSNMc1vniLdNRERkoBQY0qzbHSsThiTMjImlmvgoIiKjgwJDmlUWVBIwb32smrYaWju7gkG3eQxai0FERLKYAkOa+X1+JhdOjr/e0dw1LJG4FoNWexQRkWymwDACer1SIuHSyupGBQYREcleCgwjYEpRwloMva72qCEJERHJXgoMI6D3HoaEIQlNehQRkSymwDACul0p0Zw8MFQrMIiISBZTYBgBvS3eNLG4aw6DehhERCSbKTCMgN4Wb+rWw9DYRkSrPYqISJZSYBgBvc1hyMvxU5yfA0A44qhvbh/xtomIiAyEAsMIqMirIM/vDT80djTS2N4Y31eptRhERGQUUGAYAWY2oLUYdmstBhERyVIKDCOktyslJmgtBhERGQUUGEZIb4s3VXYLDOphEBGR7KTAMEIGNCShwCAiIllKgWGE9BoYitXDICIi2U+BYYR0m8OQGBhKNYdBRESynwLDCOnWw9CcvIdBqz2KiEi2UmAYIT2HJFx0VceK4lx85pXXNbfTEY5konkiIiJ9UmAYISW5JRTlFAHQFm6jtq0WAL/PR3lR18THmkYNS4iISPZRYBhB04qmxZ/rNtciIjKaKDCMoN7WYpiotRhERCTLKTCMoN5We0xci6FagUFERLKQAsMI6m0thm43oNKllSIikoUUGEZQ76s9akhCRESymwLDCOotMEwo1vLQIiKS3RQYRlBvqz3qBlQiIpLtFBhGUOJVEjubdxKOhIEeQxJah0FERLJQxgODmfnM7AozW21mrWa2ycxuNrOiAR5vZvYpM3vazKrMrMHMXjez75hZabrbPxgFgQLK88oB6HSd7G7dDUBJQQ45fu8/RXNbJy3tnZlqooiISFIZDwzALcCPgTeAy4GHgC8CfzWzgbTvOuA+oAX4H+BrwKvR5/8wM0tHo4cq2eJNZqbbXIuISFYLDPaAYDBYAUwD3g6FQm0J5RcBHwGagFtDodDz/Z3LzA7GCwl/dM6dlVC+HrgN+CRwfx/HB4AvAyuA9znnYjdiuMPMOoHzgMOBlwf+DtNrStEUVlWvArzAcNikwwBvWGJ7bQvgrfY4c2JxxtooIiLS01B6GK4Hnks8NhgMXg78L/AhvF/yS4LB4EEDONe5gAG39ij/JdAMnN/P8TlAAbA9ISzEbI1umwbQjhHT622uE+YxVGstBhERyTJDCQwnAv8KhUItCWVfBbYAC4BPRMuuHMC5jgEiQLfeCOdcK16vwDF9HeycawGWAu83s2+Y2X5mtreZXQgEgXudc2sH0I4R0+ttrnWlhIiIZLGhBIYZwPrYi2hPwizgp6FQ6MlQKPR74K944aE/04Eq51yyP6m3AJVmltvPOc4D/gP8AFgbbdtdeHMjPjOANoyoXhdvSliLQTegEhGRbDOUwFAAJP5GOxFwwOMJZW/jBYv+FAK99b+3JtTpSxuwDrgH+BTeMMcfgKuBb/V1oJldamYvDqCdKTOQ1R531SswiIhIdhlKYNgCHJjw+jSgHliZUFaBd9VCf5qBvF725SfUScrMCoGngVLn3AXOucXOud855z4OPAB8z8zm9na8c+5O59zRA2hnyvQWGKZP6LqK9Pm1O9lZN5CPT0REZGQMJTD8Bzg9GAxeFgwGLwE+DDwaCoUSJx3uB2wawLm24g07JAsNM/CGK9r7OP5sYH+8SzF7egjv/Z00gHaMmMmFkzG8Kz2rWqroCHcAMHd6GQdMLwOgIxzh3qVrMtZGERGRnoYSGG4AGoGfAHfiDR1cE9sZDAYnA6fg/eXfnxeibTg2sdDM8oH5QH/DBbFhD3+SfYEe26yQ48uhsqASAIdjZ8tOwFuL4eJ3d3Xc/HPlZjbuashIG0VERHoadGAIhULrgYOBL+EtsHRIKBR6M6HKbOB24O4BnO4BvPkPX+5R/jm8uQv3xQrMbJqZHRgdhoh5I7q9IMm5Y2UvDKAdIyrZ4k0A8+dUctQ+XpiIOLj7P2/ucayIiEgmDOmv71AotB34WS/7XmCAv6Sdc6+a2e3AZWb2R+DvwDy8IPIE3RdtugEvBCwClkTL/oZ3SebpZrYUb7KjAR8DTgYecs6tGNSbGwFTiqZAlfc8MTAAfPbdB7J83ZMAPP3mDt7YXMNBMytGuokiIiLdpKy7PhgMVuL9km4GHg+FQuEBHvplYANwKXAG3q/SnwLfSbIYUzfOubCZvRf4Jl5IuAmvx2It8A28JaezTm8THwH2m1bGwoOns+R1b92pu/61mh9+5niybIVrEREZZwY9JBEMBv8rGAw+FwwGJySUHQWsAn6P10vwdDAYHNDNo5xzYefczc65uc65POfcDOfclc65xh71LnTOmXNuSY/yBufct5xzB0aPz3fOHeqcu8k5l5V3cepttceYCxYegN/nBYRX36nmhbd2jVjbREREkhnKpMdzABcKhaoTyn6Idynlr/ECwzHAF4bfvLGpt9UeY6ZPKOL0I/eKv77r36sJR9yItE1ERCSZoQSG/YFXYi+iQxGnAL8KhUKXhEKhD+HNYfhUapo49iQGhh1NO5LWOe/k/cnP8S7+WL+zgf+8tmVE2iYiIpLMUALDRGBnwusTo9uHE8qW4V0tIUkkBoZtTduS1qkozuNjx8+Jv75nyRraOwc6LURERCS1hhIYqoHKhNen4N1AKnHdBUfXSo3Sw8T8iQTMm29a21ZLS2fyVR3PPmEfygq9W2nsqGvhkeXvjFgbRUREEg0lMKwCPhQMBicGg8FyvDkNL4RCofqEOnsDew7OCwB+n5/JhZPjr3sblijKy+Hck/aLv1785Fs0tXWkvX0iIiI9DSUw/ASYBmzGW/55KhCK7QwGg3685ZhXJj1agP4nPsaccdReTCkvAKCuuZ0/PLO+17oiIiLpMpSVHv+CdwXE68CbwFdDodC9CVXeizcc8VhKWjhG9bUWQ6LcgJ/PnHJA/PUfnl1HTWNvN/gUERFJj6Gu9Hgn3n0kku17DO8SS+nDQAMDwKJDZvD7Z9axfmcDrR1h7lu2lss+cEi6mygiIhI3lCEJSYHBBAa/z7jo3V136f77infYWt2UtraJiIj0NOSloYPB4PHAJcARQDlQBywHfh0KhQZyp8pxrdtqj33MYYg5dr/JHLLXBF57p5pwxPGbJWv45seOSGcTRURE4obUwxAMBq8DngI+ixcY5uDdjvpiYFkwGLw+VQ0cqwayeFMiM+Pi93Td/nrJ61t5a1tdWtomIiLS01DuJfFx4FvAO3g9DPsABdHtJdHybwSDwU+ksJ1jzkAWb+rpoJkVvGvulPjru/69OuXtEhERSWYoQxKXAzuAY0KhUFVC+QbgrmAw+BfgNeC/gQeH3cIxqjyvnDx/Hm3hNpo6mmhob6Akt6Tf4y5aNJdn1+wg4mD5uipeXl/F/DmV/R4nIiIyHEMZkjgc+H2PsBAXLX8Ib4hCemFmg5r4GLPXpBLed/jM+Otf/Xs1zunGVCIikl5DCQwBoLmfOs0MY0LleDGUwABw/oIDyPF7/+nWbK3jyVVaVFNERNJrKIHhLeCDwWAw6bHR8tOBt4fTsPFgsFdKxEwuK+DMY/eOv777P28SjkRS2TQREZFuhhIYFgPzgD8Hg8H9E3cEg8F9gd8DBwH3D795Y9tQexgAzjlxX4ryvE6czdVNPPby5pS2TUREJNFQhg1+DLwfOAP4QDAY3Apsw7unxAy8EPJktJ70YTiBobQgl3NO3Je7/v0mAL99Yg3vPnQG+Tn+lLZRREQEhnYviXbgfcBVwHpgJnAMMCv6+irgPdF60ofBrsXQ05nHzmFiSR4A1Y1t3PUvTYAUEZH0GNLCTaFQqCMUCt0QCoX2B0rxwkJpKBTaPxQK3QD4g8FgaSobOhYNdQ5DTH6On/MXdN2Y6s8vbODHf32FzrDmM4iISGoN+0qGUCjUCDT2KP458OlUnH8s6zkk4ZzDzAZ1jtPmz+S5tTt5do3XQ/GPlZupbWrjqrOOJD9XH7+IiKRGOm8+NbjffONQcW4xxTnFALSF26hpqxn0Ofw+H9/5+JGcNr9rbYbn39rF13/7HHXNGhUSEZHU0N0qM2w4Ex9j/D4fV3zwMD510n7xsje31nLlr59me01/S2aIiIj0T4Ehw1IRGMBbOfKCRXO57AMHx7t2Nlc3ccXdT/P2dt2kSkREhkeBIcNSFRhiPnT03lx19pHxlSCrG9v46m+e5eX1SVfyFhERGRAFhgwb7pUSyZw8bxo3nHdsfGGn5vZOrrr/eZa8vjUl5xcRkfFHgSHDUt3DEHPo7IncfMEJVJbkA9AZcdzwx5d4+Ln1KfsZIiIyfgzourtgMBhOd0PGq+Eu3tSXOVNKueWid3HV/c/zTpV35esd/3iD3Q2tfPY9B+Ib5CWcIiIyfg20h8GG8JABSFcPQ8zksgJuvvAEDppZES976Jl1/OjPK7XAk4iIDNiAehhCoZCGLtJkSuGU+PMdzTsIR8L4fam9H0RpQS4/OP84rv/jS/EFnv716hZqm9v59tlHUqAFnkREpB8KAhmWH8inIs/76z/swlS1pOdqhrwcP9/5+JGcfuRe8bLlb+/ia/c8y+6G1rT8TBERGTsUGLJAt2GJFF0pkYzf5+OLpx/C+Qu67kq+dlsdn//FUpa8tlU3rhIRkV4pMGSBdM9jSGRmfPqUA/ji6Yfgi840aWjp4IaHX+L7f3hJy0mLiEhSCgxZYCQDQ8wZR83mhvOOY3JZQbxs2aptXHrHEzy9emTaICIio4cCQxbIRGAAmD+nkjs+fzLvnz8rXlbb1M7/PLScm/70Mg0tHSPWFhERyW4KDFkgcbXHHc2pXYuhP0V5OVzxocO49pPHMKE4L17+r1e38PlfPMELb+0c0faIiEh2ynhgMDOfmV1hZqvNrNXMNpnZzWZWNIhzBMzsi2a2wsyazKwu+vzz6Wx7qmSqhyHRsftP5hdfWMC7D5keL9vd0MbVi1/g1r+9QnNbZ0baJSIi2SHjgQG4Bfgx8AZwOfAQ8EXgr2bWb/vMLBf4G/BD4GXgCuCbwBPA7PQ0ObWyITCAt17DNz56BN/5+FGUFebGy//vpU184c6lrNywO2NtExGRzMroij1mdjBeSPijc+6shPL1wG3AJ4H7+znNt4H3Au9zzv0nXW1Np0mFkzAMh6OqpYqOcAc5/pyMtefEA6dy8KwKfvr313gyOgFyR20LX//ts3zk2L256N0Hkp+T2sWlREQku2W6h+FcvGWkb+1R/kugGTi/r4OjwxZfAv7snPuPeUrS0dB0yvHlMKlgEgAON+LzGJIpL8rj6rOP5P99dD7F+V3h5U/PbyB45zJe31SdwdaJiMhIy3RgOAaIAM8nFjrnWvGGF47p5/iTgRJguZn9BKgH6s1sl5ldb2ajZs3jbBmWSGRmLDpkBnd+YQHH7j85Xr6luomv3P0M3178PMtWbaND96QQERnzMh0YpgNVzrm2JPu2AJXROQq9mRvdfhk4C/g6cA7wNN48hl/19cPN7FIze3GwjU6HkVrtcSgmluTzvXOO5soPHUZh9L4TDnj+rV1c9/sVnHfrv/jFP95gw86GzDZURETSJtOBoRBIFhYAWhPq9CY2/DABeK9z7ufOuQedc2cCS4DPmNlBvR3snLvTOXf0INucFtnYw5DIzDht/ix+8YUFHJfQ2wBQ19zOH59bz+d/sZTLf/Ukf1u+kcZWreEgIjKWZLrLvhmY3Mu+/IQ6vWmJbp91zq3use8eYCFwCt4VGFkt2wNDzOSyAr73yWPYXtPMYys38c+Vm9lV33XzqjVb61iztY5f/OMNTp43jVPnz+Sw2RPxme54LiIymmU6MGwFDjKzvCTDEjPwhiv6urnB5ug22W/YbdFtxTDbOCISA8PKXSvpjHQS8GX6P0/vplYUcsHCuZy/4ABeXl/Foy9v4pk3d8TnM7R3RvjXq1v416tbmFpewKmHz+J9h8/sthS1iIiMHpn+jfQCcCpwLLAsVmhm+cB8YGk/x8cmS85Msi9WNiqWKjy08lD85ifswqyuXs0dK+/gsiMuy3Sz+uX3GUftO4mj9p1EfXM7/3ltC4++vJl1O+rjdbbXtnDPE2v47RNrOHKfSk45eDonzJ1CaUFf01NERCSbWCZvaWxmhwIrgYd7rMNwOd46DJ92zt0bLZsGlAHvOOeaE+o+CbwLONo5tyJa5seb+HgksK9z7p2+2hEMBh1AKBRK4bsbvF++8ktue+k2AAzjV6f9imOm9nehSHZau62Ox17exH9e20Jj656rRPp9xhFzKllw0DSFBxGRzBjUWHFGAwOAmf0UuAx4GPg7MA9vpcengHc75yLRencDFwCLnHNLEo4/Aq93oh0vZOzGu1LiROB7zrnv9teGbAkM4UiYS/95Kc9v9zpOJhdO5g8f+gPl+eUZbddwtHeGeXr1Dh59eRMvr68i2bfN7zPmz6lkwbypvGvuVEoLFR5EREbAqAsMfrzLIi8F9gaqgAeA7zjnGhPq3U2SwBDddxhwHbAAb7LkKuAnzrm7B9KGbAkMADuadnD2X8+mtq0WgHfPeje3LroVGwOTBnfUNrP0jW0sXbWNNVvrktbxmTF/zkROnjeNEw+c2m2JahERSanRFRiyQTYFBoAlm5Zw+b8vj7+++rirOefAczLXoDTYUdvMslXbWbZqG6u31Cat4zPj8L0nsuCgabxr7hTKi/KS1hMRkSFRYBisbAsMANc/dz2LVy8GINeXy+IPLuaAigMy3Kr02FnXwrJV21j2xjZW9RIeDNhrUjEHzaxg3swKDppZwcyJRWOi50VEJEMUGAYrGwNDW7iNcx85l7U1awHYr3w/Fp+xmPxAfj9Hjm4761p4cvV2lr2xjTc21/RZt6QgJx4e5s0sZ+70cgpyM33hj4jIqKHAMFjZGBgA3q59m0/+7ZO0hr2Fkc6Zew5XH391hls1cnbVt/BkdNhi1eZaIv18V31m7DOlJB4iDppZwZTyAvVCiIgkp8AwWNkaGAB+v+b3/M8z/xN/fevCW3nP7PdksEWZ0dreyZptdbyxqYY3NtewanMN9S39Lz9dUZTHAdPL2H+a9zhgehkTisd2L42IyAApMAxWNgcG5xxfeeIr/HPjPwEozS3lDx/+Q7eVIccj5xxbqpui4aGWNzbVsHFXQ9LLNnuaWJLH/tPKOSAaIPafVqYJlSIyHikwDFY2BwaAurY6Pv7Xj7OtyVvt+qgpR/GrU3+F3+fPcMuyS1NrB6u31LJqc7QXYkstzW17LhqVzKTSfA6YVsZ+08o4YLoXJrQehIiMcQoMg5XtgQFgxY4VXPTYRUS8daz47/n/zRcO/0KGW5XdwhHHlt2NrN1Wx5ptdazdVsdb2+tp6wgP6Ph9p5RyxD6VHDGnkkP2mkB+jgKaiIwpCgyDNRoCA8DPV/6c0MteG33m4+73380Rk4/IcKtGl3DEsakqFiJqWbutjre319PeGenzuBy/j4NmVXDEHC9A7D+tDL9PkylFZFRTYBis0RIYwpEwF//jYpbvWA7AtKJpPPShhyjLK8twy0a3cCTCxl1eiFi7rY43t9by9vZ6wpHe/20U5wc4fG8vPBw5p5LpEwp1NYaIjDYKDIM1WgIDwPam7Zz1l7Oob/fuBvm+2e/j5lNu1i+rFGtu6+SVjbt5aX0VL62vYuOuxj7rTykriA9dTC0vYGJJPpWl+eQGNIwhIllLgWGwRlNgAPjXxn/x5SVfjr++5oRrOOuAs3o/QIZtd0NrPDysWFdFdWPbgI4rLcihsrSAypK8aIjwnntbL1QU5QUU+EQkExQYBmu0BQaAa5+5lgfXPAhAvj+fBz74APuU75PhVo0PzjneqWqMh4dXNu6mpX1gEymTycvxM6kkn0llBUwpK0jY5jO51Hud4/el8B2IiAAKDIM3GgNDa2cr5z5yLm/VvgXAARUHcP8Z95Pn13oCI60zHOHNrbW8tK6K9Tsb2N3Qyq6GVqob2vpdnXIgDKgozouHicmxR2kBk0rzmVCSR1lhniZhishgKTAM1mgMDABra9Zy7iPn0hb2usePn3Y81590PZMKJ2W4ZQLeFRm1TW1UNbSyu94LEbvrW6lqaO1WNtDLPPviMygrzKOiOI8JxdFtUdfrWFlFcR6FuRoCERFAgWHwRmtgAHhg9QNc99x18dcVeRVcd9J1LJi5IIOtkoFyztHU1smuuhZ21rews66VnXUtXY/6FqobWunjgo1By8vxU1mSz6yJRcyqLGb2pBJmVRYzq7KIoryc1P0gEcl2CgyDNZoDg3OOn738M375yi9xCQsjf+rAT3Hl0VdqiGIM6AxHqGpoZVddCzu6hYlWqupbqGlsG9B9NQaisiSfWZXF7FVZHA0T3vOywlz1SoiMPQoMgzWaA0PMs9ue5aplV7GzZWe8bP+K/bnp5JvYr2K/DLZMRkJHOEJtUxs1jW1URx81jW3UNHU9r25spbqxrd9FqpIpKchhr8pippYXkpfjJzfgIy/gbXOjr3MDXeU5AV+8Xm7AT0Gun5KCXIrzczTXQiR7KDAM1lgIDAA1rTV89+nv8p9N/4mX5fnz+OrRX+WcuefoL0TBOUdzWyfba1t4p6qBd6oa2VTVyDtVjWzZ3URnKsc+kjCgKD+H0sIcSgtyKSnovi0tzKGkINd7XpDDhJI8Kory9N0VSQ8FhsEaK4EBvF8ID615iJteuCk+GRJg4ayFfO9d36MivyKDrZNsFo5E2FrdHA8QiWGiNQUTM4eqOD/AXpUl7DWpmNmVxew1qYS9KouZVJqvICEyPAoMgzWWAkPM27Vv87WlX2Ntzdp42aSCSVx/8vUcP+34DLZMRhvnHLvqW3mnqpHqxlbaOiJ0dIZp64zQ3hmmPbbt8LZtnT32d0Robu+koaWdxtaB3T10IApzA958i3iQKGZ2ZQmTywvwJQSJcMTR0t7pPdo6aW4Px5+3tHd/DVBe7PVqVBTlUl7kXWFSqMW1ZGxSYBissRgYANrCbdyy/BbuW3VfvMwwLjzkQi6ffzk5fs2Il5EVjkRoaOmgvqWDhpZ26ps7qG9pj5ZFt83t8ec76loGfIvymLyAjwkl+fEQ0DaEORs95fh9VBTnUV6UGw0T0ctUo6GirDCXgrwABbkBCnMDFOT5KcgNdAsuIllIgWGwxmpgiFm6eSnffurbVLdWx8sOmngQN558I3uX7Z25hon0wznH7oY2NlY18M4ub3hk464GNu5qpLE1NVeGpFN+jp/CaJAoyE18HqAwz3sU5+dQnB/beo+i/BxK8nMoyg/ofiSSTgoMgzXWAwNAVUsVVz15FU9vfTpeVhAo4JvHfpOP7PcRdbfKqOKco7apfY8g8U5VI7VN7d3qGni/pPP8FOQEoj0B/m6/uGOvnYOaprb4FSc1TW3UNLWnZHGtocoL+ChKCBPFBTmUFeRSWerdi2RSaT6VJd5S4iX5Ofq3LIOhwDBY4yEwAERchHvfuJdbVtxCZ6Srm/fYqcdy5VFXcnDlwRlsnUhq1DW309jSER8WyMvxD3tooKW9Mx4gapvavSARe93YRkNrB81tnbRE50M0t3VmZKJo7L4kXpAo6AoU0deFuQGao/M5erY3cdvSHu4qa+/EMMqLcqMPb0gmNjxTHn1eWpirIZjRR4FhsMZLYIhZtXsVX1/6dTbUb+hW/oG9P8DlR17OrJJZmWmYyBgScdHJlm3h+KTL5oTXze2dNLV20tTaQUNrB02tHTS2dtDY2hndeo9wmi91TRWfeaGirDDXm+9R6IUIb06H15tTFBuSyfN75fEengD5ucMPdjEd4UjCxNZwPATFJ7/GXrd10hINdiX5OZQUeL04JQXe5b3eNoeivDG7fogCw2CNt8AA0NzRzK0rbuXBNx8k7Lr+Egr4Anxy7ie59LBLdQmmSIY552jtCHvhoaWDxrZOGls6qG1uY1ddK7vqW+KrgO6qb83o5a/DlTh0lBvw41zC2rWO+PN4uYvtcsR+jXWGI7S0h+kID3+ia8+2FeUHvBCREChyAz7CEUc44ugMR6LPvW1ntDwciRAOR+tE9xnEFzrLSVj0LDe66Fl8ITS/L1ontt/H3pNLOHjWhFS+tYFXVmAYn4EhZn3den6y4if8651/dSsvzinm4kMv5rx551EQKMhQ60RkoGL3Jamq94LErujWe+09b++MeJMvE/7qT7yqI1ZeGJ2kGXseic4ZiQ3JxOZ41Da3Uxsdmmka5NUsMjQfOno2l33gkFSdblCBIZCqnyqj05yyOdy66FZe3vkyP17+Y17a+RIAjR2N/GTFT1i8ejGXzb+MD+/7Yfw+zdYWyVZmFp8YuffkkhH/+e2dYWqb2qlrbo/P72ho6UgYionOjei2BoY3RNPc3pnSiaU+Mwrzuia25kdDUn5ugMJcv7fNC1CQ4z13OBpbvKGhhpbYo53G6OtsCkO5AV/GfrZ6GBjfPQyJnHP8e9O/uXX5rXvMb9ivfD+uOOoKTp5xsmZhi0jKhSOR+GTLjnAEwwtBBvG/g2NlMWbe2jKxIr/PKMwLkOP3pfT/U+FIhMbWzm4hoqGlg/bOMH6fD7/PCPi9bezR/bWPQOy534dzjo7OCO1hb3Gzjs5I1wJo0ecdCc/bO71hlvbOCEfOqeTkg6al6q1pSGKwFBi664x08se1fyT0cojdrbu77Ttm6jFcedSVHFKZsi4xERHJjEEFhsz1bUjWCvgCfGLuJ/j7x/5OcH6w2xyGF7a/wLmPnMtXn/gqSzcvpaWzJYMtFRGRkaIeBtTD0J+qliruWHkHf1jzBzpd97G8PH8ex0w9hpNnnMyCmQuYWTIzQ60UEZFB0pDEYCkwDMyGug3c9tJt/HPjP3utM6dsDgtmLODkmSdz5OQjdb8KEZHspcAwWAoMg/N61es8uuFRlm5eyrq6db3WK8op4oRpJ3DyzJM5acZJTC6cPIKtFBGRfigwDJYCw9BtbtjMk1ueZNmWZTy37Tnawm291p03YR4nzTiJk2eezKGVhxLw6apeEZEMGl2Bwcx8wJeAzwN7A7uAB4HvOOeahnC+B4GPA6875wY0lV+BITVaO1t5YfsLLN28lGVblrGlcUuvdUtySzhh2gmcNOMkTppxEpMKJ41gS0VEhFEYGH4CfBF4GPg/YB5wObAMeK9zbsBrfJrZB4E/A23AOgWGzHHOsb5+Pcs2L2PZ5mUs37F8jwmTiQ6ccCAnTj+Rk2acxOGTDyfHp7kPIiJpNnoCg5kdDLwKPOycOyuh/HLgNuA859z9AzxXMfAG8Cfgw0CjAkP2aGxv5Nltz8aHL3Y27+y1bnFOMSdMP4ETp5/IiTNOZGrR1BFsqYjIuDGqAsN1wFXAAufcsoTyfGA38IRz7vQBnusneEMRBwKvoMCQtZxzrK1dy1NbnuLJLU+yYueKbrfb7mn/iv1517R3cXDlwRw44UBml87GZ1pCRERkmEbVvSSOASLA84mFzrlWM3s5ur9fZnYscBlwrnOuXksXZzcz44CKAzig4gAuOuQimjqaeG7bczy55Ume3PIk25q2dau/tmYta2vWxl8XBAqYWzGXuRPmMm/CPA6ceCD7le9Hnj9vpN+KiMi4kekehleByc65KUn2xSYv5jnn2vs4RwBYDmx1zn0gWraBAfQwmNmlwKX/9V//dRSohyEbOOdYV7cuHh6W71hOR6Sj3+MCFmBO+RwvQEw4kAMnHMjcCXMpzS0dgVaLiIxKo2pI4m0gxzm3V5J99wCfBiqcc7V9nOObwLeBQ5xz66JlG9CQxJjQ3NHM89ufZ+WulayqXsXq3av3uL9FX2YUz2D/8v3Zv2J/Dqg4gP0r9md26Wxd0ikiMsqGJJqB3lbzyU+ok5SZ7Qd8B7guFhZkbCnMKWThrIUsnLUwXlbVUsWq3atYXb3aCxHVq9nUsCnp8Vsat7ClcQtLNi+Jl+X4ctinbB/2r/CCRCxQTCmcojtxioj0ItOBYStwkJnlOed6rvgzA6jqazgCuBmoBh6OhoeYAJAbLWtyzm1LerSMSpUFlZw882ROnnlyvKyxvZE3a970QsTuVbxZ8yZv1b6VdDJlR6SDN2ve5M2aN7uVl+SWxMPDgRMO5MjJRzKnbI5ChIgImQ8MLwCnAsfirbsAxK+SmA8s7ef42cB04PVe9q8FHgE+ONyGSnYrzi3mqClHcdSUo+Jl7eF21tetZ03NGtbWro1PntzRvCPpORraG1ixcwUrdq6Il03In8CRk4/k6KlHc9SUo9i/fH/8Pn/a34+ISLbJdGB4APgW8GUSAgPwOaAQuC9WYGbTgDLgHedcbJjiq0B5kvOGgFbgSkC9C+NUrj+XuRO8qykS1bXV8VbtW/EAEQsTjR2Ne5yjurWax995nMffeRzweiGOnHxkPJzMmzhPi0yJyLiQDSs9/hTvksiHgb/jrfT4ReAp4N2xlR7N7G7gAmCRc25JP+fcgCY9yiA459jetJ21tWtZU7OGV3e9yvKdy6lrq+vzuIJAAfMnzeeoKUdx9NSjOaTyEF3eKSKjxaia9Ahe78IG4FLgDKAK+CnevSQGvCy0yHCYGdOKpzGteBoLZi4AIOIivF37Nst3LOfFHS+yfMdyqlqquh3X0tnCM9ue4Zltz8TLyvPKmZA/ofujYAIT8yd2K5tYMJHinGLNkRCRUSHjPQzZQD0MMhDOOd5peMcLENu9ALG1aeuwzpnjy4kHiEmFk5hUMInKgkpvW+htY2U5fg19iEhKjboeBpFRwcyYXTqb2aWz+dj+HwNga+NWlu9YHu+F2Fi/cVDn7Ih0sKN5Bzuad7CqelWfdSvyKuIhIh4qCiopzy+nPK+cirwKyvLKKM8rpyinSD0XIpJSCgwiwzC9eDrTi6fzoX0/BEBnpJPatlqqW6u9R0s1u1t3d3td3dpV1tLZMuCfVdNWQ01bTbdlsnsT8AUozyuPPyryvTARCxUTCyayV8lezC6dTVle2ZDfv4iMHwoMIikU8AWoLKiksqByQPWbO5qpaauhqqWKquYqdrXsYlfLLqpaqtjVHN227KK6tZrIIKb0dEY6vXP2mHORTFleGbNLZrNX6V7sVboXs0u8XpS9SveiJLdkwD9TRMY2BQaRDCrMKaQwp5AZxTP6rNcZ6aSmtaZbmNjVsovdLbupa6ujpq2m23YwPRd1bXW80vYKr1S9sse+CfkTmFUyywsQJXsxtWgqOb4cAr4AAV+g1+cBC3Q99wXI9+dTnFusJblFRjH96xUZBQK+gDcpsnDSgOq3drZS21bb9Wj1trFAsaNpBxsbNrKpfhOt4dZezxMbSlm5a2VK3kdBoICS3BJKckooyS2hOLeYktwSSnNLKc7xnic+KvIrmF0ym+Lc4pT8fBEZOgUGkTEoP5DP1MBUphZN7bNexEXY2byTd+rfYWPDRm9b7203NWyiPdLXyuyD19LZQktnCzvZOajjJhdMZu+yvZlTNoe9S73tnLI5TC2ais98KW2jiCSnwCAyjvnMx9QiL1gcO+3YbvvCkTA7mnfEA8TGho1Ut1bTGenc49ER6aDT7Vkee7SEW2jqaBrUPIxEO1t2srNlJ89vf75beb4/n9mls+NhYk7pHPYu25sJ+RNo6miiob2Bxo5GGtob4o/E1z2fRyIRyvO9SaIT8iZQkV/hPc+PPs/rel6WV6awIuOKAoOIJOX3+eNXgZww/YRhn885R3NnMw3tDdS319PYHv1l3ZHwy7y9kfr2+vjrnc072diwMelNxABaw61JbyQ2HDtbBtb74TNft8tZCwIFez5ykpQlPApzCinOKaY4p5iCQIEuhZWspsAgIiPCzCjKKaIop6jfoZJEnZFOtjZuZX3detbXrWdD/Yb4trq1Oo0t7lvEReJzPFLBb36KcoooyS2hKKfICxK5xfG5HYn7yvPKmVQwiSmFU5hcNFnLkcuIUGAQkawW8AXil3yeMuuUbvvq2ur2CBLr69bT0N7QbfJk4oTK3p7HLiGtaauhptV7VLdWe8/bEp5HHw0dDSl9n2EXpr69nvr2+kEfW5ZXxuTCyUwunOyFiITnsdfleeWYGc45WsOtXg9PRwNN7U3etqMp3uvT1OGVNbY3xm/KFhuKiW0n5k/0hmgKJlCWW6a7uI4DCgwiMmqV5ZUxf/J85k+en7JzTi+ePqB6HeGOeLiob6+PT+js+WjtbO32urmzmZaOruexX8pt4bYht7murY66tro+F/XK9eVSkFNAU3sTnS75EM9QGRa/h0piqCjPK48PvRQGCuPPCwIFe7wuCBQM+7LbjnAHjR2NNHU0xR8DeY0jfrVOLDyW5pXGy2KP2L7+2umcI+zCdEQ6vEfY28bm+zgcub5ccv255PpyyfHnkOvLJeALZPWwlAKDiMgQ5Phz4n/Jp0Lsl10sQCQ+7/lXf01rDTubd7KjeQdVLVWEXbjf87dH2mlvS+1VLzEOF1+JlL5v8NqnPH8eBYECcn25RIgQcRGcc92fuwgOb5u43zmHY2TujVQYKKQkt4Q8f15XKIgFgmg4GGpbYkEix5cTDxK5/q5wcerep3LBwRek+B0NjAKDiEgWyPHnUOH3rsoYjHAkTHVrdTxA7Gzeucfznc0740ML4P1iTpwTUZLjrYnRs6wo19s6XHy+RuJQTaxsKMMoybSF24bV0zJSmjubae5sTsu52yPtfV7OfOikQ9PycwdCgUFEZBTz+/zxRb0O5uBe6zV3NNMabqUkpyTldz7tiHRQ25pwD5VooIgN1TR3NHcNx/Txerg9BLGJo8U5xfErUIpyiygKFFGcW0xhoDA+kTS+P6cIIH71TuwKndjz+rb6rufR7UDa6TOf10uQ8Aj4AvHPvj3cTkeko9t2ID1Fub7cYX1Gw6HAICIyDsSWIU+HHF/OoFYiTSY2GbOls4X2cDt+82Nm+MyHD1/Xc/NheM/NrNs+w9I+ByDiIjR3NFPfXk97uD0+fBBbHj3Hn0PAAkOaBBqOePMe2iPtXpAIe89j2/Zw+4DvU5MOCgwiIpJxZhaf/JjNfObzeinSsFy53+fH7/OTT37Kz50KWqZMRERE+qXAICIiIv1SYBAREZF+KTCIiIhIvxQYREREpF8KDCIiItIvBQYRERHplwJDOryxAhb/HCL9r9olIiIyGmjhplTbsAZuvxbaWqB2N1zydcjJ3FKeIiIiqaAehlR7+nEvLAAsfxJ+8m1oacpsm0RERIZJgSHVPvkFeM+ZXa9Xr4Sbvg511Zlrk4iIyDApMKSaz+eFho9d1FW26W34wVdg59bMtUtERGQYFBjSwQxOPwcuvAIs+hHv2uaFhnfeymzbREREhkCBIZ1OOg3++9tdkx7ra7zhidUrM9suERGRQVJgSLf5J8CV10Nh9Faorc1w69Xw4rLMtktERGQQFBhGwv6HwDd+BOUTvdedHfCL6+E/f8tsu0RERAZIgWGkzNgbvvljmDrTe+0c3Pcz+PNvveciIiJZTIFhJE2cAt+4GebM7Sr7631w70+1KqSIiGQ1BYaRVlIGX/kBHHxUV9kTf4c7roeO9sy1S0REpA8ZDwxm5jOzK8xstZm1mtkmM7vZzIoGcGyFmX3JzP4RPa7FzN40szvNbNZItH9I8gvg8mvguEVdZSue8iZDNmtVSBERyT4ZDwzALcCPgTeAy4GHgC8CfzWz/tp3HHAz4ICfAZcBfwfOB141s4PS1ehhC+TAxV+D9320q+zNV+CHX4PtmzPXLhERkSQyevMpMzsYLyT80Tl3VkL5euA24JPA/X2cYjUw1zn3do/zPgL8E/gecHaq250yPh984lIonQB/+JVXtmkdfPtSOGYBnPFJb7KkiIhIhmW6h+FcwIBbe5T/EmjG6ynolXNuQ8+wEC1/HKgGDklNM9PIDD7wcbjoSi9AALgIPL8EvvsF+Pl18M4eb1FERGREZfr21scAEeD5xELnXKuZvRzdP2hmVgaUAK8Nt4Ej5sRTYfps7zLL117sKl/+pPc4/Dj44Ke6X2EhIiIyQjLdwzAdqHLOtSXZtwWoNLPcIZz3aiAH+E1flczsUjN7sa86I2rOXPjydXDVT2D+8d33rXwOvv8luOUqWPt6ZtonIiLjVqYDQyGQLCwAtCbUGTAzOxv4CvAY8Ou+6jrn7nTOHT2Y84+IOXPhsmvgO7fDUSd13/f6crjxK/DD6D0ptOiTiIiMgEwPSTQDk3vZl59QZ0DM7HTgPmA58AnnRvlv0732hf+6GrZsgEd+By8s9eY3gHdFxZuvwH4HeUMVBx/lzYcQERFJg0wHhq3AQWaWl2RYYgbecMWAVjMys/cDfwReB051ztWntqkZNGNvuPT/wYfPh78/AM/+CyLR4PDWG976DXvtC3MPh5lzYNYcmLZX110yRUREhinTgeEF4FTgWCB++0YzywfmA0sHchIzOw14GO8yy/c652pS3tJsMHUmfPYr8KHz4P8egKf+CeFOb987b3e/msLn8+rPnOM9ZkS3EyapJ0JERAYt04HhAeBbwJdJCAzA5/DmLtwXKzCzaUAZ8I5zrjmh/FTgT8Aa4D3Oueq0tzrTJk2Fz3zJG4r4vwdh2aPeHTATRSKw9R3v8fwTXeUFRV0hYuYcr/di0jQoLVeQEBGRXlmmh/nN7Kd4KzQ+jLdK4zy8lR6fAt7tnDdob2Z3AxcAi5xzS6JlR+MFDQP+H1DV8/zOuXv7a0MwGHQAoVBo2O8nIxpqYc1rsHl912PXtsGdIzfPCw6TpkJl9JH4OjcvLU0XEZGMGdRfiZnuYQCvd2EDcClwBt4v/Z8C34mFhT4cQtfkyFt6qdNvYBj1Ssq9qykSr6hobYGtG7uHiM3robkx+Tna27zJlVs2JN9fNsELD5OmeQFi4hQonwClFVBW4d1Uy+dP8RsTEZFskfEehmww6nsYBso5qKlKCBDrvPtW7NoGLQO+GCU580FxqRceyiq85a7LKroCRWKwyC/07qWhIRARkUwadT0MMlLMvEmPEybBYcd2lTsHTY1QtR2qtsGu7V6I2LXdK9u9o+uqjN64iDc00lDrhZH++HyQV+DduTOvAPLzvW3seX4h5CWU5eV5wyI5uQPbKpCIiKSUAoN4v1iLS7zH3vvvuT8chupdXnjYtS0aInZCfS3U10BdDTTWDe5nRiLQ0uQ90iUnN/rIAX9OdBvwwkTseU6O97rbI9C19cdeJ3nu9yfUC3Qd5/d7rxMfgUBX/dj+QEDDOCIyaigwSP/8/uj8hakwb37yOp2dXu9CXQ3UV0e3tVBX3RUq6mugoQ7aWrsuB02njnbvkc3MEoJFQpBI3PYMGj3rdzvO74WQPfb79zzO5we/r3t9X7Suz5dQp2e5HyzhWF9sm7Dfl7BPPT0iY4ICg6RGIAAVld5jIDo7oLUV2lq8R2tsm1jWCq3NXsBoa4WONmhv79p2tnd/Hd+273mZabZyzmvraGnvUJgvIWhEnycGij32+ffcb9a138zbZxZ97QNf4nNfj32Jdfxdz82X5DyJ+xJ+bmKd2POe++N1eh4z0Dr9HBf/DKJb6LrD7R71ej6S1PcZEPsZ9NgmOd6I1jeFwHFKgUEyI5ADxTneMEg6RCLRHoYOL1h0dni9ILFfzonPOzogHN1229fp9YSEe7zu+TzcGT2m0ztPONz92HA4Wi9hG9s3HiYduwiEIyPTqyQjKzFUkBAkepbvEXJ6BJJuwYeu0JJ4rvjzHuGlt3bE6sTPndCWPY5NOOceQSrZufsp26O853vy0a2NsfL4Z5NQHjs2Vr7fwd7dizNAgUHGJp8vOmkyv/+6mRQJ7xkk4mEkIXCEk+yPHRc7R7yss0dZZ9cv7Pj5Or1QFdvG6kfCXfX3KIu+dpHosdHn4XDXORK3sf0ydjk3PkJvNnnvRxUYRMal2Nj/WL3vh3PJw0T8EU7yvMfWua6QEjtfz9fx5+E963TbF4GI67Gv59Yl/7nxYxN+zh51oq+7nSNZ2SDq7FEv+vNjn2/8l7br/jp+Drr2RSLe84jrUUZXXRfZ8xyJ9SWzMjgapMAgIulj1jXpUsaObiGFrpDRbR9JwkeyQNMj9MQCXWLQif+cJMEIuh8b30+Sur21N5K8fl9hrOfPgySBrOfPivTy8/tqS+x5tHzOAan5bzgECgwiIjI4e0x8VCAcD3yZboCIiIhkPwUGERER6ZcCg4iIiPRLgUFERET6pcAgIiIi/VJgEBERkX4pMIiIiEi/FBhERESkXwoMIiIi0i8FBhEREemXAoOIiIj0S/eSSBAMBjPdBBERkZHiQqHQgO9/qR4GERER6Zc53d88LczsRefc0ZluR7bR55KcPpfk9Lkkp88lOX0uyaXqc1EPg4iIiPRLgUFERET6pcCQPndmugFZSp9LcvpcktPnkpw+l+T0uSSXks9FcxhERESkX+phEBERkX4pMIiIiEi/FBhSyMx8ZnaFma02s1Yz22RmN5tZUabblklm5np5NGa6bSPBzL5pZg+Z2bro+97QT/25ZvYnM6sxsyYzW2Zm7x6h5o6YwXwuZnZNH9+jr45gs9PKzA4ws++Z2bNmtsvMGszsZTO7Ktn/R8bRd2XAn8t4+a5A/L//fWa2yszqzKw5+vvnx2Y2rZf6Q/6+aKXH1LoF+CLwMHAzMC/6+ggze69zLpLJxmXYMvaceNORiYZkwPVANbACKO+ropntCzwNdAI3AXXA54DHzOwDzrnH09vUETXgzyXBFUBVj7LlKWxTpn0W+G/gL8B9eP9GFgHXAZ8ws+Odcy0w7r4rA/5cEoz17wrATGAa3u+czXjfhUOBS4FPmtl859xOSNH3xTmnRwoewMFABPhDj/LLAQd8KtNtzOBn44C7M92ODL7/fRKevwZs6KPug0AYmJ9QVgxsBN4kOlF5LDwG+blcE/0e7Z3pdqf5MzkaKEtSfl30/V82Tr8rg/lcxsV3pZ/P6+PRz+Drqfy+aEgidc4FDLi1R/kvgWbg/JFuULYxs1wzK850O0aac27dQOpFu1Y/DCxxzr2ccHwj8L/AAcAx6WhjJgz0c+nJzErNbEz2jjrnXnTO1SXZ9UB0ewiMy+/KgD6Xnsbyd6UfG6PbCkjd90WBIXWOwetheD6x0DnXCrzMGPrHO0Rn4wWnBjPbaWY/NbOyTDcqyxwG5AHPJNn3bHQ73r9Hr+B1pbaa2dNm9oFMN2iEzIxud0S3+q54en4uicbNd8XM8s2s0sxmmtmpwC+iu/4e3abk+zIek1e6TAeqnHNtSfZtAd5lZrnOufYRblc2eB54CHgLKAVOBy4DTjGzd0VTrnjfIfC+Lz3FymaMUFuyTS3eHJingRpgLvBl4BEz+6xz7u6MtSzNzMwPfAdv7Pn+aPG4/6708rnA+PyuXAL8NOH1BuB859yy6OuUfF8UGFKnEEgWFgBaE+qMu8DgnDuuR9E9ZvYK8H3gS9GteN8PSP49au1RZ1xxzt3as8zM7sKb+3CLmf1+DAfPW4HjgW85596Mlum7kvxzGa/flT8Bq/HmJByBN/wwKWF/Sr4vGpJInWa8Lp9k8hPqiOeHeOHpjEw3JIvEvh/Jvkf6DvXgnNsN3IF3hcW7Mtua9DCza/F64+50zt2QsGtcf1f6+FySGuvfFefcZufc4865PznnvgtcANxoZt+MVknJ90WBIXW2ApVmluw/yAy84Ypx17vQG+dcB9HPLNNtySJbo9tkXYOxsmRdiuPZhuh2zH2PzOwa4Grg18AXeuwet9+Vfj6XvmyIbsfcd6Un59wrwEtAMFqUku+LAkPqvID3eR6bWGhm+cB84MUMtClrRT+XmSSfrDRevYrXZXhCkn3HR7f6HnW3f3Q7pr5HZvZd4LvAPcAlLnoNXIJx+V0ZwOfSlzH5XelDATAh+jwl3xcFhtR5AO+61y/3KP8c3tjQfSPdoGxgZhN72XUt3hyav45gc7JadFz1r8BCMzs8Vh69FPUSYC09rsIZD8wskOyKGjObBfwXsBtvgtuYYGbfwVtL4LfARS7Jgm/j8bsykM9lHH5XpvZSvgjvUtNnIXXfF92tMoXM7Kd442oP413OElvp8Sng3cm+4GOdmd2Cl2D/A7yDNynndLxV2p4DFrk9V2gbU8zs08Ds6MvLgVy8lUABNjrnfptQdz+8f7gdeCuH1uOFzkOBM5xzj41Uu9NtoJ+LmZUD6/Emdq2ia+b7JXjfp3Odcw+NWMPTyMz+G/gZ3r+Vb+Ndqp1oh3Pun9G64+m7MqDPZTx9VwDM7GG8lR7/jbf2Qj5wFPBJvDkJC2PrLqTk+5LpFanG0gPwA1/BWzWrDW9M6MdAcabblsHP5Ezgsehn0Qo04a1L8S0gP9PtG6HPYAle71Oyx5Ik9ecBf8a7PKwZeBJ4b6bfR6Y+F7yJWv+L161aE/0f3jbg98CxmX4fKf5M7u7jM9nj+zKOvisD+lzG03cl+n4/ATwCbIr+/7UF72qJnwJ7Jak/rO+LehhERESkX5rDICIiIv1SYBAREZF+KTCIiIhIvxQYREREpF8KDCIiItIvBQYRERHplwKDiIiI9Eu3txaRMSMYDF6Dd6+BRaFQaElmWyMytigwiEhcMBgcyEpu+mUsMg4pMIhIMv/Tx74NI9UIEckeCgwisodQKHRNptsgItlFgUFEhixxzgDenSe/DBwINAB/A74VCoW2Jzluf7y7Dr4HmARUAY8D14ZCobVJ6vvx7qz3abzb9ubi3dBsCXBjL8ecDXw9Wr8V+AfwlVAotGUYb1lk3NJVEiKSClcAdwArgVvx7th6EfB0MBiclFgxGAweA7wInA+8APwIeBY4D3gxGAwe3aN+LvAo8HNgFnA/cBuwHPgocGKS9gSBe/GGT24HXgPOAR4PBoN5w32zIuORehhEZA/RnoNkWkOh0A+SlH8AOC4UCr2UcI5b8HocfgBcHC0z4B6gFDg/FArdl1D/HOB3wL3BYPCgUCgUie66Bngv8Ffg46FQqC3hmLzouXp6P3BMKBR6NaHu/cC5eLdcf7C39y4iyamHQUSS+W4vj//XS/3fJoaFqGuAOuBTCX/VvwtvyOKZxLAAEAqFHgCeBOYCJ0F8KCIItABfSAwL0WPaQqHQriTtuS0xLET9Mro9tpf3ICJ9UA+DiOwhFArZIA95Isk56oLB4MvAKcA84GXgyOjuf/dynn/jhYUjgKV44aIMeC4UCm0dRHteTFK2KbqtGMR5RCRKPQwikgo7eimPTXgs67Hd1kv9WHl5j+1gJyrWJinrjG79gzyXiKDAICKpMaWX8qnRbV2P7dQkdQGm9ahXG93OGHLLRCQlFBhEJBVO6VkQDAbLgPl4lzSuihbH5jks7OU8sfIV0e1qvNBwWDAYnD78ZorIUCkwiEgqfDoYDB7Ro+wavCGIxQmTFZ/Cu+TypOg6CXHR1wuANXiTHwmFQmEgBBQAd/S8JDIYDOb2vGxTRNJDkx5FZA99XFYJ8KdQKPRyj7L/A54KBoMP4s1DOCn62EDClRWhUMgFg8ELgH8CDwSDwT/j9SLMBT6Ct+DTZxIuqQRvmerjgA8Ba4LB4N+i9WYBpwJfA+4ewtsUkUFQYBCRZL7bx74NeFc8JLoFeBhv3YVzgEa8X+LfCoVCOxMrhkKh56KLN12Nt77Ch/BWelyMt9Ljmz3qtweDwfcDXwA+A1wAGLA1+jOfHOybE5HBM+cGcnM6EZE96XbSIuOH5jCIiIhIvxQYREREpF8KDCIiItIvzWEQERGRfqmHQURERPqlwCAiIiL9UmAQERGRfikwiIiISL8UGERERKRfCgwiIiLSr/8P/GyajRztvRYAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 576x432 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE5/figs/AE5-01-history_1</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgwAAAGdCAYAAAB+VCt0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABsvUlEQVR4nO3dd3yV9d3/8dc3yUlCEhISVsIWkCkKynDUgVqcaFWqWHeLWq9bW23rbbV1tPXXWu86WttLq61aFQdasW6tA7cguFAZypA9QgbZ8/v747pOchJOcnLgJCch7+fjcR7XufbnnBw4n/OdxlqLiIiISGsS4h2AiIiIdH5KGERERCQiJQwiIiISkRIGERERiUgJg4iIiESkhEFEREQiUsIg0gUYY24yxlhjzINh9q319x0Vy+u2N2PMAv/eF3b0vXeHMeZBP96b4h2LSDwoYRBpI2PMv/wvjK+iOOd//HMqjTG92jG8TsMYM8xPRK6MdywiEjtKGETa7kF/OdYYM7mN55zvL/9jrS2KeUSeVcAKoLydrh+tYcCNwJURjluHF3dxO8cjIjGQFO8ARLqQBcC3wFC8RGBxawcbY0YDU/3Vf7VXUNbaY9rr2u3JWnt+5KNEpLNQCYNIG1lvHPWH/dXZxphICXfwC3EL8Eq7BSYi0gGUMIhEJ1hS0Bc4oaWDjDEGONdfnWutrfO3TzPG/MEY86ExZqMxptoYs80Y87IxZtbuBBSp0aMxZrQx5jH/PhXGmOXGmBuNMSkRrjvcGPNzY8zrxpg1fjuMIj/2nxtjeoSLBXjTXx3qxxX6uDDk2FYbPRpjMv22EJ8ZY0r9x+fGmN8YY7JaOKdJI05jzAXGmIXGmBJjzE5jzJvGmO+29rp3lzEmxRjzM/9+xf57vcIYc7sxJreV8w4wxjzk/x2r/FhX+5+JK40xac2OTzbG/NQY877/96gxxmz136e/GWMOaY/XJ6IqCZEoWGu/Mca8DxyKV4LwXAuHHgUM8Z//C8AYkwF8GHJMDVCJl3wcBxxnjLnXWntprOI1xhwBvAQEv3R2AvsAN/n3XNDK6fOAg/znFq+tQRYwzX/MNsYcba0tCTlnO5AJZAP1/nqoijbGPRJ4Da/6BxrbZ0zwHxcaY4611n7dyjX+AfwIqAPK/LiOAo4wxpxprf13W2JpY7x98UqRJvmbqoBqYJT/uNAYc6K19sNm550IPAMEQs6rx/sb7YP3N3oZWO4fnwS8ChzpHx/8u/QG+gH7+88/iNVrEwlSCYNI9IKlDDNb6fkQrI74xFq71H9eD7wInA0MBFKttcEv1yuAUuASY8z3YxGkMSYbeBIvWfgYmGitzQIygAuAAwCnlUt8gtdwcaQfazbQAzgFWAlMBm4JPcFaOwU43V9db63NbfZ4og1xJwP/xksW1gMz/JgzgGPxGksOAea3UkpyKnAOcBmQ6b/u4cDbeP/v3dWGKqVoPISXLBQCZwLp/t92CrAU72/8jDGmT7Pz7sJLFp4HRltrU/1Ys4AjgPvwksqgH+AlC+XAeUCa/3dJwXu/Lgc+i+HrEmlkrdVDDz2ieOD9Z16B9+vukjD70/B+yVvgp1Fc9zz/nDfD7LvJ3/dgmH1r/X1HNdt+vb89H+gT5rxz/f1hrxsh1uF4JSRleF9aofuO8q+5NsI1FvjHXdjC+1AD7BfmvPF4v94t8MMW3icLnBPm3Dy8X/EWOCLK1/ygf95NzbYfHnLP48Oc1x8o8Pf/NmR7v5Dz+rcxBtc//u54/zvQo/s9VMIgEiVrbTHwH381XEv/04CeQC3wWBSXDlZvHGyMSdz9CBsE20TcZ63ND7N/Ll6vj6hZa1cDX+IlRxN3K7qWBeN+xlr7RZh7fwk85a+e2cI11gGPhjl3M7DIX91vD+MMCsa72Fr7cph7bgXu8VdD4y3BK3UCL5Fpi51RHi8SM0oYRHZPsFriMGPM8Gb7gknES9babaE7jDFJxpgf+Q3aNvuN3KwxxuIVZwOk4hVh7za/WH+8v/pWuGOstRaviL6163zXbzC5yhhTHtqAEa9KA2DAnsQaxoH+8s1Wjnmj2bHNLfZfXzgb/eUevcchool3lDEmHcBaW0Hj3+YVY8yvjTETIySLL/nLU40xzxpjTjfG9N7tyEWioIRBZPe8Cmz2n58X3GiMyQOC4yI0GXvBb/T4FvAPvMZsuXgN8rYDW/1HUPoexpcDBL94NrVy3MaWdhhj/oL3OmfjVUEk4RWtB2OtiVGszfWNFBuwwV/2NsaYMPtLwmwLCrYJCLRyTDSiidcAoe0Y5gDL8KonfofXbqTIGPOCMebc5u0srLVvATfglV7NxGvrkW+MWWaM+ZMxZt89fjUiLVDCILIbrNdN8hF/9byQXefifVEXsGsPiuvxelfk4zU67G+tTbPW9rPW5uI1hAwK9yXYHsLexxhzAl5DzDq8dgEjgRRrbW/rN2AEFrZ2jRhotdtnJxR1vH7Vzv541Vj34iUPGcCJeGN+LPQTzdBzfofX8+JavJ4ZO4ExwM+Br4wxGhBL2oUSBpHdFyxBGGGMOdR/HkweHrfWVjc7Ptj74Qpr7UPNqyvwGsfFSgHelz20XmXQUl14MNZ/WGt/Y61dFaaIP5bxhgp2xRzayjGD/OWOVqoeOko08QYboTaw1tZaa5+x1l5qrR2H9ze5Gq8k5EC8YbZpds4aa+0t1trj8UqTpuNVLyUBrjGm3568IJFwlDCI7Ca/8d0Sf/V8Y8wkvDECIPxQ0MEvjU9auOSxMYytGq9RInjd83bhF+WH3UeEWI0xQ/FKHcIJNuTb3ZKHj/3l9FaOObrZsfEUjOHIFqpHoDHeldbastYuZq3dYq39E3Bn8LoRjq+z1i4ATsarJkrH6/IqElNKGET2TDAxOBO42H++3Fq7KMyxwUmWJjTf4Rc7/yrGsT3pLy82xuSE2T8bb6KocFqM1fd7Wk4Igi35w47G2AbBHhAn+ElYE8aY8TT2TJi3m/eIpWC84/HGf2jCGNMf+LG/Oi9ke6CVBAMaB7lqqOrwG7O2pJrGUqWuVp0jXYASBpE98xjer7psIDhCY0sTTf3XX95ujGn4NWqMmQK8TtPGcLHwN2Cbf91XjDH7+/cLGGPOxRsUqKWZIoOxXmqM+WHwi8oYM8QY8y+8wacKWzj3a7z3JMsYc8ZuxP0E8Ln//BljzLEh79UxeINfBfBKUObuxvVjylr7Dt5ojAD3G2NmBXs6GGMOwms4mo3XUPTPIaeOB77wh38eFfIaA/779jP/uNB5SB4yxjxgjDnOGNMzuNEYMwzvc5eKl2i8E+vXKaKEQWQP+OMbvOCvJuAVxz/SwuG/xqu/How3aFG5MaYUb1yACXhfwrGMLTjqYAVeEfVnxpgivB4ED+N9Kd/dwukP4g1jnQT804+1EG/chvPx6tU/D3eiX+QeHH/iKX++g7X+I+J8GX51yhn+vYbgJS+lxpgyvOGih+CNs3C6tbYq0vU6yPnAp3iJwZN48e7Em9F0f7zk6jRr7Y5m540D7sCb5rvCGLMDr+3CU3glNIuBm0OOTwUuxEtQio0xhf77sgY4C6+E4dIWxt0Q2SNKGET2XGiJwhvW2g3hDvJbxE/FSyi24fWmKML7lTzFWvtqrAPzu+FNwvvVvh2vqHotXs+Ho/FGPQx3XjVem4pbgNV4iVAt3pf3TL+lfmt+DPwB74swOGzxULweAG2J+xu8cR5+C4QO3vQFXvfD/a21K9tyrY5grd0OHILXU2ExXglLMl5py53AeGtt8/kdluFVrdyD350Sb76LncC7eL1UDrPW7gw555fA/+IlDKv9eyQCq4AHgAOttQ8j0g5M/BsYi4iISGenEgYRERGJSAmDiIiIRKSEQURERCJSwiAiIiIRKWEAHMexjuOo9aeIiEgLkiIf0q0oaRARke4iquHbVcIgIiIiESlhEBERkYiUMIiIiEhEShhEREQkIjV6bEVNTQ0bNmygsrIy3qF0W6mpqQwaNIhAIBDvUEREujUlDK3YsGEDPXv2ZNiwYbQ+bb20B2stO3bsYMOGDeyzzz7xDkdEpFtTlUQrKisr6d27t5KFODHG0Lt3b5XwiIh0AkoYIlCyEF96/0VEOgclDCIiIhKREoa9SEZGRov71q5dy3777deB0YiIyN5ECYOIiIhEpF4SbXTc715ot2u/cv1JYbdfc801DB06FMdxALjpppswxvD2229TWFhITU0NN998M6eeempU96usrOSyyy5j8eLFJCUlcfvttzN9+nS+/PJLLrroIqqrq6mvr+ff//43AwYM4Mwzz2TDhg3U1dVx/fXXc9ZZZ+3xaxYRka5FCUMnNnv2bK688sqGhGHevHm8/PLLXHXVVWRmZpKfn8/BBx/MKaecElXjwL/97W8ALF26lOXLlzNjxgxWrlzJPffcw09/+lPOOeccqqurqaur48UXX2TAgAG88IKXMBUXF8f+hYqISKenKolObNKkSWzbto1Nmzbx2WefkZ2dTV5eHtdddx37778/xx57LBs3bmTr1q1RXffdd9/lvPPOA2DMmDEMHTqUlStXcsghh/D73/+eP/7xj3z77bf06NGDCRMm8Nprr3HNNdfwzjvvkJWV1R4vVUREOjmVMLRRS9UGzdXW1bN6607A6xI4Mjdzj7oGzpo1i6eeeootW7Ywe/Zs5s6dy/bt21myZAmBQIBhw4ZFPU6BteFn8f7BD37AtGnTeOGFFzjuuOP4xz/+wdFHH82SJUt48cUXufbaa5kxYwY33HDDbr8eERHpmpQwxFhSYgJJiQnU1tVjraW6tp6UQOJuX2/27NlcfPHF5Ofn89ZbbzFv3jz69etHIBDgzTff5Ntvv436mkcccQRz587l6KOPZuXKlaxbt47Ro0ezevVqhg8fzk9+8hNWr17N559/zpgxY8jJyeHcc88lIyODBx98cLdfi4iIdF1KGNpBaiCR0rp6ACpr6vYoYRg/fjwlJSUMHDiQvLw8zjnnHGbOnMnkyZOZOHEiY8aMifqajuPw4x//mAkTJpCUlMSDDz5ISkoKTzzxBI888giBQIDc3FxuuOEGPvroI66++moSEhIIBALcfffdu/1aRESk6zItFU93J47jWADXdZtsX7ZsGWPHjo36ejtKKtlR4lUT9EpPoV9WjxhE2X3t7t9BRERaFVV9uRo9toPUkBKFypq6OEYiIiISG6qSaAehVRBVNXVYaztsToSlS5c29IBoiCclhYULF3bI/UVEZO+khKEdxLrhYzQmTJjAp59+2iH3EhGR7kNVEu1E1RIiIrI3UcLQTppXS4iIiHRlShjaiUoYRERkb6KEoZ2Ea/goIiLSVSlhaCfBho9AQ8PH9paRkdHu9xg2bBj5+fntfh8REelclDC0I1VLiIjI3kLdKttqzvFRnzKgrQf+4+Wwm6+55hqGDh3aML31TTfdhDGGt99+m8LCQmpqarj55ps59dRTI96itLSUU089Nex5jzzyCH/5y1+orq5m2rRpuK5LYmLkbqC33347999/PwBz5szhyiuvpKysjDPPPJMNGzZQV1fH9ddfz1lnncUvf/lLnn32WZKSkpgxYwZ/+tOf2vruiIhIJ6CEoRObPXs2V155ZUPCMG/ePF5++WWuuuoqMjMzyc/P5+CDD+aUU06JODBUamoq8+fP3+W85cuX88QTT/Dee+8RCARwHIe5c+dy/vnnt3q9JUuW8MADD7Bw4UKstUybNo0jjzyS1atXM2DAAF544QUAiouLKSgoYP78+SxfvhxjDEVFRTF5f0REpOMoYejEJk2axLZt29i0aRPbt28nOzubvLw8rrrqKt5++20SEhLYuHEjW7duJTc3t9VrWWu57rrrdjnv9ddfZ8mSJUyZMgWAiooK+vXrFzG2d999l9NOO4309HQATj/9dN555x2OP/54fvGLX3DNNddw8sknc/jhh1NbW0tqaipz5szhpJNO4uSTT97zN0dERDqUEoa2aqHaIJLVW3dS689cOaRvzybtGtpi1qxZPPXUU2zZsoXZs2czd+5ctm/fzpIlSwgEAgwbNozKysqI12npPGstF1xwAX/4wx+iiqulXh+jRo1iyZIlvPjii1x77bXMmDGDG264gUWLFvH666/z+OOP89e//pU33ngjqvuJiEh8qdFjO0vdwwGcZs+ezeOPP85TTz3FrFmzKC4upl+/fgQCAd58802+/fbbNl2npfOOOeYYnnrqKbZt2wZAQUFBm655xBFH8Mwzz1BeXk5ZWRnz58/n8MMPZ9OmTaSlpXHuuefyi1/8go8//pjS0lKKi4s58cQTufPOOzV0tYhIF6QShnaWEkiktLIG2L2EYfz48ZSUlDBw4EDy8vI455xzmDlzJpMnT2bixImMGTOmTddp6bxx48Zx8803M2PGDOrr6wkEAvztb39j6NChrV7vwAMP5MILL2Tq1KmA1+hx0qRJvPLKK1x99dUkJCQQCAS4++67KSkp4dRTT20o0bjjjjuifh9ERCS+jAYUAsdxLIDruk22L1u2jLFjx+7Rtcsqa9hYUAZAaiCJIX3bf6yEvU0s/g4iIrKLqKZRVpVEO2sy4mOtRnwUEZGuSVUS7az5VNdVtfVRN3yMxtKlSznvvPOabEtJSWHhwoVRXWfatGlUVVU12fbwww8zYcKEPY5RRES6HiUMHSA1kEip31OiqqauXROGCRMmxKRRYbQJhoiI7N1UJdEBUpoMEV0bx0hERER2T9wTBmNMgjHmKmPMcmNMpTFmvTHmNmNMehvOPcoYYyM8DuuI19GaJl0rq9t/EioREZFY6wxVEncAPwHmA7cBY/31ScaYY621rX3DLgPOC7M9BbgXyAcWxTbc6IVr+BhpKGcREZHOJK4JgzFmPHAF8LS19oyQ7WuAvwCzgUdbOt9auxV4JMx1z8YrPXnIWlsT67ij1dENH0VERGIt3lUSZ+P1A72z2fb7gHLg3N287hx/+Y/dPD/mmo742D7tGDIy4jfGw7Bhw8jPz4/b/UVEpH3FO2GYAtTTrNrAWlsJfOrvj4oxZh9gOvCutXZFDGKMiaYNH6Mf8VFERCSe4t2GYQCQb62tCrNvI3CoMSbZWlsdxTV/iFdqEdPShQn/ar/xB5ZesDTs9muuuYahQ4c2TG990003YYzh7bffprCwkJqaGm6++WZOPfXUNt3n1ltv5eGHHyYhIYETTjiBW265haOOOopp06bx5ptvUlRUxD//+U8OP/xwHnzwQZ599lnKy8tZtWoVp512Grfeemub7nP77bdz//33A96Q0VdeeSVlZWWceeaZbNiwgbq6Oq6//nrOOussfvnLX/Lss8+SlJTEjBkz+NOf/tSme4iISMeKd8KQBoRLFgAqQ45pU8JgjEkELgR2Ak+24fhLgEsuu+yytly+w82ePZsrr7yyIWGYN28eL7/8MldddRWZmZnk5+dz8MEHc8opp0RsRPnSSy/xzDPPsHDhQtLS0igoKGjYV1tby6JFi3jxxRf5zW9+w2uvvQbAp59+yieffEJKSgqjR4/miiuuYPDgwa3eZ8mSJTzwwAMsXLgQay3Tpk3jyCOPZPXq1QwYMIAXXngB8CbDKigoYP78+SxfvhxjDEVFRXvwbomISHuKd5VEOV6PhnBSQ45pq+OAQcBj1tqI51lr77XWTo7i+h1q0qRJbNu2jU2bNvHZZ5+RnZ1NXl4e1113Hfvvvz/HHnssGzduZOvWrRGv9dprr3HRRReRlpYGQE5OTsO+008/HYCDDjqItWvXNmw/5phjyMrKIjU1lXHjxrVpFst3332X0047jfT0dDIyMjj99NN55513mDBhAq+99hrXXHMN77zzDllZWWRmZpKamsqcOXN4+umnG2ITEZHOJ94lDJuAccaYlDDVEgPxqiuiqY74kb+MeWPHlqoNorGpoKxh5sr+vXqQldZSrtRo1qxZPPXUU2zZsoXZs2czd+5ctm/fzpIlSwgEAgwbNozKysqI12mtK2dKihdHYmIitbW1u2wPt6+1+4QzatQolixZwosvvsi1117LjBkzuOGGG1i0aBGvv/46jz/+OH/961954403It5DREQ6XrxLGD7yY5gautEYkwpMBBa39ULGmH7ATOBza22bz+tIu9Pwcfbs2Tz++OM89dRTzJo1i+LiYvr160cgEODNN99s069+gBkzZnD//fdTXu4VvIRWScTSEUccwTPPPEN5eTllZWXMnz+fww8/nE2bNpGWlsa5557LL37xCz7++GNKS0spLi7mxBNP5M4774zJkNYiItI+4l3C8ARwHXAl8E7I9ovx2i7MDW4wxuQBWcC6FqobzgcCdKKulM01HfGxbQnD+PHjKSkpYeDAgeTl5XHOOecwc+ZMJk+ezMSJExkzZkybrnP88cfz6aefMnnyZJKTkznxxBP5/e9/v1uvozUHHnggF154IVOnejngnDlzmDRpEq+88gpXX301CQkJBAIB7r77bkpKSjj11FOprKzEWssdd9wR83hERCQ2TLynWzbG3AVcjjfS44s0jvT4HnB0cKRHY8yDwAXAdGvtgjDX+QrYBxhgrS2MJgbHcSyA67pNti9btoyxY8dG94JaUVdXz6qtOwEwxjAyN1MjPrZBrP8OIiICeD0K2yzeJQzglS6sBS4BTsIbzvku4IYIw0I3MMYcipdoPBptstCREhMTCCQmUNMw4mMdqYHO8CcQERFpXdy/ray1dXhzSNwW4bgL8bpMhtv3PlFmSvGSEkikpslU17H9EyxdupTzzms6vUZKSkrMpqueNm0aVVVN26c+/PDDTJjQfuNUiIhI/MU9YejsYj1RVGogsaGnRGVNHVkxu7JnwoQJ7dp4MFaJR1vFu8pMREQ88e4l0amlpqayY8eOmH5ppexGw8fuylrLjh07SE1NjXywiIi0K5UwtGLQoEFs2LCB7du3x+ya9fWW7Tu9cROMgdLtqWr42IrU1FQGDRoU7zBERLo9JQytCAQC7LPPPjG/7vl/eYOtxRUAuBd/hxG5sa6YEBERiS1VScTBvnmNCcLKzcVxjERERKRtlDDEQWjC8LUSBhER6QKUMMSBEgYREelqlDDEQWjCsGZrScO4DCIiIp2VEoY4yExLpn+vHgDU1NXz7baSOEckIiLSOiUMcbJvSM+Ir7eoWkJERDo3JQxxonYMIiLSlShhiJN9B4QkDJuUMIiISOemhCFOQqsk1mxTw0cREenclDDEiRo+iohIV6KEIY7U8FFERLoKJQxxNCqkHcNKtWMQEZFOTAlDHI0M6SnxjXpKiIhIJ6aEIY7U8FFERLoKJQxxpIaPIiLSVShhiLNRmupaRES6ACUMcaYRH0VEpCtQwhBnavgoIiJdgRKGOGsy1bUaPoqISCelhCHOMnskkxvS8HGtGj6KiEgnpIShE1A7BhER6eyUMHQCShhERKSzU8LQCeyb16vhuRIGERHpjJQwdAIj8zIbnq9Vw0cREemElDB0Amr4KCIinZ0Shk5C7RhERKQzU8LQSYS2Y1ixqShucYiIiISjhKGTGD2wsYThzaUb2VpUHsdoREREmlLC0ElMGNKb4f29xo9VtfX8/b/L4hyRiIhIIyUMnURiguHyE8Y3rL+3fAuLV22PY0QiIiKNlDB0IuMH5/Dd/Qc1rLsvf0l1bV0cIxIREfHEPWEwxiQYY64yxiw3xlQaY9YbY24zxqRHcY0kY8xPjDEfG2PKjDHF/vNL2zP29vCjY8aQnpIEwMaCMv794Zo4RyQiItIJEgbgDuB24CvgCuBJ4CfAc8aYiPEZY5KB54H/Az4FrgKuBd4ChrZPyO0nOyOFC44a1bD+2DtfqwGkiIjEXVI8b26MGY+XJDxtrT0jZPsa4C/AbODRCJe5HjgW+K619s32irUjnTx5KC9/uoHVW3c2NIC84fsHxTssERHpxuJdwnA2YIA7m22/DygHzm3tZL/a4qfAf6y1bxpPz/YItCMlJiSoAaSIiHQq8U4YpgD1wKLQjdbaSrzqhSkRzj8c6AksMcb8GdgJ7DTGbDfG/N4YE9cSlD2hBpAiItKZtPkL1XGcYcA44C3Xdcv8bUl4VQLfA8qA/3Ndd34U9x8A5Ftrq8Ls2wgcaoxJttZWt3D+aH95JVAN/C+wAzgHrx3DQOCClm5ujLkEuOSyyy6LIuSO86NjxvD+ii2UVdU2NIA8+zsj4x2WiIh0Q9GUMNwIPAyEfrn/Gi9hmAAcDMxzHOfgKK6Z1ux6oSpDjmlJsPohBzjWWnu3tXaetfZUYAFwvjFmXEsnW2vvtdZOjiLeDqUGkCIi0llEkzAcArzuum4tgOM4CYADLAeGAFPxShmuiuKa5UBKC/tSQ45pSYW//NBau7zZvof85ZFRxNPpnDx5qEaAFBGRuIsmYegPfBuyPhHoA/zNdd0NrusuBv5D5HYHoTYBfYwx4ZKGgXjVFS1VRwBs8Jdbwuzb7C+zo4in01EDSBER6QyiSRgCgA1ZP8xffyNk2wYgL4prfuTHMDV0ozEmFS8hWRzh/GBjyUFh9gW3bYsink5JDSBFRCTeokkYNgD7h6yfCOS7rhtaRt4Pr6dCWz2Bl3Rc2Wz7xXhtF+YGNxhj8owxY4wxDW0arLVrgPeAqcaYA0OOTfSvUQu8GkU8nZZGgBQRkXiKJmF4Hviu4zh/chznZuC7wLPNjhlD02qLVllrlwJ/A043xjxtjJljjLkNb+THt2g6aNMfgGU0K43AG/ipHHjNGHOTMeYK/9ypwO+tteva/Ao7sXANILcVV7RyhoiISOxEkzDcCqwBfgZch9dG4MbgTsdxhgKHAm9HGcOVwC+A8XjJw2zgLuBka219pJOttZ/4933Xv9b/AenARdbaG1s5tctp3gDynle/inNEIiLSXbQ5YXBddxte98lT/Mc413U3hRySgZdM/COaAKy1ddba26y1o621Kdbagdban1lrS5sdd6G11lhrF4S5xufW2lOstb2stanW2knW2gejiaMrUANIERGJF2OtjXzUXs5xHAvgum68Q2mTP/3nM/77uddBZGBOOvdcejjJSYlxjkpERLoYE83Bezx0suM4Y4AT8NoRPO66bvGeXlNapxEgRUSko7W5SsJxnBscx9nsOE5OyLZjgU+APwEu8LHjOL1jH6aEUgNIERHpaNE0ejwBWO66bkHItj/gdYu8Ebgb2Adv9khpZ2oAKSIiHSmahGEYXrdGABzHGQgcBLiu697suu7leIM4fS+WAUp44RpAfvRNlx+jSkREOqloEoZsILR0ITjS4/Mh25bgzSshHaD5CJD/95/P2KLJqUREpB1EkzBsx5vfIWg6UAMsDNmWHOU1ZQ/96JgxZKUlA1BcXs1NTyymvKo2zlGJiMjeJpov90+BUxzH2c9xnJHAWcC7ruuGtrYbRuOkT9IBsjNSuOH7B5GU4PWOWbOthD8+8yn16i4rIiIxFO1Ij1nAZ8AK//ltwZ2O46QCRxF5wiiJsf2G5PDTkyc0rH+4cisPvLEijhGJiMjeJpqRHt8BTgaeAeYDs1zXfSnkkEOBtf4+6WAzDhjMrEOGN6zPe38V//1sQytniIiItJ1GeqTrjfTYkrp6y2/mLWbh115viUBiAn88bxrjB+dEOFNERLqhqEZ6VAPFvUhiguGa0yYytG8GADV19fz2ySUa1ElERPZY1ENDO44zG5gDTMJrx7ATrzvlP13XfTy24Um00lMC/PasKVzxz3fZWVFDUVk1Nz6xmNsvPIQeyXs8EriIiHRT0QwNbRzHeRiYCxwNZOJ1tewJHAPMdRzn0XaJUqKSm53WpOfE6q07uVU9J0REZA9EUyVxKXAO8DFwLJDqum4ekOqvLwHOchznxzGPUqI2YWhvrjhxv4b191ds5V9vqueEiIjsnmjKqH+I1wviiNCxF1zXrQPecBznSOAL4EfAPbEMUnbP8ZOG8O32Up5euAaAx99bxdC+PTl6wsAIZ4qIiDQVTQnDOGB+s4GaGvjbnwHGxiAuiZE5x45lysi+Deu3P/c5yzcWxjEiERHpiqJJGCyRu2BE1UVD2l9iguHa0yYxpE9jz4nfzFPPCRERiU40CcMy4HTHcXqE2+lv/x6geZY7mfTUAL85azI9ewQAKCit4jfzFlNZrTknRESkbaJpw3A/4AJvO47zS+At13VrHcdJBI4A/gAMxRtCWjqZATnpXD/rIK6du5C6ess3W3byf//5jF/NOpAEE75gqN5aCkqq2FxUzpbCcjYXlrOlyFsGkhI48cAhHDkuD9PC+SIisveIJmH4O3A4cDbwKlDvOE4BkINXUmGAea7rqsGjz1rbqb5MDxjWm8tP2I8/v7AUgHeXb+Ffb67gyPEDvITATwa2FgWTgwpq6upbvN5na3fw/OJvuey4cYzIzeqolyEiInEQ9dDQjuOcjddjIjhwUzHwCXC/67qPxTzCDhDLoaG/3PElz696nkVbFnHKiFO4YPwFe3zNWLv7lS95ZtHamF0vwcAJBw7hgqNGN0y1LSIinV5Uv2ijHvrPTwq6ZGLQEZbvWM4jyx4B4MPNH3bKhOGS745l/Y4ylqzaHvHYzB4BcrPTyOuV5i2z0+iflcZH32zjPx+tpa7eUm/hhSXreOvLTZx/5ChOnjyUxASNOi4isjfRWMExNjVvasPzJVuXUFNXQyAxEMeIdpWYkMB1p0/iN/MWs3xjEX0ze/hJQY+G5CAvO43cXmmkp4aP/cDhfThh0mDu+e+yhsSjtLIW95WveOHjdVx23Hgm7dOnI1+WiIi0I81WSexnqzz+38ezsXQjAA+d8BCT+k2KyXU7I2stC7/exj2vfsXmwvIm+w4bk8slx44lNzstTtGJiEgrYlMl4ThOPd7YC9Gyrut265KLqblTmf/NfMCrltibEwZjDAeP6s+Bw/swf+EaHn3nGypr6gB4b/kWFn29je8fMpyzDhtBqia/EhHpslr7H/xtdi9h6Pam5U1rSBgWbV7EZQdcFueI2l9yUiJnHTaSY/cfxD9fX87rS70Slpq6eh599xte/XwDFx8zliPHqxumiEhXpCoJYl8lsb18O0c/eTQAgYQA7539Hj2Swo53tdf6akMhd7/8JSs3FzfZPn5wNhcdPYYJQ3LiFJmIiPii+vWmpuztoG9aX0ZkjQCgpr6GT7Z+EueIOt64Qdn8+UeH8bOZ+9MrvbGr5ZfrC/nFvz7gF//6gCWrt6OEVUSka1DC0E5Ce0ss3LIwjpHET4IxHDdxMPc7R3HGwfuQmNCYzC5dV8B1cxfx0/vf54MVW5U4iIh0ckoY2sm0vGkNzxdu7p4JQ1B6aoBLvjuO+y47kuMnDm6SOKzYVMRN8xZz2b3v8NaXm6irV+IgItIZKWFoJ5P7TybBeG/vsoJlFFcVRzhj7zcwJ52rZu7PA/9zFDMnDyWQ2PjxW7OthN8//QmX3PMW//1sA7WtDEktIiIdTwlDO8lKyWJszlgA6m09i7cujnNEnUf/XmlcfsJ+/OuK6Zxx8D6kBhIb9m3YUcafnv2MH7kLePHjdVTX1sUxUhERCVLC0I5C2zEs2rwojpF0Tr17pnLJd8fx0E+O5gffGUlaSmMv3y1FFfz5haVc9NcFzF+4pmFsBxERiY+4j6RjjEkAfgpcCgwDtgPzgBustWVtOH8BcGQLu6dYa+P20/7g3IN54IsHALVjaE1WWjIXTB/NGYcM59mP1jJ/4Rp2VtQAkF9SyT2vfsXDb61kYE46fTJT6ZOZSt/MHvTpmUrfzFT6ZPagd88UkpMSI9xJRER2V9wTBuAO4CfAfOA2YKy/PskYc6y1ti2V2fnAVWG2r45ZlLthUv9JJCUkUVtfy6riVeRX5NOnh+ZXaElGaoAfHL4vp03bhxeWrOPfH66moLQKgLKqWlZuLt5lXIdQvdKT6dPTSyD6ZqbSp2cqw/r1ZMrIfk0aWoqISPSiThgcx0kERgPZQNifdK7rvt2WaxljxgNXAE9ba88I2b4G+AswG3i0DZcqs9Y+0pZ7dqQeST04oO8BLNm6BPBKGU4aflKco+r8eiQnMeuQ4ZwyZSivfLqeee+vZltxRcTzisqqKSqr5pstO5tsP2h4H351xoEtTqQlIiKRRZUwOI5zPd4v+awIh7a1bPhsvJGm7my2/T7gFuBc2pYwBKs2MoAS24k69U/Lm9aQMCzaskgJQxSSkxKZOXkYJx00lPydlWzfWUH+zkrySyr99Uryd1awvaSSgpJKWuqRuWR1Pj978AN+d/YU+mV1rxE3RURipc0Jg+M4/wv8BigGHgbWA7V7eP8pQD3QpEWgtbbSGPOpv78tBgKlQA+g3BjzCnCdtXb5Hsa3x6blTsPFG3Ja7Rh2T4Ix9Mvq0eqXfV19PYWl1eSXVPiJRCWrt+7k1c82ALB2ewk/vf89fjt7CvvmRcp3RUSkuWhKGC4GNgIHuq67PUb3HwDkW2urwuzbCBxqjEm21la3co01wHvA50AdMA24HDjGGPMda+3Slk40xlwCXHLZZe03OdSEPhPokdSDitoKNpZuZEPJBgb1HNRu9+uuEhMSGhpEjhnYuH3isN7c/tzn1NZbCkqr+Pm/PuCXp03k0NG58QtWRKQLiqZb5WDgmRgmCwBpQLhkAaAy5JgWWWsvstb+ylr7hLX2KWvt1cAMvOqJ2yOce6+1dnK0QUcjkBjgwP4HNqyrlKFjHbP/IP5w7jQy/PYLVTV1/HbeEuYvXBPnyEREupZoEoatxL5XRTmQ0sK+1JBjomKtfQdveu7pxpi4V1ofnHtww/PuOq9EPO0/tDd3XnQoedle7mmBe179CvflLzUUtYhIG0WTMMwDvus4Tktf8LtjE9DHGBPumgPxqitaq45ozVq8xpfZu3l+zDQfwKkTtcnsNgb3yeDOiw5l7KBeDdv+89FafjNvMRXVe9YUp7aunveXb+G38xZz9UMf8OQHqygqa6ngTESka4omYbgB2Aw85TjOPjG6/0d+DFNDNxpjUoGJwJ4MurQvXqPMgj24RkyMyRlDZnImADsqd7CqaFWcI+qeeqWn8MdzD+bwsXkN2xZ+vY1f/OsDdpRUtnJmeJsLy7n/jeWc95c3+M2TS3hvxVY+/7aAf7y2nHPufJ3f//tjPl2brwRRRPYK0VQxfAkE8Boqnug4TjFQFOY467ruiDZe8wngOuBK4J2Q7RfjtV2YG9xgjMnD6865zlpb7m/LAkqttU3GDTbGnAQcBrxkrY3+myDGEkwCU3On8tq61wCvWmJk9sg4R9U9pQQSue6MSTz4RhpPvO8lbt9s2clP7n+P3541hRG5ma2eX+OXJrz0yXo+WZPf4nG19Za3vtrMW19tZmBOOidMGsx3DxhEr/RYFtCJiHScaBKGBLxf7OtCtoUbPq/NQ+pZa5caY/4GXG6MeRp4kcaRHt+i6RgMfwAuAKYDC/xt04HbjTHP4Y3qWItXWnEu3uiPV7Y1lvY2LW9aQ8Lw4eYPOWfsOXGOqPtKMIYfHjOG3Ow07nrxC+qtJX9nJT//1/v86owDmTKy3y7nbNhRykufrOe/n22guHzXWrKcjBS+e8Agcnul8eqn61m2sahh38aCMv7x+nIefHMFh43J5cQDh7D/sN4kGI0+KSLRsdZi4vR/R5sTBtd1h7VTDFfitTe4BDgJ74v+Lry5JCINC70CWAKcDPTHKwHZANwD/N5au7F9Qo5eaDuGxVsWU1tfS1JCZxiZu/s68cAh9O/Vg5uf+pjyqloqquu44fHFXH7CeE46aCjVtXW8u2wLL32yjs+/3bVmywBTRvblhElDmLpvP5L86bpPPHAIq7bs5KVP1vH60o2UV3ltJEJLHQbkpHHCpCHMUKlDzJVX1VJcXk2/rB4aEly6nOAPmC1F5WwubP4o47wjR3HKlGFxic2ofhUcx7EAruu22z2stRz75LFsq9gGwKMnPsqEvhPa7X7Sdmu3lXD94x81GX56ysi+LNtQRGllzS7H98lM5fiJgzlu4uCII0dWVtfy9rLNvPjxOpZtKNplf1KC4dAxuRwzYSB9eqaS0SNAz9QAaSlJcfsVEWs7Siqprq0nt1ePdn1NmwrKePKD1fz3sw3U1NXTIzmRffOyGD2gF6MG9GL0gCz6ZbVvDNK11NTVs7O8mqTEBLLSkjvsvpXVtWwpqmBTYRlbCsvZHJIcbC2qoKau5d/Kpx+8D5d+d1ysQonqH8Nu/8R1HCcTr01Bseu6OyMd390ZY5iaN5XnVz8PeO0YlDB0DsP69eTOiw7lxicW87U/udVH3zQdbiTBGA4e1Y8TJg3hoBF92/zLNTU5iRkHDGbGAYNZs3UnL36yjtc/30hZSKnD219t5u2vNje7H6SnBshI9RKIYCKR0aPptuz0FAb1TicvO43EhM4zW/224greXea9rmD1zLC+PTnxwMEcs/+ghnExYmHVlmLmvb+at7/a1GR48IrqOj7/tqBJ6VBWWjKjB2T5CUQvRg3IanMJj7WWsqpaCkqrKCqralgWllZRV2/plZ5CTkYKOT1TyMlIJScjhfROnvhZa6morqOorIricm8ulqLyKn9elsZtiQmGkbmZDclXn8zUyBePg8qaOor9uIOxB58Xl1dR7K8X+duCpX8AA3LSGD8oh/FDshk/KJvBfTJi8rerrq1j1ZadLNtYxPINhSzfWMTWNsyN05KtRbt/7p6KqoTBn3jqamAOENpTYg3wD+BPruvu6XDRHa4jShgAnvnmGa5/73oADs47mPtm3Neu95PoVFbXcsv8T/lg5daGbbm9enC8X3XQu2ds/pOsrKnjna+8UoevNhTG5JqBxAQG5qQzuE8GQ/pkMKSvtxzUO73Dpv3O31nJO36S0NrrSklK4IjxAzjpwCGMGdhrt/5TttbyxboCnnh/1S7JHUBaSlKTL4PW9M/qwagBXklE36weFJdVUVhWTaGfDASXRWXVrf7yCyc5KcFLIjJSyc7wE4qGRyrpqd5vtnoLWEu99V5bvQWLxfrr1npF1cH1Omupq7PU1tdTV2+prauntt5S5y9r67ztdSHPa+vrqaiqo8j/4iwq95KC6troXhN4bXZGDejFqLyshvcuswN+oVtrKS6vZlNhOZsKythYUMamgnI2FXrLcCWCuyuzR4Bxg3MYPzib8YOz2TcvK+K/JWst24orvOTATxC+2bIz6s9NVloyedlp3qNXGnk53jI3O43ePVNj2f4pqgu1OWFwHCcZeBk4Em/smw143SzzgEH+jd8BZriuu7tjJ8RFRyUMm0s3M+PfMwBISUzh/bPfJzmx44rBJLK6est/PlrLpoIyDh2dy8R92rdx4tptJbz86XpWbSmmpKKG0krvUVFdF/nkNkgw0L9XGkP7ZHjJREMikRGTX787Sip5d5nXLuPL9eGThMQEQ1KCoSrMF9M+/Xpy0kFDOHq/gW2aTbTeWhZ9vY0n3lsVNik5aHgfzjxsBAcM7c32nZWs3FTEyk3FrNhUxMrNxW1OIiR6ub16eEmEn0CMzM0iLSW6QuxgsrSzvLohCfCSgrKGJKEshn/DBAOZacmUVdZG/FIPJCYwakAW+w3OYdzgbMYNziY5KZGvNxezbEMhyzcUsmxjEQWlkcdgSUww9O/Vw0sGsr1EwHueTm52D9JTOmxm3XZLGH4J/B54Hvi567pfh+wbAdwGzAR+5bruLdEEEW8dlTAAnPT0Sawr8Tqa3H/c/UzJbev8WtKd1NTVU1ZZ0ySJaPK8sobSihq27axgfX4pO0qiHyiqR3IifTN7eHNw9PTm4eib2YM+PVPpm5lKn8weZKTumlQUllbx7nKvJGHptwWE+x8kwRgm7dObI8blcejoXBITDW8s3cSLH69j9dZdazBTAolMHz+AEw8awqi8rF3uWVtXz1tfbmLe+6tZu72kyT4DfGdsHmcdNqLVicXqrWXjjjIvedhUzMpNRVH/+uuRnEiv9BSy01PIzkghOz2Z7IxUEhMMhaVVFJRWUlBa1fCoqolN4teekpMSyE5PISs9mV5pyWSlp9ArLZle6SlkpSXTKz2ZsqrahuTr683FVLbhdRkgp2eKXyrivf9eKYmlvj503X9eb8N+lqIR8NsiZKUlk5We3Pg85PWEPjJ6BEgwhuraOr7eXMyX6wv5cl0BX24opKQicmlFgjHUt+E7dEBOGmMHZjN2UC/GDMxmn349GxpJx1m7JQyf+08nuq67y78wx3ESgE8B47pul6qc78iE4bcf/JYnVz4JwKX7X8rlky5v93vK3q+ssob1O0pZl1/Kuu3+Mr+ULYXle/SfcEogkb5+MtEnM5XtOytZ+u2OsFOJJxg4YFgfjhiXx2FjcsM2IrPWsmJTES8sWcdbX24KW+owMjeTEw8cwvT9BpKQYHjl0/X8+4PVu9T7JiUYjj1gEN8/ZDiDemfs1uurqatn7baShi/DksoaeqUnhyQEIcv0ZFKT2/6L2VpLeXUtBSVetUZBya4JRUV1LcbQUIqVYEzDuvGfG2NI8JcGb5loIDExgaQE07BMSkzwSnOCy4QEkhINif4yKcGQEvASnl7pyfRK85KE1EBiVCVNdfWW9fmlrNzcWHqzZmtJ1MXuu6tHciIDstMZkJPOgJw0Bub4z7PTyMlIiUm7g3pr2ZBfypcbCvlyXSFfbihgU0HbZilIS05i1MCsJglCRzaojFK7JQzlwF2u617TyjF/BK5wXbfVCaM6m45MGF5e+zJXv3U1ABP7TuThEx9u93tK91VVU8eGHWWsz29MItbll7ClsDzsl3W0EgxMGOqVJHxnTG5UXURLK2t4felGXlyybpdSA4DUQCIpgcRdxr1IDSRy0kFDOH3a8E7b+K67qamrZ83WnazwS25WbipmXX5J2MQykgTjNRYekJ3GgJx0PyFIY0C297xXenJcGpIWlFby1fpCrxRifSHfbCmmrt4ypE9GQ2Iwzm8s2YW687ZbL4lqvBkgW5MOxK7VyV5oam7jeAxf5H9BWU0Z6YH0OEYke7OUQCIjcjN3GcHSWktJZQ35OyvJ31nJ9p0V3rKkcX37zsqwReoGmDA0p6EkISdj9760M1IDnDplGKdMHspXGwp58eN1vP3V5oZGeJU1dU2KvjN7BPje1H2YOWUomT067S+2bsmr3/d6UMBQwGtEvLOipqHUJDHB+KUlXolJQsO6V6KSkNBYgtIZ5WSk8p2xeXzHH1q+qqaOemvpEUWpU1cXzSv9HJjlOM5N4aa4dhynDzAL+CxWwe2NclJzGJU9ipWFK6m1tSzZuoQjBh0R77CkmzHGkNkjmcweyQzvH3447GA3wtAEIjHBMHlE35j1GAnGMn5wDuMH5/DjGeN5fekGXliyjnX5pQD0zUxl1iHDOX7i4KiqBCS+UpOT9uq/V0qgY3ofdSbR/DX/CjwOLHIc52bgTbxeErnAUcCvgb54wzpLK6blTWNl4UrAm71SCYN0RsYYMvyxIIb169kh9+zplyKcOmUYyzcWsbOimoOG9+0sDcREurU2/yt0XXcecAteedO9wNdAKfAN3hgM+wD/5x8nrZiWO63h+cItC+MYiUjnZIxh7KBspu3bX8mCSCcR1b9E13WvAw4F7gc+wZvw6RN//TDXdX8Z8wj3Qgf1P4hE4xVnLS9YTlFlUXwDEhERiSDqCibXdT8EPmyHWLqNjOQMxvcZz+fbvZ6qi7YsYsawGXGOSkREpGUq64uT0GqJRVsWxTESERGRyFosYXAcZ4j/dKPrunUh6xG5rrtujyPby03Lm8Z9S725JBZuVjsGERHp3FqrkliLN2fEWGBlyHokNsJ1BZjYbyLJCclU11ezdudatpRtITc9N95hiYiIhNXaF/tDeF/+xc3WJQZSElOY1G9SQy+JRVsWccqIU+IclYiISHgtJgyu617Y2rrsuWl50xoShoWbFyphEBGRTkuNHuNoal7jMNELNy+krfN6iIiIdLQ2JwyO49Q5jnN9hGN+5TiOJpxvo/G9xzfMI7G1fCvf7vw2zhGJiIiEF00Jg6FtM1t1zplDOqGkhCQm95/csK7ulSIi0lnFukoiG6iM8TX3atPyGsdj+HCzxsMSEZHOqdXuj47jNJ8VaViYbQCJwBDgHGBFjGLrFkKnu/5oy0fU23oSjJqWiIhI5xJpvIQFNHaltMAF/iMcA9QDP49JZN3Evtn7kpOaQ0FlAUVVRawsXMmYnDHxDktERKSJSAnDb/ESBQPcgJdAvBXmuDpgB/Cm67rLYxng3i7BJDA1dyovr30Z8HpLKGEQEZHOptWEwXXdm4LPHce5AHjGdd2/tHdQ3c3UvKYJwwXjWyrEERERiY82D+Hsuu4+7RlId3Zw7sENz5dsXUJNfQ2BhEAcIxIREWlKres6gUE9B5GXngdAeW05X+Z/GeeIREREmopqkijHcQwwCzgOGAikhDnMuq57TAxi6zaMMUzLm8Yz3zwDwAebPmBiv4lxjUlERCRUmxMGx3FSgBeBo/AaQQYbQwbZkO0Spam5UxsShn8s/Qejc0Zz9JCj4xuUiIiIL5oqiWuA6cDNQF+85OAmYADwA2A98DiQHNsQu4djhhzTUC1RXV/Nzxb8jGdXPRvnqERERDzRJAzfBz52XfdG13V3BDe6rrvFdd3HgaOBk4ErYxti95AWSOP+4+5ncM/BANTZOn717q+Yu2xunCMTERGJLmEYAbwXsm6Bhqb8ruuuBl4ALoxJZN3QoJ6DeOiEhxiVPaph2y2LbsH91NVMliIiElfRJAw1NJ0nogSvaiLUt8DwPQ2qO+vTow/3H3c/E/tObNh292d3c8uiW6i39fELTEREurVoEoYNeD0jglYChzQ7ZhJQsKdBdXdZKVn8/bt/57ABhzVse3T5o/z63V9TU18Tx8hERKS7iiZheA84NGT9GWCC4zj/dBznJMdx/g84Fm/46DYzxiQYY64yxiw3xlQaY9YbY24zxqRHc52Q680zxlhjzBe7c35nkRZI466j72LG0BkN255b/Rw/W/Azquqq4hiZiIh0R9EkDI8CKxzHGeav3wl8BFwEPIs36dQq4JdRxnAHcDvwFXAF8CTwE+A5Y6KbttEYczJwBlARZQydUiAxwK1H3MoZ+57RsG3B+gVc9tpllFaXxi8wERHpdsyeNKZzHCcJOBUYCawFnnNdt7zNNzdmPLAUmG+tPSNk+xXAX4BzrLWPtvFaGXhJxzPAKUCptXa/Nr4OC+C6bltD71DWWu74+A4e+OKBhm3je4/n7mPvJjs1O46RiYhIF2YiHxJycDxb3xtjbgZ+BRxhrX0nZHsq3uyXb1lrT2zjtf6M1/VzDPA5e1HCEPTPpf/kzo/vbFjfJ2sf7v3uveSm58YvKBER6aqiShjiPZfEFKAeWBS60VpbCXzq74/IGDMVuBy40lq7M8Yxdho/mvAjbjzkRoz/N15TvIbzXzqfb3d+G+fIRERkb9fi0NCO45y/uxd1XfehNh46AMi31oZrxbcRONQYk2ytrW7pAsaYJOA+4FVr7bzoo+1aZo2aRUZyBte+cy219bVsLtvM+S+dz9+/+3fG5IyJd3giIrKXam0uiQdpOi9EW+aJCB7T1oQhDWipyX9lyDEtJgzA1cC+wGltvGcDY8wlwCWXXXZZtKfG1fHDjicjkMFVb15FZV0lBZUF/PDlH+Ie62rSKhERaRetVUlcBPww5HER8DxeUvA28FvA8Zfv+Nuf9Y9tq3LCz3gJkBpyTFjGmJHADcD/s9aujuK+AFhr77XWTo72vM7gOwO/w70z7qVnoCcAJTUlXPbaZXy5Q1Nji4hI7LVYwuC67r9C1x3HORE4HjjVdd3nmh3+G8dxTgXmAfdEcf9NwDhjTEqYaomBeNUVrZUu3IY3UNR8P3kISgKS/W1l1trNUcTUZUzqN4kHjn+AS/57CQWVBZTWlHLpfy/l/uPubzK8tIiIyJ6KptHjr4D5YZIFAFzX/Q9el8bro7jmR34MU0M3+r0kJgKLI5w/FK8dxJfA1yGPgXjVFF/jtW/Ya43OGc19M+4jKyULgOKqYi559RLWFK+Jc2QiIrI3iSZhOAD4JsIx3wD7R3HNJ/DaPFzZbPvFeG0XGqZqNMbkGWPGGGPSQo77BV5XyuaP7XjTbX8f+EMU8XRJo7JH8fdj/05GIAOAHZU7mPPqHDaUbIhzZCIisreIJmGoxksaWnMA3iRVbWKtXQr8DTjdGPO0MWaOMeY2vJEf38IbXTLoD8AyQkojrLWvWWufav7Aa/ew018PnWFzrzW+z3jcY116JPUAYFv5Nua8OoctZVviHJmIiOwNokkYXgdOdBzncsdxmgz24DiOcRznCuAE4LUoY7gSr6RgPF7yMBu4CzjZWk3PGI1J/SZx19F3kZyQDMDG0o1c/OrF5FfkxzkyERHp6to80qPjOCOAhUA2sAZ4F9gK9Ae+A+yD1wBxmuu6UfdYiKeuMtJjW7294W1++uZPqa2vBWBkr5E8cNwD9ErtFd/ARESkM2mfkR5d110FHIxX0jAcOB9vDITz/fXXgEO6WrKwNzpi0BHcesStJJpEAL4p+oZLX7uUkuqSmFy/3tZTUbtXzO8lIiJttFtzSTiOMxCYBGQBxcAnrutujHFsHWZvK2EIen7181z3znVYf7ytiX0n8vfv/p20QFqEM8PbWraVJ1c+yb+//jcFlQUcN/Q4fjThR4zOGR3LsEVEpGN0ncmnOou9NWEAeGrlU/zmg980rE/LncZfj/krqUmprZzVyFrLR1s+4vEVj/PGujeos3W7HHPUoKOYs/8cDugbqU2siIh0IlElDK0NDS17gVmjZlFVV8Uti24BYOGWhfxswc/48/Q/E0gMtHheWU0Zz616jseXP86q4lWt3mPBhgUs2LCAqblTmTNhDgfnHYwxUX0ORUSkk2tt8qn78cZIuM513a3+eltY13V/FJPoJCbOGXsOFbUV/PnjPwPwzsZ3+N+3/5f/O/L/SEpo+hFYXbSax5Y/xnOrn6OspmyXa03JncLZY84mNy2X+7+4n9fWNXaKWbRlEYu2LGK/3vsxZ/85TB88nQQT7wlRRUQkFlorYbgQL2H4I15viAvbeE0LKGHoZOZMmENFbQX3fn4vAK+te41fvfsrfv+d32OxLFi/gMeXP87CLQt3OTctKY2ZI2Yye/RsRmY3jsB9x/Q7WFW0ivu/uJ8XVr/QUF3xxY4vuPLNKxmRNYIfTfgRJ+xzwi6JiYiIdC2t/S++j7/c2GxduqjLJ15OZW0lD33lTSb64poXKawsZHXxaraWb93l+H2y9mH26NmcMuIUMpIzwl5zRK8R/L/v/D+ciQ4PfPEA87+eT3W9N/3HquJVXPfudfzt07/xw/1+yKkjTyUlsaW5xkREpDNTo0f27kaPzVlrufnDm5m3cl7Y/QkmgaMHH83sMbOZmjs16rYI+RX5PPTVQzyx/AnKa5tONNq3R1/OH3c+s0bNajEBERGRDqNeEtHqTgkDeOMoXP/e9Ty76tmGbTmpOZyx7xmcOfpMctNz9/gexVXFPLr8UeYum0txVXGTfemBdE4beRrnjD2HQT0H7fG9RERkt8QmYXAcZ8juRuC67rrdPTceulvCAFBbX8t9n9/H10Vfc/SQo5kxdAbJickxv095TTlPrnySf335L7ZXbG+yL1iacd6485jUb5J6VoiIdKyYdatcC+xO8YONcF3pBJISkrhs4mXtfp+0QBoXjL+As8eczX9W/YeHv3q4YertelvPa+te47V1rzG+93jOHXcuxw09rtXuniIiEh+tfbE/xO4lDCK7SE5M5vujvs8Z+57Bexvf4+GvHuaDzR807P9yx5dc+8613LH4Ds4eezaz9p2luS9ERDoRtWGge1ZJdAZfF37N3GVzeW7Vcw09K4JSE1OZOWIm5447l+FZw+MUoYjIXk2NHqOlhCG+CioLmLdiHo8vf5wdlTt22f+dgd/h3LHnMjVvKoEEVVeIiMSIEoZoKWHoHKrrqnl57cs8/NXDLC9Yvsv+Hkk9mNx/MtPypnFw3sHsm72vRpIUEdl97ZswOI4zBTgOGAiEG4Wnyw0NrYShc7HWsnjrYh766iHeWv9Ww2ybzeWk5jAtdxoHDziYaXnTGJgxsIMjFRHp0tpn8inHcQzwIHCufxPb7GY2ZHuXShikczHGMCV3ClNyp7Bu5zoeW/4Yb65/k42lTWdQL6gs4KW1L/HS2pcAGNxzcEPpw9TcqWSnZscjfBGRvVI03R8vB87D6z3xF2AxcCcwDzgK+CXwInBtTCOUbm1I5hCumXoN10y9hvUl6/lw84cs3LyQhZsXUlRV1OTY9SXrWV+ynqdWPgXA2JyxHDrgUM4ddy59evSJQ/QiInuPaBKGC4AVruteCOA4DkCR67ofAh86jvMK8CHwX+CBGMcpwuCegxncczDfH/V96m09KwtX8uGmD/lwy4d8vPVjKmormhy/rGAZywqWMW/FPH564E+ZNWoWiQmJcYpeRKRri6bF2GjgjWbbGhIO13U/AZ4HnBjEJdKqBJPAmJwxXLjfhdxz7D28N/s9HjjuAS7d/1Im9p1IomlMDEpqSrh54c2c99J5LNuxLI5Ri4h0XdEkDAYInRSgDMhpdszXwJg9DUokWoHEAJNzJ3P5pMt5+MSHeXf2u9x25G0MzRzacMzS/KXMfmE2f1z0R8pqyuIYrYhI1xNNwrARr2dE0GrgoGbH7IuXSIjEVUZyBjOGzeDfp/wb5wCnYfyGelvPI8se4ZRnTuG/3/6XWHQrXlu8lrs+uYuTnj6JQx87lCveuIL5X8+noLJgj68tItJZRNOGYRFNE4SXgKsdx7keeBqv4eOpeNUSIp1CSmIKl028jBP2OYH/t/D/8eHmDwHYVr6Nny34GYcPPJzrpl0X9ayZhZWFvLTmJZ5f/TxL85c22bdg/QIWrF+AwTCp3ySmD57O9CHTm5R2iIi0RXlNOZtKN7GxdCMbSjcwse9ExvcZH5dY2jwOg+M43wP+AJzouu4ax3Fy8HpKDKOxS2UB8B3XdXcddacT0zgM3YO1lpfWvMStH93aZETJlMQUfnzAj7lg3AWtTnxVVVfFgvULeH7V87y78V1qbW1U9x+eNZyjhxzN9MHT2a/Pfhp0qh1ZazX7qbRJbb337zgpIT5zJtbW17KlbAsbSjewsWRjQ2KwscRbNi+p/J+J/8OPD/hxrG4fu4GbHMc5BXjedd36FvZnARcDI/Bmt3zIdd3N0QTQGShh6F52Vu/kLx//hXkr5jUZFGp41nB+ffCvmZI7pWFbva3nk22f8Nyq53h17auU1JTscr2khCSOGHgEM0fMZHjWcN7e8DZvrn+TT7Z90uKgU3179OXIwUcyffB0puVNIyUx3BhoXV9+RT7/+eY/FFQWMHPETMbktF8Tp4raCuZ/PZ/Hlj/GptJNDOw5kGGZwxiWNcxb+s+zU7KVTEShrr4OoMv2MKq39eRX5HtfxCUbGn6tBx9byraQYBKY0GcCB/U/iMn9JzOx30TSAmkxjaO0upRlBcv4Iv8L1hSvaXL/OlvX5ut8b+T3+N1hv4tVWDFNGOrx2i48APzTdd1v9yy2zkkJQ/e0dPtSfvfh71hW0LTnxCkjTmH26Nks2LCAF1a/sMuAUUEH9D2AmcNnctyw48LOrLmjYgdvb3ibN9a/wYebPqSyrjLsddKS0piaO5VBPQfRP60//dL60T+9f8Pz5MTkPX6tHe3z7Z/z2PLHeGXtK9TU1zRsn9x/MueOO5ejBh0Vsy+gosoiHlv+GI8uf3SXsTnCyUzObJJIDM0cyrAsb7m3Jm6hrLWU1pRSUFngPSoK2FG5o3G9soDCysImzxMTEtm3176M7T2WsTljGdt7LKOyR9EjqUe8Xw7WWgqrCtlcurlJIhD8lb65bDNVdVVRXTPRJDKu9zgO6n8QB/U/iEn9JpGVktXm86vqqlhesJwv8r/gy/wv+WLHF6wtXtviD4jWJJkk8jLyGJgxkIEZA5maO5UTh58Y9XVaENOE4b/A0f5F6/HGWLgXeNZ13banRJ2cEobuq7a+lseXP85fP/1rm3pODMoYxMwRMzl5+MkMyRzS5vtU1FbwwaYPeHP9m7y1/i0KqwrbfG5Oag7907wEIphIBJd90/qSk5JDZkpm3Ks4quuqeWXtKzy67FG+2PFFq8cOzBjI2WPO5vR9T6dncs/dut/G0o089OVDzP9m/i5jcOwOgyE7NZtAQoCkhCQSTSKJCYkkmsQm60kmKeyy+f5Ekxj5GglJBBICDY/kxOTG9UQvjuSEZAKJTY+pt/WU15RTWlNKWU0ZZTVllNeUU1bb+Dy4r7ym3DumtoydVTspqCxoksTtrgSTwD6Z+zC291jG5IxhXO9xjM4ZTWZy5h5fO1RNfQ1by7ayuWyz9yjd3PB8U+kmtpRtaTEZjxWDYVT2KCbnTm5IInJScxriW1W0ii/yv/AShB1f8k3hN1FVWfbt0ZeBGQMZ1HNQQ2IQfN4vrV97VpfEdi4Jx3GGAnOAC/F6SVhgK42lDqt3K8xORAmDbC3byq0f3cqr3766y77M5EyOG3YcM0fMZGLfiXtcnF1XX8dn2z/jzfVv8sa6N1hXsm6PrgfeL6KslCxyUnPITs0mOyWb7NRsclJz6JXSq3F7yLZY/Se0pWwL81bM499f/ztsz5AD+h5A/7T+vL7u9V2KXtOS0jh15KmcM/acNjcKXVGwgvu/uJ9X1r6yy/UGZgzk/HHnc9yw49havpW1xWv5due3rNm5puF5eW357r9YiWhQxqCGkohBPQdRW19LbX0tdbauyfOa+pqw+2rqa9hZvZPNpZvZVLaJ7eXbd+uXeaislKzGL+IM/0u5p7c+IGMAJdUlfLz1Y5ZsXcLirYv5uvDriPccnjWcnsk9WV6wvE0lGIkmkRG9RrBfn/0YnT2awT0HM7DnQAakDyA1KXWPXt8eaJ/JpxzHSQBOxGuzcAJeD4t6vMGc7gWecV03ulZgnYQSBgl6Z8M73PrRrWws3cjhAw9n5oiZHDHoiHarFrDWsqZ4DcsLlrOtfBtby7d6j7KtbCnfQn5FPvU2bBOiPZJkkhiaOZQRvUYwstfIhuXgzMFtmkLcWsvH2z7m0WWPhk0EkhOSOWGfEzh77NmM7+216N5StoUnVjzBkyufpLiqeJdrHjHoCM4Zew6H5B2yS1JmreWjLR9x/5f3897G93Y5d3T2aH643w+ZMWxGq4mQtZZt5dv4due3rN25ljXFa1i700skNpZubJf3ujNKS0ojOzWb3qm9yUnNIadHjrf0H6H7eqX2orymnBUFKxpGT122Yxlrd67tNO9XRiCDvIw8BqQPaEgMBvb0koMBGQOiLsUqripukkAsK1gW9WsdljmM8X3Gs1/v/bwkIWd0p6jCaab9p7d2HCcX+KH/GI5X6pCPNznVP1zX/Trqi8aREgYJZa2lztbFrdV0qNr6WnZU7GiSSIQut1dsp7CykNKa0pjcLykhiWGZwxjRa0STZGJIzyEkJSRRUVvBi6tf5LHlj7GicMUu5/dP68/sMbM5fd/TG4psm6uoreCF1S/wyFePsKp41S77R/YayQ/G/oCTh59MckIyr697nQe+eCBsNce03GlctN9FHDrg0D0u+amuq6a4qpg6W+c96uuotbXeMuRXcPN9zbe3dlzzfcFf2dV11dTU11BTX9PkeU19DTV1TZ9X11djMKQH0kkLpJERyCAtkEZ6IJ30pHRvGfII7ssIZJCRnEFOak5MvrjKa8pZWbiSZQXLWF6wnGU7lvF10dcNvQ5ixWDo26MvuRm5DEgfQF56HnkZed4yPW+3EoJolVaX8un2T1mydQlLti5haf7SJq8zLz2P8b3HewlCn/0Y13tczKtm2kn7JwyhHMc5Bq/K4ntAMt701vH/nzYKShikq6uuq6awspDCqkJv6T8PNloLNmIL7m9L48BQgYQAw7KGsbVsKzurd+6yf3L/yfxg7A+YPnh6mxMtay0fbv6Qucvm8taGt3bZn5WSRWZyJutL1jfZbjAcO/RYfrjfD9mvz35RvQ5pXzV1NXxT9E1DKURhVWFD243QtiFJCY3tPwIJgYb2HMG2HemB9IbkoH96/07X8LeitoIv8r+guq6a0Tmju/Lkdu0zvXUr3sIbInofYGoMriciUUpOTPYaQqb3b9PxpdWlrC5ezaqiVXxT9E3Dcmv51rDH19TX8HVh04LD1MRUTh5xMmePOZtR2aOijtkYwyEDDuGQAYfw7c5veXTZozzzzTMNbQyKq4qbVF0kJyRz6shTuXD8hVE1OJWOE0gMeO0Xeo/1xv3dS/VI6tGk+3V3sdsJg+M4o/FKFs4H+uBlKmuAf8YmNBFpLxnJGezfd3/277t/k+2l1aWsKl61SyKxrXxbwzHBHg7fG/m9qLqatWZo5lCunXYtl0+6nPlfz+fR5Y82dGftmdyT2aNn84OxP+jKv+REuryoqiQcx0kFzsRLFA7DSxJqgGeB+1zX3bWJeRegKgmR1pVUl7CqaBUJJoHxvce3+yA+dfV1vLfpPQorCzl26LGkB9Lb9X4i3VTsqyQcx5mI1zviB0Cmf5NVwD+AB1zX3dby2SLS1fVM7snEfhM77H6JCYkcMeiIDrufiETWasLgOM6leInCJLwkoRp4ErjXdd03YhGAMSYB+ClwKd68FNuBecAN1tpWR9IxxgSAu4ApwFCgJ7AJb6KsW6y1n8QiRhERke4uUgnD3f5yJXAf8C/XdfNjHMMdwE+A+cBtwFh/fZIx5lhrW+38mgxMBt4DHgZKgCHARcBCY8zx1tqYJDYiIiLdWaSE4TG80oRd+zzFgDFmPHAF8LS19oyQ7WuAvwCzgUdbOt8vgZgc5rr3AOuAX+ANLCUiIiJ7oNWEwXXdc9r5/mfjVXXc2Wz7fcAtwLm0kjC0YhtQCWTvSXAiIiLiifcAS1PwhpdeFLrRWltpjPnU3x+RMSYRLzlIAgbjlSxkAC/GMlgREZHuKr7T28EAIN9aG27mjo1AH2NMW4b4GovXWHIzXvJxHPAH/9EiY8wlxpjF0YUsIiLS/cQ7YUgDWprmqzLkmEjWAN8FTsLrcbESyAJandzeWnuvtXaXNhAiIiLSVLyrJMqBfi3sSw05plV+48fXguvGmPuBj4Gn8UobREREZA/Eu4RhE161Q7iSgIF41RXV0V7UWluKlyzMMMaM2MMYRUREur14Jwwf+TE0mbTKGJMKTAT2pH1BcP7W8HPsioiISJvFO2F4ArDAlc22X4zXdmFucIMxJs8YM8YYkxayra8/UmQTxphc4PtAKfBlO8QtIiLSrcS1DYO1dqkx5m/A5caYp/G6QQZHenyLpmMw/AG4AJgOLPC3nQNcaYyZj9fwsRoY5R+XDcyx1kZsAyEiIiKti3ejR/BKF9YCl+D1csjHmx/ihgjDQgO8gzdWw0wgF2+o6K14DSD/bK19v31CFhER6V7injBYa+vw5pC4LcJxFwIXNtu2BK+UQURERNpRvNswiIiISBeghEFEREQiUsIgIiIiESlhEBERkYiUMIiIiEhEShhEREQkIiUMIiIiEpESBhEREYlICYOIiIhEpIRBREREIlLCICIiIhEpYRAREZGIlDCIiIhIREoYREREJCIlDCIiIhKREgYRERGJSAmDiIiIRKSEQURERCJSwiAiIiIRKWEQERGRiJQwiIiISERKGERERCQiJQwiIiISkRKG9mAtbF4f7yhERERiRglDrNXWwAO3we8uhzUr4h2NiIhITChhiLVH/grvvwbVVfCXG2H7lnhHJCIisseUMMTa8d+H9J7e85Ii+POvobQkriGJiIjsKSUMsZY7CC6/EZIC3vqWDeD+Fmqq4xuXiIjIHlDC0B723Q/mXN24vnKp166hvj5+MYmIiOwBJQztZfIR8P05jeuL3oL5D8YtHBERkT2hhKE9zTgDpp/cuP7SPHjrhfjFIyIispuUMLQnY2D2ZXDAtMZtj/wNPl8Uv5hERER2gxKG9paYCJdcC8P29dZtPfz997D26/jGJSIiEgUlDB0hJRWu+C306e+tV1XCXTfAjq3xjUtERKSN4p4wGGMSjDFXGWOWG2MqjTHrjTG3GWPS23ButjHmp8aYV/3zKowxK4wx9xpjBndE/G2WlQ0/+R2kZXjrxYVw5/VQpjEaRESk84t7wgDcAdwOfAVcATwJ/AR4zhgTKb5pwG2ABf4KXA68CJwLLDXGjGuvoHfLgCFNx2jYvA7c32mMBhER6fTimjAYY8bjJQlPW2tPt9beZ639GfAzYDowO8IllgOjrbXHWWv/aK39p7X2KuAUIAv4bXvGv1tGTYCLfta4vuJzePAOb8IqERGRTireJQxnAwa4s9n2+4ByvJKCFllr11prV4XZ/hpQAOwXmzBjbNp0OP2ixvWFb8Iz/4pfPCIiIhHEO2GYAtQDTfoZWmsrgU/9/VEzxmQBPYHO26rwhDPhyBMb1194HN5+KX7xiIiItCLeCcMAIN9aWxVm30agjzEmeTeu+2sgALT6s90Yc4kxZvFuXH/PGQM/+B+YEJITPXIXfBGfcERERFoT74QhDQiXLABUhhzTZsaYWcDPgVeAB1o71lp7r7V2cjTXj6nERLj0Ohgy0luvr4e7/x+sWha3kERERMKJd8JQDqS0sC815Jg2McacCMwFlgBnWtsFWhKm9oCf/AZy+nnrVRVw69Xw6r81WZWIiHQa8U4YNuFVO4RLGgbiVVe0qc+hMeZ44GngS2CGtXZn7MJsZ716w09/2zhGQ10tzLsP7roRSoriGpqIiAjEP2H4yI9hauhGY0wqMBFoU4W+MeY4YD5eN8tjrbWFsQ2zAwwcBtffBcNGNW5b+hH85n9g+WdxC0tERATinzA8gTfo0pXNtl+M13ZhbnCDMSbPGDPGGNOkTYMxZgbwDLASOMZaW9CeAbervnnwy9vguDMatxXtgNt+Cf95GOrr4hebiIh0a0nxvLm1dqkx5m/A5caYp/FGaRyLN9LjW8CjIYf/AbgAb0CnBQDGmMnAf/DGcngAOMEY0/wej7Tvq4ixpAB8/2IYfQDcfxuUFnuDOj031xvkac7/Qk7feEcpIiLdTFwTBt+VwFrgEuAkIB+4C7jBWhup1d9+NDaOvKOFY7pWwhC0/1S4yYX7/uglCgArl8Jv/wcu+nnTKbNFRETamekKHQnam+M4FsB13XiHsqv6Om9Qp2fnelNjBx17Gsz6YeO8FCIiItExkQ9pFO82DBJJQiLMPAeu/iNk92nc/tp8+MPPYOum+MUmIiLdhhKGrmLUBLjRhf1DqiK+/Rp+d7k3F4WIiEg7UsLQlWRkwhU3wewfQ6Lf/KSy3GvncP9t8NXHUJivmS9FRCTmOkOjR4mGMXDs92DkePj772H7Zm/7+//1HgA90iB3MOQNhrwhjcu+uV4Vh4iISJSUMHRVw/aFG/4Kj/x11yqJinJYs8J7hEoKQP+BIYnEEBg4FAYM9RIRERGRFihh6Mp6pHvjMkw+HD79EDavg83roaIs/PG1NbBxrfcI1as37HcQ7DcFxh0IaentHbmIiHQxShi6OmNg0qHeA7z2C8UFXuIQTCCCz4tbGASzaAe8+6r3SEyEEeNgv8ne1NuD9lHpg4iIKGHY6xjjlRj06g1jJzbdV14akkT4y2++8rYH1dV5A0StXApPP+B15Rx/kJc8jJvklWqIiEi3o4ShO0nL8EoPRoxr3FZX57V1+OIjWLrY66oZqjAf3n3FewRLHyZM9ZKRPrmQntE5SyBqqmHbJm85cBgEkuMdkYhIl6aEobtLTISR47zH9y7wqi2+WAJfLIYvl7Rc+hCUnAJZOV5JRK/ekN0bevXxltl9vOdZOZDUDh+1YPXLlg3NHuthx9bG7qWBZBg+xhvLYvT+3vPkcDOqi4hISzQ0NJ18aOh4qquD1cv90oePYN2q3buOMdCzl5dQZGZDaiokp0JKmEdyC89rqpsmBFs2wNYNXo+QaCUmwT6jYNT+MHqCV2qS2mP3XpuISNcVVfGwEgaUMLRZ0Q6v1GHpR7BhDRTugKqKeEcVnjHQu7+3DI5V0ZKEBBi6r1cCMWoC7Dveq75prr7eS1xqaqC2GqqrGtdrqr1t4CVHmdneQFsJGhtNRDqtqBIGVUlI2/XqDYfN8B5BFWVe4lCU7y9Dnhfme893FrXf6JM90iF3kPfoP8gbYyJ3EPQb0NhuoTC/sSplxVKvhCJUfX3juBWvPOUlGX1yvRKWYCJQXQ11tdHFlpAAPbO85CGzVwtL/5HaA6orvSSkqrLxUV3lba9qti94rMVLTDIyvXtlZEHPTH+ZtfttN6z1rl9Z7v2Ny8uhsszb3rOXF39GVvtUNXUVwc9+Yb73OemZCRm9vPe9R1rnbNsjsge68b92iYke6d5jwJCWj6mthZ2F3n+sJcWNX4DBL76qSqiqarq9qqLpl2ZCgpcE5A7yRrEMJgmZ2ZH/Y87uA9Omew+A4kL4+gs/gfh813EprI1cKtEW9fXevYoL9/xauysltWkykeEnE8nJXnVORZn/KG9cDyYJdXWRr5+R2ZhABJcNCZH/vGcvLyFqKI0Jlsz4j+rg8ypvf3VV0yTNWm+m1noLWG+9vt7fbhv3NyzxPi+pad6YIj3Svec9gg9/W/B5ILnpZ6i+3vucFuV7n9nQ5LcwJDGubKU6LDGp8X0PPjKaLzO9v09tTeP7UFvdtNSqpnrXUqzqau+1BpL9R8Brk5PkPw8ke3/fQLK3Lfg8kNw4pHxLWvq3ZIw3SmxCgv8IfR663mwZy6TJWu8zWVfrPWprvfcudN0Yvxqzh/eZSwoocYshJQzS/pKSIKev9+gMsrK9wa4mH+6tl5b4CcTnsPILr61G6FTioZJTvP+Egv8BJ/v/KQfX6+u8EpWdhU0bjMZLMOnasa19rl+603tsXtc+1+8IiYmNSUR9HRQVRF+a1Fxdrdcgt6WxT7oLYxqTjeBzk9CYTASXodtMAmBDEgI/Saitif7+iYle8tCQRPjL5s+TkrxEsb7eT05Dn9d5yWro9vq6xsS1vs5b1tU1HhN8XlfX9JjgsnkCDN52rJfw2pB9NuQYWw/TZ8LpF8XkzxMtJQwiGT1h0iHeA7xf18UFjb/Qgr/iov21UlPt/VLdWeg/ilpeVlX6DT1TGht7Jqc0bQDafD0lxfuPJPilXVLsPy9ufL4nX3xJgcZf4cFf6+DFW1LkXX9vaANVV9f4HkYjkNzYOyg51Xvfg+99VWX7xNrVBL/s6ltIwNtbXZ2XuHeG5D1WqqvjdmslDCLNBX9t7qlAcnxLVqz1is0bkoliKPETippqv5g+3UsEUpsX1adFbv9QV+dda2dRYxLRkAg121ZV6SU8oSUzuxSZpzQtXk/2i9AbfnmG/EIN/joF/9dpyHZjvESpocrFr26pDF0PqYoJ98s1LcNLBhq6C/dptt639TFIqqv8973Ie++DCVxJSFJRUuT95x9aZRBIblqCFUxWA82OgcaqjCbVPMHqjaqQ/SHVPrubQDb/5Vwf8uvZNnseelysJSR4709iIiQGvJKBpCTvc5LolxJUV0JlhVet2ZZqtS4nfkm6EgaRvZUxjUlA37zYXz8x0RtjIysn9tfuSDXVXjJRXg5YLyFISd2zayandK5quHgIbXvS0MbEhhTnh2wPbgueA14CkBRomhBE2+uotgYqg22iKvzn5btuq6sB07xdRkJjVUnz58EqltD2GokttONITGw8NzHRv09IAoxpmhBDSGLMrvuTAjH8I0VHCYOIdG/BX+09e8U7kr2LMf6XYxxjSApARsCrdpQ9pk7iIiIiEpESBhEREYlICYOIiIhEpIRBREREIlLCICIiIhEpYRAREZGIlDCIiIhIREoYREREJCIlDCIiIhKREgYRERGJSAmDiIiIRKS5JEI4jhPvEERERDqKdV23hSlXd6USBhEREYnIWBu/ubX3ZsaYxdbayfGOo7PR+xKe3pfw9L6Ep/clPL0v4cXqfVEJg4iIiESkhEFEREQiUsLQfu6NdwCdlN6X8PS+hKf3JTy9L+HpfQkvJu+L2jCIiIhIRCphEBERkYiUMIiIiEhEShhiyBiTYIy5yhiz3BhTaYxZb4y5zRiTHu/Y4skYY1t4lMY7to5gjLnWGPOkMWa1/7rXRjh+tDHmGWNMoTGmzBjzjjHm6A4Kt8NE874YY25q5XP0iw4Mu10ZY0YZY35rjPnQGLPdGFNijPnUGPOrcP+PdKPPSpvfl+7yWYGGv/9cY8wyY0yxMabc//653RiT18Lxu/150UiPsXUH8BNgPnAbMNZfn2SMOdZaWx/P4OLsHXZteFMTj0Di4PdAAfAx0Ku1A40xI4D3gVrgVqAYuBh4xRhzgrX2tfYNtUO1+X0JcRWQ32zbkhjGFG8/BP4HeBaYi/dvZDpwM3CmMeZga20FdLvPSpvflxB7+2cFYBCQh/edswHvszABuASYbYyZaK3dBjH6vFhr9YjBAxgP1AP/brb9CsACP4h3jHF8byzwYLzjiOPrHx7y/AtgbSvHzgPqgIkh2zKAb4EV+A2V94ZHlO/LTf7naFi8427n92QykBVm+83+67+8m35WonlfusVnJcL79X3/PfjfWH5eVCURO2cDBriz2fb7gHLg3I4OqLMxxiQbYzLiHUdHs9aubstxftHqKcACa+2nIeeXAv8ARgFT2iPGeGjr+9KcMSbTGLNXlo5aaxdba4vD7HrCX+4H3fKz0qb3pbm9+bMSwbf+Mhti93lRwhA7U/BKGBaFbrTWVgKfshf9491Ns/ASpxJjzDZjzF3GmKx4B9XJ7A+kAB+E2fehv+zun6PP8YpSK40x7xtjToh3QB1kkL/c6i/1WfE0f19CdZvPijEm1RjTxxgzyBgzA/i7v+tFfxmTz0t3zLzaywAg31pbFWbfRuBQY0yytba6g+PqDBYBTwLfAJnAicDlwJHGmEP9LFe8zxB4n5fmgtsGdlAsnU0RXhuY94FCYDRwJfCCMeaH1toH4xZZOzPGJAI34NU9P+pv7vaflRbeF+ien5U5wF0h62uBc6217/jrMfm8KGGInTQgXLIAUBlyTLdLGKy105ptesgY8znw/4Cf+kvxPh8Q/nNU2eyYbsVae2fzbcaY+/HaPtxhjHlqL0487wQOBq6z1q7wt+mzEv596a6flWeA5XhtEibhVT/0Ddkfk8+LqiRipxyvyCec1JBjxPN/eMnTSfEOpBMJfj7CfY70GWrGWrsDuAevh8Wh8Y2mfRhjfodXGnevtfYPIbu69WellfclrL39s2Kt3WCtfc1a+4y19kbgAuCPxphr/UNi8nlRwhA7m4A+xphwf5CBeNUV3a50oSXW2hr89yzesXQim/xluKLB4LZwRYrd2Vp/udd9jowxNwG/Bh4Aftxsd7f9rER4X1qz1l/udZ+V5qy1nwOfAI6/KSafFyUMsfMR3vs5NXSjMSYVmAgsjkNMnZb/vgwifGOl7mopXpHhIWH2Hewv9Tlqal9/uVd9jowxNwI3Ag8Bc6zfBy5Et/ystOF9ac1e+VlpRQ8gx38ek8+LEobYeQKv3+uVzbZfjFc3NLejA+oMjDG9W9j1O7w2NM91YDidml+v+hxwlDHmgOB2vyvqHOBrmvXC6Q6MMUnhetQYYwYDlwE78Bq47RWMMTfgjSXwMHCRDTPgW3f8rLTlfemGn5XcFrZPx+tq+iHE7vOi2SpjyBhzF1692ny87izBkR7fA44O9wHf2xlj7sDLYN8E1uE1yjkRb5S2hcB0u+sIbXsVY8x5wFB/9QogGW8kUIBvrbUPhxw7Eu8fbg3eyKE78ZLOCcBJ1tpXOiru9tbW98UY0wtYg9ewaxmNLd/n4H2ezrbWPtlhgbcjY8z/AH/F+7dyPV5X7VBbrbX/9Y/tTp+VNr0v3emzAmCMmY830uMbeGMvpAIHAbPx2iQcFRx3ISafl3iPSLU3PYBE4Od4o2ZV4dUJ3Q5kxDu2OL4npwKv+O9FJVCGNy7FdUBqvOProPdgAV7pU7jHgjDHjwX+g9c9rBx4Fzg23q8jXu8LXkOtf+AVqxb6/+FtBp4Cpsb7dcT4PXmwlfdkl89LN/qstOl96U6fFf/1ngm8AKz3/3+twOstcRcwJMzxe/R5UQmDiIiIRKQ2DCIiIhKREgYRERGJSAmDiIiIRKSEQURERCJSwiAiIiIRKWEQERGRiJQwiIiISESa3lpE9hqO49yEN9fAdNd1F8Q3GpG9ixIGEWngOE5bRnLTl7FIN6SEQUTC+U0r+9Z2VBAi0nkoYRCRXbiue1O8YxCRzkUJg4jsttA2A3gzT14JjAFKgOeB61zX3RLmvH3xZh08BugL5AOvAb9zXffrMMcn4s2sdx7etL3JeBOaLQD+2MI5s4D/9Y+vBF4Ffu667sY9eMki3ZZ6SYhILFwF3AN8BtyJN2PrRcD7juP0DT3QcZwpwGLgXOAj4E/Ah8A5wGLHcSY3Oz4ZeBm4GxgMPAr8BVgCnAYcFiYeB3gEr/rkb8AXwFnAa47jpOzpixXpjlTCICK78EsOwql0XfeWMNtPAKa5rvtJyDXuwCtxuAX4kb/NAA8BmcC5ruvODTn+LOBx4BHHcca5rlvv77oJOBZ4Dvi+67pVIeek+Ndq7nhgiuu6S0OOfRQ4G2/K9XktvXYRCU8lDCISzo0tPH7ZwvEPhyYLvpuAYuAHIb/qD8WrsvggNFkAcF33CeBdYDTwHWioinCACuDHocmCf06V67rbw8Tzl9BkwXefv5zawmsQkVaohEFEduG6ronylLfCXKPYcZxPgSOBscCnwIH+7jdauM4beMnCJOBtvOQiC1jouu6mKOJZHGbben+ZHcV1RMSnEgYRiYWtLWwPNnjMarbc3MLxwe29mi2jbahYFGZbrb9MjPJaIoISBhGJjf4tbM/1l8XNlrlhjgXIa3Zckb8cuNuRiUhMKGEQkVg4svkGx3GygIl4XRqX+ZuD7RyOauE6we0f+8vleEnD/o7jDNjzMEVkdylhEJFYOM9xnEnNtt2EVwXxWEhjxffwulx+xx8noYG/fgSwEq/xI67r1gEu0AO4p3mXSMdxkpt32xSR9qFGjyKyi1a6VQI847rup822vQS85zjOPLx2CN/xH2sJ6Vnhuq51HOcC4L/AE47j/AevFGE08D28AZ/OD+lSCd4w1dOAmcBKx3Ge948bDMwArgYe3I2XKSJRUMIgIuHc2Mq+tXg9HkLdAczHG3fhLKAU70v8Otd1t4Ue6LruQn/wpl/jja8wE2+kx8fwRnpc0ez4asdxjgd+DJwPXAAYYJN/z3ejfXEiEj1jbVsmpxMR2ZWmkxbpPtSGQURERCJSwiAiIiIRKWEQERGRiNSGQURERCJSCYOIiIhEpIRBREREIlLCICIiIhEpYRAREZGIlDCIiIhIREoYREREJKL/Dw4kCw/ng46tAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 576x432 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE5/figs/AE5-01-history_2</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAGdCAYAAABQEQrmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABYfElEQVR4nO3dd5xcdb3/8ddne8um98Qk1ASEBEgjoIQiCFxKBKQrXIoyAoL3/q7KVQREVK6UCzpXQQWpUqRYABHpNQkQQJKQAAmk92TrbJn5/v74ns3ODrNlktmdmd338/GYx5n5nu8553tOBuaz32rOOURERETSKS/TBRAREZHeRwGGiIiIpJ0CDBEREUk7BRgiIiKSdgowREREJO0UYIiIiEjaKcAQERGRtFOAIdKHmNmJZuaC19OZLo+I9F4KMET6lq/HvT/czMZkrCQi0qspwBDpI8xsMHAsUAfch//v/6yMFkpEei0FGCJ9xxlAIfA48Jsg7evtZxcR2XEKMET6jpZg4l7gJeBTYKKZTe/oIDObZGa/NrMlZlZrZlvN7D0zu8XMDmjnmMFmdrWZvRnkrwuO/6OZnZCQ96qgT8idHZThziDPVQnps4P05cHno83sSTNbb2YxM7ssLu8MM/upmb1uZqvMrDHI95SZndzRM0jlnszs90GZHu7kfFcH+V7t7Noiuagg0wUQke5nZnsDBwCbgKedc87M7ge+iw885rZz3CXATUB+kFQLFAGfD177ArMTjvkC8CgwOEhqBCLA7sHrVMDSdGvx1/0P4BeAA7YBsbh9FcDrcdmbgjINBY4CjjKz25xz32jn3Knc02+Bc4HjzGywc25TkvMZrQHf71O+WZEcoBoMkb6h5cfsQedcU/D+3mB7mpkVJR5gZqcAt+CDi4eBvZxzFUA5MArff+PNhGN2Bf6K/yFeABwGlDnn+gOD8D/mj6TvtrYbDvwcCAMjnXMDgYqg3OCDjSeA04HRQIlzrhIYCFwC1AAXBvfcRqr35Jx7FViID8TObKe8hwPj8AHbAzt60yLZTAGGSC9nZvm0dua8ryXdOfce8B7+R/K4hGMKgRuDj/c7505xzi0KjnPOuTXOuXudc/+RcLmfApXAEuCLzrnnnHPR4LgtzrmnnXMnpfkWAUrwwdO3nHPrgutFnHMrg/d1zrljnXN/dM6tds7FgvStzrlfAqHgPKEk596Re/ptsD23nfL+e7B92DlXvQP3K5L1FGCI9H5HAiOBT4BXEva11GIkdvY8HBgDRIH/15WLBM0Qc4KPV2bgh/N/duLYvwTbmUFABuzUPd2Fb0aZYmb7xe8ws/5x51TziPRaCjBEer+W4OF+55xL2Hc/vs/C0WY2NC59ZrB9xzm3qovXmYrv1+WAp3a0sDuoHninowxmVmBm5wWdOteYWUPLpGPAliBbCb7ZpMUO3VPQ7+Kx4GNiLcYZwXWWOude7Oo5RXKNAgyRXiz4a7llhMN9ifudc5/iR5QU4H/4WgwPtp+mcLmWY7Y557alWNSdtaml2SOZoCbiBXzTxVHACHztzAZgXfBqUR73fmfuqaWZ5IyEPi4tzSN3pHg+kZyiAEOkdzsV/9cywLtx04S7uL/evxjsj28m2ZFRHmkfGZKCaCf7fwjMAjbi73O4c67MOTfMOTcC3/GzhbXzPlXPAMvwnUOPh+2jeaYG5f3DTpxbJOspwBDp3VKZSGs/M9sneL822I5L4fiWY/oHNSdd1RxsSzrIk8r5kmkZHXKJc+4u59z6hP3DEw8I7Og9ETRHtfSxaGkmOS/Y/t05tzqV84nkGgUYIr2Ume2G/6sdYAq+b0F7r5ZOji0BScucEfuaWfxf9x2Zjw8WDDg6haJuDbZJ10UJ5oxIOqFXClrO/XY7+49oJ31H76nFHfjaiqPMbByto3nUuVN6PQUYIr1XS7DwjnPunWBIZtIX8FCQ98xgFMU/gVX4OTC6NDrDOVeDn4wK4Goz69fFcr4XbKeZ2cgk+88ExnbxXO1p6T+xT+KOoH/Gfyc7aCfuqeX4VcCT+Od4L35irw3An1M5j0guUoAh0gsFf/WfHXzsysRWf8HPbjkCOCqYjKtljovTzexBM5sYd/6RZnaBmd2ScJ4rgGpgD+BFMzvUzPKCYwaY2bFm9reEY14BVuMnprrfzCYE+cvM7BvA7bSO8thR/wi2N5rZIcHzwcym4YOpIR0cuyP3FK+ls+dBwfaeuMnORHot++yoNRHJdWZ2KPBs8PHzzrn3u3DMU/gRFg86504N0r6Dr8Fo+WOkBv/XeGnw+QXn3Owk134EGBAkNeCn1d7eh8E5ZwnHzMHPutlynSqgDD+65ffBNb8OXO2cuyruuNnAc8AnzrnxHdzbLsAbtAYSEXzTRTl+iOuJwN+DfROcc8t39p7iji3Aj8ZpqZ3Zxzn3r/bKKtJbqAZDpHdqaR5Z0pXgIvCnYHuCmQ0AcM7dCOyH70uwHL8aawR4F/hf4PLEkzjnngP2xE/d/S98H4YC/EyY9xOMqEg45lH8hGDP4WsL8vHTcp/vnDsvMX+qnHMfA9OBe4D1wfm34pstpjnnnu7k+JTvKe7YZlr7uMxTcCF9hWowRES6mZktwS+KdpFz7teZLo9IT1CAISLSjczscPycGLXAKOdcVYaLJNIj1EQiItJNzGwIraNwfq/gQvoS1WCIiKSZmf0C+Cp+VE4hfgbRvZNM8CXSa6kGQ0Qk/Ybg5+6oB54GDlNwIX2NajBSFAqFHEA4HM7kugsiIiJZrSDTBchhisxERKQvSekPazWRiIiISNopwBAREZG0U4AhIiIiaacAQ0RERNJOnTzTpKmpiZUrVxKJRDJdFOkBJSUljBkzhsLCwkwXRUQkKynASJOVK1fSr18/xo8fT7AStPRSzjk2bdrEypUrmTBhQqaLIyKSlTLeRGJmeWZ2uZktNrOIma0wsxvMrLyLxxea2RVmtsjMGsxsk5n9ycwmtpO/v5ndamarguu9b2YX2U5GBZFIhMGDByu46APMjMGDB6u2SkSkAxkPMICbgBuBhcAlwEPApcBfzKzD8gVBwePAT4AP8EtH3wIcDLxuZnsl5C8C/gF8E3gguN4HQBj40c7eiIKLvkP/1iIiHctoE4mZ7Y3/kX/EOXdSXPoyfKBwGnBfB6c4ATgauM0594244+8G/hWc44i4/OcD04BLnXO3Bmm3m9mfgCvM7A7n3Cc7f2ciIiJ9W6ZrME7Hzwx2c0L67UAdcFYnxx8abO+IT3TOfQy8BBxuZp+L23VGcN7bE85zM35BolO7WG7pJs3NzZkugoiIpEGmA4xpQAyYG5/onIsAC4L9HSkOtnVJ9rWkzQDf1wPYH3g7OH+8uUE5Orte1rvrrrvYd999mTx5MmeffTbnnHMOl156KbNmzWKXXXbh4YcfBuD5559n9uzZnHzyyUycOJEzzzyTjtalueaaa5g2bRqf//znufDCC7fn/fDDDzniiCOYPHky+++/Px999BEA119/Pfvssw+TJ0/me9/7HgCzZ89m/vz5AGzcuJHx48cDcOedd3LKKadw3HHHceSRR1JTU8Phhx/O/vvvzz777MPjjz/e7v1VV1czYcIEmpqaAKiqqmL8+PHbP4uISGZkehTJKGCjc64hyb5VwCwzK3LONbZz/PvB9jDg3ZZEMysjCCzwKxoCDARKg/O24ZxrMLNNwOj2CmpmFwIXXnTRRR3cjnfUj//WaZ4d9fcfHtvuvvfff5+f/OQnvPLKKwwZMoTNmzfzne98hzVr1vDyyy+zePFijj/+eE4++WQA3n77bd5//31GjRrFQQcdxCuvvMLBBx+c9NwXX3wxV155JQBnn302f/3rXznuuOM488wz+d73vsecOXOIRCLEYjGefPJJHnvsMd544w3KysrYvHlzp/f12muv8e677zJo0CCam5t59NFHqaysZOPGjcycOZPjjz+ehQsXfub++vXrx+zZs/nb3/7GiSeeyB//+EdOOukkDR8VkQ5FYzHy8zL9N3bvlukAowxIFlwAROLytBdg3AP8ALjGzGqBZ/DLJF8dbFuOj992dL2ydvbhnLsNuK1lNdVs9Oyzz3LyySczZIi/9UGDBgFw4oknkpeXx1577cW6deu2558+fTpjxowBYMqUKSxfvrzdAOO5557j+uuvp66ujs2bN7P33nsze/ZsVq1axZw5cwA/NwTAM888w7nnnktZWVmbcnTkS1/60vZ8zjmuuOIKXnzxRfLy8li1ahXr1q1r9/7OP/98rr/+ek488UTuuOMObr89sQVMelRjA6z+BDashVGfg9HjM10i6aWcc9Q1NFNd30R1pMlv6xvbvq/372ta0iI+rbE5xqCKYsYP68e4of0YP7SC8cP68bkh/SgrTu9PY2NzlC01DeTn5VFU4F+FBfnk5/XuzuKZDjDqgGHt7CuJy5OUc26LmR0B3AXcFrfrReDn+OCjKuE8xSRX0tG1coFzLunohuLi4jZ5kqXn5+e32/8hEokQCoWYP38+Y8eO5aqrriISibTbpNJeOQoKCojFYtvPGa+8vHVU8r333suGDRt48803KSwsZPz48duvl+y8Bx10EMuXL+eFF14gGo3y+c9/Pmm5JM2cg22bYeUyWPExrPgIViyDtSvBxVrz7TIRDj4Kph8CJe3G8DuuthrefhU+XgxDRsDMw2DQ0PRfR7pNzDm21jZQVecDhZogEKipb2oTPNS02TZSE2km1kHTbmc21zSwuaaBtz7e2CZ9+IBSxg/t519BADJ2SDlFBflt8jnnqG1oZmNVhI3VETZW1bOxuoGNVfVsqo6woSrCpuoIVfXJm2zz8ywIOPLbbAuD98UFeRTk5xFzjuaoIxqL0Rx1NMdiRKOOaCx4H3M0R1u3ec1NDGisorypjuuuPIeSwvyk1+9umQ4wVgN7mVlxkmaS0fjmk/ZqLwBwzr0H7Gdmu+GbXFY75z40s+uDLIuD7RagniTNIGZWDAwGXtjxW2nVUTNGdzr88MOZM2cOl19+OYMHD+5S00RXtAQDQ4YMoaamhocffpiTTz6ZyspKxowZw2OPPcaJJ55IQ0MD0WiUI488kmuuuYYzzjhjexPJoEGDGD9+PG+++SbTp0/f3hckmW3btjFs2DAKCwt57rnn+OSTT9q9v5ZajK997Wucfvrp/PCHP0zLPUuC5mZYu8IHEis/hk+DbfW2zo/9eLF/PfAbmHYIfPFomLAn7MxQ3/paWPA6zHsR3n8TonHB8aN3wsTJcOARsP9BUFK649dJp+ZmiNRDYxBc5+X5Z5CXB5bvty0vM8jLb30fLxaFaBSam/w5o8GrudmnRaNBetz+hkjcqz7p51hDhIaaGppq64hF6rGmRqpL+7NtwEgaBo8iOmIsBWPGUTF6DIMqSxlQXtTlJobmaIyNVRHWbatn3bY61m+tZ922etZv89uNVRGaorHOT7SDzDn6xSIMjNYxIFbPgGgdlbEITeRTn1dIXV4R9VZIfbCt21THgs1VvLGkYPvzzzNj9KAyxgyuoK6xmU1VETZUR2hsbKY81kBF8OoXi1ARa2BIrIHxsQj9gvSyWCN1eUVU5ZWwLb+07TavlKr8UjZYYaf/XRS6KEOaaxgSrWFoczVDozUMaa5haPB5SLSGATH/HWskn6bms6GPBhjzgCOB6fhRHwCYWQkwBV8T0SXOuQ+BD+OSjsbXXrwS7I+Z2Vv4YCQxoJmO7/A6f8duIzvsvffe/Pd//zeHHHII+fn57Lfffmk574ABA7jgggvYZ599GD9+PNOmtfaFvfvuu/nGN77BlVdeSWFhIQ899BBf/vKXWbBgAVOnTqWoqIhjjjmG6667jv/8z//kq1/9KnfffTeHHXZYu9c788wzOe6445g6dSpTpkxh4sSJ7d7fnXfeuf2YH/zgB5x++ulpuec+wTn/A1O91QcKVVuhJthWb2tN37bZ10o0d7HjrBkMGwUDh8LSf7X++DdE4OW/+9fo8fCFL/vahorKrp23IQLvzoW5z8N789ovj3OwaIF/3ftL2P9gmHUE7Lmv/8HeWU2N8OlHvuamrgYidT5wiNS3vm+oj0sL0rv6/BJtD0LyfPDguueHOA/fSS0+HOvfWM2YbSshbvB+xApYUTiQdwoGsr58GFX9h1M3ZBQMHcmAynIqy4rYVtvQJoDYXB2hINpMRfCDG/8jPCFIK4s1EsNosnwaLZ+m+Bf5NFpB27QgX35BAcMLmhie18hQ6hkUi/gAoqmW8sYaSiPVFEVqyItFU34mUaxN4FG/upCIFVLqmrbfS3msIW2jJZrIoyq/lG1xwUddXhH9o/VBAFHDgFh9l89XRJRI1TYozUyNnnU0cqDbL262D/AO8GjCPBiX4OewONs5d0+QNhLoD3zqnOuwKSPu+Kudc1fFpX8L+CVt58EgmAfjeGAP59yyjs7d0gcjHA63SV+0aBGTJk3q7Jalmzz88MM8/vjj3H333T12zZz4N49FYdUn8OFC+GQJbN3SGjhUb/U/ljujuATGTICxu8LYCTBmF/+5OGjhrN4Gr/0TXnoK1nz62eMLCmH/WT7Y2HPyZwOApkYfTMx7Ed553ffvSGb8HrDPNPhoESx62wcZiQYNhZmHw6zDYcTYz+5PJhr1/UmWfQDLl/jXquU+XdpoIo/VhQNYWTCAfGJt/prvF22gCD2znuLy8mDAYNzAodj5/4UNHZGuU6dU7ZjRAAPAzG4FLgYeBZ4AJuFn8nwFOMw5H66b2Z3A14FDnXPPxx3/BPAxfiZQh68RORH4GzDHOdcUl7cIeBWYjA9AFgHHAHOAa51zndavK8DIPpdccglPPvkkTzzxBHvssUePXXfRwoVMaq7xP95DhndfH4NUROph2WJfpg/f900T9WnqWjRomA8ixu7iA4oxu8DQEV2rFXDO//i/9BTMeyF5oDB0pO+rMWO2/1Gf9yK8/Zr/6z+ZsbvAtC/C1C/6GpMWmzfAG8/Bq88kD2rA9ws58HCYNhsq+vm0WAzWr24NJJYt8f1K2gtqUmV5vrmmpckmFvMvF2t9H4v6ZxW/L4lofgExyyeal0+z5dNseTSTRxP5NFkejc5odHk0kUez5RGxQiJ5/q/viBVQH7yv357m95dV9mPYsAGMHD6I0UP7k795HW71pxRtWEX55tUMqlpHRVNtep5HTysth8oBUDnQbysqfe1aYu3TjtQ6lZZBWQWU9YPyiuB9BZS3fO7n/90j9b6WsKbKB981VcEreN/QheUHguCBgUN8LeGgof59/LZygG9iS7+cCzDygcuAC4HxwEb8NN5XOudq4vLdSfIA44f4CbLGB0mL8BNv/cY595mQ2cwGANcCX8H3u/gIP1X4r1wXHkZvDzDmzJnDsmVtK3F+/vOfc9RRR2WoRFnGOd+GXlPNosWLmXTHda37SsrgwMNg9r/13MiJTevho4WtAcWKZalVoRcWQb/+0G9A8m1lf6gYAMNH+f9ZpkN9Lcx9wQcby5ekduyIsT6Qm3YIjOykFsI5+GSpDzTmPu//B54ovwD2mer/x758qS9bVwwf7WtNBgwOgoYyX2tTUtb6uSWYaNlXVLy9fb2+sZnN1Q1srm1gS00Dm2sibK5pee+3W2ob2FoTAefIw2E4ouQRw3au/wq+c+HnhlSw24j+7Dqikt1GVLLL8ErKS7owvLumCtZ8SvOqT2n8dBmx1Z9SuG4FxdWd9PkqKIz74U38Ee7nf6Sdg6Ym/8Pe1Bj0M2lqTUv83NToa5PKK9oGD/3i3rdsC4tSf1DNzXHNXUEA0tgAxaVt7yE/TT/mjQ2tAUd1sK2rhX6VPpgYOAT6D0rf9VKXWwFGruntAYa0o6nRj1aoqdr+V82ilauZdOfPkuffYx8faOw/y/+PNR1iMf+X/QfvtgYUWzZ2flz/gbDb3rDrJBg2OvgfcH//Ki7d6R+rnbLiYx9ovP6s78+QzNCRPqCY9kXf/LIj5W1u8k0trz7j+3HEdwrthBs0FBu/hw8oJuwB43b3PyqBmHPU1Dexta6RquDV8n5b3KuqrpFt9Y1sq20k0tQzzQX5eUZ5cQGjB5fHBRP9GTe04jMjInZapA7WrIANa6Cw+LNBRFyAJTkrpX/ATHfyFMle0WaorYHaDqouBw6BfWfAkvfaVscvec+/KgfCF78MXzwm9aGTzvkq+8ULYNE78ME7nY/aMINR43xAsdtefjtkePb+j33sLnBGCE4+D956xQcbS97zf61N+4Jvwhi3286Xv6CQ6OQDWTF6Hz7efwV5819k/IdzGV+7uk22rXklLCkazpLiYSwpGs4HxcPZml9G/hajsCqPwoUbKMzfRGFBHvl5Rm2kmer6RmLd+HdaZWkhAyuKGVhRTL+SQsqLCykrKaC8qICykkLKiwsoKy6gvLiQ8pKCNp+LCvJ6bmG+kjI/OmjCnj1zPcl6CjBE4sVi/i/p2uqg70KSX468PP9XWWU9/PwPvq3TOV+z8Nxf/JwMwXwfVG2Bv94Pf3sAJs+AQ/8NJu3Xfr+FTet9QLH4Hf/qrIaiuMT3J9h1Lx9Q7DIJyso7PiYbFRX7ESUzDyMajZFnYDsx4sM5x/pt9XywehtLVm/lg9VbWbpmG/WNLTUHY2HIWMb238zkyEq25ZWypHg46/L7JQ1mojFHNBZNW81DYX4eg/oVM6jcBw6DKooZWFHCoO3vixkY7CvM12yTkpsUYEjf5lxrO2t9rW/vTNaHwcx3Eivv57d5ebBhS2tHKjM/98LEybB1E7z4pH9t3RRcJwYLXvOvYaNg9rEw60g/V0FLMLH4HV+93JGK/rDnPr4JZre9fEfLzLXHdllTNMbW2ga21jZu71+wvZ9BbSObayJ+X20D1fVN5OcZpUWtf42XFvltWXEBZUXJ0wryjeUbarYHFFtrOx8hs6JwEM3DxlBaVEBRc5SRMUdTc4ymaKx124X5GcqLC+hfXkT/0iL6lxVRWea3ie9bXmXFBT1XsyCSIQowpG9xzveniJ+noKP2+OJSP8qgrF/Xf8gHDIbjz4JjTvNDK5//q5+TocX61fDg7fCnOzrvC1Ba5oOJiVN88DJ6fHrmcugmjc1RFq3cyjvLN7Fw5RY2VUe2Bw2piMYcNRE/Y2M6DaooZs9RA9hjVH/2HD2APUYOoF9px31knHM0JwQezUHgUV5SQGVpEQWqZRD5DAUY0rs553tmx09+1NmEO4VFUF7payt2ZtG0ggI44GD/WrMCXvgbvPKP1pEKyYKLomLYfW8fUOw52fc/yOIaiuZojA9W+4CiJahobO6+GRlTUVZcwB4j+7PnqAE+mBjVnyH9SlKuOTAzCvNNTRUiKVKA0YdVVFRQU9NOz/1c1TI7ZaQuCCginQ/bzMvzNRXFpb7GoDt6u48cC6d9E+ac4+doeO6vfo6FgkLfh2LiZB9UTNhjx4bT9ZBozPHR2m0sCAKKf326uUv9EvIM+pcVM6C8qE3/ggHlRf59eWu/g8qyIqKxGPWNUeoamv2rsZm6hibqG6LBe/+qb2zdH2mKMmJAKXuM9AHFmMHl5KkZQiRjFGBI7+Cc75i5bXOb2Smbm5spKEj4muflt85RUFzas8Pnikv8Whxf+LIfEVJc0jrrZZaJxmJU1zexoSrCe59u5p3lm3jvk03UNnTcrDN6UDmTxw9m8vjBfG5IxfagIZWVI/Pz8ikqyKd/WfYGWyLSMQUY3eH8L3ffuX/7VLu7vvvd7zJu3DhCoRAAV111FWbGiy++yJYtW2hqauLaa6/lhBNO6NKlrr/+eu6++27y8vI4+uij+dnPfsbs2bOZMWMGzz33HFu3buV3v/sdX/jCF7jzzjv585//TF1dHR999BFz5szh+uuvb/fcF110EfPmzaO+vp6TTz6Zq6++GoB58+bx7W9/m9raWoqLi/nnP/9JWVkZ3/3ud/n73/+OmXHBBRdwySWXMH78eObPncuQkiLmv/QC//nj63j+j3dz1c23snrdepavXMWQQQO57nv/j7Mv/3/URiJgefzyl79k1kEHJb3HCy64gFNOOYW33noLgKVLl3Laaafx5ptvdumZdZmZn4+iB0Waomytadg+F0Ob+Rla3rfsq/crWXZl9OXw/qXbA4rJ4wcztDJLFhcTkYxSgNGLnHbaaVx22WXbA4wHH3yQp556issvv5zKyko2btzIzJkzOf744ztth37yySd57LHHeOONN7aviNqiubmZuXPn8sQTT3D11VfzzDPPALBgwQLefvttiouL2XPPPbnkkksYOzb5bIs/+clPGDRoENFolMMPP5x3332XiRMncuqpp/LAAw8wbdo0qqqqKC0t5bbbbmPZsmW8/fbbFBQU+LLEon4o6JpPoX9lQn8G482Fi3j5mX9QOnAQdY1N/OP5FygpKWHp0qWcfvrpzJ8/P+k9Dho0iP79+7NgwQKmTJnCHXfcwTnnnLNT/y6ZtKk6wsuL1/LyojW898nmLgUMnRncr5jJ4wYzZcIQJo8bzIiBGZ4eXUSykgKMXmS//fZj/fr1rF69mg0bNjBw4EBGjhzJ5ZdfzosvvkheXh6rVq1i3bp1jBjR8eI3zzzzDOeeey5lZf7Ho2VZdICvfOUrABxwwAEsX758e/rhhx9O//79Adhrr7345JNP2g0wHnzwQW677Taam5tZs2YNCxcuxMwYOXLk9tVaKysrt5flm9/8pm/qiDYzyGJ+JctYrG1gYfgRHJUDOP4rJ1E6dDgATbV1XHzxxSxYsID8/HyWLFnS4T2ef/753HHHHdx444088MADzJ07t9Nnn002VNXz8qK1vLRoDQtXbNmpoKJfaSH9S4uYMLySKRMGM3ncYMYMLtcQSxHplAKM7tBBM0Z3O/nkk3n44YdZu3Ytp512Gvfeey8bNmzgzTffpLCwkPHjxxOJdL6gjnOu3R+R4uJiAPLz82lubv5MerJ98ZYtW8YvfvEL5s2bx8CBAznnnHOIRCLtXtM5h8WisHm9n58/6LRZUJBPLOYgv4BIcZnvTzFgMOTlUV7eOtnUTTfdxPDhw3nnnXeIxWKUlJR0eI8nnXQSV199NYcddhgHHHAAgwcP7uxxZdz6bfW8tGgNLy1aw6KVW5PmMWBIZUm78zMkfu5XWkh+Fg+JFZHspgCjlznttNO44IIL2LhxIy+88AIPPvggw4YNo7CwkOeee45PPvmkS+c58sgjueaaazjjjDN888GmjQwqLUltIa12VFVVUV5eTv/+/Vm3bh1PPvkks2fPZuLEiaxevZp58+Yxbdo0qqurKS3I58hZM/j1/97M7Ftu9E0kW7cyaMAAxo8dy5ufrOLoA2bwpxtvbfd627ZtY8yYMeTl5fGHP/yBaLDU9mfuMWgiKSkp4aijjuKiiy7id7/73U7fbzINTVGWrPHTflcUF1AeTPlcWlzQ5ZEPa7fUBUHFWj5YvTVpnjyDfccN5uBJIzlo4nAGVWRnh1IR6X0UYPQye++9N9XV1YwePZqRI0dy5plnctxxxzF16lSmTJnCxIkTu3SeL3/5yyxYsICpU6dSVFjIMYd8geu+cyk0NMDGtX4ERGzHgo3Jkyez3377sffee7PLLrtwUNDhsqioiAceeIBLLrmE+rpaSguLeOau33L+icexZPFi9j36eAoLCrjgrDO4+LLL+dFPruO888/nupv/lxkzZrR7vVAoxEknncRDDz3EoYceur12o809FhVxzDHHcN11fnXUM888k0ceeYQjjzxyh+4xmU3VEd5Yup7Xl6xjwbKNNCSZL8Lw8ze0BBwt24qSwmB9CR+AzPtoA0vXJF+XJM+MKRMG84VJI5m153AGlBcnzSci0p20mmqK+txqqo0NsH6Vn047UV6en5CqX38/1HNntMxfUVsNddV+CeZExaV+qeLSsm4fVvqLX/yCbdu28eMf/7jdPJ39m8ec48M127YHFR+uTbJceJrk5xlTJgzhi5NGcOCeIzS8U0S6g1ZTlTSpq4ENa+OaRcx/vVqC0lgMqrf6V3GpDzTKKro+lXXLLJu11f5aze1MC11a7gOLkp4Z/jhnzhw++ugjnn322ZSPjTRFefvjjbyxdB1vLF3P5pqGdvOOGVxOZWkRtQ1N1EaaqW1oiluMq3MFecb+uwzh4EkjOXDP4VSWKqgQkeyhAKOPe++99zj77LPbpBUXF/PG00/Blg2tiXl5MHSkr6moqfKvuAmtaAim4s7L92t3VPhajRkzZtDQ0PZH9u7f/559dhnnA4umdhakyi+A8gpfQ9LDE1E9+uijKeXfUFXPG0vX88aSdSxYvqndqbLz84x9xg1i5u7DmbH7MEYN+uyqp9FYjNqGZuoizdREmqhtaKY22LZ8jjQ2M25oPw7cczgVJTsxlbmISDdSgJFGHY28yFb77LMPCxYsaE1wzi8ZHh9cFBT6FUBbmkH6D4LKgX5dj+ptUF8TV6sRhaqt/lVcyhv//Iev1YhFfUBRW+1rLVpWGY2Xl+/zlvfztRVZ+iydc0Qa/Q/+t25/qcOmj8rSQqbtNoyZewzngF2GUN5JQJCfl0dlaZFqI0Qk5ynASJOSkhI2bdrE4MGDcy7I2C4a9cuFR+pa04pLYdhIX6MQz8z3hSgt83NR1FT5YCO+mWN7rUZe+x1CLQ/KWpZBL/Ofs1As5qhr9LUJNZEmaqu28uH6uqTBxbihFb6WYo9hTBw9MKUpskVEegsFGGkyZswYVq5cyYYNGzrPnI2iUd+XIn7iqqISqKiErV1cEM05H2BE6n0tRbtTPBkUFfnzFxVDXRNs3Lpz5e8G0ZijsTlKQ1OUxubY9koah2NtVRMPLdgC+L4Q+44fzMzdhzFj9+Ga2VJEBAUYaVNYWMiECRMyXYwd88G78Osf++aLFiecDf92xo43U2zd5Jcmf+lJ2LjO12JMmgLTZ8N+B/laiyzjnOPjddW8vmQdry9dx5LVyYeBgm/6OHDiSGbuPpz9dx1CebH6QoiIxFOA0de9/DTcfUtrzUVhEZz7HzD9kJ0774DBcOxpcPQpsH6NbwLp13/ny5tmdQ3NLFi2kXkfbWDeh+vZUNX+LKefG1LBjN19f4pJY9T0ISLSEQUYfVUsBo/cCU892JpWORAu/hHs0rXJuLokLx9GjEnf+XaSc47l66u3BxTvr9hCNJa8KSfPWkZ9DGPGHsMZnWTUh4iIJKcAoy9qiMBvr4e3X21NGz0eLr0aBg/PWLG6S02kibc/3sj8jzYw/6MNbKxuv5aioqSAqbsOY+Yew5i66zD6larpQ0RkRyjA6Gu2bIRbr4JPP2xN23c6XPg9KOkdnROdc3y0top5QUCxcMUWYh3MWLvr8Eqm7jaUabsOZdKYgRTkZ+dIFhGRXKIAoy9ZvhR+eVXbOSi+NAdOOd83ZeSwaMzx/orNvLhwDa8sXtvhDJoVJQXsv8tQpu02lAN2GcrgfloATEQk3RRg9BXzX4Lf/yIYPoof1XHmt+CQYzNbrp0Qc46FK7bwwsLVvLyo46Bi95H9mbbrUKbuNpSJowdoGXIRkW6mAKO3cw7+dj88dldrWlkFfPMK2Gv/zJVrB8WcY9HKLby4cA0vLVrDpurkQUVlaeH2Woqpuw7ViqIiIj1MAUZv1tQId94EbzzXmjZ8NFxyFYwYm7Fipco5xwert/LCwjW8tHBNu0NJB5QXcfDEERyy9yj2HjtIw0hFRDJIAUZvtW0L/Opq+Hhxa9rEyfDNH/jFyLKcc44P11bxwvureXHhGtZtq0+ar39ZEQdNHMEhe41kn3GD1PQhIpIlFGD0Ris+9iNFNq9vTfvi0XDGt6Ag+//Jl62r4jf/WMTbyzYm3d+vtJCDJo7gi3uNZMr4wQoqRESyUPb/2khqFrwOt//Mz3UBfvGwr14AR5yYtauTttha28BdLyzhybc+JXHuq4qSAmbt6YOK/SYM0VBSEZEspwCjt3AOnv4TPPy71qXTS8r8/Bb7Ts9s2TrRFI3x+Nzl3PvSUuoaWhdbyzM4ZO9RHPr5Uey/y1AKFVSIiOQMBRi9QXMT3HOrX1ekxZDhcMnVfobOLOWc47Ul67j9mUWs3lzXZt9+E4bwzSP3Yvyw7O8vIiIin6UAI9dVb4P/uxaWvNeattte8K0rod+AjBWrMx+vq+I3Ty9kwfJNbdLHDCrngi9NYsbuw7Asb9IREZH2KcDIZas/hVt/BBvWtKYdeAR87VK/KmoW2lrbwB+eX8JTb7ftZ1FRUsCZX9yD46aOU1OIiEgvoAAjV320CG7+AdTX+s9m8JVz4cunZGVnzsbmKI/PXc59L3+Y0M/COPaAz3H2IXvQvyw7gyIREUmdAoxcde+vWoOLomK44Luw36zMlikJ5xyvfuD7WazZ0rafxQG7DuUbX5rEuKHqZyEi0tsowMhFq5a3roZaUAjfuwE+t1tGi5RMTaSJm/7yLi8vXtsmfezgcr5x5F5M221YhkomIiLdTQFGLnrtn63vp8zMyuDig9Vbue5Pb7F2a+sMnBUlhXztkN059oBxmsdCRKSXU4CRa2JReP3Z1s8HHpG5siThnOPRucv53TOLaI7rxXnM/p/j3MP2pLJU/SxERPqCjP8ZaWZ5Zna5mS02s4iZrTCzG8ysvIvHm5mdYWavmtlGM6s2s/fN7Eozq0zIO9vMXDuvv3bPHabZ4ndgazC0s19/2PuAzJYnTlV9I1c/+Ca/eXrh9uCivLiAH5y8P98+dh8FFyIifUg21GDcBFwKPArcAEwKPu9nZkc452KdHH8tcAXwLHA10ATMDt4fY2YHOucSJp7mNuClhLSVO3MTPSa+eWT67KxZW2TRyi1c98jbrI9blGyPUf254iv7M3JgWQZLJiIimZDRXycz2xu4BHjEOXdSXPoy4BbgNOC+Do4vAC4D3gK+FBeM/NrMmoEzgcnAgoRDX3PO3ZOm2+g5DRF465XWzwcenrmyBGLO8afXP+aOZz8gGtckMmfGBM47fKLmtBAR6aMy/efv6YABNyek3w78DDiLDgIMoBAoBdYmqelYHWxrkx0YNMFEnXORFMucOW+90rqI2cjPwbjdM1qcbXWN/OLP7zB3aeuqrRUlBfzH8ZOZteeIDJZMREQyLdMBxjQgBsyNT3TORcxsQbC/Xc65ejN7EfiymX0X+BPQjG8iCQH3OOeWJjn0f4E7AMxsKfAr4JYkTSnZJb555MDDMjqh1r8+3cxPH32bjVWt8dnE0QO44iv7MXyAmkRERPq6TAcYo4CNzrmGJPtWAbPMrMg519jBOc4E/oCv8fhZkOaAnwBXJuRtAv4MPIGv4RgFnIevQZkCnLtDd9ETtmyERQtaP884LCPFiDnHQ69+xJ3PLSEWF4+dNHMC5x6mJhEREfEyHWCUAcmCC4BIXJ6OAowG4GN8QPIUPrg4CfhBcI6ftGR0zr0CnBB/sJndjg84zjGz3znnXk52ETO7ELjwoosu6uSWuskbz0FLK9DEyTC45yep2lrbwP88/g7zP9qwPa1faSH/efxkZu4xvMfLIyIi2SvTf27WAcXt7CuJy5OUmZUBrwKVzrmvO+fud8790Tl3CvAAcI2Z7dlRAYK+Gz8NPh7TQb7bnHNTOzpXt3GubfPIzJ7v3Ll41RZCt7/UJrjYa8xAwhd8QcGFiIh8RqYDjNXAEDNLFmSMxjefdFR7cTKwO/BQkn0P4e/v4C6UY3mwHdKFvD1vxcd+enDw644ccFCPXn7hyi18/565bKpurWz66qxd+Z+vzWRY/9IeLYuIiOSGTAcY84IyTI9PNLMSfJ+I+Z0cPzrY5ifZV5Cw7UjLcIx1Xcjb89pMDX4glHZpDrK0WLRyC/9971zqGv0KqJWlhVx7+jTOO3yipvsWEZF2ZfoX4gF8n4nLEtIvwPe9uLclwcxGmtnEoFmkxcJg+/Uk525Jmxd3jsGJmYLak6uCj39Joew9Ixr1/S9azOq5qcEXr9rCFfe1Bhf9y4r4n68dqEXKRESkUxnt5Omce8/MfgVcbGaP4Dtbtszk+QJt58D4KT5oOBR4Pkj7K36I6zHBcNU/4efV+ArwBeAh59xbced4ysxWA2/SOorkLHwNxq3OuTbDZbPCorehaot/XzkQJu3XI5ddvGor3793LnUNrcHF9WfPZPwwLa0uIiKdy/QoEvC1F8uBC4FjgY3ArcCVnU0T7pyLmtkRwPfxQcX1+BqRpcB3gRsTDnkYOBE/e+gA/CRcbwM/cs7dn46bSbtXn2l9P+NQyE/WGpReH6zeyhX3vtEmuPj5WTMUXIiISJdZts8tlW1CoZADCIfD3X+xSB1853RoDDpXXvkr+Nyu3XrJJau38r173qC2obXPxc/Pnskuwys7OVJERHq5lGZ3zHQfDOnImy+3Bhejx8PYXbr1ckvXbOP797YGF/1KC/nZWQouREQkdQowslmbqcEP79apwZeu2cb37nmDmkhrcPHzs2aw6wgFFyIikjoFGNlq03r44F3/3vJgZvdNDf7h9uCiCYCKkkJ+duYMdh3Rv9uuKSIivZsCjGz1xrN+Bk+ASVNgwGdG2KbFR2u38b17E4KLs2aw20gFFyIisuMUYGQj5+C1Z1s/H9g9tRcfra3iu/e8QXV9S3BRwM/OmsHuCi5ERGQnKcDIRp8shTWf+vfFJbBf+qcG/3hdFd+75/XtwUV5cQE/PVPBhYiIpIcCjGwU37lz/4OgJL3rfSxbV8X37nmDqvjg4qwZ7DFqQFqvIyIifZcCjGzT3Axzn2/9fGB6V079dEM1373nDbbV+TXkyooLuO7MGeyp4EJERNJIAUa2ef9NqN7m3w8YDBMnp+3Uzjn+58/vtAkufnrmdCaOHpC2a4iIiIACjOwT3zwy8zDIS9/U4G8sXc+S1T54KczP47ozpjNx9MC0nV9ERKSFAoxsUlcDC15r/ZzG5hHnHHe/sGT753+bOo5JYxRciIhI91CAkU3mvwTNvuMln9vVTw+eJq8tWceHa6sAKC7I46uzunfacRER6dsUYGSTNs0j6a29uOeFpds/Hzt1HIMqStJ2fhERkUQKMLLFhrWw9F/+fV4ezJidtlO/+sE6PloXV3txYPeuyCoiIqIAI1u8Hld7sdcB0H9QWk4bS+h7cdy08QysKE7LuUVERNqjACMbOAevx00NPit9zSOvLF7LsvXVABQX5nPKgep7ISIi3U8BRjb4eDGsW+Xfl5TBlAPTctpYQt+L46eOY0C5ai9ERKT7KcDIBvHNIwccDEXpCQJeXrSW5Rt87UVJYT6nzFLfCxER6RkKMDKtuQnmvtD6OU1zX0RjbftenDB9PP3LitJybhERkc4owMi09+ZBra9lYNAw2GOftJz2pYVr+HRjDQBlRQWcPFN9L0REpOcowMi0z0wNvvP/JNGY454X29ZeVKr2QkREepACjEyqr4V357Z+TlPzyAvvr2bFplrAL2j2lZkT0nJeERGRrirIdAH6tNJyuOr//BDVNZ/CyLE7fcpozHHvS60jR06cPp7KUtVeiIhIz1KAkWkjxsCJX0vb6Z7/1ypWBrUX5cUFfGWG+l6IiEjPUxNJLxKNxbj3pQ+3f54zYwL9SgszWCIREemrFGD0Is++t5pVm1trL+bMUN8LERHJDAUYvYSvvWjte/GVmbtQUaLaCxERyQwFGL3EM++uYs2WOgAqSgqYM318ZgskIiJ9mgKMXqA5GuO+uNqLk2buQrlqL0REJIMUYPQCz7y7krVb6wHoV1rICaq9EBGRDFOAkeOaojHue7l15MjJM3ehvFi1FyIiklkKMHLcP95Zybqg9qKytJDjp43PbIFERERQgJHTmqIx7o+vvThwV8qKNXeaiIhkngKMHPb0ghWs3+ZrL/qXFXH8tHEZLpGIiIinACNHNTZH29RenHLgLpQWqfZCRESygwKMHPX3BSvZUBUBYEB5EcdNVe2FiIhkDwUYOerFhau3vz/lwF0pUe2FiIhkEQUYOWprbeP291N3HZrBkoiIiHyWAowcVV3ftP29VkwVEZFsowAjBznnqK5vrcHQomYiIpJtFGDkoEhTlOaYA6C4II/iwvwMl0hERKStjAcYZpZnZpeb2WIzi5jZCjO7wczKu3i8mdkZZvaqmW00s2oze9/MrjSzyiT5+5vZrWa2Krje+2Z2kZlZ+u+ue7RtHinKYElERESSy3iAAdwE3AgsBC4BHgIuBf5iZl0p37XAvUA9cDXw/4D3gvdPxwcOZlYE/AP4JvBAcL0PgDDwozTdT7eLbx5R/wsREclGGR3baGZ743/kH3HOnRSXvgy4BTgNuK+D4wuAy4C3gC8552LBrl+bWTNwJjAZWBCknw9MAy51zt0apN1uZn8CrjCzO5xzn6Tp9rqNOniKiEi2y3QNxumAATcnpN8O1AFndXJ8IVAKrI0LLlq0TBRRG5d2RnDe2xPy3hyc69SuFDrT2gQY6uApIiJZqMs1GKFQ6B3g18A94XC4Ok3XnwbEgLnxic65iJktCPa3yzlXb2YvAl82s+8CfwKagdlACLjHObcUfF8PYH/gLedcJOFUc4NydHi9bFEdUR8MERHJbqnUYOwF/BJYHQqFbg+FQlPTcP1RwEbnXEOSfauAIUG/iY6cCTwH/AxYCiwDfo/v2/G1uHwD8bUdqxJPEFx/EzA61RvIBPXBEBGRbJdKgDEG+CGwATgPeCMUCs0PhUIXhEKhLo34SKIMSBZcAETi8nSkAfgYuAvfBHI6vibjB8AVCddqyd/e9dq9lpldaGbzOylLj1AfDBERyXZdDjDC4fC6cDh8XTgc3gU4GngM2BffbLI6FAqFQ6HQlBSvXwcUt7OvJC5PUmZWBrwKVDrnvu6cu98590fn3Cn4USLXmNmeCefp6HrtXss5d5tzLh21NjtNw1RFRCTb7VAnz3A4/PdwOHwSMBZfq7ER+AbwZigUej0UCp0TCoVKOjyJtxrfDJLsR380vvmkMcm+FicDu+OHtiZ6CH9/Bweft+CHsn6mGSS4/mCSNJ9kozZNJOrkKSIiWWinRpGEw+F1wE+B7+CDBQOmA78DVoRCocs6OcW8oAzT4xPNrASYAnTWJNESLCSbyrIgfhuMMnkL2C9JQDM9KEdWNIF0pm0nTwUYIiKSfXY4wAiFQqNDodCPgE+AR4ARwJ+BE4EfA1HghlAo9OMOTvMA4PBzWcS7AN8f4t6WBDMbaWYTg2aRFguD7deTnLslbV5c2v3BeS9MyHsZfvTJgx2UNWvEN5FoHRIREclGKU20FQqFDN//4hvBtgBYB1wH3BYOh1cEWf8cCoVuAP6J7xD6w2Tnc869Z2a/Ai42s0eAJ4BJ+Jk8X6DtJFs/xQcNhwLPB2l/xQ8xPSYYrvonfC3KV4AvAA85596KO8ftwLnAjWY2HlgEHAPMAa51zi1L5Xlkijp5iohItktlHowf4GfCHIv/EX8RP8X2I+FwuDkxfzgcrg6FQn8Brurk1JcBy/G1Csfi+3PcClyZZPKsNpxzUTM7Avg+Pqi4Hl8jshT4Ln4K8vj8jUH+a/GjTQYDH+FnE/1VJ+XMGm2HqaqTp4iIZJ9UajCuAarwQcX/hcPhhZ3kB3gTP3y0Xc65KHBD8Ooo3znAOUnSq/HDUa9I3NfOebYCFwevnNPQFKWh2cdd+XlGaZFWUhURkeyTSoBxEX4Wz9pOcwbC4fAT+GYPSZOahA6eObQIrIiI9CFdDjDC4fBvurMg0jVah0RERHJBKn0w9gf+DfhNMDw1cf8IfD+KP4fD4QVpK6G0oXVIREQkF6QyTPU/8Z0817ezfx1+xMh3drZQ0j6tQyIiIrkglQDjQOC5cDjsku0M0p8FDkpHwSQ5DVEVEZFckEqAMQJY2Ume1cDIHS+OdEbrkIiISC5IJcCoA4Z2kmco7a9WKmmgdUhERCQXpBJgLABOCIVCFcl2hkKhSuCEIJ90E61DIiIiuSCVAOM2fA3FP0Kh0L7xO0Kh0GTgaWBIkE+6ifpgiIhILkhlHowHQqHQ0cDXgLdDodA6/PLmo4Hh+OnD/xAOh+/vlpIKoD4YIiKSG1JaTTUcDp8DfBO/iukI4IBg+z5wYTgcPjfdBZS2NExVRERyQUqrqQKEw+HbgNtCoVAZMADYGg6H69JdMEmuTR8MdfIUEZEslXKA0SIIKhRY9DA1kYiISC5IqYlEMqs5GqOuoRnwHV7KS3Y4PhQREelWKf1ChUKhciAEHIXv3FmcJJsLh8O7pqFskiB+JdWK0kLytJKqiIhkqVQWOxsAvAzsBVQBlcA2oAgoDbKtBpqSHS87T0NURUQkV6TSRPIDfHBxHjAwSLsJqABmAW8BHwGT0llAadW2g6f6X4iISPZKJcA4HngxHA7fEb/gWTgcduFw+HXgGGAi8N9pLqMENERVRERyRSoBxlh8LUWLGHF9MMLh8HrgSeC09BRNEqmJREREckWqi51F4z5vw0+yFW8dvvOndAMFGCIikitSCTBW4GsxWiwEvhgKhfLj0g4G1qajYPJZbQIM9cEQEZEslkqA8QJwSCgUahkb+QCwK/C3UCj0rVAo9BAwE3gizWWUQHVEfTBERCQ3pDIPxh/wQ1LH4Gszfg0cBpwIHBnkeQU/2kS6gZpIREQkV6SymupbwEVxn5uBr4RCoQOA3YDlwLxwOBxLdyHFU4AhIiK5IpWJtr4IVIXD4QXx6eFw+E3gzTSXS5LQOiQiIpIrUumD8RxwYXcVRDoX3wejQiupiohIFkslwNgI1HdXQaRz8TUYlWoiERGRLJZKgPE8fkpwyYCYc9TEBRiqwRARkWyW6loke4ZCoR+HQiH9uvWw2kgzLfOzlxUVUJCfyj+diIhIz0plmOr3gX8BVwDnhUKhd/CTarmEfC4cDp+XpvJJIH6pdo0gERGRbJdKgHFO3PsRfHaa8BYOv+KqpJEWOhMRkVySSoAxodtKIZ2K7+BZoQBDRESyXCoTbX3SnQWRjmkdEhERySXqKZgjtA6JiIjkklRm8vxcV/OGw+FPd6w40h5NEy4iIrkklT4Yy/nsiJFkXIrnlS5QgCEiIrkklUDgLpIHGAOAKcA4/GRc6qvRDdrO4qk+GCIikt1S6eR5Tnv7QqFQHvBD4JvA13e+WJKozTBVzeIpIiJZLi2dPMPhcCwcDl+Nb0b5WTrOKW1Va6ItERHJIekeRfIqcGSazyloqXYREckt6Q4wBgHlaT6noE6eIiKSW9IWYIRCoSOAU/HrlXSZmeWZ2eVmttjMIma2wsxuMLNOAxUzm21mrpPXQV3M/9fU77pnOOfa9MHQSqoiIpLtUpkH49kOzjEWaJkn45oUy3ATcCnwKHADMCn4vJ+ZHeGci3Vw7CLg7CTpxcBtwEZgbpL9twEvJaStTLHcPSbSFKU55gfwFBfkUVyYn+ESiYiIdCyVYaqz20l3wBbg78AvwuFwe4HIZ5jZ3sAlwCPOuZPi0pcBtwCnAfe1d7xzbh1wT5Lzno6vnbnLOdf0mQPhNefcZ47LVup/ISIiuSaVYardMa346YABNyek344fjXIWHQQYHTg/2P62vQxBE0zUORfZgfP3KK2kKiIiuSbTa5FMA2IkNGMEP/oLgv0pMbMJwKHAy865D9rJ9r9ADVBvZkvM7NtmZqleq6eog6eIiOSaTAcYo4CNzrmGJPtWAUPMLNU2gX/H14okq71oAv4M/BdwPH5isK34GpTfd3RSM7vQzOanWJa0aLuSqgIMERHJfql08vwB8CNgfDgcXpVk/yj8RFtXhsPhrk62VQYkCy4AInF5GtvJ04aZ5QPnAFXAQ4n7nXOvACckHHM78ARwjpn9zjn3crJzO+duA24LhUJdWY8lrdpOsqU+GCIikv1SqcE4Dng+WXABEA6HVwPPkfAD3ok6/IiPZEri8nTVUcAY4H7nXJeOC0ap/DT4eEwK1+ox6oMhIiK5JpUAYzdgYSd5Fgb5umo1vhkkWZAxGt980qXai8B5wbbdzp3tWB5sh6R4XI9QHwwREck1qQQYZXRemxAB+qVwznlBGabHJ5pZCX6F1i73eTCzYfhalnedc6n2ldg92K5L8bgeoWGqIiKSa1IJMFYAMzvJMxPfObOrHsDPo3FZQvoF+IDm3pYEMxtpZhPNrKydc30NKKTjoamDk6QVA1cFH//S1YL3JK2kKiIiuSaVAOMp4IuhUOjUZDtDodBpwCHAk109oXPuPeBXwFfM7BEzO9/MbgBuBF6g7RwYP8XP3Dn9s2cC/OiRCEkm3oq/BzN73MyuDK51JfAecBBwq3Mu2ayfGaeVVEVEJNekMpPnz4EzgfuCIOMpfG3FaOBo/LDPzaS+XPtl+D4QFwLH4qf3vhW4spNpwrczs1n4Kcbvc85t6SDrw8CJ+NlDBwC1wNvAj5xz96dY7h6jPhgiIpJrUpnJc1UoFDoKP/zzRNqOFjF8kHBKOBxOaU0P51wUvwbJDZ3kOwc/BDXZvleDMnR2rZ/jA6Wcoj4YIiKSa1KaaCscDs8H9gBOxgcEvwu2JwN7hsPhN9NeQtFKqiIiknNSaSIBIBwONwGPBC/pZo3NURqafUtRfp5RWqSVVEVEJPtleqpw6URi/4ssXjJFRERku0xPFS6d0DokIiKSizI9Vbh0QuuQiIhILsr0VOHSCa1DIiIiuSjTU4VLJzQHhoiI5KJMTxUundAcGCIikosyOlW4dE7rkIiISC7KhqnCpQNah0RERHJRl2swgtEjRwGf4qcK/z/gz8H2BOAT4KhUpwqXjqkPhoiI5KK0ThUOvB0KhTRMNY3UB0NERHJRWqYKD4VC44ArgXOBkYDms04TDVMVEZFclHKA0SIUCuXjm0YuBI7A14Y44Jn0FE0goQ+GOnmKiEiOSDnACIVCuwDn45dOHx4kbwR+A/wuHA5/krbSiZpIREQkJ3UpwAiFQgXAHHxtxaH42opGfDPJScDj4XD4yu4qZF/VHI1R19AMgAHlJTtc4SQiItKjOvzFCoVCuwMXAF8HhuB/594C7gTuC4fDm0OhUKy7C9lX1cQ1j1SUFpKnlVRFRCRHdPYn8Qf4fhXrgZuAO8Lh8PvdXioBNERVRERyV1eGqTrgCeBhBRc9q20HT/W/EBGR3NFZDcYPgX/HDz89JxQKfYBvHrk7HA6v6eay9XkaoioiIrmqwwAjHA7/BPhJKBQ6Ct8X4zj8VOA/CYVCTwN/6P4i9l1qIhERkVzVpZk8w+Hw38Ph8MnAWOAK/LTgRwP345tQpoRCoQO6rZR9lAIMERHJVSmNewyHw+vxNRg/C4VCh+OHrZ4ATAXmhkKhd4HfhsPhX6W9pH1QmwBDfTBERCSHpLQWSbxwOPzPcDh8KjAG+C9gCTAZuCVNZevzqiPqgyEiIrlpp2duCofDG4FfAL8IhUKz8bN8ShqoiURERHJVWqeGDIfDzwPPp/OcfZkCDBERyVU73EQi3U/rkIiISK5SgJHF2vTB0EqqIiKSQxRgZDE1kYiISK5SgJGlYs5RG7/YmWowREQkhyjAyFJ1Dc3EnH9fVlRAQb7+qUREJHfoVytLqXlERERymQKMLKWFzkREJJcpwMhS8TUYFQowREQkxyjAyFJah0RERHKZAowspXVIREQklynAyFLq5CkiIrlMAUaWUoAhIiK5TAFGlooPMCq1DomIiOQYBRhZqs0wVc3iKSIiOUYBRpaqjqiJREREclfGAwwzyzOzy81ssZlFzGyFmd1gZuVdOHa2mblOXgclHNPfzG41s1XB9d43s4vMzLrvLlOnpdpFRCSXFWS6AMBNwKXAo8ANwKTg835mdoRzLtbBsYuAs5OkFwO3ARuBuS2JZlYE/APYD7g1OP5oIAwMB67ayXtJG3XyFBGRXJbRAMPM9gYuAR5xzp0Ul74MuAU4DbivveOdc+uAe5Kc93R87cxdzrmmuF3nA9OAS51ztwZpt5vZn4ArzOwO59wnO3lbO80516YPhlZSFRGRXJPpJpLTAQNuTki/HagDztrB854fbH+bkH5GcN7bE9JvBgqBU3fwemkVaYrSHCylWlyQR3FhfoZLJCIikppMBxjTgBhxzRgAzrkIsCDYnxIzmwAcCrzsnPsgLj0P2B94Ozh/vLlBOVK+XndQ/wsREcl1mQ4wRgEbnXMNSfatAoYE/SZS8e/4WpHE2ouBQGlw3jaC628CRrd3UjO70Mzmp1iWHaKVVEVEJNdlOsAoA5IFFwCRuDxdYmb5wDlAFfBQkmvRyfXavZZz7jbn3NSulmVnqIOniIjkukwHGHX4ER/JlMTl6aqjgDHA/c65xONaPnd0vVSu1W3arqSqAENERHJPpgOM1fhmkGQ/+qPxzSeNSfa157xgm9g8ArAFqCdJM0hw/cEkaT7JhLaTbKkPhoiI5J5MBxjzgjJMj080sxJgCtDlPg9mNgw4DnjXOfeZ44L5NN7Cz6+RGNBMD8rRI30sOqM+GCIikusyHWA8ADjgsoT0C/D9Ie5tSTCzkWY20cza6yfxNfxQ02S1Fy3uD857YUL6ZUAz8GBXC96d1AdDRERyXUYn2nLOvWdmvwIuNrNHgCdoncnzBdpOsvVT4Ov4IajPJzndv+M7an5m4q04twPnAjea2Xj8TJ7HAHOAa51zy3bmftJFw1RFRCTXZcNU4ZcBy/G1Csfip/e+Fbiyk2nCtzOzWfjA5D7n3Jb28jnnGs3sCOBa/CRfg4GP8LOJ/mrHbyG9tJKqiIjkuowHGM65KH4Nkhs6yXcOfghqsn2v4ue+6Mr1tgIXB6+spJVURUQk12W6D4YkoT4YIiKS6xRgZCENUxURkVynACMLqQZDRERynQKMLNPYHKWhKQpAfp5RopVURUQkBynAyDKJtRdmXeq7KiIiklUUYGQZrUMiIiK9gQKMLKMOniIi0hsowMgyWodERER6AwUYWUYjSEREpDdQgJFltA6JiIj0BgowsozWIRERkd5AAUaW0TokIiLSGyjAyDLqgyEiIr2BAowsoz4YIiLSGyjAyDIapioiIr2BAows06YPhjp5iohIjlKAkWXURCIiIr2BAows0hyNUdfQDIAB5SUFmS2QiIjIDlKAkUVq4ppHKkoLydNKqiIikqMUYGQRDVEVEZHeQgFGFmnbwVP9L0REJHcpwMgiGqIqIiK9hQKMLKImEhER6S0UYGQRBRgiItJbKMDIIm0CDPXBEBGRHKYAI4tUR9QHQ0REegcFGFlETSQiItJbKMDIIgowRESkt1CAkUW0DomIiPQWCjCySI1WUhURkV5CAUYW0URbIiLSWyjAyBIx59rWYCjAEBGRHKYAI0vUNTQTc/59WXEB+Xn6pxERkdylX7Es0XaSLdVeiIhIblOAkSXU/0JERHoTBRhZIr4Go0IBhoiI5DgFGFlC65CIiEhvogAjS2gdEhER6U0UYGQJTRMuIiK9iQKMLKEAQ0REepOMBxhmlmdml5vZYjOLmNkKM7vBzMpTOEeBmV1qZm+ZWa2ZbQvefyMh32wzc+28/pr+u+u6+ACjUuuQiIhIjivIdAGAm4BLgUeBG4BJwef9zOwI51yso4PNrAj4M3AocC/wa/x97Q6Ma+ew24CXEtJW7ugNpEObYaqaB0NERHJcRgMMM9sbuAR4xDl3Ulz6MuAW4DTgvk5O80PgCOBLzrnnunjp15xz9+xAkbtNtaYJFxGRXiTTTSSnAwbcnJB+O1AHnNXRwUEzyreBx51zz5nXrysXNrNyMytJvcjdQ0u1i4hIb5LpAGMaEAPmxic65yLAgmB/R74A9APeNLP/BaqAKjPbYGbXmVl7NTT/C9QA9Wa2xMy+bWa2E/ex09TJU0REepNM98EYBWx0zjUk2bcKmGVmRc65xiT7AfYMtpcBjcB/AZuAM4HvA6OBr8flb8L313gCWB1c/zx8DcoU4Nwdv5Ud55xr0wejQn0wREQkx2W6BqMMSBZcAETi8rSnpTlkEHCEc+7/nHMPOudOAJ4HvmZme7Vkds694pw7wTn3G+fcX5xzvwFmAn8HzjGzg9u7kJldaGbzu3ZbqYk0RWkOllItLsijuDC/Oy4jIiLSYzIdYNQBxe3sK4nL0576YPu6c25xwr67gu0hHRUgGKXy0+DjMR3ku805N7Wjc+0o9b8QEZHeJtMBxmpgiJklCzJG45tP2msegdahpWuT7FsTbAd2oRzLg+2QLuRNO62kKiIivU2mA4x5QRmmxycGozumAJ01SbR0Dh2TZF9L2voulGP3YLuuC3nTTh08RUSkt8l0gPEA4PCdNONdgO97cW9LgpmNNLOJZra9T4ZzbhnwCjDdzPaPy5sfnKMZeDoufXBiAYLak6uCj3/ZudvZMW1XUlWAISIiuS+jo0icc++Z2a+Ai83sEfzojpaZPF+g7SRbP8WPCDkU34GzxSX4WTmfMbNb8KNITsXXilzjnPs0Lu9TZrYaeJPWUSRn4WswbnXOtRku21PaTrKlPhgiIpL7Mj1MFXztxXLgQuBYYCNwK3BlZ9OEAzjn3jazWcC1wblKgEXAuc65OxOyPwyciA9KBgC1wNvAj5xz9+/sjewo9cEQEZHeJuMBhnMuil+D5IZO8p0DnNPOvneB47twrZ8DP0+5kN1MfTBERKS3yXQfDEHDVEVEpPdRgJEFtJKqiIj0NgowsoBWUhURkd5GAUYWUB8MERHpbRRgZAENUxURkd5GAUYWUA2GiIj0NgowMqyxOUpDUxSAgjyjRCupiohIL6AAI8MSh6iaWQZLIyIikh4KMDIsPsCoKMn4vGciIiJpoQAjw9TBU0REeiMFGBmmdUhERKQ3UoCRYRpBIiIivZECjAzTOiQiItIbKcDIMK1DIiIivZECjAzTOiQiItIbKcDIMPXBEBGR3kgBRoapD4aIiPRGCjAyTMNURUSkN9LUkRl2yqxdWb+tnpr6JoZVlma6OCIiImmhACPDZu89KtNFEBERSTs1kYiIiEjaKcAQERGRtFOAISIiImmnAENERETSTgGGiIiIpJ0CDBEREUk7BRgiIiKSdgowREREJO0UYIiIiEjaKcAQERGRtFOAISIiImmntUh2UCgUynQRREREepILh8PW1cyqwRAREZG0M+dcpssggJnNd85NzXQ5so2eS3J6LsnpuSSn55Kcnkty6XouqsEQERGRtFOAISIiImmnACN73JbpAmQpPZfk9FyS03NJTs8lOT2X5NLyXNQHQ0RERNJONRgiIiKSdgowREREJO0UYGSImeWZ2eVmttjMIma2wsxuMLPyTJctk8zMtfOqyXTZeoKZfd/MHjKzj4P7Xt5J/j3N7DEz22JmtWb2kpkd1kPF7TGpPBczu6qD79F/9mCxu5WZ7WFm15jZ62a2wcyqzWyBmf13sv+P9KHvSpefS1/5rsD2f/97zWyRmW0zs7rg9+dGMxvZTv6d+r5oJs/MuQm4FHgUuAGYFHzez8yOcM7FMlm4DHuJz3YyaspEQTLgOmAz8BYwoKOMZrYr8CrQDFwPbAMuAP5uZkc7557p3qL2qC4/lziXAxsT0t5MY5ky7d+BbwF/Bu7F/zdyKHAt8FUzm+mcq4c+913p8nOJ09u/KwBjgJH435yV+O/CPsCFwGlmNsU5tx7S+H1xzunVwy9gbyAG/Ckh/RLAAWdkuowZfDYOuDPT5cjg/e8S9/5fwPIO8j4IRIEpcWkVwCfABwSduHvDK8XnclXwPRqf6XJ38zOZCvRPkn5tcP8X99HvSirPpU98Vzp5XqcEz+C/0v19URNJZpwOGHBzQvrtQB1wVk8XKNuYWZGZVWS6HD3NOfdxV/IFVb3HA8875xbEHV8D/BbYA5jWHWXMhK4+l0RmVmlmvbKm1jk33zm3LcmuB4Lt56FPfle69FwS9ebvSic+CbYDIb3fFwUYmTENX4MxNz7RORcBFtCL/mPfQSfjA61qM1tvZreaWf9MFyrL7AsUA68l2fd6sO3r36N38VW7ETN71cyOznSBesiYYLsu2Oq74iU+l3h95rtiZiVmNsTMxpjZkcBvgl1PBNu0fV/6YrSWDUYBG51zDUn2rQJmmVmRc66xh8uVDeYCDwEfApXAMcDFwCFmNiuIosV/h8B/XxK1pI3uobJkm634PjyvAluAPYHLgL+Z2b875+7MWMm6mZnlA1fi287vC5L7/HelnecCffO7cj5wa9zn5cBZzrmXgs9p+74owMiMMiBZcAEQicvT5wIM59yMhKS7zOxd4CfAt4Ot+O8HJP8eRRLy9CnOuZsT08zs9/i+GzeZ2cO9OFC9GZgJXOGc+yBI03cl+XPpq9+Vx4DF+D4V++GbQ4bG7U/b90VNJJlRh6+CSqYkLo94/4MPto7NdEGySMv3I9n3SN+hBM65TcCv8SNQZmW2NN3DzH6Mr+27zTn307hdffq70sFzSaq3f1eccyudc8845x5zzv0I+DrwczP7fpAlbd8XBRiZsRoYYmbJ/gFH45tP+lztRXucc00EzyzTZckiq4NtsqrKlrRkVZx92fJg2+u+R2Z2FfAD4A7gmwm7++x3pZPn0pHlwbbXfVcSOefeBd4GQkFS2r4vCjAyYx7+2U+PTzSzEmAKMD8DZcpawXMZQ/LOWX3Ve/gqzAOT7JsZbPU9amv3YNurvkdm9iPgR8BdwPkuGFMYp09+V7rwXDrSK78rHSgFBgXv0/Z9UYCRGQ/gxx1flpB+Ab5t696eLlA2MLPB7ez6Mb6/0F96sDhZLWgX/gsw28wmt6QHQ3vPB5aSMEqpLzCzgmQjjsxsLHARsAnfoa9XMLMr8XM53A2c65JM0NcXvytdeS598Lsyop30Q/FDd1+H9H5ftJpqhpjZrfh2wUfxw4NaZvJ8BTgs2X8QvZ2Z3YSPkJ8DPsV3QjoGPwvfG8Ch7rMz8PUqZnY2MC74eAlQhJ/pFeAT59zdcXl3w/+H3oSfGbYKH6TuAxzrnPt7T5W7u3X1uZjZAGAZviPbIlpHBpyP/z6d7px7qMcK3o3M7FvAL/H/rfwQP/Q93jrn3D+CvH3pu9Kl59KXvisAZvYofibPZ/FzX5QABwCn4ftUzG6Z9yJt35dMzyLWV19APvAf+FnRGvBtWjcCFZkuWwafyQnA34NnEQFq8fOCXAGUZLp8PfQMnsfXbiV7PZ8k/yTgcfxwuzrgZeCITN9Hpp4LvmPab/HVvFuC/0GuAR4Gpmf6PtL8TO7s4Jl85vvSh74rXXoufem7EtzvV4G/ASuC/7/W40eT3Ap8Lkn+nf6+qAZDRERE0k59MERERCTtFGCIiIhI2inAEBERkbRTgCEiIiJppwBDRERE0k4BhoiIiKSdAgwRERFJOy3XLiJ9VigUugq/XsWh4XD4+cyWRqR3UYAhIjssFAp1ZaY+/XiL9EEKMEQkHa7uYN/yniqEiGQPBRgistPC4fBVmS6DiGQXBRgi0mPi+zzgV0e9DJgIVAN/Ba4Ih8Nrkxy3O35lzMOBocBG4Bngx+FweGmS/Pn41R/Pxi9FXYRfRO954OftHHMy8F9B/gjwNPAf4XB41U7cskifpVEkIpIJlwO/Bt4BbsavKnwu8GooFBoanzEUCk0D5gNnAfOAXwCvA2cC80Oh0NSE/EXAU8D/AWOB+4BbgDeBOcBBScoTAu7BN+f8CvgXcCrwTCgUKt7ZmxXpi1SDISI7LaiZSCYSDod/liT9aGBGOBx+O+4cN+FrNH4GnBekGXAXUAmcFQ6H743LfyrwR+CeUCi0VzgcjgW7rgKOAP4CnBIOhxvijikOzpXoy8C0cDj8Xlze+4DTgROAB9u7dxFJTjUYIpIOP2rn9b128t8dH1wErgK2AWfE1RrMwjehvBYfXACEw+EHgJeBPYGDYXvTSAioB74ZH1wExzSEw+ENScpzS3xwEbg92E5v5x5EpAOqwRCRnRYOhy3FQ15Ico5toVBoAXAIMAlYAOwf7H62nfM8iw8u9gNexAcj/YE3wuHw6hTKMz9J2opgOzCF84hIQDUYIpIJ69pJb+ng2T9hu6ad/C3pAxK2qXbM3JokrTnY5qd4LhFBAYaIZMbwdtJHBNttCdsRSfICjEzItzXYjt7hkolIWijAEJFMOCQxIRQK9Qem4IeILgqSW/ppzG7nPC3pbwXbxfggY99QKDRq54spIjtKAYaIZMLZoVBov4S0q/BNIvfHdc58BT+E9eBgnortgs9fBJbgO3sSDoejQBgoBX6dOMQ0FAoVJQ6DFZHuoU6eIrLTOhimCvBYOBxekJD2JPBKKBR6EN+P4uDgtZy4kSfhcNiFQqGvA/8AHgiFQo/jayn2BE7ET9D1tbghquCnLZ8BHAcsCYVCfw3yjQWOBP4fcOcO3KaIpEABhoikw4862LccPyIk3k3Ao/h5L04FavA/+leEw+H18RnD4fAbwWRbP8DPb3EcfibP+/EzeX6QkL8xFAp9Gfgm8DXg64ABq4NrvpzqzYlI6sy5riyGKCKy87Q8ukjfoT4YIiIiknYKMERERCTtFGCIiIhI2qkPhoiIiKSdajBEREQk7RRgiIiISNopwBAREZG0U4AhIiIiaacAQ0RERNJOAYaIiIik3f8Hg2U/C53ZfbAAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 576x432 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "pwk.plot_history(history,  plot={'Loss':['loss', 'ae_loss', 'cnn_loss'],\n",
-    "                                 'Validation loss':['val_loss','val_ae_loss', 'val_cnn_loss'], \n",
-    "                                 'Accuracy':['cnn_accuracy','val_cnn_accuracy']}, save_as='01-history')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 6 - Denoising progress"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 14,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:40:20.536936Z",
-     "iopub.status.busy": "2021-03-14T21:40:20.536450Z",
-     "iopub.status.idle": "2021-03-14T21:40:24.468004Z",
-     "shell.execute_reply": "2021-03-14T21:40:24.468505Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Real images (clean_test) :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE5/figs/AE5-02-original-real</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAByCAYAAAC89bCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAANWUlEQVR4nO3de4hV1R7A8TXD5PTUMrIHYU44WBQo6SSp2MvKMDHDtCwkKwwGS4rwn6LRpsfUWIhOA2XmZJkiY2qolZklRTFBFD1QCyxfmJWlk70sm/vHvf3u77d0b/c5c/Y5417fz1+/ddeafRZ3z5l+rmdZR0eHAwAACEV5qTsAAABQTCQ/AAAgKCQ/AAAgKCQ/AAAgKCQ/AAAgKBVJG9bW1rItrAtobm4u6+wzeJddQyHepXO8z66C72Z28C6z5XDvk5EfAAAQlMQjP/9qbm5Oox84gtra2oI/k3dZGmm8S+d4n6XCdzM7eJfZEvc+GfkBAABBIfkBAABBIfkBAABBIfkBAABBIfkBAABBIfkBAABBIfkBAABByfmcHwBI28qVKyWePHmyqWtra5O4urq6aH0CkB2M/AAAgKCQ/AAAgKCQ/AAAgKBkfs3P5s2bJb788stN3a5duyRev369qfPbAkjPxo0bTfnWW2+VuKLC/pn6559/itInANnFyA8AAAgKyQ8AAAhK5qe9tPLy6FxvxowZpsy0F5Cun376SeKJEyeauv3790t83333mbp+/fql2zHgKNHY2GjK06dPl9j/3jz11FNF6dPRgpEfAAAQFJIfAAAQFJIfAAAQlMyv+dm0aZPEO3fujGzH9tns8NdvzZw5M7JtXV1d5M8hXfX19RJ/+umnke0aGhqK0BsUw6pVq0x50qRJEo8cOdLUtbS0SNytW7dU+3W0+uKLL0y5rKxM4u3btxe7O+Lvv/82Zf23ddmyZaZuzZo1EldVVaXaL42RHwAAEBSSHwAAEJTMT3shm3KZ2ooT93NMgxXe7NmzJW5qapLYn9Y47bTTJNZD+ej6tm3bZsp6enP+/Pmm7oQTTpB4+fLlpk7/Tjz77LOmrrKystP9zIL29vbIuh49ehSxJ5Z/Y8Jjjz0mcUdHh6lbvXq1xFOnTk23YwojPwAAICgkPwAAICgkPwAAICis+UGX9u6770qc9pUjGzZsSPX5IfJva581a5bEejtsTU2NaffRRx+l2zEU1JtvvinxuHHjTJ2+qsRfh6K3vvt1c+bMkdhfR1RdXZ1/Z5E6f81PnOHDh6fYk2iM/AAAgKCQ/AAAgKAw7YUuxZ/a0tNeSb3zzjumfNlll0kct0U+n8/Cof766y+Jb7jhBlMXdcr64MGDEz9fT6P4J7N379498XPQOW+88YbEY8aMkfjAgQOm3YgRIyResWKFqfv5558l9o+d0O+yvJx/p/9r7969Er///vul60iezjjjDFPu1atXSfrBbxQAAAgKyQ8AAAgKyQ8AAAgKa37+54ILLih1F4Kl1/nErbvRa3f0bex+XZxCXYuBaAsXLpR406ZNke2uvfZaiefOnRvZbuXKlaY8ZcoUiX/99VdTd/fdd0vsv2uuROicPXv2mPK9994rsV57dc0115h2ra2tEuvrLJxzbsGCBRI///zzkZ/9yy+/mPJzzz2XoMfZpI+I+PHHHyPbDR06tBjdEfr3w7+ORF9pcckll5g6fw1QsTDyAwAAgkLyAwAAgpL5aS99c3ScCRMmpNwT/CuX7ex6Osvfwp6PuJva/ak0JPP999+bsp4O8fXu3Vvip59+OrLdwYMHJb7xxhtNnd5K72toaJB49+7dpu6FF16I/Dkcnp7KGDVqlKnTU5pjx46V+NVXX038/HXr1nWid2F6/PHHJS4rK4tsp79rxaBPZdfHUThn+3ndddcVrU9xGPkBAABBIfkBAABBIfkBAABByfyaH3/eH6WRz3Z25wqzDifpZyM/a9euNWW9Lbmiwv6JmTdvnsTnnXde5DNvu+02if01PqNHj5b4s88+M3Vbt26VWN8YjvxMnTpV4ra2NlM3YMAAiRctWpToeXfccYcp+8cY4FD+EQP+e4jiX31xxRVXdLov+vvlX2Py+uuvS+x/7/UaPv94iqVLl0q8ePFiU1dfXy/xhRdemEePozHyAwAAgkLyAwAAgpL5aa845557rsRVVVUl7En2+NNLSaebkp7cHPd8Tm1O3zfffCPxQw89FNlu0KBBpnz11Vcftt2yZctMefny5ZHPvP/++yXWQ+3O2a3uyF1jY6MpL1myROKTTz7Z1D3zzDMSH3fccRL//vvvpl1zc7PELS0tkZ/tn/Ktlyz0798/utMZ509zffDBB5Ft9TvSt787F3+C9vr16yU+/fTTJX7rrbdMu23btkmsT2127tDprCj33HOPKcdt19deeeUVU9a/c/lg5AcAAASF5AcAAAQlk9Ne+rK3uKG4LVu2SKyH8Z1zrk+fPgXvV0j8U5zT/rlCSHo5Kpz7+OOPJfa/O5o/VB1lzZo1pqy/t/oiU+ecGzZsmMT+RZl62ktfAOmcc+3t7RJ37949Ub9C8/bbb0fW3X777aY8ZMgQifXp6/pyWeec+/LLLyOfqXf86Z1l+D9/SjiOnuqaPXu2qdPTVEmnmnyFeEYufvvtN4n9XZ9MewEAAOSA5AcAAASF5AcAAAQlk2t+9PyzXtfj0/P+rAEIk17nw5qfwisvj/731caNGyX21/xoDzzwQOQzW1tbI3/O33KtbyG/+OKLI38uZD179oysa2pqMmV9Wvcff/whsb82Qzv22GNN2T/RF4fSW8+dO3SLeT7Sfoa/Fu+ss86S+Ouvv458zvnnn2/qHnnkEYkL/d9oRn4AAEBQSH4AAEBQMjntlfSSvVGjRkk8cODAtLoTJD316Fz+W9j1VNSll1562P/dL+eyBdPvJ4pHnx773XffRbY788wzI+v0Jaq+k046yZSZ6joyfWqzc/YYg08++cTU6WlF/1gBTV9yuWHDBlOnL0fF4Y0ZM8aU58+fL/GVV15p6s4555zI5+jpJf+S0JqamkR90ctIJk6caOr27dsn8dlnn23q9Lb7CRMmmDp92e3DDz9s6k488cRE/coHIz8AACAoJD8AACAoJD8AACAomVzzo7e0xkl6nPqOHTtMuUePHhL76wrwX/6aHL22xr+RvRDbzZOuKWI7e3F9++23phy3JiEp/X2MuyUcuTvllFNM+cMPP5TY36Ksr624+eabJfbX/7z00ksSs+4qd4MHDzZlfdt9sT355JMS6zU+vq+++sqU9bUzn3/+uanr3bt3gXqXG0Z+AABAUEh+AABAUDI57VUIeuvt5MmTTd1dd90l8bhx44rWp6NZoU9SnjFjhin7U2lR6urqOv3ZSE6f0OrcoUP4STz66KOmvHTpUon17e/OOVdZWSnx3Llzc/4sRPOnxNauXSuxPuHZ/5t40003pdsxFE17e3uidqtWrTLlq666SuJjjjmmoH3KFyM/AAAgKCQ/AAAgKCQ/AAAgKEGv+VmyZInE/pUI48ePl1hvbXfOuUGDBqXbMRyRf0x+HL3Nnq3uhdGrVy+Ju3XrZuoOHDgg8bp160yd/v//zz//TPRZM2fOTNyvO++8U2L/GH3k7uDBgxJPnz7d1C1YsEBifRv3iy++mH7HUBT+2p3W1laJ464R8tf2dZV1PhojPwAAICgkPwAAICiZnPYaPXq0xJs3b45sp7fC+tti9TDdvHnzTF2fPn062UPkQ29nj9vaHnfjOwpj+PDhEjc3N5s6PfXka2trK2g/+vbta8pPPPFEQZ8futdee01iPc3lq6+vl/j4449PtU8oHn0ys0/fEu+cc9dff73Ep556alpdKhhGfgAAQFBIfgAAQFBIfgAAQFAyueZnypQpEi9atEjiXbt2JX6G3qo3cuTIwnQMOdNre5Le3K63tiN9+kZv5+z3zL/eIun2du2iiy4y5WnTpknsX53gb7tHbt577z1TnjRpUmRb/d7Hjh2bWp9QXHv27JF4586dke0qKmz6MHDgwNT6lAZGfgAAQFBIfgAAQFAyOe1VXV0t8S233CLxrFmzIn/G376+cOHCgvcLR+bf1p70dF+mukrH39r84IMPSqyPnXDOubq6Oom3bNki8bBhwyKf7/9O6NOl0Xm7d++W2H9f+/fvl7impsbUNTU1SVxezr+js2Lx4sUSb926NbLdgAEDTFl/748G/MYCAICgkPwAAICgkPwAAICgZHLNj6aP2v/hhx9MXWVlpcRDhgwxdVVVVel2DEJvZ0+6xkevHXGOKyy6qv79+5vyihUrStMRiL1795qy3qK8b98+Uzd06FCJ58yZY+p69uxZ+M6h5Hbs2JGo3YgRI1LuSboY+QEAAEEh+QEAAEHJ/LRXv379JG5paSldRxAp7oZ2TU9t+dufASTz8ssvm3LcKb76eBD/pG1kU9++fUvdhaJg5AcAAASF5AcAAASF5AcAAAQl82t+0PXptTxxW925wgLovIaGhsi6xsZGU/avtED26eNhdJw1jPwAAICgkPwAAICgMO2FktPTXh0dHaXrCBCApCf4AlnGyA8AAAgKyQ8AAAgKyQ8AAAgKyQ8AAAgKyQ8AAAhKzru9amtr0+gHSoB3mS28z+zgXWYH77JrYuQHAAAEpYxzVQAAQEgY+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEH5D4+frCe4lbkyAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 720x169.2 with 5 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Noisy images (noisy_test) :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE5/figs/AE5-03-original-noisy</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAByCAYAAAC89bCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAr/UlEQVR4nO2de/xVY/bHFzHjkkwzEgopl6mZSEUiKbdKJIUaanSTJpIxEZXRKCZTiZiKKffKfdzvRmQQuXYTpSuKIZeiKH5/zOzHZ33O2U/nfDvHz8v+vP9au3XOPvu797OfvXvWWp+12XfffWdCCCGEEFlh8//vAxBCCCGE+CHRy48QQgghMoVefoQQQgiRKfTyI4QQQohMoZcfIYQQQmSKLQr9YN++fVUW9iNg3Lhxm23qPnQtfxyU4lqa6Xr+WNC9+dNB1/KnRb7rqZUfIYQQQmSKgld+Em655RYzM/viiy/cv59yyinB/sUvfuF848aNK2jfY8aMcdt33nlnsJ9//vliDjOw2Wbfv/CxptF5550X7JEjRzrf9OnTg/2rX/3K+QYOHBjsBx54wPnWr18f7LVr1zpf5cqVCz1sx2abbWZ/+MMfKvTdGOPHjzez3PMyc+bMYDdu3Nj5zjnnnGCfddZZzvfII48Eu1+/fs5Xp06dYC9cuLDgY4xdv4rw1ltvuW28JjxuY9fr3HPPDfYVV1xR1DH07du3qM8XSnKf4Tkz8+eNfVOnTg12586dU/fN5573k8by5cvd9oIFC4L9zDPPBPviiy92n9t3332D/fTTTzsf348IjsnddtvN+c4///xgX3TRRc43fPjwYBczzkaNGmXvvvtuwZ8vlORazps3z/173bp1g3322Wc739ixY4O9dOlS5+Nzkcatt97qtrt06ZL62Z49ewZ70qRJwS5m/CF77bWX237nnXfy7sPMbNdddw32smXLUvcZY/Xq1W67cuXKZbk30+ZZJHZe+Hvz588P9j777FPwcVSrVi3YOMebmQ0ePDjYkydPDvbHH3/sPvfLX/4y2F27dnW+5N3ALD6OvvnmG+fbcsstg/3ggw8637HHHhvsKlWqON+SJUuCXbVqVed7+OGH8+4PKfrlZ/To0WZm9sc//tH9O77g8MXCFwucgMz8ZMj7nD17dupxHHzwwcF+9NFHnQ9P0pw5c1L3wb+HHHrooak+vMg4gZuZtWjRItj4omDmX+74hsWbuX79+s733Xffle2BaeYfgGZmv/vd71I/e+WVVwb7mmuucT58YeSJGYlNjvfcc0+qL8Z2220XbH4xTyYfMyvqJbJly5bBfvbZZ51vw4YNwX711Vedr2HDhqn7vOGGGwr+/WJJHpT8IhF7gcRzxS9/OMlWr1694H3GfDVr1gw23isM3puxlx1+MTrooIOCfcwxxzhf7D87uI0PXbPchzIyYMCAstybycsKv8S88cYbwcaXHeb111932/fff3+w+T8tH330UbD5ARPj+uuvDza+/Lz33nvuc8mDyKy4F8vHH3881YfzJ88nJ554YrDxP9BmZsOGDQs2v1hOnTq1LP/JbNCgwUY/s2bNGre9zTbbBJuvSYcOHYJ94403Ol+PHj2Czfczzs+777678+HLCj6L+N7D/9Djc9DM7Kmnngr23nvvbWnwC9VOO+0U7OOOO875cN79/PPPU/fJJPd+7OVHYS8hhBBCZAq9/AghhBAiU+jlRwghhBCZouicnyTWysnJMTDWjvbGwMRiBuOonEC7//77B7tevXqp+8AYIueaYFw8lozGOQexmPbEiROD3atXL+fDhK1Vq1al7qOUJMfKfx/Gdbt37576fU62w+RWPg+tWrUK9l133ZW6T47RYnwbeeWVV9w25/kgGMf/9ttvnW/WrFnB3m+//ZyvadOmwebr3L59+2Dfe++9qb+db+yUI6/A7Ps8pKFDh7p/520Ec6U+/fRT58P7ChOQzeLjnPMs0njuueeCzWPi66+/DjaPwa233jrYX331VUG/ZWZ26qmnBptzJXDML1682PkwsZJzJcpVjJDk+lx11VXu33/9618Hm8drocUBtWrVcts333xzsNu1a+d8nTp1Cjbm+JiZ9e/fP9iYJ8U5Uv/6179SjwXHQLNmzZzv6KOPDjZeczN/3f/617863wUXXJD6e5zojkyZMqUs+Vv//Oc/zSz3OPEaDRo0yPkwZyuW64K5r2a+MIiT1XHsYO6TmT8vOD7uu+8+97mf//znwf7973/vfDiOYs+wadOmue1GjRoF++2333a+WL5dDMwzS0MrP0IIIYTIFHr5EUIIIUSmKDrslYStsBTPzOzLL79M/c7hhx8ebC7DPeyww4LNpXOsI4Bg+XKhOkIMltquWLEi9XOl0Jcx86Eu1kHAZUIOlTRp0iRaPr2pFPP3NWnSJNgzZsxwPlymHjFihPNhOT2GWszMevfuHWxeWsdl99tvvz3YuFTKXH311W4bNYc239y/72PoIFaCzxS6PJ5vH+WSLfjtb3+b998xRB2Td2A6duwY7Fi4gMFSY2bUqFHBxnN/4YUXus9dfvnlwebrgmEm9uGyPOtsYaicy49Ro+rMM890vpiOz9KlS3PCGaXg/fffNzMfWjIrTg8GwXAWh/UQLIc28/ccg/MZljbzcWD4pXXr1s4XCxniuOVrgGENDnPh9eBx9f9BUjrOx8ISGQiOTw4voYzICy+8kLoPfsbgeeH7GcPOffr0CXZsTPHzGsNerLuDcKgupkGF453D8igBwPdFEkJVqbsQQgghxP/Qy48QQgghMoVefoQQQgiRKYrO+UnibJzj85e//CXYnNez4447BpvlslGivU2bNqm/y60iMBa5cuVK50O5bPwcy4RjTBT7i5jl9h9BML7Ipft/+9vfgn3yySc7H7ZE4DYH2FIiX7uAcuT8pOUPYGyVJdIR7pMVy33AnjAMnuutttrK+datWxdszD948cUX3edQUp9ba2BsPdZeIhbf5rGJcv4M9rmbMmVK6ufKBV9XbBOAOVtmuXlbCLZS4JYIFWXAgAEFfS4mpYH99JIy4oSdd9459XvYzmDRokXOh60wiunVha0ASskuu+xiZmafffaZ+/eK5h/Wrl27oM9xrgaOJS57xjwiPC7sk2bm2x6wZATmOt5xxx3Oh/3zeNyi/AHP/7E8n421ZSmHbEGlSpXMzPc3NPP5rpjjZualPB566CHnw3YksfHwxBNP5D2OfGCe3gknnJD6Oczffe2111I/FwNzg8zMhgwZEuxi8i6R008/3W2zDEQ+tPIjhBBCiEyhlx8hhBBCZIqiw1533323meUu5yf/no/bbrst2LiUbuaXrWOdwHnJFbuLs69GjRrBxu6/vOSK5dLr169P/W3mP//5T7B32GEH58OldS6zw+VEVj1Fxc18S3/lKI+uXLmymeWqI+Oyf2zZkTvfY5ksq5LiUi0v/+L5fPLJJ52PVV8TTjvtNLeNHci5BJOVTivCFVdc4baTsIRZcUu11apVs5NOOmmTjycfyXFwefJRRx2V194YMaXmPfbYI9gcQsKlcQ6joJI6hisw7Gtmtu222wYbl8XNfGkzh9gvvfTSYL/88svOh1IM22+/vfNxB3gEQ69YSm/2X9mGmCTHpvKzn/3MbceUlGMhHZwvWX0XrxHLJVQkzMbXK1ZujL/NaQIoRcJjjENdaWCXczM/rpiXXnopGhavKMl14d9GiRZWsMbnyODBg50PFeUxzcLM39+cGsDq5AhKkXC3AwTHB5eoF6owzuOjW7duwebOBwiX52N4Ne33Ys9NrfwIIYQQIlPo5UcIIYQQmUIvP0IIIYTIFEXn/CTddGM5Pgx2ceX8CO7wiqxevTrYHPPFPJ8zzjgjdR+YX8LS/p07d079HsIdoDFGyT7ORUH+/Oc/B3vPPfd0Psx9KlU7jY2R5PpgSamZz2/BWLCZ2QEHHBDsnj17Oh9eS4zXm3mZAS4Tx5wALGOOgTk+DOf44JjjnA3M54id97p166b6+HvYAf3NN990vo8++qhs7S2S4+B7DHMpOOcuVhKK5a9cJouyDcwll1wS7LScLTOfk9C2bVvnmzt3brC5dBlzflBig7cxl8zM5/8xeM4ee+wx52vVqlWw+VrHpCBKAeeCVKtWLdjcqiU2frELOpeU4z3O+UA4Xp599lnna968ebAx74nzIDn3BMGxyTlm+PdUr1491ReD2+XgXIP5U2b/ndvKkfOTHCu2UDHzsh48X2IHdrTN/HzNXdCxNQvnT+I54zkCO7njc5HzZFGaBvM4zXyeJ/tw3PI9g8++li1bWhrciZ63kQULFqT6ErTyI4QQQohMoZcfIYQQQmSKosNeyfImhxYwlIHKlWZ+Sa+YsFdSim2WWzp9/PHHB7vQJVD+bSw9x2V2BsNcTCzMxeAyHYYGzNI7cpvlhtZKDZdxI3PmzHHbWJLMoTtcZl26dKnzYVkkh8twiZRLe7/++utg4/X78MMP3edQRZzBEmdUOzYrfOxwZ2VWKUVmzpyZ6rvuuusK+r1NIbZ0zGGuQstTWTn52muvDTaHibBUlu85VG6eNWtWsFkd/E9/+lNBxxUbZxx+iZWs429weDz2+8uWLStLGDM5b7EwG4eocGxhObSZ74LOEhUY1sPwB8MhaQx74T3NociDDjoo2GvXrnU+DKtxWAhV4YtJBcC5FVMNzHLnjR+SWAcDDi/FQIkWVII2M1u+fHmw+ZmyYsWKYOdTt85n83yM42Px4sWpx4jSCma+JB/TWcziHeA/+OCDYMfU2xl+NuVDKz9CCCGEyBR6+RFCCCFEptDLjxBCCCEyRdE5P9zNPQFjvhznx87EHGvE+B93UscO8Jzzg3C539577516LAh28OXYJlKq0vNvv/022Nttt53z4Xng3+vWrZu99NJLJTkGJJEI4BycAw88MNjcOoQ7NiNHHnlkQb8baweBZcz5PpvAeRkIdyXmzt+F7N/Ml5TGcnyY2Fjq169fzvkuFckxcuuUGHgeY9cFcwnMzOrVqxfsWL5cLLcA4WsWG++jRo0KNss0nH/++cHGvCQzn7vHOTFLliwJNneUx2M75JBDnK/QLvXFkrRl4PN17LHHBptzcHr37h1sbDFi5scE+wrN+6pZs2aqb5tttgk25tiZ+XYzPFaw9VHr1q2dD3OarrnmGuc766yzUo+F83wK5eOPP67Q9yrKiBEjgs1yDrGydPTtv//+znfEEUcE++9//7vzYXd4noNwnygHgOPNzKx27dqpx4x5e3wNMN+J876wzQfnRGKO6cEHH5z6e5xjdM4555iZf8YzWvkRQgghRKbQy48QQgghMkXRYa+GDRuamdmjjz7q/h07xsaWTnkJD8ucsbTdzKxJkyYFHROGufg3UFmSVSdHjx6dus/zzjsv1YeKqNyNOsZVV10VbO6kjrCacK1atVwX7VKRqC6zEiiW07I6K342FubikMPkyZODzePj008/DTb/ndjlt3///sGuX7+++xyWunNX4lhoC+FwVWx8dOrUKdjcRR2XY3lpeN26dWVTeE7K8VmlduTIkcHmsAPKHMQkD7CLvZnZ+++/H2zu2o3XvtCO9zfddJPbxuX2QYMGOR+eXw47YUktd7xO5i6z3BJ5LNdnBVpUip4+fbrzlSvslYT2atSo4f4dy7gvu+wy58PzxPcfjoEYfL0wPMgKzxgSx7Ba06ZN3ecwZIXSFWb+/sC52syPFQzFm/mwFx8zqtAXky6www47RMMkpQb/dpRhMPNl3XzPbL/99sHmLuio5M3PGH6+poEhbQwxm3kVbkxLYWLhbr6WMfkPlMLhc4TXGeUUzL5/VqiruxBCCCHE/9DLjxBCCCEyhV5+hBBCCJEpis75mTdvnpnltrfAuB2WPZr5XAouSWMJemSvvfYKNkqpm5ldfPHFwebck7QywVgckmObKK/PYGz9qKOOcj4s8eMYNsq+c7kfxiaxJDHt+EpBkhuzcOFC9+/YEZfl05944olgY8zVzEsOJGX0+bZ5n40bNw42X6PXX3892CjXzp2Ok3GZD/Tx9apTp06wn3nmmdR93H///W4b83yGDh3qfKecckrqfspJ0lYDO2ybmb3wwgsFfZ9zZLCrO+b4mPm8qg4dOjgf5utwGwm857Bs/NZbb009Lm590a5du2Cz5D3eRxdddJHzYT4H30/Y4oFJymbNcnMB33zzzdTvbQqJ5D+3wYnNZ5hDUmiOT779pIEthfhY8Hxu2LDBfQ7zIjmnBlsk8DyO5z2WixM7fs4FwRxGlsD47rvvypKPl7QWOeaYY3J+L4FL97Gtw/PPP+98KPvC+ZoDBw4M9owZM5wPy+AZzNnCHNpYTlssn+/6669P/V7sHHNeGT73ORcP85sqglZ+hBBCCJEp9PIjhBBCiExRdNgrIbZMPXbsWLeN5Y28VIVLgdh52MyXcvKSF8LLnrjMij5edkRiYS4ul8SwDXYeNjPbaaedgv3qq6+m7pOX93CZcNKkSc7HYalSkRZKwyXQ9957z/kwTLls2TLnwzAYK3zi8j2GuRguxcZwGYZzuLw8BobIeByhmi+rpaKi7fz581P3z+cRw2BYxm9mVqlSpY0dboVp27atmeVKRHDILg2UEjDz9zgqu5rlShIguBy+zz77OB+q6D733HOp+0AFWgy/mfnxwwrkuEyOZbJmZk899VSwWYUYYYVnVMHu2LGj83EZfqlIriGHLnA+Gz9+vPNheDAWkkCleTMfGnr55ZedD1WjuXwe56zu3bvn+Sv+C0qDMHhc2K3czF8H7vyN15K7hGN5PksFIKwqzuelVCTjnJ8/s2bNCjaHytesWRNsVjbGUCGHRdEXC79jCoaZv/djz1qEQ1s45ljiA/fJzxSE01sQHn84J+E4NcvtFJAPrfwIIYQQIlPo5UcIIYQQmUIvP0IIIYTIFEXn/CSd17kVwCOPPBJsbolw9tlnB3vrrbd2PszzKaZz7x133BHs2bNnOx9K5cdKQ1GyH7sLm/m8ApQTN/Ox2sMOO8z5Yh2FMQ7K5bsIl5TusMMOZSnB5Jh3AsZPuY3JhAkTgs0l1bF9x0r18RxynBpL3bE0db/99nOfww7XW221lfNheTufd8zz4TwJzIXYdtttU4+f26bE2mlwS4JSkuThFJrjw3BZOpaKcxdolGpo1qyZ8yVtNsxy21YUCpbSDxkyxPkwh5DlFk477bTUfaJUAucEYHue6tWrO99xxx0XbO6kftlll5Xl3kxyfbh1D8pJ8DjHNiOx8m/uXo55PrFO8U8//bTzvfPOO8HGnJ8bb7zRfa5bt27B7tOnj/O99dZbweYcydh9hPloKM3BcHk35vFhV3Wz/85n5WhvkXbPY4sefH6a+fmGc4Xwmcm5o5gvyvl2mLfI8hwoHYNgDpGZz/Xj69W5c+dg8zyLzwO+nzFv7pZbbnG+RL7DzLeHMvPzTEXQyo8QQgghMoVefoQQQgiRKYoOe2255ZZmlhvead26dbBjZY+8RDxu3Lhg8/Iehko++eQT58MS6JNPPtn5eHk2gbulo/IthrLM/BIbq7/iMjgvLw8bNizYrEL87rvvBpvL11FpGJeTzeIq2KUgVhaL15W3Wa0brwmqs5r5Tr58HbA0e8qUKanHiWHDxx9/3Pn23HPPYLds2dL50hS/zXy3eQzPmuUusyIYYsCle/49Xsbt2rVr2bq6J+HmWNiBiYWFkxC3mdmKFSucD5WNeck81h1+1113DTZKJfC9v2rVqrzHaObVprmkFhWfWUUdO7JjOTTDoVfcRhkIM7PDDz88dT+lAMNcZl46gefZHj16BBvnKDPfmZ47q//mN78JNqpzm3mlYSZNYRevMYNdwc38uY0prMfU+ZcvX+58KAFw9913O99dd90VbA4ZlUvhOTlWnksx1MXjCJWbOSSGcx9LrWCndQ5vYtiXzyfOmSj7gmkHDF9LniMQTFnAZ6SZ2bnnnhvsfffd1/lwDuZ3DtwPjm+zeMf5BK38CCGEECJT6OVHCCGEEJmiwgrPrBCJxJZKMfTD8FI0NlVj9d1Y1QyHPRI4pIJhL8xUN/PLxldffbXz4fI5gxUyvPTMlRRpcAiuadOmBX2vovDyaKFwaAuXrXkJG5d1K1eu7HzcUBPBiisML3EoBCvkWL03VjW4fv36YHOYC5eJuaIQwwMnnXSS82Hzy0KbRpYSHne77bZbsJcuXep8sZAg+jBsaeZVz2PfGz58uPM1bNgw7zHzEjqGr1CxnX0xMHTG8Hyybt26YHMFGd5/H374YUG/vakkzSxZ3ReVjnlsoeJurLHkP/7xD7eNYxura8z83HfooYc6H1bbYPUtNyjFakiea2JhV2xszeBneexgxRY3WcVr+UPdm8nv8H2Cz4oqVao433bbbZfz/XzEGvLyPIghVFbnR3VrvLdxDmRY3Rz/Bn6edurUKdhcCYxjjCvBMMTHSuGo7M3PlEKurVZ+hBBCCJEp9PIjhBBCiEyhlx8hhBBCZIqic35uuOEGM4uXszPYefnMM89M/RyWvJn5Dtgcu0W4FBBjiBj7a9Gihfsc5hKwSm8sZoiKtpyvgiV2WA69MWKx73KR5LhwvJTVfAsFlZo5HozyA3ydMQ+EO/dinhaqBbNSLI4rLrWOKd/ieecyyzlz5gSb1cdROZZLfrn0Fvn8889TfZtKIj3AuVgc30cwryJ2btiHnc4ZzDnC3AUzs3nz5uXdP4PXuhglV+wUz2XLWG6LZfzFwLkM9erVy5lXSgHn+iSgGnMs14oVdlHlnNXKURKA851QRZqlAzA3cfTo0cFmFX9UyOc5EaUguDs7S36kwTl3COf7oazGDw3Kupj58cn3F+YNxvLtOL8PJShWrlzpfDjmOZcH1d1RzmGLLfwrAl5L7s6OitI8fjHPh3NvMc+HxyZ+lqVj8LP8DCsErfwIIYQQIlPo5UcIIYQQmaLosFdauAuXYFlx+fbbb0/dHzao69Kli/PFQl1ImzZt3DaqxcaW1rEBJJcaFhqGOv/88902luNxiAOXBXn5HJeUuRy0ELXKitC/f38z+76sNgGXvnGZfWPgtUz2nYBlnbx8ieXX3AAVQxWoPMrlrbiMy2W+eC1joQIuoUbFZ242u8022wSbJRrat29vaXC5ZilJwl2xv5HLv3G5O/Y9DlWOGTMm2O3atXM+vP9Q9dvMl9tiuTmrw2KDUg6Vo1wGN07FkDRKWZjFJTgqyty5c8uiCjxw4EAzM7v88svdv+O9GQtTclgSy555DOB+eCzjuOewDUpDYPk8h5ZQfZ1lQjB0werS06ZNszRw7mYFfGyszeMWxwSH+GLh6lLATVNxm+dLPLeoSm3mrwPLp6BaN8/d2Iycla87duwYbE4jQVBhHL9j5qVI+vXr53y4zfMMStOwgjrCSvKo+PzFF1+kfi8NrfwIIYQQIlPo5UcIIYQQmUIvP0IIIYTIFBVub8Fxu4kTJwabWwFgHI+712LcrmbNms6HZbjc0XXChAnBTjrN5wPj/Jw7gF12uZQZu67HciEYluJHYu0ZrrvuumDvsssuzte2bdvUfZaCRo0aue1YOe3mm3//vswxX4yvc3wbcz+WLFnifHjusZ2FmS+NxVg3l5fHcrsQzD8w813Be/fu7XyxFi4Iyx1gzg/nu/Xp0yfn3JSa2Pjk9gx8r6YR69jM9zTnR6Wx++67B/vSSy91PiyNvfnmm53vscceCza2VTAzmzx5crBfe+0158Mx8uWXXzofl2cjOF55jMTyIzaFRMoBS9TNclvfIJjDwnIPuB27V7htEF5LloLAXCe8RpivZeZzQLHVipnZjTfeGGzO8YnlXeJxcZdw7HQ+duxY54u1PImNgU0hmd9YEgHHMef8IHzPYm5lMbIo+Iw+/fTTnQ/3g3Mr7x/zQ++5557U3+LnIOZhcS7s119/HezYsxZzlphXXnnFbfMzLR9a+RFCCCFEptDLjxBCCCEyRdFhr6TElZfDnnzyyWCzQvAnn3wSbAwzmMW7vCOTJk0q6jgTsHy5Ro0azhcrbeRlceTVV18Ndp06dZwPFTAZ/L1dd93V+VCpE8uozfwyZylJQkq1a9d2/47lkthV18zstttuCzZfk27dugUbS9TNcssUkVjX9caNGwf7iSeeCDYvgdatWzfYqCJs5pf8eTkW//annnoq9Th4POA1YqkApFq1am571qxZOSXDpaJr165m5pW2zcx69eoVbFSHNfPyCzFYlTUmbbFo0aJgc+k0gmX2HNpFmYs33njD+bBEnsM0vJyP4JzVvHlz5+vQoUOwWSEbVapZ1Xbu3Lmpv7cp7LHHHmaWK/9Rv379YGPZsZm/tigpYOavM48/vFc5jIhg528+Ngw3MklXgHzgnMHEQjoxH4YmedzGrlcsjLMpJPMbh5hRxgBlPMz8XMTSJzjfjBw50vlQGXrdunXOh/PAjBkzUo8X7wV+9hSqto7PCbPCw3P8OQxnsXQFwmGuREoGQ6CMVn6EEEIIkSn08iOEEEKITKGXHyGEEEJkiqJzftK6OWNs9cgjj3Q+jLtxfkesnBHLqjnejOXCWPZuZrbTTjsFG0t0OV6PnbmxG7RZPOcH203EcnwYzPPh8kWE99m1a9dovLOisJx8Ap5bzk3q1KlT6v6wbBVtM3+N9ttvP+fDMcB5DFheiyXHXLKatAMwyy2zT3JhzHKl8GPXGeE8LMw74ZJqhMvA27RpE/I5Sg12yE7jxBNPLHh/WMo8fvx458Ny2L333tv5sF1JrKwa8/Eeeugh58MYPssTYG4G569gjgLnHmILm2effdb5ME/ks88+cz7skF6oNECp4LJx3k6DrwnKgfD9UahMBIPzNeb8xPI7rr32WrfN7U9KAbbaKKYU/Pjjj4/eyxUlmTt4HOMzAHO5zLykAT6nGMzxYTCnjuFxhHl6eG9zjk/16tWDzfIXV199dbBjeZzFgPMA5nWa5eZ2Ikm7o/fffz/1M1r5EUIIIUSm0MuPEEIIITJFhRWeedkYO2mzWjKGm3AJ2cyHKzgMg9vvvPOO8+EyPIe9sDwOl1V5CXTlypXBZnXpSpUqpX4Pl0Zr1arlfPjZjz76yPlQlZTLowvtIl9KkhJK7kwfkxXgjuwIhg64tD2muInLlxzyw1AXKinjuDHzpcscoim0tPzNN99021jCjercZmYXXHBBsPlvxc7V3KX4kUceKUsXcLPvwxkzZ850/46K3axiGxt3eN5Y7RrDjiwfkBYaN/PdqnHOQLVbMy8RsH79eufDrvEYOjPL7RqeBis1Y6hkiy38tIjjiUuLOVxeKpIQJocd8BqxNAPOYSxhgCq6rLCbtn+Gw2Np4bI1a9a4bezczmEu3EeDBg2cD+dZPH6zuNov/g3c9RwlRZgdd9wx1bcpJKF1TrtAWMkbQ8esio3hbQzpMzG15GbNmjkfzp/4bMcwl5m/N7jrAt7PCxYscD4srY+lcHBZ//Dhw4PN8yz+fVxan3Stb9q0aepvaeVHCCGEEJlCLz9CCCGEyBR6+RFCCCFEpqhwzg930sUY5fz5850PO+vG4pBNmjRxPiwF5DwC7PaNndvNcvMAEjiuyrkRCP5e0tIjAcucOUaO7SA4LwVj2Fwyy3kNyNChQ1N9m0JSsh/L8eHrhaXonJ+DUvWcQxXLJYjlEeHv47nl/Q0aNCjYzzzzTOo++HsYK2Yf5vksXrzY+WIl/yjLwDkozZs3L1tXd851SsD4PueoxK4Ltks48MADnS9WHo3tEq688krnw+7VN910U7A5twX337JlS+fD68s5HZjHxy0ekHbt2rntk046KdjcsgZLeJlydQJPJCYGDBjg/v2LL74IdqwEOgaW/Jv5McA5TYMHD07dD+Y74jXCHB+GWy7gb2MbESaW4xODc3ywbQrmdf4QcHslBFvwbIxYng8SK9vnZ0qPHj3yfo6frXhfYnm8mW/7hPeTmc/z4bwebHF1wAEHOB8/e5GkhYVZ7vM0+dtj+ZVa+RFCCCFEptDLjxBCCCEyRYXDXtjF3Sx3KQs5++yz89pmZueee26wucM7l4qngYrOZn4pFZfp2rdv7z6HXcJZ8ZI7O6eBpbtmflk/pv6cKFDmo2rVqm572rRpOcqopaB79+5mltt1GUMHDJYwcvk6lqxjZ2Azv5yJpddmXvGZQw7I0UcfneqraAdoXDplUI7g4IMPTv0cLy9jWPTQQw/NOZZylbonY5ZDTRjqwnCxmS8bZ/VrVKJmBWY8p6eccorzYTiLO7KjYjfem6z6jZIYOEeY+RAIL71jmDEWSmMFZCxD5lJt3Gal70aNGkXDxhWlRYsWZpZ7b8ZCQ48++miwWUrjkksuSf0eKunz/YDzFM/dKCmCoUEMf5j5dIPYc4I7sMeIhV3x93lsYniuUAmMUnHHHXe4bRzznCaA4Z4hQ4ZU6PdYOgDvo0MOOcT5cBvnfy51R26++eZUH19LfNZOnDjR+W6//fbU/SCc+oLniEvaMTychlZ+hBBCCJEp9PIjhBBCiEyhlx8hhBBCZIoK5/xwHgXG32Ly9gyW+KV1GTcz22uvvdw2trvgODx3lU8488wz3Tb+DVjWa+bl/Lkzd5cuXYKNHabNfLk3l0NjuTSXFqI0OOcQHH744dHS6orC+QQJmA/B1xml1rGTs5mX2+fzEivXx7wQ7sKLZdNYtlq5cmX3ubvuuivYXGrbpk2bYHPrFSx35TwJjk0jmN+EOT5mvlUDd3KO5TRtKpzrk4CtHO69917nQzkJlKQw8+M8BreeQQkJbp2CuSeY48ed7i+88MJgYysRhr+H28uXL3e+iraNwXJ2lvQfP358dN7aVLjbN+ZZsKTH3Llzg835HjFwHsD5y8zfZ+zj7QTObcE8H8yJNPM5k7HWEwyOK2x7Y+bvR+78HZMtKDfY3sgs3nW9HHmBxZTTJ8SkaWJ5V6eeeqrbvvXWW4PNkjMIz8/YHf7OO+90vtGjRwe7kBwfRis/QgghhMgUevkRQgghRKYoOuyVlFO2bt3a/TuGuh5++GHna9u2bbA59ISKwVwGieEmLJE188unSdfcBCylvv/++4PNJdzTpk0LdlJamoCqw9ztG2E1YSz/5DL4qVOnBhvDXAyXiS9atMgWLlyY+vmKkoRDrrvuOvfvn332Wep3UMmblz2x83KsbJW/h6WO9erVc74TTzwx2LjsyV3AW7VqFWwucUbJAVxGNfPjCLslM1zqziGytGPhvzUt1FgKknJSXlbGbsgc2sLl6KQTcgKGfrlLMy5/s3RBmiq3mdnTTz8d7GXLlgUbu6qb5Za3Fwr+9ooVK5wPVWa5NBbDtHz/ffXVV8Fu2LCh8y1durRs0gVmuSEkDLFxl3AMFXKYGf8mns/ws6x8fd999xV1vGZmJ5xwgtvGuauY0BbKMPAzBX0cWo4pusckK1g2odQUE+bCEDY/mzB0x2H0f//738FOVMITsJye0wbSzhnLX2AYkc8t/g2sNo/zDINpHjw/Y6k9PlvNvEQDE5NrCd/f6CeEEEIIIX5C6OVHCCGEEJlCLz9CCCGEyBRF5/wkuT4ck8cyOu4EGyuPwzJSjK2bmQ0fPjzYXDKLHeA554c7wyawVDfmmnBcFVspYBzVzMdjuQ1G48aNg80xUYynY6dtM1+qx3kvAwYMKEsn8KQckWP02LqE8wMwT4r/vlg7iFj3dITHB8ecE7i8GvNsWHZ9woQJwebYM/49nPuEpbyxHB8et3j+OFdr1apVObIKpSIZs3x+MdbPvsMOOyzYsdL2ipa88jjH/COUqOByds7XKRRsNTJq1Cjnw47lnBOD21iqb+bPH7du2HnnnXPun1ISGys8XvGei41XlpOoW7dusPnewWvLLXlWr14dbMyXOeigg9znMDcpTYbELLflyNtvvx1sbqeEeW0HHnig8+HYjD2n+FpyPlepWLJkiZnlSsBgnhnmUpr5Fi44R22MI444Ith8r6OsR762O/lgyRKUaBk8eLDzYbsQfD6b+XmX55mePXvm/ZxZYbk7Zr4djpnPf0tDKz9CCCGEyBR6+RFCCCFEpqiwwjOXviKssItLp6yai0te3IG30G62rPBcKNylGHnxxReDzeXsGOricFwspINl97wsiMvbrPBcrk7gyRJwrJyVlyhjJYuzZs0KNoe9sFs0hsDMvNwBqxTj0ir+dr9+/dznsEQSy2DNfAkmhzdjnZ1RqoBDWximwdCtmS/n5VDB7Nmzy9IF3Oz78lL+TQzL7L777s6XLMmbxUNbPK5xmZmXmAtVUsZwNV9PlB3gMYjHyaEEDHFyOBwZMWKE28bzEJMj4I7vH3zwQVnuzUQ+gNWjUU5i1apVzodK3gyes/POO8/5UA06NgYeeOAB50srW+frj+HHAQMGpB4X/z0Ydh40aJDz4fOHy71xPmNVYwxpcnpEgwYNciQQSkFyz8XkSh588MGS/Fas/Btp376920aldyyD55J4fC5iiodZXGKA53wEQ3DTp093PlSk52NGeA7CLvJpaOVHCCGEEJlCLz9CCCGEyBR6+RFCCCFEpqhwzg/mrzD77LOP28b4H5dZItwSAeXvWao7BsZWMV8H5e3NfN5Nr169UveH5bl8LFzmuuWWWwb7m2++Sd3njBkzUn0/FEnHaD5OjL3H8lP4OmNp6hlnnOF8sXjw7Nmzg835KphfhbkfnAeCpaIshb9hw4Zgc+7O/Pnzg81xYmx98cknnzgfdh/m7todO3YMNpfPcky7lCQ5DNymA7tcc04HdlbnDuLYNZk7UsdKSdevXx/sLbZIn2Kw1QbnCWIeGIPjh9ucjBkzJtixDtGcDxTLJ8P9sLQF/l4pSa7l4sWL3b9jfhl3rceSfD7OWB5Wy5Ytg12lShXnw9woLG0389Idsf1zDl7acfHYxLJ4LoPfZZddgs3PFJxbUcqBv9emTRvnW7t2bepxloI33njDbePfi1IdZmbdu3cPNs6PZmbDhg2r0O/jb7AEwI477hhszJvr06eP+1zsOsfkFfA64Pxg5vONqlat6nycB4bEnilJjmmnTp1Sv6+VHyGEEEJkis0Krczo27dvYR8UZWXcuHHpinIFomv546AU19JM1/PHgu7Nnw66lj8t8l1PrfwIIYQQIlMUvPIjhBBCCPFTQCs/QgghhMgUevkRQgghRKbQy48QQgghMoVefoQQQgiRKfTyI4QQQohMoZcfIYQQQmQKvfwIIYQQIlPo5UcIIYQQmUIvP0IIIYTIFP8HhmBzvns3A5QAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 720x169.2 with 5 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Evolution during the training period (denoised_test) :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE5/figs/AE5-04-learning</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAOiCAYAAACfI7YeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAADYS0lEQVR4nOy9Z6BV1bX+PY29gPQmAkqVIoKiggVsEWvUaKLeJJYUDZpEo/HqNflHk2tuTK4xRiVqLDG2GLvGXrAiFhQFEaWIKL0Xe3s/3HdPn/F41mDtffY+Z50zn9+nsRnrrL32bGsyR1vniy++CEIIIYQQqfC1xn4AIYQQQoiGRJsfIYQQQiSFNj9CCCGESAptfoQQQgiRFNr8CCGEECIp1st74ZgxYxQWVgDGjh27Tn3vob4sBtXoyxDUn0VBc7P5oL5sXtTVnzr5EUIIIURS5D75KTF27NgQQgicHwg/r7OO3WTxZ+Tzzz+vUw4hhPXWWy9T97Wv5du3ffLJJ5nP4d0fr/Wev6EYM2ZM1e9Z6suGAMcHt/W6666b6x78d0je8VAEatGXITRef3q5wspZCxDsa69vizBvm/rcRMpZ17Ouq3Qucl969/Se5bPPPsvU4d/V9ZwN2Zf4nOX8Po+888bDW6vx8/rrr1/R/b3+qVY7lPD6s+zNT7VZ22DMIm8n44vV60gPXhCKsBlqanht9tFHH0WZN0K4QfX6uZwXcCV4L4WmtPGqFnk3GbzQZb1MuQ3ztmmlbc/PhZ832GCDiu7ZVPHmTt72rcYcq9Y8ynufxl7X8/6nz8PrOx7j+L7zfjuuufyM3vs075pQjd9dDdJbtYUQQgiRNNr8CCGEECIptPkRQgghRFJU7PPDNj3PAdKz/+W1E7Iur78O2n+9Z67Un8SD/w6fuSh2z4YC28KzI1fKxx9/HOUNN9ywonuU08+p+319+umnUUYfAcbrWy/YIa9zLePN96zrxJdUOq7zOkbjuOFrPef4cnzu8v4G757VpHTfWqwZ/MzYFt77x/MHwiChcnzxPB++Ir7vtAIIIYQQIim0+RFCCCFEUjR6qHteyjkSzXu86N3DI+8Rr/iSSk1+WUew3O54T+84u5x+zmtCSRFsbz5CryR9BfYz37Oc/E5oguM8JHnHj6gbz4zi/TuauvgeaK5mkxj2F5tWsW85NYG3FuQ1pVWT0ljmMYbP4o3xckzAWearEGxbf/jhh0b3/vvvRxlTj/B3Y7tvuummRof9wH2Cf+e9yxvSHK2THyGEEEIkhTY/QgghhEgKbX6EEEIIkRRV8/mphk8E2z29kDvES1Xv+Q7gZ7Y3o41yo402Mjq0Z3q+AvIr+JK8vx3t0iFk9xH3F/7dypUrjQ77ksPgsW+5nxUOnY0Xoow+A9yG2J+rV6+OMvfZBx98UOf9QvD9Dlq0aBHlzTbbzOiwf5tC+v2i4fmloO8J99d7770X5TVr1hjdihUrMnXYD9zPm2++eZ0yX+v5hHmpT6pJ6Rmqkb4hBP+9hW2N8yuEEJYtWxblpUuXGh1+xrnHayLOr4033tjo2rRpE+X27dsbXcuWLaPM/lv4+7zyRtVGq7sQQgghkkKbHyGEEEIkRYObvfh4zzNL4fGbdxTNphIM48NjwFWrVpnrUIffFYI9wuvSpYvRtW3bNsp8LKiQ6LXD/YzHnhwiidfOnz8/yrNnzzbXLVmyJMrcl3g8y0fkrVu3rlMOwT/ixePYWh7NNgV4zGNbcV8vXLgwytOmTYvy9OnTzXXLly+PMs9vNGvw8TrO1S222MLo2rVrF2U2iXFYfEp4aSg8c0yWqWvRokXmugULFkT5rbfeMjqct2gC42dp1aqV0XXs2DHKXbt2NboOHTpEGfs8hBA22WSTKHOf12rtzmM+L8ckhm3NpkKcN3PmzDE6nG/cD9hneH80V4Vg34tsisS517t3b6Pr1q1blHkNRlcEL/1AteeoTn6EEEIIkRTa/AghhBAiKbT5EUIIIURSNLizgpf6nMP2PH8g1HFoJabqXrx4cZRnzZplrkObKIfa9uzZM8psh0S7MYdOy+enbrBvvTZif52pU6dG+bnnnosy26zRL4T9A9Dmzv2FNu1OnToZ3ZZbbhll9vvC70jR5wfbm/1EcK7OmzfP6CZMmBDlZ555Jspvv/22uQ7HC863EKztH/2yQrB9iHM4hBD69u0b5R49ehgd+jKkFuqed83iNRjHAPruvP766+Y6/Mx+KOjnw6HZOG/ZTwT9ubiMA/4djx30KWwon588eL4unMoF/XrYvwp9IadMmWJ0EydOjPI777xjdPjOxPZjnx/sB9bhGEB/Wv7cvXt3o0O/LPYjQuTzI4QQQghRD7T5EUIIIURSNPh5vVeFlo/3vMrReCzuZW7G47y5c+ea69CkguYxfk40f4Rgw/byhoKGkLZJzDMN4ZHopEmTjO62226L8mOPPRZlbks0cbAOTWlczRiPUjt37mx0eKzPx+dsbkkNNB+w2QGP1J966imju+OOO6L8wgsvRJlNTTjH+Hgd5zRmrQ3BmgE4tQXiZW3nlAfNHS8U26s8jnMJ109OW/Dyyy9HmdMWeOlGcEywSwSmU+C/Q7yM8Uyt1ufSs3troPcO4zULTYWYOiIEO6deffVVo5s8eXKU2cSI5iZc2/i5vDD7vG3L5isvy34tU1Do5EcIIYQQSaHNjxBCCCGSQpsfIYQQQiRF1Xx+0L/FC9tjHdp1vQq8bNdFuySHuqMPAobRcbgk+iagH0EI1q7Kf4d2SbZFe35KTSUk2rPdYh9xX2JbsK0W24L9Ox566KEoX3311UaHfj7YR3vvvbe5btCgQVHeeuutjQ5/z2uvvWZ06J/A/TNz5swob7PNNkaH45F9UhqLUht7VaC9MO5y+hPnGJcluPfee6N88803Gx2GtyOjR482n0eMGBFlTjOAob4csouh9Rxmj/3EpS/Q3ys1Xz2vSjjC6+ybb74ZZZynL730krkO/bKwNFAItq05RQWOOV5L0QcP0xSEYOcxj/c8pSaqTal9vbI+DPr5sG8N+q6ij08Idn7xWoc+cBxujp+xZAz7v2GqEH5n4jOzLx6us5xuBPuP37XYf+WklfHeYSV08iOEEEKIpNDmRwghhBBJ0eBV3fk6z4ziVXTFv+PwODxGQ/MEZ53EY1yuJo5HsGzWwGvLORL3TD9FotJjfu8YF9sazUkhhHDPPfdE+fHHHzc6PFrt06dPlIcPH26uGzZsWJT5qBbbnUM8MTSanx/bgU1iHPpeBErPy/1XC7MN9suLL75odPfff3+UX3nlFaPDo+t+/fpFebfddjPXYX+yqQSP1PkoHDO1L1261Oiw7zkEujHMIU0BXD85VQiaMlDHpjN0UWDTFo5NXhM322yzOuUQQujVq1eUuao7jhde1xtj3S19ZzmV27EN+b2F459D3d99990os7kM25AznKPbAJqZ+d2H7YffFYIdA2wKx9/OazD+PjatYv9V2xytGS+EEEKIpNDmRwghhBBJoc2PEEIIIZKibJ+fkt3Ns7d5Ora5emHwXogu2uz5+9BOiHZPtlGifwDblNGng+3G+JxeSB37iXilMBqDrL7Ez94zl+O/hf3FJSyef/75KLOdervttovyIYccEuWDDz7YXIc+AOzPgf3M1eDxOb20BewTUsu065WSNe+8fsG/8eYth7ViGDmXsHjyySejzP4KO+20U5QPOOCAKO+7777mOvRJ4PIZWNpgwYIFRoe/j8cS+q/wb2XfoZTANYzXM2xDTh2A6yn2M1fmRp8fXmdxjeQ5hb6bnJqgf//+UebyQzg++L3h+fzkCY+uhNL8K8dnBZ+F07ygzw+Pf/Sn4d/aoUOHKG+11VZG17t37yijzw/706L/JL/f8Ll4vcDfyn49uF5zH+B3lJMqII8/kE5+hBBCCJEU2vwIIYQQIikqDnUv5wgvr87L/szgMatXERczwGJG0hCsOaRjx45G16lTpyhzBW98ruaQ/bUcUwi2rXfsyCYHrOzM4ex4fM7Zmffff/8o77XXXlHmY3B8Tg5Dnz17dp1yCDY8k7OeYsg8HqWHUOxUBeXMTbzW62vMqhyCNVVyltms9AQh2EzOaOrifsf2ZbOXl0kWP3M1bDxCZ1N2c5jHlYJjgE3G2JeswzbEucL9hdfxvMHM2phZOAS7BvN8x7nKGZ5xXeJ+bcx566Vy4bUUP3N2a+wTDhtH8y2bEbF9uc3QHIn34OfCMcD9jO9TnpfYD/y+xt/HvxXhv/PWrjzo5EcIIYQQSaHNjxBCCCGSQpsfIYQQQiRFocqMl2O3Q3sm2x6xeu2MGTPqlEOw9lKu2o2hlGyLxu/2QsFZh8/JPgeNSTnV5z2fH/x9ixcvNrrx48dHGf1FQrB2ZO6HIUOGRBnT2HNYOvoYcfgnVpweN26c0c2aNSvKWG4hBBtuzSUzihzqzrZxz4fLG7/oMzNnzhyje+ihh6L8+uuvGx36EwwdOtTott122yhzWQIE5zD/nvnz50f5jTfeMDr0H+NxjH5b3H9eNfPmDo4J9pPy0gNk+Ymwvwf6Z6IfTwjW1wtLLIRgQ655/qEfZpH970LI917zruH1GddZfvfhfOYwdewvfv/gHMMxwN+N85LXcawiz6VQcL5x+gtcu9mHyStxgvO7kpI+OvkRQgghRFJo8yOEEEKIpCiU2YvxqqB7mR+xUvfUqVOjjGHv/Hcc5owhmN6xajmh4EWrHJ1lJqkUPCLnbLBoXuJq25tvvnmUMQtpCPboFo90+egUfwNWFQ8hhLvvvjvKGHLP92/Xrp3RYXhtU8oAXE4mVC9cFMPb2bQ1ZcqUKLOZo2fPnlHu1q2b0aHpCU1NnBoB+xfncwghvPrqq3XKIdgq1zynsUJ1U0pdUGtwDLAZBU3SbALBPkOzKKcUQVMJpw3Bz2jmCsGuBdxftVhLa53uwDPNeOZoL/ybzbd4HzZt4WfuZ5zrOPd4XuJc5LmHJmfOSo3fx2s3hsiz2QvnLKcwqW/FhGK9jYUQQgghaow2P0IIIYRIigY3e5UTHeUV3MPjPT7Ce/vtt6M8ffr0KHMkA2Z15gzPeBzLmU3xyNUresp4UVSNSTlmL+9o2DN7YYSOV3CPj7dXrFgRZYzi4ogu/MyFNrGQKhfVw4guLvaHESZ89OyZZJsS+Dt4HGDEHkZyhGDnEpsE0VzIUTo4l9D8yYUQsd+5GC2asjmqEMcPmq5DsFFoPG+LZpJuSHAMeNnBef1EUxeaQDjSB8cHR+y0atUqylwQ1esTHKs8NyuNxGzMLN+eiwT/HmwnztSMn3ktxfcPm7Oy3gFshkKzMv8Nmqi8QuE8jnCuo4k0BLt+eBmeKyHdGS+EEEKIJNHmRwghhBBJoc2PEEIIIZKiYieUcuyjef18+Dq0dXqV29nnB/0AMISPfRMwwyyHWaLttByfDi/UvaiVo+trOy2B/hwYvhiCDWtm/yrM6sx+GjgG8P7sBzJhwoQoo106BOvnw+Hsffv2jTKHRqPdupzw8aaE5zuBtngMYw3B9guHoOLcYR32xZIlS6LMPmLoN8L+QOivwPdHvwMOs8eUCgyOLb5ncwf7ncc19jNnwcZ5hv4/7NOBGfJ5nUUd+6jgetkc5ls56yy2O2dqxjHetm1bo8P1jX1M8TP3Eb5D8TovgzT7G+G84bUE+5b9LtHPh32MOCy+mjT9ESWEEEIIUQba/AghhBAiKco2e1ViuvH+Jm/oNIf74TEoh+3hESyGQPNx9oABA6KMIc8h2KM5zkrqhQejiczTFQk+bka838BHongsjgULQwhhhx12iDJn7MUQ8z59+hgdHvFiJmE2bWHYNIdLYij9dtttZ3SHHnpolDFEOwR73Myh0fhbi5bCgOeUF5aPpmDOvO1l5sX5yH2Gpks+ssexhvObQ9ZxTmPqihDs3PdCark/cZxhiHUItn+LZJ72Qs+9a72swGxCQpMfz2k0fWK6ihBsn2F/8f3RNMPFgzGUmecYjtVK26EIfVlaQ8tZ/3FN4RQA6K7B6zPON34v4juN5yXOWTQP8zhCEzSOjRBsFn90NwnBmrM8kxi7JaArAqec8d5bedDJjxBCCCGSQpsfIYQQQiSFNj9CCCGESIpiOSsQnk0P7ZccHpeVep/t/Gjn9NKLl1ONtylRshd7YaRetWG2w6PNnsOK0dbfqVMno8PwVw6DR9s0+pnwM6N9m0Ny8e/4udAfgf1aPJpS6K3na+CF3+L847BWnDvcnxhinjccln0X0GeAw+wxRJ59VAYNGhRl9h9A/xIuu8F+FUWhnPWl0irhOJZZh6HG7OOB/h94Dw6/Rh8Vnn84HrwK5U15na1krcA5y/45uE7xON5yyy2jzGHi6DPDvnK47qKfJa+lWX0egvXDZJ8ffF9zX+Ic5vFXy9QxTWcFF0IIIYSoAtr8CCGEECIpCm32Qvg4DE1dGAIdQnaYOmcXxeNYNg3kNQU15ePYPBlH+ffhMaRn9mITEoYdl1OJGPsBv4+PdPFInjOI4jE8Z/3FMYHHvSHY394UMjxXkqnbq+iNpiBMFxCCnTuclRuv5azq+H3Yh2jKCsGmq+DUCHi8ziY3TLGAzxiCHZP8XM0dNC2wqRCzsXM/vPPOO1HmlAOYGgHnCpu9vDmGJh2eUzjnKjX/FYHSvPJMkV4FA3434RrJ7YljnNsT+53/Ds2ROO+9TNBepmYeRzhWeHxgWD+no8HfWu1UMcVbwYUQQgghaog2P0IIIYRICm1+hBBCCJEUhfb5QZsi26nR54fLGSBoX2SfHwyFZXti3vTpHuWkZG8Mqu234qWVz6rOzn/HdmS0OaP/AZYtCcHayNmfAyu3Dx482OjQX8XzAyla39VFfZ+R/97z4UJfG2437F+emziP0XfnzTffNNdheDun6ceUFdtvv73RDR8+PMrs34X+BJ4/BIdcNwZ5/ER4fcE5wCHK6F/F/nJYpoLTCrz11ltRxvkXgg17Rp8RDLcOwZYO4pQCuO56Yc6Ml4qkaJR+l7fe8m/13jHYZlwSxEsHkhecC+gPFoL1v8OxEYItb8FjBccjv4fbt28fZfYHwpB8LiOkUHchhBBCiDLQ5kcIIYQQSVFosxce/fExLh6nc6g7HtvhETkfqeERrHeE5oUhelkn+eiyaNWGs57BCzH1jlLx2JpNW3gf1mE2UO5nPGZ99dVXo8xHrmh66d27t9GNHDkyyjvttJPR4Zgo57c2Jbxxh5+9iu9srkAzGGdznT17dpTZlIHH6Hjd1KlTzXVeBeptt902ygcccIDRYf+yqQ7DZvkI3TOxNAZ5zF6emYjnGJoOeb1EEzKmGAghhJkzZ0Z53rx5RofPhiZGzLIdQggDBw6MMmd45r5FirZeVkppXnm/wetnHqto2mKzF7Yvr6X4XvTGB44rHg/4ecqUKUaHazKbVnGdxbQnIVizKKfUwDnrZQBn8rimNI/VXQghhBAiJ9r8CCGEECIptPkRQgghRFIU2ucHYRsl2q05/f0HH3wQZbQZsg8A+jiUUzHWCzdtSj4/Jbzn9PxeWIefvbBE7ktMW4Bp0EPItjGznwmG1+67775Gt8cee0SZ/YHy4oWiVjvterXJ6/PDNnVMgY9Vn0Ow84/t++hDgn0bgg2rnj9/fpQ5JB7TUHA4O/bnqFGjjA5D8LnPqpG+oqHIeta86wv/dvSh4j7B8Hb2pcPPPDexonivXr2ijKklQgihe/fudf5NCL7PD1KOT2bR5mOW/1Zd19SFlzaE00zgZ16fcQxwCDuWo8C5yOMB1+PXX3/d6NBviH270K9nm222MTocO1yuBt/ZCnUXQgghhKgH2vwIIYQQIikKbfbyKhHjZz72xKMyPLrnMDoM3+UjNS+DaN6q7kUybZVD3ufmY1XMoMv3wGywHDaNR7BszsrKIsuV4YcNGxblvffe2+jwWLVSOKy4CFmA85I3ZJ9/E5qeGMy8zXMTzV6csRvN0HgUjplcQ7B9tttuuxkdZunmY3LEG8fcn0Uze2XhpSbAfua+RB2vl+gmwCZp/A5u6z59+kR5hx12iDLPN0w34mVRZyrtk6K5F5Sex/s9nlmd+5LXTwRNmnwdvuNwXQ0hhBUrVkQZTWBomg7BrtX8zkTTOKY3CCGEIUOGRHno0KFGt9VWW0WZq83nTUdTyVjRyY8QQgghkkKbHyGEEEIkhTY/QgghhEiKQvv8eGUk0HeA/T/Q/ofpv7t27Wquw7/zwrar5fNTBPszkmUnzesj4vn8YP+EYH0/uB1Qh5W+Q7B+BugjwpWBd9999zqvC8GvKO+FeiNNyeennHHmpdFHHysvpJbDl+fOnRvlGTNmGB2G0WI1ZwyHDiGE/v37R5nD7D1fJAy75zHojWv+7Y1Nnj70Qrq98G++N/pZYJ+EEELPnj2jzGN+u+22izL6YaEPRwh2HPE8wudi3zH8DUXrn3LIE3rv+W95lds5VQC2IY93XPvYFw/nDd6ffXBQx/MQx86OO+5odAMGDIgy+oqFYEtfeO9hDy/lTBY6+RFCCCFEUmjzI4QQQoikKPRZIoa/8rHg1ltvHWUOYc86+uOjezxO5IyUXrbUvEewRa8KXl8zHP+91y6YfoBNT3jsicej/B14zMomTLyHZ5LiI+S85M1EWwTKGXd5s+GyCQlNXWjuDMFW+OawVsSrGo86DoP38MKAkaJlAc6ikuP8EL66ZmEbsokR4X7GOccZ8vv16xdlDG/n6/BZvHlUqSm5qfSlRzkuEriG8XqGbc3vtM6dO0eZsyxjqDuGs3P2ds90hv3O72R0X2AzOfaf93u8fq7kXVvst7MQQgghRJXR5kcIIYQQSaHNjxBCCCGSotA+P2jjY1s02kTZ5yDLTsg25Uqruovy8cKmUYdlE0Kw/YBjgP0KKvXlEZWBPiTsx4H9xOHLCM5H7r+mHNpcS/KWbvB8azzfRw51x9QE3EeYggDnsOZi48F+Pgj666CPZAi2xAmuweyf+emnn0aZK8PjmOP1GT+zDx/+XUP6yerkRwghhBBJoc2PEEIIIZKiyZwtexme2SSG5M3GjMd5/H3VMoEVrdpwQ4LtyWZK/iyaFmyiksmqevA6gSb9ctYQNC2w2QtNEpy1l9dFxDNbisYBzcycJsHLmI0pIvB9yvfAzxg6H4Jd4zksHb+Pv7ux3oU6+RFCCCFEUmjzI4QQQoik0OZHCCGEEElRaOM8p2hHKqn2yvdDHdsoq2GH9Oylqfn8eL4Def2ysv6mHJ2oDtWYm7W8XwpUWvrCg/2B+DOCfYbV2vk51H8Nh7eWYj9476Y8/873q+v78oLfUc731ReNSiGEEEIkRdknP2PGjKnFc4hGQH3ZvFB/Nh/Ul80H9WUx0cmPEEIIIZJiHc/GJoQQQgjR3NDJjxBCCCGSQpsfIYQQQiSFNj9CCCGESAptfoQQQgiRFNr8CCGEECIptPkRQgghRFJo8yOEEEKIpNDmRwghhBBJoc2PEEIIIZJCmx8hhBBCJIU2P0IIIYRICm1+hBBCCJEU2vwIIYQQIim0+RFCCCFEUmjzI4QQQoik0OZHCCGEEEmhzY8QQgghkkKbHyGEEEIkxXp5LxwzZswXtXwQkY+xY8euU997qC+LQTX6MgT1Z1HQ3Gw+qC+bF3X1p05+hBBCCJEUuU9+SowdO7YWz1Enn376aZTXW88+6scffxzlr33N7uH42rr+JoQQNthggyh//vnnRsf3RD777LMof/LJJ0a30UYbZf5dfRgzZkzV79mQfVkNvvjiizplZp111sn8zP2F/bzuuusaHY4J/rsNN9wwxxPXTS36MoTi9Ce2FfdF1txcs2aN+bzppptGmfsa+4x1ODf5u7A/+e+478uhqc9NbAtvHeS+RLDdGWxbbvePPvooytxfWWNlbeBv8NbxuqhFX15yySUhBH/Nqs/4Qz744IMob7zxxpnX8XqG3++1mfcbUOfdA9/rIfj9nPf3ZOH1Z2Wjq4HwBgRuXLwO8Xj//fej7C2U3JH42dvslLOhSgnur7wbmSyZ4YUYx9H666+f+7uxv+qz2WmO4EuL2wbb2Hspfvjhh1HebLPNMq/jhRrnKs8xbyHF/vSeKzVwLvEahe3krcc4j7y5ybq8/1nk/7gi/Mw4NnET3ViUfrPXLrwOlXMt4v3HwOujrHcTzxNvM4zvU9ZtsskmUS5nU1vJhicvehsLIYQQIim0+RFCCCFEUmjzI4QQQoikKLTPD9oNPcdGtgejHRltlOgnVNfnLDyfAw/PryBl/x/PIZl9OLAN8zo8l9O2OHb4nujLws+c1xeiuYJtgz4WrPN8F9Dn54033jC6CRMmRJnnX79+/aLcp08fo+vQoUOUPX+SSv0Emzs8/xCvL/OuiXx/dH5lfzzPF8n7vkodpWuF124lvPebdz9uF8830fs771my7sHgd3t9wPMZf2utAobqIt03sBBCCCGSRJsfIYQQQiRFsc4HCTx+46N1PB7zjthWr15d59+EYI9ZMZ9ACDbEjo9jvTB4PMLzQuRTA4+3vXZp6DbDo1o+kveOeFM0dWXh5UDywpDfeeedKJ911lnmupdeeinKPG+PP/74KHfr1s3osM9kds4Hzs28eZnKwcv/gvfPYx4q4Zmdi2aSLv3+cn6fR96xW074fFYOrLzpDULwxwpey24qGAbP4NrC7+H6ohVACCGEEEmhzY8QQgghkkKbHyGEEEIkRaF9ftBG6dke33vvPfN50qRJUb7ooouiPHXqVHMd3vMPf/iD0e21115RZlsm2iH5udC2WW0bZVMmr+8A25G9ekxZf8ftjuOD/Ufy1rRhvPIOKYB+Il5pCgbb+P77748yhraHEMLy5cujPGzYMKPr2bNnlLfaaiujw75nXyTNx7rxfO48cAx4fj34mes6ZV3HlON7VDSfnzywP06lz41jnn0YvXUK007kTQHjrdXe83PJCs8XyUuFUF908iOEEEKIpNDmRwghhBBJUWizFx6j4bFcCPYIjI/38Mht5syZUX7ttdfMdXjcNm3aNKPbddddo8xHrvjdfFTLR+1ZOh3B5yMrK2k5YaN43Osdx65cuTLzu7k6NPZlimYv/P08PzCUlcc5Vn6+7bbbosxh6fh3P/3pT41u7733zrw/HsV72YoZL32F+D+81AF51zPPTYBBk8eKFSuMDufm5ptvbnR5zTYNRelZK82c7OG9+zh9i/feyqqKwHjvN28M4Pt7/vz5Roe/vWPHjkbnhcHXF81yIYQQQiSFNj9CCCGESAptfoQQQgiRFIX2+UHbY4sWLTKvYxvv1ltvHeXu3btH+ZVXXjHXYYguh+uyj0fWczGeXRdt5qn5/HjpATxfHvyMbcs+YHh/Tn2AOg61nTNnTpTnzZtndFgxfOjQoUZXTnh3c4TDVRGvLM11110XZUxJwb4L2N777bef0bVt2zbzu9HfqJzw6JT9fLDtvfnHbZTlp8K+JmvWrIkyp5pYtWpVlBctWmR006dPj/Ls2bONrlWrVlHeYYcdjK5v375R9tbxxsbzM/N8gHCM8/yaO3dulLnN2rdvH+XBgwcbXd65krd8DPZrCCE88sgjUcZ+DSGEgQMHRtmb29Um3RkvhBBCiCTR5kcIIYQQSVFosxeaNthMhKYTPjLv0KFDlPGoj8HQZu86NpXg97HJzQuv5SPflMhbvZlNVniM++abb0aZj04XLlwYZT46xbGyevVqo3vxxRejzMfu3/zmN6PctWtXo2vXrl2d908RNkHiOOfj7//+7/+OMld3Rk488cQot2nTxui8cHYv7YBXWTrFdAUl8oZZ83XYnhiKjulFQrDmF253nHM8p19++eUo4zoQQghDhgyJ8pZbbml0bKIuKnnNjQya8Xnu3XvvvVFmNw/MjM5me3QVQfi9m9c8xhnb//a3v0WZw+W33377KLds2dLoaplJXyc/QgghhEgKbX6EEEIIkRTa/AghhBAiKQrt84P2RS8U1QsbR5syh+ahrwaGNYdgfU/KCZdEfwf+vkrLM9SK0vOV47OCYazs74T3YbsutgX7Pr3zzjtRvuKKK4zuqaeeivK7775b5/1CsCkNRo4caXTos/X8888b3euvvx5l9jd68skno4w+KHzP1H1+eBygL8gZZ5xhdIsXL44yzoEePXqY6w455JA6rwshf5kYDgPGfmL/AfSdSM03D9uFfXLQL4X9qyZOnBjlf/zjH1HGFAYhWD+OTp06GR2WOkC/vRBsGgr2BfH8QXGN8lIyNDScBiXv+wBTBYRg/XXefvtto8OSMVzOCVNGsB8rfr/n14O/ga/D9fN3v/ud0eE6jmt1CLa/li9fbnStW7fOfJb6opMfIYQQQiSFNj9CCCGESIpCm73yHgvycSx+XrBgQa7v4tA/L6wubwXocsIXG4PScbdnHuCjzbzHyPxb0ZTAfYLhz4899pjR4VE4hqmPGDHCXHfwwQdHebfddjM6DJN98MEHjW7p0qVR5t+Gx7ForgnBho2mCJpH2OyHKSRuvvlmo8tKBXHhhReaz95xN845zyRQTmhsaqYuxDP5oZnj/vvvNzoMX3788cejzFXWu3XrFmUOqZ42bVqUOdUE9jOnTNhzzz2jzHOxqGZoHvueeQmv5XcTrll333230U2ZMiXK7BqAWZ27dOmS+SxoVuZ74Fjh9RLNXuhOEIL9PZy2YMaMGVE+6KCDMr+v2nNUJz9CCCGESAptfoQQQgiRFNr8CCGEECIpCu3zU6mPDNoXMVySQXs226nz2mM9v56i+fhkUU5Fa/ztHLqJtna2u+PfsX/H9ddfH+X3338/87ux+u+YMWOMbtiwYVHmtAXoN8R+BezvhOCY4HDu1PHa449//GOUsewBg2nt2U8LxxbPIxyvnFLBA8cW+yvgfVLra1zr2McD0z1ccsklRoc+QOhDMnr0aHPdTjvtlOu7vbmI5Sz4Ozp27Gh0RfX54bb13jHob8ipVtCv56abbjI69ItEX6sQ7BzzfOrwuTiNgOd3g+U0eJ3FOcXpFLx0FbV8h+rkRwghhBBJoc2PEEIIIZKi0GYvDzSj8LEZHpUtW7YsynzMiFkuyznq9o7ks65b27WNiXfsyOCRZTmhxBjyfNVVVxkdHvHykTWaRi666KIo77zzzuY6bGusIh1CCPfcc0+UcTyEYH87H7ujKY0rR2M7pGYmCcG2N4ch/+Uvf4kyH5Pj0f/3v//9KHPb43WceRszgnNWYJxjvXv3NjruQyTFPiyB6yJnBb7vvvuiPHnyZKPD9j322GOjjJmEQ7BjgFMfoCmSQ8Hbtm0b5ZNOOsnovFQTRTV7lbP+Y1vw+Md0HWgCC8Guye3btzc6NIPhmhuCXQdx7rFLhPeu+Ne//pWpy7p/CCEMHTo0ylylvpYpKHTyI4QQQoik0OZHCCGEEEmhzY8QQgghkqLQPj9o92Q7LvoceKHaaF9keyX6/LB/TtZ3re37vL/L6yvUUJT8Vjx/B7bPok2ZfwO256uvvmp05557bpS5cq9XTmOfffaJ8nbbbRdl9uvBMgfXXnut0WEKeLafI1xteO+99868ltslNfD3Y5mDEKzdntupX79+UcbwZQ7nffPNN6PMvgRPP/10lDmkFv2PDj/8cKP71a9+FeUWLVoYXaX+f80BbDP268Gq4V27djU69Mfbcccdo8x9PmHChChzX2IZhE022cToDjjggChz+Dz6gjSVucjvH69MEo5HTDcQQgi33357nfcIwbYF63Dt47Zu165dlL3UBzhWsKRJCF8tf4KgjxH7ivbo0aPO60KQz48QQgghRNXQ5kcIIYQQSVFos1elZJk2vNBzz0RVaci6Z0orAlkZRvG4lDPoeseQL7zwQpQ5nP2NN97IvAeaSTjTNobeYvV3NoPi/Z944gmjY9NIFgceeKD5jFWQeUyxmSY1cOycf/75RufNDzR1YdqBZ5991lx36623RhnNXCGE8NZbb0WZTVSY4ZbHwTe/+c0oDx8+3OhSM3Uh7777bpRfeuklo5s5c2aUubo4mnHQTMlZ9R999NEoc7VvZNtttzWfMbydTSVoJuK1AE1GXhblhqL0HuB54WUVx/XmgQceMDpc69iUhvecN2+e0d15551R5gzPmAYC+5ldFLCi/DXXXGN03jqL7xQ0sYVg+6hVq1ZGh2a3aqcw0MmPEEIIIZJCmx8hhBBCJEXjnwk6eFFVng6PcfEYkD3XsbghH6l5BUrzRoYVPcNzVht6UXYIm4ImTpwY5YceesjoMLrAK17Kx794H4x6wKihEEJ47rnnosz9jEfDHAHRq1evKKNZhJ+FM4+mDpo4lyxZknldmzZtzGccB88//3yUOcoITV1cCBFNjmxCRZPH9OnTjQ6jUfr37290eNRf1AzBtQKza3O0DZokeG5ipm2MvuRIzEmTJkWZ10CMsDzmmGOMbsCAAVHmtcZbS3H+F8HslfWs3jsMfy+PY8QrLs3Zzy+//PIo8zqIf4cmRs68js/F2fLx93jvTMzoHIJdE/jvajkXdfIjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSovENog6eXRd17BOwYMGCOv+G7ZzoL1At2zDam4se6l56Pm6XvG2BWZVDsL48bM/m70DwWvYfQR3aotHfIATrv8Xh+Tg++LmwOjxmrGVatmyZqUsRrNzOoasYbs5+AfPnz4/y4sWLo4wh1XxPTn+Afin8d9i/7L+Cob98T298NndwXqEPXAh2XnEbYdg6pqTAcGiGMwtj1nbM6ByC9bPzUkvwfOew+KLi+bPgmsXvN+wTrwo6j39cM3mNR1859H9jnzr8O25nb/1Hv0tOaYDft3LlSqPjeVpNdPIjhBBCiKTQ5kcIIYQQSVFosxfCJiQ0L3EIJmay9MKc8WiOj+nw/qzDo0b+bs9kVMtslfUh7/FrCPb3duzY0eh22GGHKB988MFGh9l2+VgcjzY7d+6cqcNjccwoG0IIf/7zn6PM4ZloIu3WrZvR/c///E+U2bSF92kqR+kNBY5lL9SdwbmD84qPt7Hw6C677GJ0aOb4+9//bnRoiuWUCsOGDcvUsTmmsckyw3kpOBBeL72UH1tssUWUR40aZXRobpo7d67RYf9hAVTOLIxgH4QQwnnnnRdlzDIcwlfXniw4y3HRCkhn4VUYwPlw/PHHGx3ODS56im3WqVMno8N1lzM8o7mzb9++UeY+wfQUXNjUo23btlE++uijjQ7HI68DOG65n+uLTn6EEEIIkRTa/AghhBAiKbT5EUIIIURSFNrnB+3e7HeDvjXs44FpvdFmyPZftIl66b4ZDDX0ntkrs1AE8tjD+RqvT9Cev/XWWxvdaaedFmX2r/AqNGOVXwyhvuCCC8x1nn8A3v9f//qX0bHfEoJ+PhzWzxWuUwP9RHhco18YhyFjqDuWvthmm23MdV26dIky+wE89dRTUfbCqnv06GE+Dxo0KMo8BovmJ1LfZ+C/xznA/iUY5ozlJkKw6yyvkdjPGPbu+a+cc845RsdlRhCv6rlHEfoPyarqjrCua9euUd5rr72MDv1wjjjiCKPD+dC+fXujw37A0iEhWJ8cfJ96aVDQj5Phv8PSJb179878O6aW70yd/AghhBAiKbT5EUIIIURSFNrslff4krNcZoWb83EsfvZCuvk58lYULjp43I1g+3nHjmzSwBBMlEPwUwfk7We859/+9jej87JpH3fccVHmUNusNmDYzIXjpZwj+eYCtiOPEa7AjSxfvjzKaHri8Ojx48dHmecmms54vnkh8pjNm1m1alWUa5lVNi+lOVGtLPFoTub5hqZlTgGApl/O1n3VVVdF2cuQ/cMf/jDKI0eOzLyO56LnXtAU4b701j1cIzncnD8juCZ7rhteRXkPvD+7m+D3cWbo7373u5nPhfdpyBQwOvkRQgghRFJo8yOEEEKIpNDmRwghhBBJ0Sx8ftg2PHz48Chfd911UWY7J9qwuQIu2iy9MGr29yhaOLtHybeHfx/a3supdo9tyO2A9+G2Rjsvfx+Gt8+YMSPK7COCafi5n//rv/4ryuyP4vnrYHg7+/wUqTxJY7DHHntEmcOjMeyZ0+ijT8nEiRMz749+N+zTh+OTfX6wBMpFF11kdDguZs+ebXQcFl9UPB+gvKHUPHaxfdlXb86cOVH+/ve/b3TsH1SCq3afe+65mc+VVe4kBH/twTWL15qihbrneR72mfJSL3j+Ol7JJoTXQfTlwTI/PPfuvffeKPPcQx8+HgN9+vTJ/DvvOfFdUW0fMJ38CCGEECIptPkRQgghRFIU2uyVN2ycTRe77bZbnddxVlc0qXCV8J122inz/nnDo5mihkfzs2DoIfcBXsvHzfjZMxXy8SV+Hx+BovnjJz/5SZTZnIIh1EcddZTRbbXVVpnP4oGmrhUrVhgdhgenCGaP5arTGAI9bdq0zHvgeOExuHLlylzffcIJJxjdqaeeGmXMIB2CPepvKmauhgBN/Fy5/corr4zyzJkzjQ7nbb9+/aJ87bXXmut43UXQpOOtiWx+yVvdvqlQTui5V0UAdZ5pHt0EPHg8oLnYy/7PKQ3QhMl9yWHxWX9XbXTyI4QQQoik0OZHCCGEEEmhzY8QQgghkqLQPj+eHdSz87KtvwRX5kaefPJJ8xmrTGPo39qeywsTr6X9shJKNlr+PZjSvpwQTIR/K9qm2RaN38c8/fTTUX722WejzDZr9Bc4++yzc3834qWfT93Hh8FyEKeffrrRjRo1KsrnnXee0Y0bNy7KaPv3yiOwf87VV18d5V133dXovFBwz/cE/Ve88djYVOrrgu3CbY2fJ02aZHRXXHFFlNnXEefgr3/96yh7ldqZvCkj2B+o0jW4MfHKK5Xj84PXeqWX2LcG/87zY8W58NBDD5nrMPSc74HjiEPdEc/Hh0smqaq7EEIIIUSV0OZHCCGEEElRnDPBOsAjPA7pw+NSPk7Eo7KhQ4dG+aWXXjLX4fE2H7d5x/De0bp35FppJd1aUTre9DJnlvPM2Ed8RI5t7bXfggULzOdzzjmnzus4Q+no0aOjPGDAAKPDvuRKxNjvbBbxjqUxu61nTmmusCkYGTx4cJTvuOMOo8OUBK+99lqUuT87duwY5YEDBxodziseZ9i/fCyP60lDHq9XQrWquZfAuclrKab54PmG7cTtecghh0R59913z7zOy9LrrZd5zULcl9Vuu/pSeh7P7OW9byoN5ed+9sY4tj3OUTRTh2DXPV4DMP0IV57P28+cIkVmLyGEEEKIKqHNjxBCCCGSQpsfIYQQQiRFoX1+EK4EjqUH2CaKtsdDDz00yosWLTLXYcjd9ttvb3ReaLNng/VCN9GuWwT/n5L93Qt95efM+9u5HbxQYvT3wMrtIXy17EiJDh06mM/77bdflLnaNP4GDrPE3+qFjS5ZssTo2rVrV+dzpQiPH7Tvs80e5+Yuu+wSZW57tP2zjwCG2bPfAa4LXhp99hVqKj4/ef0/+O+xj7i//vrXv0aZy7gsW7YsyujLFUIIJ554YpS7dOkSZU4pgn3CeCUtcM3w0oZwX1a7+nd9KfVFpWu+l4LDu9YrYcFjANdM/Du+buutt67zb0Kw6WF4fcS5yGsw9qUXBl9tGv8NLIQQQgjRgGjzI4QQQoikaDJmL+/olMFjNMz2y5l/kXLCCb3jS+/4vAimrrrg56rFc6Kpi80ReMzKGWY5XLMEHrOHEMJhhx0W5XJCz/MekcvMlQ2Pl7xt6s05zxzihdkj3hF60UwjTKlN2aTjZSxGU6GXfRezpodgU4CgmSsEm6n3pJNOMrohQ4bU+RzlmC68tSbvfZpKX1ZKOe8mHANepnJ+Jny/oln5+9//vrnu8ccfj/KcOXOMDtMdsNsD9qU3hvNm/K4GxXwbCyGEEELUCG1+hBBCCJEU2vwIIYQQIimajM+PaD6wP8LSpUujPGXKFKPDchcY3s7VvNu0aVPNRxSiEHg+P144O4N/h+kGQrB+invuuafRjRo1KspYQiaE7JBoLjdRpMrqzR3PzwfxwufRp46rs2Ofc6kgDIPv0aOH0XnjFj+zfxOOq2r7A+nkRwghhBBJoc2PEEIIIZKi2Z9H4jFa0ar9pgqHWWIY5D777GN0GNLep0+fKO+www7muhQrq4vmD88Vz0TgmZdQxxW3L7/88ii3aNHC6NCczBmDs6qSFz30PFW8LN9oUsJxxWOlc+fOUeb3qZfmBa/l9CXeuK20on0edPIjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSotn7/CC1tB8KH7TzYgr2EGx45uGHH250WLbCSxPvpfYXoqlSzpqVN6ScS7V07NixrGcqgc/mfTeG6yvsvbagL48Xzs79gNdif/Gai3/HfkNZPmAh2PW/IUtYeOjkRwghhBBJUfY2fMyYMbV4DtEIqC+bF+rP5oP6svmgviwmOvkRQgghRFKso9w3QgghhEgJnfwIIYQQIim0+RFCCCFEUmjzI4QQQoik0OZHCCGEEEmhzY8QQgghkkKbHyGEEEIkhTY/QgghhEgKbX6EEEIIkRTa/AghhBAiKbT5EUIIIURSaPMjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSQpsfIYQQQiSFNj9CCCGESAptfoQQQgiRFNr8CCGEECIp1st74ZgxY76o5YOIfIwdO3ad+t5DfVkMqtGXIag/i4LmZvNBfdm8qKs/dfIjhBBCiKTIffJTYuzYsbV4jrXyxRd2E73OOvk25mvWrInyZpttZnSffPJJlNdff/1M3Xrr2WbC7+bnws9f+9rXMnV5n7/EmDFjyro+D43Vlx55+/mzzz4znz/66KMob7LJJpn3//TTT83nzz//PMobbLBB5t/h/UOwfctjZ23Uoi9DKE5/fvDBB1HeeOONc/3Ne++9Zz5vuummmdfmnUflrBneWrA2mvPcxDbEucKf8TpvHjE4H7m/8vZDpe+GuqhlX+K7KISvvo8QbzziWrThhhsa3ccffxxl7gdsJ14Hyx3zdeHNS+89jOOIxxi/e8vF68/63bnG4AuOX3Z5J5g3wLyGXXfddXPdn8m7GNdngjZFcFBzX2Jb5B3s3D+44cEFIAQ7ViqdTLzIiGxwIcWNEOtwAebNDi6W/J8IvAfrEJ5j3pyrxuLfVPHWJfzMcy5rjeQXGM53bmdvPuJ9vP+08HPgd/Cz8EYJqdWaXPpO753Fz+mNa+/d5OnyrrP4LPyfPqScvvTew431LpTZSwghhBBJoc2PEEIIIZJCmx8hhBBCJEWhfX7QflmODw7bh0t4/gcbbbSR0aHNle3EbJ/N+jvxJV67eDpse+w//hvsP8+2zv5GiDfG2I8IP3v27BTBdmR7Pupwnt5zzz3mun//+99Rbtu2rdHtvvvuUR4yZIjR4bXcnzhvuT95/qeK51vj9WXedY/XYGx3vj/esxwnag9vXa8VJedl7zegg3MIvg+a5yPjrWF5fU6xjbyABa/92FfIe5fjb+f1ub4Ozx56UwshhBAiKbT5EUIIIURSFNrsVekxddZRGR87Yviyd+zIR4R4NOwdyzXUsWpTANusHBMmtr2Xv8cDj1L5eD5vmCWPnWodwzcHPvzwQ/MZ5yb3Nc6J2bNnR/lXv/qVue6VV16JMvcRHsVvu+22Rpc3hFdmry/JGwKdN58OzzH87OVMW9v35f27vOtzQ4VYV/t78r5X2ITprYN4T+/dh+TtgxD8VCGNtZbq5EcIIYQQSaHNjxBCCCGSQpsfIYQQQiRFoX1+0C7JNnn0M1i8eLHRTZ48OcoPPvhglN98801zHYbFXnTRRZk6xgv/RKpZc6Y5we2A7eTV0PJswxhC66Xh9/qAfVfQRu75G6XYrzgHeG6ijn0LFi1aFOVrrrkmyujjE4L1Edhyyy2Nrnfv3lHu2LFj5nfz/EP/D6Un+JJq+8hwKhD0p2TfD7yW/S69emF5Q7XLKRtRK7LC1rP8bEKwz8nh357PJF7Lfm3eGpZVSoSfC+/P/YXrAIfIezXccN1t0aJF5jNWG538CCGEECIptPkRQgghRFIU2uyF8FEZHgvycR4e1T3xxBNRfvXVV811eEz361//2ujatGkT5XKqQyN85FrLbJVFJ+9xOh9v5z2mxvvzUS0eq3oZRFnnZZ/Fe6YYJo3H2NxneNzObTN//vwoX3vttZn3x7lz8sknG92IESOi7GWL5TXDy0iMfV9OKobmALaTl82ezSjYTjgGuG29MGe81ruOWblyZZTXrFljdDgGWrVqZXSbbrpplHmd8DL31wIcc976yOMR/+6tt94yuqeeeirKm2++udFtv/32Ue7evbvRYT/krSjPZi8E53kIITz55JNRXrJkidHhWvKNb3zD6LbaaqsoV9u9QCc/QgghhEgKbX6EEEIIkRTa/AghhBAiKQrthOKVREB7LYelb7PNNlHOG2a5dOlSo0ObaDlhlojKW3wJ2qm9EGTP3vzuu+9GmW3KGOr+zDPPGN2cOXMyvxvt4q1btza6oUOHRnm77bYzOhwTKfr85PXhYj+KG2+8McoLFy7MvAf2y+jRo40O/fEYXBfK8eHAdSI1nx+vgniWXw/rEPYNWr58eZS9cHbuL/TrmTlzptHhnOY1o3379lHeY489jA7nqve7GwJvrfPSRWB73nvvvUb317/+Ncr9+vUzOmzrdu3aGR22BV7nvTO9de/ll182ny+++OIoL1u2zOhwru+www5G16VLl1zfVwk6+RFCCCFEUmjzI4QQQoikKLTZyztax0zAfDSHWSJXrVoVZT5WxePZ9957z+g47BmR2at88Iicj8XRvMl99Pzzz0cZQ6MfeeQRcx2aLfl4FENhMdSVn4v7dd99940ym1YxbDRF8Ch+xYoVRofhxXzE/cc//jHKnunwmGOOiTJmdA7hqxWjsygn03CKpssSOB95zcV+9tIKoAlz4sSJ5jrO3o2guZpD1hcsWBDlWbNmGR327S677GJ06LLAJiPPpNnQ2Z+978NUGpzKBde6xx57zOiwzTp37mx0uL7xPVHnhbB7777Vq1dHed68eUb32muvRZnNjTj3ODy/lvNSJz9CCCGESAptfoQQQgiRFNr8CCGEECIpCu3zg6BtOISvVo1F0J6PNkS2QyK9evXK/SxoF2f7qBca6oUvNgYl3wm283tV1vPaYL1qytwuaN++//77jQ7LjkyePDnKLVu2NNfh+OCK3T169Igy/x60YXOqeHyW73//+5nf543FFPB+//e+971c92D/hN/85jdR5rmC48ereM0+d15oM/qbFKHie1aYft51oxyfRa89PX88nI/ojzdu3DhzHfZDx44djQ79M2fMmGF06K/J6yz+XadOnYyuZ8+eUcaw98ai1Kbsb4Q+Ml41c253XHvY/w3X57lz5xodvgvff/99o0MfIC9dBI4/1uFvePTRR40O/cpwvQ8hhEWLFkWZ1/Va0vhvYCGEEEKIBkSbHyGEEEIkRZMxe7GpBPGOeDEs0Mv4Wmk18UorvhcZbE/PzMVHrl6FdITTClx11VVR/tOf/mR077zzTp334KPTAQMGRPmII44wOjTLPP7440aHn/nIFccLmwabQz/XBy9s/IYbbogyVpkOwbYxmjVOO+00cx22N/c1jkkvdLmcPiuCqQup7/ji9QtNT969uT3RxPLAAw8YHc5VzOjLpi00Pe26665Gh6ks+LlwneD1ZP/994/yXnvtZXRsQm1sstrbG7toJmITFbb1pEmTjA5TDnhm3rxVC9jciHOdx9j06dOjjP0agp3D/E7BZ+Hs7d7f1Red/AghhBAiKbT5EUIIIURSaPMjhBBCiKQotM8P2nk9+yjbg9EWuXjx4sy/w3tyuK73fZ79vCn5gmSVD0E7r1dihO3BeK1nb77mmmvM5/PPPz/KmJ6d74P25iFDhpjrLr300ihvscUWRoc2cvZBQds6h8FjyCyXxUgdzyfuvPPOizL69TBYwfmggw4yOvQD8Hz1sMJ1CHbesi8SfuayG16l+MagvutIpesSl5i45ZZbosz+eFOmTIky9hdXEx89enSUt9xyS6PDsge8jqO/B5c42WeffaKMqSxC8NesxqDkG8l+NjgeeYzjb0A/nhCsn8/8+fONDsc/+zDiOy5vG5UzDu+5557M50LYhw/Xa15XVN5CCCGEEKJKaPMjhBBCiKQo1vkggUeBbIbyKqbj0ZkXco3XsdnLO9bPGzbaVMn7m9isgPAx7o033hjlM8880+gwnNY7rv/Zz34W5WOPPdZc16VLl8zvxsrHXHEa+53NXlgtmjPFeqkXUgDn43333Wd0r7/+epS5ejSG7Z500klR5uNtPBrHdBUhhHDHHXdE+a677jI6NE+iuSWEEE488cQos5kLw6qbiomTxznOFW8Oe2snZ1i/5JJLooxmrhBCaN26dZQPOOCAKO+3337muqFDh0b5iiuuMLrZs2dHeebMmUbXoUOHKB999NFGt/vuu0eZK4HzmGtsst4leV05pk6danRoxvf+jscHjnE2PWVlaffG0cqVK83nO++8M8r8buC1Fdlzzz2j7FWUrzY6+RFCCCFEUmjzI4QQQoik0OZHCCGEEElRaJ8fD88fKMu+yLZXtGdyaHal5S2qdW1DULL983OhvdbzmfJs1px2/ayzzooy+1SgDwKGnocQwqmnnhrlk08+OcocEo8Vpl966SWj++c//xnlrHIZIXy1OvS3vvWtKLdr187o8o6P5gra5s855xyjw/7lUiZYimDUqFFRZv8E9GsYO3as0WHq/HfffdfocLxyiv1WrVpF+cgjj8x85qYC++7kXV+4LA36lFx22WVGN23atCijX10Idr6gf9zgwYPNdVjlnX20sPI4z/199903ygceeKDRob8R+98VzSezFFbuVUhncH176KGHjA7Htee/xeszpndgPzosCYLvTy6tgb/h2WefNbpXX301yuxThPBcGzhwYJTZVwi/r9prbtoruBBCCCGSQ5sfIYQQQiRFoc1enlnFO87E7JJ4VFZO1tNaZHEuwhEsUjpm5qNGfE6vDxgMVcXMsCGEsGTJkih7R6IcUo5H8r/5zW+ijCGyIVgzDJtCZs2a5Tz1lxx//PHmM4bTltMOKfDcc89F+YUXXjA6NCFzJlnM5IwZaDlTM95/xowZRjdv3rwo87E/9hOH4mI2YTZB4JrBGcKbA55p+V//+leUsY1CsCYyNgv3798/ytiXbG7861//GmWem/gsO+20k9EdddRRUWaTG64hHKaNYwnNY40NmxvRXMfjGM1SHNqOZik2BeG4RpNlCCFceeWVUb777ruNDtsJ25afGe/P8xJNZByyjs/Jz4yuCNwOaMaW2UsIIYQQoh5o8yOEEEKIpCi02QuPufg4zMvijOYX/Ds+6vaKJ+Y1l/Fz4X2KXvS0vgUAud3xmPXee+/N/LsWLVqYz3i0ygUnH3300Shjn/CxKpruvGKabOLD4/rDDjss8zn5+BdJMfLrpptuytRh32AUSQi2WCxexwWI0XTWtm1bo+vevXuUOWoFi0Dy3HziiSeizKafopm6siIxKwXnKkfDosmPi4R6azDOJTRTspkG1wWet9iX3/zmN40Oo8Y4a7Nnhi6SqSuE7L70TDq43nDEJP52XsPxO9i9YPz48VHmKC68p1dQHL+PxxFmaed+xvtwX+J6zes/F8KtJumt2kIIIYRIGm1+hBBCCJEU2vwIIYQQIikK7fODsE8O2hBZh1lDvQyYaB/1KiSXQ9Gyi3pk2c3RXluOTXnRokVR5grNeK0X6s6ZttE27fmBeJXhsU/YT+nggw+Ocq9evTKfq77+Uc0N9OnyKtzz/MNUBmjrZ58H9Pdgv57NNtssyi+++KLR4RjhSvGrV6+O8po1a4yOr21squ3zg+sb+69tt912UWY/DvR7435G3x4Me+a2xb7ldh49enSUcS6GYDMBe2OM0yQUzeen1Ie8tnnZ8733CI5/Tufg+UJ5FdOzfGj5fp5/ozdW8bu7detmdJjhmX8PpjiodroRnfwIIYQQIim0+RFCCCFEUjSZs3w+8vKyeE6YMCHXPfCIl48g+YgSwWvZXOb9XdEo/Q5uF/zMJirMpsoF6jBcGI+zQ7BZX/nYHY94O3bsaHRYUPTwww+PMh/P/+lPf4oyH50ifH8suLr55psbHT4nm71qWXCvKPDYRnAOeFlguU2zsjNzqDlm5eZweTSXvf7665nPxXMRv6NoZi4ma0xhm3mFmj14LPfp0yfK3F9owuJM3hiC7aUUwec65JBDjO7000+PMpudPbMQjjl+5qJRahvPdYPp3bt3lM8880yju++++6LsZX/23kWc0gDNS/g+5TX+sccei/LTTz+deX+ma9euUcY+D8EWsOW+9MZAfWmeq7YQQgghRAba/AghhBAiKbT5EUIIIURSFNrnB237WIYgBJsim30Osqp4s/2QK4hnXcs2crTVNuVq31l+Bfjv/PuwLACHnw4fPjzK7IeF/gGc3hzt2+y3gM+CYwArvIdgKwOzrRvDLM877zyjQ1s0k3p4u1fGBceBl05iwYIF5vP06dPrvAdXoEbfIA51R78Dnus4b/nvjjnmmCg3VT+tSkPf0d+E+wtLTLB/FfYRl6W5+OKLo+yFUfft2zfKP//5z40O/Xz4udDfkH1PkKKnFMl6Ps+nEPuBUwDsscceUeYyLegzgyHxIeQvW4FguZgQrD8tr+OYloR96n70ox/V+fwh2HHFY6CW79emuQIIIYQQQlSINj9CCCGESIpCn+vzMSuCFYXZnIXhmWia4SNCPErlY1s8BuT7exXf8SiTj/CKFgafFUaIv51NW16YP/bXsGHDjA6PRPm4FNue2wi/A+/x97//vc5n5/uFEMIBBxwQZTR9lAP/Vs/UkwKYFfiRRx4xOhw/nHbgyiuvjHKbNm2izH2Gff3GG28YHba9l4F20KBBRnfEEUeELHDNYHNBY1Aab5Wa53h84jrFJg4Mc+YUEvj9GGIdQgivvfZalNFExWvGL37xiyjzuoDw+oxrPIO/gX+rZ95pTPhZcE3htRh/E6YXCaHy8VmJGX/x4sXmM4fWZ7Hjjjuaz2j2YncTrx1q6Xqgkx8hhBBCJIU2P0IIIYRICm1+hBBCCJEUhfb58UIY0U6IFb1DsDZFtiMjS5YsifK7775rdP369Ysy2929lNteev2iUbKnsp0fbdPcB6jzylSwjv18EPS3YPs2hkxed911UX7rrbfMdehvxP3FYfEI/nb2HcDv5t/jVZluLKpdCRzhe2K46rhx44wO/Xe4PzElAfYhp7JYtmxZlNnHAccL9xmm7edyDF7qDH7OpgD/dq8SuLcW4VrKbY1+Pjj/QvjqulvisMMOM5+PPfbYKPN6jN/N/h2ev4f3W4uWxqDkD8V9kNcfidcebEOvnz0/Im5b7Eu85x133GGuw5Ql6JfH333UUUcZHZcVQnC9YD+vWpYRKtYoEUIIIYSoMdr8CCGEECIpCm32QvgID48C+agMw+zuueeeKHtV3Z944gmjw/DPVq1aGZ13XFmk0Mq88HGsF66Px5BeZWwODcejWv4+zAbNx+Joqjj//PMzv2/16tVRPu2004xu6NChmc/lhcxmXVd0vDDncvAyPKMpA7M2hxDCNddcE2U2jeDRNfYFm14RNHOFYLPY7rzzzkZ3yy23ZH63Z9rCo/cizOE8R/w8lr2/x77k9RLn+4oVK4xu7NixUZ45c6bRoakZMxL/8pe/zHwuL3WG1+5obgnB/gaem0XL+Fx61kqfq9K1pxwzEc4NNGfdeOON5jo2dSHt2rWL8n777Zd5Hc91z4Wgln2pkx8hhBBCJIU2P0IIIYRICm1+hBBCCJEUhXZk8NLYe/ZhTL2fdb8QrK378ccfNzoM5WWfn0rD79DW6aVubyhK7cG/AT9zm3m+GQj79XihqQjbf9F/AEOjuRr7okWLonz66acbHfoLeNWhPbiN8v6ehqQhQ907dOgQZfaxwhQSjz76qNHhuMdwdvbpQL8eHkvnnHNOlI8++mijw/71+ozHsee/1lTI2+/sP4l+dX/4wx+Mjn0hEeyX3/72t1EeMGCAuQ5LX3A7e+s4Pif3pecHU7R1Nqtf8PdxODv+Xv6tXkoR1PFvz9su+Fxvv/125nX8XFtssUWUuYRFpWtwLddZnfwIIYQQIim0+RFCCCFEUhTa7IXHdHxc6h2JYjZJzNQ8bdq0zO/iqtJZ3xWCPYrj7/YqlBetEnjpyJR/g5fhOe8xspc1mo9L8dp58+YZ3VVXXVXn/Tkj9+677x7lTp06Gd2CBQuiXM6RK5o3uR3wuLnombxrAY7l/v37G91NN90UZaz8HYI1sWC2Z67+jma1Qw891OhwLJUzx7AP0RQTQjHMI+XihbMzmEKCw5VvvfXWKGNoewi+mXvw4MFRPvzwwzOvQ1M2h+d72X3x93hpCvKa4huL0vN5GZ7LSa+A7VJOpnn8Dn7f4TvumWeeiXI5bYspZnhsepUWcM7yu7aWaSd08iOEEEKIpNDmRwghhBBJoc2PEEIIIZKi0D4/Xvgp2j3Z1t2zZ88oH3zwwVHmdPdoT+zVq5fRod9QOXZHr4xD0cJpS8/H9l+0y1fqz+L5ULAdGcMg//jHPxodlzbIeq7f/e53UWZ/DvYBQtD/gX2RPHt6kf18qlXewgPnxMKFC40O586wYcOMDn1+9tprr4q+G8cL9wP+Vs9fAUPpQ7A+XEUoZZInbUE5/YptwXPq0ksv/cr3lsC26Natm9Edf/zxUcY+wbIXIVReuR39P/i5cPyxn8gmm2ySec/GII8/Gf8G/MxthP40/HdeyRNsM89f7Nlnn838bpwn/F0jRoyIcjnvOi8VgspbCCGEEEJUCW1+hBBCCJEUjX++WyFeZuU2bdpEGSuBe1XBq0WlGYQbk3JMOJUeQ3pHm5MmTYry+PHjjQ77Gb/7oIMOMtdhVtlyjlyLdkReH8rJNl5N0My1Nlq2bFnv78s7x8oJXy+CqQspjfVyQn+9Cumo46zNnul36623jvJxxx1ndHvvvXeU2dSFeG3r/Z6861JzmMPlVDDI+3ecNd2bN2hW3HPPPaOMYe8h2IztRx55pNFh6gPG68usivIh1LZvdfIjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSoliGbtFswbBxrkS8YsWKKK9evdroMAwfQykPOeQQc12rVq3q/5BCFISSD0Y5Pj+YZoPLQaDPRefOnY0Ofbb69u1rdMOHD4/yvvvua3RZKSS8UgbllGMQ9YPTA3gV0nF8DBkyJMo//vGPzXV77LFHlHk8DBw4MPNZMM3MZpttlnldQ/ot6uRHCCGEEEmhzY8QQgghkkJmL9Eg4HEmH8diiOSpp55qdEuWLIkyVm4fNWpUlZ9QiOJQMktUWu2bwTDnfv36Gd1ll10WZU4P0LZt2yhjChEGU1l41ctFw+GZGDk7M67PmI7iwAMPNNeNHj06yl7oPLs25E07wWMFn7PaJjGd/AghhBAiKbT5EUIIIURSaPMjhBBCiKSQz49oENDPh0NhMWT25JNPNjq81rNhYyr3plhiRIi6KKecDJaRYL86vA+Hunfp0qXCp/sS9OmoZSVukR/2vcJ+YZ8f9NHBccS+OviZ/XowLQmv1XnLx5RTaqm+6ORHCCGEEElR9snPmDFjavEcohFQXzYv1J/NB/Vl80F9WUx08iOEEEKIpFiHbcNCCCGEEM0ZnfwIIYQQIim0+RFCCCFEUmjzI4QQQoik0OZHCCGEEEmhzY8QQgghkkKbHyGEEEIkhTY/QgghhEgKbX6EEEIIkRTa/AghhBAiKbT5EUIIIURSaPMjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSQpsfIYQQQiSFNj9CCCGESAptfoQQQgiRFNr8CCGEECIptPkRQgghRFKsl/fCMWPGfFHLBxH5GDt27Dr1vYf6shhUoy9DUH8WBc3N5oP6snlRV3/q5EcIIYQQSZH75KfE2LFja/EcdfL5559H+Wtfq+0+Db8rhBA+++yzKK+//vqZf/fJJ5+Yz961X3zx5X8E1lmnvP9YjBkzpqzr89CQfYl8+OGH5jO29aabbprrHvg3IYSw7rrrRpn7BPH6h/HG38cffxzlDTbYIPc9Q6hNX4ZQnLmJfcN9ndW/77//vvm8ySab5HoOnFMh2Hn16aefGh2OEZ5/H3zwQZQ33njjXN9dojnNTQ9uT/yM8wrbmfH6y/u+9dbLflXx2l2fd0Ut+3LNmjXm3zfbbLNcf89thusbr2dZfcLwfMNr8f48Dyt9h+H38T3z9nMleP1Z3W+qMl5HerqshZlfmAhPWB5wWZQz0crd8DQnsL822mij3H+HkwY3Gd4k8cYKv4y9F6L3HeVueJob2KbcFjh3eLOTtXDzgrh8+fLM++M9vTnFL0VvDJa74WlOvPfee1HecMMNjQ7nAM8H/Ix9zv/5wM/cX948ytu31dz81BIeY9hm3qawnDbDObVy5Uqjw3nD4x/bzNs0ef+5wH7gZ/T+M+O9o/Ge5fzHNQ/FHCVCCCGEEDVCmx8hhBBCJIU2P0IIIYRIikL7/Hi2Tc8hOa/N13PMQ51nj/V8hVL28WE8pzZsM88nJ6/TI/dX3nuwr0J9nJqbO157sA8Ggu2PY+L+++831z300ENR7tOnj9GNGjUqyt27dze6li1bZj4jfl85jrfNHfRF4XbJu56hjtfjavtqhGDX+KL6+JQovau8dwWuNSHYsVvp2PT8erw2w3crP7PnbJ3XT9abe/xc3ju6vhR71AghhBBCVBltfoQQQgiRFIU2e6EJhI/wvKP1LNisgUdqXt4YDunDo3s+kpTZq26w/7gfsO3zhhyXE9760UcfRZmPUbEvyzmex5wdefN1pAIe2WMYdQg23PbZZ5+N8qmnnmqumzNnTpQHDBhgdB06dIhyx44djQ77gsdElsktBN+U3dyphtkI25Pv593fM0Xi33mmbF5ncX3xzNwNtT6Xnscze3muG/xu8sxECP927544T3H+8jN7c8PrS7wnuzbgb/dcIqrdXzr5EUIIIURSaPMjhBBCiKTQ5kcIIYQQSVFonx+vDAL6fCxbtszopk+fHuVnnnkmyuPHjzfXYSr3Cy64wOg6deqU+d2eHdIL95M/0P/BduO89dDQLs22YRwr7M/hfTfihdnzM6bu5+OFvCKc1v6tt96K8uWXXx7lmTNnmuvQR4Dv0aVLlyi3bt3a6PLW6OJxkPJ89Pwn8/oD4Tzl+Yf34HmL7V7tuk4hfPW35Q3XryZZvwvnEJcVQbg9vWvx93ItsRYtWkSZxz/Osbw+b9y2+HfeuOEUFN618vkRQgghhKgS2vwIIYQQIikKbfbyMuxiyCzr0CQxbdq0KD/++OPmOjxGe/vtt40OzV7lhL7K7FU3WJ3dM2d6aQU8U5Nnhsl7nF5OqHvq2Z+xrXjMY9vwEf1TTz0V5dtvvz3K3Ldovtpjjz2Mrn///nU+RzmkNv88vJByz4RcaZoIBOett86yawM+M5pz+J6VVo2vJvU1e3lmoUWLFpnPjz32WJRnzZpldL17947yEUcckesZOfM0PotnOl6xYoXRTZw4Mcq8/qN5Gp8xhK/2bTXRyY8QQgghkkKbHyGEEEIkhTY/QgghhEiKQvv85LXX8nXt27eP8tKlS+uUGfb5GTZsWJTZ5pq3ei2DoYFFr0RcbThcOQvP7o+hm1OmTDG6yZMnR/mRRx4xunnz5mXeE0sn7Lnnnka3++67R5lTH1RSXqW5wr4TWE6E2wn9fNCvh/0AcA6zzw+HtyN5fU/KKY+SEp4fjOePh7AfCqY3mD17ttFhegleI1A3d+5co2vbtm2Ut9tuu0zdlltuWeczFoFqVFZ/+OGHje4Xv/hFlOfPn290BxxwQJS33357o9tqq63qfA4eD9jn7A+E8PqMqWTYv69NmzZR/va3v210I0aMiLLnF1UJmvFCCCGESAptfoQQQgiRFIU2eyEYKh2Cb0bBYzQ8TvcySy5ZssToamGiqtRc1tzgisIIH6W+9tprUb7zzjujfNddd5nr8Ji1VatWRudVeZ4xY0aUn3vuOaN78cUXo3zkkUca3dChQ+t6/GTwjuVbtmwZ5SeffNLoHnjggSjj8Tdno8Xj75122snocD6Wk5UbzTapVW73yJsmwksZgWap++67z+jwM4dAo4mUw5rRLLpw4UKjGzRoUJRxvefPvOY2RoqD0rjj9vPcOvC5eayiWZHNXqtWrYoyZzjv0KFDlHmNzGoXr8+95+c1/pVXXokyv7txvRg+fLjRDRkyJMoyewkhhBBC1ANtfoQQQgiRFNr8CCGEECIpmozPD9sXPf8ZtFOiPZH9SdCWiuGRIfh+ImjPZJ3nS1BpCvhaUfqN5TwX/nYOF/ZKHqC/BduX0Yfj3//+t9Gde+65UUb/Hw6Nxu9mezY+J4e+os/P9OnTM5959OjRRocV5rHUSirgOMe5EoKdE5dcconR4RxEf49u3bqZ637yk59E2SuHwn4AOLbw/iHY/uQ+y1ulvqEojdly/A1xzvH880rr4O9l3yuvpAyWUrjtttuijKUMQghhzpw5Ue7Tp4/RYYj166+/bnQYFs/PgffkvkTfoSKUninNBx6Png8L+jt5pZ3eeecdo8Mxzt+3//77f+WZ6oLnM4JjxUsXgWMjBOuzu2DBAqNr165dlPn35E2RUgk6+RFCCCFEUmjzI4QQQoikaDJmL6+CLB+/oe7dd9/NvCceBXMGX++41Mvu25SqRWcd72P4MJscsB+8I3k+OsX2RJNRCCFcdtllUT799NMz74nHvRzifNBBB0UZMzOHYLM433PPPUaHR7CLFy82OnxOzky76667Zj5nCqD5k8cBZnEeN26c0eH4wWP/73znO+a6zp07R5nN1Xhkz/MN5yYf7XtmhqLN2/o+D/+9dz+cS2xewvbksGqct5hVnUPPd9lllyjvu+++RofV2t98802j88x4eB8cKyFYM0qR4PGI45rfN2i6QxNYCCFcf/31UX7++eeNDvure/fuRterV6867+89pzdueN5jOoKnnnrK6LzQfQzP57702qi+6ORHCCGEEEmhzY8QQgghkkKbHyGEEEIkRZPx+fFsj6xDOyGGMjNoh+RQW7RLcqruovkH1Bf2YcpbhsNLHc/2bbz20ksvNbqzzjor8zvQfo+hm4cffri57pRTToky243xu/m5MLSSQ2YxbJRDdIsQQtuYeP5e1113XZS5bAyCJUK4mjP6mvF3oQ8EVgwPIYTNN988yuz7gXOayyxweoTGJmuNyTs3y1mjsK3ZvwpLU3DagscffzzK6E/F/nDHHHNMlLlP7r///iij70cI1hdp8ODBRoc+P+zbUq1yRNUiK6WI5zuKv539eq688sooc2oChP1YMZ0Lv9Pw+/A52U8Oxx/7bt54441RZl8/DxwTXbt2NTovzUV9KdYoEUIIIYSoMdr8CCGEECIpmozZi/GqrqNu/vz5mffAIzzO8Jx1vxD8LM5e5eiimctKv5/bj6sBI3gszn+Hn1evXm10Z555ZpQxVDMEa0LiEPYuXbpE+a9//WuUd9hhh8zv5tBQPCZ+9tlnjY6P+ZHevXtHeZtttsm8LkVwLE+dOtXonnnmmVx/h1mze/ToYa7DtAN87P/0009HmbNy9+3bN8rbbrut0e23335RruVxei3xzF7VMPegKSsEO+ceffRRo0NTIZq2OG0B9gPOxRBsRndeq9u3bx/lQw45xOi23nrrOp8jBGvS8dbqhqL0TmCzl9dfmAKAUwzgfGOzFKYYYbMXmoTZ/O9l8kZWrlwZ5bffftvosC/5XeeN24EDB0aZ28irtFBfdPIjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSosn6/Hg2RLT5sg8JgjZXz57oVSFn0Oen2jbKalNqJ+852d8JP3O4N4ZdYrr7EEK46667osx+Nvj5uOOOMzr0FUI7P4dZYmr8yZMnG91NN90U5RdeeMHo0NbNv/WEE06IcuvWrY2uaFXAG5OrrrrKfMbwdvZJQN+ePffcM8o8JqZNmxblW265xeiee+65KM+bN8/oMK0++xGh/9jIkSONLqX+5LUTfTfuuOMOo0MfOV4nhg8fHuVDDz00yuh3FYKdc3//+98zdexrePDBB0f5wAMPNDr0Xyk6WWVVcMyxbxL6LU6cONHosP+4cjuyaNEi83nSpElRHjRokNHhOw7fYZwSAu+JZWxCCOHll1+OMvvU4TuZxx+mEcE5GkJtU4ro5EcIIYQQSaHNjxBCCCGSotB2GTweKydMHMPxPPB4m4/i8mZSZSr9u8Ygy9yFx57c7l6I8BtvvBHlq6++2ui8lAN41IkZl0Ow4bVoShs7dqy5Do+Q8flDCGHWrFmZ343HxkceeaTR7b///lH2wvpTZOnSpVFGsyLDx/J77713lLfYYosoL1++3Fw3e/bsKHMoM45BHo+YJfjFF180unvvvTfKbPZCs1uRzF7eulTOGESTLs8PbCc2C7///vtRZlPJdtttF2XMjj5hwgRz3YUXXph5f4TvjyHzOFZC8NehIoS3I1n9hGsrm31ff/31KL/66qu5vwv7gdNAnH/++VHeZJNNjA7nM4bZs+kMzWA8TzhDN4LXsikL78ntgOsCZwevL2mv4EIIIYRIDm1+hBBCCJEUhTZ7eXhHvgsWLIiyZ4bC4zcv4sm7B0cIefcpWubREnwMjs+ZFanA14UQwsyZM6PMmZSxrfn7MGKHo7gwQgGP4Ln/sT09sycf97Zo0SLKJ510ktF55g88nk2xyCkWLmSTJvYFj59Ro0ZFGduX+x2z+w4ZMsTo3n333SjjcX0IfrFIHJM8RooaPVQtMzrOVTQRh2DXS+4vLBKMfRKCNWk++eSTUWYzDRYvZfr16xfl733ve0aHZjWviDKbSoo2H0vPzi4E2NZcoBT7xIuc4v7CtZWLCj/44INR5mfhNTnrOi+TPs57nodeZBsWJ+YM42ieltlLCCGEEKIeaPMjhBBCiKTQ5kcIIYQQSVFonx8v1B0/sz0Y/QDYLwVBnwP27/Duj5RT8b2oPj/8GzxfF2wL9rfAsETOrI3f4X0fh0tiP+B16P8TQggdO3aMMtui0SeA/+7rX/96lHfcccfM72aK5lfQ0Nx99925ruvWrZv53LNnzyijLwO39Q477BBlDpfHucMh8nPnzq3zOr4Pz2kcr02l4ns56T9w7WH/DvTH6NWrl9Ghjxy3J2ZSf/rpp6PM6SqQli1bms9bbbVVlI844gijQ38Wbx0v+lws9ROve9h/XFUd5w36yYUQwo033hhl9nfyfN6wDT3fVOxnnid4fx5/eH/OiI/zlMcA+pKx/yBmf642OvkRQgghRFJo8yOEEEKIpCi02cvDC52bMWNGlDE0j49O8UjXO5L0wur56A+fi8MQi3Y8W2oP77nY5IC/qUOHDkbXv3//KHOBUszUzEepGObJR/J4RHrAAQdEefDgwea6K664IsoLFy40Ovx9HC55wQUXRJn70gtnx/HSXLI9e9mEWcfmpix4bqJ5CU2QnIIA+5DDgPHveHxmmUlDCGGbbbaJMmeNZvNBUfDGFq9Z3rWo477Eedu1a1ejw4LBbCrBkPZXXnklypwVGLMOH3LIIUZ31llnRZnXk7xFotmUzWOpqHhmy9122y3KbBLDjPicTRvThnChWFy7u3fvbnSY8gPD7DlcHrP4s4sC3p/XB0xpgJm7Qwhh9913j/K2225rdDgv+ffUl+axagshhBBC5ESbHyGEEEIkhTY/QgghhEiKQvv8eCHmaM9nP5GJEydGmVO5Z+GF0nth6azz7LgYgl1t+2VD4YXrYzp6DD0PIYQTTjghyhwi36ZNmyhzmDGGwmI/s6375ZdfznwutBufccYZRofp+xkvbBSfpWi+XA0BhpQz6KPAcxN9eXA+sO8Ohryy3wFWZ+fK1dj33C/oa8B92xT7sJxQd2wX9oXCtALc1uiD8dxzzxkdfmY/H2TLLbeM8s9//nOjQ18QBv3D2O8Faao+d7gusU8Tvh9GjBhhdEOHDo3y6tWrjQ79btCPh/HGDo6B++67z+h+85vfRJnXcXzXon9dCCGcffbZUebQfQyL5/W/ln3bNEeNEEIIIUSFaPMjhBBCiKQotNnLM1l5FWTxKByP1FasWGGuQ9MMHx/iMSuHyHuVzvOGmxaB0u/yKvfyb0VTJIcH4zGrd+TKeNl1szJDjx071lzHZhNkr732ijKa3+r6PgTHGI+BImXobgwwG/akSZOMDiums4kFUx7gOFu8eLG5Dk0qs2bNMjr8OwyjDsGa2Y455hij22effaJcrWrptaI01stZM7yM+DhevTndqVMno8Nx//bbbxvdAw88EGU00/B3/+///m+UOUUFwuu4t84i3EZFzaTPz4nPllVVPYSvmmRxzao0GzmPf+wzTAeybNkycx3Pxax77LvvvkZ36KGHRtlLReC5GlSbYr2NhRBCCCFqjDY/QgghhEgKbX6EEEIIkRSF9vlBe6ZnE2XfIPT/QF8etkWjDxCn0EefH7bV4rOU4+OT14bdUJRsyV7FZMardo+hy2ynxu/wbNgM+gNNmzYtyrfddpu5DsPl+ff8/ve/z/wuzz8A/VU8G3lzoZzfhD4/l19+eeZ17733nvl80003RRnbvm3btuY69C/ZfPPNjQ59ithXb4899ojyf//3f2c+F46rEIqXeqISnyTP5wfhsGpcl1iHKSQuueQSo8N1Fn01jjrqKHMdlqXhddxLGcH+Ylnkva6xKI01/n243vDag33p+b6W40eE843/Dr8DxwD6dYVgfwOvs1iKCOch/503Bnh9xueqdj/r5EcIIYQQSaHNjxBCCCGSotBmL8QLWeSjsl69ekUZQ2bxWC4EezTMVWi5unFevErgRYXb1jtmxSPRcsx4eCzOIfLeUSr+3WWXXZZ5fwzJ/OEPf2h0mMHW+218HIu/rzmauerDgQceGOVvfOMbRodZYdEUWtfnEpyGAkEzVwg2FHf77bc3uiuvvDLKHFKLJjgOkU8ZHNts/r/wwgujzFmc0TWgb9++UT7ttNMyv4vNarj2eHOMzadoAin6OltJODq2RaXmHm5r/pylwzHw4IMPmuu89B/4fuV56fWz59JSy9B3nfwIIYQQIim0+RFCCCFEUmjzI4QQQoikKLTPT9405awbMGDAWu8Xgg33mzFjhtFhJeJWrVqt9VnruifbK9HWWQQfkpKtlW3BaGP2fHDKSR3v2a3ff//9KLOfxq233hrlG264Icrss4E+AaeccorR5Q2X5N/qjb9ahmBWSik8thZji++JqQV+9rOfGR36YDz22GOZ90TfLw5ZxzblUHf8vpNPPtnocK6yrxDfB/FKrDQGlfRh3r9hHwv08fjb3/5mdDfeeGOUOR0AhrpfeumlUWZ/Dw/vmb21xvPzQb+yoqUwQDCcvZx0I14aBLwPj2P8O343YftiVXcG32/8zOgni+tDCH4/e7+9lulhdPIjhBBCiKTQ5kcIIYQQSVFos1deswqHTvfp0yfKXbp0ifK8efPMdVmZoPmefESInysN3SwCpd/Bvw+PNr0+8NrFy/7MKQfwWjZV/PWvf40ymseYESNGRLl///5Gh2kMWrdunXkP/q2NFYJZFLxs3nhUzdlcd9pppyhjqokQQnjllVfqvAdnXMb0BJhNOgQbYs0mRwzH7tChQ8jCy+heBMqp5l4ir2kB170QQnj66aejfPHFFxtdixYtosxz8+ijj47ytttum/ndvD4jOOf4N+NnzxTJc7GS7Ni1pLSOcP/g7/PC0MvBM8Hj9/Pahn10//33Z94Dzf1sRh4yZEid3xWCHXP8jI31ntTJjxBCCCGSQpsfIYQQQiSFNj9CCCGESIpC+/yg7ZZtlF56c/RBwFBYTtXds2fPKHfu3NnoMIW+V9Xde2amaD5ApXbjZ0b/Cw419ML1sZ24zbC/uP0wbJ0rcb/44otRRl+hVatWmetOPPHEKHMJBfTzKcd/y7PDFyW8vS5qUYGe74HjgktTYLg5+wNhGgrPJydvuDL7CuE9uZQJ9lktQ2gbinL6GX1+uF3OPvvsKGOZmBBsCglOIXL88cdH2VsTcR55vkze3PSqkLOO02U0NtXy58kDjgleB7FdvPH/xBNPRLl9+/ZGt3jx4jq/K4QQttlmm8z7Y1/y+PP6K2+6m0rQyY8QQgghkkKbHyGEEEIkRaHNXpVWtsXskmeddVadcn3wsotWEqLa2PBxed4Mt/x3ec0rfAw8c+bMKE+cODHzWdDU1b17d3Pd17/+9Sh7ZhIvnLYcitjPjWVWLScDumfqQvJm5vXGqrdmFNlsiXCYOK49PAY9MxGmifj3v/9tdJjRl9NJoGvAD37wA6MbNGhQlDEknk1gec0+5cypoldybyzQ1MXmJDQhsYkR58Ohhx4a5alTp5rr0Oz1ne98x+hGjRoVZV6L8qaA8UzV1aZ4K7gQQgghRA3R5kcIIYQQSaHNjxBCCCGSotA+P6J5wn4F8+fPjzKWJwjBhjIPHTo0ygceeKC5rmPHjtV8RCEKgRfey9WwsYQA+3ugLwXr8DNXZN97772jfMABBxhdlv8Wh0Dj56Kl+2hueOMlrw/tyJEjo8x9iSVOdt99d6PDUHcGUyaU45NZS3TyI4QQQoik0OZHCCGEEEkhs5docPjItVevXlH+4Q9/aHR77rlnlLFy+/Dhw2v0dEIUBw5JRrMGmzg8kwem/xg4cKDRXX/99VHmuYmZ7zkLPoLmaX4OmboaDs+chSYsLzs49vPhhx+e+/4IpzvAMeGZttiUW+2szohOfoQQQgiRFNr8CCGEECIptPkRQgghRFLI50c0CGgDZj+GTp06RfnYY481OvQl8EoZYCglVokXoinDvhkeXqVu9J3o3bu30VXqk6MQ9uKB/jQ8djwdllHB6zwfn3LKmOQtmdSQ6ORHCCGEEElR9snPmDFjavEcohFQXzYv1J/NB/Vl80F9WUx08iOEEEKIpFinHJuyEEIIIURTRyc/QgghhEgKbX6EEEIIkRTa/AghhBAiKbT5EUIIIURSaPMjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSQpsfIYQQQiSFNj9CCCGESAptfoQQQgiRFNr8CCGEECIptPkRQgghRFJo8yOEEEKIpNDmRwghhBBJoc2PEEIIIZJCmx8hhBBCJIU2P0IIIYRIivXyXjhmzJgvavkgIh9jx45dp773UF8Wg2r0ZQjqz6Kgudl8UF82L+rqT538CCGEECIpcp/8lBg7dmwtnmOtfPjhh+bz+uuvH+V1113X6D755JM6r2O++CJ7Y466r33N7hE///zzTB3y8ccfm88bbLBB5rVrY8yYMRX/bRYN2ZfYJ+utZ4cdtudnn31mdHnbDO/PeGPA60vU8VjhMVcOtejLEBq2Pz/99NMoc3+ijtsU58RGG21U59/Udc8s3n//ffN5k002yXWtd125NPW56YFzgPsI59U662QflOCc5vHg/R3Oab7OGx951/+6qGVffvDBB+bfN9544yhjO4dg33c8Vj/66KMob7jhhkaX993EZM0Nb17ymuj1ZV6q+c4Mwe9PnfwIIYQQIinKPvlpSLz/MXj/88bdvne6895770V5s802Mzr8O+8eHuXsvJs73v/AsC+5X/F/HmvWrIky/48g7//k+QQR+4jv6fWfd/KRAvib8X+iIdh24zbE0x7vJAb7mu+B1+L/nteGN0bqc1rQ1MF1EPsnBDsfeX7guojzgU8x8Dq+B44d7ue8J7Z84tAU+88b44x3woJtzSdN2Gabbrppru/Le8IWgm131nknON7cwz1AfU7b60JvZyGEEEIkhTY/QgghhEgKbX6EEEIIkRSFdlbwfEE80P6M9lG+B/v5IGiDZRt2Xh1/X6We+M0BtEWXExWANudWrVrl+huOGMN+YJ8GhPvS668U/XwQ7E+OOEHYHwivRT+DRx991Fx35513Rnm77bYzugMPPDDK7dq1Mzrs+/pGiqQC9kM5czPLF7Kcdse5Wc53Z63xIRTP56fUTt6aUU7kFK9TCLZnOf5wedfnvPPLe7/x82OEF/cdXiufHyGEEEKIeqDNjxBCCCGSotBn914InJdILet4kY/g8diOkyvh8Xw5R5D4LPx3Xuh+cwfbghNn4Wfu57xHnV7oOY4jDsHEfubvypvAMkXzCqYM8I7XMYw6BNve8+bNi/Lpp59urnvttdeiPHLkSKPr379/lNns5SWmRIpuKmlIvPUN+5nnB7ZZ3vWMTdKeKcj7bm/O5V1nq5GULw+lceiZdKqVRNUziXnuGhgWj23Lz4z38BIgeu1ezrsPx0C152hab2AhhBBCJI82P0IIIYRICm1+hBBCCJEUhfb5yWvj4zTeK1eujPL9998f5bvvvttct2jRoij/5S9/Mbphw4ZFme2jaI8tx4bdUDbmosP2bWwzz9a9atWqKPPYQL8T7hP086lWQcsU/XwQL7wd/aHatGljdFjSAufcpEmTzHWYfn/zzTc3OvzM46XSsjSam/8H+3Ggf4a3tnkFUFFXjt+Gl5YC8eY7f5/Xzw09BvD78hbZDsFvF+yvhQsXGh3OKU7zgjruvyy4VBDeg/16vMLW6IvLZTf4czXRyY8QQgghkkKbHyGEEEIkRaHNXl44MR4Z8tEYHoWvWLEiyhMnTjTXLViwIMqPPPKI0WFW2XKOJBHPXJYaeUPDvUrBLVu2zPy71atXR7lFixZGlzcb8/Lly81nPE7neyKeCai5gsfa3GdeKOv48eOjfPnll0eZTVtouj700EONrkePHpn3x/lYTkitlyqhuZP3t/Nal5UBvRyTMJo8vDX+nXfeMbrJkydnPheOj759+2Z+d0OHunvfz++GvNXMMV1ECCFMmTIlys8++6zRdejQIco//vGPM++J34dm6hCs24BXIWHZsmXmM7qfsLkMx9+IESOMbuDAgZnfUV908iOEEEKIpNDmRwghhBBJoc2PEEIIIZKi0MZtz3aMdkIv3HXp0qVRnj9/vrkObdZsH0UdP0feSrNeKYXUwP7y+pVLkGSlgH/hhRfMdQ8//HCUZ8yYYXTTpk2LMtv5+/TpE+VtttnG6Hbdddcob7/99kZXTsXk5o4Xvsz2/b/97W9RRn+8tm3bmuvwM/ZDCNbvgP0pKi0bk3Koe14fJ6+UD4L9GoL1rUSZYZ8+HDuPP/640eF6vdVWWxndwQcfHGWc341FJWPSe8egjtfBM844I8qzZs0yuuHDh0f5kEMOMbr27dtHGcdDOfMC+2vOnDlGh/Oe/bfwvch/99Of/jTKHTt2zP0sedDJjxBCCCGSQpsfIYQQQiRFoc1eXggmZ/VE8JgQQ6y9irfvvvuu+YxH+Xz0h/f3jgVl9voSNFVwpW80g3H4JIZyXnnllVG+/vrrzXXTp0+PcuvWrY0OM0NzSPXcuXOjfN999xndhAkTonzqqaca3T777BNSBucVz0085l+yZInR3XHHHVHGeYTm6RBCOP/886PsHXd7c5PBY3nOklupuaw54IVVe6kDsO0x1cRjjz1mrnvwwQejjFn1Qwhhyy23jHKXLl2MDjMUP/TQQ0aH85ZNpq1atarz+fmZG4rSd+Y1G4Zg+4TNymhWfPnll40OTV1smu/atWuUeU5lZXXmf/eyZ+P7jddgDJnnzNM45rBfQ6ht2ol0Z7wQQgghkkSbHyGEEEIkhTY/QgghhEiKQvv8ePZ7rzo32la54juCNlcOiUTbpuer4/n1NJXK3xxenrdiN9uD81ZMZ38ttB2/9NJLRnfuuedGGX1y+LuxxAmGbYYQwhZbbBFlDqd9++23o4y+QSGE8MYbb0SZ+9KzfaeA5xOH/fv73/8+8x54Xbdu3YzuP/7jP6Kct7p3CH6/4Jjh8ZNaSQsE11kuS9CmTZvMv0M/O/Tluu6668x1uL5wuQL0z8HSDCHY9BW8zmK5GU5DgSUtirQGs48Pvqd4POKY5z7BazmtB/5e9MMKwaYEYL/LrLWby/rg3/Hvwc9cFgPD2/m7cb3mOVvLklA6+RFCCCFEUmjzI4QQQoikKPRZb96wRK+yOpo1GM/shceHXoii9918lI7XFiGjbOn4lM1ceKzKvx3bhY+UPbMCmjjY9PTMM89E+Ve/+pXRPfHEE3U+C383Zi9Fk0kIIfTr1y/KHCKP4wOP4EOwx7PclymauhBv/D7wwANR/ve//210eIyNpoxvf/vb5jrsCz5CR5MAH717IfheFeqUwXnFcxPhdCAXXnhhlP/xj39Emc3OOP/2339/o8N1AcdNCLb/Vq5caXR4H8zoHEJtTSX1AcdmCLbdPbMrr0vXXHNNlHl+4XdwqPugQYOizOYsNiuW4HUc78lzD81z//znP40O5zCv3di3/fv3Nzpus2qikx8hhBBCJIU2P0IIIYRICm1+hBBCCJEUhfb58UBbMYdqo03x9ddfz7wH2iyHDRtmdOjTwKHZeVPh83VeGvnGoGTP9UqHsM3XCx1Fu7FX9fzee+81nzEc+umnn3ae+Et233138/mKK66IModt4u/jSseYTh3D5UOwvwHT8Avrr8DjHP0/2OcOr8UUBOynxX2BYMkTHp/oy8DjGn3bvBIrqflzYZ9wX2I5iksuucTobrjhhjr/jtfSY445JspcwgJ9Q5YvX2502M/bbLON0Z1wwglRxnEUQnHTFnhlYJg1a9ZEmf1xcP1kXyiE12rP5w3nM45/Lw0Kz6Hbb789yliKKASbRoRTV+Bzse8tlyOqJjr5EUIIIURSaPMjhBBCiKQo5vlgDvKGmOPRqXcPPlZFqhWWXoTwdiQrkzO2n2cCKCdL7qOPPhrlE0880eg4hDaL448/Psr/9V//ZXTdu3ePMh8nY8bZV155JfP+fIw7cuTIKLPZC0Mwi5RFtqHANn7zzTeNzjNd4pzDcGVu38WLF0d57NixRvfII49EmcfgjjvuGGU2vxx++OFRZrNs0aq6Z61vtVhD0MTCGfFPPvnkKGOGdX6WAQMGRPlHP/qRuQ775LbbbjO6J598MspLly41OjRh4nOEEMIOO+wQZQ6HLprZq9SXlY6xmTNnms+Y1dnLxs/h7AsWLIgyZ7Pna0vw/MJw9jlz5hjdLbfcEmXuS4TNeFtvvXWUP/zwQ6Pzfl99KdaMF0IIIYSoMdr8CCGEECIptPkRQgghRFIUyzjqwGUW0N7MdkEM1UZ7MNvL8Z5t27bN/G4vLJ3v6ZWwKJpfQen52Gbu+bCgX4wXjjxt2jTz+Sc/+UmuZ+JU7ieddFKUDznkkChziCfaxd966y2ju+yyy6KMdm+Gfw+GX3v9nCI4x66++mqjQz87npvoQzZ48OAoT5482VyHFcOff/55o8P+Zd+CN954I8rs34UVxbfbbjujQ18XL01DQ1EaX7Xw8eGxi6HGl156qdFh23s+ceiTgz4cIVj/EizNEILtLw51P+2006KM4fL8LO3atTO6opURyupLb8xhn7z88stGh2sYh6Ij3F9YPoRDyLHPsP24tAz6+fD8euqpp6LM7xB8TtZhqoKG9Ncq1ttYCCGEEKLGaPMjhBBCiKRosmYvNEXxceLs2bPr1HmZjCutwO79HVOEI9i6KOe5vN+Hx9ZXXXWV0XmZtpHOnTubz5iRGc1XnMIAn4tD56dMmZLru/EYP4QQRo8enXltLUMwmwKrV6+O8q233pp5HR/L77nnnlHu2LFjlDlsFs1g3NZ4bM6hsfgZj+FDCOHBBx+MMprAQiiGqQspzclK1wyep/iZ19KpU6dG+cUXXzQ6zNDdo0cPo+vVq1eUMdUEZ1j/7ne/G2U2YeL44NQEP/7xj6PM62zR+qsSvD7BtfThhx82OkwDweB7kcPUMc3Ac889l/l3aEpmExWGurO5kdMkIJ45C38rh8GjybRly5aZ96gEnfwIIYQQIim0+RFCCCFEUjQZsxcf43rHweiFjseJHLWFnzkSy7t/3gKl5WRAbky8KDQu6upFeGFm37vuusvo8Lfz9+HRKkdq4REv3gMLLvI9vbHCJpROnTpFGYslhhBCmzZtouwVty2qObOW4BxbuHCh0WFEF5tAjjjiiCi3b98+yhxV0q9fvyhjNl++P0cqLlmyJMpscnvhhReijFmNQ/hqlGFjU98xxXMA10E2saBpGdsvBNv2HCGEWYGx/ziia9y4cZnPiVG2GN0VgjWz8XxH8ziPHR5zjU2pvXndQ9Mdj2OM6OI+QbhYKZqe2ISE5M2qz+ZFHAMcaYnXsgkM10+uGoBmLyw0HYLNZj106NBcz5wXnfwIIYQQIim0+RFCCCFEUmjzI4QQQoikKKYTSh14NnC2b2N2WC+cEG2P5WRfRl8Cz77M39dUwN/nhXSz3fiZZ56JMoeiY/+xfRtt09wPaO/GZ2Fb9EYbbRRlDMMOwdqbOTS6b9++UT7ggAOMzmuH1Ku633zzzVFm/xmEfeK6dOkSZczSzW2IGWfRNygEG36N/ioh+GHA6IPHVayLluG52njr4KRJk6LM/YDjHv3jQrDtefbZZ0cZ14EQbFuzL8i3vvWtKO+7775Gh/OPw6qRovn4MKV28tKi8PrSunXrKHNaBmxfz7eGQX9NXgfxXYhzlrNE49/xe5fXdQSvRV/KEELo06dPlNn3rmfPnpn3rC86+RFCCCFEUmjzI4QQQoikaDJmLz4yxKNbNpU88cQTdd6Dj3sxTJDD77zQ0LymLj5CRvMOf19jwqYJPM72ip6y6aBr165RxqPMEKwpks0YaCLDe4Rgj3X79+8fZTZN4NG9l4WaQ0MvueSSKHM7eEUDUwczdqPJMQR7NM7tjW2KZlNOoYCfOaT2pZdeytTheOXQ7CFDhkSZx0jRMnaXzBdeKg0vpQOvidgnnJoA+4hNW9iG/H3jx4+PMhYo5e9GMzRmbQ7BhrezyQP70lsv2YTD47GxKT0Pv0c8Vws082GB5RCs2WjChAlGh2s3ZmMOwa7JPN7x2VasWBFlnl+YDZyLS+O7gc1xu+22W5R/+MMfGt32228f5VqauRid/AghhBAiKbT5EUIIIURSaPMjhBBCiKRoMj4/7HuC9m0Og88Kdy3H5oo67zr2C8FQQ/YNKpKfTwhf2mXZfyav/wNX2d1nn32izL4DGDLJ4ZPoC8X2+i233DLK6Ct09dVXm+sef/zxKHs+P7/+9a/NZ35OxCtHUtRSJQ0F9j37XOD4Ydv/xIkTo4xzhccEpvfn+Y2hvlz2APuF5x9WDef+80KEG4M85S3KKfmD8G/H9ANYnT2EEObPnx/ladOmGR3OW+xnXmf32GOPKP/sZz8zOs/HA8eVl06iqZSX4ef0fEDx9+60005GN3jw4ChzWg9cI3lO4T35+/BZsFwIpjAIIYTZs2dHmX1+cAzsvvvuRnfhhRdGGcuWhGD9ytDfKARb/qTa6ORHCCGEEEmhzY8QQgghkqLJnN3zUa1XxTurEjgfx2JoJR/heVWeMfyUTUTe8TmGIRbBbJLnGbhtvd+A2ZI51H3VqlVR5vBnPGZlEyOGPGPF3wcffNBcx+YVBM1xJ598stF5psimcpzeGHTr1i1ThyZqrNgcQghPPvlklNEsxeHXWM3Zm5s8//DziSeeaHS77rpr5jOjiYDNuY1BJWYvXHs4RB7nlWcO5PQVb731VpQxq3cINtM2rq1sukZTM64RDFchz2t+59/qtUNjwn2Kz+ZlR+Z1FtuX2xrXZ04f4b2b8NnQDIWh7SHYeeq9P0466STzOW9F9oacezr5EUIIIURSaPMjhBBCiKTQ5kcIIYQQSdH4jic54ZByDM9mfw/2HyjB/iSYJpx1nj3WSyPv2Zi9tP+NQZa/C9rv2a8Af6+XOoDt2/h7uY3YzyCLv/3tb1FGX4QQrH2b73fBBRdE2SvFwDZxfE5PlyLoJ8IlSTAlPs/N559/Psro68Vg+7L/HYfDIgcddFCUzzjjDKPDvufnKoKfT33Bucrz1gsVx7nDfhzPPfdclNn/A/348P4/+clPzHUjR46MMs8jXFv5u/P6/BTBf9KjtMZwH+B6yTrsP/aFQh2vs7gme36y6BvE34Hv2lmzZpnr8Dk5xQWWqRg9enTIYs2aNeYzjj9+J+EYq/Yc1cmPEEIIIZJCmx8hhBBCJEWhzwvxeK+co028Fo/32ESF5hE+wkP4SNKrNozPzN/nVYNvTPgI1KtM78FmMATNGN4xLoOZftHsxeBx+gknnGB0gwYNijKbML2jdYW6Z7PnnntGef/99ze6K664IvPvcIxg+7IZEccdh7qj+erwww83uj/84Q9R9kJ7i24qyQOPTy/rPX5m0y+aADGjcwghXHbZZVFm1wNc+3beeeco//KXv8x8Zq+fPVMyZyvGeVv0viz9Rq9SAIP9Vc4anPeevOaiG8lDDz0UZUxnsDa22267KHspRNjlA83YbOKu5TtTJz9CCCGESAptfoQQQgiRFNr8CCGEECIpCm0sRRulZ0Nk+yVWtp05c2bmdRgS/9RTTxkdlkRo3bq10Xk2WPQdYn+Scmy+DQk/V14buhfqXs7f4WeuMH/uuedGed68eVHm8YD34BIW6NPk+UIwXpr8oqbQbygwvJ0rdWN46hNPPGF0aN/H+ch+Z9i+6EsQQgg/+MEPovzjH//Y6LA/OSQev4/Hj+d30Bjk8Ter1nqCc+e6664zukcffTTK7KuHZRB+9atfRZlDkr3q5d7c8cK2vTUKfZPyhsvXkqx+wvHIa2Jef0N+p3EfIejrxc+EvpA33XRT5j28/sJ3JvvQ8rqepePfU0t/rmK+jYUQQgghaoQ2P0IIIYRIikKbvbzj0tWrV0eZj/CwcjCGSnNmSQyhfffddzPvz2YvD3zOSs1CDU05z4XmCDZV4G/ne+Lf8VE0HnVOnDjR6P7+97/X+Rz83T/84Q+j3K5dO6NbvHhxlNEkujaw//i4F8dmimYvzM7cv39/o7vmmmuizP2JVd1xjHTo0MFcN2LEiChzn6G5hc0DXl97KRWKYOqqJThfeF0aN25clK+99trMv2O+/vWvR3nvvfeOMqeTQDcB1qFZg9cM/FyO+crr58agtFbwWMXfV601JO99+Dp0Abnvvvsy/w6fmecMrgMcoo5jjjO7Y+g7910t3QuK+TYWQgghhKgR2vwIIYQQIim0+RFCCCFEUhTa58cL90MbMIeeZ9mfly1bZq7r3LlzlAcMGGB0nTp1yvxuTAfPIXxFT7WeB89mjnbXcmywXlgn2nXPPvvszHtgqCZ/92mnnRZl9u1C3w/+bV5VaS+9QnPo5/qANn30jwvBlo3ZZZddjG6HHXaIMs5h7x4eHNqLfc3htjh+uPQF+jIUuayJV9Eb4TmG7cRt9pe//CXK77zzjtHhd/Tu3dvoMMUB3pPXY+wHLq1RKfh97CtUre+oFt46UoLXJfzsrcdeaDj7a2GJEPSbC8G+x7BtOW0BprHgdx+mi2AfLXwWLm+B8JiupT+lTn6EEEIIkRTa/AghhBAiKQp9du+ZFrwsy6ecckqdcrXwslU2B2px7I99yRWap06dGmWuIozH93h8jkf1IVgzZTnHqpVmgE3d7IXkNVGFkN3e5dwD8UwKnvmj6OkJSmY5fs68c9PL4IuZ0kOwGZHRpB9CCFtttVWUMYtzCNZVwHuuWpih8piSmhLlZJ7PC69R3jsTzdgnnXRSlC+66CJzHa6tv/jFL4yuT58+mfdHUxqb6rAvWVdLE7ROfoQQQgiRFNr8CCGEECIptPkRQgghRFLIcUE0CGjLZT8GDJFkf6C2bdtGGasGjx492lxXqc+IEEUkj69DOf4R6HfDYc7bbrttlLt27Wp0w4cPj/KBBx5odFklQfi50FevuftLNjZeRXv0+eF0B3gt+vIceuihmffgcdSxY8fM50IfNM9fyyuZVG108iOEEEKIpNDmRwghhBBJIbOXaBAwoy6HvqI5CytMh2BDK/GYle+Bx7jNLQxWpEcesxdnqUZzspfSoU2bNkb3xz/+Mcoc6o6mLb4nmijQ1MXzT6auhsMLZ8fxwZXV0SyFWZ2HDh1a0XOw+SovnJm8lujkRwghhBBJoc2PEEIIIZJCmx8hhBBCJIV8fkSDgKnWudo22nl79uyZeQ8Mg/cqdgvR1Cn50Hi+P6zDeeSV7/DmSjnzCP3sPL8efC4uuyGqC44JLxWClxrEK0WBfmZcPgPHHPvulBPe3lBoJAohhBAiKco++RkzZkwtnkM0AurL5oX6s/lw8sknN/YjiCqheVlMdPIjhBBCiKRYh216QgghhBDNGZ38CCGEECIptPkRQgghRFJo8yOEEEKIpNDmRwghhBBJoc2PEEIIIZJCmx8hhBBCJIU2P0IIIYRICm1+hBBCCJEU2vwIIYQQIim0+RFCCCFEUmjzI4QQQoik0OZHCCGEEEmhzY8QQgghkkKbHyGEEEIkhTY/QgghhEgKbX6EEEIIkRTa/AghhBAiKdbLe+GYMWO+qOWDiHyMHTt2nfreQ31ZDKrRlyGoP4uC5mbzQX3ZvKirP3XyI4QQQoikyH3yU2Ls2LG1eI6yee+996K88cYbG90663y5yfvoo4+ivNFGG5nrPvvssyh/7Wt2H4j3YD7//PNMHd8n6++86+pizJgxZV2fh8bqS+yTEGw/bLLJJrnu8emnn5rP2J7ltC1+97rrrpvrurVduzZq0ZchFGduYv9uuOGGRvfFF1/+Zxjn2Pvvv2+uyzsOeCzh9/E8/fDDD8u+fx6a+tzM6hOG2xrhfs5LpWspgs/PeL+nLmrZl95YZbw+wbWIddhm/H3rrffl657XL/w+7BO+Lu8Y+OSTT4xu/fXXz/y7+rwX14bXn2VvfhoS3OBsuummRocN7TUYb3gQb9J8/PHHUd5ggw0yr+PJ6z1LtTu2KYGToZyFEl9YOHlRXhu4WOD9QrCT29vQcN/lHR8pwBtRr39xHODCzZuRlStXZt4P57S3qHKfeWuBt2Fr7nj/AcA+ytsuvCbiXOE+qHRNzHpZs66cdaJWlJ7HG6uMt2nL22bljOOsecnjAe+J/crwJgn7iJ/Lezfk3ZhXQrpvYyGEEEIkiTY/QgghhEgKbX6EEEIIkRSNbxB1YD8fxLN7ol8H2pjZ38PzAchymg7B2iXZEbaWNsqmDPqFeLZvtiOjzdmz3+Pf8XV4D29MMZ4jXup+Pgj7znlzANsNbf3jx4831911111R7t+/v9GNHDkyyh07djQ6HFs8Drw1IzU/HwTbif1n8voDIZ6vFc9vvLYcPxfPL6VolMa5t2ZUGlDBbYbvKr4H9jPPWbwW7+k5pHu/h9dZr2+9dd1zvq4vOvkRQgghRFJo8yOEEEKIpCi02atSssxZ5Zi98PiccxYgfBzrHfnXMp9B0cFcTBwajUe+ec0PfEyM/cXtjkftfIyLR6ncJ94x6wcffBBlzjOVGmzGxP7l43W8dvbs2VE+5ZRTzHUzZ86M8vbbb290nTt3jnK7du0y7899jc8ls2X5cF9i+3rmMfxcTrvj/bkv87oUeNc1lFtC1lqP7xXvfVBOvp686yf/9qy1jt99+N28jmddtza8lDN5r6ukL9N6AwshhBAiebT5EUIIIURSaPMjhBBCiKRosj4/aCNle/D8+fOjPHHixChfd9115jq0If7v//6v0fXo0aPO71obecMEU4btwZ59GH0JsNwJ+w6g/5bno1VpuRMmdT8ftPeX059LliyJ8jXXXBPll156yVyH/culLzbbbLM65XLgvk45LYVXKyqv7wa2p5f+oxxfkLx1Evn7vND9xvAByvrNuE55teb49+X1m1qxYoX53KJFiyjzb8XPWfLadB7ot8Q+gvicrVu3Njr0ReJ2qG9f6uRHCCGEEEmhzY8QQgghkqLQZi88suSwOjz64+PRli1bRnnatGlRRhNYCCGsWrUqyuPGjTO64447LsqeOcQLnfaOY1PDq5qN7csmKzwixX5l8maQ9lizZo35jP3FZq6Uq4CHYNumHDPHq6++GuXLL788ymy+wqruBx98sNGhSbocPHMBjrtKx09TxUvpgH3J6yCuu3nXNh4reTOzL1++3OjQtYHX//bt20eZzShIY5s685rZvfVyypQpRnfHHXdEmUPk99tvvygPGTLE6LLMbp7rRt5xE0IIzz33XJQ55czcuXOj3LVrV6PbYYcdooxmO0ah7kIIIYQQa0GbHyGEEEIkhTY/QgghhEiKQjuhoC2X7fVoO2b7ItoU0c/n7bffNtehPZN9fv7jP/4jyp49uxx/oJTx/GLQXuv5ZaBPzuTJk40OfUkefPBBo5s6dWqU2Xesd+/eUd5xxx2NDm3k2267rdGl7vODsM8FpiRgW/zNN98c5WXLlkWZ2xD7ZZdddjG6Vq1aRdlLv9/YPh3NAVxnua2xz3AMsH/OO++8E2XuEwxzxpIxIdhx9MYbbxjdW2+9FWX2E9lpp52ivMcee4TGpvSOyFtSguHrsH1vvfVWo/vDH/4QZZ5TW265ZZTRl6auZyvBPlr4mec9jo93333X6O68884oL1y40OjQb6lnz55G9+1vfzvKhx12WJ3PWCk6+RFCCCFEUmjzI4QQQoikKLTZC/HCafn4DcOS8YiQr0Oz1PTp0zO/m/+OnyULmb2+xMsAi8e6bJZ67bXXonz77bdHmY97X3/99ShvvvnmRodh0xzGjEewL7/8stFhCOaPf/xjo+NK46nx/vvvR5nDZNH0hP0XQgg33nhjlLGfsI9CCOHUU0+NcqdOnYwOj/M90wGPMxxbbBJI2USWN1u3Z/5HE+YTTzxhdOhSsHr16sy/49BsDINnlwU0kY0ePdroRo4cGeUiZPLOMnt5majRhMRjFdvs/vvvNzr8DjZT4jzlTPdZ6zPPL/zMbYu/B/suBGsG475EFwYeA4sWLcr8vvr2pU5+hBBCCJEU2vwIIYQQIim0+RFCCCFEUjQZnx+2BaL9ku2LmCq/Y8eOUWYfAPTl8coXeOHXbAdH2y3bVVFXTqX4WsMhptgW7IODdlf2n/FKBKB91uuH559/3uj+3//7f1F+7LHHosx2cC/VPqa479Kli9EtXrw4yhyC+fTTT0eZwywxRBdDr1PBC+/HEOXf/OY3RodjDcdBhw4dzHX7779/lDmtPfY1V67GvmB/BV4nkKKWnmFfEJx/eUOl1wb+dvQnCSGENm3aRJl9SF588cUoX3XVVVF++OGHzXXo2zVo0CCjw1IUXKrhzTffjDL3Ha7rX//6140O16+8FdBrSWnt4/bzysB4/qKYvmX27Nm579mvX78o8/s0y4/OmxdexfcXXnjB6DDdCK+zCP9ufJfzs1RaYb5Ecd7AQgghhBANgDY/QgghhEiKYp711oF3zO6FnuMRG4fK4fEemy6841I8di9CKGWllI4Y2eSHeOGZDPYDm72WLl0aZW7rsWPHRvm3v/2t0WGoo3fMjxmYjzzySKPDavBoygohhHvvvTfKXFkczTds/kvR1IXg8TT3C7bpM888Y3Q4d3C8fOtb3zLXoakEM3uHYPuT+8xLqeCNc8wKz+bqxsQzLVQLDD9HM1cItu3ZLHXKKadEGc0aPDfwnnvttZfRYcoEnOsh2PBoNm9iFudu3boZHWcvLgq8JnrvLexnXDtDCOGee+6JMpsp8Z5bb7210aGp0Huf4lrHz+yBqUHYfQHNc56bxRZbbGF0ONerjU5+hBBCCJEU2vwIIYQQIim0+RFCCCFEUhTa58fzK0DY7wb/bs6cObm+i0OgPZ8ftMc2ZZ+fku110003zbzGq1rPNmuvzdAP4L//+7+N7uKLL44ylznAe2K4K4e3/u///m+UsXpxCLYiNKeDx+9jfwe0RXPJjNRB3x224WPldvZXwL/DfvrOd75jrsNUFhwiPGvWrChzyC7OY04ngSHz6OMTQnm+DQ1BVkmEPH9T7t9hu3D5CfS7+dWvfmV0GHKNvoA8N/fdd98oc6j7fffdV+d3hWBLEw0YMMDo0Eesb9++Rle0Nbi0TrK/JL7TeIzjeGRfK/T54TUY/Xp23HFHo8taS0PILovhzQt+N1xzzTVRvuGGG4wO/ScZfBZ8/hBC6N+/f+bf1Red/AghhBAiKbT5EUIIIURSFNrshUd6XkZkPprD4zgOBcy6P4fY5T069cxCTJGyOoeQbabisO4sPFPktGnTzGcMi3300Uczv4/bCM1lxx13XJR/8IMfmOvQdMchs1hJ/Lnnnst8Zh4reGzcu3fvzGcuanbgWoLjnsPZMZ0AjxGcc0OGDIkyH3fPnDkzyg899JDRYR/ysf92220XZTaHHHzwwVEuUjh7XTSk2QvD2Tn77jHHHBNlzOgcgk0zMGLEiCh/97vfNddh6DnPfTThvPLKK0aH5jg2i2Koe9u2bY0Ofw+nQmgMssxeiNdfTz31lPmMpnovpQibmtD8j/MkBLvOeqaut956K/P+jz/+eJTRZBmCXQf4t6KJu3PnzkZXS3eDYr2NhRBCCCFqjDY/QgghhEgKbX6EEEIIkRSFdlbwKtt6pRTQ5suhsAjayNnnIK/9vByfn6KRZdv1Krd7LFiwIMoY9hiCtfWzTxHadXfbbTejO+igg6Lcp0+fKE+fPt1ch9XZJ0yYYHR33HFHndeFYH2MeLztscceUeZUCKmDfXj55Zcb3apVq6LM4wfTB6DfAfuaYFXom266yeiw2jePJRxnWPIkhBB69uwZ5cGDBxtd3vDeIlHp2sN+UtiG6B8Xgi1ZgL4ZIYQwatSoKJ911llR7tGjh7luyZIlUb700kuN7sknn4wy/x6c+/vtt5/ReaVKvNINjYHnG1mCfR2xzdhPyvOfwXH86quvGt2VV14ZZR7/uLaiTxGWHwnB+vxwaoLXXnst87m8dRbTH6AvVwi1nYs6+RFCCCFEUmjzI4QQQoikKLTZywsN9458MaszHul6YbcdOnTIvL9n9irHJFa0zKMlONtn3tBtNG+EEMLDDz8c5X/84x9Gh23dunVro8MjbA6fRPMWhlRzyDr+HWccxorQ3Cf4eeTIkUZ32GGHhSzw6LZoKQwaAjQf/vvf/868js1SBx54YJTxuJv7HbM4t2/f3ujQFMPH8hjqy5Wl77777ihzJfAihESXSzlmL5x/PD9efvnlKHNaAUwbMXDgQKPbfffdo4xzgNcPDFN/7LHHMp+Rs/keddRRUe7atavReRnAi2a2LLUHmxvxfcR9+fbbb0eZTfz4+zhTOY5jnCchWDMVZ7rHe+KcYhMizmees9wPCL772OyF9+T5jBnHOaVBfUlv1RZCCCFE0mjzI4QQQoikKLTZC4/i+MjQMyFNnTo1ynjEy3+Dx45c1DKvicq7jo/38nj9NwZstslrxpkxY4b5fO+990YZI79CsEfhnP0TzVJ8ZI2ZovGefEyM2WC9InoMHqX+5Cc/MbpevXpl/h1GEXqRJ82VBx98MMp89I6ZwzlCCCPoOnXqFGWM0AzBZmDm7OsYxcJzCscPm3PHjx8fZcwWHsJXTbGNTZ71h+eAt77g+smmhdmzZ0eZTdloHtx5552NDq9Fk8fvfvc7c92zzz6b+VwYgXfEEUcYHRYz5YzcOMZ47BTN7FWC+9QzW2L0I65tIXx1bUW4LRBc19lExXOlBBe6RXhue2Yvr+j1vHnzoozv7hCsqZWjCOuLTn6EEEIIkRTa/AghhBAiKbT5EUIIIURSFNrnB2H/GbRfsu0Us1Cijq9DXw2sCh5CWj4/HJqK7cT+AWh751BK9MVgu7uXrRvBEE8G+4tDMNHezH2C/g5sex42bFiU999/f6PD38727RT9fJBbb701U4ehqxyeir512C/Lli0z1+F8ZJ8H9BNh/zHsMw6zR/8/Hj9NMXVBpaHu7N+BKQF4nGP2dc6Ojm34n//5n1HmDOsIrzXoV8eV2zFs21s7i7qulij1E48rHHO8ZqEfHfu6oB8k+0LhPbmf8fuzfHxCsHOPxxj+Hb8b8Dfwb8XfgxXkQwihb9++Ud5mm22Mrnfv3pnPWV+axiwXQgghhKgS2vwIIYQQIikKbfbCIzc+LsUjNj5+wzBchLO44lFwpWYML3yRj2OLdrRe+v38LPib2ByI5iUOQf7GN74RZQx7DyGEmTNnRhlDnEOw2XzbtWtndGgmwbbt16+fue6ll16KMpvjsG/5GPfcc8+t87oQvmo2QfD41wvjbEhKv80zxfJv8ook4vzgEGgvnQCOcz6WR7PKK6+8Uue/h2ALO/J3YxZnDu3F7+aixrvsskuU+egd26UI/ZnH7O71F689eC33HRZ1HjFihNFhgVlegydPnhxlDFHm78Y1g7Omn3nmmVHm1BL4nF6x0qIXl87qSy/0HAt8sgsBrn3YByFY8xKnh8EqBjwv8Rl5viGYZZ/fuzj3+Ltx7h1//PFGh+HsnEWc14Vq0vhvYCGEEEKIBkSbHyGEEEIkhTY/QgghhEiKQvv8oB3Ss+uyH0OWPwJfhyG07NuC8HejfZb9A9DWmbc6emNR+l1epXP2B0L7M4chHnLIIVHG8EW+D1YXDsH2V5cuXYxu2223jTKGfN50003muieffDLKbM/GEOdf/epXRte9e/eQBY4X7suih9dmkTeFw9r+DlPSMxgezfPjnXfeiTKm6edUCK+99lqUOcQaK417qf45bHaHHXaIclFLIDA8N7EfPJ9CD54fo0ePjjKmCQkhhF133TXKjzzyiNHNnz8/yliihtlrr72i/Mtf/tLoBg8evPYHXgtF8NHyyFpnER6PW265ZZTRVycE2yfsd4P+lFx2Bt9xPJ9x7OD8uuqqq8x1GGbPvkG4xrPvzk9/+tMoo/9PCCF07tw5yt67qNK1Kwud/AghhBAiKbT5EUIIIURSFNsuA3jZktnMlXUUzseAeLSIphHGO3pmPHNILY/wKiHLLIfPySGY+Ps48+6OO+4YZT729MyKnnkJw5pRx8exK1euzLz/oEGDosyV29u3b5/5d14fFaH/ao1nYhk+fHiU58yZY3TYF1OmTDE6TEOB/c7zD0OnuW+9OYbpF4488kijGzp0aObfFRUOGfZM6dhf/HfYZi1btjQ6NBtx+gpMG8EmlqeeeirKGJLM68Kf//znKPO6gPA6y+a5vH/nhfw3JuWkN8H3HZvEMGs6Z1D3wPHB6xe2E5qh3njjDXPd7NmzM++PazyaOkOwaVC8tAWcebqW/aeTHyGEEEIkhTY/QgghhEgKbX6EEEIIkRRNxufHg/1S0AfIs7Nytdws+B5eyGJz8AXxbMPop8G2aK8sBvoL8N9hf3HZAbRpY8mMN99801yH4dXsP3LBBRdE2fPxYbwQ2qKn1M+i0vHJviYYUuuFWPPcnDRpUpS9VPx4T+zbEKwfGIN+PehnEELlaQ0ak3LGGV7Lf4dzrnXr1pn3YL9I7K/bb7898/vQj+O8884z16GfD48V9PHgdvf6wUvHgd9RBJ+f0tjySjQx+Js4RQvPFQT72Stx4s03LAvDPnteORz00WL/OhwfHCLPPmgNhU5+hBBCCJEU2vwIIYQQIimKc75bB5UeX+LRH5ou+HgUj3+9o0QGj/K9Y+lyjjkbg9Jv9tq2UhMAt4tXnRdNXRzqiFW7f//732feA8Ohv/WtbxndPvvsk3l//O3eMTFXCPfCNYsMj8G84fw8Do455pgoY1h6CDYEmquuY2ZonI95sxOHEMLGG28c5QMPPNDoTjjhhChzhmePIpm6PLx0GZ4pKC+YwTeEEG688cYor1692ugwpP3oo4+OMqcYwL7l58obzs6mbFzXed4WwdSF5Mkm7qVTqXRsemPAW+tefvnlKHPVeO89udlmm0UZM/MznjsB67yxU1908iOEEEKIpNDmRwghhBBJoc2PEEIIIZKiaRi66wBtjxwKiGHWXvXpWbNmRXnChAlGh7ZoDo9Gu2Q59tiilbdoSNs4+uSgbZifg22+v/vd76L89NNPZ94f++H000/PvI7t73nDtIvmR1AplY47/v1YMuRHP/qR0aF/1/jx440OK4HjHGOfB2z7AQMGGN3Xv/71KI8ZM8bovPQVmFKBfdCKMB/rwvPryRsqzbDfBlZyRx+fEEL45z//GWVOX4HVxnHOeaVsygHnJq+z3nxE/7wi++ZhP5RTQgn/jvsSfy/rcE7x+Mfx8uKLL2bew2v3Pn36RNmbh+zn5Y1pfLd7vkKVoJMfIYQQQiSFNj9CCCGESIpCm728MHI8juMjvL59+0Z54cKFUebspYsXL44yZwzGMFnOiOqFbXt42ZGbCngUzSYjPLLkY3fO0ougOYJDba+//voo47Enh6zvtNNOUR42bJjRYUZgroLsHePi7yvy8TlTzhF63r/je+AR+iGHHGJ0I0eOjDJWBQ/Bmi5xPvL4wH4aMmSI0eH8YxMLjgseg545pqgZnr3UBOX0M/6+RYsWGd24ceOifOutt+Z+lu9973tR5szsWd/trRl8f+w/b73ke+L3FWHelsxwPB5xnJVjdsU1yxsDXuZrTt2B1z7zzDN1PmMItm3ZHaRfv36Z3+1l8vZS2tRyLurkRwghhBBJoc2PEEIIIZJCmx8hhBBCJEVxjNt14NkC0QaMFaZDCGHnnXeOMlaQZTsn3nOLLbYwOrRnYjr9EKzdk2216IvEoXlF8/MpPSvbZ/OG0LK9GXXePbjSN7bT2LFjjW7FihVRRrsx98mpp54aZe5n9B/xbOScMsHzB0J/lbwp+psTni0e2xErevNnrwp5tVPZh2DnJvuM8XhqbLJSMFTq84PjdcmSJUZ3+eWXRxnD3vmemN4ghBD222+/KHs+P/hbvHBl/s2ezyfPVaRaofbVIo/fkVdlnfvV8xXClCLsR+eFwSM4BnheYIkTXsexOjuXtcFSKJ5vF8/Laoe3m++t2Z2FEEIIIQqINj9CCCGESIpCm708M5F3/HvGGWdEGc0hfFSKR38czl4pTSkTcH2ftZy/x2Nc7tdHHnkkylxFOOt4+5vf/Kb5jOHt3jGzZxooJ6yyiKau+mYpLufvvWs5BDbPPRoiwzKO16KZuZiSKcAzh7Bp0DPF4hp57733Gh2HviP9+/eP8plnnml0aAbzsvTmNV2UY+osUjqCalCtyvReShEv8zWOs2OPPTbKF1xwgbkO+/mwww4zuj333DPKXbp0yfUc/Cw8VmpZFUEnP0IIIYRICm1+hBBCCJEU2vwIIYQQIikKbTjNa+9jHfqUoG2YQym9it6iunj2fCxvsXz5cqPDUgbbbrttlA8++GBzXbdu3er7iEIUhpKvm1fVnfFSB+Ca2KtXL6Nr06ZNlLt37250Rx55ZJT32msvo0O/IgxRZn+VvCkwRP3xyrTg+47D1HF8oM/PiBEjzHXon8P357GDeOUtPGo5XnTyI4QQQoik0OZHCCGEEElRaLOXF9aZ9zgMr6tWOKEoH8z4udlmmxnd8OHDo/zrX//a6LDf+/TpE2XOHCxEc6ScNQpNErw+ookK00KEEML1118fZU5DgeZkTg/A2XhLaF1tPDyTEvbf+++/n/l3mI15++23r+g5OEUJjivv3c1/572/64tOfoQQQgiRFNr8CCGEECIptPkRQgghRFIU2uen2iGSXmh7LapIiy/BSsucsr9Dhw5RPuqoo4wur53XC/EUoqlRiX9D3jWsR48eZd97bd/nzTlMZVG0iuvNDfTD8sqKYAqREGzoO/rncMoE9N3ke+C1/K7Nuybz36mquxBCCCFElSj7v8hjxoypxXOIRkB92bxQfzYfTjrppMZ+BFElNC+LiU5+hBBCCJEU63jp0oUQQgghmhs6+RFCCCFEUmjzI4QQQoik0OZHCCGEEEmhzY8QQgghkkKbHyGEEEIkhTY/QgghhEgKbX6EEEIIkRTa/AghhBAiKbT5EUIIIURSaPMjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSQpsfIYQQQiSFNj9CCCGESAptfoQQQgiRFNr8CCGEECIptPkRQgghRFJo8yOEEEKIpFgv74Vjxoz5opYPIvIxduzYdep7D/VlMahGX4ag/iwKmpvNB/Vl86Ku/tTJjxBCCCGSIvfJT4mxY8fW4jnWyhdf2E30J598EuX111/f6NZZ58tN3urVq6PcokWLzPt/+OGH5vNGG22Uee1HH30U5Q033DDzug8++MB83njjjTOvXRtjxoyp+G+zaKy+/OyzzzI/r7vuukbHn/Pck/8Gx877779vdBtssEGUeRwhON7Wdu3aqEVfhtCw/enNgc8//zzKX/ua/f9V1rzl9vXAv/v000+Nbr31spe0vPO2XJrT3PTAfg3BzqtK5una/g7vz+MDx5XX5+VSi7689NJLQwj2vbQ28N3BYxV/O78X834H9wPeJ297et+9atUqo2vZsmWUvTlbzXdmCH5/Vm/U1ABcrPAlVdfnLPJueMpZDPNO9GpOyuZEORscXPS8DS9+xnETgu3bTTfdNPO7eHHH+/CiUp/NT3PAW2TXrFkTZV5kW7duXeffeO3J/ek9hzdGvDnubZ6bOx9//HGUvbnJG9kseKOC9+f5hzr+O7w273ofgr/5bgxKY7ScjR+OXe838D3xnYNty3jtiZsT3uDgZ74H6nCzE4LtE34v4nPWd7NTDo0/MoQQQgghGhBtfoQQQgiRFNr8CCGEECIpCu2UktcPh52k0KboOUd6Ts0I2z09X55KHMdSgNseQb8N9uFAuzjK3CeendrzAfB0DWl/bmp4Yxvt/ezHgXMV2/fNN980191///1R7tGjh9GNGjUqyptssonR4ThI3S8rL+i7wX5v2J7so5Ll9+X543nfXalfj+e8W849aw0/J8JtW+m7wwscyNsWlX43+tDy2onznv2+8Jn5GWvpv6WTHyGEEEIkhTY/QgghhEiKQttl8MjLC61l81XWtWwewzB4Pu6tNJcCHm3y8WHRQjAbEu8oFdus0nbBe3jmTO7LvN/HR9aYL8hLp9BcwXbzcnqwyWPlypVRxvn45z//2Vx34403RnnYsGFGh+HyO+20k9F5R/s4/3i+y0T9f/B84PmCYBvmzflTTh4XNLlx2DbO8aZi3vTaspy/w/dPtcbte++9F2Xsk7x5uvhZvLQFjKdDUxqbuOtLWm9gIYQQQiSPNj9CCCGESAptfoQQQgiRFIU2dKO9kW30WdeFEMK8efOi/K9//SvKjzzyiLkO7cYXX3yx0XXu3Lm8h/3/qdSumzKejwDa+r0QVrwHj5W8dmP+O7Rbc9qFFP18suBU9suWLYtymzZtjK5du3ZRxjl31VVXmetwTq9YscLocEywz4M3lrxQ45QpJwQbQd8T9M9hfw/sI/bx8VJUoE9Jc/DJ8tJ4MN77Lm/9rkWLFpnP2J5cZgb9brzv9nR5fa/YfysrnUkI1a3Bx+jkRwghhBBJoc2PEEIIIZKi0GeJeHzKx21etWE0bUyYMCHKzzzzjLkO/2769OlGh2YvPmbE41lPx+Q9rmyOeGHGXphs3qykXlVu1GFIZwj2WJXDcPNWPm4OR/LlgpXW+WgaP3Nm75dffjnK5513XpT5KBznypFHHml0/fv3j7LX16zD+Z5a5XYPry1wbnppIiqdA15/Ie+88475PHXq1Ciz2XXIkCFRzpvFv5aU2q2cMZc3dQCvZ88++2yUH3jgAaPr2LFjlI877jijQ3O0l+bFM0NhX+L6EEIIt9xyS5T5PYhm7QMPPNDott5668zvqy86+RFCCCFEUmjzI4QQQoik0OZHCCGEEElRaGcFL3TOq16L/gOTJ0+OMofMIlxVerfddosy2yi9FN8eKfv8oB2ZfbTylrdYunRplLFfQ7D99/DDDxvdkiVLosy+Ce3bt48y+pKEEMJBBx0U5cGDBxtd6j4/Xsgrhs2uWbPG6M4555woL1y4sM6/CcH67R188MFG16VLl4qe0Rtbnh9fymC78Jqb5f+xfPly8xn9ddi3y6vq/u6770b5wQcfNLpp06ZFmUucdOjQIco9e/as8xkbklIbllO6x7sWU3dgWpcQQvjlL38Z5eeee87o9thjjyjvtddeRoc+P1i6h5/D86HC+YY+WSGEcO2119b5/CFYX0t8jhDk8yOEEEIIUTW0+RFCCCFEUhT6vB6PSPlI1Dua3myzzaKMx7abb765uQ6P9xYsWJD7udBM45m9yqkG39zx+hJDOflIFI9P77vvvijfdttt5rpJkyZFmY/j8bv5GBc/s9mrR48eUR40aJDRFSGEtjHBTL0c1opwltn777+/zntwyO7JJ58cZZ63Hl6mb5y3KZoqs0CzA2dgxvnB8xbXt8WLF0d53Lhx5rpHH300yhyWjilFONM0hm0/+eSTRodm0W222cboPPeGolKOiRbnG8+vKVOmZN4DTUidOnXKvL+XBd9LTYDvQnQ1CMHO77fffjvz+zjlDJrN8b1eDXTyI4QQQoik0OZHCCGEEEmhzY8QQgghkqLQhm+0Ma9cudLoPD8A/DsMncPwyBCszZKr3KI/EIfhevbYvOUYikApdJX9lrw0AnlD+7msAbaZF+46e/Zso/vd734X5bvvvjvXc3FfIvzdq1ativLcuXONbs6cOZl/hz4jqfuP8JjAvv7P//xPo8sq/8K+IJh+nyvDIzxWvbI3SDk+Fs0dnH+cmgD9LNhncebMmVH+2c9+FmVOG4Jzh9MWYLuzLwj68fG4wXV9xx13NLotttgiFInSb2S/NnyvsK8j+sGwDt99Y8eONTqvJFT37t2jjKUuQrDt6/nGYV+yDteBGTNmGB2mO2CfLGwHfm+Uk0qmXNKd8UIIIYRIEm1+hBBCCJEUTea83qsmy+DRGYbceRXXMdPv2r4vb8h60UPd8xz1e8eOnvmqHFPQvffeG+Vf//rXRvfKK69EGY9jORwTw9K5MnCLFi2i/Mgjjxjd448/HuXVq1cb3QsvvBDl+fPnG91WW20VxP/Bx/JYuR3bl8Hxss8++xgdhuKyuQCP/ctJNeGlqMDfkFoaA2wXDifGNmS3gXPPPTfKTz31VJR5nRs9enSUMWt6CHYNYVMJPhevNaNGjYoyZ/z2wrgbE3aJwPeU927g8fjiiy9GmecXmr34+3DN4jB1dPPwxj+nQkAwAz+nO8D7szkO08ywOwuuyeXsAfKgkx8hhBBCJIU2P0IIIYRICm1+hBBCCJEUTcbnpxw7PKb/xsrRDNqzu3btanSez4pnn0U7NV9XNJ+frOfJ+5xeZW8G24VD1v/nf/4nyhMnTjQ6tPPic3F4669+9asosz8O2sjvuuuu3M+M48hL+Z4i6K/AbXPhhRdGmdPco68B9u0ZZ5xhrsPQdx5nWMkaUxWEYKt4s18P+zkgqfn5IOgbsmzZMqPDz2eddZbRYakS5Bvf+Ib5/P3vfz/K6JsXgi19MXnyZKNDX5B+/foZHfr19e3bt87nKAqldYR9VnBNZF8afDfxGMc1jKu6I+jrGMJX33EIjn/0BV2+fLm5Duc6+2H9+9//jjL6gIVgUyjwuxWfk0Pw27Ztm/nM9UUnP0IIIYRICm1+hBBCCJEUhTZ7eRVk8SicQ7axSjGHL2dRzvGad3zuPVfRyAr9z/vcnqmAj88feOCBKHPW33fffTfznhiCfPjhh0eZQ+KxOjSGVYYQwsMPPxxlDMMOwR5F8+8eOHBglPk4Fk1i1Q7BbAqg2Wvq1KlGd88990SZj7ixjUeMGBHlbbfd1lyH85bvf9ttt0WZw+DxPsOHDze6QYMGhSyKNm+z5mYtTOcYHs2//dhjj40yZ1/Hv0MzFJo9Q7DZmO+8806ju/nmm6OMqSVCsGvB0UcfbXSDBw+OMq/daI4pQsb9rL703iP47nv99deNbvz48Zl/h2YpTlswa9asKPfp08foMMQcMy5ztnyc96+++qrR3XLLLVHmigz4e1AOwZq9MFw+BNuXCnUXQgghhKgH2vwIIYQQIim0+RFCCCFEUhTa58fDs9EvXry47Pt5/ivllKlAXdFC25lSG7LtGduTq+zitfz70Afg+eefN7qf/OQnUfbKjHB1b/TtwTT5HGY5ffr0KHM4+xNPPBFl7/dwyPZOO+2U+ZypV3LH+XLmmWcaHfcNgr5Zxx9/fJS5ojf6bd1xxx1Gd+ONN0aZ5z72/SGHHGJ0F198ceZzoQ+Xl8K/oSjNkVqsITz/cN7eeuutRof+Juw/ufPOO0cZxwD6jIRg+5bvP2HChChzmZQjjzwyyt/85jeNjssgINiXRfD5yXq34DzhPkH/FvZT5DIjCPs7IlOmTIkypoQIwZZ3wn7AdAMhWD8fnrO45vPvwX7g9aFVq1ZR5vD8WvpT6uRHCCGEEEmhzY8QQgghkqLQZ/eVhpy++eabdd6DzTueCacamZr5+fEosOgmsRKcXdcLz5wzZ06UH3roIaPDo07M9hmCPRbu37+/0c2dOzfKF1xwQZQ5E/Rbb71V5/1C8I++8YgczWohhLD77rtHmY+TU8/4jH2Ylem3LjAkGvuaw1/xiJ7bHsNoOYvzihUroswVr1955ZUoDxkyxOiKYOpCSutDpesEmx3wM89pDGF/8MEHjQ7bk81ZaFZE8wSHrF9++eVRxjQIIVgz9DbbbGN03/ve96LMldq97PJsOikKbHL31iXM6oxm+xD8rM4IZ1e/9NJLo4wpBhicbxzqjvfkdwGmmEFTagh2veS/QzMb9x2aWqvdrzr5EUIIIURSaPMjhBBCiKQotNnLO/L1zC94vI3H6XxUmlU0kynH/Obdp2hmr6yIJXxOPppFHXvtY2TIuHHjjM4rbIfHwc8++6zRofkD4e/GvsSj+hC+elyPtGnTJsrf/e53jQ4jIPgYN3WwOK3Xn1xMceTIkVHGI3TuI4xoYRMj9pmXwZ2jUTDTd7du3YyulgUUK6G+6wObvXDt43UQ59hLL71kdBhV1b17d6PD+Y66P/3pT+a61157Lco8b7EfDj30UKPzMnIXYf3MS+k3s4nWA6OseBzjfbx1iXXY9nlNZ+yigHOd555nOkZTGr9PUYdZqEOwJllvPFSCTn6EEEIIkRTa/AghhBAiKbT5EUIIIURSFNrnB2E7NdoNWYdhzxxeiKD9ku2Qef18+P5NyRZdelYvLNYL81++fLnRoW0a0w2E4Gf4zLouBFsdHp+L7cvYX+wjgpW/uV+x8jeGtodgbdF8T+z3FLM9Y9Zlb45xqCyCfTt58mSjW7RoUZS5r3v06BFlrjSOPgocIo+6ovn41Bov1B19JHn+YSZg9lnBNBSnnnpqlDHkOQQ7/9CPLoQQ+vbtG+XDDjvM6LDfef5562zRqrpnPYO3vmAKDsyAHIIN+3/nnXeMDtuF11lcp3jOog5lzrrt+S1hv3NFeZx7mOU9hBBGjBgRZV4vqu3ng+jkRwghhBBJoc2PEEIIIZKi0Of1XvFShHUYgueZxxA8ZgzBP1bF+7DJA+9TqSmtoWGzFz4n6/AoFUOOQwihV69eUd51112N7qmnnopyhw4djA5DnrlgIR4H4/HxqFGjzHVYVG/GjBlGh2HwPAZ++tOfRpmP5HEc8d8V0dTVkMUw84bK8jE2mkoxBJpD3THDLZpNQrDmVf6tnjly6NChUWaTAB7nNxXTtVdwmdcabBc2S6EZZe+99zY6DLnmLNwzZ86s8/6cagLbdq+99jI6LIg6ePBgo0OzkNcnPD681BaNQWnt4D7xssR36dIlyqeccorRPfroo1Hmoqc4bzjUHU38DL63sC85S/QzzzyTeX9cIzlEHrN3/+IXvzC6HXbYIcps5sLnqnaR02K+jYUQQgghaoQ2P0IIIYRICm1+hBBCCJEUxXNcADyfH7TZc6kL9CvIa79n+7mH57uD9m3Px8grz9HQsO3WK/uBv4/bAX0qfvjDHxrdbrvtFmVMRRCCDWlFW3cItvI3ht1y+YxHHnkkyp4fFobkhmCre3N/4XMV1V+rscA5xj4WGB6L4dAhWH8QrM4+ffp0cx2G8HJKBZyrHOqLbLXVVuYz+hZw+DH2fRF8fqrtv4Xjl8OV99hjjyjjfAshhKVLl0YZfU1CsH27ePHizO/ecccdo3z22Wcb3cCBA73HzkURwtk9Sm3vpRTh9QVTMbCfFPrusP8W+y3W9Rx1gX4+OC/vuusucx3Ot1dffTXzfuj/GUIIZ511VpQPOuggo+OweKTafj6IVnQhhBBCJIU2P0IIIYRIikKbvTzTEB4Z8tGfF56JoLmH7+H9nfeM3tFi3nsWGe834JHrAQccYHR41MnZRb3QVAyZxP76xz/+Ya7DjMBMv379ovyzn/0s85k5m2nRj9MbE8w6ixXYQ7Bzk/sFswnj8TqbxzDE1svUzKDZ9Le//a3ReWboopk1S8/qrYHlmMTQFMymBKys3rFjR6PDlAZs9sL0Emgi5hQYl1xySZQ9MxebhSqdf0XNvu71F6+JnkmsZcuWdcoh2DWSzZs4b9jUhO2EJreFCxea6954443M++N377nnnkZ3+OGHR9mr/s4pZ2T2EkIIIYSoEtr8CCGEECIptPkRQgghRFIUxyBaB2ijZ9s3fuZQbfbfKcE2SkwvzunuvVTx+H38XF54fpHC25Fyngt9frjdsT3Zros2bbblY9tzH6Ft+vbbb4/yxIkTzXXog8Lp7n/zm99EuXv37iGLjTbayHz2UqsXrXJ0Q4M2/WeffdboPP+Z+++/P8rYhlzWBMeZVzWe+2yLLbao8xlD8MOA0ceoXbt2mdc1FOWk3qjrbzz/Ep5j+Jn9q7DtsUQNg2sul2PYbrvtosxrBn5m/xxvXnnrrOfb1RiU2oZ/D667nm8S+1lyG2bpuJ/z+rXhPSZNmpSp4/cG+h9hpfYQ7Dz1/Hq8qvHVRic/QgghhEgKbX6EEEIIkRSFNnvhsTibUfDIzTt+w+Nfvg7vydVrPTONdzSHR5RFC59lSs9aznNiW3h/x8f2eKzLx7h4T+4HbOvzzz8/8/swc/ARRxxhdPwZ8cJivd9X9L6tNT//+c+jzGavJ598MsqrV6/OvAfOTa4E7pm60ETGVaAvvfTSKLOZC00zPD6LYOpqLDDFA7sMXHbZZVHmsGc0ZWAWZ04ngffkdRznkWd+Z3Mcmko8l4gi4IV256Gc3+e9m7wq8miKwtQVbOpEkyKbF3EOYeb8EOxc5/eptwbju6La/Zr2Ci6EEEKI5NDmRwghhBBJoc2PEEIIIZKi0D4/eVOTc1hn165do/zaa69FmcsXYHr9qVOnGl2fPn2i3KNHj1zPEUJ+P5giVI4uPYP3zJwCIG+fsF8P2uy9Kr7se3HGGWdEGdPps90YP3OoLcK/B/+O/UzQfs66IqXNbwywhMEPfvADo8Ox/cQTTxhdlq8e+5pg2/ft29foTjzxxChzGRWcqzzf8ft4/Hghwo1BJetD3r/hUGksQcJVvK+55prM++Mc+Mtf/hLlckKsPT8O9Cnhe3p/11TSUHjpHLxUK14/Y7uwHx2mA2HQh2ry5MlRnj9/fq7vCsGWScGUEww/P879Fi1auN9RTXTyI4QQQoik0OZHCCGEEElR6LN7POrk0FT8zFlehw4dGuUJEyZEGc1cIdjjRA6lxNA/L6Nm0cMs64t3xMp9gse4/HdcfRjBtl+8eLHRYagtVn/nLM7bbrttlDHslq/1Ksh7pG7mYrDvjzrqKKPbb7/9oozzL4TsI3U0VYdg5/DgwYONDvuCw4jR1MXrAps8kSKYupA8qRR4/uWtGs4Zdl9//fUoX3zxxUaHJmpeP4855pgoY7V2z9zI5h38nfz8qPP6h9vBS1PSGJSex/t9taheXmmIPZuqs2AT1YABA6LsVXxnHfYfu0vI7CWEEEIIUSW0+RFCCCFEUmjzI4QQQoikaDKODGyv92zAw4YNizKGyc6ZM8dc17lz5yj36tXL6DBUj7+r0qrBaM8sgg9JyfbPvhFom/ba2WsHz1bLdl20Td9www1Gh+UR8Fn4uU4++eQo81jx/HwqrdzupexPARwj7BOHutGjRxsdfl61alWU2ScM/QD4/p4fB447Hp/4d+wzVqkvWK2odioMbAtuz8svvzzKs2bNMjqcq7vuuqvRHXfccVFGPxteT/Li+XUyvIYgXhmHxqA0JivtUx7HeVOmeH5E7HuFn1955ZUoc1vi2OFQ+k6dOuX6Pl67PX9Q/O3VLimkkx8hhBBCJIU2P0IIIYRIisa3veSknFDAb3zjG1E++OCDo+wdq5YT6lrp8VsRTF1Ifc013A5524VNYs8991yU77zzzsy/wyPXb37zm0a3zz77RLmcY29vXHnmlSKaumqZNdy7N88drLru4R13e1WgPfDvvGcumpkrCw5Lx/HKv88z0+Lceemll4xu7ty5UWZzUr9+/aLMmdMxBQE+Szkh+N51eTMZF536zsty3jdeqgfPjIjX/vznP4/yeeedZ66bMmVKlA899FCjwzWZ5zaP4yw45UwtTZg6+RFCCCFEUmjzI4QQQoik0OZHCCGEEElRLCeUKpFlfy5CJXXxVdDOy2G4Xbp0ifKQIUOizD4/eJ0QzYVy1iwv9QT6AHXs2NHoevbsGWUOV95rr72ijH51IdjSFx5Npcp6c8BrX/S78fyIDjnkkChvvfXWRoch6+wviSVpGO/vkIb0i9XJjxBCCCGSQpsfIYQQQiRFszR7IXi8V2kIpqg/XgjmHnvsEeU//elPRofX9u7dO8rt2rWr9iMK0aTB9YxD1jEdQdeuXY3uL3/5S5Q582+HDh2izKYSNGehyY3nt0xdDYdnzsobMo/9t/322xtdpSkG8qYG4XeyMjwLIYQQQlQJbX6EEEIIkRTa/AghhBAiKZqlz0+WL498fBoPtBWj/08I1sY8atQoo8vbZ1j9vUWLFhU8oRBNm7xhwq1atarK92FaCi98WaHuDQf2Ca+dedve87NBXzLW4XdzyRvPXwd9cRXqLoQQQghRI8reZo0ZM6YWzyEaAfVl80L92XxQXzYf1JfFRCc/QgghhEiKdbwy90IIIYQQzQ2d/AghhBAiKbT5EUIIIURSaPMjhBBCiKTQ5kcIIYQQSaHNjxBCCCGSQpsfIYQQQiSFNj9CCCGESAptfoQQQgiRFNr8CCGEECIptPkRQgghRFJo8yOEEEKIpNDmRwghhBBJoc2PEEIIIZJCmx8hhBBCJIU2P0IIIYRICm1+hBBCCJEU2vwIIYQQIinWy3vhmDFjvqjlg4h8jB07dp363kN9WQyq0ZchqD+LguZm80F92byoqz918iOEEEKIpMh98lNi7NixtXiOslmzZk2UN9tss8zrVq1aFeWWLVtW5bs/+eSTKK+//vqZ173//vvm8yabbFLxd44ZM6biv82iKH3p8dlnn9Upr7OO3ch/7Wtf7uPXXXddo/v444+jvMEGG+T+bvw77mf+/nKoRV+G0Hj9+cEHH5jPG2+8cdl/x3/z+eef1ymHEMJ66325bOGYCOGrfY/gfKzPXGSa89z84osvDy9wPoRg+8Frd7wHzxvsP+5nvBa/a21437c2atmX+N4IwX935IXbDNdBbIcQ/Lb48MMPo7zRRhtlXvfee+9FedNNN811P76nt15Uu428/ix789OQeB2Sd4HFDQ8PBpx45Uwub6JXcl0K4CTlfkBw8oZg27DS9sS+/eijjzLvz4uDt1GqdEPVXMC5yXORFzAEFzNvDuM4+PTTT3M/F17Lc9r7vryLf3MEX2i8KcQ5seGGG2beA9dSb35zn3jzG+/jbYxYh89SpLnJvx2fk8c4jn9vA+C903iz6o1/HPO4RnKf44bHm+feWu3NL17/a4nMXkIIIYRICm1+hBBCCJEU2vwIIYQQIikK7fPj2QbR1sl+HPgZfX7YBurZsD17s2fPxGur4dDWXPAc8fL6A6GO7c342bN1e3Zv7mePIvkSNAZeP+G49/wC0D/hueeeM7rXX389yr179za6ESNGRJn9KNB3h3XoJ+I9f2rgWC7HSRbBv/P8J3mtzrsGM/hcvB4XzdeyNM695+Q1K+9vYB8ZbBd+f+Z1BMfv9hyQvfcb/x6E74njTz4/QgghhBA1QpsfIYQQQiRFoc1eGP7Hx3SeeSnr2JXDCb0j10rzuOBRPj8XPnNDHu8VAfzt3LZ5j3i9sFuvLxHOC4PPxTrsP35GL6Q6BdB8yEfceIztHZu/9tprUT7//PPNdVOmTInyfvvtZ3SdO3eOMpvEvL7wzCiphbcjnvki7zhHnWc6K8dcjPfhuek9Cz5zEczTpefx1jlev7z3g9cnXg46/Ds2P+J98q6lHl5Yv9d3Xt6i+uRWq4u03sBCCCGESB5tfoQQQgiRFNr8CCGEECIpCu2s4NmRPfvpggULojx+/Pgo33LLLeY6DIM/77zzjK5du3ZR9uyvXti2+JK8Pk7cflnhmd792AcFbd2cvh/HEdvI0X7O4y1FP58suL09XykMRb/55pujzKHuCxcurFMO4as18xBvXKDfQdHCoYtKJeOcfSs9fz/PJ6fS0jZF8PNBSmOS/ZYQ7/dxe3q+L57/FvYl9yuus3lD4rEsSgi29AXPw7z35PUf1+Bq++Xp5EcIIYQQSaHNjxBCCCGSotBn93hUhsflIfiZevH47aWXXoryk08+aa7DY7RjjjnG6NDsxcd03vG5d6RX7VC95kg1UgDwsTf2F4d44rVe9XA+ji1aOG1Dg79/s802MzqvKjSat66++uooL1++3FzXokWLKO+6665G1759+8znwr7msYRzledi3mP55kilaRuy1sG8ofP8mfsL5xybOj/44IMo87sA3RmKQKk9eO3JWynA6xN+L2JmdJRDsPNm9913N7qs8HZe9zzTnfdcs2fPjjKvF9gOm2++udGxm0I10cmPEEIIIZJCmx8hhBBCJIU2P0IIIYRIikL7/HjlDLzwyTVr1kT55ZdfjvK8efMyv2vSpEnm8/DhwzPvj3ZqttumVrYiL2jv5jbyfAQQ7Ne3337b6DC9wWOPPWZ0r7zySpTffPNNo2vdunWUDzroIKM79thjo9y1a9eKnrm5giGo7JOAPlDYZyGE8I9//CPK2GfMzjvvHOVRo0YZnefzU+n8wzmdWt/mDSNnP46sUHS+bunSpVFm367Vq1fXKYcQwooVK6I8f/78zGfhEidDhw6Nco8ePUJRyVvmgcc0zr1nnnnG6M4999woT58+3eiwTMzWW29tdD179qzzOfi70ecHfWuZuXPnms8PPvhglNmPCP37cN6HEMLAgQMzv6O+6E0thBBCiKTQ5kcIIYQQSVFos1fejKx8jIahdKjjDJFoinnrrbeMDrPWssnNqw7tPWfK4bRepWAvpcGcOXOiPG7cuCjffvvt5rqnn346yhgGG4JvxnjnnXeizMe4AwYMiHKHDh2MLsXwdgTDi3n+4efnn3/e6G688cYoe8f+aIJkM5c3x1DnhenymEjN1IV4axHOTR7zaBLBtn3hhRfMdY8//niUp02bZnTLli2LMpu9MIMwm09xTBx++OFGhy4LRaDUhmiuCsFfEz2z8uLFi6P86KOPGt2zzz4bZV7P+vfvH+UsM1cItt35HjhPOOwd597KlSuNburUqVFGM2gINpydQ9s7duwYZc/cXQk6+RFCCCFEUmjzI4QQQoik0OZHCCGEEElRaJ8ftCFyWnSv4juGzuE9OL04/l2fPn0y7894tlr0WeG0600lDB5tuVyxG+3+5fhheTrs28mTJxvdRRddFOVbbrklymw/x2fB0iQh+O2OafPfeOMNo0M/MPYJ8UJRUwDbn/sCx8xvf/tbo8PwZWTHHXc0nzG8vUuXLkaHc4z7Bec0z2HsJ29cpwb2H7cn+gNxFe9Vq1ZF+e67747y//zP/5jrsK3R7ySEELbaaqsoL1q0yOgwVJv7Ev03ORy6liURKqH0+7msg1dWxFtT0Gfmkksuybwnz8sRI0ZEmX0rsT1R5nvg+OB3Mq7BvJaiDxCH4ONaOmTIEKPj56wm6a3aQgghhEgabX6EEEIIkRSFNnvhEXY5pgU8jsOjVC9EnY8kve/zQtabkgmkZAZkMx7+Bj6OxaNNbk/P5Ifwcem9994b5bPOOsvo8IjUM20NGzYsynvvvbfRoUnzhhtuMDrMPMrH+miCmzJlitFhGHyK4PE3m0owizOGOTOYPuC73/2u0eHxNx+9c8qKvHgVxFPGC/NHkwRnVb/44oujjCkMeC3F+fetb33L6HAe81h58cUXo8zmjwMOOCDKaDoLwc883BhkmVS995GXfsBL64F0797dfMb55s2hrMzdDL830LTFFRMw1J3Nm9i3mHokhNqmhNEKIIQQQoik0OZHCCGEEEmhzY8QQgghkqLQPj+IZ6NnHYa0e5XckbZt25rPeVO+r+1ZkKKFR2f9Dvztns2X05t74e2Yuv7Pf/6z0f3+97/PvCeGraKd+kc/+pG57rDDDovyFltsYXRoF8fU8CFYPx+2g6OtHqu/h1CM/mtM0A8H0wWEEMK//vWvzL/D/tx3332jfPDBB5vrvDIVCPuP4bXsa5FaSZlK4FQEM2bMiPKFF15odOjng747I0eONNfts88+UebSE+hXx2s1Pss222xjdF//+tejzBXK81apbyhK445917zxiL6WXA7innvuiTKPf3yP7bnnnkaH5SG8EHJMTdCyZUujw+/j9wdWmL/vvvuMDn0mORUB+pyxj2mbNm0yn7O+pL2CCyGEECI5tPkRQgghRFIU2uyV1/TE16HpBLOQ8nEoXsdVuz2qUdW9CJTMPOWEXHoZdPG3Y7XmEEL44x//GGUMhQ7hq2YTZI899ogyZo7dfvvtzXX4LJzJG4/nX3rpJaND8xUfBeOY4PGB3+Fl/G6u4LiYMGGC0Y0fPz7KbB7EY3PMOMsVm9FUOXfuXKPDUFkO9cU+7NWrl9H17du3zudIHWwznjtnn312lB955BGjw2zNo0ePjvIpp5xirmvVqlWUOYM7zs1x48YZHYbMf+c73zE6zPrNa27R3AuyyOvK8cILLxjd888/H2X+7Wgi4xQG6HrA5iycz14YPLoJrFmzxuhwHcDs+Ay/Uzp16hTlrl27Gl0t35nFHRlCCCGEEDVAmx8hhBBCJIU2P0IIIYRIikL7/HigXZftnugH4F2HtkcOZa6UItuYs2C/Ca8qMvrn8HXoO4DhmCGEcMUVV0SZK2pjm/3Xf/2X0Z122ml1/t38+fPNdeirgCGXIYRw3XXXRRnt3iHYcGgOje7WrVumrpbVhpsCaIvHvg3B9gX7hWEpApS5P7GUwrRp04zu4YcfjjKHD6NPAvqhhGB9URT2/iW4Rv797383updffjnK7Aty+OGHRxlTT3B5C1x3b7/9dqNDPyIuL4P35LIYnl8K+nNllZZoSEq+pV4ZER7H2GY43kOwfj08v3Bcc6mIu+++O8pc+gJ9qNCXh9+ZmH6AS1jg/dl3DN8V7G+Hfj6DBg0yOq9MUn1pem9qIYQQQoh6oM2PEEIIIZKiyZi9ygl5W7hwYZTx2I7NO3h0yke1Xih9pUfmRT1q56zKHp5Z77XXXovyP//5T6Pj0HfkoIMOijKGPYZgj1YxxJmPz/E4lsMs33zzzczvxiPYQw891Oh22223zL+rtLJ4cwH74s477zQ6DP3n7MxYjRvDbTnzNo4lDnXH0F9MZVHX56zv5ozBKYMmxjfeeMPo0MRy4IEHGt2OO+4YZTTpcB9gmotrr73W6NA8gqHzIYTwve99L8qcasJbh4qW4TkPbApCszr3ifd3CKcmePTRR6PM76IssxSbnbBtOUUJmq65f/D72CSGY2fTTTc1OjQHVjuliE5+hBBCCJEU2vwIIYQQIimajNmLwWM1PvpDsweadPgIHk0X7ImP92QdHuGxOc7TFTUSrByPemyzlStXGh2aI1599dXM7+DIhueeey7KbP7Ao9QlS5ZEmTOU4nUcAeHRuXPnKB9//PFGxxmCEfwNXhRHcwX7l+cVtg2bBzHLMkaVcJ9h//IxOUaJzZw50+gwmo+zCT/99NNRHjBggNE1lazAtQBNxugyEEIIw4YNizIXmcQ59/rrr0eZTdLXXHNNlDkrMI6HY445xugGDx4cZV4zvIjUovVf1vN4RXi9bMxoGmLTE75zeH1G2OyFYwB1XlFhz7zI7xQ04/HfocsJF9bFNZ8LVteXYo0SIYQQQogao82PEEIIIZJCmx8hhBBCJEWT8fnxwsTZHrxgwYIoe6GAaGdlu6xn68zr81N0Sm3D/hboJ8Vh8NhmbFNGXytud/zMbYZ+PhwSjz4jmAGWs8FihlIMz+XvZl+B3XffPcqcEdizaTelfq4FN9xwQ5S5nXDMDBkyxOh69OgRZZy38+bNM9dhWgr2ecAwdc7Yjfdk/7GJEyeGLDB7eGppDNBvBOdRCH7YM/YZZnS///77M+/Rtm1bo8Pw9m9/+9tGh74gvB57PlpeVv/GoLRW8HsK1xBeg/E34JwJIYTNN988yrw+499xJn38Du+96KWqQB3PPWxrXp8RzuKMfmVbbrml0VXbzwfRyY8QQgghkkKbHyGEEEIkRZMxe3G4Kx6/8TE1mk684z08duQjXS+UHo8P+VgQn5MzUnpZoxuDrCNh/HfP/MfFYHfaaacoc8jsXXfdFWXuLwxv5Ezb+B3t2rWLcs+ePc11U6ZMyfxuDEVns9dvfvObKPPRM5peeHzgkXI5ofVNCS9NBIaYc1ZWzPDLcwDNprNmzcq8Dscgm1c54zOCpi4OH+YswUjRTF2ltcJbJyo1ubP5pX379lHmrObYR7xeoNkL5x8/Bz4nZtkOIYQzzzwzylxsE+eYV6CUTSw8Hhub0tzxipAy+Bu+8Y1vGB2OY0wxEIJtM16fW7VqFWWeb1gEFU2TvJZi1mg2e+HvY3Mcmq/OOecco0PTZ79+/YwO373VXmd18iOEEEKIpNDmRwghhBBJoc2PEEIIIZKi0M4KaCvOG3oegg3d9OyQXugf2kTLqSDsPSfa2j0bdmODv4H9CpAWLVqYzzvvvHOU2Xdn1113jfLy5cuNDtuX7fXdunWrUx4/fry5bsKECVHmchOYWv2UU04xOg69RbzfXk5JkOYAz7Gtt946ytj2DPvqTZo0KcqYup7nGPrgoD8J35N1CIYEhxDCDjvskPlc1a4Y3Rh4PoWo43GN4cW8Dvbp0yfKM2bMMLpXXnklyuhrxSHWhx12WJRPP/10o8O0BUxen5+i+9yVxra3njC4tqIvZQg2fQSubSHYdYnnlBf2j/MBr8P0JSFYX7/Zs2dn3gPXhxBC+NGPfhTlUaNGGR32Lb8/a9m3OvkRQgghRFJo8yOEEEKIpCj0eSEe3XqVs/moDMP2+HgbweM2Pj7E7+OjYO9ZPBNZ0Y5ns0It8d/LCcnHcEYMnw3Bmhy5jbDSM5uhOJyyBIbIhvDV6t4ImtxOOOEEo8PwT8br5yKkKqg1XiZzzgSMoMlq6tSpRjdu3LgoDxw4MMp8vI7msTlz5hgdHsvz3MRUBt///veNDkNqm4OZi/HmGMJjF03UWEk9BNsvDz74oNE9/vjjUcZ5yll5zzrrrChzdl+E1/G86Qf4t2I7FCHDc4ly0hZ47hP43vLMgXwPb3zgfED3DK6yjqHuHpwy4Tvf+U6U27Rpk/l3XKWeU5NUE538CCGEECIptPkRQgghRFJo8yOEEEKIpCiWE4qD5y/D/jqckrsE20cx/TfbXNEmyt+NfgZsx/Xsup4dvkh4vlZoR2abMtrXua29sh+e/wWGfF5//fVR9mzPbCf+/e9/H2UskRGCH37q+X0VzX+r1vDYHTlyZJTHjh1rdFlhsyFYXx6sss5zFvuQ0wpkze8QbHr8I444wui4JApSND+RPOUtygH7zwuDZx/Jd999N8p//vOfjQ79M3CuXHTRReY6TDHA8wj9S3hOeT53iFcRvQiUxpY3rrhPvPJKnu8O9mU5frJZfp7ss4ffx/fA7xsxYoTR4brLf4f3ZD+vWs7LpvE2FkIIIYSoEtr8CCGEECIpCn12X2lF16zwPz5axGM6DunDEGg+WvRCwb0jV9QVwQRWOlJk04/X1pU+N5q2vLbmCs14LH7ddddFmdsdn/nII480ul122SXKbCL1soviMSu3SdHMJLXAM7nsuOOOUT7wwAON7o477ogy9yeaSvKaHNnMhekQhg4danSnnnpqlDEjeAi2nzgLcZEzrmfB/YO/z+s7T/fGG2+Yz3/729+izPMWOe+886J80EEHZV7H8wjXE29t4XGE44P7rmjzMc/z8FzIm+aFwfWynO/Dv0PTJ87lEGxbs4kU05tgFuoQbN/y3+GYKOe31pfGfwMLIYQQQjQg2vwIIYQQIim0+RFCCCFEUhTa5ydvFVy2E/bo0SPKno1y7ty5Ucaw2xBsqC2GxIfg29Y9u3XRfH5Kv4Or3ed9zkrDcL3Qdg5TRx+Op556Ksrcl/icXDka/Xz4u/E3sL0c24X9ClIrb8F06NAhyuecc47RYemLm2++2eiWL18eZZxH7G+1dOnSKKN/UQghjB49OspHH3200fXt2zfzmZGm6OOzNvKOSR7n2NbXXnut0d14441R5rmJ4cs/+9nPolyOz03e9ZLXeK//PvjggyhzmoQi4aUN8foSr+W122t79HPj9sS/W7ZsWZSfeeYZcx2OHe6DTp061Snz9/F3Z6VMqDWN/wYWQgghhGhAtPkRQgghRFIU2uyVN0MlX4dhdmgCe/PNN811eGSIJrAQbKVxzDLMeBk2maJmBeajUmxbLwSTdfiZj23xyJWPovEodcmSJUZ39dVX13kdt/sPfvCDKG+zzTZGh/f0KkVz/3A4NNJUzV5ef5YD9gW39+9+97son3jiiUb36quvRnnevHlR5mNyrMDeq1cvo/MyiWNfczZvz5yL5jg2czcGWeYgL5WGZ0LCtCFcORurs1911VWZ9+D5geZOL/UDjjk203jPjDrPzOWtQ0WgtI7wb8X2LMcNAtuX2xrnM7d11nUMppbg7NLYttzO+K4tx/SZ9z1fbVcRnfwIIYQQIim0+RFCCCFEUmjzI4QQQoikKKYTSh2w/dLzIRk4cGCUBwwYEOX/r707xk0khsI47q2R6EgTUUCRNk0KhChSReIKJLkATaRcImfgDEgpyCnS00VcIlSIZqtYn592njyzEAb8/1WOPBkmjMexxs/Pdr5cl+Ta+ABN1W3P780pe3EpbYv5+flO6yzXb3JcCH6sjd7b9/f3pE6vTeefbRzW09NTLNtU+Lk7CntbZlh6nral07e89urFaXl0nt5uGaLPi1163u/3Y9kuna66Lm9LErtsW7e+sPRe2zbShjifHE3jWfR7st/narXKOsfz83Pys25r0u12K39P+2ovzYWXasI+i3qsbbdeuzqFnLQK9r5q/+L1z7kxUyH4/ZSmB9hsNrFsv0vd4sRe12AwiGUvDsvrL6xjxlby5gcAABSFwQ8AAChKu+ZhHPaVnfeq7Pb2NpaXy2Use6/i6mSW9F7FnVPm2FNN19jlk+v1OpY/Pj6Suu/v73+ew2Zx1qXRnU6n8rObLimtU9c2x16W701pWrlTEnrN3rPeNCOs10ba4KdvstO0uRl8bT+k5/n8/Ezqvr6+Ynm73SZ14/E4lh8fH5M6b4pR5U7317mX59TP5rDP6CH6F5vSwGvz+gzrkvXRaJQcp2EJ+n82hBCm02ksX19fJ3Xa/rzn2bY/L83M/+LNDwAAKAqDHwAAUBQGPwAAoChnE/NTR9UWDOe6JcGlsTEAXhr74XAYy3d3d7H88PCQHJcbfwCcg0P3VRrTcXV1ldTp8vP7+/ukbjabxbKN/9Br3O12sWxjd+h3T6NOXJTeI90e6u3tLTnu9fU1lm0MrW0fSpfSe7FHXjzQofHmBwAAFIXBDwAAKMpFTnspnVI51I7WqE8z6trXnrpk8uXlJanTLK+6e7hmCrbHndMydOA36DNhn53FYhHLdqpElyzb/rIqC/Ghd99GM7m7pYeQTlvqNKhmbQ4hhJubm6zPtufPTXfQNIN5E7RSAABQFAY/AACgKAx+AABAUS4y5qcqlocYn9PxljdqPMJkMknqvF2ggdJ4qTtyY216vV7ys92KoIpunxFCGh/kLavW+A/igY5Ltw7ytsyw96FqibmN3dnv95WfrXGXtj14/bj+nr1m/Xty44Zy0RIBAEBRag+l5vP5Ma4DJ8C9vCzcz8vBvbwc3Mt24s0PAAAoyp/fXFcPAABwarz5AQAARWHwAwAAisLgBwAAFIXBDwAAKAqDHwAAUBQGPwAAoCgMfgAAQFEY/AAAgKIw+AEAAEX5C1ZjRiQ6cVSDAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 720x1209.6 with 40 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Noisy images (noisy_test) :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAByCAYAAAC89bCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAr/UlEQVR4nO2de/xVY/bHFzHjkkwzEgopl6mZSEUiKbdKJIUaanSTJpIxEZXRKCZTiZiKKffKfdzvRmQQuXYTpSuKIZeiKH5/zOzHZ33O2U/nfDvHz8v+vP9au3XOPvu797OfvXvWWp+12XfffWdCCCGEEFlh8//vAxBCCCGE+CHRy48QQgghMoVefoQQQgiRKfTyI4QQQohMoZcfIYQQQmSKLQr9YN++fVUW9iNg3Lhxm23qPnQtfxyU4lqa6Xr+WNC9+dNB1/KnRb7rqZUfIYQQQmSKgld+Em655RYzM/viiy/cv59yyinB/sUvfuF848aNK2jfY8aMcdt33nlnsJ9//vliDjOw2Wbfv/CxptF5550X7JEjRzrf9OnTg/2rX/3K+QYOHBjsBx54wPnWr18f7LVr1zpf5cqVCz1sx2abbWZ/+MMfKvTdGOPHjzez3PMyc+bMYDdu3Nj5zjnnnGCfddZZzvfII48Eu1+/fs5Xp06dYC9cuLDgY4xdv4rw1ltvuW28JjxuY9fr3HPPDfYVV1xR1DH07du3qM8XSnKf4Tkz8+eNfVOnTg12586dU/fN5573k8by5cvd9oIFC4L9zDPPBPviiy92n9t3332D/fTTTzsf348IjsnddtvN+c4///xgX3TRRc43fPjwYBczzkaNGmXvvvtuwZ8vlORazps3z/173bp1g3322Wc739ixY4O9dOlS5+Nzkcatt97qtrt06ZL62Z49ewZ70qRJwS5m/CF77bWX237nnXfy7sPMbNdddw32smXLUvcZY/Xq1W67cuXKZbk30+ZZJHZe+Hvz588P9j777FPwcVSrVi3YOMebmQ0ePDjYkydPDvbHH3/sPvfLX/4y2F27dnW+5N3ALD6OvvnmG+fbcsstg/3ggw8637HHHhvsKlWqON+SJUuCXbVqVed7+OGH8+4PKfrlZ/To0WZm9sc//tH9O77g8MXCFwucgMz8ZMj7nD17dupxHHzwwcF+9NFHnQ9P0pw5c1L3wb+HHHrooak+vMg4gZuZtWjRItj4omDmX+74hsWbuX79+s733Xffle2BaeYfgGZmv/vd71I/e+WVVwb7mmuucT58YeSJGYlNjvfcc0+qL8Z2220XbH4xTyYfMyvqJbJly5bBfvbZZ51vw4YNwX711Vedr2HDhqn7vOGGGwr+/WJJHpT8IhF7gcRzxS9/OMlWr1694H3GfDVr1gw23isM3puxlx1+MTrooIOCfcwxxzhf7D87uI0PXbPchzIyYMCAstybycsKv8S88cYbwcaXHeb111932/fff3+w+T8tH330UbD5ARPj+uuvDza+/Lz33nvuc8mDyKy4F8vHH3881YfzJ88nJ554YrDxP9BmZsOGDQs2v1hOnTq1LP/JbNCgwUY/s2bNGre9zTbbBJuvSYcOHYJ94403Ol+PHj2Czfczzs+777678+HLCj6L+N7D/9Djc9DM7Kmnngr23nvvbWnwC9VOO+0U7OOOO875cN79/PPPU/fJJPd+7OVHYS8hhBBCZAq9/AghhBAiU+jlRwghhBCZouicnyTWysnJMTDWjvbGwMRiBuOonEC7//77B7tevXqp+8AYIueaYFw8lozGOQexmPbEiROD3atXL+fDhK1Vq1al7qOUJMfKfx/Gdbt37576fU62w+RWPg+tWrUK9l133ZW6T47RYnwbeeWVV9w25/kgGMf/9ttvnW/WrFnB3m+//ZyvadOmwebr3L59+2Dfe++9qb+db+yUI6/A7Ps8pKFDh7p/520Ec6U+/fRT58P7ChOQzeLjnPMs0njuueeCzWPi66+/DjaPwa233jrYX331VUG/ZWZ26qmnBptzJXDML1682PkwsZJzJcpVjJDk+lx11VXu33/9618Hm8drocUBtWrVcts333xzsNu1a+d8nTp1Cjbm+JiZ9e/fP9iYJ8U5Uv/6179SjwXHQLNmzZzv6KOPDjZeczN/3f/617863wUXXJD6e5zojkyZMqUs+Vv//Oc/zSz3OPEaDRo0yPkwZyuW64K5r2a+MIiT1XHsYO6TmT8vOD7uu+8+97mf//znwf7973/vfDiOYs+wadOmue1GjRoF++2333a+WL5dDMwzS0MrP0IIIYTIFHr5EUIIIUSmKDrslYStsBTPzOzLL79M/c7hhx8ebC7DPeyww4LNpXOsI4Bg+XKhOkIMltquWLEi9XOl0Jcx86Eu1kHAZUIOlTRp0iRaPr2pFPP3NWnSJNgzZsxwPlymHjFihPNhOT2GWszMevfuHWxeWsdl99tvvz3YuFTKXH311W4bNYc239y/72PoIFaCzxS6PJ5vH+WSLfjtb3+b998xRB2Td2A6duwY7Fi4gMFSY2bUqFHBxnN/4YUXus9dfvnlwebrgmEm9uGyPOtsYaicy49Ro+rMM890vpiOz9KlS3PCGaXg/fffNzMfWjIrTg8GwXAWh/UQLIc28/ccg/MZljbzcWD4pXXr1s4XCxniuOVrgGENDnPh9eBx9f9BUjrOx8ISGQiOTw4voYzICy+8kLoPfsbgeeH7GcPOffr0CXZsTPHzGsNerLuDcKgupkGF453D8igBwPdFEkJVqbsQQgghxP/Qy48QQgghMoVefoQQQgiRKYrO+UnibJzj85e//CXYnNez4447BpvlslGivU2bNqm/y60iMBa5cuVK50O5bPwcy4RjTBT7i5jl9h9BML7Ipft/+9vfgn3yySc7H7ZE4DYH2FIiX7uAcuT8pOUPYGyVJdIR7pMVy33AnjAMnuutttrK+datWxdszD948cUX3edQUp9ba2BsPdZeIhbf5rGJcv4M9rmbMmVK6ufKBV9XbBOAOVtmuXlbCLZS4JYIFWXAgAEFfS4mpYH99JIy4oSdd9459XvYzmDRokXOh60wiunVha0ASskuu+xiZmafffaZ+/eK5h/Wrl27oM9xrgaOJS57xjwiPC7sk2bm2x6wZATmOt5xxx3Oh/3zeNyi/AHP/7E8n421ZSmHbEGlSpXMzPc3NPP5rpjjZualPB566CHnw3YksfHwxBNP5D2OfGCe3gknnJD6Oczffe2111I/FwNzg8zMhgwZEuxi8i6R008/3W2zDEQ+tPIjhBBCiEyhlx8hhBBCZIqiw1533323meUu5yf/no/bbrst2LiUbuaXrWOdwHnJFbuLs69GjRrBxu6/vOSK5dLr169P/W3mP//5T7B32GEH58OldS6zw+VEVj1Fxc18S3/lKI+uXLmymeWqI+Oyf2zZkTvfY5ksq5LiUi0v/+L5fPLJJ52PVV8TTjvtNLeNHci5BJOVTivCFVdc4baTsIRZcUu11apVs5NOOmmTjycfyXFwefJRRx2V194YMaXmPfbYI9gcQsKlcQ6joJI6hisw7Gtmtu222wYbl8XNfGkzh9gvvfTSYL/88svOh1IM22+/vfNxB3gEQ69YSm/2X9mGmCTHpvKzn/3MbceUlGMhHZwvWX0XrxHLJVQkzMbXK1ZujL/NaQIoRcJjjENdaWCXczM/rpiXXnopGhavKMl14d9GiRZWsMbnyODBg50PFeUxzcLM39+cGsDq5AhKkXC3AwTHB5eoF6owzuOjW7duwebOBwiX52N4Ne33Ys9NrfwIIYQQIlPo5UcIIYQQmUIvP0IIIYTIFEXn/CTddGM5Pgx2ceX8CO7wiqxevTrYHPPFPJ8zzjgjdR+YX8LS/p07d079HsIdoDFGyT7ORUH+/Oc/B3vPPfd0Psx9KlU7jY2R5PpgSamZz2/BWLCZ2QEHHBDsnj17Oh9eS4zXm3mZAS4Tx5wALGOOgTk+DOf44JjjnA3M54id97p166b6+HvYAf3NN990vo8++qhs7S2S4+B7DHMpOOcuVhKK5a9cJouyDcwll1wS7LScLTOfk9C2bVvnmzt3brC5dBlzflBig7cxl8zM5/8xeM4ee+wx52vVqlWw+VrHpCBKAeeCVKtWLdjcqiU2frELOpeU4z3O+UA4Xp599lnna968ebAx74nzIDn3BMGxyTlm+PdUr1491ReD2+XgXIP5U2b/ndvKkfOTHCu2UDHzsh48X2IHdrTN/HzNXdCxNQvnT+I54zkCO7njc5HzZFGaBvM4zXyeJ/tw3PI9g8++li1bWhrciZ63kQULFqT6ErTyI4QQQohMoZcfIYQQQmSKosNeyfImhxYwlIHKlWZ+Sa+YsFdSim2WWzp9/PHHB7vQJVD+bSw9x2V2BsNcTCzMxeAyHYYGzNI7cpvlhtZKDZdxI3PmzHHbWJLMoTtcZl26dKnzYVkkh8twiZRLe7/++utg4/X78MMP3edQRZzBEmdUOzYrfOxwZ2VWKUVmzpyZ6rvuuusK+r1NIbZ0zGGuQstTWTn52muvDTaHibBUlu85VG6eNWtWsFkd/E9/+lNBxxUbZxx+iZWs429weDz2+8uWLStLGDM5b7EwG4eocGxhObSZ74LOEhUY1sPwB8MhaQx74T3NociDDjoo2GvXrnU+DKtxWAhV4YtJBcC5FVMNzHLnjR+SWAcDDi/FQIkWVII2M1u+fHmw+ZmyYsWKYOdTt85n83yM42Px4sWpx4jSCma+JB/TWcziHeA/+OCDYMfU2xl+NuVDKz9CCCGEyBR6+RFCCCFEptDLjxBCCCEyRdE5P9zNPQFjvhznx87EHGvE+B93UscO8Jzzg3C539577516LAh28OXYJlKq0vNvv/022Nttt53z4Xng3+vWrZu99NJLJTkGJJEI4BycAw88MNjcOoQ7NiNHHnlkQb8baweBZcz5PpvAeRkIdyXmzt+F7N/Ml5TGcnyY2Fjq169fzvkuFckxcuuUGHgeY9cFcwnMzOrVqxfsWL5cLLcA4WsWG++jRo0KNss0nH/++cHGvCQzn7vHOTFLliwJNneUx2M75JBDnK/QLvXFkrRl4PN17LHHBptzcHr37h1sbDFi5scE+wrN+6pZs2aqb5tttgk25tiZ+XYzPFaw9VHr1q2dD3OarrnmGuc766yzUo+F83wK5eOPP67Q9yrKiBEjgs1yDrGydPTtv//+znfEEUcE++9//7vzYXd4noNwnygHgOPNzKx27dqpx4x5e3wNMN+J876wzQfnRGKO6cEHH5z6e5xjdM4555iZf8YzWvkRQgghRKbQy48QQgghMkXRYa+GDRuamdmjjz7q/h07xsaWTnkJD8ucsbTdzKxJkyYFHROGufg3UFmSVSdHjx6dus/zzjsv1YeKqNyNOsZVV10VbO6kjrCacK1atVwX7VKRqC6zEiiW07I6K342FubikMPkyZODzePj008/DTb/ndjlt3///sGuX7+++xyWunNX4lhoC+FwVWx8dOrUKdjcRR2XY3lpeN26dWVTeE7K8VmlduTIkcHmsAPKHMQkD7CLvZnZ+++/H2zu2o3XvtCO9zfddJPbxuX2QYMGOR+eXw47YUktd7xO5i6z3BJ5LNdnBVpUip4+fbrzlSvslYT2atSo4f4dy7gvu+wy58PzxPcfjoEYfL0wPMgKzxgSx7Ba06ZN3ecwZIXSFWb+/sC52syPFQzFm/mwFx8zqtAXky6www47RMMkpQb/dpRhMPNl3XzPbL/99sHmLuio5M3PGH6+poEhbQwxm3kVbkxLYWLhbr6WMfkPlMLhc4TXGeUUzL5/VqiruxBCCCHE/9DLjxBCCCEyhV5+hBBCCJEpis75mTdvnpnltrfAuB2WPZr5XAouSWMJemSvvfYKNkqpm5ldfPHFwebck7QywVgckmObKK/PYGz9qKOOcj4s8eMYNsq+c7kfxiaxJDHt+EpBkhuzcOFC9+/YEZfl05944olgY8zVzEsOJGX0+bZ5n40bNw42X6PXX3892CjXzp2Ok3GZD/Tx9apTp06wn3nmmdR93H///W4b83yGDh3qfKecckrqfspJ0lYDO2ybmb3wwgsFfZ9zZLCrO+b4mPm8qg4dOjgf5utwGwm857Bs/NZbb009Lm590a5du2Cz5D3eRxdddJHzYT4H30/Y4oFJymbNcnMB33zzzdTvbQqJ5D+3wYnNZ5hDUmiOT779pIEthfhY8Hxu2LDBfQ7zIjmnBlsk8DyO5z2WixM7fs4FwRxGlsD47rvvypKPl7QWOeaYY3J+L4FL97Gtw/PPP+98KPvC+ZoDBw4M9owZM5wPy+AZzNnCHNpYTlssn+/6669P/V7sHHNeGT73ORcP85sqglZ+hBBCCJEp9PIjhBBCiExRdNgrIbZMPXbsWLeN5Y28VIVLgdh52MyXcvKSF8LLnrjMij5edkRiYS4ul8SwDXYeNjPbaaedgv3qq6+m7pOX93CZcNKkSc7HYalSkRZKwyXQ9957z/kwTLls2TLnwzAYK3zi8j2GuRguxcZwGYZzuLw8BobIeByhmi+rpaKi7fz581P3z+cRw2BYxm9mVqlSpY0dboVp27atmeVKRHDILg2UEjDz9zgqu5rlShIguBy+zz77OB+q6D733HOp+0AFWgy/mfnxwwrkuEyOZbJmZk899VSwWYUYYYVnVMHu2LGj83EZfqlIriGHLnA+Gz9+vPNheDAWkkCleTMfGnr55ZedD1WjuXwe56zu3bvn+Sv+C0qDMHhc2K3czF8H7vyN15K7hGN5PksFIKwqzuelVCTjnJ8/s2bNCjaHytesWRNsVjbGUCGHRdEXC79jCoaZv/djz1qEQ1s45ljiA/fJzxSE01sQHn84J+E4NcvtFJAPrfwIIYQQIlPo5UcIIYQQmUIvP0IIIYTIFEXn/CSd17kVwCOPPBJsbolw9tlnB3vrrbd2PszzKaZz7x133BHs2bNnOx9K5cdKQ1GyH7sLm/m8ApQTN/Ox2sMOO8z5Yh2FMQ7K5bsIl5TusMMOZSnB5Jh3AsZPuY3JhAkTgs0l1bF9x0r18RxynBpL3bE0db/99nOfww7XW221lfNheTufd8zz4TwJzIXYdtttU4+f26bE2mlwS4JSkuThFJrjw3BZOpaKcxdolGpo1qyZ8yVtNsxy21YUCpbSDxkyxPkwh5DlFk477bTUfaJUAucEYHue6tWrO99xxx0XbO6kftlll5Xl3kxyfbh1D8pJ8DjHNiOx8m/uXo55PrFO8U8//bTzvfPOO8HGnJ8bb7zRfa5bt27B7tOnj/O99dZbweYcydh9hPloKM3BcHk35vFhV3Wz/85n5WhvkXbPY4sefH6a+fmGc4Xwmcm5o5gvyvl2mLfI8hwoHYNgDpGZz/Xj69W5c+dg8zyLzwO+nzFv7pZbbnG+RL7DzLeHMvPzTEXQyo8QQgghMoVefoQQQgiRKYoOe2255ZZmlhvead26dbBjZY+8RDxu3Lhg8/Iehko++eQT58MS6JNPPtn5eHk2gbulo/IthrLM/BIbq7/iMjgvLw8bNizYrEL87rvvBpvL11FpGJeTzeIq2KUgVhaL15W3Wa0brwmqs5r5Tr58HbA0e8qUKanHiWHDxx9/3Pn23HPPYLds2dL50hS/zXy3eQzPmuUusyIYYsCle/49Xsbt2rVr2bq6J+HmWNiBiYWFkxC3mdmKFSucD5WNeck81h1+1113DTZKJfC9v2rVqrzHaObVprmkFhWfWUUdO7JjOTTDoVfcRhkIM7PDDz88dT+lAMNcZl46gefZHj16BBvnKDPfmZ47q//mN78JNqpzm3mlYSZNYRevMYNdwc38uY0prMfU+ZcvX+58KAFw9913O99dd90VbA4ZlUvhOTlWnksx1MXjCJWbOSSGcx9LrWCndQ5vYtiXzyfOmSj7gmkHDF9LniMQTFnAZ6SZ2bnnnhvsfffd1/lwDuZ3DtwPjm+zeMf5BK38CCGEECJT6OVHCCGEEJmiwgrPrBCJxJZKMfTD8FI0NlVj9d1Y1QyHPRI4pIJhL8xUN/PLxldffbXz4fI5gxUyvPTMlRRpcAiuadOmBX2vovDyaKFwaAuXrXkJG5d1K1eu7HzcUBPBiisML3EoBCvkWL03VjW4fv36YHOYC5eJuaIQwwMnnXSS82Hzy0KbRpYSHne77bZbsJcuXep8sZAg+jBsaeZVz2PfGz58uPM1bNgw7zHzEjqGr1CxnX0xMHTG8Hyybt26YHMFGd5/H374YUG/vakkzSxZ3ReVjnlsoeJurLHkP/7xD7eNYxura8z83HfooYc6H1bbYPUtNyjFakiea2JhV2xszeBneexgxRY3WcVr+UPdm8nv8H2Cz4oqVao433bbbZfz/XzEGvLyPIghVFbnR3VrvLdxDmRY3Rz/Bn6edurUKdhcCYxjjCvBMMTHSuGo7M3PlEKurVZ+hBBCCJEp9PIjhBBCiEyhlx8hhBBCZIqic35uuOEGM4uXszPYefnMM89M/RyWvJn5Dtgcu0W4FBBjiBj7a9Gihfsc5hKwSm8sZoiKtpyvgiV2WA69MWKx73KR5LhwvJTVfAsFlZo5HozyA3ydMQ+EO/dinhaqBbNSLI4rLrWOKd/ieecyyzlz5gSb1cdROZZLfrn0Fvn8889TfZtKIj3AuVgc30cwryJ2btiHnc4ZzDnC3AUzs3nz5uXdP4PXuhglV+wUz2XLWG6LZfzFwLkM9erVy5lXSgHn+iSgGnMs14oVdlHlnNXKURKA851QRZqlAzA3cfTo0cFmFX9UyOc5EaUguDs7S36kwTl3COf7oazGDw3Kupj58cn3F+YNxvLtOL8PJShWrlzpfDjmOZcH1d1RzmGLLfwrAl5L7s6OitI8fjHPh3NvMc+HxyZ+lqVj8LP8DCsErfwIIYQQIlPo5UcIIYQQmaLosFdauAuXYFlx+fbbb0/dHzao69Kli/PFQl1ImzZt3DaqxcaW1rEBJJcaFhqGOv/88902luNxiAOXBXn5HJeUuRy0ELXKitC/f38z+76sNgGXvnGZfWPgtUz2nYBlnbx8ieXX3AAVQxWoPMrlrbiMy2W+eC1joQIuoUbFZ242u8022wSbJRrat29vaXC5ZilJwl2xv5HLv3G5O/Y9DlWOGTMm2O3atXM+vP9Q9dvMl9tiuTmrw2KDUg6Vo1wGN07FkDRKWZjFJTgqyty5c8uiCjxw4EAzM7v88svdv+O9GQtTclgSy555DOB+eCzjuOewDUpDYPk8h5ZQfZ1lQjB0werS06ZNszRw7mYFfGyszeMWxwSH+GLh6lLATVNxm+dLPLeoSm3mrwPLp6BaN8/d2Iycla87duwYbE4jQVBhHL9j5qVI+vXr53y4zfMMStOwgjrCSvKo+PzFF1+kfi8NrfwIIYQQIlPo5UcIIYQQmUIvP0IIIYTIFBVub8Fxu4kTJwabWwFgHI+712LcrmbNms6HZbjc0XXChAnBTjrN5wPj/Jw7gF12uZQZu67HciEYluJHYu0ZrrvuumDvsssuzte2bdvUfZaCRo0aue1YOe3mm3//vswxX4yvc3wbcz+WLFnifHjusZ2FmS+NxVg3l5fHcrsQzD8w813Be/fu7XyxFi4Iyx1gzg/nu/Xp0yfn3JSa2Pjk9gx8r6YR69jM9zTnR6Wx++67B/vSSy91PiyNvfnmm53vscceCza2VTAzmzx5crBfe+0158Mx8uWXXzofl2cjOF55jMTyIzaFRMoBS9TNclvfIJjDwnIPuB27V7htEF5LloLAXCe8RpivZeZzQLHVipnZjTfeGGzO8YnlXeJxcZdw7HQ+duxY54u1PImNgU0hmd9YEgHHMef8IHzPYm5lMbIo+Iw+/fTTnQ/3g3Mr7x/zQ++5557U3+LnIOZhcS7s119/HezYsxZzlphXXnnFbfMzLR9a+RFCCCFEptDLjxBCCCEyRdFhr6TElZfDnnzyyWCzQvAnn3wSbAwzmMW7vCOTJk0q6jgTsHy5Ro0azhcrbeRlceTVV18Ndp06dZwPFTAZ/L1dd93V+VCpE8uozfwyZylJQkq1a9d2/47lkthV18zstttuCzZfk27dugUbS9TNcssUkVjX9caNGwf7iSeeCDYvgdatWzfYqCJs5pf8eTkW//annnoq9Th4POA1YqkApFq1am571qxZOSXDpaJr165m5pW2zcx69eoVbFSHNfPyCzFYlTUmbbFo0aJgc+k0gmX2HNpFmYs33njD+bBEnsM0vJyP4JzVvHlz5+vQoUOwWSEbVapZ1Xbu3Lmpv7cp7LHHHmaWK/9Rv379YGPZsZm/tigpYOavM48/vFc5jIhg528+Ngw3MklXgHzgnMHEQjoxH4YmedzGrlcsjLMpJPMbh5hRxgBlPMz8XMTSJzjfjBw50vlQGXrdunXOh/PAjBkzUo8X7wV+9hSqto7PCbPCw3P8OQxnsXQFwmGuREoGQ6CMVn6EEEIIkSn08iOEEEKITKGXHyGEEEJkiqJzftK6OWNs9cgjj3Q+jLtxfkesnBHLqjnejOXCWPZuZrbTTjsFG0t0OV6PnbmxG7RZPOcH203EcnwYzPPh8kWE99m1a9dovLOisJx8Ap5bzk3q1KlT6v6wbBVtM3+N9ttvP+fDMcB5DFheiyXHXLKatAMwyy2zT3JhzHKl8GPXGeE8LMw74ZJqhMvA27RpE/I5Sg12yE7jxBNPLHh/WMo8fvx458Ny2L333tv5sF1JrKwa8/Eeeugh58MYPssTYG4G569gjgLnHmILm2effdb5ME/ks88+cz7skF6oNECp4LJx3k6DrwnKgfD9UahMBIPzNeb8xPI7rr32WrfN7U9KAbbaKKYU/Pjjj4/eyxUlmTt4HOMzAHO5zLykAT6nGMzxYTCnjuFxhHl6eG9zjk/16tWDzfIXV199dbBjeZzFgPMA5nWa5eZ2Ikm7o/fffz/1M1r5EUIIIUSm0MuPEEIIITJFhRWeedkYO2mzWjKGm3AJ2cyHKzgMg9vvvPOO8+EyPIe9sDwOl1V5CXTlypXBZnXpSpUqpX4Pl0Zr1arlfPjZjz76yPlQlZTLowvtIl9KkhJK7kwfkxXgjuwIhg64tD2muInLlxzyw1AXKinjuDHzpcscoim0tPzNN99021jCjercZmYXXHBBsPlvxc7V3KX4kUceKUsXcLPvwxkzZ850/46K3axiGxt3eN5Y7RrDjiwfkBYaN/PdqnHOQLVbMy8RsH79eufDrvEYOjPL7RqeBis1Y6hkiy38tIjjiUuLOVxeKpIQJocd8BqxNAPOYSxhgCq6rLCbtn+Gw2Np4bI1a9a4bezczmEu3EeDBg2cD+dZPH6zuNov/g3c9RwlRZgdd9wx1bcpJKF1TrtAWMkbQ8esio3hbQzpMzG15GbNmjkfzp/4bMcwl5m/N7jrAt7PCxYscD4srY+lcHBZ//Dhw4PN8yz+fVxan3Stb9q0aepvaeVHCCGEEJlCLz9CCCGEyBR6+RFCCCFEpqhwzg930sUY5fz5850PO+vG4pBNmjRxPiwF5DwC7PaNndvNcvMAEjiuyrkRCP5e0tIjAcucOUaO7SA4LwVj2Fwyy3kNyNChQ1N9m0JSsh/L8eHrhaXonJ+DUvWcQxXLJYjlEeHv47nl/Q0aNCjYzzzzTOo++HsYK2Yf5vksXrzY+WIl/yjLwDkozZs3L1tXd851SsD4PueoxK4Ltks48MADnS9WHo3tEq688krnw+7VN910U7A5twX337JlS+fD68s5HZjHxy0ekHbt2rntk046KdjcsgZLeJlydQJPJCYGDBjg/v2LL74IdqwEOgaW/Jv5McA5TYMHD07dD+Y74jXCHB+GWy7gb2MbESaW4xODc3ywbQrmdf4QcHslBFvwbIxYng8SK9vnZ0qPHj3yfo6frXhfYnm8mW/7hPeTmc/z4bwebHF1wAEHOB8/e5GkhYVZ7vM0+dtj+ZVa+RFCCCFEptDLjxBCCCEyRYXDXtjF3Sx3KQs5++yz89pmZueee26wucM7l4qngYrOZn4pFZfp2rdv7z6HXcJZ8ZI7O6eBpbtmflk/pv6cKFDmo2rVqm572rRpOcqopaB79+5mltt1GUMHDJYwcvk6lqxjZ2Azv5yJpddmXvGZQw7I0UcfneqraAdoXDplUI7g4IMPTv0cLy9jWPTQQw/NOZZylbonY5ZDTRjqwnCxmS8bZ/VrVKJmBWY8p6eccorzYTiLO7KjYjfem6z6jZIYOEeY+RAIL71jmDEWSmMFZCxD5lJt3Gal70aNGkXDxhWlRYsWZpZ7b8ZCQ48++miwWUrjkksuSf0eKunz/YDzFM/dKCmCoUEMf5j5dIPYc4I7sMeIhV3x93lsYniuUAmMUnHHHXe4bRzznCaA4Z4hQ4ZU6PdYOgDvo0MOOcT5cBvnfy51R26++eZUH19LfNZOnDjR+W6//fbU/SCc+oLniEvaMTychlZ+hBBCCJEp9PIjhBBCiEyhlx8hhBBCZIoK5/xwHgXG32Ly9gyW+KV1GTcz22uvvdw2trvgODx3lU8488wz3Tb+DVjWa+bl/Lkzd5cuXYKNHabNfLk3l0NjuTSXFqI0OOcQHH744dHS6orC+QQJmA/B1xml1rGTs5mX2+fzEivXx7wQ7sKLZdNYtlq5cmX3ubvuuivYXGrbpk2bYHPrFSx35TwJjk0jmN+EOT5mvlUDd3KO5TRtKpzrk4CtHO69917nQzkJlKQw8+M8BreeQQkJbp2CuSeY48ed7i+88MJgYysRhr+H28uXL3e+iraNwXJ2lvQfP358dN7aVLjbN+ZZsKTH3Llzg835HjFwHsD5y8zfZ+zj7QTObcE8H8yJNPM5k7HWEwyOK2x7Y+bvR+78HZMtKDfY3sgs3nW9HHmBxZTTJ8SkaWJ5V6eeeqrbvvXWW4PNkjMIz8/YHf7OO+90vtGjRwe7kBwfRis/QgghhMgUevkRQgghRKYoOuyVlFO2bt3a/TuGuh5++GHna9u2bbA59ISKwVwGieEmLJE188unSdfcBCylvv/++4PNJdzTpk0LdlJamoCqw9ztG2E1YSz/5DL4qVOnBhvDXAyXiS9atMgWLlyY+vmKkoRDrrvuOvfvn332Wep3UMmblz2x83KsbJW/h6WO9erVc74TTzwx2LjsyV3AW7VqFWwucUbJAVxGNfPjCLslM1zqziGytGPhvzUt1FgKknJSXlbGbsgc2sLl6KQTcgKGfrlLMy5/s3RBmiq3mdnTTz8d7GXLlgUbu6qb5Za3Fwr+9ooVK5wPVWa5NBbDtHz/ffXVV8Fu2LCh8y1durRs0gVmuSEkDLFxl3AMFXKYGf8mns/ws6x8fd999xV1vGZmJ5xwgtvGuauY0BbKMPAzBX0cWo4pusckK1g2odQUE+bCEDY/mzB0x2H0f//738FOVMITsJye0wbSzhnLX2AYkc8t/g2sNo/zDINpHjw/Y6k9PlvNvEQDE5NrCd/f6CeEEEIIIX5C6OVHCCGEEJlCLz9CCCGEyBRF5/wkuT4ck8cyOu4EGyuPwzJSjK2bmQ0fPjzYXDKLHeA554c7wyawVDfmmnBcFVspYBzVzMdjuQ1G48aNg80xUYynY6dtM1+qx3kvAwYMKEsn8KQckWP02LqE8wMwT4r/vlg7iFj3dITHB8ecE7i8GvNsWHZ9woQJwebYM/49nPuEpbyxHB8et3j+OFdr1apVObIKpSIZs3x+MdbPvsMOOyzYsdL2ipa88jjH/COUqOByds7XKRRsNTJq1Cjnw47lnBOD21iqb+bPH7du2HnnnXPun1ISGys8XvGei41XlpOoW7dusPnewWvLLXlWr14dbMyXOeigg9znMDcpTYbELLflyNtvvx1sbqeEeW0HHnig8+HYjD2n+FpyPlepWLJkiZnlSsBgnhnmUpr5Fi44R22MI444Ith8r6OsR762O/lgyRKUaBk8eLDzYbsQfD6b+XmX55mePXvm/ZxZYbk7Zr4djpnPf0tDKz9CCCGEyBR6+RFCCCFEpqiwwjOXviKssItLp6yai0te3IG30G62rPBcKNylGHnxxReDzeXsGOricFwspINl97wsiMvbrPBcrk7gyRJwrJyVlyhjJYuzZs0KNoe9sFs0hsDMvNwBqxTj0ir+dr9+/dznsEQSy2DNfAkmhzdjnZ1RqoBDWximwdCtmS/n5VDB7Nmzy9IF3Oz78lL+TQzL7L777s6XLMmbxUNbPK5xmZmXmAtVUsZwNV9PlB3gMYjHyaEEDHFyOBwZMWKE28bzEJMj4I7vH3zwQVnuzUQ+gNWjUU5i1apVzodK3gyes/POO8/5UA06NgYeeOAB50srW+frj+HHAQMGpB4X/z0Ydh40aJDz4fOHy71xPmNVYwxpcnpEgwYNciQQSkFyz8XkSh588MGS/Fas/Btp376920aldyyD55J4fC5iiodZXGKA53wEQ3DTp093PlSk52NGeA7CLvJpaOVHCCGEEJlCLz9CCCGEyBR6+RFCCCFEpqhwzg/mrzD77LOP28b4H5dZItwSAeXvWao7BsZWMV8H5e3NfN5Nr169UveH5bl8LFzmuuWWWwb7m2++Sd3njBkzUn0/FEnHaD5OjL3H8lP4OmNp6hlnnOF8sXjw7Nmzg835KphfhbkfnAeCpaIshb9hw4Zgc+7O/Pnzg81xYmx98cknnzgfdh/m7todO3YMNpfPcky7lCQ5DNymA7tcc04HdlbnDuLYNZk7UsdKSdevXx/sLbZIn2Kw1QbnCWIeGIPjh9ucjBkzJtixDtGcDxTLJ8P9sLQF/l4pSa7l4sWL3b9jfhl3rceSfD7OWB5Wy5Ytg12lShXnw9woLG0389Idsf1zDl7acfHYxLJ4LoPfZZddgs3PFJxbUcqBv9emTRvnW7t2bepxloI33njDbePfi1IdZmbdu3cPNs6PZmbDhg2r0O/jb7AEwI477hhszJvr06eP+1zsOsfkFfA64Pxg5vONqlat6nycB4bEnilJjmmnTp1Sv6+VHyGEEEJkis0Krczo27dvYR8UZWXcuHHpinIFomv546AU19JM1/PHgu7Nnw66lj8t8l1PrfwIIYQQIlMUvPIjhBBCCPFTQCs/QgghhMgUevkRQgghRKbQy48QQgghMoVefoQQQgiRKfTyI4QQQohMoZcfIYQQQmQKvfwIIYQQIlPo5UcIIYQQmUIvP0IIIYTIFP8HhmBzvns3A5QAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 720x169.2 with 5 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Real images (clean_test) :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAByCAYAAAC89bCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAANWUlEQVR4nO3de4hV1R7A8TXD5PTUMrIHYU44WBQo6SSp2MvKMDHDtCwkKwwGS4rwn6LRpsfUWIhOA2XmZJkiY2qolZklRTFBFD1QCyxfmJWlk70sm/vHvf3u77d0b/c5c/Y5417fz1+/ddeafRZ3z5l+rmdZR0eHAwAACEV5qTsAAABQTCQ/AAAgKCQ/AAAgKCQ/AAAgKCQ/AAAgKBVJG9bW1rItrAtobm4u6+wzeJddQyHepXO8z66C72Z28C6z5XDvk5EfAAAQlMQjP/9qbm5Oox84gtra2oI/k3dZGmm8S+d4n6XCdzM7eJfZEvc+GfkBAABBIfkBAABBIfkBAABBIfkBAABBIfkBAABBIfkBAABBIfkBAABByfmcHwBI28qVKyWePHmyqWtra5O4urq6aH0CkB2M/AAAgKCQ/AAAgKCQ/AAAgKBkfs3P5s2bJb788stN3a5duyRev369qfPbAkjPxo0bTfnWW2+VuKLC/pn6559/itInANnFyA8AAAgKyQ8AAAhK5qe9tPLy6FxvxowZpsy0F5Cun376SeKJEyeauv3790t83333mbp+/fql2zHgKNHY2GjK06dPl9j/3jz11FNF6dPRgpEfAAAQFJIfAAAQFJIfAAAQlMyv+dm0aZPEO3fujGzH9tns8NdvzZw5M7JtXV1d5M8hXfX19RJ/+umnke0aGhqK0BsUw6pVq0x50qRJEo8cOdLUtbS0SNytW7dU+3W0+uKLL0y5rKxM4u3btxe7O+Lvv/82Zf23ddmyZaZuzZo1EldVVaXaL42RHwAAEBSSHwAAEJTMT3shm3KZ2ooT93NMgxXe7NmzJW5qapLYn9Y47bTTJNZD+ej6tm3bZsp6enP+/Pmm7oQTTpB4+fLlpk7/Tjz77LOmrrKystP9zIL29vbIuh49ehSxJ5Z/Y8Jjjz0mcUdHh6lbvXq1xFOnTk23YwojPwAAICgkPwAAICgkPwAAICis+UGX9u6770qc9pUjGzZsSPX5IfJva581a5bEejtsTU2NaffRRx+l2zEU1JtvvinxuHHjTJ2+qsRfh6K3vvt1c+bMkdhfR1RdXZ1/Z5E6f81PnOHDh6fYk2iM/AAAgKCQ/AAAgKAw7YUuxZ/a0tNeSb3zzjumfNlll0kct0U+n8/Cof766y+Jb7jhBlMXdcr64MGDEz9fT6P4J7N379498XPQOW+88YbEY8aMkfjAgQOm3YgRIyResWKFqfv5558l9o+d0O+yvJx/p/9r7969Er///vul60iezjjjDFPu1atXSfrBbxQAAAgKyQ8AAAgKyQ8AAAgKa37+54ILLih1F4Kl1/nErbvRa3f0bex+XZxCXYuBaAsXLpR406ZNke2uvfZaiefOnRvZbuXKlaY8ZcoUiX/99VdTd/fdd0vsv2uuROicPXv2mPK9994rsV57dc0115h2ra2tEuvrLJxzbsGCBRI///zzkZ/9yy+/mPJzzz2XoMfZpI+I+PHHHyPbDR06tBjdEfr3w7+ORF9pcckll5g6fw1QsTDyAwAAgkLyAwAAgpL5aS99c3ScCRMmpNwT/CuX7ex6Osvfwp6PuJva/ak0JPP999+bsp4O8fXu3Vvip59+OrLdwYMHJb7xxhtNnd5K72toaJB49+7dpu6FF16I/Dkcnp7KGDVqlKnTU5pjx46V+NVXX038/HXr1nWid2F6/PHHJS4rK4tsp79rxaBPZdfHUThn+3ndddcVrU9xGPkBAABBIfkBAABBIfkBAABByfyaH3/eH6WRz3Z25wqzDifpZyM/a9euNWW9Lbmiwv6JmTdvnsTnnXde5DNvu+02if01PqNHj5b4s88+M3Vbt26VWN8YjvxMnTpV4ra2NlM3YMAAiRctWpToeXfccYcp+8cY4FD+EQP+e4jiX31xxRVXdLov+vvlX2Py+uuvS+x/7/UaPv94iqVLl0q8ePFiU1dfXy/xhRdemEePozHyAwAAgkLyAwAAgpL5aa845557rsRVVVUl7En2+NNLSaebkp7cHPd8Tm1O3zfffCPxQw89FNlu0KBBpnz11Vcftt2yZctMefny5ZHPvP/++yXWQ+3O2a3uyF1jY6MpL1myROKTTz7Z1D3zzDMSH3fccRL//vvvpl1zc7PELS0tkZ/tn/Ktlyz0798/utMZ509zffDBB5Ft9TvSt787F3+C9vr16yU+/fTTJX7rrbdMu23btkmsT2127tDprCj33HOPKcdt19deeeUVU9a/c/lg5AcAAASF5AcAAAQlk9Ne+rK3uKG4LVu2SKyH8Z1zrk+fPgXvV0j8U5zT/rlCSHo5Kpz7+OOPJfa/O5o/VB1lzZo1pqy/t/oiU+ecGzZsmMT+RZl62ktfAOmcc+3t7RJ37949Ub9C8/bbb0fW3X777aY8ZMgQifXp6/pyWeec+/LLLyOfqXf86Z1l+D9/SjiOnuqaPXu2qdPTVEmnmnyFeEYufvvtN4n9XZ9MewEAAOSA5AcAAASF5AcAAAQlk2t+9PyzXtfj0/P+rAEIk17nw5qfwisvj/731caNGyX21/xoDzzwQOQzW1tbI3/O33KtbyG/+OKLI38uZD179oysa2pqMmV9Wvcff/whsb82Qzv22GNN2T/RF4fSW8+dO3SLeT7Sfoa/Fu+ss86S+Ouvv458zvnnn2/qHnnkEYkL/d9oRn4AAEBQSH4AAEBQMjntlfSSvVGjRkk8cODAtLoTJD316Fz+W9j1VNSll1562P/dL+eyBdPvJ4pHnx773XffRbY788wzI+v0Jaq+k046yZSZ6joyfWqzc/YYg08++cTU6WlF/1gBTV9yuWHDBlOnL0fF4Y0ZM8aU58+fL/GVV15p6s4555zI5+jpJf+S0JqamkR90ctIJk6caOr27dsn8dlnn23q9Lb7CRMmmDp92e3DDz9s6k488cRE/coHIz8AACAoJD8AACAoJD8AACAomVzzo7e0xkl6nPqOHTtMuUePHhL76wrwX/6aHL22xr+RvRDbzZOuKWI7e3F9++23phy3JiEp/X2MuyUcuTvllFNM+cMPP5TY36Ksr624+eabJfbX/7z00ksSs+4qd4MHDzZlfdt9sT355JMS6zU+vq+++sqU9bUzn3/+uanr3bt3gXqXG0Z+AABAUEh+AABAUDI57VUIeuvt5MmTTd1dd90l8bhx44rWp6NZoU9SnjFjhin7U2lR6urqOv3ZSE6f0OrcoUP4STz66KOmvHTpUon17e/OOVdZWSnx3Llzc/4sRPOnxNauXSuxPuHZ/5t40003pdsxFE17e3uidqtWrTLlq666SuJjjjmmoH3KFyM/AAAgKCQ/AAAgKCQ/AAAgKEGv+VmyZInE/pUI48ePl1hvbXfOuUGDBqXbMRyRf0x+HL3Nnq3uhdGrVy+Ju3XrZuoOHDgg8bp160yd/v//zz//TPRZM2fOTNyvO++8U2L/GH3k7uDBgxJPnz7d1C1YsEBifRv3iy++mH7HUBT+2p3W1laJ464R8tf2dZV1PhojPwAAICgkPwAAICiZnPYaPXq0xJs3b45sp7fC+tti9TDdvHnzTF2fPn062UPkQ29nj9vaHnfjOwpj+PDhEjc3N5s6PfXka2trK2g/+vbta8pPPPFEQZ8futdee01iPc3lq6+vl/j4449PtU8oHn0ys0/fEu+cc9dff73Ep556alpdKhhGfgAAQFBIfgAAQFBIfgAAQFAyueZnypQpEi9atEjiXbt2JX6G3qo3cuTIwnQMOdNre5Le3K63tiN9+kZv5+z3zL/eIun2du2iiy4y5WnTpknsX53gb7tHbt577z1TnjRpUmRb/d7Hjh2bWp9QXHv27JF4586dke0qKmz6MHDgwNT6lAZGfgAAQFBIfgAAQFAyOe1VXV0t8S233CLxrFmzIn/G376+cOHCgvcLR+bf1p70dF+mukrH39r84IMPSqyPnXDOubq6Oom3bNki8bBhwyKf7/9O6NOl0Xm7d++W2H9f+/fvl7impsbUNTU1SVxezr+js2Lx4sUSb926NbLdgAEDTFl/748G/MYCAICgkPwAAICgkPwAAICgZHLNj6aP2v/hhx9MXWVlpcRDhgwxdVVVVel2DEJvZ0+6xkevHXGOKyy6qv79+5vyihUrStMRiL1795qy3qK8b98+Uzd06FCJ58yZY+p69uxZ+M6h5Hbs2JGo3YgRI1LuSboY+QEAAEEh+QEAAEHJ/LRXv379JG5paSldRxAp7oZ2TU9t+dufASTz8ssvm3LcKb76eBD/pG1kU9++fUvdhaJg5AcAAASF5AcAAASF5AcAAAQl82t+0PXptTxxW925wgLovIaGhsi6xsZGU/avtED26eNhdJw1jPwAAICgkPwAAICgMO2FktPTXh0dHaXrCBCApCf4AlnGyA8AAAgKyQ8AAAgKyQ8AAAgKyQ8AAAgKyQ8AAAhKzru9amtr0+gHSoB3mS28z+zgXWYH77JrYuQHAAAEpYxzVQAAQEgY+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEEh+QEAAEH5D4+frCe4lbkyAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 720x169.2 with 5 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "imgs=[]\n",
-    "for epoch in range(0,epochs,4):\n",
-    "    for i in range(5):\n",
-    "        filename = run_dir + '/images/image-{epoch:03d}-{i:02d}.jpg'.format(epoch=epoch, i=i)\n",
-    "        img      = io.imread(filename)\n",
-    "        imgs.append(img)      \n",
-    "\n",
-    "pwk.subtitle('Real images (clean_test) :')\n",
-    "pwk.plot_images(clean_test[:5], None, indices='all', columns=5, x_size=2,y_size=2, interpolation=None, save_as='02-original-real')\n",
-    "\n",
-    "pwk.subtitle('Noisy images (noisy_test) :')\n",
-    "pwk.plot_images(noisy_test[:5], None, indices='all', columns=5, x_size=2,y_size=2, interpolation=None, save_as='03-original-noisy')\n",
-    "\n",
-    "pwk.subtitle('Evolution during the training period (denoised_test) :')\n",
-    "pwk.plot_images(imgs, None, indices='all', columns=5, x_size=2,y_size=2, interpolation=None, y_padding=0.1, save_as='04-learning')\n",
-    "\n",
-    "pwk.subtitle('Noisy images (noisy_test) :')\n",
-    "pwk.plot_images(noisy_test[:5], None, indices='all', columns=5, x_size=2,y_size=2, interpolation=None, save_as=None)\n",
-    "\n",
-    "pwk.subtitle('Real images (clean_test) :')\n",
-    "pwk.plot_images(clean_test[:5], None, indices='all', columns=5, x_size=2,y_size=2, interpolation=None, save_as=None)\n"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 7 - Evaluation\n",
-    "**Note :** We will use the following data:\\\n",
-    "`clean_train`, `clean_test` for noiseless images \\\n",
-    "`noisy_train`, `noisy_test` for noisy images\\\n",
-    "`class_train`, `class_test` for the classes to which the images belong \\\n",
-    "`denoised_test` for denoised images at the output of the model\\\n",
-    "`classcat_test` for class prediction in model output (is a softmax)\\\n",
-    "`classid_test` class prediction (ie: argmax of classcat_test)\n",
-    " \n",
-    "### 7.1 - Reload our best model"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 15,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:40:24.471821Z",
-     "iopub.status.busy": "2021-03-14T21:40:24.471351Z",
-     "iopub.status.idle": "2021-03-14T21:40:24.838168Z",
-     "shell.execute_reply": "2021-03-14T21:40:24.838662Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "model = keras.models.load_model(f'{run_dir}/models/best_model.h5')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 7.2 - Let's make a prediction\n",
-    "Note that our model will returns 2 outputs : **denoised images** from output 1 and **class prediction** from output 2"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 16,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:40:24.842112Z",
-     "iopub.status.busy": "2021-03-14T21:40:24.841643Z",
-     "iopub.status.idle": "2021-03-14T21:40:26.051859Z",
-     "shell.execute_reply": "2021-03-14T21:40:26.051349Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Denoised images   (denoised_test) shape :  (14000, 28, 28, 1)\n",
-      "Predicted classes (classcat_test) shape :  (14000, 10)\n"
-     ]
-    }
-   ],
-   "source": [
-    "denoised_test, classcat_test = model.predict(noisy_test)\n",
-    "\n",
-    "print('Denoised images   (denoised_test) shape : ',denoised_test.shape)\n",
-    "print('Predicted classes (classcat_test) shape : ',classcat_test.shape)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 7.3 - Denoised images "
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 17,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:40:26.057556Z",
-     "iopub.status.busy": "2021-03-14T21:40:26.057076Z",
-     "iopub.status.idle": "2021-03-14T21:40:28.068243Z",
-     "shell.execute_reply": "2021-03-14T21:40:28.068739Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Noisy test images (input):**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE5/figs/AE5-05-test-noisy</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA44AAABwCAYAAABRhy5gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABDYUlEQVR4nO2dZ7xURbr114xiGjHnLAbMY86KOSfMAQNjdpRRwRzAnFAxK5hHx5xFETHORcEw13wVHXXMOWPW+36qYj3rdJV9Dqf1/nzX/wtPn9q9e/feVbWr2Ws9zx/+93//F8YYY4wxxhhjTIk//tYHYIwxxhhjjDHm/zb+4WiMMcYYY4wxpop/OBpjjDHGGGOMqeIfjsYYY4wxxhhjqkzY7Ib77LOPs+j8xpx//vl/GN99+Dr+9vg6/j7wdfx94Ov4+8DX8feBr+PvA1/H3weNrqOfOBpjjDHGGGOMqdL0E8fEPvvsAwBYZJFFwt//8IdxP0q1xMcyyyyT48cffzzHa6+9dtiua9euOb755pubOp6NNtoovD700ENzvPLKKze1D6X0XY499tiw3XLLLZfj9dZbL7Tx+44++uji8S677LK/eDzpnHcmBxxwAABgvvnma/o9t9xyS4579uyZYz7nAPDuu+/muE+fPqFtqaWWatdxtoftttsuvL7mmmta9lkTTTRReP39998Xtz3ppJMAAG+++WanH8c999wDAPj3v/8d/s59+H/+539C2yuvvJLj5557Lsd6HQcNGpTj/fffP7RtuummOb711ltzPHLkyLAdj8HJJpssx19//TVKvPDCC+H1fffdl+P99tsvx3fccUfYbuONN254fECcT3r37p3jK6+8sngcyoEHHggA+Pbbb5t+T7Ocf/754/V+7o+nn356aOO+sdNOO4W2Bx98MMfp+wHA3HPPHbZ77bXXcjx8+PAcP//882G7NK8AwFNPPRXaFl988YbHzn1VP/vVV19t+B4ljbHE7LPPnuNevXqFto8//hgAcNRRRzW17/ZQuo433nhjjrfccsvi+6+//vocn3nmmaGNzwvPvwCw1VZbNdyfntsSk0wySXj9zTff5FjnLT63NY4//vgcH3nkkU29p0Zpfm/F/bEj45HP9ejRo3PczD2+EQ888ECOV1999dDGczOPudtuuy1st8kmm7T7c7/66qvwevLJJy9u++yzz+Z40UUXzfHbb78dtpt11llzfPnll4e2XXbZBUBrruMFF1wAIJ4jII6tWkm6l19+OcftWSsxtbUx89577+V4pplmKm53ySWXhNe77rprh46rBJ8rnYOa+S7/V8Yjw2tS7d+XXXZZjk888cTiPnjddP/994e2PfbYI8ePPPJIjldcccXi/t5///3wesYZZ8zxsGHDcqy/LZi///3v4fVdd92V47feeivHaRwk+PcbHzsA/Pd//zeA+LtN8RNHY4wxxhhjjDFV2v3EMf1S5f9B/SX4KSMzYsSI4nv4f14B4LTTTsvxqaeemuM777yzuA9u0yd9F110UY75SQUQnyjU/sdW/9eX4f8BvuGGG4rbMfoLv3TeOoOxY8cCAA455JDw91NOOSXHzzzzTGibfvrpG+7r5JNPbvpzS/9jxU8xAGCdddZp+J7HHnssbMf/m1v73zxGn04cdthhOT7jjDNCGz8h5fOh/1u0wQYb5Jj/14f334r/iUt9fJZZZgl/5+9x7bXXhrYBAwbk+MMPP8yx9nU+n/o/Wzz++X/s/vKXv4TtDj/88BzzU0b9H9UZZpghx9rvFlpooRzz0zP933Q+Xv2fd6Y9TxmZ6aabDkD8n7zfEr5eL774Yo733HPPsN2+++6bY33iz/+LyvATRoXH5gQTTFDcrjRfKE8//XR4vdhiixW35XM/22yz5VjH3H/913/lWJ84TjvttE0dV0dIT9j1O3z22Wc5HjhwYGjjJ+APPfRQjh999NEOHUOzTzhq8DXWuXnIkCE5nmOOOXLMygAg3rNrTxx33HHHHM8zzzyhjZ8K6zx29913AwC233774r47SroX1+7BOl8uvfTSOb744otz3NEnjvqUkfnpp59yXLvGzT5xfuONN3KsT5Q333zzHLPqSOHj4CeMQHyatsIKKzR1TJ1B6dzofb7E/PPPn2N9Urrzzjs3tQ+d3xju30kJAcT7IQAcc8wxOdbvxGvboUOHFrdjBg8eHF7zUyd+mq1PHDs6n3QW+gSPn+4pfG7nmmuuHLOaAqg/ZWR4LOlTOobX+3q8vA+99/ITx/XXXz/Hes4/+uijHPPcqftkxZ0+ZeWn1qw0AoDvvvsOQPyNpPiJozHGGGOMMcaYKv7haIwxxhhjjDGmin84GmOMMcYYY4yp0m6PY8pqeM4554S/c3Y+9mwAwKqrrtqwTbW7nM1p6623Dm3sc+JsrJwtSWHtt2YTZJ+Tes/YO8XH+Omnn4btWBtd036zXp09ZQDQo0ePHKvuvJWkDIdLLLFE+Dt7HGteI9Y///Of/wxtV111VY7Vp8EZZpmXXnopvOYspXxuVRfObTPPPHNo48xX7HljTyNQ9wSx7vyDDz7IsXotn3jiCfwWpPO21lprhb/z+Nxmm22K759iiilyXPPunXDCCeE1a+s5e6L6Ptjrw+NFs9Jydr5//OMfoY09TOyB0ms155xz5vg///lPaGNv33HHHZfjDTfcMGzHXhz1Ppx11lkAWuNVLVHrm/yar+MXX3xR3F9HPSpTTTVVjtkjXPNh1XxO7ANp1isExL7B87vOQTXYS9TZJD+Y3gOnmWaaHGuW4wUWWCDHnKlbPSZdunTJsXpbuK1Z7zizxhprhNc8d+o9dvfdd2+4j3XXXTe85lwESqlfqyeP/di/ZhbHNBfquoGzRjc7lkaNGhVeL7/88jnWbNi8juJ74N577x224zn93HPPzTH7mX/pGNm3XsuU269fvxyzjxOIHvbaXPX555/nuHv37qGto17eZrj33nsBtM3gX0PXIomSH/yX4HWUen05a7Te9xjNcs1wLg/2UteoefS+/PLLHF944YWhjdflPKcB466/9tXOIOVO0FwLNfg+X/P66pgpof5rhr2W6gtleFxoLgfOfFobtynXQiPYC8toZmTOCaBZeVPOl9qc4CeOxhhjjDHGGGOq+IejMcYYY4wxxpgq7ZaqJgmcyqFYcqnFwjmNMUt4VN6nadMZljewdEaLY6aC6ECUJGoKfpZbqfSG5ZssxfrjH+PvbJbzqNyC08GzxFHhR+gqG20lSZpUeyTOEiogll3gR/MsTQWi/IKLGCtchJQL0SssF9ISLjfddFOOH3744dDGBXu1BAfD50AlZiz14gLmnKYbaJ+EojPZbLPNwr+JWgkTbmOJI8uwgCg1VDkhl93g0jkTThinlFL/4vTvvwTLb6aeeurivlmeyqU/AODJJ59suO9a/0/S1EQrpThJUqVSwoMPPrj4Hr4GLMtpD3yeJptssuJ2PKb5GnP/AaL85s9//nNo43OdLA+NWHPNNXOshZa5T7KUUyV/NVpZjiNJ4nheAsaVjgDazqsliR/PN0BMoc7SVCCWwuDzx/flGiwp133oNeBjnGSSSXLMZayAKKHr06dPcR/N/L0R+nmdSUpl37Vr1/B3XkdoWv9JJ500xzfffHOOuZyF8vzzz4fXLBtLhbgbwaVoalK70aNH5/i8884LbfxdWJb25ptvhu249JKWLtN+U4L7vF5jLhvQ2aTxyPJLoO11ZXh9yRJbnet4fPJ2QOzvvK5lWwcAfPLJJw2PQaXoPPZ1vXXdddfleLXVVstx3759G+77l1h44YVzrJaPGum6tkI6Pu+88wKoy0UVtr7x9Tj77LPH+3hU+vrDDz803E7HPvct/c2g9r9ETereLHodd9ttt+K2d9xxB4D6dfQTR2OMMcYYY4wxVfzD0RhjjDHGGGNMFf9wNMYYY4wxxhhTpd0ex4TqvTltb02bzxp+TvMMAAsuuGCOOQU/UE5VPGzYsOJnrbDCCsW2l19+OcdanoGPg7XrqhPmkgKatrhZrr766g69b3xJvhXVarP/4MUXXwxtrLO/4oorcqyenSOOOCLH3bp1C23sGVR/B8Pnmj0QY8aMCdvx/tU7UUsPzgwZMiTHWoKEfVqDBg3KMZdY+S0ZOHAggLZjiVFfCqdQ5zIef/vb38J2/N3POOOM0LbkkkvmmFO0d7Tcw/vvv59jLoGix1vbP88R6jlotuQDzyfqn06p1FtRziF5cfT7sd9IPdDs/WVvd8+ePcN2c8wxR/Fz2dfIPkEtGcGlL2rw+FG/8I8//phjHsfcl4DoXdOU5bUSQcxDDz2UY/X5tdKrmso4qIfk6aefzjH734DmxwzvU9OulzzDE088cXF/l156aY7ZGwXE+zR7hQDg2GOPzfF3332X49q9pNZ/+D7dntIM7K/sbNL5UA8an+fauNJ7IlO7L7FXle+BOvZ//vnnHE8wwQTF/XF5F471ODgHgOYbYI+5lt/hMi5Dhw5FR0jnWNeUnUnN06j5Cvg8sTdS76Ps+66VQGJ0/uL5jf2omjOBr5XmcuAyDlrmqrQPzWew4oor5pj7XW1M/5p89NFHDf9eK0VTKovBJX4U/T3B/m4uLzR27NiwHfv++Zxpv+BydwqXe+F5R3/H8P1dfZFaAiuhOTD4N5qWmUl+0hp+4miMMcYYY4wxpop/OBpjjDHGGGOMqdJhqepdd90VXm+55ZY53mCDDYrbstyRU9MCMb21SjhL8o5VV101bMeP8Vn2otLXlHIWAHbZZZfQpjKthKar50fGHU3xfvrppxePsZWk79ge6QHLlxiVtDIqdeDyHPzZDz74YNiOpVMscdMSLryPmqyCpT0cA8Aee+yR4yQZTLBMi8vMlNJoN+LTTz9tetv2ctBBBwFoK1Vt9rqy9EgljrU07yz9ZLmSlrY58MADc6zjnWF5qqYs57ITNWrjh2VQfE1V8qfyVCaVvGhFuvEEn0sgzmEqc+EU43yeVULHciiVrLDcilOd19KeczpzlWwPHjw4x1rGgcvvsLRfyyqw7HbdddctHkcNvudMPvnkoa2VaePXX399AMBCCy0U/v7CCy/kmCVpCt97dB9sqVDJIMun+V6ksurpppsuxzxHqPxthx12yLHe6/v3799wHzVrCMsdAWCqqabKsVpF/i+hJbh4bN16662h7aWXXsrxIYcckmOVEdeuP5dBYToqGeSxpGOfy2vxWD300EPDdlxahuXNteOoHW+prZXzqsLHoOUNSqW1uMQaEGWIM888c2gr3etUes+wvLk9548tGtttt12OucSKoqVkSuvr9qwPW2kBSFYZtYvx920WLukFtD2fDH9/Ls/F5XAAYIsttmj4Hpb1A23XNgyvjXlNrdeAZeslaaqikla2XWmppGbwE0djjDHGGGOMMVX8w9EYY4wxxhhjTJUOS1UXXXTR8JolMCptOfnkk3PMMohZZpklbMdymVVWWSW0lR6ZazZTlgXyI2nOzAkAiy++eI416x5/FmdZ+vrrr8N2LLtVqQLDj6dTZsbEk08+WXzfr4FeK5YZs0QUiNkPa5KLESNG5Pj7778PbV26dMkxZ+rkzHBA+dG/Znzj7InaR3jbUaNG5firr74qHjt/rtLRjGIqjehMkqSBs78B9SxynDW4JMsGgK222irHN9xwQ2jjDKx77bVXjjXTYUfOmWZlZunQ5ptvnmPOBAjETGcleaKy7bbbhtfXXnttjjULYU1iNr4kuYweJ0unNestS3Nr55kz+d1+++2hjaWgLGtTeCzVpC0sHVIJ0FNPPZVjztirfbU2Pku899574TXLepdZZpnQlrLH6rXvTFiaCkTpL2evBcpZRe++++6wXU1GzRn/Dj744BzzfRko9xO1fFx88cU5TvLbxE8//dRwH2o3qEnASug14YyROqY5k2GrYEmtotJPhr/7yiuvHNpqmeD53PI9tqMZw3msauZcluHyHKtSzdr+Obt6LXN1s8f7a8FSb5U7spWFz1Eto7PanXg8smxZ4XPBfU3PEa/L9Do+++yzOWYJ4jvvvFP8XJWHc3b1miyWM5yfeOKJoS3df2sZ3jtKskR88MEHTb9nxx13zDHPHTynAPXfHYzefxmeq3m+PProo4vvqcmRa1mZ77333hzrNeA1Ct8DdQ7i77nJJpuEtnSvqkmO/cTRGGOMMcYYY0wV/3A0xhhjjDHGGFPFPxyNMcYYY4wxxlRpt0kgpdsfOXJk+Dv71dSLMddcc+WYfYGqrWXd7cQTTxzavvvuu4bHoynLS6hel1PAq6fqzTffzHHNV8LlKWopkvW7lOhoyu2OkHxu6nHjY+BrCpR9jbXjVj0++2D69u1bPD5O8//KK6/keOjQoWE79g+oX3PDDTfMMfszWc8PRE8Ql+YA4vn54YcfcsweLSCWo1E/YCvTVHfv3r3d7+HvxKmd2YMGRP/KmWeeGdq4pAX3b+2z7Avh/sNeCSD6FYcMGRLaOO39wgsvnOP2jBf2bPH+1bfI+9TSGK2kNEewX1jLyPCx/vOf/8yx+jTYV85+c6Dsa9RxW/MSMzx+ppxyytDGvvKZZpopxyeccELYjr0k8847b2jj78n70NIx5557bo71fKS+zHN0q2FfY7P9lu+bvwSXdWK/p+6b09nPOeecxWPi+XK33XYLbeyb/Oijj5o+Rub999/P8fPPP59jHXPsedRSELfddluHPruz0PIj7E/l864+f76uWvqCPc08NyulPnPdddeF11wiRD1vuoZL9O7dO7zmMhTqlRowYECO2WdfmyN+zXVOKoWiJYq0VFAzcEknRf32DPfvK6+8MrTx2oPXw3pf4twd3M+AuE5r1ofP/j8AuOqqq3Jc8yarp47RcnWdSfI2qv92ookmyvE222wT2nhb/k7sCQWi/1xzbXAuF74Haq4Nngs4T4IeE3tma75lvtfr9eD5V9dRXNKDc1mwL1I/W0tvNVMex08cjTHGGGOMMcZU8Q9HY4wxxhhjjDFV2i1VXXHFFQG0fdSt6byZUtpzlaQxJWmqotIMlnpw6YvPPvssbFeTuM4+++xNfTZLF2uPnRmWT+px6GP4VpJS1Gs5E5aGsRxR2XjjjXOsZTtKEjqF0yCnshIJlsTwMbEkFIjyGD23/Kie33fZZZeF7caMGZNjLtsBxBTjvXr1yrFeby7VonKUZh79d5Q07lQyxuUAatKgDz/8sOHf9X3axmmxWVassu/SOGCpOBAlVSq/LUmZVLr2l7/8pfiexx9/PMfXX399w/3p+3baaafQpuUGOhM9H42OZ9NNNw1tLNVj2ZlKM1WeyvA54z7EshwAWHrppXPM13TPPfcM23GpAZYR6fHzse+///7F41O5Hpc94nPD0lQgfq/zzjsvtCVJVSuk42nO1LmTpXLaN1mixpKxWkp2haWfgwcPLm7HkvOzzjorx8mCkqjdm1m+xdKol19+OWz3xRdf5Jilr8rw4cNzXJMtavmuVvLxxx8DaGvl4PsSy4OBKNNmOaEed5JPAvWSIvfdd1/DzwWA0047Lcd8H1UpIc+lPMcCsdwSlwFRud5ss82WY7VovPbaa8XjZ9QGweh57EySHFslgywn1L6uY6EZ+B4IxPsjWz50bcAyfZbCqgxbJYnMW2+9lWO2ZGiJoqOOOirHOvfpmiihpZd4HaVSbS611ir0nszXVcvj8Pr8T3/6U45Zeg3EdRmXzgOAt99+O8dstdF7Ma8NuPzaDjvsELarlTrhtnPOOSfHeg1Ycj7ppJOGtlKZGS0Jw2UAtTxUM/iJozHGGGOMMcaYKv7haIwxxhhjjDGmin84GmOMMcYYY4yp0m6Po6ZqHh/UT9YRVLvO3sjzzz8/x5NPPnnYjj0nG2ywQWh79913c/zII48U98G+gJtuuim0sV+I9f3qreS0u+yhA+q69vElabL1GrAWWlP4sp76zjvvzLH6NGo+lTXXXDPHtZTYpX1oen5OqX/BBReENtbxH3bYYQ1jRXX7fBz8nRUuwcG+yFaT/C2ql2e/UbP+W6V2HceOHdvw7+oDZJ8po6Vean5KTtHPZSKOOOKIsB33LYU9cOw5qaHbpe9c80iOL+zNA4BJJpkkx7fffnvxfZrWv1nYE8O+DfZHAHEe5HIZ7JNT9DqyP5G9Y7POOmvYrmvXrjnWvsrlQ9g7pqUG1P/KvPrqqwCiT6yzSB5CPe5u3brlWD0lfF1r44DnX/ZQAdFjzWNTPVXsJ2X/ufZ1vs/zsQOxdMzll1+eY/XSTjXVVA0/F4iePfblacknLuejc04ryxwlX1+PHj3C39nDy6XFgFgOin2b7AlVtN9yn+ZcC1quh/M3sM9fxyOn/6+x0UYb5Vj7HR//9ttvH9p4TcReyJp/S/NSbL311gBakwMg+RVrvl/Nm8Bw30/zRiN0PPL35/lM4dwgteNgH7ReHy4FwmWJ9J7AfWaRRRYJbbxe4PIMZ599dvGYSuuIVozHhF5H9qPW+hx/D/Xp8nfnEnsAcPXVV+d4mmmmybGOg/79++eY/eZaXmj99ddHidLcv99++4Xt2EPJZVqAmJuAPfK10lN63rQvN8JPHI0xxhhjjDHGVPEPR2OMMcYYY4wxVdotVZ1vvvkAxEfnALD88svnmNM8Kyyp4RS5APDKK6/kmB+XKzU5D6ew5lTxKnNhWY2mLeZ01CwPYmmqomUItthiixyzhE4fC7NciKU9QF0qOL6kc6/X6pNPPskxpyIGoqSso8fGch6W39Tkk5w+uSa71LTepdTHtX3oNeA2lnewtAeI8tSaZKKzueOOOwBEKSEwbpw24tlnn82xSlaYvfbaK8cqsWBZ45tvvpljLUPA54JToOs5euKJJ4rHwTI3lm+zPASI55k/C4hSPJawqzyKU9ZzaQQAOO6444rHOL6k86F95V//+leO+biBKAtmmbZKaTldO0vjgTgfp74ExLJGAPCf//wnxzUpC8uh9PyxBaAGz6V6HLfcckuOaxJARuX4fK9qFVpehec6lgcD40oGAG1lScw333yTY7VNcCp/lT8yxx57bI45JbvKTFnapKUgWM7FMi+1Ydx444051hT4DPdBPY5rrrmm+L5WljkaPXo0gLblOGqp65vt39w3tFQHz4uff/55jrnfA0DPnj1zzFJIvfZcbqt2X6pJOZ977rkcN1siRst8MUma+mtQ+l5cgoPLqADxvLA8VdcXffv2zbGuDfk8sTRXZZJsjZl//vlzrCXO1l133Rzrmo1tMnyN9V7MfU3tNAcddFCO+ZxpSSWWkuu9KpXf6ahtohl0jPH3rc2dfK9caqmlQht/J75XAvEc1tZxvN7gc6ay7Bp8/62tV3ntpWOa79Mss+frC0SbhpZyK9mQGD9xNMYYY4wxxhhTxT8cjTHGGGOMMcZUabdUlaUpDD+C79evX2jjx6eTTTZZjlX2wXK7mlS1BmdI1cfOpe1YPqltnMVxs802C9txFjGWlQDAiBEjcvziiy/muCaTLGXLaoUUpySNY/Raa/bDxM033xxes0xXKclHVarIfWOVVVbJcU2eNsMMMzT1ucpOO+2U42Yzbiq169hKknRDpeOMXrfSuNDxyFLVxRdfPLSVpMUs9QTK50LlgiwfOeecc0Jbnz59csySC75uALDtttvmWKWqH3/8cY5r46l79+45bqU0VSmdJ5Yx1qRmPE+1Rx5Tuo6cQQ4AdtxxxxyzvF6PmyWzmiV6nXXWyTHPLa+99lrYjuVInDEQiP2EM1xqZmye038NaaqiWTAZlXSuuOKKOWZpLtsugGh5+Oqrr0IbS1f5mvLYAYCBAwfmeMkll8wx9x8gZq/V7zLttNPmmGVTimZSZVgCyhLsU045JWx32WWXFY+jlaRsrpzVFQDWW2+9HKt8n+8/H374YY7VxrLEEkvkWMcPZ5tm+eNnn30WtmO5M19TXmsAMRN47b7EaxleowFxTOv9l20PDN87gGgbUmrZ1TsLtSNxNk6Oa7A0VWF7ExD796BBg3Ks14BlwDXbCMs/daxyJu5HH300x2z9AuI8yHMnEG0fLB3XrJ2aNZ1J67SVVlqpuE1HGTBgAIC29rZm11qcXVrvedw3VWKtVonSPng+5mNUiejSSy+d46OOOiq0cbZyHnPaL/g+2uz352y7ClsggGjPK+EnjsYYY4wxxhhjqviHozHGGGOMMcaYKv7haIwxxhhjjDGmSrs9jkn/rFpjZvPNNw+vWQ/MHiLV43fr1q3he5SnnnqquB1rfjnm9wDA3nvvnWP116nnscTrr7+eY/VlMSeeeGKOVWvMqW815fav6ZVrhPraSuj1fv/993OsPjSGvx97aoC2qa8Tmq59zJgxOe6oL7ZWPoa5++67c/zDDz+Ett/qWqVU4ppSnOG0+ED0x+y222451vPHpVm233770DZ06NAcP/DAAzlmr4xyyCGH5Ji9GADw0EMP5Vh9M+wXmn766XOsqc2bnRcWXHDBHPP3B6KP5ayzzgpt7EH4tWDft6ZGZ/j66HEut9xyOdbzwuVn2Jcz88wzh+3YI8LjZaaZZgrbnXDCCTnWeWH48OENj12PicsAsQ8PiF4l9tKw9wyIc1dKE59Inkq+B3QWqYyFjheGPY1A7HPcVvOK1/o3+wQ1NT6fM/beXX311WG7W2+9tXgcNV8js8wyy+RY77F8vOypm3DCuCSp+RrTOWjFdSzlAOC+v/rqq4e27bbbLsfs71SfVO1eoSUUEupLZ3+U9n1Gy0YxXL6Ax5V6ntivqN5F5tRTT82xfsfHHnssx8suu2xoS97dVlzHtD7gUhe/RCn3wg477BC20/VraR88x2oZjMcffzzH7GXTeyC/j3OGAMCll16aY5479V7MJXG6dOkS2kr+zamnnjq8Vl8v07t3bwBxTdZZ7LLLLgDarhsYXicAca1QGldA9DXqOuree+/NMZcv4hJkQPn3kJb+4HHB/mMAOPjgg3PMnvWzzz47bMc+aIX9tLXvzMeh17TkW2b8xNEYY4wxxhhjTBX/cDTGGGOMMcYYU6XdUtUkK+nZs2f4O6fyv+mmm5ral6beZimbplBPj6qBKFFTSQSnZWdpocJSkpochlPPc1kIIKZB1nTw5513Xo5Z0soxAPz888851nOa4NIencUNN9wAIEobgFhK5a9//Wto4+9fKgUAAFNMMUWOVX7LcD/hcwlEqdeGG26Y48GDB4ftWE6pj+b5GFlGdM0114TtWM4z33zzhTYuG8DXuCY30jTLKr9qBSwTAqLsYcstt+zQPvncqqyCzyfLbVRGceSRR+aYx7vKfFJ/BIAhQ4aENn5dKueir7VcAcNzlUp0unbtmuMvv/wytPF3+bW4/vrrc/zdd98Vt0sSSaBtOQ7eh3L00UfnePTo0cXt+Nyy9JNLKQDArrvu2jCuURtLmkafj4PTxiuzzDJLjrkUC39eK8ocpXmL53UA+OMfx/0fLUvG9PhYFsqlKIBxUjCgfs74PrrGGmuEtqeffrrh/rRECKPlUnSuSWhZJp4Xaug6oMTxxx8fXidJlfbBzqB0flnaXrsGPFbVCsFSeZaHK7PPPnuO9Z7C/fvcc8/NscoTzzzzzBzr/XHdddfNMd8D+XOBWGqCS4QoV111VY61fAjvU79zOle18i0d5bbbbgPQdt3Ac6TK4dnywCVWatJUhfsGr/lU+smyb57DVequ8lSGZcx8ntWexfL977//vrg/HscqU9fryiS7idocOoO55poLQLRMKCxNVXgc8BwIRDuVyr55PPF51ntHaQ7Sdci3336bY5WRl+YFLTPHx69zJ0t5a7JY5scffwyvk2S8Zhf0E0djjDHGGGOMMVX8w9EYY4wxxhhjTJUOa+hUltIRtt5662JbLesiy8uOOOKIsN0FF1yQ4/R4uxGcLUulhKeddlqOWZ6psjbOILjCCiuENpZ81mB56oEHHhjaVBrbmZTki9dee22OVdJZQo97rbXWyvGkk04a2jiDFWdR48xjQLyOffr0ybFmr01SFCDKihWWxT744IOhjaW2tcyZKv1gWKZz3HHHNdymFdK4BEtTfwnOWMuyB5WBcFZEvqZAlFlsvPHGOVaZU0neqRJElltxDMSxxfKJjmayZZmOSq84s7NKCpN8vtmsy+0hyfpUHssZURWWF77wwgs5VtkMy60Vlq9xJk2VmG+22WYN38+yyFagchnOXscZSDlDKAAssMACOW7F9folWAYIxOx8K6+8cmh75513Gu6D73lAnJs1C3UJvQfymGbZpdpLFl100Ryr1JK/G1+fYcOGFY9Ds1DvvvvuOb788stzXLMKaGbMeeedt/h5ncW0004bXvO50MzfvD6Yc845c8wyfCDOpWpD4TbO3Kjj4LDDDssxZ81miwwA3HfffTlmewEQs6ryvD3JJJOE7TSjawnOxvjMM8+EtimnnDLHn3/+eVP76wzSGuqggw4Kfy9lPQWATz/9NMdsa9DslrwuUVhmzn1Ix+Pcc8+d446eF77H8vfSrPi1+yX3Ze7H7bnHpntGK9Y5pSzHzHPPPRdec5Zavrfdf//9YTu2VKhEWDPpJnQu4mymLLnm7KgAMHLkyByrrYerEWy77bY51vVqbQ3Uv3//hsercldGLRFpnVO7jn7iaIwxxhhjjDGmin84GmOMMcYYY4yp4h+OxhhjjDHGGGOqdNjjqJp71tpq6mAutcAp/tWXUoN9aDWdM+uEGU6DC0Qd/x133NHUMWi5DPU1Mpy6mf02CnuJaue0s0n+RdV01z6z1KaenVSyBWjrm2MvIPs0nn/++bAd+9x23HHHHM8xxxxhu5ovoJROWLX/zL777hteszb8gw8+yLFee/bkaspt9ky0ijFjxoTXqsFnOO0z6/GHDx8etuPU2+w5BeJ35HPx6quvhu26d+9ePMYS7DMEoq9onXXWaWof6g8rzR+cah4ADj/88Bxrv060wjOXSs7cfvvt4e/sA+dxAERfI/Pwww83/bl8btWL1Qzq+1bfF8Npzzl1uvo4+Tuzrw+I3o+az36llVbK8WOPPRbaLr30UgCxREZnw57GX0LLGSXY+9dR1NsyzTTT5Ji9lTqP8jhjXyQQ54lm71FdunQJr/m7sQ/+m2++Ke7j6quvDq9rORLGl5QOX0u51DjppJNyzP4lPW71FDFc8onLnowaNSpsx2OGPVtafqWWUn+PPfbIMfsp28O7776bY803wfwa98BGaFm3RK3fljxkNU+jwiU+uHycrrd43HEJl4kmmihs98orr+RYfeV87XhdWytXpPB8ybAXGWhbKothP21n08w8w55GpeTRB8qebSCuUdlDqaVjdN3TzGdp7oF55pknx5ynQH2SH330UXH/xxxzTI75Xqw5V/h86hhJa4JaeRM/cTTGGGOMMcYYU8U/HI0xxhhjjDHGVOmwVLX26HiWWWYJr1lKwe9TWYWmyW3m8/TRMksZe/XqlWNNq837030cffTROWZ5qkrXHnnkkRxzanigLE/t2rVreM3p91spTVWS3O7HH38Mfx87dmyO9RH5WWedlWO+xlraI5UWAKL8AojlLrbZZpsc//zzz2E7TlvNacRZDgQAxx57LEqUzud1110XXvNxaF/o3bt3jllyreViGJXlcMmQVlGTpjYrga7JQPk8AFES8+STT+ZYJTYMy9A05XsNPn4uQ8BSWiCmVdc5iEup1NJZzzzzzE0fV2fCMmiGx8vf//734vv5uFVSzyVHtCxCjx492nWcAHDnnXfmWFOKcz9R6dBiiy2WY05tzynpAeD444/PscpoWLLFcjAdc1tssUWOWd4KAJtssgmAtuVWWslrr72WY/2+LM3mfsClR4DYV9XmscQSS+SY5ajav7k/sR1AJZk816tklq8rz4nah7mf1OagNddcM8dcJguI8uyaFLKzSXJ+lvUDwODBg3O86qqrhrall146xyx513tgDZbBc0kPtf98+OGHOdZ1FMP3nmWXXTa0seS4NieyfFZl+rwm4tIVCvcvnTP0nt4KtFQXlzrjOQWI5Zp43GqJIpYxavmd1VdfPccsVdZ5iscS23UGDBgQtuPXWtLj9ddfz7GWzmFq15jXr7wWu/jii8N2NalqGsda2qczSOWBVOpbkpIC8Z6o63+GJe+8FgTibwguecZzGxDncLaQcMksRW1RvHZia5DOnSwP1+/FVj3+/nq9a30hWVZcjsMYY4wxxhhjTIfxD0djjDHGGGOMMVX8w9EYY4wxxhhjTJUOexwV9haqj4Y1tFyeoZZ6Wz1krPFnzwr7d4CYYn2ppZbKsfp+WKOsKd8PPfTQHHN623/9619hO9Zyq8eR0yyzrp09jQr7t4C2JQU6k+Q50HIE7Kvh7w7Ec8t+K/YaAW29FCXOPPPMYhvr9nl/KZV+on///jlW7T9rzbl8RE3v3qzPVFOqsxdnwgnjsEqpoPfee++m9t0eUqkBPec1DTt7Yrg8ivoCaz7g0nbqA9l8881z3KyvsVlPpm7HvgD2uAHRu8DxiSeeGLZjb9KvycQTTwygrR+KvYDsOwOiR41Tr999991hu2eeeSbH8803X2jjuTqV6AFianAg9q/33nsvx9qndT5mDjrooIZ/32+//YrvUa94KpMAtPW4Mjx3sh8MGOeTaaXHUT3b7GtkDz0AfPXVVzlmP5mWyOB98PwIxJI4tdIHfP/l7fQasN9ql112CW1cvopLegwbNqz4ubV5le/FBx54YGjjslbqr5t11lmL++ws+POBWJ5Av9Paa6+d4/XXXz/Hus5hTx/fv4A4p/F45zEHxPT/fD/T+zkf48knnxzauD/V5noegx0tGcap/dXTmPbZivtjKvVSW2vOO++84fVLL72UY/au6XzDXkgtJ3bAAQfkmOdSzUWw22675ZjXV9ov9HUJLsX0xhtvhDa+Vro/nq/4++vamL2cuh6ujf/xJa0x2dMIRP+1lqviscB5LdTHyOvcmhew2bJ9tXIZPG71HsvraD632mdqZUdmnHHGHLMfVH+T6bqHYR93CT9xNMYYY4wxxhhTxT8cjTHGGGOMMcZU6bBUVR/HfvvttzlWadCUU06ZY5bf7LTTTmE7Th2tUlVO9c1SVU0nz49guUyApkveaKONcqzyDpZsMSx9Vfbcc8/wmh8vs1RM5ZT8KJzlDcC4tNW1tLgdRWU/CS4XUpPV7rXXXjlWaWaz7L///sU2lprxueT07wCw66675ljlW5wKmSWTN998c3sPtQ0sCQCiBOH2228PbSmlNffHziJ9lqbTr0mPuI3leipV5fexBAaI6cwZlYSXpExa2oaPI0l7Eyyn5b6mpWR4HF9//fWhjVNdq/ymWWrlMMYXLXmQqEnBWHbKc5OWNeLrqHLhlHobiPN0TW5+3nnn5VjLQrCcS2W//F2aHY9qAWBYNqgyPLYbNCO96Ww23XTT8JplTlpCiPsqz8sqaeVyM1yiSNtqZXVK8l6Vdp9++uk51rIgG2+8cY5Zxprk1olaGQo+Ri4LoWnuZ5ppphyPHj06tKW+x6UPOpva+NO2e++9N8c85nhcAXF8qmSQSzew1Ezn8IEDB+Z4pZVWyjGX8ADinK5jn+9ZNWsDl7LQef/tt9/OMY9Hlcs3cx5bsc5R+0/iqKOOyvEMM8wQ2vr06ZNjvpfruOW1iMo0eS1733335Vglx1NMMUWO+fpoWSh+n66B1L6TqJ1zllUDwJgxY3LM8mwuoQRECTaPW2DcPeiSSy4pfm5HGTRoEIDY74Eo79R1PMPlTFSqyuWAlNI5ZJsIEEtraJkehi0lCq8PWdrN0mGgedsQlyDTuVklv0z6LiyjVvzE0RhjjDHGGGNMFf9wNMYYY4wxxhhTpd0aw/QI/d133w1/Zylps6g8i2UvKvVhnnvuuRyzjAIoSy44Wx0Qs8vVMgHyo/BaxiXNfMSw3EapSQpT1tFWZBtL7LzzzuH1cccd19T7unTpkmOW/QLAggsumGPOgghEmTFnEdtqq63CdiwF5WvMElkAWG655XI8atSo0MayaJbD6Xl++umnc6zSDCZJToG215Svf79+/UJbkh3od+wMUr/WbIQsKalJVlQyyjSbMa8jqHR88sknz/HYsWNDm2ZqTWjGQ77+mgly+eWXb7iPxx9/PLxmuQj3VWBc1jaV0XcGSb62xx57hL9z5mGWginNXquRI0eG1zz3nXPOOTnecMMNi8fBMlA9zyyNW2+99UIby8Z4PGrfTRJ9oO25TlkSgXqmREaz17WSNLfo9WBJsM4DW2+9dcN9sVQRiNlXdQ5jaSmj8q3FF1+84XaawfXll1/Oscof+V7KFhWVpnLGVY6BKOtkWOIHxO95wgknhLYkHW+FxDGhmSP/9re/5VjXHiwNYzTLLdsw9BqzTYYz1avEmOc6lilz9nkgSuN47ADxvsfoeKxlYOTMtiX7CxCv44UXXhja1ObTmaiVKcFSeV3zsG2CrzdLtIFoO9J1CcPfnbMfA1FyzmsxzdrOFhCVprKliCWUOuZ4btYsmyyFra29axk9W0nKiq9rK5b6fvHFF6GNz3vKPg+0vcfWrAx8Dvn8sTRV4THIvzOAaK1S+F7K8nu+dwDxN4lK+9lywFUfFM5wftpppxWPo4SfOBpjjDHGGGOMqeIfjsYYY4wxxhhjqviHozHGGGOMMcaYKu32OB5xxBEN/77GGmvkuJYOntPpayr3Guw94/IWNWopptnToWnjWdOvKZiZW2+9tanj4LT5tWN89tlnQ9uiiy7a1P7HhyuuuKLYxjpoIKaN55IrnDoYAPbbb78cq8exVAphiSWWCK+XWWaZHHPZBdVjcxpphdOgs4a/o9499pjV9lEqf9EKL04qV6D+zlrfZ408e3h0HyVfIABcdNFFOWafi/pdOe05e0n4PUAcZ+qxYV8W+4gWWGCBsB2//v7770PbiBEjcszpzNVzwMfI3qFWM2TIkPBvgo9Pr6OmZU/oWGJ69eoVXnOfrJUb4fP+2muv5Vh96g8++GCOdX7k8jjMqaeeGl6z11JTguv5KcHzDnuuAeCss85qah8dQT16CfY1aikrPlYud6AeNPaZ9u7du3gMXGZB/ft8vXmO0OPmvnbBBRcUP6vm7WJP0HTTTVfcPx8Hly0BYikevXek97UiB0A6jk022ST8vVb649///neOjzzyyBzruWUPEY8XhfuCjn32iPN6pT3ngn1ufIz6nbnUk5b0YHj9omuX2v0ylV/SclCdiX4+r1/YpwvE8cgeYfWT8b2uViKBvfJ8HwLK+TXUx8j717HP+QF4PaclF+aee+4c8xwBxO/Gbd26dQvb/fzzzzmurb06m+QF1VJ56mtk+JrzPUXznXDpmOeffz608RqY73WaG4RhT7iWVGKfbG1MsM9WS4uVjg+IvkbuQ7pW0HU0kzyftfWqnzgaY4wxxhhjjKniH47GGGOMMcYYY6q0W6qaUtJrWm+WMiX5XIIfydYkjjVKMip9nMqSN075znILAJh22mlzrOmmazI/htMWTzzxxKGNy5VMM800Dfet++c099zWynTjBx98cHjNsrGBAweGNpYIf/LJJw3f02ifJVj2suqqq4a2lVZaKccHHHBAjnfaaaewXS3lMMPlKTRteu0acz9fbbXVcrzOOuuE7YYPH17cX00O3Cpq34nlqdwfudwIEMsdqESrJFHTz2XpJ3+WymBff/31HKsUh69XbWzyPjhVOhBl8VyCQ2XvPAZVtpJk+q2QxqVSCyw7AoBLLrmk+J5tttkmxyzFLpUFAID3338/vGZZOaeo17TxXAqBSwNov2DLAo8XYFxKdWCcPA1oK2PkY6rJbrkcAsv6gLbyVCal2G/FvKoyv0Zo+Q22drBkcNCgQWE77u/a91l+u//+++dYpYXavxJvvPFGcTtNKc9lIpq9V0400UThdansk15Hlb4zrbw/pvImWvKH5fC8vgBiKvxHHnkkx7X09vweIPb9WokvpjYf1SSOKodMaOkPtiWorad0/blMAhDLPun1SpL2VlzHk046CQDw1ltvhb/PNttsOeY5C4iSW1436LqmT58+OWYpJAD86U9/yjGf91TObnzQ68YyeO6vOjdzaREt8cDllyabbLIcqxSUr7GWW6qV9hpfkkRVS/7oursEXyu9t/FY5esNxDUAy1NTv0qwLJgl9VoeR0sbleAxXTuvtfJ5LE89++yzQxufD/5NBgAzzDBDm2NQ/MTRGGOMMcYYY0wV/3A0xhhjjDHGGFPFPxyNMcYYY4wxxlRpt8cxpahXPxTD/jQl6WeB9pVFYM34Mccck+N77rknbMcpsTnVsaa9Zm+B+uQ6Uq5Btdes/WdPS23fJ598cnitfoLOJB2vekqY2rH2798/x6qlv+uuu3LMPlAglkngczTjjDOG7V566aUcs9eD0xTrZz/wwAPF42Xf16efflrcTnnnnXdyzDr29uj50zkYPXp00+9pJdyv1lprrRzzdwWih+G5554Lbdw3OJW3+mguu+yyHLMf4c033wzbsUePPcFALOtQ65Pqa2TYg3L++efnmMu+AHEMqh/5H//4B4DoresskqeM5y8gemy//PLL0DZ06NAcc3p+LgUA1H0QnAKf+4V6W3jM8LWaaaaZwnY1z1t7xl2C078DcZ5deumlc6xlkzQNOsNzV2dTSst/yimn5FjLVTH8PdhLCERvLqf4B+IY5PPOczHQNhV9gj3/QNucAJ0NX59m77dcDglovjRLR0gevQsvvDD8vXasPD7POOOMHCe/ZIK/u3rj2BPFsc5tpXImenwdWctoGaLaOoRL8zC1Mgns4wTqPtbxJZUzquXT0PHYt2/fHPO6UUuLsTd73333DW3abxI8d9a4/fbbw2u+jlxOC4j+/dr15jXLyJEji/tn1KvKfU3XzbX1V2dR8zSyhx6I95uOlmDj9QujpU4YzgegJfa4tIbOzcsuu2yO+XeSwiVJUpmSRGkuYE8jADz55JM5XmqppULbyy+/DCDOYYqfOBpjjDHGGGOMqeIfjsYYY4wxxhhjqrRbqpoefzab7h+I0gR+H6cRBmL5B5VmLLzwwjnmFLks0QLio1qWOw4YMCBs99BDD+VY00CzJIYfH6uEgx+Nq9SHv2dNKnbuuefmWOUOqUxIK9JUTzDBBADaSo4vuOCChscGAN26dcsxy4UVvv4sMQaAW265Jcd8HeeZZ56wHV+7mhRnzTXXzPG3334b2kolI1R2yWm2OTUzAHzwwQc5ZpkES271uFRm0kyK/s6Gz5lKZDmVNEsujjrqqOL+WAoHAIssskiOWU74448/hu1YSsHp60uSOaCtXFP7RkJlpqlPA8CoUaNCWyp3AcTxpGV+uNyL9rUk61500UWLx95R0vXSPssyXZWlsGRlyimnzPHnn39e/BwtIcDyZJ5/+/XrV9zHsGHDcswpv4HY13Ru2W233XJcG9Msn9V5lccjl8RRGVlt/2nuasW82owk6umnnw6v//znP+eYJUQKf6dXX301tLE0kEu4JKlegssosSRcy3RwKZ5JJ520eEzNwvJwIMqMazRb7qOz0Tk8wRL72WefPbSxrI/XLypfZimb3rM4Xf/dd9+dYy69AwCLLbZYjvm8aPkQllNq2RuG1zwqkeZrpeUK9ByU4BIf/P1bTUmiyuVh9F6u0uISfF153QSUSxlwGaIaWjaJ0fV1jx49mtonz6Vqe+C1HvcnlRWXJNJMK8pVlT6Tj0ftCq+88kqO55133hzrmONybyq95rWilnRhnnjiiRyzPFWPl8uQ6f54jcVllHQ8br/99jnWkmHNStjVYsLo+rgRfuJojDHGGGOMMaaKfzgaY4wxxhhjjKnSbqlqQh/BNispGTFiRI5vvPHG0MaZf3Qf/Nh5+PDhOa7JjfiRfsqImBg8eHDDYwJiRrk99tgjx5pNsdnMmiwBVEkVy1M1A1OSo7Ti0X/KpKSZnfgx+PHHHx/aLr300ob7Urkab6eZFFk6xRkjlQUWWCDHtf7EGSRZ2gNECUptHypPLcEZHWtSEpWmXnnllU3tf3yoSTiUkpxB+zP3BZU/7rnnnjnm76vfnaVNG264YY41K1mSZQNlaarCWSaBcoY/AOjatWuOeQzuuOOOYTt9zaSMvq2QqiY5u2ZEZViWrdTkqXytLrrootC2884755j76UEHHRS2YxkQz2cbb7xx2I7lUMstt1xoY6lqrX9qdl+GM8DpXMrw/ldcccXQ1ux4Hx90Luc+w9JUII4zvk9pRj/+TmussUZo48yQLKnXeeGPfxz3f8WcdZwzeHYWLL3acsstQ9tf//rXHHO/Y6k4EL+z3qfXXnttAK25P84333wAxmUYTLCEjNcQQDzWe++9t81xNqIk91Nq44X3wRk2gbo8lW0jLIdjqTgQ5x2VOPK8ytnjVdLKawSW3wPArLPOWjzG8SWdGz1/Kk9tBr0v8T5r8y9fHz0vDMtCNdtuDR5btXX4bbfdVtwHr0N5HyppVHsZkz6vFRaA119/HUBbGXFNVltCfwvwWpN/ZwBRTjrbbLM1/DvQvPSe11hsDdE2rh7Adjkg3pvZrgI0LwNna4uueZJ9h39nKX7iaIwxxhhjjDGmin84GmOMMcYYY4yp4h+OxhhjjDHGGGOqdNjjyOmggeb9fmuttVaOVYPN6fVPPvnk0MaesmY11JtuummOOY02EL2LipbFGF+49ID68Pgc6DltpWY8pYRXT8TDDz+c42Z9AOp9ZP8a+3cA4N13380xl/fgvwNlT8dCCy0UXrPPhFMiA8Cpp55aO+xMzRfAr9kfVPOcaGrudP1a4cVJac7bk6qefWL8vsMPPzxs99hjj+WYU/crXDqF/QIAMGTIkByzR2SjjTYq7o/19wDw4Ycf5njkyJE5Xn311cN2c889d45Vt3/ttdfmmMsVnHbaacXjUFo5HpO3Uc8zl0/YfPPNQxun6OdYfUjsC7nqqqtCG3vxeG5mjxYQfd/sjeIyJ0A87x0tn8DeCvXecbkK7p/qA+HvqZ7GNN5bMR7TvtlXCsR5cNVVVw1t6rlJcEkM5YEHHii21fzhPEbYW3jHHXeE7bi0xNlnnx3atMRSCR7jWkKAj4vL+dTg/gmMu6ezP7qzUG9jgn266gGaYYYZcsxlF2o+xmbHiPZh9u3yPmqeNPXNsWeL55YffvghbNelS5ccDxo0KLTxHHzhhRcWj5/hdRlQLn3SmTTrJQWaKzkBxBwQ6k3n68++M73HspeNr4/2LS49pLC3j2OeH4G2c2QJvn/079+/2PZrlsdJ81btM9U7rmWPEjoOuPyE5k1gDjzwwBxrSQ/29+pcyvD8oR5H7gtcZkPXvOwX1tJlzcJ5Co444ojQdt111/3i+/3E0RhjjDHGGGNMFf9wNMYYY4wxxhhTpcNS1WeeeSa8bo8UIMGyGSDKHmqp52twinaWp2ra2kcffTTHmgKcS0jUUmkzte//xRdf5JjTVwPAEksskeOePXuGtnPPPbepzx4f+PMB4MUXX8xx9+7di+9jyZimImY5wQcffBDaWMrGpUD4eihvvPFGjtdbb73Qxo/3+fG7whKRk046qXi8LMMD4jXh7bh0DBDlXNttt11oS5K4VkgcR48eDaCtlGWXXXbJ8RVXXBHa+NrVYJmKjp/0uUAsu6BSkrfffjvHq6yySo6nnnrq4ufWUpurPJX58ccfc8wSWSCm0d92221z3B6paitJ55qlqcrNN9/c1L6GDh0aXvP37dWrV2ibdNJJc6z9hOEyGzwmxo4dW3xPrUQMy4+nn376sN26667b8D3KIYcckuN77rkntLF0V2ml5DjdL1S2x/elUaNGhbbll1++4b5qdgo9LzxvrbTSSjlWGWypZA3L8AHgmGOOyfHXX38d2saMGZNjvn9wGRAA6NGjR461DMGSSy7Z8LNVTnfeeeflmK0swLg1QkfXCjUefPBBAG2lYGwnUdm33tsTeq3UvtEMWlKGz+1DDz2U4/feey9sx6U1VKLHczrfV9UmVBuDfC/le6z2O97HCy+8ENr69esHoK0UuTMoHfuZZ56Z4wMOOCC0JfuHovMv38PUrsNlivj6TDbZZGE7LVeWqElT9TqyPLVmu6m18Xy111575VjLXzC6tmOpdmeTjrdW+q0kTVXUntUsffv2zbHaDVhuzWXbtPQMr6lT2YsEr43V8sOUyuIpfL15bQTE/s+SdWDcmq1m5fATR2OMMcYYY4wxVfzD0RhjjDHGGGNMFf9wNMYYY4wxxhhTpcMeR05FDETNtPpN2LOy++6751j9FpzGltO/A8B0003X8LOULbbYIsdc4kFTdrMOmdNNA23T+jbDZZddFl737t07x6zLPvTQQ8N2rLdWTXEqC9IKL07SaKuPhtO8c9kChUs61FAdPPv/2GvH5VYAYIUVVsgxpxhXrx2fTy0fMtFEE+WYfSW19O3qMy3BPh9FvamaqrszSV4kHmNA1OPXvGaMnhdOF62afvaBsNdD04hz+QxOWa2w76vk+fol2GPFvmKFPYBPPfVUaOMSMSNGjAhtaW5pRRkH9cw2QkswsN+z5l9hj7D6GdjHWvMZs6d9zjnnzLF6CYcNG5bjn376qbg/9TUyfPw6zuaff/4c8/ngzwWAueaaK8fqF+G06p2N9v/ERRddlGMtacDXh0tT6D2F/dz33XdfaON5iz1V+++/f9iOfWjsd+XSHEC5HAUQ/Tw85+rx1uZc3pa97lw2B4jjUUllgFpxf1xttdUAADfeeGP4O5eSYC8pEK8PlzNRuP/tvPPOoY19xrUxzdf4nXfeyTF7GoG6H+qMM84otpXQewnfz/kYtcQGl+3R8gJpnlVvZStRXyNT8t/r2oDHNN9vgfh9ubSC+pvVF1yCc0+wpxGI/nO+Burl4zb1CvJ3aRYt26DH1Qq0P/N4OfbYY0NbqVSFlv/hvsDeeyB6ddmTqHk9GL6mep+7//77c6z5BjgHBPu+dR3COSXUV81eaL5PTzhh/KnHJTjeeuutBt+iPq/6iaMxxhhjjDHGmCp/aLaI5z777PPrVfs0DTn//PPbn7pW8HX87fF1/H3g6/j7wNfx94Gv4+8DX8ffB76Ovw8aXUc/cTTGGGOMMcYYU6XpJ47GGGOMMcYYY/7/xE8cjTHGGGOMMcZU8Q9HY4wxxhhjjDFV/MPRGGOMMcYYY0wV/3A0xhhjjDHGGFPFPxyNMcYYY4wxxlTxD0djjDHGGGOMMVX8w9EYY4wxxhhjTBX/cDTGGGOMMcYYU8U/HI0xxhhjjDHGVPl/eSbNlJvqPOoAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 1152x169.2 with 8 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Denoised images (output):**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE5/figs/AE5-06-test-predict</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA44AAABwCAYAAABRhy5gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAiE0lEQVR4nO2dW7SWVfX/p50U4hDn80EQFAkP4AETJA2V0MbIaljRaZSNkYOLLr3tppsuGt3R6DAadaEVZGVhRqYQAgmZyFFAQFEEwRMm2snyf/Efrr7z636WG36bvd/33Z/P1Xz3Wvt5n3fNZ631POP5zjnPevPNNwMAAAAAAACgiXf19QkAAAAAAABAa8ODIwAAAAAAAFThwREAAAAAAACq8OAIAAAAAAAAVd7T3Y7Lly8ni04fs2LFirP+r8fAj30PfuwM8GNngB87A/zYGeDHzgA/dgZd+ZE3jgAAAAAAAFCl228c32LFihVn4jygwvLly3v8mPix98GPnQF+7AzwY2eAHzsD/NgZ4MfOoOZH3jgCAAAAAABAFR4cAQAAAAAAoAoPjgAAAAAAAFCFB0cAAAAAAACowoMjAAAAAAAAVDnlrKoAAAAA0Du8+eabjZ/V/u9//5v6/fOf/yz2G2+8kdre+973dmm/6135fYJ+PuusXNLNPwNA58MbRwAAAAAAAKjCgyMAAAAAAABU6Wipqss7uttP5RdIMfoG9cl//vOfYqv0JiLiH//4R7H//ve/p7Z//etfxT558mSx3adDhw4t9uDBg1PbOeecU+yanIdrBgD6My6TbJJT1v7P1873vOc9jW2dSNOY6R4Y0bzv/e1vf0v9nnrqqWK/9tprqU33uhEjRhR72LBhqd+gQYOKrXtgRMT73ve+Lu3+4Ku+wueZXhveptTmEvcvcCrwxhEAAAAAAACq8OAIAAAAAAAAVXhwBAAAAAAAgCptH+PosRMaA3fkyJFib968OfXbt29fsS+++OLUtmDBgmIPHz682B7XBj2H+1F1+xrP8cILL6R+Bw4cKPahQ4dS2/79+4v9xBNPFNvjNJYuXVrsyy67LLWNGTOm2JrOXOMFInJ8x7vf/e6A3qe7MVXM497BfaDxNxp/7LFX2jZkyJDUdvbZZxe7v8W/9RW1tVnj615++eXUr7Zu67Xw+uuvF3vcuHGp36RJk4rt10Irz+PTza+gn3W/0TGKiHjppZeKrWN7/Pjx1E/bXn311dSm80f3rPe///2pn/pg9OjRqe0DH/hAl7bO04jW9lVfovNAff/vf/879VO/bt++PbXt2bOn2EePHi2254OYMmVKsWfNmpXa5s6dW2y953U/ss5CBG8cAQAAAAAA4B3gwREAAAAAAACqtL1U1VFJhEqe1q1bl/pt2bKl2C4LuPLKK4vNq/m+oUm24enGVSrlMp3nn3++2CrhGDBgQOq3a9euYqs0NSJLNVQqVSvHAf9D/ahj1F0pl/dVW+d3RJbGeVpyLauiNrLinkXnqs6/iCybU4m5ysgj8hycOnVqahs/fnyxVUKnPoXuUZN2qzTSpcQqedTwAA0NiIg4ceJEsV955ZXUptJ+ldTNnDkz9dP11yWUrSZ/bJId1vaGWmkFXc9cZqr7npfqUHSM/DyeeeaZLo/h36XyVA/rmTx5cpffO2rUqMbz6G+oj10+qpJjlXqvX78+9Vu9enWxt27dmtp0fup15/c5unZOmzYtten1dM011xTb/ch9DkTwxhEAAAAAAADeAR4cAQAAAAAAoErbS1X91blKIvS1vWd1e+6554pdk9Hwar53cKmUyhBV8vTss8+mfppR7NFHH01tKoFTfw8ePDj1mzBhQrFffPHF1KaZyFxWBP+fWjY4/awyHc0YGJGlcSqbicjSKZXzuFRVpWwTJ05MbSNHjiy2Z4qDd0Z9rBI6lVpFRPzlL38p9u9+97vUtnv37mJrxmv3o8qjzj333NSmUsbPfOYzxZ49e3bq55mT+yu+ZulnnYO6xkbktdOlcdr217/+tdi+dqpfXUqsn8eOHVtsz5zqa0Ero3JPHedTuYfQY9TkrnqPotlM9e+Or3u6HusaqxnnIyIOHjxYbPeHnpf6sb/fN6n/VUrq9yibNm0q9u9///tiu3xf56eHV+hYN2XKjcihPL7/qmy507NVn0qYzOnQiWPm8MYRAAAAAAAAqvDgCAAAAAAAAFV4cAQAAAAAAIAqbR/j6GiMo8biPPXUU6mfxlR5PIzHwMGZQbXmHovTFH+zd+/e1G/NmjXF1liMiBxboLF2HoencSEjRoxIbU3Xk8cPaPxIJ6Ye97gA/axxL16CQWPZtOyJxxVr7KrHOelYaxyVxq1GRFxwwQXFvummm1KbxjjCO6PXekQutaCp4u+6667Ub+fOnY3H0PgtnSM+9/Ua8vmuMXU6bzW+qqvP/QkdT48f1bX06aefLrbHo+q6qqVTInI8nB5/0KBBqZ/uo942bNiwYquv9O/+f622rvqaqNe37jG1mDQ/hu57TfMlojmG18d53LhxxdbYtYhcSkOvCy959eCDDxZbS3P4+faH2K4mfA3Te4+1a9cWe+XKlanfxo0bi617ovtRfTV37tzUNmvWrGJrDgC/H9IY89r+q7S6T5titiPyNa1j4fGjtftQnYNa0s33No3Z1pwZXkJI70O81Ineew4dOrTLY0e0Rgmx1lqJAQAAAAAAoOXgwREAAAAAAACqdJxUVV+t62tmL8ehqAwg4u2SDjjzuGRHU4U/+eSTxd68eXPqpxILlxnoK/4BAwYU22UgNVmASoRUfqRyLT9+p1w/NQmHylNVBq7pxSOyzOnYsWPFnjZtWuo3adKkYp9//vmpTWXAW7ZsKbZeFxFZluV+pMRO16hfVfq7atWq1O+ee+4p9p///Odiu2Snhsrr1Na5E5F9d/LkydSm807P6YYbbkj9xowZU+z+4G/d69QnKq+KiHj44YeLfeeddxbb563KFV0mqRLUGTNmFPvSSy9N/bRNS0ZEZMnW8OHDi61+836tINFSauEVSi39f00ap//ne4q2qX+8n46ft+n5auiOlmaIiPjlL39ZbA8P0PPQdbo/zDn97Xq/EhGxY8eOYuv4qdTejzFnzpxiL1q0KPW7+uqri33xxRentoEDBxZbJbIqN4+I2LZtW7FV0uqfW00SHtE8h/S61TGPyLJgXfcOHz6c+uke42FM3S2xo591b/M5p3NE71ciIqZOnVrs66+/vtgf+9jHUj9dI/uq7FTrXSEAAAAAAADQUvDgCAAAAAAAAFV4cAQAAAAAAIAqnRGMJagWWuM0PMW09vOYqv6gz281VEsekVMp79u3r9gef6Gxdq6DV+2/6va9NIOmQfZYBY0Z0BgbLxnRideMjqdr/5tS+d99992pn47ZvHnziu3lMmbPnl1s9VtEjr9Q/9dKongabI0FaMUYjt7CY6qOHz9e7O9+97vF/t73vpf6afp2L/GgaEyHxq5F5FhynYMa2xGR/eixdxrXqtegxr5G5JigTqQWE37o0KFi+7j89re/LbaOra6jETkmUcvcRER89KMfLbbGNc6cObPxGB6Lo3NXrxmPCdLY5FZAx91jGnVuNf0+P4ajv1eP7+Ogn/V7fZy1X+08dM55PKrOdz++rtV6/E7cDx29Z/HyFlo2Sn2gsfwR+d5z8eLFxfZ4YS3d4PH7Sm39VZ/4PqDHb+UcDT53dNw9flRj8bUUia91TbHJp4KOrc4XH0v9bo3PjMjrtuZk8RJF1113XbG9pEdvzbv+ewcFAAAAAAAA3YIHRwAAAAAAAKjSuu+kTxN9Bb9///5i++tplRq6fKA/yCxaAZV6uJT4wIEDxd6wYUOxDx482HgMlzhqmn+Vi/irf/3sktmm47lUta/SIvckLgNRCYenYV+9enWxf/rTnxbbyyeoJPWrX/1qsadMmZL6qVTKpSNaUmDv3r3F9lIQKs1R+XFE9k9/m98qMz5y5Ehq+9a3vlXsu+66q9guvdIxU/mNj/OSJUuK/dnPfja1qVRVpcQuHdZrzefqD3/4wy7PUaXtnYrubS4d1zFTyZbKyL1N18Rrr7029dN5qzLyiOzHWikjlWvW5pyuO7U0961ATWaqv7f22/Wzy+31+Lpmdfd7fS51d9z1GH6vpOeh/o7I+6D6v9X81hO4D/Reweejyn0//OEPF9vliVpaQ2WrXjKsu+EV2k9LlUXksBuXUOo67uWRWoGm60nXsLFjx6Y2HVsNyfC9Qv3ov139qPcoLvXVcVepqs9v9YHfK2mbljjTkmYREeeee26x/Trxe+AzBW8cAQAAAAAAoAoPjgAAAAAAAFCl46SqKnPTrHueCVBf8brcCs4c6geVmqk0NSJi1apVxd68eXOxa5JjzyKmn1XG4FkcVQ43evToxuOrbMFlWZ2QqdPlFyofVrlwRMRvfvObYmtGx0996lOp31e+8pViqzzVJRz63S7huP/++4utWSFdpqFSH5WV9Dfcjyr19WypP//5z4v96quvFtuvZ50HKr1atmxZ6qeZAT2zrR5T7Vo25BkzZqQ29bmuHzUpX7tSk45r1r2IiF27dhVbM6lu3bo19dP196qrrir2l770pdRPZV4uT1Qf9ES24naSNTZJtp2ma92PUbtudR77MWrHb8K/Sz/r3Nf7pog8j88777zUpvuqr+mdhl+neu17pnadI7ovua90bE9X6qt+1Myc3//+91M/zU7uss5FixYVu5X96OOi4+yZaHU89d5NJaER+f5v1qxZqU1loXo8P4aGzWib34ccO3as2HoPFRGxbt26Yj///PPF9jVcqwx4xuua7L8naf+7XQAAAAAAADij8OAIAAAAAAAAVXhwBAAAAAAAgCodF+OoWuNHH3202K7vV225pvSFnsXjrTSWYufOncW+7777Ur+1a9cWW2PeXDM+ZsyYYk+cODG1abzihAkTij19+vTUb9q0aV0eLyKnZ9bv9viWdorTUXReeBkMjXVZs2ZNalM/3nDDDcX2mLfx48cXW8fI05dr/IXHU/7kJz8ptsZ2XXLJJamfxt+cSlr6TkD9+NJLL6U2jaXQ0ikROR5D10GPa9PyDLfffnuxPSZE58vpxnbp3PJY4qZU54MHD278rk5B54zGwETk9O0aA+Mx4eofXwcVjVt2OjGetLvUrmH9rCn+azGIfp2eztierj/Ux1qm56GHHkr9NJbP91iND+uEOP9TQX3n9yW6ltbiznTMTnfN0jmuuSF2797d+F2ei0BL7rTT2qn7g5fV0za9/9N7l4icC8NjVTU2UvclHyO9z1V/+9zU7/bSH1oqSfv5fq7U1iBiHAEAAAAAAKDP4MERAAAAAAAAqnScVFWlV1pOwFGJBVLVM4eXQVGJlcqrNm3alPqpJFElAip9jMjSGfVpRE7VrNI776eyZU9FrTIdbWsnOUcNlTa8/vrrqe2RRx4p9p49e1Kb+mTy5MmNx3j22WeLrdeClojwfr/+9a9Tm363SoIWLlyY+tXK6vSWhKOvUNnZvffem9q+/e1vF1vHOSKPxahRo4q9dOnS1O9rX/tasVUS7HIbPV5tnGuSP5XprF+/PrU1rekqN+8UfFx0/hw/fjy16XzSlPy+/qpc7eDBg8V26b3Ko7ScQEROAa9SLvd3J84zxf3TJE/1cA0dF29TObLavi/p8bXNz6l2HhqKoGWONIQkIsvRtTxBRN47O93fTnd/b0+Pi4d5PPjgg8X+zne+09hvyZIlxV6+fHlq89JJ7YKOrd6rReT7AW1zGb7OER8HfTaoSbG7W8JEz9dLomibhg156Q9d0/sqbIA3jgAAAAAAAFCFB0cAAAAAAACo0nFSVX116694FZVldfc1M3QPlexotsyIiB07dhT7D3/4Q7FdQqfSApUPqN/8uzz7lL7u18xZLuE4ceJEsV16p9LITpE0N2X/c18dO3as2J5xVdHsxS5pVVmIZn/z4+lnPZ4fY8aMGcWeM2dO6qe+6w+yKfXj/v37i/3jH/849dO55dIWnRef/OQni+1Z91SeOnDgwGLXxrkmo9HrTudfRMT9999fbJVhReTrRGWSnu2xE1Gp1JAhQ1KbZhTUbMOPP/546qdz8MCBA8XWsIGIiM2bNxd7ypQpqe1zn/tcsefPn19sz2zbiftq09oZkTO667xwGbD+n0uJdW/Sdc9lpvpdOs7eT+eqf9fq1auLvXLlyi7PLyJiwYIFxZ46dWpq02uylk2yndbj05H/+X7WNBa1Y+tYuixSr4UtW7aktq9//evF1nugcePGpX7f+MY3iu1zup3804T/Br1f072iljHas+OeyXHxfU+vIf1evxY07Mrlub0FbxwBAAAAAACgCg+OAAAAAAAAUIUHRwAAAAAAAKjScTGOWu7hyJEjjf00tqcTYzHONKrVd32/xl9oHE1ExAMPPFDs3bt3F1t12xFZgz969Ogu/x6RdeIvvvhiatOYDk09f84556R+GheiJTwicoyI6t/7Slve0+hvdz9qOmtPw65za+/evcU+efJk6tcUq6olPCJyfKXHquoxFi9eXOzp06enfhrT4HO6E2I4HI1XW7VqVbG1jEpEjlnSuRQR8eUvf7nYy5YtK7bHMp1OXGOtXIGWArjnnntSvx/84AfF9jVcY1U0DtOvz3alFkOnsS7+ezXmcebMmcXW2NeIiFdeeaXYTz75ZLF9nX7mmWeK7bkCfvazn3V5Tpdffnnqp2t6LZV9O6H+8dIwuv9om+8VutZ53KHGX+mY+XfpWq2xpTpP/bv9WvjFL35RbF1zb7zxxtRPYxx1/vk5diK6P3r8qPrO/aNrs5ao6u7+qCWJIiI2btxY7BUrVqQ2jU/We5s77rgj9Zs9e3axPe62E9FrU39vrWyQX889fd+g81afVSLyOep5eJkxjef3vBu9dZ/T2bMeAAAAAAAA/s/w4AgAAAAAAABV2v59tcuh9LW9ygf81fzYsWOL3elyi55CpRoqR/VX7i+88EKxvbSCStRUmnH++eenfirFUlmxyxhVqupSkib/u/RKX++7dMiP+RbtnG5c0d/hMt158+YVW30QkeeZ+t9lWfp/Ki318fvRj37U2KalIFRGNWbMmNRPv7td/XEqqORtzZo1xfZ04ypj/MIXvpDaPv/5zxdb5am1tORq1+SoKouMyFK5u+++u9haCiAiX08uYV+6dGmxb7311mJ7eYp2QsdQ1x/3o+5TPld1LdW9TWWrEXn91HH2MjoPP/xwsVWK7p9VQudhBHqOnbLHqtTMyxeprFrDMLz8k+4pLv1UP44cObLLv0dkyaPK8l0yuWvXrmL/6le/Sm3q86uvvrrYKk2NiBg/fnyx/T5Kf0vTGtHV51aiVhpK7xVcNq/zwKXeOnf1eHpvFJH3LP2fJ554IvXT68lDclSe/IlPfKLYulZG5DW9lf1xJtD151R+u67NpzNmvj/WfOzlOd7Cpaq6rvaVHztjNQcAAAAAAIAzBg+OAAAAAAAAUIUHRwAAAAAAAKjS9jGOHoOmacQV1+Zr/EBTHFt/pxa/pOmid+zYkfrt3Lmz2H/6059Sm8bYTJs2rdhz5sxJ/YYNG1Zs1fS7Llxj7Wpxh/pdEyZMSP00NmfcuHGpTWOnaimd2xX9TR5PprETOn4RWauvcVkeGzdgwIBia5zB448/nvppaQBPMf3pT3+62HPnzu3y/CJyrE87xdicLseOHSu2xt94TJXGRFx00UWpTddBHSMvBdEUy+QxwTq/165dm9ruu+++Yq9fv77YHrOjKeW9NMBtt91WbI199WumndCx1jiXQ4cOpX5aSkXnVUTz2uTjovGPOs6+P+r67rGW27dvL7au/UePHk39NG28H79d56OOhZdW0Pg1jX/z+XjBBRcU28sS6Wdf35Smub958+bUb/Xq1cX2vVOvBV1XfQ/UddXXBZ3/TeUEWh0tlxGRY3/37dtXbL/P0c9ePsNjTd9Cy3Q4zz33XJd2RB53nzuTJk0q9hVXXFFs34v1/sjveWvxqZ1Gb/4+vyfV3CB6bXmb4mu93pP21Txrn9kNAAAAAAAAfQIPjgAAAAAAAFCl7aWq/nr38OHDxdZX0i7D81fI8HZqUlWVc2jq9ogsT/VSHZp+XGVyLodSmda2bduK/dhjj6V+KgnxlOWzZs0q9oUXXljsK6+8MvVTSZWnuW+SgLWznEPPvSYvUolEbb7U2vS7VNq1adOm1E/nrUq5IiJuueWWYmt5D5VQ+Xf1B3Q8VSpVGweXQKm8UMtnuJRJ57H+zyOPPJL6qWxuy5Ytjd+t67ZLcRYuXFjsL37xi6lNy/bo//m10Mr4fFG5n4Za6LoXkaWlKuWPyGn9Vco0ePDgxmPodeJSO5XFeikePV+9BjtpT33rt/hc0uvM10uVaR8/frzYur9EZLm4S1XVr/rdXtpGPz/wwAPFvvfeexvPSUtcRURce+21xdZ55b9LS1J4uSWV06os2qXJp1sOoTfwsd26dWuxN2zYUGyXjusaqfcyEXme6drp5Tj0u9X2EiG61vk9il5fKvvXa9D/r3af08q+ajdc2q2hCB5Wp311ndFyOBF5Te+rkBzeOAIAAAAAAEAVHhwBAAAAAACgSltKVfWVrkuvNMum9vPscvr6t5MkNj1J7bW3vnLfvXt3atuzZ0+xXXKhY71r164u7YgsXVTbJa0quXApzk033VTsRYsWFVuzqEZkuU1/lj/2RIYun0vqf82cunLlytRPx/nmm29OberXWubU/oZna3wLHxeVhW7cuDG16dzSOa12RJaEqxzVM6Jq1kA/P/Wdyh8XL16c+t1xxx3FnjlzZmrTdbxT/K+/Q+VvmjkzIktXXd6rY6ttmnHR++m6pz6NyH71bJK6Bo8ZM6bYKs+LeLtcsRPQNfLll19ObQ899FCx9T7EM1LrHPFjqGRYs316iIZmT9VsqeqPiIjLL7+82AsWLEhtem3ofKzJTD0rqF6vet2pXLrVUTlvRMS6deuK7eulojJjD4XSfU9tz7aqc0nvZXz8NAOu+1ipZaDX4/vaqWuBypHbKQSgFfFx1n3VJdJNUtVRo0alfq2QvZg3jgAAAAAAAFCFB0cAAAAAAACowoMjAAAAAAAAVGmbIATV0qs2eO/evanf/v37u/x/LQMRkTXdml48IuLss88udqfE0fQEOhYaz1KLa/M4J00RrampPRbSYwHewmMJtLTG7bffntrmzp1bbI0R8JTifaUT7w9oDM+dd95ZbJ+nWoJDY1Mj8lxlPv4PjdU977zzir1z587UT0smeMyOxvPoPPY1UeMvdC2ulSvwOJ1LL7202Lfddluxb7zxxtRP53gn+tt/k64/uvd4SRRdLz2tv/q4u9/tcf9KU5mAiOyfCRMmFNtLhLSz75rOXX3lsYAak6j+8fh93du8XIrGQGk/jznWeEItqzF79uzUb/r06cX22Did7zpvfc/2vVnRdUL93065AvxeQ8skaCkNL/el8YkeT6jH0Pnjx9AyKJdddlmxdT2PyOPneR4OHDhQbL0+/XfpNelrc1OZHuhZ9Hry/AC63us+4Pe8rRB3yh0zAAAAAAAAVOHBEQAAAAAAAKq0jVRVZRUqpTh69Gjqp5IdfaXrad1HjBhRbKSKXVOToY0cObLYc+bMSf22b99ebH01HxHx2muvFVslMP5dKqPS0im33npr6nfLLbcUW+WOETn9dCemhm9FXNakssk//vGPxXZ585IlS4o9derU1Mb87BqV33/kIx8ptksLdY10+VKTBNX9o/NHZTQueVLp1cc//vHUpmVWVOKox4vof1Iplc6rnFBLKUTkueVyZC3/oOUFvHyCoqUfatJCL+lx3XXXFVtLqWhJBz9mp/hU1yKXfs6fP7/YKiV1SXBNrqb+0mNcccUVqd+8efOKPWPGjGK7XLipzEJEnvuKSyH1nFw+rcdoJ7mjrm++1mlYi65NLt9/+umni60ljyLy79dyCiorjoi4/vrri61ros9Hva/1eyq9TvTe2Ev26Dn5nqqfW9137YTPF/WjzzNFfTdx4sTU1gr3Q31/BgAAAAAAANDS8OAIAAAAAAAAVXhwBAAAAAAAgCptGfilGmzXcTelcp81a1bqp2mwiX/rHqqt1tgmjbeIiNixY0ext23blto0/kp1/J6m+qqrrir20qVLi+0xAho/4DEcaPV7B40R0bipiIgNGzYUW9OBe7rxhQsXFltjUyPwYxMa47hs2bIu/x4RsWbNmmJ7jKP6q6ksRETERRddVGwtA+JxxTpvPTZDY73w6f/QsdAYNV9XNdZQ50tExOHDh4ut8+zQoUOpn/pfbV87x40bV2z1fUTEhRdeWOzJkycX2+NdWyEWp6fRPctjPzX+/pprrim2l0rReDiPr9OYRJ3HPpd0rGvzquYD/e6meMeujtnUpmtGO/l+9OjR6bOW+NJ7maYSYRFvjy3VefGhD32o2F56SP2q4+f+0DhTj39UP2octN8b6/Wk11lEnv+szT2Hx756+UBFn0N0fmuZn4h8LfRVfoD2md0AAAAAAADQJ/DgCAAAAAAAAFXaRqPZJJP84Ac/mPqplFFf4auEKiLLTDxdNq/qu0bHReWEPrYq/Vi3bl1q01f3KoeaPXt26teUYhxftQY6t9SnmqI8IuKxxx4rtqZr19IMEbmMA9Lx7qHjpFJ8l03pmnjixInUpvNH5UteWkHnqs5Bn496TszN7qHjpJIx96OGYUyfPj21qbRNbZfXNZWCcMmTytr8PHTt12umVtKjU2iaLxG5jJDKuV12WCt7o/4/0+VM/Lu7Oodav4h8ju7/VkbH0+eSSgG1TJSXwdD9TP0dka+FadOmNfZrkvf6mGs/n6sadqWyRv17RF4//NptJ2lxO+FzX+eW752K7r/u71oZj96CqwUAAAAAAACq8OAIAAAAAAAAVdpGE6bSApUIzJkzJ/X75je/WWx93e8yCuRwp476QF+ze1Yy/awZymrH60RZUyfh0hmVYGjWQM3u6FxyySXFnj9/fmpTWQ3XwqmjEpgJEyakNpWZ+tg2zUF80DeoZKzmg5p8UNs8W7WuzTqH/Xi6P/pe2d1z7G80SQ1dBqhttfnYm+j3+vnW5Od6X9WuckeX5mr4k2ZH9Tmi90B6T+rH7Amf6ji7xFH3ztq1xbztfWqSY38mUf+oj12aWpO6k1UVAAAAAAAAWgIeHAEAAAAAAKAKD44AAAAAAABQpe0D/VzTW0txC71Pu8Y9QJ2mGB5PAT537txijxkzptjdTUsOp46PH+PZntTiVU43loXY/t7hTPiup2k6D79G+luJHY1PHDFiRB+eSdfU4kyh79F7ozfeeCO1aSysxipG5H1ayyF5OQ7/v76AOwoAAAAAAACowoMjAAAAAAAAVEG3AgDvSE0eo/JUL48zbdq0Yg8YMKDYgwYNSv1UYt4f5FAAAK0Cay5Az+OlXlSCOnHixNQ2cODAYi9atKjYs2fPTv2GDRtW7L4KQ+GNIwAAAAAAAFThwREAAAAAAACq8OAIAAAAAAAAVYhxBIBTRrX1Gp84fPjw1E/1+MTRAECnomnym8oVOb25Juo5dfX5LSjfA3D66JweMmRIarv55puL7fkgNO/D0KFDu7Qj3h432RewQgAAAAAAAECVU37juHz58jNxHtDL4MfOAD92BvixM8CPnQF+7AzwY2eAH1sL3jgCAAAAAABAlbOadO4AAAAAAAAAEbxxBAAAAAAAgHeAB0cAAAAAAACowoMjAAAAAAAAVOHBEQAAAAAAAKrw4AgAAAAAAABVeHAEAAAAAACAKjw4AgAAAAAAQBUeHAEAAAAAAKAKD44AAAAAAABQ5f8BYYFR+3U+aPsAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 1152x169.2 with 8 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Real test images :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE5/figs/AE5-07-test-real</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA44AAABwCAYAAABRhy5gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYaklEQVR4nO3deXhVxf3H8aFsotAIBQUDolgFLaUCPo8WKVhE1AYUxSJLXVgUTa1SpayCoSCCioBFqLigLYjII1AhAS0q4sJSRRYVBVkqm6AgsoUQIL8/+vD9fWfMGU9ubm5uzn2//vpMZ+65Yw65N9MzS7mCggIDAAAAAECQn5R2BwAAAAAAyY2BIwAAAADAi4EjAAAAAMCLgSMAAAAAwKtC2IaZmZnsolPKJk2aVK641+A+lj7uYzRwH6OB+xgN3Mdo4D5GA/cxGgq7jzxxBAAAAAB4hX7ieNKkSZNKoh/wyMzMjPs1uY+Jx32MBu5jNHAfo4H7GA3cx2jgPkaD7z7yxBEAAAAA4MXAEQAAAADgxcARAAAAAODFwBEAAAAA4MXAEQAAAADgxcARAAAAAODFwBEAAAAA4MXAEQAAAADgVaG0OwAkkwMHDljl8ePHS87JyZG8cuVKq11eXl6J9gsAAAAoTTxxBAAAAAB4MXAEAAAAAHgxcAQAAAAAeKXMGsesrCyr/NFHH0meMmWKVVenTp1EdAlJKDs72yoPGzYs1OtGjRolefDgwXHtEwAAJx0/flzyxo0bJS9atCj0NerVqye5VatWktPS0orZOxTXjh07rPJbb70l2d1fIR7uv/9+yXXr1o379REtPHEEAAAAAHgxcAQAAAAAeKXMVNWXXnrJKm/YsEGyOz2xd+/eCekTSsf8+fOt8ujRoyWvWLEi8HVXXHGF5EsuucSq69evX3w6B0TEvn37rPLAgQMl33zzzZJbtGhhtdu6dWvgNevXry+5YsWKxewhSlJ+fr7kPXv2WHXLli0r9DWXXnqpVWbZyP/oqanGGDNo0CDJjz32mOSMjAyr3U9/+lPJM2bMCLz+ZZddJnnq1KlWXaNGjYrWWYS2fv16yfp35MYbb7Ta7dq1S3K5cuVCXbugoMAq+163YMECyevWrQt1faQunjgCAAAAALwYOAIAAAAAvFJmqqrPgQMHSrsLKAEff/yx5LZt20o+dOiQ1S4vL0/yb3/7W6uuf//+kvVU1VNOOSVe3UxJeqq4McZMnjxZ8vfff2/V6WnmeqriO++8Y7U788wz49lFhPDdd99Z5dmzZ0t+8sknrbo1a9ZIXr58ueQaNWpY7fQOgq4BAwZIHjlypOQKFfgqi6fVq1cH1m3evFnyF198IXnTpk1Wu9dee03y119/Hep9f/nLX1plveO5nk6Zavbv32+V9fTUu+66S/KIESOsdvp7yt3tOzMzU/K7774rWe+waYwxOTk5MfQYJ+npqH/729+supkzZ0p2p3PHon379pKrVKli1enru5+xuo/Aj+GJIwAAAADAi4EjAAAAAMCLgSMAAAAAwIuFIeaHRyugbNJbVhtjr+HYu3dv4OuqVasm+a9//atV17Jlyzj1LjUdO3ZM8vTp0yX37dvXanfw4EHJ7po3vaX8li1bJN96661WO70Wp3z58jH1Fz9Or2vs3r27Vae3dfdZtWpVTO89ZswYyXq9Y/Xq1WO6Xqo5cuSI5BdeeEFyu3btrHbNmjWTfOLEiWK/b9WqVa1yhw4dJF911VWS9bpIY4zp2bOn5M8++6zY/Sir3PVqrVq1kjx+/HjJlStXDrxG48aNrbI+lkqvjVu0aJHVTq/D08foIJj+O0LfH/eIorBHa2j6XhljzNChQyU3bdpUsvsduHTpUsm+deRR8eGHH0q+8sorJderV89q9+9//1uy7/gfvReKuya0efPmMfezLOKJIwAAAADAi4EjAAAAAMAr0lNVc3NzJespOii7tm/fbpX1lAt9pIMxxixbtkzy6aefLrlHjx5WO739eN26dePRzZS1c+dOq3zHHXdI/vTTTyXro02MMaZr166SO3fuHHj9rKwsyU899ZRVp7f8T09PD9VfFG7JkiVW+d5775Wsj7P58ssvY7r+aaedJvm6666z6vSUc9+Uqueff17yAw88EFM/os69P7fccotk/fm4du1aq92zzz4rWR+xYow9lfyNN96Q7B5l1KdPH8nuVC536upJ7mcz/sc9/um2226TrP+28U1VdeklAP369ZN8/fXXW+3WrVsX+pqpSk8DNcb+ntIKCgqssj5+5vbbbw+8vp6aHOu0SH18lduPKNLThfU0U3fK+/nnny/Zt8RF/8zy8/OtukqVKhXarkWLFlY7d5qx9vvf/15ysh8txhNHAAAAAIAXA0cAAAAAgBcDRwAAAACAV6TXOH711VeSt27datVVrFhRcs2aNRPWJxRPr169rPLrr78e6nVjx46VrLd4R/Ft2rRJst7G3xhjateuLfnNN9+U3KBBg5jeq23btpLnzZtn1dWqVSuma+J/9LqpOXPmWHV6jUis7rvvPsn9+/eXfNZZZ1nt9Jqtyy67zKpbvXq1ZHdb9VSmj8zQx94MGzbMaqePs9Hmzp1rlR988EHJvnWHhw8flnzqqaeG6SrioEuXLpLjsX/Dr3/968C6FStWFPv6qUYfs6E/3/QaY2PsI8Pivb9CXl6eVdbfv+4xIHfeeWdc3zsZzJgxQ7JeP7hw4UKrnf4Mi5X+Wes1jnoNeGFlbcSIEZL130d333231e7yyy+XfN555xW9s3HAE0cAAAAAgBcDRwAAAACAV6Snqm7evDmwTm+7q7elRvKZNGmSZL2l9I/R0xNuuummuPYp1a1Zs0ay3r69evXqVrucnBzJsU5P1davXy955cqVVt3EiRMl6yNWEEwfyfDyyy9LPnr0aKjXu1OemjZtKnnBggVWnZ5K7L5O00cPDBgwwKrr1q2bZD3l3HeESxS5Sy9GjhwpecqUKYGv0/enXbt2kmM9zoTpqaVD/9xL+h64R2Dhhxo3bmyV33//fcl16tSRXL9+/YT16cknn7TKvqONhgwZUtLdSTh95FOTJk0ku1NVNX2EhzH23xj6SLdGjRpZ7fT3qP4bxZ0urH+X3Cnm33zzTaF5+fLlVruGDRtKzs7Oturi8TdWGDxxBAAAAAB4MXAEAAAAAHhFeqrqp59+GlinHxPrXSGNMSY9Pb3E+oTCudNh9O6penqq+3i/Ro0akvXUVGOMGTNmjGSmIxfPrl27rLL+WR86dEjy7t274/7eetezCRMmBLbLyMiI+3tHTW5urlW+8cYbJYednlqpUiXJ48aNs+r0LoHx4OuT/neXavSutMbY04y1jh07WmW906CeEgwgdtWqVbPK7m7QpUFPX3ddcMEFVtntf9RMmzYtVLsWLVpYZb27dFg7d+6U7H5/fffdd5Lz8/Otuo0bN0r+4x//WOhr3HLVqlWL3L944IkjAAAAAMCLgSMAAAAAwIuBIwAAAADAK9JrHFF2PPfcc1b59ddfD/W648ePS9ZHRBhjr/vp1KmT5Jo1a8bSxZRz7Ngxye56iS1btkh2t/0urk8++cQqDx06VPLatWsl16tXz2qn17vi/+nfiz/96U9WnV6PEVZWVpbkeK9pdD311FOBdan2e6w/69atWxfqNXPnzrXKv/jFLyTr9Ty9e/e22rVu3TqGHqKsWrx4cWDdFVdckbB+oHj0cRL79++36vSaZvf4nbS0tJLtWCnTfyvs2LEjsN2zzz5rldu0aVPk99LHr7h8x7HoIwJ99B4DZ5xxRviOxRFPHAEAAAAAXgwcAQAAAABekZ6qqre3RfLJycmR/Mgjj8R0je+//17y0qVLrTpdXrhwoeQ5c+bE9F6p5u9//7tkd8pgly5dJPfp06fY7zV79mzJ99xzj1X39ddfF/qanj17WuVatWoVux9RcODAAauspxkvWbIk8HVnn322ZD0t0hhj9u7dK/k3v/lNcbvopT8XNmzYEKpdKtBTmT766COrTk/hXrVqlWT9uWeMMStXrpQ8ffp0ye529bVr15Y8ZcoUq65Dhw5F6DXc6eDbtm2TvGfPHqtO/37qKXXLly+32rVq1UryH/7wB8mx/m5+8MEHgXXuEQVILvq787HHHpNcrlw5q13z5s0lu1PTo27mzJmS3c86/fl28ODBhPXJ9cUXX0h2j+DQkmGJBk8cAQAAAABeDBwBAAAAAF6Rm6qqp1j5pl+cc845ki+55JKS7BKUp59+WvLEiRMlHzlypETft2XLliV6/SjSU2BcgwYNCnWNvLw8yZs3b5Y8depUq53+Xb3pppusOt22YsWKkgcOHBiqD6lm3rx5VnnWrFmhXpeRkSH5L3/5i1W3b98+yU2bNo29c4XQ082NMWb+/PmFvq/r22+/jWs/yhJ3B76LL7640Hz77bcHXmPTpk2S3en7jz/+uOSuXbtadd26dZM8YcIEyVWqVPH2Oer0LtTDhw+XrL/njDHmxIkTkq+++mqrLmiq6TXXXGOVx48fL/mFF16Q3KhRI6ud3kXZ/begpy3rZQnNmjWz2t1www2F9gmJc/jwYcnuzp/Dhg0rtN2vfvUrq527k2oq0cswBg8ebNX16NEj0d0xxhiTm5trlR999NFC2+m/eYwxZsiQISXWp7B44ggAAAAA8GLgCAAAAADwYuAIAAAAAPCK3BrH999/X/Lq1asD240YMUJyqq/NKEnuOtO+fftKDruuMS0tTbJem2qMffSAXrNjjDF169aVzBbyRffJJ59IbtiwoVW3YsUKyf/5z38Cr6HXYyxbtkyyuz7xjTfekPzhhx9adXq77KFDh0o+5ZRTAt831ezfv1/yuHHjQr+ue/fukvVarJ/8JHH/n+Jrr71mlSdPnhzY9oILLpCsjyRA0TVo0ECyu/6pc+fOkt01Qc8884xk/Rmr11qlIv1z0sciVK1a1WqnPzsvvPDCUNcuKCiwyg899JDkxYsXS3a/A++9917JY8eOter0Wkt9fX18jzHGVKpUKVQf8ePcY3T0ERm+dllZWZLDHkOk18EaY0zr1q1DvS7V1KlTp1Te1z0qKWi8ctFFF1nlTp06lVifwuKJIwAAAADAi4EjAAAAAMArclNVd+zYEapdhQqR+09PGnv27JH8+eefW3XulJuT9LQpY+zjABo3bixZbzVvjDGvvvqqZHe78XLlyknetm2bZD3dDcEuv/xyyXPnzrXqevfuHeoaerv5nTt3Sj7zzDOtdvr+6O3ljTHm3HPPldy/f/9Q75sK9FRvvWW+O9VXT+92t9bXUxRLenrq0aNHJY8aNUrymDFjAl/jHgUxevRoyaeddloce5f89Fb7GzdutOr0FEU9NdI9zqR69eqS9RTEXbt2We30sRD6+A1jjJk2bZrkRx55RHJmZqbVrmbNmj/8j4iwl156SbK+B+7vozvtPwz9XWaMMaeffrrkjh07Br5Ot+vVq1dgOz3t350m2aZNG8mVK1f+kZ5Gl/u35VtvvSXZnT768ssvF3oN9+8f976e5E5h1f+G3Nfoo8ays7MlV6tWrdBro2zR09KTBU8cAQAAAABeDBwBAAAAAF4MHAEAAAAAXpFb6KePEND0XH9jjGnXrl0CepOarr32Wsm+oxr0eqt//OMfVp27hflJeh2JMfa6Rvd4Br0Wh637i04fg6HXPBljzO7duyXrn7u7Ju3nP/+55PLlywe+19SpUwvNxhhzyy23hOxxapk3b55kvd7G9c0330ju2bOnVZeenh7XPuXn50t+7733rLrhw4dLfueddyS7ayv158f06dOtuqA1QVHkrivWv1thjzIqaXrd6tatW626VFvjuH37dsnPPfec5FjWNBbFsWPHJOvPbGN+eMyKdtddd0lu0qSJ5FmzZlntnnjiCcnu2nZ93Ie+32X5qCR9xNfs2bMl33PPPVa7Q4cOSXY/l8J+TgW1W7lyZWA799/TnDlzJLOusexwjzkK2v8jGfHEEQAAAADgxcARAAAAAOAVuamq7777bqH/+5AhQ6xyjRo1EtGdlLR69epQ7fRW7u7U1NzcXMkjRoyQ/MwzzwReb8CAAVaZ6anFU6tWLcn3339/XK+tj2wxxr6vZ511llU3ceLEuL53VPh+F7Q777xTcjyOotFTX/XvqTH2MTqvvPJK4DX0cUjuZ3NWVlYxexgNTz/9tFXWU73Dfn9deOGFVlkfu5GRkRH4unr16klOS0uz6gYNGiT54MGDkuvXrx+qT1Glv2/0FGv3OJNYpnG6x6X861//kqw/B9yjP6pUqSL54Ycftur0fdRTIe+++26r3ccffyzZnT592223SdbHuyxYsOCH/xFJyv3Z6mVMQUufjLG/l5o1axbYbv369ZLdI8NioY+1Msb+t6anEp966qnFfi8kTllahsETRwAAAACAFwNHAAAAAIBXmZ+q+tVXX1nl5cuXF9rO3bkP8XP48GGrHHZ3qA8++EDyz372M6tO79Y2Y8aMwGvo3XLdKVVIXv/85z+t8rZt2yR37NjRqmOnuMK5u1gGGTdunOTPP//cqnN3mw5jyZIlkvVOkq4zzjjDKt98882S27ZtK/m6664rch9Skf55vvrqq1Zd06ZNi3XtLVu2WOWlS5dKfvTRR626b7/9VrKe7pjqyz/0bsD653LxxRdb7Tp06CDZ99m2Y8cOyTNnzrTq9u3bJ1kvKdC/68YY0759e8l6h+ui0P+2ivvvLBlNnjzZKuvpqXpqv9691BhjGjVqFHhN/TfL0KFDi9wnvbzAGHsKsrvj6p///GfJixYtkvzQQw9Z7Zo3b17kfqB06N/ps88+uxR7UjhGUwAAAAAALwaOAAAAAAAvBo4AAAAAAK8yv8bRXZuRl5cnWa8J6dq1a6K6lHLGjh1rlfPz80O9rmfPnkV+L3e9SHZ2tmT3GAckr7Vr1wbW/e53v0tgT8qu0aNHS9Zb6LvbtWslvU2+3g7+gQcesOp8a4LwQy+++KJV1seUtG7d2qpr0qSJ5Isuukiyu/5cfzbrNbLuuin9PeoeH3HfffdJfvDBBwP7n2r69+8vuXr16pLdY1Uef/zxUNfTf78MHjzYqtPHbOg1wsm4HirZDR8+3CrrYxHGjBkj2V0jOm3aNMkjR4606vQRHFrdunWtsl4/3KVLl1D9dY9h0vtBzJ8/X/LixYutdjk5OZJbtmwZ6r1QOho0aCDZd9RLaeGJIwAAAADAi4EjAAAAAMCrzE9VdbdS1vRW83Xq1ElAb1LTlVdeaZUffvhhyXrKU6z0dtN6OpAxxtSuXbvY10fiPf/881a5cePGkvV0RwS7/vrrJeut+2fNmmW1e/vtt4t8bXd6ot7WX+vevbtVvvrqqyXr6XQoOvc4k0mTJkl2t+vXxz98+eWXkj/77DOrnZ7KWLVqVcktWrSw2t1www2S3Xt/7rnn/mjfU5E+8qtPnz6Se/XqZbXTx5m49NKLSy+9VLL+fER8paenW2U91V//HmRkZFjt9LRQPb3VGHvqeN++fSW7v2f6uI+w7rjjDqt83nnnSdbTXd1/ZwMHDpT83nvvFfl9UXz638x///vfwHb6niYjnjgCAAAAALwYOAIAAAAAvBg4AgAAAAC8yvwax1WrVgXWpaWlJa4jKcydt6+3t9bz6n369etnlfW90+t53HU/KDv0cQKuTp06Ja4jEaSP4+jRo4dVt3379iJfr3z58lb5nHPOialfKBnusURBx6y4RyPp+6rX5KHkVKhg/5nlW5fvrodEyRs1apRVHj9+vORt27ZJ3rBhg9Wuc+fOkt31jx07dpRcrVq1OPQyWJs2bSQvXLhQ8tGjR612ek0zSsfevXslHzlyJLDdiRMnEtGdmPHNAQAAAADwYuAIAAAAAPAq81NV3Wkf+nH8hAkTEt0dGGMGDBhQaEbqOXDggORXXnlFcs2aNa127hbjiJ17lEayb+2NklOxYsXS7gKQ1G699VarrI/gyM3NlVy5cmWrXTIuhWrWrFlpdwFxoI9R0n9DGVPyU5/D4IkjAAAAAMCLgSMAAAAAwKvMT1V9++23S7sLAALo3R83b94sedq0aVa79PT0RHUJAIBC6amAyTAtEKlnzZo1kt98802rTu/YW1p44ggAAAAA8GLgCAAAAADwYuAIAAAAAPAq82scASQvvZV0w4YNJXfr1q00ugMAAJBw+nik8uXLW3XHjx+XXKFChUJzsuCJIwAAAADAi4EjAAAAAMAr+Z6BAoiM3bt3l3YXAAAASlXXrl0lr1ixwqrLzs6WPGTIEMnt27cv+Y4VEU8cAQAAAABeDBwBAAAAAF4MHAEAAAAAXqxxBAAAAIAEGDdunLeczHjiCAAAAADwKvITx8zMzJLoBxKM+xgN3Mdo4D5GA/cxGriP0cB9jAbuY3LhiSMAAAAAwKtcQUFBafcBAAAAAJDEeOIIAAAAAPBi4AgAAAAA8GLgCAAAAADwYuAIAAAAAPBi4AgAAAAA8GLgCAAAAADwYuAIAAAAAPBi4AgAAAAA8GLgCAAAAADw+j+V1vWf7zfycAAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 1152x169.2 with 8 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "i=random.randint(0,len(denoised_test)-8)\n",
-    "j=i+8\n",
-    "\n",
-    "pwk.subtitle('Noisy test images (input):')\n",
-    "pwk.plot_images(noisy_test[i:j], None, indices='all', columns=8, x_size=2,y_size=2, interpolation=None, save_as='05-test-noisy')\n",
-    "\n",
-    "pwk.subtitle('Denoised images (output):')\n",
-    "pwk.plot_images(denoised_test[i:j], None, indices='all', columns=8, x_size=2,y_size=2, interpolation=None, save_as='06-test-predict')\n",
-    "\n",
-    "pwk.subtitle('Real test images :')\n",
-    "pwk.plot_images(clean_test[i:j], None, indices='all', columns=8, x_size=2,y_size=2, interpolation=None, save_as='07-test-real')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 7.4 - Class prediction\n",
-    "Note: The evaluation requires the noisy images as input (noisy_test) and the 2 expected outputs:\n",
-    " - the images without noise (clean_test)\n",
-    " - the classes (class_test)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 18,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:40:28.073289Z",
-     "iopub.status.busy": "2021-03-14T21:40:28.072810Z",
-     "iopub.status.idle": "2021-03-14T21:40:52.946814Z",
-     "shell.execute_reply": "2021-03-14T21:40:52.947331Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Accuracy :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Classification accuracy : 0.8965\n"
-     ]
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**Few examples :**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/AE5/figs/AE5-04-predictions</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq8AAAT2CAYAAAAMMEqYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9dXCV59vuD3/i7u5OhChBAgRCCO7u7rR4aaFYi5RCBSstbXF3txCcYCGBeAJxIcSIu96/PzLr2s3+7r0f0pl33nme4ZjpTJusrqxr3dd9X6ccx3HKSZLEZ3zGZ3zGZ3zGZ3zGZ3zGfwfI///7A3zGZ3zGZ3zGZ3zGZ3zGZ3wqPgevn/EZn/EZn/EZn/EZn/HfBp+D18/4jM/4jM/4jM/4jM/4b4PPwetnfMZnfMZnfMZnfMZn/LfB5+D1Mz7jMz7jMz7jMz7jM/7bQPFTX/jFF1/8t7cl+OOPP+T+b7/7n74++J+/xv8J64P/+Wv8vE//Z68P/uev8X/C+uB//ho/79P/uev7XHn9jM/4jM/4jM/4jM/4jP8+kCTpk/5ZuHChtHDhQunbb7+VvvzyS+nChQtSTU2NVFtbKyUnJ0uHDh2SXFxcJDk5OWn16tWSDMeOHZOmTJkihYWFSTU1NdKiRYukgQMHSgkJCZIkSVJjY6MUHR0tJSYmSvX19VJ9fb2UmZkplZSUSP87GhsbpaqqKqm4uFj666+/JFNTUwmQ5s+fL2VkZEiSJEnp6elSfX29JEmS9Mcff0jOzs6S7LN/yvq6d+8unT17ViorK5MkSZKam5vF34+OjpZ2794tLVq0SAoMDJRUVVUlQJKTk5MAydLSUnrx4oUkSZJ0//596eHDh1JDQ4NUV1cn3uPXX3+VNDQ0pO3bt0uSJEkPHz6U/vzzT6m0tLTVWj98+CCtWLFCAiRA+vvvvyVJkqSCggIpNDRUqqysFK/9lPX9c41hYWHSpk2bJB0dHUlbW1s6deqUeK958+ZJOjo60sqVK8XPVq9eLQHSwYMHpZqaGikwMFAyNTWVUlJSJEmSpNraWqmgoEC8/u3bt9KhQ4ekJ0+eiJ9VVFRIz58/l37//Xfp2LFjUn5+vhQVFSWtXLlSunnzpiRJkrRkyRIJkDZv3iz+v+rq6k9eo+w1GzdulJqbm6X6+nopLCxMSktLE++Xl5cnXbhwQfrhhx+k06dPSxUVFZIkSVJpaal0584d6erVq61ev2DBAgmQduzYIfZDcHCwdPv2bSklJUVqbGyUGhoaxOtjY2Ola9euSW/fvhU/279/v9grK1askIqLi6WPHz9Kv/32mzRz5kxp/PjxkpOTU5vW+M/vqLa2Vux/SZKk3bt3S4qKipKWlpb0xx9/SJIkSYmJidL8+fOlIUOGSD/88IN07949KSsrq9V73L17V+rbt68ESMOHDxf3QFlZmfT8+XPp5s2b0sOHD6WPHz9KkiRJ2dnZUmNjoyRJkvTXX39J8vLyUt++faV3795JkiRJVVVVUlNTk/gbbd2nMuzZs0eaOXOm9Pz5c/Ez2WeTJEnKzMyUfv31V+nIkSPi3m9qapKqqqrEf0uSJD5rU1NTq2u2efNmaezYsVJoaKhUWloqXb9+vdXelaG5uVmqqakR65ckSTp//rxkaGgozZw585PX+M9naWNjoxQaGiqtX79eCg0NlSRJkhoaGqQePXpIioqK0qNHj6Tc3FzJ0dFR8vDwkGpqalp9ptjYWGnt2rXS8ePHxc8qKyul8vJy8d+//fabtGHDBqm8vFx69OiR5OjoKH355ZeSJElSeHi4FBgYKPn7+0uPHz+WJKnlGSV77uzZs0eSJEnaunWrBLT5Gv7www+SJEnSjh07pMGDB0sJCQlSZmamFBgYKPXq1Uu6dOmSdO/ePenSpUvS2bNnpalTp0qApK2tLS1fvlxKTEwU6zh69Kg0d+5c6cGDB5IkSVJxcbEUEhIiXbhwQTp79qx05swZ6erVq1JycrJUU1MjXb9+XTpy5IgkSS3Pbn19fcnb21vsg/z8fOn8+fPS+/fvJUmSpHXr1n3yGv/5LD169KiUmJgoBQcHS46OjpKnp2ere0uSJCklJUVasGCBtHDhQun8+fPSL7/8IllYWEiANG7cOOn58+fSihUrJHl5eWn69OlijzU0NEiNjY1SUVGReK/jx49LysrK0qpVq6SmpiZp48aNUqdOnaTw8HDxmpqaGunZs2fSqFGjJD8/P2n37t1SXl6e1NDQIGVlZbVpjTKsXbtWCgwMFPtUklrucRmam5vFdytJre/RixcvStra2uI+ef/+vTRixAjJ1tZW+v7778Vzora2ttV7yFBXVyelpqZKV69elbZv3y5t2rRJOnnypDiDiouLpdevX0tv376Vmpqa2rxPb9++LX399dfSvXv3pMuXL0v6+vqSv7+/VFlZKV26dEmys7OT1q1bJ127dk0aMmSING/ePHF2VFVVtXombNiwQbK3txf3ZHJysnTp0iUpIiJCSk1Nlc6ePSvNnDlTOnjwoNTc3CydPHlSGjFihBQeHi6VlJRICxculDZt2iTV19dLISEh0uTJk6WdO3dKkZGRUkxMjJSTkyNJUtueNTJs3LhR6t69u3Tt2jXxM9m9DUhOTk7S8ePHW8UjtbW1UmhoqBQcHCzisurqamnEiBESIO5j2bMpNzdXGjp0aKvYpa6uTlq7dq0UEBAgvX79WpKklrN4165d0smTJ6WKigrp6NGjkoqKijRixIhPWt8n0wZk8Pb2pkOHDlhaWqKqqgqAo6MjKioqyMnJkZaWRocOHcTr/f39kZOTw8jIiLq6OgwNDamqqqKoqIi6ujoaGhrw8PAAoLS0FD09PaytrXn69CklJSX079+fsrIytmzZQkhICK6urgwcOBAdHR3mz5+PgoICLi4uPH/+nIyMDAICAnj79i0//fQTzc3NHDhwgFOnTn3y+pSVlZk/fz7jx49n0aJFGBsbY2xsDICVlRXy8vLIy8vTo0cPAgICiIyM5MmTJygpKbF8+XL8/PxIT0/n2LFj9OjRg169egFQVVVFTU0NZmZmLFy4kJ49ewKgr69P+/bt0dbWpqSkhNraWszMzDAzM6OqqgoXFxd69uxJXV0dp0+fxsXFhW7duiEvL8+VK1c4ePAgVlZWbbqGOjo69OvXDy0tLRobG/Hz8xO/CwoKwtTUlCFDhlBcXMyFCxeIjIxk6dKlDBs2jJqaGuzs7NDV1UVTUxMAFRUVjIyMyM3NJS4ujsePH6OkpMTkyZMB2LlzJ9nZ2axfv56uXbuKvyUvL4+bmxsfP37k1atX9O7dm06dOtGrVy8kSeLjx4/o6+vT1NTUpvVZWFhw584dlJSU6NatG2pqajQ3N7Nw4UKUlJT4+uuvGT16NHfv3mX9+vUoKyszdOhQ+vbtS3x8PIcOHaJ9+/aMHDkSV1dXXFxcMDAwAEBOTo7m5mYSExPp3LkzCgoKABQXF6Ovr4+7uzvm5uasXbsWIyMjNm3aRJcuXbC1tcXMzIyZM2eip6dHQUEB9vb2GBgYIEkS7du3Jzc395PXaGlpyYkTJ6itrcXCwoKgoCDxOycnJ3744Qf09fUxNDTk1KlTGBgYMGDAAI4ePUpERATTp0/HwsKCW7duYWFhgZeXF7169eLx48eUlZXh5eVFY2Mj5eXlxMXFoa2tjbm5OQ0NDWhpadHc3ExaWhqpqal4e3tjaGjI6NGjGTp0KO3atQNAXV1dfKbq6uo2XUOAc+fOMW7cOPz8/LCyshJ7JyUlhcLCQvHfhoaGqKurY2JigpKSEjk5OWRlZbXaa4C4VsnJyURHR9OlSxdsbGz45ptvePDgAaqqqujo6BAUFMTVq1eZPn066urqzJ49m44dO/Lo0SMOHz5M9+7dmT9/PgDt27fn6NGj1NXV8fjx4zatb8iQISgoKKCuro6VlRUmJiYAKCoqMmfOHPz9/amtrSUzM5MpU6YA8OrVK+Tk5NDU1MTHx4eKigpSUlLQ09MT76uhoSH+/fr169y/fx9/f3+0tLQwMDAgJSWFbt26AdCxY0fGjh2LlpYWL1++5M8//8TDw4P9+/fz+vVrFBUVqa2tJTAwkG+++YaKioo2rdHDw4Pi4mL69+9Pr169sLW1JTg4mLKyMnx9fXF3d6ehoQFzc3NcXV3R19cnLS0NaDlrTE1NaWhoIDU1FV1dXfr3709DQwOvXr1CQUEBFRUVrKyscHV1RUFBgdevX5OXl4ejoyNDhgyhsbGR6upqtLW1+f3337l79y4rVqxg9erVqKmpcefOHRITE1m/fj2jRo3i2bNnbVpf+/btUVZWpqCggJMnT5KSkoKLiwuGhoYkJyezY8cOhg8fzoABA5g+fTqSJOHu7k5SUhIfPnwgIyODsWPH4ubmhoGBAc3NzVy9epWOHTsyceJE8dxpbm5GkiTk5OT48OED9fX15OTk0NzcTP/+/dHQ0MDS0lJ8rubmZnR1dVm8eDGZmZmUlZURHR2Ni4sLxcXFbVqjDGPGjKG4uJg1a9awevVqBg0aRGJiImvXrmXUqFHMmzdP3GPQcp7funWLly9f0tjYyK5du/Dy8hL37/Dhw3F1dSUtLY0ffviBxYsXo6GhwU8//URhYSEzZ85EUVGR1NRUfHx8UFVVJT09nZqaGnr16oWnpye6uroA6OnptboH2ornz5/z8eNHlJWV6dSpE8uWLcPOzg4NDQ3evHlDeno66urqaGpqkpSURFNTkzj/1NXVRUAVEhLCjh07qKyspKCgAGiJjyRJwsjICB0dHVJSUiguLiYuLo7i4mI6deoEgI2NDQUFBeTn56OkpER2djbl5eWYmJjg5uZGbW0tDx48wMzMjOHDh7dpfVFRURw9ehQNDQ22bNlC+/btxe9GjhxJfn4+JSUlTJgwgYEDBxIeHs7p06dxcnJi6NChmJmZkZSURFRUFB4eHigrKzNs2DBevnzJo0ePsLGxYeTIkQDU1taiq6uLj48Pw4cPZ9q0aSgrKzN48GAKCwvZvn07gYGB6Ovr8/TpUxQVFenbty/jxo0jPT0da2vrT1pTm4NXAE1NTRG4AjQ0NGBsbMyMGTNava6+vh4FBQUCAgKwsrKioqICOTk55OTkqK+vR0VFBRUVFRobG1FUVERPT4/6+npevnxJWFgY7dq1Q1lZmaysLG7dukVKSgqlpaV0796dQYMGMX78ePG37t27R3FxMY2Njbx//54XL17QuXNnOnbs2Kbgdf78+axatYqEhATy8vJwd3cHoKysjLq6Otq3b098fDyGhoYsXryY1NRUNm/eTI8ePZg9ezbQcjiam5sjLy9PVVUVGhoa1NXVkZ6eTmBgIBMnThTfj6enp/jbpaWlVFZWoqioSHJyMra2tixZsgQ3NzfOnTvH/v37WbRoET4+PgC8ffuWGzdusHDhwjZdPyMjI5ydnenSpYv4mezmGzdunPjZH3/8wdq1axkwYAC7du0CWoK06dOno6uri7a2NgD5+fnk5OSQnp5OfHw8MTExGBoakpaWRkNDA0ePHqWiooIJEybQuXNnsrKyUFNTw8jIiJEjR/L06VPi4uLo1asX9vb2vH//ntu3b2NtbS2Snragb9++3Lp1i/T0dKqqqggKCuLw4cMcP36cAQMGYGNjA7QECc+fP0dJSYm+ffsiJyeHoaGhuFbV1dUMHDiQjx8/kpOTw7t373B2dsbDw4OmpiZSU1OpqKggMzOT6upqunTpgp6eHgoKCsTFxfHx40fGjh2Lq6sr3333Hebm5mI/GRkZMWjQoFaf+4svvvjkNbZv356wsDDS0tJoamri48eP6Orqkpqairm5OQMHDgQgMjKScePG0b9/f/bu3YuxsTFnzpyhoKAASZJISEigtrYWW1tbwsLCAFixYoW4tzZu3MiTJ0/YuHEj7u7uIuFUUlJCTU2NjIwM3r59S9++fRk+fDhlZWW8f/9ePCPk5eVRVlZuFch+Kh49esSIESPo1KkTnTp14uPHj8TFxZGRkYGjo6N4XVJSEmVlZTQ2Nopg7/nz51RXV9OrVy8UFBTIy8tDRUUFPT09jI2Nef/+PR8+fGDUqFFYW1vj7++PomLL41BNTY2EhASOHTuGra2tSMLi4+O5cOECZmZm4m+7urri6upKdHQ00dHRbVqfLIDs0KGDSPjLy8tRUlJi2rRpAGzZsoWGhgY2btxIUVERc+fOpbS0lA0bNgBgYmKCk5OTCHIAGhsbaW5uJiEhgYyMDLy8vMQB+erVKzQ0NCgsLKSkpAQ9PT3x/Dhw4ACnT5/G0NCQb7/9ljlz5pCUlISCggJ+fn74+fm1aY8CDB06lOzsbOTk5ESgl5eXR25uLubm5jg5OfHixQvCw8NRUVHBycmJqVOnoqysTJ8+fdDV1SU7O5ukpCRRNLl37x4PHjzA29sbZWVl3r17h7KyMhYWFjQ1NVFdXU1eXh6mpqa8f/+e69ev065dOyZMmICZmRnff/89Dx8+ZOLEiTg7O/PmzRvu3buHq6srv/76K/v37//k9WloaODt7c2bN28oLS0FoEePHsjJyfH48WNu3bqFl5cXAH5+fjQ2NqKgoICTkxObNm1qlWj4+Pgwa9Ys0tLS+PDhg3juSZIk3t/S0hJ7e3tWrVpFhw4dUFRUpEuXLnTp0oWmpiYaGhooLS0lMTERaElOOnToQEREBM3NzdTU1LTp+gHU1NTQ0NCAk5MTHTp04MyZM/zxxx84OTlx+/Ztnj59Sp8+fQAoKSmhpKQEKysramtref78OefOnaNv377069cPZWVlIiIicHFxEcnlkCFDOHbsGObm5kyYMIHr16+Tn5/P3LlzycnJ4dSpU2hpaREQEICNjQ3m5uYEBAQALbFHU1MTxcXFVFZW4uDg0ObzAloS4vT0dJKTk+nRowfr168Xv9PT02PcuHGMHj2ampoaSkpKxP3T2NjImzdv8Pf3Jy8vj+PHj1NZWYm3t3erAFFZWVkU+Hr16sWLFy8ICwvj5MmTjBo1ikmTJgEtMUG3bt3Q0dGhoKCArKwsbG1t6devH7GxsZw4cQJbW9v/ODv+K7x8+ZL09HRGjBghCmr5+fk0NTXh4uIizncZbt26xc6dO+nSpQsDBw7EwcGBxMREDhw4gIeHB4sWLWL8+PEkJiby999/U1RURFFREQYGBigpKaGnp8fQoUP56quvUFFRoaqqiq5du6KoqMiSJUu4e/cuQ4YMITc3l+fPnzN48GCmTJnCd99998lranPw+vLlS3788Ue++OIL5s6dC8CbN2949OgRJiYmjBw5Eh0dHerr63n69CnV1dViY1dVVXHp0iUqKipYsmSJeM/KykqRQb1+/Zo1a9bQv39/kV1oa2vz008/IScnh4ODA9bW1iJwkqFPnz58+PCB4OBgtLW1OX/+PBcvXsTHx4fAwMBPXt/48ePp1q0bmZmZItAoLy/nl19+oUePHvj4+PDbb7/x8uVLJk+ejIODA/PnzxfV43PnzlFTU8OaNWtISUlh//79BAYG4uXlhSRJ4pApKioiJSWlVQBpZ2dHYWEhy5cv5/Xr12zZsgU3NzegJSsLCAholV3OmDEDGxsbQkNDP3l90FLthZYHTWJiIt26dRNJhQy3bt3i2rVreHl5tbpR1NXVcXNzw9DQkKamJkJDQ3n+/DkaGhrY29vj5+eHtbU1SUlJbNiwgcrKSmxsbFBQUGDp0qW8ffsWe3t7Nm/ezKBBg9DV1cXFxYV27dphYmJCaGgoO3bsQEVFhW3btgEtFdq2wNramkGDBvHjjz8yfPhwVFVV6dq1K9999x3Tp08HICQkhGfPnrFgwQL8/f0xNjYmLy+P8vJyli5diomJiUio/Pz8WLNmDZcvX+bUqVM4OjpiaWnJrl27ePbsGY6OjkyePFkkXzExMcyePRsNDQ2amppoampi2LBhvHnzhvPnz+Pq6ir21r9F+/btcXJyIjs7m4qKCmpra1FXV8fV1ZV79+6RlZXF0KFDxT6ToVu3bigqKhIZGYmuri59+/bFzMyM27dvs3v3bpqbm0XgCxAWFsaDBw+YPHky/v7+qKioUFdXJ4IRWRVWS0sLgCNHjrB//36++eYbZs6cSUVFBQoKCq0qMp+K8ePHi/+vqqqKyZMnExUVxfr16/H39wdanj3Xrl0jKSmJ5uZmTE1N0dPTo7GxkbVr19KzZ0+++uorPnz4wPPnzxk+fDhWVlZMmzaN48ePs2DBAt6+fcvQoUPZvXs3ABcvXkRBQYGTJ09iZmYmKgGjRo3Cw8OjVWWguLiY/fv3Y2hoSP/+/Xn58mWb1ihLBGRISEjAyMgIBwcHAO7fv09lZSUbN24kNzeXy5cv0759e3Hw29vbM2bMmFb3iKzK1tzczNixYzE1NSU7O5t9+/Zx5coV1NXVefbsGdOnT2fNmjWi8zJx4kQKCgq4fv06kyZN4quvvsLX17dN6/k/QUdHh2XLllFVVcXFixfp2rUrDQ0NfPjwgcrKSs6dO8euXbsICQlhw4YNjBo1ivz8fD5+/IipqSlWVlY0NTWJymJqaiqFhYUiEP75559JT09nzJgxLFy4EB8fH169esWWLVt49OgRubm5zJgxg/79+xMQEMCPP/4oqpgrV67kr7/+Yv78+YwePZqffvqpTWtrampCQUEBNzc35s2bh6OjI9bW1iQnJ2Ntbc369esZMWKEeL2skl1YWIiGhkar4NXf35927dpRXFyMpqYmpqamAGRnZ3Pjxg3i4uIYNWoUEyZMYNSoUf/xXFRQUCA0NJTbt29TVVWFtrY2Dx8+pF27dvTs2RNjY2Oqq6tpaGho0xrz8/NJSUmhtrYWe3t79u3bx40bNxg0aBBubm7cu3cPPz8/nj9/zldffYWdnR3btm1DW1ubgQMHMnLkSOLj45k8eTLq6urMmTMHOzs78f7m5uYAZGVloaGhwY8//khTUxOurq6kp6fz4cMH8vLygJZkKCEhgaysLFRVVWlubhZ7+9atW4waNYpvv/22TesDcHd3Jy4uTlT9Aerq6khNTcXX15cxY8ZgbW3NkSNHKCwspEOHDlRVVbF7924uXbrEhQsX8PHxwdnZmfXr17Ny5Uq0tbVJSkri8uXLpKam0rNnT6ZMmYKysjJeXl7cvn2b48ePY2RkJApaRkZGBAYG4uPjg5ycHGFhYcTHx4subO/evdHS0sLIyKhN61NRUeHvv//m5cuX7N27lyFDhlBTU8O5c+do3749Y8aMAVpincuXL3Pr1i309PTo2rUrFhYW4n1yc3Px9vZGTU2NmJgY1NXV+f777zEwMODNmzcEBATQ3NxMbW0tISEhovtpbGyMi4sLFhYWfP3113h7e6OlpcWxY8eQJImqqqo2X7M2B69+fn68evWKN2/eiKpiUVERhw8fRk9PD3Nzc/z9/UlOTqagoABdXV1xAGVkZKCtrY2Hhwc2NjbU1tZy7949bGxs0NXVJS4ujn379pGdnU1xcTEZGRlYWVnh5OSEk5MTAHFxceTl5aGhoYGioiLl5eXk5uaipaVFbW0tkiShpKSEtbU1Li4urQ6GT8H169fR09PDy8sLLS0tCgoKmDFjBrdv32bnzp3069cPQ0NDgoODCQsLY+DAgeIgeffuHTdv3sTAwAAXFxcuXbrEyZMnUVNTw8vLCwMDA5qamkhLS+P06dPEx8cLaoGlpSW6urqoq6tTWVmJsbExHTt2BFoOsIKCAhYsWIChoSHNzc08ffoUa2trJk6c2Obgtbq6mhs3bhAVFYWioiKZmZmiPa6qqkpubi7bt28XAfTUqVPF/6uqqiqq7goKCrRv356qqirq6+vp2LEjxsbGFBQUEBoayvnz58WecXZ2Jjo6mtLSUtHuk0FWRSsrKyM2NpaysjI8PDxEtU5WEWsLrK2tCQoK4uLFixQWFuLj48OqVauAloDjl19+QUVFha+++kokQrGxsRQVFaGurs6HDx8wMDDA3t4eFxcXnJycSEpK4tWrVzg6OoqWnb6+PhYWFhgZGVFcXMzOnTuJiYlhzZo1ODs789tvv/HmzRtmzZqFgoIC+fn59O/fH2gJoDU1NfH29haVkk+Furo6xcXFfPjwAWipAMq+qydPnnDmzBmePHlC+/btmTJlCkZGRqLSZmNjw4MHD6isrGTw4MGoqKigqqpKfHw8SkpKgqaRlJSEJEn07t27VQteU1MTSZJ4+/YtTU1NoqoXEhLC+fPnUVVVFQGelpYWhYWFpKent/kaBgQE0NDQgIKCArm5uZiYmNC7d2+RDFdUVFBaWoqOjg62trYoKSlRW1tLx44dSUhIICwsjIyMDH744QdMTEwoKiri1KlTTJs2DTMzM7p27cqKFSsA2LNnD9bW1nh6eqKsrMzq1atRUVEhKyuL169fo6amhrm5Obq6uqSkpBAWFkZzczMvXrzg3bt3eHh4tGrbfgoKCgooLi4mOTmZiooKnJyccHV1RV1dnaamJp4/f46enp44xKOioujZsycbNmxARUWF2NhYXr16xciRI9HX16e5uRk5OTl0dXVxc3OjuLhYXEtTU1OUlJTEQRQSEsL169fp168fvr6+hIaGYmhoyJo1a1BUVOTWrVt8+PABX19fysvLkSQJHR2dNl9DaHlmaGlpkZGRwZMnT0hNTeXjx49Ay17y8/PDzs4OBQUFQTErLy8nOjoaOTk5PDw8sLW1Fdf8wYMHFBYWMmLECHx9fTExMSE2NpYjR44wfvx4dHR0sLKyEudI3759CQwMJDMzE3Nz81Y0KWhpsTc3N1NZWdnmtSkoKFBfX4+qqipDhgyhU6dOvH79mtraWvr16we0FGRCQ0Pp2LEjVlZWqKqqYmBgQGxsLA8fPkRFRQVbW1ucnZ1xcHAQicvHjx/FnlZXV8fW1pZevXphaGhIUlISRUVFGBsbIycnh4WFBSoqKri4uHDz5k1CQkIoLS2lXbt2WFpaYmpqioKCwr+6hlZWVuJecHV1RVtbGzc3N6ZPn46Ghob4PmXPaw0NDczNzVFUVBSJsKOjI2fOnCEsLAwdHR2ysrIYMmQIjo6OrFq1CmNjY9ERk1VVo6KiePjwIa6uriKQV1BQwMTERCTteXl5oqooK/7cuHGjzWusrKwkNja21XPu/v377N+/n379+gmK4JkzZ3BxcWHRokVYWlqir69PfX09L168wMfHhwkTJhAWFiaoDioqKvz222/k5OQQGxtLVVUVPj4+WFhYYGZmxpUrV7hy5QoDBw6krq6OkpIS0YW5f/8++fn52NraEh0djbm5OYsWLcLCwqLNBZ0jR47g7OzMhw8fSEpKoqSkBBcXF3x9fWlqaqKurg4VFRVqamrIzc0VSfHUqVNFDGVmZsaQIUMYPHgw8vLy3Lp1i+LiYr766ivKysrYsGEDJ0+eZOTIkQwdOpS8vDx++uknvvrqK7777jtycnJITU1l1KhR4nP16tULExMT0U2Gls61mpraf7mmNkcF48aNY/DgwRw7doyDBw8yd+5crK2tcXJywsrKCnNzc16/fk10dDSOjo706dMHRUVF7ty5Q3h4OCtXrmTYsGEATJ8+nTt37nDs2DEMDQ2ZN28eFRUVfPXVVzx9+pS+ffuydetWxo4dC8CPP/7Itm3bcHFx4ddff8Xf35/S0lIOHjxIWFgYffv2Zf78+bx9+5ZvvvmGPn368Pz5c7755ptPXt+wYcOQl5fnxIkTDB8+nPXr13P79m2gpa1fUFCAn58fGhoarVqXAAYGBjg7O3P//n1u3rxJUlIS8L84aOXl5aSkpJCTk8OrV6+4efMm0dHRKCoqMmHCBKClyrhlyxZsbW3R1NTk/v37/P7777i4uIjsLCEhgQMHDtChQweWLVvW1kvI/v37WbVqFePGjWP48OFcuHCB06dPs3fvXqytrVFVVaWgoICmpqZWrQ9ZleGf0NfXZ8CAAZSXl4sgMDo6mitXrojXREREoKqqytKlS7GxsUFbWxsXFxeghR+TnZ0tqu/jx49n5MiRyMnJiapeW2/UhoYGGhsb6d+/P+Hh4ZSXl7fKVNXV1enYsSPl5eVUVFSgra2NJEl4eHhw//59li5dSnV1NWvWrGHChAnY2Njw999/k5mZSXh4ODNnzqSuro6RI0cyf/58GhoaKCsrIyYmhuvXrxMTE8PAgQMpLi7m5MmT2NvbM3XqVLp27YqXlxfq6uqEhIQwdepUpk+fTteuXdvMlwwNDWXr1q3k5OQwfPhwnJyc0NPTIyEhgZycHPLy8jh//jwaGhps3LgRe3t7oKWKImtvq6qqiu8mICCA/v37i+5Geno6mzZtwszMjKVLl4rgGFr2aGNjI0+ePEFXV5dOnTpx9+5dpk6dyoABA/jrr79a0YqSk5M5cuTIv0pC5OXlaWhowNramr/++gtlZWWxB5WVlenWrRuenp6UlpbS3Nwsqjgyjq2ysjIVFRXo6+sTGBjIqlWrxOHu6OiIi4sLb9++BWDlypUMHDiQY8eOieTqq6++oqqqCl9fX0pLS9m2bRsFBQU0Nzfz5MkTXFxc2L59u+i8tAVKSkq8f/+e7777joyMDP7880+RCNy5c4e4uDgWLVpEp06dqKysxNbWluPHj2NtbU19fT1TpkyhvLycoKAgwQ0vKSnB2NgYU1NTMjIyOHjwID179mT48OHMmTOHPn36iAQxPT0dLS0tHj9+zDfffIOysjJ79uxh6dKlzJ8/Hx0dHTIzM3n27Bmenp7/KvCpqalBUVGRI0eOkJCQwNatW0VCL0vOx48fj7+/P01NTZiZmYkChJ6eHmVlZSQnJ+Po6IicnByKioqCqtLU1ISzszOnTp1i0aJFpKWliaDYxcWFPXv2UFdXh5mZmXiWxMTE0NjYSMeOHamurmb79u2kpaXxxx9/0LNnTxobG//VdZTBxMSELl26iL3e1NTEzp07SUpK4s8//xT6BF1dXaytrdm5cyfPnz9n1KhRzJ8/X1AMysvLyczMRE9PDysrK+bOnYuKigqWlpZkZmayfv163r17x6BBg5gwYQLKyspAS5KycuVKnj17RnJyMuvWrRN0ttra2lb35adCQUFB6DBk8PDw4MGDB9y4cYM9e/YwfPhwvL29uXHjhrjm0EJhSUhIwMDAgODgYP766y9WrlzJmTNnePbsGYcOHcLBwYGNGzeSmJhIfX09ysrKvHnzhuXLl9Pc3MyyZcvw9fUV1DZjY2O0tbUJCwvj2bNnJCUlMW3aNCZMmMC1a9c4ffq0eA58KhISEoDWXb7i4mKuXLkiqr7Xr18nLi6O9evXM2TIEACmTJmCpqYmL168wMrKiqFDh/Lnn3+yfPlyzp49S8+ePdHT0yMnJ0ck0zJ6iOz7rK2tJTk5mVOnTiEnJ8eOHTt4+fIlM2bMEB2Q8PBwbt++zfDhw9HS0qK+vr5N63vy5Am9e/dm27ZtbN68mdLSUjIzM8U6mpubATA2Nmbu3LmCJ/7Pe97a2pqpU6diaGhIfX0979+/R1FREVVVVVJSUrh8+TKlpaWYmJiwfft2tLW1yc/PF3sTWjrO/9yHCxcuRF5evlWwWlJSIihs/y+0+TSJi4ujrq4OXV1dVFVVaWhowN7enpUrV6KmpkZDQwMvX76ksLBQtCgBTpw4QWRkZKuoOzo6msLCQoyMjDAzM8PFxQU3NzeWLFlCSkqKIHbLYGpqioODA69evWLDhg1MmDCB1NRUdu7cSWNjI+rq6qIy6uTkRGxsbJsFBgCjR4/G0tKStLQ0TE1NGTt2rKgM/P3333To0IHhw4ejr69PXl6eODQNDQ2xs7OjqamJ+vp6vLy8GDZsGAMGDODdu3fs3r0bfX19+vTpg5OTE/b29owYMYIxY8YI2oSamlqrlnJZWRlGRkb07NmTkpISLl26xNOnTwkMDGTYsGEUFRW1eX03btygS5cujBgxgm7dulFRUUFWVpa4IbS0tOjatSs9e/akb9++NDU1sX37dtzc3BgyZAjPnj0jPDwcZWVl0b4bPnw4np6eREZG8vPPP1NcXIyjoyODBw9GSUkJHR0dzM3Nyc7ORklJCXd3d5qamvjrr7/Yv38/1tbW7NmzpxV3T4a2Crbq6+upra0FENk8wLx587C3t+frr79m6dKlxMTEiN/Jycmho6PDwIEDefToEXl5edjZ2SEvL4+CgoIQBNjZ2XH58mVu376Nr6+vSEx0dXUxNTVlxowZhIaGYmJigoWFBRMnTkRFRUW0h9XV1cnOzmbv3r0iQZCTk8PR0bFVe/+/wowZM0hLSyMgIAAHBweuXLki+Evdu3cnNTWVZ8+ecefOHXr27Im9vT1NTU1kZ2eTmpoqAjJZUN/Q0MCoUaNo37495ubmnDp1iufPn7Ny5Uo8PT05ePAgqampLF++HCMjIyorK+ncuTMaGhq8fv2anTt3UlBQQEBAgGjnbd++nfz8fPT19encuTNv3rxp03WUJUSyYPXu3bvEx8fj4OBAv379RIApq2TJaC/Xrl3j5MmTBAYGYm5uzoYNG3ByciInJ4ekpCSqqqqYPn06q1ev5sSJE2zbto0LFy4ALW2x9evXM3nyZOTl5amsrBT7yczMjPbt2+Po6CjoIDIOtGzftQV6enp4eHjQt29fsrKyRMUtOjqajIwMOnToIChPcnJygioRERHBr7/+ip2dHSNGjBDXUElJCQMDA/Ly8nj69Ck3btygvLxcVLIAbG1tsbW1pX379rx58wZVVVUePHhAZGQkAFu3bmXgwIH4+fnh5eVFXV0d4eHhguvWVvzzUCorK+PkyZMArF69Gjc3N/bt20dTUxNdu3ZtRVHQ1NTEwsJCCDczMjJEl8fX1xc9PT0RaBgZGbFt2zZevnyJo6Mj0dHRlJWVCVHso0ePSEhI4IsvvsDb25s///yTkpISbGxsBGf1n1SZtuD+/fsEBQURGhpKREQEQ4YMEV1CaKG7+Pv7ExAQgJubG1lZWTx48IDAwEBsbGwE/9Dd3R1NTU1RINDW1sbd3V3scQcHByRJ4u7duzx8+JCSkhLevXuHpqYmq1atQk5OjgsXLmBhYSEoUnfu3BHCQmgJHHR1dUWg8qm4c+cOL1++xNnZGT09PSIjI+nSpQuBgYH069eP77//ntzcXL7++msMDAyorKzk7NmzuLi4IC8vz+7du1FUVGTx4sV06tRJ6EYuXLiAoqIikydPpl27djg5OYlAp7i4GF9fX2xsbPDz8xPiKNk9rqqqipKSEnZ2dvTv3x8nJyeeP39OUVERgwcPFvv5UzFhwgTc3d1RVVXl6NGjSJJEXl4e8+bNIykpiY0bN1JaWkqvXr0wMjLi9u3bpKen4+TkhIqKCiEhIVRVVTFgwACGDh3K06dPuXr1KhoaGixatIhDhw7x6tUr8vLyeP36NTU1Nejr67N48WK6detGYmIijx8/JjU1ldLSUoyMjBgzZgyzZ89GSUkJU1NTIiIiePLkCX379hXfx6di2rRpvH//Xojdr127xo4dO/D392f58uUYGBhw69YtqqqqmDNnjjiHQ0JCCA0NxdHRkZ49e4oOSEFBgThjY2NjiYmJQZIk9PX1kSSJI0eOoK6uzpIlS8jIyGDz5s14eXlhYWHB8+fPRUddJoaHliC+uroaAwODTxKhtzl4PXToEKmpqUyfPl2oyyoqKujevTuKioq8evWKiIiI/+AwyMvLCwWdm5sbV65cob6+HisrK168eIGRkRFLliwRFbnc3FyUlZWFAhdg5syZjBw5kqlTp3Ljxg0aGhpQVVVFUVERKysrLC0tefz4MUOHDmXWrFksX76cTZs2tUnQtH79ejZt2gS0CKIWLFggMqTdu3dz/vz5VgKJgoIC8YDOzc0lNDQUfX19vvvuO7p16yYePllZWYSFhdGlSxd69eqFl5cXXbt2xcfHR/BHKysrBT9Q9p5+fn54e3tjb29PdnY2u3btorS0lFWrVmFgYPCvCPh1dXUsWLCAnj17Ymho+B9CO0mSGDt2rODGHjp0iAMHDrB+/XoUFRV5+PAhV69exdXVlWfPngnxhampKcePH+fJkydoampiZmaGu7s7U6dORV5eniNHjrBnzx6MjY3p0qULSkpKPHv2jPj4eBoaGoiIiBDV7NzcXJqbm7GwsGhzNURGKXn79i1VVVVYW1tz/PhxTpw4wbBhw0TrqUuXLlRXVwuRDLRUGfbs2fMf30dxcTEGBgbo6Ogwa9Ys6urqWomQiouLUVVVZdmyZcyaNYvExERqampYt25dq2q1TDEaHx8P/K/DfdiwYQQHB3/yGtPS0lBVVWXz5s24urrSp08f0tLSuHz5MuPHj6e8vFy0kq9evUp5eTnm5uYkJSWRkZGBlpYW+vr61NbWEhcXR1xcHJ6enkJAqKGhwZgxY+jZsydv375l586dVFdXi8NQV1eXbt26kZuby759+6iqqmLhwoWC2x0aGsq5c+eIiopi6dKlbNiwoc1iH0VFRdHOysjIYOPGjTx79ozu3bujoKBAnz59UFZWprq6mubmZvFAf/ToERkZGQwdOhQ1NTV+//13iouLkZeXx8jIiKqqKm7evElQUFAr/l3v3r0xMjLi0KFDvHz5knnz5jFx4kQ0NTUxNDRESUmJqVOnCoGp7LvIz89HUVHx/5h4/b8gqyJt375d/CwhIUG4qsgC16KiolZ7aOvWrQQHB4sWHSAESjLe4+LFi8nPz2fGjBmYm5uLDkZNTQ2NjY3Y29tjZ2fHo0ePyMrKQltbm+rqaq5evcrVq1fR0dHhxo0b+Pv7Y25uzq5du0Q1qK1oamoiMzOTy5cvo6enx6BBg1ixYgVlZWWsXbuWJ0+eYG1tzd69exk6dChNTU3Iy8sL14qkpCTu37/Pu3fv6NatG9OnT6e2thZHR0caGxtpbGzEzMxMdKbevXvHy5cvsbKyQktLi02bNhEVFUX79u0JCAigS5cuJCcnY2BgwNdffy0ExMrKym3m3r148YKgoCCSkpIIDg7G3d1dBK+NjY1oaWnRt29fjIyMUFVVJTw8nEOHDlFWVsbSpUtZsmQJ8+bNa1URbWxsRJIklJWVKS8vR1lZGVVVVfLy8ti7dy+5ubki2Hr//j3v3r3DysqK58+fo6ysjKenJ/3796d///6i0qWtrY2FhQVFRUVCBf+pCA4OZteuXQwdOhQ3Nzf27NmDmZkZ9+7dw87OjunTpxMSEsLTp08ZNmwYYWFh3Lp1Cw0NDUF5efjwIWFhYfj5+dGhQwfMzMyIi4vjzJkzhISECHcfOzs7EhIS0NbW5tdffxXBqizJb2xsRFlZmebmZrS1tQUXNTg4mGXLltGnTx/27t3b5meNrPO5f/9+Vq9eTUlJCb/88gt//fUXO3bs4NGjR/Ts2ZNJkyYRGRlJcHAw5eXlODg4UFtbS2lpKbGxsVy5coWxY8dy584d9u3bR3R0NPPnz8fBwYGhQ4eKquOjR4/o06cPx48fp6qqSgjEtLW1uXDhAl9++SU7duwQ67e3t6djx46sXr2a6Ohofvzxxzat7+jRo+LfX7x4QUhICFFRUURFRWFgYEBgYCA7d+4kPDwcY2Nj0R3ftWsX9+7dY82aNXTu3JkbN24gSZLoDEiSRFxcHKmpqejp6Qnh88yZM+nbty8hISHs3buXxYsX89tvvzFs2DCePHlCWFgYpqamwvEIID09nfz8fLp06YKdnR1nz579f66pzcFrly5d6Nixo8gYAT58+EBtbS1eXl6YmZkJ5Z6sElFWVsbo0aOZMGEC2tra7Ny5k127dpGVlQXAsmXLuHDhAnPmzEGSJC5evCgqIUpKStTX1/P48WO8vLwwNjZm9OjRyMvL07dvX7y9vXn//r2wl9DQ0ODt27dERERgY2PD9u3bycjI+OT1ubu7c/36ddq3b4+VlRUlJSXiAJXxkmpra6mpqUFNTY127drR2NhIbm4uBw8e5PDhwwwcOPA/RGIdOnRgw4YNogyvp6cnBAKxsbGoqqqKqtCyZcuENY6ZmZnYwEZGRvz444+EhISwZ88eJk6cSI8ePdp6CbG3t+fy5csYGhoKXtY/KQGyDDItLY3vvvuOhIQEVq9ezcyZM4EWYdmUKVMYPny44BxZW1uTkZGBJEl06NCBkpISQkNDqaurIyAgACcnJ/r06UNtbS1qamooKChQUFDAiBEjBFXj5MmTHDlyhI0bN5KVlcXWrVuZOHGi4CW2BXV1dVhZWREeHs6yZct4//49GzduZN68eeI1TU1NvH37lrdv3xIVFUVqaipdunRh8+bNyMnJUVlZiZKSEsrKyty/f5+oqCg6duyInZ0de/fuFa10WWaZkpLCgQMHcHJy4sqVK9y+fZsbN24ILmRjYyOqqqqMHj2a8PBwfv/9d+Li4oRKsy2YP38+6urq+Pn5UVNTQ1lZGfLy8tjY2KCjo0Pfvn0ZNmwYysrKPH/+nKysLCIiIrhw4QIaGhps3bpVVD0ePHjAsGHDhPpdxnkKDAxEQ0ODyMhIZs+ejby8fCtR3+3bt7l8+TKamposWbJE8Lo/fvyIkZERX3zxBWlpaYLj21bU1tZy69YtioqK0NbWZuzYsTg7OxMVFcWCBQvw8fHhiy++EO+flpbGu3fv6Nq1K97e3uTm5vLhwwfmzp1Lu3btKCsr48yZM0BLoJqens78+fPR1NRk+fLlpKWlYWJiwoEDB0hOTiY0NJShQ4eKblFcXBzPnj3DyMioVQdJQ0OD6urqNieSiYmJZGdn06NHD5EImZmZ0aNHD1GFjYqKEq1GWXdG5jjy+vVrqqqqREs/PT2d8vJyPn78KDpAKSkpBAcHY29vLzpFCxYsQFtbmxUrVogqh4GBAcrKypSVlQkajEw9P3r0aLS0tDA0NOTBgwdtWmNsbCxpaWno6ekxceJEBgwYgLy8PBUVFVhYWLB48WJevXpFVlYWT548EUIuPz8/QSvQ1NSkrKwMfX19XF1dW1VzExMTuX//Pr179xbiVmdnZ5ycnPj777958OAB/v7++Pn58d133wkFtI+PD5mZmWI/FxUV8fjxY0pKStq0vgEDBgDg6+srbLskSaKhoQFlZWUaGxtF4vfTTz/h7e0tKnwy/PPfKysrefToEXFxcairq9PQ0ICRkZHgaffq1YuHDx8iJyfHjBkzSE1NZevWrdTV1TFnzhxsbW2JjY0VPNR9+/bx4cMHNm3ahKGhoXBnaAs6derEwoULGT16NMXFxdTU1JCWlkZJSQl2dnaiECE72ywtLZk0aZK4L2WV3szMTKKjo1FWVua3335jy5YtbN++naioKKqqqjh+/DgpKSmUlZUxePBgOnfuLD5DSUkJ2dnZxMbGUl5eLjpMMuFQVFQUo0aNEkHXv0FRURGVlZX4+Pjg6OgozmBTU1N69uzJl19+Sffu3QkPD6e2thYHBwfy8/MpKCgQtIZ9+/ZhYmJCz549GTdunHgmmJiYoK6uTm1trbC68/PzQ11dnYiICO7evYuxsTHr168XPNoTJ05QXV3NuHHj0NPTQ01NjdDQ0P8Qq38KXrx4QdeuXQkJCWHXrl107dqVc+fOkZKSgo2NDYmJiWJfXLx4ERsbG96+fUtKSgpubm6MGzcOQ0NDVq1aRXR0NPb29qSmpqKvr8/79+/JycmhqKhI6GjgfxVmfH196dGjh7g/e/bsyfLlyzl16hSTJk0S33NeXh719fUoKip+UnegzcGrmZmZaMdkZmZiY2ODs7MzYWFhXL9+naioKIqLi3F2dhZfso6OjthUHz584NGjR+jp6VFTU4OGhoZ4mJ0+fZqKigrByRs7diz+/v4iI5YRqrt37067du3w8/MTraM9e/bw6tUr4c92584dRo4cibe3d5uyMFNTUy5fvoyuri729vaEhoaSkJAguHVaWloUFRXx4sULPD09MTQ0BFqqKGZmZpiamhIZGcmRI0dElSIpKQl1dXXhnhAZGYm+vj7p6emcPHlSVOGghatlbW0tAsmioiIKCwtpbGzE3d2dIUOG4ODgwOzZs1FQUPhXwaujoyPr169HS0uLfv36UVtby507dzAxMcHGxkZUmpOSkti0aRPe3t5CfBUWFoaPjw+amppUV1fj7++Pv78/2dnZJCQkMHDgQLS1tUX1srGxkfz8fJycnLCzs2Px4sXic9TX14vqCkB4eDgnT54kJCQESZIoKiqiqqqqzVzJjIwM0d5wd3cnLS0NXV1dFi5ciKamJjExMejr66Ojo0NZWRk5OTmUlJSQkZGBiooK0dHRmJqa8uTJE2xsbOjYsSMqKiq8fPmS+/fvM3r0aObMmQPAw4cPOXLkCMeOHQPg1KlTjBo1irS0NGpqakhJScHS0pLm5maioqJwcHBAT09P2KwZGxv/K2uX3bt3k5SURGNjI3Jycqxfv57y8nKh+vfy8iI7OxtFRUUmTZpEREQEixcv5t27d4Keo62tTW5uLqWlpVy7do3p06fTrl07MjIyyM3NRUdHB2VlZTp27CgCiezsbGpra3nz5g0LFiwgKyuLo0ePMnr06Fafz8jISDysgDa3KgFx7+Xk5DBy5EiRPPXr1483b95QXFzcqhIYERFBYmIiX3/9Nerq6qxbt47q6mrhIgBw8OBBiouLadeuHbGxsVy6dIl58+bx448/cvfuXerr6xk1ahShoaG8f/++FZ/xxo0b/Pzzz/Tr1w9ra2u0tLSoq6vDzc2tzW08aOlG5efnc/r0aaysrLCyssLCwqKVoKiyshJ9fX1Bf6mvr6d379707t2bqVOn8sMPP9C1a1d++uknDAwM+PPPP8nPz2fjxo1UVVVx7tw5lJSUUFJSory8nIsXL5KcnEx6ejr6+vr8+uuvDB48mL1796KoqMgPP/wgLO9kFRF7e3sWLFiAJEltDl5ramqIjY3Fy8tLnBsyfpyMMnXr1i3OnDmDkpISCgoKVFdXExMTg4WFBfr6+ly9epUHDx4wcOBAcSDKKsgy6k1GRgaqqqoUFxejq6uLoaEhNTU12NjYiE6al5cX27dvp2vXrnTr1g0bGxtyc3Opr6+nqqqKhoaGVjS1T4HsvvD29sbb2xtoOQtkqKio4PXr15SWllJSUoKFhQWurq5COFddXU1YWBiSJNGtWzexj9LT01FSUsLQ0BBFRUWCg4NxdXVl7NixyMvLEx0dzfjx4/H09OT27duCw+3l5UVoaCipqak0NTXx4cMHqqqqqKiowNDQEFVVVV69etWmNY4dO5YJEyYgLy9PRkYGw4cPFxSqmpoaUVgyMzOjubkZa2trnJ2dAbhy5Qrl5eUiYFNRUcHOzg5nZ2fc3NyYOnUqixYtwszMjLVr13L58mV0dHRE4KempibcTSorK8nKyqK5uRlVVVXU1NRISkri6NGjODg4sHr1aoB/JbxLSEjgxo0bPH36lPbt27N69WqRLNbX1zN27FgCAwNRVlZGR0dHeLbW1tZSVFREaWkpxsbGWFlZie9cloACXLp0SXTnfHx8sLS0FMH9/fv3SUtLE/Q7ExMTdu7cyYoVK4SuAlqCyp49ezJ48OA2J1mPHz/Gw8OD+Ph4amtrCQoKEsWKwsJCbt++zdSpUykvL8fY2JjMzEz09fXp2rUrNTU1lJaWkpuby6tXr8jPzycrKwsXFxeCgoKwtLTkw4cPNDY2Eh4ejqqqKgMGDGDMmDGkp6ejrKzM1KlTiYuLo0uXLmhoaODj48OuXbtaJQmqqqoYGRkJR47/Cm0OXkNCQujZs6fw4pQdbF26dGHJkiX89ttvBAQEsGnTplYXTwYdHR3mzp3L+PHjyczMRF1dHXd3d968ecOSJUuIiorCxcWFn3/+mcmTJ4uHVc+ePQWR38nJqZV9A7RsgOvXrzNz5kyx+f8NunTpgpmZGQ4ODlRXV5Ofn4+8vDympqbY2tpibGxMREQE5eXl5OXlIUkSWlpaaGlpMXv2bLS1tVmyZAkzZ85ERUWFiRMncvjwYcLCwjh16hR1dXXMmjWLqKgounTpgrm5uQh0Ro4cKTI3GVJTUzly5AgdO3YUXFhLS0u2b9/eii/SFhgbG6Ovr9+KMyjjLI0ePVq0JP4ZVIWHhxMWFsabN2/4/vvv+fDhA9OmTaNDhw6sW7eOqKgoampqGDVqFHFxcZSWlhIQEMDJkyexsLCgvLychoaGVhXGfxK5oWWYQa9evXjw4AEaGhqcPXv2P4zmPwWnT58WdikWFhbs2rWL+vp6wsPDCQkJIT09nUWLFuHv74+zszOqqqqMGDFCiLc8PT2JiooiMjKS2tpaOnfuTLdu3YiKiuLWrVtcuXKFtLQ0VFRUuH//PvHx8ZiamjJz5kw+fvzIihUrGDRoELt37xbViPr6eqEunj59Os7Ozuzbt4/a2lqMjIzazOtVUVHBzc2NpqYm1NTUmDVrFg0NDa043jt37uTjx48cOXIEe3t7ysrKgJbKeU5ODlZWVly+fJn+/fsTHR1NfHw8vXv3xs7Ojv3793PgwAEWLlzI0KFDgZYOSlxcHKGhoVy4cIGsrCz09PREAidb5/9+XaHtdmfQEiyOHTsWS0tLkeTk5eWhpqaGqakpY8aMEQIXQJjwy6ppioqKrTjPJ06cICcnh4aGBs6cOUNOTg7QQoHQ19dn/PjxvH79mo0bN6KoqMiIESMwNDQkLi5OiH2qq6txdnZGV1eXS5cukZaWxvz581upZT8VLi4umJqacvjwYbZv346NjQ2TJk0SbgoAbm5u4hCFluRflpiNGjWKM2fO8OLFC6Kiopg9ezZxcXG8fPmSnTt3YmNjI3xA5eXlGT9+PNnZ2axbt45Xr17x7t076urqcHV1RV5eHm1tbZYvX46ioiKPHj3i8ePHGBoa4u/vz61btzh8+HCbLXpsbW2xsbEhJSWF169f4+vrS2NjIykpKTx58kQkhs7Ozvj5+TFs2DDKysr48ccfOXHiBHZ2diQnJ/PmzRt0dHREYhofH8+rV6+wsLBg9OjRpKen88svv/DixQsyMjIwMTFhzpw5/Pzzz0BLl2Xp0qVs376dcePGceDAAQYMGMCzZ8949uwZo0ePZurUqSQnJ7Nz5842X8uKigrk5eXR0NBATk5O3APy8vL8/PPP6Orq4uTkxOvXrykpKcHd3Z3GxkZCQ0O5ePEi+vr6GBsbiwKFra2t4LCXlJTw66+/cu7cOTZs2ICvry+XL1/m/PnzLF26lL///pujR49y5coVsrOz8fX1paqqiszMTGbOnIm2trYIiuXl5cnJyWll0fVfQZbAFRcXU1xczPr16/Hw8BC89sePH7Nu3TrMzMx4//69CCy3bNnC5s2bUVBQQJIk3r9/z7p16/jmm294/PgxX3zxBV5eXqxcuRJAnHu+vr7069cPNTU14ShgaGhIp06dMDMzQ01NDQsLC/Ly8oiJicHW1rZVwvdvhKFKSkrU1dXx5s0bEaD7+/uL4oCSkpIotllaWlJcXExkZCTGxsbiu9bW1ubbb78V+93W1hYtLS0ePXrE5cuXARg4cCBffPGF8MYHxLVRUFAgJiYGOzs7zp07B7R0iKBFGBYREcGpU6fw9vbm4cOHbVrfhAkTUFFRoUePHoIy9M+1BwYGMnz4cOrr60XxEVqsCHfu3ElsbCyWlpatukuzZ89m6tSpvHz5EnV1dQYMGEBwcDD6+vqMGzcONzc3Ll68KLxxT5w4wfPnzzlz5gy9e/emX79+reI4JycnNDU1kZOT+/+N24CDgwMlJSXChHzv3r0EBQUxYcIEhg4dKtSvsiw7Li6O2NhYoUo2NDREQ0MDQ0NDoYCWfUkya6xZs2bRsWNHnj59SlpaGnZ2dqK9LYOKigolJSXo6upSVVVF3759UVFR4cGDByQmJtLQ0IC/v3+bD5W0tDTRDi4rK+Px48doaGiIjaahoSGskfT19cXDPCIigsjISBwcHPjpp5948OABJSUlHDx4UPiVnjlzBkVFRaKiooCWKuaQIUNwdXUlNjYWHR0diouLhY+dnZ0dmZmZGBkZiRZKc3MzjY2NouL6KRnK/w4jIyP27t3bSoBhbW1NXl4eu3btwtTUlFmzZtG/f3+Cg4O5evUqK1euRFFRkWnTpmFtbY2mpiYdOnTg8ePHPH78mLy8PAIDA+natStmZmYEBgayYsUKsTnT09NRUFAgMzOTjIwMPnz4gI6Ojgik6urqmDZtGsOHD8fS0pLk5GTs7e2pqKgQQcan4u7du4JHbG5uLqr+169fp7i4GCcnJ+rq6qirq8PFxYWysjIKCgpaiTYUFBTQ0tLCwsJCiLm6dOmCuro6ly5d4q+//hK+vwoKCkyZMoWvvvqKuXPncu/ePQICAoS9C7QkCMOHD+fly5fk5uZibGwsgpB/g4qKCrS0tFBQUCAtLY3g4GCcnZ0JCgqisrKS7du38/79e9zd3blw4QIlJSXY29uTkZHB69evuXjxIn5+fpiYmPDHH3+we/dukayYmppibW3N4cOHKSkpwdnZmXbt2hEeHs62bdt4+vQp6urqWFpaYm5uzpMnT8SEpJcvXxIdHY2JiQmSJJGRkYG9vX2rKuynQibAhBbO+Pv371FTU2PZsmWkpaWRn59PaGgoSkpKWFlZMXDgQBITE0lPT0dbW5uhQ4cSFxfHt99+K+xh2rVrR3Z2dqvWqew5lJKSwtGjRykuLmbWrFm0b9+en376iVu3buHh4UFiYiJKSkp07twZR0dHunXrxtu3b7l8+TLR0dFtnnQHLYHzkCFD0NbWpri4GG1tbRobG7l37x4RERFCzHnhwgUKCwvp1asXhYWFFBYWoqmpyddff91K7CUTJV68eFH4o8oM7z08PHB1dRXBSGlpKbt27cLNzY0JEyaQnZ3NuXPnmDRpEt26dWPevHk8fvyYGzdu8Pr1ay5cuNDmgShRUVHY2tpSXFzMixcvhN2Ys7MzjY2NVFVVMXz4cIYOHSr8pHV0dIiPj+fhw4doamrSu3dvTExMcHZ2prKykoyMDNLS0mhsbMTW1hZLS0sx8ai5uZnS0lJKS0s5cuQIHh4edOrUCXl5eXx9fXFwcOD+/fvk5OSISYwJCQliKMc/xVZtwalTp3j06BFdu3Zl+PDhImnS0dERQjto4TT27dsXV1dXFBUV6dChA/fu3ePs2bPExcWxfPlygoKCWol2TU1NUVFRobq6GisrK4yMjMjKymLZsmVIksSyZcsYNmwYzs7O+Pj4cOfOHQBhu/RPvnRlZSUdO3ZsszVffX09qampVFdX4+vri7KyMomJiTQ1NeHu7i5oL6ampiJwNzMzE1QVGcrLy7l37x6//fYbDx8+JDU1FS0tLRoaGsjOzsbe3h5dXV2ePXsmWtEVFRU4OzvToUMHoYlITk7m3bt3WFhY0KNHD5KSkti9ezd+fn6tvNM/FU5OTixYsID4+HjOnz/PgQMHxOCSoqIi9uzZI9xwPD09xcQpmaOQlZUVo0aNQklJSbgKSJKErq4uz58/p76+nq5duzJ16lQ6duxIcnKycETp1asXixcvpqamhosXL/Lu3TuqqqqYMWMG7dq1Izg4mObmZjp16oScnJyY8Hnx4sVPXp/srHFzcxPdgtzcXCIjI+nevbugu2RkZIjANTg4mDt37pCfn09+fj4ZGRmiyDJmzBiRdMgmPS5evJiuXbvy4MED4Wrz/Plz4TktS+wOHjxIZmamsFSTwdDQUAg0ZZSl/xfaHLzKrBoUFRXp3r07W7duFSXpvn37EhAQ0CrYePjwId9//z1z584VwUFqaiqVlZWiarJq1SphDi2z3Dhz5owQMowaNQpfX18xPq+urg41NTUMDAyE1+yiRYsYNWoUK1asEG2ijRs3tjl4vXDhAv3796dz585IkkRubi5ycnKUlZWhrq5Oc3MzlpaWKCgotDJ73rFjBxcuXODPP/9k1qxZTJ06la1bt7J27Vqg5UaOjo4mNTUVaFHBu7m5iYlBsr995swZamtr0dPTIygoiClTprBq1SrxcJBl9zL8k4P4qTA3NxcPdBlkZPAff/yRr7/+GgUFBRYtWkT//v159+4d9+7dY/bs2cLkX19fnzNnzoj2BsD79+8JDw/HycmJ77//no4dO9LQ0MD58+dpbm5m2LBhlJSUcODAAWEAP3DgQDIzM4mKiqKgoICVK1fi6+tLXV0d69ato6ysrBW/+lNQU1PDokWLUFBQYPLkyXh4eGBnZ8fQoUPx8/OjqKiIxMREsrKycHJyIioqipUrV7Jw4UKxD+vr69HQ0BAHfXl5OYqKipiYmKCnp4etrS3z5s1j/Pjx3LlzB21tbeTl5UXic+vWLQYMGECHDh3E96yvr8+gQYOE5cs/r11bqQMyekBOTg67d+9mz549TJgwgaCgIA4cOMCWLVs4ePAgU6dOZc6cOURFRdG9e3fBGc3JySEyMhJvb29BiXn06BGvXr2ic+fODBo0iCdPnpCRkcGDBw9o166dqAw0NzfTu3dvdHR0SExM5PXr1/Tq1Qtvb2/i4+M5ffo0HTt2pKSkhHPnztG1a1dhd9cWyGyjKisruXbtGnFxcfTt25fBgwejp6fHyZMnKSkpwdLSEmNjY1RUVHB1dSUlJQUNDQ3hUbpq1Sry8/MxMzPDz89PcLzi4uKAlsTt48ePzJkzh4SEBO7evYuXlxeVlZUkJiYKXrSpqWmrCo+/vz8NDQ0cO3aMY8eOYW1t3abhE2/evMHLy0s4j5SUlIgq9uXLlzl06BC2trbU1dWxYcMGTExMmDZtGurq6ty7d4+mpibmzZuHra0tKSkpJCYmMnXqVDp16sS4ceOIjY2lf//+YnjIjz/+yNOnT5k0aRLZ2dnY2NiwZcsW/Pz8OHXqFM+ePWP79u3o6enRvXt35OTkKCwspKmp6T9sAT8V58+fZ9GiRbi5ufH+/XuqqqrQ1dXFxsYGfX19vLy8hMhPhqdPn1JeXo6zszMLFy4UHpgNDQ2oqKgQERFBcXExhoaG4h6ysbFh+fLl4jmZmJhIfHw8kyZN4urVq/j6+nL16lVUVVX566+/8PHx4cSJE4SHh4uRztC65d8WREdHc+bMGeLj47G0tMTMzOz/2IGQeZbLKBlGRkb4+Phw4MABbt68SVVVFZqamv8RgLm7u4sgvbCwUHTNvvvuO0aNGtXKD1mmX3B1df0PYamWlhbz589vk8Vic3MzysrKqKmpUVNTQ2VlJUVFRbx7945+/frRtWtXFBQUaGpqarXm2bNno6+vz7fffsu7d+/Q0NDgzJkz7NmzB1VVVRwdHamrq2Pr1q0UFBRgYmKCsbGxmOTUqVMn9PX1UVNTa+Wh/PjxY86ePYu3t7ewerp27RrffPMNs2fP/lfBK/yvAQF5eXkioJaJzDMzM0UQbmpqyuDBgzEzM+Pw4cPo6upy7tw57OzsWLJkCc+ePWPKlCl07NiR0tJSMUo1ICBATPzT1NSkpqaGmpoaOnXqhJubG1evXuXnn38mKiqKzZs3s2rVKnbu3MmNGzfYunWrcH15+/atECd+KmQdsX9en/r6esrKyiguLkZHR4eLFy+SnZ3NqFGjyMjIYMOGDYSHh6OpqYm9vT35+fkUFhYyePBgfv31V3Etbty4QY8ePQgICMDR0ZFnz55x+PBhzMzMUFJSQl5eHkVFRQYPHoydnR3Xr18nNDQUJyen/7Buk5OTIyYmhpCQkP9yTW0OXsPDwwVXw8rKivHjx2NnZ4e3tzeVlZXs2rULAwMDkaHX1dXR3NzcqsokqxIEBwezfv16cYhASzXSzc2tle+loaGhuNkLCgrEjQT/y0NVZgPk5eWFubk5+vr6NDY2snz58jatLzc3lzt37iAnJydawRUVFZSVlaGnpycM3aGFu/r27VsyMjJoaGhg1apVYlOdOnVK+FIOGDAAT09PwsPDxUCBJUuW4OPj00pA9E+ujiRJODg4iPnnoaGhREZGMmnSJAwMDLh+/Trm5ub/agKOhoYGYWFhvH79mubmZgYMGEC7du2YN2+eUB2PHDmS+vp6Dh8+TFxcHOvWrWPw4MGkpaVx6dIlampqCAoKonv37hw9elSY28tG3AYEBKCmpsaBAwf46aef6NOnD1OmTEFbW5thw4aJmzc9PZ3Hjx9TWlpKWFgYKSkpODo6ihG/xcXFba5Qurq6kpmZyYwZMxg9ejRPnjwhKyuLgIAADAwMOHv2rKCfQAvnp7Kykp9//lkIfIqKikhNTRVjGYcNG4apqSm7d+8WXq8yrk5FRQUJCQnY2NiwcuVKrKys2L59O7/88gs//fQT5eXlrF27lqKiIr788stW44FlDxOZhVBbsXnzZo4cOcLIkSPp1KkTixYtori4mM2bN6Otrc3hw4epr6/HxMSExsZGhgwZwuzZs3Fzc0NFRUU4RcgEBK9eveLGjRsoKiqyfPlytLW1sbOzo66uDgcHB3bu3MmDBw+E4baNjQ2DBg0SB4a7uzvz5s3Dz8+PhIQEUlNTMTQ0xNzcXHgpfioqKysJCgqic+fOdOjQgdjYWDZv3syVK1fo06cPX3zxhehOHD16FENDQ4YNGyYCrYaGBjw9Pfn999/5+eefCQsL4+bNm0ybNo2vvvpKBFOyoMDf35+ePXuKpFpVVZX9+/fzyy+/sGvXLlxdXTl06BB37twRivk+ffpQWlpKfHw8ycnJbQpe4+Li6NChAy9fvuTIkSPMnTtXBK8eHh7MnDkTV1dXlJWV6dq1K127dkVDQ4OUlBQ+fPjA2LFjsba25vHjx0RERGBsbMzHjx9JTExsNRimY8eOWFhYEBISIobAaGhoiGdoXl4eJiYmTJkyRcxThxZ+sLy8PPLy8hgbG7N69WpBPflUNDY2YmFhIQoN2dnZREZGkpCQQM+ePWlubub169c8fvwYdXV1HB0dKSsrw8vLC11dXdFhko0ShxbOvsxL28nJiXXr1qGvr4+ZmRkfP34kPT0dX19f1NTURMUuNTWV48eP07dvX2bMmEFERAR37txh1qxZrFq1CmtraxoaGtocvN66dYtBgwbRo0cPYmJi6NixI/7+/igpKXHgwAHu3LnD4MGDBTc7Li6OR48e0dTUJIahKCsrs379eq5fv055eblIdhsaGnjx4gX19fVUV1eTlZXFypUrkSSJwMBAMZFLxovetm0bDx8+5JtvvmH06NGC03j16lWOHj0qnHr+T0H1/wuyz/Pu3Ts+fvxIp06dUFNTE9Vb2V7Ly8vjyZMnxMfHo6qqiqenJ3Z2dvz888+cO3eO+/fvo6ury9ixY3FxcRGm/LLEX0bhMDAwoEuXLgQFBQkKhmwtp0+f5vDhwygoKBAUFCQ+o5mZmRjH/m9w+vRpYmJiyM7OZsyYMcyYMYP4+Hh27NiBhoaGcGz566+/cHFxoUOHDmhoaNCuXTuGDRuGm5sbL168EO1+WXdZRUWF0aNH09jYKAZUQEvCLNMPqKmpCdFnWloa1tbWjBgxAiUlJdLS0nj58qVwV+jatSs//vgj165dazVt87/Cr7/+yqpVq1BUVCQ/P59r166hoaEhhlo8ePCATp064eHhwbVr16iurmbo0KE0NDQQFRVFeXk5JiYmuLi4sHr1ajGEJjY2loULF9K/f39qa2uFRkFWlR4wYACLFy+msbGR4OBgHj16JDzFZbag9fX1lJSUCNpISUkJZ8+e/S/t69ocvF68eBENDQ08PDzQ0NBg8+bNQEt2NnXqVK5cudJqPJuJiQkBAQGCFK+qqkpTUxM1NTWEh4eTmJgoPBRlym5ZBmBsbExQUBALFizAxMSEFy9e8OzZMwICAtDX16empgYlJSUkSeLatWtkZWUxffp0kUX/8ccfnD17tk3jYTU1NdHQ0CAvLw9LS0vGjRtHXl4er169oqSkRHAwZWKi+/fvk5GRwYoVK4Qga9u2bezevRs5OTm2b9/OvHnzePPmjXBQkM0qdnFxoUePHsLf087OTrT4bGxs+OKLL8QEl8uXLwtLDkmSSE5Opqio6F8Fr05OTty4cYNDhw7R0NCAh4cH7dq1w9DQkClTpgiO3dOnT9m5cycdOnRg2rRpwgni/fv3REVFcfLkSWbMmCGI8snJyYSFhYlsOSoqinPnzpGcnIyuri4vX77Ez8+PAQMGCJXuF198IVoE+vr6gpQvE6iFh4cTGxvbiqPzX2HOnDl06tRJjLaLi4sjKyuLvLw8EhMTKSoqalXNlVlExcTE8ObNGxISEoR/3+XLl4mJicHKygpdXV1KS0uFXyK0VHh2797Nq1evqKqqYuPGjQwYMICbN28Kf9jy8nLh8SfjU8voBoBoqbZ1Ghy0JHM2Njb88ssvVFRU8PfffzNz5kxWrVrFrFmzOHz4MEOHDiUoKIi8vDw6d+4sOKwyyHxM1dXVMTY25tmzZ5iZmdG/f390dHQoLCykrq4Oa2trZsyYQXFxMcePHwdgxIgRLFy4EFVVVWpra+nevTs9e/YUVYu///4bbW1tYa3TFrx9+5Y3b95gYWHBoEGD8PDwICQkhAsXLmBkZCQmv8XGxnLmzBmcnZ0FbUUmcjQzM2P06NFUVlYSExNDTU0NFy5cwMPDg2XLlqGpqUlBQYEYDiJDbGws6urqODg4MHz4cM6cOYOFhQWKioqkpKTw8OFDevXqRZ8+ffDx8WHOnDmkpKS0SSySl5dHRkYGu3fvFjQO2f08evRopk2bhpaWFnJycvz55580NzeLaWVubm4oKioSERHB7du3qa+vp6GhgYcPH6KlpcX27dvJzMwkOTmZhQsXYmFhwcyZM7l27Rr+/v7o6OgQFRWFjY0NAwcOJCkpCW9v71bPbh8fH5qbm2lqasLGxoZx48axf//+Nl1D2dhpS0tLIW6Jj4/n5cuXeHl5IS8vLxJie3t7nJ2d8ff3x9DQkOTkZO7evSs6Je7u7qI1m5+fz40bN1p5XgYHB/Pu3TtsbW0JDAxkypQpgq5SXFwsnp8y5w1DQ0OmTp0q+NRNTU1tNvF/9OgRQUFB9OnTBx0dHZydnQXFLDExkatXr7aq1qelpREaGipGfurr67Ny5UomTpzIqFGjOHDgAG/evMHX11dM1/rll19EkFtWVkbHjh1ZvHixoCNUV1ejrq7O9OnTUVZWZteuXWhqaoqAr7y8XIgRBw0a1GZnExmSkpJ4/vw5ZmZmDBs2DD8/P4qLi8XvCwoK+Oqrr/j48SOjRo3i+fPnuLi4sGPHDpycnIiPjycwMFBU7U6fPk1+fj69evWic+fOYijF2LFjWbBggeh4KioqIi8vT1hYGMePH6e2tpZx48ahr68vns3m5ubs3LmzTefEP/Hy5UtCQkKor6/H19cXTU1N4uLiuHTpErNmzaJ3795s2bKF3bt3i8lg+fn5dOvWTeyxiooKfHx8KCkpQU5OjoaGBjGuWlYNr6ioQJIkYV2WlpaGkpIShYWFnDp1ivLycvF+zc3NeHl5MWPGDMHjlSUxmZmZwt7rU5CZmSme8TLrOhsbGzFAISkpiRUrVuDv78/OnTtRV1dnwoQJ1NXVCceT8ePH079/f6ytrYmJieH48ePIy8uzYcMGdHV1SU9PJy0tDSsrKwoLC8nMzKS0tJRRo0ZhaWlJZGQkycnJLFq0SBQwa2trW1miykSY/xRy/9/Q5uDV0tKSP//8k86dO7NkyRKgRUQwY8YM7t69y/Dhw1uNEzUzM8PAwIBTp06RlpbGpEmTePLkCb///juTJ08mODiYqVOnkpGRIVTmo0ePpra2VkzjkrX+79+/z/HjxzEwMMDHx4d79+6RkJCAo6Mj6urqDBkyRASux44do6Kigh9++KFNh6ZMqKGrq0tdXZ1QjIeHh9OhQweam5spKCgQ9hhGRkbk5OTQr18/mpqa+OqrrwgLC2Pt2rV4enpib2+Puro65ubmVFVVoaenx++//467uzvNzc1MmjSJ2tpaHj58iJ6enrAy+fDhg3gIPnv2jA4dOuDu7k5xcTHR0dEYGxvj4ODwr5TqKioqDBs2jGfPnvHixYtW75GRkUFeXp4gde/atYu6ujpiYmJoaGigb9++zJs3j9OnT7N06VJ2795NVlYWmpqa1NfX07NnT8HPvXjxIvfv3xf80zlz5uDm5sbKlSvFazp16sTZs2cpLy/HzMwMT09P5OXl6dy5M6WlpSQkJBAVFdWmh1K3bt1wcnJi1apVZGRksGbNGuzs7Dh16hTGxsZ89913rV4fFBRE+/btKSsrQ0lJSYx8tbe3582bNzx48IBvvvmGTZs2sXPnTg4dOiQCXX19fYqKipAkie3bt1NZWYmZmRmWlpZifrO7uztXrlwRqs3Tp0/z+PFjcdg8e/aMzp07t8lYW2bgv3fvXqKionj+/DlVVVVs2rSJfv36kZSUxMuXLwF49eoVHTp0EBXFmJgYXFxcRAUmNzeX7Oxs0bYLCAigffv2KCkpsW7dOkHa19bWpqSkhEePHgEtgiN/f39UVVUpKSkhPj4ef39/6urqWLZsGXJycvzxxx+fvKb/HfLy8ty5c4eysjKio6MxMzPjyJEjFBQU8PHjR9atW0dsbCxxcXFoamoybtw4lJSUuH//PqWlpYwePZr8/Hy+/fZblJWV2bBhA3v37iUnJ4elS5diZWXFyJEj0dLSIiUlpZXwrKmpiUePHvH9999TVFREUFCQ4EX36NGDZ8+e0b59e1JSUkhKSsLLy4vRo0cLv8ZPQVFRET169BDVDl9fX/Ly8kT1SFFRUUyaU1JS4saNG5w5c4Zp06bh5eXF+vXrqaysZO3atdTW1nL69GmcnJyYNWuWOAyysrIE7zwoKEiM4QwODqaiooJp06YxbNgwEhISyMjIYMSIEUAL9Wbu3LlACyXK0dGRiIiINl/DjIwM3r9/j4GBAY6Ojjg6OopRtzIrxfHjxyMnJ4eqqqqYXihJEk+ePOHgwYPExsYCLTSNqqoqnJycUFJSwsXFhREjRqCsrMymTZvYsWMHX331leAP/tMBwsbGhtGjRwuhUJ8+fZg8eTIRERFERUUxcOBAnJ2dW1HBPgUjRoygqKiIxsZGHBwcWoltFy5ciIeHhwgyc3JycHFxYf78+WzZsoX4+Hi+//570YmRBd3z5s3jwYMHnD17FkdHR+7evQv8L17mhAkTsLKyIi4ujpSUFDw8PEQw4OXlxfz581sd/kOHDsXIyIhz584xd+5ccV3bCh0dHSIjI5k/fz4pKSmsWLGilZiwrq6O3NxcXFxcWLt2LWfPnuX+/ftkZmbSrl07AgICWgl0kpKSOHLkCA8fPhRFk+XLl4vkOi4uTvBGL1++zNWrV9HW1mbhwoX4+/vz5MkTtmzZwsePH5k7dy6LFi0C/p2zycKFCxkwYIAYmywbxXzmzBnevHmDv7+/cEGSFaEADh8+zPnz5/n222/p2bMnO3bs4Nq1a1RVVVFWVoaZmRmJiYkYGBhgbm7OgwcPSEhIYOzYsWhpaXH//n3++usv8vLyhAirpqaG5ORkHBwcmDhxIjNnzkRVVZWrV6+ydOlSXFxc+O233zh16tQnr2/27NkiEdXX1+ebb74hPz+f5ORkunXrxrRp0wTlrXfv3nz48IEXL16IgFxXV5eRI0eKkevLly8XzwhZt8LAwICBAweKSWuHDx8WNpSWlpYcPXpUOO78c8/IEkaZM0xhYSGLFy/m1q1b/881tTl4nTx5Mjdv3mw1LvLMmTN8+PCBOXPmMH/+fKqrq4mMjMTHx4fOnTsTExNDWloa9fX1wv5DT08PLS0t2rdvz6xZs0R7MSwsjPr6enr16sXMmTP/IwJ3cHDA1NSUiooK3rx5Iya/bN26VbSB//rrL16/fo2fnx/du3dvU/BqamqKvb29UKcXFhby8eNHJEmiqamJ3Nxc5OXlqa2tJTMzEw8PD9zd3amrq2P69OliJJzsRvrzzz9xcnJCW1ubyZMn4+3tLYQJAH369MHc3JzY2FgKCwvp06cPHTt2RE1NjZCQEDGtSNainjt3LmVlZRw+fLhNitF/4saNG1hYWBAQEECHDh0EQVuSJAoKCoiOjub9+/dMmjSJAQMGUFpaytWrV4V5MCBcGPLy8ti3bx9qamrMnz9ftPiLi4t5+/Ytzc3NeHt706NHD2HR8+OPP+Lr68vgwYMZPHiwUN127txZtKh0dXUZN24cqqqqbTLvl8HIyAhjY2MePnwoDhZjY2OSk5O5d+8eXl5eQmynqKiItrY2KioqVFRUUFRUJILX77//nurqaiHacnNzw9TUlD/++IOKigo6dOjA1q1bhSn869evGTVqlOAIXb9+XUx8kxHSd+3aRUpKCl9//TXQ0mKaPn16m4LXkJAQBg4ciLm5OUZGRnz33Xdoa2sLW5WoqCh69OiBhoYGVVVVxMfHo6enh42NjRgLq62tTUNDA9XV1TQ2NlJXV4eBgYFoCUFL8HP79m0cHR358ssvxVAJOTk5unXrRvv27Wlubm6lYK6oqCAqKorY2FgcHR0ZOnTov0qyoOWB6OLigomJCcrKymKISVlZGRs3buT9+/fU1taKQQKGhoY4ODgQERFBXFwcV65c4fDhw+jr6/Pzzz+zbds2tm3bRnx8PL/++isODg4YGRkRGxtLREQE3t7eeHp64u3tzdu3b3n06BGlpaWMHTsWBQUF3r9/j6WlpZg/rq6ujp6eHurq6m2+H42NjTE3N2fGjBmiE5Gdnc21a9eoq6sjMDCQLl26UFZWxrVr19i1axcfP34UljfHjh3DwsJCXMPU1FRqa2sJDg5GTk5OrCUpKYnHjx9TWVmJkZERCQkJ1NbWMnXqVObNm0dpaSmHDx+mrq4ORUVFfH19OX78OPfu3cPd3V2IQv/NaFFZ1+3ly5fCscXe3l60ZK2srOjatWsrd5jHjx8Lz9rS0lKRzPbp0wdbW1sUFRXx9PQUIkEZX75Dhw50794dXV1ddHV1KSgoID8/H21tbUHpUVJS4t27d/To0QM9PT369+8vvC7/TfDarVs38vPzhbexpqYmKSkpREZG0rt3b0EXyMzMpKamRijvBw4cKCrgb968QV5eHmtra4yMjPD29iYxMZHt27fj6enJtGnTOHbsGOXl5QwcOFAIAzMyMigtLaWwsBAzMzNUVVVxcnJqVbmrqKhAV1eXAQMG4ODgIAYktAVNTU1IkoShoSFubm7k5eWRmZnJrVu3hMNJhw4daGxsZOnSpXh6etKuXTsGDBiAvr4+ZWVlaGtr079/fwoKCnj16hWWlpYiPoiPj+fKlStYW1tja2tLTU0N5eXlpKWlYW9vj4qKCpcuXSIlJYXp06fTr18/lJWVKSgoID09XVhOqqmpMX78+H9lW+fi4oKLiwu2trbs3LmT7OxsrK2t6du3L7q6uvz+++/idXZ2dqioqFBYWEhWVhbFxcUEBwcLLY+dnR2dO3cWUyRzc3NpaGjA0NBQ2JxFRUWho6PDu3fvePLkCdBChwkKChJWampqasjLy5OamkpmZiZXrlxBTU2Nvn37tllYKNMPAEKvU1lZiZycHEZGRmhra1NeXk59fT0KCgqUl5eTnZ1Nx44dGTt2LLq6uoISZWVlhZeXF1paWgwaNEjQF7S1tdHW1sbJyYmYmBgxqnnNmjUoKCjQqVMnFBQUuHPnDvr6+rRv317Yjb17904ktPr6+q0q+v83/Cu3AVnFtb6+nlu3bqGmpsaJEyfw9vYmPz+fLVu2UF1dzZYtWzAzM2PMmDH06dMHMzMz4fE1depU9u3bx5o1a5g+fTpff/01O3fuZM2aNQD0799fBK6FhYV8+PCBnj17MmbMGJydncUINWNjYyoqKoRFUFxcnGgzyvxL24Ju3brR2NjIu3fviI+PF95senp61NbWUlZWhpubGxUVFZw5c4aCggKCgoK4cuWKmAhhYmJCfn4+YWFhHDx4EFtbW6ZOncqECRNE8Pe/z5mWlc7nzp1L165diYiIYN26dSgpKbF3716gReh2584dDAwM/lWLWYaVK1fi7OzM7NmzRVAsm1LUp08f3N3defnyJc+ePaNv375Ay3WXBQ5Tp07lxIkTray6vv32W1F1ioiIIDg4mMbGRgIDA7G0tMTf359vv/2WmzdvsmHDBh48eEBVVZUQ88kUj01NTdy8eZO6ujpGjx7NrFmz6NevH1u3bv3k9f35558sWLCAbdu2MXr0aMLCwoiLi2PKlCl888039O/fn82bN4u99uTJEw4dOsTz589Fq2bp0qX07dsXBwcHEZTLDgVLS0u+/vprobwcO3YsjY2NbN68mSFDhvDll1/y888/s2PHDnx8fNDW1kZNTY3vvvsOc3NzXFxcqK+vF62kbt26tZmH1tjYKPbA27dv6datG8bGxqKF2KNHD9q1aycqxzLv1oCAAHFfxcXFER4ejoGBAZ07d8bU1FRw1GVJxOrVq1FVVeXYsWO8fPmSAQMGCPGNrGJrZmZGu3btxOcxNDRkw4YN7N+/nz179nDt2rX/8IH9FBgZGTF37ly++OILxowZA7S0XS0sLFBRUeH7779nx44d3L59m99++43Xr18zZswYbG1tef/+PUuXLhVq99LSUg4dOsS+ffu4ffs2S5cuJTs7mzdv3uDp6Ulubq6Y4mRra4uenh59+vThwoUL3Lx5kytXrtC9e3e2b99Oc3Mz165dE0JAc3NzoqOj2/ys0dPT49atW63auNXV1Tx9+hQtLS1xb6ampvL777+Tm5tL586duXz5MvHx8bi4uKCvr8/kyZOpqalBXl6e8PBw/vzzTwC+/PJLMcHqhx9+oKysjJqaGpFo79ixA2VlZUJCQnjx4gV6enrExcVx69Yt3r59y44dOxg6dCjV1dUUFhbSvn37Nl/D7777jurqak6cOMGbN2+YO3euOPhTUlKYN28e27dvFwl9cHAwa9asEeNR27dvT79+/Zg/f744POvq6qisrCQ7O5vk5GTy8vJYvny5+PwxMTF4enpSVVVFaGioSFwtLS1ZsWKF4B9mZGQILYWM7vFPZf6nwsjICDk5OfE8fP36NXPnzmXhwoVs376dhoYG8vPz6dy5M3fu3OHEiRPMnDkTNzc35s6dy6NHj1i1ahUDBgzA2NiYixcvcvbsWWbMmMHIkSPZvXs39vb2HDlyRDiIAAQGBqKoqEh8fDxhYWG4uLgIj25A2J/J4OTkxNatW4mJiREB06dAQUFBjIRfsGABvr6+fPjwgc2bN3P79m0hxpFNhXr37h0XL17E09OTRYsW8erVK16/fk3nzp2pqqoiJycHNTU1hg0bhqenp6C3nDp1Svhl29ra4urqioKCgqAGOjg4YGhoyPv376mvr8fAwIC5c+eSnp4uJmzJy8sLP+h/A2dnZ7Zt2yamnBUVFeHn58fp06dZs2YN8vLy/PTTT7i7u/P69WtMTEyor69n7dq1QmC+detWoQGQk5MT/Gs5OTkxQGPv3r2Ulpa2igFmz54tRv3K8OrVK3799VcePHjAmDFjuH37Nu/evRMjnP8N3r9/z86dOzE3N2fu3Lm8evWKr7/+Gl9fXzp06MDbt29RV1dn8uTJrdwAZBg0aBD+/v5IkiSsIP+J4uLiVt71MhcNHR0dSktL0dXVZdKkScIX+fz586xatQpPT0/27NlDaWkp69at+y9Fom0OXp8+fcq7d+/w8PBARUVFjNmTfRATExO6detGSkoKoaGhBAYGYm1tLao5MtN9FRUVXFxcqKio4OnTp1RWVuLr60ufPn0EHUAmaPn48SONjY14enqKNoW2tjbDhw/H3d2dnJwcqqqqCAsLQ1FRkaCgIKGMbGu1QGYjYWtrS7t27cjLyxOtwY4dO4qLaWBggKurK83NzTx9+rSV4KasrIxff/2Vuro6evToIcRshw8fRk5OjuHDh9OrVy8+fvzImTNnuHTpEjY2NiJwlSSJgwcPirn0MqWljo4OK1asICYmhjlz5qCqqvp/3Dz/FZSUlITNkwz/VKSamJiQlpbGhw8f0NfXx9fXFzs7Ox4+fEhwcDD37t3D0dGR8ePH4+LigpaWVis7mLdv37JlyxZ8fHyYPXs25eXlhIWFUVFRIeZD19TUiIkksoBOVVVV7A+Z3ci8efNaKU0/BWFhYWRlZfHdd9/RqVMnoqOjCQ0NpX379kyZMgVJksQYVGhRCp89exZJkrCxsSEpKYnTp0/z8eNHnjx5QmZmprA7i4iIEA+kxsZGIiIihCJVQ0NDzG/ftGkTNTU1DB8+HAsLC27evEliYiIODg5MmTKFQ4cOsXjxYiZOnIirq2urVtSnQNYuraqqorKyEhUVFXR1dWlqahICSHd3d9TU1Lh06ZLgb0dHRxMeHs7cuXNRUFBg27Zt9O7dW9iJyUQxoaGhhIWF0a9fP5YtW0ZqaioPHjxAQUEBb29vOnfuzLNnz/jjjz/w8vJCXV2dzMxMQRPp2rUrXl5e3LlzRwS4bbXnmTFjBiUlJfz1119iJHVOTo5Q3ssOi4EDB1JTU8OjR4/Ytm0bnTt3JjQ0VBjq29raoqysTHR0NBcvXmTgwIH069eP5uZmfHx8UFJSwsDAAC8vLzw9PVFSUqKgoAAFBQW6dOmCjo4OmzdvxtHRUdjLpaamimA9MzOTrKws8vPz27S+yMhIPDw8kJOTIyUlhcePHxMTE4OhoSF9+/YVLWgLCwumTJkiphpFR0djbm7O2LFjyczMFIGIhoYGs2bNQlFRkdTUVExMTGhubhbTfk6cOEFpaSlycnI4OjqKhCkgIIDVq1cLbriJiUmr6X0yWoVsb7QVMj5mYmKicBHYu3cvq1evpqCgQLzv0aNHOXLkCNra2oImUVRUxJo1a0QF+Ny5c/Tr1w9TU1OUlJTQ1NTEwMCAnJwc4uLiUFJSwsLCgqysLEJCQkhLSxMVsISEBJSVlUWnycDAgEWLFpGRkYGSkhJ5eXlt5oPKpuP9M5HX0tKiY8eOxMbGsmPHDnR0dIQdm52dHf379xdDfDw8PCgtLUVFRQVlZWVxTo4fP56EhAQxClRHR4fFixeLkd3QUjxKSEhAUVERTU1NIiMjyc/PF2dxbW0tKioq1NXVkZCQwOvXrykuLv4/BiT/FVRUVHB0dBSeyAYGBlhaWhIYGEhgYCCOjo5UV1fz6NEjysrK0NXVxdTUlOfPn7N69WpsbGw4e/as8Bd/8eKFUOL7+vri7u4uKtPq6uqUl5cTHx+PoaEhHTt2RElJibKyMlRVVUVA26dPH3r27ElISIhwgunUqZMQHLYFHz58QFNTU4zNlqGqqkp4FMumhl65coWMjAyqq6tRUVHh48ePQrdiZmZGQUEBe/fuRV5eHicnJ1EAAoSrwvbt2wkNDeXEiRNAi4+rpqYmf//9NxoaGnTu3Jl27dqJzpOCggLjx4/H1taW06dPExkZ2abgNSIiQrh0yKbo2dnZoa2tTWBgINnZ2a3cZubNm4eCggL5+fns37+f4uJiTE1N0dTURFNTE2tra+zs7Hjz5g1PnjzBwcGBsWPHUl1dzYEDB0hISGDChAkEBgZSVFTErVu3KC0tFQNTZIL6O3fu8M0335CXl4eLi4voqvTv3184M/3f0Obg9caNG2zfvp2pU6cyffp0Pnz4QHp6OoMGDcLU1JTGxkYmTpxIeXk5ly5d4t69ewwbNgwNDQ0qKipISUnh1q1bFBYWsmrVKrp27UqPHj3Yvn07z58/Z/fu3YwePZrk5GQeP36Mra2tGD0nM4339PTEwsICY2NjwaE5fvw4Dx8+ZNKkSUJFW1lZSf/+/QVH71NQW1tLU1MTGhoaDBkyhOzsbMrKykhKSqK6ulq0lZSVlXF1dRVtENkD0NfXl9LSUs6fP88XX3whWsPLli3j999/x9XVlR49elBQUMDly5fZuXMn6enpovpYXl7O7NmzuXDhAsbGxmKSE7RUtJYtW0ZoaCjTpk0jIyMDeXl50Sr+VMyZM4clS5YgJycnqn/V1dVUV1cLZ4cHDx6QkpIi+MsfPnzgzJkzREZG4uTkxKRJk5g1axbKyso0NDS0mvghU7dDCxXB3NyckJAQzp8/j7W1NYMGDcLExIRnz55x9OhRNDU1mT59urA86t69OykpKdy7dw8NDY02z6n29vbmjz/+wNzcnEWLFuHn58f169c5evQo/v7+/Pzzz63agzIR3Lx585g0aRK7d+/myJEjhISEkJOTg6amJu/fv8fDw0N4jTY3N3Pv3j3++OMPiouLKS8vF61nGfz8/OjduzcuLi506tQJRUVFmpqaUFJSorq6mtu3b1NdXU1AQADXr19v5Qv7X6G5uZmGhgbRyXj8+LEYmPHgwQMuX77Mzz//jKGhIfHx8XTo0AFPT09u3rzJpUuX8PPzE2rfzMzMVu/b1NTEpUuX2LVrF1FRUaxdu5Zp06aRmprKy5cvqa2txcLCgrq6OmJjY8WwghcvXvDkyRPs7e1xdXXFycmJmTNn0tjYiKKiYpunM5mZmbFw4UJGjhzJzp07GTRoEFZWVoSGhpKVlYWWlhYTJkzAxcVFCHm2bt3KtWvXcHR0pFOnTkRGRvLmzRvxnjdv3iQpKQlLS0vGjh2Ll5cXd+/epbi4mNmzZ4tsPysrSwS11dXV4qAoKCjA2NhYjIeViVgcHR1p166d8HD+FFRUVPDTTz8xf/58VFRUOHr0KIWFhRw8eJAhQ4bQ3NxMUVERJiYmLFq0iIsXL7Jt2zYCAwOZPHmysJgzNjYWk6a6du0qOJTl5eVoamoiLy/PN998Q0ZGBufPn8fLy0sMuJAkCUVFRdatWycSlPbt29OtWzeam5uFyENXV7fVPvlUvHv3DnNzczHnXjYdacqUKSgrKwvRWGRkpBC5zp8/n9evXwu6l6wA8cMPP7Blyxa+//57QZORVRYnT57M7du3OXPmDA4ODtTU1FBdXS26c42NjaSlpSFJEnZ2digrK6OqqsoXX3xBamqqcHBoyz0ICH6u7FlaXl4uJkCeO3eO4OBgvL298fLyoq6ujnbt2omOSGFhIVu3bqWkpIQLFy6Qnp4u6HhKSkps3LiRv//+m0WLFjF48GA2bNhAXV0dkZGR2NnZcf78ecLCwli0aBGdOnXizJkzfPz4ETc3N7G+5uZmMYp77969IqBuC2TWflZWViJhy8nJoXPnzowePVq4Dx07dow//viDHj16sGbNGsHDDgsLQ15enuTkZEGhS0tLY+/evbx79461a9eyadMmIQLr1KkToaGhDBo0iLi4OHr37o22tjbJycl8+PChFS0kJiaGxsZGJk2aRMeOHVFUVBTt6ragsbFRGORXVVUJT2I3NzdiYmLYvXs3BQUFKCkpsX79ekHz0NPTIyMjQ4i558yZI6YZQsu5b2tri5OTkxjXrKury5QpU3BwcODWrVuYmJjg5eXFrVu3uH37NgDLly9n+/btuLm5icIJtOh+7ty50+ZBDC9fvhSfae7cuWzevFkktwoKCkyYMEGMxNbU1BTWZ6tWreLo0aOoqanh5eVFQUEBpaWlODg40LlzZ9LS0nj06BFffvklkydP5tGjR5w+fRptbW2mTZtG//79iYyMRFFREWtraxQVFYmJicHBwQE1NTUiIiLIy8vDzs6OgIAA3r59i7GxMV999dV/ee63OXhVV1fHxsaGgIAArKysiIyMFG375uZmHjx4QFBQEGZmZvTr14979+5x8OBBdHR0MDExQVNTE29vb5qbm1FSUhJj8D5+/Mjy5cuZMGECa9euFRyuzMxMIeL5+++/iYiIYNu2bYwYMYLg4GCUlJRwdXUlLS2NmJgYAgIC8PLyory8nJKSklZZ1Kdg//79nDx5kvnz5zNz5kxhft6pUyeSk5O5f/8+I0aMoK6uTojQZGMMXV1dCQoKIj4+ntjYWMH/vH37NmfPnqV///5s3LgRMzMz9u3bx5MnT5g9ezaamprcu3ePxYsXC1W+tbU1O3fuFB5+0dHRYhqTh4cHZ8+e5eTJk8IkuS2Q+XHKLMWgZXzdpk2b+OuvvwgMDKSpqYnk5GRxcERERGBjY4ONjQ23b98WWXNKSgp//PEHQ4cOpaqqij///FNYeZ05c4Z9+/YxZcoUVqxYQXx8PJGRkdy9e5d3796hpKSEj48PFhYWSJJEdXU1+vr6uLi4MHPmTLp3746iomKbK3YjR44UQzGgxTrr7du3PH78mJMnT2JiYsKYMWOEOKW6uhp5eXkhrti3bx+SJJGTk0OnTp1Ys2YNQUFBZGVloaamJjxyb9y4wfXr1+nUqRP29vZCWAKwadMmbGxs+O6773Bzc2PDhg1IksShQ4d4+vQpJiYmrF+/nsbGRt6+fYuXl1ebKndz5swR/qmmpqZ0794dDQ0NSktLuXLlCo8ePeLkyZNMnDgRBwcHkeEGBATg7OzMpUuXaGxs5Pvvv6esrExUqTt27EhCQgIvXrwAWqrSDx8+pKamBjMzMxEwxcXF0aNHD7p06cKLFy8ICwtDVVWVadOmicrWb7/9xpMnTxg3bty/8nkNCQkR6vixY8eK5GHkyJFcvnyZO3fuYGNjI+gsQ4YMoaGhgY8fPwpO1rFjx0SFFlpoQY6Ojjx//pxnz54JG5zY2NhW6l03Nzdh/VdbW8uRI0cIDw9nzJgx+Pv7s2DBAurq6khMTMTFxeVftfBmzZpFVlYWlpaW6OrqsmrVKuGhK0NdXZ0Ijp49e0ZKSgqrVq0iKCiIL774gqioKBYtWkRjYyPHjx9n3bp15OTksHLlSsFplokvkpOTgRY+tJGREQoKCuzbt4/Q0FD++uv/Y+0vo6u62v1/+JNkx93dnQgRICQECAQN7looVgotLVCghdIiFShSoFCoQNHipRSCu4WQkBAlRtzd3Z4XGWsecu7ze27S8b/G6IsyMnYy95przku+8iv29vbY29tz8OBBvv/+e9ra2hg/fjyTJ0/+1wz127dvc+rUKUpKSnjvvfdYs2YNZWVlnD59Gl1dXWbOnElkZCTh4eFMnDgRDw8PysrKSExMxNDQkLlz5zJv3jxBLoEuWTl/f39GjBhBQUEB+/btE5d+Tk4O0OWrvmjRIvH/zc3NwmSko6OD+Ph4WlpahJxTZWVlj6E70JVY19XV0d7ejra2tsD/qampMWjQIExMTNDT0xPqJbW1tVy9epWMjAyhTqOmpsb9+/dJTk6mqKiI+fPni06wk5MTFy5coLy8nJs3bwrVhObmZqqrq3F0dBS/MygoiLS0NDIyMsQ7IVkQ19TUMHnyZFauXMn8+fP56KOP3nmNkgOktE+hS84oKiqKP//8k3Pnzgm+wsCBAwX5taioiNGjRzN16lSysrLYs2cPrq6uTJgwgZCQEO7fv09KSgqpqanIy8vz5s0bXr58Sd++ffHz88Pc3Fzo9To5OVFfX8+rV6948+YNffr04YcffuDu3bvs2rULDQ0N5syZg7OzM1u2bOnxc1RWVhbEI3V1de7cuUNaWppQL1q5ciVlZWWUlJQQHx9PdnY2ZWVlFBYWCjx/SkoKubm5NDQ0CIOb+vp6vv/+ewoKCjAzM2PmzJnY2Niwc+dObt++jb+/P7q6uty+fVsQbAEhv/k2PLC1tZXCwkJqamp6/D5KnWFXV1e+/fZbMSmQl5fnp59+IioqiuDgYAIDA8XZqqWlxaVLl9DR0WHXrl10dnayefNmrK2tmTt3Lnl5edTW1jJ//nxWrVqFnJwcYWFh5OTkEBwcTFZWloBuubu7M2LECBobG7l165aAun3wwQeigz1gwABsbW0pLS0V2vf//+JfmRS4ubkxfvx4amtr0dPTw8nJCUdHR8LDw8X4c+7cucjLywviyr1792hoaGDevHlMmjRJfN7r168FzujevXv4+vqybNkyTExMuHTpEnv27MHNzY3Zs2ejpqYmgLxSZRAWFiYeTK9evQS5QEtLi+rqap4+fdqj9bW0tJCRkSEOSulzoYtEJGmRKigo0NjYKJJwNTU1SkpKBGhbU1NTJKFhYWE4OTkRGBiIpaUl+fn53LlzRzDw6+rq+PTTT4EuQPjHH3+Mr68vLi4uolPn7OzMlStX2LVrFw4ODnz44Yds2rSJjIwM/vjjjx6t0cLCglu3bqGmpsaMGTNQVVUVHYw//vgDBQUFBg8ejIaGBuHh4UII3sXFhfz8fOzt7dHX16eyspIDBw5w/PhxQkJCsLW1RVFREZlMhqGhodB0nDFjBu7u7ri7u1NeXi6SiVWrVvHjjz/y+vVrdu/eTU1NDYsXL0ZJSUl0KPLy8rp1zt4lrKysmD9/PsnJydy9e5dhw4YxdepUioqKOHXqlCAbAaJ7OWHCBGEoII3ubGxsmDdvHqNHj0ZZWRl1dXXKy8vJzMxEU1MTT09PfHx80NPTw8rKiqCgIB4+fIienh4LFizAyMhIyGgNHz4cOzs7ioqKBBHBwMAARUVFdHV1GT58uDDXeJc4c+YMT58+RVlZmQ8++AA5OTnS0tIoLCzE3t5ekNQaGhpQUlIiMzOTPXv2MGrUKIKDg9m/f78Yh2dmZjJ+/HhevXqFoqIiNTU1qKuro6mpib29PfX19YSFhZGcnIyOjg5KSkro6upiZGREZ2cnGRkZ1NXVYW9vLzrMf/75Jzt37qSoqEgYe/Q0wsPDOXLkCEuXLmXw4MFAV7fSzs6OQYMGYWtrK7CSaWlptLe3i44odHWHPD09mTBhAnfv3iUgIICvv/4afX19Ojs7hZqIsbGxGNv7+/uTkZGBpqYm+fn5HD16FBUVFYYOHYqFhQU1NTUcPnyY8vJyRowYgZ+fn1jbuxy4b4fkQiiFNOWQ9JJ1dHTEiDcmJobY2Fjk5eWFVe2tW7doaGhg1qxZODg40NjYyM6dO/ntt98YPHgwffv2RVFRkcTERIGjleLOnTt0dnby+++/8+rVK0aMGMH7779PYWEhDx8+5Nq1a5iYmBAYGEhNTQ0mJib/yo7axcWFkpISsrKySElJQUtLi9DQUL744gv69+/PvHnzyMnJob29nZCQEHx8fDh58iQVFRU4ODgwb9489PX1SUhIEIoA9+/f58cff+TNmzdCHgy6upWnT5+mvLxcGM1I+ND29nba2trEOSed35IZibGxMQ0NDRQWFvZoffn5+WL6JyUX0AX1CAwM7Aanqq6u5ueffxb4aYkwKhVPEolNIiWfOnUKfX193n//fbKysqipqcHa2pqLFy/y6NEj3N3d+eqrr7CxsaGlpQUTExN0dHSE0ohERmxoaBBTSD8/P0pKSnq0RhMTE5KSkkhNTRVuWoaGhkInuqKiAkVFRUaOHNlN8ae5uVk0CK5evcqNGzcoKipiwoQJaGtro6Ojg5ycHE5OTjQ3N3Pz5k2OHDmCmZmZSIJTUlI4fPiwKLrNzc0FWUk625ycnGhsbOT169cYGxv/Kz7I2xqjz549E0S34uJi1NTUGDNmDK6uruTn5/PTTz8RGxsrGisFBQU4OzujrKzMsWPHMDEx4eOPP8bExISIiAgBKTQ1NWX58uVYWlqSnp5OYmIiffv2pby8nCdPntDU1ISJiQne3t7MmTNHQPlqampQUFCgrKyMvLw88vLyKC0t7dH6rK2tcXd3Z+nSpRgZGVFYWIiWlpYw4snIyOCzzz7DwsKCZcuWkZOTw4gRIxg0aBAODg5MmzZNOCuuXr2auXPncuDAAR48eMBHH30knrmysjLjxo3D09NT5F8xMTGCrFZTU8OjR4+IiIjA29sbb29vvvvuO+Li4tDT08PW1lYUPv8tepy89u7dW1gMymQyPv/8c1HlJSYmCpcYiSzl6OjIlClTSEpK4sSJE/9B3OjXr58YOX/++eeEhISQkpKCiYkJ7u7uxMbGCmb2tm3b6N27t7Dek/zoHz58SP/+/Vm0aFG3jdvW1iYq73cNyaFGT0/vPyofT09PDA0NhVvIxo0bSUhI4Pjx48LZ5Pr16zQ2NqKsrMyhQ4dISUnh66+/Zvz48XzxxRf8+uuvBAUFYWdnJxQF3maZS4eVsrIy33//PfLy8mzfvl1o6+7Zs4e///6b3377jZ07d7JkyZIeJ6/29vb079+f33//ndu3b7N8+XLGjx/P6NGjCQkJYcyYMfz1119CVsXJyYkffviBX375hd9//51169Yxc+ZMrl+/TlxcHP369ROXwrfffsvx48eZPXs2L168wN/fv5sWrfQ8Zs2aJcZXqampnDp1SnhBm5mZCQey4uLiHrNjpdixYwdXr17l9u3beHt7M3fuXMzMzLC1tcXNzY2SkhKePn2Ks7Mz8+fPx8HBgZycHJycnDhx4gRubm48ePCAjRs38vXXX6OiosK5c+eorq7m8OHDwt1o/vz5tLS08MMPP3D58mV++eUX7t+/z7x58wTZR0qI3n//fSF1snTpUt5//32+/fbbHjPV586dy6lTp/j777+xtrampqaGpKQkTE1NmTNnDj4+PmhpafH06dNuyf/Fixe5ceMGUVFRwnq1ra0NdXV1cnNzycvLw9nZGUNDQ9ra2ujfvz9jx47l6dOnVFVV4eXlxbp162hvb2fHjh3cunWLZcuWYWZmxtWrV0lMTERBQUGogBw6dIjY2Fg++OADgaF81xg2bBglJSW8ePGCLVu28PnnnwNdSa2mpibr169HVVWVnJwcPv/8c8zMzNi7dy8ymYzQ0FB+/fVXDA0N+fLLL4WFodSxmDdvHq2trRgaGuLp6Slw0evXrycvL09c+BUVFZSVlTFmzBg2bdrEsWPHWL9+PceOHRMJbXt7OydPnuxxUlBZWYm2tnY3p7vOzk6KioqQl5fvJkPk6upKYGAgOTk5nD17FmVlZTIyMujbt6+4eCXtT8m5Sgop2Q8ICGDEiBHcvn2bEydOcOjQIcrKyrCzsyMnJ4etW7cSGxtLr169BPlMRUXlX3ddAYYPH87Vq1e5c+eOuCckKSOJkzB27FiRdBkaGjJ27FjCwsI4ffo0f/zxB9OnT0ddXZ05c+aI7+ibb77h1q1bfPrpp2zevJnDhw/z999/ExMTQ0xMDPv27eOLL74QsnhVVVX8/vvvmJmZMWfOHHr16kV1dbV472xsbLh586YwkXnX+PnnnwWZtKysjN9//13APP53HD16lEePHtG7d28mTJiAqqoqjx8/5unTpygqKqKpqUlLSwvnzp3DycmJmpoarly5wh9//MHEiRPZuHGj0CB/9OgRGhoaIjkvLS1FXV0dHR0dHBwcOHXqlJDj09bWpr6+nqioKHJycjh9+nQ3Ytd/C3V1dXr16sWzZ8+4d+8eAQEB2Nvbs27dOpYvXy7G7UA3DoaJiQmFhYXExcVx48YNIeNlZWXFsWPHePjwoVCi6ezsRFdXF319fR48eEBrayva2tqCef7PP/+IDp/0O7744gsaGhowMjISsKS35e7+TXz++edC+ko65yRs9sGDBzE3Nyc+Pp7Y2Fhhxa2jo8Nvv/2GTCZj/vz5Ah/a2Ngozl5NTU1GjRrF69evUVVVZffu3QQEBLBlyxZB2n358iXa2tqsX79enJVFRUUYGBggk8nIzc3l2bNnPU5coQvX7ujoSEVFBd9//z1VVVUMGzaMESNGCGiW1DAsLi4Wcmetra1cuXKFL774gvDwcMrLywW0pqysjJycHMLCwnB3dycnJwcvLy+R20gmS7du3aKxsREDAwNUVFRQVFQkNjaW999/nz179jB06FBsbGwE6V5bWxt/f3+hJf7/ih4nrxKgH7q6mxKrrqKiQoDFLSwsUFFREQ9aEu+eMWOG6GKmp6fT0tJCS0sLH3zwAc3NzQwYMIDMzExev34tXkIJE6Srq4uenh6LFy8mIiKCnJwcrKysqKys5MqVK3h7e4sOSEZGBv/88w9tbW307duX5OTkd15fdXW1cBCRoqCgAHl5eUxMTDA1NaW9vR05OTmB2bhw4YIgWeTm5nL37l3q6upQVFTEwcEBR0dHQYDKysqivr4eJycnYmNj2bRpE+7u7mzdupVLly4RGxvLpUuXMDQ05Pfff0cmkzFp0iT8/PwwMzNj7ty51NTUUFRU9K82sRQ+Pj7CyWLgwIHCFWbo0KGYm5uTmppKfn4+VlZWwsN9x44dZGVlkZ+fT2NjI1FRUZSWlmJkZMSFCxeErl1GRobAEH788cfdPN+dnZ1ZvHixsJm9ePEip0+fZtSoUbi5uaGmpoaioiLNzc3k5+eL8UtPoq2tjZqaGry9vUlPT2fbtm2sXLmSgICAbp05dXV1mpqacHNzw8HBgfDwcLZv3059fT1+fn6C0ayqqkp2djZPnjzhypUraGtri7/JzMxMWB3269eP3r17U1RUJEgDJiYmLF68mMjISExMTDA0NGTq1KlERUWRm5uLoaHhv5I8+/jjj0lISBB6nUuWLMHLy4u4uDgKCgowMDDA3d0dFxcX7O3tSUxMxNjYmAcPHohJxfPnz1m+fDm5ubmUlpYycuRI3NzcKCgoEFABY2NjXF1dBbxEYvInJyejqqoqnNTu3LnD48ePkZOTw9vbG1tbW2bNmsXEiRPJysoSMIOeREBAAF5eXmzcuJG4uDiysrJwcnJi4sSJKCsro6qqSktLCydOnCApKUkI90MXa/3atWuiwyPhQM+ePYumpibjxo1DVVVVaN726dMHeXl5wsLCSExMRFNTEx0dHYGNbmtrw9fXFy8vLyZNmkRycjJpaWlUVFTw+vVriouLe+R4I/2Nt27dIigoSEgqNTc3o6CggIGBAWVlZVy+fBkVFRWmT59OYGAgR44c4e+//xaf0draSnh4OAEBAVhaWop3LSUlhefPnyOTyejs7ERDQwNzc3PS09Opra3F1dUVW1tbrl+/LkT7ZTIZLS0tTJo0SUiBSXhl6Xf1NCR2fFJSEmFhYXh5eTF06FA+//zzbmxiU1NTGhoahPW2sbExdXV17N+/Hy0tLWEgERoa2s190dLSkpCQEKysrIQxhUwmo6ioiMbGRvLz8+no6BB6nZJJjiRZdfnyZYKCgtDR0aGtrY0ff/zxvzr7vB1ZWVmcPHmSkSNHoqmpydChQ0lNTeXQoUPU1dUJ3K2Ojg5GRkYsXbqUPn36iOnOq1evOHnyJFVVVQwZMoSFCxfi5eVFfHw8d+7cISsrCw0NDaKjowkNDWXGjBmsWLECDQ0NAc+Brk6yVOxInVFJCknCLEvfV3BwcI/c7l68eIGfnx+9evXi9evXVFVVCd3SN2/ekJWVhaurq9j/r1694tGjR/j5+WFtbU1+fj52dnasXbsWW1tbUlJSRFfWysoKDw8PVFRUBL/j3r17Yu8OGDAANTU1ioqKKCsr4+TJkzg6OqKuro6jo6PACGdmZpKYmCiaXv82TE1NhWW29L3KZDJOnDhBbm4uM2bMwMDAAA0NDe7cuUNJSQmGhoY8fPiQkSNHsnv3biIiIggPDyc9PZ3y8nLU1dW7Nb6am5vR0NAQsqGDBw/Gz8+PL7/8krS0NNHMKysrQ19fH5lMRltbG7GxsRgaGjJ58uRuBOt3CRUVFUJCQrh79y4xMTHo6Ojw5s0bYmJikJeXZ+jQoZiYmGBubo6xsTE6OjqoqalRVVVFWloaaWlptLW1YWVlxeXLlwXBavjw4Xz33XdkZWWxbNkyysvL+eOPP/D09BTuoBLWPj09ncDAQAGtjIuLY8eOHbS1tYnuvbq6+n+oFfy/osfJa15e3n+wFWtra4mKisLU1BR3d3fRrRw2bBgvX77kk08+EdJF0MXQLCkp4ejRo9TW1rJp0yYsLCz48ssviYyMZMqUKUKLTMJzSaGsrExeXh6xsbHY2try7NkzysrKSElJET/z4MED1qxZw9SpU1m7dq2wbHuX+Oeff9DX12fw4MGCIaqnp4eioqI4GC0sLKirq+PSpUucOnWKuro6HBwchLxHQUEBcXFxAmNUUVFBaGgo3t7eLFmyhMDAQEpKSggLCyMjI4OQkBC+/PJLzMzMWLx4MWvXrsXd3Z3q6mqsra0F/tDQ0FAkfpJ+4b8JiSHb3Nws2J7p6enMnTuXadOmceTIEWbNmsXt27e5ceMG/v7+bNq0iYKCAgDOnz/PmzdvaGpqQkdHh4yMDKKjo9m1axfQ1U1ftmwZEydOFFWaJL80ffp0+vbtS2JiIhMmTBASIPv27RPWtAoKCsjLy9PZ2YmSkhKWlpY9ZuNraWmxYsUKjI2NWbhwIYWFhdy8eZPW1lZ+//13nJ2dBSZZsraVhLAB7t+/L1zjNm7cSEdHhxhPjhw5UnTL4uLi+PDDD/H29qa+vh51dXWhCSiFTCb7D7/tlStXMmbMmH81ioWuIuDDDz/ks88+IzExERsbGwYPHkx2djbbtm3j8ePH7N27F2dnZzw9PXnx4oVgZ9vY2JCVlUVJSQlnzpyhqqoKc3NzZs+ejYODA5s3bxZdRA0NDeLj46mqqqJv374MGDBAjJUXL17M6NGjOXPmDI8fPxbi14MGDcLa2lqs7d/6xUPXRbxixQrKy8sxMjJCQUGB6dOnU1VVxaNHj7h16xYPHjzA2NhYKAFkZ2djYmLC9OnTSUlJYe/evRw6dAhAED51dXXp7Ozk7t279OvXj/feew8fHx/ee+89SktL6d27N87Ozuzbt4+Ojg7OnTsn3PUka+Hz58+TnZ3N2LFjee+99zA0NBTwn3eJxMREjh8/3q2z2dHRgaGhoZCM27BhA6qqqshkMioqKv6jYK2oqODu3btiYjBw4EAqKyv54YcfOHr0KDKZTGhR6+jo8Pz5cxobG1m2bBljxoyhqamJo0ePkpaWxsiRI/+DsFRSUkJeXh6urq7/qsjauXMnfn5+7Nu3j8TERHx9fZk4cSLbt28XEC/JklbSgYSuok9OTk64Cba2tpKbm8uPP/7I48ePkZeX76Y+4+7uzl9//UV4eDgVFRXY2dnh7+9PSkoKGzZs4Pnz5yxevJjx48d3k5i7cuUKdXV1zJ07l+Li4h6T0oYNG8aJEydIS0tj69atDBkyhPr6ehYvXtwNwz506FB+++23bgLtdXV1YqIBXZM9SR6tsrKSN2/eMG7cOFavXs25c+dYsmQJT58+ZcOGDcLVELogEf/7uY0ePVqw8svLy7GxscHQ0BBnZ2f69+/fIxLs8ePH8fHxETa/Uuc8MjKS77//ntjYWNatW8eHH34IdEEENm3axNq1a9mxYwcLFy6kubkZZWVlIiIiiIiIYNCgQSxdupTy8nKxfiMjIwH3evLkCQ4ODkKrvbKykuPHj7Nu3To8PDwYO3YsZ8+exdrami+//JKcnBzmzp1L7969uxV3PY0VK1YwZ86cboWodE88ePCApqYmZs+ejZycHCdOnMDCwgJDQ0M+//xzwsLCOHfuHCoqKuzbt4+ysjJUVVVpbW0lKipKuGclJyezfft2srOzGTp0KB988AFmZmYcPXqUlJQUQYqWBPwVFRV58OABqamp+Pj4EBgYiLu7u5AsfZeoqKgQesnOzs6oq6tz+/ZtvvnmG4qKiujbty9///03jo6O9O/fX8iPVVZW0traypAhQxg0aBD19fXs2LGDU6dOcfLkSebNm8elS5dISkrCzMyMgoICHj58iI6ODtXV1SgoKBAWFkZJSYlo6IwfP56rV6+SmZmJgYEBxcXFREZG4uLigq6uLk+ePOHnn3/uVpz9X9Hj5FWqSB49esSBAwewtLRk7NixYhQriRZLERISQkVFhXgpoSuxcHZ2RiaTcfnyZerq6lBTU+P8+fN4eXkxa9YszMzMuumRSYx6qVOWnZ0tJLvc3NzIzc1l+fLl9OnTh7a2NnGJ9jQ8PT3JyMhg69atmJmZ8dVXX3XrwkLXiCY+Ph5lZWU+//xzioqKePbsGadPn0ZJSQllZWWCgoLw9PSkvb0dY2Nj3NzcKCoqwsTERLhLtbe3U1RUJHyKBw4cyPbt2zl69CgvXrzAyMiI0aNHi26EvLw8ysrKqKmp/SuJLCmOHDnCkydPkJOT48KFC/Tr148zZ84QHh5OYmIiNTU12NraChZ0fHw8VlZW/Prrr2RnZ/P7778TGRnJnDlzWL58OeXl5Vy4cEFI9iQnJ4tOra6uLkuWLMHQ0JCIiAh69eqFg4MDu3fv5uHDh6xYsYL169cLPN7/VVH+7+//v0VzczPq6uqEhoZy+PBhxowZQ69evfjqq68oKSkRxURFRQUaGhosXboUS0tL+vXrJ7CqTU1NPHv2jJKSEu7du4eHhwdLly5lxIgRFBYWsnPnTjF5mD17Ng8fPmTNmjXMnDlT4DPLysqoq6sTEwGJ3DhgwACMjY2FbFF7e7vQjH3XkEwcjIyMSE1NJSsrC21tbfr168eMGTMoKioiPz+f2tpabt++TWFhocAjDRs2DDk5OVJTUykoKKCyspIBAwYQGBhIaGioGBn/8MMPODk5cezYMZ4+fYqXlxdDhgxh+vTp/PPPP7x69Ypvv/2W5ORkhg4dKvQNOzs7yc7OJjs7m8GDBzNz5kxMTEx6PJI9duwYMpmMXr16CQm7Fy9eCO1ONzc3bGxsUFVVpaysjN27d/P3338zatQoQkJChCRbdnY2+/fvJy4uDugqtg0MDGhubkZOTq5bcSx1x2tra5GXlxcXmQSxaG1tJTk5WbgeSZ2afyM/VFFRwdixY8U4/NChQ9TU1LB06VIiIiL49ddfcXJywtXVlfPnzwunHslysqamRpBe4+PjaWxsxNraGjk5OdGdlOwWpQKkf//+zJ8/n4aGBtauXYuBgQHbtm0jOzub+Ph4oqKiiImJYdq0aYSEhPDo0SN27tzJqFGjeoTJfnuNYWFh9OrVi+Dg4G5OeWlpaWRlZREUFISFhQWhoaF0dHQwcuRIli5diomJCWfPniU1NZXp06fj6+vLpEmTGDBgAKqqqkKqZ8mSJezZswcjIyPS09MJDQ1ly5YtKCoqCgmmsrIyYZAAXVyLhoYGxo4dS2ZmJrNnz6aqqop169b1SGopJCREdIqLioooKCggPDxcJHuampo8efKEyspKbty4gZWVFSkpKbS3t5OYmCiK8lWrVjFx4kRu3LhBUlIS8fHxjBgxgkWLFtG3b1/hMX/hwgUSExMZOnQovXv3pl+/fmISunv3blJSUpg5c2Y30p802g4PD2fXrl0C5/uuMWLECJHwSwTelpYWUlJS0NXVZcqUKTg7O5Obm0tsbCxlZWWsWLFCqBBIP79582bS09Px9vYWd6Genh63bt3ip59+YsGCBWKyYWNjg7e3NxUVFRw9ehR5eXm0tbWZOXMm7733Hq6ursybN48//vhDkMC+//57mpub30ng/v+K9vZ2MjIyqK2tFZyZu3fvcv/+fQYMGICzszNWVlZkZGSgoKDApk2bcHNzo7CwEDU1NdLT0/nwww8pLS2lvLwc6ILGQNd7mJ+fT0tLCwUFBSJHunv3LqmpqTg4OODn50dVVRX9+vXD1dWV0tJSzpw5Q21tLb1798bX15fo6Gjy8vKEHNq7hrW1tWg2SQWfh4eHaAxIKgoymYyRI0fi7e1NTU0NYWFh2NnZ4eLiwqRJk1BXV+f69etcuXKFr7/+muXLl7N+/Xphdz506FChOKGgoMDLly/x9fVl7ty5ODo60tnZiaurK6dPn6azsxMLCwvq6+vR0NDAw8MDmUzG5MmT0dTU/K9FSI+TV+iyk/z111+5ePEienp6mJiY4OPjI76UkydPcvPmTUJCQvD09GTHjh00NTWRk5ODkpKS2LQ2NjY0NTURGhoqmJ6S3aaZmRlVVVUcO3aMzs5OevfuLawDvb29hfaZm5sbdnZ2/Pbbb2zbto2MjAzWrVvH0qVLaW1t7XElPWLECNLS0oTY9a1btxg5ciTV1dWiGxgXFycgEtKIQlVVlYcPH1JWVoa3tzdTpkwRf/+yZcsYNGgQ169f56+//qJPnz44OTmJy/fGjRt888037Nu3j88//xyZTMa3335LcHAwM2fOpFevXhgYGJCdnS26KWPGjBGjoZ6GnJycSLYkfU9jY2MWLFjA0aNH2bFjB69evcLZ2ZnVq1ejrKzMtm3bADhw4AAGBgZUV1eLF02yqS0qKkJDQ4PW1lb27dsHdOHt+vXrh6mpKbdv3yYsLEwkc2PGjGH69OkicZWMGzo6OpCTk6Ojo4O6uroed+6SkpJwcnLiwIEDJCcnExUVRXt7O7a2trS0tLBz507KysrEmlxcXJg/fz79+vWjs7OT4cOHo62tzaNHjzh37hxv3rzBz8+PwMBAKioq+PjjjwkNDRWSY4DAi/7zzz/Y2tpiZWUlyCQdHR0YGxuTmpqKoqIinp6eFBUVcfnyZWxtbXF0dOyxOHpZWRlaWlpMmjSJlpYWvv32W3Jzc9mwYQN+fn7cuHGD1NRUMSZWUVHB29ubkSNHCvvF1NRUoqOjBZmuvb2du3fvoqOjw7Jly1i3bh0JCQlcuHCBsrIyIQxuZWXFe++9x927d3n16hV9+vRh0qRJYmSdnJzM4cOHUVFR4ZNPPsHGxoZZs2b1OHmNi4ujqamJsLAwxo8fz6hRo2htbeXPP/9k+PDhgvh59+5doqOjqa6uJjIykr59+4qxtxS6urp8/PHHFBUVYW1tjY2NDWZmZmhpaQn3vPr6erKzs6murubixYtER0dz6tSpbmNIRUXFbnjBtrY2YXPaU53XtLQ05s6dK+Atz549w9LSkpqaGm7evMnz58/54YcfGDRoEAsWLCA5ORlPT098fX1RUVFBJpNRU1NDXl4eSUlJ5Obmis+2sLDAz89PuCxVVlYKUfKhQ4fy2WefsXfvXo4cOcKCBQtISEjgiy++4MmTJ0JU38HBgfb2dvLz83s0Zn47xo0bR21tLUOHDv0Pi+eioiJSU1OxtrZGXl6ep0+foqOjw5gxY1BQUCAoKIjOzk72798vJKckuR/omiCdPXuWK1eu4OLiwvTp07ly5QqPHz8WI8qkpCQGDx6Mv79/t+lHW1sbTk5OWFhY8M8///Dtt9/i7+/Pl19+KbDV7xKGhoYCApWQkMAff/xBbW0tGzZsEGStq1evcu/ePeLj4zl16hQvXrzo9hmLFy/mxx9/JDMzk1GjRgm74QsXLghyUr9+/fjpp5/YuXMnV69epaWlRXT9oGtiePjwYTQ0NBg+fLgYs9fW1uLg4ICBgQFXrlzh8OHDQJcd6rvGxIkTRXEtnVPp6eno6+uzefNmAYE4evQoN2/eZOTIkSxcuBDowhq3tbVx7Ngxdu3ahZ6eHurq6oSHh2NkZMSYMWO4efMmJ0+eJC8vj88++4yqqip69+7NgAEDOH78OMePHwdgwYIFHDp0CB0dHTo6OtDW1sbW1hYjIyOUlJRYvnw5tbW1/3rSI6lvREVFcezYMZycnDh79iwXL15kyJAhBAUF0dHRIZj4U6dOFWfD9OnT+fHHHzl06BDy8vIEBQUBXXCG9vZ2rK2tsbW1pbW1FXNzcxoaGkhKSqK6upqbN28iLy9PRUUFRkZGorCQrOcLCwuZM2cO6urqREREiAloT8LY2FhMC2tqarh79y7Nzc2sWbNG5F4hISFERkYyevRooQGvqalJdna2IOoCzJ49m8ePHxMTE8OOHTt48uSJ6Pw7OjqKYqu6ulpMbFpbW4Uzo6urK2ZmZlRWVhIREYGCggKjR49GRUWF7OxsASH9/zx5vXLlCp9//jlKSkrMnTuXhoYG4dQjifHevXtXOG/06tWLjo4OTp8+TWJiIsOHDxdWiBI7d8GCBUydOpV//vmH27dvs379eqZNm4a3tzc//fQTp0+fZsWKFcybN08cXqqqqvj5+YnR5Lhx47C1tRU2kVFRUaLb1NOwsbHhp59+4uXLl+zZs4cVK1ZgamqKmZkZdnZ2wnnp1atXxMTE0Lt3byZOnIiOjg6nTp0SjkOSBmRoaCjW1tYoKCgQHx/P/PnzRSX0ti5kbGwsERERyMnJiQpT6nRDV3J35coVIdAM9MgpRQrJJUXCH7e0tGBvb8/GjRsZOnQoMplMVNLPnj0TyU5kZCTfffcdJiYmDB06lObmZrKyskTy6uPjw+zZs7l7966QjZozZ47wpo+LiyMyMlIkxS0tLXz++ee4ubnx448/iqpe0pasq6sT44WexKtXr4Qv+JYtWzA0NCQyMlLIqi1ZsgRNTU3U1NT46quvqKioQE5OjufPn3PkyBEsLCzo378/Ojo6TJ48GW9vb1RUVHj69Cnnz5/nzp076Orq0r9/f6F4oa+vz3fffcfOnTsJCgrixIkTuLi48NtvvxEbG8vKlSsxNjYW0lglJSUUFhb2GM8rxePHj3FxccHExISsrCxsbW2xsbERB1RtbS1//fUXampqfPPNN7i4uFBTUyM6Tw0NDRw5coQbN26watUqAbjX19fn559/Zvbs2QBcvnxZJEXy8vLcu3eP2tpaIiIisLKy4sGDB1hZWbF3715Gjx7NkSNHsLe3RyaTdRtx95Q4CV17p6CggJ9//pmDBw8SEBBAYGCg0PhsaGjg+fPnwsrRxMSEXr16dUs28/LyOHbsGC4uLvz999/s27dP4LbNzMzw9fUV7G0dHR2BJweEl7kU2dnZWFtb89FHH6GiosLWrVuJiYnhyJEj3ayN3zVSUlKIjo6msLAQdXV1IX9WXl4uko62tjZyc3PR1dUVmLCmpiZkMhmqqqrU1NSQkpJCbW0tmpqaoqOjp6dHQECAkPlSVlbm22+/xcbGhm3bttHY2MilS5fEOeLu7s7u3bs5d+4cmzZt4uHDh7x+/ZrJkydjbGyMnJxcj7UloYuw1dTU1C3hl8xnhg8fjqGhIdu2bSMxMZE5c+bwySefIJPJRMdLVVWVOXPm8OGHH3azuIQucqubm5swTmlra0NXV5dPPvkEV1dX1q1bx8mTJ1mzZg0bN24E/gfDa2dnJ2AJTk5OHDx4EDs7u26KDO8SlZWVYrpmZWXFyJEjaWxs7LYHNTU1hVnPH3/8IZJXExMTTExMGDJkCNDlpiRJH77//vvdLECVlJRwc3Pj448/ZuTIkdjb24tk/NixYxw+fJh+/fqxZs0azM3N2blzJ5cvX2bmzJkC7jJ9+nRsbW1RU1PrkRtcQ0MDZWVlIkl9/PgxeXl5BAQEiH8rLi5GU1OT4ODgbnfW9evXuX37NvX19cycOZO8vDzOnTtHY2Mj5ubm5OfnU1ZWhra2Njk5Ofzwww8kJSWhoaFB//79hfZ4WVkZ6urqaGtrU1lZyTfffIOmpiYXL17Ex8eH+vp6tm7dio+PDzNmzOjRM3w7pKlqWVkZ7u7uAucdFRXFkydP8PPz48MPP6SpqYnTp0+zePFi7OzsMDExYdq0afTp00dMRMzNzVFTU6O5uRl5eXn09fXR0tKipaVFuN3V19cTHx/PTz/9RFJSEpWVlaSnp7N27Vrmzp3LokWLyMrKQl9fH3l5ecaNG9dja1joSqIlyIpkLy9JrUlTre+++44XL16Qn5/Po0ePcHR0xNLSEgcHB7S0tIR5kJOTE/v37+e9997jzZs3lJSUiOT19u3bPH36VEyQ/P39CQsL46OPPqKhoYGtW7fSu3dvEhISWLRoEREREfTv35+LFy/S0tLCjBkziIyMZOzYsd24Mv9X9Pg0evbsmQD1L1y4kOzsbGJjY6muru5GBlBTU8PIyIjGxkba29uRyWRoamqKEQd04Vcl5w43NzfCw8PR0dERGDBPT088PT1pbm5mxowZqKurs2zZMsG8kxbX2NiIvr6+SJ4rKyu5c+cOTU1NYkT/rpGeni5Ym+3t7dTV1Ql5CmdnZ5ydnWlvb+fevXvCDWPTpk14eHgwY8YMxo0bR05ODgoKClhZWeHm5kZGRga3b98mNzeXxsZGwsPDu2m6jRgxAicnJ7Kysli0aBEeHh6iE9jR0UFbW5twhvHx8aGlpQUVFRUxEu1p5ObmMmTIEOTk5CgrKyM1NRUVFRV8fHxEciM9n/Xr19PZ2SkwLkVFRSgoKODq6srIkSPFQaWhoSHc0jQ1NVmwYAEBAQFMmTKFjo4OLl26RE5ODllZWfTr148RI0bQ1NTErl27uHz5MgEBAQQFBVFfX4+ampr4Lzo6mrNnzwrJlXcJRUVFnj59ipWVlfj+GhoaWLVqFY6OjuKCcnV1xdnZGXt7e+rq6pCXl8fGxkYwVlVVVVFRUaGsrIyEhAS2b98uTAi+//57pk+fTnt7O3l5efTq1QtPT0+GDBlCVFSUgMJIEkbS6CUqKoqff/6ZpqYmAgIChD6oNGZ61/D396e9vZ2tW7eSkpLCt99+i6+vL7W1tdy4cYPo6GhMTExwcXHBy8tLdL1aW1spLS0lPz+frKws4uPjefz4MbNmzUJdXZ0xY8bg4+NDQ0MD+/btEw4wgHCAksZYH3zwgegwmJiYUFJSQnh4uEjwioqKkMlkdHR0/Kt9KsnFvXnzhgcPHvDjjz/y4YcfdtsLMTExNDY20qdPH/r27YuRkVG3Ef6VK1e4f/8+fn5+9O/fn1u3bgmSBXRJRh0/fpz8/HyMjY2prKwkPj4eTU1NgoKCOH36NP3792fEiBFC5URRUVHg+65cuUJNTY3ADfck3NzcBLlD0n6sra3lxYsXAj/bp08fFBQUmDdvntCElLoW9+7dE/qmEvNccsAxNjams7OTpKQkGhsb8fHxYe7cuURERLBhwwamT5/OxIkTqampYefOnfTv35+BAwfy9ddf09TUxJMnT3B2dkZNTU2cq/+GsCVhB1tbWwVRpbGxkaKiIqysrPDy8sLAwIDc3FyKi4tpa2ujtbVVEFxHjBghCino6tZGR0djamoqHPzk5eUpLCwU49vKykpOnjxJSkqK6PI0NDSIDrm2trbACmdkZDB8+HBB6OtpSKROiTBlaGhIY2MjGhoaQBdsIiUlBQcHB7y9vVmzZo3AEEsTkuLiYlpaWgT2UyI/RUZGoq6ujpGREQYGBrS0tAiFDH19fQoKCoiIiCA2NpZ+/foJLWToGoFraWlhb29PcXExhYWFODs7C5JcT5JXJSUlZDIZDx48IDExkba2NoKCgrCxsREOb0ZGRnh5edHS0kJbW5sgWXt5eZGQkICJiQljx47l5s2bvHr1ShQa5eXlmJqa0q9fP+rq6khNTaWuro7CwkKysrJwdHRkyJAhaGpqMnbsWOTk5Hj69ClJSUls2rQJHx8fSkpK2Lx5M62trTQ2NvZYFxy6iJwDBgzA1NQUZ2dn5OTkUFJSYs6cOeJc6+zsJCAggLlz5xIbGysss9euXSu04Pv27UtDQwNv3rzBycnpPxw+m5ubqamp6UZWlKAkWVlZZGVlERcXx6lTp8Q0q7GxkcLCQiwtLYVyj0S6fdfIyckRd7uioiI2NjbU1NRQXV0timdJuurly5dCf1o6S6XvtbW1FUdHR3r37k1OTg4RERHdDIrevHnD/fv3sbGxobi4mBcvXnDx4kUhKSeTyYRFsATXklSG1NXVcXd3JzIykkePHnWDmv5f0ePkdeDAgSxbtky8bPb29gQHB1NZWUloaCiZmZniQba0tNDZ2Ymqqirz5s2jpKREvNTQhcNobm7mm2++4dixY9TV1TF58mS++eabboBpOTk5ISKckZEhANRSBa+qqirkZYyMjNDQ0GDQoEEoKSn1mNTU0dFBZWUlq1ev5vnz5yxatIiRI0dy9+5dAgMDRbXw559/kpubi5+fn6g+oQuz6eLiIip8FxcXrK2tqaysFMLbMplMdJ0DAwPZsGEDzs7OfP3114SGhtK7d2969+6NTCajuroamUwmWvaffvop7e3twvHG0tKymzj+u8T+/fvp27cvEyZMQENDg4qKCpFgSdCP1tZWjIyMmDhxIidOnGD58uUYGhoyYcIEUlJSaGpqYsqUKQKPKnUAr127xoIFC/jpp5+EN7SNjQ39+/fn8OHDODo6MnjwYEEau3PnDr///jsHDhzg4sWLTJkyRSTEkpVcT8dAw4YNo7y8nF27dhEWFsbevXuZMmUKvr6+yMvLk5KSwvfff8+TJ08IDg5mwIABREZGYm1tzTfffNNNwDk+Pp6wsDASEhJElzwwMFDgFCWcj7Svp0+fTnBwsBhl7dixA3l5edTV1QWE4ezZs7i5ufHRRx+J7ppk6fquIdkQxsXF8fr1a4Gtys3NFVJSGzZsQEdHhwcPHhAfHy/IKsrKynh5ebFkyRLa2tpwdnZGRUUFFRUVVFVVef36NadOneLXX3+loqICZWVl4ehVUVHB5MmT2bt3b7fKePXq1cJZLz09nZCQEGG3KBlAnDlzpkdrhK498Omnn+Lo6Mj27dtJSUnp9jmqqqqYmZlhZGQkCmkpMU1ISEBLS4tdu3bh4+NDU1MTb968wdjYGDMzMzIzM/noo49IS0tDV1eXwsJC0XXduHEjc+bM4aOPPuKPP/7g0qVL3bSBpQQ2MDBQELwUFBQE4e9dYt26dVy4cIH4+HiysrL47rvvuH79OgYGBuL9VFJSorm5maqqKkxNTQkICMDQ0JDU1FSuXLkiPktDQ0Ng5G1tbXn9+jXXr1/n2bNnAKJb09LSgpGRETU1NcTFxYnLJTY2Fm1tbTw9Pfnkk08YOXKkYHJLIRF1ehqtra20traKd6Suro64uDiKioro168f+/fvZ+DAgezfv59NmzaxZcsW5s+fj5+fn5DXkkJRUVFIfJ08eRIHBwfmz58v8LPR0dECnrJ9+3Y++eQTzp07x5QpUxg+fDgfffQRcnJyREZG8ueffwpZIwmn3tPQ1dVFRUUFAwMDSkpKSExMpLq6GgsLC8GKlySTAgMDsba25uDBg+L93bx5MxkZGUKSELpgTwcOHGDYsGHY29vj7u6OgYEB9fX14kzz9PSkoKCA6upqNm/ezKJFi4D/0T795JNPWL16NSYmJoSHh3P58mXGjh1LYGBgN9OOdwmZTIaZmRmbNm0iNDSU7777TmAub9y4wfXr1wkICMDIyEjcydLou1evXmzcuBF5eXlUVFQYOXIkdXV1PHz4kIaGBtzd3QkKCsLAwIDY2FhUVVXx9PSkrq6O6OhoUlNT0dDQ4L333hMYWmkiK+1pqYC+f/8+LS0tHDx4sMfP8dixY4JPY2lpKRoY06ZNo6CgQEgQTp48meLiYvLz8/Hx8WHfvn2kpqZy8+ZN3N3dSU1NJSMjQygoAMJkBBAC/ZMnTxYJrLa2Nu+99x4DBw7k6NGjgvCkqKhIXl4eDx8+pE+fPuK8jYmJ6db8epeQk5MTkyEtLS3Wr1+PlpYWGhoaFBQUkJqaiomJCRYWFvTp0wcvL69uKiOhoaE0NDQwYsQI8R4vW7aMhQsXdsNP+/v706tXL3x9fYmKimL9+vU4ODgQFRWFpaUlSUlJ3LhxAzU1Nc6dO4e2tjYKCgrddObfe+89srKyiIyM/P+7ph4nr2PHjgW6OhZXr14VY3xdXV2cnJzIzs7mr7/+QlFRES8vL3Jzczl9+jQjR44UUj6RkZHIy8sL9nZTU5MwBSgpKeHNmzdC7H/ChAk0NzfT3NwsfLAlBnpHRwc1NTWoqKhgYmJCS0uLwF3+W7kM6YWoqakhKytL6A5qaGgINlxAQABLly4lJSUFAwMDgcvMy8vj5MmTmJiY8N577xEVFcX169cZMmQIq1evxtPTkzNnzpCUlISFhQX29vb4+vri6OiIiYkJM2fOFL7GUhteW1ubtrY2zp8/T3NzsxAyhy48aWdnJ9evX+/RGiUrXxUVFYFjlKSBAOGfnpeXJ7TcBg0aRHFxMe3t7cyfPx9bW1tu3LhBaWkpRUVF5ObmoqamRp8+fdDV1eXhw4fU19cLC9v29nZ69+5NWVkZ8fHxmJqaMmnSJBQVFVm+fLlgokpYTkB0u7/88sseYe4sLCz47LPPaGtrIzw8XFSP0kvX3NzMiRMngC4WsI+PjxDUd3Nzo6WlhaysLJSUlBg6dCjDhw8XZJ/x48eza9cuUS3X1taKsYv0O6Tf097e3m1ceunSJS5cuMCQIUNYs2aNGOfJy8t3K+reJb755hsaGxvx8/MjICBACGs7OTkJHLOk9WlhYUFZWRk1NTXdLDV79+7NmDFjuiWh6enp/Pbbb1y/fl0QH5qbmxk6dCimpqYYGBiwdu1a0WV8G8cudXezsrIIDQ3F1NRUdILe1ix917h//74gnvj5+TFjxgyeP3/O7Nmz8fDwEFqnjY2Nwh61tbWVmpoaOjo6hE2thNNTUVER7PX9+/fz+vVrce5UVlbi5OREbW0tCgoKODg4YG5uzhdffMH9+/fFeqUuiImJieisS9OC/91l+W8xZMgQlJWVcXR0JCsri8bGRnR1dQkMDGTMmDECB3rgwAEyMzOZOXOmcGUyNzdn5syZwkSioqICZ2dnFixYQEdHB7/99htPnz4VSVJ4eDg3btygX79+/P777xQUFBATE0NOTg56enq8fv2aDz/8kJCQEDZs2ICJiQnnzp0jKSlJYPv+DQSrsrJSNDCkUFFRQUtLi5KSElEITJ8+nZcvXwpzDOjCoktYyNGjR+Pn54e+vr6QRTp16hSbN2/G1tYWPT095OXl0dPTEx0qFxcXLly4wIYNGygsLMTJyUkUwkZGRgwZMoSOjg50dHR49OgRRkZG3cjG7xIS/Eiats2ePZvz58+zdOlSJk6cKDzrL1y4gEwmExA0gF27dhETE4OxsTEpKSm0trYKE4r4+HjmzJlD3759xfsaHx8vcIAymQx7e3tSU1O7TW0kwuvbpiDOzs6EhISIvdBTsm9paSmGhob4+fkhLy/fDb6hrKxMSUkJv/32G9nZ2XzwwQcCL3ny5Eni4uIYM2YMAQEBNDc3Y29vz6JFi3jw4AEvXrxg/PjxTJ06Feg6S5KSkqiqqkJVVZXKykqqqqooKCjAysqKxsZGjh07xsCBA0WiuGzZMqEVe/HiRWQyGZ6enj02JwoICEBHRwdPT08hryfFxIkTRTNJarJIUJD169eTm5vLqVOnSEtLIy4ujoULFwpoZFRUFPfv38fZ2VmYFFVWVoqEuLGxkTt37tDc3Mz777+Pu7s706ZNE0WAiYkJdnZ2okH28OFDwsPDRYH+rtHa2ipgMq2treJOLCsr4969e0RERNDe3o6lpaWQyzI1NUVLS4u6ujpUVVVRUFAgOzub9vZ2zMzM/k9pwMGDB4v7Pjo6Gl9f324QABMTE77++muys7NZsGABs2fPpri4mIMHD5KRkcGgQYMIDg7G19f3//vkVYr09HQ6OzsFM7O1tRU/Pz9MTU0JDAzk3LlzPH36lMjISL744gth41daWsr27dt58+YNqqqqODo60tTUJHB1r1+/Zs2aNTx+/BgrKyuGDh2Ku7s7JiYmGBgYiCy/oqICTU1N8WJ3dHTQ2dkpxkaFhYVoa2v/aymi6dOn4+7ujoODAy0tLdjY2IiDQUNDg5UrVwJdtqnPnz/H398fmUzGkSNH0NLSYuTIkbx+/ZrDhw+LC8nIyIjm5mYhc2VmZkZwcLDYSEOHDhWXdVNTE/X19ULnLTIyUogwjx49WnR235ZeedcICQkRnubQVS3V1NQI3Jy2tjbt7e38+OOPvHr1is8//5zr16/z1VdfCUycsbEx/fr1Ex3vjo4OBgwYwGeffUZOTg7r168Xh8CNGzdwcnLio48+Iicnh8jISKEEIVWlixYtora2ltjYWPz9/VFQUODo0aM4Ozvz8ccf90japampic7Ozm7Ei5qaGpEkOjg4MGDAABoaGggKCiIvL09IKd27dw9tbW2xHwMDA1m4cCH//PMPaWlprFmzRhQ48fHx1NTUoKamRq9evejs7KSpqQklJSUUFBRoa2sTTi3QRdCROomSM5SUULq5ufXoGX799dc4ODhw8eJFXFxcmDdvHqGhoZw+fVp0IiRvewnXCP9jhauiooKysrLQ+01LS8Pc3Jy0tDSuXr1KXl4eJiYmNDU10draKtxhpO5jXV2dgMYA1NfXo6ioKCYEV69eFZ0MFxcX6uvre7Q+6LIBlYighoaGrFixAk9PT6ZNm8a5c+cYM2YM0JUsZ2dnExAQwIwZMwgMDEReXl7oFEoC6DU1NZiamnL37l327NmDmpoa6urq1NfXC0F0d3d3zM3NRbLVv3//bsWJqqpqN2iNhE/Nz8//D0LSf4uKigoCAgK6YQShC5cpLy9PY2MjR44c4dy5c0BXg8Dc3Bxvb2+MjY1ZtmwZy5Yt4/nz55w8eZLm5mZRpLx+/ZqmpiZsbW1pamqiqKiIyspK9PX1GT9+PI8ePSIxMREHBwd8fHyIiIhg+/btPH/+nF69ejFw4EB++OEHCgsLWbBgAcC/eoZvX3AShEdfX59BgwaRlJREaGio0Jz95JNPhHe6jo4OeXl57Ny5k5aWFqGDW1pairOzM4mJiezfv1/IC6qqqpKRkSEE4KdNm8aNGzdYunQpTU1NeHl50bdvX+rq6lBSUmLgwIEMHDiQ2tpa3rx5Q1FRkVDo6EnIy8uLaY6klKCtrU1UVBTGxsaMHj2a8vJyUlNTsbKyIi0tDTMzM/766y/++usvoKsQuXv3LpqamgQGBgo8+9vd7zdv3vDmzRtGjRolZPKampo4dOgQFy5coLCwkGXLlgm3qebmZjQ1NZGTk0NTU5MBAwaIIm769OmiGH+X+Ouvv1i4cCGLFy9m8eLFQuIMuu6O169fExoaSnZ2drfu/I0bNzhz5gxv3ryhtLQUCwsL/P39UVZWFn+fVMADREdH8+rVK6HQIk2TJJmn6upqrl+/Tn5+Pl988QXbt28nOjqa+/fvo6CgQEhICCNGjBAW3D2Jr7/++j/+raWlBXl5eaytrTE1NWXu3LlcuHAB6Br1q6mpsXTpUoHbvnTpEoAgjcnJyZGTk0NZWZnQTtXT08PBwYHQ0FBKS0uxtrYmJSWFpKQkfH19RZGgoaFBQ0MDampq4vxOTU3l0aNHKCgo4OHhQVRU1Duvr6mpidLSUoyNjUXxUl1dzfPnz7lx4wYxMTFYWlpSVVVFeHg4dnZ2hISEoKKiIuyIU1JSiI+PF+og0FXMS1KTioqKyMvLU1RUxLZt21BVVWXLli2oqamJteTm5pKWlkZsbCwxMTE8ePAADQ0Nnj59Slpamij83nZh/X9Fj5PX2tpasrOzGTlyJOPHjycjI4MdO3agoaHB8uXLsbKyYsKECRw/fpzdu3fT3t4uiCUAwcHBeHh48ObNG7y8vPjll18ICwtj3759KCgoYGFhIQg6ysrKooP7yy+/oKqqSm5uLmvXriU/P599+/aJl3vv3r1UVFSwdu1aqqur+fDDD7Gzs+PIkSM9Wt/Dhw+Jjo7G2tpaJGDSyMvQ0JD6+nquXbuGnp4ew4YNw8fHh8TERIqLi7GwsGD+/PmUl5fT0tLCqFGjxOG9e/duDh8+TF1dHQYGBsTExNDS0tItKXtbEDw8PJz9+/czfPhwPvzwQ0aOHElubi5hYWHExsaSlZXF2LFjRSe8J/HFF1/Q0tLC7NmzBej/8ePH7Nixg0GDBrF582aCgoKYO3eusOaFLn3T9PR0EhISuH79upA7mTBhAo8ePSI1NVXoiSopKSEnJyfwsZaWlqioqDBgwAD8/f0FFllK5sPDw4UUl6KiIqWlpZw7d+7/dKr5b7Fp0ybi4+MF47etrY3Hjx9jYmJCnz59UFJS4ssvvxTVpbRHZDIZFy5cwMXFhW+++YbDhw9z6NAhEhMTefbsGcbGxmIfV1ZWEhAQQHZ2Nt9++y1JSUkMHTqU6dOn4+npKQT0JSxtZ2cny5YtY/jw4aioqFBQUICurq4oxnratVu1ahUGBgZ4eHgIN6aCggKKiopElRsdHU1dXR1DhgwRv2f79u28ePGCpUuXMnnyZPFuXbp0iUWLFmFnZycuOUVFRUJCQmhsbCQnJ4crV66goKBAdHQ0jx49YsaMGeKQUVJSEuLSsbGxgtA4c+ZMQkJCul1S7xp3795l3LhxbNq0SRzgJiYmbNy4ESMjI2xsbHj8+DFPnjyhqqpKdDekYuHAgQNijC+xbZubm3F1daW5uRkbGxtxYUiXYHt7uzAESE1N5fTp0zQ1NTFr1qxurlVSmJiYoK2tjZqaGmVlZT1a38GDBwWR6O2QVCn09PSYMmUKdnZ2NDQ08OLFC9avX8/SpUtZt26d+HlNTU2ampq4dOkSkZGR9O/fn6CgIDQ0NIiJiUFXV1foukJX4+H69etUVlYyffp0hg0bxuDBg4mJiRHM79zcXDo7Oxk9ejTW1tbk5eUJHed/G9XV1dTW1oqCp6qqitWrV1NXV8fOnTt5//33efr0KR999BGrVq1i7NixTJo0CV1dXWxsbIiLi2PDhg2MGjUKb29vvvrqK44ePSpMbu7du0dGRobAjrq5ubF+/XqhUezi4kJFRQUtLS3dsHyS8oCmpiYGBgaEhYX1eG3Nzc3s37+fzZs34+npyZEjR5gyZQrFxcXExsZibGzMkCFDqKur49dff6WyspKNGzeio6NDXFwcUVFR9O3blyVLlqCuri5kEaELCvTy5Us0NDTYuXOnmCqeP3+eJ0+eCPxgdHQ0FRUVqKmpMXbsWKZPn46Ojg4PHz4kPT2d8ePH4+7u3mOYmYaGhihKpZCUYczMzFiwYAHz58/nzZs3hIaGkpGRwahRo9i4cSN9+/altLSUp0+fCuy7kZGRgHBI58LChQu5fv06AwYMYOjQoRgYGPDkyRNhVy7Z3+7bt4/169czZswYxo0bx/jx4zl+/DgpKSmsWrWqGz7634bUaX57zW1tbUJ3XVJE2L17N5GRkSxcuJDg4GCcnJyE8P+MGTOwsLDA3d2d+fPn4+LiIsb2KSkp3Llzh/z8fAICAvD09ERNTY2tW7eiqanJhAkT8Pb2JiMjg/b2dgwNDdHW1qa5uRkrKysUFRV7LB8pJyfHs2fPGDx4sOAUaWpqoq+vLxpgkumDrq4upqameHp6Al3n0a5du8jNzeXLL7/Ex8dHEFulybfUJdbS0hLNIHt7e7Zs2SK0/DU1NdHV1RVTK1dXV/GdLF68GH19fUpKSigtLeXhw4f/dU09Tl5zc3PJzMzEyMgIU1NT2traqK+vJz09nV27dhEQEMCSJUvw9PQkNDSUnJwcAd6NiIigX79+fP311+Tl5WFnZ0dVVRVlZWUoKSmhra0tuqU1NTXo6Ojw9OlTZs2aJcZlERERJCYm0tjYSGlpKa6urjx9+pRbt25hZmZGU1OTENb28PDosc+x5F3v7u6OtrY2DQ0NZGRkiK6K5Od8+fJl4uLiCAoKYsSIEejo6KCiovIfFdzAgQOFNpuk0aqnpydG/ufPn+f9999HT0+PqqoqUbUlJydTWlpKWloadXV1BAUFIZPJyMvLIzIykszMTDIzM/9VNyQrK4vi4mKUlJSE1EhDQwNpaWm4u7uLBHr16tVAV8flzJkzPH/+vJt3tpycHGZmZpiZmQkrT+hK7DQ0NJCXl6elpQU9PT3hkCY9R4nAIY1yw8LCqKurw93dXRQJFhYWqKqqdtPhfJcICwvj6dOnQm4lPz9fuAxJY8q3XXRMTEwYNmwYM2fOFHqegwcP5vLly8TGxgrWee/evSktLcXR0RFdXV10dXXR1tZGSUlJ2FKampqKgkAqxqSQOutS8WFqaipGOT1do2StCwgv98DAQFEsNTU1IScnR1NTE4WFhQJflZSURERERDepnLi4OJKTk2lpaaFfv37MnTuXbdu20dTURGNjI5aWljQ3N/Ps2TOio6Opra3FxsZGEJja2tpob29HTU1NuOl9+OGHREVF8dVXXxEfH09wcHCP1gddo92qqiqSkpIwMDAgOjoaNTU1IU9WUVHB5cuXhVV1Z2cnT548YejQoTx69IjvvvvuPzyypYRf6mwNGDCArKws4dvt6uoqDm2ZTMbNmzfp6OgQnb+EhASBD5eTk6OiogJVVVWBOe1JSIxjVVVVysvLRRe3urpajL/fLlB37tzJzZs3u0FRpLNTV1eX4uJiiouLaW1tpW/fvqIgGjJkCHPmzKGzs5OYmBgBwXm7K6qnp8eGDRu67cmPP/4YDw8PSkpKuHr1KkVFRcJp7V0jISFBXFjSOwOIqVR2djaGhoZiqtXZ2Ul6ejovX75k+vTpwtimsLCQpUuXEh4ezpYtW/D19RUaxWlpaeTl5aGpqUn//v1RUlIiISEBd3d3cR5LZ1h9fT2DBw8W7lD379/HzMxMEG3S09N7tL7W1lbKysq4f/8+t2/fBrqgXg4ODsjJyaGnp4e5uTnu7u7Mnj2bmpoa/v77bwYMGCCeq+Tu9+rVKyorK0lKShLfc21tLWfOnEFJSYn+/ftTV1cnJmSJiYkkJSUJgxJpH2tqajJt2jTs7e2pqqri9evXREVFiSleTyXr9PX1ycnJEa5QbysyKCkpCdWawsJCDh06RK9evZg2bRq9evXC3NycrVu3iu8mLS1NWH9L0KsjR45w9OhRoAteJD3DrKwspk+fjqGhIWFhYdjb22NnZ8f06dP55ptvsLKyYtCgQfz2228UFhYyd+5cjI2N/xU2W7rnX758SWtrK3369BHQFisrK3R0dFizZg0aGhr4+/uTkJDAkSNHyMzM5KuvvmLfvn28//77AhNcVFREYGAgAQEBaGlpkZWVRWZmpujyS5C9u3fviiT3+PHj1NXVsXHjRpycnKirqyMzMxNFRUWampqEnrO1tXWPoR+ampr8/PPPvH79mrlz56KgoEB9fT0ODg4sWbKEhIQE0tPTUVVVJTAwEDk5OWJjY1FSUiIxMRElJSU8PDzw9/cXz7+iokIQFd9uxNja2hIUFISxsTHt7e2kpKRw//59ysvLsbW1RVFRkXHjxjFp0iRUVFSoqqrCyspK7Pl79+5x4MCB/2ph3OPktampibt373L79m1cXV1ZtWoVa9as4cKFC6xZswY1NTUuXLjAkiVLeP36NQ8ePKC4uJiUlBQqKysxNjbGy8uL3377jR07dhASEkJ9fT2mpqaoqqqSmZlJbm4uRUVF1NfXc+LECZSUlJgyZQrQxcT85ZdfUFJSorOzk02bNgkt1g8++AA5OTnhovRvLsyhQ4fi6emJo6MjhYWFosratWsXvXr1QkFBgYkTJ1JUVMSmTZuYOnWqePHe7pwCnDp1ip9//pl+/fqxdu1adu/ezbFjx3j8+DEfffQRGhoa4rs7f/48FhYWXL16lfz8fJycnNi3b59IajU0NBgwYACtra3079+f2tpaYRvY0zh9+jRv3rxh165dLFmyhE2bNjF9+nQcHBz+zw0TFRXF8uXLqaqqwsXFhRUrVjB48GCeP39OdHQ06enpzJo1i/Xr1+Pu7s6ePXv49ddf0dXVxcLCglevXuHt7d0NhxwfH09nZyfm5ubIyckxbNgwvL29MTc3x9HRkZaWFhYsWCDseHsSAwcOxMTEBGdnZ5qbmzEzM0NVVRUtLa3/KGakxGTevHkCs3zr1i0ePXokOmmSv7uvr+9/4HxUVVU5ePAgJiYm/PDDD93Gcf8v6aT/3cH7tzJEUujo6Aghcalbo6ysjLe3N83Nzd2q9Hnz5jFhwgSRvF+4cIGOjg5GjRolOpYbN25EJpPx008/cfHiRRYvXsyGDRvEgS3ZGZuamorCVU1NDXNzcyZPnkxzc7N4jh4eHqLIkcak7xqzZ89m3Lhx3Lt3j5CQECorK9m8eTPQlTRs27aNw4cPC2FtTU1Nvv/+ez7//HMaGhrEJWFqakppaSl1dXWUlZWRlpZGU1MTQ4YMoba2lsOHD/PXX3/xwQcfsHr1agFFMjU15fvvv8fS0hJHR0fu3bvHp59+ipWVFR9++CGqqqq8ePGCjo4OZsyY8V8dYf53LFiwQDz32tpatm/fjpKSEl9//TVmZmbdCpq6ujqmTZvGtGnThMtRS0sLampq1NfXY2RkJJQrZDKZ0KL85JNPmDJlCtXV1Zw5c4bOzk6mTJnCtGnTyMrKoqCggPj4eJydnRk4cCB2dnZCE1ZPT4+EhASOHj2KpqYm3333Hbt37+7RGr/77juGDh1KcHCwgFuEhYWxaNEiysrK+Oyzz5gwYYIo+CZOnIidnV239yEnJ4c5c+YQHh7O9OnTRdf04MGDPH/+nEePHokuVnBwMPb29nR0dAhXJ+hKTi5duoSSkhJBQUE0NTWRlJREcXGxeG6xsbE9dme6dOkSaWlpHD16FGVlZfEM58+fz5gxY/j+++/ZsGGDYGRraWkxfvx4QTqGruTQ2NiYJ0+eCDKisrIyJiYmxMfHExoaypIlS7C0tOS9995DTk6O8+fPExISwpMnT+jVq5cYX+fm5tLc3CwE3zs6Opg8eTKTJ08mLS2Na9eu4eLi0iOt0NLSUs6ePYurq2s38wNJ9Qa6VDeWLl1KcXFxt8bAli1bOHz4MLW1tejq6oopQVxcHPv27aO8vBxdXV1cXV3Jycnh+vXrQsO1pqaGJUuW4ODgwMcff8z+/fs5e/YsU6ZMwcPDgwMHDgjHMS0tLe7cuYOfn9+/kpK6f/8+u3btori4WOyPO3fu8ODBA5YsWcKPP/7I8OHDyczMJDk5mc7OTlatWsW2bdsEZjMsLIzk5GSKiopwcnJi9erVODo68tVXX3Hz5k10dHRQUFBgwIABLFu2jOTkZNatW8eXX35JSEgIo0ePxtLSUtwxknC/FElJSfz8888EBwczbdq0Hq1PsnOPiYkhLCxMSIF99913WFlZoaWlxYkTJzh06BCPHj1CRUWFM2fOkJWVJVRIJHlMKWxsbARf5u3Q19fnwIEDGBsbC+iWtE8yMzOprq5GWVmZgIAAQZQMCwvD29sbVVVVDAwM3qnp2OMbMzIyUti6TpgwAU9PTzQ1NenTpw9BQUGUlJSQlpZGaWkpkZGRqKmpCeyOpqYmhYWFWFtb4+XlJSxHJRyHv78/6enpAqhrbGwsmJbSmEJTU1MIkJeUlKCurk6vXr2YNGmSIFUMHz4ceXl5Ghoa+PPPP3u0vpycHJFctLe3i8Nkx44dwP+w8P39/QkNDSUmJoZ//vmHCRMmUFRUxI0bN9DQ0MDU1JRTp04RHh5OWVkZQUFBODo6oqWlxYwZM8QL3rdvX2prazEyMkJOTk5oq/Xp00d4q+fl5QmrP0VFxW4yGz0VRgeE3umiRYu4fv06DQ0NAPj4+FBVVcXevXt5/PgxXl5eTJ06lc7OTgYMGMC1a9fECMfCwoLRo0dTWFiIlpYWr1694saNGwJb5uHhgbm5ufDxdnFxwcjIiIKCAp49eyZE/Ldt20ZhYSG9evVCV1eXxMRErly5wrRp0/6VQxp0sVElnT3ppTEyMhIOKpLSgZ2dncDoREZGkpaWxosXL7h69SrNzc04OTlhbGyMsrKy6Jy4urqKsY+FhQUTJ05ETU2NZcuWCcamFFVVVTx58oSioiKMjIywtbVFJpNRXl5OTU0Nenp6ODs7Y2ZmJtio7xq5ublUV1ejqqqKhYUFGhoaVFdXk5qairKyMnZ2dt2UNiQyiKTZm56ezuPHj0lJScHd3R0PDw/RxVdRUaFPnz5UVlZiYGDAmjVrsLOzE+L45ubmmJqakpCQIDoifn5+qKqqikQ5KSkJV1dX+vTpQ2pqKr/88kuPn6O/v7+wpOzdu7fAm0oC7B0dHSgrKwuMn76+PgoKChQUFNDW1oa3t7d4l992N1NWVhYjybS0NDo7Oxk8eDAeHh4oKCjQ2NhIa2srWlpa4rJubm7myJEjJCYmYmVlhYGBAfLy8piZmVFeXs6RI0f+qy7h/w4JJw1dHax79+5RUlIiHAZlMhn5+flCuk/CwUmYWBUVFXJzc/nhhx+IjIxEU1NTEIiGDBlC79698fPzw8LCguTkZJEoSEWko6MjGhoaFBcXU1BQgI2NDebm5t0kvxQUFFBTU8PX1/df4eul7ltycjJZWVmYmZmRkpKCmZkZ/v7+zJw5E09PT968eUNmZiZubm4ika2vrycuLo7ffvuNFy9e4O3tzZAhQ4iJiRFTICsrK6GtmZycjLGxsRj5FhQUCJjA69evhXShiYmJIFNqamri6uoq8OomJiY9kiEyMTHh9evXWFtbExQUxMqVK8nMzOTgwYMkJycDiI7zqVOnMDIyYsSIEcTGxnL06FEBOZHuFA8PD1paWhg+fDjFxcU8ffoUOTk58T1K+tsdHR24u7uzatUqBg4cKCZiDg4OaGpqUlpayt27d/H39xfvgJubG1FRUbi7u3P//v13XqOpqSny8vKYmpoKNZG2tjbxuS9fvhQGINLPS4Y8N27cwM3NDTk5ObKysujduzfu7u789NNPZGZmoqury/LlyzEzM+PChQuEh4fT2toqzt7BgwejqKiIm5ubsJUHhMnPixcvqKurQyaTUVBQIEi0PY179+4RGxvL0KFDmTNnDm1tbTx//hwHBwdcXFyorKzk2rVrREVFMWfOHHGvVVZWcu7cOYqLi7l+/br43ba2tgJSdfbsWZqamtDQ0KC+vp7S0lK8vLzw8vLiyy+/JDc3l6NHj7J//34Bk0tNTeX58+dC1UAqAKOjoykoKBBmE+8aEvnV1NSUrKws4bApnfkdHR1kZGSQlJREUlISQUFB6OnpiZ+9c+cOw4YNQ1VVlfj4eKKjoxkxYgSmpqY8evSIlJQU9PX1aW1tRUdHB39/f7S1tQkPD+ePP/5ATk6O9957j8LCQo4dO0ZSUpKQuHv48CFJSUlcuXIFmUyGhoYGkydP/q8a9v8KNlBbW8uCBQvESEcSu7106ZLwa967dy/Pnz9nzpw5/PTTT2hqaoqsvb29HQUFBZydnbl8+TIhISEkJCSgr6+PqqoqV69eRSaTMX78eKZNm4aTk5PAn7S3t3PlyhWampoYPXo0K1asID4+XnSNpM+GrtHqnj17eiRaHB4ejru7OwoKChQXFwtGYFZWFu7u7sjJyfHy5Uuys7MZMGAAjx8/ZuvWrejp6eHt7c2rV6+4evUqPj4+wv0qPT2dyZMnAzB//nx+/fVXoKtTu2vXLjQ0NMTfLLmyNDY28urVK+Tl5XF1dUVJSYmWlhbevHmDTCYTsip+fn6cPn26R8/wwoULTJ06lYCAAFxdXXn+/DlpaWk4Ojpy/fp1Nm7cKAg4Q4cOZfDgwQwYMICTJ0/y119/cfXqVTw8PFiyZAmjR4+msrKSUaNGsWPHDpycnHB2dmbGjBk4OjqKdTc0NFBXV8eTJ0+EoUFWVhb37t0jMTERW1tbDAwMROGSmpqKs7NzN13gdw3poHxbZqeyslKYRtTW1hIUFCQ6QZcuXWLt2rVYWlri7++Pt7c3urq6ottXWFjIqFGj6Nu3L52dnezbt4+zZ8+ycuVKoTna0tLCvHnzurFUJctSSZR8//79+Pr6cvr0aa5fv87gwYNZsWLFv7IWbWxsJDk5GSUlJdTU1DA1NSU9PZ3bt2/j6Ogo9sfb0wApQa6pqeHGjRskJyfj5eVFQEAAmpqaVFdXi8/PyMgAYObMmd2MDSZMmEBrays3btzgwoULglDwtlpCaWkpp0+fxt3dnRkzZnDr1i12797NvHnzerzOI0eO4OnpKfRMq6urhbrI1q1bsbW15fjx4wKGMXv2bGGcUlRUJJKX1NRULCwsWL58OTY2NixcuJAHDx7g5eXF1q1b0dfXJzExkdevX+Pr69st8S8qKuLo0aMkJyczYMAAgRVXUFCgT58+ZGVl8dVXX3HixAmx398l6uvrUVJSEoQHXV1dcnNzef78OT4+PgIjJo3UIyIiuHjxIvb29sIuOyEhgTNnzlBVVYVMJqOtrY3+/fuzZcsWsQegS5lEukzf7kiamJhgamoqCK/SHuno6KCpqQkLCws++OCDf6U0APDVV1+J53jy5En09fWZOnUq58+fR19fn4SEBL766iuePn2KsbGx0LaUHIc2btzI/fv36d+/P5MmTUJbW5uSkhJu3bpFXFwc69atY968eVy/fp09e/bw8OFDGhsbcXR0FKz9p0+fYm5uztq1a0UC3tTURJ8+fbqteeDAgQQGBvLpp5++8/ok1Qs/Pz8sLS3p7OzE2NhYqJlIkZCQwOnTpxk0aBAjRozg2bNnbNiwAehSVZDk90aOHIm8vDw1NTWEh4eTnJyMpqYmBQUF+Pr6cujQIUFoq6mpYfTo0chkMqKiopgyZQrBwcEcPHiQy5cvc+jQIb788ksxtZSTk+vmMvauIeFSNTQ0KC8vJywsTDRapL9NKlq9vLxITk7m6NGjFBUVYWdnxx9//EFLSwtbtmxh6NChTJ48mfv375OXl8fZs2dFMv/s2TOmTJnCggULhKKB1LHeuHGjeE/S09ORyWTCrvuzzz5DTk6OvXv3YmZm1g1S1ZOYOXMmU6ZMEXewm5sbMpkMXV1dYmJi+P7776msrBT6o9ra2gQEBGBqairgjxERETx+/Jjq6mpycnJQV1dn8ODBtLS0iDOnsrKS3NxcAXeS4m0oQEREBB9//DF1dXU4Ojpy8uRJ/Pz82LhxI99//z2hoaHdiKT/LdLS0ti2bZtQacjKykJBQaGbEsu4ceOEBq+Hhwffffcdt27d4r333mPHjh1YWFiwYsUK/v77b77//nv+/PNPRo8ezRdffEF4eDjjx48nPT2d3NxcJk6ciLGxMefOnSMnJwdNTU2WLFkiin5PT0/8/Py4ffs2J0+epE+fPpSUlHD06FHmzJnDF1988f998jplyhTU1dUxMDAgJSUFGxubbl+6hoYGgYGBZGZmYm1tzcyZM9HU1CQqKoq0tDRmzpxJWVkZq1atwtLSkkGDBqGgoEBtbS0//PCDSHb19fVpbGzk2bNnvHz5kl69ehEUFER1dTVnz56lvr5eCLVfunRJ4Jhu3rxJe3s7w4cPF1VeT2LixInU1dWxd+9eHj16xMqVK2lpaWHPnj0UFRWxePFiSktL+fPPP4UupJ2dHbq6umhoaLB06VLMzMxQVlYWGotv65SWlJTw+vVr9PX1BcgZuvTfWltbsba2Jisri4yMDJycnLqNYHJzc1FRUaG+vl7Ib/wbhyZJdqS1tZWTJ09y9OhRhg8fzubNm3F0dGT8+PE4OTkxa9YsMVKTyWQYGxuTmJhIVlYWampqAvPY3NzM8OHDCQkJwdXVlfz8fCFzJYWamhotLS0EBwcLDT05OTk++ugjsrOz0dDQQFlZmYkTJ9Lc3ExsbCyTJk1iypQpAof6rmFpaSm0douKilBVVeXVq1eEhYVRUVGBq6trt+/NycmJwYMHU1RUxOPHj8nKyiIwMJD+/fujoqJCTk4OAwYMALr0AKFLb9fAwIAbN27g6+srpMfehhXIZLL/wAj6+/vT2dkpMMdS17unoaGhgYmJicCKQ5edoKOjo8BsQlcS0tHR0W0MI5EgLSwssLOzE5g1STP43Llz1NbWsmvXLhobG5k9ezatra24u7szYMAA7O3t0dbWFjqcEnb9wYMHTJo0STia3b17l379+hEUFMTixYuFSPy7Rltb23+s5+2zRl1dnQULFqCjo0NYWJjA4zk4OFBXV8fdu3cpKioSwvFpaWnIZDJMTEwwNzcnODiYlStXin38vy/2xsZGEhMTefr0KSkpKdjb22NlZYWqqioVFRVCs1kiPw4fPlyYWLxLVFZWCphOQ0MDw4cPx8/PT4i9S+opdXV1nD59mr/++ovS0lKqqqo4evSoIKHt2bOHf/75h8uXLwNdBfiSJUtYtWoVISEhNDQ0iPG4rq4upaWlonOvrq6Oh4eHKLrKysrEBSNpa0sX7L+xooYuLKQkryOJ7kukEXl5eX777TcBCRk8eLDgO2hra3cb+2tqauLt7Y2hoSEWFhaCWHX8+HFBJjMxMcHd3R1VVVWRVEmWum93jqWJTGNjo7Aj/zfQnStXrjB+/Hj09PQERlxFRUVolYaGhnLp0iVKS0uZMGGCwE53dHQIJrfUoR08eDA5OTmkpqYKhRsXFxdu377NDz/8gJqaGsHBweJZvS2htXz5crKzs6msrBQkWSUlJTZv3sy1a9eEyYG2trYwnehJFBYW4ujoiL6+PuPGjePZs2eEh4fj6upK37592bdvn8Bz3r9/X3RhKysrBal61apVWFtbC6c4Hx8fAXWJj4+nuLiYoUOHisT16dOnlJaWCutQ6OrypqamioTa1taWvn37YmZmJiYfrq6uPXZllDgAERERHDlyhBkzZnSTo3Jzc2PDhg1cuHCBzz77jKlTp7Js2TJxN7W3t1NaWioIq6mpqWzevBlLS0tWrVoldOc1NDRITk7m4cOHxMTEUFNTw8iRI9m4cSPe3t4UFRXx5s0biouL8fDw4Pnz5ygoKNDQ0EBqaip//PEHTU1NLF26tEdqA2PHjhW5kK6urpguSDhVNTU1vvjiCxobG9m2bRtGRkZoamoKxSVbW1uhHf7jjz8K3VjJJtbKyoqpU6eK6dT/Lt5qa2s5efIknZ2dwtBCSUkJT09Pxo4di4WFBdbW1igrK7+zYUiP31bJheH+/ftcu3aNkJAQXFxcyMrKoqqqCltbW7S1tZk9ezZOTk5ixP/TTz9x7949DAwMMDExES4SUVFRomqTmNmSduyDBw+4c+cOpaWl1NfX4+fnJ3CU0mF2+/ZtTpw4gbm5OaNHjyYrK4vU1FQGDBjAuHHjUFNT6xHWTur0ZWdnU1VVxYwZM9DS0uLBgwccOXIETU1NWltb0dTUJCEhAW9vb95//33a29vJzMzE1tZWMIjr6uq4du0aHh4ejBo1iubmZrFxYmNj0dDQICAgADk5OSorKykrKyMpKYnExEQsLCyE/l1BQYGQLrKysqKtrU04dfXUhAH+55J+8OAB9+7dEx24hoYGTE1NGTlyJG5ubjg6OlJZWYmKioqQKpEuk6qqKtLS0nj+/DnPnj1j0KBB4mBOSkoiMzOzmz2o1C2QYBDSd/E2cejtLojEVP/55597LF8j4Z7j4+Opr6/HxMQEOTk5bGxshFvN2xeVl5cXH3zwAb/88osgZ/Xt25fevXujqKgoXvr09HTy8vKYPn06QUFB3Lp1i7///hsNDQ0GDhyIpqam8BM3MDDA2dmZNWvWAF3C0hkZGXR0dBAQEMCff/7J1atXe2wpKoVElJOiubkZIyMjxo8fT319vXAb0tLSQk5Ojra2NoGhVFZWFt0F6ILKyMnJYWlpSXl5Od999x2jRo1i3759/P3336J79s8//+Di4sKaNWuYN2+ekHhqb28nNjaWsrIyQdiSyWRCaNvDw4O9e/f2SO4MuvDE/v7+yMvLU1VVJTC9TU1NAm+nrq7O3LlzGTlyJNHR0eTn51NaWoq6ujpWVlaUl5eL7o2NjQ0NDQ28fv2akpISYbkqkRWNjIzIy8sT+oSSMkVzczNubm4iIUhISODAgQP4+/sLfemRI0fS0dHRo+Q1JydHFFHy8vJMmTIFMzOzbqYn0EVu+uabb0Tx7OLiQnx8PCkpKYwdO5b3339f/G2JiYkCEuLk5MSwYcPo6OigtLQUfX19VFRUBFGyqamJ2NhYMjIyGDJkCGpqaiQmJgpCnqOjo4Bl/BstYoATJ04QERGBnZ0d69atw9TUlOrqauG406tXL4YMGcKbN2+YMWOGSEDq6+tRUFBg+fLl1NTU8OzZMw4ePIienh7+/v4EBwcTHBxMdnY2X3zxBdXV1QwePJgff/xRTFzKy8vR1NQkJCRE6GVXVVWJ4lnSB05LS+P169f4+fn1GF//4sUL5s+fL/5fkuSTzsmMjAxu3LiBjo6O6NJCVxH77bffcvXqVaKioqioqODJkyckJydz7do1vL29OXToEO3t7Zw8eZL29nbq6+uFbm5HRwcGBgZUVFRw8eJF6uvrmThxItOmTaO+vl6YEXz88cf8/fffeHl5ERMTQ1VVlejkv2vU1NTQ2tpKREQEjo6OgoD2/fffo6CgwKeffip0TW/dukVZWZnAlkt6wTNmzGDgwIG0tLQIKaaAgADa29spKSmhvLwcS0tLzMzMaGxspKysjMzMTNEUgK7zt6amBk9PT0GglhK56upqkpOTsbCwYOzYsT3WPpemFMeOHePhw4cYGxsLQl1CQgLOzs7MnTuX4OBgBg0axKVLl1i4cCFqamqkpKSgqqoqLKqDg4O5f/++ICTOmDEDVVVVOjs76dOnD8bGxkRERFBRUcHo0aMJDAzE19cXVVVVqqqqCA0NxdjYmKNHjxIREUFubi6GhoY8e/aMS5cuMXXqVBYtWtSj5HXp0qWCrCydZ83NzVRWVmJkZERWVhYlJSXo6OgwYMAAVFRUyMvL48SJE7i7u3P48GEqKir4/PPPaW5uZvXq1ZSVlYlkesiQIUyYMIGOjg5evHghZPo6Ozvp7OykpaWFly9figK4pKSEuro6rKysmDVrFrdu3cLGxkaYbbwLHPJfSWVJrE6JJXrgwAG2b9+OkZERq1atwtnZmWfPngmr1f79++Pn58etW7fYt28f8+fPZ9u2bWRnZ9PU1CQOtry8PAwMDAQ2y8/PD09PT5KSksjLy6OiogJzc3M+/vhjKioq0NbWxt7enhkzZqCoqEhKSgqBgYH4+PiITpOfn1+Pktf4+Hg8PDz4448/SEpKQl9fHw0NDY4fP84nn3zCihUr+OKLL/jtt99ISkrCwcEBJycnNm3axG+//SZa7NCF/QkKCmLGjBlC6F5LSws7OzsuXrzIP//8Q0VFBQsXLmTGjBlcu3aNyMhIBg8ezNy5c1FUVOTy5cscPXqUkSNHistfJpPRr18/QkND+emnn3osD9La2irkYdauXcucOXNQUVEhLi5OuHfcuHFDSD0NGjSIpUuXMmvWLDo7O1m3bh0FBQW8evWKkpISnj17RkdHBwMHDsTe3h5HR0eGDh0qDoTS0lLRkdyzZw8nTpxg7dq1zJ8/XyTEKioqlJSUCIyPt7c3f/31F19//TU3b94U2qXvEklJSfz111+oqqrS1NREfn4+QUFBTJgwgcjISG7duiU6x9XV1eJQiImJERI8/5fOnJaWlhD1b21tRUVFBVdX124X3suXLzl9+jTz5s1j2LBhBAQEsHnzZl6+fMn+/fuJjo7m+vXrgqQgdV7/bQcWui7hy5cvY25uzqBBg3j58iV//PEH/v7+QgMzNzeXwsJClJWVMTAwQEtLSzyTEydOcOrUKc6cOYOtrS0aGhqCVT9p0iQOHjzIxYsXuX//PvHx8SLBBwQTXYII/PLLL5w8eZLhw4ezePHifwWJkEJdXV2wbaWzRrIkhC77aIncY2hoyPDhw8nJySEnJwcHBwdGjhzJgwcPuHDhgvC8DwgI4Pbt2yQnJ5OamkpycrJwmouIiBAY923bttGnTx88PT1pbGxETk5OyLtJxL7IyEhWrVpFcHCwYM/3JCRNY0CQwuB/VAikqUx1dTV1dXU4ODgwZ84cXF1dyc7ORl1dnZKSEn7//XdsbW3ZuXMn6enpQp3B19cXZWVl5OXlBaZcUv+QupApKSlcuXKFtLQ0cdaeOHECfX19fvrpJ/r3709ERATy8vIMHDiwx8/w5MmTvHjxgpUrVwpXpqamJlJTU9HR0UFdXZ2DBw8KS14pcnJykJeXZ9SoUZSWlvLs2TMSEhJYuXIlAQEBwu3I2tqaWbNmMXXqVAYPHiwSU+gqfqT7Crqk49ra2sTPtLe3Y2NjQ2ZmJr///ju3bt0SDYN3jcmTJ4uCu7m5mdTUVCwtLbG1tUVHR4fRo0fTp08f4uPjOXz4MC9fvhRi9AYGBkyZMoUbN25w4sQJWlpacHZ2RiaToaWlRWtrK66uruzatQsjIyM8PT3p7OyksLBQ2JZXVlbi4+PD+PHjcXV1JTU1lbt37zJmzBgGDx7MsWPHSE9PR1tbm0uXLvH8+XMMDQ17ZNdcW1tLr1692Lp1q7j7dHR0ePz4Mbm5uZSXl3PgwAFsbGzo168f6urqLFmyBDU1NR48eMDPP/9MdHQ0P/zwA0pKSlRXVzNx4kQx9m5sbCQkJERYxgLC0eptCEVnZydBQUFCJ7alpQVNTU0aGho4ePAgZ8+eZfXq1axatapHz/DtGD16NKampigoKIhkLzc3l4SEBGbOnImpqSl///038vLyKCkpsX//fvbv34+XlxerV68WneT+/fvj5uZGUlISV69eJSYmhlGjRmFhYSHMZCZOnIiBgQFbtmwhODiY06dPdysapcnqgwcP0NHRYfDgwezcufNfQT/gf2BjFhYWnD9/nszMTNLS0jh9+jRXrlwhMTGRPn368P7776Ovr8/27duJiopiyJAhtLa2UlVVxahRozAwMCAgIEDY4wJCs9nX15dr165RVFQkFIYkYyoFBQUiIiKIjo4mKipKkM6lMygwMFCQ7G/evPlf19Pj5DUqKgoDAwNB8oiPj6eoqAgPDw+qqqo4cOAAjY2NpKamipGlhoYGnp6ezJo1S3TgJN3G6urqbpjP2NhYzpw5Q0BAAD4+PqJ75+PjI15aZ2dnbG1t+eGHH1BXV2flypU8efKEU6dOsXbt2m7dyJ52C+7duyd8mSV7Uw0NDSwsLOjXrx9JSUloaWlha2srqr+SkhKKioowNTVFR0eHyMhIYmNjuXDhAvr6+gwbNgxra2tqa2uRyWRCAqetrY2WlhZycnJERzYqKkqMVqCLyPG//drb29uRl5fHwMCgx8LoAM+fP2fQoEECzjB9+nQAbt++TXV1Ne7u7lRUVPDrr7/S1NRETk6O6CaHhITw5ZdfCuLT2LFjUVBQ4NSpU2RlZXHo0CFB4pO6im+PXySJjoSEBBISEoQ7mYWFBdXV1RQVFXHv3j2Cg4Nxd3dnxYoVYlT/rmFra0tISAgODg7Y2Njw6tUr4uPj0dDQID8/Hz09PTHKUldX5+HDh1y5coVevXqxaNEi9PX1efr0KW1tbWRkZKCpqcno0aNRVVUVyf2gQYOwsLAQTkzQpZV7/fp1TE1NMTIyIicnh/Pnz1NQUIC2tjYWFhbCjWb8+PEYGxuLi7Wnun3p6ek0Njbi7u5OYWEh58+fx9DQEBcXF2QymbDklA4sqVsjVcK1tbWCrCZJoVRUVAg1ifDwcM6fP8+MGTNYtmwZixYt4ttvv+XkyZPU1dVRUVGBnp6eIBsaGhoKUwZzc3MmTZok4AhxcXFCcLwnoaurK0hjUrdIUmZQU1MTo96srCyuX7+OhYXFfzC5vby8hE2nRL6Sk5PDysqK1NRUXr58yaBBg3BxcSEuLg4dHR1MTEyQl5cnNzcXS0vLbpdFZGQkJiYmrFixQkxnSkpKyMjIID8/v0fONxYWFqILKnVEpG6+tbW1UFYwMDAQqhF9+vQR6hfQtW/++usvFBQUGDRokDhzPTw8hHSXoqKi+P4UFRVFgnD//n2uXLlCSkoKlpaWQvpQMtmwtrYmPz+fnTt34ubm9q+S15KSEurr68X59eDBA2JjYwkICCA5OZmGhgYGDhyIsbExpaWl5OTkYGJiIrr2MpmMYcOGMXfuXB4/foyenh5tbW3ExcVhYWFB3759GT9+PB0dHUJiS8L0trW1oampycuXL1FQUKCiogIlJSUyMjKEYDx0FQ7SXu0pdCA4OFg8+7a2NhQVFUlMTOTFixfY29vTt29fHB0d8fX1JT8/n+TkZGJiYhg0aJCAq7i5uVFdXU1nZyfDhg1j7NixpKen09LSIkxGcnJyCAsLw8PDQ3yXpaWl2NvbizOktrYWdXV1HBwcuH37NoqKiowaNQpfX1+gK6GSfOd7MiH49ddfGT58OGFhYULb08jIiN69e5Obm4uSkpKQxJQMeaSQDH2ePHnC5MmT8fPzQ0dHh5aWFtLS0oQByv9WCCgqKuL169fY2NigpKREVFQUkZGRFBQUMGfOHJSVlVFWVqa6ulp0kyXsb0/W9na0tbUREBAgCIBSSEojhw4dwtraGmdnZ1H8FRcXk5aWRmFhIZ6entjY2AgdUzU1NTIzM7l37x7Dhw8XykFJSUlMnDhR3I9ycnLk5uayZcsW3n//fby9vWlqahL8DG1tbdTV1QXMC+jmqvYuITXlysvLefPmjZhMSeYFksObg4MD06ZNIycnh/3795OcnIypqSlnz56lb9++rF+/nri4OEEkHD58OE1NTcjLyxMREYGfn183RQqAxMRE3rx5w8aNG/n888/ZvHkzFhYWAjKVn58vdODj4+PfeW09Tl7r6up49OgRAO7u7qSnp9O/f382b97M77///h+jwQcPHmBiYoKnpydTpkzp9kfD/9ifSlFVVUVVVZVwxNmyZQvQJfJfW1vLrVu3cHZ2Jjs7m+3bt9OvXz8hWxMWFkZkZCTBwcEiSe5p6Orq8ssvvxAaGoqDgwO7d+9GS0uLp0+f4u7uzo0bN6iuriY9PR17e3shqDt69Gj279+PkpISDx48YMeOHaSlpXXrrknuMc7Ozjg6OrJ06VJxgVRWVhIeHk5qaioGBgY4OTkREBBASEjIf1wakkuFpA3XUyZ3UlISgwYN4siRIxw5coTTp08TGBiIp6engDJAl6TTwoULaW9vF0S4srIy8bysrKwICQnB3d2du3fv8urVK7Kzs3FyciIrKwstLS1xQEvx0UcfCQLO7du3ee+99wST09vbm5CQEDIzM7l//z4ODg4MGTIEBwcHtm3b9s7rGzBgAAMHDhSJm0wm49ixY/z111+EhITw6aefisu8qKiIjo4OevXqxdq1a+nduzcrV67k2rVreHl5kZ+fj76+vsDRbd++HWVlZUJCQrolSVFRUXzyySf4+Piwd+9e5OXl2bt3Lz/++COFhYV4eHiwe/du7OzsOH/+POfPn2fZsmVoa2uTnZ3d4716+/ZtXr16xbJly7CyshJYxtbWVoKCgrC3t0cmk4mRmzTSqq+vFwnWgwcP2L9/P/b29uzbtw8jIyPq6+uZOnUqKioqXLx4kcTERBYtWoSzszMrV67E1NSU4uJinj17ho+PD/b29tjb25OUlMTNmzcJDg7m888/71Y0Sl36nobEOn4bWqGhoSFUIqTfkZOTw1dffYW7uzsjR47sRi6Sk5Nj3LhxVFVVUVhYiEwmw8bGhtmzZ+Ps7Iyamhrjxo3Dz8+P4OBgduzYgaKiInFxcdy9excPDw/RIbp58ya///47EyZMYOHChQA8efKE27dv4+DgwKFDh/5Pp57/VwQHB3fzD4+MjOSXX37hxo0bDBo0iGXLlmFsbCwmJe3t7aLgbGtro6SkBC0tLdatW0d4eDibN29GU1OTlpYWzp49S//+/Xn//fdRUFAQlrnSPrtx4wYbN24kOjqaQYMGMXfuXKEwoauri62trTDwuHbt2r/uoEsESMlpasuWLSgqKjJnzhzS0tI4ePAglZWVjB8/HkNDQyoqKpCTk+t2R1hYWPDjjz8Ksp6enh5paWliuufl5UV8fDwnTpwgNjaWuro6XF1d+eyzzwQZKDk5GRMTEzHW9PLyEsmrmZkZK1euFFCKnkRCQgKnTp0iPj6ecePGsXz5cs6fP88HH3zA+PHjOXHiBLm5ubx+/ZqVK1dSV1fHy5cviYmJEZ3orKwskpOTcXd3F+vW1dXttu8PHDjAnTt3+OqrrwQp8O1CKS8vj2PHjhEUFERgYCBXrlzh2LFj7Nu3T4y/tbW1u3Eo3jWOHj3K8ePHCQoKYv/+/fj4+FBfX8/KlStZtWoVbm5u3bD+xcXFZGdn069fP2QyGebm5mRnZ4uRsZOTE6dOneLZs2fo6Ogwe/ZsgoKCKCsrQ05ODn19fcLDw1m6dClTpkxh7969ODs7s2XLFv7++2/y8/PZuHEjHR0dREdHY2dnx5YtW5gzZw6hoaH/gbd815DJZKLIfpso7ODggLa2Nr/88gu///47NjY2rFy5kkGDBjFz5kzq6urIyckREBvoajA9f/6ce/fu4ebmJr73mJgYsrKyaG1tRVlZmXv37jF37lxmzJjBggULePjwIVevXsXKykq4VM2ePbsb1KOiooKkpKQerU2CLz569IhVq1YhLy/Pxo0bhZlCQEAAenp6DBgwQOBgBw8eTENDA9nZ2UIrXFtbm/v37xMbG8ucOXPEmP/vv/8mNzf3/8TFx8fH8+jRI+bNm8fQoUM5duxYN0OX4cOHM3bsWPLy8nj9+rWAv0lE5//n8+rRN0BXxv/gwQOsra3F6CM6OprTp08THx+Pv78/vr6+dHZ2Ehoaio6ODi4uLvTu3Rt9fX3RFZUOKV1d3W7VrouLC5qamlhaWlJfX0+vXr1oamqioaEBZ2dnGhsbuX//PtnZ2cyfP5+AgAAUFBTw9PRk9OjR3Lt3j1OnTlFRUUFwcHCPW+wdHR306dMHZWVloZwgdVsllmFBQQHPnz9HUVERY2NjAVOQFAGkrpT0s9HR0cKlQvKZ7ujo4MqVK9TU1KCqqkpdXR2+vr5Cp7C9vZ1Hjx4Jyae3CUZGRkZUV1eTkZHRrUJ810hISOCnn37in3/+ERXf/v37cXFxITk5mTNnzjBr1iwWLFiAhoYGT5484caNG4wdOxZ1dXVWr15NcXGxAP5bWVmxdetWUlJSqKmpYd26dURERLB27Vp8fX05evSoGD8YGxuTlZWFiYkJI0aMwNDQkJcvX7Jnzx68vb3ZunUrdnZ23cSweypB9OrVKxISEsjIyMDMzEx4xT979oxhw4ahpqbG/fv3OXXqFHZ2dkIY297eHktLS4YMGUJVVRWGhoZ4eXnh6emJubk5jY2NjBs3jqysLBISEgSG8vTp0zx8+FDgoSRnFBMTE6ZNm0ZmZia9evXCw8NDuHxJ8k6hoaFcuHChx8nBmzdvuHz5MgMHDsTb25tNmzbx8uVLMRL939+ZTCZDJpOJCQd0CdO3tLRgaWkpunTq6uo4OjpSXl5OaGgoioqKZGVlcevWLeTl5QkJCREe5BK2MDo6mpycHNzc3HBwcEBRUVHY3gJCb1ay3O3Jc5Qc2OTl5enXrx+1tbVcuXKFhoYGIbOkpaXF2LFjhSZiXFwcz58/Z/Dgwbi4uJCZmUldXZ2ARBgaGgr8bFtbG7a2tigpKaGkpERTU5OYFtnY2GBjY0NVVRV37twhIyMDPz8/oqOjaWlpYfHixQwcOFC8+2+PrN8lWltbxaWkoqJCRkYGMpmMmTNnMmbMGOrq6sjNzeXu3bssWLCA/v37i7MyMjKSb775hgkTJrB06VLq6urYtm2buAjz8/OFD7mCgkI3FRZA6Ea7uroyefJk+vTpI4iSffv2xcDAgJs3b3L+/HnGjBkjLGJ7GnPmzMHR0RETExOKiorw8/MTuHNFRUXGjBnTbe9L56aEmZRII4aGht2SNQ8PD7766itCQ0MZPHgwgwYNQk1Njby8PJSUlBg/fjwTJ05EQUFBdAKjoqLQ0tISzj4lJSUYGRmhpqZGRkYGpqamPZ7UhYaGcvnyZSwtLcXv8ff3Z/z48Xh7exMXF8fu3bu5ffs2a9eu5dNPP6VPnz4cOnSIy5cvs379eiFp9vY7a2xsTE5ODtC1NySDglevXgmnMqnRIZGLzMzMBBGouLiY2bNn07t3b2JiYjh8+DC9e/dmyZIlPX6GEydORE5OjoULFxIYGCg6jf7+/t2Sqvj4eNE5c3BwEFOe6dOn09zcLIpAfX19fHx8hKSdNHXKysqisrKS4cOHY29vT3BwMI6OjigpKTF58mTWrFnD3r17+eWXX6irq6Nv374oKCiQm5uLtbU1Tk5OzJkzhytXrvS4WL58+TKDBg1CR0eH6upqKisrBQfHwcEBQ0NDxo8fj6amJh0dHVRVVREVFUVnZ6ew+jYyMhL7t729ndraWry8vOjduzcpKSkcPXoUR0dHevXqxfbt2ykuLmbEiBEEBwcLfdzW1lZMTEwwMDAgODiYjo4OIf3W1NREYmIip0+fJjIyskdkdGlicfPmTXJycnBxccHe3h5FRUXs7Oy6WV6fP3+euro6xo8fT9++fUlPT6dXr16CLDtixAi0tLREkgtd+vhHjx4lPz8fd3d3ampqaGtrE7rG7e3thIWFCWvo6OhoHj58yLhx4wR0Sl5eHnNzc8GT+m/R4+RVQUEBPT09URW6urry66+/curUKRwcHNi5cycTJ04kNzcXeXl5jIyMmDp1KvLy8rS2tgq9VukhS50EaaMbGRlhbGxMW1sb2trarFmzhtLSUqKjo/H09MTf359jx46RlZXF2rVrRVLn6OjIRx99xDfffMOZM2dobm4WxJmehGRZCF1Mya1bt1JTU8P69evFv925c4eOjg6UlJRQVlbGwcGBiIgI7ty5Q0VFBTY2NqxevZqff/5ZuCkpKysTFRWFubk5MpmM69ev8+uvvwpnJ2m0J+HcqqqquHXrFi9evEBbW1schs3NzaipqdG7d29u377Nb7/91mP2qOSJ7eLigrW1NdeuXWPPnj388ssvREVFsWbNGiIjI/nxxx+FKHp4eDhqamoMHTq0G6aopaUFJSUlQRT4888/OXHiBPX19QJzdvz4cZ48eUJ7ezvJyck8fvyY7du3i5cvJyeHkpISrl27hq2tLR9++KHo2JaWlvbYJe3Bgwfs2bOHwsJC3N3d8fX1ZerUqQLPVlNTww8//MDt27eZNWsWXl5etLW1Ccvizz77jPfee49Xr151s8nT0tJi9+7dhIeH8+jRI0Hw2L17N3Jycly7do3i4mLWr1/P0KFDmTlzJgEBAUKcOzo6msePH+Pv74+lpaWQivnzzz+RyWQ9ulicnJywsbERuofW1tYYGBigoKAgPOTflkKR4m09WRUVFcaMGYOBgQHFxcWoqqqKTq0EKxgzZgzOzs6sW7dOCOX7+vpSUlKCsbExmZmZrF+/Hjs7O/bu3Ut5eTmPHz+mf//+ArdnbGzMhAkTuHXrVo+eY1hYGFVVVWRkZGBsbIy3tzfV1dUCUyVBUyS5LCkuXrxIUlISAQEBtLW1ERkZiaqqqkhu6+vrUVZWRklJibKyMsrLy7GwsCAuLo7Lly9TV1fHgAEDhBvcixcvOHDggDBC2bBhA0uWLKGjo4MPPviA/v37k5KSQkxMTI/WFx8fT9++fVFWVqakpARFRUXmzZvHuHHjUFZWJj8/nz/++IO2tjY2bdrUrYBtbm4mJiaGpqYmBgz4/7F33uFRVmkb/0167733AgmkEEJJCL2GDkqRqiCMYAMVBakKKKgoMKg0KVKk995bIAFCaEmA9N57T+b7Y5yzZNXdxHVl9ct9XV7Bmcmb98x5zzlPuZ/76cyTJ0/Q1NQkNDSU8PBwPDw8yMzMFPP/z5H90NDQX2R0zpw5w/Hjx6mtrcXc3JxVq1aRk5PDV199RceOHamtrW3W+IBGnXOUjTyUMDQ0FAGB+vp6oYrR0NAgdJf9/PzIyMigsrKS+vp6waO/f/8+mZmZyOVyLl++zLRp0+jVq5d4TdlFSEkhsLW15ciRI6iqqtKqVSuys7OJiYkRDtHJkyfR1dVtdmSyrKwMKysrJkyYIPYJXV1dtm/fDigoWkp90iVLlgiFnfv373Px4kXRWOGll15qRB3KzMwkIyOD0tJSgoKCGDZsGL169WLZsmUsWbJEVNNraGjg4ODA5MmTmTx5MlOmTOHjjz9m+vTpLFmyBIDjx4+zbt06Ro4c+buM108//VQ4GEo5I+X3qKOjQ21tLYmJiUJhREtLCwcHB+RyOSYmJvTq1atRdrWqqorQ0FA6depEfHy8cJxLSkoEhcXX15cdO3ZQU1MjHK8PPviAVq1asWLFCtasWcPUqVMZO3Ys+fn5wvi0tLRkypQpzS4OVbZuHzBgAEZGRuTk5BAZGUlhYSFOTk60bduWVq1a0bZtWyoqKkQ76YKCAlq3bi24oEoolWaURWi7d+/myy+/ZNOmTXTv3p1FixaRl5fH4sWLKSgoYNOmTYSHhwsHqKqqShjFStTU1JCRkUF8fDxXrlxplvHar18/UbBoaGjIV199RdeuXcnOziYlJYXAwEBUVFSIjY3lypUrIqjRsWNH0V5cmYF1c3PD0dGRTZs2sWbNGsaOHUt2draguSjVo5KTk2nbti3dunUjLCyMGTNm8Omnn3Lt2jViY2O5cOECz+vtggABAABJREFU+vr6dOzYUWifK/foptDMmm28tmvXDgsLCyGUX11dTWhoKObm5jg6Ogrvyt7eXmzwz6dvn09B19XVkZeXR2FhIRkZGeIAdXZ2xtzcvNFmfe7cOc6dO0dISIjwjtevX09AQAB9+/ZFQ0MDbW1t+vbti4GBgah2a9OmDVevXm3y+J6XNjI2NqZbt26Ym5tjYmJCbm4u8+bN4/DhwwwdOpQRI0aQmJjId999h62tLR06dCApKQlXV1d8fHyIiIgQHXiGDRuGkZER2traFBcXY2Vlxbhx4/Dx8cHe3l40IACF0kFOTg7Ozs5YWlpSWFhIbm4u58+fp66uji5duqClpYWRkdHvknfx9/dHX1+fl156iby8PM6cOcPNmzdJSUkRG+jt27dJS0vDzs4OLy8v1NXVf7P9ZXV1NbW1tURHR5OamkqvXr1E0ZWqqipjxowRElkRERE0NDQQGxtLQ0MDKioqdO7cmWXLlhETE4OqqioRERFcu3ZNCMsraQxNRWBgIFOmTCEnJwd3d/dGh0JhYSEHDhzAy8uLgQMH0q5dO+7evUt0dLTgwVZVVZGamkplZSWnT5/m5MmThIWFiSi+m5ubOFhsbW356KOPuH//Pj/++CNXr16lrKyM1q1b09DQwIEDB2jVqhW9evWipqaGu3fv4u3tjb29Pdra2piYmAhOY3MwYsQIbG1tuXbtGtOmTcPV1VU0tkhLS6OyspKAgACxTisqKkR0saysjBMnTvDs2TPc3NwICgqioaGBe/fuIZFI8PT0ZOLEibRv357+/fujr69Pnz59qK2tRVdXF01NTby8vDAwMCAzM5Pi4mL2798vItgBAQE4OTlx8+ZNNmzYwODBg0XqsjnIysqiTZs2eHt7i3VpZmZG//79iY+PFxIy/9wqUVksWF1dTUZGBm5ubtTX14vnXFdXl0GDBtGtWzfR9hIU6WllZuB5oXNTU1N69epFbW0tFy9epGvXrqiqqnL06FEApk6diqenp9DGbQ727NnD7du3qauro0+fPgwYMEDslyYmJvTu3Vt0LwMFP0xVVRV3d3cWLFjA+fPnmTt3LhYWFqxbt05oenp4eIjCE6CRfqtEIvnVphjKXucpKSlCu9vLy4uamhouXbr0u7I8kZGRXL58ma5du/5CA/f27ds8ePAAMzMzgoKCMDEx4ebNm9y8eRMtLS26d++OjY0NZ86c4ezZs4SGhuLg4EBsbCxHjx4lNDSU1q1bi2Yf9fX1gpf++eefExgYSHZ2NqWlpWhrawvhe2XErKioiK1bt2Jubi70L5tbdNe7d2+Cg4Pp27evkHtUdkkDxTk4evRounXrRkVFBXfv3uXKlSu4urrSoUMHUlNT2bZtmzDaly9fTnx8PAYGBgwfPlwYFeXl5SQlJWFmZoatrS25ubk4OTnx0ksvNYpUeXt7o6ur22jPUzYEsrOzIy4urtnFocpmGba2ttTX15OSkkJNTY0wMJQ1DBoaGowaNYo7d+6we/du1NXV6d+/P1ZWVpw7d45Lly7x7NkzzMzMmDVrFq6urnh7e1NQUEB8fLxwUrKyskRWp7a2lu3btxMbG4u/vz8hISGYmJhw6dIlAgIC8PDwoLS0lISEBHJzc5vdvlgJPT09vv32W2pra5k0aRKenp5cvnyZvXv3YmVlRUFBAZqamjx9+pSCggLRjrqyspKCgoJfqMbU1dVx5MgR4XiOHDmSiooKAgIC0NDQ4NVXXxWKEYmJiVRWVjZS1YmNjeXBgwf4+vo26sjo7u7OpEmT6Ny5s4jMNwX29vY0NDTQs2dP3NzcxDXNzc05efIkx48fx9XVFVtbW1q3bs3Vq1dZs2YN7dq1Y8iQIaKBS2JiIrdv36aoqAgLCwvU1dU5cOCAsEs6dOhAZWUlt27dora2tlFDqYEDB2JtbS2KGj/44AOqqqr45JNPhIIIKByJ69evi0DKb0HyvAbpv4JUKm3aB/+HIZPJfrON0d99fPD3H+PfYXzw9x9jy3P69x4f/P3H+HcYH/z9x9jynP59x/f7RCZb0IIWtKAFLWhBC1rQgheAJkdeW9CCFrSgBS1oQQta0IIXjZbIawta0IIWtKAFLWhBC/4yaDFeW9CCFrSgBS1oQQta8JdBi/Hagha0oAUtaEELWtCCvwyar7P0B0EqlY4AwgA/oC2gD/wok8leeVH39EdDKpVKgEnAVKA1oArEAZuBtTKZrP4F3t4fCqlUGgq8DXQCTIAC4D6wSiaTHX+Bt/Yf4f/THCohlUrHAco2NVNkMlnz9IP+ByGVSu2AxUBfwBTIBA4Ci2QyWeELvLX/Cv6Oc9gIEsli4H3AHbm8ed0vGl9nFrAc8EUuj/2D7u534e9+JkqlUlNgKDAA8AVsgRoU58RmYLNMJmt4cXf4x0AqlQ4A3gJa8Y+95jbwpUwmu/Ei7+0Pxwtchy8y8joPmIFioab/64/+ZbEF2Ag4A7uB9YAG8DWw+2fD6C8PqVQ6D7gMdAFOAl8ARwBjoOuLu7M/BP8v5lAJqVRqD6wGftnn7y8KqVTqiuLwmATcAr4CElAcMDd+PlT/Nvifm0OJJAmJRP4b/2X9juvZA7OB739xYCpEbCcjkUQgkZQikVQgkdxFInkTiUT1V64mA3KAlb9jZH80/u5n4kgU+2cwcBNYBewDfIANwE9/9f1UKpV+BhwFAlCchV8Dd4DBwDWpVPriHJE/cx0q3h+ARHIaiSQNiaQSiSQBiWQPEknHX7las9fhC4u8Au8AacBTFN7mhRd4L384pFLpEGAckAi0l8lkeT+/rg78BAwHJgA/vKBb/EMglUpHAkuAs8AwmUxW+k/vN6891v8Q/r/MoRI/HxybgXxgP4qN6e8AGWABvCmTyVYrX5RKpV+i2Ic+Baa9oHv7Q/E/PIfFKIyVf8bvMbA/BjSBFb/y3hYUazYHhbNZDvREYUR0QSIZyfMSO3J5JRLJ18BnSCSdkMuv/477+aPwtz4TgXhgEHDs+QirVCr9CIVTORwYhsKg/ctBKpVaoVhv2UAbmUyW89x73YDzKLI/21/MHQJ/1jqUSD5DEZHNR5HhygPcUBjxw5FIxiOX/+N7+B3r8IUZrzKZTCzM5rZy+4tA2U7mC6XRAyCTyWqlUunHwBBgJn9hw0cqlaoAnwEVwJh/NlxBMd4//cb+OPzt5/Cf8CbQHUW0vPuLvZU/BlKp1AXoDSQBa//p7QUo6CDjpFLpLJlMVv4n395/A/+rc1iEXL7wP76KRGIIjAXO/UrUdQjPOZvI5Xk/v/7vnM3twFJACrww4/XvfibKZLLzv/F6llQq/RaFE9mVv6jxCjiiyGbffN5wBcXcSqXSUsD8hdzZP/BnrMNGRjxyec5z7/0rI75Z67ClYOu/B6uff/5az0jlawFSqdToz7md/wo6oUinHwcKpVLpAKlU+oFUKn1LKpX+Wmrgr4b/D3MIgFQq9UbBOfpaJpNdftH38wdCacCd/mc+3c/O1jVAB+jwZ9/YH42/8Rw+j9Eo5mv3r7wnnE1huALI5bUookSgcDYbQy7PAK4AI5BIDP7Im21Bk6EMctS90Lv4z/AEBYe3vVQqNXv+DalU2gUFh/nsi7ix/wL+1ToURnwjwxVALr8A/LoR38x1+CJpA393KDdP5195z+W5f3sBEf/92/mvIOjnn9koeD2+z78plUovAyNkMlnun31jfxD+P8whUqlUDdgGpAAfveDb+aPh+fPP+N94/wmKyKwHcO5PuaP/Av4Cc6iJRPIK4IAilR8DXEYub27BY8+ff179lfea5GwikRghlxf90/vXUET9uqDgLLbgT8LPz+74n//35Iu8l/8EMpmsQCqVfgB8CTySSqUHUaTNXVHQJc4Ar7+4OwT+nHUojHgkErNGjqREojTiD/7GdZu8Dlsir/89KL/4d6VSqYnyxZ8X6qLnPmf8p97VHwuLn39OA7RRPND6KAj4p1A8gHtezK39Ifj/MIcA8wF/YKJMJqt80TfzB8Pw55/Fv/G+8nWj//6t/Ffxvz6HViiM609RcO7OA0+QSMKaeZ0QFJGbX3NGmuNs/jMif/7ZpZn304L/HMtRnBnHZTLZqRd9M/8JZDLZKhQZADVgCjAHRaFaKvDDP9MJXgD+++tQLi8APgAsgUdIJN8jkSxDIvkJOM2/NuKbvA5bjNf/HnYBJ1B4XY+kUun3Uql0FRAN9EfhnQD8laWWlNW7EhQR1nMymaxMJpM9RCGJkgaE/YUpBH/7OZRKpe1RROq++NvJuDQNyurmv2yf7L/AHG4GeqA4OHVRZGi+A5yAE0gkbZt0FYlEA8WBmMWv9zUXziYSiclzv9cUZ1NZbe3QpHtpwR8CqVT6JjALiEXBV/5LQyqVvg/sRcGrdkXxvAeiiPz/KJVKP39xd/enrUOQy1fxL4z4X9AJ/oEmr8MW4/W/hJ/5dYNQEJezUCzMySgMuhAU6QRQVMX+VaHUx0yQyWT3nn/j5+iP0otu/6fe1R+Ev/scPpdqjucfnMC/G5SRVcPfeN/gnz73l8JfYg7l8kXI5eeRy7ORyyuQyx8gl09DkV7VBhY28UpKSbPf0uVt5Gz+HPFZRdOczYKff5r9ynst+C9AKpW+gUIF4hHQTSaTFfybX/mfhlQq7YqigPmwTCZ7VyaTJchksgqZTHYHRTAnHZj1cxHpn48/bx2CRPIvjXgkkt8y4pu8Dls4r/9FyGSyOhSap188/7pUKtVGoeVXCTz88+/sD0Pczz+LfuN95cOt/d+/lf8O/uZzqIeC6wlQ9RsVzuulUul6FEVAb/9ZN/YHQvmMevzG++4///wtTuz/Ov7Kc/gtiqhbU1P1SjqE1q++K5c3IJEMQqHfO+7n/2pRVC5PANagmO9fczaVe9T/IuXibwepVPo2Cr3lB0CP/4F0+h+B8J9//kLiTCaTVUil0lsojFh/fp2X/aLwx65DiaQrCiP+AHL5u8+9cweJZCiKvXYWEsm3yOX//D00eR22GK8vBuNQTPyWv7iU1GUU1aHuUqlUQyaT1fzT+z4//0z6U+/qz8HfYQ6rUTRg+DUEoNhkr6IwAP8X09FNgfIg6S2VSlX+SV9SH+iMYqP8qxbc/ZXnUGmw6Dbp03J5ERJJDf+I/PzaZ37V2UQi+XfOpvKafwcj6n8aPxc1LUcREe/1vAzhXxyaP//8LTks5ev/fE6+aPzR6/A3jXjk8gokkn9lxDd5HbYYr/9FSKVSA5lMVvJPrwWhWLhlKLTO/rKQyWR5Uql0Nwq9t/koOsQAIJVKewF9UKRj/7IVpH/nOfyZ2vHar70nlUoXothctvyVW4vKZLJnUqn0NApFgTdQdJ5SYhGKDfu7v6rG6198DpVc+OZEoe4D/kgkBsjlJf/20/+AcDZ/ls76ZyiLuKKbcc0WNBM/62MvRtHxrvdfnSrwT7iCokPaVKlU+p1MJhNd0qRSaT8UjnIVL1BL+DfwR6/D/8SIb/I6fGHG68/di4b8/L9KiZOOUqn0h5//nSeTyf5XusP8XpyRSqWVKFIjpUBrFNyrahTdqP6XUge/F++iaPc392ctu1sodN6GouCWTZHJZEUv7vb+Y/x/mMO/O5Si199IpdIewGMUz2w3FCmsuS/w3v7ekEhaA5k/VyA//7ojijQ+NK/j0EUU3Ln2/Jpm5q8dphJJU5xNpc7vC+tq9Xc/E6VS6QQU3389CkPvzV+huSTJZLIf/uRb+6OwF8Uz2RN4LJVKD6ColfBGEY2UAHNkMln+b1/iv4Q/dx0KIx6J5Dvk8n+0OpZI/p0R3+R1+CIjr34oeEjPw4V/SJok87/T2vD3Yi8wCngFBZcjA0UP5+UymSzpBd7XHwaZTJYjlUqDUURdh6J4+EqBY8AymUz2V03HKvG3n8O/O36OvrZDcXD2ReF8ZALfAIv+ZtGf/zWMBOYgkVxA0fmqFEUBxwAUkdDjNKOfOYruS7NQZHV+TfD9DBLJbzqbv8KxA4lEBUUVdhxy+YNm3MsfDT/+3meiUsJMFXj7Nz5zib9ox0KZTNYglUr7o8jwjEJxHuqgKEI6Dnwjk8lOv6Db+zPXYSMjHonkV4145PLGRnwz16Hkt5QOWtCCFrSgBS34j6DQj5yGgr6glOgpQpEW3AZs+025nd++5p2fr2X/C3F1ieQ9FIaDK/9wNk8By5HLk37jer1//sw7P0v8tKAFfy/8+etQnX8Y8a34hxF/C/gGufyXRnwz12GL8dqCFrSgBS3460AiGQ3sQBFJPfAHXG8fEAa4Ipf/JSXTWtCCPx0veB22GK8taEELWtCCvw4kEgkK5QSFgsB/cohJJH4oWlu/iVy+5t98ugUtaIESL3gdtjQpaEELWtCCFvx1oDgkpwIHAJv/8GrWKJo7fPuf3lYLWvD/Ci94HbZEXlvQgha0oAUtaEELWvCXQUvktQUtaEELWtCCFrSgBX8ZtBivLWhBC1rQgha0oAUt+MugyTqvUqn0L88vkMlkkt967+8+Pvj7j/HvMD74+4+x5Tn9e48P/v5j/DuMD/7+Y2x5Tv++42uJvLagBS1oQQta0IIWtOAvg2Z32Pryyy9RV1dHVVUVgNLSUtTV1dHS0iIlJYXq6mrc3d25d+8e77//Pi4uLnzxxRdIJBLmzp3Lvn37cHV1Zf78+XTt2pWysjK6detGQkICBw8eJDQ0FIDc3FzMzRUtcO/fv88PP/xAZmYmoaGhDBgwAAcHB+RyOdXV1WhqKlrpKpQboKKigrNnz7Js2TLu3bvHxIkTmzy+4OBgJkyYwIwZM1i7di0//PADEyb8o+lJQ0MDixYtIjU1lY8++gg3NzcAMjIysLFRFNzt3r2bCRMmMGjQIH766SfxPWlqaqKhodHo7zU0NKCiovAhSkpKSEtLo6ysDFtbW2xtbcnLyyMyMpLs7Gw6dOiAl5cX169f55NPPiEwMJAlS5bwKy32/iXWrl0rvqvs7GxWrVpFcnIyL730Ev369UNTU5OCggLOnz/PkSNHyMjIQFtbGyMjI1q3bs3gwYPx8lK0IN6wYQO3b99m9OjRdOnShXPnzvHaa6+RlJTEkiVLmDdvnvg7AHp6eqipqVFfX4+mpiaqqqqkpqby8OFDtLW1yc/P59KlS+jr6zNjxgysrKyoqKhg9uymN5ZZu3YtdXV1VFVVoa+vD0BkZCRbtmzB39+fV199FYDKykoqKyvR19enrq6OyMhIli9fzokTJ+jatSs//vgjNjY2pKamoqmpiYWFBfX19eLZ37p1K0VFRUyaNIm0tDTmzZuHhoYGX3/9NRYWFly6dIlhw4ZhY2PDhQsXMDMzIyEhgbFjx2JsbMzmzZuxtLQkPj6e8vJy1q9f3+QxLlq0CBMTEyQSiXh+0tPTuX79OiYmJqioqHDgwAGqq6uZPXs27u7uAERERFBeXo6rqytVVVUkJyfj7++PiYkJa9euJSMjgyFDhnD16lU+/fRTgoKCWLp0KU5OTly4cIGYmBj8/PwYMWIEAJmZmdy+fRtNTU169eoFQFxcHF26dMHU1JQzZ85ga2vL4cOHOXnyZJPHByCTyQDo3r07d+7c4eLFixgYGNClSxfy8/M5efIkYWFhXLlyhUGDBuHi4sL58+cxNDQkLy+PmJgY9PT08PLywsDAgPr6empra9HS0gKgqKiI6OhoEhMTMTU1pWPHjmLPkcvlYo38Gurr6yksLMTMzAyAH374gZ9++gknJ6cmjy82NpYuXbqQnJzMDz/8AMCQIUNYvXo16enpHDp0iL59+9KlS5dGv/fRRx9x7tw5Fi5cSL9+/QDFvK5bt46tW7fi7e3NsWPH0NLSYtasWcTExNC+fXvatWtHp06daNOmDfX19airqwPw9OlTZs2ahba2Np9++imurq6sW7eO999/H1dXV06cOIG1tTXl5eW89957TR4fQK9evVi8eDEJCQk4OjrSpk0bunfvzogRIzAwMKCqqop3332XzMxMFixYgJ+fHwBHjhyhtLSULl26YGdnJ/b58vJyevbsSWxsLEeOHCEkJET8rZycHObPn4+Pjw8zZszg66+/5sMPP2TlypVIpVIePHhAbm4u3bp1A6C6upqMjAyioqJISkqiY8eOhISENGs/bdWqFVOnTm20r6empvL999+zfft2tLS0mDZtGp06dSI2Npb4+HgcHBwIDg6mTZs2ABw4cIBJkyYBMH/+fMLDw4mKiuLIkSO0bduWd955B01NTbKzs9HW1sbAwACAu3fvivXr6OjY6L6io6OJjo7Gzs6Onj17AjBr1iy+/PJL5syZQ3Fx0+Vslevw+bM2NTWVo0ePYm9vT3h4OAA1NTVUV1eLPfebb77h9u3bTJkyRcxTZWUl2tragOJMTE9PR0dHBwcHB0CxrpRF5CoqKqioqFBfX8/NmzeprKykQ4cO6OrqAnDjxg309fXx8fHh6NGjzJw5kwkTJrBw4cJmn4nz58/HxMQEDQ0Nnj17RlhYGNbW1pw8eZKSkhLWrFlDt27dxFgrKyvR1NQUe4REIqG+vp76+nrU1NRQUVGhrq6OhoYG1NXVkUgkNDQ0UFNTI/afZ8+ecfToURwcHBg8eDAqKiqUl5ejrq4unqebN2+ipaVF27ZtOX/+PG+//TZjx47lgw8+aNYY582bR0FBASYmJlhZWYnv9fnz4/m5OXr0KHv37qVz584YGRnxxRdfoKWlxbJly6isrOTKlSv4+/vz5MkT5s2bR9euXTlx4oSYQ1VVVUpLSzlz5gwRERHo6uoydOhQ8cwrsW7dOu7fv49UKsXHxwdQ7L11dXW89dZb/3JMzTZeKysrhaF67tw5ysvL8fPzo3PnzuIBBPDy8kIqlWJvb4+Ojg5Pnz7FzMyMiRMn4u7ujqmpKQA6OjpMmTKFsrIyOnToIH7f0NBQ/NvDw4Nu3bphZGTUaLOSSCTiQVB+adXV1VRVVaGmpoaWllaj6zQFjx49YtCgQaipqbF27VqGDx8u3isrK+PMmTPs2bOHyspKhg0bJoxXExMTSktLSUhI4O7du/j7++Pv7y8OQU1NTfGQAFy8eJH8/Hx69uyJoaEhqampAHh6elJZWYmenh6g2KB+/PFH7OzsGDZsGAAxMTGcOHFCbGLNxaeffoqdnR39+vXDyMiIzp07ExAQgLOzM9u3b+fBgwcMHjyYnj17oqmpSXJyMnp6ehQVFYmFqcTgwYMxMjLC1tYWAG9vb7744guysrIAhePh6+uLpaUlt2/fxszMrNFGW11dzY4dO7h16xYjR46kT58+ODo6UlxcjKWlJaB4RpoDiUSCuro66urqVFRUoKOjQ+vWrRk1ahSRkZHMmDGDuro6/Pz8GDBgACYmJlRVVeHg4MDEiROxsrLC398fbW1trl69ys2bNxk1ahSAMFwB+vTpg0QiQV9fn6qqKh4+fIiVlRU1NTWA4hl+5ZVXGDp0KGZmZmRmZvLJJ58QEhJCt27dSElJITc3V9xrc6A0skBhhCUnJwMK56umpoasrCx69+5NRkYG+/fvx8/Pj5CQEDw8PMjNzUVXVxd9fX1UVVXR1tamqqoKV1dX2rRpQ8eOHdHU1OTZs2cEBQURFBQEQPv27fHz80NLS4uCggLU1dWxtrYmPDycbdu2MWrUKF599VV69eqFTCYjOztbPBeDBg1qtvEKUFBQwMSJE2nfvj03b97E29ubNWvWcPr0aQ4dOoSrqyutWrXi9ddfR1dXV6x3MzMzTE1NGx32qqqqVFdXc/78ea5cuYKLiwv9+vXD19eX1NRUKioqxN89e/YscXFxdOrUifr6evbv34+RkRHvvPMOGhoaPHz4kDlz5hAaGsqHH36ImZkZFy9ebJajrKOjw2effUbbtm2ZMWMG5eXldOnSBQsLC+Li4njw4IEw0oqKijAwMMDCwoKKigp69+6Nq6uruJazszPDhw/HxsaGHj164OzszO3bt9m5cyegcBrDw8OxtLSkoqJCrOft27dz5swZDA0N6dy5M4mJidy8eZPExEQGDBjAkydPGDVqFDNmzBB7XXMwZ84c4uPjGTJkCB06dOD27dscPHgQHR0d+vfvT11dHRMmTKCysrKR4X/u3DkOHTrEokWLGD9+vDCadHV16datGz4+PuK5BIUhZGpqytKlS7l16xbvvPMOiYmJfPTRRwwdOhQAHx8fdu3axaJFiwgLC6Nz587o6ekxdOhQ1NTU2Lp1K8uXL290jv07KL9HbW1tEZzQ0dFBT0+P3r1706lTJwYOHIiJiQnGxsZ4e3uTlZXFl19+iaqqKvPmzaNnz558+OGHPH36FDc3N1xdXXF2dsbLy0tcF8DS0pJz585ha2uLl5cXT58+ZeXKlbRp04aPPvoIZ2dnrl69yo4dO8jMzKRfv374+fmRmJjIrl27yM3N5euvv2bo0KEsW7as2XN59+5ddu/ezZ07d3BwcOCll14iPDyc8vJyTp06hVwub3Renjx5ktu3bzN58uRG19DQ0KBdu3bo6+vj5eXFnTt3yM7OxsXFRdgFoDgbnjx5Qk1NDZaWljx48ICZM2diamrKqFGjcHFxEYasm5sbr7/+eqNnojlQ2g4aGhro6uoybdo0DA0N0dbWRkdHh549e6KhoSEMQFDsu8p/g2J/UZ4PtbW1v9jTVVRU0NLS4tSpU1y8eBEtLS369etH+/btxWd0dXUbyaUGBAQQGxvLihUruHXrFnZ2dty6dYuJEyc261xMT0/nyy+/ZPTo0QwaNEjcL8CVK1eIjo5mwIABuLgoOhF36NABBwcHzp49y/Xr1+nXrx8hISG4ublhbm6OsbExn332GdeuXaNdu3Zoa2szdOhQPDw86NChA/b29mhpaWFnZ0eXLl3EvxsaGsjKykJPTw8tLS3Mzc2JjY1l5MiRjBw5klmzZmFoaNik87DZxqu2tjZyuZzMzExycnKora2lpqZGeCIFBQVoaWmhr6/P4MGDxe+VlJTQsWNHgoODG33pDQ0NjBo1irq6OsrLy4Xnpaenh1wup7a2Fk1NTeHxZGRkUFZWhpmZGSYmJjx9+pQnT57g6uqKh4cHRUVFZGRkAIrDVjkZTYWOjg5nz55l6dKlwrNJSkrC1tYWFRUVSkpKMDU1xczMDDMzM5KSkkhISCAgIAAjIyNu3LhBdnY2U6dOZcCAAcIza2hooLa2FjU1xVeelpZGbm4uNTU1JCQksG7dOhwdHZk2bZowXJW/19DQQKtWrcQh7ObmxpAhQ0SEu7n48ccfUVNTIzs7m/Hjx4vvFmDfvn2sWrWK6Oho1q1bx8CBA8V7KSkpFBQUYG5uTnl5OVlZWZiYmIgoXHl5OUZGRsLIvnTpEjdu3KCqqgoTExPy8vKoqKhAU1OTqqoqYWRdvHiRkydP4u7uzqhRowgMDAQUHlh2dja5ubnNGl91dTUNDQ1i46murkZHR4eQkBAKCwv59ttvefr0KRMnTqR3797U1dWRlpaGhoYGL730Ei+99BKg8IyPHz/O06dPsba2ZvTo0UgkEiorK6mqqkIikWBhYQEojHQjIyM6deokIvCtWrXi66+/BhSZhN69exMfH8+5c+cICQlh586dFBcXM3z48EbGaFNQUFBAaWkpjo6OGBgYUFpailwux8fHh/LyckxMTDAxMeHJkycMHDgQFxcX+vTpg66urthw09LSiIiIwMPDg+DgYHr27ElBQQFlZWXU1tbi4+ODra2tyA5YWFiQm5srDMLS0lJxP8XFxZw6dQpHR0d69erF8OHDKS8vJz09HQsLC+GcNQdZWVlUV1czfvx4ABYvXkxtbS1Tp07l2bNnfPrpp7i7uzN9+nTmzZtHamoq5eXl1NbWkpubK/YZ5T1UV1dz8uRJPv74Y2JjY+nWrRsDBw7EyMgINTU1zpw5Q01NDe7u7sTFxSGTyVBTU8PT05OoqCi0tLSYMWMGGhoa6OnpER0dTVlZGRMmTKC8vJzq6upmja9v375ERkbSpk0bVq1aJQ6ToqIi8vPzUVNT49y5cxw8eBAbGxs0NTWxtrZmzJgxvPrqq2hqahIXF0dkZCQeHh4MGjRIHEzV1dXEx8cTEBBATEwM1tbWtG3bFmtra/H3DQ0NuXr1KnFxcaxcuZLw8HAuXLjA3r17sbOz48svvyQ6OppJkyaxcuXKfxsJ+TWkp6fTr18/Pv/8c9zd3Tl48CBnz56lpqaGmpoazMzMCA4Opra2lvLycvF71dXVFBQUcO/evUZZuOLiYtq1a0dOTg63bt2idevW6OjoIJfLUVVVFWfCmjVrmDJlisj8pKeno6mpiZ6eHmlpaZw/fx5NTU3c3d3Fnnz9+nUuXbrEuHHjmjw+U1NTcnJySEpKory8nE6dOmFgYECPHj14+eWXhUGem5uLjY0Nbm5uFBYWsmbNGm7evMmAAQMYNmwYH3zwQaPrVldX4+XlRU1NDTk5Oejq6vL48WNu3LhB+/bt8fLyorCwkFu3blFYWMjMmTMBRUR03bp1AIwcORIzMzPOnDnDRx99RJ8+fXjzzTebPYelpaXo6+uTkpLCoUOHSExMZNiwYSJLqowKJyUloa2tTf/+/QFFQKeuro709HRxLYlEwtOnTyksLCQ4OBgDAwNMTEx49OiR2FcKCwsxNDREVVWV3bt3ExkZyerVqxk0aBC7d+/m3LlzhIWFiXOipqYGLy8v5syZ0+yxKXH8+HGsrKxwcnLCw8NDPDfKKGK/fv3Ys2cPe/bsYfjw4ZiamvLw4UNheyj3w9LSUoyMjDAyMqKuro6ioiI0NDTQ1tamuLiYu3fvsmXLFo4dO0bPnj157bXXxLzl5eVhYWGBtbU1NTU1IqhhYmKCTCYjLy9PZFJ++umnZjnKO3bs4Ny5c3h7e4s9QonCwkKePHlCSkoKLi4upKSkYGxsjIGBAdu2bSM6OprTp0/To0cPYVh7e3uTn5+Puro6c+fOpaamhgkTJnDw4EGcnZ3p1q0bI0aMEJkhJZ4+fUpERAQODg506dKFPn36cOvWLWQyGbdu3aKsrAxDQ0Nqa2v/7ZiabbxqaWnR0NCAp6cnDg4ONDQ0iA1xz549PHz4kFGjRtGqVSvS0tKor6/H0dGRgIAAEhISyM/Pb2S8lpaWcuzYMdLS0jAyMqK6upqamhrCwsJo3759o9TdxYsX+eyzz4iOjmbatGl89NFHRERE8NFHHzFx4kQWL16MjY0N+fn5uLm5YWRkRGlpKYcOHWry+Dw9Pdm7d69YgDExMaSkpGBmZoaenh6DBg3Czs4OFxcXnJ2d2bFjBytWrODdd99l3LhxTJ48GWtraywsLEQIHhSGWH39P9r/9u7dW3joly9fZv369ZiamqKiooKVlRXm5uaEhoYSGhqKubk5vr6+4nd79uxJUFAQtbW11NXVNXcKsbGx4fz58+Tk5DQ6zEBxoH7zzTdcvHiR2bNns2PHDmE0m5mZYWtrS0lJCStXrmTz5s1MnDiRhQsXAgrHIjMzk6KiIlRUVHB1dSUrK4vZs2djZWXFggULMDMzY8WKFWzYsIGgoCDeffddBg8eTFpaGikpKTx48ECkDyQSCYcPH+bLL78Uqb6moKysTEQUQbG5KiPgoaGhfPHFF+Tk5GBgYEBGRgZyuRx1dXXS09Opr6/Hw8MDADs7O958800ePnzIV199xcmTJ1m7di06OjqsXbuW9PR07O3tKSkpISsriwEDBjBhwgQRmVamfuLi4pg+fTpZWVm8/vrrWFhYkJKSgoqKCg4ODs02XEFBg7h06RKDBg2iQ4cOhISEkJCQQEVFBRKJRBioDQ0NaGlp/Wo06fHjx6xYsYIBAwYQHByMlpYW1dXVbNiwgStXrvDo0SOKi4sZP348y5cv59mzZ0yfPp3OnTvz2WefYWxsLIz4Xr16YW9vLwx3UNB3NmzYwKVLl9DS0mpWSh3Aysqq0ZoZNGgQhw4dYvjw4Vy5cgVjY2OsrKwARQTM2tqaa9eusXz5cgoLC1m0aBEuLi7s378fQ0NDHBwc2L17N7GxsYBifk6fPs2QIUOIjY1lx44dJCcnM2vWLNzc3NDT00NdXZ2QkBA++OADsVkDuLi4sG3bNh49esSJEycoKytj0aJFwnFuCoKDg9myZQt+fn6NIvoFBQV4eXnx4YcfMmLECKqrq7GxsSErK4uCggK6dOkionGnTp1i2bJlvPzyyyKCc+LECVavXo27uzvffvstlZWVZGZm/iILJZFI+OCDD8jNzaVTp04A+Pr6Mm3aNKysrLCxscHGxobvv/+empoaAgMDuXr1arPmcP/+/ZibmwvaypAhQwgNDRWUF1Cs1/j4eMzNzTEyMgJg+vTp9O3bF2tr60ZUjosXL3Ls2DEePnyIlpYWbdq0YcSIEXTp0oXKykreeustrly5wqeffsr7778PKCgI8fHx9O/fn/DwcIKDg4mMjKS0tJTy8nLu37/Pnj17UFdX58iRI4Lq1RQkJydjaWnJzZs3uXDhAk+ePGHSpEm0bduW3Nxcjh49yp07d1BRUaFjx450794dY2NjFi5cSHp6OsHBwb963StXrnD27FlxmEskEurq6nB0dKR169aAIjq2cOFCTE1NxZ4ZEBDA0KFDSU9PF8+qkZERenp6PHnyhKNHj+Lp6dnsORw6dCjh4eG4u7tTVVWFjY2NmCs1NTWmT5/Oxo0bkUqlDB8+nOXLlzNy5EgaGhpE9gWgY8eOGBoa8u6771JUVMTq1asJCgpCT08PDQ0NoqKi+PrrrwkJCRHZiFOnThEVFYW7uzs7duzg4sWLYo9WUgflcrlYE78Hu3btIiAgAAMDA3GuVldXo6enh6qqqgjMqKioiD3P1dWVZcuWkZqaytixYyksLGT79u0MHDiQGTNmUFFRQUREBEZGRtTX13Pp0iWuXLlCbm4uAwYMQCqVCkrVkSNHCAsLw9/fH0AE7UBhcwUEBFBeXk6PHj2YMGECUqmU/fv3N3l8t2/f5o033qBr166kpKSgqqqKkZERurq6DBo0iHbt2lFbW0tpaSkWFhYkJiby7bffEh0dLSiDyu87IyMDVVVV5syZQ0VFBb6+vtja2vLjjz/yxhtvkJiYiJ6engg6KMejrq4uaHLV1dV06dIFfX19Ro4cyaBBg7C3t8fAwIDq6ur/TuT1zp07IspYUVFBaWmpeDjLyso4evQodnZ2GBsbc/r0aVJTUxk+fDg+Pj64uLgQERHBjh07sLW1ZcyYMRgbG6OlpcW9e/cwNzfHzc0NJycn7O3tARoNwtLSEmtra5KSktDV1UVdXV1ETZ6PeigNPeUD3hzjtVWrVrRp04bKykouXrxIYmIiPj4+aGlpUVVVRXFxMZ07dxZ0hZSUFBITE9m8eTNeXl4EBQUxePBgUlJS2LRpE/n5+eLhUBpT1dXV5OXloaenh56eHt27d2fq1Kls2bKF2bNnExgYSHh4OMbGxvj4+IjoSXR0NA4ODtjY2FBRUYGFhUUjY6GpGDJkCNevX2/kRBw5coTk5GT8/Pw4cuQIa9asITk5mTNnztCnTx/Bd1JyVFNSUgBFRF35YLq7u+Ps7Mybb77J5s2bef/99xkyZAh+fn40NDTg6OgoUrtyuRwNDQ2cnJyora0VHCFltE75TJWUlIgoWVOhTD3dvHmT9PR0wsLCMDU1pa6uDl1dXRFpjo+PZ/bs2bi4uLBkyRJsbW05evQoERERmJub06ZNG2xtbbGysuK9997j2LFjDBs2jODgYJ4+fcqpU6dQUVHB2tqaadOm8corr5CZmcn27duxsLCgd+/eAKxatYoLFy7w1ltvsWrVKgDu3buHp6enONTv3LnTrDlUbmwxMTHY2dkJhwqgrq6O4uJiDA0Nqa6uxt7ennv37rF+/XpCQ0MFX7mgoID79+9TWlrK6NGjadOmDWlpaXz++edkZmaira1NZWUln332GZ06dcLc3Jy8vDxOnTrFwIEDCQkJoaKigrKyMjw8PMShWFdXR2VlpYgMm5qaNoqqNRVJSUkiYl9WVkZDQwMaGho8ePAAAwMDXn75ZZydncXnlZzlCxcu0K1bN6ysrCgrK+P+/fuUlZVhY2PD48ePMTExYdiwYYSEhFBaWiq4eXfv3kVHR4cbN26gp6fHm2++SVhYGOrq6ri5ueHu7k5NTQ3Xrl1DX1+fHj160KNHDzZt2oSGhgazZ8/m3XffbfL4PDw8MDQ0pKCggMOHD2NhYYGzszO6urpYW1ujra39q2nQK1eucOHCBQIDA8XhmpOTI9botWvXuH79Oh4eHgQFBfH48WNu3rzJ06dPMTIy4tGjRyKb0LFjR3HdoqIizMzMxHN7/fp10tLSCAwMbERRaA46duwoOJDJyclUVlZSXV1NTEwM9fX1ZGVl8ejRI9zc3ER6ub6+njZt2gh+nPIzxsbGSCQSrl69Snx8PAAODg7Cub527Ro3btzA29tbGK4FBQVcvnwZVVVV4UwWFBQIKpG5uTn37t0jNjaW/v3707Vr12YZr2lpaXTq1AlPT0/S0tJEtlBdXZ2srCxOnjxJdHQ0ampqPHnyhMzMTEGhUKKmpoaGhgYuXbpESkoKffv2JTg4mNjYWGJjYzEzM0NfXx9dXV28vb3FtXV0dHj77beFU3L16lVqampYs2YNFRUVInrVoUMHcRZlZWVx+fLlZs2hqalpI+oNIP4/LS2Nuro6nJycGDBgAFu2bCExMZGCggL69OmDqakpTk5OVFZW0tDQgK6uLq1atcLBwYHs7GyxLyi54/r6+uzevZuTJ08yZswYpk+fzoMHD7h27RouLi5oamri4eEhzj0lbes/RVpaGqmpqbzyyivo6emxcOFC4uPjWbVqlcg4+fj4oK2tLTJOxsbGeHh4kJWVRVVVlZj7xMREsrOzRWRfT0+PgoICsWfb2NiINDxAfn4+xcXFjYz8srIyQX1UUVFh6tSpmJubExAQIK7RHOP1pZdeYsaMGYDizPDw8EBLS4uSkhKSkpLQ0dFpRAtSVVXF0tKSQYMGYWtrS2VlJaCgPijvUxk4UKJ///4sWbKELVu2EBYWhpubG9nZ2Vy6dInY2Fjs7e3x9vamX79+1NfXc/fuXdTU1JBIJGhoaKCmpibmsinNs5ptvO7Zs4e2bdvy+PFj1q9fj66uLm+++SZWVlbiAHv48CF6enpUVVWRmZnJ3r17MTExwcbGhtLSUnbv3k1hYSH19fVMmDCB8PBwEhISiI2NxcLCgpEjRwIKw0VFRUWk0ZV8t+LiYuEJtGvXjo0bN/7ii/y9MDEx4ciRI0RFRVFaWoqvry9t2rQRacWoqCiGDBmCr68v0dHRGBsbM23aNK5fv867777L2LFjmThxIvX19Rw+fFgUkLRr1078DXV1dY4fPy6IysHBwXz++ecArFixQjz88fHxwqNet24d3333HUOHDsXFxYWoqCj69esnNunmwNnZmV69ejWKup4/f55Vq1YxdepUvvvuO0JDQ7l69SoZGRncuXMHPz8/9PT0RKrK19eXN998k1atWgH/SK+oqanh6+tLVVUVmzZtwt/fn4ULF6KlpSUoJ1KplH79+uHi4oKxsTF79+4lJiaGLl26iEiEkquqTAv/Hnz99decOHGCbdu2ER4ejpqaGqmpqcIxysvL4/Tp0zg7O7Ns2TK0tbVp3bo1ixcvJjMzkylTpvDKK69QX1+Pk5OT4HxZWFgwaNAgqqqqePbsGUOGDOGVV14BYNu2bXzwwQcMHDiQNm3aYGJigqmpKX5+fiLNBYrNR0tLC11dXaqqqtiwYUOzxta1a1d8fHz46aefWLt2LSNHjhQbW3R0NCkpKfTq1QsTExNKSkqIiIggIiKClStXCuPVwMAAW1tbkpKSGDt2LPv27UMul1NSUiKiIydPnuTGjRssWrSIOXPmMG/ePDZs2MDo0aOZPXs2b731FiYmJhQVFYk1WVtby71791BTU2PUqFFMnDiRlJQUli9f3qwx7tixQxj3KSkpFBUV4ebmxpEjRzA0NKSqqqqRQ7hv3z4uXLjAyy+/zK5duwC4cOECdXV11NfXU1BQgKqqKvb29rRr145XXnmF8vJyli9fTnR0NN7e3ri7u3Pjxg2MjIwIDAzE3t6enJwcTpw4gYuLC66urmzcuJH79++zb98+3Nzc6N27N3l5eY34902B0uhYvnw5O3fu5J133hFGzfP8W/hHYWdZWZlI52/cuJFhw4ZRVlYm6Ct3796lpqaGIUOG4ObmxsaNG/n2229JTU1FS0uLuro6ZDIZe/fuxdHRkSlTpjB69Gjs7OxE+hwUFKC9e/dy6dIl+vXrxxtvvPGLLE1TsHTpUsGvTEhIYMWKFdy8eVPMSX19Pf7+/nh7e4vfqa2tpaSkBGNjYwAuX77MV199xZQpU3j55ZcJCgoiPj4eJycnpk2bhp+fH5cuXSIqKopVq1YRFhYmrmViYkKXLl0wMDDA1dWVffv28cknnzBkyBC6du0KKIy7Dz/8kKysLFGc1FSUl5dTWlpKv3796N+/P/X19WJeTUxM6Ny5MxYWFly5coXTp0+jr6/PkCFDAMWe+Xz269ChQ6xbt47vv/+eKVOm8NZbb5GYmIi1tTVaWlpUVFRw7do1Hj9+jKmpKfn5+VhbW9OjRw9SU1N57733sLe3F8a3MmthbGwsztSKigqmT58uuKJNgdLZP3r0KG+88QYpKSnCEc/Ozmbr1q0MGTKEbt26cfjwYXJzc9HT06OhoQEjIyMeP34sCquUWLp0KVVVVRgbG4tAjpIDaWRkRHl5OQUFBbi7u7Nx40ZWrlxJz549KSsr45133uHLL78EGhdW1tTU/O4IbFBQED/++COJiYm0bduWhw8fEhUVJdahtbW1MLLq6uqEg6IMBnh6elJdXY1EIiE7O5vIyEiCg4OFQ29ra4uTkxO2trYcO3aMU6dOYW9vT9euXWnbti05OTmNjHAdHR2RwdPV1aVDhw7iuYqIiODo0aPNGt+0adMAheH69OlTHB0dRe3SF198QWlpKQsWLKBt27aAgpr4/vvvc+HCBR48eEBVVRXl5eX/8rkpKSkhLCyMQYMGiazmnj17OH78OBcvXqSyspKBAweyZ88eCgsLWbVqFXZ2dmhqarJixQosLCw4fvy4iL7+OzTbeB0+fDiqqqqcPn2a+/fvM336dLKzs9m0aRPW1tZ89dVXZGdnk5ycjJ2dHba2tjx+/JiNGzdSUVHB06dPsbW1JTQ0lPT0dD755BMKCwu5ceOGqJ4sLi6mpKQELS0txowZQ2VlJRs3bqSkpIT+/fvj5+cnNnJ9fX0RlSsuLmbjxo3cunULAwMDTE1NG3kzTUFRUZHw5pTV9cpD2cjICCcnJzQ0NETqICgoiL59+9KpUycuXLjArVu3SEpKQk9Pj8DAQLp27UpwcDAXLlzg2rVr9O3bl3bt2tG3b1+ePXvGtWvXqK+vp6qqiu7du+Pm5sb169cpKioSh2FlZaXgEtrY2GBsbEyHDh1wc3MTxUHNQXx8PIsWLcLBwUF46OPHj8fBwYHIyEiWLFnCxx9/TEhIiChkUXradXV1XLlyBVtbW/GgA6xfv57r16+joaGBt7c3K1as4Pr163z11VfExcUxYcIEtLW1RUr7eaJ7p06dGDVqVKPNTRkVtra2JiwsjEuXLjV5fFevXkVLSwt7e3uCg4NJSUmhsLBQpM+Ui9De3p6VK1cKLrO2tjYODg707t2bx48fC6eppKREfM8XL17knXfeoX///lhZWRETEyMM18WLF3P37l3Gjx9PQUEBixcvZsKECcycOZOwsDDu3r3L1KlTqaqqolOnTiKtoqWlRZcuXZodETEzM8PS0pJbt24BikP/66+/ZufOnYJyonxODQ0NmT59On369BG//3wU4cGDB1y+fJkBAwawcOFCqqqqmDhxIq+++iqffvop69at44MPPmDs2LHk5+eTlpZGWlqauJZyjSjv4+rVq9y5c4fu3bvz6quvNqsIRomqqiqxltXU1NDR0cHb27vRcwIKw27jxo2kp6czdepUpk6dKt5Tcifbt2+Pj48Pz549IyoqioaGBlRVVTEwMGDy5MnY2dlhZGREnz59UFNTY926dSxevJiZM2fStWtXWrduLeghenp6PHjwgB49evDee+8hlUqxs7P7XdHl8vJy4uPj0dLSEkZXXV0dampqyOVyEV1RFsIsWrSIgwcP4ubmRqdOndDS0sLPz482bdqgqanJhQsXxPxnZGRw5coVHj9+jJ2dHfHx8RQVFZGYmEhtbS1Pnz5l8eLF6OnpIZVK0dPTIz8/H4lEQnl5Ob6+vmhqauLo6EhmZmYjCkdTkZ6ezq1bt2jfvj11dXWiItnBwYGAgADU1dUZMGAAFhYWrFixAm9vb8LDw9HS0hIOkZOTE/7+/lhYWKCrq8tLL72Era0tI0eOpF27dqSkpHD27FlKSkqwsbERRnhmZiZZWVk4OTmJbJyyQtzExITa2louXrxIfX09ffv25caNG6xYsaJZgZBnz55x48YNDA0NhVKCEqampnTv3h1HR0fu3btHVlYWDQ0NjYpxn3doBw0ahKamJikpKXz99dfCuPP19UVfX5+LFy+yd+9efHx8GD9+PLGxsWzcuJF79+7h5uaGg4MDVVVVbN68GWtra5HZys/PF+lfCwsLOnXq1KxaicrKStauXUtOTg7du3cnIiKCyspKbt68yYEDBzhw4ADu7u6iqFq5F1y6dElw/idOnCjqWLKysoTBnpWVhaWlpeDC7tixgw8++IB27doJ58XOzo4BAwaQnJzMjRs3KCoqIjMzE2tra1JTUzlw4ACXL19GRUWF8PBwXn755SaPTYnx48eLoqYrV67Qvn37RsVnSl5vXV2dsCkqKirYuHEjtbW1fPXVV4CCIlZQUEBYWBhqamqcP3+eZ8+e0bFjR3x8fNDT0+PixYtkZWVRVFREaWkpsbGxnD17FolEgre3N7q6uo2KsTU0NIQKwt69e4mLi8PT05OCgoImj+/69es8ePCAmJgYcnJyOHXqlMgYjBgxggsXLjBv3jwCAgIYP348rq6u3Lx5k02bNlFdXU2bNm2QSCScOnVKFOd5enqK4tW6ujqh1qE0Ps+dO8eWLVuIiooS9xETE8PMmTNxc3PDy8sLDw8PiouLCQsLIz4+npUrVzJ58uQmUcyabbwqI4hRUVEUFhYSEBBAQUEBn332Gf7+/kyaNAkrKyscHR3Jzc3F09MTOzs7ZDIZmzZtwtLSEplMxrBhw9i4caMgLJuYmKCtrc358+c5f/48dnZ2TJkyhczMTG7evMnnn39OYWEh165dY9SoUbRr106kDjQ1NVFTU6O8vJzDhw//wtBpTuQuOjqaV155hYCAAO7fv9/I+O3QoUOjNFvbtm2pq6tDVVUVR0dH+vTpw6ZNm9i1axempqZIpVJ69uxJREQEs2bN4tatW5w/f57du3fj4+PD0qVLeeONN5g9ezbBwcFs3LiRHj168PTpU+7duyf+tra2Nr1796Z9+/ZYWFiIw/vJkydcuHChuVNIYmIiUqkULS0tnjx5gqamplBHmDFjBvPnz0dTU5P3338fe3t70tPTKSkpwcDAQHCcCwsLSUhIwMXFhZKSEm7cuCHkfhYuXMiCBQtYv349U6dO5fLly0RFRbFhwwZycnLYu3cvbdu2Fbzitm3bsmbNGjQ1NYUxra+vj4qKCrq6us2KEoBivs3MzJg3bx6fffaZiP4r51B5kNnZ2TFjxgzKysoEV9fe3p7JkyeTk5PDgwcPhKGrNLa7desmJE28vLxEtPP7779nwYIFYuwzZ87ku+++o1u3bgQHB9OrVy/OnDkj5LCqq6sZNWoUWlpaREZGEhQU1CzjVcnDzszMxMbGBgsLC65fv87KlStFcVhkZCTJyckEBATw6quvMmrUqEY0HG1tbWxsbCgpKREUFGtra2bPni2q21VUVFi4cCGxsbFcvHiRI0eOkJaWhra2diMjMjU1FUtLSzQ0NKitrSUlJYXTp0/z7NkzjI2Nf9eBMmzYMA4ePEhcXBy+vr6NCmBSU1MxNzdHS0uLqKgotm7dipeXF9999x3wD+qCsmLfx8cHExMT9PT0RBZIOQ82NjZIpdJGkYX8/HzOnz9P165d6dq1K126dOH+/fvExcXRrVs31NXV2bBhA9u2bWPgwIEiktFc6Orq0rNnT+zt7dHV1SU9PZ29e/cSEBBAx44dyczMJC8vj9DQUOLj47l8+TIBAQHMmzcPLS0tLl++zJ49e8QBkJCQQFpaGrdv36aoqAh1dXVGjx6No6Oj4Jbq6+vTpk0b4uLiKC8v5+TJkwwYMAAjIyPOnDmDgYEB3bp1E/JNoAgMFBYWNnt8s2bNQl1dnWfPnvHkyROcnJwwMjL6BY/98ePHfPHFF1y9ehVbW1v8/f0xNDSkpqaG9u3bN6rIVhamKQ2hmJgYSkpKyMzM5PDhw2hra+Pk5ERiYiL37t1rVC8gl8sJCgqisrKSH374gQsXLuDp6UlISAi2trb07t2bmJiYJo/v8ePHJCUloampiYODA9ra2pSXl2NsbIy+vj76+voYGBjQtm1b9u/fT2ZmJqWlpeTl5XH79m00NDRo06YNdXV19O3bl+7du/PGG2/wySefABAWFoafnx83b94kIiICUOxhWlpaJCUlcfHiRTQ1NQkLC2Pp0qXcvXuXK1eusHHjRlq1asWwYcOIi4tj3rx5lJWVER4ezmuvvdYs4/Xbb79lz549vPbaayJDGBcXJ4pP09PTG9V3KIuTr1+/zpkzZ6iqqkJLSws1NTXs7OzQ0tLC2tqa3Nxczpw5Q/v27XF1dWXevHns3r2bzZs3C3kvJV9Yqdywf/9+oXICCqd7165d4rvx9fX9XeuwU6dOTJ8+nfnz53PixAm2b9+On5+f4Mj37dsXFRUVQZeztbWlrKyM69evk5KSwrBhw8jKyhL886CgIK5fv87kyZNJTk5mwIAB9OzZk/j4eBEIefLkCatWrSIxMVFQLUxNTRk8eDBmZmbU1NRQVFQksipHjx5lzpw5vPLKK82Wyjp58iSPHj0SgbfLly9TXl5O79696dChA3369KF9+/bcv39fROmVtoy9vT2Ghobo6OgQGRnJV199hba2Nq+//rr4nKOjI/3796e8vJxNmzZx69Ytbt26xcOHDwHw8/Nj3LhxJCYmsnbtWvr27cuRI0cEDaVfv37cvn2bBQsWoKamxvz58//tmJptvB4/fpxu3bpRX19PdHQ0n332GeHh4QwYMIAbN27w9ttvs2TJEoyMjLh+/ToNDQ34+fnRv39/GhoacHZ2FhVoSmKui4sLK1euxMfHh/nz57Nt2zbGjRvHO++8w+7du/nxxx/p2rUrhoaGGBkZYWVlhbW1Nfr6+o10ylRVVXnttdeEQTx//nwSExObNb779+8DipRLRkaGCPs/n56ora0VZG41NTWKi4vR0dFBVVWV0NBQrK2tqaqqIjExkVmzZnHlyhUiIyMBRRqzR48exMTEYGxsTGRkJHK5nNdeew1zc3PmzZvHtm3baNu2bSNO6qlTp8jIyODjjz8GFIfzli1bSEhIaBT1agocHBz46quvcHZ2JjQ0FFtbWy5duiSMyyVLlogCDoDTp0/z/fff4+/vz+uvv87MmTN5+vQpUVFRREZGUl9fT+vWrfn444+xsrLC3t6erVu3NjKsz507x6lTp3j48CGLFy8GFEarsbHxL+gPr776KomJibzxxhv07t0bAwMDjh8/3uTx5eXl8eDBA0aOHEmPHj2wtramvr6euXPnMnz4cL7//ntA4aj89NNPWFlZMXToUKHzBwpqR1RUFGlpaXTu3JmXXnqJV155hR49erBz507ef/99oVXc0NBAQkIC06ZNo3fv3ty5c4eoqCg0NTUbbaTh4eHo6+uTnp4uJMZOnjyJTCbDzMysWZvujBkzUFNTo6qqCnd3dx48eIBEIuHDDz/Ex8cHHR0dli5dSllZGUuWLKGqqorx48cTEBAgtDqVz0FWVpbIhiihfKbKysqoqalh5cqVlJaWkpiYyN69e0XW49GjR+zYsYNHjx4xcOBARo8ejYaGBkFBQejq6tK+fXs6d+7Mo0ePmjw2Jfz8/MjPzxfPvjKi+uTJE9577z0yMzPp1asXmpqaGBoaYmdnJ35XTU2NI0eOcOLECUpKSti1axfR0dEEBATw6aefiujThg0bqKioYNKkSYSEhHDv3j2WLVtGbW0t27ZtayTNV1FRIYqp5s6dyyuvvEJKSgqZmZlYWVk1O12pdP6Cg4O5d+8e7777Lk+ePCE5OZkhQ4ZgZGTEuHHjOHToEBMmTKC6upo33niD8ePHU1FRwbRp0/jhhx/Q0dHhyJEj2NjYMHDgQFauXMm5c+dQVVVl0KBBmJmZUVFRgZmZGdnZ2eTn54uCkU8//ZQjR44QGBiIrq4up0+fpm/fvsKxVEJ5eDUXyuzMV199xeHDh1mwYMGvVkl7e3szb948Vq9ezauvvsrSpUvp27cv+fn51NXVCaqPEpmZmcyZMwc3NzfGjh1LZGQkhw8fxtbWllu3bvHDDz9QUlKCu7s7OTk57Nmzh7i4OM6cOcPt27fR09Oja9eu9OnTBz8/PyH9NmrUqGYZr6AwYJUO7jfffMODBw9YtGiRMLC0tbUZNmwY33//PQcPHmTixImiyOvLL79kwIABjB8/HrlcztatW0VBUvfu3Rk6dCj5+fkcOHAAUOwhfn5+7Nixg127dmFlZdVIocXGxoZWrVqxYcMGcnNzqaqqQl1dHXNzc+zt7fHx8eHcuXPNGl9MTAxz5syhe/fu4jVPT0+srKxo06YNSUlJZGZmivfWrFnD9u3bCQkJYcWKFaxatYqdO3dy4sQJZs6cKVQr9PX1uXHjBmvWrMHAwICnT58CCkqBtrY2L7/8Mm3atBGvFxcXExUV1YiCpyx+CgwMRFNTU/A6mwu5XI6bmxurV68Wut8ffvghJ06cIDw8nL59+2Jubk56ejo//fQTZmZmhIaGsmXLFm7cuMGePXvYtm0bDQ0NwvDeu3evkDA8duwYly5dokePHnz55ZeYmppy+PBhduzYgbm5OUOHDiUtLY1vv/2WpKQkLC0tyc/Px9zcnP79+wunLygoiM6dOzd7fKNGjSItLU3QM4qLizE2NhbPqIaGBitXrqSmpkYEJUaOHElOTg6GhoYiW9C/f38RXVdGTR0cHLCzsxPPwqlTpwR1xc3NDTc3N/z8/IQsaPv27TEzM2tUpAoQGBjIW2+9hb6+fpOyPL+rYEtZ3Xzt2jWePn2Krq4uCxcuZO3atdy6dYtLly4RGhrKw4cPiY2NpaGhgX79+jUKwwNCM23gwIGCV2Nra4uJiQmGhoakpaVx9epVqquref/99wUfTFlU06tXLxENLCoqQldXlzFjxghjtqioqNk8O3d3d0G6zsrKIjc3FycnJyEyXFtbS2VlJbW1tYLfZGhoyL179ygqKiI4OFhM/urVq7lx4wYmJiaMGjWK6OhoYmNjycvLY+vWrVhZWeHg4ECvXr0YNGgQ3333nfBsFyxYIIyZuLg41q9fT2JiIkZGRiIS1tDQgKWlZbMlepycnFi3bh39+/dHW1ubEydO8M4775CQkMDq1auFRwUKGY3ExESePn2Kl5eXkPJQFq+lpKQImbTx48fj5uYmIq76+vqMGDFCpHiqqqqoqKjAyckJdXV1kpOTuXfvHpqamiJtuXPnTi5cuCAWiDJ60RzMmTOH3bt3ExERQceOHfH19aWurg5TU1PKysrE53Jycli+fDm+vr5iQ1VKvxUWFqKmpsaNGzeIjY3Fy8uL3r17o6qqSlpaGo8fP+bw4cNoaGhw+PBhcnJy6N+/P9HR0YK3rNSrrampQUNDgy5duvxCcL60tJS6ujry8/ObRXEpLCxET09PSNhs3bqVHj16NJIzKiwsRF1dHX9/f+Li4jh9+jQJCQn07NkTf39/rK2tG6XvHj9+LGTNPDw8kEgk3L9/n+TkZFq3bk1YWBg+Pj5CZs3Q0JBnz55x79497t+/j6WlJZ07d8bDw0NEK11dXXny5Anbt29v1hyCIrrs5+eHlZUVBw8eZOHChXz99dc4OTnh6enJ5cuXqampYcCAAYwZMwZvb2/KysooKysjKipKaErq6OiQmZlJfn4+77zzjnDMkpKSyMvLIyIiAn19fYKDg8nOzub8+fOEhYWJPamgoIC0tDQyMzPR09PDzMwMKysrrKysUFdX5/r162RlZQkOZVMRHR2Nuro69fX1QmYvOTm5UVWzki+/dOlSvLy8BNVESQfw8vLC3t6ea9euoaGhwbRp0zA2Nubs2bMAvPnmm6ioqLBz507u3r2LsbGxKMIoKioiMDBQFFQq/7ay0BUUCiLGxsZoa2v/gofbFNTV1fHkyRNycnKwsrISxZoSiYTS0lIqKyvFntClSxeePXvGG2+8wZkzZ+jatauQAmvbti0aGhqUlpZibGzM1q1b2bp1K5MmTcLFxQW5XE5SUhIRERGYmJhw584dKisryc/Pp7CwkLq6OiwsLLCwsMDFxYW6ujrc3NwYPHgwJiYmJCUlUVpa2mzljylTpvDtt9+irq5OZGQkH3/8MSUlJcydOxdAyEgq98D09PRGhTZKLuXVq1f56aefuHLlCqBo/qJsprJy5UosLCwYOnQo06dPJzY2li1btpCTkyOi6gUFBRgYGKCtrY27uzvBwcHcvHmTtLQ0VFVVeeuttxgyZAiOjo58+OGHzWpSYGFhQY8ePTAwMKCgoEB8l0oda6VTo6xTqK+vJzk5mZkzZzJu3DhsbW0ZNGiQoIEoC2o3bdokMjmgaGhhbGzM3bt3Wb58OR4eHpSXl3Px4kWxtpTSmBYWFrRt21bsmUOGDBHnrpKa0hykp6cjkUhwdHREX1+f+Ph4IiMjuX//fiNh/fr6emEEKrNAtbW1/PTTT2hoaNC3b1+SkpJYunQpEomEAQMGEB0dTXp6OlpaWri4uDBu3DihNHP48GEKCgrw9fWlX79+REVFicyxp6cnxsbGYt0NHz6cmpoa6uvrefLkSbPGpyyAjI+PJz4+XjSp+eGHH7CxsaF379707NmTtLQ0jhw5goeHB7179yYsLEwUS4JCzUKZbVTC0dFRSNcplSGsra3x9fXFx8cHc3NzbGxs0NPTw9HRsZEUXW1trVDIUVdXF41umoJmG6+TJ09GV1eXl19+mU6dOlFXV4eDgwNWVlZ8+OGHohtTQkICenp6aGpqEhMTQ2Bg4K967tnZ2dy8eZONGzcSHR3N7t27KSgoYMGCBWzYsAErKyt8fHyoqqoSv7N//36RDjI0NCQ3N1dUq928eRMzMzOxgP9Z0+zfYfTo0UJbzcfHRwibK5sMqKmpUVlZSV5enuDGKovKSkpKBN9KyWscMmQI9vb2XLp0ifHjxzNs2DAWLVrEjh07WLBggSjy2rZtm4iqfvDBB0ybNo26ujrOnTvHuXPnhCfyySefUFxczNy5c1m6dCmZmZksWbKkWWOsqKigc+fOjBkzhtraWubPn096ejpHjhxpxIkEBafLx8eHffv2CcPr0KFDFBcX061bNzp27MjRo0c5dOgQFy9exNnZWWwefn5+vPHGG6K7kb29PZ06dWLs2LGYmZlx7do1Nm/eTJcuXcjOzhaVikoZNGUUNCcnp1nje+utt5gwYYLg8BgYGDBq1CiWLVuGs7OzINu7uLgQGhoqis4AoXjg4uLC1KlT+eSTT1i9ejVOTk6cP38eLS0tAgMD2bNnD0ePHmXAgAGCbnD79m1ycnJEg4bCwkIiIyMJDAxsVJDyPMLCwmjbti0GBgYiIt0UKGWglBJPjx8/xsHBQagMALz22mtUV1dTXV1NQEAAFy5c4NixY1y5cgUzMzPs7e1F+i82NpZr164hl8tFFNrU1BRHR0eSkpJYu3YtWlpa9OzZUzRnSEhIoKamhtdff53c3Fzxt0BRFJidnc25c+f49ttvuXPnzi+erX+HH3/8kVmzZhESEsLBgwf55ptvMDQ0ZPHixSLjk56ejo2NDe7u7sIQnzp1Kvv372fMmDF0796d4uJidHV1GTVqFP7+/lRXV3P37l0cHR1ZtGgRP/74I6mpqcTFxdG7d29Onz5NREQER44cEbJOGRkZqKio0KpVK1q1aiVkfm7cuEHr1q3R1tZuNoVHQ0ODQ4cO4ebmxltvvcVrr71GVlYWmpqamJubY25uLjrRrVu3TlCWFi9ezJEjR5g9ezYvv/wyOTk5XLt2jdatW2NsbExmZibR0dE4OzsLR97X15f169fTuXNn5syZw5YtW/j4448ZMWIE7733HiUlJRQWFuLu7i6yTcr0t7a2NpmZmaLCvzmQyWTs2LGD1157jeHDh7No0SI2btzI5s2bMTc3JzU1tVF3qrCwML744gs0NDS4fPkyKSkp3Lp1i7Vr11JcXIy2tjba2trk5eVhZWVF69atiYuLE3tEREQE1tbWdO/enfv377Np0yYAOnfuzLvvvkvnzp0pLi6murqa2tpaYmNjMTAwwMbGhsLCQm7fvt2s8Y0fPx5VVVWePHnC1q1bKSkpwcrKSoypvLyctWvXcufOHczNzenWrRsXL14UBvzmzZsJDg5m/vz5Qobs+Sj+gQMHWLRoEV27duWTTz5BT0+PzZs3k52djY+PD1ZWVixZsgR9fX0WL16MmZkZO3fuJCkpCXV1dR49eoSzszPDhg0TzWGGDx8uvpemIDAwkF27dtGpUydhIJaUlFBZWYm/vz8eHh4kJiYSHx+Pn58fU6ZMoVu3boLnPnDgQKKiosjLyxN7wLJly/joo48ABQ3ipZdeQl9fnzt37mBkZISdnR3r169n37595OTkIJPJmD59Ou+88w7jxo2jX79+7N27l7CwML7//nseP37M8uXLuXz5MuHh4Y0CME2BXC7H1taWd999l0ePHrF+/Xo+//xzpk+f3kh3vaCggKFDh4qMzI4dO1i9ejXe3t4sX76ce/fusWTJEnR1dTl06BAfffQRUqmUzMxMXn31Vaqrqzlw4ADDhw8X6jwRERH89NNPHDx4kMGDBzN37lyqqqp46623cHd3F3KYenp62NnZsWHDBk6ePNkspaHjx4/TvXt3fvjhB7766itatWpFdXU1Dx8+ZMmSJfTu3ZujR48ybdo0SktLmT17Nh999BGampr4+PiQlpYmaFUPHjwgJSWF4OBgCgsLWbBgAdevX0dFRYWkpCS0tLRYvXo1/fv3JyIigqioKKFOdePGDS5evIivry/h4eEUFRWJpk4aGhokJiY2UpD5V2i28WpsbCxaZVpYWJCRkUFubq7QXLSysqKhoUEIZNvZ2ZGRkcHx48dRV1cXXSyU2mm9evWisrKS3bt3AwqDp76+npKSEnEY3r17l/v379O2bVtMTEzIycnB29ub3NxcrK2tUVVVxdjYmKKiIg4fPoyuri5z5swhKChIdAJrKpScN2dnZ9GYICcnh6qqKuFpKYW9/fz8qKqqEtXZXl5e5Obmcvv2bZ4+fSpEqUHx8KSkpNC6dWtR7Z2UlMT9+/eJjo7m6dOnhIWF0alTJ+GZqKmpoampSX5+Pq1atUJNTY2EhAR++uknQkNDGTly5O+SCdHT08PNzQ11dXXkcjmdOnXCy8sLXV1doqKiiImJwcbGhrS0NI4fP86QIUOE4SqTyXj69CnDhg3D3t6eq1evcuLECeRyOVVVVXz33XfU1tYybNgwxo4di6enp+DsPJ8miI6Opra2lvfee4/q6mqWLl3KsWPH6Nq1K/Pnz0dFRYXjx4+Tm5v7i5Zy/w7KNrtWVlaEhYUhkUiQy+UUFxfj6emJuro6BQUFFBYWsmHDBkEud3V1bVRYpKenh7OzM3V1dRgZGaGhoSFSuiEhIZiZmXH8+HGKi4tJTU0lNTUVExMTwsPDycvLE1HrHTt24OvrS1hYGJaWltTU1FBQUICxsbFYR801DJSbZ2lpKd27d6dTp04EBQUJw1W5RgAhc9KmTRsaGhrIyckRztadO3e4f/8+iYmJPHz4EE9PT/z9/UUEysbGBl9fX65du0ZxcbEwquRyOV988QXV1dWi6C0hIYGMjAwRgbG0tCQlJUXIjTW34MfX17eRYaOrq0t8fDxLly5l9OjRguZQXV0t2g+DoutbdXU1qqqqJCcn4+3tzaxZs0Tm5/bt22RnZ4smKkZGRmzevJnWrVvj4+ODn58frVu35sqVK+Tl5WFkZISNjQ3q6uqCmqCiokJhYSFOTk5MmDABU1NTQTlqzhzK5XLat28vONX/rMF5+/ZtKioqGvFDz507J9qHDh48WETlQJHCvnjxIkOGDKG8vJxPPvmEvn37oqWlxYgRIygqKmL37t0kJCSIIqoffvgBiUTSqO3z8+2uAVGo1lx4e3vTsWNHwedV7v/KlKipqSkaGhrU19dTWVmJpaUl06ZNo7KykoyMDNG+Wdk5sa6uTqSofX19KS0t5dy5c+jr6+Pp6UlcXBxPnjwRqUknJyeKi4txdXWlpqaG+/fvo6qqSmBgIA0NDezZs0e0ojYxMWl2Q5TNmzejqamJiYkJ7dq1w9HREVdXV/Ly8rC2tqa6uhpzc3PMzMwoKysjLS0NS0tLDAwM6Nq1Kzk5OVy9ehVjY2PB03V1dRU0iZqaGvr16yea19y/f1/st0pj9NKlSzQ0NKCvr0/37t3Jzs6mtrYWDQ0NrKys6NWrF66urjx69IgtW7Y0O1MXFhbGvn37hEqEgYEBFRUVaGlpoaenJ1qZg4JmpKenJ4rX4uLihKGjpDZs3bqVO3fuCM3wbt268eabbyKXywXPPj4+nrS0NKytrRk1apRY6z169GDWrFncu3dPfI+BgYHcvn2bzz//nLS0NMHZbA48PDxQVVXF1taWhw8f8vjxY9q3b8/kyZMxMjIiJSWFkpISoTgCCnqEsjmEu7s75eXlpKam4uLigq+vr+ig6OnpKQz67777jtWrV/PgwQNcXV1FRDM2NpbVq1fTuXNnfH198fDwaNQudfv27djb2+Pn54eRkRGbNm1qVi1PWVkZ2dnZWFpa4u3tjYaGBtXV1Tg5OWFubs7Vq1eZMmWKKKYLCwsT53VMTAxHjx6ldevWjBgxAktLS65du8bDhw+JiYkRyi6g2EuHDh3KpEmTUFVVFQ5hUlISRUVF3Llzhz179tC1a1e0tLR4/PgxDx8+xMzMDH9/f/Lz8xs1mPlXaLbxumLFCiZNmoS9vT1lZWVcvXoVdXX1RjqAEokENzc36urq0NLSorS0lHnz5vHNN9+IzxgbG7N8+XLmz5/P3r17uXv3LqNGjcLe3p6srCxat25NZmYmkyZNEhGNiIgINDQ02Lx5M2PGjCE+Pp6YmBhBJ6itrRX8DGXFrp+fX7OMV6XG6POFQgUFBTx8+BBTU1N0dXWFdp+Xlxfp6ekcP36c0NBQAgMDqaur4/r166LHeGZmJsnJyWzevBlQPKTvv/8+xsbG9OzZk23btnH69GkmTZrEpk2bMDMzE2L9Xl5edOzYkfr6es6fPy+02DQ0NDh37pzo2tJcKLvC3L9/n+7du/P1119z7tw5lixZwpMnT2jTpg0uLi5ERkZy9epVJBIJlpaWnD9/njt37oho2NOnT1myZAmPHj3irbfeQlVVlcuXLxMWFsamTZuoqKjgwoULdOzYEWdnZyGnVVVVhVQqpa6ujqNHj/LgwQMOHjxIjx49xELYunUrUqmUrl27/qJLx7/D3Llz2bx5M1OmTOHixYsA7N69m23btokOYHv27CE+Pp758+dTVFTE1q1bCQoKwsnJqVHxgYWFBVOnTuXll18mODhYdAEBRQvk/fv38/rrr3P+/HlAoaenLO5JTEzE1NSUmzdvsm/fPt577z0mTZoksgRKLbva2tpmRUJAYVwoiwXs7OwYMmRIoyppY2Nj0tPTaWhoEO2ZY2Njsba2FjqeDx48IDExETMzMzp16sSgQYPQ1tZu5Pkq+cxfffUVZWVlYk1UVFRw8+ZNnj17xpgxY2jXrh0uLi7cuXOH/fv307NnT6ysrAgKCqJVq1ZoaGg0u0OTMm2fnp5Ot27d+Pjjj0lPTxfSdEq5mLy8PO7evUtsbCzdu3cXWaHXX3+dGzduMHbs2EZFO56eno2qWSMjI0lNTW10qKuoqNC9e3cxR8r2nkreu4GBAcuWLRPycKB4Vg4ePNjk8RkZGREeHt6oEYsSyg52xsbG6OnpidahoJBJu3z5Mj/++CMlJSUsXbqU1q1bc/ToUbZv305gYCBffvklFy9e5KWXXuLjjz9mxYoVzJ49m927dzNhwgQmTpzI2bNnWbFihUhxa2pqEhoaSkVFBenp6ejp6WFgYEBWVpaoM9i4cWOTxweKVHCvXr34+uuviYyM5M033xRGW0pKinAWlVX4yn7rOjo6ODk5idbU/v7+QtP71q1bxMXFce3aNdLT0/H29sbBwYFu3brRpk0bqqurBdXlm2++ETSSZcuWkZ6ejpeXFxMmTEBVVZXIyEgsLCxESjswMJCtW7c2eXzr1q2jb9++jBo1ih49eghaUUJCAjExMbRp04bXX3+dpKQkDh06RExMDFZWVmzYsAELCwvCw8Opqqpi7dq1NDQ08MknnxAQECCUJ3r37s3QoUPR0NCgoqKCffv2iTqOp0+fCsWbmzdv8uOPPwIwe/ZsysrKiIuLE7QQUFARvvrqKwwMDBg7dmyTx6h0KA4dOsSuXbtwcXGhW7duODk5oaamJoqWJRKJaIaQmZmJn58fqampTJgwgYCAAI4cOcLZs2dZuXIlL730Eh9++CFnzpxBXV2dhoYGIT11/vx5bt68ibW1Ne+88w4TJkwAEFJUSs5+Wloa1dXVfPDBBxw9epS5c+cSFhbGrl27mlXMBIqMm4qKCp999hmTJk1i0qRJ7Nu3j++++47y8nK2bNlC27ZtRSZ3/fr1zJo1C1AE3B4/fsy2bdsAhUOjbHW6fft2Fi1aJHiwz54949KlS1y6dIm2bdsSEBDAG2+8QWRkJGvXruXEiROsWLGikbOal5fHtm3b8PLy4osvvqBjx47NPi+ULZBnzpzJlClTKCsrIysri7y8PFRVVblw4QIFBQWYmZnx008/ERISItZRfHw8CQkJQhHJ3NycUaNG8frrr4ugo5eXF926dSM0NJROnTqhqqpKdnY2RUVFZGdnc/bsWQ4cOCAy6EVFRezfv58LFy5QWVlJ//79CQgIoF27dly4cEHwnP8Vmm287ty5ExUVFUaOHImFhQUeHh7U1NRQWlqKqqoqcrkcbW1t1NTUxKaur6/fqJjCyMiIUaNGMX78eLS0tBgyZAienp6iolTZI9rR0RF7e3scHByYPn06pqamNDQ0MGbMGEDhLSkXj5qaGnp6eowZM4br16+zbNky2rZt26hFbVOg5JlWVFRQU1MjNkxlO9rn78/Ozg4fHx/q6urEAaSmpoarqyvp6enCUIiPjxce4oULFzhw4ADjxo3j9ddf59mzZyQmJnL27FmCgoJE7/kbN25w+PBhpk6dSlhYGOXl5Tx58oTevXvTsWNHEhMTRTq0uSguLsbX17dRBW9gYCB9+vTBx8enkVC6u7s7V69e5aWXXqJjx46sWLECPz8/CgsL+fDDD6moqODNN99ER0eHJUuWUF5eTnBwMIaGhsTExLBq1Sqsra1xdnYWhmt2djahoaFoamoKLdf58+c34oPK5XLMzMzo0KGDiNw2FWvWrAEUXr8SQ4cORV1dndjYWCZNmsTly5epr6+nrKwMf39/Onbs2IjLU1RUREJCAsbGxkyfPl1EpDp27MiuXbv45JNPmDdvHm5ubmIOlI0WLl++LNQiunfvTocOHdi+fTsbN26kurqaqVOnYmZmRkNDA6AoDhszZgzffvttk8doZWWFs7Mzu3fvJjExUXQ9uXTpkigu8/f3F5JzSseurKxMOBF5eXmcPHmS7t27C0MxNzeXjRs3YmpqSnh4OAYGBoKPpOQaKhtnjBkzhrVr17JlyxY8PDxERGbp0qV8+eWXhIeHExISIoT+fw9OnTol+qh36NCBgoICZsyYIZzlyspKrly5QlFRkWiNm5yczNq1azl16pR4Dj777DNsbGwYOXIkbdq0EVHEyspKevToQfv27QWf9OjRo5w/fx43NzdefvllwdFraGhALpcTGRmJtrY2fn5+pKWl8fHHH+Pn59ds4/zo0aP4+/uzc+dOUYTm5ubGvXv3OHLkiGgFq62tTUlJCQcOHCAuLo7c3Fxh9Hbu3FlEOHR0dAgMDKRt27Zoa2vTr18/Zs6cybJly9i9ezdSqZSOHTuKIk1lgdL3339PcnIyERER5OfnY2ZmhoqKCl988QX6+voMHz5c0G2aizt37pCfny+Kx5TPmYqKCrm5uYLC83zRrbKxwK1bt8jPz+fu3bs8evQIb29vvLy8GjkZSUlJJCUlAYriMKVSjLa2Nl5eXhgbG1NSUiKqnwMDAxk3bhy5ubls3ryZxMRE7O3tWbhwIaNGjWq0JzYFS5cuxcjIiJqaGp48eYKXlxd2dnaoqqo22recnJyYPHmykLNSRiGnTJlCRkYGISEheHt7Y2xsLPahnJwcEhMTaWhooLq6mjt37nD27Fn09PQwNzcnLi6OpKQkJk+ejLOzM7t27eLZs2e0bt0adXV1PD09MTc3p6Kigk2bNqGjo8PWrVuxsLBoVuMe5XyFhoaip6eHlZVVI13g0tJSFi9ejKamJsuXL8fd3Z1nz56RmZkptN6PHTsmquiNjIwwMDDAzMyMIUOGUFtbK5xEKysrocmdnJws2tGGh4eLQq2bN29y7Ngx3NzcxJoNDQ0VXQyVxW3NwY8//oifnx8BAQF4eHgQERGBra0tFhYWPHr0iCVLljB37lxhvFpZWfHOO++Qk5MjnCMlsrKy0NXVZfTo0aLtuBLPd8SMi4tj1qxZeHh4iNa0vr6+tGrVClVVVUpKSkRzigkTJpCXlyfm+PmW7k2Bcv+Vy+Xo6Oigo6ODhYUFWVlZ5OTk0LlzZ1atWkVgYCDt27fn6dOnvP/++5iamvLGG2/Qo0cPDh8+zGeffca0adNwdnYWUWNQROenT58uggSVlZVoaWkJmdB79+4Jw9Xc3JwBAwZgY2PDwYMHyc3NbSSd6e/vj76+/r/t5tds49XZ2ZmcnBxqa2sxNjYmNTWV+vp6EfWRy+XU1NSgoqIiCpwyMzOxtLSkZ8+eXLlyhX79+gnhemW1vHLTSE9PFz3Nq6ur6dWrF/379xdRofr6enJzc8Wm5eLiIjoLKXU6s7Oz2b59O6qqqgwbNqxZ41MeVOXl5dTU1KCvr4+9vb1I4yg7bTg7OwsS8vDhwxt1hNDQ0BDdbby9vfH29hZGdEJCAuXl5SQmJuLt7Y2npyeJiYlcvXqVL774gjfffBMvLy/c3NyIiYnhwoULBAUFUVVVRUBAAL1798bZ2Vmk0mtqapq9WI2NjWnfvr2QNDI0NMTc3Fx0B6qvr+f06dNUVVXRtm1bkpOTyc/PJzg4WHjx33zzDXv37mXChAm8/PLLrFq1SnA9leldZQcqpbyI8ns1NTXls88+E6/p6enx1ltvic5jhoaGdOvWDQMDA9TV1ZutGAGKw0JLS0tI8vj7+zNs2DBWrFghJL20tLQ4ceIErq6uQsS5srISbW1tampqyMrKwsHBAS8vL2HwAYJbvWPHDnr27CkiYg0NDSI1oyzUW7RoEa1atUIulzN+/HiuXbuGtra2aCNbWFiIiopKs1unamlpiYj2lStXiI6ORi6Xc/78efT09OjXrx+mpqai2lhJT1B2YtLR0SErK0sURM6cORNTU1OioqK4evUq7u7u9O/fHzU1NRoaGqirq2P79u3s3LmToUOH0rp1a5ycnPDy8kJFRYXMzEzU1dW5d++ecBqU0RRLS8tfaLM2BcpGIYMGDRJFNhoaGqIIs6SkhGvXron0fUhICPX19chkMqEo8Xzxkq6uLp06daJNmzZERERQUlJC7969RWFMSUkJqamplJWVsWvXLjIzMykoKBB9zlVVVUWveVVVVfz8/Hj06BGHDx+msLBQPENNRWpqKjo6Ojx79oz09HSSk5MxMDDg8uXLZGRkoKenx9WrV0WxjLm5uZBak0ql4gBTcvJ79OiBjo4OiYmJQslg5syZpKSkkJGRwcOHDwkKCmLBggVCk9bFxYU9e/YwdepUkQYGhYbwjRs3RKMJoFETg6Zi7ty5WFtbM336dNEtrLi4GH19fZH2VuooK3uaX7p0iSVLlogCM2dnZ0xMTIiKiiIqKgotLS2srKzEeqytrRUGUG5urtC+VVVVJTc3l9zcXDQ1NbG2thaKGF9//TVxcXEEBATg4uLC48ePefToUaPOV02BUjlh06ZN7N+/nwkTJhAWFoa1tbXoIFVTU4OamhoGBgaC3pGZmUl5ebmojq+rq2u0B4PCgT527Bg//fQTZWVlSCQSUdykPG+Vai1KQ8Ta2pq6ujrRfRIUncd+/PFHOnbsyJgxY1BVVW2W8VpTU0NtbS26uroEBgZSXFzMs2fPsLGxEQott2/f5v79+4SEhAhDU2kwTZo0ic2bN3PkyBG8vLwIDg7m2bNnnDp1ilGjRjWivlVVVaGnp0dwcDB2dnbs2rWLa9euYWFhIYzXQ4cOsWzZskbflfJ83Lt3Lzt37hQdu5qKPXv2cPnyZebNm4e6ujpdu3ZFW1tbZAUNDQ3F83rhwgVsbGxYvnw5169fZ82aNfj4+GBmZkZqaioZGRlUV1cTFhZGWFgYV69e5cmTJ4Kbr+zW+d577zFu3DjRmUsqlQojTi6Xo6enR2VlJcbGxowZM4bMzEzWrl1LaWkpU6ZM4eTJk00eX2FhIWVlZeTk5CCRSLC3txcUMgsLC9q0adNITeLChQuiqcagQYPw8/NDIpHw+eefs3//fpYsWdLIEFcWaAGC8mlubk5ISAijRo3ixo0bghYkkUiorKzExMQEV1dXKioqiIuLo3PnzuTk5GBkZES7du3+bXS52bvRnDlz0NXVxcfHR6SsdHV1RTFBbW0t+fn5WFhYkJ2dzbJlyzh37hxvv/02CxYs4KOPPiIhIUFogB08eJBZs2YxYsQIQHEo5+bmCq3XwYMHo66uLqQmlFzC69evU1JSwsyZMxsJPYNCi3bevHkYGBg0+oKbCmXnHhMTk0Y8zUePHnHnzh08PDxwdXVFVVVV0AyUkdeZM2eSlZXFF198IeRc3nzzTWxsbPjmm29YuHAhRUVF3L59m4yMjEZcR0NDQ4KCgrCxsRHiwWvWrGHw4MEMGDCARYsW/SKC9bxX11QoI5yzZ8/mzJkzrFixopEnl5+fz/79+9m+fTvu7u6MGzeO+fPnk5eXx+eff05RUZGgcjx69IitW7dSVlbG7NmzGTx4MFeuXCE8PJyhQ4eyYMEC9uzZQ0REBJ988omInitRV1dHQUEBEomEx48fExUVhZqaGkOHDhW/P2XKFLHpNwU9e/ZkwYIFJCUlERUVRXp6uohCOjk50bdvX86ePYuVlRUzZ87kjTfeABTGREFBAR4eHqioqDRqKZmXl0dVVZXgtNnb23Py5En09fX54IMPKC8v5/vvv8fT05OPPvqIO3fuiIpnUDhFhoaGFBcXs2/fPrp27YqjoyPp6els3LiRu3fvNiocayomT55Mt27dhIP11ltvcejQIUaMGIGJiQmDBw8Wjh/QKBpUVFSEo6MjDx8+JCQkBC0tLdzc3JgwYQJBQUHiAMjNzWXGjBlERkYydOhQPDw8WLduHT/88AN6enpMnz4dT09PLl68yO3bt9HW1iY0NJQxY8YQFBSEm5tbozlvKry9vfH396empoYHDx6QlpaGp6enoAVdvnyZ6upq2rdvL4x/VVVVxo4di4qKCmfPnm1UlVtfX4+NjQ0ZGRksWLAAiUQiNFsLCgqYNm0arq6uTJ8+nZEjR/LNN9+wefNmIU8EigiGr6+viLaHhYUJiZzm6qAq97bQ0FDRyGXGjBm4ubnxzjvvoK+vLxpE7Nq1i5CQEN5++22Sk5NFJgAUWSJlgc/x48eJiYnB29tbFHwq2zy2bdu2UbGiEhKJBB8fH+zs7AQv2cjIiIkTJ4oGF8rPNRfV1dWMGzeuUZtbJedb+XydPn2aBw8e0KdPHyorK1m/fj13794FFN/3+PHj6dGjB3PnzuXw4cO4urqyatUqjI2NRfcfV1dXcnJy2Lx5MxEREYwcORJ1dXWys7Np06YNfn5+QmtWJpMRHR1N7969eeedd/Dx8eHhw4eNVBaailOnTtGnTx+xrkpKSgDFs/bpp59y+vRpJk6cSOvWrblw4QL9+/enZ8+erFu3jj179rB7924hMVRZWdmI3qKiokJeXl6jDJISSsda2c1PLpczaNAgdHR0qKysJDk5mYKCAjp16oSuri6FhYV89dVX3Lp1Cxsbm2YZd0rHShlFVXb4GjhwoLj2/PnzOX78OEuXLuXs2bPiOVZXV+ejjz7CysqKL7/8ktjYWIyMjATvUsltVDpgBQUFrFy5ktraWj755BNeeeUVYmJiGtES+/fvj6OjYyN++JMnT1i6dCnm5ubMmjWLLVu2NGsezczM2LFjB/r6+qxevZoLFy6waNEiBg4ciLOzMwcOHCAkJIQrV66waNEiunfvLuS51NTUaNeuHT179kRPT0/UkigREhLCiRMnOHjwIB4eHjx+/Bh1dXXBE5ZIJKLYUgmJRCI6eimh5P9WV1fj6enZLOP18OHDmJqa4unpiZqaGvfu3RMypspnNykpiaqqKmxtbRkzZgxGRkbCSbh16xapqamAgq7y9ttv4+zsLLK0yqAfKIIWz+/3Q4cOxdzcHGtra2JiYvjwww9ZvXo1PXv2RFtbG0NDQ1auXMnatWtFlr0pxb3NNl6fT+0+fvyY27dvk5aWRqtWrRg7dqzgRlVWVvL999+zbt061NXV6d69O56enqiqqnLz5k3GjRtHUVGR+DJAYSD89NNPou+2hYUFSUlJlJWVkZKSwpEjR0SKyN7eXlxPqYvX0NBAfX09BgYGzfaglVCK5Ovq6tLQ0MCzZ8+Ij48X0klt27YVG0xOTg75+fmimGfx4sWsWbOGAQMGEB4ezqVLl1i+fDl+fn60a9eOBQsWCOHwx48f8/jxY5H+bWhooH///tjY2FBeXi4kunR1dZHL5VhaWqKurk5dXR1RUVGYm5vj7OwsHqjfA2XHq+eVHI4fPy4O/bZt2+Lv709ISAgdO3YkOTmZ69evs379etGZKTIykvz8fD755BNGjx4NKLRyLSwsmDVrFhYWFrz++uukpqaK6F5tbS33798nJiaGO3fu4OTkhIeHB/Hx8cTFxeHv7y8i3cp5bg6mTZtGSEgIQUFBQmorISEBdXV1Ro4cibW1NRERERQVFTF69Gg0NTWpqanh1q1bgvOakpLCiRMnCA4OxsbGhtOnT5OTk8Orr76Kvr4+JSUlPHv2jNraWiwtLXnvvfd49OgRxcXFPHz4kO7du4t2yGVlZZSXlzNs2DBqa2sJDg5GTU1N6Dfu3bsXVVXVZhmvV65coWPHjkICJTk5GUNDQzp06EB0dDRr164lJCSE1q1bY2BgQG1tLRkZGTx+/JiamhpsbGzo2LEjS5Ys4fr16xw4cEB0ffnss8+wtrYWxRfl5eU8e/YMDw8PZs+eTWpqKgsWLKCkpEREpUEhczd27Fg6duyIurq6aBmtpqYmnpfmQBnBP336NEVFRXTt2hU7Ozuqq6spLCykdevWNDQ0CD5qbm4udXV1QkHizJkzAIwdO5YbN26QkJBAamoqbm5uWFpaUlBQQH5+PlZWVty5c4fTp0/j5+fH3LlzhZFYX1/P2bNnBQddye0FxWavdHaeP3iaivLy8kaycT/99BNZWVm4urqKKIiJiQmbN29myZIloioYFBkcZXRV+bevX79OdXU1/fr1w8/PT/ST9/f3Jzg4WKikgMJRU3Kek5OTsba2JjAwkNLSUnR0dDA0NBT0LFB0g8rPz2/2GJVRG+V4lQ5hSkoKd+/epby8XEiCbdu2jSdPnpCUlISFhQUlJSVIJBIqKiqEoaapqSmKkQIDA/Hw8GDLli0kJSWRn59PREQE5eXltGvXTlDVjIyMcHd3R0NDgxs3bpCYmEj37t1xdXUV0eaQkBCys7OFPmVToYxoKlvQKvniqqqqmJqaUlNTI3jkT58+paysjMrKSiwsLHB3dycjI0PQWAwNDSkvLxfFMLW1tRQVFQmKh1I27unTpxQXF/Pyyy8zefJkwYVVctqVtBZlpLCsrEw4cQUFBRQVFf1Csu9fQVVVlbi4OKGmY2BgIJ55payTUmrJ1dWVr7/+mtTUVDp37oypqSlOTk6oqKgIuocy8+fh4SHaKisdpKqqKtFxztHREQsLC+zs7CguLhaOV0hIiChYra+vRy6XC86yvb3976K3vPzyy+Tl5TXKEPn7+7Nv3z4hDaq8d09PT2ED3Lt3j1OnTlFQUEBwcLCgfoDiLDU1NRUtz/fv30+fPn0YMGAApaWl7N69m+rqapGhBQUl4ubNmzg6OtK7d2+0tbUpLi6moaEBQ0PD35XBAkWQadKkSaLddmlpqXC04B9BJKValKOjIyNHjuTZs2csXLiQ27dvM3DgQIyNjYXR3L59e4yMjLh9+zbJycmkpaWJToWgcLBu3LiBu7u7MEb19PSE462kCikjwhYWFjg7O1NeXt7I+P8tND8P9DMiIyO5fv06/fv35+TJk8yePZu4uDiRrrt7967YCN599108PT2Ry+XCIlcarvb29lhZWfHs2TOOHDnCli1bsLS0ZPTo0Xh6erJ+/XoaGhoYN24cXl5eLFmyBHV1dWbNmkV4eDjXr19HJpNRX19Pz5498fHxEZGI3yOqrfzSlFqWR48eZf369VRWVjJr1qxGnrG2trZ46D788EORzlR2EzIwMGDcuHG0atUKAwMD+vbty/79+1FRURELbNy4cZiYmBAdHS28l2PHjrFz5078/f3p06cPR44cQUVFhejoaDIzM6mpqaGsrOx3dbx5HsuWLePVV18lPz9f9E6Pjo5mx44dTJ06VUg3nTp1ijVr1jBo0CDmzp1LQkJCo8IUpWyNEr6+vuzevRsLCwsSEhIoKytDS0tLRI1ra2vZuXOn6E89duxYevToIfpZP+94jB8/njFjxjB79uwmj6tv376AgpvcvXt3njx5Qm5uLv7+/uL+lDI9GRkZQoPWwMBAHHhJSUmcOHECU1NTSktLOXDgALdu3cLb2xuJRMKtW7eora0lLy+PsrIy3NzcWLNmDXPmzGHgwIFMnDiRpUuXUldXx8WLFzE2NmbGjBk4OjqKeVZKV+Xl5bFo0SLhmDUFp06dEtmO7OxsXn/9dQoKCnj11VcxNjZmwYIF9OzZU4jE19fXk5KSIhp3rF69mlGjRglKy8yZM/n222/JzMzk7t27ope1h4cHZmZmLFiwABcXF9GbW7nxKRsjDBgwgFmzZjFlyhRRfFBXV4e3tzfq6uqiA05z8ODBA77++mtOnz5NYGCgiKbBP9KmzysYJCYmEh0dzdChQwX1SFnhK5PJeP/994mOjiY8PJyFCxeKtpJ9+/bF19eXuXPnUlZWRl5eHs7OzmzcuJHS0lJ27tzJnDlz6NSpE1u3bkVLS4uSkhIuXLjAmTNnUFVVZfLkyaLIpqnYtm0bb7zxBsePH0cqlYqGE7179xaRqDlz5qCjo8Px48extLQUaWYzMzMR1QfFoXf+/HmGDRsm1o+WlhZjx47l4cOHnD17lrq6Onr06EFwcDBbt27l7bffprCwEE9PT/r27Ut6ejqnT5+mffv2jSK7oEg9HzlypFEErClQpk3d3d3x8vISe1dmZibLly+nqKiITZs2YW5uzqBBg7hz5w5Dhw4lMzOTiIgIVFVV2bp1K9HR0Xz66ads3LiRESNG8NZbb3HixAlUVFTYunUrkZGRaGhoUFNTQ2hoKEOGDCEoKEgYwAYGBvTv35+OHTuioqKCpaUlhYWFLFmyhNatW/Pqq6+yf/9+3n333Uadxf4dlIaltrY2np6elJaWChms+fPnM3bsWAwMDERnRCVv+pVXXmHkyJGilabyea6oqGDbtm1s374ddXV1bGxsMDc3Z/jw4YwZMwYXFxeRAlaq4ezbt4/169dz584d7O3tqampYdCgQcJ4TUtLo6GhgQEDBrBjxw6Sk5NZt25dk8dYWVlJfX09Tk5OdOjQQRQRAsIZCA0NRVtbm+HDh7NixQr279/PwYMHRa3Is2fPAESnvPbt2yORSCguLhZGjPJv9enTB2trayGmf/LkSTQ1NQkODhZyeEoUFBSwceNGLC0t+fbbbzl27BiDBg0SVJemQhlJVV7/5s2bVFZWsm3btkbBEx8fHz799FMRuc7OziYnJ4djx46RkZHBkCFDRFe5I0eOiMCOMvMVERHB559/TlRUFAcOHEBNTY25c+eycOFCQKFtPWfOHEJDQ2nXrh2qqqpEREQQGBjYyEFuroFeWFiIpaWl+I7btGnDkydP2L9/P+7u7vTo0UOoQz2f3XV3d2fatGkMGTJEaO2OHTuWuro6/Pz8ePr0KampqUJqTxlkA4VKwcKFCxk+fLgwuh8+fCgK/jMzM1m3bh0FBQVCcaJ9+/aoqqo2anrxW/hdxmtdXR0HDhzgzp07TJs2jb59+7Jt2zbc3d3JysoiOjqaEydOMGzYMBEaV25UgYGB9OzZE1VVVZ4+fSp6Z2tqamJra8uECRNo3bo19vb2lJaWEhoaioGBAVZWVvTr14/WrVsTHR1NTk4OGzduFG0qz5w5w549e3B0dBSHekNDA9evX2/W2Orr6wW3S6n1GhQUxIMHD4iKimLp0qVkZ2eLnuhKvo6trS2vv/463bt3x9LSknXr1uHs7CweSlAcVnp6emzYsEF8J126dGHLli2cP3+etm3bUlZWJpoChISECK+toaGBsrIyPD09KSoqIi4uDh0dHTp16tTsysPIyEgePXpEnz598PDwoKSkhKqqKpFy0tbWFkZ6QUEB+/bt4+7du8TFxdGvXz/hSFy5coVr164J+sZLL71E165d6dChAxoaGuzZs4cDBw4wdOhQ0Yf9/1j7y/iuzq1dGz7i7u6uJMQIGkIgBA3u2lIoWqAtlLaU0haqUJxCsUJxLe4ECIQkJEgCcXd397wf8pvXJve6916k7zO+rK5CA/Mvc45rjPM8Tug6fUlyCV9fXz788EMhWjcwMCAtLU0gilpaWsSN731LTU1NTHRUVVVxdnYmIiKCgwcPEhgYiIuLC99++y0JCQniptLe3o6LiwsaGho0NDTQ0NDA5MmTCQoKEkbE/Px8Nm/ezJgxY+jXrx+PHz9mz549KCkp8cEHH+Dh4cHy5cuRkZGhuLiYjIwMvLy8kJGRQU5OTrymjx8/pri4GCcnJ2xtbUVGuNRcv09paGiQmZmJg4MDkZGRwpxkb2/P4cOHUVVV5caNGzx9+pThw4fj7OyMn58fo0ePJj09HUtLS5KTkwkJCSEoKAgXFxd27drFjRs3UFZWpqioiLa2NhHuMGHCBJqamnjx4gUtLS0sWLCAlJQUnj17BnTd7Gtra5k7dy7q6upMnToVd3d3LC0tuXz5MkeOHOmGIXufevXqFaamppiZmZGYmMiBAwdYtmwZJiYmXL9+naSkJObMmSPWvdLfLyYmht69e4ukv4iICNra2li7dq2YaLa3t5OcnMzdu3cxMjJiyJAhfPHFF5SXl4vDhZ6eHnp6enh5eZGfny8mm8rKyrS0tGBra8uAAQOorKwUvOeelJmZmfACeHp6EhkZiZOTE8HBwTx//pyXL1+ybNky9u7dy/bt2zl16hTp6enMmjWLvn37oqmpyevXr7l06RJGRkYEBgZSWFjIt99+i7q6OkOHDkVZWZkjR47w6NEjYZiBLnPT1KlTOX36tDCMStntmzZtQk9Pj4iICJEXP2XKFLS0tIiIiOjRNcrIyKCkpCSGAoqKilRWVpKdnc3AgQMxNDSksrJSOOP79u2LmZkZ4eHhGBsb4+zsTFNTE+Hh4Zw8eRJnZ2dev35NaWkpoaGhQlpiZmZGc3MzkZGRdHR0oKioiLKysvgsp6am4uLiIpqTuro6njx5IowydXV1mJub99gIo6SkhIqKCkVFRRw+fJi8vDxKSkqQl5fnyy+/FJK2hIQEoqOj6d+/P05OTiQkJJCQkMDkyZPR0dHhyZMnYsro5eXF9evXqa6uJjs7W5gui4qKxOsiuddra2vx8vIiODiYV69ekZubK9iZ1dXV+Pn54e3tzddff42pqSnl5eU9lpqFhITg4OCAt7c3nZ2dvHz5El1dXQGhf/XqFStWrMDFxYXAwED8/f15/vw5Dx48IDIyUjB4V65cydixY5GTkyM3N1eYsSsrKwkNDUVVVZXi4mIUFRUxNTVFU1OTpqYmamtrhY5UChDS09Nj0aJFyMnJERUVBYCrqysJCQn/aqgjIyMjNsbffPMNR44cYdiwYfz9998oKyvT1tbGw4cPBVlJMnVaWlqyefNm9u7dS0xMDJMnT0ZNTU1oVaGrWZSXlxcR1RKPe/To0UKaKCWHDRgwgJkzZ9K7d280NDQ4fvw4ly9fZu3atd1S5nqKO3v79i1r1qxBW1uboUOHMm7cONLS0tixY4eQ1ejp6QkJQVlZGTdv3iQ8PFwgyfLz88nLy0NbW1s09NbW1gwfPlxoXjs7O0lKSkJeXp729nYRO33y5EkiIyPR1NTks88+Q09Pj507d1JYWIiSkhL19fWoqqpiampKW1sbly5d+q/X9K+aV3l5eZKSkrh79y5z585l4sSJjB49mpiYGLZv386FCxcYOnQo33//PfX19cydO5fQ0FCMjY05ffq0wEBcv36d1NRUdHR0MDc3F3y2+vp6YmNjqa+vx9PTU6QIaWpqYmRkhKysLFu3biUlJYXPPvuM7du3Y2Njw59//tltBR4SEiKydd+3VFRUaGtrEyvTESNG0LdvXy5dusSpU6cERmXw4MHC6Qhd8WvSg+HBgwciWnLEiBHioSYvL0///v25cOECDg4OwlwWGxtLaWkpjY2NIrZQihQEBENVmvIWFxdTW1srtH89rdzcXEJDQ4XZTFNTU/xaYGCg0LCEh4dz5swZ6urqcHV1Ze/evRw7dozbt2/zyy+/8Msvv1BRUUFqaqrQL0vxoA8ePGDPnj2UlpYyZ84c/P39xXShqqqK3NxcLC0tOXPmDHZ2dly+fBlvb2/8/Pz4+eefqa2tZdq0aYSEhPD999/3iGkHXQ1sYWEhsrKy6OjoUFlZKW6eN27cYN68ebS2tiIvL09raytycnKYm5vT2tpKcnIypqamfP/990JSIN2IIiMj8fX1ZcWKFWL6Jv1aZ2cn48aNY9y4cRw8eJDnz5/j5eUl1qbQ9RDbtGkTTk5OTJ48mblz53LmzBkiIyN71Lz26tWLu3fvCsawn58f0dHRWFtbo6qqSk1NDefOneP+/fvk5uYye/ZsdHV1Wbt2rThw/f3335w9e5aSkhJxyBo7diwyMjI0NzcLZqvUzOXk5BAfH4+DgwPu7u4CfSfJWbZu3UpJSQlLly6lX79+ghWbmZlJeXl5j5tXHR0dfvjhB8aMGcP69eu5fv06bm5uzJo1i9zcXA4ePIiKigpfffUV0DVptLS0JDo6GhsbGxYtWsSbN2/YtGkTbm5ubN26Fej6/kRERFBcXExTU1M36Y2CggJNTU20traK10lfX58BAwbg6OgoDjsaGhoMGDCgx9PWd8vV1ZWamhosLCw4f/48M2bMQEtLCxMTEzIyMrh69SoKCgp88sknLFmyhKSkJC5evIiGhoYwuD5//pxt27bx5ZdfMmDAANatW8fWrVuFoUky06iqqhIcHCxWeh4eHhw8eBAzMzPBbpYeiEpKSpSWlnLhwgXi4uKoqKhg6tSpzJ07t8fNa3t7u0BISSU1IMOHD2fo0KFCpzplyhQMDQ05efIkycnJ6OnpCW1kS0sL+/fvF3nvxsbGJCYm4u3tzYEDB4Cu50lMTIwguPTr14+mpiZycnJoamoSXgzoWuHm5eUxZ84crKysKCsrE9/dnmCWVFRU6OzsZP/+/f8RMqKvry+a1/j4eI4dO0Z7ezsODg6cOHGCP//8k6KiIoYNG8bZs2dpampi0aJFLFmyBHt7e7799lvevHkjmv3c3Fz27duHvb09d+7cEWlQGhoaBAcHC+a05EWpra3lr7/+YvLkyXh6enL06FHWrFnzH1P1/1aRkZFMnjwZPT09wsLC+OabbzAwMGDnzp04OjqK9XpcXJxI7wsODsbS0pLy8nJSU1OZN28emzdvRktLi7CwMKqqqtDV1UVZWZnc3Fxu376Nuro6srKyAoLfu3dvvL29WbRoEadPn+bmzZtUVVVRV1eHjY0Nw4YNE4bav/76i7lz52JpadkjDJhUUsLh7du3efToEU1NTZSWlnLt2jXmzp1LS0sL4eHhZGRk0KdPH27fvs2dO3fYuXMn8+fP5/Xr1xQUFIipvZTW5eHhQa9evSgoKMDV1RV3d3dx8JAqIyODpKQk0tPTsbOz6zaMSktLo6amptuBo6amptsz+31KXV2dv//+GxMTE8zNzcnJySE/P18YUKOjo3F1dcXIyAglJSURDJKXl0dAQACPHj2itLSUgoICgoKCRPOqqKgo5EWtra1kZWWRkZFBY2Oj8H8kJCQISoKLiwvPnz8XgQSSuauyspLi4mLa29uJjIwkJCTkvxpE/7VsQGqa3jUc3b9/n99//53hw4fz2WefUVNTw+HDh3ny5AnQJTiWtC3JycmCH/juG/Ho0SPOnDnDmDFjsLGx4csvv6SpqUlE2h05coSkpCSUlZXp3bu3aISnTZtGa2srTU1N/Pbbb9y9exd3d3eGDh3aIwC8FKTw7NkzZGVlCQoKQltbGyMjI+zt7dHW1sbMzIygoKBuDvHMzEzy8/Px8PDA3Nwca2tr7t27R1lZGV5eXlRXV1NQUMDAgQMJDQ3l0KFDrFixgj59+jB06FDGjx8veKb9+vXDzs6OrKwsKisrsbGxQV1dnebmZkJDQ1FSUsLZ2Znw8HB++umnbmLp9yljY2OWLl36v2JhAgICsLW1pbm5mYqKCgYNGoStrS3V1dXcvn2b0tJSMaFRUlJi3Lhx+Pj4UF9fL9Ba0EWl2LRpE2FhYVy+fJmKigohE7h48SKxsbEikOLEiRN8/vnnfPnll6xdu5Zp06ZRXV3NwIEDUVJS6vEDUyoDAwPxeZMi9t5N65LWG1JEp/TPrq6uFBQUUFlZKdJy3o1T1NfXx9LSkk8++YQPPvhA4FOOHz+OtbU1Q4YMYfHixcTFxVFWViaatuPHj/P7778zYMAAli9fTktLC/b29gKV9D6rkndLakqmTZvGoUOHuHfvHkVFRfzwww+Ym5uL79C1a9fYsmUL9vb27N69W3zOPDw8mDZtGo2NjVy9epV+/fqJA4aSkhI2NjacOXOGhIQERo8ezcCBAzE2NiY5OZmIiAgaGhqYNWsWY8aMIS0tjcjISAYOHIi6ujrbtm3j0aNHgraxatUqEX35viXFuPbr149vvvmGrKwsBg0ahIqKCuvWrcPGxoZTp04xcuRIAgMDGTp0qJj+JyUlsWHDBlpaWhg5ciRjxowRP9fAwABvb2/RPIaFhYlVVkVFBYWFhcyfP58JEybQ2NhIUlISH374IQMGDBAPkfb2dqqrq9HW1hYNreTgf986f/48X3/9NQsWLGD69Ons3r2bwsJCysrK6NevH0uXLuXPP//k1q1bfPLJJyxYsEAYq6QKCgpi69attLS0cOnSJdzd3Vm8eDEZGRl0dnYSHBxMv379aG5uFlscQPAXpdQwydUvrdyLi4vJy8sjJiaGzz77jAsXLvQYIwVdm4D/mWGupaVFQ0MDhw8f5s2bNzg5ObF06VLk5eV58uQJT548ISMjA+g6JHR0dJCQkICWlpbQiZaUlPDq1StxqK2rq2PPnj0UFhbi6+uLnp4eZWVl5Ofno6Kigr29PRoaGnR2dgq9tK2tLe3t7SQmJtLW1tZjhzp0HfaSkpK4du2a+He//vor3t7eFBUVsX//fsFtlcwy8fHxGBgY4OLiwqlTp3j16pU4YN+6dQtPT0/Gjx9PTk4Oe/bswcDAQPBrpet4d0jz8OFDbty4ISD7L168EFSCd1fNurq62Nvb4+Li0qN7qrm5uXhttLW1kZOTo7GxURj4xo4dS0ZGhoiNhS6D0P3797G3t+fDDz/ExcWFkJAQQQ1QVlams7OT58+fi2l5eXm50Lbeu3ePpKQkLly4gLOzM5qamtTW1jJixAg8PDyELrKtrY3Ro0cTFxfHkydPCAwMZMWKFT2SRUDXsKO5uRlHR0d++OEHZGVlaW9vp7a2llu3bgnushTxum7dOgYPHkxeXh4rVqwQf7b0OtXX1xMVFYWhoSEzZszA0tISbW1t0Se8GwUuEZPCw8MpKSkRm2Po0hKPHTuWwMBAAMEl7mnzumHDBiZPnkxnZydubm4oKysTGBiIgYGB4L3GxMTg6OiIqqoqjx49Ijo6GktLS0EmUFVVxc/PDy8vL9rb22lqahLG1ZSUFPbs2YO5uTlz5szBxMSEvLw83r59S2VlJZMnT8bQ0JCbN2+ybt06pk6dypIlS4iNjaWwsJDg4GDmzZtHR0cHkZGR1NXViYP2/63+VfPa0dHBoEGDaG5uFs0KdJ0g7OzshDY0JSWFuLg40XgZGRnx6tUrkpOTSU9Px9jYmN69e3fTWMTGxhIREcHMmTPx8PCgoqKC7OxsVFVV0dDQoKysjNjYWNzc3Jg2bRpKSkq8evUKb29v5s+fz9GjR/npp59oampi/Pjx9O/fn3v37vXo+hQUFDh//jwJCQloaGjg6OjIkydPqKurY8mSJUJ8XFlZiaampkCySAQFExMT+vbtS0NDA01NTejo6JCRkcH+/fuJi4vj77//FrF29+/fZ+DAgXz99ddAl85Pmv7GxMSgrKzcLfVm8+bNyMvL8+mnnxIREcH58+d7PJU0NjbGysqKzMxMSktLsbW1RVdXl4SEBJEHHxQUJCJ2oesGaWdnh6KiIvn5+WRlZeHn5yeMY9D1QC8qKqKmpgYHBwfs7OwICAjg7t27HDlyBFdXV/r160dqaioGBgbk5+ezZs0aampq0NbWFg2ku7s7HR0dvH37lpaWFrZs2dIjBip0Ha6qq6tRVlZGSUlJJNi8OwWtra1FXl4eFRUVlJWVu8UASxGBo0ePZurUqfTv35+QkBBMTEyQl5cX6XDQJa24e/cu6enpgqYgcSyTkpJoa2tDQ0ODK1euICcnx1dffYWNjQ33799HRkZG6LN6MvGRgOrSw8zZ2RlVVVX27NlDZGQkU6dOFQiolJQUscmQtObwf9By0sHq1KlTaGlpifzqpqYm8vLyKCsrEzdLTU1NkpOTCQ8Pp62tjSlTpjBlyhTS09MFv9LNzQ1ZWVnB1ty5cyezZs3qcfOqra1NTEwMWlpaYt1fW1tLWFgY7u7uBAUFcfv2bc6cOSOYyo6Ojjg6OhIeHs5vv/2GtbU1aWlpgh8qGTvs7OxE03nz5k1Onz4tYl+zsrJobm7Gy8uLxsZG6uvrkZeXp6qqShgLJMxfQUEBFhYWIhmoJ/X8+XNSU1M5d+4cFhYWwoyVlZWFhoYGM2fOJC0tje+++04kta1atYrs7Gw2b96Mp6cn48aN45NPPhGJWz4+PowaNYpDhw6RmJiImpoatra2tLS08OLFC5H6U1RUxMuXL0lJScHV1ZVPP/20G97o3cNaR0cHaWlptLW1vXd0o1RpaWkioKS+vh5FRUUMDAyYPn06v/32G4cPH+a7775j9OjRZGZmivQwaT2blZUlEHwffvghPj4+/P333+Tn5wNdLvPU1FS+++47ERSiqKhIbm6uWOnb2dkJBFFVVZVI2IKuw2x1dTXq6ur/aqXu5ubG7du38fDwEPKTGTNmoK+vz507d8jPz0dNTU2g6kJCQoTbPCAggPT0dBQUFLC2tkZPT4+6ujoeP35M37598ff3R11dXTQanZ2ddHZ20tzcLJpEydAo3XtycnIEnWDs2LGC4ynhh3r37o2ZmVmPmlcvLy/BUjc2NmbevHkoKyuLzURFRQVTpkwRRsawsDB27tzJ69ev8fX1RUFBgZSUFIqKivDx8WHQoEFAF+f4r7/+QkFBAR8fH7Kzs4mIiKCpqQl9fX00NDR4/PixaKz69evHxx9/jJKSEo2NjTQ0NKCpqcngwYOpra1FX1+fsWPHdvOlvG81Nzejo6ODm5tbN1OUxCWPjo5GV1cXDQ0NIVMZOnQov/zyiwhLaW9vp6CgABsbG16+fCn8LRJDPDk5mUePHhEfHy9oDO3t7ULqUV9fj5KSEnl5eejr66OsrCwO3S0tLZw9e5bIyEgCAgJ6zM2WsF3/s2xsbKitreXFixfCcFhRUUFbW5uIYi4pKSE3NxcTExNGjRqFk5MTMjIy4n7X2dlJVFQUBQUF6Ovro6KigpycHFlZWdy5cwdHR0dxHQUFBWRkZBAXF8e6detYtmwZLS0twqwshcNoamoSExPz/7ymHjevhw4dYvjw4cybN49p06aJhKeOjg5WrlzJwoULhQbN0dGRGTNmkJ+fT3R0NElJSbx8+RIvLy/69u2Lj48Penp6REdHi3G8NOGQppoHDx6kpKQEfX19tLS0+PbbbykvLyc0NBR5eXlUVVXR1NRk+/bt6OjoUF9fT0BAAAsXLmTChAk9XqtLDt68vDwiIyOprKxEUVGRlJQUoZFSU1OjtbWVlJQU7O3tCQwMxN3dncLCQrKyskhOTkZeXl5MpTQ0NISm7enTpwwZMoTLly/z8OFDsTKS1rZbt24VAmY7Ozv09PRobGxEQUEBJSUlKisriY+PJysrC3d3927TlPctGRkZ7t27x/r162lububkyZN0dnayevVqHj58yKBBg3B1dRU3/OjoaI4ePUpTUxP+/v6YmJigo6Mj+KbQdcOKiYmhra0NNTU1ysvLxQly8+bNfPnllyxbtowxY8Ywbtw4li5dyqlTp3j8+LHgr1pYWAizw7NnzwTUe8eOHT2+xvb2du7fv09DQ4NA1YwePbobIkhNTa3bBCM/P5/8/HyUlZW5fv06Fy9eJDU1FUdHRxYuXIiRkRGPHz8WHEXoMk5t3ryZhoYGvv/+e4KDg2lvb2fmzJm8fPmS2bNnc+3aNa5fv463tzc3b97E1NSUwsJCMjIy/sOA8L7l4+ODl5dXN1NicXExpqam+Pj4MGzYMNra2sjPz2fdunWsW7cOAwMDdHR0KC8vF2imsLAwgoOD8fb25ty5c8THx7N06VLKysrIyspCRkaGOXPmiBv6yZMnefv2LWpqauTl5YkJT3l5Offv30ddXR0fHx9+/vlnGhoaOHLkyHs5R/+3un37Nj/88APu7u7s27cPZWVloQNNSkpi5MiRIt3IxsZGMFMzMjJEo6yurk5DQ4PQpBYUFJCQkEBLSwsODg7CROrg4IChoSG2trYoKCjw+PFj1q1bx4YNG+jXrx+bNm3i9OnTrF27ltGjRyMrKyvA/aqqqigoKPQYJTVt2jT69etHS0uLiC/W0tLC2tparAY3bNiAvr4+y5Yt4/Tp03h5eREVFcXGjRuZOXMmgwYNEtGkampqXLx4Ubj2nZycOHHiBP369SM2NpaDBw/y9u1bZGRk8PDwoLOzk5KSEoYMGUL//v1JS0tj69at9O7dG1NTUyoqKjA3N2fbtm2MHz+e5ORksaJ/3zp06BAffvghZWVlhIeHo6+vz5w5cxg4cCBbtmzhzJkzvH37ll69euHq6oq/vz8vXrxg3LhxDBkyRPCj+/bty9ixY4GuqZa2tja+vr68efOGPXv2kJSUJP7MqKgoGhsbWbBggZDLNDc309HRgZqaWrdDhtRUdnZ20tDQ0OPmta6uDn19fT7//HNB3jh48CB//fUXtra2/PLLLzg7O5Oens5XX31FXV2d8FDU19ezcuVK3N3defjwIbm5uWhoaJCUlERjYyNDhgwRoQySFl+aEEsM4HPnztG3b1+WL19OeHg427Ztw9HRkZ9++gkHBwfWrVvHvn37OHHiBNbW1t141e9bGhoalJaWoqGhQVtbG2PGjBEbmgcPHhAfHy82dNClFffx8UFGRobMzEw2btyIo6MjH3/8MX379iUyMpKLFy9y/PhxysrKRKpbbW0tKSkpdHR0sGHDBlauXMn58+eZMmUKgwYN4vfff0dJSYnq6mpycnK6mYQHDBiAnJxcjw9XUmVmZmJgYEBbWxuvX7+muLgYBwcHXF1dsbKywsDAgMbGRsrLy7s9Mzw9PTEzMyM/P5/KykpycnKEPra5uZnGxkY2bNhA//79KS8vp6KigrS0NLGlkZOTY9euXVy5coUNGzaIgUNWVpbogVpbW/n555+5evUqZmZmZGZm9ljzKhkX32XqSgcSDQ0NfH19hQnPxMQECwsLlJSUSE5OJi8vj/r6ehwcHDA1NUVVVVVIVkpLS4mLi8PKyopt27ZRV1dHREQENTU1VFRU/AfSzMrKiunTp/P27Vt27NjBqlWr8PPzY//+/Wzbto01a9bg7e2NlZXV//fNq5ycnHBBQlfcWX19Pb179+6G+snMzCQ9PZ24uDih5ZSYaNbW1gKzkJSUxPPnz2lvb8fKygpra2vRkFVWVtLQ0IC1tbWIDoyOjhZMvDt37hAUFMTQoUM5f/48eXl56Ojo8Pvvv4sGuqdf1LNnz7J+/Xo++OADTExMMDY2Rl1dHW9vb27fvs0ff/xBVVUVRkZGxMbGMmbMGIYMGUJUVBS3bt2iT58+ODg4CFlEfHw8HR0dlJWVMXv2bFpaWkhLSxPRjTt37iQqKoo///wTZ2dnxowZQ3Z2NhoaGri4uGBnZ4eMjAwtLS3IyMjw+eef8+mnn5KVlYW6ujr79u3jzJkzPbpGY2NjcnNz0dXVpbOzEy0tLcF+7OzsZNCgQVy9elXkOz9+/JjIyEhGjx7Nt99+i4KCAteuXSMvL4/Ro0cLhmppaSnOzs7Iy8tz9+5dbt++jZeXF1ZWVnz44YdCEK6srIyZmRkLFizAyMgIeXl5MjIyMDY2Fg1AVVUV5ubmGBkZdUN6vG8pKSlRUFDA7du38fHxEWYQ6YZXUFBAUVGR0JlKD+6nT5/i4OCAhYUF8+bNQ1NTk4SEBOrr60UeuZWVFTo6OhQXF/Pw4UMiIiIYPHiwcGM+f/6c+Ph43N3dmT17NkePHuXNmzeMGDFCfG+ysrJwcXERzvDs7OweX2NNTQ1lZWViclpWVoaPj4/A4KxevZqqqirBPHzx4gVHjx4lPz+fN2/eCAJAbGwsJiYm1NbWYmRkhIODA/Hx8WzZsgV9fX2amppITU1FX18fOzs75OXlOX36NM+ePROuZ2mFXlZWRmFhISYmJvz444+MGTOGZ8+eic1CT2rTpk28ePGCtLQ05s6dy7Bhw7C1taVPnz5Cc+/r6ysmlnV1dbx8+ZLw8HAqKyvR19cXEhAnJye0tbWFNnjfvn0UFBSgp6dHVlYW8fHxJCcnM2/ePL7//nsuXLhAfn4+pqamqKmp8fr1a2RlZQW9ITs7GwsLi24Jdz3FgS1evFjIWv4n8u7dn+vo6EhAQADx8fFs375doPLy8/NZv369SG9ycXGhX79+3Lx5E2trayZOnEjv3r0JDQ0lJCQEGxsbLC0tSU9Px8rKCj8/P+Tk5OjTpw+ysrLs2rWLY8eOMWnSJCZPnkxmZiZaWlpMnz4dQFx7T8rY2BhTU1M6OzuxtLTE1NSUyMhI0tLS6N27NwsXLhTbOFdXV1asWIGXl5d4X6SHfK9evfD29hZNQlVVFYaGhnh7e4tJlJKSEs3Nzbx9+5ZXr14xc+ZMcQCvq6v7D3lVRUUF4eHhdHR0MHjwYHR0dHo87Ojo6MDX15e8vDxevXqFiYmJ0PB5e3uL5nPPnj0UFxczatQoBg8ejKqqKjk5OVhYWGBlZYWNjQ0xMTHi0GFiYoKGhgaKioqioc7IyCA6OlpMyHNycggLC2PkyJFYWlqir68vpE6TJk2ioaFBNBHSfbWtrY24uLgeXWNbWxvJycmieYH/gzmytrYmIyNDmGTDw8NFIlR6ejppaWmoqKhgYmJCcnIyHh4eKCkp8eDBA4FtU1VVpbq6Gl1dXaZOnUpHRwfu7u5UV1eTkpIipnFScyzFcyclJQkzZp8+fRg5ciS5ubndJBzvW0ZGRsjJyZGYmCgO569eveLOnTtiiyihnOzs7KisrOTy5cuUlZUxYsQIzpw5Q0ZGBs+fP8fQ0JDGxkYmTpwowhuys7OFqbmgoIDr16/T2dmJp6cnnp6eREdHdzOavXuAlbSpXl5eYgsoTanft6SN2cOHD1FUVGTWrFmoqqrS1NSEoqIi6urqREZGCqSapEuGLpmcoaEhLi4u2NjYoK2tLczXkvylvb0dAwMD6uvrKSwspKSkRDTFkhFORUUFWVlZrKysxPDm0qVLmJiYYGtry5s3b1izZg1jxowR0/n/V/W4eZ05c6ZYt0krPBkZGRwcHLplwhcWFvLFF1+I7nnq1KlizSydHAsKCoiIiKCoqAhHR8dupwLoWgkdO3YMe3t7Fi5cSEhICF999ZVYGUGXHm7FihV8+umn7N69W0RV/tvKzs6mtbWV2bNnM27cOLHKXrJkCZmZmVy+fFkkvKSkpGBoaIi8vDy3bt3iypUrzJw5k2nTpvHnn39y4MABvvjiC1pbW3FxcWH9+vVcvnyZlJQUrl+/zrlz51i2bBn+/v6CxiCZT6qqqlBWVhbNt/Qg+eijj1BUVGTevHlYW1szePDgHjev8vLyeHp6cvHiRZSVlVFRUaGxsZFt27Z10xbt3buXPXv2oKenh7a2NoaGhsKEk5CQwG+//UZ6ejpHjhxhzJgxBAQEoKqqSlhYGEePHiUtLU2EAQwYMICNGzciLy9PdHQ0MTExDB8+nGnTpnHhwgW+++475s+fL64/ICCA4cOHU1tb223V3ZPS0tLC2dlZHJx69+6NtbW1SIvKyMhg3bp12Nrakp+fT3x8PImJiZSXlzNo0CDmzJmDuro6165dY+/evZiYmLB27VrBFM7Pz8fe3p65c+eKRLDo6GjOnz/P2rVrRSa3dKJ9F9xsa2uLpqameDBJudjvW0lJSdy5c4fKykpqa2spKSnB3d1dNHKJiYncvn0bLS0tSkpKKC4uJigoiKqqKmFCgy4UioTwcXd3p3fv3kyfPp1nz57R2dlJXFyceNjNmjWLEydOUFVVxfXr14EuLbEEEZ82bRqKiorcvXuXuro6JkyYwIgRI3j8+DG//vprj+UtpaWlQNeD8vr16wI3JFE7/vzzT6EL19HRoaGhARUVFZHMJnEh340ehK7JUHp6Ok+fPkVGRkZ8piWj5qRJk1BTU+PcuXMUFRUJJqepqSkmJibU1NQIeY2JiQkVFRXo6ur2OIFKalwB4SRua2sTbvnOzk5+//130tLSWLx4MampqezZswd1dXUGDx4sJqFGRkZUV1cze/ZsXF1dWbNmDampqUycOBFXV1eioqKQlZVl/fr1+Pj4iC3K5MmTMTExEQlpUgM9fvx4xo0bx6lTpygqKqK0tBQDAwNiY2N7dH2AMO7IyMiIxvDMmTPs37+f0aNH8+effzJhwgSRsqWoqEhAQACZmZm8ePGCiooKoOuwl5OTIxiUWVlZpKSk8PHHH+Pr68uOHTs4ffo00PV9k3BcUr27oZC2O42Njfz111+0tLTg6emJjo5Oj9P8pEPt7t272bFjBx9//DErV67ko48+Ql9fn7a2NiZNmkRkZCS7d+9m7ty5QJfhNz8/n5MnT5KZmcmoUaO4d+8ee/bs4ddffxV674qKCrS1tZGVlRX3QalxlBp2ib+rqqrKrFmzhFawuLhYJPlJ1y8rK9tjNri1tTXp6elUVlaK91IqCwsLFi1ahKysLNHR0XzzzTcEBwezceNGMTmUtlanTp3CysqKNWvWMGvWLNLT03F3dycgIABNTU1KS0vx8fEhICCAx48f4+/vj46ODvv372fcuHFA1z3UzMwMMzMzgRSTomYtLS0pKyvrkcdFKqkxbmhowMvLiz59+hASEsLnn39OY2Mj3377LZMnTxbbxrCwMM6cOYOenh5qampoaGhQV1dHaWkp+vr62NvbY2dnR3t7O6mpqSIGfcaMGSLe9fjx49y6dYsPPviAcePGcfToUfbu3cvcuXPR1tYWUgJra2t+/PFHamtrxQbp3XvH+5aTkxM7duzg2bNnQtInNaHNzc389ttvXLlyhWHDhgkMn6+vLx9//DFWVlaC/iE9syR5nLGxMUlJSbx48YJ+/foxcOBAMa21srLq9netrKzk5s2baGtr4+bmxu+//05lZaVA9AUGBnLy5El27tz5X6+nx82rhFOS1g8SnzM5OZk3b94gLy9PUFAQ8vLy4oQEXWkyM2bMICYmhqamJuTl5TE1NcXFxUX8r56eHiUlJSK6UYpzrKmp4dixY1RWVjJ9+nThSHvx4gWlpaWkpaXh5eXF0qVLRWwqIOC+PamJEyeKf5YE/tB1MluzZg39+vUTp1xHR0dhYhg5ciRWVlaCEKCrqytcy9B1E5J4fpaWlnh6epKTk8PTp09paWkRPNKNGzcybtw4kUjT3NxMbW0tKioqQuc0d+5cEcv3b5KLbt26RUFBQbdmIiUlhV69egFdWiRJItCnTx+hgfn222+prq5m69at/Prrrzg5OZGYmEh4eDgDBw4UN8i7d+/y5s0bVFRUaG1t5dGjRzx8+JDp06cza9YsrKysBBv48uXLDB48mIULF5Kfn8/PP/9McHCweB9VVFSE2ep96+7du5w7dw43Nzd2794tmsdevXqJ6Ux5eTlRUVGcPXtWMDrPnz/PtWvXuHPnjhCvT5w4kaFDhxITE0Nra6tohKQbiJubG21tbdja2lJRUcGNGzeIj49n3bp1AGJd6uzsjKGhoaBYSJrexMREHj58yIULF0TU5PtUY2Mj+fn5PHv2TBwQi4uLxXuqoaHB0qVL0dDQoKCggNDQUDQ1NTEzMyM4OBhDQ0Pa2towNzfHz88PeXl5rl+/TmNjI01NTQQGBnLlyhXu37/PpUuXiI2N5fbt26xcuZLbt28DXRPBP/74AwcHB1JSUsjOzhZ6Uunac3NzsbKy4vfff+8x8mzr1q0ig3737t1UVFSIKXJQUBDJyckMHDiQpqYmHj9+DICdnR05OTkkJSVRXV1NQ0ODaE5DQkJ49uwZ+fn5oinq7OwkMDCQyZMnExsbi6+vrwCDS+lU06dPp3///rx+/ZrVq1djYWGBnZ0dzc3NFBYWiu/gu4f396nw8HBB8tDQ0CAhIUGElhQXF/PTTz/x4sUL/P39cXZ2xtTUlOzsbB49esStW7fE+rK4uJg//viDx48fY2pqiry8PJ2dnZSVlaGhocGbN29QVVUlOjqauLg4Xr58ibm5OWlpabx584bOzk6sra1ZtmwZkyZNYs6cOSgoKHD16lVOnz7NuXPnsLa2/leA9ISEBOTl5UlJSeHMmTO8evUKZ2dntmzZgra2Ns+fP+9m2pXwekOGDCEwMJCsrCyOHz8utlODBg1i0qRJaGho8OTJE3bu3ElQUBCFhYUiX14yGN24cYOGhgY+++wzDAwMOH/+PM3NzUyePBl9fX1BYDAxMRGmylevXvXo+q5du0ZiYiL79u2jra2NGzdusHDhQmHcOXr0qPi+pKen8+LFCwFqNzMzE8akiRMnMmrUKPbt2yfS0qCrQX13yjlr1iy0tLR48+YNUVFRKCoqdpsuh4aG0tbWJjB8c+fOpba2VjQpkiH11q1b732Nbm5uaGhoEB4eTmtrK76+vqSnp/P555/Tr18/1q9fD3Q18lKkKcD27duxtbXlwYMHwvQ5atQoZGRkWLZsGT4+PrS2tuLn5yciqp8/f86MGTOEkUhbW5uJEydSUVHB4cOHsba2Zty4caioqKCvry82f21tbfz444/Y2tqyYMECvv322x69j42NjeTm5qKoqCg2yJ6enixfvpz8/HzhL4AuU/nbt2+ZMmUKRkZGREdHo6enh7GxMUOGDMHLy4uIiAiuXbtGbW0tixcvFmQaaVAg4eOkTaCuri5qamrcvHlTsI59fHzE8Ep63vzyyy8CudaTioqKom/fvnz++eeC1V1WVsaYMWNQVVUlPz+fjIwMdHV1mTt3Lh4eHoSGhqKjo8PMmTPF5+fFixfo6upiYGBASEgICQkJuLq6oqamJjbVzc3NHDlyhNbW1v94ppWVlYn0vD59+uDp6UlmZiZJSUmMHj2av//+Wxxu/9v9psfN67taDOj6MtTW1hIdHc3jx4/R0NBg1KhRuLq6ihskdH2xJN5ecXExxsbG2Nra/sebIJmcysrKcHV1xdvbm1evXrFx40bGjx/P999/T05ODps3b8bMzAxdXV0yMzP58MMPxQslaYP+zelEcmJLyV4mJiZoamrS0tJCr169/uMFbWtro76+XqzWampqqKuro3fv3kyYMIHq6mr09PTw9fWloKCAe/fuERQUhL6+PkVFRZw/f55hw4bx0Ucfcf78eRYtWkRJSQk+Pj4iHrCpqQldXV1kZWXF+H3MmDFERUWJUIie1P379zlw4ABJSUl8+umnPHv2jOjoaExNTSkrK+PNmzfY2toyevRoysvLRTMHXY1tv379GDduHKNGjUJVVZXU1FTU1NRQUVHhn3/+4ciRIxQWFuLu7i4ST2JjY7l//75gp4aFhXHt2jVycnIYM2YMy5Yt4/vvv+fYsWNiAghdN/yehk08f/6cK1euYGRkJBpX6YuppKSEnJwcHh4eNDc3o6mpSVJSEu3t7YIiIcWcOjs7M3ToUAwMDBg4cCCFhYXCGABdhqKOjg7k5ORQUVER04n29nZu3ryJt7c3J0+eJCIiQiTPSX+fsrIy/vrrL0JDQ7s1WO9bbm5ujBgxgpKSEvHeODo6ipuMubm5yP7etWsXR48exc7Ojp9//ll856REOilGU4rHlVLj3NzchDlPkgP8+eefdHZ24u7uzsGDB+nfvz+5ubkkJSUhIyODvb29eO9evnzJw4cP6d27N+PHj++RIQ26tiqFhYWEhoaSkJBAaWkp0dHR+Pr6oqury8yZM5k6dSqdnZ2Ehobi5eWFra0tFy5cECYfb29vwdzdt28fly9f7qbBlR44U6dOFRHVADExMWJlraqqirKyMrdu3aKjo4Nly5YxdepUVFVVxeS2qamp20bofUpy2kuxrFlZWdTU1KCnp8eePXvYs2cPJiYmrFq1CiMjIzo6OrCxseHNmzdUVFSgpKSEgoICLS0tNDc38+LFi//r2tvY2JjMzEzy8vKEGat///7Y29vj5+cnUskA4fS3tbXF3t6es2fPCi1uT6uwsBBLS0vRXObl5QkaR2VlJWfOnOHUqVMCMfT27Vv++ecfhg0bhr+/vwi6MTExobi4mKioKIKCgkQ63Jo1axg6dCglJSUoKSkJyU9CQgKpqalkZ2ezcOFCrK2thRFM+v6qqqoyZ84clJSUaG9vZ9u2bTx79qybE/y/1fPnz3n27BlycnKYmJiIqF/JLKaoqIifnx+lpaWCv6qrq4u+vj4JCQnk5eVRU1MjyCELFy6kra2Np0+fUllZSV5eHmpqanh6egqSTVZWFvv37+fIkSMYGxsjLy9PR0cHd+7cYffu3cjIyLBq1SrxrJI+J9A1DHlX9/++ZWVlRWxsLHFxcdjY2BAbG0t0dDQdHR3C6Gpvb8/ixYuFoUpFRYWgoCDOnz+PgYEBv//+O7KysjQ1NdHe3k5AQICI4YauqVxsbCxv377FxsYGf39/sT5+/vy5kO4UFxdjbW3N6NGjxfP66dOnvHz5kpqamn/lA2lpaUFVVRVzc3OBZtPR0enGaZf+Hvfv38fFxYV58+YBYGpqKqRwQUFBKCkpoa6uzqlTp9DT0+OLL74gLi6OVatW8ejRIz755BMCAgKE+dnJyYnW1laGDh3KkydPOHr0KHl5eVy+fJni4mJu3ryJh4cH+fn57Nq1i+LiYi5fvtyjTdbJkycpKSkhODiYzz77jKVLl/LPP//g5+eHqqoqd+/excbGhuHDhzNgwACcnZ3x9vYW/72Uipmenk5nZ6fo+1JSUigvL2fw4MFiW5CamkpDQ4Pg9kqSTzk5ORwcHBg6dChRUVGUlpayatUqZGRkhLRp9OjRJCcnc/bs2f/vm9cbN26IlJfi4mKOHz+OkZER/fv3x8vLS6y35eTkujlW9+/fz7Vr1+jo6EBBQYHq6mrGjh0rJoytra0kJibS0dGBn58fioqK4iYjJyeHo6Oj+FBK8XgjRoxg3Lhx/3GzaWxsFFDqf9PAVlRUoKKigoaGBtXV1cTExNDQ0ICrq+t/JMwkJiZSUFAgCASHDx9GR0eHBQsW0Lt3b+rq6vD29sbR0ZE3b95gY2ODrKwse/bsYf/+/YKfCDBo0CB+++03QRdoampCRUUFNTU1qqurqaqqQktLi8bGRqKiojh27BgpKSk9PoVJ2q7du3dz584dkRhkZWWFl5cXw4cPJzMzkwsXLrB//36io6MBWLduHRMmTODQoUNMmzYNLS0tfvzxR4KDg3nw4AFHjhwhKytLrLfevn2LvLw8o0ePZtWqVZibm4u1trW1NR988AHDhw/Hz8+PO3fuiC+XNAEGBGi8JzVs2DBsbGzIzs5m/fr1qKiooKOjg6WlpdC9Dh48mMDAQIyMjLh79y4zZswQrvK4uDiGDh3KggUL0NLS4smTJzx//hxNTc3/wCEZGBhgYWFBQ0ODiCNtaWlhw4YNmJqa4unpib29PTk5OWLaB10r8ZCQECwsLPjmm2+wsLB4r1WJVJqamowbN476+nosLCzo27cvwcHBwoQmweFjYmI4duyYWPm+m8wiKyuLrKwsT5484aeffqKwsJDly5djZ2dHXFwcy5cv59mzZ+jp6QmHtp+fH56engQGBgrzwAcffIC8vDy7du0STt+UlBQUFBQYN24ciYmJbNmypUfvIcB3330nUlu2bdtG7969Bd1EQh3p6uoSFRVFdnY2gwcPBhBu608++YS5c+dy+vRpjh8/Tl1dHf379ycpKYnKykosLCz49ttvKS4uZtWqVaxcuVL8fEtLSz7//HOWLl2KsrIyUVFRdHR04OHhwYQJE7C2thY6X+jCXn3zzTdivfk+JSsrK+5pktkkIiKCq1evCud8YWEh8fHxzJw5k4iICHbv3k1gYCAHDhzg1atXnD59mpaWFszMzLCyskJeXp6XL1/y+PFjIZnIzc2lqKiIgIAABg4cyKFDh4Aufuf06dNZvHhxt1XwwYMH2bFjB3Z2dvj5+Qmd8b+pWbNmYWJigomJCc7OzigoKJCcnMzKlSuxtbXFzs6OV69esXr1ambOnMnEiRMZOHAgI0eOJDU1lStXriAvL8+GDRvQ1dXl9u3bAsAvHUKkrdGCBQsYOXIkDx8+FNPO+fPni2fMyJEjux2EW1tbBRc2NDSU06dPIysr26MNiK2tLX5+fsTGxqKlpcX8+fOJiYlhzpw5jB07lp9//pmxY8cSGRlJr169REzs1q1buXz5spD8TJo0iYULFzJnzhyePn3KunXrSElJEfeMr7/+WmiOc3JyuHz5MpWVlQIlWFBQwIsXL2htbcXU1JTGxkaKi4sxMDAQjauUKNjT5nXXrl0sX76c8ePHc+fOHdatW4e+vj6nTp1CXl6eK1euiO+jv7+/OGjt3buXBw8eMHPmTD7++GMxQW5qauLo0aMoKSmxcOFCVFRUOH/+PGZmZnh7e4tGcseOHUJHKQ1sPDw8RHKYVHfv3qW2tpZVq1Zx5swZRowYIZ7H71taWlqiV2hrayMrK0two6U6dOgQCQkJDBs2TDTN0HXIdnR0FPhIoFtSlYODg3hu5OTkCAJHSkoKW7ZsYejQocydOxcnJyf8/PwEW11JSYn4+Hg++ugjoAubNXnyZCIiIv6rmel/lra2Nvv27aOhoYFBgwYxaNAg1NXV0dbWFpstPz8/LCws+P7777GyshJhJ1VVVRw4cABZWVnmzJkjwi4CAwMJCgqiurqa8vJyEWqioaHBsWPHaGhoIDU1VcjKevfujZWVFZs2bSIyMhIDAwOhg5eRkeH69etC1vA+cds9bl6TkpI4fvw4c+bMobOzk5ycHGRlZXF0dMTS0pItW7awY8cOlJWVMTU1FZOpV69e8ebNGwBcXFxwcHDo5phLSEhgx44dWFlZsWrVKvT09MjNzUVPTw8PDw9++ukn6urquH37NqdOnaK8vJyamhpycnLIzMykoKAAGRkZbG1tBRHg6dOnPRbgHzhwgMzMTEaPHs2QIUPQ0NDgxYsX5Obmoq+vj4mJicAf9e3bFzs7OwoKCkhKSkJTUxNdXV1UVFRISkri6dOnIkM4IyODxMREhgwZgoKCgshhl5q5R48eoa6u3u009W7j9vbtW5qbmxk2bJiYyMrKynZDP71v+fn5MXz4cOLj41FTU8POzk6kWwwfPhwdHR0OHDhAWFiYwLg4OzszZMgQjIyMRHSftrY2tra2WFtbCxOTNImKi4sjIyOD169fiy8GdE2bwsLCuHPnDm5ubgQHB1NdXc2TJ09QVlbG399fAIuNjIzQ0tIS2seeXJ+fnx+ZmZns3r1bnOxTU1NRVlbG0NBQaAzLy8sJDw8XkzYp4cbNzY2UlBSKi4t58+YNeXl5uLu7i9VRSUmJaOpiY2O76chevHhBc3MzAwcOZMmSJdy9e5cffviBK1euMG3aNMzMzDh37hxpaWn4+voKhl9Pqrq6mra2Njo7OzE1NaVXr150dHR024z8+eef7N+/Xxge5OXluXTpErm5ufTq1Us8DPft28e9e/eYOnUqS5cuBboOqdnZ2ejq6mJubo6qqip9+/Zl5syZ3cIxampqqKmpEQBuQKymg4OD0dPTIykpSdAmelIREREkJSUxZMgQFi5cKJqQhIQE4uPj0dHRQV9fn5aWFioqKnjw4AEWFhbY29szbtw4Jk2aREFBAXfu3EFWVpaPPvoIGxsbkpOTSU5OxtnZGWNjY2pqagTaRWpeXVxcePr0KRkZGSLNSUtLi8WLF6OoqMjDhw8FbiktLY3w8PD/0Nb+t0pLS6Oqqory8nLu3bsnjB2ZmZnIy8tjYGBAaWkpkZGRpKSkUFlZiZ6eHsOHD8fb25unT58SGhoq2IqBgYGEh4cTHh6Oubm5oJUUFxeLqZiWlhYaGhrcvHkTFxcXPDw8qKyspKCgAFNTU3R1dfH19cXJyYnS0lKx1nVxcenmsn7fsrCwIC8vD1NTU+E6lpGR4Y8//kBXVxd/f386OjoIDQ2lvLycUaNGIS8vT3NzM8+fP8fCwoKPP/5Y6MclULqcnBwuLi7ExMTQ3NzMvHnzmDt3Lp2dnVy7dk1M7aZPn050dDQyMjLCDHv16lW8vLwwNjYmIiJCSHwAJk2a1KPr8/T0xNnZGRsbG8FRlQ4LISEhvH79mt69e2NgYEBqaio2NjbY29uL0ACJlammpoaVlRW9evUiJycHExMT4UXQ0NDo5tiuqqoS3z8dHR3u3buHoqIi9vb2TJ48GWtra0xMTIQmsbq6mtjYWEHtkfTu71t3795l9erVQFf0dlJSEjU1NeI9jYuL4/Xr1yQkJDBixAjk5OSQk5Pj9OnTREREMHbsWBQUFATSUltbm5s3b5KYmMjAgQNRU1MTRuj58+cLKcS7jaOOjg4aGhqCd/v69WvU1NTIzMzkxIkTDBs2jKlTpwrTWE8rLCyMsrIy3N3dsbGxEYa4jo4OYZ6qq6vDwMBA3Es7Ozt58OABzc3NeHt7Y2hoKCaObm5u/PHHHxQUFKCqqoqHhwdz587lwYMHhIeHi420qqpqN91+YGAgw4cPF/cWHR0dHBwcyMrKwtfXl7Vr15KZmcm2bdt6dH2urq5cuXJFSA5GjRolyAxv374lKSmJ4OBgTE1NuXLliiBcfPPNN2IYIiGzTE1N0dPTIyUlBR0dHZycnEhLSxNhUYsWLUJbW5vo6GgSExNJTU0lLCwMe3t7Mbi0sLBg4MCBwuckxQVLCXLvHg7+b/WvNK+LFi0iOzubb7/9lnXr1lFcXAx0NVtaWlps2rQJExMTdu3ahbe3NydOnKChoUHgTIyMjFiwYEE3HpuUYJGcnCxg4Kmpqfj7++Pi4oKKigo3b95ky5YtyMnJ4eXlRVZWFjExMd3WlsOHD+e7777D3d2dq1evsm3bNmbNmvXe13fp0iWys7MxNDRkyJAhKCoqYmtrS21trXD+b9myhcTERP755x8hfE5MTERdXZ1p06aRmZnJ2bNniYqKwtnZWbhADQwMxOTru+++46OPPkJVVZW9e/fyxx9/MG3aNPGAlswL0LXqUVFREUYbZWVlpkyZQmBgIAoKCmzcuLFH76F0GFBSUsLAwEBoZ+Xl5ZGTk+Pt27doamoyceJEgoKCmDt3LmVlZaxevZqXL1/y448/Cl1TQUEBdXV1BAYGYmdnx61bt8jIyKC5uZmMjAw0NDSEnm3fvn0cOHBArEfj4+PR1NTE2dkZa2trGhoaSEtLIy4uDl9fXwICAmhtbe3xOlYqGxsbfvrpJ2FISUlJERxX6JrYrF69muzsbBYvXoyZmRnW1tb4+fmJFC5vb28++eQTcSpXVFSkubmZvLw8DA0Nqa6uZtmyZcjLy7N161aB5RkyZAhHjhxBV1dXrIbeTdeSptn/ti5fvoy5uTnR0dGEhYWRlpZGr169RNwldDWgb968YcOGDWzevJnOzk6mT5/O6tWr+f3330XzqqGhgbW1NR9//DHQ9R3Iy8tjy5Yt9O3bl87OTrHivHbtGteuXaO1tZUdO3YwatQo7t69Kw6ilZWVVFZW4uHhIdzdkqGkp7Vy5Up+/fVXwUy0tbVFVlaWu3fvcv36dfr27Ssm24aGhty+fRsNDQ3mzJnD3LlzuXXrFufPn0deXp7vvvuO/v37c/v2bUxNTfnqq69ISEjg4MGDBAUFsWbNGjIzM8VDpKioiC1btrBt2zahVZ42bRrOzs48fvyY8vJy3NzcKC0tZefOnejr6/P48WO++eab976+xMRE7t27x6NHj7ol97m4uFBXVyemGNXV1WzatAlPT09+++032tvbWbduHRcuXKCjo4OcnBwht7p8+TKhoaECtdfU1MSqVauElr+6upoNGzbw+++/U1JSIl4jMzMzxo8fj66uLlOmTBHmPkC8jz0lt0BXIMmlS5eYMmWKSFA0MDDg7NmzWFhYoKWlxYQJE5g0aZKQ8EhTZ3t7ew4dOiTWh/n5+VhYWDBq1CgqKiqIi4sjJiYGc3NzMXX//vvvSUxMZOfOnXh5eYkUJG9vb/r06cObN29YvXo1y5cvZ926dd1A6LNmzeKPP/7o0XtoYGBAVFQUvXv3xsXFhcTERKqrq1m/fj2nTp1i7NixLFmyBCUlJQ4dOkSfPn04d+4cs2bNQklJiQ0bNmBiYsLvv/8u4O9SKp907+zo6KC+vp6ysjJaW1tpb2/H398fa2trWltbKSsrw8rKimHDhglGZltbm7i23Nxcbt68iY6OjkA79aTeRVIBfPrpp5w+fZoxY8bw2Wef8cknnxATE8PFixdxc3MTf64Uy/3dd9/x119/oaSkJO4pVlZWgkLU2NhIbGws1dXVnD59msGDBwt5lVRv376lra0Nd3d3YmJihM7W19cXCwsLVFVVaWtrIzg4mD59+vxH2tl/K4ni8fXXX7Ns2TIxNJGuRU1NjY8++ojm5mbx/JCRkeHatWucPXuWBQsW8Nlnn3VDHy5cuJC6ujrk5eXR1dXl0KFDrFq1ikOHDqGpqSlCZGRlZXn06BFBQUE4Ojry888/Iycnh6ysLH5+fgLPqKenh5KSEkZGRnz55Zc9CmLQ0tLC39+foUOHYmlp2Y3gIw3IOjo6MDExYeDAgTx69Ii///4bW1tbZs+ezbp16/j777/ZsWMHa9aswdfXl19++YWkpCRu3LiBjIwMVVVVODo6ikFBRESEMJ9dvnyZpqYm6uvrKS0tZf78+QwdOlSEkMjKyuLr68vt27fJysoiNzf3v0bE9rh5NTQ0ZOLEiWICZWFhQWNjIz/88ANOTk4EBATQ0tKCoaGhmCjFxMRgYGAg3Nje3t6icb1y5Qp9+/alV69efPjhh5SXl4sseS0tLfLz8ykvLycsLIx9+/aRl5fH8uXLmTRpEiUlJdTX11NRUUFNTQ0pKSno6+uLtci72K33LSlyTjr5QNcH18PDA0NDQ5qbm4mLiyM+Pp6PP/6Ys2fPYmhoiJ6eHo8fP6a2tlbAjj08PGhtbaWxsRFlZWUMDAyERtTBwUE0GbW1tTQ3N5Ofn09TUxPKysqUlJRw+vRpSktLu60pkpKSKCsrw9PT818zQg0NDf/jhvRumZiYEBgYiLq6upiYGhgYoK6uLvLsnZyciIqKoqioiMGDB+Pl5UV9fT0JCQlcvnxZnK4GDBjAkydP+Ouvvzh+/DiVlZUClO3t7Y2vry+dnZ2kp6cLY4HkHlVSUhIRrj2pu3fv8vfff2NnZ8eHH36InZ0dNjY2/8EATE5OJioqCi0tLQwMDEhJSaG2tpYpU6Ywbtw4Nm/ejJycHAEBAdTU1HDy5En++OMPkRcOcOTIESIiIvDz88PGxoaAgADevHkjMD2lpaUoKiqydu1aCgsLBQLtyy+/JDU1tceSD6nq6urw8/Pj1atXZGVl4erqytSpUzE2Nub58+fcuHEDR0dHBg4ciKKioiBL2NnZYWxs3A1rt2nTJmbPnk18fDzPnj2jtraWiooKnj17Jiaqtra2XLx4ka+//lo0NdJJW5oKZWZmcvfuXczMzEQzkZmZyblz5/7VNU6YMIH09HROnz5NcnKyiPqVEFgSq1RPT4+PP/4YdXV1amtrxVoxJCSER48esXLlSgwMDLh06RIHDhygoaGBzMxMlJSUyM7O5v79+5SVlVFXV0dzczPKysokJyejoqIitjvu7u5MmjQJW1tbysrKKC4upqCggI6ODpycnOjVq9d7rbrereHDh6OpqYmGhgbDhg1jwIABGBkZER4eTnp6Ourq6ri6ulJYWMjVq1cpKSlBVlaW27dv8/z5c4KDgxk5ciRPnjwhISEBW1tb3N3d0dbWZtiwYTg4OJCTk0Nubq7ACkoPZWlDUldXh4qKCkOHDkVNTY0DBw6Qnp5O//79hfn0/58KCQnh3Llz6OrqMm3aNOFYlw60EkdbQoOpqKgI05m/v7/Ild+1axehoaFMmzaNoKAgTExMKCoqwsXFha1bt1JfX8+SJUt48uQJS5YswcvLS0QIt7S00L9/f1paWmhsbMTX11dEbauoqODv74+rqysbN27s8XsoUVikyfTff/+NlpYWS5Ysoaqqiu+//57k5GRGjBiBoaEh58+fp6OjgwsXLjB58mTq6uqIjY3tdm+SPr9JSUlER0dTXV1Nbm4uycnJVFdXC115UVERsbGxTJw4kRUrVuDo6Nit6aupqUFZWRlVVVW8vb2RkZGhvb29x4xQGxsbbt++TUREBB0dHcyePVsYfFauXEljYyMWFhZ4e3sTFRVFVVUV1dXVAoVVWFgoyA9bt25l6dKljBs3jk8//RRHR0eio6MFZk5NTU1IO6T0s+joaK5cuSLuZXJychQVFYn7gIaGBmpqahQXF4vkrp6WFE0ubUIrKyvR0tISzWtHR4cYYEgbiMrKSuEHePHihZAGnDlzhlu3buHr60twcDBaWlqiQWxvb0dbW1v4Xu7evYuTkxP9+/enqqoKFRUVMcCSfr+EJ4uOjiY+Pp5hw4b1OIjBzMyMQYMG0dHRQWxsLC0tLTQ0NJCbm0tcXBxGRkbExMSgra2No6Mjjx49Ii0tjdjYWBH/6u/vz6VLl7h9+7a4rzc2NnLt2jV8fX3x8fGhs7OTP/74g2PHjgFdpiwZGRmeP3+Onp6ekNAZGxtTXFyMoaEh9fX1XL16lYSEBKytrfH39xeRw/+v6nHzKo2uU1NTefnyJT4+PsTHx/Pjjz8ybtw4/vnnn248wP3793P06FHR0BkbGwvYr9TUNDU1MXPmTNavXy/wNtD1gbl58yZnzpzh2bNnwg2oqamJgYEB5ubmQuMnJbgsXboUOTk5rl27hoqKCkePHmXz5s3vfX2TJ08Wa4P6+nqio6Npbm4WwnGJ6xcfH09ERAS//vorEyZMoLOzk4cPH3Lx4kWGDx/On3/+KeDX0gMRuiaVaWlplJeX07t3b1RVVZk6daoQ8Uu/Ly8vj8OHD1NYWIimpiZ9+/ZFXl6eoqIisrKykJWVZeDAgT2+EUGX1k5Ka4GuE6T0/2VkZLCzs8POzo7Ozk7hjm9oaMDX15cXL16wb98+du3aBcCCBQsICAjg8uXLXLhwgfj4eIqKipCRkcHZ2VmctnNzczE2NmbWrFmMHDmSESNGiOb71atXKCoqCqxGaWkphYWFAhouURbet6SpuLGxMTo6OgQEBGBiYoK2tjbNzc2oqamhoKBAv379+Oyzz8jMzCQ+Pp7r169jbGxMcHAwurq6TJgwASsrK5SVlZGVlSUpKUnE+m7ZsoWLFy/y/fff4+DgwNq1azE0NCQ3N5exY8cyaNAgGhsbuXz5MoqKigI+DV03JFlZWbH2b25u7vENV5IsVFVVoaamxsiRI8WBZP/+/Tx79kwYqkaOHCmg/QcPHmT+/PmkpKRw9epV+vTpg5mZGTk5OZw+fZq6ujo++ugjKisr2bNnDy0tLSLdTEFBQWig1NXVkZeX59mzZ6irqwt3fn5+PpqamuTm5gq8UklJSTdu6fuWuro6I0eOpLKyks7OTiGzmD59OpMmTer2oPb19UVLS0uEJuTn55OXl4esrCwdHR3cvn2be/fuUVlZSWlpKb/88os4YF6/fp0jR44wc+ZMWlpaOHfuHI6OjsyaNYsnT55QXFzMlClT6N+/PxYWFuLQmZ+fj5ycHCtXrqS9vZ1//vmnR9cnrWIl04S6ujqhoaFs3ryZ0tJSdHR0MDU1xdbWFlVVVZKSkoSuuk+fPmzYsAFXV1dOnjzJ5cuXiYiIYOHChTg5OYnv8sCBAxkzZgyffvopt27dIjAwkCNHjiArK4u/vz/y8vK4uLjg7u5OcXExFy9eFHg7LS0tMYD4N3nq0CW/cHJyEq+Zjo4OtbW11NbW0tTUJJJ8pLKyssLKyor6+npxLwwLC+Pw4cMkJSWhq6vLpEmTBP9z4sSJBAQEsGXLFg4ePEjv3r1FYt3vv//O5cuX+eWXX0SEs7GxMSNGjMDJyYmOjg7Mzc1ZvXo1Y8aMQVlZuccRv8bGxuK72NjYKKZsurq69OrVi0GDBtGnTx8RJSoB+n/99Ve++uorJk2ahJmZGW/fvsXc3Fw0sQUFBfzzzz+cPHmSoqIi8Z5KdIbAwEAyMjJoaGgQCU7S+yQZpiQjlRQ/KrGte7oJsbGxISoqitDQUCoqKsjIyMDS0pKgoCDu37/Pt99+y8WLF1mxYgX79u0jKioKV1dXcd+UlZUV6LrCwkLS09MJCAgQSMuwsDDxPPvuu+8wMDCgs7MTOTk5KisruX//Prm5uXR0dIhUxJkzZzJs2DD8/PwoKCgQyKYbN27wzz//9NgnMXr0aDw8PJCXl6ehoYH6+nrU1NSoq6sTzHpXV9duptiGhgY8PDxoaGhgzJgxYqCXlZXFyZMnefnyJTY2NowdO5ampiauXLnC69evcXFxYfz48aSkpBAfH4+rq2u3BEHJoC0nJ0deXh6ZmZnU1dXx6NEj0tPT0dfX73GUsYQSPH/+PBUVFfTq1QtTU1MKCgro7OzE3t6ekpISbty4gZqaGtbW1sjIyHSLoi4uLsbOzo6QkBAuXLiAra0tcnJy3Lt3D1NTU2bPns2pU6fE5mLBggX4+/tTX1/PggULcHZ2Ftp5yVApBefk5+ezY8cOZGRk2LRpE2vXrv2v19Tj5lWKGDt69Cjnzp3j66+/Rl5eHldXV2E0Cg8P5/Dhw7S0tFBTUyMSKKQH6LVr1wgLC6OtrQ1ra+v/QINIJSsri7KyMqNGjWLevHlcu3aNU6dOcf/+fVRVVUWkaVZWFiYmJqxevRpzc3MePnzIJ598gp+fH1OmTOnR9SUlJfHrr78yZswYfH19SUpKoqWlRZzIOjo6mDhxIiNGjEBHR4fw8HA+/fRTgWexsrKisrKShw8fiuZNgvg+fvyY5uZmgR6RDFlWVlZMmzatm2aurq6OcePGiaZy5cqVKCoqsmzZMmbNmtUNaNzTampqEmsJaRXY0tJCXV0dNTU1GBoaoqamhoyMDGfPnuXw4cPU1dXh4+ODqampQF38/vvvrFmzhtLSUg4ePMjz588JDAxk06ZN1NfXExYWJvil2trarF+/HhsbGwGtBvjnn38oKipiwoQJWFpaEh0dzaFDh2hoaKCjo4Phw4f3+EbUp08fjh49iqysrHjwh4SEcPXqVfFnSc3mkiVLOH36NDk5OWzYsAE1NTVOnTol4OVycnI8efIELS0tIfn4448/yMvL4+rVq0AXA3jChAlAV9RoVlYWEydOFDiXd41a0LWWLyoqwtramoqKCqKiooRW6n2rtLSU6dOnc+XKFdTU1ITbeMeOHdTW1vLdd9+ho6PDtm3busWypqWlcf/+fU6ePElDQwOVlZWkpKSIDciSJUvQ1dWlo6NDGOra29vJzs6mublZ0CmUlJRYvnw5Dg4OHD16lGPHjqGrq8tHH32EpqamWNtNnjyZn376iezsbAHAft/S0tJiwIABNDU1cfbsWdauXcucOXOEo/ndev78ObW1tWJTID3kpElDQEAAixcvxtraWvy72NhY8vLysLCwYOHChcyfP5+wsDDu3r1LdXU1+vr6LF26VGwg/uem4931q5ycHK6urjx48KBH1wiIw1liYiKXLl0SGu/KykqSk5P59NNPCQoKYu/evezYsQNjY2NmzpxJXFwcHR0djBgxgqioKM6fP4+Pj4+Ib5RKomJER0fT2dnJ69ev8fLywtDQkMrKSq5evUpMTAwDBw5k6tSpeHt7C/mJlOinr6//r5rXRYsWdcMPQpeWeevWrXh7e/Pbb791+7Xa2loyMjKE2cjFxQULCwtmzJjB3bt3SUlJ4fPPP8fc3FykF/7++++EhIRgYGCAmZmZQDT+b9rOsrIyoa/84osv8PPzo7KyEmVlZdrb2wkJCenR9cnKyhIXF4etrS2mpqbMnDmzWxBJfn4+DQ0NvH79muvXrzNo0CAmTpxIVFQUQ4YM4aeffiIwMJDGxsZu9wlDQ0OmTJmCpqamSEGTk5Pjp59+4sGDB5w6dQpPT08+/PBD5OXliYmJQU1NjefPn5OSkkJAQIBoiN79mQoKCj0+SA4ePBh7e3uRcFZUVISGhgYzZswgKCiI0tJSIXMwNTXF0tKSyZMnM3bsWIKDg1FSUhKIQmtraywsLIRJTgoVkFLkAgMDKS0tFVrhAQMGUFdXx4MHD0hOTmbr1q04OzszY8YMsfGRXm/oMtD9W3zkjh078Pf3Z/r06djZ2ZGQkMDVq1e5du0azc3NfPzxx1hYWIjDlpmZGXPmzGHkyJHdDI2rVq2iT58+NDc3M2DAANHHVFRU0NnZSUVFBaGhoTg4OLBr165uQP6mpiaWLFmCmZkZP/74I1ZWVpSXl6Ours6AAQNobm7m4sWLhIWF9ej6qqqqSEpK4sGDByIFa/369axbt46ioiKuXbtGZmamaNRnzZrF8uXLycrKYunSpWRlZaGqqkppaan4s7ds2YKKigo///wzvXr1YuTIkWIqPXPmTPbu3YuqqiqysrKMHTu226HJ2NiY8PBwUlJS8Pf3Z/ny5bi6ulJZWfne5tAeN6+AWAl0dHRQUFCAv78/P/74ozAPFRcXc+XKFSorK7GxseGrr76iqKiIU6dOkZWVRW1trThxGxsbixF4fn6+AFG3tbXR3t6Os7OziA0tKSmhtrYWbW1tNDQ0iIuL4+7du+Tm5uLi4kJCQgJubm6iKfyfupn3qdjYWGGegi4+GiBiQtXU1ESjAl0n5MTERPLy8hgwYADq6up0dnZSUFCAkZGRMKzcvXuXs2fPEhAQIHJ+pZIwORkZGYIEoKury7hx40hOTiYkJITIyEisra0pKSkRGdPAvzJRZGRkiLVxdXU1MjIyaGpqoqSkJPRtLS0tJCQkUFRURGNjI3V1dejo6KCnp8ezZ88wNjYWiVKvXr3iyZMnlJWVIS8vz+TJk1FTUxM3YyUlJf744w+xfnjw4AGFhYW0tbXx6tUrWltbRYNqbW2NlpaW4OKqqqr2GJUlJyfH+PHjefHiBVlZWfj4+NDR0SEeTCNHjiQ0NFRMWoqLi1FQUGDFihWoqqoybtw48b7X1dWRnp5OS0sL1dXV9OvXj5KSEq5evYqMjAyzZ8/uZkSSzHRnzpwhICBASEqk6M/c3FxevnxJamoq7u7uyMvLU19fT1NTU4+uU1dXVxAEvL29xZT3zZs3rF27lrlz55Kfn09qaioeHh4UFBQIXfmTJ0+IjIwUIRhSYt3YsWNFpG9GRgaKiop4eHggJydHTk4O7e3tDBkyBH19fYqLi9HR0SE1NZVDhw6RmZmJjIwMq1evxtraWpgSDQ0NhQSnp6gs6NLjDho0iFevXglOqKGhIePHj6etrQ1FRUXOnTvHxo0bMTc359SpUxgbGwtWK3Rhxb755hvxGauoqMDOzo7s7GxOnDjBgAEDmDBhAnZ2djQ2NvLFF1/Q1NSEu7s7xsbGYtpaU1NDamoqKioqaGlpUV1dTUtLC9bW1mhra3czmLxPHThwAE9PT3r37k11dTWhoaGUlpYydOhQMW329vYWCDB/f3+ys7OZPXs25ubmfPrppzg7O3P06FGGDBnCnj172LdvH05OTjg6OqKqqkp2djalpaXCuKOgoMCsWbOEREHKLo+IiBABAQsXLhRSHQmJZG1t3W0K877V2NhIW1tbN71sU1MTYWFhKCkpUVRUREdHB9nZ2bi6ugr5l+SfgC527/fff8/s2bMJCQmhvLwcVVVV6uvref78uXjgjRkzhvz8fDIzM7G3t8fMzEyQVKDLO/DPP/+I2GNARIz/z+bxfevRo0c0NzcLrV9bW5vYhjU2NpKVlcWlS5fQ1NQkKiqKb775hrVr13L69Gk2bdpEQUEB0KWlf/f739jYiKWlpSD7QJdG393dndTUVOHvGDNmDDU1NTx48IDs7GwuXrwoMHF9+/alqKiIgoICevfujba2tphq9qSkaXhVVRU1NTXdmgs3NzcxcCoqKkJRUZHGxkaSkpLo1asX8+fP/4+fV1RUxIkTJwT1Arr0sVKSX2Zmpnimjh8/ntGjR1NdXc358+epr6/H29sbJycnioqKRACHxO3V0tJi1qxZYrDwvpWZmcn169dRUFBgxowZqKmpkZSUxO7du8nOzsbc3BwrKyvRuGZnZ6OgoCDkJ0VFRbx48ULI3lxdXdHU1EROTo7s7GxevnxJTk4Obm5uvHjxgsOHDzN//nzBrX758iV6enrExsaSlZVFe3s7DQ0NaGlp4e3tTVhYGOrq6owdO5aIiAgh/XnfUlVVFclr0dHRJCUlERoayogRI/D19aWxsZELFy5QVlaGh4cH/v7+NDY2Cg/Ks2fPuv086bWoqKigsLCQsLAw4uLi6OzspH///qxatUp8nqXDS2FhIbGxsVhZWZGfn4+2trboY9rb2/H29sbU1JT29vb32g70uHm9dOkSo0aNYsuWLWRlZaGmpoaRkREaGhrixZw0aRLV1dUsWLCAxsZGpk2bhpGREWPGjOGHH35AV1eXWbNmkZqaSnp6unioHD58mHPnziEnJ0dubi7+/v4cPHiQxMRE1qxZg7a2Njt27MDIyIjCwkLu3r1Lnz59UFZW5t69e/zzzz84OjoyZswYLC0tu4nx37ckJ15OTg63bt3i5cuXuLi4kJKSgqKiItra2uLnFhYWUldXx/jx4ykqKuL58+eUlJQQEBDAuHHjhHP52rVrPHnyhOrq6v91etHY2Mjdu3eJiIjA29ubuXPnYm5uzvHjx4WrcP369QwcOJD79++TkJDAggULUFFR4eXLlz2+xvT0dFxcXCgsLOThw4d0dnYyYMAAsfaALoxOfn4+48ePZ+LEieTn54svtBTrO2bMGHx8fCgvLxfxpjdv3mTHjh2MHz9eYHmsra0ZPny4+Nmurq7IyMhgYWHB2rVruXTpEr/88gsTJ05kyJAh7N69m6ysrH+dlHb9+nWuXbvG0aNHUVRU5PTp04wePZqKigocHR3p378/v/76Kzt37sTExAQzMzNsbW0JDQ1FUVFRaLWk9+b169fk5uZiZmYmJDBXr17F1dVVmAHr6+uRlZVlw4YNhIaG8tVXX7F9+3Z+/PFHpk2bJnKu9fX1+fDDD0U+u3TY6ezs5Mcff3zvaxw3bpww9ki8VkdHR7744guhmZNO72FhYVy/fp3o6GjRhEq8xVevXrFixQpGjhxJcXEx0dHR4j09fvw4LS0tfP755wQEBHDt2jVu3LiBnJwc6urq/PHHH9y9e1ekEllaWtLc3IyzszPbtm0TJsp/k6cOXc2GgoICenp6zJw5kzdv3nD58mU+++wzoCtQ5MaNG6xfv56MjAyys7M5evSoiKKtra1FS0uLFStWiHvMoUOHuHz5MhUVFQKplZSUxB9//IGvry92dnbMmTMHKysrWltbuX79OqWlpZiamlJVVUVERIQwcP35559YW1uze/du2tra/uMG/99q48aN2NjYsHr1aqZPn87MmTPp16+faC6UlZUxMjKiubmZ8PBw5OXl+eGHH3Bzc+Pp06dUVVWJRqlXr154enpSXV1NXFwcdnZ2VFdXc/bsWTENtre3/w+yhY2NDQsXLkRZWZmsrCzOnz+PioqKQA21trZSX19PWlpaj1nE0HVPP3jwIHPmzBHyLWlVL615Dx8+TEVFBb/88gtjx45lyJAh/2timaOjo7gnREZG8sEHH9DZ2cnmzZsZNGgQeXl5lJaWoqWlxcuXLykoKKBPnz74+PgQEhLCunXraGho4OzZs4waNQpAaO1tbW0xMzNDTk6OO3fuvPf1Xb16lR9//BETExPy8vL4448/MDc3Z+3atQQHB4vvnbKyMgEBAWJzOX36dLy8vDAxMSE3N5fXr19jZmYmDnqPHz8WccVGRkbcuXNHAOa/++47EVEqRdsaGBhw7Ngx0bjm5uby22+/ceLECczNzTl9+jTa2tpCCtaTkg7e69evJyQkhNOnT+Pj40NycjLl5eWC7ynJmP78808KCwv55JNP+PLLL1FQUKCjo4PS0lLi4+O5f/9+t22QoqIibm5uRERE8OzZM6ytrWlsbCQzMxNzc3NcXFxIS0ujo6ODGTNmiA3vN998w7Fjx/D39xfxp4sWLWLlypU9bl4///xzPv74Y7S1tUVTlp2dLTTZM2fO7MY9ffHiBbGxsUJP/+uvv7Jr1y4sLS2FVMnf3x9TU1NevHhBREQE2traTJgwAU9PT5KSknj9+jUpKSnU1NTwxRdfUFBQQGBgIOvXr8fR0VH0Cq2trZw4cYK2tjY2btyIv78/r1+/Foly71OWlpbMnDmT5cuXk56ezq+//sqpU6fw8/Pj4sWLDB06lEOHDtHc3MzXX39NamoqI0aMYMCAAXz//fdiMg1dEi0/Pz9evnxJTEwMDg4ONDQ0sHnzZrS1tZkyZUq3tNTm5maqq6uxs7Ojra2N1NRUSktL6dOnjxgKrFu3jujoaIYMGYK1tfV7bXl63Ly+fv1arOLfxTRJa+Kamhp69+6Nvb0969atw8DAQKz4mpub6dWrF4qKisjIyAjo8uvXr7l48SIXL14kMTFR/Mzr16/z008/kZOTI9J9jIyMqKqq4ty5c/Tp00esCfX19Xn58qVAiLi5uVFYWNijJBHoSu6BrolqZmYmLi4uzJw5U0CaIyIixFTGyclJYCxSU1ORk5PDz8+PcePG0dTUJJA82dnZBAUFsXDhQpydnWlraxPampycHHJyckT0pYRSqaqq4vnz51RVVbFw4UJWrlwpXv+qqipkZGTIzs4mPj6+p2+h4Krl5uYSHh5Ofn4+ERERWFpaoqOjg6KiIgYGBowdOxZNTU2ht4mKiqK+vh57e3vMzc2pr6/nxYsXYiInTXNjY2OpqKhg0aJFYjqbkJDApUuX8PT0ZNy4cWK1o62tjZqaGjt37qSsrIwhQ4ZgaGiIoaGhcE/3NLJRW1ubzMxMnJyccHJywtLSEgMDAz799FPKy8uFaURDQ4OcnBxqamoYN24c9+/f59SpU5SUlIhTYf/+/TEzM6OqqgonJycCAwORlZWlT58+VFZWCke/trY2M2bMQEVFhSFDhjBy5EgePHggeH/vymGk07pU5eXlPcbXaGlpdTMVSrguySGroqJCfn4+ZWVlmJmZMWTIEKqqqggJCaGlpQUZGRmRWd3e3k5nZyeqqqq8fv2aM2fOEB8fj7q6eremU8ItVVZWMn/+fDQ0NPDy8qJfv34oKyvj7u7O5MmTkZeXR15eHj09PTo6OoiKiurGfH7fejddyNnZmUOHDmFjY8ONGzfIy8sTJ3RPT09mz57Ns2fP+OmnnzAzM2PKlCkEBwcTHh4ueMMS8qysrIzo6GhUVFSYNWsWlpaWItrxXY5keHg4J0+eFCEjEqtUWVmZqqoqgYeTDGw9NRZ6enoiKyuLiYkJcnJyaGtr4+Xl9R+/r729nYqKCqF7b21tJSkpialTp2Jra0tYWBhycnKsW7eOyspKTExMUFBQQFlZmb59+zJp0iSsrKxYsmQJ0NVw6ejoMHjwYDo6Onj16hXKyspYW1vj6uoqnNvy8vKYmJigr69PR0fHv9pkSWvcmJgYDh48SFFRESoqKixZsgRjY2OuXbsmDC2SsVVZWZmQkBARYKKpqSlitb28vHB3d+fNmzfIysri5OSEs7OzMO7179+f5ORkdu7cSWNjIz/99JMwmnR0dDBz5kzRuJ45c4Y///yTXr16CZnL/8vI+r+VhKWCrubNyMgIOTk5mpub8fLyYteuXWzYsEFIbnx9fUlISKCjo0NQFLS1tcnLyxMyERkZGWRkZFBWVubJkycUFRWxZs0aWltbGTBgANOnT0deXp5Hjx6J1D9fX18mTpyIvLw8Dg4O9O7dm9LSUkxMTHBxcRHkGhkZmf+IYf9vFR4ezujRowUSURoc7dq1i4EDB4rmVVZWFjMzM/G5rqurIzc3F1tbW96+fUtISAgZGRnIyckxZswYBgwYQGdnJ4MHD8bHx4e3b98SHx+PmZmZSADU19cnJSWFhw8fEhERgY+PD56entTW1mJmZsbkyZPx8PDg4cOHJCcn8/Dhw/fSS/7P+p9A/KqqKrS1tZk9ezZOTk5YWVlx4MABTExMmDt3LhYWFty8eZOjR49ib29PQkIC0MVxdXJywsLCgrdv33Ly5EnxMxsbG0lPT8fIyIhBgwbh5eVFXV0d9fX14uBvYmLCyJEjxXtUU1PDkydPBGFJuje9+zx5n8rJyRGMehUVFSZPnkxtbS0xMTHU1NSgo6ODn58fcXFxVFdXU1xcjImJCd7e3uI+cefOHRITE7G1tSU4OJjKykqsrKzQ0NBAXV2dpKQkIiIiyM3NxdHREX19fbKyskRQibKyMm/evOHWrVv07dtX6OClQ0pNTQ0JCQnExMSgq6v7X7+L/wqV1dHRQV1dHYmJidjb24us8KioKMFWDQ4O5osvvkBNTY2QkBAePHhARUUFcnJyhISE8Ntvv7Fjxw5WrFjB559/zt69ewVLNDQ0VPx5V65cobq6Gmtra9E0L1iwgJCQEK5duyZ+34gRI+jXrx9Pnz4VkWVPnjzhxIkTPV7nxcXFkZSUhJubG4GBgUIm8ODBA6HRmj9/Pn5+fjQ2Ngpo8KxZs8Q05ezZsxw9ehR1dXU++eQTccOUEDjQ9WG+ePEiAEuXLkVfX5/29nag64aRlJTEhAkT+PXXX4Guddv48eOFRu5dXlxPSmp6pBt+VlYWjx8/FogrFxcXNmzYIE4/ly9fZt26dTQ1NQmE1rJlywTaIjQ0lIEDBwpG4p49ezhw4AC6urqiob179y4bN24UOc7SawCIxka6eUspWG1tbZw9e5YLFy4I/uj71KxZswQnVpKcSCXd5FatWoWPjw/Dhg3D19eX1atXc+zYMUpKSoAubffAgQMJDAzE09MTOTk5WltbBaoMujBAP/zwQzejoFRr167l66+/Fge3xsZGgel6F4OWmprK9evXCQsL69GDs7a2ltbWVjQ0NFBQUEBVVZV79+4RHR3N119/TXBwMH/99Rf//PMPq1atYtiwYTQ0NJCfny8iQU1NTXF1dWX79u38/vvv3LhxgxEjRvDLL78gKyvL33//jaKiIiEhIQQGBtLU1ERHRwctLS20traydOlS7O3tKSoqoqKiAgcHB5SUlKitreWXX37B0NCQZcuWUVJS0qNpllTSZ0Qycerp6bF06VJsbGzEA9Ld3R0vLy969+7N0aNHefToEXv37sXe3l4ELpw9e5aff/6ZYcOG8fXXXzNv3jx+/vlntLW1+eGHHwSOqrW1VRghnjx5woEDBygoKKBXr17Iy8ujoKDA8OHDhYkxODiYgoICwXIcMmQIFy5ceO/r++qrr3jx4oX4LMD/yQv/n6+Di4uL+Hz9888/NDQ08Pnnn5Ofn8+vv/6Ks7MzGzZsEJ8N6fcOHTqUXr16iXvGxYsXmTt3LosXL8bf35+CggIuX74MIFLuFBUVBbauoKAAY2Nj7O3tu4WHvG8NHjyYbdu2kZyczIkTJwgLC2Pw4MHMmzcPFRUV4R+QjItSbdu2jYiICFxdXbG0tOSHH34QcgIZGRnU1dUZNmwYI0eOFDI2iTJTVVVFdnY2/fr1w9/fX7wO/v7+Ynr86NEjdu7cSVRUFDIyMkLP3tOV+tKlS4U5zsjIiPXr1wtTKHTp74OCgqirq6Nv376oqKhw//59QkJCcHNzY9GiRdja2jJgwADevn3LmzdvaGpqwtPTE39/f65cucLGjRtpbW3F0NCQoUOHUlNTQ3p6OjU1NVhaWgq826ZNm/jyyy9pamoS7v21a9eipaUlTLo9WTVLFR4eTlBQEOvWreOTTz4hLy+PrVu3cvv27W5SEiUlJQIDAxk1ahStra3IyMggLy9PSUmJiLOFLtnWqFGj0NHREVIzY2NjkXooLy9PS0uL+M5JjUxTUxNbt26lubmZqVOnsmzZMnFwsLS05NGjRz2OaP7fSvoODhw4kNGjR2Nubk5oaCgnT56kvr4eIyMjRo0aRW5uLrt376aoqAhPT0+mT58uwhKGDh3KZ599JqRdEnf3/v372NjYiAAVCZ/Zr18/5OTkqK+vp6qqSjSvEllk5syZ4rN88uRJ7t6926NDiGS2OnToEA8ePOCTTz7h6tWrlJeXi/j15cuXExoaytWrV0Wsr4yMDFlZWWhrazNo0CASExOpr6+nV69eGBkZMWDAAOLj40Ui6PTp03n8+LH43N25c4eWlhaRyrZ9+3bu3r0roqhbWlqor69n5cqVKCgocOPGDTGg+2/V4+a1pqaG+vp6kZMeFxcntCZjxozBycmJ9vZ2+vTpg76+Pq9eveLVq1c4OTmhq6vL33//LYDutbW1KCgoCIfw7NmzMTExobq6ml69ejF37lwqKysJDQ2lpqaGN2/eUFlZibu7uxirS+5QNTU1Kisr+emnn7CxseH06dMEBQXx+vXrbkyz/1br1q3DyckJX19fwXmVSsJYTZgwgXnz5nHr1i0uXLhAcnIyFhYWODg4YGdnh4KCAv7+/hQVFWFnZyca1+3bt1NYWMgPP/yAqqqqYIbKy8uLP6ewsJDU1FROnDhBXFxcNzF6Y2NjN+e9pA16d93/vtXR0YGVlRUTJkygb9++3bLpFRQUuH//PgUFBSxevJj+/fuzfPlykXySmprKixcv6N+/P8HBwfTu3bvbVMbIyIj4+Hi+/fZbwQX28fFh1apV3RBNycnJgn/77bffkpSUxOrVq0U+ta+vL3PmzOmxUURTU5O0tDTy8/OJi4tDUVFRxHBKDy9NTU0GDBjA9u3bsbe3F1GRWVlZyMvL4+XlhYuLiziR//XXX5SXl/PBBx+QlJTEzz//TENDA3PnzkVFRYWxY8eira3N3r17uXnzJlu3bhX/7dKlS8nIyODLL7/E1taWjRs3kp+fzx9//IGLiwt2dnZs3bq1R4B0DQ0N6uvraWtrQ0FBATMzM6ZOncrgwYPp27cvBQUFZGVl0dnZKYDfkqP23r17bN++nZKSEjo7O4VMIjs7mwEDBvD555+jqKjIgAEDOHPmDD///DOWlpb069eP5cuXo6Ghgb29Pe3t7VRXV2NiYiI+pydOnGD79u3U1dWxevVqlJSUsLOzY/jw4T3egpSXl4speFNTE1FRURQXF+Ph4cHAgQORkZHBycmJyMhI9u/fj7a2Njt37mTfvn2sWLGCK1eu8Omnn2JtbS1imaUDwhdffEF1dbV4APzPJD5JrxsUFMTEiRPR0dER6693J6ympqbU19ejqKj4H03nf6v6+nrOnDnDX3/9xWeffcaCBQt4+vQpu3fvxsXFhZ9//hkZGRlSUlK4ceMGaWlptLe309bWxqRJk9DR0SErK4t79+4J7rL02YAuF3d6erpAXh07dozVq1ejoqKCt7e3MG5KCMA3b96wc+dO1q1bR0tLC5s2baKsrIzffvtNZLL3tDZu3Iivr6+QJfn5+YmtCvwfPdy7VVNTg6+vr/A7lJSUiEmTkpIS1dXVImVw2LBh9O3bF2VlZVJSUjh79izy8vKsXbuW8vJyDh48SL9+/boRcPbt28e+ffsoKSlhwoQJLFmyRKRC9VT3+q6UQkZGpptGPzIykkOHDvHs2TPGjBmDnJwcz54948CBA6SmppKVlcXr168JCAhgwoQJGBgYUFhYSF5eHunp6Whqagp5lYaGBv369SMhIUFoLSVviFQSF1hDQ+P/KvEoLCwUcpn3reLiYjIzM5GTk6O4uBgtLS2CgoLIzs7mxYsXbN68mQ8++KDbkOjd78j58+e5deuWMCs9ffqUGTNmoKysTGpqKn/99ReGhobMnTtXbB5qampE06yurs7PP/+MgYGBkEmYmpoKLrOrqyvDhw9n0qRJ3bZRPSmJRSxRgySUo1Senp7s3btX9DMS0mnfvn1i9T9//ny0tLRoaWnpFqkOXbKeuro68VpaW1tjaGhIa2srnZ2dYiCira2NkpISqamp5OTkEBMTg7y8fLc+4OXLlzx79kz0Fe9TAwcOpKOjgydPnogDG3RRa959r9zc3KiqqhJozIqKCkxMTHBycqKkpIR//vkHPT09jIyMKCgoYOvWreL3e3p6sm7dOoYPHy4MhoMHD0ZeXh47OzseP35MSUkJTU1N7Nixg7i4ONatW4etrS03b96kpKREyDYbGhr+q4yux81rZmYmtbW1YuKjpqaGrq6uOPX6+PjQ3NxMW1sb2dnZJCcnY2pqyuTJk1FWVubRo0dA1xfNw8ODlpYWPDw8MDExYf369bS0tJCdnY21tbV4c/z8/Ni/fz/h4eEEBgayYcMG0exJUa6tra2EhoYK9mJMTAyenp58/PHHPUqjePHiBYMGDWLo0KHIyMgI05J0Mvz+++/58MMPaW1t5ZNPPhE3Ag8PDwE3t7CwwMbGhlWrVomT4NGjR/nqq6/w8fERHxwpTcfIyIicnBySkpI4ffo05ubmaGhoYGxsLG7Kurq6JCYmoqWlJdY0dXV1JCUl/avmVVpX/t9YsevWrePZs2cMGzYMb2/vbq/hZ599xsuXL0lOTsbJyQljY+NuOlFpfSQRJkaNGoW/v784OULXDbG6uprq6mpsbGwwNDSktLSUtLQ0evfuTWtrK0VFRYwfP57x48f3yOyTkZFBaGgoiYmJyMrKYmVlJU7yFhYWIgLWzc1NmK3y8/NRVVUVMaYlJSU8ePBAsHmPHz9OTU0NCxcupLCwkOvXr/PFF1/8Bwy7oKCAx48fc+HCBdzc3MjLyyMjI4OoqChSU1PR0dER2jxpOjN+/HjCw8PFtOR9qqioSOBUpEPFwIEDRWKPFDk5adIkJk+ejIKCAs7Ozjg7OzNgwACys7PJzs4Wn9vY2FjRIEgSFYD4+HgSExNJTEzEw8Ojmzv85cuXvHr1CkdHR5FYFhERQXp6Oh988AHjx48X0/3g4OAeN68hISE8fvyY+fPn06tXLxITE8nJyWHkyJHCgCStVjdt2sT06dM5d+4cKioqfP7551y4cIG1a9cyceJE4XiXjIDvSjekaXJ1dTVGRkZAV1NiZGSEtbW1YH9mZGSQl5eHnZ0durq6goghadt7mub3/Plzka7z8OFDFi9ejKqqqiAnSPeJ2tpa9u7dS1ZWFgBz584VK0Ap+U1iQ0rcawsLC3EI1tXVJTAwkNevX6OqqsrixYuZPn06ysrK6OjoiMlgYmIip0+fZvjw4VhaWpKTkyMOD0CPm3OAc+fOER0dzfz58/n444+ZPn060PX9Ki0tFYewhoYG8QCXtL1SVVVVMX78eLy9vbG3t0dXV5erV6+KSOrRo0djYWGBnp4e2dnZ2NraMnToUB49esTt27cxNDQUSKOwsDAKCgqERGPTpk0CT/X06VMRuPO+VVNTQ3NzM1paWigoKHSjhkRERPDXX38BMG3aNGRkZEhKShL3fDc3N5KSkti1axdxcXFMnDgRBQUFUlNTiYmJoaKiQsQjOzk5YWtrK5KenJycUFJS4s2bNzx69AgbGxu8vLyoqKggNjZWSFyAbg15ZWWlGBa9b1lbW1NXVyciiX/99VemT58uwj5u3brF0KFDMTU15fz585SUlPDBBx+go6NDWFiYSGnasGGDeGaFhYXh5OTE0aNHOXXqlJiSS81rYmIiT58+JT09nenTp2NtbS3wjFI9ePCAnJwcYXabPn26+C72tF68eIG3tzfXrl3j2bNnrFq1SvyalD5naGiIoqIiK1euJDMzkw0bNjBz5kzCw8OF50W656elpQn9MXRRLiS2q6KiopC63LlzBwUFBfr27SsOoGZmZmhra3Pt2jXCw8OFbE2qXr16oaCg0GPtstRzKSsrCwrOqVOnMDMzY+LEiRQWFqKoqMiECROIiopi9uzZDB48WDwjJUOW9H25d+8eV65cwdnZmYyMDBwdHRk+fDjDhw8XnzlJY9/a2oqFhYU4IERGRgrMmomJCSdPniQnJ4dJkyahra3dLcb8/1Y9bl6VlZVRUFDgwYMHREZGMnv2bNG4vn37lufPn/PmzRt0dXUZNWoUEydOpKamhpcvX1JcXMzo0aOZPn06ioqKODo6IiMjw8yZM4UzT9JDPX78mLCwMJG36+rqip6eHu7u7t2mobq6usJ1amBgwMmTJ3n16hW//fYbQ4cOZdGiRT26vpUrV+Lj40NlZSWNjY2YmZmJJmPMmDEMHjyYiIgIrl+/3m3NVVhYKByyeXl5whWtrKzMwYMH+euvv0SKkdTQXr58mVOnTjFjxgz09PSEIUVKFpo/f76Ibz158iQHDx7EwsJCTDOMjIx6jJGS6r+ZaDZs2EBRUZFA17ybh71gwQJaW1sxNzenqqpKSBckBq+9vT0bN24UJ67/TZ9TXV0t3s/09HTevn2Li4sLS5cuxdXVlatXr7Jr1y4+/PDD94qKe7daWlrQ1NRk8uTJ6OrqEhMTQ05ODqampiQnJ/PkyRPc3NzEZDQuLo41a9YIcTp0NYebN2/mxYsXbN++nT179ghJg4uLC3/++SfBwcH/8WevXLmS3r17U1hYyLVr1/Dy8mLLli1iOm9sbMzu3btRVVUVk4rW1lbWrl3Ld999997XuG7dOhYtWiQaWAMDAx48eMDZs2cZPXo0S5YsYcaMGcL09G41NDQwbNgwlJSUGD9+PAoKCqSkpPyvPF1ra2uGDRuGj4/Pf8S7+vj40NLS0m0i9+2337JgwQLR4En1b8DhERERnD17Fl9fX/r378+yZcsoLi4WCWURERHMmjVLTFtevXoFwOLFi1FQUODChQukpaWxfPlyevfuDcDOnTspLi5m27ZtYlsgKytLQ0MDt2/fxsbGhiFDhlBWVsaJEyd4+PAh9fX1+Pn5oaKiIkISOjs7xdZJ+hz1tHl1cnLi+PHjpKeni+myr68vhw4dEvIh6Jru9uvXTzSvFhYWKCgo8PLlSxoaGvjhhx8YMGAALS0tPHjwQNBKBg0aRHV1NSoqKiIrXopjlv6ura2tvHnzhvr6epycnBgyZIhI8tmwYYMA3f/b+vrrr/n777/58ccfyczMFIZdQ0NDysvLKS4u5tmzZ4SFhQmTy9SpU7v9DFNTU9zc3KitrUVXV5elS5cyfvx45syZQ1hYGB988AG//PIL/fr148svvyQyMpKrV6+ipKTEt99+i42NDQ8ePGD79u1YWFiwevVqFi9eTElJSbeJVnx8PJGRkT2ifjx58kSkI40aNarbf6unp8fQoUPp06ePMPZYWloyYcIEFBUVmTRpEtbW1ly4cIETJ06Qn59P//79iY+PR05ODnl5efLz83nw4AHW1tYMHTqUvn37oqamJmRIZmZmLF26VEQWq6qqcv78eXr16iWaV0lHaGlpSd++fUWM8PtWYGAgDg4OaGpqIisrKyZ1Xl5ezJ8/H3V1dQYNGkRERATffPMNTk5OzJ07l6SkJObPn09NTQ3W1tbMnj0bOzs7oqKiyMzM5OjRoxQVFbFo0SIWLVpE3759AQSJYt68eezYsYNdu3axe/dusZmqqKhAU1OTadOmkZ+fT2FhIUpKSkIf/W9KYhpLBwtpWFJTU0NDQwOpqak8ffqUrVu3kpSURGVlJePGjWPu3LmisX769KkwqI8YMYKYmBi2bdtGXV0dSkpKfPjhh4KqIG0wnzx5goaGBmlpaYJNv337duzs7DA1NSUqKgoVFZVu997hw4cze/bsHml79+3bx/Lly5k4caLQvz5//pxLly7h4+ODh4cHcXFxGBsbY2BgQHJyMmfOnBFDiUOHDvH1119jbGwstk3+/v7s3r0bY2NjjI2NxRAlKyuLw4cPo6Ojw4oVK1BUVCQpKQlLS0uRLOfj40P//v0ZPHgwjY2NBAcHY2Jigo2NDenp6XzxxRf/32teJ02ahIGBgRj1Hj9+nBUrVmBgYEBRURHHjh2joaGBjz/+WKQHqaioEBkZSXp6Oj/88IMQHTc0NIiJUHNzM8ePH8fGxobBgwfj4eHB06dPUVFRwdPTkyFDhoiVbkVFBVVVVaLhcXR0xMXFRQifXVxceP78OeXl5T2eFjg4OGBubk5MTAyPHz/G398fb29vobsrLy/nzz//JC0tjTVr1mBtbc358+eJjIzk1atXgnSQlZVFSUkJzc3N1NbWoqamhoqKCjIyMlRXV5Oenk58fDzGxsYMGjRIxLINGDCAQYMGoaurK8xoAHfu3CE2NrbbiqFPnz5MnTr1vfQh79bjx49pbGzEyspKNKWFhYW0t7djY2ODnJycSN+QMrOhq+FtamoSjUBFRQWRkZE0NTXh4+Mj9ILOzs44ODiIpn/v3r38/PPPjB49WqCYJC2TdC1GRka4uLiIiZiuri5v3rzh+++/73EQg5qaGgMHDhSfv9raWiFKl5eXR1NTk6FDhwJdp+oJEyaQkZEhNH11dXWsX7+e5ORk8fvc3d1xd3envb0da2trrK2tKSoq4syZM8I1Ka3QZ86cSUREBCUlJVhYWKCvr09JSQkODg4YGBiIm1JNTY04jPXUjW9iYiLwJ9B1ky0rK0NGRobCwkKys7MxMzMjIyOD/Px8DAwMBIM4Pj4eLS0tcaNxc3MTE4/GxkZaWlooLS0lISEBGRkZfvvtN4HHefv2LRUVFZiZmdHQ0ICKigp2dnYUFBSIQ6uNjY2YpkmmrZ5MlaXy8/Ojra2N4uJioWM3MjKiuLiYs2fPUlFRIQw4H330ERUVFWJLMmXKFF69ekVqaiqJiYn07t2b1NRUoqKiyM7OFlzb/Px83N3dkZOTo66uTkw/kpOTSUxMpKOjQ5BLpAlkZWUlCgoKWFhYEB0dzevXrxk2bFiPYzeHDx8u3r+ysjJu3ryJpaVlt0NRYmIijY2NzJ07l+zsbCIjI1FXV0dHR4fbt29TVlbGhAkThEnI2toaDQ0NVFRUsLe3Z9asWSgrK9PU1ERRUZH43hUWFpKTk0NVVRVBQUGYm5vT2NhIZWUl2dnZWFlZdVtLSvesntaYMWMoKChg79697N27F39/fxETq6amhp6eHvX19cTFxfHy5UucnZ1paWmhqqqKsLAwOjs76devHwEBAcTFxXH48GEKCgqYP38+q1atIiEhgUePHnHkyBGRptjZ2UlhYSHa2triPamrq+P27dtYWVmxa9culJWVhV5UMkj17dsXfX19EU/7PiWZCjs7O+no6CA3Nxd1dXX09PREmtK7PgUnJyeWL19OfX09gwYNQlNTE0NDQyIjI2lpacHExIR58+YhIyODiYkJdXV1jBo1irq6Ompra3F2du4m0VJSUsLa2pqEhASOHDmCsbGxoKdIZWRkhLGxMdra2ujp6fXY7CO9rtJE3sDAgPb2dgoKCvD09BRNp46ODgoKCnh4eKCvr8+2bduE2faTTz4RB6a+ffsK1KVEYJHMO9JhYNiwYXh5eTFkyBBSU1PFs3fLli2oqqqKg35NTY2QMkhyxp6aX6HrWXrnzh0yMzPp06ePmOC+fv0aCwsLLC0tOXPmDJWVlXh6euLi4iIIO3369BFpfG/fvuX06dPY2dmRl5dHXV0dFhYWbNq0CVdXV3Evs7e3R05ODgcHB5qamkhJSeH+/fsYGRkJhntrayteXl4oKyuTlpaGt7e3+M5I0sv3rczMTGG2lp7n2tra9O7dG2dnZxobG3n79i2hoaGoqKggJyfHpEmTCAwMpKWlhaSkJBwcHJg/fz7Tpk1DTU1NhF9A1/ZKIpOkpqYKQ52ysrK4/1dWVmJmZsbMmTO7hSy0t7czZ84c5OTkeP36/8feeYdXWWxv+06y03vvvZBCQggplAChBZDepRdBISCKDRVFFEEFBQUJiChIkSaEEjpIrwFCGqmkh5Dee3m/P7Z7PnM8hfg753jEPNflFdkbdmbtmXdmzVrPelY0x44da0OD+kdot/OqkDxS9LwdMWIEd+/eJTIyUtzMZs+e/XejNIq2fwrU1NSIm2pCQgJLly7FzMyMPXv20LlzZ5HWUlFRQUNDg4qKCuEoZWdn8/777+Pl5cXevXtFtADkygOff/757yKnHz9+nM6dO1NdXU1CQgJ6enpCISErK4tr165hZ2dHr169mDRpEqampoSGhrJo0SKSkpJ49OgRdnZ2BAcHk5ubi4GBARMmTGDv3r3Mnj2bH3/8UZDzq6urWbNmDdOnTwfkD/W2bdt+EwGLjo6mtLQUExMT3njjDby9vcVD/9Zbb4k+z0+LI0eOoKamxvDhw4UwcHJychtHdfHixVy9epUff/xR8AEbGxuFQ1pVVcWdO3coLS3FxcWlzS1JIcoMcnlZJb4AAQAASURBVN7inj17uHXrFqWlpRQWFuLg4ECPHj1QV1cnJiYGFRUVcQADgnbi4eHBtWvX+Oqrr35Tof/PoKGhIexobm5GR0cHMzMzrK2thTOi4Ga/8cYbpKeno6qqytChQ6msrOTVV1/lwoULzJ079zfruKmpSYxz8+bNnD59mlWrVuHq6kpFRQVRUVEYGRkJgX2Qc75++OEHPvjgA/r27cv69ev57LPPGDVqFOvXr0cmk4ne9k+LDz/8EHV1dbHGNTQ0eOGFF3jppZe4ffs2ERERqKurc//+fY4ePcrw4cP55JNPqKio4MqVK1RWVtLU1ERTUxODBg1i8ODBImKtr6/PmTNn2LBhAwMGDODFF18EIDY2li+++AJ3d3cCAgJEBfdHH31EZWUlX331FSkpKaLdc8+ePQkMDERHR+c3vManwbhx4xg9ejTh4eG8++67eHp6CnWP0tJSOnfujLKyMmpqasyePRsVFRWMjY0pLCwkLS2NBQsWCIF+RSvpXr16YWVlRVxcHBERERQXF7N48WLGjh1Lnz59hIOqKCJZsGCBuKw1NzejrKxMdnY2qqqqWFlZ0dDQwEcffURubq6Q6HpaFBYWEhUVRWhoKOrq6ly+fJny8nLWr18v9JYvXbqEtrY2/fv3JygoiFu3btHa2iqcvvz8fAoLC9HU1OTmzZt4eXmJA0URqVRVVeXSpUsi8rNz507S0tJYu3YtPXv2FJSgzz77jLVr14rWrL/GiRMn2Lp1axvO+tPg2LFjmJub4+LiQmNjo7ALEPrOnp6ezJ8/X8j2XblyhfT0dM6dOyeKn4YMGUKnTp345JNPiImJobm5mQ8//JD333+fpUuXisPw7t275OfnM3HiRB4+fMju3bsZMmQIGhoaaGtrU1NTw82bN+nXrx+SJKGjoyMCHH5+fvj5+bXLee3evTt+fn6YmpoKTqCXlxehoaHk5ORw5MgRQkJC2qjiKJo/KKCkpMTYsWMxMDBg7NixaGlpUVVVRWZmJl26dGHmzJmcPn2alJQUsrOzxRxUVVXx5MkT3njjDY4ePcqqVavo3r0769evx9LSUvApFbUYir3i92RBAOHo6OnpkZiYSHx8fBsnxNrammXLlonmCApK3ZYtW3jhhRf46aefOHnyJJMmTcLDw4PBgwdz8OBBPvnkE+7fv09gYCBqamqCh9nS0sKkSZOYMGECenp63Lx5k7179wrd6vT0dA4cOICfnx8ODg5kZWWJQEV70dTUxJEjR0hPT6e8vBxjY2Py8vJISUlBRUUFJycn3n//fZ5//nn09fUpKCggOzub2NhYHj16JFSS9PX1RWZYsY5Wr14tmhwtWbKEyMhIFi1axLvvvsuMGTPIyMgQHe+8vLywt7cXMl2fffYZFhYWfPfdd3z++ee88cYblJaW8sUXX7RL3WThwoVCzUNxfjk4OPD2229jZWVFVVUVysrKpKamcuHCBYYOHcrw4cPR09OjubmZ119/nVdffRVzc/M2me/Hjx+Tk5ODvr4+bm5uIqqqp6cnfAKFTnxpaSnV1dVtqIoKn05TU5MzZ87w448/4uPjw65du1i+fPk/tandzmtcXBwnT55k4sSJeHp6MnXqVHJzczl8+DB37tyhqqoKSZJ48OCBiJxOmjSJ5557jvr6ehobG0XKWkEqV6QdZ8+eTXp6Onv27KFbt24MGDAAQ0NDsrOz2bFjB/r6+qLNpp6eHiNHjiQ+Pp4PP/yQ2bNnY2dnR2lpKUZGRlhZWZGdnc2UKVPapfcqk8m4du0aJSUlYmNSHLyKIqcRI0ZQWVnJnj17sLGxYdCgQULX1cnJidraWn7++Wd0dXWFrt+kSZO4cuUKvr6+GBkZcerUKe7cuUN4eDggX+iKzkyKdGtzczN37tzh+vXrIkTv5+dHa2srn3zyCS4uLn9XBPpfQUHeVtyY09LShND2gwcP2LFjB/Hx8cyYMYM+ffqQmZnJli1b8PPzE5y1J0+eiAWrp6fH/fv3efjwIdra2ri5ueHl5YW6ujrV1dUMHjyYTp064evri5OTE2ZmZqirq6OhoYG1tTXJycncuHEDJycntLW1uXr1Ktu2bePWrVu4ubkxffp07t692645VDjPVVVVODo6CrmfnJwcTp06xe7du5EkCU1NTT755BNcXV2JiYlh165d6Ovrs337dnr06CGyBA0NDaIDWUVFBampqTQ1NTF69GgR3bGxseHjjz/m5s2bbNy4URwyNjY2hISEcOTIEQ4fPkx1dTWTJk3Czs6OzZs3U1hYSEVFRbuyBNHR0VhYWIhLh+LAuHTpEkVFRXh5eQkxbJBvIObm5jx8+JCtW7dSUVFBaGgo3bp1o6qqipMnT2JmZiaibRYWFjg7O4uUfGZmJu+99x5xcXH07t2bHj16kJOTQ3Z2Nurq6tjZ2dGzZ0+0tLSEGoCfn5+IErVXRgrkG1tKSgqOjo64urqyY8cOWltbmT59OnPmzMHAwIC8vDzq6uraZClyc3PR1NRs42hVVVXh5eUlimIUqUZFulxJSQkfHx8R5R86dKhoyqGgInl5eTF58mQMDQ1Foai/vz8zZ87ExcWl3XJga9eu5ezZs6xYsYIFCxYQGhrK3bt3uXfvHra2tmRmZqKhoYGXlxc2NjZMmTJFyEM9fvwYT09Pevbsia2tLYcOHWLFihUYGhry0ksvMWLEiDZFaLq6uri6ujJo0CDMzMzYtm0bR44cEXquV69e5fLly4wbNw4LCwuOHj0q1EcaGhr47rvvyMnJabfzeunSJUpLSxk0aBD9+vUTep+mpqbiYmtmZkb37t3p06cPJ06c4PTp01hYWDBy5EjRxOP8+fM0NDQwefJkoS2qqanJ8OHDiYuLE0EVRRtMY2NjIfHz9ddfExsbS2BgIP7+/lRWVnLx4kXU1dVxcXERwYLTp0+L7oFPi19/x2ZmZri7uwvedKdOnQgKCqK2tlZU+iv400+ePBHFRi0tLXh6etK1a1e0tLS4desWOTk5PPfcc0Jb+9fBhvT0dPbv3y/qRRoaGigpKaFbt26MHj1aOAeKDoqVlZWkpaVhbm6OtbV1u3m9v65tUCA6Opo7d+6IYsCff/6Z27dvM2HCBGxtbUlPT8fX15eQkBAh0ebq6oqOjo4Yn6enJx4eHiQnJ3PmzBnRoa9r167iklNdXU1xcbE4P1asWCGcP4U8mKOjowhyxcTEtLtNM8CPP/6IkZERQUFB1NfXi4uTQuP9+vXrzJo1S+gMm5ub4+bmRm5uLoWFhUyZMoWUlBQaGxvZvHkzWlpamJmZ8fbbb7cpFuzSpQulpaWiY6OOjg4eHh6iME9RVFxeXs6AAQMEJcnKykrsL4aGhvj4+Ah5rqeBg4MDNTU1ZGRk0NTUhLa2Nra2tmJ/1tXVZejQofj7+2NpaYm6ujpZWVkiwqqg10RHR3Pw4EGam5sZNmyY6BZaV1dHXV0d2traGBgYIJPJiImJ4erVq9y4cYO6ujqmTJlCeXk5GzZswMHBgbCwMIqLi0lOTsbT0xNTU1P8/PwYPnz4U7W/bfeJcuvWLbZt2yZatX3xxRfcu3ePY8eOERsbi6GhIREREaxbt46qqipefPFFwfGsq6sTIenKykq0tbVRVlYmNzcXJycnVq9eTXR0NN988w0XLlzA1dVVdPG5dOkSvXv3RkdHh5aWFmxtbfn44485cOAAy5cvR01NjXfeeacNz27v3r3s3bv3N9Gzf4YRI0Zw+/ZtzM3NGT16dJvNqb6+HhMTE/T19UlNTWX9+vUUFRWxevVqhg8fzpAhQ1BVVeXQoUOsWbOGXr16CXmUiooK1q1bJ76L6upqWlpayMjIQF1dnbVr1xIfHy/6qLu5uSGTycRNUuEMgLwzz8qVKxkzZszvcl7HjRsnbl95eXmcOXNGOJZr1qxh06ZNLF++nPfff1/8vs8++4w33nhDOK+K9LBMJqO5uZm4uDj279+Pjo4OU6dOFRrAdnZ2gkf6ayiqjU1NTYmOjubUqVMMGzaMgQMHIkkSUVFRFBYWMmvWLObMmdNu51Uhd6LoxiaTySgpKeHevXts2rRJpOx//PFHsUGEhoZy48YNdu7cKTblwsJC4WzX19dz8+ZNrl27Jjq5+Pj4CH6iuro6pqampKenk5CQwKBBg2htbWXAgAEMGDCAiRMncuzYMfbt28fo0aNJSkpi7NixJCUlsW7dOlJSUp7axrVr1zJ16lRu376NiooK3bt35/Tp04wbN45Zs2axfft2kdYCufRXY2Mj6enpIiXTq1cvFi5cSEFBAZcvXxZ9yBXzO3XqVPz8/KipqeHIkSMUFRUREBCAhYUFWlpazJ49m+LiYoqLiykrKyM0NJSFCxeKZ1ChYaitrd2Gw/m0+Omnnzh37hzvvfceAwcO5P79+0RHRwvueUtLC/fu3SMnJwcNDQ1xGVY8J01NTbS2tqKuro6uri7Nzc2ihSjIo2ZpaWm/kapqamoSnOht27bxzjvvUFxczNSpU5kyZQq6urqi6t3R0ZH33nuPkpIS8vPz22Xf3bt3KSwsFMWOw4cPp0+fPiQnJ3Py5ElqamoYO3asWJ+BgYEEBgaKivSgoCDhUDx+/FhoPre0tNC9e3f09fVpbW2lrq6Obt26cebMGTG/qamp6Ojo4O7uTnZ2NjNmzMDOzo6TJ0+Sl5fHm2++SUZGhui0V19f/xstzKfFgwcPeOGFF5gwYQJnzpzhxo0bDB8+nPPnz7NkyRIcHR1ZvXo1vr6+VFdX8/jxY3r16iUCFbdv3+bAgQN4enqyY8eONvNVWFgoorog78Zlbm4uCqf8/f354osvuHbtGq+//jpDhw4lKSlJFBIrtI5BHiXevHlzu84LQDQJaW1tFcWEIHdUFixYQG1tLefOncPX11f8rtzcXNFjXnGhUtA7vvnmGwoKCggICKCwsJBvvvmGTp06MWLECACuX7/OihUrhCMVFRWFsrKycApATkNROACZmZlERkbSuXNnxowZ0+6MZExMDGpqakiS1KYpkSJzU1NTw9atW4mPjxeykvfu3SM0NFRQtxRrsKWlhZaWFqEFPWnSJFpaWqipqWHy5MltmtmA/PJz4sQJnnvuOSZPnsycOXMoKCjg3XffxdnZWVzaFZcDRUHa0zg/v8bVq1epqKjg888/x8zMjGPHjmFhYcH48eN59OgR69atQ1VVlddeew2QU4f09PRwcHDAxcWFESNGkJuby/r169m+fTtubm6sXbuWwMBAsX4DAgJYunQpS5cuJSMjQ2gea2ho4O7ujpubG+Xl5aSkpIjaCpDvo3369BE8aG1tbRYtWtTujoWKfTgnJwcTExN0dHTQ0dFBVVWVlpYWnJ2dBX3sxx9/ZOPGjYwePZqlS5cC8ufwyy+/ZN++fWhoaAg6p7GxsVA+UmhEx8TEEBsbS2ZmJj///LNQ7lEESry9vXnnnXfE+9bW1oSEhAhd+P8IbSAgIEB0u1JwWMzNzenZsyeDBw8mLy9P9DKfNm0ab7zxBjKZTEhKzJ07FxUVFTZv3oyrqysvv/wydnZ2PHnyhPT0dBobGxkzZgwmJiYilVZTU8O8efNISUnhrbfeon///iJC1LNnTxYuXCiqb0Fe6HHgwAEqKipYuXKlaMH3NHBwcKC+vh4nJyc0NDSIjIwkMTERY2NjCgoKSEtLE6F3Pz8/mpubRdWfqqoqzc3NNDU14enpSUVFBZs3b8bFxQUPD482lZCLFy9m8ODBpKSksH//fq5evUpNTQ2HDx8mPT1dtP4LDAykoaGBe/fu8cEHH6CkpMShQ4cAeRXupUuX2juFxMfH06VLF6Kjo1m5cqUQkgYICQnhvffeE7w0kDs57733nogigzzyrYimyWQyevToQUtLC8XFxejp6Qnn8R9tlBoaGjQ3N1NeXo6Wlhb9+/cXXYwcHBxYvXo15eXl6OnpiRZ6TwtFH2k9Pb02B52Ojg62trZCs3TGjBniQL5586Zoj3r79m1aWloYMGAAra2tZGdnC37csWPHqKysZPHixaKtcWtrq7gMzJo1S3Bcv//+e7p27Spu2z169CAoKEhs8Ldv38bFxYWQkBA6derULufV19cXFxcXQXDfunWrSP/KZDKys7O5cOECGhoarFy5EkdHR5YuXYq2tjbfffcdra2teHl5YWxsjLa2Ns3NzdjY2FBRUcHVq1fJzc3F2tqarKwsamtrsbKyYtWqVZiYmHDmzBkuXrzIq6++iq2tLVu3buW7774jODhYaBIrJJ8UNKL2yLoooK2tLfhzGhoavPXWW2RlZQn+rYqKCgEBAVy9epWPPvoIAwMDXnrpJWxsbKivr2fbtm0YGBgwceJECgsLOXHiBBYWFuL7V2RPYmNjCQkJYf78+VhZWVFQUICJiQkqKioEBgbyyiuvUFVVJTiu3t7eoplHbm6uEJ1vr570kiVLqKmpEZxCkD9Xzs7O5Ofn09raKg6wCxcuYGxsjK+vL5aWlkiSJBzXQ4cOUVpaypIlS6iqqqJ79+7Y2Njw+PFjLly4gK2tLSEhIcKpevjwId26dSMkJER0U5s5c6bgfFtbWzNq1CgqKytpbW0VbT89PT05c+ZMu2xUqBsoLrM+Pj4kJCSwYcMGtm7dKjj0Tk5OaGlpidTjr/u9K2haXbt2RU1NjZycHM6ePUt1dTWNjY3k5ORw+/Ztfv75Z/FMV1ZWEhkZSVRUFDY2NmzdulVcTnfv3o1MJmPatGltgh2jR49GU1PzqQ7Ov8WmTZtIT08XznhZWRlpaWlUVFSIIlF7e3vGjh2Ln5+f6MQE8v3K0dFROHXTpk3jxo0bfPfdd2hra4vCFpBTt1RUVESv+IcPH+Lh4UFoaKhwXBW6nQqYm5sTHByMmpoa+fn57c6CNDY2smfPHlRUVOjVqxfm5uY4OTnh6+tLZGQku3fvprKykkmTJmFtbc3jx49FsS4geOb29vbcv3+fxMRExowZQ0hICMOHDxeROoXj+s0333D79m28vb0xMjJi8ODBQk2jubmZkJAQPv30UxITE/nyyy954YUXUFJSYv/+/eTl5TF58mTOnTvXLhsVhWyOjo6Ulpairq4uzo6BAwfy6quviqxDS0sLMTExPH78GDc3N7EfKQrTTU1NmTNnjshsKpoYnDt3jqlTp6KtrY2VlRWpqam/kTqrqanh66+/pqCggIEDB+Lj44ORkRGurq4oKytTWVmJmpqayPw8Le7cuUNgYCDW1tbIZDIMDAxEkyFlZWW0tbXJzs7GwMAAKysrzp07x61btwR9SNFePScnh969e4u2sgo0NTVx5coVioqKcHJywtHRETs7O3JycvDx8cHV1VXUaSjaWstkMhISEsjOzv7NM/c0xa9KT8t/CQsL+31Emf8hhIeH/8Mr57NuHzz7Nj4L9sGzb2PHOn227YNn38ZnwT549m3sWKfPrn3tF+7rQAc60IEOdKADHehAB/4gPHXktQMd6EAHOtCBDnSgAx34o9ERee1ABzrQgQ50oAMd6MCfBh3Oawc60IEOdKADHehAB/406HBeO9CBDnSgAx3oQAc68KdB+5XD/40ICwuzAT4ChgDGQD5wBPgwPDy87J/80z8FwsLCxgN9AV+gC6AL7AkPD5/2R47rP4GwsLDewKtAT8AIKAXigC/Dw8NP/oFD+90ICwszBsYAwwBvwBpoRG7XdmB7eHh46x83wv87/go2KvAsrlH4a8xhWFiYEjAbeBHwAlSAZOT2bQoPD2+/kPD/GMLCwj4D/AE3wASoA7KQn4lfh4eHl/xxo/u/4y8yh5mA/T94uyA8PNziH7z3p8L/gu/2h0Vew8LCnIF7yBfzHWA9kA68Atz8ZUP+s+M9YBFy5zXvjx3Kfw5hYWHvAVeAPsBp4AvgOGAIhPxxI/s/YwLwLRAE3Aa+BA4BnYFtwIFfNuQ/M/4KNj7LaxT+GnP4A/Ad4AjsR26vGvAVsP8ZsA9gCaANnENu1x6gGVgBxIaFhdn+cUP7t+CvMIcAFcCHf+e/z//IQf278L/iu/2RkddwwAxYHB4evlHxYlhY2DrkD/EqYP4fNLZ/F5YAuUAa8gjsxT92OP9+hIWFTQBWAueBseHh4VV/877qHzKwfw9SgJHAiV9HrsLCwt5F/tCOA8YidxT+rHjmbXzG1yg843MYFhY2GpgOZACB4eHhxb+8rgocQG7fTGDHHzTEfxf0wsPD6//2xbCwsFXAu8A7QPvaKv2P4C80hwDl4eHhK/7oQfwH8T/hu/0hkdewsDAnIBTIBDb9zdsfADXA9LCwMO3/8tD+rQgPD78YHh6eGh4e/kzqkYWFhSkDnwG1wJS/dQoAwsPDm/7rA/s3ITw8/Ofw8PDjf5tyDQ8PfwJs+eWPIf/1gf0b8azb+KyvUXj25xC54w3whcLpATFv7//yx5f/66P6N+PvOa6/4MAvP13/wft/Bvwl5vBZx/+S7/ZHRV77//Lz7N/ZcKvCwsKuI/+CugMX/tuD68BToyfyFNBPQFlYWNgw5KnKeuBOeHj4zT9ycP9hKByef93H7s+LZ8HGv/IahWdjDhU8wfS/857iNb+wsDCD8PDw8v/OkP6rGPHLz9g/dBT/N/yV5lA9LCxsGmCH3JmLBa48C5xe/od8tz/Kee30y89/1Mw9FfkX4EaH8/q/DEVz4wLgPvJiEYGwsLArwPjw8PCi//bA/pMICwuTATN++ePpP3Is/yk8Qzb+JdcoPFNzqIjUOf6d95x+9f/uwK3//HD+swgLC3sD0AH0kRdwBSN3gD79I8f1f8RfaQ4tgF1/81pGWFjY7PDw8Mt/xID+jfif8d3+qIIt/V9+VvyD9xWvG/znh9KB/wPMfvk5H9AEBiJXVOgMnEFeHHPwjxnafxSfIrfxZHh4+Jk/ejD/ITwrNv5V1yg8O3MY+cvP18LCwowUL/7inH/4q79n+F8d1X8ObyBPwb6K3HE9DYT+yS9Yf5U53A4MQO7AaiO/LH8DOACnwsLCuvxxQ/u34H/Gd/tDpbL+CRRVh88kV/QZgsovP5WQR69ifvlzQlhY2Bjkt7O+YWFhPZ6V9GxYWNhi4HUgCXkBwjOHZ8zGv9wahWduDvcB04ChwMOwsLBjyDnMAwFn5NEeV+BZSMuikFMKCwszR057+RSIDgsLGx4eHn7/Dx3c78dfYg7Dw8M//JuX4oH5YWFh1cifxxXIZe2eVfzXfLc/KvKq8M71/8H7en/z9zrwvwmFnlv6r5wCAMLDw+uQR7YAAv+ro/oPISwsbCFyWZeHQL/w8PDSP3hI/3Y8gzb+pdYoPHtz+Au3biTyiOQT5M74HORKLsGAQv+08A8Z4H8I4eHhBeHh4RHI07DGwM4/eEi/G3/VOfwVFIWTff7QUfzf8T/ju/1RkdfkX366/YP3FVWV/4hX0YH/DSjmsfwfvK9wHDT/80P5zyIsLOxV5Hp28cCA8PDwZ26TfUZt/MusUXhm55Dw8PBm5Nq8X/z69bCwME3kOtp1QMJ/f2T/eYSHh2eFhYU9BHzDwsJMfl2t/2fCX3kO+f9O+Z9aQYn/Id/tj4q8KvROQ3+RshEICwvTBXohX8h/duL2s44ryKuYXcPCwtT+zvudf/mZ+V8b0X8AYWFhS5E7BA+QR7KeCYfg13iGbfxLrFF4pufwn2E6oAEc+LNLnv0LWP3y80+dVv8H+CvMYY9ffv49tYU/E/5nfLc/xHkNDw9/BJxFTmJe+Ddvf4j8drIzPDy85r88tA60A79EAPYjTyEs//V7YWFhg4DByNMHf9pK57CwsPeRc87uIY9k/SmjHv8Mz7KNf4U1Cs/2HAKEhYXp/Z3XApDbXI28VeWfFmFhYe5hYWG/aR0aFham/EuTAjPgxp+5bfpfYA69fl2M9qvX7YGvf/nj7v/uqP69+F/y3ZQk6Y+pifqlxdgN5A/lUSAReXvDfshDzj2fgV7Oo4HRv/zRAvlBmQ5c/eW14vDw8Df++yP79yEsLMwMuA64ILfrDvLezmOQk7anhIeH/ymrucPCwhQdX1qAjfx9Hk9meHj4jv/isP6t+IvY+MyuUfjLzOFt5BGdeKAK8AKeAxqQd037M6spKOgea5FnCh4h54CaI+/M6IScJzogPDz84R81xv8r/gJzuAJ4G3l0MgO5jc7AMOSR5ZPAmPDw8MY/aoz/Dvyv+G5/mNpAeHj4o7CwMH/kt60hyBdxPrAB+PDPXmTwC3yRt7z7NZz4/7p2WcgJ7H9ahIeHF4aFhQUB7yF3Brojf2hPAJ+Eh4f/makfCk1CFeSyNX8Pl/lztzR85m18xtco/AXmEHmTieeRV6xrAo+BbcCn4eHhmX/guP5dOA9sRZ527YJcaqgGuTOwC9jwDJyJz/ocXkSug9oVOU1AGznX/hryOdz1LHTb/F/x3f6wyGsHOtCBDnSgAx3oQAc60F78UQVbHehABzrQgQ50oAMd6EC70eG8dqADHehABzrQgQ504E+DDue1Ax3oQAc60IEOdKADfxp0OK8d6EAHOtCBDnSgAx3406DDee1ABzrQgQ50oAMd6MCfBh3Oawc60IEOdKADHehAB/40eGqd17CwsD+9plZ4eLjSP3rvWbcPnn0bnwX74Nm3sWOdPtv2wbNv47NgHzz7Nnas02fXvo7Iawc60IEOdKADHehAB/48kCTpqf5bsGCBtGDBAkmB1atXSyYmJpKampqEvMWi9Nprr4n3GxsbpdbWVqmiokKKioqSLl26JMXFxUk1NTVSS0uL1NraKkmSJFVXV0uLFi2Shg4dKl29elX8++rqavH/hYWF0tWrV6XExERJkiSptbVVamlpkSRJkvLy8qSoqChJkiSpqqpKeumllyQHBwfpzTfflLKzsyVJkqRfjf1f2nfs2DHp5ZdfliIiIsTvr6yslBoaGiRJkqTa2lppxYoV0oIFC6SUlBTxd+rq6sT/19bWSqWlpVJtba30t6iqqpLS09OlzMxM6eLFi9JHH30krV+/XiouLhb/dsmSJdJHH30kSZIkHTlyRFJTU5N69+4tLVmyRFJWVpZCQ0OlxsZGadeuXZKuru5T2fdrG2/fvi1t3LhR+vnnn8W4bt++Le3atUtKT0+XUlJSpMGDB0sODg7SlStXxN85fvy4FBERIRUVFUmSJEkXL16UxowZI82YMUMqLCyUcnJypCFDhkgzZ86UGhoapNLSUql///4SIM2cOVOSJEnavHmzBEgffvih+FzFWjh9+rS0b98+qaamRsrMzJTef/996dtvv233HO7fv19au3atdOvWLUmSJKm+vl78rrlz50pqamrSuXPnpIKCAsnNzU3y8vKSqqqqJEmSpObmZkmSJCk6Olr66KOPpISEBKmmpkYaPHiw5OvrKxUVFUnHjh2T1NTUpCVLlkh37tyRunTpItnb20s5OTni95SWlkqSJElFRUXSunXrpDFjxkh79+4V71dXVwu7W1papObm5nbZCEgODg7S+vXrpePHj0ujRo2SlJSUpKCgoDZrt6WlRTwrit9bUlIi1mZycrK0ZMkS8QwHBgZKDx8+lCRJkr755hvJ2tpacnJyknbt2iU+o6mpSZIkSSorKxOvffTRRxIgbdiwQWpqapJmzZolmZiYSB988IG0Y8cOae3ate1epwq8+eabYnydO3eWli5dKq1fv146deqUJEmSFBcXJw0aNEgaM2aMmMe4uDjJ0NBQ8vLykgoLCyVJkqRbt25JGRkZ4nOLioqkq1evSm+//ba0ZMkS6f79++K9vLw8KS4uTrpz546UmpoqNTc3S/X19WJ95ObmSp07d5Y6d+7cZt7bM4cvvfSSWJvNzc1SY2OjmDOFHYpxrly5Ulq4cKF06NAh8fxJknyfVew90dHRkpeXl2RhYSHWvmKsxcXFUktLi9TU1CT2surqamnOnDmSqqqq1Lt3bykiIkKMp7W1tc0YvvvuO2nkyJG/ew6PHDkirVmzRoqNjRWvXbp0SdqxY4eUkJAgXrt+/br0zTfftDkLbt26JS1evFjsBZIk35Pz8/OlwsLC3+yzijmSJPm+vHHjRunLL7+UEhISpGXLlkkymUx66623xN/59fPQ3jlUPFt1dXXieU5NTZV27dolbCgrK5O+/fZb6fnnn5cmTJggbdy4UcrNzW0zh4p/q0BxcbF0584dKTExUdjz63NIkiTp6tWr0sGDB6WioiKpurpaioiIkG7cuCG1trZKZ86ckb7//nupvr5eio6OloYOHSq9//774vtpj40HDx6ULl++LCUlJYnfvWvXLsnIyEhatWqVJEmS9Mknn0gDBw6U4uLiJEmSnxW7du2S1qxZI4WEhIgzQpLkZ2Dv3r0le3v7NvM8Z84cKTQ0VIqKipKampqkd955RzI3N5dCQkKkEydOiL93+PBhKSQkROratau0bNky6cGDB+K9d955R9LQ0Pjd6/TBgwfS+fPnxVgVc6tAUlKStGPHDunkyZPieW1qapLKy8vF33nttdckJSUlacWKFeK1lStXSmZmZtKnn34qSZIkVVRUSJcvX5bOnz8vzZ49W+xvgKSsrCy99NJL4vkrLy+Xrl69Kt2/f1+s0/r6+nbN4enTp8Xel5WVJfXu3VtauHChJEmStGnTJgkQY/s1Bg8eLBkZGUmxsbFScXGx5OPjI+no6EgbN25ssw+lp6dLn376qWRqavobv0GS5Gt8//790rJly6Q9e/ZI9+/fl2pqasR4rK2tJV9fXyk9PV06f/68NGzYsH9pX7vbw+bn55OQkICFhQVTpkzhxo0bWFhY0KdPH4qKihg9ejQ9evRg4sSJODo6oqenh7e3N1FRUchkMrS0tKiuruaLL76gb9++hISEMHPmTGJjYwkODha/59y5c+Tk5PDcc8/h7OyMoaEhVVVVACgpKaGkpMTRo0c5c+YMTU1NnD59Gl1dXezt7Vm9ejX+/v7k5eVx8eLFdtnXu3dvtLW16dy5s3itsrISdXV1TExM0NTUxMrKitbWVvT09ACIjIwkKSmJ7t27ExwcjEwm4/z58ygpKTFgwAAMDQ3Jz88nOzsbmUyGra0tGhoatLa2oqKiQlJSEnv27KF79+64ubkxZswYysvLuXbtGhERETQ2NnLz5k1kMhmurq4YGRkRERHByZMnaW5ubu8UUl5ejqamJtbW1uK1wsJCfvzxR86cOYOGhgZnzpxBTU2Nuro6AOrr63F1dUVfX5+amhq+/vprtm7diq+vL/PmzSM+Pp74+HiGDBmCqakpd+7cwcrKiuXLlxMQEEBFRQULFixg3759qKmpERISIj43KysLNzc3fHx8qKioQENDA21tbQIDA7G3t2+3fd7e3lhaWqKtrQ2Auro6AImJiTQ2NjJgwABUVFQoLy9n5MiRmJmZoaOj0+Yz3N3dKSsrw9PTk+rqatLT06mtrUVFRYWWlhYaGxtJSEjA1taWJUuWcOTIEVavXo2qqirOzs7MnTuXlpYWtmzZwtGjR3F1dW3zO7S1tampqaGlpUWso/Zg6NChREdHU11djZqaGlVVVaipqdGzZ0+CgoKorKzk/PnzVFRU0KNHD1pbW7l//z4mJib07dsXTU1NampqePLkCX5+frz55ptcuXKFUaNG4eHhQVZWFqtWrSIvL4+XX36ZsWPHAlBVVUVNTQ0WFhYYGBgA0NLSgoWFBTNnziQoKAiZTMawYcNwcnLC19eXxMREkpOTxTy0F97e3syYMQNzc3OKioo4fPgw7u7uDBgwAIDOnTszdepUNDU1xXfs4uLCuXPnOHbsGIsWLWLixIkMGzaMmzdv8v333+Pg4EBgYCBmZmYMGTIEDQ0NunbtKn6nmZkZFRUVODo6YmJiAoCKigoApaWlfP7558THxwNw7do1/P39SUtLa5ddAwYMQF1dnfLyco4ePYqOjg6BgYHY2toKOz7++GPu3r3LkCFDmDFjBra2tigpKdHQ0MCxY8cwNTUVz1JMTAwJCQk4OTlhYWFBYWEhX3zxBV5eXsyYMQOAhoYGNDU1Afka7NatG48fP6Zv374MGjQIdXV18vLyiI6OxsLCAn9/f/EdKysrc+fOnXbPX3V1Nba2tjg4OIjnKTU1lYCAAPr27cvu3bv5+eefWbRoET179kRTU5MzZ85w+PBhmpubaWhoQE9Pj06dOonP1NXVRVdXl4qKCvbu3cu5c+fo1KkT8+fPJy8vj23bttGrVy+mTZuGj48PDQ0NeHp6YmZmRnNzM5cuXSIyMpLCwkLs7e3FWvr555/bZZuysjKNjY1oaGiI1xwdHWlpaaGpqQkAAwMDgoKC+Oqrr2hoaMDLy4uvv/6a2tpa5syZQ5cuXQAoLi4Wa01NTY2PP/4YfX19duzYAcCTJ09Yt24dAwcOZNy4ceTm5vL222+zfPly5syZQ8+ePamsrERJSYlu3brRtWtX1NXV0dDQwMnJiT59+gDy57U9sLGxoaamBiWl/5+9HTp0KGVlZchkMk6ePImxsTGLFy8W56adnR0mJib07t2b/v37c/LkSZYuXcqECRMICQlhyZIlXLx4kcePH4vPNDU1paioCEtLS2QyGfPnz6eyspLa2to23+/w4cPR1NQkOTkZBwcHsS4kSSIoKIgVK1aQlZXVLhsVcHZ2RkNDg0ePHon9RENDg+TkZFRVVVFTU6NTp064urqiqqpKSUkJp06dora2lpEjR2JhYYGJiQlubm5YWVmJzw0MDOSDDz7A29sbAD09PYqLi9m+fTtNTU2888476OvrU1hYiKamJv7+/mIP0NfXJzk5mdraWnx8fADavZeGhoaK+TM2NmbFihXU19dz9uxZ8fsDAgLEPGtpaQFgaWlJaWkpo0aNYtSoUQwbNgwrKyvc3d3JyckR34+joyN9+/ZFS0uLmpoabt68yaFDh1BSUmLevHl4enqirKzM48eP6dq1q9hr7927x549exgxYgRz5szB0dGRn376iQsXLjB79ux/alO7nddr166xe/du/Pz88PHx4cmTJwQHB/Pyyy9z8uRJPv/8c06dOkVDQwOzZ8/G1tYWdXV1MjMzSUtLw9zcnCNHjrBixQqCgoK4fv06/v7+eHh4cPnyZYyNjSktLeWzzz4jPj4ea2trnJ2dkclkZGRkkJGRgaurK+Xl5SQmJlJQUEBzczNZWVl4eXnxyiuv4ODgIL6YBw8etMs+FRUV+vfvT2NjI4WFhchkMszNzZHJ5F/V48eP0dTUxNfXFx0dHZ48eUJ0dDQ///wzlZWVeHh4UFZWxs2bN1FXV8ff31843qmpqdjY2GBmZgbIF7CjoyNmZmasWbOG1tZWAgMD6d27N9XV1Rw5ckR8RkxMDDdv3qRfv344ODhw/fp1JEli8uTJ7Z1CbGxssLKyoqGhgZaWFlRUVFBRUeHixYvCSe3SpQvBwcEEBAQAUFZWRlNTE62trVRUVPDw4UNKS0uZMmUKQ4cOJSwsjOjoaM6cOUNFRQVz586lZ8+efPDBB/Tt25erV6/yyiuvUF5ejra2NgUFBWRmZnLq1Cnh8FlaWmJpaUlTUxMmJiYMHz4cgIqKinbZ5+HhAcgvHdnZ2airq5Ofn098fDzDhg3Dzs4OdXV1DAwMWLt2LQCtra1i/isrKwHo168fAKdPn6aoqAgXFxfq6+sxMzMjMDCQnj17CqdNX1+fN998k7S0NHx9fbG3t0dNTY24uDisra2ZOXMmgwcPBuQXhfLycnR0dDA1NUWSJPE7nxbe3t6cOnWKnJwcQkNDCQwMxMfHh3Xr1om/k5aWhkwmQ1tbm5iYGI4ePcrQoUOF85KWlkZWVha+vr5MmzatzbNy6tQpKisrmT17Nq+99hqpqamkpaVhZ2eHk5MTra2tKCsr09zcTFNTE/PmzWPevHkUFxfz6NEjRo0axfjx4wGQyWSkp6e3y75fw9/fn0GDBmFhYcHNmzc5duwYMpkMLy8vQH6hnjlzJiC/DJWXl2NhYUG3bt2Ijo7m448/xsDAgFGjRlFWVkZkZCQODg5YWFgwePBg3NzcaG1tpaCggKqqKiRJwsLCAg8PD1paWigtLUVDQ0Ns6Ddu3CA5ORkLCwtxKKxbt46bN2/So0ePp7bL0dGRyspKLly4wO3bt3Fzc8Pe3h4dHR0MDQ0pLS3lxIkT5Ofns3r1auzs7KitrUVLS4uSkhJu3rwpLqL+/v7U19ejrKyMqakpOjo6REdHs2vXLsaPHy+c19raWsrLy1FXV6elpYXQ0FCGDh2Kg4MDSkpKtLa2kpCQQEFBAcbGxlRXV4uLZGBgYLud13PnznH79m2Cg4OFk33v3j2OHj3KoEGD8PT05Pr169y9e5fOnTsTEhJC165dyczMJDIykuvXr+Ph4cFbb70lnNDS0lL09fXR0tIiLS2NM2fOcPDgQaZMmYKFhQW5ubkcOHCAxMRExo8fL5w2kF9q/P39KSwsZNmyZVRWVjJkyBBsbGxoamriyZMn7bIP5I4mwKNHj0hISMDQ0JBevXqhrPz/WXmZmZlkZmbi6uqKubk5P/zwA7du3aJXr17CeVUECgBu3rxJVFQUtra21NTUoKurS319Pd9//z0PHjygf//+NDQ0UFxcLBxAMzMz9PT0kCQJY2Nj8VkymYwhQ4aI57C9AQ8vLy+Sk5OJi4sjNjYWR0dHunXrxssvv0xERASRkZHi4lpVVUVERAQNDQ306NEDe3t7cebfvHkTc3Nzhg4dypgxYxgyZAhHjx7l2rVrBAcH88Ybb3Dt2jWSkpKwtrbGzs4Oe3t7Dh8+TFFREQA1NTU0NTUxZMgQfHx8yM3NpaamBhUVFUpLSxkyZAijRo0iLCysXTZWVVWhra2Njo4Ojo6OPHnyhKtXr+Li4oKamhqFhYXU1tZiaWlJt27dUFVVpbKykitXrnDv3j2ampro2rUrFhYWODs74+vri5ubG5IksX//foDfjMnW1hYDAwP69u3L3Llz27xXU1NDdHQ0pqamlJSUkJWVhYaGBiUlJZiZmYlA3tOioqKC0tJS9PT0MDExwd/fn4sXL5KUlMTAgQPx8fGhsbGRhw8f4uDgIPa6QYMGcenSJTIyMsjOzubQoUNtPrewsJBr166ho6ND9+7d6d69OwCHDh1i27ZtpKamoqqqyurVq/H29qapqYlevXqJf3/8+HHy8/NZsmQJAQEBFBcXo6enx4QJE/6lTe12XlVVVSkoKGD//v3U1dWRmZlJTU0NCxcu5LnnnmPnzp0sWbKEb7/9Fm9vb2xtbQFobm7m/Pnz/PTTT5SUlIjD/ciRI4wbN47a2lpWr17N1atX0dfXF5vIr2+JJ0+e5Pr164wcOZKRI0cybNgwunfvjrq6OjU1NRgYGAjHFcDX1xcrKyv27dv31PZt3bqVbt26ER8fT15eHqNGjRITcu3aNX744QcKCgoIDQ2ltrYWc3Nzxo0bR9euXXFycsLY2Ji0tDSqq6vR19fH0NAQAC0tLTQ1NcWi+DU6derEsmXLMDc3F6/p6Ojg5+dHv379UFFR4ccff2TPnj00NDRgZmZGQEAA2tra1NfXs2vXrqefQMDT05OWlhbOnDlDfn4+oaGhqKmpoaqqioODA+vXr8fe3h6ZTCbGb2lpSUJCAklJSXh7e/P2228zd+5cQkNDAYiNjSUjI4OWlhby8vI4d+5cG3t69+7N119/zSeffEJkZCTLli3DysqKqqoqRo8eLS4HDQ0NNDU1oaqqCsidytOnT7fLPsW/19PT48mTJyxduhSAd955Bx8fH9LT02lsbBSXCMXvUVJSIicnh8jISIyMjJgwYQJlZWXExMTg6uqKi4sLd+/exc7Ojq+//rpNpK5Hjx68//77XLhwgdLSUm7duoW7uzvPP/88Ghoa4sZcXFzMiy++SGVlJVu3bkVVVZWmpiY2btzYLhsVa9rGxgYPDw+qq6uRpLbc/IULF6KhoYGKigoaGhoYGBjg6ekp3ldVVUWSJJKTkykrK6O4uJjGxkaqq6sxNTVl06ZNTJo0iYqKCsLCwsjOzmbDhg0YGxsLJ09PT0/MHcCtW7eIi4tj6tSp2NnZAfIojauraxvHuj1QVlYmPj4eCwsLvL29efnll/Hz80NZWZmff/6ZjIwMpk2bhoqKCg8ePMDLy4uKigpWrVpFfHw869evx8zMjE2bNmFsbMynn36KqqoqdnZ2qKioUFdXx40bNzhx4gT79u2joaGBb775hvHjxxMXF8elS5cYPnw4Li4uADg4OLBo0SJkMhkDBw6kpaWFXbt28eDBg3Y5r+Hh4fj7++Pg4MC0adMwMTHB1NQUNTU1ysrKyMrKYvHixZiYmGBhYcGdO3e4fPky5ubmuLu74+3tzbfffsvw4cOZNm0aQUFBDBs2jObmZoqLi+nXrx8bN26krq6OiooK9PX1hW1xcXEEBwczb948dHV1AXmEtLW1FW9vb9zd3dHV1RWO2e/FyZMn+fLLL/n000+F82psbEznzp3ZuXMnMTEx2NnZMXHiROGgaWhoMGbMGDw9PYmOjkZVVZXAwED09fUpKioiMjKSpqYmhg0bJgIW48aNIzAwEJBfdr777juUlJTaROwAnnvuOYyMjPjkk09ISUlh1qxZGBkZ8cEHH+Dp6cn8+fO5du1au+2Mi4vjgw8+4Oeff6Z379588skndO7cmdbWVg4fPszKlSuprq7Gzc2NHj16UF5ejr6+fps9SFVVlfT0dKqqqigvLxeBGMWZYW5uzksvvYSOjg719fUMHjyY7777DktLS/EZv7a3urqa8+fP4+joyPDhw1mzZg2zZ8/m7bffbpdturq6+Pv7s2fPHjZt2kRwcDBLly7F2tqahIQENDQ0sLS0pLm5mcWLF7Njxw40NDQ4ceIEAN9++y0xMTEsXbqUcePGic/V1NTEzMxMOPkmJiaEhISwYMECPvjgA3x9fYmMjCQrK4va2lqKiooIDw9HR0eH119/HSsrK0pLS6mvr8fY2BhTU1Py8vLa7dgBxMfH4+/vj7KyMmpqavTq1Yt9+/axfv16fH19WbBgAcbGxmhoaKCqqsrNmzfZt28fPj4+zJo1i6ysLOHr5OTkcPnyZSZPnkx5eTk7duwgKSkJZWVlxo4dK/ZLHx8f1q5d22YNlJeXU1BQgJqaGiUlJaxYsYKkpCRefPFFZs2aRWtrK7dv3263jV9//TUHDhxg2bJlDBkyhGXLlnHv3j0+/vhjcTZVVla2yaiBfO92cnIiJSVFBIV+DUmSWLZsGa6ursJPysjIEPM8bdo0rly5QmpqKh4eHlhZWYn9prGxkUWLFpGQkMD169dJTExk6NChvPTSS0yfPp033njjn9rUbudV4azdvHmT+/fvY2ZmhpmZGSkpKbi7u9OlSxd69+5NfX09NjY24t/5+/tTUFDAgQMH6NSpE5999hlAm3R6586dSU1NRU1NjeDgYHr06IGrq6v4DGVlZa5fv07Pnj1RUVEhKysLVVVVsSkqvsyCggIMDAxwd3fH3d29Xc6rtrY2aWlpnDhxAkmSmDhxIgA//vgjERERpKam8uTJE3R0dBgxYgRKSkp4enq2cQoqKyu5du0aQ4YMQV9fH4Dc3FwOHjyIpaUlZmZmODg4UFxcTFJSEpIkoaWlRXJyMgUFBdjb2+Pn54enpyfl5eXk5uaKyFNkZCQymYzg4GCePHnCjz/+2N4pBOQRRmdnZ+HwWFtb8/rrrxMYGMiQIUMAxC3axsZGpGZKSkrQ19cXfy4oKODo0aPk5OTg5+cHyB3viRMninl59OgRVlZW9OzZk2nTphEZGUlBQQHdunXD09MTa2trSktLMTIyQl1dHXV1dRobGykoKCAmJob79++3y7bW1laqq6tFZFOxoSs2idbWVtzd3ampqSEyMhJra2uCg4OJj4/n+++/p7q6mtGjR6OsrExTUxNBQUH069ePlJQUNm/ezPDhwwkLCyM/P59z584RGBiIu7s7M2bMYPjw4cTExBAdHU1VVRU2NjYUFBSwfv16DAwMKC4u5uHDhzg7OwvHoLy8nOTkZPFQPw0sLS3p2bMnw4cPR1dXFxsbGy5cuEBycjImJibo6uoK2oQiPWxqakpqaipxcXF0794dGxsbLl++THR0NFZWVpiZmdHS0sLjx4/p2bOneH4fP34sKBSKOVWMtbi4mLNnz2JhYUGnTp0oLy+npaWF2tpaQdtRRCvai59//pmioiKUlZWxs7OjpKQEgJkzZ2JqakptbS0tLS1YWlqiqqpKQ0MDhoaG6Orq8ujRI7788ksGDhzI4sWLuXHjBrNnz+a7774TFy5A0D8SEhIoLy9HQ0NDOLP29vY8fvwYS0tLcRGTJInOnTvTuXNnmpubUVZWRllZmfnz57eJdj0N4uPjCQgI4LnnnvvNe9XV1aiqqrbJrOzbt4+9e/cycOBA/Pz8GDRoEKWlpRw8eJDLly9TVlYmIj5mZmaoqKgwbtw4GhoaSE1NpaqqioaGBpydnWlqaqKsrIy9e/fSo0cPvL290dHRoaWlBR0dnTZRQ0BQZdqLfv36kZyczM2bN9m9ezehoaF07twZBwcH7t+/T11dHUFBQbz44ovo6+vT3NxMc3Mzjx49QlVVleeff77N55mamuLg4EBqaiogd9Z69uwJyM+S/fv3Y2VlxejRowF5JP748eMUFBTg5+dHz5496d69O3PnziUjI4PFixcD8n3N3Ny8jSPxNHjy5AlJSUnk5OSgq6uLiooKxcXFlJeXA/Joak1NjXBYDA0NsbKy4oUXXqB79+4i2NLc3Iyenh7V1dWkpaWhqanJvHnzMDIyorGxkfr6egwNDfniiy+QJEnsHZMmTQLke2xjY6OI2ivmUEdHh+zsbHJyckhKSkJNTY3k5OT2TSLyPUCSJLp06YKXlxc///wzd+7cwdDQkEWLFmFnZ0dqaiqlpaUAWFlZCQesoqKCvn37MmvWLACuXLlCZWUlAQEB9O/fn7y8PCIjI1FXV0dbW5uuXbuSlJTEpk2bALkDNW3aNFpbW0lNTUVbW5vGxkbU1NTQ1tYWe5GCwpGTk9Nu+xTBGwVkMhmDBg0iISEBT09PHB0daWhoEN/7hQsX2LBhAytXrqRLly60tLRw/vx5unTpQmxsLPX19UiShKGhocggpqSkkJCQgLe3N8rKylRXV1NaWkpVVRVOTk6oqKgQHx/Pt99+K55vKysrcnJyGDhwIMbGxpSVlXHkyBEyMjIwMjJ6avtMTU1xdHSkU6dOIqjm7u7eJiuhoKzU1dXR0NCAgYEBhoaGbSKqxcXF3Lx5k9raWqysrHj48CEWFha4u7tTW1srvv8nT55QUVHBuHHjhJ9RXV1Nc3MztbW1tLa2oqOjg4mJCV27duX06dOUlZUhSRIVFRXExcX9S5va7bzm5eUxb9485syZw6NHj1BRUREH0/bt29m/fz9+fn5Mnz4dJycnmpubhWNqa2vLgAED0NLSEs5eeXk58fHxaGtr88EHHzB79mwSEhLw8fHBw8OjzYbZqVMnBg8eTOfOnbl16xZvvvkmLi4uDBo0SGy2ra2tYhP5PQgODubOnTvY2dnh5+dH165duXTpEq+99homJiaMHDmSU6dOcfHiRS5duiTSlUVFRZiamgLyEH1iYiLOzs7icxMSEoTjPmHCBKysrIiJieHSpUtER0cTFxcnnPjBgwfz3nvv0b17d06fPs23337LCy+8wKRJk2htbaW0tJR79+6xb98+9uzZIzbqp4WCKvBrDpmrqyvvvPNOm0h3ZmYmK1eupLW1lddee41OnTrRtWtXsVmcO3eOtWvXcunSJfz9/XnxxRcxNDTE0NCQDRs2iPRGVFQUdnZ29OzZk4qKCry8vJg1axZvvPEGLS0tZGVl0djYKFLRID90Hj9+TEpKSptN5WmgcIAVm8eWLVt4+PAh165dQ09PTzgvUVFRLFiwgDFjxhAcHExUVBTbt29n7NixIorT0tKCp6cnTk5ONDQ0cPHiRVRVVRk6dCgbN25k8+bNbNy4EXd3d0BOBfH19aWwsJCEhAQeP35McnIyERERSJKEiYkJa9euZdq0achkMhHxHDp0aLsiPj/++CNqamqCt1xbW8udO3faRGQVacjQ0FBee+01rKys2Lx5M1lZWdjY2GBoaMj9+/epqKhg1KhR9OjRg8rKSoqKigS1AMDe3p7t27djamr6G6cmPT2d119/HR0dHdavX0+XLl3w9/fH3d2ds2fP8vrrr9Pc3MyyZcvaNYcAZ8+eZc2aNYIrB/KoRnNzM42Njejq6hIYGIiSkhLKyspoamqKNa2rq8vChQsFj/769euCUqDAw4cPBX2kf//+DBw4kC+//JK6ujq+/PJLXnnlFcLCwpg2bRogT+UpItkA9+/fp7GxkaCgIIYPHy4uNU+LuXPnCufjb2Fubo6BgUGbLISXlxfq6upUVlZSWlqKhYUFr7/+Oq+//jpz5sxh9+7drFq1SoxXkiSUlJRQV1fH2tqazMxMtLS0mD59OkpKSuzatYvly5djaWnJoUOHsLS0REVFhbKyMpFxUUARvW8vRo4cKb6bOXPmsGfPHiZMmICOjg6vvvoqr7/+OsbGxmhra8uLMH5x8rZt28bZs2dZvHgxL7zwQpvPHDRoEAEBAW3WaEpKCl9++SVbtmwhKCiII0eOYG5uTl1dHRs3biQqKop33nmHHj16oKSkxNChQ9ucLcuWLftdzvnOnTvZvHkz8+fP54svvmDUqFEUFBSI862xsZFp06bh7u7O9u3bsbW1FVxKxR7T1NQkAhh2dnYiA6LgNSouSIq/+7fPIMid+Hv37iGTyQS9SUdHh4EDB4rod0hICCtWrODAgQPtovGcO3eOuLg4evTowZo1a1BTU+OHH37g2LFjdOrUif79+wNyxzwsLIxFixbh6uoq+MWLFi1CWVmZ9PR0bt++zY0bNwQ1zNzcnKysLObNm8eTJ0946aWXWL9+PT179mTx4sXY2NiwZ88eVFVVqampoV+/fpiYmAgnUk9Pr806cHZ2xsrKiqNHj7ZrHn99FiqeG3Nzcz755BOamppITEzkwoUL+Pr6EhwcLKKT6enpFBQUcOzYMQ4dOkTXrl3R1tYW/E2ARYsWMX36dBGQqaqqQl9fn9u3b/Pqq68SGBjI7t27Aflc37hxQ/ChN2/eLGgUIN/XamtruXTpkqhDeBrMnTuXKVOmiLN75cqV1NTU/N2z9dGjR2hpaWFgYCAiwRYWFujo6PD48WMSEhLYs2cP8fHxdO/enfDwcFxcXHj06BEODg7o6enx4osvkpaWxurVq5k/fz61tbWcOHGChIQEnJ2dGTBgANra2hQWFpKfn8/06dNxdXUlPz+ft99+m4sXL/7dS/2v0W7n9fr164LL9reRhvr6eiorK+nbty8eHh4cPnyY2tpa8SWrqqri7+9PSUkJq1evJjQ0FH9/fw4dOsT169f5+OOPcXJy4u7du/zwww9MnjyZ6dOnU1hYKBbRggULUFJSYvPmzeTm5tKvXz+qqqqora3l3r17+Pv7Y2FhQUtLCzt37uTy5cvtIje//fbb5OXlMX/+fF566SVAvgENHDiQ0NBQunbtSlRUFA8ePGD+/PkoKyszffp04bhmZmZSV1fXpmCnW7du6OnpsWTJEnr37k3Pnj05c+YMR48exc7ODgcHB+7evUtISAh9+vQhKSmJ8+fP0717dyZMmEB+fj56enqoqKgwcOBAIiMjCQ8PJz4+vl1pSgUUh+/ly5cpKSmhR48eWFpaCi6rtrY27u7u6OvrM2bMGG7cuMGtW7cwMjKiV69eqKqqioiYlZUVw4YN45133iEwMJBLly6JyLACmpqa4pJibGzMnDlzGDlypBiLk5MTII9EpaWl4e/vj42NDb6+voJG8Ldcm3+GW7du4e3tLYjn6urqWFhYcPDgQaysrITzquCG1dbWkpOTg4ODAz169CA/P5+IiAi6dOnCw4cPuXv3rkiV+/j4YGZmRmxsLEZGRnTu3JkjR45gY2PDkCFDKCkpYd++fSQlJYkiFVdXV0xMTEhKSmLo0KEiAgH/3yGaPHlyu5xXxXdWWlpKdnY2LS0tIgqbkpJCU1MT+vr6WFtbi2Kbmpoa3NzcsLOzQ0tLS0Qc9fX1kclkKCkpYWpqKgru1qxZg5+fH5MmTRLO+fLly7l//z7PPfcc48aNw9zcnHfeeYcHDx4QHx+PmZmZKEpwcnJi7NixJCcnU1NT89S2KTB8+HBKSkooKyvj/PnzhISEoKSkRFZWFlpaWhgZGaGkpMSRI0fIy8vDwsKCzp07Y2Njg4qKCi+//DKZmZl8/fXX5OfnM2/ePGJiYpg5cyZlZWWoq6vTo0cP5syZ0yZVpqenh729veCwTp06laysLJqamsQGGxUVhZqaGt27d0dVVZWLFy9y9+7ddtk3adIk9PX1OXXqFI8ePWLYsGHY2NgQGxuLsbExDg4OVFdXk5+fj7m5OS+88AL29vZ89dVXrFixQvDJQZ456datmziEFQWfBgYG+Pj4iEtlamoqGzduFEV+IOdXKrjN/fr1a+O4Kpylpqam3+Xctba2cufOHYKCgggICMDNzU28p6BhgDzSfO/ePTp16oSFhQVdu3blyJEjfPjhh7S0tDB37lzu3r3LsWPH6NWrF0OHDm3ze7S1tbG3t2f06NE4OztTXV2Nubk5hoaG9OvXDzs7O3r37k1sbCwJCQkEBwdjZ2fHmTNniIuLIygoqA0X72nR2NjIkydPUFFRwcTEhLFjx5KZmYmhoSEtLS1oa2ujoqJCUFAQNTU1IioK/F0KmZqaGq6urjQ1NQkHTSaTIZPJaG1t5YMPPqC6upqJEydSU1NDamoqI0eOFMGW6upqysvL+fLLL6mpqeHbb7/lueeeo6GhAW9vb+zs7OjWrVu7nNeHDx9ib2+Pr6+vGFPfvn0pKSkRfN3m5maio6MBCAoK+k0R6q5du1izZg0BAQEsWLCA/Px8Tp06xfnz50lPT0cmk6GhoUFKSgrfffcdenp6LFiwgOeffx5dXV327t3L/fv3mTt3Lp06dSI+Ph5dXV1sbW2pqqpCWVkZXV1d6urqyM/Pb/c8VlZWUlhYSG5uLvn5+bS2tqKurk5JSQl37twhLi4OLS0tiouLqaqqwtjYmLfffpuGhgY+/vhjUlNTsbW1xd7eHgcHB4yNjWlsbBS0Jk9PT3r06IGenp64fCgKF1VUVEhLS8PFxYWffvqJtLQ0bGxsxDoxNzfn7NmzdOvWDQcHB9588020tbXbXMT/Fa5fv46amhpZWVk8evQIbW1tevfujZOTE3fu3OHgwYNUVVXh7+9Pnz59sLOzE4HHlpYWrly5IjJ6lZWVoljVzs4OIyMjEhIS2LBhA01NTTg7O+Pt7U2vXr1ENlZNTY3z58+zdetWdHV1Wb16NfPmzcPQ0JDW1lZBfTEyMsLExEQ4/v8M7XZem5qaaGhoEKnd+vp6sVC7dOmCra0t/fr1Iycnh7Nnz2JoaMjAgQMFjycgIICbN2+ya9cuNDU16dKlCxUVFURFRXH8+HFsbGz49ttvqaioICMjg8GDB/PgwQO+/fZbZsyYQf/+/dm4cSMHDx7EyMiI0NBQ9PX1yc7OpqioSNwSamtriYiI4NixY8IJfRooeDq/LqAJCgoSDk9TUxOdOnXi/Pnz1NfXc/HiRUaPHo2uri75+fmcPn0adXV1wf9dsGABffv25Z133mHFihXi5vPTTz9x4sQJXnzxRcaOHUvPnj0JDAzEwcGBbdu2CYK8t7c3CxYsID4+XhSimJiYsH37dgYNGsSBAwd4+eWX2zuNAERHRxMTE4ODgwOWlpbEx8dz+vRpUTEYHBzM+++/z6VLlzh27BiAONgMDAwYMGCAqNIF+Y3t/v37GBsbExAQgLq6OjKZDG9vb+rr69HV1WXcuHHk5+dz8uRJIiMjGTVqlKjOvXHjBg8fPqSlpQVdXV10dHREWqM9zuupU6cICgpqUx1bW1uLhYVFGypLly5d2L59O0VFRYIjqK6uzvTp03nppZeYP38+JiYmXLlyhaSkJDp16iSKOx4/fkxISAimpqasWLGCr776im7dulFTU8OZM2dITExk5syZPPfcc0JxQyaT4ebmRl1dnYisKMbze1QjALKysigsLMTb25tu3boxbtw4UlNTycvLw93dHQsLCwAR1Z4/fz4gjyhfu3YNGxsbbGxs0NDQoLq6WqSiLly4wJo1a5gzZ46IDu7fv59vv/2WJ0+ecOLECZKSknjllVdYvHgx8fHxREVFicI3kKcOV69eTVFREbW1tWzdurVdtgUHB+Pm5iYUGxwcHHBxcaGwsFCkwK9du8bmzZu5desWbm5uTJ8+XVT56uvrExkZSWRkJFOnTmXOnDls2rRJRDn09fV59OgRlpaWTJ48WaQiFQgKCqKuro4TJ05gYGAgHMPExESysrLo3r27cHoPHTrEpk2bWLBgwVPbp6+vT1lZGatXrxbPuqOjI/fu3UNDQwMHBwd0dHQEL1pdXZ2BAweyceNG7t27JyLrp0+fxsrKih07dtCpUydqa2uJjo6mpKREVPgq9ujU1FS+/fZbHj9+TGhoKJMnT+bcuXOcOXMGLS0tevfujaqqKuXl5chkMnGAlpSUCNpGe3D48GHOnDnDyJEjGTFiBA0NDeTk5Ai+e11dHZaWlpSVlREVFUVKSgozZ84UUaK1a9eSk5NDa2srOTk5fPHFF+zYsYNVq1Yxfvx4NDQ0KCwsREdHR3DbFfPY2tpKU1MTy5cvFxf206dPEx0djbOzM9bW1iQnJ7N3715iY2NpbGwUl4GnhZ2dHYMHDxYpV8W81tXVoaWlhYqKiuCHKyKUikIrJSUlQQsoLy/H1NQUTU1N8vPzycvLw8nJSdCeNDQ0OHnyJN9//73goD5+/JizZ89iZGTElClTcHFxoaioiPj4eKKjo6mpqeHBgwfY2dkxZswYUQyl4Di2x8YxY8aIQmQHBwccHBx47bXXAPnedefOHfEdtrS0CCWN0tJSIiIiWLVqFRkZGTz33HMEBASQlZXF9u3bOXLkCA4ODkycOBFTU1NOnjzJm2++SWhoKFu2bEFXV5fy8nI++eQTioqKGDVqlFjjmpqaKCsrU1FRIZ7DyMhIIiIi2lxGnwaKgs1NmzYRFRVF3759UVVVZd++fVRVVYnn8cCBA5w+fZrRo0fTr18/fvrpJ/bu3YuzszNTp07Fy8uLgoIC7ty5Q319PXFxcURFRfH888/j7+/fJpDWqVMnFi9ejLm5OYWFhVy/fp0HDx7g7e3NiBEjaGlpQZIkrly5QlZWFioqKmhpaWFjY8Pq1avbleXZtm0bTU1NaGlp8fDhQ27dusWkSZNYs2YN5eXlbNu2DZCfJ2PHjhX7haKALS0tjZqaGoyMjITTHBQURNeuXfnss8+4e/cusbGxNDQ04ODgwL59+wgKCmozBsVnVlVVkZKSgoqKCjKZTOxT5ubm6Ojo8OGHH1JfX8977733T21qt/M6ZcoUcXNQU1NDTU2NyMhIjh49io+PDwsWLEAmk6GmpsaECRNQV1dHWVkZCwsLlJWVuXbtGpWVlbz//vsMHDgQVVVV3njjDSZMmICDgwM5OTnMmjWLhoYGPDw8uHr1KsXFxWzdupUpU6YAcicJ5FGnGzduMH78eLy9vdHS0qKwsJCcnBzU1NR48cUX6du3LykpKU9t3/bt22lsbOTMmTMMGTKERYsWCc4KIHhYiso5kJOhKysr0dbWxtLSkurqavbv38+ZM2cAeUVefHw8ubm5FBQUkJKSws2bN8nPz+err77CwMCA+fPnc+bMGZYvX07fvn3p378/y5YtIy8vj0GDBmFvb4+1tTUGBgaoqKggSRKmpqa/ix7xxRdf8MorrzB16lS8vb3Fg+7j48O+ffs4fPgwBgYGInpqYWFBjx498PX1FZ/x6yIdgB07dnDlyhUmT57MoEGDaGpqorS0lObmZrS1tdHQ0BCOr7GxMZs2baK4uJjQ0FBSU1NZtmwZtra2TJkyhUePHrF06VJMTEyYOXNmG97z00BdXV04rooCEGdnZ0aMGEF1dTXZ2dno6elhZGQkbFRU7Hp6eqKvr48kSZSXlzN79mxCQ0M5ceIEt2/fJjU1lcbGRrS1tSkqKiIvLw9nZ2caGxvZtm0b/fr144UXXuCHH34gJSWF5ORkysvL+eGHHzA2NhZFX8nJyQwcOJD33nsPLS2tdvGyFWhtbcXMzAwTExNxeFZXV9PS0oK6urqIFtra2v4m1aiiooKHhwezZ8/G0tJSzK0kSSIiYmBggCRJbNiwgatXr6KqqsqKFSs4efIkx44d49y5c4Jn5uzszNixY3F0dBSORlpaGlVVVbi4uLT7wAR5sc/9+/dxcnJi4cKFItPj5+fH4cOH2b17N/b29gQGBnLv3j20tbVxcHAgISGBvXv3iorg4uJi4XAOHjwYX19fmpubuXHjBmfOnCEsLIzDhw/j7e1NXl4eqampdO3alU8++QQNDQ2MjIyE43r//n10dHTo1asXxcXFpKSk4Obmxty5c/Hy8noqrtavYWhoSE1NDRUVFSISqqGh0Ya+o6DB5ObmsnfvXpycnJgxYwYhISGUlZWhoaEhFAMAccAZGxtjZGSEqqoqBw4cYN++fejr67NixQrKyspIT09n0KBBjBo1irNnz9K9e3c0NTU5ePAgJ06cICwsTKS2Gxoafpf8kJOTE4sXLyYpKYlvvvkGHx8fgoKCaG1t5d69eyQmJmJnZyfk8fT09Kirq0NNTY1BgwZhamqKuro61dXVuLq6Mnr0aPbt20d4eDj9+vUjMTGRd999l+eff54333wTkGczGhsbiYyMJDU1lRdffFFwllVVVRkxYgQBAQEoKyvTuXNnZs+ejYWFBXl5eaxatapd9hUXF+Pm5vaboinFvlxeXk5mZqZYP48ePeLNN98UWbT6+noiIyOpr6/ns88+o2fPnpw4cYJdu3YxduxYfHx8uHz5Mnfu3KG4uBhHR0dmzZpFv379uHPnDikpKWRlZZGSkoKuri53797l4cOHTJw4kQEDBtC7d2+ys7P5/vvvOXLkCK6urqLe5GmhyO5paGhgbm7+G/qIgh/p7++PJEmYmZlRXl5OUVER+/fvZ/fu3ZiYmLBw4UKUlJSYMWMG6urq6Onp4e/vj4GBgYjmFRUVMXnyZObOnSu+Uw0NDVauXElsbCx37txBT0+vDeVCsW6Kioq4cOECe/fubdclEuQ0K21tbaKjo8nIyGDKlClMmDBBcESNjY35+OOPuX//PqqqqhgZGXHlyhUSEhJExvnmzZvExsZSVFREcnIy+fn56OrqMmDAACZPnixS9EVFRRgZGeHi4kJYWBguLi6CljNv3jz8/PzarBcfHx8GDBjAoUOHGD16NKNHj+att95ql339+vXD2NgYd3d3Hj9+zLFjxzA3N0dbW5tRo0axdetWLly4gIeHR5vMS0lJiVDs0dLSIicnh4KCAmQyGQ0NDZw7d46LFy8KmTJtbW1kMhlnz57FzMxMRFBlMhkTJ05EU1OT3Nxcpk6dikwmY/PmzRw/fpylS5dibm4u6DN/Lyvxt2i386ogx9+6dQs7Ozuhebpt2za6d+8uooCampptonIgv6F99dVXyGQy3n//fQwNDUlPT0dPT4+BAwfS3NyMtbV1m4KKQ4cO0djYKB6g+/fvo66ujqOjI9XV1SJipKOjg46ODkVFRVRXV+Ph4cHQoUOFjNPTQpHSvX//Pjdu3BC3hebmZrKzs3FyciI4OFg4PXV1dXzxxRd8//33AIwZMwaZTMbDhw8B+YPfvXt3EhISOHnyJAUFBeL7AfnmduvWLV599VXi4uI4dOgQs2fPZtCgQURERHD8+HFqa2t5++230dXVpbm5mSdPnjBmzBi6d+8ufk97IEmSkNTx8vISUT+FY5ycnNwmEqivr4+/vz9VVVXEx8ejo6ODrq4uenp6qKqqkpqaKi4IigIwVVVVMjMziY+PR1lZGVtbW9zd3dHU1KS2thZDQ0MsLCywtbXl7t27xMXFieizgYEBn332GTExMWRmZvL555+3yz41NTVu3LhBUFAQampqpKamigfpwYMHHDt2jEGDBmFgYMDDhw9pbGwUzltTUxMvvvgiGRkZdOnSBWtra2QyGZmZmZw5c4aLFy8yefJk+vbty4EDB7h9+zZhYWEoKysTERGBm5sb48aNIzs7m4MHDxIbG0ttbS03b95ESUkJd3d3iouLqayspKSkhMTERAwMDLh8+XK7uL0FBQWYmJi00eqtqanh7t27YlNVVVWlX79+jB8/XhQOFhYWCi6wovCotbWVzMxMtLW1uXDhAsuWLSM3N5egoCDS0tLYvn07AOPHj6dnz55oa2uTmZlJRUUFP/30k4jyKg42S0tL7O3tuX79Ort27WLgwIFtdJOfFkVFRcTGxmJiYkJzczOpqano6elhbm5OXl4e9+/fp2fPnri4uHDnzh28vb3p3bs39+/fJysrS8h6FRYWkpKSQlVVFS+88AJKSkpERkZy48YNlJWVKS8v58KFC6iqqhIfH09cXBzu7u5CKg3kFbSXL1+moKCA559/Hnt7e6KiokhMTBTOv6+vb7v2GkVxwqxZswgNDcXV1ZXW1lY8PT3R0dGhtbWVlJQUGhoasLKy4vTp09y8eZP58+eLPfLXmsm3b98W9BeFPqtiraSnp3Pq1Cm6dOnCe++9h7OzM4mJiejp6WFtbS2iJIpi0/z8fIqLi8VnXLp0iYiICBHJf1ooDq+jR49y69YtzM3NBYdTSUmJhIQEHj58iIeHB/b29vj4+Ii1qqamhq+vr3CWFPsGyLmNdnZ2pKWl8fjxY2pra8U8JScn4+LiQlNTE3FxcXz11VeMGDECDw+PNmdSSkoKtbW1jB49GhsbG4qLiwkPD2+XfS4uLgQGBrbhTGpoaIjLs7q6urBZcVZEREQwceJE9PT02LZtm6CbXLt2DWtra+7fv09DQ4Oo8v76668B6N69O2+//TajRo0C5LUVZWVlPHnyhDt37uDk5ISSkhKOjo7Y2tqKNZKVlcWJEycoLi4mJCSk3XrEBgYGFBYWoqenJ+hKhYWFQlHH2Ni4TcGyAgrqg4GBAba2tpibm1NSUkJSUpLQ+R0yZAiFhYX8/PPPKCkp8eKLL4oq89raWrKzs+nUqZPQGd23bx/nz58XmqeampoYGRnR1NQkZJZ+vSe2B4aGhsyYMYPLly8zatQounTpImgRlZWV4gJRV1fHw4cPUVJSQl9fn379+uHj4yNkRBWyUfX19aioqBAcHIy1tTWPHj1CTU0NfX194XR36tSJzMxMSkpK6NatG35+fhQUFJCYmIibm1ubuhk9PT0yMjJITExst20KzVQF17hnz54iO6HQYp03bx6SJInLX1VVFRcvXiQmJgYTExNsbGwoLy/H2toaPz8/kpOThTSciYkJhoaG+Pv7U11dzY8//sjPP/8slGHU1dUJCAgQ0puKsSQmJlJcXEx9fT0gvwiVlZU9FUWp3c4ryB2577//nsbGRnbs2CEkcX79C+vr60XEQAFFxEmhzaqjo8OjR48En0pFRYWpU6eKCn+AESNGEBkZyaxZsygsLGTAgAEMGzaMKVOm0NraipWVFcrKypw5c4bU1FR69uz5dyUd2ovXXnuNuXPnikOgoaEBXV1d0d2htbUVmUyGpqYmr7zyCmlpafzwww988803DBo0SBQiKFJviuIOBUxNTSksLKS+vh41NTVqa2uZMmUKVlZWogAuPDycQYMGoaWlxahRoygpKWHevHloaGiwdetWHj9+LDa29kCxOZw+fZrU1FSxoaemphIfH4++vn6bSIJCBmX16tVs374dLy8v3n77bYKDg4mJiSElJYVXX32V9PR03n33XU6ePMmnn35KfX29kB7y8/MjKSlJ3OxWr14tODQ+Pj58++23Ijri5ubGjBkzeP311zl58uS/JG7/LXJzcxk/fjxbtmxhxIgRgi+9c+dOqquriYqKIiQkhOLiYt544w1MTEzYuXMnIOfOTZ06VdA79u/fz7Zt20hPTxc8MXt7e8aOHUtKSgqZmZn06dMHAwMD7ty5I+gmVlZWeHl54eHhQZcuXfD19aWoqAgNDQ00NTWxtLREV1eXpKQkLly4gKOjI7m5uU9t4+HDh5k6darQdSwtLcXY2JhevXpx/vx5zp07R79+/ejWrZtwBkB+ELW0tLRJ79+5c4fVq1dTWFhIUVGRsLOyspKYmBhAfnDKZDLmzJmDk5MTISEhHD9+nNbWVhYtWkR5eTnLly/n1q1bYk0qtEMVjkV7MWXKFAYOHMiGDRvw8fHByMiIyZMn06tXL8zMzJg9ezYhISEkJCSIf1NbW4uSkhL+/v58/PHHVFRUMG/ePCwtLXn++edRUlLi+PHjvPnmm6SkpIhGGEZGRlhbW4vCr1/zMVNSUpgxYwZJSUnMmTNHUAtcXFxwcXERPOP2XiQPHDhAU1MTgwcPFs5PYWFhm6YsX375JYcPHyYwMJD+/fszY8YMcdH6dWFVTEwM06dPJzU1lYkTJ7Jz504RrS0pKWH48OEYGxtz4MABxo8fz8KFC3+jLQnyoMTw4cOZN28edXV1JCUl0dzczM8//0xERES7I1rHjx/n66+/plevXmzatEnICQEi4NDS0kJVVRUZGRmYm5uLCHJ9fb2QntLX1+fq1ats2bKF4OBgcaH18fFhw4YN4juxtbUVmQd/f38yMjLYvn079+7dE3QRxbj27t1LUlIS48eP591338XExISlS5eyZMmSp7ZPwd3/NRSOa3NzM5qammhqapKdnc3WrVs5deoUgwcPZtWqVRgbG7Nhwwbx76Kjo0Wh0EcffcTkyZOFhJ6bmxtbt27F1NSUa9euUV9fL57XhoYGmpubhaKLoonMuXPnePnll+nduzdbtmwB5A6QggL2tCgsLMTY2Bh1dXWam5spLCwkLi6OJ0+e0Llz53+osmFjY8OCBQvQ1tbms88+48iRI6xbt469e/fy+uuvc/ToUZSVlUXNwdKlS8XZVFZWJprKqKqq4ujoiLKyMs8//zwrV65k8uTJvPjii7zzzjuAfM+vqqqid+/edO/enfPnz7fLxt27dzNt2jTee+89XnrppTZ+y+7du4mIiGDSpEn06tWLDz74AFVVVZYuXYquri5GRkb4+flhY2NDREQEAQEBbNmyhUuXLvH555+zdetW9u3bh42NDYsXL6Zv375t9t9169axf/9+bty4gbOzM/Pnz+fJkyecOXMGPT09amtruX//Ps3NzezatYugoKDfxT/Pzc1l48aNZGVlsXDhQnr37o2ysjLbtm0jLS2NuXPn4uLigiRJXL16lby8PG7dukVmZiYODg5UVVUhk8nEBSYzM1MUP9bW1nL27Flu3bol1EsSExOZOnUqLi4uLF68mHnz5omxpKen8+TJE6ZOncqsWbNQUlKisLAQMzMzSkpKiI2N/Zf2/C7nVSaTMWHCBE6ePMmOHTuora1l1KhRBAUFiepYheRIQ0MDp0+f5siRI7S2tjJ+/HiKi4v59ttvycjIABBVbYCQSPH09KRTp06oqanRuXNnMjMzKS0tpXv37gwdOpTm5ma2bdsmeBe1tbXcuHFDOGLnzp2jublZCMM/LQoKCmhpaRGFBfv27aOiooKXXnpJSHS8//77pKamMnXqVMaNG4eysnIbLqWKigq2trYkJSWRkpLCpEmTGDZsGBcuXODKlSsA9OrVC01NTXbu3ElcXBwlJSU4OTmRkJDA559/jq2tLcOGDWsjlZOYmMjp06eRyWSEhoZiYmKCi4tLu2/Subm5mJmZUVNTg7q6OpaWlqSnp7NkyRKuXLlCSEgIMpmMCxcu8OjRI5577jlRva4Q2x41ahReXl5UVVUJPmVCQgIXL16kpKRE6IqWlpZSUFBAaWkpBw4cQEtLizFjxrB8+XIRUTE2NhaRbEUUPTQ0lOHDh2NlZSVutU8LDQ0Namtrqa6uJjExUUQOlyxZIuSe1NTUaGlpwd/fn4qKCu7evYu/vz81NTXcuHEDR0dHfHx8kMlkVFRU4OnpiYuLC2fPnuXRo0dERUWJ9ImqqqpQkdDQ0KChoYHQ0FC6d+8uOoT9Iy5dbW0tjx8/xtXVtc3h+jQ2KrIC2dnZbNmyBT8/PyZMmMCECROoqKhgwIABWFtbc/LkSZSUlBg4cKBwvGpra4mJieHq1avcvn2bW7duCSFwRYFLeno6ffv2JSAgAFNTUyE67e7uzujRo4mMjKS4uJgXXngBfX193njjDVRVVYV6xPHjx9tw4tsLxUZoZmZGfX09LS0tggfWs2dP4Qh17twZT09P6uvruXfvHnp6ekyaNInBgwdTXV0tKlkV/M2ioiI8PT3x8PCgc+fOmJiYkJ+fT2pqKurq6owZMwYTExOuXbuGm5sbjx49wsjIiKCgIIKDgwVH8/Lly+jo6BASEoKZmRmFhYXtsi84OJiamhpiY2OJj49n+PDhbaSadHV1cXZ2xsTEhOrqaioqKqiurhYNDTp16kRzczPh4eGCu60oyjl9+jTNzc0i8mNiYiIUMPLz89mwYQP9+/fHycmJ+vp6rly5Qm5uLm5ubuJZzMjIoKqqSjRjUGSN2oOtW7cSFRXF2LFjxbNw6tQpbt68iZ6eHqNGjcLU1JQTJ06wY8cOjh07xosvvkhAQACSJOHg4MCDBw+4f/8+x48fZ8iQIbz77ruYmZlx5MgREZm/du0a2dnZDBgwQBzAERERXLp0SexZb7zxBitXrsTGxoaMjAz27t0LyAuSCgoKCAgIaKNN/TS4desWaWlpuLm50a1btzY0rvLychoaGrC2tkZLSwuZTEbfvn1FN8pHjx4xcuRIamtrhU62QuqsrKyMiIgIVFRUeOONN3B2dqagoIDbt29z584dMjMzKS8vR1lZGUdHRwwNDUUzF21tbe7du8exY8dwdHRk0aJFbaTqYmJiftNR8J9BSUlJyO7JZDIkScLOzg4vLy90dHRISUkhPj6e2tpacU5UVFRgZ2dHZWUl169fF53MLCwsRGEoyC/OtbW1NDQ0cOHChTbNLBR7q0wmIycnR9CfQkNDKS4ubnMR0tXV5cSJE6KAuL3Oq66uLk1NTZSUlJCQkIC5ubnIFkVERHD48GFkMhm9e/dGS0sLLy8vxowZA8izr8nJydy4cQMXFxemTJmCs7MzNTU1qKmpCUfszp07eHh4iMZEGhoaNDU1ibXz3Xff0dLSQlpaGoGBgWLfzMnJYePGjTg7O7N69Wqg/Y17IiMjxfcVFRXFd999R+/evQG5I/nZZ5+RnJzMN998Iwq1lJSUqK+vF4WQjY2N7Ny5k0ePHolLDMj9CXt7e+HzJCYmsm7dOgwNDcXZa2BgQEREBHFxceTl5aGqqkpwcLCQwnv8+DFVVVWYmZn9Rv/4H+F3Oa8glyvR1tZmy5YtVFdXM23aNEJDQ6mvrycvL0/cnhVtvsrKypg8eTJTpkwhPT1dFG8oilgaGxtJSkoiISGBjz76iGXLlolohJqaGp9//jna2toiCnf9+nXeeOMNQkNDOXz4sBDJVWiPrVu3ji5duvymKvVfoaioiCdPnmBlZcWTJ0/49NNPKS4uZvDgwTg4OIiWaorOFIoOOVFRUbi4uODt7c2wYcPIy8tjy5Yt5OfnExgYKKI6Crz00ku4uLhw48YNysvLhT7g2rVruXr1Kubm5qSmpjJ27Fg6depEXV0dxcXFDB8+XHSTWbZsGR9//HG7u4m8/fbbfPjhh4wbN47GxkYqKirYuXMnZ8+exdramn79+lFRUcGmTZu4fv06mZmZrF69mr59+7Jjxw5KSkq4ceMGHh4edOvWDUtLSw4ePNgmGlJSUkJRURG6uro8fvyY/Px8CgoKUFJS4sGDB8TExIhUZV1dnaBRqKqqCq6ookCvPXp2II9qT5s2DQcHB0pKSnBwcKC8vFwUJE2bNo3S0lJ0dXV5++23BZe1a9euNDQ0sGLFChoaGjh79izjxo3Dy8uLxsZGQQGorKxk586dHDt2jKqqKtFQY/z48ZSWloqMw9/KDQGiG5xMJsPe3p5OnTrh5OSEJEntcl5/3Ta3ubmZ48ePiyhVly5dWLduHaqqqkRFRTF//nzs7e3p2bMn+vr6IjW8efNmIiMj6devH+PGjWPHjh0YGxvz5ZdfYmtry/79+7GwsMDIyIh169YJbU1PT09kMhlGRkaUlJRQX1+Pr68v+/bto6CggIyMDHbv3s3Vq1dxcHD4XS1+AVGR2rdvX7Zs2UJeXh6dOnWie/fubQ5fZWVlRo0aRUxMDDExMTQ2NmJgYEBqaiqurq6sWbOmTQOHadOmCd3ItLQ0fvrpJ3744QeePHlCUFAQffv2RU9Pj0uXLnHz5k0CAwPZs2ePECgH+aX8p59+QklJCW9vb8zNzQkODm6X7rIivbl27VqOHj1KaWmpiE5UVVWhq6vLq6++ysSJEzl//jzbtm1jzZo19OvXjy+++AKAixcv8uGHH1JaWsr8+fOZPn06LS0tXL16lRs3btCpUyehsb1hwwZRiV1cXMyXX37Jxx9/TGNjIz/99BMFBQUsXLgQkPOpNTU1UVJSQldXl8mTJzNy5EjBK31aXL9+HQMDgzYc+by8PD777DMGDRokIm2PHz9m3bp1PHjwAE1NTdLT0xk8eDB+fn4cOXKEd999lx49enDy5ElA3uXsrbfeEh18mpqasLS0ZM2aNUybNg0lJSViYmLatAffuXMn2trafP3117i5uWFjY0Nubi6qqqocPXqUAwcOiD38afHtt99y8OBB3nzzTcHDVHRBKy8vJz09HWVlZSwtLZkzZw6tra3k5uaybNky6urq2L59O8HBwYwaNYq8vDwsLS1pbW1l5cqVpKens3TpUj799FM++eQTFixYQGhoKG5ubty9e1e0Z21sbEQmk4lCmLKyMjIyMmhoaOD69ev4+vqKzIkibaxI0z4NFJcnbW1tlJSUsLa2xsrKSnRku337Nrt27aKiooIRI0agrKzM0aNHycjIIDMzE5DT6bZt20ZUVBRDhgyhqKgIV1dXHj16hJ6eHpaWlly/fp0ZM2awe/duBgwYQGBgIOXl5aImQ5H1DAoKEsWUCmRnZ5OQkICJicnvakMdEhKCqqoqy5cvZ/fu3YSHhwvn1dPTk8OHD3PgwAGuXLlCQEAA/v7+IlCXl5fHK6+8QnR0NLNmzWL06NFIkkRiYiL6+vooKysL9YKYmBiuXLnC8OHDUVVVFVJi06dPZ/jw4cTHx3Pw4EEGDhwIIKQks7OzRUvx1tZWjh8/3i77YmNjCQ0N5f3338fW1pbY2FjR2UxBBUpLSyMlJYWePXuipKQkNO27dOlCr169yM3NJTU1VXRiVNiVmJhIjx49eOutt9i4cSM5OTloamoSEhLSpg38qlWrWLt2LQ0NDULR4OeffxaNESwsLJAkCVtbWywtLTl8+PA/tandzuuhQ4fYvn27aJHZq1cv9PT0xIavkIdKS0vD1taWbdu2CfHsDz/8kOTkZN58802xqL28vNDS0sLe3p5+/fpx6tQpcdPu0aOH6N8+bNgwNDQ0iI+Pp7GxESUlJZYvX87169cZM2YMI0aMEHpy0dHRooK6vYLMu3fvFrzAPn368NFHH7Fx40ZmzpzJK6+8wqBBg1i5ciVxcXH4+/ujp6eHp6enaLE6e/ZsRowYQXFxsUjblZaW8sknn3D79m1MTExYuXKliMR98sknIuVz+/Zt1NXV6dWrF2PGjMHb25t79+6xfft2OnfuzOjRo/H09ERDQ4PDhw+3ST20B4aGhpSUlAih/I0bNxIREcG0adN4/vnnMTc3JyYmRhRqJScns379emH7kiVLOHbsGPPmzUNTUxNnZ2fs7e0JCAgQgvFff/210DjNycnB3t6e9957j65du4pNVFFMVV1dLQTb1dXV2bZtG4WFhXz88cdoamryySeftMu+lJQUioqKqKioYODAgfzwww+UlJTg6elJTU0NJSUlovXlzZs3SU9PJzg4GBUVFaysrKivryc9PZ2SkhJsbGxwd3fn66+/5vjx4wQEBDB48GAePnxIWVmZUNFQwMjIiJaWFr766itSU1Px8vISEfilS5fi4+PDBx98QHx8PB9//LHYxNqLGzduEBERwQsvvICTkxPjx48nOzubwsJCTExMxGfW1dWRk5Mj9FFBnl344IMPuHv3Lg4ODjz//PO4ubnh7u6OkZGRKK6aMWMG3333HR999JGQwQHYuHEjFy9epFu3bsycObPNxcPGxobGxkZ69eolOFsKfd/2onv37nh4eKClpcWDBw9ITU3F0NBQHNjff/89J0+exMPDg6lTp2JjY8P3339PVFQUZWVlODs74+rq+hvyv5qaGomJiTg6OtK5c2du3LghLiBKSkq4ublhbW1NY2MjtbW12NnZ/eYi0tLSgpmZmSh6uHPnjmgD+bTYvXs3sbGx2NraMm3aNHG4L1q0iNzcXKF/aW9vL7q2gfygvnXrFrdu3aKwsJA1a9bQ3NxMeno6mzdvxtbWFg8PD2xtbTlx4oTI6ihoDYpDIiIiQmQVGhsbiY+P5/3336e8vJyJEyeioaHB2bNnKSsrY9SoUW26F7YH2tra3L9/n9jYWHx8fJg2bZrgoSvQr18/PvjgA1EN7+Pjg46ODvfu3aO6upp169YJ2R2QU1K8vb2pqqqipaWFoqIioRdZWlrK4sWLmT17tsjAaGlpUV1dTUBAAI8fP8bQ0JA333yT5uZmjIyMqKuro6SkBF1d3XadGT4+PiQnJ7ehqim0khVRUSUlJdGwRFFVrZDYMjU1xd3dnV69eonC55CQEFxcXEhPT+fx48ekp6eLS5GzszOTJk3i7t273Lp1C2NjY+rq6njw4AHJycmcOnWK8vJykdU8fPgwDQ0NTJs2jT59+qCpqcmiRYvaVUfw5MkT9u7dS05ODsOGDWP48OHExsby1Vdf0bt3byZPnkxNTQ0PHz5k9OjRQj3m9ddfB+T0mvDwcIyMjMjKyhKXYMW+OXDgQF5++WXy8/O5desWKSkpBAQEoKenJxxXRUYO5BmB77//nq5du+Lp6cnBgwe5dOkSQ4YM+U1Ti6fF1atXGT58OPX19SJQpICOjg4aGho0Nzfj4eGBl5eXKLJqaWkRRYfBwcG8+uqr6Ojo0NTUREVFBfb29hgbG1NTU0NdXR2Ojo5YWloKySzF3qmQx3v11VeF4xobG8vFixfJz88XTWlqamrYvHkzO3bsaFdgbujQoaLAfubMmeTk5BAXF8eSJUsoLi5mwYIForBWWVmZqqoqVq1aRWZmJhkZGaIFr5OTE126dMHNzQ01NTUqKysxMDAgNDQUTU1NTp06RXR0NLt376a6uhqZTEa3bt2wtbUlMDBQfD/19fWCR9+7d2/mz5+PlZWVCDL8bUH430O7ndfTp09z/fp1lJSUhNaZgvOSlJTEjRs3uHjxIlevXqW6uhqQL95Vq1Zhbm7OoUOHSExMxMLCgi5dughZG0WXBiUlJTQ1NXn06JEo2unZsycjRoygrKyMK1euoKmpyezZs+nTpw/bt29nwYIF4mYL8jTikiVLqKqqavehWVNTg42NjZADGzlyJDKZjKlTpxIREcHYsWMZPny4qBQFueSFqqqqaLMJ8rTuiy++CMBbb70lqsnnzp0rRLfT0tLo27evOBhra2sZOXIkXbt2Fak7hRyXnp6eKH74+OOPGTVqVBuqQnuwcOFCwVNOTU0lOTkZb29vVq1aJbiuGRkZjB49GldXV65fv05cXBzjxo1j1qxZIkqjiKhlZ2fj5+fHgAEDBOdxxYoVbX6nr68v7777rnhYo6OjSU1NxcbGBkmSxDq4ceMGX3/9NRYWFmRkZLBlyxZWrVrVLq7dDz/8IDoJDR06tE0XkV27dnHnzh0hUXLx4kXS0tLELTs+Pp7g4GAcHR1JTk6mS5cupKenc/DgQa5duyboA3V1dVhYWKCnpyfmISYmBmdnZ1RUVDh9+jSXL1/m1VdfJS8vjwsXLjBr1iyxkT158kRECOrr69udkn38+DE3btzAz88PX19fli1bRlJSkqg4VlVVpVu3bkIM3djYWDhxysrKomXtwoULsbe3F3xqLS0tCgoK0NfXR11dnby8PKKjo5HJZHTt2pWSkhLS09Oprq7mvffeo0+fPiJd7+7ujra2NlZWVpibm6Orq8uQIUN+l7g9yDtp2draUlRURH19PcXFxVRUVKCkpERTUxPJycmcO3dOtBlURBTi4uLQ0NAQc6poBGFubi7aVF+6dInOnTszceJEQkNDmTp1Knv27MHAwIDOnTujo6MjnGV7e3uam5uF8DvIixi7dOmCh4cHOjo6gs/XnnW6bt06oqOj+emnnxg3bhxDhgwhKioKfX190tLSROTb2dmZ7777DpDvpT179hTrePz48axdu5ZHjx6xevVqsrOzcXNz491338Xe3p7MzEySk5NRU1PD0dERCwsL4aiDPBoZEBDA0qVLMTIyYvv27cTGxjJx4kTU1dWJiori4sWLVFRUsHz58nbPoampKT4+PnTq1ImkpCTq6+txd3cXFe8NDQ1ER0ejrq7ehhMH8v3wzJkzwvlSpPQbGhqorKxk4MCBWFlZUVFRQXFxMdHR0Tx58oSjR4/Sr18/vL29Wbt2LUlJSRgaGgpJom3btokOib/WkywvL6ewsLBdzuuUKVMYNWqUKBhSRP7y8vIwMDBoo5SiyDBpamoSGBjIxYsXOXToUJsitcOHD2NiYsKgQYOEMP/333+Puro6/fr147333kNVVVXwajU1NdHQ0CA3N1c4XNra2jg7OwtKUmZmJlVVVaIjVXvPjQcPHnDjxg0yMzOF3nNBQQERERFkZmYya9Ysxo4dy9ixY4XT/Morr5CSksLly5fZunWriO6pqakxdOhQEhMTKS0tRU9PD1tbW7y9venTpw+jRo3iww8/ZNmyZcybNw8fHx/RlESBzz77jG+++YZPP/0Ud3d3Tp48SWNjI6+88gpAu9SFFLh9+zZ9+vQRe/Svi76ysrKor6/nlVde4YUXXuDy5ctcuHBBUAyNjIxEJrmgoAB1dXUhCZeXl0f37t3R0tIiPT0dV1dX7OzsKC0tFZHU48ePk5iYyKJFi+jbty85OTmkp6dTWloquqSNHj1aNBf5ddfIp0XXrl2RJImysjKMjIzw9PQkJyeHLVu2oKGhwcaNGxk3bhyampo0Nzdz6NAh6uvrcXBwEAEuPT093n33XcLCwkRNiKKhA8i50Yrs8uXLl7l37x5VVVXMnz+f9957jxEjRjBixAhAXgCalpZGUVERLS0tv1HDUfiO/wztdl5bW1s5dOgQZmZmSJLU5kv8/vvv+eKLL+jfv7+olh86dKjoErF48WLRWk5FRYW4uDiqqqro0qULdXV1HDlyhIaGBiZNmkRMTAw7d+5ER0eHkSNHoqamhoaGBv3792/z8AUEBPD999/T1NTE7du3CQgIENJBisKqHTt2PLV9L7/8Mi4uLrS0tFBeXo6SkhIWFhZ8//33QmmhtbWV2NhYdHV1MTAwEFE6kHcFys7OJiUlhbFjx9KrV682h0V2drY4tHJzc5k0aRIvvPACqqqqqKqqYmJi0uY77dGjBzY2Nm1Sr+bm5m3ku9oLAwMD4cgUFxczc+ZMnJ2d2xRp/Vq719XVlZSUFOHwzp07V/Caf/rpJ3788UdeeuklBg8eTN++fUVqD+TpbVdXV3r06EFNTQ2amprExMQIjpe2tjbjxo3DycmJ+/fv8+qrrwqpnMuXL7c7mgXyww3k/cYjIyPR1NTEzc0NW1tbCgsLuXTpEo6Ojrz22mu8/vrrbN68meXLl/Ppp5/i5uYmeGubNm3i4MGDdO7cmalTpzJw4ECio6NZtGgRSkpKqKio0KdPHywsLIiIiOD9999n/PjxvPfee0yfPh1PT09mzpyJiooKw4YNo3v37igrK/Phhx+SlZUlOEdVVVV8+umnbXRp/xUUjR4UhSqqqqp4e3sLXujjx4+JiYlBS0uL8PBwDAwMxMXBzs6OHTt20NjYSF5eHtu2baOhoUF0vztx4gQXL16kV69eBAcHCy6f4pm/fPkyLS0t4nlQFKEpNqDy8nI+/vhjSkpK6Nq16++O2FVXVwtx7kWLFhESEoKysrKgZUybNo1evXpha2srDpuhQ4diaGiIpaWlEPlfs2YNOTk5WFtbk5aWRllZGV5eXty+fZv4+HhWrVrFunXriIqKoqSkBC0tLSorKwUNQ1Ed/+tMh7q6Og8fPqS0tJRu3br9pnDsaTBp0iRUVFRITU0lPT2dt99+Gzs7O+zt7UlMTERHR4cnT56IC2bv3r3Zt28fUVFRzJs3T6hLTJs2jbt371JaWoq7uzvdunVj9+7dtLS0EBQUxJUrV2hsbCQjI6ONjq2Ghgb19fUoKysTGBjIuHHj6N+/P6qqquLib2dnh52dHUpKSr8reu7h4cFHH32Ev78/u3fvFvJ8ipRgVVUVCxcupK6ujh9//BFfX1+ePHkiolQvvPACGzZsYMKECbz66quMHTuWCxcu8Nlnnwn9UzU1NZ5//nm+/vprCgoKiIqK4vLly+jq6uLg4CAcLpCryCgax/y6HqK5uZkdO3YIytbTQsGf/uGHH/juu++YP38+U6ZMwdbW9jcHsKampqCqlJeXk5SUxPLly7Gzs2tzeY2NjUVbWxsfHx9Rl7BixQqGDBmCuro6P/zwA1FRUYC8aMbLy0vseSBv7jF79mzq6uo4duwYSkpK+Pj4iD1doen5tHj06BFubm4MGTJEnDvBwcFs27aNI0eOsGHDBuE4Lly4kOrqarZs2cKHH35IamqqoIcpihP79evH48ePSUtLIy0tjaioKF544QVmzZqFk5MTtbW17Ny5k2vXrvHKK68wa9YsjIyM+O6771i/fj1NTU188cUXvPbaa7S0tPDmm2/i5+cnVGaef/75dp+Pzz33HKWlpfTo0QMvLy8yMjKEeoFCU7ZPnz54e3vzzTffsGnTJnR1dRk4cKDoHlhZWcmSJUvw8PCgT58+XLx4kevXr9OnTx+hNqBoupKfn89PP/3E1atXcXd3Z/ny5Xh4ePDgwQNmz56NoaEh69evZ8yYMTx58oT/x9lZx2V5tv//TYN0d3cKCoiIoCK22N09nW7TOacunLrpjE1n5+zuxpiIgWIQ0iAh3d35+4PXfX7lG79Hdvz1+LwY3Nd9XddxHvEJNTU1cT4sWbIEf3//LiljvHnzBg8Pj078A01NTbp3705qairx8fH4+vqSkJDA9u3bUVRU5MqVK/j6+hISEsK+ffuoqalBR0eH2tpaUbxKSUkJPLKampoYyDg4OGBpaUl2dvb/aJZevXpFe3s7q1evFu+IZMLe1tYmLKL/U3S5eHV2dhadRH19vdA3hY4VSkBAACYmJsKLWUNDg+rqaqqrqwX4OiMjg7q6OrS0tISH/OvXr3n48CHl5eWMHj0aGxsbJkyYIIgz5eXl6Onp4eDgwMePH3n06BGKiooMGTIEFxcXKioqCAkJobm5GXd3d5qamiguLu6EdfucMDQ0JDQ0FHt7e5qamjhx4gSampp88803AFy/fp3k5GT09fVxdnamvr4eZWVlJk6cKMT+q6qqkJOTo7CwkOjo6E4YnHfv3hEbGysY3TY2NkyfPp1u3bqho6NDeHg40MGa1dPTE45H5eXlvHr1ioqKCuTl5TEyMhIvRFfj4sWLGBsb07t3b1xcXASJQ0dHB21tbaqqqjA3N6e+vp6cnBzh3gIdbjxZWVn4+fkhJycnsE8RERECzO7n50d6ejoyMjK4u7ujpqaGrKws0dHRuLm5oaCgQFJSEs+ePcPFxUV4Ie/Zs4fs7GymTJnCkCFDqKyspH///p3kNT4n/P39kZWVRU1NjRs3bmBgYICuri6mpqZMnDiRpKQkDh8+jIaGBnPnzqV///5C09Pd3Z3U1FTu3bsHdEwK/P39xRR96tSpXLt2Deg4mE1MTLh+/bqYAJqZmQmHMckqsm/fvtjb21NUVCR0+9zc3EhLS0NJSQkZGRnMzc3Jysr67Gv8VAUjISEBHR0d4WevpKSEsrIyLS0tYqMBHVsFieuYjo4OiYmJPH36lPDwcKqqqti4caOQ1WptbeX8+fMMHDgQb29vampqhNxJ3759ycvL49y5c6ioqDBkyBCcnJyE7nFtbS2GhoZYWVmJSeV/wi/9b6GoqEhFRQUXL17E29tbYAolbjc9e/YURBSJr7a+vr6QEpJMNSoqKkhISBDThE+f5dTUVFRUVEQjUVVVxZs3b5CWlhaTKkkUFBQIzc6HDx9y8OBB9PT0GDNmDIMGDcLQ0JD9+/d/9vVJZPVycnIIDw9n9OjRqKio8PbtW65cuYKuri4eHh4UFRWJQlzC/B0yZAhnzpwhPj5e5GAvLy9Wr15NZmamkMbZvXs3X3/9NXv27CE0NJSmpiaGDx/OgAEDyMzM5Pr161RWVhIeHs6kSZPEof/hwwdevXqFkpKS0Ot+8OBBl+/hzJkz8fT0pKKigpSUFJSUlGhoaCAkJIQhQ4agpaXFiBEjuHjxImvXrmX69Ol4eHhQWVmJqqoqOjo6DB48mO3bt7Nnzx60tLQ6EV+9vLyYN28eQUFBqKioCLhWXV0dmZmZaGhoCPclKSkpysrKcHZ2JiAgoJO8lYyMDDdv3iQ0NLRL0/NTp04xfPhwzp49y7Nnz3BycmLy5Mno6ekJWMTTp09JSUnB1NQULy8vWlpaqK6upqGhgYaGBoqLizs1RvLy8kIHVF1dHX19feF6d/HiRd6+fUufPn2E29yHDx9obW3Fw8ODkSNHsnDhQtHM3bx5k/LyctFAFhcXk5SU1KV7WFhYSGxsLEFBQeL3VFRUEBQUhJKSEk+fPmXLli3Iy8ujoKBAeHg48+bNY//+/fj5+ZGWlkZUVBQODg4YGhqioaGBubm5kL+cOnUq586dIyMjg1OnTjFv3jwePnxIdHQ0T58+Zfbs2cTFxbFr1y5ycnI4fPiwsIuOiYkRDp4hISEcPXr0X216JJ+lvr6e8vJyVFRUkJWVpaGhgYEDB+Lm5oaPjw+vXr0SyjSGhoa4uLjw4cMHKisriYqKQl5eHkNDQ1HfDBo0CF9fX96/f8+dO3cYOnQoLi4uyMrKcubMGRITExk4cKCAnUg2y2PHjhUyXTU1NVRVVQnCtIaGBs7Ozl26vvz8fDw9PQVOWSLdZmxsjJmZGcrKymzdupWIiAg0NTUZN24cFhYWpKSkUFVVxdixY9HQ0EBRUZGoqChUVVVxcnIS+s/GxsadSMSGhoYsXryYpqYmMjMzuXz5Mrq6uqKmsLe376QbL2m+JPDLz8Etd7l47d69Ozt37kRGRgYvLy9xoLS3tzN9+nRGjBgh5DAUFBQ4d+4coaGhHDhwgD/++IPVq1cLZ44tW7YILcWMjAxxc96/f8/KlSsZMmQIUlJSogvS09OjtbWVzZs3ExMTw59//ik+l0RUX8JklRR8XQGmQ8e0bcOGDezcuZNp06aRmppKYWEhffv25enTp4LoJLGElWCYli5dSnl5uSiWFRQUUFZWpry8nNLSUjIzM4Url7a2tpCIkVgYAgK/JVm7QsdhKvlOJBMxS0tLJk6ciLq6Orm5uV29hbx69YrHjx/z119/ERwczNmzZ8nKyhKdnIyMDJaWljQ1NZGSkkJNTQ0WFhbU1tby4MED9uzZg5+fHxcuXMDX1xdjY2MeP37M6dOnsba2xsHBgYMHD6KlpUVWVhYXLlwgPj5eCHPr6emRkZFBWVkZ/v7+ZGZm8vPPP9PQ0MCKFSv44osvUFdXp7CwkMWLF1NVVfUf3TY+jWvXrlFcXExoaChFRUUMGjRI4DhNTU1Zs2YN/v7+bNu2jYkTJyItLY2GhgaLFi1izZo14vkEmDZtmlhn1tfX4+vry9OnTwW5orKykitXrqCqqsrevXsJCgoCOlYoz54949dff+Wrr75i5cqVfPjwgXfv3jFjxgwaGxvZt28fJiYmLFu2jNWrV3eZeAcd65fk5GQGDx4sDsvW1lZ0dXXR1NREQUGBgoICkpKSUFRUxMfHh+LiYpYuXUpoaCgDBgxg4cKFhIeH8+eff5KQkMDff/+NtrY2EydOJCwsDFNTU2EocezYMTQ1NVFSUuLw4cNUVFRgaWmJu7s70tLSlJeXY2RkxJ49e8TnWbduHbt37+4yHs3GxgYlJSUmTZrEli1buHPnjlBlMDY25quvvgIQsAZ1dfVOzjoSI4yBAweK9bSJiQk9e/akqKhIyJpt27aNw4cPAx3rtcjISEFw+3StXFhYyKNHj4Q+qaTAysnJwcLC4n/Vuvz/RXV1NRoaGmJ1Kmkmjhw5QlJSEgEBAWhra+Ph4cHo0aPZuXMnkyZN4tq1a6xbt45Xr16RlZXFqVOnCAgIIDc3l5qaGsLDw9HR0cHFxYWxY8diZGSElZUVQ4YMQVZWlj/++AN7e3vhU/748WN27NiBoqKiKPwlh5SxsTGTJk0iIiKCn3/+GR8fny5d46BBg7h8+TKnT5+mW7duHD9+HEVFRS5cuMCHDx9YunQp69evx83NjRkzZiAtLc348eORk5PjxYsXODo64u7uzoMHD9i/fz8LFy5EWVlZwB/s7e2ZPXs2CgoK/Pzzz0Jv/Ndff8XJyUk00ZJD1c/PDwsLi06FK3RMkPr06cO7d++6dH2JiYlCL9bf3x8TExPi4+M7kb52797N5cuXWbhwIf3798fJyUlA7RQVFXF0dCQxMVGcVRYWFvj4+ODi4iLW7cePH+fbb7+lrKyMPn36cODAASwsLPj999/ZuHEj3bp1Y+rUqcyePVsYluTm5vL27VuxxoYOiNLEiRO7RCysr6/n0aNH9OjRg6FDh9LQ0MDNmzdpbGxk+PDhaGtrCxm6mzdv8uTJE5YtW8b58+dxd3enpKSEhIQEFBQUqKiooKmpCQcHBwEV69u3L9euXcPDw0NAfRYtWsRPP/0k7tPdu3dpbW3lxIkT4hk9ePAgHz9+REdHh5cvXzJv3jxGjhzJkydP+PXXX7t0HyUEyaioKF6+fMmgQYNELhk5cqSAdZw9e5bq6mqcnZ25cuUKBgYGrF69muPHj9OvXz927dqFra0tiYmJ9O/fHw8PD/r160daWppwApNsPZctW0b//v1FkZqQkICxsTHHjh0T1/3o0SMiIyNRVVUlMTGR8+fP061bNwE9/NyQWGtLyITQ0fCXl5czd+5cgoKCGDNmDGlpaTx9+hRDQ0OGDh0qmo7Vq1cLNamKigqam5uJi4tDQUEBGxsbpKWlBSkbEERKDw8PXr58yfLly1FUVGTVqlXMmDEDc3NzSkpKKCsrQ1FRUUixdSW6XLza2dmRmJhIa2urcFlQUVFBSkqKlJQUYmJi0NPTY8GCBcTFxXHq1CmhWaatrS20Cf39/fnw4QO///47ixcvxsvLCxsbG/T19fnyyy9xcHAgNzcXExMTLC0thSxDQ0MDJiYm6Ovr06NHD+rq6nj06BH9+/fHxMSEuro6zp8/L9QHPDw8yM7O/uzrCwkJoU+fPgwfPlxMFCWg/6qqKgHClrx4Eis+S0tLgVNtbW0lOjoaa2tr8WLn5eWRlJREc3MzMjIyYlweHh7OTz/9RGtrK9ra2vTv3x93d3eam5vJzs6mtLSU2tpaampqSEpKorCwkPLycmbOnImTkxNaWlpd9nKePHky6urq/PPPP0RERNDQ0CA6T+jATNXV1ZGeni5sWmtqasQ6v6SkhOvXr7N06VK2bdsmdE8jIyORlpbuhA3U1dXl3r17hIaGUldXh56eHnFxcdy/fx8PDw9B0svKymLUqFEEBwcTEhKCvLy8kCLp6rpSS0tL2C5KNDvr6urYuXMnw4cPp3v37vz0008kJCSITlBWVhYjIyPU1dVF02JiYiJeuoyMDN6/f4+Pjw+HDx8mLCyM5uZmmpub6d69O8OGDSMoKIiamhqioqLw8vIiKCiI06dP89dff7FkyRIcHByEAkNhYSFVVVVYWlp+Fjj9f4u6ujpUVVWxtLTs9OJ/KiEDHZCCnJwcamtr8fHxobW1lZcvX1JcXIyHhwfff/89Hz58wNbWlpCQEOFGVVxcjJKSEj179uT69evcuHGDe/fuMXXqVCHonZ6eLpKhjIyMaMRCQ0MFqSkuLu6zMEz/W8jJyREYGEhcXByRkZHk5+djYGAgROglNrGysrKYmZnR3t7OqVOnuHz5spjqaWlpoaGhgYWFBZqammhqatKjRw969eolyHSlpaXC79vGxob8/HwSEhLIy8tj6tSpQianqKiIO3fu0NTUxBdffIG9vT0VFRViddaVUFVVxd3dnfb2dpSVlamvr0dNTQ0LCwsyMzNJS0vj2LFjjBo1ihEjRlBbWys2L9bW1qxatYq0tDQ8PDyADvWCXbt2cf/+faZPn87KlStFnkpPT2fu3LkUFBRw/vx55s+fj5aWFo6Ojjx+/Jjk5GQSExPp06cPOjo6Qg6ob9++6OrqoqGhQVRUVJeL1ydPnrBnzx4aGhr49ttv6dGjB//88w/37t3DyclJyPK0tLQI8q4Egy9xYhwwYADjx49nxYoVJCYmkpSUhJaWlvBVDw0NxdzcHD09Pezs7BgwYIBoJDIyMjoRvRQVFZGVleXy5ctCR9TIyAhTU1NcXFy4cOFCl3RQAwICyMjIEDwFU1NToqKiOHr0KPr6+mLrM2nSJEaNGiVgG5LpoIWFhVjBSsTf6+vriYyMFOeJZHPZt29fZGRkGDdunCjetbW1mTp1KuXl5Tx79ozMzEx0dXUFRnvq1Kl4eXkJaUA9PT1MTU27VLwqKyuzePFiXF1dBa7R2NhYMM/19fX56quvyM7OJjQ0lLa2NtatW4eHhwfFxcXY2dkJPWpDQ0OhIxoREUFbWxuKiops27YNLy8vUcB7eHiwfft2oUhgbm7OokWLhLPV27dvKSkpwdHRkby8PLKyshg4cCDTpk0Tz3xX4sSJE3z48EFotn6qZpKZmcmHDx9wcnLCx8dHEI8lBaampiYNDQ1ERUWRnJyMra0tdXV1wqrX09OT6dOni4HV9evXKSoqwtHRsVNDL7FSl5KS4siRIzx79gxra2sGDRokTFpMTExwcXGhX79+Qurtc0JNTY3GxsZO0DRzc3PGjx+Pn58f+vr6LFmyhGfPnvHmzRtu374tSLp+fn706NEDZWVlpKWlMTMzo6mpSQyc1q1bR05ODosXLyY0NFTIocXGxuLi4kJgYCD+/v48ffqUiIgIFi9ejJycHO3t7dy/fx8VFRUxSU9JSeHx48eC1Pf/iy6fmqampixduhRArD0ksXnzZo4fP86pU6dYunQpW7duxd3dHTMzM8rLy9m3bx/u7u7s378fDQ0N/vrrL86cOYOTkxMjRoxg+vTpKCsrM3ToUMLDw4mIiBCwAD09PWHL+ekU7uXLl3z8+JGMjAzs7OzQ0tLCzs4OPT09tLW1O+E4PyecnJzEBHLfvn2kp6cTHByMt7c3SkpKPH78mKKiItHBpKWlcfnyZaG7qKurS1xcHA8ePMDIyEhME6ZMmUJdXR1Xr14VbkbQgUWRaJgOGTKE3r17o6ioSGlpKQkJCRgYGNCvXz/s7e0F4zowMJCJEyeira1Ne3t7l9d5wcHBBAcHM2HCBE6cOMGlS5eE2LakyEhNTaWhoQEzMzMxtUhJSUFLS4vhw4fz4sULHj58KHBeEqcR6NCle/36Nb179xa+0NDhsnP//n2qqqqwsLBg2rRpGBoaYmxszIwZM1i2bBkWFhZ8//335OfnY25ujry8fJdFtSUhkTKBDp07ybTq5s2bLFq0SPycoqJiJ1H6AQMG4OHhgZycnGCOvn79mry8PNzc3PD09GTo0KHs2bOHK1eu4ODggLe3N83NzTx58oT8/Hw8PDwEXlhS1GhpaYl1n5KSEsHBwbi5uVFRUcH69eu7dG0SGz0J7rS4uJicnBzU1NRQUlKitbWV5uZmVFVV0dbWRltbm9evXwtS2ahRo8jMzGTatGnAf7mo5ebm8v79e9LT01FUVOSLL75g2bJl9OnTRyiBSJzZJG5V0DFpbm5uxtjYmKSkJL7++mtKS0vZtGmTwDTX1tZ26Rp37dqFoqIiy5YtQ0dHh9u3b1NeXs7SpUtF8pPor0omS1JSUty7d4+HDx+yY8cOgZGU6M3GxMRgaWnJt99+i46ODtevX8fDw4OamhrevXtHc3MzSkpKNDY2kp6ejqamJomJiejr66Onp8e4ceN49+4dubm5LFy4UEwWPn782OXiVaIlLXEFNDExoUePHgwbNoyffvqJY8eOcfLkSQwNDZk9e7bQsJaYPsyfP593796xdu1aRo8eTUBAgMDXz5gxQ6yOlyxZQmxsLKNHj6ahoYH169cTEhLC3LlzqaiowMDAgMDAQAICAsTUTl5enilTpgicdHx8/P+YVn5OSOSvNm3axMyZM8nOzubIkSNCY7m4uJiXL19y+/ZtoS6Rm5uLrKwsKSkpnDlzhuvXryMrK8vo0aPZsmULR44coaKigh49etDU1MSlS5cYM2YMS5cuFWdTe3u7OIClpaVFbqqtreX169ccPXpUSP5AR+Hwww8/8Msvv3Qp3/Tp0wdZWVmcnZ2FLNDLly+5evUq2dnZzJo1iw0bNmBmZtbJrEOC6SsrK6O2tpaGhgbhsLRjxw7Cw8MZNmwYlpaWnDp1CltbW+FeKdlmPXv2DD09PRYtWkRpaSlr1qwRn93c3JzBgwcza9YsMc1sbm7+VzJSVlZWIl9KJp0jR44UxWpFRQXLly8nKipK6Ow+e/YMBQUFUeza2NggJSUldLPv3r0rSE7r1q0T9+3SpUucOnUKT09Pvv/+e2RlZUlLS2PSpEkUFxcza9YsAek6duwYM2bMoKioCDk5OSHj9qm18udGYWEhf/31F7/88gsjRoygrq6OwsJC9PX1iYqK4tSpU8yfP58pU6bg5+dHbGwst27dwtzcnJEjR5KZmcm5c+eYPHkyP/zwA4aGhpw7d05oLwcEBDBjxgy2bNkiJugTJ07EysoKY2NjoS2fnp7O5MmTBab50KFDomHU0NBg0qRJGBoaYmJi0qXiNTU1leLiYoyMjAT0w8nJCScnJ/FcSjgEY8eOJTo6Gj09PY4dOybkSUtKSkQ+qK2t5dq1azQ1NfHdd9+Rk5NDaGgoqqqqDB48mNjYWM6cOYOPjw+urq6EhYUREBAgTI0kTZ2amprAANva2vLx40ciIiJ4+/atgHL9X/GvdV4BAZj/9N8GBgaiKwwJCUFXV5c///yTtrY2YmJi8PHxQUNDg+LiYkE4efz4MWVlZcyePZvi4mLWrFlDdXU1w4cP7wSe/++MtNbWVlHcVVZW8vz5cywtLdm+fTuNjY0cO3aMs2fPdlr9/aeQKBacP3+e1atX4+3tLVjykoLh+PHj5ObmsmzZMqytrQWgvK2tTQjOf/XVV5w/f56vv/6aadOmiY6tsrKSM2fOsGzZMgICAvj99995/fo1gwYNErjDbdu24eLiQu/evcVUTqKmYGdnh7u7u1g7SVaf/yb69u2LkpJSpxXX8ePHuXPnDjNnzmTcuHHk5+fT2NiIrq4uKSkpvH37Fnt7ewYNGoS6ujp9+vShsbGRO3fuIC8vz6hRo4TLTXR0NIaGhqxfvx5TU1MOHTpEU1MT9vb2bN++XeDrrK2t+emnnwQz95dffmHnzp2MGzcODQ2NLmv1SuLp06fcvXuXnj17IiUlJQrS169fC7gLdEgy/f7772KCBXSSRpKTk8PW1hZpaelO33d9fT1PnjzhyZMnQIeqxIgRI3j9+jVLly6lrKyMlStX4u3tLaxNi4uLOXv2LObm5gQEBPDw4UM2bNhARkYGM2fO/FfXCR1Nx8WLFwkJCaGyshJfX18mT57caXpTVlZGamoq5ubmjBgxgtbWVpSVlQkJCWHHjh3IyMiwcOFCfHx8GD58OEOHDiUhIYHo6GgWLFhAYGAgv/zyC/v27cPZ2Zlx48YxZ84cdHV1CQsL47fffkNKSgpDQ0OUlZUZOXIk06ZNQ0pKChUVFUJCQrp0TZs2baJ///4ieVpYWAjHHUm0trYKX3BJrFy5kqlTp+Lk5IS0tDQ9evQgMjKSs2fP0tbWJibyubm53Lhxg5SUFPT19QXJTWLO8Ntvv2Fra8vt27f5/vvvmTdvHuPGjaO+vp4HDx4wZswYPDw8xJboU8m0z426ujqUlZVRUFCgpqYGVVVVjI2NRRHZs2dPJk6cKKZzQCfpr9zcXPbu3Ut2djYDBw5k9uzZ+Pj40KNHD/Lz89mwYQMfP34UhBfo0CNWVFRkx44dJCYm4uPjw/z588X2JSsrC2NjY2EVvXz5cmpqali+fLlwXPvcqK2tFVsyQMBMBg0aREBAAMrKyjg7O5OTk0NaWhqGhob4+fkRERHBzZs3qaqqoqqqivXr19PS0sL48ePp0aMH0dHR5OXl0dTUhKenZydSYHNzM6NGjSI7OxtXV1eePHnC2bNnWb9+PZaWlri6ujJ16lQWLVqEiooKd+/e5fz589y5c6eTre7nRFxcHH///bfgREDHlGvFihVUV1fTu3dvQXTdvn07JiYmTJgwQUz2pKSk0NDQENJFOTk5VFZWUllZybt377h9+zbHjh1j3bp14vdfuHBBEPQMDQ2FyYuWlhZ//PEHhYWFLF++HAcHB/bt24e6ujqbN29GTk6O58+fd2rUPyecnJyoqakRJF1JAWNoaMiMGTNoaWnh+fPnhISEMHjwYGRkZDh58iQLFixAT0+P3bt3U1tby8SJEykoKOD777/n+fPnwtFs1qxZ4m9pampy69Yt4uLiWLFiBQoKCqLJq66u7mSNKtnI/XdB+0+NIj43pkyZIjaf0PGOSRoMb29vFBQUhLMUdNz333//nenTp/PFF18wYMAAzp07R21tLU+fPsXd3V3IgUqgH2vWrBHfhaqqKqmpqSxfvlzo10+YMIG8vDxRuG7evBlHR0du3bpF9+7dRRNy4cIFbty40Qki9Z9i+fLl9OrVC0dHR3JycgSUSPJ9SfR0LS0tWbZsGenp6YwcOVKQ7eC/iLnt7e1Cl9ra2hp1dXWMjY3Zu3cvxsbGFBUVcerUKSIjI/nll19E/WVoaEhqamonfLefnx9FRUVERkaSmJiIk5MTf/75J7GxsUKh6f+KLhevRUVFQkZHUqxpamqirKzMvHnz8Pf3x8HBgfDwcN6+fYu1tTUaGhpoa2uL4iQxMZGIiAgsLS3R1dVFVVWVoqIioqOjuX37tlhFBwYGiqmfxD62vb2d0tJS2trahF89IITwjY2NxcOira1NZmZml4pXT09PGhsbefjwIWpqaixcuLDTDXRycqKgoEBI9/Tr16+Tb7tEDqWqqoqUlBSePn2KjY2N6J6cnZ0ZP348o0ePRl1dHTk5OcaMGcPhw4d5/PgxK1eu5PTp0/z+++/i879//x4rKyu8vb1xcXERXuX/dhWblZVFY2Mjw4YNY/To0bS2tpKZmUlKSgr//PMPSUlJJCcnExMTQ11dnfBXrqioIDk5WRgZSIrPxsZGzp07x9u3byksLGThwoVYWFiQn59PQUGB0H+VJOcpU6agrq5OVlYWZmZmIpkmJiaira1Njx492LJlC1OnTiUyMpLc3NxOxJnPicbGRmJiYnj48CEPHz5k+fLlrF69mtjYWPbu3Sucw1paWtDV1cXc3FyIMEusWysqKmhra0NdXV2sgp49e8aHDx8wMzOjra0NAwMDMYmXHEienp6kp6cLnKiFhQVxcXG8f/+e1NRUHj16xOjRo9HQ0KC5uZnc3FwxQe1KNDc3U1dXh7S0NN26dcPW1pb79+8TFRVFRkZGp87V2toaFxcXKisraWhoEN3xpk2bePDgAWVlZejo6PD+/XuUlJRYvHgxtra2vH79Wlj3VlVViclOVlYWv/76K7GxsRw4cABbW1vq6+uFTE3v3r0ZMGAAxcXFPH78mJcvX3Z56mNmZoaBgUEnvHteXh7S0tJYW1ujqqqKjIwMjY2N1NXVieTavXt37O3txSGrra0tCAL19fUsWrQIVVVVrl+/LsgXPj4+ODs7ExcXx4sXL9DS0hKHqrW1NQoKCsI5zNraGgsLC5KSkoiJiRHPR1evLzo6mvr6euzt7dHS0qKsrExg7+zt7RkzZoyQdIOO909RUZGPHz8K6StZWVn69OkjSHl2dnbisN+6dSsHDhxgypQpLFmyROg2Dhs2jPLyck6dOgV0FAGfWnxqaGiIAiA6Opro6GghVN7V4nXZsmWoqqpiZ2dHSkoKN27cwNraWhDKoKPYs7e35/Dhw1RWVlJfX4+Kigq2trZkZ2fz4cMHoqOjuXfvnii8paSkSEtLw9PTUxQcDQ0NlJWV8ffffxMVFYWLiwvW1tZkZmYSFxdHXl4eRkZGBAQEdHK8c3Z25ubNm8THx3cJYib5fuLi4ggPD2fatGnCFUpTU5PAwEAxGLh+/TphYWGMGzcOVVVV+vXrx+vXr7GwsEBRUZH8/HwyMjKE1NTYsWNRUFAQuqcxMTEEBASwa9cu9u7di46ODlZWVrS2topzQAJ5yczMxNPTU3xnurq6JCcnk5aWxvbt2//jROu/R0tLC8nJyYJAVl9fT01NDRoaGkhJSfH+/Xvmz5+PpqYm//zzD9XV1axZs4b29nYCAwMFw/7Dhw/ExsaKTaOZmRkjRoxAV1eX4uJidHV18fb2ZuLEiWRkZHD//n169epFTU2NIHXr6upSWFiIt7c38vLyfPjwARsbG3R0dKiqqkJKSupfNZF2dnYCaiI5wyW1h2RC+WlIuCt2dnbCCS84OFiYtjx69AhPT0+mTJmCoaEhhw8f5vfffwc6puJWVlaUlZXx7NkzoKMAHzt2LMbGxowZM4Y+ffrw7bffUlBQwKFDh1BRURFNUGhoKOfOnesSsbCtrQ0ZGRmKi4tRVlbuZMGsqKiIgoICcXFxNDQ0iAFec3MzkZGRtLe3Y2lpKcyCIiMjqaur44cffhAQJ319/U5NyP3792lraxO114kTJ1BWVmbVqlWCfwIdudXa2prs7GxKSkrQ0tJCU1PzsxqsLhevd+7cEQLkLS0t3L9/X0xJHRwccHZ2RklJiYyMDDQ1NcnLy+Pu3bvMmDED6Bg9S2ziNmzYQGhoKD/88AM2NjYsXbqUyMhIAgICKCws5M8//8TExEQUfpIbkJ+fL/A7kjAyMsLIyKiTxMKsWbMICAgQZIzPjZaWFr755hu++OILcRBAh1apiYkJS5YsQVFRERUVFVpaWgRzT1VVFSUlJSIjI1m5ciWVlZXMmDEDZ2dnDhw4QHp6Op6enqxatYrnz5+zZs0aMjMzWbx4MTIyMgQFBbF792727t3Ljh07+Prrr3n9+jXffPMNkyZNYseOHXTr1o3c3FyePHmCqanpv5pKpqSkdCIDpKamsmHDBs6fP8+iRYtYsWIFR44cYc6cOWJa8Gncv3+fyspKunXrxoABA4AOXFR2djaLFi1CRkaGefPm0drayqNHj5CTk0NBQYFBgwYJJu3WrVtpbW0VMjrl5eVcuXKFsrIy5syZg6urq2D+PnjwoEs2v3FxcZSVlSErK4uioiLdunUT0+KsrCxCQ0ORl5dHR0eHwsJCDA0NUVFR4bfffiM5OZmtW7fi5eXF5cuXyc/PJygoCFtbWxobG4VNpaqqKsuWLSMqKgo5OTlKS0upqamhurqa8vJyNm3ahLq6uoCtSFy6Pnz4gJWVlWhwgoODcXR0RFlZmZ07d372NUpJSdHU1ERpaSnt7e2YmJgwduxYhgwZwtatW3n9+nWngr9nz57o6uqSmJgoOt+cnBy2b9/OwIEDOXr0qMDnXrt2jaKiIiZPniwYphcvXiQsLAzomNwtXbqUH374gfPnzzNu3DhhF5uRkUFRUZFw3SkrKxP/3fz58z/7+qBDek9eXh59fX2qq6vJzMzkypUrlJeXC81h6Gio37x5g7e3NyYmJuzcuZO3b9+yZcsWITslJSXFjh07UFdXFxMHCYxBVVWVn376id69e/PixQtOnjzJ+fPnSU5OZtu2bfTo0YMzZ85QWVmJrKwsEydOxN3dnaqqKkGE+1Qm5nPj1KlTQrFCS0sLJSUlKioqUFJSYurUqQwbNgx1dXVKS0sFQ1dRUZE7d+4QFhbGokWLGDZsGP7+/qSlpREXF4empmYnjUpAWDFKXPAk36G+vj6FhYXU1taSmZkpCq1P5XR69OjB0aNHuwy/ksSCBQvEVHzPnj38+eefBAYG/q+EkwULFnD16lWOHTtG3759+frrr6mtrRX215KD8Pbt26xevVpo8EoiKyuLlStXUltby8GDB+nXrx8lJSWMHj0aWVnZTtfwqT5lSUkJtbW1eHh4MGPGDFatWvXZ1+fs7Mx3331HRUUFd+7cEZqvq1atYurUqezYsYOCggIyMjL49ttvxRbB19eXo0ePoqmpyYMHD7hz5474fYMHD6Zfv35069YNKSkppKSkSE5O5sKFCzx69Ija2lpqa2uRlpbGwcFBkIkkG4TevXvz119/cePGDRYvXiz0g3ft2sWbN2949uzZ/9DU/f9Fbm4uPXv2RE1NjdraWiIjI7GwsEBOTo6rV6+yfPlyqqqqhE50t27d+Oabb9i7dy8JCQnMmTMHLS0tHj16hIKCAjt27ODMmTNER0ezbNkyATWwtbVFVVWVhQsXkpqayqtXrzh8+LAgEkrkAGfOnMmMGTNITk7m0aNHNDU14eTkhJqamnC/7Go8fvwYd3d3gUuVbHT+rxg8eDBeXl5icKWhocH333+PoqIi69at48mTJ2zZsoUVK1bw/v173rx5IzY0kkJeV1cXd3d31NXV0dHRoaCgAEtLSy5evCg2rnp6esyaNavTOzlq1CjhAPq5sWnTJlGv6OjoiC32p1NQSe6WbCqPHz/On3/+ib6+Plu2bBFDPAl8QVtbm7a2No4cOUJubi7Dhg0TP3Pw4EHx3v/4449s376dX375RWwoJLKZ0tLSNDc34+fnh6ysLGVlZezZs4c3b978RxhWl4vX4uJijh49SkBAAI6OjmKEfOPGDSZPniywMZIDvbGxkcrKSurq6mhtbaWtrU084FOmTCE/P5/Y2FhSU1ORkpISOnkhISG8fv1aWMBJgO41NTUYGxuTnJzMnj17hF2khFwhkUzJzMxET0+v0yr4c6K2thZFRcVOq/TU1FTq6+txcHDA2NhYsO3U1dUpKSnhzZs3GBgY4OHhQUtLC//88w+1tbUCc9TU1MSLFy8oLCzExcUFExMTQkJCyMzMRFZWFhkZGXbu3MmXX36Jv7+/WEFKVp6enp6dCkgTExO0tbUxMDD4LA/g/x4SO0tA4BRdXV1JTk5m6dKlODg4cOzYMeLj4zutzxMSEkSnGBISgqOjIw4ODujo6ODv78/FixdpamriyZMnjB49mtLSUp4/fy6mGW/fvhXWehMmTODu3bts2LCB2bNn07t3byHuLVkHpaenY2hoyNixY7uEl7x69SpDhgzBzMwMJycnfH19mTRpkhB7VlFREQ4hoaGhZGZmYmJiIjA9ZmZmtLS0CMkkPT09lJWV0dXVxc/Pj7t375KRkUF2djYGBgY0NDRw+/ZtwsPDCQsLQ19fnx07dohnqKqqiqamJrS0tPD09ERZWZnk5GQOHDhAYGBgJ9/xroSysjJWVlakpKQQGhoqDAJGjBiBv78/5ubmvH79WpgZSCz5Pn78KFjSEydOZMmSJXh6eqKhoUFhYSElJSXIyMiQkJCArq4uo0ePRllZGVVVVVxcXFi0aBF+fn4MHz6cN2/esH79eurr6xk+fDiGhoZERUUJ+10lJSXc3d27bPELiIMhOTmZsLAw1NXVBZZRXl5eFK/V1dXEx8ejq6srZPoiIyM5duwYKioq3Lp1i3HjxjFq1CiKi4u5cOEC7e3tlJWVsXDhQoKCgkRR4e3tzdmzZykvL+fx48fcvXsXV1dXMRXV1tYWesz6+vrIysqSn5/PpUuXOmltfk48fPgQZWVlmpubqa+vJzU1VWwClJSUaGpqoqmpicjISB48eICvry9BQUFoa2tjbW0tVvENDQ28efOGtrY2fHx8RPEaGBhIW1tbJzJma2urmHw5OzuLidOnTfqzZ88E9MTW1lZszLqq3AIdWMKIiAhsbW2xt7fH2tqay5cvs2DBAlasWIGWlhaRkZEoKirSv39/AgMDKSkpISQkBA0NDRwcHBgyZAjV1dU4ODiQmprKjh07iI+Px9LSktLSUmJiYjA1NeXDhw+oqKjg6+srMPyfHvrQIQF269YtDA0NGTZsGIqKihQWFgq4xadEnc8JibNkWFiYWPcrKSnh7OwsNEvPnDlDQUEBy5cvBzpwnerq6gwaNAjoGLxkZWUhJyfH7NmzMTExISoqivz8fNLS0sTU/9GjR5SUlKCoqIiDgwOenp54eXmhqqoqsNqSQragoAALCwtRiIeHh4vpXkRERJeu0cLCQhQ5bW1t4gyHDnH/rKws1qxZQ2BgIFu2bKF79+4MGTIER0dHbt68SW5uLh8/fmTr1q0YGRnxyy+/0KtXL06dOsXjx4+5fv06vXv3JjExUZCCAeHQpKWlJQo9Cek1NjYWbW1tscGShLOzMxoaGl0uYCsrK3nx4oXYBMrIyIhBmKSQzM7OJjMzE0NDQ2xsbDAyMiIzM5N79+7R3t7O0KFDMTAwwNfXl5KSEnR1dcnJySE+Pp4BAwYQHBzM+vXrefv2Lb6+vvj6+hIXF4e0tDRaWlrk5OSQl5dHeXk5cnJywulP0qCVlJQIk4ehQ4d2SZ1GVla20zTz0KFDqKurM2nSJBoaGoQTqqenJx8/fkROTo7y8nKSkpJISkoiKipKFKaS5v/atWukp6eLQdj169e5cuWKUA4YOHAgLi4uWFlZ4eXlRVNTk5j0vnjxgpCQEKqrqxk4cCATJkxAWloaNTU1oc/8n7DLXS5eJYLseXl5LFmyhD59+vD48WPOnTuHpqamKF4rKytpa2vDy8tL6Jg2NjYKzISUlBTe3t4cOnSI4cOHEx8fz8WLF4U1WllZGS4uLp0cSiorK8XL2draypYtWxg2bBgDBgzg/fv3nDx5Eh0dHfr27StsMbtKMpB0u5JoamqipKRE4EQ0NDTYt28fBQUFrF27FmVlZWpqalBUVBQC7oaGhly/fh1DQ0NaW1tJTU3FwcEBc3Nz8SBKHEMWLFiAiooKP//8M6GhoRw7dowpU6aIg9DY2Jjt27d3Wuvp6uoyd+7cToLjXYlPccQSc4QVK1awdOlS4QSira3NnDlzOmHtPsV72tnZoaSkRHFxMZqamnh6evLVV18RGRmJm5ubWOF069aNt2/fEh0dLdx1JElbWlqaOXPmICcnx8iRIwkKCkJWVhZ9fX1OnjzJsmXLCA4O5tSpU116UaWkpPD09BSauQMHDhQJTkdHR0wAc3NzUVdXR0pKCisrK9asWYO6ujoeHh48f/6cDx8+4OPjI6RMJAXchAkT2LNnD9euXaOhoYGKigpiY2P58OEDDQ0NpKWl8ebNG1FcSApCOzs7evXqRUFBAXfv3iU7O5snT54QGBgo5F8+NyRafdDxPJw/f55Lly5haGjIF198wdixY6mqqmLv3r0cO3aM4cOH4+fnJ0T+L168iJKSErt27RLPg5mZmSABpKSkEBUVJQ5iMzMzxo0bB3QUkzdv3kRTU5OxY8dy/fp1lixZwqBBg8QaaMyYMZiYmAibzG7dugkf+8+NnJwcTExMuHPnDrGxsWzYsAFzc3OeP3/eSb9ZTk5OKJm0trayatUqIa+0c+dOKisrGT58ONDRQC1dupSSkhLmzJnDrl27OhUsERERokGTKGf89ddfPHjwAFdXVxYsWMDHjx+JjIykX79+9O7dW5BqDh48yBdffPHZ16empoa8vDwqKiq0tbWRmZmJioqKWBdLtFclBh6vXr1CV1eXyZMnM336dGRkZMjKyuLQoUMkJyfTu3dvdHV1xXfn5OTE4MGDqaqq4vbt24SGhvLu3TsMDQ3R1dXF1dUVHx8f3NzcOk05IiMjiYiIQFpaWhT1QCdc8efGkSNH2L59Oxs3bmTlypVkZmby9u1bjhw5gq6urrCKTUhIQFNTE3d3d9FQSKb3P/74I2/evKGkpISkpCR0dHRQVVVFVVVVTCFfv35NQ0MDGzduFDAnSdTW1ootxMOHD4V83eTJk6mpqcHc3Jxly5ZRWFjYJRY+IOAa/fv3Jycnh5SUFIyNjbly5QqamprU19eTnJyMsrIybW1t3Llzhzlz5ghtYOgwAZCSkqJ79+4YGxsTHR3N9evXkZOTE+5y0LHOLioqEiStTzWZ5eTkMDU1JTs7m+joaEaNGiU2lvn5+cKlTVlZmbVr136WCLwkpKWl+fvvv/H29sbPzw9/f39xRhoYGBAcHMz06dNRUlLi/Pnz3L17F0NDQ9HYb9iwgaamJlEI6enp8csvv7B7925u3LjB9evXeffuHdnZ2Xz8+FGoEgwfPpzvvvuO3r1709LSQrdu3cRmZe3ataxYsUJIYknsY42MjP6HlfPnRFBQEAUFBVRWVpKdnY2cnBzdunUTeaasrIzbt2+TmJhIQECAKAQvXLjA+fPn6d27N66urrS1tTFjxgxcXV05c+YMV65cYf78+YwePRroIDCqqqqyevVqHBwcWLRoER8/fhTEz2vXrhETE8P06dPZtm0b8F/Pb1NTk7BYlmDiPzd2797NwYMHgQ6pzFWrVuHt7c3IkSOJjo7m5MmTQlVAW1sbWVlZJk2aRHJyMnfv3uXly5e4ubnRs2dPFBQUCAkJYeHChaiqqnL79m10dHQ4deoUDx48EHXC0KFDOXHiBHPnzkVaWpobN26wadMmBg0aRExMDHv27KG5uVk0nKampigqKrJ06VKkpaUFQfH/ii4XrxKNMUnyMDExYc2aNQwbNkysFZSVlbG1teW3337Dy8tLFA6S9Vd0dDSRkZHY2NigoaGBqakpHh4eYkKQnp5OTEyMEDR+8+YNx44dw9/fX0hLyMvLM2HCBPr37y+cjhITE3n8+DGtra24urp2Kvg+NyQvZWJiItnZ2VhZWQm3CB0dHQFc79atG7W1tRgYGNCjRw8UFBRoamqiV69e/6N7r66uFnIe5ubm+Pv7ExgYSENDA4aGhmRkZFBdXc3NmzfZvn07mzZtQkFBgY0bN5KYmMiwYcNwdXXl0qVLhISE0K9fPzF+/zeuN7du3eLs2bNMmDCBMWPG8O7dOzQ1NbG2tub8+fNs3ryZCRMmCMZ4cnIylpaWTJs2DXl5eTIyMtDR0cHAwID6+npBHFiwYAENDQ3iQA4ICKC2tpZNmzbR0NDAggULBMP03r17nDhxgqlTpzJ+/HiKiooE1mX//v0cOHBA4AG7Gl9++SXS0tJISUlhYWGBqakpLS0t7Ny5kydPnuDs7Ez//v3R0dHB3d0dJSUlYQkqaQgSEhLE/W9qakJeXp6mpiZevXpFc3OzwPrs37+fb775hnHjxhEeHk5ycjIDBw4UTdz58+cpKSlh6tSpYvqop6eHvb09NTU1gnjyKQnnc+LUqVPcvn2bKVOmMHbsWEaOHElNTY1496AD9+vr64u5uTkFBQX89ttvjBgxAldXV4KDg0lMTCQ9PR19fX0aGho4cOAA5eXlTJs2TXTdknXOH3/8AXS4QmVnZ3Pv3j10dHSYOnWqICs8ePCAoKAgYetaX19Penp6l+WVJHH9+nXS0tJobGxk5syZmJqaYmpqyubNmztBImRlZXFzc0NFRQVpaWlkZGQYMWIE3t7ewrFJ8hmGDh3KggUL2Lx5cydJt3v37qGiokJ8fDwVFRUoKCgQEBBAdHQ02dnZdOvWTZhrSLBcn06Tu7odgA5FAFNTUzQ0NJCXl6dHjx5CTF/iuqWmpiYklJ4/fy5E+KFjDZ+RkUFQUBDjx4+ntLSUwsJCMekyNjZGVVWViIgInj9/joyMDLa2tkJqa+7cufTo0YPS0lL+/PNP9PT0mDt3LosWLUJOTo5z587x8eNHRo0aRXp6Ov/880+X72FmZiba2tooKiqKDZyLiwuOjo4EBQWhpaUlML8STB90TDR1dXWFQYmXl5eYUq1cuRJbW1tu3rxJTU0Nvr6+tLe3k5yc3KlwvX37NhUVFQQGBqKgoMCNGzdITExk2bJl9OrVS2Br1dXVOX36NBkZGf8q30BHA6murk5jYyMtLS3i+ZSXl6dXr16oqqrS0tJCeHi4MAtpaGjg1q1b3Lhxg6+//hpzc3NevXrF69evcXNzIzg4mNevX3Pu3DkcHR0xNTXlyZMnVFVVCUkz6GjempubOXv2LOvWraOqqkq4HF6+fJl//vmH1atXiyZVMnD43Pjll19ISkri22+/xc/Pr9NwR1pamqamJvLz8wkMDGTTpk1kZGQQHR1NSEgIL1++RE5OjiVLlgh8/blz51i9ejWrV6/G39+fiooKNm7cKAhOkkhPT0dZWVnkZAn7X0ZGhvr6ekEQHT16NFZWVmRnZ3PhwgXCw8MFJO5zQ0NDAw0NDRITE4mJiaGpqYkePXogJSXFtWvX2LVrF+3t7QwcOBB9fX1haerk5MSoUaNwcHDAwMAAMzMz5OTkUFZWZvLkydTW1rJnzx7xd6ZPny7gjNCRA+Li4igtLRU8IXt7e4YMGSIw+5LJr4aGBpcvX+bMmTNddhBrbm5mzpw5ApM7duxYXF1defjwIbq6uvzxxx9UVFSQn58vnhMTExMOHjxISEgI69ev59ChQ+zbt4+8vDyePn3KokWLsLKy4sSJE9y/f5/s7Gyx+SkuLmb8+PHo6uqSlJTEmTNnKCkpEeo6kq2AxGa+qKiI8vLyTtun/xRdLl6NjIwYP368+Hd1dTUWFhbY2tqKzry9vR0rKyuWL19OQ0MD6enpWFlZYWRkxMWLF9m7d6/AMWlpabF3714mT55MSUmJsFArKSmhvb0dJSUlNDU1ycnJ4f79+/Tt2xdjY2PhuCPBGNrb2/Pnn3+yZ88ewsLCRBLqCi7k03jz5o3QE5TYxRYXF1NfX09gYKBYLwOdEmZjYyOpqalIS0tjZGQkSCQNDQ3U1dXR2NiIjIyMOFhycnIARDEkKWaqqqo4ffq0IMBUV1dz//59bty4QVZWFgMGDMDNze1fXV9ycjJJSUk0NTUhJSVFbm4uOTk5mJqaEh8fT0ZGBsbGxpiYmFBRUUFcXBw6Ojr07t2b3r17Ex0dTWNjI6ampqSnpxMaGoqPj49YPVZWVqKsrIysrCzBwcEkJSUxcuRIYaMXGRnJokWL0NbW5vLly6irq7Nnzx4xmc7Pz6e+vl4Ul10NSVFhb2+PiYkJjo6O1NfXk5eXx507d7hz5w55eXnMnj1b2CZKJiPQQYxpb28XOrpZWVnY2NhQU1NDYWEhRUVFKCkpIS8vj7e3NzNnzsTDw4OhQ4dSV1cnDpXLly+zdu1aPDw8mDp1qvhu/P39UVNTIyUlhfz8fPLz87l27VqXWMAZGRlcvXoVa2trxo4di4eHRyeIjGSyP2LECNra2jh9+jRPnjwRP6eurk5sbCyvX78Wk7hnz55x9epV0tLScHV1RVpaGl1dXaqrq3n48CGvX78mKioKIyMj0tLSSE9Px9vbmwULFuDo6Mj69evx8vIS797Zs2fZunUr48aN6yRN9rlRXl7Ozp072bhxI/3796e1tZXExETRwEpWUJaWlkI/EjomVBLSxqfkA8l0ZsiQIYIZLLF+hI5ckZubK/RXnZ2duXHjBoqKimzevBkHBwfevn2Lk5OTWJ2VlpZSV1eHl5cXAwYM+I/Tgk9j0aJF5Ofn8+HDBxQVFbGwsBBNjI2NDQ0NDcTGxmJnZ8esWbPo06ePOJTz8vKEzbazszNqamqkpqZSV1dHfX09ISEhQlf5w4cPtLe3ExAQQGlpKbGxsZ1gB48ePeKnn37Czs6OqVOnoqKiQlBQENu2baO8vJwxY8aQlJTEzp07mTJlSpfuYa9evfD09MTc3JwLFy5w7do1tLS0mDp1qiBaffjwgfz8fN68eYOXlxfq6upMnTqVwsJC6uvrheSdjY2NOGMkBMq6ujo+fvyIubk5NjY2FBcXo62tLYxHSkpKxPcVGxtL//79GTNmDM+fP2f//v3MmDGD5uZmnj17hoqKCp6enl2SHpSIrEPHYEdJSYnExETOnj2Lvb09gwcPZtq0aeJnjIyMhBtaRkYGq1atorS0lBs3blBfX8/+/ftpbm7myy+/ZPr06cLFUUKOMjU1xdHRURQYhYWF6OjokJuby/379/n48aMwxykvL+f169cUFhaKTV5VVRUGBgZdgrg8fPgQ+K/J+6cb0OTkZEJCQggICCAwMJChQ4dSWFhIRkaGUGGRrP49PDzQ19enoKCAZ8+ecefOHTZs2IC3tzd6enpkZmbSo0cPzM3NiYuLIyIigqtXr2Jra0tBQQFVVVXo6+szZswYIiMjOXnyJLt376a0tJT58+cjLy9PYmIid+/eFe/954ZE4/Xdu3ckJyd3amLevHnDy5cv8fDwwMfHp5Oe+8iRIxk5ciTQcfaXlJRgaGiIoqIiY8aMISoqiujoaCwsLGhubu6Uj6SlpRk3bhzjxo3j9OnTnD17FmlpacaMGYOjo6OQGZOcJ4cOHWL//v3i+elK9O3bV9iSe3h4cPbsWXR0dDhx4gQyMjL4+vpy48YNsXVyd3cXmF8zMzPy8/Opra3l3bt3JCQkEBsby4oVK3Bzc2Pq1KmCyPn9998zYMAAamtrKS8vp7GxkUOHDvH48WPWrl3Ll19+KfT7J0yYwOPHj7lz546Qz0pOTqagoOCztHq7XLz+d3yekpISJ06cICwsjAkTJjBy5MhOndnFixfZvHkzBw4cICAgQHgaKyoqoqGhga2trTgIJEK6EqkYCRnKxsZGCGv36dOHnTt3ijH8kydPSExMZNGiRairq7N06VJu377N/fv3iY+Pp6ampkue8dBxKMbHx4suoL29nVu3bvHu3TvMzMzw9vbGwcFBdM8SK8nW1lZWr17N/v37cXFxYd26dYwfP16slrp164aVlRWNjY0kJiYK9quOjg6urq5oaGhgb28vpIUkwveTJ09GWlpaMDJbWlq4evUqFRUVXWbhA4wbN47g4GBRdPfq1QsFBQXk5eVFwpQwAq2trWlvb6ewsFBMsj8tKN+/f8/Dhw+xsrISBV55eblIbvX19XzxxRcYGhpSXV3N2rVrOXv2LIMHD+a3335DXV2do0ePcvfuXZEITpw4QVtbG5cvX/5XDmKnT59mwoQJDBkyRIigQ4dUiYeHB7m5uTg7O+Pq6oqurq54PiRreFlZWfr16yfwU7q6ulRUVKCmpsbYsWMpKiri48ePbN++nQkTJpCQkMC5c+cYMWIEOjo6NDU18cMPP3Dw4EFkZGRQVVXl8uXLQIf4tpeXF2ZmZrx//1585ocPH3apeB07dixmZmad8IyfRnNzM7q6umRlZXHy5Emys7OZP3++INh98cUXpKWlsW3bNvT09IiPj2fWrFkEBgaSk5ODtrY2/fr1w8DAgObmZvbs2cOlS5eEq5aKiorQCB04cCB2dnYMHDiwUyNXWlpKSkoKmzdvprS0tMsSNpKJi2SSPGPGDDIyMggPD0dKSkoIh0tA/5Ii5+3bt/z555+8efOGuXPnsmHDBpqbmzl48CCZmZm8ePFCqJDIysoiJSXFgAEDCAkJITc3FxkZGeF8p62tjampqdDw7N27t3i2oQNmINEZleAsuxIyMjKEhIRQVlbGpEmTBE5aIpN34MAB1NXV+fXXX3FxcaG2tpbGxkaMjIzYunUrYWFhbN68mYiICKysrFi1ahWNjY28fPmSpKQkAYuBjqIjNjaWmpoa0dwAosjo3r27kCF79uwZzc3N6OjoICsri7GxschjXYmgoCDKyspISkoiIiKC6upqSktLOXfunFDAePXqldDo3Lx5M8uXL0dJSYn4+Hjevn2Lp6cnHh4enWALGhoabNu2jR07drB48WKBAywoKKCiooKePXuKNeijR4/Iz89n7NixIq/dvXuXu3fv0tTURFBQEBs2bEBLSwtjY+MuFa937tzBy8tLwMHq6upITk4WNp6tra2dPrcEU1lbW0tiYiIVFRVUV1fz4sULpKWlxdAjPT2dc+fOYWRkxLBhw3jw4AGZmZnMmzePuXPnoqenx+PHj4WajYODA5MnT2bo0KGikG9vb2fmzJl8+PCB+Ph42tvbsbW15ffffxf4288JXV1dPD098fX1paysjK1bt2Jvb8+cOXOEJbSkqfrll19oaGjg999/F+Ttc+fOsW7dOvbu3cvatWtZs2YNgwcPFueJuro6fn5+rFy5kh49erBp0yYhUv/27VthOiSpE0xMTNi+fTuLFi0iLi6O1NRUXr9+zbBhw9i8eTODBg0SJNHPjcOHD5OdnU1OTg6+vr7CrjU7O5uhQ4fi7e1NREREp/MoMjISOzs7kQ/i4uI4f/68IJWdOnWKnTt3smrVKi5evMj27dsxMjKira1N4FolE/Dg4GBu3LjB1atXuXXrFq9evUJPT4+vv/4aHR0dNm7cyM8//wx0kP2GDh3a6fz4T6Gjo8Pq1atpaWnByspKNPqjRo3i8OHDfPfdd8KoJS4ujjVr1tC3b1/CwsL44YcfaGtrQ1tbmz///FPUA/Pnz6dfv358+eWXODk58e7dO0GqDA0NZevWrdja2mJpacmJEyeYPHkysrKywgESOjZee/bsYc2aNQwaNEjIbBoZGfH999//f6+py8VrU1MT7e3tpKeniwNSWVmZgoICgfO0trYWN6WgoIDs7GyOHz9ORkaG8IXv378/Dg4OyMnJiSmJvLw8enp6tLW1iSQeFxdHc3MzRkZG9OrVi8TERG7duoWfn58gTRw9epSHDx+yZs0a4a4yf/58EhISmDlzZpclpSSEraqqKlHc1NTUcPv2bYyNjenbt69gezc1NYmpx7Vr1ygrKxOf+/Tp04wfPx5ZWVns7OxIS0ujqqpKrNUl9qvJycnk5OQIKEZbWxsmJiZ88cUXdOvWTeDRnJycxPQpNTUVRUXFf0WEsbS0JCkpidjYWCwtLTEwMCArK4tnz54JfVBJSKZSV69eJT09nT59+pCWlkZmZiby8vJkZWVhb29Pc3OzmBhLRJePHz/Os2fPCAwMZOzYsXz8+JHY2FhUVVWZOHEiysrKLFu2jAsXLuDn5yfYwPLy8mzcuJH6+noSExMFweRzo6ysTBQ+Hz58ICkpScj1TJs27X/oBTc3N4smRXJv7O3t/9cVoqTrlFgPl5WViYm8JCFIZGnc3d2ZO3cubm5uZGRkCNebsLAwwsPDhayRtrZ2l13S3NzcxEEcGxtLQ0ODmHZraGgIIl9TUxMJCQm4ubmJwnX//v1ERUUxZMgQhgwZAnR855LiKyoqitra2k7FtKamJv369eOPP/6gpqZGvFO3bt1i/fr1WFhYMHz48E6rc8kkMiMjQ5BtuhK3b98GOgiTEgOGyspKTp8+zfTp07G1tSU2NpbLly8TGxvLzJkzGTNmDAkJCVy/fh3oyD8FBQU0NTVRWVlJfHw8tbW1ODg4MHDgQEpLS2lqaiIjIwNtbW38/f3FNiE5ORlZWVmqq6v5/fffmTx5MhYWFjx//pyKigqGDBmCl5cXaWlptLa2Ul1d3aXru3btGkpKSqiqqoq8CR0T527dumFjY0P37t2Jjo7m0qVLTJgwAWVlZVJSUlBRUcHGxgY9PT1CQkIoKSlh2rRpeHl50draipeXF0lJSQJWpK6ujpqaGp6enlRWVgo909raWgIDA+nduzd+fn4oKCgQFhbG+fPnqa+vF811v379KC8v7/K7aG9vT05ODpcuXSIvL49Zs2bR2tpKVFQUHz9+xNXVtRN2X4L5zc3NJTU1FWtra0xMTMTPFBQU8OrVK7S0tPD392fkyJHk5uby8uVLEhMTaW9vp2/fviKXSLB1paWlKCkp4ebmRmNjI3p6epiYmFBVVYWRkRE9e/akvr6e169fd+n6JO+Z5N1vbm7GxsYGa2trnJ2dkZaWJjY2luzsbLS0tMTG8ezZs5iYmGBra0txcbFwHJw/fz4VFRU8e/aMI0eO4OzsTO/evcWA41Psv4TQkp6eLgg+ffr06QSXk5Cddu/eTXV1Nba2tl1+Tk+cOIGRkRGurq7k5OTw559/oqOjQ3BwMHPnzqWsrAx9fX1u3LjB+vXrkZKSIigoCEtLS8zMzOjfvz/R0dHCgc/V1VWQ0iIiIkhJSUFbWxsrKyuqqqpIS0sTf7u4uJh79+6Rnp6OtbU1RkZGaGlpYW1tjY+PDz4+PqSmplJbWyvkC/+Nw9b79+8JCQlhxIgRjBgxgoSEBAoKCrCzsxPSYu/fv+f8+fNIS0ujqanJ06dP6datG66urjQ2NhIdHU1tba1g9VdXV5Ofn09NTQ2Ghobic0mISW1tbZSUlCAtLS0Um3Jycnj16hWAmK5WVlZSXl6OoqIibm5ufP/9951UNj4nnJycxIQY4Pnz54JA7ubmRlNTE8XFxRQXF5OZmYmFhYWwXH7x4gX9+vVDU1OTa9eu4eLiwpgxY7hw4QJxcXHs3LmT4OBgrly5QlhYGGfOnOGnn34COkhmv/32GwYGBlRXVxMREUGfPn2AjkavrKwMPz8/hg0bhra2tpAY/RxyaJeL16ioKPz9/SkqKuLVq1cEBAQwefJkxo8fz8qVK5k5cyYrVqwQpJiePXsyduxYHj9+zPHjxwGEVFZmZiZtbW3i4airq+P169fCg10im3Dw4EHk5eW5cOECd+7cYfHixYwcOZI7d+7g7e1NS0sLjx49oqKigocPH1JaWkpcXBzOzs5s3LixS13mjRs3GDVqFIGBgcjLy4tCZ/r06bx48YJXr16JVVRycrJIkgcOHODx48ccO3aMWbNmMWzYMD5+/Ch+b0pKCnv37hVOKZK12OHDh8nKygI6EmFOTg7FxcUYGxsLXKSE4CbBDvv4+ODp6dlJrL0rcfLkSdauXYudnR3btm3Dzc2N48ePs3v3bubNmyf06CTx8eNHwsPDhavYq1ev2L59O5WVlaxfv55vvvmGrKwswsLC8Pb2FiSvuLg4Tpw4wYkTJ3jx4gU///wzt27dIi0tjffv3zNz5kyuXr2KjY0N06ZNY+DAgQJfamdnx+nTpzl69Ci7d+/uEn55/vz5SElJkZGRITBClZWVjBgxgiVLlgi/bcnBJSHbNTc3/48p/acuXeXl5Xz//fc8ffoUaWlpVq1axcmTJ9mxYweTJk0CEE4p+/btE7Jg0DGtlpaWJi0tjdmzZ1NTU8PBgwfx9vYWlrJdcUyRrO7i4uJ4/vw5PXr0QElJibS0NNrb28WhKiMjw9q1awVzf/fu3dy+fZvffvuN6dOnAx2bhk+1ip2cnIT1o0RPNTs7m6tXr3ZyCYKOokiy6m5sbOz0TPbo0YMePXqIFdnXX3/92dcHiEJJImy9Z88ezp8/T1RUFN27d8fNzY07d+4I0oYk10hJSeHm5sbs2bPFu//q1Susra3x9/enZ8+eyMnJkZaWJqxk9fT0WLZsGfb29qirqwuNYw0NDSHAXllZyQ8//MDdu3fZvXu3mCItW7aMurq6Ltv8/v7778yePVsQ3aBDpk/S6Li4uPDVV1/x9OlTtm7dSl5eHt9//73ANEqm79u2baOmpkbcQxkZGYKDgyksLBRTRG9vb1avXo2XlxeVlZWiGFRWVmbw4MGdiJkSwXBJ/vv48SNGRkYEBQV1uXgFOkmBSaahtbW1VFZW0tjYyJgxY8TaWLLVUVBQwNraGhsbG1RUVERxmJ2dzY4dO0hJSeHnn39m8eLF7Nixg82bN/Pbb7/R2NjYqan7/vvvSUpKQkZGhp9//pmioiJWrlzJ119/jZ+fH926dcPQ0JDm5maOHDki7C0/NyQ5S/Lcq6urd5rMS/DEx48fR01NTRj4VFVVkZyczJAhQ1BWVubDhw8MGzaMJUuWcPfuXW7dukV2djbZ2dk8e/aMX3755X+QVn19fbG3t6ewsJC3b9+ye/dulJWVGThwIH379hW5p6KiAm1tbYyNjfn48SN//vlnl+6f5CyEDqKokpIS5eXllJaW0rt3bw4ePEhoaCiPHj3C0tKSbt26sWXLFkpLS9HQ0GDBggWcPn0aOTk5SkpKSE1NpaCggLCwMKEb7ePjw8WLFykoKEBJSQlHR0eB4YeOCV1qaqqAdgwbNoxx48ZhZGTUidR96NAhTp482WW4WZ8+fcjOzmbGjBk4Ojqydu1asrKyOHHiBNAxBHn16hUhISFER0fj6+uLnJwcqampbNy4ERkZGcaPHy9yrcTCPSUlhd27dwuyqyQUFRWpra0VBLv29nasra0ZPXo0SUlJSEtLM3v2bBwdHYXpRlBQkCj8uxr/ncSooaFBdXU1lZWVDB48mLCwML788ktxP0JDQ4UmrwSuImmEZWVlGTJkCN9//z0xMTHcv38fb29vRo0axaZNm4Shhry8vNjeQYfmc3R0NBcuXMDe3h4FBQW+/fZbzM3NUVZWFtKrknrvP6nwdLl4bWtro6GhQUw+JV2crKwsCgoKgugkicTERN6/f4+xsTGjRo2isbFRiIr/888/6OvrixH933//zYcPHxg/fjwhISEcOHCAGzduAAgJph49eqCjo0NISAjz5s3D2NiYtLQ0Ie6rpqZGdXU1hoaGuLu7d1l7ccuWLcIbvGfPnkKCxtraml9//ZWlS5eyfft2MjIycHNzIzY2lpiYGBQUFFi1ahWqqqrCJczBwUEUnlVVVdjZ2WFoaIiUlBTKysrMmTOH9PR03r59i4ODg8AefrpelRBKoqKiSE9Pp2fPnlhYWFBdXS3Wtl2Nw4cPC2KdhHUqLS1NSUkJN27cwMXFRRBfhg0bRv/+/SkqKhIdsIuLC3PmzCEnJwdXV1dUVFQwNjYWto6SGDduHHfu3CE1NZVz586J1aC1tTX5+fnY2dmxfPlyBg8e3EnHVcKoVVNT45tvvuHWrVtdcmfq1q0bZWVl1NfXY2NjQ//+/YUcluSA37dvH69eveLHH3/E19cXeXl5kaDj4uKIi4tDTU2N3r17o6yszMWLFzl27BgpKSloaGiIbUFNTQ3FxcVkZWWRk5ODiooKbm5uGBgY8PHjR44ePUpJSQmBgYEMGjQILS0thg0bhpGRkXD5evz4cScFiM+J69evC1/xAQMG4OrqKp61trY2bt68KZy8tmzZAnTg41paWpg9e3Yn7GJzczMyMjLk5eWhoaGBqqoqWlpaXLhwgdDQUNzc3KipqaGurk5sATw8PDA3N0dDQ4P9+/fz9u1b6urqWL58ucBSxsTE8P79ezQ0NP7VhmD27NkYGxvj4+ODvLw8VVVVODk5IS8vz9OnT7l9+zZFRUWMHDmStrY2TE1NKSoqwsPDQ+iJSuLly5e8efNG6INCR4LevHkzdnZ2DBkyhJSUFM6ePUtmZiarVq3Cw8ODzZs3Ax2r01GjRgmCT01NDVu3biUpKQkvLy+GDRvWyYHnc2L8+PE4OztTWVnJhQsXhE6nj48PmpqalJSUYGZmJrSuLS0tkZaWxtzcXEjqmJmZYWFhQU5ODsePH6epqQlZWVnev39PUVGR0Dl2cHDAw8MDZWVlURAkJSUJgkpdXR2LFi3C2tqalJQUcnJy+PLLL7Gzs+P333+nT58+otnpSpw/f56RI0cK6NPBgwcZPXo0Q4cOpaamhufPnzNgwAACAwP56aefqKqqwsvLC1dXV16+fMmxY8d49uwZs2fPxtzcHGlpaXJycigpKaGxsZGUlBSePXtGTEwMurq6ZGZmCucwWVlZbG1tGTp0KJqamqSlpVFUVMTNmzcZPnx4JzetqqoqMfToSk5NTk7uJG6fnZ3N+/fviYyMpLq6msLCQpG7JG5h0LH9mjBhAgoKChw/fpycnBxhGy3Z4vTq1Yv09HSKi4u5evUqcnJy1NbWIi8vT1BQEFZWVpiZmQlM4nfffYeLiwsLFiygpKSEW7duYW9vj4eHh2ji8vPzcXV17WSN+59i7969QrZMAmWROMFBx9BJTU2Nfv36ERAQgKKiIqmpqVy+fJnq6mpaWlrIy8vj1atXPH78GBsbGyZNmoS1tbX4HB4eHlhaWmJtbY2+vj737t3j0qVL2NnZERwczIEDB4iNjaW1tVXkKHl5efLy8njw4AE6OjoMHjwYd3f3Lk/PocNC2c3NjaysLLZu3UpJSYnQ4A0ODqampkbk/NbWVgIDA7GyshJEv379+jF9+nQh/q+pqYmlpSVWVlaicP36669JTU1lzpw5QnM8LCwMBQUFevToIeREp0yZgpWVFSNGjBAupq9fv6a5uVlMLbtqxCAx57GysiI4OFiQhiVN19u3b2loaBAwI4kRkpKSEtra2kRFRWFlZcX8+fMpLCzk0aNHQu5r5syZvHz5kj/++IMBAwbw9u1bsRUvLS1l+/bt1NTUcO7cOZqamjh48CDfffcdhoaGODk5UVhYyPnz5+nWrZuw+n758uV/vKYuF6+9evUSGB5dXV0iIiJobW3Fz88PGxsbXFxcOnWe6enpxMbGsnbtWjZu3Ah0eBLfvn1b6F+WlJTQ3NzMli1bqKurw8bGhqioKFG4Ojs7Y2Njw4cPH/jmm2+wsbFh0aJFQmbDwMCAn376iRkzZpCdnc2jR4/Ew52ent6l60tMTOTly5d4e3vj6+vLixcvOHToEF988QWWlpbMmzePFStWcO/ePaZMmcLdu3dZv349K1asYMqUKVy5coV3794xb948gRdNSEhAQ0ODZcuWISsrS2NjI1JSUhQVFaGvr8/XX3/NvHnzKC0t7YS3am9vp7W1lYKCAuHr3qNHD9ra2nj79i1KSkr/qnhVVlbm6NGjmJubo6Ojg5ycHBMnTqS0tFRMfhITE4VMkouLC3PnziU3N5f4+Hgh0Az/pf2orq5O//79yc3NFVp4PXr0YOXKlfz6669IS0vzzz//oK2tjaqqKn5+fgL43tbWJggEbW1tYm0okUcJDAzsUvH67NkzXr16Ra9evZg8eTKTJ08W+GlpaWlKS0u5c+cOWVlZAhbR2NiIvLw8ZWVlQgTe19eXYcOGUV9fz99//010dDRbtmyhpqaG1atXi84yLCyMrVu3AvDtt9/i5ubGvXv3+OGHH4iKisLAwICqqioMDQ1xdXVl5cqVImksXbqUvXv3drKX/JyoqqriyZMnLF26FG9vbwoLC8nJycHNzY3y8nKePXvGpUuXcHJyYvLkyXh4eCArK8v06dPR1dWlvb1dmH7IyclRVVWFpqamaJYkbjgZGRnk5+fj4eGBvLw8tbW1ODk58dtvv+Hg4EBKSgqTJ08mKioKRUVFJkyYID5jfHw8v//+Ow0NDXh4eHT5WT127Jj432VlZRw5cgR3d3cmTpzIpk2b+OGHH9i8ebMwd8jLyyM7O1tsCCREUeggPL569YqwsDAxmZNIqX355ZfMnDmT33//nVevXqGqqsrQoUPp1asXV65cobS0lNu3b4tpztChQ9HV1eXw4cOcPHmSkydPEhERwZo1a7p0fZJm7t69e2zevJmYmBj69evH6NGj0dPTIykpiaNHj6Kvr8+3334rnlXJyvbT1dq+ffvYvHkz8vLyeHh4kJKSQnl5OdCBpxs2bBgVFRUUFxdTWVlJWVkZmZmZREZGcvnyZUpKSjA1NWXZsmXU1taiqakpZL+WL19OdXX1vypeJa5SNjY2TJkyBV9fXyIjI0XjlpaWhq2tLR8+fODSpUu4uLiIvPfq1StOnz6NsbExenp6LF68GFdXV2xsbKiurqahoYG///6bLVu2oKGhIRRE3r59S3Z2NitXruSXX37ppPUaERHB5cuXaWtrE7wJ6HBhGzlyJEVFRV26vl9//ZWDBw+iqqpKQ0MDjx8/5uzZs7x8+RIlJSWUlZWprq5GQ0ODHj16kJiYSHFxMUuXLmXFihWEhoYKlzfJ0EJHRwcPDw+0tbXR19cX5h8HDx4kMTERAwMD2tvb8ff3x97eXjSHysrKWFpaYm9vT3h4OHfv3hXKO5LJtaGhIQsXLuyS9OC2bdvo06ePKHz9/PxEE/v8+XMSEhLo27dvpwFEfn4+paWlJCUlUVVVxZkzZ9i5cyfNzc1s27YNa2trweiXODY5Ojri4uJCdnY2SUlJlJWVYW9vz+jRo3nx4gX379/HysqKUaNGCWhbWlqawGE6OjoKKEFXrg864BXBwcF89dVX3L9/n1WrVuHi4sKLFy+Ij4+nd+/ezJw5k+bmZtzd3Rk0aBAmJibExcWhqqrKd999h5GREcePH0dFRYUpU6awa9cu8fsPHDjAoUOHBMlUQg6WlZWlb9++ODs7c/nyZUpLSxk5ciTe3t5i25iRkcGDBw/IycnBwsKCqVOndskaFuDMmTMcPHhQyOx9qg+/du1a0aRLikdJUyFRPbh27RrGxsasWLGCAwcOsG7dOqHyEhISgqGhIVVVVeJcLyoq4uXLlxw+fJgjR47Q3t6OnZ0dZmZmQqVnyJAhWFlZERYWxqVLlzA2Nsbf35+vv/6ar7/++j/ewy4Xr5IEeuPGDTZs2EBdXR1ffvml8Mc2MzMjNTWVp0+f4u3tzZdffomjoyOysrICS+Hl5cW7d++Ql5enoaGB9evX097eLpj369evR0dHB29vbwYNGsTSpUvR19fn0KFDnD17FjU1NebOncvIkSO5e/euWD+dOXOGGzducP/+fUxMTBg0aFAnB4nPiRkzZqCnpycKq6lTp7Jx40Zmz57N0qVLmTBhAvv27aOiogJZWVl69eqFt7c3J0+epKqqiuHDh7N8+XLBEJSSkkJHR0ewPyUY2tOnT7Njxw6ysrLYt28f0JG8YmJixIMl0anMzs6mb9++LFq0CEtLS9rb27GwsOjytE4SX375JQEBAQKbAx2kmOXLlyMtLY2srCw5OTmUlZXR0tIiioFly5bR1NTU6cH/lIwgYZWGhYVx6tQpGhsb0dTUZPHixURGRnL69GmKior47rvvkJGRoa2tjRs3bpCRkUFzczMZGRmoqqoyaNAgCgsL2bt3Lzk5OfTt27dLL+uLFy+ElqO/v7/4bE1NTdy7d4979+5hYGDAihUr8PDwoLi4mJ9++ommpiYh+i9xYmpoaEBKSooVK1ZgaGhIz549iYuLY/fu3WRkZBAWFoaqqqoAz6elpVFeXs6hQ4eIiopiypQpTJ06FTU1NYHjfvToEebm5jg5OXViQ3cFGjFo0CBcXFzw8/OjubmZkydPkpiYyJgxY3BycmLEiBF0796dgoICnjx5gpycnDgYJNhtySSlpaWl099+8+YN586dIyYmRkj8JCYmiklnYGCgIO9oaWmxePFisZpsbW3l2rVr9O3bl8DAQBobG0lOTkZNTY28vLzPvj5JxMXF4ejoiJaWFq6urmJL4+HhIXQxJaGqqkpMTAznzp0jJSWF3r17s2DBApycnAgODhYQh2fPntHa2iqIizo6Orx79w4vLy82b97My5cvWbduHTo6Ojg5ObFx40YcHBwoLy/nxo0b9O3bl7lz5zJ27FjWr1/PuXPnhDJIVwwnJFq9QUFBxMfHU1JSIrRfoWM4ICsri6ysrMi7ubm5tLW1CbmelpYWSktLaW1tFc94fX09Tk5OvHjxAuhwAxoyZAh5eXmsX7+e8PBwTE1NGTBgAAMHDsTNzY2ioiIxdbWzs2PJkiU4OjqSl5dH3759O61muxIeHh6iUbO0tGTjxo0oKiqK583Pz080rosXL6ZPnz4oKipy6dIlsYVraGjg/Pnz9OzZE29vb6ytrXnw4AHr1q1jypQpzJ8/n9TUVPLz8+nVqxczZ85EU1NTGAiUlZVRVVWFhYUFPXv2pKmpiby8PJ48eYKTk5PIZx4eHixZskTk48+JqKgoTp06xfz585GRkaG2thYjIyM2b97MyJEjef/+PV999ZVwbbS1teXBgwdiQuft7c1PP/1EbGys2FgMGTIERUVF3r9/z4MHD5CWlubLL7+kR48erFq1ivj4eMLDw3F3d6e4uJiMjAxiY2MZNGgQ7e3tbNmyBT09PebMmYO5uTm7du3i4sWLzJw5k+XLl5OQkNCle9izZ08mT57MgAEDiI6OZtWqVZibm7N27Vr69OmDrKxsJ3nIqqoqbty4wYMHD9DW1sbT0xM7Ozu6d++OtrY2Pj4+wpho3bp1vHjxgocPH/L7778LboiEcCWBs0gw9snJySJnAoIfoqys/K90iP97jB8/Hh8fH/r37y8mgxJy4xdffEFAQABXrlzh9u3bGBoaEh4eTlFRETExMaSmpnL48GGhk7x7926gI4cVFhayceNGbGxsqKysJCYmBltbW2bNmoWMjAx37tyhsLBQGBJJ3o+nT58SEREhClYpKSny8/O77HiXkpLCmjVrGD16tMDePn/+nB07dnD16lXxc5WVlZ2+x3HjxuHj48O7d++ECoDkHNu2bRsWFhYUFxd30p3NysoSz1jPnj2Fe9yIESNYtWoV4eHh7N69m+fPnzN//nwmTJiAp6cnf/zxB/Pnz2fDhg2fpabQ5eIVOtZN9+/fJzIyEugosgIDA3F0dGTw4MEoKytTUlJCaWmpEC2/du0aV65cYcGCBejr6yMnJ8esWbPQ19fn1KlTfPz4EQMDAzQ0NKipqcHDw4OlS5cKz/eMjAzU1dVZtGgRffr0wczMDAcHB6ysrHj27JnA0kgOUScnJ/r3798lBjd0PKASYpREV27YsGEcPHhQdAuSwjYpKQlDQ0P27NnDwoUL2b59O2ZmZoKZLPGMnzx5Mnp6esIRTCKIHBMTg42NDXJyckRFRXHo0CHhxgEdWD+Jc9LQoUPF5CcjI0McJpKCvysREBDAP//8g4mJiXhIPnz4wNu3b4VgsGSlVlhYSFNTE926daOlpYXy8nJRpEJHUpHIaLi7u3fS/o2Li8PPz4+//voLGRkZwR788ccfAXj37h1PnjxBWloaAwMDKisrKSoqEjqbDQ0N5OTkcOXKlf/VTvL/irq6OrS1tUVCraio4NKlS7x48YKwsDC0tLRYt24dwcHBFBUVcf/+fWpra8V0d8KECYwYMQIzMzPq6+vR1NQkKCiImpoaPnz4wIsXL7C2tqa5uZny8nJxD1RVVfH19UVTUxM3NzeSkpIYPHiw0ORraWnh6dOn3LhxA19fX5ycnBg7diw5OTn4+fmRmJj42dcocV6Rk5OjsbERMzMzXr9+zbFjx5g2bZpYVbW0tHDs2DEyMjLQ1dXlxYsXJCUl0b17d1EQSchGpaWl1NfXU19fLyTUlJSU0NLSQkZGBnl5eczNzbG3t6eiokJMfD61mnz58qUoxBwcHMR9KywsZP369Z99fdAxTYyJiaFv375Mnz5dWCFnZmZSX1/PH3/8QWBgINXV1ezbt4/4+HikpKR4+fIlJSUl+Pv709bWRlNTE+7u7ri7u5OWlsbZs2fJyMggICCAXr16CQb++PHjCQgIYNq0aTx9+hQdHR3mzJkjCvWLFy9y+fJloqKi+OKLL3B0dOTnn38WZisSN8DPjYcPH+Lu7o6+vj4rV64kKyuLiooKKisr0dDQQFNTkz59+iAtLS2cm5qbm0lJSaGkpAQPDw8qKyu5ePEi8vLybNiwgdjYWOG0NXjwYD58+EBlZSVxcXFUV1cLEfeamhpaWlo6yW9Bx/pw4MCB2NvbIyMjg6ysLCtWrEBdXV0wy7sSjo6OREVFkZubi56enuBCvHv3jm7duuHk5ER7ezu6uroi70m2Td27d8fLy4vIyEgOHjzITz/9xOLFi8UkVSL1N2PGDAEtsrCwYO7cuQIaUV1dzePHjykvL2fgwIFYWlrSt29fQkJCSEhIwMzMDD09Perq6mhubu6E/f6ckPA/JJJVqqqquLm5sWDBAtTV1dHX18fa2pqqqirMzc1xcHAgLi6O1tZWQbKcPXu2gAd8+PABa2tr+vXrR01NDVVVVcLS08fHBy8vL+Lj44mKiuLRo0c0Nzdz7949tLW1WbJkCUVFRTx58oS5c+cKMuaxY8fIzc0V96+rDlurVq0SvJTu3buTkJBAXFwcixYtQk1NTfBTJJCV9PR04ZYFHY25m5sbgwcPpq6uTpBoJYMsCexn+/bthISECNiSmpqauNfDhg3j/PnzVFRU8OjRI0aOHIm5uTlmZmZs374dQ0NDNDU1efv2LW/evOnS9cF/cQgkww7oIIvV1NSgpqYmcmRmZiatra00NzeTmprKu3fvyMrKwtraGltbW0pLS4EODeZu3bqxZMkSlJSU6Nmzp7iHgFALysnJISkpSQz7evbsSUVFBdnZ2WhqagoN+ODgYOzt7amtrSUrK6uTScvnxMSJE8W0Oj09HV1dXerr60WRqaWlRffu3ampqRHfn6mpqdhSScybmpubCQ4O5syZMzx58oTo6GgMDAzw9/fn77//JiYmhtLSUnx9fTE0NCQvL0/wE6ZPny5qPwkJ18jIiKlTp2Jtbc3s2bOZO3cuX331leAx/P+iy8Xro0ePOHXqFEFBQYwYMUJgEgMDA7G3t0daWlp005+SX5ydnXF0dERNTY2EhAQqKiqEvIyMjAyHDh1ixowZgvgiWU9K/uaSJUtwcXHp1CX8/fffpKam4urqytixY1FTUxOrMYmVZVdDMs2UCHuPGzcOd3d3fvzxR27dusXGjRtZtmwZLS0tnD9/XmgjSiRetm/fjoWFBSNHjiQmJoY//vgDGxsbPD09ycvLo6GhgaCgIExNTRk9ejRff/01ysrKzJs3j6ioKKZNm4ajoyOtra0YGxuzYcMG+vXrh7e3N62trZw5cwYpKSkMDQ1paGgQrOquRHx8PLdu3cLX11cUrwkJCaxZs4bCwkLmzJnDnDlzMDQ0pKWlRXwnmzZt4vr162zfvp2xY8cCHZOHW7duIS0tjbq6utDclBRGEv1Yyb34VF/Q2NhYuHq1tLQINx8DAwMhkZaTk0NlZaVY8X5OqKqqcv78eZFU9+7dy59//klFRQW6urp8+eWXBAcHk5CQwNKlS/Hx8WH79u0oKytz8uRJ+vbtS79+/bh79y7FxcXCLnf79u00NDTg4+NDv379mDNnDmFhYRw6dAhFRUV+/fVXgbNcv349Li4uXLlyRcjxHDx4UAiSz5w5k9raWmFHKlGR+NyIiIjgyZMn9OrVixEjRjBp0iSqqqr4+eefMTAwEMWrrKws48aNIzIykhMnTqCkpMTIkSM7OSpJSUlx9+5d/vzzT+zs7Ni+fTuTJk3i9OnTQmtz0KBBbNiwARcXF8rKyggNDcXMzOx/2C+7ubnh5OQkJiaS1fa/2RIcO3aM1tbWTmSDrKwstmzZgqamJps2bQI6csXRo0eFmsGCBQsYP348PXv27ES6BITj3YULF/jnn3+YNWsWAwYMEA1neHg4kZGRDBw4kE2bNmFnZ0dVVRVqamp0796dx48fc+jQIS5cuEBwcDADBgxAV1eXTZs2YWpqKj7T50S3bt148+YNI0aMEJPTxsZGgYuUTJXk5ORobW1FXl4eIyMj8vPzxXQkMTGRvXv3Ymdnx7Jly8T02djYmAkTJlBQUMCSJUvYtm0b69evFxuJa9euUVNTQ0lJiShe29rakJeXx8LCQuCCNTQ08PHxobm5ucsQLOiYFG/YsIHExEQ8PT159eoVaWlpQrbq1q1bnciozc3NxMfHM2zYMAIDA7l69aqA3jx48ID379/z008/8ezZM27fvk1+fj5Pnz5FTk6O4cOHY2FhwbNnzygqKsLCwkIQMvX19TtN6RUVFTEwMBANbnZ2tshhXYnvv/+elpYW2traSEhIEFPIu3fvUldXJzaMkunVgQMHePXqFV999VWnCZe1tTVRUVEcOHAAJycn5s6dy6BBg5g1a5YgHV+8eFGw0z9+/MiRI0eEuo2BgQH29vZCP/fT9+3bb79l4cKF6Onp0draSt++fbtU4H2KDdbS0uLEiRM0NjZ2anq0tLSoq6ujpKQELS0tli1bxvDhw4mIiOD48eMcOHAA6Bi8aGhosG7dOnH2SElJsWHDBiIjI3nx4gWbNm3CxsaGc+fOCWznyJEjuX79Ovv376e8vJxLly4xadIkTE1NRZ0AHcTMM2fOdNkWXnLfJbAje3t7nj59yrp161iyZAmLFi1izZo1nDp1it27dzNnzhwKCgq4c+cOBQUFuLq6MnDgQAoKCrh69Sr5+fkCO3v06FGysrJYtmwZ48aNY/Xq1YwdO5Zff/2VSZMmoa6uzsiRI9HR0aGwsJDa2lqioqJoa2vD29ubPn36EB0dTXFxsXBJlCixfG5ICtfw8HAuX77MmDFjCAoK4tatWyxZsoTnz5+Lre6bN2+wsLDg7NmzyMvLs379esrKyhg1ahTy8vKoqamxbt06cS937NhBY2Mj48ePp7a2FlNTU7Zt20ZKSgqnT5+mZ8+e4oz8+++/OXDggBj4SGq7BQsW4O3tzYMHD4Qj2YwZM/6/19Tl4vXq1asYGRkJ/NPz58+5e/cumpqatLe3U1tbS05ODjIyMpibm9PQ0EBjY2MnAfvIyEgcHBxIS0vj4MGDWFhYsHPnTuzt7YUVp4ThK5laStiSgBCYf/jwoejc9PT0qKiowMbGRkxbo6OjhTTX50ZFRYUgR0lWN8bGxixYsIDw8HC2bdtGdXU13333HZ6enkRERPD9999TXV2NkpISMjIyXLp0icrKSjIyMpCSkuKXX35h8uTJDBo0CB0dHd68eUNsbCzGxsbU19cTGRlJQUEBI0eO5LfffsPU1JTc3FxsbW3x8/MTmmgZGRlUVlaK4lBOTu5fEWHev38vCDeSMDIywt3dnaSkJFRUVNDQ0KCqqorz589TWVmJrq6uIAjJyclRVlZGREQEeXl5+Pv7Iy0tzYsXL7h48SJ5eXnC7cjExITy8nK6d+/ON998g5qaGqWlpWhra3daXzx//pyJEyd2Ir1oa2uLJNSV4rWxsVHonyoqKgpNwrKyMqysrESRLC8vj6KiIjU1NdTX19OvXz8sLCyYMmUKBQUF7Nq1S0A2EhMTBYbQ1dWVadOmUVRUJKZnvXv3FtaFjY2NrFmzhgkTJpCcnIympib6+vokJiaSmJgorlFBQQE5OTmMjY27JBoOHeSQuro6oaphZmZGSkoKBQUFvHz5UuCsu3XrhpaWFpaWlpw5cwZra2vq6uo4deoUxcXFuLm5YW5uTnR0NK9fv+b169fMmTMHeXl50Xza2dkRFBTE6NGjxYH78OFDDh8+jJKSkiA3QgdOW1lZGWlpad6/f8+ZM2dwcHBgzpw5Xbo+QJDuJI1PTk4Ov/zyC/X19YJw9ujRIx48eMDYsWMJDw+nuLiYhQsXigM3IyMDIyMjcnJyuHnzJuHh4eTk5NCzZ09MTExQUVHpRDJsampi2LBhTJkyRRyusbGxODk54ePjw48//ih0OHV0dIiMjCQzM5MBAwb8D0bvfwplZWViYmIIDw+nZ8+egsApmezIyckJXUQJlEBeXl7YZV68eJHdu3dTWFiIg4MDL1++5MOHDzQ1NYmcYWBgICAPkumZnp4e3t7e1NbWoqGhQXFxMZGRkaSmpqKgoICJiQmWlpZYWFiIJlReXr7L5FfoIJxK4CKenp5UV1eTlZXVySYaOnKAhoYGhYWFlJeXM3bsWKSlpXn8+DEWFhb07duXx48fU19fT3BwMCYmJvTq1Ytz584hLS2Nnp6eIJuUlZXR2trK06dP0dPTIygoCCUlJe7evYuSkhK9e/emZ8+elJaWCqUMe3t76uvrKSws7NL1Sd5liRLG0qVLmThxIrdu3eLkyZPExMQgJSVFdXU1qamppKWlUV1dTVhYGM7Oznh5eQmsa9++fXn37h1XrlxBTU2NJUuW8PXXX3PixAmysrKEEoKZmRk1NTWoqqrSvXt3DAwMcHd3F6vb7t27c/36dUJDQ5k6dSq9evWioqKCrKwsXFxcuryNVFJSorKyUrD9P2XyV1dXi0ZVRkaGqqoq1NXVhZ6tp6cn58+f59WrVxQXFws3MIl0Vn19vSBpjRkzhgkTJvDFF19QV1fHL7/8QkREBGpqatjb26Otrc2mTZv4+++/OXPmDIqKigwbNoyHDx+ipKQkrlXyDnQl8vPziYuL4/Lly7i6umJvb4+1tTUJCQlERESwZMkSevXqRWFhobCwNzAwQE1NTWww3N3dmTdvHm5ubsTHx7Nr1y6uXLlCcHAwz58/5+3bt2JjWl9fz/v374mNjRXGHAkJCUKe88aNG0RFRbF3717GjRsnrMRlZWWxsbHBz8+vS6Q7ibJKXl4eDg4Oojm1sbFh8uTJPHz4UFgADxgwgJ9//pnevXsTExNDW1sb06ZNY8CAAaSlpeHh4UG/fv3YsGEDcnJy9O/fn+bmZvHcjx07Vui9SmAKEo5FYWGhMF7S0tKisLCQ/fv38/DhQ86dO4enpydr164Vhkb/v/hXagOSX1xTU4Ofnx99+/bFx8dHrJkeP35MVVUVM2bMwMjISCS9mpoafv75Z5SVlZk0aZJYxf/xxx/Mnj27099JSEggOjpa6FneuHGDmpoaXr58yY4dO4Trh6+vL97e3sTFxXHv3j0CAgIE1OD69ets2LCBxYsXf/b1paenk5GRQe/evbGxsSEuLo7Kykr09fXFS19TU4OVlRVWVlYUFRWxZMkS0YlOmTKF1NRUZs2axbhx41i3bh1bt27lp59+4sGDB5iZmbF06VIuX76MiooKT58+RUpKShREkoJSS0sLLS0tKioqiI6ORkFBQawT5eXlqa+vR0lJibFjx3ZZvkZDQ4PRo0ejoKAgZIy8vLy4dOkS5eXlaGtrIyMjQ0pKCiEhIaJL37VrF8uWLaO6upoNGzYQFhbGjBkzGDFiBPn5+axYsYLz58/j4ODA0KFDMTAwIC0tjePHjzNv3jy2b99OWloaCQkJWFpaYmJiQmxsLD///DOhoaG0tbWxdu1aoCMpSoqgrsanRBYFBQVGjx7NhAkTyMrKIjIykvj4eOGc9ttvv/Ho0SNOnz6Nl5eX6FDfv39PYmIiJSUlVFRUEBwcjJOTE5WVlQwZMgRra2uOHDnC8ePHGTx4MB4eHty8eZMTJ06gqKgobAPHjRuHsrIySkpKDBo0CBUVFZE4cnNzKSgoQEpKqstWxj4+PgQFBREVFcXu3bt58OAB8fHxQEcBefr0aWxtbYU9c319PaampsjKyhIaGsqZM2fIy8tj/PjxBAUFAR2FvpSUFPfv30deXh4bGxvBMJUA+SW6xu7u7vz8889irS8pXiWaupJiID4+/l9j0WRkZMjPzxcH0Zdffsnt27c5d+4c/v7+VFdXC4LRP//8w/Lly/nrr7/E/b948SLt7e1MnDiRt2/fCqkuZ2dnli9fzsSJE+nWrRuRkZE8evRITE/69+/fCSsv0euEjsZl7dq1aGpqIisry8WLF9m3bx/JycmfpU34aeTk5BAfH4+enh6+vr64urpiZGREcXEx5eXlneTOoAPaU1RUhK+vL+Xl5WzZsoWEhAS+/vprmpub2b59O83NzXzxxRedMKorV65ETU0NWVlZampqiI+PR1ZWVsCf0tPTefToEbm5udjZ2VFWVkZOTg7y8vKdmslP7Vs/N6ysrPj1119pb2/Hz88PDQ0N3Nzc+PHHHwXuU3KIS2BCTU1NaGho4Ofnx9ChQ/Hx8UFZWRl/f3/Ky8vFvZGTk2PAgAFCZ1RfX19I7UGHw11kZCSFhYXU1dWxa9cuzM3NBSP+0wYNEMOHfxPh4eG8ePGC2bNnC8KOiooKp06d4saNG8TFxdGvXz8mT55MUlISx48f58mTJ5w6dUrcB0NDQ3788UfKy8uJi4ujsbGRnJwcQTSdNGkSDg4OZGRkUFxczLBhw1i4cCGysrJUVVV1emaPHj3KkydPGDBgAHfv3mXOnDn06dOn0+ayK6Gurk5DQwPZ2dmoqamJwcOnGr1tbW20t7d3gs9oaWmxZMkSZs+eTWtrK6qqqiQmJvLll1+ybt06xowZQ58+faioqKC5uVlAHWJiYsjIyKCoqIh58+bR0tLCnDlzOHr0KN27d+fQoUOkp6eTnJzMjh07aGpqIiAgAC8vL5ydnVm5cmWXri86OpqTJ09SVlYmGP26urr8+OOPKCsrk5uby+zZs5k4cWKn/65bt27CQAgQDoZpaWnExMQQFhbGkSNH0NLSYvTo0UyaNIm8vDwOHjzIq1evsLW1xcbGhtjYWAoLCzEzM8POzo5u3bpRWFjIixcvGDduHP3796e9vZ1Hjx7R1tYmapzPjePHj/Prr7+yYsUKVqxY8X/+XENDA/v37xf464KCAubMmUNAQAA1NTWcP3+e0NBQhgwZIkwHoONdlKgYSTS1VVRUWLlyJcnJydy6dQtPT08mTZqElJQUZ8+eFecVdAwqjh8/jqWlJX5+fty4cUPUAv9XdLl4nThxoli1FBUV0atXr04Hb0tLi9BokzzYEoLSn3/+SXp6OsuWLcPc3JyZM2diaGgofH7hv6S4evXqRVtbG+fOncPLy4vg4GBUVVVJSEjAz89PCBoPHz5crGp69OghJi4ShvSmTZs6SXf9p5B0WZKJppmZmSi+FyxYgJ6eXqc1hYODA2vWrCEyMhJZWVmBI5GQMfz8/JCTkxNr2cbGRkJDQ6moqBBWompqaqSnp/Pdd98RFhbGpk2bxBpNwoL/+PEjb968ISoqCllZWUpKShg/fnwnJu3nhoWFBTU1NWLyBx0Fj5ycnDgw4+LiePfuHePGjcPa2hoFBQXGjBkDdKzle/bsiZqaGlJSUvz+++/8888/pKSkMHfuXFatWoWxsTF//PEH586dEzIf27Ztw87OTiS3wsJCwsLCsLCw4KuvvkJZWZmbN29ia2sriDkXL15k//794t+fExJShJGREdLS0qSnpxMVFUVCQgKFhYWoqKgQExODr68vNjY2BAUF0dLSIu5rTU0NtbW1Ql5GV1cXOTk5/vnnH6Kjo7l58yatra3ExsYCHaB66Fhfe3p6EhgYiKurK9nZ2Rw7dozw8HA8PT0ZMWIEixYtQkZGRuDG7e3t6dWrV5fvoWTK4uPjQ0hIiEgEv/32G5WVlezevRtnZ2dqa2uJjo6mpKQEDQ0Nsb0YO3YslZWVmJmZCUvU/fv3o62tLWyax4wZw7Bhw0QiKykpob6+ntraWoqKili4cCFycnJYWVlx8eJFwsPD8fb2Fla4ampqjBkz5l+TfSRi5du3b+fQoUPcu3cPd3d3kS9kZGTYtm0bWVlZXL58mczMTKEW0tDQQG1tLStXrkRKSqrTgdq7d28hX6eqqoqzszNJSUnU1NQI73TJFElZWVkU0RJrxKqqKgYNGoS/vz9eXl6MHTsWFxcXBg0aJKYKnxPp6encvn1b4OD27dtHamoqy5YtQ1pamtDQUBwdHcV6Nj09nZMnT3LkyBH09PTw8vJix44d+Pv78+2331JdXY25uTmzZs3C2NiYioqKTtuZ06dPk5CQwKBBg8TfhI58MHDgQGRlZbG0tCQrK4uSkhJRyDU2NtLc3CymlF2J9PR0li5dyuHDh9m1axerVq3C2tqa69evc+bMGfr27cvatWsZM2YMW7duZceOHaKgNDAwwMbGRjRdJiYm3L9/X9gRb9iwgYyMDLZs2UJwcDALFy7sVEyNHz8eY2NjTpw4QWRkJN27d2fmzJnIy8sLkpuenh7v3r3j4sWLjB8/vsu2mwEBAdjb2zNy5EgGDx7MkydPaG5uFlrkmpqaaGlpYW5uzqRJk6irq2PVqlVAB3b7xx9/xMXFhZKSEoYOHcrkyZNZuHAhoaGhrFy5kps3b5KVlcX48ePZsWMH+vr6PH78mNDQUIYOHYqsrCy1tbW8fPkSHx8famtrhezQxo0bGTJkCEePHhVcgrKyMmEB+rkh2QL06dOHwsLCTpCg0tJSmpubUVNTQ0ZGBm1tbbS0tGhra+PZs2dERERgYGAgXCmhAwdtYWFBbGwsPj4+9OnTh+vXr3Pv3j3evn1LcHAwtra2rF27lsjISN68eSMk3W7evCmE7X18fPD392f9+vVkZmZ2suntakgw156enrS1tTFz5kxB1JWSkuLIkSPC2U5LSwt7e3vBRZGVleXy5cvU1tYyefJkpKSkBFxFS0uLQYMGMXnyZEpLS8nKyuLIkSOcPn2a7Oxscf5KdN2HDx/OgAEDhBWtpMGDDtOXpKQktmzZgra2dpeGAv7+/ixfvpxp06aJ/6+4uJj09HSio6NxcHDAy8tLqCxUVlZy/vx5QXxtaWmhvr6esrIybt++TUREhNg+5+fnEx0djbq6Os7OzuJsev78OTdv3kRNTY2BAwciJyeHqakpq1evFnbNPXr0YPXq1VRUVIia6XPvYZeLVwmoXjIZk5eXF4x1GRkZlJWVBX7s0wMjKyuL9PR0If8hJycnZC2ampqEw1F9fb1Yh3Tv3p2NGzdy+vRpSktL6dmzJ4aGhujr6wsiiZqaGu3t7QIu0NjYyPv372lqamLUqFGMGjWqS7IZ2dnZNDQ0UFVVRXFxMebm5sjKylJWVoampiZLly4FOkhBeXl5WFtbd5r0Ll++nMzMTKADW/rixQsWLVrE7NmzCQwMJCwsTDjnWFlZMW3aNBobG9m8eTMfPnzg5MmTuLq6MnXqVGRlZVFTUxMktoqKClpaWmhqaiIqKkooKnQ11NXVefjwIZqamgJI3tjYKMhJ5eXlbN26lfz8fA4fPiyIVs3NzeTm5iIvLy8mlAcPHhQSQQMGDGDNmjVCykbSjUq+V4nahLW1NampqXz8+BE9PT3++OMPNDU1SUxMJCIiopPQvcRhq6vF6927d/H19UVGRoZly5aJe2JrayuUDhQUFJCWlsbR0RE9PT2UlJTEvQ8ICBDFOkBISAitra3U1dXx999/8+TJExwdHRk1ahTp6emUlpYSHBzMxIkThTNXTEwMt2/fJjExEQUFBeHlDghfdslkt6vSJxLyXFlZGdLS0piamgqR7EePHrFr1y4iIiJobGxERUWF2tpaQa5wdHTE2vr/sXfeYVGd29u+h957LwIiCkoRUERFEHvvNbYUNXGsSdTENFtiqiUasXeNLfbeCwoWxK4gSO+9d9jfH5N5TzhpkJPvJCc/nuvyGmFmNnvt/e71rvKstZxFSjkxMZHnz59jYmIiIgFdu3YVbdSKi4tRU1MTSun06dNcuXJF9AAuKCjg6NGjxMbGCo6ovr4+bm5uuLm5iXXdWDRr1gwjIyMSEhLIzs6mTZs2vPbaa0Kx6ejoMGDAAO7evcuYMWMEJ1NZgKOvr09qair5+fkYGRmJlmHu7u48f/6cc+fOMWbMGNEHdf/+/dy4cUP0i1ZOwamtrSU3N5fIyEiOHDkiRnra2dnRrFkzFi9ejI6OTqPT6lVVVbRu3VrMMVcWfS1YsAAzMzPi4+MpLS0VBX9mZmaUlJRw7NgxVFRUOH36tCgwyc/Px8XFhQULFoi0rq6uLurq6sTFxbF27Vr27NlDUFAQPj4+aGlpiQlx5ubmos1RWVkZJiYmaGpqis1RU1PzD1EGQBGJDwoKIjQ0lLNnz/K0elAqAAEAAElEQVT6669jbW3NxYsXyczMFJN+HBwcsLGxwcLCgsrKStTU1FBVVUVTU1MYswUFBdy7d4/z589TUVGBpqYmxcXFXL16VUSIlffJ398ffX190dM0KyuLOXPm0Lp1a8LDw9m4cSM+Pj7MnDlTdAeJi4tj48aNjZIvLS0NQ0ND2rdvj4qKCp9//jmHDx8WLaUCAgJo3bq1cCD27t1LZmYm1tbWaGpqEhoaSmhoKG3btqWsrIznz5/TtWtXrK2t2bp1K0lJSejq6jJ06FDBY9XT06Nz585oaGgI6p2xsTG9evXi8OHDfPjhh0ycOPFn7fdsbW3Jzc1tdEGT0mDV0NDA0NAQSZKoqamhurqarKwsiouL8fT0/BlfWDkNTflsKEcux8bG0qFDBwIDAxk6dKgobIuNjWX//v3Ex8fzxRdfMHv2bCorK1m2bBkhISFIkkROTg4WFhZiKIsyi6u0H+CPFTF7e3uLwFdMTAy3b9/GyckJFxcXYmJi2LJlC8nJyXTu3JkBAwagra2Nvb09r732GhYWFgwfPpwzZ87g4eGBu7s7+/bt4+bNm6KAz9zcHHNzc3bu3ElISIiITMpkMmpqanB1deX111+nTZs2oiXWvHnzhINra2uLqqoqKSkpnD9/HjU1td/lhP4UPXv2FBm23NxcYVdUV1ejqakp7oWSonXp0iXCw8MFtUiSJBwcHHBzc2P79u08ePCAAQMG0K5dO3Jzczl+/DiampqMGDFCtMr6/vvvuXTpEpMnTxbOsnK8tZ6enshU/7S9YmVlJdu3b2/Q6Ns/1G0AFNG38vJyYmNjUVdXx87O7mcbsCRJlJSUoKWlxdy5cwkODiY0NBRbW1u0tbVJTEzk4sWLWFpa4uLiQllZGTKZDFdXV6E4Z82axQ8//EBycjK+vr5YWFiwaNEi4uLiWLlypeBTgMK4mj9/PtnZ2cybN0/0l2sM7O3tef311wkLC6NPnz7s2rULNTU1we+Ty+WoqamJ8Y0lJSXEx8cLhf/TCURPnjxh+/btTJgwAR0dHUJCQli2bBm5ubm4uroycOBAunXrRnFxMWZmZlRUVJCdnc3+/fvF1CZlmzBra2tGjBiBqakppaWlPH36FFVV1UZXHYLCkMzMzCQkJARDQ0OWL18ujA74V/V5cnIyeXl5wvuLj4/n8uXLeHt7C06dMqXbq1cv5syZw5EjRzhz5oyYNLVy5UrMzMzQ09MT5HstLS0eP35MVlYW48aNE2l0U1NTBg0aJBT9vXv3cHZ25ocffuDcuXMNlk85ucTa2hodHR0xwWzXrl20aNGCffv2YWFhwcCBA9HX1yc8PJzo6Gg6d+5Mjx496o0XTElJ4erVq2KWenp6OnPmzOHmzZsEBATwzTffkJWVRUxMzM9aN9nY2LBgwQLMzc1p2bIl169fZ+bMmQQEBDBkyBDs7OzYuXMnc+bMEQVwDUVOTg5Hjx5l06ZN1NXVsWLFCkaMGAEoJhq9/fbbrFy5kgcPHoj2LNnZ2Tx8+JBmzZqRlJREr169WLt2rXj/008/RV9fn6+++ko4C0+ePCE+Ph4/Pz/BfywvLyc0NJTY2Fjy8vJo3749ixYtIjs7m+3btzNv3jxGjhwpuGH79u1j8eLF9boSNATLly+npqYGVVVVamtrqaurw9zcXKRHq6qqWLhwIVevXqVLly507tyZvLw8evXqhYODA8eOHSM0NFRsIHPnzsXGxgaZTIaVlVU9XlxhYSGrV68WhT+AmEGunIzUpUsXLCwsMDExwc3NTYzjdXJyEgNVlFyvhsDe3l5w/pOTk5k9e7YYggAKStSZM2dYvXo1ffv2FX2Tr127RkFBAXfu3EFFRYW9e/diZGTEuXPncHJyoq6uTmxKoJiot2LFCqysrAgICBD3sbq6mvDwcPT09PD19eXBgwecP3+e3r17i8LDn06Y+yOwsrLiwIEDtG/fnldeeUVEB5cuXYq2tjZqamocPXqUvXv38sorrxAaGkpCQgKGhoY4ODjUS+tXVFTg5ubGZ599hr+/v9h0d+zYgbW1NVevXmXnzp04ODiIjfr27dsMGTKELl260Lp1a9LS0li6dClnzpzh9u3bDBo0iI4dOwrO9JIlSxol3+PHjyktLRX9fpW9S/fs2UN0dDR9+/bFxsaGnJwcQbXq1KkTU6dOJScnh+XLl+Po6MgHH3zAyZMnmT59Otu3b2fo0KH06tWLdu3a0aJFCzp27Mjjx49ZuHAhtra2fPbZZzx69IglS5ZgZ2fH/PnzkclkwilQVr0rrxsoHBxbW1vkcnmDqrmViI+P5+rVq0iSRLNmzTAxMcHV1VVw9XNycuqtkerqaiorK/H19cXW1hY1NTUx1W7Lli0cOnSIgQMHMm7cOPE9e3t71q1bR/PmzdmwYQNHjhxh6NChwkFRZo769OmDtbU1T58+5cqVK2RmZor6moCAACoqKjhz5kyj7iH8i5ojSRIZGRl8/fXX9O/fH1VVVc6fP09ycjKjRo1i8eLFGBkZkZKSQrNmzcRYXuWo19DQUCIjI1m6dCkVFRXY29uzc+dO9PT0sLe3F32WNTQ0mDBhAp06dUJPTw9XV1dcXV2Jiori1VdfpVu3bixbtoz79++L+iIHBwcKCwvp0KEDr776aqOGMTx69AhPT0/i4uK4ceOGyF63adMGNTU1rl27xqJFi9i5cyfvv/8+7u7uYgS8tbU1L1++xMjIiK5duwoDW5kRunr1KomJicybN4+AgAAKCwuZOnUqUVFRovZDiYKCAr744gtKS0vZvn37zzId+/fvZ9GiRWLy3m+h0cbr+fPnycjIoHv37tja2ooJGkZGRpSWlnLv3j3RH/Gnod/s7Gx0dHTo0aMHzs7OYnznzZs3SUtLo2XLlnTt2pX+/fujqanJw4cPKS8vx9/fn3HjxomNQV9fH1VVVTIyMn6WMk9OTqa6uhpDQ0Nqa2uJiooiOjq6UfK99dZbwjCsqKjg+vXroqinoKBA9NdTUVEhLS2N6OhoMfElNTUVHx8fZDIZqqqq3Lt3j1u3btG7d2/Wrl2Lp6cnM2bM4KuvvsLZ2Zlu3bpRVlZGdnZ2vQhqfn4+27dvJzc3l8TERPT19bG3t8fKyoqysjKysrJwd3enefPmPxtn2hAoNz9QRPCioqJo2bKloAyYmZnRt29funfvTsuWLSkpKWHXrl2kp6cTFBSEu7s7JSUlXL16lfDwcD788EM+/fRTkpOTRTEUKCaKDBs2jCdPnpCTkyMiQioqKqKxvnJEsDLymZKSwuPHj8nLy8PAwEDwahpjvBYVFTFu3Di8vb0pKChg9uzZlJSU0LlzZ5ycnPD19RWbclxcnDDmlT1PHzx4IKZzPX78mLi4OLp27YqtrS22trasXr2ad999F1dXVzEO0sTEBB0dHQoLC0VFsJOTk/CO09LSSExMpKKiAlVVVXR0dNDR0aF9+/YUFxc3OtX10zG6SqqNMoLr6urK6NGjSU1NJS4uTvS7VM7eLi8vF5EQpePk5uYmnC/lhnL58mVycnKwsbEhKSmJ7OxsMQNbaSQVFRUJ2lBmZqaIzCt/FxkZybNnz+pNu2oohg0bRnZ2tnCUQLExKh22mpoaXr58SXx8PKNHj2bKlCnU1NQQExPDo0ePMDMzw9TUFCMjIzp06FAvevjvAxOqq6uxsrISk4CUHQCUhSVdu3YlODhYRM8lSao3I17JD28Mv97KykpEsJRRHPhXRw5XV1eSkpKIiooSuk7pMH300UeEhISIrg/+/v7i+VWm+ZXyGhsbi3TkgAEDhPGvr69PixYtyMvL4+nTp1y6dInQ0FDRYUDZYL+kpISSkpJGF8EAoi3V4MGDBWdWRUWFQYMGAQpdt3fvXqqrq/H29sbCwkIU94LiuVFTU8PCwkK01VHy7J4/f46RkRHDhw+nsrKSNWvWIEkS2traXLhwQVzHuXPnCuNEST9RXv/ExEQcHBxYvHgx27dvJyMjo1Hy5eTkkJeXR3h4OAkJCfTp04du3boRHx8vZr/PmzePyspKMjIy0NfXZ/jw4Xh7e1NcXCxG5b548QJtbW0MDQ3JzMxk27ZtbNy4ESsrK27fvs3du3dJTk7myJEjdO7cmcrKSg4dOiQKbczMzERWTtkDWgk3Nzd69OiBv7+/0DuNwd27d1m4cCFeXl68++67GBkZUVtbS3l5OUlJSYIy1rNnT5ydnTEyMkJdXV1kQ8PCwgQvOTo6mrNnzzJ27FihZy5evIiKigrdunVj5syZbN26lSNHjvDkyRPc3d1FcZ4yYq+cKmZhYUFhYSFpaWnU1dXRrl07wce/f/9+o2RUtsCqqqpCW1tbZOUAMa2tb9++9fpbKykqVlZWwonesWMHDx48oLKykv79+9O+fXtycnK4ffs2Ojo6DB8+HC0tLWpra5k0adLPKGPp6eliSqLyeVPWLJibm+Pl5SV0dWMQFxeHnZ2doELV1tYCCt3g7+9PcXEx27ZtIyEhQdhZvXr1wtLSkuzsbPbs2YOqqio9e/Zk9uzZPHjwgIsXLxIbG8vHH39Mhw4dhG48d+4cZWVljBkzRtQyVVZWUlNTQ0pKiuCzK7M9lZWV3Lp1i9DQUA4dOkRiYmKDRm032ni9ceMGS5cuZcGCBSxbtqxehe358+fZv38/Y8eOrccLBfjwww8JCwtj06ZNGBoacuPGDezt7fnwww+ZNGkSmzdvpnv37uKmhIWFiarBTp060adPH8G1+fTTT6mpqRERsidPnqCtrU3z5s1ZsWIFsbGxZGdnY2xszMcff8zHH3/cYPnMzMzYuHEjGhoaPHv2jH379olefEqjWUNDg4yMDNauXYskSfj4+JCSksKLFy+YOnUqY8eOpba2li1btrBw4UJu3LjB22+/zYkTJ1BXV6eurk4okNjYWJKSknBwcBAKdu7cuYwePVoULxQWFqKjo0NpaSlbt24lMTGR4cOHi0rHxiI8PBxDQ0PeeecdUZ15+/Zt8SApWzspo0gbN25k+vTpjBo1SkQmtm/fzpw5c/Dx8WH79u0AJCYminTkqFGjGDZsGFlZWcyaNQtQcA2VSkFp+H322Wc4ODgIBb9p0yZOnjxJhw4dWLZsGWpqavXoBw3By5cvBa9MT0+PFStWcPnyZVauXEmnTp0YM2aM6K176tQpDA0N+fDDD7G1teXq1au8/fbbaGpq8tVXX9G3b1/atWtXj0vn4+PD2rVryczM5MyZM5SWlmJoaCj4oikpKWI8ICjGkC5btowuXbqwYcMG1NXVRcFdUFCQSP02ppjC2NiYoUOH8vrrrxMaGsqbb77Jnj17OHr0KJqamtTW1vLGG2/g6OiIoaGheHby8/Oprq5GT0+PqqoqCgoKKCgowMXFhR07dojerbt372b9+vWiSOHKlSssX76coqIimjVrRnBwMO3atRN82C1btrB06VL69esnmrxfvnyZXbt24evry+zZs8U6aCgKCwvJzc0Vgz4AseEpjbPdu3cTGhpKREQEmZmZNG/enGPHjvHpp58ybdo0PvzwQwwMDH5X2VtYWPDOO+9w+vRpzp8/j729PR4eHqSnp/Py5UvatGkjjOjLly8THR0tUsOgiJI2Nl1ZUFDA1q1bGTp0aL3IuzJNq0wFd+jQoV5K1sLCAmtra2JjY3F1deWtt94SWSY/Pz/atm2Ltra2KOIZN24cEyZMEB1KfloE6eTkhKamJjk5Ofj7+wtnKDw8HDc3N9TV1Xn06BGXL19ulGxKKLmeSuNb2Y4rOztb6PiRI0fWiwgrUVRUxOHDh1FRUWH8+PH1ghXFxcWsWbOG1q1bM2PGDKKiojAyMhKTyt555x3at2/Ppk2b6hVhKY9hZGTEgAEDkMlkwoCdP38++fn5jepHbG9vj56eHl9//TWffPIJe/bsIS8vjxkzZrB//342bdqEt7c3EydOZMuWLaSkpODk5ER1dTVPnjyhoqKCAwcOsHr1avr378+QIUPYsWMHoNDDyrGebdq0oUuXLvTq1YtWrVqJJv/wrxHiDx8+JDg4mO7du2NpaSl0TLdu3fDx8flDXFBQpP8lScLb21tEAXNzcykuLiYvL487d+6wc+dO7t69W69eAxRrecmSJWJv7ty5M6GhofWCLlevXmXr1q1s3LiRwMBALC0tefnypXhmlVMtT548yRtvvEHr1q05cOAA5ubmon+tsbGx6O3bvn37etP5GoLMzEwyMjLo27cvBQUFvPXWW6iqqvLxxx/TrVs3nj9/TkJCghjYo6amRnV1NXV1daIoTU1NjaVLl1JVVUXHjh2ZOXMm3bt3p6KigpKSEoyMjIQjUVhY+IvBN1tbW3744QfU1NRITU3F09OTCxcuUFtbi5ubGxoaGixbtow33njjZ0Xuv4XAwEC0tLRo2bIlLVq0QENDg9raWvFsdOrUic8++4za2lqhYy0sLDA3N6ewsJCIiAjy8vJ499138fb2xtrampUrV4rewSoqKqImICwsjLffflv05Va+HxoaSlFRETNnzqw36KiyspIvv/ySM2fOYG1tjaura4OKQxttvNra2vLmm28Cip5qSi6DsmLU29ubwMBAysrK2LhxI3p6enTp0kW0RsrPz+f7779n8+bNfPzxxwQHB/Pmm29y5MgR4S1euHABOzs7WrRoQVRUFJaWlrRq1YoXL15w7tw53nrrLdTV1Tlw4AC7du3C29ubKVOmoKKigpaWlthkHB0d603+aAjmz5/PoEGDCAgIEBXkKioqwkhXzhp2dHQkKCiI5ORk1NTUhHJRtvBRVVWlU6dOzJ07lwsXLtChQwdUVFQwMjKibdu24hxbtmyJnp4emZmZZGdnk5qaip6eHs7Ozvj6+pKfny8iCDo6OtjZ2VFdXS1oFcr2TY1BeXk5EyZMEOMRjY2NOXXqFEeOHKGyshIPDw+CgoLIz8/nwYMHPH369GeVloaGhnh4eDBixAhh2JmYmLB8+XJ0dHTw9/cnPz+fXbt2ceXKFQAmTZrE4sWLsbKyIiwsjGvXrol0SmRkJOrq6nh5eVFXV4etra3wDhsr4+7du4WXq5xE0rFjR6Kjozl8+DAvXrxg5syZVFZWcuHCBVxdXZk5cyagMJg0NTWxsbERzpHyXh07doxDhw7Rq1cvxo8fj4mJCfv27cPAwAA/Pz9UVFQ4deoUd+/eZcSIEaIdyrp166itraV///6oq6uTnZ1NcnIybdu2FY5DY3sS/3TyTFhYmOBhLliwAB8fH+zs7AT3HBTRjefPnzN69GisrKwEUb9NmzZCGf+0stzT05Pg4GBUVVXJycmhTZs29OrViytXrogG68+ePUNPT09E7X19fetFWO3t7UWT/caM91UiOTmZgoICbGxsSE1NZdu2baiqqiKXyzE0NBSGUPfu3TE3N+fcuXMkJycTHx/PnDlzGDduHEZGRjx8+JBLly6JoQsymQxJkvD19WX48OFoa2sjSRIqKioiFajsD9u5c2eqqqrYsmULLi4u6OjocPbsWZKTk5HJZGRkZIhG3V9++SVff/11g+V7+vQpLVq04OHDh1y+fJnc3FxatmxJ//790dbWFty00tJSzp8/L4wFZaeIt956C09PTw4dOoSuri4BAQFYWFhQU1Mj+PJlZWVoamr+zDCsrq7m9u3bHDt2jKqqKkaPHs3gwYMBRRS5uLhY1DDY2Njg5uZGUVGRKKJrKFJSUrCzswP+1QheS0uLqKgoCgsLad26tUjxgyICZmRkhJGREXl5eVy/fl1U71dXV7N7927i4uIoLCwU/NyCggJkMhlBQUFYWVmRnp5OSUkJFhYWqKqq8vLlS8LDwxk4cCCTJ0+moqKC06dP8+TJE/z9/VFTU+P27du0aNGi0f2IjYyMMDc3Z/LkyaipqXH//n3Kysp47733xFhdpeOh5IGDwiBUU1PDx8dHTJ8rKyujsrKSCRMmiIKk8+fPo62tTVlZGWpqagwcOFCMgp09ezb+/v6cPn2ayMhIunfvzqBBg4RRpLznyixLdXU1Fy9ebHRUMjAwEJlMVm/8a01NDdra2nTo0IH8/HxBh2jVqhUpKSmsXbuW/v374+7uTsuWLUUUcfDgwWRkZHDw4EEkSWLChAnU1NSQnp5OREQEAwYMYPbs2dy5c0fQx5TXLyAggEGDBuHk5CR0soqKCjY2NmIPunTpEvHx8Y2SDxTRaWXqPyMjA1NTU0xNTXFxccHT0xNra2vKy8tJT0/H0tKSzMxMiouLcXNzo7S0lN27d3Pnzh0mTZpE8+bNcXd3F9dLT09P2CFXr16lrq6Obt26UVFRwXvvvYe9vT2zZs3CxMSEqqoqjI2NOXbsGNu2bWPChAmiZ7cSygl7jcGvtdSsrKxEU1MTXV1dqqur2bNnD/v27aNnz56iuMvY2Ji2bdsSGRnJq6++iomJCVZWVlhYWODs7IyZmRkpKSnMmzcPR0dHOnToQG1tLc+ePRNBTFVVVYyNjcnMzBSFqE5OThQXF3P48GHy8vLw9vYWdBlVVVW2bt36mzI12nht3bo148eP5/z584SHh2Nvb4+RkRERERHU1tbSo0cPjI2NuXbtGl9++SWVlZUsWbKE3r1706VLF1RVVTl+/DhXrlyhVatWBAYGEhgYiJOTE05OTjx+/Ji7d+/So0cPfHx8qKioEC1czpw5w5EjR/D19cXJyYnPP/9cbBzKariYmBiqq6vx8PBAQ0Oj0eNh169fL6gGvr6+wojLysrCwsICKysr0dtu2LBhxMfH8/DhQ9q1a4erqytVVVVER0dTWVmJgYEBkydP5t133xXH19DQoH///sKo0tLSEpyomJgYjh07RnR0NEFBQWIkaVZWFhkZGVhZWTFq1Cjq6urIy8sjOzu70e15ADp37ixal2RnZ2NlZYWtrS0zZ84kPT0dT09Pqqurqaqq4tKlS/j6+vLtt98CiI0xMDBQkL6VKewWLVrQsmVLEfLfvXs3N27coEePHty6dYv9+/fj5eXFpEmT2LBhA/fu3WP//v34+PiI/sGTJk1i0qRJ5OfnExsbS01NTb00YkOgHMWnqqrKtGnTqKurQ1tbm2nTpvH06VMWLlwo+D5xcXEUFBRQUlKCnp6eGGJgZ2cnjNeamhqePHnC/v372bt3L1VVVYwcORITExPc3d3FpBdQKKrs7Gxyc3O5c+cOp06dwtTUlHfeeQdfX1/S09P59ttvcXV1xcfHh2vXrrFkyZJGz+JW4pNPPuHMmTNMmzZNVMU+f/6cRYsWkZ6ejq6uLpIksXPnTnbt2oW6urpoWxYVFcXmzZvFc1JVVYWqqiqVlZWiRV14eDiXLl2iS5cuTJw4ETc3N1JTU3n06BHffvst1tbWrF+/noEDB4pJOdXV1ZSWluLi4oKLiwtff/01b7zxRqNS6qB4VpRFmYWFhezZs4eqqirGjh0rjNfk5GQcHBzw9PTk2rVrrFixArlczooVKwAFJ/H8+fPs27eP6OhoMVa1vLycwsJCUXxRUlLC48eP0dbWZtSoUULZOzk5UVlZyauvvsqTJ08IDAzE1NQUe3t7tLS0OHz4MHv37mXSpEmimLOhUFVV5aOPPmLTpk0io9G3b18GDhyIoaEhOTk5REdH8+zZM86cOUNhYaFondeyZUsxlUsulxMQECCyDVFRUZiammJubo6Ojg5hYWEkJSXRvn174YQ/fvyYTZs2sXPnTlxdXQUfua6uDhsbG7HZKjNLPj4+JCUl8cUXXzRKxqtXrzJ69GjU1dXFpKLKykosLS0ZNGiQiNIpo0D29vYiGlReXo6enp7oN3vv3j0++eQTEb1ctGgRQ4YMQUdHR6R6ldd12rRpdOnShbq6Ou7fv8/Tp09p27Yt7u7ufPDBB8THx3Pnzh0GDhyIuro6W7dupUWLFsybN69R8kVHR4tR4cpWZtXV1URFReHq6sonn3xSr3A5NTWV9PR0Md3wp5y/jRs3cujQIaZOnSoMFmWXh8rKSsGxNjAwEAN/lFPisrOzmTBhAgYGBuzbt0/wQ0FRhJeSksL169e5dOkSUVFRog92Q9CvXz/69+9PSUkJDx8+JDk5GVNTU3x8fLC0tMTb25sxY8aINo+7du0S6yQgIIAvvviCiIgIysrK0NLSIigoiK+++ooHDx7g5OQkJjoqDdDx48fTuXNnEUlVjqfOy8tj/vz5onvJw4cPSUtLE0NwXrx4wfr160XRZWNgYGCAp6cn9+7dIzc3lwULFtC8eXNqa2spLS0lKChI7Gu1tbXk5ORQWlqKpqYm2dnZbNq0iZqaGjZs2CD29qqqKiorK0lLSxNFvKdOnSI6Ohp7e3sSExPZsmULnTt35u2330ZXV5e6ujpu3LjB+vXrOXv2LB4eHmItJCYm8vTpU1RUVJg6dWqjuij9lLteV1eHTCajtLRUXPOKigouX74shh+YmZmJ6YiqqqpMnDgRVVVV9uzZg5WVFZMmTWLMmDEi6LJ06VK2bdvGZ599xsSJE1mzZg2HDx9m8eLF2Nvbo6KiQocOHcjNzWXZsmX07t2bjz76iJs3b3LkyBE6derE+PHj8fLyQlVVtV7t0K+h0cZrQkICoaGhmJub0717d0xMTFBXVxccxj179pCSkkJxcTEuLi5IkkR+fj5Hjx6lrq6OwYMHM3LkSNLT07l27RpTp04Vc4+VU7VKS0s5c+YM58+fJzAwkIqKCmbPnk1+fj6TJ0/G2dmZ6OhovL296dWrF7169eLs2bM8fvyYHj16CIWkvGmNwbJly9DR0eHcuXPcv3+fESNG8OLFC+bPn0/fvn0ZPXo0V65c4dq1awwdOlQMVnByciIjI4OvvvqKgoICpk2b9jOj6/jx45SXl9OnTx8MDQ2JiYkRxRZdunQhPj6ec+fOiRR0QUEB1tbWGBkZ8eLFC4qKimjZsiUqKiqYmJjUW3yNwaRJkwCFkac01N3d3Vm4cCGff/45jx494ty5cwwePJgxY8agq6vLy5cvRVsvUHi8xcXFHDp0iLq6OgYMGICbmxs5OTnCM1amfMeNG8eUKVO4evUqLi4uGBoa8sorr+Dn54eJiQm1tbW4u7vXSzcZGxtja2v7hzi9H3/8MWFhYZw+fZrk5GQGDx4sKBH+/v4kJyejqqpKZGSkmDCkpF8oq0jV1NREEZYyJXvv3j0hiyRJyGQyWrRoQVVVlTDghwwZQlVVFbdu3eL69eu0aNFCzIcGRfFDTEwMJSUltG3bFhcXF6ZNm0bHjh0bpYxAkTq1tramV69eDBkyBAMDA/T19bG0tERTU5PNmzeTlZXFkCFDGDBgAGZmZsLB6tq1Kz4+PiJ9I5PJ0NLS4uHDh2zYsEFkMzp27Eh+fj4rV67E3t6e4cOH07FjRwwNDUWDfCV/WrkusrOzCQ8Pp1OnTlhYWPzhPq/6+voi1ammpsaUKVNQU1MT60RFRaUeHWDgwIGCc3zo0CGCg4Np1qwZQUFBGBsbi6EHVVVVokJc+X1dXV38/PzEaMqfoqKiAg0NDUpLS4Ux1qdPH/Esqqqq4uTk1OiopDLiGBQUxLRp06ioqBDFZhoaGujr6yNJknAIlZthly5dcHZ2Fmm9JUuWcOfOHdavX8/IkSPR1tbmyJEjODs70717d1RVVUlNTRWjugFBj/Dx8WHhwoW4u7sTFxfH1atX8fLyEn17q6qq6nFnG4s7d+7Qq1cvLCwsKCkp4dq1a5ibm+Pt7U1UVBQHDhzAy8tLPJ8/NVwrKysZNGgQXl5eaGlpib6foOAZKiPhQL11YGNjI4bbKAtHTUxM6kWrpk+fjru7O0+ePGHTpk2Eh4fTt2/fRrU6A0Vq1cLCggsXLnDz5k0mT55MdnY2ixcvZvjw4YwYMUI4R0lJSZw7d44nT54waNAgEenOzc3l8OHDJCcnM3XqVMEHBkVmztraGhUVFTIzM4mKihKdUkDh4I0cOZKamhpcXFyIjY3lu+++IzY2VkyGMjc358mTJ2zdupX4+Ph6XU8aAuX0N0mSKCgoIDY2lrKyMkEZAoWTFxcXx549ewgNDWX06NH4+PgIipyDgwO3bt0SDtSbb77Jo0ePqK2tZcCAAejr63Pw4EHmzZvHtGnThLEHijV47tw5MRBmwoQJuLq6oqOjg6WlJfb29kRFRbF27VqePHmCn59fo+QDRaHQ4MGDcXZ2xtzcXPRwX7NmDVFRUQQGBjJq1CjRSs/CwkLsTfr6+oJmoDRcQcH3z87OrtcqcOTIkVy7do3ly5dTUFDAuHHjRDcR5f3U0NCgX79+dO7cma5duyJJEtXV1RgZGeHk5MTVq1eJiooSGY2GYOfOnYL6mJOTw6lTp1BXV2fgwIHChujdu7f4/5AhQwQ9MikpCR8fH6ysrPD19UVHR0dkOZSwtrYmMDBQOJpjx45l+fLlfPTRR6IFHCi6/QwZMgQvLy9kMhkmJia0b98eFxcXPDw8UFVVJT4+nn379v2uTLKGVqvL5fLGl7X/zRASEvKrltA/XT7458v4T5AP/vkyNq3Tf7Z88M+X8Z8gH/zzZWxap/9c+Ro/vqgJTWhCE5rQhCY0oQlN+IvQ4MhrE5rQhCY0oQlNaEITmvBXoyny2oQmNKEJTWhCE5rQhP8ZNBmvTWhCE5rQhCY0oQlN+J9Bk/HahCY0oQlNaEITmtCE/xk0Ga//LchkS5DJKpDJ7P/D47yLTFaNTOb6J53Zn4f/CzI2oQlNaEIT/nM07RdN+A/wlxRsyeVyU2Ao0B/wAGyBKuAxsA3YFhIS0rjpAn8mZLIvgXZAS8AMKAcSgaPAd0hSbiOPZw9EA5uRpFn/9l4C4PAr38xEkuoPYZfJtIFY4D6SNOAXv9Wwc5IBrwFTgTaA6o/nuA1YiyTVNvJ4vy7jzz87Adj5409TkKTN//b+nyPjnwC5XD4CCALaAl6APrAnJCRk/F95Xn8m5HL5b673kJCQxq33vxn+D8j3Korn9rdQFxISovo7n/lbQy6XJ/AbujIkJMTqV977n4FcLu8PzAZaA6ZAOnAPWBESEhL+V54bADJZF2AO0AkwAfJQ7NurkKTTjTjOL+8XMtnv2gZIUt2/HevvtF/803XN38Z2+6siryOBTUAH4DawCjgEuAObgQNyubzx3en/PLwN6AIXgG+BPUANsAh49Ac8xY8BTeDXZkcWAot/4d83P/ukJJX/eE79kck6NfI8foodwBbACdiP4n5o/Hjs/X9gOsDvyaiA4tqtAUp+9TN/nox/Bj4CZqAwXlP/2lP5/4bfXO9yufw/i4z89finy/eAX9Yfi4HLP37mzF9yZn8+Gq4r/8fwo+FzEvABzqJYq5HAYOCmXC7/ax1mmewj4DoQiOL8lgMnAGOgayOP9mv7xe/aBj/bm/5e+8U/Xdf8bWy3Rk/Y+pPwAhgEnPqplS6Xyz8A7gDDgWEoLspfAQMk6edzV2Wyz4APgAVAw+Z5ymSGwDjgEpL0ayOUCpCkRY04v93Ash/PIawR31Oe0xBgAhAP+CFJOT/+Xh04gOL6TwK2N/B4DZFRGe3dBuQCh4G5v3HU/0zGPw9vAykoPPsg4MpfeC7/v2AQEhLys/Uul8sbv97/nvhHyxcSEvIAhQH7M8jlcmW0buN/63z+P6MgJCRk0V99En825HK5FQp9mAl4hoSEZP3kvWAUTsgSFHrxvw+ZbCSwFLgIDEOSiv/tffVGHOu39gthG9SLsMpkv2cb/F32i3+0ruFvZLv9JZHXkJCQyyEhISf+PbwcEhKSAaz/8ceu//UTU+KXDFcFDvz46vIr7/8SxgI6KKKbfw4kKQ0IBUYgkxn8gSMM+/F1uTBcFcetRuERA8xsxPEaKuMsoBsKukLpb37yP5fxT0FISMiVkJCQmJCQkH9sQ+RfUrY/4o+s978d/uny/Rrkcrk74I8iY3DqLz6dJvw2HFDsx7d/ariCQgcBxYD5X3FiyGQqwJdAGfDKzwxXUO4dDcWv7xeSdBlJOvEzaoAk/bZt8PfZL/7RuubvZLv9VZHX34LyIaj5S8/ilzHwx9dHjfhOjx9fb/zGZzSRycYDzVAYdY+A67/DO72JYpEEokg1NQZKbljcL7yn/J0PMpkRklTQgOP9vowymRvwBfAtknQdmaxbA477n8jYhP8cf2S9/y/hny7fmz++bgkJCWkch/3vC80f0+f1dOU/QL4YFNxBP7lcbhYSEiKCCnK5PBAF1/7oX3RunVDQy34A8pHJ+qNIE1cAd5CkxnJxG7In/hJ+zzb4O+8X/3RdA/9l2+1vZbzK5XI1YOKPP579K88FAJlsLqAHGKIgYQegWHxfNOIoASi85he/8RkrYNe//S4emew1JOnar3zn7o+vf+RBVSpGp194r/lP/u8K3GrA8X5bRplMDYV8SShSJw3FfyJjExoJuVz+Z6z3vy3+6fL9FHK5XBsYD9Sh4KL9U/CLulIul78WEhLya7ryb4+QkJA8uVz+HrACeCaXy4+ioFc5o0jTXuBfzsh/G+1/fM1EwcH1qPeuTHYdGIEkZTfweA3ZE+tDsYf8nm3wt9kv/i/pGvhrbLe/W6usL1B4dKdDQkLO/dUng4KDtBBFdWUAipvSq8EPqUymAVgCGfx6W4dtQHcUSlkXhWLYADgCZ5DJvH7lexk/vjZr0LnUh/LBfgeZzOQn56uGovhBCePfPVLDZPwE8AZe/ZFc31D8JzI2ofH4xfUeEhLS0E3p745/unw/xSjACDgTEhLy6zz0/y38pq6Uy+W/piv/JxASErIKBaVLDZgCvI+iQCYZ2P7vdIL/Iix+fH0L0EYROdVHsVefQ2EsHmzQkRq2X/wShG2AJP2abfB32i/+L+ka+Atst7+N8SqXy2cB7wJRKIqJ/npIkhWSJEOhLIehiEreRybzaeARTH98zf+Nv7H4R55PJpJUhiQ9QZLeQuGBa6OoUvwl5P34atbAc/kp9qGoPnYGniGTbUQmW4Wi6KMfihQWQENScb8to0zmhyLauvwPpJf+Exmb0EiEhIRYhYSE/Gy9y+Xyhq73vzX+6fL9G6b++LrhLz2LPxEhISGLf+TcZYaEhJSFhIQ8CQkJaYiu/J+AXC6fjyI1vx2FbtYFfFFQufbI5fKv/qJTU7ZYk6GIsF5CkkqQpKco2ialAEHIZB0bcKzf3xP/HTJZQ22Dv81+8X9J1/xVttvfwniVy+XTUbSVeAYEh4SE5P3OV/67UBiWR4BeKB6+nb/zDSWUUUatP/BXleTnwF95X/vf/kbDoSDDD0LhHWagWHCvo1BCASjSVQAN8fR/XcZ/0QVe8K9CsMbgj8vYhD+MH42DP7Le/yfwT5dPLpe3RsFTTAEa3nvzfxe/pyv/9pDL5V1RFEUdDwkJeSckJCTuRwM9EoWBmAq8K5fLm//Wcf4/QWloxiFJD+u9o8ikKSNtfg04VuP2RJmsnm2AJP2WbfC32y/+D+iav8x2+8uNV7lcPgf4DniCQviM3/7GXwhJSkRxk9ogk/2+d6codqriX95mY6A0HHV/5X3Tf/tc4yBJNUjSciSpLZKkjSQZIEl9UMjXFoUCeNqA4xTw6zLqoWjW7AZUIJNJ4p8ipQKw6cffrfqF7/9nMjbhP0JISIhY73K5/C+PZvzZ+AfL908s1Pot/J6u/F+Asrn+z1rxhYSElKFoQ6SCgn7130b0j68Fv/K+0rjV/pX3/4XG7Iky2Rx+Yhv82HHgt/C33S/+ibrmr7bd/tKCrR8J6l+gSFf3/GmF5d8YNj++NnRTeAx4I5MZIElFjfg7yhTML3UEAEUxFfxKf8f/ABNQeMU7GtH+5NdkrEQxCOGX4INCEd9AoRx/iVLw/0vGJjQcjV3v/2v4R8knl8u1UDzDdfz6s/dPw+/pyv8FaP74+mvtsJS/r/ovnMu/4zqKCnIXZDINJOnfz8H9x9eEBh7v9/dEmayebVCvpeOv4+++X/xjdM3fwXb7y4xXuVz+MYqmy/dQEJn/HlQBxXzkgp95eYped0tRkNfDkKSGcnauouAt+aFo8PzTY7YB0n+WCpHJHFB4NPDrTan9f3z9Y03zf0lxyGTtUSzIEhT3pqG4yi/JqEgpTf6Vv78IhfG642fjYf+F/0zGJvwu5HK5K4rG7xn/9vt66z0kJKThHLW/Ef7p8v0CRqIotDz5DyrUQi6XtwHS/32fkMvlDdGV/wsIRTHJb6pcLt8QEhIipvnJ5fK+QGcUran++w34JSkHmWw/isECn6CYOqiATNYT6I1i8llDq8yv8mt7ouKY9WyD36EK/BR/6X7xf0XX/F1st7/EeJXL5ZNQCF+L4qGdJZf/bOhEQkhIyPb/8qkB9AG+/rH9x0sU/E9LFNOVmqPgiE5pxPEOoSAz9+bnD+pI4H1ksisopl0VoyDq90cR/TzNL409VBjS3YFoJOlJI87lp7iATFaOIuRfDLRBUaxViWKCSmOiGL8l4x/DnyPjfwy5XD4EGPLjj8r+uB3lcvn2H/+fExIS8luTwv7u6AN8LZfL/6z1/nfDP12+f4eyUOufMlFLiZHA+3K5vHG68n8HP6DQnT2A53K5/AiKtemGglIgA94PCQnJ/fVD/H/FOyhGgn6ITBaIgsbggIKPWwtMaWBPcPit/UIm+5ltwM8nlScgSdv/7Xt/h/3iH69r/k62218VeVX2F1VF0Uril3CNho4n/XNxEYXi7wx4oWg3U4qi6GgXsLoRniBIUjgy2X1gHDLZ+/82eOAK0ApFBLIjCs5WAYpU+i5g16+0E+kB2KIYXfpH8QMwBkUvSG0gDUU/yC+QpIRGHem3Zfyj+DNk/DPQFsWo3J+iOf/qh5vIb4+5/bvjd9f73yYr8sfwT5dPQC6Xu6EouPwnFmr9rq78X56CFxISUieXy/sB01Ho5aEoplDlobiXq0NCQs7/ZScoSVnIZB1QRF2HoohyFqOY3PY5ktSQfuDKY/3WfvFHbYO/w37xf0HX/G1sN1njWq014Q9BJhsLfI8ionnkTzjeIRTenDOSVPgfH+/PwP8FGZvQhCY0oQn/OZr2iyb8h2gyXv8bkMlkKAqStIG2jWzO/O/HaotiysksJOm73/n0fw//F2RsQhOa0IQm/Odo2i+a8B/iL2+V9X8CigdzKnCEf1Uc/lFYo+iZuv73Pvhfxf8FGZvQhCY0oQn/OZr2iyb8h2iKvDahCU1oQhOa0IQmNOF/Bk2R1yY0oQlNaEITmtCEJvzPoMl4bUITmtCEJjShCU1owv8MGtwqSy6X/8/zC0JCQn7WME6Jf7p88M+X8Z8gH/zzZWxap/9s+eCfL+M/QT7458vYtE7/ufI1RV6b0IQmNKEJTWhCE5rwvwNJkhr0b9q0adK0adOk77//XlKisrJSKi4uFj9HRERIBw8elKKjo8XvSkpKpLq6OkmSJKmgoEBaunSp5O/vL3Xu3FkaNWqU9Mknn0iXLl2S8vPzJUmSpOLiYqm6ulqSJElKS0uT2rZtK2lqakqbNm2SJEmS6urqpL1790qTJk2SJk2aJG3cuFF6/vy5VFNTI/5mTk6OdO/ePSkpKUmSJElSnntD5PspKisrpRMnTkhDhw6VjIyMJGtra2nBggVSdna2VFdXJ12/fl3avHmz9OjRI0mSJOn58+eSubm55OPjI+Xl5Un379+Xhg0bJm3cuFEcc+HChZK5ubl04MABqbi4WAoKCpKMjIyk8PDwen/7/Pnzkp6enhQQECCVlZWJ86mtrRXXQYmGyPdTGZXHUB7n8ePH0siRIyVAGj9+vHT48GGpV69eUv/+/aX8/Hzp7t27kr+/v/T555+L7xUUFNS75j9FRUWFVFZWVu/91NRU6eLFi9LTp08lSZKk8vJy8d62bdskIyMjqW/fvtKJEyekM2fOSImJiZIkSdJ7770nAX/oHiqvW21trbRr1y7JzMxMAiQTExPpyJEjP/tcUVGR+N3WrVslQHr11Vel27dvS+3bt5ccHBykhIQE6fjx4xIgjR07Vnz+wYMH0vz58yUXFxcJkDQ0NKQBAwZI33//vXT79m3pwYMHUkZGhiRJkvTy5UtpxIgREiDNnDlT/O3GyOjn5ycB0tKlS8U5FBUVSbW1tVJOTo5Y+wkJCdKmTZuk58+fS5IkSa+99poESJs3bxbfW716taSlpSUBkr+/v/TgwQNp3bp1koGBgdS+fXvptddek7S0tCRPT09xXElSPGdKPH36VHrrrbcka2trKTg4WLp27Zp47/bt29KZM2cavU737dsnvfXWW1J0dLSUkZEheXp6SlZWVtLLly8lSZKk6upqKSMjQyotLZV+imfPnkkLFy6UXF1dJRcXF2nZsmViLS5fvlwaPHiw9Nlnn0lbtmyRZs+eLY0ZM0YaMWKENH78eGnNmjXS8+fPpdjYWGnJkiWSsbGxpKenJ82ePVs6ffq09MMPP0hr1qyRli9fLm3dulV69uyZJEkKPffixYtG3cPCwkKh65KSkiQPDw/J1dVV6M+KigopLi5OysrKkqqqqoR8FRUV4v93796Vxo4dKw0dOlT68MMPpQ8//FBatWqVlJycLEmSYm0HBwdLxsbG0okTJyRJUuiWhQsXSvv27ZMyMzOl8vJyKTIyUjp9+rS0efNmqW/fvhIgAdKXX34pSZIkrVy5UtLX1/9DuqaqqqqevsrPz5du374tHTlyRJo/f75kZWUlaWhoSIMHD5bmzp0rLV26VLp165YkSZKUl5cnzZo1S3J0dJQWL14sSZIkZWdnS0OHDpUAacCAAdLjx4+lp0+fSleuXJGqq6ul2NhYaerUqdLo0aOlCRMmSEZGRpKBgYG0du1acR0LCgqkoqIiqaamRiorK5MSEhLE89mYexgYGCjt2rVLys7OFtc7JydHysnJkdLT04XMly9flvT09KS+fftKZWVl0uPHj6VPPvlEOnz4sLRjxw5p2LBh0jfffCM+X1RUJKWmpkrJyclSZWWlJEmK/XDSpEnSZ599JkmSQm+6urpKe/fulSRJkm7evClFRkZKkiRJBw8elDp06CC1bdtWCgoKkgYMGCDt2LFDPAeNkXH9+vVSt27dxPrZsWOHtGjRIiGzEsnJydKaNWvE54qLi6XMzExJkiTp2LFjkoODg7Rq1SpJkiRp+vTpEiB9+OGHUkxMjHTp0iUpJCRE2rFjh3TixAlp/PjxQsceOXJE6tChg2RiYiLt27dPCgsLkz766CNpz5494m9v3bpV6tixo7Rly5YGy/dTGauqqqTIyEhp1qxZ0ogRI6QzZ86IY0+fPl3S0NCQFi5cKH730UcfSYA0d+5c8buMjAwpISFBkiTFnnPp0iXp1KlTUnl5uZSamipt27ZNOnjwoHTixAlp0aJF0pYtW6SysjKpsLBQCg8Pr7deqqqqxD5dW1sr9suMjAyx9htzD6OiosRxldi1a5cESEOGDBG/Ky4uFrZYXV2d1Lt3b0lPT086ffq0JEmStHPnTqlv377SzJkzpTt37ojvKfXYTxEbGysdPHhQ7BMff/yxNGjQIKEzJUmSzp49K61bt05avXq1tGDBAmnKlCnS999/L9XV1f2ufI2esFVdXc0bb7xB//79GTZsGBoaGuK95s0VQ4fMzMwAKC4uJj8/H5lMho6ODrW1tTRr1ozWrVsjSRIODg706tWLjh07UlhYyNdff02bNm3o168fsbGxfPPNN/j7+/PZZ5/h5+dHUlISz58/R1VVlcDAQMrKyvDz88PKyopVq1Zx8+ZNJkyYwODBg1FTU6OqqqrRxvw777xDWloavXv3ZsiQIXh7e9O7d29atGiBn58f/v7+PH36lLNnz1JcXIyHhweGhoYA2NjY8PHHH2NjY4OOjg7x8fHU1NSgovKvALeenh4ymYwrV67g6emJXC5nz549LF68GH9/f0aPHo2rqyu+vr5s2LABTU3NH1viwcOHD9m2bRt2dnbMmzcPdXV1Tp482WgZS0tLAVBRUUFVVRUrKytGjx6Nvb09VlZWxMfHU1hYSG5uLuvXr6djx45MnDiRhw8f8s033zB58mSMjIzE8erq6jh06BAlJSVMmjQJTU1NAD7//HPS09OZMWMGLVu2xMbGRtwTLS0tkpOTefDgASUlJcycOZOcnBzu3LlD3759adasGQByuZwWLVoQGRnZKBlra2spKipCJpOhpaVF//79KS0t5datW3To0IEhQ4YA8PjxY/Lz8wkMDERfX198v0uXLmzbtg1XV1eMjY3p378/pqamODg4YG5uzsyZM2nTpo34vKamJl26dKF58+ZoaGhgamrK+fPnmT17NpMnT2bZsmXiWjVv3pwuXbpw6NAhdHV1AUhPT2+UfG3atCEhIYHU1FQqKirQ0tJCX1+f4uJi0tPTxfVzcHDA29ubsrIyCgoK6NWrF+bm5vj4+Ihj+fv788orr3Do0CEsLCwoKysjJyeHoqIi7t69i4mJCUOHDmXgwIHY29sTGRlJaGgoI0aMEMeorKxk2LBhDBo0CEdHR9zc3MR7fn5+PHnS+ImNUVFRBAUF0bJlSwDWrl1LTEwM6urq1NbWoqamhqWlJQBr1qzB2tqaESNG4ObmxtixY7G1tcXa2hpXV1d27twpnrnhw4cTHh5OYmIi3bp1w8XFhWfPnhEWFoaamhouLi7U1dXRsmVL5s2bh4mJCY6Ojjg6OqKnp0dVVRXV1dWoqqpiZmZGTEwM27ZtIyoqCisrq98SqR4MDAzEtdu6dSuPHz/GxMRE6NHU1FQsLCwoLi7mu+++o1WrVvTr148HDx4QGRnJgAEDaNu2LaNGjeLly5d4enrSrl07EhMT2bVrF/b29rRv356hQ4fi4eGBi4sLAK1bt0ZVVRUNDQ3S09OxsLDA29ubw4cPs2jRIqytrfnkk09QVVWlY8eOAMyZM4e2bdty4MCBRt3DqqoqtLS0uHv3Ls+fPyc4OBh7e3vs7OwwMzOjWbNmmJmZkZSUJM5R+Zzu37+fjIwMIiMjkSQJExMTQKG/nJycGDZsGKNHj8bd3R2AmpoaXrx4gaqqKmPHjqWiooL8/HxatmyJi4sL/fv3Jz4+nvPnz+Ps7EyPHj2oq6sjKysLdXV1zM3NKS8vb5R8+vr6SJJERUUFANra2mhrawPKblAKBAcHs2DBAkxNTdHW1sbd3R1nZ2e0tbXZv38/mZmZ1Nb+a9BUbW0tKioq2Ngoukhdv36dq1ev4ufnR58+fQDo378/7u7u4hno1KkTly5dYunSpchkMsaMGUNmZiZ1dXV4eHgQEBCAqqpqo+QDaNGiBZ6enjx9+hR1dXWsra3x8/PDzMyMvLw8ysrKsLOzw87OjpSUFJYvX862bdsYPHgwVlZWvHjxgrNnz6Knp8eVK1e4ePEiJ0+eRF9fn+bNm1NdXU1eXp7YU65fv05aWhrjxo3jnXfewdzcHHt7eyRJonnz5ri5uVFYWCjuO0CHDh3Iy8vD2dm50fIBqKurY2FhwdixY1FRURHPCsCQIUOws7OjZ8+egEIvtWrViuXLl5OcnEy/fv2oqanB39+fSZMUwxizsrL45ptvKC0tpVWrVjg7O9O7d29qamrQ0NDA0NAQLS0ttLS00NbWRpIkvvrqK7S0tJg8ebLQAaBYC1paWgBYWloSFBREYWHj5jAcOnSITp06oampiaWlJc2bN6dXr14sX76cli1bkp6ezpkzZ4iNjeXVV1/FyMgImUxGcHAwLVu2xNHREVDsO6NHj8bOzk7oZYCwsDDWrVuHTCZjxowZdOrUifT0dFasWME333xDv379ADAyMmLv3r1069YNPz8/unTpgr29PS9evOD27dtER0fTu3dvYfP8FhptvD58+JBdu3ZhZ2fHsGHDqK6u5uXLl9jb21NaWkptba0wUFRUVCgqKiInJ0coqokTJ6Krq8vatWuxsrISyvHw4cPMnz+fnj170q5dO65evcrTp0/58MMPxcN68uRJcnNz6devH+bm5vXO69mzZ5w5cwZPT0+GDBkiDMrG4sqVKzx69AgTExMGDhyIra0tb775png/PT2dx48f8/DhQ9TU1AgODsbOzo7c3Fzi4uIYN26cULJVVVWYmpoK5QIKQ2HcuHHCsB81ahStWrVi1KhRZGRkEBQUhIuLC2pqavTt25eqqiphDGpqanLhwgXU1dUZOXIkLi4ujVa2AKqqqujo6IifNTQ0GD58OMOHD+fZs2d8//33dOnShaKiIiIjI+nbty/Tpk1jypQpzJs3D319/XrXpKqqirCwMCIjIzE1NWXQoEEAhIaGcunSJfz9/WnZsiVVVVWkpaVhYWFBdXU1ERERhIWF0bdvX2bMmEFMTAyXL18Wzk9BQQHNmjVjxIgRjTJeS0tLUVdXp6KigoSEBHR1dXF2dubNN98U511SUsLNmze5du0ajo6OeHl5YWhoSF5eHg8ePMDKyorx48dz48YNzp07h1wux9zcnCdPnhATE8O4cePQ0NAgLCwMXV1dWrRogaurK5IkiQfPw8OD8PBwrl69ysOHD/Hy8hKOjLe3NzNmzMDT05O8vDzu3LnTqHs4c+ZMLC0t0dbW5s6dO9jb21NYWEh5eTnOzs4YGBiQlJSEJEn4+vpSV1dHWFgYzZo1o2fPnpiYmFBWVoYkSbRv3x5PT0+cnZ3JyMigurqawMBABgwYwOnTiimjn376qVCo165d49atW9ja2jJs2DBKSkqwsrLC29sbgNzcXO7cuUNeXh4ODg64ubnV22gaiuzsbBYuXAjAkydPcHV1pXPnzmRkZJCVlYW1tTUA4eHhxMXFkZWVhZOTEy4uLhgZGTFs2DBMTU0BWL58Ofv372f48OEMHjyYqqoqioqKGD16NABubm60atUKY2NjJEkSRp2/vz8ODg6AwnHPz89HS0sLQ0ND1NQU6rOyspKamhqys7MbZbzW1dWhoqLChQsXhBM6fPhwMjMzuX37Njdv3mTu3LlkZWWxaNEi2rVrR48ePaioqODOnTu4u7tjb2/PkCFD6q27e/fu8f333yOTyVi2bBkzZ84Uf7OmpgYbGxtsbW1FwOD06dPMmDGD0tJSampqGDhwIB9//DGgeLbj4+NRU1PD19e30cZrXl4eWlpaPH78mNjYWLy8vLC3t8fGxobq6mrs7Ozw8PBAXV1dfOf+/ftcvnyZvXv3kpGRgb6+PoMHD6ZDhw7U1tZSXV3Nm2++KTbPvLw8SktL0dDQID4+Hm1tbdq3by8cQ+V1Bti9ezdLly7l448/pm/fvtTW1hIfH4+zszMqKiqUlJQ0Sr4xY8bg6uqKiYkJkiSRlZVFbW0t5ubmqKurk5+fT35+PgYGBnzwwQfie0lJSWKtODs7Y2pqSkFBAVVVVWhoaIiAjxLbt2/n4sWLbN68WTyHNTU1tGrVql5w5OnTp1y6dIn58+fTr18/0tLSuHv3Lr6+vtjZ2VFdXd1oGTt16oSdnR0vXrygurqa9u3biz3t3r17xMTE4OnpiaWlJUZGRqSkpJCQkECfPn0wMzPj/fff5/Hjx8yZMweAb775BoCePXsyduxYtLW1KS0txcTEhISEBM6fP09FRQWLFy/Gx8eHmpoa+vXrR3FxMVZWVujp6dGnTx/y8vKIjY1FS0uL1q1b07p1a6C+09BQVFRUYGtri62tLZIkieCNgYEBPXr0oEePHgDcuXOHFy9e0LlzZ5ycnFi/fj2rVq0S96NXr144OztTUlJCeno6RUVFZGdn4+zsTF1dHTU1Ndjb24vrV1ZWho6ODi1atCAxMZHMzExeeeUVAIqKigCFk1teXk51dTUaGhqMGDECX19fvv/++wbLFxsbS0lJCY6OjlRUVKCrq4ulpSXvvPMOeXl57Ny5k3379tG8efN6z+J7770n/l9ZWYmPj48IfCgdNlA42idPnqSkpAQ7Ozv8/PzQ19enrq6Ohw8f4uPjw8iRI6moqODixYusXbuWiIgIBgwYQOvWrYUDq6enh4GBQYMCj402XsvLyzlw4ABDhgwhNTWV8ePHo62tzZo1aygoKODIkSP06NEDKysrdHV1ycjIIDU1FWdnZxEN0tPT4+bNmxgYGFBUVERMTAyHDh2iRYsWyGQyNmzYQNu2bfnwww8pLCxk7969GBoaYmZmhq+v788MV4C3336bIUOGYGVlJW4yUM+bbQg+//xzCgoKaN26Ndra2hQUFAiP8NixY6xevZrAwEBWrFiBhoYGRkZGqKioUFlZSXl5OampqcJ47dGjB7q6uvWiUM2aNaN3795YWlrStm1bAFxcXPj6668pLS3FwMCAmJgYjh07xuHDh+nQoQPffvstAJ6enqxcuZL4+HgSExOxs7Nj8ODBXLlypVEy/lQpQn3lXldXh7q6Oh06dMDOzo7Y2Fjh/Xt6euLg4EBiYiIZGRn1Nmo7OzuuX79OSEgIenp6BAUFMXbsWCwtLamsrOT777/n2LFj6OrqMm7cOLy9vfH19cXBwQE7OztxHezs7EhNTeXGjRskJCQQGRnJrVu3xLVqCI4fP86oUaOE0aGMQim94i+//JIVK1Zga2vLRx99hIeHB9euXaOmpgZHR0e0tLS4d+8en376KXv37kVPT08Y5HPnziUjI4M1a9ZgY2NDeHg4WlpaeHl5AQqvfPPmzQQFBTFo0CDu3buHXC6nW7duLF26FLlcztmzZ4VBkpCQwOrVqxtl9IAiu9GyZUtsbW1JSkri/fffR0tLi5CQECwsLEhMTGTw4MHIZDKuX7+Ovr4+np6e7N+/n5cvX+Lv74+2tjZpaWm0bt0aPT09evbsyZMnTzAxMcHd3R1ra2tqamooLi4WzqDS2G3RogUxMTHs2LGDvn37YmpqSkREBBEREdy+fZsbN24QGxuLt7c3y5cvJzg4uFHygWK9AZw9e5aBAwfi7OzMggUL6N27N1ZWVpSWljJnzhwqKiqYP38+qampvPLKK+Tn59O3b1/atm1L3759cXV1ZeDAgRgbG4u11r9/fxFpT0hIICYmhoCAALS1tYmPj6e4uJja2lrWrl1Ls2bNmD59OmlpaXz22WeUlZUxZswYevfuLSI2ixcvJi0tjeXLlzdYvm3btvHGG2+gqamJu7s7kyZNwsfHh23btvHdd99hbGzMoEGDyMjIEHqyqqqKoKAgJEmqF/lXGq6rVq3iyy+/pLa2lvHjx+Pr61vvb6qoqPD48WM8PT0xNDQkNzeX7777jry8PPr168fOnTuFngZF9uy1117j2rVr9O3bV0RgGgobGxsqKysJDAzE19e3niN/9+5dHj58SHBwMK6urgDcunWLy5cvM2DAAAYNGsRnn31GTk4Oo0ePpn379tTV1aGqqkqLFi0ASEtLY8mSJXh5efHKK69QU1PDpUuXiI6OFhmc9PR0YmNjKS8vJzY2FisrK2xtbQGFI9+mTRuxXzQ26BEUFISRkRE6OjokJiYyb948dHR0+OabbzAzM2P//v3s2LEDZ2dnPv30U3H9Vq1aRWFhIWvWrBHX5fHjx5w/f55OnTqhoqJSz4iYMGECVlZW9Tb1gwcP8uDBA2bMmIGPjw+HDx8mJiaGGTNmiEhXRUUFUVFRIstgZmbW6P1CW1ubVq1a0apVKwBSUlLIy8vDxMQEIyMjrl+/znvvvYefnx/vvvsuP/zwA8+fP6dXr144ODjwySefcPr0aWxsbPD09MTKyoo9e/bUi1J7e3uTkJBAWloaKioqVFdXc+/ePfz8/NDQ0MDFxYWUlJR6BtOaNWvYvHkzw4YN47PPPkNPTw9QGJGNhfL+FxYWkpOTg7GxsXB809PTycnJQV9fn7Zt2+Ll5cXTp0+5ffs2FhYWXLt2jcrKSlJTU0lISMDGxgYTExNmzpxJVlYW5eXlrFu3jiNHjtCuXTvmzp2LiYkJ5eXlpKSk4OTkhLm5Oe+99x6lpaW0adOG6Ohorly5Qp8+fTAwMODFixfs3r0bAwMDhg4dSkBAQKOM1+DgYF68eIGxsTG+vr4i65Ofn8+FCxdISkpiwIAB9OzZk2bNmlFVVYWKiopw0LOzs4mJiaFjx45C12hpaVFbW0tdXR19+/Zl69atrFu3jmfPnvHs2TO8vLxE9Lldu3Yia+Xs7MyJEye4fv06KSkpDBo0iFatWtGzZ086d+6MnZ1dg+y2RhuvBQUFDBw4UAiel5dHhw4dcHZ2JjExkfLyctTU1CgvL2fLli28ePGC4OBgzMzMSE1NpaqqiujoaHr16kW7du14+fIlKSkpDB8+HG9vb0pKSrhz5w4vX77E1NSUwsJCEWVp06YN1tbW3L9/n2vXrqGmpkbbtm3x9PTE3d1dRHeSkpKIjo6mefPmODk5NUo+ZZT3lxAfHy9SHS1btqS2tpbMzEy0tLSwsbHBwsKCkydPcuLECRwdHfH19aVLly7U1NSQlJSEiooKenp6eHp6kpGRwZUrV7CxsaFVq1YMGjSIwsJCtm3bRlpaGs+ePSMuLo6OHTuSn59PWloaBQUFDBgwAFBEJ44ePUqHDh0aewtJSUkR9Aul16uvr4+lpSUFBQUifefq6iqiaWlpacKAuHDhAuvWrePNN9/ExsYGDQ0N9PT0sLa2Rk9Pj7y8PFRVVZkwYQIDBgxg06ZNLFy4kIqKCtq2bcvrr7+OiYkJJiYmYqPMy8sjKyuL0tJSysvLqaqqorKykqioKGJjYxtlvFpbW1NZWYmOjg6lpaVoampiaGhIfn4+Bw4c4P333wdg6tSpDBs2jOTkZL744gvCw8OZPHky8+bNo7i4mEePHgEKQ6eqqoqIiAg0NDSwtLSkoqICfX19AgICqKmpITY2lqioKM6ePUtaWhqOjo7k5OSgpqaGkZERLVq0EE6N0sHKzc0lMTERDQ0NgoODxd9rCLZv3469vT0dOnQgISEBNTU1EZUqLi5m//79mJubo6Ojw7Zt23jllVcwMzPDx8dHRGTLy8tJSkqiqqoKLy8vrKys0NLSEpuUi4sLkyZN4ujRo6xbt44hQ4bg7OxMQEAAqampqKqqoqmpiYGBARoaGqirq5OdnU1RUREuLi5oaWlRXV1NXFwcXbt2bbBsSlRVVbF9+3aio6NxdHQkOjqaH374gV69egEKR2v//v0UFxczfvx4jIyM0NTUxMTEBBsbG2pra3n27BkmJib06tWLnj17CoNAX18fDQ0NcnNzOXHiBHfv3uXBgwdUVlYSFxfHq6++ipWVFZs2baKiooKBAwcSHR3Npk2bsLCwYPr06ZSWlhITE0NGRgbq6ur10mgNQXR0NCkpKRgYGDBx4kRh4IeGhpKZmUlmZib379/Hz8+PSZMmYWBgIDb7rl27kp+fT2pqKpaWlqipqZGbm8v9+/fJyMgAFBHwS5cuAYqgg7GxMXFxcURERODp6UmPHj3o3r075eXlJCYmUlxcLJy03NxcoqOjCQ8Pp6ysDFA4Zo01XiMjI2nTpo0wNn8KZVTqxYsXwnitqKhAQ0MDVVVVnJycmDx5MpIkichXXV2d0OkHDhzg9OnTZGVlUVRUJIxkLy8vYmJiyMrKwszMTDhTzZs3Z9KkSUyePBljY2NiYmKora3F0tJSGK2VlZWNks/e3h5QGEyRkZEUFhaio6NDUVERZmZmWFhYoK2tTXl5uTh2RUUF+/btIz09HUtLS2bNmkWXLl24f/8+6enpJCcnC2f48ePHJCYmMmDAAIKDg1m0aBFxcXHMmjWLDh06EB4eTl5eHjk5OcTHx9O/f3+xh+3evZu6ujpatWqFJEnU1dVRXV0tjLzGoLa2lufPn5OZmYmjo6NwAs3NzXFzc+POnTuYm5sLo3nw4MGcP3+ex48f4+TkxIgRIwgLC+PBgwe4ubkxb948Xr58yXfffUf//v2xtrbm1KlT7N27F3d3d7p06YKdnR3FxcUYGBhQU1MjqB3K+xQXF4eJiQn+/v5kZ2dz6dIlnJ2dRQS2MVBRURFRbxMTE3Jzc5HJZBgbG5OdnU10dDRt27YVRm5dXR1VVVU0a9aMTp06Af963iorKzExMaFr167cuHGD+/fvs337dh4/foyZmZmgbhQXFyOTyXj+/DnGxsb4+fmJ8ykvL0ddXZ3Q0FAyMjKoqqoiNzeXPXv2kJOTw5IlSxol36BBg4iPj8fa2loYrj/88AN79+7FyMiIvn374uTkhLa2NmVlZcKxj4uLY9euXRw/fpxu3brh6upKWVkZly9fplWrVmKdGhkZMXLkSFJSUti4caOIxgcEBJCTk0NKSgp2dnaYmpqir6/P8OHDsbW1FQG/xMREEdBqKBptvMbHx7N27VqGDx+Oi4sLBw8eFBdDW1ub1157DS8vL8LDw1myZAlubm4sWrQISZJYsGABN27coEePHqxYsQIXFxeKiopo3bq1SI0DQlmHhYXx7bffMmPGDAoKCtDV1aWgoIANGzawYcMGQBHW9vb25tGjR6SmptK3b1/y8vJYuXIlPj4+fPrpp42SLz8/H2Nj45/9PjMzk9GjR/P666+TnZ3NoUOHhJGi3EzV1NSwsLBg+/btrFmzhunTp7NgwQJhkKurqzN48GAAli1bxtGjR/nyyy+FsbBr1y4WL16MkZERb775JsuWLaNNmzY8fvyYDz74gOLiYjZu3Iibmxve3t7Cq/8pP6YhOHPmDJ9++inGxsb07dsXAwMDVFRUcHV1xcfHBw8PD5KSkkhMTMTBwYG8vDyeP39O9+7dMTIy4ttvvyUtLY2xY8cKHuutW7cABWfYz8+PrKwsLCwsMDY2pqKiQnjMAwYMEA97ZWUlampqqKqqYmRkxNq1a7l//z7Tp0+ne/fuFBYWEhwcTF1dHStWrGiwfF27dqWmpoZr166RnZ3N4MGDadmyJZGRkZw8eRIrKytmz54tjNjQ0FDCw8MBBTVl8uTJ9O7dGycnJyoqKmjTpg2qqqoUFBSwfv16ysvLhbJTRqW3b9/O22+/TefOndm9ezdGRkYsW7aM5cuXExgYyLFjx0R0tW3btujo6LBjxw7s7OyYPXu2SHE2FMpoh6GhIV5eXqxfv56qqirBMY6Pj2f37t04OTkxadIkzp49y4EDB/D19RUK4tmzZyQnJ6Ompoampib29vaYmprWi/gMGzaMyspKli9fTkxMDCEhIYAiGtGmTRsR3QZESrimpgZTU1MeP37MrVu3aN26dYM4TP+O2NhYvv32WxYtWsTjx485d+4cUVFRYgOprKykX79+7N+/n0GDBjFt2jR27NiBh4cHMplMONJK3fLTc3j27BnZ2dmYmJjg7OxMSkoKO3fuFNzcHj164O/vT8eOHUlPT8fQ0FAYH927d6djx44UFBSwZcsWDh48SF5eHt26dRPPckPQrl07YZgrjQGAefPmcfPmTU6cOEFxcTGdOnWiQ4cOJCUliY2vtraWx48fo6Wlha2traAtvP/++3To0IGPP/6YnTt3cuzYMTQ1NcnKygIUOtrQ0JC7d+8SFxfHBx98QK9evTh06BAZGRnU1taiqqpKeXk5y5Yto66ujpCQEFq2bMmjR48aFe0BWLlyJR999NHProtSrnbt2pGfny821q5du6Kpqcn27dspLy9n2rRpglqWk5MjomHHjx9n8uTJdOzYkQULFrBhwwYWLFjAtm3bGDNmjNABoEi7tm3bloCAAKErHzx4IGTu3r07AwcOFHSRxqKurk5kU7788ktMTExISkqirq6OYcOGERQURHl5ubjHDx48wNLSkvT0dI4fP07Xrl0ZMWIEdnZ2REREkJ2dLY595swZtmzZgpGREQEBAYSGhpKQkMCrr75Khw4dWL16NWVlZVRXVzN8+HDhXHz33XccPnyY2bNniz1Hqbd69erFmTNnGiWjqqoqa9euJTQ0lHXr1gluqaamJpMnT+b111+vZxRXVFSwfft2Dh06RL9+/ejXrx+lpaXs2LEDJycnNmzYgIeHB8OGDWP37t3MmTOHM2fOcOvWLd544w0mT54sjlVdXY2mpmY9w6uoqIi33nqL1q1bY2hoyLlz55g+fTo9e/Zk27Ztjb6HSqqBtrY2mpqaHDx4kKqqKl555RU8PT1xdHTEwMCAiooKnj59iqWlJe3atSMiIoLdu3fj4eFBXV0ddXV1IlqZlpbGnTt3SExMJC8vD2NjYzp06CAcJWV09/nz59y+fZu4uDicnZ0xMjKibdu2uLm5MXPmTPbs2cM333yDXC7n4cOHxMTEkJOT0yj5DA0N6wWAYmNj+f777zly5AizZs0SWcILFy4wZMgQ4Ux+//33LFq0CFDwXY2MjDh48CDTpk1j4sSJrFixop69VFpaiqmpqVgLFRUVLFq0iOjoaEELBUXwYMyYMQAkJiayfft2SkpKxDn+f4m8ymQyUYSkqalJy5YtuXv3Ltu2bcPBwUHwNezs7AgODsbPzw8TExNu3LjBiRMnyMjIoG3btuIGGhgYcOPGDU6dOkVtbS3jxo0TKSBra2uR4lam7o2MjOjYsSN3796lqKiIrl27oqurS1FRERcvXsTBwQFbW1u6du0qvOLGYOfOnUyYMAETExMKCwvZtGkTOTk5BAQEYGlpiUwmo1WrVgQGBhIZGYmXlxfa2tqEhYURGhpK9+7dmTt3LocPH8bW1hZVVVUMDQ3x9/cXDx4oCmmUnlZNTQ23bt1i9erVFBQU0LFjR8aOHYuDgwMZGRmCC3vt2jUGDx7MsmXLGDFiBN26dePLL79k2rRpjZIxPz+f3NxcvL296devHxUVFYSHh5OVlSWu2bNnz9i1axetWrXCyckJHR0dHj58yO3bt7l+/booXAKIiYnh3r17WFlZ4eDgQGFhIUuXLiUrK4v+/fvTrVs33N3dycvLw8PDQ1AUCgsLycvLw9XVFRUVFXx9fSkvLxfpUENDwz/EXX7y5Anu7u4EBgYSFRWFjY0Nt2/fZtWqVUiSxLx582jTpo3wBps3b86UKVNIT0+nQ4cOIrrVsmVLnj9/ztatWxk8eDAWFhZiHVZXVxMaGoqenh5+fn7Y2Njg7u7OwIEDBe8rPDwca2trQb/Q0dEhKSmJiIgI0tLScHd3Z9CgQejo6AjjoqF466236NixIy9fviQzMxM/Pz/U1NTIzs4mKyuL5ORk1q1bR1BQEHV1dQQFBaGnp8eNGze4cuUKb7/9NlZWVjx79ozS0lJRwKaurs6tW7coKyujdevWWFlZ4efnJ67XxYsXGTx4ML6+vly5coWEhAQ6d+5MYmIiYWFhBAYGCoP2/v37IjPxR9CnTx+ysrLQ1tYmNzeX7t2706VLF3R1dXn8+DE5OTnCAdm/fz8HDhzgiy++IC0tjR07dtC9e3c6deokiqsyMjI4cOAASUlJdOrUCR0dHTIyMvD396d37964ubmxYsUKKisrqayspLq6mvnz55ORkUFBQQHq6uqMGzcOe3t7nj17hpWVFX369KGiooLExETBwW0ovLy8MDIyEqn0119/nVatWvHee+9x/Phx3n//fRFFUkYiU1JShMOnjJJcvXqVsLAwNDU1effdd3Fzc0NHR4eQkBCqq6tFVMfMzAw7Ozvx9+rq6rhz5w6WlpZ4e3tjY2MjjOOUlBRcXFxo3rw57dq1A2h0qhIQRmt1dbV43mUyGebm5uJZ0tTUFEUpd+/eZdeuXVRUVNCzZ0+aN29OZWUldXV1ggu/ceNGli1bJpzQrl27EhkZSU5OjqADxMXFoaamRrNmzbC1tUVfXx8DAwOePHnCjRs3kMlkuLq64ujoSGFhIZcuXcLa2lpkRxqKM2fOYGFhAYCvr6/YfCMjI7l69SqDBg0S9Jfly5dTXl7OkCFDWL58OefPn8fExIROnTqhra1NcnIyBw8eRFtbW0SaLS0t6dy5M7dv3+bBgwfk5+dTUFDAokWLGDVqFE5OTtjZ2Yn7lpSUxNq1a3n27BmvvPIKgwcPJj8/nz179uDl5UWXLl3qpd4bgoSEBBwdHRk3bhyVlZVs3ryZ5ORkunXrhrm5OaqqqshkMtLS0tizZw+Ghoa4u7uLrFBmZqZwtExMTKioqCAzMxNnZ2fatWvH9evX2bp1KzU1NbzzzjtMmDCB0tJSQkJCsLS0ZOLEiXTs2JHIyEjOnz+PtrY2np6ewqnJyMhg7dq1pKam/iEnGRQGlKOjI8nJyaxZs4aIiAj69Okj1oOBgYGgBmpra/P06VMuXrxIVVUV9vb2qKio8PDhQ86cOcPly5fp06cPxsbGtGjRQvBNjYyMBE+3RYsWIkjg7u5ORUUFq1atIi8vj7lz59KtWzc0NTWxsLAgJydHXNMFCxagpaXV6MK01NRUoqKiMDIywtXVFX19fdq0aUNiYqKgzSiLJZX64cWLF2hqajJ48GA0NDR4/fXXUVFRwcrKioEDB+Ll5YWamhr5+flERUURFxeHuro6c+bMwdfXl7t377Jx40YKCgro2bMn2dnZIiCmoaHB7t27ad26NT4+PgwfPpwTJ06wZMkSgoOD6dKly+/K1Gjj1dfXl3feeQdQWNmlpaXcvHmT77//nqFDh4rPGRoasn//fkpLS7l48SLXr1/Hw8MDCwsL8vLy+P777+nVq5fgQ65btw5QeNRTpkxh4sSJ9OvXj+fPn3Pv3j2cnJxQVVWlsrKSSZMmMWnSJB49eoSWlhZlZWUi9G1qaoq5uTnz588XqZLGIDIykrfeegtQbL7fffcdhYWFpKenk5+fT3JyMu+99x5jxoyhb9++gGITuHDhAjdv3sTFxYVhw4YREBAgvAdJkgT3s6SkBD09PebOnQsoFtXZs2cJCwsTvMMlS5bg4ODAlStXiIyMpEOHDrz33nsEBwczatQoPv/8c9q1a4ezszPDhg1r7C3Ew8ODOXPm0K9fP1GhGhcXR0FBAU+ePKF58+bExcVx6tQpTp06RVBQEG+++SbJyckcP36ciooK7O3tBfn/4MGDmJqa0rx5c/bv309UVBQbNmygrq6Op0+fsm7dOnGeJSUlIrpjYmIiKBVmZmbCQ5ckiaKiIiRJQl9fv9G85RUrVrBixQqRri8uLubcuXPcuXOHxYsXM378eN5//33mzZvH5s2b8ff3x9/fX3w/OTlZ/H/z5s2sXr2a/Px85s+fDyg2YnV1dQoLC7lz545IS3fs2FFU/E+cOFGsp8jISMaOHcuoUaPo3bs3K1asoKCggEuXLokU48aNGxsl4/Dhw8XxExISMDY2xs3NjZSUFDp27EhsbCz79u3j7NmzjB07lqlTpwKKiH9YWBhBQUF4enqirq4u0sKgMFri4uIwNzcXkWJHR0emT5/Os2fPKC4uprKykrKyMtatW4eamppIX06cOJE5c+awcuVKjhw5wvLly0WB2B9Bx44dUVNT48yZM6xYsYKJEyeKNFVaWhrFxcUilarUEREREezYsYPNmzeTl5cn+GQqKiqYmppy7NgxUlNTmTx5Mm5ubjx58oTk5GSsrKx49dVXGTx4MBEREVRWVpKVlUXXrl2pq6sTxtysWbM4ffo0mzZt4o033mDIkCHC8AdFd4yGIjk5WRj6UVFR3Lx5k7CwMFFF/sUXX9RLY5eUlKCpqYm6urqg1cTExJCSkkJRURGWlpbcvn2bDh068Oqrr9K5c2fRFcXf35+goCAqKiqIj4/Hzc0NVVVVVq1aRXh4OLNnz8bCwoKamhqeP3+OqakpK1euBBQRbk1NzT9UHDp48GBu3LhBYWEhbdu2pbi4mNLSUhGUUFJdlEbCzZs32bZtG2+//TYTJkwAFM6xci3m5+ezbds2qqqqOHbsmFgPZmZmvP766/j5+REfH8/69etp3rw5b731Fm5ubmRkZPDs2TMWLVrElStXmDt3rijevHbtGrt378bPz48pU6Y0Sr6kpCTs7e3p27cvqqqqZGdnk5aWJozJ8PBwXF1def78OQcPHsTGxoZ58+aJ1HhBQYGIUt26dYuIiAixhh4/foyvr6/InKxduxZjY2N0dHREIOiVV16hVatWojp+3759fPXVV7z11lsierl3714+/vhjZsyYgb+/P6tXr26UjMouGgEBATg7OzNu3DjeffddFixYwNSpU1FTUyM2NpaTJ09y8+ZNzMzMsLS0FBm0DRs2kJOTQ79+/Rg9ejSFhYUUFRVRWlrK119/zeeff87WrVuZOXMmX375JaDgg7///vsMHjxY6FINDQ0iIiKwsrIS2buMjAxWrVpFcnIyAwcOrGeDNAYJCQk0a9aMI0eO8MMPP+Dt7U379u3Ffq3k4NrZ2dG6dWtiY2NZvnw5np6ebNu2DU1NTTIzM4mIiBC6Yt68eTg5ObF//37RHaG2tpbIyEgMDAywsLCgtraW2tpawSmVyWTCSQNFgXebNm3EHjhixAjKy8sb/Szu27ePjRs3MmHCBHx9fdHV1RVGqb6+PpWVlZiZmdG9e3dkMhmZmZmUlpby2muvMW/ePECx79XV1TF48GAGDx5MbW0tKSkpgqudk5PD0KFDRReaU6dOceHCBUaPHs3s2bNFobu5uTnXrl1jzZo1ODg4sHLlStzd3cnJyWHZsmXU1tb+/zFelQeNjo7mwIEDDB06lFdffRVra2s8PDwoLi7m66+/xtDQkHfffZfc3FzeeecdAgICeO+991i9ejUPHjzAxsaGw4cPk56ezrRp09i2bRvvvvsu0dHRfPfddzx9+lRcpOfPnzN+/HjOnTvHsGHDWL16NdbW1lhYWPD+++8THR3N22+/zahRo+qdq9LYbAw0NTUpLCwkMzOTyMhIZs6cSWpqKqdPn6ayshILCwu+/PJLLl26xCuvvEJWVhY3b96kY8eO9O3bl1OnThEREcHrr7+OnZ0djx8/JiUlhRs3bnDr1i169epVr+rU1tZWbChvv/22iNzV1taio6NDu3btRCTSz8+PiIgI1qxZw8iRI+nfvz9r1qxpNDVCmZLIzc3lq6++Ys+ePYKjUlFRgZOTE/r6+nTt2pWrV69SVlYmHI8rV64QHh5OTU0NBw8eJDw8nHv37jFnzhycnZ35+OOPiYiIwMvLi+rqauLj45kxYwZvvfUWU6ZMEYpaWQhnY2PDDz/8wOXLl5k2bRoeHh7cv3+fuXPnkpuby+TJk3njjTcaJZ+6ujrDhg3D2NiYkSNHMnLkSMaOHYuLiwtjx44Vn8vKyiI3N1f8XFxcLNYmKCLi48ePx9DQkOPHj3PixAmGDBkisgLK1lhKfpDytaCgQGxaGhoaeHl5UVZWRlRUFJMnT+bdd98VDtvbb7+NsbExL168aBQX7fnz52RnZ5OXl4e7uztubm6cO3eOWbNmYWdnxw8//EB+fj7R0dGYmZmxYsUKYmNjcXV15fXXX0dHR4cXL14wcuRI1NTUuHjxokhL+/v710vzamtr4+bmRkBAAKCgVnz11VfExMTwySefoKWlRUJCAqCIYAC0b9+e1157DUdHR5GCaiyOHTvGd999h7u7O7NmzapXoBQUFCS4na6urpw5c0bwm5XGn7OzMzKZTKTxNDQ0WLJkCbm5uaKI0t3dnXfffZcZM2YwefJkXn31VTp16kRWVhYaGhpi81Jysx0dHZHJZERHR4tIQ2OoAj/F9evXSUhIoKysDDU1Nb766iuePXvGvHnz6NixI3PnzhVGntLIUa6R2NhYdu7cSVpaGhMnTmTUqFGUlpbyySefsHv3bhYuXIi1tTVJSUlcu3aNxMRE0tLSiI6OJjQ0lFGjRiGXy3njjTdIS0vDwcGB+/fvc+HCBXx9fenevbs4z8zMTGxtbRvNBwWF8fbee+8xZcoU/Pz8cHJyoqamRtwTZURWR0cHLS0tAgMDGTp0KAkJCZw8eZL+/fsLw+zRo0dcu3aNgQMH0rt3b2G4gqLKvrKykoEDB2JjY4O2tna987WysuLJkyfief9plFxLS4v09HTy8vIaLd/UqVNFtK+mpobr169TWFhIx44d6d27N5mZmVy9epWCggI+//xzbGxsqKmpEU5IeHg4JiYmBAQE4O/vT0lJiahrePnypTDq+/TpQ2xsLKGhoVRVVREcHMy0adMwMzPj22+/pbKykjlz5uDl5UVQUJAw7gBMTEz4+OOPMTc3Z9WqVaxevVpwmxsCIyMjbty4gYaGBsbGxixZsoQDBw6wb98+bGxsGDFiBC1atKBt27b4+/uTkpLCixcvcHZ2pra2lpcvX1JbW0twcLCIjD958kR0DnB1dUVTU7Pec+Tq6sqnn35aL9VtampKnz59MDQ0FFFLVVVV+vfvT3BwsCici4qKavR9rKys5PDhw+jp6bFu3Tp8fHzIzMzk8OHDeHt74+bmRl5enmhDqKxRuXTpEsePH2fkyJEEBQXRt29fSktLRQAsJyeHW7duoaamhlwup02bNsTHx5ORkYGFhQWpqal89dVXHD58mK5du/LBBx+I2h1JktDR0aGmpkbQGnJycli/fj3nz59vVAeXjRs38uLFi3pR9+rqalJSUrC2tqa0tJSnT5/y5MkTWrduTZs2beoVV548eVJkUpW/Ly4uJjQ0lLCwMFJTUzE2Nq73zA0aNIirV69y/PhxNDQ0mDNnDjKZjMGDB1NYWMi4ceMwNjbm3r172Nra0rlzZ2bNmiWoQb+HRhuvOjo6IvWSm5tLamoq7u7uouXMuXPnWLp0KaCI0t67d4/nz58zf/58unfvztdff01SUhIGBgaYmZmRnZ1N27ZtcXd3Z8OGDdy6dYuEhAS2bdvGw4cP0dXVxcLCAg0NDdFPtEePHrz55psiHfn8+XNOnz6Nj48PNjY2pKSkkJubS2lpab1+pA2Bp6cnYWFhREdH4+zszIgRI8jLyyMuLg53d3f69evHwoULOXXqFAEBAURHR3Pw4EE8PT0xMTFh586dJCQk8OjRI/z9/YmKihIembL1U1paGtnZ2dy+fZvWrVvTqlUrgoODqaysFOlJLS0tfHx8UFNTQyaTkZ+fj66uLmZmZjg4OJCcnMyLFy8aXaUO/1LcJ06cYNWqVZSXl+Pl5YW1tTUFBQWoqakxdOhQHB0dKSgowM/PD3d3dyorK1FRUcHe3p6ioiJ27txJREQEbdq0YeDAgWhra1NdXY2Hhwfr169HVVWV6dOnc/v2bbZt20a/fv0EFULZoqpDhw40b96ce/fuERUVhaWlpXjIlJ0P/r07wu9h+PDhjB49moKCAiIjI1FVVRWtxSorK7l16xampqZ88803whm7ePEin332GTKZjK+++gpQcJi9vb3x9vamtLSUNWvWYGpqire3t1i/RkZGFBcXExYWRl5eHgMGDMDe3p4BAwYQGhrKli1b8Pb2Zvz48URGRnLhwgXkcjn+/v588sknnDp1irfeeouePXsK3m1DkJSUhL6+PuXl5YL/ZGhoiIGBAV5eXoLnBopNf8qUKdy5c4elS5cyYsQI4uPjiYuLE0ZKaGgoBw4cQFNTkzZt2lBaWsq9e/dET0olr6m0tJTLly8TExPD0KFDBWXF0tKSNm3a0L59e0BBG3r33XfFOfyR9jXK6uORI0eKTSwxMVFECZT8vpycHNFSydjYWPQRVaa7Hz16xLNnz2jWrBkBAQFUVFRw5coV9PX1MTc3F/zcN998k6ioKJYtWyaKgnJzc8nJyUGSJDQ0NLCysqJ9+/a0b9+e27dvk5mZSYsWLcjPz+f58+eNkk/Z6/jOnTu0atWKV155BQ8PD06cOMHSpUuJjY1l0qRJgmseGxtLRkYGAQEB6OrqcvToUVEYC4rq/c2bN1NVVSXSqnV1dTx58oS7d+9y8eJF0bpJWRymra2NhYUF6urqFBcXc/bsWQoKCmjVqhUaGhq8fPkSCwsLQX9qLM6ePYuRkZFwFl6+fMnz58/p2LGj4Fc/fPiQo0ePYmNjg0wmo1mzZiQmJnL+/HkqKysZOnQoKioq3L9/n4iICAYPHoyLiwt3794lJyeH8vJyCgoKKC0t5c6dO7Rr1044ZcpWjZmZmaiqqvLhhx9SXFyMtbU1aWlpgpMfFBT0h5ys27dvU1NTg7u7O+rq6oLqpGxhpa6ujoGBAYaGhuI6FhYWoqurS1paGvfv30ddXR0PDw8mTpxIjx49iI2N5cWLF1haWpKVlcX169cJDAxkxowZImqn3GPDwsK4ceOGuL4tWrSgR48etGjRguzsbFauXIm2trZofbZx40Y8PDwaJaO/vz/Pnj0jIiICAwMDAgICqKysFHUdzZs3x8fHRxRl7t69m/3795OXl4eBgQGXLl1CT0+PtLQ0bG1tefbsGZaWlsIRa9OmDRMnTiQnJ4cHDx5gZ2dH165dxfGUbeCsra1/Rs0xNzfH3Nyc6upqEhMTUVVVbbDx81M0a9aMGzdu4OXlJeh8MTEx5OXlkZeXh5qaGv7+/qK9Y6dOnZgwYQLNmjXj3LlzaGlp4eHhwauvviparqWkpHD27FnatWuHm5sb2tra3L9/n5KSElEILZPJROGeXC7H3d2d5ORkysrKROu+0tJSjI2NKSgoYN26dWzZsoXi4uJGGa/K9onl5eXEx8fj5OREbm4uNTU1NG/eHBMTE06dOiUykR07dsTOzo727duTmJjIgQMH0NbWFlHVkydPcvnyZZKTk0U9UlVVFSdPnuTevXsiYhwYGMj27dv59NNP8fDwwNfXl6qqKtq2bcvs2bMBhd5KTk4W+yY0rHCy0cbro0eP+Pjjj3njjTeYNWsWR48eJSwsjOnTp2NhYcHTp0/FZ5csWYKWlhY9evQQnqDSS62rq2PVqlVUVFRw5MgR5HI50dHRgGLYQYcOHSgvL2fq1Kn079+fVatWMXXqVI4ePSq4lkZGRmzZsoVJkyaxfPlyevbsyYABA+jRowdaWlqiErIxcHd359atWzg5OYkUhLGxMZ988glOTk4YGxvz1VdfUVxcTMeOHbl+/To3b97k66+/5ptvvhERqAsXLhAREUFpaSm6urq0atUKNzc32rZty8GDB7l06RK3bt3C3t6eDz74gODgYLZv386xY8eYNm0aY8aMQVVVlbS0NAwMDDA2Nub58+fMmTOHsrIyNmzYgJ2dHceOHWvsLRQoKCigZcuWTJ06lW7duhEdHU1ZWRlBQUHo6OiIh0rZomXbtm2sX78eIyMjjI2NiY6OxtbWlokTJ2JlZUVSUhKBgYG4ubnh5+dHVVUVgYGBaGtr1/PYLl68yI4dO7CxscHQ0FD0jjt9+jQnT57E1dWVI0eOiOhzY9G5c2dWrFhBSEgIERERLFy4EAsLC4KCgti0aRPLli3jjTfeEOmQc+fOMXXqVJKSkrC2tq7nnSqjREuWLKF169bs3buXffv2oaenh7m5OampqRQUFLB//35CQ0NJS0tj6tSpTJgwgYiICBYsWMCrr76Ko6Mjx48fZ/HixXTu3Fm0EVE2mx49enSjjNfevXsDinWmrLLt1KkTV65c+RnNwtPTkwkTJnDnzh3Wrl2LgYEB/fr1EwoUFHxGHR0dTp06haamJmZmZty9exdzc3PefPNNevTowcWLF1m5ciX29vacP3++3ibYsWNHNDQ06lX6KtPNQKPpO6BIOb/yyitUVVWJQsrU1FS+++47bG1t+eyzz9DQ0ODZs2eMGTOGzp07i+xOREQEFy5cwNbWlvfff58zZ85gZmbGhAkTkMlkHD16lLi4OIKDg1m3bh3BwcH079+f/fv3s3DhQnHepqamZGZmsnLlSszNzVm4cKFICbu5uQke+9GjRwkJCalHP/k9jBo1CnV1dfz9/bl58ybvv/8+3t7evP3222zdupVdu3bx4sULWrZsib29PadOnWLRokVs27aNAQMGYGtrK9poJSQk0Lt3b6qqqnB0dERFRQUHBwfmzJmDmZkZV69excDAAGdnZ9q2bSuKJWbNmkVCQgIHDhwgMDCQbt26sXPnTo4ePYqPjw/BwcGN5vL+FIaGhqxdu1b0HB0/fjz5+fn88MMPmJqaUllZyYkTJzhx4gSmpqbU1dWho6PDwoULcXBwYMmSJezatYtvv/2WMWPGUFpays6dO/nss8/Iy8sjPz8fR0dH5syZg5+fH/fu3SMhIYGhQ4dibGxMaGgoH3zwASUlJXzxxRciO7d582Z27tyJg4MD/fr1Y8KECY0OdIBi3WtqavLNN98wY8YMunfvLloP7t+/nzt37jBv3jxqamoYN24cWlpaoleulpaWaFyvfGZtbGyYPHkyGRkZ7Nixg6KiIj7//HNUVFQICAhAQ0NDcGzv3bvHgAED6N27N1988QWgcBZSU1PR1tamsLCQI0eOUFpaKqK0U6dOpVOnTqLwsqH4aR9VJR0MFNmroUOHsmHDBvr06cPz58/ZtGmTMPCaNWsmOtAcOnSIkydPkpCQwLRp08Q+3r59e3R0dFi7di379+9n3LhxTJ8+/RcLLWtqaqisrKxX4JqWlsaDBw/Iy8sjMDCwXm1JQ9GqVStMTEwoKiri1q1bZGVloaOjw9ChQ8XxzMzMaNu2LVu3buXJkydMnTqVoKAg1NXV+e6777hy5QqTJ0+mpqaGt99+mwMHDtCrVy/WrFlDeXk577zzDg8ePKBLly4iuGBvb8+iRYtwdHREX1+fsLAw5s6di6+vL6tXrxZ9WQ0NDXn48CF3796la9euzJo1i82bNzdYvvXr11NTU8NHH31EYGAg8+fPZ8iQITg6Oor7amZmJvrNHjlyhPLyctauXcvAgQMFfcrAwIDHjx/z2WefcevWLezs7GjRogVVVVUkJiYSFxcn+tMqO3+0b9+eu3fv8umnnzJt2jQ2b95cbwiEMuDxU1RXV/+uTI02XqOiogRxvHnz5tja2nL//n3y8vKwsLBgwIABmJmZcerUKc6ePUtVVRUDBw7k5cuXwjjQ1dXlzp07onp0zZo1pKamoqenx7Rp02jXrh2jRo0iIiKC9u3b89133xEQEMDo0aNFKw5lSL9z584EBwfz4MEDLly4wMOHD+nVqxd+fn6/2DXg96Cc0qNs7XLv3j3atm2Lj48PGRkZfPHFF0ycOFFs/PHx8WhpaYm076uvvira75iZmTFr1ixKSkrIzc0VEcvIyEhSUlJwdHQU1a/K1hxmZmb1mk7X1NSIlKGbmxu6uroYGxuLxa+jo8OFCxcaLWdpaSl6enp4eXmJ3nsqKiqC61JdXU1UVBRFRUWi/VNERAQlJSXCqwRFxXSfPn2QyWTk5eVhaWlJQkICmzdvxsHBga5du9KuXTt0dHSIjo7G1NSUiooKQWJXKqgjR46wceNGXF1dGTlyJPr6+iQlJZGcnNyghfxTaGpqMnr0aFq1asWJEyeIi4sTkT/l1B3l383JySEmJgZvb2+ys7Oxs7MTEX3ldVBGV5OTk4mOjiYmJoaWLVsyZcoUNDQ02LBhA1FRUXTq1InmzZuTlJREaWkpAQEB5Ofnk5iYSHR0NNbW1rRo0YILFy5gamqKvb099vb21NbWUlxc3CgZy8vLuXXrFubm5kyZMgUvLy9KSkq4ffs2KioqeHh4oK2tjYaGBoWFhWKqWkZGBkePHmXy5Mno6OhQUFBAcnIyL1++FK3swsLCRCu7mzdv8sknn3Dp0iXOnz9PdHQ0Y8eOFYbr8+fPcXJywsbGhtLSUtEu6v79+yQnJ9O+fXvRL7axUEZYdXR0xLOcl5fH/v37cXd3Z86cOdja2lJdXY2vry9t2rRBT08PJycnnjx5wo4dOygvL+fKlSuYm5vj5+cnohaDBg1CQ0ODK1eusHHjRsaMGcPo0aPJycnh4sWLxMTEkJyczKJFi9DW1ub27du0aNGC2tpa7t27x/bt2/Hy8qJz5848e/ZMZBIaA6WOcXBwoLa2lqlTpxITE8P27dtp3ry5mL6TkJCAhoYG5eXluLq6kpOTQ3Z2NuPGjePp06fcvHkTUNCKlOndli1boq+vj76+PgsWLGDkyJEkJycTEBAgUq4ffPABBw8epLa2lnfffZclS5bw/vvvk5SUxKZNm3B1daV169YiktXYCmdQGK+JiYmC696qVSuqqqrE5lVdXc2lS5fIzs6mVatWdOnSBXNzc4YMGUJdXR3l5eVkZGRgamqKpqYmcrmcb7/9lhcvXtCiRQu6desmiiaVvbm3bdvGxo0bmT59Ou7u7ujq6pKYmCi4hPfu3WPLli08ePCAoUOHoqurKzJYP+V/NwTNmzenVatW4l4q+9CCwjitq6sjIiJCdARo0aKFiDjq6uri4+MjumckJSVx5coVcZ6rVq3CyMgIb29vIiMjuXv3LlVVVWRkZLBo0SKeP38uWhoqnTvl0Ad9fX10dXWFMV1eXk5cXBzXr18XGYmG4saNG8TExFBYWIiFhQXW1tbY2NgwY8YMwsLC0NDQ4PLly+Tn51NdXY2/v7+YnmRqasrMmTNFmrykpARdXV2ePn2Kvb09ZmZmgo+spqaGj48PFhYWxMTEoK+vLzo0hIeHU1tbS1BQEGpqamIqmrIXu6amJubm5oSFhTW6jy0oWmVZWlpiYmIi9kALC4t63VSioqK4f/8+enp6GBoakpaWho2NDe3ataNTp05ER0dz584d0bpz//79PHjwgOLiYjIyMnjw4AGgGPS0cuVKMT0SFIV/vr6+JCUlERsbi6OjI6Wlpdy4cUPsF46OjvTt2xdvb+96ExIbAiXtycPDg9u3b1NaWir2n8zMTM6cOYOOjg5jx44V2W8lTSk9PZ20tDRqa2t58uQJ58+fF92FcnNzMTExwcrKimbNmmFiYoKuri7W1tZkZ2dz8uRJjI2NCQ4O5uHDh6xatYqqqio8PDxITU1FXV0dJycnLCwsMDAwELqmIRS6RhuvyuiZMqyr7OGqVNwtW7akZcuWdO7cGVVVVfbu3cuRI0dISEjA19cXCwsL3NzcuH37Nu+88w6enp6ie8HixYsZN26c8MiaN29Oz549uXDhAmPHjiUpKUlEyx4/fsx7771Hu3bt2LdvH1OmTMHU1BQ1NTURIofGDykoKiqiffv2lJeXc+PGDTIyMkT17urVq/n8888xMDBALpdz48YNtmzZQmRkJCYmJrz99tt8+OGHXL16laKiIvr168f8+fM5fvw4ISEhZGdni6pMKysrBgwYwJAhQ0TblGHDhjF9+nQ0NDQoLS0lKysLSZJEBwBJknj//fdFvz51dfVGR5aV0NXVFS2TlL0CDQwMyMzMJCwsjIyMDNG398GDB9y8eZN27doxceJEUlJSuHz5MqCITBkbG5OTk0Nubi4qKiocOXKE6OhoFi5cyJw5c4iKimL37t1UV1czdOhQWrVqVS/1fuvWLVFhqix6ioyMZMmSJTRv3pzXX3+9UbLl5uaSnZ1NixYtWLZsGZWVlcIgDQoKYv78+dTW1rJq1SrU1NQIDAxkypQpHD9+nGfPntXr+ajknH344YeiqErJARsxYoSI1Hp7e7N48WKsra05fvw4p0+fxsjIiG7dunH69GmuXbvGp59+ytSpU9m3bx+bN29m+vTpmJubi+lXjcH69etZvXo1Y8aMEQUe27ZtY/r06XTp0oUffvhBbNp79uzh6tWr2NvbCy5nYmKiKFhatmwZly9fRltbG1dXV5ycnPh/pL11VNfn//9/o7u7O0UBQUVa7EKxsNtNN3tzUzd1U+d0c+rUzU2dgd3Y3aggiChIS0h3d/3+4Lyur3zen5D9HufsbDsKr+f1ej6f1/WIe4SGhjJo0CA2btzIxo0bu2jQSpiucXFxJCcnY2RkJLSd6+rqqK+v5/79+wJyAv+u8/rkyRMKCgrw8/MTpKjS0lLa29vp0aMHJiYm1NfXIy0tzeHDh9HV1aW9vZ0ff/yRWbNm8fnnn3Pv3j369OnDhQsX0NDQIDAwkIKCArZu3Up7ezuenp7s2LGDixcvMmnSJExMTNi5cycREREoKioybdo0HBwc8PX1FfvA6dOn2bt3L1OmTCErK4vr168TFBTEL7/80sXN6v8Kia0vdI5ONTQ0SE1NJScnB29vb06ePElZWRkxMTH8/PPPuLi4cPfuXZqbm4mNjcXU1JSMjAxOnjzJmjVrxAThxYsXXaQHW1tbsbW1xcDAQCSuq1atYvv27Xz99deYmpqKcbqESJueni6kqKBzH62srOz2PVRSUmLp0qXk5eWxefNmoXcpKSYlxM3S0lI2bdrURQ+4rq6OyZMn09DQIJ6fjo4OAZuYO3cugYGB1NfXiz+3srISRK2ioiJ27NjBt99+K1zoqqurOXDgAJGRkWhqauLl5YW1tbUgkXbXPjU1NRXoLAqjoqKQkpJCW1tbGMj06tWLefPmUVxczP79+8UEsrm5GRkZGQoKCtDR0UFGRoYTJ07w5s0bYYQxZMgQTE1N2bt3L+fPn2f79u307duXjo4ODhw4wLfffsuxY8d4/PgxBw8eJDQ0VCSOEsexbdu2oaSkREJCAl999RWPHj0SVtWfGleuXGHPnj00NjZiYWHB8ePHmTBhAmPGjBEuYlu2bOHcuXMsXbqUmTNnCstceXl5+vTpI4pXRUVFqquruX37Nq9evcLf35/IyEjCwsKYOnUqCxYsICEhgfT0dGFn29jYyJUrV6iqqsLW1lYUrM3NzYKo6uzsLIT8nz179r/qtf93IemWy8nJiU5wbW0tVVVVaGhoCNm25ORkTp8+TUBAANA5cQGYPXu2sFiVk5Pj22+/JTk5mRMnTrBq1SrxXLm6umJhYcGlS5fQ0tJi3bp1XL58mXXr1nHw4EHmzp0r9IlVVFTIysoSe7eENyLBi3cnJBPE6dOnExQU1AXPeu7cOa5cucLSpUsZPHgw+vr6+Pj44OXlhYKCAvv372fPnj0iL8nPzxc/KysrK9z3hg8fjp6eHnZ2dsjIyHDx4kXu3LmDgoIC48ePR0FBgVu3bglstpubG4qKisTGxuLj4yM4FZ8a3f4Whg8fLrxuJZWYv78/ubm5ojPTo0cPhgwZwvr164WQeHR0NJmZmYwePRojIyMMDQ3p6OjAycmJQ4cOoa6ujq2tLQoKCsTGxvL8+XOSk5PR1dUlKCiI3Nxc/vrrL3JycliyZAmmpqYsXrwYXV1d8fJLWIlFRUUcOHBAYEm7E9HR0ezbt4+6ujoCAgIYNmwYL1684MCBAxQVFfH111/T3t7O1atXaWtrQ0tLi+bmZsrLy1FTUxN+wM3NzVRWVrJ7925+//13ampqBOP7+fPnvH37Fnt7e7FhfqzzCJ2jku+++w5vb28WL14sxhSKioqsXLmSsrIybt26xZMnT/61FJG/vz+6uroUFRUhLS2NoqIivXr1QkpKivv37/PmzRssLS0ZO3YsUlJS+Pj4MGbMGGRkZNi8eTPHjh0TLit37twhMTGRQYMGCYkxDQ0NATGQuG7o6Ogwbtw4goKCeP/+PXfu3EFWVpbFixcDiPvV3t6OtbU1dnZ2/62j2v8WTU1NZGVlkZmZSVBQECoqKtTW1vLPP//Qu3dv5s+fz/Lly3n16hWHDx8WUjbBwcH06dNHdL61tbXJyMhg+/bt3Lx5U6xFQ0ODjIwMxo8fj5OTEz4+PoLpbWVlha6uLk1NTYSFhXHv3j3k5OQICAggNDQUeXl5/Pz8UFNTE/etsbGx22uUWN9u3boVIyMjli5dipeXFwsWLMDIyEhslhJiV3BwMKtXr+bUqVOcPXuWBQsWMGbMGIqLi4Xm44QJEwgNDeXdu3fCFCM4OJjm5mbS09MpKCgQqh7Q6bpSWlpKa2srurq6aGlpkZWVxZs3b7h8+bLoHgJdkqlPDTs7O/r27cvdu3d5/Pgx48aNE+RBSZKjrKzM+/fvef/+vfj7SkpKYpKgqKhIQEAATU1NxMXF0bNnTywsLARmX4IDy8/P59atW8IcwNbWlg0bNtC/f39qa2uZMGGCSNqnTp2KnZ0d/fv3p76+Hj09PUJDQ7ud+ERGRtK7d2/U1dXp6OigsLCQ2tpa8fwpKSlhamrKnTt3uHr1qjADgc4i+9KlS2IELSG/jBo1CmNjY96/f0/v3r2RkZHh5MmTFBUVMXv2bFRVVfnjjz9IS0vjr7/+Eoz77OxsMjMzWbt2Lffu3aO1tbULBKSsrOxfQXh69OiBpaVll670/fv3OXjwIFOmTKFfv35s3LiR1tZWYbywZ88e+vfvz+DBg5k9ezY3btxg/fr1vHnzBi0tLYKCghgzZgzZ2dlcuXIFU1NT9PX1sbS0FF2xpqYmAfWQ/K6Ojg4qKytxc3OjT58+yMjI4OTk1EUeq7vPqYyMDPfv3+fSpUsoKyszffp00b2zsLDAysqKpKQkCgsL/8OSGxBkXh0dHRwcHHB2dkZTUxN1dXXWrVtHcnIye/bs4dSpU0CnPWnfvn1ZtWoVy5YtQ15ensGDB2NqaiqmE9LS0nR0dKCgoICCggKFhYV89dVXJCUlsWTJEnx9fcnMzPzkNVpaWhIcHEx+fj4+Pj5iuiIphLS0tFBXV6etrQ1dXV3a2tqIjo7Gzc1NvBMdHR3i76urqzNs2DCqqqrQ1NSko6MDJSUl0RGWKKhICtbGxkb69evH06dPWbFiBRMmTOhCzpaSkuL169ecPXtWTDA+fPjQrfsocfUqLy/n0aNHPHr0CBMTE4ErjYqK4tGjRwBdztsTJ06QkpKCvb29eF8kxEeJ5Xd2djaNjY0oKSkxZswYhg4dysuXL8U5MXDgQJSVlZkwYQJSUlJ89tlnNDY2IiUlxZIlS9DQ0OD8+fM0NTXx/fffA3SbiH7z5k1Gjhwpuq3QySk4f/48ZWVlrF27VuypLi4uVFdXo6ysTG5urnh26+rqiI6OFs6iEn7OpEmTmD17dpeE+M2bN5w4cQIDAwMWLlyIn58fUVFRAMyaNYuFCxeiqKhIUVERGhoa9OzZk/Lycq5du4aMjMwnSYF1O3nV1tYmKChI/H9bW5vwkX/+/DlhYWEAzJw5k5CQEDw9PXn9+rUYq0tJSeHt7c2oUaPw8/MTnUOJflptbS2vX79m//79vHv3DiUlJdasWUNgYCAHDx5kz549REdH8/fff4sKMiEhgfb2dpycnJCTkyMhIYG8vLx/hWGSlZXl1KlTqKurM2vWLKytrXn9+jVXrlxh+fLlbNmyhfPnz7N27VoxcpeWlqatrY2Kigri4uJwc3Nj6NChQrNQ4jDk6+tLQUEBlZWVNDY2cvnyZWbMmIGBgYEg0Li6uqKrqyvcLyQi+zExMQITqaioyPfffy9kgSQH0KdGSkoKUlJSGBgYCMLYx64aRkZGJCcnU1tbS69evQgODsbFxQV5eXnx4o4fP563b9/i7OyMmpoaT58+5dWrV8ycOZNvv/1WYEIlz4wEEJ+VlYWMjAwmJia8fPmShw8fMnnyZIHZktgf9urVS4yVupsUFBUV8erVKyoqKpCRkWHEiBE8ffqUR48eYW1tjampKSoqKkKmpKKigmvXrgltYkk0NjZy/vx57t+/j4mJCcHBwWhqavL48WPOnDkDdB52x48fJyYmhqFDhzJr1ix27NjBixcvOHfuHNXV1Xz22WfMnj2b6upq6uvrsbKywsrKSoj4y8jIdLvICgoKIiQkhEuXLvHzzz/j6OjIkCFDhJUwIFyG7O3tRVJz+fJlqqurycvLo7CwkI6ODgYPHoylpSVr1qzBysqKuro6rly5QnZ2NuPHj+fHH38kMTGRQ4cOCRKVhMjQ3NwsZJsKCwspLi4WHtp2dnbifv6bzqvEUe7Ro0dcu3YNHR0dzM3NsbS0JDo6WhTCLS0tfPHFF/Tq1YvXr18Dnd2EPn364OrqyocPHxg3bhzS0tL069ePkpISIYk0bdo05OTkiI6OprCwkNLSUiG7NH36dHEdzc3N5OTkoK6ujru7Ow4ODsLOuV+/fmKk1p1QV1cX7xx0JuvKysqCLBYVFcWbN2+4ePEiGRkZQotZX18fT09PIXkkMR1Yt24dEyZMwN7entu3b6OmpsaoUaOIjIzk6tWrgsAVExND3759+fzzz2lqaiI3N5cffviBiIgItm3bRnZ2NgMHDhQmLNBJjPk3GpqOjo7s3LkTU1NTcnNzSUhIIDU1ldLSUrKysvDy8hIkDYB9+/axYcMGgoODhcSaJAEvKSlBT0+PYcOGoaSkRHp6OklJSbi6uuLl5SWuTwLJycnJ4e7du0JLVV9fHykpKRYuXIiqqqqQRwKEl313SWkHDhzg6NGjtLa2MmnSJAwNDVFSUhIwIMkE7uHDhwKDLUmWy8rKhHNSZWUlU6dORUNDgw0bNpCbmyuUSObMmUN7ezuWlpZUV1fTo0cPfvzxR5SUlKiurhbvmyQh/q9x48YNIiMj+eyzz4R98bFjxz55jZMmTWLWrFk0NDTQ2tqKuro6NTU11NbWoqurS25uLqWlpcjIyBATE8PTp095+fIlgYGBDB48WEzwJHqiZWVlXSABXl5eGBkZYW1tTV5eHtHR0TQ1NZGYmIiSkhLl5eWMHz+ePn36MHnyZPbs2YOLiwvOzs68f/+eBw8e8PDhQzo6Opg3bx6DBg3qlmSdJCSygS9evODgwYP0799fFCMVFRViKvjxXtbc3ExWVhYvXrzA2dlZGDetW7cOGRkZxowZg6qqKo8fPyY3N5eXL18SHBzM8uXLxe/w8vKiT58+lJWV0dDQIKyv8/LyMDExwdPTk2+++YaoqCgmTJiAo6NjtzXsS0pKqK2tRVlZWXRuCwsLhRRnQEAA9fX15OfnY21tjby8PK9evaK9vR1/f39kZGRISEgQTnGSQsTBwYFZs2ZhYGBAUVERWlpaZGZmsmHDBt68ecM333zDokWLaG9vp6KiAk1NTebOnYuXlxf19fUYGhpiaGhIa2uryAc+FWPf7eQ1Pj6+i3yFpEvg5OTEiBEjePPmDW/evCEsLIwzZ84wa9Ys9u/fT3l5ObGxsejq6uLr69vFBmz//v0UFRWxcuVKVFVV8fHxITMzU8iXPHjwgPnz57N27VqKioqIjIzk7t279OrVi7i4OBYuXIirqyvDhg0TzL+vv/4aQ0PDblWY0Omec+zYMVpaWoR0h5eXF/v37xejAskmnJCQwIIFCzh16hTKysq8fv1aCNxDJxB5x44drF27ltbWVrKysoiMjERJSUnYi9rZ2ZGQkMDUqVOF//dvv/3GTz/9hKurKwoKCnz77bcMHTqUQ4cO8ddff/HhwwciIiIICAgQGpvdCQ8PDxQUFFiwYAHz58//D1el9vZ2wfCW4JI/hmG8ePGCly9fMnDgQNHRaGxspKSkhBcvXjBkyBDc3d1JTEzk4cOHBAQE4OfnJ0YsKioqwm/c1dWVsrIyUlNTxUsjuQZtbe1uJ67Q+Yw+fPiQvn37YmhoSGRkJIWFhcyaNYt+/fohJSXFvHnzUFFR4fvvvxdsSYnns4eHB7m5uSxdulR4xL97947W1lYmT54sCFpaWloCPpGXl9dFasfW1hY7Ozvmz58v9GG3b99OeXk5a9asQU1NjT179ghsYXdVI1xdXfnpp5+YOHEibW1tXQDwkqivrxcs+evXrwvh9MDAQL777jv8/Pz48OEDTU1NXZirBgYGGBgYCOiIBJNZVFTEnTt3yMrKErp+jo6OtLS08OzZM06dOoW7uzvz58+nra2N/Px8qqqqkJKS+lfTga1bt5KTk4OjoyOHDx/G2tqanJwctLW1OXjwIFFRUTx//lxYJNfU1CAtLU1mZqZ4Dmtra9m/fz9VVVVYWlpSXl4uMHFeXl5s2bKF/fv3c/r0aRYvXsz06dN58uQJ9+7dY968eWI0ev36dVpaWujduzcVFRVcv36d3NxcZs6cyZQpUwgPD+f333/vls7kx7g1AwMDdu3ahZSUlCi6q6qquHDhAnfu3AHoIv9kbm7OwoULGT16NCYmJmRlZfHs2TOuX78u/Nl9fHyE9W9+fj5NTU0YGBgwf/58AZ04deoUNjY27N+/nxEjRiAvL4+Ojg6mpqZERUVx8eJFhgwZ8q8sRaGzABwxYgQHDhzg+vXrTJ48mZ07d1JXVyfODokcGYC3tzejR48mPj6en3/+mTVr1uDo6Ei/fv2Qk5Nj4sSJFBQUcO/ePQYOHMgXX3xBU1MTzc3NgsSjq6uLoqIi7u7uzJ07F01NTWpra0VyK2E7S3TBExMTBayru+Lvly5dwt3dnXHjxtGzZ0/y8/PJzc3F0dFRYE3XrFnD6NGjhdSXr68v6enpolkxbtw48vPzycnJ4cGDB5w+fZrU1FTevn0rJOfMzMwwNzenvb2dtrY2nj59Sr9+/aioqOCvv/6irKyMZcuWiff44/3cycmJ33//XRQDr1696tYaJRjcoqIisrOzMTc3p7q6mqdPn1JXV0dTUxNv3rwhKSmJ/Px83N3dUVFR4ejRo+zcuRNnZ2dGjBhBfX29sIwdOHAg48ePF1bOkv2roqICHx8fnjx5wsKFC2lsbCQ4OBgPDw/Mzc05duwYX331FcOHD2fkyJGoqamJye2pU6e6WKx2JyRjdSsrKyZNmkRcXJywsre0tKRv375s3boVRUVFQaKSKAq5u7t3kfEzNDRk8ODBjBw5krFjx/Ls2TOysrKE+oCioiIHDx4U+M7z589z6NAhMjMzCQkJYeHChUJxqa2tjbq6OsrLy3F1df3XJgympqa8ePECCwsLHBwckJKSolevXqxatYqsrCxWrlzJtWvXsLOzY+fOnTg4OGBsbIy6ujoqKiqoqqqirq5Oamoq8fHx1NTUIC8vT2BgIIaGhqSmprJ582Z0dXUZNGgQM2bM4IsvvhDuo9LS0jg5OfHmzRuWL1+OlpYW0tLSjBgxAlNTU27dukVFRQUjR46kX79+dHR0/J9Qum4nr+7u7lRWVhIfH09hYSHe3t5CA1BBQYERI0YQEBBASkoKb9++paamBkVFReHeUFdXR0JCAvn5+Tg6OtLY2Eh1dTUFBQVcu3aN0NBQnJ2d2bBhA46Ojty/f5+cnBw2bNjAl19+ydWrV7l06ZIQ/E9ISBAvlMT+rq6ujpSUFAoLC7ut+dbQ0CDkIB49ekRDQwMuLi6iC9PQ0ICuri6hoaEUFhYiIyPD48ePBTEJOtmPt2/fpr29nQEDBuDt7U1VVZUYJ1RUVACdHYW//vqL2NhYiouL8fLyEu5MpqamYpOXWMD6+fnRp08fjh07hp6eHqNHj0ZRUbHbyavE6i4rK4t79+6JcUJZWRkJCQnIy8uLaliiU1dcXIyfnx+ZmZksW7aM/Px8Dhw4gKmpKZWVlfTp0wcDAwOkpaWprq7GwsJCVNzS0tICZvLq1StevnxJZGQkL168IDc3Fx0dHfGPuro6cnJySElJiQpPwsj/1NDR0cHFxYXPPvsMW1tbzp8/T0lJCVOnThVuPgEBAUhLSwvs24gRI3j+/DlffPEF33zzDRkZGVy6dAlzc3Ps7e158eIFKSkpLFiwgGnTppGWloazszNycnKUlpby6NEjIYN27do15OXl2bp1q8AMSr53RUVFcnNzkZKSQl5eHltbW+zt7bu9KSkqKuLk5PTfYp4lZLvIyEhyc3Opq6vj0aNHvH79GltbW3x8fKiurqaqqgo7OztRIBoZGWFvb4+TkxMVFRXk5ubS1tZGeXk5qqqqBAYGkp+fT0REhPAs9/f3R1ZWlvz8fKqrqwUGGjpB9/8W0gKdyWVra6vQwYTOLqO3tzfx8fGoqKgQExODtrY2s2bNQl9fn8ePH/Pnn3/y+vVrxo0bh729PX5+fpSUlNCzZ0/i4uJobGzE1taWn376CQMDA/Lz81FTU2Pw4MG4urpiZ2dHUlISd+/e5f3795iZmVFfX4+5uTk1NTU8efKEiIgIoBMPKMGKd5fl/OrVK2xtbVFUVERFRaWLNqcENuPr68vr168pKysTMmxZWVk8ePCAwYMHY2Zmxs2bN1FSUsLIyIh//vlH7DsSL/aZM2fi7+8vOl2+vr5UVlby6tUrVFRU0NPTIz8/Xxw8kkaDjIwMgYGBqKqqcv/+fe7fv9/te3j//n369OmDlpYWxsbG9OjRAwUFBTIzM+no6EBTUxNVVVWamprEYWhubk5YWJgohiUmNHp6eigpKdHa2oqRkREjRoz4D/xfQkIC586dw8zMDD09PQoKCoRcVkFBAW/fviU7O1tMk6CzAyopsj4my35KZGVlMX/+fOTk5Lh79y5qamq4ubkhJydHUVERUlJS2NraYmFhQWpqKqmpqTg4OIiplJmZmUjgbty4wZUrV8SUKyYmhpiYGKZMmUJTUxONjY0sXLgQaWlpbt26RXZ2NlZWVrS3t4suKHQW73JyckL6q3///mIfknR5uxuSTmBNTQ319fXU1dXR0dGBiooK0tLSlJWVUVxcTHFxseh05+Xl8fDhQ968eYOioqJIZDo6OjAyMkJJSYmHDx+Sl5cnMJYSiEl2djaHDx+msbGRqqoq8vPzmTdvHh4eHkydOpXMzEzq6upwdnYWHBXJumpra7u9PomhkbS0ND169GD+/PlUV1djZGREe3s7JiYmQqMWOslb+fn5hIaGCtJ1W1sbTU1N9O3bV0z4zMzMGDNmDDU1NZSVlZGcnExWVhYnTpxg6dKl4n7dunULJSUlMXqXwCwkHIxFixYxceJEHBwchJlQd6J///68evVKQBurq6vFFElWVpZjx46J5//q1auCgC+xxvb09BQQGcnep6amhpKSEs3NzaSmpvLmzRusra2Fmx90SmopKyvj7OzM0KFDqaqq4u3bt6LpExISgpycHIcOHUJOTo6LFy9+8pq6nbxKnBA2bNjAu3fvOHv2LCYmJly4cIG7d+/i5OTE2LFj6dmzJw0NDTx58oTz588Li7OOjg7i4+N59+4dqqqqLFiwgCVLlpCamsq2bdvIysri22+/pbGxEScnJ2bOnMnZs2eZNm0azc3NHDlyhEmTJgmyg0TqycnJiZCQEMaMGSOYfI6Ojt1293n27BkuLi4kJSURGRmJubk5BgYGYrNRUlIiKChIJLO//PILEydO5LPPPhMj24SEBP7++2+BgZw/fz59+/ZFRkami8TH27dvBQ7v/Pnz4oBevHgxq1atwtjYmObmZiwsLEQr3dnZma+++gpFRcV/nRjExcXR0tLCqVOnRAIuuW6JdV1paSl6enro6urS0tLC9evXsbS0REFBgfLycurr6wX2SVZWlpEjRwrsnqKionA0kuC8JMSG1NRUzp49KzzEc3JyyM3NFZ0VCflCgtcCur1OPz8/3N3dxUiwsbERZWVlUWBJEkVPT09OnjwpNBmXLl3Knj17mDBhAp6enuKQ37VrF62trejo6JCRkYG3tzeHDh1i8+bNwjHO39+fIUOGcP/+fR49esS+ffsIDg7mwoULtLS0MGXKFCZMmEBubi6VlZUoKSnx3XffsW7dOqSkpFBRUeHq1av/6n7+10hPT+fOnTsUFRVRX19PYmKisGcMCQkRVn9DhgzhzJkzwtxg5cqVrFmzBkNDQ3r27ImhoSFycnJIS0tjbm7OokWLmDZtGj/88AN//PGHKDIkpJOQkBB69+5NR0cHmZmZ/2NH+FPj4MGDlJaW8vDhQw4ePMiIESMwNjYmNDSU0NBQGhoaePr0KRUVFWzdupU3b94wd+5cMjIy0NbWRkFBARcXF8LCwsjNzSUpKYns7GxGjx7NunXrcHV15datW2hoaDB37lyam5tFF3D9+vVYWlqyfft20tPT+fHHHxkzZgz5+fno6+vj5+cnWMTp6enCRUaiEfwp8c8//7B69WrR4fbw8BDdmKamJqytrVm3bh2DBg3izp07Alqye/du9u/fz9atWzE3N2f16tW0trbSo0cPpKWlaW9vZ+zYsUKCRmIy8XFoamqyceNGIcf38YTq+++/5+TJk+zdu1eMuI8ePcqxY8e6bUWdmZlJS0sLEyZMwNfXFw0NDY4dO8avv/7K4MGDxRhbQUGB9vZ2pKSksLa25ocffuDDhw88evSImJgY8vLyBJTqp59+EiTOmpoaAb3Iy8tj7ty5fPjwgZkzZ5KVlcVvv/3G8OHDcXZ25rfffhOH/seTPxsbG77++mtUVVXR0tISuMJPCcnesXnzZl6+fMmhQ4cwNTWltLSU4uJigYOsrq4W+E5lZWVsbGywtLTsoqSSl5dHVVUVy5YtQ0dHh4kTJ5KcnCzwrgYGBgwcOJCAgACmTp0qpndLliwRWrLx8fGcO3cOT0/P/1a3VkNDA19fXy5cuPDJa2xra0NeXh5vb2+RJEpJSRESEoK5uTmZmZk8fvxYfLcSGN+YMWPo2bMnmzZtIiIighUrVhAaGkpmZibW1tbU19cLS9W0tDT09fWxtramoqJCOPelpKSIpP/Fixds2rQJb29vwsLCUFNTw9zcnKFDh7J+/XpCQ0P56aef/jVkAKCgoID379+jp6eHm5ubsC7/r6GlpYW5uXkXNyzJpEuCGT158iQRERHMnj2boKAgHj9+LDqaERERNDc3M2PGDEJCQtDX18fFxUXgTiUNGMnEQIIrrq6u5p9//uHVq1fdgkWqqakJWbeGhgauX7+OjIwMISEh9OzZk3379mFgYMDdu3dZtmwZV69eZf78+UKpZ82aNejo6HRJmlVUVKisrKS+vh43NzdmzJghChrobP7NmzcPU1NT9u/fz6hRo/D09OT9+/fs2LGDrKwsBgwYIFSXioqKukxh/q/odvJ65coVWltbMTY2xtDQEEVFReLi4njy5AlaWloEBweLl0ZJSYmxY8cKn+13795hb2+PgYGBGJtERkYKfcLm5mZev37N6dOnef36Ne/evWPUqFGYm5uzfPlyioqK+P777zE2NsbPz0/IAVlaWjJ69GjhjlVYWEiPHj0YPHgwffv2JTEx8ZPXJzlsDQ0NsbCwoKqqiqysLFRUVIRvvCRpS0tLo6amhilTpjB69Gig88WVlpZm9erVbNmyhejoaEGIKiwsZPTo0SxevJgTJ07w9OlToZZgY2NDa2srr1+/FodOeHg4LS0tTJw4EeiUCdLW1hY6fxKsYXejvb2dhw8foqqqioeHB7GxsURFRaGrq8v48eOFw5ekEpWwAvX19VFQUGDNmjXk5+cLfNjHzj/Q2flrbGwUVeTRo0e5d++eIGUlJibS2tqKl5cXZmZmWFlZ8eDBA7y9vcVBVFFRIUao3SVRyMvLY25uzq1bt7h8+TJ9+vRh+vTpojMmLS0t8ESSQz08PBxTU1OGDx/OzZs3KS4u5o8//qCgoIC9e/diZWXFF198IZzJrly5wh9//CGgAs3Nzfj5+ZGXl0dERIQYQykqKtLW1kZtbS2lpaUkJCRgY2PT7fHkfw3J+FCy6ebk5PDu3Tvy8vKEwPWECRN49+4dMTExtLa20traipaWFlZWVgQGBmJlZUVNTQ0KCgp4eHh0IehoaGigqKhIdnY2ly9fpqmpialTp2JsbMyOHTtob28nLCyMHTt28ObNG4YOHYqvr6/AaxoZGXHr1i3++ecf6urq/pVwuET1orS0FE1NTWGJKHnuqqurhaKBxEEpIyMDgCVLlohr0dLSQktLS8i0GRkZiXdMTk6OwMBAoY1aVFRETU0NmZmZJCcnC6xbcHAwurq6QrpLW1sbKSkptm3bxuHDh7uItH9qTJw4EXNzc7Zt28axY8eEE111dTVNTU0CgtS/f3+cnJx4+/atsMK0t7fnjz/+EJMleXl5HBwcmD59Os7OzgwZMoTMzEwx/dLU1KSlpYWMjAzRZZV0iJ49e8aNGzdITU1lypQpDBgwgLdv33Ljxg2RBH322Wfo6el125Zy7ty5qKqqkpqaSkREhMBXSyYO0CnFlJSUJFzxsrKysLa2FsWniYkJ/fv3R0tLi9jY2C6Hdl1dHc3NzcJbXjLdaGpqwsLCgjlz5uDl5YWamhoVFRWYmZnh6OjYxUHM0NBQuOp1N5YsWYKSkpLgKkjsocvLy7G0tBTvZ1tbG97e3qLbe+TIEaKiopgzZ46wtN2/fz+FhYVoaGhgZWWFuro6ioqKLFmyRJgbSBoN8vLytLW10dzcLPCPSUlJnDx5ktzcXPEsRkRE8Mcff9DU1MTs2bMJDg7utmzdxyoMra2tNDQ0YGFhIfZqKysrQQQyMDAgJiaGnJwcBg0axKpVq9DV1aWiokLI60lMaU6cOEF9fT3z588XePzU1FRaW1spLy+nsrISHR0dNDU1qaioEIlfZWUlr1+/FufLixcvhLnGvXv3/rVFLHQWCJI9/OXLlwwZMkRozh87doz3798zePBgBg0ahKqqqhj3z5o1q4vjm7q6OpmZmTx79kxMv54/f46UlBQfPnygoKCA1tZWgoODhREO/L9iTHKmSpLjrKws9u/fz4MHD5CVlWXIkCHdymskrpeS/16/fj06Ojr4+flhZGQkvktNTU2SkpJISkpi8eLFBAQEEBUVxZkzZ2htbRVQJyUlJfz8/BgwYIAgnE+fPp3ffvuNWbNmMXr0aOTk5Bg8eDDq6uoYGRmJc/nkyZNERkbS0NDAihUr6N27N9OnT6esrIxVq1Z1aVz9b9Ht5HXVqlX06dOH5cuX4+npSXV1NRcuXMDIyAgfHx+RuFZXV9PS0oKOjg5DhgwhLy+PqKgoBg4ciJubGykpKbx79466ujrBpPXy8kJWVpbY2FiePHnCy5cviY+P55dffuHXX3/lwoULLFy4kPb2diEdI5HoycjIwMDAgN27d6OgoEBYWBiqqqrdJop4eXnR1NSElpYW48eP58mTJ6JaLi4u5u3btxgYGPD06VNmzZqFnZ0dT548QV5enoKCAh4+fIinpyeDBg0iISFB+P16eHjw999/06NHDz777DPS09OJiIjgiy++EInMhQsXaG9vx8PDg+fPnzNr1iysrKwYMWIEKioqQpdT0vqXl5f/H0H6/1ssW7aMv/76i7/++otJkybx2WefkZiYyNmzZ4WmKXRWax0dHYJglJycTGVlJZMnTxaJoKTaVFRUFBvcx/izN2/esHLlSkxMTPjrr79QUFBg/vz5JCYmsmjRItatW0dubi5Hjx6lrq6OcePGAZ0v/8e/rzsRFxeHr68vV65c4dSpU8KhCBDSJx8TZX744Qd+/PFH5s+fz5w5c0hLS0NOTk44tjk4ONDW1oavry+ysrJs375d4FgVFBRoamqivb0dVVVVZsyYIbRNoVNoPz09natXr/L8+XO0tbW7dEQ+lkvqTrS2toqDsaKigkuXLnHq1Cnk5OSYOXOmIMFUVFR0eUZKS0uZNm2aEKlvampi3Lhx4nuXwDwkBdKNGzfYsmULlZWV5Obm8s033wjHJAsLC+Li4rh69SoaGhpYWFggKyuLqakpSkpK6OrqEhYWJrrs3e3arVmzhrq6OlavXi0c/CQF1ePHj3nx4oUgZZWWlnLo0CHhJrRmzRqgcx+SbIbGxsZCkUTyHUqUE1paWoiJiSE7O5u2tjYePXrEvXv30NLSwsbGhpSUFFRVVVFSUhLajO/fvyczM5Pi4mIxWehOSDqpMTExwmoWOp8JyTMvMTmRyLN99913LFq0iA0bNrB582aRvNrZ2WFtbc38+fNFkvDo0SPOnDlDbGwshoaGAl8fGRmJra0teXl5lJSUCMWCmpoapk6dysSJE/Hy8sLX15eAgADOnj1LQEAAPj4+fPnll91ao2TiceXKFUGYDAwMFM529fX17N27l6qqKoYOHYq0tDT37t2jX79+uLi4IC0tjaGhIePGjcPPz48nT56IpBcQWPGUlBSkpaVZuHAhycnJJCQk4OPjI1jpjY2Ngmjc1tZGVlYWCQkJmJubi72subm52zJEAQEByMjI0L9/f1pbW7l16xbPnj1j0KBByMrKUl5ejpKSEjo6Ol2mbuHh4dy7d4+AgAD69u3LzZs3iYmJQVVVldjYWOLj40lPT8fNzU2QsxISEgSMYsCAASgpKVFSUoKmpqaQTMvPzxd2qdXV1Vy7do3Tp08DnZOm4OBgSkpKurVG6HzvMjMzSU9Pp729nbKyMqytrdHX16epqQkdHR1MTEyE1WhGRgYtLS2oqamxdOlSKioqBOGuuLiYtWvXcufOHebMmUNoaChSUlKsXbuWAwcOAIgJgqGhoTDPGDlypLCn/eWXXzA3N2fAgAG8fPlSQAZUVVWFRXV31yclJUVHRwdJSUns2rVLKGxIMJi3b9/m+fPnggujoqJCXFwcL1++FNJcra2torFgaWnJnTt32LFjBxoaGkhLS1NRUUFmZiY2NjZ4eXmJ57eiooKYmBjk5eXx8PDo0gwqKytjw4YNggy/adMmFi9e3K0O88WLF1FTU8PMzIw3b95QVVWFiYmJkBJtb2+ntbWVd+/eoa+vj6Ojo2guWVhYcPjwYTIyMrCwsMDOzg4dHR3Gjx+PtbW1yLEkxKtz585RWFjIpk2bOH78eJfrePnyJUeOHBHE2Nu3b5OcnEx4eDgdHR2MGTOGnJwcrKys/k+5s38FG6iqqhLjJHV1dRwcHOjXr58QtJcQPJ49e0ZOTg4GBgbY2dnx448/igzf2tqaYcOG0djYKLB51tbWGBkZUVhYiJ2dHXPnzqVnz57iC5eTk2Pnzp1oaGhgY2NDU1MTTk5OyMjICDelQYMGsXr1anHzJZ2YT43ExERu3LghXMEGDBhAdna20EHt378/hoaGREdH09LSQkJCgoAyaGpqMn78eFJSUli2bBm7d+8WQuFqamooKytz5MgRcnNzaWxsxMXFhSNHjhAbG0ufPn3o1asXCgoKHDt2jB9//JHq6mrRuYNOEetTp06ho6PD1KlT0dbW/lcs7ra2NoHtgc7Ds6SkRGAIly9fzowZM/j888+RkpKisbGRxMRE1q9fT15eHn/88YfA523ZsoWIiAjWrVsnuhmSTfrDhw8sXLiQ8vJyevfujZ6eHo2NjVRWVlJYWMjr16+RkpLCzMyMefPmERcXR1xcHL169eoCZegODgY6iQXt7e2CoOXl5UV5eTl37txBQ0OD4cOHiwNL0p2CTnxeWVkZjY2NqKqq8u7dO4yNjbG2thaOR/b29lRUVAitvKamJm7cuCE6BT179sTAwKBLJycmJobNmzfj7e1NaGgosrKyxMTEYGVl9a86ktDZhZd0uG/evMm+fftobGxk9erVzJ8/H+gkkxw4cIDS0lKcnJwwNDTs8pkdHR2kpKQIqbCqqioiIyO7KB8UFBRQWFiIuro6Hz58EBAfY2Njvv32W1paWkT31dramt27d1NdXc2vv/6Kn58fu3bt4tChQ93WW4ZO+IcEzy6J1tZWIdXi6+uLr68vDQ0NzJs3jytXrjB06FDhKw6IBEJOTq7LiE9CppEUMbKysvz99988evSIwYMH06NHDyZMmCCIMz/99BODBw9m3rx5ovN7//59ysvLWbp0abf0XSVx9+5d0tPTcXd3Z8qUKcKARV9fX5hKfJzwlJWVAZ2JtouLC6dPn8ba2pp//vmHhoYGrKysurieOTk5oaqqSkpKCk1NTSxatAh3d3dqa2sZNmwYK1as4OTJkyJ5VVZWFhAbY2NjnJyciI2N5eLFiyQmJnZxnvvUGD58OC4uLsyaNYuNGzdSXFzM+/fvRcHe1tZGr169MDIywszMjPv37/Pw4UPc3d2RkZGhrq6OO3fuIC0tjYmJiThYoROCpKKigomJCQ4ODsjJyXHt2jXy8vKws7MTmHaJCk1qairy8vLk5uayfft28vPz+fXXXwkICKC2tpaSkpIucj+fEhLiLHQWfiUlJaIJExcXx8aNGwkMDGTq1Knk5+cLC+GZM2cyZ84c6urq2LlzJ4WFhcycOVMkueXl5Xh6elJfX88vv/yCs7Mzd+/e5dixY4wfP17gR2VlZZGTk8PBwQENDQ38/f1FYVpbW4uXl5dQcpFcZ3eZ6o8fPxbSTJqamjQ2NnLq1CkyMzP57rvvGDZsGBoaGsTGxmJvb8/s2bPx9vbuUmRUVlby+eefCylNRUVFBgwYQHl5OXPnzkVbWxsvLy/WrVvH5s2baW9vx93dHVVVVWpqagTe9LfffhMJbkFBAZmZmfj5+aGgoEBKSgq6urr/yjJdWlqa8vJyzp8/z9dffy3In5JupURvfcyYMQQHB4ufk9xHT09Pnj59yvbt21FQUGDChAno6uri5OREU1MTQUFBTJ48mdraWmJiYjA0NGTatGkoKSmxf/9+Dhw4IFQIVFVVhe4wdDZIJDJdS5Ys6RasRRLp6enIy8uTkZGBgoICf//9t5iAt7a2iimBm5sb+/fvx9jYWDwnVlZWTJ48mf3793Pjxg0GDx7MqlWrxDkigVU0NzezZMkSevXqRVJSEkVFReLzKysr2bZtG6mpqSxevJjAwEDa2tqE/bSbmxsVFRUsWbKE2tpaHBwcBLb2f4puJ69r1qzh6NGjnDlzRoCVJYnMo0ePSElJwdzcHAcHB+Lj43nz5g1qamo4OTlhYGBASUkJt27dori4GA8PDywsLISmmbGxsWBpSypzgN9//52DBw8ydepU0VGRAPEluNempiby8vIIDAwU+NRbt251m8yUlJREVlYWWVlZeHt7IyMjg4GBAdXV1RgbG4vDbsSIEYSFhXHhwgXh3z1p0iSUlJTIyMgQ+EU9PT1B0JozZw5xcXFCg9bZ2Vl0YPv16ydUHJYtW0ZmZqawR1RTUyMpKYk//viDiIgIBg4c+K+SAUmEhoZiZmaGsrIyT58+pba2Fg8PD5SUlEhOTubNmzcMGjRI/P2KigqSk5P58OEDra2t4mCVaMFKxvASD+r6+noSEhK4dOkS0HmATZ06lZqaGqqrqxk6dCgqKipYWVkRHR1Nnz59UFRURFlZmczMTOHbXFxczC+//MLdu3e7NQpycXGhra2Nfv36CSa6xFP9Y+xfTEwMxcXFTJkyBSsrK/78808yMzMZPnw4bm5unDx5klu3biEjI8OxY8coLCxEV1eXwYMH4+vri6GhIWlpaTg5OREQEIC/vz+JiYlcvHgRX19fAeRXVlbG3d0dQ0ND4RhmZGSEjo4OpaWlQui/O1FSUkJ2djYVFRWUlpbi7u6OpaWlKCCys7P54YcfePv2rYCHmJmZ0bt3b5EQRUdHExkZKVxSjh49SlpaGg0NDQwYMICMjAw0NTVZtGgRRUVFfPjwgZiYGIAu3tqVlZWUlZVRV1dHWVkZsbGxvHr1CicnJyZNmsSECROoqakR7+6nxs8//0x6ejoJCQncvn1bjH9zc3MxMjISB8vDhw/JysrC3d2dkJAQ4uPjaWpqwsjICAcHhy7f7YcPH5CWlsbU1BQFBQVBSEhJSRF6k21tbcJ7PT09neLiYiwsLHBxcRGJa1hYGBs3bmTw4MEC6/5/bbb/NSQJyJEjR0TnOyEhATMzM6FV+vbtW0xMTMTeqKmp2aVTr6urS3l5OcXFxbx584bbt29jbm5OfX09xcXFoohvaGjAy8sLDQ0Nnjx5QmNjIw0NDTg4OBASEoKMjAwTJ07sIuM0ffp0Jk+eTEtLC8ePHyc+Pl4kRp8aVVVVggRqaGjI6dOn+fXXX5k/f75w0lu0aJEg+eXl5REXF8fZs2cFBtXJyYns7Gxu375NfX09VVVV+Pr6Ul1dLYi52tra3Lhxgw0bNlBbW8vkyZOFtM/06dNxdHTkwYMH1NTUCHOA6upqkZD/V+jTp8bs2bPZtm0bQUFBQoNYW1ubzMxM1q9fL86BXr16kZubS3JyMi4uLkIP+5dffuHevXu4ubnh4+ODhYUFWlpa2NnZ4ezszJMnTwgLCyM9PV18Znl5OZcuXRKdyA8fPpCVlUXfvn1RV1cnMjJSqMRItFIl0dHR0e3O661bt7h69Spjx45lwYIF5OTk0NraiqKiIi0tLRQUFBAfH09zczMJCQlUVlZiY2MjZK40NDTE9y1xTbx+/To2NjaMHTtWJPTLli2jd+/eFBQUcPv2bT7//HN0dXW5e/cu169f5+HDh8LdExBSVhKTn9zcXLEP/puorq4mPj5e4C6XL18u7J4VFRWZOnUqxcXFJCQk4ODggKamJgYGBsI0KDc3l9TUVNTV1SkvLxeJtMTe2d7eHn19/f/oKHZ0dNDa2kpqaiqJiYl4enqSn59PXl4eenp6FBUVMWjQID58+CDG9t11ZBw3bpyAUUnsv2tra4mOjqa9vR1dXV1UVVVxc3MTeUhrayulpaUYGhri7OzMmjVr+PDhg3CbhM7iSUNDg6ioKGJjY/Hz82PatGk8fvyY5ORkceZqampy7do1EhIS+Pzzz3FxcSEvL084m1VWVqKlpSVMqOD/3k+7nbza29vj6urK9evXKS4uZsOGDWIka2NjI7xuoXNzdnR0REFBAWlpaY4fP87hw4cF0ywgIAAzMzPS09Oxs7P7b7UuFyxYIDx8JZIcr169Ii8vj9DQUDHeXL58OdOmTetyULW2tpKSktJFhPr/CicnJ9zd3bv8HmVlZWRkZLrgMCR43v79+5Ofn9+lmnV1deXUqVMkJiaKBwM6TQH+/PNPDhw4QGxsLCoqKuzevRtnZ2dRvUiqd4B169aJA+7333/nzJkzDBgwgLFjxwo83L+RzujXrx+qqqrcvXuXhw8foqmpSe/evcnPzycwMJDr1693YVbq6ekxaNAgTExMMDQ0xMHBgcuXL/Pll18yZcoUvv/+e/755x+++eYbNm7cSEREBDNmzMDb25sLFy5gbGxMbW0tSkpKqKiosGLFCpYtW0ZzczMfPnxg586dZGRk4O/vj5OTE/fu3WPjxo2kp6eTlZXVZcT/KeHg4CCwynp6ehgbG2NjY4OHhwf29va0t7dz8uRJoqKiCAkJYcSIEQwfPpxHjx6RlJTE119/jYWFBSNHjiQlJQUFBQUx0pVILb1//x5LS0tUVFQIDAwUGMtr165x9OhRsrKycHV1xcnJieDgYEaPHs3nn3/OtGnTmDNnDjt27AA6E7T9+/ezadOmbq1RIrguJSXFpEmTcHBw4N27d9y/f5+MjAzk5eVFklpbW8vTp09JSUnpcpilp6dz/fp1wsPDhWVzcXExaWlpFBUVoaCgwN69e5k1axYrVqwgJiYGBQUFnJyccHBw4MaNG7x48YKsrCwhZzRu3Dg+fPiAtbU1LS0tgnzXXf1MSUhc0uLj4/nrr79wcHDg/Pnz2NjYMHr0aLKyskhNTWXZsmWMGzcOGRkZvvnmGzEN2bhxo7B47Ojo4OHDh7S3txMSEoKysjLPnz8nMTERGxsbvvvuOwFjOnz4sCAzjho1ikWLFokO9W+//cbXX38NIDb6a9euMWPGDKZMmdLtNUoOovDwcO7fv8/48eMJDAyktrZWYMDOnz8v1iEvL09xcTFbt25l586d4vecO3eOqqoq5OTkePr0KRoaGkJhoKKigvj4eAwMDIiNjSUtLY2rV68SEhLC5MmTsbe3F/s2/L93XtLFKioqori4uNtrS0pKori4mDt37rBnzx6ys7MpKioiMTGRysrKLokr/L+x7/bt20lJSeHHH39k0qRJZGRksH79ei5dusTVq1dZs2YNCxcupKKigjVr1hATE0N7e7tQJjl+/DiOjo6EhIRga2uLjIwM8vLyAt4WEhJCWVlZl67+v4msrCzmzp3L9u3bWbhwIebm5ty+fZu1a9eKTqSjoyMFBQXo6ury+eefo6+vz4kTJ8QadXV1yc7ORl9fH01NTaysrMREsX///ujr64tpws8//0xzczNTp07lxx9/5JtvvuGHH37g2bNnXLlyRVgfS0tLs2fPnv+43ubmZq5cudKtNba3t5OUlMTo0aOxsLDAzMwMNTU1jIyMkJOT4/bt28L6FDoJhTdu3GDEiBGMGjUKCwsLPDw8OHPmDL/++iuVlZX4+voKbDJ0jpwl+7xERWPo0KFYWlri5OTEokWLaGpqYvHixejp6XHmzBl8fHyYNm0a69at4+rVq4wZM6bbuHNJtLS0CALT0KFDsbCwwNjYGCkpKaFB7+7uzp49e9i2bRshISF89dVXHDhwgDNnzrBhwwamTZuGs7Mz7e3taGhoiATu3bt3vH79msjISKZNm8awYcNEodTS0sLnn39OUFAQU6dOZdGiRZw8eZKmpibh4Ddy5Eh++eUX4uLihA7zhg0burW+j4tOc3Nzli5dSkNDA1999RW6urq8ePECa2trMRGRwB8+3rcNDAw4efIkR44cYc+ePfTs2ZMpU6agpqbG69ev2b59u5i4WVtbY2ho2AWyZmtrS0JCAl9//TWenp5ERkaSlJRE7969+emnn7ok9R87Ov5P0e3ktbCwkH79+iEtLU1CQgI7d+7EysoKFxeXLlJRGRkZ+Pr6itZyZWUlbW1tKCkpCfZ8YGCgIIXU1NR00YzT19enra0NbW1tPD09cXFxoX///uTl5XH16lWampq64NUcHBxwcHAgJyeHV69e0bt3bwYMGEBLSwt379795PV97PtcVVUlrkHS7ZB0OTIzM2loaGDYsGG4u7vT0dHB/fv3RYUl6foVFBQgIyNDRkYGGRkZODs7c+jQIXbt2sXjx48pLS3l3bt3REZGMnbsWJycnBg2bBja2tpizAOdCbGenh7z5s0TlWVLS8u/Sl5VVVUxMjIiNjZW6GFWVlbyww8/MHPmTIEN+5gUpK+vLwoFyfcg0Z97+vQp+/btE7qtTU1NODg4sHTpUoyNjWltbSU2NhZnZ2cxTsvPz8fU1BRLS0vMzc0pLi4WdrEqKirY2tpibm7OvXv3uu03/vr1a9zd3XF1dSUiIoIzZ84IK1BHR0dBWHBychIdfok/ury8PLW1tWRmZgrVBHd3d+Tk5IiPj6eyshJVVVUh/RUXF4eenh5Hjx7F1taWyspKkUzKysoKbU6JXaqLiwsGBgYCy9irVy8CAwO77ZhibW2NnJwc6urqQqouIyOD7Oxs9PT0MDc3x9HRkZiYGKSlpYWJwKZNmyguLhYOTR9PJoKCgtDW1ubatWs0NjaioKBAS0sLSUlJ4nDq2bMn1tbW1NXVUVBQgJWVFRMmTMDf318Unx+PC58/f86LFy+6TRKBzi7prVu3iI2NxdraWui8Xrx4EQ8PD0aOHImsrCz6+vr06NFDFNESzWdfX1+ys7O5e/cuVlZWuLq6Ym9vT0tLCwoKCpSUlIhxu5+fH4aGhjx+/Jjr168Ld5ylS5cya9YsQbKQdMu9vLxwc3NDTU2Nn3/+mZcvX+Lv79+t9Y0dOxYrKyvGjx8P/L8RsIQUpaOjg7S0tOhWSaAp586dw9zcnMLCQszMzFBXV6euro729nZx4Ej87mtqasS6S0pKyMzMRENDAxUVFeEOJzFwyM/P58WLF8jKyuLo6CgK+KKiIhISEigsLOz2PbSyssLGxkbsj7169cLW1hYpKSmUlZXJysrqIhFUW1uLoqIiampqODo6iolOY2Mjfn5+vHr1iuTkZPbv38+6desYPHgwly5dIi4uDkdHR+zs7KisrKSgoIB+/frx7bffoqGhQVtbm8DzSTpQkn+npKRw584dtLS0ukz8PiUWLVpEbm4uHz58oKioCAMDAxobG8nLyyMgIIB169YJjoKEJHjz5k3Onj0rOo4dHR1YWlri5uYmGjodHR3cvHkTR0dHPv/8cxwcHLhz5w7u7u5UVFQwfPhw1NTUSEhIoK2tTZwP0tLS+Pr6Ym5ujo2NDS9fvqS0tBRzc3OcnJzE+Ds2NvaT1zh48GAaGxvFpEMyTn/y5Ik4n4cMGUJbWxsaGhokJiby5s0bevXqhZubm1CcsbCwYO/evdTW1gopv+HDh9Pe3o6rqysdHR2Ul5fj7OyMubm5eJ+dnZ0JDg6msrKSQYMGYWlpiZ6eHsHBwWI/kJaWZsaMGSgoKAgd5+5EY2Mj6urqXQyYJBbs0Jn0Z2Zmkpubi7S0NMrKysjJyWFoaIiZmRlaWlooKyt3IW1duHBBuBdCZxPs4sWLFBYWMnz4cGxsbMTvz83NpaGhQezb0JlkZmVl8fbtWxwcHLC1teXSpUv/Cip49OhRlJWVcXJyIjw8nP379+Po6CiuNz09vQv5+2PstwSTqqOjw+DBg3F2dqaqqgpnZ2fx3krI3ElJSUK5ZOfOnSIZ3rx5M+/evUNKSor4+Hjq6urQ0NAQ5hQODg5UV1fz999/C+jN/xXdTl6Li4vp168fPXv2JD09naVLl3L16lU2bNggEr+LFy9SWVmJnZ2d0FGUkpJi1qxZYnwsJyeHmpoazc3NmJqa0tbWJiRGJGOtUaNGsW3bNtLS0oiKisLe3h4jIyPBTpUklJIHoKOjg6ysLBobG6mvr0dFRYXRo0d3K3n9OCQEqdTUVGRkZIRob2ZmJpcvXyY2Npbm5mYmT57M33//zenTp1m7dq04vCsrK8UBEB4ezqpVqxg6dChnz55l+vTpJCUlCZFg6HxgnJycCA0Nxd7evoudoERL8OPIzMzsFuPw41BTU6Oqqorm5mYcHByQkZFh3759JCYmcuDAAVxdXZGWlhZWgx8nyRJ88oYNG7hz545QWtDT0+P9+/eCsS+R0li7di2lpaWMHj2auro6/vjjDxISEggODua3335j/PjxjB07VhAmhg8fLhyQjhw50u1OwdWrVwVu1tDQkL/++ovy8nLRiZCRkSE0NFSQfyRhbm7O+fPnWbBgAS4uLvj7+7Ny5UoAzp49K0gBo0aNYtWqVRw4cIDbt28LXKSJiQlffvmlcK+RVJ2///67kMU6ffo04eHhbN++nc8//5xZs2Yxfvx4tmzZ0i0mt0TnFTq7an/88QeRkZEEBQUxevRoWlpaaGtrE1I8SkpKNDQ08Pr1a9HF+fh5kpWV5aeffkJPT4+3b99SUFDA2rVreffuHcuWLRN4QFlZWV6+fImmpibz5s1j7NixtLS0/I9avO3t7Zw/f56oqKguWNRPiWfPnnHmzBn69u3L2rVr0dLS4v79+2JkKRn/29jY8OTJE4qKihgyZAgLFy4Un3X79m127NiBnZ0d69atw8TEhJKSEmGg4OjoiKenJ3V1dXz77bccPXpUKEhIS0szdepUTExMWLBgAbGxsWzcuJFp06bx888/A52HwnfffcfUqVM5duxYtwhNJ06c6PKOjxw5koCAgC73ZenSpaSmpvL06VPevHkDdCpL7N69m23btrFw4UJOnDhBWlqaOET9/f0ZPnw4b9684dKlS5iZmQnjl6dPnwqf9NDQ0C6j8nfv3rFz507k5ORYunSpcNpbsWIFt27d6rYGKnROxHbv3o23tzcXL16kpKQES0tLlJSUiImJ4e7du0KBBhAwjm+//ZaFCxdy9OhR1q5di6WlJUuXLuXXX3/liy++oKGhgeTkZHr27CmKRXt7ewHPaW5upqioSKwvJSWFp0+fYmtrK5ISCVny/fv3rFu3DmNj4/+2W/m/xZ9//klbWxsXL17kwoULjBgxAldXV9avX4+BgQG9e/emrq5OTN8OHTrE0qVL8ff3Z+vWrfzzzz/k5ubi5uZGYGCgmHg9fPiQLVu2YGJiwp49ewgMDMTa2pqffvoJIyMjDh8+TE1NDbdu3eLzzz8X0D0FBQVOnz6NvLw8NTU1XL58mY6ODvr374+MjAytra0EBARw+fLlT17joEGDCAwM7GLCcunSJWbOnMnkyZM5cOAAq1atomfPnigrKxMZGUlkZCReXl7i+U5MTOTVq1cEBwejoaHBrl27hCOnr68v7e3t4n5ICGCSyVFDQwNffvmlOI8MDQ1xc3MjKiqKLVu2kJWVha+vL2ZmZiQlJfHkyZNu3UPo3B8lGNPGxkZiYmJQUlLCw8OD6upqnjx5QlZWFvr6+ixbtow+ffpgamrKqlWr+PLLL5GRkaG+vh4FBQVkZGTo6OjoojHv5eWFt7e3MG8pKyvrktht2LABOzs7Jk2aJGAL9+/fZ82aNaSkpPD8+XP8/Pw4ffq0UHzoTixfvhxLS0usrKzIz89HSUkJNzc3oW7g5eUl4JLGxsbi7IqPj+fQoUMcOXKElpYWRowYIfhAH6vTeHt7s2LFCg4cOEB0dDSysrJ0dHRQX1/PyZMnWbduHdBZwIwfP57x48fj6upKY2OjaHBeuXKFTZs2YWpqKvD//1t0O3mVaD9CZxt47dq1QvQ9MjKSf/75BzMzM0JCQqiurub69eukp6czYMAAMWaQjPEzMjKE9ImEHZ2SksKVK1coKSmhtbWV4uJibty4wf3799mwYQMTJkxAXl6e8vLyLht/REQE7969o6CgAE9PT6SlpSkoKOi2m8iVK1coKysjODhYOE+dOXOGoqIipk+fjpeXFx4eHhQUFKCvr09rayunTp0SGrWTJk2iX79+JCUloaurK6rHrKwsqqurOXfuHF988QXffvstkyZN4u3bt2RlZWFvb09ubi7Hjx/Hx8eHOXPmAJ2JYkFBAe3t7SQmJnLt2jVsbGwYOnQo169f59KlS6ID3Z3Q0tISmC8bGxumTJlCc3Mzu3btYty4cSxZsoQZM2YIeSE5OTlkZWUpKCjg9evXaGhoEBoairGxMYqKiujp6QlZEcmoMjY2luPHj5OSkkJ7ezsHDx4Uci8zZsxg+PDhYkOVdCkBYXzw8uVLPD09GTp0aLfG6u7u7ty4cQMNDQ3q6ur44osvkJGRwcLCgsLCQvEM5+XlceLECby9vfH19UVXV5fS0lKgsxJdu3YtNjY2nDx5kvfv34vfb2dnh7GxsehEGxoasnHjRqytrYXNnQTfBJ1d3WHDhjF37lwxsUhJSRHY7JiYmG5jmB49eiTEo6WlpcU78eHDB9ra2lBWVu6Ci3ZxcWHatGmCUSorK0vPnj3R1dUlJSUFExOTLhuYjY0NAQEB/P777wLGIvG6trW1Zfr06aJLVVVVRWJiIllZWXz48EH8t6OjI/7+/kyYMIEBAwZ0WxzdxsaGOXPmMHjwYAwMDHj//j15eXnMnj27i/lDc3Mz8fHxQgLK0NBQ+KxraWkxffp0TExMqKio4MyZM8TFxREQEMCQIUPQ1tYmIiKC3bt3c+7cOaDTCc3e3p7CwkJaWlp4+fIlZmZmmJqaCha8JHr06MGWLVuwsbHp9li9qqqKsLAwLl++jLGxMb/88ovYyG/evEl0dDQTJ07EwsKCr776Cjk5OX777Tf27NlDRkYGx48fx93dnSdPnlBZWUlDQwP19fXo6Ogwbtw4vLy8urjj3Lx5k4sXL1JdXY2Ghgba2tpUVVVhYGDA0KFDBTlUopwBnbjoW7duAZ1OiN3dT6EzwZs4caLQje7o6ODNmzc8fvyYioqKLu5EkiRAQjIbOHAgERERxMTECIWSGzducO7cOf78809kZWWpqqqirq6OoqIiUdDJy8vT0tLC5MmTKS8vx8DAQEhkNTY2UlFRQVtbG0ZGRjg5ObFgwQJUVFQENONT4+rVq4wePZqRI0cKFz5bW1tmz57N2bNn2bJli1AUuHTpEgsXLhSEu4EDB/Lw4UPRuQ0LC+PNmzfIyMggKytLW1sbERERjBs3jgULFiAvL8/r16+Jjo7GwcEBMzMzDA0NRUcXOrHwBQUFomh1cXGhZ8+eIjFraGjoNjYbEBOOwsJCLl++zPnz59HQ0ODNmzfs2LGDWbNmMWfOHCoqKkhJSUFLS4vKykquXbvGq1eviIqKQlNTk/fv3/Pu3TvOnz8vDCoA0c2UTGCtra1FsfT+/fsuWusdHR0cOXKEvXv3kpKSAnTu10eOHKFv374EBQUJbdzurE8Sra2t6OvrU1xcLJoneXl5DBs2DB0dHQH5k/ALqqqqKCkpEZJ8eXl5nDt3joiICMHlgc58p0+fPvj5+YmuPyCmJk1NTYSFhbF//342b95MUFAQv/76Kzt37uT58+eYmJhgbW2NjIxMl0LiU8Ld3Z36+np69+7NmjVryMvL4+jRowwaNIiVK1cyduxYnj9/zvHjx3FwcCAoKIjCwkLCwsJITU0lKCiI3r17k56ezsGDB1FSUqJfv354enpiaGiIo6OjkPQcNGgQAwcOpKqqigkTJiArK8uUKVO4du0acnJyzJs3TyS+paWlVFRUYGtrK2xwJTyH//OedesbAIGLKikpoaqqCisrK1EtXrt2jejoaAICAgTrdd++fdy/f19UGfn5+VRWVqKvr8+DBw949OiRWDR0dlsk9n2VlZXMmjVLjKtaWlpoaWmhurqa3NxcIiMjBSlGT08PTU1N0UlUUlLi6tWrnD59ulvsw+rqapSUlATA/MGDB2RmZqKurk5xcTH5+fmoqKgwatQokXAfPnwYXV1dGhsbefr0KQoKCtjY2NDe3k52djaxsbEiwX/8+DH79u2jd+/ezJ8/n+LiYlxdXXFxcSEnJ4fLly938TeXYNUkcIqbN2/i5OSEra0thYWF/8otRRKOjo5kZmYiIyODoqIiP//8M0VFRVy6dIn09HTxQhcXF1NYWIiNjQ1GRkb07NmTmpoadHV1mTRpkpCjAcQotrW1leTkZLS0tJg/fz5RUVHs3r0bS0tL9u/fz6BBg8jPz2fv3r1YWFjw+eef09LSQl5eHpaWliQkJHD8+HECAwMZOXJkt9ZlY2PDzZs3efjwIebm5nz99ddYW1tTW1srGNvQmfTk5uby7Nkz1NXVu/zZ+PHjCQoKori4mObmZjw9PZGSkiIpKYmXL18SEhKChoYG7u7u2NraEhgYiJ2dHRs3buTIkSOsWLFCMNDt7OyEfW5rayttbW04OztTUlJCSkoK58+fx9XVldevX3/yGisrK5GRkaGiogItLS2GDx9OQ0ODeF569OjRBcM4duxYli1bJn72Y63Mj8djEqUPNTU1UlJSMDIyEnrOknHQjBkzmDdvHgB37tyhtrZWPJ/Xr18XB4q0tDT9+/dn/vz5aGhodFs8vG/fvsLuMTs7mxcvXmBvby+KtebmZlpaWoR6hYRM2NDQwIMHD3jz5g0uLi6sXbsWQBAA7927h6GhIUFBQaSlpbFr1y5hwTplyhT8/PzE5964cYOSkhJ+++03sYeVlpYKGR1PT088PT159OgRf//9d7fWd/XqVbZs2UJOTg7W1tY8ePCAiRMn0tHRwd27d8nKyuLzzz8XjjpeXl6sXLmSXr16MXjwYC5fvszly5eRk5NDSUmJyMhIoPMd9PPzIzAwUOzDtbW1wtlNU1OT69evc+3aNXr06MGQIUMEpn/lypVoaWmJ9auoqGBgYEBISAjz5s3rdvI6b948rl69yrNnzwTeOiUlhUuXLnHmzBmhNQmdifL79++xsrISXePJkyezYsUKVqxYwb59+1BTU2POnDlUVlYyceLELlAGKSkpPD09sbS0pLS0lAsXLpCUlMS7d+9wdHRkx44d4tmR4Cvb2towMTHh119/7da6JCGx+ezfvz+9evUSECdlZWWePXvGwYMHBRxkzZo1tLS04OXlhaKiIsePHxdcgFOnTqGurk5lZaWQQwwICBBOW9988w3q6uqkpaUhKyvLxYsXmTFjhpCrlBQ9hYWFQt1j9OjRuLm5UVJSIsbxmpqanDlzpls8AsmkVFFRkfb2do4cOYKcnBx79uwRdq2lpaVs2bKF2NhYQS57/vw5Z8+eJSUlBUdHR9zc3MjOzub8+fNAJ2xLch35+flER0cL29HGxkb09PSIjY3l/fv3eHl5ieT1q6++Elhve3t7pKWlSU5OZt++fZiamjJ79uxuJ6/Nzc3IyMjQ0NCAqqqqcD38888/uXPnDv7+/gwePJj4+HiOHj3K27dvmTlzJhoaGrx+/Zra2lqh/ZqQkMDZs2cpLy/Hw8NDKCpBZ2Ls6enZBQsaGhqKjIwM0dHRREVFUVVVxfbt29HQ0MDZ2Rl/f3/S09NJT09HQ0MDHR2dbvF4oHNC9PDhQ/T09OjTpw99+vQhKyuLH3/8kaNHj9LW1sbdu3d58OABDx484OLFiygpKZGVlUWvXr3YsWOHMG25c+eOkIdMT09HXV2dcePGMXr0aGEOFBQURHh4uIBDzp07l7y8PF6+fCncKe/cucOFCxdQVVVl6tSpeHh48P3335OcnCyIwf9bdDt5lcSJEyfE5qOtrU1tbS3Ozs5s2bIFZWVl6uvrUVZWxtbWlqNHjwos4axZs8jOzub69evMmDEDOzs7PD09qaqqYsuWLdy6dYshQ4bw/fffk5aWxsmTJ4FOJyuJTZ5EwHnr1q3U1NQITJCDgwNlZWXiRf4YS/WpMWHCBBQVFblw4QI//fQTDQ0NfP3110ycOJEnT54QEhJCXV0d3333nSBnTJw4ETs7Ox48eMD58+fR0tJi1KhRZGdns2zZMiIjI5k/fz579uxh9+7dHDx4UHTyjI2NqaqqElJgcnJyPH78GBkZGQICAlBUVERHRwd7e3umTJnC+PHjqauro0ePHvTr14+ZM2d2e6wOnfqKM2fOFEze58+f4+3tzaZNmwgODsbU1FSAtd+8ecPTp08JCAhg1KhR/yObMyUlhR9++AEHBwd++OEHpk6dKrCdhYWFyMvLExAQIJQMVq5cyZkzZ/juu+8AxHhh48aNzJ49m6amJvbs2cPhw4e7SAD9X/HgwQMhf3Pr1i327NnDnDlzBJZKElZWVixcuJD9+/ezcOFC4cZkYGCApaUlUlJSGBgYsHz5chQVFXnw4AGbNm3i4cOH/Pnnn0ydOpUtW7awbds2/P39sbKyIiUlhZqami4Yz5SUFDZs2MCtW7eERuzdu3fZsWMHWlpafPbZZ/Tq1atbyd2gQYNEAtrS0oKqqiojRoygra2Njo4OYmNj8ff358qVKygoKIjujMQKU/KzDx8+REtLSxCP+vTpw9mzZ3nw4AHp6en4+fkxadIkLl++zLZt2/7jOiQScHZ2dpiamhIfH099fT1r164lJCSEoqIiysrK/hU2u6mpibS0NBISEqitrcXe3l7gSltaWigqKhLC6I2NjZSVlWFhYSGsog8cOEBaWhrz5s0TuO3169czefJkFBQUyM7O5uXLl6SmphIQEMA333xDcXExX375JSNGjODHH39k4MCBZGdndzGVkEB1JNeSkJAgYCPdwYWqqqri6enJggUL8PHx4c2bN4SEhCArK4ulpSUrVqzAwMBASB5JsHASOcCtW7ciKyvLqFGjaG9vF6PggoICbt26hbKyMr169UJRUVGw6efOnUtISAgnTpzg2LFjDBw4EH9/f06ePImxsfF/yPC4uLgIEfn8/Pxu30NHR0fk5eVRV1cX8mTW1tZMmjRJJLXR0dHIy8uzdu1aioqKWLhwIcrKyhQUFPDgwQPy8/MpKSkhOTmZNWvWICcnJzpV2trajBgxgpMnTwpd0MTERGbNmoWDgwNXr14lKyuLnJwc0a3/uFjLycmhpqamW/vLx7F27VrMzc2FLGTPnj0FAU0yGZSSkqK2thYZGRlcXV1ZtGgRt27d4tSpUzg5OaGiokJOTg4BAQGsXLmSW7duCZWV0NBQQkJCePXqlYAjWVlZsWTJEvz9/amsrKS2tlZMr/T19YVjk4mJCZGRkWzYsIH4+Hj+/PNPZs6c2W0C7MdwEVVVVdzd3bsQWi9dusSFCxeor68nKipKFD+vXr2iqqqK2bNnExoaioaGBkVFRbS0tHDixAlkZWWxsbGhoaGBadOm8ejRI/z8/PD29iYlJYWYmBiuXLmCu7u7kKeaN28ehw4dAjrVe5YuXUpRURHbtm0TSeTHrmWfGikpKYJ0LYHJKSgo4ObmhqenJ9OnT0dfX5/KykrMzMyQk5Pjw4cP9OzZk8DAQKFsIfmOLC0thRLBx13Ea9euUVJSIohN0PmOjB07FldXV5YvX05bWxthYWGMGDGCFStWsHr1anr37k1KSsq/2kehUx6tb9++bNy4kd27d7NlyxaWL1/OwIED2blzJ7t370ZLS0s02CTGSqGhoaxevRpLS0siIyO5ePEi/v7+rF27FkVFRXbt2sX169dRUFAQeuiSiUOPHj34+++/0dLS4tKlS7x69YrGxkaRMNfW1orr+pgg7+joiIODA8+fP/9f1/Svk1dlZWXU1dWRkpISL5W9vT0jRozgzZs37Nq1iyFDhvDq1SvKy8vJzs5GVVUVHx8flJWVUVJSQkFBQZCSHjx4IKwV+/XrR2trq6iyNTU1hYSCtLQ0w4cPJzY2liNHjrB161bh4vDw4UNMTU1xdnamvr4eU1NTQkJCCA8P/+R1VVVVERERwf3791FXVycwMBB3d3eKi4u5f/++IHJMnTqVly9fCqFeR0dH6uvrqampETIh9vb2WFlZERkZyYMHDzhw4ABLlizh3r17QGfVn5SUxO3bt0V3T11dnbdv35KcnIycnBz+/v60tbUJQPV/tbt1dXXtdvKanp4ufOzz8/OJiooSXa2PPZwzMjKEZayVlRWOjo7imiUizG/evBHOYaqqqigoKJCXl0d8fDxSUlLIyMjg5OSEqakpTU1NxMTEcPr0aa5du8aZM2fQ1NREQ0OD8PBwzp8/j46Ojig48vPzSU1N7bbDlpmZGZ6enjQ0NHD+/HkSEhLIzs7G1tYWZWVlKioqePXqlZB3kmj6WVpaMm3aNKSlpWloaODSpUvU1NTQt29fAW6fM2cOjx49Eqx7JycnHj58yKNHj2hoaKB37974+vr+B3mnT58+9OjRQ9gNSktLc+zYMaZMmSJY7N2JlpYW4uLisLCwELaTkgRVYsE7ffr0LuS+hoYG3r9/T0NDA9ra2lRXV1NUVCQ6DmVlZSgqKuLs7IyGhgZXr15FUVEReXl5mpubMTQ0REtLC0VFRWH20L9/fw4ePIiMjAx+fn4cPXqUo0ePoqioKDan+vr6LvajnxqNjY3CFUpKSkp04N+/f09BQYEYN9vY2DBp0iR0dHREcVJUVMSAAQPEOL+4uJi8vDxGjRqFn58fZWVl/Pbbb8JgZMKECYwYMYK4uDhqamqE0LmCggJGRkbcuXMHPT093N3d8ff3JzU1lXv37vHhwweqqqoE4aY7ncmGhgbU1dVFh+zMmTOEh4fj4OCAu7s7SkpK1NXVISMjw2effUZzczP5+fkYGxszf/58rl27Rk5ODnZ2dsKMQUpKin79+tHW1kZhYaEgvpw6dYrz588zevRofH19SUtL49mzZwwePFjoIEdHR3Pt2jWgs7h1cXHB0NCQqVOnUlRU1EWu6VND8p4AQkrN3NwcZ2dnvv/+ey5duiQmExJXN3l5eUpKSoiKiuL27dt0dHQIWI0E8pObm0tFRQUDBgxgyZIldHR0EBERgYqKCsbGxujp6VFaWoqsrGwXFZv79++TmJgoipz6+vouuN/ukkMlUnz379/n1atXIgGqqKhAU1OTiRMn4uLigqurK5s2bSI6OloQdd3d3VFQUKCiogJ9fX2hW6ytrc2DBw948eIFb9++xdPTU5BpNDQ0mDZtmvgcTU1NUYhKxu2SaeSLFy94+PCh4JO8ePGChoYG5OTkupXgSSBjgLB9lnTe5s6dK7ghEuk9AEtLS4YPH87YsWO7QG0KCgqENW1JSQnHjx8nPz9f6Ji2t7fj5uaGkpKSIJO+fv2ao0ePCqcrVVVVXF1dGTx4MD179hSksJiYGIyNjbsoH3xqaGho/IfdqoaGBsHBwZSWllJdXY2+vj4jR45k165dQg85MzOTBw8e8PbtWxwdHZk2bRpDhw7F2NiYS5cuERERgaWlJTIyMlRWVpKXl0dbW5vA87569UqcMR+TxR0cHPjuu+9Et1lKSkoUr4WFheTl5XVrfffu3ePMmTNERkZSUVHBV199xdatW+nbty/t7e1ERUXRt29ffv/9dxISEli8eDFNTU30799fNDaOHz/OixcvqKmpwc7ODiUlJfz9/dm3bx/79+8XcpeHDx+mo6ODoqIipk6dSltbG5mZmRgZGdHe3i7UFxQUFNi0aZMwoGlra6Ouro7c3NxPknP7V8lrS0sLgwYNEtXUxo0b2bBhg/jA6upqrly5wuHDh8WGJ+lE/fDDD+KQlLjKmJmZCYeOvLw8Tp48SUtLCwMHDuSzzz7DwMCAhoYGGhsb0dLSwtbWFg8PD44cOYKqqippaWmEh4fz119/ERoaKsb5ffv2xczMrFvJ6+HDh9m8eTPBwcHihQoPD2fNmjWUl5fj4+NDamoqJSUlAnQeGhqKubk58vLyTJkyBWlpaTIyMnBzc2Pv3r08ffqU6upqSkpKaGlpQVFRUTy8lZWVVFVV0d7eTlxcHO3t7cjJyWFiYiI6ao6OjqxZs4YXL14QFhYm5LMkI+PuRnh4OF999RXx8fFERERgbGxMUFBQF1mM7OxsDh48SHh4OP7+/vzyyy+oq6tz9+5dvvjiCzw8PNi0aROPHz9m+/btbN26lUWLFnHgwAEeP37MtWvX+PPPP9HS0hI6mNDZpVq/fj1paWl4eXkRFhZGdHQ0s2fPxtfXV4zOw8LCWLx4MQMGDODvv/9m48aNn7y+MWPGiDX07NmTmTNnChmOtrY28vLy2L9/v8A4rl69mu+++04kShJJj7Vr15KXl8eECRPw9vbG1taW4OBgJkyY0IXxuXbtWhYuXIiUlJSAcUiUB+Lj43F3d2f27NnIy8uLLoaEbCRJ1LtDoIDOMdAff/zBkiVLWLlypTiw4P+pfcTFxWFiYkJmZqYw9OjduzfNzc2iK+Tk5CQ217i4OEpKShg5ciQmJib07t2bO3fu8OTJE9LS0ujfvz+TJ09GX1+foqIiNDQ0KCsrIzw8nCdPntC/f3+MjIwYOHAg48ePR1dXl/DwcMzNzcUm3J2QlpbG0dGRlpYWysrKqKioIC0tjdjYWBwdHcWzr66uzsyZM5GXlxeF84cPH1ixYoXYC77//nvCw8PZvXs3M2bMICcnR7gYSTrVr1+/Rk1NjW3btnUZyyUlJbFs2TIhhSYtLU1xcTFz585FQ0ODsLAw3N3du23VnJaWJghUlZWVNDc307NnT3x9famvr+fs2bP07t2bgIAARowYQVZWlkji1NXVUVVVpaqqivDwcKSkpGhqaqJXr144OzsL9m9aWhqXLl0SY9Y7d+6watUqnj59Sk5ODqmpqXh5eREcHExjYyPr1q0jLi4OU1NTvvvuO4KCgmhubsbIyAhLS0vh1vRvQkZGBh0dHZqbm5GXlyckJISxY8fS1NQkku6XL19y8eJFHj58SGNjo3Brk7gpzZs3j379+gmYR0VFhYD7SJRbXF1duXHjBnPmzGH06NH8+uuvouh//fo1J06cQE1NjQEDBtCzZ88uXdfuOmxJQklJCVVVVWpra0lISCAmJgYZGRlGjhyJs7Mztra22Nra8vbtWw4dOsT69euZP38+GzdupLKykgULFmBsbMxvv/2GsbExoaGh1NfXk5aWxtq1a6mtrUVLS4uzZ89ia2vLmTNnsLW1FUoVTU1NXaY9Dx48ICwsDFNTU8LDw9HT02Pt2rWsWLGCcePGCZOWTwkJ3KqgoICbN2/y9OlT+vTpQ11dHfr6+ixdulR8ZlRUFCUlJTx8+JCQkBB69epFfHw8CgoKwo1SIn1ZUFDAF198gYKCAo6OjmhqauLv74+vry+mpqbIy8vT1NTEgwcPWL9+PaGhocyfP5+1a9eSkpJCbm4u169fx9/fHz8/P/r06UN7e3u3lVuA/5BMk7DhJeQyiTTkhAkThCYzwPr16wUfY/bs2YSEhKCurk7Pnj05cuQIHR0dTJw4ERkZGWJjYwkJCRE24y9fvmTPnj1CcebjsLOz48SJE2JCIJlkQye8RtIA+9Q4fvw4R48eZd26dYwbN46FCxfSr1+/Ljq7Ghoa9OzZEy8vL9LS0vjll1+6kM4kTZaEhARWr17N77//Tq9evTAwMKCoqIi///5bYNqhszj5/fffcXJyIigoSLhnXblyhejoaJSUlLqcCxL44v379zl06FAXXsN/F91+U2NjYwVEQJLsrFixAug8bG7fvk1CQoKwTYROF6ZVq1ZRV1cndD8HDRpEcnIy58+fZ+7cufj6+rJ3714+++wzSkpKKCkpwdvbWxzKkocJOg9nZWVlfvjhB/r374+zszP5+fk0NDQIEoqCggKamppdHGo+JTQ0NBgwYEAXZvSjR49ITk7G3d2dFStW0NzczLNnz1BQUMDW1hYrKyv09PSEPayOjg5eXl7k5ORw//59vL298fb2Rk1NjYcPH5KTk4OJiQkyMjL4+PgIb2uJI0VISAjLli0TDFKAoUOH0tHR0cXO7d8krtCJRZo3bx5VVVV0dHTg5uYmnHeys7OFOHFGRgZJSUnIyMiIRPDKlSukp6fT3NyMnp4erq6utLS08ODBA4YOHSrwuhKHlGvXrjF37lyGDRvGrl27UFRUFJVjSEiI6LqMGjWqixGBtLQ0zs7OTJ48uduOKYWFhRw8eJDW1lYWL17c5XuUkZFBTU2N3r17k52djYaGBpMmTcLa2lpYA0KnFFhycjKampoMGTJE6C5+fC1FRUXk5+eLDjt0EgevXbvGrFmzhBTXgwcPxIbt7+9Pr1698PHx4auvvhKi0y4uLty+ffuT1yghRd29e1coIly+fJnr16+joaGBra0tYWFhhIWFsWjRoi4de8kBHR0dzf379xk4cKDwnFdVVRVEs8rKSvLz88nOzubDhw94eXnh7+8vRrObNm2ipKQEHx8fWltb2bVrF/Pnz6dPnz58/fXXFBcXi/fv32iExsTE8PbtWwICAhgwYAA3b94U1qb6+vqUlpaioqJCS0sL2dnZ3Lp1iwsXLlBQUCBkrwIDA1FVVWX8+PFi+pGdnU1aWhpv376luroagOvXr2NlZYW7uzvp6ek8efKEO3fusHr1aurq6khOThYSTY6Ojpw8eRITExMmTJggfMm7OyHw9fWltrZWmLqsWLGCs2fPEhcXh5KSEkOHDhXkM4mYd05ODoWFhdTU1BAYGEhMTEwXa9r4+HgaGhoEGTIiIkKYhUybNg0TExN27NghEp07d+7g4OAglFuGDRsm7H+DgoKorq4mLCwMNze3LrbGnxpJSUldOvYfx61bt0hKSsLX15c+ffqgoKAgrMRNTEywtLRETU2N9+/fU1FRga+vr+h0mpub8+OPP1JXV8f58+c5ceIEQBfYxqJFi9iyZQvffPMNixYt4rPPPmPs2LHk5OQIeaqcnBwePHiAkZER06dP70Kk+ZRobm4mLy+PtLQ00tLSUFJSoqWlBS0tLeG09/EB7ePjw5QpU5g3bx5mZmbCBW358uU0NDQQFhaGkpKSgGdJbJCTkpIYPHgwvXv3RltbG2dnZyIiInj//j0WFhb4+flhbGws5CtTUlJwc3PDy8tLEIZaWlrQ1tbG29v7kwgxkqiurubFixecPn1aTC+WLVuGjo4ON2/eJDk5malTpxIUFMTPP//MhQsXkJGR4dChQygoKIhpmoRL4uXlRWRkpJhYWFpa0traipKSEhUVFZw9exYLCwuKioqor69HVlYWHx8fzMzMuH37Nt7e3gQHB1NeXi5MKqSkpETnT2Lf2p14+vQpV69eFVJj3t7eYu/y9vYmLi6O8+fPk5iYSK9evRg2bBiKior06NGDQYMGoaWlxZw5czA0NCQ+Pp4tW7YII4bW1laam5sxNzdn9uzZXYxy+vfvj6enJy0tLTx69IhTp05RWVmJiYkJTk5O9OnTBzMzM9ra2qitraWtrU0k+/Hx8Z+8Pn9/fzQ1NVmzZg1KSkqcO3cOf39/wsPDCQgIYOPGjSgrK/P69Wv69+8viidlZWXS0tKws7Nj+vTpQupKYrphZ2fHyZMn2bp1K3fv3iU/Px81NTVqamrQ0NDAx8dHuNeNGzeOuro6jh49CnTCAywtLWlpaaGmpoby8nKam5tRV1fvQuL8n6Lbyevr168FllRXV5e2tjbU1NRYv3492dnZPH78mIaGBnr06EF1dTXDhw9n2bJlyMrKkpycLCQbJCLgT58+xdraGl9fX1EFrF27FicnJ5G4lpaWoq6uTkdHh3ATsbW1ZciQIRgZGSEtLc2cOXMEQ///TyxatEh4sBcVFXHy5Elu376Nrq4ugYGB+Pj4YGhoKPCuNTU1qKioIC0tTWZmJtOnT8fJyYnJkydz8eJF5syZw4ABAwRZRkVFBXNzc+rq6mhpaRHM7n79+vH+/Xuampr44osvBJxC4pLzsfxPa2urwL5I3K66ExJGpLW1tUiyoLOLISMjI6ABklFvW1sbd+7cob6+Hi0tLRQUFLC3t6e5uZnevXuzcOFCampq2LlzJzU1NQwcOJDp06cTEBDAhg0b2LZtG3FxcaxZswZzc3Pa29vJysqivb2dvLw8XFxcOH78OE1NTZSWliInJ4ePjw+WlpZoamp2203s9OnTnD17lrlz54rEtaqqSnjcW1hYsHr1alavXi1+RqKTKumE1tXVYWhoyPjx45k8eTI1NTXExsZSVlaGpqYmSUlJInmqrq4WG93Dhw+5cOGCsAaEzkRz5cqVtLS0MGXKFNasWUPPnj2ZPHky9fX1Qmu0O+Hk5ISFhUUXyEFxcTH//PMPs2fPZtKkSTx+/JiXL1+K5BYQY2foPJTu3LlDR0cHgwcPxsXFRRDKJPff0tISZ2dnUlNTSUhIoKamBkNDQywsLAgLC0NGRob79+9TV1fHkiVLaGhoYM2aNSxdupSamhqUlZWFe0x34+3bt5w+fVqItkdHR5OVlcWsWbNwdHQkNjaW0tJSIUuzf/9+0tPT2bhxI7a2tqxcuZJjx45x7949Ro0aRX19PRs2bBCyLRoaGgISISMjg5aWFsXFxfz2228UFBTw+PFjQkNDcXZ2pnfv3sTGxnLq1CmioqJQVFTk5s2b9O/fn9jYWBobG7sUSZ8SdnZ2ODk5ISsri5GREUZGRhQUFHD16lXMzc3FhKWgoIBr166hrq6Oubk57969E9Jgvr6+vH37VrCPpaSkkJWVFZquEqUAW1tbsX+Eh4eTmpqKrq4uysrKnD9/nrKyMnx8fIQEmCQePnwohPT/TWRlZXXZXyorK8WzfvPmTXbv3s1vv/0mIC+VlZWCDCiJDx8+cO/ePZSUlKivrycnJwdZWVnWr1/PuXPnBGHU0dERDw8PoPN97tu3L+Hh4YwYMYItW7bg6upKv379+OGHH1BRUUFeXp7jx4+zefNmysvLKSgoENbKnxry8vLIyMigpKREe3s7xcXF6Ojo4OHhQVZWlkhoJdGrVy9MTU1RUVGhoaGBgIAAGhoaqKqqQktLi0WLFglrUBsbG1xcXDA2NiYxMRFNTU0ePHjAhAkTGD16NEVFRfzyyy/Y2NiIAurZs2ecOHECd3d35s2bh6OjI2fPnuX06dPU1dWxcuVKBg0a1K3kta2tjerqaioqKlBTU8Pf319Ay65evcq+fft4//49e/fuZd68ebi5ufHHH39w6tQpFBQUhExaVlYWCxYsYO/evfz222/cvn1bQCBu3bpFSUkJr1+/5vDhw12mGGpqahw8eBBVVVX69+/PtWvXGDhwIAYGBigrK5OdnU1SUhKtra2YmZl1260QOmXi9u7dK+5pnz59aGtro6GhQRBHJ0+ezIYNG+jbt68otEJDQwkNDRUyX9Bp+yyZUKSlpQl7bgkDPycnB2NjYzw9PQUxsrW1laioKB4+fEhBQYFY/5QpU1i9ejW9evUSxjvu7u4MGTKkWxyJuXPnAp05jby8PGZmZsJYQyI39+rVKy5cuEBpaSljx46ld+/eRERE8OzZMzo6OrC3txcSltDZDZaTkyMoKIicnByePHlCU1OTwP56enoyduxYAcMsLS0ViiPp6en0799f6JUrKSkJLethw4Yxa9as/3N93U5eJdZ8tra25Ofnk5OTg42NDbq6ulhYWDB48GDy8vKEfqLkMJk6dSrW1tYcPHiQy5cvs2bNGjQ0NAgMDKS6upqsrCwsLS3x8/NDSUmJ6Ohonj59SmNjIzU1Nejr6/Pq1asuI5a7d+9y+/Zt7OzsaG1tFY4kHzP5/m08ffqU8+fPExkZKaAPjY2NIrlpaGjgp59+IjExkblz5zJq1CjMzMxQUFAQhgzm5uZoaGjQ2NhIcnIyjo6OLFy4UHSF3N3deffuHX5+fvzwww9CQcDAwIDy8nJ2797N+fPnsbKyYvPmzUJQWEpKiubmZkGs6W53eerUqcjJyQkrXujs5CorK6Ojo0N5eTnnzp3j5cuXwsVEIgD+2WefYWhoKLRujYyMCAoKoqWlhejoaN69e8eLFy9wd3fHxcWFr776Cmtra54+fcr69euFtIZEfFzi3AWd3U4JbMDIyAg1NTXKysq6jWGytbVl9erVXaq3mpoazpw5899qyCUnJ3P16lWUlJTw9PQkKyuLlJQU+vXrh76+PocPH+b48ePU1NSwdOlSVFRUePToEa6urmJTgM4NKDg4GH19faFIYGZmhqurKzt27ODKlStCyWHPnj3069ePBw8esGPHDtFR+tTo0aMHly5dErJkgCAiWVtb4+LiwqpVq3j+/Dn5+fkCg1dVVUVDQwM2NjaMHz8eWVnZLoSMtLQ0vvnmG1RUVJg7dy7V1dUcPnxYfIcSPVcVFRV27NjB+/fvSUlJoby8XMhPZWVl8ffff9PY2MiaNWvQ19fvonzwqWFqasrSpUsxMDDg8uXLxMXFiaJZWloaVVVVwsLCaG9vJzg4mE2bNpGbm8vy5cuRlZVl69atvH37Fh8fHyIiIggODubEiRNiFGZjY4OtrS3V1dXCWKSurk4wcRctWiSweiEhIbi4uKCioiKwxhIM3ueff46mpqYgl35qnD17luDgYOLj47ly5QrTp09n6NChNDQ0cPXqVQ4dOsTcuXNRUVFh+/btWFpasmvXLoqLiwWMZsaMGfz6668cPHiQ/fv38+233zJnzhwuXLhAREQEI0eOJCsri8LCQlavXo2npydff/21YHrn5eUJC099fX0KCgrE4Z+Tk0NJSQnz5s2jd+/e/0ocXUIOkniaP3r0iOXLl/PDDz8wfvx4gZVuaGjgwoULODs7o62tzcOHD3n27BkrV64UI93S0lIUFBTQ09Ojrq6OzMxMgZ+0tLTk6NGjAsMnMdkA2LBhA6dPn+bChQvU1NR0sb6eOHEiUVFR7N27l3379hEXFycwfp8a5ubmfPnll3h4eFBaWoq9vb2AbFy7do0JEyYI7e+oqCgePXqEjo4Oc+fOxcPDg9jYWJYsWUJAQAALFiwQGHQlJSVSU1M5duwY+fn5uLi40NLSgp6eHgEBAfj6+oozSUVFhYKCAhwcHAgLC0NfX18ktBI7WU9PTzHu705Izun+/fsTExPD/v37SU5OZsmSJYwbN46MjIwuU4cPHz5w6tQpxowZI5JViZa5xG70hx9+wMnJieLiYiFnV1VVxc2bN4mKiury+RKpN319fb777jvi4uKIiIgQclw6Ojqoq6uTn5/PhQsXuo0HBQgODqa1tZXy8nJ69+5NY2Mjf//9N48fP2bdunW4uLiIs1JHR0cYT0iiqKiIoqIiDA0NmTBhAiYmJkJRo66uTvBJzp49y4cPH/jxxx/p06cP79+/R11dHT09PWbPno21tbUgtTU0NCAtLS1gMRoaGhgaGnYL8iGJ8vJyXr58yaFDh8TZZm1tzcSJEykrK2PMmDEUFhZiYmLSpQh3cHAgNzeX+Ph4GhsbuxDQBg0ahKysLKdOneLkyZMCLtDa2sq6devo0aMHu3btQlVVlSlTplBQUEBeXh5//PEHFRUVVFdXC1iEkpISVlZWlJSUfPIEq9vJa319vWjLGxsb09zcTExMDLm5uZiamgo9V09PT4yNjZk0aRKXLl0SGqbjxo1DTk6O4OBgAgMD+emnn7h16xbff/89Cxcu5MWLFzQ2NtLc3My7d+/Izs5GXV0dQ0NDOjo6SExM5M6dO9jb2/PixQvq6+uRkZGhtLSUtrY2dHR0xIGTn5/fbebhsWPHiIiIoL6+HkNDQwIDA9HR0aGiogIjIyNaW1uF/eLJkyfJzMwUsh5ycnLMnTsXdXV1Wltb6dGjBz/++COZmZmcP38eLy8vBg0aREhICFlZWbx79w7oHCVJSUmRkZEhulXJycnCZvTdu3cEBQWJ5FVS6SckJHDlypVuW1IOHDiQ0tJS0tLSaG5uRk1NDXV1daHSINlgAgMDWb58ucCQQmfxoqqqSktLCwkJCaioqODj40N7ezslJSW8f/+etrY20WlzcXHhs88+Q1dXl/Hjx/P48WOmTJlCeHg4DQ0NgthUW1tLfn4+cnJyZGdnk5KSIjQMP07QPiUko2LoZI62tLSQnJxMbm6u6CB1dHTw7NkzUlNTqa+vp7GxkcTERKKjo/H19WXMmDEMHDiQa9eu8fPPP5OVlYWfn5/Af0lMAJKTk2lubha+5q6urri6ulJWVsb58+cFLi0gIICgoCBWr15NdHQ0z549w9XVldTUVIHv686hqaioiI2NDerq6pSUlFBUVISenh4zZ84Uf2fQoEEMGjSI27dv8+rVKwYNGoS1tTUvXrwgNTUVNzc3cW8lOMTa2loSExMFFjY+Pp6amhqUlJRYvHgxnp6eNDc38/79e0aPHk1HRwfjx4/nzZs3/Pbbb3h4eAiVh8bGRpYvXw78J6bsU8LS0hIPDw/evn3LjRs3MDQ0ZOjQoaI4dXR0xMzMjJKSElxdXQUzv6SkhKysLPGz1dXVREVF4eTkRL9+/bhy5YpgZUtc++Tk5PDw8BB6kxYWFqJQffHiBX379hWd0ICAAPT19eno6OD27dti/NndCUFKSgqJiYlkZGSQlZWFlZUVo0aNYuzYsTQ2NnLy5EnMzMyEy5ahoaEY6Uu6tBLyk4S0Z2RkRFtbG8+ePUNTU5PFixdz+vRpfv/9dwoLC/H19RXdk4SEBDIyMrCzsxNJ86tXr2hvb0ddXZ3Xr1+jrKwscMP/xiXt9evXmJqa8vbtW4qKimhtbaWlpQVpaWk8PDxob28Xyh6GhoaYmJiIIjEhIQFjY2Nmz56NlJQU5eXlyMjIoK2tjbKyMn/99RevX7+mZ8+e7Ny5k759+9La2kpubi6WlpaUl5fT1tYm3A737t1Leno6Pj4+1NfXU1dXh7m5OZ9//jlPnjwRrnrdiSdPntDc3IyNjQ2+vr7/8ecS1QRJZGRksG/fPoKCggRW8vTp04J9P2/ePO7cucO7d++YN2+ewJWXlpby6NEjMW2QkZHB19e3C5QjISEBCwsLAgMDu3QuJdh6U1NTQWTrTqiqqooz1cPDg6tXr/LgwQPmzZvHoEGDBMkOOqEJz58/x9DQkICAAFxdXcUE1draGlNTU2JiYgR5NT09nYqKCgYOHCgIvYaGhigpKWFmZsbz588pKCjg0KFDLFy4EHt7e6ENLkl0dHV1MTIyQl5ennfv3pGfn99tSJ2uri6LFy8W5KK6ujoePXrEuXPn6OjoYNeuXUJ9YOLEiaJjCp3ciqdPnyInJycghPX19aLznpKSgpycHGlpaRQXF6OhoYGSklIX8rME5zt16tT/uDaJnXJqaiqZmZmYm5t32wkuMTGR/fv3C0WG8PBwJkyYwPjx47lx4wZ79uwR1sn5+flcu3ZNkIG9vb358OEDz549IyoqipcvX4rpgZGREY8ePSI6OlokrzNnzhT27rt27SI4OJghQ4YIx0SJQkxGRgb37t3Dx8cHXV1dYmJiCA8PJyoq6pNymm4nryUlJTQ1NYns2NLSknv37rFy5UoUFBT45ZdfxPheV1cXdXV18vLyuhAgJCMuydjs8uXLnDhxgoiICMrLy+no6GD27NkMHz6cn3/+mezsbObPn4+3tzeqqqqsXr0aFRUVfv75Z8aOHUtRURHl5eWoqqp2IR1JxJG7E99++y0FBQUsWrSItWvXoqCgQEpKCtLS0hgZGdHR0UFJSQnm5uaEhYURGRlJREQE27Zto3///owfP55evXohLy/Phw8f6NOnD66urqSkpHDt2jWkpKQYOHCgwL44ODigoqLCkSNH2Lx5M3p6ehw7dgw7OzvMzMxExSpJumpra6mrq8PAwIDx48fT1tZGY2Njd28jOjo6XLhwgdu3b+Pm5sa8efPQ0tIiMTGRt2/fsnz5coHHlMTDhw/59ddfSUpKQl9fnyFDhuDl5YWFhQVPnz4VOn0+Pj5CPL+4uBh9fX0MDQ0ZNWoUY8aMYfDgwSQlJfHs2TPxLCgrK2Nvb09RURGZmZlUVVXh6ur6rzp2EkFu6Bz/h4WF8fr1azw8PPDx8aGjo4PIyEj+/vtv3r59yxdffMGcOXP49ddfuXz5MqNGjRIiyhJ/8u+//56RI0eSnp5OZWWlEHH+8ccfCQ8PJzAwkMOHD4suuJeXFydOnMDBwYHGxkYuX76Mubk5v/76q3CoamhooH///mzduhUnJycx4v2UqKqqYuvWrTg7O6Ojo8Pdu3eprKwkODgYb2/vLla+ksMaOnGZhYWFrFmzBicnJ44fP462tjalpaVoaWnRp08fwsPDKS8vJyEhgcePH9OvXz9GjRol3uvw8HAePHjATz/9hIKCgkjAJDATVVVVgd36eFLR3ZDsMc+ePSMzM5NFixYRGhpKc3MzVVVVojtcWVlJeXk5hYWFQg82MTERNTU1Nm3aRN++fQkMDKS5uRltbW1GjRolilw9PT1KSkpobm6mqakJJSUl+vTpI7oqe/bsITU1VZAsWltbuxxcPXv25NSpU2hra3d7tD5p0iSampoIDAzEyMioy941ceJEWlpauHPnDnV1dUybNk1MDHr16kVERIQo8KdPny5sKP/880+++eYbGhsbWbVqFX379hXSQqGhoWzduhXoJHB8/fXX1NbWMn/+fIyMjHBwcMDT01MkcBIb8P8/ce7cOUpLS/Hz8+Ps2bNIS0uLDtbWrVs5d+4cX331FVOnThUd0ZiYGEH+zcvLo7i4GBMTky6SUBUVFbx9+xZ3d3dWr16Nm5sb5eXlbN68GW1tbVauXElDQwPR0dFCX3bcuHECW/n48WOys7MJDg6mubkZb29v5s6dy8SJE9m8efMnr+/UqVMcO3aMwMBAtm/fLpLJoqIiYbGbkpLC+/fvsbGxwdLSUqjYQGcyK1HrcXNzEzJJN2/eFFyJY8eOsWbNGqKioqiuriYuLu6/fZ9cXFx48uQJ58+fx87OTqxbU1OT4OBg+vTpg4ODQ5e94VPivzo77tmzB1lZWbS0tMjNzaW5uRl3d3cKCgr4559/sLe35+rVqxw9epSBAweyaNEiampqKCoqIjU1lZycHKKiolBSUmL06NFoa2uTlJREdnY2JSUlGBoaCveu9evXc/DgQZ49e4aGhobYR7ds2YKurq54Hmpra6mvr8fX15eRI0eyY8eObq3x/PnzQlUjKSkJLS2tLs2cV69ekZKSgqysLNbW1sjLy9PR0SF04T08PAQ85u+//2bLli24u7szZ84c3r59S3h4OHFxccydO5epU6ciLS3Nixcv0NfXp7m5mevXr/PhwwecnJwECU8SBgYGrFmzRkzAJk6c2AWK8imho6NDv379CA4Opnfv3sL23dLSEjs7O0aPHk11dTWpqamcPn2ahIQEXFxcWL58OcHBwZibm1NaWiqggg4ODrx9+5a0tDQGDBiAtrY2CQkJBAUFCQKfrq6uICBCZwPD0tKSxYsXU1hYiLOzMy0tLRw5cgQzMzOKiorEGXj9+vUuVr3/XXQ7eZUAhltaWoiKisLa2hoPDw9CQ0PJyckhOjqaDx8+YG5ujp2dHfv27SPj/2PvvMOjqrY2/pv03nslPYQkpJFQQgsQepfeQUDmomBHUSwgFhRFJIogSBGkCkqRjnQISSgJISSkh/Te25zvj3H2JVaC3CvXL+/z8EyYmXPmrF3XXutda6WmUlJSwsWLF+nSpQulpaWA0trT1NQkIrRV6WlAeVpURTWfOHGCfv36MWPGDMaMGUNSUhINDQ2C6+To6EhDQwNZWVktOlVFFG9NNYqQkBDq6uoYO3asOL2p3C/3Q7VIhYeHY21tTXx8PJ6engQE2xn7cQABAABJREFUBIiAmOzsbLGI+fn5kZCQQExMDNXV1QwbNowBAwaQkZHBnj170NLSEr+t2jzuPz3X1taSmZnJ/v37yc7OZtq0aaLal4pP2xrIZDIxeDp06CAWNENDQywtLcnMzCQ1NRU1NTWsrKyoqanh66+/Fptkeno6rq6uZGdnU1NTw/Hjxzl37hwWFhY4OjoKS1t5eTkrVqygqqqKJUuW0KlTJyoqKhg9ejRDhgwR1mQVd9rQ0JDS0lIR7FRaWiqCnR4U94+BrKwsUlJS+Omnn0hNTcXT0xNLS0tKS0tRU1Nj8ODBDBs2DFtbW2bMmIGlpSUVFRUcO3aMwsJCZDIZM2bMwMPDg5KSErEIgJLaoIqE9vT0FG7V8vJyjIyM8Pf3x8LCgtOnT/PNN9/g7u7OuHHj6N27N1ZWVmhpadGlSxcCAwPR0dFplfKqo6MjFtOOHTuirq5OZWUleXl5qKmpiZKGdXV1DB06FCsrK0pLSzl69KgI4DE0NCQzMxMzMzPs7OxEpS0/Pz+am5uZM2cOGzZsoHfv3qKazNatW/nxxx/p2rUr2tra3LlzBxcXFwICAujYsSPbtm2jqKgIuVwu5oEkSa1ebEE5x5qamvjxxx+JjY0VymF6ejrvv/8+Wlpa/Otf/8LX15eioiK2bt1Kamoq7dq1o0uXLsTExCBJkrCYamlpkZ2dLSxXKmWqZ8+eBAYGcunSJdTV1UWuzoyMDBQKBU5OTuL5NTQ02LlzJ0VFRUydOrVF/tfWYsCAAezYsQNTU1Oh0MXFxXH06FEGDx7MlClT+Pzzz0lLS+P1118XB+KEhASRbL+mpkb0Z4cOHbC0tERDQ4OgoCCmTp2KmpoaPXr0wMLCgldeeQVQGiBu3ryJqampSGlTXFwsyk6mpKRgbm4u6APNzc00Nzc/FB0rKCgIS0tLwsLCMDQ05ObNmxw4cIDS0lJhDVZZAq9cucLdu3exs7Nj0aJFQuFTWZhVCemrq6t588032bhxI6NGjRIei6KiIvbu3Yuvr6+woL399tt8++23REREUFZWhpeXl/AqqSxZ9fX1jB49GhsbmxYH3wdBp06dKCoqwsPDQxQDuHLlCgUFBQQFBREYGIi9vT3nzp0jLi6OpqYmli5dip6eHkePHqWhoQEfHx/y8vJEGquePXty+PBhli5dyqZNm+jduzeLFi3ipZdewsDAgMWLFxMQEMDOnTs5fPgwwcHBzJ8/H0BUFby/r3x9fVm+fLkIJmutjCpL582bNyktLcXNzQ1HR0fy8vI4duwYtbW1Ir2VmZmZoIw5Ozujra1Nhw4dRJ5hJycnjh07RmlpKU5OTvTs2RNLS0uuXbtGcnIyJiYmzJw5kxkzZmBgYMCoUaOoqqrC2dmZxsZGfHx86N69O8bGxhw/fpzU1FSeeOIJKioq2LNnDwEBAS0Cfx8Uenp61NXVUVBQQFZWFkVFRTg5OTFjxgyGDBmCkZERCQkJFBQUCLe9TCbDyMhIUBrg30GwZmZm9O3bF09PT8HnBSVF7fDhwyJ+YtiwYQwfPpzCwkLWrVtHYWEhlZWVjB8/nuTkZK5fv86tW7fIyMjAw8MDc3NzfHx8Wm1ZTk5OZvTo0b9pDFL1y/r16zl79ize3t7cvXuXU6dOYWNjI3Lsjhgxgvbt26Ojo4O6ujoXLlxg3759lJWVMWTIEGbNmkVmZiZr164lKCiIHj160LVrV2pqajhz5ozIJGFlZUVaWhr6+voYGhqiUCjw9PQUcSK7d+8mKSnp0Suvqo6Li4vj1KlTGBoaEhgYyJIlSygvL+fChQu8+eabaGhosG3bNnr27EnPnj1ZtGgRu3btwtXVVVhj1NTUsLS0FAv3/VDlIq2urqa8vJzFixejp6fHuHHjWLFiBTU1NS2STZ8/f57r168zZcoUoekHBAQQGhoqTgIPgo0bN4rApF+ipqaGioqKXyV5njBhgnCpqUznoOSR5ubmYmlpSfv27enRoweJiYmsWbMGOzs7goODmTt3LqdOnWL9+vUcPHgQQFgG7q8XHx0dTUFBAWfOnKGmpgYPDw9sbGxaXWnjfnTv3l24H6qqqpAkSaQte/LJJ9m+fTsaGhr06tULbW1twT1VBVF9++233Lt3jw4dOnD+/Hlu375Nr169WlgFSkpK+Pjjj3F2dmbhwoWkpaWxevVqevfuzdChQwFlIEdTU5OIyvX29hZtvGLFCt59910RRNca5OTkkJSUhI6ODpWVlZw8eZKwsDAiIiJwc3Nj4MCBREREiIUnICAAW1tb5syZw/fff4+RkRHr168nJCSEVatWcefOHZYvXy7ur1LITU1NReAGKBXLAwcOkJ+fz6RJk0QAhsqFOnz48BabS2tdlaAcI6r8eEZGRkyaNEksogYGBtTU1HD27Flyc3Px9fXF29ubnJwcNm7cSEZGBq+++irTp09vkRooOzubsrIywsLCOH/+PHv37gX+zX386aefmDdvHj169BBkekNDQ6ZOnUq/fv2wsLBg+vTpfPPNN1haWgrXj0wmazEvHhSqZ1NZQVXjKjY2lh07dohKfL6+vuLQVFpayogRI7C0tGTx4sXEx8eLksDx8fEkJiaSm5tLXV0d169fR5IkBg8ejL+/P4sWLaK0tJQVK1ZQXV1NTEwMffr0wdfXt4V349tvv+Xw4cPY29sL2sUvq5Y9CO7cuUNdXR15eXkiXdPdu3f54osvKCoqYsWKFcyaNYvr168LSkJxcTEbNmxg165dfPTRRxgaGtK+fXtSUlIYOXIkU6dOxd3dvUWbjx8/XrRlYWEhCQkJzJ8/n9dee40ffviBiooK/Pz8UFNT49y5cxQVFYk5aGBggLq6OllZWaSmpra6D9966y10dHSExX/BggWcOnUKHR0d6urqMDAwIDQ0lKSkJCZPnoyenh7Hjx+nZ8+eFBYWkpycTGNjI+7u7sIKvHHjRsEvbmxsFAd+hUIhSsXKZDIKCgqIi4vj+vXrxMTEkJKSwpAhQ+jXrx96eno4ODiwZcsW7O3tGTZsGGlpacK69aCYPHkyU6dOFdbgr7/+mh9//FG4wIODg5kyZQq1tbV89tln9O7dm2eeeYa1a9fy+eef89prr4niDCqq1dy5c8nKyuKdd97h+eefZ/PmzbRv314c9lWWucuXL/P111+jUCjE+FPlnr5/Xt8/Lu/PMdoaaGhoiADmtLQ0PDw8CAwMREtLCwMDA0pKSnB3d0cul1NeXk5paSnTp09n1qxZLaz3CQkJFBYWMnDgwBbBpgEBAUiSRGlpKSEhIejq6nLr1i18fHz4+uuvycvLo7CwkDFjxgjKzEsvvUR2djYhISFYWloSFxdHZWXlr3KhPwhCQkJISEhAW1tbFASws7Nj6tSp2NvbU15eLtLR3U9FVHkWQblHf/XVV3Tr1o1t27bR3NzMxx9/LHLDgzKYS3XYNDY2xtbWluDgYMzNzXF1daWgoIAbN24wbNgwZDIZX331FT/99BMvvfQSu3btwsDAAEmS0NDQEBb7B8GVK1dapItUHUgUCgVaWlrU1taycuVKGhsb+eyzzxgwYADDhw8X2VgAUb1UhYEDB3Lp0iW2b9+Om5sbcrmc7du3s2zZMj7//HNBCTx+/DiJiYloa2sTFhbGzp07RaYMX19fEWQJSspBRESE4LL/ER5Kef3000/R1NRkxIgR+Pn5UVRUxJo1a+jUqRORkZFiAfTy8qKsrIw33niDxsZGEXzh6OjIs88+KzT6efPmieIA169fx9zcHF1dXXR0dAgPD+fSpUtUVVWRmJjIrVu3uH37tkhVpa6uTnV1NXZ2dgwbNgwbGxtSU1MpKirCxcVF5EZ7UKgqhiUkJFBWVoadnZ2Izj99+jQlJSX4+fmRnp7Od999x4gRI3juuefQ0NDg4sWL6OjoCEut6rSpUjDPnj3LhQsXuHPnDoMHDyY4OFhYJD788EMUCgXTpk0DlIq96jStKr154cIFUWmnqamJ77777qHcscuWLWPw4MGUlpZy5MgRCgsLCQsLY8yYMZiZmVFbW0u/fv1ISkoiNjaWEydOCKK/i4sLr7zyChkZGbzzzjucOXNG1JwH5UJZUlLCBx98QENDA7du3aKpqYn27dtz9+5dNm/eLMo89u7dm9TUVExNTbG0tGTZsmXcunWLZcuWYWhoKGgkTz/9dKv4dlu2bGHv3r106tQJf39/qqqqxAlS5Urz8vKivr6eM2fOYGdnR0BAALW1tURFRXHo0CFkMhkLFixg8ODB5ObmUlxcLLwB586dY8mSJXTr1k3w1u5HRUUFq1atoqqqigULFmBmZkZ9fT2mpqZMmDABU1NTUlJSWLZsGb6+vrzwwgut7sOUlBQiIyNJS0ujpqbmV3xZPT09Bg0aRHJyspgDqqIXCoWCAQMGiIPf6dOnOXXqlEh+D8o0RiqPyIABAyguLqauro4ZM2bg6upKRkYGzs7OeHh4iMNnTEwMbm5uLF68uMWCdOfOHa5fv95qGVWYNWsW/fv3x8fHh9LSUsrLyxk4cKBwd6ng6+tLRUWFoOd4e3sza9YsrK2t2bp1K5999hnGxsZMnTqVuro6LCwsMDQ0xNHRkdjYWKFsWFhYcPHiRVENzdfXFx0dHZGy6uWXX6Zdu3asX7+enJwc5HJ5qxVXUOYyHjp0KLa2tqIQg5mZGXK5nObmZuG68/T05F//+hc9e/Zk2rRpmJubs3btWszNzXnxxRf55JNPuH37Nr179xZ9sWzZMnR1dZk9eza5ublER0fTsWNHEZmuoiiEhIRw7949zMzMqKurw8TEBD8/PwwNDTl8+DC2trZiw/n4449bbdW6nwphY2PDlClTyMnJEYpaaGgobm5uJCcnU1lZiZeXl7CwW1pacvv2bezt7TE0NOTy5ct8/PHHFBcXM2XKFPz9/QkJCRFK69atW0XFqfr6ejp37syLL76ItrY29fX1XLp0SaTzS0lJQS6XEx0dzbhx4+jatSteXl6EhYWRmZn5wPIdPXqU7Oxs+vbti7u7OwMGDMDPz4/q6mqWL1/OF198wYgRIxgwYIBIsK+pqUlkZCTa2trY2NjQrl07Fi5ciLa2NgqFAjU1NaZOnUp5eTl6enpcvHiR+vp6ysvL+fzzz6mpqWHevHk89dRTokR1WVkZsbGxgm6Wk5NDWloa4eHh3Lp1i88++4wePXowfvz4VvUfIILHbG1tqaur49y5cyJgauzYsZiYmLQo9HB/n6tQXV3Nzp07iYqKoqqqSkTQAyI3bP/+/dHU1CQ2Npbz58/j7u5OUFCQyBBTX1/Pli1bCA4OpmfPnixYsEDkJLaysmLatGloaGg8VAae06dP8+mnnzJ//nymTp0qApVUwcTGxsa0a9eO0tJSbt26RWhoKLGxsXz22WfIZDJeeuklPD09GTJkCD169EBDQ4P169dz4MABJk+eDCjTKJqZmeHn5ydc9k5OThw9epSkpCSmT5/O22+/zZ07d0hPTycoKIioqCh27twp4m0eNhhdRXWAf9PqSkpKKC4uFlXOZs+ejUwmw9HREUdHR44ePYqWlhY5OTkkJiZy8OBBkeFk9OjRmJubM2/ePDHGZs6cSU1NDZ9//jkzZsxokbKyb9++LaqdhoeHt8g8smXLFqKjo+nbty8+Pj7Mnj2brVu3/qFMrVZew8LCBMdHZS346quvWLVqFXK5nNGjR/P888+LAJLNmzezYcMGZs+eLVztnTt3Jjw8nNLSUkExWLp0KVu3buWdd96hrq4OMzMz2rdvz5w5c9DV1eXevXuoq6uzevVqYaru168furq61NfXExERQc+ePWlububy5csiiOZhggwqKyv5/vvvuXXrFtOnT6dv374UFxdz8+ZNTp06hb29PWVlZVy7dg0fHx8KCgpEjs370xKlpKSgoaGBj48PqampPPPMM9TV1TFp0iT27NlDWloaGzZsoK6ujn79+rFr1y6hvIaHh7cgZW/atInr168zY8YMXFxcuHXrFidOnCAhIaHVvLSrV68Kzo2qok52drawlKWkpNChQweeeeYZ3nvvPe7du0dJSQllZWUiGXZwcDCBgYHExcWRk5ODtbU1xsbG5OXlceXKFZqamjh06BDl5eXMnDmTcePGceXKFY4fP46BgQEaGhpkZmZSXV0tSkjeunWLw4cPM2PGDMzMzIiOjmby5MmEh4e3Ki2IKkWQs7Oz+Ofk5CSURFVwkp6eHkeOHKFbt2507dpVFEOwtbXlo48+YuzYsSLyd8KECYSHh2NgYMDx48eJi4vDyMhIKHEqvqeLiwtmZmb07NlTBKgkJiZSXl6Or6+vsOjv37+fffv2PTSn0NjYWGSzuHDhAmfPnsXf3x8jIyMqKiqorq6mS5cuIuUaKGkOoaGhlJeXi3lx69Ytdu7cSVpaGnPnzhULm4qP3q5dOywsLDh06BDDhg1j9uzZHDhwgKlTpzJ79mwmT55MWloaq1atoqKiArlcLirFqDa9lJQUDhw40GqLz9WrVwkKCmqhoKrKOH722Wei/OKdO3ewsrLCy8sLExMTVq9eTWZmJnK5XNBSUlJSqKqqIjIykj59+pCcnExAQAA9e/ZEoVBw7tw5+vTpI9YlFeVCpcADIhI/LCwMFxcXnnjiCb788kvCwsJEDfPWwNTUlO7du1NYWMg333yDgYEBY8aMISIigpycHFJSUqiurubEiRNs3bqVoqIi+vfvj4ODAyYmJpiZmQnueUREhLC2/fDDD7z99tuMHz8eIyMj9u/fz5o1a1i2bJmghDQ0NFBbW8uZM2coLy/Hy8tLyKarq0tSUhIrV67ExcUFZ2dn9PT0Hsp6DkoPlGqdnzFjBl26dGHMmDEUFRUxadIkLC0tMTQ0ZN26dZSVlZGUlISXlxelpaXo6emJw//p06fZsWMHLi4uTJw4kSFDhghvzeXLlwV/uHv37qirq2NnZyeqNoLSqm1jY0NdXR1ffvklx44dA/7tMgYEz/FBsXPnTrZs2cKMGTPYsGGDSOsGCOv5sWPHCAsLY+TIkTQ3N1NZWYmnp6fIQAC0SNGlKnu8evVqJEli9+7dXLx4kWvXrhEbG4uOjg59+vTB09OTJUuWAMpMOOnp6SLY+cKFC5SWltK5c2cqKio4deoUeXl59OrVq9Wc1/379zNmzBg6duzI3LlzyczMFBXY/P39W1CCVCkgAbHGqigcOTk5qKmpkZOTw9tvv01FRQVPP/002traXLlyBUNDQ0xNTXn11VdRU1Pjk08+ITU1lV27djF9+nQaGhpYuXIlJiYmnDlzhmnTpjFt2jQqKyuprq7+FVe0Nbhz5w6JiYmcPn2aMWPGYGpqikKhIC0tDRcXF1GQwdzcnKqqKo4cOcKmTZvYvn07Xl5eFBYW4uXlJYIby8rKWLVqFbW1tXz//feYmZnxwQcfEBQU1CLbBSgPQKr7TJs2DVdXV27cuEFqairt27fnxRdfZP/+/Rw6dIihQ4eKQh+tQfv27VEoFDQ2NorAR1UweH5+Pr169RL5+kEZ7O7q6ipoUVeuXOHEiRPcvHlTVN4yNjYWxov8/Hy2bNnC5MmTRUq+S5cucfbsWfr37y+CGWtra6mtrSUhIQENDQ3MzMwoLCxkw4YNnD59muTkZD799FO6du366JXX3r17Y2BggKenJ0VFRaxcuZJTp07x8ssvi/x8JiYm6Ojo0NDQwKBBg9iwYQP5+fns2bMHf39/YR3Yv38/n3zyCc888wwzZ85k8uTJfP/99+zatYu7d+8CYGVlxZgxY8jLyyMqKop9+/YRERHB9OnTcXBwwMDAAB0dHfLz8zl37hwuLi6EhYUhSRLq6uqtLvcHSutyfHw827dvp3v37uJU7eDgQH5+PsnJyYSHh/PJJ58QHBzMnj17ePfdd0WVFfh3GTyVe1dfX5/S0lIsLS157bXXWLZsGYcPHyY6OhpbW1v27NmDgYGBUKxkMpkgo4My2CIsLExY0dzc3DA2NiY8PJx169a1Sr7Ro0dz5swZJEnCxsaGvLw8GhoahCKlqanJ+++/T25uLl26dKGkpERUgFLl8XzqqadYvnw5X331FdHR0bz33nuYmZkxZcoUampq+PDDD+nYsSMXLlxgxIgReHl5cf36dTp06MC4ceMYP378r+giCxcuZMiQIRgYGJCWltYiw0JroLJmubm54eDgwNSpUwXdpbq6WnBfbW1tmTRpkjiEJScno6Ojw8yZM3FxcWHjxo2Ym5vTv39/EW0LSlehKvdiYmIiFhYWZGZmsmPHDrp27crkyZPZt28fhw8fZu3atVy+fBlJkoTrMCsri/r6ej799FN8fX3JyclpdQUqlWvM2NhYyNi+fXvWrl1LXFwca9as4cknn6R///7iGkNDQ06ePElaWhoBAQEkJyfz/PPPi9Qm95e0nTFjBsOHD2fLli28/fbblJSU4OjoSEREBNHR0Zw5c0ZYcZ577jn27dvHqFGjsLOzo7GxkR07dqCjo8OwYcPQ09Ojvr6+1cprfHx8Cwuuiq93P/Xoqaee4urVq6xdu5ZOnTphbW3Nq6++Snl5OTo6OhQWFlJUVMQTTzzBlClTKC0t5ezZs8THx4s0bbW1tXTv3p0JEyYQGxvLU089hZ6enrhnUVERaWlpWFtbi0o5V65cEVbNNWvW4O/v/0CJte+HioN6+fJlLl26xLBhw4TVyt7eHg0NDdauXcvVq1eZPHkympqazJs3j/r6ep5//vkWmSXudxPb2dnx2WefiYOLra0to0ePFhWItm/f3uJQcvv2bXr06CE43BkZGWzYsIFLly6JtWH+/Pn07duXTz/9tFUygtKLpOJ3zp8/H29vb5577jl0dHTEgVlHR4chQ4awa9cuBg0axKhRo/jggw8IDg4WLmM/Pz+effZZLl68KJTCiRMn0q9fP4KDg3FxcUFLSwtDQ8PfPBS6ubmRkZFBbGwsPj4+bN68GX19fVEZbvv27XzzzTetyoyh4gWrosm3b99OQ0MDy5YtY9asWRQUFPDdd99RXV3N0qVL0dDQ4ObNm6ipqdG5c+ffvGdVVZVY52UyGbq6uqSmporMCyEhIaLksaOjI87Ozujo6IggsNLSUszNzdHX16esrIzOnTuzbt06vvrqK7p06UJTU1OLA+Gf4fDhw4wcORJ1dXX69OmDubm58ET98kATHx/P/v37USgUPP300+jp6bF9+3YSEhIYMWIEr732Gtu2bePJJ5/k5Zdfpn379iLl0rp169i0aRPl5eXMnz8fNzc3Dh06JPjtw4cPZ+jQoSKZvyrWIzY2ltzcXLHWPAxmz55NUFAQe/fuZfHixbz66qsUFhayevVqBgwYwIABAwR9ydramujoaLZv305gYCDr168nKCiI3NxccnNzCQoKwsjICG9vb7Kzs8VvTJky5Te5/wMGDODo0aO8+eablJSUsHz5cgwNDRk9ejTl5eVMnjyZ3r174+rqKowfrU1bd+/ePWQyGTt37mTXrl106dIFOzs7EhMTf5O2duzYMVauXMmrr77KuHHjGDlyJHV1dTQ1NWFqaoqFhQU6OjqkpKTw8ssvY2Fhwfbt2ykqKmLDhg0MGjRIHKjvpzYWFhayefNm1NTUmD59OqD0sIwePRpPT08iIyN/k0b6W2i18nr58mURsLJ161beffddLC0tee655zAyMqKuro7i4mKRdsfCwoIxY8Zw8+ZNoqOjRaPHxcXxww8/UFdXx71798T9J0yYQFJSErdv3xYWPFVaotraWnx9fVm1apWo7azila5evZrExEQ+/fRT7O3tKSwsRJKkVp8yf/rpJ5E2SjVgVLC3t0dHR4eKigqKiooYNmwYLi4u3L17V0R4Jycn4+zsTGlpKSkpKVy9elXkxa2vryc+Pp4zZ84QGRmJn58fu3fvFtw6lRslJiaG/Px8nJycMDc3R0tLC3Nzc7y8vDhw4ADV1dVERkZib28v3BqtQXBwMPb29lRXVwtagImJCTdu3KBr1664ubmJ6lozZ84kICBAvJebm0tCQgIymYwBAwYQGRnJd999R/fu3UWQQteuXenXrx/9+vXjwoULtGvXDm1tbQIDA4XVqra2llOnTqFQKETFGFUy6JycHEpLS4XC2Jp68aDkHRsZGQlie3NzM7m5uZiZmQmXUnl5OVZWVi3K8llZWdG7d29sbGw4efIk+/btY+jQocJVqkq0rLJ0VVZWkpSUxIABAwgNDWXv3r1cunSJTp064eLigp2dHQ4ODhw5coTk5GRhYaqrq6Nz585i487MzGx1Baq0tDTy8vJEqhoVh1CV6gkQQQKSJCGTyZDJZMJ1pKWlJTjjKj62ql1UHMXMzExOnDghAh63bt1KeXk5N27cYMCAAYSHh1NQUIBMJqNz5848+eSTmJmZERcXR1lZGSEhIWhpaVFaWkphYWGr+dm2trYis0l1dTUGBga4ubmRkJDAnj17OHbsmAjSUKWnO3jwIEVFRXTr1g1bW1tKSkpIS0ujsbERDw8PjIyMsLOzEzxrlXVYlY7t8uXLpKamMmbMmBaJ8+Pj44VV7tChQ8TGxvLVV19hamrKxo0b2bJlC5s2bfrTkob3o7a2litXrpCWlkaXLl2wsbHh7t27GBsbC0pDQUEBHh4evPXWWyQmJjJnzhw0NDRwdnYmKysLhUKBjY0NJSUlVFRUiABaldJ/+/ZtHB0dRe7GkydPUlxcjKOjI2lpady5c0eklAJE4RBdXV06d+5M7969sbOzQ5KkhzIElJSUiNRWly9fFkUDhg8fTkFBATdv3hQxBqrKherq6ujp6QllISEhgW3btjF69Gg++ugjVqxYwYcffihSFKqyUhQVFZGRkYGVlRW+vr5oa2uTm5vLxYsXsbS0pHv37qipqVFXV8fAgQNbuDFBySdurVKQkZGBpqYmzs7OJCYm8uGHH6Kpqcm0adOwtLTk3r172NjY4OrqSlFREYaGhujq6lJYWMjRo0epqqqisbFR8D1tbW0ZMmQIjY2NbN68GSMjI/r27Sv6u3v37hgaGhIdHc25c+eIj4+nS5cumJubk5eXh7OzM5aWlkRERHD79m2qq6uxsLAQbtqTJ08+UN34++Hv709xcTFZWVkUFxeLrBfFxcXk5+cL1++VK1fYuXMniYmJgiaWlZVFfn4+RkZGYq+aOHEiCoWCDRs28M033+Di4oKvr68ItNPX1yc8PBx1dXUUCgV5eXn8+OOPwjro6+tLXl4eu3btIiAgABMTE+zt7cW6d7+35EGhcpWraBFlZWWiHLXKM+jh4cG1a9e4fv06ubm5BAQE8Oqrr4qsPPn5+YIGp9I9CgsLOX/+vDCo1NXVicpVqryyvXr14osvvuC5557j0qVLJCcniyDqa9eusXTpUkaMGIGzszM1NTVUVVW1Wq8pKipCJpPR3NxMU1MTtra2BAQEIJPJaNeuHaA0DlRXV6OmpkZpaSmVlZV8++23uLu7Exwc/Jvpq9LS0jhz5gzBwcHIZDLu3r3L0aNHcXV1pVevXgwZMoSmpiaqqqowMDCgtraWuro63NzcsLOzo76+ntOnT9OhQwfkcjlqamo0NDQ8ULXJViuvGzZsICQkROQaNTExwcXFhZqaGoyMjFBXV8fIyAg9Pb0WpyA3Nzdh4Tp37hwrVqzA29ublStXoq2tLUoCdunShSlTpnDhwgU++ugjrKyskMlkorLPlClThOKalpZGTEwMJ0+eZMuWLRgbG6OtrU1lZSWrVq3CxsZG8EYfFHPnzsXJyYnJkyfzzjvviMpe9+7dIzs7WygZJSUlnD17Fh0dHUaMGMG0adO4efMmL7/8Mj/99BPPPfcc4eHhXL16lb1799K5c2fq6uqoq6vjnXfeYcuWLXh6etK7d28OHTrEqFGjRO3pffv2cfz4cT7//HNsbW3JyMhAJpNRWloqeKBWVlaEhYW1KpOCCpcvXxZpj/Ly8mhqaiInJ4fLly+LdGQDBgzAy8uL0NBQfHx8CAgIEFVWMjMzRcYJTU1NRo8ezY4dO0hLS+PNN99skXC/c+fOqKmpUV5ejouLC+3atUOhULB69WpWrFgheJTPPfecUCAsLCzE6T4+Pr7VSad/+OEH1q5dy4cffsjEiRM5deoUN27cYObMmVhZWWFkZISWlpYIdDAwMEChUODv709ubi4xMTHU1dXh6+tL7969Adi7dy/Lli0jLy+P8ePHExkZKZJJq8bu8uXL2b17N/Pnz+fkyZM8+eSTfPLJJxgZGSGXy0UlOqBFrkU7O7tWb5orVqzg+PHjPPHEE8jlcjZs2CByEIeGhvLJJ5+QlZXFzZs3cXd3FxvmuHHjMDc3x8rKiry8PMaOHUtJSQmHDx8WNAFQpgB69tlnyc/PF3SH5ORkPv/8c+bOncuzzz4rqsq99957ODk5iRO8r68v7u7umJmZUVpayr59+4iJiWl12cbu3bujoaFBc3Mzurq64iCbn5/PmjVrOHXqFGPGjGHVqlXY2tqye/du5syZQ2lpKUFBQezbtw9HR0cyMzNFYN17773HuHHjkCSJ+Ph4SktLRc7FTZs2kZyczMsvv9yCsmNsbIybm5tQksLDwzExMaG0tFSUhbx27Rqffvppq5TXJUuWEBMTw4IFC4iIiGDbtm1cvXpVuJBjYmKIiIgQ88na2popU6ZQWVnJtWvX+PDDDwkICODll1+mvr6emJgY6uvrxaFv165dbN++ndmzZ+Pl5cXu3bvJyMhgzJgxWFhYiBK34eHhouxxbW0t3t7e+Pj4MHnyZBGd/O677/Lll1+KLAcPitWrV/P666+LdG1aWloUFRWRn5/PDz/8QEJCAk5OTtTV1XH58mUCAgI4ePAgzs7O4h7V1dWcPXsWR0dHBg0axMSJEzEzM6Nz585C1h9//JElS5YQHR3NwIED+eqrr0TAb1xcHMbGxnTo0AFHR0eGDBnSIuI+Ozub6OhoAgICeOKJJ0QBiAfBjh070NfXx8zMDC0tLVxcXMTvfP3113zxxRe8/fbbIrduRUUFPj4+JCQk8O2337Jjxw4yMzMxMDCgqqqKnj170rdvX8rLy1myZAkmJiYitsTKyoqVK1diZGTEuHHjmDp1Krdu3aKxsZETJ06wb98+evToIdy/dnZ2LRLp9+rVi4MHD1JVVcXmzZsfWMbnn39eFC9JTU1l9+7dhIWFkZaWRkNDgygHHhMTQ2xsLAMHDmTmzJmcOHGCixcvMmHCBNzc3ERQb9++fZk8eTJOTk68+OKLvPXWW3z55ZfMnj2b9u3bs2vXLhoaGlAoFHTr1o2RI0eio6NDRkYG3bt3Z9y4cVy4cEFkBggNDRUez4yMjIeq5qfC0KFDiYyMxMzMjMbGRoYMGSJiWDw8PLCwsCA6Oprg4GA++OCDFgn9fX19cXNzIycnh2PHjpGRkYG+vj75+fkUFRVhYWGBJElCLyopKeHEiROiwuiVK1e4dOkShYWFBAQEsHfvXsLDw7l27ZpQyK9evUpzc3OrlVcnJyckSWL48OGEhITg5uaGrq4unp6e4uCqqalJWVkZhw4dIiQkhHPnzvHSSy8xZMgQvv766xZePBW8vLzYuHEjBw4c4Mknn6R9+/bMmjVLUMdA6RXS1NSksrISDQ0NnnjiCRGj8dprr7F161bmzZsn9trVq1ezbNmyP8312mrl9f4ch/7+/nzwwQcYGBiISaLKIKB6YFBySBMTE0VkrErxGjZsmFiksrKySEtL4/z581y8eFGQ2l1dXdm+fTv79u1j5syZhIWFceDAAU6dOkVgYCAdOnQQ/FZ3d3d8fHy4ceMGhw8fxtPTUwToPChU3BWV6R+UrhsLCwvBa/Ty8uKll17CxcWF/Px80RHOzs5cuHCBixcvMnfuXObNm4dMJsPe3h5XV1eeeeYZGhsbsbW1FQpgu3bt6NmzJwkJCeL3/Pz8aGxsFKVHVfyTmpoabty4wfXr17G1tRXJnFuLGzdu8PHHHzN69GhcXV3JzMwkPz9fZGVIT0+nuLgYc3Nz1NXVuXXrFseOHSM0NJQuXbrg7OzM7du3mTt3Ls3Nzbi5uXHv3j1RfhGUXDBra+sWZW5v375Nc3Mzrq6udOjQge7du5Ofn4+BgQGpqank5OSgpaUlFguVJcTDw4Nz5849sHyenp60a9eOnTt3Ul5ejomJCe3atSM7Oxt1dXWRyeD69evs2LFDuC26detGeXk50dHRmJiYMHDgQMLDw8nLy2PlypXExcURGhqKk5MTNTU1dO/enby8PNasWcPw4cMJCwujY8eOwh2ya9cuJk6ciKenJ88++2yLsVhcXExDQ4MobtFa1NbWUlhYSHx8PNra2sLVouKb2dvbs3HjRgoLC1m6dKlIGD1+/HjByUtMTBQBJ6GhoVhZWQnlVU1NDWdnZ7GhOzg4cPHiRUpKSpg9ezbm5uZs2LCB2NhYXn/9dXR0dDh37hwmJib4+vqip6fH2bNn+eqrr9iyZctD8SXvP/yWl5ezefNmZDIZISEhImNDYGCgcN22a9eOTp06cefOHTw9PVm/fj2ZmZmcPHmSqqoqkd8QlHNaFSxhaWmJubk5Ojo6dOvWjaFDhwoLtSoLxv20js6dO+Pk5ERKSgpJSUloa2vTvn17Fi1a1CJDyJ9B1W9ubm6UlZXxww8/oKWlxVNPPUVBQQFpaWkMHDgQY2NjtmzZIrK1PPHEEyQmJrJy5Upu3LiBJEn861//wtLSktWrVxMQEMDs2bNJTk7mu+++IygoiIEDBxIfH09WVhYODg6oqanh4+PDyJEjcXFxEUFSqoprKsOECr6+vn+auua3oBqPGhoaeHh4EBISQlpaGosXLyY2NpYePXrQvn17GhsbMTAwoG/fvr9yG3bt2pUlS5ZQU1PDzZs38fPzo2/fvhw4cIDz58/j6OgolAVPT0/69esnlBlzc3ORiig2NpZevXphaGjI3bt3yc/Pp2vXriQnJ/PJJ58wffr03yw08EfQ1NQUEdKqoFMbGxt0dHRwcHAgODiY6Oho9u/fT48ePYTb98CBA+zcuRNXV1dCQ0O5c+cOenp6dO3aVcR0DB06lKqqKlasWEGXLl04duwYb7/9Nh06dBAKavfu3UlLS8Pb25sBAwYQGxvLM888w4wZM8Q6WllZiUwmQ1tbWyj7rVFeQakI+/j40NDQQH5+Pjk5OSQkJNDU1ISTkxMODg6Eh4ejoaEhks63b99eFIkA5Zqlrq5OVVUV6enpnDlzhq5du9KpUydx8A0PD+fkyZMkJiaKzCcLFy6koKBA0CO0tLQwMTERFS23b9/O3bt3MTExQUtLq1VzUIVNmzaJ8afyEDk6OjJz5kyRvjE9PR0bGxuCgoIIDw/H1tYWDQ0NamtraW5uxsDAQKSaVJVNtbGxwdramoqKCkxNTampqeHu3bvk5eVx5MgRDh8+jIWFBc899xzDhg2jc+fOpKSkcP36daysrFi6dCnR0dEkJSUJA6G7u3urPXW+vr5IkoSpqSlqamrs2rVL5LxWKBRcvXqVdu3aoaenh5ubG507d0ZDQwN7e3uKioqIjY0VyuvatWu5deuWoFMoFAqys7OxsrLC1dUVDw8PUbwqLy9PpIvT1tYW+oIKp0+fJi8vTxgGampqOHLkyANZz1utvE6aNEm4Oe6PNAZlCgaFQoGxsTHNzc2Co2ZoaMiBAwe4cuUKL7/8Mr179+bVV1+loqJC1Md1dHTkzp077NixgwMHDvDcc88JDm1OTg5HjhxBV1dXuJvPnj3LwIEDCQwMJDAwkKFDhwqlRGWi1tHREQrng2Lu3Ln06dMHR0dHmpqaqK6uFhZdMzMzdHR0mD9/vigLmp2dTXV1Nfr6+hQXF+Pk5ERlZSW1tbWiLKgqgvT+SN2Ghgaqq6tpaGige/fuLU41Y8eOZezYsZSWlnL69Gnq6uro1KkTmpqagibx008/ERER0cLt/aCwtbUVZdtU3BdtbW2haObm5pKVlYWrqysNDQ3s27ePJUuWMG3aNGFZSkpK4scffyQ3NxdtbW3eeOMNEd2uSrisOkkBQiksLy/H09OT/v3707dvX1FWr7CwkIqKCvT09EQOSgMDA2F9a00KmwkTJojk5Tt37uSLL77AxcWFzz//HB0dHebOnQsoT+mnT5/G2dmZwYMH4+TkRHh4OJqampiZmYmN7PLly+Tk5NCuXTuWL19Onz59hLtZS0tLpDk7fPgweXl54jkMDQ1Zu3YtY8aMEUmz8/LyWLduncj1q6oc19rqTKq5YWpqSlpamlBIVIfIiooKDh48SGVlJbNnzyYjI4OTJ0+ira0t+LIJCQns37+fxsZGwsLCWgSrjBw5Uhyqqqur8fX1pX///uL+lZWVbN68mZ9++gn4dxlBVWqpnJwc9u3bx759+5Ak6aEC0/Lz8zE2NkZHR4eqqipOnjyJhoYG48aNo3PnzkRGRnL16lVOnTpF586dMTMz46WXXqJXr14oFAqmTJnCjh07AKXlcP78+dy7d49Tp07h5uZGQUEBKSkppKen07NnT8aOHYuGhgb19fWiqpiKS6qy+qqyoKgKiKjKLT711FO8++67rQosfOGFF6isrCQ9PZ3NmzeTk5MjIq4rKiqwsLBAX1+f9PR0Pv74Y1FN6umnnyY4OJhTp06xfft2zp8/z+LFi/Hw8ODNN9/k2LFjoliKtra2UMRLS0tJS0sjKysLZ2dnwfWUyWTC8q+trS34lFZWVkL+oUOHMnjw4FZ7soYNG4aamhpJSUkUFRWho6MjrKEVFRV06dKFkSNHCqVO5dbU0NBAoVBQX1+PhYUFkydP5ttvv2XXrl2iPPCXX37JzZs3CQ8Px8PDg4ULF4rURqC02JqamhISEkJeXh7Hjx/n+vXrBAYGcubMGVJTU/H19UVXV1ckaFflIH9QREZG8sQTT+Do6IiWlhZDhw5FoVDQ0NAgAsqmTZvG9OnT2bNnjzgAqIpPfPTRRwQFBfH+++8TEBBAZGQkS5YsIS8vj1WrVnH9+vUW1j1QHkxVAXA1NTUiBVFYWBirVq0SVe1UyqumpiY6OjpkZ2eTmpra6swYqiwcb731FllZWRgaGlJZWYmOjg63bt1i165d9OvXDz8/P/z8/FAoFMKTpaLC3bt3Dy8vLwIDA6mrq+Oll14iJSWFffv24ePjQ0VFBUZGRhQVFf0q8DE0NLRFiq979+7R1NREQEAA1dXVIuUbKLn6Ks9sa3DkyBH8/Pzw8PAQz6w6PBcUFIjUTj4+PowdOxZjY2Nu3ryJoaFhC2VMoVAIC7qHhwfq6urcuXMHNTU11NXVhSfq4MGD3Lp1i6qqKszMzNi6dSvGxsb07NkTd3d3du/ezZ49e5g6dSqDBg1i9erVXL58mQULFmBhYcFXX33VKvkcHBzE2v3tt9/y1FNPERAQQEhICFZWVty8eVOU0u7duzcaGhpkZGSgra0tgsRUiIuL48svv8THxweZTMbNmzcxNzdn7ty5VFdXc/PmTYqLi0XRGC0tLWxtbVFTUxO0SyMjIzIzM3F1daWpqUlYamNjY7GxsXmgrCatVl6vXr1Kbm4u7du3bxHEooLKHXN/nkFVRPCpU6fo06ePUGoOHjzIwYMHmTRpEgMHDhSRpZ06dWpRGMDHx4fBgwfj7e2NsbExvXv3JjAwUKRo2LNnDz169BDKl0wmw9PTs4Ub9EExffp0nJycBP2gurpaLEaRkZG0b9++RVoia2trYV3Q0dFh7NixNDQ0CGsQ0GLjTkxMZM+ePfTp00cogvcXI7gfpqamgu9XU1ODvr6+4OBevHiR+Pj4h1Jee/ToIU7iWVlZzJw5ExsbGxGo4OTkxMyZMzEzM8Pa2lqknPH09CQrK0sEd73wwgvcuHEDZ2dnZsyYQW1tLUuXLqWoqIh58+bRrVs38ZsGBgaYmJi0CNpRRQSbmJhgamqKmZkZycnJfPXVV2hra7Nw4cKHSkEEylyxqoOWl5eXqBzi5eUllFczMzN8fX1xcHAQp21VNTBXV1eRpmbHjh307duXCRMmiM1HZfGOj4+noaGBGzdu8OSTTxIQEMDYsWMpKirC0tKS8PDwFt6K69evc+jQIbKyslBTU8PV1RVLS0tOnz7dKvmGDBmCra0ta9asISoqCl1d3RauboVCQUhICNeuXePkyZMEBATw0ksvcefOHd544w08PDxwcHDg9ddfJzU1FUNDQxHBqkrJYmNjI4pPuLi4tCjTe3+VvTVr1jBz5kxGjBghSn4qFApGjBiBra0tmzZt4tatW63sQaXbPCEhgcGDB+Pp6cmUKVMoKysTik779u2xtrYmLi6O5cuXc+fOHQIDA+nTpw/q6uoij627uzvjx48XgabXrl1j165d6OvrExQUhLu7u7CigHKz//bbbykoKGDKlCloaWnx6aefoqGhwUsvvYSWlhYaGhoiV7CNjQ0ymUzU/H5QmJiYYGJiwldffcXu3bsZMWIEzzzzDLq6uqipqREQECAi4Z2cnGhqamLevHlis3zmmWfw8/MTRSYMDQ15+umnKS8vx9DQkHbt2rFo0SKGDRtGSUkJiYmJopoYILxCjY2NVFRUIJPJMDQ0xNjYGIVCIbioqkp59+erfFCoxn5DQwOJiYls3ryZdu3a8cYbb3Dy5Enu3LkjrFKJiYnk5OTQsWNHLC0taW5uJi8vj+LiYm7dusUXX3xBWVkZoaGhDBkyhLfeeotnn32WS5cuERoaysyZM7G0tKS4uBgjIyOx1ty8eVMcxq2trTl58qTIUe3u7k6HDh1YuHAh/v7+rc5Oo6WlxZ07dygrK0NdXR1HR0fs7e3FuhUUFMQzzzxDbm5ui/nTp08fIiIiCAoKorq6mqtXr6Kvr0///v2ZNGkScXFxFBUVkZiY2OL3XnzxRVEONz4+Hh8fH6ZPny5ym0dERPDWW2+Rl5fHxo0bGTx4MFZWVsJQZGNj02pPz8GDB1FTUyMoKEjcS1NTE0NDQ7Fenz17lgULFtCzZ0/BW2xoaBAWcFXcBiit8P3792fEiBH4+PiQnZ3NW2+9Rffu3Zk4cSKjRo2ipKRErLH19fXCKwkI6peKP6mqWFVeXk5ISAjBwcFs2rSpVTJ6enqKgkMqOlxVVZUIDispKWH06NHi0KjyCJaVlYliGikpKXz77bfY2toK44IkSdTV1YmUnnl5edy8eZPbt2/j7u7OyJEjsbW1RaFQtAic8vb2FodkNTU1wsLCUFdXx8LCgpMnT/LFF18ITv6DQKW4pqWliaqjxcXFguPq4+PDyZMnOXz4MJ07d6Zz587o6OiIeIn7aQoDBgzAxsZGKPlhYWHs37+fd999l65du+Ln50dOTo7w5F27do0VK1bQr18/HB0dOXTokDCkdO3aVWRY2rZtG5WVlQwbNgxzc3N27dr1xzI9qDtPLpc/XJ6UxwhRUVGy3/vsny4f/PNl/CfIB/98GdvG6T9bPvjny/hPkA/++TK2jdN/rnx/rXB1G9rQhja0oQ1taEMb2vBfxANbXtvQhja0oQ1taEMb2tCGvxttltc2tKENbWhDG9rQhjb8z6BNeW1DG9rQhja0oQ1taMP/DNqU1za0oQ1taEMb2tCGNvzP4PFRXmWyt5HJ6pDJWp+kreV9nkcma0Qm835ET/Zo8E+X7/8D2vqwDW14PNA2F9vQhv/XaH3Alkw2HfizjPEKJEn9T75z/z0dgSRgPZL0zH3vmwMjgcGAH2APNAA3f36GjUiS4hf30gVSgDgkacgDP8O/r5/Of0s+5WfvAyGAJ2AB1AIZwD7gMySp+Bff/2vyPULI5fI/7Z+oqKjW1T19VFAmtpsBzAE6AOoo+2AjsAZJal1VgD/qw19/dwqgKmEzG0la/4vPH6c+/MN2ioqKal07PWaQy+XTeYD5HBUV9eDz+TGGXC7vDiwEugJmQAnK+fhJVFTUob/x0f6NP5sff379H62nrZv3j9Fc/C3I5fIWbRUVFdW6tnpM8T8xTh8Ccrn8CaAnEAB0BAyBb6Kioib/nc/1qPA47fmtLlIAXAPe+p3PugMRwOFW3vN1QBtY8Yv3xwCfA7nAKSATsAZGAeuBgchkY1rUnpSkWmSyVcD7yGRdkaQLrXyWa/z35AN4FogFjgEFgD7QGXgTmINM1hlJyhLf/uvyPUr8af/I5fIxUVFRf0dKi03AFJRtugOoBvoCq4Aevxo3f44/6sN/Q7mxrgaqAIPf/M7j1Yd/2E5/Y/89Klzj0c/nxxJyufw1YClQBBxAOS8tgECgF/D3KwUPMj/+HH80F1s37x+vudgCcrn8UbTVY4f/iXH68HgNpdJaBWQD/zSL/mOz57deeZWkayg3hF9DJrv4819fPvD9ZDJjYBJwooWSpsQdYBhwsIWFVSZ7FbgCjEbZaHt+cd1WYDkgB1q3GP135QMwQpLqfvWuTPYO8CrwCko57sfDy/doIfrn/tOWXC7/s/75z0ImG4FyA0sDQpGkop/f1wR2/vxc04CvH/B+f9aHqu/JUJ4+i4G9wAt/cNe/vQ/lcvkI7munqKioop/ff7h2egwRFRV1jd+Zz3K5vPXz+TGFXC4fg1IhOA6MioqKqvzF560rq/SfQOvmx+/d4/fn4sPP+799Lv4SP3tE/lpbPYb4nxinfw3PolRaU1BaYE/9vY/zyPHY7PmPjvMqk/mitBjmAAdbceUEQA/lKbklJOkkkvTDr6gBkpQHfPHz/3r9xnX3gLPAE8hkRr/6/GHwn5AP+E3FVYmdP796/MY1j16+h0BUVNTJqKioH37pJoiKivrj/vnPY9TPrx+JDQxAkhpRWm0Anm7F/f64D/+NZ1Ba8magtPj8Ph6PPhTtpFJcAaKioh62nf5nIJfLH3Y+P3aQy+VqwPtADTDxlwoBiD79u/Hg8+P38Udz8eHm/eMxF3+JR9FWjxX+h8bpQyMqKupUVFRU8v+4t+p38Tjt+Q9DG/g9zP359atW8gn7/vx6rpW/pxrkv1eM+jzKRuyB0jXxV/Hflm/oz683fufzRy3fo8af9c9/EjY/v6b+xmeq94KQyUyQpLIHuN+f96FM1h54D1iFJJ1BJot4gPv+3X34QO0kl8tNoqKiyv47j/Rfg5jP/+u8XpS8QRdgN1Aql8sHA75AHXAlKirq4h9d/F/Bw82P38IfzcW/Mu//7rkoIJfLRVtFRUWdkcvlD9tWjxse/3Hahr+C/+qe/2iUVyXpfTKgQMl7aA3CgUqU5ugH/T0NYOrP//vxd74V/fPrX1+M/hvyyWQvoOQ1GaMM4ApHqbi+9ztXPDr5HjHkcvmD9M9/Eiqri8tvfOZ639/ewKUHuN8f96FyPG5Byf959YGf8u/vw0fdTv8TkMvlf2U+P47o9PNrPkr+vN/9H8rl8jPAE1FRUYX/7QcD/sr8+C380Vz8K+P5756LgFg7H1VbPW54vMdpGx4af8ee/6hoA2MBE+DwH3ICfwmZTAsl2TevlcEz76E8sR1Cko78znfyfn51asV9fw//DfleAN5AGYEZjnIARCJJvzeRH6V8jxqif6Kion6vf/6TUG0+zyGTmYl3lZvo/cE7pn96pwfrwyUogw2mI0m1rXjOv7sPRTvJ5XLRTj8vRK1rp/8tiPkcFRX14PP58YXVz69PAboorZOGKOfgEZQK2a6/59GAh58fLfHnc/GvzPu/ey6qINoqKirq4dvq8cTjPk7b8PD4r+/5j4o2MOfn17WtvM7859fSB75CJnsGeB64jZKc/3so+fnVopXP9Fv4z8snSUqXl0xmjdK98h4Qh0w2BEmK/Y0rHqV8jwxyufxB++c/iW9RWtYGAreQyb5HybPqC7gBySi5xA/iLv7jPpTJQlFaSD5Cklrr9vq7+7BFO8nl8r/STv9LeNj5/LhCleZLhtJydf3n/yfI5fKRKK2UPeVyeZf/umv2r82PX+LP1tO/Mu//7rmIXC4XbfUPdaE/vuO0DQ+Nv2vP/+uWV5nMB6WylU3rU1yoTpY6D/hb/0KZ8uQW0BtJKvmDb+v+4jceDv9N+QAkKR9J+g6IRLlYb/6dbz4a+R4h5HJ5i/6Jior6o/75z0EZ4DcMpTU7D+WEmomyD8NRRvCCMp3On+H3+/Df7tA7/DsgpDX4W/vwZ9L9o2qn/wnI5fK/Mp8fV6iUudT7FAIAfrbeqSwhof/Vp/rr8+OX+OP19K/N+791Lt5HF3hUbfU44vEcp214aPyde/6jsLw+bCATSFIZMlkD/z5R/z5ksoXAx0A80AdJ+rMNVXXPv7rx/nfk+/W1Gchkt4AAZDKLFtGzSjwq+R4J5HL5Qu7rn6ioqL/3uSSpCfjo53//hpK/HIByk0p4gPv8UR8aoCwuAVCHTPZbd1iHTLYOZaDKwl989rf3YVRU1G+208+80AAetJ3+d/BPCtRSIenn17Lf+VylNOj+zuf/KfzV+dESD7KePvy8/7vnYou2kst/mR0RgHVyuXwdykCuhf+tB3uEeFzHaRseAn/3nv/XlFeZTAfl6VYBfPWQd7kJBCKTGSFJFb/zOy+jdKNfA/r9hiL3W1AlB772kM/135Pv92H38+tvbbJ/Xb5HBLlc3qJ/7k+79BhiCkrLzaafU+g8CH6vD+v5/XERhJK7dg7lov1bbrDHpg9/A6Kd/tfT16ggl8sfxXx+HHEGZYSvh1wu14qKimr4xee+P7+m/1ef6q/Pj9/Cw66nfzbv/+65+J9oq8cNj+s4bUMr8Tjs+X/V8joGJfn9QKsCmVriNBCM0lVw/FefymSvA28DMSgDmB7ULN3559e/kiT4Pyufsp522c95a+9/Xw1lImcr4AKS9Fscr0ch31+GXC5v0T9/G1Xgl/itzU0m64RywlWhfOYHxWl+qw+VwSdP/s7vv4lyw9n0B+Uv//Y+lMvlRlFRURW/eO9h2+lxh5jP/5BALQCioqKK5HL5DpTJ+5egrPIDgFwu7wf0B8r5b2f++Ovz47dwmj/eLx523v+tc/Fnt/lvtpVcLn+Tn9vqf7k87GM7TtvQKjwue/5fVV5VgQ9/pULNHpRk3/78WrmbhrKRmlEmkX7mN1xP6UjS17+4Tg3oAyQhSfF/4dn+s/LBAGAFMtkZ4C5KTpY1ysocrih5W7N/dcdHJ99fglwu/1X//Ia7Kz0qKurr//KjARxDJqtF6dKoRFnnfBBKC8coJOm3ckH+Hv6oDx8Oj0kfAsfkcvnvtlNUVFRr2ulxx6OYz48rngPCgMVyubwHymo3zijrkDcDs/8huXr/bC62ft4/PnPx/wP+0eP056qFI37+ryrvcBe5XP71z38XRUVF/c9WS3uc9vyHV16VSafD+auBD5J0EZksDpiETLboF7xSVb4+dZQppH4LP/Hrcn99AXuUpdoeDv8d+Y6j3Ei7oayHbIKymsodlOT9T3/H0vzX5Xs0eNj++W9gNzAeZfSxLnAPZU7P95Ck9Fbd6Y/78GHxuPTh77ZTVFRU+t/4XI8UPyd+/+vz+TFFVFRUgVwuD0NpzRqJ0pJYibJ62LtRUVH/jDy9fz4XH2bePy5z8R+P/wfjNABlCeL74cq/8wxn8L9d6vex2fNlrUuv+p96CtkEYBvKk/F3j+B+e1BaL92QpPK/fL+/in+6fP8f0NaHbWjD44G2udiGNvy/x+OivMpQktCVEaF/5aFksgCU1TueQZI+eyTP91fxT5fv/wPa+rANbXg80DYX29CG//d4VBW2/hqUi88c4Dv+HWH/sLBFmSfvi7/6WI8M/3T5/j+grQ/b0IbHA21zsQ1t+H+Px8Py2oY2tKENbWhDG9rQhjY8AB4Py2sb2tCGNrShDW1oQxva8ABoU17b0IY2tKENbWhDG9rwP4MHTpUll8v/5/kFUVFRv1mfEP758sE/X8Z/gnzwz5exbZz+s+WDf76M/wT54J8vY9s4/efK12Z5bUMb2tCGNrShDW1ow/8OJEl6oH/z5s2T5s2bJzU1NUnNzc2SJElSbW2tdOXKFenKlSvivZqaGun06dPSG2+8IYWGhkqABEhr166VJEmSCgoKpNraWkmSJOmVV16RdHR0pJUrV0qSJElVVVXSiBEjJECKjIyUXnzxRcnV1VXS1taWZsyYIX355ZfSunXrpPXr10u7du2S9u/fL33wwQfS0qVLpczMTKmwsFD617/+JY0dO1a6efOmJEmS1NzcLKme/UHkUz3vjBkzJBU2btwoAdLixYslhUIhzZ07V/L29pYSEhKksrIyaeTIkZKZmZk0e/ZsKTExUVxXWFgo/s7KypLefvttaenSpVJ6err4fO/evdKhQ4ek6upq6X6kp6dLCxculFauXCnV1dVJxcXF0sWLF6WioiLp3r170r59+6SzZ89KjY2NDyTf/TKeOXNG2rx5s5STkyPdvXtX6tevnwRIAwcOlM6ePSv9EhcuXJAWLVokbd68WaqoqBB91djYKP5evXq1tGbNGqmgoEA6duyYNGHCBGnDhg3iHiUlJVJNTY0kSZJUXl4uDRw4UHJ1dZUuXrwovvP+++9LCxcuFH3X1NQkSZIkNTQ0tKoPX3zxRampqUmqr6+Xrl69KuXn54vxqvr96dOnSwMGDJBu374tSZIk3bp1S7p8+bK0atUqyd7eXurdu7d079498ft5eXniOb/++mspMjJS2r17tyRJkrR69WoxbjZt2iQ1NjZKI0aMkDQ1NaVjx46J64qKikR7ffDBB1JgYKD0/vvvi2dqjYwff/yx5OvrK61fv16SJEn66aefpCtXrkiSJElLliyRAGnJkiXit9evXy8NHjxY2rRpkyRJklRZWSmlp6dLCoVCys3NleLi4qTa2lopPz9f2rFjh5ScnCxJkiQ9++yzEiD169dPiomJEdfePzasrKyk3r17i/FQWloqZWVlie+8+OKLEtDqcarC4MGDJTMzM+n69etSRkaGZGNjI+nq6ko7duyQGhoaJEmSpMbGRqm+vl5SKBRSc3OzGDv3o7a2VnrqqadEX7322muSJEnS3r17paVLl0rV1dXS6dOnJW1tbalnz57iuri4OOn111+Xrl69KkmSJE2YMEHS1dWVTp06JeXk5EhjxoyRFi9eLEmS1Ko+fO2116QJEyZIAQEB0sCBA6WDBw+K31S1+7hx48Ta+sMPP0hz5syRduzYIb6Xm5srXb58Wfr222+lbdu2STdu3BCfrV27VjIwMJBcXFykxYsXS+vWrZOOHj0q1dfXS5IkSXfv3pUWL14sBQUFSX5+ftLYsWOlefPmScOHD5feffddSZIk6bvvvpM0NTWladOmPbB898u4YMECCZBefPFF8Vx1dXWSJElSfX296L/Y2FgpMjJSeu2116Tm5mbp8OHDkoGBgQRIQUFB0vfffy9JkiRVV1dLISEhkqWlpRiPkqRcX1RQKBRSQ0ODVFtbK2RVobm5WWpsbPzNz1RoTR+qsHTpUmn48OEt1s/750lDQ4NYOyVJkiIiIiQzMzMpLi5OysrKknr16iXNnj27xfdramqkvXv3Ss8++6x06NAh8VlxcbFoN5U8dXV1Yv5JknJML168WNqxY4eUlJQkxcTESLt375Y+/fRT6a233mqVjGlpaZJCoZAkSZLKysqkK1euSFlZWVJWVpY0duxYCZCioqLEb1dVVUnNzc0t9rQLFy5I06dPl7744gvxXk1NjRgLTU1N4jfuR3l5uZSZmSnl5uaK97Zs2SLZ2tpKfn5+0vr166XMzMwW/RAQENDqcZqbmyt+v7CwUFq6dKn05ptvStnZ2eLe+fn5UmZmZot+fOaZZ6ROnTpJJ06cEO+VlpZK0dHR0syZM8Vas3TpUkmSJGnhwoWStra2tH37dvH9jIwM8fepU6ckExMTydvbWyouLpYkSZISExMlBwcHycvLS0pLSxPffZhxev8YuXr1qrR48WLpxx9/lJqamqS9e/dKzz33nLRhwwbpyy+/lLp16yYBkqmpqbRq1apf6Siq/rm/jYYOHSppa2uLtezmzZvSpUuXxOdVVVXS9evXpWeffVbS1NSUAElbW1vq0qWLaMNFixY90H7R6gpb6urqADQ0NKCjo0OnTp3Izc3lhRdeoG/fvgwaNIj27dtz+/Zt5s2bx9ChQ6murmbQoEEA6OnpUVdXh46ODhMnTkRPT48OHToAUFdXx7Bhw3B3d8fOzg51dXWCgoJwd3enffv2dOjQAS0tLYqKitDX16ddu3bY29tTUlKCo6MjAP369aO0tFTcU02tdcbljz76CAsLCwYNGkRNTQ1ffPEFGzdupH///gwYMACZTMYTTzzByJEj8fHx4fTp08TFxeHh4cHo0aPx9vYW97KwsACgsLAQgOnTp7Njxw7efPNNli5dioODA6dPnyY1NZVu3bqJ63766ScSExPp2LEjtra27N27l7Nnz5Kbm4ufnx/t2rXD3NycsLAwNDQerkhacXExO3fu5M6dO0RHR2NjY8OgQYMIDg4GQKFQiLYzNDSkQ4cOjBgxAgMDA5KTk4mJiSE0NBRXV1f09fXp06cPVVVV6Ovr4+3tzcSJE3F3dxe/p1AoKCkpwd7eHiMjI5566inOnTtHVlYWnTsry4qnp6ezb98+OnbsiK+vL+rq6hQXFxMf37qKjSNGjKC+vp41a9Zw/Phxnn/+eSIjI9HR0QHAyMiI2NhYMjMzqaqqoqamhrNnz+Lt7c3s2bNxdXWloKCApqYmADQ1NTE3Nxf39/b2Jicnhx9++AF/f3/69u3L8uXLKSgowNHRkcbGRp5++mkmT55M3759xXWqe+jr6zN8+HB0dXVxdXUlOTmZH39sXTlvf39/XnnlFcLDwwGwsbHB2toagDlz5mBkZIS/v7/4vrW1NU5OTujp6QFgYGCAgYEBADo6OlhbW6Ojo4OOjg69evVCkiRqamoYP348ZmZm3Lt3j++//578/HwCAwPFtYWFhRQUFFBQUMCaNWuYNWsWJiYmmJiYUFtby/nz58nPz2fgwIGtkk+F1NRUMjIyKCkp4bPPPsPPzw8rKytMTEzIzs4mOTkZHx+fFvNA9nMJ6ZUrV/L9998zcuRIFixYgI6ODqGhoVy6dAkLCwsiIyMB0NXVxdDQkOrqanx9ffnwww/x8vIS99PR0SE9PZ2YmBgCAwMZNmwYzs7OdOvWjerqampqarhw4QKrV69ulWxjx47l3r17ZGdn4+rqSu/evamvr2fHjh2YmZmxY8cOnJ2dqaiowMTEBD8/PwB8fHwoLi7m+PHjaGtr07t3bxQKBceOHUNLS0t8Ly0tjaqqKvz8/Hj66acxMTFh165dLFq0CE1NTQwNDamoqKB9+/a4uLjQp08fioqKePbZZ4mJiWHatGmMGDGC559/nl69ej1U/02bNg0XFxfy8/NZvXo1pqamREdHk5iYyNixY3nyyScBqKyspFOnTvTt2xc1NTVSUlKoqqpCW1ubSZMmMXToUEC5RkyePJnLly+zZMkSxo8fz+TJk9HV1eXy5cuYm5vj7u6OpqYmmpqaFBUV8fnnn1NVVcWcOXNwc3NDTU0NDQ0Nrly5woULF3B1dWXAgAE0NTWRmvpw1ZCHDRtGeHi4GDeVlZWkp6eTl5dHY2Mj5ubmol8ABgwYgLa2NtnZ2ZiZmTFz5kxMTExobm5GXV1dPH94eDiWlpbY2NiIa/X19dHU1ASU+5tKnnPnzqGtrU3Hjh0ZNmwY7dq1o7CwEFdXVzQ0NLh06RIvvfQSwcHBLdaGP4Otra2YU8bGxnTq1EnIOG7cOOzt7bl+/TpPPfUURkZGDBkyhB49eoi1BqBLly4YGhqyceNGhg0bxqxZsxg+fLj4XKVXXLp0ic2bN1NaWkqfPn0IDQ3FzMwMLS0tiouLycrKoqGhgaeffho/Pz969+6Nvr6+uM+gQYMwNDQkKSnpgeUD+Oabb5g2bRoWFhZUV1ezZcsWAgMDsbe3B+Drr7/Gy8uLwMBAbt26hbGxMc3NzSQnJxMdHc3SpUtJSUnBzs6O3r17ExISglwup6qqiszMTMLCwgCor6+nvr6egwcP0r9/f0xNTTE2NhbP0atXL15//XVMTU0xMzMDICsri0GDBuHu7k5VVRUHDhzg0qXWFSKLiori8uXLBAYGMmvWLLGn6+rq4uPjA4C2tjampqa4u7tjY2ODhoYGPj4+ODk50bt3b3Jycjh06BB3796la9eujB8/HiMjI4yMjJAkCZlMxttvv03Xrl2JiYlBS0uL8PBwse+Ccuy2b98ePz8/Mdfbt2+Pm5sbLi7K4l3Tp0/Hw8ODq1ev/qFMrdZ8mpubqaqqQiaToaWlBcCPP/7I6dOnxUJqYmJC3759cXNza3FtfHw8586dQ1NTk759++Lr64uvr6/43NzcnBkzZoj/p6en061bN7S0tLCwsMDS0hI1NTXKy8tRKBSYm5sLpbW5uRk1NTUxIcrKytDQ0BDP+KBYsGCBUqvX0CA7O5uNGzfS3NzM559/jouLC01NTYSFhWFoaAhAdnY2AQEBTJkyhf79+wOIiePi4kJjYyNXr17F1NSUzp07o6enx/Hjx+nfvz+RkZFcvnyZpKQk0tLS6NixI5cuXSIuLg5TU1P8/f2RyWTExcWJ9/ft28eQIUOYOHEi0dHRpKent0o+AEdHR5qbm1myZAlnz54lNDSU5cuX06dPH+DfimtlZSXXr1/HysqKyZMnA3D58mX279+PtrY2Li4uWFlZiQGoutbBwQEHBwcAmpqa0NDQQFdXl/LyctLT02nXrh3Dhg1j2LBhREdH09jYiKamJgqFgtzc3BYyJSYmUlpa2ir5VJPn6NGjpKenU1JSQl1dHaWlpdja2lJfXy/GjZqaGjU1NdTW1lJWVoauri5Dhgxpcb/y8nJqa2uxsbGhubmZQ4cOkZCQgEKh4ObNmwwaNIhXXnkFUI7xHTt24OfnR0REBJIk0djYiJaWFlVVVVRVVaGhoYG2tja9evXCwMCA7OxsYmJiWiz2f4a6ujrGjx+PmpoakiTh6elJc3Mz2dnZ6Onp8fzzz7f4fkREBJaWlpw/f54PP/yQvn37EhAQACiVeRMTEyRJQqFQYGVlJa4LDQ3Fw8ODVatWERsbi0KhoKysDEdHRxwcHGhqaqJ79+7cvn2b6OhogoODhUKdl5fH1atXaWxsJCAggLKyslb1Y1FRERcuXMDGxoaioiLi4uLIy8vDxsYGHR0dJEnCyMioxff19fXR1dXl7NmzbN26lcTERHx8fLh69Sru7u5MmzatxRoDSmXX0NCQkpISvLy8mD9/PsXFxdy9exdHR0ehEKraevz48YwfPx6A0tJSxo4dy507d7h48SImJiYPLJ+fnx9+fn4tDopJSUmkpqbi7OzMqFGjhFLe2NiInZ0dzs7OgHKc7d69G5lMhoaGBk1NTTQ0NAglAyAkJISBAwfSv39/cbDR1dXl888/x9DQkLFjxwLK9WDevHnY2SlTph4+fJgDBw5w4sQJJk+ezLvvvgtAbm7uA8umQmBgIIGBgWzevJldu3ZhaWlJamoq58+fF2sGKA/68+fPF0qampoaU6dOZdSoUQwfPpzS0lLOnDlDWVkZQUFBaGlpsXnzZu7cuUNzczMpKSlcu3ZNHJJycnKora0lLi6OvXv3IpPJmDhxIqDssxs3bnDt2jViY2NRV1ensbERbW1tGhsbWyWf6sCu6kd1dXXq6+vJyckhKSmJkydPcvnyZfz8/Hj11VfFPB07diwDBgygqqoKhULBlClTWtxXoVDQ2NiImZmZmE8qFBQUcPnyZdTV1QkLC8POzo6srCyys7OxtrYWe56rqyuBgYGAUmnKzc3Fzc2txZ77IFBXVxdjtKamhsLCQqqrq3FxcWHUqFGMGjWK8ePHs2PHDpycnPD29sbDwwNzc3MqKipoamrCxsYGX19ftLW1OX36NIMHDwb+reR7e3ujpqZGWloap0+f5u7duzQ1NWFkZESXLl0wMzPjxo0b7N27Fx8fH7HeZmVlkZ+fj5GREXp6egQFBREUFIRcLm+VjKdOnRLzoba2Fh0dHe7du0dsbCyamppUVVWhp6eHjo4OWlpa3Llzh+LiYkxMTDAwMOD8+fMoFAoGDx6MgYEB3t7eBAcHs2PHDsrLy4WCGhkZSVlZGYaGhly+fJkePXpgbGxMY2MjxcXFFBYW0rlzZ9q1a0ddXR0JCQloa2uzdu1aAJKTk3nllVeIj49n3rx5DyzftWvX2Lx5M7GxseLgbmFhgY+PDwqFgsrKSlxdXbGwsMDIyAg7OztmzJjRYq28ceMGV69eJTMzEzMzM+Li4ggICEAmk9HY2IhCoSAgIIB27drx2Wefcf78eQIDA9HR0UGhUFBeXo6JiQmampoMGjQIf39/2rdv/6t9z8PDg3bt2j165fX69eucPXuW8ePHY2BgwPz584mPj2fx4sW4urpy8OBBHB0dW5wyATZv3syyZctITk7G09OT9PR0XnzxxRabzy/Rrl07HBwckCQJTU1N6urqKCoqwsjICFNT0xbfVS0cABkZGXz44YeYmZkxZ86cVsl39OhRfvjhB2bNmkVwcDDr16+nuLhYnApkMhlNTU3C2uTo6Mibb75Jx44dAbh37x6rV6/myJEjDBgwgLlz52Jubk5sbCyxsbHU1dXx/vvvM2bMGPLz87GwsEBDQ4Pr16+zdetWjh8/zosvvsjEiRMpLS0lKSmJIUOGMHLkSLZt28bSpUuprKykQ4cOnDlzhqeffrpVg1jVro6OjgQHB1NZWcnChQuF4lpUVCQsxnfv3mX58uXMnDkTT09PfvjhB2bOnMnQoUOZOHEi+fn5aGpq4uPjQ2FhIWVlZZiamorr6+rqaGpqQldXFx0dHaysrH5VDMff319YEdzd3fHw8KCpqYn8/HzMzc3p3LkzGhoaHD169IHlu3v3LqdPn6Z79+4sX76cTp06iRN9ZGQkI0aM4OuvvyYmJgY7OztMTU0ZNWoU6urqREdHc+nSJQIDAwkPD6eyspKdO3diamqKjo4OGzduZO/evQAMHTqU7t27tzhZJiYm8sorr1BUVMSUKVN4+eWXhTXm1KlT7Nixg7t37xIQEMCoUaPo1KkTenp6zJ07ly1btjywjB9++CHp6ekEBQXh5+eHvr4+0dHRfPDBBzQ3NzN16lSGDx+OhoYGkiShp6eHr68vhw4dYvv27Vy4cIGZM2fSvXt3sbCqFG34tyUkPj6edevWcfnyZQYNGsSoUaPYt28fn376KXPmzCEyMpIJEyZw584devToITweoDy8RUREcOnSJfbt29dq6921a9eIjo5m2LBhvPHGGyQlJXH27FlAqZgNHTpUHJIUCgUWFhZkZGSwbNkyTpw4wejRo9m2bRsAZ8+eJTY2llmzZrX4jZqaGoqLi8nOzqagoED01datW3nvvfcIDw9n8uTJdOjQAVNTU9EuKlhbWzNs2DDKysrIzs4Wv9canD17loSEBLp160bHjh3x8/Pj+eefp1+/fnz00UcEBQWhpqZGamoqHh4eAJiZmWFtbc0333zD8ePH6dOnD8OHDycoKEjcd+jQofj6+rbYHHx9fXn++efx8/PD3t6eDz/8kHv37rXYpObOnUtgYKA4oANcvXqVdevW/Ur+B0Xv3r2xtbXFwMCA2tpa8vLy8PDwQJIkmpubsbe3b2GB8vX1JTQ0lJCQEO7evcuUKVNQV1enX79+HDhwgLq6Ot5++2369etHTU0NFRUV9OvXDycnJ4qLi1m8eDHp6el07dqVOXPm4OfnR4cOHbhx4wZffPEF8fHxuLq60qdPHzp16oSmpiYaGhpC2XtQHD16lFGjRnH8+HGuXr3KqFGj8PT0pL6+Hjc3NxQKBSdOnOD48eOMGzdOKK9WVlY4OzuLPS0rKwt7e3txiKmqqiI3N5fKykp0dHSwsbER6+q9e/fYtm0bhw8fpmPHjrz99ttERkYycOBA0YbvvfcehYWFfPTRRzQ3NzNgwADs7e356aefqKioYMWKFQ8sY1ZWFpaWlhgYGJCTk8PcuXORJIlt27ahq6tLXV0dFRUVeHt7s3DhQpycnPjwww+pr6+nZ8+edOnSRdxrzJgxDBo0iPDwcJKSkpg2bRq2trZs2bIFAwMDPD09eeONN9DW1sbGxgYbGxthgXRxcWHw4MHi0Lx161beffddKioqmDp1KgsXLmyVAeB+tGvXThzgNTU12bVrFxcuXOCdd94hLCyMOXPmYGJiQnV1NT4+PmLPCwoKYsqUKeTl5QnFbd26dbz11ls8++yzDBs2rMW4HjRoEL6+vjQ2NqKmpkZ1dTV6enpUVFSwaNEisW7J5XJ0dHRQU1MT8oNSsfPz8+POnTutkm/ChAkYGhqSlZXFjRs3MDIyIjw8HC0tLU6dOkVGRga9evUiNDQUgNu3b1NfX4+3tzfa2toA2NnZ8a9//Usc4jMyMmhsbCQ0NBQtLS3u3bvHwYMHqayspHPnzgQFBQk9TU1NDS0tLeGF1tLSIigoqMVhW4Vdu3axadMm2rVr94cytVp5PX36NEVFRdTU1BAbG8vevXsxMzNjyJAhaGtrc+nSJfLy8oQFR2V9bWxsRF1dHWtrazp06ICJiQnff/89dXV1NDY2YmhoiKOjI56enujr65OZmUlFRQVOTk44ODjQ2NhITk4OCoUCGxsbamtruXr1KtXV1QQEBGBjY0N5eTlHjx5l+fLlXLt2TbikWoPdu3ezYcMGzp49y6VLl4S5Pz4+Hn19fVxcXNDQ0CAjIwMNDQ1CQ0PFBK6trcXExISQkBCOHz/OhQsXCA0NpVevXvj4+JCYmEiPHj0ICQkRbeLn54epqSnW1tYcPXqUhIQErl69Sq9evWhubsbc3FxsWG+99Rba2tpoaWnh7u5OWVmZsJ61Fo2NjYwbN47BgwcLxbuoqIjq6mqxSCoUCuHGrKio4Pvvv8fR0ZHx48ejqanJ119/Tc+ePQkKCqKoqIjs7GzxrEALpQ4QruaSkhIaGxuRJImGhgZqamrIy8vD2NiY0aNHA3Dr1i169uxJbm5uq2kDV69eJS0tjdGjRwsXV3Z2Nunp6eJwFRwcLCzlCoVC0FQA7O3tSU9Pp6Kigjt37pCZmYmPjw9GRkYtLPleXl5YWlq2+O2Kigry8vIApcVWNfGbmprQ09NDTU2NuLg4jI2N8fT0FJY6KyurVimvBgYGlJeXs3nzZkxMTJg+fTrm5uY4OzuTl5dHcXExN2/eFMq5lpaW2Pw1NDTIzc2lpqZGLKz19fU0NTUJF9zdu3c5deoU6enp6OjoMGrUKGbNmoW5uTnx8fGYm5sTFBSEvb093bp1w9HRkZ49e6KpqUlcXJywcpuZmdG3b98WC/CD4uLFi+zYsYNFixYRHh5OeHg4fn5+ZGVl0aVLF+zs7EhOTiY5ORl/f38cHByoq6sjJycHY2NjJk2aJGg8hoaGXLhwga+++godHR0cHByIiIhAT0+PkpISLl26REREhPjtxsZGbGxsyMjIYMOGDejq6tK/f3+8vb0pLS2lrKwMb29vioqKOH36NF5eXoSHh7daeZUkCTU1NQwNDcXYam5uBpQbyGeffcZbb72Fo6MjLi4u4nBpYWFBcHAw0dHR4hAdFhZGu3btaG5uJjc3V7jevb29aWxspK6uDnV1dV599VWxyb/wwgtER0eTmZmJp6cn169fR0NDg/nz54tnzMnJ4dlnn+XcuXOtPihXVFQASuuuyttRX1/PhQsXUFNTE5ZjlRu2uroabW1tevToIe6xZ88e7t27R3h4OE5OTsTGxlJaWkp9fT0xMTEkJiYSERGBnZ0dtbW17N+/XyiBpaWlzJo1S+xD0dHRfP7554DSO6eyqGtqalJRUcHt27dbJd+NGzcYNWoUMTExHDhwgAEDBlBQUMD69evp3r07Y8eOpba2lmPHjom5pfLCgHKNNDc35/z581y5coX27duLtaakpIS8vDyqqqqQJAkDAwN0dHQICQlh5MiRxMTEcOfOHerq6oB/U7PU1dVJTU3lxIkTwouSlpYmvDwqC/uDwtzcXKzdurq6LTxzKsUzNzeXkSNHMnfuXABOnjxJfn4+urq6LdZIR0dHodCUlpYik8nQ1dUVYz84OFhQ10A5D8vLy6msrMTU1FTsx7dv3yYlJYWsrCxqa2v56aefeOmllwAE3as16NGjh6AONTQ04ODgQL9+/aivryc9PZ1jx44xbNgw9PX1yc3NpbS0FAcHB6HI/hLFxcUcPHgQFxcX2rdvL9YMExOTFnS6+9vYxMSExsZGmpqaMDc3x8zMjObmZk6cOMGlS5fo3r07np6ePP/88/Ts2ZPr168/sHwhISGYmpqSlpZGdXU1WlpayGQympubuXz5Mnv27KGwsFBY5W/fvs3mzZvp16+fMAAaGhrSuXNnmpqauHbtGubm5uTm5rJu3Tq6deuGl5cXampq3L59m65du4o1v7CwEBMTE/T19dHX16eiogJtbW1kMlkL6qCLiwvFxcUcOnSIlJSUR6+8VlVVMWzYMPLy8jh37hyDBg3Cw8OD+Ph4bGxs8Pb2Jjk5mVu3biGTyXByckJTU5Np06bRq1cvqqur8fb2RlNTkw8//FAMOBMTE/r378+LL75IcHAwp0+f5uDBgwwdOlQoS/r6+sKtlJOTI07g1tbW2NjYkJiYyOeff861a9cApctK5S57UKgaLD4+nk2bNiGXyykrKxOd5eLigqGhIS4uLpSWllJTU4O2tjZqamro6emhra3N9OnTiYyM5MSJE5SXl1NVVUWPHj1aLMigXAjat2+PsbExXbt2xdfXFwsLCzZs2MCVK1dYtWpVi4kM8PLLL1NaWoq6ujo9evRg//79vPfee62S8caNGyQmJhIUFERISAjXrl3jxo0bdOrUCQsLC6G0uru78/rrr7N8+XJmzZrF1KlTiY2NBeCzzz7ju+++E8qXsbExampqLVygv4XY2Fju3r1Lp06dMDAw4JtvvmH9+vUYGhrywgsvMHjwYDZs2EBMTAy9evViz549vPzyy79y9f4R9PT0cHBwEM+Rn5+PtbU1EydO5Pjx4yxbtoxZs2YJeoCK++br60tkZCSjRo3i2LFjvPTSSxgbG7NgwQICAgKwt7dnzJgxdOzYkS+//JKcnJxf/ba7uzuvvPIKXbt2JSIigurqatLS0rC1taVPnz64uroSEBCAmZmZcAE3Nzdz7969B5YPYPXq1djZ2TFp0iTWrl1Lx44dGTduHB9//DFFRUWoq6tz+/ZtEhMT8ff3F7wxlRKootWooK6uTnV1tdhgjxw5wuLFixkzZgxr1qwR1nGA/v3706NHD7EJVlRUYGdnh46ODpcvX2b9+vWkpqbi7u7OwIEDmTBhAjNmzODFF19slYwVFRXk5+dz9+5d8Z6fnx8+Pj4YGBhQV1fH888/z+3bt9mwYQMODg44OTnxwQcfYGRkJKyyoDyQDB48mClTprB3715mz54tlFVNTU2MjY3FBg3wzDPPMHnyZKKioli6dCmgtB4EBwdTUFBAYWEhFhYWnDt3jnfffZcBAwaIjfVBUV9fj7q6Ol26dKF79+6A0uL75ZdfMmbMGM6fP8/KlSuZN28eGzduxNLSEnV1dZqamoQyOnz4cEaMGEH79u2F0gtKytUnn3zCtWvXePnll5kwYYI41I0ZM0Yor1VVVdjY2ODo6EhOTg7Lly/H3Nyc9957DyMjI3JycnjnnXc4d+5cq2RTQUXdun9dOH/+PK+99hrdunVrsb6pq6tTW1tLeXm5UHRXrlzJ5cuXeeGFF+jZsyeOjo5MnDiRM2fO8Mknn3D8+HG6d+8u2m/t2rWUlZXxxhtvkJ+fz5EjR0hPTxfKq0KhEL9XW1vLnj17MDExwdvbmzNnzrBhw4YW/NI/g8pzaGZmhr+/P05OTty6dYv169eTmZnJ2LFjmTZtGmFhYTQ1NVFSUoKZmVmLsaarq4u3tzcnTpzghx9+oLq6mk6dOuHk5CSeJTs7m6SkJFxdXTE0NBSW6JiYGOzt7UlKSuKDDz6goKCAyZMnM3v2bLS1tVm0aBG9e/dm69atHDx4kB49evDqq6+2qg/vn/uWlpZs3LgRDQ0NzMzMKCgooLS0lIyMDE6fPk1hYSGWlpYsWrSIgoICnJ2dxfUFBQUcPHiQnJwcBgwYQOfOnTl48CDV1dUtfgOU+/vRo0extLQkJCSEmpoaUlNTsbS0xNDQECcnJ5YtW0ZERATTpk2jrq5OKPEPEwei2vf19fXR09Nj1apVhIaGMnfuXJYtW8acOXNQU1Nj9OjRnDp1iuPHjxMREUHXrl1xdXUFlC79HTt24Orqys6dO4mOjub69et4enpSUlLCl19+ibm5OU888QTu7u6/2idnzZpFSEgIlpaWQsG/desWe/bsIT8/n6SkJIYNG0bnzp3p2LEjzzzzzAPLl56eTnl5OR07dsTe3l4Y2kA5D27fvs2pU6d48skncXR0pKqqiuzsbKqrq3/lbTl69Ch37txhxowZ3Llzh3/961+4ubnx008/MWvWLLp37y5oM+3atcPS0pKGhgZx/f3e9u+//56UlBS6detGRUUFb7zxBmZmZvz0009i3f09tLqXhwwZgr+/vzhtvf7667i4uBATE0NBQYFwAysUCnx8fLh16xZXrlwhIiLiVxzY4OBgxo0bh6GhIW5ubhgYGIhBHBwczNGjR3n//fe5e/cub7zxBjY2NjQ0NIgFUWXBNDc3p6qqClNTU6ZOnSoCOYqLi1s9kAcNGoRMJkOhUODi4kJ2djYymUy47lTE5Nu3b/PFF1/g6urK66+/Lk6Or732Gv7+/owdO5YpU6Zw8+ZNcnNzqaurIzs7m8TERExMTJg8eTJWVlYEBgYSHx9PTk4O3t7eTJo0ie+++47MzExBFm9ububKlStCaVZZRoEW/MQHRWxsLAcPHsTMzAx7e3tOnDhBcXGxCBpT8YptbGzo1asXGhoaODg4MGzYMHGPzp07M3DgQEH8v3PnDnv37mX//v24uLggk8nESbNXr17iRHfixAmysrIYM2YMoFQcb9++zYIFCxg9ejSJiYnEx8dTV1eHTCajZ8+eLYKeHgSlpaUEBgYKC76trS3du3cXG2VWVlaL0+/mzZv5/PPPGTBgABoaGty7d49Dhw7h7+/P4MGDGTlyZIv7P/XUUzg4OGBtbS2sIhcuXCAtLQ0fHx+WL18u2jkuLg4fHx9BO3FxcWHevHns37+fOXPmMHLkSAYOHNhqN5CzszNFRUWEhIS08HAkJiZy5coVwdPs2LGjWCTV1NQ4fPgw+fn5TJ06FTU1Nc6dO4eBgYFQqFXw8/Nj4MCBlJWV8d577wmXeceOHenatSumpqacOnWKdevW4eHhwauvvoqmpiZaWloUFBSgUCjw8PDA2dmZe/fukZWV1Sr5ALp160ZjYyNTp04FYMeOHVy+fJlJkyYRHByMmpoaycnJ5OXliQ1EV1e3BacvPj6e9evX4+joSKdOnQgLCxNW76VLl3Lv3j169+7N8uXLycrK4tixY3Tq1AkTExMyMjJISkoSQQxdu3bF2NgYNzc34TXQ0tKia9euwmrQGmhra3P79m12796NkZERTzzxBLGxsZw9exY7Ozuefvpp5s+fz4wZM5g5cyYLFiwQcyEvL4/o6Gjs7e2F5Ucmk5Gbm4utrS3h4eHs2rWL/fv3k5WVRUlJCUePHiUlJYXg4GCCgoLYuXMnRUVF4jBw6tQpdu7cib29Pb1796a2tlYEotjb27No0SJu3brVKhlVSvLFixepqKigZ8+emJiYEBAQIJT9uro6bt26JYLx4uLiuHDhAmfPnmXXrl1UVFRgbm5Ov379xIbbt29fMjMz0dPTQ0NDgw8//BA9PT0cHR2ZNGkSzs7O2NnZCSWrurqapKQkqqurmTFjBrW1tejp6WFnZyc8T8bGxgQEBAjPyYNA5RLX0dHBwMCA6upqvLy8mDdvHgqFgpycHOzt7XF2dmbHjh0YGBgwatQo1NTUqKqqorS0FBMTExwcHBg7dizR0dHExMSQk5PDoEGDhPfKxsaG7OxsLl68SFFRESUlJaSmpqKhoUFCQgLnz59nw4YNgDKgb+DAgUyaNImioiJ69eolrNaXLl3i+vXrreJmL1++HGdnZ0JDQ/H39xdrGSiVveDgYBQKBRcvXiQyMpLVq1cTHh4ulJScnBwuXbrEjz/+SElJCX369BF7t5mZmVh3PvjgAzIzM1mwYAFxcXG89NJLjBgxQhgZoqOj2bhxI66uroLzGhERga6urvA2qfaz1sLExKRFX3Xt2pXY2FgSExOpqalh1KhRJCYmsmnTJurr6+natSs2NjYtrLw//vgjn332Ge+//z7e3t7Y29vz448/Ul1dTVZWFsePHxcH1l69elFaWkp0dDQVFRXY2tqir69PdXW18BI2Nzdz8eJFsrKy6NChAx07dsTAwEAc6lsDQ0NDDAwMMDY2RltbW3gEVfuXv78/w4cPF4dGOzs7Jk6c2OJArlJiPTw8xIE/ICCAWbNmcePGDbZs2cKECRPw9PTE09OToqIi8TtaWlqcOHGCCxcuiIBCUB4aamtrSUhI4O7du8TExCCXy7G1tf1TmVqtvAYGBiKTybCwsMDGxka4hby8vFAoFBgZGRESEiIm3cGDB1m8eDHz5s0jKioKUJqRjYyMiIiIoHfv3sJ1BsqTsSRJdOnSheeee445c+awY8cOunTpwhNPPIGWlhaSJGFraysUIFCeHjw9PfHw8KCqqop169Y9lPvgl24LFezt7UWgGigVpAMHDuDg4MBTTz2FpaUlcXFxbNmyBQ0NDTw9PQkICMDT05OMjAzWr1/P7t27aWxsZOjQoYSEhODl5UVqaiq3b99GU1MTNzc3OnXqxLp168jKyqK6uhpQDhptbW0SExPJzc2lS5cuGBgYcOnSJW7cuNFqGQ0MDLC0tMTY2BhdXV1MTEwEb0xHR4empqYWvNUuXboQHh7egq+qpaXFyJEjxcJfVlZGYmIiJ06caGHd0NHR4c033xQKhaOjI6Wlpdy+fRs9PT0sLS1ZuHAhH330EWpqasJiJkkSWVlZdOzYkR9++KFVBPyrV6/StWtXOnbsiI2NDZIkichlVeBZbW0tDQ0NVFRUiMj7+vp6vv76a3bt2kXHjh05ePAg5ubmIpjLwsJCHK569uwprissLOSrr75i165dLFy4kC5durB582aioqLo378//fr1o6Ghgdu3b2NkZES7du3Q19dnx44dyGQyBg4c2OrAQpX1vF+/foKnl56ezpYtW1i5ciVqamqsXbv2V8EZ27Zt49KlS7i5uREWFkZcXBxaWlr4+PigpaVFbW0tkiQJa9aiRYtYsmQJGhoauLu7ExwcLOb+xx9/zA8//MArr7yCJEmiTUeNGoWOjo5o6+eee46PP/641S7ngQMHMmLECECZdWDt2rXk5eWJLAENDQ2MGDGC/Px88vPzsbOzo76+nsuXL2NlZYW3tze5ubls27aNwsJC5s2bJxTC06dPs3DhQpKTk+nYsSNOTk6cP3+e69evU1FRQW5uLuvXrycjI4Nx48bxzjvviGwRtbW14rVfv3488cQTgNKy1FpoaWnx448/cu3aNcH9NDU1paqqipKSEpycnOjYsSNr166lrq6OwMBAzM3NheW8oqKC+Ph4fH19aW5ubkHV8fX1xd/fH0NDQ27cuMGxY8cwNTXF3t5eyJefn4+zs7PgBOvq6tKhQwfu3bvH3r17SUlJAUAulzN//vxWB8KokJGRwZ07d7C3tycoKEjsBTU1NZw5c4ampiaRJeD69et89NFHJCQkoKWlRUNDA+vWrUNDQ4NVq1ahqalJTk4OEydOZObMmezcuZPnn3+e0tJScZgCqK6uFhzg4uJikpOTMTEx4cknn8TIyAhtbW0cHR1Fm6nGfGtkvJ8K0NDQQG5uLqGhocJirFKIVApHRUWFCA4D5biWJInAwECMjY0JDQ0lMTGR5ORkCgsLsbe3R6FQYGBggJWVFe+88w5bt24FlBu/s7Mz169fJzU1FW1tbXx8fHBwcKCiooLOnTsLN29lZSVOTk6Cd//TTz89sIxffvklgwcPbhHHkpeXJ7Kw9OrVi5kzZ/Lxxx9z7do1Nm3aRFhYGJqamjQ2NlJZWUlKSgrXr1/H1tYWOzs7KisrqaqqIicnRyiyFy9e5KeffmLkyJEiEPh+Goe7uzvffPMNMpmMmpoa9PT0uHbtGjU1NSJ4uL6+vtWKHSgPWZmZmZSXl+Pj40NERAR79+5lzZo1rFixguXLlzNq1Chef/11zp49K4LokpKSRIYIb29vbG1tBV80PT1duP8tLS0xMjLi3LlzXLlyhW7duiFJEsePH+fMmTN/+GydOnXi+eefF8bAixcvtuqABfzKBd/Y2IhMJqOuro5evXrh4uJCYGCgCLCOiIgQvOSLFy/i4uKCtbU19fX1uLi44OHhQWVlJYaGhrz11lts27aNd999l7y8POFha2xspKqqCgMDA8rKyvjhhx84f/684Ls6ODgwe/Zs4uLihDW3f//+hIaGPlDgZKuV1zNnztCtWzeGDh2KTCbj2Wefxc3NjQ8++ECYuu9fQG/evAn8m/tUUVHBxYsX6dChA25ubhQVFfH222/T2NjIxx9/jK6uLpIkUV9fT69evdi+fTsffPABL774otiA7if5qtxRurq61NbWsn79ehITE1m0aJGIaHwYFBcXC96bJEns27cPfX19sXEOGDCANWvWcOTIEWbMmEFNTQ2enp4sW7aMGzduMHLkSDw8PHjyySdRV1cXKVO0tLSws7PjyJEjvPvuu6SkpODn50efPn2EYhQZGUltbS3vv/8+7dq1Y/r06Tg4OJCeni7a+O7du2RkZLQ6FRhAx44dCQwMFNa6yZMnk5SURF5enlCwAgICuHfvHh988AHq6uq89tprmJqakpOTw5o1azh16hQuLi7C4uXr68v48ePR19fn1KlTlJeXA0rl9/r161y5coXQ0FDGjx+Pl5cXixcvpqSkhLlz5/LEE08IOZycnFi0aBE3b97k3LlzREREtJr6kZOTw9atW0UKrg8//JDo6Gjef/99YTV4+eWXSUpK4pVXXuG9995j0qRJlJWVUVtbS2RkJMHBwZibm4vAkG+//ZbevXuzdOlSqqur+f777/H39ycyMhITExNxUPriiy/Iz8/n4MGD2NjYMGXKFCRJYsGCBZiamvLaa68BymCao0ePUlJSQkxMTKsDYdTU1AgMDGzBJ2vXrh2RkZGcPXuWc+fO8fHHH2NgYMDQoUPR0NDg2rVrhIWF0adPH5ydnVFTUxOZAo4fPy6suPcfPqZPn467uzuSJHHo0CG++eYbampqmDlzprAiz5gxg++//57ly5czZMgQlixZ0uJZMzIyWiWbCqoN/ubNmxw9epS+ffsSGRlJSEiIsEJ17dqVoqIilixZQmZmJlZWVjQ1NSGTycSp3tXVlW7duuHv709xcbEYj1OnTsXR0ZEzZ85w5MgRxo4dS9euXVm3bh23bt3C1taWoUOHMmjQoBap0t5++21u3rzJk08+KZRroEVgxoPg1q1b+Pj4sG3bNnGwNTIy4tNPPxVutHfeeYfU1FTefPNN6urqmDx5Mp07d2bAgAHCeq6ib2hpaaGlpUVeXh6bN29m3bp1VFVVUVtbS0pKCo2Njfj7+2NtbS1S/ADExcWxYsUKQkJCWLVqFd7e3jQ1NaGpqcncuXPx9/enurqa48ePt7oPGxsbhYXUy8urhScsJSWFH3/8EWNjY3r06IGamhoXL17kwoULot+cnZ2F8nPq1ClGjRpFUVERlZWVBAQEMGLECMzNzRk6dCg//PADq1evRkdHh5EjR4oAnPLycszNzRk3bhz37t2jvLxcZDooLS0lMTERLy+vhwr2OXfunOAj19XVifW5pKQEQAS9WVtbM3jwYJH5RFtbGwMDA8Gf1NbWpqKiQtBtfH19UVNTIz4+Hjs7O2E9VqXU69GjB6NGjSIlJYVLly7RoUMHPv74Y4KCgmhqamphubpx4wbnzp2jV69e+Pv7M27cuFYpr3369OGFF17Ax8eHpqYmrly5wvr164mLi2PGjBk888wzrFy5Ei8vLw4cOECHDh3EXqapqYmrqytz5syhf//+7N27l6effpqCggL69evH/PnzBU1twYIFzJkzB3d3d0xNTfnss8/44osvGDRoEB999BHBwcG88sorNDQ0oKurS35+PlevXmX+/Pn07dtXUCwmTpz4UDSXwsJCYmJiOHToEDU1NZSUlDBt2jRGjx5NRkYG+/btA1rSEg4fPoy6ujpPPfUU/fr146WXXuLIkSOMHj2a8vJyJk6cSEREBB07dqRTp07Ex8fT2NiIhYUF4eHhWFhY8MILL/yhAltZWSm8K+vWrUNHR4fx48cLCt+DoKCggHv37okYmQsXLpCbm8u4ceMYNmwYycnJLF26lC+++IIVK1Zga2uLlpYW+/fv5+TJk3h4eKCnp0dSUhLt27cX88vOzg4TExNu375NdXW18MRu2rSJEydOMHDgQHFAdXR0ZOXKlbRv314Eq+nr6xMYGCj43uPHjxfc/j9Dq5XXu3fvYmBgIAJe1q1bR3JyMqWlpZiamlJcXExSUhJubm5YW1vTq1cvUlNTBb8sPT0dPT09oThdunSJEydOoK6uzvnz5+nbty8ymYzS0lJsbGwIDg5m2rRpnDlzhu+++47u3btja2tLeno6xsbGIs2PlpaWCO4xNzdnwoQJAK3mEoLSolNQUIC6ujomJiZ89913rFixgs6dO+Ps7Ex5eTmmpqaMHTuWiIgIoQDExsayaNEiRowYQUJCAocPH+bevXt4enoKl2JwcDBmZmZs376dmzdvoqGhQUBAAAkJCVRXV+Pg4IChoSFnzpwhLi4OmUxGdXU1VlZW9OzZE3Nz8xacVENDw1YNYlAGZvn7+3P37l0KCgpwc3MjKChIcHhVk1MVfJSXlyc2DhUvrb6+HltbW6G85uTkYGBgwLRp0wgODmbz5s0kJyfj5OSEra0tOTk53Lx5U3AWGxsbBUFc9XupqalYWVkRGhqKl5cXJ06cICkpqYXi8CCwsrLim2++Yffu3QwYMICYmBiys7OFUqZKNVNXVycifC0tLQWfrKSkRLi8Vq1aJTjFVVVVmJiYkJeXx61btzA1NaW0tFRsKJ07dyY7O5vt27eLvjYyMuLzzz/niy++4JlnnkFPT4+qqipOnjyJt7c3VlZWpKenC77Wg+LKlSvMnDkTUC5ud+/eRVdXFwcHB6ZPn46amhoFBQXExMTQpUsXjI2N0dLSYubMmS026YCAAAwMDEhMTKSiokJYPGpra2lsbMTa2loEPnbr1o36+nqsra1FChtra2vBea+oqEBPT+9XVuTevXs/1DxUobCwEAMDAyZNmiS8PWvXriU6OpqAgACRvzY5OZkbN27g5eWFu7u7ODB26dKFCRMm4Ovry9WrVzlz5gx1dXUsWLAAZ2dnjhw5QnR0NKtWrcLU1JTnnnuO0tJSli9fTo8ePUhPT+fIkSMiwC8/P5/Lly/z7LPPAi35ZK3BhQsXKC8vF16mixcvUllZKQ7ITU1N7NixA01NTY4ePUpNTQ0hISHcuXOHTp06idzZkiRRWlqKlpYW+fn5bNu2jXfeeUeMqYqKCoKDg3nyySfR1tYmOjqa6Oho/P39qaurE2uXrq4un3zyCbq6uqLfQLlefPvtt1y/fv1X3MQ/w6lTpzh27BhhYWHCXa6yVGVnZ1NfXy9ctaBUdqytrenYsSPl5eUi1/e4cePIz88nMTERTU1NEhMTSUhIICEhgdWrVzNq1ChOnTrFxYsXmTVrFjo6OgwcOBCZTCZc5MnJySK1VVJSEtnZ2eTn57eI8ldZ1R8UWlpawpqdlZUllNX4+Hhu376NpaUlkiSho6NDY2MjLi4u4pCTlpaGvr6+yMJy/PhxkQLJ1taWkpIS9PT0hFtdQ0ODCRMmkJCQwIABA+jTpw+DBg1i9OjR1NXV4ebmJnKylpWVkZ6eTlpamji4qILc7ucfPghmz56Nqakpzc3NwjKnOlDcn9awZ8+euLi4oKenR3x8PAqFgoqKCszM/o+294yr6tzafv/03nuVXgQUVAQURREsqNiNXbHGXhKNmkSj0cQUNYk1do29K4oNBRUVUQEB6SK9S+/1fOC37ie82e+zJeec8WnvhCyYa615zzGucRVtunfvjpaWFjExMTQ1NdHU1IS6ujr9+vUT4JOHh4cQLKmrqzNp0iQKCgr44osvhNPO350Lbty4QVFREatXr0ZVVZWEhARSUlI60Ro+tVpbW8nOzhabKUtLS7Zs2SK2R5cuXWLatGmUlZVx6dIlLCwsxFl0+vRp6urqBLc8JSWFkydPAh1bzm7dulFTU0NJSQn+/v4MHDiQiooK0TO5uLgQFRWFgoKCWMmbmZmhra3N27dvsbGxIT4+njdv3nDmzBmmTp3a5bOmtLSUiooKHj9+LIASFRUVXr9+jbu7O1ZWVpSXlxMWFsbQoUMFVaupqYn8/Hzk5OTQ19enqKiIjIwMkpKSMDc3p76+npycHPFskdDJHj58SEREBK9evaKlpQUHBwdWrlwpNiFXrlwhMTGRAQMG4OXlxfDhw0lKSqKwsBADA4NO1Mj/W3W5eTU1NeX69evU19fj7e3N6dOnycrKEjdYdnY2V65cQUVFhZUrV7Jo0SKGDBkiuBp1dXWYm5uL17O1tRWvl5mZSUxMDG5ubujq6hIdHc3Hjx9pbW1l7dq1hIeHExAQgIGBAZ999hlTpkxBV1eXzMxM0tPTaW1tZfHixWK6SEpK6pIiDxACLEdHR9ra2rh79y4XLlygvLyc2tpa/vzzT86dO4eFhQV3795FV1eXbdu28f3331NcXMz27dtZt24dN27c4Mcff2Tz5s28e/dOvH59fT35+fkC9l+0aBHW1taCQ6yoqCh8HteuXYu/vz+VlZXIy8uLJq65uRlra+t/bVsjaQrPnz9PdHQ0CxcuZO3atcKLFjpWbhoaGmzatEnQQSQN+KpVq/jiiy/Q09NDQUGBhIQENm3aRHFxMStWrMDX15fU1FTS0tLQ0NBg7NixKCsrs3PnTvT19Vm0aBEHDx4kNze3k3AhMTGRS5cuMWvWLIyMjBg2bBjy8vJd5i0PHDiQ+Ph4Ll26RFlZGXPmzMHR0VEIeNTV1dm9ezdaWlpYW1uza9cuDh48yMaNGxk4cCCLFy/G0NCQo0ePioPe39+fffv2UVlZSWVlJYsXL8bAwIDLly/zzTffiMPuzZs3fP3110CHyGLRokXcvn0bQDgf7Nixg+3btwMI0+5Tp0516RpPnz5Nr169cHV1RU1NjZMnTxIWFkb37t2xt7dn1KhR2NnZ4ejoiKKiolgp/qeysrLCwMBAIJ3QwR2trq7mxo0bNDY2Mm/ePLp37865c+fQ0NCgpqZGrLxsbW0ZN26c8PSTVF1dHdCBhPj7+/P777936Rol/oi+vr6Ce3X9+nV27txJbm4u6urqJCcn4+vry44dO9i4cSMXLlzAyMiIiRMnoqSkxMOHD0lKSqKhoUEEokybNg0NDQ3a2tp4/vw5AQEBrF+/HnNzc1JSUjAxMcHQ0BBLS0tMTU2FwX5iYiKrV6/m999/JygoiAEDBlBeXs758+cxMjLq8gPl48ePjBs3jn79+rFmzZpO5yJ0DEt+fn40NjYKoc9ff/3Fw4cPqaurE/7IycnJYgV44MABLl682Ak9V1BQEP7Xp06dEob4y5YtE4jdsWPHyMvLo6ioqNOK8a+//mLTpk3Y29szbty4Lp+nMTExnD9/nqamJkaNGoWcnBzV1dW0tbXRs2dPnJyckJWVFWvgAQMGYGlpyV9//SXoU9Cx6Zo8eTLKysq0t7eze/dufvzxRyGwkXDnoQNNnTVrFmvXrhWC4Li4OD777DNGjx7N999/zy+//MLOnTv54YcfhP9rcXFxlxu74cOHAx1Ia3Z2Ns7OzhgaGuLh4UFSUhKXLl0SLgFtbW1MmjQJMzMzSkpKiI2NxdbWFmdnZxoaGigoKKC+vp6HDx9SWFgo7MKgg5YlIyPDH3/8wa1bt9i6dSsxMTGCJpGZmcmmTZuwtbVl4cKFvHr1imPHjmFubi4s7Ozt7amvrxdnz6dWfX0969atIyAggKlTp2JmZsbEiRNZuHAh/v7+NDc3s2nTJh4/fkxAQAAmJibcunWL8PBwlJWV8fT0FFzKHj168OTJE9TV1ZGRkekk3pGcYUuWLMHHxwcADw8Pli9fLtA4HR0dsXnNyMiguLhYUBOCgoJ4/fo1+vr6wrXmU6uyslKs5AEWL14sGteSkhIGDBjApEmTiIiIIDAwkI8fP3LixAlcXFxIS0vju+++w93dHV9f3056iqioKObMmUNJSQm2trbs3LkTDw8PduzYwblz51BSUhI6HsmQ5ufnh5mZmRhCysrKSEhI4NSpU1RWVv6v9qL/t9LT08PGxobJkyfz9u1bHjx4gL29PVOnTsXNzY1du3bxxx9/8PXXXwt3lUmTJrF06VJsbW0xNDSkR48eZGdnc+DAAU6fPt1ptb948WIWL17M9u3buXXrFj/88AO+vr4EBQVhZ2fH/v37MTMz4+PHj7x48YKDBw8SHh7OhAkTsLKywsbGhoyMDM6cOSO27v+tuty8RkREEB4eTnh4OIMGDSIwMBA3NzfRYLi5uREfH09aWhrR0dH4+/t3+jA9PT158+YNx48fp7GxEVtbW+zs7CguLiY5OVnwKN69e8fJkyfJyMigd+/eODg4ICsrS3l5OZaWloIzUVhYyF9//SXWtFOnTsXW1hYFBQWBDnallJWVaW5uJjc3V9gkeXt7M2jQIGpqagSqbG5uzoMHD7Czs8PAwICffvpJ+FDu378fX1/fTqKylpYW3r9/j7a2Nr169cLc3BxpaWkmT56Muro6WVlZ7Nu3T6zrgoKCWLBgAdCBaoaFhaGmpia4qrKysigqKgqUpCtlbGws/OOcnZ2F5VBhYSHS0tKCbG5kZPQf37/6+nqKi4t59OgRCQkJBAcH8/TpU1RUVATRXLKSTE5OxsvLi+LiYk6ePImGhgZLly7F2NgYAwMD8vPzycjIICEhgQMHDpCbm4uhoSGzZ89GRUWFmpqaTmrzT6lhw4ZRX1/Py5cvMTQ0FA8Y6EDijY2N6devH9CRPLJr1y5aWlqoqqoiMjKSnJwcZGRkKC8vx9/fX9gLQQcSa2hoKDYJf/fD09fXFxY4EmW4pHGdPn066urqnDt3jvz8fLS0tDA1NaVnz55oa2t3WbA1dOhQqqurCQkJITExkfb2duTl5Tl37hweHh589913na67vLycd+/eCXQGEDxgSUqUgoIC7e3tVFdXo66ujoqKChEREdy/f5+mpiZGjhxJcXExTk5OfPz4kZs3b5Kdnc2sWbMwNTVFSkqKsrIysb5TVlamvr6+kyijKxUSEkJxcTH6+vqCPhIbG0tERAQWFhbMmDGDFy9e8OrVK27evElgYCCrV69GR0dHIGkTJkwgIiICXV1diouLiYyM7JRWVVtbKx5SAMHBwbS2tlJRUcHt27cFb9TX15c3b95w9epVxo8fz4ABAygsLOTBgwc4OTl12WlA8v7Y2tqipaVFRkYGqampGBoaoqKiQnFxMa9evWLYsGGigdbW1qZ37944OTmRmJhIaWmpsJrr3bs3dXV1xMfHU1FRgaGhIXJychQWFnbyazUzM8PExARPT08CAwNpamrCzc2N+fPnY29vT0pKCrdu3aK8vBx3d3dKSkowMjKiX79+9O/fv8vNq5mZGd7e3gQHB1NVVcX333+Pjo4ON2/eRE5OjvHjx4uflbhymJqasmzZMkpKSjhw4ADh4eHo6uoK5LK5ubmTWjokJIQHDx4gJSUlvJljY2O5e/cuo0ePxsjIiCdPnuDm5oaXl5dAfnv06NHJlzgxMZGkpKQuXV9GRgZnz55FVVUVJycnoVNQUFDA3d2diIgIQYGQl5cnMTGRsrIydHV16datm9iCKCoq4ujoyP3790lMTCQrK4vo6Gji4+MxNzfn/fv3qKio4OHhQWJiokDPNTU18ff35927d2Lz0dTUhIKCgkimHDhwoECyCgsLu9ygP3jwAF1dXSHoffbsGZWVlXz22WfiNY8dO0ZxcTF5eXmMGzdO/Hx2djb37t2jsbGRvn37MnDgQOzs7CgsLOT58+dUV1djbGxMZWUlkZGRgp+blZXFgwcPePz4Maampnh5ef0DjWttbSUhIYEnT57QvXt3XFxcKCoqEp7lXanCwkJyc3MxNTVl5syZfPnllzQ1NfHrr79iYmLC7Nmzqaqq4urVqxgaGmJqakpUVBT37t0DOhDKx48fU1dXR1RUlHhdBQUF+vbtS2trK5aWloKDfO7cOQFgGRoaUlNTQ1hYmNiCNjc3U1ZWhqOjo6DbNDQ0iK1wV8M0JGJaDw8PGhsbefbsGc+fPyc8PFxsGywtLVFUVOTx48cUFhaiqqrKiBEjOgVofPjwgYyMDJqbmxk0aBDa2tokJCTQq1cvdHR0kJWVRUVFhYCAAJSVlXn37h3GxsZieMnMzKSxsREXFxexBYiLi8Pc3Bxra2v09PTIysoS/cP/Vl1uXm/fvo2NjQ0xMTFs27aNZ8+esW7dOvGgbGxsZNasWeTk5BASEsK1a9f+odbOz8/niy++QENDg6lTp3Lx4kXi4uIE1+XBgwecOHGCqKgonJ2diYuL4+zZs3Tv3p39+/fj7+8v1Jd79+7ljz/+EB9AcHAwvr6+bN68mYEDB9LW1saFCxe6dI3V1dWcO3eOtLQ0Zs+eLSyuHj16hI2NjbiRHjx4wNWrV9HV1cXCwoKePXuiq6vLqVOn+P333+nTpw8LFy7EwMCA0NBQ1NTUGDx4MPPnzxfGxE1NTejq6vLbb7/R0NDAn3/+yY8//tgpIcnExIQDBw7w7Nkzli9fTq9evYiKikJHR+df3aizZ8+mvb2d0aNHo6mpiZSUFC9fvuTYsWPU1dUxbdo04dsLHWtHSQpRS0sLYWFhXL58mcePH4s4RRcXF0aOHImxsTGxsbGC52hkZER2djaJiYnIysoybNgwunXrRlJSEnFxcQQEBFBYWMjBgwe5e/euUHmnpaUJz9CuRjZKeJ5jx47t9OCG/xFYQEda2Pfff4+uri6HDx/G2tqaiIgINmzYgKOjI+rq6ri5uQk0+s2bN4IbKDm4DQ0NGT9+PLq6upw4cULwooYPH057ezvJycmMHz+egwcPcv/+fS5dusSiRYuEMritrY20tDSqqqq6NFGvX7+epKQkvvnmG6qrqzlz5gzTp09n+PDh5Ofnd0JRoYM3ev36dfz8/ETzqqSkhIyMjFgFubi4YGpqKtBTFRUVZGVlKS4u5unTp7x+/Zrg4GD69OkjYqFdXFxwcHAgJCSE6dOnM2vWLIGw5ubm/sMHtysVGRnJ/v37UVZW5rfffiMoKAgXFxfk5eVxc3MTPPgpU6awatUqIiMjOXHiBNLS0jQ0NNDW1oaysjLe3t5kZGTw119/8fjxY5ycnIS/skTQ1tLSwl9//SVs9pKTk/n999+xsbFhzpw5LFq0iHPnzvH06VOsra2FoK+goIBRo0b9IzTlU8rU1JSQkBDU1NTIyspi69atIqY1KSmJyMhIJkyYwIABA/jw4YMQZikqKtKzZ09hbyZxHJEIkCSCDmlpaTQ1NTt9Br169eLChQsCeZaI2zZt2oSZmRnp6en8+uuvhIaGMmvWLObOncuIESOEGrqr1adPH2RkZAgLC+P69essWLAAAwMDUlNTKSgowMbGhh49elBXV8eHDx/Izs7Gx8cHNTU1Fi5cSE1NDcHBwYSEhBAWFkZDQ4Ow75G4z5w/f57MzExsbGzo06ePSNMrLS1l+/btlJWV4erqyt69e2lpaeHixYt4eHgIxbqkKisrefbsWZfuwzt37rBjxw6++eYblixZQmFhoeD3u7i4sHr1atra2gSIcfr0af744w8mTJhAYGAgDx8+5PHjxwQGBpKRkUFlZSU9evRARkaG4OBgLl26hIuLC+3t7SQlJVFaWoqxsTFeXl7U1dVx4MABDhw4gLe3N3v37hXov5aWloh5ltB4cnJyKCwsZOnSpezcufOTr7G8vJy9e/eiqqpKSkoKFy5cQFNTk3HjxqGnp0dCQgIGBgYUFxejqamJo6MjU6dOFTHckyZNoqysjHHjxqGgoMDy5csJDQ2lpKREJPZJSUmxe/duVq5cSVRUFN988w23bt2ioqICdXV1+vfv3ymRraGhgY8fP/Lq1SsOHz7Mxo0b2bdvn9DMLF269JOvDzruf3Nzc0aPHi1AowsXLvDrr7+yaNEiMjMzWbVqFffu3ePQoUN4eXmxc+dOTpw4ga6uroil37JlC2lpacjLyyMtLY2Pjw/bt2/HyspKuJPcunVLpDxu3bqVrKwsvvvuO6DDsaChoYHW1lZaW1sZPXo0M2bMwNramvHjx/PixQsqKyu77GwiJydHa2srGzZsYNasWXz55ZecP38eQLg5vHz5ko8fP2JgYEBKSgpLlixh06ZNwqby1atX7Nixg5cvXzJo0CB++uknevfuzYsXL6irqyMpKYk+ffoIlNzc3JxffvmF8vJyampqUFRUxNXVFRcXF0F1kTTKGRkZWFtbs3nzZkJDQwkODv6v19Tl5lWiAJbYAPXp0wddXV327t3LsWPHMDEx4cqVK5iZmYkEkbKyMs6ePUtKSgpfffUVlpaW2NvbU1lZiZqaGsbGxqioqFBXV0dycjKVlZWUlpYycOBAVq1aRVhYGK9fv0ZGRkZMAU+ePGHv3r1cunQJQBDuY2JiePToESYmJigoKHSZLxkREYGTk5OYQv4ezefi4kJTUxOGhobU1tZibGxMjx49UFJSYs+ePTx9+pRRo0YxduxYunXrJtSrly5d4smTJ1hZWdG3b18xbaurq5OQkCAmyoCAAM6ePcu7d++4fPky0dHRTJkyhR49etDc3ExERASTJk2iurqaZ8+eYWpq+q+aVwnd4O8PXAMDA8aOHYuCggIGBgaEhYXh4uKCnZ0deXl5rFmzBiUlJWbMmIGOjg79+/fH2NiYlpYWXF1dhfo+NjaWsrIyNm/ejIODAzIyMhw/fpyEhAS++OIL5s+fLwImKioqaG9vx9bWlvHjxwsxRWlpKeXl5ejo6FBbW/sf/VT/t3r69On/9X3R0NAQdmcSo3crKyvRoJqamvL27Vt0dHRQUFAQThFGRkbk5+eTl5dHXl4e7u7uwrS/pqaGixcvCpucZcuWMXToULKysmhtbWX58uWoqqrSv39/ampqBHfy6tWr3LlzR9jsdKVKS0spKChg5MiR9OvXD0dHRyorK7GyskJaWpq8vDz++OMP7ty5g5SUFP7+/gwaNIiXL1/y8uVL1qxZg4aGhlA/u7i4iOHk75xVSZMTHh6OoqIiNTU1hIeHk5WVhZ2dHWvXrkVTU1M8aCRRviEhITx+/Jgvv/wSPT09IWDpSrm5ubFo0SLq6urQ1NQUdnOSvws6EO7ly5cLnqRkXa6oqEhjYyPQ8dDetGkTV65cEZuZFStWkJaWhoeHB15eXpSXl/PgwQPU1NQYM2YMTU1NREdH8/DhQ6ZNm4a8vDxTp06lf//+JCUl8eHDBwwMDFBWVubEiRPIysp2OXZTwlmHDuuz0aNHo6WlhYKCAtbW1gwcOBAbGxtaWlpISkqitrZWiCT+zluDjnPr7t27SElJYWtrS1paGm1tbWhqaqKlpSVoBn8XlWVlZWFtbY2Tk5PwiLWxsWHbtm3Y2NiQn5/PH3/8gY2NjUgY6mpVVVXx6NEjAgICxJaupaWFyZMno6SkRE1NDd9//z1lZWWMHTsWGxsb7t+/T1JSEjIyMvj6+tKrVy8ePnzIgwcPqKysREpKikGDBjF48GCkpKQICwvj3bt3pKWlERYWhpaWlkDvMjIyGDx4MHp6epw9e5bg4GBKSko6UVjq6+uF1+rgwYN58+bNJ19f//79+frrr8V5Y2hoSEJCAgcPHmTEiBGdEs+gY/P48uVLoqOjSUhIEM1IeHg4bm5uBAUFCcAmMTEReXl55OTkeP/+vUgnkpGR4dChQ2hrawuF/2effdaJtvJ/niclJSVCKd4VH1uAkSNHUllZSWhoKLdv38ba2lqAGx8+fODDhw84OTnRr18/xo8fLzjbgKA2SbZNT58+5f79+zg6OtK/f38xxEvsmqADPIqLi0NXV1cI2Xbt2sWTJ0+E2X1VVZXYyN2+fRt1dXW2bNlCY2OjaMq6UjY2NkyaNElQu6BjMyKxioyNjcXe3l5ELr9584bY2FiRMCjhvr5+/RopKSlGjx6Nn58fmpqaQl8hoW01NTUxa9YsPDw8GDVqFI8ePWLEiBEYGhrSvXt3cnJyaGhowN3dXaDd0LG9MzAwoKWlpcubur8PnioqKvTr14+cnBxkZWVFqqCpqSlr166lpqaGLVu2EBkZyS+//IKXlxcODg7C0eXrr7/G19cXKSkpUlJS8PLyIj09natXrwrO6r179zAyMsLCwgITE5NO30eJa5GioiLDhg0jKiqKkpISoZ9xc3MTg9r/Vl1uXiVkcskkCR1Gs8uXLwc6bpKHDx9iY2NDeXk5/fv3R1tbm8jISM6ePcuwYcMYNWoUq1at4ujRo6SkpDB8+HCsrKy4efMmV65cAToaxeXLlzNs2DDMzMyIj4/H1dWVtrY2WltbiYuLo7S0FA0NDaSkpIQdhcScXWLzIuHOfGpFRkZiZWWFt7c3Hz58IDExEWNj405JIc+fP6esrAxvb280NTVpamqisbGR0tJSCgsLGTt2LJ9//jnQcXjHxsYK2xYJXF5fX09dXZ0Q/WRlZYlotePHj3P8+HHc3Nzo1asXBgYGmJqaMnbsWKqrqwkODiYtLe0/JnV8SklSbKSkpJCSkkJaWhoLC4tOXLcbN24QHR2NgoICiYmJvHz5kvLycmJjY7l8+bKI2ZQkZcnJyZGQkEB8fDxWVlZiHRgbG8uOHTswMDBg27Ztgl7i5OREU1MT9fX1qKurM3/+fAYNGsTZs2dJTk4mLy+Pvn370tTU9EkrhL+XJD1KSUmJkpISkUctyayWTOdKSkrs2LGD1tZWYelhbm7O1q1bef78Od988w3nz59n27ZtDB06lOHDh+Pj48Pjx49JSUkhJCQEJSUlIiIiaGlpYdCgQXh6egraRc+ePRk0aBAVFRUkJiZib2/PrFmzyMvL49tvv+X48eOoqKiwePFiAgMDuXbt2idf49u3b1FRUWHSpElC7BIZGSma2Nu3b5OQkCDSySwsLOjXrx9PnjwhPDwcS0tLJk+ezM2bN5GXlxe53nV1deTm5gpai5mZGRoaGlRUVKCiooKGhgaVlZUUFBQwY8YMMbU7Ojri5OTE4MGDxcNHwm0E/hVtwNHRkTlz5gj7q9evXwu7qL+LMsaOHdtJ9V9aWipQVwUFBWpqasjJyUFfX58VK1bg6urK7du3RSMvIyNDe3s74eHh+Pv7s3z5cpycnJg3bx4fPnzo5MSgpaXFvXv3aGtrY+fOnWRmZgrO4qBBgzqhQ/+tJNSF6upqpKSkxDXU1taip6fHlClTxL/X1dXF3t5e8LYlKYcyMjLClzgiIkKslnV0dIiMjKSqqkrwfaHjfm1sbCQ/P5/GxkasrKwoKysjNDSU2tpaRo0ahYeHBx4eHhw5coTff/+d169fo6io2OWobYDHjx+TlpbGxIkTxfWVlJSI87qtrY3y8nIKCgoEpeHRo0fs2LEDIyMjTp8+Tffu3XF2dqa2tpb8/Hx8fX1ZuHAhDg4OQqgkQXdjY2OF5R50iJw+++wzzMzMWLRoESkpKfTp04fKykrBGZaEq9jY2GBgYNCl5nXUqFHiHpCUg4MDhYWFvHz5kvb2dszMzIQAUhL8snDhQm7cuIGGhgbu7u40Njaiq6srBtva2losLCxwc3PDx8eHFy9esGPHDrF+l7hM/D3mta6ujpaWFtTU1ISoVzKIqqioiFz5v4dZfEpNmjSJ69evM2fOHCorKwkJCRGgTlxcHCoqKvj5+eHk5ISTk1MnIZysrCyBgYG8ePGC+/fvk5ycTK9evdi9eze6urrU1tZy4cIFlJSUhJ3ZmTNnREPcu3dvMjIyePHiBWFhYSgoKAjPUgcHB/r3709UVBSlpaWkpKTw/Plzfvzxxy7b8km8SSVpXmpqavTp04eUlBTU1NSwt7fH2dkZLS0tdHR0KC4uRktLixkzZjB58mQyMjIIDg5GQUEBNzc3Vq1axeDBgykoKOCrr77ir7/+YsqUKTg4OGBnZyeobWFhYbx9+5bZs2fz2WefUVlZyZYtWzA1NRVC2ezsbOLi4ujWrRszZ86krKxMuDh9ajU1NVFWVkZMTAwGBgYsX76cBQsWsH37duEMZGJiIrzlpaSkRNSvhJ6kp6dHv379GDp0KFpaWiIg5rfffqN79+5oaGjwyy+/0NDQwIQJE5CTk+P169eMGjVKRP42NjaioKBAeXk5OTk5WFtb07dvX+HyIAmBGj169H+l8HS5eW1paeHBgwfiJsvMzBSNmp+fH7t27SIhIYFFixZhYmIiuGCDBw8WXpHQwYUqKiriwYMHREVF4eXlRVpaGtnZ2UDHA0kywdnb27Nnzx7Ky8uJiorC0NCQiRMnMmjQIIqLi4Ut0IcPH9i+fTuysrIsWrRIqHcl6SufUhJLKgkvJC4uDldXVxYtWoSSkpJYobu5uaGpqcmLFy84efIk7u7ufPnll2RlZZGcnIy8vDyWlpbIy8uzdOlSpk2bhr29PUZGRnz8+JHdu3fT1tbGtm3bKCwsZOrUqf+IJtywYQPS0tKsXbuWoUOHsm3bNnbu3Mn58+cZOHAgDg4OXUYlocOi5j+JdyoqKqiursbExIQxY8Zw6dIlhg8fjpeXF4cOHeKLL77gw4cPxMbGCkTh+vXrHD9+nLq6OiorKyksLGTOnDm4ubmJFUv37t1Zv359J+FVr169KCoqEmES3bt3x8bGhiVLljB16lSePn3KuHHjsLCwQEZGpkscnz59+pCRkSHiMSW+lhkZGYwZMwYXFxdu3rzJhw8fWLJkSSekURLdeOvWLcLCwujRowcrV65kzJgxmJubC5/N1tZWfvrpJ86fP4+5uTmnTp3Cz8+Pu3fvEhoaiqKioniPvvvuO/78808OHTrE6NGjReOqp6fHDz/8IHjPXWle3dzc0NbW5tChQ/z1119YWVnh7u5Ot27duH//PjExMaioqODp6Ymenh7l5eVs2LCB8PBw8bk9efKEd+/eCe9Fb29v6uvr+fXXX0UqXs+ePRk8eDAhISGdknAkzX91dTWqqqosWrSI6dOnEx0dzbVr1/D29sbW1vZfiQsklZiYiIeHBw0NDURHR+Pg4MDMmTMZMmQIbW1tpKeniwz0v6vgL1++zKtXrxgxYgQTJ07E0dFRUIskYs59+/ZhYWFBSkoKNjY2wrIoNTUVFRUVRo8ejbe3N0lJSaSnp9OrVy9evnzJ+vXrCQ8PF84LioqKyMnJ0dDQQHh4eJeaV0lJ1uV+fn7IyMgQGRlJt27dxFmppqYmhDuSqq6u5ueffyY4OBgzMzMWLlzIoEGDuHTpElpaWmzZsoXTp0+zefPmTg+B/Px8EhMTMTU1RVtbm2vXrvH69WvhqXnmzBnWrFnDpEmTmDJlCn369KG8vJwrV64wfPjwLp2l0CGC2rp1K2FhYaxZs4a1a9fS3t7Or7/+ip2dHZ9//jm7du0iNTVVOJBIoob/bgNmamoqBm5HR0cR+ytxFXB1deXBgwfs37+f5uZmAT7U1dVhaGhIz549mTdvHvn5+QQEBGBubk5sbCwyMjLo6uqip6eHnJzcPyKt/1s1NzdTWlqKnp4era2tJCYmYmlpyYwZM9izZw+DBw8mKCiIyZMnk5ubS79+/dDX1xf3xYQJE/jhhx9oa2ujurq602uXl5ejp6fHsGHDGDZsGG5ubiQmJhIZGcm0adOYOnUqX331lfj56OholJWVRTBJTU0NysrKqKqqIisrS0tLCzU1NV1uXgER3xkXFyf45NXV1TQ2NtK/f39sbGwoKiriyJEjBAcHo6ysLARekgSs7777DiUlJUFDaWtrY+HChXTv3p36+nrevn3LpUuXuHPnDtXV1URGRgo3HEkjmJycTGlpKVJSUgwcOBBfX1+R6uXh4YGzs7MAu/5NhYWFUVZWxty5cyktLeXixYvMnz8fR0dH9u/fT1xcHAcPHhSIqURQaGVlxaRJk4iLi8POzk44dRgZGREUFERwcDDnz5/HzMyMJUuWoKKiQlFREbt27aKoqEikST169IijR4/SvXt3ZsyYgYqKinDu0dHRoV+/fowYMQIXF5cu0SH37dsnKF8///wz0HGG5+bmCnvEly9fkp2dzWeffcawYcO4f/8+eXl52NjYiHjxxMRE5OTkMDExITc3l9LSUmGDOmXKFEETqKioQE1Njfj4eDIzMzE3N8fGxkYMPffv32fRokV89dVXwv7sm2++ob6+nhUrVnzS8NHl5jUsLIySkhKxzv3hhx8oLCzEzc2NJUuWCOuqoUOHoqCgwPPnz4Wqsnfv3jQ2NpKcnIysrCxjx44Vwh01NTVhTeXg4MDYsWOFqlBNTU1M3iUlJVhYWFBXV0dcXByampqMHz+e3NxcGhoaCAoKQkpKiuDgYC5fvkxCQkKXDlzJWvDu3bs8fPiQ1tZWhg0bhpaWFvfv3+fOnTvMmjVLTChxcXG8fPmS5uZmhg0bhqenJ9evX+frr7/Gy8uL5cuXC3sPCZlfR0eHnJwcrly5gpaWFn379qV79+40NDSgqKhIRUUFS5YsYdKkSTx//pzMzEy0tbXFgVtdXU1gYCAVFRWsWLGiyz6oEjuOhw8f8uTJEywtLfHz86O9vZ3Tp09TW1vLtm3bGDBgAKqqqhgYGDBx4kR69+7N119/3clq6fnz59y5c6fT658/f57c3FxCQ0ORlZUVq7BXr17x8OFDHBwcCAwMpKqqimPHjiEvL8+aNWswMzPjypUrVFRUkJyczOnTp1FUVMTKyqpLyT5GRkZER0fT3NyMvr6+QN+qqqrIysrCyMhIBBeEhYVhY2MjrlOSeAMdzfyQIUNYuHCheKhJLN4k0YcSY2qJLYyysrJAHCSlpqaGpqamMNOXoGrffvst3bt3JyYmpstDiER4IfF0lRiGh4WFCY9SV1dXevXqJVCpsLAwoGO1KfkuRUVFoa+vT3l5OSUlJcTHx6Ovry88OOfMmcPWrVspKSkRvqqNjY1ERkbyww8/UF1dLZwq8vPzefToEdLS0mJjkJmZSU1Nzb9CXhsbG3n69CkFBQUYGhri4+ODkpISxsbGPHnyhKtXrzJkyBC0tbV58+aNCLiQIOuVlZXEx8cjJSUlbNBiYmKQlpamZ8+ezJ49m0OHDhEbG4uqqiqjRo1CWVmZc+fOMXjwYCZNmsSaNWu4fv06S5cuFTZq0LFy37NnD+bm5gQFBZGYmNhlilJUVBT5+flkZmaiq6tLTU0Nurq6WFlZUVJSwsuXL4UvqKKiIvn5+aioqDB58mSMjY0pLS0VNJYvvviCoUOHUlVVxatXr2hubsbZ2RknJyfS09N59eoVWlpaXL9+nffv3zNr1iycnZ15//494eHheHp6oqKiQnx8PDExMfj4+KCgoCCa/Q8fPnD06NEuN6+SOGKJZdbUqVPR19f/x6AeExNDUlISVlZWeHh48Ouvv5Kenk5ISIiI0NbT0yM5OVk09ZKHrcRTWyL+LSwsFO41EpqBpqYmc+fO5ePHj9jZ2QEdYquQkBAUFRUJDAxEX1+/y84mL168EIlLTU1N3Lt3j8rKSnx8fMTvDg4OFoELdXV1wp7OwsJC8FklD3tJSbja+fn5nD17lh49egjrvcePH/P27dtOW8XXr18LmoiEUiLhQufl5RETE4OhoWGnjWlXytDQkFWrVpGSkkKPHj0oKiri8OHDuLi4iM8jNzeXnJwcWltbO9ljAYIC5uLiIlLipKWl8fX1xdfXlxcvXvDw4UM0NTWZPn06BQUFFBUV4ezsjJeXF/n5+Tx79ozs7GwaGhrEkCMBx2pra7l37x6enp4sXrz4X4VpFBcX8/jxY2JjY6mpqRHc6vz8fC5evMj69euprq4WDi4pKSmdghsSExPJyckRIQrFxcUUFBQwePBg3Nzc2LFjBw8fPuTkyZNMnz5dhDJAx8AtKytLYWEh/fv3p7W1VdAvtbW1cXJyoqKigsLCQpEm2tVrS0pKEvZ6GRkZrF+/nuTkZCwtLUVse3Z2NmFhYbi6utLe3i6oWrq6upiYmKCvry+sswYPHoyMjIzYBikoKAjXCcnWbfz48aipqVFRUUFDQwMZGRmUlZUJYMjAwID29nZkZGREkM/z58///2lea2pq8PLyIiwsTJiRDxs2jCNHjvDy5UsWLVrEZ599xvr16wHYtm0bly5dYs2aNUydOpULFy6Qk5PDvHnz2LJli7BI+fDhA+fOnWPUqFFMnjxZqNMkVVpaSnNzs1htv3r1irlz59KjRw8uXLjAoUOHKCsrEw3vuHHjiIiI6HISBXR42SYmJgr4WrIiv3DhAseOHcPd3R03NzcaGxtxc3Pj22+/ZfPmzcIo293dnYMHD3bipZSXl/P+/XtxeNja2lJbW8u6detYsWIFf/75J+np6WI6k6DZbW1teHt7o6amJlb3I0aMYNKkSRw/fpyrV692eUUiaT7v3r3Lr7/+ioKCAufOnWPcuHG0t7dz9OhRLC0tmTdvHmFhYYIcbmlpyalTp8SkBQiPWwnp/t27d2RmZpKbm8vMmTNZu3Ytjo6OZGVlcfz4cQ4cOICmpiYHDx5EWlqa0NBQ4Tf5zTff8NtvvzFkyBA0NTX55ptvGDx4MN99912XmteYmBiio6OxsLAQcaASdLGiooKMjAxGjBiBvb09ly9fJiwsjEGDBmFiYsKbN2/Q1NRk6dKljBs3TnDZkpKSMDQ0FA3A5s2bGTBgAJs3b+bo0aNMnTqVcePGsXr1ar788kvy8vIIDQ3FwMCAuXPnMmXKFAoKCkhKSmL+/PkiBejatWts2rSJ8vLyTvG7/61OnDiBpqYmTk5OnDlzBktLSy5evEhsbCzm5uZ8/vnntLS0iOnZwcGBcePGce3aNdra2pg7dy7Z2dk8ffoUHx8ffHx8OHHiBG/fvmXr1q3k5uZy8uRJSktLcXFxoUePHrS0tDBz5kyh2q+pqeHJkyds3LiRhIQEZs+eTXl5OZ999hnh4eGEhoYiIyODhoaGOOC6UlZWVty+fRt3d3dBa5BUcHAwp06dwsLCgt69e4tUovHjxxMQEMCoUaOQlpbm1q1bnDhxAm1tbWxtbYmNjaWlpYWhQ4dSV1fH7du3yczMZOjQoezfv58PHz7w448/0tzczPjx4zl16hRhYWEkJCTQs2dPQkNDWblyJSEhIZw4cYLp06eLIAc5OTnWrFnzydf3ww8/cO/ePVxdXVmxYoVoOiRx23v37qWgoAAFBQVKSkooLCzEwsJCoE7Ozs5cvnwZ6GheJLnotbW1bNiwAQMDAwYOHEhMTAz+/v7o6emhqqqKkZGR2CB5e3uLoUsyeI0bNw4tLS0iIyORlZXFy8uLYcOGcezYMZ4+fdqlz3D06NFAh9G9s7OziNb98ssvcXNzo7W1lSVLlnDo0CHBYVVQUOCzzz5DQUGBnTt3ijS3QYMGkZOTg6mpKdXV1Xz++ecoKCgQEBAgmk4/Pz/q6+sFcFFeXi7EvB8/fiQjIwNbW1ukpKTQ09OjqqqK8vLyTsE3Xam6ujr69euHiooKDQ0NyMnJsX//fnbs2MGOHTsICwtjy5YtHD9+HEVFRXR1dUlNTRWuKsXFxWzbto2nT5+KCGBAOC5IxEjdu3cnICCA/Px8DAwM2LNnjxCNxsTEUFxcjKurq0Cq/14SsWL//v3/VfMqEZMGBAQwZcoUFBQUePLkCY8ePerEoW5qamLp0qUitOXvA6upqSnjxo3DwMBAWOj9vSTJnbW1tZ1iUCWpWRs3biQ6OrrTliwtLU387+DgYBYvXszMmTP5448//tU1pqamoqSkRFlZGT///DOTJk3it99+4+HDh+K9lpOT44cffhBpepJn77lz5wSFQ0ZGhujoaGJjY4W7Tbdu3fj222/JyMhg9+7dPHr0CCMjI7FKf/bsGW5ubsyePZt58+bx4sULkpOTBXAkIyMjEjaLioq6jJ736tWLsrIy+vXrR0FBAcuWLePOnTt4enqKmG17e3sGDhxIYWEhe/bs4f79+0hLSzNmzBgMDQ0xMjJiwYIF1NTUIC8vL4YUaWlpoqKiiI2NJTAwkPHjx7Nhwwbq6+vZuXOncIUYMmQIsbGxzJgxAyMjI27evImenh4lJSVUVlYydOhQ1NTUkJeX/6QQjS43rwEBAcLQViJyWbx4sTDXT0pK4sGDB1hZWeHj40OvXr24cuWKCBLo3bs3srKyaGpqCgSnra0NGRkZ+vTpI5qN8vJygoODBcfNxMSE+Ph4EhIS8Pf3x8fHB39/fzQ0NMTEmp6ezvPnz9HU1MTCwoIff/yRpKSkf6xj/rd68OCBsENasWIFI0aMEP9u6tSp1NfX8+TJE27dukVMTAxLliwRPnR79uzh9OnT9O3bl88//5zW1lYiIiIwMDAQwrX79+/T0tJCY2MjmpqaVFRUEBkZSXJyMunp6RQUFDBixAhBsE5PTxdCIYkvqaamJtXV1fj6+op89q6UZJLq27cv48ePF1zGiooKLC0tCQgIEGstSQRqREQEDx48wMDAoFOzrKGhgYODA69fv6aqqkqQ6VtaWhg7dqxYoxYWFtK9e3fmz59PdXW1iEUcOXIkY8eOpUePHoLE7+HhIdD4oUOHCk7np1ZiYiJHjx5FX18fbW1tBg8ejLa2NtnZ2dTV1TFw4EDh5evs7CzM/S9cuMDDhw8ZO3YsixYtEgdzY2MjdXV1lJSUCE51YWEhOTk5REVFCWuUgQMHCoK95POWlZUVyvbs7GxCQkKE6CYjI4PXr1+jpqbWaYL/lJL47g4bNkzQa5qbm1FSUsLKygozMzMuXLggkmZWrFjBmDFjsLCw4N27d+jr6+Pq6kpwcDBDhgxBSUmJyMhILl26RP/+/Rk5ciSurq7s2bNHmIiPGTOG3Nxc3rx5I0y6J0yYwPv378nPz6dnz54CQVNRUREr6sDAwE4ijk+td+/e0a1bN4EW7N27Fx0dHaFULS4uFg4K7u7umJiYiAAFiduCnZ0dT58+/QftxNXVFTMzM4GyS9w03NzcGDRoECoqKqiqqvLLL7/wyy+/sGPHDrZu3YqtrS2TJk3izZs3ODo6ChpKfn7+P9DE/1b9+/dHWlqagoIC7ty5Q2trK56enmRkZPDTTz/x+vVrLC0t6d+/v/B3lPhK3rhxg8LCQgYPHiziZHfv3k1JSQn19fXIy8uTlZVFZmYmHz9+FP7Ebm5uTJs2jZ49e1JVVUX37t2Fv+3Vq1fJzc0VgkRDQ0NSUlJExKmEztOVkogjJdZ0kpJYzeXk5CAtLc3EiRMZN24cpaWlXLhwgbKyMnr27ImrqytGRkaoqqri6upKcnIykZGR5OfnU1JSwsCBA8VZmZKSQlpamnB/mTZtmhiiFBQU0NDQEPdZVlYWb968wdzcXAi67t69+48t0n8rBwcHcVbq6OgwZ84campqRDPSrVs3FixYQGZmJhUVFRQUFJCWlsbDhw/R0tLC0NAQCwsLHjx4wHfffcf79++ZMGGCQFV1dHRwdnbGxMSElJQUbt++LZKp6uvrWbt2LaWlpQQGBopmsbm5mSNHjlBZWcnEiRNFwlxdXR2PHj3qsjhUcn0SzUdmZiZNTU3MnTtXPAPHjRuHv79/p//u9OnTPHv2jNmzZ+Pp6YmtrS03b97k4MGDyMjIICUlhbKyslDT6+rqCq7+sGHDBB/78ePHlJWV4enpiY2NDRoaGuTk5BAbG8vmzZsZMWKE8A1OSEjg6NGjXbo+6KCL6erqMnXqVPr160dcXBxubm4MGDAATU1NYmJiePXqlThf5OXlKSkp4dixY7x69UoE8lhbW+Pt7Y26uroQIGVlZdGtWzdB47p06RJv374lLy8PTU1NlJSUhFm/JNHT1dWVvn37IiUlJYba1tZW/vzzT7Hl7kqlpKRQWlqKmpoaRkZGTJs2jcbGRnr16kWfPn2E17eGhgbm5uZERUXx5s0bXF1dxVAMHdzp/+Q60t7eTlxcHMnJyTg6OgohdFNTE9evX6eoqAg/Pz88PDwYO3YsoaGhYoutp6fHkydPqKio4OuvvyY2NpalS5cKl6f/W3W5ebWysqKtrQ0nJycOHz6MmZkZ+fn53Lp1i4CAAL788kt8fHyYOnWqME13dHQUGdndu3cXfMtbt27xxx9/UFNTw/jx4wkKChINw9u3b4mPjyc1NRVlZWXc3d1JT0/n3Llz1NTUMG7cOI4fPw50oJOJiYmcP3+es2fP4uTkxKZNmxg6dCjOzs5C0fgplZWVxfv37wkICBBoT35+PsrKyvj5+eHp6cnKlStFilJMTAwVFRW4ubmxbds2tm7dSn19PYsWLSI1NZW9e/eip6eHj48PUlJSJCUlkZ+fj7y8PL6+vty5c4f09HT+/PNPlJSUhOuCpFJTUzl58iROTk5MmTJFQO5ZWVn07dsXCwsL4UH6qRUTE8Po0aOZNGkSgYGBKCgoUFFRQVRUFD179hTpZBIxlrS0NBUVFVy8eJG8vDzU1NSE60NxcTHR0dFERkZ2utGgI2VGgia6uLh08sJ88uQJVVVVrF69GiUlJZqbm5k/fz7z588nPj5eqI8lecpdKU1NTRH7+Pvvv2NnZ4eUlBQ1NTUYGxsLM/iqqir8/PzE8LNp0yaio6OFEl9yffr6+vTu3ZuysjIuXLhAZWUlM2bM4PXr1+zevRvo4GjPmjWL5uZm4XlrampKYmIiUlJS+Pj4oKysTElJCUeOHBGqfHt7e8aMGcOcOXPYs2fPJ1/j3LlzycrK6oS0eHh4iBtecqBK/rYhQ4ZgYWHBZ599Jrx4oQOpUlRUpLKykoaGBlpaWrh8+TJ+fn7Mnj2bFy9ecOLECUaPHo2JiQmvX78mISGBPn36sHLlStTV1Xnw4AFDhgzh2LFjzJo1i9OnTzN16lR69OjBrVu3yM7O7rLCWfLeL1y4ECUlJd6/f8+pU6ewt7cnICBAcEAlASV9+vQRav+/pyS1trYyduxYEhMTqaioIC8vj2HDhrFu3To0NDSoq6vDwcEBW1tbnjx5Qt++ffn222+FF6azszMLFiwQYQEXLlwQ3rUS6y7o4BDfunXrHxni/1tJMsCXLFnCgQMHSEhIoFu3bty8eZO2tjbU1NTo378/gYGB+Pv7i4fGmjVrxPnj5+fHxIkTKS4uZt++faSlpYmgjbdv3/Lo0SP09PTw8vLi5cuXqKio4OPjIx6SkqaqqKiI9PR03r17J2zubG1tMTExEZSZroAAkoqNjRVxkJJY1ObmZjIzMykqKkJBQYGtW7eKh2N4eDh3797l559/ZsSIESI8AjqaqCFDhvDq1StycnJYsGABvXv3Fm4BampqHDt2DFNTU3755Rd0dXVJS0sjKSmJfv364e3tjZKSkvAKlpWVxdvbW1DAbt26xb59+7q0ybKwsKC9vV1YG6mpqbF582agA4mUbCpv3rzJ7du3+fjxIx8/fiQ+Pp6qqiq0tLSYOXMmjo6OzJ8/X6ziPT09efDgAREREcLZ5fnz5+Tm5pKWlkZ4eDj37t3j119/ZeDAgeK7LOFg379/n5s3b2JqasqMGTNYsWIFN2/e5NatW122PGttbUVKSorKykpevXolVPZ+fn7k5OSwfft2bGxsRPNaV1fHu3fv2Lt3L8nJyYImoKOjI9L8IiIiqK6upmfPntjb22NsbEx6ejq3bt0iNjaW6dOns2zZMl6/fs3OnTvR0NBgyJAhuLm5MX36dKSkpFi/fj1bt27l8ePHfPvtt+zfv5+HDx/y9OnTLkf9KioqCh61s7Mzo0aNorW1laamJlxcXLhx4wYHDhwQ16Ojo8Ply5c5d+4ckZGRDBw4kNWrV+Ps7IydnR1mZmZiW1VQUCDEgaqqqri5uYnwgdLSUtzc3JgwYQIDBw4kLy+Pv/76Cx0dHaZPn460tLSw2IqNjeXatWvo6Oh0WUvQ1NREbW0tz549w8XFRYhtc3NzRULc34NNJK45vr6+YpCSDMXQ0RtIS0sjLy9PQ0ODsOTbvn07SkpK7N27Fzs7O/bs2cNPP/0EIGKC161bx5MnT5g9ezbNzc2MGzeO1NRU5OXlhZDt3bt3/983r48ePaK8vBxVVVU8PT3R0NAgPj6eP//8k9OnTzNw4EACAgKEuCkzM5P3799z+fJlnj17xvbt2wUaZ2FhwaxZs5CTk6Nfv36CM1ZYWIiZmRmzZs0iPz8fbW1t2traGDhwILW1tfzwww8EBweLpvTp06doa2vj7+/PtWvXaGpqwtzcnJKSEuFe8Kk1fPhwDA0NBaoMHdy0yMhIRo4cyYABA5g2bRrdu3cXUPzKlStpbm4WSF5TUxO///47cXFxZGRkIC0tTWpqKra2toKno6SkxO3bt6mvr6etrQ1/f3+mT59Ofn4+sbGxgoQu+UJJGripU6dib2+PnZ0d586d48aNG10OYpCgHnV1dZSXl2NiYoKmpiYKCgpiWoSOL6jEHsnIyIg///yTZ8+esWvXLmJiYtiyZQs6OjpUVlaKNKL09HTKysqQk5Njz549JCQk8M033/xDIObt7S2I/69fv+bkyZOsXr0aKysrXFxciIuLo6CggHv37pGSktKl6+vTpw+7du3ir7/+Ij8/n6tXrzJhwgQWLlyIlJSUQIOkpaWpqqoSzau3tze1tbWdRBsSda6MjAwqKiocOHCAnJwcpk2b1ukhEBsby7Zt2zA2NsbW1hY/Pz9evHjB/v376devHz4+PvTs2ZMxY8aIBKfW1lbOnj3LsWPHuoy8Ghsbi8ZV4toQHx9PcXExvr6+ODo64ujoKNJhKisrOXPmDAoKCkIt+vz5c3799VdMTU1xc3NDTk4Od3d35syZIxqGw4cP07t3b/bt20dRURGjR4/G0dGR6OhoTp8+jYqKCvX19SKlqKSkhPb2dvT19XF3d8fGxobY2FhCQkK6dH3QoXL+u61cUFAQhoaGqKurY2dnx4oVK3BwcEBRUZHIyEixctTX16e6ulqg/Bs3bsTCwoKIiAikpaUJDAwUn7G9vb3gJMvIyIj7TV5enra2NvLy8oiOjsbT01MkRJWVlaGkpNSJa+7i4oKSklKXnTEAcf+mp6cTExMDIIaDGzducP78eaHU/+mnn4iNjRXrttbWVnr16kVaWhqysrJoa2uLrHEHBwf27dvHmzdvuHTpEm1tbSQkJBAWFsasWbOQkpIiKiqK3377jcbGRlxdXQUNQlKS9//GjRtcunSpyw/NvLw87t69i56eHr169aKhoYFLly4REhKCubm5SOqDDmqVg4MDX375JatWreLWrVudBEltbW3069cPa2tr6uvrUVFR4dmzZxw5coTly5djbGyMnp6ecFEJDw/n9u3brFy5UgARp06d4vTp08yaNYsZM2aQkJAgKBdBQUFYWFh0yVdaQqGKjo4mLCyM6upq/P39GTFiBPLy8lRUVIjtVUBAgDgzJCli169fx9LSkgEDBhASEkJsbCwjR45ETk6OBw8ecPLkSTQ1NTEyMhJemVFRUSxYsECI1WbPno2zs3OnlfqAAQNoaGgQnGXoAI4kq3iJH/Wn1KFDh+jZsyePHj0iMTGRMWPGYG1tTXZ2Nn369OGPP/6grq6OV69e4e7uLrxXJeltXl5epKamcufOHVRVVVm5ciV9+/alrKwMLy8vcnNzmT59Oh4eHsyePRtAeGwXFxeLCNqMjAzc3Nzo06cPDg4OLFu2jFevXlFUVMTDhw8ZPnw4/v7+WFtbc+vWrU++PuhQ9Jubm/P69WsiIiLQ0tKiV69eQnQNMHHiRHJycqirq8PAwICvvvqKgIAAIiIiqKqqQl5eHhUVlU7PD1lZWczMzKitrSU2NpaUlBTMzc0ZMGAAr1694sWLF522ww0NDRQWFnLq1Clu377N3LlzBQDUo0cPdu3ahYmJSZeDe7777juio6PZtWsX58+fF4lpmpqapKam8uLFC7y8vMjLy2PLli1Ax3AtoTdWV1cLAOLatWu8efOGwMBAevfuzatXr4iPj0dZWZnp06eTlZVFcHAwCQkJlJWViQ3zTz/9RHZ2NoqKihgaGop00rt37+Lm5kZgYCBycnL07t2bw4cP/9fY+y43r4WFhYLInJOTQ1JSEn/99Zf4skhJSQlUYPfu3dy5cwcdHR00NTVJTEykpKRE2PmYmpoKtESSxVxXVyfiSCWpGYCYPkaMGMHBgweFAKV3797IyMjg5OSEmZkZffr0QV1dHSMjIxoaGkTi0aeWl5eXEFhJcpwdHBy4fv06jx8/ZsCAAQwZMkRwIXfs2NEp2lOSKX7w4EHq6uoYNGgQDQ0N3L9/n/v377Nz505mz57N3bt3CQ8PR15eni+//FLwWiRJRxIE08PDA1dXV1JTU4WSUaJiT05O5u7du8JE+FMrOTlZoFOamprIysqirq6Ok5MTsbGx1NXViUYbOlDwjx8/MnbsWJycnLh27ZrIOe/WrZuwKOvVqxd6eno8fvyYoqIi8R5KVraS9KaWlhYKCwuFcOz69evs3buXGzducPXqVfr06UOPHj1ISEjgyJEjREZGdgkNsbS0xM7Ojn79+nH48GGioqJoaGhg6NChnbwQZWRkRDSlREAoOZgBETksQWH/+usvIbhwc3NDQ0ODpKQkysrKBOLav39/EdihpKREeXk5ISEhhIaG4ufn9w9bJ01NTbZu3SpcNj61ampqhBG/vr4+8vLyZGdn8+WXXzJ16lS+//57fH19qampoa2tTeS+W1lZ4ebmhpaWFllZWTx79gwPDw98fHzQ1tamubkZOzs76uvref/+Pc7Ozvj7+3Pq1CmKiorQ1NREWlqa33//Xdxba9euFQ1Y3759UVVVRU5ODikpKSZOnEhUVBRxcXFduj7oaOrq6uooKir6B12lvb2dKVOmiHv1ypUrfPz4Ufg0xsfHk56eLizuTE1NmTJlCjU1NWRlZYmHjZaWFrm5uRQWFtKvXz+kpKRIS0vD1taWuro6vvvuO0JDQ1mwYAHTp0+nrq4OVVVVfHx8/tEsSB5In1ofPnwQh7XEfSQ0NJT09HR+//13+vXrR2hoKPfv3ycqKgptbW3BBZsxY4ZIubG3t0dGRoYpU6YgJydHWloax44dY9myZaxbtw5nZ2fCwsJoa2sTZ8mbN29ob28nJCRExFevWLGCRYsWAR0R0iUlJQwdOhRtbW3y8/PJz8/vcvMaExPD3r17mT59OvPnz6e8vJyGhgaqqqo6BSjk5uZSUVEh4lW9vb05evQoV69eZcWKFeTk5NDU1ERbW5vYakAH8r5z504SExP56quvWLRoEYmJiSL0xNHREV1dXdra2oSFliSIIyIigp9//pnGxkaOHDlC79696d27d5dWsn+35MrJyRHCy+LiYhQUFJCVlaV3795YWlqirKwsMu4lA2doaCjl5eVs3ryZ3r17i8jhnJwc1NXV6dmzJxkZGURGRnb6vdXV1QJR/bt4p6ysjOLiYvz9/RkyZIjw1FZVVUVdXZ3AwECUlZW71LzKyMjQ2NjIgwcPSE1NZdmyZaipqXH//n2UlJTw9/cnNDSUlJQU3N3dRQSwk5OTuD+fP3/O1atXmTp1qnBPkNS9e/f49ttvyc3N5ZtvvmHfvn0YGBhQWVkpaBzq6uoigGPBggXCP3rWrFl8/PiRd+/ecfDgQZYsWUJAQECXm9fU1FTy8/NJSkri3r17JCQkMGnSJLZt2wZ0PAskTjTXr19HUVGR1atX4+fnh5+fH+vXryckJAQzMzMBfCUkJNDW1oaxsTF5eXncunWLd+/eoaenh5mZGcrKykhLSwuKU2NjI9bW1owcOZKQkBBu3LhBnz59OjWvPXr0IC0trcv0FmlpabH+f/ToEVFRUXh6elJXV8fr16/Fdyg7O5vLly/To0cPYUf4/v37Thul+vp6QR/Lycnh9u3bvH//ngEDBjB79mzi4uL48ccfefr0KUuXLuWLL75g9+7dZGRksH37dhFX3NraSlRUFPX19cyePVtsQMzNzZk/f/5/vQ//VUhBQ0ODMIIODQ3l7NmzQIcvoyQpQpL9q6yszL59+9DV1SU3NxdnZ2diY2O5desW7u7uDBs2jIiICPbs2UNBQQGenp706NGDiooK5OXlRXqRRKnZ1NTEL7/8QkZGhvCF8/DwQFpamujoaCwtLbGwsKClpQVHR0c2btwobCi6UvX19WI96ODgwMqVKzuR+ouKiggKCvrHl2jPnj1oamoKZZ6pqSny8vIkJCQItSB0fLFLSkr4+eefWblyJREREXzzzTeUlpby7bffCv5Snz59+Pzzz9mxYwePHj1i9+7dTJo0iby8PMaMGUNAQECXTZkXLFgg/OQkD0E5OTmUlJT4/fffOXToEFu2bOHzzz+nsrKSe/fu8fr1a0JDQ/H09OT7778XiFddXR2Ojo4kJCSQn5+PkZGRQFRnz54t1urPnz9HR0cHe3t7iouL+eOPP2hqamL58uXiQZSTk8OMGTM4ePAggwYNwtnZucuoMnQk5UjiF6dMmcLXX3/NunXr+OGHHzh48KAg3zc1NQlFbkNDAwYGBgIZSUpKYvPmzXh4eDBixAgOHz7MlStXmDVrFt999x2ysrIcOnQIfX197OzsGDlypGgKJa/p4ODApk2b+OmnnwgMDGTDhg18++23nf7WIUOGYGVlhYmJCb/++usnX+Pr168JCwvD0dFR+IFqa2tTUFDA2bNnhfF0a2sr9+7dE5xOVVVVwsPDSUtLQ01NjUuXLjFgwADq6up4+PAhz58/F0ilRD3brVs34UYh8WD8+1AoWe/U1dWJA0fCCR4/fjz9+/cX2e9dqcuXLzN37tz/uObU1NTs1EgNHDgQNTU1FBUVCQ8PJyYmhj///JOKigpOnDjBoEGDGDZsGJcuXWL16tVUV1ezY8cOpk+fzuvXr3n+/DleXl6oqanx8OFDMdClpqaSk5ODoaEhycnJPHz4EH19fdasWYOamppQFOvp6f1Hscz/Vl999RU9evRgwoQJgtc7depUPn78KIb68ePHY2Njg7KyMjY2Nvzxxx+cP3+ehoYGpk+fLrZY+vr6LF68mJaWFvbt20dOTo7wGbW1tWXlypWYm5vj5ORESkoKhw4d4vHjx8jJyTFo0CCR7AUdEcjbtm3D09NTKOJHjBhB3759u8wnPHv2LMXFxeK90dLSYsOGDQQFBaGtrY2xsTHt7e3o6Oh0EvVJBtCEhAQuX76MhoYGlpaWZGdnEx4ejpGREaNGjRLm6QcPHqS4uJiLFy9SXl7OihUrGDx4MEeOHGHv3r3Y29tz6tQpMaB+++23bN++Heiwgfo73enflLu7u6A4VVdXEx4ezl9//UVraysbN27E0tKSsrIyzpw5w82bN4mNjRXUoRcvXjB//nwxPLa2tmJnZ8eYMWOYN28e1dXV3Lhxgz179lBcXIytrS27du36h78swJkzZzh27BhbtmwhMDCQzz//nD///JOgoCA2btyIsbGxEBt9ai1cuJDGxka6detGbm6ucNzQ1dXlwIED1NbWEhAQIIZyGxsbpk6dytWrV1m5ciVLly7FyckJR0dHYVD/9+rfvz/z5s1j3759/Prrr5w/fx5jY2NmzJjBmTNngA6rp169ejFnzhwiIiIEnWLWrFksXbqUS5cusX79enR1dTsFC31qtba2Eh8fj6enJzo6OqxcuZLQ0FDWrl2LsrIyFhYW3Lx5k9DQUJKSklBSUhKJcfX19YLrL7m+zMxMdu/eLbie2dnZXLlyRdDnJIERM2fORFdXVwgVAfz9/Vm7dq043+F/gDRARB9LtmOfUnPnzmXgwIGMGjWKlStXYmVlxZMnT4SP8oQJE4COvm3ZsmX06NGDtrY22trasLKyEjzpwsJCkT4ZHBzMzZs3KSsrw9LSkvT0dNHYGhgY4OjoiJ2dHXJycri4uPD48WO0tbXZvHkzubm5hISEMHbsWHbv3o2mpiYfP34Ugq1PqS43r7W1teKQaW9vF6a82tra7Nq1CysrK6qrq9mzZw+BgYGMGTNGIIXm5uYkJyezZs0awsLC+OOPPxg2bBjV1dVcvHgR6CAWT58+nZKSEioqKoRAo6WlhbKyMkxNTdHU1MTOzo4DBw7w4cMHkbohMVu3sLBAVVW1k0nzp9bTp0+Rl5fH2dmZqqoqTp48SY8ePcTBfuHCBZEcZWhoiKGhoTBDT0lJobCwkLKyMgIDAykoKODmzZsMHDiQWbNmkZiYSGtrK0+fPsXQ0JCtW7fi6elJfHw8Fy5cICoqCjU1tU4P+YyMDJ4/f46SkhI+Pj4YGRkJ7zQJ1aKrzaupqSnl5eXcv38fW1vbTlxUHR0drK2txepDQ0MDGRkZHj9+TFJSEv7+/mJqPnLkCLm5uXTv3l34xEnMjAcNGsTnn38uVMsHDhygtbWVffv2oa+vT1JSkkhMCQoKYseOHQQHB2NhYYG8vDzt7e1ERUWJ/PGuxOGlpaVRXFwsvGMlyK+kkVFTUyMgIAANDQ1u3bqFqakprq6uZGVlCaWqvLw8BgYGvH37ltu3b5OUlCQSVsrKyoiOjub169cCsfb39xcHTVpaGuXl5dja2jJ79mwMDAw4dOgQx44do6ioiC+++ILGxkb27t1LZmYmAQEBXRal3bx5k927d7NmzRqmTJlCXFwcFy9epH///pSWlrJjxw7k5OSE44WFhQXr1q3Dw8OD5ORkHj16JPijUlJSREZG8uTJE4qKirhz5w4qKirC2q28vJydO3eSl5fHjh07gI6HtaOjI4GBgYwaNYrm5mbRzEuCRZSUlFBSUsLQ0JCPHz+KNLxPrdraWpSUlIAOZO706dPo6ekxb948HBwcaGlp4cCBA8jLyzN37lwRcyyxYenTpw8hISHs3LmTHTt2sHjxYvF3VVZWkpSUhLGxMbq6umK9pa2t3Ql1sLa2Rl5enokTJ/LmzRu2b98uVs7QQSk6duwYgwYNYsWKFV26vvz8fB4+fEhycjLDhw+nra0NR0dHgR4/efIECwsLvLy8BJ3BxsYGKysrrly5wrVr13j//j3t7e2iyQREiIO6ujrZ2dm8e/eO0tJSxo4di6GhIdnZ2Tx69Ij09HQmT57M5s2bBa2nubmZN2/e8PHjR7S0tEQsrIqKChYWFl1uXpOTk1FTU+Pt27ccPXoUBQUFnJ2d/+Fb29TURGhoKFpaWri4uODl5UV7e7tIHJOWlhYhERIbo6amJjw9PVm6dCn79u0jNDSUhw8fIiUlRbdu3WhvbycjI4PW1lYsLCxEcyAJZPDz8xOG6pLtisS381Prt99+Q1tbW/gaS97DS5cu8f79e5qamvjpp58oKysTsea6uro4OzvT3t5OYmIiZWVlQhMiqdTUVKytrenfvz8uLi64uLjg6OjITz/9hLe3t2hcz549i6KiogiFKSgoEODQkCFDxDW3t7cLDUNXq62tDQUFBUaPHo2np6c4/9+9e8eFCxeQkpJi0qRJAr3T19dn5MiRvH37lsrKSszMzDAwMKCtra3TOS7xDLeysmLFihVUVVXx+vVrbt68CXSIp+Xl5dm2bRujR4/m2bNnFBUVISsry/jx4wWHVkFBAXV1dfLy8njy5EmXrw86zkdJ0qCLiws7d+4kKiqK9+/fY2RkxNu3b6mqqsLGxgZTU1P09PRQV1dn//79vHjxQkQdR0RE8ObNG5KSksjKyhL3ZEhICNnZ2cyePZtly5YJ0ZaGhoYAO0JCQpCTk8Pf358FCxYwaNCgTsi+pN6+fcurV6+61LxKAnEkQiro8Nr39fXFzs6OtrY2Xr9+TUtLCwsXLuw0SKqqqnLr1i2uXr1Kc3MzgwcPRk1NTcQNS1LgXr58SWZmJkpKSsyfP59vvvkGfX19Ll26RFlZGaqqqmzZsgVfX18KCgp4/vw548aNQ1NTkz/++IPk5GTBcf+U72mXm9dXr15hbGwsUkl69+4t0nUkHM3p06eTkZEh/OkkVV1dLQyr4X8iy/4+CUp4ZBLT59evX6Orq4unp6eAlaGjqbt//z75+fmoqakxbtw4+vfv3wkdlfBJulLv3r1DVVUVDw8PcnJy2Llzp3BOePXqFb/99psgkx87dozQ0FAuXLggxBDV1dVoaGhQXFwsPM2KiooYOHAgPXr0IDU1lUePHjF9+nTMzMz4888/uX79ungwSDKiJTnm8fHxnDp1irlz54oHR0REBM+fPycxMfFfqbjPnj3LvXv3WL9+PQ8ePOD06dOiOZ85c6bIdv77Z9K7d29GjRrFmDFjgI4HwKVLl1BWVhbq7sLCQiorK1m1ahUbNmygqKiI06dPIy0tTW1tLdeuXcPMzIxVq1bh5OTEkydPKC0tRU5Ojq+++oqVK1eKTOgjR46wc+dOJkyYwLZt27q0ymtvbxcP+9raWoyMjPD29sbHx4ecnBxOnz5Nr169kJKSEtwsV1dXgToCLF++nJ07d7J3717++usvpk+fzooVKwgPD+fbb78lPT0dOTk5evbsiZaWlkhMKysrE8EIUlJSNDc3ExAQQEBAAL6+vpw6dYopU6aI64+Pj+fx48ddjt6UlZVFWlpa5FCvWrWKtLQ0Nm/eTEZGBj/++GOnn1dUVBQ8LmNjY16/fk1cXBxPnz4lMzOTHTt2CP9lSUyslJQUWlpazJ49G2lpaXJzc1FUVKSlpYXhw4czefJkgRBeuHCBjRs3oqioyNdff83s2bNF4ylJgupqDRs2TKx7GxoaOHnyJC0tLUJ81tDQIJB9Pz8/8b3x9PRkwoQJREREcPDgQfF6YWFhXLlyBS8vL8aOHUtBQYFYpXt4eAiRlgS1Bhg0aBBaWlpoampSXFxMeXm5oMRARwN648aNf5WnPmHCBNasWcOZM2cEwjRp0iT++usvYmJiOH78OIGBgeIMLSoqEg4WOjo6HD58mMzMTDQ1NVm/fr14UNrY2DB06FBGjBhBt27d2LdvH7/88gv5+fksXryYrKwskTE+bty4TmllEhpDU1MT48eP7zRUdVU4CR2omrm5Oenp6Zw+fRqAoUOH8tNPP3XiY2ZnZ7Nnzx5sbGzYtWsX3t7eYrCQk5MTXEMtLS1hsdXe3o6enh6///47AwcO5OHDh1y/fh1TU1MGDhzIkydP2LlzJ0uWLBFn2vfff8/333/PqlWrePDgAdAx1CorK4thrSu1evVqevTogbS0tGgK3r17R1NTEyNHjqSwsJAXL15w4MAB/P39mTJlCmPHjkVRUZGMjAxmz55NREQElpaW9O7dm4KCApHwFRcXx/79+7Gzs2PKlCmMHDmS1NRUSkpKuHnzJpmZmdy9exd7e3uGDBkivHChY3NYXV3NpEmTsLW1xcnJCQMDA6SkpESz9Km1YMECxowZg6urq2jQIyMjhdl9//79O2klysvLqaurY/78+YKCFRISwtmzZzuhxVFRUYSGhuLu7k5QUBCHDx/m4MGD7N+/n/j4eCwsLDh8+DCBgYFcunSJpUuXUlJSwvLly/nll1+Ql5cXdJOMjAwUFRUxNjb+V/aYZmZm4j4oKysTzkjQgXS+fPmSvn370qdPH0FhBNi8ebNINtTU1OT48eOUlJQgJSVFQECAuHeVlJTQ1dXtFIEroQKtWbOGmpoa7t27R05ODubm5tjb22Nra0tLSwvQsU2UDFgKCgpdRs8lnqopKSmCW25paSk2ArGxsWRnZ6Onp/cPT+7S0lL2798vtsxVVVUYGxuTn5+Pg4MDfn5+tLS0CA2Suro6Q4cOFd8zCeg4Y8YMIQY3MjLijz/+oLCwUGyTunXrJvq3Twkl6nLz6ujoSG1tLWpqaqioqNC9e3cBKX/48EEgaAArV65k+PDh9O7dGxcXF27fvi34sBs2bBAI2J07dwQS6ePjQ35+PtXV1Tx//pwLFy7Q3t6Oj48PJSUlHD16lD59+lBYWEhISAjy8vJYWFiIlc3Zs2dpaWnB29sbHR0dgVR+atnY2KCnp0dLS4tYDz5+/Jjp06ejoaFBUFCQiEmUZBBLEluePHlCeno6hYWFpKamipSegoICgoODycvLw9PTk9GjR5OZmcmtW7dITU0VSINk/fv36tu3L0FBQQJW19HRQUZGhuPHj1NUVPSvblRVVVUmTJjA+fPnuXz5MgsWLGDNmjViVS+plJQU9u3bR01NDevWrevkQ2phYcHy5ctJTEwUaVRaWlqsXbtWOAhUV1eLiEOJ7cmBAweIi4sTPCl1dXXevXvHixcvRJ47dAiSHB0dyc/P7zK/x8XFRYiwpKWlmTlzJs3NzVhZWaGgoEB0dDQ//vgjFRUVeHl5YW5uzi+//MKbN2/o2bMn2trajBs3Dnl5eebNm4e1tTX+/v7U1dXxxRdfiMjVhoYGPnz4QH19vUgBk5aW7pRZHxMTQ3Nzs7Aa8vX1xcLCAnV1dZYtW8bdu3exsLDA1tZW2Fp9Sq1fv54BAwbg4uKCjIwMfn5+TJkyhXnz5hEREUF8fDw6Ojr4+fmJqTo2NpZhw4YJ4r0k1zo1NZUPHz5gZ2eHq6sr8fHxSEtLi3Xyx48f+fXXX9HS0mL79u3k5uaSkJBAZWUlVlZWZGZmCvGhtbU11dXVPHnyBHl5eRQVFTEzM+sysgwdGwIJ4mBjY8Pq1au5ffs2W7duxdfXF1lZWZFYJCMjI1wNJIOYjIwMtra2DBgwgObmZgwMDLCwsKCsrEwEFly+fJkhQ4bg7+/P7du3efHiBZaWlty7d4/8/Hw2bdqEjY0Na9asITIykh07duDj40Ntba2IYp0zZw55eXnMnz9fNOyfUmPHjqW9vZ3i4mKysrKIjY2lR48eNDU18ejRIy5cuICtrS3jxo0DOsIuCgoKRJSlvb0969evF3Z7kodqdnY2PXv2FOtTyRblwIEDlJWV8fXXX+Pv709eXh4yMjKcO3eOa9euMWHCBObMmSOsgKytrcnJyWHdunV8+PDhP55P/63Wrl2Lvb09Hz584OTJk9y9e5e8vDwR9Snxx9XR0WH06NFYWlqKv/fvNB5tbW1u3rzJkydPUFRUxN3dHW9vb8H3nTx5MmPGjGHHjh0cPnyYkpISbG1tmTBhghi4oYNe4ubmRkJCAg8fPhSe0tDxwOxqSMH8+fNFfLck6CMlJYXu3bszdOhQpKWliY2NRUFBQTQFkuuzsrLC19eXvLw8XFxc0NTUJCkpiYaGBtEUlJeXs2/fPq5evYqtrS2vXr0iMTGRx48fM2rUKAIDA4mOjmb+/Pl0796dxsZGgoKChDuGgoICXl5eohFrb2/v5MbxKXXs2DFSU1PZuXMn0EErWb9+PQ0NDUAHfUBXV1f8vIQSIXEZePHiBWvXrqW2tpbc3FyuXbtGQUEBERER2NraYm1tLdDdvn378uWXXwIdq/erV69y9+5dkpOT6datG0OGDEFZWZlTp04xatQozMzMePnyJRoaGhw+fJjm5uZ/JQ6tq6tDV1eXCxcusH//fnr27Mny5cuxtbUVw42kuf37NnfRokW4ubkRFRXF2bNnKSkpwcvLi3HjxvHu3TvWrVuHoqIin3/+OZ999hm5ubkEBgby6tUrLCwskJWVpaSkBCUlJYYMGUJMTAxPnz5FRkYGCwsLysvLuX37Ns+ePRPPDxMTk06Jgp9Ss2fPJjc3l/z8fPz8/MQwvnPnToyMjJg8eTL6+vq0traipKTE06dPuXTpkki7W7ZsmQgX6dWrF1paWly4cAENDQ0WL15Ma2srDx8+JC0tjaCgIIYOHUplZSUnTpygurqaffv2YWlpSWFhYSdHDWVlZZqampg6dSqBgYGYmZnR3NzM/v37/+s1dbl5ldhJQAeq9Xd7hRMnTnDo0CEsLS2xtrYmOjqa0tJSunXrhq6uLkZGRjg7O+Pq6spXX31FZGSkaEx69+6Nt7c35ubm1NfXC2N5SR6vJGP8woULglNqb2+PoaGhEMikpaXx5Zdf0tLSwsWLFxk2bBguLi7cv3//k69Pkr4j4buuWbOGAQMGEBAQgJ+fn2hcz507J5Ta69evZ/jw4djY2PDzzz8LdeSQIUP47LPPePXqFVeuXCE1NZUxY8bQs2dPli5dyoMHD/j+++/ZsGEDb968EelTcnJyQk3bt29fnJycCAoKYsiQIezduxcVFRWREqWkpNRlRETykBs5ciQJCQl8/PiR9PR0fH19hTuC5CF/4sQJevToIRrXiooK0aBpaGjw7NkzgaR7eHgQFBSEqqoqmZmZ6OnpCTRIXV2dESNGkJKSQkREBFOmTBFNRn5+Pg8ePODGjRskJycLDqClpSV37twRCuxPLQUFBUpLS1FSUkJLS4tBgwYJBA86HoRnz56lra2N5cuX09zczLp169DW1ubGjRt069aN1tZWwsPDaWxsFMrht2/fUlJSIq5VT0+Puro6qqurhY+thoYGbW1tNDc3Cy53Wloaw4cPZ9WqVWJ70NzczMKFCzvlxUus3z6l6uvr8fb2FnQZCWLc1NSEgYEBy5Yto7q6Gi8vL0xMTLCxseH06dOkp6djY2NDZmYmJSUlZGZmoq+vz8KFCxk/fjxVVVXMmTOHuro6pkyZgoGBASEhITx69Ahvb28xZe/Zs0egAvLy8sIGZcSIEejq6pKQkEBBQQHW1tadaChdqaamJhobGykpKcHAwEC8/qxZs/jpp59YunQpP/74o+BFS+g7Eg9YMzMzNm7cKBwxSktLKS0tJT09HUVFRXJzczlz5gw6OjoUFBSwZ88eCgsLGT58OAkJCeK9aGxs5M6dO3Tv3p1169bR3t5OcHAwLi4u9OzZkyVLlrB161ZOnDjRZWHh30MNoqKi6Natm0gbbGtro7S0lJqaGhobGwVKLClXV1e6d+/OsmXLqKur48KFC7x//57U1FTGjRuHjo4ObW1t4nOCDhqQoaEh0tLSwhkiLi6OW7duoaury8yZM7G0tKS4uBgLCwsKCwuJj48nLy+vSxHNkpJE3jo4ODBixAiCg4N58+YNxsbGaGtri4ewsbExy5cvB/7HFF9BQYGoqCiUlZUxNjamrKyMkydPAh2uAUuXLmX06NHY2toiLy9PaWmp8KosKSlh1qxZrF69GuhohKqqqvDx8eHWrVv4+/vj5+fH2bNnBRqkqanZ5Q3I4cOHO/3/goICcnNzyc7OxtLSkhEjRvyDm1pfXy8iNP38/NDQ0CAiIoKcnBxsbW3FwN+rVy+RpvX27VsePnyIiYkJVVVVREdHExQUxOeff87WrVvF3yERD0nO1pycHEpKSpCTk8PR0RE5ObkuPy8cHByIiIgQiPiNGzdoaGhAW1ubPn364OrqKniw0NEXpKSk0KdPH1paWtiwYQMfPnwAEB6iRUVF6Orq0rNnT3HWDh48GE9PTzZs2MDhw4epqKjg5MmTqKioMG3aNObNm4euri7nzp3jzp07dOvWDQMDA3Jzc1FTU2PixImkpaUJ8Kwr1djYSGtrKzdu3CAuLo4NGzYIlDkpKQllZWWqqqqEI5JkMDA2NsbHxwdFRUUhEgsMDGTt2rUcOHCAkydPiibf1NSU+/fvi79P4iOro6MjXFBGjx7NiRMnRJJcS0uL8H+XaA1MTU1FCM2nlqenJ8+fP8fKykp8xy9evMiFCxcYP378P/j66enp7NmzR9AaZs2axYABA4iMjKSyspLk5GRBJZI4sHTr1g1vb28RuX7x4kXu3buHk5OTeP2srCxu3LhBamoqzs7O6OrqClGoqamp8LI9ceLEP7yh/8/qcvN6//59hg4dSnV1NcnJyYL7AR2InqamJhMnTmTjxo1UV1eTnp6OqakpMjIyjBgxAn19fSFyUFdX5/Lly+jq6pKTk8PXX39NRUWFiFk1NjZm/PjxJCUlERQUJBRzrq6uODg4cPTo0X/ciJKbqKurEUk9ePAAX1/fTgiKu7s7q1evFirCy5cvs2LFCioqKlBXVyc3NxcvLy+GDx/ODz/8AMDgwYN5+/YtoaGh+Pj48Pvvv5OTk4OdnR25ubliZeXu7o6MjAx37tzh5s2bqKqqUlBQgLa2NosXL2b27NmoqKjQ1NTE27dv2bJlCytXruTw4cPo6+tTVVX1SVPK30uSe21tbS2U4pIwhl9++YWHDx+yadMmLCwsCAwM7KRmVVBQQElJiQ8fPvD1118LJH3UqFGMHDmSp0+figna0NBQpKNERESIeFk1NTWsrKwoLi5GW1ubkSNHYmVlxa1btyguLqayshIdHR10dXUZM2YM+vr6nSxz/ls9f/6c69evM2TIEJHwI2lc09PTefToEbNmzWLQoEEoKytTVlbGqlWrBFcOOgahtWvX8vr1a4YPH86CBQsEyb6srEykWMnJyXHz5k0eP36Mm5sb+vr6xMXFceDAAY4cOUJbWxsGBgZiBSqpf8M9+3uNHj0aV1dX5syZI9DqhIQEEhMT6devH05OTqxbt45Tp05x9uxZ+vXrR2VlJebm5rS0tFBcXMyzZ8+YPHky8+fPZ8OGDRgZGYm1EnTEb+bn5wu/2MTERP766y8RQgEd1J+JEycyduxY3NzcMDIyEgEc9fX1Ilbw35SqqiopKSk8fPgQPT09ZsyYgZmZGZs2baK4uFj4lUpKW1ubjx8/cvPmTRGhLOHbHzt2jBcvXrBq1SpGjRrFixcvqKiooKqqiosXLxIXFye2GI2Njfz0009ISUlx8eJFPn78yMaNG4W38eXLl3n37p2IxayurkZFRUUEVPzbUlVVFaiYxBWioKCAFStW8ObNG4KCgli1ahXQwXvr2bMnI0aM4MyZM1y9epXvv/+etLQ0LCwsBM3m+fPnPHv2DEdHRxYuXMjYsWOJjIzk2LFjFBQUMGrUKIYNGybSmaSkpBg0aBCDBg0COtDe4OBgEfErETl9ahUWFvLy5UsGDhyIqakpAQEBGBoaoqKiIpBIScoidDSZjx8/ZuTIkejq6pKenk51dTUzZ85k3LhxJCQkEBISQklJCX/++afwyQwPD+f169d4eXmJRKq/o/3Z2dmsWLGCFStWMHfuXLy9vXn79q04FySi1f+31b17d+7cucOhQ4eQkpLqFHIjqdraWlatWkVVVRWHDx/GysqKp0+foq+vz+7du9HR0SE+Pp6jR48KOomGhgazZs1iwoQJHDlyhNOnT4twmr/fA9XV1Z3Wvv379+fu3bvcvHmTwsJCYZPXlZo/fz6bN2/mwoULpKWlsX37drZv387z58+xt7enV69ePHjwgMTERObMmYOtra1Y46urq4v3VXJOGBsbY2pqSlVVFaGhoTx58gR9fX0Rt71161bc3Ny4dOkSampqjBkzhgEDBqCmpkZbWxtBQUHMnj0bMzMzQVGorKwkNjYWAwMDxo8fLygNn1oKCgokJCQQEBDArFmzBCC2d+9e/vzzTzQ1Nfn2228ZOnSoQImhI0E0NTWVH374gV27djF69GguXbrEzJkzmTlzJrKysoSFhXHnzh3u379Pnz59WLBgATExMZiZmaGvr9/Jy1VKSor+/ft3ividMWMGCxcuFO+XpqYm27ZtEymmn1JqamoEBQVRUFDAzz//zLNnzzAxMREuGx8/fqS+vl5wXaWlpdHT08POzo6ysjJ2796Nm5sb/fv3Z8eOHezevZsxY8Ywbtw4Dhw4QGhoKLa2tnz++eed0PBvvvmGixcvMmLECNauXSs0S3l5eeTm5grtwvHjx6moqEBLS4uMjIxPSmTscvO6a9cuCgoKRFa4RNiRmpqKgoICO3bsYMaMGaioqAgxj4RrkZeXJzxGz549i5qamlC5ScyOCwsLGTNmjFgZDRw4kMzMzE657AoKCmhqauLu7k5LS4tYp0saPgUFBUxMTEQ2eldKVlaW8vJytLS0+PjxIw8ePEBPT08gWyUlJTx//lyo6RwcHCgvLycjI4Pk5GQUFRWZOXMmCxcuZOPGjTx9+hQHBwdmzJiBl5cXVVVVPHr0iKCgILS0tNDT0+P+/fvCfgo6vjjW1taoqKhQWVkpLLckzXBbWxu7d+/uEmH7/7xGVVVVvL290dLSoq6ujrq6OpSUlJCWlkZDQ0OkQA0dOlQoYNvb22lqahLNa2hoKAA9e/bE399f2Km4uLgIAUFiYiJXr14lMzOTwYMHs2zZMqADwY2JiRF53S4uLsLz1sTEhNLSUu7cuUNdXd0/xB3/rSSRmn9/GLW1tYkko5iYGLy9vcnLyxPXZWBgIB5k0DEhSgajqKgo8R1rb28XaJWioiL9+vUT+fSSgaepqYny8nLhxdq7d2/k5OSIj4/H0dERZWXlTqunv3OoPrUkXrXKysq0trby9u1bYmJisLOzEze+xO8zJiaGAQMG4Ovri4KCghCrvHv3DhkZGaysrAR6+eTJEz777DMhtnr+/LkQsdjZ2WFiYtJJdGFubk5VVRUNDQ2iWZAgsX83Cu/qqhL+x2bNxcWFjIwMNm7cyODBg4UZekNDA1lZWbS1tVFSUsLHjx/Jzs6mvLwcNTW1TgNCQkICly5dwt3dHUtLS+EtPWTIEF68eEFsbCyurq4MGjRI8EWhQ5ATFRUlHmaSsrCwEAiGsbExq1atQldXt0uOER8+fEBVVZWamho+fvxIc3MzZWVlREZGcu/ePfLy8nj79q14786ePYu1tTVOTk4UFxdz7do1hg8fjqenJ56enjQ1NXH58mVGjhxJr169KC8v5+rVq8jIyDBs2DB0dXWprq4WCGNkZCRv3rxh7NixnZosydpXsq1QUFDA0NDwH1y4T6mkpCRqamp4/fo1hoaGyMrK0qtXL06cOMHjx48ZPnx4J85tRkaGEHNIPDbV1NSoqqrC2tqaEydOkJaWxoEDBzh//jzt7e306tWLlpYWYmJiePfuHf3798fW1pbTp09TXFzM4sWLUVVVpbi4mF27dmFtbc3w4cMpLi4mPDycbt26CWBCIhb61Lp//z7FxcVUVFQIXcOIESO4efMm2dnZwnYtNzeXd+/eYW5ujpGREb6+vqSlpVFYWEhBQQHl5eViawPw5s0b/vzzT2EAP3nyZFasWIGNjQ39+/dHW1sbMzMzKioqxHsqIyODtrY227Ztw9nZmfHjx9OzZ0+GDRsmzop/U/Ly8oIP3Lt3b5SVldHV1WXs2LEYGRnR3NyMjIwM1dXV5OTkoK+vT79+/SguLqa4uJjJkyfj5OREt27dhPAMOiyyjh07RltbG56enkRFRZGSkkLv3r3Fa02cOFE4cXz48AFLS0tUVVVJTU0VA5CzszOvX78mOzsbGxubf+VQk5ycTHl5OWPGjBGUr8TERJqampCVlRUWj4DQ++Tl5ZGYmEh8fDxPnjwR3tPy8vI0NjaiqqrKggULGD58OF988QX379/n888/Z8GCBURFRZGTkyP+1oyMDOLj4ztZbSUnJ6Ovry+23TExMTQ1NQnbuK6UnJwcsrKynDlzhh07dmBmZoa7uzumpqZimDl9+jQFBQXY2tpy7949KioqGDt2LFOnThUhKoMHD8bd3R1bW1v69u1LZWWl0B1MmjQJV1dXMjMzefv2LT4+Ptjb25OcnMzvv/+Oubk5X375JZ999hlJSUlER0eTlZXFvXv3xGusWLFCPKckPd//rbrcvObl5XHmzJlOitvTp09z8eJFLC0t2bJlCyoqKjx9+pTAwEAmTpzI4cOHuXnzJsePH+f8+fP06NEDLS2tTh+AmpoaP/74I9LS0gwYMAAtLS3KyspITEzE2NgYFxcXcnJyiImJ4d69ewLNkhjoSjwbJV6CiYmJxMTEEBkZKaD+T6mFCxd2SpQ5ePAg2traYg2jrq7O+vXrmT17NlFRUSJaVJJ4oq2tzezZs/H29sbR0ZGnT5924lHV1tYycOBARo8eTWNjIy9evBDxaZKSrEQVFRUpLy9HU1OTWbNmISsry6ZNm3j06BE///wzX375ZSff0q6WRJCzZ88e3r59y+DBg/H19WX27Nno6upSWVlJVVUVJiYmyMjIUFJSwvv370Wk5KJFi8jMzERWVpbr169TXFwsvBKhA8F69+4dgwcPxtLSUhhQA2IwkZGRobCwkMjISMzNzenVqxelpaWEhoZy+/Ztbt68iaampuD9fUrp6Ogwc+bMTodYYWEhERERODk5YWhoyJYtW/jtt984deoUlpaWnD9/HkVFRaZNm4acnBxqamoMGjSItWvX4ubmxo4dOzhz5owwr29tbSUtLY1+/frh5eXVqVnr0aMHP/74IxoaGmhoaHDv3j3u37+Prq7uf8wW72rjCnD79m00NTVRVlamurparMn/jv59//33VFdXi++/5PeoqKjwxRdfMG3aNKSkpLC1taWtrY0ffviBd+/esXr1ajw8PKioqGDZsmViqPLx8eHbb7/lzz//JCwsTNjXXbt2jYaGBkaPHi0y3iWrPMln0NUsbknZ29ujqqpKcnIy27dvJzQ0FF9fX2RkZHj69Cm1tbXU19fz4MEDSkpKcHNzY8yYMdjb23cSb0oapLi4OI4fPy5SwSRuEC0tLcyePfsfK97+/fsTFRXFkiVLKCkpYdOmTUyaNImPHz+Kz9vOzu5fXVtmZqZIvsrMzGT8+PE0NTWxb98+Ll682ImSZWFhwdu3b5k1axb79u1j3LhxXL58mTNnzjB//nygA1hYvHixaPoeP35MYWEhS5cuxcDAgNWrVyMrK8uVK1c4fvw4R48eJS4ujujoaLp37y6Gt6NHj4pGWVFRkdjYWCwtLbssSIOO83LAgAEkJSURFxdHr169hJCztLQUFRUVjI2NBZJlb29PQ0MDb9++JTs7m6FDh2JsbExpaSkFBQUYGRlha2vL/Pnzqa2txczMDG9vb0Fp+fHHH/n111/5/vvvxetbWFgQEBDA1q1buXz5MteuXWPjxo0YGBgQGBhIcnIyYWFhvH37lu+//164PXxKXb16lZs3b1JQUECvXr34888/6dOnD48ePWLdunVs2bJFhLlcvXqVtrY2fv/9dz7//HMRbyxxXVFWVmbLli3ExcWRmpoqkpSMjIwwNTUVtA1ZWVm2b99OW1sbNTU1KCkpsXr1ahwdHQkODmbLli1cvXqVmpoaQZsZPnz4vxLcAWLzsmPHDqZNm8bcuXOprKwkODiY+vp6zp49i5ubG66urqSlpSEjI0Pv3r25e/cu79+/Z+TIkYwaNYqoqCgBKDx48IBvvvmG4uJili9fzrBhw9i/fz9HjhzBwcEBDQ0NYmNjUVVVRUtLi/LychwdHbG0tOTmzZusWLGCxYsX88MPP+Dm5iZ+TlVVVazpu1LPnz/HwsKCmpoa0bxaWloyf/58Jk2aRFNTU6fN2ZMnT0RSpa+vL5cuXUJVVZWvvvpK6EYePXoEdOhWdu3axZs3b3BychL/TCL0a2xs5NWrVyKsRhLOcO3aNYYOHYqmpia//fYbNTU1jBkzRjR7fw9S+m9lYGDA3bt32bdvH3Jychw+fBgNDQ02btzI5MmTmTJlComJiYKGVVRURFtbG3JycuJ5KQlGkGz9bty4waZNm4COZ0NQUBDy8vJ8+PChE+I+ZMgQdu7cSU1NjXDdsLS05OLFi6SkpBAbGwt00KAWLFiAs7MztbW1/983r4sWLRJG7ZLS1tamb9++tLa2EhkZyYABA9DT02Px4sVkZ2ezY8cOjIyMmDdvHufPn+fRo0d4eXmJlZ5kypf4xEkedNra2hgYGGBvb0+PHj2wsrKisrKSyMhIDh8+zBdffIGGhgby8vIC9Xr16pVIJfH29sbDw+MfNiT/W0mM+aGDozJ37lyuXbvGuHHjmDBhAjNmzEBfX1+sOZqamlBVVUVHR4fU1FQiIyOJjY1lyJAhbNu2DU1NTcLDw6mqqmLMmDGdlMPv3r1DQUFBJMZAx0NKonxVUlISaIeSkhJz584V5toSy5+/P6A/tR4+fEhISAjjxo3D29ubKVOmcPPmTXbs2EG3bt3w9/enpqaGo0ePoq6ujq2tLWlpaaSkpNDY2Ii5uTkmJiai+bx79y4vX74U71l5eTnXrl3j0qVLVFRUsGTJEtEUSNa3n3/+Ob179yYxMZFHjx5hYWGBo6OjsGO6f/++sETr6pRZXFxMSkqKyJjOzs4mJycHT09PunXrxsePH7lz5w5SUlLie2xgYEB8fDyxsbG4u7uTm5vL69ev8fPzw9nZmYMHDxIbGysM3WfPni0oCVpaWpSWlpKUlCS+GxKVLXSsgL29vTsZPT9//pyQkBAMDQ3x9fXthPp+SmlqahIVFYWFhQUWFhbCIH/fvn3ExcVhYmLC2rVrOw1uku9Ke3s7ampq4pCGjtVtjx49UFBQoKCgQPyOrVu3Ultby+PHj2ltbaW0tBRNTU0cHBywsLCgb9++NDY24uPjI8Q1Hz9+pLKyUtwbEn/Zrtbf//b6+npGjx5NXl4ee/bswc3NDSUlJVpbW8nNzcXQ0JB+/frh5+fX6X1OSUnhzJkzwutZ4oiSl5dHSUkJGhoaTJgwAQsLCzw8PGhtbWXv3r2oqakxefJkwaE/cuQIISEhDBgwgMGDB4u/LTk5mefPnwvLmK6Ul5cXioqKqKqqUlFRQU1NDXZ2dkycOBF1dXUREdvS0kJUVJTIlE9JSUFJSYlp06Zx5MgRZs2aRW1tLQMGDGDevHni76isrGTo0KFiu9WnTx8OHjzI5s2b+fnnn5k3bx7QwX3bunUrI0aMwMPDgwEDBpCZmYmZmRl2dnb06dOH3NxcXr58KZrMT61evXqhqqpKS0sLf/zxBw0NDZiamuLl5YWpqSlSUlIcP34cKysrBg0aJKy8JCmCksFATk6O27dvU1pair29PSUlJRQVFREbG0tbWxsBAQEoKyszZswYzMzMSE9PJzExEQsLC7p3746enh5z5sxBW1sbNTU1cZ9+99133L9/n59++km8h11pfsaNG0djYyMnTpwgOjqas2fP0qdPH2RkZFBWVubMmTPo6uryzTffMH78eOTk5FBUVOTt27fcuXMHOTk5fHx8kJWVxdbWlujoaPbt2wd0hKKYmZlx4cIFLC0tkZaWFlZ1q1atEiCLtbU1RkZGmJmZdfLJ7NGjB/Hx8RQUFNDQ0ICLi8t/HJ7/W40dOxYTExOWLVuGiooKhoaGGBkZoaGhQVRUFBEREaKB7Natmwht6datG4qKiujq6qKmpoavry91dXWcP3+eDRs2UFNTw44dO3B3d+fRo0e0tbUJi0knJycWLFggAjfs7e0ZPHiw2AL27NlTNH4KCgqCnwr8K369BN3PysoSDhcSitzf/aQlv09XVxdpaWk+fvyIkpIS9vb21NTU8ODBAxEB//btW6ysrHB1dcXU1JS2tjZiY2MpKCgQ71dCQgKPHj0iISFBfFc/fPhAUVERZmZmGBsbi9ju2tpaysrKMDMzIyAgoBPP+L+Vqqoq2trazJgxA0tLS2F35u7uzq1bt4iKihLPtoKCAjEMJiYm8uuvv/Lll19ibW3N77//jqurKwMGDCA1NZW8vDz8/Pw4ffp0J6coExMTNDQ0KCgowMDAgKVLl5KSkiLSKq2srPD09ERWVlYEOYwZM0Y0/p8SYdzl5lWy9s3JySE2NhZzc3MhZjpw4ABnz56lqamJwMBAfvjhBw4dOsS1a9f49ttvGT58OMOHDxd+bBJhUmlpqUBGIiIiuH//PgMGDMDf359evXqRkZFBdXU1Hh4eqKioEBYWxvXr1wkICMDd3V00rnl5edy7d48XL14AEBAQwLJly7pkswQd/Kd3795hYGDArFmz0NPT47PPPkNWVlagzRLfMiUlJWRkZHBxcWHjxo189913wofVwsKCbdu24ePjw969exk8eLD4Hb/99hv5+fmMHTsWXV1d4T2ZmZnJxo0befjwIV999RV9+/alpaVFRAPOnz9fIC1tbW3/yt7lypUrHD58mNraWry9vRk8eDDbt29n8eLFpKam0t7ezrVr10hNTWXjxo2Ym5sTFhYmmkx5eXmam5t59eoVZ86cEcNBt27dMDExITs7m4KCAhITE1FSUuqEIN2+fZvg4GB8fX3p3bs3cXFxNDc3M2LECGRkZCgvL+f58+ekpqYSFBREUFAQcnJynVLM/ltFR0eze/dutmzZgpubG0VFRSQlJQkvSx0dHWHrIclFHzt2LMrKyjx9+pT379/z6NEjXr58ycGDBwkMDERVVZWDBw8yfvx43NzcxJpDshpraWmhtLSUiooKmpqaMDU1pbq6moyMDBQUFEQ8ZUtLC8nJyZw+fZq7d+8KXuazZ8+69Bnevn2ba9euMWDAABYvXoyKigqNjY1s27aN4uJiLC0t8fT0FOvuqqoqlJWVkZWVFRG5krW6ZMUVGBhIYWEhZ8+eZe/evcyePRsrKyvOnz/P6dOniYmJ4cCBA6Lhgw6On7+/P9ra2jQ0NCAvL4+JiQmqqqoiLU7yPv/bCgkJoaqqih9//JGsrCyOHj0q0HUJ0jNv3jyUlJQ60YigA92UfHd0dXVRV1enpaUFFxcXQS1SUFAQXsdPnz7l3r17uLu7i1jPzZs34+vrS0pKCu/evUNZWVn8fH19fSdhwn/L4/57ycjI0NTUhLGxMSNHjhTcRYlgUXKuvX//nkmTJon/Ljo6mrt37zJ8+HBcXV35+eefhXWgo6Mjw4YNIzs7GwcHBzGcSWKD37x5w5EjR6ivrxfWVba2tty8eZMLFy5gYmLC5MmTxfdVUklJSYSHh3fJuQUQQ0twcLDgx0u2cZqamsTHx7N7924KCwvx8PCgvLxciHEk9kvV1dXk5uaSmJjIgwcPqK+vp7m5mbS0NGpra4mJieHKlSuMGTOGuXPnCleEwsJCSkpKBAAgKyvLmDFjqKurIycnBxMTExYtWkSfPn3Yvn07JiYmrFixQtzbn1KStKiAgADOnTtHe3s7hYWFGBoaIicnh7y8vHCF6devnxgYN2/ezN27d7l06ZIYgqEDkYuIiKCyshIfHx/Ky8uFj6+FhYU4WysqKgR32N7eHmVlZdra2rC1tWXjxo20t7dTW1tLYmIiT58+JTIykqlTp/6r5lWykYOOgeiHH34QIE9VVZXg0QNiOJCTk6N79+50795dIMZqamoijlhCI5s2bRpXrlxh9erVBAUFcePGDT58+EBVVRU9e/YkODiY5uZm5s+fj6OjIzdu3MDMzIzw8HAqKip49OgRRkZGwnWlvLy8y6ma0CGy+vDhA3p6egIxrKyspKioCEVFRfT09FBQUBDnmba2NvX19fz00084OTlx5coVWlpa8PT0JDc3F+jgCvv5+aGtrc2HDx84ffo0ISEhuLm5iW3CkSNHePHiBSNGjGD58uXo6Ojw6tUrFBQURK/R3NzM3LlzRbPo7OzM1KlTu9TXSPxjBw8eLOw7DQwM2LBhAxs3buTHH39k+vTpfPXVVxw9ehRvb282b97M4sWL+fbbb+nduzcmJib89ttvSEtLM378eMLDw+nVq5dIRKuvr6empkY0oKWlpWRnZ1NbW4uNjQ09evSgoaEBGRkZ5O2aGREAAQAASURBVOTkCAgIoH///mLTINmkq6iofJIYrcvNq6ROnz5NVFQUe/bsQVtbm/T0dEGYlhzghw8fJiUlhalTp/LmzRuWLVtGbGwsY8aMQUVFhaKiIu7du4eWlpaYnMLDw/n+++9ZsGAB/v7+6OnpUVNTw82bN7l9+zbGxsZUVFQgJyfH/v37mTx5MnZ2djx8+JAPHz4wduxYGhoauHPnDpGRkaLZ/tTKysrixIkTREREMHDgQL799ltGjBghDNKhI3ry1atX/w975x0eZZX98c+kTnrvhfRCeiAhCSV0CFU6CkoRQUdQml1EFF0LShEDKyJFpIgCIr2FToA0ICSB9N57r/P7Y5y7Rt2fxHUXl833eXwGM5PJe9/73nvOPed7vgd9fX1UVFTQ0NAgPDwcfX193nzzTZKSkoRjoK6uzvLlyykvL6dPnz7cuXOH9957Dx0dHQIDA/nxxx/JyMgQ3UeKi4uprq7m/v37XLx4kZKSEsrLy2lubsbFxYWwsDBxsty1axeff/65SNM/KEpLS1m1ahX6+voifTpu3DghKK88TDg6Ogperbe3Nz/++CN5eXm0tbVRW1vLjz/+SFpaGioqKjz99NNMmTIFBwcHysrKKC8vZ9iwYVRVVRETEyO6sCxcuBA/Pz8RmRw2bBiVlZWCoO7t7c1HH31ETEwMrq6u+Pv7o6en1yXnVXnvldzMsLAwLl68yAsvvEBISIgoeqmtreXNN9/E1dWVhQsX0rt3b7777jvWr1+Pg4ODcOanTp3Kzp076devH2+99ZaIBl26dInPP/+cGTNmMHbsWNGmMC8vD01NTQwMDLCwsOhUpV1SUsKaNWu4d+8eH374oXBKNm3a1CkS+nvw9fUVh4jc3Fzs7OxEgV15eTnjxo3D3t6e5ORkCgsLqaiowNzcHB8fH8FxqqmpEREiuVwuUpCPP/4458+fZ/PmzTzxxBPY2Njw9NNPc/jwYeLj4zE0NMTc3JwTJ05w6NAhvvnmG5qamtDU1GTVqlUEBgYKygQoOJRdkQFT4rPPPhMFJiYmJujp6eHt7c24ceNE9aqmpia9e/dGS0uLjIwMVq5cyYABA4Sup5eXF1988QXW1tbU1tby0UcfER8fz7x585g9ezYqKioi06NcYx999FGnqK+JiQnjx48X9/HnkZ2AgABkMpkoELp3794Dj2/JkiVUVFSwYMECwsPDAYXBVHIjldxle3t7Bg4cSEVFBVVVVZw9e5b09HSuXbtGWFgY69atIyMjAx0dHZGWVFVVFY7rxo0bWbVqFdra2vj7+zNlyhRaW1tZvHgx7u7uWFtbM2HCBNrb28nJyRHthkGRydq5c6eQneqq8wr/6PIGCidh/fr1Imreo0cPpk2bhqmpKQYGBly4cIGdO3eKApy+ffuSkZHBtWvX0NLSwsvLi5iYGBITE7G0tGTEiBGCT+nk5NSpGEnZREZZvLN06VJUVFR4++232b59O3379uWTTz6hV69erFy5kuLi4i7NHygOFs7OzkyZMoWBAweSkJBAWloapaWlBAUFsWvXLoKCgigvL+f999/H39+fqVOnsmjRInr16tXJmWxpaSExMZHnn3+eqqoqIiMjOXPmjKDiaGpq8sYbb9DS0iIOOi0tLUilUtTV1Wlvbyc2NpYzZ85w584d/Pz8mDdvHqtXr+b06dN/iLMMiu5W9vb2+Pj44OjoKNZ1U1MTNjY2DB8+XDSFkEgkwvlrbm6muLhY2JCNGzeyY8cO0bO+tbWVzZs3iw6dSnqCo6MjUVFRTJs2TQjbKwu8Dh48SEhIiJA4Ky8vJzIyktGjRzN37lzOnj3L66+/LmS6HhQ2NjaisLSxsZHS0lJMTU2xtrZm8+bNXL58mfnz54sM4qlTp9i+fTtVVVVkZ2eLqKOyk6ilpSWTJk3qxF+9ffs2sbGxmJqaCkWeU6dOYWlpydKlS0WEV19fX9xjuVxOfn4+Dg4OmJqakpmZKbJNfwQ1NTXk5+ejr68vrnnkyJGYmZkJ+TylCoGzs7PIhsTFxXH+/HkcHBzIzMxk/fr1tLa2smjRItzc3Lh9+7bg965atQpQFEnevHkTDw8PUdz6y6i4gYEBAQEB1NXV0d7eLoJ0ymLE/w9/2HnNyckhJyeH2NhY4uPjef3111FRUeGLL77A0NCQLVu2MH/+fCZMmMAnn3zCiRMniI+PZ9CgQcyfP5+EhARSUlLQ0NAQ9AFQnGj8/f078ciUFdy1tbWoqanx7LPPEhYWxr1797h//z7m5uakpqbS0tLCU089xfjx44mIiOgU8XtQXLp0icTERJqamqisrOT69et4eXkREREhZEYOHjzI999/L+S8lPw7f3//TvqKTU1NFBUVMWHCBJGy3bVrF/v27WPWrFkMGDBAEPl79eqFhYUFd+/eFcUg33//PaqqqvTt25d+/fphampKUVGRSItmZmaSlpbWZed1zJgxzJo1i+joaF588UV27drFG2+8ISRjQBH6b25uJi4uDldXV8zMzPD19SUjIwN1dXXq6+uFc6ivr4+joyPBwcEYGBiQn59PcnIyEydOZNCgQVRXV5OWlkZHRweDBg0SEWileL2LiwtyuZy4uDjkcjlDhgxhyJAh3Llzh5SUlE6NLh4E48aNQyqVoqqqSlxcHIGBgbi7u3PixAmys7PF5w4dOsSGDRvw9PRk1qxZtLW1Ca5dcHAw8+fP5/PPP+eLL77AysqKjz76iIEDB9Le3k5WVpboxqbkQpmYmIi0WVtbGxoaGlhaWnbieyrbfCpb5YJCB/FB0iQ/h7m5Oc3NzZSXl4tIo5OTE3/72986cbMSExO5e/cu1dXVSCQSqqqq0NPTQ01N7VeyQOnp6UilUtzd3YVsWHNzM08//TQWFhaEh4fj5eXFhQsXOHDgAJcuXaK5uZmSkhIhIabciPX09ITzdeDAAT777LNOz9eDIDk5mQEDBoj+6HV1daioqIjnp6mpqVPR4u7du7lx4wZqamr07t1bSM24u7vTo0cP0tPTKSsrw9zcnEWLFgkDUVVVJTiHSke+o6OD5uZm1NTUREGKsgAPFIY5IyMDDQ0Nxo0bJ6TkuhINOXToEPn5+TQ3N2NpaUlDQwPnzp2jsbERb29vMUfZ2dkija5UKamtrRWHDyWHHuDEiRNcvXqV0aNHAwiZwba2NnJyckR7xo6ODnbs2MGVK1d49tlnBYXg6tWrREVFCYmrCxcusHHjRgYPHizUFroKVVVVpk+fjr29PW+88QbW1tbcuXMHVVVVevbs2anPfUdHB9XV1VRVVQk1gczMTK5fvy64rlpaWtTV1aGvr8+cOXN+s01qXV0durq61NbWkpOTQ11dnXAqv//+eyoqKkhNTeX69evY2Njg7e0teMJdwZkzZygvL0dXVxc1NTX8/PwoKysjLy8PR0dHUWzT1NTEvXv3OHHiBEVFRbz44osMGTKE9vZ2UlJSaGtrIz09HYlEwuDBg4UsWExMDJqamqJo0tramujoaPLy8vDy8urUUlZVVZX6+nouXrxIVlYWmpqaXLx4kZEjR4qW2Eq+flegTAkrZdSUkEqlBAQE/Orz1dXV3Llzh2vXrmFoaMigQYOIi4vjgw8+ID8/H6lUiqWlJXK5nOjoaPT09AgJCRFtpJWqIRcuXBCtVJOTk9m9ezdyuZzk5GSReVCq1ERHRzNt2jS8vLwoKyvr0vhAoUJTUVGBv78/UqmUlJQUXF1dcXR0FGpAvr6+4lkrKysTe55SHzYgIIB33nmHxMRENDU16ejoELJvAwYMoLGxUUh86unpYWxszJgxY3ByckIikVBQUEBdXZ2wC1VVVaLhQV5eHtbW1jg6OlJTUyP2ga5AmfUrKysTeyootI+VAcfMzExMTEyIiYnhmWee4ZtvvmHlypXs37+fu3fvsmDBAhISEoTmb3Nzs+g4mZOTQ01NjfhepdrEz+lUmZmZYr04ODgglUpRUVERNU5KW/YgalF/2HmdMWMGFhYWbNu2jR9++AGA6dOn4+fnR1FREcePHxdGBBTe/c2bN3FycuLevXt89tln2Nrasnz5cnGhSrrBmDFjOhlWd3d3evXqRVFREdOnT2fixIno6+tTUlKCjo4Otra2PPfcc4I3qKenx8qVK7vsEIAiJTd16lSsrKywt7fH3t6ey5cvc+zYMSIiIggJCaG2tpbbt28DiE4/ADt27MDGxobVq1cTERFBVlYWe/fuZeLEifj6+tLY2EhjYyMWFhbExMRw6dIlZDIZERERnDlzBisrK1avXi2qavfu3YuRkRGvvPKKME5KZ6G5uZlZs2YxcuRIoX34oPi5Lu69e/dobW3l/v37vyo8SUlJ4c0338Tf359Vq1YxdOhQkpOTBYetb9++5ObmUldXJ9LwY8eO5dSpU3z66adC1H3ChAnU1NT8ylnKzc3l9OnTQiN3w4YNHDlyhCNHjhAaGkp1dTWVlZWdGic8CJQO8qpVq3j22WeZMmUKEyZMYOvWrZ0q0JUnXS0tLdTV1blx4wY5OTnY2dkRFhYmeJGgOGlbWVmhpaUlNmCleLOycEJZNFBbW0t9fT1lZWVoaGh04kwZGhry5ptvcv36dRYvXkxUVBQeHh4sWbJEENcfBHv37mXnzp1MnDiRl156CeBXRQWgWAsWFha4ubnRs2dP6urqiI2NxdXVVURilH2z/f39ycjI4KOPPiI/Px8XFxdqamr44IMP8PT0ZPLkyfTo0YP79+9z9OhRzMzMWL16NQMGDCA9PZ1vvvmGH374gcuXLzNp0iTeffddJBKJqMbuKhYuXNiJg97Q0EB5ebnQ4f25nN3KlSsFveTo0aO8+OKLDB8+HH19fXbv3k1mZiaBgYFMmjSpUztQ6Fwwd/nyZVH0tGbNGtzc3GhubhaRaaXjX1xczEsvvURzczPffvttl+WHACIiIvjqq684dOgQp0+fpra2lgEDBvDhhx9iZGREVFSUUP8oLS0V0QhPT09WrVrFlClTuHr1KnPnzqV37974+Pjwxhtv0N7ezsCBAykvL2fz5s0MHz6cBQsWsGDBAs6fP8+JEydYvnw577zzDgcPHuw0N56ensTHx3P//n1cXV0ZP348LS0tlJWVcfbs2S6PUalY8Oqrr1JaWsqBAwe4ceOGyAz8Eh4eHsybN4/Y2Fi0tbVpa2sTnPfU1FR2797NtGnTeOyxxzh//rwoIoHOqh26urrI5XK0tbVZunSpUAQpKChg/vz56Onp0bdvXwICArh79y5nzpzB1taWSZMmib39QeDs7Mznn38uqCZr1qzBxcWFvLw8GhoaAMX6srCwYMuWLaxYsYI33ngDDQ0NnnvuOWpra9mwYQMZGRkMGjSIKVOm0NbWRkdHB8899xyFhYVcv35dpFFXrlwp+Ns7duzgqaeeQkVFhbt37+Lk5ISvry+ffPIJbm5u3Lp1i0WLFrF161b27duHjo4O7e3tXa4hCA8PF81d6uvrmTZt2v/LK92/fz/Lli3Dw8ODuXPnsnfvXr755hvy8/MxNjbG3d0dFRUV3N3defLJJ3F1daWxsRFLS0tBMxkxYoSIIC9dupTDhw/j4eHBp59+SkJCAq+//joGBgb07NkTfX19ysrKqKmpwdPTk7Nnz/5Kf/f3sGPHDiIjI/nkk0+YPXs2EomEu3fv4ujoiKenJ56enpSWlpKdnY2trS0jR45EW1ub69evk5mZydatW5k4cSLz5s1j7NixnD59mg0bNrBnzx5WrlyJi4sLEydOZOTIkWIOnJ2dee+997h79y6fffYZiYmJjBkzRtjhkydP4uHhgaurq1DeeeKJJ9DX16dPnz5dWo8pKSni+aitre1kk5TIzs6mtbWVAQMGkJubS3FxMRcuXCA4OJi+ffsSHh6Onp4eUqmUfv36kZycTGVlJdHR0fTp04fDhw+L7DQoKGWWlpa0trbS3NyMRCLh3LlzbNy4kd69e7Nu3TpAsf/6+fmJPa68vFxEhf8/dNl5/fHHH+nduzcBAQGkpKTw2WefATBt2jT+/ve/I5VKuXDhApaWlmzatEkYuIaGBiZMmICxsTFyuZz09HSCgoIwNzenoaGBK1euEB4ejq2tLUVFRaSmptLc3Ex1dTWlpaVMmjRJTJryZKKqqkpjYyP6+vpiMpSOw+DBg1FXV+9y9NXJyQk/P79OjpypqSlNTU3k5+ejrq7Oc889R2lpKXv27BENCZQwMjLi5MmTgjeZm5srWr5u3bqVjIwMgoODSU5O5vjx44wePRoPDw/R11uZTp89ezZRUVFYWVkRFhZGcnIySUlJPPbYY5ibm4tokYODQ5ed19OnT2NoaEhRURETJ07ExsYGa2trGhsbhfTLM888g5OTE3K5nMzMTNTV1bG1tcXW1pb6+noqKysZMmSI0Cg8ffq0qBQNCQlh1KhRaGpqcubMGfT09PD09BQ0hbS0NObOnYu7uzvR0dGkpaXh6OhI//79hTB9YWGhkO3oStciUNAFkpOTsbCwICQkhJSUFG7evMnEiRNpaGggJSUFDw8PvL29RfpOKpVSXl6Or68vgwYNwtPTk4sXL5KXl4e+vj4pKSm88cYbuLm5YW5ujo2NDQ4ODqJIQuk0pqamcuvWLdzc3LC3t0cikXD//n1xAjc2NqawsJDz58/T0tKCm5sbYWFhBAYGdsl5jYmJITo6ulOhQk5ODhoaGiIqm56eTmpqKgYGBiK6FRsby4ULFzoVA5aUlCCVSjE2Nqa6upobN25gZ2fHY489RkJCAnfu3MHDw4OOjg527dol6DnBwcEMGDAALy8v/Pz8cHBwYM+ePZSWltKrVy+RbfDz8+uSWoQSSo7y3r17xbOanZ3Nyy+/zLBhw3jhhReorq5m8ODBxMXFsWjRIvr06SOaJChF+FtaWigpKcHc3FxQRvbt20d9fT1PPvkkRUVF3Lp1S0RndXV1aW1tJTk5GSsrK0Hn+Plz2NbWJqgQysYPSo3nB4WNjQ0vvvgiVVVVJCcnU1VVxZw5c0Sq8ejRo7S3t4vuS2pqahgbG/PMM88IusnHH3/MoUOHqKurIywsjPDwcEpKSkQ0RNnJSlNTUzhAf//733n66acJCgri6tWrQh9206ZNGBkZYWVlxfXr19HQ0MDV1ZXp06dz4MCBLj2fSlRXV5Oeni6KYbKysvD39xcSawkJCdjZ2WFlZUVBQQFSqZTVq1dTWVnJtWvXOH36tCgSrKqq4tatW7z88ss8/vjjfPjhh+zdu5fW1laWL1+OhoYGhw4dIicnh9GjR+Pg4CCKQ5ycnEQh4sCBAzu1M21ubkZfXx83N7dOxvdBYGhoKApalTqkGhoaQjautraWgoICXF1dUVFRYebMmaJteXl5OfX19QQGBqKvr092djYHDhygb9++oiBXmXkYPHgwbW1tNDU1oaenh4uLCxkZGZw9e5aePXuipqbG+fPnMTc3F9KCLS0t2NnZYWBgQHFxMU5OTqirq3fZeV20aBHt7e0sX76cNWvWcPnyZSZPnkxubi7p6ekYGhqKCLoyEzVixAhCQ0MZN24c6enpXLx4kfv37zN48GDGjh1LQkKC4J4rKTqXL18mPT2dwMBAfHx88Pb25saNG1y6dAl9fX2ef/55IiIi0NPTIzU1lfT0dNzc3Pjyyy/JzMykrKwMW1tbkaLuCpydnXFzc+P+/fukpKSIQEtWVhZJSUmoqqpSVlbGzp070dLSYvTo0SLLkpycTGBgIC4uLpw5c4bs7GxiY2O5f/8+ra2tvPXWWwQGBmJpaYmdnR3+/v7i+3NyckhMTERXV5dRo0ZhZmbGrl272Llzp+iuJpfL+eabb8RaGThw4APpoP4cSnqjhoaGOCCkpKRw9+5d7Ozs8PT0pLW1FV1dXYYNG0Z4eLhok1teXi4i0IAozFM2Samrq0NbW1tIoCmLKU1NTTtpEAOiG6qJiYkILiopMfb29pibm5OWlvYrv+q30GXnddeuXRgZGaGvr8+dO3fQ0NBg4sSJrF27Fn19ferq6mhtbWXixIkMGTKEK1eu8OWXX5Kdnc3FixfZv38/NjY2hIaGiqjK/v37yc/Pp3///sTFxbFw4UKkUim9e/cmOzsbGxsbZs6cKYqaWlpakEgk3LlzB3V1dVxcXEQRirJ6V2k4u1qNP378eMrKygTpHhSR3w8++EBIjTg5OYnU29dffw0oIlx9+vShT58+lJSU8NZbb1FZWYlUKhV6f4cOHcLKyorRo0ejqanJ+fPnefHFFwkJCcHU1BR3d/dO0YO1a9cKB+Odd97h/Pnz6OvrM2zYMJFO7GqVOihE1pV6kUr1BGV08/Tp02zdulV0NXnjjTc6yXg1NjaSl5dHa2srgYGBODg4UF5ezrVr19DX18fZ2RlfX19Gjx5NTU0NZ8+e5Z133sHV1ZVFixZx6tQptm7dilQqZfHixcyaNYuUlBTu3bvH+PHjRTFaVlYWjo6Of6jZxLp164RczoYNGzhw4ABnzpwRG39LS4tQeVizZo2439ra2vTv3x9bW1uysrK4efMmiYmJNDY2oqamJtIubm5uhIeHs2vXLt566y3Wrl0rnIm7d+9y69YtbG1txffm5OQQHx/P0KFDqa2t5bXXXqOpqYmtW7fi7u5Oc3MzKSkpXRqj0pH6ubGtqamhpaVFSJvFxMSQlpbGU089JT6TnJwsIkJKNDY2UlFRIdZPREQEjo6OBAYGIpVK8fDwoF+/fsTGxrJ3716CgoJYtWoV5eXlfP311+zdu5e+ffsycuRIAgMDxTPc1tZGYWEhY8eOZc6cOZ26SXUFW7Zs4fbt20RERGBgYMCpU6fEuvjqq68Eh04Je3t7Zs6cSUNDAz4+Przwwgu0tbWJaGt8fDyvvfYaI0aMYPbs2Rw7doxFixbh7+/PF198wZUrV/jxxx+5cOGCqJIGRSpaIpGgo6NDfn4+wcHBBAcHExAQwObNm1mzZk2XOmxJJBJmzZolDuPt7e2dFBt69+5NTU0NFhYW2NjYkJiYiFwuFwcWmUzGoUOHAEUHnfDwcMLDw4Uu9v79+8nMzOSzzz5jy5YtnSLMt27dIigoSOiqbtu2jQkTJjBixAhiY2M5f/48Hh4eODs7U15eTnt7u+hy1RVkZWXx2WefsXPnTiwtLdm8ebNo16rUf54zZ44oINPS0uKll17C0tISW1tb7OzsyM3NFaluJadSIpEQEhLCvn37+Prrr4UqyBdffMHx48fJzs5myZIlnYy8iooKAQEBnfjMra2tODg4iI6BXUV1dTXLly/nzTffpL6+XtxjV1dXYXucnZ3FPu3h4SG60xUUFGBmZib2vMWLF7Nlyxb69OmDVCrlvffeE+179fT0qKys5MUXXxQc3jVr1rBu3Tpee+01evfuzalTp0hMTEQikZCYmEhqaiovv/yyoJUpGzF0NSOpvIdK/v6XX37J3bt3qa2tJTExEXV1dZYuXUrv3r2xsrJi7NixjBs3TnSJtLKy4qWXXkJNTY1hw4Yxc+ZMTE1NOXPmDElJSfTv3x9QrOUrV67wySef4OPjQ3JyMvv27cPa2poVK1YI6kOvXr0ICgqiuLiYqqoqxo8fj4aGBomJiezcufMPyfLNnj2bJ554grNnz3Ljxg0GDBiAg4MDV69e5fLly2RmZtLa2kpGRgbl5eXCST9z5gypqal88skn9OzZk8GDB3P79m1ROwD/KFa0srISrVhfeeUV7t27x8qVK7GyshJFgvHx8bz00kvcunVLFI+Vl5eTnZ0tGvj8ESiDcXfu3BEa5NevX+e7775j4MCBBAcHiyydUhFDCWXkVCkNqKQHTJ06lVGjRpGbm0t2djZaWlqYm5ujra0tGsAYGRl1UigZMmQIoaGhnfwWZVdE5d+9cuUK3377rdgX/xm67LxOmjQJOzs77t+/T1NTE56enujo6PDll1+io6Mj+qUreaz29va88847XLt2TVT3Ojg4MG/ePEpLS0Wvah8fHy5cuMCHH34ouDLDhg3D09MTMzMz0dYsNjZWdL8ZNWoUHh4eQpPM2tr6V11Suuq8Wlpait+JiYkRnM9BgwahoaFBUlIScXFx6OjosHz5clauXCkksm7dusXFixdxcnJi5syZnDx5kvv373P37l0GDBjAq6++SkhICAEBAWzcuJHvvvuOo0ePUlFRwbvvvsuQIUO4efMm7733Hubm5nzxxRfiuoYNG4ZUKuXo0aO0trYyfPhwTExMyMnJ6eoUMnnyZHR1deno6KCjo6OTg6h8yJUtJ5Ub67Zt24iKisLa2poRI0YI3uHGjRvZt28fEomEcePGiY4Z6enpuLu7M3nyZKHxGB8fj4mJCaGhody7d09UPCq7peXm5tK7d29CQ0NFde3Bgwf56quvOqWPfw+XL1+mqamJAwcOMHPmTNzc3KiqqsLExAQDAwNMTEx+1ae6ubmZ+vp6ioqKxCk+JiZGOK7vvfcehYWFrFu3DgMDA5555hnOnTtHVFRUJx6tvr4+vXv37pQStbOzE5XAGhoaTJ8+HUNDQ7E4T5w40eVq/IaGBlatWoW3t7foSGJra0txcTENDQ2oqalhZmaGu7s73t7etLW18corr9DY2Mjjjz8uHCDlgczY2BgTExNMTEyEUoKKigre3t6UlJTw9ddfc/36dQYOHCgoOllZWcTFxdHW1kafPn2EnnFiYiKJiYnk5ORgb2/fyXn+Ixg7dizu7u60trYSGhrKwYMHSUpKYvPmzWhra7Np0yZMTEzw9fUlKyuLM2fOCH3hX+ogHzp0iKNHjzJw4ECWLVuGioqK6IWupqYmND7LysqIioqiT58+dHR0sG7dOr777jvMzMywtLTEwMCA6dOnM3fuXEBRFLho0aIutWycP3++0MFVthnevXs3Fy9e5IknnhCNA0pLSzEzMyMgIIALFy4I/UNly00DAwNu3rzJvn37mDZtGsbGxuzYsUPwN11cXBg4cCB+fn5cvXqVa9eukZOTQ0lJCSNHjhQVwHfv3uXkyZOcOHECS0tLkc1ydnamtrZWSPt0BfHx8Zw7dw4bGxueffbZTgVKHh4e2NjY0KNHD7Kysjh9+jQ3btwgOTmZUaNGYWRkhIeHhzjI+vr6EhgYyLlz59i6dSs9e/ZkyZIl1NXVsWbNGioqKvDw8EBfX58zZ87g6OjInDlzOHr0KJ9//jl2dnZ8+umnqKmpcfDgQS5dusQbb7yBiYkJu3btwsDAoFPl/4PA3t5eGPqfO4U/N87KddHQ0ICenh79+vWjsbHxV1Qqpaann58faWlpnDp1Cl9fXxH5v3fvXicKlbW1NXp6ejQ2NqKhoUFwcDB1dXXCDtra2nba26uqqpDL5V0OCFRXV1NeXs706dMJCgoiKysLY2NjrKysyM7OJj8/n6CgIPEsFxQUcOrUKcrKyrCzs8Pe3h59fX3+9re/4ePjg4qKChYWFiLirMTEiRPx8fERUWuJRIKxsTHx8fEcPHgQc3NzoQKivPeFhYW8/fbbmJub8+KLL+Lt7c3Nmzd/daB9EGhoaBAREUF6erqwNzY2NowZMwa5XC4kL93c3EhPTxe0G0AUESopJz169MDR0RFjY2Oh0CORSDhx4gRffvklSUlJNDY2cv/+fcE3LS0tJSoqisGDBxMREYG7u7uwU88//7xoVgT8IS3bzMxMPv74Y27cuMGoUaMYMGAAs2fPFocSpb45KLorHjx4kL59+zJ27FjU1dXJzc0VhWeGhoYigGBnZ4eamprIbuno6NCvXz/Bw46NjeXkyZOoqKgwe/ZsERSsqKhARUUFQ0ND4bfFxMSwfft2oqOj/3znVSmhopSuMjQ0JCEhgXPnzqGlpcXEiRMZNWoUUqmU2NhYOjo6mDlzpjBgys3d29tbpAmmT5+OpqYmS5cu5e7du/To0UNohD3zzDOYmpqK3+vVqxdPPvkkycnJor3nkSNHsLKywtramrq6Ompra4UOW1cnWbnoQXFK2bdvn+i76+rqyt27d1m/fj3q6uqsXr0aX19fHB0dyczM5NKlS1RUVBAUFMQnn3zCpUuXGDBggKBaLF++XLR6dXBwwN/fn4SEBExNTUVlsKamJllZWcTHx7Nr1y4GDhxIQ0MDY8aMYcyYMbz22mscP36cPn36YGJi8oe4dkoJjtu3b3Pv3j1qa2vFhvbYY49RVVXFypUref/99+nZsydaWlps27aNK1eu8NhjjwmZJFDo1SpTlpMmTUJDQ4OEhASioqJISEhg1KhRvPbaaxw+fJhLly4RGBjIM888Q2JiIkePHiU4OJiOjg5SUlLEZzQ0NBg+fDigcERPnDghqscfBH379qWxsREvLy+OHz9Oa2sr9vb2nbokVVZWCpkk5emwvb2d3NxcOjo6UFVVFUZJKpXi7+/PsGHDSEpKwtTUlKqqKsLCwsjNze1UUDZu3DhhuNrb20XBkFJ8vbm5mblz59LQ0MDu3bs5deoURkZGzJkzh4sXLz7wGGtraxk/fjw2NjaiRaJSu1KJiIgIpFIpra2trF+/nosXLzJjxgwR6VCO39nZmbq6OjIzM1FTU8PW1hYtLS2xobW3t3P06FEkEgkffPABurq6VFZW8u2331JRUcHQoUNFH+qYmBgOHz5McnIyEomE1tZWLl++3OWe8cr7p6qqKlL9SowaNYpLly6xbt06Vq1axdNPPy2utbS0lF27dnHp0iVxwCovLycqKorbt28TExND7969WbFiBerq6nz77bekpaUJyRcl8vLy8PX1xd/fn8bGRi5fviwk+AwMDBg8eDDz588HEJ19NmzY0KWCLVNTU1pbW7l165bgm0VFRXHgwAFaWlrw9fXFxsZGRNf9/f0ZMGAAZWVlJCQkMHToUMaPH099fT379u1j7dq1ODs74+3tLX5HXV2d999/X2QGlOvN2NgYc3NzhgwZwqBBgzhz5owofNHR0aFXr16d9LaV0eft27d3aQ47Ojrw8PDgmWeeEbbj7NmzlJaW4u7uLigSysPd5cuX2bZtG/X19UycOJHKykpSU1ORSCSEh4fTq1cvbty4wcmTJzEwMODTTz8FFEWPSUlJREZGYm9vz7x585BKpejo6FBQUEBsbCwaGhrk5OTQ0dEhJPGys7O5d+8e27Zto1+/fl12XpUNPpSFKnp6eqioqNDQ0IBEIkEqlQqe/c87XCk72Cntmlwux8nJCQsLC8GpDgoKEt3DlJQBpURjRUUFNjY2zJ49W6RrlWuwtbUVGxsb6uvrBW90yJAhGBsbk5ycLNogPyjOnz/PoUOHGDRoUKdGM0qZQVDwJZU617t37xatSwMCAhg5ciT9+vUjKChIaLNWVlZiY2NDz549aWpqIikpidDQUMaMGSMaj3h4eCCTyUhJSWHfvn2cPn2aqKgoIbnU3NzM1atX+eqrr9DR0aFPnz6Ehobi4+PTpfEp0dDQQEZGhuC2K7Xc582bR48ePSgoKCAtLQ0/Pz+Sk5NF0ZSdnR379+8XXdKUdvnHH38kODiYFStWiH3Z39+f7du3c+PGDXx8fFi+fDlWVlasWrWKqKgoAgICWL16tTgI1dbWoqenJw7JymK0rgblqqurqaiooLKyUsx/YGBgpyCLUttZVVWVs2fP8uGHHzJ//nyxJgoKCjhy5AgNDQ0MHz4cNzc35HI5VVVVgmJUVVVFSUmJaH6j/NvZ2dmoq6tz7tw53N3dMTIyQk1NDVVVVUFnKCsrIy4uTjRm+j384YKtnj17oquri6GhITY2NkyZMgVjY2OcnZ1xdHQUOnOXLl3izJkzQrO1qakJHR0dJBKJeECUYWWpVMrs2bMJCQnho48+YsuWLUycOJGBAwd26lKlnNitW7dy584d7ty5w6hRo0hOTmbLli2oq6vzwgsvoKKiIroDPShaWlrIzs7G1dUVBwcHNDU1SU1NJT4+XlSwh4aGcvfuXVauXMm2bdtQU1Pj1q1bQkZHyTkKCAjAw8ODlJQUUbiloaHBvn378PT05LvvvuPcuXNisYLixLZv3z5BbF66dCmjRo3iww8/xMLCgmeffZbc3FzkcjllZWWUlJT80SnEx8cHU1NTIbJfUFCAubm56Mjzww8/8Morr9DW1oaWlhbvvvsujz32mIiC5ebm0r9/f4KDgztV1vbs2ZPKykrWrl3L0aNHWbt2Lb6+vuzduxcLCwvBQTt8+DDvvPMO1dXVeHp6smjRIiwtLZFKpezatYu7d+9ibW3Nvn37RCvaB8Hs2bOZN28eDg4OxMXF8eKLL2JmZiac1+rqav7+979TX1/P5MmTxQFAGRHo27cvNjY22Nvbc/r0adTV1dm7dy9jx47l448/JiUlhU8//RQ7Ozu+/vrrTg0Jfh5xaW5uFnweQPQGDwkJEdW3/fr14+OPP+4y187Y2Fg0I/g57/XnkEqlZGRksHDhQurq6njrrbc6Geefp3PKysqYNWsW1dXVfP311/j6+tLS0kJbWxumpqYsXbpUNB0AhbFNS0sjMzOzU4TH3NycyZMnC63F5ORk3nzzTdLS0kRF/oPi58V1SiQlJbFu3Tr27NlDS0sL33//PUePHiUvL4+FCxcybdo0HB0duXfvnrimZcuWsWPHDjw8PJg0aRKvv/466urqHDx4UEQDd+zY0akj2xNPPIFUKhURmJdeeolRo0ZRVVVFWloanp6eWFlZsX//fl5//XWeffZZli1b1qXxvfXWWzz++ONYWlpiYmKCrq4u/v7+uLq68sUXX9C/f382btwo2mN6e3vz9ttvc+PGDfLz8/Hx8REHES0tLbFGpFIpmzZtwsHBgfr6eiGfBQrHW0tLq1PTiJycHLZu3UpzczNvvPEGoaGhlJSUkJmZyf3790X0/o8gODhYdLlSorCwkKVLlzJ58mQiIyMBxXOzYsUKDAwMOHDgAD169EBbW5vdu3cTFRWFgYEB586do66ujtGjR4viQSXef/99ysvLxd9ZuXKlMMxDhw4VslTHjh3j5ZdfJiQkhFdeeYXLly9z5swZAgMDefLJJ39FqXkQqKiokJmZSWVlpbjXd+7cwcDAAB8fH+RyOQ0NDRgYGHSyY62traJmQyKRCKpSYWEhNjY2LFu2jB49eqCmpoaamhpeXl5in5BKpXh6eqKrq9vJKa6rqyMuLo7Gxkbh4Ojo6NDa2oqmpiY6OjrC4X9Q5OTksH37drZv305TUxPz588nNTWVt956i/HjxzN9+nTRAtTExKRT+2g1NTWeeOIJmpqaWLZsGWFhYTz99NM0NDRQWVmJuro6t27dYtWqVfj7+7NgwQLRjlZZB/Hxxx8zbNgwUY0OCp7+woULyc3NRSaToaenJ/aon2sidwXNzc1CpvGjjz7qpGIRGhrK5MmTOXHiBLm5uURHRwMKus5jjz3G9evXqa+vJywsjNraWsGHb2lpISsrCzMzM7KysvDz82PDhg2iLsLOzo61a9fy9ttv4+rqyhtvvCH8m+zsbCoqKoSiQ15eHtu3b2fgwIFd6q4FikYkjz32GG+99RZZWVn06tULuVzOmTNnGDRoEKqqqhw8eJA7d+4wZ84czM3NCQkJ6XQQ0NDQQFVVFTs7O6Ffe+fOHd58801CQ0NZtmwZR44cQSaToaury5tvvsmcOXPo168fbm5uGBgY8MMPPzBhwgT69OnD5s2bkcvlbN26lbq6OkJCQggLC6Otre2BJPm67LwqeT3q6uo4ODgI/cWfo6GhoVP14A8//MD58+eZMWOGOLm1tbWJbh3nzp1DLpczbtw4WlpaRLHAkCFDOi32tLQ04uPj6dOnD2ZmZrS2tlJeXk5ERATe3t4kJydTVlYmBMhBUaDSFSxevJiCggIhzKtUCWhpaSEvLw8TExPeeustCgoKeP/99zl27BgdHR00NDTg4eHBggULsLGx4dChQ9TW1jJr1izOnz+Pm5sbbW1tXL16lR9//BG5XM7kyZNxdnbmzJkz7Nu3Dzc3N8aOHSsMzJ49ewR35NKlS4wcOVI0Ajhw4AB5eXl/yKjU19eTmZmJjo6OSEsoq8VtbW1ZtGgRCxYswNHRkfnz59PS0sLKlSuZOnWqcPTu3r3Ld999x5AhQ0SUVMkJVOqdVlVVYW9vj6amJiUlJVy9epU7d+4wadIk0RtZuRk4ODgITd6Ojg6++uorjIyMGDJkCP7+/l1yXrW0tIRKgKqqKtXV1cTExPDVV18xd+5cDAwM6NGjB4WFhcIYKBsuGBgYMGPGDNTU1LC3tyc8PJz29nbu3LlDe3s7vr6+6OrqcvPmTRwcHITjGhsbS1lZGS0tLWhra+Ps7Cy6paWnp7N+/XouXLggxJxzc3Nxc3Ojb9++tLe3dzkda21tzc6dO0lOTkYmk2Fra0tubi5Xr16ltraW/v374+7uLirJhw8fLhxXZeeh5uZmYmJicHNzQ01NDV9fX3Jzc4UDrmz/qq2tLQ5kShFppZxMSkpKp0Ima2vrTqd5ZcFcZWVll8YHCsOn7KiXk5ODgYEBeXl5lJaWEhYWJmg8GRkZgCItqqmpydNPP42joyPV1dVcuHCBjo4O/P39GTx4sOhSB4rMg7W1Nc8//zxWVlakpqZy584dRowYgaurK6Wlpdy+fVtQXZTyMqWlpYJ7VldXh7q6Ovfu3evyHBYUFKCioiIyPenp6RgZGfHCCy+gp6fHyZMnO8n+yOVy0U3Iy8tLSIFFR0ejqalJ//79uXLlihBL//jjjzl79iw//PAD0dHR9OzZk9TUVKqqqjhw4ABGRkZMmjSJwsJCKisrRWtdJWJjYzEzMxP35ubNm12eQysrK6RS6a8iKTY2Nujr6wttUGVDiNGjRxMTE4OLiwt+fn7Ctvj7+wv5MycnJ7G2lHOgoqKCqakpJSUlGBgYYG5uTkJCAlVVVfTs2VNQZ06ePElmZiavv/46YWFhlJSUYGVlxZNPPvmHCn1qa2tpbW0VlfwFBQVUV1fT3t4upICamppENE8ul1NZWSmE/H9Oc9PV1RWOm729PQEBAaL4RylXWFBQQG1tLW5ubmL8t2/fpr6+Hmtr605d9BwcHHB3d6e2tpasrCy8vb1xdHTEwcGhk0rD78HExIS+ffty5coVtm3bxvDhw0lKSuLEiROoqqoyevRoSktLSUxMpLi4uNOhODAwEDs7O7Zs2cLXX39NVlYWzz77LIGBgVy6dImysjK0tbXx8PBALpdz7949evToQVtbm0hDDx06lDlz5pCcnCxS1dHR0Zw4cQIfHx/RovTYsWOcOXOGhoaGTg2BHhRGRkY4OjoSExPT6XCnVDYxNDQkKytLFBP16dOHHTt2YGdnx8svv0xRURHh4eFCfaa8vJyAgAAhadje3k5xcTG6urq4uLhQWVkp2hKPGzeOgQMH4uHhQXt7O8nJyRQXF3eSIktNTcXe3h4rK6tOftGDQEtLCzMzM8zMzAgKCuKHH34gJiYGCwsLnJ2dSU1N5YMPPqCsrEzIcpqZmZGamkpKSgpWVlaoq6sTERFBTU0NlZWVmJqakpqayuHDhzlx4oQoAlcekpTPt7J5jZ6eHuPGjWP37t3o6ekJ7nlhYSGffPIJERERbN++HZlMRnR09O9qu3fZedXR0ekUEfktYfWmpiZaWlowMzNjypQpuLi4cOnSJUpKSkQYXCKR4OLiQn5+Pjt37kRfX5+XX36Zo0eP8tZbbzFgwADWrVvXSVduz5497N69m8WLF7Ns2TLOnDmDiYkJY8eOpaqqColEwtKlSztFGvr27Ss4bQ+CTZs2AYq2f0rnVUVFBQ8PDxwdHamvr8fU1BRTU1O2bt3KtWvXiI6OJiUlhbCwMBYsWMDly5d577338Pf3Z/369bz66qsiRdvS0kLv3r1JTU3l/PnzDBw4kMbGRj755BPGjRsnHIy7d+/y4osvMnfuXCorK0WLOIALFy7w5ptvYmNjIyIvXUFeXh5XrlzBxsZG3N+SkhKuXLmCg4MDTz75pOBkjho1Ch0dHUJCQiguLqa+vl4oQnz55ZcUFhYKgfXc3Fxyc3PZv38/ly9fZsKECaICu7CwkOrqasrKyti/fz+zZ8/G2tqaDRs2cPDgQdLS0oTgt4qKClOmTMHAwEBwGLuC7777jnXr1uHv78+QIUPo3bs3tbW1fPfdd7i6utK/f38ef/xx4Zjdv3+fTz/9lCNHjuDg4EBqaiqenp64ublhbW2Nrq4u48ePF/ff1taWl19+WSy+6OhoDh06RHR0NNXV1fj6+jJz5kwRBbpx4wYbN25ELpczdepUfH19mTVrFubm5iQmJrJ69WqOHz/eSe/y9+Ds7Mz333/Ppk2b0NbW5s033yQ7O5vFixdTVlbG6tWreeaZZ/Dz82PHjh3iWi9evEh9fT09e/bk+vXrzJ8/n/79+7Nz5042btwo+sEroa2tTXt7O42NjZSUlKCmpoaOjg4dHR3CSP28iEcpu6V0SlRUVPjwww954YUX+Nvf/taleQSFg/fdd9/x5ZdfoqWlxeLFi4mMjBRSUteuXcPIyIgBAwZga2tLYWGhoNRs27aN9vZ2Xn75Zby9vamqqqK4uFhwrSdNmkRwcDARERGUl5fz1FNPoaqqKjiJr7zyCnl5eUyePJkZM2aI+6LkBre0tDBr1izGjRvH8ePH2bdvX5fGtmLFCnHIzs/PFzSEHTt2sHz5chYsWEBSUhKFhYVYWVmRkpLCoUOHhMQQKIpdn3/+eQYOHMj48eOJjIzkgw8+4NChQ/Tp0wdbW1vefvttrly5wqBBg4iIiBASh8qubpMmTeqklNDS0kJ6ejp+fn6CzvTNN9/w5ptvCsrRg0LZlUz5bCur0/fu3Sv0nWtqakSxVGFhIWVlZXR0dAi+tPJQrzTk3333HadPn2bcuHE4Ojqiq6vL888/T0JCAmvWrGHYsGF8++23LF26FHV1dT766CM8PDxE1kTZuRAUfOqwsLA/VKwFCkpKVVUVjo6O2NnZcePGDRFFUiqQKDWC1dXVKS4uJisrSzghP0ffvn3x9/fv1CHu/PnzREZG8tJLLzF58mQOHz7M7du3eeONN7CxsaGpqYl3332XuLg4Xn75ZbGvtre3i/VZX1/PzZs3aWhoIDg4mGXLlnWJ3uLl5cWePXs4ffo0BQUFVFRU4OjoyLvvvou7u7s4fLi4uFBWVib02AcMGICHhweHDx/mu+++A/5RYGpra8vgwYPR1NTE3d2dd999Fw0NDSorK0VxlDJzomwHq2wEUlZWxr1795g7d26nw5Yy8lpbW9vleVTyyt966y1mz54tMi7K/aypqYn4+HjhuPbu3ZvXXnsNNzc3Ojo6UFdXx9nZmcGDBxMUFMTMmTOpr69HW1sbU1NT8bpr1y7Onj2Lubk5N2/eJCoqiiVLlrB582auXbvGDz/8wOTJk/H29sbAwKCTIoytre0fcsqBThm369ev8+yzz+Lg4MC+ffvIyclh2rRpVFVVERERgbm5OSkpKZw+fZqmpiauXr3KzJkzRUOQuLg4rl+/TlVVFbW1tZiZmVFaWkpkZCRvv/02cXFxFBYWYm5ujpqaGlevXuX06dNMnTqVoKAgjh07xvXr14Xqz5QpU9i0aRNXr16lvLwcQ0NDAgMD/3znValnqfx3dHQ0V65cobq6Gh8fH4YOHSomXtnCTsnXvHz5Mm+//TaOjo4iymZjY8OMGTPIzMzk4MGD5OXlCW1BJedTSVL28/Ojrq4OLy8vmpubuXXrFoWFhWRnZ9Pe3o6Liwv+/v7U1tbyzjvvEBwc3GUOU0REBJaWliKiphRmVxZ+mJiY8Nlnn9HU1MRLL73E0KFDhcyRn58fqqqqqKqqYmxsTP/+/dHW1qauro4jR47g5eWFu7s7c+fOJT4+XkSsqqurKSws5OrVq2RmZlJfX4+BgQERERHcu3ePjRs3dhKVv3z5MqmpqVhYWPyhyOv3339PYGCguK8NDQ3k5+cTGhoqToppaWlcunQJExMTQZ1wdnYWKeqTJ09SWFjYKbJdUFDAypUrKSwsZPz48YwaNUroPHp7e/PKK69QW1srCkBAEV1zcHDgrbfe4osvvmD69On4+voKzmVFRcWvtEt/D9evXycrKwsbGxtRXOjp6cmwYcO4efMmhw4dIjQ0VKRjVVVV6d27N5mZmeTk5LBs2TLmz58vJMru379PcHAwfn5+yOVyNDQ0xCacl5fH1atXqampYdCgQejq6mJnZ0dQUBC1tbUcOHCAe/fuMW/ePE6cOMGVK1cYO3as4MlKpVLy8/O7VOgDig5bffv2pbi4WESMrKysePzxxykrKxPSPKqqqhgZGdHS0kJ7eztGRkaCI5efn09WVpaIKKanp3P8+HGCgoIwMTGhqKgIR0dHbGxsqKioEAULI0eOxMPDg02bNvHNN98QHR2NtbW1KCoEBScrLS1NdDJSFh91BXV1dZiZmdGnTx8hSm9iYsLly5cJCQkhIiKCAQMGCKeyurqab7/9lmnTpmFvb8/NmzfFwVD5/hdffIG9vT0vvPACNjY2JCUlUVFRIYTlbWxs0NPTIyYmhm3btgEKXWS5XC4q+IcOHcrEiRPFWE1MTGhtbWXnzp2iOcCD4OeRvoqKCs6dOwf8oy7gm2++6dSKtqSkRERflDA1NWXQoEH4+PiIe6WkNIDCWQgPD8fMzIzAwEDCwsLw8fFBX1+fxsZG8V3KA15GRgYFBQVYW1sLOam4uDghVdZVJCUl8d5777Fp0yamT58uruHn3Z6U+2BZWZloaKAs+PX39xeZnfr6etasWUN7ezvBwcFCugcUrWDv3LkjChALCwvJz88X32tkZISfnx8uLi6MGjUKfX19KisraW1txcDAQDQCuHHjRpfGp9T5VuoAK2WjTE1NuXHjBgkJCYwZM0Y0t1BRURGFtomJiUilUhwcHLC1taW9vZ2GhoZO0djbt2+LvvOTJ0+msrKSnJwcQTOrqKjg+PHjommMpqYmNTU1HDp0iIyMDAwNDdHV1SUnJ4fbt2+TkpLS5QJKJycnwbvMysoSKjpPPfWUeI6UuuVtbW34+voyZcoUBgwYgFQqJTc3l0mTJjFy5Ejs7OyIi4ujZ8+eQstTKW3Yr18/TExMOHjwIE1NTZ2E9AcPHoyenh56enqUlJQwbNgwHB0dMTEx4cKFC2LufXx8OtEWHhRHjx4lPj6e559/Hjc3N8HV9/X1RV9fHzU1NTo6OjA0NGTEiBHIZDIha5WamkpgYCCDBg0Sh9GfFxgnJydz9+5dysvLqampwcvLS6jeKB21mJgYPv74YzIyMnB1dcXS0pL6+npee+01UeSroaHBxo0bMTQ0FLbrQdHR0UFbWxv19fXcvn0bT09P5s6di729PZs3b6aqqorw8HAiIyNJSUmhoqKC0NBQoqKiiImJYdasWdja2nLlyhVycnLw9fUV1zhp0iSOHDlCjx49GD58OLq6upw6dYqsrCyee+45PD09uX37NmfOnEEqleLt7U1qaiqnTp1i6dKlBAQEiKi80u96EMWILjuvFRUVaGtro6KiQkdHBzExMaxdu5bq6mrGjRuHj48P1tbWnXq+u7u7o6uri7m5OQcPHkRdXV0I0zc3N9O7d2/a29t56qmnmDRpEnv37mX16tWsWLGCoqIiUZWo7GSTm5vLkSNHiIuL4/bt21y8eBF7e3shU3Pu3Dk+/vjjTqnSB8Uvo7Q2NjYYGRkJp72iokI8sKGhofTr1090BVNuyMbGxjz22GP4+fmJDXffvn2MGDFC9NL29/cXoX/lCUsqlZKXl0fPnj1F9PjWrVvcu3evE6+yvr4edXV1fHx8/hDnNScnh1dffRUVFRWKioqIjo5GW1ubBQsWiFTktm3buHDhAq6urhgYGJCYmIiZmRmqqqoUFhZSWloqeFhKtLS0kJCQwGOPPcb69etJSkrizTffZMKECQQFBfHmm2+Kz/6cW5aenk5eXh51dXVs27aNiRMnkpKSIjr9bN68uUuCzA4ODjg6OrJ8+XLGjx/PlStX8Pf3Z8mSJezatYtly5bh7++PtrY2vXr1wtnZmWXLljFw4EDWrVvHoUOHhFTP999/z2effcbkyZPZuHEjFhYW1NfXC/6zgYEB+vr6BAcH8/jjj3dKmZ07d47Zs2fz+OOPs3v3btatW8eSJUu4evUqEyZMQEdHB21tbWbNmsWsWbO6FA1Rqm14enoKJ8jBweFXfLbS0lIuXLiAsbGxcHKUsLW1Zdq0aaK72LJlyzh8+DCbNm3Cy8uLc+fOERAQIA4Bzc3NXLp0iZaWFjw8PAgNDUVVVZWFCxfS1NREv3790NLSEtmVO3fusH79er7//vtOnVceFFlZWXh5eTFv3jyhevHll18ydepUBg0axP79+zExMRGFXdevXyc3N1c4K1ZWVtTU1JCXl4etrS0nTpzg2LFjogFGWloaJ06cwNjYmPDwcBYsWIC2tjYaGhoirWpjY0Pfvn3R1dUlIyODw4cPY25u/itHTqmu0BXk5+eLAh2pVIqtrS1+fn5YW1vz97//neeee04UvoAiraw8LCsxbNgwhg0bRk1NDQUFBaxatQojIyNRLGhsbMzrr78utEyVDp8yEvrzLFpra6soJlVSGS5fvswPP/xASEgI77//fpeeUUDI5uTm5lJdXc3evXvFPqmMMCojbnFxcSJNbGZm1kl6ChSRtS+++ILPP//8V121Ro8ejbOzs3C4VVRU8PHxwdLSEhcXF2xtbVm2bBklJSWiiFcqlYpiwv79+5Oens7WrVs78XMfBJqamsTGxlJSUiKK5VpaWjh+/DjXrl3D1NRUPC/K1G1ubi5RUVHo6+tjZGSEnZ0dmZmZ3Lp1S+huA0LfV+ngK9Uafp7W9vHxITMzU9Qc3L9/n23btnH+/HlxoLWzsyMjI4Nvv/32/20w8FsoLi5GRUVF/Keurk5bW5t4llRUVCgtLRWHrtDQUF566SWhLezr6yv+ZmxsLHFxcbS2topD2dGjR0Vhbf/+/WloaCA3N5f8/HzhDHp4eIgOl8riLIlEQnV1tZDwa2pqonfv3vTu3btLtAhQHLI2bNiAkZERb7/9tpCQU9o3paJKQEAAU6dOxcTEhAMHDoho79dffy2uVZnZAcT1bd68mbKyst/MXpw5c4ZFixaRkJBAjx49iI6OxsTEROyfxsbGzJo1SwTl3N3dRRfPB8Xdu3fp168flZWV2Nvb89VXX4nnXFkE+PTTT4s6EVtbW+bNmyd4xsrDYkJCAvr6+uLva2lpiWipvb29OCht2LCBgoICRowYQb9+/Vi+fDn79u3ju+++4+uvvyYmJobCwkKio6Px9/dnzJgx1NXV0djYKDp4/h667LwqW/Pp6uqip6fHmDFjSE5O5tChQ6LTxZo1a8jIyCAsLAyJRMKWLVtoamrC2tqa2bNn09jYyKeffkpZWRmmpqYEBQVx7tw57t+/Lzh6U6ZM4fbt29ja2pKSkiIqZG1sbET1t5aWFjU1NdTV1ZGbm0tDQwPV1dU4Ojr+YQ7Tz9Ha2kpRURFZWVncu3ePrKwsiouLhT7qz09XP087KVOt69atQ0tLC3d3d5544gnu37/PxYsX8fT07MRZcXZ25vnnnxdNB0xMTGhububevXuoqqoyd+5cTE1NOXDgAPHx8WhoaLBlyxbKysp4//33O0UgHgRKqaPjx4/z7bffMnjwYMaPHy9kS5TFA1VVVfTu3Zv+/ftz/fp1du/ezenTpxk9ejTPPvss/v7+nZxqLS0tXnvtNSZPngwgOJG/lcYpLCwkLy8PbW1tLCwseO+990RLvn79+glprurq6i5r2w0ePBgLCwuhbzhhwgSxsQYHB/Paa6+hq6uLVCqlrq5ObDSBgYE8/vjjODk5MXDgQNFhChBdbyoqKqiursbS0hItLS20tbUZOHCg0DS9efMmKioqTJo0SWzYygjQ4sWLycrK4ty5c6xdu5bnnnuOqqoqYmJiurwZnT17ln79+nV6xquqqigvL+8krC+RSERbQYlEIqqsR4wYQd++fQX/Vy6XM3LkSLy9vQkODqaxsbFT8ZlEIsHd3Z2cnBwkEgnJyclYW1tz48YNamtrKSoq4uLFixgaGorOR7q6uixdupSsrCz27dv3K8Hq30Nubq7geCqhdDyioqJYsWIFw4YNQ1dXV4ivDx06FFNTU1RVVXnmmWeor68XBwoPDw/c3d0pLCzk7Nmz2NnZCTF7dXV1HnvsMXR0dKioqBAFGePGjRNG1tPTk2XLlv1mO2YbG5suz6GSWgOKDIQyDauhoYGzszNLliwREeu2tjbMzMywt7fH1taW5uZmsrOzMTc3x9DQUDimyij0ypUr0dXV5ZVXXkFbW1s48coiJ2WDAFDsP8o21yYmJpiZmdHe3s7WrVuJi4ujX79+ndKzXUGfPn14//33SUxMxN3dXewXbW1tnaIrzc3NohDVzs4OTU1NsaempqayceNG0tLSePvttzupnbS1tVFZWYmxsTEhISHY29sTExPD6dOnCQgI4JlnnsHQ0JCYmBjs7e3R1tYWz4Oqqiq2trYiRa+MoHYFr7/+ulDDMTMzE1G7wsJChg8fjq2tLcePHycmJob58+cLh8HW1pYhQ4aIpiKgiOA7OzvT0dFBU1MTUqkUR0dHHnvsMREhDwkJwcrKStwbAwMDli9fTl1dnZB5s7CwYMaMGQQHB2NqaipS0HZ2doK+1RWcOHGC69evo6amRr9+/US/e6Xd0dTUZMGCBbS1tXH06FGKioq4ffs2QUFBothMCWWFuVIzePPmzdy5c4fhw4fj4eGBRCJh7NixHD16lFWrVuHg4ED//v2FdJuSd6qU51IeNk1NTXFwcGDkyJG4u7uzfv36Lo1RKpXy2muvMWTIEKFpqgyatbS0kJGRga+vLx4eHujp6VFfX09SUhImJiY0NTWxZ88e7t27h6WlJe7u7hgaGornzMvLi6eeeoqGhgahCPFzFBUVYWVlxaBBg7C1tRWRdk9PT5555hkcHR2xsrJCW1ubRYsWYWFh0WX1lp8fhry9vYWjDQit+fj4eIqLi+nfv7/IHEydOlU0qLl8+TKurq4icweKzE9ISIho4xwTE4OzszOLFi2isLCwk87yyJEjaWlp4ejRo1haWjJ16lTc3d05deoUubm5xMbGUltby5gxYx5ov5E86GKVyWRdW9V/QURGRv5TfYlHfXzw6I/xURgfPPpj7H5OH+3xwaM/xkdhfPDoj7H7OX10x9f19kzd6EY3utGNbnSjG93oxkPCA0deu9GNbnSjG93oRje60Y2Hje7Iaze60Y1udKMb3ehGN/5r0O28dqMb3ehGN7rRjW50478G3c5rN7rRjW50oxvd6EY3/mvQ7bx2oxsPConkHSSSJiQSu9//8P/7PcuQSFqRSDz+pCvrRje60Y1udOM/i4doEx9awZZMJssCevyTt4sjIyO7Jgr5F4RMJvsQ6A24AaZAI5ANHAI2RkZGdr0VyF8IMplsMhAO+AN+gB7wTWRkZNd6SP7ZkEhmA9t+51MdyOUPLpCrWJz3gC+Ry1/4xXu/eR+Qy3/7PkgkWkAaEI9cPuY3P/MQIZPJngSUvfmeiYyM/PJhXs+/ir/sc/on4lHfT2Uy2WweYE1HRkZ2TfT6L45HaS3+r8yhTCYbDbwI9ARMgEIgFvg0MjLy2kO5qP+kTZRITIAJwGjAB7ABWoA7P13DNuTyjl98V5dtYpebFPzJqAbW/cbP6/7D1/HvwhIgDjgNlAA6QAjwNjBfJpOFREZG5j68y/uX8SYKZ6AOyAP+KpHEBGDVP3mvPzAYON7F71wBaAIf/8Z7XbsPcnkjEsl64EMkkjDk8qtdvJZ/G2QymR3wGYqx6P7Ox/9b8Fd9Tv9sPMr7aQJ//pr+S+MRXIsJPOJz+FPA6mWgHEWQqgxwAcYDk2Qy2VORkZG7HsKlJfCfs4lTgE0onPYoIAewACYCXwIRSCRTOnUE+QM28WE7r1WRkZFvP+Rr+HdCPzIysumXP5TJZO8BrwOvAV3rt/jXwhIUzkAaishW1MO9nJ8glyegWKy/hkSiPPl+8cDfJ5EYADOAs8jlv3XY+CP3YRfwPor5/0s4rzKZTILiZFwOHACWP9wr+tPw13xO/3w8svtpZGRkAv9kTctksq6v6b84HsW1+KjPoUwms0QxT8WAb2RkZMnP3hsEnAPeQbH3/2fxn7WJ94FxwNFOEVaJ5HXgBjAJhSP7/S9+r0s2sZvz+m/EbzmuP+Hbn15d/8n7/xWIjIyMioyMTI2MjPzvEAuWSLxRRL7zgaNd+M3HAW1g32++K5dHIZendqm3pFxeAFwCJiOR6HfhWv6deAHFCXwO8PvNpf9L8F/3nHbjgSGTyf7omv6r45Fci7+FR2gOe6Dwqa7/3HEFxR4E1AJmD+PC/in+HTZRLj+HXP7jr6gBcnkRsPmn/xv4G7/XJZv4sCOvmjKZbCZgj2KB3gYuRkZGtv//v/Zfj7E/vd5+qFfxv4cFP71uRS7vyjM29KfXy3/y9VxBsYgHAEf+5O/uEmQymSfwAbA+MjLyokwmG/wwr6cbfwj/i/upWNOPyjj/B9fiozKHqSi4ncEymcw0MjKyTPmGTCYbgIJrf+ghXds/w3/aJrb+9Nr2T95/YJv4sJ1XS+DrX/wsUyaTzYmMjLzwMC7o3wGZTLYcBWfJAEUBVz8UhuWDh3ld/1NQEMJnAh0oeDddQT8Up+b7f/JV3fzp9aE6rzKZTA3FOsxBQWfpxn8n/if2UyVkMtm/sqb/kvhfW4uP0hxGRkZWyGSyV4BPgSSZTHYIBe3DGUUa/TT/cBYfPv7TNlEiUQOe+un/TvyTTz2wTXyYtIFtwBAUG64Oiqq0vwMOwHGZTOb38C7tT8dyYCWwGMWknwCGR0ZGlj7Mi/ofw1TAEDj+T3irvw2JRAMF2byoS7SAB0PRT6/2f/L3dhVvAQHA7MjIyMaHfC3d+GP4X9pPlRBr+r+88PXn+F9bi4/UHEZGRq5DwedUA54BXkVRwJQLbP8lneAh4z9tEz8AvIFjyOUn/8lnHtgmPrTIa2Rk5C8r3xKBZ2UyWR2wDEVF/oT/9HX9O6CUqZHJZBZAGIpJjJfJZGMiIyPjHurF/e9g/k+vf+/i75n89Fr5J16LEhU/vZr+G777gSCTyYJRRHg+eWgyLt34l/G/tJ/+DH90Tf8l8T+6Fh+1OXwZRdHRBmAjCmfMA/gb8I1MJvOPjIx8+SFe4s/xn7OJEskLKPahFODJ/+eTD2wT/4oFW0pC74CHehX/BkRGRhZHRkYeBIajeAB2/s6vdOPPgETSE8WhIQ841sXfVkY/pH/qNSmg9Yu/8R/Fz1KU91HInnTj0cMjuZ/KZLJ/ZU3/5fC/uBYfwTkcCHwIHI6MjFwaGRmZERkZ2fBTgGoCiqKoZTKZzOlhXifwn7WJEsnzwHogCRiEXF7x/3z6gW3iw+a8/haUYXWdh3oV/0ZERkZmy2SyJMD/l8Tubvxb8EdJ6SCXVyGRtPCP0+afCeV3PqxUki6KBhoATTLZb6q2bZHJZFtQFI8s/k9dWDf+NDyq++mjUuSjxP/iWnzU5lAprv8rKb7IyMgGmUx2A4UTGwBk/Ccv7Dfwn7GJEsliYC2KTNAQ5PLfs3UPbBP/is5r6E+vD3ty/92w/un1UVi0f11IJFIUaYoOYOsf/JY7QAASiT5yec2fdm3/EMtP+BO/syto5p/fk0AUm+xlFF1U/lfSmI8aHrn9VCaT/Rlr+q+G/6m1+IjOoeZPr/9MDkv585b/wLX8c/ynbKJE8goKimQCMAy5/EGCdA9sEx+K8yqTybyAwsjIyIpf/LwHCp4IPAwh3z8RMpnMA4VoeNEvfq4CvAuYA1cjIyP/HVzKbvwDUwAj4EiXSOmdcR7oBQQDZ/6k6wKFvh48JNH8nwpC5v3WezKZ7G0UBnPHf3NLyv8F/C/sp7+AWNOPQpEP/E+uxUduDlFolC5E0T3z75GRkfnKN2QyWQTQF2ji4Tel+ffbRIlkBYqGDLHA8N+hCvwcD2wTH1bkdQrwqkwmiwIyUUguOKPohStFwcFY85Cu7c/CSOBjmUx2EUhHIZlhgaLDjxMKIvczD+/y/nXIZLLHgMd++l9l7/RQmUy2/ad/l0VGRj7szjBKUvq/0rnlexRk8xH89kJ9jN+4D0gk23/6dxly+fJf/I4Kiurwe8jlif/CtXXjd/Bf8pz+K/hf2E9/jj9jTXfj4eJRnMPvUNiHoUCyTCY7iMLOe6KgFEiAVyMjI8sf3iUC/26bKJHMQuG4tqNw6F9AIvnl72chl2//xe91ySY+LOc1CnBHcZoMRcHHqkKRFvka+PoR6IZzBsXD0RdFX3VDFMLh91GMccMvIyX/hfAHZv3iZ04//QeQzcNsayiReKKQJvvXCgLk8mtIJPHADCSSV3+DI+RP1+/DUMAGRevSbvx74c9f+Tn91/G/sJ8CQsD/X1/T3XhoeFTnMDIyskMmk40Cngemo+C3aqOooD+GwuafeoiX+J+yiY4/vaqikAf9LVwAtv/iZ12yiZI/X7qyG914BCGRPA7sBiYilx/8E77vexRReGfk8up/+fu60Y1udKMb3fhP4SHbxG7ntRvdeBBIJBIUhRJagP+/1LBAIvEH4oAXkMs3/s6nu9GNbnSjG934a+Eh28S/os5rN7rx14NiYc4HDvIPpYg/CisUWo6bf++D3ehGN7rRjW785fCQbWJ35LUb3ehGN7rRjW50oxv/NeiOvHajG93oRje60Y1udOO/Bt3Oaze60Y1udKMb3ehGN/5r8MBSWTKZ7L+eXxAZGfkrsTElHvXxwaM/xkdhfPDoj7H7OX20xweP/hgfhfHBoz/G7uf00R1fd+S1G93oRje60Y1udKMb/zXocpOCDRs2EBMTg1QqxcXFBS0tLSoqKmhsbMTU1BS5XE5iYiLq6uoEBgbS3t7OhQsXqK6uplevXtjb23PkyBG++uorevTowdy5c9HX1+fOnTvk5ORQU1ODra0tQ4cOxdLSkuvXr3Py5EnS0tKoqqpCU1MTR0dHrK2t0dRUtBI2MjLCyckJbW1tyssVzSusrKyQSqU0Njayfv36Bx7f5MmTaWhooLW1FTU1NfT09PDw8EAikfDVV1+RnJzMCy+8QEBAAFu2bOH69euYmZnR0NCAmpoaQ4cOZcyYMQDcunWLuLg47O3tMTExISEhgdu3b+Po6MgTTzyBsbExBw8epLa2lqCgIFJTU0lISGDIkCH069cPgIKCAmpqatDX16e0tJTjx4+TlZWFl5cXwcHBODg4sGrVqi7N4euvv05JSQmWlpaYmppSWlpKbm4u+vr69OzZk5aWFjZs2EBBQQHPP/88zs7O1NfXU15ejr29PQB79+5lw4YNDB48mNWrVwOQnZ3N9evXiY2NxcTEhGXLlqGqqsq2bdtQV1dn5syZ5OTkEBkZiZOTE8bGxpw9exYNDQ3mzJmDv78/OTk5bN++HXV1dSZPnoyWlhZ3797lhx9+eODxRUZGAnDo0CGio6NxcnLCysoKiURCcHAw5ubm5OTkcOLECerr6xkyZAitra3Mnj2b2tpaYmNjaWlpoVevXri6unLy5EmkUimVlZUYGRmRlZVFYmKiGENUVBQ//vgjlpaWrFy5EgMDA9auXcuFCxd4+umnsbCw4NKlS1hYWDBz5kwANm/ezHPPPYeGhgbffPMNkydPRiaTPfAY169fj7q6Ot9++y179uxh2LBhuLm5cfbsWbKzsxk1apT4W4cPH6aoqIhhw4bh6OhIY2Mj6enpeHt7A5CUlMSBAweYOHEiPXv2RC6Xk5GRQUlJCadPn6ayspKpU6cSGhoKwI0bN1i7di179+5FX1+fTZs2MXz4cFpbW7GysqKlpYXVq1ejpaXFwoULycvLY8eOHdTU/HYL7H+Gp556ipMnT6KtrU1bWxvx8fGMGTNG/HzFihUMHz5cPH8A1dXVqKqqoqurC0BbWxsAamqKra6mpobr16+TnJyMp6cnQ4YMobGxkUuXLpGWloaenh42NjZIpVIsLCxwdXUFFOuwpKQER0dHDAwMAGhvb6e8vBwNDQ0MDQ0BujSHMplMzMHPER0djZWVFdbW1hw/fpwbN27g5uaGi4sLjY2NVFRUYG5ujre3N5WVldy8eRNLS0sGDRokvkMul/+kZKNAXl4e+fn5XL9+naSkJNzd3Rk8eDANDQ3s37+fY8eOoaamxujRoxk7diyhoaGoqqqSmprKkSNHaGlpQUVFhczMzAceH/xjLcbExLB9+3bOnTvHwIEDee211zA0NCQvLw9PT0/x+cbGRrS0tDp9x4ULF9i3bx+BgYGEhIRw4sQJ8vPzmTBhAh0dHVy8eBFHR0eGDRuGlpYWEokEfX19Ghoa0NbWBqC1tZVly5Zx48YNxowZw4wZM3B0dKSoqIjDhw+TmprK4MGDiYiI6NIchoWFYWpqiqGhIRoaGtTW1pKamkpubi5SqZTAwEB69uzJvXv3OHToEBKJhClTpjBgwABSUlL45ptvsLa2ZvLkyVy/fp1Tp04xadIkwsPDiY6OFuuvra2NlpYWmpqaSE5ORkdHh5UrVxIeHs7q1atZsWIFurq6PPfccwwcOJDGxkYaGxsJDg7Gzc2N6upqrl69yvHjxzlz5gwDBw584DEGBARw5coV3NzcGDNmDA4ODkgkErS1tVFVVQUgPz8fDQ0NzMzMAMU6VK6TzZs3c+PGDQYPHoy1tTVSqZSwsDDq6+v5/vvvMTc3Z+TIkbS2tpKbm4uTk6J3SHx8PJWVlRQVFXHmjKKJ09y5c4VtLC0tpaysjObmZnr06IGGhgY//vgjJ06cEPP+oPD19aWtrQ0NDQ1MTEyws7PD1dUVbW1tkpKSaGxsJCwsTPxdTU1N9PX1AWhqakIqlXL//n12796Nm5sbAwYMID4+npKSEsaMGYOFhQXNzc00NjaKvQIU+1N2djYAdnZ2tLS0kJycjLq6Or6+vqio/CO+eP/+faKiosjLy8PR0ZGYmJgHHt/PbWJdXR2hoaEcPnyY1157jZEjR3Lo0CHx2erqauLi4oiPj0cul4t1V1dXR0ZGBh4eHujo6PDll1+Sk5PDrFmzcHV15YcffuDHH38kMDCQhQsXArB69WrOnTtHr1696NmzJ/Hx8Rw4cABHR0deeeUVhgwZ8qv1npqaSlVVFdu2bft/x9Rl5zUqKorvv/8eLy8vbG1t0dXVRVdXF0NDQ9TV1Wlubub+/ftUV1dja2uLubk5gwcPprKyEm1tbXJzc7l48SJHjx6lR48ehISEMG7cOIYMGcLdu3c5f/48GRkZZGVlYWlpib+/P0VFRaSmpnL58mWsra156qmnGDt2LADl5eV0dHTQ0dHBuXPn2LNnD/b29rz77rsYGRl1dXgUFBQwZcoUNDU1KSsr48SJE2hoaBAWFsagQYOora2lqqoKVVVVnn32WXr37k1+fj59+vRBS0uLH374gWPHjjFq1CjKysr4/vvv8fT0ZPTo0bi4uBAQEEDPnj1RV1cXDr+dnR2NjY3s3LmTkydPYmJi0sl5zc/Px9nZmYyMDPbv34+JiQkrVqzAxsaG9vZfNnv6fZSWlnLnzh06OjqwtrbGxsZGzB+AiooKzs7OmJiYoKOjA4COjg61tbXiO1RVVbl+/bpYwABlZWWcPHkSGxsblixZgqqqKomJiaxfv56wsDBmzpzJkSNH+PDDD3n33XeZP38+EydO5NSpU2KRtrS0sGXLFkxMTJg3bx4NDQ1i0+8qdu7cybFjx9i5c2en5wXA3t6ejo4OtmzZQmNjIy+//DKzZ8/m7NmzVFVVoa2tTWhoKD179kQqldLe3i7udXJyMvv372fy5Mno6+tz+PBh9u7dC8CIESMYMWIEFy5c4MSJEyxatIjg4GCCg4PJy8sT16ZcO3V1dZw6dQoPD48uje3evXt4e3tz8uRJDh06xPjx4xk6dChDhw4lLi4OiUQiDj3jxo0ThysATU1NYSAAGhoaMDU1pbm5GVDI95WXl3PlyhWsrKyYOHEiHh4edHR0ABAcHMySJUtISkrizp07JCYm4uHhgaqqKtra2hgYGPDUU0/h5OSEiooKW7ZsYe3atTz33HNdGmNlZSVVVVX4+/szfvx44B/OqLu7OwsXLqSuro64uDgCAwMpLi7mxo0b2Nvb4+fnByicOKWBBdDX12fYsGEMGzaMxsZGQPFsOzs7s3jxYtTU1Dh27Bj29va0tbXR2tqKuro61tbWmJqadvouVVXVP7THKHH8+HG8vLw6PdvZ2dmkpKRgZ2dHR0cH3377Lenp6cyZMwdnZ2fWrl1Leno6Tz75JCYmJiQnJ7Np0yb69OkjnNempiZUVVXFeq6srOTQoUN88803DBo0iE8++YTY2Fi+//57ZsyYwUsvvcSVK1e4ceMGd+/eRVtbGycnJ6ytrXF1dWXJkiXcuXOHkydP/uGxGhsb4+XlRUtLC2FhYVhZWZGZmUl0dDRyuZyePXuKe/pLODk5ERISQmVlJVlZWUyaNAlHR0UTn+joaHR0dHB0dMTSUtH5t6WlBaCT4c/Ly6Ouro7BgwezdOlStLW1kcvlWFpaUltby5o1a6iuriYiIqJL43JzcwOgqKgIqVRKr169CA8Pp6SkBAAzMzMkEgmWlpYMGDCApqYmWlpaaGlpwdXVlWXLlgln5vTp03z22Wc4OjoSHh5OSEiIsKEaGhqUl5dz7NgxPD096du3L/369SMrK4u0tDQA6urqMDQ0ZNSoUSxdupTPP/+cTZs24ebmhp6eHocPH2bzZoUSUVecV11dXaZPn46npydGRkaUlJQgl8txcHAQ82VhYSH2l5aWFpqbm2lvb0dVVZXJkycTERFBU1MTJ06coKamBnd3d9ra2rhw4QLGxsaMHDkSdXV1sS/FxcXxzTffMH36dPr37893333HwYMHCQ0NFbaxsLCQnJwc2tvbaW5uprS0lMOHD5ORkUFgYGCX5rFfv354eXmxbds2NmzYgJeXFwsXLsTe3p68vDxSUlLQ1dXF19cXMzMzYQt+ftiKjo5m1apVLFmyhKlTp3Lr1i2OHj2Kv78/FhYWaGpq0tLSQkdHh3g21dTUKCwspLS0FCMjI9TU1EhJSUFdXR1vb29UVFRob2+noqICU1NTQkJC+Oabb/jhhx+wsbHp0hivXr3KkiVLkMvlnDlzhn79+qGurk5lZWWnz6mpqXHx4kW2b9/OnDlzxL5y9epVjh07xpw5c3B1deXbb78lPj6eyZMno6KiQlRUFNu2beP48eP4+PgQHh7Om2++ib+/PwkJCWRkZFBXV4erq6vYgzU1NX8VYEhJSSEqKup3x9Nl5/XVV19FRUUFT09PTE1NAdDS0qKqqgpDQ0M0NTUZO3YsV69e5fr169jY2ODj44ORkRF5eXmsXLmSmJgYZsyYQUhICE5OTmLyTUxM6Nu3L5aWlhgaGlJXV4eKiop4EE1MTACFAUpJSSEmJgYtLS0mTZoEgKWlJffv3+fSpUt0dHRgYmIinJUHhZaWlojompqaEhoaSl5eHh988AF79uyhoaEBHx8f8Xk7Ozt0dHTExpmdnc3nn3/O4cOH8fPzY+7cubi5uWFgYEB1dTXq6upUVVUhl8upra3FxsaGHj16oKKiwrRp03B2dsbf3198v9Jg6urq4urqyrPPPktDQwN5eXno6en96tTyIFBGIZ2dncXPlE4qKB4iX19fcU+VUP77u+++48aNG2zduhUvLy8R4dDQ0BBGrqysTERWwsLCcHFxYePGjWRmZvLKK68wfPhwQGFgkpKSeP3111m7di3h4eFs27aN7OxsjI2Nqaurw8nJqcsRH7lczsSJE3F0dERPT0/8vLm5mR9++IFevXrh7u6OnZ0dqqqqqKmpsWzZMnr06MGhQ4cwNTXlhRdeIDg4GFBsyEojo62tjYODAx4eHtja2jJv3jwRmduzZw+XL1/GwsKCr776iiFDhlBTU8PGjRsZMGAAtra2AIwaNYpDhw7R3t6Og4ODcDQeFFevXmXLli2oqqry97//nXHjxon3lOtl7dq1VFZWsnjxYoyNjQGF825iYoK2tjZlZWUsX75cOKjJycnEx8czZcoU/P39aWpqQkdHhx49etDS0oK6ujrq6uoUFhZSXFzMnDlzUFFRwdHRER0dHZEduHPnDq2trRgaGmJqasrYsWNpamrq0vgAbGxsGDNmDF5eXuJnTU1NnD9/HnNzcx5//HHKyspITk5m+/btXLx4kcLCQqZOnYqXlxdqamqd7mtBQQGpqalcuHCBpKQkPD09ef3111FRUcHV1RUjIyPi4+O5cuUK9vb2qKmp8fbbb1NZWcnq1avFc5ScnExKSgo+Pj64uLgAUFVVxfnz57s0vqioKHx8fBg5ciQNDQ0cOHCA/fv3o6KigrW1NcOHD+eLL77gyy+/5J133qFXr16MHj2axsZGUlNTycjIIDo6GhUVFbFeb968SXZ2NgMHDiQlJYXPP/9cOMfFxcVoaGigo6ODlpYW2dnZFBcX4+7uzieffMLu3bsBMDc3Jy8vD3V1dfT09FBVVcXS0pLhw4cL5+dBUVpaipmZGXZ2dowdO5bhw4ejr69PfX09oFhX77//Pra2tsyZMwd3d3dSUlL48MMPMTY2Zs2aNaioqPDll1+iq6vL5s2bRfYHICQkBCsrK44ePcrVq1eZPn26eF8qlVJbW8uRI0eIj48nODiYMWPGiKic8r706dOHJUuWMHr06C6NDRD7g3JOCgoKMDExwdzcvNPnlM+hhoaG2P9VVVWpqamhsbERPT09QkND0dbWZvDgwYBir6qsrERTUxMzMzNMTEzw9/dn2LBhYi/evHmzCLCMGDGCF154AYCEhASxZkGxz44bNw49PT2kUillZWUPPMampiYuXLjAjRs3sLCwQEdHB19fXxGcKC0tZdCgQRQUFLBq1Sp8fHxYuHAhu3btYtu2bUyYMIGIiAji4uK4fv06GhoaXLp0CV9fXyIiIjh//jyPP/44enp69OzZEycnJ9LT06mpqSE+Pp7m5maCgoJwc3Ojf//+4t5oamri5+eHjo4O58+f58svvwRgzpw53Lp1q0vzqMyAuLm54efnR2trK6mpqTg7OzN27Fg0NTV566238Pb25u233yY5OZmPPvqIfv36sWDBAkCRAV66dCleXl7cunULe3t75syZg4ODg7hmPT09GhoaOHXqFGVlZdja2oqgkJqaGvr6+vTv3x+JRIKamhr5+fkUFBRgb2+PmZkZbW1tTJ48mZaWFrFeHwTTp08nPT2drKwsQJGJCAoK4t133xU2+MaNG3R0dDBixAjMzc2Ry+UUFRWJ72hra6OyspLExES8vb1Zs2YNZ8+eJSMjA1VVVSZMmICTkxPnzp1j8eLFTJs2jaVLlzJo0CDa29tpamrCzc0NDw8PnJ2dhbN669YtXnvtNfr06cO7776LjY0NSUlJnQIsv4UuO6/l5eUMHz5cnH4aGhooLCxEVVWVqqoqdHR0MDMzo3///ly5ckVELmpqavjkk0/YsWMHY8aM4auvvhLfqYxmZmVlIZVKMTQ0FBGNjo4O7OzssLOzw8zMjO+//57r16/T1tbGzZs3cXV1JSIiAm1tbVxdXdHX1+fevXtcu3aNoqIiGhoamDFjxgOPT1NTk7q6OtTV1dHU1MTZ2ZmWlhaOHTvG7du3sbS07OQMqampibRXRkYGx44d48aNG4CCgjB06FBx3yoqKmhrayMzM5PCwkI0NTUJCQlBTU2NxsZGpk6dytSpUwHFg66mpoaDg4N4+EGxyGprazlz5gxyuZyQkJCuTiGWlpZYWlpSWlpKYWEh5ubmwjFra2tDVVUVZ2dn2tvbaWxspL29HR0dHSQSCXfu3OHixYvo6uoyfPhwLCwsKC8vR1tbGxMTE/z8/EhMTGTTpk1IpVL69+/P1KlTKS8v59q1a0yZMkWMUQkTExNyc3PZu3cvISEhDB06VESPVFRU6Nu3b5ec1yNHjiCVSpk5cyYzZ85k27Zt/O1vf2PYsGEUFBQQGxsLgKurKzKZjJqaGlJSUvDw8GDEiBF8+eWXxMXFYWhoSFVVFaA41LS2tpKcnExzczO9evWisLAQQ0NDhgwZwpAhQ7h16xZr1qwhNjaW119/nX79+lFbW8vzzz9PVFQUDQ0NeHh4oKamRlFREQEBARgZGVFUVMSVK1e6NIdVVVVcvXqVBQsWMG/ePOAf0R9DQ0NKSkooKCigvLyc0tJSjI2NaWxsFNFVgK1bt7Jz505effVVgoKC6Ojo4OjRoxQWForUV0VFBXV1dRgZGQlDmJycTG5uLuPGjfvVBpOWlkZubi51dXXU19fTt29fBg0axKBBg7qUjgWEQ9bY2ChSc2lpaSQmJgqHtry8nJSUFNLS0jh//jyZmZlIJBJ69uxJr169kMvltLe3U1ZWRlxcHD/++CO7du2iqamJefPmif0pLi6OadOmYWtry4EDB3Bzc8PLy0vQDC5cuMCYMWPIy8vj4sWLInIGCuP++uuvExUV1Sl1/3swNzcnPz+ftrY2EZU6duwYgwYNorKykvb2dhEFXbFiBTk5OcycORM9PT327NnD1q1bKSsrw9/fH3d3d1pbWzl58iQtLS1MnjwZuVzOjz/+iKGhITNnzsTe3h53d3caGxtRVVWlV69ewpHr16+f2NMrKiqIiYnh9u3bWFhYAIp9Xnmo7wqys7PFs2NlZSXmrKioiB49euDn58fmzZu5du0a06ZNAxT24NChQ0ilUmbMmEFTUxMZGRn07dtXOKa5ubmoqalhZWVFjx49uHTpEidOnMDFxaWTc6urq8ulS5fIz89n0aJF2NraisCBMmv087ErneoHRUVFBQ0NDdja2uLr60t8fDxHjhzBwcEBV1dXVFVVKSkpobm5GalUSnp6OuXl5fTr14/29nYOHz5Meno6EyZMYPr06UyfPh1QrOWMjAyqq6uprKykqalJBIJAEXXcuXMnGzdupL6+Hm9vbzZs2CDoMra2tvj7+4v/Ly0tJTQ0VESWu7IWT506xeXLl7G1tcXb2xupVIpUKsXX1xcdHR2xR+bk5LBnzx6Ki4uZO3cuFRUVnDt3DrlcjqGhIU1NTXh6eqKqqkpHRwdOTk44OTlhaWnJmDFjqK5WdASdP38+dnZ2lJaWEhkZyZgxY1i5ciXq6uokJiZy8+ZNgoKCcHd3F9fY3NzM8ePHmTVrFgsWLOjyXpOTk0NjYyMeHh4sWrSI6OhoiouLKS0txdbWlkGDBvHSSy9x7949ZDIZpaWlnDlzBjs7OwAyMzPx9vZm7NixREdH8/XXXzNz5kx69+4NIIJ7oPATLl68SH19PUZGRpibm1NbW0tBQQFSqRQbGxux16anp4tAjoWFBebm5oKm2BXn9fLly+Lfjo6OpKam4unpyeLFiwFFqv7SpUtoamrSv39/evfuTXBwMLm5uRw5coQxY8YQFBTUKdIcGBiIRCLh008/pUePHrzxxhsMGjQINTU11qxZw7p16ygpKWHq1KmEhISITGNVVRUaGhoiat/Q0EBubi61tbWMGTNGHI7q6ur+3zF12XldvXo1Pj4++Pn5UVBQwMKFC7GwsODdd98lJiaGzz//nClTpvDUU08RHh4uBrphwwbWrVtHeHg47733nvi+lpYWkRpTVVXl3r171NbWsmLFCsLCwjqlfpKSkti0aRMjRoxg4cKFDBo0qNP7+fn5aGpqEhERwUsvvURNTQ0XL14U6cEHQX19PWlpaVhZWYmN29zcnKeffpqxY8fi6elJcHAwra2tyOVyEQ0GxQMaHR2NVCpl/fr1hISECM6StbU1JiYmODg40NLSQl5eHtXV1UilUpHuCAwMJCAgAFBs8MbGxr+ZRtPT0xNpvT+KtrY2tm7dys2bN8W9VI5BX19f8LdiY2Px9PQUUY/bt2+zaNEiqqurmTNnDp6enqxbtw5QGIply5YxdOhQqqqqCAgIoKysjHXr1lFaWsqyZcuE4yqXy2ltbUVDQ4NZs2bh5eXFV199Re/evTE3N+eZZ55hwoQJaGlpiXT1g+K9994jICCAoKAgDAwMSE1N5W9/+xvvvPMOCxcuZPDgwdTW1lJeXk5ERATffvst06ZNIzQ0lI8//pglS5awbt06li5diru7Ox988AG+vr6UlJRw/PhxwYvatm0bFRUVbNq0iZ49e+Ln58e8efOQSqX06dOHrKwsRo4ciYqKCh988AG3b9/GwcEBPT09YYRKS0tpaGjA0NCQXr16PfAY/f396devH6qqqkRHR6OpqYmtrS1qampcvXqV1NRUxo4dK07xd+7cITc3lwEDBtDQ0MCqVas4c+YM77//PsuWLQMUEShfX19xIgZFpEgikSCVSsXPXFxcsLGx+c20lbm5OSEhITQ3NyOXy7s8d7+F4uJisrOzUVdXR0VFhX79+mFtbc2VK1eIjIxER0eHBQsWYGlpySuvvMLx48cJDg7G3t4eHR0dkpKSyMvLIzc3l5qaGkaNGsWUKVOYPn06LS0tzJo1i+TkZD788ENCQkJ477332L17Nx9//DGffvopp06d4ty5c7z55ptUVVXx+OOP89JLL2FsbExsbCwrVqzg+PHjAF1yXp977jlMTU1RU1NDTU2N3r17o6OjQ9++fQkMDOTMmTPs2LGDgoICXnrpJaytrfn888+Ry+WUlpYKDrGSSx8UFISXl5dwAvr378/mzZtRVVUlKCiItrY2YRTt7OyYPHky1tbWlJaWcvLkSTw9PenVq5eI0t+8eZOQkBB69erFoUOHOH78eCe+3oNAIpGINPmtW7dISkpCU1OT4OBgkWZ/8cUXqaurE86Il5cXS5cuJSEhgWPHjuHv788XX3yBoaEhOTk5SKVS8SzU19eTlJSEurq6uH+//Pvz5s2jrKxMOM8dHR3/1BHviq0ABZfwxx9/ZM6cOTz77LMEBARw6NAhFi1axNKlS5HJZGzfvp21a9fi4+ODtrY2EokEMzMzevfuTXt7u+C0KpGWlkZKSgpWVlYEBQUhl8tpamoSti4lJUVkSpSoq6sTtqKxsZGFCxdSWVnJ3bt3GTNmDOXl5cyYMYMnn3yyy9zzEydO4O3tzfPPP4+5uTn79u3j2rVrjBo1CkdHR0HhsLa25vXXX6etrY2EhARxuE1KSkJDQ4PRo0ejqalJXl6emAtQHB527twpqEEjRoxAT0+PDRs2UFpaypIlS8Rzu3z5ciwsLNixYwfwjwhsfX09Uqm0U6awK/jss8/w9fVl5MiRuLq60tjYKA7Fyij6O++8Q0NDg3CutmzZgouLCzU1NeTk5Ijnt7Kykvv375Ofny+cV6Uf1NLSQk5ODm5ubvj6+hIaGkpOTg7nz58XB3EAHx8fnJ2d6dGjB5WVlRQUFIhM6Y8//sjmzZs7BbV+D99++y21tbWcPXuWtLQ00tLSKCsrE9lzV1dXZs+eTUdHB+bm5rS1teHs7Mz9+/dFut/Y2JjHHntMfOe+ffv45JNPuHXrFoMHD2bTpk3cu3ePhoYGPv30U1JSUvjss89oaWlh40ZFx9eSkhJ69OjRyZ706tWLK1eucPLkSb7++mv69+/PU089JXi6/wxddl5dXFwEnyw3N1fwUIyNjcnPz+fIkSMiKlJfX09ycjLl5eWCsB0ZGYm7uzvXr18nISGBxsZGrl69SmFhIVpaWly8eFEYvrfffhtDQ0NUVVVpbm4mNTUVFxcXHB0dcXZ2FpNXW1vLDz/8wPHjx9HT02Py5MmEhYVx69YtDAwMurQhmZiYYGtrK5xSZQeygQMH0qNHj199/ubNm9y6dYsJEybg4eHB888/T21tLXK5nL///e9s3LgRPz8/3n77bZFizM/PF8UtampqtLS00NbWRmxsLDo6Opibm6Ojo4OqqipNTU1UVlZSVlaGjo4OFhYWpKamcubMGVRVVUWKqSvo6Oigra2NoqIiCgsLO6VWlcZGQ0MDDQ0NnJ2dMTU1pa2tjcbGRjo6OigqKuLevXu/Cu2rqanh4eHRib+ZlZVFYWEhdnZ2ooBISbRvb2+nuLgYc3NzJBIJTU1NJCYmAopCiHHjxv0hWoSjoyO2trbk5ubS1taGu7s73t7elJaW4u7uTkREhHguNTQ08PLyIiAgAFtbWxFV79mzJ8bGxmhoaAijoeQhKR1qKysrWltbycrKws3NjbKyMjw8PMShp7i4GBsbG5566ilmzpzJhQsX2L9/P+bm5qipqXH58mXa2trw9/cXdIIHhZOTEy4uLiQnJ7NlyxbS09OZMmUKM2fOFIUFJSUlpKWlicIDqVSKlpYWBQUFJCUlERYWxquvvgooqCCFhYWEhITg6elJe3s7crlcRG5iY2NpbGykT58+WFtbU1RURFtbGzU1NSQkJKCmpkZgYCAGBgadeNCgeN6Li4u7PI83btzA398fBwcH4uLi2LFjB/3792f58uWAoqADFKljJT/wwIEDXL9+nRMnTjBr1iysrKxEIaeBgQGTJk2io6NDOGEaGhpoampSXFyMiYkJPj4+eHl5YWVlJebd0NBQzLmGhgaenp7CwVM6hB4eHl3iEYLisKCElpYWo0aNYuTIkdjb26Otrc3t27e5efMm1tbWzJ49Gx0dHdatW0djY6OIZBw+fBiJREJjYyMSiYQJEyZw/PhxNm7cyNixY8Wa+yWkUqlIm5eVlZGVlUVmZiaNjY04OzvT1NRESUkJDQ0N6Onp0d7ezrVr1/4QJ1RbW5u6ujry8vJIT08XGbKWlhbq6uqYPXs2DQ0NJCUl4eDggKmpKY6OjkRFRZGbm8vTTz+NlZUV58+fZ926dTzxxBPCKWhubqampgYXFxfCwsJEWhkU0SapVCo+e/PmTSorKxk8eDCampqCe9jU1ERDQwPGxsbCmD8olFHk27dvi58NGjSIyMhICgoKUFVVFZFKJY0qISGB8PBwwsLCmD17NlZWVtTW1pKTk4OqqioJCQmoq6t3OszW1NSIDEJMTAxubm6oq6sjlUoxMTEhPDwcDQ0NQPEsKekMCQkJpKenY2hoyNWrV8nIyOhEw3kQDB48mOnTpzNlyhQAbt++TVVVlRjf3bt38fLywtHRkcWLF4ssmZJfrizEzcjIICAgADc3N0pLS9m7dy/l5eU8++yzjBs3jvPnzxMdHc3YsWMpLi4WlIBevXqRn5/Pxx9/zIULF3B0dOT06dOCM/n9998TFxeHTCbD39//gfiSv0R+fj4mJiYUFxdjZmaGjY0NZWVl1NXVUVxcjJ2dnXCulVAWZoPiOa+trUUikeDh4cETTzzBuXPnKC0tZd68eWhqahIfH09rayvDhg0TNjctLY2zZ89SWlqKn58fJiYm5Ofnk5eXh7W1Nebm5vTu3VtkSO7fv8+nn37KhQsXulRDoLQJNjY2xMXFCa79jRs3yMzMxN7evtPaaWpqYuDAgXh6emJgYEBeXh4SiYTW1lY8PDxoamoiNjaW2NhYOjo6iImJ4dKlS9TX1xMSEsLIkSPx8PDg66+/FvvMhQsXOH/+PGPHjqVHjx7k5eVhYWGBpaUlcrkcTU1NfHx8GD58+APVEnTZed29eze9evVCXV0dQ0NDhg8fTv/+/VFRUREGSklij4yMZOXKlejo6LB48WLeeecdVFRUiI2NZeHChcTExGBubo6TkxPt7e2kpaWJtOb169dZsmQJPXr0EKfOUaNG8eKLL9La2kp2djaVlZUEBASgpaVFVlYWKSkpuLm50aNHD6Kiovj444+Ji4vj8ccff+Dx2dradtrAJBIJdXV1xMTEUFVVJRx3JaKionjllVe4desWn332GRs3bmTXrl3MnTtXpKLHjBkjHNfc3FyuXr2KnZ0doaGhqKmpYWNjw6xZs0hISODu3buoqKjg4uJCR0cH+fn5ZGdnc//+fXFthYWFfPHFF6SmpjJjxoxfOQu/BxUVFaRSKf7+/qioqHSKpigrREtLSwVtARQn+yVLlhATE8O8efNobm5m165dhIeHAwonX1tbW6RhQZEy/PHHH5k0aVKnhWFoaEhrayvnzp1j/fr1JCQkYGFhgZubmyiCCwsLEwY2ICCgSymSdevWoampiVQqRVVVlSlTpjBkyBBaWlrEid/FxUVErv39/dmyZYu47tjYWORyOXv27MHa2hoVFRXa2towNzcXXN329nZRzKWnp0dcXBwnTpzAzc2NyZMnAwrn5MiRI8IB7927N/Hx8ejq6nL//n3i4uJwcHAgMDCQnJwcNmzY8MBjbG9v59KlS/To0YPg4GD27t1Leno6I0aMwMzMjJCQEMLDwykoKOCbb74hJCRERP1NTEz48MMPxcEjJiaGFStWkJKSQlBQENu3b6dnz54iatrc3Mwnn3yCVCrFz8+PhoYGbt68SUREBBUVFbz++uuYmJiwZ88e8SzAPziFFRUVXeagAfz973/n888/BxSFL+fOnaOgoIBly5YhkUjo27cv3t7eIuIhl8sZM2YMxcXFqKurCy6ZMgVlaGhIz549OXPmDE888QTjx49ny5YtPP/88xgYGKClpUVbWxuhoaHCcfjggw+Ijo5m+fLlrFy5koKCgk6R6T59+rB161Y0NDTQ19fvcrpSiY6ODkpKSkSxJMCQIUOIioqivr6e4uJidHR0WLJkCdra2tTX1zN48GCeffZZUVCojEJpaWmxYsUKTp06xeHDh8W9+XlhmEQioa2tjbS0NCQSCQsXLuTatWvs378fR0dHESSQSCTI5XJcXFwYPXp0lyPpysOgRCLBwcEBXV1dHBwcMDExITs7m9raWoyNjSkpKeHTTz+lV69ePPHEE5w6dYqoqCimTp2KlZUVGRkZfPbZZ5SUlHTid2tqatKvXz9BBVAW0nR0dHDgwAGysrJYs2YNTk5OpKSkUFVVxYABA1BTUxOZAU1Nzd/McD0IJkyYwIgRIzpl4Dw8PFi4cKEoQnvmmWd44oknMDExYe3ateTm5lJRUQEo9lsrKyv2799Pa2sro0aNwtTUVKRMq6urOXz4MH379qW1tZUPPvgADQ0NvvrqKzIyMti3bx/h4eHCkVIWSSlhbGzM22+/zaBBg9i2bRtffPGFSHU/KDZv3ixsTEdHByEhISLauXr1ak6dOsW6detwdHREKpV2UufJy8vjhRdeQEdHh/fff5+IiAhmz57Nzp07xSG0pqaG999/n/DwcIKDg1FXV6e9vZ1Zs2YRHByMmZkZy5YtY8+ePYSGhtLe3s7f/vY3PDw8sLOzY/PmzRQWFrJ//350dXVZvnx5p/l4EPTv35+LFy/i7OyMt7c3JiYmguL1S/4yKGgd2dnZuLi4YGJigpWVFSUlJaiqqgo1pM8++4yLFy/y+OOPU1dXx6pVq0TxLigOVy+88AIZGRnCRvn4+ODv709bWxsqKiq0traKDNf9+/dZvXo1VVVVgl7yoDhy5AgWFhbo6+vz5JNPIpFIyMnJ4dNPP2Xfvn04OTmxd+9egoKCAMW6UmYy6urquHPnDpcuXaK9vZ2IiAh69+7NuHHjqKmp4dq1ayQmJtLR0SEy01u3bqWhoUGoQyQlJXH8+HEKCwtJSkpi165dXLt2jQ8//FAUBObn53Ps2LEHLoLtsvPa1tYmNjB3d3defvnlTvwzQDil3333HaAgB/88xf/ee+8JmYeSkhIMDQ2prKyktLRU/J0xY8ZgZGTEoUOHyM3NxcbGhjlz5giHQ1tbm5iYGIqKirC0tOTFF1/E3t6eGzdu0NjYSGBgIAMGDOhU4f0gKC4uJj4+Hk9PT1E41d7eTk5ODs3NzaiqqlJQUICZmRkBAQFMnjyZ4uLiTpEzLy8vcYr49NNPGTp0KLm5uaxdu5a2tjYWLVok+HKgMCxSqRQ3Nzfxb1Bs+BKJBBMTEwYPHkyPHj1QU1PD3d2duXPncvLkSdLT0wXVoCsoLCwkOTmZpKQkYmNjMTAwoKWlBQsLC3R1damsrOTUqVPU19cTFBQkIry9e/emV69e6OvrC8e1rKyM2tpaHB0dhdNw8OBBTp06RVtbGwEBARQXF3PgwAFsbGxE9E6ZdpXL5ULCysjIiGHDhmFvb097ezsqKiq/SgX+Hn652aipqYmTa1tbG1evXsXc3BwXFxcR8U5ISKCmpoba2loqKysJCgpi+PDhv5IbOnfuHIaGhqL6WRllNTQ05NChQ4wcOZLJkyfT2trK119/LaLqHR0deHl5YWFhQU1NDfb29sycOZPMzEz279//m1H9/w9yuRx9fX3s7e1RVVVl+PDhJCUl8eWXX/4fa+8ZVeW17m9f9N577x0pKiAoIgh2xd410ViT2DWJGjVqosYaS4zZxl5ix947KmABpIOASJHee38/MNY8cvZ+z5aM//1ljz0MsOZ65jPnXX4FFxcXXrx4QUtLC4MHDxaY7La2NpqamtDQ0BAX6/nz54mPj2fs2LEUFRUJQD10FDlPnjzh0aNHKCkp4e/vT3t7O+3t7QL7VlZWRlVVFR4eHuLQSUxMpLS0FBkZGaqrq5GTk6Nbt268evWqS2t0cXGhvr5eFFrr16/n/PnzjBo1ij179mBubo6ampogEKiqqtLc3Mz06dNxcHDg5cuXFBUVERwcjK+vL83NzQAEBwcza9YsYmNjBeZZTU1NfNagoCAKCws5ffo0z58/x9jYWJDgJOdPRUUFb9++RUdHBxsbGyIjI4mKiurS+i5cuCBGpDk5OUJSztTUFHNzczQ1NUVhKRnHKSoqiqnIp4d8e3s7z58/x8vLiz59+vDjjz9y7do1li1bxqJFi5CWlmbfvn00NTXx3XffYWhoSFZWFsnJyQQGBqKpqYmTkxP79+9HXV2dkSNHCjKjlJSUkD08e/Zsl9b47t074uPjsbKywszMTLDQ5eTksLW1FRCHkpISMjMzUVBQoKKigj59+qCjoyNgRhcvXkRbW5s+ffoQHR3N8ePHaWpqYtiwYUycOJHg4GDevHnDL7/8grKysmCFR0dHs2rVKoKCgujWrZsoOCXfmaSzLCcnx/Xr17l7926X1ufq6iq68AB//PEH58+fx9DQEFdXV/H7JUm8pPMvef/q6ur4+++/uXr1quiwGRsbc/z4cZKSkrhw4QKvX7/m3r179O/fHykpKa5evSok6eLi4lBSUsLY2Bh5eXk+fvxITk4OFRUV4j5esGAB+vr6QuHhzp07/5UM82lI2PVNTU20trYKAnJNTQ19+vShpaVFFKzQcW+lpKSQmZmJvLy8IH5aWlry8eNHrl69SlxcHCoqKtja2qKnp8ebN29oaWlBW1sbOzs7GhoaSEpKws3NDS0tLUJDQ3n+/Dk1NTXo6+sjJyfHkSNHSElJ4f79+9ja2iIvL4+2tjaenp5kZ2d36Tmqqqpy5swZFBUVRYdZ8q6/ffuWY8eOMWTIEIKDgwUGX0NDg8ePH1NbW0u/fv0E1rqhoYE///yT1NRUpKSk+Omnn6ipqSEyMlJMIU1NTfnjjz/E9EiCse3VqxcLFy4UxYKCggLV1dVkZmYSHR2NhYWFgAdJ8qvPifXr14scxMHBgdTUVFasWMG1a9eADhzutGnTGDJkiIBFKigoMHToUHR1dXFwcCA3N1coHkBHgzEhIQFvb28sLCxISUlh2rRp6OnpsXHjRqytrbly5Qry8vL8/vvvaGlpMXXqVNrb29m9e7fY13379iU4OJgjR46wceNGvLy8Pqv46HLyOnnyZNF5qK2tpWfPnqJbp6Wlhby8vGAUOjg4YG5uztChQ+nRowdVVVUcPHiQ9PR0NDU1qa2tpb29naqqKjGizcvLw9zcnPnz5+Pr60t1dTVHjx4VHUhJtLe3Y2dnJ8ZG6urq9OnTh5KSEmpra1FXV2fGjBm4ublx7969z15fXV0dDx8+JDs7G11dXSFpFBgYKBh4kZGRxMXFCX3ZHTt2dCLCaGhosHz5clRVVQVhKysri5MnT+Ls7CwSnrKyMhQVFUVipa2tLbQ0oeMQkCQ1bW1tNDY2CqD7Dz/8IPQuu5oUSLTlPnz4QFZWFklJSdjY2AgYQ0tLC5mZmdy9e5eYmBgmTpxIz549UVdXF1jZ6upqLl26REtLC926detUzUdFRXH58mXS09PF+L6wsFBgaSWhq6vLoEGDGDJkCN9++y1nzpzh+PHjvHv3TiRlnxZLnxufdpkkMmqSPfvixQtSU1PFhZOQkMCBAwc4duwY7e3taGlpsXDhQqSlpdm4cSMVFRX07NkTNzc3rl69yurVq+nWrRvLli0jLi6OwsJCfvzxR6GHJ4ES3L9/nz179vD27VvU1dWxtrZGVVWVly9f0tTUxDfffMPevXu5ePEiK1asYMmSJV1aY3V1tegO6ujo8O2335KSksLTp09Zt24d0tLSHDt2TJBgMjIyaG5uRkVFRbyvT548ISIigp49ezJ58mSgIymTaAADbN++nevXr3PhwgWh6iF5ltAxZfnuu+/Q1dWlurqa5ORkXr58ibKyMi9fvuTevXtMnjyZjRs3diJpfk4sWLCAkpIS3r9/j5WVFUuXLsXMzIzJkydjbm7Opk2b2LJlC2/fvmXfvn3k5OQQHh7OsGHD8PHx4e+//yYpKQl7e3vMzc2pra0lPz8fCwsLNm3axK1bt5g9ezZ5eXkEBQWJrp2amhoPHz4kNjaW4cOHC4Z6UVER5eXlmJqaoqKiIrRnHz9+zMGDB0lISBDM48+JS5cuCQk3OTk58vLyUFdXF3jM2tpaysvLMTIywsHBgfz8fF68eIGpqakodCX7/Pz58zx79oyysjJGjBjBsmXLUFdX5/z583z8+BEXFxeePXsmOmHQUXBZWVmJdyM9PZ1u3boJLc9bt26Rk5ODkpISRkZGnQruz41nz55x/vx5Jk6ciL29PY2NjcTGxmJkZISOjo5I6vT19Rk6dChWVlY4OTlhaGhITk4O2travH37lrKyMqZNm0bfvn358ccfhQakvLw8oaGhKCkp0djYyMWLF8nNzWX+/PmEhISQn5/P3r17ef78OZcuXUJDQ0MkrSoqKp04E+Hh4ezdu7dL41hlZWXR7Xz//j1hYWE8evQIS0tLRo4cKc72+vp65OTkBH9CkhA+fPiQR48ekZeXR0ZGBvX19dy/f5/ff/9dEKGkpaXJy8ujvr4eIyMj8vPzWbJkicD+pqSkkJiYyIABA1BSUuLBgweEhYXR3t7O9OnTRdGmoqIi4HRdSV4lyggyMjLU1dXx9u1bWlpa6NWrF4sWLWLRokVCgcPS0lIQkjw8POjXr5+AnUkKxoiICGRlZdm9ezfTpk1DXl6eO3fusGXLFrS1tVm9ejWpqaniLjh79iyhoaHEx8ezZ88eqqqqCAwMJDIyUmDNJYm5ubk5K1asYMGCBZ+9PugouBUVFQV+99PYv38/Bw8eFATSx48fo6ioSO/evXn69Cm3b99GX19fJK/ff/+9mKLZ29tz584dZGRkcHR0pLGxkXXr1lFcXCy664GBgairq3Pt2jUSExMZOnQo7u7ugqQKHbhjJSUl1q1bh6ysLE+ePOnS+iTnugTvfPv2bZG49u7dG319fSIiIjhy5Iho/pWWlnLx4kWhVTx58mShGlNRUcGdO3d4/fo1bm5uAmZhYWGBkZERMjIyVFZWijU2Nzfj4eEhVB169+5NYmKiaFguXrwYKysrvvzySy5evPhZE6wuJ68ODg4kJiaKNnGfPn3EZdi7d29WrlyJiooKjo6OGBoaoqKigrGxMZqamiQlJZGYmEhISAgzZswgJiaGTZs2ISsry4wZMwgJCaGyspL8/HxUVFSoq6tj3Lhx3L59m4KCApKSkigtLeXUqVOkpaXx3XffUVlZydSpU3n9+jUzZsxg/vz5ZGZmMmXKFJycnFi3bl2Xkld/f38UFBS4c+cOGzZsICgoiKFDh3aSrxo4cCBJSUm8evWKs2fP0tbWxuTJk0WiWVtbS0NDA/fv3+fp06esWLECf39/wsPDuXbtGgsXLiQxMREHB4dOWNj/K3799VeePHnCt99+S0BAAO/fvxfyMv8kebW0tOTrr78mLy8PXV1dPD09RYfzyZMnxMXF4evry4ABAyguLmbx4sWYm5uzaNEitLS0KCwsZP369UhJSfHnn3+iqqpKZWUlO3bs4PXr1+JCzM7Oxtvbm969e6OqqiogJbGxsaSkpLBkyRJCQkKAjirT3Ny8k55sTEwM0dHRXVqfJGpqaqivrxfC2ZK1u7q6iu7inj17+PDhA2vWrCEpKQmAwYMHU1NTw8aNG0lLS8PKykoIjUuioKAAeXl5Xrx4ga+vL/Pnz2ft2rW8e/eOL774gvr6ekaOHMmkSZNISEjg8ePHxMbGip9/+PAhqampdO/endmzZ+Pv79+lfRodHU1DQwN6enrCSMPOzg5bW1ssLS3R1NQUievJkydpaWlh+PDhYq3R0dE4OTnxxRdfMGTIEGpqarh06RInT54Ua/f09BQX6Kd6whEREcTGxjJnzhwcHR356quvOHToEAMGDCAxMZFBgwYxffp0WltbyczM5MKFC13WeIWOhE5iUCCJcePG0dLSwoULF/Dy8hL6izNmzKCpqYmMjAxqa2spKSnB3d0dBwcHVFRUhNrAnTt3aGlpoW/fvjg7O3PixAlSUlJQU1MTBVhLS4uQ6bKzsxNQE1lZWZSUlKivr0dFRYX+/fuTmZnJtWvXGDhwIIsWLeqScDggElULCwvmzZsniKIZGRlcvnwZZ2dnMdVRUVFBV1dXiNUrKCjw6tUrjhw5wtmzZ9HQ0MDW1pbs7Gxqa2sxMTHhl19+EaPALVu20NTUJKBAurq66OrqkpmZyaFDh6iqqmL8+PF4eHhQUlLCzp07efjwITNnzmT27Nn/KHmVTI4UFBRQUVHB29ub69evs3fvXtrb23F3d2fgwIEYGxszdepUkTxILteFCxdiamoq9jTAyJEjyc3NRVNTk8mTJ9Pe3s6jR494+PAhX3zxBSoqKlRWVpKQkCASt9zcXH755RdCQ0MxMDDA2dkZFRWVTlOd4cOHY2hoyLt37z57fZLkYsuWLbx48YJRo0bx9ddfk5WVJbqr0CHTJpl6SGBpMjIy+Pv7M3HiRA4cOMDx48cJDw8nPj6eiooKlJSUWLVqFYMHD+bJkyeEhISgrKzMV199hby8POXl5eTn5yMlJYWHhwfdu3fH1dUVc3NzsrOzyc7OxtfXF3Nzc+rq6vDy8mLDhg0cPXq0y89QErm5uRw8eJDCwkIWLVokIBzW1tYcOnSIsLAwzMzMmDRpEm5ubmKtsrKy5OTkUFlZiYqKiiA8S5oZxcXFpKamkp+fL0w5zMzMiIyMpHfv3gwdOhRNTU3c3d25f/8+xcXFDB8+XCgD6OnpiY7sP4mGhgYuXbokMN3Hjx/n999/p6mpCRMTEzZs2ICPjw+PHj3i6NGjyMvLU1lZiZmZGXPmzMHHx4f09HR27tzJyZMnxe/V1tZmypQpAuro5uZGaWkp3333HdAxYd60aROqqqr069cPFRUV7OzsePjwIUeOHOHrr7/G19dXnNGSe/XTRt7nhL+/Pzt37kRLS4vIyEj69+/P7t27uXDhAj4+PsyYMYO2tjYyMzMxMTGhR48eNDc388UXX7Bjxw6OHDlC9+7dOXjwIA8fPsTV1ZXx48czaNAgwsPDuXz5MlpaWkhJSdGjRw+WLl3KxYsX2bZtG5MnT2b06NE8evSI3bt3M3ToUH744QeCgoKQlZUVUMPQ0FDOnz8vCH3/zZioy8lrVlYW169fp729nX79+nVi9wUEBHRi25aUlPD8+XOioqIYOnQozs7OTJkyRegNOjs7M3LkSN6+fUtycjKurq4CU/jgwQOOHTsmRlivX79GVVWViIgIPn78iLy8PMXFxdTW1tLc3ExDQwOvXr1i27ZtQEdy9GnH7XNDVVWVoKAgUUWXlJRQXl7Ohw8fSE9PR0dHBx8fH8zMzEhLS2P9+vXCAerOnTsikb9x44ZwrSgpKWHbtm04ODhw48YNwZRMT09HV1eXfv36YWxsjJqaGtra2qioqNDU1ERzc7Po0sbHxxMbG0tFRQXNzc3Exsby8OFD+vfv39VHKFiZnz679vZ2kpOTuXfvHm/evEFfX58VK1agr69PUlISX3/9dacuaGRkJE1NTZiamoou3J07d9i4cSPQkQCWl5eTm5uLt7c3X375pbg0GxoaePnyJaWlpZ2wsHl5eSQmJpKfn4+BgQFeXl7cuHGDP//8k1GjRn32+pqamigvLxfdagkRwtrauhPBbdOmTRw5coRJkyaxfv16Pn78yPLly7l06RLGxsY4OTnR1NRESUkJN27cADpkxgYOHEhISAhqamq0tbWxZ88eUlNTqa2tJS8vT4xif/rpJ6CjSj1w4AAfPnygtLSUt2/f4ujoSFNTE0FBQQQFBZGfn9+l5PXDhw94enry4cMHysrK8Pf3x9TUVJCXJHHz5k2WL19OQEAAEyZMQEVFRVwiDg4OgmR0//59jhw5IrRKd+/ezeLFi7GxsREJoeTZFRQUkJWVxYULF4Tgu56eHoWFhdTU1GBra8uAAQNwdXWltLSUBw8esGDBArGXPzdKSkpQVlYWJh5v3rzBxcWFSZMmYWRkJDrBqqqqNDU1CfJMQUGB6B57eHjw8eNH0tPTuXbtGkeOHBEwEgm+7dMzq6qqirq6OqSlpTtd2s3NzaiqqoqOfVNTE0VFRZSUlNCjRw8mTJiAoaFhl5JXHx8fKioqaGlpobi4mNDQUPE3IyIiqK+v7wRHksgTSeL169fs3LlTGGQYGRmRm5vL8ePHqauro3v37kIWR+LKY25uTlVVFbm5uWhoaGBiYiIIa5qamqJIlxRGEhkfZWXlf2TIIMGDSsaAampqBAUFERMTw/v379HT0xPOZVZWVlRWVvLmzRuuXr1KXV2d+Bzdu3cXne+ePXv+WwJ29epVUlNTOXXqlNDbPHHiBBYWFgQEBPDkyROuXLkiSF8BAQG0tLRQU1MjkkqJZNY/wS0/f/6cGzduMH36dEaOHMnJkye5cOECDQ0N9OzZEwsLCx4/fkxxcTHq6uqUl5cjJSWFvr4+06dPF8oKEsKQt7c3fn5+jBw5Eh0dHaKjo3n+/Dljx45l/fr1AiJz7949QZTV1dVFSUmJfv36sXXrVt69eycmf8rKypibm2Nubs79+/dFUfo5cevWLVRVVfH39xeckoKCAkpKSoT8Y2RkJJcvXxaTHElDorW1VThD3bp1S+hGq6ur8+HDB+7fv4+CggIZGRnY29tTWloqXNcWL15MQkIC+/btIzIyEjs7O9TU1IRbVVNTE/b29gJjKsGKd1VNATo4EBK5tNOnT/P9998LjdPVq1cLHsODBw94/vw5cnJyoviXYFIjIiI4ePBgp2K7tLQUIyMjEhMTiYqKYvz48fj5+VFeXs6pU6fw9PSkqakJJSUlIVsFHcl8eno6p0+fxtHRUajTJCQkoKysjI+PD5GRkZ+9Pjc3NwYOHEhOTg6ZmZnY2dkRGhqKgoICDg4OotBSVlYWd3xhYaEwgZKXl6eoqIgTJ04QHR1NYWGheMYSfd3y8nIxBf/222/JzMzk8uXL+Pv7061bN06ePMmzZ88wMjJi/PjxjBgxgoqKCioqKpCWlqa9vR0PDw+xZ/+fJ68ZGRnEx8czcuTITolAe3t7pxFMU1MTt27dYs+ePeIL+Oqrr+jfvz9//fWXYEYvWrSIrVu3smvXLv766y+OHz/OtGnTqKmpYdeuXQAsXbpUiFBfv36dSZMm4e3tzZUrV2hpaeH8+fPU1tYK/JSZmRlnzpzB0NDwH21k6EjEPT09sbOzIz4+nsWLF/Pq1Ss0NTU5ceIEw4YNw97enhEjRoiNuXjxYn755RcKCwsFax46sG2PHj1CX1+furo6HBwchIj68ePH2b17t3BHsrGxwcDAAEVFRaSlpYWu2sqVK1m0aBGmpqZoa2szevRoVq9ezeDBgzsRGD432tvbqaysFN2Mly9fMnv2bOLj4/H09GTp0qUCO+rs7MzOnTtpa2sT5CM7OzsWLVqEk5MT1tbWREREcPz4cfH7o6KiBCnh77//xtLSku+++06sy8/PT9isSrotFRUVQo9OS0uLnJwcgWvuSsTExPD69WtGjx6NvLw8q1ev5t27d5w+fVowvNetW8eGDRuA/xH1f/36tSAdDRs2jB9//BFdXV3CwsK4fv06KSkpgpHevXt3qqqqGDVqFNOmTSMqKkoIUh88eFAwnKFjPLtixQoaGxsF1lhaWrpTYpKRkdGlNaqqquLt7c25c+eELqmpqSmvXr0iMzOT4OBgdHR0hINKZmYmFRUVWFhY8OOPP2JhYYGysjLPnz8nPz8fXV1dNm3axNmzZ9m9ezeRkZHcv3+f+vp6UXRcvXqVx48f07t3b4YMGcKOHTsYPXo0u3fvZsSIETg4OFBQUICdnR3y8vJYWlpy6dIlRo4cyaVLl7rcfZXoRkPHNOPs2bPIyMiwZcsW+vXrx82bNxk/fjw6Ojrs27eP5ORkAX+QYDxv375N//79qa2tFSNGV1dXVq5cSWxsLF999RVz585lzpw5QAfMRE1NjadPn/Lw4UPRDS0vLycjIwMnJyc0NTUpKCjgm2++QVVVlV9//ZXW1tYud7T8/f3Jzs5m69at5ObmsmfPHtzc3IiIiEBdXZ05c+aId1CivyyJtrY2fv/9d5G49uzZU8Cm6uvrhbnKlClTkJGREYYtEkvc7Oxs4SbYrVs35s+f3wn6ZGpqyu+//y5IZP+k6wodCbXErlQSBgYGfPvtt1RVVaGrq4uCggLt7e2Ulpaydu1ajh49ypw5c9i+fTuysrKUl5dja2tLbm4uhYWFIomuq6sT42yJOoSCggJZWVncunWLzMxMbGxsBPwsOjoaHR0d0eEqKSkRmNH/TcT93JDIDc2ePRtNTU1Onz7N2bNniY+PJzU1lcOHD3Pt2jXc3d358OGD+C7v3LlDREQEw4cPR19fn27dumFiYoK3tzcODg6oqamRl5fHX3/9xc2bN2loaGDOnDl8/fXXQgFETk4OHx8foYiSn59PZWUlWlpa+Pn54eXlRXJyMtnZ2fj4+Ij7OTMzsxNO97/FkCFDUFFR4dSpU4SGhrJ582bCw8MxMzNDW1ubzMxMQbzdvn078+bNEz/b2trKd999x/Xr14GOCUNVVRVjx46lra2NTZs2kZOTI4hKNjY2yMjICCnACRMmMGDAAJYtWyYmjIsWLaJnz54cOHCA+/fvs3//fvH76urqqKur6/JzdHNz47fffuPRo0dCrcDW1pZt27Z1koeys7OjqakJXV1dAgMDO8kFGhgYYGJiIrqiWlpaqKmpsWvXLqHjHR0djZ+fHxs2bMDX15f379+zceNGpKSk2Lp1q3jPJOfpjh07WLZsGYcOHUJKSooLFy5gbW3N9OnTu7S+xsZG1q5dS2hoKJaWluzatYvCwkKWLFkiyLlLlizh0qVL6Onpicl3UFAQBw8exNzcnIyMDLy8vGhqakJFRUUk6kpKSigqKmJmZtapWTho0CABhzl+/LjgBHw6CZVMiKBjQrht2zZmzpzJokWL/uuaupy8Sixdq6qquHbtGnJyclhZWQkQsAT3oqamRkNDA3Z2dtjZ2VFSUkJ2djbm5uZYWFhgaGiIqqoqhoaGBAUFcebMGSoqKsjMzCQiIkIcytDB/k5ISEBGRgZdXV1SU1MpKioiJiZGHAaSpKStrQ05OTmBHe0qcLuqqorGxsZOo3xVVVXU1NSwtLQkMDCQqqoq4uLi0NDQoH///sjLy/PmzRvq6uo4cOAA79+/JzMzU/y8gYEBBgYGaGlp0dLSgp6eHgMHDhSizxkZGdjY2GBjYyNa7woKCqipqVFQUEBjY6MgR0msD1VVVRk6dGiXCRTQoXhgZmaGoqKicFyCjgtLRkaGr7/+mqlTp9LY2Mjhw4exsLBgyJAhnX6Hj48PCgoKwhb0xIkT3LlzB1tbW1GR9+7dG1NTU86ePcu5c+eYPHmyANZLGJ3Hjx/n7du3ODk5CbJMfX09TU1NREZGYmJi0iW1COiYDmhqamJsbCyEoN3c3ET1evv2baEMMHPmTDHaj4iIwN7eHnl5eQYMGCD21PLly/H29iYmJgYlJSUcHBy4d+8eR44cwdHRkbVr19LU1MSsWbOwtrYWieuxY8fQ09PDw8OD4uJiXrx4QXNzM6GhoQJiUl1dTWVl5T/SQz1+/Di7du2ipKREFEybN2+moqICAwMD+vXrJzQznZycMDIyorKykpKSElpaWigtLeXGjRuUlpYyadIkhgwZgpOTEwUFBTx8+FAIqEsMI9rb2ykrKyMoKAhXV1cCAgJ49OiRGM06ODgI5v+hQ4dQUFBgyJAhfPnll11WxICOQ05SLFVXV2NsbExraysfP37E2toaMzMz3NzcRLfU09OTCRMmEBYWJt4/HR0dGhsbOzkKWVlZcevWLcLDw4mOjubw4cO4u7vj4+MjirmamppOrmD6+vq8fPmSu3fvEhoaiq6uLh4eHkhJSQlnsU8Jp58TEpWJZ8+e8eHDB968eYObmxuKiopYWloKjL1EDzknJ4fHjx+jqalJdXW10IS0sLDA2toaDQ0N3N3dUVVVJSMjg6NHj5KSkkJISAh2dnbiOZmYmKCkpERZWZlIHCSQidLSUsHCz8/Px8TEBF1dXTIyMro0GZDE3bt3GTBgAGpqarS3txMWFoaWltZ/1MNtaGhAX1+fvn37oqurS0FBAaampiJZlfzv9evXuXr1KgUFBSgpKQnFmrlz56KsrCwmBYqKiri6utKnTx9MTEx4/fo1Pj4+nWATXl5eQs4K6JTAf05IEvARI0YQGBjI9u3bCQ8Px9bWVnBAoqOjkZGRQUNDg48fP7Jnzx7OnDlDVlYWhYWFjB49moCAACwsLDrdO5Jph7KycifMaXx8PB8+fMDR0bHTfy8vL09mZialpaV4e3tTX18vtKi/+eYbgoKCqKqqYvDgwV0iF3p7eyMjIyMcAUeNGtVpYibZex4eHiJx/de//kV1dTWurq74+PiQlpZGWlqaGI+bmZlx9epVkSg6OjoydepU5OTkuHTpktAXNzExwd/fn7lz59Le3o6enh5jx46lR48elJWVcfv2bbGvpaWlUVZW7lJXWRJ6enrIy8tjaGhIcHAwWlpa4tyPiorixo0brFixAkdHR4FxluQYHz9+pLm5mcePH5OXlwd0uHyNHz+eoqIiTp48iZmZmSA6S1RBhg8fzvXr17l06RIZGRns3LmToUOHYmdnh4ODAx4eHixcuJD9+/ezdu1a+vfvT3BwMO/fvxe6qV1Z35s3b4QKz7lz58jJyWHVqlVAx3nX2NhIbm6uILn7+Pgwe/ZsYZWdn59PcHCwWGtzczP9+/dnyJAhFBcX09zcLMjBAJ6enixYsICwsDCOHz+Ot7c3Y8aM6SSl+em94OPjQ1VVFT/++ONn2d53OXn19fWlV69erF+/nl9++aWTSP2NGzfYunUrw4cP54svvsDc3Jy1a9diY2PD1atXhVVcSEgIQUFBNDQ00N7eTnBwMB8+fEBGRob4+HhOnTpFeHi4+JtPnjyhf//+zJs3Dz8/P/bs2UNKSgozZ86kra2NBQsWiA6KRLdP8rJLqtTPjf+Ng5Kwunfv3o2JiQkqKiq8efOGS5cuUVVVRa9evVi1ahXy8vJkZWWxefNm7t692ykZ8fX1Ze3atTg6OnLmzBk2b95MWVkZixcvZvny5eKCbmlpEVpqksNUYpqQlJSEs7MzFRUVVFZWitHsiRMnCAsL69IaJSLaioqKgnSipqbGuXPnkJKSEutPSUnhr7/+wsHBgeDgYOTl5SkrK0NbW5u6ujqhzdbY2EhFRYVg0L99+5awsDD69+/P5MmTUVZWpqys7N9UA3R1dXF0dOSnn34iISGB1atX8+DBA6ADE/ry5UucnJwYPHhwp5HKfwt1dXUBp5CVleXnn3/GwMAAZWVlEhISuHPnDgYGBsycOZMvv/yS+vp6rl+/TktLC2vWrCEoKOjfDCB69uxJ3759gY7L84svvqCsrAwHBwdmzZqFsrIyo0aNEnp6ly9f5sGDB6LLdf78eXbt2oWOjg5WVlZYWFjQ2tpKVlaWgDR0JQwMDNi8eTMpKSk4OTlRWFhIUVERNTU1NDc3k5aWhpubG8bGxqxdu1bssRMnTrB27VrKy8sxMzMTGpM3btygR48e2NjY4Obmxps3bwSeDjqIN2ZmZowZMwZZWVnS09MZOnQoX375JdDRUUhMTCQ4OJja2lr++usvIiMj+eGHH5g/fz7Dhg0TRKHPjffv34sxto6ODrNmzRJV+8mTJzlw4AA6Ojq4uLjw119/MWDAANatW4eioiLHjh3D0NBQaIK+efOGwYMHY2xsTGlpKQsXLsTOzo5NmzYRFRXF8uXL2bRpk7iUBw4cSI8ePToJgVdUVHDw4EFKS0uZP38+GzdupLKyElVVVTQ1NVm0aFGX9il0TIn69u3LtWvXxKUrwRpXVlbS2toqumSJiYn8/vvvfPjwAUNDQ4HdNTIyIjk5mYqKCpFY79u3j5SUFCwsLJgyZQpjxowR3RSJUL6vry+lpaUUFhZiYGAg3mdVVVXevHnDihUr8PDwYNu2bURERLBp06ZO2pafE2fOnCEwMFDYCl+9ehU1NTXc3d3R1tbuJO2kpaUloDZz5swhJCSEvXv3ijGiJE6cOMG5c+fQ0tKirq6OxsZGfvrpJ4Gnz8jIEJAIFxcXYakquS8+jU/dEuF/MMifGxLsppSUFGpqaqxZs0Zo7kp4AJcvX+bVq1eiM/7bb7/R0NCAubm5cMILDQ0VkDNAEF02btyIkpIS8+fP548//qCwsJCBAwcKFYNPk1czMzNqa2uJiIggOjqalJQULl++TFtbG97e3qKA/eKLL7qUvEZFRdHW1sbChQv58ccfaWpq6iTV1NDQQO/evVFSUqK9vZ2oqCi2b99Obm4uu3bt4scff8Te3p7p06fTs2dPvvvuO65cucKVK1dQV1cXI38HBwdxH8XGxuLu7o6VlRVtbW0MGjSIr776Cug4a86dO8eAAQOYO3cuL1684O7du4SEhCAlJfWPtMEBlixZgry8PLW1tdTW1oqpx59//smJEycICAjA1dUVTU1N6urqhB56U1MTERERPHjwgJaWFvr06cPkyZMJDg4W72h1dbUgy0r2WGlpqcCVZmVlERYWRlRUFGvXrsXKygp5eXm8vLxYtmwZAwYMIDIyUpwT06dP79Iky8PDQ8h/1dXV4e/vT11dnfiu1NXV+f333/Hw8ODrr7/Gy8uL69evo6ur28nsqby8nNTUVOF4J4EDSiY5kmmihGuip6fH9evXSUhIYMaMGUyfPh0dHR2hsfzp+2dra8vvv//Oxo0b2b59e6eO93+KLiev0AHgHjlyJA0NDbi7uwsc1uvXryksLOTly5f06NGD7OxsAgMDcXR0xNzcnA8fPojFycjIiGTmU7cFZWVl0tLSGDt2LG5ubhw+fFi03K9cuUJtbS0ODg707t0bPz8/wdj/NJuXjA/U1NQ6HQifE5KD9MmTJ2zbtg0pKSnmzp1LSEgIz5494+7duzg7OzN69GgBin/58iV9+vTB0tKS77//XnQNNTU1Bb4nNjYWdXV1srKyiIuLIy4uDnl5ea5evYqhoSG+vr54eXkJUwZJKCoqdtIh1NfXJzU1laioKPz9/QkJCely8vrq1Sv27t3L3LlzaWlp4cSJE2hra/Pjjz8CHRgniYXbF198AXTgWtLS0oTl75gxY1i5cqVwX+rXrx8jRoxg4sSJPHr0iPj4eN68eYO/vz8zZ85ERkZGyODk5uZSUlKCs7MzISEhnD17ltjY2E4WsEFBQcLP+1OFgs8JJycnFBQUaGpqoqKiAhsbG4qLizlw4IAYU2RkZPD777/z5MkTDAwMhEZxa2sr1dXVjBo1CkNDQ65evcr9+/cZM2aM6H5LuhnQoeEosX09d+4cf/31F/3798fCwoLp06eLRMTLy4s1a9bQ2tpKbm4ur169wsLCAikpKUE+6UqMHDkSPT090tPTaWlpobGxERcXF3788Uf++OMPfv75Z8rLy/n+++9RUlLi1atX/Otf/+LChQtUVFSgqKiItbU12traPHz4UEALHB0dxYXSr18/hg4dSmVlJefPn8fBwUG4TD169IjevXuLZFJCzCwtLaWxsZGRI0fi6+tL9+7dqa+v/0cmBatWrWLChAmMGzfu3zq3Z8+e5fnz58yePZvFixfz9u1bgRHfu3cvQUFB3Lx5k6amJnr06IGzs7Pw1JZYNVpZWdGrVy+ys7O5cuUKo0eP5pdffmHWrFnCCjE2Nlaw3h8+fMjTp09RUVFh3LhxNDc3U1JSIjr6Xd2n0CFZ99VXX+Ht7U1eXh7nz59n3Lhx/7YfEhISRAErJydHfHw8lZWVWFpaCgxgbGws169fJzg4mB49ehAbG0tlZSVxcXGMGjVKGIHcuXMHLy8vzMzMMDExITw8nKtXr2Jvby/2uIODg7iYZWRkGD16tLC17koMGjSI+Pj4ThavEvtiiYPg6dOnycrK6sQQl7hM3bt3Dw0NDZ48ecKLFy+AjgRzzZo1mJub8+bNGwoLC/H29qa2tpY///yT9evXC/m2+vp6kSxItF2zs7OFyPrVq1dxcnJi6dKlyMnJkZiY2KX1RUVFCXjMq1evhAyZJDQ0NHBycqKurg47Oztev36NqakpQUFBDBo0iFu3bglrUon8lJSUlFDMkVzuEjnKsrIyvL296datG/fv32fmzJlAhxX54MGDcXBwQFpampqaGhQUFPD19RVuSZLP9amhwueGtLQ0X375pZgQSuLatWuEhYXR0tJCaGioUPsZO3YsZmZmjBw5kvz8fA4fPkxjY6MgP+bk5KCiosLSpUvx9PQkMTGRa9euoa2tzYABAxg2bJjQZ1ZVVe00nk9ISGDFihUMGjSIPXv24O/vz549e9i5cycDBw7ssnILdEwyW1tbhfTfp+fNwIED0dDQEElXaGgoHz584MGDBwwaNEhIoU2ePJmZM2cSHR3N999/j4qKCqtXr2bgwIGCZDp06FCgozmzatUqFBQUWLFiBXZ2dly6dImPHz9iYGBAWloaN27c4Ouvv8bV1RU1NTXu37/P9OnTCQwMZMmSJZ0mQ/8tVFRU0NPTQ1lZGWVlZfbs2UNFRQWGhoY0NzdTW1uLpqYmEydOpKSkhJ49ewqyXXNzM25ubrx48YIzZ87Q2trKsGHDSE1NZdeuXWzatAlzc3MqKysFPOjTAsLOzg5NTU2hIzt//nwh6zhq1Ch8fX3ZvHkzSUlJzJkzhxMnThAZGSne9/+/6HLymp2dTVtbGx4eHnh4eFBeXi7+rWfPnkRERODn54eCgoI4sFpbW3F3d0dBQYHS0lLq6uqoqKhARkZGEJQkDMTc3FyGDBlCt27dxNgnLy+Pmpoa8vPzOXHiBFevXmX48OHCM1oy8ioqKkJDQwM1NTUBmu7KAwYEPvfWrVs8ffoUS0tLFBQUaG1t5caNG+zatYtp06Yxfvx43NzcSEhIIDExkfPnzzNw4ECsra1ZvHgxS5Ysob6+HisrK1paWnj58iUlJSXk5eWhp6dHcXGxkKowNzenoqJCjCLr6+uFkQB0jLLev3+Pra0tMjIyGBoaEhsbK3TfuhqWlpYkJyeLZxcWFkZtbS3jx4/H3t6ed+/e8e7dO8aPH8+YMWN4+/Yt8+fPJzY2VlgVamlpMWTIEHr06EFhYaGoSAsLC2lubqZbt248f/6cU6dOsXXrVpSUlDh58iRSUlK4uLiQkJBAfHw8Pj4+2NraYmdn18kHOjc3VyQFXX2GVlZWoqspKV4+fPhAYmIifn5+Aotz7do14uPj6devnxizhYWFkZWVRWpqKps3b6a0tJTHjx/j7OxMQEAAqampNDU14eLiwubNm4XUEXRcjjExMcJyNzg4mOrqaqqrq0Wnoq2tjXPnzlFZWYm+vj4VFRVCeqUroaCgQFBQECNGjKC8vJw3b95gZ2eHoaEhb9684ebNm+Tk5AAdHf1z585x4sQJ9PX1BaO2e/fudOvWjerqap4+fUpVVRXS0tLo6enh7+9PaGgoXl5e5OXlUV1djaamJo2NjcTHxxMREYGcnJx4PySQgdraWurq6vj+++/FZ01LS+POnTtdWh90jGTfvXvH69evBUZcXl6ed+/eoaamhpOTEwMGDMDe3h57e3suX77M6dOnGTBggOh4SzqLZmZm6OnpCbzxwIEDaW1t5fHjxwJvXFJSIrR6P5Vqk/iLW1hY4OjoSFlZGWvWrEFZWRkXFxf09PQwNDQUmPvPjaioKJqamggICCAgIIA//viDjIwMMd3Izc1FQUGBzMxMLl26JCRsJGO8pKQkQe6UkpKiqKiICxcuoKOjI0w5Tp48ydGjR7GysuLbb78VDj3m5ub88ccfaGhooK+vz6tXr0hMTBSkrqysLHx9fWlrayMuLg43NzfWrFnTZTLTsGHDiI6OJjw8HCUlJSZPntxJhzkjI4M7d+5QXFyMv78/fn5+3LhxA1VVVeGkJHEsDA8Pp6WlhdOnT4s9PGHCBFRVVUURKNnHSkpKAhZjZ2fHwIEDgQ7Rf3l5eUpKSggPD+fMmTMMHjyY5uZmWlpauqwWUVJSgoKCAkVFRTx48ABfX1+hE1pQUIC6uroQpYeO4tjBwYFRo0YxaNAgQfKUJKmqqqq0tLQIN0VAwNgWL14sXAmNjY0pLCzk0aNHZGVlCRUVc3Nz0YGWOMVJppuS39VVB6qGhgba2tro2bMnPXv27OQ5X1hYSHh4ONbW1igoKKCnp0f//v3F5CshIYExY8aQlpYGdOC8m5qaSEhIoLq6GiUlJTw8PGhvb+fZs2dUVVUxadKkf9P5fPfuHZqamujp6SEtLY20tDRRUVHEx8fj7++Ps7MzW7Zs+UekQuiAzEVHR3Px4kUqKipE8Q0de0yi3NLU1MSkSZN49uwZsbGxWFlZCfiGBO4jJSXFtm3baGlpERKQkjW8ePECAwMD1q5dK7rflpaW2NnZCf1vKysrQUCNjIykb9++DBo0iLS0NM6fP4+Hhwc7d+7s0rso6ShHRUVhZWWFkpISysrKVFVVoaCgIIplRUVFZs6cSX19PVlZWUKuU0dHh6dPn/Lo0SNmzJjBqlWrWL58OSdPnmTSpEn06tWLpqYmFBUVaWtr4+PHjygoKAiN2N69e3Pz5k0iIiIYN24cCQkJREZGConC169fiyZR//790dHR+X+fvK5atYq8vDy2bt2Kl5cXv/32G5mZmaxdu5alS5cSEhKCrKws6urqBAYGoqSkJEb4mpqazJs3DwMDA9atW8fLly85c+YMCxYsIDAwkPv372NgYMCcOXP4448/uHLlCqGhoUycOJE9e/aIDqNEDkNVVVUchFFRUVy5coUJEybg7u5Ofn4+mZmZXcYS/vLLL8TGxmJra8vhw4dxdnbG3t5ejJ9dXV25fv0633zzDbNnz8bX1xdXV1dmzpzJ4cOHhYNJZWWlwDp9++23+Pn50draire3N87Ozhw8eJCSkhLmzJnD0KFDkZWVFUnXnTt3qK2tZciQIWhoaFBYWMj169d5+/YtU6ZMwc7ODjk5uS4ndZKQCGUbGBjw8eNHGhoaqK+vFwn/3LlzSU1NFQzEt2/fkpOTQ0hICOvWrUNDQ4OTJ08ya9YsFBUVGTFiBK6urty/f5+wsDBho+rl5SWEsyMiIli9ejWTJk1i8uTJJCcns27dOlRVVYUjzYIFC2hsbGT06NE0NDRw69YtNDQ0Pgv/8r9DQryRdAZ79uzJTz/9hLGxsZDlkJOTw9DQkL59+2JgYEBycjIlJSVUVVWRlJTEzZs3sbGxYd26dcIyU0tLi3Xr1gkTCklIJIsqKio4e/asuFw3b96MlpaWGH8nJCRgamoqmK1xcXGcOXNG4MY/N44ePcrp06eZO3cuX3zxBcHBwcTHx1NWVoaXlxenTp3CwMCAuro6pKSkBDN2woQJyMnJsWDBAtrb21m+fDkqKiqsWLGCsrIympubcXd3p0ePHmL8fPLkSeTl5bG1tRV6ompqavj6+oqulmR0+r9hN9ChddjU1NTlxODcuXPU19dz6NAhNm3aRHBwMG5ubuTk5NC3b18WL14sEgPJFOTKlSts3LgRFxcX5s6di5WVFZGRkbx9+5bGxkYOHTrEo0ePMDc3x8nJiZKSEl69eoWWlhazZs1iwIABIhmwtrbG29ubjx8/0trayrp161i8eDETJkzgwIED7Nixg8DAQJ49eyYkoboSt2/f7qSiMXLkSAETiImJ4cCBA7x48UIUrPLy8iQmJqKiosKAAQP44YcfkJGR4eHDhwJmJemc5+XloampSWBgINevX+fGjRvMmzcPS0tLcnNzef78OXZ2dnz77bc4ODhgZGTEyZMnmTdvHjU1Nejq6tLW1kZqaipXr15l8eLFYgrTlYiOjsbOzg5ra2syMzNJSUkRZ/a9e/fYvHkz3t7ejB49WrCYHR0d6d69O/fu3eP9+/d4e3vz7bffMm/ePAoKCkQiCp3H/qampqxcuZKxY8eSnZ3NtWvXiIyMJCwsDH19fUG2gw44lq+vL5aWlnh6eqKpqSm6fF2J3r17AzB16lTs7OyE1qfEgruqqkpovUJHQRYdHc2pU6fQ1tbGw8OD3r17d3pnPiU+S87mgIAAbGxshOxcTU0N8+fPZ+/evZw/f57KyspORKWmpiYUFBTw9vbu9B1JS0vj6+vbSfbvv4WioiLV1dUUFhaSn59PdnY2pqameHh4MGLECIyNjUUB+2lEREQwZcoUMVFbv349Q4YMoaqqiuzsbPLy8liyZAnt7e2MHTsWe3t7YbAgSa6gI+Fes2aNgCFMmDABAwMDZGRkxDkaEBDA5cuXOzl9diWkpKSwtbVFTk6OlpYWDA0NKSkp4dKlSzg5OQnOh4SvUVlZKQh40NG4OH36NKWlpQQHB/Po0SN27txJWFgYU6ZMYefOnSxatIgDBw50Kuyh4xx48OABeXl5dOvWjdbWVszNzZk5c6awEvf396eqqgoVFRXc3NwE9+VzQwJDOH78OPfu3UNTUxNTU1OMjIwYN26cgJ8oKipibGzMvXv3OH36NDY2NmIiK8GDq6qqYmtry5o1a7hw4YIoGAwMDDA1NSUjI4NvvvmG+vp61q1bh7a2NiNGjGDmzJno6Ohw/fp16uvr2b59O3369KGpqYn58+fz/fff4+fnx8OHD9mwYUMnqbn/FF1OXisqKoiNjeXDhw94eXkJjKkkSbSxsRGbrr29nbi4OLKzs/Hy8qKqqkp0wywtLXn//j3p6elCWsjY2BhZWVnevn3L/v37SUhIwMXFhcDAQLy9vYmMjERbW1tgZd+9e0deXh6Kioq8e/dOvESSh3Dt2jXS09PFqOJz4sCBA9TX1zNt2jQhj3Hu3DlaW1uZNGkSM2fOJDk5me3btwu91Pz8fG7dukVRURGFhYXo6+vz8eNHoIPZ3N7eTkJCAubm5sIezt3dnYSEBEJCQjoJI0uMHEpKSvDx8cHOzg4bGxsSEhKEwwnQCYvX1ZD4CQOi42pgYICZmRnV1dVERUVhYmKCrKwsNTU1tLW1MWnSJPr37y+Y+QMHDuT27dvU1NTQ0tJCZWWlcFJ59eoVxcXFzJ07Fx8fH+7fv8+pU6dwcHBg2LBhQmJKMoJ0cHAQvtGXL1+mrq4OMzMz8vLy0NDQ6LLDVmRkJL169cLIyIjGxkaePHlCVVUVjo6OSEtLk5SURHh4OObm5nz77bfi5woKChg3bhwBAQFUV1dTX1+Pt7d3p66ooqKiuHxfvHiBgoKC6D5LpHIkievWrVuF3mNVVRVlZWWUlZUJoebMzEwOHjzI+/fvaWpq6lLy2tTUxPv373n9+rVIKgwNDbl48SLOzs7/hk20sLDg48ePdO/eXcjN3Lp1i4MHD+Lv78/ixYtpbGwkIyNDQHCys7N58OCB6BAkJCSIbr0EriMJSRdFYqUrJSUlMJz6+vpizV0JCe44NzeXO3fu8ODBA6ZMmYKLiwvDhw8XnzM2NpaXL18CHdiuzMxMpKSkGD58OMrKygIPbG1tjZeXFxEREaSlpWFvb8+QIUNIS0ujvb2dlStXoqWlxeHDh0lKSmLevHkoKCh0ej8zMjKQl5dn4MCBTJ48GUNDQ+Li4mhtbe2yLJ+lpSWWlpYUFRWRnZ0tBL4lISFUamhooK2tzbNnz8jJycHAwIAff/wRb29vysvLxWUUHBzMvHnz0NPTIywsjJiYGDIzM2lubub27dscPnxYvHsaGhq0tbWRnJyMnp4e6urq6OnpER4ejpqaGlpaWsL0wMTEpJNsWFeipKREJBiNjY388MMPHDhwgDFjxvD8+XPq6uqE0kp4eDienp6oqqpy/PhxGhoacHR0FKNZCwsL3N3dSUpKoqGhAQcHBxobG3n69Cm5ubn07dsXHx8fevbsyYYNG0TSIfmOdHV1MTY2pqCgAF1dXaGt/OHDB4qKijAwMKB79+5C8eRzwsnJifj4eGxtbTuRWiVqIuXl5Zw9e1aQWRoaGigtLRXayxJ1EwnGPDg4GEVFRWGhaWZmJrCN9vb2YrqSn5+Pl5cXw4YNw9nZWUhmSUICYVFTU6OyspJ3796hoqIi7Du7oowhgeBJCINSUlJoa2vT3NyMvr5+p3U/efIEGRkZ2tra2LJlC+/fv8fCwkLcBQ8fPhRks4SEBHJycrh69Spz5sxBWloaY2NjoqKiSEpKwsvLS/jeFxUVkZeXh5KSEnJycoSEhFBSUsK7d+9QVVXFyMiIXr16CemufxIS50FdXV3RCY2Li+PmzZukpqbi6OiIq6srZmZmBAcHk52dLTDPEjk/SQNj165d7N+/H0NDQ6FgYGhoKIht9fX12Nvbo6qqKrCkPXr0IDg4WCTEjo6ONDQ0UFVVRZ8+fRg5ciSysrIkJSUJ6cauhImJicBFt7a2oqqqSkVFBcePH8fLywsrKytxThsZGQkb508x3fr6+nz48IGoqCiKi4uxtbUV96EEEmpubo6uri43btzgyJEjzJo1S6i5FBcXk5OTg4ODgzgXJLbIkjhz5gxPnjz5f5+8Lly4kF69egmCyY8//ihGiq9fvyY9PZ1+/fphYGDAmTNnuHr1KsrKyiKJXLlypcDMWFtb89VXXwllAg8PD65cucLy5cuF5/alS5dobm4WjMPCwkJ0dXWRkpKivr6eq1evUltby7Rp0wgODubjx4/U19ejq6uLqqoqUVFR/xX4+2lI5D8kON7bt2+zaNEi6urqaG1tZerUqXh7exMSEkJDQwOrV6/mxYsXFBQUEBgYiIODA3l5eUK8fcWKFRw7doxVq1bh6+srukV+fn44Ojry5MkTzp8/L4SdoQOsn52dLcT6hw4diouLC7q6uv82FvknL+q7d++oqqoS2Kr58+eLRGDt2rVs27aNcePGsWHDBszNzRkzZgwjR44U8AXJqOHkyZPo6OjQ0NBAeno6fn5+rF+/nqVLl7Jv3z6kpaXx8vIiLCwMBQUF9u/fj4eHBzU1NVRXV2NmZkZRURFDhgzBwsKCAwcOcO7cOZYvX86YMWPIyMggPT39s0wcPo2DBw8KFnF+fj4//fQTERERhISEsGTJEgoLC/nzzz9RUFAgJCQEBwcH0tPTef36NVpaWgwcOBBzc3Nqamr+o+e5xJbxwYMHqKmpYW9vj4uLC19//bVIXBcuXMi9e/fYs2eP2CtycnJCVzU8PJx169bx6NEjtLW1/6Ozy/8Vc+fOZdSoUcJWWU9PTzjClZWVCdvkT5/5qVOn0NfXF5I7ERERzJkzhy1btvD999+Tmpoq9i5AcnIy3bt3p729ndu3b9Pe3o6vry+xsbE0NjZ26vxLLpUPHz5QUVGBlZUV+vr6NDQ0CGJDV+P169f06NGDgIAAzpw5Q3NzMzExMQwaNEgUbxJ1EFVVVZycnJg8eTKLFy+mublZFNH9+/enpqYGbW1t+vXrx+DBg7l37x7BwcF069ZNyIIlJibi5eVFQkLCf/Qz37dvH2vWrGH06NEcOHAAOTk5ampqCAgIEI6Bp0+f/uz1SYoOiTe4RO1ATk4OT09PzMzMRJesuLhYwBIkFo7QkfRUV1cTGhrKtGnTBMbaycmJp0+fkpycLP7eTz/9RFVVFXJycvzwww/MnDmTuLg4oQigr6/P8OHDmTZtGpaWlkyePJm2tjaOHj36b6Spz41P5RQlWtnR0dH8/fffzJo1i99++w0vLy+am5uF7BP8Dy5zy5YtuLu7s2jRIjQ1NZkyZQpv375FUVGRbt26kZmZycqVK0lJScHf35+zZ8/y8uVL9u7dy/Tp01mzZg1//vknjx49on///mRlZXHnzh1mzpyJmpoaf/zxB0VFRfTu3RsDA4MuEyffvXvHtWvX8PT0FAW4pCsmsfE9duwYd+7c4YsvvsDNzY0ePXoQERHBhw8faG1tpaKiglmzZlFeXs6ff/5JSEgIN27cYPPmzQQHB4vktaWlRST6Erkm6LhHx40bR319/X/sHkssqJ2dnTuxwT83oqKiCAwMRFFRUbi7Se5HCQFQ8nzXrFnDq1evBGZyyZIlDB8+HAUFBc6fPy86mT///DMzZsxg69atQrNW0niSODFKOsYtLS3MnDmT2traTlrRR48eFVhpBQUF/v77b7S1tYVc3j8JGxsb0USTEGkzMzM5e/YshoaGhIaGMmPGDAABr6msrERDQ4OePXtiamoqrIvnz5/PkiVLMDU1ZceOHRw+fJht27YRExPDu3fviImJEaQmifa0iYkJMjIypKam8vTpU3GHurq6iqRWSUmp09nelRgyZIh4lllZWRw/fpy9e/ciJSXFokWLsLCwEHfajBkzRCMC/sdB9fr162RnZ9PY2IijoyOenp6d8hI5OTl27dqFvLw8J0+exN3dnYCAACIiInj69CkTJkxAR0eHW7duoampKeAZFRUVREZGYmNjw65duwTU5P8vupy8DhgwgAEDBvDs2TO2bt1Knz59BMNaWVkZU1NTobWXmpqKuro69vb25OXlUVtby8CBAzE0NCQmJoacnBy8vLwEXgQ6RIDT09OBjg5hc3MzmZmZeHp6YmRkhIqKing5e/bsKSS4lJWVSUlJITY2FgMDA/r378+MGTOEbMznxr59+1BVVeXx48fs3r0bdXV1QkJCqKmpEfhJR0dHRo0aJSqXuro6jIyMsLKyEh7cS5YswdXVFQ0NDXx9fYUN665du+jRo4fAJzk7OxMTE8Pu3btFcnzkyBFu3bpFbW2tAI9L9N8kpAkXFxfRPfknIfnO9PT0OjHr+/bty6tXr2hoaODt27fCPEESEoFzLS2tTsB9KSkpZGVlkZOTY+zYsZSUlFBXV8ebN2/w8/PDyclJgLhVVVWFc5FE0goQ9qzm5uZISUmhoaEh5GK6EsbGxiQlJdGtWzfU1NQYNGgQKioqgr1qb2/PlClThK2ig4MDGhoaZGdnc//+fQwNDbG0tERdXZ2IiAi2b99Oc3MzkydPZtiwYTQ1NVFZWSl0gFVUVFBTUxPjoI8fP3Lq1CnKysrEBaOgoEBOTo4gYeTk5PDo0SMsLCzYtm0bWlpaXLp06bPXqKKiIsS5Dx48yOvXr/H09GTQoEE0NjZy4sQJMjMzGThwIIMGDRLVs2T0Iy0tjbW1NfX19cI21cHBgaqqKuFcZ2hoSEFBAS9fvqSxsRFPT0+GDx+OoqIir1+/7lQ4NTc309bWRk5OjrC57NWrV5exvJ+GoqIiUlJSfPXVV5iZmXHjxg309PTEQd7Q0IC6ujo9e/ZER0dHnA/5+flCCmbAgAEMGTJESOi8f/8eQ0NDli1bRn5+Pr/99hupqakYGhpy8uRJTp48SUpKCqGhobS3t3fSr5bI/nz55ZcCuvTx40eBMezqhEASmpqauLm54erq2skhSFlZmfr6eiIiIigsLKR///4MGzZMkHQkfzMoKKiT9aKcnBw9e/YUyY6zszNFRUWsW7eO2tpaoQoiMSCIiorC2dkZKysrBgwYQHBwMHJyckybNg1tbW2RuB44cKDLa5MQX96/f091dTUjR44UGqsODg7CUKO8vJzjx48LnVIzMzN27txJaGgot27d4sqVK0JeyMLCgsLCQqKjoykoKBBwjfDwcLZt24aKioroyh4/fpwHDx5gYGCAnZ0dd+/e5fz581hYWDB79mwWLlwo9G+BLneYHz58iLW1NU5OTnz48IHo6Gja2toICQkRyevo0aNxcXHBwsKCpqYmbG1tMTU1xcbGhl9++YW7d+8K971du3Zx7NgxpKWl+f777zE0NOTEiROCXCixYb5//z6ysrLCflVbW5va2loKCwuJjIwkJiYGbW1txowZg6GhIS4uLpiamgrTkK6EkpKSsH/930YZdXV1yMrKUllZyY0bN3j37h0NDQ08e/aMH374gSlTplBXV8fFixcFtr9Xr16C3xAYGChw28+ePSMiIoJBgwaJf3/16hUFBQXi+3zy5AlGRka4ubkJrouNjQ2ysrKCHN3Vkfqn8ak+d2lpKa6urmIyYWxsTE5ODosWLcLQ0JDx48djY2NDbm4u586d48yZM+Tm5mJqaiqmHeXl5Tx+/FgQfI8ePYq2tjYjR47Ezs6ukwXsp/Ho0SOWLFnCmDFj8PLyElPOgQMHisZAV2LTpk0UFhYyceJEkSyWlZXx5s0bKioqcHNzw8PDg9bWVp49e8bDhw+RlZWld+/eoqBLT08XMlqxsbH06tULOzs7EhMTSUpKEiYixsbGGBsb09LSQnNzM4cOHaK4uJhXr16hqqrK4MGDUVNTQ0pKqtMEWVpaGi0tLby9vTEyMvp/n7xmZ2ejr69PYmIit2/fJisrC2lpaXr27NmpzVtcXIy5uTmjRo3C3d2d27dvExUVRU1NjcBrvnjxAk1NTQwMDJCXl+fQoUM8ffpUyC/V19czdepUbG1tCQ8PJzk5GScnJ6ERKCsry6BBg5CVle1E5nJxccHFxQVzc3MWL17cJZ9jiWvE9u3buXnzJvv372fkyJE8evQIJSUl2trasLKyQkVFBSMjI5SUlFiwYAFJSUns37+f9evXM2jQIH799VehLuDl5YWRkRGrV68mLS0NeXl57t27h4uLC7/88gtDhw7l8uXL3Llzh6lTp2JjY8OYMWPIysoiOztbXEolJSVCq00yIvonHS0FBQXevHmDg4MDrq6utLS08OHDB7S0tERln5CQQEVFBfX19cjLy9Pe3i4MEyRyQhKZm7q6OhITE3n58qU4nEePHs3Tp0+5desWy5YtQ0FBgXPnzvHhwwd69+5NS0sLWlpaGBoaigu7X79+tLS0kJaWhomJCSYmJsjJyXXqHn1O+Pj4cPnyZYqLiwkKCmLt2rW0tLSI76y5uZlly5bx8uVLkpKSeP36NT179sTFxYX8/PxOBcHdu3dFUmloaEifPn0wNTWlf//+NDY2Ii8vj5SUlIBPaGpqoqWlRe/evUlPT6e9vR3oGDf//fff6OrqsmDBAry8vJg1axZ2dnaC4NGV5BU6cHUSctatW7fIz89n+vTpKCgosHXrVk6dOsWNGzfYtGkT7u7urFixAltbWx4+fCisD0eOHElTUxO//fYbU6ZMoba2litXrpCWloanpyfy8vIC3qGmpkb37t0pLy8nLy+v0977FNfX0tKCtLS0wOD9U/kaV1dX6urqhPyMxH0PIDU1lffv32Nvb4+1tTU2NjYi8bhy5Qrr16+nurqa7OxsUfimpKRw8eJFevbsyYQJE3j58iXr1q3DwsKCfv36ceXKFYGprKys5NSpUwQEBGBmZkZjYyPe3t7cvn0b6Ehar169ira2trDf7CqLOzY2luTkZKExC4jLLCsri2PHjnH48GGBN585c6b4DiTnqK+vr7iMGhsbSU5OprW1FVdXVyZOnCgkaXJycjh37hx5eXmChCWBYOnq6iItLY2+vj5WVlakpqbi6urK0qVLxWf96quvOHz48D+y+YWObqSVlRXDhw9nzZo1pKWlderc5+XlcerUKWEFvXXrVsEaLygoQE1NjREjRghXtYcPH3LmzBmkpKQICgpCXl6eZ8+ecf/+fRYtWsShQ4d49uwZGzduJD09ne+//x5lZWVKS0tJS0sTf+fLL78kPz9f6F13VeBeWlpaCMYXFRURHR2NsrKy6DjLysoydepUFBUVKS4uZteuXSQmJjJq1CgsLCz49ddfeffuHRMnTkRKSkrACHx9fdmxYwfV1dWsWbOGxsZGtmzZgr29PdevXxeWmxJoW11dHSoqKsjLy3Pt2jX27NmDmpoaJiYmwq5Zcn8cPXq0S7AzGxsb3rx5w/v371FXVyczM1MkNLq6utTU1PD8+XNiY2MxMjISpjLl5eVERETw999/i7H54MGD6dGjBy0tLVRUVKCnp4eLiwtqampkZGQQHR3dySGwsLCQuro6DAwMSEhIYM2aNcI6VEKikuQKgYGBqKqq/qOGjkRVo62tjdbWVurr68V36unpKd6xmJgYtmzZQkpKCjk5OezZswdFRUXCwsJ49OgR6urqTJo0CV1dXc6dOycgV7169RKKAfHx8UAHxl1RUZG6ujoUFRWpra0VjaKSkhJaW1vp3r07SkpKbNiwgfz8fHr27ImGhkaX7/2LFy/S1taGra2tWEt6ejqNjY04OTnx9ddfi9wnOTmZvXv3Ulpayu+//05AQADx8fFERkaKhoaamhpLly6lb9++/P333zx9+lS4nErUCvr06cPMmTN5+PAhW7duxdPTEx8fH6Kjo5GWlmbQoEFAR0Osra0NTU1NfHx8yMvLE2Tj/yu6nLweO3aMGzduMHbsWA4fPkxaWpoYbxcWFpKSkoKzszP6+voC0wUdF7+ioqKoMnx9fXn16hUXLlzgxYsXyMrK8vLlS+Tk5HB3d+fly5doaWkxfvx41NXV2b9/v8C4Ll68mKamJo4cOUJzczPffvstRkZG+Pn5sWPHDnJzc5k6dSqGhoZdlj6BjovRxcUFb29vxo8fT0lJCUeOHCEhIYHZs2ezbNmyfxsvOTs74+rqyunTp7l+/TqBgYGMHz8eS0tLnj59yoEDB4iOjmbu3LmMHj2aPXv2cOHCBTQ1NQkICBCJw759+wRbViIGDx0H45s3b9DW1sba2prW1lbRTetqJCcnc+zYMQYNGiTG3BERETx+/JhBgwbRr18/XF1daWpqEp269vZ2duzYQXJystBUlJGRIS4ujjdv3nDv3j1SUlKQlZUVl6FEpqi2thY9PT18fHzYv38/K1euxNbWluDgYCwtLUUlX15ejoyMDKampkIaJSEhgZs3b3Zpfe/fvxcYt08vEeioaJ88eYKqqiolJSU8efKEuLg4Zs2ahZ+fH0OGDEFbW5vi4mL2799PZmYmGzZswMHBoVOiDR0qDc+ePWPWrFm0trayf/9+evfuzfjx45k8eTJlZWUCI/zo0SPOnz+PgoIC+vr6zJ07l4MHD/Lu3TshgdTVkHz+srIyxo8fz4IFC9DS0iI9PV0Id5eXl5OWliZGzSdOnGDXrl3iAJVYNbe1tXH16lVCQkL44YcfOH/+PLdu3WLp0qUsXLiQlStXUlpair29PTo6OpSXl/9HjKeenh4KCgp4eXkRGxvLihUrsLa25ueff+7y+h49esSGDRvIysoiNDSU5cuXC1zVq1evWL16NcrKynzzzTfMnDlTJNCShPzw4cNUV1cTExODsrKy0H2VTHRMTEzYuHEjDg4OZGVlceTIEeTk5Bg0aBCRkZH8/vvvHDx4kLa2Nr777jvs7e2F/fGiRYu4cOECX3zxBUOGDCEmJoZ9+/Z1CV9/7tw5/vzzT/bv34+zszO7du0iPz+fVatWUVRUxPnz58nOzuabb75h5cqVlJeXM2fOHNH1GDt2LIGBgaKAfPr0qSAZOjs7k5+fz+7du3n16hVNTU3C+aewsJAtW7YQHx8vMPjy8vJCEudTQweAH374gcOHD3f5+Umivr5eSKlJQtKtbmtr49ixY+Tk5LB48WKOHj3Kw4cPxf6EjmL0u+++E6RH6MBwP3/+XGgBS0TSpaWlMTAwwNnZGWdnZ+rr6/n999/JzMzkyZMnvH37FkBM0cLCwli4cCEtLS2sX79e6BZ/bowePbrT/58wYYIgKENH4XbixAlyc3Px8PAQTl+lpaWMHDmSESNGEBISQmBgICdPnhTJa1xcHPPnz6dXr144OTlx9+5dtm/fzq5du/Dw8GDAgAGdVAwaGhrEJE1ydlZXV3dSAyopKSEjIwM/Pz/ByfickHTJDQwMCA8P56effqJ3797MnTuX1tZWwsPDqampEbJrknj69ClPnjwRZhoFBQVcvHiRjx8/oqmpib+/P/369RNn6pw5c/D396e6upq0tDTRLJCQ7BITE0lISCAhIYG3b9+KJPfAgQM8f/6coKAg5s2b14nw9rlx6tQp9PT0iIyMpKSkhBEjRuDu7i4Y/zExMWLStXHjRjZs2MBff/1Fr169mDp1Kv3790dRUZGBAwfS3t7OgQMHiIuLw93dnY0bN9Lc3MyZM2eYPXs23bp1IyEhgdbWVsaMGYOysrLAFUPHXevg4MCBAweYOXMmCQkJIgmWOIZKiq/PjQkTJuDj40NTUxN37twRttg7d+7kzp07ZGRk8Pz5c0JCQhg9ejRJSUm8fftWJLpbt24lJyeHo0eP8uTJE8LCwlBSUsLAwABdXV1RjH3//feUlJTg5eUlHFIPHjzI06dPCQoKolu3bmRnZ4sp1cmTJ1m/fj06OjosX76csWPHYmJi8lkFSJeTVzU1NTIzM8nPz0dLSwtbW1thCpCbm0t6ejrGxsbY2dkJX22Jdqmfnx9VVVXk5eUhLS2Np6cnWVlZnDp1iqKiIqADluDg4EBsbCzFxcXIyclha2uLo6Mj7969w8fHR1iVHTp0CGlpaYYOHYqVlRWKior07t2bhoYGkpKSKCsr62RL+Dlx6dIlDh8+TFtbG/PmzUNFRYXs7Gxqa2vJyspi9erVtLS0sHz5cpSVlSkqKiInJ0c4VFhYWBAbG8v3338vKt+vv/6axMREPDw8hJ9wYmIi2dnZpKenM3XqVMzMzEhKSuL58+e8ePFC+M7X1dWRnp5ORUUFampqgrQlGcd1VZ4HEJXep90yiZ5qbm6uKEZycnLQ19dHTU0NaWlpYmJiCAsLw8/PT1w+ZWVltLa2Cmeg27dvCxs/Q0NDHBwchLRKt27dcHNz4+LFi9ja2jJ27NhOHQDJCywZtUNHp7+srKxLB1JrayuKioqd4A7v3r2jvb1d6LheuHCB4uJirK2taWxs5MqVK/j7+xMQEEB9fT2pqakoKipiZ2eHh4cHfn5+aGtri1H5u3fvWLFiBbm5uULhQlZWlszMTEpKSlBUVCQ3N5fz58/j6uqKlJQU8vLywkUIEJq/cnJy/8gVRl9fX4zzdu/eLbp3L1++xMTEhMWLF2NkZIS9vT1ycnLU19cTHh4uEgMJmbCpqYl3795RVFSEqqoqe/bsYeTIkXz33Xd4enoyefJklJSUuHfvHrdv38bDw4NRo0bx+vVrfvrpJ/z9/cVIVFFRERsbG2JiYti7dy+vX78Wqgddjfz8fFJTU8nPzycqKorMzExMTU0pLi4mPz+furo6srOz2bBhA35+fnTv3l1cjAsXLqR79+4Cn9vW1iaKacm50rdvX/r27UtaWhpPnz6ld+/eYr+mpqZiYGCAp6cnurq6wg1JkthJijpNTU1UVFQoLi7m4cOHTJky5bPXJysri5KSkpAQlEjqrFu3DllZWVpbW+nduzcjR45ETk6O169f8+bNG0FOzcrK4vTp06Snp6Ojo4OpqSmWlpaYmJigqKjIx48fiYmJISkpCTk5OSG9JcHPNzQ0iPG1JFRUVAR+rbi4mD179vDrr78CdGL5f25IxqimpqbU1dWRlZVFY2MjlpaWaGlpUVxczN9//42srCzff/89EydOZM6cObx//57Dhw8TGBhIcXExLS0txMXFCfeh9PR0qqqqKCkp4f79+0DHeWNnZ0dycjI6Ojr4+vqyaNEi9PT0SElJoba2loaGBrS1tUVReevWLXJzc5GVlUVaWrrLHS0rKytqa2s5fvw479+/Z9KkSZ3Iifn5+ezcuZOUlBSCgoIIDg4mICCAJ0+ecOfOHa5duyZcCcPDwzEyMqK+vp6KigrCwsLIz89n6NCh5OXlERUVxYABAxg8eDBjx46lpqZGdEG1tbUFxGz8+PE8fvyY+Ph4AbFrbW0lKSkJXV1dJk+ezMqVKz97jdevX2fFihVAxyTqxIkTxMXFMWDAADIzMzlx4gShoaEEBQVx9epV8XN5eXm0trZiaGgo4A4fPnzg3r17jBs3Dn9/f2GDK7E/lpKSoqmpiZaWFuTl5QXZUqJBPHXqVO7evcu2bdsYO3Ys8fHxbN68GUBoG/8THkhsbCwNDQ3ExcWJPSLRQX7x4gWHDh1CRkaGJUuWMGrUKDIyMoQRg7S0NEuXLmX58uXi+5JMYezt7enevTs3btwgKSlJKO6cO3eO8PBw7OzscHNzQ1lZmczMTAoLC1FTUxMuX9BxN48aNUooPLS0tAiYyefGpEmT0NfXZ//+/Tx9+pSvvvqKYcOG4e/vz+XLl9m5cydSUlKEhIQIC2UFBQUUFBSIj48XXWVXV1dUVFR4/PgxDx8+xM3NjTFjxqCkpEReXh6mpqYYGhpiYWFBTU0N5eXlKCoqMmzYMMaNGydsjEtKSgTn5cOHD9TU1JCVlSVkAiWQkP8rupy8Ll68WGTsnp6eBAYG8tVXX1FZWdnJ9hU6Xuzo6GhOnz7NyJEj6du3L/fu3WP27NlUVVXxyy+/sHbtWmpra/nXv/4FgJeXFyYmJhgYGAirMl9fX+bPn0///v0JCQlBU1OTjIwMNDU1MTExoaioiMePH5OUlMTixYtpa2vj7NmzmJiYMHfuXJ4+ffrZ65OwxqHj4DE0NMTb25uwsDC+/fZbTp48ybp16ygpKWHPnj1ISUmxd+9eHj16hI6ODkpKSsLfWOK2I8FuzJs3j5ycHFauXElERATQIbFibW1NcXEx+vr6zJ8/n7lz54pO65IlS6isrBQV908//URbW5twNfsngtO+vr4YGRl1MnawsrJiyZIlaGlpUVRUxIEDBygpKWHRokUimZR4gre2tvLq1Sthqzhu3Dg0NDR4+fIlV65cATqgCZJR6qcdusGDB4vn+79HVxIHGklib2RkhIGBAYGBgTx58uSz1yepgj/1YzcwMKClpQV7e3u8vb159eoVmZmZzJgxAy8vL06cOMH27dtZu3YtcnJyfPPNN6xYsYL79++zYcMG5OTkWLJkCf379yciIoJly5aRm5uLoaEhWlpaqKurs3PnTj5+/CjkcHbt2kVDQwNLly7lhx9+oKKigvT0dEaNGkV2drbonuzZs+cfWW9CR1ersrKykzWptLQ0jo6O+Pj44O7uTnt7O3l5eeLAc3FxwdLSkrlz5wpdzRUrVlBUVISSkpJQa/jzzz9ZuXIlK1asYPPmzejp6TF+/HgmTZrExo0buXDhAkeOHGHq1KmoqamRlZXFxo0b0dLSYsGCBcTGxvLXX38xceJE0THoSgwcOFBc7FpaWhgYGHDu3DkiIyMJDAzk3LlzfPXVV5SUlNDY2EhrayuXL1+moKCA/v37C6JDRUWFuAgkicSmTZvEvt6wYQOvX79m+/btKCgoCP/4c+fOCR3lffv2CYauoqIiv/zyC/PmzcPT01MQH7sqXTd27FiGDx+Ol5cXxcXF9O7dG21tbTGh8vf3F3Cbb7/9ll69enHq1Cnq6+uJj4+nvb2dixcvCoOFAwcOMHr0aCGPZmtry759+4Q4/tSpUyktLWXBggX4+flRVFT0b3g7iXVlbW0tixYt4u+//0ZLS4uVK1cyY8YM1q5d26U17t+/n02bNgEdyYykO/3NN9/Q1tZGWFgY0tLSqKiocO3aNcaMGcOvv/7KunXrWLZsGbq6usKetqSkhLCwMIYMGSISHUk4OTkJQf5bt27x9u1b6uvrCQoKYsyYMdTX16Ourk5ZWRklJSWi+F+9ejUDBgzA2dm503nxuVFaWkpVVRU3b94URJaNGzeK35Weni4S4qqqKvr168eUKVPE+SEnJ0d1dTXDhw8nMjISe3t7oQZibW0t4HRZWVlAR2JUU1PD+/fvuXTpEufPn2fPnj307NmTlJQUgdcPDAykpaVF4IElo9ru3bt32bjn0ztG8rMSM6KXL1/y6tUrRo0aRffu3enTpw+5ublYW1tja2uLmZkZlpaWoviIiIhASUmJ2tpagVkuKCggPT2dsLAwpKSk+OmnnwQTff369URERLBt2zaGDRvGiRMnWLx4Mbt37+4Es/L39+fbb7/l5s2brF279j/aD/9fYWpqSlxcHEOHDsXIyEjoS0+cOJGxY8dSXV1NcXEx79+/F4nsunXrcHd3p7q6ulOjRFL0Spo97969Q15eHhUVFV68eIGxsTEBAQGoqqpy584dtLS0MDEx4ccffyQ6Oprjx4+jpaVFXFycUMg4evSogF7V1dV16qh/TqSnp/P1119z/fp19PX1O+HmJUotn0r9SUyGqqqqUFRUFMXvggULMDY2Rl1dnejoaJ4+fSrOlW+++YanT59iamrKuXPnOHnyJHV1ddTV1TFgwABB5K+urhbGL9OmTSMgIIC2tjb09PS6JFX3jxy23N3d6dWrF5cuXeLmzZsYGxujqakpRp8ScDJ0jBElX463tze+vr6CTXfw4EFcXFzEgxg2bBiGhobEx8fj5ubG7NmzxSZWUVERBAboEFgfMmQIOTk5REdHC0mivn37kpOTw5s3b4T8S1fXNmXKFF68eCH0WqHjpV20aBFNTU2cO3eOvXv3oqKiwqhRo3BwcODYsWNkZ2cTHBzMwYMHycrK4rfffiMtLQ1TU1Pmzp0rSDk1NTUEBQUREhJCeXk5T548wc7OThg5QAfR4ZtvvuH169cEBQVhY2NDZmYm58+fJzc3FyMjI8aMGfOPCDES//Pa2lrBTtXV1eX169d0794dfX193N3def78eaeXJCgoSDjvNDc3Iysri5OTExoaGuTk5BAXF8ewYcNISUmhuroaHR0dzM3N+fvvv7GzsxN4KRUVFeGRfPjwYZqbm5kzZ47QmEtLSxPsU4lUR1eioKCAwYMHo6OjQ1ZWFrm5uWhoaIhk/eLFi6IjOHDgQCwsLKitrRVC7YCo5s3NzfHw8ODixYscOnQIBQUF3r59K7rLDQ0N3LhxQ+g5amtr097ejpKSEs7OzigpKeHt7Y2enh5z5szh2bNnnD59mtu3byMvL8/IkSPR1tbuEqkQOpi9EuvHiRMnUlpaKnC948aN4/Xr19TW1lJeXo6WlhbKysoCiiKp4rW0tMjKyqKiooIePXqQnp5OZWUlhw4dorm5GTk5OUEmUVBQQEVFRXjJKysrCyKira0tNTU1KCoqCkej4OBggoKChDnD/3bI+pxQU1PrNBrdtGkTN2/eZPLkycIcQlJIStQlPDw8iIuLo7CwUJwJkrGjRIf47du31NTUsG3bNqSlpXn58iU5OTmCYNbS0oK5uTl6enpcu3aNgoICZs+eLT5HU1MT3bp166TzGxsb22WiyKfEF21tbb7//ns+fvxIeHg46urqTJkyhStXrvD777/T3t5O7969sbCwoKKigqdPn5Kfn4+GhgZffvklS5YsEWdddHQ0qqqq6OnpoaGhQWVlJS9fvuTDhw84OTnRo0cPGhoaiI2NFYYpkiR12rRpAGK8PnToUIYNGyasN7saqampHD9+nOnTp2NnZ4ezszPq6upoa2tz8eJFtm3bhpOTE3Z2djx58kTICZqYmFBRUSEKPgk04PXr13h5eeHs7CxwcUFBQfTu3VvI8MjKygqTicLCQuTk5ITF7ogRIwTm19LSEkdHRywsLMjOziY5OVnAUj43IiIiCAgIYNq0aWhqauLq6iomcZ6enqKhEx8fT9++fcUYdsSIEaITXlhYiIaGBnp6ehgYGCAnJ4exsTEODg68ePGCrKwslJSUsLOz4/Hjx2hoaDBixAju3btHREQEFy5cwMLCgvDwcNra2hg5ciS2trZCego6yI8SPV/JlPNzw8fHR2CC+/Xrx5dffik0tDU0NOjWrZvoyEkIhPPmzaNXr17iPouLi+PKlSvExcVha2tLQUEBFy5c4NatW0BH8aGuro6Ojg4WFhZUV1ezd+9eHj58SEVFBfv27UNDQwN/f3+++uorsrKy+PjxI5aWlsjIyODj40NMTAwJCQn/Zu39OdHa2srAgQMZOHAgqqqq3L17l7KyMvLy8jAzM2Pu3LlUVlby7NkzoqKimDRpEsOHD+ft27esWbMGW1tbunXrRnp6Os+fP0dVVZW+ffuioaGBpqYm7u7uaGpqEh4ezp07dwgICGDIkCFER0cLYrsEf25vb8+bN2+YPHkyQUFBokn26NEjCgsL+fDhAxkZGV3iEdy7d4/r168DHaRsd3d3AB4/foyLiws2NjYi31FUVCQkJISmpibOnj1LWloaampqNDY2EhYWhp6eHra2tpSVlXHgwAHS0tKorKwkKipKQP9cXV1RUFAgLS2NoqIi4uLiuHXrFhMmTGD48OE8e/aMx48f06NHD3r06CE+Z319Pe3t7Z2MMP7/osvJq0QMefLkyTg5OfHnn3+SmJhITk6OSF4/lReSgHFzcnLIzMzE2dmZSZMmERkZSX5+PufPnyc+Ph45OTmRoCUkJDBx4kThIJGamkp6ejoXL17k+vXrrF+/Hg8PDzQ1NYUj0uTJkwWYPysrS4jy/jfG2v8OHx8f8WW2trZSVVXFkydPqKiowM7Ojg0bNmBnZ8e2bdvYunUrLi4ufP/997x7944jR44wZMgQgSONjY0VYryjR4/m999/JzU1lYULFzJr1ixycnIEe/3u3budfLXj4+NJS0vDw8ODc+fOoaOjw8uXL9HU1CQ3N5cffviBmpqaLndCoEOSIjs7m7dv3/Lx40cGDx4sQNru7u4sXbqU0NBQ+vbtK8hcHz58EJelm5sbWlpaYrRTV1fHrFmzePnyJUuXLsXExEQ4cfTo0YOFCxfy888/ExISQlJSEiUlJUhLS6OpqcmPP/6Ira2t8K2urq7Gw8NDXDaS/74rERYWxm+//SbIC1u2bMHPz49169aRkJDAggULqK+vR0tLSxRDffr0Yfny5djZ2XHr1i0yMzOZPXs2K1euFNOGu3fvcu7cORobG3FzcyM1NZWKigrWrl2LkpISxsbGjB8/XgiK//DDD/Tv3x9tbW3a2tpQV1fHwcFBOPpcunQJT09PwsLCSEhI6JJF7F9//cWvv/7K6tWrWbduHW/evOH8+fOEhoairKyMm5ubkA0aOHAgTk5OBAUFUV5eLr7bp0+fCnOC7t274+TkRHt7O2pqauzbt4979+6J4uWXX37BxcWF1atXC+m56dOn8+WXX4okIT8/HwMDA5SVlfnpp5/+sd6iJCR2tdDRtfvrr7+QkpISFoutra2EhoZ2+t78/Pzw8/OjurqalJQUIbWWm5tLZmYm/fv3R0lJib///pucnBwmT55Mz549MTAw4NmzZ4JNbW1tzfnz54XShMSMBDoIf/Ly8p1IgPLy8v8IaydZh4yMDAYGBqSkpBAeHs7YsWNxcXFhz549tLe3s3jxYgICAli6dCnXrl2jsbGRfv36MXXqVKGDCh2d5aioKBwcHJCRkeHZs2ekpqaKRK+5uVmcuRKry9LSUjZt2oSTkxNTp06lrq6O5ORkIYsI8Pfff3Pz5s1OHabPif79+3P06FGkpKSYNm1aJ13lpKQkPn78iI+PD926daOoqEgUqp8W5ZMmTWLTpk3s2bOHv//+m9DQUFxcXNixYwdycnJ8+eWXtLa28vLlS5SUlBg2bBijRo1CV1eXxsZGLl68SENDA8OGDUNfX58+ffpw4MABzp8/z3fffUdRURErVqygra3t3zCs/y1kZGRQVVVl/PjxjBs3DikpKVJTU3n58iXW1tYYGRnR0tKCqqqq0F6OiYlBR0cHLy8vVFVVMTQ05Pbt21y8eJHw8HCBrb9x44Zww5o4cSKysrKiMdKvXz9mzpzJ69evyczM5MqVK5w6dQroKLglCaWJiYlQbFFUVKS5ubnLEKVZs2YJXKqlpSXTpk1DV1cXNzc3oTIiJydHY2MjxsbGWFpaCpthSUg0U6HjvY6Ojhaa8WZmZvj5+bF9+3Z0dXUFzvvEiRNMnDiRIUOGsGfPHkaMGMGhQ4cYPXo0586do6CgQJhCXL58mdmzZ4tzuiskbejoZo4dO1bsu9DQUNLT0wkPDxe6rtAB1XJxcRGqBMePH2f37t3C2ez169dUVFTQrVs3Nm3a9G9627W1tWRmZoomjqQhV19fT58+fZCTk0NTU5PExERBmn337h3nzp1j9+7dNDQ0CDv5riSvEoigh4cH3333Hebm5gKuIbmz37x5w40bNwgICMDHxwcfHx/ev39PWlqakPFKSUlBQUEBbW1tysvLef78Oc+fP8fe3h4bGxsxBRsyZAgDBw4kNjaWlJQU1NTUkJWVFbrREjhGRUWFMD2QYLRNTEw+C+7Z5eRVwl7V0NCgX79+qKqqEhsbS1lZGTdv3sTR0VGQmW7fvs2ePXtQUFAQsit//vknkZGRbNmyRbh/uLm5ce/ePR49ekRra6tIADMzMzl69Cjy8vIMHz6csrIyDh06xObNm3F3d+fJkye8evVKXHB1dXWCNb97924uXLjAggULOmG6/lt8CrYHBK61sbGRuro64VpTX19PXl4ehoaGSEtL8/PPPzN+/HjBoJPYkaqoqODj44OsrCwjR44kMzNT+PomJSUJzJLk4pd4G2tpabFw4UK8vb1FO1/iCrV69WoSEhJIT0/vRCD63JD4cefk5HDs2DEOHDiAp6cnffr0obCwkA0bNjB8+HA8PT0BuHPnDqtWrUJaWpp58+YRGBjYCR+mrKwsZGgOHz6MkZGRsEDU0tJi2bJlGBoaoq2tjaWlJWlpaRw6dAg5OTmCg4MZN26cSNzl5eU7vZSGhoa0tLR0CfrR0tJCXV0d8vLy6OrqEhcXR3FxMQsXLiQ4OJgffviBU6dOiRfY1NSUpqYmhg0bRnBwMLdu3SIhIUFIfRUUFLBjxw68vLyEDNiOHTtwdnZm586d/Otf/6KpqQkjIyNSU1NJSkrCwMAAFRUVYmJi8PX1FZ1CQ0NDpk2bhomJCTY2Nhw5coRNmzbh5eXVpWeor6/Pd999Jw5pGxsb/vzzT86ePcvy5cvp06cPjo6OPH36VFxeUlJSnfT4bGxsmDRpEmfPniU9PZ1JkyYxY8YMGhsbWbVqlUhcJR2qoKAgBgwYIJLfT4stIyMjQVaqr68XIuhjxoxBXl6+EwHnc0OCb338+DHR0dHMnDkTGRkZzpw5I7pYmpqa5Ofnc/r0aTIyMnBzc2P48OGYmJjQo0cP9u3bx40bN4QfuIKCAk+ePKF3795cvnyZzZs3Exoaiq+vL//617+4desWVlZWeHl54eLiwvr167l//z7r16/H39+fyZMno6urS3FxMdu3b8fQ0JAlS5bw888/ExgY2CVy4dOnT3Fzc0NTU5Oqqiqhy+rk5ISTkxNNTU00NzfTt29f1q5di6qqKuvXrxcQkW7dumFkZMShQ4cEjEDSAc/LyxMKFEFBQSxcuJC7d+9y7949EhISCAwMZN26dZiZmYkC7P3792zevBkZGRlMTEwELhQ6zvKTJ092WW1g/vz5KCsrc+vWrU6sf+jAKErOcktLSyorK0UyYmNjw4gRI9DW1mbr1q3o6emxbt06oTFqZGTEr7/+SmZmppjk6evrExISQr9+/cR4W0FBgaioKGFKoa+vj5KSkhCZ37hxI2pqavj5+fHq1Sv27t3biRj238LOzo6YmBhSU1NpbW3Fy8sLAwMDvLy8yMrKIi0tDQ0NDSZMmICtrS3Nzc1C01xfX5/IyEhsbW0xNDRk6NCh1NbW4ubmRk1NTSdpMh0dHZycnLh+/TpXr15lzZo1mJubs3TpUvT09Lh48SIxMTGCZ+Ds7CyKqw8fPnDnzh3MzMwEbKsrIUnoCgsLuXv3LlJSUmIi0tTURGxsLFJSUsyePZvZs2fz5s0bfvrpJ0GUdHFxQUlJia+++gotLS2qqqo4e/YsHz9+ZM6cOQwePBh7e3uMjY1paGjg7t27hIeHY2Jiwvjx4xk1ahT19fWcP39enEny8vKCeCknJ4eZmRnl5eWYmZn9R23u/xYSc4hPw9bWlmvXrnU658zMzDAzMyM5OZnZs2dz//59Ic+VmZmJgYEBmpqaDBs2TCSuBw8epKGhQRT9b9++5cyZM8jLy/Pq1SsxJcjJySE9PZ3AwEAGDBjA8ePHcXV1RUlJSfBeDA0NCQwMZMSIEdy9e/ez1zd69GiMjIyE8yX8D7xMMm3w9/fn4sWL/Pnnn4SGhtKjRw+++eYbjI2Nsba2JiEhgdzcXLy8vBg6dCh//vknioqKQg/2r7/+or29ne7du/P+/XsOHDiAoqKiuP8UFRV59uwZ27dvF3JyPj4+4j6pqKigvLwcHR2dzyqSu5y8Si4/Cc5DIswbFhZGc3MzqqqqNDY2kpCQQGJioiD/tLe3i6SlpKSE6dOn4+vrKzQJe/ToQWJiIkpKSsycORMrKytWrlzJli1bcHNz46uvvmLu3LmUlZURHR3N+fPniYuLQ0FBAQ0NDWJiYqiqqsLQ0JCAgACUlZUpKCjg3bt3XUpe8/LySE9PF3aC0CECXVVVxfPnz5GRkSEgIIC1a9eSl5cHdODEdHV1CQwMpLm5mcePH3PgwAEaGxvx8/MjPDwcCwsLLCws6NWrVycRZX9/f3r06MH79+/R09MTYvVubm5irJibm0tVVRV6enr06tWLQYMGkZ6e3uUuiCQkQu9JSUlcvnyZxsZGhg0bxuzZswWr1cjISCSvr1694t27d6KTUVtbi4KCAu3t7VRWVlJTU0NoaCi1tbVcvnxZjKgSExPFJTRixAhqa2vFC/vjjz8iJyfHvn37RHJeW1uLiooK9fX1NDQ0oKqqira2ttjcnxsSGAt0AOYHDx6MvLy8GF2vXLkSS0tLysvLUVBQEALwqqqq6OjoMHDgQCFBs2rVKnbs2IGfnx/+/v4YGxtjY2MjbD2/+OILiouLkZGRoVevXjx9+lSQFuTk5GhubiY4OBhvb2+Bu504cSKKioq8fPmSc+fOCYeR/+bl/Gm4urqyYMEC6urqyMvLw8TEBA8PD7755huUlJTw9fXFzs5OHHjwP4UndLy/ElJXUVERmzdvxt/fXzyLIUOGcPPmTYqLiykrK2PgwIHMnDkTdXV1WltbhauehFzS0tKCra0t8vLyZGdns2fPHnR1dRkzZgyqqqr/yLJRVVUVVVVVUlNTKS0tZeXKldTX1zNnzhyioqI4ceIEKioq5OTksHHjRiorK5k/fz49evTAxMQEaWlp7O3t+fnnn1FWVhbudD169BCX3N27dzsRRKBDrSIzM1PYItrZ2eHr60tubi4LFy4E4PDhw0RFReHt7S2+/4CAgC4lr2VlZZ3whxUVFVhaWnYyVZkyZYrolpWXlzN06FAKCgrQ19dHR0eHhw8fsmXLFurr63F3d2fQoEFIS0uLyZabmxvbt2/HwcGB58+fi987adIk+vbtC3SQzr7++msiIyPZsWMHpqamYjrQ1tZGYmIiVVVVXU56oKNg+vLLL7l16xYbNmzAwMBATNQGDRrUyVnn02hvb2fo0KGMHDkSPT09CgsLefLkCXp6erS1tdHQ0ICVlZV4p/X09LC2tmbMmDHIysry4sULnJycRMdHQ0NDmJ20t7eLv7ts2TJMTU2ZN28e+/fv59SpU11KXs3MzIiLi2P//v08e/aMJUuWsHXrVhwdHTlz5gwPHjygd+/ejBo1SpBQJNABiSthfHy8ICwNGzYMbW1t0ZFOT0/HzMwMW1tb7OzsCA0N5ejRo9y4cYNffvmFL774gtOnTxMdHY28vLxgs8P/KKxUVlaSlZWFjo7OP4LvFBYWIi0tzb59+7h27RpDhgwR8n6VlZVUV1dTUFBAdXW1cDC7du0a8fHxovs/btw4tm3bJhLLR48e0djYyNKlS4WzYEpKCsnJyRQUFDB06FDMzc2xsbGhoKAAPT09Zs2aJZoA5eXlvHnzBgMDA7p160Z+fj4WFhZkZmYKLdKuRN++fWltbUVKSoqWlhZyc3OJj48XutJtbW2UlZXR1tYmirHXr18TGBiIm5sbjx49Ql9fn2+++YaPHz8KhYDS0lLWrVtHaWmp0Jg2MjLi/v37RERE0Nrayvjx49HT06OxsVFgmyVNDkCQmIYPH86sWbMYMWIEQJeSV4n6BnTI7DU3N6OrqyvIwhoaGkhJSWFubs64ceM4efIkMTEx9OrVS0xf4uLiKCkp4ZtvvqFPnz6cO3cOTU1NfvrpJ2pra3n69Cny8vJ4enpy69YtYUEsJSUl7lPocNDy8/MTyX1eXp5wR01OTqaqqkrIcf5f0eXktbi4mIKCAuTk5ETHU0JU6NevH/r6+sybN4/o6Gh+++03goODWb58OdOnTxfdPXNzcxITE7l79y62trbMmTMHU1NT1q9fLzTdMjMzqampQUlJiaqqKm7cuMGIESOYO3cu0dHRQpNRXV0dAwMDysrKsLS0pE+fPhQUFPDbb7+Rl5fHhg0bupQU5ObmEhERgbu7u0heU1NT+f3330lKSmLChAnicHjw4AEqKirY2Nhw+fJlDh06JEbEdXV1rFmzBmdnZ5YtW0ZYWBgXLlzoxKT39fXF1taW9vZ2mpub/6PMTkNDA2vXruXSpUt4eHgwfvx4UTFJuhRdDck4V0LgWbt2rcD0GRkZsXbtWnx8fIQuYW5uLps2bRLMasnzlpKS4q+//uLChQt4e3szfPhw/Pz8qKmpobi4mAULFqCurs6+ffvo1q2bkMfQ1dVl6dKlmJmZdQKJq6io0NLSQnh4OI2NjQQEBPyjzvKnmC45OTmWLl2KnZ0dJiYmxMTE8OTJE5ycnBg+fDhSUlKoqKhQVVVFWFgYHz9+ZPr06aIwWL16Nfb29vzrX//ijz/+YO7cucLqTqKIsXnzZgwNDXn8+HGn5EWi0ycrK8vmzZsZP348mpqanD17lqamJoYPH87GjRspLS2lf//+XdqnxcXFFBYWsmPHDtLT0zl8+DBff/01CQkJSEtL8/btW9GV+E8g+E8LH8mFImF3S2xVdXR0KC4upqqqit27d2NiYsK4ceOQkZEhMTERe3t7qqurOXDgAAYGBoKgWFhYyHfffYelpSUKCgq0trbi6+vLw4cPP/8hfhISS2YJHGjDhg3s3LmTBQsWcPjwYZycnGhsbERTU5OVK1diZmYmsNyDBg0SGPXhw4cL5YTLly/Ts2dPTp06xV9//cXNmzdZsmQJo0ePZvHixSQlJYnOlWS/SxQ2Dh06xA8//MDy5cvZunUr7969Y+vWrWRkZHSp6+Pj4yNwpOrq6kydOrXTv8vLyzNhwgRycnI4cuQI0tLSTJ06lSVLlvDw4UNu3rxJVlYW48aNE2YvTU1NogsXHBzM0qVLaWxsZOLEiVy7dg1ra2tOnz6NgoIC27Zto1u3bnTv3p2UlBSysrKYOnUqFhYWODo6Ii8vT0xMDKdOnUJOTo558+Z1SWLp07CxsUFbW5uEhATev3+PlZWVKKQ+LaqgI4lJSUnBwMAAfX19MjIymDZtGhEREUydOpU+ffqQmJjIqlWrsLOz47fffsPDw0PAz2pra4mPjyc7OxsnJydcXFzw8fERRdynZ/C3337bqYDoitQZdBQ6Xl5e+Pv7k5GRgaWlJbKysuTl5VFSUiJsY/+3tGJzczMfP37Ezc2NjIwMzp07h4eHh5D2U1BQYN68eSxcuBBzc3OUlJQoLS1l5syZguwjufzv379PQ0MDZ8+eZeTIkeTm5tLW1ibuBz09PSZMmNClJs6nER0dzdmzZzl27Bjq6uo4OjqKbqStrS2rVq3C1dWV3NxcZs+eTW1tLT/99BMuLi48fPiQK1euIC8v3+ndGDRoEBUVFZ0cswwMDJCVlaVnz54iAczLyyM5OZnffvsNOzs7oe167NgxgTMtLCzk0aNHZGdnEx0dTW5ubpcdCwEBf4iJiRFGLb/++itubm6Ulpayd+9eLl++jJKSEt27d2fXrl2MHDmS6Ohobty4gaGhIf369SM5OZlp06axefNmfH19mTVrFq9eveLWrVv88MMPbNiwgYULFwpN59bWVlpbW5k5cyZffvklrq6ulJaWcujQIfz8/DAwMBDmIpLEtashkWOUwDd0dHTEedbU1PRvJjb/6T13c3Njy5YtgsSqra1NQUEBR44cEXCmO3fuEB0djbGxMbW1teTm5nL69GnU1NRYvnw5Hh4e7N27Vyjj7Nu3j5s3b/Lrr79iZWVFcnIyOTk59O7d+7+uqcvJq6Qi+bQ6bW9vJyAgAAMDAwFAbm5uprGxEXd3d7y8vLh//z4fPnzgX//6F/b29rx48YKTJ09SUlJCXFwcampqwuO9rq6O+/fvExUVxcSJE3F0dERKSorq6mpsbGwoLCykoaGB2tpa8VDd3d0FDOHJkyekp6cTHBzM1KlTu5QUJCYmYm1tjbS0tOgEpqamcubMGRwdHRk8eDAtLS2sXbuWffv2sWLFCgYOHEh0dDR3797FyMiIVatWYWtri4uLC2/fvuXly5eoqqqSkpKCra0tEyZMEF7XWVlZmJubExoaSmFhIS9evMDa2hpnZ2cSExO5fPky0dHRNDY2Ul5eTlFREWZmZowfPx5PT89/5CYiETrv1q0b48ePx8vLi/LycgoKCrC2tkZFRYXCwkL2799PSkoKU6dOFViwpKQk8vPzOxEBoqKiiIqKEgYGGRkZ3Lhxg7i4OOzt7amsrKSiooL79+8jLy/PiBEjxItTXFxMXV0dxsbGyMnJUV5eLmxZJVqlkhfqcyMvL49t27YxYcIEzM3NOwH4nz17xt27d3F3d+90aWlpaWFvb09dXR2VlZWiK2JgYMCXX35JZGQkcXFxwgJSgs2TJErv379HU1OTCRMmoKury8OHDzE1NSU4OJjnz5+ze/dulJWVGT9+PBUVFbS3twtnOkAQwD43dHV1SU5O5tWrV0RGRrJ3716GDRtGnz59UFRURElJifb2dtTV1cWlIS0tTXx8vMBb9erVC1VVVSZPnizYvxIM2qtXr4Rub79+/aivr+f06dOUlZUJS0NNTU0aGxuFJJykq56Wlsb06dM7yQ79k67d+/fvKS4uxtvbG2NjYx49ekR9fT0+Pj7Mnj2bXbt2sWvXLtTU1AS+Ly8vj7KyMmJiYpCVlcXa2pqKigqKiop49uwZbW1tVFZWEhMTQ2xsLEOGDKFbt26Ulpaira1N3759kZeXJykpiWfPnglolIWFBcnJyVy8eFHozkq6742NjaSkpPDx48cu2YtK8JDt7e0UFhaSnJyMvLw8Hh4eKCsrC4WG5ORkampqMDc3Fw2DcePGkZKSgoaGBsuWLeskLVNaWkpGRoawK37y5Am3bt1CTk6OGTNmCEF4Cfnu6dOnfPfdd5iYmHDw4MFOFqLFxcWcOnUKVVVVRo4c2eWg/H8tAAEAAElEQVTkVWKd6ezsjL29PY2NjRQVFWFgYEBbW5vAWEuet0TWTAK7AQQBUoIrV1FRobKyktTUVGpqaoiPj6exsZG8vDwhrffo0SMSEhIYMGAAU6dORUVFhQsXLmBjY4OnpyexsbG8ffuWgIAAMdnp2bMnu3fvFjjTz4ndu3cza9Ys+vXrR/fu3UXXXIJhbmlpobq6Wkjo5efnCwF8TU1NTE1NKSwspLy8XBgcWFlZYWBgQJ8+fWhubhYqBNbW1lhbW4uxb319PZcvXyYlJUUYadTV1aGkpNQpUTQ3N8fc3Jza2lpu377dKWH8nJDodktJSWFtbS0gA+/fv0dfX1/s+YSEBP766y/MzMyETbKJiQnp6enU1NTw4sUL/Pz8KC4uZuDAgSgoKNDS0iLG0Q4ODqI7Hh8fz8WLF+nTpw+urq7U19dz6tQpXFxcMDAw4Pnz56IjW1tbi46ODt26dRMEt64mr5J9Kom2tjZkZGREc0VHR4c7d+4QFxdHQEAAXl5eogjS0dFBUVGR+/fvi4mrmZkZHz58oE+fPvx/7J13eJRV+v4/k957JY30QhJCDSUQeu+99zq4KAhSRBFUBBQRlEFEpHcUpPcaILSQECCkkZBCeu/1/f0xzlni7n6XuO6q/HJfl9fIzGTmnHnPe85znnM/9z1nzhy2bt3K2bNniY6OZty4cYwaNQoTExO8vb2Jioriyy+/ZNKkSVhaWpKYmMi3335LTk6OcL1ycHAgLS2NXbt2UVhYWO+TLFXSSUUhU/FdnZycMDExEZtHCwsLpk+fjru7O1paWqSmprJ//35KSkpo2rQp/v7+JCcnc/XqVfLz85HJZHz22Wfo6uoyePBgsrKyePbsGUOHDhU1Lenp6axYsQJXV1fGjx8vsrAvXrzg0qVLFBcXi/XUzMwMU1NTsfb/X6h38KqpqYmampogGVdXV4uBcvjwYfbv30+XLl3w8vLi2rVrwnrwnXfeQZIkwXdq164dvr6+VFVVkZKSwrfffsv333+Pqakpfn5+otK9T58+jB49GiMjI4yNjUlNTUWhUHDw4EHRphs3bjBq1Cj8/f2JiYmhrKyMtWvXCh3L+iArK4uRI0dy584dTp48yciRI8Uk2rJlS5o1a8a5c+dENboqeFRlUMaNGyeKEnbu3MnWrVtxcnJi3LhxwpHrrbfeIj4+XlRF29raYmhoyLfffsvSpUtZsGABWlpafPPNN5w7d47OnTvz0Ucf0apVK/T09KiurkZbW1s4X9UXrq6u5OfnM3z4cDw9Pfnoo4/49NNPWbRoEd7e3pSVlbF06VLi4uJYvnx5HX9yR0dHIiMjSU5OxsHBQXgbP3z4kE2bNnHw4EFKSkrIzs5GW1ub0aNHExQUxIkTJ5gyZQr9+vUTu8fs7GxevnyJmZmZ2PWpimMMDAzqqBrUB46OjixatIiKigpx9Jubmyvc4SZMmFBHJkyVoQwKCqJ169YUFxejpqaGubk5xcXF5ObmsnDhQszNzTExMRECygEBAeTk5DBs2DBKS0vZt28fwcHBBAUF4erqSlhYGMeOHRNFg1VVVTg5OfHpp5/+g9TJDz/8UK9q7i5dulBaWsqoUaOoqanhxIkTPH36lCZNmtCxY0fs7OzQ1dWlurpaZK+jo6PZtm0bBw8exNzcnLlz5zJjxgy8vb358ssvhWbh8+fPhZSbauyVlZWxYsUKZs2axcSJE9myZQugzBBNmzZNBE+qgOvVYorfivv373P06FEmTpxIz549hdNLaWkpQUFB2NjYMGXKFMLCwhg9ejSampoMHjyYkpISXF1dqa2tFRnU3r178/HHH3Pt2jUePnwIKLV6u3Xrxg8//MDy5cvZuHEjFy9eZPHixcTGxnLp0iXc3NyE3eHt27eZPXs2O3fuZPny5dy6dYsjR47Qrl07vvrqK7Kysli3bt1r909172pqaoojZ1NTU7777jvatGnDlStXuHjxItbW1owdO1ZUCKswd+5cKisr/0FRZezYsbi7u4sCMyMjI7Zu3UrPnj25desW/fv3p3379uzatQuABw8ekJubS2JiIl9//TWTJk0SAYrqFCUrK0uYHPwWqPSbra2t0dHRoaKiQthBg7Je4cKFCxgZGTF48GC8vLzIyckBlNm9PXv2UFlZiYmJCZWVldjZ2bF+/XouXrzI5MmTKSsrY/DgwbRs2ZKMjAxiYmKIiYnBzMyMpUuXkp2dzcqVKwkODubrr7/m5MmTfPDBByxbtkwYT6gMG+oTvKoqwMeNG8fgwYNF0GhjY4Ovr68Q1X/x4gVnzpzh3r17aGlp8fbbb+Pn58e6deuEPefdu3f5+uuvmT59upi3FAoF77//PosWLeKDDz4Q3xsdHc327ds5ffo0JiYmVFdXs2TJEiIiIoQ0WXFxMYWFhWLzfvr0aXbu3Ck2Xa+LVq1a4erqKmTrVGvQkydP0NHREcGrpqYmlpaWODo6CjfGyMhI7t69S3V1NZ07d6aiogJ9fX0aN24sAsNt27axbt06FixYIDKe69at4/Llyzg6OtKvXz+GDBlCREQEixcvFpbHp06dYufOnSxcuJCJEyeKjLyhoWG9ElagDKRUttOenp5izLxq+dyoUSO6dOnCrl27iI2NZcKECTRp0oRJkybRvHlzNm/ezOzZs5k8eTInT57Ezc2N0tJSsXHx9vYmPT2dO3fu0K9fPyZMmEBycjKTJk3i/v37BAQEEBQUxKeffkp+fj5ffvklDg4OFBUVCRrX4sWLSUtLw8DAQNAKXgdOTk5IkoStrS3a2tqEhoby8uVLUdiugoeHB2vXrsXExARJkvjmm29YvXo1gJBffPr0KVFRUTRv3pxRo0Zx+/ZtPvvsMzZt2kRMTIyoj9DT06vDF351QxUVFcWDBw/o0qWL8ATQ1tYWyZ/XKX6td/DauHFjdHR0CA0N5fHjx3Ts2BFDQ0OSkpLYu3cvp0+fxtjYmLZt2+Lq6srTp0/JyMigpKQEXV1dDh48SH5+PjU1NcycORMnJyd++OEHzp8/T9euXcnOzub06dMEBwcL+ZMDBw6IQoHQ0FChDTh16lTu3btHeHi4kDgyMDAQtqdAva3imjZtir6+vsgqgXLQenl5UVJSQlRUFLq6uowePZr8/Hx69+5NZWWlsDB9Nd1dU1NDr169BFdJRVjet28fFhYW2NnZER4eztq1a7l27RoVFRWMHTuWtm3bioK40tJSLCwshP7t74EdO3Zw/fp1tm7dir+/PzKZjMePHwvCel5eHlZWVri6uopg7tixYzg6OopCGVUAHxcXh729PU5OTly9elUscJ06daKkpIT4+Hjhyz516lRCQ0NZtWoVkyZNolGjRlRUVKCnpydEwg0NDX8zl1eFcePGkZ2dzdmzZzE2NmbcuHFcu3aNzz//nODgYD766COhQevn54empibJyclERESgqakpMvigHG/h4eF07dpVVFOWl5eLHfKaNWuE3IjqhvPx8WHMmDGkpaVx7tw5QHlM1r17d7FY5+XlsWTJEpo3by5czeqjZQvKQrlBgwZhY2NDYmIiBgYG2NnZUVFRwcOHD/H29haGCOHh4Zw/fx49PT26du3KmTNnhKNTVVUV5ubmwo7z66+/JiUlhTlz5uDn58f58+eJjIyksLCQkSNHsmjRIjEpqaRgVGjVqhXt27dHR0eHx48fExoair+/f70L0uDvknsnTpxAT0+PDh061Ang3NzcGDBgAI0bN2bcuHGkpaVx9OhRioqKCA8Px8DAADU1NTp27MjWrVuxs7MThX+jRo0iMTGR0NBQLly4QJs2bdDU1OTGjRuCRqISti8rKyMlJQVDQ0N69+5Neno63377LRkZGTRv3lwEB/XlE8pkMjQ0NMTvP3nyZCFh9fLlSzIzMwXnTtVvVUGLoaGh0LLMzs5GV1eX8vJyvv/+e2xsbJg4cSJFRUWMGTMGOzs7Pv/8c0C5cU1LS+PEiROcOHGCvn370qtXL0pLS/noo4/YvHkzJiYmIni1srJi4cKFqKur4+zs/Fq2ja/i2LFj3Lp1Czc3N+bNmycy36/SWS5dusS9e/fQ09OjcePGgkZgaWkpjsRVR+SqrHlAQABDhw4lLy9PFDapq6tjYWFBbW2tKCxU6Xba2toye/Zsscmys7Oje/fuQh4oPT1dBFn1gcqRy8zMjLi4OCIiIsjLy6N58+Y4OjrSrVs3iouL2blzpzhdCQwMRC6XU1ZWxpIlS0hNTeXu3btCBSAiIoIXL14gSZLg/sbHx7NkyRKRlfb396dbt25C07ygoEDYox49elRkNn/++Wdu3bqFqakpmpqaghb04MGDevXTzMyM6dOn8/z5cxHsNGrUiNOnT3P//n3Gjh2Ln58fa9asEeYboMz4qcwS2rVrJ+aNzMxMEbza2dmRlZXFlStX6NKlC0eOHBEUo4KCAn766SdhROHp6cmUKVPw8vIiPz+fR48e0aRJE1HBruJx1zd4/fnnn/Hx8UFNTQ0dHR0MDAzQ1dWlsrKSixcvkpSUxLhx4/D19SUzM5OdO3eSkJBAQkIC8fHxzJo1S5gWDBgwQNiunz59moyMDFq0aMGQIUOwsrJCTU2NFy9eEBkZyaNHj8jJycHV1RUbGxt0dXXp27cv5eXlYqyqTpbKyspIS0sjNDS0DvXldbBv3z66d++OpaUlZmZmtGrVCplMJu5BSZIoLy8nOTmZvLw8QWlq06YN/fr1w8XFBT09PZHpd3Fxwd/fX9B/fvzxR2ELLEkSbm5uglr64sULJk2aRJMmTUR7VDrvOjo6yGQyysvLMTQ0FNSe11HEqHfwqpI1uHHjBqmpqULQWuUzPXjwYKqqqigtLWX8+PEcPXqUqVOnYmVlxciRI3n8+LGoRFZVO588eZLCwkK2bt1KeHg4vXv3JiAggLFjxzJlyhS2bNlCcXExgYGBnDp1Ch0dHaZNm8a6des4duwYY8aMEWnmRo0aYWBgQHl5ufCdrw9UagGqIpSSkhLhyRwbG8uFCxcYPXo0+/btE7vLoqIiKisrMTMzEzdneHg4zZo1Y8qUKXVsXB8+fMjmzZtp1qwZAwYMoLS0lPDwcMLDw1mzZg3vvfeeaIuLiwsdOnTgwoULxMbGiuC1uLgYfX19UbhQX4SEhHDixAl2794t+Mh+fn6i6lBlgacyf4iMjEQmk9UJnisrKzl27Bi5ubkMHjyYxo0bk5iYSHh4OJMnT+btt99m7969/Pzzz5w7d44JEyawfv16Zs2axfvvv4+mpiYLFy7Ezs6OvLw8Kisr0dLSEratxcXFmJqaYmxsXG/aQGBgIPv37+dvf/sbu3fvpnXr1mhqavL06VMcHBzQ1tZGQ0ODqKgoEhIS6NatG3p6epw/f57bt2+zZMkSQZOIj4/nxIkThIWF0bt3b1q3bi0KDLZs2cL27duxsbFBLpeLG6+0tJSEhATB2XZ3d6d///51MpEXLlxgzZo1DBs2jOHDhzNy5Mh6Ba+5ublCuH/gwIFijGVnZ6NQKLh37x4TJkwQhRUqLtHcuXNxdnZm0KBBnDp1in379hETE4OOjg6tWrXCxMSEHTt2YG1tzfTp07l37x4rVqwAlKL63377LSYmJhQUFCBJksiEqampoaGhgSRJYhOUmprKoUOHqK2traPX+rrQ0tIiMDCQiooK0tLSSE1NxcrKSmTkLC0thasNKCktf/vb33j8+DGPHj0iMTGRAQMGoFAosLS0JD09nezsbGxsbOjWrRv29vbs3LmTqKgoDhw4QL9+/dDX1+fzzz+nsLAQPz8/UUkO8PHHH7Ns2TI++OADPvnkE+bMmUP79u2Fs5GqOPV1UVtbKzbX3bt3p3v37jx//pyjR48SGRlJYGAgkyZNEn7tampqaGpqUllZSXR0NH5+fhQXF3Py5En69u2LnZ0dx44dIyUlhXbt2hEdHc2xY8eE1i4og4GhQ4eyZ88eBgwYwKxZs3jvvfcYMmQId+7c4aeffqqTLfHz8xNa20C9VD9AKVv4/fffM3PmTObMmSM0aquqqujcuTM1NTVERERw7tw5mjZtSpMmTaiqqhIV1j/99BNWVlZ07NgRDQ0Nbt68iaGhIebm5lRVVVFUVISbmxv29va0a9cOCwsLjIyMmDlzJgsXLhT3pKrQT5X9GTt2LJMmTRILZ3x8PEeOHCEzM1MUqr4OFi9eDChP7M6dO8fp06dRV1cXmsi+vr6YmprSvXt3vv76azw8PMRvGBsbW8faVldXF319fYyMjDhy5Ahqamr069ePd955hy+//JJ3331XjJUxY8ZgY2NDhw4dhLzW5s2b0dLSYvXq1aSmphIUFERycjJ79uwBlNrVqs+oD6qrq8VmQuWUpaGhQfPmzYVUlEwmY9GiRUyePJnU1FRR0K2mpoaZmRlqamoUFRUJndlXT9Oys7PR0NDg2bNnfPLJJ9y6dQttbW3atWtHcnKycJ5r27Ytu3fvFtzdwMBAYXijQn5+fr1P6kBJh6ypqUFDQ4OysjJevHhBSkoKpaWlPHv2DBMTE6GlvHnzZs6cOYOamppYg1XSUiqUlpby5ZdfEhERwZAhQ+jUqZMokMrJyeHbb78V9qndu3dn3rx52NvbU1VVxaBBg6ipqREFzpqamujp6REcHCwkyFJTU/n0009fu387duwQVvT6+vqCKlNbW0tNTQ2ampro6upSXFzM/v37uXbtGjNnzmTgwIGCKnfp0iVOnDiBra0tXbt2xdLSUpzWdezYkUePHpGeno4kSSQnJ4vvGTVqFHPnzqVp06aUl5cLB7OgoCDmzp3LlStX+Pzzz+nVqxc1NTXk5+fXqYX5V/hNJgVVVVW0atWKbt264eDgwPPnz6msrGTo0KEMGjSIsrIycZQVHx9PXl4eEyZMYNmyZezatYvQ0FACAwMZMGAAampqQioiJycHIyMj/Pz8uHDhAgkJCTx9+hRQZoNULlxBQUFMnDgRUJoVLF26VPA4QRlYxcTEUFhY+Ju1JiMiIrh06RJFRUUMGDCAadOm8ejRI3R0dCgpKcHS0lLsLrW1tZk/fz45OTki42tra0tOTg7JycmYm5sLukSTJk2EJuqGDRsoLCzE19eXMWPG0K9fvzqBLih3mqqMh0pmbODAgQwaNIiff/6Z9evX1xFLfx3MmzePnj17UlxczOHDh/H39ycwMJDS0lLi4+NxdXVFQ0MDLS0tLl26hK6urrhxq6uryc7OxsDAgFWrVmFtbU1WVhabN28WG49ly5bh4uKCtbU1np6edeSZ+vXrR25urrD4tLW1paKighs3btCxY0f09fVZsWIFe/bsoVu3bkyfPv03Z2I/++wzwsLChADzd999J7JjqkVs7ty5jB8/nk8++YTZs2fz/Plzzp07R0BAALa2tqSmpnL79m18fX3p06dPnezalClT0NTUJCsrC09PTzEevvvuOyEjsmjRItzd3cnMzOTUqVPk5+fTsmVLUdX5qkBzfSCTycRkC0qXlPT0dEpKSjh//jxhYWF1KrnNzc3p06dPHRchExMTUSwZERFBaGgokZGRpKen06hRI86cOcPRo0cBpdTKokWLiIiIYPv27Tx9+pTRo0czY8YMcbRWUVHB999/T3x8PCNHjqRx48aCdqO6j+sDfX19SkpKGDx4MO7u7uzcuZMNGzZQUlJCz549mTp1ap1MrMpa8a233uLZs2dMmzZNyGyVl5fz1VdfYW9vz5AhQygsLERNTY158+bx448/EhsbS//+/RkwYAC3bt0S7mmPHz8Wn68yLBk0aBAlJSUMGjSIyMhIVq9ejbm5ORMmTKhX/1R1ACqN45MnTxIaGkq3bt1wdnb+h8xIaWkp2traNG/enNLSUiorK9m/fz/fffcd+fn5LFu2jE8++YQlS5bQv39/OnbsyNGjR+nevbvI2J4/f57ExETx2/7www+kpqbSvXt3Bg0axPDhw0VVMlBvN6Zf45133qFZs2YcO3aMZcuWMXHiRIyNjfnmm284evQoS5cuFUVlq1atQltbm65du3Lo0CE++OADBgwYIDa7ycnJuLq6is3jsmXLSEpKEm6PKuqRipupujeePXvG3r17KS0tpWPHjvTr16/OUamOjg5NmzZl+PDhJCcn1zu7DMqx6ufnh7a2Ni4uLvj5+XH27FkuXbrE22+/jZ2dHY0aNaqzTqm0Szdt2kR2djaJiYnk5OQItzYdHR2ePXsm3Cv79u3L+fPnsba2rhOUf/nll2Kjr6ury/jx4/n++++JiIhgzJgxwp5UNdf8+OOP9erb48ePcXd3F/f5q0W0qoTHqzbl8fHxrFixgsLCQry9vYXL3Zw5c8jOzqZt27biJGDp0qWsWbOG2tpakpKSRLV9y5Yt8fX1FS5azZo1Y9euXSJwffz4MRcvXiQ2NhYzMzNRg/PNN99w+PDh1yr4eRWqBJi2tjampqaMGDGCTz/9lNWrV9O/f38mTZrEpUuXhBKCrq4un332Gd7e3mzfvp3AwEDS09PZuXMnxsbGBAcH06tXLwYNGoSvry/379/n448/RpIkjI2N6yQqfH196dWrF8ePH+eHH36gZcuWTJo0SWReq6qqhLa0akzX9xS2U6dOxMfH4+HhQePGjbl9+zbPnz/H1dUVZ2dn8XnNmzfn0aNHbNiwgXPnzrF9+3YcHR05cOAA8+fPJyMjAzMzM65du4aVlRXZ2dnk5+fTq1cvhgwZwsGDB0UyQF9fn+fPn9O6dWuxIUxMTGTPnj2MGjUKX19fnjx5Img19+/f57333qNnz54sWrTo3/bpN6kNqI6yysrKqKmpwdjYWBxhqFLHKlLxzZs3RQSuGpjLly8X2YD8/HwmTZpEXl4eV65cISIigsrKSuLi4sTCYWFhgbu7uyBmT5gwAX9/f2FdNnfuXJKSkggNDcXFxQUrKysKCgo4ffo0t2/frhd5Oy0tjerqanGEpTraU0lNqIoCysrKRGGDlpaWEDFWQcXtev78ObW1taJCr0uXLpiamgqXF1DuvFRe0wkJCWhqamJra0tpaSnV1dUUFxcTFxdHQkIC5eXlIlvw8OFDHj58WO/gVbWDe/r0KbGxseIoITU1tQ5RuqioSHx2Xl4elpaWQprJ1tZWHFseP34cY2NjvL29cXR05NatW+Tm5tKyZUumTp1KTU0N169fJy8vjw4dOtCvXz9u3brFpUuXCAwMJD8/n9LSUsrKykRhWn5+PqmpqSQnJ9ebfJ+amkphYSHa2tp1CrNGjBgBKAOBtLQ0YmNjUVNT48mTJ4SEhGBkZES3bt0EP9bS0pKAgAAGDRqEvb09+vr6hIeHc+/ePVxcXPD19RVak6mpqTx48ICwsDBxzD148GCmT5+OtbU1J0+e5IsvvuDq1at88cUXgrelEmNWyTi9LgwNDUUAfu/ePT766CMqKioYM2YMI0aMoEWLFnWOaV5dNFW/vbu7u8jEGBsbk52dTUZGhnD9uXv3LjExMTRu3JhPP/0ULy8vNm7cyI8//oi5uTnm5uaoqamRlZWFqakpWlpa1NTUcPv2bbS1tXn//feZOnUqhw4d4vvvv69X/0A5kYaFhZGWlkZeXh7R0dEiQFf52ickJIj71MTEhJqaGjw8PGjXrh2pqamiEEIlZzdz5kwcHR25cuUKOTk5tGjRgsrKSjIyMoS9pkpFQSaT0aNHD+Lj48nJyaGiooLs7Ow6rjDXr18nNjZWyKXVB6WlpZw9exZJkvD39+fy5cuoq6vTtm1bkf1UHbHr6emJDbCKY1hdXU1FRQXl5eWigKNr164MGTKENWvWCPczVYbIzMyMjIwMQkJCMDQ0ZMiQIZSVlVFcXExFRQUtW7YUwUFVVRXp6eniGLWkpKTeFCxAuEEtWrSIZ8+eMXbsWHr37s3hw4fZt28fjRs3ZsGCBfTu3Zu9e/eSm5tLenq6cIjr2bOn2CBWVFSIwHX16tWsXbuW3r17C/mkR48eYWxsLIKsrKwssrOziY2NJTk5mdDQUHEsC8qgVk9PD0dHR+zs7PD39xfr1+siPT1dOCM1bdpUbKYqKyvJz8+noqKCly9fCoc0SZK4cOECixcvJiwsjO3bt+Pk5ISFhQWmpqYi6REWFsbly5dRKBQYGhqyceNGTp48KYw3kpKSqKysJDExEXt7ezQ1Nbl//z4tWrQQQfTdu3dRV1enSZMmhISEkJ6eTmFhoaDY1ecavlo8V1ZWRmVlJbm5uRgaGrJ48WJhzFNbW0tYWBiPHz8mMzNTWKy6uLhw8eJFEhMTkclk3L59G3V1dU6ePEltbS1WVlZCIqywsJDi4mJx0uLg4MBnn30mirl27drF0aNHefbsGba2tmJ8q2hbqpOZ+kCV0VQVbmlpaREUFETjxo1p06YNlpaWfPrpp6SnpzNy5EhmzpzJmTNnRGYUlAmvW7du0aJFC7Heq4qsjx8/zubNm8X36erqIpPJaNasGT169KCyslLQENTV1bG3t6d9+/Z4eHgI2omxsTETJkxAkiTCwsLq1b+hQ4dy584dJElCXV2d7OxsQkJCRHLN1taWmJgYJElizJgxlJeXs3PnTi5fvkz37t05efIkaWlpgLLwV2VeoEJaWhqZmZmi8HvLli1iA64qzgZEDcmzZ8/w9vamZ8+eACJBFxcXhyRJ/xBP/TPUO3i9dOkSo0aNIiEhgb179xIUFESnTp0wNzdn48aNrF+/XpDEJUkSWotHjhwRBVmqY8iKigrOnDlD69at6dq1q8gkRkdHM2TIEMzNzdm6dSva2tqsXr1aWO+pRJyPHDmCj48Pvr6+oohr3bp1TJo0Sbh1nT17tl7C2jNnzsTNzY3hw4czc+ZMqqur60za2tra2Nraip3vr6ESoTY0NMTY2JhmzZrx7NkzUeAEkJSUJIjoV69e5fbt21y7do3g4GCcnZ3Jy8tDJpNhaGhISEgI27Zto6KigiFDhrBw4UJycnLYvn07kiSxdetWbty4Ua9rmJeXJ+z+VFkWSZKwsLAQi2ZJSQnOzs44Ozuzfft2Jk2axLBhw5g/f74oRDhz5gzXr1+nsrKSFStWIEkS77//Plu2bKFTp0589NFHBAcHo66ujpmZGZmZmSITrnJBOnXqFG5ubnTv3h1tbW1SU1NZsGABCxYsEH9naGjIkSNHXrt/6enpXL58mQMHDmBlZcXnn3+Or68v8fHxODg4IEkSn332GampqezevZuEhARGjx6Nra0t7733HsOHDxe/Rb9+/WjXrh2JiYncuHGD48eP8+TJE/z9/VmwYIHgA2VnZ/PWW28RGhqKg4MDX3/9tThuAWXGWaFQcPr0ad566y08PT1p1KiROGqub/WoaqLOyMjg9u3bZGZm4ufnR//+/YV497+q2FRldlST7o0bN1i/fj0ff/wxnTt3Zv/+/RQXF9OqVSuqqqp4/PgxUVFReHl5MXr0aLy8vLC1tcXPz08og6irq9OjRw/mz59P27ZtefbsGcXFxVhYWBAXF8eOHTvqHF+/DlTFUtOmTePKlSssWbKEmJgYUlJSSElJQV9fn8rKSnFSoeKZqWgmH3zwAbq6uixcuJDmzZuzfft2dHR0hO5yYmIiy5cvJzIyUnixS5LE/v37efHiBb1792bBggW0bt2ajIwMcnJy/oGm07FjR/bv34+6ujpubm78/PPPr92/Zs2aCS62u7s7S5Ys+Qd9w8zMTFHpK5PJePHiBVpaWtja2qKhoUGPHj3Q1dWlY8eOVFVVsWfPHjE33rhxg65duzJy5EjWrFlDUFAQ4eHhHDlyhMrKSgIDA+nevbvQnkxJSeHBgweC+xcSEkJqaiqurq7k5OTUmxYBygzZl19+ybNnz4C/j9sNGzagqanJvn37ePz4MSNGjBAZcJVs1IQJE1BTUxNrQt++fTE2NmbLli2ieMnKyoqsrCySkpJ4+PAhtra2Ilt9/fp1njx5Qtu2bVmxYgXJyck0atQIDQ0NIiMjCQ8Pp0mTJoLOc+HCBZYtW1bH9/3fQV9fH2Nj4zqFs6r6D3Nzc2bOnImxsbHQ6D1+/LhQHAGlVufNmzeJiIigW7durFq1SigQXLx4kbi4OODvHEAvLy8RzHTu3BkXFxdWrlzJ06dP+fzzz9HT0+PevXvCjnvz5s0cO3aM8vJy5s6dy4gRI3j33XdZuHDha/fx1eSBmpoaBQUF7N27l1u3btGmTRsWL16MsbExCQkJQrf6k08+4ebNmxw/fpy7d+8ycuRIfvjhB8rKyjh58iRz587F2tqaMWPGCCdMbW1tKisruXbtmjDrGTZsGB07dhTrVEZGBhcuXBCOWmvXrkVfX5/i4mKMjIyYMWMG3bt3Z+fOna/dv1dhbGwsVIa6du3K8ePHSU1NZdOmTWJjs23bNkaOHMnYsWNZt24dw4YNY/PmzfTo0YPGjRuLk8vVq1eLbLGhoSHu7u4iOCsrK6Njx46sXr2atm3bUlBQQHBwMP3798fExISffvqJL774gqVLl6Kjo8PXX3+NnZ0dkydPJjY2lsWLF9cpOv53qK2tJTAwEFNTU2QyGf379yc/P59Lly6RnJyMqakp77//Ps+fP+f06dPMmjWLvn37inl87dq19OrVi59++gkTExOMjY3Zv38/GRkZ6OrqkpSUxK1bt8QckZmZKUwmVJtLUBZTv/vuu6Idc+fOZerUqairqws1kRUrVtCrVy9BeftXqHfwGhYWRlxcHPfu3UNdXb1OwwoKCkhNTUVdXZ1nz56JQKV///6Ymppy9+5dnj9/zvfffy+Izg8ePCAoKIgpU6bg4+ND586dKSkpwcPDgw4dOlBdXU1VVRVubm51BOuPHj3KF198gZOTEz179hQT/Kv8FwcHh3pnJYuLi7G0tCQmJoaSkhICAwMxNDQkLS1NeCk3btwYUA5iDQ0NhgwZUucGUlnlxcbGEh8fL45iLSwshAxXcXGxkHrJycnhxo0bJCcnY2VlJbJkd+7c4ccff0RNTY1u3brRtWtXTE1N+fnnn9m1axcdO3Zk4MCB9Q5ef/rpJzZs2EDnzp1ZvHgxtra21NTUoK2tTUVFBYWFhXVcroqLi+sUcYSFhfHdd99RVVUltAzt7OyEegAo+UnOzs7C1EBlHHD06FFSU1OZPHkyPXv2FEVbKs6gTCbDz8/vN7mkvIrGjRuTlpZGWFgYc+bMEcoTFRUV6OrqikIjlbSUiYkJfn5+9OrVCwMDA5KTkykvLxdBfZMmTXjy5Anh4eEUFxdz/fp1goKCsLW1FVXtzs7OhIaGkpyczMGDB/Hx8cHJyYmqqiri4+OFpbEqo2xtbY2hoSGSJNW7klsVBKg4r6rf7+HDh0J+qVmzZpSXl3P9+nUePHiAk5MTY8aMwd/fn3feeQdNTU1SUlKEYsidO3fQ19enSZMm1NbWkp2djaamJm5ubuK3sLS0FONTZblqYmLCy5cv+fHHHxk4cCAdOnSgbdu24ohLX1//H9xrXhd6enr4+PhQXFwsfMe9vLwE0V+V4dizZw/Gxsb079+fuLg4Dh06hK2trciAT5o0SZh+qKpZv/76a+H8lZycTFRUFCUlJVRXV9O+fXvBgdXS0sLV1RVXV1fCw8PJzMwkPz+fe/fu0aRJk3+wgHxdREVF0adPH0xMTIiOjiY0NBRzc3OcnZ2pra0lIiKCy5cv4+DggK2tLY8fP+bYsWN06tRJWGG7ublhZGQk6EqffPIJ2trafPLJJ0I7+NXAysXFhZEjR/LgwQPu3btHx44dsbW15cWLFzx//hxzc3NhENK2bVtOnjzJ4cOHsbGxITAwkNjY2Hr18dKlS+zfvx9TU1M6deok7D27dOnC+vXree+99zh+/Dj29vbit4iKihJ64OvXr+fQoUN06NCBlJQUPvnkEyIiIrCxsRH0sC+++IIWLVpgaGjIrl27aNmyJcHBwTg5OZGUlISzs7MwiQFl0ZvKhlKVyQVlkFbf9UJFaaqqqhKUr8LCQnFkeubMGXr16oW+vr5wQGvatKmozVBJKerq6tbR8KypqSEoKIjU1FTy8/NZuXIlaWlptGrVCoVCwZ49e/Dw8CAoKAg/Pz8SEhJE2w0NDRk/fjyZmZkMHDiQ8vJy2rZty4QJE9DW1q7DaX4dPHr0CH9/f4qKisjPz0ddXV3QOJo3by5OtnJzc7l58yaampr07t0bX19frl+/Lk4fVSd19+7dE/JvixcvJj8/n65du+Lg4MCECRPQ1dUlMTGR4OBgfHx8MDAwEPOHtbU13bp1Iz4+XpxuampqCrH91NTUep9iAcTExPD8+XPatWsnqGEqPXXVBmX27NliTlG5ijo5OeHm5kbbtm2RyWSUlpZy6dIlKisrCQsLIyoqiqKiIqZNm8aUKVN48OABq1evFsYAKgMAVaJLhRYtWvDy5UsKCgqwsbFhzJgx3Lx5kw8//JDq6uo62czXgZqaGvb29mLzraGhQd++fTl8+DBnz54VhkAhISF8/vnnzJw5E3t7e/z8/ERtQ4sWLYT7nsqs59ChQ2RlZSFJEp6ennh7e2NkZERBQYEoUgOlckzz5s2xsrISRcS1tbUkJiaSnZ2Nq6srJiYmBAYG0q9fP6Fa83+h3sGrpaUlixYtwtramvfff7+OvmDHjh3ZvHkz7u7uxMbGCo2v1NRUBgwYQL9+/Thz5gyhoaGkpqZibGwsKn5v3rzJ7t27Wb9+Pd7e3jx48IDnz58zf/58kpOT2bBhA87OzgwePJi8vDzu3r1LUlISUVFR6Onp8c4779C+ffs6Egu9e/cWk/7rYsyYMaKi+vjx43z33Xf06dOHnJwcMjMzhWViaGgo7733Ht7e3gwbNgw1NTXU1dUpLS0VEhH3798XlbD5+flER0cTHBwsXJlUC4GxsTHFxcVCPFzlGT1x4kQMDQ05d+4cZmZmXLhwgWvXrhEWFoaGhgba2tp1Uvevi/z8fCIjI8UAU20uQMlXys/PF+TqGzduYG9vz4EDBzAyMqKwsJDDhw/z5MkTsemoqalh48aNhIaG4u3tzd/+9je6deuGo6MjxcXF3Lt3TxSEJSYmsnr1avT09Fi8eDF+fn7cu3eP7du3U11djY2NDRkZGTg4OIhNQn1hZGTE0KFDhVi/KrPi5uYmjpdmzJghqlVTUlKYN28e7du3x8DAgISEBK5fv05cXBzR0dEYGhrSq1cvTE1N6datG8ePHxdc3b179/Ljjz/SpUsXNm3axLBhwxg6dCj79+8nPz+f7du38+LFC7Zv3063bt1YunQpx48f58iRI0yYMAFzc3NqamrqcMZe9xqmp6ejr6+Pk5MTkyZN4vLly8yePZuYmBhMTU05ffo03t7eHD9+nO3bt9O5c2fc3d0JDg5m/fr1ZGRkoK+vT+fOnWnWrBl9+vQhPj6eTz/9lKKiIj744APMzMxYsWIFffr0oba2lry8PHR0dIiNjeXrr7/G3NycDz74gKioKNasWUNFRQVyubxO0URgYCDTpk0jOzu7Xn1UmQQsXLhQFF9mZWVx//59YS0MSr7v8uXLcXNzE8ds69evJzQ0lO7du/Pdd9+JsVRQUCA2wKpjLUmShDNYVVUVTZo04W9/+xu9evXiwoUL7Nq1i+HDh6Ovry8KOW/fvs2qVasEX9zS0rLesnVXrlxh+fLldO/enYiICHr37s2BAwc4efIktra2hIWF8eTJEywsLMjPz+fBgwdcvHhRBGEqqMZ3eXk5JiYmPH/+nMjISMG7rKmpoaKiQujkTpw4EQ0NDfbv309MTAzt2rVDJpPh5eVFz549hbxa48aNMTMz48iRI0yePLneRYWgLMqdOHEiPj4+lJSU8PnnnwszD0dHR1atWoWHhweVlZU8evQIIyMjunfvjqOjI3fv3mXNmjU0adKEDz74gD179rBx40Zmz57Nxx9/zJo1azh16hTx8fH0798ff39/Fi1axKlTp1i+fLk4yVLRLVTQ0dHBzMyMwsLCOqcT3bp1o0WLFqxZs6ZefQQlD7SmpobS0lJ8fX3x9fVl/vz5LF68GAMDA/r27UtsbCz29vZs3LgRU1NTIb3m4ODAhx9+yNSpU6mtrSU2NpbKykoGDx6MmZkZ+/fvF6o6qjGoq6srnKTeffddJk2ahJ6eHpWVlSIjp7qGjo6OfPPNN2Ktrm8dyPXr1/Hz8yMvL4+kpCRhk11WVlZn/Tc1NaVFixY8f/6ckJAQYmJiSEhIAJSnYSrKgGo9Vm3s79+/LxzCVBrnmpqauLi4CD1ebW1tQdPr27cvRkZGnDhxgnfeeYdp06bRsmVLdHR0WLVqFWfPnq2XjBQoN5LHjx+vY+Oq0sx1cHBg6dKl5ObmChOLbdu2ceDAATp16sQPP/wAKBNqc+fOJSUlhd69e9OiRQtmzpxJXl4epqameHp6YmlpSUJCAqdOnaK4uFgofryarKmtrSUgIEAUZOro6PDxxx+zY8cOpk6dyqBBg/jxxx+FU93rQJUNfnWOSkxMpLq6mri4OGGqpCrCu3HjBpMnT2b69OlUVFTw448/Ul5ezuDBg0Ux1VtvvUVAQAAbNmxAW1ubyZMnC35zVVWVUCgICwvj6dOnmJiYCOoHKGkWc+bMESY7qiTAiBEjmDJlCvPnz/8/+1Tv4HXQoEFoa2vj6emJnZ0dBw4coLa2lqFDh9KhQwcCAwPR0dERxPh3332XvXv3Cv7biBEjGDBgAHl5edja2nL79m1WrlzJ7du3ycjIwNXVlalTp/L06VNevnyJp6cn1dXVfPnll1RXV7N371769euHj48PH330Ebm5ubi6utKmTZt/0AZr164dmpqa9QpeLS0tMTQ0FAujqsBFJW0lk8lISEjg4sWLDB06lO7duws+UFlZGe+88w7+/v689957TJo0iaSkJGpqagSN4c6dO+zZs4eAgAAWLlzI8ePHuX//PlVVVUIK6N69e3z66adER0cLf+/o6GimTZsmhO5dXFxwcnL6TcVMlpaWonhFJYiuQk1NDVlZWTx+/FjIVw0cOBA1NTWOHz/Otm3b6NSpkxiwqmB+5syZJCQk8NNPP9GoUSNBGZg+fboQJwelLaWJiYnYVGRnZ3Pq1CmOHTtGYmIi7du35+2338bHx4fc3FwhTl4fGBkZoaamxtChQ0WGKj09nbi4OGxsbMQOtLS0VLz3zp07HD58mMDAQPr06YO+vj7nz5/n7t27gFKuadCgQcycOZOAgAC+//57zp07J45MCgoKMDU1ZciQIezcuZOPP/4YNTU1kpOTBfe2devWGBgY0LVrV2JjY0UGpKqqqt7uN9988w2lpaVcuXKF4OBgVq9eTatWrcRmxtfXlxYtWqCpqcn06dNFFlil46oqqFMhJSUFXV1dunbtyqBBgzhy5AglJSU0adKEkSNHoqenR35+PmVlZaKiW8W1rKioQEtLCxsbGzEefvrpJ86fP0/Pnj0JCgpiwoQJfPnll/Xqo4oOoBLU9vDwIC4ujlOnTokF5sWLFxw4cIDg4GAqKytZtWoV7du3F5JWNjY2InBVHWGbmpoycuRIDAwM6NSpE4mJieLYMysrCwsLCxISEpDJZAQFBREWFkZYWBg2NjaC1mNvb8+MGTMoKiri+++/p3PnziL7+bpo3769uPeaNm0qNHtVgX/Hjh3x8PDAwcEBU1NTYaAgSRInT57E3d1dZA6Li4sJDQ1l3rx5PHnyhPnz5+Pm5sb48eNp0qQJBQUFWFlZUV5eTmZmJlZWVujq6vLo0SNiYmJYv349+fn5vPXWW0ycOJFx48aRk5PD999/T1VVVR2jj/qgW7duuLu7k5qaypMnTxg3bhzOzs6CsmJkZMScOXNITU2lsrISdXV1kUFMSEggIyODRo0aYWhoiIODAxoaGjRq1AgbGxtxWpGZmSmKfdetW4dCoeDMmTN1LL7Xrl3Lo0ePmDt3Lq1bt6aqqoqvv/4aKysr9PT0SExMpGvXrkybNq1e/du9ezejRo0SVtCvnjAMHz5cHBdXVFRgamqKs7OzSBQ8fvyYp0+f0qxZM+H2l5WVhZ2dHeXl5ezZs4fExERGjBghePNXrlwhICCAr776isjISMaMGcPnn3+OnZ0dZ86c4cKFCwQGBuLj48PDhw+pqKjAwMCAkJAQampqSExMrFMV/zpo06aNkLr09vZGW1sba2trmjZtiq6uLvn5+ZiYmGBhYcHbb7+Nrq4uERERdYpu0tLSOHjwILm5uWRnZ+Pn54eGhgZjx47F3t6eDRs24O3tXacwrKamhsaNG6Ompsbhw4cJCQnBzs6OMWPG4O7ujqWlJaGhody/f18Er1VVVRQXF9erf6CkUvXp04fr169z8eJFpk2bVseISUVpkySJRo0a4enpSVlZGeHh4Xz33XekpqayYcMGkYSwtLQU97HKNj0hIYGxY8eycuVK2rdvz5kzZ/jqq69YtWoVLi4uTJ06VdB/9PT0UFNTq1PsrNITr+/1g79bBRsYGJCfn8+uXbu4cuUKtra2wkrc0dFROBCq5N5kMhm1tbVCjkwVuKoKCoOCgkTypbq6WhShz5w5UxitNG/eHCcnJz744APU1NTYsGED6urqbNmyhdu3b4vvUOF1ZcDqHbyam5szZ84c1NXVSUhIYMWKFaipqTFkyBCRfXz8+DEODg5YW1szYcIEHjx4wLNnz9iyZQv9+/cXclSglKZKT08nNDRUPKevr0/r1q0FN0Tl1X7jxg0eP36MsbExI0aMqMNlra6uprS0VAzgzMxMiouL6x3chYSE0L59e4YMGcKQIUME8V7Fcc3JyeHYsWMYGRmxZcsWZDIZL1++pFGjRoIMf/XqVZo3b063bt348MMPhQg+wFdffcW8efMYOnQocrlcyN5ERESwevVqevXqxcGDBwUhOygoiMzMTA4ePEhSUhLNmjWjQ4cOr0Vo/ldQ6dLZ2tpSWFhIZWWlCKSqq6u5du2amFTnzJkjNgWbN2/m5s2bTJgwQfhzgzLwsba2xtnZma5du3Lnzh1OnDghtHxVC35VVRX+/v5CkPvChQtERUURFRUljq9VAuSqm0Rl5FAfZGVlYWZmJorbDAwMhPZnnz590NHRYdOmTWRlZfHdd99RWVkplCxUmdqXL18KdQkvLy/Cw8OJj4+nc+fOmJqa8tVXX1FRUcHQoUNp0qQJbm5uZGRkYG1tTZ8+ffD39xe8UltbW6ZMmUJ1dTWFhYVCrF0FlZxWfXDp0iVkMhmhoaFkZmYyYMAA4cLUqFEj1q1bR2FhIbm5ufj4+IjrdfnyZc6dO0dgYCDNmzenvLyc7777jiNHjojjvqysLJ48eYKRkZGwigUlL1qVaXFwcKBPnz5kZGSQkZGBk5MTS5Yswc7OjrCwMDZu3Eh8fLw4Rvq1kP7rQF1dXQRqKSkpvPXWW3h4eNCkSRMhx7JhwwYiIiIYO3asWCSePXvGkCFD6NWrl6Dv6Ovrc+fOHc6ePYuamhrOzs6Ul5dTXFxMmzZthOh5VlYWenp63Lx5EwMDAwYMGECzZs149OgR2traODk5kZ2djY+PD5MnTyY9PZ2JEyeSlpYmxLxfF/369ePFixfo6upiYWHBF198Ie61oqIiLCws8PT0FPemlZUVbdq0ISwsjNjYWKGvW11dzcWLF9HT02PcuHFkZmbSq1cv7ty5I47hVeMyMzOTkydPkpycTFBQEHfu3GHkyJHMmjWL8+fP89lnn2Fubo6/vz/nz58nJyeHvn371jswV0FHRwdPT0/S0tKwsrJi2rRpYjOqsqVUaZp6enoKq2x1dXV69uxJhw4d0NbWJikpCRsbGwYPHsyzZ8/Yvn17nbk9MjKSgQMHoqenJ2xJ79+/j7W1tTiliI2N5e7du1hZWbFmzRoOHjxI06ZNsbKy4sKFC+Tm5taRBXsdREZGCi63lpYWpaWllJaWCrMV1X2Xl5dHy5YtcXBwoLS0lO+//57PPvsMLS0t+vXrh6mpqSiC6dq1K+rq6ly6dEnoho4fP55mzZrh4OBAq1ataNmypXBO69y5M5MmTSIqKoqHDx9SWVlJTk4O2dnZVFVVkZyczOHDh8nMzERTU7Pe17Jly5biWqqCoJiYGO7du0fLli3FOMzMzESSJNzd3WnRogUdO3bk6tWr4nOqqqqwt7encePGGBoacvbsWfbu3Uvnzp15//33MTc3p6KigpycHCIiIkhMTKRnz554e3uzZcsWLly4gL6+Ph4eHvTq1YsuXbrg4OBQ5yTCx8en3qcDqms3dOhQrl69yqZNmwgKCiIgIEDEHxUVFZw4cUKc0nl4eDB+/Hi++eYbZs6cCSiNKTw9PUWW8/jx43UKq0pKSujUqRNNmzbFz8+PxMREUlNTuXPnDlFRUfTu3VtQIF6VyaqtraWyshI9PT3kcrlw46sP8vLyqK6uxtLSkqqqKh48eMDLly/p168f/fv3F6dRNTU1uLm5YWBgIOh7RkZGNGvWjNTUVMLCwrC3t8fKyoqqqipqa2sJDg6mrKyMbdu2cfjwYUFbgb9rXxcVFXHjxg2qqqoIDw8nJSVFGN1MmjRJbBRevnxJZWXla9k01zt4PXr0KFeuXGHRokVoampSWloq9CxBmfI+dOgQx44dQ11dnRkzZrBz506OHDlCeHg4CQkJoqJSVbG7efNmHj16JLheL168oHXr1piZmaGjo4ODgwO7d+8WnL4ff/yRCxcuiB0DKDMPKvevn3/+mQ8++IChQ4cKp5LXRVZWVh3OjKoCuHv37hQUFHDlyhUcHR3p0KEDMpmMn3/+maNHj+Lo6MjQoUPZuXMnX375JaNHj2bBggXid1LByckJBwcHwftQwcrKSsi3BAUFcfjwYUxNTUlKSmLdunU0adKEgwcPcunSJR4/fvwfBa/Hjx8XbZIkiYEDBwo+YHp6OpcuXeLRo0e8ePGC6dOni/ctXbqUe/fucfr0aUpLSxk6dCjPnj3jyJEjDBs2jIEDB6Kvr4+LiwsHDx7EwsJC0ChUO8izZ88SEhKCg4MDbdu2xdvbm5s3b+Lq6oqvry8dO3YU8iug5P1+++239dpt3r9/Hy8vL+7evcvt27cZOHAgbm5udOnSBRcXFyorKzlz5oywogXlEVt1dTX9+vXj5MmTQiJq+vTpjB8/nitXrqCvr4+2trbICHTq1Il33nmH9PR09PT0sLS05MCBA5w9e5bJkycTHBwsNI+1tLTIyckhOjoaHR0drKysMDc3/81SRIGBgUiSJKSq9uzZw4kTJ7C3txcSLp988glbtmyhbdu2yOVyLC0tuX//PllZWbi6uvLo0SMOHz7M9u3bhWZzcXEx9vb2lJWVMXDgwDqLueoaVlZWCq/sli1bYmFhIfjop0+fZtmyZZSXlzNz5kz69+9fb47dq3jy5AnGxsYYGxtTWlqKo6Mj48aN48CBA+zevVtYt27dupUOHTrw0Ucfcf/+fU6fPs20adNwcnJCoVCwb98+ampqGDhwIGPHjsXNzY1PP/2UyMhIunXrxqxZs/Dx8SEhIYGmTZsSHx/PyZMnhQtM06ZNRZW/iucLygUrPz9f8IPrA5UMm5eXF1ZWVnXmnSdPnnD27FmaNGlCjx496oyT5s2biwx3fn4+S5cuxdramuXLlwNKzuOHH36IjY0Njo6O7N27lwcPHuDp6YmxsTH5+fnExsYSFBTEokWLBBexR48eHDp0iG3btvHuu+8yfPhwDh06RE1NDbq6ur9JbSA/Px9DQ0O8vLzw8PAQ64SqKKagoICvvvqK3Nxc1q1bJ0w2tLS0MDExYe/evURERBATE4OlpSX9+/cXG841a9awe/dutm7dSm1tLWVlZcyfP5/o6GhWrlxJbW2toB0sWrRIaLH26tVLaPfK5XKRaNDT0xOL+Ouid+/eYsOhqsJ++PAhMpmM4OBgQekoKCjAwsICQ0NDampqOHr0KOnp6cybN08UnyUmJor6CCsrK2bMmEFYWBiXLl0SmeFPPvmEa9euMXjwYExMTNi5cydNmjQhPj6eoKAgsYa6ublRVFQk+O9BQUEi6+7m5sb58+dfu48RERE0bdqUkpISMjIy8PDwoLCwkAsXLqCpqSl4jS9evGDr1q3ExMTg6upK27ZtWblyJXfu3MHc3JxOnTrRpk0bcXzdqFEjoZiwceNGJkyYQE5ODqtXr+bWrVt07twZHR0dbGxs6N+/P0FBQWhoaAhHpsaNG9O6dWuMjIyIi4vj4sWLVFRU1CmUfV2ouKCtW7dm0qRJtGnThsrKSrZt20aLFi2EcdDRo0fZt28fixcvZu7cucTExPDzzz8zbdo0Fi5cSFFREVu3bmXPnj3CihWUzlULFizA0tKSHTt2kJubi52dHfPmzUMul6Ourl5HNlFPT4/a2lqhl6ujo0N4eDgKhYK4uLg61uKvg6ioKK5evUqXLl1o06YNCxcuJD09HX9/fzQ1NUVdy/Pnz1mxYgXZ2dksW7ZMnFzu2bOHhQsXkpubi0KhYOrUqSQlJfH06VNRNNqzZ08aN26MiYlJHf7u0aNH+fzzz2nVqhVt2rThq6++EtrDRkZGdOrUCUdHR06cOMF7771Hnz59Xou6U+/g9fr16+zduxdNTU1Wr17Nhx9+yIULF7hy5QpDhgyhoqKC6upqUQhx5swZhg8fztq1a3n48CFPnjwhLCwMExMTDh8+TGlpKc2bNxeRd2ZmpvAGVk3YeXl5lJSUCC5Rs2bNOHjwIKtXr6ampgZHR0dGjBghdpRxcXFUVFSII6H6YOjQoUK79OTJk2hqatKpUydAWdRhY2MjFvQ1a9Zw584dnJycKCsrIzs7m65du/Ltt98ycOBAwsLCSE5OFpW8qmKoGTNmYGdnR05ODv7+/vTs2RM9PT0yMzOpqqoSbiEA33//PYcOHWLNmjWMGDECV1dX9u3bx4EDB+jQocNvct2ytbXl4cOHaGtr4+PjI4Lm2tpaLC0tGTBgABoaGnh7e1NTU0NNTQ2SJNGhQwc6dOiAv78/kZGRjB8/HiMjI6Kjo5kxY4bgs6iKW1SoqKhAW1tbSGgcO3aMRYsWiR2rStKpUaNGdbg/L168IC8v7x84fv8O58+fZ/z48Xh4eHDo0CEWLVrE9OnTGTx4sOByqtyiDA0NCQ0NFcfjY8aM4ZNPPhGf1aNHDzp06IC1tTWPHj2ioKAALS0tunTpQt++fXFycsLe3l54f1dWVpKamkpsbCzBwcFoamqKcVxdXY2RkRFaWlpCMsTIyIjKykru379frz7K5XL09PSwsLAgMzOTBQsWkJKSwvjx48V4NTc3Jz8/nzNnzlBRUcH06dOJj48nOTmZgQMHUlBQILIZkydPJjExkStXrnD37l38/f2ZO3cubdu2FQughoYGOTk5PH36FEmShLwMIO7thw8foqenJySYVH1/Ha/qX+P27dvo6ekJ1zvV+FIVuVVXVzNw4EBiY2NFJm7t2rXY2tqKzK+Liwt2dnZCJmbhwoXi/m3Xrh1Pnz7F398fCwsLhgwZQk1NjVAOiIqKEnPPq0UGbm5upKSksHv3biIjI/H29mbkyJH1Dl7Dw8PJyMgQgUZERASgrCjPysoiISGBkpISbG1t8ff3p6amhtTUVFJTUzE0NERLS4vNmzfzww8/0L9/f0GTqK6uFrSK/Px8oqKiqKmpEXNFVlYWurq6YuG6cuWKkD/s2bMnN2/e5MSJEzRr1qxOQdNvga6uLurq6nV0Saurq0XWVFWMU1hYKIxYDA0NuXDhAikpKQwfPpx+/foJGT8VR9/V1ZUOHTogSRKRkZF4eXlRWlrKixcvsLCwICgoSEgBtmnTBmtra6ytrcnJyWHfvn3Y2dkxduxYOnfujKurq5CXqi9UgX9OTo5wjrSxsaG2traOYc2LFy/EGqfKKltaWoqsbVVVFWZmZjRq1IgrV67QvHlzZs+ezf79+5kxYwag5Db37NkTX19f7t27x8SJE0WRV0ZGhuC6Xr16VfBGtbS0yM7OFpJEvwXnzp0TXG/VCYquri5mZmbcuHGDkJAQgoKC6Nq1K6dOneLgwYM8fPgQf39//va3v9GoUSPS0tJwcnIiNTWV6OhomjdvTpcuXdDX12ffvn2kpKTw+PFj4WqlpaWFsbEx1dXVYr79NVTvA4TGr6+vLzY2Npw4caJefczPzxfObA4ODshkMpKTkzExMSEtLY27d+/i7OzM6NGjMTMzo7KyEnt7eyHzNmrUKDHXnT9/HjMzM9zd3TE1NSUvL48pU6aI6vmsrCzMzc3p2rXrPyQvXp1rVaYkKkRFRbF161ZAqbutciB8Hbx8+ZLi4mJRd6CKpVTfqcqo19bWUlFRQX5+PjExMTx9+pSQkBAWLFhAUVERxsbGvHjxgi+++ILz58+jra2NjY0NrVq1wt3dHXd3dyorK7l9+7bIGK9fv57bt2/To0cPrK2thbtbjx49GDlypAiQVX01MDB4LaOJegev+vr6WFpaYmtri7W1NQsXLsTW1pZdu3aRkpLChAkT6NevH8XFxUIb9OzZswwbNoxmzZpRXV2NlZUVTk5OrFu3jpUrVzJw4EA+/fRTHBwcMDMzw9TUVOhfglKPb/369QQEBPDRRx8JSZyJEycKrdTGjRvj6+tLYWEh7du3Z9CgQXXEtl8X/fv3p7S0lHnz5nHz5k02bdokMoGvVvU+fPgQhUKBh4cH7777LmpqaoSFhQm3nXPnzvHDDz+wbds2evXqJX6HvLw8unXrhqurK+bm5kyZMgUrKyu2b99OWlraPyyA6urq1NTUcOPGDaHfGR8fz44dO0hMTBQOL/XB2rVrhYuFs7MzOjo6FBQUUFBQgIuLC8uXLxfC4ebm5hQVFdXZBBgZGYksnI2NjZDxUeHly5c8fvwYT09PnJyc0NbWFnabqoKZV6slVUfRKikSGxsbkpKS2LlzJ02bNmXy5Mkiq/Q6UOkQOjg4MHr0aLp27YokSQwYMIAff/yRDRs2MGnSJL755htAKRafk5ODgYEBjo6OzJkzhxcvXggzBlDy71JTU6moqMDJyQkPDw9evnxJSkoKtra2ov9Dhw4lKCiInJwcYmJicHd3F6+Zm5uLAD03N5e7d+/y5MkT8vLyCA0NrVfWR5XRKS0tZffu3ZSUlNC5c+c6Mj8LFy7E2tqaiRMnYmRkRO/evUVVvSpzqDr2+eabb4iJiWHUqFE8efIEa2tr2rdvL+RrVNW8T58+RVNTU2TqQanpvHLlSo4dO8amTZuYPXs248aNY8OGDbRt21ZwpuuLEydOMGHCBPLz84VpgCro6dGjB/369RNyY87OzhgaGorgcsaMGVy5cgUrKysGDx7MjBkz2LJli1DDACVlqX379nV4ZarNk76+vtic2dvbo6urS2FhIVpaWjRr1gx9fX1GjhxJeHg4Cxcu/E32tzk5Ofj4+IgijocPHyJJkuC9+vn5CS6hvr4+8fHxHD16lJ9++kls0NXU1DAxMSEvL4/t27fTt29fcW1SUlI4dOgQubm5dOrUSXA7a2pqGDRoEG3btuXDDz/k6tWrfPXVV/j6+lJQUEBQUBDt27f/Bx72bzF8UZ1UqH5XLS2tOhx2dXV1Vq1aRXR0NKmpqeL5n376ie3bt6Onp8fIkSOxs7OjoKAAe3t73n77bREYNm3aVPDsHj9+zMcffyw2w2VlZfTr16/OWG3evDknT54UVKKnT58SHR1Nx44d/6MTgoSEBLKzs2nWrBkBAQF1AqsXL16QnJxcZz2aO3cuZWVllJSU8ODBA0GpcnJy4uXLl6irq2NgYFCHGqEKHH18fNi+fXudxIWKhhQfH8/Dhw8xNTWladOmuLm5Cf1l1TWo73U0MDBg/fr19O7dm65duwJKkfzx48ezc+dOli1bxvLly+ncuTNffvklubm57Ny5U9is29nZUV1dTWpqKps3b+bkyZMoFApGjhwpVBXat2+PhoYGeXl5KBQK0tLSePHiBT4+PiKzXFhYWCejp9JANjY2xsXFhcmTJ4uAr77Ba1VVFWpqalhbWwv6RosWLRg3bhwXLlzgzJkzdOzYkSVLltSRIWzZsiXm5uZERkYKsf+RI0fi4+ODnZ0dLi4u4iRBhX+XGa6srKS4uFjIR6mQnp6Ovb093bt3Z9q0af+2oOlVqHRj/9ka82qgaGxszAcffIC1tTVaWlocOnRIrL3du3dn/vz5PH78WEiteXl51Znbjx07xtmzZ4mKiuLRo0fCwEBV1/TDDz+IzK+/vz8+Pj6ij8HBwZw9e/a1qZ71Dl5tbGxYtGhRHQeL1q1bc+LECZFpadeuncicampqkpCQwMmTJ1FTU6NZs2biBtXW1mbSpEm0atVKEN1VP+SrR2jm5uY0a9YMLy8vSkpKeP78OSdPnqRFixZCvunatWs8fvyY7t27C8FkoN5V3MnJySxbtoy9e/cCysBGZalWVlZGbGws7u7uZGdnC9WD0NBQhg4dSuPGjTlw4IDQnr1z5w4HDx6kRYsWtGnTBm1tbRITE//Bt1dLS4uLFy8KojooFx57e3vc3d1p166d4IY5OTnRtm3bOtIo9YUqAK+trRXVjCph5rt371JVVVWHlqAKdE6cOMGOHTvQ19fHxsaGhQsXUl5ejouLC97e3iQnJ7N7924qKipo06YN9+/f5+7du3Tv3h0TExNcXV2FzNGr2oGqin8zMzOMjIx49OgRT58+pVGjRvj7+9fbM/5VfbhOnTrx7rvvYmZmRkVFBXZ2drzzzjvChvfFixecO3eO5ORknj9/DigXxA8++ICUlBQ0NTW5d+8e5eXltGrVCisrK7EYPX/+nKKiIgYNGiQ4OiraRKNGjYiLixNHiPr6+jg6OlJdXc3Tp0/JycnBysoKGxsbcnJysLOz48qVK6/dx/DwcJExs7W1ZcCAATRv3hw3NzfS0tKIjIykR48eTJgwQVjYqgTjzczM8PX1JSQkhGfPngmumcrCOSMjgy5duohJRTXxamtr4+joKAqgtm/fzuPHjxk9ejSjR4/GwsKCzp074+bmxtSpU7l165bgLv8W6TNVJljFC7906RIdOnQQdsQqmJiYMG7cOKysrIQUmoeHB9OmTePGjRscOnSI9957j7S0NDIyMti/fz+RkZF07dpVLMYFBQWiqEZlePBrnq6RkZGYlzw8PJg/fz5Hjx4lJiaGr776SnADXxdJSUlMmjQJUBbvnD59Gnt7e3r06EFcXByPHj2iT58+IqNWVlbGkydPKC4uxs3NDRsbG7y9vfHw8KC2thYjI6M6i1N+fj7NmzenZcuWZGdns3LlSgoKChg2bBi9evWiqKgILy8vDA0NsbW1JSMjg6KiIsG5BOVGNCsrSyQW6ostW7Zw584dOnXqxIQJE1BXVycyMpLLly9jamrKqFGjhMOVqoaivLyctLQ0pkyZItaZ+/fvC5pNeno6CQkJ+Pj4YG5uTuvWrfnkk0+4ePEikyZNomnTplRVVeHh4YGNjQ2RkZE8ePBAuAmp7lVDQ0Py8/PFHAjKxbc+UOkfq6SNVBI/qrk+Pj4eSZJo27YtVlZWlJSUUFJSgo6ODqampmJzWFtbK4wo2rRpI6rCO3bsyKZNm3B0dMTKyorVq1djaWnJ1KlTqa6uJiIiQmTHjxw5Qk5ODm5ubuIUJDAwUGR8f/rpJx49eiSyxa+LPn36UFhYWCfhYGNjQ0BAAPr6+ty7d4+vv/5aeNjv2LGDdu3a0bx5c3ESVVNTg76+Pubm5lhaWqKvr09FRQX379/H1NRUFAQaGRmho6ODo6Mj5ubmoobm888/59GjR8yaNYvx48cLCTsVLUtlq/tbYWJiwqNHj7C1tcXb2xt1dXWhq6yhoUFQUJC4v1W81PLycmJiYti7dy+HDx+mTZs2fPnll7i4uAiK0auoqqri8uXLPH/+HHV1dTIzM3n58iV+fn4MGTIEa2trNDQ0BAVSZWGuOtJXyUq5uLjUW3pQJcmlguo0FJR1Pvfu3RMxm6rIytzcnFatWtGqVStkMhm9evVCR0cHS0tLhg8fTnZ2tnADVOHQoUMcPnyYvn37MnLkSFJTU1m0aBFeXl589913pKSkMGPGDIYPH86NGze4ePGiKMLs1atXvU5Z6x28qhwnXq0+1dLSYtSoUaIaH5QVY5WVlejq6uLj48NPP/1EUlISLVu2JDk5mTVr1uDm5saGDRsAhFuXurq6yPSo4O7uLirVysrKWLVqFU+ePEGhUIgjwOHDh7Nr1y5AyQc0MTGhqqqq3lJShw4dEl7KdnZ2REZGcvToUVEQcv/+fSoqKnB1dWXo0KHs2LGDZcuWYWVlRYcOHbh79y779u3DwsKC0NBQKisrRaq+RYsWREVFiWOYcePGAUqqxK/5ZCpzBDs7O8F5UxWwqDYQoNyl1ReSJJGdnS2yfp6enmIHdO7cOXbs2MHKlSv/ofJ2//79HD16lOnTp4uj2by8PJYsWYKDgwP37t1jzZo1BAcHs2LFCq5du8amTZvQ1dWlX79+ODg40KVLF+7cuVNH7D0hIYGQkBCmTJkiTBFkMhmffvopiYmJdY7xXwfdunUjOTkZY2NjrK2tWbt2rXhN5SEPSl3CR48eYWlpSWJiIlpaWuIIRcXNevbsGYmJifj6+opMVGZmpijMyMvLE0oKoDy+09LSwtTUFHt7e37++Wfi4+OFPnBGRgZPnjwRmquqDUtVVVW9gtcdO3awYcMGPv30U5YuXYqzszNpaWlUVVURHR3N7du3hTi2v7+/WCw8PT3FYpebm4u6ujrp6emcOHFCVLd27txZuEypZN9AOW5Ux+cqf+7nz58zfPhwRowYwYgRI4iOjiY+Pp5JkybV4Uu/mpl/Xfj4+AiJlYqKCi5evEh6errwNC8uLiY/Px8nJyf69++PhoaGCLoSEhLIycmhtLSU5ORkXFxcmD17Nnfv3mXr1q3cvXuXtLQ0WrRogYmJieD7qo7GVJtoSZLqZEPV1dUFX3P8+PG4u7sL+bP6ivjn5OSIkxoNDQ0SEhIwNDQU+qQxMTF1MroqnemgoCD69OnzTxfIV39vNzc3vLy80NDQICQkhE2bNmFnZ8eiRYswMzPj3r17zJw5k8aNG5Ofn09lZSVubm7U1NSIzKGGhobQ9vwtweupU6c4ceIEhoaGwj43MjKSXbt20apVKwYOHIiWlhYZGRkUFhZy8OBBYmNjWbVqlcjuXL58mYsXL9KxY0d0dHQ4duwYT548YcaMGWJz9Pz5c65du0ZJSQkGBgb07t1bUCtCQ0NJTExk4MCBqKurc/fuXRwdHYVroqoo9+nTp/Wm76gsN9XV1dHT0+Phw4eAcv179OgRSUlJ9OvXT/AZX7x4QUxMjNDv9Pb2FnQYlWW2oaEhFhYWVFVVYWJiwqxZs1BTUyM1NZXz58+jr6/PgAEDMDQ0FKcB8fHxHDlyhM6dO9O/f3/WrVvHxo0bWblypVBcuH//PkeOHKlz0vA6aNy4MYsXLxYOc5qamqSlpQnppAEDBtCrVy/mz58v6BwqqkNhYaHQ8fb29mbRokX079+fVq1aUVxcLI6yo6Oj8fT0REtLi8rKSsrLy9HT06O4uJirV69y48YNcnNzSUlJIScnR2ivqlBRUUFubq7YFNQXKgMBlUwVKMfptWvX8PDwENrW5eXlqKuro66uTlpaGqGhoZw9e5aEhIQ6MlDV1dXk5eUJaUZLS0s0NTWFWZOJiQk6Ojqkp6czbNgwIRNVXFxMTU2NSBglJSWJQm0NDQ3Ky8t/k1lIZWWl0HJXHeer5vUHDx6wa9cuevfujZ+fHzdv3iQqKoo5c+bQu3dv7O3thURnXFwckyZNYuLEiaSnp4vgWjU3WFtb07JlS9577706vNySkpI60l/Pnj3j2rVrbN++ncrKSoYNG4arqytNmzZ97ROQegevnTt3xt7enqysLMLDw6mqqsLW1pbg4GBRTW1kZERpaSm7du3i0aNHggowbNgwrKyshDZm//79ycjIIDY2lmfPntGnTx9xrFpYWIiBgYGovEtJScHDwwNtbW0GDhxI+/btRSVnTU0NPXr0oKCggMuXL2NsbMysWbPQ0NDg+vXr9eqfhYWF0Le0sLCguroad3d3JEnC3t6eyspK9PX1cXBw4G9/+xtVVVU8ffqU9PR0ZDIZXbt2RUtLCx0dHVq3bk18fLxwnhgyZAhBQUEisAOlplmbNm344osv6mwI1NXVuXXrFlVVVbRs2RJbW1th06g6ygZ+03GsSpi4Q4cOBAQEcOvWLUpLS2nZsiVVVVWkpaWJgPvcuXNER0eLDLCvry/t27fHyMgIIyMj7t27JyZRFxcX3n//fZHZaNOmDbGxsTx69AgLCwvatGlDz549hZahvr6+yKirnMt0dHRo3749jRs3RlNTk9u3b7N37946ChX/DjExMYSFheHn51enqh+UgWdISAhXrlzB0NCQnj17imNL1XWGv58ANGrUCE1NTUFtUJkWDBgwgKSkJEGmV0Emk4lrUltby8uXL8nLy0NDQ0MEX3369KF3794icI2NjeXmzZv1uoYqdQ7V5sXLy4v4+HiuXr2KmpoanTt3xtLSkoKCAnx9fcV99OrE4OnpyerVqzExMcHR0ZHo6GgiIyN5+vQp7dq1E6YYVVVVvHjxgqysLDIzM4mNjeXJkye4uroye/ZsUTx05coVbt++jYODQ52iO5lM9puEwwcNGsTLly/FRjYoKIiioiIOHTpEbGwstbW1DBkyRCwsz5494+7du6JQ8L333kNdXV30OTAwkEePHmFnZ8fs2bMpKChALpczYcIEevXqhaGhobAMtbS0xNraWkjjHT9+HDMzM7HhyMnJ4dy5c8TGxjJs2DC8vLwoLCysVyGMiYkJy5cvp2PHjmhqatK8eXP09fWJi4vDzc2N2bNnU1RUxGeffUZCQgKNGjVi8ODBNG/e/F/ya1++fImWlhYWFhaEhYVx8uRJ+vXrR+vWrVm9ejWpqanEx8eLbEtpaakI8lQbkz179nD16lU6depEcHAwjRs3rjPn1AejRo0SJ08qNGnShOnTp+Pk5ISWlpbQnc7LyxNKLyoNywsXLnD58mWcnZ3JzMxk//79mJiY0LRpU86fPy94sL169aK4uBh/f388PT3F76OlpYWjo6NIjshkMuHCVVVVRUlJCZcvXyYkJERwZY8fP/7a/fPx8UFdXZ2jR49y+fJl2rVrR8+ePSkvL6eiogI3N7c6manU1FRRUGpiYsLNmzextrYmMDCQ7OxsLl++jKurK6ampoSGhnLlyhVqamoYPnw4Tk5OTJ8+XQQe1dXVwmrcyMiIQYMGCb67Kuh5tSq9d+/eWFpa1jnCfh2oOK2ampocOnSIkJAQHB0dRaFWVVWVUKDJz88XMkqgnEfbtm0reIwq7jEo51I/Pz/Cw8MJCQnB1tYWLS0tDhw4QGFhIcOHD8fDw4OMjAxh7d25c2ehdaujo1Nn7tXW1hZ6u/WFr68vaWlp1NTUiBMplUSUSqnExsZGZAbDw8O5du0a6urqzJs3j5ycHMzMzASdQJIkUlJSuHDhgjhF8PPzE+Oyd+/etGvXjjt37uDg4EBqaqqwpn+VZ+7q6oqNjQ0ODg7069cPQ0NDIfVWHyxbtoy0tDR69uxJQEAAsbGxmJqaEhwcTPfu3VFXV6dx48Y0adIEU1NT9u/fz9y5c1m5ciV+fn7s3buX0NBQ/va3v4nT7qtXr3L8+HFatmzJ5MmTxUlK165d6xRYl5aWkp2dzYIFC3j69CmFhYUkJibSsWNH8vLyiI2NpXXr1ri6ulJdXY1MJnstzqvsdYW15XJ5/RS4/4RQKBT/Mv3zpvcP3vw+vgn9gze/jw3j9M3uH7z5fXwT+gdvfh8bxumb27/6p+0a0IAGNKABDWhAAxrQgD8Ir515bUADGtCABjSgAQ1oQAP+aDRkXhvQgAY0oAENaEADGvCXQUPw2oAGNKABDWhAAxrQgL8MGoLXBjSgAf//QCZbiUxWjkzm8B9+zrvIZFXIZF6/U8sa0IAGNKABr4k/hPMql8vNgcFAX8APsAMqgUhgO7BdoVDU30j7Twa5XC4DJgMzgCaAOhCNso+bFApF/TU9/kSQy+XDgGAgAGgKGAJ7FQrFuD+yXb8n5HJ5IvCvlJMzFAqFzf+wOb87/rRjVCb7t3MEklS/OUIZsEYD3yNJc195ftIvn/l/oRZJ+rvTgkymC8QBD5GkfvVqx38Bf9rr+F+EXC4fD+z65Z/TFQrF939ke/5TvOlzDfx/08e+wNuAD2AOpAEPgC8VCsXtP7JtvyfkcnkH4B2gHWAG5KKcn79SKBSn/9vfX2+d198Jw4HNKC/qFSAJsAaGAN8DveVy+XCFQvFXrybbCYwHMoGDQAnQDdgAdHwD+rgMZdBaDKQAb2oWqgD46p88X/w/bsd/A3/WMfpv5whksuHUb/f9AaANfP6r58OBFf/ibzoAXYAzdZ6VpDJksg3AGmSydkjSrXq047+BP+t1/K9ALpc7AF+jvAd/mwjtnxNv8lyjwhvbR7lcvgZ4D8gBjgHZgBswEBgql8snKBSKPX9cC38fyOXyZcDHKPt3EuU8bQE0AzoBb2zwGgMMAE69mmGVy+VLgbvAUJSL1I9/TPP+c8jl8kEoF5MEoLVCocj+5XlN4BDKPk4EdvxBTfw9MA9l0BqHMgP7+hZRfy3kKxSKj/7oRvze+JOPUTFH1MmwymS/bY6QyYyBscAlJCm5zmuSFI4ygP1nf6fKlHz3T17dA6wC5MAfFrz+ya/j745fsszbUQYIPwEL/tgW/a54I+eaX+GN7KNcLrdBORYzAH+FQpH5ymudgcvASpTzxl8Wcrl8OMrA9SIwRKFQFP3q9X/uoPI74w/hvCoUissKheLEr6kBCoUiHfj2l392+p837PfFkF8e16kWEwCFQlGFMgME8Lf/eat+RygUiisKhSL2Tcro/H+GP+8YlaTLSNKJf6AGSNJvnSNGA3oos5KvB5nMF2gDpAKn/kkbXwI3gGHIZL/dWP0/x5/3Ov53MBdlNnwyygxzAxrwZ4ATypjqzquBKyjXSqAIsPwjGvZ7QS6XqwFrgFJgzK8DVxDzzn8df1Tm9f+CquPVf2gr/nOouDvP/8lrqueay+VyE4VCkf+/aVIDfiO05XL5OMAR5WL5CLj+BvAI/6pj9LfMEd1+eQypx9/M/OVxG5L0r671TZRBdEeUx2d/BP6q17HekMvl3sBqYINCobgul8u7/NFt+p3xps41r+JN7WMsSl5+a7lcbvHqRlIul3dEWRNy7A9q2++FdoAzcATI+4Xf6wuUA3f/l5zeP1XwKpfLNYAJv/zz7B/Zlt8BqoHr/E9ec3nl/72A0P9+cxrwH8AG2P2r5xLkcvlkhUJx7Y9o0O+Ev94Ylcl+6xwRhDLzEfOa36MLjANqUXJs/xXu/fL4Rwavf73r+Bvwy/qwGyX/eekf3Jz/Ft7UueZVvJF9VCgUuXK5fBHwJfBULpcfQ0ltcUVJgbrA3zfEf1W0+uUxAwhDWUwrIJfLrwPDFApF1n+7IX82qazVKKP40wqF4twf3Zj/EKqFbL5cLjdTPfnLBPxqcYjp/7RVDagvtgNdUU64+ihv1i1AY+CMXC5v+sc17T/GX3GMijkCSXq9OUIm00JZ7JVejwKvEYAJcOYfOLJ1kf7Lo+Nrfu5/A3/F6/hb8CHKgpBJCoWi7I9uzH8Bb/Jco8Ib3UeFQvEVShqPBjAdWIyy+DQZ2PFrOsFfEFa/PM4CdFGeaBminJPPodzEH/5fNORPk3mVy+VzgXeBZyiLD/7qOIAyc9Mb5S7sOEqeSDeUO7FYwB34qx+VvNFQKBS/rkJ/DMySy+XFKMfrRyglnf6K+GuNUZnst84R5r885tXjb2b88rjl37wv95dHi3p89u+Nv9Z1/A2Qy+WtUWZb171JckOv4g2fa4A3v49yufw9lEWcG4FvUG5uvYDPgL1yuTxAoVC89wc28T+FSi5QhjLDGvHLv5/I5fLBKE+2guVyedv/9n36p8i8yuXyOSglXZ4CnRUKRe6/+ZM/PX4pRhuAsvowHeViOwVldX4QyuMEUErbNOCvB1XRUMc/tBX/Af5SY1QmqzNHIEn1mSNUWTqd1/wuH5TcrhT+veSL7q++43+Ov9R1/A14hS4Qw98L0P5/wl9+rnkN/OX7KJfLO6EsZjquUCjmKxSK5wqFolShUIShDMhTgXflcrnL//U5f3KoEgDPXwlcAfjlNER1Gtb6v92QPzzzKpfL3wHWo9yBdX0D0uoCCoWiGlj3y38CcrlcF6Wwfxnw5H/fsgb8DlCNU/0/tBX/If4SY1Qme4dX5ggkqX5zhCTlI5NV8vcM7L/D6xRqqaD6zD903vpLXMffDgPA45f/L5fL5f/sPVvlcvlWlIVc7/yvGvY/whsx1/wbvAl9VJmV/INkpEKhKJXL5XdRBrHN+OfFlX8FRP/ymP8vXlcFt7r/4vXfDX9o8PoLuXk1So3F7q9W573hGI8yC7TzfyUr0YDfHW1/efyrTkL/Dn+OMSqT1ZkjkKTfOkdEAs2QyYyQpML/4/t0UPa9Ftj2Gp+rMuYI/43t+m/jz3Ed/zNU8K+vRXOUwUAIyoX1TaQUvOlzDbwZfdT+5fFfyWGpnq/8H7Tlv4XrKFVe3OVyuZZCofh1X3x/eUz8bzfkDwte5XL5BygFex8APd4EqsCvIZfLjRQKReGvnmuFcjEuRtn/BvxJIZfLmwBpvx6bcrncCSWfCf76gtN/3jEqk9WZI+pJFfg1rgItUB5nXfw/3jccZWHTyX9TqKVCm18e/1CDjj/1dfwP8ctx5LR/9ppcLv8IZfC6869sD/v/yVzzpvfxBvAWMEMul29RKBSpqhfkcnlvoD1KSak/2o3vN0OhUGTL5fKDKA1fPkTpsgmAXC7vDvRE6aD2X1eL+kOCV7lcPhHlZFqD8oLP/SdHQYkKhWLH/7hpvzcuyOXyMpTHnUUoPcf7oMwkDFEoFH/lXabK2WfQL/9UaU22lcvlO375/2yFQvFXdr8ZDiyWy+VXULoXFaEsgOmLMpt1Gvjij2ve74I/5xiVyf5hjkAm+/W7EpGkHa/5iT+iLAjpyf8dvKoKtf6Zo9av26iGsnI6Gkl6/Jrt+G/hz3kdG/C6+P9hrnnT+3gE5dzSDYiSy+VHUXLQvVFSCmTAYoVCkfOvP+IvgflAIPD+L/q1d1EaNAxGOV9P/1/oSf9RmVeVHqE68M6/eM81/vp2hkeAUSgrgXWBlyg1I1crFIrEP7BdvxcCUNpOvgoX/q4t+YK/tnXjFcATZWanLUo+Vj7KI8rdwO43wF3szzpGf985QpJuI5M9BMYiky3+p1xWmcwbZYHT6xRqgXKRskNpk/xH4896HRvwevj/Ya55o/uoUChq5XJ5H2AOyntxMEpXv1yU88lGhUJx/g9s4u8ChUKRKZfLA1FmXQejPH0qQulC+JlCofifaEnLXl/2sAENaEAD/sKQyUYD+4AhSNLR3+HzfgSCAVckqeA//rwGNKABDWjAa6EheG1AAxrw/wdkMhnKgh5lBf5/MvnJZAEoHWbmIknf/Jt3N6ABDWhAA35H/Cl0XhvQgAY04L8OZbA6AzgKNPoPP80Wpebot//ujQ1oQAMa0IDfFw2Z1wY0oAENaEADGtCABvxl0JB5bUADGtCABjSgAQ1owF8GDcFrAxrQgAY0oAENaEAD/jJoCF4b0IAGNKABDWhAAxrwl8Fr67zK5fK/PDlWoVD8g8q5Cm96/+DN7+Ob0D948/vYME7f7P7Bm9/HN6F/8Ob3sWGcvrn9a8i8NqABDWhAAxrQgAY04K8DSZJe67/Zs2dLs2fPlmpra6XKykqptLRUqqmpkSRJkvLz86UnT55IL1++lKqrq6WcnBwpNjZWys/PlyRJkmpra6Xdu3dLrVu3ljQ0NCRvb29p4cKF0u7du6Vz585JcXFxkgoPHz6UNm/eLN26dUs8V1RUJKWnp0v37t2Trly5IiUnJ4vXCgsLRTvS0tKkAQMGSAMHDpRSU1MlSZKkkpISSdX21+nf6NGjJScnJ2nLli2SJEnS9evXJWdnZwmQFi5cKL43JSVFysvLk2pqaqTa2lpJkiSpsrJSevr0qfTs2TOpurpaKi0tlSoqKiRJkqTQ0FDJwcFB0tfXl9atWyelpaVJ0dHR0pkzZ6SHDx9KtbW1UlxcnPTxxx9Lo0ePlgYPHiwNHz5cmjdvnrR7927p2bNn4rvv3r0rrVmzRnr48KFUU1PzWv17tY8rVqyQJEmSdu/eLY0dO1Y6ceKE9PHHH0uAtGjRIkmSJOmtt96SunXrJmVlZUlHjhyRAGnWrFnSr/H1119LgARI7du3l2JiYur8Rir89NNPko2NjTR58mTxXFVVlejPl19+KcXFxUn5+fnSqFGjxGdu375dyszMrNc1TE1NlSIjI6X8/HyppqZGiomJke7evSsVFhaKMbFw4UJp5MiRUnh4uCRJklRTUyNNmDBBAiRDQ0Np/fr1UlFRkVRYWCjl5uZKkiRJDx48kCwtLaUmTZpIu3fvlqZPny4NGDBASk5Olh4+fCh5e3tLY8eOFf1LTU2Vbty4IWVmZkqSJEnbtm2TXFxcRN8AycXFRZo+fbp04MCBevUxKSlJOnjwoDRq1CjJ1NRUAiQTExMpICBAatKkidS3b1/p8uXLoi1FRUVSWVmZVF5eLlVWVopxe+vWLalt27YSIC1evFiKjo6WLl++LF2/fl2qrKyUqqurxfiOiIiQFixYIG3evFl8bmZmpnTu3Dnp8OHDUkREhCRJkpSbmytt2rRJ2r9/v5SUlCQtXrxYAuo9TlNSUsS4T0lJkYKCgqQ2bdqI+3///v1SQECA1L9/f+ngwYPSzJkzJUB66623RPtWrlwpAWLcvXz5Ujp27JiUlpYm3lNRUSFVVlZK5eXloq+voqysTMrLyxP/7t+/vySTyaSDBw+K51RjpD7XcNq0aeJ3V+HChQvSwYMHxbiUJEnKy8uT7t+/L0VFRUkVFRVSSUmJeG337t2SmppanXH38OFDqbS0VPw7KytL/P+JEyckU1NTafTo0f/Qz6+++koCpF69eknp6emSJElSZGSktGvXLunChQtSeXl5va+hCpWVlVJJSYmYqyVJkm7duiXNnDlTcnd3lwYPHizm/IKCAun58+fifQcPHpR0dHSkHj16iOdOnz4tmZiYSDNnzhS/g0wmk/z8/KTz589L1dXVUnR0tHTp0iUpOztbKi4ultauXSs5ODhIbm5u0s6dO8VnlZSU1Lnu9bmGs2fPFvNYZmamdP78eamgoECSJElasmSJpKurK23YsEGSJElKSkqSbt++Lb4rJydH2rp1q3TixAlJkiQpLCxMWrBggbRmzRrpxo0b0sGDB6UuXbrUWY9KSkqka9euSREREXXGwau/a3R0tNS9e3cJkAYPHiwpFArp008/lb744gvp6tWrUk5OTr36OGvWLKm8vFxcm1OnTklnz54V90RVVZV05swZaePGjdKqVaukzp07Sy4uLtK2bdskSZKkjIwM6eeff5Zu3Lgh5eTkSL9GUVGR+A2jo6MlS0tLydfXV8rPz5eqq6ulH374Qbp7964kScp54Ouvv5Z69eolubi4SKNGjZIePHggPuvIkSPSsmXL6j1OVTFNdXW1+KycnBzpwIEDUufOnaWWLVuK6/Qqzp49K7311lvS22+/LR08eFBc+5KSEmns2LFSt27dpCdPnojrP3v2bGnUqFHS8ePHpaSkJOnGjRti3pQk5VxTVFQkSZJyXlq1apXUrFkzqW/fviIu2L59uyRJ9RunFy5ckKqqqqRt27ZJAwcOlHbv3i2+c926dWI9atOmjfTixQupqqpKzEEvX76UgoKCpHHjxklVVVXS1q1bJUDq3bu3tGbNGqlNmzbStGnTxBgpLCyUYmJixLonSZK0detWycTERHJ3d5eioqLE86rf/cCBA1KXLl0kTU1NydDQUBo5cuS/7V+97WFlMhmamppoamqK59LS0vj+++8JDAxk5MiRmJmZUV5ejrGxsfibgIAAzM3Nqa6uJiEhgebNm9O7d2/xHoAtW7bw+PFj2rZti62tLeXl5ejo6GBgYICBgQEHDhxgz549LFu2DHt7ewAMDQ0BOHPmDFeuXKFbt24EBQVhbW0NgJ6eXr36t3btWq5fv45MJiMxMREvLy9atGhBQkKCeE90dDRXrlxh1qxZ4rm4uDiuXbvGqVOncHZ25sMPP6zTNzc3N+bPn09SUhIpKSnMnTsXDQ0Nhg0bRkBAAAAPHz5EkiQmTpyIvr4+u3bt4tSpU6SmpmJvb4+npycApqamaGhokJaWhqura736B3Dx4kX8/f3R19fHxMSELVu2oKamxrx58xg3bhwlJSW0a9eOgIAALCwsGDp0KBcuXODy5cssXrwYFxcX8VpAQAAjR47k4MGDPHnyhNraWgDCw8MpLS3Fzs4OgKysLNLT07l69apoh4aGBidPniQxMZH27dvj6upKUVERxsbGyGQyPD09ycnJ4cyZM/Xqn7GxMYWFhRQXF2NsbIy7uzsRERGcPn2a9u3bY29vz+TJk4mJicHc3Jz8/Hxu3bqFn58fy5cvx8rKip49e2JgYABARUUFly5d4s6dO+J6tWjRgoCAAHR0dLC3t8fExIT33nuP4uJiDh48SE5ODtXV1XTp0gVLS0sAUlJSqKqqYtSoUdjY2BAaGoqzszPjx48nKCiIa9euvXYfHRwcyM3NxcvLC0mS0NHRwdbWFmNjY/T09GjUqBG2trbi/aWlpYSHh9O0aVNxbwC0bNmS5cuX8/TpUwIDA7G1tUVTUxM1NbU69ziAk5MTs2bNIi8vj/v372NnZ4etrS09evSo8z5dXV2aN2+OnZ0dDg4O9OrVi7KyMiorK+t1HQsKCvDx8QGgvLycmTNnEhAQgL29PQcPHmTNmjU4Ojoyffp0XFxc0NDQwNjYmJKSEnbt2kVAQAB2dnbMnDmT2bNnA/D48WNu3bqFl5cXNjY2SJIk5jSAly9fsnLlSu7cuUObNm2YMWMGzZo1Q0dHR7Tr3XffZfDgwTRr1kw8V1hYyMWLF+vVv+bNm7N48WJGjhwpnjMzM6OkpIT4+HgqKyvx9/enurqa/Px8DAwM0NLSQktLS7y/SZMmov8q2NjY8M0336Crq8v06dOxsLCgqKiIzz77jLCwMObNm0f//v25d+8eR48e5caNG+jq6mJvb8+KFSto166dGCOenp48efKEQ4cOcfr06zjm/iMyMzOxsrIiOzubzz77jHbt2tG7d29qamrYsmULurq6fPzxx7Rt2xZQzqX5+fnY2tqio6ODk5MTI0aMwM3NjYqKCrS1tXFxcWHlypU8ePCAMWPG4OPjw969ezE3N6d79+4APHnyhIMHDzJ58mT09fXZuHEjKSkpvP3220yYMAFQXu+bN29ibm5OixYt6szZr4OSkhIeP35MQEAAlpaWdO7cGQ0N5bI6Y8YMrK2tyczM5PDhw7Ru3RoTExNu3ryJl5cXxsbGWFpacunSJUJCQnB3d6dfv35YW1vj5eUFwJ07d7h8+TLPnz8X32dhYYGHhwe7du3i4sWLzJs3DzMzMz7++GN8fX1ZsGABGzduZMOGDdjY2GBmZoaZmRkuLi64ublRUlJSrz4mJiaira0t2vPgwQM8PT1FP9XU1GjatCn29vakpqairq6OpqYmgwcPJi8vjw8++ICioiLmzZtHWFgYO3bsQF9fn+HDhxMcHIyBgYFYNzw8PLh58yYHDhxg9uzZeHt7M3DgQHx9fUlOTubevXsYGhoya9YsqquryczMJCwsDC0tLXx9fWnVqhXa2tr1HquqmObixYvs2rWLiRMn0rVrV9zc3Bg2bBh6enpYWloSFhZGTk4OgYGBGBkZYWVlhYeHB507d8bc3JybN2/i4eGBi4sLAwcOZM+ePXz11Vd8+OGH2Nvbk5WVxZEjR+jevTsODg5UVFSQl5cn2pGfn8+JEycwMTGhW7dujB49mtLSUk6ePEl2djajRo1i4MCB9eobQGBgIBoaGkyZMoXS0lLOnTuHvr4+gwcPZvTo0YSEhHDjxg2aNm2Krq4uGhoaNG3aFFCupyNHjqS8vJxnz57Rpk0btm7dSmFhIZIkMWzYMLy9vcV3GRoaUlVVxc2bN3n8+DGFhYWoq6sze/Zs0tLSWLp0KV5eXgwYMIDmzZujq6vLyJEjadSoEfv27cPQ0JAuXbpw/Pjx/7NP9Q5eASorKykpKcHU1BSAZ8+ecfv2bbS0tMRErApgZTIZMpkMb29vJkyYwPPnz/Hw8BCBa2ZmJqamppw+fZr33ntP3Ai6urpkZWUhSRKOjo4AJCUlER0dTWpq6j+06euvv+bMmTP88MMPYlFJSEj4hwX438Ha2poxY8YQEhJCdnY2jRs3Ri6Xc/HiRbKzs0lNTWX//v2cOnUKGxsbBg0aRHZ2Ns+ePePUqVMcPXqUbt26icDp6dOn6Orq4uzszDvvvENZWRm7du3i3r17YvJSIT09nejoaHr06IGPjw/Gxsbo6uri5OSEubm5eJ+FhQUjR46kqqqq3hMRKCf1NWvWMG3aNDp27MjevXtxcHBg3bp1v5gQwejRowHlomxkZERQUBAhISGcPn2a8vJy0tLSyM7ORi6Xc+DAAdq1a0dkZCTa2trk5uYSEhJSp2+Ojo5069aN4OBg8dzx48c5evQozZo1o3Xr1oAyoJ06dSpBQUHk5+djaGhY7z7q6+uLyV8FTU1N7ty5Q2ZmJlOmTMHb21vccPfv3+fevXt07dqVoKAgALKzs4mNjcXd3R1NTU22bdtGUlISP/30E1ZWVoByoqmuriY9PR0bGxsmTZrErVu3WL58OeHh4XTv3l0spNXV1Rw7doysrCzeffddWrZsSVhYGKWlpQQFBVFTU1OvPgI0bdqUR48eoa6uzrJlywDYvn07hoaGDBs2DIDa2loqKyvJzMykurqarKwsEZgUFxdTXV1N586d6dmzp/hc1Yawurqa8vJyAHR0dERgHB8fT2pqKmZmZgDk5uaSkJCAnp4e1tbWmJmZ0aZNG6qrqykqKiI4OJjg4GDkcnm9+nft2jX09fVxcnLC1dUVExMTcR/k5ORQWlqKg4MD9vb2mJqaMmTIEIYMGcLp06c5ceIE1dXV9OvXjylTpgDK++vo0aPk5eWRkZGBTCbj/v37WFhYiAA8OjqaS5cuERcXx5MnT+jevbuYT54/f46Ojg6BgYEEBwfXuWZJSUlERUXVq39BQUH4+fkBEBUVxcmTJ9HV1SUgIICkpCQePHiAl5cX2traXLlyBVAGzqamppSXl5OSkoKenh4rVqyos0l/+fIl9+/fx9zcXLQxPj6eH374AR8fH95//33S09MZOnQo4eHh6OjooKurS6dOnVi6dCmgHDdZWVlYWFjQtGlTtmzZwpUrV8Qm4HURHh6OlpYWVlZWlJaW8sUXX2BlZcWFCxeIi4vDxMSEyZMni3XjwIEDhISEYGRkhJaWFoGBgQQEBLB06VLKy8t5/vw5FRUVBAQE4OnpyY4dO5g1axaurq5izqqpqUFdXZ3Lly9z8OBBysrKcHFxQSaTMX36dL766itAGYhduHCB8vJyXFxcsLGxqbNJeR14enpy48YNAAICAlBTUyM1NRUdHR0aN27MnDlzWLZsGVeuXKFTp07Y2Njw9OlTNDU1Rd+OHDnC6dOnmTNnDlOnTq3z+ebm5lhZWdWZc1TBxePHjzl69Ch9+vShRYsWhIWFceXKFfr06YOPjw8KhYINGzaQn5/PzJkzxfU4efJkvfrYrFkzioqKMDQ0xNLSElNTU3Jzc4mKisLDwwNjY2NsbW2RyWTExcXRunVrOnXqBCgD3xcvXqCmpkZKSgrR0dEcOXKEyspKdHV18fDwwNHRETU1NRISErCxscHd3R1vb2/Wrl1LfHw848ePR01NTdz/pqamdOjQAQ0NDUpLS3nrrbe4fPkyn3/+OY6Ojjg6Ov6mjVZcXByfffYZly9fplGjRnTt2pUWLVrg5ORETEwMRUVFVFVVUVBQQHh4uOh7nz59sLOz486dO1y7do2ysjJcXV1p1aoVt27dIi4ujpiYGBo1aoSJiQnW1tYipnnw4AGlpaU0bdoULS0tSktLSUtL4+HDhxgbG9OjRw+WL19OSUmJ2MDr6upSXV1dr76pq6uLTeSkSZN4+fIlt2/fFonCWbNmERgYiIODg9hISJJEQUEBJiYmvPXWWwDExsaiq6vL2LFjxQa7efPm4ntKSkrIycnh5s2b7Nu3j1u3bmFlZcXixYuZOHEiT58+pW/fvkRFRTFy5Ei0tLQoLCykqKiIJk2asHHjRiRJIi4u7t/26TcFr+Xl5ZiYmFBdXU1ERAQVFRUsX768TvStoaFBcnIyNTU12NnZoaWlxYgRI2jcuDEGBgZoaGhw8OBBvvrqK/Lz82nUqBFt2rRBV1eX5ORkEhIScHNzIzMzk9jYWKytrRk3bhxt27bF398fUE6wampK2m7Xrl0JCwvjo48+QkNDg/HjxxMfH8+RI0fEe14HQ4cOpVOnTjRt2pSWLVsCYG9vT3BwMD/99BMxMTF07NiRDh06sHHjRg4cOMDAgQNxcXFh/Pjx9OjRg1atWqGurs7bb7/N8ePHWbduHc7OzoAyKzVz5kxGjBjB8+fPKS0tFd9taGjIzz//TGZmJl27diU/P58hQ4Ywffp0bG1tqaysJD8/HysrK0xMTABl4FBfdOjQgcuXL4tArnXr1uTm5orA9VXExMSwd+9eIiIiaNKkCVu3bsXHx4cVK1awadMmLC0t+fDDD5k7dy7p6elIkkRYWBgZGRmoq6uTkJCAs7Mz7dq1w9fXV2TMV6xYwY4dOxg0aBB9+vQR36erq0urVq1o1qwZmZmZ1NbWIkkSkZGRr90/1U0Kf1/IfHx8eOedd7h69Soff/wx+vr6DBgwQFxnbW3tOhuEx48f8+233/LWW28RFBREu3btqKqqqvOerVu3sm/fPnr06MGKFSvQ0dERY7ldu3aMGjUKd3d3amtr+fnnn0X2vqqqClBm3m7cuMH69eu5fPkyDg4Or93HnTt3MnHiRHJycoiOjhbPb9y4kYqKClq1aoWTkxP5+fmcO3cOAwMDunXrhq6urvhN4uLiOH78OMXFxbRv354uXbpgaGhIbW0tFRUVlJWViYW2RYsWPHr0iPXr15OamsqMGTNwcXEhKyuLadOmcfz4cXR1dfnuu+8YN24cubm5YqPTqVMn3NzcXrtvr17HJUuWsGnTJkxNTfn888+Jiopi+/btyOVy7OzsWL16NTdv3mTWrFligW7fvj3Ozs44OzuLYKSyspLQ0FCKi4tp2bIlTZs25ccff+TDDz9kzJgxInh1c3Nj8+bNnDx5kvLyctzd3QHlqUh2djYmJiZcuHCBoqIi+vbtK+5rOzs7+vfvz9atW1+7fy9evMDIyIj79+/z8ccfExERQVBQkDjV0NLSwtDQkOLiYvbs2UNRURGDBg2iZcuWVFdX8/z5c7S1tXF3dxdz3PPnzykqKmL27NkYGxuTlZWFqakp6urqrFq1ig4dOqCmpsbx48d5+vQpkydPZu3atairq/PgwQNCQkJo3749ampqWFhYoK6ujpeXF506dSIlJaXe1/DAgQPMmTMHUC6GGhoaJCUlsX79eoKDg/nxxx/p0qULAFOnTuXixYtiM+Xl5YWmpiYFBQUUFBSgp6eHnZ2dWFwB+vXrx969ewkIULr9Xrp0idTUVPT19UWS4/jx43Tp0oWPPvpIbGR++OEHVq9ezaRJk1ixYgXl5eVERESIQPR14ejoSGRkJBUVFZSXl3PkyBFiYmJo27YtFhYW3L59m7S0NLy9vdHU1ERbW5vAwECRydTQ0GDs2LEMGjRInFIBREREsGTJEqqqqti+fTt9+vShtLSUoqIiCgsLSUtLo2PHjrRq1QpfX1/c3NzYt28fS5YsYfDgwfz444/4+vpy8OBBdHR0xL0xa9Ys7ty5U69NSP/+/Xny5Alt2rQRp00JCQlYW1tjZGREbW0tBQUFHDlyhAMHDtCjRw8RvFpYWLB27Vru3r3L5cuX8fT0ZO/evdy8eZPS0lKysrJEIPf48WM++ugjioqK0NHRYcSIEQQHB2NhYQEo18fg4GCuXr3K/v37GT9+PNra2uTl5ZGUlERRUVG9rt2r2LJlC4sXL0ZDQ4PJkyeLeVtNTY2LFy+yYsUKevfuzZo1a9DU1GTLli3s3LmTGTNm4Onpyfz58wkJCWHBggUMGTKE6upqDh06REVFBfPnz8fd3Z19+/ahqanJqlWr6NSpE+fPn+ejjz6iVatWjB07FlDeIwMGDKC6ulqs8RoaGsyZM4eKigp0dXXFc/VBZmYmly5dEqelc+fOFcmxq1evcv/+fZydnWnbti06OjpijSotLUVdXV0kNNzd3VmyZAn3799nzpw5DBo0qM73nDlzhk2bNvHixQvKy8sxNzdnwIABYo13c3Pj888/x8TERGR2Y2NjWbZsGV5eXnz88cfExMTw4YcfinHxr1Dv4DU+Pl4cVWdlZZGVlYWnp6c4+i4oKMDQ0JDMzEzu3r1Lo0aNcHNzo6CggJcvXxIYGIhMJqO0tJTTp08TGhqKnZ0dXbt2xcfHh2fPnlFaWoq1tTUWFhZoaGiQkpKCkZERzZo1E1mQ2tpaZDKZGGDvvvsudnZ2jB49mmXLltG7d2/8/f0JCQkhMzPztfuXkZFBQUEBjo6OYuFTpbUjIiK4efMmY8eOpUmTJty/f5+oqCjGjBlD8+bNCQwMFJ9TUFCAmpoaWlpa3LhxQxxhPn36lNzcXDw8PLCxseH06dOcO3cOLy8v9PT0GD58OPv37+fChQu4ubkxd+5cqqqqKCwsxNDQECsrKwoKCjh//jxNmzbFw8OjvpeQFi1a8PPPPxMbG4tMJqNx48Y0btyY4uJiUlJSqK6uxtnZGU1NTbKysoiLi6OsrIzu3buLAdezZ0/Cw8NJSEjg5MmTmJiYoKuri62tLQUFBaSmpqKhoUFZWRk1NTUUFxeTnJxMTk4OycnJRERE4OXlxeDBg3Fzc6O2tpaEhASKi4vR1NSkUaNGNGr02xw8r127RkVFBb1790ZHR4edO3diYmLC8OHDkclk/PDDDzg4OCBJEvfv36djx474+fmJbJa9vT2Ghobo6elx+PBhkekxNDRk27ZtODs7U1xczOXLlwUVQDWZqMbpgAEDxFFuUlISNTU1dOnShdLS0jrj8fz583zyyScA9VpQioqKSE5OJjs7m8jISJYvXy5oDo0bN+b5/6PtL+Ozurb2DfSKu7u7JwQIECyBAME9xaFoixQpFCkUKZRSoGihFN24uxMkgQQISSBEiRtxd7fzIeeZ/+btft9N9u+c8WmXDU+ynrXWnGPe45a0NHR0dCgrK0NNTQ0FBQUKCgpQU1MTDbiLiwuvX78mLS2NhIQE7O3tsbKyoqSkhJaWFpSVlQUikp6eTkhICFFRUXh5eeHo6EhUVBQvXrxAXl4eU1NTTExMsLe3p6mpiT///JOXL18yZcoUVFVVqays7PR97NevHzk5OZw9exZZWVnu3btHS0sLiYmJ9OnTh3HjxvHmzRvOnz+Pv78/5ubm9O7dWzRrr1+/RlpaGgcHB7FO9O/fn2HDhqGhoYGamhrS0tLIyMiIn2lmZoaZmRlDhgwRf1ZQUEB9fT36+vooKCggLy+PtLQ0DQ0N4u/8fWz/pRUfH8/58+e5du0a0D4xGDhwIMrKyujr61NVVUVYWBjR0dH07NkTIyMj8Zw1NjYKtLWiogItLS0yMzO5dOkSJiYmzJ07l8LCQvbt24e1tTXffvutQHmhnQojAQKam5vJyckhKSmJ3NxcPnz4gIuLC126dBGHQC0trQ40lC+tz58/i0OZiooKy5Yt48OHDygqKtK7d28sLS1pamri0KFDpKam4uTkhIeHBz169BBNS2pqKmFhYTg5OeHq6gq0r/9VVVWC1iQpVVVVWlpayMjIwMrKCgsLCzIzM/nw4YNAXM+cOcNPP/2EsbExI0aMQEZGBhUVFUpKSsjNze3U9fXt2xcFBQXMzc2RkZGhpqaGqqoqampqkJKSIj8/n+rqaurr66msrERTU7NDk2piYtLhvyXV0NBAYmIinp6eYuOXPIPv37/n/v37fPPNNwJtBnB1dWXJkiUsX76ciIgI7O3t6dKlCzExMZw9e5aXL18SGhraqeuD9nciJyeHO3fuICsri729PUOHDhXvjWQfNjIyolu3bqioqJCeno6RkRGqqqp06dIFa2trZGRk6N+/P3Z2dvTs2ZOEhAQ8PDwAePDgAYGBgbx69UogtWfOnGHWrFkAhISE0NLSgrOzM21tbWRkZBAVFYWlpSW9evWiW7duglaXn5/f6WvU09Ojd+/e6OjoMHz4cGxtbSkqKqK6uprXr19TX18vgBRon9DKysqiqamJrKwsycnJaGpqCjpKVVUVGRkZ2NnZ4e3tzd27d/nxxx8ZO3asOEApKipiaGiIh4eHoAIpKCh0oAK2tLTQ2Ngo/qyhoYHk5OQOB7gvqezsbEHPSExMREZGBldXV5SUlFBSUqK1tRUlJSXMzMw6rIcaGhqkp6cTHx8vUGdJTyVZizIzM2lqakJdXZ2oqChBDbSwsGDZsmXMnTsXVVVVysrK0NLS4quvvqKpqYk7d+4wduxYPDw8cHJyIjg4mKNHjyIjI/NFzXmnm9eHDx8yY8YMWltbKSgowN3dHUNDQ4qLi8nMzERZWRknJyeqq6sJCwujS5cu9O/fn6ioKJ4/f87YsWPp0aMHysrKODg4MGTIENHBv3//nsTERGxsbAQlQXL6+J8lQRoaGxvFKXbYsGGCD9LS0oKBgQErV65k/fr1X3x9N2/eRFdXVzSuNTU1mJqaMm3aNEpKSnj48CEtLS0oKCgwc+ZM1NTUGDJkyD/oCYqKiuzfv59vvvmG7du3s3PnTnbs2EFNTQ3ff/89NTU1Al29ceMGAEeOHOHo0aO0tLRw7tw5UlJSOHXqFC9fvmTMmDHMmTMHgNu3b7NkyRLmzZvH4cOHv/jaJFVXVyd+R0mVlpaira1NUlIS4eHhTJs2DWdnZ/T19fnuu+/w8PDoQAPw8vKie/fuPHv2jN27dxMcHMyIESM4f/48+vr6pKSkoKWlJTiLERERrF27lvj4eHx8fFi1ahWDBg0SG7BkrHTr1i0KCwsZO3YskydPpqysjNjY2E5dX3h4OPv37+fEiRNMnTqVGzduEBgYSEhICImJiZSUlDBv3jy0tbXZsWMHr1+/5vTp07S2thIeHk55eTkeHh6cOHGCuXPnMm/ePPbu3cv48eNZvnw5CxcuREpKipUrV/Lbb79hbm4uXjZJE19dXS1+HxMTE0aMGIGxsTG5ubkdGh0J30lCL/jS8vLyIi4uDlVVVZSVldm2bRtWVlYsXbqUGTNmoKSkRGxsLEpKSowYMYL4+Hhu3ryJvb09Y8aMAdqpFIsWLaKiogIpKSlkZWVJT08nMzMTAwMDDA0NsbGxISQkhHv37gkuZd++famsrGTNmjUUFRWxdetW3NzcqK6uRlVVlaKiIpKSktDU1GTYsGEYGhoK+kFnasiQIfTo0YOpU6cSGBjI3r17mT59OsnJyURERNC9e3d2796Nr68v586d49OnTwwePJjCwkI2b97MhQsXMDU1ZfHixYwZM4Z+/fohIyMj1hQvLy/27NlDVVUVb9++xd3dHRUVlX/8HnJycri5uYkNRkJJqampobi4WPDyO1uampqCz62oqMi1a9cYOXIk+fn56OvrU1ZWxsqVK0lPT2fv3r306tWL2tpaSktLUVNTw93dHSkpKZSUlMSG/unTJ7H5vHjxgoMHD3bg5jc2NiIvL8/UqVPR19fn0aNHrFixgsbGRr799ltmz57NyZMn2b9/P7/99ptojsrKysS60dlrlJS2tjarV6+mtraWlpYWLCwsAJg9ezb+/v6sXLmS8ePHC9RfUs3NzRQUFIhmFtrXCw0NDRobG2lubhbrSO/evVFVVSUgIABTU1OGDx/OsWPHaG1tJSYmhrt377Jp0yZ8fX05ffo0JiYmgmNcXFzc6euztrbGxMQEWVlZZGRkmDFjBoWFhSgoKGBiYkL37t2ZMWMGly9fZvTo0QJNkozh/7dydXXl8ePH4rmqq6sT3FUFBQWePXuGnp4eY8eO7fDvBgwYwI0bN9DW1kZeXp5jx45x6dIltm7dSlJSEu7u7nh5eXWKplRXV4eHhwcLFizg1q1bnDhxQoAmZWVlglLk5+eHn58fiYmJJCQkUF9fL6axqqqqzJ49W+zbWlpaYtrx+vVrjhw5gpycHH369KGsrIzKykrevHnDuHHjkJOT4+LFiwQEBDBv3jz8/PxwcXFBX1+fhoYGBg4ciJKSkpgcxsXFffG1SWrixImMHTuWO3fukJqaipaWFvn5+YSGhtKvXz/Wrl1LZmYmT58+pU+fPowfPx4vLy+qqqrIzs5mz549HZBCVVVVfvzxR1RVVUlOTub06dPk5OR0eB969erF+fPnO2gQJIdFSUn4w5LDt4KCAikpKURERHTq+pqamhg2bBiampoEBAQIDu6hQ4cEf7exsZGGhoYOFCQVFRXU1NS4ffs2ly9fBtq53MePH8fJyYmGhgbk5eXJysri6dOnlJeXY2lpSUZGBkZGRowbN048w9XV1aKvO3PmDCtWrGDt2rX8/PPP7Nu3jzNnzvDu3TsGDBjAmTNnBIXpf6tON6+VlZXs2LGDXr164evrK3hvurq6VFdXC1jb1NSUhoYGCgsLkZKSws7OjtTU1A4nBjs7O96/f09sbCw2NjaoqakxatQoioqK+O2331BSUmLRokXo6Ohw5coVysrK6N27NxYWFqipqSEnJ0dLSwuxsbFi8Zk8eTKOjo5inPH3sfyXlKmpKeHh4SgoKODs7NxhM7O0tERLS4uSkhJUVFSYNWsWbW1ttLS0UFNTg5KSEtLS0h0aasm4OicnR4gCZs6cyaNHj3j16hVlZWVoaGhgaWlJUlISt2/fpn///jQ2NnL//n2ioqKIiooSG9CZM2fYtWsXHh4eGBsbd0rkIyk1NTVWrlwpRkkS7iO0j7IzMzMJDQ1FQUGBLl26UFVVJRBpFRUV2tra0NbWFkhRZGQkYWFhKCoqoqOjg5SUFEVFRR0WZz09PUpLS5GVlWXQoEEdGldJ0zNgwABiYmI4deoUZWVlDBs2jPz8fE6dOvV/LvT/s6SlpfH19UVWVpa2tjZ+/PFHdHR0uHTpEqWlpcjLy9OvXz/c3NzIyspCU1OTkpISCgoKKCgowNDQEGhfOPr160dgYCAaGhpoaGjw1VdfERoair6+Pj4+PmLiEBUVxa1bt6ivr8fHx0dQWySfo6amRv/+/cnLy+vQ6IwePRo5OTmxWH5plZSUYGhoiL6+Pi4uLlhbW4tTsY2NDePGjcPGxobU1FSBqFlYWIjG9ejRo4SEhDBjxgx8fX3Fwp+QkMCZM2fo0aMH3bp1Q1dXF2lpaZydnRk/fjx9+/YF2hHmUaNGkZKSQmBgIGFhYejo6NCjRw/09fXZsGEDWVlZlJaWYmBgIN6HzpampiazZ8/G29tb8K6srKyIiooSjViXLl2wtbXFwcEBeXl5Dhw4wLFjxwRavm3bNlpaWli1ahXQPp4sKSmhZ8+ejBw5kt27d3Px4kWWL18uxmCXLl0iLCyMBQsWCLRPUv7+/iQlJTFmzBgsLS0BCA4O7tSEB9oPNW1tbejq6rJ27Vqsra3JzMwUiLCOjg6TJ0/mxo0bvHv3DldXV5SVlcV78z8PzB4eHgwZMkQgnWZmZujr65OTk0NJSYkQJ7a2tmJoaMjUqVPJyckhPDwcc3NzFixYIBCx+vp68R4AfPXVV3h5eXH9+vVOXWNGRgb/+te/GDBgAJaWlqIBk1R+fj4lJSWCZtKvXz98fHw6NFdGRkYkJiZ2eG8+ffqErq4u+vr61NXVcerUKT58+IC5uTkqKiqkpKQI3cGPP/6IjY0NBgYGFBQUsGLFCubPny8Qz+bmZqFg7myD/uTJEwYPHiwODBJxsaTKy8t59epVB31CS0sLioqKFBcX8/jxYxwcHOjVqxfJyckcPnwYNzc3FixY0GGqJkH8oF3UZGZm1uFgn5SUhKOjI87Ozri7u/P69WtycnLo3bs3fn5+vHv3jpkzZzJ27FgCAwNJSkr64mtUVFREVlaWAQMGUFlZKZ4LCXWlvLycuro6lJSUkJGRITc3l9ra2g7PT3JyMrm5uZiZmWFtbY2amhrZ2dk8efKE4uJixo8fL4Sg5ubmZGdnExQUxIkTJ7CxsaGiokLwYSVUHWif/koQ848fP6Kjo0NqampnbiHQPgUJCQkRz31aWholJSVYWlri5+eHvLw8srKyfPr0SdxfHR0dfv/9d/Lz8zlz5gwAa9euRVZWlh07dohmtqamhmHDhmFjY4OxsTEHDhwgLCyMYcOGMXv2bAoKCjh16hT9+vUTmpDo6GgKCwtxdnbG2NiYiooKISYcOnQoampq3Lx584uvT6IZaGtro7a2ll69etGlSxc0NTUpKioiNzcXBwcH6urquHfvHnl5eQwfPhwnJycsLCwYN24cnz59EvQdyX6hoKBAbm4uDx8+JDQ0FF1dXdzc3GhqasLIyEjQDxoaGkSTnpycTHNzM8OHD+fp06coKyuzdu1a5syZg7GxMTIyMl8ktP+vOK+vX7/G1dUVbW1tSkpKSE1NxdHRUSzk0L659uvXDw0NDXEhX3/9NUVFRTQ1NSEnJydI3qdOnaK4uJiffvoJdXV1Ll26xO7du4XST05OjqdPn5KRkYGysjK6urqig29oaCAlJUWM3lasWCEIxOfPn+fOnTsdTjb/qR48eEBoaCiDBw9GVlZW8AMB3r17x71791i9erXY0FJSUqioqMDIyEg0utLS0rS1tYlFsVevXlRXV5Oamoq2tjbr1q1j+PDhbN26ldu3b+Pp6cn333/P7du3mTp1Kj/++CPr16/H0NCQo0eP0rNnT+zs7MjMzGTXrl0oKyvj7+9PS0sLBw8e7PT909fXF2h0VVUVCgoKqKqq0tzcjImJCePGjePly5fEx8djaWlJeno6J0+exMrKim+++QYtLS3Ky8v5/PkzdnZ2/Pzzz9ja2gr0saioiJqaGqGQhfaxRc+ePRk9ejQLFy6kpqaGsLAwXFxcxKhPRkaGUaNGsXfvXkpKSmhtbUVHR6fTojtPT0927twp/nvo0KGoqqry/v170by2trZiaWnJrl27xN/Ly8vD1tZWIEKtra107dqVP//8U2x0Y8aMYfjw4ZSXl3dQz+fk5HDu3Dmsra2ZMmUKra2t1NfXo6SkRGNjI7W1tSgrK4vRa2NjI9LS0gwfPpzhw4dz8+bNTjWvWVlZDBo0iMrKSpSVlZk6dSofPnxgxIgRYgPo1q0bBQUFonk/evQo0N68HT9+nI8fP4pRkLe3NwYGBtTV1XH37l3Ky8tZunQpWVlZtLW1sXLlSrGZ5uTkYGJiwtixY0lISGDq1KlERUVhZmbG7t27mTp1Kk5OTuTl5XH06FE8PDz49ttvO3UPoZ1vJSsry7Rp02hraxObv76+fgekOjExkdzcXHr27Am0rz1qamqsWbMGGRkZFi1aREhICNB++L548aLgm0q41YGBgUydOlV85uPHj7lw4QKGhob/aF5PnTrFjRs3UFJSYsGCBUD74SUoKKgDOvif6tWrVzQ3N7N06VK+/fZbnj9/Tl5eHrNnzxbXP3r0aJqampg8eTKnT5/m2bNn6OrqUlxcLKYl2tragqI0Y8YMcVD4/PkzRkZGNDQ08P79e3x8fFBRUaGgoIC8vDz09PSYP3++cIiRrF9WVlaMGTOmw/jS0tISOzu7TjevMTExBAYGsmPHDlauXAm00zAUFBTQ1NRET0+P4cOH8+bNG0JCQrhy5Qq9evXqABrExcVRVlYmULva2lrB/Yf20WZmZiZ//fUX0C6iGjBgABkZGdTU1LB+/XpxKBkwYIBYpySUJg0NDdzd3WlsbOw0onXq1ClsbW2xtbWlqalJUIgaGhqora3l6dOn4h5JmnYZGRlkZGSQlpYmNjZWCHZu3LjBH3/8wdKlS2lpaUFKSko0C7m5ucLZpKamBhsbG6ysrKirqyMtLY2amhqMjIxobW3lzp07BAcHY2hoiJ6eHjY2Nvzxxx9AeyN1+PDhTq2p2tratLS0MHfuXObOnSsaaVlZWZSUlHj79i25ubmUl5cLalKfPn06/IyKigpu3ryJsbExP/74I9B+APnmm28YPnw4Dx48IDw8nDNnzojJT1NTEw8fPsTW1hY7OzsmTZqEl5cX0N44V1RUiMYrJCSEyspKnJ2d/6spyNmzZ9m1axerV69m7dq1+Pv7U1VVxVdffYW8vDwtLS2CylZWVibesaSkJGJiYoiOjqampoYTJ04I0S+0P/9GRkbi4H348GHxHqiqqjJjxgwCAgK4fPkyKioqonktKCggNDQUKSkpjI2N0dDQoLm5mdbWViorKztNqTMxMeHdu3dcvnyZqqoqFi5cKGiOp06dIi4uju3bt1NRUcGaNWuora2la9euODo6UlNTw5QpUxg/fjz+/v68fPmSO3fuMHnyZExMTIiMjOTChQtkZ2czdOhQvLy8sLKyEo2tvr6+AJ9yc3MJDQ1lzJgxLF68mLVr17Ju3TrCw8NZs2YNmpqaZGRk8PDhw/94TZ1uXpOTk1m5ciVDhgyhra2NvLw8nj59ysmTJ5k0aRLu7u5cu3aN3NxcvvvuO0xMTMjNzRUd9fv372loaMDb2xtnZ2dmzJhBr1696NevH9ra2hw6dIjffvsNU1NTYYXT1NTE7NmzefXqFVlZWVRXV4vOv6CgAFlZWcaNG4eurm6HU1lERAS3bt3qFJfw9evXzJw5U2xYT58+xdXVVfB+JDQCSUkaOGNjY6qrq4mPj6elpQVbW1saGxt5//49Hz9+5PPnzzQ1NdHc3Iy5uTkDBw6kf//+3L59m9DQUN69eycW57t372JsbMzUqVOZN28eeXl5PHnyhMzMTCZMmMDs2bPFycTLy4urV6926h5K0O/bt29z+/Zt1q5di6urKy9fvqSuro6+ffsyceJE8vPzCQ8Pp6KiQnCcSktL0dLSQlNTU4hJKioqaGtro6mpidjYWNLT0yktLeX8+fMkJCSgpKTEp0+fUFFRYfr06UD7OEJPT09sUjU1NTQ2NpKQkED//v2xsLBAXl4eXV1d5s6dK0YWX1ISdFBSe/bs4dmzZ9jb24uxvuRE+PdydHQU9/3WrVvs37+fJUuWMG3aNK5evcovv/zCihUr6N27dwcKBYCPjw+7d+9GTU2N8vJyvvvuO9ra2vjhhx9QVVUV9jiSz29qaupA2xg7diwvXrz44muUNG/u7u7iMz08PPjjjz84d+4c9+/fF/yze/fuCSrPmzdv2L59O4MHDxaHBAlqMXDgQNHcFxQUEBQUJNBECdXh5s2byMjIoK2tTVNTE3l5eSxatIjU1FRMTEwYPnw4AJcvX+a3336joaFB8KQ7W1u2bGHEiBFUVVVx9epVPn78yOjRo9m0aRPq6uri7xkYGAgER4Kk6ujo8P79e9zc3Pjrr79ISUlh3rx5KCgo8PHjRyIiIhg0aBDdunXD09OTqKgoevfuDcDvv/+OiooKW7ZsITQ0lOnTp7N27VqBsvv6+tLS0kJMTAyRkZEC+e2s2Gf37t0AAtXv3bs3DQ0NqKmpceLECY4fPy5sepqbm4mMjGTSpEn06dOHyMhIwsPDmTVrFr/99htv3rwhICCAn376CYBNmzYJLvWqVaswMTEhNjYWWVlZrKysCA8P586dOwwaNIi6ujp+/fVXrK2tGTlyJPfv3yc4OBhNTU3Mzc1JSkoS32FnRIXQjvhkZ2d3sBqMiIjgzZs3+Pn50a1bN9GMjRw5EgcHB65cuYKXlxcyMjIcPHiQN2/e4O3tTZ8+fcjOzqatrY2ePXsiJydHXV0dT58+ZfDgwZibm7N161aMjIyYMWMGz54949dff+XKlSuMHDkSeXl5ysrKePLkieDoVVdX061bN9zd3YXNUlRU1BdfX0NDg2jSampq+PTpExcuXODx48eMGjWK2bNnC7Hd3/cNaG8Kd+3axdmzZxk4cCD19fXs3buXyZMn8/btWw4fPsznz59xdHSkvr6etrY2XF1dSUxM5NOnTzg7O+Pg4ICrqyttbW0oKysTGRnJ06dPMTExwcfHp8OkMy0tjbNnz6Knp0d5efkXX2NpaSk5OTlCiPx3Ya+DgwNpaWnY2tp20DvIy8t3mLZI9A3nzp1j7dq17N69Gw8PDxQUFPD39xfuIMrKysjLy6Ouro6JiQkNDQ1kZGRgbGxMS0sLT58+paGhAUNDQ6ytrdHU1MTGxgZlZWUUFRVRU1NDSkqKzMzML74+gIEDByItLc3QoUPR09PDy8uLkpIS5OXlBaoM7U3z2rVr0dHRYcOGDRw4cIBz585x5swZtLW1+e2333B2dubWrVtcvnyZgoIClixZIg7GmZmZyMnJMWXKFH755RdkZWWxs7MT9lGS0tHR+cfkt7S0lKNHj/L48WOUlJT+4ajzf1V5eTkPHz7kyJEjNDc3IysrK4CjpqYmgZ6XlpaSnZ2Nk5MTDg4OHDx4kCtXrnDy5ElcXV0xMjKiR48eODk5UVpaSnR0NElJSULMaWlpyYIFCwT9zMTEpAOKqqioiJmZmThgbNmyhZaWFu7du4evry/W1tZMnz6dsWPH8uzZs//zmjrdvNrY2Igb0draiomJCQYGBty8eZOysjJ69erFu3fvaGpqIjk5ucOXX1ZWxoMHD9DW1sbPz4+amhpaW1uZPHmyaDoLCwvp1asXGzZs6OBnNmDAADw9PYmOju4glKiqqiI0NPQfNkzQ7ncosWD60lJUVBRIbVRUFPn5+cKv0tPTkw8fPpCZmUlGRgZNTU2YmpqKBV1GRkacPCUITEZGBnv37v2HErKhoYFvvvmGsrIyYmJiMDQ0REFBAQ0NDeLj44VvrpubG25ubhw/fpz6+npWrVqFmZkZycnJKCoqMmDAgE43rxI4Pzw8nLi4OAoKCrC3tyc9PZ2SkhJsbGxwdnZGSUmJ4uJiTExMhFCusrJSnOpNTEx4+PAhV69eFWKZ58+fc//+fXGPysrKaGtro76+npKSEsLDw5k6dSpSUlLo6emRlpaGkZER6urqvH37lnfv3mFrayt8VvPy8jrtD6qsrMzHjx/R1tbmw4cPHD9+nKqqKlasWIGRkRFlZWUdRnLp6emUlZXR3Nzc4Xl5+/YtZmZmdO3alUePHnHlyhUiIyPZsWMHgwcPRk5OjoyMDKqrqzE2NmbSpEkAPHv2jJcvX6KgoCDcB6SkpMjKysLKygoVFRXxXkhsQv6d08P/VZqamgI1amhoEAfEqVOnYmxszOnTpzl+/LhAjwcMGEB+fj737t3j48ePDB8+HB8fHz5//szevXsJCQlBUVERLS0tdHR0iIyM5MCBA3h6euLq6kpVVRX5+fniHVdSUiIhIYH4+Hg8PDw68CpjY2N59eoVxcXF6Ovr/1dICLQLVKSlpYmJieHRo0dUVFQwYsSIDu4hDQ0NgrJSW1srUOGpU6eyaNEiioqK2Lhxo3Ap+Hs9fPgQR0dHwsLCUFBQoKWlRdjtbdu2jUmTJrF9+3aOHDnSwebL2toad3d3gfp07dqVLl26YGlp2SnFs6ysrLD5AjoId7S1tamrq+PHH3/EwsKCCRMmoKOjQ2ZmJidOnBD8TImCPT09nYsXL6KoqCjElNDeXMyZMwdXV1ciIyNpbGxETU2N3Nxc/vjjD8LCwlBRUeHChQv07dsXa2tr0tPTKSwsFN9zeXk54eHhREVFCQHNl9aiRYtoaGhARkZGNAGSeyVBPuvr6+nRowe//fYbAAcOHCAtLQ1ZWVmePXuGrKwsCxcuxNHRkeTkZOHJWV1dzZ49e/D39+e7775j3rx5uLi4oKmpiZOTEykpKbS1tQmv1MGDB/Pw4UOOHj2Ks7MzI0aMoLKykqdPn9LS0kL37t070H2+pKSlpcnKysLCwkK4okjGz46OjmIaAAhqVnNzM7m5uaipqQlxYUlJCZMnTxbUloMHD3Ljxg0sLCxwcnLiw4cPJCcnc/36ddGQtrS0iENcZmameI569+5Njx49/jExePDgAdHR0SxdurRTI+fMzEwh0pFwbAsKCkhLS0NJSQlvb+8Oh0loX9fk5OSor6+noaEBDQ0NfHx8KC0t5fTp01y5cgUDAwO6du1KcnIy9+7dQ01Njba2NpSUlHBzc2P48OFERERw5coV8vPzqa2txdLSksbGRhQVFYWDyf3795GVlWXmzJlA+wTtzp07X3x9gJiAQTtFw8LCAgsLC/Ly8qipqcHc3Bx5eXnOnz/Pw4cPcXV1pa6uDnNzc9zc3Pj555/p3bs3a9eupaysjJ9//pnAwEBcXFzEWl9fX4+VlRUbNmzgq6++wsDAgJaWFnr06CGcjSTVvXv3DhZUzc3NYi/Mzs6msrKyU81ramoqqqqqjB8/nsTEREJCQrh48SILFy5kzJgx6OrqYmNjI/Q9ElpiVVUVOTk5pKWl4erqSk1NDQoKCqipqVFVVUVaWhphYWHCl33GjBkYGhoSGBhIYWGhcCyBdnqgtrY2AwYMoLq6mrS0NKytrdm7dy9tbW3s37+fyMhI5s2bJ8R3/1d1unn9+yYlLS2NlpYWo0aNorm5WZzYR48eTV1dHdu2bcPS0lKIihoaGggJCREKw3fv3rFp0yZ++OEHMX5buHAh69at+7dm0YqKivTq1Yvg4GCioqJwd3cnMzOTI0eOkJCQgLOzM3p6erx9+1ZQGS5dusTevXu/+Pq6du3Kvn37BAdk/PjxGBgYkJiYyOTJk+nVqxc//fQT/v7+HDx4UBhrw/8zZ5egcuXl5VRWVuLq6ip4XZJNR09PD2dnZ3755Rfx7w8fPkxFRQXQfqMjIyNFM/Xtt9+SkJBAXl4e/v7+fPr0iREjRnQaCYF2oriMjAyTJk2iW7duKCkpkZqaip2dHaampmRlZZGamoqamhrdu3fvgBCqqamxefNmysrK+P7777l//z537tzhjz/+YMyYMWzZsoWXL18iLS3NnDlzWLFiBV27duXBgwdcv35dUEWg/YU6efIk3bp1Y968eXh4eBAeHk5qaipSUlJIS0tz+/ZtDh8+LKxXvqTy8/M5e/YsZ8+eRVtbm5UrV+Lp6cnnz59RVlZmzJgxHXh3aWlpnD9/ntbWVuF927dvX2bOnMnbt2+ZPn26sCRLSEjg9evX+Pr6EhoaytatW8nIyMDa2hpvb2/hRDFv3jxKSkrQ1NRERUWFYcOG8eLFC+7du0efPn0ExUYSbhEdHS1O919Sz58/Z/To0cLip7W1FTU1NdTU1OjRowdhYWH89ttvaGhosGXLFiZMmEBtba2Yhpw5c4bw8HDGjRtHWFgY79+/Z8qUKfj6+mJsbEx6ejqPHz9m8ODB+Pr6Ct7b0KFDRZPVrVs3SktLOXnyJKmpqUyfPp3U1FQ+fPjA0qVL8fPz4/Lly/+V0wDAunXrUFdXR1NTExcXF3R0dISJvwQxmDt3LjExMWzcuBEDAwOuXr2Kr68vVlZWDBs2jEePHrF48WI+ffr0j8/39/cXvHPJxqSrqyvCGgC+//57unbt2sHqy9/fn2fPnrFkyRKhBK+pqcHa2rpTqN3169dpbGykT58+tLS0EBcXR1FREd27d8fPzw9nZ2d8fX3JzMxk+/btzJw5U9hgvXnzhjlz5rB582YAunTpwsCBA/nzzz959OgRc+bMYceOHejo6IgRo7W1tWgyGhsbhcvElClTuHLlCnp6euTk5DB16lS2bdsmmh8LCwt2795Nc3MzV65c6dQ9nDp1Kr169eLWrVts3ryZYcOG4erqioWFBQYGBkhLSzNmzJgOgMTkyZOpr68nJSWFESNGYGFhITZqMzMz6uvrefXqFfv37+fJkyc0NDQQExNDQEAAO3fuRF9fn/LycmE9NmzYMHR1dXnx4gWFhYXCHcbBwYGCggIePHjA8ePHGTduHCNGjOjU9X3+/JlHjx5haWmJkpISVVVVjBgxgjlz5vzDCSYnJ0e4mERHR/PgwQPha37r1i3xfQcGBhIbG4u5uTlr165l5syZbN68mf3793dAUhUUFMjKyuLChQvcvXuXESNGMGvWLGbOnPlv1drDhg2jb9++2Nvbd6p5LS8vJykpqUOD+vTpU1atWsXUqVM5dOgQDQ0N3LlzBy0trQ7NbG5ubgcAa+TIkcjJyREYGEhAQAB5eXl89dVX+Pj48OTJEz5+/IiDg4OwnSwvLycvL4+8vDx69OjB8uXLO7iXNDc3c+TIEVpaWliwYAHy8vL/q8j7S0sSXALtFKXU1FTOnDnDw4cPSUxMxM3NjZEjRxIdHU1GRgaBgYGoq6sjKyvL0aNHiY+Pp6ioiKFDhwqxaENDA7GxsYwYMQJ5eXkCAwN59OiRcNb4v8IxWltbOXHiBM3NzXzzzTcsXLiQT58+cffu3S++ptbWVqZMmcLChQuFe4eEHte1a1fMzMzEoXDv3r00NTXR2trK3LlzGT58OPr6+uTn59PS0kJ4eDhhYWEMHjwYRUVFUlNT8fT05K+//qJr166cP3+eP//8U9A+Jc9CXV2dADIkVo0S7+Bp06aJifrfXZv+r+p08yqB0SsrK8nJyaG4uBhlZWXhXaeqqsrkyZN59uwZ33//PdAODVtYWHDjxg2io6MpLy/n2rVrvHjxQjRkkiovL+fjx4+4ubkhJyfHw4cPhXChrKxMKPMtLCw4ceIEN27cQEFBASkpKWJiYjAzMyMgIIBnz54xadKkTqdReHl5ERMTQ1ZWFgYGBpiamorxkoS3NHbsWD5+/NiBkB4bG9tho7h+/TpXrlyhsbERLy8vVFRUePfuHf7+/ujr62NgYEBVVRWfPn3i48ePyMvL09zczJAhQ3j+/LlQ0V65coXCwkKmTp2Ko6Mj+/bt4+nTp/Tr14/m5mbCwsI6ewvR1NRESkqKbt260aVLFz58+CC4uQEBAdy/f58uXbowd+5cFBQUyMnJ4cKFCzQ2NpKbm0tNTQ329vaoqKigr69P9+7dhX9vnz59UFVVpbq6moKCAoqLi3n37h1KSkr89NNPHRYyJSUlXr9+zevXr7G2tmbgwIFoamry/Plz9PT08PT0pKKigvj4+E41r5KTs76+Pp6enoJv9Ndff9GlSxdGjBhBUVERiYmJ9O/fH0tLS4yNjVFQUKC+vp6AgABycnIEt1dimCxJPZkzZw6qqqokJiYKW5CMjAwCAgKwt7dn2rRpDBo0iAcPHohNWVVVFR0dHZqamjqIUZKSkrh8+TJZWVlMmDDhi69RX19fJC+lpqaSlpYmvidra2v8/Py4efOmIOdDOyLdtWtXrKys+PTpEyUlJSgrK+Pj4yMEjk1NTYwdO5bIyEi0tLSEEhXaxYxKSkrCOmXkyJF4e3sLOk9xcTEVFRXIycmhoaGBiooKffr0EYtkZ0syZpV4Bnp7e1NRUcHGjRvp378/w4cPR1NTEy8vL2bNmsWHDx/49ddfqa2tZePGjYwZM4Zff/1VUES+//573N3deffuHU+ePBHohaWlJQ0NDSQkJODk5MSQIUMIDQ0lPj6eb775htGjRwvzbR0dHdzc3JCVlRUWTe/evaOyshI/P79ONa8DBgwgODiY6upqAQRIUu9qa2v5+PGj8KyVhEhkZ2fj7OwsnkNo5/ja29vzww8/iMCYnj174uPjQ0VFBW/evEFKSgovLy9xLw0NDfH09CQ4OJjW1lZGjx4NIPweJeKumpoaMV0DOt28QnvTPGDAAJ48eSJ4upK1s7W1VWxWdXV1tLW1iTVUIva9c+cOHz9+ZMqUKWLzf/Hihdi8XV1diY2N5fTp05SWljJ48GCCgoKQkZFh9+7d9OnTh+bmZg4ePIienh5z584Vv5uenh7Z2dmkpqYSHh7+b22r/q9yd3entbWVjx8/4uTkhI+PD1lZWWKcamJigrW1Nampqbx//54JEyagqKhIeHg4x44dY9GiRXh5edHY2MinT58wMjJCV1cXZ2dn0tPTiY6OFtZipqam6OrqUl5eTkZGBhkZGfj7+wuxjJKSEubm5ri7u2NjY0NpaSlv3rxBRkaG4cOHfxGa9e+qubkZY2PjDrQHLS0tnJyc0NPTo6Ghgby8PDG5effuHZ8/f8ba2lrwPxMSEnj58iX19fUCFJJcn6KiIlOnThV+1b169RLPu7S0NBYWFhQUFFBYWEhoaCh+fn5oampSWFjIxYsXRSLc06dPGThw4H816fn48SPV1dU4ODigr68vwpPk5OSIj49n8+bNFBQUAO2cawktKSgoCENDQ1avXo28vDx79uwhJyeHRYsWsWDBArS1tYmKiuLcuXPU1tbyzTff0L17d1xdXUlOTiYqKgoHBwc0NDQoLi7mxYsXlJaWUlJSgqqqKoMGDSI9PZ19+/ZRXV0t1iczM7NONa8SykdoaCjh4eF4e3ujo6NDYGAgHh4e6OjocPXqVbKzs1m1apVo3pWUlJCTk+PFixc8f/6cz58/4+TkhKOjI0+ePCEsLEyEiHTt2pXg4GCOHTtGQ0MDvr6+4n2qqKhAT0+PgoICbt++jba2NuPGjRMWjg4ODuzevZva2tovtuTrdPP6+vVrRo8ezdu3bzl+/DjS0tL069ePrl270q9fP/GCqKiooK6ujoaGBjExMeTn5/PmzRukpaXJzc1l3759GBsbM3PmTFRUVKipqUFFRYUnT56wfv16duzYwfjx47l8+XIH1e3ChQv56aefcHBw4MSJE3z+/JkNGzbQv39/pKSkyMvLo6SkRMSDdrZ0dHT46aefsLCwIC0tjZycHNTV1bGwsBDRhIsXLxaCG0mVlJRQXFyMkZERUVFRrF27loyMDBQVFdHU1MTZ2RknJydycnJQUlJCS0uLnJwc9u/fL8b+586d4+bNm8yfP5/U1FRGjBhBdnY2W7duJT09ncmTJ5OVlUX//v1ZtWoVQUFB/Pbbb532XywsLMTExISKigpevHhBWFgYI0aMwNnZmYyMDJ48eYKbm5vgLFVXV5ORkcHvv/8u7FcmTpwItJt0z5o1SygrhwwZwjfffMP+/ft5/Pgxb9++paKiAl9fX65evSpGW9CO/kgOQR8+fKBHjx7o6OigoqIiEqHc3Nw6jN6+pExMTPjuu++YMWOGEHVIPIUlz+eLFy949eoVRkZG2NjY8PPPPyMvL09RURFbtmzhzJkz1NfXd/h9LS0tWb9+vfDLrK2txcXFhczMTPGsSayvnj9/Lt4VSZmamgrvQ0l9+vSJ8PDwTl9j7969aWtrQ01NDW1tbYKCgiguLhajJgsLC7Zs2UJtbW0H7llzczMaGhpcu3aNnJwc4uPjkZWVpXv37mhoaNDW1sbatWtxdHTk9u3blJSUiH8rQYYvXrzIyZMn2bx5M/PmzWPbtm3k5eWhpaUleOcBAQEi5em/bV4lFRQUxNu3b5GXlycvL4/jx4+Tm5vLlClTBIcL4OrVq5SWlor3UuI/CDBv3jz2798PtKOUlZWVmJqasmHDBjQ1NYmNjeXq1atoa2ujoaHBuXPneP36NQYGBoKPXFZWxsyZMzuMziMiIjh79izdunX7R0zuf6p79+6RkJCAuro6Tk5O6OjoCH7Ytm3b+P3339m0aRM///wz0H4gvnHjBjY2NqIpKC8vp7CwEGtra5ydnZk6dSopKSn88ccfvHz5EltbW3Jzc9HV1cXY2Fg0oQYGBgwZMgRVVVURBqOvry8cEHJycggNDRWxw50Jevl3JYlUliRQxcbGoqen12E0qqSkRGFhIWVlZR2aPskB0djYmKFDh9LY2Ciiw7W0tHBzc0NLS4vg4GDu3r3L3bt3MTQ0ZMWKFWIylp2dTXV19b8V1PXq1UvEgUuSzL60hg8fTkJCAjdv3sTLy4v58+fT0NDA5MmTycnJYdasWSI5sr6+ntzcXPT09KisrKRr166sXr2ahoYGRo8ejZ2dHYGBgWhpaTFhwgQePHjAX3/9xYkTJ/D29mbSpEloaGjg7+9PRkYGubm5VFVV4eHhQW1tLdXV1Zw+fRpXV1cWL15MTU0Nx48fR1ZWFi8vL7S0tGhoaPi3fP//q4yMjBg4cGAHAd+IESPw9fWltraW4uJiZGRkBFB08OBB1q1bx9SpU8VzmpSUxI4dO8Qh/ebNmygqKvLkyRMBXkmEYJLQipqaGiwtLfnll18oKiri+fPnrFq1itraWmbNmsUvv/zCmTNnhA3Z5cuXefr0qdibOlM5OTkUFBSgp6cnLLjq6+uRk5MjKytLNK6KiopkZWVx+fJlZGVlxR7l6OhIXFwcnz9/FvQBaKc0bNu2jffv3wPt+2X37t3p2rUr9fX1PH36lMTERBGte/v2bfz9/SkvL0dPT4+SkhK0tLSQlpYmPz+fbdu2IS8vj7e3d6euTxJCMmfOHEpKSnjy5AmysrLcvXuXhoYGhg4dypUrV3jy5Am9evUSwriXL1/y7t074fNbV1fHV199xeLFi1mwYAFv3rzhl19+EXoBf39/lJWV+fHHH8Xe9/nzZ4GGZ2VlsWvXLhwdHUUKpMR5Q0NDAwMDgy+m0HW6eVVRUSE1NZVz587h7+/PkiVLWLBgAfX19dy5c0eMLzw8PLh58yYxMTEUFhbS2NjItGnTmDBhAuHh4eTk5PDVV19hamrKjh078Pf35+jRo/j5+ZGZmUlrayv5+fmMGTOGzMxMNm7cSGJiIt7e3kJ9OXr0aExNTfHz80NDQ4OqqiqqqqoYOnQoXbp0ERyWzpa0tDTKysrioZV41Ul4VpIToqSJKSsrQ0dHh4aGBl6+fElMTAxubm60tbVRXl7OkydPqKmpYcSIESgpKQlVuyTfNzExEUdHRyZNmoSioiLr168X/EgrKysWLFhAdHQ0586dE16CysrKxMXFcefOnU5HNhYXF2Nqasq7d+9YunSpaPh79eqFm5sbBgYG3LlzBxMTE7y8vMRJOSsrC21t7Q6Lg2Thl1R1dTVfffUVLi4u3L17l3fv3mFnZ4eUlBQ7d+7Ez8+PXr16kZeXx759+0hLS8PHxwc/Pz+B3P7666/IysqSkpKCkZERO3fuFIj7l5QE3ZU0rhK0ePHixdjZ2REaGioaT8mCKfHw1NLSQkFBQVjmSDKZ5eTkUFFRobKyksjISCIjI8nPz6dHjx6Ym5tTWVmJvLw8sbGxzJs3j1evXmFvb99BFaqhoUFWVpb4vvLy8sjOzkZTU7PDJv4l9ezZM3x9fVFRUaFbt24oKiqKIIi0tDSh4v57VVVViZARNTU1FBUV2bFjB9nZ2SxevJg+ffqIZt3Z2ZmdO3fy/fff8+7dOyZPnix4zxEREWRmZhISEiIMt/9+gNLS0sLX15egoCBevXqFnp7ef4X6SDwk58+fj4ODA0+ePCEnJ4f58+cL1BH+n4giPz+f3bt3U1NTIxKJJk+ejJeXl/g9JePl4cOHCzFUQ0MDWVlZQphZVFREXV0ddXV1rFixgpMnT1JWVsbIkSOpr6+noqKC1NRUrK2tMTMzw9vbm4iICCHA+tJKSUnBx8dHTBVOnTqFrKysMO6ePXt2h3s4fPhwEZsdFxcnhE5OTk40NTWJCYokDc3CwgJvb2/hq/p34YQE4Zw/fz49e/YU74qysjLFxcU0Njair69PYGCgGAf+3RD/S6upqYni4uIOiGpubi5Tp05l4cKFdO/enfPnz/PmzRt+++03VFRUuHHjBn379sXOzo65c+eipaWFo6MjEydOREZGRoAEffr0ISwsjHfv3rFq1SoOHTokgBJHR0c0NTW5cuUKnz9/pra2FmlpaaKioliyZAnOzs4MHjwYJycnwcMzMzMjPDy8U9fX0NCAv78/ISEhFBQU4OXlRd++fTl06BB+fn6cP38ed3d3fvjhBxwdHdmzZw8HDhxgwIABLF++XCRp5eTkMHnyZPG5tra2zJ8/n3379lFQUICFhQWDBg3i7du3whFBklzo4eEhkvSMjY1FKEB+fj4jR47EyckJU1NTnj9/zp9//tkh1OFLysXFhfr6ejGZkvBSZWRkUFBQoLGxURzIW1tbKS0tRVlZmcTERLEXSsAaaBd9b9u2DU1NTTZv3oyenh5Hjx7l6dOnuLi4iLVERUVF0HKKiorIzs7m8ePH7Nixg0+fPonEvF9++YW6ujoRNNPZewjtCZ2fPn2itbWVvLw8WlpaxITM19eXX375hbi4OOzt7XFxceHZs2ecPHkSaG/Md+/ezYMHDygvLxcUyLt37zJz5swOIJqKigp1dXW8efNGuI0cO3aMP//8k/HjxzNnzhx0dXWJj4+nX79+TJw4ETMzM7p06cKzZ8+IiIhg7ty5uLi4/EMA+H/VtWvX2LJlC/X19Wzbtk1YYhobG1NXV0dNTQ2LFi2ib9++1NTUEBQUxOfPn1FVVWXWrFlISUkxfPhwMjIycHBwoKqqim+++QZtbW3S0tIIDg7Gy8sLPz8/Bg8ejI+PDwAnT55EUVFR8JF1dHRYt24dDx8+ZNq0aWzduhVHR0dCQ0OFZZokSv0/VaebV21tbUHgbWlpwd7eHkVFRRQVFbl9+zb37t1DVlYWNzc3HBwciIuLQ05OToyWof3UJvFQk5jvxsXFkZaWxuDBgzly5AghISFER0eLpJmoqChGjRpF3759uXnzJmFhYfz888+oq6vT1tZGZWUl6urqqKmpdWgY/ptIQ4n6ztjYuMMYSWJH8+eff5KamsqBAwfo1q0bWlpaaGlpkZKSwu7du2lqamLWrFlkZWXxww8/iN/D19eXwsJCdu7cyfXr13F2dmb69OlCgV9VVSXQs+7du5OUlIS1tTU//PADAQEB3LhxQ4x9oR3t/W9SbyT2TQ0NDejo6JCXl4eMjAytra04Ojri5ubGy5cvefbsGd27d0dLSwtXV1eOHTsGIA4XRkZGIuJPVVVVmH1raWkxcOBA2trasLGxwdramo8fP3Lt2jXhdfvixQvOnj0LtCOSko1VSUlJcJ0+ffokEkg607w2NzdTXV2NpqYmNTU1ZGRk0KdPH0xNTfnw4QPXr1+nV69eoqGpqqqirq4OdXV1pKSk8PPzQ1pamg8fPiAtLY2BgQFDhw5FWVmZkJAQHj9+LGyI5OXlKS8vp1evXgwdOpTg4GAeP36Mq6ur8NEtKyujrKyM7OxsoZItLi4WfrYzZszA0dHx3/Iy/7e6ffs2Xbp0EUl0AwYM4M2bN1y9ehU1NTVGjBghFN6SLHRobzIltiVhYWHk5OSQnZ1NTEwMDg4O6OjooKCgwJ07d4S9VEFBgeAIp6amCt/a/Px8Xr58iYeHB8XFxSQlJVFTU4OPjw9aWlpMmjSJsLAwsrKyvvi6/l6SZ8LZ2ZnS0lKBOh45ckT8LjY2NiQnJ1NYWMjIkSOZOXMmhw4d4vHjx/To0YO5c+cKcV1FRQVHjhyhvLycX3/9VXy+RMgi8WmuqakR15uRkUF2drbgSkvoSf7+/owaNYrBgwczbdo0AgMD2bNnT6cOkl27dhWuESkpKcTFxfHq1SuCg4NZv369EABmZmZSXl6Ou7s7o0eP5siRI1y6dImJEydiZ2dHWVmZUAvX1dVhZ2fHuHHjGD16tODESzhsktLQ0MDBwUGMSRsaGoSw5u/8u5cvX/Ly5UtaWlqEhVdnSmKJ+Hef0qCgIOEkIhn9vnr1ipkzZ9K/f3/hUGBmZsa4ceMEohcVFcW9e/eQlpZGUVFRmLdLJgsWFha4u7sL7+2UlBRev37N48ePxWelpKTw559/cuvWLfLz81mwYIEIGXF2dsbe3r5TKVSysrIiKUlZWZnCwkLs7e2ZMGECP/74I5cvXxaotWQKFxcXx9ChQ5GSkuLQoUMkJCQIJKu6uhoFBQUMDQ1Zu3Yto0eP5tmzZ7S0tPD+/Xtu3bolqEiampo4ODigqKjI69ev+fjxI2PGjBG6FHNzc3744QfhhnD37l0ePXrU6YOykpLSP0bxf7cFk6D5RUVFBAQECF1Ec3MzKSkpwntXsicWFBTw888/Y2pqSlRUFNra2qxatUocvF6/fk1+fj5ubm6YmJjQ0tJCREQEFRUVGBgYkJCQwM6dO7GwsEBOTo6wsDDOnTvHhQsXhHK9syUrK4uHhwfv3r0jODgYa2trXFxcUFJSwsHBgY0bN/LixQukpKSER/mNGzcoLy8nPz+fFy9eCAcHiZgpKSmJlpYW4eMt0URUV1fz7bffkp6ezoQJE6ipqeHt27ciEOinn35CT08PWVlZ6uvrqa2tZciQIQwaNIjz58+zfft2AgMDOyWejIyMJDc3lzVr1ojno6amhm7dumFpaYmamhrDhg3Dx8dHxIbHx8czatQoIWI0MjISvs13795l//796Ovr06VLF+7cuUNMTIwAOKqqqnj58iURERH06NFDTACtrKxYtGgRMjIyfPfddzg5ObFp0ybq6uooLy8XXstfEgff6eZVojqTLKwS4Yiurq5Y9FRVVamvr2f16tW8ffuWzZs3iyZUElMmaWSlpaVZt24dlZWVHeILXVxcCA4OZu/evejq6oo8YIllTEVFBfX19airq1NYWEhNTQ3Kysq0tbV1eFmPHTvWwX/2S6qwsJD+/fszcuTIf/ipSdK16urqSE9PFzcL2nmvb968EYENfzctlwQRyMnJER4ezu3btykqKuKvv/4SSNyOHTuorq5m+/btVFZWMnv2bBwdHTl9+jSDBg1CQ0MDCwsLSktLxUjwypUrneahNTU18eTJEwwMDLh79y4VFRWYmpqioqJCXFwcWlpafPPNN/j5+WFqakpiYiJZWVkMGTKE5uZmVq5ciYqKCqdOnRJm7cXFxUybNo1x48aJsaBkpP3w4UPi4uIEshUSEsLHjx9FkEVUVBQLFy5k8ODBWFhYUFJSgqysLD179vyvYjdLS0v5+PGjOJ06OTkJRDEkJIRr166JzHpob1BCQkJwdXWlb9++9O/fX4y7Dh48SEBAAG5ubkycOBF1dXUiIyN5+/YtaWlpwrC5V69e4ud1796dfv36YWxszJ07d9i6dSufP39m8eLFwr4oJSWF8+fP06VLFxYtWiSa9S8tTU1Nzp07h4eHB87OzhQVFXHp0iUiIiLYuHEjXl5e/PHHH2zcuBEXFxeWL1/O2LFjO3COnZ2dOX/+PNLS0qSlpXH06FHhZpGfn4+mpiYzZsxgz549KCoq0tzcTEhICLa2tsjJyfHx40f27NnDt99+i5ycHH/88QdPnjxhwIABXLt2jf79+wu1/H9Tkqbk8OHD7N27F319fbHwnjp1ih07drB69WoWL17MoUOHRHM2bNgwLl26hJGREYaGhiQmJmJsbIyioiJz586loaGhQxqOZHKzdetWqqurGTRokLDjmTVrFmZmZty7d4/y8nIUFBQYNmwYioqKHQR2/y6Z6z9V7969iY6OJjw8HEVFRVauXImysjL79+9HSUmJU6dOAe22bXv37sXFxYUBAwZw+/ZtcnJy8PPz4/3795w8eZJevXqJ+xATE8PgwYM7iDkla2JjYyMtLS2YmZmJdyAkJIT79+/j5OT0jw1RgtxZWlr+I/3nS0oCKkhJSZGbm8ucOXOora3l2rVreHl5ce3aNSFaKyoqAqB///48ePCAixcvMm3aNOTl5Vm3bh0HDhzA0tKS77//nrq6OsHxXrduHcHBwWK9kNzbiRMnsnLlSgYNGkRhYSE9evQQh+q9e/dy4sQJTE1NGTt2rBA7djYzfujQoYI6JGmeP3z4wK5duzAxMeHFixcYGhqSnJwsRKyDBg3i4MGD/PTTT3h5eREUFCQinZOTk+nXr5+gNzg7O+Ps7Mz27dvZt29fBzcLCb954MCBTJgw4R+exH/3WU1KShJpc3369OHWrVtffI3h4eFiLCwpiefo339GW1sbMjIy2Nvb06dPH/T09MjKyhIWcnPmzCEkJIStW7cC7dMuyd43b948vLy8yMjI4MKFC8TFxWFpaYmJiYlIWMvLy6OyshIVFRVhe+bo6Mi4cePw9vYmKiqK2tparKysOq0FOXbsGN999x0xMTHs37+ffv36sWjRIhGtDe2hSiEhIWzcuFFoAnR1denevTsDBw7Ezs5OBDc8evSIr7/+GicnJ1avXk1bWxurVq1CR0eH7OxssVbFxMSwd+9eli1bJlxNDh06JECpzZs3ExoayvLlyxkwYAAGBgZs27ZNrMVfWtOmTaNv377IyMiQkZEheP7Z2dnCAvDMmTOEhYWxcOFCFi9ezPXr17lz5w5XrlwR69unT5+IiIhAXl6e3r1709LSQlNTE2VlZZw+fZqVK1fy5s0bdu7ciYmJCevWraO4uJidO3cybtw4IdYfNmwYZ8+eRV5enpcvX9LW1oabmxsyMjLo6OgwdepUsf79b9Xp5lVTUxMLCwv8/PzIy8vj5s2bHDx4kA0bNjB8+HAiIyPFiDsvL4/q6mqePn2KpqamcCSoq6tj2rRpjBgxQuRCSwzpoZ24L4k/1NfXp7GxUTzkxcXFfPz4kaysLKKiokQ6kL6+vuCgSOrixYs8fvy4U2iIxL4BEAlhklODkZERzc3N9OvXDxcXF9zd3amtreXly5f4+/tTVFTElClTMDAwEOPhUaNG4e/vT3Z2NufOnUNdXZ3evXuTlJREW1sb9+/fx9bWViR66OrqIi8vj4yMjFDyJScnY2dnJ258cHAw//rXvzAzM6Nfv36dvYVcunSJ2NhYRo0axdSpU0WQhCSPu3///nh5eQmeSmlpKfn5+eTl5dHU1ISWlhbFxcU8evSIlpYW7OzsxH3p27eviMuUCDFu375NdnY2/fr1o6ioiPDwcN6/f4+TkxMuLi58+PCBe/fuoaSkRHl5OefOnRNKRaBT9kPQnpaiqKhIYWGhQJMkFRoaSnp6uqB+5OTkkJqaiqurq1j4MzIyqKqqoqGhgba2NiwtLTsYuA8ZMkSg0ADLly/H0tKSgIAABg4cyKRJk8jNzeXSpUsUFRUJcZtkzFNRUcFff/1FUlISAwcOxNzc/IsSRf5eEq8+LS0tpKSkyMnJQUNDA29vb8rKyrh9+zYZGRmYmJjQ2NhIW1sbKioqpKWlkZSURL9+/bCwsBBCsh49ehAfH8/9+/fFdwMIT8iysjI+fPiAiooKq1ev5sOHD9y8eZOEhARWrlxJly5dhBhISkqKT58+oa+vL1Cz/yYeVjKV+fz5M3V1dXh7ewvP2OTkZOTl5QVCKi8vT3p6Ojo6Otjb2wuld0lJCVVVVcIH8+9WaPHx8cjJyWFra0vv3r0FgqWhoYG0tDR+fn6CCiBpLMrLy9HR0RECpMuXL6OmpoaGhoYYjX1pqaurk52dzfv379HW1mbmzJls375dBIekpaWhoKBAc3Mztra2wp4sNjYWLS0tzMzM0NHREeiluro6bm5uDBkyRDRwdXV1YlJibm4uJiQSL04dHR2SkpK4ePEiDg4OWFlZISsrKxJ2/qdlT2crMDCQqqoqBg0aRGlpKSoqKjQ0NNDS0iLoWbKysqiqqopm+8GDB8yfPx9NTU369euHuro6QUFBtLa2MmLECL7++mvu3LlDVlYWjo6ODBgwAA0NDbZv3y7ElS4uLqipqWFgYCDueUREBJqamqxcuZLy8nLOnz9PcXGxACgyMjL+o7fk/yxtbW10dXU7eBlHR0dz+/ZtvLy80NXVRVlZmZiYGAFCjBo1ChUVFUxMTNi+fbu4bgnvNjY2ViBupqam6OnpYWlpSZ8+fYiKisLW1hYnJycyMjLEQWfgwIE4ODgQERFBWFgYBgYG4tDY1NREbW0t/fr1w8TEBHNz8041r1evXhXXUVBQgJmZmWiu09PTycnJwcLCAjMzM8aOHUtrayuKioq0trYiLy+PsbExmZmZPH/+nOfPnwvkWE9Pj7i4OPr374+rqyuOjo5ERUVRWlqKqakpJSUlhISEUFdXJ54VACcnJ0aPHi3W1uXLlwOwfv16lJSUWL58eaftIy0tLZGSkiIhIYHExEQSExPx8fERWoTi4mJhiZiQkEBcXBwZGRlMnDiRNWvWdLC6unTpEjt37qS6ulqk+BkbGwv+tbS0ND///DO3bt2ioqICXV1d+vbtS2hoKP7+/h10BpIo2MzMTKKjo4mJiWHatGmYmpp2qnmVWG5GRkby7t07NDU1aWxs5MWLF0hLS2NnZ8eaNWuEV7a7uzsLFizg1KlTvHv3DktLS3x9fYWbg6WlJZGRkZiZmbF+/XohrIuIiCA4OJjw8HBhu/jhwwfOnTsn0tlUVVUxNzcXa9SzZ8+Eu0bXrl1RVFTEw8Pj//fNa69evZCXl8fExISRI0dSXl4uMqZ79OiBqakpf/75J0OGDOHQoUMkJSWxbds2/vzzT1xdXXn//j3JyclkZ2djY2ODm5sbJ0+e5NOnT/z88884ODigpKREfX09Q4YMwc7Ojn/961/s2rULaWlpYeuQmZkpRlH6+vrif/9dWNAZToikPn36hLW1NW1tbUI1KUlKkiRdSRSvampqBAYG8uOPPxITE4OdnR2PHj1CQ0ODEydO0KtXLzZv3swff/zBjz/+yOzZs1mwYAF79uzBwsKC1NRUTp8+TUhICKNGjWLHjh1A+5hGSUmJmzdv8uHDByIiIqivrxfItJSUFK2trbx8+bJT9kqSunPnDs3NzZSVlfH8+XNUVFQwNzenV69e9OzZk+7duwtun0Qx7urqSnp6OnJychw8eJC3b99y7949evbsybNnz4iLi+PixYvCnmb9+vWoqKhQWlrK8OHDRdrGzZs3KSoqEtGzEm5br1696NWrF83NzWhpaVFfX096ejpOTk4drLq+pN6+fcuKFSuIiIjg0aNHeHt7C4K7mpqaaNgCAwM5dOgQenp6ohktLy8nMDCQI0eOEBkZyZIlS9i2bVuHBvjvjaaxsTErV64kKyuLNWvWICUlhZWVFVu2bOHatWtcvnyZFStW0NDQQGJiIocPH+bEiRMkJyczcOBAQfTvLDpZXFzM2rVr0dXVpaqqCkdHR8GPXLJkCefPn2fr1q3Ex8cLwQ7A/v37iY6O5syZM9TU1LBs2TLMzMzYt28fW7ZswdnZmZUrVwp+2qlTp0RARL9+/di8eTM6Ojr06dMHY2Nj8vPz0dHRQU9Pj3379rFmzRpMTEyEx626ujrS0tL/leCnoqKCmpoaFi5cyJIlS1BVVRU2NsuXL2f58uUYGxuTnJzMTz/9hKmpKfv27RP/vrq6Gh0dHXEo/p9VVlYmuMsmJiZ4e3sTFhZGUFAQs2fPFr6jZWVlfP78mba2NvGZxcXFnD17litXrmBqasqaNWtYsWKFCAn4kkpMTERbW1sc6lJSUrC1teXEiRMkJiYSHR1NUVER1tbWnDx5Ugir0tPTSUhIoLa2lj59+jBt2jQWLVrE0qVLOXLkSIcmWlFRkby8PHJyclBRUUFVVZWKigoxWp03bx5ubm5ISUkRFhbGv/71LyIiIqirq8PS0rLDZOnvo/8vrbi4OLZt20a3bt04cuSIsL5btGgRa9euZfr06Zw8eZLIyEhhxzNz5kwRfCIvL4+hoSGzZ89mxowZwsFGR0cHWVlZ0tPTSU9Pp2vXrgQEBPDDDz9gb2/PkiVLOHnyJCNHjuTp06d06dKFAwcOoKCgwLFjx1i1ahXm5uYdfF2PHTvGzp07OwV2hIaGEhkZSY8ePUSj4+npyaZNm7h8+TLTp09n//799OjRg19++YVVq1axc+dOdu/e3eFZhfb9Sl9fn9WrV3Po0CGkpKQYMGAAY8aMYeLEibi6unLu3DkcHByYOnUqJ0+e5PDhwyQkJAiT/ZSUFOLj4+nbt69YU+Tk5HB2dqapqUkAI52pvLw8kpOTycvLEwdfScx0ZGQkQUFBwrZRoh2AdkFiQ0MDX331Fc3NzSxZskSkCEqiXhUVFamoqBDq+m7duuHg4ICqqip1dXWsXLmSY8eO0aNHDywsLHj69CnV1dXY2Njw9ddfCwpdfHy88IH9b6yyJOKiv4vZKisrxXqjrKyMiooKzs7OQsz0888/Iy0t3UHIBu2H7sjISBYsWMCMGTNYu3ateM5aW1vR09NjwoQJgod88+ZNMjMzmT59OkuXLu1A0RgyZAhWVlZMnjyZvLw8nj17RkNDAxs3buz0NUL76N/Y2BhNTU2kpaWpra0lICCAyMhImpqakJaW7hCRLJlYfv3112zdupWqqipiYmIoLS1FRkYGCwsLbG1tkZeXp6mpidevX6Otrc3mzZvR0NDg5MmTPH78mKysLO7evYu6ujrTp08X0xhob6wvXLhAamoqw4YN++Io+E43r6WlpYIb5uXlhZubG2pqasjIyFBZWSn817Kzs3F3d8fd3Z3S0lKOHDnC48ePUVNTw8fHh169emFjY0NzczOvX78mOjqa/Px8HBwcSE9Pp7m5GSMjI5G8JBnTqampCfK7pKmpqakhMDBQ2HNIOG5TpkxBTU1NjKO+pHJzc7ly5Qru7u6YmZmRkpJCUFAQqqqqqKmpCV4gwIULF0hISBDpXuXl5Vy/fl3YKFVVVSEnJ4eamhqGhobk5+dTXV0tFpWPHz/y8OFDnJyc6Nq1q3hoT506hY2NDQMHDsTHx4dZs2YRGxuLi4sL0tLSeHh4sGfPHt68eUN5eXmH9JovqVGjRlFSUiLskvr164eNjQ1lZWUkJiZSV1dHamoqZWVleHp6YmZmhpqaGkFBQXz69IkdO3aIyNXXr18THh4uxnFbtmzh0qVLGBgY0KVLFwICAkhPTxfj7Rs3bpCens5PP/3E+PHjCQ0NRUdHR4yDKysr0dHR4enTp/z+++98/fXXnbLJgvYNU1lZGQcHB+HBKinJeGfOnDl8/vyZt2/fCjRh5cqVqKur4+joiJ2dHdLS0gwcOFA0rpIXzMbGhjNnzvDHH3+QkpLCvn37hO9oS0sLVVVVmJmZMWrUKLH5P378mNjYWOLi4sjNzWXs2LFs3bqV2tpawsPDOx33N3nyZHR1dcnIyODjx48ClYf25vXv3O+/f7a1tbX474CAAF68eIGLi4uIr500aZIwxJaWlubevXu8fPkSLy8v+vfvT3Nzs1BNL1myRPhV2tjYYGJi8r9aDf19U/vSam1tJSUlBXd39w6uD6WlpYKbC+3oam1trUg36t27t0hxycjI4NatW1haWjJu3LgOG7erqyvFxcW0tLSQk5NDRkaGWL969uyJmpoa8fHxzJgxA4DZs2eL7y4rK0vQdfr164e9vb3Imf/SiouLIyoqCmNjY8aMGYOtrS3p6em8ePGCpqYm3Nzc6Nq1KwkJCbx9+xZbW1v09fUFL/DRo0dYWVkRFRWFrq4u3bp163Bgl2y87u7uODo6YmRkRGlpqXCm6N+/P9ra2sjIyGBoaIiUlBRdu3bF09OTgIAA/vjjD4YPH86UKVMAhAd1Z0rS6Eg2f2gXwLx69Yq6ujpkZWWZPXs2gYGBhIaGoqKiwrJly4Qdn4TnKnmnJZ6iERERQhwlCbvR19dn27ZtgkdcWFjIvXv3WLZsGTo6Oty/f5+BAwdSXl6OoaGhsNBrbm4mODiYmpqaTscYSyYs79+/x8TEBGNjY5ydnVFTUyMhIYGEhATmzp2Ln58fW7ZsYerUqRQWFvLgwQOMjIzIy8sjKCgIAwMDfH19RSqj5P7Jycnh6upKfn4+0dHR2NvbM2bMGDQ0NBg6dCgNDQ3injc2NqKhodGhwTp06BAlJSWsXr1a7C9/p7N9SUms/3JzcyksLBRcz5EjR6KlpYWLiwuDBw8G2kfP6urqTJw4EXd3d168eCEijVesWMHZs2cpLy/n66+/ZvXq1ejp6ZGcnExaWho9e/akpaWFwMBA3NzcsLS0pF+/fhw7dozPnz9jZWWFjIwMCQkJ7Nq1SxyU5eXlaWxsxNfXtwMdrDP16tUrUlNT0dPT45dffhHBOf7+/ri4uGBmZib27ezsbLp06cLKlStJS0vj5MmTfPfdd9TV1XHkyBFhN5Wamoq9vb1wN3n69ClDhgxBU1OTixcvcuPGDezs7NDS0qKgoABdXV3hER8bG8u7d++4ffu2oKOVl5cTGxtLUlKSuL9fWhUVFbS0tAifYWif/AwfPhwNDQ0hxpORkcHR0ZGcnBz+/PNPPn78iK6uLllZWQQFBYlJjCTOPS0tjePHj9PW1oaWlhZJSUloa2uzdOlSlJSU2LBhg0CIJZMfSTiS5DsuLi7G29sbc3NztLS0aGpqIjc39z9eU6eb1/v37/Ptt98iLS1NWVkZra2tQuxTUlJCt27dSE1NRVdXl9DQUDw9PVm4cCH5+fk8ePCAQYMGMX/+fDHWe/nypVC9ScYn0dHRqKqqEhMTw65du2hqamLXrl306NFD2J18/fXX2NvbU19fT1BQEKdOnSInJ4fx48cLoreLiwvW1tZs2bLli69PX1+fR48eoaKiwpgxY6iurubdu3dkZWWRmJgoOFwS5Wbfvn3Zu3cvCQkJLFq0iA0bNqCkpISFhQXZ2dkcPHiQOXPmMH36dB48eICZmRmNjY0EBQXx66+/0tzcjKurK5WVlaiqqlJVVcWdO3coLi5m69atIqFEX19foFcKCgo4OztTX19PcnJyp5vX33//nezsbJ48eUJ9fT3jx4/H0NCQ8PBwIcBqbm5GUVGxg5PA06dPhQesRJm4c+dO1q1bx61bt4SNzZs3b7C0tOTJkyc8efKE6upqdu7cycyZMykqKiIwMBADAwMRSVtQUCBQOnV1dXx9fSkqKmLGjBnIy8t3unnV1tamoaEBPT09Jk2aJMbmUlJSjB8/XjRSnz9/xtjYmIKCAs6dO4ebmxvjxo2jT58+eHp6iu+7oaGB4OBgDh06RFhYGAsWLODIkSPU1dWxePFifv31V+zt7fHz8xNNj8Q8HuD8+fMsX74cbW1tZsyYwciRI/Hw8MDe3p5nz56RlZXVKb4rtEfgSsI6VFRUOuS1u7q6smPHDh4/fsy1a9fw8fGhsrKSDx8+4OPjQ9euXamoqCAtLQ0XFxf69OlDYWEhlpaW1NXVMWnSJPF51tbWzJgxg4kTJ6KlpcXr168JCQlBX1+frl27ioQrSZSurq4ujY2NHfhwbW1tnTpASqqiogJZWVkRSQztKFB5eXmHMXO3bt3YuHEjz58/JyIiAjU1NREqEBAQwOrVqxk+fDgjR45ERkaGsrIypKSk0NTUZOzYsUIIk5aWJn52a2srVVVV7Nq1i48fPzJ37lwGDBgguGrq6urY2tpiaWnJ6dOnKS8vF/nxX1p1dXWEhIQwefJk4cZw8OBBDh48yJQpUwQCmJ2dLVwhli5dKgIj8vLy2LlzJydPnsTd3Z3Vq1d3sNCRkpKira0NRUVFQa8oLCwkNzcXDw8PgTalpKTg7OzMoEGD+O6775CRkWH06NFMnz6dvXv34ubmhrOzc6cnINA+6ZgxYwYWFhYYGhpSVFSEiYkJ169fF965fn5+DBo0iHPnzgHw008/oaioSE5ODitXruT69etAO4osoZ8oKCgwdOhQpk6diqurKwcPHsTf318gs9DOQ54zZw5PnjwhKCgIaNdj5OfnizQneXl5QUHr0qULgwYNYs+ePV98fTIyMhgZGSEnJydS7uLj40lKSkJDQwNTU1Oxho4fP57nz59z9OhRHjx48A8R6tWrV7G3txdBNoaGhsycORN3d3f+/PNPQkJC2LJlC8bGxuTl5aGrq8uGDRuorKwkMTERDQ0N+vfvL5CrmJgYzpw5g4KCAvPmzROo+7t37zp1DyVNpZWVFd999x0///wzFy9eJDMzE1VVVQwNDZGRkeH169d8//33GBsbM2jQIKysrHB1dWXTpk307NmTbdu24ePjw9GjR+nZs6do1Orr69HV1UVbW5v09HS+/fZbDA0Nef78uTikNjY2CjEbtDd3L1++FMCPBCgDOggTv7T27dtHQ0MD06dP5+uvvwbax9k7duzAwsKCbdu2YW5uzocPH7hw4QITJ05k3759zJs3j+3bt9OnTx/hMe/i4vKPYKTIyEiSkpJwc3OjoaGBBw8eEBgYSFtbG1OnThVhQW1tbbx//56//vpLJAKqqKhQVFQkQpoyMzM7zen9++RQQseSCDah/QCnoKAgrOfu3bvH77//LvqAwMBA8vLyGD9+PN7e3sKBKSUlhT179pCZmYmlpSWDBg3CxcWFqqoqCgsLUVdXx8rKivr6ejw8PJCSkuLatWuYmpoyaNAg/P39KSgoYMGCBYJ6kZmZ2QH9/d+q081rUlKSMM/fvn07+vr6QvE4fvx4Nm3ahJubGyEhIURERGBgYICamhrjxo3Dx8cHKysrkZKSnp7O3bt3hVXU303/U1JSiImJISwsDCMjIxQVFUlKSmLfvn1ERUWxYMECcfoIDg6msrKSwYMH079/f/E5ubm5nebaeXt7o6WlRX5+PqGhoTg7O/PVV1/xr3/9i8jISPbs2SMeRE9PT/r16yeauri4OKB97F9WViYsMnR1dbGzsyM+Ph5paWkyMzP59OkT5ubmTJo0CWNjYy5evChi/by9vdm8eTOjRo1i4sSJLFy4kCFDhgDtjUBAQACnTp3iyZMnmJmZCXFRZ8rU1JSZM2dy8uRJNmzYgLu7O3PmzBGock1NjeDAQvvLl5WVJYIooJ0HKPFFlCRiaWpq4ufnx9KlSzl//jyJiYlMmzZN2OxIRDSHDh1CUVERLy8vnj59ytChQ9HV1WX37t24urqip6eHtrY2+fn5nc6p9vPzEwhba2srBw4coLy8nBUrVgiezf379zl37hwqKip89913DB48mJ49ewou6d/H3I8ePSI4OFhsKpLUKMloHdqbPDc3tw7PsKR8fX2ZO3cuhYWFeHh4MG7cOFJTU1mxYgXJyclYWVnx6NGjTl3j9evXKS8vp3v37sKW5PXr19y+fZv4+Hjc3d2ZMGECUlJSbNiwgZMnT6Kpqcm6detwdXUVAkI9PT3U1dWRk5OjrKyMqqoqZGVlCQ0NJSwsjB49ejB//nzxc01NTXFwcKCoqIidO3dSXFzMvHnz+PDhAx4eHvz4448sXryYd+/eERoaKkQMku+uM5WYmEjfvn3R0NDg/fv37NixA0VFRTZt2tRBjKSgoEDv3r1F7LFEWCQxch84cCDe3t6CDy/xH5aoXe/evcuePXvYtm2biK68f/8+/v7+6Onpcfr0afr3709paSl3797F3d0da2trbt26hbq6uqD5fPXVV/+Rp/X30tTUZMuWLYLusW3bNu7fv8/ChQuFsA/aDyq//vqrCNkYN24cgYGBJCcn869//QspKSnS09O5desW3bt3F+9nS0uLCHYpLCxk1qxZ2Nvb09jYKBDke/fu8fbtW0aMGEG/fv3Ee2NiYsLWrVs5efIkq1atYunSpR08i7+0du3aRXp6OqtWraJbt24dqAd/j0nW0tLCz8+PixcvMmfOHMzNzQUiCu0H0kmTJuHi4kJZWRnXrl3j6dOnjBw5EldXV2FZJaFJREREEBQUhIWFBatXryYpKYnt27cTHh7O69evuXnzJunp6SxcuBBPT0++//57jh07xvbt2zvVpGdnZzN27Fj69OlDXV0dGzduRFZWlkmTJmFiYiLCA6D9EGxkZMSKFSvQ19fnwoULHQ51dXV15OfnU1xcTJcuXZg+fTrNzc38+uuvNDY2snnzZrHWx8fHC99odXV18vPzkZKSEo3r58+f+fjxI/Pnz8fX1xdzc3Pu3bvHmTNn/jHm/k/15MkTHjx4wJIlSxgyZAh79uxh9erVHD58mIKCAuzs7AgKCiIrK4uKigqqqqo4f/48y5Ytw8rKipKSEnbu3ImWlhYLFy7k+++/5+7duyxbtgwvLy+cnZ3F+L+xsZHCwkJKS0vJyMhgwIABnDlzRli41dbW4unpyeTJk4WYq6mpSRyUy8vLhSdrZ2rRokVUVFR0EHIWFRUJj+GKigqWLl2KiooKgwcPFr2Hra0tlZWV7Nu3j7lz5/LTTz/9I1kN2vsKKysrjh8/TlZWFrNnz+bbb7/lyZMnvH//vsPk9dWrV6JxHThwIKtXrxZN/KZNm4iOju6g7els/TsK1+vXr1FRURE6FTU1NVxcXIiKikJTU5OpU6cyYMAAjI2NO1DcHBwc2LRpE9euXaOyspIxY8YwcuRI7t69y+HDh2lra2Pu3LlYWVkRGhrKb7/9RlVVFTNnzqStrY2mpiYyMzN59uwZGhoaWFlZYWFh8f8f5FVXV5fk5GTi4uIEd1WS/Svxc5VsWBJuWHNzs1BCysrKkpyczJMnT2hsbERJSQknJycUFBR4+vQpHh4elJSU8PDhQ6Kjo4Vp+Pbt2zExMaG4uJjMzEwRZygxVndycqJHjx64u7uLBVhi69WZknj+RUdHC/Plrl274uDgQFBQkBD8+Pr6smTJEhGDGxgYiKKiIk5OTsjKyopGVl5eXggrJBGQ79+/p7m5mUGDBjFz5kzS0tK4cOECBgYGeHl5oaamJnLdTU1NsbKyorS0lIaGBsERioqKory8/N+abv+nkvAge/fuTZcuXdiwYQMPHz5kyJAh6OjoEB4ejqqqqjhdQbtoqrq6mtbWViorK4UArbq6GjMzM7S0tKipqREjSnNzc1JTUwFYsGCBuCe6urpMmTKF4OBgYeLd2NjIkSNHqK+vJy8vT4in9u3bx/v37wXy8qUlQQpkZWVJTU3l559/prW1VSBZycnJLF26lM+fP6OoqMjXX3/N2LFjO2Qwq6ioUFJSws2bN/H390ddXZ2+ffuK65fYTCkqKjJp0iQmTZqEra1th7F0ZmYmSUlJuLi4sG/fPk6cOMGrV69wdXUVdl7m5ubY29tz9uzZDlHD/6k+fPiAu7s7KioqfPr0SYwoS0pKiI+Pp7q6WhD7JRYuqqqq+Pv7o6mpyaJFi+jatSu3b99GTk5OjPsrKys5c+YMR44coaSkhO3bt9PU1ER1dTXp6em4uLigoKCAjo4OISEhtLS0MG7cOLp27cqjR48oKiqivLycV69eERMTg5GRES0tLYLr1pmSBIFUV1fz+PFjHj16RN++fUVzKolhlFAWjI2NxWSkqamJ5ORkzMzMBOdS0ihpa2tTWlpKcHAw6urqtLS0YG1tLYQIfn5+QvF87do14axy4cIFnj59KuxzXFxcSE5Opri4GG1tbbp3796p5lVLS0scSu/fvy8QnKNHjwLthyZJ+pWXlxe5ublERkbi7OxM//79CQ8Pp7y8HHt7exISEjh48CAtLS1s3bpVCKHq6+tJTEwkNTWVoUOHYmVlJfh3LS0tHD9+nOzsbJYsWSIa2qSkJOzt7Rk4cCAWFhYMGzaMf/3rX/+Vb3ZraytJSUkkJCQA7Yfc7OxsSkpKhNCtra0NXV1dTE1N6dmzJ3v27BGHHQMDAzQ1NZGXl6d79+58++23FBUV8e7dO+Li4njy5AkODg60tLSgo6PDo0ePiImJIScnh7q6OiIjI1m7di2TJ0/m48ePQgBz9epVysvL8fT0xNPTk+rqaoKDg8V04kvr4cOHrFy5EhsbGzIzM0VAwrp16+jTpw+XL1/GzMyM2tpa3r59i4mJCT179hSUn9u3b2NpacmYMWNQVVXl9u3bYjLQ0NDA0aNHCQ8PZ82aNXh5edHU1MTJkyfFJEkiGPt7w9Tc3ExpaSmysrIYGRmJZiMhIYGoqCi6detGTU3NF19jZWUlKSkp3Llzh8GDByMlJcXUqVN58+YNBQUFYl+T7EfFxcXcvn0bHx8fDA0Nsbe3FxS5efPm4eTkxLJlywTo1L17dzEZUFRUxM3NTdC3VFRUmDp1KtBOF5KIh4YOHUpkZCTPnj2jqakJb29v4cHd2Nj4xdcmqb/HAufm5hIQECCoKcHBwdy5c4fhw4czb948UlNTiYqKwsjICCcnJ0aMGEFycjIxMTEsWbJEHLqcnZ3R0dEhPT1dgHZv3rwhMDCQrl278v3336OmpsaDBw949uwZVVVVqKioUF9fz8CBAzEwMOCHH34QXGp1dXU8PDyws7MjMzOTjx8/fvH1JSUliX6prq6O3NxcgVB/+vSJ0tJSfHx8BFhlYGDAoEGDiIqKor6+nilTpghXgpiYGIHSStDbbt26sXv3bgoLCykuLqa4uJiioiIsLCwYPXo03bp1E5aRku9YRkYGGRkZsrOziY6OxsnJCQMDA9TV1b+IRtfp5nXAgAFkZmbi6+vLqFGjqK2tFZzIS5cu4efnh4eHB1OmTMHW1lZsih8+fBBE8pqaGhITE7GxsWHp0qUMHz6cv/76i7Vr12JjY4O+vj7BwcGUl5czefJkioqKePr0KSNGjODAgQNERkby66+/Mnv2bHx9ffH29qauro7Pnz9TWVkpIHJdXd3/qrkrKSnB1tYWV1dX4TbQr18/3rx5Q2FhIRs3bmT9+vXCN7K4uBg7OzvU1NTIzc3tsFE3NjaSl5eHiYkJ+vr6ZGdnExERgaKiIra2tkKR2a1bN3r37k1jYyN3795FQUGB06dP4+Pjw7lz54Rf2vjx4xk1ahTOzs6UlJSgrq4uNrsvrStXrrBr1y5OnjzJzJkzWbNmDSEhIcTHx3P16lVOnjzJ4MGD2bBhgxCJubu7Y25uTkpKCufOnaOxsZHGxka8vb2RkZEhOjoadXV13N3diY2N5eTJkzx//hx1dfUOUZAuLi7079+f2tpaZGRkqK+vx9bWlvv37yMnJ4e2tjbV1dUYGRkxe/ZsKisrefz4cafsziQnOgUFBRoaGoQXpKR5kWTIQ/vI6siRI4IO4OnpiaqqKoWFhYKOEh0dzbx58zA0NCQuLo5x48YJJebJkydRVVUVQsK/bwpBQUEsWLCAmTNncurUKdEs1NbW8sMPP3DgwAHU1dXJyMjg/v37nbqH06dPx9DQkJs3b3L48GGqq6uZPHkyixYtYt++fRQXF1NYWEhUVBQrVqxg3759VFRUcOHCBTIyMqioqBBTk7+/I1VVVVy/fp2cnBzBwdu1a5ewoLG2tkZBQYGWlhY8PDwoKCggKysLW1tbgoODefjwIevXryclJYUBAwaIaOTw8PBOey47OjoSEhJCQECAuAeLFy9GR0eHBw8esGHDBrKzs/nxxx9Zu3YtiYmJIi5yzJgxDBkyhMzMTPT19TuI7IYPHy6a7WPHjuHj40Pfvn35/fffuXPnDjNnzsTV1fUfB19paWlh81ddXc3atWspLy9n165dVFVVERAQ0KnrU1FR4a+//iI7O5vw8HD09fUFv/TChQt88803zJkzB19fXxQUFBgzZgzDhg0jKCiI6dOn8/r1a8EblZTkWVi3bh2Ojo5oa2sza9YspKWl/4EIycjIUFtbS2ZmJgUFBQJ1+rt3tJWVFWvWrBH2c52tQ4cOkZGRIRxNmpqaiIuL48WLF9TW1tK7d2/ROFRUVNC1a1fu3r3LypUrCQsLw8rKSkREBwUF4e3tzYULF3jz5g2urq7IyMhw5MgRlJSU6N69O6GhoRQVFWFkZCRoILt372bGjBlMmTKFoqIi3r9/Lw502traPHjwgLVr16Kvr8/ly5c5fvz4F19fTEwMsbGxDBw4EEVFRXx9fSkpKeHDhw/079+f2bNn09raSkVFBXZ2dqKRLC8vF8lSnp6erF69WgQ1QLtI8Pr164JHbW1tTUtLC1OmTOHRo0ds3rxZTCM1NTXFM1BcXIyamhpdu3ZFXl6eefPmceLECU6fPs2iRYvE5KQzhyzJ5C8wMJCtW7fi6emJnZ0dx48fFwEFpaWl3L9/n3/9619AewPd0tKClJQUzs7OTJs2jblz56Kjo8PHjx+RlZUVDgp/F1RKwB6JBeHfS7JnSNIL3717J0RoFhYW1NbWUltbK1xPOlNXr14V7568vDyPHj3C0NCQo0ePcuHCBW7duoWzszNycnJcvnyZ9PR05s6di6GhIcOHDxcUygMHDlBQUIC9vb1AyZ89e0ZOTg7GxsYCXV25ciXR0dH8+OOPzJgxg927d7Nr1y769OnD+vXrWbt2LVVVVR1Q0paWFmpqamhra+t06MuBAweYMmUKbm5ulJSUiFj2hoYGBgwYwIQJE8Q+UFJSQkJCAklJSQBCzwHtlM6NGzdSVFTEsmXLhEd9QUEBb9684c6dO0RGRjJz5kzhRiSZBixevJjc3Fx27txJRESEcE9oampi1KhRjBs3rlOi0E43r15eXnz+/LkDvC6p2tpawsLCSE5OZujQoZiYmIg/y8zMxMPDAwUFBWxsbOjbty9ubm6Cc5iZmUlycjLJycm4ubnRv39/dHR0sLKyEh388uXLsbe3p7q6mj59+uDh4YG6ujrJyclYWFjg4eEhUEtJPrDkBnxp3blzB2lpabS1tcWX7uzsjK6uLrKyslRXV4tR4dWrV3n+/DlycnIi+aWurg5tbW1MTU0xMTFBU1OTnJwcGhsb8fT0xNfXV4i43NzckJaWpqqqSpxCZGRksLGxEd6hcnJypKSkkJmZSa9evTA0NBQI739bioqKDBs2jLCwMDQ1NZkyZQrff/+9OGFLxGXHjx/H2tqaadOmYWhoyNatW2lrayM9PZ379+/j4OAg0rYkBvWOjo68ffuW58+fA+3iocjISGJjYzEyMsLa2rrDWPfAgQPCT1TyfVdUVJCbm0t1dTWWlpbiwPSl9XfPzeLiYpYvXy5siSSm2rt27aKiooKKigrOnDlDZGQkOTk5XLx4UbgdpKWlUVdXh66uLpWVlVRVVdHa2oqhoSGOjo6MGDGCxMREamtref/+PdLS0mKUFRYWRkREBEOHDhWxof3792fYsGE8e/aM+Ph4xo0bx7Jly7C0tGT58uX4+/t/8TVKFkYbGxvRlPj6+go/xoaGBtLT09HV1RViLomVTWxsLKmpqXTv3p1Fixbx6NEj9u3bR//+/UlKShJNppSUFEFBQZSXlzNw4ECsrKyoqalBU1OThoYGdHV1qa2tJT8/H2tra0JDQ7l06RKPHj1CSUkJNzc3ZGVlBT+0s2VjY0NISAiNjY0MHjyYoUOHisOUJL0P2huQ+vp6WlpahCG+hNclOfTk5+cTGBhITEwMU6ZMwd3dnd69e7Nz505iY2MZNGgQ5eXlxMfHY2ZmRmFhIZWVlQI5c3BwwM3NTbg7HD16lKtXr+Lt7S14jZ1V4xsYGBAQEMDt27dRVFRk6NChwnauvr6ecePG0a1bNyorK2lubqahoYHY2FhWr15NcnKyoH3Ex8djbm7OyJEjRcyrZDSsrKzcweqqsLAQaWlpWlpaePjwITk5OdTU1HDo0CEGDx4sLLjKysp4+vQp2traIv1O0mx1purr6zt4hDY1NQkeXFlZGfLy8sKUXDK98vHx4cKFCzx//pxXr16RkJDA+PHjWbRoEY2NjTx8+JDKykrBrZa4LtTW1op3SHLYlEReSri1WlpatLS0oKWlhZeXF1ZWVqSkpKCiosL48eMFuvSlNXjwYOHcYmBgwKpVqwgPD6ekpITAwECMjY3FAVFXV5fc3Fxev35NRUUFEydOpEePHjg7O5OZmSkcIL766iu6devGpUuXgHbB1Pz585GRkcHS0pJRo0YxYcIEnJycSE5O5uHDh0C73ZOhoWEHcaSamhpycnIoKCgIpXdnqXRKSkq4urry4cMH9u7dy/3799myZQtjx44F2idVtbW1aGtrC21G9+7dsbKyQl1dnZEjRzJmzJgOzhWrV6/GxsbmH02YvLw8w4YN4+HDhyxcuJB58+bh4+NDTU0NoaGhtLa2CjstWVlZZs2aJd4RRUVFvL29kZKSEt/dl9bly5dFhHJsbCwDBgxg4sSJ6OnpMXLkSD59+iScDoyNjXF0dMTAwICSkhKsra2xsLCguLiYx48fU1FRQXZ2Nn/88YdwTpL4YmdmZqKhoSFAgIcPHwphWnFxMVZWVvTu3Rt5eXlUVVU7HEzLy8tpbGxEW1u70wJYR0dHLC0t0dLSEt+VhoYGysrKwtItPT2dkJAQKisrhZjX0dGR7777Dn19fZqamsjJySEkJITi4mIaGhpEyMmrV6/EvpGfn4+5ubkQEkqidhUVFfnpp58wMTHh/PnzHDt2DCcnJ9asWcPkyZORkpISB5bo6Oj/eE2dbl6Bf9u4Njc3i1NCWVkZT548YcSIEcTFxXHq1Cnh5QbtCMbEiRNRVFSkra2N2NhYYdOgpKSEu7s7v/zyC6qqqhw4cAB5eXk2bdqEgYEBERERHD58GDMzMxYuXEhERAQ7d+5EXl4eDw8PAbsXFRXx559/dkh9+JIKDAzE3d2d6OhoamtrGTduHHJycsjJydGtWzehgs/IyBAPWHp6ukBb9fT0sLW1ZejQoSxcuBB1dXX++OMPsrKymDlzJo6OjiI2ViJCaWxsJD8/n4iICGxsbPj999+5efMmx44dQ1NTk+HDhzN58mQMDAxQVVUVdk7V1dU4Ojp2+v717t2bdevWsX37djZt2sSWLVuwt7dHTU2NdevWsWLFCoKDgzl79iyvXr2iqKiIX3/9lf79+3PixAnWrFnDo0ePaG5uZsqUKRgbG7Nt2zYePHjAgAEDhE/dsmXLGDNmDBcuXODTp0+ClN3c3ExMTAy3bt3i9u3bpKWlcfnyZdasWcPo0aPR0NAQ0bKTJk1i1apVrFixotPX+f79e1pbW9m0aROysrK8ffuW0tJSunTpgouLizihW1hYsGzZMt68ecOtW7eYP38+UlJS1NbWoqenh5ycHC9evKC+vp4uXbrQ0NDArVu3qKysxNLSkoyMDM6fP09KSgoLFixATU2NDx8+ICsry6FDh0QD5erqyuHDh5k/fz6PHz8mKCiI2tpaNm7cyLhx4zrVvErqq6++YvTo0R38bAMCAnj37h0+Pj6icZWM0hwcHKiuriYgIICWlhZ69uxJQ0MD69evx8PDg549e6KtrS2MwWtqarCzs8PPz48ePXqIz5GSkuLt27dUVVVhbGzM+/fvRVqMpaUlbW1tIqpWV1eX0tLSTl9beHg4+fn5jB49mkGDBom4Rvh/Fi6LFy8W90tdXV1YBn3+/BkdHR1xIIqOjmbHjh3ExsYSGhrKo0ePqKurIysri+TkZGJjY+nfv79AVevq6mhtbeX27dtkZWWxYsUKZs6ciZubG4cPH+bBgweMHTuWOXPmiBHuuHHjxKHtS0pOTo7evXuTk5NDYWEhGhoaIsZ1wYIFzJ49m6KiIiFsuX37NjNmzKCurg5DQ0M2bdokrJEsLS3ZsGGDQP//bh4vqfz8fBHkcvToUTZv3kxbWxvq6uq8e/eO58+fo6+vz8SJE2lqauLPP//E2NiYIUOGYGNj879ajv1ftX//fvbv3y/2Bnl5eTw9PfHw8EBeXp6GhgY+fPhAaGgoSUlJfPjwgdu3b/P7778zZ84c0tPTaWxsZO/evUL4YWtrK3QHioqK+Pn5MWXKFKHuTkpKEqIzKysr9uzZw+vXrykoKGDMmDHC8lBfXx9dXV169OjBuHHj/ivbwb179wqHitbWVmF3lZmZSVBQEOHh4Xh7e4sG/uLFi2zevJmvv/5a2PMFBwfz22+/8fjxY6ysrPjpp5+wsbEhLy8PLS0tITQEWLVqFeXl5cJBxdzcnJMnT3Lr1i08PDxYvnw5BgYGFBQUUFdXx9mzZ9HT0+swSpegzl9aQUFBGBsbU1NTg4GBgUi0hHbHnGPHjlFWViZiY/9ut6iuri4SlsrKylBQUKBr167/656soaGBp6cnt27d4sKFC+jp6eHj40NBQQHv3r0jNzdXHBK/+eYbNm3ahJGRkQgQUVJS+q/4oHZ2dnz69InVq1eTm5vLyZMnxXunpqYm9mU7OzsuXLggxGGxsbHo6+sL+peRkRF1dXW8fPmSn3/+GT09Pa5evUq3bt3YunUr0dHRWFpacuXKFaSlpfnuu++wt7fn0KFDrFixgurqapSUlMjNzeXTp0/Y2NgIPrDkIPI/EekvqW+//VZwuS0sLDA1NWX06NHIysqK7+zhw4cEBARQX19PaGgo9fX1zJgxQ7hySNb68ePHc/LkST5+/MjMmTOZMGECOjo6zJo1i+TkZAwNDcXzAQhQrqKiAg0NDZYuXUp1dTXr169nypQpQlNRUVEh0skktMv/qzrdvN68eVMYhisrK3P37l2qqqpwdXUVSkCAFy9eUFpaSs+ePfHz80NTU5Po6GiePHmCtra2yP/Nz89n6tSpKCgo8O2334rsW0tLS2pqaqiqqiI2NlaYMYeEhJCZmUlsbCzx8fHo6OhgbW1Namoqu3btYvLkySLJqWfPntjb23dQEf/HL+T/yxMzMzNDQ0OjQ6rM+vXrUVVVZdOmTTx9+pS//voLa2trnj17hra2Np6enrx9+5aUlBTmzJkjxm9TpkyhoKBAoE9SUlKkpKRQVlaGvb09SkpKYszT2tqKkpISJiYmbNu2DVdXV3744QcUFBREgytBAGVlZYXhc2dKYjciQRmCgoK4e/cuurq6LFu2TKA42traAtr/5Zdf2LRpEzY2NhgaGgr+raqqKs3NzVRVVQmBjKenJwsWLMDQ0JAbN26Qm5vL0KFDmTx5sjgxpqamioe1rq6OoKAgYT4N7d5vCQkJ4tTamXr27BnXr1/HxsZG5C8D4pRfWFjImzdvMDAwEOIyVVVVrl27RlxcHElJSSgpKdHQ0EBOTk4H9N7e3p7x48ejoaHB0aNHuXnzJo2NjSK4QZLKtGzZMh4/fszx48epqanB2dkZT09P2traGD16tBAourq6CpVyZ+r69evY2dmhra2NpqZmBzWppqYmvXr16mAbIy8vT3NzM3JycuTk5HDkyBGOHDnCd999h7m5ORs3bqShoYGioiJMTU0ZN24cnp6exMfH09jYKDZLyf2T2JlUV1eLUfrKlSupqqrC09OTiooKDA0NsbKyIjExsdM2UgC//PILRUVFYsrwdz7xtGnTcHR0FApWaDehP378OCNGjOC7776jqamJtLQ0mpubyc7ORk9PDy0tLQoLC5k/f77wv+3evTsuLi7k5uaSmZmJt7c3o0aN4ubNmxw6dIj37993oDzIyMjQrVs3Zs+ejYmJCbdu3cLa2rrTZv6fPn1i7NixODs7i8OEJLCivr6e69ev4+DgIJ4NZ2dnduzYQUpKCt26dWPo0KE4OTkJO8HCwkLMzMxobW1ly5YtVFdX07dvX+FT27NnT8aMGUNzc3OHJqBfv34MGzaMhIQE4uPjUVJSYuLEifTt21cEpwCdTp8CBIp7584dXr16JRKeJM+RgoKCMOaXpP5IvLMnTJiAl5cXvXv3Ji4ujsjISLKzs0V8an5+Pm1tbWhra9PY2Ejfvn0JCAhg69atXL58mT59+jBp0iTCw8PFRFBLS4vVq1fT2trKp0+fRIMiaVy/BPH5e0kQ1ZMnT3Lnzh2+//57hgwZgoWFBYMHDyY6Oprdu3fTu3dv1q5dK6hSEvcDaEcuIyIixPdx6tQpVFVVqaysREpKij///JPTp09jbm6OhYUFdXV1NDU10bt3b9zc3HB0dKSxsZGrV6+K5CMDAwPh6wvtHrbJycn07Nmz0+hyTk6O8CM2NDSkvr6evn370tzczPPnz7l79y6WlpZoaGiQmJiIvr4+BgYGPH78mNraWmbPJd1jIQABAABJREFUnk19fb1o+gYMGMDLly85e/YsmpqaeHl5iUhpWVlZYmJi6Nq1K5MmTUJVVZU9e/ZQWlpKQkICgYGB4oCcn5/P7du3mTRpkriPmZmZwmqsM7Vs2TIKCwvZu3cvhYWFLFy4kKqqKvr164e7uzvffPMN/v7+oheR7IV/TzSrqalBXl5e2NKFhYUJSiC0i+igne+5Z88erKys6N69O4MGDRKfIdlPtbS0MDY25tChQ5SXl4sDTWVlJWlpaWJP+9JKSUkhNzcXbW1tevTogaysrDjYS7ivgwcPRlFRkVevXqGqqoqGhobQ2GhoaIgJ8YoVK3B2duaHH34gISGBGzducPPmTZYuXcq8efO4f/++oBNI6DFOTk5ij4qIiEBVVZVffvkFBwcHsf9J/n+J1eR/qk6vRtu3b6eiooI9e/YwatQoampqyM/Pp0uXLh3GET4+PlRVVWFkZMT48ePJzs7mxIkT7N27F29vb8aNG4eCggJJSUmoqqpiYGCAlpYW+vr6omGUqDNfvnzJrl27xGd7enrS1NTEzZs36d+/P76+vgLFi46OZtOmTXh4ePDNN98A7aPrLy3Jqfmrr74SROng4GDq6uoYOnQoGzduJCAggISEBAwMDHB2dhaQuUQtJ7HXsra2xtvbG2traxGFKtkAioqKiI6ORlpaGjMzM8zMzNDT00NaWloIhZKTk9HX1xebkrq6OtHR0cjLyzNkyBA0NDT+KyFMfX09ly9fZs6cOYwdO5YtW7awf/9+oJ3DJREg9O7dm969e3P48GGWLVsGwKZNmzA3N6dPnz6MGDGiQ0JVeXk5wcHBaGhoYGtry4ULF8QIRmLHJFGMmpmZ0b17d2H5YWpqioeHh0hTk5GRYcKECf8W5f9PlZ6eTkpKCn379hUvucTLVV5entDQUDZu3EhZWRl3794VCJqRkRFVVVXo6+uLRTUuLo6CggJkZGQYPHiw8C9sbm4WDYOkunTp0qHRVlFR4erVq+Tm5jJhwgQKCgoE6X7mzJkoKSlRUVFBZWVlpx0VHj9+zOvXrzEyMvr/sHfe4VVV29d+03vvhfSENCCUkIQSktB7kd5BQTiAqGDBRvGqgFJE7kFpAlKlSUcIHUINCaEkkN5773V/fxzP+pFbiZ/3esWM5/EJnnOS7JW99lpzzTnmGPj5+dG1a1cx1ueDqMrKSsrKyrCwsEBFRYVjx47x/fff09jYSFVVFfv372fp0qV8/PHHXL9+ne3bt+Pg4EDHjh2FvqEyC5mVlUVSUhJdunTBwMCAqVOnEh4ezqFDh3jttdf49NNP/+G1Xrx4sUVuMEooy9TPZ4qUGUp/f3/8/f2bSao8e/aMmzdvCmrO3bt3uXjxIi4uLpSXl+Ps7IyrqyuFhYWcOXOGoqIi3Nzc2LRpk3DAuXXrFp6enkybNo1evXpRXV0tDqdKBAQE0K9fP1xdXbl8+TJyuZwhQ4a0OHh98OABgwYNwtPTk4KCAi5duiQ2//nz53PgwAGWLFkiHKL09fWRyWQi8Dt58iSxsbG4u7vz6NEjDhw4gJeXl6D8KDNlSitV5SFAXV1dHKQtLCyYMmUKEyZMoLy8nPDwcNq0aSOaJnNzc0WW+0Xka/4WCxcuRENDgytXrrB//35RagZEdv/mzZtkZWXRoUMHOnXqxIMHDzhz5gzGxsZ89dVXWFtb89VXX/H5559TXFyMk5MTvXv3FprFbdu2FYd5ZUPUDz/8wLlz5+jatavI+nbs2BE7Ozth5err60tTUxMlJSWoqKgI++2WIjs7m59//pkLFy7g7u6Om5sbDg4OouKSmppKdnY2EydOpE+fPnh6elJVVcVPP/3EiBEjMDc3FxbWXl5eXLlyhfj4eKysrFBVVSUvL4/q6mrU1NSaiegr5dHCwsKoqKhgw4YNaGtrU1dXh5qaGllZWTg5OXH16lV27twpZBn/kSLKv4KPj48I0p53ElP2dyirVCoqKlhbW9OuXTt0dHQIDw8nOTlZUADT09MFrefOnTvs378fLy8vunXrJubYs2fPKCgoICQkhAEDBnDy5EkOHz6MsbExFhYWWFhYoK6ujra2NgkJCWhra+Pn5yeC19OnT3Pu3LlmvO0XgdLxafny5cyfP5/s7Gx2797NoEGDAAXFZ+bMmeKZCw8PF65caWlpmJiYoKOjg66urpC9fP/999HU1KSiooITJ05w48YNIea/ZcsW2rdvz5o1awgJCaG4uJj6+npUVFTQ1NQUer05OTmcOHFCVD8KCwspLS1tcfAaGxtLcnKyaBAtKysjPj4efX19jI2NsbKywsvLCwsLC3FgVTqFrl+/njlz5ginNEmS6NKli+j7KC0t5fHjx9ja2oosbk5ODiUlJRw+fBhNTU2x9oSHhyOXywkKCmLevHncvHmTL774gr59+4q1IT09/T+TeY2OjsbQ0JC0tDQaGhoYNmwYkiRhbGzM3bt3CQsLY86cOfTu3Ztr165x7do1unfvjoWFhbD/cnBwQE1NDV1dXSIjI3n33XdRUVEhJCSEhoYGli5dyqJFi3Bzc8PPz4+UlBS8vLy4evUq2dnZmJqaMnfuXGxtbXn8+DGXL1+mqalJbM51dXVs2bLlnwqm/yuoqamRmZnZTG4jKSmJQ4cOoaWlRa9evfDx8eHSpUusXLmS77//nm3btjFixAgOHTrEunXrMDc35/PPP0dPT49OnTrx9OlTHj58SL9+/QQfU+nDbWNjw5MnT7hz547IOu7du5e//vWvgOLEtG7dOt59912sra3p1asXmZmZogHl12RD2rVrh6WlpTjdjBkzhtjYWA4ePMjPP//MnTt38Pf3Z+XKlXTs2FH8ridPnqCiokJwcDDu7u4EBwdz8uRJ7ty5w9y5c1mxYgU7d+7kwoULnD59WmTbcnJyRCCrlF/au3cvHh4eREZGYmBgwJEjR+jSpQvffvstx48fx9XVlSVLlmBlZdXi8Sk1PZ8vcxYVFRETE0Pfvn1p164dDg4OFBcXc/36dfHQhISEoKGhITa7QYMG4ebmJuTh/Pz8cHJy4u7du+zbt0903e7fv5+mpiZeffVVhg4dSm1tLVu2bCEtLY0vv/wSGxsbEhISKCwsxN7eHkmS+Oqrr7h48SLjxo1j1qxZLQ7uDAwMOHr0KKNHjxbNIkrExMRQWVkp/OI3bNiAnZ0dXbt2Zdu2bUKztmfPnhw+fJiMjAxu3brF3r17efjwId27dyciIoL9+/czZMgQcQhcvXo1O3bsYMyYMSxfvpzVq1fzzTffsG7dOg4ePMg777zzdx3pSi3T8PBwsXC+KD788EMkSaJbt27ChrmsrEw0MIEiY1ZeXs6zZ89wcXHh2LFjhIaGkpeXx6effirMFMrLywVnzc/Pjy5dunDu3DkyMzNFqUt58Dhy5Ajz5s1DV1eXTZs2iWpRSUmJ4KorP5ucnExiYuKvkgJ7Hkrd7G+++YYVK1YQHR0NNHe1OnDgABcvXmTjxo04OTlx7Ngxtm7dSt++fdHX10dTUxNdXV3c3d3p1q0btbW19O/fHxsbG+7du9fMuUdDQ0Nw35UNUwYGBvTt25esrCzWr1/P3r178fT05KuvvsLS0rLFzkyAyPYPHjxYyMkpERcXx7lz5wgPD6ehoYHHjx+TmZlJQkICY8aM4d133xVByWuvvcbDhw/ZtWsXKSkpDBs2jMWLFzdrznny5AmbNm0iOTmZ6dOnk5ubK57hw4cP4+npyY4dO1i9ejVvvPEGc+fOpb6+nkePHmFnZ4eRkVGzCsaLYPPmzWzatInQ0FD27dvHrVu3OHDgAG+++SZaWlo8ffqU+fPn4+joiIqKCu3bt+fgwYNs2LCBc+fOERYWhr+/P3379uXBgweEhIQwf/58zp8/z44dO7C1teXzzz/Hzc2Nc+fOsXfvXh4/foy2tjbGxsbk5eWhoaHBvHnzRNONqqoqq1at4vbt2wwfPpySkhIqKyvp0aMHEyZMaDYPXgTP3zMlSktLuXbtGtnZ2VRXVxMTE4OnpycffPABo0aNIjMzE0tLSwwMDASlJywsDCsrK1RUVBg9ejSWlpbo6ekJNQ9lr4TyEDh9+nTy8/Px9/fH0NBQOHA9fPiQ9PR0wsLChGSWEkrqza/FtGnT6NChAxEREfj5+WFsbEx2djaHDx8WspnFxcWiWXD16tUcPXqU119/nenTp2Ntbc2dO3eIi4ujR48eODg4sGfPHr7++mtSU1OFooanpyeOjo7U1NRw4sQJSkpKUFdXx9nZudkB4f3336dbt27Exsayb98+QkJC6NWrV4v59SEhISJLrxxnSkoKW7ZsoW3btlRVVVFbWysqVEqJwpUrVxIZGcmYMWOwsrIiKyuLL7/8ElNTU2bOnMmwYcNYvXo1EyZMoEOHDsyZM4dJkyZx/fp1kb1esWIFWVlZ/PTTT2zZsgUbGxssLCyIiori2bNnPHz4kIiICMrKypg8eTLZ2dl8+umnzQ66/wgtjnzmzJmDoaEhrq6u1NbWNusCnzVrFmFhYdja2nL16lU+//xzVFRURGk/JCQEPT09tLS0kCQJdXV1Ib1TWVmJq6sr6enp/Pjjj+Tm5jJnzhy0tLQYP348DQ0NGBkZcfXqVZycnIQBwePHj0lNTaVDhw6EhYVx6dIldHR0xAk1Pj6+RePr0qWLOJnW1dWhqamJn58fN27coLy8nJqaGsEfio2N5fbt26JBwszMjGnTpmFgYEB6ejrDhg3D1NSU77//njNnzojg5/Lly5iZmYlFQVNTk5KSEmEHeebMGeD/fLPPnTuHuro6CxcuxM7ODl1dXU6fPk2PHj1+lZqCjY2NcC+rr6/H19eXL774AhMTEy5fvizccCIjI4XzhtK95P79+6ipqQkt1hEjRmBoaMiTJ08wNzdn0qRJREVFsWfPHoyNjZkwYQIRERGcPHkSHx8f9PT0SExMJD8/ny5dujBv3jxqamrE4m5gYICJiYloPGhoaODkyZMtGp+qqio5OTmC3wqKks3SpUuFaP2KFStYunQpR48excrKirfeektsNomJiUI4OzAw8O+6tG/cuMEPP/xA9+7d6dKlCyEhIZibmwvtv4aGBiIiIsjKymLgwIEEBQXRqVMnDh48SHJyMqWlpcL+c8CAAWhrazfLqLwIBg4cSH5+PmFhYULQXVl2zsrK4ty5c5iYmGBnZ4eenh6lpaXU19fj7e2Nqqqq0KRVOsPdvHmTq1ev8vjxYyorK0VTwPPdrg4ODqSkpHDp0iWWLFmCtrY248ePJyoqitjYWB49ekT37t1paGjgyJEj6Ovr4+npSVJSEvHx8S0OXkePHk1lZSV6enpUVlZSWlqKpqamOJQUFBSgp6dHQ0OD6DJW3u+ysjLi4uLQ0tLC2dlZLMygOIwGBwcLyazk5GR69epFWFgY165do7i4mLfffpsePXowZsyYv9M3Vcq9GBoaCte98vLyFhtN9OjRg6amJnJycrC0tGTs2LE8efKEM2fOCLtaZeYHFOXlU6dOYW5uzquvvkptba1YI3r27ImxsTHHjx8XAb63t7fYCAcNGsT9+/d58OABOjo6XLt2jZqaGpydnUUDnlLD+ccff+Tjjz8GFJue8qDwa1zSZs6ciYODA+PHj2fcuHFUVFSIpjIXFxc0NTXJysqirKwMFxcXkpKSKCsrIygoSNxLJUVpypQp5Obm8vPPP3PmzBk8PT3p3r07FRUVIkO1Y8cONDU1mThxItnZ2SQlJTFkyBC6d+/OgwcPuHnzpijvgqJE2djYSFlZmbDhbgmysrKora1l4MCB9O3bF2NjYx4+fEhZWRlqamoYGxvTv3//Zt/j6+vLq6++yv3790V2eNSoUSQkJHDr1i3mzp1LWFgYt2/fprGxUUhF+fn5oaamRm1tLR06dODhw4fcu3dPSOalpKRgZWWFhoYGjx494uTJk6Snp+Pn5yfck36NgH9ZWRk5OTnCFl6ZGbS2tiYtLY2SkhKMjY154403mDp1KioqKnh4eDB9+nRAoZSgq6vLwIEDaWpqEtJ0Li4u3Lx5k59++gl1dXXOnTtHdHQ0qampqKmpER8fj7q6OuXl5VRXV5OXl4epqalomA0NDRWNiRUVFUiSxMCBA3FwcGhxwxYg3L1UVVVFtTYrK4udO3eiqqqKl5cXDg4OGBgYUFFRIXTNfX190dbWJisri+zsbOEUp6enJ2QCY2NjqampISgoiK+//lqsYUpt7vr6ekJDQ/H19cXAwICioiKMjY1p3749vr6+BAUFcfz4cUExaOlhOTs7WzxPu3fvFo3xSkqDrq4uDx8+RFNTk7Fjx1JaWspf//pX9u3bh76+PsePH6eoqIiTJ09y+/ZtQGGP27VrV/bs2QMoKkndu3enXbt2fPbZZ6LPwdfXF01NTQ4cOCDsuIcNG0Z5ebmID0FRJaytrcXNzU245P0rtDh4XbVqFU1NTejr61NXV0dKSgqSJOHs7IypqSmmpqZs3ryZZcuWkZ2dzeTJk+nRo4eY+MbGxmhpaQm+ZmhoKD179iQ+Pp7z588LCZ+jR49y7949li9fTnBwMFevXiUrKwtjY2Py8/P5+uuvKS8vF77kAwcOJDAwkAULFqCrq4uVlRU5OTktFixWujklJiYK55kOHTqwbNkybG1tqa2tJSUlBXV1dbp168b+/fs5f/48kyZNYsuWLYDiVLpgwQKRDVNmLA0NDYmNjWXDhg306tVLBK+lpaXo6uoSERFBeno6KSkpQoosKyuLH3/8kYMHD+Li4iLElK9evUplZaXglrQUyiYTJddLX1+foUOHMmLECNq3b4+xsTEXLlzg66+/xsvLi61bt1JQUMCNGzcwMTHB29ubyspKTExMGDJkCIGBgcjlcn766SfBtZwzZw6fffYZixcvJjs7mzVr1pCamsr3338vFsP169eze/duFi1axJAhQ5g8eTJjxowRG+aqVavYvn27sB98Eezbt4/PP/+cCRMmIJfLAUX2986dOyQmJtKrVy+GDRtGRUUFkyZN4tSpUyxatIi6ujq+/fZbwsPDSUlJEVbEixYtEj9bqf2rDPRramp45ZVX6Nmzp8hQ6+josGDBAvbt28fKlSupra1lwIABPH78mM2bN7N8+XJ27txJZmYmZmZmSJLUYsvG4OBgOnXqhKWlJYmJiezatQsnJydmzJiBjY0Nurq65Ofn4+npyUcffUROTg7m5ub06tWLZ8+eCYc4fX19hg8fjqWlJQ8ePODx48fExsYyYcIEPvvss2aH006dOjFw4EAMDAx4+vQpHTp0wMLCArlcTm5uLnp6ekIu7vDhw0J/8tdUQEBx8IyKisLb2xtfX18GDhzYTIpMU1OTmzdvYmZmJrLIc+bMYdq0abRv357g4GCKi4sxNjbG09OTjh07EhUVRUVFBampqcJERDnXXFxcGD9+PLa2tly8eJFdu3bR0NAgNmElsrKyKCgowMnJCU9PTwYNGsSNGzd47bXXWsQnVMrWaGhoiB6C+vp65s2bR11dnTjIKfHaa69hY2PDmTNnWLp0KV27dmXHjh34+vri7OxMdnY2Y8aMITExkS1bthAcHExiYqJQfMjPz+fmzZvcuXNHyHplZGQQFRUlMjL37t1j586dgMKmeubMmQDCPrilUFrodujQgY4dOwqN8MGDB2NiYsLo0aNFSVVNTQ1TU1O0tbWbNfg9e/aM69evExAQwNatW3n33XfZt28fMplM8GSrqqrQ1NTE2dmZqqoqdu3ahbm5OaNGjcLDw4N169axb98+OnTowJYtW/D09KShoUHox8bGxrJ9+3YiIiJaZPoSFhbG1KlTBb2pe/fuIkjQ1dUVou9KSJJEQUEBAQEBmJmZMXXqVOGg5ezszCeffMKoUaMYPnw4I0aM4PTp0xw9epSRI0dSX1+PgYGB4DvHxsZy4sQJevXqhYaGBvPnzycsLIz169fTo0cPDhw4gCRJQqP7xo0b7N69+99mtP4WDx484MaNG3Tp0kU0D4FCNlNJ8VuyZAlz584lIyOD7Oxs/P39adeunSghK2MGpdIFKA6B+/btY+fOnRgZGTFkyBAcHR3Zvn07vr6+rFixgsjISL744gvs7OxwcHAgMzOTcePGCXvv7du307NnT9zd3cUz06NHj18VvKqpqfH1118TFRXF+fPn8fLyYvfu3VRWVvL+++8L2/evv/4aVVVVpk6dypQpU5g9ezaNjY2sX7+eNWvWMGDAADZv3oy6ujqVlZW0a9cOLy8v8Zw9XxHs0aMHOTk5REdH06ZNG4yNjYHmDfDZ2dmkpaWho6MjEmctdUk7evQo3t7eHD58mB9//JF3331XOIkp4ebm1iyoVrqEVVRUsHHjRrZv397MVEPZe+Pg4ICpqSn9+/dHU1NTrLGgaIRTGkwo17KcnBwePXpEx44dqa2tpWPHjgQHBwt3QB8fH7Zt2yYaxf4ZWhy8lpeXi81IXV0dMzMznj59yo0bN8jPz6e+vh41NTXmzp2LhoYG/fv3F9lBbW3tZuXNnJwcHj9+jJ+fH+3btxecNSXp2cPDg9LSUiIiIoiLi6OgoIDIyEhu3bqFlZWVaNpQV1enU6dOf6cFWltb+0LE3+dRWFgo7G0NDQ0Fh1O5IKWnp1NXVyc4dampqSIwUhKPCwoKOHXqFCkpKeJUOn78eLFBzJw5U1zr6dOn2bp1K8nJyeJUq6WlRc+ePVm4cCFHjhxh9erVODo6iiyKiYkJwcHBPHjwQATMLUFSUpI4DSthYGAgGmyUE7i4uJjjx4+LbkoHBwchSu3i4oK2trYoN5uYmBAYGEhZWRn+/v5Cr/DUqVMMHz4cPT09kpKSuHPnDg4ODoJzl5CQwNatW7ly5Qo+Pj6A4mHV19fH3Nycfv36tZgPWlpaKnRzlfDw8OC9996jqqpKzMeJEyeSlJRERkYGp0+fpqamBj09Pfr27UtUVBRRUVFcv36ddu3a4ejoKGxYNTQ0KC8vF1Jbz1sTgiLzGxQUhIaGBteuXcPFxYX6+npu3rxJUVERXbt2RVtbW2QNGhoaePDgQYvGqKurK+5feXk53t7eqKmpce3aNbS0tBg2bJjgfWlpaTXj8nl5efH06VPs7Ozo1q0bISEhFBQUYGlpiZaWFioqKgQFBYmNKisri1OnTnHmzBkyMzMZNWqUmL+ZmZnk5+dja2sr/q75+fkEBATQpk0brK2tGT9+vGhCagm2bNnCmTNnmDlzJr6+viJDeOnSJUJDQzE0NBSKBOvWrcPX15ekpCT27t1LVVUVJiYmonM1ICCAOXPmsGzZMiorK4WUz48//sj69et58OABaWlpWFpa0rFjR+rr63FwcMDV1ZW6ujpOnDiBmpoaQ4cOxcvLi0ePHlFWVoazszODBg3i8uXL3Lx5s0XBq1LsfMyYMejq6nLp0iXy8vKE3iT8H//L2NiYwMBAZs2aRVJSEitXrqSmpoaBAweK+2RjY0PXrl1p3769yBZ//PHHHD16lIEDBzJlyhTU1NREZadDhw5ERUVx8OBB3n//fW7duiXoSfPmzUNfX5/r16/TtWtXdHV1xYbUEvTt2xdNTU3U1dVJSEggLi6OiooKcfC1trZm0aJFtG/fXjRWKTvOQUH3CQ8Px9raWpST3dzcRMarpKSElJQUVFVVBe2ntLQUNzc3VFVVefDgAefPn6empoYOHTrwzjvviHW4urpa0A7at29PaWkpDx8+bFHwamJiIpoZGxsbhcwi/B99x8/Pj/T0dHbt2oWRkRHvvPMOoFj7bt68SUZGBnPnzmXkyJHcu3dP2HK+9tprFBcXM23aNGGbmpGRwe3bt0WTa0VFBRUVFfTs2ZN3332XW7dusXHjRkxNTQUv886dO1RXV6OtrY25uXmLbX5VVVWpr68XFclHjx6RnZ1Np06d+PDDDxk0aBAuLi5cu3ZN0J+Uko8PHz4UerWdOnUSJgWgmNteXl4MHTqUpqYm+vfvj7e3NyEhITx58oSIiAiuX7+OmZkZffv2pWPHjlRVVTFixAgsLS1RUVEhNjZWZNE1NTWFakZLoWw8HTJkCJIkcebMGdLS0mjTpg3t2rUTVAulQoarqysWFhacPHmS6upqpk6dir+/P9nZ2eTk5Ag634MHD6ivr6dr165UVlaSkJDAjh07qK+vx8nJib59+zJ69GisrKx49uwZTU1NdOnSBWNjY2Ff3tTUxOuvvy6q1klJSS1eS0eOHCk44SEhISJwvXjxIlevXqVr164MGjSI2tpaQS179dVX0dHR4dGjR5w7dw5A7A/W1tbcvHkTZ2dnRo4cKVxDb9y4waBBgxg1apSwrl+8eDFt27ZFV1eXKVOmiHV51apV+Pr6Mnz4cKGKA3Dnzh0iIyP/7ZhaHLweOHCABQsWoKGhIQRodXV12bVrF+fPn0dDQ4O9e/cyevRoQJGpUpbfGxsbqaioELyiS5cuiRuptEerra3FysqK+fPn06lTJ3bt2iUEqfv27UteXh5JSUm4ubmxePFi7OzsOHnyJDk5OXh4eCBJElVVVejo6Pwq8r1yAR0+fDjt2rXj3r17goysdA/x8vIiOTmZ27dvY2RkhLm5OadOnWL69Ols3LgRgB07dhAVFYWBgQFfffUV06ZNAxSBgJKzl52dzaZNmzh58qSweVVRUSE1NZWSkhJqamqorKxEW1ubsWPHCgcmS0tLhg8fzu3bt5k9e7ZwjnpRREVFYWFhgYGBgTjh1dXVCb6UUkj8+vXraGlpUVpaKoJwfX19cnNzKSwspLCwkFWrVnHq1Cm2bdvGlClTREkwMDCQIUOGsGTJEn7++WeCgoKYPn06+/btY9KkSbz66qvk5ubyySefcOXKFQIDA/Hz8yMmJoZjx45RW1vL7Nmz6dixI3K5vEVNd4MGDRL2mhUVFWRkZNCmTRsRUINioykoKCAoKIjY2FhiYmIwNzdn4sSJeHt7U1payp49e4iIiGD79u1YW1szceJEunbtip2dnWgisrW1FbxcpVWhjo4O+fn5mJiYMHPmTIyMjKiqqsLb25va2lohJfb8tbTE8UaJpqYm8ez4+fnx6NEjfvzxR7y8vIQdr7IBTsnRrK+vR5IkRowYwYgRIwBFsKl0HzI2NhYVBmW2TVVVVTiNgSIgUT7DmZmZvP/++3Ts2JHPP/8cVVVVqqurmT9/vsgq29jYEBIS0qJ7CIp7pxQ7V0Ipa6VU6Th69CjPnj1j2rRpuLu7iyZSpYaoiooKOTk5eHt74+XlxZEjR7h69SoeHh5C5uzatWuiMzgoKAg/Pz/eeustERQ+evSIQ4cO4ejoyKBBg9DU1MTd3Z3k5GQaGxtFA5HSKvlFkZGRQWxsLM+ePUOSJGbPni0OQ56enpSUlLBmzRoSExOZMGECgYGBgtsPiGYHpeZkZWUlS5cuFffmhx9+4MiRI9TW1hIbG4uFhYVoimrTpg1BQUFs376d+/fvo6WlRW5uLg8ePGDt2rXMmzePV155hfv373P+/Hnc3d1bHPQAYtMDRbCuoaGBr68v+vr6nDx5kpSUFKZOnUqnTp3EfNTQ0MDQ0JC8vDxWrlxJXl4en3zyCYCQvFq3bh3Tp09n7969TJ48mYULFzJp0iTmzJnDvXv3hKLA2rVrAYU++a5du3BwcECSJEpLS9HR0RHrmpKW4Ojo2Ezm599B6XyopaVFXV2d0LEFRQXo7NmzfP/995iYmAgNaSWH/KeffsLHxwdTU1P27dvHwIEDmTRpEt988w1nz55lwIABODs7CzUXfX193N3dxbOYm5uLlpYWqampVFVVMXnyZOrq6tiwYQPjxo0TVTlJkrC0tERDQ4M2bdq0mPPa1NSEpaWlqJY+efKECxcuEBcXJ4Tv9+7dy44dO6iursbLy0tkCJOTk4mOjub+/ftcvHiRuro6vv76a0BxYGjfvj0DBw4kIiICAwMD3N3dcXd35/z580ydOpWcnBwCAgKYPXu2ONAoObzKZsPn79fp06fZvn17i7PLN27cICwsjNdff51p06axZ88ecnJyGDt2rNBqVdJqZsyYQffu3VFRUWHRokWcOXMGa2trunbtyieffCIO9k+fPuXEiRNkZ2djaWnJgAEDuHTpEjt37kRDQ4OJEyeir69PUFAQgYGBXLt2jUePHgnbX6Xpkq+vL8uWLRPXqpQja8l6o6yU+vv7i8NZfHy8MJbJy8ujb9++xMbGsmzZMry8vNizZw8VFRV88MEHwvWtoKCApKQksrOzhQqPv78/Dg4OXLx4kYqKCqytrXFwcMDc3JyamhoSEhJISUnB3t6e999/n4kTJ7J3715ef/11HBwcmgWuoHjGlZXTf4UWB6/a2to0NTVx69YtHj16REBAAEVFRaIEExAQQE5ODufOnSM7O5unT5/i4ODAiBEj0NDQQC6Xs2/fPrS0tER3d3R0tLgRYWFhovGjrq6OR48ekZGRwfjx4+nduzdDhw4lPj5edFMqORPnz59nzZo1mJmZMWzYMLEQtpRLaGRkxIABA7CysqKuro6OHTuSkpJCXFwc7u7uODk5ERgYSG1tLRUVFeTn5wuxdCWxOyAggBUrVghnrW7dupGamsr69es5evQoHTt2ZMWKFcLpwtjYmO+++w4dHR3Wrl2Lurq6OGlbWFiwadMm4UpVXl7+q5qYnkdSUhKvvPIKvXv3Jjg4mISEBDQ1NUXGJz4+nj179pCXl8fQoUNRVVUVwbeampogl7u4uBAUFMTYsWNxc3MjMTFRbHCZmZnCoWjlypWoqakxZswYYfRw+fJlccru0KEDAQEBuLq6oqury5gxY9i8eTPDhw9n3rx5QlbtRdGtWzfxb2U2y93dHTs7O7Hxr1+/no0bN1JTU8OUKVOYOnUqbdq0ESdmIyMjpk6dypMnT0TznLm5OV27diUgIAA/Pz9u3bpFbm6u6Hxdu3Yt3t7ezJ8/n5qaGiGjFRgYSLdu3cTcX758OXv37mX9+vWYmZmRnZ1Nv379mm30/w719fXNMkfK12prayktLRWi0EresBIXL16kvr5eZObOnz/PzZs3KSwsJCUlhdzcXHJzc3FycmLEiBG4ublhbW3N3LlzUVVVJSYmhgcPHnD9+nVBByotLSUlJYWKigphLKLM3v8aTUIllGoYFhYWItujrq5OaGgod+7c4ZtvvuH27dvY29vz6NEjcnNzMTAwEHPq3r17WFhYiEOfiooKAQEBXL9+nZMnT9KtWzf69+/P5MmTycrK4ujRoyQnJ5OWltasPFpQUMCAAQNo166dyPIoD+G1tbVoamoyf/58QkJC2LRp0wuPLygoCB0dHS5cuMDRo0dJSEhg4MCBIoMdHR3Nzp07MTQ0ZNmyZSKIe15m6fHjxzQ0NHD//n1Onz4tDgirV6/ms88+w8LCgldeeYWRI0fi7OxMY2MjixcvJigoiKamJqKjo2loaBDNh0qFglu3bmFtbU3v3r1Fc8ivaQ59Hq6urlRWVuLm5oauri6nTp1i9+7d+Pj4EBoaSseOHYmIiMDW1pZPPvmEnJwcamtrCQgI4MSJE6Iy17ZtW9HkU1dXhyRJBAcH07lzZxGYffXVVyxevJg1a9ago6NDx44dRWm/qqoKY2NjGhsbWb16NSUlJbz33nsMGjSIQYMGteiQpcxAxcfHY2ZmJvYdUDxr0dHR/Pzzz7z33nts3ryZbdu2MXHiREFxkMlkFBQUcPnyZfbt24eXlxfjxo3D0NCQjz76CIBDhw6JrPOMGTMoKSnh7bffBhRl2Zs3bxIYGIiLiwsmJiYEBASgqqrKX/7yF54+fUpYWBgzZsygurqas2fPUlpa2qL7duvWLRoaGrh69Srp6ek4OjrSt29f7t69y9y5czEwMMDR0REHBwcuXbqEmpqa6E8pKSlh1qxZ9OvXj5UrV7JhwwacnZ1ZsGCBaABUHrJ69epFRUUF8fHxwuZ47dq13L59WyiPXLhwQdCZ/vKXv2Bra0tcXBw//fQT2traGBoasnLlSiIiIlo0Rjc3N8rLywVtJSgoSBya4+Pj+emnn0hNTcXT05MhQ4aIdW3JkiV4e3uzdu1a2rVrxzvvvCOoFDExMfz8888kJSUxatQoAgICRKygTBBFRUXh4eEhyu4lJSXU19dTUFCAkZFRM8MdJQwMDITM1Yti7NixJCcns2jRIiZPngwosqiDBw/GxsaGmpoaEhMTUVNTY/78+dja2vL06VN++OEHbty4QWhoKFZWVnz//ffiZ9rZ2YnKuFKGz97env379yOXy7GysuKzzz4jODiYH3/8kQ8//JBNmzYxYsQIcbB63mwpMzNTyGp9++23XLly5V+OqcWrkZeXFzU1NZw5c4aIiAihVTZ16lRGjx5N+/btycjI4MCBA8Jy1NzcXMj5KJs7QCGWr9wU9u/fL04Zyo5lpZKAqakpXl5eGBsb4+rqir+/P5IksW7dOvT19QkNDcXc3JyHDx+ioqKCnZ0d7du3x8XFpcXi6G3atMHS0pKSkhJKS0txdHTE0dGRuLg4QZNQStsog3OltMfw4cPR1NQUjTQWFhaUlpZy48YNTpw4walTp8jJyeHMmTP4+/tjbW2NnZ2dsOwrKioSDRgJCQkcPXqUhQsXMn36dBISEli5ciVDhw4Vwautre3f8VZeBKampuTl5XHp0iXhvKKiokJMTIzopFZTU8PW1pawsDDu378v3F+eh5+fH3379hWcv0uXLols9/Xr1zE1NUVfX59Lly7h7u7Od999R3BwMKtWraKgoODvyu3K5hwzMzMGDRrEkSNHCA8PZ8qUKS0eY0ZGBunp6UIHsrKykri4OLy8vKiurha8R0mSqKmpwdXVVXCKlLQKfX19xo8fz4kTJ0hLS2Pjxo0EBgaKewaK0t/169dJSEhg06ZNjBw5kvnz59OmTRvq6uq4fv06dXV1opkrNDSUDRs2kJCQQHZ2NmZmZujp6TF06NAWBa9K44yYmBjq6uro0qWLMLEoLS0lOTlZaDLq6uqKbJwyi5Cens6dO3dYvnw51dXVdOnSRWz8SitRZYe9qqoqw4cPx9XVlRkzZjTzxVZXV8fb2xsnJycRsJqbm4tmQKUE0a+RdFNKROXl5REVFUV5eTm9evXCwsKCjIwMqqur6dq1K507dyYuLk5UX9q0aUNhYaHQwlQeZs6dO0diYiJubm5UVlYSERFBu3btmDt3LiYmJoSGhrJ161YSExPZvHkz/v7+WFhYEBAQILjwjY2NPHv2DFVV1b9zB2ppZtLS0pJ+/fqRnp5OVVUV8+bNY8qUKSJrZWJiQq9evbC2tqZt27acP39eCNsrLW8nTJgg6CHGxsbs3buXuro6Dh8+TFlZGXp6egQFBdGrVy9qamooLCzE29sbCwsL6uvradeuHZGRkZw+fZoRI0bw6quvkpyczObNm0lOTmb8+PF4eHhQVlbGhQsXWnwPY2NjSUhIoKGhARcXF9q3by82fnNzc6ytrUlMTCQ0NJRx48ZRWlpKTEwM8fHxaGhooK+vz+3btzl69KhoolRmhQwMDIiIiKBPnz7Ex8dz/fp1QkNDiYyMpLq6Gg8PD5HlrKqqEnNZufFHRESwZs0atLW1mTx5Mo6OjqIZ5UWRlJSEXC5HU1OTIUOGcP36dRobG4Wk4fM80b59+5Kfn8+0adNwc3Nj8ODBwlTHx8eHy5cvk52djUwmQ0dHh9deew07Ozs++eQTTExMhNSi0qmwrq4OT09PKioqOHv2LI8ePWL27Nm89957REdHs2LFCtLS0rCwsOD+/fvib9BSEX99fX1B9dDX1ycgIICAgAAaGhrYuXMnubm5LFu2jAkTJoi1pkOHDoJKp66uzqBBg3j69ClHjx4VfTNKXV65XE5VVRX9+/fn8ePHbNiwgZEjRyKXy7G3t+fNN9+krq6OsrIyvvnmGy5dusTcuXOF6+HZs2e5cOECrq6uvP3223Tp0qXFwauSwqWEt7c3oMgcX7p0iXPnznH9+nX69OnDK6+8Ij6n5PZ27dpVzL9BgwYJkx+lpXJ4eDgqKir069cPPz8/EhMThUa3sjqmzEAWFRVRUVGBg4MDRkZGNDQ0kJ6eTlFRkVAJSk5ObtH44uLiKC4u5ujRo8LMRUkF7NKlC1lZWfz888+oqamxePFidHV1uXv3LjExMZiamuLv709ZWZnozZgxY4Y4EJ07dw59fX0CAwORJInz589z48YNcaCxtrbmjTfeEAnPyMhIevbsycSJE0lOTiYpKQlra2vq6+vFvjVkyJDfPnhVdtLfvXuXp0+foquri4mJCdOnTxf6efX19aKTNDY2loKCAlJTUwkMDCQoKIji4mJmz57NoEGDqK+vp7KyktmzZ1NZWYmBgYFoJtLQ0KCiogINDQ1qamq4cOECx44dY86cOXh7e2NpaUl1dTU2NjbIZDJcXFy4cuUKJSUlhIeHExIS0mLOa21tLTdv3sTExKSZe1Xbtm3FomtmZiZclpKSknBwcGDgwIEMGjRI8ON27NghHuS4uDiqqqoYNmwYHh4eYmw6OjrMnj2bK1euMHr0aIYPH877779PdnY233zzDR4eHqJUcvbsWa5evSpkbQD69OnDqFGjRIn8RWFsbMy+ffu4dOkS5eXlDB06lOLiYtavX4+vry9Tp05l5MiRpKWl4eLiQlxcnPheHR0dDAwMaN++PUFBQVy4cIHz58/zyiuv0K9fP3bu3El4eDh6enpCEqOiooKUlBSqq6sxMzNrpkn6PJ43uejevTvHjh1DTU2tmTvMiyA9PZ24uDjMzc0JDQ1FVVVV0C+UY5gyZQoDBw4UOoqnT58mKChIaNUpS9M9evTg8OHDjBkzhpSUFD744AN69uwpfKdLS0vZtWsXGhoa+Pv7ExoaKq5j4MCB9OzZU+jLguLgcPDgQWJiYrh69SqZmZl069atxTJESt/wv/zlL9y7d4+TJ0/i7e0tlAVKS0uFc5PShtHY2Jhu3bpRUFDAw4cP2b17Nw8fPsTe3h4tLS3Mzc0ZN24c48aNY8iQIVRWVnLy5EnMzc0ZMGAADQ0NFBUV4eHhIYLx2tpakWlRQklN0NDQoLi4mNTU1GYi/y+KgoICioqKqKurw9nZWWgSAqJBS1dXlwcPHnD27FmcnZ0ZPHgwV69eZfv27ZibmzNz5kwqKirYtm0by5Yto6ysjFGjRhEcHMyFCxf4/vvvsbCwYPHixQQHB1NYWMjSpUs5fvw4r7zyCosWLRIHFeXYlK5rz2Pr1q18/vnnfycV9iIYO3asoAqUl5dz4cIFoXSxYcMG0SX+vFmGiYkJn376KX369BG2xK+//joTJ04kPDycvn37YmhoSHh4OB988AF1dXUMGzYMHx8fYWyiVIsJDw/ns88+Iz8/n1mzZolS9dmzZzExMWHatGlERUXx1ltvNVM/eBGEh4fz7rvvUlNTg7+/PydPnhSZqSlTpogMak1NDT169ODq1atCZmfy5Mls375d6Af7+fkJq+jXX38dUDgHLVmyhLVr17J27Vr27NnDBx98wP79+0VDbElJCREREbRv317cS6Wqi9K228PDg++//563337735Yrn8fPP//MyZMneffddxk0aBBLlizh+++/x9HRkfnz54s1XwkfHx+WLFmCl5cXKioqfPvttxgbG/Phhx/Sv39/du7cyZ49e1BVVcXZ2Zm6ujq+/PJL3n77bdTU1Pjyyy85evQotra2ODk54ejoSLdu3VixYgXV1dW4u7tjY2NDVVUVy5cvx8XFhSdPnvDpp5/SoUMH3nzzTYyNjdm+ffsLj3HMmDHk5ORgZmaGjY0NdXV1VFdX0717d7Zs2UJ0dDQaGhoUFhYyffp0AgMDqampISIiglu3brFkyRL69++PmZkZ/v7+ZGRksGvXLrZs2UJKSgo9evTggw8+ICQkhPj4eCwsLETpvW/fvhw6dAhvb28yMzPx9PQkODiYWbNmUVtby8GDB4URQvfu3Wnbtq2QmWsJlLHL38LOzg41NTXKyspwdHTEz8/v75zY0tLSGDFiBOHh4Xz88cd89dVXVFZWiiwrKPakc+fOMWDAAN5//30yMjJITk7G3d3973R3lU3tyqxrdXU1R44cISEhAU9PT6Hl2xJcvHiR0tJStm/fzpEjR3B2dsbb25uYmBg6duyIra0t58+f5+HDh8Ky2N/fXzTG5+fnc+3aNaysrJg0aRKfffaZcOZLTEwkPDycbdu20atXL8zMzOjTpw/37t3jrbfeYsWKFfTt25eNGzeSnJwsnodbt25x/vx56urq6NGjBx06dBCVhBc5RLY4eO3SpQvx8fEUFBSQnp7OqlWrWLlypSgVNjU1oaGhIQIUKysrnjx5Ihwy+vTpQ58+ffD19RUbgLm5+T+cOG3atGHatGmiaUFHRwcfHx/BEWzXrh21tbUiYzRgwAB8fX05ePAgubm5lJWVtdjyT5Ik9PT08PT0FAFHZmYm6urqqKurixKavr4+dnZ2wi6te/fupKWlceHCBdGZ36FDB4YPH46FhQXV1dV4e3tjYmJCaWmpKHU5OztTUlLCkSNHhA6bp6eneCDatGnDmTNnqK+vJygoiGfPnuHk5ISNjc2vsoYFRenllVdewdXVlRs3bpCamkpmZqZoglCerpXOLUppoNDQULp27crJkycxNDRk5MiRnDt3jitXruDr64uNjQ3Xr18nMjISe3t7srOzxQlRRUVF8Mz8/Pw4c+YMhw4dQk1NjbCwMKGBq+SN6enpNcvKtgSqqqrY29s343cpF4LGxkZqa2uFVAv8nxxKZWUl48ePx8bGhoiICL777jtGjBhB7969+eGHH1i4cCF3795FkiTc3d2Fs5uenh5jx47F1dWVzp07U1JSwsaNGzEwMGhma6vMLNvb29PU1ER4eDinT5/mxo0b9OvXr0VjjI+PJzMzEx0dHSwsLDh06BD9+/enc+fOpKSkEBMTg5mZGU5OTujq6lJaWoqenh4aGhpYW1sTHx+PjY0N7du3x8jIiLy8PLKzs+nbty8jR44EFOYcKSkpIlNfV1fHqFGjyMjI4McffxTWwJqamkRHR3P79m0CAgKaZSA1NDT46aefuHv37j8sgf0rHDx4UHSpJycns3HjRkxMTHj11VfR1dWluroaW1tbevXqhYODA2VlZWRmZlJVVUX79u1xdnbGwMCA/Px89PX16dSpE3fv3hW2tRkZGeTn55OQkCB+5507d3j48CE6Ojp4e3sTHR3NxYsX8fb2xs/PT5QVQcFZrKurw83NjdTU1BbL1+zcuZPk5GRmzpxJly5dAEVnvaGhIcXFxdy7d4/AwED09fWFh/rQoUM5ceKEkHTr1asX2dnZ5OXlER0dTW5uLk1NTSQkJNC2bVvGjh1LQ0MDSUlJpKen4+vrKxr99PX1mThxIunp6SxZsoQTJ04waNAgYfLRt29fPDw82LhxI0+ePBGZ8JbAycmJ8ePHExcXh46ODsuWLaN37970799fbGKNjY3U19dTUlKCtbU1gYGBmJubC35oU1MTFy5cEAL7yo3NyckJLS0trly5Iuy7IyMjSUhIEDxLPz8/TExMsLGxaaZ6YWpqKrjC7u7umJub4+7u/neyeP8Ofn5+TJkyhfHjx2NlZYWfnx8uLi706dMHmUwmGvHu37/PsGHDcHJyYsqUKbi7u3PhwgWRXfruu+/w9/fnzp07rF69GhcXFxYuXIiOjg7Z2dlUVFTg5OQkEjkaGhoYGxsLK3IlpaOxsZHU1FR0dXUZPnw4gND5dXJyEoe/lqC4uFgcBC5fvszWrVuxsrLik08+YejQofTo0YNFixbx888/C2WW5wOspqYmzp8/j56eHgMHDmTx4sVUVVWxatUqkU1XHvpdXV3FPSgrK2smf2dra4tMJiM7O5s7d+5gZmbGwIED0dTUxNzcXOzXLVUYAgWNTOlUqKWlhYWFBaNHjxa8+eLiYubPn8/s2bO5fv06Dx48oH379nTs2BEXFxcmTZoEKJJMSmviV199lYyMDOLj46mtrcXe3p7i4mIiIiLw8vISCYC4uDhSUlJwdnambdu2qKqqCrF/dXV1YS5RWFjI/fv3sbS0bLEhirW1tdCJb2xspF27dqSnp3Pw4EHy8/Nxc3MjKiqKp0+fUl5eLoySxowZg6urKx999BFXr15l+vTp9O7dm4SEBCorK4VOc35+vkgw9ujRg4ULF5KXl8epU6d4+PAhvXv3FvKLmpqa3Lt3j4iICGH0ZGRkJKpZSl71v3NG/VUkJnd3d8LCwrh79y7Hjh0jPT2dGTNmMHjwYFEiUZYrP/roIyRJ4uzZs1y7do1BgwZhZWVFVFQU+vr6eHl5UV9fT319vehITktLE+Xzjz/+mGvXrpGZmYmTk5NoBKurq8PHx+fvOHUNDQ24ubkJy86WoqamBnV1dUpKSkSGoKGhgZiYGOFmZGRkRHBwMB06dBAd+iUlJezcuZMdO3ZQUFDAkCFDeOONN4ReWWpqKqdPn2bZsmUkJCSwaNEi8bdq3749fn5+zU5gEyZMQFNTk0ePHpGTk8OkSZNQUVFhzZo1PHjwQDRmtFSsGBQNW/v27aNv376oq6uzbds2TExMWLBggShBKhsZAFEOtrS0xM7OjqKiIpKSkrCxsWHRokX4+PiI7sdx48bh7+/Ps2fPOHjwoPidz+uF2tracvPmTfbt2wcoDgyDBw8GFEGuUve0sLAQQ0PDFkv02NnZ/VN5JjU1NTQ1NSkqKhKnW319ffz9/QWXMywsDH19fQ4ePMjt27c5efIkPXr04LPPPmPs2LGoq6szZswY0Xk6depUsVEof4eyGSUsLKyZni8oAs+nT59ia2vL/fv3OXbsWIsdYVJSUrh37x4ffPABBgYGvP3221y/fp0lS5ZgY2PDzZs3adeuHUFBQVRVVVFfX4+GhgY5OTnU19cLjWANDQ1u375NbGysaI5QKiOsW7eOoUOHMmjQIGFl/OWXX7Jy5UrWr1+PiYkJ/fr1o2PHjoSHh3Pz5k1sbGxwcHCgsbFR/K2VGpxKvcoXRU5ODtOnT0dHR4empia+/fZb3N3dxabwzTff0LdvX+FhHxcXR1RUFNra2owaNQpLS0vq6+upqakRPPavvvqKa9eucffuXdTV1fH09BQybM931S5btow33niDFStWsHHjRmbMmIGdnZ2oGOTn57Njxw4iIyOZMmUKI0eOxN/fn7Nnz77w+B49esRXX32FlpYWS5YsITk5mfr6eoYOHcqZM2dYv349Hh4eTJs2DW9vb4YOHYqhoSG1tbWcO3dOuA727t2bv/71rxw4cIAxY8bQvXt35HI5NTU1bN68mR49eohsfGFhYTOpHlBUOQICAgSdYvfu3WRkZLB3714qKysZOnQo/v7+HDlypMVNd/369WPQoEGoqamxd+9e5s2bR0REBAEBAejr69PY2Ci69FNSUrC0tBSct8OHD7N27Vr+8pe/0L17d27dukVKSgra2tqsWrWKxYsXs3nzZj7++GM++ugjIRR/4MAB8fudnZ358ssvxeEgPj6eqqoqOnTowKBBg7h+/bqooPTo0YPdu3cLt8EXwdSpU5k8ebIIHpVap+rq6ujq6lJbW8uaNWvIyspi2LBhaGpq8uTJE0EVs7e3R1tbG0mSyM3N5aeffqK2thZDQ0P69euHm5uboFCAYn0tKiri8uXLlJSU4OHhIdbW8vJy4uLiKCwsFGouoDi4v/POO7+q4Q7g22+/Ze3atTQ0NLB//3727NlDp06dWLBgAUZGRkLhISUlpVl1QJIkrK2tGT58OBUVFezZs4eqqirGjh0LKJJWY8eO5fHjx9y9e5f27duTmpoqbJwNDQ159uwZ6enp2NraCp3VS5cusWXLFiZOnCjmo7ISpq6uTkhICMeOHWvRGBMTEzlx4gSAkL9T6nenpqaioqJCu3btUFdX55tvvuH48ePMmDEDJycnzM3NRTm/R48edOvWTcQpmZmZXLx4EQMDA/T09ISV6jvvvCN0r2/dukVkZCSvvPKKoCLV19cLjXUTExP69++PqakpR44coXv37gwcOJBr16698PiioqKIjIzE2dlZrHePHz8WVWalNb2rq6twDpwzZw4VFRW89dZbpKWl4eDgwKxZs3jy5AkLFixAT08PVVVV8vPzCQoKYvz48ezZs4djx44xduxYZs6cycyZM6mqqhL9Evn5+djY2KCqqkr79u3x8PAQ+0VlZSVaWlqClnL37t1/OaYWB6/nz5+nb9++rFy5kvbt2/Pjjz8SGRnJtm3bMDQ0FAFZcXExO3fupFevXqIxIjw8HA0NDdTV1TE2NhadxBoaGsTHx3PkyBEOHTpEbW0tc+bMYf78+VhaWtK7d28ePHggRLb79evX7ITc2NjIxYsXuXHjBg0NDYKeUFRU1CyAehHEx8fz7bffUl1dzaxZs5gyZYpw8lKWtTU0NP4uK6j8o69evRpbW1ucnZ1JSEjgwIED9O/fH0dHR3r06MGKFSuE4QIouKEZGRmsXbuWa9eu0b9/f2bMmCE2eqVNoxL6+vr88MMP5OTkMHnyZKGN1hJMmjSJvLw8Pv/8c7KysrCzs2PixInY2Njw6NEjdu3ahbGxMYsWLUJLS4spU6aIElBMTAxGRkYiKFJXV8fIyIhly5bh7OzMsmXLsLCwwNzcHH19fXr27MnNmzdRV1fn2rVrjB49WjRl6ejooKWlxaBBg5odQsrKyoSMzsmTJzl16lSLGn8qKyspLCwUfEttbW0qKytRUVHB2NgYdXV1ampquHPnDq6ursKR6ObNm5w5c0b4b8+fP5+8vDzxu+3t7amursbCwoKRI0diY2Mj/hZ1dXV88803dO3alZ49e7Jz507efPNNJk6cyMKFCxk+fDjHjh0TVn8DBw4UXMba2toWi4dbWFjg5uYmFjulwsKKFStEwOnu7k5ZWRmNjY3iIBcbGyssiZVWok+ePMHZ2VlkjjQ0NLh//z6XLl0SxHoTExNxQFmwYIEQDy8sLGT48OF07dqV+vp68vLyePr0KTk5ObRr1w5fX19cXV1/lZlGQECA2LR9fX3ZsWOHyDo5OTkxZswY8vLy2LFjBw0NDXTt2pXAwEB+/PFH5HI5PXr0YOrUqZiZmXHx4kW+/fZbseBraGhgaWnZrGynqqrKq6++KjSHNTQ08PHxYerUqYKStHPnTkxNTVFVVcXS0pIxY8YwbNgwYSXdkuB11qxZqKmpUV5eLnzeQ0NDUVFRoby8nBs3bnDjxg0sLCxwdXVFX1+fLl26sHTpUgICAoTphbGxMX369KGsrIzQ0FCCg4OxsLDg1KlTHDp0SGTXjYyMePjwIdu3byc2Npby8nJ0dXUxMzNj4sSJtGnThqSkJAICAvDx8eHq1avk5uaKzOKvQXV1Nfv27ROHpgkTJuDt7S14p2pqapSWlqKmpoa7uzsZGRlcunRJSMdNnTqV119/nVGjRtG2bVuuXr1K27ZtmT59OqqqqkyaNEmUIpXc1YCAAMzNzdm1axfh4eHcuHGD/v37U11dzcmTJ3n48CGdOnUiMDCQUaNGCVMPJSWqJUhLS6O4uBg7OzvMzc0pKioS6xcomni7deuGubk5Li4uXL16VczXV155hd27d6Ovr4+1tTWHDx8Wpeb8/HzKy8uF7a9Svi47O5t79+4JByel6Uh5eTkGBgZCCed5Go/SXMfAwIDGxkbRc/KiiIuL491336VHjx4MGTIEe3t7jIyMRFVTeZjv06dPM1rJrFmz6NatGx07dqShoYE2bdqQmZnJyZMnGTJkCEOGDOHjjz9my5YtvPPOO8yfP59u3bqRnp4OKNacmzdvsm3bNqZPny6ae7p27Yqamhr5+fmsXLlSBF29e/cWB/KW4q233mLYsGEUFBRga2tLhw4dSEhIYPfu3RQVFTF8+HAuXLjAp59+yuXLlwkNDaVbt26sWbOGqqoq3n33XTw9Pdm4cSOXL18mLy+PpqYm8vLy0NfX5+bNm9y7dw8DAwMGDx7c7HDxyiuvCK4+KDLVDQ0NaGlpNTtwGBoaMnToUDp37tximpmJiQnGxsY8fvxYVIEjIiKIjo4mICAAGxsbOnXqRHJyMmVlZXTr1o33338fDw8PGhoaePXVV8X1KBsRlQpQbdu2xc3NTRw4ysrK+Otf/4qXl5dowlZmjH19fSkoKMDU1JTGxkZ27NjBgwcPGD16NGFhYdTX13Py5MkX6lVqcfB6//592rdvj5WVlZDy+Pzzzzl58iQHDx5k/PjxaGpqkpCQQFpaGhcvXsTZ2RkbG5tmE9vd3V1kZ0DB80hKSuLBgwcYGRlRWlpKdnY2FhYWQuMwPDyc8+fPY21tjYeHB7W1tVRXV2NsbIydnR3V1dXcv38fV1dXEXDu3bu3RVmtzMxMbt26RVlZmXBPAoV2aGxsrAiGGhoaMDY2Ftk0Q0NDevbsSceOHdHQ0CAuLo7333+fqKgoVq5cyXvvvSeaoGpqanB3dxe+6cpNKzY2lqtXrzZz9Llz5w6WlpbY29uTmJhIZmYmz54949mzZ+Tm5rZYTQFg/vz5lJSUMHToUOHwoQyQr127RmRkJDY2NsIVCxT8TSXp+4033qB79+5cvXpV6PveunWLW7duiSY85QkOFB7sJ06c4PTp06irqzNy5Ejx399CTU2tWXn59OnTfPvtty2SA0tNTRVBtrI5xdDQUMy1p0+fcvLkSZqamgQxX1dXF1dXV5KSkkhNTaVTp06i21eJ4uJibG1tKSoqEpm78ePHC1ONxYsX4+DgwJMnT2jbti1ffvklQ4YMYc2aNaSnp3P27FnR8fn84lVdXd2iLnVAcNuSkpIwNDRk4MCBJCYm8v3331NeXo6/vz91dXXcv39fLPoNDQ3k5+dTW1tLeno6ly5d4tixY6iqqjJmzBiCg4OF44qtrS09evTg2bNnonxXU1NDVlYW9vb2LF68WGRbLC0tRbPBwYMHuXbtGt7e3iQkJPDzzz9TX1/P2LFjW9w8qVwvSkpKqKioEA59yvuobDa6ePGiIP17eXmRlZXFiRMnaGhoYNy4cWhoaPD06VMePXokymdlZWVYWVnRvXt3EVh7e3vj7e1NfX09aWlp5ObmMn78eBG4vfXWW6xfvx5QGHDMnj2btm3boqGhQV1dXbPqwovAw8ODlStXsnr1arZu3cry5cuFesS1a9coKSnByckJAwMD7t69S0pKCk1NTYwePZpu3brRuXNnysrKcHBwwN3dnfbt21NQUICzszNvv/02/v7+LFmyhHfeeYdvvvkGTU1N7t+/z7vvvgsoDty1tbV06dJFBPmPHj1ixowZSJLExIkTqaqqYu/evejp6Ql5uJZg/fr1LF++HFDQjnbv3o2trS2gWFOTkpI4cuQIVlZWzJ49G319faqrq4U++PHjx9m5cydDhgxpRvUBxXPu4ODAqlWryMvL4+TJkzg6Oor1MzIykvDwcGJjY7l58yapqanI5XISEhKIjIzEysoKf39/zM3NiYyMJDY2tsVKLgcPHkQul/PJJ58wY8YMdu3axdWrV5kyZQqBgYFoaGiIJAAo1p7o6GihgNGrVy8h/ZSfn4+xsTElJSW0bduWzMxMTp8+zaZNm/D19aWiooJDhw6Rnp6OpqYm7dq1E9UxZZOYqakpvr6+NDY2ConK6upq7t27h4eHBz4+Pi2+j8nJyZw5cwYVFRVWrVrVbH9KSEggPz+fUaNGid/15MkTQQ9TUk0qKyvp0KEDp0+fFlnjyZMn079/fzZv3syVK1eYNm0atra2nDhxggsXLjBv3jxBP1A+88XFxeLgvXv3blavXk1FRQXTpk0TfPOWPoegMCfq3r07dXV1gmp24cIFzp07x7hx4xg7diwffvghly5dwsbGhm3btuHs7Ex0dDRnz55l1qxZtGvXDl1dXW7dusW8efMARbUtLCyMxMRE8vLy+Oabb0QDslJqz8zMjICAADFGVVVVQaGrq6ujoKBAuIspm09bqvOqpIx8+umnnD17lgkTJlBRUUFJSQl1dXW0bduWqVOnivXaxcWFzz//XFAXevXqRWFhIdu3b2fbtm3o6+sLSl1MTAw5OTloaWkJsxXl8zhz5kwePHjA8ePHCQwMZPDgwUKSU11dncjISK5duyZiARUVFa5du0ZMTMzfNdH9LVocvIaEhLB7927RTR4cHCxOq/fu3WPz5s3U19eLaL2mpoaff/6Znj17iotRljDV1NREc5aJiQmvvfaaCAaUJZeKigq0tLTQ0tJi1KhR4iSXkZHB+fPn0dXVZdy4cXh7e7Nw4ULWr18vSunKP1BLYGVlxXfffSeaMs6ePUtUVBSZmZlUVFTw2Wef0dTURGhoKO+8806zwLiiooJ3332X69evo66uLjoNtbS0KCkpYdu2bTx58oTOnTujra1NTU0NI0eOFAFw9+7d2b17t5Bb2blzJ59//jl1dXUMHToUfX19Tp06BSiygAUFBbz33nvCMq4lMDY2Zvjw4aiqqjZbsEePHo2Pjw/R0dHs2rWLqKgofHx8GDp0KEuWLMHBwYGwsDDu3LnD5s2baWxsZPTo0SxcuJA7d+7w/fffi+YQUJRGlbJoUVFRzRw6lBqJZmZmaGpqIkkSqqqq4u+xe/duIiMjhWPXi6K0tJTc3Fzq6uooKipCR0dHUA9OnjwpnGCmTp0qMovJycn4+/vTp0+ff7gwKEXrFyxYwI4dOxg0aJAITAGx8KSlpTF16lQ2btyIr68vZ8+e5d133+WLL76gT58+IjurREREBBs3biQ8PFyUml4E+vr6qKiocODAATIyMpgzZw5vvvkmrq6u4n7W1NSIjlVJkrhz545onlNmpQAmT57M66+/Lnzkw8PDcXd3Ry6X8+GHHxISEsKBAwcwNTXlo48+Qk9Pj7Vr12JkZISuri6HDx8mKCiIzp07k5GRQU1NDePHjyc5ORmZTIajoyNbt24VnfIthZJuU1JSwl/+8hdmz57NxYsX2bJlC7169eKNN97g9u3bREREEBsbi5ubG0eOHMHR0REtLS0qKioYPHiwsNI9ePAgq1atwsXFhcmTJzejmMTGxvLVV1/Rpk0bISavhFJqycjIiMGDB9OlSxeePn0q+Op/awP67/D06VPhK56bm9uMHqPMjk2YMIEhQ4awevVqNm3aJKg7AwYMYPjw4RQXF6OlpUVaWprgY7dt2xY7Ozt69uzJypUrWbp0KQMHDmTGjBmCL2pnZ8f69evJz8+nrKwMGxsboVYBik3krbfeIi8vj8LCQqqrq1ukf6rErl27cHNzw83NjREjRjTjXJ44cYKPP/6YlJQUwc3u2LEjX3zxBfr6+hgaGvLqq6+ioqLyd3xppRueg4MDc+fOxdLSEn19fT7//HPBLT98+DCgWFfbtGnD7t27Bb+5W7duBAcHU1tbS11dHb169SIkJAQ1NTWhDfsiKC4uJiUlhcjISAYNGkROTg51dXXY29tjZmZGTk5Os6qRrq4ulpaWgpJ2/Phx0TQYFBTETz/9BCiyb8oKkpGREa6urkIlBBTOTM9v7spDR7du3di+fTvV1dVcunQJb29vUXJX0uFaSlFSNuz+o0TJ8ePHuXr1KuvXr8fJyYnly5ezatUqHBwcWLlypWh+e/bsGWvWrBEBtnKe1dXViaqTtbW1oBimpaUxbNgwunfvTl5enujvqKys5OrVq+LQtnr1amJjY9HV1f1V1rdKbNu2jQsXLmBiYsLYsWMJCQnB2dmZOXPmEBoaKlwT9fT0sLS0FA1l33zzDSNHjsTS0hJjY2OOHj3Khg0bOHr0qJC6Ulr0fvDBB8LEJCsri/Xr13PhwgUcHBwYO3YsQ4YMaVahunjxIps3b6ampoaFCxeKfUPpbNUS5OXliQqcn58fYWFhqKiooKKiInTHlTJ9yv6jvLw8NDQ0xN5x+fJlLl68SFpamnAYNTMzY//+/aiqqrJp0yZ8fHy4f/8+5eXleHh40NjYKJSTvvzyS6ZOncrnn38u6IdTpkzhvffeE3NZTU2NSZMm4e/vz+XLl//lmFocvMbHx5OYmCjs3iRJwtvbm8GDB+Pi4iLsW5VE+Orqah4+fMjevXvx8/Ojc+fO2NjYiKBVRUWFuro6dHR0xKniyZMnSJKEo6Njs+BTmRUCRFpdVVWV7OxsGhsbiYyMxMfHB19fXxoaGmjXrh0LFy5skVXc89ImDQ0NLF++XFgpuri4kJ6eTn19vcgOK+05HR0dqampoby8XHgEKy3v5s6di5aWFsXFxdTU1NDU1CQcgJ63TFNKR5WUlHD69GnS09Np27at4NwYGRnh6+tLcHAwffr04dy5c+zbt6/FweujR4948uQJbdq0YePGjbRt25Znz56RlpZGWFgYwcHBnDp1iuPHj2NoaIihoSGampoMHTpU8OWuXr3KzZs3cXJyom3btjg4OKCnpyesCC9fvizI5hoaGqJ0rHwAnzx5QkpKitB8LC8vR09PD21tbTIzM4WjWseOHbG2tm6RfaqWlhZZWVmAIkhXLggpKSncunULFRUVHB0d6dixI5aWlsTHx3Ps2LFmnOrY2FhiY2OxtLSkR48eaGho4OjoyLhx4ygrKyM8PBxjY2OysrJQVVVFV1eX6dOn89NPPxEdHS2coTw9PZHJZDQ0NIgFKCkpifv37wvu3vXr11t0/0BxMFNVVeX48eNcuXKF0NBQ3N3dhSUjIO6dUnWgtraWgoICoqKihL2ps7Mzo0aNEoGrUoN2yZIlTJ8+ne7du7Njxw5SU1NFU8TZs2dFM5qKigr19fUiq+rn50dOTo7QeOzQoQO+vr4tVv0ARWatqKiI8+fPEx8fDygyksOHDxcuNsHBwXh4ePDkyRPOnDmDubk5q1atEg0NSs6rvb09+fn53L9/n6KiIsaPH0+3bt3EJlpRUUFkZCSzZs0iPj6eCRMmoKenR2ZmJpcuXaJLly74+fnx/vvv4+PjI7JPiYmJREVF0aZNmxaXK6OjozE2NqZ79+6UlpZy+vRpnJycsLa2ZuDAgUiSxOTJk3FychJBZ15eHhkZGYJHplw/9u3bxxdffEGvXr1oampCVVVVNNNMnDiR77//nrS0NNzc3BgyZIiQNgSFjJTywG9iYkJBQQF6enriWY2KihJSVy1Fhw4dmDhxoggASkpKRJBeXFxMcXExLi4uBAQEEBUVha2tbTPFBldXV3EwfPbsGbdu3RJcOzU1NU6cOEFycjLvvvsuXbt2ZdOmTYK7CIoNeebMmVRXV4vNsFevXrz33nvCQtzQ0FAERy2tZKmqqhIaGoqpqSl3797Fzc2N4OBgoRKjo6NDTEyMyHwpDxvKkrvSz12p4KKsYFRVVbFhwwbs7e35y1/+QlJSEteuXcPPzw9PT08CAwObBfS6urqYm5tjZWWFmpoaCQkJxMTE4OPjg66urqgw1dTU/EOll3+FgQMHoqWlRa9evYD/sxYHReb12LFjdOjQgZkzZ4omrcbGxmYZ3vv379PY2EhwcDBz584VfE9jY2N69+4tDmu5ubk4OjqKkrOSJqQ0cbG3t8fY2Jjo6Gj69OmDm5sbpqampKSkiM+1VCYLFFq6Su3fJ0+e4OXlJTL9mZmZHDt2jKCgIKF88ejRI+7du4e9vT1hYWEi26uiooKtrS2zZs1i+vTppKSk8Oqrrwod7KSkJH788UfOnTtHVlYWenp66OjokJWVRWJiIrq6uhQXF3Pp0iXkcrmg3C1YsEBcq66ubotpA0ptXysrK0xMTERfiJGREeXl5ZSVlZGbm0tOTo6gPCYkJIhE2qlTp7h8+TL+/v5UVVVRXV0tmus6depEU1OT6O3o0qVLMzvp3NxccWhUxkCgaJr09vYmKyuLQ4cOoaenR2hoqDDd+c2D1+3btzN58mTeeecdrKysaGpqorq6mtdeew1dXV309PSQJInExESuXr0qeA7r1q1j48aNvPrqq7z55pvi5AmKB0qZbTtw4AArV65k8uTJonNR+bBkZ2eTn5+Pt7c36urqjBs3jrS0NM6fP8/q1avJy8tjxYoV+Pn5oaamJk64LQlelSUtUJQrlbIyoMg6d+zYkTt37gh9vkePHokTbr9+/fjhhx+YMGECt2/fpk2bNowdO1aUjEaNGkVNTQ0FBQVkZWUJN6r6+vpmrifLly8nJiaGZcuW8dFHH1FcXCzE0J/v8P41mWWAH3/8kZUrVzJ37lxhTHDr1i3kcjlz585l0KBB3L9/H1DYS44YMYKUlBQKCgowMzOjqqqKR48eATB48GBCQ0O5dOkSkiQxf/58jh07xvTp0xk/fjwrV64UwvkmJia4ubkJUfXa2loGDhxIQUEBx48fp1u3bri4uHD8+HGRvcvNzeXWrVstCl4rKiqEgL/yIHL//n2OHj2KpaUlFy9eFFajycnJXL58mfv37/Ps2TPatGlDQEAABQUFfP3113Tu3LmZXaS1tTVvv/02c+bMQVVVlejoaJEBWrZsGTKZjHv37jVzDenRowcBAQGYmJiQmJjImjVrOHv2LHV1dcLI4XkawYtCT0+P2tpaJEkSG+OqVauwtbUVHMz09HS++eYbunTpwuDBg4mKiqKsrEzwJh8+fIibmxtNTU188803LF++HEmSePjwIQ0NDbz33nuMGDECVVVVKioq6NevH3FxcWzdupWmpiZee+01pk6dKhaq0NBQEhISkMlktGnThk2bNuHn50dVVVWLx7du3TqePXtGZWUl06ZNIzAwEEdHRx4+fIiDgwNbtmxBW1ubvLw89u3bJ+R7ns8sKfVwIyIiWLZsGefPn6dTp04cOHAAV1dXrl+/jo6ODhoaGuzfv18EycoO58OHD7Nu3ToGDBjAnDlz+OSTT5opmNja2gq+ZUvRs2dPjI2N6du3LzY2NsybN49Hjx6xdetWFi9ezIABA3BxcSEmJgZDQ0PatGnDzJkz6dWrF2VlZRQUFAi6T1FRkXDCi4qK4tChQ5w6dYpdu3bx6quviqyznp4ekyZNahbA6OrqiuC1qalJOCkpx6lsVPk1WLp0KR4eHmJ+PL/pBgQEsHnzZnr27El9fT179+5tpvxQVFTE/v37xYE9JiZGmKXMnz9fNC/J5XJ0dXVZtmwZW7dupWfPnhQXF2Nvb8/w4cMxNTXlypUr5OXl0bZtW3bs2IGTkxMNDQ3o6ekJznNKSgqnT59u0fgsLCzYtWsXjx494sGDB4SEhIjAFRQbdGZmJgkJCaioqPD06VOys7NFR/yECRPo2bOn0HFVGm3s3r2bb7/9lokTJ/Laa6+xYsUKYmJi+PDDD5k1axYpKSnN7omHhwdyubxZz4mxsXGzudrQ0EBtbW2L5+qaNWuoqKgQFYrnM8nKYPLBgwfk5+ezbNkypk+fTllZGW3btqWuro5bt26JMSklwpSZQ09PT2bNmsWpU6eIi4vDwMCA119/XVCdfv75ZxFHKNGzZ0+6dOmCpaUl5eXl7N+/HysrK7S1tTl79izr1q37Ow3mfwdbW1u++eYb9PT0yM7OblYF2bZtG59++imffPIJH3/8MaCgpMhkMmpqatiwYQPz588nNTWVuXPnEh0dzUcffYSpqSn19fWoq6tz9+5d8ZwrFXi6d+/Opk2baNeuHXl5eaSnp3P79m0eP37MhQsXhNWuiYkJWVlZQre5pYErKGhmTU1N/PDDD0RFRdG3b1/xc6qqqkhNTeXmzZucPn2axMREAgMD6d69O6A40KWnp+Pj48PSpUuJi4tj7969ZGdnCzWSqKgoHj16hK+vL3V1dVy9elWoJygPHm+88QZr1qxpNm/PnDnDggULBI2xS5cuLzw/W7wijRgxgs6dO3Pv3j0KCwsZP368yNrU1tby+PFjysrKqKysFALmampqYpM5cOCAaIhRV1enqqpKCOWDImumlDcpLS2luroaUEhvnDlzhk2bNqGiosK7777L6NGjUVVV5cyZMzQ1NTFy5EhsbW2pr69HTU2Ne/fuce/evRaNLy0tjezsbBwcHLCwsODjjz9m0aJFPH78GA8PD+bPn8+VK1e4cuWKEIz29fUVfwNQmC+YmZnRpUsX1NTU2LlzJ0+ePGHixInI5XLOnDnD3bt32bp1qzilK4PXp0+fYmpqypgxY4SUhrJ0ZGpq2mzTGTt2LJ6enuzYsaNFY+zatSvjxo1DT0+PgoICzM3NcXNzw8nJicLCQjQ0NPj444/p3LkzjY2N3L9/X5zoq6urhfNYYWEhgwcPxsDAQNjbHT9+nGXLlpGamiqE6bW0tMjJyeHw4cM0NTUxbNgwoqKiOHLkCOnp6ZSVlQnDBC8vLyG8rWyIaqlw+L179wgLCxN/P1BkQNzd3fH29haBYm5uLkuXLiUlJUXIrNXX15ORkUFJSQlBQUFCwkq5OPfp04eSkhIuXLhA7969cXBw4N69eyQkJPDuu++KrEFkZCQPHjzAwcFBdI0qKxZDhw7l8ePHXL16FXt7eyGn9e+kQf4RZs2axbBhw/D29ubGjRui09rGxoYOHTpw6NAhLl++jJubG3p6enTp0oXs7Gx69eolJISUsLS0ZPr06bi4uDBo0CCxyCg3guvXrxMREUFMTAzV1dU0NDQIzqfyEDd48GCGDBlCeHi4mFtAixUjlMjKyiIgIIDly5eLICM8PJySkhJSU1OprKzk3r17tG3blr59+9KtWzcMDAwoLi4WBhWgmIPt2rVDR0cHKysrLl26RHFxMSYmJiQnJ5Oamoqrqytz586loqKCtm3bUlhYiKOjI4MHD8ba2pqqqioKCgrIzMzEyMgILy8vqqqquHLlChkZGQQGBrZobM8flH19fZk5cyY5OTnC6cfX15eUlBTu379Pr169RCOZEsoSvDJQePvttwkODiY9PZ0jR46Qk5NDUVERBgYGzRzDlIoFFy9eRE1NDWdnZ6ytrcWB2NjYmMrKSnH/JEni0KFDv0o/08fHR2SklW5YdXV1Qk6xa9euFBUVERMTg7a2NlZWVpSWlgr3MjU1NWJiYigtLeXZs2fClaxTp07Y29szaNAgDAwMRDnWwMCA+fPn/9112NjYCCk5Zcm3tLSUhoYGQXu7ffs2u3fvFj/rRTBq1Cjs7e3JzMykpqZG/J1/+ukn9PX16dOnD+3btxe/y9bWVpjCPI/s7GyqqqqIj4/n0qVLfPfddzQ0NFBWVoampia9e/empqaGIUOGYGNj83eHCaXSxuPHj0V2VltbmyNHjvDkyROamppwc3PDwsKixYYhVVVVhIeH079/f2xtbQkPD0dVVZWwsDBCQkJISUnBw8MDCwsLdHR0aNOmDY2NjZibm1NbWyuy0xYWFuTm5rJ//34CAgKE3bGLiwsjR47k+PHj3L17l7feegtQ8KWvXbvG4MGDGTlyJFlZWWzbtg0LCwvmzJkDKA4ciYmJIvnl5+dHz549W5TsAEVS4vvvv2fGjBnY2NiwY8cObt68ia2tLampqWI/rqqq4tSpU4SHhzNkyBAcHR2RJImNGzdSUFCAo6Mj2tra3LlzRyh8qKmp4evri6enJ8bGxhQVFaGhodHsoG1paYmWlhZRUVFoaGjQv39/XFxc2L59O/n5+SQnJ6Ojo4OamhrR0dGcPHmyReMDRZXgzp073L59mw8//BAHBwcRuFpZWTFy5EiuXbsmgvjAwECqq6sZN24cP//8M++//z6Ojo6YmJhw6tQp5HI55eXlBAcHk5qayokTJxg+fLigPyiDUF1dXdFkqZy3d+/eJT4+noSEBEJCQigqKiIwMFDcR2Xc96/Q4uD1jTfeICoqii+++EI0MCl5LXfu3OHKlSskJSXh6enJxIkTxcLQsWNHoqKi0NLS4vbt29TV1WFlZYWpqalYTEAhreLj40NSUhInTpzA2NgYT09PKisrKSkpETpkX3/9NaGhoRQVFaGurs6yZcsYO3YsSUlJFBcXY2Njw5kzZ/j888+ZMWPGC48vKyuLwsJCtLW1cXJyEjy2pUuX0tjYSFNTE9ra2lhaWmJmZiYEeUGxiRw8eJDCwkJCQkKoq6vj6NGjvP/++wAMHToUY2NjJkyYQGJiIvfu3cPV1VUs7nl5eejo6DB37lyx6f/www9s2bKFMWPGiNJBUlKScFfp1KlTi4NXZafnhQsX2LVrFz4+Pjg5OfHOO++gpqaGsbExwcHB6OnpMWPGDLS0tPjyyy9F0Kejo8PYsWPFQUHpne3t7c24ceNEx+zzm4BS669jx44MGzYMNTU1UlJS2LRpk7CcVZb6Q0NDhahzS8WYQVGKU5Y7lCoDXl5eeHl5UVFRIT6XnJzM9evX0dTUFBzGoqIitm3bhqqqKh9++CEGBgZUVVVx7NgxDA0N6dChA99//z0rVqzgq6++YtGiRfTs2ZPIyEjBYVRVVeXp06cYGhri5eVFSkoK+/fvFxxLd3d3sRlPmjSJxYsXExMTw7fffvvCY1RmypRzu6SkRLjZKbPGDg4Ogo6hpOdoamri4OBAZmamKDlXVFQItybls9zU1CQMRJRBUlVVFRcvXqS6upqBAwcyevRoMXcvXLjAX//6V+rq6li0aBHbtm3jxIkTXL58WagOtBRDhgxBS0uLkJAQEbjm5+fTpk0bHjx4wMaNGykuLqZ79+4sXrxYHIAbGhoEpUlZQvfx8RH85EePHjF//nwyMjJYvnw5jx494uLFi7z33nssXryYlJQUUlNTqampYfjw4eKwlZycTHx8PFlZWXTo0AEvLy8qKyt5/PgxxcXFLQ7ulNx/ZePqtGnTqKysbNaIeffuXTIyMoTGcl1dnSgza2tr8+zZM65cuYKdnR0zZ84EFOX1xMREXFxchCi/srFPua4kJiZSUFAgsvZKnrTyedPT0xMVo5ycHHbs2MGpU6da1DgJiqDK09MTDQ0NGhoauHv3LvX19QQEBGBgYEBNTQ3btm0jKiqKXr160bVrV9Epb2ZmRvv27YmIiBDGDatXr6ZHjx5IkkRsbCweHh4ioFeq1yhLuMrssTJ50q9fP4yNjYV1sq6uLhkZGVhaWqKioiL4vS1BmzZtaGpq4tKlS1RXV4umuJUrV9KlSxf69OkjnBlBkW1TNr5GRUVRX1/PgwcPKCkpQVNTU8wjJfVHWU7u3bs3YWFhJCQkEB8fLzRf6+vriY6OZv/+/Zw+fZqmpiamT5/OkiVL0NbW5i9/+QtnzpwBFM+Tq6srkZGRosT7Irh8+TI//vgjbdu2pUOHDty6dYvy8nK6du2Kubk53t7e9OnTB0dHRy5evMjDhw9xcXER2dHns2mffPIJmzdvZtOmTQQGBpKcnCzcpZ48eUJWVhb19fVcvnyZJUuWEBISIub1Dz/8wCeffEJoaCiTJ09GX18fS0tLQkNDBZ/X3t5eVMBagurqahYsWEB1dTXz58/n8uXLQgFkw4YNoslq1apVvP/++8JQQ0VFhcTERCZPnoyHhwdbtmwhPT2dkSNHsnPnToyMjBg1ahQzZsxolkxpaGjgyZMnXLx4kTZt2hAUFISRkRFWVlZkZGTQp08frK2taWpqYv369UKVCRQ846VLl7b4WQRFAKulpSWCexMTE8zMzJoZhxw6dEgozezcuZMTJ06gqqqKjY0NlZWV4nB5+fJlNm/eTGJiIomJicTGxtKtWzdUVVWFNB0oqhOOjo7cu3dPUD/j4+M5dOgQo0ePZtmyZQDNnt0X0edvcfCalJREYmIio0aNEt3GZ86cwdvbGxsbGwIDA2nXrh3a2toUFBRgbW2Nuro6Xbt2RUVFRfARDx06RLdu3ZgxY4ZYUJUyHseOHSM2NhYnJyeGDh2Kra2tINUvW7aMixcv4uXlRW1tLR4eHsyYMQMzMzOR7VWeZhobG1tsUuDo6IiVlVUzyZT+/fujpaXFgwcP+Otf/4qTk5PwBC4tLaWyshJbW1vKysrYsWOHCFBv3brFl19+Ka5R2fABioXE29ubdu3aiYYNQGQ6lCgvLyc7O7uZAPqxY8c4f/48b775ZovF7ZVobGzE0tKSsrIy1q5dS2BgIG+//TZGRkZCiiUiIgJVVVWCgoL+rvPPxsaGtm3bsnnzZs6cOcOnn34qFiwNDQ1kMlkz7lrPnj357LPPRLdr3759BXFfyaN+Xpe3sLAQuVwOIA4HLwoll+/+/ftEREQQEhIigidtbW2qq6vR0dHB1taWDz/8sBmfT5IkTp06hYmJiaCtpKWl0alTJ3R0dPj555+Ji4uja9eu6OnpUVlZycyZM7G2tmbfvn106tQJHx8fkXVXBiP6+vrN7r+xsTGzZ88WahYt5RMWFhbS1NQkFp1r164RGxtLcHAwNjY2ODs7C+mevLw81NXVOX36NMeOHaO0tJQuXbpQX1/P6dOnuXfvHkFBQaK7/8cff+Tw4cMYGhoSFhbGwIEDhTWzcoFXckCVcHFxoWvXrlRWVpKcnCzoF/fu3WPv3r3iRN0SODk50bNnT0JCQmhsbOSrr76itLQUmUwmDpUVFRV07dpVBK7wf6VpJaceFJuFkn7k4eHBhAkTcHV1FcoR9+/fF7IxTk5OQgJO+XOePHlCcXExnTt3FjxCUGRMP/vsMwoLC1t80Pruu+8YO3YslpaWFBcXExcXJ/oFXFxcKCsr4+bNm9TU1NC2bVtyc3NZs2YNdXV1Qpj+8OHDREVFCRtUQNg5Ojk5oaamRmFhIRkZGZiamgpum6qqKu3ataO+vl40tl26dIkDBw4QEhLC+PHjRZbEyMiIsLCwZg54L4qSkhJu375Njx49hIZsZWWlkMuSJAlXV1esra3p3Llzs/JwWVkZ+/bto6CggFGjRgk+fEVFBfr6+jg7O/P06VPR3V5bW0t2djaPHz+msLAQKysrHBwchOWz0iQlLS0NDw8PtLS00NfX59GjR6SmpgprypagvLycHTt2IJfL8fb2pqGhgcLCQlF1AQV15969eyLYMzAw4KeffiIuLo5XXnlFcLjXr19PdHQ0/fv3JzQ0lD179lBaWir+7ioqKkRGRtLQ0IC9vT0aGhqEh4fzzTffUFVVxfjx4ykqKuLhw4dER0cL7mB8fLyw8dbQ0MDX11fQwl4EXbp0EVUxpWSXhoYGmpqaREVFERMTI9QTXFxcqKmpoU2bNoKbqXwe6+rq0NbWxtPTUwTzZmZm4rnp1q0bZWVlopm7b9++jBo1CkDIDE6ePJmJEyeKn2lmZsbIkSMFF1xfX/9XUXjq6+tZuHAhwcHBojqonJtKDe9bt24JbWU7OzuxthQXFzN48GC6d++OpqZmM66vi4sLU6ZMwd7enitXrtC5c2f09fVRV1enrq4OBwcHTE1NxSE7Ly+PI0eOUFFRIWhKNjY2zao0LbX3BXj77bfx9vZm4sSJDBgwgIMHD4p97HmNcg8PD1EZnDdvHm3atGHp0qU4OTnRqVMnJElCU1OTkJAQ7Ozs0NfXx97eHnt7ezw9PUX1srKyEkNDQ1RVVTE3N6e0tJQvvviC4uJiFixYQEhICKqqqs36mJT39HlO9b+CyouK3Mtkspar4f+PQS6X/9O/yMs+Pnj5x/gyjA9e/jG2ztOXe3zw8o/xZRgfvPxjbJ2nL+/4Wi6I1opWtKIVrWhFK1rRilb8TnjhzGsrWtGKVrSiFa1oRSta8XujNfPaila0ohWtaEUrWtGKPwxag9dWtKIVrWhFK1rRilb8YdAavLaiFa1oRSta0YpWtOIPg19nm/IbQiaT9QTeBLoBpkAR8BBYL5fLW2Z38j+Kl3mMMplsFdAF8ADMgWogFfgJ2CiXy1smnPg/BplMpgLMAGYDPoAa8BT4HvirXC5v/B0v7/8bMplsNNAL8AM6AAbAHrlcPvn3vK7fCjKZbDqKe/Wv0CSXy1tuW/M/BplMZg+sAAYAZkA2iudwuVwuL/4dL+03w8u8lgLIZLLBwELAm/+7h5HAWrlcfvP3vLbfCi/rPP0zrTXw+z+Lv2vmVSaTfQRcBYKBs8Aa4ARgAoT8flf22+FPMMa3AD3gPPA1sAdoAJYBMTKZrOWm9v9b2AlsA5yBA8AWQBPFWA/8Etz+kfERMB9F8Jr5+17KfwTRwPJ/8t/FXz5z5ne5st8QMpnMFUWQMwO4A6wDklAEQjdlMpnZ73h5vwle9rX0l0TASaATivF9DdwHhgM3ZDLZH/5A+ZLP02j+BGsN/G88i79b5lUmk40BPgXCgVFyubz8b97X+F0u7DfEn2GMgKFcLq/52xdlMtlnwAfAEqBldif/I5DJZCOAKUAy0FUulxf88roG8CPwCjAN2PE7XeJvgbeADCABRQb20u97Ob8t5HJ5NIpN5e8gk8mUmazN/63r+Q9CDlgCb8jl8m+UL8pksrUo7vFnwJzf6dr+v/Gyr6UymcwaWAzkAu3lcnnec++Fogh+VgC7f58r/M3w0s7TP8ta87/yLP4umVeZTKYKrAKqgIl/O3gAuVxe/1+/sN8Qf4YxAvyjwPUX/PjLV/f/1rX8BzDql69rlIEriPv28S//u+C/flW/IeRy+SW5XB4vl8v/VJp5MpnMFwhEkW0+9Ttfzv8XZDKZC9APSAH++jdvLwUqgSkymUzvv3xpvwn+JGupI4r9+PbzgSsonlGgHLD4PS7st8LLPk//GV6yteZ/5ln8vTKv3VCUYQ8Bxb/wfHyBGuDOS8Lt+TOM8V9h6C9fY37Xq/j/g9IrMukfvKd8rZNMJjOWy+Ul/51LasVvhNd/+brtj85bBsJ++XpOLpc3Pf+GXC4vl8lkN1AEDYHAhf/2xf0G+DOspfFAHdBVJpOZP39YlslkwSi46D/9Ttf2W+Fln6f/DC/TWvM/8yz+XsGr/y9fc1Fweto9/6ZMJrsKjJbL5fn/7Qv7DfFnGKOATCZbDOgDRigauHqgCFxX/p7X9f8J5Qbi/A/ec3nu357Arf/85bTit4BMJtMBJgNNwNbf+XJ+C7T95euzf/J+PIqgwIM/ZlDw0q+lcrm8SCaTvQesBZ7IZLKfgELAFRiGoqfg9X/+E/4QeNnn6d/hJVxr/meexd+rYcvyl69zAB2gD4qTpS/wMwoS8MHf59J+M/wZxvg8FqMo/byJInA9C/T7I28oKJonAN6WyWSmyhdlMpk6ChK+Eib/1atqxf8vxgLGwBm5XJ7+O1/LbwGjX76W/pP3la8b/+cv5T+CP8VaKpfL16OgKqkDs4D3gTFAOrDjb+kEf0C87PP0H+FlW2v+Z57F3yt4VUpFqKCI0i/I5fIKuVz+GBiJooGkl0wmC/qdru+3wJ9hjAJyudxaLperoCi1j0KRmYySyWSdft8r+//CfhTdoa4osiGbZTLZehSk/EEoMgUAf/RS0J8Ns3/5+t3vehX/PSgVMf6ovOY/xVoqk8neRVGO3YFizdEDOqOgKO2RyWSrf7+r+6/gjz5P/xFetrXmf+ZZ/L2CV6WWW5JcLn/w/BtyubwaRQQP0PW/elW/Lf4MY/w7yOXyXLlcfhRF+ccM2PU7X9Kvxi+8rGEosso5KJQHZqJ4QHugKOsB/NEzIn8ayGQybxS8rQzgD68L+guUGSujf/K+4d987o+Gl34tlclkISgaYY7L5fK35XJ5klwur5LL5fdRBAWZwKJfmp7+qHjZ52kzvKRrzf/Ms/h7cV6f/vK15J+8r/wD6fznL+U/hj/DGP8p5HJ5qkwmewL4/W0Dwh8Jcrm8AYWG3ZrnX/+Fy+SHwpTh8X//ylrxK/EyNU8ooVxrPP7J+0rFj3/GNfxfx59hLR3yy9e/k6qTy+VVMpnsDoogtiP/uIH0j4CXfZ7+LV7mtabkn7z/X3sWf6/M61UUQvbuMplM8x+87/vL15T/2hX99vgzjPHfwfaXry/Lg/s8pgDawI8vgUzPnwIymUwbxX1rQmE88bJAGfD0+0XKRkAmkxkA3VEcsv6oTYV/hrVU65ev/0wOS/l63X/hWv5TeNnnqcBLvNb8zzyLv0vw+ksW7gCK8sEnz78nk8n6Av1RlA7O/vev7rfBn2GMMpnM8xdx7b99XfUXkwJLIOIPbvln+A9e80eholCBQji8FX8MjEHRXHf6JWmeAEAulycC5wAnYN7fvL0cBXdyl1wur/wvX9pvgj/DWgpc++XrbJlMZvf8GzKZbCCKwK4GiPhvX9hvhZd9nv4NXta15n/mWfzdHLaAt4EA4MNfdOzuoBBqHokiUzfrJdDOfNnHOAD48hd5jEQUHFArFE5NLih4orN+v8v7TXBeJpNVA49QCIX7oGjWqkXhLvJHLeEBwkVsxC//qzyIBMlksh2//LtALpcv/i9f1n8KyuaJP7zLzT+ADEVgs0Emk/UGYlGsPaEoyrAf/o7X9lvgZV9LD6FwLOoDxMpksqMo1k8vFJQCFeB9uVxe+M9/xB8CL/s8VeJlXmv+J57F34s2wC+yHwEovI3bAG+gEDE+BfSUy+Uvg/TJyz7GcBQPpxkKhYF3UFimFqE4SfvI5fInv9/l/SY4hEIKZDKKh7YdCr0+H7lc/vO/+sY/CPxQWNxOQ3FqBsXBQ/na6N/nsn5byGQyLxRNdi9T84TAL1mtLig61QOARSg61jcAQX/0oOdlX0t/aQ4dhMIi9QmKQGARCsH+00B/uVz+9e93hb8NXvZ5Cn+KteZ/4llUkaSXSZWiFa1oRSta0YpWtKIVLzN+t8xrK1rRila0ohWtaEUrWtFStAavrWhFK1rRila0ohWt+MOgNXhtRSta0YpWtKIVrWjFHwatwWsrWtGKVrSiFa1oRSv+MGgNXlvRila0ohWtaEUrWvGHQWvw2opWtKIVrWhFK1rRij8MXtikQCaT/eE1teRyuco/e+9lHx+8/GN8GcYHL/8YW+fpyz0+ePnH+DKMD17+MbbO05d3fK2Z11a0ohWtaEUrWtGKVvxxIEnSC/03d+5cSflfdXW19DwePHggjR8/XpoxY4Z09uxZKTY2VkpISBCfa2xslJqamqTGxsZm35uamirt3btX+vTTT6Vr165JkiRJu3btklRUVCRjY2Np3bp1UnJysvj8lClTJD09PencuXNSbm6u5OvrKxkaGkq3b9+WJEmSHj58KHXs2FEKCgqSUlNTJUmSpMuXL4vrfpHxRUZGSlVVVc2uc/v27ZK1tbU0c+ZM8VpRUZFUWVkpNTQ0iNcaGhqka9euSbm5uZIkSdKHH34oAdKbb74pPpOXlye+p6GhQWpoaJDq6uqkxsZG8ZmHDx9KBw4ckA4cOCDdvXtXKi4uliRJkurr66WSkhKpvLxcampqEn/bFxnf82O8evWqFBcXJ9XU1EjV1dXS06dPxe+ePXu2pKmpKZ09e1bKzc2VfHx8JD8/P6myslKSJEn83pKSEikuLk5qaGiQmpqaJLlcLrm4uEgODg7SO++8I2VkZEiSJEm5ubnSW2+9JX388cdSRkaGlJOTI/38889SQkKCJEmS9OzZM+m1116TevbsKZ05c0aSJEk6cOCANH/+fOnIkSNi7C25hxs2bJBUVFQkQHJzc5OcnZ2luXPnSgUFBZIkSVJNTY1UU1Mj/SM0NjaK+9/Y2CiVlJSI927cuCFZWlpKHTt2FPOrvr5eKisrE3/L2tpaqa6uTvydlKivr5ckSZJqa2ul2NhY8fqSJUskQPrwww9bNEbl/Hkez4/r/v370sCBAyVA0tfXly5fvixJkiTNmDFDAqT9+/eL71OORZIk6fHjx1KXLl0kQPLz85OePXsmFRQUSP369ZMAyd7eXpo6daq0evVqKS4urtmcePbsmRQcHCzp6elJH3/8sbR48WJJVVVVGjZsmFRRUdHiebphwwZJT09PsrGxkX744QepvLxc+vLLLyUVFRUpODhYSktLkyRJksrKyqSysjIxhl27dkmzZs2Svv32Wyk7O1tqaGiQUlNTpejoaCk1NVXKzs6WwsPDpU8//VRavny5dPPmTfG9dXV1zf6mN27ckA4cOCA9ePBA3MOqqirxDDY1NYnXJall8/SHH36Qxo8fLx05ckSSJElKT0+XHj9+LNXV1UlRUVHSjh07xN/4+fudl5cnlZaWiu9ZtWqV9Mknn0hnzpyRkpKSxOe///57SVNTUwKkgQMHShs2bJB27Ngh7dixQ7pz547076Bckx4+fCgNGTJEUlFRafE9zMrKkiRJkr7++mtpypQpUnR0tCRJkiSXyyVAAqQ9e/ZINTU1klwul9q3by+NHz9eevr0qXT79m3JwcFBcnJykk6cOCGtWLFCAqSOHTuK/aKurk5KSUkRv0eSJKm8vFy6d++etGnTJmnHjh1SUVGRVF5eLv3www/Svn37pKqqqmbjvHXrlvTaa69J33//fYvvoRLnz5+XQkJCJEAKCQmRUlJSJEmSpKioKMnBwUGysbGR7t69Kz6vXE8lSbGWpqSkSIWFhZIkSc32ni+++OLv9hAldu3aJQ0YMEA6cOCAeO3EiRPSW2+9JdZSSVLsVcp5XVVVJW3fvr1FY0xISJDu3LkjHTp0SDp//rxUWloq1dXVSdu3b5esrKwkLS0taevWreL3Pf8sKhEfHy/NnTtX0tbWlpydncWclyTFuqXcR5R7YkVFRbNnce3atdKIESOkdevWSU+fPhXPQmZmpvTpp59K+/btkyRJMeeBFs/TuLg46cCBA9LFixeloqIiqbGxsdn6Wl9fL6WkpEg//PCDtGTJEunIkSNSQ0OD1NjYKD19+lSsRZIkSQsWLJBUVFSkTz75RLyWmpoqPXjwQLp7964UFRUl3b59W9qyZYu0bNky6cKFC1JNTY307Nkz6ebNm83uv3KNef61Q4cOSSNHjmzRPdy5c6dUU1MjFRQUSA8ePJAqKiqksrIy6eHDh+Lnzp07VwoODpaioqLEa8o1oLa2Vry2detWacSIEdLp06fFa+Xl5VJjY6OUlZUlRUVFSXfv3pW2b98uLVmyRDpx4oQUHh4u9ejRQwKkJUuWiO8bOXKkpKGhIe3atUu8dvv2bSk8PPzfju+FaQNK6OjooK2tDcCzZ8+4fv06DQ0NTJgwAU9PT0xNTWlsbERLS0t8TlVVkeBVUVERrwFYW1vTrl07PDw88PHxAeCVV15BkiTy8vJwdHSkurpafN7U1JTKykpOnDiBpaUlr732GvHx8Ui/uIT5+voyY8YMkpOT0dDQAMDR0bFF41N+/uHDh+jr6+Pl5YWZmRlNTU3o6emJz5mYmDT7vpUrVxIZGcm0adOwtLQEYOLEibi4uAAQFxeHp6cnFhYW4nvU1NRYtGgR1dXVrFixAiMjI65cuYK5uTlDhw6lqKiI9PR0jhw5wu3bt7GxsWHevHlYWFiQm5tLQ0MDdnZ2LRofQLt27TA2Nhb/b25uLv7dtm1bevTogaWlJXl5eSQmJlJTU8OhQ4ewtrYmLS2NsLAwXFxcMDIyIiUlhWfPnlFdXc0rr7yCsbEx7du3p66ujuzsbBITE/H398ff319cq4uLi/idkiQxdepUSktLuX37Nj/++CNeXl7MmzcPT09PAEpKSlo0PicnJ8aMGYOhoSE+Pj5IkoSdnR06OjoAaGlpER0djYqKCu3atSMqKoo9e/ZgZWXF+PHjxRwoLS2luroaIyMjAHR1denWrRsDBw7EwcGBBw8esGfPHqZPn463t3eza4iKimLnzp08ffqUESNG8PrrrwPQ0NAgxhUREUF9fT0LFy5k1KhRbN269YXHePPmTYKCgigpKSE2NhZPT89mc9La2ppx48bRrVs3bG1tSU1NZeXKlbi4uPDJJ59w584dqqurGTNmDA4ODuL79PX1mTBhAoMGDWLgwIG4u7sD8MEHHzBhwgTs7OzIz8+nqamJtm3bApCVlYUkSZiamhIYGIi6ujr+/v44OTlhamqKjY1Ns2fnRWFsbMzbb7+NkZERnp6eqKio0KNHD7788kvc3Nxo06YNAE1NTcydOxdvb28++ugjpkyZgpaWFkZGRlhbWwOgoaFBeHg4QUFBdO7cmerqap4+fYqJiYmYiydPniQ8PBxdXV2qq6upqanBw8ODpqYmLl68iI+PD6+//rqYR7m5uRgZGaGtrU1SUhInT55s0fiCgoJQVVUVa4S9vT0nTpxg586dmJmZYW9vz6lTp7h+/TojRozA2NiYzMxMrKysqKioYNOmTeTk5NCuXTsaGxvJycnBy8tL/HxfX19ef/11kpOT6dy5M4GBgRgbG1NQUIC5uTk5OTmEh4dTXl7O8OHDsbW1pbS0lMLCQgwNDdHU1CQtLY0zZ85QUVFBaGhoi+/hjRs3GD16NCkpKfzwww+YmZnxyiuvUF1dzfLly/H09ERbW5vLly/TsWNHPvvsMxoaGjA0NMTU1JSPPvqI4uJizM3N6d27N4aGhhQWFrJ//37Wrl2LtbU1oaGhBAYGit9ZV1dHXV0ddnZ22NvbY2BgQFpaGsXFxdja2or7V19fT0NDA507d8bY2Jhjx44hk8laPEaAPn36cO3aNS5fvszly5c5ceIE8+fPF3MmPz+fgoICNm/ezPHjx+nXrx9vvPEGoFhX1NXV0dPTo6GhgbVr11JbW8vbb7/NtGnT0NXVpVOnTuJ33b59m/Xr12NpacnMmTOJj4/n1Vdfxc/Pjy5dutC3b18uXrzIw4cPWbhwIZqamnz33Xe4u7vTv39/Bg8ezN27d194bAkJCbi4uGBvb4+WlhYaGhrU19fj6urK0KFDKSsrw9/fX3w+NTWVnTt30qFDByZMmEBxcTHHjx8nJSWF4OBgJk2axMiRI6mrq2PdunXo6uqyYMECQLEnVldXi/Vi9+7dhIeH061bN2bPnk1MTAyRkZF4eHgAipjAz88PKysrADp16sSSJUtavGfs27ePK1euMGDAAHr16oWqqiqxsbHExcURFBSEtbU1jo6OVFZWYm9vz71795g3bx5hYWGMGjUKdfX/C6Wqq6tRU1Nr9pqDgwMODg48evSIzMxMzM3NGTBgALm5uZw7d47bt28zbdo0VFVVmTt3Lnp6eixduhQLCwuqq6vR1tamoaGB5ORktLS0CA0NJTY29oXH16lTJ7S0tDh27Bi3bt1i5syZ+Pr64uvrS2RkJFu2bOHgwYN06dJF7HcVFRWsWrWKgoICJk2ahL+/P8+ePaNt27bY2dlx9+5dEhISeO2119DX1wfg8uXLlJaWMnDgQPr374+Ojg6GhobY2toyfPhwOnXqxKBBgygpKeHRo0eEhYVhbW3NiRMnqK+vZ+bMmXTt2pWsrKx/O6YWB6+ZmZk8efIEb29vjI2NSUtLQ11dnZEjRzYLzEBxE2tra9HW1kZbW5v09HQuX76MiooKvXv3xsbGBl9fX/H5+vp6ACZMmCCCz+fxyiuvUFpaSnR0NHfv3mXhwoXk5OTw17/+lZiYGMaOHcuMGTOorKwUk9nJyalF4yspKeHIkSPExsbSt29fvLy8qK+vJy8vj7i4OPG5pKQkKisradeuHQAxMTGEh4czZcoU8f+qqqpMmDCB6Ohonj17hpGREXp6elRUVGBra8uFCxfYt28fbdq0oampCQ0NDZqamlBVVUVHRwc7OzvOnDnD559/TnJyMmPGjKGqqoqYmBi2bNmCu7u7WABbAmNjY6qrqykpKUGSpGb3bejQofTs2RMDAwPu3LmDp6cnOTk5nDx5EldXV9q0aUNdXZ34fEREBCdOnCAsLIwFCxaI+1ZRUcGePXvIyspi+PDh2Nvbk5KSgqmpKc7Ozty8eZP8/HxCQ0PFQnTw4EH27t3LlClT6N+/PwUFBRgZGTULtF8Ebdu2FYHW84uq8pBTVVUlrkVVVZW8vDzOnj2Lp6cn/v7+5OTkUF9fj56eHsnJyVRVVREWFoafnx/r1q3DycmJiooK3nzzTS5fvkyXLl3w9vYmNzeXpqYmjIyMuH37NgcOHCAnJ4fGxkZ8fHzo0aMHOjo63Lv3/1h7z7iqr65r96L3uum9NxFBBVFBQUXF3ntvMSYx0ZhEjTXRFI0lid3E2I3R2BULCiooolIE6b1I751NOR84e53w3O/73JLfmZ8MgQ3rX9aac8wxxnzFkydPaGxsZMmSJd0SjveN69ev4+npSUVFBTk5Oejq6qKnp0dnZydSqRRTU1MWLlwovv/8+fPcv3+fzZs3ExgYyLFjx0hISCA4OBgNDQ3evXuHkpISVlZWrF27FoDa2loSExPp6OjAzc2NgQMHIpVKaWxsREVFhZaWFl68eMHdu3fx8PBg1qxZfP311yQnJ2NnZ4ehoaF4P/5N2NjYiPdJFr6+vvj6+tLc3ExtbS3a2to8ePCAkJAQiouL+fzzz1FTU2PGjBm0tbUBUF5ezi+//EJ8fDz9+vVDRUUFGxsbLCws0NfXR1dXl/z8fL755ptuh7q7uzsjRowgLy+Po0eP0r9/f5YvXw50Fe6yfQ3g6dOnJCUliUL9fcLe3h57e3ugq6hRVFSkvb2d9PR0TExM8PDw4N27dxQUFKCsrExubi537txh2rRpKCkpceLECYqLizlz5gx2dnZERUXR0NAAdO29/fv3p3///kBXgWFsbIyCggIGBgbo6emRmprK3bt3qa2tJTAwEDMzM1pbW4mKiqKyshItLS2ampooLy/H398fb29vQkJCenQPZeCDoqIiysrKtLe3k5WVRWJiIn379sXPz4+0tDQKCgpwc3MTSWhKSgpSqVRc78TERHR1dRk4cCB3797l+++/5/nz53h7ezNo0CAUFBRoaGhATU0NPT09+vbtS1tbm0iCdHV1UVJSory8nNzcXFGgSqVS1NTUcHZ2prKyksOHD/Phhx++9/qSkpJQUlLC0dGRTZs2kZ6eTmhoKLm5uaSmpmJqasr06dPJz88nJSWFM2fOEB8fj7OzM52dncjJyZGRkUFcXJw47GNjY4mOjiYoKAg/Pz9Wr15NRkYGdXV1aGlpkZqayrVr11izZg3Tp0/nwIEDnDx5kpEjRzJ//nx0dXV59OgRV69eJTg4GFVVVf7++29cXV0ZNWqUAFfeNxobG0UR29DQgIqKCvLy8jg5ObFkyRLq6uqora2lpaUFFRUVTp8+zU8//cTixYsZPnw4ycnJ3Lt3j7KyMhYvXsyCBQsAePz4MY8ePcLDw4OGhgY0NDTIy8sDEAV1fn4+L168YPz48QQHB4t3taKiAolEgqqqKn379hVonIeHBx4eHj0uQlpbW7GxsWHw4MHIy8vz7NkzIiIiMDMz4927d7S2tqKiooKbmxtubm6kpaVx/PhxdHV1mTFjBh0dHRQXF6Ouro65uTn9+vWjT58+ALS0tFBRUYGRkREGBga0trZiYGCAhYUFFhYW/Pjjj1y6dAkLCwuGDx/OmzdvUFdXF+eyrNjKzs7m6dOn+Pv7M27cuB6tUZZIq6mpUV1dzbVr1zAyMsLIyIjnz5/z7NkzRo0axdKlS0XyKivwX716ha+vLxYWFpSUlDBgwABaWlr44osvSExMxNbWlnHjxgGgqqpKS0sLCgoKmJmZMX78eNrb29HW1mbdunXi77l37x4vX77kq6++QklJCU9PT65evYqFhQUjR46ktrb2v6/pvVf//0Z6ejrBwcHs2rWLmTNnsm3bNo4fP84PP/zAwIEDmTZtGtC1WV65cgVFRUWGDBmCsrIyJ06c4MCBA+jp6dHS0sLcuXNRVVWlvb0dBQUFlJSUuHz5Mvfv3+eDDz4QG1lrayuNjY34+vpiZGRESEiIQJlaW1t5+vQpkZGRREZGsnPnzn+FRsri/Pnz7N69m8mTJxMcHAx0VZ4AZWVl4vsyMzM5f/48vr6+fPDBB/z8889Mnz4dFRUVrl27xt27d3n8+DEWFhasXr2asWPHUlBQwIMHD3j8+DFPnz6lra2NqVOnsmDBArGhjBw5shvarKioiJaWFrNmzWLt2rXU1dWxfv16QkJCmDt37r9aY2dnJ+np6Rw4cIDa2lo2bdqEu7s7VVVVmJqaYmdnx7179ygpKRGIcGNjIw4ODlhZWXX7+5qamsjPz0dVVbVbwaGpqUldXR2xsbGYmppy6dIl/vzzTzZt2sTSpUs5d+4cKSkpjB07FoBvv/0WFxcXHjx4QGJiIjt27MDIyIhVq1b9B6r530JBQYHOzk6amprEAQFdyH9LSwudnZ307dsXLS0tAJycnNi+fTuDBg2ipqaGzz77DFNTU7799lsePnzIjz/+yI4dO/jggw+wsbEhMzOTGzdukJqaioeHB05OTlRWVnLy5En09fWZM2cO48aNw8DAgIaGBlpaWmhpaRF/3+HDh4mNjWXHjh0icU1KSurRGrOysnj16hV2dnb07t2bzs7Obkhge3t7V2vl/920Bg4c2A2pX7ZsGZ2dnSgoKHDkyBFu377N/PnzmTFjBgB3795l165dxMbGYmxsjJmZGTk5OaioqLB//35GjRrFL7/8wpo1a7CyshL3SFtbGycnJ7S1tZFKpeTn56Ouri4Q0J6EpqYmOTk5WFpaoqCgIL5eX19PaWkp4eHh/Pnnn5SWlvLRRx+xaNEisdFD17uTmJjIkiVLePnyJUFBQVhYWADg6urK4sWLMTAwQEFBgdDQUKqqqsTP9u3bl3379jFkyBCBqJqYmKCqqsqff/7J6dOn+fnnnwGIi4sD4MMPP+To0aPvvb6ysjIMDQ2pq6sjJycHIyMjhg4dKq6fgYEBs2fPRldXFw0NDaKjo8nIyBBdKRMTEzIyMnj+/DlycnIYGhqKov1/JtFmZmbi37K909TUlMWLF9PU1CR+ztDQkIKCAvbs2UNzczMrVqwQRVB+fv57r00WEydOBLq6O3PnzuWjjz6iubmZbdu28ccff3DlyhW++eYb+vfvz6NHj3B2dsbX15ecnBwSEhKwtrZGW1ub9vZ2jh07Rl5eHvLy8owYMYK1a9fi4OAg1lNXV0dHRwdaWlqoqKigoqIiwAB9fX1Gjx5NXV0d2tra4t3Q1tYWf+vChQtxdnbuESq5dOlSioqK+PHHH5k5cyZ//PEHly5doqKiggcPHgBdz2tFRQUdHR0sWLAAV1dXNDQ0xN7U0tLC1q1buXbtGt999x3r168XiS90JS1Hjx6lsrKSDz74gPHjx6Ovrw90FVE+Pj5cvnwZiUQiCv1x48bh6uqKgYEBOjo6bNy48V+9g4B4txMSEnj79i1jx45FS0uLsrIyCgsLKS0t5dmzZ2zcuBF1dXVqamrw8fHBzMwMqVRKQEAACQkJ7Nmzh9DQUJycnGhpaSE5OZklS5YQHByMnJwcBw4c4O3btyxbtkwkr1988QX+/v4kJSURERGBn58fEomEixcvMmzYMFxcXDAzM6OhoUHs8/8mli9fjoGBAVpaWkilUo4ePYqxsTFr164lLCyMdevWMWfOHJYtWwbAlClT0NLSwtfXl9bWVs6dOwfApEmT8PDwoLGxkQEDBiCVSlmzZg0dHR3s3LkTExMT1NTUBFAnO6cAdu/ejZ6eHsePH/8/doybm5vp6Ojotse9b5w7d47PP/+c8ePHo6mpydq1azlz5gxLly7F3d2dvXv34u/vj4qKCkVFRRQWFqKvr8+WLVtITU1FX18fdXV1Bg8eTGZmJj/88AOJiYliDbKYPHlyt9/7f+q4NTQ0kJCQQFlZGS0tLSgpKaGjo0NbWxt//vknMTExVFZW/tc19Th5/fDDD9mzZw+nTp3C398fMzMzJBKJWLwseY2JiWHnzp1YW1vj7u6OjY0Nmpqa9O3bFyMjI0EvgK4ESAY7NzQ08ObNGw4fPkxTU5N4MGUvprOzMyUlJZSXl1NSUoKBgQGjRo3i8ePHnDp1ikGDBjF79mxSU1MxNDT8j/b+fwtLS0ucnZ1FC0dRUZGgoCCSkpIESgLg4+PDgwcPKC4upr6+HkNDQyZPnkxUVBTt7e14e3vz9u1bkpOTqaioEG2EtrY22tvbqaurY9CgQfz666/iMyMiIlBXV8fIyEgcsoMGDcLCwoIRI0YAXQelRCJh7Nix+Pv7U1NT09NbiJycHCoqKigqKlJVVUVycjKurq7o6uoiJyeHVCpFUVEROzs7xo8fL36urKyMuLg40S6urq5GV1eX5cuX/0dLsbq6Gj09PXx8fLC3t6eoqIjm5mYKCwtpb29nwIABqKurExsby82bN/n+++/ZuHEjAQEBtLW1ER0dTVtbGzdv3uyGeL9PyK6JgYEB9fX15ObmIpVK6dWrlzjUNDQ0aG9vJyEhAWNjY6ZPnw50dRaio6MJDAzEysoKb29vVFRUSEhIEJ/f0NBAQ0MD/fr1Y8CAAdjZ2dHU1ISamhomJiZoaGigoaEh3oX29naBLskQ3+XLlzNmzBgAHj16RElJSY/WmJCQwI4dO9ixY4dAl6urq1FRUQHoluw1Njairq7OpEmT0NbWpqamhqdPnzJw4EAkEgmVlZXcunWLAQMGAF2tnx9++IG4uDiUlZVRVVWlpqZGINLnzp0jOzub8PBwjIyMGDhwIJ6enuJn3717Jwq/J0+eYGRkJNbak2hoaGDfvn0EBASwZMkSoKslWV5ejoqKCs3NzSQkJODu7s6OHTvE/8/Pz2fgwIEoKCgQFxdHZ2cnY8eOZdGiRdTW1pKRkYGDgwNOTk68e/eOsrIy9PT0WLJkCeHh4QB89NFHDBkyRFzL6dOnM3r0aJqbm2loaEAqlXLnzh3s7e1JT09n6NChAml533jx4oV43nV0dEQCqaWlJYoOOTk5KisrUVJSwtjYGC8vL9LT08nNzcXV1ZXa2lqePHlCS0sLAwYMoKioCFVVVYFiPXv2DG1tbfr27Yuenh61tbXU19ejpKQkkB7oemeam5tpa2ujoqKC0tJSAB4+fMj69euRSCTv1cr7nyFLDp2cnNDR0UEqldLU1IS7uzvZ2dnk5ORgaGiIs7MzoaGhpKam4uvri5OTE8nJyYSFhTFx4kScnZ2JjIzk0aNHBAYGsmXLFszNzVFUVEROTo6qqiqamprQ0tKitLSUuLg4evXqhbm5OVlZWZSWlnajFkDXoVtYWEhTUxMODg64urri6urao+TV2dmZiooKYmJimDlzJioqKjg6OnLq1ClMTEzo06cPV65cITs7m6+//popU6agq6sr3tPMzEwuXrwIQHR0NL///jubN2+mX79+QBeYcujQIcrKypg8eTKOjo7o6ekxbtw4ysvLKSgowNvbGx8fH6ALwW9tbWXo0KEMHTpU/J1BQUGUlZVx5syZHp+JmpqaYu+qrq4mLi4OW1tb1NXV6dWrF7W1tTx79ozs7GwcHByYO3cuffr0QVNTk87OTuTl5QkODubJkyc8evSItLQ0/P39GTFiBOPHjxfJ2O3bt7l79y69e/fGzc2NyMhITExM8Pb2JjU1latXr1JbW4uKigqlpaWcP3+ewMBABg0aBHTlHICgE/UkZIi3kZERtbW1mJubo66uzqtXr0hKSsLc3BwHBwfq6up4+PAhOjo6zJ49G4CKigpRAOro6NC3b1+0tbXR1dXl4sWLHD58GBsbG44cOQJ0PXcGBgZUVVXx22+/oaury4QJEyguLuby5cssXryYoqIiIiIi0NDQwMPDAz09Pezs7FBQUCAyMlIkv+8bxsbGorCxtrbGycmJFy9ekJOTw/Lly9HT0xP7hbm5OW5ubqipqQlqwT/jzz//FMn63r17GT9+PFKplEuXLlFfX4+HhweGhoZoamqK919eXp6Ojg6Kiop49OgR586do7GxkbFjx9KrVy9RbNfV1dHY2Iiqqir19fX/65p6nLwuW7aMcePGsWPHDjZt2sSmTZvQ0tLCycnpP2gDsuRGW1sbCwsLVq5cydKlS5GXl0deXl5k5fn5+RQUFGBhYcGyZcsYPXo027dvZ8yYMTg7OzNz5kwCAwNFNdLS0kJ9fT1SqRR1dXW++uorwsLCePDgAffu3aOqqorc3FxGjRrVrW38PrFo0SLGjh3Lzp07mTx5Mt9++y19+/bl+PHj5OTkiERAR0eH9evX09bWRmdnJ2/evKGsrAwHBwexSU6ZMoWCggKqq6uJj4/H3NycuXPnMmbMGNasWdPtej1//pzNmzeTm5vLN998w7x584CuF1HWVoeuB+/QoUNoaWmRlJTE48ePe3oLAbC1tWXXrl3k5OTw9u1bQkJCGDx4MHp6eigqKuLv709LS4tIygC2bt3Kw4cP+eOPPxg0aBBRUVGoqakxderUbp9dVVVFYmKiaCVraGjg7+/PvHnzkJeXR0FBgUWLFlFUVMS5c+dEgnPu3Dlyc3OZM2cOp0+fpr29neXLl7N9+3YWLVr03mtTV1dnyJAhSCQS6uvruXbtGu3t7dja2qKsrCy+LycnhxMnTuDj48Ps2bMpLi7m999/Z+jQoQKBHDp0KKdOnSIxMZGrV68SEBCAh4cHFhYWtLW18e7dO3JycvDw8GDx4sXdqtCOjg7B37Kzs+PcuXMkJiYyYcIEAgICgC6qRFhYmEj23jeam5u5f/8+I0eOFM+4qqoqHR0d3RJX2fWorKwUB2ZdXR1r1qzBwcGBkJAQfHx8cHV1pb29naioKK5cuYKFhQVr167Fy8uLjo4OpFIpVlZW1NTU8MUXX7BmzRo2bNggNiHZJpWRkcHLly8xNTXF1dVVtOb/TURHR3PlypVuqKGmpiYSiQQlJSXk5eXR0tISRWV1dTUhISF4eHjQ1tZGaGgo2dnZbNy4kcmTJ9Pe3s6hQ4dob2/n448/JiUlhb179zJw4ECWL1/OqFGjmDJlCioqKpiamlJbW8vr168pKSnhww8/xNrams7OTpYuXYqHhwerV68mJSWFtWvXiuS9J9HY2IiysjKampqiuxETE0NqairDhg3D2tqa69ev8/TpU6ZNm8bEiRMxNTUlNDSUxMREJBIJI0aMICMjg6KiIuLi4sjJyUFJSQlnZ2fi4uLYsmULEomEHTt2MHz4cEpKSggNDcXMzEw8421tbaITJJFIBFBQXV1NaWkpjx8/Zty4cfj5+XHt2rV/dS9dXV3Jz89n79692NrasmnTJn7++Wfa2tpEsjF79myRtNvZ2TFjxgzi4+OpqalBR0cHZ2dnHj16xKxZs7CxsWHXrl20tLSwadMm9PT0RCfl1atXfPPNN3z22WfMmjWL48ePc/78eX755ReBBEPXO/Ty5UsUFRWxt7f/V8jd8ePHKS4upqysjObmZlRVVcnMzCQ0NJSgoCBcXFyQSCS0trYyevRoWlpaOHjwILNmzcLMzIyNGzcSGxvL0qVLyc/P5969e7i6ugq6THJyMpGRkcyePZsffvhB/F5Zm/1/PncyYEIWsuJAQ0ODv//+m6NHj7J48eIerbGsrIy8vDzc3d3x9vYmLCyMtLQ0oSswMTERz9SmTZsYPXo0ra2totuUmppKS0sLy5cvR0lJifj4eBwdHXFzcyMxMVHsX7LzMCwsjIKCAs6ePYuenh5btmxh/PjxtLW18dFHH+Hg4MDo0aM5ffo0J0+e5ObNm+jo6LBhwwbs7e27AULvG9evX2fjxo3o6+vz3XffsWPHDq5fv8769etxdXXlxIkTKCkpcfHiRVavXo2XlxdeXl4iv5k5cyZqamrIy8tjY2ODiYkJWVlZXL9+HQAvLy+ga3+Miopi3rx55OTkcPjwYXr37s2+ffvIzc3lwIEDLFiwgLy8PFRVVZk8eTKzZ8+mX79+mJmZ4ebmxtmzZzl58iSTJk167/V9/PHHQBeKL+NCt7W10dDQIJLazZs3c/HiRVatWtUNqPtnJCYmUlJSgqenJ/Pnz2fNmjUAXL16lSVLltDS0oK3tzfTpk1j+PDhuLu7izMfut65t2/fim5VaWmp0BWoqKgwcuRI5s6dS2trKxs3bvxf19Tj5DUqKgpfX182bdrE7du3KSkpwd7enl27dtHW1kZlZaVo0ezZs4f29nbxUGpra9PW1kZxcTHl5eXIyclRXFzMvn37KC0tZf/+/UCXcMHa2prm5mbi4+Nxc3PD1NQUHR0d7O3tCQoKory8nMLCQhQUFNDS0mLVqlUoKysLDtKcOXMYMWJEtxb3+8SrV6/o378/2tra3Lp1CwcHBxobG0lKSsLMzEzwRdTU1Ni8ebP4uYKCArS0tLCwsKCwsJCQkBCcnZ3x9/enqamJoqIiIQwxMTGhsrKSI0eOkJ6ejo6ODkVFRQL1+WeLOSIigri4OBoaGhg9erRIjC9evEhcXNy/okiEh4cTEBCAsrIy7u7ulJeXc/r0acLCwpg0aRL+/v6oqamhpqZGU1MTBQUFhIWF8fz5c1paWoiPj8fBwQFra2sqKiqIiIigsrKS+vp6kRza2dkJkcGlS5dQU1MTvBiAO3fukJOTg7y8PJMnTyY8PJwbN26Qm5vLl19+CXQhXuPGjetxu1ImiAIEctunTx/k5eVpbGykvLwcKysrpFIpERERvH79msLCQs6cOcObN2/48ccfGTBgAPfv38fd3Z3hw4fj5+dHSEgIMTExDB8+HH19fTQ1NTl27Bj+/v54eHigpaVFQkKC4FY6OjpSW1uLhoYGKioq2Nvb8/TpU6Kjo7G0tERJSYm6ujqUlJTIzs7u0RrXrFlDYmIiBQUF7Nq1C3V1ddzd3cXzcf/+fe7cuYOdnR1r1qwRSH5eXh5JSUnMnDmT/Px8li9fjoqKCmPHjkVVVZWIiAisrKwYP348QUFB4velpKSgrKyMoaEhy5YtIysri5EjR4rnpLGxkZaWFnx8fGhtbeXGjRs8f/6cIUOGYGtr2+P3EODEiRM0NDR041jr6emJKt3NzQ1nZ2diYmL47rvvqKurY+zYsQKJiY+PJzIyks7OTjQ1NamsrKSkpEQk5E+ePOHKlSvd2qmyrgLAgwcPKC8vx8bGBnd3dyQSiUhwvL29MTIyoqWlhaCgIOTl5SkqKurR+nr37i3el9jYWA4ePEhBQQGTJ0/G1NSUzs5OTExMsLCwoKysjKKiIiwsLJg0aRK5ubk0NDSgpKRETk4ON2/e5MmTJ4wdO1asIS8vj7KyMuTk5LoJWMvLy5FIJEAXgn/s2DEqKipwd3dn8ODBzJw5k6CgINLT06mqqkJRUZGKigrRxu5JlJSUoKuri66uLjo6OoLbL0MK4f/TOkgkEtrb27l48SIeHh64urqiqKhIXl4e7e3ttLS00LdvX0xNTcnKyuLdu3fIy8sLKoAs8bWwsGDUqFHk5eWxY8cOjh49SlVVFbNnz2bXrl0sW7ZMIDvW1tbk5+dz7tw5nJ2d/wOA+W8RHx9P//79u6F906ZNo7a2loiICE6dOoW9vT2rVq3CxcUFqVSKq6sr586dEwJEmfBSS0uL2bNnC4RcW1sbb29vPvnkE+bMmUNnZydHjhwhLi5OiEYbGxuxsbHByMiI1tZW0cE8ffo04eHhjBgxgjlz5gAwePBgwS/sSTfL2NhYUFy0tLTo378/T58+5eHDh3h5eSEnJ8esWbMwMDAQ756ysrJ4to2NjcnLy8PW1pYNGzaQk5NDfn4+V69eRU5OjvDwcBQUFLC3t2flypVkZGRw5MgRGhoa8PDwoFevXqJ7s23bNkJDQ4Gu82HIkCG4ubkRFRVFZGQk5ubm/1G8v09oaGgItNjW1hZ5eXnGjRtHbGwsra2tlJWVYWZmhouLC6NGjUJTU5Ps7GwsLCyQSqWiwM7NzcXKygpVVVWePXtGfX09y5cvZ9y4cVy6dInvv/+e6upq2tvbSUlJITs7W3QKAwMD6ejo4NixY0IAa2VlhaamZjehu5+fH/Ly8u/VWpdFYWEhV69eRVFRkf79+2Nubi66o42NjXR2dtK/f38eP37MiRMnUFFR4euvv0ZTU5Pc3FySk5Npa2tDXV2defPm8fnnn4tz9sGDByQnJ/PJJ58glUrFNTQ3N+9WSMH/11WSdWRVVFRISkrC39+foKAgRowYgbq6Ourq6v91TT1OXk+fPo2npycmJiYsXrwYeXl5amtr0dPTE6pJWWv8n4TimpoaYmNjefr0KVlZWVhYWDBhwgTa2tqor6+nvr6ekpISbG1taW9vx97enmnTppGamkpzczMKCgpoamqKF6KlpYWsrCzevn2Ls7MzQ4cORV1dnZMnT2JkZISPj897X4R/xo0bN+jfvz+DBw9m/PjxFBcXs2HDBp48eULfvn3p168f169fR1lZmYCAAPz9/YGuire5uZmamhoiIyPZvXs39vb26Orq0rt3b0xMTASCUFNTw549ezhx4gTQdUPr6+tRUVEhICCgG1KVmprKl19+iY2Njfhdp0+fZtWqVSgqKjJlypRuD/b7RFJSEn5+figqKlJWViaubXh4OObm5uL3QFc7JT8/nydPnuDn54exsTHp6encv3+fadOm0dTUxK5du3j58iXKyso4OjoyefJkgQikpaXxxx9/COTOw8OD6upqjh07RkNDA4cPH8bBwQFDQ0MeP36MsrIyGRkZuLu7I5VKCQwMZMqUKT0m4Le0tHD79m1u3rxJY2OjULyXlJRQXFyMlZUVDQ0NlJeXU1RUhL6+PvX19RgZGSEvL8+jR4+4fPkydnZ2ggOrra1NXl4e2dnZmJqaUllZiampabdnLC4ujkePHpGdnc348ePp3bs3HR0dtLS04ObmRr9+/di4cSNbt25l69atjBs3DjMzsx61KgEh1Pvzzz/57LPPKCkpYcKECZw4cQKJRMLz5885cOAADg4OeHt74+fnB3QJ7PT19dmxYwePHj1iypQpODo68sUXX5CVlUVlZSWffvqpaGFDF/Lyyy+/0NbWxoYNG/Dz8+Py5cuUlpYK4URWVhY5OTmMGzcOU1NTRowYQXZ2tmhX/5t4+/YtgFDjy+6rmpoahYWFlJSUoKWlxb1799iyZQuDBg0SBWV6erqg7cTHx3Ps2DEMDQ2ZPn06Y8eORVlZGWNjY3x8fLqJOmUFWFhYGAkJCQwYMECg5DJenbq6ujiUZN2YlpaWHid3ampqgu8fFxfH1atXxfujqqpKa2srFhYWBAYGCm6cDKEwNzdHKpWiq6uLu7s7OTk5vHr1qtvB7evry+bNm5GTkxOFc1RUFPn5+fj6+tLR0cHx48c5cOAAAHv27BGtZn19fRwcHASa+W+jpqYGVVVVjI2NcXV1JSEhgc7OTgFy1NfXU1lZKTiO9+/f5+HDhyLJMzY2prW1lQcPHog95MmTJ0RHR9PZ2YmPj49I2EpLS5GTkxOinZ9//pmvvvoK6OI/NzU18eLFC+bPny/QIC8vL6qrq9m+fTvDhw8X9JT3jd9++41evXqhpqZGXV0d1dXVWFpasnLlSrKzszly5IhorUKX60VwcDC7d+8mOjqaJ0+eoKyszNixYxk8eDDff/890NUCd3R0ZMKECUyYMAGAK1eusHXrVszNzVm8eDEKCgrExMSgpqaGhYVFt3t///59Lly4gIODA83NzdTV1SGRSFi6dCkAv//++3uv0dTUFFNTU168eEF9fT0BAQFoaWlx4MABbt26xdixYxkxYoQAp1pbW8Xz29HRga6uLgoKCpSVleHs7Iy+vj4HDhwgMTGRr776CgUFBR49esTIkSPp06cPT58+pb6+ni1btjB37lxsbW2Bro5Rv379uH37Ns+fP2fdunVs3rxZOBQMGTIEGxsbQUfsScybN090OwHxfH7zzTfs27eP8ePHC9rH559/jlQqxcvLi7KyMt69e4eKigqtra1kZWXR1taGgoIChYWFDB06lLVr15KZmcm8efOIjY3FwMCA3377jfr6enR0dFBXV+fgwYNC4Obn50dmZqYoymSOGY2NjZSWluLm5sagQYP+KzL5z7hz5w63bt1i2bJl9O/fn9evX/Pq1Ss8PT2pqqrCwsKCTz75hICAAIKDg3n06BFbtmwBut6de/fuoa+vz+eff466urooODMyMrhy5YropigoKJCcnIyZmZkoVmtqasQZIMv1li5dyooVK8jJyeH+/ftMnjxZUGWqq6tpbm7+r2vqcfK6evVqFBQUuHXrFh0dHUyYMIGMjAw++OADlixZQv/+/Xn58iXnzp1jzpw5osJWVVWls7OTrKwsCgoKxAPZp08fTp48ydOnTzl16hTff/89vXr1EpZEKioq6Onp4e/vj6WlJS0tLaxbt47Xr18zZ84c5s+fL9RxI0eOxN3dnZs3b7Jx48ZuVef7hqyVNmrUKKArGdHT06OpqYmXL18SExPD4sWLBTIhkUiwsbHhwYMHPH36lG+++YYRI0bQ0NAgKhWZSjAqKgplZWVMTExQVFRk9uzZuLu7k5aWxuPHj1m6dCkLFizg1q1bnDhxgiVLljBo0CD69u3LrFmz8PDwYPv27YSFhbF8+XKys7M5efIkK1eu7NEaBw4ciKKiIr/++ishISEsXbqUL7/8kpiYGHR0dMSmI+OemJiYMHXqVBoaGsjJyaG4uJiEhAScnJxQU1PDzMyMqqoqlJWV8fX1ZdGiRcjJyXHlyhXi4+NZtmwZBQUFLF++nF69erFw4ULWrl2LiooKDg4OQNfmERUVxYkTJ9iwYQPbt2+npaWFbdu2iXvyvnHt2jWuXLmCnp4eNjY2pKSkkJ6eLipkBQUFsrOzefz4sVCBTpkyhf379wt6wI0bNygvL8fU1JSUlBRUVFSwtbXF09OTQ4cO8eLFC7y9vTl16hTW1tYkJyfz7t07XF1dkZOTY/fu3URERPD777+Tk5PDoUOHmD17Nn5+fkilUpqbm3ny5AmTJk1i4MCBmJubc/jw4R6tE2DmzJk8e/aMX3/9lSdPnohNZeTIkUIdeujQIQ4dOsSgQYOYOHEiJiYmvHz5ktevX7N+/XqCgoLQ19enqKgIBQWF/1AjGxoaoqyszOHDh4mKiuLu3buYmZlx7do1IiIi+PLLL6moqODu3bs4ODhgbGxMe3s7ra2tPUay/mfInCdaW1sJDw9HTU2NwYMHk52dze3bt3FxcUFTUxNnZ2dUVFS4e/cuFRUVnD17lszMTExNTQUqoqCggLKysnAhGD58OK2trYLr+9tvv3H+/HkaGxupqanByMioW2L76tUrjhw5wrBhw1i+fDkjR47k66+/5ty5c2zcuLEbP/x94sqVK8ydOxdjY2M8PT3Zs2cP5ubmAgmurKzkzJkzFBcXs3LlSqH4/u6773j+/DmLFi0SlJ3+/ftz7949wsPDcXFxITAwULgNVFRU8Pr1aw4fPszvv/9OR0cHQUFBNDU1UVhYKP4eGY0rJiaGRYsWoaCgwP79+0VCW15e3tPbByAABx0dHS5fvoy+vj4LFiygoKCAq1ev4u/vj6mpKbdv3yY7O1u0SWVhaWnJpEmTUFJS4s6dOzx+/JikpCRaW1sFShYSEsLFixeZNWsWo0ePBrqQXF9fX0xNTYUlj42NDXJyclRXV4vnXOZUkJGR0eMOwcKFC2lra6OqqorIyEjCwsKE2426ujo7d+4UZwl0IWChoaEUFBTQ2NjI1q1bKSkpIS8vrxv9yszMrFvh0NzcjJGREV999RVWVlZ4eXmhoqKCvr6+4CmrqamJQnrBggV4eXkhkUj45ZdfuHXrFpWVlQQHB7NixYoerVHmIhAeHs7Bgwc5deoUgYGBBAUF8fr1a2xsbNDW1qahoYEzZ86gpKSEu7s7T548ES5A48ePR0tLi6ioKPbt20doaCimpqaMGjUKV1dXxowZQ0REBEePHuXt27cMGzaML774grKyMpYuXUp1dTVqampkZmZiZWXFyJEjmTBhAgoKCpSWlmJoaMiaNWt48OABw4YNE9ab/yZkRd3gwYPx8/OjoaGBmJgYIiMj8fX15d69e1hYWNC/f38MDQ1pbGwUCbNUKuXNmzc0NTUhLy+Pr68vysrKFBQUUF5ezsyZMxk9ejRXrlxBIpHw7bffkp+fz6VLl6itrWXq1Kk4OjqKvUdJSUl0TUpLS3n9+jW5ubk9TtBl74EMVJK9GxYWFlRUVFBcXCysS48dO0ZZWZmgC0okEuzt7QUgmJaWxo8//sisWbMICgpizZo1hIWFsX79eiIjI7GxsWHTpk1IpVL++usvioqKGD58OL179xZWcjJAwsbGBldX126di/d1F+px8iqDimVJTJ8+fSgtLUVRUZGkpCRevXpFeHg45eXl5Ofno6ysTHl5Oba2tri5uTF9+nTk5eXx8fGhqamJt2/fCkpAa2srSUlJpKenExUVhZWVFT4+Pjg6Ooqb1dHRISgDbW1t1NbWUlxcTGtrK71798bMzIwBAwbw6NEjCgoKero8HB0defnyJXp6evj6+mJjY4OioqLwpEtISODDDz8U3B8tLS3U1dVRUFAgIyODtrY29PX1u/GKTp48yfbt28nJyQG6bs6iRYvEhlxfX4+/vz+DBw9GVVWVuLg4EhIS0NfXp6amBjs7OwYMGEBjY6Pwm9y3bx/p6en/ivPau3dviouLiY2NpaKiQvghylrLssjKyiIqKoohQ4YwevRo0Yq2tLQUD7KMp2xrayvaR7LW6q1btyguLmbJkiW4uLhw8OBBIiMjmTVrFgEBARQWFhIVFYWlpaWwI2tqaiIlJQUtLS3q6uoICQkRraj3DQ0NDTQ1NfHz88PLy4uQkBCqqqooKyvD0tJSoMcFBQW0tbWhpqaGrq4uNjY21NXV8erVK8rLy1FUVMTT01NcKw0NDZydnWloaCAqKop+/foJMntFRQWNjY1YWFigo6NDc3MzUqkUIyMjKisreffuneBhb9u2jR9++IGSkhLevHmDi4tLjy2lkpKSkEgktLW1CYshR0dHkZj5+fmJRHnBggVERUVhZ2dHZ2cnsbGxnDx5EmNjY7Zu3So+c+LEiZSXlxMSEkJ5eTnq6uo4Ojp2O9ATEhI4ceIE48eP59q1a4SFhdGrVy969eqFu7u7sGGaPn268EkFeP36dY/WB7B48WLmz5+Po6Mj+fn57N+/H0NDQzw8PLCzs0NOTo78/Hzc3d35/PPPKSgo4K+//uLhw4fCy1RbWxtzc3MGDhyIhYUFubm5XLt2DRcXFzIyMkhJScHS0hIdHR2qq6uRSqWUlZWRlZVFSkpKNzTm1KlThISECPW1srIyUqmUkpISXr169X/lif3fIiIiQjiG9OvXrxvyoKuri4mJCQYGBuTn54sCHboshl6+fMlnn30GdIl+Xrx4gYmJCa9evWL//v00NzfTt29f8YzFxMTw4sULcS9bW1vR0NBg+vTpXLt2jY6ODkF5efHiheBxHjx4kLq6OlRUVLq5rbxvyMvLdxMR2tjYYGVlhZ6eHhkZGUIE1tHRQUlJCRKJRIg/ZS1VBwcHISaNjY0lNTUV6BKB2djY0NzczOPHj3n16lU3tbObmxubN29GIpFga2uLtra26FL902VAR0dHnEs9TQoGDhwIdJ2HTU1NKCsr8+TJE5qamtixY4fgJUqlUpSUlIiJieHQoUPY29szefJknj17Jroura2tAolXVVUV3FB1dXUiIyO7WYO1tLRQXl6OgoIC2tra4vmQvf8jR45k5MiRZGdnc+HCBaqrq3n79i1v374VSPX7xs2bNzExMSEhIQFdXV3R5paJwmQ8/8rKShobG8nIyODu3bvcunVLdE19fHwwNjYmIyODyMhIoKsofvv2La6urujo6HDnzh3u3r0LIES+V65cER1KgODgYNasWcOIESPIz8/n8OHDvHv3TiTrBQUF7N+/v8fJa3R0tKBexcbG8vvvvwsRuIWFBU5OTmIfunXrFvX19RgbGzN8+HChxSkrKyM7O5uYmBgKCwupqakRbXo1NTUGDhyIpaUl+vr6jB07FjU1NXr16oW9vT1qamoUFxdz/fp1KioqmDBhgth7ZM+EtbU1qampZGdnk5+f300L8N+id+/e3c6YfxblFRUVhISE0NraypAhQ4S4Ni4uDgUFBaysrJgxYwZ6enpkZ2fzwQcfEB4ejpKSEkFBQTg5OREREcFPP/0EdHWo4uLiaG1t5fr162RlZZGWloatrS2JiYkUFRVx69YtvL29u3Wv6+vraWxspL6+XjzH/1v0OHn97bff6NevH3PnziU/P5+HDx9iZWXF7du3OX36NOPHj8fLy4uffvoJNzc3jh07xtGjR5k7dy5r167tpjpOTk5my5YthIaGMnXqVCGsWLJkCcnJyZiYmLBmzRrs7Ow4f/48r169YubMmZw+fVoIG7Zs2UJOTg7BwcEYGRlhbGyMu7s7v//+O/Ly8t34o+8TskRz/Pjx7Nq1C2dnZ2G3cvDgQXJycqitrSU+Ph4PDw/BHRs/fjy2trb4+vrS2dlJVFQU5ubmaGpq8uzZM5G4QtfhFB4eTlZWFm/evAG6Npu4uDiePn2KoqIitra2HDp0iOTkZEHOHzhwINOnTxfXUFNTk5UrV/bYcSAlJYUXL17g5+fHmjVruj3U/7SWqqysZP/+/WRkZPDdd9/x7t07SkpKmDRpkkAJ2trasLGx4eOPP/4PwcOoUaN4+PAhZ86cwcbGhj179gjfyc2bN3PmzBl0dHQE5+vq1asAbNmyhenTpxMdHU1kZKRQab5vBAUFMXToUIH4rFixgqSkJDIyMmhubsbOzg41NTXhCpCens7OnTs5d+4caWlpvHnzBlVVVWbPns2qVauoq6tj69atgmfo5+cnyO5//fWXqNCzs7P59ddfhan8unXrUFZWxsPDgwMHDqCuro6ysjJfffUVEomEK1euUFxc3KO1yeL69euigo+MjOTDDz9k+vTpNDQ0UFpaKlAlJSUlvvrqKwwNDVFQUOCHH37g/v37rFq1SpD4ZciKjY0NampqbNmyhZCQEDQ0NDA0NERJSQl9fX38/PzQ1NSkrKyM33//XVzPs2fP8vHHH7No0SKRHMyePRtTU1O0tLQ4e/Ysf/31138UR/8tNm7cKFrxLS0twju5srISW1tbli5dSlhYGJ2dnQQFBVFVVcWFCxcwNTXFwsICBwcHMjIyOH/+PAYGBsycORNVVVUOHjzIzp07SUlJQUlJiZaWFoyMjJg0aRKLFy+murqa8ePHk5ycLJDj/fv38/LlS5YuXcqECRNob2+no6ODdevWMXfuXF6+fMl3333XLSn6byHz5pXF8+fPuyVrAJs2bSI2Npba2lrKysrQ0dFhxYoVLFmyhOHDh1NQUMDs2bNJTk7Gz89P+LeuX78e6Grbyw6lbdu2IZVKefHihdi3ZFxFmdI7PDycTz75hOTkZN6+fcuRI0dYsGABbW1tjB07tscUEJnaXOZgcvz4cSwsLIS1XkBAABKJBBUVFcaNGyc49jk5OTx//pyCggKRxL98+VL4gAYFBbF582b8/f3Jzs7G2NiYefPmdRO32tnZYW9vj46ODoWFhfz444/Y2NgI66/m5mbk5OQwNjZmyJAhwgy+J3H37l1GjRqFjY0NGhoaDBkyhMWLF1NXV4eHh8f/8XpoaGhgZmbGwoUL+fzzz1m/fj1//PEHaWlpovUfFxfH+vXrmTt3Lp988glZWVls3rwZfX19PvvsM7S1tQkNDaW5uZlNmzYJdLy1tbWbOb6trS2fffYZM2fO5K+//iIsLIzCwsJu3/Pf4sWLF/z222/Mnj2bO3fuIC8vT1VVlXgW5OTkaGpqwsTEhNGjR3PgwAEuX74MdIFdNjY2REREoKSkhIaGBh9//DEXL14kOTmZzZs3c/LkSQoLC4WIx8bGhs7OTn788cduRvxaWlps2LBBJDs5OTmCiynzN542bRqKioo8f/78vdcHXVQ8TU1NAgICBIAm00hMmDABVVVVvLy8sLCwEFahM2bMYPv27WIfLSsrIzExkfj4eJKTk6mtraW6upoJEybg5+dHVlYWa9asITQ0lN9//x1lZWW++eYbnJ2dWb9+PY2NjXz99dfExsYKgZfsmZFdZ5lvsIGBgaD7vE/Ex8eTn5+Ph4dHt6E00EULiImJ4cCBAwQFBXH16lUhTispKeHjjz+mb9++xMXF8eGHHxIVFSU41vfu3cPOzo7ExETMzc2ZPn06Cxcu5PXr19y+fVvYe12+fJmOjg7RvczKymLx4sXs3r1buPJkZGQQERHBy5cvhdf9/xY9Tl4fPXpEW1sbvXr1wsPDg7S0NF6+fElxcTGKioo4OjpSUVFBVlYWbm5uNDU1ERMTI1pztbW1/Pnnn4K/UVdXh6amJiYmJsIeRVbhf/TRRygoKJCSkoKxsbE4/JSUlDA3N6epqQl7e3uUlJSEnx10tbciIyOxt7fvsQpYUVERd3d3zM3NRSVcWlpKdXU1mZmZFBcXo6qqirW1NYWFhYLDK5FImDhxIoaGhly7do0ff/xRGB+/ffsWfX19hg8fjqurK+np6Tx8+JC4uDjBA62rqyM6OhonJyfmzZuHoaEhYWFhPHz4kLq6OtTV1ZFIJPTv3x+pVMqBAwf4+++/kZOT6yZQep948+YN0dHRbN++XXBx09LS8Pb2Jisri8zMTEaOHImysjIJCQnCTkpbW5sFCxYINCEsLEzwncvKylBSUmLAgAGCpzZx4kTMzc0JDQ1FQ0NDCLZaW1uJjY2lqKhI8PgMDQ3x9/dnwIABbN++HUAMaUhISBBJ7/vEsWPH0NfXR0lJCTc3NxwdHTE0NOTRo0fCULyoqIiwsDDKy8tRUlIiLS2N6Oho8Rmenp7MmjVL/F59fX1B3pcJSDQ0NEQrWnZd9+3bB8Avv/yCoaEhT548ITc3V6iHZZusl5cXzc3NWFhYCC50T8Le3h5FRUVR6AwdOlSIp9ra2mhubqaqqgp5eflu74CMs/vPr8m4grLBEg8ePBDcwcLCQtLT0xk7diwzZswQdi2vX7/m6dOn4jNzc3PFPpCXl4enp6dIJHR1dXuEEshCRimBrkItMDAQqVQqrre9vT3V1dWoq6tjbW2NtbU1ampqFBUVkZ2djZmZGaWlpdTU1FBXV4eysrLwjG1ubkZTUxNHR0cGDRrULemRSCTcunWL3bt3ExsbS01NDfX19Xz00UeMGzdO7EMKCgqiY+Ht7Y2qqiqvXr167/U1NDSI9vWDBw/4448/cHFxoU+fPiQkJHD79m0xQELGC9u0aRNTp04lLi6O0NBQIiIiyM/Pp76+nvDwcNHFyMzMpK2tDRMTE1xdXRk7dqwoej09PYmKiuLly5d4e3szYsQIdHR0uHr1qkCmx40bR58+ffDz86OxsZG2tjYcHR17TB2Q0cVkwzMqKyuRk5PD3t5eWFPJQiY+TU5OFmuqqqqivb0dfX19hgwZgrGxMQkJCeLglAlt5syZIwRY9fX1vH37FiUlJSEaraqqoqWlhdjYWAwNDfH19RXagvr6ekJDQ7G2tu5mL/U+oaurKwp+2eRDe3t7FBQUaG9vF90n2VRC2YSwtLQ0vLy8WL58ObNmzaKoqKjbtZANAHn58iUaGhqoqanh5OREWloaW7ZswcXFRYiuVFRUhAex7N/QlUzV1dWhr6+Pvb09GzZs4JNPPuHBgwfCg/Z9onfv3vTq1UtQke7fv8+vv/4qxIOBgYGoqakJP3ZLS0smT56MhoYGU6ZMYfz48dy/f5/vvvsOIyMjXFxcyMvLEzoAdXV1wsPD0dDQYP78+WIC09mzZ0Vn0c7OjlGjRvHu3Ttu3LhBSUkJDQ0NTJw4ER8fHwoKCjh+/DguLi7Mnz+/x8mrnZ0d1dXVXL9+XXTIpk6dKlDVgIAAwTefOXOm6NDJiszW1lbevXtH7969MTIywsHBgczMTDw8PITA1MfHh969e6Ouro6trS1v377l5MmTeHp6EhAQwPPnz3n9+jVBQUG0tLTw/fffExwcjKenJ4mJiTx69AiAsWPH9rjLExcXx5dffsno0aPZsWMHBgYG1NTUCDGlp6cnnp6eKCoqkpmZibGxMVZWVmhra4sksra2Fh0dHYKCgpgwYQJKSkrcvn2bxMREwsLC0NXVZfbs2Xh6enLr1i0ePnyIpaWloCbU1NSIa2RgYEBsbCxffPEFNTU1ogiV2Z0FBwcLAfv/LXqcvAYGBtLS0sLjx48ZPHgwY8aM4fPPP2fjxo1s376du3fvsmbNGn7++WcGDx4suK0yT7qQkBA2bNhAZWUlQ4cO5fPPPycgIAAlJSWePn3Ktm3bgC6Ed/Hixfz0008kJSXx7bffCs7r8ePHaWhoYMaMGQQEBNDZ2cnz588pKirC1taW2NhYVq5cyahRozh79myP1rdw4ULmzp2LkpISnZ2dFBcXU1JSwrNnz/juu++oqqri5MmT+Pv7c/z4cb766iuqqqoYNmwYjY2N6Onpce/ePRISEgRXBsDf359169YJDrCfnx/Nzc2cOHECLy8vduzYgb6+Pl9//TVycnJ0dHRgb2/PkiVLxBhDLS0tWlpauHDhAjt37hSoXU+TVxniWFJSgomJCXfu3BEjPd++fcu1a9ewsrLC0tISV1dXkpOTefHiBZ988omgQzx+/JgffvgBVVVV9PT0uH79OgYGBly6dAljY2OUlZVpamrCz88Pb2/vbpX+q1evROvVycmJKVOmCF9O2YsulUq5f/8+Uqm0x+baH3zwgbBimz59Otu2bRMcZFni8+eff4r2lbGxMXp6ejg6OlJQUEBVVRWurq7dqt8+ffrg6OjI5cuX+f3338nNzeX7779n6tSpZGRkcPz4cfGyycvLo6mpSUlJCcuXL0ddXZ1p06ahpqZGSkqKGLe4dOlSpFIpRUVFPe4QyMYoywQp/1R1ypJaY2Nj2trahF8xwPTp0+nVq1e3ZLmlpYW7d+/y999/izWsXbuWb775hkuXLnHx4kUWLlzI9OnTRReid+/ePHjwgLi4OAwMDHjx4gWHDh0S5PwvvvgCW1tbLC0tGTduHEOGDBFo4PuGjMsmJyeHvr4+GzZsQF5evhuPtm/fvnR0dIj/dnZ2plevXsTFxZGamoqWlhZDhw4Vdjzv3r1DIpEwb948hgwZwoABAwRaKuOlqaur4+TkxOeff87OnTt58+YN33zzjehQ/PN6/jOWLFnSo+S1qamJ5ORk6urqSE9PR0FBARcXF0xNTblz5w4bNmzo9v0yH9m8vDy++eYbbt26hUQiwcHBAQMDA3Jycujs7MTJyYn+/fvTu3dvRowYQZ8+fVBUVBS8Nmtra8LCwjhw4ADz589nxIgRmJiYMGXKFEJCQkhJSWHmzJlYWVkRGBjIiRMn0NfXJz8/XwiK3jckEgmdnZ0oKyujpqbGr7/+ioKCArt27RLdAVlbVBaurq5UVFSQn59P79696d+/PwMGDEBFRUUAAUePHiUkJIR3795x4sQJjIyMqKqqEsKghw8f4uDgIJJXNzc3tm/fzvXr10XbV8alv3//Prdv32bChAk9LiL79+8vOk6y7pGurq6wSQwLC6OoqAhzc3Ps7OzEtKXCwkJOnz7No0ePxOhbmfOBzB4xODiYkJAQvv/+e06dOiUGAVy8eBE5OTksLS3Jz88nOjqaXbt2ERwcjIeHB/r6+sKf+d69exQVFeHr64u/vz+ampq4ubn1KHldsGABM2fOJDU1lWPHjhEeHs7du3dpa2tDTk5OcHrz8vKIiIjA3t6e1atXC+so6LLrk9l+yUTdLi4u7Ny5EycnJwICAkhMTGTkyJEEBweTkZEhOnEy5b+VlRXff/898fHxAHz//ffCpzgzM5Njx44RFBTUTXD8vrF27VqBLCYlJXHs2DFmzpwJQHFxMS0tLbS1tQlv+a+++ko80zU1NVy8eBFVVVXmzJkjiiQLCwtxNre1teHk5MTt27eRl5enubmZ58+fo6GhQXx8PGPHjqWyshIfHx927tzJzZs3WbhwIbW1tcId4o8//sDKygpHR8ceJ6/l5eWCMyujvBkYGKCqqiqE8seOHcPOzk5QdJYvXy46Ji0tLejq6jJr1ixqa2sxMjJCWVlZjIeHruf//PnzpKWlif2sqKgIeXl5JBIJNTU1qKuro6KigoWFBQkJCeTk5HDs2DHa29vR0tLCysoKT09PJk2a9P9/8hoUFERjYyMdHR2iBSKbVS1T/M+dO1dwa/r27cvEiRMJDQ3l448/ZvTo0WzdupWUlBRcXV2ZOHGi4BplZWXh5+fHzJkz0dbWZseOHZw7dw4VFRUiIiKEKbBMiS5DQOrq6njx4gVv3rzB3t4eGxsbtm7dSmtra499CWUHvyz09fUpLy+nra2NAQMGYG1tzbBhw4AuNGjmzJniJn799ddUVVVhaGjImDFjmDx5MgUFBWzZsoWnT5+Sm5srktdevXpRXl6OnZ0d+vr64pCRk5OjpqaGHTt2oKamxurVq4VSGLqSFJmYTUNDg8GDB/PkyZMerdHX1xcFBQVOnjxJfX09ffr0wcjIiH379lFfXy8muKirq3PkyBGSk5MxMDDo9sJYW1vj7+/P/fv3efz4MXV1dfj7+3fzUY2LixMmy9A1faOwsBA/Pz9ReTs5OeHi4tKtRfDll18SHR2Nr68vM2fOxMDAQGxk7xPffvstBQUFHD16lBMnTjBq1ChmzJhBU1MTb9684caNG1y4cAHo4l2VlpZSUFDAggUL+P7775FKpejo6IgkqbGxkaysLDIyMkhISEAqlYphFiUlJWzZsoULFy7g6urKhg0bsLOzIzIykosXL5KWlsaaNWvE+jIyMtDQ0BDJlEyl3NNobW1FTU2t27P6/PlzwsPDcXBwEBw+2UjOyspK5OXlGTx4MP3790dTU5OIiAgePnxIYmIi1dXV3axXtLW10dDQEOOAZdxeGRWnqqoKHR0dLCwsMDU1JTw8XCSRX3zxBSNGjBDCNCUlpR6102UhKyBbW1sFii4LGYdQTk6O1NRUjhw5QltbGxMmTCAoKIiGhgYuXLiAoqIiy5Ytw9vbm2fPnnH37l3hgiCzArt79y4XLlxg/vz5KCkpsXr1ampra5k7dy7z5s1DR0dHJDUNDQ1cvHiRd+/eMWrUKJqamjhy5Ij4757E6NGjxcAFmbWaTJTl5OTEypUrUVZWxtraWqBaq1ev5uXLl0RFRQFdB2tpaSnDhw9n/vz52NnZCZqHj4+PKGqys7PZtWsXAwcOZMGCBVhbW5OVlUVCQgKBgYFoa2uzYsUKVqxYQW5uLn///Td37tyhuLgYJycnhg4d+q/M32XODJqampibmzNq1Chqa2uprKzkzZs3REVF4ebmhrKyMjExMQwePJjhw4dTWlpKYmIiY8eOFRzY69evc+HCBXJzc3F2dmbEiBGYmZmxf/9+2tvbcXBwwNTUFHNzc4Eyy54Tmbf4oEGDRGF75coVgbRNnTqVsWPH0tjY2KP1XbhwoRsv2sDAAEdHRyHMdXJywt7eHiMjI7Kzs6moqGDGjBli7KisUzN69GisrKwICQlhxIgRDBs2jL179zJmzBiamppwdnZGIpGIoR1SqVTw70NCQtDU1GTQoEHU19fzxx9/MHjwYBwdHQUlSCKRcPbsWa5fv97jYRrQde7Ex8fzxx9/4OPjw6FDh2hqamLw4MHie1pbW3F2dsbMzEyI/6RSKXv37iU+Pp6JEyfy+vVrkpOTmTZtGtOmTSM/Px8FBQWCg4NpaWkhLi4OGxsbnj9/Lvb8Tz/9FCMjI549e0Z1dTXQxVN2c3OjoaGBPXv28ODBAyZOnMjo0aP/FTcbujoSra2t1NbWCrHcixcvyM/PJyAgAAMDA5qamigrK0NRUVHsCTU1NUJToKmpSX19PSkpKd1oUrJ9WnZdnj59ysuXL9HV1aWhoYHKyko8PDy4cOECenp6TJgwgS1btohzYtSoUUJI+m/cWzIyMvj5559xcHAQ90e2Jz98+JAnT56wb9++bp8tLy+PoqIizc3Ngst89epVUlJSsLOzw9fXF2NjY5YsWYKWlhby8vLcvHmTv/76i4CAAFauXMmzZ8+66XICAgIYMmQIN2/epK2tjYEDB7Jjxw5MTEzo6OjA29ubuLg4Pv300/+6ph4nr/8k+srC19cXV1dXmpubKSsrY8iQIQwZMkQYpk+aNEkIAVavXi2Sv3/yK6urq7G1tWXJkiUoKSnx2Wef8fPPP2NqasrYsWNJTU3l3r17jBw5UljXQFfr+pdffiE3NxcjIyPRup43bx7Pnz/n4cOHPVpfc3MzJSUlov2ipqaGlZUVAQEBzJ49W1gIJSQkkJuby6pVq+jduzeHDh3ixo0bQFdyPWTIEGbNmkVHRwfZ2dmcO3eOGzduMHDgQDQ0NFBVVaW2tpZffvmFTZs2ic02KSmJZ8+e8eDBA+Lj47l8+TJ//fWXSNgrKytRU1Pjxx9/xNDQUEzY6UkYGxszaNAg7t+/T2JiopiSEhcXx4gRI4ToIS0tjT59+ohJQ9B1eNfW1gpFoaamJk+fPsXW1pbp06d3KygePHhAdXU18+fPp7y8nJSUFFJSUigpKRFcUA8PD1RUVASvV2bwnZ+fz+LFi0XB0pPkddOmTUDXwfnnn3+KjcPLy4vHjx8THR2Nvb294NpGRkaiq6tLQECAqOSLi4uFj5+qqipVVVVERUVRXFxMcHAwvXr1QktLizt37giPXxcXFzHqcMOGDURERGBsbIy3tzelpaXEx8fT2NgoRB7Z2dkoKyv/K6/egwcPMm7cODQ1NUWhoaioSGxsrEiUZZO9rK2tRYtU1uaSHSKFhYVcv34dqVTKypUrCQ4O5tSpU5SUlFBUVMT9+/d5/fo19+/fF23N7OxsQkNDKSkpERW4lZUVSkpK/PDDD0yZMkVcw7S0NNTU1P6VR6hsI5UlYNXV1cjLy6OtrU19fb0Ynayrq0tBQYHwDl69ejU2NjZi1r2Pjw92dnakpKQIB4SOjg7y8vJQUlJi586dJCQksGTJEvr27YtUKiU+Pl68fx4eHty8eRM7OzsCAgKQk5MT3QNlZWXi4uJITk6mvLy827vy32Lp0qUUFxejr6/fTVne2dmJv7//fyBIT58+FVoDc3Nzxo4dK0SV9vb2wh+5paWFgoICiouLkZOTIz09natXr4pRvzKhYmBgoChkCwsLqaiowM3NDXt7e2HgHxYWRnJyMj/88IPgivYkUlJSePfuHfr6+ri7u4tELyMjg/DwcNLS0jA2NkZfX7+bPU5ubi7Z2dnieW1ubiY8PFxMo1qwYAEHDhygtLSULVu2UFlZKRTMysrK3WgxsvGsMq7plClTqKysZNeuXZw9e5Zhw4axYcOGHvNdoSu5mT59uphq9s/x6DK+ZEdHB62trVRVVVFUVISmpiZTp07F2NiYhoYGzp8/T3x8vBArWVtbM3LkSNE5kp05Ms9d2Z4o+5qenh5GRkbCAeT58+fY2tri7u6Oq6sr2trauLm5ce/ePf7++28UFBR6PDhEKpVSWFiIu7s7a9asEXmATGj7119/0dnZyZQpU0hPT+ebb75h/vz5qKmpcf78eUpLS9m9ezdWVlaii9K3b1927NhBRkYGK1asEILD+Ph43r17h7W1NQsWLGDbtm1cv36dK1euYGlpyfTp03FwcKCqqoply5Zx5coVhg8fzqeffvqvrd1kw3i8vb3Jy8sjKyuLFy9ecP36dZycnASAJJs+19raSltbm+CPys7m+vp6WlpaaG9vF+Oma2trycvLE1SS8vJy4uLiqKioEJMVnZyc+P7777GzsxN+0TL6XFNTE3JycsyZM6ebJWdPQlVVVdgrynxrZVFbW0tKSgrHjh1j5cqVqKqqiml1svGt6urqNDQ0kJaWRl5eHq2trZSWljJs2DA2b94sEuHCwkJaWlqYMWOGmKJZW1sr6FulpaW8e/cODQ0NbGxsGDNmDEOHDu3Webl79y6//PILH3744f+6ph4nr9CVmMhQn6ysLO7fv09aWprwKJTFs2fPUFNTY+jQoWzcuFFwlWQhJydHUVERpqamSCQS+vbtK2whZN+3aNEi1q9fT1FREWpqanR2dpKWloZEIsHAwIBXr15x7do1+vfvz2+//YaFhQURERF89tlnGBgYMG3aNH755Zf3Xpuqqiq6urpiNrycnBx6enr/Ue3k5uZy8uRJlJWV6d27t2g7f/TRRwQFBXH9+nUWL15Mv379WLBgAQEBAVy5coXVq1eLkYLt7e1cvXqVcePGMXz4cC5dusSXX37Jxx9/zI4dO4RoZNq0abx48QJNTU3WrFmDjo4Ohw8fJjo6ms8+++xfTfeRTQi7f/++mFCyfPly4QeakJBAVFQUFRUVDBo0SBzK9fX1vH79mtGjR6OoqMiQIUPQ1tYmOzub7OxsoUo+fvw4r169orCwkPPnzzN58mSOHj3KtWvXOH78OOPHj2fPnj2YmprS0NBAYWEhpqam6Orqsm7dOpqamnqMZP3PmDNnDs7OzqJ1mJ+fT69evejfvz8SiYT4+HguXbrE+PHjxYxtQDzT9fX1DBgwgP79++Pm5kZVVRU5OTm4urri7OzMmzdvaG1tZc+ePcKeaevWrXR0dBAREQF0Vdznz5/n7t27wkO3vb2dw4cP8+effzJhwgQ+//zzHq/txIkT7NmzBz8/Pz755BNh1r127Vp8fHzEdLK4uDiOHz/ezXoIunz/TExMxJSi06dPY2hoyDfffMOaNWsIDw/n0qVLJCQkUFNTI+g8n376KS4uLty6dYusrCyqq6sZOHAg27dvF0iYLMrLy8Vh+T9///vEP9vJ7e3tnD17FgMDA2bNmsXbt2+5c+cOS5cuxd7enhMnTrBx40Zu377NmjVr0NPTw9zcnMDAQFxcXFBQUBBm8lpaWkIJe+nSJVpaWli1apUQb33//fds376d8PBwpk2bRkBAAF5eXmIAxIIFC3Bzc8PY2Bg5OTn27t0rqD43b9587/WpqKj8H2eYNzU1CcujX375hfLycrZu3Yq/vz8zZ87k0qVL+Pn58dFHH2FlZUVcXFy3Q7upqYmEhARiYmJ4+/Ytb968QVFRkeHDhyORSDh58iRtbW34+/szcOBAOjs7efToETdv3kROTg41NTUaGhrEeMbi4mLS09N7fP+gqyWfnp4uVOoyTqmJiQkTJ06kra1N+DyPGzcOFRUV2tvbRTEp4z3LhplAF6Xs8ePHnD59mmHDhjFv3jxKS0uxt7dHW1ubrKwsXr9+zciRI9HR0eGnn34iPDycbdu2CeBDR0eHuXPn4ujoiL6+/r9KXAFWrlxJZ2cn2dnZQtz45s0bFi1axPDhw9m9ezeFhYWUlZXRq1cvwsPD2b9/P/n5+fz+++8cPXqUGTNmcPDgQVGgy2h0X375Jaqqqhw6dAjoGmQRGxtLcHAwbm5uXL16lVOnTrFixQq8vLy4f/8+9+7dw8HBQQyq6NWrl7DPmzBhAhYWFlhaWnL69On3XmNlZaUYCDBu3DhsbGxoa2tj27Zt1NXVoaioyG+//YaVlRX9+/fn2bNnwsVky5YtLF++nDt37pCQkEBSUpLg43d0dODr64uOjo5AX/X19TEwMMDf358FCxaI5HDy5Mmkpqby+++/Y2pqyrx581i1ahV//vkn27dv59NPPxW+z/8mrl69yqxZs5g6darwbH3w4AE5OTnC7SYlJYWIiAjc3NxwcXERBYCioqKw4JOXl8fa2poPPvgAVVVVkpKS2Lp1K+np6Tg5OVFXV0dHRwceHh4iAR4xYgQbN27k7du3eHl5IS8vz4wZM1iwYAGmpqYkJCSIwR0LFy5ERUWlx5zefv36kZCQgJmZGY2NjeTm5hIWFgZ0UUFdXV358ccf2bdvnxCE6urqin2oubkZLy8vjh8/jpKSElFRURw+fJjExMRuXdNZs2axYsUKXFxc6OjooHfv3gwdOhQdHR12797N2bNniYyMZPv27Wzbto0LFy4wfvx4du7cKWh6Pj4+nDlzhmfPnv2va/pXE7ZsbGyEldHDhw/ZvHkz5eXlTJs2TVTWKSkplJeXM2rUKNTU1DAwMKC8vJzOzk7a29tJTk6muroaBQUFXr16hba2tmipy6YeeXh4MH/+fLS1tUVmL7NUkZeXx8DAgD59+hAYGMjixYsF6nfnzh1evXrFwoULe8wHjYuL65YMdnZ2Cksu2WQmNTU1BgwYgJOTEwUFBWRkZJCUlISuri4uLi64ubkRHx/P6dOniYyMZMmSJWIzCQsLIykpiUGDBrF06VLq6+tJT0+no6ODCxcuoKqqypAhQ/D29ubXX3/lk08+oaamhtu3b2NhYUF1dTU6OjpUVlby7NkzEhMTe5y8ylBOmZHwlStX0NLSYu3atUBXYn769GkePnwokL1+/fqhoaGBgYEBvXr1IjY2lpSUFO7du4e6ujr6+vqC8lBdXU1dXR01NTXk5eVRXl5OWlqaOKjmzJnDV199hampKeXl5dy4cQN1dXUGDBiAra2t8OaVDbCQFTTvG+Xl5RQXF5OTk4OzszM2NjZkZGRw6dIlevXqJdrFMhs3R0dHkSi/fPmSV69eUVFRgZmZGdbW1igpKZGXl4ecnByTJ08W7dPs7GyUlJTQ1dWlqamJ1NRUwXnU1dXF1dUViURCS0sLHR0duLi44O/vj4KCgjAob29vZ8mSJT1uBck6AzIEJDc3F3V1dZFgyYQxXl5e2NnZUVxczJEjR7CxscHa2pqioiKqq6tJT0/Hz8+PsrIyJBKJmNE9atQonj59KtCw6upqtm7diq6uLgsXLiQgIICTJ09SU1MjLE+ysrI4e/YsDg4OTJkyhba2NmJjY3F3dxcTy3oSbW1tYiLTq1eviImJoU+fPrS1tVFWVsbFixeJjY3l6NGjWFlZMWrUKOGVq6amxpEjR8RIYugyWzcyMhIJ8ZkzZ3j69CnOzs4oKysLJfySJUv44Ycf+PHHH4mIiEBXV5dhw4ZRXV3NxYsX6dWrlxCgAt0S0J4krz///DMuLi6Ym5uLiW1lZWWCypOQkMDnn39OW1sbgwcPZtSoUTg6OjJw4ECsrKwoLS3Fw8NDJGSy9ry6uno31Nrb2xslJSUqKirEnPaOjg5ev34txK6tra3k5+d3U3fLwtDQkPr6esHf70mYmZmRlZVFZ2en4HtKJBI0NTVFS7Sqqoo3b97Q2NhIXFwceXl5+Pv7C3798+fPyc3NpU+fPnz99ddYWVlx6NAhtm3bJniS6urqtLS0iD1INmfd29ub69evk5KSItB/qVRKY2OjECI1NzfT1NQkhrH0JGR0Gl1dXRobG1FQUODFixcoKCgI2pHs/NPQ0CAoKIgrV65w7do1lJWVmTVrlvDZhC4ETkNDgxcvXnD16lUcHBxEESejYBQVFeHs7ExBQQGFhYVCBKqlpYWBgQEqKiokJyejo6PTzTPT3t5eUL96kryqq6ujqqoqkrjGxkb+/PNPXr9+TVFRkfAzl9HelJWV6du3r9gnZeOpL1++TFZWFnp6eqioqCAvL09aWhqJiYk0NjYydOhQ8Sy3tLSQmJhIeHg47u7u9O3bl48//pgLFy4QExODuro6M2fOpLa2Fjc3N3JycggJCRGizJ5GWFgYUqkUDw8PFixYQEREBH///bdAmwcOHEh9fb0Yh9vW1kZWVhZ2dnaoqKigoqJCbW0tmZmZWFhYCB7o69eviY6OJi8vj/j4eDExr7CwkIKCAlRVVdmwYQOBgYHcvHlT5B8ODg7U19cLkZjsesTHx6OnpycKkveN0tJSIiIisLS0FADD27dvyc/Px9PTk1GjRpGamkpxcbFIwpuamgQ6LOt4WVtbo6WlhY+PD/Ly8sTGxnL58mUCAwMxMDAQwMnLly9pbGzEx8cHPT09iouLmTp1Kjk5OURERFBXV4ezszMtLS2EhIQwatQovLy8qKiowMfHBx8fn///k9dHjx6xbt06oAtulnlCAsIaCrq4on379hVZ+aVLl7hx4wYffPCBmCijq6uLRCJh27ZttLW1iSTm448/Jj4+Hicnp25+XzJo38fHRyQ0AwcO5MyZM5ibm1NeXs7kyZOprq7mxIkTeHt793hk4x9//MHevXtRUFAQfClZS/2fyjtDQ0N+++03Kisrefv2LSkpKaSlpbF161ZaWlqYNGkS8vLybNq0iY0bN+Li4iLa5I2NjeJllNkwbdy4EX9/f1FhAUJ5GRUVJczTP/roI2FTNW7cOEaOHNkjywzo2nxaW1tJSUnhypUrQBeafuXKFeHVmZ+fT3Z2NitXrmTixIloaGjQ2NgolJK5ubl88cUXlJSUoKmpyeLFi/Hy8iIpKQlXV1fWrFkjDgNfX180NDT44IMP8Pf3Z//+/Whra1NWViYQ+bFjx4p2enNzM7m5ucIntadG91KplKysLJ4+fYqNjQ2+vr60tbWRkZHRTdhkbW3NihUryMvL4/r168Lz1d7enn79+uHk5ISuri7p6el8+eWX1NbWcv78efHzMuXzihUrePPmDbW1tUBXJT5ixAgCAwPR09PDxMQEFxcX4T8LXYI9WfIXHx//3sbMsvD29mbbtm2YmZlRVlZGamoqUqkUiUSCpaUl6urq/PTTT2LKyeHDh0UbavLkyRgaGnLjxg0OHjzIunXrOH/+PMnJyXz77bfY2toyf/58xo8fz4MHD0SFXlNTw6JFi9DQ0GDSpEnY29uTkZGBRCLh9evXbNy4kZSUFFavXs2UKVME17ajo+Nf0QZUVFSE/2h0dDRmZmb069cPRUVF2tvbKSwsJCsri0WLFvHNN990GyM8fvx4Ro4cKRJX6EqGo6OjBQ9bhuqlpqayb98+amtrMTExob29naFDh/Lll1+yfft2IdT6+eefWb9+PWPGjOHHH39EX1+f4uJijIyMkEgkxMbG9mh9W7duFYK20aNHo62tTWxsLGlpacTFxVFaWkpbWxs6OjrCXSU1NZWamhpSUlJ4+vQpjx8/5osvvkBbW1vsicrKyvTp0wdDQ0P09PQwNTUlOjqasWPHYmdnx4YNG3j+/DkrVqzAzc2Nzz77DFtbW4H4tba20tDQQH5+PiYmJsyaNYv29nZ++eWXHk8stLGxIT09nV69ejFixAjk5eUFh1lGGYuKiuKvv/4iPDxcWAr+0/0hLCyMqKgoamtrhT92eno6Fy5c4JdffuHhw4c4OTmJaVsNDQ04OTlRWlrKkydPsLS0xN3dXSBlSkpKYvR1bm6ueF9u3rzJunXr/mu78p+RlJSEm5sbenp61NTU8OzZMywsLPjrr7+EWFlfX1/87t69e/PDDz/w3XffcezYMU6cOCF4hfr6+nh4eHD+/HmKiorw8fFhypQpotjq3bs3dnZ26OjoICcnx/z585kwYYK4JwMHDqStrY2LFy9SWVmJnp5etyLr34bMMkpdXZ13795x+/Zt0f0LDw8nJCSE4OBgFi5ciJycHBKJhKlTp2JrayvGbr948UJ8XmNjI/r6+nR2dnLq1Cmio6OpqqpCIpGIYiAiIkIM4gkMDBS5wciRI6mvr6e5uZkxY8bg4ODA7NmzhYD72bNnhIaGsmjRoh6tsaKigsuXL4vz4urVq8K669WrV4wcORIvLy8cHR3JysoSHrZz585FT08PKysrCgoKSElJ4fz58xw9ehToQjzd3NzEWHJra2vc3NyIi4sT+g+ZcHHo0KG0t7czZswYAaZUVlaKYQYFBQWkpaVhZ2fHwIEDe1Qoh4aGCr91GSBTWlrKq1evuH37Nu7u7mLfVlFRQVNTk8zMTK5du0ZiYiLW1taYmJjQ2tqKjo4OPj4+rFy5koSEBK5du0ZdXR3Lly8HurqCW7duJTg4mL1793LixAn279/Pjh07ePjwIdu2bSMqKoq9e/cyYMAATp48iZqaGi9fvuyma/hv0ePkVU9PT8y51tDQoKKiAuhS+f7ToF52Q/Lz84XJ8EcffURhYSE3b94ULb3a2lrMzc2FGvzx48dCTVhTU8PVq1eRSqW4uLiIg0hVVVVMKNLV1RVwswzl8/Lywtvbm4aGBjZu3Phf/cL+GTLSdnV1NYWFhbi6uqKiooKOjo4guv/44490dnayfv16jIyMuH79upgZ/fjxY86dO8eAAQPQ0tISBHNXV1emTZtGZ2cn5eXlIlErKCggOTmZqqoqbG1tReJaWFiIubk5Ojo62NnZ8c0333Tzb4TuVkI9idTUVGJiYpCTkxPGybJrLLMUkk2DGjx4MIaGhsI2rK6ujqamJiQSCV9//TUHDx4kNTWVnJwcdHR0aGhooE+fPujp6TFy5EjOnTtHfX09NjY29O7dmxUrVogxgvv27aOwsBBPT088PDwwMzMjOTmZX375haamJlatWvUf057eJ0xNTenfv7+YId3Y2Ii5uTkTJ04U1jatra0ikY2KimLLli1MnjyZb7/9VsyLr6qqIjU1lUOHDol52t9++y2DBg2iurqavn37oqOjI1SRMqua9vZ2wXuura0VYovi4mKysrLw9PRk9OjRzJ07F3V1ddTU1HrctszLyxNtXUNDQ+Tl5amoqBAT6aCr2NuzZw8RERFIJBKRtNy9exd9fX0aGhpQVVVFIpGgq6vLwIEDkZOTQyqVkp+fL7xufX19ycvLY+/evZSVlfHgwQN8fHwEJ0pGAxk1ahT9+vXD3t6ezMxM4uPjefPmDbGxsf/qPkLXwSkz7LewsBC0FpngD2DQoEEYGRmJUb4ym5fDhw+jpKTErFmzcHBwQFFRkejoaFpbW7GyssLa2hpTU1OBZFlYWNDZ2UlVVRVKSkq4uroSExPD8+fPGThwIAMGDGDChAmCK3358mVaW1tZtGgRurq672Ws/c/o6OjA399f2N9FR0dz7949Hj58SHNzM4aGhgwYMIDRo0ejq6uLkpISY8aMQSqVcvz4cTH2U8bxVlFRITExkczMTFpaWnB1dRVFg4WFBcOGDcPPzw8rKysuXLhAbW0tmpqa2NnZCZszmaBPKpXy9OlTFBQUBAhRXFxMUlJSj9b41VdfUVRUxI8//ij274iICDo7OwXq7OfnR1NTE4qKihQWFqKiosLt27fJy8tj8uTJDBs2DA0NDezt7VFWVqa+vp6Ghgba29tpaWnh7du3uLm5kZ+fz6effoqrqyvr1q3D1NSUqKgoDAwMqKys5NSpU7i7uzN69GghLP2nGtzT05PVq1f3CNW6cuUKoaGhjB49GicnJwYMGEBLSwsSiYT29nbS09NFIqmpqUlsbCzh4eGCo1xaWkpZWRlGRkb079+fyspKfv/9d5qbm1m9ejUSiYS9e/fi5eVFYGCgEPwAwuYIEJSmnJwcvLy8hOZk06ZN1NTUsGTJkm7uKT2Jq1evcufOHbKzs9HX18fX15fZs2ejqanJnDlzMDExwdfXV5z9MtEhdCHvY8aMoaysjMzMTDo7OzExMWHz5s2CQz527Fh0dXUJDw/n3bt3BAQE4OPjw9y5c9mxYwdhYWFMmTJFeBvL/Khljg2tra0EBQWJz+nplDToorHY29vj5eWFVCrl3bt3aGpqMnToUCZMmCBG3Obn53P27FmKiooYNmyYGJUqs5qSqehlfNdHjx5hYWFBR0eH2C9zc3MpLy8Xrjwy67NPPvmEiRMnEhERwYkTJ1BSUiI3N1eMA5ZN+jQyMuox2CHTRcioLdDVNcjPzxeov1QqpaKiQuQ5+fn51NTUkJuby9WrV/Hy8mLYsGGEhIRw9OhRzpw5Iyh50dHRvHnzBjs7Ozo6OqiqquL+/fvs2bOHU6dOkZeXx9GjR+nXrx/Dhg0jJyeHt2/fMn78eNzd3amoqCA3N1ecg7K86X+LHiev48aNE1NIZFOtZHwkAwMDKioqhLUNdLXRTpw4wUcffcSCBQv4888/iY+PF+itoqIiS5YswczMDHt7e7KystDX16eyspKqqipOnDhBU1MTGzZs6KZYrqqqIj4+HnV1daFWNzc3Z86cOcLr7+TJk5w8ebJHlbSsVfXXX3+RnJzMvHnzcHd3F36f9fX1XLx4kaqqKiZOnEhnZ6cwbpa152pqavj+++/F+NHVq1ezefPmbq4B0MVhunDhAmpqamzevJmAgABKSkowNjbG2Ni4m/+nbFqOrEUEXa2AfyKJ7xv19fWUlpYybtw4fH19SU1NFXYqsofH399feCO+e/cOCwsLlJWVaWho4NWrV1hZWfHJJ58gJyfHJ598woULF8jMzMTJyYlXr17h6+tLZWUlWlpa5OfnM3XqVL788kvU1dUpKytj586d5OTksGDBAsaOHSu4Su/evSM6OhpTU1PBd+ppUtDS0oKJiQkLFizo9nXZjPCOjg6hwgXESFRTU1OBYhgYGBATE8Ovv/7K9evXgS6k9cqVK5w6dQromgXv4+ODr68viYmJjBs3jvj4eLKysnBycsLd3Z13795RV1eHnp4eb968obCwEGtra9rb23FxccHe3v5foSNlZWWsXbuWlStXMm7cOCQSSbdpRpWVlXz22WecOXMG6EL5tm3bxtmzZwkPDxdFw9SpUzE3N+fWrVvY29sL2kFcXBxRUVF4eXkxffp07ty5g0QioaysjKqqKh4/fizuS1xcHLa2tnzzzTe4u7tTVVVFWloaBQUFSCQSCgsL2bp1a4/nxssoRoaGhv/Bf87OzkZVVZUDBw6Iee3Nzc2sXbsWS0tLSktLOXLkCPX19UJoVFlZSW5uLhKJBFVVVfT19fH09GTYsGEsXboUiUTC8+fPycrKora2lgcPHrBu3Tqqq6u5e/cuvr6+QjD0+vVrLly4gLq6OgsXLhRWcydPnnzv9X388cd89913QFcyXlFRgYGBAcrKysLgfM6cOYwfPx49PT3BW5Ult9DlT1lSUoKVlRVNTU3U19fz4sULIiIimDZtGu7u7mRmZnLz5k1Gjx7NkCFDeP78ORcvXkRLS4uNGzfi5ubGmjVriIyMZP78+cK2STZkRCqVMmLECExNTVm1alWP7qHMm1I2Sevhw4dijLCM5qWlpcWgQYOwtLQUVIJFixaxY8cOXF1dmT59uhj+0traSnJyMikpKaL1OGXKFCwtLblx4wYPHjygvr5eWPwMGjSI4uJizp07x88//8zw4cMJDAxERUVFUGv+eW2HDx/eozUWFhayefNmvvjiC3bt2oWmpibv3r0jKSkJHR0d5OXlycrKorm5GV1dXU6cOEFISAjbt28Xs+NlkZ+fz549e8jJycHFxQVLS0tCQ0M5evQon376qXBdqK2tFUmTqqoqcnJyVFVVcf78ebS0tNi0aRPy8vKkpqby999/U1xcjIeHBy4uLsjJyXUTx7xPxMfHi4mVNjY2rF+/XnSQGhsbxTheWV4g04t0dHSgrKzM4sWLaWxs7GatePv2bWxsbDh16pTY/7766iux144cOZL169cjJyfHjh07ePDgAdnZ2fz555+i4JCNFL9y5YrQKxgbGzNhwgT27t3bozWOGjWKiRMnAl0cb2NjY7766iu++OILsafKrMCSk5MZNGgQS5YsQV5enra2NoKCgsR1VVRURF5enosXL5KSkkJeXh6Ojo44ODhQXV1NY2OjKNju3btHU1MTFhYWYrz00aNHiY2NFZ7wEomEfv36CX/c0tLSHttHLlq0iLq6Ot6+fSvoH/fv3yc1NZURI0aIQQI3b95k6dKleHp6oqOjQ3BwMNra2rx9+xapVIqjo6MYIHLt2jVB6ZAJfxcuXMiiRYu4d+8eV69e5dtvv0VPTw81NTWeP3/O4sWLxZCj9vZ28cxIJBJhqwd0K9L+b9Hj5FXGJ5FNkxgzZgwbNmxATU2No0ePEhYWxvLly5k+fTrQNT9cxuHZsWMHvr6+jBkzhvr6ejIyMqiursbMzEzwXYOCgvj99985ffq0sDFJTU39jwTGyMiI4cOH09TU1G10bHZ2tkCy3id7/79FdnY2z58/Z+TIkd2+LpVKWb16NQUFBURGRvL06VPBk+rs7MTHx0dUGc3NzXh7e4uJGP8zlJSU0NLSIiAggJkzZwpVKXS9AFKpVFAlPvnkE+bPn8/QoUN59+4de/bsITQ0FKlU2s194X2iT58+9OvXT7TjIyIiSE9PR0dHR1Tnt2/f5tGjR3h7ewsFLXQ9VIGBgTx79ozjx48LhwXoQsksLCz4+++/Wb16NdXV1fTp04f+/fszatQoOjs7+fvvv9mzZw/FxcXMmTOHMWPGdCPZOzk58dVXX6GrqyuuWU+tpBISEsjPzxezr6Gr2JFx3WTcJVkxNHv2bAYPHkxiYiLR0dGCp+Pj4yOQ6B9++IGJEyeyfft2wRfr7OzEwsKCAQMG4ODgwIIFC0TiIGt/mJmZCf6vpaUlVlZWtLe3Ex0dTW5ubo+GL/wz5s6dy7Vr1wRlp6SkhBcvXiCVSsnIyODWrVvCRDswMBAtLS1xCMgmZzk7O9PY2EhaWhq5ubkkJCQIKoWsM3D+/HlCQ0PJzs6mvLwcDQ0NFBUVaWxsxMzMDF9fX6qrq4mNjWXt2rVs2bIFPz8/7Ozs6N+/P3Z2dmRlZdHW1tZjg/vHjx+TnZ2No6OjQFyhK1k2NDTk8OHDoj0YGxvLjRs3GDx4MJaWlhgZGfHDDz+gpaWFpaUlnZ2d/PLLL9TU1BAQEICamhqOjo5s2LBB0JeePHnC7du3SU1N5eXLl4K+InMnkEVTUxMvX76kqamJpqYmwsPDRcu0J7Fs2TLxbysrKyF4GTFiBJWVlSgqKgrLMtlm/ujRI/HOTZw4EWdnZz766COh8F20aBFtbW28fv0aRUVF5OTkePv2Lfv378fOzo7Y2FhiYmLIzMxkwoQJYtqNrK1bU1Mj3gszMzNh5SMrJHoaBw8eFMXh4cOHefr0KQYGBnh5eWFoaEhoaChPnjwRdjqHDx/Gzc2N3bt34+DgIFrvgBgb3t7ejoWFBdHR0QQFBfHdd9+xbds27t69y+zZsxkwYADr1q3DwsKCRYsWYWhoKNTTjo6OKCgocO3aNUG3+Pnnn8UEpL///rtH65OhWDKLrfv37xMSEsKMGTNEF83CwoKoqCiePHmCgYEBX3/9NZMmTaK1tZWSkhLMzc2Rl5cnMTFRFEceHh4oKiqSnZ0N0I2u0d7eLkaRy8TOxsbGjBgxAmtra9GFefjwofDrVVZWZuPGjZSUlIhk831jxowZ+Pr68vbtW6ytrfH19aW1tZWrV69iamoqxLxFRUUUFhYK1X1jY6NQx799+5bm5maam5upqKjgp59+QlNTk1OnTiGVSvHz86OlpYWnT58yZ84cXrx4wd69e+nTpw9nz55l7ty5ZGRkiGfwzp07mJqasnfvXpG4QlcB+29s+WSJK3R1MGbMmIGjo2M3cEjmTSvr7Mk6Cf+0K6yrq8PFxYXly5cL9NXHx4cJEyZgYGBAZmYmysrKODk5cfHiRYESBwQEcObMGRISElBVVWXNmjU4Ojqyf/9+KisrUVZWJjExkS+//FLYA/YkAgICePr0KY8ePeLo0aOUlJSQnJyMmpoaSUlJnDhxAjs7O0aMGMHTp08pKysjODhYdH4HDBhATEyM8PE9duwYCgoKJCYm4u7ujpycnPCZVlFR6da9CAwMZOjQoURFRRETE0NycjLDhg3D0tKSsLAwwsPDmTx5MlZWVsjJydHY2CiS2P8t/pXbgMxKQk5Ojn79+omkKy0tjQcPHghVaGdnJ87Ozjg7O3P9+nWuXr3K8OHDxSStsLAwHBwcGDFiBACJiYmUl5fTu3dvtmzZgoGBAcePH+fdu3fU19cLO5WamhqMjY0FF012sMjLy6OkpERzczPt7e24urr2ODmQSqXU1dXh4OAgTHP/GXp6egwaNIjnz5+LmyUz8n/y5Ikw87W2tkZOTo5BgwZ1qyJk6m0/Pz+cnJwEP7OhoQGpVMrr16/FvPp/JryyZOLly5fCYL+qqqrHqCR0eXiWlpaiq6tLbW2tUBjX1NTQ0tJCVlYWcXFxZGdno6OjQ1JSEg0NDQIVtrW1RVdXl6tXr5Kfn4+DgwMuLi707t0bV1dXXr9+TXt7O9bW1kyYMIE+ffpQVFTEmTNnRLty3rx5wsNQlpzKEo3/SbjvqZhJWVmZwsJCjh8/jq+vL25ubujo6JCenk5kZKQwvYYuZ4G6ujp0dHTERLHy8nJsbGyEqFBdXZ3Ozk4MDQ2ZPn064eHh1NbW4u/vj42NDZWVlTQ3NxMUFERQUBDff/89kZGRYka5RCL5D8cK2bSclJQUzM3Neyws1NHRwcXFhcbGRt68eSMKtba2NpKTk8nJycHDw4Phw4ejrq7O5cuXhTeorq4uS5YswcrKiry8PAwMDNDV1SUxMZHY2FhKS0tRV1fH09OTa9eukZ6ejrGxMR0dHYLDOmzYMPT19dHV1cXR0ZGXL19y/PhxVqxYwY4dO5gyZQpjxowRAh2gx6hdcXExiYmJdHR0CCuu2NhY4ZXp4uIiUID8/HxevHjBhQsXmDJlCitXrqRfv36UlZXx4sULUlNTkUgkeHp6CnqMoqKisKNqaWnhzp07gkcmE1wAYrIQdCUpJSUlmJqa4ufnR3FxMVVVVd06Iu8bMmunxsZGamtrBRdQZp7/z+uQmppKbW0tSUlJKCkpiXG/WVlZRERE0NLSgq2tLf369cPS0pJPP/0UTU1N4uPjCQkJIS8vj7y8PMLDw9HV1cXNzQ0LCwsiIyMpKytj+PDhVFdX4+3tTUFBAZWVlWRlZdHU1ISdnd3/sfh+n5Dd89DQUE6ePEl7ezsTJkwQYEVVVRVxcXECAJg6dSq7d+9m3Lhxgg4hi9u3b3PkyBFsbW1FslhfX09mZibZ2dn4+Phw/vx5Wltb2b17NwkJCSxfvhxdXV3Mzc0ZP348gwcPprm5meTkZDIyMtDR0eHNmzeYm5uL9vg/J139t9DU1GTIkCHMnTuXyspKvv32W2pra9m8eTPQ9Rw5OTkxfPhwioqKBPoNXb61oaGh+Pn5MXnyZFRVVTE1NRU2fWFhYcJTVObDrKGhQW5urujc/PNskXUn6uvruXnzJnp6euL6Hzp0iP379wP0mMIja4nLOlfQlQPIpl7KxqWnpqYKMVZjY6OYqlRSUoKcnByenp7ExcUJO005OTkWL17M5cuXxTmvqqqKuro6mZmZ3L9/H0NDQ5YvX866devIzMzEysqK58+fc/ToUT766CNGjhxJY2Mjd+/eFdOc/o1zRGZmpui8yfbqqqoqIiIiMDAwwNnZGWtra/HOyjQi+fn5yMvLC0TZzc1NOJHI7BgnTJggplIaGRmJroGOjg4eHh6MGjWKvn37snPnTtLT0zl+/Djz588nKipKWKvJzP1tbGzEaOqehKKiIn379uXnn38W6PbQoUMZPnw4nZ2dYuz5sGHDCA8Pp6mpCSUlJaRSKTY2NtjY2NDa2sqGDRtYuHAh3377LYCYSjlw4ECkUqkQnMr0Im1tbVRVVdHY2MiMGTPw8fERSH7//v3Jzs4WaLIs13pfXn2Pk9eXL19y7tw5XF1dmTBhQjdT+uDgYFRVVenVqxfQdSDIHiRzc3PBl4WuBMrX11eIrxoaGli9ejVhYWF8/PHH/Prrr2zZsoWMjAwaGhqEdVZ7ezvFxcU0NTV185pTUVHB2NiYTZs2UV1dTW5uLjY2NixbtkxwaN8nHj58SHV1NZ6enoI8LvOLlFVaf/zxByEhISxbtowPPviAsrIywsPDOXnypGi17t69Gz09PTH/XRYXL17k1KlTHD58mDFjxghjeRlX59ixY5ibm/P1118LPz/ZVKOioiJWr15NSkoK27ZtY8yYMdTU1AhO8ftGWFgYBw8eZOLEiaxcuZIlS5bQ2tqKsrIyV65cISIigmHDhrFq1SoePnzInTt3qKurIzw8HGNjY/bt20e/fv24ceMGV65cob6+Hjs7OwwNDWlpaWHo0KF88skngkby7Nkzbt68yZMnT6ivr2fUqFGsWrWKXr168fDhQ2JjY7GxsWHo0KGiapaNlPyn4OZ9w8PDA3Nzc1atWsX+/fvZv38/o0ePRk9Pj9LSUrS1tQWt5cCBA+zbtw8XFxd2795NYGAgP//8M8eOHRPXpLm5mc8//5ywsDCWLFnC3LlzxWhf6GqrycRa0HUg//rrr0ilUtzd3fn8889FsixD0j08PHB2dua7775j3bp1rFixokdrvHz5Ml5eXmJqnexQlEql+Pj4sGrVKgoLC3nw4IGYfPXP6NWrF1OmTKGsrAypVIqurq6wLvon2rVy5Uo++ugjDA0N+e677/j6668BhBF7WVkZnp6ezJ49m5kzZ7Js2TK2b9/O0KFDkUgkxMTEYGpqKt6lnoS7u7vg8EZFRQmRxKpVq4QVy6JFi8jJyWH37t3Iy8uLiURRUVGYm5sTHh5OQUEBa9euZc+ePUAXSl1RUYGCgoIolGRogb6+Pr1796ampkYINiorKwXiIxvHa2lpSUVFhXBU0dDQ+FdcO+gqtu7du8fhw4fx8PDg4MGD3Rw25OXlWbNmjeAKOjs788UXX3DlyhUsLCyYPHkyffv2JTMzkwULFjBo0CB27txJWloa06dP72ZzpaqqyrJly5CXlxdek0OHDmXTpk3o6OhQVVVFSEiIOMwHDRok/Gz/TcioTw0NDZibmxMQECB8gJubmxk2bBj9+/dn6dKlnD9/nkuXLrFs2TKOHj0q0DDZ/tfW1kZaWhppaWnIy8tjYmJCTEwMa9aswcHBQQhXlZWV+fbbbzE0NBQAx8CBA4UXcmdnJ9OnT2fYsGEYGxsTGhrKnDlz8PLy4tdffxXWVO8TUqmUb7/9loEDBwrfZgcHBzHG9Ny5c3z66aeMGzeOuXPndrOKdHNzIyUlhbKyMpqbmwkMDOTIkSN8+OGHvHz5UqBwbW1tREZGsnr1auTl5enVqxfz5s0TiatsmpGMQnL//n1MTU1FMpuUlMTLly8BxGSuzMzM916jbJTwiBEjRGKvq6srNBc3btzg66+/RkFBgX379hEYGEhiYiKlpaXo6OigqKiIgoICeXl5XLhwgejoaNavXy8mr6mrq3Px4kWys7NxcXFBV1dX8Ofv3r3L0aNHGThwILt37wbg+PHjPHnyRNCF9u7dy40bN9i5c6egnfQ0Dh48KBIyWdy7d48ff/yR4OBgvvvuu250i7CwMFavXk1hYaH42siRI/ntt9+ALkqlra0tbW1t1NXVCceIqKgo9u/fj7W1NbNnzxa0yIiICMzMzJg6dSqjR4/m2bNnQhAVHBxMbW0t7u7u3Lx5k9raWtTU1Ni4ceN7ry8hIYHevXuLfOzjjz/mp59+orS0lOrqaiwsLMSeExAQQE5ODjdv3sTY2Fh0dmVn3JMnTwTiKitCJRIJkyZN4ujRo5SXl7Nq1SqWLVvG559/TkhICMnJyRw6dIgJEyZQWVlJaGgoGRkZaGlp4ezs/K80ET1OXu/cuYOqqiry8vLk5OQgkUiEWbi3tzempqaiOpFdKFn1paWlJUjPMssWTU1Nnj17xuXLl1FRUUFDQ4NDhw6hr69PcHAw48ePFy8mdLWtjYyMBGKnpaWFiooKzc3NdHZ2CuQuPz8fbW1tDA0Ne5S86ujo0NnZSUZGBvX19cKM/t27d5SUlBAZGcnz58/x8vJi5cqVKCoqYmJiQu/evfHz8+O7777D1dVV8Ff69evXLXGorKykoKCA6Oho/Pz8GDVqFDk5OVy7dg15eXlB+q+urub06dOYmZkREBAgRqz16dNHjFSVHbw9TV5DQ0OxsbERqHRSUhItLS24u7sL7qescqyurqa8vJynT5+KIQNxcXF4eXnh6elJTU0NBw4cwMTEBCUlpW6zqO3t7dHR0SElJQVfX1/c3d25du0a2dnZNDY2oqmpSX5+PqmpqZibm4s56LKXRDZO9Z8TOt43JBIJLi4uVFZWCqX2sWPHkEqljBs3jqSkJF69ekVbWxvu7u4YGhpib2+PnZ0dQ4cOJSEhAegSQ8nU33V1dQKFysnJYdeuXTg6Ogpl9K+//kpycjKXLl0SHEhra2vevn2LvLw8ffr0oaqqisjISPr06YOvry/jx48nLy9PcALfN2TPmGwijJ6eHrW1tVRUVGBra4utrS0dHajgB2gAAQAASURBVB2Ul5dTV1cnPE5lHpOyws/AwID4+Hgxsau+vp5bt27R1taGrq4uLS0twrHA29ubDz/8EENDQ5KSknB2dmb8+PECOR8wYAAXL15k9+7dbNy4kYCAALS0tAgJCeHSpUs9vod2dnZoaWnR2dlJY2MjBgYGIrmEriLB2toaIyMj+vTpw/Tp05FKpWzcuJGwsDD09PTw9vbG09MTqVQqhoT8k54DXSjSuXPniImJwcjIiL59+2JkZISqqipRUVHk5eUJZFU2lECWEAYHB4sDvSfCUOgyuG9tbcXf3x8XFxdevHghvJttbGw4f/48qqqqREdHExISwuTJk8W9Xb9+PX/99RfV1dXIycnR1NREZmYmiYmJJCYm0tnZiZWVlUiWdHV1MTIyYuPGjcyaNYv169dz7949goOD8fX1Fa4ODx8+5MiRI3R2drJr1y5Bm7p+/Xo3NPp9448//uCzzz6jT58+6OjodKM4yYSfEokEW1tbXF1dMTc3Jz09naqqKpqbm8VZI7vWhYWFQkwjey60tbVxcnIiNzeXV69eMXjwYBYvXkxNTQ1///03fn5+uLm50dTUhIqKClpaWmhpaYnky9jYmKioqH9VZFVWVvLkyRNxX3bs2EFoaCh79uwhMjISOTk50RWRPTtpaWn4+/vj6OjI7NmziYmJITc3l969e+Pj48NHH33E119/TXFxMc3Nzejo6KCvr8/bt2+Ji4tj2rRpLFu2jMbGRq5fv46CgoJwoLly5Qr79u1j9uzZWFlZ8ffff5OQkICRkZE4F9+HT/jPyM/P5/nz53R2dgqxVHV1NU+ePKG8vJyoqCgyMzPp16+fSGbc3d0pLS3tlpS4u7ujpaWFjo4Ov/32Gy0tLWhra2NjY0NxcTEqKio4OzsLGpmzszM3btxg165drFq1ShQ9FRUVVFdXc/bsWSwtLVFUVBTFclhYmEjUexK2trZoaGgglUopKCjA2NgYHR0dbG1thbVUc3MzDQ0NSCQSsQ/169cPExMTkpKSMDMzE+1uWedKT09P2E6Vl5cTERFBZWUlY8aMEeDU3bt3SU5Oxs/PDy8vL37//XciIiIwMTFhxIgRTJo0CWdnZ6qqqoiJiaG+vl5QUt43fvp/2DvvsCivrYv/ht57bwLSpKigICDYUOw9do0l1kmxJDHGNEtMNMWriZkYNfbYe+/YK1gAFZAmvffe5vtjMufKTW4iublJbj7X8+SZCMPL+w6n7LP32mt98QWzZ8/G398fHR0dFixYgKampoiXlBSohoYG7t69y7p163j06BHjxo0Tc7Z9+/bMmTOH/fv3M3bsWGbNmiXoNmlpacA/Lb2zs7OFLjEo1HGqq6vJzMykbdu2ODo6UlpaSkxMDNXV1c1ipOjo6OfSlW5x8FpbW8s777zDxYsX2bFjB6NGjRKbt7J89q98BUNDQ7S0tASnUlVVVchruLq68v777xMXF8e5c+coKSmhe/fuLFmyhMbGRoYOHYqbm1uzDJy1tXUzdy5QZCeeTaUreW4t5aF17NgRdXV1sQF+9NFH9OnTh4qKCmbNmsWDBw9YsWKFcKt41ufc19e3mZQSKDY05aaWnZ0t/MKrq6tpamrirbfews3NjeXLl+Pt7c26desAxalv/PjxtG/fns6dO6Ompoa6ujqrV6+murqatLQ0srOzf5NVnLKspmwu+OKLLygqKmL69On069cPPz8/Ll++zJkzZwgMDBQlU1VVVRwcHJqV1eLi4igsLCQ1NZXa2loiIiKIi4tj/fr1rF+/nkmTJtGvXz/69esnuFo7duwQg93V1RUVFRXCwsKwtramsbERTU1NkXHYv38/S5YsaVHTnRKvv/46H330ESoqKhw7doy9e/eKBrw9e/Zw+/ZtZs2axVdffSXUFACGDRtGWFgY+fn5NDY2kpWVxZ07dzAzM8PR0VEEFEuWLEFNTU1kmb/44guePn2KiooKa9euFdIhW7du5dixY7i4uGBpacnu3bv5+uuvOX78OB07duSrr74iMjLyZzU2/x2WLl0qNqHKykpOnTpFZGSksBpWil2PHTtW2C2DgpNXXl4uOEnbt2/n2LFjqKqqUltby6NHj0hMTMTFxYU2bdrw6NEjIVczdepUJk+eTFRUFEeOHGHEiBG0bt2ayMhIzp49S69evfD09OTNN98kNDSUJ0+ecPToUbKzs5k/f36L/4Y6OjrY29sLvc4uXbqgo6Mj1gJTU1M2btxIVVWV+Nq7775LQUEB33zzDZ06deL777/HxsaG999/nyFDhjBp0iSWLVvWTO917dq1fPrpp4AiYC4sLMTZ2ZlBgwahr68vaA9KKMu9YWFhgvL0W3Dt2jX27t3LP/7xD7y8vGjfvj0FBQXCavH27dscPXpUdAMr9SXV1NR46aWXRAPZZ599RlFREerq6qLUt379embNmsUXX3zBjh07OHjwoNBz1NTUFFkWMzMzSkpKuHjxIidOnODx48fI5XKMjIxEIJednc0XX3zB9evXmTFjRoueMSEhgaamJhwdHbG2thZZVEBosyp5hc7OzixdulQ0HsrlcsrLy4XGqbe3N1988QX19fWkpKQQGxsrBOJv377N6tWrqays5LPPPqNt27asXbuWDz/8kBUrVjBnzhy8vLx+9pCoVFD4V4rY88DNzY1169ahoqLCwoULCQoKIjo6WpTtx48fL3SlHz9+zK5du4QyS6tWrUSJPCIiAj8/P4YPH86UKVOQSCQsWLCAvLw8QkNDCQ4O5tatW0IH98KFC1y4cIFNmzYxc+ZMQTUpLi7myZMnXL9+nfr6er799lscHR2ZNGkS9fX1fPfddy0+KHt4eNCvXz/s7OzEXpaamsrixYvJy8sjKCiIGTNm0K5du2Z78M+5eDk4ONCuXTu6du3KpUuXKCsr4+nTp/j7++Po6IiOjg4xMTG4uLhgYWGBiYmJkKGLi4vDw8NDUBVzcnKorKxk9uzZyOVybty4wdtvv839+/eZOXNmi57x9ddfBxTap3l5eejq6tK3b1+6d+/+k74JY2NjQkJCOHDgABKJBC0tLZqamigsLKSiokJUG5Saqsq1NTU1FTU1Nbp3796MghEdHU1sbCwmJiZcuHCBjRs30qFDB7Zv395MYvDOnTtMmDCBmpqaZqpDz4OUlBTu3LnDsGHDeP3115vxdGNiYsjPz6dbt26kpaXx7rvvCpWOZ6twnp6e/OMf/0BdXZ3PP/+crVu3kpiYyIkTJ4iLi0NNTY158+ZhaGjI4sWLhULP119/zbRp04iKiiIqKoru3buLtWXo0KHs3LmTjh07iqTEgQMHWLt2rTis/Du0OHgdOXIkxsbGgmv0bEm8sLCQ9PR0XF1dycvL4/z58/j4+ODt7c3ChQuFoH5mZiaNjY3o6uqiqanJ+PHjyc3NFafjdu3aoaqqSlhYGJ6enhQVFXHp0iXu37+PiYkJ/fr1w9HRkfr6en744QeysrKYNm0a5ubmJCUlkZaWRvfu3VscuMI/vbA9PDyIj48X11BK7ejp6YkmkcWLFxMZGcm4ceN49OgRpaWlfPLJJ+jq6nL27Fl27dqFubk5ffv2pWvXrkIaQy6Xo6urKyZ3hw4dhIuPEgYGBhQUFAhNxLNnz7Jz507eeecd3N3dheLBb3GhUnJNWrVqRVlZGd26dSMvL08sPDo6OrRp04aGhgbR2PTqq68ycuRILC0t0dfX59GjR1y7dg0dHR0+/PBDYmNjuXDhgqCFNDQ0cP78efFZFRcXc/nyZdG9riyjBwcHExwcLE7bTU1Noou2sbFRNP60BEod22d5emZmZqL0Gh0djYODA2+//baYnErXEKWMUkJCAg8fPmTUqFF0796dwsJCduzYgYqKCpMmTeLNN98kPz+fTZs2cfDgQWHS0K1bN6ZNmyaMFkCRMbKwsBCHvPDwcB48eCD4yvr6+nTo0KFF2UllE6SZmRkpKSl89dVXlJeXs2jRItzd3UWZSqm6AYpDX15eHjU1NUIQ+8CBA5w9e1aIe5eXl9PQ0EBcXBw5OTloa2szePBg3njjDSG9ZWJiQrdu3Th06BCNjY307NlTdFJbWVlRW1vL6NGj6dixI7q6ugQFBYlAvqVQimOXl5eLDmdAyHypqqqKsXPx4kXRxayUN/v0008ZNmyYyM4+fvwYqVRKQ0MD4eHh+Pv7izELCg5jfHw8eXl5eHp6MnPmTNzc3DA0NBQ0EqW1p5Iu5OrqSkNDQ4tpA7m5udy8eZO5c+cycOBArK2tCQgIEKXWPn364OnpyaFDh7h06RKpqaki0759+3YyMzPJzMwU87a+vp63336bwMBAnj59SufOnWnfvj1nz54Vn8/KlSsZNmwY06ZNw9/fnxMnTvD+++/j4ODAkCFDmDhxosiIGRoacuTIEa5fv463tzfBwcEtbp4sKytj3759jBw5ksrKSlauXImamppwCnz06JFowFJ2/T+LmJgYjh07RnV1NSNHjsTNzY29e/eSlZXFwIEDyc7O5rPPPiMjIwNfX1/c3NyoqKjgiy++YPPmzc0yt1paWly+fJmPP/6YyZMn4+bmxrvvvsvZs2f56KOPmDx5cjOt4OfB9OnTMTIyor6+ntOnT6OpqYmTkxNffPEFWlpaolKTlJTE2rVrSUhIoF+/fgQEBJCbm8vWrVv57LPPBP3Ez88PHx8fgoODcXd3x8bGhtDQUMHTBYUhyeeffy4yjHfv3hV6s4GBgSxatIiAgAC0tbVJSkrC0NAQHx8fnJycMDExERJzzwsrKyvMzc2bdbhbWVkxatQoKioqCA4OpkOHDuTm5rJjxw4R+JmampKRkcGxY8ewtrYWNJD8/HwhfXnq1ClSU1Px9/enbdu2JCYmsmrVKh48eIBMJuOVV14RDo5FRUWAQv/cx8eH3NxcvL290dbWpqysjMOHD2NmZsZXX33VYkk3UJjbGBoaoqmpSWFhoai+KGFtbU11dTWbNm2id+/e2NnZcfnyZQ4dOsTnn3+Oubk5hoaG/OMf/0AulzNu3Djs7e1JS0sjPz8fQ0NDvLy8OHHiBJ9++ilz5syhR48e1NXVcffuXWJiYhgwYACjRo1i1KhRmJmZsWbNGhITE3nvvfcIDg5m9OjRFBUV4eHh0aKx+sEHHwgFCyWUlEAdHR2hS6+pqSkOKj179hTN2pcvX8bAwID27dvz8ssvU1JSgoeHB1paWmhoaKClpUVoaCilpaVCu9fc3JwZM2bw2muvAYrDaU1Njaj6gSKx2djY2KxnIC0tTdjm/hJaHLy2bduWqKgokpOT8ff3F1m59PR0srKyRHaqurpadB8aGhri6OiIubk5DQ0NokO+vLycjIwMhg4dKnTLfvjhB1q1asXUqVPp3r07UVFRXLt2jbq6OuF5r6enh6Ojo3CNiY6O5tSpU/Ts2ZPc3Fzq6+vF6aelHbIZGRnY29vj5+eHmZmZcCRRWradOnWKS5cuYWRkxN69e0lOTqauro4HDx6grq5Onz596Nu3LwUFBdy9excNDQ0hP6TsxtfT02tWukxLS8PExISKigpKSkqEPe2gQYMYMGAAampqXLt2jTNnztC1a1fRKOPp6fmbtPu6du3KsWPHROChlJRKSEgQWbdWrVrR1NREaWkp6enpFBQUNLOzrK6uFvSJcePGYWdnR2xsrPi8zc3N6dGjh/id0dHRnDt3Dj8/P3r27Eltba0oMaiqqlJQUIC6ujqGhoaoq6sLAXElD62ljjA6Ojrk5ORQVFQkOmQDAwPJyMggKytLlCqbmpo4f/48J0+epLS0FHd3d9LT09m7dy9Xr15FXV2dkSNHsnnzZo4fP46ZmZnIAI4dO1Y0elRXVzN58mRGjx6Nm5sbjY2N5OXlCamnPn36UFVVRWZmJv3792fy5MmiCUrpeNYSnDlzhri4OFq1akVCQgLR0dG4uroSGBgoZHRUVVUpKSnh4MGD3Lp1C1dXV3R1dUUG7MaNG5w9e1ZUKGxtbUVXa3Z2tuDsvvTSS4SEhLB27Vr27NnDsmXLGDlyJF988QWnTp1i+PDhtGrVip07d7J+/XqGDRuGTCYTlqnKikJLG7aKi4tFc6YyQFXyvXR1dWlqauLgwYNYWloSHBxMVFQUX3zxBd9//z1Tpkzh2LFjrFmzhqqqKkaMGMHgwYPZtGkTN2/eRE9PD3Nzc/T09OjWrRs6OjpcvHgRMzMz2rZtK3QIw8PD8fb2pqioiJSUFFxcXPD29sbZ2Zk9e/aQnZ0tyo0tbdry8vLCxMSE+/fvY2hoiKenJ6GhoWhqaqKmpiYyD8OHDyc8PFwE6xUVFdy+fZvIyEhB2SopKUFXVxdLS0u6dOmChoaGyLYrXYCUCiwNDQ3CFnXlypXcv3+fr7/+upn6gVwuJyIigu+//56MjAy+/PJLunXr1uK/oTKQbmhooLGxkR9++IHa2lpeeeUVDA0Nyc3NpXXr1qKCVFlZKTJVcrkcCwsLHj9+zKFDh8jPz+eVV15h1apVlJSUMGvWLPT19Xny5Al6enrMmTOH0NBQrly5wsaNGwkMDGTw4MGiBwMUa9ymTZvo1KmT0Gs2MjLi9ddf/0mG/XlgbGzMjBkzuHXrFtevX8fc3Bw/Pz9sbGzQ1NQUmcqGhgYsLS3x8/MT0m2lpaVkZWVRX1+Prq4u6urq5OTk4OPjQ3FxMbm5uUIH+u7du4K2oVTTCQwMpLGxkdatWxMdHY2enh49evQQ625BQQGjRo2irq4OPT097Ozs+OSTT/joo49adAhRyvCVlpZSWloqsvL/SrFQuk6ZmZmJz1JbW5uGhgahH33r1i127NiBhoYGVlZWWFlZCf1gpX1qdnY2ly9fFvrKI0aMoKysjKKiIm7fvo2Ojg52dnY4OTkJKckLFy5w5coV+vbty2uvvdbicZqXl0dVVRUODg6oqqoSExPDqVOnsLOzw87OTsQnd+7cISoqCkNDQ7p27cq2bdv4/vvvMTEx4f333xdJgOvXr5OdnY2ZmRn37t3D1NSUkJAQDAwMuHDhgnAOCwkJoVu3bkK7XskNtbKy4vbt26xcuZKSkhKCg4MZOXIkq1evFvesPJQ+D3r16kVVVRX37t3D0tISGxsbqqur2bp1K8OGDRP23cbGxqLZEBTz8caNG5w5cwYdHR0yMjIoKCjA29ubIUOGYGNjg6mpKTExMUIWLisrCycnJ6ZMmcLcuXMBRROh8u+tTHg2NTUxdOhQPD09hV5sQ0ODoAv9GlocvF68eJFvvvkGExMT0Thx9+5d9u3bh6mpKQMGDEBVVRU9PT0mTJjAiRMnWLJkCU1NTaIrvUuXLvTr149PP/2U9957j0mTJvHSSy9x9epV9u7di4qKCvX19Tx48EAMjIkTJ5Kfn8/169ebkaRnzpxJ9+7dhS/vvHnzGDduHFVVVeTk5LRYzNfAwIC0tDSKi4vR1dVtxmMzMTHh0aNHDBo0iEGDBrFs2TIuXbrE6tWr6dChA0uXLqV9+/bk5+cTGBjIihUrAISfNyhkM2pqajAzMxOuJXl5edy4cYPa2lpKS0vp3LkzRkZGLFmyRJSyBg8eTMeOHenUqRPm5ub079+/WSaqJWjdujXh4eGiGe7Z51NmPnJycoiMjOT+/fvitba2lsmTJ/PJJ58I3bkNGzbw+PFj5s2bx+jRo7lw4QIlJSW8+uqrzUojQUFB2NnZcfz4cXr16kVBQQEDBw5k9OjR5OXliUY35em8tLSU2NhYbGxsCA4OblHwqixFfvDBB1y9elVomJ4/fx47OzsCAgKQyWS88847dO3aleLiYs6ePYuenh4dOnTA19dXBAWxsbE8fvyYCxcu4ODgQI8ePTh+/DgbN25k8ODBLFy4kIkTJ5KWlibMDS5evIi+vj5VVVWiCcHa2prvv/+euLg4PvroI1EiiY2NpaSkpJmj0PMgJiYGZ2dngoODsbOz48GDB6ioqJCSkkJFRQVpaWm4ubnh7u7Ot99+y549e7h06RJVVVUEBwczYsQITp06JSg+rVq1orCwkIyMDCQSCUZGRjQ1NZGUlMR7770nGmA+/fRT3nnnHUARVLVv3x5bW1uxsfbv359XXnlFVCyys7OxtbVt0bMpsW3bNrZt28b8+fOF9F5ubi4WFhYYGhpSX18veICenp689NJLGBoaiqDPw8ODqVOnsmDBAmpra/nyyy9JS0vD2dmZzz77jPbt21NRUYGPjw8eHh6cOnUKiUTCO++8Q0pKCh9++CFHjx7F3NwcJycnYfH8+PFjocDg4+MjGoE0NTWJiop67ucLDAxk+vTp6Ovr06VLFywtLdHV1f1Jc5S9vT1r1qyhqamJxsZGDA0NmTFjBmFhYRw9epSDBw8CiurC8ePHOXToEIaGhkybNk1kzb28vESgDgp5vKVLl5Kbm8s777zD8OHDSUtL48iRI6iqqtKpUychSJ+cnPyTjOjzYvz48RQWFqKmpoa5uTleXl7U1tairq5OVVWVMGNQQkdHh8bGRtEDMWLECMaPH8+hQ4d4+vQprq6uDB48mHv37mFoaIi1tTVnz57l0aNHosTq6enJ8OHDad269U+UA5Qla3V1dVRVVVm/fj2pqak/W+J+HuzcuVNYso4fPx5zc3Nu3LjBe++9R4cOHYRigrW1NfPmzWu2KRsaGiKVShk0aJBY7548eUJoaCgNDQ3C+vX+/fsi6wiKhprXXnsNR0dHUlJSKCwsFBJ2SkRGRrJ7925MTExEFlaJltptKzPXK1as4MKFCyxdulRQIZ6Fvb09EyZMaPZZmpqaMnPmTCoqKoiIiGDTpk08fPgQUFAIlDJ0CQkJrF+/Hn9/fyZOnEhSUhKTJ0+mR48eLFy4EDs7OzIyMti/fz/nzp1DU1OTPn368PLLL+Po6IiZmRlubm5kZWUJi+iWwMzMjOrqakER0NHR4fTp09y6dYu33nqLAQMGsGzZMiIiInj99ddxcnJi7969hIeH06dPHy5fvsy6deuYPn06Y8eOpXfv3hQUFPDkyRNsbGyEhXvr1q358MMPmTNnDmpqaqIfZPfu3QwePJi4uDhKS0uxsrLC3t6eTz/9lMbGRjQ0NMjJyWmxvqsSy5cvJzMzkx9++AF3d3cOHDiAu7s7vr6+zbKxzwaOJSUlSKVSrl69Sr9+/bC3t+ebb74ROs3GxsZMmDCBUaNG8ejRI9atW8f48eP55ptvxHxVHg6VFT1tbW3hevpsNh4UgfKVK1eorKx8Lu75b7KHPXDgAL179xZZSS0tLbS1tenQoQOmpqYkJyeTk5NDcHAwL7/8MnFxcSxfvhyJRMKqVavEqUy5ASllmO7evSs0IT/77DNsbGxwdnbm9ddfx9LSUmRtlT9fVlaGgYEBfn5+tGvXjrNnz/Lw4UOampqaaSO2BFZWViIb9iwPEhTZ5adPnwIKrtPgwYPR19dn586dTJo0qVkJX7nhAUK43tnZWUhJODs7C0kIpSxKQ0OD4AR5enqK+29sbMTX1xdfX18hAK+vry/4T78Fbdq0oU2bNhQXF1NUVISJiYkosyuNAp4+fUpNTQ0aGhpCbSE5OZmNGzfi4eFBXV0d0dHRREdHExAQwKRJk3jrrbfYuXOn4KUps3qmpqa0bt0aGxsbCgoKaGxsFFaOSk6f0onk0KFDXL58GR8fH2Ht2hIcPXqUJ0+eEBkZiaGhIbdv3+b8+fNs3LiRzp07ExYWxs6dO7l69aoIQJSSZp6enrRr1w4nJyfRqFdWViYCNaVVodIxJjk5WVhqKiVtYmJihBh1dnY2N27coK6ujtu3b+Ps7NwsmHv8+DGPHz9u1oX8PFC6SJmbmwt5pdLSUuErnZCQQE1NDTY2Nvj6+ormqzNnzvD06VPKy8vx9fXlpZdeIiMjA3NzcxFIPwulpmtpaSkLFiwQgeuaNWvo2rWr4HzevXuXe/fuMX78eGEycv/+fWFS0VKNV1AcprS0tDh58iQuLi7CnhEU1JALFy4I3cScnBwRrIJCAm3ChAkYGxtTWVlJTEwMHTp0IDg4mLZt2+Lv79+M46irq0tubq7ITjx58kQ0EhoYGIjMoFwuJzU1laysLHGt34rMzEzefPPNn5WhKikpET0EBQUFNDQ0iEA5MzOTpKQkwaFr166dUGV4+vQpcXFxAFy/fp3Tp0/j7+8vDDRiY2Opr6/ns88+48yZMwwaNIg5c+ZgZGREUlISmZmZwlQjJCSE119/nfz8fMrKysR1W4LS0lJat24trChfeeUVvL29xSZsZWXFsWPHMDIyolOnThgYGIhmR6Ufe0JCAn369BHWoK1atSI7O1vMZ2NjY3r37i2ycIWFhSQlJfH48WNycnLw8vISjUN+fn689dZbIqhtbGzE3t4eiURCUlISN27caNHzFRQUUFJSQmhoqAjCT506RVRUVLMDaVVVFXfu3EFDQwNVVVUSEhKoq6ujd+/ewnwgIyOD7Oxs6urqCAkJ4eWXX+bq1auUlJSQn5+PpqYmAQEB+Pr6Ci62qakpGzZsIDMzU4zn+Ph4Nm/ezMOHD+nUqRNGRkZUVFQIZ8WW0gZyc3PR0NAgLi6OR48eCZqNXC6npKQELS0tMjIy0NPTw9vbm5qaGk6fPk1jY6PocD948CDr168nLy+PgQMHYm5uTmZmJg8fPqS2thYNDQ3y8vKIiooShhjKg2lBQQF2dna0adNGSBpqaWlRVFREVFQURkZG+Pv7s3DhQqKjo7l8+XKLA3Sl/B0oAriysjLhiqWs8l68eJHY2FiCg4OxtbXl4cOH2NvbExgYiKqqKrdv32bHjh20adOGyspKMjMz8fLyEgoIx44dw8TERJgEXL9+nc2bNzNu3DgGDRrE1q1bOXPmjGhesra2ZtSoUYBiPYiNjSUuLg49Pb0WVwlWrFghYi1tbW3y8vJwdnbmpZdeIjY2ls8//xw7OzsMDQ0xNjamVatWZGRkCB3+ESNGoKOjI5Q4lI6AISEhoqlNQ0ODgIAAwsLC0NDQ4Pr164LPbm1tzapVq7h//z5jx44VjaC3bt2irKxMuFWqqanRsWNH9PX1f7VBtMXBq5mZGVZWVhgaGlJSUoKBgQFOTk7MmDEDCwsLGhsbef/994mOjmb9+vUEBQWxZMkSbt26xc2bN5sFlKNHj2b48OGYm5vz8OFDkpOThevClStXsLS0ZNy4caLEnpGRgbq6uuj+27hxIw0NDbz11lvMnj0bLS0tUlJS2L9//0+0ElsCGxsbbGxsqKysbMbpVYoO9+3bV8h25OTk4Ovr22wDampqQiKRiOzTN998w9GjRwkNDUVLS4vS0tJmROyysjIqKiowNTXFzc2tmX6fsrFGVVUVuVzOyZMniY2Npby8nGPHjpGfn/8TJ6nnRWNjo5AxUaK6upq4uDgaGhro0KEDzs7O1NfXU1NTg6WlJXfv3uXdd98lNzdXNHNlZGRw5MgRRo0axfTp06mrq2PZsmWcP3+et956i86dO1NaWkpFRQUODg6sX79elBDU1NSEt7iFhQUpKSksXLiQoqIijh8/jp2dndB0fF5cvnyZr7/+mvfff59p06axePFiocgQHx/P+vXrMTU1pW/fviL4Cw8PJzs7W0iHqKioCOeftm3bUlhYSHFxMfr6+owZM4YuXbpQXV3NkSNHkMlkWFtb8+WXXzJy5Eg0NTVZuXIl8fHxWFhYkJ2dTWpqKkFBQcybN0+cwkGR1SgrK2tx8BoUFMTTp08Fz87c3JzQ0FCMjY05dOiQsHdtaGgQJTETExP09PTYvn07MTExvPbaa6xatYqcnBx27NghFBaexeDBg5k6dSoaGhqCe/zxxx/zwQcfsHTpUpFBLi8vJzk5WXBAS0tLiYuLQ11dnaKiImJjY1ucNRg/fjy9e/fm1VdfpX///ixfvlyM9cOHD7N+/Xrq6uoYNmxYswqLMgvt4+PDgwcPePfddwUPFiAxMZHVq1fTqlUr0Xgpl8uxsbHh4cOHjBkzRsz1kJAQ0ZVeUVGBlpYW3bp1ayYDqERLD1knTpwQgYuS265cM1JSUgTP9fbt2+Tn5/Puu+8yZcoULly4IJwAO3bsyNChQ4WlpZeXFy4uLhw7dozi4mKOHDmCv78/paWlLFq0iEOHDgmpuO7du/PKK6+Iz65Nmza8/fbbwp1KT09P+Jw3Njb+Jimwo0eP0rdvX7Zv386dO3f48MMPm9mHuri48Pnnn5ORkcHatWuFuYe7uzvm5ub06tWL1NRUYZG6Y8cODhw4QGZmJidPnqSoqAgbGxs+++wz0b198OBBvvzyS/Lz87G3t2f16tVCe1ypZOLg4EBhYSELFixAV1eXBQsWcObMGaRSaYsaC8ePHw8gArQlS5agpaXF1q1bmykr5Obm8tprr5GVlUWHDh148uQJJSUlpKWlMXXqVMrLy2lqasLQ0FDI+clkMg4dOsS2bdu4f/8+ZmZm9OrVCzU1Nb7//nsmT56Ms7Mze/fu5cGDBwwePBgHBwfu3LmDrq4uU6ZMwcfHB09PTzIyMlizZg03btxg+vTpzXjev4Y7d+7g6uoqmgSVWTGlO1ltbS23bt1CX1+fwYMHc/bsWcEFHjBgAPHx8UI/ecKECchkMvT09Fi7di3Xrl1DLpcTHBxMYmIiKSkpHDlyhKFDh/L111/TqlUrcdCQSCRMnTqVadOmoampyZMnT8jPz6eqqgojIyPatWsnMuvLly9/7ucDOHnyJBMnTkRVVZW6ujoyMzMJCgri1VdfFTSwXr16icoBwKhRo1i0aBG7d+8W2dgJEyYQExODh4cHgwYNEvP7wIEDzJw5k6CgIJYtW0ZVVRVLlizhwoULQi9/woQJDBgw4GdL5kZGRmhra/PVV19RX18v1CWeF5qamnTv3p0hQ4bQq1cvzM3NRVb09u3bfP3114SHh/PSSy+Jyp2GhgYvv/yyyNAmJCTQtWtXgoKCaNeuHWVlZZw/f57Ro0fz8ssviyocKBw627Rp0yzjf+DAAa5cudLM9OjLL78kMjKSr776igEDBtCzZ088PDwwNTXlzTff/MVnanHwGhISIviCdXV1XL58GblcLsS+09LSOHHiBKWlpYJXo+xOe/z4Mffu3WPKlCmiZAaKAHDZsmUcOXIECwsLOnXqhLW1NYmJiWzevBkPDw9cXV1ZtGgRHTp0QE1NjTVr1rBo0SKCgoKYPn06mpqatG7dGgcHB4qKipg7dy7GxsYtEpwGxQmnrKxMbPRK/caHDx9iYmIi3FGU0NXVJT8/n127dgl3EQMDA8aMGYOdnR2lpaV06dKF/Px8YmJiBKn+zp07gpPk4+ODiYkJbdq0YcCAAVhbWwttSWUTQ2NjI4WFhXh7e/P06VP2799PYWHhTxzAngelpaXo6+sjk8l4/Pgx06dPR0tLi40bN2Jpacn48ePR1tZGIpE0c78CxQZXUlJCbm4uvXr1YvXq1cJ6cdq0aaxatUoIbSttGXv27ImhoSENDQ3cvn1bNIkpg4JnCdxKiohS5ghopjTxPOjevTsFBQW8+uqrWFlZNft5pQSKnp4eTU1NxMbG0tDQQENDA8eOHcPS0pKAgAAhzHz9+nWKiooICAhoVt5UlpCzs7PR19dvZvMaFxdHQkICcrlc8FqVlAQ1NTU+/PBDjIyMmDlzJiNGjCAgIAATExOOHTv23M/o7OxMamoqu3btora2ltdff11kB5VBR3R0NLt27eLu3bsMGDCA1157DS0tLW7dusWDBw84ceIEU6dOxdbWlsjISFJTUwEYMWIEHh4eVFRUMGrUqGb2tcq5/f7779OxY0fh1lRRUcHbb7+NiYmJ4HZfvXqVzZs3izLub2miMDc3x8PDg71797Jw4UJsbGzw8vLi6NGjRERE0KdPH8aMGYOVlRUZGRmicmNnZ0dSUhJ37tzByspKGImkpKRw/fp1mpqauHDhArGxsSxduhR3d3fCw8N5+PAhpaWlBAQE0KZNG2pqaoiMjBRld1Bko5WL8uXLl9m3bx9DhgxpxvF+HtTV1bF9+3a0tLSE1XOvXr1wcHCgoqKCffv2ce3aNfH+gwcPYmZmxvnz51FRUaFt27ZCk/HBgwdYWlrSv39/5s6dy6uvvkp0dDROTk6UlJQgl8vp0KEDd+/eFWXmHj16NKP21NTU/CSjc+fOHZKSkujVq9dv4oRaWlqioqIiJJRu3rxJXl4ednZ2tG/fHn19fYYPH05mZqb4fJVc5qtXrxIcHEy/fv3IzMyktLSU7OxsUXZu164dBgYGJCcns2XLFtLT04mIiKCkpIS+ffty+/ZtioqKmlGjLl++zKlTp2hqamLQoEGEh4ezfv16Jk+eLA6mLYFyzt24cYN58+aRmprKwIEDReB6/fp1rK2tcXFxYcyYMaxZs4aIiAg8PDzo06cPFhYW3L9/H2tra8LDw0lPT2fXrl106tRJBEvKbHBZWZkwPXB3d8fJyQkNDQ1CQkKaUb6U1Z3g4GCR+dLT06NXr15069aNoKCgFimbWFlZYWRkRFhYGNra2oJLrZSqVFVVxdLSUtAF1NTUKCwsFHrsSnWDwYMHM3/+fNEUef/+fTw8PPDw8MDd3V0kKu7du0dgYKBQAKiqquKdd97B2tpa2MrfuHGD7OxsBg4ciLq6OhkZGWzevJnQ0NBmNL3nRU5OjmhyVZpBPCuDmJycTKdOnSgrKyMrK0vwyOPj4zl+/DiDBw/Gzc1NHD6HDBnCkCFDyMzM5MiRI2zdulW4Ga5cuRJVVVUuXbokNOoBYaji7++PRCLh0aNHNDQ00KZNG3R0dIRlt6GhYYsPkr6+vixfvrxZNcDExEQoIPn5+REaGkrnzp1RUVFh69atHDx4EHd3dzQ0NKivr0dfX5+33nqL6Ohorl27RmNjIzY2NmRnZ+Pq6kqnTp2Qy+UUFBRgZmZGcXExa9asIS0tDQMDAzp27Mjo0aNF8qasrAwPDw+RuFJC2Uf1a2hx8Orr6ysyMOXl5Vy6dIn8/HxsbGxwdXUVVq83btwgOjpaiO8HBwfj4ODArl27hPWoskT70UcfCcvDQYMGMXr0aBISElixYgUHDhygvLycb7/9VpS6z507x6VLl1BXV6dz587o6+tz7tw5kpOTmTZtGpmZmXzyySc8ffqUwYMHi0zt80DZmGFhYSGySkrnMC8vr2aLPShKf1FRUSQmJpKXl0daWprQGQQFh3b8+PE4Ozvz/fffM3r0aHr16sXYsWNZuXIl7du3FyLgxsbGIqArKCgQGnZNTU1UVVVhYWGBhYWFcFXy9PTkrbfe+tUTys89o6Ghoeg29/T0RC6X8/XXX9OvXz9xPWU2UOmAY2xsTE5ODrq6unTr1o2wsDAsLS2ZNm0ahw8fZv/+/WhoaAhOYmlpqSB7jxgxQnSfrlixgvbt27NkyRJCQ0PR19dHIpEIPt+7774LKLLO6enpzQwAngc9evQQmZaioiJCQkK4du0ajx8/JiAggAEDBrB7927OnDmDr68vqampXLt2jbS0NMrLy4mNjcXR0REbGxtyc3M5d+4cSUlJDBs2DFNTU+FKpq+vT1BQkHCDa2pq4sCBA3zzzTfk5OTg4OBAfn4+eXl56Ovro6amxvXr1/n222/FZqbUIm6plbFEIsHS0hIjIyOx8Cqho6ODra0tFRUVYuOwsrKid+/e+Pr6cunSJY4dO0ZhYaHoUra0tBRGIosWLRIZsLy8PEH9ePDgAQ8ePCAgIEBwUN9++22++OILevbsyfHjx5vxNTMzM1m7di22tra/qYkCFBnRAQMGEBcXx969e/nggw9YuHAhLi4ueHl50a9fP1HFSEpK4v79+wQHB6Otrc2pU6dQUVFh1apV1NbW8o9//IPt27cLvdoDBw7w7bff4uDgwHvvvYezszNubm64urrSu3dvNDQ0hHSOlZUVdnZ2NDY2kp+fL7LIsbGxfP3115SWlooD/PPCz8+PHTt2YGlpiZubG1VVVcTGxuLg4CCy9aBQoygvL+fevXts2rQJe3t7Dh8+zIABA0hKSmL69Oncu3ePXr16YWtrK5pMunfv3sze8v333+ftt9/m8uXLPHz4EAMDAyFeDoqgMS4uDiMjI4yMjEhLS+P06dMkJydjZGT0m4KCoUOHoqqqipOTE506dWLOnDns3LlTZLR0dHQYPnw4dXV1IqOloqLCrl27uHXrFvv378fJyYk5c+bQ1NREeHg4jY2NREVFERwcTEhICPn5+Rw4cEBQWnr16sVLL73EmDFjePr0aTN6iKWlJZWVlURHR4u9Jicnh/nz5zNp0qTf1FgICkqZubk5hYWFuLi4kJubS1lZGY8fP6a+vh4nJyc+/PBDWrVqxTfffMOsWbOYPHkyJSUlJCcnCzvYx48fExsbi6qqKqGhoaSnp4vgW09Pj9raWjw9PRkwYACamprU1tY2a7ABRFlaiSdPnhAdHY2dnZ1wamwJlPt9VVUVDQ0N1NbWCtWLxsZGjIyMmnFg1dXVCQwM5MqVK+Tm5jJ8+HDGjBlDv379UFNTo7q6mmXLlnHt2jWGDBmCm5sbSUlJosn36tWr3Lt3TzQPNzU1cezYMVRUVBg+fDhPnjxh/PjxDBgwQPDbIyIi2LNnD2VlZb9pnNra2qKurk58fDwXLlzAyMgIiUTC7du3efToERKJBH9/f1HONjMzw9bWVki63bp1CzU1NUaMGMH777/PiBEjqKys5KuvvuL48eO4u7szZcoUbt++zb59+wBFkObg4EBISAipqamsXr2a0tJS0TyVlJSEnZ0d+vr65OXlERERQUJCAoMGDaJbt25cv379uZ/P09NTJPYSEhJwcXGhpqYGKysr5syZI8ZMTU2NoK48fPiQyMhIDh8+TGBgIC+//DIeHh4cPHiQ7du34+vrS5s2bYiPjxd0HiXF5ebNm1y7do0NGzZQUFCAtrY2mzZtEjSIR48eUVBQwFtvvYWBgQGpqancvHkTb29v9PT0nquK1eLgVckNsra2Rl9fnx49evD06VNxGtPU1GTq1KlER0fz9ttvM3v2bF599VUuXLjApUuXCAwMRFNTk9OnT/Pdd9/RqVMnzpw5Ayg0Gj/55BMArly5Ql1dHeHh4ZiamjJ+/HgGDRrErFmz8PT0ZOLEiUyZMgVvb2/Ky8vR1tamXbt2aGtr4+7uzmeffcbmzZt/kjn8NVRVVaGqqtos3a3kfz2rqZqens4XX3zB9u3bUVNTw8vLiy5dutCuXTtcXV1F6r+iokJweZWBKygySq6urjQ1NZGZmUlFRUWz8r2FhQXa2tqicU05iJWE6tdffx19ff0Wl5vhn/Zrr776qsiw6ejosGzZMkxMTIiMjBTSYFevXmXVqlUcPXoUPT09rK2tBV3kwoULQit24sSJhIaGsn//fjGJld2lH3zwAbm5ucycOZOhQ4eSlJQkTBi2bt1K165dmTBhAoaGhjx+/Jjr16/z8OFD8vPzhX93S3Dr1i3Cw8MpKyvj3r17hISEoKKiwooVKygpKSEhIYGUlBQcHR2ZNWsWNTU15OTk0L9/f3x9fTlx4gQRERGMHz+eqVOncuvWLc6fP8+XX36Jj48P6enpXL9+nVatWuHr60t+fj4RERGsXbuWmJgYcnNzhdyKkpOsp6eHtrY2gYGB2NjY4OLigr29vbiutrb2T8Tzfw22trbMnj2bvLw8ysvLSUhIwNXVFWtrazw8PGjTpg1t27bl7t27YtwZGBgIX2krKyuuXLnCnTt3aGxsZN26dfj4+DQj8EdGRnL58mW8vLwIDw9nwoQJ/PDDD8ydO5eRI0cK85Bz586xbds2xo0bJ8b+gAED+P7775/7JP2vqK2tpampiYCAABYtWiSCaEdHRwYOHMjUqVObldh0dHSQSCSipK+UuFKuTb169aJHjx7o6uqSnZ2Nt7c3y5YtIyMjgwkTJtDU1ISXlxfp6eksXboUKysrxo0bx8SJE0UjzuPHj3F2dhYcYm9vb5YsWcKJEycICAhoUXCgpAk5OTmJzUNNTY27d+8SFRWFn58fH3/8MYaGhqxYsYI7d+6gqanJ2LFjhYKJs7Mzs2fPplOnTkJw/O7du2zZsgV3d3cRiCmbPZTZ3V69ehEdHS0Cn2+++QZbW1tqamrYunUr169fp6ysjJ49ezJ58mQePnzI9u3bW+wbr6amJtYsZTe3jo4O7u7u6Ojo0NTUxMaNG8nJyWHs2LFivV63bh3nzp1j+/btNDY20rVrV9zc3HBzc2PSpEkcPXpUBIPvvPMOaWlpXL58maVLl+Lo6MiyZcvo2rUrCxYsIC4uTugQjx07Fnd3d2EjXlhYiLu7Ozt27KBdu3YtejYlGhsbCQsLo0OHDjx+/Jh9+/bRvXt3wsLCmD17tkhIAKLKoqyYNTQ00Lp1a9TU1Dh48CDr1q2jf//+Ql5IV1eXefPmERERIfo/PD09OXnyJAcOHMDJyYnFixeL6z+rbV5YWMimTZs4fPgwmZmZyOVyAgICmD9/foufsaKiAm1tbeLj49m2bRu6urpIpdKfNESvWbOGU6dOkZGRASCaC5+lUGhra9OlSxfU1NQwMDDg4sWL3Lx5k+7du+Pp6cmTJ0/IyckhLi4OFxcX9PT02LZtG7du3WLv3r0cO3asWbX37Nmz3Lt3jwULFtC7d+9mDd3PC6XU4ZUrV/j2229xdXWlTZs2XL16lUuXLmFoaMiSJUuwt7fnyJEjXLt2jW7duokqhra2NlZWVnh4eCCXy9m9ezfHjh0jMzOTGTNmMGHCBEAxHzZt2kRNTY3Q+I6OjmbkyJE4OjqyZMkSsd95eXmJmMPCwkJQEw0NDVu8pvr4+LB582bS0tK4c+cO2dnZ9O/fn7fffhszMzOioqJ4/Pgxt2/f5v79+4SEhPD999/zxRdfcPfuXaKjo4WLWXx8PKDo19i0aRP6+vrY2tri7u6OtrY26enppKSkoKOjw+zZs7G3txcGDaCgW1hbWxMdHS3WvaNHj3L9+nU++ugjPDw8nqtBtMXBa0xMDBoaGlRWVqKjo/MTNx8lyVo5gdzd3XF1deXw4cPExsaydetW8vLyOHHiBPfu3aNLly44OjrS1NQkmj/S09OFTMU333xDfX09gwYNYtOmTYSGhhISEoKNjY0QBa6traVDhw7U1dVRWloqGlj8/f05cOBAi6zw4uPjuXr1KmFhYWLRcXBwaHZ6v3v3Lps3b2bnzp0UFRUJwrK7uzt9+vQhOzubvXv30qtXL+zs7Lhx4wYPHz4Ui8yBAwfQ1dVl4cKFQhNWS0urWVlOSWAvKytDR0cHXV1dCgoKiI6OpnXr1rRv357Tp0/zwQcftCizDIoFsaamBj8/P/z8/Dhx4gRGRkZCOubChQtigT9y5Ah3796lffv2WFtbU1ZWhqamJu3bt0dXV5dvvvmG6OhoTp8+zZQpU/D09OTgwYPo6+sL1xQdHR0uXLhAVlYW4eHhrFy5knv37rFt2zaRWVA2W2RlZfHxxx+TmpqKu7s7zs7OlJeXt0hAPCkpSXjX+/r6YmJiItxPcnNzKSoqQlNTk8DAQEaOHEldXR1GRkbC3nj58uUcP34cHx8ffH196dmzJ6dPn2bbtm0YGRmRmppKTU0NvXr1wtLSksOHDwuPZ2XJvry8nNraWhwdHdHQ0MDQ0BAbGxt69erV7GB07do1Tp48iZGRUYtKltXV1cKDW01Njdu3b6OpqSkOHY6OjqI8s3btWkpKSkTQnZGRQa9evdDU1GTnzp08ePBAWLwqm5/MzMyQy+UUFRUJj3JlcB0TE8MPP/xA27ZtmTVrFmVlZSxYsICFCxeio6PDmDFjyM7O5vz582hpaWFpadnizDIgsoaZmZlkZ2czZswYXF1d8fT0pLy8XFjtKmFvby9+n7m5OV27diUvL4/c3FzMzMwE/+zMmTPChtrd3Z1Fixbx7bffYmJiQo8ePUhISKCsrAxdXV3c3d1FllWZDbWwsBBi5AEBAcKnvaVOdzU1NUyePJm7d+9y9+5dxo0bh56eHnfv3kVPT4/x48czcuRIIiMjiY2NxcDAgOnTp+Pr60t8fDz6+vrY2NgI9RNQZIIXL17MkSNH6NatGxMmTEBfX5/q6mqKi4spKysjPT2dkJAQ2rZti56eHmfPnuXatWuMHDkSe3t7rl69ytGjRzEyMuKrr74Sph4//PDDbzIL0dLS4t69ezx8+JDx48fj4eEhvldUVMTbb79NSUkJPXr0wNnZmcTERGxsbERntoWFhbB+VX5u6urqYm4pqTvDhg1j4sSJZGVlUVxcLDiZdXV1wsbaz88PZ2dnjI2NqaqqYs6cOTQ2NvLVV18Jub+WQCnJWFtbi46ODgMGDCArK4vTp08jkUjEHpKQkEBmZiaenp7CfTEjI4P09HQhE/TgwQOuX78uqh6A+H9TU1MhQXXs2DGWLl0qutIPHjyItbU15ubmqKurY2pqiq6uLnp6eoIy1dTUxNOnT6msrGyxbraySblVq1bk5eXxj3/8A21tbVFdLCgoQE9Pj1u3brFy5UpSUlLEzzY2NpKSkkJwcDCVlZWkpaUhl8vx8/MTVKnTp09TXFws5CYDAwNp1aoVRkZGXLlyBR0dHQICAmjbti0rVqzAyMiIjz/+mIkTJ1JeXs7jx4/R0tISlMbfgvT0dJqamoiOjiYmJgZvb2+qq6uFu+OgQYPQ0dHhwIEDHD58mM6dO9O2bVsyMjKorq7Gy8uLVq1asXLlSg4ePEhJSYnoE1HSzZSUJWWz3dixY2nVqhVbt26loKCAZcuWCae90tJSwsPDKS0tFU5lY8aM4fLly0gkEhFAPi86duzId999h7q6On5+fty6dYvKykqKioqIjIxk9erVpKenC0pOhw4dGDNmTDNZO1VVVXR1dbGzs0NFRYWKigpu3boFKKpIwcHBXLlyhX379tGlSxfeeOONZoeW2bNns2XLFkxNTdHR0SErK4tHjx6hq6vLyZMnuXDhAtbW1syaNeu5+lx+k1TW7NmzgX96TgPcu3ePLVu2sGXLFsrKyggMDOTbb78V/NCQkBAGDx6MkZERd+7coaamBmdnZ0aMGIGamhqbN2/m8OHDXLhwgTNnzpCYmMjIkSOxtbVFW1ubDRs2kJ6eLhQO8vLyWLduHUZGRrzyyitoa2sjl8ublckMDQ2xtbVtUfAaFRXFqlWrkEgkQkj/X3XH3n//fU6ePMmrr76Kvr4+Gzdu5OTJk5SVlXHq1CnRIfrtt98yfvx4XFxcyM/PJycnh/3797N69WqmTJnCkCFDuHHjBg8ePCAwMJDOnTuL35Gens7u3bvx8fFh6NChZGdnExERgaOjo9BavXPnDocPH27xhqK001U+k1I6BhSZdSUVIzMzk0uXLuHk5MTWrVtxcnLi/PnznD9/noEDBxIUFERMTAyXL18mKiqKgIAAxo4di6qqKh988AFPnjwRNpeJiYlMnDiRxMRE9uzZg4GBAdXV1djY2DTbzJycnPD398fFxYVx48YJK9aW8CWVpHd1dXWRZdbW1hbNPunp6Tg4OFBTU8OjR4+E7m5paSlaWlrMnz+fdu3aERUVxccffyya7J4NXJVScU5OTqIM5OXlhbOzMxEREYCiLLR48WJ8fHxE6bW2trZZwDVixAiMjY1bvGlmZ2fj7OzM1atXOXv2LO7u7nh7e4v5+KwzirLhp6amhps3bxIXF4eNjQ1qampERkZSUFCAioqKWDxmzpzJ8OHD0dPTo0uXLgQGBgoayM2bN4XmsbJx45133qGqqko4rkRHR7N27VohWbN27VpRLmoJmpqaaGpqYvfu3dy+fZvJkyfj4+ODXC5n9uzZREREsGzZMmEIoaOjI0rgSpSWlpKZmSkW0XfeeQeZTMaIESMEb1kpF1ZUVMTTp09p3749ffr0oVevXhQXF3PmzBk6duzIsGHD8PLyIi0tTWSFlHNo1qxZTJgwQcjjPQ+USgGrVq1i7969uLm50b17d0xMTAgLC6Ndu3ZkZGTwySefUFlZyeDBg+nRowc3b95k3bp1TJky5ScH10OHDgkKlr+/v6BxtGrVChUVFa5evcr8+fPx9fVl2bJlrFmzhrNnz1JYWEhhYaHoYAeYP38+3t7ewpDm2bW1paipqRFr/rPIz88XJgvKNeiHH35gw4YNWFlZMXPmzGaHuvr6ekaOHElRURFr167FysqKTz75RNiNf/PNNzg6OrJ3716hBKFcB77++mvBXz527Bimpqbk5+dz6dIlNDU1effdd5s1kz0P4uLi6NSpE19//TUnT55EJpMxffp0goODxWevbPZ0cnJqVl1pamqirKyMJ0+e4OrqSmhoKKdOnWLlypWkpaWxfft2dHR0ePLkCXZ2dlhZWfHll1/y1VdfAbBy5UrGjh3L8uXLkclk9O/fn3nz5okxoampyYwZMwgPD6ekpARzc3PKysrYs2dPi54xPT2dxsZGWrVqhZWVFVpaWlRXVxMfH4+VlZVo8I2KihKNjvDPXoYlS5Zw5coVunfvTkREBNeuXaN///64urqKDJ2yabuoqKjZnJ47dy7Hjx9nwoQJTJ48mVGjRjF06FDc3d1FU61UKuXUqVNs3LiRgQMHirJ7S5CXl0dDQwOGhoYEBAQglUpFBnfkyJFs2bKFPXv2sH37dkAheWVnZ4dcLqexsREDAwMqKyuJiIgQ6jnK60qlUhwdHamoqCAqKop27dqxZs0aPD092bp1K3K5nCNHjuDt7c29e/cYOXIkQUFB9OrVi/T0dA4ePMiQIUPo1KkTR44c4YsvvmDQoEGEhYU99/N5enoydepUNDU1xX57+vRp5s2bx507dzAwMBDN+Lm5uaSlpXHgwAHS09Nxd3fHxMSE/v3707t3b2JiYli/fj13794VEm7Kfp3Lly9TU1MjjJeehVJqbP/+/RQUFIg5UlpaioODA0ZGRnz77bfIZDLRG/RLaHHwGhERgbm5OR07dhSBZFRUFGvWrCE2NpbWrVvT2NhIaGioyKSWlpY2u5GHDx8SEhJCr169MDIyYtSoUVhZWZGSksKWLVuEc0hJSQm7du0iKCjoJzyWvLw8IbGhXCSUgUpRUZGYRC3NSjo5OTF48GCRzi4uLubevXtoaGiIhiN1dXVWrVrF7Nmz2blzJ3l5eYAio/OsNe7p06dFJgUUC/W1a9fIzMwUFIczZ84QFRXF4sWL6du3r3D4AgV14unTp1hZWXH16lXRFKCEv78/b7zxhlAkeF4obSThn5kD+GdpSCke/t1331FcXIyenh55eXk4OTkRFhbGoUOH2LBhA6WlpcIJIyIigvDwcAoKCti1a5fwJg4KCqKhoYHi4mI8PDzE52poaEivXr0EyT8hIQFLS0ucnZ35+OOPycrKwtraWrh6tCR4VZa9le4tbm5u6OvrU1hYiLW1Ne3atWPq1KncuXOHgwcPcuXKFVRVVRk5ciRTpkxBRUVFiO5v27YNgBkzZrBo0SIqKiqoqqrCyckJCwsLYRurlDczMjLCx8eHhw8f4uHhgZOTE76+vjg7O1NUVCTGh1wup7q6WvC4ly9f3iLZs/z8fPT09EhOTqa6ulpM/mefPyIigvXr11NeXi7kW5QZ/jt37ggReB8fH/T19Xn8+LEg5ys7eP+14rB69Wo0NDQYMGCAkJNydHSka9euaGtrc+vWLS5evIiJiQlt27aloqICGxubFustK5/R2NhYyKgon0uZ0YqMjGxmdal0qklJScHe3p6AgABcXV3Jz88nPT0dNTU1ysrKaN++PQMHDiQxMZEzZ86QlJSEh4cHcXFxFBQUsGDBAtFMGhUVRWRkJPb29piYmODu7k5CQgI7d+5k8uTJIiur/MxaAuXaFBgYSHV1NXV1dVy4cIG9e/fSp08fdHV1OXjwIBkZGbz00kuMGjVK0K+MjIxEiT0mJoanT5/y5MkT9u/fL64vl8vF2qg81Dg4OCCXy9m5cyfl5eXC5jclJYWSkhJMTU0ZNWoUXl5eotQZGxtLv379mDRpEhcvXmzRM6anp3P06FFsbW3x9vZm06ZNgKJ5x8rKSpixyOVyQUno3r07u3btQltbG6lUirq6OkePHsXKygoXFxcMDAyIjY3lypUryOVyjh49Sl1dHQYGBmhqalJXV0dDQ4OQi9PV1WXUqFGYm5sTERHBzZs36dmzJ2+++SY9evRAXV0dMzMzoUPZEijHdW1tLfHx8Zw5c4bg4GBxsCsqKuLGjRtYWFjg6Ogo3CK9vb3R0tIiKiqKrKwsvL298fX1pVWrViQnJ6OiosKlS5fQ0dFBX18ff39/zM3NmzXwKS25QREIK/XVlQom9+7do7CwEE9PT0JCQgAFTWHevHk/OeT9Eu7evcuVK1dE0+n69evZuHEjV65cwd7enpCQENEr0rZtWy5fvgzAwIEDcXJy4uOPPxb6rtnZ2aSnp4uyd1VVFebm5hgbG5OamkpOTk4zhZ/w8HCSk5NRVVVtViovLi4mPj4eV1dXtLW1CQsLIz09nXXr1jUzpXheBAUFoaGhgVQqJSgoCEtLS4qLixk6dCgODg7s27ePQ4cOiferqKhQUlKCp6cnFhYWFBQUYGpqyuDBgzE0NKSyspLExERqamrIysoS2Wg7OzvGjRtHaWkpmzZtIi8vjz59+ojxUl1djbW1Nfb29qJh28DAgNzcXHx8fIRk2OrVq1sUvNbU1NCuXTvq6uo4e/Ys1tbW3Lp1i+PHjwOKmMDFxQVtbW0KCws5cOAAt2/fRkVFBUNDQ0JCQjA3Nyc6OlrsOco9Xnn/mzdvFs3qJSUl7Nixg86dO2NoaIiRkRF6enoMHDiQ+Ph4WrduzcSJEzExMSE1NZWRI0fi6+vL6dOnOXjwoGja+yW0OHjV1tZGJpMxcuRIITMTHx/PuXPn6N+/P998842wBr1+/TrOzs4iUwgIztjs2bOxtbUlKysLPT09+vbtK64fGRlJU1MTt2/fxsjICHNzc5ydncVCLJfLcXd357333hNST8rTu9LiTEtLC11dXdEk9rwICgpiwoQJaGlpUV5eLgKxmpoajh07Rk5ODp999pnIPisFd7W0tPDx8SE2NlZY3N65c4d9+/aJEmZMTAz6+vq8/PLLBAcHU1paypkzZ2hoaKBz586YmpqKxhttbW3s7e3Jz89n7969xMXFoaKi0ky/rnfv3oSFhYm/w2+BMnB99iBQU1PDrFmzOHjwIOHh4WhqavLxxx+zbNkyWrduTXx8PGfPniUyMlJo0lVUVPDll19y7NgxsTiNHz8eIyMjFi5ciLq6Oh988AH9+vUDFJu9MnCNi4vjzp07eHl54efnh4ODA+np6aKZRJkhawmqq6tZt24dhw8f5pVXXsHZ2ZkzZ85gZmbGhx9+iLe3N5aWlly5ckV4MCvJ/9nZ2WKTkEgkyOVyOnXq9JPs4cqVKzl+/DihoaHo6Ohw9epVtLW1GTt2LMnJyUJhwtraGmdnZwwNDUXw2tTUJHg9ytLas5znX0N9fT1paWn4+/vj7+9PQ0ODMC5Quk8tXryYBw8esG7dOgICAjh9+jTa2tq4uLhw5MgRioqKCA8PJywsDA8PD1q1akVtbS0ZGRliU2xoaBD3mZaWxrVr13B2dkYulxMdHc0333wDwPr163nrrbeYNm0ahw4dYuPGjcLu9rdQBpSfi7q6Ot26dROn+Lq6OioqKpg3bx6vv/46SUlJorFDWY158OAB/fv3x9vbm6amJlJTUyktLaVv376sWbMGFRUVJBIJq1evZsGCBVhZWQmemampKX369BH30KZNG7y8vJo1EMTFxYnudyX27dvHsWPHfpJZ/CUos3wzZsxg8uTJJCcn8/nnnwtTDVA02imd26qqqvj666/Jyclh4MCBuLm5kZuby6lTp9i+fTtJSUnNLLEzMzOpr69HQ0ODuro65HI57dq1Y8OGDbz++uvi5yZMmICNjY3INPXp04fevXsjkUiEI13Hjh0JDAxscfC6efNmVq5cydKlS/Hw8GDz5s1kZGTQo0cPrKyscHJyonfv3qiqqgp+X5cuXYTbmVI/c/v27Tg6OvLmm2+ydu1a1q5dy9KlS8nOzsbR0ZHWrVsTHBzMzJkzuXfvnuD6zp8/nx49emBkZISjoyNlZWV8+umn3L9/n02bNvHll1/y4YcfinHe0h4C5doklUrx8/MjNzeXY8eO0aNHD0H30tXVFdnso0ePsmzZMhYuXMj48eNpbGwkISGBoqIizp8/T2VlJRs3bqRPnz4cPXqU4uJihgwZIrLeb775Jk5OTrz88st89dVXxMbGEh4ezuHDh+nYsaPo2s7MzOTUqVMcP36cLl26sHz5ciGT92x29HlQW1vLgwcPuHXrFh06dCAoKIjo6GgaGhpE4K3ULz158qT4OaWm9pUrVzh48KCwDHV1dcXQ0JCMjAzKysrIyckhJSVF2C/v2rULa2tr+vbtK6gAz2asy8rKhOPYrVu38Pb2JigoiFmzZrFw4UJmz57d4mqkklJkbW2NtrY227dvp66ujkmTJnHo0CFGjhyJnZ0do0ePprq6mrt37xIfH094eDguLi7ExsaSmppK3759adOmDevXr6empobAwEBmzJjBpUuXOHHiBCtWrGDgwIFMmTKF+/fv891334nEXGNjoyi95+fn8+TJE0xNTXnttddEfAOKveNfs5q/hgsXLjBgwACOHTvGm2++SWpqarODWlFREbm5uT/hmqalpQk9/osXL7Ju3TqKi4vFYVhpsLB//36mTJnCp59+ysqVK5k0aRLz589n3bp1Ys9X4o033kBNTU1cQ6mt7+Pjw+jRo+nfvz9r16791WdqcfA6d+5cCgoKBE8HFA1NwcHBvPTSS6iqqoru0pycnGacn9OnTwu1gvz8fCwsLGhqauKHH35AX1+f8ePHM27cOK5evcrGjRvR0dGhW7duony/evVqLl68yPjx4xk+fHizQE7JG5k7dy66urpkZmb+Jmcf5cSuq6sjMTFR+Lw/fPgQFxcXhg8fTmpqKp9//jk9evQgMDAQmUyGkZER6urqXL9+HR0dHaysrFixYgU1NTXY2tpiZGTEmjVr8PPzY/Xq1RQXF/Puu+9SXV0ttG4BYZWanJwseImgsOW1sLAQ8lGgsFyNjIxs8TMePnyYjRs30q9fP2bMmAEoFgRl8FpVVcXNmzcBRcmkW7duXLp0iYKCAgwMDJo5K5WXl/P06VP09fXR1NRkwIABWFhYYGdnR3Z2NhcvXqS4uFhkc3bu3MmVK1cYNWqUmLSJiYmoq6sL4eqNGzfy8OFD+vbti7Gx8W/Sl1Tey7Nc4g4dOtCqVSt0dHSEm8fTp0+xtrZGKpUK7by6ujratGmDra0trq6u6OnpCX7XokWLSEtLo2/fvlhZWfHKK6/Qo0cPEhMTSU5OpkOHDvTt25czZ85w8+ZNzM3Nhb0iIJQzjIyMxGd//vx5XF1dSU5Ofu7nU1FRQUtLS0jBbdy4UXQDP378mF27duHo6MjKlSvx8/MjNjZWmAaoqqqSmppKbm4u/fv3JyAgQMwVHR0dDAwMRCCt1Iu1trYmPj6esrIyGhoa6NKlC927dycjI4P79+8LcflvvvkGb2/vZtmPCxcusH379hbrvCozkzKZjJKSEt544w3i4uJ49913GTFiBNOnT6d9+/Yi4EhKSiIlJYWgoCA6d+7Mtm3bWLt2LWVlZUKX+dkDgoqKCjU1NYIKYmZmRvv27cVcbGpqEtUcUGhBfv7559ja2vL555/Ttm1bqqqqOHToEGlpafTp0+dXhbWfhZGRkTA9UG7egwYNYujQoaK017NnT/T19Tlw4ADe3t5MmTKFFStWcOzYMYYPH05DQwOffvopxcXF9OnTh8TERNLS0hgzZgyTJk2ioaFBzOtHjx7h6OhISEgIp0+f5tChQ1hZWXHx4kXOnDmDiYkJ48ePx8rKSgTBEomEc+fOUVNT0+KgBxRZuxkzZmBnZ8e9e/cICAhgyJAhIqOvq6uLo6MjampqWFhYcPXqVQ4ePMhrr70m/laZmZn4+PhgZGTE06dPcXd3Z8CAAdTU1LB7925qa2sJDQ1lzpw5gEKLXEVFBT09Pdq0aYORkRFZWVmsXbuWwsJCVq5ciYqKinD8AsW6b25u/hN3s+dBbW0tLi4uuLi4cOXKlWbjRslDVx6OoqKiePLkCXFxcaipqTF//nwWLlzI4MGDycjIENxONTU1+vTpg5qaGurq6pw6dYqCggLGjx/PsGHD8PX1pVOnTly4cIFu3br9JEAwMzOja9euGBoaIpFIRAe9iYkJ8+fPF+v780DpVqaqqsqKFSvYvn07Pj4+zJ07l0uXLrF27Vo++eQTbGxsBD82NDQUAwMDzp07J2S5lAf44uJi4eSXkpLSzDRBmRm8fPkyffr0EbxmU1NTUlNTuX//PgMHDmTAgAFERERw4MABRo8eTUBAAKqqqgwdOvQ3HZZv3rzJ1atXsba2xsjISBj3KF0V1dXVcXNzE3rgr732mlCs6Nu3L2+//Tb79++nU6dOFBYWcv/+fcLDw1m2bBkdO3akb9++jBgxgvDwcNTU1AgLC8PX11c0neXn53P69GnCwsKwtrbGxsaGRYsW0bFjR6ZPn46qqipnzpwRtKQJEya0aO8/f/4833zzDb6+vkycOJHdu3ejo6PDpEmTyM7OZvv27cTFxREUFCScQuvr69m9eze7d+9m5cqVdO/eneHDh3PkyBHy8vJo1aoVa9asEdXRuXPnChvrWbNm4ezsTF5eHocOHaKurk5QAjU0NIT19CuvvEL37t25fPky9fX1TJs2jVdeeQVdXV2Rwf93aHHwqrQ3LSwsJDs7GysrK+EuUldXR1paGtbW1qIcCorFR3liV4pP19TUYG1tTW1tLatXryY+Ph57e3u6du3K8OHDUVNTw9jYuBkBOykpidOnT4ssrbIMqqqqyuXLlzlx4gQ2NjaMGTMGuVxOcnJyi0t5lZWV3Llzh6qqKiQSCb6+vsJ/esWKFcKbevXq1WzatIlJkyY1kybx8PAgNzeX3Nxc/P39RQk6NzeXmpoaoXG3YcMGDh8+jKOjI126dBGBeHp6uuAY2dvb4+rq2uzUmZaWhrm5Odra2kRFRbFp06YWlYBAoT2olIlSoqKiAnV1daGB2rdvXxITE/Hz86N169a0bt2a/Px8NDQ0RNAFigxnQkIC6enpmJmZiVR/ZWUly5YtE5Jf9fX1fPvtt5w4cYK6ujo6dOjQjApy+/ZtOnXqhIODA5GRkcKWU11dvZkMVEswZcoUxo0bJ3g4nTt3Ftnempoa1NTUcHd3JygoiIULF4qvOzg4iGrBs5vC5cuX2bNnD4mJiWhpaTF37lyRPSsvL6d37960a9cOOzs7PDw8sLGxoU+fPpSUlHDp0iW6du1KYWEhy5cvR0tLi7CwMFRUVLh8+TI9e/ZsUfCqdHgCxby4d+8ebm5umJmZER0dzalTp3j33XfFIfPy5cucPHmSkpISwSP39fVFS0uLmJgY6uvrhUuKUu8QEBrDyvKrra0tnTt3FhmnLVu2EBMTQ3FxMY8fP6ZNmzbMnDmTc+fOicz5gwcPOHbsmHC/el40NTVx7tw5Pv/8czQ0NBg9ejQaGho8efKEQ4cOMW7cOHR1dcXBIDs7m8TERMaMGUP37t25c+cO9+/fBxQUnI4dO9LY2EheXh5qampUVFQILm9dXR2DBw9uJqBdW1tLamqq0HSMi4vj3r17+Pr6Cj7loUOH2L59O4MGDWLmzJktklm6dOkS3bp14/79+5w8eZKwsDAx3pRKCyoqKuTm5rJ3714qKyuZPHkylpaWnDhxglOnTqGqqirG2fDhw4Wd9uLFi8UYLisrQy6Xo6KiwsOHDzE2NsbMzExQI/bt28eNGzeE1I2ynN/Q0CD6BfLy8kTzSkvQrVs3Zs+eTUJCAhcuXODDDz8Ua3pCQgI5OTmkpaUJlYa7d++ycuVK8vLykMlkonNZT08PGxsbampqSEhIoGPHjrz//vu4uLgwYcKEZn0NcXFxdOzYER8fH7EHPXjwgI8//phu3brx3XffAYpAqaioiPz8fFJTU0XFoiVoamoSCYbKykrs7e2pq6sjKysLY2NjysvLSUpKorKyEnd3d2EVraRbaWpqMnToUE6ePElGRobY25R/N+Xaf+bMGbZv305aWhoLFy7EycmJ0aNHc+jQIXHIy83NJSsrCxcXF8zMzOjTpw99+vShsrKSkydPoqOjQ5cuXQBaFLw6Ozvj7OxMTEwMu3fvJjY2lpCQEPz9/bl8+TLnz5/n0aNHODg4CHMdV1dXYmNjuXHjhtD9VGrylpaWiopsQUEBWVlZ2NnZCWUKFRUVqqurOXr0qPh7uLq6CvmxsLAw2rZtS2xsLLdu3aJ9+/biEKisRLVU7uzTTz/l4sWLtGnThrFjx9KpUyehVDJu3DhhRgEImpSSx6ykCZSVlXHr1i3q6uqwsbHhrbfeomPHjsIZVDm3y8rK6NKlC/X19ZSXl2NiYoKpqSn6+vpcvHgRX19fsSY/u/eVlpaSnJxMUFAQQ4YMaVHwampqyrVr14Ri09ixY8nNzSU0NJTExEQqKiqEi5+bmxtt27bF3NxcOKRt2LABHx8fVq9ezaBBg5g+fTrvv/++4Be7ubmxcuVKQLF2de3aVVSbjx07RlFRUTO1plOnTvHDDz/QtWtXOnfuzJkzZ7h37x7+/v60b9+e0aNH//7B68WLF9m4caOw73znnXcICQmhY8eOfPvtt6xbt66Z/deGDRtYtWoV/fv35+OPP0ZdXZ3KykpB5m5qahKyGkoEBgbi7+9PUlISn3zyCXv37mXp0qUsWLCA7t27C8emnTt3YmxsjJeXFzo6OuTm5vLee++hp6dHeHg4mzdvZt68eUyaNOm5n6979+7U1tZy9epV8vLyhFhybm6uCPZmzZpFr169RDNabW0tcrkcLS0tvL29ycjI4OLFiwwYMIBZs2bx0Ucf8fDhQxYsWICFhQVvvPGG4MBUVFRQXV2NlpaWOOUMGzaM8PBw7t+/z/3794XtbHZ2NosXLyY7O5uJEyfSo0cPTE1NOXXqVIv+hkpLW+X9K4NPZbantLSU0aNHU1FRASi6Tevq6tDV1W0m1B8XF4eGhgbu7u60atWKiooKKisr0dDQQEVFhTlz5uDr68tXX33FO++8g4qKChMnTmTAgAHCw1xVVZXy8nJWr16Ns7Mzr732GvPmzSMhIYHNmzezadMm2rdv32IbzqqqKtH5r6KigqqqajPPbS0tLUaPHo2qqqpo2mjdujWGhoY/63By//59MjIyWL16tchmaGpqUlBQQEFBAU1NTYSGhqKnp0dFRQXt2rUTC/mhQ4dYtmwZCxYsEIvi06dPOXz4MPr6+mIjawnu3r0rAq2UlBRhc2tvb8/y5ctxcXFh27ZtjBw5kgEDBlBVVUVVVRUlJSWUlJQwceJEhgwZglwu59ixY5w4cYJ58+YJXl5RUZHIPiulp8LCwoRH/bMC5e3btxcNRJ07d6ZXr148fvyY1NRUHBwcmDJlCu7u7kIq5XmxZ88eDh8+TI8ePRgxYoS4lx07dlBdXc2ZM2e4fv06nTp1ElWf5ORkDhw4wJgxY5g8eTLGxsbcvHmTHTt2cPz4cT7//HN69eol/q2vr4++vj6hoaHMmDFDGDKUlpZy//59tm/fTmFhIf3796d79+4EBgZSWlrK6dOnqa+vp6ioiKCgoN9Ebdm5cyehoaF06dIFc3NzXFxcOH36NJ9//jmdO3dm9uzZwh/8ww8/5Nq1awwbNoyBAwfy3nvvsXjxYtTV1dm2bRseHh7s2bMHFxcXBg8e3Ez0+/Lly1RVVREeHk5xcTHTpk2jsrKSefPmMXToUMLDw7G1taWyslIElsnJySxbtoy6ujreeOMN2rRpQ0JCguCsPi+U5Vs7OzshewiKteOdd97h1q1bzJw5UwQHfn5+zJo1i9TUVF599VXU1dVJTU0Vn/PYsWObNVXp6urS0NDADz/8gJ6eHsOHD+fp06eiDKqUjtLX1ycgIKBZufXYsWPY2dkREBCAvb09ixYtYsuWLYwePfq5n095cEpJSSEzMxN9fX2io6M5dOgQ+vr6ODk5kZaWhq2tLVOnTmXKlCloamqyY8cOwaMPCQnhxo0brFixAjU1NRwcHGhsbOTdd9/F19eX119/HQsLC/Lz8/n666/FYdHR0ZEtW7bg7e3Nhg0bWLZsGZaWlixcuBAfHx90dXWxsLBAV1cXHx+fZmOiJYiJiRH0p2XLlgkXtvj4eCF12alTJ2pqaujZsyfV1dXCDdPDwwNbW1vu3bsnqFhaWlqMHz+ewMBAfH19kUgk9O3bl8bGRhHolpaWcuzYMc6ePSvK6d7e3iLLBwo+rL+/vxgPSgrcb4FyDw0ODmb06NFCD1ipQf4sVFVVeeWVV3jppZfo1q0blZWVODg4MGbMGCZMmICJiQm1tbV06dKFqqoqvv32W8rLy5kwYQKtW7emoKCAnTt3UlpaypAhQ4R+7ODBg4XhSZs2bfj666+xs7OjtrYWTU1NunTpIub6s3vZ80DpgKVcp5Syc6ConCvX/tjYWN58803Kysp49913GTRoEMuXL6d///7iIDhw4EDWr1/fTLXi2V6f8vJyrl27ho2NDT4+PlhaWnLjxo1msqXDhw/H3d2d3r17U1FRgZGREWZmZqJh9nnQ4uBVRUWFO3fu8PTpU6qrq5uVdJWb9cOHD+nVqxcSiYTi4mIKCwtRVVUV2cWcnBzKy8tp27Ytcrmc999/n9TUVExMTERAY2JigoaGBikpKTx58gRNTU2MjIyE+HxSUhJPnz4VgYZSyLm6uho9PT20tLRwcnJqceehpqYm6urqopHKxcVFZNHS0tJQUVEhMDCQwMBAsrKyiIqKwtzcHB0dHRGQFxUVcezYMfz9/enVqxdJSUn84x//oKqqisLCQvT09HBzc6NDhw54e3uLQaDMdmVlZYnTUGNjI2VlZRgYGGBgYCCEr8vKymjVqhWtWrVqcfCal5cnAtfdu3ezevVq+vXrR1hYGCUlJaxZswZjY2P69u2LiYmJKD0qDRNUVFSIiYnhzp07ODg44OzsjJaWFkZGRuzatQt1dXWGDx+OtrY2I0aM4Nq1azx48AB/f38++ugjkRGKiIgQdrTBwcFERUVx9epV2rVrx+eff87atWt5/PhxM1eQ50F+fr4IsmNjY9m7dy/a2tpCzqSkpIR79+5RU1ODq6srXl5eVFdXU1FRgbGxMY2NjWRlZQnXH1NTU7S0tHB0dMTU1LRZoHL27FlOnjyJi4sLkydPFhbFkZGRtG7dGh8fH7GRHj9+HB0dHfr06UNycjJlZWWoqqqK5o2WoLy8nHPnzuHk5ISVlRU9evTg4cOHJCUl8corrzB16lQyMjJYvHgxMTExBAUF0bZtW+Li4gTPMCwsjKKiImpqaoQ7kbe3N3Z2djg5OSGRSGhqahLcKC0tLWpra0lKShI6t8oDj46ODhoaGpSVlfHw4UMiIiKwsrJi2LBhYpy2NHhNTk7GxsaG119/XcwtpSyepqYmkZGRlJWVcfv2bfz9/fHy8mL8+PFYW1sLLuS0adMICwujsbGRhw8fUl1djY6ODv7+/hw/fpyHDx/Svn17evfujYWFhXCfMzQ0xNDQkIcPHwqf+hEjRqCqqsq+ffuIi4sjMDCQ4cOHC0mmlqJdu3bI5XJMTU1FQ015ebnwVVdScqytrQkODiYuLo5z584xYcIERowYQXR0NPv27SM5ORk9PT309PQYNGgQbm5u1NTUoK2tTVpaGrdv30ZVVZW+ffuio6NDWloa6enp3L9/nzZt2gjOoBLFxcUcOnSIiIgIXFxcMDc3x9DQEH9//xYHr4mJiVhbW2NsbIyDgwMffPABlZWVhIeH4+XlRUZGRjOecGBgIO3atWP79u3cuHEDFxcXQkNDiY6OJi4ujrVr1xISEkLnzp0Fxapz585cu3aN7777DkNDQ0aPHo2dnR379u3j1VdfZf78+Xh6euLn50dERAQqKio4Ojo2c/YxNDSkffv2Leb0KjmuZ8+excHBgREjRlBeXs7FixeFkoqlpaXgzmtpaeHv78/cuXO5cOECTk5OLFiwgIKCAqE0ERkZKZqWVVVViYuLw9DQkPHjx+Pm5saVK1c4e/Ysc+bMoXv37hQXF3Px4kX09PQIDg5GXV1dNPYZGxvz6quv4u7uTmJiIhs3bnzu4EAJpY2tubm5UDGJjIzk+vXrmJmZiQPBzZs3iYmJoaGhQVA71NTUuHTpkqBV3Lp1Cw0NDVq3bk2bNm3Q1dXl7t27VFdX4+3tjZubmxjPs2fPpk+fPjx58gQ/Pz/R1AQImo9yHVAeooFmTZwtgbu7O/379xeNYRKJhIKCApH9TkxMpK6u7ied8I2NjQwePJimpibB/1UiKytLGO1kZ2cLF1BlNcvU1LQZ9zQoKAgHBwcqKyvJzs7Gzs5OUFksLS2xtLTkwYMHYnw8L/5V7rOkpITKykqMjIyaKYzcv39fGBEVFBRw48YN7O3tRbxw48YNPDw8BJVT2aimdMcDxT7x6NEjTp8+TdeuXenUqRN9+/ZFLpeTl5cntLuVrnsZGRmMHj2aOXPm4ODgQGxs7HPNwxYHrx07duTTTz/l8uXLmJiYNBNgHjt2LKGhoZw8eZJ169YxZMgQZs+ejZ+fH4mJiVy9epWQkBBR5k9OTmbYsGFi8lZUVPD06VPxQaqpqTF37lw0NDR+0q2sqalJq1at6NixI15eXoIesGDBAmHT2LNnT0JDQ4Wl3PMiISFBuNA86wGdn58vBlpFRQUbNmxAW1ubWbNmNfvjqaurU1hYyJkzZ5g2bRozZ84UZWZfX1/27t2Lu7u70NNUBoUvvfQSAQEB7N69m1OnTgk5ImXpRFdXl6FDh9K1a1f69+/fomd6FspNUFdXly1btnDjxg0xYePj49m+fbuwO302UMvJySE3N1cYVCgnoBLV1dXU1NQ0EzKXy+W8++67zJs3Dx0dnWYTu7KyUmQADxw4wKeffkq/fv3YsGEDI0eOpHv37qSkpGBlZcWHH3743M93/fp1Bg8eDCgW/0ePHiGXy4VTl5IbXVpayo4dO8Thobi4WBzAcnNz2bFjB1paWsLM4e7du0ybNg07Ozu2bduGqqoq9vb25OTkUFRUxKBBg7Czs0NPT4/Vq1dTUFDA559/TteuXRkzZgy5ubmkp6fTr18/wS3W0NDAwcGhmTHA88De3p4lS5YwYcIEpk2bxv3799m4cSP37t0jLS2NxYsXs2jRImxtbVm8eDH37t1j8uTJTJ06lZycHDQ0NEhOTsbR0ZExY8aQk5PD6NGjRYlaydFTLqCgyC4pTTkcHR2bZXJ69OhBp06dcHV15e7duxw6dIjy8vLfZKLx7DXd3NyajZnY2Fi+++47OnfuzPTp03F3d+fw4cOcOnWKDh06sGHDBmHYkJGRgb29Pba2tmzevJmsrCxiYmJISUmhXbt29O/fnxMnTqCiooKJiQk3b96kvr6eAQMGYGJigqenpyg/T58+ncePH7N48WI0NDR4/fXXW9Tt+3OYPn36TxokRo4cSf/+/dHU1ERNTa3ZxuLl5cWiRYsEd3jp0qVoaGgwadIkhg8fzrp164RahLq6Ojdv3mTLli1UVVXRvXt3UlNTKSgo4M033xQHq9zcXC5cuICvr68QQf/000/5/vvv6d27NyNHjiQ+Pp74+PgWGxQArFq1SpQTU1JSWLduHTo6OkybNo1PPvmE0aNHi4xZY2Mjampq6OvrM3r0aMLCwgRdABBjWmk57e3tTZcuXVi0aBHbtm0jISFBaDP7+vpy+PBh4aCm7IC+ePEiFy9e5KuvvhLZXmVma8yYMfTu3ZslS5Y89/NFR0ezYcMGbt68yejRo7G1tUVfX58nT57g7u7O2LFjSUhIIC0tTewRKSkpIlOlo6PDJ598wooVK3jvvfeYP38+L7/8suAkBwQECMe+N998k/bt23P79m0hqwaKgMPV1ZU333wTX19fGhoa+PLLLzl58iQVFRUEBgbi5ubG8ePHeeutt4QT2fOiU6dOeHl5UV5ezp49ezh69ChaWloEBwdz69Yt9u3bR+/evcnIyODgwYM4Ozvz5ptv0qpVK9GM6+LiwuLFi3ny5Anbtm0jPz8fUOyVe/bs4d69e6xYsQIfHx+mTp1KTU0NBw8eJCgoiIqKCjH2EhMTSUlJQVtbGx0dHa5fv86+ffvw9vZm6dKlGBsbN+PQPi9MTEzo3r17M5piaWkpjx8/pl27dlhZWVFfX09eXl4zHd66ujp0dHQICQkhJiaGtWvXYmRkxLBhw7CyssLExEQE8crgWk1NjbfffpuamhqR2VXu8ba2tpw8eZLvvvuOjz76iGHDhgm6VX5+PidPnmTDhg3i7/q8SE9Pp6KiQmRPk5KSyMzMJDQ0FF1dXerq6nj//feFXfagQYMEVbK8vJz58+ejrq7OlStXyM7OFs3NlZWV5OXliQMqILLEW7ZsYenSpQwbNoy3334bUMQDmZmZordCeQ1PT0+x/pw/f545c+b8atNdi4PXAwcO0K9fPxGJ19TUCPsvXV1dnJyc6NmzJ48ePcLQ0BANDQ3CwsJEVqOyslLwZJ8V/87Ly8Pd3V1koJSev1OmTOHJkyfs2rULBwcHwfNT+sWrqakhkUhEOUmpCVhXV8e5c+eEGkBLYGNjw7vvvktycjJaWlpUVFQI8n9lZSVZWVlkZ2fTtm1bHB0dmwWuoFiELSwsiIqKIiIigu7duzNs2DD27duHnZ2dCAitrKxYu3YttbW1olTh4OCAr68vpaWl4qSpoqLC/v37iYqKwszMjJ49e4oF/Vnf7udFly5dSElJwdzcnH79+onNY/ny5aioqDB+/HicnJyoqqpi+/btxMfHC2FpJW8nNjaWo0eP4uHhgYaGBlFRUZSXlzN48GCqq6tZsmQJnp6evPTSS804u7t27SIvL4833niDAQMGMG7cOBwdHYVLh6urqzio6OrqNjttPy/u3LnDzZs3mTNnDm3atOG1114jPj5eXFdPT4+AgADU1NSwt7cnPT2dH374AVtbWyEPVFNTQ0REBF5eXmJSXblyhYcPH6KjoyPMMBwcHBg8eLCgVYDCPa1bt26UlJTQoUMHqquraWpqwsLCgh49etCxY0dyc3O5ffu2CF5bKiWl7MRWnqb37NlDdna24ETeuHGDoKAgpk2bxrVr11BVVWXw4MFoamqyZcsWzpw5Q2VlpVjMLl68SFZWFqWlpRw5cgQbGxtMTEyajW1ld7iRkZHIMDQ2NgqPayXatm3LgAEDMDIyEl3zSjHrlkC5OF+/fp36+nr8/f2JiYlh69atXLhwgR49euDi4kKfPn2YP38+N27coF+/fuTm5vLo0SOCg4Px8PAQnERdXV2sra1pamoiJSWFqKgoGhoaBN8uMTERDQ0NUQGJjIykffv2DB06FGNjY6Kjozl58iSzZs3C19eX7du3k5mZKbJtv8bR+lfcu3ePjh07CjqHpaUlOjo6lJeXN1NMUaJTp0506tSJpKQkocRib29Pv3796NKli8jQKCtc169fZ+3atYwbN46QkBAePXpEamoqw4cPFw16Ss1npdzepUuXWLVqFfX19QQHBzNkyBDy8vL48MMPBf+3JbC3txcHfuV6rnR/a2pqIi0tTayHqqqq1NfXU1tbKww4tm7dytOnT5tl1mNjYyktLRWVEj8/P2GdquTR37lzRyg1ZGZmsm3bNry9vZk6dSqVlZVIJBKha/vkyRMuXrxIp06dmjXEPg+qq6t55ZVXGDx4MK1bt8bMzAwbGxvefvttMSeuXbtGcnIy7dq1w8jIiIaGBubOnYuLiws+Pj7cvn2bwMBASkpKOHv2LKampnh4eHDp0iVUVFRwcXGhuLiYzZs34+LigqOjI0OGDMHKyorCwkJcXV2pr68nLi4OU1NTHBwc6Nu3L0VFRVRXV1NbW8vhw4fJz88XRh9RUVHP/YwaGhqYmJigo6NDeno6kZGR+Pj44OLigrq6uqA9+fn5MXv2bJycnER1zd7eno4dO4qsuZ+fHy+//DIGBgaiOqCUglIaS9TX11NfX49EIhF2pQYGBsKd7cqVK0RGRhIeHo69vT2Ojo7CphX4TY2Fb731lqgGKGFmZoajoyPXrl2jrq5OUDE++eQT1NXV6d27NzY2NhgYGAh7d2NjY+zt7VFVVSUmJobs7Gy8vLzEfLt69Sr19fXi4LF161ZsbGzo2bMntbW1qKuro6qqyoQJE6ivrxfre0NDgzAmUOpPP5s4+jUYGhqSlJTE/v37qaysFPNJyalVxlNt27YVhifq6upivKanp+Pl5UVAQACXLl0SiiGqqqocPnyYuLg4/Pz8CA8PF86OvXr1QkVFpVnjvKmpKWpqaty/f5/ExETRRBgbG0thYSENDQ2UlJQwbdq0X32mFgev+/fvx9PTExMTEyoqKprZoym1K11dXXFzc6OpqYm6ujrU1NSaNRXV1NTg4eGBtrY2lZWVLF26VFgyKsnXSlFlUJThz549S5s2bZrZKOro6AhFg8GDBzN48GCRga2oqGDPnj1s2bKlRbIZtbW16OrqMmLECOrq6oiNjeXRo0d4eXmhq6srysL6+vr06dNHBNtKtx/lYDAxMSEuLo7169c3c4spKCgQ742Pj2f58uVoamqKw0BdXR3dunVDTU2tmQbrlStX2LJlCy+99BIeHh5kZmZib2//m4K76dOnk5WVhampKUOGDOG1117jq6++YvPmzfTr14+PP/4YUBxUPvjgA+Gx/v3336OlpUVOTg6HDx8mJiYGc3NzLl++zMqVK3FxcWHevHnExsayfv16RowYIXiZSgWF27dvi1LiiBEjhNzLxo0bMTY2Zvfu3WKxVjZqtJQ2oKKiwrJly6ioqODrr79m5MiRQgoMFEHYunXrAIWA+OzZs/nhhx+YPXu2CF6VDWhBQUHo6uqSkJDAgwcPhFi98u+ioaHByJEjBS+qvr4euVzOhx9+KH7f1q1biY+PZ8SIESLLm5eXR15eHnp6ehQUFDTran8emJqaMn36dHr37i0MLXR0dFi8eDGGhoYcOHAACwsLrKys6N+/vyjbPnnyRPxuLS0tNDQ0OHXqFFu3biUkJES8R8nJezao1tfXZ8KECTg5OeHp6UlVVVWzslptbS2NjY1UVlYyY8YMkTGNjY39TaW8pKQkrl69SmRkpHBsy8/Px9vbm9raWo4fP87MmTMpKioiMzOTM2fOsGXLFiQSCWFhYUyePFkcPI4cOUJmZiYDBgzA2tqadevWcePGDUJDQ+nbty/6+vqiQUZTU5OEhARu3LhBx44dRUahqKiIl19+WUjTffHFF5SWlhIUFERycjI7duxo1gT5a9iyZQu+vr5CykoZQG/fvh1nZ2cmTJiARCKhtLQUNTU1tLS0aGxsRF9fn4iICHbu3ImXlxcbNmxAX1+fhoYG8vLyRNCkpPt4eHjg4uIilBCUY62yshJ1dXVBGYiMjBSB67PVAAsLC+rr6zl9+nSLJYhmzpwpDgN2dnZ89NFHYs387rvvOHLkCOPGjRO8xadPn6KhoYGenh7Z2dls2bKFCxcu4OPjg0wmY9u2bULj1djYWDTceXh4iLF69OhRNmzYwKxZs+jTpw/z5s3jhx9+YOvWrSI43blzJ8ePH2fEiBFoamry8OFDcnNzmwnMPw9ycnKYMmWKyKA3NTWJ4BsUiZnTp0+Tn5/Pyy+/jKqqKm5ubvj7++Pg4EBBQQG+vr7MmDGDI0eOcPLkSV555RWGDx+OVColLS0NmUxGfn4+ixYtAmDq1KmMGzeOhoYGampqsLOzIysri+HDh+Ps7Mz169dp27YtXl5ePH36lDNnznD8+HGGDRvGxx9/THp6eouC14qKCpGd69ChAyoqKtjb2+Ph4YGrqyvu7u7Cbrpnz57iQCuXy9HW1mbixIl88MEHLFy4kClTpvD9998DCBrFyJEjMTQ0xNXVFUdHRxYtWkRTUxOmpqbExsaSnZ0tYgEbGxvU1dU5efIkAQEBzJkzhy5dupCYmIi+vj7FxcVCd70lmDhxItbW1kgkEurq6qirq0NPTw93d3fOnj3L1atX8fT0RFtbm/Xr11NZWUnr1q3R09MTMYi+vj6dOnXCzc0NDQ0N9u/fT1JSUrNyfWRkJOXl5bRr1468vDxOnTqFp6cnPXv2RFNTUwTq+vr6Qo6ztraWuLg4oUWunD8taUozMDCgVatWvPvuuzx8+JA9e/bg7u5OYWEhKSkpODk5MW/ePKqqqqitrUVFRYWcnByCgoKQy+VYWloK2UKlw2JhYSGdOnUiMTGRw4cPc//+fWxtbUVCJCwsTMgOKmNDHR0dTE1NRXLR0NAQPz8/EhISWLNmDTU1Nbz++uusW7fuV5+vxcGrctKsWrWKhIQEevbsKVLIa9eu5datW7zzzjt4eHhw4MABiouLGTduXLPN+eHDh+zbt4/27dvj4OBAYmIiZ8+eRS6XExISgra2NsHBwWLAenh4MHbsWI4fP87rr7/O5MmThR1ZeXm5uG5TUxNyuVzwMsPDw1tcRti7dy/19fWkp6ejr69Pt27dsLKy4t69e6ipqdGmTRtat24tMkBKmTClMLTSDq6xsZG6ujquXr1KRkYGDg4OFBYWCts4bW1t1NXVmTp1KgYGBqJc0dTUhIaGBsXFxXz00Ue4uLjw2muvCSOHzp07k56ezqZNm+jatetvCl6VJP5nzQ2Upcpn+VCXLl0SgevcuXOZNGkS5eXlLF++nNjYWGbOnEmfPn1E97apqSmVlZWCr/SsnFpdXR36+vqMGzeOmJgY4Uj2yiuv4OjoyKFDh2jXrp2goTx+/JiSkhLRvdsShIaGEhoayvXr1/nuu++YMWOGyL4psy1K7N+/n/z8fN544w3mzp1LdXU1GzZs4NatW0yZMkVkmu3t7fHz8+PBgwciEw0/9RL/4YcfqK6uFgvPqVOnOHv2LN26dRMn2ry8PJ4+fYqRkREqKipCzLolUB4g4Z+STrGxsXz66aeMGDGC9u3bi0VC6bedlpaGqqoqAwcOpLy8XGS8bG1tGTlypDBeSElJEd7v6urqVFdXCxqNMvsKisxeSUkJffv2pbKykuPHj4vA0d3dndLSUg4fPszTp09b7MUNirL4gwcPUFNTw9bWltzcXGxtbXnnnXcwMzOjvLycZcuWkZiY2Ewep127dj8Zf7a2tujq6mJiYiJsg6dOnYqzszO9e/fm8ePHxMfHk5ubS3V1NXZ2dnTq1ImgoCAqKytZsWIFGRkZzJgxAw8PD9GAodzI9fT0mDJlCvfu3Xvu52vXrh0SiQQ1NTUMDQ1paGjA0tKS0NBQYmNjWbRokTAvUHLfbW1tGT58OL6+vly7do3ExEQuXrzIwIEDkcvl1NfXU1xcjLGxMf369cPIyEgEp61bt8bT0xNjY2OOHj3KiRMnGD58uDCT2bNnD+fPn6dXr14iM6hUlVEedn4LlHOkpKSEO3fuUFxcjJGREcbGxoSFhQnL0erqagwMDOjYsSN2dnZoaWkxbtw4wZdUjldvb2/MzMxQV1enrKyM2tpaEWivWbNGaC8rN868vDyqqqqacQt9fX3F3mFpacmgQYNQUVFpcVPT7t27ycjIICwsjA4dOqCjo8OjR494/PgxPj4+ODg4MH36dHJzc8UhT19fn+TkZOLj4zExMREHLH9/f9TU1PD29kYulzNt2jTB9dbX16djx444OzszevRovL29SUpKEs1gNTU1NDQ0UFRURHl5Obq6uqiqqrJnzx4h26T8PP61AenX0NDQQENDAxUVFejr6wtdaA0NDR48eEBmZqa4TyXHU9mco6Wlhba2tqBKPcutVt6HhYUFZmZmJCUlYWdnR2BgoODPp6SkIJFImt2zk5MTHTt2FIc0Zc+Jshm8pWspKHTV7969S25uLrq6unh4eIiqU+fOnbGwsBANukFBQaJ/5datW0JDOCkpiU2bNmFiYkL79u1FUuLZeaNUHwCEIUh1dTWxsbHY2NhgaWlJfX09ERERJCYmEhgYiI+PD61atRIOkL8Fyt6jwYMHM2TIENEAbWBgQGFhIVlZWdjY2KCnp0ddXZ1Ql1FRUaG0tLSZCkdAQADx8fGkpqZiYGBAr169aN++PdXV1c3ob89KmSrjMiVsbGywt7fnwYMHGBkZERISQl5eHlu3buXs2bPPZUokebZL7JcglUqf741/Ychksn87a//uzwd//2f8Ozwf/P2f8cU4/Xs/H/z9n/Hv8Hzw93/GF+P07/t8Kn/0jbzAC7zAC7zAC7zAC7zAC/xWPHfm9QVe4AVe4AVe4AVe4AVe4M/Gi8zrC7zAC7zAC7zAC7zAC/zP4EXw+gIv8AIv8AIv8AIv8AL/M3gRvL7AC7zAC7zAC7zAC7zA/wxaLJX1e0EqlU4Cfs1rsEkmk6n+AbfzX4FUKk0FWv2bb+fKZDKrP/B2/iuQSqX9gdmAJ2AKZANRwEqZTHbjz7y33wNSqXQF0BFwA8yAauApcAhYI5PJCv/9T//1IZVKJcBkYDrgBagC8Sjm5jcymazxT7y93x8SyRJgPuCKXJ7+H1znTWA54INcHvc73d1/hL/zXJRKpS8BXYH2QDtAH/hBJpON/zPv67+GF+P0fxL/D/YLU2Ao0B/wAWyBOiAGxZ6xSSaTNf37K/x++DMzr/eBxf/mvws/vufkn3Jnvy9K+fln/OLPvKnfAz9O1GOAH3AKWA3cBQYD16RS6d9hY5kL6AJnUTzfD0ADsAiIlkqlLfN1/ethC/A94ATsBtYDGiiedfePwe2fA4XA4xQkkptIJOVIJFVIJPeQSN5AImn5oVYisQfeAtb9akAgkUxAIpH/+N/Un3mHDMjjLzKP/x/MxfeB11AEr5l/7q38DCSS/kgkZ5BIMpBIqpFIkpFI9iKRBP36D//kWv9+nEokLyGRfI1EcgWJpOzH8bn9F672Ypz+sfi77xcjUOwRnYBbwCpgP+ANbAD2/FF7xp+WeZXJZPdRBLA/gVQqVZ6+1v1R9/NfRIlMJlv0Z9/E7w2pVGqFYoHNBdrKZLK8Z77XHcUBZAnwSwvr/wIMZDLZT1SvpVLpMmAh8C7w/FYnfyFIpdIhwAQgBQiQyWQFP35dHdgDDAcmApv/pFvc8uP95aEIrCuBnig2hS5IJCNomVzKB4Am8PkvvksRPHwNVAB6P/seubwaiWQ1sAKJJBi5/HoL7uN3xf+TuTgXyAASUWRgI/7c23kGEskKFFnSQhQZtgLABUVANhyJ5GXk8pZ89r80Tt9HkXmuQPF5ePzilV6M0z8af9v94kckAIOA489mWKVS6ULgNoo9YxiKgPa/ir8c51UqlXoDgShO18f/5Nt5gX+PVijGz61nFyEAmUwWAZQD5n/Gjf2e+LmF6Efs+fHV9Y+6l/8Chv34+qUycAWQyWT1KDZQgNf/8LsCkEiG8M/A2gu5fCpy+WwUmbdD/DOwft7rGQLjgPO/mHVVWPlsQhGIrP2Vq24HGvnzN6O//VyUyWQRMpnsiUwm+2tpO0okzwZknj+O0wXI5S8BvQEJioDsea/3a+N0LoqStAHwvF69L8bpH4S/+X6BTCa7IJPJjv4rNUAmk+Xwz/Wy2x9xL3+54BWY8ePr938Tvp2mVCodL5VKF0ql0tlSqbS7VCr9n+XxPoMnKLguAVKp1OzZb0il0i4oOGnn/owb+4Mw8MfX6D/1Lv4zKDnXyT/zPeXX/KRSqdEfczvNIAJr5HIRWCOX/9bAegyggyKD+0t4A+iBggdc+YvvlMuzgCvAS0gkBi24l98b/9/n4p8JEZAhlzcLyJDLf0tA9svjVC6PQC5/0qKKw4tx+lfA32G/+DUo/eYb/ohf9qfRBn4OUqlUGxgPNKHgT/wdYAVs+5evpUil0skymezSn3FDvwdkMlmRVCp9B1gJPJJKpYdQZKtaoygrnOWfB5H/eUil0rdQlJANURDyQ1AsRMv/zPv6D6EMCp1+5nvOz/y/B3Dzv387zfBcgTUSiRFyeclzXK/nj69X/+07JJI2KP6eq5HLLyOR9HiO615DkWnogoLL94fj/9tc/ItBBGRIJGbNDloSiTIgO9SC6/36OP1teDFO/0D8TfeLfwupVKoGvPzjP0/9Eb/zr5Z5HQkYASdlMtlv77D862ATEIZiI9ZF0Z33HeAInJRKpe3+vFv7zyGTyVahyJCpAdOABSgI3enA5n8tDf2P4y3gI2AOioXoFBAuk8ny/8yb+g+h3MTmSaVSE+UXf1yIFj/zPuM/9K4UaElg/TwIQZEFS/jZ70okaigOmWkouGnPizs/vnZpwc/87vh/Nhf/OpDLi4B3AEvgERLJOiSST5FI9gBnaHlA9svj9LfjxTj9Y/F33C9+CctRNG2dkMlkp/+IX/hXC16n//j63Z96F78TZDLZ4h85IrkymaxKJpPFymSymShOntooOhD/ZyGVSucD+1A09LRGEaB3QJEZ+0EqlX72593d7wuZTGYlk8kkKA4iw1AEUPekUqnfn3tn/xF2oVD0aI0iE7JOKpWuQtFI2Q9FVgkUfLk/GiKwRiIRgfWPQWbLAmuJRANFcJHzC+XWDwFfYBJyeXUL7jPnx1eHFvzM747/T3PxLwe5fBW/EJD9hE7w7/B84/S34sU4/QPxN90vfhZSqfQN4E0gDkWfwh+Cv0zwKpVKPYFgFB2UJ/7k2/lvQ0ls/lNPwf8JpFJpN2AFcEQmk82TyWTJPwbod1HowGUCb0qlUudfus7/Gn48iBwEwlFoFG79k2/pN+NH0v0gFFmCHBQLzxQUczAERUkPFN3+fzSaBdY/ZrRW8dsCa9MfX4t/9rsSSQCKbOuXyOUt1Zks+vHV7Bff9V/E/9e5+JeBRPKLARkSyfMGZL88Tv8zvBinfwL+TvvFz0Eqlb6KQv3lEdBdJpMV/cqP/G74ywSv/P0atX4JymBA90+9i/8MA358/YlkjUwmq0Ihm6GCIpv1t4NMJnuKYsJ6/Wvzwf8SZDJZg0wm+1Imk7WXyWTaMpnMQCaT9UHxbO1RiGw//MNvTC7/PQNrZSZV6yff+SddIIF/NoK1BNr/8jv+DPy/not/KiSSbvwYkCGXz0MuT0Yur0IubxaQIZE8T0D278fpf44X4/RPxN9lv3gWUql0DrAGiEURuOb88k/8vvhLBK9SqVQLxebUhEIw/e8OpXD1zzWj/K9A88fXf9dJq/x63R9wL38WbH58/Tsetiag2ET3/Cid9cdDLm9ALv8Subw9crk2crkBcnnLA2tFQ1cd/8xsPQs9FNJDbYCaZ4wJ5Cg4awDrf/zaqp/5eeU1/0yu3ou5+Ofh3wZkyOUtC8h+eZz+p3gxTv98/G32ix8b7/6BohLW/c/gKv8lglcU/CBjFGTfv0OjFlKp1OvZJphnvt4KxWkF/rfFmK/8+DpdKpXaPvsNqVTaF+gM1AB/mij2fwqpVOrxo7D2v35d5UfRaQvgukwm+2+U+f4QSKXSn0jnSKVSfxQE/ApaolH5x0EE1j9KZz0PYgDrn5EKqkVxYP65/+79+J6rP/775ygFyoax+8978/8F/O3n4l8Yv3dA9u/G6X+KF+P0v4z/D/sFgFQq/QDF/hAFhD2rEf5H4q8ilaVs1Po7OGopMQJYIJVKI1AIrZej4EP1R7HxnuAvYtn3G7EPhSZfT+CxVCo9iKK82wZFNkICLPgf93LuA3wulUovA0koStWWKBx+nFE877Q/7/Z+F5yVSqXVKEo/5YAXCk5pLTBMJpP9edUBicQAubzsX772WwPriyh4iAE8qyWpaM76OftXkEgWociYbUEu/3fSfYE/vv6Zjk9/+7n4oxvckB//qQwQgqRS6eYf/79AJpO99QffFigCsteA6Ugk3yGX/9O6ViL5LQHZRX5unP7neDFO//v42+8XUql0Iop1txHF2H9DKv2J90WqTCbb/N++lz89eJVKpW1QcNj+bo1aEYA7is0vCAW/tQRFFmcbsO0v5xbTAshksiapVNoPeBUYjYLfpYOiMeAE8JVMJjvzJ97i74FzKA5UnVFYMhqhEK5PQPE3/OqPJKj/l7APxd9vPApeXBYKjeXlMpks9U+8L4CzSCT/NrBGLm9JYL0fRUdsb36voEAiUUEhhRePXB77u1zzN+D/yVxsz08d1Zz5p2zaUxT86D8azQIyJJKfDciQy583IPvlcapwnhvy479EEI9EsvnH/y9ALn/rX37mxTj9Y/D/Yb9QSheqopAB+zlc4g+wFJf8/oocL/AC/8feX0dXebbr3vAv7u7uCQlxIBAIBIfgUkpwaYHi0tKWtkApbYECxVoKFVyKe3ENGicJcXd3t/v9I3teq1ldez3k2e83xrfXyzFGxyjJzJz3NS875TiP8x3e4f8FyMmtpeOSc+A/DOvbwFYkKfPfeL9IOi58KyTpX/POOiKvG4EF/2XkVU5u+P96ntX/Sy7pHf6/CDk5Jf7DIHPjPwyyUGAvktQ1g+y/W6f/sSb/d8hCkmz/09+8W6fv8D8O74zXd3iHd/j/BuTkpgGn6IjaXvp/4f0u0JESdECSqv6P3+8d3gHerdN3eIe3wDvj9R3e4R3+vwE5OTk6iq7UAO//IyF4OTlvIBJYgST99C9e/Q7v8PZ4t07f4R3+Jf7/RW3gHd7hHd7h/7foMAIWApf4D9mafxdmdOjCHvhXL3yHd+gS3q3Td3iHf4l3kdd3eId3eId3eId3eId3+L8G7yKv7/AO7/AO7/AO7/AO7/B/Dd4Zr+/wDu/wDu/wDu/wDu/wfw3eWud1yZIl/9fzC/bv3y/3v/vd//Txwf/8Mf5PGB/8zx/ju3X6P3t88D9/jP8Txgf/88f4bp3+zx3fu8jrO7zDO7zDO7zDO7zDO/zfA0mS3uq/xYsXS4sXL5Y+/PBDqba2VpIkSaqvr5fCw8OlqKgoqbi4WGppaZEaGhqkuro6SYb4+Hjp4MGD0q1bt8TPwsPDpc2bN0tnzpwRP6utrZViY2Ol6upqSZIk6dWrV9K+ffukkJAQqaGhodPrNm/eLAESIK1atUoqKiqSNm/eLPXq1Uu6d+9ep9e2tbVJsmd/m/HV1tZKhYWFUk1NjfSfERYWJp06dUpKSkoSP2tvb5ckSZKKi4ul1NRUqaKiQvyusLBQSklJkUpKSqT29nYpOjpaGjt2rKShoSF9/fXX4nXJyclSSEiI9ODBA6mgoECSJEmKjIyUBg4cKAUHB4vxZ2VlSfPmzZOGDx8uff3119Lu3bulrVu3vtX4/j5GHx8f6c8//5QkSZIyMzMlCwsLqVu3blJBQYHU2toqHTlyRHrx4oUkSZLU1NQknnPKlCmSpqamdP78efGz7OxsqaCgoNOcy/Do0SPp8OHDUkhIiJSSkiJFRUVJmZmZ4juTobGxUTp8+LBkZmYm6enpdXr/tra2Ls/hggULpObm5k6f0dLSImVlZUnV1dVSe3u7lJqaKtbaL7/8IgHS4MGDpfj4eKmlpUX8zcyZMyVFRUVpx44dYr5nz54tAVKfPn2k5cuXSwMGDJCCg4OlhIQE8cySJElFRUXStWvXpMzMTEmSJOmHH36QjIyMpD59+kj79u2Tdu3aJXl7e0u6urrSd99916UxlpWVSRcuXJCGDh0qDRw4UAoJCek03vb2dunNmzdSRESEVF9fL37e0NAgNTY2dvp+qqurxb+LioqkBQsWiP21b98+8brCwkKx9xsaGqRBgwZJgLR9+3apvLxczGtFRYUUFBQk3mP9+vVSc3Nzl9epbBytra1STU2NVF5eLp5l48aNEiD169dPjL22tlaMIzMzU3JycpKcnZ3F99/c3NxpfyYlJUmXL1+WYmJiOq2T/4z29napuLhY+uOPP6TNmzdLRUVFUkFBgdSvXz9JW1tbOn78uHhtV+Zw/fr1EiAtXbpU/P39+/eldevWdXrPhIQE6csvv5R++OEHqbW1VZIkSUpPT5dsbGwkR0dHKS0tTZIkSaqrq5Oys7OlqKgo6eDBg9K6deuk3bt3i3Upe43sPWSor68Xe0GSJGn58uUSIFlZWUkzZ86UNm/eLOXl5b31+P4+xtLSUkmSJOnMmTNScHCwNHPmTMnf31/S1dWVNmzY8I/v+tixY1LPnj2lTZs2SUePHpUcHR0lLy8vKScnp9Pr7t69K6mqqkozZ86UJEmS9u3bJwGSjo6OdPjwYXFu1dXVSb/++qt05MgRKTY2Vlq7dq2kpKQkrV69WrzXq1evpLt374q10ZU5BCRLS0vpxYsXUl1dnTRz5kxp8ODBUnZ2tiRJHWtOtmckqWOvyc7z9PR0KTAwUBo0aJCUm5srnjcjI0M6d+6ctGjRImnfvn1iLH/fs38/Q/fu3St5e3tLAwcO7LRu2trapIKCAmnFihUSIM2fP1/8ritjlGHSpEmSkpKSdO7cuU5z0dLSIm3YsEF6//33pfDwcPHzoUOHSqqqqtLVq1fFz2pqaqSWlhYpOTlZio2NlRobGyVJkqTQ0FDp888/l0aOHCnNmzdPunjxovjeCgsLpSNHjkjr1q2T9u3bJ0VHR4vvoqmpSWpvb5caGhrE99rU1NTlddre3i6VlpZKjx49kjZt2iTNmzdP2r59u1RcXCzec9KkSZKfn1+nMYaEhEhPnjzptH/+bq8UFRVJp0+flu7cuSPV1dVJeXl50rVr16QrV65I8fHx0suXL6Vx48ZJHh4eUkREhFRZWSnNmzdP2rhxoyRJknTz5k3JyclJMjQ0lHR0dCRA8vf3l86ePftvzaEMFRUV0pEjR6TVq1dLL168kJqbm6V169aJM/vnn3+W2tvbpWfPnkl79+6VIiMjpfPnz0sTJkyQLl++LDU3N0sffvihZGtrK2wu2b2XkZEhde/eXfL29paioqKk1NRU6eeff5ZevXr1j+e4efOmdO3aNfFdmpiYSIA0d+7cfzm+LreH7d69OxoaGtTW1nL//n20tbVxc3PDyMgIAEXFjreMi4vj9u3b1NTU4O/vz4gRI8R72NnZMXbsWFxdXSkuLmbr1q00NDSwfv162tvb+eCDDzh06BCDBw9m7NixpKSksGXLFvr27cuyZcv48ssvUVdXJzc3l9GjR2NsbMzYsWMpKytj37597Nq1C2NjY6ZMmUJQUFCXxldfX09TUxMmJiZUVlZy5MgRDA0NmTlzJj179kRdXR1TU1MaGxt58eIF+vr6uLm5kZGRQXl5OQ4ODgBUVlZSUVFBt27dACguLmbHjh1kZmby2WefsXTpUvGZenp6NDU10dTUJCT9fHx82LFjBwUFBRQUFGBnZ4e1tTVz584lPT0dKysrVFRUaGlpISsrq0tjXLNmDT179iQ+Pp6nT5/y3nvvYWVlRV5eHioqKsyZ8x9dGBUVFZEkCTk5OTZs2MDo0aNRUFAgLi4OPT09AHR1dVFVVQXg6dOntLS0MGjQIAIDA7G3t2ffvn0oKCiwcuVKTE1Nxffx/Plzrl27Rm5uLpIkYW1tjYaGBuHh4cTFxVFfX8/QoUMZNmxYl8Y3YcIE6urqqK+v59q1a4SEhODm5saCBQvQ0tICoLm5WTzzlClTyM3NxdTUFE1NTcrKytDW1qaurg51dXUcHR3x9fUFOiQY33vvPSwsLHjz5g3nz5+noKBA/O7TTz/F29sbAGNjY8aMGUNbWxttbW2MGTOGtLQ0Dh48SG1tLRs3bmTz5s3Ex8fTp08f/vzzz7ceo76+Pt27dycwMBBdXV38/f3Jy8tj79692NrasnjxYtzc3IiIiODZs2fo6+vj5eUlxvx3JCYm8vTpU2pra6msrKSkpISJEyfi7u6OhYUFWVlZ2NjYYGJiQnNzM5GRkWRmZjJ79mz69u1LWloakZGRDBkyhEuXLnHlyhUGDRpEQEAAISEhqKuro6Sk1KU5hI41YmxsjIKCApqamgA0NDSQkJCAp6cnGzduJCkpiStXroh9KENRUREKCgokJiaya9cuvv32WzQ1NdHV1aWyshIdHR2cnZ1pbm7mhx9+QF5enu+//x5NTU2WLVvG7du3GTNmDCtWrMDLywt9fX0MDQ3R1NTE2NiYhoYGtLS0cHNzY9SoUQDk5uZ2aXwODg5MmDBBrC2AgIAA6uvriYuL48SJE4waNQoXFxfGjh1LdHQ0f/zxB2pqaoSFhaGqqsqwYcOwt+/okKquro66ujpWVlYoKCjQ2tpKUlISJ0+eZPTo0fTp0wd1dXVKS0t5+PAhampqjBkzBjU1NQBqamqIj4/H2tqaL7/8Ek9PTxwcHCgqKuLQoUOUlJR0eQ5LS0sxMDDg2rVr/Pnnn3zzzTds376dBw8eEBoayvbt2/Hz8yMwMBCAvn37oqSkhKWlJerq6qxYsQJzc3MsLS2JjY0lPT2d8ePH07t3b+zs7Lh37x4XLlygd+/eTJs2jdOnT7NgwQISEhL4+uuvUVdXx9nZGV1dXdzd3XFwcKClpQUzMzPxjLa2tpSVlfH8+XPS07vScRg8PDxYu3YtdXV1/PzzzxgYGDB69GisrKwAUFJSQk5OjpqaGrS0tMT5I/vcoUOHUl1dLfaHuro6UVFRPH36FFNTU7y8vMSdKicnR3x8PLm5udTX16OoqEhGRgb379/H3d2d0aNHU1RUxKxZsxg1ahTTpk3D1NSUESNGiNdfuXKFIUOGdHkeW1paGDVqFF5eXnh6enb6XXR0NNXV1ZiYmIh9CrBnzx5+/fVXdu7cSWZmJsuXLxe/d3JyoqysjMTERLS0tDA3NycwMJA+ffowYMAAqqqquHjxIj179sTV1ZWRI0eip6eHvr4+ZWVl3Lp1i8GDB6OhoQHwX55rXUF7eztZWVlcv36d6OhofH19GTduHEZGRsTFxXHz5k3c3d0ZMmQI6enpKCkp4enpSUBAAKmpqSxbtoympiZmzpyJrq4udXV1BAYGIicnR3FxMba2tmJ/SpKElpYWra2tvHnzhu7du2NlZcWRI0dwdnYmODiYly9fMnHiRAIDA1m8eDGffvopra2tfPXVV8yePRtNTU0ePnz41uN7/fo1jo6OqKmpIS8vj66uLqampsTFxVFbW0tbWxt2dnb07NkTd3d3pk+fjpycHPv37+f8+fPs2bMHLS0tsrKyaGpqQklJCS0tLerr61FXVwdAXr4jkW9ra4ufnx9Hjx5lzpw5TJs2jSlTpuDg4EBeXh4//fQTycnJ9OzZk759+4rzz8DAgI8++gh5eXn69OnD5cuX/9sxddl4lW36pKQkioqK8Pb2xsTEBICYmBhUVVVxdnZGUVGRAwcO4Obmxtdffw1AWloaBgYGaGtr4+zsjLKyMsbGxjx79oyKigrWrVtHYWEh58+fB8Da2hobGxuePn3K3bt3qa+vZ9myZcjJybF48WLU1NQoKiri0aNHDBw4kF27djF9+nROnz5Nt27dsLa2pq3tX3eB/Dt0dXWFIV5VVcX58+dRVFTE29sbXV1dCgsLcXNzIz4+ni+//JJ+/fqxfft28vPz+eOPP6iurmbChAlUVVXR3Nws3jc+Pp7z58/j7+/P+vXrASgvL6e9vR1DQ0MMDQ1pbW0lPz+f/Px8zMzM8PX1JTo6mmfPnpGZmUm/fv0YMGAAAwYM6PTM586d69IYZ86cSUNDA1988QVpaWls3LiRHj16EBoaSkREBO7u7igrK1NXV4eCggIKCgoYGBjg7u6OpaUlu3bt4s6dO0yZMgVnZ2cKCgrQ1dUlLy+PhIQEjI2NhcFbWlpKa2sr8vLyVFRUYGpqSktLC0VFRaSmpvL8+XMSExMBWLx4MbNnzyY2NpYdO3ZQXFyMiYlJl41XmTFRUVHB69evOXnyJP3792fevHlAx0FsbW1NS0sLBQUFqKur8+2334q/b29vp66ujtTUVPT09PDx8aG8vJzq6mpUVVUZO3YsY8eOZfXq1Vy9ehVlZWUUFBQ4ffo08vLy/PTTT6ipqZGWloauri4qKioYGBjg6urKrl27ePPmDc3NzQwcOBBDQ0PGjBlDa2trl4zXuro6XFxc+Oqrr8TP7t+/z65duxg9ejSLFy8GOgzo+Ph4FBUVkZOTo7m5meTkZLS0tLCxsQHg+fPnrFmzBgALCwumTZvGokWLcHR0JD8/n6SkJGpqaujWrRslJSWEhITQ1NTExx9/TGNjI5988gmpqakMGTJEOCTvvfceY8aMobi4mOrq6i7NnwyyvZufn09dXR3W1tZkZGQQHx/P+PHjmTRpEvPnz+fcuXMMGTIENzc3ampqyMrKIjk5GSMjIxITE9mzZw8FBQX89ttvaGtr09zczPXr1xk+fDju7u7Iy8tz5coVZs6cSY8ePUhJSaG4uJiLFy/y3nvv4eXlRVtbG3379sXQ0BDoMKIXLFhAeXk5eXl56Ovrd/kCHTVqFIMGDcLAwEC8p6qqKkOHDqWyspJXr16hq6vLmDFj6N27N9XV1WzZsoXa2lphNLu4uJCYmIitrS1tbW00NDRgaGiIh4cHGhoaFBYWUlRURHh4OADe3t40NTXx4MED7t27x5s3b/jss8+ADuO7ubmZRYsWoaWlRUtLC0pKSjQ0NHD+/HmOHz/OggULujRGmVFmbGwszjlTU1OmT59OW1sbly5dQk1NTRiVampqBAcHi7//u2EfHh7O06dP0dHRQUdHBw8PD/Lz86mqqkKSJPr27UtJSQkJCQkkJCQQERFBnz59UFBQoLCwEEtLS8zNzRk3bhxNTU1UVFQIg6i9vZ379+8TGxuLgoLCW49v1apVzJo1ixMnToj1MmrUKGpra2lubqapqYn8/HwUFRVxcHBAU1OTpqYmFBQUaGxsZOrUqbS1tQmjtqWlBU1NTTw9PTEzM6OlpYUHDx7QrVs3LC0t0dHR4fXr1yQmJqKtrU1lZSWFhYV4enoSHBzMzZs3+fzzz1FTU2PatGlAh0Pk6upKcnIyVVVVZGZmdmkO09PT0dbW5oMPPhA/q66uprm5merqaqqqqvDx8cHMzAxbW1tqamqoqanBzc2NjRs3MnjwYLZv346Pjw8BAQHk5eWhoaGBoqIibW1tNDU1YW9vj4WFBdARWEhMTKSqqoo3b95gYGCAiYkJ48aNAyArK4v09HRiYmKwt7fH0NBQON5aWlro6+t3aXzQ4bgVFhZSWlqKra0t8+fPx9nZGYC//vqLjIwMtm3bBnQER5SUlDh37hza2trcunWLx48fIycnh5KSEmVlZbS3t6OhoUFAQAAuLi5kZWWhoaFBVlYWBQUFuLq6UlFRQWJiImPHjsXExITPPvuM0tJSFi5cSHl5OVu2bCEoKIiFCxfS2trKixcv+OCDD7C1te3y+Orr64WhL4OXlxft7e2YmppSWVmJnp4eH374IVOmTEFXVxfoMEitra2Rl5fH0NCQvn37UlNTQ1FREb169UJDQ4O2tjYqKyupra1FTk4OFRUV5s+fT01NDdevXyciIoJFixaJdfP69Wtu3rzJxYsX2bJli3BcbWxs+Prrr2lvbyc6OvpfjqnLxqvM0OjRowfKysri4IWOS/D58+ccOnSIbt260a1bN1xdXQEIDQ3lwIEDLF++HB8fH2JiYvDy8kJBQYH9+/eTmZmJtbU1tbW1fP3115SVlYlDLCAggN9++w1XV1caGhrYsmULpaWl7Ny5E2VlZVJSUujZsyeampp8+umnBAUF0atXL5KTk3n+/HmXxvf3CJGGhgbDhw8nPj6enTt3Eh0djb6+PnZ2digoKNDS0kJ5eTnQcem/fv2aGzdusGzZMj799NNOHqq6ujpqamqoqKiInzU1NVFSUiIuREVFRdrb22loaODKlSscOnSIiooKnJycgA7vadWqVeLvZZfLv4Pnz5+TkJCAnJycmENPT0+++OILFi5ciKamJsHBwUyfPh1DQ0OKioqQk5Pj8ePHXLt2DR0dHYyMjLCwsKC4uJgvv/yStLQ05s+fz/jx4wFYsWIFT548YefOnXh4eHDo0CHCwsKYPXs2RkZGDB8+nMDAQFavXs2zZ88oKiqiT58+9OnTh7q6OmJjY+nevfu/NT7oiPDPmzcPPz8/bG1tMTIyoqqqisbGRkxMTEhJSWHhwoXY2dlx6NAh8Xfy8vLCy0xJSSE0NJSnT58ydOhQ1q5dK9a0bC8sWLAAT09PfvvtN968ecNXX31Feno64eHhWFhYsGjRIj766CMA1NTU+Pbbb2lpaem0d9rb27s0tr/++ouxY8d2Mpg8PT355ZdfRCQOwMTEhF69eokMwDfffMO5c+f44osvRIS9sLBQvP69997jgw8+QFtbWxjv9vb23Lhxg8uXL+Pv7y+MbgUFBZqbm1FTU6OmpoaGhgZWrlyJvb09paWlpKSk4OTkhLGxcZfGJoPMUd6xYwenT59m1qxZzJ49mz59+tDc3MzFixc5deoUioqKwuG8ffs2aWlpqKioYGlpKSKtZ8+epbW1lTNnzmBsbCwux5kzZ7J3716GDBki9tLRo0eJjIyktbVVRNGrqqrEZ0CHkztp0iROnDjB5MmTWb58OcuXL+/yGGWXHEBsbCx6eno4OTkxc+ZMDA0NO60R2ecGBASwZMkSFBUV2b17N1OmTGH8+PGsXbsWeXl5kpKScHJywsTEhMmTJ2NgYEBkZCSff/45gwYNYuPGjYwYMYIDBw7w+eefU1xczKeffirWNXQYEPPnz8fa2prvv/+ehQsXdlonbwvZd/b5559jZ2fH3bt3aWlpYcWKFcyaNUs4kbW1taipqYkojuy7CQ0NFQ5+e3s7ioqKJCYmoqioiLa2NlOmTGHSpEn89NNPXLx4kaVLlzJ06FDS09MxMzOjra2N+Ph4/vjjD+Ew+vj4cOnSJa5du8auXbvo27cvBQUFmJmZ0bdvX37//fe3Hp/MIbaysmLu3Ln4+/tTV1fHvXv3ePHihcgoeXt7o6enR3t7O/Ly8rS0tNDQ0EBbW5vIbkHH/SNz1ltbW7lw4QKvXr2itbUVS0tLLCws6N+/P3Z2dnh6elJTU0NxcTFFRUUABAUFcebMmU73giRJ5Obm4uLigq2tLfn5+V2awz179oiAC3RkFW/evMmDBw/w9/dn8uTJeHt7o6CggIqKCi9fvuTgwYOYmZkxceJE9u7dy+XLl1m7di22trb4+/uL6N+wYcMwMTERd1loaCgrVqzA0dGRHTt28PLlS+bOncuSJUsYM2YM0GHk2NjY8O2337JhwwZWrlxJZWUlO3bsIDg4mM8//7xL44MOR9nX1xctLS1UVFRwcXERvwsICGDcuHFoa2tz7do1Hj58iI+PD7m5uRw7doyjR4/y5Zdf4u3tzRdffEFISAg9e/YUwStnZ2d27tzJqlWrqKioQFtbGxUVFTQ0NPD392fAgAHY2Njw3XffER4ezpEjR2hubub48ePCYF+7di3Xrl3jm2++Yfjw4Z0cvLfB3/d2W1sbLS0taGho0K9fP7S1tUlISOD58+e0tbVRXV2Nvr4++fn5fPLJJxgYGKChoUF7ezuamppcv36dDRs2MH78eDZv3gzAH3/8wcmTJ2loaBDBna1btzJnzhwqKiqIjY3F0dERJycnfvjhB4yMjDh79ix37tzB1dWVXr16YW7e0Y/jwYMHRERE/Msxddl4TUpKIiQkhP79++Ph4cHx48fJzc0Vnpe7uztHjhxBXV2dESNG4OrqSnh4OL/99hsZGRkUFxcDHWH+3bt3Y25uzrRp0+jRowdVVVUUFxezZMkSiouLefz4MY8ePcLDw4MJEyYAiIhYeXk5mZmZuLq6MnHiRO7fv091dTXq6uoicmhubs6oUaM4derUW48vLi6O5ORkevTogZWVFb6+vtTV1VFTU4Ompiaampo0Nzfj4ODAwoULUVZWJj09nZCQEHJycoCOiJ/M+8vPz6epqYk7d+5QUVFBfn6+SMMaGBgI+kV9fT12dna4u7sDHcZlRkYGVVVV6Ovro6CgwM2bN8nLy2PEiBEiEtzU1NTVKaS6uhpbW1s++ugjkpOTuXv3LvPmzUNVVZWJEydy48YNYVTb2tqSl5fHuXPnsLGxobS0lKioKJEiAFBRUeHMmTOUl5ezdetWABISEoiLi0NTU5OKigqSk5NpaGgQF7WKigrdu3dHQUGBkydPsmXLFoYPHy7ec9WqVcIg6uphGxYWRk5ODt27d6dXr1706tVL/C47OxtJkjAxMSEnJ4eMjAw0NTVpbW1FUVGRiIgIcZEZGBigqakp0sFKSkoihQcdhuHQoUPZuHEj6urqXLhwgeTkZKDDyGhtbSUxMZHXr1+TmpqKsbExtbW1wtOEDgO4pqZGpBnfFhUVFaiqqlJSUsKTJ0/w8/PD29tbGFvt7e1UVlaipKQkDFfomHsDAwMR5ZAkSURxx48fz6ZNm1BVVSU1NZU3b97Qt29fbGxsRBbD0NAQGxsbYWSkpaWRlZVFY2OjMBgXL17My5cvefPmDaqqqpiZmdHQ0NCl8ckgS2tpaWlRU1ODo6MjqqqqnDlzhpkzZ9La2sqSJUuwtLQEOtKR7e3tSJLE4MGDsbW15ebNm0RHR3Px4kU+/vhjFixYQK9evcjPz+f169d4eXkxa9YsmpqaiI6O/kf0r66uDiMjI2JiYggLC8PW1lakXg0MDFBVVeX58+f069evS2N7+PChSH+6ublx4cIFoqOjCQoKYuLEiYwcObLT69XU1PDx8aFbt26CfqOnp0daWhr19fXo6OgAHRH4a9eu4ePjI57T0tKSCxcu8ODBAxwcHNDQ0CAoKIioqCiRYWltbSUmJgY7OztBJamoqKBHjx5MnjyZ06dPs27dui6NsbKyksbGRoyMjBgzZgyRkZGEhoaSnJyMs7MzgYGBYm3I6AsyyKLokZGR1NfXU1tbi66uLg4ODri4uNCzZ0+0tLSIi4sjNjaWqqoqysvL0dPTo0ePHuJ9+vTpw8OHD/nzzz+RJIlFixZhYWFBSkpKp3Xp4+PTyfF72/Hp6el1oj7Ioq1lZWWYm5ujo6ODgoKCML5le0dTU5O8vDza29txdHQEIDk5mfDwcFxcXOjRowcjRoygrKwMOTk5qqurBbWrT58+QEdUdPjw4RQUFLB//35haMlQWlpKcXEx7e3tJCcnk5yc/L+6z7497OzsRIAFOs62trY2YmNjsbGxEetOhvLycm7cuEF1dTUNDQ3s379fZL5MTU3x8fHh559/5vXr12hrazNs2DDKy8uxsLAQGaK6ujoqKiqEAVhRUSHePzs7m/j4eJqamnB1dSU6Opq7d+8SGxsrKGNdRWpqKr179xb7KiMjg+TkZBwdHenbty/QcRaFhITQu3dvBgwYQHJyMoWFhfj4+NCzZ0+UlZVRVFTExsaG2bNnM2DAACoqKjh58iQRERGYm5tjZGREaWkpkiRhamqKs7MzSkpKKCgo4OzsjJ6eHoMHD6Zfv34sW7aMtrY2Dh06hK2tLXJycqirq5OdnU12dnaXxpeens6tW7fw8fEhKCgIBQUFVFVVkSSJxsZGGhoa0NXVpaGhgZycHOF0trS0UFxcjLm5OSYmJvTt25e8vDzu3r3biSZlbGxMXl4eycnJ2NjYMHPmTKytrXFwcODq1av8/vvvTJs2jaCgINzd3dmzZw+BgYHExsZSWVkpxnXmzBkKCgro37//v6RDdtl4dXBwYMeOHWhpaeHt7c3169c5e/YsFhYW3Lp1i2HDhjF9+nTu37/Pli1bMDMz4/Tp0yQmJmJhYUFVVRUAbm5urF+/nqtXr6Knp8fIkSO5d++eSLtHRkaydu1aCgsLCQoKErxaZWVltmzZ0inaYmhoSExMDNu2bUNLSwsjIyNUVFRYuHAhCxYs6JLxunPnTv78808OHjzIjBkzuHXrFuHh4Wzbto2ffvqJgoICdHR0UFRUZM6cOeTl5XHnzh0RufPy8mLy5Mmoq6uTkpLCmTNniIqK4smTJwCdeEEKCgoYGRlx+/ZtTp48KXiGAKNHj2bIkCG8fv1a8NvevHnDjh07ePDgAZcuXep0oHQF2traaGtr4+DgQEZGBidOnODIkSN8+OGH9O/fn8ePH5Ofny9SdhERETx58oQ1a9bg4+PDjz/+SGZmpkgH19fX06NHDzQ1NbGxsSE1NZX9+/fzySef0L17dz799FMKCwvZu3evSFW0trbS0tKCgoICNjY2HDjwz+6FsuhnZGRkl8Z35coVfv31V5YtW8aGDRs6/U5fX5+CggLS09PR0tJi06ZN2NraCqP0xYsX/PzzzwwdOpSvv/4aRUVFWlpaGDhwIHPmzOkUOX/vvfdobW3FyMiImzdv8vDhQ3r37s3WrVvR1NQkMjKS+Ph4ioqKuHr1Kq6urnTv3r1TxDw9PZ3IyMh/GCr/CjIvVcYlNDExEQZwc3MzysrK1NfXC26vkpISbW1tfPzxx6ioqGBqakpdXR1Xr14lMzMTNzc3xowZIyK5enp6DBo0CG1tbSRJws3NjZ49e2JqaioMfNnr09LSKCgoICcnR1AR+vTpQ319PVVVVaSlpXUpFStDSkoKycnJzJ49mw0bNiBJkng+WTRq9erV/PjjjzQ3N1NSUoKXl5fI0GhoaBAVFUVubi55eXmUlJSwd+9ecnJy+OOPP7CwsODQoUPExsYyc+ZMVFRUKCwsZM+ePfTr149Vq1aJNC7AkydPWL58OatWrRJG4ZAhQ3j8+DGnT59m165dnTiN/wppaWncu3ePzMxMevTowb1794iOjubOnTuUl5fzzTffAIh94uPjQ2NjI/fv3ycvL4+5c+cyY8YMNDQ0xHqAjmjnqVOnqKmp6cRvPHr0KJs2bWLBggVMmTJFRK0bGxsxNDTkr7/+4vfff2fSpElMnTqVH374gfXr1/Pxxx9TW1vbiQv/tpBx4A0NDbGysmLjxo2oqKigqqoqopD/2WiFjqijjo4OU6dORUtLi+3bt5OSksLo0aMxNTXF2toaa2trTp8+zfnz5+nTpw99+/bl+PHjPHr0iAMHDgijytPTk23btqGurk5bWxuOjo7s3r2b1tZWTExMaG9vx9XVtdPeflvcuHGDmTNndhpDa2sr5ubm9OzZEx8fH+Lj4ykuLv5HZBk6nC1lZWWgIwPyyy+/sHv3bnr16sXt27eFIW5sbExMTAwrV67EwcFBZLGOHDnC/Pnzsbe3Z968eWzZsoVffvmFMWPG0NzczMOHD3FwcCAwMJAtW7bw3XffsWLFii6NcdasWSJ4IzN8vb29CQoK6hShlEHGs5VRG2T0jD179qCtrQ3AwYMHSUxM5OzZs5iZmYkMm6+vL7dv3+bSpUt899139OrVi+PHj3faV2fOnGHDhg18//33bN68mW3btlFQUMCiRYsYOHCgqEHoCrKzs3FychJBpxs3blBeXi6eKzk5mRs3bqCpqcn333+PgoIClZWVfPvttzQ3N7Np0ybOnTtHr169WL9+PXPmzEFRUZHXr1/zww8/0Lt3b44cOUJ6ejqnT5/Gx8cHV1dXKisrOwWCsrOzycvLo7y8nIaGBi5cuCDoGuvWrWPbtm3U19cLe+JtcfXqVTZt2sSKFSs61QG1trbS3NyMhYUFy5Yto7W1FQUFBTQ0NNDQ0OCrr74SEV8ZFW3KlCn07duXS5cucejQIYKDgxk0aBCLFy8mMjISb2/vTnspLi6OuLi4To6ikpIS06ZNY/LkyUCHDXHnzh1iYmIYNGgQEydO5O7du//tmLpsvM6ZM4cdO3bw6NEjAMaPH4+ZmRkmJiZkZ2eTmZlJt27dRGGHmZkZPXv2JCYmhuzsbJFCTElJoUePHtjb25Obm8vRo0cpLCykb9++6Onpoa2tTa9evairq2PWrFnCUFVSUhIX5OPHj3n48CGNjY0oKyszbtw4Xrx4QVNTEwEBAVRVVfHrr792aXyXL1/G0tISLy8vysvLuXDhAoWFhaSnpxMYGIiFhQW5ublUVVVhYWGBtrY25eXlBAQE4OTkRFJSEuHh4QwZMoTs7GwuXLhAVlYWdnZ2jBw5kiVLlohUoLy8POrq6vTt25fy8nLq6uq4desWvXr1Eq8xNzfHwMCAzMxMlJWV0dPTw83NrRPVoKu4desWjx49YtSoUQwYMID169fzxx9/sGzZMqytrZk+fbowXMPCwsjIyGDSpEk4OjqipKTEjz/+SFtbGx4eHmIcP/74I8bGxujr65OdnS3mVlb85uDggJeXF9BReCCbz9raWsLCwnj9+jXJyckiZaqrq8vt27eJjo7uMm/ZycmJgIAA4QjAfxT/GBsbIy8vj7KyMvb29vTq1YvQ0FDOnz9P3759GThwIA8ePKC+vh59fX0GDhyIi4tLpwKPkJAQQkNDsba2xsTEhB9++IF79+7x3nvvsWLFCmHs+Pr64unpKThRDg4OIkJYW1srsgSNjY1dIt9Dx0W3detWqqurGTt2LLW1tRw6dIikpCT69+/PmDFj0NPTIysri9raWvT09ISjIENsbCzPnz8nLCwMZWVlnj9/joGBgViX1tbWQIeBvX//fgwMDFiwYIEwfGUcTSsrK968ecN3332Hg4MD8vLy2NjY0KtXL+zs7DAzM+typAA6HD1ra+tOB2Fra6tw5tavX88nn3wCgLKyMs+ePSM/P59Ro0YJXpi7uzt9+/ZFRUWFp0+fkpiYyK1bt7h9+zaSJBEfH98pNd+jRw/mzZvH06dP2bRpE2PHjhVpXG1tbRYvXtyp+FRZWRllZWWGDRuGiorKW6W7ZPDx8WHGjBno6Ohgbm4uvnM9PT369+8vXldZWYmcnByGhoYMHTqUly9fcvnyZZydnRk1ahQLFixg3759bN++nbVr1zJw4ECqq6tJS0vj3Llz/PXXXxgaGrJ9+3Y2btxIfn4+Li4ugtcmW69tbW14enrSp08flJSU8Pf3x9ramnv37rFo0SLS0tK6NoF0nB9hYWG4ubmxfPlysf7Ky8spLS3FyMiIoqIi4uLiyMvLAzocJ1NTU/z8/IAObnBOTo4oPHz58iV37twhJSWFxsZGxo0bx/Tp08nIyOD69etUVFSQmZkpzvDz589TW1vLwoULsbCwQElJSdRpyCAzprtasKWhoUFYWBheXl5UVFTw559/8vz5c3x8fAgODkZJSYno6GjS09NFtDQtLY2LFy9iaGjI3LlzkZOTIzY2luPHj5OSkiKMwiNHjhAREYG8vDy7d+9GR0eHhIQEIiMjcXR0ZOTIkfTs2ZPnz5+TmZlJVVUVra2tnDhxgsrKSmxsbNDT08PY2Jjm5mbU1dXp168f/v7+3Lx5863HeP36dc6dO4ecnBxBQUHCMfXw8OhE65IVpfXo0YNt27ahqKhIVlYWu3btQlFRkcDAQJqbm7l37x4NDQ2MHz8eExMTjI2NRaFaSEgI3t7etLa2kpOTg5+fn9ifsvf39PQkKCiImJgYDh8+jJWVFcuWLUNeXp7a2tpORWNvCz8/P5SUlDh06BAPHz5kwIABrFq1Shjbsghpbm4uioqKeHp6Iicnh46ODq9eveL69es0NDRQUVGBgYGBMPLLy8tFYZeamhrx8fG8fPlSRJgTEhKorKwkOjqafv36ce/ePWHPyLKqpqam6OnpUVhYyHfffceIESOYMGEC9+/ff+vxyYp4Z8+eTXNzM/v376e2tpavvvoKJSUlMc7/DBsbG9zd3TEyMqKkpITs7GxcXFywsLBg8ODBJCYmkpOTQ01NDTo6OsybN0+sVy0tLaZNm8bMmTOxtLQkPz9fFBdqaGigoqIinL5ffvmF7Oxspk2bhra2tqh7+u/QZctHQ0ODDz/8kMLCQoqLi+nbty/Tp08HYMuWLYSEhPDTTz+hra3N5MmTuXv3LgcOHKCmpoaDBw+Sm5tLXFwcDx8+pHv37vj7+/P69WuysrIYOXIk3bp1E9XqgwYNAjpSm01NTdTV1QnPKDU1la1bt3Lr1i0ALl68yDfffMOTJ09QV1enZ8+e7Ny5k0WLFgmP4W3g6enJ559/jpeXF3l5eUIR4dWrVwwbNgxTU1Py8/NpaGhAT0+P1tZWPDw86N+/P7GxsYSHhwsuqcwI9/PzY8WKFQwfPhxFRUXq6uqQl5dHRUWF5uZmfH198fX1ZevWrSxdupSvvvpKcKmgY2OVl5dTUFDAkiVLBJG8sbHx36qyfP78Odu2baOiokIUf6moqHDq1CkqKipobW3liy++ICIiguXLl+Pq6sr3339PbGwsd+7cYdKkSfj7+wMd9ICKigqsra1F0ZksfX3mzBlSUlJYvXo1dnZ2nZ65urpaLOA3b97w6aef0tLSwsSJE5k1axZpaWkcPnyY0tLSLvNe58yZw5w5c2hvbxdRTpnTpKSkhJmZGfX19eL1zc3NvHnzBhMTEwICAvjyyy8pLS0V6Wo9PT3y8vJEqj0kJIQvv/ySZcuWMWrUKA4fPkxjYyOHDx/GwsKCuro6Xrx4gampKe7u7nh6elJZWYmJiUknL7utrQ1ra2ssLCxYsmRJl6KTlZWV/Pbbb3zyyScsXryYV69esWnTJoqKioShraGhgYuLC3JyckiSRHNzs+DXlZWVoaKigpeXF4mJidy7d4+tW7eSmprKjBkzcHR0FN+dsrIyt2/fpqysjAEDBhAQEICpqSl3794lOTkZX19f2tra+O2338Tz2dvbM2XKFFEt/nfj/20ho+jILi3oKCrKzMxk4sSJ9OrVq5NjU15ezoEDBygpKWHjxo1Ax/psbW3FyclJGGuJiYmsW7cOMzMz9PX1kZOT46+//qK2thZvb29mzZpFW1sb+/btQ1FRUaR9/f39mT17dqdnrKioICMjAz09PT744IMuGa8jR478byPuMm6anJycGKesUr5Hjx7iLFRQUODJkydcunSJxsZG1q9fz7hx48jKyuLChQtcv34dOTk5+vTpw+TJkzl48CDFxcXk5uaKLAwguGqy7zI+Pp6goCCMjIxEcUVXC7YUFBTIyMigV69egrtfXFwsON+yKu/Tp09z4cIFmpqa8Pf3JygoiOrqapycnLCxsWHRokXY2tpy9OhR4uPjyczMJCYmhtGjRzNixAiUlJSwsLBg69atxMbGEhkZibOzM9ra2oJ/6ubmRu/evcX4ZIWWSkpKyMvLIycnJ9bI20JW7Kenp4eOjg5Xr14V1Iz29nZSU1OJiYmhqqqK0tJSzM3Nyc3NZcuWLbS0tGBlZcXAgQM5efIkv/32G+PGjWPv3r00NjYyduxYwsLCcHFxITs7GxsbG2bNmsWvv/7KTz/9xLBhw1i2bBlLlizh119/Fao4pqampKSk0NrayoQJE1BTUyM0NJQRI0awcuVKgC4Zr7/88guvX7+msbGR6OhopkyZwogRI8T329bWhoKCAlpaWjQ3N5OdnY2SkhJWVlZIksS1a9eIjo5mxIgRlJeXExYWxrhx45gxY0YnStKBAwf49ddfUVVVpU+fPlhbW3eiUykpKVFTU8OIESMYMWIE48aNY+nSpdy8eZPp06fz008/UVJSIlL/XYHMqbp9+zZXr14VHFfoMJrl5eVxd3enqKiIW7duoampibe3N8ePH+fXX3/F2dmZxsZGCgoK+P333ykqKkJHR4eqqipmzZqFgoICe/bs4fbt20RFRQnqnbKyMo2NjRw6dIhBgwZhbGxM79696d+/P9ra2lhYWPD9998zbdo07t69y7Rp00hMTOxEPXsbDB8+nLlz5wIdwYiff/5ZKOd069aN6upqJEn6BwVkzZo1rFu3DmVlZYqKisjMzKS8vJz+/fvj5uaGq6sr6enpHD9+nPj4eL755hssLS15+PAhSUlJ4r6YMmUKmzdvJi8vD3d3d1RUVAgNDcXb25uamhqSkpJQVVXFx8eH1NRUbty48V9mZP6OLhuv+/btY+XKlfTs2ZO4uDh+/PFHVFRUCAoKwsrKiilTpmBvby9SXTK+38yZM9HQ0GD37t3o6emJjfnLL78wffp0PvzwQ6CjKOnhw4csWrQINTU1ysvLWb16NSkpKbi7u7N06VK8vLxobGwUBTMbNmwQZO6/V+IXFxcLo+lt8d1334lCKy0tLXbt2kVhYSHKysrCALCwsKC0tJT8/HxsbGzo168f169f5/Xr1yxatIjg4GA0NTUxNTVl9erVaGhoiOjNb7/9xv79+5kxYwaffPKJIOrLnjc9PZ2MjAygIzqnoKCAmpoaenp6PH/+nIcPHzJ16lQmTpyIqqoqlZWVXZ1CBg8ejJGREYMGDaK6uppjx47x5MkTVq9ejZubG5aWlqSmpopigby8PLp3786rV684f/48Fy9eZMmSJSKy8ejRIxITE/H29mbevHl4eHiIKv4BAwaIOZClsJubm1m7di0FBQV8//33vPfee9TV1dHS0kJAQADJyclERkYiLy9PdXU1qampghPWFaSmphIaGkpgYCBWVlY0NDSgpqZGc3Mzz58/p6WlhaCgIAICAujWrRtnz57l5cuXBAUFMWLECKqqqrh06RKhoaHU1tYye/bsTvxZSZLw8fFh8uTJFBUVCT5veHi4qNCFDtWMoUOHCgdEJrkkg5ycnChifFsMHz4cbW1tEc329PRkwoQJPHjwoNPrZAbx9evXuX79OiNGjGDixIkYGhqirKyMm5sbvr6+bN++nT///JP79++zcOFCLC0tqaysRFdXV6R7s7KyRHo6PT2drVu3kpSUxAcffMCAAQMIDw8XckrNzc1ERUWxbds21qxZ0yni+7a4cOECv/zyCxMnThTFUIqKikyePFmkWq9du0ZRURH9+/dn6NChKCkp8erVKz7++GOcnJyIj4/n2bNnDBw4kJEjR9Le3k5GRgaZmZno6uqiqanJ+fPnSUxMxNjYWPB59fX1RVr6zZs3fPvttxgYGHD//n3U1NTo1asXSkpKlJeXU1hYSEVFhaBE/Z/i+PHjlJWV4efnh4ODg4gSHj9+nMOHD+Ph4cGSJUtEyra+vp5+/frx7NkzNmzYQEZGBnv37sXGxoapU6cSEBBAdHQ0v//+OykpKXz22WdkZ2dz5MgRhg8f3okjCfD7779z584dpk6dKlQorl+/zvPnz7t83nTv3p0hQ4bQv39/VFRUhCSgzMlLSUmhoqKCpqYm8f3l5OQIRzkvL4/PPvuMOXPmiJRrcHAwt27dIj8/n59//pnZs2czb948pk2bhpOTE0+fPhXO+Zo1azh79izbtm3j6tWrKCoq4uPjw4kTJzh8+DBubm5MmTIFX19fUYfQFRw5cgQrKytBH/rqq694//336dWrF4qKimhpaTFlyhQKCws7Uea8vb15+PAhO3fu5NGjRzx58gRdXV0MDAxISkoiNDSUtLQ0hg8fzubNm3n16hV79+5lwoQJODo68u2337Jt2zbk5OSEg1paWkppaSnffPONKNxTUVGhra0NDQ0NwX3/uwrO22DkyJFs2LCB5ORk4uPjcXR0FNmHp0+fcvz4caZPn46lpSVFRUVs27aN9PR0Ro8ejZycnOAu2trasmjRInJyckhOTiYtLQ0rKysePHjA8ePHuXDhAoAwkrW1tTspB6iqqnYK1ixevJgePXqgq6srivG66nz8Z6xfv57+/fvz4sULnj17Rn19PbGxsWhra7Ny5UpmzJjByZMnOXbsGCEhIZw/f57c3FxWr16NkpISmzZt4saNGxQXFwt+vrKyMs3Nzejo6DB9+nQGDRrEiRMnyM3NpampCVVVVZF9CwgI4Ouvv8bb25vbt2/z8uVLnJychMrN06dP2blzJwMGDOiUWfxXqKmp4eXLl0K14ocffuD+/fusW7eOpKQkLCws+Pbbb4VzV1dXh4aGRie6homJCS4uLjQ3N1NVVUV1dbUoPqyqqiI1NZXCwkL8/f2ZOXOmoI0UFhby6NEjzM3N8fb2Rk1NjZiYGOEQ9e3blw0bNnDlyhU2b96Mr68v3377Ld99991/O6YuG68FBQUieqSgoMCDBw/Izs7Gzs6OJUuWiNc9efKE8vJyysrKuH79OqtWrcLLywsVFRXy8vKoqakhLy+P169f4+fnR1VVFXV1dSQkJKCmpsbjx4+pr6/n6NGj/PXXXygqKgojcs2aNbS1tQnyr+xzc3JyyM3NRUNDg5aWFrp3746mpmaXODABAQHi/7W1tenWrRseHh6dImaKioo0NzdTWlqKg4MDenp65Obm8vr1a3r16oWFhQW1tbWYm5uLQjPoIM/HxcVRVFQkNuHfF4eWlhYeHh7CIFFWVqagoAA5OTmio6OJjo4mOTkZeXl5Bg8ejKqq6r+1WQcOHMjAgQMBRDGWtra2qCitqqrizJkzJCYm4ujoiKamJo8ePaKhoQFTU1MyMzM5f/48paWlFBQU8Ndff9HQ0ED37t1pbW3l1KlTPH/+nA8//BBvb2+ioqJ4/fo1Y8eOxcDAgMbGRlJTU8nNzaWtrQ1TU1Mh11NdXc3OnTuJiYlBR0cHPT29Tt/920BWXRseHk59fT2tra3AfxSEKCsrU1hYSHx8PPLy8uIgTkpKIikpiZ49ewIdh2VFRQVv3rwhPT0dFxcXURUp0ww1NTXlm2++4dmzZyQnJ1NcXExiYiKNjY08f/6c7Oxs/P39sbCwQF5entLSUnR0dJCTkyM/P1/I/syZM4ePP/74rcfo6emJp6cn+fn5FBYWYmpqysSJE3n9+rVIs7969QqA3r17C33ZjIwMJk6cKCqDKysrKS4uFn/v7e0tKB26uroUFRVRV1fHlClTxGeHhoZy4sQJ8vPzMTIyIjc3V8iIWVlZ4ejoiI6ODpWVleTn5wvDsKsICQkhIiKCSZMmAR10lxcvXjBs2DBcXV3Jz89HVVUVbW1t8vPzGTp0KLNmzUJNTY2rV69iYWFBY2MjkZGR1NXV0aNHDwYMGICamhr19fWYmJigoqKCiooKmZmZoqBFUVERX19f5OXlhSZs9+7dycnJ4eTJkwwePFgUcfxdFq6rOq8yOSVJkoTRtHfvXj799FN8fHzo3bt3p8u6traWFy9edOIapqenY29vL7jMO3fuJD09nfz8fJydndHQ0MDPzw8dHR1WrlxJYmKiqCm4ePGiuABTU1NRV1fH2NiYnJwckdKXJIk3b94wZswYxowZ0+mMfxv4+vpSVVUlnDUVFRWsrKyoq6tDUVERVVVVwsLCyM7Oxs/Pj5qaGvLz8zl//rzgyH355ZdER0eTlpZGt27d6NevH2ZmZpiZmeHm5sa1a9dwc3NjwoQJZGRkcPr0aZKSkrh79y4TJ07Ezs4Ob29vjhw5QkVFBatWraKsrIzXr1/z+vVrnJyc8PX1JS0trcu0AUmS8Pf3R1lZmYaGhk4ZQ6CT1F9VVRVNTU0YGRmxYcMGNDU1uXHjBrdu3UJJSYkvv/ySwYMHc/XqVY4dO4a9vT3r16/HwcGBjz/+mKdPnzJjxgzWrl2LiooKv/32G5s3b8bNzY3g4GAh85WXl0e3bt06yYz5+PgAHcGhmpqaLo1x7ty5GBoa4urqSlBQkMj8VVZWsn//fu7evUtTUxMffPCBkAGsrq7m0KFD1NTU0NzcjKGhIYqKiowYMQJ1dXXWrl3L8ePHKSkpoaysjGPHjgEd2SInJyfMzMyExnRERISok9DQ0KC8vBxFRUWCgoIICgriyZMnXL16lQkTJqCoqEhZWVmXxiebG2VlZdzd3enWrRubN29m+/btYg36+fnR0tJCU1MTLS0thIeHExMTI/S7ZVSdbt26UVRURFhYmNDWff36NQAjRoxg/PjxjBs3Dmtrax4/foy+vj49evQgKSmJ7du3U1ZWhoWFBZmZmXzzzTeoqKjg7u4ulFtcXV0xNDTkzp07XTJey8vLef78OeXl5YwaNYqJEyeipKTEggULKCwspKysjISEBMFXldV61NfXi8I5FRUVYZBDh4EbGhrKs2fPaGhoYNy4cbi4uAgFJh8fH2xsbHjx4gXJycmsXr0aLS0tfv31V6Kiohg7dqzgfNvZ2WFubi6ytLIM0H+HLhuvGzZswMjIiIKCAtLS0vj666+xs7PrVN0JHbqmCQkJ6Ovr09zczIkTJ6iurmbx4sW8efOGJ0+eMHbsWL788ksOHTok9DAPHz7MokWL2LFjB2vXrgU6PCx3d3du3brF0aNHycvLY+nSpXz22WdCrkpfX19olyorK3PgwAFmz57NiRMnumS8JiUliYshOzuby5cvo6+vz7Rp00QUS6Zr9vr1a8GvnThxItXV1Vy/fp3Hjx/Tq1cvgoODhSHQ3t6OsrIyH330EcHBwYIvKoMkScyYMYNx48aJRgeKiopUV1dz9+5dzp49S3l5OUFBQUyaNOlfhtT/O8TGxlJbW0vv3r0xMjLiww8/7MQrPHr0KGfPnkVJSYnp06djZ2dHe3s7RkZGWFpa0tLSQl1dHXFxcVy/fh15eXm2bNnC4sWLiY6O5sCBAxQWFopo+u7du0lKSmLo0KFAR/rnu+++Q0VFpZOwfHp6Ovfv3yc3N5fs7GzKyspwdnZm8ODBXdImjI2NJTo6WqhN/OdUCHQY8I2NjUIuSFFREV1dXXr37i3oAbKMgq6uLlevXhVyVsbGxjg4OIjvTF5eHjc3N/Lz80lNTeXBgweCJ11VVcWqVatE4wwNDQ3U1dVJT0/n2rVreHh4MHjw4H97PmVReehIqWdkZDB8+HCamprYtm0bGRkZ3L17V0S/ZRJprq6u5Obmsm3bNk6dOoWnpyf79u3Dy8uLBw8e0NjYSLdu3cjKyuL48eP4+Pgwe/ZsKisr2bVrF/fv3+fzzz9n6NChbN26lUuXLgEdkin9+/fnjz/+IC8vT0To/x2BewsLC65fv07//v0pLCzkt99+4+LFi/z44498+umnLFy4EA8PDyorK8nJyRGR4iFDhtCnTx8sLS25du0aZ8+eJSkpiX379vHjjz8KTd+srCxUVFRYtWoVDx8+5Msvv8TW1paVK1dy5swZdu3axYwZMzhx4gTQocM6dOhQwV2Ejqh5fX29EPQ/c+bMW48vJydHrHGAzMxMoqOjMTY2ZsiQIfj5+XWikgQEBPD5558LJYQDBw5QWloqtH4nTpyIr68vTk5OGBkZkZSUxOHDhykpKSE6OprGxkY8PDzo1q0b9+7do7y8nObmZhISElixYgWqqqocPnyYTZs28fr1ayorK/nggw+4fPky33zzDcuWLevyHLa1tVFYWNjJCK+vr+fBgwcMGzYMJycnHjx4QFxcHOfPn6e+vl5cXPr6+kKtZvfu3UybNo0bN26QnZ3NwoULaW5uZsCAAdy5c4eSkhJWrVrFvXv3aG9vJzAwkLq6OsaPHy8UT/Lz8/H29qaxsZGRI0dSVVVFRESEaACzc+dONm/ezIwZM956fLt27cLAwICqqirCwsKorq7G1NQUe3v7f+iN6ujo0NTURGNjIwMHDkRLS4uUlBQSExNpa2tj0KBB9O/fn9DQUEH5uXTpEsuXLxfUi7i4OPz9/VmxYgXq6up8+umnPHjwgJkzZ3Lr1i1CQkKYMWMGs2bN6iSrCB1R0kOHDv0j0v6vkJOTw9dff425uTkff/wxcnJyFBYW8sUXX3D69GkAjh07RmZmJoMGDeLzzz+nurqabdu2iXOhrq6O3377TWTXYmNjSUhIID8/HysrK7S1tamurqaurg4VFRVxR547d46PP/64U2MJKysrZs2aJQJNMn3W/Px8NDU1u6xjC/8hsB8SEkJLSwvLli1DV1eXzz//nDFjxvDTTz+RlZXFH3/8QWFhIfr6+ujo6NC7d2969eqFnJwcTU1NDBkyhNTUVKEKYWZmJozX27dvY21tzfz585k8eTK+vr7U1tYyZMgQGhsbiY2N5enTpxw5coSMjAxevnzJrFmzRODg+++/Z//+/fTr14+QkBB279791uNzdnbGysoKHR0d2trayMnJoby8nEWLFonszps3bzh48CDvv/++aMSko6NDRUUFJ06coKSkhMmTJ4ssioaGBgoKCvz8889YWlqybds2bG1tuXjxIt999x0eHh5MmTKFkSNH4u7ujpaWFlVVVWzevBkNDQ3Wrl2LhYWFKNw0MTFBVVWVjIwMBg4c2MkJ/K/QZePVzs6OpqYmwsLCsLS0FN7dlStXePXqlRBWfvbsGU5OTvTs2RNPT08ROX358iX5+floaWmho6NDY2Mj7e3tqKqqCh1RWTVqz549CQ8PJyUlhW7duqGiokJtbS319fU4ODhgY2PDqVOnOH/+POvWraNXr154eXmRnJwsOGJ/r8J9G9y6dYu7d+9SXFxMQUGB6P5RXl6OpqYmampqqKmpoaioyIULF4T4fLdu3Vi1ahWnTp3iypUrhIeHExUVxbhx4/D19cXa2hptbW00NDR49eoVV69epbKyUnS2GDZsmLjEmpqaRDTNw8ODiIgIsrKyRGecCRMmCG22a9eudXUKOXz4MH5+foKn09DQQEtLC7m5udTU1BAeHs6zZ8+ADvUENzc3HB0d/3EYy3RTm5qa8PDwICwsjBMnTpCSkoKbmxu1tbXcuXOHu3fvIi8vLzx+NTU1YQAUFhYiSRIaGhqkpqairKzM9OnTKSsrIzIyEmNjY0aMGMHBgwffenwyQ9TOzk5EplNSUnj48CE1NTVCvWLgwIFs3rxZFBMpKSlhYGDQicpRVVWFjo4OkyZNEoa2paUl8+bN6+Sw6ejooKGhwdOnT4mKiuqkidnU1CQcLA0NDVpbW7G2tmb06NE8efKELVu2dIr4vy0kSepEP1BWVmb48OH06NEDFRUV7OzshDPh4eEhVB+SkpJwdXUlKSmJixcvoqmpyaJFi9DT0+O3337j2LFjKCoqMnPmTDw9PenevTtXr17l6tWrGBsb8/DhQ+Tl5Rk2bBgeHh5YWFggJyfHhAkTGDVqFKampvj6+uLm5ia40f9OEYWhoaEoXNLR0aFHjx4kJCQImRkdHR3y8vKIiYlBU1MTPT09lJSUUFVVFQa9uro6lpaWVFVV8fLlS/788090dHRQUlJCR0dHRITb2tqYPHkyI0aMwN3dXShS/D3S6OjoiIuLC0+ePOHy5cuYmppSWlpKdHQ0tra2nbQU3wYNDQ0kJSVRXl5Ot27dqKurY8CAAcLAbG9vF1q6T5484cWLF8jLywtpoFOnTlFVVYWGhgZDhw5FS0sLJycn1NTUyMnJISYmhujoaG7fvi0+U19fn4iICOLj47GyssLOzk44ovX19WRmZmJoaEj37t2FtrWJiQn37t37tySILly4QFVVFba2tiL6c+/ePXR0dETHNj09PSZPnkxgYCAVFRUEBQUJbuWwYcPIzMwkLi6OMWPGYG9vT2FhIaGhobx58wZHR0fmz5/PgwcPiImJQUFBQWSAnj179o8GGXJycpiZmeHs7IytrS1PnjwRxoepqWmX+fUyp1BRUZGqqioqKyspLS3FxMQEPT09amtrSUtLIyoqisrKSvr06SP2hJubGx999BEJCQk4OjpSVFTE4cOHqaiowN/fn5KSEq5fv05VVRWrV6/G09OTkydP8vjxY9asWYOmpqagIjx8+JCcnByio6OJjIwUAZiioiIhWxUZGUlBQYGQ83tb3LhxA1VVVezt7amoqKC8vJzo6GjU1dXp06cPlZWV2NnZiWyBvLw8YWFhnYxIWYbk2rVrXL16VdQcyJ5/7ty5qKqqEhISQkNDA8rKyvj4+JCSkoKBgQE+Pj5oaWlx5swZvLy8mDhxIiUlJVy7dg1VVVV8fX2prq5GW1ubHj168Mcff3RpjKWlpaK4VNbgZMWKFaKZQnV1NfX19cIpycvLw8DAgEmTJmFubs6DBw9EoxZnZ2ehPW9iYkKfPn24e/cuCgoKGBsbY2VlJQIZP/zwA0lJSVhbW1NWVkZtbS1xcXFoa2sLvqgM5ubmeHp64u/vL2yFt4Wenp7I7qSmphIREYGGhgbr1q0TQRgzMzPCwsKEIS9zOG1tbVFVVeXevXs8fvwYPz8/Jk+ezOjRo2lsbBSSWLL3b2trw9nZWRSoyQIJERERXLhwAR8fH3x8fIiIiODIkSO0t7ezZMkSAgMDOX78OD///DO1tbX/ckxdNl7b29spLCzExMREaOI9efKEhQsXUlxcjLOzM6WlpTQ1NTFs2DDMzMwoLS1l5syZODk5MW7cODIyMvj0009JT0/n2LFjODk5cfz4ccHVOnjwINu2beOXX35h7dq13Lt3j3v37okK8blz52JnZ4ckSdy/f5979+7h6+tLr1692L17NwkJCZSVlaGkpERgYOBbVa7JoKyszL59+0hISMDU1JQjR46ItHJ+fn6nCJmsaC0qKoo+ffqgr6/P6tWrMTExYdmyZeIgMjQ0FJXb27dvZ8uWLZ0O1YEDB+Lr6ysM7Rs3blBTU8PIkSMxMTFh7ty5xMbG8uOPPwo+EHR4cp999lmXCtIA0UzAwMCA69ev89VXX+Hg4MDIkSNxdXXtJO5+48YNXF1dOxlqsjSpu7s7xsbGhIaGcuXKFR4/fkxlZSWBgYEEBQVRX1/PvXv30NDQoFevXsKgkEHGnVFVVcXU1JSAgAAhJfPmzRuuXLmCu7t7l/muDg4OmJmZCboAdEQP9u3bR0VFBRoaGri5uaGoqEjfvn0pKysTnNuHDx8ye/ZscfjfunWL58+fM3fuXPEctra2LF26FEVFRdEVTUVFRVTIygxXXV1dBg4cyJAhQzp10JFprTo6OvLbb7+xffv2Tp2y3hayji6y+fD396d3795CgWLjxo307t2bR48eYWtry3fffUdCQoJ4Pj09PXr16sW4ceOYP38++/btY82aNeJ7S01N5ezZs8yaNYtbt25x5coVjIyMcHV1FeklmU7fp59+yscff4yRkREZGRkMGzYMTU1N8Wz/u2rW/w4VFRWiGERFRYVPPvmEJUuW0N7ejr6+PnV1dSxYsICXL1/y008/CUP3woULREVFiXmXVbFDR2SlqKgIOzs7Zs2ahbGxMb/99hthYWEsXboUNzc37t69i4mJCefOnRNOlIwP2d7ezuXLlzlw4AC6urrY2tqSnp4utJO70o66qKhItIhsbW1l8ODBODg48OLFC3Jzc0lKSsLd3Z2srCy++uorXr16JTretLe3U1tbS3l5OWvWrGHp0qXMmzeP0NBQIQhuY2PDmDFjqKioIDQ0FEDw+Kqrqxk0aBDdu3dHT0+P2bNni2gMdKSXc3JyWLhwIXPnzuX3339n+fLlXT5rIiMjGTVqFCNGjBAKGc+ePWPs2LHCSFmzZo24pJWVldm9e7foSuXi4iLqGWSycg4ODhw8eJCTJ0+Snp7O999/T2pqKpaWlkycOJHKykrR7VBHR4cPPviAsrIyoWjz98yKvLw8BQUF2NvbM2LECMzMzAT38m0gawihrq6Oq6srVlZWImIlJyeHoqIip0+fZu/evejp6bFx40ZhvFZVVTF58mShQLJmzRr27dvHvHnz8PT0ZM+ePTQ2NrJr1y5WrVpFfn4+Fy5c4NKlS0RFRQmFBICysjIWLFhAbW0tfn5+zJw5U8y3zEAKDAxk0KBBnTRT3wb19fX8+OOPqKurc+XKFcLCwujXrx87d+4UHfUCAgIEvUdWSPp3DXI9PT38/f3Jzc0Va1EGFxcXBg4cyLBhwwgNDeXw4cMkJyeL9upr165l0qRJ1NTUUF1dLeiAqampQl1EFkRraWnp0thkSE5Oxs7ODkdHR+rq6nj+/Dl9+/Zl4cKFrF+/ns2bN/Pdd9/x6aefcv78ed68eYOFhYVo0R4TE0NFRQWTJk2ib9++tLW10draioqKCj4+PkyaNIm4uDjMzc3F+nv16hW//vorhYWFgl9qa2srikP79u2LlZUVFRUVyMnJMXfuXObOncvRo0cJDg7uUicxWUa5ra2N5uZmjIyMMDY2FrUD0NHq2M3NDQUFBXFuy+ZfFhSIi4sjISGBK1eu8MUXXwjd2LKyMi5duoSzszO9e/dm0qRJpKWlkZiYSElJCXV1dSxbtoysrCzOnj1Lr169+OSTT/jpp5/EHjc3N+e9995j0qRJ1NXVCSrh/w5dNl43bdrEBx98gIuLCy9fvhTe3MyZM7GzsxPdbGJjY3n58iWPHj0S/JVBgwZx+PBhdu3aRWRkJAMHDmTu3Lm8evWK/fv3Ax0pWTk5OdEzPigoCGNjY86ePSva7cmKP9LS0rCxsWHatGm0tLQI4WtXV1eKiorQ1dXtsr7k4MGDaWxsJCYmBltb206Gk7m5Oe3t7Tx+/JiMjAxWrVpFaWkpx44dY8eOHfj6+hIUFIS6ujoDBw4kJSVFyCyVlZVx6NAhNmzYQEtLC6qqqlhbW5OdnS0iJZGRkRw/fpyWlhba29s5fPgwq1atYsKECXz77bcYGxvT1NTEpEmTaG1tFR2kuop+/fpRWloKdGz2kpISEa1sa2tDW1ub7du3U1FRwaFDh4iLixOtVO/fv4+bm5soXHr58iUXL17EyMhIPItMa1N2CXt7ezN37lxRBSqL2puZmXXSCfy7BuKAAQO4efMmnp6eXVZUkCQJPT09wSeUSZqMHTtWRHxkmpwbNmwgMDCQ77//HjU1NSZOnNhJj87c3JywsDDhQevr6wtDrLGxUTSdqKioIC0tjatXrwIdqS0LCwvS09PJyckRuq6yjmYFBQXs3buX6OhoPvvsM6ZPn87evXvfeozx8fGkpqbi5eUl9oOsla+McuHj48P777/PgAEDKC0tpaSkBDU1NVGQGBAQwOzZs3n69Cnz589HSUmJTz75BF1dXbKysmhoaCA7O5vS0lLa29vp1q0bY8eOpV+/fjg5OWFlZcXhw4c5ceIE06dP70SRkTkqtbW1/5buIiA0BwsLCwkPD2fw4MGdON4aGhrcu3ePlpaWTuLyx44d4+rVq6JRRG1tLc7OznzwwQdC61MWMa6qqsLJyQlvb2+8vLyoqakhMTGRQYMGieKvFy9eCIm7tLQ0XFxcmD9/vnBM/f39ycjI6NSB620g61/e2tqKnp4eurq6lJeXc/PmTdTU1AgKCqK9vZ0HDx6IaFl7e/t/mRZVUVERDRra29sZPnw4+vr6WFlZ4eTkxIsXL4QAeEVFhehuZ2Njg4KCAosWLRLZAUmSsLKyEooOqqqqjB8/nrNnz3Z5DidPniwcXyMjI5YvX05ra6uIKG7cuPEfdQay9uEylYm4uDjR53zevHmYmJhgYmJCcnIyV69eJSQkhKysLCRJQl5ensbGRuGABQUFsXLlSoqLi8nKysLAwECcM6Wlpfzyyy+oqanx1VdfoaKi0uVM1t9pZtHR0ZSXl6OmpoaXlxeqqqqoqalx8eJFGhsb+frrrzE2Nmb48OEMGjSIzz77THA5m5ubaW9vx93dnXHjxol2wx4eHkydOhXoyESsW7cODQ0NQU/R1tZm1KhRtLW1kZKSgq+vL0uXLmXw4MGC6jV9+nTq6uro2bMnjo6O5OTkCJWet4GMhnTjxg3Onj2LnZ0dAQEBqKio0L9/f4qLiztpjg8cOJCVK1dy7do1MjIyaGxspKSkRLT2dXJyorW1FTc3N0aMGCHqKmRUNg0NDTIzM7ly5QppaWkUFhaSlpYmVFKOHDnCixcvmDdvniiIluHhw4f8/PPPwkB8W9TV1bF48WJRaPX3av7k5GQyMzNFZPHJkydUV1cTEBBAZmYmJ0+e5Pnz5wQGBnbSof7pp5/w8PBg3bp1yMnJcfLkSSwsLKivrychIYHw8HAcHR0pLCwUn29pacmPP/6ImpraPzr2SZLE6dOn+fDDD2ltbe2SI/ns2TNcXV1F98iCggIyMzN58OAB9+/fp7GxkcWLFzNhwgSampo4e/YsMTEx2NjYUFhYyP79+3Fzc+PUqVPs2rWLsLAwcY7u37+fa9euUVVVJe5JQOzhhoYG0Tq2rq5OnKHDhg0TtIGQkBBevHiBvb0948ePfyu97C4br7IwMXREZrZt24aXl5eQC4EOmZwLFy4QGhpKZWUlkiTx7NkzBg0ahK+vLz169BDk3aVLlxIfHy90LmUdQl68eMGVK1eYOnUqw4YNo6CggJCQEJGagY4LXFtbG09PT4qKijh//jy9evWiX79+mJiYUFdX12V9SRcXl04GVVRUFPfu3cPR0RFbW1uamppISkpCV1eX4OBg7ty5I7Qmb9++zb1794S8zqxZsxg1ahRlZWX89NNP/Pnnn+jp6eHr6yv4O6NHj8bQ0JBLly7x+PFjysrKGDhwILW1tdy4cYP29na8vb2xtbXls88+o66ujubmZhQUFBg/fjzjx4/vchHFhAkTRFi+f//+eHt7o6GhQXV1NSkpKaSlpQm+yR9//EFJSQlKSkqic8zfDYWIiAhevXrF5s2bee+99zp9jpycHI6OjnTv3h1vb28qKyuJi4sTgt2yz5QkCTMzMxQVFamvryc9PZ329nZ69Oghika6gtzcXBwdHTt5lZIk4ezsLIrGfvnlF9LS0hg3bhxubm64u7szdOhQVq5cKQrrZOlld3d3rl+/Tn19PV999ZVIFZaXl4uezrIomKwLkIw3t3PnTk6ePMmkSZOwtrYWUdFz587xww8/MGfOHLZs2dLlDlR1dXXk5uaiqamJpaUlCgoKtLW1UVVVxdOnT0lISKC4uJgRI0ZgampKRUUFOTk5Ir1TU1NDY2MjTk5OHD58mPDwcH7//XfBr4qJieHq1au8fPkSJSUlfHx8WLVqFYMHDxbPUFtbKy7IkpIS0ZnMzs6O9PR0NDU1MTY2FlXIXYWGhgaVlZXiYDM3N8fX11cYNaWlpQQHBxMeHt6pWMrOzk509lJTUxNG/uDBg4VOc1NTE/X19ZiZmQn+M3TIaNXX14tCE1mXMlmEy8DAQHAJZbxmWU93OTm5Lu3FmpoavLy8aGpqIicnh/b2diIiIkhKSmLIkCGCrlRQUEC3bt2IjIykpaWFAQMGYGtry5s3bwgLC8PCwkJoTss6yhUXF4v5dnBwYPjw4eTn5xMaGsqoUaOYO3euOK/b2tqwt7cX+1rWBrJv3740NjZSVFSEmpoa27dv5+jRo12aQ5nAuqx6eerUqbi4uLBs2TICAwPFeoqPjxccOplwu4yG8eLFC/bt28f7778vjJLw8HCcnJwIDAzk1KlT5OfnU1VVRWJiIlpaWgQEBFBRUUFlZSUFBQX07NmTFStWUFpaKvq8KygoiOJZNTU1JEkiMTGxS1224uLigI6Uq8xo/nuBqUzVYsCAAQQFBREWFkZ0dDR+fn7Iy8tTUVHB06dP0dTUpGfPnvTt25ehQ4dSW1vL5MmTqaurIyIigoaGBrS1tRkxYgTm5uZkZWXx8uVLqqurUVJSEoUvcnJyZGdniy6O/fv376QZDB2FNF0xXn19fXn8+DEbN24UKiOys1sm4VVbW8vTp09xcHDAycmJdevWkZ2dTUJCAtCRDZPJs1lYWNCjRw/ef/99xo8fj5KSknDINDQ06N27N7a2tly7do26ujqqqqq4evWq6M4JHVnQwYMHo6SkRH19PSoqKtTX13Px4kUePHjArFmz3np80MF/lzXK+fDDD4WNAx02j7y8PEpKSiQlJXH06FE8PDwYNWoUMTExnDt3jtraWiZOnCjuqsjISG7fvi3OkqKiIu7cuUNTUxMxMTGkpqbi5OQkVG1ycnIIDg7GxcWFU6dOkZGRQW5uLqamphQVFWFhYUFISAhLly7t1Lb6bRETE0NaWprQGldQUODixYvs2rVLrFFvb28UFRXJzs7m6NGj/4iQe3p6MmXKFOrq6pCTkxMOmmzdZ2RkCEeirq6O169fo6amJr7LjRs3cvHiRV6/fo2JiQnjxo1j3LhxSJLEjh07OHPmjDjHZNmJ/w5dNl7/3p1jwIABgiYQGRkpurlMnjwZT09P0Q5WR0cHHx8fysrKuH//Pj/++CPQESExMDDA1NSUMWPG8PLlS6KjozE0NGTjxo3U1tayc+dOysrKGDJkCIqKihQXF4uL+/Xr10RHR9PQ0ICjoyMZGRl88cUXjB8/nk8//ZQrV64IwvXbQjaRf4/whIaGcvfuXby9venZs6cwgFpaWkSzBhkyMjJEVHPIkCHY29uzdetWdu/ejaOjI1u3bsXDw4MDBw4QFhYmujRdvnwZa2trNm7ciLGxMW/evMHW1pakpCS++eYbJk2aRGNjI/v370dXV5fz5893uc2fDFpaWoIzY2hoiJeXl4huZWZmkpSUxKFDh6ivryctLQ0nJyfKysqwtramf//+nQqgxowZg66u7n954MuMo8mTJ5OYmMj333+Po6Mjc+bMITQ0lClTppCZmcnChQvZvHkz2traqKur0717d06ePMnKlSsZNWpUl1tSpqWliYi5LPKamZnJtm3bqK2tZdmyZSxevJijR49y8OBB9PT0WLRoES4uLigoKGBiYkJcXBwzZsygT58+vP/++6L4JTg4WBivMppHS0sLrq6uBAQEoKSkJBQ0jIyMiIiI4OXLl/zwww988skn2NraEhYWRl1dHT/++CMjR44kKyurS+R76LgM5OTkyMnJ4dq1a9jZ2eHl5YWOjg41NTXEx8ejoqJCeno64eHh2Nra8vnnn6OkpERrayt79uwRGq1Lly5FT0+vk8xcVFQU33//PUFBQWzbtg1jY+N/RMAjIyOxtLTk7NmzlJSU8Pz5cyZPnkx7ezvffPMNlZWVnDx5Eg0NDdE0oCtQV1dn/fr15OXldXL4ampquHLlCgoKCnz99de8fv2aAwcOkJ+fz4oVK/jmm28E+V9HR4ekpCTy8vI4c+YMnp6eoinFqlWr+OyzzwgNDeWXX35hyJAhaGhokJaWhrW1Nf7+/vTo0QMlJSUhL/T3VJ2pqakoMvl39qJMSig8PJxr165hYGCApaUlc+fOFdxLDQ0NUXyUm5tLS0sLwcHBLFy4kMTERI4ePSouuqioKHx8fMjIyGDevHkYGRlx7tw5AMHp7Nu3L6NGjepE4Wlvb6e+vl5EO2QFVB4eHqirq5ORkYG1tXWXeXZ/x9+jY97e3pw6dUqky3/88UfOnz8v2mVXVFQwdepUbG1tUVdXZ+jQoZiYmODs7ExISAhr1qzB0NCQmzdvYmBgwPr166mqqsLQ0JDS0lIMDAzo06ePkDu6e/cuvXv3Zvz48eI7hI75++GHH0TbXehIeW/ZsuWtx/X06VP27dvHxx9/LIIYMpw6dYqrV68yc+ZMtLS0WLJkCTo6Oty6dQtfX18RdZVRfUxMTKiurhZtZT/66COePXvG2bNnefLkCTY2NtTU1NC7d2+WLl1KU1MTUVFRXLx4UXAmi4uLOXfuHBs3bux0bv674v2A4OTKijyLiop49OgRSUlJGBoaMmDAAFRVVSkuLhZUuvDwcF68eAF0ROA2bdok5urly5dMmTKFIUOGEBMTQ2Nj4z84/7q6uowfP56pU6fS0NDAixcv2L9/Py9evGD69OnMnTuXu3fvMn78eEaPHo2Kigrnzp3DxMSEmzdvdqmrJnREVydMmCC0l/++n7W1tWlvb6eoqAh9fX3q6+tFTU23bt0ICAigoaGhkyzn+PHj6datG3Z2dmhpadG9e3c++ugj0dHQzMwMLy8vJElCW1sbXV1dnj9/jq2tLfv27SM3N5eLFy9y+PBhtLW1+fXXX+nWrRsrVqwQWRGZOtDb4r333mPw4MHs3LkTc3NztLS0yMzMpHv37uzatQuAkydPEhIS0slRAPjhhx/w9fVlw4YNaGlpCS3iiIgIvv32W7y8vHj16hVNTU00Nzfz1Vdfcf78eSGdKVOasLe3p7q6GkNDQ6Ej3tbWRnBwMKampmRlZYmisn+FLhuv1dXVVFRUYGtri4mJCUuXLqWgoIDW1lby8vJQV1dHVVUVd3f3f0g5lJeXixSITOYqISGB+vp6fHx8MDIyoqGhQRyS5eXl6Ojo0LdvX5YtW0ZcXBy///47Dx48oKGhAWNjY4YNG4a9vT1WVlbU1taKSk1lZWW0tLS6LLMk01YbNmwYwcHB2NjY0K1bN+Lj4wkLCyM2NlYQ/o2NjfHy8mLKlClcv34dJSUlevbsSUVFBWVlZTg4OKCuro6BgQFeXl6iyhAgMDAQHR0drKysyMjIwN7enpUrVzJixAhiY2OJiooSTQ7Onz/P6dOnRVqyV69eXLx4EWNj438rJZuYmEhSUhIaGhq8ePGCiIgIodZgZWWFp6cn1dXVWFpasm7dOkpLS9m9ezcLFiwQh0xbWxupqamYmJiwevVqoMNQTEtLEy0XIyMjKSsrY9iwYURGRnL69Gk2b96Mg4MDW7duFTq9/fr1E6l4mbGppqYmekt3FVeuXBFdyGRC5FZWVhgYGHDx4kV0dXUxNDQkOzubkpIS3N3dGT9+vPj72tpanj9/TklJCebm5vTr148RI0Zga2uLpaUlTU1N3L17F1dXVzHH6urqKCsrExAQQE5ODllZWeTl5VFQUICCggLKysq0t7eTl5dHdnY2I0aMEDyty5cvU1FR8Y/Wkf8dMjIyuHnzJpIk4eHhIegxCgoK9O7dWzRYqKuro7a2lpycHMLDw/H39ycsLIz79+/z6NEj0UTC0tKSBw8eoKKigqurKy0tLfTr14/g4GAxB3FxcSQmJuLi4oKdnZ1IwXt6etLQ0EBaWhrl5eVkZWVRWFhIdXU1z549o1evXoSFhXV5HrW1tfnpp58wNTVl+PDhlJWVCWmxjIwM4uPjcXd3Z9SoUYSFhXHr1i1MTEyYOHEiy5Yt4+HDh0RERFBZWUlMTAw3btzA399f6EW+efOGO3fuEBsbK2RwzM3NCQgIwNHRkbKyMjIzM9HX1xdn0rlz58jOzqZv3774+/tjZGTErVu3hNxRV+Dr60tjYyPq6uooKCjw6NEjBg8ezPLly1FRUaG9vR0VFRXRplemKyvjabq6urJ48WKePXtGTU0NtbW1pKenc/36dYqLi9HX1yc0NBQDAwMeP36MhoYGAwYMEJklWZVve3s71dXVwni9ceMGf/75J3PnzmXOnDloaWnR2tra5U530KH8kZeXJ9ZMbW0t0dHRqKioYG1tTUtLC7///jsJCQmCdyqrLC8uLkZRUREDAwOGDBnClStX2L59O69fv2bkyJGcOHGC7OxskWGRk5Nj+PDhDBw4EAMDA1RUVHBxccHS0pLy8vJ/BCY0NTVFYCM2NrbLUVfoMF5knGVZ8Z7M0D937hyXL19m9OjRTJs2jUOHDhEdHd0pHfz3Tl+yLI6sYYKlpSX+/v5cunSJrKwssrKyaGpqonfv3hgYGLBw4UJKSko4cuQICQkJor2prq6ukHKrr68nOTlZyDempKR0WfkjNzeXIUOGsHv3brZt20Z7ezuJiYlCuF82Bh0dHaGekJGRIYp9AwMDxb1fUlKCgoKC4Gz+9ddfZGZmoqOjQ21tLfn5+fj5+WFlZYWGhgbh4eGCtjJ+/HhevHiBnJwcdnZ2onlIcXEx2traODo6EhAQQEBAQJeNVy8vL2bMmCEM0LKyMpElMzc3JygoCEdHR/T09Bg6dChFRUVcv36dwMBAli9fTmRkJIqKimItypoYyO7B7OxsDAwMcHBwoLKyEj8/P3r06IEkSYwfP56oqCj27dtHUlISe/bswc/PT9TMyNQdXFxc2LRpE6WlpV3SBAeYNGkSz5494+nTp/z111+MGjWK6upqdHV1GTduHMOGDROUJU9PT0pLS0lJSaGpqUnQM2JiYoiPjyc4OJjevXsL6sPgwYOxt7cXAb7Gxkbi4+PJzc3l3LlzyMvLiyItWaMS+I9uiQoKCvj6+jJr1iwyMjLeWpu/y8brjh078PT0xMjICCMjI4YMGYKlpaXwVBobG4VMhMyzlqGiokKkZ3bu3ImrqyuPHz9mx44d3L59mz59+rB161ZMTU2ZN28eFy5cYM+ePXz00UcAoiji0aNHVFRUsHr1aiGqW1paKmQrZJdtUFAQDx48YMeOHW89vuTkZBHBkJeXR19fn3HjxjF69GhOnjzJunXrKC4uxtvbm++//56pU6cKInpYWBgDBgxgyZIlNDQ0iMtg7ty5TJ06FVNTU7Kzs0Ul4ujRowkPD6euro4ffvhBGPv79+8XKQx7e3tRpV9dXc3ly5dxdHRkzZo1nDt3jgEDBnS5QjY1NVV0Y5JxwwYNGoSXlxdKSkqiWlZ2sG/ZsoVNmzahoKDA5s2bgY6Cqj///BM3NzdRHNDY2Eh2djby8vKoqqqSmZlJREQET58+FUa2rLJRpsV36tQp3n//fQDRPxs66Aznzp1DV1dXpGzfFvfu3cPa2popU6YI2bHevXtz8+ZNduzYIVJKEyZMYNOmTYIDCh2H/e7duykpKeHChQv4+/vT0NDArFmzsLGxwcTEhOPHj7N582Y++OADPvvsM8ERzczMJCQkRHSBSklJIS8vjwkTJvDZZ5+JiK6WllYnMfSAgAD8/f3ZtGnTW4/xxo0bbNq0iUWLFrFhwwbgP1KzMppJTU2NcC727dvHokWLGDBgAIGBgZiZmSEnJ0doaKjQl62pqRHC9uPGjWPWrFmdDLKCggJ+/vln/Pz82LZtGz179iQ6OppTp07h7OxM//79KSoqorS0lNWrV1NSUsLhw4eZNGmSaEzSFdTV1YksgaqqKhEREaIVc0BAABkZGRw5coRVq1bx/fff8/XXX4vufytXriQtLY09e/bQ0NBAc3MzcnJyqKqqsnbtWlG5vW3bNsaOHcvx48eRk5MTe7uoqIiDBw9y4cIFxo4dy8iRI4mKimLOnDk0NDTw9ddfi2InNTU1fvnlF/Ly8pg/f/5bj09JSUloyhoaGrJv3z6qqqpoaGhARUWlU/SnR48euLm5kZycLCgnCxcuxM3NTUSZa2pqOHr0KBUVFZw6dQoNDQ0OHz7MxYsXMTU1ZfHixZ3kZ2SOvby8fKeCOjk5ObS0tLCyshLC9i0tLf9WK+ro6GguXrzI6NGj+fDDD9HU1BQRpZ9//pnp06djZWVFQkICn3/+uejg9erVKx49eiQ6pJWWlnLq1ClaW1v5+eefcXR0ZMWKFaSkpODv709VVRW1tbVMnz6dwMBAUVwYHBzMlClThB61ubn5PwzUrKwsVq5cycOHD3F3d/9Hmv2/w9q1a3n//fdpb29nx44dbNu2jRkzZojU8uXLl0lISEBRUZFbt26J7lRffPEFn376KdBh0FVWVgo++t+dWBnlIC4ujjdv3pCQkCD0mw8fPsz69eupr69n//79jBgxgvnz53dSWTlz5ow4E3Jzczly5Ah37tzp0l6UFXhZWVmxZs0aQXPo06fPP9R8HB0dUVNTw8TEhBkzZggtZRmCgoLo2bOnMGJknQwvXbrE0aNHqa+v5/jx41hZWfH8+XNRhHbw4EHR2fH48eNs2rSJadOmsX//fi5evIiioqKQZOzKOSrDRx99RGtrqwiqLFiwACUlJS5cuIC5uTlffPGF6Jg1e/Zs9u7dy/Lly0X3K1mWKzU1ldLSUu7cuUNqaiolJSUiWi0vL4+TkxOmpqaUl5fT1NTExIkTUVNT48cff+T06dO0tLSwdOlSXF1dcXJyYufOnTg4OHTqGrZ//362bNnSpXoXPz8/9u3bx/Xr17l37x6VlZW8efOGxsZGKisraWhoICMjQ3QYfP36NTdv3mTMmDEEBweL2oft27eLuXN1dUVBQYH79++jra3Ne++9h5ycHOXl5Tg7O/P69WsyMjLYtGkTenp6rF27lg8//FAE4RQVFTEzM6OyspKmpiahAQ281Z3f5dPI29ub7t27iw80MjKiqamJ8PBwrK2tsba2RlNTk+vXrwsNQ319fSEdtWzZMmxtbYmIiKCsrIyWlhacnJyETqNM0HzChAno6uqiqqrKuXPniIyMxMnJifHjx9PU1ERNTQ1lZWU8evSIp0+fYmVlxZw5c8Rz/vrrr3h5eQnj9m2hrKzMhg0bGDBgAK2trZSUlAg+poaGBu3t7ZiamuLq6srz589RVFRETU1N8GG7d+8uokOySFX//v3F4rt16xYHDhxg0KBB9OvXj8jISOzt7YXh+ujRI2JjY8Xz5OXlYWRkRLdu3Rg2bJj4rh0dHZk7dy4WFhaiQvhtUVdXR15enpA3iYqKwt3dHQcHB+7evcvJkycJCgpi6NChZGZmUlJSgpubG6Ghoaxbt05oscnWg6xfs6zy097enra2Nvr27Yubmxtubm7iGb///nvk5eUZPXo0w4cPx8LCgvv371NVVUXfvn2FwW9sbPxvCdtDhz7ohQsXcHFxwcHBgfLycrS1tdHS0mL69OkkJSWhpKQkVAVklAmZcLqzszMLFy4Un6+mpib6rEPHIT5hwgTq6uoEt6yqqoqPPvqIwsJCXF1diY2NpampiXXr1jF//nwRnbCxseHp06f8+eefeHh4sGrVqk7FDm8LXV1d3n//fWH4A6KfvZWVlSgAkkFFRYXs7GxaW1uxt7fH1tZWpMNLSkpEZXBMTAzy8vI0NDRgbm6Ouro6fn5+uLq64uLiwqBBgzpFw729vcUBHRMTg4GBgRBlj4yMZOnSpdTV1f1bMksRERGiOtvQ0JC8vDwhqTdo0CDs7e2FRJ9Mg9jS0lJclpqamiLal5qaKgxFGZ9K1vVMS0uLtrY2FBUVMTY25s8//+Tw4cO8ePGCmpoa0QLWwMCAjz76SDRiePnyJebm5mIvJiUldWl8Mketra2NtrY2+vTpIwxaQFzk+fn5DBs2jP79+2Nvb0+fPn2oqakR8yujc8haTsvUIBobG0U0eejQofTs2RMFBQWqq6tFZF5dXR0lJaVOTsr06dMZN24cfn5+5OXl8fjxY+zt7UXzjq4gMDDwHwaMn58fu3btYuvWrVhYWLBmzRrWrl0rdKBPnDghin2SkpKEMoufnx/z589n0KBBVFZWMmnSJF6+fElhYaGgvfTo0UNobpqYmGBpaUl9fT36+vqMHj2aixcv8sEHHzBx4kTGjBlDTU0Ne/bsITIyEldXV2bNmtUlnVBZswRAFCF7eXmhoKDAmjVr0NfXFxQNTU1NFi9e3Kk1NXTMv5GRkZjPuLg4bt26RWtrK2ZmZmhqajJ8+HCUlJSE0gx0dELLycnh6dOnVFdXc//+fRHZy87OJioqSgj7Z2Zm4uHhwcSJEzupALwNDh8+TFRUFJs3b8be3p7k5GSUlJQwNzcnPT2dQ4cO4e7uTnBwsHC4KisrRftlgLt37xIXF8fAgQPx8fHh7t27omvX5MmT8fb2Zvz48SQkJJCVlUVlZSWmpqYEBwfz9OlTDh8+zMuXL1FWViY/Px9bW1va29u5cuUKv//+O21tbZSUlNDS0vIPXeG3hax1dk5ODsbGxsKAVFdXF1Q5VVVVhg4dyqVLl0RB+rRp0+jRowetra0cPXqUV69eCQnJrKwswacHRAbl6dOnGBoaMnv2bCIiIjh79ixWVlZs3rwZV1dXYmJi+PPPP+nXr5/gtxYWFpKbm0tjY2OnpjFvg/Pnz2NraysCAb179+b58+eipa2amhoFBQU8fvwYCwsLxo4dS8+ePUWjl7y8PDw8PDAzMyMnJ4dnz54RHByMs7Mz+fn5nDt3jvT0dAYPHkxRURHNzc0iYCDLMMsaO2lra5OdnU1mZqawbWTng+zse5s12mXjVZbyuHbtmiC/S5JEVFQUjx49YsSIETg5OaGjo8OZM2eIjY3Fy8tLiPvu2bOH9vZ2FixYgKqqKl9++SWurq40NjZSWlrKnj17ePz4MUuWLGH8+PFs3bqVr7/+GuiIAM6fPx9LS0vu379PUlISly5dIiQkpJOsws2bN0X6/z/r/P0ryITtVVVVKSkp4dSpUyIVaW5uzvLlyxkwYADV1dWsXbuWP/74g/nz5wtpi78Xe2VnZxMSEkJiYqIwhmTaZ2/evOHNmzfo6elhb29PbW2t4C/5+/szdOhQ0cXD39+fXbt2YWhoKATV165dy/fffw/Q5YKt7t27s3nzZt5//32cnZ25fPkyioqKog/5s2fPyM3N5ezZs4SHh9O/f382btxIWFiYaNnm5+fHV199xdixY3n16hUHDhygoKBAaP8qKCgwd+5ccUHX1tbSrVs3EhMT+eKLL3j69CnOzs7MnTuXy5cvd4psysnJCRkdeXl5cnJyujS+gQMH8uTJE2EwKSsrk5GRgY2NDVZWVqJFcWtrK48ePeL+/fu8evWKlJQUevXqxYYNGzA2NhZSXnp6eigqKoqOUY6OjnzwwQccPnyYn376iXXr1oluci4uLowfP57y8nKqqqqYOHEijo6O5Ofn09bWxuvXr9m7dy8JCQmMHz+ewYMHi+KEruCDDz5gxYoVtLe3C+5QS0sLb968oby8XHRQkxVVFBQUMGXKFJYtW4azszPHjh2jtbUVX19fRo8ejby8PA8fPuT169dkZmbyww8/0NzcTEBAAHJycujp6WFtbS2ivI2NjVRXVwvqTlRUFH/99Rfdu3fH0tKS5uZm4ZhFR0f/23xJWVS4qakJe3t7ccFAh4PTr18/Xrx4wfr169HQ0GDXrl0MHjyYuro6tLW1mTp1Kk1NTVy6dInY2FiqqqooKSnBwMAAe3t7li5dyo4dO1i8eDFr1qxBR0eH27dv8+jRI9HrPiMjg4yMDIKDgzl69CjKysqUlZVx5coVKisrGTNmjOCfdWUvxsfHExcXR1NTE3p6esJQkY1PXl6ec+fO8eDBA9FSVUNDgyFDhqCmpkZVVZWYe1lETkVFBV9fX5qbm3n48CG1tbUMHTqU9957T/COtbW1aW5upqioCCMjo3808XB1dRUc1bCwMK5fv86ECRM6NWd4W1haWmJubt6JciDTxC4oKCA8PJwhQ4aIC/rgwYMsXrwYSZJQU1MT54eenh6rV6/m/fffZ//+/aSmprJ06VKmTp3Khg0byMnJwc/PTyhMaGtrU1RUREREhNB2lhlNhw4dwtjYmDFjxojC1ZkzZzJ16lT69+/fpTmUSQ8pKSmxbNky0cihtbUVLS0tVq1aRXt7O01NTSgqKooilb9DJsEGHfv11KlT/PLLL1RWVmJoaIinpyfjx49n5cqVXL58WRT+yDi9ampqYg3s3r0bKysrUXC6cOFC6uvrOXHiBO+99x4bNmygb9++XZLmKy4u5tixY/Ts2ZPly5eLeww6WhZ/9913oi06dFDvjh8/zpAhQ/joo48oLS3l+vXrJCQkUFdXR2FhoSgGhY6o/nvvvUdwcDBVVVV89dVXxMTE8MUXX7BlyxZevnzJd999x/bt24GORkmbNm0SDQxkVJpvvvmGWbNm8dVXX3W5hgA6pBtljrnMbpg6dSp3797l22+/pU+fPgwdOhQjIyMGDBhASEhIpwBBeXk5L1++5OnTpxgZGTFmzBj69+/PrVu3RPGVTDFBpvd97do1jh8/TmpqKlu2bBFZzD///JOff/6Z0tJSpkyZgqKiolBtmD59eqfOom+Dv/76i27dujF06FBB/evduzfHjh3DxsYGSZJob28nLi6O/fv3s3jxYgIDA6mvryc3N1d09oIOGb3k5GTu3LkjdMWPHj3K3LlzmT17Nv379ycqKoqKigoGDhwoGiHI5klFRYWMjAx++uknxowZI/Z+TU2NoFC9TdOerueB6IjcPXjwgIyMDHr27Im7uzvLly9n4sSJ/PHHHxw8eJD33nuPvLw8bt++TWVlJcuXL6euro6wsDCOHTtGY2OjkPG5dOkSkZGRoh/077//zr179xgzZozQTpUkSURR3d3daWtrIzY2Fn9/fwICApg1axZtbW3cvHmT2tpaVq5cyZEjR1iwYAGjRo3TZvg+AAEAAElEQVR667Gpqqry+eefs2rVKvT09Lh79y65ubn07NmT/v374+DgQEpKCjdu3CA5ORlvb28CAwPx9vamoaGhU5XiqFGjaG9v54cffiA9PZ3ff/+dESNGCA9V1qO9uLiY7777jl9++QVJkvj999/p3r27aM/68ccfi/TMBx98IDpe9OnTp1OHqrdFYGCgiI5BR+GIrGHC2LFjaWtr4/jx46LasKamBl9fX9HxJycnh/Hjx4vUU+/evfnss884ceIE33zzDa9eveLTTz/txF3x8/Pj119/ZdGiRSQkJHD69GnBefbw8KB///48f/6cnTt34ujoyNKlSzExMeHq1av8+eefXWqDa2xszLp163B0dKS2thZlZWWcnJxoaWkhNTWV+/fvExYWJiSdsrKyiIqKoqamhoiICL744gs0NDRobGwUhSKyiLCsZWhsbCyvXr0SXG83Nzd27tzJuHHjUFJSIj09nV9//ZWJEydy4MABRo8ezdGjR1m4cKHoMjN69GgOHz7MnTt36NOnT5eiBTLjQlZcM27cONTU1JCTkxP9zJ89e8ajR49EK9vu3bvj7u5OfX09KSkp2NjYsG7dOoYNG0ZlZSWzZs3i9u3bbNu2DRUVFUaNGoWTkxMJCQnk5eUxcuRIfHx8KCoqYvPmzRw7dowRI0bw+++/4+HhwZ07dzh//rzg8Pr5+bF582b++OMPoSbSFcg6tOXl5REREYGnp6eo6t+xYwd3795l5MiRGBkZ8ezZM6ysrOjfvz/KyspERUVx+/ZtysvLsbW1Fd3Cfv/9d5SUlNi4cSMqKio8fvyYO3fu8ObNG5KSkhg9ejTjx49nypQpvHr1imPHjqGvr8+cOXNwcXFh3759aGpq4uDgQPfu3TE1Ne0SV/nvGDx4MM3NzSLqWFBQQHR0NPX19fTp0wc1NTV8fX0pLi7GzMwMExMTlJSUSE1NJTQ0lMzMTAYOHEiPHj14/Pgx+/fvx8fHhxEjRqCsrExpaanocNTe3s78+fPFOWJoaNip0KyxsVGsv1OnTpGYmMiiRYsIDAwUihH/Dvbu3cuDBw/46quv8PPz4+jRozx58oS5c+fSv39/Xr16xZ49e6isrGTUqFFoaGgQHBxMfHw8zs7ODBgwgLq6Op4+fcq5c+d4/vw56enpZGdnU1xczPz589m0aRO7d+8Wd4aLi4tYE5qampiYmNDW1kZWVhbq6up899134k7Q0tLik08+QV5engcPHoh08dtC1ujD09NTGKUtLS2cO3eO5ORk/Pz8GDVqVKfI839GdXU1V69eFdzrsrIybG1tiY6OprS0lAcPHjBhwgRBP9uwYQO3b9/GwcGBIUOGoK2tTVlZGZIkCc7lhAkTMDIyonv37qioqODl5UV2djanTp0ShdVvi0OHDpGbm4utrS1FRUW4uLiI80emRCIreGtububChQs8fvwYa2tr0tLSuH37Njk5OYKyEhISwvDhw5kxYwYpKSlUV1eLDKeOjg7h4eG8fPkSR0dHxo4dS3Z2Nv3798fDwwM9PT2mT58OdHDGN27cKHi+ra2t9OvXr8uSddBBNfvxxx9x/H9o+8+orK617R/+0XvvvVeVIlJELFhQ7MaeWKJRY4smRqPRqDFGY2KMSWyxd4m9RDSWKDZAQUFAOkjvvXfeD4w1H7n389xb8h/vOcYeu2QD17rWWnOe8ziPYm+Pm5ubAHS8vLxIS0tj48aN/Pbbb2I64O7uzsSJExk5ciQ1NTXs2LGDly9fMnDgQGRlZYmIiEBRUZHg4GA0NDSECOrhw4c4Ojoye/ZsNDU1OXnyJGVlZfzyyy/i4PPHH38QEhKCra0tAwYMEGiktbU11tbWFBQUiMb/fWvmzJmYmpoKi8u6ujrc3d2Jiori6dOnfPHFF/Tr14+1a9dy8eJFvvjiC4YMGcJnn30mXD9yc3ORk5Nj7NixWFpa8vnnn/PHH39w6NAhAgMDOXHiBHfu3EFHR4empiZsbW1ZsmSJmA7euHFD0AWVlZWpqakRh9ra2lpiYmJwdnZ+74nrv7LKSklJQUlJCUVFRSIiIsTI29HRkTdv3pCcnExQUBBTp05FQUEBDQ0NwTPctWsXKioqeHl5sXDhQlpaWggJCSE7O1ucfKXmIioqii+++IL169eLrl9aZCUv19mzZ4u/L6Xi+Pv7069fPxITE3vsTZiZmcnjx48ZPnw4w4YNo0+fPhgaGooXIjQ0lGPHjpGens7gwYP5/PPPuzWCFRUV5OfnCxP/sWPH8v3333P8+HEmTpzIuHHj+Oyzz7CyskJfX5/09HSuXLnCuXPnqK2txd7enqysLJKSkkhNTWXIkCHigYMu7pt0Klq1alWP4iilkvLsJTshNTU11NXVaW1txdzcnOXLl4sUG11dXZYuXSq4KO/yiWJiYsjNzaVfv35MnjwZU1NTPv30U16/fi2M4CXVoqGhIQMHDuTzzz9n8eLF7Nu3D11dXZqamvjhhx9YuHAha9asISQkhEmTJqGhoUFnZ6dIA5IECO9THh4eYjScmZkpCP4KCgrExcXx+++/k5WVhY6ODgYGBnh5ebFgwQJu3bpFSkoKZWVlqKioCEs26WSqpqaGhYUFRUVF3Qjzly5d4qOPPmLJkiWCLiIZ4+fn5xMTE0NAQABVVVUoKipiZ2fHV199Rb9+/SgrK0NOTg4NDY0eGWzX1NSgrKxMdnY2DQ0NIju8oqICHR0d5OTkhH+kgYEBNjY24h5mZWURGRmJsrIyQ4cOFTSX4uJiqqurycnJwdjYGE9PT+zs7Lh79y6PHj0iPT2dgIAAUlJSOHv2LLW1tbS3txMTE4Oamhrt7e2oqKgI1XGfPn2ESb7kf9uTcnd3p62tjdevXxMZGUlMTAyLFi3CxMSE9vZ2wsPD6dWrF0OHDkVeXh5ZWVlxYpf8F1taWhgyZAguLi5oaGiQm5vL4cOHhd3UgwcPaGlpoba2lidPngj0RF1dndzcXCwtLRk/fjxffvklKSkpHDhwgOrqalatWsWQIUOQl5cXgqd3rdnep4qLizEyMqJXr16YmJiIJD1pelNQUEC/fv1wd3dn1KhRomGoqKjg8ePHPHz4EFNTU4YMGYKsrCzx8fGYm5uLUa2cnByqqqpkZ2ezZ88eevXqxYABA3j79i1GRkYCia2rq6Ozs1M0r8eOHSMyMhIvLy8cHR1RVVUlKiqqxwli0MUnvXfvHv7+/iKCUprCQFcDUlVVRXh4OL1792bhwoU4Ojry559/YmJiIjb05ORkTpw4gYqKClZWViQnJ4uAjBMnTtC7d2+ePXvG3bt3cXR0xN3dXTgoSNeZl5eHnp4ePj4+2Nra0tDQQFNTk2joY2JiOHLkSI/8M0NDQ0lISBDceoBHjx5x+/ZtiouL6ezsRElJic7OTlJTU9HR0cHT05O2tjaR6Z6YmMihQ4eIjIzE2NiYZcuWERAQwOnTp4mMjMTZ2Zna2lrKysrQ19fH39+fiIgIvL293zuyt3fv3qSnp3Pv3r3/sED6byUFb5SWlpKSkoKGhgbu7u5AF/DRp08ffHx8qK+v59ChQzx79gxzc3M+++wzTE1NOX/+PB0dHRw5cgRdXV327t1LRUUFkyZNIiAggISEBNatW4e7u7sQRUkRpJcvX6a0tFQEoEDXe1FVVYWdnZ1wP5K8RKUeoKd18+ZN4uPj8fb2xtPTk6KiIsLCwtDT06OlpUUcJtLT01FWVuby5cukpqZiaGiIgoIC//zzD6Wlpfz000+MHz+ebdu2UVdXR3l5OSYmJmhoaBAdHQ10gX9mZmZkZ2fz5s0b5syZI+7jtWvXWL9+PY2Njaxdu5YZM2bQ0tJCRkaGAGJSU1N7bD0oCZJzc3N58+YNZWVlDBo0CD09PUJDQ7l69SqnT5/mgw8+QEtLizFjxpCQkICysjLz588nKSmJmpoaYQEprcElJSU0NDQwatQo5s2bR2lpKUlJSZSWljJx4kSmTZtGe3s7v/zyC5mZmYwYMYKysjIUFRWZPHmy6G3y8/Npb28Xh+nExMT/ek09bl4lJej69etJSkri2LFjHD9+nICAAKZMmcInn3zCq1evuHDhAsOGDWPWrFmkpaUJA+wvv/ySgQMHkpCQwKtXr4iOjiY7Oxt5eXkaGxuFYjQ2Npb8/Hz27t0ryPCysrJkZmbi6uqKjIwMeXl5dHZ2iuZVW1ubmTNnUl1dzd27d1FWVuabb77pkddrRkYGW7ZsYeDAgbS0tLBo0SLs7OyQlZXl+PHjLFu2jNbWViZNmsTatWu7cSGlU+ft27dFIycp56GLamFqaoqTkxMaGho0Njayf/9+EX06a9Yshg8fzvnz57l9+7bgu6SmpnbzS9PR0cHDwwNVVdV/5Z959+5dzp8/j7+/P4sXLxYo47ubr4GBAbNmzWLChAn/4d8KXQeFDz/8kOTkZJYtW8a6devw8/Pj4sWL1NfXi2SQ5ubmbqhpU1MTnZ2dtLS0iKSnd5ErFRUVpk+fjqqqKpcvX0ZVVZUFCxa818Ms1bsecYqKiiQmJtLZ2YmtrS2qqqoMHTqUSZMmUVdXx6ZNmzA3N+fbb78V0anffPMNHh4efPLJJ8IvU/K5laKKBw8eTGpqKoWFhRgaGtLa2sru3btpaGggMjKS58+f07dvX1avXo2DgwN3797F3t5eeN9JIqKVK1cyb948bty40Y3P9t/qwIEDfP7550yePJna2lo0NTVF0yh9nxIlQUNDAwUFBXEfOjo6BCeprq5ONDv79u3jwIEDQBe/auPGjcyePRsnJycqKipISkoiKyuLiooKfHx8WLlyJUOGDOGff/7hhx9+oLq6muXLl4voRkmU5uHh0aPpx/8sS0tL2tvbOXbsGDk5Oezbt48vv/wSDw8PzMzMBCooJycnREiS8leifkhTkfr6epFGNGzYMGxsbLC1teXVq1dA18Zy7do1Xr9+zfXr15kzZw7z588nJSWFnJwctm/fjqamJoaGhgIRaWlpQVtbW9hpvW89e/YMRUVFTExMiIuLo6CggD59+uDm5kZRURG3b9+mvLxccH4BYSskKytLRUWFoBjo6upiaGjIBx98gIKCAn/++ScpKSksW7ZMpPikp6eLseC8efME7aihoYGOjg4xXTAxMcHKygoHBwdKS0v56KOPePbsWY/TtaBrxDtt2jSioqI4e/Ysw4YNY+DAgaiqqlJbW0t2djbr168XziqdnZ2UlJSQn58vvt+cnBwSExMxNjYmMDCQjIwM8fsfPnzIsmXL6NWrF3379uWXX34hNTWVnTt3Mnv2bOLi4igrK0NXV5dBgwZx/vx5duzYwaRJk5g6dSp5eXmUlJTg6upKcHAwbW1tPeKEPnz4kBkzZnQTwnV0dNDe3s6kSZMYMmQIf/zxhwggGTduHG/evOHJkye0traycuVKVFRUBA/W2NgYZ2dnEVyxevVqpk+fzsmTJxk6dCgrV67EzMwMCwsLwRt8Xxs6e3t7bG1tRSDQ+9aLFy9oaWmhpKSE9PR0GhoaKC4uJigoSMSlGhkZ8erVK44fP05NTQ3ffPMN3t7ewkGgsbFR3M/g4GBGjBjBtWvX+OuvvzAyMuLChQsibXPevHlMnz4dMzMzHj58SENDg2hcT548SUFBAYsWLRKf79atW1y7dk34W9vb23cDlN6nmpqaOHr0qEh5dHV1JSwsjJCQEMzNzdm2bRt//PEHDg4O6OjoCBFbUlISvXv3ZsqUKaSnp2NiYoKhoSE//vgjp0+fFu4T75rum5qacujQITGdCgoKEv9MSUlJ+MQbGhqKdeDKlStcv34dGRkZvvrqKzZs2PBfE6j+Z0miyJKSEr777jtqamqYO3cuYWFhmJubC13OsGHD+Oabb9i9ezcHDhwQk/LFixcLelpoaCgrV65k4MCB6OnpISMjw/bt24mIiOD06dNA1zrS2trKsWPHWLduHd7e3vj4+PDgwQP09fWZPXs22tratLa2oq2tjb29PfLy8ty7d++9wI4eN68aGhriRvj6+opc8b59+2JhYSFsshQVFdHV1aWmpobGxkbS09MxNTUVwQFFRUU0NDSgp6dHcHAwiYmJHD58GE9PTzw8PDA1NeXGjRtUVlZy/Phx5OTkcHBwQEZGRthYlJeXk56eTkVFBX369KF3796oqKiQlJTE2rVrGTFiBFu2bBG8ufcpfX19TE1NUVdXp6GhQfAuoUuFK6ERn332mRAwSGhwdnY2Dx8+pLGxEU9PT8LCwjh37hzFxcWMHz8eNzc3mpqaxEssNdlSeXp64uzsjJ2dHYMHD2bmzJm4uLhQWFgoTvaZmZmkpaWxatUqLCws/pXYR1dXl7a2NtLT0wUCqaOj023RbmlpET6ZYWFhvHr1Cjc3N/r27cvz58+5evUq5ubm2Nvbo6CgQFhYGH5+ft04v9CFECYnJ9OnTx+UlZUxNDQUfoy2trYEBAQIjlZmZiZ2dnbo6upSVFREcXGx+D560rw+ffoUb29vlJSUMDExobCwUKCarq6uaGtrC3N0KV0sIyODPn36YGxszKefftrNukpJSYlFixYhIyPD1atXefv2reBeKikpoaenR2JiImfPngW6DhfDhg1jzpw5TJ48mZqaGpFC8y5CU1NTIzxI/7ex4v+tzMzMxEuvra1NQkIC8fHxwoJFKklZXV9fLzY6BwcHwRWTxjavXr2io6ODsWPHoqKiwtu3bykqKhL53dOmTWPPnj2cPn0aV1dXli5dira2NiEhIURGRvL48WOBYklNc1VVFdeuXUNZWZnZs2f/hyfyfyspq7yqqoqHDx+Sk5PDsWPHsLe3Z9GiRSK2uaysjGPHjqGsrMySJUuwtLTExMSE1atXc/PmTdLT01FQUGD06NEsWrSIy5cvc+PGDU6ePImfn59IrwoODsbZ2Zn169cLnvXMmTPR0dGhsLAQXV3dbt+ttD5IiGVPoymlaUJGRgavXr3C0tISHx8fOjs7yczMpLi4mIKCAurq6igtLe2m7vb392flypW8efOGn3/+mezsbBYtWsTAgQN58OABO3bsQFZWluHDhwtUSllZmcDAQLKysoiIiODgwYN89NFHwjKvpKQENzc3Vq1aRX5+Po6OjiLIAboOTD1tYKVY0Pb2dp48eSIs1qDLUSAzM7NbBHRnZyf29vaMGTOG/Px81q9fT1hYGC9evEBTUxNZWVnhv1tVVcX58+e5dOkSycnJmJubk5WVxd69exk2bBi6uro8e/aMgIAAwbmOjo4mIyMDNTU1lJWV0dbWJjExETMzM4YOHYqpqWmPku4GDhzInDlzqK2t5cWLF/j4+GBqaoqysjLm5ua4uLgwZMgQbt++jZycHPr6+rx69YrHjx8D8Pnnn+Pj4yOCMoyMjHjw4AH5+fnk5eXRv39/6uvriY+PJz4+nsLCQoYOHcqYMWMoLy8nPDycGzdu0NnZiaWlJTU1NbS1tTFhwgQx2cvLy6N3797Iy8tz6dIlfv755x4dJmVkZHj69CmPHz9GXl6eoKAgnJ2daWho4PXr1ygrK2NhYYGjoyN6enro6+tTXV3N5cuXyc/PZ+XKlcIJY+7cuVhbWzNr1izCwsL46aefsLe3Z/Hixbx8+RIlJSVKS0sJDQ1FS0sLKysrzM3NuX37Ns+ePaOmpoZRo0aJg7EUppKQkIChoSEaGhr/EUP+PvXpp58K6sOjR49ExPnr16+Ji4vD3d2d4OBgcW2VlZXo6OhQXFzMoUOHuHv3Ltra2iJsxtXVFX9/fyorK/Hw8BCuOYGBgTQ1NbFhwwbU1dW5evUq7e3t/P777yxatIg+ffogKytLSUkJpaWlHDt2jCtXriAnJ4eHhwcGBgY4OTn12AK0srISJSUlRo0aJYJ00tLSBB3zgw8+QFFRUQTALF26FA0NDZ4+fcqLFy8oKSnhxo0b9O7dG2tra7S1tUXgjfRZjI2N8fb2pqOjQ/RGu3fvJjMzU3g1l5aWoqmpibGxsQD1FBQUurkpyMrKYmFh8V+Fkz1uXhsbG0WDmJKSwqBBg4S9yZ07d4iKimLIkCGCFPzixQv+/vtvzMzMUFZWJiQkhKdPn2JpacmPP/7IpEmTePjwIV988QXJycnY2NhgZmbG48ePhQ9oS0sLx44do0+fPvTt25eMjAza2tqor68nLi6O27dv88knnwgEtqioiMrKShoaGt6L+Ptu+fr6sm/fPhYuXIiXlxcXL16kuLiYr776io8//ligkJKQoLW1VSCWGhoa2Nvb4+joyKxZs9i/fz+RkZH06dNHJMpIecfQddPMzc158+YN0GUr4+npybp169DT00NZWZmkpCRyc3OxtbUVnM2Ojg7Gjx//H0KL9y1/f390dHRElnlDQ4MgSkOX2ODBgwdERESgra3NmzdvuH37Nnv27MHR0ZHt27cLSsawYcOEr6kUSyr5DTY2NhITE8Pjx49JS0tjxowZeHt7M3r0aJ4/f86YMWNYtWoVenp6nD59mrKyMqysrCgoKAC6Fk0p9asnde7cOcGPlnxQlZWV6ezsxNnZGWtrayIiIjAyMuKzzz7j+PHjTJs2jYULF/LLL79w584dduzY0Q3VHj58OHZ2drx+/Zrs7GyR6NTc3ExCQoIQXBgbG4sxkIaGBnfv3sXU1JRRo0Zx//59tmzZwqhRo/D19UVTU5PDhw9z+PDhHgkooCvt5NmzZ4wcOZLy8nLWrVtHbW0tZ8+excTEhI6ODhGHqampSV1dHVlZWXR2dmJjY8OmTZuEn+TLly+Ji4tj9OjR9O/fX9id1NfXIycnJxqmwMBA3rx5w/Tp0xk1ahRffvml2OgNDAxoamri6tWrNDU1ceLECaqqqoTrw4QJE3rcvFZVVaGpqUliYmI30d769etJSUlh3759qKmpkZyczKlTp7CwsGDkyJHk5ORQX1/P5s2b6du3LzNnzqSxsZHx48fj4OBAZWUlL1++JD8/X3DHevXqxW+//UZbWxt//vkngOCxQ9ez+G7UdGlpKerq6uIgKh0G/03l5eVRV1dHW1sbycnJwkkgKCiIiIgI0Viqq6t3syYKDAykqKiIefPmMWjQIP744w8aGhoICQmhtrYWRUVFrl+/Tn5+Purq6hgbG9OvXz+OHj3K7Nmz+frrrzExMWHcuHFER0fT3NwsTNcrKirElO3ixYt8/fXX7Nix419dH3Stq46OjkLop6mpibu7OxUVFSKN8aOPPhLqY0dHRx49esSqVavERKKmpoYrV65w5MgRPvzwQ16+fEllZSV///03CQkJIu1Kcvu4desWr1+/Zt++fQwcOJCbN2+SkJCAk5OTmDZYW1ujr6+Pqqoq9fX1wkXlfUuavD169IjY2FgsLCwwNDTEyspK8PsmTZrEyJEjRXTzsWPHCAsLE82WsbExo0ePprS0lJiYGMLDw4U9ohRVLtlHmpubi8mfmpoaz58/Z8eOHeTn5/PFF19QX1/P8+fPcXR0ZMCAAeL99PPz4++//xZ7dU/K29ub8vJyjh49SkVFBcuXL8fS0pKUlBTi4+OxtbUVE4DRo0djZmZGfHw827Ztw9ramjt37iAnJ8fChQsFoPPdd9/xzz//sHr1amxsbDh16hTq6uqkpKTw5Zdfsnv3bnR1dTl69Ch6enrs2LGDxMRELl++3C1MxdLSEi8vL9zd3ZkyZQoGBgbU1tb2GJWUGtcDBw4QFRWFqqoq3t7ejBgxgpUrV3LhwgV++uknEfxQVVWFsrIyr169Yvv27dy/f5/+/fuLXqCzs5NBgwaJPVpeXh53d3e8vb1JS0tj9+7d2Nvb4+DgwJUrVzhw4ACurq54enqira0t4owlj9g1a9bwww8/ICcnx927d0WowPuWNHlcsmQJTU1NREdHo6Ojw+XLl9HT0xOBRJmZmcIhatmyZUycOJHHjx9z4cIFoqKiRMT9mDFjuHXrFi9fvmTKlCnU19fz119/YWhoKLzsDx8+zIoVK5g7dy63bt0iNjaW6Oho/Pz8MDMzIzc3FyUlpf/guAYGBjJo0CBWrlz5v15Tj5vXp0+fcujQIa5du4arqyubNm2ipKSEO3fuoK6ujpOTE3/99RevXr1i0aJFdHR0cO7cOYqKinB3dxe2ETk5OaiqqqKkpCQ2hZkzZ/Ldd9+hoaHB/fv3xd+ULF9UVVXR0dHh7du3vHr1iqKiIkpLS1FWVu6mZnV0dGT9+vX/SuFsYmLC27dvqaysRFZWlqysLDIzM0UTrK6uTkFBgUCx3k0tMTY2Zt26dRQWFpKUlISGhgabNm3Cz8+P/v37CxuclpYWoqOjiY6OxszMTPjHSerudwUDxcXFPHr0CAMDAywtLRk0aBClpaXipeipEh+6fF779+9P//79qaqq4uLFi6ioqDBmzBjk5eX57rvvRHyglAQiWVfV19djZWVFdna2sGaxtrYWY6y0tDQuXLhAfn6+8H1NTEwUEZ6DBw9m8eLFjBw5EktLSxH3qKurK7xmAwMDiYuL4/HjxzQ3N/c4Ck864EjG89KhRrJDksjira2t2NraUlFRQXJyMrm5ubS2tvLzzz8L54z29nYSEhIIDQ1FQUGBmJgYAgMDWb58OWFhYezZs4eOjg7k5eXx9/fHy8uLwYMHC36pnp4eRkZGyMrKUldXR2RkJE1NTdjb26Onp8e4ceNobGzsMWq3a9cuYeAuJZ0UFRVx6dIlgcpoaWnR3NxMXl6eMGzPyMggLy8Pf39/wS/S0tJCVVWV/Px8Xrx4gYWFBcbGxujq6tLa2kp4eLhIT1mxYoUQEaxYsUIkwUAXH1oKHamursbGxkbEuf7PxJb3qerqauEZKDlE/Prrr9y+fZu4uDhaW1tpaWkhMTGRxYsXM2TIEAwMDNi3bx+tra0EBwczbtw4MYJ0dXUlOTmZmpoaPvvsM7S1tamoqKC4uBhzc3Pa29uxtLTkzJkzXLp0iaSkJCHmqampwcTEhMDAQDw9PbG1tUVRUZHCwkLB4+ypH3FjYyPt7e3o6enR3NzM3r17aWpqYvz48axatUrcGzMzMwwMDMjKymLVqlX4+voK0/egoCA2bNiAv78/tra2PHnyBBMTEzZv3kxLSwvPnz8nMDAQFxcXlJSUyMvLE5MHKysrPD09qa2tFfxQae0pKSnpNupcv349Li4uPRaKNDQ0CArHu5tUY2MjBgYGjBw5UuwB2trawiNTRkYGQ0NDFi1aRFZWFsXFxURERAjbHeiyrFu/fj0ff/wx586d4/bt2yIAJSAggPT0dCIjI7l69Srjx4/H09MTFxcXzp49S3x8PJ9//jmffvqpWMNfvnwpeInvW0eOHOH8+fPY2dkxaNAg1NTUaGlpESmMDQ0NFBYWoqenh7a2Ng4ODqxevRo1NTUePXrEnj17KC8vx9fXF3Nzc86fP4+2tjZGRkYUFxeTlpbGxx9/zNKlS4mOjmbLli3cunVLaB2cnJzw8vISv9/f3x8zMzNu3LjBihUriI2NJTg4mJaWFgGq9NRGKiwsjH79+uHt7U1ISAhHjhyhqamJpqYm+vTpg7a2Nr///juxsbHY2dmxePFi6urqkJOTIzMzk8uXL6OoqIiWlhaBgYEoKSnR2trK3bt3ycrKor6+njt37jB58mScnJyYNm0atbW1ODk5icN0Z2cn+vr6Al0+fPgwQUFB9OnTh6lTpxISEsKTJ0/44IMPuj2371txcXFs3ryZpqYmRowYIa7P1tYWR0dHnj17xueff057ezsffvihoGD5+/vz/fffM336dIyMjAQFT7KIam5u5uDBg9TU1Ajdj4ODA1u3biUsLIxPP/0UXV1dEaP89u1bvv76a2JiYigoKMDFxYXFixfz4YcfIicnx5MnTzh+/DhlZWXdDP//W0mTt9DQUGpqapg3b143sbeqqip9+vQhIyNDeA7Ly8tTXV1NYWEhEyZMYN68edTW1tLR0UFeXh7m5ub07t2b1tZW9u/fz65duwgODhbCRemwWlBQgJycHF5eXmI9g/+TUClNZ9PT0zEwMGDEiBHvhSz3uHmtra0lOTmZtrY2GhsbRZMRFhbGd999x9SpU8nJySEkJAR9fX1hEQKIU3VHRwdpaWlER0fj4eHBqVOnaG5uZs2aNdjb2wubEQUFBaEUlzhdZWVl1NTU0NLSQnNzM8bGxgwePLjbOK937949bnikiomJQUZGRjQ6knqxuLgYdXV1KioqiI+Pp7OzEyMjI7HwZWZmoqamhpGREVVVVZw5cwYvLy8hcEpKSiI0NBRnZ2d69+4tVPReXl4MGjSIR48e0dLSIlJe3o1TlCgSzc3NlJaW0tDQQEtLC5WVlf+qKUhISKCzs5N+/fpRWFhITEwMpqamyMjIiBGmgoICEydOZObMmZiYmDBr1iySkpLQ1NRk27ZtfPPNN/zwww/ExcVx8+ZNoIvrVVpayvXr17tlZ0spPpGRkQLVVlRUJD4+XiDt/fv3Z9iwYWJRSEtL488//8TIyKjHjgojR47k0qVLFBcX4+7ujpWVFcrKysjLy4ucaTk5OTFSlwzZNTU1efnyJaqqqpiZmeHj44O5ublIQcvMzERLS4tJkyYxevRo2traOHXqFNXV1YwZM4Yvv/ySjo4Okcbm7e3djX9bX19Pc3OzULHPmTOH4OBggoODuX//vmgC36eePn3KkCFDROzjhAkTuHXrFrt27eK3337Dzc1NNBzvVmhoqBj1eXt709zcjKGhIZ6enly9epWHDx8KT1F9fX0UFBRITk5m1apVWFlZMWvWLBHpZ2dnx+rVq4mPj2fw4MHCRkuiVkhWVenp6T22rIOu9aKqqkqIkqALAU1KSiIoKAhtbW0yMzPp7Ozk008/Fdy//Px8bt68ibu7O0uXLmXFihVoaWmhpKRETU0NBgYGuLm5CU9mQFj0aGtr8+WXX6KiosLKlSsJCwsTgkapWVVXVxeHkrq6Om7duoWioqL4jO9b0oFYyj2/e/cuvr6+ODg4UFhYSGNjI9ra2nzwwQcAAnFZsmSJaF6rqqqETVdlZSVFRUX069ePUaNGIScnh6urKzU1NSgpKVFYWMi5c+fQ0dEhMDBQmJwXFhYyZMgQzM3N6ejoEN7O0mi2paUFWVlZ5syZ0+PmVUphq6yspKqqSjQhUiiCgoJCt3S7t2/fEh4ezoMHDxg+fDg7d+6kra2NjRs34uLiwsyZM8VIUkFBQQQKSGLFhoYGGhsbUVZWFqKi169f8/LlS4KCgvjggw+4ePEiycnJYjoiqdcbGxt7HKF64cIF4SgjIYL19fV4eHggKysrKCB37tyhd+/eDBgwAHV1dZydnQkNDRXepWpqapSWltLZ2SkSpv7++28GDRrE+vXrAbCxsaGmpoaGhgbevHkjaHJLliyhpKREIOtDhw7lwIEDArHW0NCgpaUFV1dXwUfsic1SXl4eQ4YMYdCgQYSEhHDx4kUiIyPZvn07AQEBdHR08PXXX3Pz5k0CAgIYN26cAGEuXrwofMtNTEzw9fWltLSUrVu3EhkZycKFC0lMTGTq1KmsWbOGH3/8kTlz5jBhwgTxbkrORLKysigoKIh3pb29HXNzc9LT03n16pVAQ3v6HkKXYOv27dtYWFgQFBSEurq6SOILDAzk+PHjFBUVsX//fvr164ejo6NIG7WyssLOzg41NTVkZWVpamoS09WoqCjWrl0rkvSmTp2KhYUFixcvpqCggK1bt/L111+zevVqbty4waNHj9i0aZNwqXFzc2PUqFEAhIeHc/z4cYqLi/Hz8xOC4vep169f09jYyI0bN0RypbSv5ubm0tTUhLGxMXZ2diK4qKGhge+//57IyEiOHDkiuLlRUVEkJSXh7u6OpqYmZ8+e5cKFCyLVND4+HgcHB7Kyshg3bhyDBg2ivb0dOTk51NXVBVhTX1+PoaGhiIVPTk4mLCwMZWXlbvvm/6t63Lw6Ojpy5coVcnJyBHfC1NQUFxcXkfT05Zdf4ujoKGyyli9fzoABA1BUVOTJkyeoqakJ9V12djbXr19HTU2NtLQ0NDU1uXLlCuXl5axevZrg4GCMjIwICwvj7NmzpKWlYWtry+DBg9HT08PBwYH+/fvj4OBAZ2cnNTU13Rq/ntbz589pbGwUY5tp06Zx48YNrl+/jr6+Ph4eHgL9TElJQVVVFTU1NQ4fPsytW7fESEVGRqZbIk14eDi//PILPj4+zJ07VwiBOjs7+fjjj/H29ubGjRtMmDCBTZs28fHHHwNdIzALCwsaGho4ePAgFy5cwNHRkW+//RZLS8seR1JCF2Jx5coVtm/fjo6ODkOGDGHUqFHCsHzNmjWCi/SuiMvIyEiM27y8vDhz5ozgyba2trJr1y6io6N5/fp1t78nIVKtra1iw7527Rr379/HxcUFMzOzbuPQgoICLl++DHSNc62trXsUxJCXl8fz589RU1MTI0Gp9uzZw5kzZ1i6dKmwPfH39+fo0aPC6H7Hjh3cv3+flJQUzM3NWb16NY2NjYJGkJqayueff46ZmRnz58/n4cOHBAQEMHDgQFJSUvjxxx8pLCzE0tKyW/yjZAhdX19PcXFxN47x8OHDe9S8HjhwAGNjY/T09NDS0mLDhg24u7vzww8/kJWVRVZWFlOmTOkW0pGVlcWDBw/EdTQ2NnLnzh2MjIzo378/o0ePJiMjA19f325c6l69eqGhoSHGWJLx+7Zt23j9+jWrVq0SKXjQdaL+/vvvMTU1Zfv27QwaNIicnBxu3br13tcHXZOMyspKnj17RlZWFkFBQYwYMYLTp0+Ld9zW1hYvLy+SkpJE8+rr68vNmzdZuXIlsrKyLFiwQKBNAwcOxN3dnaSkJJ48eYKfnx/6+vpoaWkRGRlJdHQ0T58+xd3dHScnJ8aOHUvfvn2FGX11dTWhoaGEhYXh6Ogo7q+BgQE+Pj7/ylXh4sWL3L17l+DgYI4fP46RkRFff/01165dY8uWLcJqJiMjA01NTfT09ETcbU5OjvBwlRTB0jhZMgO/ceMGTU1NTJ8+nRkzZohNXyo1NTXBAa+trUVFRQVnZ2fx3sjJyfHy5ct/JQ6VYqTv3bvHhQsXePv2LatWreKLL74gIyODixcvMnbsWHr37k1eXh5aWlrMmjWLV69e8fDhQzIyMgQdxtbWllGjRok1REdHh6qqKnJzc1FTU6Nfv36cPXuWJUuWcOLECeH1q6qqyr1792hvb8fX15ezZ8/yySefkJ6ezsmTJ/H29sbBwQFvb2+sra357bff3vv6pk6dSlxcXDdUWV5envT0dFRUVLCwsGDEiBG0tbWxZcsWtLS0GDJkCK9evSIrK4v+/fvj4uJCVFQU+fn5mJmZUV1djbu7O7/99ls3IZiJiQlnz54Vkz95eXksLS2xt7cXdlFSLVmyBFtbW86fPy8O7/+2JIX5u419Y2OjSCaUlZUlICCAxMRE4uLi+O233+jbty///PMPDQ0NrF27Fg0NDXbt2sW2bdvw8PCgrq6OJUuWMG/ePHbt2kVoaCgPHz6kqqoKbW3tbpS4trY2goOD0dHRQVdXF2dnZ/r37090dLSww5PoL46Ojj0OYYAu7+EffviB/fv38/3332Nubi6oBNB1cAgICGDLli3Y2NjQ2trKq1evuHTpEvfv36e5uZlZs2axdu3abt+TkpISqqqqNDU1cePGDRFlD120JHd3d3HISkxM5OnTp+Tk5GBnZ8eHH37YLfnOxsaGL774gsrKSuTl5Tlz5sx7X19MTAyzZ8/mn3/+4cCBA3z77bcUFxezadMm3rx5w7x581iyZAmbNm0Sz69keaalpdVtP3B1daW8vJykpCTOnTvHX3/9hYuLCzt27KBv375cvnyZDz74ABsbG3799VdcXV0pLS0VU4XRo0cTFxcnaIeTJ0+md+/eQtSpra39Xil3PW5eb968yciRI7t5xQ0ePBjoeqAlc3mpEQgKChIwcklJCZmZmUycOFGoK1NTU4X45ezZs+zevZvIyEgsLS1xd3dHUVERMzMz/P39uXHjBjU1NQwfPpwFCxZQWlqKgoKCsF0BuiEpHR0dPX5pR48eLbio0LVwDxs2jJ07d5KXl4ejoyMqKioi3auzs5OBAweioKAgxuaDBg1izpw51NXVCTscdXV15OTkiI+PJyIiQhjo5+Xl0dLSIkIbzp49261hlJGRESKfly9fEhERQXV1tRiNSM1kT8rExAQlJSWysrJQU1Nj/PjxYuGTUtLS09MJDw+nf//+KCkpUVRUJHhN0KVcnTRpEq6urjx9+pSnT59y8uRJwbUbM2YMDg4OZGZmEhsbi6qqKtOnT2fs2LFUV1cLf8B3m7tbt25RUVGBlZUVY8eORU1NjVGjRhEYGCjU4O9TEu+2T58+ODg4kJ2dja2tLcrKysK+5N0FxtXVVVALAGEar6enh4uLy38gv4WFhQIhDwoKoqCggAcPHqClpUVycjJPnjwhJiYGBQUFFi1ahJGREU1NTZiYmDB27FgqKirw9PQUDXtFRQXZ2dk9uofSKVjKp5fSeySRlLOzM66urhQXFxMeHo6RkRGampoUFBQIP0kVFRVycnLIzc3F19eXPn360KdPH3Jzc4Uxvr6+PjExMdja2lJdXS0aGMl2rKGhgTlz5gBdnHdvb280NTV5+vSp8HfW09Pr5n/8vtXa2oqOjg4WFhY8e/YMbW1tfHx8BJ++s7MTGRkZYYt37do16urqxDTm0aNHrFmzhkGDBuHm5kZraytpaWnU1tbS2tqKpaUl1dXVZGdnk5mZycCBA0lPTycsLIyysjLOnj0rNujMzEwMDAwwNTUlMTGRq1evCgRtwIAB3XiUPS0VFRV8fX354YcfxPsgLy9PQ0ODiDRVVFTE398fT09PYS8juSk8f/5cZKf7+PhQXV3NgwcPKCgooLKykvDwcOzt7RkwYIBY13Jzc9HT00NVVRVNTU1SUlJQU1PD3NxcrC2Se4KcnBxycnI9Sp56t5SVlVFQUEBdXR1zc3PU1NRIT09n165dnDlzBnV1dXr37o2hoaFY+5YvX054eDjKysqUl5dja2srbHwkv0w/Pz80NTWRk5PD398fS0tLysrKxHojOXpUVVXx9OlT8XsGDRrExo0b2b17tzgYV1ZWoqur2+N7+NVXX/Hy5UsMDQ1F5OfDhw9JTU3F0dGRyZMnC1GniYkJCgoKVFZWimQwJycnQcMpKysTvuLKysps2rQJVVVVYmJiUFVVxcnJSaxTWVlZyMjIoKqqKpwb3r59S3x8PLKyshgYGGBlZcW8efOEm0FFRYXgTvekJDcTV1dXli9fTnR0NIGBgd2iPNeuXYudnR1Tp07lzJkzlJSUEBoaCnTZNAUHB2NpaUlCQgLl5eUYGBigqqpKVlYW6urqjBw5sts+9Pr1a27cuEG/fv0IDg4Wn7mzs5P8/Hzq6+vp06cPOTk5PHjwQFAWJk6c+K8EW9bW1mLCcfnyZVpbW6mpqeHhw4fExMTw2WefMWXKFEGPq6+vR0tLC0VFRfLz86mrq+PPP/+kurqayZMni57I3t6eH3/8kUuXLqGoqCimGdXV1bx69Qpra2s6OzspKyvD3t5euKNAV8BHc3Mz5eXlyMrKigO0xPHuSenr64vDvb29Pdra2oSHh3PhwgXCw8PR0dHp1kfdv3+fP/74A0tLSz799FO0tbXJy8tDXl4eY2Nj8Q5XVVXh4ODAxx9/LCYoAwYMEA19RkYGrq6uGBgYICcnJ4T86urq3Lt3j6ysLIYOHYqOjg5paWmiX3gfGl2Pm9fffvuN3bt389NPP3WLY4WuRfj58+ds3LiR8vJydu3aJSD806dPEx0dzdSpU5kxYwYNDQ1UVlaKqM6HDx/y4sULIZDIyclh//793L59m2XLljF16lTmzp2Lubk5kyZNwtzcnMzMTGpqanBycvoPBFJqWiXxz/uWZIze2NgoNkdVVVUCAgJEY/706VOePHlCTk6OQAQnTJiAsbEx/fv3x8nJSXiz1dbWoq+vj7OzM6NGjSIvL09w+aTKyspCQ0ODNWvW8NFHH3VTnldUVFBQUICHhwdjxoxhxIgRdHR0iEayp1xJ6EogMzY25scffxScJeg64crLy5OUlMSMGTOoqanh9u3bODs7o62tLfjKubm5mJiYMH/+fG7cuMG0adOor68XaPXIkSPZt28fFhYWpKens23bNnR0dPj888/R1tYWVkVqamrdrvXgwYM8fvyYq1evsnTpUoKCgoQTQk/K2dkZPT09XF1dUVRU5PHjxxQWFuLv78/cuXPx9PQUo8eSkhLq6+tFoEJFRQV//PEHdXV1zJ07Fw8PDxFzp6CgQENDA05OTsyfPx9tbW1ycnJITU0lJiaG27dvo62tTV1dHXV1ddy+fVs0dklJSdja2hIYGEhFRUW3yEAlJSWOHj3ao2uU7pXEW5Vq+fLlLFiwQKhAf/jhB9avX8+yZcv45Zdf8PT05MWLF0JMItkh1dfXo6GhQX19PdevX+fs2bOkpqaiqKhIU1MTra2tjB07VoxGFRQU2LFjB87OzigqKvLHH3+wZcsWdu/ezcSJExk4cCCxsbGiGempjRR0RSmPGzcOd3d3zM3N/69TBkn16+rqyvXr19m0aRO7d+8WAQrJycmkpaXh5uZGS0sLBw8epLCwkHXr1onGdOnSpeTm5vLNN9+IhCVbW1vxz1NSUlizZg2enp5s3rwZDw8PQkNDCQkJYeTIkUybNu1fRxkDrF27lpaWlm4N/tatW5k+fTr79+/n2LFjfP755yxfvlwIu7S1tXF0dCQvL4/y8nKUlZWxsrJCTU2NxMREGhoaBCoVFBTEp59+iomJCS0tLeTn59PY2CiaD8krVUqOgy5fVSMjI3H/3NzccHBwYMOGDT26Njk5OaysrJgyZQpTpkxBU1OTvLw8jh8/zoULF0SABnQ143V1dcjKyjJixAjGjBmDlpYW5ubmhISEiM13w4YN3Llzh2+//Zb58+eL9cHV1ZXt27eLpvzXX3/l0aNHFBUVoampiYWFBQUFBcJ66eeff8bFxQVFRUWys7Opq6sT38n7lpWVlfjPMTExPHv2jPj4eDQ1NTExMeHmzZuCS//555/Tr18/ampqRChGTk4Ourq6+Pv7U1payuHDh4H/Yyn49OlTfvzxR5YtW4aTkxNff/01r1+/5ueffxbOLvX19eTm5nLnzh1KS0uprq7mxYsXmJqa8sMPP9CvXz8SEhK4dOkS9fX13ewd36d+/fVXNmzYQN++fbGysqKjo0NoMTQ1NQVqb29vj76+vgAHfH19ef78OcuWLWPevHmsW7cOeXl5rly5Qnh4OLGxsVy6dAlfX1+2b9/ezYklMzOT7du3M3PmTOEzm5iYSEVFBXv37uWff/7h+PHjrF+/XlDV9u7di6enJ/Pnz+/R9UHXO963b1+++OILJk+eTFhYGAMHDiQuLo4vvviC5cuXk5mZyZdffklzczMjR45kxIgRbNu2jSVLllBQUMD+/fvZs2cPzc3NonnV0NBgwYIF9O3bl4SEBPGOP3v2TARZ9O7dm6lTpxIcHIytrW23daCkpARZWVlMTU0pKSnh0KFDHDx4EGVl5R7ZgU2YMIHq6mo2btxIWFgYs2fPpq6ujgULFgja4rvhDi0tLdTX1zNv3jwWLFhAcXGxsAWTytfXFxcXFzo7O7uh/t7e3ty8eZMjR46wbNky8QwvWbJE9HdSCl5+fj5Hjx7FxsZGUJK0tLRISkr6r9fU4+Z1woQJJCcnk5KSwvnz58nMzKSlpQVvb28MDAw4evQo9+7dA7oWxaamJjZu3MjPP/8MICw6pBOjmZmZsPtobm5m3LhxuLq6curUKQoLC/Hw8MDPzw8lJSWmTp2KpaUlT548Ecq2dwVOubm5HDlyBAMDA2H621PjcCkF4qOPPkJGRobr16+TmJjItGnTBB8kLi5ORI1KXNuKigo0NTXp06cPra2tnDt3Toig6uvrxSjdx8cHKyurbnwVOTk58vPz0dHRQV9fn9LSUvHPnJ2diY+PJy4ujujoaFJSUmhtbeWff/4RIRA9rdWrV+Ph4cGDBw/Q0dERfou9e/fm2rVrbNq0CT09PaZMmUJUVBSamprC/gW6ToSVlZVcvXqVY8eOid8rIyPDjBkzWL16tdgEUlNTsbKyorm5mZCQELy8vAQ/SBqhu7m5IS8vz9y5c2lqauLAgQO0tbWJsX5PT5mqqqrU1NRQWFgoPFklyzMnJyexSErehf/88w81NTVMnjwZc3NzHBwcUFNTw8PDg5iYGO7fv8/EiRNxcHAQiWhZWVkUFRWRlJRERkaGEJplZGTw6NEjXFxcWLJkCbKysiQmJlJUVCTiPdXU1MjOzub27dt4e3uLU/G/MdeWkZGhrq6Ov//+G0NDQwYNGkRraysnT56ks7OTtrY2xowZg4+PD4qKiowdOxYlJSXRCHh6egoaT35+PqmpqZibm4sNTzpkaWtrC4QRuhAQJycn8X6Fh4cLT8IZM2awYcMGXr16JZCGd1H7962ioiKOHDmCj4+PaCQlD2lnZ2c+/vhjdHR06Ozs5OHDhyQmJjJ27FiGDh2KpaUlBw8eJDIyUggblJSUCAgIICsri+rqaqqqqigrK8PDwwNXV1eBgBgbG1NXVyc8HhMTE0VgQ0ZGBkpKSkyZMoWCggJcXV1F4/quaPR9q729XdjEpKWlERUVxfDhwzE0NKR37958/PHHIm0Kuka3xcXFYrxqb28vbJkAocYHBFIqWTH98MMP3Lt3jxUrVjB58mQ6Ojo4efIkUVFRGBkZUVJSwtKlS0WyUP/+/UWAg4GBwb9CtDo6OigrKxPfUVFRERcvXiQuLo6ZM2cyadIkevXqRWxsLPfu3ePixYtoaWnxxx9/YGdnx40bN2hoaGDGjBl0dnaybds2ysrKWLhwIX369CEpKYnHjx/z4sULXF1dWbx4MaqqqqSmpnYLEtHU1BTAxNmzZ7G3txdNUV5eHomJicjJydG3b98eXV9dXR1WVlaC129mZoatrS0mJiYkJCSwbds2srKyGDZsmOAuampqEhgYSG1tLVOnThVJgvLy8pw4cYJXr14RGBiImpoasbGx3Lx5E2VlZfLy8oTjg0TBOXToEBEREdTV1ZGSkoKsrKzwIe7du7dAkpubm8nKyiI3N7dbw/0+paCgQE1NjZhGQRcaK6WmBQQEUFxcTEhICH369CExMZHw8HDmzJmDh4cHBw8eFFPLiooKTp8+jYyMDEOHDkVVVVWEE9y/f5+nT59ibW1NQ0MDw4cPR15enl9++YX4+Hjq6upwcHAQ9ps//vgjxcXFDBgwQDybRUVFQoPRkyouLhY2UaWlpVy4cIG8vDymTJnCtGnTRBCJmZkZsrKygt8qaXJ0dHRELPq7gTp1dXUUFRWhq6vLyJEjefv2LYmJiWK6m5qaSkdHB3JyciQnJ3PhwgU++eQTMaaXPPClUIOTJ09SXV3N1KlTuwEg/61MTU1pbW1FVlaW/Px87t+/j5qaGr6+vmzbtg0DAwPOnDnD8+fPWb9+vYjVdnNzo729XXz30udqbW0Ve9m713rx4kU0NTWZPHkympqa5ObmcurUKZYtW4alpSWysrIcO3aMM2fO0NjYyMCBA/Hy8sLV1ZX6+nosLS1FcM5/qx43r3/88QfQZbi/adMmYmNjcXFxoaKigoSEBB48eICKigoLFy6kurqa9evXC+NzJyenbgtgS0sL8vLyDB06lAcPHvDw4UPs7e1Zt24dNTU1HD9+nMWLF2Nvby/SRfr27cvu3bt5/vw5v/76Ky4uLsK+q7Ozk5CQEFpbWxk2bBguLi7Co7An1yeNrt3d3bl58ybl5eUCZe7o6BCWXe9WYWEhDQ0NyMnJ8ejRI7Zt28bYsWOZPn06L1684MSJE3R2djJq1CiGDh2KrKwsd+/epaqqivr6eqqqqkhKSuLt27dYWlqio6NDa2srWlpa9OnThzt37nDmzBny8/MxMTEhJSVFqJX/TcXGxgruV2xsrHgoX7x4QWpqKgcPHmTu3LlcvnyZ69evM2PGDHHvpIAIacHt1asXhYWFmJqasmjRIvHdfPLJJ0RHRzNv3jwyMjJYunQpixYt4uDBgzx58oSrV68yZswY6urqUFNT44MPPmDgwIEi0ejChQs4OTn1WJRWVFQkkk2gC4WXqArSv6AL3SgvLyc2NpasrCwcHR1xdXUVaCl08QylE7ODgwPy8vLo6ury9OlT7t27h4yMDEOGDOG7774jICCAU6dO0dHRwYIFC5g4caJokoyMjERK1JQpU5CVleXNmze0tLQwYcIEpk2b1iMropKSEmpqarC0tBQ0BqkuXbrEp59+iqKiIjt37hRuEtDFEV20aJFomKR/l6Kb29vbGTlyJBMmTMDHx4f9+/eTl5cnopGlsBE5OTnq6+sFcj5s2DBevHghlKS+vr707dtX8L576mMr/czp06epqKjo1rz++OOPDB8+XPDCr1+/zqRJkxg8eLCw46qtrRViSPg/SPXUqVOpq6vj2bNnnDlzBhcXFxYtWkR1dTXLli0TXr3W1tb88MMPAIwYMYJ169ZhYGAgGgTpEN7R0SGoG+9aab1PScIi6Gqg7ty5g5qamrhX9fX1uLu7C6SstraWvLw80tLSkJWVxcfHB0NDQ0E1KC8v58SJE0J4IjVUvXr1orGxkQcPHvD69WvxXtTW1rJlyxZUVFQIDw/n7du3BAQEYGRkJCJNJZpFS0vLv7LmS0xMpLa2FkNDQwoLCxk9ejSxsbGsXbuW5cuXY2JiQm1tLXFxcRw7dkw8x7m5uWhpabF79250dHSYNGkSp06dYuPGjWzZskWI1O7evcuVK1e4e/cuurq6QhB24sQJIiIixOeQ3t2mpibU1NREMx0bG8vr168FmthTq6yWlhZ0dXWRkZGhb9++9O7dW9zT+Ph4YmJigK4m5K+//kJTUxNzc3NUVVUZPXo0U6ZM4dmzZyxatIjAwEBCQkK6TTTl5eXR0NCgqKiI58+fY25uTkBAAJWVlTx+/JgNGzZQV1cnYkM1NDQYPHgwCxcuFChZZWUlpaWl6OrqoqKigpubW498s6X3rLS0VKBzd+/eJSkpiWnTpqGoqMj69es5c+YMs2fPRk5Ojvv379OnTx8mT55MTk4Ora2tlJaWCiR88uTJbN26VTQ/koD7jz/+oLGxkblz57J7927x3bS0tGBjYyMoSFIEdHl5OadPn2bNmjUAQvTU09LR0RGgwtmzZ6moqOCrr75i5cqVyMvLk5CQgK2tLd7e3pSUlFBeXi58nisqKvjrr7+wsLDgyy+/7KZ1qaqq4uzZs/Tu3Zvp06cTFxfHs2fP8Pf3x9vbmwcPHtDU1ERZWRlnzpzhwYMHTJo0Sfy8RAeCrilyfn4+s2fP5pdffumR6A66nqUNGzagra3Njh07cHV1JTQ0FBMTE4qLi/npp5+oqKjgo48+ws/PjzVr1pCXl0dFRQU2NjbIysoK5FRao5qbm2lvb0dVVRV1dXWam5s5c+YMT58+pbKyUgie09LSsLS0JDc3l5CQEB4+fIiBgQHDhg0TvO6hQ4cyaNAgzM3Nu32H/8/r6dHVv1O1tbVkZGRgaWnJyJEjqaio4MGDB0AXsvfdd99RWFgIwPbt22lra8PNzU0sxB0dHaSkpAg+6+bNmwkPDycsLIzp06fj6upKYGAg1dXV3Lx5k0ePHjFq1CiGDRvG3LlzGTt2LOPGjROZ3nPmzGHs2LH8/PPP/Prrr3z33XfMnj27x8k+o0ePxtzcnLCwMPbt24eHhwfr1q3D1NSUhIQEsrKyxKbxbo0bN040dzU1NSIlo76+XjSEPj4+ojGdPHkyT5484dixY8TExKCpqYmTkxOampqYmZmRmJjIvHnz8PLyYv/+/YwcOZL8/HymTp2Kra2tEG2Eh4f3+N6dOnWK9vZ2YXvy5Zdf4uvrS2FhIdOmTcPNzY3bt29TUlLCsmXLCAsLE5SFNWvWUFxcTGpqKqtXr2bYsGHY2toKqyZJ3d7U1ER4eLjghkovoFQ6OjrY2toK7nRiYqLIJD937hx79+5l69atTJw4kVGjRnHp0qX3vr7c3FxGjBghFtrvv/+eU6dO4eLiwurVqwUZXBJ7GBkZ4eTkJMRNkpOFhoYGU6ZMQVlZmT/++IPw8HB+++03hgwZQk1NDffu3aOzs5Nly5bh6urKrl27yM/PZ8GCBdja2pKVlYWRkRF9+vSho6ODffv2ERMTg6WlJYGBgYwZM4bW1lYaGhp6LDLYvHkzpaWl9O3bl/79+zNy5EiBKBsaGuLo6Ehqaiq3bt1ixowZYrF5+/YtDQ0NKCgoCEGO5Nfn6uqKm5sbNTU1qKurM3v2bB4+fEhubi7Tpk0TJ+revXuzZ8+ebs3MlClTGDlyZDdfZemQ0NnZ+a+Q15qaGpE4JZWENsjKyorR1q5duwC6HVSfPXtGUlISLi4uBAQEoK6uTnt7O0lJSVRWVmJra4ufn5+4htevX3Pt2jXx89Ki+/LlS27cuIGenh4jR44UXH7oakgqKiowNzfHwMBA8Njft/7++28mTpzImTNnOHv2LIGBgXz88ccoKiry119/8ebNG9zc3BgyZAiVlZX89ddfPHv2TIjD8vLyRDzl7du32blzJ87OzmzatInr16+jpaXFypUrCQ4Opr29nW+++Ya2tjaBDCkqKrJgwQIsLCwEPef48eNoa2uLAIiqqira2tr+NS3i2bNngp+tqKgoFPAffPABNTU1bN++XRi6f/nll0RFRWFubo65uTmFhYXY2tri4+ODkpKSoCVJyXzQ5V/63XffMWzYMCIjI7l8+bKgIri6utLU1ET//v0xNTVlw4YNmJmZMXbsWGxtbbl8+TKnT5/GwsKCMWPGkJaWxp07d7qJHP9bvStkkZWVFY1raWmpmPSkpKRQUFBAYWEhjx8/pq2tjfj4eMrLy3n58iUpKSkUFxdz+fJlZs6cyZgxY2hrayM2NhYtLS0uX76MiooKra2tLF++HFlZWU6ePMm3334rXDJsbW35/vvvKSkpwcbGppuNUlNTE4mJiejr6zN8+HB8fHyEl/H71LvvVXV1Nbdu3eL58+ds2bJF+FNLXuV1dXXCKtDR0ZH6+nra29u5f/8+GzduZNq0ady9exdra+tuqJ2Ojg4bNmzA1dWVzz77jIKCAgwMDOjTpw+9evWioqKC8ePHC5Ramvbu2bOn2/3y8/NDW1u7R9cHXZaGksPQ+PHj+eijj2hsbCQkJAQtLS2RJAVdwMH/TCx0cnLCyMiom++zFFnd1NQktAIjRoygoqJCBGs4OTnx8OFD3rx5g62tLdu2baNfv34UFRXx4MED6urqxH4l6U7+5176PiUdViwtLVmwYIHwcpXubVNTE1u3bkVVVbWbxei7ws7k5GSWLl2Kp6enWHPr6uoEtRJg3rx5ODg4cPnyZe7fv099fT1eXl6CT2tpacnq1avR1NSktLQUVVVVUlJS+O2332hqauL3338Xaav/rXrcvGZmZlJdXc33339PY2Mjf/75J97e3ixcuBAFBQUCAwMxMTEhPT0de3v7/+DFJicnIycnh7m5OcXFxfzzzz8MHDiQ2tpa7O3tqaqqIiQkhLdv34okGGVlZZKTk0WnLo17oAtlunjxInV1dYwdO5bx48dTX1/Phx9+SEpKSo+bVx8fH3x8fPjnn38IDQ3lww8/FE2BdPKRxBsyMjK0traKjN/y8nLs7e2xt7dn6dKlDBkyBDU1NYGu1tbWCn9YHR0dhg8fTkJCAm5ubtjb2yMrKytsKiSD+IKCAgoKCjA1Nf0PLk94eDhRUVHd+CbvU2PHjkVHR4fk5GRu3LiBp6cnioqK/Pnnn/j6+jJt2jSuXLnC4cOH8fb2pqysjIyMDNzc3CgrK+Pt27f4+voKO4vXr18L/o30+ZWVlfH19RU8svHjx9Pa2kpBQQGvX7/G0NCQ4cOHExUVJTal2tpafHx8sLGxISgoiJUrV6KoqPh/jaf93+rly5dC1HLnzh1CQ0NF0MGTJ0+wtLTEyspKoAHe3t7CWLmkpAQVFRWqqqoElWLs2LHcvXuXixcvijzt8ePHM3PmTCIiInBxcSEmJobVq1fTr18/du7cSWlpqUgk8ff3R1ZWFhsbGyorK0VT966NVU/pH5cuXRI8Tg0NDby9vUlJSeH69ev4+/sTGhrKvHnzeP78OcnJyaL5uHbtGikpKXz22WeC2tHU1ERbW5vwL01MTKSuro6WlhZevXpFfX29OFhI8YXQhehIlikKCgpUV1cjKytLe3s7paWlQqSmpKT0H9zc9yljY2N69+5NZ2cnhYWFmJiYYG1tjaenJ5MnT0ZRUZHjx4/z9OlTzM3NGT58OFVVVVRXV3Pq1ClCQkJwdHTk/v37qKur09TUxP79+2lqauKrr75CS0uLhIQEGhsbaWtrY9GiRYSEhFBfX4+DgwNubm7k5uby9OlTNmzYgIaGBp999hnQdUAqLS1FUVGR8vJyGhsbe+zzGhUVxaRJkwQfc+TIkUKYIicnJ2yW7O3t0dTUJC4ujjNnzuDp6cmMGTPEhKO0tFQEN4SEhIgNXuLbQVfT0bdvX1RVVSksLERGRgZjY2PR0IaFhaGrq8v06dNFMIiDgwNOTk4kJSXR3NxMWVlZj++hgYGB4JO/ePGCkSNHMmTIEHx8fLh16xZhYWE0NDQwdOhQFixYID5ve3s7ERERzJw5E0tLS54/f058fDwyMjKEhoayY8cOZsyYgYmJCS4uLtjb2+Pj4yPSiEaNGiVEhdXV1cTExJCYmMiSJUvw9fWloaFBWB62trZy79490tLSuglI36ckwKK0tBQ1NTVUVVWJjY1l165d1NfX4+/vT0NDA2VlZcL/OCMjg8jISJKTk7vRx1pbW7l27RqxsbFUVlZSXFzMsmXLGDx4MAoKCmRkZKCtrU12djaPHz+muroaQ0NDPv74YywtLTl06BCZmZncunVLuOLIysry+vVrOjs7GT9+PL179+7RuBm6KHEyMjJiGvj27Vv69u0r3oX79+9jZ2eHkpISWlpawj/72bNnIlUtKCiIuro6cnNzxfNQXl4uYrelUbybmxvDhw9HU1MTeXl5+vbty9GjR7lw4YLwXC8sLMTY2Jj58+fj6+tLTk4O2dnZwv3D0NCwx81rVVUVCgoKmJmZienRyZMnmT9/PiNHjhRiruLiYjo6OpCRkaG4uFgo8d89xEiTYOg6gEvhFxJyLXFrCwsLGThwILm5uSQkJDBx4kTGjh0LdDWbWVlZ2Nvbi3Xazc0NX19f2tvbewx2NDc3izhwc3NzYQ/X0tKCoqIiVlZWWFlZUV9fj4qKCm1tbRQVFZGVlSXEf3fv3iU+Pr6bsEtVVVUcrBobG9HU1KRXr17cvXuX/Px8oIv3K32nEl/Yzc2NgwcPir/x999/o6OjQ15eHs7OzqIn+N+qx83r3r17SUhIICkpCUVFRQYOHIiioiL19fWsX7+ezz77jC+++IKffvqJ0NDQbkptaUylpaXF1q1baWpqEhwm6STQq1cvUlNTuX37NtCF6AQFBZGUlISMjAy5ubniZj558gToyrLv6Ojg+fPn+Pr6Cj5fXl5ejxfcsLAw9PT0cHd356OPPuqmzBw2bBiZmZmkpKRw584doZZvaGjg66+/Jj4+nt9++43Ro0djamraramsqqri/v37GBgYoKysjJmZGTo6OmzcuBEfHx9UVVV5/vw5f/31F8bGxgQFBfH333+TnZ1Neno6mpqaqKurU1ZWJoICevXqRUBAQI85ob/++itr1qzhyy+/ZMmSJVhZWZGWlsbdu3e5evUqK1as4Ndff+XOnTt8/fXXIntaEhu4uroKpfzSpUu5cuUKFy5cYNCgQd3gflNTU9TU1MQ9mD9/PosXL+bjjz/m4MGDmJqaCuK45IsbFRVFSkoKycnJDB48GEdHR3Gf37eio6M5duwYOTk5VFZWMnv2bI4ePUpJSQnXr19n165drFixQtwjaeHJz88nKSlJcG337duHqakpK1as4Pfff8fOzo7r169jYWHBpEmTGDp0KK9eveL06dMoKCjg6OjIkCFDkJOTw9jYGAMDA5Hq079/f2bNmiUM8wHhfQe8dz65VP3792fr1q14eHhQX19PbGwsW7du5a+//uLMmTNMmzYNPz8/8vLyBO8tNzeXqKgosrOzu/mujh07liFDhgiVuaurK+fPn+fbb78lOTkZa2tr4TwQEhKCjo4OpaWljB8/no6ODm7evElKSgqzZ88mODiYvXv3oqmpSVFREcrKyt2i/3pS/fr1ExxXXV1dkZg1a9YsQQeQmrDBgweLw+Kff/5JSEgI0NUQvOs40tbWJhJmjh07xp9//sncuXPZunUrQ4cOFSi/FEkrRcfa29sLvu/bt2+JjY1l+PDhaGhokJiYSGZmpriv71uGhobk5uYyevRoRo0a1Y2fHxQUhLu7O5WVlQIJkRoraUwMCDpOSkoKGzduxMjISBiLv4uYxcfHc+TIEcrLy/Hz82PEiBHivqSmprJ06VJ0dXWZP38+kZGRZGdns3PnTtzc3CgtLSU9Pf1fWRBKm/769eu5ceMGa9euFWbtXl5eHD16lMjISB48eICurm63zyRNLh48eMDvv/8uRBw5OTmcOHFCBL5ERETg4ODA2LFj+eSTT0RUqhTnu2jRIl69esX69euFpdvLly+Faf/jx49ZuXIlJiYm/PLLLz22dIMuXr6CggIBAQG0trby999/U1ZWJqwe6+vrSU9PF9Hcubm5VFdXM3z4cMrLy4mJiSEgIICpU6dy7do1kpOTcXd3R05Ojq1bt6KoqEhVVRV5eXlimiOF6URHR6OoqChEL/fu3RPUp+vXrxMREcHUqVMFjaCnSWmlpaVkZ2fj4OCAsbExU6dOFcjujh07+OWXX1izZg27d+9m//79HD16FBkZGSwsLBgyZIiIXs3Ly2PTpk189dVXjBkzhgULFqCvr097e7vgqt69exdFRUURWwxdvPyDBw+KhnTixImMHz+etLQ0evfujYyMDNOmTftXjiZS/c8Ux9zcXB4+fAjQbcJkZGSEkZERsbGxXLt2jb59+4r9QlrPpUZRS0uLmpoaHj9+THt7O6NGjWLkyJHC2QO61qfAwEAMDAyws7MTv6Nfv36CIyqVh4cHM2bM+FeuJnZ2dsjJyaGmpkZnZyfR0dFUV1fj6+sr1p3vv/+evLw8vvrqK2xtbYmMjGT//v0kJiZiaGjI4MGDOXz4sBCjwf+hDzQ1NZGamsqbN2+IjY3tRt2Q9rj09HTS09MZNWoUJiYm+Pj4UFpairm5OSdOnEBZWRkZGZn/CEj5f1WPm9f29nZkZGSYNGkSdnZ27N+/HwUFBebNm4ePjw/5+floamri7e1NcXExdnZ2QnFfU1ODj48Pnp6eGBgYoKio2M1aq7S0VBio+/n5MWHCBD744AMcHR1xcnIiMTGR1NRUOjs7UVNTE3nl48aNo6ioiHv37nHr1i00NTXZtWsXZWVlgqP7vmVoaIiJiQmjR48WQhEphlbyk/3nn3+4ceMGX331FUZGRmhpaeHo6EhZWZmA2bW1tUlNTSU8PFwI2AAxtvTw8KChoUFkwo8fPx5VVVWUlZXR0NAQFj7Nzc2Ym5uLfPP8/HwUFBSEv+fYsWN73LwqKCiQmZmJiYkJ6urqwsLMycmJyspKlJWVMTU1Zd68eeTn56Ovry8eWDU1NXJzc4mMjBS+jO7u7uzdu5eUlBSCg4MxNzcnIiKCx48fk5OTQ2hoKEOGDKG+vp6IiAji4uJ4+/atSG1pbW3F1dWVtrY2Hj16xKNHj7C3t2fGjBmYmZn1mPOqoKCAkZERGhoaGBoaMnPmTKCrKSsrK6OgoICWlhZUVVUZMmQIL1684MyZMxgZGaGkpMTJkyfJyspCWVmZ1tZWEhIS6N27NytXrkRZWZk3b96go6MjnCB27NhBUFAQZ86cwdvbW0SxtrS00NnZSVZWFqampuJULZUk1Hvy5EmPRRSrV68WYkEJWZJGlaGhodTX15OamkpTUxOnTp1i1apVNDc34+joiKampkB9//zzT+Tk5ASCYWNjg5aWFg4ODuLkbGBgINDU2NhY4QHq7OzcLYREX18fXV1dZGVlBQequLhYxIH2tDIzMzly5Ajp6emCmuTi4sLSpUt5+PChGB8uWLAAJSUlVFRUUFBQEE3OyJEjWb58Obm5uUIgOm7cODIzM4WQCLoO1Tk5OXR2dpKbm0tdXR0xMTHk5eWhqanJ+PHjCQ4ORk5OjitXrpCamkpBQQFRUVEMHTqU4cOH9zhIA7qex3379qGqqioCMZqbm5GRkcHBwQEzMzMhltHU1GTs2LEUFBRgZmZGQUEBmZmZnDt3jtbWVrZu3cqCBQvIycnh559/RkVFBSMjI548ecLAgQOprKwUfN7+/fuLkboU3jFt2jSam5upqqqisbFRuDsUFRWRnp6OsrKyQMz+TT179ow3b96IZ0WazBkZGZGXlydcZyorKzl9+jR1dXXo6+tz8+ZNIiMjqa2tRUdHh7a2NlpbWykqKuKXX34Rn9fT05O2tjZsbW3x8PAQnuPp6enIysoyc+ZM0bheu3aN7Oxs5syZg46OjvieJH/bnjavnZ2dvHz5kmfPnpGWloa3tzfr16/np59+4vbt25iZmeHu7k5hYSF37txBX18feXl51NXVaW1txcnJScTyysvLk5mZiYKCAv7+/hQVFfH777+jqakp6BeOjo6MGjWK1tZWQkJCSElJYdiwYcybN4+qqirq6upEqp+mpiYBAQFirbhw4YKIm33fUlNTQ1tbGz09PVRUVLpREmpqarCzs2Ps2LGYm5sTHx8v1o3Zs2czYcIEioqKKCgowNzcnBUrVpCdnU1rayuZmZkUFxejrKxMU1MT9fX1wtlFQq+NjIyoqalBUVERe3t78vPzGTp0KFOnTmXFihW8efNGTMF0dXWpr6//V562ktWYjY0N5eXl/P777yLtat68ebS3t5OWlkZdXR26uro8efKE58+fiwnf9evXiY+PF5OempoaTpw4ga+vr0DNExISKCkp4enTp7i6uqKgoEBJSQmTJk1i/vz5NDQ0EB4ejq2tLWZmZmLNrKqq4sqVK1RWVuLr6yusAntS766/BQUFFBcXU1ZWRlNTE6ampqSmppKamoq2trZomI2NjYWYUgoeGDNmDAoKCsTGxqKrqysODE1NTSgoKNDZ2UlRUZGgjEoRuB0dHejp6dHY2EhhYSEaGho4OztjZGSEtbW1oEIUFxfT1NT0Xg16j5vXJUuWUFdXR79+/cjJyWHy5Mno6+sLdd7p06eZMWMG/fv3586dO9y5c0eM+aW4P+nUUV5eLhIYdHR02LZtm/CKXbhwYbcxueQT9u6XJn0ZSkpKNDY2cvjwYbZs2cKUKVM4fPgwhw4dYtmyZT3Kcx40aJDY6CR0sbi4mPj4eAwNDQUH6X/GCK5btw4VFRUhTElNTWXnzp0cPXq0G99PXl4eCwsLLCwsaG5u5siRI2LE3qdPH6HgDg8PZ8aMGUI0pqqqSlxcHHZ2dt0QlX9z2pR4SqdPnyYiIgJPT08cHBwICgrC3Ny8G8fwm2++6WZzVFtby+7du7l//z5jx47lhx9+oKamhhEjRvDNN9/g5eUlrG2ePXuGvLw8z549Y+HChUL4MWLECAwNDZGVlWX//v1C8PL8+XMAgoOD8fb2FgkydnZ2nDt37r2vz97entmzZ3dbxGpqaoiIiMDGxobJkycLeoONjQ0RERFcunSJtWvX4uTkxLp160hKSuLUqVMEBASQlpYm4vA+/fRTbt++zb59+6itrcXS0pI3b97Q2NgoELK7d+8SExMjbMykhaiyshJtbW2am5vFZ4uIiODQoUNiE33fkuxp0tLSBGfKwcFBJCodOnRIOCLs3LmTtLQ0pk2bhr6+PnJycpSXl3PmzBlWr15NRUUFgYGBaGlpMWjQIBYvXoyxsTHDhw/n6tWr1NbWYmxsTGZmJvPnz8fb25srV65w/PhxysvLUVNTIyAggEePHnVDCiTnjOzs7H+lVE9JSSE9PR1/f/9uClxlZWUeP37Mjh07WLRoETNmzCAjI4OamhphKaOurs7XX3/NgAED2LlzJ4mJicyaNUu4B7S0tDBy5EgRiTh37lzi4uKor6+ns7NTbKKDBw/m+++/x9HRkb1797Ju3Tq8vb1xcXFh79693L59mzt37vwrTqiioiKRkZE8evQIIyMj1q5di6urK1lZWeTk5NC3b1/q6+tpbW3FwcEBLy8v9uzZI+z6fvvtN+Tl5Tl48CAODg40NTWxZ88eoqKihK+m5F/r4eEhEPSZM2eira1Na2srtbW1IvQEupAgKXxGRkaGp0+fkpCQgJ+fH/369evmLtKTGj9+vNignj59SkpKCh0dHTg4OAj/SF1dXUJDQ4VnqCTkVVNTY9OmTRQVFXHlyhWBuMbFxWFgYMDs2bNxdXUlLS2N69ev09nZyYABA0hISBCi0FmzZgFd6vydO3cyd+5c8Uyqq6tz7NgxUlNTycnJ6dF1SbZUqampvHz5kuTkZLZv384XX3xBXV0dmzZtwsLCAl9fX/78808hSDMwMKC2tpZHjx4xf/58fv/9d+7evSuQ6iFDhuDq6kpKSgo6OjoYGhri5+dHcHCwOCh1dnbS1NSEoaEh+vr6jBgxAjc3N5EI19jYiJqamliXbt68ya1bt/jggw96pJWQRun/N+rPsmXL+OyzzzAxMRHN6Lv33NnZmfHjxwuqg4eHB9evX+fQoUOEh4djY2ODiYkJurq6bN26lc7OTg4dOsT58+e5fv06NTU1WFtbc/jwYX744Qfu3r2LgYEB6urqTJo0CRsbG2bPno2FhQX37t1DTU3tvQzu/2f5+vqSmpoqkp6SkpIwMjJi+fLlQqmflZVFdHQ0iYmJPH/+XABXDQ0NnDhxgmvXrqGkpERzczMKCgosX75cAGBSKtr9+/fJz8/H19cXPT093r59K6gHzc3N1NTU/AfqeP36ddasWSN8nP+/VE5ODk1NTfj5+dHe3s5ff/3FZ599RkVFBb/88ouwyquoqMDPz4+AgAAGDx7MZ599RkZGBs+fP0dDQ4OXL18yYMAAoKvXqaysxNPTE3d3dzw9PUlOTqaoqIhhw4bRr18/ZGVl0dHRQVtbW7grqKqqYm1t3W3P0NPTQ15e/r2E6D1uXiW+Q0tLCykpKaxatYr6+npOnjyJhoYGkyZNwtTUlNu3b/PkyROcnZ0Fn0+KJ4yLi0NNTQ0dHR2hQCsuLmbChAkMGTKE4uJibt68SVZWFhMmTBCnxqKiInJycrpdmGS2rqamxsiRI9HU1KSzs1P4W/a0nj17xoYNG9i4cSOurq58//33vH37lnXr1gmLipiYGKZOncqQIUNITU1l48aNLFq0iGHDhvHnn39y7tw5dHV1efToEZ2dndjY2GBgYEBsbCw6OjrY29sDXSfa6dOno6ioKAjPEoTft29fli1bhqGhoYDmbWxsxIPd2tpKZWXlvyJvS2ViYoK5uTlOTk6YmJjw/Plzgdb5+PhQUFDA0aNH0dDQYOLEieTl5bFhwwYeP36Mg4MDHh4eZGRk8ODBA4GISTw8a2trJk6cKKJtr1y5QnNzM8uWLWPz5s1oaWmRlZVFZWUlcnJyYvP66KOPMDY27rZQ9lTFraenR3l5OYmJiTx48EAEMrx8+ZKJEyfi6OiIhoaG8PGVbKTs7OzQ1dVl9erV3Lx5kzdv3uDu7o6pqSn79+9HSUmJ5cuXk5eXx6VLl3BxcWHr1q20t7cTFRXF4sWLSUlJQVtbm+DgYMrLyzl37hzu7u7Cs1ZCu6Kiojhw4ACGhobMnj27R+laUlVUVIj89r///htZWVnGjBnDBx98QF1dHRcuXODevXu0tbXx7NkzoqKiUFBQQElJiaioKKBLZCLljENXwlxGRgaGhoZCeZ2VlYW2trZIFHv3UPDu8yclycTExGBubi5EQDU1Nf+K8xoUFER7ezvW1tbCszc7O1vEFK9cuRJTU1PS0tJQVlZGU1NT8Mvr6urYsmWLGFc6OTlRU1PDjRs3OHjwIE5OTvj4+FBbW0tsbCyRkZH/ISozNzenf//+YvPv6Oigvr6e8vJyli9fzqhRowgJCWHFihVYWVn1KGscuvj/y5Ytw9/fn6amJvr160evXr3Q1dWltraWpqYmzM3Nu33f0voQEBBAW1sbFhYWgpNfXV2Nrq4uw4cPx9fXFzU1NfHu2NjYcPDgQd6+fSsO5ZLzRkZGBsePH6dXr17MnDmz20FDSUmJxMRE1NTU/rWzCSAcNSwsLHjw4AFXr16lvr5exKI+ffoUTU1NERDy5s0b8vPz8fDw4JNPPiE4OJiIiAiio6OprKykT58+TJo0CRcXF9zd3bG0tBTcQikMQHL5kNAx6KJ8SIlM0NUYpKSk8OGHH4rpX08qJiZGpBFu3ryZqKgorl69SktLC35+foSGhmJoaEh0dLQ4zCorK3f7OxLdRbL2srCwYPPmzTg5OdHc3MxHH31EdHQ0srKy3QSRtbW1NDc3i2eioqICDQ0NsZcUFhby888/o66uzoIFC1BTU2Pw4MF89NFHPWpeZWRkqKmp4fr161RXVzN9+nQMDAxISEhASUlJPPf6+vp89913rF27lri4OHbu3Imfnx+JiYmUlZWxbt06PvnkExITE9m5c6cQEWppaXVzMli0aBHQReOqrq4WoktlZWUmTZpEbm4u7e3tjBs3jnHjxnH79m2WLl1KRkYGH374oUis6klNmzaNiIgIvv/+e6Kjo7GyssLT05Po6GicnZ0F2l1VVcWhQ4fIzc2lsLCQyMhI8vPzxVrZ3NxMYGAgS5Ys4fnz5+zZs0dMkmNjY8nIyBCx276+vowcORJnZ2ch2pWoHQUFBfz444/cunULOTk5goKCCAwMFDStnvrXS2VgYEB2djYKCgro6+sza9YsfvzxR2E/JlV5eblYByRwsaysjJaWFqysrGhsbERVVZWkpCTu3buHrKysEM65u7uLNev58+cCKIqPj6egoID+/fujqakpmtbm5mbq6+vF5Bneb8/vcfNaX19PRUUF58+fp6Ojg8WLF5Oens53333HgAEDmDt3Lk+fPuXKlSvo6emhra0t/NNUVVW5e/cuDx8+xMbGRsRGRkREEBwcTEhICEpKSnz33Xds3ryZyMjIbjnFysrK3Xim0gs4cOBAlJSUcHFxwcXFhYiICLZt2wbQ45zjqKgozp8/LziAN27coLW1VSziMTExqKioMHXqVADOnTvHlStX8PPzY+jQobx48YLIyEh8fX0xMDCgvLwcDw8PzM3NUVdXZ+DAgYKza2JiIux4oIvLJuX+6ujo8N1334n/XUlJSYz4ZWRkMDAw+NcK4KioKGxsbIRSXU1NjcrKSqCLQ6ehoYGPjw9JSUls376diRMn8vnnnxMeHs7jx4+BLqR58uTJLFmyhMOHD7Nv3z7mzp1Le3s7CQkJLFy4kBkzZnDjxg1xXyWaQHt7O9nZ2SJaz8LCgmnTptGvXz8xSpPI+bq6ut2ETe9TNjY2vHnzhqNHjxIWFoavry8qKirU1NTw4sULnj59ypAhQ1BRUaGjo0OI7Orq6oAunp6GhgbLli2jubmZzZs34+LiwokTJygtLSUtLQ19fX0++eQTIfQyNjbm448/5u3btwQFBREcHExWVhbXr19HUVFRNEDSy5mfn8+DBw9ERGJHRwcvX77s0XWqqqpSVVVFeXk5GhoapKamcurUKXx9fZk/fz5qamro6enh5ORERUUFISEh5Ofni01QRUUFXV1dHBwcaG9vJzMzExkZGbKyskQTIZHtL168yMcff8yWLVsAugU3tLS0ICcnR0tLCzk5OUJ1LS8vj7OzMx0dHSIUoSdlamrK8uXLuyX3xcXF8eOPP/LZZ5/x9ddfc+bMGa5cucLGjRsxNTUV40lZWVkePnxIXl4ey5YtE4hWWVkZZWVlqKurExMTQ0NDA9ra2vj5+REdHY2xsTF+fn5kZGRQVVXVjfOen5+PhYUFkydPxtXVFVdXV2RkZJg7dy4tLS09NkdPS0vjgw8+EGsJdDXI7zZbra2tIhcduhb6t2/fCg9GybXFwsICIyMjRo0axY0bN3jy5AmTJk3Cz8+P1tZWsrOzxdgZuhAY6fkoLCzkwIEDODg4MGLECIGYS/xMKf3q3yRslZeXo6WlJWg80IWoh4aGkpiYSGdnJxUVFcTGxhIXF8fAgQMZOnQoYWFhqKioiAPxmTNnKCsrw8vLi/j4eLS1tVm5cqXYYMvLy2lvb8fU1FQ051paWigoKBAVFYWBgQG6uroMGzZMILOVlZUcPHhQTC3GjBkjgIX3rfv371NWVsb8+fOZOXMmQUFBHDhwgOfPn+Pv78+ECROEmFFHR0fsARL/b+rUqSJ+VUtLiwEDBrBp0yaxb1VWVmJoaCgiO98VPHl7e1NbW4uenh51dXVCzGRnZ4e2tja3bt0iPDwcbW1t5syZIyyJevouSuP8zMxMsrKy8PPzQ01NjYKCAjHebW9vR1NTU3C3P/nkE2FhJlVISIjgokufX/KelcI3Jk2ahKGhId988w0NDQ3iuU9OThb2dy0tLZw/f54+ffqgqKjIyZMnuX37NhoaGsjKyvbY9QO6GnR/f39+/fVX3rx5IwSR165dE8460EX1cXJyoqqqCjs7Oy5dukRlZaUQGEnrwciRI1m5ciWPHj1i3rx5VFRUEBMTg729PQsXLsTU1BQrKyv8/PwEuCdNbaWwit9//x3oclDYuXMn5ubmQpciUTHftyorK2loaKCjowMNDQ0h+FJWVmbq1Kn8+eefYq3LyckhJSVFCLna2tpwd3enuroaY2NjsV5K/UBVVRXe3t4CmHn69KmgpcTGxvLixQsx4Xr9+rUQoNbX1wunAiUlJeEe09ra+v8fq6wpU6ZQVlbG3Llz8fPzY+/evdTU1LB06VLq6+vZsWMHTk5ObNu2jba2Nt68ecOjR48YPXo0+vr6gouqq6vL+fPnOXXqFPr6+ixevBglJSVSU1O5cuUKAwYM4JdffhEweW5uLs7OzlhYWCAjI0NMTAxpaWno6urS3Nwsbvw///xDTEwMX3/9Nf3798fS0pJ169a99/UFBQUREBBAYWEhf/31Fxs3bqSyspJff/0VZWVl/vrrLxwdHSkoKGD79u1UVVVx5MgRJkyYQEtLC6NHj2bo0KEYGBhw/vx5kpOTSU9Pp2/fvowePfp/PRXGxMRw9+5damtrhXWTJCqSEJJ9+/ahr6//r1BlqU6dOoWlpSXBwcHipCcnJ8eYMWMYN24cdXV1vHz5krdv3/L9998LgYWtrS1TpkzB3t5ebNRSlJ2mpia1tbXMnTsXNTU1Tp8+jYaGBg0NDbx48QIrKyumTp1Kfn4+U6ZMwdDQEA0NDcE9VVZWJi4uTow1Hjx4wLNnz5gzZ06PRyXDhw+no6ODefPmMXnyZJydnSkvL8fOzg5lZWX09PQEEigrKytGHObm5qKJvXDhAmlpaYLIP3v2bFRUVNizZw+1tbV8/fXXrFq1SvzNfv36cfLkSYqLizE0NMTW1hZbW1v+/PPPbsklkqdtQEAAp0+fRltbm+rqagIDA3vcvCorK5OTk4OOjg67du0iJiaGTZs28fXXX6Ojo0Pv3r2xs7MT4sAZM2awf/9+mpubmTt3LuHh4WzduhVra2suXLhAY2Mjz58/F3ZuTU1NaGhocOfOHbZs2cLff/8tRBOSBZq0MZeVlWFiYiJETe+WdELvaR06dIiVK1eioqIiTul1dXWiAYeu03xSUpKgz0g2dEOHDqWyslKYXkv15Zdf4uPjQ3l5Oa2trejr69OvXz+ePn1KZGQk6urqrFixgvDwcA4cOEBZWRn379/nt99+o6qqiv379wvusrTprlu3TlgD9TQpTRLXSYmBBQUF+Pn5icX7r7/+Ijk5mRkzZmBra0t7ezu///47165dw8HBQah8f/zxR4KCgsjOzhYUAOm9OXLkCLt37+bYsWOCL/fPP//w/PlzZs2aRUBAAJcuXeLNmzckJyeLn5M2yc8++wxHR0fBY+tJbdiwgSlTpmBra8uLFy+4efOmeIbevn3Lli1bmDBhAoMHD+bmzZvcvHmTOXPm8OWXX+Lv74+vry8hISF88cUXDBo0iK1bt2Jubi6aXYmLHxoayrZt20hNTWXDhg189913tLW1ceHCBQoLCykqKmLx4sUMGDAABwcHrKysyMrKIjY2Fjk5Ofr374+iomKP6S1JSUls3ryZcePGAV2HWMka8ueff2b69Ol8++23eHl5MWDAAJqamli+fDna2trC01t6lmfPns2QIUPw8PAAup7tn3/+mdLSUmbMmMGUKVNQUlISTcLkyZMZOHAg6urqKCsro6+vz8OHDwXFwt3dnQ0bNtC/f3/xO6XnoSdVXV2NqakpX331FY8ePSI6Opq0tDQ8PT3FJFbSZEh0j9OnT3Py5En+/vtv8vLyuv0+ExMTjh07hoqKCosXLyY7O5sRI0Zw5MgRLl++zL59+7CxsRGNK3SBRMXFxZiamlJYWMhXX31Ffn4+I0eOJCgoiMmTJ6Ouro6ZmVmP3XcAoWtYsmQJLi4uBAYG4ujoKDxM29raqK+vJycnh/Hjx7Np0yaUlJRYu3YtsbGxaGtr8+2332JgYMCjR484cuSIWP/Nzc1Zu3Yt0GWV9dVXXwFd4/bGxkbRvMrJyZGTk8PGjRs5deoUAJ9++inr1q3D3Nyc7OxsGhoacHR0pKOjg9zc3Pe+vg0bNpCZmcnYsWNFgFN0dDR///036urqXLp0ib59+5Kens7FixdRUFAQz4yJiQmbN28mLy+vm6PK+fPniYiIYM2aNUyePJnk5GTWrVtHRkYGU6ZMwcbGhpCQEOLi4mhubqZv376oqakhIyMjPO3t7e0FsFNaWkpcXNx/iE3/X9Xj5rWhoYHW1lYGDBiAp6enSP+QFs5bt25hZmYm/nhVVRUHDhwgKiqK8ePHC6sb6LL70dDQYMuWLQQFBQk+lhR/Jy2ip06dEsR2SaglEdG1tbUFGTk8PJx58+bh5uYmUjbeFUu9T40cORIFBQUiIyOJj49n3LhxYrT4ruhGyhgODg5m5MiR1NTUsGPHDuzs7AS/ShIaFBUV4e3tLbwTi4qKKCoqoqWlhYaGBjw8PITA6+DBg8jJyQmTcEm5Dl00AzMzM7Kysti7dy9OTk7/Cn318vKivb1dPIgdHR3Cz9HMzIzOzk5KSkrw8PAQMapXr15FXl6eAwcOdFNfGhgYCK7mmzdvSEpKora2lgcPHjB06FBMTU0xMTERDYhkGSadOl1dXamtrSU6OhoFBQWUlZWFFYm0KPe0pGZRSrQBePjwISkpKfTr1w83NzeUlZVpaWlBQUGB+/fvExoaKsbQK1as4Pjx42hqagpVO3QhgUOGDEFWVhZ9fX1Onz4t0ogcHR0ZOHAgpaWlQm2qoaGBvb09eXl5vHz5EmNjY+Tl5YmLi0NZWRlvb2+xIEpoUU/L3t5eeFeOHTuW4uJizp49y5UrV9izZ49YyCUbMiln3sXFBU9PT3JyclBSUqKqqgorKyuRT52cnIyuri6GhobMnz+fx48fU1JSQkpKCnZ2duTn55ORkYGtrS2mpqYCHS8sLBQm+tJ9r62t/dcG969fvxaq66SkJNra2vj666/x9/cnKSmJ0NBQkpOT2bJlC1u2bEFHR0d4B0uVkpJCVFSU4PFaW1sTFRVFTk4OY8aMQVlZGScnJ65evYqpqSkBAQH06tVLjCevX79OaGgo06dPF+9/bGwsx48fx9TUVGR/Az1qXpWUlKiuriYtLY2WlhbS09PFvdLU1OT69eucOHECBQUFoRtQVVXFxsaGzs5OsrOzsbOzw87OjrKyMq5evcqPP/4IdOkLysvLefjwIY8fP6alpYX79+/j7OxMUVERycnJVFdXC9eJwMBAfH19SUhIoKmpCQMDA9TU1CgvLxcxxP/mGU1KSuLbb79l+vTp6Ovr8+zZM6qqqhgyZIgYlbq4uAiBWElJCW5ubkyYMAFbW1ugS6A0YcIEYVKvqqrKq1ev2L59Ozk5OcyePRsXFxf09PRQUlKirq6OiooKtLW1MTIy4tmzZzx48ICJEydib28vxJEKCgriPj948EAY7vekRo0axcSJE4GudV2yfCwtLSUvL4+ioiKKi4vp06cPwcHBdHZ2CgBD+hxxcXEkJiaKJjMpKYmYmBhaWlpITEwkOjoaNzc30cyVlJQIqpWVlRVycnKUlpZy6dIlIiMjMTAwQEFBAQcHB6ZPn46uri5xcXGUlpbS2NhIRkbGeyFbUkn+5v7+/owaNYrPP/+cjo4Opk6dSmdnJ3/++Se6urr4+fkJUCAgIABra2t69epFRESE4KHb29sTGBiIt7c3ERER6Ovr07t3b/z8/Dhy5AiRkZFcvXq1GzAg2e7p6OjQ0dGBlpYWhoaG5OfnU1BQIFLV/r/Uw4cPqa+vR15eHj8/P3R0dFBWVu42uX379q0QiUtUna+++goVFRUaGhpQV1dHT0+PoqIiMjIyWLhwofj5wYMHCxGwFPRiaWlJcnIymZmZ2NjY4OnpSXNzs3A4AejduzcWFhbk5OSQn5+Pt7c3Hh4eJCcn96h5jY2NRU1NrVv8cUlJCaGhoYwePVrQ/SRBXu/evYX4vKioCGdn524WWWVlZZw6dYqqqirxs4cOHSIsLAwXFxfhrlFdXU1tbS2tra0CYGhvbxci4L///psHDx7w0UcfoaurS2lpKR0dHe8V09zj5lUyuJcubMmSJaIJMjc3Z9myZWRkZAiDcB0dHerr67l8+TIXLlzAx8eHGTNmYGRkRGZmJnZ2dgINkCxNNDU1RZrNzZs3SUxMxMbGhtjYWKqrq5kzZ46wp3i3cnNzkZOTE4vemTNnWLhwIfPmzXvv65NOQX5+ftjZ2fH27VtkZWVZt25dNyK1hoaGsFcBOHDgAN9++y06OjqYmJgwbNgwFBUVkZGRoVevXhgaGtLa2kpFRQVxcXE8f/6c/Px8DA0NxWlRRkZGmBs7OjoyfPhwccPr6+sxNjYWyVPLly+ns7NTnOh6UtKYU+KiSEbKly9fpra2lr59++Lk5ESfPn3Eta1atYoVK1YIhEEqeXl58YD6+flx5swZ1q9fz/fffy84mG/evBHpIVOnTmXBggUYGhqKlJg9e/aQmJjIqlWrxKlw4MCB1NfX99h3ERDN77s8yxs3bnDlyhU0NTVRVlamoaGBBw8e0N7ezps3b+jo6EBXV5fGxkbRRAwcOJDJkyfT3t7O7t27yc/PZ+HChejr67Nx40YOHTqEra0tV65coaKigjVr1hAWFiYcMCThXXR0NNbW1syaNQtbW1tKSkoIDw/H3NycESNG4OTk1GMOk8TXlQzNJdHbnj17CAwMJCsri7KyMoHsHj58WMQdBgQEiJH4iRMnOHToEKtWreKLL74gICCAu3fvcv78eSwsLJg7dy42NjYcO3aMwsJCdHR0kJeXR0VFhZCQEOTk5Ni8ebM4MNy+fZs///yTuro6PDw88Pf3JyAgQHxPPalp06aRlpaGqakpGhoaxMXF0djYyIcffigoNBJStmfPHuTk5Ni9e3e335GVlcW2bds4f/48fn5+mJub4+zsTE5ODoWFhdTV1aGsrIyioiLr1q0Ta5mOjg7ffPMNjx49oqysjE8//VS4VlRXVxMREYG2tja9evX6V+lh0EUJGD16NF5eXnR0dKCoqCjW1d9++43NmzdjbW3NqlWruin9v/jiC8aMGUNmZiampqYYGRnxzz//sGLFCpGGJgn2du/ejZ+fH7t27SIyMpJJkyaRmppKYGAgS5cu7RZlqaKiIqyHoEs4+fLlS+7evYu7u3u3/+/7lpeXF7t372bgwIF8+umnqKiokJCQwJQpU7CysqKgoID29nZqamqYP38+ZmZm2NnZUV5eTkJCAq6urnh5eXH16lVev35NTU0Nenp6ODs7c//+fR4+fMhHH32Et7c3t27dorGxETk5OWEdtX37dtLT04mPj+/mqQpdjjDTpk3j8OHDfPfdd5SXlwvv0vetd9P4dHR0qKys5LvvvuPOnTtiPbS1taWqqopBgwaJQ051dTXt7e2oqalx4cIFtm3bxrfffsvmzZu5fPky586dY8GCBcyZMwcLCwvhngAI0/uYmBj09PSYNm0a+fn57Nq1C0NDQ65fv461tbWwCoyJieHMmTNcu3YNLS0tVq1a1S2R779VcXGxGCu7ubmhqakpfFj37t3LF198wZYtWwQ4I5W5uTkLFy5k7ty5VFdXIy8vj7m5OQ0NDaxcuZLo6Gg2bdrEpEmTxDUpKysLDqn0zGtoaIgmUF1dHXNzc37//Xchmnq3EZca3Z5WbW0tmzZtorOzU6Rz/s+SKAPv8o6Dg4MJCAgQgRelpaVMmjSJgwcPdmvAPvnkE6ysrLh+/Tpbtmzh008/xdXVFSUlJY4fP05JSQnff/89I0aM4KOPPiI+Pp76+nqOHTsmpqLS+9fY2NijxhVg1qxZjBkzppurjSQSfvfApqury6hRowSFQJqG+vn5daMpSNoJHR0dVFVViYqKIjQ0lEWLFrFw4UI2b97MX3/9BXT5maurq1NVVSWmDZI37oYNG3j06BFOTk4EBgZiZWWFmpqamAj/b9Xj5vXdi09LSyMiIkLwL+Xk5AQ6mpGRwZMnTzA1NWXChAnk5OQQFhaGsrIyY8aMEabhiYmJbNu2DRUVFQGVz5kzh969ewsl8/jx49HR0WHNmjW8ePFCoGERERE8ffpUZJO7urqybds2HBwcaG5upqmpSfB83rfa2tooKCjA0tISAwMDVFRUKCkpEaEE9fX17N69m46ODhFRGB0djZqaGmPGjCE0NJSJEyeyadMmXFxc+Omnn6iqquLw4cNUVVXh5+fHgAED8PHxISMjA2tra9EA+/v7s3HjRnJycrC0tBQbWUtLC2lpaejo6GBlZYWpqSmjRo1CX1+foUOHkpmZ2aNrfPbsGTY2Nt3sKBQUFLCwsKCxsRFtbe1uG7KUCS+90FLjBP9HpPPixQuWLFmCl5cXY8aMYceOHbx9+1Zwh/Pz8yktLcXCwkL4YTY1NfHo0SPBo33X1eDfWA9JJY3hEhMTBTo1bNgwFBQUxLMjpWXl5OTg4uLC/PnzBdI/f/587O3txYmyuroaLS0tVFVVxcvl5eUlNnRnZ2diYmKEEnvv3r3k5ubi6uqKvr4+vr6+GBkZoa2tjZqaGvb29tTW1qKiooKWlhaKioo9FsPIyMjQ2dnZDZkuKCigvr6eoKAgCgoKOHToEPLy8syaNQsFBQVOnTpFWVkZdnZ2oomQbFN8fHyEe4eioiKenp4oKSkRExNDdnY2JiYm6Ovri+fC2dmZoKAg0tLSuH37NtbW1ujq6uLm5kZJSQmHDx/m4cOHDB06tMcetlINGzZMWOMpKyszYMAA7t27x8GDBwkMDKRv377s3LmTQ4cOifuckJDAs2fPKCwsZObMmULV6uPjw6hRo1BSUqKiogIDAwP09fXJzs7m3Llz1NfXM3PmTDQ1Nbl16xa9e/fG0tISDw8PlJSU8PT0RFdXl9OnTwvqxYoVKwQS29HR0WPjcA0NDR4/foyKigpeXl7dfFQLCwuprq7Gy8tLNEhPnjwhMTGRjz/+WKjrv//+e6ysrPDw8CAoKIhjx45RUVEhkJLXr18L3+kPPviAI0eOUFJSwtu3bzE3N6elpYXk5GSsrKy6iX2k6tu3L2VlZcTFxQlOeE+qtbVVNDCKiopMnDiR/v37i0OphGClpKRQVlaGqakpmpqaZGdnc/XqVa5du4aVlRVaWlpoampiY2ODlZWVUCSrqKjw+vVrKisryc7OxsXFRSQVQhf/vbW1lby8PCFIaW9vFzGxwcHBKCgoCFpaT5Pg8vLyCA0NxdPTk4EDB2JmZiZ8wt3d3dHX16ejo6ObQEVKZpMmE87OzkyaNAkrKys6Ozvx9/cnMzOT3NxcvLy8+Oabb7pxcW1sbFBUVOTvv/8mKSkJPz8/bGxsmDNnDrKysgLwsLS0pLS0FDMzMwYMGMCZM2eoqqrq8TX2798fVVVVWlpayM3NZfjw4WIN19TU5IMPPqBfv35UVFRw+fJlAD766CNUVVVRU1MT4mypsrKyKCkpwdbWVrw/ysrKzJw5k4CAAOrq6jh+/DhlZWXMnDmTAQMG0N7eLuwVZWRkcHd3JyAggIqKCg4ePIi6ujoTJ04kNzdXRET3pOTk5Lh3754QMVlbW5OcnMzRo0dpa2tj+vTp+Pn5AQigoKmpib///pvq6mo8PT2FX7G7u7toXF+/fk1WVhYeHh6MGDECOTk53rx5I94lR0dHamtrefHiBRkZGYwYMUKIFGVlZVFUVERfXx9LS0taW1t58OABGhoa/1d61v9WixcvRlZWlrCwMO7evUtAQACpqam8fv26G0CUmJjIo0ePSEpKoqOjQ6zz+vr6REZGcv36dUaMGMHQoUP5+eefyc/PFxPimTNn8vHHH2Ntbc3YsWN58+YNLi4uTJw4ERkZGTIzMyktLRVuRk+fPsXMzIypU6fS3NxMaWkp6urq4tn/b9Xj5rW5uVmgE3fu3GHFihX07t1bwNsFBQU4ODigoKDA2bNn8fT0ZNWqVejp6bF9+3ZhxeTo6EhkZCQ3btzg/Pnz4vcHBgYyevRo4SUpnTYSEhKEb52pqSktLS0cPnyY48ePExwczJYtW/D29sba2pqysjJkZWVFYktPMoAlflRTUxP29vaoq6tTXV3Nq1ev8PLyorOzk9DQULKyspgyZYrgX40ZM4alS5cyZ84czp49yx9//MGRI0eEcn3NmjVkZmZiYWGBh4eHUNNJSKv0oDg7O/PixQuqq6sFyV/y0nz8+LHw2Tx06JAYffe0jh8/zsCBAxk3bhwKCgrExMTQ2NjI1KlTRXNy584dUlJSGDx4MPPnzyc4OBgVFRU6OzvFWBO6GllZWdluC6KKigre3t6YmpqKjcLR0RFvb+9uSVJxcXHcv39f/Pd3o+jKy8tRUVERzXFPS0onys/Px8XFRYzVoes7lwQT2dnZ+Pj4CJ9Z6Mrynj59Oq9fvyYpKQlHR0dht1ZYWEhLSwuLFi1izpw5Ij2qpaUFa2trsrKyUFJSIi4uDisrK1auXCkWh9bWVhQUFMT7Al3vU0VFxb+ykpIOU1LTEx8fz6+//srSpUsJDg4mLi6O2NhYPv74Yz788EPu379PRkYGaWlpDBo0iKqqKtauXcuAAQM4fvw40MVdGzBggEA64uPjuXfvHtnZ2UK5bWtrK+gx6enpLFiwgMjISBYuXMjOnTuxs7MTPoLS+/s+iSn/t3J0dBS8anNzc9TU1Pjkk08YMWIEN27cwM/PDy8vL/Fc/fPPP5w4cYKmpiZGjRqFn58fK1eupL29XXzn7e3tBAQEICsrS2xsLPv27aOwsJCAgADROFRUVDBr1iysrKzQ1tbG0NCQjIwMwY01Nzfv1pRL72pPysLCgqNHj/7/2Dvv8Kiqrf9/Jr333kklkAChJBAg9FClg4AUQSkOIIJdUbDSBQSjIr0ovUsn9JAChJBCEkjvvfdyfn+Ms19yr/e9xN+9Vy9vvs/jMzJzMnPWOfvsvfZ3rfVdaGpqCkUVJfz9/XnzzTdF5zqABw8e8PPPP2NmZsaoUaM4e/YsJ06cABR6vT/88AMVFRVcvHiRa9euMWDAAN5///0W8k9Lly4lNTUVa2tr0QClvLwcc3Nz9PX1xSZKuThra2szdOhQrly5IjaZrYFS+ggUcnWqqqpYWlrS1NRERUUFWlpaaGlpYWxsTEREBI8ePWLgwIHo6emhp6fHvXv3+PHHHykqKuKjjz4S49LW1pYlS5ZQXFzMzp07+e6770hNTSUgIEC0CldqhGpra2NnZycYJlVVVWGnnZ0dr776KqAoyLt7926r7Lt58ybBwcEYGRnRt29fDAwMRPQoJiaGs2fP0qlTJzH2EhMTycnJwcnJSaSDTZ8+nenTp4uI0cCBA/Hw8GDz5s3k5uaKTVh1dTXV1dWYmZlha2tL3759uX37NsnJyfTv3581a9bw9OlTzpw5I2Tz9PT0MDc3p3379qLxRGsb9ygLWlNSUsjLyxP6vKAgmmbOnElzczObN29m7dq1jBo1ilmzZgmB/g4dOuDs7ExdXR1RUVFkZGQwf/58vL29UVdXJz09ndTUVGxtbRk9ejTFxcWcPXuWX375BT09Pdzd3YmIiODhw4cMHz5cPIudOnWisbGR27dvY2xsLJR70tLSWmUfIJQgfHx8REfH2NhYfvrpJ9TV1Wnfvj0dO3ZEW1u7RZ3G5s2befDgAXfu3OHtt9/m119/bfH7DQ0N7N+/n7CwMFauXMmoUaMYMWKESNdRVVVl6NChIq8YFOvTmDFjRN6+8n4pmyO1b9++1VEQZcreli1bOH78OP369aOpqUkU5yrx+PFjvvvuO0GIffzxxyLN5enTpwQFBZGZmcnAgQOZPn26KNzt2rWrIHskSWLatGlMmzaNkpISUT+RlJQk8spDQ0M5cOAAI0eOZNSoUaSlpXH37l3q6+u5c+eOaNv+v6HVzmtERIT48rt37yJJEtHR0fz444+MGTNG7BBNTEzo37+/YBX79etHWVkZJ0+e5MqVKzg7O4tWgFFRUZibm+Ph4UG7du2wsLCgtLRUsABpaWls3LgRY2Njvv/+ewIDA0UVJijyVZYsWQIoErsTEhJ4//33/1DIOTg4mJKSEpycnCgpKaGsrAxVVVWcnJzIzs4WrUcnT56MpaUljx8/Jicnh4qKClRUVFizZo3QILxz5w4+Pj6ilV52djZ+fn4tZCDi4uKESL8yHOHq6kpDQwO6urrCcfXy8iIzM5PTp09TVFTE3Llzqa6uFpqtrUGfPn2wt7fH1NSU4uJiDh48SGNjY4sq54SEBLGjNDAwwNramrKyMkpLSykoKCA8PJy4uDiys7NZvHgxr7zyCk+fPuXgwYM8ePCAgIAAOnbsiCRJDB8+HEdHR0xNTdHQ0BAFdrq6uqIK+fXXX2fUqFFiUdHQ0KCkpERM9q3B/fv3uXXrltAt1dTUFFWjAQEB+Pn54ebmxquvviocjqCgIKqrqxkyZAjTp09HW1sbKysrIT+jhLa2tghTPct6enh4iKKp7OxswdY9G9J61nFXVvcrRa9bO1bT0tL+rrFBbm4u169fF51t5HI5sbGxmJubY2xszFtvvSWKHkDBbr/xxhtUVVVx9epVXF1d0dTURJIkca4ODg707t0bd3d3QkJC2LhxI927dxdKGEpR9bq6OpKSkvj+++/R0tKiV69edO3aFRsbG2pra4WGb2sQGRkpxK2VObPNzc20a9eOhIQEVq5cSb9+/ejcubOYZ1xcXHjllVdoamoS84OnpydFRUWineOz983BwQEXFxdqamqoq6tDVVWVgIAAioqKhEqKoaEhSUlJ5OTkMGDAAKysrGjXrh29e/fm6dOn7Ny5kw4dOohc9+eFvb09s2fPpl27dly8eJHz58+jra3NK6+8gp+fn4j+gCJKoaenR9euXVFRUaG0tJShQ4dSVVWFoaEhTk5OSJLEG2+80aIPOyi6Bv76668MGDCALl26sHr1atHNKjY2lqdPn4qGI+bm5vj4+GBra9tinlIuTK1N/Zg/fz6gYI3Pnz/Pyy+/TOfOnbl//z4//vgjAIsWLcLHx4eePXuKqnMTExOGDBlC586dRUcjpSRTVFSU0CZWFrJqaWkxffp0RowYQWlpKcuXL6dXr14MHTqUFStWkJOT0yKMq3ToO3bsiEwm48KFCxw6dIi6urpWFfwoHZrfixQ5OTkJEXhQjOfY2FgMDAx+N9VEkiQSEhLw8PAQjpyGhoa4D5cuXeL06dN07dqVRYsWERAQIPKGlVBGT5qbm4WOrLW1Nd26deOVV16htraWTp06ie5Rz4NHjx4JZR9zc3Nyc3MxMjIS7YZBMfc0NjYK5ywjI4Ndu3YRHh7OsmXLcHZ2RkVFReTi2tvbi3az+/fv58qVK8ydO1fIFSqL/Dp37syTJ09obGzE1dVVPLtmZmY0NDSgp6fHpEmTROqPjY0No0ePFgzw86KxsRGZTIaLi4uwycnJiXfeeUdERtTV1QXrqsSgQYOwt7dHT08PJycnNm3aRGlpqeiUVV9fT0REBMXFxTQ2NqKhoYGKikoLFZPJkyfj7e2Ni4sL+fn5WFlZifzSa9eucfnyZaZMmUK3bt0YNWoUpaWlJCUltcq+6upq7t69i7OzM35+fiQnJ2Nqasr8+fPx9/cnLi4Oa2trOnfuzKJFi4iLi8PKykrk2oOiPe27777bQhLw93LElZteUKQmPHnyhDt37pCUlET37t1F3rK3t7fwFx0dHYmKiiImJgZLS0u6dev2TzeSsucNIcjl8tbFGv6CCAoK+odiky+6ffDi2/gi2Acvvo1t4/TFtg9efBtfBPvgxbexbZy+uPap/N6bbWhDG9rQhja0oQ1taMNfEc/NvLahDW1oQxva0IY2tKENfzbamNc2tKENbWhDG9rQhjb816DNeW1DG9rQhja0oQ1taMN/Ddqc1za0oQ1taEMb2tCGNvzXoNVSWf8qyOXyV4Fd/+Sw5qCgINV/csxfEi+6fQByuVwGzAbmAR0BVSABhd3fBQUFtU55/78Ecrl8BrD3t3/ODQoKal2z8L8Y5HJ5KuD4Dz7OCwoKsvoPns6/HP8H7HuVF3yuAZDL5WuA7oA7YAbUAGnASWBrUFBQ0Z93dv9/kMvlpsA4YCTgDdgC9UA0inu7KygoqPkff8N/IWSyz4H3ADckqXUto1p+z9vAasAbSXr+1mH/BrzIY1SJv8q6/6c5r8BD4LN/8FlfYCBw/j92Nv96POTFtg9gDzADyAcOAVXAYGAzECCXyycFBQW9UBWBcrncHtgCVAJ6/+Tw/yaUAZt+5/3Wt1X6a+JFtu8hL/5cA7AUeABcRjHn6AI9gZXAPLlc3jMoKOiPO0F/LiYB3wM5wDUgHbAExgPbgeF/2nwqk/1TxxpJap1jLZPZA+8A237XcZXJ7IDPgWGAKYrrchL4DEkq+Zujg4BlwHpgVKvO41+PF3mMKvGXWPf/NOc1KCjoIYpJ9+8gl8uV6rTb/lPn86/Gi26fXC4fi2IApwC+QUFBhb+9rw4cBiYAs4Ddf9Ip/svx245zF1AEHEcx+b4oKA0KClr5Z5/EvxEvrH0v+lzzDAyCgoL+rt2eXC7/CvgI+BB4/naKfy0kAqOBX59lWOVy+UdAOIr5dDzQOvX9fw3+qWONTDaplX1nPwE0gXV/94lM5gKEABbAKSAe8AWWAMOQyXojSf/DYEpSDTLZZmANMpk/khTSagv/dXiRx+hfat3/y+W8yuVyLxQ7lSzg1z/5dP7leIHsG//b6wblAAYICgpqQDExASz+j5/VvxdvomCxZqPYbbahDX9ZvEBzDQC/5xT8hsO/vbr9g8//8ggKCgoOCgo687epAUFBQbnAD7/9s/9//MQUUDrWdkjSK0jSh0jSHKA9kMH/ONbPB5nMEHgFuPoP0gWCUDiubyJJY5GkD5CkgcBGwAP46nf+Zj/QxJ/sGL7IY/Q3/GXW/T8zbeAfYf5vrzte0JzJF8U+ZZ5g8u98pnyvq1wuNwoKCir9z5zSvw9yudwTRV7V5qCgoJtyuXzgn31O/2JoyuXy6YADCsf8EXDzv3yMPosX3b7fw4sy1/wzvPTb66M/9Sz+fWj47bXxT/l1SQr+B+/nIpP9gMKZ7M/zs8JTAR0UIeeWkMmcgUAgFfjubz5dgSLPcgYy2dtI0v8QCJKUjUx2C5iITCZHksqf81z+U3hRxuhfZt3/SzmvcrlcG5gONKMIR7xQeMHsU+662v3OZ87P/H97IPTffzr/PsjlcjVgH4pw2Ud/8un8u2CFwsZnkSKXy2cHBQXd+DNO6F+MF92+FnjB5poWkMvl76DINzdEURzTB4VTsPrPPK9/B36be2b+9s8Lf+a5/AP8Ecd68G+vt3/nMyUpcOnv8mglqQKZ7A4K57YncPVv/vYOCic6ADjbivP5l+MFHqN/mXX/r5Y2MBkwAs6/AEnNv4cXyT7l5LBMLpebKN/8bbJ9tnjE+D96Vv8efAr4AK8GBQXV/Nkn82/ALmAQCgdPF0VRxo+AE3BeLpd3/vNO7V+CF92+38OLNNf8Ld5BwcK9hcIpuAAEBgUFFfyZJ/VvwmrACzgXFBR08c8+mRaQyf6oY90HqECRjvC38Pjt9fc+A3jy26v773wW8dtrQCvO5d+FF3WM/mXW/b8U84oiJACKheVFxItk30EUzM5wIE4ul58GqlHsql1QTDJuKPKQ/mshl8t9UbCtG4KCgu7+s+P/GxEUFPS3leoxwAK5XF4JvI2iUnbcf/q8/lV40e37B3iR5poWUEqbyeVyS8AfhYMXKZfLRwUFBT34U0/uXwi5XP4mivEZj6JI5q8G4VgjSc/nWMtkGiiKvZ78gwIvw99ey/7BNyjfN/qdz3J/e3V4rnP5N+IFHqN/mXX/L8O8yuXyDihuciZw7k8+nX85XjT7fissGI1ih5mLYnKdg8K+Pigq8kEhp/FfiWfSBRL5n2T0/0tQFor8FZiMfwdeSPtetLnmHyEoKCgvKCjoBIowsin/o738Xw+5XL4QhfRQHDAgKCio+E8+pZaQyf6oY2362+vfyl099y//9vp7jq/yGpn9we/+l+NFG6N/pXX/r8S8vujFBS+cfUFBQY3Aht/+E/gt364LCoHm2P/8mf3LoMf/hKdq5fLfLWT9SS6X/4SikOut/9SJ/YegnIB0/9Sz+PfhRbXvhZtr/jcEBQWlyeXyOKCLXC43e7YK+r8Rcrn8LRSV9THAoKCgoL8WASCTPetYD0KSWuNYK9OutP7B50pm1fAffG7wN8c9C+2/+Y2/DF6kMfpXWff/Es6rXC7XQuHBNwM7/uTT+ZfjRbfvdzADxeS05zcJjf9W1PGP71dXFHmwt1F0F3kRUwp6/fb6e5WlLwJeOPv+D841Stj89vpf7azL5fL3UYSYHwJD/nJOjkz2Fs841khS6xxrSSpFJqvnfxjYv0XCb6+/l9MK/yM19Xs5scrv/Gs5+/+DF2KM/i/4j677fwnnFYUIsjFw9gUsLoAX1D65XG4QFBRU/jfv9UAx+Vai6JDyX4vfirNe/73P5HL5ShTO657/5vawcrm8I5Dzt2FJuVzuCGz97Z/7/+Mn9i/Ci27f7+BFnWvao2g0kfs376sAX6DQBQ0JCgr6o+HoPx1yufwTFHPmfRTFPX+1VIEWjjWS9Ecd62jAB5nM4Hckra799hqITKbSQnFAJtMHeqNg9n6vkr39b68P/+B5/X/h/8IYhb/Ouv9XcV6VxQUvQheY38OLat9luVxeg2IXXoGiz/EIFIzl+KCgoBeG0XqBMQn4QC6XX0PRNaUCReL9SBS76HMo2i7+t+JFt+9v8aLONcOAdXK5/CaQhCK3zhLoh0KiJxeY++ed3v8f5HL5LBSLfhNwC3jzd9KUUoOCgnb/h09NAZmshWPdylSBv8V1oBuKrllXWnwiSUnIZJdQ5IguRNGKW4nPUKT4/NhC4/V/0PO312u/89l/Ai/0GH0Gf4l1/093Xn8Tf+/DC1pc8ILbdxSYgqL6UBvIRqEpuTooKCj1TzyvNjw/rqGQp/FBEUbXBUpRpEPsA/b9Kf3U/3V40e0TeMHnmisoHPLeQGcU1eZVKMLH+4Bv/3JMZeug1M1URSGv9Hu4wZ/Rblsm+zvHGpnsb49KRZJ2P+c3HkNR7DWUv3VeFZCjaA/7LTLZIOAx4AcMQHG/P/6dc1RBIYeXgCTFPOd5/Kvxoo9RJf4S676sde2I29CGNrShDW1ow/8ZyGQrUWiW/m+4gST1b8V3PkChu2yPJP19DqhMZo/CYR6GIpc1BzgJfPa7rK9MFghcBJYiSZue+zza8F+LNue1DW1oQxva0IY2/Ocgk00FfgbGI0kn/gXfdwxFeN4FSfpHGrFteIHQ5ry2oQ1taEMb2tCG/xxkMhkKhRaFvNL/jyMik3UBHgBvIklb/8nRbXhB8JdpUtCGNrShDW1oQxv+D0DhrM4DTvA/ElJ/FNYomsj88M8ObMOLgzbmtQ1taEMb2tCGNrShDf81aGNe29CGNrShDW1oQxva8F+DNue1DW1oQxva0IY2tKEN/zV4bp1XuVz+X59fEBQU9HfidEq86PbBi2/ji2AfvPg2to3TF9s+ePFtfBHsgxffxrZx+uLa18a8tqENbWhDG9rQhja04b8HkiQ9139vvPGG9MYbb0iPHz+WlKivr5cKCwvFv2fNmiVpampK27dvlyRJkiIjI6XLly9LjY2N4viGhgZxfHNzs9TU1CRJkiTV1dVJlZWV4rPx48dLWlpa0qFDh8R7VVVVkiRJUmFhoZSamiqOz8vLk958800JkABp5syZUn19vVRWViYdPnxYUp7789j3ySefSDt27JDu3bsnfvfgwYOSnp6e9NJLL4nfLC0tlUpLS8UxS5YskQwNDaXZs2eLa6S0TZIk6caNG5K9vb2kra0tTZ48WRozZoz0zjvvSJWVldLDhw8lW1tbCZAWL14sSZIkPX78WLKzs5OcnJzEuTx8+FCKiIiQnjx5Iq5pTU3Nc9n3rI1ffPGFJEmS9Ouvv0rr16+XGhoapPDwcMnV1VV65513JEmSpHPnzklvvfWWFB0dLWzYsWOHtHz58hbvpaSkSMnJyVJ1dbUkSZJUW1srXgMCAiQjIyMpLCxMKi0tlebPny+9++674m+vXr0qDR8+XJo7d65UUVEhSZIkRURESJaWlpKXl5eUmZkpvqs19/Drr78Wv5GXlyfV1NSIfycnJ0thYWHiuyVJkjIzM6VTp05JP//8s/Tw4UOpqalJKi8vl+7duyfFxsa2OG737t3SmTNnpPr6ekmSJKmhoUFqamqSampqxDUoKSmRZs6cKQ0YMECKiooSf19eXi7+v7m5WUpKSpK++eYb6fXXX5e2bNnSKhujo6OllJQUKTo6WoqKipIKCgrEd1+4cEHat2+fJEmSlJqaKvXs2VPq06ePuMaJiYmSra2t5ObmJiUlJQk7cnNzxXdERUVJmzZtkm7evCney8/Pl/Lz8yVJkqSKigpp8ODBEiB99tln4pgpU6ZIgPTBBx+I95TPZmvH6dWrVyVJkqSMjAzp6tWrUnZ2dovrJ0mSFBcXJ02fPl0CpOHDh0tlZWXCHuX9iIuLkyZPniz17NlTjMUhQ4aI+eLbb7+Vdu/eLVlZWUl9+vSRioqKpJSUFOmdd96RDh48KH5z48aNkr6+vjRnzhzxO8pn/Ny5c9KsWbNadQ9TUlIkSZKkTz/9VPLz85OuX78urv39+/elv0V0dLT0/fffSwcOHBBj6f79+9LixYulHTt2iOOqq6ul4uJiqbq6Wqqvr28x7q5fvy7Z2dlJgKStrS198cUXUmxsrFRUVCSOOXLkiPTGG29I33zzjRQaGipsra+vb/U9VGLz5s3SrFmzpPDwcHH/lOPxWRQUFEhxcXFSYmKidPLkSalXr17iPn366actbKytrZWqqqqk9PR0KSkpSTp+/Lj05ptvSseOHZMkSZKCgoKkgIAAKTw8XEpKSpLc3d2lXr16ifkgIyNDqqmpkc6cOSOZm5tLgGRlZdWqe/jgwQPp/Pnz4vvat28vubq6SkePHpWmT58uaWhoSMeOHZPKysqknj17SoDk5OQk+fr6StOnT5ciIyOFTXl5eVJISIi0ceNGad26ddKtW7eknJwccZ0qKyulgwcPSj///LMY2/X19dLBgwelS5cuSdXV1dLy5cslQFq1apUkSZL07bffSoBkaGgobdmyRfxWa2xUoqmpSaqsrGwx13zxxReSh4eHtHfvXvFeWVmZVF5eLoWHh0vXr1+XSkpKhH05OTniuJqaGikzM1MqLi7+u3FQW1sr1dXViePeffddacWKFVJDQ4N0+PBhSU1NTRo1apRYgwsKCoR/UFdX1+pxumTJEgmQZsyYIcZ7VVWV1NTUJNXV1UmFhYVSTk6OlJqaKqWlpYnr/+TJE2nLli3SwoULpW3btrV41p71dSRJkm7duiX5+flJBgYG0oYNG8T7VVVV4tji4mLp5MmTYo29cuWK9Prrr0tff/21lJiYKEmSYu69devWH7qHyutTWloq7ovyXPft2ye9/vrr0pgxYyRLS0sJkObPny/m3dLSUik7O1vKy8uTrl+/Lr311lvS4sWLpUePHonv2bJli/TWW2+1mL+efc7r6uqk6upq8QxWV1dLt27dkpYuXSp5enpK7du3lz788EPpzp07/9S+VreHbWxsJCEhAUNDQ6ysrDA1NRWfTZ48GXNzc3Jycrh27RodO3akffv2qKqqAqCuri4cZplMJv6TJAkVFRU0NDQAyMjIQFNTk169etG9e/cWjjZAZmYmGRkZdOjQAWdnZywsLHBzc2P48OE4OztjZ2fHsmXLqKqqQktLq1X2eXt7o66uzqNHj5Akie7du5OdnU1lZSUymQxdXV0AysvLMTAwEH/3+uuvI5PJyM7OJiIiAnV1dc6dO0dERASvvfYanTt35u233yYlJQVfX190dXWpq6vjzp07FBYWsmDBAiwtLdHX10cul5OZmcm0adOora1ly5Yt9O/fH0NDQ/bs2UNYWBjDhw9n2bJltG/fvrW3EA0NDRISErh79y6nT58mKSmJoqIi8vPzsbKyorm5maioKDIzM9HX1wfg6tWrqKmp0atXL0pLS8V3paamcvjwYYYOHcqYMWPQ1NQEQEVFhfHjx+Pv74+RkRGRkZFkZ2fj6Ogo/tbDw4O5c+eioqJCTU0Nenp6+Pj48PnnnxMZGUlISAiTJk0S3/m82L59O4mJifj4+FBQUMC9e/fo0KEDn3zyCe3ataNdu3Y0Nzfz6NEjwsLCCA4OJi8vj5deeomAgAAaGxvR19enW7dubN++nfXr1/PWW2/RqVMnHB0dqampEWNZTU3xCCnHWWlpKXFxcQwaNAgLCws6dOggzqu0tJTs7Gz09fWxsbHB2dmZcePGYWlpiampKXFxcc9to5eXF5WVlZiZmVFZWUl2djYNDQ1YW1tja2tLaGgoc+fOpampiV69ejFixAj09PQoLCzkl19+wdraWjwvAA0NDVhaWpKSksL+/fvR1dXF39+flJQUPvnkE7p27Yqvry8WFhYA6OnpsWvXLrZt28bVq1eRJIlBgwbRoUMHRo8eTZcuXcS5Dh48GBUVFerq6lp1H/X19bl69So9e/Zk4MCBVFdXU1FRgb6+PvX19fz6668kJiZibW3N559/zowZMzAwMCA6OpqIiAhGjhyJtrY2np6evPXWW5SXl2Nqakp+fj7jxo3DyMgIFxcXpk+fTkFBAVZWVjQ2NtLY2IiTkxMBAQE4OTkBkJ2dTXx8PBUVFezevRsTExM++ugjjI2NAejYsSN+fn5ER0c/t32hoaHEx8ejpqbGhAkT8PLyIi8vjytXrmBra0vXrl1bHO/q6kpDQwNaWlrExcVx+/Zt1NTUmDhxIllZWbz77rvY29vj7e2NsbExbm5uqKuri7EK4Ovry08//cTOnTvJycnBxsYGOzs71NTUxLWdOHEiZWVlrFixghMnTnDkyBEMDAy4ceNGq+7fs+jfvz+2trbi38q5f9euXfj4+IjxYmpqikwmY9u2bYSGhjJixAjkcjlJSUk0Nzfzyy+/4OHhIa5NXV0d+/bt4+TJk0iSRP/+/enXrx8AT58+pbi4GAsLC9TV1UlMTERfX5+6ujrq6uo4efIkLi4ueHl58c0337B9+3aysrJaZZePjw8hISF88cUXPH36lO7du2NqasrZs2c5c+YMHh4e+Pv7Y2BggLm5OdbW1sybNw9PT08kScLKykp8l5aWFmFhYaxevRpJkpg3bx73798nLS0NX19ffH190dbWJioqivXr16Ovr4++vr5Y/9TU1Ojfvz9VVVU0Nzdz5coVHBwceO+996ioqPhDawXAo0ePsLe3Z8+ePcTFxfHOO+9gZmYGKMZTXV0dCQkJhIaG0rNnTwwMDMjLy6OpqQlLS0tUVVVpbGxEQ0ODyspK6uvr0dDQoLa2ll27dnHu3DksLS0ZM2YMXl5eVFVVoa6uLtZ+mUyGq6sr5ubmqKmpMXDgQBYvXoynpyeGhoYA4nwSExMJCQlptY3Tpk1DR0eHa9eu8d5777Fhwwax1mtoaKCqqsqWLVvIz89n6dKlaGtrA+Do6EhgYCAWFha0a9cObW1tLl68yN27d5kwYQJ6enrs3LmTTp06MWDAAExMTCgvLyc3N5dLly5x7do1AgICGD58OFlZWWzatInY2FisrKzEHKepqcm6detQVVXl2LFj2Nra0qdPH37++efntu/mzZv8+uuvTJgwAV9fXyorK1m9ejVpaWmMHz+eCRMmMGjQIOzs7KipqcHT05OoqCj8/PywtrYGwNDQUFzvyspKOnTogImJCd7e3uJ3Bg0axIgRI8S6UlBQINZI5bV8FhoaGtja2tKzZ090dXXR1NSkT58+LZ6Lf4RWO69mZmakpKSgp6cHKJy4zMxMLCwsGDFiBCNGjGDZsmWsWrWKdevWicUuPz8fbW1tdHR0UFVVpampicrKSpqamtDR0RGLf3FxMY8fP6Z9+/Z4enqSl5eHra0tmpqa6Orqkpuby7fffkt2djbvvfcezs7OVFRU0LVrV6ZNm4aJiQm3b99myJAhaGlpMXv2bGpra5/bvoEDB3L+/HmSk5PR1dXF2toaVVVVzMzMUFVVpaysDENDQ+zt7QHIy8ujvr4eLy8v1q1bx7x58zh//jx2dnZUVVURGxvLkydP6NevH0uWLKGuro7a2loxCPbu3Ut6ejrTpk0TN3zt2rXIZDJOnDhBXFwcI0aMoL6+nvnz56Ojo0Nubi6hoaHcv38fT0/P1t5CYmJikMlklJeXo6+vT2RkJAAvvfQS48aNAyAhIYGcnByqq6spLCwkLi6O3r1707VrV2JiYoiJicHCwoLvvvuOo0eP4ubmJr4/Pz8fCwsLlixZAig2PJmZmYwePRpnZ2fKy8vR0dHBxsaGcePGUVZWRkJCAunp6XTr1o158+ZRXFzM2bNnCQkJea6B/CxMTU25f/8+ZmZmNDc3ExYWRlVVlRgHjx8/pqmpiZqaGmJiYjh58iR1dXUEBgZiY2Pzm362Ag8ePODw4cP07t2bTp06oaKiQkNDg5iA8/LyKC8vx87ODm1tbTIyMsjMzKRv3760a9eO6upq8fBevHiRkJAQRo8eTb9+/aipqcHc3Jxp06YBcOrUqee2sbKyEl1dXWQyGWpqahQUFFBWVoaJiQkODg6oqqqyfft2nJycuHz5Mq6urgCcPXuWsrIyJk2aRPfu3cnKysLc3FxMxteuXePkyZOMHTuWnj170tjYyBdffMGmTZtYtGgR77//PoaGhhQVFWFnZ8ekSZO4ffs2Bw8eRFNTk2HDhrFgwQLMzc0pKSnh6dOn9OnTh5deegm5XN6q+1hXV0dWVhZPnjzB1NSUO3fuoK6uTkBAAJmZmdy8eZOUlBS6devGlClThKO5adMmwsLCMDAwYOLEiQD06tULUCzEDQ0NvPHGG7zxxhvit1JSUsjNzUVLS4uqqipA8TwAVFVV8fDhQ3R0dHB1deXp06fs3r2bAQMGMGLECIqLi4mIiBALaGvuYXFxMZIk4eDggL6+Prm5uTQ2Nv7ddVBRUaGpqQkPDw90dHS4evUqO3bswMvLi1dffRUtLS3WrVtHTU0NI0aMoFu3bqipqeHi4oK2tjaSJNHU1IS2tjbDhg3DwMCA1NRU4Vg1NjaSnp6OhoYGmpqaTJgwgb179wLQ1KTo3hkfH98q+5R/q6qqSqdOnejUqROVlZWUlpZSXl7OuXPnSEpKEhu85uZmVFRUMDU1JTo6mtOnTzN8+HCmT58OKMZucHAwqqqqeHt709TURHx8vHCejI2NGT9+vCBUlItqWFgYWVlZODk50b17d0pKSmhoaKC6uprHjx/j4+PD9OnTcXNzY8+ePa220cLCgsOHD1NWVsbDhw8xMTGhf//+6Ojo8N5776Grq0tMTAzjxo1j0aJFBAYGir9VzklNTU2cPn2agwcPAorNaUlJCVFRUeTk5KClpYWXlxceHh7IZDLu37/P4cOH0dbWZvny5Tg5OYkN5KBBg1i1ahWrVq1i06ZNjBkzhqSkJAoLC6mpqRHP+vMiJycHTU1Nrl27RnBwMAMHDsTd3R2Avn37YmZmxvr161m7di2LFy/G2NiYyMhIfHx8WjjMRkZGVFZWkpqairu7O+np6ezbt4/ExEQA+vXrh0wm49GjRyQnJ1NcXMyIESNQV1enQ4cOZGZmEhUVRefOnfnmm28AxbORm5srSJHQ0FDOnz/fglR7Hig3B3PmzOHHH3/Ey8uLRYsWUVxcjImJCVpaWly8eJGoqChefvll3NzcaGpqIjo6GjU1NQICArCysqKuro61a9cSHBxMz549GTZsmBifY8eOZcaMGVRVVSGTyQgJCSEhIQFvb2/q6+u5du0a169fp7i4mJSUFFJTU6mtrcXT0xN9fX0aGhqorKwkIyOj1ev+vn372L59O7m5ufj6+lJVVUV0dDQXLlygpqaGjh074uXlJRzVnj17kpGRIf7d3NxMdnY2AFZWVjg7O6OmpkZRURE5OTlijbaxsRGE18OHDzl8+DAeHh7MmjULUBA4KioqaGtro66ujqqqqiCUBg0aRFFRkRhb/wytdl5NTExobm7GxsaGoqIiPv74Y8LCwpDL5cydOxdQPJB5eXlkZWXRuXNnAO7du0d1dTUDBgzA1NSU7OxsamtrcXBwEMxac3MzJiYm9OzZk6ysLLZt28aOHTuYPXs2K1YoWitfuXKFXbt2YWlpKdiC8+fPo6mpib+/P6DYwQ4YMAB3d3cWLFjApk2bntu+6Ohotm3bRs+ePQkMDERdXR0HBwemTp1KVFQUy5YtY8mSJXTq1AmAAwcOcPToUTZs2ICvry8FBQXExMSwZMkSPvjgA8aPH09NTY2YmAGePHlCu3btMDU1ZdKkSVy5coVr165RUVGBvb09X331FcbGxqiqqlJYWIidnR3u7u7069ePXr16sWDBAurr67G1taW5ubm1t5ALFy4ACkZs/PjxwpG1trYWDnRtbS1ZWVkkJiZia2uLn5+fcA4cHBwoKioiMjKS+/fvA7RwMJuamsSiBQhGYODAgZw9e5ZVq1YxcOBAfHx8SEpKQlNTEycnJyIjIzly5Ajjx4/HxMSEwYMHs3v3bq5fvy6cr+fB5s2bxULf3NxM//798fT0xMrKilWrVrF+/Xo+/vhjli1bhqWlpdgQGBsbU1FRgYGBAUlJSVy6dIkuXbowbdo0NDQ0uHbtGiYmJnTu3Bk1NTWSk5PZu3cvp06dIiAggG+++UawXvfu3ePChQvo6uoyceJEdHR0iIuLIzQ0FF9fX44fP8727duZNGkSy5Yta/U9DAkJoXPnzqioqNDY2CgW6traWhobG/Hz8+PVV1/FyMgIc3NzQMGuKhlCKysrwsPD+fbbb+nfvz/Dhw8HoEuXLnz99dfo6OiQl5dHnz59+Pzzz5k0aRJbt25l3LhxuLm5sXbtWm7cuIGHhwevv/46np6eqKurY2JiIn7v8ePHbN++nVGjRjF+/PhW25icnEy/fv24c+cOR48eRVVVFSsrKyIjI+nUqROzZs2iuLiYU6dOMX/+fObOncvYsWNxcHDg8OHDHD16FHd3d2xsbMjOzqawsFCwVM8iPDychQsXkpubi5eXV4tmPzU1NUiSRIcOHbC2tsbd3Z2ff/4ZY2NjsUh/9NFHXLhwQYyz54WrqyuOjo58+umn/Pzzz5iZmTFo0CAmTpzYwoFVV1enoqKC9PR0amtrcXd3p0uXLrz//vtEREQQFBREt27dWL16NeHh4WRmZpKbm4ubmxu1tbU0Nzejq6uLmpoaCQkJbNq0ibq6OsaPHy8cbjU1NZydncXvGhkZcfDgQbS1tTEyMqKiogIbG5tWRQdA4fg/G6HS09PjxIkTvP3229jb2/P555/TtWvXv3OqZs+eTXl5ORs2bKC4uJiPPvqIUaNGYW9vj52dHenp6Rw5cgQ3NzfeeecdunbtytOnT/Hz8wMUG4PBgwfToUMHNm7cSGhoKMOHD2fcuHFUVlaioqLCwIEDaWpqEtdA+WxHRUU9t31bt25l2LBhrFmzBg0NDUxMTABYuXIl2traODo6sn37drKzs5HL5bRr167F36enp5OWlkZFRQVbtmwhPDycL774guXLl5ORkcHly5dpbm6mS5cuODg40NDQgI2NDYGBgQQGBvL06VOsrKxoamqivr5eXMMnT54QHBzM06dP8fb2xsXFhbS0NK5evYqHh0er7qGXlxfa2tosXryY8ePHi7UPICkpievXr1NbW0tNTQ2bNm0iMTERNTU11qxZ0yICA2BsbExpaSnJycncvHlTOETvvfcekyZNwtbWFm9vbzZu3MjGjRuprq5m8uTJJCQksGLFCmxtbVm+fLnYWJaXl3P48GFMTEyYMGECEyZMwNnZuVWs5LOYMmUKRUVF7Nu3j7179+Ls7MyKFSvw9PRkwIABABQWFgKK+W316tWUlJTwySefYGVlRXFxMampqQBUV1cDCjJKSTY5OjqyevVq9PX10dTU5NVXX8XQ0JDKyko8PDz46KOPUFFREQSfqqoq+fn5REZGYmpqyqxZszhy5AizZ89uFamj3HheunSJb775hvHjx7Ny5UoRSQ0NDRXRDU1NTezs7Frc53v37nHmzBkKCgoYMWIEo0ePxtbWlsePH3P37l18fX3p1KkToaGhFBcXM2nSJCorK/n111958uQJI0aMwNzcnJiYGGJjY3F1dWXQoEEtzrG2tpZbt24hSdJzjdFWO6/5+fnY2dkBUFFRwZ07d4iJieH8+fP07NkTBwcHZsyYweDBg4UjBKCjo0N5eTmlpaWoq6tTWlqKoaGhcFxLSkrQ0tJCW1tbOKXR0dFUVVWJMF19fT3btm1DkiSmTZtG3759ATAwMGgRkjIzM+ODDz7A3t7+7yaLf4ZFixYRGxtLt27dMDIyAhQMjI+PDxEREcTFxXHz5k1cXFzQ1dUlJyeHu3fvEhsbS69evSgrK6OqqkrsHoqKijh37hx3795l+PDhODo6YmtrS1FREQYGBoIJOXToEBs2bEBHR4dBgwbRrVs3kpOTuXz5Mubm5vj6+gIKptfExAQvL6/W3jqB7t27o6enR58+fVrcIyUePHhA79698ff3x8HBAQMDA3x9fcnKyhKsqoGBAVVVVXTr1o2GhgZCQ0Px9vbGyclJ7NZSU1MpKirCwsJCMNXHjh3j7NmzdOzYEVNTU0JDQ9HV1aVLly44Ojpy7tw5Ll68yIgRI7CxsWHkyJFkZma2yj4ly5aRkUF1dTWBgYFinKmrq9O5c2exoDo5OTF37lzWrl1LeHg4np6eBAQEIJPJ0NPTw8XFBRcXF4KDg6moqGDevHnid7S1tdHT0yM+Pp7c3FyGDBnCqFGjxHuPHj0SY1R53U1MTERIJjs7m7t37xIZGUl5eXmrbGxsbKS+vh5DQ0Py8vKIjIzExcUFDw8PtLS0MDAwYOrUqVhaWgrmTF1dHQ8PDyRJEtGDxsZGwRbV1tZiYmLC0KFDAYiKikJNTY1u3bqxdOlSampqBIuso6NDeHg41dXVrFu3DktLS0AxsSvTggwMDLCysiI9PZ3c3NxW2af8DUdHR1JTU6mqqqKwsJDHjx8jk8mws7PDx8cHUDwTv/zyCyEhIUydOpWBAweKSIGKigoREREkJSVhYWFB165dMTAwECHysrIyPv30U+7duwfQIgJSU1MjNjNOTk44OTnh4+NDeno6Dx48oLGxEVdXV7y9vbl27Ro5OTmtcl7z8/Pp378/nTt35vr16+Tl5QGIaFJWVhZmZmZUVFQQHh5Oc3Mz3bt3F47orFmzKC8vZ82aNSxdupS3336b3r1789NPP2FjY4OHh4cY58pIwZMnT0hISMDIyAhDQ0P09PTIyckRoUovLy+ys7OJjo4WkbLc3Fxyc3PF5rs1UC7CFRUVYj51dXWlZ8+eqKmpoaKiIlIbampqKC4uRl9fnyFDhtDQ0MDixYvZt28fAQEB9OnTR5AhoGDdYmNjsbe3x9bWFhUVFW7dusWTJ09ITU1l4sSJuLu7o6GhQWpqKsnJyWhoaKCiosLNmzepra1l5syZqKmpIUkST58+FaHi58WBAwcICwvjs88+w9nZmfPnz1NQUMDMmTPFMZ6enlRVVXH69Gk6deqEg4MD1dXVnDt3ToSBhwwZgr+/P83NzVRVVVFcXIy9vT1z5sxp8XtRUVHEx8djampK3759BWEDiIhRfHw8ZWVleHl5CQIBFPNVWVlZq9N3lGurMuKiZNZA8bzX1dXh6+uLkZGRSB/Iz8/n2LFjeHh4YGJiwtOnT1FVVcXLywsvLy9SU1O5f/8+9fX19OvXDz8/P2JiYigpKcHLy4uAgAC2bt0qWNmrV6+SlZWFsbExZWVlPH78GE9PT+HglZeXi7S+1obUQRF5MTExITAwEFNTUz788EMuX75MREQE7u7ufPTRR4IFrq+vJzc3l6qqKtTU1GhsbBSOamVlJV27dqW+vp4rV65gZmaGhoaGSJsoLCxssX7funWL27dv4+vrS48ePejRowcFBQUUFxe3cOD2799PYmIiTU1NXLt2jRs3bvDyyy8/t31Dhw7F39+f5ORkKioqMDY2xtzcnPDwcBobG7G0tERPT4/IyEhSU1Pp168fbm5uxMXFERwcLNZCBwcHMR5UVVVJS0tj+/btlJaW0r17dzw8PEhKSkJNTY3S0lIePXpEXl6e2BQ3NDSwfft2PDw86N69O4aGhmKDraWlhYeHB6GhoTx8+PCf2tRq5zU8PJy6ujpcXFwwNjZm4sSJVFZWkpycTEREBN7e3sJ5UC6aoFi4lQOsrq4OBwcHETrPzMxEVVUVY2NjkpKSOH/+PFlZWYwYMYILFy6QmprKF198QUFBAQDjxo0TNDTAkCFDWjykTk5O2NnZ/aHJNjY2FqBF2EFVVRVHR0ccHR1paGhgzZo17Nq1i0WLFgnnWPn7rq6uGBsbo6urS3R0NBMmTCAnJ4eFCxcyYsQIAKytrdHR0aGgoEDkLU2fPp26ujrWrFnDjh07CAgIYPDgweTm5qKmpibYzhkzZlBUVMTFixexsfljXfVWrFhBRkbG74aPzpw5w6VLlxg7duzv7oxycnLEpsPLy4tx48aRkJDAt99+y+PHj9m8ebNwzkJCQsQOU09Pj+vXr3Pv3j1kMhmamprIZDJGjRoldrKurq5Mmzatxb3s3LkzK1as4LPPPntu+7Kysjhx4gTHjx9HS0uLGTNm0K5dO1JSUvDz8+PNN99skUoSFxfH/v370dTUpH379tjZ2eHs7IyzszNbt25l6tSpmJiY8Pbbb7f4HWtra1599VVqa2uJiIjg9u3bNDY2oqenJ9ixzp07o6OjQ3NzM6NGjRKLtY2NDZaWlqSlpbFjxw7u3r0rWKPnQY8ePTA0NERDQwN1dXXefvttHBwcOHfuHJIkERwcjJGREa6uri0W5EePHpGYmEhAQAAdOnRg1apVfPnll0ycOBFbW1vefPNN2rdvL9i+pUuXAopNna+vL83NzTQ0NLBs2TL69+9PU1MTGhoalJSUkJSUhImJiWCyvLy8+PDDD4mPjycmJua5bVOif//+gCKcaGxszI4dO7h9+zYeHh4t2NNu3brx448/ivCzoaEhcrmcfv36kZCQwM6dO9HU1OStt97CyMiIpqYmkaZkYGAgohcLFy7kvffeE9+rra2NlpYW9fX1NDQ0iNzR1NRULl26xPTp0+nbty9r166lT58+FBQUiEjE8yAsLIzJkyfzzjvvMGTIEOHcAdy4cYOQkBBmzJiBmZkZERERGBsbM2rUqBbf4erqirOzszg35fPZvXv3FoxnUVERT58+xcDAQFwP5RyXkpLCu+++y8CBA9mwYQPBwcHMmjVLRMIqKytxcHDAzc1NRF+eFw0NDRQUFIi5HhTh/J9//pmzZ89y//597O3tcXJy4vHjx2RnZ9OpUycMDAzo1asXP/zwAzKZrEVeHSjm51deeYXt27czf/587O3t8fX1paKigtOnT1NZWYmVlRWdO3dm/vz5hIWFcfHiRXr16sV7773H7t27+eGHHzAwMGDOnDnIZDJMTU2pqalplX0+Pj58//33lJWV4evrS1BQEGZmZgwcOFCQPMOGDUNPT4/Ro0czZMgQ9uzZw6lTp/jggw8ARNhZLpcTHR3Nq6++ytGjR9m8ebNYM5TXMjU1lc2bNxMdHc2HH37IRx99JD5XkkJpaWnY2tri4ODQImLVvn17Onbs2OoaAiW+//57jh8/zq5duwQZ0aFDB7p06UJdXR2GhoaoqanRu3dv9uzZQ05ODj/99BN6enoUFxdjZ2eHvb095ubmxMfHk5qaKljjdevWERoaSo8ePTh58iT29vYEBgbSsWNH8Xza2dmxdetWOnbsyL59+wgLCyMwMJCZM2eioqIixpjSkWwNQkNDRYqRl5cXcrmcjIwM4uPjKS4uRl1dHUtLS8zNzYXz7unpycaNG6mtrRXPrqOjI0OGDCE5OZmjR4/y/fffA7B8+XJWrlzJ+fPnuX37Nh06dODp06dMnz5d5HK7u7tTX1/Pxo0bSU5OZvz48QwZMgRjY2OmT5/Ojh07GDduHI6OjixcuFCsm8+DpUuX0tzcTF5enqitOX36NBs2bMDf35/PP/8cAHNzcx48eEDXrl1pampiw4YNHD9+nKCgIF599dUW36kkTSIjI8W8oNzkg4LcBLC0tBSEliRJxMbGoqqqKiJcDQ0NlJeXi1zea9eusWLFChYsWPC/2tRq5/Xp06ds3bqVKVOmMG/ePFasWEF5eTm//PILubm51NXVERwcTHh4uChCUOa1KvNkn0VzczONjY3i5oeHh3P8+HG6dOlCnz59SExMJCoqiq5duwrWxMrKisuXLxMUFISvry/9+vUjKiqKu3fv4uXlxeDBg1swsa3B2LFjcXJyIjAwkIyMDI4dO0ZiYiLt27dHT0+P/Px8DAwMGDt2rOIC/sZELVu2jKysLAYPHoyVlZXYgQ4ZMgQrKyvGjx+PgYEBV69e5dq1a1haWjJy5EiRfpGZmcmAAQPQ19dn6tSpBAcHExsby+jRoxk4cCAdO3akqamJDh060NDQIJLg79y502obNTQ0mDhxIsHBwXz//fcMGDCAAQMGUFhYKHJ4L1++TGFhIW5ubjg4OGBmZoaLiwt3795l3bp1eHp6Mnr0aOHogCL3y9PTk9zcXBYtWoS5uTlfffUV7dq1Izk5mfLycnx9fampqaGgoID09HTx3cprqQyFFBYWsmXLFh4/fky3bt1aZZ8yB/POnTsEBASgoaHBvXv32LBhAyoqKqxevZpJkyYBcP78ec6cOYO3tzc5OTlERkaKEHd8fDxbt24lPT0dFRUVsrKyxMTdo0cPVFRUKC0tZcSIEfTv318wGrq6ujg7O2NpaSkcR2XBUlFRkXAELC0tuXnzJsnJyWJj9rwwMzMTD7+pqakIpX7zzTeUlJRw4cIFunTpgru7Ow0NDVRUVJCYmEhycjLV1dWoqKjg6uqKhoYGMpmMzMxMGhoa6N27N+rq6ty+fZudO3dy5MgRNDQ0MDMzw9bWVjxXTU1NwrkE+PTTTzl9+jSLFy8WzGV9fT36+vrY2dlx9+7dVtmntPHZnMlPPvmEmJgYXF1dsbOzo7a2lo8++oiSkhK+/PJLbG1tSUlJQVNTE19fX6Kiovjqq684evQooFi8nZ2dRa5ajx490NfX58MPP2TQoEEsW7YMVVVVQkJCKCsrY/Dgwairq6OpqUl0dDSZmZkkJSVRU1PDjBkz8PLyorCwkBs3bqCpqcmIESNa5by6urqSk5ODtbW1YBQbGhpISEjgyy+/JCwsTKQi+Pn5sW3bNjIzMxk6dKjYWCqZfTc3N7Kzs9m+fTuVlZWMGzeOpqYmzp07R4cOHXBxcaG0tJSGhoa/c0BdXFzo16+feDbPnDlDc3Mzenp6zJo1i9zcXO7fv09sbGyrndeEhAQyMjLEph7g7t27xMfHY2RkxNChQ6mpqeHgwYM8efIER0dHsak2NjZmyJAhgjVWIiYmhubmZry8vBg1ahT5+fno6enRqVMnNDQ0aGhoIC0tDSsrK2QyGf7+/owYMYKEhASKiorQ1tZmwYIFXLlyhTVr1qCjo8OUKVPw9fX9u4KSf4agoCDs7e3ZtGkTZ86cwcHBgXfffVc4rvfu3aO4uJhbt26JkLiamhqGhob0798fOzs7pk+fLpg4b29v3n77bd5//33kcjlLlizhzTffRFVVFTU1NaytrRk2bBhWVlaUlZWxefNmkpKSMDIyYsmSJZiamjJ06FDOnz9PaGgo3bp1E5s65fVvLXbu3En37t1xcHCgX79+LUghc3PzFjUCABMnTqRPnz7k5+dz+fJlTp48SceOHRk1ahQlJSUsW7aM/fv3Y2VlxbRp0ygtLWXnzp2AYiOVmJhI7969eeONN7CxsaGpqYmBAwcyfPhw+vXrR2RkJLt27cLMzIyePXuKvNqSkhLq6+tFFKg1uHfvHiNHjqS5uZni4mJGjx6NmZkZR48eZfTo0aiqquLm5kZubi7m5uZinVJuEJV58hoaGnTp0gVtbW3s7e3p27evcHxTU1NF6pGRkRFWVlYivdHNzY3z58+zZcsWEhISMDEx4ddffyU9PZ1Jkybh6OjI6NGjCQkJoUOHDkyePJlVq1Y9t33KdehZ1rxTp06MGjWqxcbQ1NSUESNGYGZmRmNjI87OzsyaNYtXXnkFgI0bN1JeXk6HDh24fPkyR44cEZukkydPkpGRgZaWFlOmTKFv375s2LChRbQkJiYGBwcHAgMDhc+nqamJra0tpaWl/Pzzzzx58oTJkyf/U5ta7bxWVFRw69atFsyHnZ0dOTk51NfXo6mpyS+//ML+/fvx8vLCzc2NW7duYWZmJvJfysrKUFNTE6yRo6MjMpmMkpISYmNjyczMxMXFhdzcXLKzs3F3d2f9+vV4eXnR2NjIjRs3OHnyJKdOnSIpKUlU9h88eBBvb29UVVUZO3Ysenp6rQ6RnDhxAlCwjMePH2fLli2kpKTg5uZGeno6jY2NbNiwQUxOWlpaGBoaUlpayg8//MBHH32Eg4MDqamp+Pj4iDzgsrIyrl+/ztatW7ly5Qo+Pj44OjqKUNO2bduYOnUq8+bN44svvuDjjz8mLy8PPT09Fi1aBCjCZJs2bRIT7MOHDykqKmrtLSQ4OBhvb2/27t3Lnj17xH1JTk7GwsKC4cOH8/PPP3PgwAH69OnDpEmTGDVqFBoaGtjY2LB3714yMzNZvnw5zs7O+Pn50bVrV1577TUADh48SHh4OHK5vEUYVU9Pj9mzZ6OqqsqtW7fYu3cv06dPFwtiTk4OlpaWqKioEBMTw65du8jIyODMmTPMnj37ue1zd3dn6NCh9OrVi3HjxuHv7090dDQ//PADsbGxzJo1CxcXF/T19fn8888xNjZmzZo1nDhxguvXrxMdHU1zczNffvklCQkJaGlpYWtrS0hICGpqakydOhVDQ0Pi4uJ4+PChKGQDWuT6AoKxkySJ6OhocnNz0dHRwcHBgaqqKioqKlBRURHj6XmRnp4uihT09PT47LPPCA8PF8+GiooKgwcPpqGhgUOHDnH79m2RR2xlZUVmZiZhYWF0794dHR0ddHV1GThwoHBO4+Pj2b17N5IkUVtby8aNG7l79y4//fQTampqopJ59OjRgGISj42N/d2inoqKihYV762Bqqoq6enplJWV4ejoSM+ePamvrxfX9vbt2xQWFlJbW0t+fj4HDhxg0KBBODk58d1333HkyBHBnh49epTBgwfj5+dHaWkp586dY+TIkfj6+uLu7o6KigpJSUkij1B5zpmZmZw6dYqgoCBycnIYM2YMy5cvx83NjW+//ZYlS5Ywc+bMv2NF/xnmz59PcXExOTk5GBkZoa2tTUNDA48fP6asrAwDAwMeP35MYGAgJiYmJCUlceLECfT19YXzqiw+dHV1FUUfKSkpLFy4kKamJm7evElJSQkuLi54enpSUFBAY2OjCJUrU0jWrVsn7FVGStavX8/8+fMBhZP2R9QG0tLSqKqqoqGhQbx3+vRpVq9ezfz58xk3bhz379/n9u3boqBKuZmtqKgQ7JKFhQW6urqUlZVx4sQJiouLWbx4MX369KFPnz7iu4uLi2lubiYpKQldXV3xPHbs2BFPT0/S0tIoKirC2dmZM2fO0LdvXz766CM6d+6Mp6fn3+VoPg8+/PBDoqOjOX/+PN9//71gS6Ojo4mKimL79u1kZGQwevRohg8fjpqaGsOGDWPYsGHiOyRJEmHxadOm4e3tTWBgIMeOHWPevHno6upSUlKCm5ubSCG7fPkyS5cuJTY2Fk9PT4YPHy6inklJSYSHhzNgwADq6+tFIZSSRW8NYmJiMDc3F3ULz6biKR3Xuro6ZDIZGhoaIs/ZysoKCwsLrl27Rn19Paampty9e5f9+/cDCpbSw8ODoqIiOnbsSFFREVOnTsXBwUGoDSjnT+W6AYp1qqGhgZycHEJCQnByciItLY0LFy5ga2vLhAkTWn0PVVRURDpRbGwsNTU1YmwpUzk0NDTEZrGxsVGcm5I5VPoz6enp+Pj4MHjwYMaMGSOuYVhYGK6uriKlsK6ujiVLluDj40N1dTXbt2/n/PnzuLu7Y2xsLIoQMzIyMDAwwNTUlB07drTaNlAQCerq6shkMqqrq6mtrcXJyUmkZmzcuJGSkhK6du0q1DrU1NRYvny5iFKdPHlSKGF4e3sTGRmJlpYWH374IcOGDePChQt8/fXXok5o6NChLFu2jOrqalEcWVhYiLu7O4aGhiJ1S+nPnDp1ioULF/LGG28QFBT0Twt8W+28qqiosHnz5hbeujI9QEnXL1q0CCcnJ/z9/bl9+zZbtmzh5Zdfxt3dnc2bN7Nx40acnZ2ZP38+M2fORFVVlbq6Om7fvs2TJ0+orKzkzp07qKqqCkfUy8uL4uJijh8/jq2tLW+//Tb+/v6YmZmJAhqlM5CXlycmyz/C+IAifSArK4tFixZRXl5OXFwcAQEBIny/f/9+Ro8ezeDBg/n++++RJInU1FS2bNmCtbU1q1atwsfHh7i4OJ48ecL169e5fPky1tbWfPjhh6Snp/PTTz8RGRlJeno6t27dEv+NHTuW2bNns2vXLnFtS0tL2b59O2PHjsXV1ZX8/HxMTEzo0qULV65caZVt2travP/++/zyyy9YWVmJnWtRURG1tbX069cPFxcXfvzxR65cuUJzczPdunXD0dERHR0dtLW1qampYc2aNSxcuBC5XI6XlxePHz9m2rRpFBYW8v3337eoqm1sbCQuLg53d3e8vb3Jzs4mPDxcPBi1tbXs27eP69evo6uri5ubmyjaUBb4PS98fHxEPqQSSmf93LlzpKens3fvXsLDwwkNDWXevHmCzUtNTeXrr7+mX79+qKur07NnT5KTk4mKisLLy4uZM2eK8JKdnR0ymUw4kY8ePUJbW7vFxk5dXZ2YmBgSEhIEa6KjowMoityys7M5c+YMKioqrVo4MzIyxO82NjbSqVMnunfvTseOHYmPjycnJ4cBAwbg6OjIu+++S0ZGBjt37mT8+PHk5+dTUlLChx9+SE5ODm+//TaRkZHs27ePTz75hE8++QR3d3eR36XE06dP2bNnD506dSIlJYXt27dz6dIlVq9ezZIlSzA0NKS5uZmioiJMTU3FpKSrq0vfvn1bJSMFisLCPn36cPr0aXbs2IGdnR1mZmaUlJQwbNgwBg0axCeffIK1tTUuLi4cP36cnTt3YmRkhJ+fH506dWLJkiWMGzeOp0+fClk6mUzG+PHjRUqIn58fLi4u3Lx5E21tbT788ENRdFZTU8Ply5fZtWsXOTk5AOTm5pKamoqbmxtdu3alR48edOzYsVW2gWIuNTMzQy6XExsby9q1a/Hz88PDw4MNGzZQV1fH2bNn6dy5M6ampkJabfHixYAixeeNN96gqqqKK1eu0K1bN1GIV1hYiKenJ6NGjSIsLIyjR4/+nQRNXV0dN27coKGhoYXjvWTJElGko8xfXrBgAT169GDXrl2tstHGxgZzc/MWEnljx45FkiRSUlJYsGABnp6eTJ48WWykALZs2UJsbCxTpkyhV69eREVFERUVRWRkpKg5+FsVmbq6Or799lsuXbok5pWDBw/y0ksviUrt06dPI5fLOXToELa2tmzatEkUby5durTFnPU8ePfdd1FXV8fHx4dPPvkET09PkpOTWbp0KTo6OsyZM4dPPvmEvXv3cufOHaysrFpEkn766Seqqqrw8vJi7969okLb29ubVatWkZSURGJiIqqqqmRnZ+Pl5SUYVBMTEwYOHMioUaOEpOMXX3zB3bt3SUpKYuLEiQwaNAgNDQ0ePXrEZ599RmhoKDNmzGiVjR999BGSJLF161YyMjJYvXr13x3zxRdfoKqqymeffSZk26ZOncqUKVMYPHgw3377LVOnTqVnz56cOHECDw8PwsPD2bNnDxYWFnz99dcYGxvT2NjYImVP6SA+Swi89NJLyGQyTp48ydGjRwkLC6OiooIHDx4IJYbWQpmypa+vT0ZGBtHR0SJlKjQ0lPfee4+JEyfy1ltvAYrCp7Nnz2JmZsbkyZNxcXHh2LFj7N+/HxsbGyFj2dDQwK1btygsLERDQ4Nz586xatUq1NTUxMaqZ8+eeHt7ExAQgKamJunp6Vy+fBmAAQMGYGFhQXBwMDk5OfTv3/8P1bs8K0O6Y8cO9u7dy4wZM/jss8+IjY1l2bJl2NraijQ/c3NzPD09BWN79epVSktL2bFjB9HR0Vy5coWxY8fyyiuviI30vHnzUFVVJS8vT2yQHj9+zJYtWygvLxfHhoWFsXz5cu7du8eyZcvo0aOHSA1ZunQpU6dOfS6bWu28dunSRcgpKTFgwAA6d+5MeHg4UVFRQnYCEA+subk5RUVFxMfHU1BQQEFBAVOnThWDMjY2lhMnTnDjxg3y8vLEQvHyyy8LyjoyMpKwsDDMzc15/fXXW+SneXt706VLF27fvo2pqSk6OjrU1NSQkpLSWhMpKyujuLiYHj16iNDo3bt3Bbv88OFDMjIyqK+vx8bGRlzsuro6rl69ipmZmZCUeuedd0SeXUZGBn5+fixYsIDz58/z2WefERERgYODA/b29mRkZHDu3DkcHBzE5BsTE0N4eDhXr17l8OHDNDU1MXXqVKqrq6msrGzBaDwvunfvzs2bNxkxYgRTp07F2tpaFKNZWlqK/5YsWcL27dupqamhrKyMrKwsVq1aRXFxMWpqanh4eNCpUyfxMD19+pRbt24xceJE5syZw6NHj9i2bRsTJkzAxcUFb29v0tLS0NDQwNjYGHd3d8FyKdmx8+fPAwqpjtu3b4vx0RqZpYiICKHNp6Kigq6urqjSXb58OXV1dQwfPpy7d+/St29fBg8ezJkzZ9i3bx+lpaVkZmZSUFAgZFjy8/MBRZ6psmArNDQUU1NTwSxfuHCBR48e0blzZ+zt7amurqapqQlzc3OMjY1paGigsbFRsLCgYC1qamrIzMxs9YSklB8zNTWlvr6euro6rK2tGTJkCB9//DH79u3D3NxcFEH26tVLpEPk5+cTFxfHvXv3qKiooLm5mbq6OrZs2UJpaanIs1SOLaVMmIGBAZqamjx58oSUlBTS0tKQyWTcu3eP/v37M3fuXPbv389bb72Fv78/48ePx8LCokW6QWugp6dHc3MzlZWVPHz4UCTxKxUD/P398fX1FWHCsLAwUlJSyMvLQ0VFhUWLFpGYmIipqSldu3bFy8uLiIgILl++zODBgwGF/NKTJ0/o0KEDJ06cQE9PjyFDhtCnTx9SU1NbVHE7OzvTv39/LCwsiIuLw8rKChsbGz7++GPq6+sJDQ1ttY3Ke6mUB1I63TY2NoSGhlJTU8OjR48AmDRpEitXrgQUjuvChQuFLmlYWBiGhob07t0bU1NTMX/069eP6upqEhISRD6nUhtXX1+f0tJScnNzyczMREdHR0iPdevWjUuXLrF161b69++Pt7f3H3Jevb29RS5iRkYGkiTh5+eHn58f7777LuvXr+eNN95gxowZJCUl4eXlhUwm4+effyY0NJRRo0ahqanJ2bNnefjwoSjmUcrgKZ9TOzs7SkpKuHnz5t8RFk+ePMHPzw9XV1cyMjI4fPgwxcXFbNiwgREjRlBbW8vFixdFylRrcOzYMVJSUpgxYwbvvvsuANevX+fmzZsEBAQwZMgQQLGBGz16NHv27GHEiBF0796da9euce3aNSRJoqKigsrKSsrLy9m6dSsjR45ER0cHT09PioqKkMlkmJiYiDB1Y2MjmpqazJs3T8wdV65c4cGDB4SEhKChoYGDg4PYVCUkJIhiW1dX11ZtJM3MzKivr6eyspJ79+7xyy+/8MorrwhH58mTJ3zzzTfU1NTQs2dPnjx5wtmzZ+nQoQNTpkxh1KhRHD16lIiICLy8vETKXXR0NNeuXWP48OEighMXF0dRUZEYM2pqaqSmpgqfQUNDgz59+jB+/HgcHBx4//332bZtm1CKePDgAatXr24hg/c8UD5veXl5VFZWIkkSd+/eRU9Pj02bNhETE9Mi5zMxMVFotjs4OHDmzBlWrVpFZWUlAQEBghAKCwvjtddeQ19fn1deeYXIyEhOnz4NKBzl2tpacnNz6d69O0uWLCElJUWwu8pc0fz8fJqamiguLubq1avU1dW1OpWutLRUaOuWlJSQmZkpfCwlATNq1Cj69+9PVlYW9fX16Orq0tzczL59+/j111/p2bMnI0aMQF9fn5qaGsHEFxQUEBcXh4mJiYg0g+J5P3v2rMj7XbBggVCvqa2t5cGDBzQ0NFBXV0dYWBje3t6ilklZvPq/odXOq3LSfxbdunXjiy++4MMPP2TSpEn8/PPPQmDY19eXAQMG0NzcTHV1Ne+++y59+vQhJSWlhRRDREQE9+7da3HSenp6vPzyy+K4QYMGYWNjwwcffMD777/Pzz//LEJddXV1uLu7Cz1WZRGJg4MDERERz23f06dPuXfvHu3atWtRQKOmpsYPP/zAvXv3+OyzzwT78SzKy8v58ccfBSuwfv16bt++zTfffMPIkSPZvHkzT5484eDBg+Tl5WFhYUF+fj45OTnY29szc+ZMzM3NuXz5Mr/++iugqPyfOXMmTU1NwsmztLREU1OTb775hvPnz/+d9M8/g4mJCe+88w5ubm4YGhpy/fp1Tpw4IeSllCgqKqKurg57e3ssLCw4efIk3333HQDDhw/ns88+o0ePHoBi0pHJZOzYsUNMIsqKzdLSUr799lvGjh3LunXr+Oyzz5g5cyYeHh4cPnyY7OxsJk+ezNixY1m9enULTdY/AuXmqqmpSVSI5+XlkZ6ezuzZs+nbt6+Y2KdMmYKpqSkHDx4UEjlz587F2tqaL7/8UjgHXl5e+Pv7U1NTw9atW9m4cSNz5sxh6dKlhIaGEhoaSpcuXXBzcyMhIYF79+6hrq4uJEUmTJjAzp07uXLlCmPGjBGTj4ODA7Nnz8bf358HDx48t426urpcunSJ9u3b06VLlxa5eoMGDaKwsJDw8HB0dHSYMWOGYKILCwvZtWsXu3fvpl27dkycOJHS0lICAgIoLS0VE+aNGzeQJIk+ffpw8OBBkT5gYmLCzz//THJyMr169aJLly5ER0fTsWNHzM3NycrKYv/+/ezfv5+wsDDWrl0rtJ5bC2U4eMCAAbz55puiuGfq1Km89NJLFBQUsG3bNnJzc/Hx8aGqqgpPT88WequZmZmsW7eOvn374ufnR2JiIlu2bKFfv340NDTQqVMnIW+mr69PRUUF06dPR01NDUdHRz777DPGjh2Luro62dnZDBo0iK5duxIXF8ehQ4fQ0dGhV69e3Lx5k7lz5wrN3ufB1atXGTRoEG+++SZ+fn4tlD9++OEHfvrpJ9599118fX1ZunSpUN3Iz8/ntddeo6CgAD8/P1avXk1FRQVBQUH06tWLhQsXtpD76tu3L76+vpiamhISEsKaNWsYPHgwixcvxtfXV+gU79y5ky+//JJPP/2UV199VbCQycnJmJiY/KENiNIJOX/+PHfv3qV///6ClVFXV0dLSwsbGxvOnTvHp59+KtggJUOso6NDVlYWR44cwdPTk6+//hpQEBmVlZU8ffpUFOApNZPz8/NF4S38T/Rt6tSpeHh48MMPP3DlyhWmTJnCjh07mDx5MpMmTaKgoKDVG5Bly5axbt06IiMjOXjwIFOmTGHy5MnY2tq2YBA9PDx48803CQ8P5+uvv8bKyooePXqwevVqEhMTOX36NP7+/sybN48TJ04wZswY1NTUGDlyJJMnT2bAgAEtxnVTUxMdO3akoqKCsLAwkVZz6NAhQkNDeeuttzh9+jTjx4/H3Nyc0tJSXn75ZSZNmoSdnV2ryIAjR45gYWHBRx99RL9+/fjkk084ffo0u3fvxt7enitXrogI4WuvvUbfvn1ZtWqVSCPT19dn7dq1qKqq8uDBA15++WVqampIS0vD0NCwxZqjo6NDcHAwycnJDB48GA0NDYKDg9mzZw83b95ERUWFL7/8kg8//JDu3bvTqVMngoODcXNz45tvvuHUqVNig9caxMXF8dVXX6GmpsYHH3zAhAkTuHr1KqtXr0ZTU5Off/65RfFcQEAAvXv3pkePHtTX17Ny5UpSUlI4e/YsgwYNora2Fi0tLVxcXDA3NyciIoItW7bg7u4u1gRDQ0NMTU2FDKYSyjVn6dKlqKiocO7cOcaOHcuYMWPIyspqIfr/vNi2bZvQCX7ttdeEmgAoIiHOzs54eHigqamJi4uLkHyLjIwkIiJCNPVQ1nwMHToUFRUVLl26xJUrV9izZw/q6urs3buXgQMHAgqnuF27dnTt2pXq6mpREKmrq4uHh4eITqekpFBdXd0iOvNsbu4/QuuvAoiKtdLSUo4fP05dXR1du3bl/fff59y5c+zevZuamhrhJKSlpVFSUiLCol5eXnz55ZecOXNGTDxpaWno6ekxefJk7OzsOHfuHICoqI+JiRFFQ3379uXcuXN8/fXXTJgwAVdXV8E0KMN9oFjgW1uRHxQUxJUrVxg8eDCenp4YGBhw8eJF1q9fT2xsLIMGDcLKyoqYmBhUVVXR09PDwsKCsrIyMjMzKSsrIzs7m9jYWG7cuEFzczOGhoZYWlpia2vL9evXOXjwIFVVVdTU1Agpo9LSUhITE8WOukuXLtTU1JCYmEhpaSmOjo4MHjyYHj16iGpRd3f355KU+Fvk5+ejoaEhZL6Cg4PR1NQUovRHjhyhW7duVFZWMnv2bAIDA7GysmL69OkcOnSI69evU1dXJxaY7OxsHj58iIeHh3DKzp49i56eHgEBAcTHx4tw8y+//EJkZCTt27enV69eqKqqsnHjRhITExk/fjxXr17l1KlTNDY2cv36ddTU1ISM0fNCmUcVFRVFbm4uDx8+pK6uDkmSuHfvHgMGDODll1+md+/e3L17l3v37uHl5SWqZX18fKipqcHHxwd7e3t8fHxE96kNGzZw//59jI2NiYmJ4fPPP6ehoYFhw4Yxbtw46uvr2b9/P9XV1bRr106weg0NDWLX+6yGp5Kp7dWrV6ucVy0tLTp27Iiurq4Itebn53PhwgU6derEpEmTWLduHQkJCaxbt06wM7t372b79u2Ul5djb2+Po6MjmZmZWFlZ0aFDB1auXImxsTFqamq8/PLLvPPOO8JpUcrJDB48mLS0NPLz87lz5w5JSUlkZmby5ptv4u3tTffu3UlOTsbJyQkTExMkSeLmzZutuoegKLzz8fERurRJSUktKqgtLCxoamoS3e5GjhyJubk5zc3NZGRkYG9vL1iCo0ePkpqaiqmpKR07duTmzZskJCRgaWnJnDlz6NSpEyUlJTx8+BBjY2Nu375Nfn4+mZmZghn67rvvCAkJoVevXvj4+LB3716Sk5MZOnQo7u7uoqL2eaGhoUFTU5OQD1Li6dOnJCUl0blzZ9F4pby8nNraWkJDQzlw4IAo8JswYQL9+/cnKSlJNEp4tgtgZGQklpaWggkqKyujurqagoICGhoaWuQvqqqqkpqayvvvv4+amhrTp08nMDCQoqKiVncqfBa1tbX8+OOPxMfHi0LJixcvEhwcjJ+fH3Z2dhQUFFBfXy9krgIDA3FwcKBr1648fvyY+Ph4EhMTuXTpEoGBgfj4+BATE0NGRoa4Zu3atcPNzY1OnTqRnJyMJEloaGhQXl7O3bt3sbKyon///ixdupTr16/ToUMH4Uhfu3aNe/futbqGwNnZmaVLl6Krq4uqqipnzpzhpZdeEnJzR44cwdramj59+vDFF19w5coVLl68SENDg9CsTU5OJj8/X0gGhYWF0dDQIPKfL1++TE1NDU5OTmhoaKClpYWbmxuampqio1xUVBRz5sxBQ0ODgIAARowYQVxcHLa2tqiqqlJZWYmOjg5qamqtdtBlMhk6OjqYmpoyevRotm3bRmFhoSis8/X1Zfny5UL6aurUqYwdO5bExES+//57jIyMRN2GsiPjs0hPTyc5ORlnZ2dsbGw4cuQIeXl5rFy5EmdnZ7KzszE1NcXHxwdVVVV0dXVFaF9ZsDxy5Ei6dOlCbW2tiN61Bjdv3sTV1RUXFxcGDhyIkZER3bt3x9LSktGjRzNixAji4+M5fvw4w4cPFzUOubm5/Pjjj3Tu3Bm5XC5IgurqakJDQykpKWHmzJno6elx7do1srKyGDduHOPHj2fgwIGoqKiI3N38/HwyMjJ48803kclkVFVViQJxUOSiKze4rZVWfPjwIfX19XTo0EGQgcePH+fUqVMsWLCATp06ce3aNdLT05kxYwaNjY2cP38eHR0dJkyYwO7duwkODgYQzUE8PDxobGwUjaRMTU3ZuXMn9+/f56WXXqJ9+/YMHDhQFJi7u7tz8eJFLl68yLhx4wTJlJGRgYeHB9XV1WzevJmOHTv+Lkn6t2i185qbm4uLi4toy/f555+jpqbG2rVrmTFjBmPHjmXJkiX89NNPeHh4oKGhwZEjR7C1tRXOa1hYGFeuXCEhIYHExEQ6dOhAfX09PXv2ZPz48bi6ulJdXc29e/dEwZVy4HTv3p2FCxcyePBgocmq7ATzbCMApRPY2uT0HTt2UF5eTmNjIwMGDOCll16iuLiYK1euMG/ePH788UdRXDV16lRmzZqFpqYmFhYWJCYmsmbNGnJzc+ncuTNWVlZkZGQQFBTEzZs3RSK4mpoaT58+RUNDAz8/PwwMDDh79ixHjhxBU1OT119/nREjRhASEkJeXh6lpaVYW1tjZ2fXgmUdNmwYgYGBIg/neVFUVERycrLQYTUzM+OVV16hW7duHDt2jG3btuHh4cHs2bMJCgoSLI6enh67d+9m7Nix3Lt3j/PnzzN37lzMzMzw9/cXahJpaWlYW1vz7bffUl5ezsKFC0UXICWjqmS6xowZQ2hoKJ988glNTU2sWLECPz8/IiMjuXr1qigyaI0gszK08t1337Ft2zbBSlRXVxMdHc3du3f58ssvMTExYfXq1WhoaLB+/XpMTExITEwUSeebNm3CxcWF7Oxstm7dytmzZzEyMmLcuHFMmDCBn376iYsXLzJv3jyxWEVHR6OhoUG/fv1wcHAgJCSEK1euYGpqiqmpKcbGxkJmRrnwuru7t3o3XVhYSK9evVr8XVxcHAcPHkRFRYXp06djb29PfHx8i9QSSZJEFb+6ujoPHz5kzJgxvP322y0kdAIDAxk8eLBwWiIiIigtLcXExIT27duzfPly3njjDeGURkdHExkZSd++fblx44ZgaUHhhConvtbgwIEDIoJjY2ODhYXF38m7vf/++0J6raamBltbWxISEnj48CGqqqr06NFD5Gb/8ssvfPfddyxatIhJkyaRkJBAXl6eYEl8fX2ZPHkyI0eO5LvvviMoKEjkYhkYGPDo0SOuXbuGqakpr776KoMGDeLBgweoqKgwbtw4AgMD+eSTT57bPmV4sKKiQuhbp6amcuHCBQYMGMCQIUPENfz4448pLy/n5s2bYsOqrH4+cuQIXbp04eOPP27RtOTx48ci3Kd0Xr29vfnkk08wMDCgurpaaMaCQvpn8ODBXL58mffeew9bW1vRVOb/JxKipaWFvr6+6E4nSRK//voreXl5jBo1Ck9PT2QyGZWVldTU1JCQkEDfvn2ZNm2akINTNg+YPHky+/fvZ9SoURQXF1NZWYm2tjb37t0jODiY9PR0Hj9+jCRJwtGRyWSi0MvFxYUvv/wSHR0d6urq0NDQ4Oeff2bJkiUUFhYydOjQ39W+/kdITEykf//+dOnShZKSEnbu3MmJEycYN24cN27c4MSJE8JhB0U6VN++fdHU1KS6ulpIeCUkJBAXF0dDQ4Nw1IyMjMjIyGD37t1cvHiRzp07C4m9bt26CXWabt26UVBQwPHjx6mpqcHf3585c+aIdt/l5eWoqKhw9OhRvvnmG3Jzc0Uq3vNg7NixIn1L2XGvqalJOFXdunUTnRO1tbVFpGXdunVs376dqVOnMmHCBLS1tXnw4AG6urpoaGhgaGhIQUEB2dnZpKSk4OzsTFFREVlZWcTGxnL9+nVycnIEG+rr6yue1dTUVHbs2EFUVBRTp06lW7dunDp1iujoaAIDA1slIwUKx/DYsWMYGBgIFtnOzo69e/cKjfl3332XiIgIEW0EmDFjBuHh4Rw5coTAwECuXr2Kvr4+qqqqorHS3r17hW56bW0t9+/fR11dXfgqSq3UXbt2MWzYMPbs2UNmZiYrV67E09OTsWPHUlhYyMWLFxk0aBBqamqtLoB1dnYWEc2GhoYWDLVSOWj16tU8evRIFKkdOHCAmTNnEhgYyKFDh+jTpw8LFy4kMjKSS5cuMWbMGEaNGoWOjo5oj7t48WLee+89cnJy+PzzzzExMWHYsGEiT7uiooLGxkaRwpSTk0NRUZHYjG7fvp0JEyb8e5xXZTX4F198webNm/H39+fVV1/F0dGRmJgYioqKcHV1pbS0lIsXL+Lo6Ej//v2xsrLi5s2bHDhwgKqqKiZMmEBxcTHBwcGEhITg7+9Ply5dyMjIYM+ePSJnRsmkDhw4kLVr14rk4i5dutDc3MyTJ09oamqiubmZ7777jvr6ehwcHOjevTvt2rVrtei0tbU1S5YswdPTE3Nzc8rKyujYsSObNm3C0tKS8+fP8/DhQzp27Ejv3r2xtbWlpKSEsLAw4uLi6NevH97e3hgZGbFjxw4iIiK4c+eO2CEqe8937NhR5ASVlpby9OlTnJ2d6datG+Xl5Wzfvp3CwkLxICUlJZGUlISGhgYVFRVcvHgRKyurFpW2zwt9fX0mT55MfHw8ycnJdOjQgfbt21NUVISLiwvTpk0jOjqanJwcunXrxqNHj4T8i62tLWlpaTQ1NaGnpycqTJWKAc3NzZSUlIjGETY2NkLvrba2lvbt2/Puu+8KsXVPT0+++uorzp49S2RkJD/99BNz587F3d1dOGKvvPIKV69ebZWNmpqaLFu2TOzcra2tUVdXJzw8nNraWtEgYsGCBejp6QknQU9Pjz179uDg4MBPP/0EKMKO3333Haamprz55pv06NGDH3/8kTt37mBkZMTAgQN58OAB3333HXZ2dsL5BYXAt7Lpwb1790hMTGTIkCE8ffqUTz/9lE6dOrF06dJWFxmkpqYSExNDYGAg7u7u3Lhxg7CwMF566SX09fW5evUq/v7+9OjRQ7QvNTEx4aWXXhIFc8rOXMoK5V9++YXQ0FDmzp0rmMDr169z+vRpzM3NCQwMFGFgQ0NDhg0bhr6+Pk5OTuTm5rJt2zZUVVUZPny4YINjYmJITk7GzMys1XJgU6ZMaVHQp6WlRXl5Obdv3yYhIQEvLy+RU5idnU1xcbFoQ9rQ0EBxcbG4B+3btyc7O5sOHTpgamoqcuFXrFiBJEns2rWL0aNHi8IlZShNufnV0NCgU6dO3Lx5k+vXr4sOR9XV1Vy+fFnk9v4R6OnpUVZWxpMnT6ioqKBz586UlJRw7tw5TE1N6dKlC05OThgbG+Pm5oa5uTkmJibY29uTkpLC48ePkcvlYmObnJzMN998Q1xcHH5+fi3y4+zs7ISyRWNjI8HBwejo6NCjRw/Ky8tFxOCNN96gd+/eQq0iISGhheTN80KZ+7l9+3a2bNnC9u3bMTU1xcnJiQ8++IAuXbrg5+dHRkYGjx49EoyvktCoqqrC0tKSFStWcPHiRQoKCkhISKCwsJCEhATU1dUxNDQkJCSEX3/9lerqaszNzYU0l6GhIfr6+qirq2NmZkZgYKAYm0VFRbz//vtERUUJnd3WMq/jxo3Dzs5O5OR6eHiQl5fHiBEj0NPTY8GCBQwcOFAUZtrY2IjuUMqUk/j4eE6ePImNjQ0TJ06ka9euJCUlcfjwYZ4+fSp+S0lgZGdns379epYsWcLw4cP5+uuv6d27Ny+//DKRkZGcPXsWZ2dnMjMz2bZtG87Ozjg6OpKXl0diYmKr28PGxcVhbW1NWVkZ2tragl1MS0vj1KlTNDU1MWrUKNzc3MQYamhooH379syaNYsRI0bw+PFjDhw4wJUrV+jevTuvvPIKPj4+5OTkUFJSQlZWFqtXryYtLY1BgwaxYsUKXFxcCA0NpbKyUjjEz+oz9+nTh/79+zNv3jyio6OZNm2aKERtrfP6yiuvCGf8l19+4eLFi0ycOFGoBaSlpeHu7s7IkSPFnHPo0CE6dOiAvb29YIsHDRpEcXExX331FTdv3qRfv344OjpiaGhIQEAAOTk5LF68WHTyKy0tpV27dgwePJhz584RHh7OrVu38PPzY968eRgZGeHh4YGpqSlBQUGsWbOG9957r4VSxfOga9euxMfHU1JSQnNzMz169GDs2LGoqanRuXNn1NXVee2114iIiEBFRQUnJyfGjx9PVFQUMTExtG/fXvhFtbW1hIWF8fDhQ/z8/AS7mp6eLgiPtLQ0du/ezWuvvdZCom3s2LGEhIRw69YtFixYgI6ODh4eHi2KDMeMGfNcz+Ef6rBlYGBAcXExpqamLF++nL59+3L27Fm+/vprLCwsmD59OjY2NiIM0717dzQ0NDh9+jQRERGMHj2axYsXc/v2bU6ePImRkRFubm7U19dz9epVjhw5IhoZKGVAlF0pdu3aRVBQED4+PtTW1mJvby86WDx69IgjR47Qo0cPHBwcaNeuXavF0d966y0hjtvQ0MCTJ09EYZIyf1XZP1zpsNXW1grh6G+//VYsgBcuXMDCwkJ06SkrK0NXV5eOHTvi7OxM3759GTBgAMXFxdTV1dGhQwecnZ356KOPRGjH3NychoYGtLW1MTQ0RFdXl7i4OA4fPoydnV2r2qYqUVhYiIeHh9B3VQrMK9MVunTpwoULF2hubqa+vp6srCwePXrEpUuXsLW1xcvLS4igx8TEoKenh76+PqampqI3eVNTEw0NDVRVVdGjRw/u3buHlpYWb7/9tugaoyxqGjhwIAMHDuTDDz9k586ddO3aFXt7e5qbm/H39xf5R88LJZtmbGwsigNAsetT3puoqCgSExNFkYWyh3VjYyNDhgyhtraWkJAQbG1tCQsLw8XFhcmTJ/PKK6/w66+/ipbDXl5eYqN28uRJxo0bJ3bUWVlZFBcX4+joKFrlJSQkMH/+fIqKijh69Ci1tbVoamo+V47P397D7777Tkxu9+7do6qqivfff5/6+np+/fVX7O3tcXd3JzQ0lJCQELS1tenRo0eLiU85SZSWlnL48GHi4+OZMmUKoGBpw8PDRQGcoaEhJiYmmJqa0tDQwNSpU0UnoW+//ZZvv/0WQ0ND0Wr24sWL7NmzR8jOtBbKoildXV2xiVWGy5QyeKmpqUiSRFJSknACJUmivLxcbEhAoUCho6ODhoYG4eHhNDQ0sHDhQlauXMmqVas4cuSIcCp2796Nqamp+LcSo0ePFsVNFy5cYM6cOQwYMIBDhw5x7dq1Fnlrz4Oqqip0dHSQyWRUVFSwevVqunXrxkcffcQPP/zAG2+8wUsvvcQ333wjUrWUG80bN26goaFBZWUl169fBxSd5UxNTUlNTRWdnnx9fSkrKxOyNEVFRVRWVuLo6EhVVRXnzp3DxMSEPn36kJuby507d3jrrbfEc3Hv3j1ycnI4c+YMBw4caPWiuXLlSrZu3UqHDh2YP38+c+bMIT4+nkWLFmFsbExmZiaenp6UlpaKwislS5yRkYGtra1wuMeNG0dNTQ13797l+vXrlJWV0b59e1EUqa2tTXl5OVlZWVRXVzN8+HB8fX25e/cu6urqfPDBBxgZGdHY2Eh0dDT79u3j6NGjQhoQFDJeyvbZzwNlnt7Ro0dJSkoS6jSrV6/Gzc1N5P/l5eUJqaSBAwcK2S9DQ0OcnJzo1q2b0DYFxYY5JCSEhIQE0XZWuXbo6upy7tw50tLS2LVrF6+//rpoAJCVlcWTJ09EWkFWVpZo+DB8+HAqKir44osvCAkJeW4bL126JLpnqqiokJqaKtQP4uPjKSoqom/fvhQVFfHjjz/S3NzM66+/zqJFi0Q05/bt2xw+fJjKykr8/f0FsaGMxp45c4YNGzZQWlrKmTNnxDh79OgRzc3NpKentxC/NzExEWoAzc3N3Lx5U2y8nm3O8bzo378/FRUVpKamkpGRIYg4PT09Bg0ahJubGxs2bBDHHzp0SDSMAEUh+/nz57l06RLq6urk5eXh5ubGhAkTqKysJCUlhf79+9O3b18xF9bU1AjHztPTk86dO3Pp0iVef/111q9fz2uvvUZWVhZPnz7Fy8uLbt268cMPP/DNN9/8nZrOP0OvXr3Q0NAgPj6euro6hgwZIq5xfX09aWlpTJ48mcmTJ4sw/+TJk1m+fDmXLl1i7dq1oji5c+fOoq39Tz/9hFwuF5umJUuWMG3aNCZMmMCOHTsYNWoUTk5O1NfXU1xcjJWVFX5+fqSkpHD69GnR3jw/P180PXpetNp53bp1K6tXr2bNmjXMnz8fU1NTjh8/zpo1aygvL6d///507NgRS0tL0Uxgy5YtdOzYkREjRhAYGIijoyONjY389NNPPHz4kK+//prBgwdz6NAhzM3N2b59Ow8ePODYsWN8+umn1NbWMm7cOCHPtWjRIhwcHKitraVTp04UFhZibW3NqFGj2L59O7Gxsejq6nLt2jWmTp3aqr7qz4ZTVFRURDikoKAACwsL5s2bx6FDhzh06BC1tbW8++67WFhYCCfv448/pqmpSSRjy+VyrK2tSUlJ4fDhw7Rr145x48Zhb28vRHpNTEzw8/MjOTmZoqIievTogZaWFk+ePCEnJwd3d3eGDRvG66+/LkKLCQkJODs7t9rpAfj111/57LPP2LBhA4GBgVy/fl3IggGizaWKiorImzp37hyxsbGoqanh7+8vWvXK5XKMjIyYO3cur776Kvr6+hgbG6OlpYWKigpGRkasWrWKYcOGkZ2d3aJdqlIRQImePXuira2NlZUVVVVV6Orq4uLi0mr7Tp8+TWhoKKNHjxY758bGxha5pomJidy6dQsLCwusra25c+cOBgYGDBo0iEuXLrFr1y4WLFhAhw4dWL58OWvWrKG4uJgbN24Ix9XOzg5TU1M2btyIo6Mje/fupaqqig0bNjB27FgsLS25evUqK1asoLi4mPDwcBwcHMjPz6e4uFgk7QNCSPx5YWFhQfv27amrq6OmpobAwEDh2GloaDB8+HCRt+np6Ul9fT07duzg6NGjLFu2jGHDhlFWVsaCBQvo3Lkzy5cvZ8uWLTx8+FBsiIqKihg4cKC41wsXLqRLly707NmTgICAFu0Jldc2LS2Nuro6NDU1KSsr48yZM1RWVpKUlNRqB3bbtm1s2rSJxYsXi7GpZLq1tLQoKSlh27ZtlJSU8Nprr+Hm5saxY8f4/PPPUVFRYcuWLeI3PTw8RMGLnp4ec+bMEa01lUxDbm6uWBxeeukl4bwqIyB6enp07tyZrKwsbt++Td++fXFzc2PhwoWsWLGCnTt3CsfredDc3Cx0MgsLCzl37hwVFRVCmggUC5y+vn6LnFPluSj7xDc0NHD+/HmWLl2Kr68vVlZWbN68mfj4eO7cucN7771HQEAAw4YNE2kJHTp0wNLSkpCQELEoWVpaiiILUDwjyiLbwsJC1q5d26r7B4pc0pEjR/LDDz8wdOhQ1q9fz9WrV4mLixOpY+PGjWPKlCmsW7cOQ0NDmpqaqKqqws7O7u+6QTU1NeHm5ibUMJStZU1NTXFzcyM0NJRffvmFkpISIbh+7NgxLly4wIQJE0TINzg4mKqqKr777jsxR4Big9Ia5zUoKIg5c+awbNkyoddrZGTE4cOHuXTpkkiz8vHxYfHixS361Z89e5YbN26IDkpeXl4if7tXr17s2bOHsLAwTp06xYEDB8jLy6Ndu3b4+/tTWVnJuXPn0NbW5uzZs4wYMYLt27eze/du5s+fz7Jly4QAfVZWFnZ2dsybN48xY8bg7+/fKudVyfY7ODiQnp7OV199RVNTE0uXLhVzm1JDNyEhATMzsxat30ERqTEyMkJNTQ1tbW0OHz4scvHnz58vnPfIyEjBjD958oTy8nI6deqEra0tkiTR3NzcohgxNzeXBQsWCObWz8+PhISE57btWSi1Wl966SWcnZ3ZuHEjgwcPZsWKFSLEnp2dzc6dO6mqqhKbfIB33nmHDRs2MGvWLMaMGcOaNWswNjamqqqKJ0+eUFNTw4ABA1ronisZ8OjoaN5//30hj1VaWsq+ffswNTUVBJKlpSUTJkxAT0+PL774gv79+zNgwIDnts3a2pp+/fqxbt06zp8/L9JNQNGEYuPGjaxcuZKpU6dSXl5OZmYm+vr6Ivr9bCqNm5sbxsbGnDp1il9++QU7Ozv09PSwtLQUhIGqqiqampqCyNHQ0ECSJH766SehLf/pp58SEhIiOqu1xnGFP+C8JiYmsmLFCgYPHkyXLl0oLCwkNjYWSZIwMjKiubmZiooKtLS0ePToESEhIUiSxLRp04QcVHx8PJaWltjY2NC9e3cGDx5Mu3btRO/3rl27MnLkSO7evUtoaChfffUVTk5OjB49WrAARkZGdOvWjdLSUt5++22+/PJLhg4dyuzZszEzMxO6o63NJVRTUyM5ORljY2OMjY1RVVUlMzOTuLg4Ro4cibu7OzU1Nezbtw89PT0h+P3xxx+LzkTKTkP29vaEhYVhZGSEiYkJ2dnZWFpa0rNnTywtLXny5AkXLlygtraW6upqsrKyUFFREf2gnzx5Qnx8PNbW1lhZWYnq1bS0NB49ekS/fv1anRYBCqekoKCAtLQ0KisrSU9PJyQkBAsLC/z9/bGwsBB90Pfu3YskScjlcqZPnw4olB3Onz9PQ0MDtra21NbWkp2dLcILxsbG6OnpUVBQQE1NDQ4ODjg7OxMSEsKJEyeYPHky7dq1o7KykurqaoyNjSkqKiI6OprS0lLq6+sxNzenS5cuop92a6BMW3BwcKCyspIDBw5QV1cnGPXNmzezfft20tLSiIiIYNKkSfTo0YPq6mru3r2Lh4cHFRUVFBcX4+rqKkLox44d48iRIwQHB2NoaMiXX36Juro606dPR5IkJkyYQFFRERs3bhRizMoKy+TkZEAxMVVWVorCGeXD/Wyu4vNg1qxZDB48mPPnz3Ps2DFxb0CRUqC8tspxU1payqVLl8jNzRVakUpnVpkHpTwXZcqDkZERXl5e6OjoUFZWxjfffMPDhw9xcnLC0NCQI0eOYGRkRP/+/WnXrh3t2rWjoKCAM2fOMHHiRLy8vBg0aJDIRWut8ypJEg0NDcTFxZGUlAQo1AOMjIzQ0tLi9u3bnD9/Hm1tbVF0BoqOUWlpaWzbto2MjAy8vb3R0dHB1tYWExMTTExM8Pf3F8dPnDgRQ0ND4RA8efKErKws4WgYGRmRm5uLpqYm3bt3RyaTkZubS0xMDG5ubshkMh48eMC1a9da5bwCwtF3dXXF399f3Cs7Ozu8vLzEXKG0fd++fZw+fZrq6mpyc3Np3749c+bMobS0lKqqKpKSkvDz86NHjx6MGjUKmUzGqVOnuHbtGgUFBZiYmKCjo0N8fDzXr18XEllHjx5FT09PNO1QFjvKZDJu3bqFurp6i8X6eTF69Gju37/P9evXGTp0KI6OjkyaNIl9+/bR2NiIlZUVJiYmVFVVkZOTg4qKimgQUV5ezunTp7G2tsbX15fr168THBzMlClTWmgi19TUkJqaioqKCoGBgZiZmREVFYWDgwNlZWUYGxu3qGhXU1PDy8sLU1NTevbsib6+Punp6dTU1IhOSc+LiIgI5HK5SFdRdrbz9fXl5s2bzJ49W+TRP8uWaWlpUVdXx969ewkICGDTpk2UlZXx6quvitxCZRcxfX19cnNzKSgooH379vTo0UPkCubk5HDjxg2cnZ2ZPn06CxYsYP78+fz888+4urrSvn172rVrh5qaGi4uLri4uPxuI5H/Dc869zdu3GDfvn34+Pjg5uYmNlVKbfVBgwZhYmIi5pLi4mKys7NJTExk3rx55OTkEBcXJxpeXL9+nUGDBjF27Fhee+01UfehvE/e3t6isE0mk4m2ovn5+RgaGhIcHExYWBh9+/Zl+vTpVFRUsHHjxlbZB4o1NSMjg8ePH9PQ0ICFhQUTJkzAzMyMR48ecfbsWUaNGkV5eTnx8fF4eXnRuXNn6uvrRUc6KysrLly4IGoCANE9zMXFRVzHoqIise7FxcWxaNEiIiIiMDAwICAggMzMTKFuopy7ioqKMDc3FyoHp06darWN+vr6uLq6UlBQQF5eHiUlJVy6dIlt27ahoqIi1vFLly5x8uRJmpqaRPMLBwcHCgsLiY+Pp2vXrkiSJIqhz5w5w+jRo7G3tycnJ0e0QgYEQaeU1ywvLyc2NhYXFxe6du2Knp4eWlpaYm2or6/n1q1blJWV/VN7Wu28BgQE8Mknn/Ddd98xe/ZsUVjg5eVFUFAQp0+fpm/fvtTW1vL++++TmprKnj17sLe3p6qqismTJ1NWVsbevXtZtWoVc+bMQUVFhaqqKgYMGCCYCD09PebPny96daupqWFvb8/LL7/MyJEj6dmzJ5qamqxcuVIII69bt461a9e2KEAIDg4WTNnzICsrS+SBKil9a2trLC0txU5pxIgR+Pv7o6mpSUVFBWpqagwcOJCuXbty5MgR0QXl8ePHbN++nbt376KrqyuqSZVsm4aGBnv27CEmJoZ+/frRp08fVFVViY+PJyQkRFTZ5+TkcOfOHaZOnYqurq44D2UuaWuhZIuU7TS9vLyIiori448/ZtasWeLBi4+P59y5cyQkJLB//37Onz+Po6Mjr7/+unAOlH2YIyMjKSwsbBEKkyAENAABAABJREFUefz4MZmZmTg7O3Px4kU2bdqEj48Pffr0wcDAgOTkZKqqqkS+7aVLl7h37x5du3Zl+vTpDB8+nNra2la3bPTw8BCpK4mJiXz66ad4eHiwaNEibt++3aLALTQ0lICAAHx9fUlPT2f16tWEh4djY2PDypUref311wF4++23+fbbb1FTU0NTUxN7e3u8vb3x9vYWciHr169n8uTJvP3220Kwf/Lkybz88suEhISwYMEC0tPTiY+PF/qxSkcxKCio1ffR1taW3Nxcbt++jbe3t8hJPHPmDA8ePBDtmUHBgClZWF1dXfbv38/27dsBhUB3VlYWy5Yt4+7duxw/flwUg0VHR2NoaMiaNWtEru+kSZPo168fb731FrGxsbRr146ePXtia2vL7du3WbVqlcjH3rdvH99//z0HDx5stX1yuZyRI0dy584dvv32WxH90NbWJjQ0lPv37+Po6Ejnzp1F84lRo0YxYcIEHj16xKxZs9i3bx8zZ85k0aJForNNdXU1jY2NYoG1s7PDwcGBjIwMzM3NRfW/MiqgpqYmugiqqKgwbNgwNDU1iYmJYf/+/SQnJ/+hNs0qKiqiK6G+vr6oWjc0NMTW1lYI9ysRHh7Ojz/+KMLpubm5+Pv78+6772JoaEhqaioymaxF7u2UKVPw9PTkypUrxMfHM3r0aBYtWsThw4d56623qK2tFe1L33vvPVasWMHDhw+Jj49nzJgxBAcHM3r0aCEuv2zZslbZuHnzZnJzczE2NhabAWWHqR49emBvby/qIZYsWUK7du04fvw4oFC3mD9/Pj179uTYsWPk5+ezY8cOnJ2dWziv2tranDlzhkOHDvHWW2+J8PPx48fZtGkTAwYM4IsvvsDIyEiwtUOHDiU5OZn9+/ejr69Pr169OH/+POfOnWtRkPPP8OxmJSsri5UrV2JoaMiSJUuEXFdpaak4pqioCBMTkxYMt9IBvH//PsHBwRgZGREcHMylS5ewt7cXTRWUzGtDQwOFhYU8ffqUrKwsrK2tqayspKKiAnd3dw4cOMCKFSuYM2cOc+fOZcKECS1C6du2bWvVPVSioKBANGIxNTUlISEBTU1N9u/fT1paGn369GHMmDFYWFiIItGamhrWrl2LsbExH3zwAVFRUULnFBQtkpVMqqWlpZCtA2jXrh1WVlaCwaupqeHx48ekpKQgk8mwsbHBzs6ODRs20Lt3b0Axj/7yyy/PLXSvRFZWFgcOHCA4OFiokqxevZqzZ8/y0UcfMXnyZLZu3cqcOXOYOXOmmDtu3bolGmo0NjbSrl07VFVVCQ8Px9fXV+hxK2tXQDFew8PDuXLlCidOnBD59xs3bmTixIncvHmT0tJSBg4ciKWlJSUlJRQUFHD69GlycnLo27cvb775Jl999dVz25eWloajoyPjxo1j2LBhNDU1sXHjRtauXSv8FhcXF+7fv8+PP/4o0haTkpIwMzNjwIABlJWVceDAAX799VccHBxEDYNSo72mpoaSkhLatWvH9OnTRQF9YWEhxcXFQnXi5ZdfJiYmhosXL+Lp6cmSJUvEeaqrq3P37l3Wr1//T2UHW+28uru7M336dJFnun79err/P9beO6qqc+vbvui99yogoHRQBERFUMBOLKhoYu8aSxJrYhJLNEYTY4maRBNb7MbeGyAWVBQUBASVLkV6LxvW9wdj3294zvO+RzK+OcYZh6Duvddea91r3nP+5vXz9WXcuHG4urqSnJwsLrrW1lYaGxvJzc0VLRJ7e3tevHjBggULOH36NE5OTty5c4c1a9YwZswY0WIPDw9n6tSphIaGkpmZSX19PWvWrKGwsJBVq1aJ3dmsWbMwNDRk586drF+/nnPnztHQ0MDnn3/OiBEjOlVah/ap5vLycs6dO4eKigphYWGiZP7mzRva2tqEL/1ff/1FW1sbnp6eomoYFRWFoaEhu3fv5tChQ6ipqZGTk4OxsTFRUVGEhYVRV1eHuro6ysrK+Pv7Y2FhgZOTExoaGiQnJ3P58mXKysoICwvDzs6OhoYGVFVVuXHjBsOGDSMiIkIguv5NtLa2YmlpSWZmJm/fviUoKIilS5diY2PDgwcP+Oabb/jkk0/o1q0bwcHBYkDi008/pa6ujpSUFOzt7YURhYODAzU1NaIF39bWxu3bt2ltbRVDPnl5eUyYMIGQkBB69OhBcnIyT58+xcPDAwsLCxQUFBg8eDBdu3YV7V01NbX/aBt+SPTq1Usg0lRUVJgwYQIVFRXs3r2b6upqRo0ahZ6eHiYmJigqKuLq6io8mf38/IROW564pqamoqGhga+vLxkZGWhqamJpacmJEydIT09n/PjxaGpqcuDAAXR0dIRu7d27d2hoaKCvr8+QIUPYu3cvv/76K4cOHRKJ7cyZM5EkqdM6rbVr1wptr6qqKp999hnjxo1jxowZhISEkJ+fz5MnT7CyssLOzo6BAwdSWFhIeno6JSUl9OnTR0yWt7W1CYG+/CEI7ZrM6upqIQEZOXIkNTU1YojJz88PNzc3unTpwsuXL3n06BHQziaW85p1dHQYO3Zsh8GTD42srCzs7e3p0qUL+vr6JCcnY2dnJ/Ry2traaGhoYGVlhYWFBT169MDIyIimpiZyc3MZPXo0zs7OQstmZ2fHixcvxOBWVVUVixcv5t69e3Tt2pUJEyYwf/58kRRCuza6qakJPz8/UlNT2bVrF9OnT2f48OGYm5szadIk/vrrL/T19Vm4cGEHacp/Cy0tLZqamoR+Uc7NhfZ7tHv37mIIKysri7KyMsaMGUNTUxNtbW2i4vjbb7+xYMECoQmUx6tXr7h586bwJ5fjtwwMDHj//r0gCMiJLqdPn2bYsGFYW1tjaWmJuro6zs7OTJ48mT59+vwrXJadnd1/fC4lJSXq6uqwtLQU1W93d3eGDBnCrVu3WLhwIT/88APdunUTHGZlZWUqKyuprq4WWDA5ais4OBh1dXXhwOjv709DQ4MYALp+/TpGRkYcO3aMuLg4pkyZIri68i6Cra0tiYmJJCQkdCp5zcjIICYmhuDgYKFrhXYZUI8ePTAwMBADKM+fP0dVVVUMKkVHR2NtbU16ejoTJ07E2NiYWbNm0bt3b8zNzRkyZAhtbW20tbWhqamJvb09169fJzc3l5CQEHx8fLhy5QoKCgro6+sLdrqlpSUzZszgwIEDAnsn19eWlZV1ussjt9UOCQlh3Lhx1NXVcezYMaZMmcK0adMwNzfnyJEjXLt2DRsbG4YOHSrWbTmmy9raGgsLC2HcUlBQgJ2dHfb29sTFxQkZVUBAANnZ2QIX5uzsLKpy2dnZrF+/nrdv3xIeHs6wYcPw9PQkKChIfFYnJ6dOt58BYR/u4uLCqFGjOHHiBJ9++inv37/H2NiYvn37cv/+fWFAZG1tTWtrK1paWri6uoqZAzU1NS5cuEB0dLQotA0aNIiHDx+yfPly+vXrh7q6Onv37uXWrVuC3uLt7U1ISIhA/jU2NqKsrMzff/8tulYWFhbIZDK8vLw6PRyqoKBAc3MzOjo6QmpoZ2dHZGQkfn5+Qp4nk8lITEwU3+WIESMwMTER2Ep/f39iY2MFW3fu3Ln4+/ujqKgoWK719fW8fftW5EbGxsYYGxuL+Q65hv348eOi89Ta2io2twMHDiQ1NfW/H5Tc3/q//W/evHnSvHnzpBcvXkjyOHv2rGRubi51795dOnfunPTgwQPp0KFDUlpamlRVVSXt379fGjlypOTk5CSpq6tLc+fOlSRJkqKjoyVtbW1pzpw5Uk1NjTR37lwJkAICAqRVq1ZJq1evlq5cuSLe5/Xr19JXX30lqaurS+rq6tLhw4el/xkLFiyQhg8fLpWUlEjR0dGSurq6NG3aNEmSJEn+2T/k+CRJkmpra6UlS5ZI/fv3l65fvy7eIz4+Xnr69KkkSZL08OFDSV1dXQoICJBiY2Ol4cOHS1paWlJcXJz05s0bydraWgKkIUOGSDNnzpS2bdsmVVZWitdqa2v7j2NISkqSpk2bJmlpaUnBwcHS69evxZ/dvXtXunz5slRYWCh+19jY+MHH989jXLp0qbRnzx5pzpw50oQJE6Rbt26J15w1a5akqKgoHThwQJIkSTp58qS0ePFi6auvvpL69+8vAZKDg4O0a9cuqaqqSqqrq5PS0tKkvLw88Rq3b9+Wvv32W+natWvid7W1teLn+vp66eLFi9Lp06el8vLy//ge5N9PY2Oj1NDQIDU2Nnb6HLa1tUllZWXi9c6ePSupqqpKEyZM+I/3un//vrRw4ULpzJkz//FnGRkZ4jwkJCRIVlZWkqGhoTRt2jTJxMREUldXl/7++2/pyJEjkr6+vnj9xsZG6fz581JMTIyUnp4uNTU1SZIkSUVFRZKLi4vk5uYmvXv3TpIkSZLJZFJTU1OnjlFNTU0CpO3bt0sxMTGSl5eXZGVlJaWlpUmSJEktLS1SUFCQZG5uLh0+fFh6//69tGvXLsnb21v69NNPJZlMJj18+FAyNTWVBgwYII63uLhYOnbsmHTx4kXp7du3UnJyshQXFyfl5+dLpaWl0pMnT6S7d+9KaWlpHb7f06dPS/r6+hIgubm5SXFxceLPbt26JR08eLDT1+n3338vrhv5tf4/f759+7b0xx9/SNnZ2eJ3AQEBkoKCghQXFyc1NjZKq1atkv78808pNzdXmjdvnhQVFSWVlJRIL1++lExMTCRAcnR0lJ48edLh3FdWVkojR46Uxo0bJ9XW1krnzp2TlJWVpfHjx4u/8+2330oqKirS3LlzpYyMjE5fp5IkSRERERIg/fHHH+J327dvl2bNmiUlJCRIkiRJsbGx0uPHjyVJkqRnz55J69atk1atWiUNGDBA0tXVlVatWiU1NzdL2dnZ0ps3byRJkqQ9e/ZIGhoa0tKlS8Xrvnv3Trp69ar0ySefiGvIwsJCCg4Olry9vSV/f3/pyJEj//FdV1ZWSmfOnOn0OSwuLpZaW1uluro6qbm5WXz+VatWSbt375YKCwuluro68X7Hjh2T3NzcpI0bN0r/MzZv3izZ29tL8+bNk6ZNmyYB0qhRo6Tm5mbp8OHDEiABkoaGhvjZ0NBQevDggVRVVSXNmjVLCggIkA4fPiw1NzdLVVVV0sOHD6Xq6mpJkiRp/fr1krq6eqfOoZ2dnbRhwwZJJpNJpaWl0vDhwyVAGjx4cId7ID8/Xzp+/LgUFxcnZWZmSp999pmkqKgoPicgLVq0SDwXWlpapJaWFqmqqkqqqamRJEmSXr58Kfn6+kqenp7Sy5cvJUmSpNbWVmn79u3S5s2bxbOhtrZWamhoEO/d0tIifm5tbZViY2M7dYxhYWESIP3www+SJEnSqVOnxGdftWqV9OjRI2n8+PESII0dO1aKi4sT921FRYV09OhR6erVq1JDQ4P09OlTafTo0ZK6urqkpqYm2dvbSy4uLlJkZKQUHx8vSZIkXb16VQoLC5P8/f2lrVu3is/+4MEDyc7OTlJXV5e++eYbqbi4WBxvTU2N1NzcLGVmZkoxMTGdvk4XLVokKSsrS7///rskSZK0dOlScV527twpVVZWSlu2bJE+/vhjKT09vcN1WV9fL65HQFJRUZHU1dWl0NBQKTY2VpKk9ueosbGx5OLiIo0ePVrS19eXvL29pXPnzkk3btyQtm3bJu5v+fd25swZydvbWwKkKVOmdMi9Wlpa/tVaI5PJpIaGBvE8kqT2tUV+T7x69Upyc3OTDA0NpVOnTkmSJEl1dXXSoUOHxLFcvHhRCgkJkTZs2CC1trZKkiRJiYmJ0r59+6STJ09Kv/76qzR8+HBp7ty54pqsqqqSXrx4ISUnJ4vnniRJUnV1tfTu3TvxeeRrhCT997ym05VX+dBUQkICz549Y/ny5fTq1QsvLy8h8F20aBHQzmCsra3l3LlzhIWFifZ9cHAw169f5/z58/Tr14+UlBSUlZWRyWSUl5ejqanJ7t27Wbduncjk5VZso0eP7uDMdebMGU6fPo2zszPffvstJiYmwivZw8OjU5UQaK+WWVpaMmvWLJ4/f97B1cTV1VVoomQyGY2Njbx58wY9PT0BVL5x4wa9evVizZo1HDp0iMTERAIDAzuUxgEhj/hneHl5MXToUOLj41FVVe1guCCXMSgqKnLv3j127dpFeHg406ZN69TxQbvGT1lZmdraWt6/f98BZTF27FhRBSkqKuLatWtoaGgwefJkxowZw+vXr/Hx8UFNTY3r169TXV1NYGCgaKv+8ccftLS0EBgYSE1NjeANRkZGMmbMGBISErh+/TpBQUGMGTNGfJeSJHVg19XU1AiXpn9OjX9oyK1Y5SG3Uf3feJVyfqaJiUmHXfvjx4+prq4WzDk1NTVRibS0tERNTU3wFbW1tamtrUVPT4+qqiquX7/Oo0ePmDRpEo6OjuI6NDMzY9++fRQXFwuovZKSUofBtQ+J33//HW1tbTGMuG/fPhISEjrYKqqrq1NUVMQff/zBq1evyMnJYezYsQwaNIisrCxMTEz466+/2LFjB2FhYRw6dAgLCwvhNCZHJWVnZ2NoaIi5ubmgQGhpaQmNoJaWFj4+PuzZswc9PT08PDyora3lyy+/FPaPK1as6DQc3d3dnfPnz3Pz5k26dOkiOi/Lly8nPDycSZMmMWDAADIzMztcw2VlZUiSxKlTp6isrKS0tFQYToSGhgrmso+PD0eOHCEuLg5DQ8MODi/yoYlz586hq6tLTk6OYEu/ffuWv//+m1GjRonzGxwcLBBUnQ25/bD8/6Fd5nHu3DkCAgLo2bNnh+pSSkoKhw8fprW1FX9/f+G2NW3aNExNTQkICCA5OZlr166hp6fX4bhu3brF7du38fX1Zd68eaSlpWFkZMSwYcM4dOgQM2fO5Pvvv8fJyYlevXrx7t07zp49S3Z2dqdYy/KQG0ns3buXy5cvY2VlJcDsRkZGKCkpdbhPo6KicHJyEjrDwYMHCxlYS0sLtbW15Ofni+/qwYMHJCUldUAjyRmSwcHBLF68WKDg5s+fT3V1tTC8uHnzptDizp49my+++IJu3boRHR3dqeOTd56MjIzYtWsXWlpanDhxgsDAQFE1rK2txcbGBl1dXVJTU8nIyBAVUAsLC2bMmMGYMWPEc+Ht27d8/fXX9OzZk+XLl/PgwQNWrVrF+/fvKS8vZ9iwYRw5ckQMX2VnZzNr1iyysrJYvnw5s2bNIjw8nJKSEt68eSO+AwUFBTw9PTsl41m4cCF9+vShubmZQ4cOoa6uztGjR6mqqhLOUQMHDmTo0KEcO3aMUaNG0atXL+bPn094eDijR4/mzZs33L17V3SuzMzMyMnJISsri169ejFixAjhaBkcHIyCggLv378XUh9ol/esXLlSDD/JzYFOnjzJw4cPBTLz3yDr1NXV2b9/vxhCnT17NsrKysJcSY4GdHd3x9rampaWFmGwpKGhIboSoaGhAp9mZWUl8iU5SSI2NpbU1FS6d+/OZ599xkcffcSLFy+4e/euQPtBO53h4sWLWFhYIEkSJ0+epLKykj179mBhYfGvXLagXZqSl5cnZF6AGOJ0cXGhe/fujB8/Hg0NDSIjI4F2pFtQUJDoDoaHh4uO8tOnT/Hy8iI5OZn169cjk8nQ1dUlLS1NkD7kdsEBAQEoKChw7tw5pk6dyqpVq9DR0aG6ulqwmOPj47Gzs+ugUf+/xb/7BoBvvvmGq1evcu7cOfr27UtpaSna2to0NDSQmppKXV0dxsbGzJ07l6KiIkxMTKirq6OtrU3Aw/Py8rh165Z4sOfn59PY2IgkSZSXl9PW1ia8yqFd/C9PAqurq3nw4AG//PILcXFxfPXVVxgYGFBbW4ulpaXAaPxTb/QhIR+ecnV1FRPgTU1NpKeno6Gh0UE35+XlRf/+/YXW8M6dOxw7dgxHR0dmzJiBoaEho0eP5tatW4wYMQJ7e3tKS0spLi6mrKwMKysrvLy8eP/+PVlZWQQEBBAZGcmTJ0/Ys2cPS5cuZcmSJXTp0qWDllTuUmJgYPCvklf5IqGnp0dubm4HF7IBAwYIjl1sbCx//vkn1tbWLFmyBB8fHzF0cPbsWX7++Wfh9ATtD9Wvv/6ajz/+mLVr13Lr1i3hhd7S0kLv3r2Jjo5m69atSJIk7Pba2tqErrWhoUGgO2pqakhLSxNubR8aqampuLq6UlZWRlFREYaGhmRnZ9O7d2/s7OwoKysTuCcVFRUUFBREG04e0dHRVFRU4OzsTEtLi0jk+/Tpg7m5uZgIvnfvnhhY7NmzJ1FRUejp6YlBBZlMJpLThw8f0tLSgr+/v2irNTQ0dJq7CDB8+HCUlJR48eIFjY2NAl8G7S5KqampuLm5YWFhgbOzMw8fPiQrK4t58+bh7e3NJ598gpGREb/88gvv379nwYIF3Lhxg0mTJgnskL6+PoWFhaiqqmJlZUVhYSHHjh3D2dmZESNGUFJSQlJSkoCUOzg40NDQIKbcL1++zIsXL/4VHxTaxf5r164lISGBcePGUV1dTWpqKpcvXyYpKQlXV1d69uwpWqPymDt3Ljt37uTvv//m+vXraGlpYWFhQWhoKKNHj8bJyYmff/6Zu3fvMn/+fAIDA0lJSaGyslJsGMvLyyksLMTJyQlXV1cUFRXR0tLiu+++48SJE+Tn5/P27VvhyiP/3jsT8kU7ICCAxsbGDtg7b29vMjMzBSUjLy8PZWVl0c6vqamhqKgIR0dHpkyZwm+//cbZs2cZMGAAERER5OXl4erqyoABA3BxcSEvLw9FRUXMzMyEq1XPnj2FPEImk5GTk4OWlhb5+fliAliubVdWVmbjxo3CorYzoaSkJCQMXbp0YfDgwfj7++Pr6yu+7/r6empqajA2Nhac4uTkZGpra4mKiqKuro7nz5/z/v17MjMz8fPzQ19fHz09Pa5fv05+fj7u7u5UVVVhbGxMv379WLBggVivMzIyOqCZHj9+zJs3b5DJZAL51L17d8aOHdup5NXNzY2BAwcKgxZbW1vWrFnDq1evePbsGfn5+VhbWwtZw5MnT3jz5k2Ha2XYsGGsX7++w+uWlpYSFxdHfX09M2bMEOhBmUxGTU2NcF+SJInm5maKi4uFdlJJSYmioiKysrLYvHkzr1+/ZtmyZYSHhwvP+s6EnLwRExPDkSNHCAsLE0lefHy8MI0YP368cN+6evUqQUFBAk2op6fHq1ev0NfXF/rUnJwccfxy5F5iYiK6urrC9EUecizmnDlzxO/krNGGhgZMTU2Jj48XA5qdddYcOHCgsEOura3FycmJ77//noqKCoqKisSgq3yGoKGhARUVFWpqajh+/LjQacvd7Dw9PYUO/eXLl2KIycrKiqtXr4oBRbk1e2xsbIek29TUFE9PTyZPnkxtbS0bN24UmD4LCwsKCws7dXzy0NDQQEdHh4qKCvF+urq6ODs7izVuzJgxvH37lmfPnmFqaoq2tjZWVlbiGlRVVSUsLIy///6bpKQkgS1UUFBAWVkZbW1tVFVVKSoq4urVqyQnJ/Pq1SshaZE70fXo0YPQ0FDxOcrLy6moqBBDXv8tOp28/vHHH4wfP17oJvbs2UNzczPZ2dloaGjQpUsXFixYgLa2tnBv+e677xg3bhwHDhzg2LFjSJLEggUL6NevHxcvXuTTTz/l7Nmz4iKB9uqgHJ2yYsUK9u7dS3x8PKWlpRgbG5Oamsq3336Lvb09N27cICkpib59+9KrVy+++OILAZzOzMzs1PHZ29uTl5dHc3OzeJg8efKE6dOnM2rUKH744Qdqa2u5cOEC3bp1Ex7Rx44dY/ny5Whra6OoqEhbWxsGBga4u7sTGxvLkiVL+OKLLygrK+Orr76ioKCAgIAATp8+TXJyMsuWLWP+/PnMmzcPe3t7ampq2Lt3L0ZGRnz99ddUVlby6NEjQkJCGDJkCH/88Uen3cP+Zzg6OmJpafl/3cXJ4d7yCcQXL17w7NkzqquriY+P58mTJ5iYmJCSkkJAQIDYKNTX1wN0qPhoaWnh7OxMUFAQW7ZsYcuWLairqzN37twOtppyRqm2tjYTJkzAzs6uUw8TaN9ddu/enXPnzrF9+3Z8fHwYPnw48+fPR5Iknj9/jouLi3hfLy8vPD09xX/v27ePoqIihg4dSpcuXYiLi+PmzZsYGBiwZcsWqqurOXnyJDKZDG9vb7E5+/jjjwXr09nZmfz8fN68eSOSyr1793L27FnWrVvHwoULxeeVJOl/rcT/v2L16tUUFBSQmJiIsrIykZGRTJ06lba2Nnbv3s29e/cYN24cW7duBeDkyZPcvn0bmUzGo0ePiImJQV1dndWrVzNx4kRsbW3p2rWrcOdSVFQULkU9e/ZET0+PmzdvsnbtWnx8fOjevTuOjo6C8QvtVbAtW7Zw9+5dvL29GTZsGKNGjUJLS+tfWTbevn1b2Pnu2bMHXV1d7O3t2bFjB0+ePGHTpk0YGhoSHBzcAYc3evRoFBUV2b59O/n5+fj6+hIfH8+2bdtYu3Ytbm5uPHnyhP3793P27FkcHBzQ09Nj1KhRODo6oqCggI2NDVOnTmXs2LEYGBiIa0O+uNfW1v5HR0D6B8LnQ2LFihVERUURFRXFwIEDsbGxEfSSRYsWMXbsWOrr6/nuu+84e/YsoaGh/PTTT4wdO5aXL1+ydu1a7ty5Q1VVldBaysHtTU1N1NXVoayszN27d7l06RL9+vUTD+jt27ezatUqtmzZgpKSErNmzeLAgQN4eHgQEhKCtbU1xcXFaGhoMG3aNOG21RmMFLTPCcgtvRsaGggLCyMsLIy2tjZx3RQWFopN3uHDh/nmm2/Iy8tDTU2N0tJSEhISOHfuHA8fPgQQlIVdu3YRFxfHDz/8gJmZGZ9//jlNTU0oKSkxYMAAsam4du0aly9fRkVFhalTp+Lp6Ul9fT0ODg7MmzcPXV1dHj58SE1NTQdDhw8JFRUVkYA3NzejqqpK9+7duXDhAmfOnOHixYtMmTIFVVVV9u7dy927d/Hw8EBFRQUXFxdsbW1xdnbm+fPnuLq6iip0jx49uH37Nvfu3ePYsWOMGTOGH3/8UVznFy9eFJt/ebfs7du3eHp68tNPPyGTybh16xbXrl0jOzubhIQE1q9fz6xZszrtziQPORv8ny6PcqyVXE9fUFAAtFdPAwICxN/T0NDAzs4OW1tbVFVVUVVV5cGDB1RXV4viR1ZWFlu2bEFDQ4MZM2aIjZW8Tfw/4+zZszx79ozVq1cTFBREWlqaMHvpDAoM2pNXoENyX1VVxe3bt4VVuLzzIJPJRMHh66+/FqxXKysrbty4QXZ2Nv7+/mhoaFBaWkptbS2tra3CjEBXV5d169axcuVKAgMDOxAZKioqMDAwEHMbRkZGqKmp0bVrVyRJws7OjvT09E5bpsuPzcPDAycnJxISEkhISMDX15eRI0fSs2dPUVBxdXXl7t27bNy4kW7duhEWFoaKigo2NjYEBATQ2trKixcvsLS0pGfPnhgZGREWFoaXlxcKCgq8ePGC7du38+LFC65evcrUqVPZunUrRkZGGBsbM3PmTLZs2UJUVBSTJ0/m559/RlFREV1dXfr37//BNtudTl6PHj1KYWEhvXr1EjvqixcvMmzYMAwNDcXCoaWlRUpKCg0NDRQXF1NSUoKpqSn6+vokJiYKdEtUVBTTpk1DR0cHDQ0NFBUVUVdXZ/z48ULo/9tvv4ldx+3btxk/fjyGhoYMGzaMTz75BAcHB4HM8PX1xc7ODplMRnV1tbi5PjSOHz8uHs7QvmPfsmULmZmZtLW1kZqayo4dOzhw4ABDhw7l3r17nD9/nsTERDGh/O7dO2FX+Pr1a7S0tHB0dKSoqEhUc6CdqLBz505u3rwprNHU1dWFlaauri6urq5oamqip6eHoqKiwDdNnTq1s6dOxIsXL8SFJP9+5OgsfX19HB0daWpq4t27d0ycOJHHjx/zww8/0NLSQkNDg2h3+fn5MXHiRPz8/Lhw4QLHjx/HxsaGxsZGfv/9d8HFvXr1Kq2trVy8eJG6ujpxA16/fp25c+fS0tLChQsXsLe3x87ODgUFBQwMDLC1taWsrIxHjx51yp7Sx8cHRUVFrl27Rnp6OpaWloSGhqKqqipsTqurq8VNIqdZQDt8+vvvv8fX15eVK1eKiXsdHR2ioqKwtbXl1q1bREdHk5+fj7KyMiUlJQwaNIh+/fpRWFjIlStXUFNTY/To0R1kJzY2Nnh5eQmxv3ygS0NDg+zs7E6dQwsLCwwNDWlpaRFmDzdv3iQ6OlpgVAYMGMCrV69E9VQ+SJaSksK8efNwcHAQD96+ffuKBfSfrTpLS0uRZPTp04cxY8YIyYmSkpJY0E+cOMGyZcuoqqpi8ODBhISE0LdvX0GSkKPCOhN2dnZMmzaN6dOni0TR3t4eBwcHXFxcWLt2Lb///jvR0dGoqqoSHh6OsrKyGBIqLCxETU2Njz/+GJlMxqlTp5g8eTJeXl707t0bBQUFkpKSSEpKQl9fn8mTJ9PS0sKDBw+wtLTs8D1Au5SlpaUFQ0NDIc8oKSlBUVERY2PjD64YyKOurg4/Pz80NDSorKwkKSmJnTt3Ultby5AhQ/D19aWhoYHbt2+Lh9irV6+orKxEQUGBUaNGcePGDZG4Lly4UEi22tra0NfXF6zq0tJSgRNraGigqqqK5ORkvvzyS7S1tXn9+jVhYWGMGTMGKysrNDU1hVvhsGHDsLKy+ldMaXm3qH///qLz8c+or6/nxo0blJaW4ufnh7q6Or6+vjg4OGBubs6dO3c4ceIEZWVlggEtZyY/fPiQFy9e8OLFC+zs7Bg0aBA+Pj5YWFiIjb3cJlw+AS9v91ZWVvL27VseP36Mu7s7ysrKgrLQmdDS0qKwsFCsJVeuXMHOzg5XV1fhWCRJEmlpaQIv6Ovri5OTE62trTg6OvL48WMmTJhAUFAQK1euxNTUFE1NTVxcXCgqKmLx4sUoKysze/Zs1q5dy8uXLzE1NSUvL4/MzEwcHR3x9fUVFA0lJSWqqqowMTFh6tSp/Pnnn+Tm5hIbG8vkyZM7PQQbFxfHw4cPqaysxMXFBW1tbSRJ4uXLl5SUlODs7IyCggIVFRV8/PHHlJaWMmbMGJF8NjQ08O7dO/Hdl5SUkJGRgaKiIra2tty4cYPXr19jZGREt27dePXqFXfu3MHW1lYgsjQ0NMjIyOD8+fPCWS84OJjc3Fyio6Pp27cvLi4uuLi4cOrUqU4dH7SjviwtLTuQbRQUFNDR0eHGjRtcuXKFadOmER4eLiRejY2N2NnZMXv2bEJDQ0lJSeG7776jrKwMCwsL3r59KxjcaWlpPHr0iICAAEJDQ3n06BGPHj0iLCxMVGitrKx4/vx5h++2R48ejBgxogMf1tDQEGdn504l6CkpKaJq/PjxY7KyslBRUUEmk+Hr6yssy+WVfGtra4yNjblz5w737t3D3t6eiRMnoq+vLzjqixcvFvezjo4OXbp0QZIkQaSA9m66qampkK3I4+OPP+bJkydcuHBBbJ7lx/jkyRMxNPb/ik4nr5qammzYsIEdO3Zw6NAhdu/eTXZ2NqGhoRgZGYmbR24Xtnv3bl6/fs3MmTNZunSpONCIiAhu3rzJrFmzWL9+PQcPHgT+Txv1n37sb9++xcHBQUDd6+rqcHR0ZMWKFeJG1NDQYOzYscyePRto1+RaWFh0OOkfEleuXBGMsvfv37Nu3TpiYmLo3bs3jo6OxMXFce/ePZqamsjIyODhw4cUFRWxdOlS5syZw+nTp8nOzhYM0cbGRn777Tdmz57N7du3UVFR4fz58+jq6nL37l3mzJlDeno6/v7+tLW1MXv2bExMTBg9ejR+fn7i88uRMp2t0P1v8ebNG9TV1TtM8z979ozvv/+ekSNHsmTJElJTU6msrGT58uXCLMLOzg5/f38SEhIwNjZmy5YtBAUFUVFRwZIlS4iLi2PYsGGUlJSwYMECvvjiC+bMmYOGhgbnzp1jw4YNmJmZiUTU0NAQdXV1UlNT+eOPP3Bzc2PZsmWMGTNGLCI5OTmoqKh0KnmV36RynMmkSZMEmUHeYv7nIiWvTCgoKAgNs9ziTt4yl197Dx484MCBAyQnJ3eoBmhqamJhYcHt27fZu3cvw4YN4+OPP+5wvhYuXMiyZctEsiBnQvbt25fc3NxOncOvv/4aaGfayjc2Fy9eZO3atUD7pOjLly9FRXzmzJns2bOHhoYGSktLCQkJ6dCmkiSJR48eUVlZiaGhoUi6lZSUxBSohYUFBw4coLy8nLq6OqEPB8jNzSUvL4+oqCgOHTokKvYlJSWYmZlhamrK4cOHO3WMn3zyCR9//HEHPbBMJqOpqQkHBwcmTpzIq1evyMjI4ObNm3Tr1g0XFxeB1GlqasLLy4sRI0ZgaGjI3bt3OXz4MElJSfz111/8/vvvfPfdd3z99dfo6Ohga2tLdnY2K1euxNPTUyCF6uvrUVFRQUdHRyBvJKnd2lH6F6QIeXh7e3eQjGRkZAi5CrRvbh0dHfn8889ZtGgRjY2NAiNTWlrK2LFjMTY2Zu/evfTr149Vq1ZhZGRESUmJ8JDv06cPrq6uqKqqcuDAAVatWoW6ujpjx45l+PDhbNu2jYaGBvbv3y+c0Xbu3El5eTn29vbCgrapqanTVUlAbDrkRBH5dydJEoqKiigpKVFcXMy1a9fIz89n2LBhHD9+HFVVVV6/fs3UqVO5f/++cG5TVlbm/v37nDt3TuiRq6urqays5LfffmPq1KlERESIboaysjK9evXC3d0dDQ0N0d6Xs1M3btxIZGQkc+bMIT8/n7i4uE4fo7yVW1lZyenTpwHYvHkzxsbG9O/fn7KyMmGco6Kigq2tLYMHDxaorJcvX/Lq1SskSWLQoEEEBQV1sLBtbGxk7969ODo6MmfOHO7du8fMmTPJzc1lxowZfPLJJ6Igcu7cOU6ePElQUBBz584lIiKCnj178ueffxIQEPCvrtUzZ86wZ88eVFVVmTlzpuhIpqamoq2tTXBwML169aJ379707t2b2tpaNDU1aWho4NWrV7x584aamhrU1NRIT08nKSmJ27dvC5vuK1euoKqqysaNG/nmm2+4f/8+796967BZKioq4sCBA2zZsoXg4GD69+/P4MGDsbS0FISQnTt3Ulxc/GGT6v8jfv75Z7Zs2QK0ywRbWlrQ1dWlW7du5Obmcv36dfz8/AgPD0dBQUFoOb29vQV6sbW1VTjzLV26lDt37pCamsqoUaMEWlNBQQETExO2bdvWYe1ubm6mtLSUZ8+ecebMGY4cOUJzczMLFy6kb9++GBsbC66vqakpfn5+HDhw4IOPLyYmBnd3d5KSkrh79y42Njaoq6vz6NEjoSGG9uqsJEnCGWvp0qVcv34dAwMDGhoauHz5Mrt376aoqIiIiIj/cBWMjY0lJSUFMzMzdHR0qKmpISMjQ/y53K2zV69enD17lhkzZrBt2zZcXV1FrvP7779z4MABZs2a9f88pk4nr+Hh4aSnp4v2lru7O+np6Zw4cYJhw4aJVrHcEnXQoEEMGDCgg01nly5dsLKywtPTE1NTU27evEl+fj7GxsaCFxoREYG7uzsHDx7ku+++o76+nrlz59KnTx+0tLQoKiri5MmTmJiYMGTIED755BOhPdq4cSOHDh1i2bJlzJgxo1PH9+2336KlpcW9e/fYu3cv9vb2LFiwQFS0Ro4cyfr167ly5QonTpwQ/tVy7ZWuri5NTU1cvnxZ+BHLE2pfX1969OghFhBjY2OGDx/ON998Q0REBCtWrODJkyd4e3szYsQIrly5QkpKCkuXLhX+w9B+c8lkMrS0tKitre3sKcTLywtbW9sOQO6ioiJiY2N5+/YtPXr0EAuvjY0Nmpqa1NfXM2jQIFpbW/n444/R0NAQQyTffvstMTEx9O3bl4EDB3LgwAEBIO/RowdnzpyhvLxcAN3fvXsHtN/sOTk5mJqaCqabjo6OSCxbWlro27cvAQEBrFu37oOPT5IkEhMTGTp0KJGRkR30U46OjjQ3N3fAjOXl5RETE4OXlxefffYZ33zzDUeOHOGnn34iNDSUwYMHc+nSJb766itKS0uRyWS4urri6ekpqqiDBg1CQ0ODnj17snjxYtzc3MjKyuL69esAjB8/XiSEz5494/Lly1RUVGBubk5JSQleXl6dGqKQg6QnTJgg9MDh4eGsW7cOW1tbtLS0WLhwoZByyE0xbGxsMDAw4OjRo6SkpKCvr09ERAR+fn74+Pjw5s0bnj9/Tmtrq2ihZWZmcuvWLezt7Vm4cCHW1tY0NTV1aE1HRkZibGxMTEwM3377LVOmTEFNTY1Lly4JL+3ORlNTE4WFhZibm4tWXm1tLXV1dZiYmDBo0CAUFRVJTEzEzc1NbFpev35NZWUlS5cupXfv3uTn55OQkIC9vT1Tp04lODhYDH1Onz6dZ8+eUVdXR0ZGBnl5eaIq4unpydSpU0XCA4hE+p/ON9BuhfvDDz90yqQgISGBESNGCISOsbGx4CA7ODiIoVBtbW1UVFTQ0NDA09MTd3d3UlJSaGlpISgoCG9vb+HyV1tbS3NzM5aWlgJVqKmpiYmJiagyA4SFheHt7Y2bmxttbW1C5w7tco1Xr17Ru3dv7O3tUVRUpKqqqtMAf4BTp04RGRmJgoICjY2NpKen09rairOzMzo6OqipqREcHMz79+95+vQpz549Y9iwYSxfvhxHR0fWrFnD/PnzyczMREdHh8GDB6Oqqir0nXJXOUlqtzLW1tbG3t4eIyMjysrKyMrKwsLCAnt7e3FNq6qqEhwcjJGREc+ePcPe3l7ge7S0tNizZ88HH19OTg7KyspIksTVq1e5c+cO3bp1E9KppKQkqqur0dPTw9/fn5s3b7J7927Mzc1F8jp06FB0dHSEz7uSkpKo8tvb2/PVV1+RlZXF27dvuXXrFseOHRPDxPJ2rTzkhjpjx44Vv/Pz80NFRUUMnsoHMjsTvXr1wtvbm7CwMCRJEs5XZmZmNDU1icEkQNwvycnJHDp0iNzcXHx9fenZsyevXr0SVtWOjo6UlZXh4+PDxIkTGTt2LAoKCvTt25fKykrR3aiqqmLHjh3s3btXGBDV19ejqamJp6cnq1ev5ujRo8yZMwcPDw/Cw8M7vVH+8ccfaWpqYvr06Xh7e9PY2Mjx48eFhem3337bYe4iLy+PFStWoKOjw6xZszA3N2ffvn28f/+e169f8/jxY969e0dqaioHDx7E19eXiRMndlhLDAwMOHDgAFZWVoSFhWFpaSlkkWFhYdjb2xMeHi7MiVJSUti+fTv6+vpMmTKlU8dXWVnJ3r17cXd3Z/78+aJDbGpqirm5ucjn/lmVt7GxYe7cufTu3ZumpiYaGxspKytDUVFRaFrfvXtHUVER1dXV2NjYYGxszIgRI6ipqaFPnz5kZmZiZGREXFwcXbt25fnz5zx+/BhTU1N69uzJpEmTBD5LHra2th+0Ue508urv78+3334ruHhJSUm8efOGoqIiLCwsRPJqYGBA3759O0xbyis4cXFxxMTEYGtri4eHBxcuXODQoUOMGzeOtLQ04uPj8fT0JDg4mIaGBvEA1tfXF7uxtLQ09u/fj4eHB5GRkejr62Nra8urV69ISUkhMzNTDHp1JhwdHamoqGDz5s2UlJSwYcMGTE1NyczMJCEhgf79+4uBB5lMRnBwMEuWLGH79u3s2bOH0aNHi3bP8OHDRau2tLQUJSUlAevevXs3r169Yvbs2eJBWl1djZaWFjY2NoIZ2NDQgLu7OwoKCpiamgo2qfwi6yxNAdq1OWVlZWJ3n5WVRVpaGg4ODjg7O/Pq1StKSkrQ0tISjmkjRowgMDCQ/Px8PD09UVZWJjU1VfAKAVEVV1VVRU1NDQMDA7Kysjh//jw1NTX07duX9+/f09zcjK6uLm5ubrx//x5bW9sODlE5OTm0tbWJ1oVcR/Whcfv2bR48eMCAAQPE9Scfjvmn44d8OFD+MNXW1kZJSQkFBQWys7PZs2cPtbW1DB8+nPT0dHGcvXv35qOPPsLf3x9nZ2dRfayvr6eyspLBgwdjYGBAZmYmZ8+excLCQlwHBQUFXL58meLiYnr06IG9vT2VlZUdFrUPiYcPH/Lnn3+ioqJC3759aWlpISkpiZEjR2JtbU19fb24rlavXo2bmxvv3r3DxcUFHx8fNm3axOnTp4U16sCBA9HR0UFZWVnYxHbt2pX+/ftTVFTE3bt3SUhIoGfPnowYMQJTU1OUlZVpbW3l5cuXeHp6Ym9vT2xsLD///DOWlpYMHjyY9+/f8+bNm3/F6z137pzQas6dOxcFBQUxcW5sbIyuri76+vr4+PiIqmF5eTkZGRli09zU1MRvv/3G27dv6d+/P4MGDRLXfXFxMa9evcLGxka0JE1NTRkyZIiwW1VTUxMVgOzsbNra2jA0NERNTa2DJOnly5c8ePCgU8lra2srt27dIigoiH79+tGlSxdh2iFv40F7El9fX09dXR0NDQ3Mnj2bxMRE4uLi6NKlC/Pnz6epqYm7d++Kf2ttbd1hGFBe5ZJHdnY2fn5+fP3116Snp7N7924iIyOxtLSkd+/e1NfXi3vFxsaGpqamf+Xmd+XKFYYPHy66aXJJkLq6umDVOjk5ERUVRUtLC9u3b+fu3btkZ2eze/duQkNDWbBgAStXrkQmk9G9e/cO1VFDQ0PhqNfQ0MCdO3fo0qULffr0QVdXl8LCQmpqapDJZOKY5NKkLl26YGpqSnZ2NhcvXsTLy0tsgD405EORf//9N3v37sXBwYEFCxZgbW1NamoqycnJODk5iQ5Vfn4+2dnZHDhwAEmSCA4OFu3u/xktLS307NmTnj17kpKSwvHjxzly5AhJSUnY2Njw3XffiSGsvLw8TE1NReGjsrKSvLw8DA0NOwxApaen8/fff3fqGAcOHMjs2bPFZywpKaGurg4rK6sO13tVVRWKioro6OgIu/S6ujoMDQ3x8vKiW7du3Lt3j8zMTEHPycrKwtzcXAyg1tXVoaCggIqKikhQdXR0aGxsxMrKio8//pgFCxagqalJWlqa2NA4OzuzdOlSGhsb6d27d6eTV2jvOGhrawu6wOPHjzl27BiLFy8W9rDyzY+ioiLKyspkZmayfv16vLy8hEYc2jcIL1++JCEhgYqKCuzs7PDz8xM81Pfv3/P3339z6dIlBgwYQGhoKAoKChgZGTFo0CDmz5//HxKbmpoabt26hZKSUgfzkg+JqKgorl27RmlpKZ6ensIM5Z8hH2CWyWQ8ePCAoqIiRowYwciRI/n999958+YNLi4ueHh48PjxY8zNzVFVVeXRo0eUlZUxcuTIDo6UQUFBnDhxgqqqKpqbmykvL+ft27c8ffoUJSUlQeoYNWpUBx11VFQUISEhHD169P95TJ1OXtXV1YmKikJZWZmUlBQSEhJQVFRk4sSJDBs2DJlMRkVFRQfM0/nz5+nWrRtWVlbs2bOH77//nsrKSsrLy8nNzaW6upqgoCDmz5+PoaEhT58+FSdu8eLFeHp6CqixfGpWQUGBr776Cjs7uw4CdHt7e5YuXUpkZCQ9evToNJB527ZtPH/+XOwyNTU1aWlp4euvv+bUqVMcP36cPXv2iKEOaNcB5+bmoqenx9OnT9HQ0GDAgAHo6+vz8OFDfH19aWlp4dq1a/j7+wsw86VLlwgPDxetj1OnTmFsbMyNGzcICAjgm2++EVqllpYWpk+fjpKSEs3NzUKj+W/aQImJiTx79ozhw4fT0tLC1q1befnyJXv27CE8PJzk5GS++eYboqOjO8CTY2NjMTY25quvviIzM5Mff/wRf39/Nm/ezMaNG7l06RKNjY2YmZnh6OgoYMYpKSlAe4v79evXKCsrM2fOHJYtW0Z9fT0vX77ExcUFY2NjGhoamDx5MkZGRhw8eJCYmBi+/PLLTlXuJEmitra2A2kiKyuL3NxcYcF5/vx59u/fj4ODg2i9HTt2jEGDBqGkpMSTJ08AhHbZzc0NLy8vnj9/jpGREaGhoaioqJCTk4OlpSUNDQ1s3bqVmzdvEhISwpo1a3BycmLChAkd4O46OjoMGjSItrY2unbtiomJCcXFxezatatT5/DTTz+lb9++NDc3s3PnTs6ePUtLS4voWDQ1NTFhwgTWr1+Pk5MTTU1NAiekqKjIpk2bcHJyorKysgMCqa6ujgcPHpCZmUnPnj3p1auX0CAqKioSHBzcodUt19ft3bsXDQ0NwsPDGT9+PO7u7qioqDB48GBaWlqwtrbudMXnzZs3ZGdn8/r1a+rq6pgzZw6qqqoUFxcLXfuuXbsoKytj4MCBFBcXs3z5crp3786qVasABPFB/oAoKSmhsbERJycnMjMz2blzJ9nZ2ejo6JCamoqVlRVz586loqKC+Ph4Dh8+zKBBg9DV1WXfvn2cPn2aPn36sHjxYmxtbSkqKqKtrY3w8HB8fX07VT3fsGEDn376KY2NjWIA49WrV+zatYuRI0eycuVKoD0pePr0KXFxceLeCQoK4sKFC9y7d48ZM2agpqYm2vzy+Kerj5aWFv379+fBgwfk5OTQ2NhIjx49sLS0JDExkcWLFxMfH8/Ro0dZsWIFISEhwoTE3Ny808No8vjn0I6amhpubm4oKyvT1NREamoqeXl56Ovr4+zszOeff46VlRVnz57l3bt3nDt3jj59+oj7zdzcnOTk5A7INbmBi5w0kJKSQnR0NOXl5XTp0oWgoCBKSkrEw1IulTl9+jRnz56lpqaGrKws3r17x/jx44WF9IfGV199hYKCAkePHuXJkyfs27ePiIgIysvLqaqqEtPUMpkMPz8/evXqRXV1NZs3b2bx4sV8/vnnhIeHk5WVhb6+vhgcAjrIZbKzs0lOTkZTU1MQNuSa0iVLlhAdHc3vv/9Ov379MDIy4tNPP+Wrr75i8eLFrFixAmj3sN+wYQOhoaGdQvP5+/t3eJ6bmpqSn5/PjRs3GDBgAJqammRmZpKSkkK/fv1QVFQkPj4eHR0dvvrqK/T09DAwMCAvL4+CggLKy8u5d+8ejo6OVFVVcfjwYQoKCli5ciX9+vUjMzOT7OxsYWerqKjIF198QUREBBYWFmLTuHPnTqKjo7l06RJdu3blu+++QyaTCVRaZ8Lb25ukpCRRMYd2W9z6+voOiaJ8eFlNTY1jx45RXFxMdXU17u7ulJeXk5iYSN++ffH09OTIkSM0NjYyYcIEevbsSUlJCerq6sTFxfH1118jk8lYs2YNQ4YMERsCBQUFunfvLtCO2dnZSJKEubk5tbW1eHt74+7uzkcffSSeqx8Sjo6OfPrppyxcuJBvvvmGtWvXCnlkeXm5GM7Ozs7m1q1bPHr0SBgnQfump7m5GXd3d+7cuUNxcTFWVlYYGxuLjaiKigrx8fEoKyvTt29fGhsbOXr0KObm5sydOxddXV1OnDjBpUuXUFBQYM6cObx//54HDx5gb28vBixtbGxwcnL6/z951dHRER/c0dERHx8fmpqaCAkJQVVVVThoQHt1aOvWrZSXl7N161ZkMhnHjh2jsrISDQ0NPDw8KC8vF//u4cOHhIeHExYWRnV1NaWlpaioqGBgYMDLly+F/qepqQkrKyuCg4PF50pOTiYzM5Pm5mbBg4X2nVJnIiEhASUlJRYuXIiJiQlHjx5FRUWFsWPHkp2dzXfffQfA4MGDcXFxITs7m+vXr9O9e3d69+7NtWvXqK+vZ8yYMTx9+pTt27ezdetWHB0dOXPmDK9evWL9+vUEBQVx8+ZN/vjjD2JiYoT4urS0lNLSUj777DNmzJjB1atX+f7771FVVWX58uXtJ01ZGRUVFVpbW//VjdrY2IiioqLAIVlaWlJVVSVK9x4eHnTv3p2HDx/S1tZGz549UVdXZ/bs2dTU1PDy5UtRkbO1tWXIkCHU1NSgo6NDQEAAbW1tQpRvY2PDRx99hK6uLlVVVSQmJqKjo0O/fv3EdVJYWEhhYSH6+vrExsZSUlKCg4MDOjo6NDU1dVoaYWFhQVRUlEBfXbp0iejoaCEZkPvAV1RU8OrVK+rr67GysqJLly5iuNDW1hZbW1uCgoKQJInGxkZR9a+rq0NJSQlNTU2xiYiPj2f37t1Ct3bt2jXMzc2JjIyktraWS5cukZ2djbu7u7hu5TpeuftIZ89hv379eP/+PdnZ2aiqqmJgYCCsCWUyGTNmzMDe3p6KigrhRBUfH09OTg7jx49n48aNAB06FC0tLXh4eODu7s7QoUOxsbFBUVERa2trFBUVqa2tFVajcqvily9fcvbsWVpbW9m0aZOoggL/ig0qDx8fH+zs7ISGraamRgxLqamp0djYiJKSkvg5NzeXlJSUDlq5goICWltb0dXVpaWlhZSUFLS0tOjevbuojAcEBDBlyhSuX7/OyZMnycrKwsfHB0tLS+zs7Kivr8fW1lZsAurr6wU+rbq6WjjLOTo6dip5dXR0xMrKiqqqqg46/1evXnUYcGttbUVDQ0MgzKysrCgtLeXly5dkZ2czffp0+vXrh42NDSdPngRg0KBBorIiSRJqamo4OzsLvuY/cUJ1dXWiOnry5EmRAF26dAljY2MCAgLEJrOzERkZ2WGz8/r1aywtLdHV1cXFxYXc3FzRfbG1tWXZsmVERUVx+/Ztzp8/z549e+jTpw9ffPGFsB7W1dVl5MiRPHv2TGjF5efdzc2NcePGCYmOlpYWVlZWaGhodChyqKqqCi293KJXSUmp01bU8o6Cs7MzL1++pKmpicrKSgoKCoRWXu7nrq6uLtakhIQEmpub8fb2Jicnh2+//ZYhQ4YwcOBAWltb+eWXXyguLiYkJEQwOfv27UthYSEPHz4UFSwLCwtUVVWRJEkkXi4uLvTv35+WlhbRfcnKyuLUqVMoKioSFhYmhoI/JJqbm3ny5AlOTk7o6+vT1NTEyZMnuXXrFqmpqTg5ObF//36UlZXx8/OjtraW2NhYAgICxNDjtWvXuH//vsBQZWZmkpeXh729Penp6Vy9epXAwECCgoLQ0NAQz/mcnBxR5f3n8/7p06cUFxejrq5ObGwsRkZGGBkZ0dbW9q9wbsHBwbx+/Vp0wN6/f4+SkhKrVq2ioaFBuP2Vl5cLKsfkyZNpa2vj3r17GBkZYWdnh6amJnV1deTm5jJq1Cj8/f15+/atoCFBe7dUVVWVrl27iuF2LS0tYeEK7c+Tr776ir59+7JmzRokSaKhoQEvLy+Cg4M7zbJ99eqVQHIqKyt3IAHJBzsBUSXt1q0bPXr0oKmpSQxdmZmZYWFhga+vL0+ePOH8+fNCvjhy5EjMzc05ceIESUlJFBcX8/TpU+7evcvw4cNFka1bt254e3vTr18/geFSUFAQLn/QLsn65ybi/xadTl4lSeLhw4d069YNDw8PFi5cSFJSEjExMbx//x53d3f69u1LTk4On376Kc+ePWPKlCk4OjpSW1uLlZUVSUlJ+Pv7M3r0aGQyGTdv3hRCczc3NwYMGICXlxd1dXXcvn1beCGvWLFCtJerq6uFdy607x7kU//Dhw/n22+/FQLpzsS6devQ0tISXNp79+4JfY4cE7N+/Xo+//xzrly5QlFREU5OTmhqagpwthzgGxsbS0JCAlVVVbS2tpKZmUlaWhrh4eF4eXkxYMAAUlNTBeblr7/+IjExkVmzZomp4fT0dNTU1HBwcPiPhbWqqkoMd3Qmevfuja+vr/CMXrVqFXfv3uXKlSsUFhYycOBAvv/+ezEsI28XOTk5cePGDR4/fszw4cNZvXq14M2NGTOGESNGUFVVxfnz5zE2Nsba2ppp06bh4+PDixcv+PHHHykpKUFDQ6MDp06e8F64cIGkpCS2bNki9FmDBw/Gzc1NiOk/JFpaWujRowfQrvVZt24dubm57Ny5EwsLC+rr65k0aRK9e/fm6dOntLW10djYSGRkJD179qS6upqGhgbU1dWxs7OjsrJS4Kfk33tKSgpBQUFieCEjI4PCwkJWrFjB0qVLWbhwIU+ePOHs2bMoKioyf/588vLy6NevH6dPn8bU1JRXr16hpKSEu7s7ixYtEsnkh8SGDRvQ0dFhyJAhTJ8+naioKJqamlBVVSUjI4OsrCxR5SgsLMTPz4/W1lZ++uknrl69irKysjCJ0NPTE/dS165dWb16NRoaGujp6VFcXExmZibl5eVUVlby6tUrYmJiePz4MW1tbZiZmeHk5CT0i2/fviUnJwcDA4P/aFN3NuT0ALnGW1NTU9j5KigooK6uzvbt21FRURG6rRkzZpCXlycA95aWljQ1NYlKkIeHh1i45VXn6dOnM336dJ48eUJycjLJycl8/fXXbN26FXV1daH1nDJliqjcNzQ0EB0djaWlJb169eL69ev8/fffncIQXb9+ndu3b3fgYUZGRuLq6iqqEPLz4+fnh6urq0hIGxoaRJXp2bNn9OvXj6amJjZt2kReXh7Xr18X94Ac3l5QUCCSPfnG8ezZszQ0NHD06FFiY2P55JNPsLe3x93dXZjLHDlyhCdPnrBx48YOn+tD4p8EhpqaGo4cOYKuri7Lli0T2tPGxka0tLSErMzGxgY3NzeOHj3KzZs3sbCw4MsvvyQ+Pp7nz5+zePFili5dyr59+zh8+DDv3r0Ta+yqVasEvjAlJYWioiKcnZ3F4JjcjnLYsGGEhobS0tIiBgutra07sHY/JCorK9HX12fp0qVoa2uze/dujh07xowZM5g4cSINDQ1cunSJlJQUPD096dq1K7q6ukyZMoWZM2dibm7OjRs30NXVFe+9f/9+lixZgrKyMo2Njbi5ueHj44OJiYmokEO7VGX8+PFs27aN1NRUoY0EWL58OUuXLhXt9c2bN+Pp6cnevXuxtrbuVPKalpbGrVu3+OSTT9DX1+fmzZtcv36dmpoaYmJiOHDgAGlpaQwYMAAFBQXq6+tpbGwUXc8LFy6wbds2GhsbGTp0KFFRUdy4cYPk5GTBLS4rKxP6cbl2UkVFhTt37ogK5vTp0xk0aBAPHjxg9+7dBAcH8+uvv5Kens7mzZtRVlYmJCREcGQ7Ew4ODtjb26OmpsaZM2fYsmULJiYmYvj0zp07GBgYoKWlhaKiIsXFxcTGxnL37l22bduGjY0N06ZNw8DAgF27dlFTU8Ply5ext7fnk08+wdjYmLt37wLt5I1evXqRlZXFmTNn6NOnDy4uLh0SyhcvXnDnzh0sLS1RUFAQg14tLS1kZGR0mt4yfvx4cnNziYyMZMeOHcLyHv7PYDO0d65NTExQUFBAU1MTSZKwsLBgwYIFNDY2UllZiZeXF2FhYezdu5dLly7x559/ik2S3GggIyOD1tZWzMzMOlSuQ0NDsbGxwcjIiMbGRnx8fLC3t0dbW5vW1lYUFRXFBuC/RaeT1xMnTuDt7S1aoerq6qirq3Pw4EGhG1qxYgUmJiZCE/jxxx+L3cUnn3yCTCYjNzdXOGN5enri5uYmcDHyJKauro5nz54B7QMGckYhtLdU5JPRgBhM8Pf3p2vXrpSWlmJlZdVppt0/T2pOTg46OjoUFBSwY8cOzp49i7q6OgEBASJZrayspK2tjZMnT9Lc3CxusCdPnogkfeDAgeIhmJWVxU8//SQQWL1798bd3R1TU1MGDRrE4MGDxSQ5tDPX9u7d2+HYi4uL0dPTQ1tbu9MmDICgDKSnp6OgoEC3bt0ICgqisLCwQyVXrl1JTk7m1KlTODk5MWDAAGpra3nw4AGOjo4CEZOXlydgxLm5uXTr1o3AwEDR7s/Pzxea0cbGRl6/fs2TJ0+wt7fH2NgYRUVF8vPz0dbWFg/y7Oxs4endmcjLy+P+/fuira+goEDv3r0FPkfedurZsyeurq40NzeL61l+/t+8eSP01woKCvj6+rJ9+3bhupWYmEhlZSV2dnYYGRnx8uVLoQE6d+6cmFTPyMjA0dFRVNXi4uJYs2YNY8aMwcDAQFQJO+vO1K1bN+rq6tDX1xfn8/Xr19y9e1dQNh4/fix4ws3NzTx79gx1dXVmzpwpNHDHjx9HU1NTtJDk6C5o3wG3traioKBAQkICV69eJT8/Hz09PXr37o2ampoAvxsbG4vEQ1lZmerqamJjY3n69KkY7OxstLS0kJqaKjAs8lbnPzdx/2yTm5ubM2HCBFEhlC+8vXv3RlVVFVdX1w5VwMGDB2NmZoaZmRlHjx4VHNHIyEh8fHxE2722tpZNmzbRo0cP4cCWn5/PrVu36Nmzp3ho5+TkdCr5sbKywsbGRgzPLVu2DG9vb0pLSzss3vLrtbS0lPT0dGxtbdHQ0GDt2rWcPn1aoGV8fHz47rvviI2Npbi4mPLycgwNDVFWVqahoYHHjx8Ljvbx48d58+YNMTExVFZWIpPJ0NfXp0ePHqSlpYnBLnt7ezQ0NHj8+DE3btwQ2u0Pjbdv31JYWIi7u7uoAJ8+fZoXL14wY8YMgoODO1TKCwsLef78uUAMamhokJaWxpEjR7Czs2Py5Mm8evWKX3/9lcDAQPr160diYiKpqamifSlPiuSOevKhLmhf+9ra2nj9+jUymYxu3boJQ5rc3Fxu3brVqeP75ZdfMDIyYu7cuUycOJGNGzfS0NCAnp4eEydORENDg65du/LgwQPu3r2LJEmMHj1aXLfPnj0jJyeHtWvXoqOjw549e4iPj2fSpEn4+flha2sr3LiSkpJITk4G2k1KQkJCRMIvN9RJTU3ll19+wdzcnJEjR6Kurk50dDQ2NjZMmTLlX7nAvX//nsDAQM6dO8fWrVuxs7NjxowZNDU1UVBQgIuLCxMnTiQiIgJLS0vMzMyIjIwUa7+enp4YkgwNDUVbWxtXV1euX7/OkydPaG1txc7ODkNDQ9ra2pAkSdyncipPdnY2xcXFwtnPx8eHyMhITExMKCoqQpIkTExMcHJy6nT1HNr1mXI6xb59+8Rmt62tjZycHC5cuICLiws9e/Zk8uTJAux/8OBBKioqUFFRQV1dHQUFBYEGnDlzJlFRUYJBu2TJEkaPHk1QUBCGhoY0NDSwYcMGfvjhB8aOHcvIkSOprKzk+vXrtLW1sW3bNnJycvjll1/49NNPGTBgAGfOnOk0mQbaucHOzs5YWVkRExPDwYMHaWhoEMO9VlZWhIeHo6urS3NzM3FxcSgoKIjPKo+kpCQeP35MXl4eoaGhhISECFIB/B+SiJxjrKOjQ9euXWlsbERdXV102e/fv8+LFy/EGiwPuab4Q/T1nU5eCwsLhZ5Mjq1paWnB2NgYPT09MfgwZ84cdu/e3eHf1tbWoqqqirGxMY8ePSItLY2YmBj2798vHDYOHTrEmjVryM3NFYlncHAwx48f77B71tLS6jAwYWdnx/Tp0wUSRR6dbasXFBSI3U7Xrl3p3bs3d+7cIT09HU1NTZycnMjPz+fcuXMcPXqU+/fvi3/bvXt3VqxYga6uLocPH6a2thZPT08qKyvF4JV8gOn8+fM4ODiwe/duLCwsuHDhAj169BBTolVVVejq6hIcHExZWRkqKio0NDSIn+UuGY8fP+7U8clDbuBQWVmJqqoq9vb2wjWltbWV169fY25ujp6eHseOHeP7779ny5YtLF26lEuXLvHXX38xdOhQkfSeOnWKXbt2UVRUJOgAchj5ixcvhAQB2h8gDQ0NJCYmCqB9jx49MDIyIjMzk/T0dExNTXn06BGqqqoddGAfEjk5OaJyHRERIez6mpqayM7OxsTERKB0/jnFLt8M7N27V7An09LSsLW1ZdeuXYwfP56TJ09y8eJFUlNTuXTpEjU1Nbi4uODp6cmYMWO4ceOGcMsJDQ3F1dUVKysrVq1axc8//0xhYaGQXQQFBaGiooIkSR3aJh8S/7QbbmpqIjExkbVr13Lt2jVGjRrFV199hYWFBXp6eoSEhFBbW0thYSFDhw5lwoQJwP+p8EyYMEHo9G7duoWzszNdunTBwMAAa2trVFVV2bJlC2/fviUoKAh7e3tMTU0ZO3asENrX1tYiSZIY1rh79y67du0iOjqasLCwf4VZSk5O5tatW2hqatK3b188PDw6JNb/rBjA/9mUydtz0L7JlV8/DQ0NXLx4kfLycgYOHCgGZS5dusRPP/3E8+fPGTFiBIcPH6asrIwLFy4QERFBRUUFJ06c4MSJEyLZkUspJEmirq4OX19f5s+fz40bNz74+OSOPXFxcaxbt46ePXvSr18/Hj58iImJCQMGDOjw92/fvs2XX37JRx99xK+//sqECRMwNDTkp59+4tSpU/j4+DB06FA8PDx49uwZiYmJ9O/fH2VlZUHYsLOzIzc3V8hllJWVef36NWvXrmXx4sWcPXuWnTt38vXXX2NnZycoIP/WjvL+/fucPXuWTz75hLFjx9K/f3/279/P48ePMTY2Fq3g9+/f09DQwJs3b4iNjSU+Ph59fX3Wr19PUlISa9asYcOGDezbt4+oqCh27tzJsGHD6N27tzi/8srz77//zrBhw1BRUaGkpAQLCwtkMhktLS1oaGjQ0NBAQkICz58/p1evXmLK/fXr153WZb97945r167h7OxMQEAAY8aM4ejRoxgbG5OQkIC7u7sA1t+5c4eamhrKy8uxsLDg1atX/Pjjj/j6+hIWFsbmzZtZsWIFs2bNEpvf6Ohorl+/zsGDB3n+/DmZmZn079+fQ4cOYWBggCRJYkId2pNhueHPt99+S1RUFHPmzBHV6M7Kk6D93EdERHDnzh0OHjzI1q1bGTdunHg9+cZfLqlRU1PDz8+PpqYmWltb6d+/v0AqvX37VjwX9fT0OHr0qEjIZ86cKe5peRJbX1+Ph4eHkHMlJSUxduxYQceQu3ZOnz5drEWdXUuhncDj5eVFenq6kPANHz5cIL/q6+tJS0ujZ8+egh4E7eueoqIin332GSNHjuTq1auC8RodHU1AQAC//vorp06dIioqitLSUkHpyczMJCsri9evX7Nt2zZBX9ixYwcTJ07kxx9/5Pvvv2fHjh14enri7OyMsrIyVlZWHYpsHxJr1qzB1taWAwcOCIMbeVhYWLBw4UL8/Pyoqanhxx9/JD4+noCAAMzMzASjta2tTQxBNjU18fnnn4sOaXV1NdnZ2ZSVlaGnp0doaCiBgYHIZDKsrKzENdLY2MijR494+fKl4Iy7ublhbGzcwdL9QzrKnV6R5KzWf76Bi4sL33zzDTNnzqS8vBxNTc0OJXBoRzGdOXOGEydO0NzcTN++fbl37x4ymazDQIvcoWLYsGG4ubnx999/U11dTW5urkhe5Toj+WCOhobG/+qFm5KSQlpaWqeOb//+/axevVq8j42NDX5+fnh4eBAcHIyKigr6+vqkpKR0SFznzZvHpEmTSElJ4bfffuPGjRvo6+uTnJzM2LFjsbe3Z8SIEfTr14+dO3eSl5dHaWkpZmZmeHp6UlJSIh7w3333HW/fvuWnn36ioqKC+fPnC0SVr6+vqGLdvn2btWvXdtj5fGjItcRqamr/QSwoKSlBQUFB6H8WLVqEp6cn3bt3Jzs7m4KCAgYNGsTw4cOJiYlh48aNKCkpYWdnR1FREbq6ugIroqioiKKiIoGBgdjZ2XHp0iXy8vIwMTHh5cuX7N69m6ioKAIDA1FUVOTgwYPExcUxePBgjIyMsLKy6vSwSEtLizC6+Oyzz3jz5g15eXmoq6tz8+ZNjh49SmlpKdOmTWPOnDnCYGH16tUMHTqUu3fvigqMqakpMpmMLVu28Oeff1JZWUlJSUkHf3V3d3eGDRuGubk5n376KdDepvmn/nHq1KnU1tby/PlzwsLCxMMVEIYQnYl/TpI/e/aM8+fPC1lDeno679+/F3oqaN+QuLu7U1FRwZkzZ0hMTGTTpk3Ci1omk/HXX3+JpHj9+vXiPigvL+fSpUt4enqye/dubty4IZIt+QNDriEsKSnhxo0bHD16lOfPn+Pn58dHH32El5cXFy9e7PR59PPzw9DQEFNTU0pLS8V1+X8D5tfX16OkpCSkIDo6OigqKlJYWMi2bdvYsWMHTk5OuLm5YW1tTXp6OhYWFowaNYpnz55x79494uLicHR0REdHh8LCQpydndm2bRvbtm1jwoQJLFu2jE8++YRvv/2W169f09TUhJGRESEhIZ1KXs+dO8fIkSP57LPPhJmDHAgeFBSETCbjl19+wczMjAkTJqCgoEBRUVEHCYaCggLGxsaoqqpy6dIlHj16REFBARMnThRJXWZmJnV1dURFReHt7c2DBw+ws7Ojd+/elJaWCvOQL7/8Ej09PaGF1dfXF9Xn/v37s3r1asrKyjp1Dl+8eMGFCxdEN0VJSQk3NzfGjx8v1rUjR46wfft2WltbmTNnDoMGDeL58+dUVFQwdepUcnNzuXjxIhcuXGDixIns3r2bmzdvdqjYQPt6PWjQILKyspDJZJw5c4bs7Gzc3NwoLy9n48aNYvhnyJAhAhsnZ5AGBATQo0cPvvzyyw8+PvnmIC0tDT09PT799FPhDLlp0yY+//xztm7diq+vL56enty8eZMDBw6QmZmJmpoagYGBDBw4kNjYWNFxs7W1pa2tjbVr1/Lbb79hZmaGnp6eeJbJ9e3/PP/x8fEsW7aMHj168Oeff7JgwQKysrJE1RPadaLR0dEdbLA/JOSdl8jISMLDwzE2Nubt27eYmZmJ9WXv3r3s2bMHExMTQVuQz7v89ttv2NjYsHz5ck6cOMH8+fNZsWIFXbp06bDu/bPbkJKSwoYNGzA3N2fWrFlERERQVFSEl5dXh/Pe1NREly5dhDzl0aNHHZ7LnY3u3buzceNGFi5ciJGREa2trXh6ejJ37lxSUlK4d++e2BwvWrSI06dPo66uTt++fVFWVubcuXPcv39f4Ky++OILoL0At3nz5g62tfLJfhMTE5YuXcqwYcPQ1NTEx8dHXOvdu3dnzZo1vHjxgj179lBfX9+hC/uh8ezZM2xtbfH39xeSnePHj3P37l20tbUZPHgw+fn5rFy5ksuXL+Pt7Y2Xlxf379/n1KlTTJkyBS8vLwYNGiQKeEVFRfzyyy9UV1ejoqJCRUUFGRkZtLS0UFdXh56eHq6urh3mHuSGQX369EFDQ4OsrCx+/PFHZDIZY8aMISgoiL/++ouNGzd20Dj/b9Hp5NXa2pqsrCyx4EVFRQmNRFtbGwEBASgqKlJZWcnmzZvR1tYmKiqKtrY2MjIyuHfvHnp6enTt2hV/f38kScLS0pLGxkbWrl3LkSNHUFVVZdiwYYSEhKChocHz589JSEhAWVlZPJTMzMzo0qWLGCCTT5TKB5CgvYXSWRu1goICUlJSMDQ0pKCgADU1NUaNGoUkScTExBAbG0thYSG6urp88sknou06cuRIHBwcmDp1qoDydu/enYyMDMrLy8nMzKRLly6EhYWxZcsWHjx4IFBDgNjBvHv3ju3bt9PW1saqVauorq7m+fPn6OrqYmxsLCgMNTU1nD59mrdv33Y6eb1z5w5tbW2YmJjg6ekptIkymUwM01lYWNDQ0EBGRgYGBgaMHTtWtBMDAwPx8PAQ2rrs7Gz09fWxsLDgo48+IjQ0lJqaGsrKysTwlaenJ6WlpaipqVFcXEyvXr2EM07Xrl1RU1MjJSWFt2/foqamhru7O4GBgf/K1cfe3p5FixYxZMgQ7O3tRdtNXj1qa2sTi256ejrPnz+nqKiI0tJSFBUV8fHx4dKlS0C785STkxNnz57lwYMHREREYGZmJtqqJiYm+Pn54ejoiLGxMXPnzqVfv34MGDCA0tJSsrKy0NHRoVu3bowZMwYLCwuUlZV58eKFcBFSV1fvNCrr6dOngl2pqKiIi4sLw4YN4+HDh5ibm5OdnY2FhYXQnurr69OrVy+eP3/OrVu3iIuLw8HBAT8/P6ZNm4aysrJAibW2tpKRkcGjR4/w9/dHRUWFnj17Ym5uTkVFBTU1NdTX1xMbG8uAAQNQUlISQwhyhNrVq1dxc3Pj999/77RRiDy0tLTEJqi6uprjx4+jq6tLVFQU0N49ePPmDU1NTRgYGNC1a1fRjUlNTRXWpK6urlRWVpKdnU1jYyNeXl74+voKHfa0adNYvXo179+/59KlS8THx6Oqqoq2trYYbhw6dCjNzc0sXryYvLw8AME5lA+ldJb8UVRURE5OjoC7v3nzhgsXLlBWVkaPHj1QUFBASUmJZ8+e0b17dzQ1NTswaqG9KlZeXi4kFbdu3SI7O7tDdejs2bPk5+czdepUhg8fLjiZcqekBQsWCC3rq1ev2LdvH9AuyZDjyXr06IGnp6foaHxoyAfs5AzdqqoqoqKiREW3oqKCc+fOCXlYQUEB8+bNQyaTceLECZ49e0ZjYyMGBgbcuXOHrVu3Mn78eCIiIqipqRFtRnnVJyAgQBAObt++jaamJkZGRigoKJCbmys2xICogMnnIqqrq8WG9EOjT58+QlPc0tKCmZmZoDM0NDSQkpLC77//jr29Pbq6uuTn53P58mUKCwuZMWOG2OzevHkTf39/DAwMkMlkrF27lqtXr1JcXExxcTG9e/dm3rx51NXV4eTkRFFREVpaWpSUlGBgYMCLFy9IT0/Hy8uLkJAQVq1axb59+zo8G3755ReuXbsm6AMfGra2tgJyHxISQnNzM2/fvkWSJLp27Up5eTlxcXEkJibi7e0tHLVSU1MF6rKuro5jx46Rn59PZWUlKSkpvH//nmHDhnHlyhXMzMwEhN/CwoLjx49z8uRJIiIiGDFixH98JnnF19DQUGA45bruf8pEPjQyMzNRVlZGWVlZ4ANVVFSE3HH48OHk5eVx48YNFBUVefz4MTt37gRgxIgR9OzZk4KCAlG5b2xsJCQkBCMjI2pra9HV1RWJrDyys7Opr69n9erV4r4qLi4mNDSU7OxsPv30U4KDg5k4cSJ79+7l+PHjKCsr06dPn05X0GNjY+nfv38HLNugQYOYOHEiw4cPx8fHh7S0NMrKytDV1cXDw0Mw2SsqKsT75ebmoqOjQ2BgILGxsZw+fZr4+Hisra2xsLAgOzuboqIirly5gq+vr7gXc3NzaWxsRF9fH19fX3HPyWcqWltbBUpPS0uLmpqa/3pMnU5eV69ejb6+Ptu2bUOSJMLCwrC2tmbZsmXcunWLyZMns2TJEpKTkzl69CiampoEBgbi5eVFeHg41dXVPHnyhDt37tDQ0CC8crOysqisrBTTbO7u7nTr1o358+fT2NgoKgvr168nJyeHyZMns2fPHjQ1NXn58iXff/89SkpKLF++XCSvmpqa2NradspxIzAwkI0bN5KamoqXlxeff/65SHQyMjLYsWMHzc3NREVF8fPPPzN//ny2bNnCjh07xEMf2lsOysrKVFZW4u/vT0tLC3/88QdVVVXs3LmT8ePHU1paKqYu5RooJSUlAgMDqa+vp6GhgZ49e3L58mUAMYDx5s0bfv/9dyoqKvj888+pqqrq1DmcM2cOffv2Zdq0af/xwP1nIpWens7ChQvJz89n/Pjx9O7dW0wiJyQkMGnSJCwsLJg2bRonTpzgypUrLF26lAEDBnD//n3279+PkpKS0PI9f/4cS0tLIiIiMDAwoHv37qK1XldXR0FBAdbW1ixdurSDsUBnw8rKilGjRvHXX3+xadMmZsyYwfz586mqqsLV1ZVFixahpaXF+/fvSUtLIyoqitmzZ1NeXs7du3eZOXMm+vr6rF27lpKSElHxlrc5L168yIkTJ2hsbMTS0hIrKyuKiopobW0VidWBAwdE1WjatGn89NNPdOvWjaqqKubMmUNjYyPr168nMjKSlpaWTjM0dXV1O0xY+/v7i0qIfKDo22+/paysjNmzZzNp0iSgfcJ97NixBAUFYWlpiZubm5jWHzFiBJMnT0ZRUZGdO3cyadIkhgwZwsqVKzl+/DibN2/mo48+IiIigmvXrlFQUMChQ4cICwsTemJDQ0M++ugjbt68SdeuXf914gp0oEwUFhayf/9+QXCQ2/Z+9tlnpKenM2rUKJYvX463tzfQXjUsKCigsbERZ2dnXFxcxES3PCF+8+YNN27cwNnZmZCQEHGtmJqacu/ePZ49e8bgwYPFZ+jatSv79+8nJCSE/Px85s2bR0NDA926dRM2lp2J0aNHo6urKyQs8uR7zZo15OTkcPjwYRYuXMiJEyf46quv8PLyYsuWLcIURm58kZSUhKqqKosWLRLV139WpwoKCgS799dff8XV1ZWffvqJXbt2ERYWxpIlS3j79i3Z2dlcvnxZaH/HjBlDr169hDzs37B6Q0NDKS4uJjk5mZ9//pmoqChBo2hqaiIhIaHDg1i+loWGhpKZmclPP/1ESUkJurq6qKiosGbNGrZs2cKQIUMEWgvap9kTExP58ssvRdfv888/p6GhQWzyvvnmG6Gfb25uJj4+HltbW1EQ+P3339m1a1cHWsZ/i+zsbB49eoSLiwtaWlokJCSwcuVKmpubGTduHBcuXGDr1q107dqVwMBAjI2NMTIyYtKkSUyfPh1oT+DDw8NZtGgRdXV1rFixgvr6ev7880/OnDkjjHM2bNiAhoYGMpkMBQUFYmJi+Pvvv6moqBD0mhcvXrBo0SL8/f05efIkOTk5XL16lerqauLj4ykqKuo0vcXS0pK2tja++uorbG1t+f777/Hx8aGtrY26ujp0dXVZvnw5U6ZMwcrKCltbW5qbm/n9999RVVXFw8ODnJwcVqxYIbjYv/32G69fv+bLL7/kzz//JD8/nx07dhARESEcpzw9Pf/DwamoqIimpqYOFcyCggKUlJQEHcbd3Z1t27Z16hirq6uJjo7m4cOHZGdno6enx7hx4zqg08LDw7l+/TrLly8X1dVp06bxzTffoKGhQV1dHaampuTk5NDU1MTXX39NTEwMEyZMENg5aO8oxcfHc+3aNYyNjcWA2e7du/ntt99YtGgRffv25fr162JjLJ/0LywsJD4+nqFDh3bq+Hr06CGq9fJwcHBg3759okBka2vLH3/8QUlJCSdOnOCHH34gJCSEZcuWYWBgwLZt2zh58iQymYx58+Yxbdo0dHR0GDNmjGAPy7uBJSUlwjTl2bNnnDx5kurqagICAggJCRGdcnm+4+fnJxLdUaNG4erqyvbt2/+fx9Tp5PXBgwds3ryZoqIiAQlOSEjgjz/+EBZnGzZs4OnTpwKjJF/YQ0NDhcbs999/JyMjg6SkJFavXk1wcLCwUcvKyhL6yH/y5TQ1NcnJyQHg4sWL9OjRAw8PD2JiYsjJyemgrYB2OYO5uXmnkteAgAASExMxMzPD29ubsrIy4T7h6+uLtrY25eXlXLx4kQEDBuDs7IySkpJIMAMCAhg5ciRv377l1KlTVFRUYGNjg4uLCxoaGmRmZrJu3TphB/v06VNSU1OxtrZm5syZODs7ix2q/MLt0aMH6enpwryhubkZHR0dxo0bx4gRIwRA+UNDrrWTJ8x5eXkoKCgIXWh9fb1gIqqqqtLW1oaNjQ2BgYGoqqqKi1FdXV2Amg0NDQkLC6N79+7IZDL09PSIiIggIyODrVu3CjxWWFiYkH9YWlqira1NW1sbbW1tRERE0LdvX4KCgkhOTiYmJgZHR8dOPUygfZMxevRo7t+/T1JSEjNnzhT+5vLBpZaWFuFBXltby/379zl9+jR+fn6EhYXx+eefk5iYyLVr13j+/DkrV65EQ0OD9PR09uzZIziZU6ZMwdXVlS5duojF5ezZs9y+fVtMW9rZ2YmFw93dXQz1WFpa8vDhQ548efIf3s//LRwdHVFRUUFFRUV0OqqrqzExMREudHv37iUtLY3KykrU1dVxcXERoHRJklBVVeXu3buUlpaK4Ue517aFhQVv3rxhx44d6Orqsn79ehYsWMCJEydoa2vDx8eHLl26cO3aNQwMDKitrSUhIQEfHx/8/f3ZsmULJ0+e5PPPP/9fbQQ/JGpra7l69SpDhgyhS5cuVFZWEh8fz48//siyZcvEkKNcV/j69WvS09MJCAgQXvfy37m7u+Pq6kpBQQG3bt3i5cuXxMXFCcMBQDhYyd87OTmZoUOH0tLSwvHjxzE3NxdaOyMjI/z9/Xnw4AHfffcdkZGR/7XN9T9DPuRRXFwsYOwBAQH4+/t3qMSHhoZy4sQJQQaQOyr9+uuvYggoOTmZnTt3CumLPORVaWgfFnzw4AGurq5iXfXw8EBLS0tMSPfr149FixZ1kDEpKyvz8uXLTktboB3iP3bsWO7cuYOSklKH9fzp06ccOXKkA7dVR0eHvLw8nj9/ztWrV2loaGDw4MHY2NiQmJjIoUOHRFdHPqV++vRpMjIycHFx4eHDh9y+fZu2tjYGDRok1lBFRUW8vb1pampiy5YtFBQU4OPjIwZOAWEz25mQs79VVFT4+OOPxcboypUrjBkzhr59+wr2rLGxMQMHDqSpqQlnZ2dqamrQ19fHwMAAAwMDqquruXTpElZWVvj5+eHg4ECPHj2YPXs2I0aMQEFBgVu3bqGsrExwcDA9evTgwYMHNDU1CQeshoYGDhw4QHBwMF26dEFdXZ2ffvqJtLQ0Mbzo6enZqXMZHx/P2bNnKSgowMTEhJs3b6KoqIizszNaWlq0tLQILNg/Ozj/nDJXUlJi5syZ4vnc3NzM/fv3SUhIoF+/flhbWws7UVNTU3r06CH0kKWlpeTl5XH48GHi4+OJiIjg888/B9oRYIaGhuK6MjY27jTbHdqHdx88eMDFixdpaWmhW7duyGQy7t27R1tbGw4ODnTt2pWIiAh+/fVXoD2/mD59Ovr6+jQ0NHDjxg0hn8vNzSU5OZnS0lLGjBkjCnQ2NjbU19cTFxeHmZkZs2fPRldXl9WrV7NhwwYAHj9+TFRUVAcDCDU1NcaOHUtNTQ1Dhw7t9FCahYWFuLYKCwu5ffs2AQEBYsZGzpiVDy9evnyZV69e0dbWxsyZMzE1NSUjI0NsbD08PDAxMSEzMxNtbW3y8/N5/PgxI0eORE1NjYyMDBQVFTExMeHBgwecOnUKdXV1+vTpI/S68s2Pi4uLkDhduXKF1tbWDxrS7nTy2qtXL/z8/PDz8xMOGPfu3RPi+YCAALZu3Up+fj579uwRD62KigoMDAywt7enT58+3L17FwUFBWpqaoT2dc6cOQQEBHDixIkOgG15/JNHKUdX3b9/HwsLC2bMmIGnp2cH7audnR329vb8+eefH3x8tra2bNy4UdABLl26xMWLF/noo48ICgpi06ZN7Ny5k/T0dDZt2iTgw9A+Vblx40b69evHmjVrREXh1atXeHh4MGXKFG7dusXatWtpa2tjyJAh2NnZ8fTpU44dO0ZjYyM7duxAU1Ozw9RyTEwMv//+O01NTaxcuZJevXrx5ZdfdmiFdyb++usv1NTUBIolOzubhoYGgVWqr6+nf//+mJqasmnTJurq6ggKCkJJSYnc3Fw2bdpEc3Mz8+fP586dO+zfv5/Ro0cze/ZsVFRUKCsrIzAwkJCQEF6/fk14eDgtLS3MnTu3w7RrRUUFN2/eRFNTk8GDBzNy5Ejy8/O5dOkSP/zwA9nZ2axatarTyWtRURGampoMGDCAFy9edGgjySHs0K7f/uGHH7h9+zafffYZdXV12NnZ8f79e0xMTITLx44dO4Sd5vz584mOjsbc3Jyvv/6akSNHis0NtCcU69atY968eaSkpIgJaGjXYxYWFvLTTz+JSuXu3bu5ePFiB6TQh4Samhrdu3dHQUGBuro6kajL/bjt7e357LPPWLt2LSkpKfz000+4ubnx+vVrsSCbmJiIln91dTXNzc2Ym5vj4+ODt7c3EyZM4MiRI+zbt4/Ro0fj4+PDL7/8Io7DyMiICRMm0NraysWLF4mLi6OwsJAJEyYQHBxMRkYGc+fOpaCgoNOJHSAGvywsLARzNT09XbBZg4OD+fLLL0X3YOfOnSxfvpx58+axdetW7O3tqaur4/Xr10D7Yrlv3z7BQnV0dCQwMPB/3Ti0trair6+PlpYWzc3N5OfnU1ZWJpJXDQ0Nvv76a44dO8a0adMoLy8X0p8Pjbi4OIYPH46ZmRktLS1IkoSXlxcXLlzooEPX1dVl+vTpLFy4kO3bt3P8+HEGDRrEiBEjSEhIYNmyZSQlJfH111+jra0tvNYLCwvJyMhAU1OT0NBQ3rx5Q0ZGhjACGT16NNra2uTk5PD+/XusrKwYM2YMEyZMoKKiosNAXFNTEzExMZ06PmhPRvv06UNgYCAtLS0dEov79+9z8ODBDn+/srKSmpoa/vrrL1HkmDlzJgBXr15FTU2NN2/eMHjwYLS0tPjhhx/YsmULa9asYcmSJRw4cIDPPvtM3HezZ8/ucH8eOnSIFStWMHjwYBYvXtzBxSg4OBhNTc1OTXMnJiby/v17JEni1KlTzJw5ky1btmBoaCgGh3x8fPj+++8ZOnQotra2vHnzRpi3BAcHixmGL774gmPHjnH48GGCg4NZs2YNZWVl/Pjjj+jo6HDhwgWmTZtG165duXDhgtDYNzQ0iEqkjY0Nq1evFgNcZmZmBAcHk5KSwuDBg1m2bBnV1dUC+/ghce/ePcGxHj9+PFFRUWzZsoWYmBgcHBxobW0lJiZG6Hi9vLxwdXVFV1eX6upqamtrUVJS6mCMMHjwYNLS0vjiiy84c+YMQ4YMoaKigmHDhjF58mRsbGyIj4+nvr6e+Ph4bt68yY4dO4D2DZGCggIVFRW8fPmSbt26ieQ1Kyur08QIefTr14++fftSVFTEtm3b6NGjB0ePHiU/P59JkyZhbW0tEvXk5GQhW2xqauKXX37h+++/p6KiQmAw8/Pz8fPzw97enqamJvLy8gRqq62tDX9/fwYNGsTZs2dF4hoZGcny5cs7dOLkg8YODg588sknGBkZCXrNh0ZBQQEHDx4kMDAQbW1tDhw4wJ07dwgJCcHY2Bg1NTUxrwTtlsI6OjpkZmYyYcIE5s6diyRJKCsr4+DggK6uLt98840o9EF7F8LFxYXZs2fz4MEDIQPQ1dWlV69eODg40KtXL3EvKioqCkReW1sbWVlZbN68mdjYWOzs7P7rc7/TmY+RkRHTp09n/fr1omXTu3dv9u3bJ/QLY8eOFR7cgNAcyisAT58+JSYmBhsbG1auXImKigp5eXmcO3dOTMTKH+7Qru88ceIEP/74IwADBgxg/PjxKCoq0tjYiIODAy4uLiJbr6uro7y8HBMTkw6V2A8JeRXm4sWLXL16VbAAp02bRu/evZk0aRKenp48e/YMIyMjKioqePr0KR4eHgwdOlRojJYsWUL37t0pKSnB0tKS+vp6rly5QktLC998840gNISEhDBq1CjOnz+PtrY2f/31FykpKQK9JF8c5D/Lk3P5INS/qYbIL5jq6mp0dXXp27cvFy5cYNOmTVhYWODt7c327dvp2rUrkydP5vXr16xZs4Zx48bh4eHB6tWr2bZtG2fOnEFBQUG0+O/cuUO/fv3w9fVFkiRycnJ48eIF8+bNw9nZWVSMWlpaaGhooKGhAW9vb2FLCu0ojr///puqqioiIiIIDw/vtAWu3Bt72rRpAkY/f/586uvraW1tZdy4ccKVp6KiAnV1dcaNGye01HJ707a2NlRVVamsrOTRo0fCbUxVVZVx48aJaXD5xPbRo0dJS0vjm2++Ye7cuSIhra2tZfTo0Vy8eJERI0awd+9e8VldXFxQV1fHw8OjQwXqv0V2djbV1dX4+PigpaVFaGio4KBqaWmhoqLCrFmz6NmzJ+vXr+fcuXM8evSow2uUlZXRrVs3srKyhJlHUVERV69eBdofMAMGDODJkycsWLCAiIgI5s6dy6tXr7h48SLTp09HQUGB+Ph43rx5Q//+/TtsTmbPni0wOP8m5ISOY8eOkZycTFNTE3PnziU4OBhXV1fS0tI4cOAANjY2zJkzR1j+yqtnJSUlJCYm4ujoiJqaGi9fvuyQkJWUlGBnZ4exsbFADslDX18fe3t7lJWV0dLSYvDgwezdu5fBgwfj4ODA6NGjhURh5MiRnU5cAYEGUlRUREVFhaqqKvT09MSa1dLSQnFxsZjgnjdvHpqamkRGRqKkpMT8+fNRUVEhMjKSe/fuYW1tjbe3NzU1NRw4cICYmBhh4ytHZsXExLBo0SL27t2LtrY2GRkZ/PnnnwQGBqKiosKBAweYPXu2WKvl/ufu7u6oq6uLqlNnQv69yu9xubOZXDM4b948VFRU2LFjB9euXWPx4sVMnz4dU1PTDtWnIUOGYGpqKoZK5KisrKws/P39gfZEcfLkyUJnLre8lIednR3r1q1jzJgx/1Hd0dLS6pTzFLS3XrW1tdHV1cXd3Z2XL1+iq6vL1KlTRdUwLi6O5ORk9PT0hD3tsGHDePHiBTExMZSXl+Pl5cXAgQNpbGwkKyuLv/76i3fv3mFoaEhJSQk6OjpYWVkxaNAgKisruXnzJv379+8wYAftMymmpqYUFxeLa2vIkCFUVlbSrVs3FBQU/sMW9L+Fp6cn8+bNE5i05ORkioqKyMjIwMHBAXV1dZGgqaioCEarnM+srq4uPmNsbCzZ2dn4+/szc+ZM4uLiuHfvHvn5+aiqqgo2uKGhIUOHDuXo0aPEx8djZGTE2rVrqa+vZ8CAAaioqKCrq0tBQQFHjx4lJCSESZMmUVdX1+khbYCDBw8yYMAA1q1bR21trRiKkk/5y2kRct1wly5dGDVqFF26dKGiooJ79+6JAfbu3buzZMkSqqurBR2guLiY7OxstLS0cHd3x9vbm7t37zJr1izxfYSGhjJr1iwhe3n//j2//vorT548wcLCgu7du3P79m3heNiZaG1tFZ2ewYMHY2VlxalTp5g+fTpTpkxhzJgxmJiYiI3eyJEjefLkCVu2bCEzM5MvvviiA89bQUGB0aNH4+zsTHx8PG5ubri6uhITE0NtbS1LlixBUVGRa9euUVlZyf79+zEyMuLRo0dMnjwZNzc3li9fTv/+/SkoKKCtrY1Hjx4RGxsL0IED/3+LTiev9fX1nDlzBnV1dVauXCnEvM7OzpSVlZGTk9MhcU1JSemg6WxpaeHt27fCp3rOnDlAe4I7Z84c6uvrWbp0aQe/+ISEBB4+fIhMJsPGxobg4GBGjhyJqalph88m3+nKRdbp6eliuKIz0dLSws8//0xiYiIRERHIZDLOnz9PRUUFc+fOxd/fXyyWL168QEdHhx49eoiFtr6+Hg0NDczNzTEyMmLIkCEUFRVx7NgxmpubWbZsGR4eHkA7u1EO/W1sbGT37t1ER0cLBJaLiwvr1q0jMjJSvLbcQ1nud97ZKCkpob6+HkVFRXR1dVFQUKCyspITJ04wc+ZMHB0dWb9+PdnZ2aLVdurUKVJSUjh79iyenp5MmDCBcePGYWBgQGRkJJmZmSQnJxMeHo65uTlZWVns3buXyspKZs2aJSZcExMTqa6uFtaUzc3NohqTkpIiqtSzZs0iMjLyP3BIHxJy7YycgVpVVcWZM2coLCxkwYIFfP/990D7pujw4cMUFRURGRmJr68vjx8/5rvvvuP58+d0794dJycnysvLefr0KdeuXSMqKorVq1ejoKDQQatXUlJCSkoKISEhYpHPzMxEkiRu3LjB/fv3kclkpKen8/LlSzEsEhwc/K9oEY8fP+bw4cMEBgYye/ZsjIyM8PPzE4mP/MElP8/m5uaoqakJzZyxsTFDhgyhR48eREdHCzmAoqIiBQUFPHnyhKFDhzJ9+nQmT55M3759xdSpv78/jY2NFBcXk5+fz86dO3FwcBAkEplMxrt371BSUmLWrFkoKyt3ulIA7RtlHx8f0ULu0aMHEydOpF+/fqSkpPDtt99y5swZ/Pz8BC9UR0eHXr16CUvnnJwcjh07JqQNgYGBGBgYiMEQW1tbiouLaWlpwdDQEHNzc5SUlOjXrx9OTk6ife/m5iYc4KqqqnByciIlJQVtbW3Wr19Ply5dPmjI4J8hn1ouLi5GQUFBrGeFhYW0tbVhZWWFtbU18fHx3Llzhy5dujBp0iTBuP7oo4/Q0NCgtLSU1tZWYbyRm5vLw4cPiYuLo2vXrlhaWmJsbIyVlRUnT57kyZMnyGQyVq5cycGDB1FUVGTmzJncvn2b0NBQTp8+zfnz58UaJt8o/9N//END3uKvr6/HyckJFRUViouLhczKxcWFxYsX09TUxKNHj9DX16dbt25069aN8PBwjh07xt69exk6dChWVlaCry3vpowYMYIRI0bQ0NAg3OHkSTG0E2nklVEDAwPCwsIICwujvLycN2/eoKenJ6qU8up6ZyIqKgqZTCZoCn/88QdPnz5l8eLFwnLzypUrREdHk5GRITZClpaWqKqqcufOHd68eYObmxtRUVFERUUxffp0srKyWL9+PaqqquzatYvevXszduxYjh49yt27d0lNTeX58+fCIrampkaQd/T19cXztq6ujoSEBMrLyykrK/uPTdqHxNixY4VjpZxU4eHhIYb8cnNzcXJyEpu5f4aenl6He7+hoYHq6mo0NDRE4ebs2bOCoGFiYtJBulFXV0ddXR2jRo3qYDVcX1/PvXv3uH37NnFxcWJITl9fHw8PD2Hv/aERHR3NiBEjxD3Z1taGTCbr0DFavnw5Z8+eBWDy5MkCFybfYAJoa2t3GBpsa2vj1q1bJCUloa+vj5mZmRjUvnLlCi9fvmTWrFl899136Ovrk5SUREVFBd7e3piYmPDu3Tvu3bvH8uXLsbGx4cyZM+Tk5LBs2bJOHZ+dnR3z58/HysoKb29vvL296dq1K3PmzCE6OpoxY8aILp48p4iIiKClpYUzZ85QVFQkdMh6enp06dKFxYsX09jYKOaMhg4dytdff80XX3yBtrY2EydO7IBPg/bc6ubNm7x7947FixcL/Kj8M3br1g0tLS2GDh36X+/FTievWlpanDp1imPHjglNjY2NDVZWVmI6buvWrfzwww98//33eHl5iUoQtLcC5ReitrY2dXV1okRubGzMkydPePDgAf3790dRUZFTp06RnZ3NuHHjWLhwIdXV1ZiZmf1H4grtYv/GxkZRtZW31ORg8Q+Jd+/ekZmZSWRkJFFRUaipqZGbm8tHH33U4eYpKChgw4YNNDQ0MGbMGDQ0NASbNT09nW3btnH48GGcnJxQU1NjwIABHDx4kE8//ZQZM2awd+9evLy8WLt2La2trezevRt1dXUmT55MaGgo58+fZ+PGjWhoaIhEGdp3iJmZmQwdOhRfX98OrNsPDRUVFeEgJgcsv3v3DicnJzGRqKamRktLC5cvX2bVqlX89ttvrFmzho8++ojt27cTFhbGwYMHWblyJQcOHGDChAlMmzYNOzs7qqqq0NfXZ9KkSSQlJXHp0iUaGxvp3bs3z549Ey0gHR0dfv31V2QyGYsWLcLIyAhHR0ciIyP/A7XWmZAz6goKCoiOjiYoKIiIiAhhTSuPuro6Tp8+TXR0NH369OHAgQMEBgZiZmZGY2MjSUlJzJs3j4CAAP744w8mTpzI/PnzRVtOUVGRsrIyjIyMCAwMpFu3btTX1/PkyROuXbvGiRMnePfuHWPGjOHvv/9GWVmZioqKDsfW2SEfeRQWFnL16lWuXr3KyZMnCQoKIjw8XJgNNDY2smnTJsGcHT16NBs2bEBfX5/U1FRUVVXp1q0benp6uLi4MGrUKNra2vj777/ZsWMHtbW1ohWnrKzML7/8Ql5enrje+vfvz8WLF/npp5/IyMjA0tJSDB5JksSGDRu4e/cuISEhzJgxo9N4HmhPXpuamkT3o7KyUlR99u/fz9WrVxkwYAC//fYbjo6OpKSkEBYWhpmZGffv3+f69esdXq9r167ExsZib2/P3LlzBfotPT2dx48fU1JSgqurK6NGjcLU1BRTU1Oqqqp48uSJqECuWrUKb29vXFxcBDfU1taWsrIyYcLR2ZA7z/3xxx8oKyuzadMmNDU1xSZLW1ubrKws9u3bx19//UVUVBR2dnYkJiYSFxdHaWkpqqqqeHp6UlNTI2RF8mq+srKy0Ci/f/+ev/76iwMHDvDq1SsmT54shlLkG8WbN28ybNgwfv75Z9EtSUpK6lSrWR5Xrlzh119/xdjYmE8//ZT+/fsLqL+CggI9e/akrKyMyspKfvzxx/+ohj579oza2lrR3cnJyWHMmDFYW1t3+LsaGhqik/TPyM/PJy4uDjU1NcLCwlBRUeH69eusXLkSmUzG9u3bGTBgAA8ePEBDQ4PIyMhOyczkm1B5DB8+nOzsbHFfKykpiYqzXE/Y0tJCVVUVycnJ2NraYmVl1cEdSyaTYWhoSN++fcnKyiI6OhplZWWhT+zZsyeWlpYYGBiIf/f06VM2b96Mh4cHP/zwA9Auwdi3bx+7du3i3bt3LF++XMheOhM6OjpUVlby999/k5SUxPTp05k6dSoqKipCVid3n/tnyAkM8klyRUVF+vbti7e3NyUlJchkMmbOnEljYyNXr14lPDycnTt3Cp1yXFwc5eXluLq6io5OSUkJFRUVQraXnJzMp59+yrJly9DQ0EBXV5fBgwd3OnkdPnx4Bxi/oqLif+hK37x5A8DChQtZt24d0J64Hz16lNbWVhYuXMiIESOEYYyjoyOKioqsXbuW1NRUdu3aJe7B+/fvo6Ojw6ZNm4SMTT7sV1hYyHfffceYMWP46aefGDVqFD4+PmhoaKCtrd1piRm0y0n+5+bT3t6eH374ocO1V1JSws8//4y2tjbz58/n559/Zvny5SQnJ1NZWYmurq5AF0L7gPfnn3+Ompoaurq6rFixAmVlZZYsWcLr16/ZvHkz165dY+LEiUydOpVRo0Zx5MgRmpubhS2sPLENDAxky5YtQnsr77T/36LTyWtVVRVhYWG0traSlJQk2hyZmZnMnj0bDw8PDAwMuH37tqhEyBcZSZLQ0tISk3f5+fn8/fffODo6oqysLFoPVlZWtLa20traio2NDV27du0AHpdHQUFBh0reP1tMcoxDZ5ODhoYGXrx4gbKyMoGBgVhbWyOTycjPz6elpUUkKwUFBWRmZlJQUICDgwNWVlYiKdHT06O2thYtLS2MjY2FVle+O1myZAlPnz6le/fuvHz5Ujig9OvXj9LSUiwsLAQLUVdXl5ycHJSUlLhz5w6xsbFYWlp2YNv9m0hMTOT+/fuide/i4sLSpUsJDAxEX1+fOXPmcO3aNaFn6d+/PxEREZw/f567d+9iZ2dHREQEjx8/FhZ38p23vNJuYGCAmZkZFy5coKSkBE9PT3r37k1iYiIHDhzA2tqakpIS3N3dRbtbUVGRuLg4iouLhe63s+iTiRMnsnbtWtTU1MjOzqa2tpZhw4YJEwZ51NfX4+vrS3R0NPfv3+fZs2cMHz5cVP0NDQ0ZMGAAYWFh1NfXk5SUxPbt22lsbGTz5s3o6uoKm7vXr18Lu9GmpibS0tKE9MPGxgZnZ+f/2HDJZDKam5tpbW3tNCrLzc2NkJAQUlNTxUNM/hm9vb3FoJ2Wlhba2to4OjrS1taGubl5B+5eW1sbXbt2pWvXrty8eZPMzEw8PDwYNWoUbm5upKWl0dTUhK+vrxjAyMjI4MWLFzx69AgTExNcXV3x8vIiOzsbW1tbrl+/zt27d0lPT0dDQ4Nx48b9qwr6xYsXMTAwwNTUlOHDh9PU1ERDQwPp6ekUFRUREhIiZAPXr1+ntLSUxYsX8/btW7Zs2ULx/8feeYdVdaVt/0fvvYNUpQiIiKKgYO9i770kMXosiYlJNDHRRNNMMYl61JgYey9oFHuvgJWq9N577/v7g5z1ykxmRubLO07ycl+XF8I5HNbae+21nnI/95ObK7i3PXr0oLa2lpqaGjIyMiguLkZdXV0Uzuzfv1/I2enr65OcnEx4eDg+Pj7o6Ohw4sQJEhMTmTx5Mr17927x7CmE4lvbEEUBRSHqrl27RCXy8y0uCwoKqK+vp6CggJqaGrp3705qaqrY3H19fXFzc6OsrIzo6GgCAgLw9PQU84iMjCQ7O5uePXuyaNEiDA0NuXHjBpaWlhgZGZGcnEx+fj4RERFMnz6duLg4CgsL+eyzzxg3bhyDBg3C0NCw1RQsaD7cFI0B8vPzhRGjkOPp3Lmz0H6ePHky2tra3LlzBzs7OyIiIkQrZUWAw9vbGwMDA8zNzamqquLhw4ekpKTg5+cn9v/y8nJUVVUpLCzkyZMnFBUV4eDgQGNjo2g8oiiaUqhhmJmZiUBLa4xXLS0tkbkChCZrZmYmJiYmlJSUUFVVhbq6OkOGDBF7Wnx8PHV1dQwZMgQ1NTUuXryIgYEBGRkZREZGoq6uTkhICDdv3uTx48ctaCnZ2dno6uoSFRVFbW0tgwcPxtjYmMLCQkJCQggKCiIwMJDCwkKRpjc0NMTZ2fnfcpYzMjKIiIigqqqKoKAgEUx5fqyK9tHl5eU0NDRgZ2eHiorK7ypUlJWV8cUXX6Cnp4dcLsfNzY0vv/yS0aNH4+LiQllZGVeuXEFJSQljY2OMjY1p164d5eXlfP755ygrKxMYGCgiv9OnTxcGmLa2dqsl66C5kDYiIgIrKytMTU2prKyktLQUZWVltLS0ePz4Md26dcPHx0e0qL979y579uzh1q1b6Orq0rNnT+EcPHr0iMuXLxMbG4uqqirm5uY8efKEESNGoKysjKqqKtOnTxdSaXK5XHS/e/r0KVOmTGHfvn1MmjSJgQMHkpSUJKL2QKszrgoH197ensrKSj788ENMTU2FpnF2djbm5uai7ba1tTWGhobEx8eTlZX1u9qyJSUlVFRUiCK0hoYGevbsiYeHB7NmzSIsLIwTJ05QVlZGu3btsLS0RElJ6XebDp06dQplZeXflUX7R2i18Wpqasrp06fp2LGj6AsfHBwsNPUA1q9fz/z581u0bvw9ofnY2FhSU1Px9fUVrTJ79erF3Llz0dbWJjMzkx49eoiNq6ioiNraWtEx5erVq3z55Zfk5uayYsUKsXmdPHmSefPmCUkOBYfvRWBnZ4e+vj6rV6/m0KFDBAcH06FDB6HD5u3tTc+ePenWrRtHjx7l+PHjPHjwgKKiIvEZNjY2bNq0CUmSRPtcBYYMGcLBgwfx9vZGQ0ODFStWYGhoyI8//siGDRuoqKiguroaX19f5s2bh4GBAbt37yY+Pp527drRv39/Bg4c2GrOy/PIy8vj+PHjbNmyRUhgTJo0SfRKr6+vZ+zYsYwfPx4TExNSU1OJjY3Fz8+PWbNmoaOjI1LMy5Yt45VXXmnhvT0v06Otrc306dOprq6mtrYWd3d33nvvPSZNmkRCQgLbt29nzJgxQLNnq4jUjB49ml9++YW8vDz27dvXqvklJycza9YsPvzwQ6ysrFi/fj179+7l7NmzYmxVVVU4OTmxfv16XFxcuHLlCubm5kiShKmpKUOHDuWVV17Bx8eHxsZGFixYgKWlJZMmTSI0NLRF6q2hoYFdu3axefNmPvroI+E9W1paMmfOHMrKyli1ahVeXl6i4raurk5wHdXV1Vt9qPTr149OnTpRVlaGjY2NUP3YuXMnPj4+Yv4ymQxdXV2OHz8uuqgsWbIEa2trqqurkSQJbW1tGhsbhf7wzz//LAz9w4cPCw1lBdVly5YtbNmyBZlMxo8//oiqqqo4pH7++Wd27NiBoaEhK1euZPz48f9Wdy2Ao0eP0qNHD4yNjenQoYNwLOLi4oSBZmZmxtWrV5kyZQpBQUHMmzePa9euiej7+PHjRTZHW1tbtL89c+YMBgYGorWtoqPYkCFDhFTYli1b2L17NxMnTkRFRYVbt26hoqKCj48PPXv2pKKigpKSEtq1a4e7uzsWFhat6nj34MEDunTpwuTJk6mtreWXX36hqamJrl270r17d8LCwqiurubBgweYm5uzfv16evfujYaGBnv27BEp0q+//pru3buTkZFBfn4+hYWFIrqnq6tLZGQkxcXFDBgwgN69e+Pt7Y0kSRQXF/PVV18JebdJkyaxbNky/Pz8uHbtGrNmzeLOnTv89NNPDBkyhKVLl7Za53XQoEG4uLjw5MkTLC0tRZZn8+bNeHp68umnn+Lt7S2Kfh4/fsyzZ8/o1q0bRUVFIopZVVWFiYkJlpaWxMfHi9bH+/btE3q9iv1fS0sLVVVVsrKySElJwcvLS0RIFaoEu3fvxsvLS0TXnJ2daWxsbLWMVFRUFHZ2dhgYGJCVlcX9+/eprq4W0cOEhATy8/MxMjJqcR5aW1vTqVMnVFRUhIJPXV0d9vb25OTkkJOTw5tvvimKxxTZxKSkJDIzM9HW1mbLli3cvXuXzZs3M2LECEaPHs3JkycJDg4WhrqOjg6zZs1i6dKldO3aFUmSWq0RqtBR9fb2FnvAo0eP2L9/Py4uLixYsICqqiquXLlCXV2dKCT9PSg6GB44cAAnJycKCgpwcnLiyy+/xNDQkMrKSj777DOysrKYMGFCCzWIhoYGYcT17t2bMWPG8OTJEzIyMmhsbBQZw38H2dnZ3L17l/79+2NmZkZBQQFFRUUYGBgQHBzMkydPmDRpEv7+/oSHh7Nu3ToyMzNFRb6lpSXV1dWCt+7s7My0adMoLy9n/fr1VFdXs2nTJnbs2MH06dOZNGmSqAV46623+O677/jxxx/Zvn07w4YNIz4+ntmzZxMdHS1UYjp06CCM49bSWzIyMnj27Blz5syhqamJW7duIUkSS5cuFY6QIsjy3nvviXNSJpNx9uxZdu3aJbJ6igY5hoaGot5DVVW1RfDu5MmT/PDDD8yZM4cxY8b8XWFmUVERVVVVtGvXjuLiYj788EPKy8txd3d/Ydum1cbrkiVLiIqK4uzZs0JPc/z48fTr14+wsDCioqLw9PQUG8mePXu4efMm06dPp0+fPoSGhnLv3j0sLCxQUVGhV69ewvtV9NFVCPteuXKFlJQUIbysqI7Py8sjNTWV06dPExUVBTRb7t27d8fU1JTIyEgCAgIYPnw4I0eObJXxGh8fz6hRo/jyyy+5fv06r732Gu3btxcSPBYWFkiShLKyMgYGBoJcfunSJVElN3DgQLHZxMfHY2BgICI+tra2BAUFkZaWxsOHDxk8eDC+vr5Cv1Gh46bwyiVJ4ujRo9TW1jJq1CgmTpyIJElcvHgRfX39FpSCF4WGhoaoKG9qahIbhKqqKnp6elRWVvLkyROhLacQEh8+fPjfVWabmJi0MFyhOVWWkZGBqqoqlpaWgg+mUJCwtbVl5syZHDt2jBs3bgj+VF5eHs+ePcPOzo6xY8diZGTE6dOnOXjwYKsKYt566y2ysrLIyMgQHXaGDRuGpqamkEPp1q0b48ePB5o5sjk5OVhZWaGjo8OwYcPw9vZmzJgxqKioUFBQADQXg0ybNk1ooyr4VuPHj2fGjBnk5eXx8OFD5HI5+vr6yGQyOnToQGlpqegUVlpaKno8P4/nuya9CNTV1bG2thbFgIqD/Pvvv+fVV19l1qxZaGhoiCjytGnTuHHjBj/99BPR0dF89NFHdOvWTRTDlZSU4OHhgZubW4sItbW1NSYmJi0kjjw8PBg1ahRTp079O+3A6OhoQkNDWb58OZ999pn4eWvTeNDMuVIYqGpqamRnZ1NfX4+jo2MLVRFTU1N69+5NYWEh33//PUVFRSxbtoxp06ahqanJ119/zb59+3B0dGTx4sXMnDmT+Ph4duzYgSRJ9OvXjwULFlBbW4uhoSENDQ14e3szduxYCgsLefToEb1790ZXVxc7OzvxvGRlZREbG0tBQQHe3t5/9xz8K7i4uKCsrEx0dLQoypg3bx6urq6cOHGC77//HkdHR7p164aHh0eLyvSGhgZ69eolIqZWVlbY2trSrl07EhMTefjwIZqamkIWq7i4WAQQ6urqRHRKEe2B5uiMIrret29fZs+eTV1dHQ4ODkRFRREREdHqe6iioiI0nRV7omLvNDMzw9bWFlVVVdTU1IiPj8fQ0BAVFRXu37+PhoYG06dPp2/fvtTX13PkyBEiIiLw9/dHTU2N7du3ExcXh5+fH3p6eiQmJmJra4u6ujoNDQ0i+/W8AZSVlcWuXbvo1q0bKioqREREUFpaSrt27bh79y6JiYktMhP/CufPn2fq1Klij5fL5ejp6bFu3TqampqIjY0lICCAXr164ePjQ2ZmJhcuXMDV1bVF6tXPzw9VVVU8PT0JDAzkzJkzhIaG4uTkxJgxY+jZsyeJiYmkpqZiaWmJvb09ffr0QUdHB3d3d3Jzc7l16xb6+vr069ePp0+fcuHCBbp168aCBQtESlxJSalF+/QXgZubGwYGBpw6dYrLly8zbtw4jIyM6NixI97e3kLqy8rKCk1NTVxdXVFWVubp06ecP3+ehIQErKyscHFxoaCggNzcXF5//XUkSeLjjz9m6NChwjBSdGM8ceKEaMk9ePBgjh07xpkzZ0QWVjGfzp07C23SDRs2YGVl9W+1h3V0dERJSQlVVVXR+EHh4Jubm9OtWzcCAgLQ0dHBwMCADh064OHhgZmZGenp6QQEBBAQEEBDQwONjY1kZmbi4+ODhYUFvr6+AELv+N69ewwaNAgNDQ2ysrLQ1tZm2bJljB07FhMTEzZu3Mjbb79Namoqz549o3///vTt25ewsDDWrFmDh4dHq3XQO3bsSG5uLhcuXCA7O5vAwEAsLCyE1JWiIAxaBp9GjRpFTU0NJ0+epKCgAHd3dxwcHIQkmiRJmJiYtGhPLEkSXbt2ZdKkSYSFhVFbW8u2bdsoKSnB2tqa8ePH8/TpU7Zu3YqlpSU+Pj6MGTOGtLQ0duzYgbm5+d91z/s9tNp4VVNTo0uXLqxdu5YTJ07w888/M2/ePNFJRdF5Q+Gh3blzhz179tCxY0f69OlDYmIi27Ztw8rKijfffFNUbFdWVhIYGIiysrJo+5qdnc23336Lh4cH3bp1o3379hgbG1NQUCB0TxVjUlNT48cff0RNTY3AwEBWrlwp2kS2BkeOHGHVqlUsXLhQtH/T1dXF19eXt99+G1dXV/Lz88VGqaALbN26lXPnzuHv74+DgwMaGhocPHiQW7duMX78ePr3709VVZV4MNLS0oiKihJV74qDPj09nbVr16KkpCRabg4ePJj27dsLA+7kyZOcP3+efv36/VvGq0Ik29XVlbi4OOExKSpzlZWV+eWXXygqKuKnn34Sh6JC4FpXV1dE7ZSUlFrwu5qamsjOzhYNJ+B/jFaF1JaysjIymYwBAwaIA/L7779HX1+fzp0788knnwiayM2bN4mPj2+V8frNN98A8NFHH3H+/HlWrVol0hGHDx/mp59+4tVXXxXGqyI18uzZMyE4r6KiQk1NjRD9V/ShnjVrFv3796ehoYH9+/cTEhKCk5MTs2bNYteuXXz00Ud89tlnzJ07VxD6tbS0WL16dYsx1tXVIUkSGhoa1NXVCT7ViyItLQ1LS0uePn3KrVu3iImJITg4GEAYrAoB9a5du9KhQwc+/PBDYmNjuX79OpmZmXTr1g1VVVXKysowMTFhw4YNfzc2xX1Q9IZXUVFh2rRpjBs3Di0tLdG/XJF1UVdXJzAwsEWaKSQk5N9SxXje+K2srOTcuXNC+9fHx0c4BO7u7mzevJmNGzdy+PDhFp2L7t69S1FRkSgiMzAwwMvLCy8vL65fv86mTZvQ0dERBSlPnz6lrKyMWbNmMWvWLI4cOSKe4dmzZ4v0W2NjI6qqqqioqJCVlUW7du1anVZX8K8PHDjAtWvX2LFjh5CHSUxMJDQ0FEdHR9zd3SkuLiYzM1MYBgoax6VLl3jnnXd48uSJKFRSVLVraGjg4OAguiIpHJA7d+6Izm8eHh507NiR2NhY7OzsRLVxWVkZy5YtE0bC4sWL2bx5syhGfFEkJiYSExODtbW1+Kz27duzatUqzM3NRQbDyckJJycn+vfvz7lz59iyZQvV1dW8++679OjRg5ycHFavXk1SUhJXrlwRxqeXlxe7d+9GVVWV8PBw1NTUsLOzE4W6Ct6hApGRkRw5ckR0mVM0xzE2NiY+Pp7a2lohzfUiKC0tFY5oQ0MDN2/exNHRER0dHVJSUnjy5AlBQUGi7uLq1ascP36ccePGCY6op6enaECjwPDhw9m8eTNOTk68+uqrVFRUCF1iKysrNDQ0mD17trgfV69e5dq1a4wZM4YRI0Zw6NAhiouL8fX1Fde9vLwcPT29f0sH1crKisuXL3PkyBFUVVVZvHgx8+bNa3EO+Pn5tehP/+jRI3bt2sWjR48wMzOja9eu6Onp4e/vz7Jly0hISCAoKIinT58KtRQtLS1RKDRz5kwCAgKwtrYmODiYgwcPcuLECYKCgigqKsLY2Fh0dFJRURHn0PPqEi8KGxsb9PX1SU9PJy0tDUdHR9TV1VFXVxfnBDSfkV26dBFOXllZmaDeKTilN2/eJD8/n6VLl2JkZMStW7ewsLBg4sSJqKmpce/ePRwcHPD09KSiooJXXnkFR0dHUdg2ZMgQDA0NOX78ON7e3kJutLCwkG+//ZaxY8cK/vOLQqHtvmXLFtHcRVF0WlVVJbjtubm5JCUliQzTlClTGDRoEO+//z579uxh5syZeHp6CknMioqKFhSq+vp6rl+/zoULF5g6dSp79+5lx44dvPLKK0BzS90pU6ZQX1/PlStXyMzM5IMPPmD16tXk5eXx4YcfcuzYsRc671ttvG7btk1IPClSeIp+v+7u7qKisra2luTkZFxcXFi4cCFmZmZkZ2fj6+vLwIEDuX79uohopaWlCV6PIoWpqanZQhBcEdVoamrC1NQUfX19SktLsbOz46OPPhLaawYGBgwYMEBsir+nF/vP8OjRIzZs2ICbm5vooV1YWMjw4cOFt3P79m2Cg4NpampCU1OT6upq2rdvz+rVqzE0NMTAwAB1dXW0tLREWtjY2Ji6ujoqKyupq6vD39+f8vJyNm/ejIODgyBt29raoqmpydWrV9m4cSMDBw5k0KBBIpT+1Vdfce/ePUaMGMGAAQNa3c4Q/ofCoWhramRkRGlpKUVFRcIDzcjI4OHDhzx+/JgxY8aIjmEVFRWEhoZy//59iouL0dXVRVVVlZycHBoaGkTU3dnZWbT827BhAxoaGrzxxhvY2dmJMbu6urJgwQJ0dXVFh6Fp06YJT7WmpubfUotQYPr06VhbW1NaWiq0W2fMmIGRkZGIunh5eYkWg9u3b+fixYsYGxuLDm/QHK1QU1PDwcFBFA4oKyszZcoUbG1tyczMFAT9cePGoa2tTY8ePVBXV6euru7vqnsVXLHU1FQMDAxEtKg1yMjI4N69exgaGuLl5YW2tjZqampoaWmJ50bxnFy4cIHY2Fj09fVFwwAFXwz4OymyHTt2UFdXx2uvvYaWlhZ1dXWsX7+e/Pz8Fi13s7Oz8fLywtfXl7CwMHbu3Im6ujrffPON6Mx048YNoqOjf7fA8kWRkJBAVlaWcBzlcjkBAQGMHTuW+/fvk52dzaBBg4SYvcJRycnJITQ0FEtLS8aMGYOdnV2Ljl+Kw8Ta2pq0tDTRbUkRuamurhb8c2tra9LT05HL5YJ7ZmlpSWBgILW1tZw6dYobN260uoAyKioKNzc31NXVW1CrJk6ciKOjIwEBAejp6fHkyRNqamqora2lrKyM8vJyXF1d6dGjB6+88koLuS8TExO0tbVJTEwkMzNTREsMDQ1FL/iioiKUlJQYPnw4nTp1ElSwmpoaKisrefbsWYv03b/TchPAyMiIDh06iPsvSRLt2rWjXbt2hISEEBwcjL+/P0OGDBHP2cCBA9m5cycxMTGi2Mnc3Jxp06ZRX19P+/btMTc3Z9WqVejr64uUf2VlJcbGxoIyoaqqKrh7N2/e5OzZsyQnJ7N06VKcnZ1pamoiPj6eJ0+eiI5YHTp0aNWe079/f8FXV0g3KhybhISEv+MvOzg4MHnyZNEMo7GxUTz7aWlpxMTECCkjPz8/YRioqKiIjniRkZHs2bOHXr16CcPK1taWL7/8EjU1NS5cuIC6ujrLli0Tf7u6uhptbW0qKys5duxYq+9jeno6I0aMwNbWlvr6erHfaWlpiVat1dXVhIWFYW5uLtbciBEjGDx4MOrq6qSlpZGamiokpTp06MCMGTOEExceHk5SUhKTJ09m/Pjx5ObmoqGhQWhoKN27d6dTp06iXkZHR4cNGzYQGhqKh4cHY8aMEc6ZQvavNQgJCeHKlSsMGDAAHx8fLly4QFVVFVOmTBG0xdraWtGyGZrbDwcHB1NYWEjnzp0FPcrMzAxdXV10dHS4e/cun332GU5OTrz11lvC8QgPDxfR6gcPHnD06FGMjY2ZOHEi+vr6WFpa4uzsLApdr127xqZNm1BRUWmRdXpRPF9YbG9vLwxtNTU18Zz//PPP3Llzh/Hjx4tGJ3FxcUKqbOzYsaJtNTTbZdnZ2ezfvx8jIyPRejoiIoIDBw6go6PD0qVLmThxIo8ePaKqqop+/foRHx9PfX09y5cvR0lJCQcHB27cuEFjYyMjRowQmZSbN2/+0zkp/R4X9fcgk8le7I3/xZDL5f+QWPhXnx/89ef4V5gf/PXn2LZO/9rzg7/+HP8K84O//hzb1ulfd36tLwFuQxva0IY2tKENbWhDG14SXjjy2oY2tKENbWhDG9rQhja8bLRFXtvQhja0oQ1taEMb2vCnQZvx2oY2tKENbWhDG9rQhj8N2ozXNrShDW1oQxva0IY2/GnQaqmsPxoymSwQeBPoCRgDRUAk8J1cLg95iUP7QyCTydoBnwBDARMgGwgGPpbL5cUvcWj/K5DJZDOB3b99+5pcLv/pZY7n/wcymcwEGAuMADoBNkAdzevzF+AXuVzeetHE/0L8ldepTCZLAez/wcu5crn8xVXp/wshk8nm0Lwe/xma5HK5yr94z38tZDLZBKAP4A10BvSAfXK5fMbLHNcfhbZ7+NeBTCYbAbwBuPM/e+kD4Fu5XH73ZY7tj8B/y376Uo1XmUy2ClgLFACnab7JpkAXoC/wpzZeZTJZe+AOYA6cBJ4C3Wle2ENlMlkvuVzeuj5v/8WQyWS2wEagAtB9ycP5IzAR2ELzurwKpAEWwDjgJ2CYTCabKJfL/9RVj/9H1mkp8N3v/Lx1/UD/O/EY+PgfvBYI9AdevM3gfydW0WzwVAAZgNvLHc4fjse03cM/PWQy2ZfAu0Ahzc5/AdABGA2Ml8lks+Ry+d6XN8I/DC99P31pxqtMJptIs+F6CRgnl8vL/+b11rfJ+O+DnGaDYKlcLt+o+KFMJvsWWAZ8Cix4SWP7QyGTyZRojhwUAseB5S93RH8I4oBRwJnnI6wymex9IAwYT7Mh23rV7/8u/F9YpyVyuXzNyx7E/wbkcvljmo2fv4NMJlNEen78T43nfwnLaDZ4EmiO3l19ucP5Y9F2D//8kMlkljSfe7mAl1wuz3vutX7AFZqzW38F4/Wl76cvhfMqk8mUgS+BKmDa3xquAHK5vP4/PrA/EDKZzAkYDKQAm//m5dVAJTBTJpPp/IeH9r+FpTRHB+bSPLc/PeRy+RW5XP7r31ID5HJ5DrD1t2/7/scH9gfi/+A6/T8DmUzmCfgBmcCZlzyc/y/I5fKrcrk8/s+e5Wgt2u7hnwr2NNtUoc8brtA8d6AcMHsZA/sr4mVFXnsCjsBRoPg3jognUAOE/RV4ITQbcgAXfsf4KZfJZLdpNhr8gMv/6cH9kZDJZB2BL4Dv5XL5DZlM1v9f/c5fAArnquGfvuu/H/9X1qmGTCabAdjRbJBHADfkcnnr+kf/ufD6b19//ovP86+Mtnv450E8zTUR3WUymalcLi9QvCCTyXrTzPENfklj+6Px0vfTl2W8+v72NRd4SHMxjIBMJrsBTJDL5fn/6YH9gVA0II77B6/H02wUuPAnNgpkMpkqsIdmPuj7L3k4/xH8NudZv3177mWO5Q/A/4l1CljSvE6fR7JMJpsrl8uvv4wB/W9CJpNpATOAJpr52W34k6HtHv65IJfLi2Qy2XvAt0CMTCYLpplG155m+tlF/scZ+bPjpe+nL0sqy/y3rwsALWAgzV6JJ3Ae6A0ceTlD+8Ng8NvX0n/wuuLnhv/7Q/lfxUc0F9jNkcvl1S97MP8hfEHzWg2Ry+XnX/Zg/j/xf2Gd/gIMoHnD1aHZWd4GOABnZTJZ55c3tP81TKL5np2Vy+XpL3ksbfj30HYP/2SQy+Xf0VwHoQq8BqygufA3Hdj5t3SCPyn+K/bTlxV5Vch9KNEcYX3y2/fRMplsLM1RoD4ymcz/L0Ih+D0o/fb1T8v/kclk3WmOtn7zF75PLSCTyZYCb9NckT/zJQ/nP4E//TqVy+V/W8UdBSyQyWQVNN/LNTRLov2VMP+3r9te6ija8P+Dtnv4J4NMJnsX+Az4AdgE5NCsqvA5sE8mk3nL5fJ3X+IQ/7/x37KfvqzIq0I3Muk5wxWA36J3imhW9//oqP5YKCJWBv/gdf2/ed+fCs/RBeKAD1/ycP4jkMlki4DvgRign1wuL3rJQ/oj8Jdep/8CiqK73i91FH8wZDKZO811BRn8yeUG/6+i7R7++SCTyfrSXIh+Si6XvyWXy5PkcnmVXC5/SLMxlwm8/VuR7F8R/9H99GVFXp/99rXkH7yuMG61/veH8r8GxRxd/sHrzr99/Udcw/926PI/c6uRyWS/957tMplsO82FXG/+pwb2vwGZTPYmsIFmL3PAXyT9A3/9dfrPoLiHfzUlhbYinz8/2u7hnw9Bv339OwkwuVxeJZPJwmg2YrsASf/Jgf2H8B/dT19W5PUGzVXazjKZTP13Xvf87WvKf2xEfzwUC3jwb9JgAjKZTA/oBVQD9/7TA/uDUAv8/A/+PfrtPbd++/5PTSn4jYS/gWYdxn5/IcMV/vrr9J/B/7evf5mDRCaTadJMZ2mi+dlrw58MbffwTwuN377+Izksxc/r/gNjeRn4j+6nLyXyKpfLC2Qy2SFgOs0FP6sUr8lkskHAEJrTlH/aSm65XJ4ok8ku0FypvYjmzlMKfEyzd7JNLpf/KTVRf6N3vPp7r8lksjU0e5e7/sztYQFkMtmHNAtLPwAG/0WoAgJ/9XUqk8k8gOy/vW8ymcyeZk4a/DVEwxWYCBgBp9uKfP60aLuHf07cBBYD82Uy2Ta5XJ6peEEmkw2jORBQQ3M3wz8l/pv205fZHvYtoAfwwW8aaGE0i/yOBRqB1+RyecnLG94fAhnNC/UHmUw2AIilec79aE7DfvASx9aGfwGZTDabZsO1keaNaenv0CNS5HL5zv/w0P5o/JXX6URghUwmuwok0ywU3h4YAWjSzCf8+uUN7w+Hosjnz96NqQVkMtkYYMxv3yp6p/vLZLKdv/2/QC6X/xW6+kHbPfyz4ijNHUMHArEymewEzQVbHWmmFCgBK/7krbb/a/bTl2a8yuXyPJlM1oPmqOtYmkXQy2nuIvK5XC7/06cpf4tqdaPZABoKDAeyaa5E/PivFsX7C8Lxt68qwJv/4D3XgZ3/icH8b+Evvk6v0qxl24XmtJYOzVz7WzQXHO75q3T8+a1ZSAB/zSIfb2D23/zM6bd/AKn8BVpSt93DP+89lMvlTTKZbDjNGawpNNs12kARzffyB7lcfuElDvGPwH/NfqokSX+JfbsNbWhDG9rQhja0oQ3/B/CyCrba0IY2tKENbWhDG9rQhlajzXhtQxva0IY2tKENbWjDnwZtxmsb2tCGNrShDW1oQxv+NGgzXtvQhja0oQ1taEMb2vCnQZvx2oY2tKENbWhDG9rQhj8N2ozXNrShDW1oQxva0IY2/GnwwjqvMpnsT6+pJZfLlf7Ra3/1+cFff45/hfnBX3+Obev0rz0/+OvP8a8wP/jrz7Ftnf5159cWeW1DG9rQhja0oQ1taMOfB5IkvdC/hQsXSgsXLpROnTolLViwQDpx4oSkQF5enlRZWSlJkiTV1NRIK1askPr37y9t375dKi0tlSRJkurq6sT709PTpS1btkgrVqyQfv75ZykpKUmqq6uT8vLypPT0dOnRo0fSd999J61evVoKDQ0Vv/f6669LgLR27Vrpb3Ht2jVp586dUlJSkiRJklRUVCR98cUX0pw5cyTF2F9kftHR0dLWrVslDw8PydHRUTp27Jj4G7NmzZIA6ZtvvhE/Kyoqkurr66X6+nrxsxs3bkiLFi2STp06JUVGRkp+fn6SqampFBYWJkmSJD169EjasWOHFBYWJhUWFkrffvutpKmpKfn5+UlhYWFSdXW1+KwffvhBsrS0lD755BPxs4qKCvH/xsbGF5rf83NcuXKlJEmSVFtbK927d08qLCwUn1dTUyPV1dVJTU1NUmNjo9TQ0CD+TmxsrLRhwwZp+vTp0ueffy7l5eVJkiSJ9/z000+SpqamFBgYKNXU1EiSJEmZmZnS6tWrpc8//1zKysqSJEmSKisrpRMnTkg//vijdPv2bam4uFiqra2VGhoapNzcXCksLEy6c+eOVFZWJkmSJFVVVbXqHirQ1NQkNTU1/d33f/vz0tJSKTo6Wrpw4YK0fv16adasWdK3337b4jorrteFCxekXbt2SXfu3BH3/fHjx2JuJ0+elBYsWCDdvXtXkiRJiouLE2tj+vTpEiBt3bpVkiRJioyMFOs1Kyvr35rj48ePpVOnTkmxsbHiZ8uXL5dMTU2l7du3S3+LCRMmSFpaWtKvv/4qSZIklZSUSCUlJVJDQ4N0+PBh6euvv5bOnDkjffTRR5KZmZlkZWUlTZ06VXrjjTekd999V9q2bZsUExMjPq+qqqrFderfv79kZGQkRUZGStHR0ZKZmZk0cOBASZKkVq/TUaNGSeHh4eLepaWlSVu3bpXmzZsn7dmzRwoJCZH69esneXt7S48ePZIkqXmfyc3NFeMpKCiQQkJCxLMnSZJY1xUVFVJ+fn6L8T+/T0mSJH388cfS3LlzpadPn0qSJEnV1dXS4MGDJV9fXykhIUFKS0uTRowYIS1btuyF56h4z7Vr16SysjLp9u3b0sCBAyVAmjt3rlReXi7dvn1bMjQ0lADJ29tbevjwoRjT2LFjJTs7O+nUqVPiZytWrJDc3NykGTNmSNu3b5cOHDggFRcXS5IkSTNnzpQ0NTWlnTt3ivdv2LBB6tGjhzR37lxpz5490vHjx6WwsDCpsbFRvOf5Z0SB1t7DYcOGSYDUv39/afbs2ZKampo0cOBAqbi4WAoLC5OWLVsmRUZGStXV1dLnn38uHT58WJIkSdq9e7c0ZMgQ6eDBg383htzcXKmoqEiSJEl68uSJ9Msvv0gxMTFSQ0OD9PPPP0taWloSIH366afiPTdu3JAkSZJ+/PFHydTUVNqzZ49UWVkp9enTR7KyspISExMlSfr39prCwkJp4MCBkpaWlnT8+PEWY62vr5euXr0q/frrr+IslCRJOnTokBQcHCxJkiRdvXpVsrS0lKZMmSJer6qqkhoaGqTS0lLp6tWr0vr166WNGzdKkZGRUkpKinT16lUpJiZGqqurk5KSkqRHjx5JOTk5Unx8vHTt2jUpPT1dfJZif1YgJSWlVXPct2+fNHnyZGnHjh1iTu+9957k4uIivfHGG+Jz7969K3l4eEiA1K9fP2nlypXSxo0bpcuXL0sZGRkt1tbzaGhokKqqqqT8/HxpzZo1EiCNGTNGamhokDZu3CgBLc6/vLw8sTbLy8ulCxcuSMHBwVJGRoZ4T2vXaUlJifjdiooKKSQkRLpw4YJUVVUllZeXS/n5+ZIkSVJiYqLk7+8vARIgbdiwQfze4cOHxTM7f/58qbCwUMrPz5e+++476ccffxTzb2hoEOPPzc2VQkNDpVOnTkkXL16UYmNjpaqqKnGfBg8eLAHSm2++Kf7OypUrJUtLy1bdw+TkZOn27dtSUlJSi3NdkiQpPDxc2rNnjxQRESGdOHFCGjFihLjXS5YskZSUlKQ9e/aI9xcUFIj/l5eXS6GhodKePXukI0eOSCkpKeIaKjB//nwJkPbv3y9JkiRt375deu+998T+FBMTI1lZWUleXl7iHD137ty/nF+r28N+9tlnPHv2jJqaGjw8PHB2dsbMzEy8rqyszMiRI+natSvt27dHQ0MDgPLycpSVlTE0NERfXx9zc3OSkpIwMjLC0bG5C+e2bdvIyclhyZIlvP7666SmpqKjoyM+e/78+aiqqvLgwQN2797N9OnTefbsGb/++iseHh4MHTqU2NhY4uLiCAwM5L333qOwsJAPP/zwhefn5OREVlYWysrKVFZWoqmpCUBWVhaenp58+eWXjB49GoCmpiaMjIzE2CMjI1m/fj2BgYHU19ejo6ODmZkZkydPJjk5WbzX29ubHTt2cODAAVatWsXIkSNJS0tDVVUVSZJIS0vD2toaXV1dpk2bBoCqqiqpqanY29sTExNDaGgoAwYMoGPHjq29hXzzzTdER0fj6upKQUEBGRkZeHp6smDBAlxcXABISEigqKgIT09PtLW1UVZWxs3NDT09PZqamrh48SLx8fGsXr0aOzs7tmzZwo4dO5g2bRo9e/bk1q1bDBgwABUVFerq6tDT08PKygqAHTt2EBISIu6ZoaGhGFtjYyPXr19HQ0ODHj16AKClpdWq+X355ZeMGDECT09PcZ+UlZVRUlISf6O2thZtbW0A9PX1KSws5ODBg5SXlzNx4kR8fHyIj49HQ0MDZWVlrl27xqFDhygoKGDcuHH4+/uTlJRETEwMqqqqqKioUFxcTF1dHTY2Njx+/BgbGxucnZ3Jyspi7969aGtr88MPP9CvXz8APD092bZtG+fPn6d3796tmmNBQQEAP/zwA3fv3mXDhg24ubkBMHnyZLp06YK3t3eL33nw4AE6OjqMGDGCqqoqfvjhBw4cOMDQoUNZvXo1Y8eOJSYmBjU1NaDZsVVSUsLZ2RkrKyvU1NSorKzkwYMHpKam0rNnT9TV1QkLC6OkpARVVVV69OhBv379MDAwIC4ujq5du9KnT59WzU2BoUOHoqenR01NDVeuXGHTpk0UFRUxZ84cpk+fzs2bN7l37x7V1dUUFja3C1dTU8Pc3JzExEQ2bNhAWVkZQUFB2NvbExkZiZ6eHu3atUNVVRUdHR2UlJTEOgC4c+cOu3btIiMjA0dHR9q1awfAkiVLGDNmDHPmzOGLL77g8uXLXL9+HV1dXcaNG0eXLl1aPT8bGxv09PTw8PBg5MiR6OrqMnXqVHR1dYmOjqakpAQ1NTVeeeUVVFVVaWxsREVFhU8++YQjR46wf/9+MjIymDRpEm+//TbGxsYcP36csrIy3n77bfFczZ49G3t7ezw8PAAIDw/nxo0bZGRkYGtrS01NDaampjg5OaGsrMyJEydIS0tj8uTJqKqqcuTIEWxsbBg1alSr5/jaa6/h5eVFTEwMSUlJTJ48mTlz5mBoaIivry/V1dUcO3YMCwsLBg4cSHJyMgsXLsTCwoKAgAB+/vlnnj17xkcffUR+fj4HDx6kffv2DB8+HICcnBzu37+PtrY2mpqalJSU0LdvX+zs7DA3N+fatWuYmppiY2NDZGQkysrKvPvuu/j6+qKtrc3q1aspLCzEwsICaP1eU1JSgrGxMTNmzMDW1hZdXV1Onz7Njh07CAwMZNmyZfTp04f169cjl8sZPHgwixYtYty4cURFRXH//n0yMjKYPXs2gwYNAiA2Npbq6mp8fHzQ19cnLCyMffv20b59e7p160aHDh2oq6vD2toaNTU1LC0t0dbWxsLCAgsLC/Lz81m9ejUWFha899575OXlsXbtWuzs7Fi1ahX29vatmqOLiwtDhw4Vz3FaWhqSJNGrVy+GDBki3mdpacknn3yCkpISdnZ2mJmZ0djYCICBgQEAkZGRPHnyBENDQxwcHLCwsMDMzAwtLS20tLR47bXXqKmpwdHRkbq6Onx9fXn33Xfp1q2b+DvGxsZkZWVhZmaGrq4uvXv35siRI7zzzjs0NDTg5OREa1FQUEBubi4uLi7k5uayfv161NXVcXFxwdjYmEePHuHi4oKhoSEzZszA3t4eW1tbunbtKj5jyJAhrFmzhtraWsaNG4exsTF5eXk0NDSQnZ1NaGgoHTt2JC8vj4yMDHR1dXFxccHDw4Oamhpu377NvXv3cHZ2prCwkAcPHuDo6MiECRMIDg7G3NyclStX4ufnx9WrV1s1P3NzcyRJwtbWFmXl5oR7dXU1+fn5aGpq4unpSWFhIVevXiUyMhJzc3N0dHSIiopCR0dHnAkA6urq4v+6urpYWVlRXl6OgYEB1tbWAMJuy8/Px9/fHxUVFTIyMjh48CAGBgYsWbJE7E96enrMnz8fe3t7zMzMKCwspKmp6V/OqdXG671791BTU+P06dM0NTXx9ttv4+XlJS6Guro6PXv2/LvfS0tLo6SkBG9vb/T09HB3d8fS0lIstAMHDrBjxw4CAgJwdXUVk1JsSMrKyvj4+ODj40Pnzp1Zvnw53bp14+bNm6xYsYI333yToKAgwsPDefz4MV27dkVbW5vq6upWzU9TU5OBAwcyatQorl+/jpmZGZIkcePGDbp27Ur//v0BKC4uRl1dHR0dHdLT0wkJCeHy5cvo6+uzatUq8T6AN998U1wfgIqKChISErh58yaFhYX07t2bDRs2UFlZiZqaGunp6URHR2NtbY2trS1Llixhx44dfP/993zwwQe0b9+ekydPEhoaKjaF1kCSJM6ePcuzZ89oamoiPj6e/Px8+vXrh4uLC5WVlURFRVFfX0/79u3R1tamsLCQ6upqdHR06Nevn9igLSwsWL16NcnJyZiYmPDVV19haGjItm3b0NfXx9fXl759+1JRUUF5eTn5+flcuXKFs2fP8vjxY7Hp19bWoqGhgZ6eHvr6+tTV1ZGdnY2NjQ1VVVWtml9sbKww+uvq6lBWVkaSJEpKSmhsbERHRwcdHR1qamrIzc3F3t4eV1dXMjIyuH79OsOGDcPQ0JD4+HiMjIwwNjbm/v37YsMYOHAgzs7OREREcO3aNWxsbNDU1KS0tJSamhosLS0pLS0lPT0dW1tbbt++zblz55g3bx4zZsxoMdbk5GRCQkKEof6iKCgoQEdHh/LycoqLi8U1amhowNrams6dO6OkpER9fT2VlZXcv3+ftLQ0Xn/9dTp16sTTp0/Zt28fkZGRBAQEAM0OUocOHQDo2LGjMBAUqKurIz09nZiYGCRJorGxEWVlZWpqaoiMjMTW1pa33noLU1NTAHJzc3n99ddp3769OMRag4ULF1JbW0tUVBRXr14lJiYGZWVl6uvrUVJSonfv3kyZMoWEhAThGKWkpODg4ICxsTHh4eHk5uYyadIkNDQ0uH//PlZWVhgYGKCiooKWlhba2trk5+ejqqqKoaEh2dnZnDt3juzsbPr370/Hjh3R0NDg6dOnXL16lTlz5tClSxfatWuHTCZDT0+PzZs3t9roAejQoQP19fUYGBiwdOlSli5dCjQ7W9HR0djb2zNnzhxGjBhBZWUlYWFh+Pn54enpiaurK7Nnz+bkyZMMGzYMBwcHpk+fzsaNG3n69CmrV68GICkpCU9PTwYMGABAXFwcjx8/xtbWFmgOKty5c4chQ4ZgYmICQEREBKmpqYwbN46GhgbCwsKwt7f/t4zXsWPHMnbsWL766itu3rzJ8uXL6dy5M2VlZcKp3LdvH5aWlkybNo2YmBi2bt3KDz/8wMKFC7l48SIHDx5k/vz5FBQUcP/+fbG+AAwNDfHy8kJfX5/09HSUlZV5++23GTBgAAkJCezfv5/OnTtjZWXFtWvXMDExYenSpWhoaFBXV0e3bt1QV1dHRUWFhoYGpFa2S//666+RyWTMnj2badOm8euvv/LJJ5/w5MkTcY5lZWXx5MkTIiIicHFxQZIk1NTUsLe359y5c1hbW4t9QfGMaWhokJ+fT1paGsnJyWhpaWFvb4+5uTmampo4OztTVFREVVUVZmZmaGpqkpGRgZmZGba2tmRnZxMZGcmCBQsoKyvj3LlzBAYGimBMa+Dg4CCMx7KyMuLi4vDz88Pd3Z327dtTUVFBZmYmjY2N9OvXD21tbSorK1FSUhLXVvF3Y2JiOH78OD169MDHxwcDAwOysrIoKytDVVUVOzs7Pv/8c/G3e/To0WJvbGxsJCQkhNu3b+Pv78/w4cNJSUnh4cOHXL58mby8PKB572gNlJSUqKioABAOc1FREbGxseTl5fHrr78ye/ZsgoKCkMlkyGQy8btVVVVUVlZiYGDAG2+8QUNDA+Xl5UCzoefu7o4kSejq6nLr1i0OHz7MkydP6Nu3Lx9++CGGhob07t2blJQUYescOnSIGzdu8NNPPzFhwgTGjh3L7t27mThxIoGBgaSlpRETE/PC89PW1sbR0ZGmpiYaGhpQVW02/ZSVlXF2dkZDQ4OHDx+ioaGBh4cH1tbWpKamkpSU1OL90Gw/1NfXU1JSAoCtra3YTxTXQk9Pj8rKSgoKCggICKBLly6EhobS0NDAuHHjUFdXJzExkYKCAqytrVmzZo34/Lt37/LgwYN/OadWG68ff/wxFy5c4Pbt2xw/fpypU6cK41VFRQUVFZXf/b2cnBxSU1Pp0KEDenp6aGhoCCP39ddf59SpU7z11lu88847AKxfv57Hjx+zbNky4aErkJ+fT35+PioqKiKaWVZWBoC/vz9OTk6Ympry448/snHjRgIDA1s7TTw8PIiKiqK2thYlJSWGDh0q5paWloa6ujpGRkb8+uuvbN++nWHDhrF48WK++OILsdAU3rwCGRkZHD16lNu3b5Obm8uMGTNaeIkKb6V9+/YALYy2wsJCzp07x8yZM+nSpQvr1q1j165dLF68GEtLy1bN7csvv8TBwYHQ0FCSkpJYtGgRHh4e1NXVERUVhYuLC/3790dFRQUdHR3hMZ05c4ZOnTrx5ptv8t577yFJEjU1NUiSxGeffUZaWhpKSkrExcXh7OwsFvTgwYMpKipCRUUFW1tbhg0bxokTJ8jJyaGyshJoNpyysrKwtrZm/vz5ZGZmEhYWRnV1Ne7u7q2a34cffij+tuKznz17xpEjR7CysuKVV14BIDU1lZ07dzJy5Eh69uxJly5duHDhAvPmzeOTTz5h5MiRIno5bdo0kpKSuHLlivjcTp06MWzYMMzNzbGxsSEqKoonT55QXV1NYGAgjo6OxMXFoaWlxQcffCAiF6mpqeTm5mJiYsKIESPw8/OjZ8+eLR7gfwVra2s0NTX54IMPKCoqon379hQXF3Pr1i1++eUXlJSUePvtt1FRUWH16tU0Njby7bff0qlTJ6A5w7BmzRrWrFmDtrY26enpGBsbo6qq+rte7927d4mKisLCwoLu3buLNVdTU0O3bt1EJOv5KKbCyNLT06O0tPSF5/Y8NDQ0uHr1KmVlZezdu5fY2Fi++OILqqureffdd9m2bRsRERG4u7tz/vx59uzZw6JFi/D392fPnj2EhYXh6uqKlZUVAQEBwujW1tYW0YRt27bx9OlTli5dSlBQELq6uqiqquLk5ER0dDRKSkpMmDCBjh07ij3gyZMnpKamYm1t3WqD53kkJSWJAwSaDdcFCxagq6vLrl27SEhI4JdffmHw4MHCyYDmCPPatWtJSUkREQwTExPq6+sBsLCw4P79+0yfPp158+bx3nvvievZu3dvAgICOHXqFOvWrUNNTU1kk2pqaujfvz96enrY2tpSUVHB4MGDKSgo4Pr16//2POfOnYu/vz/KysqEhoZy/fp1bt++TUxMDAUFBbi4uHDq1CkKCgpYuHAhffr0QVVVlS+//JLY2FgKCgrQ1NRk9uzZGBoaUlFRga6uLt27d8fb2xt1dXUqKyvJyckRa9DY2Jjq6mqCg4OxsrLCysoKV1dXkQ1MT09nxYoVqKmp8cknnwhnojU4evQoGRkZbN26FU1NTe7fv09xcTErV65kzZo11NTUsGfPHgC2bt1KUFAQ0Byxzc3Nxd3dnc6dO4vPU1dXZ/DgwWRnZ/PFF18AMGvWLJYuXUpFRUULwz0kJITw8HCWL1+OtrY2K1euxNTUlE8//ZQNGzbw6NEjdHR00NfXZ9u2beLZby2ej7rp6elhamqKmpoadnZ2FBQUCGM7NTVVGO6KDEePHj2YOHGiOOe0tLSwsbHBy8tLROnOnTvH2rVrsbS05MMPP/w7p1mB0tJSQkJC+PTTT4mOjmbBggUUFxeze/du8vPzmTJlCuHh4dy9e7fVc7SyshLX1szMjHXr1mFqaoqzszNvv/02R48eZfDgwb/7u4mJiZw/fx4LCwvc3d05fPgw169fZ+XKlYwePRofHx9MTU1RUVHh0qVLYj0YGhrS0NAgPmf48OFiDMnJycTFxVFbW4uBgQG7du3i5MmTPHnyBAcHB5ydnVtlvD4Pxf6upaUlMkuSJOHi4sLUqVPJzc1l0KBBqKiocPbsWVJTU6mrqwOgsrKS2tpa0tLS+Prrr6mtrWXz5s0YGxsDcOXKFXJycoSTrampSW5uLk1NTfTp00c4dIcOHWLFihWMHTtWrHMFIiIi2L17d4uo/u+h1cbr1KlTuXjxImpqavTr1w9lZWXS09MpLy/H2NgYS0tL8vLyKC0txcbGRmwkRkZGqKiooKuri4qKCvr6+kDz5p2VlYWbmxsjRoygrq6Ob7/9lhs3buDr6ysuiiKyERkZSWBgIDY2Nri4uJCamoqNjY14wExMTDAxMaGoqIjw8HDhAb0obt26RUpKChUVFchkMmGYS5IkNj0jIyP09PQAuHz5Mr/++it2dnaMGTMGCwsLsrOzxXjv3btHRkYGmpqaxMbGsm3bNlJTU/Hz8+O1114TG5ckSTx58oSioiLc3NyEAZuTk8Ovv/5KcnIygwYNIjQ0lLq6OjQ1NSkvLxep8NZgzpw5GBkZ0b17d2JiYkS6qqSkhKamJtTV1amoqBCR4MbGRhobGykrKxOe7ZAhQ7CxscHQ0FBEHVNSUsjKysLR0ZEBAwagpKRETEwMDx48QFVVlf79+2NhYcG0adO4dOkSWVlZ6OrqAs2Oj2IzS0hIICoqirq6OszNzcV1f1EYGxtz7tw57O3tBa1CTU0NNze3FoZ+Y2MjhoaGPHjwgKamJrp06ULHjh2JjY3l7NmzvPHGG5SVlXHp0iX69u3L5cuXOXfuHJmZmYLCoXjASkpKRJrdzs5ORKkuX76MqqqqOLQyMzPJzc2lqqoKNTU14VjV1ta2ao76+vpIktTi4IPmyOuFCxeorKxk2bJl2NrakpmZiYODgzi8Ll68iI+PD126dKG0tJTvvvuOtLQ0lixZIoz1Bw8eoKenR/v27QkPD+edd97hwYMHBAUFkZmZiZOTEz4+PoIyVFlZSXZ2NsnJyeTk5GBoaIizs7M4tGJjY1s1PwWampoIDw8nPDycyZMn4+fnh4mJCdu2bcPa2pqJEyeK1J2joyMBAQGEhYUBzY6sggYDzVkVRcosJycHIyMjcnJyOH/+PLdu3WL06NF0796doKAgqqqqyM7OxtXVFXt7e+rq6lBSUkJDQ4OqqirKysoYOHAgXl5e1NbWkpGRwZMnT1o1t6NHj2JtbY2LiwsVFRU8fPiQHTt2iLRlp06dyMnJoampSRiuFy9eJCYmBi8vLwICAlpEtSsrK5kyZQqSJKGsrExVVZV4XUE5UKSM8/Pzqa2txcnJiZ49ezJy5EigOfLXo0cPkRrMzs5GVVWV2NhYoqKi/mFw4h9BkTa1trYmICCA+/fvExUVhSRJ1NbW0tDQwNixY+nZsye1tbV07dqVV199lfz8fEpKSvDz88PPz48ffviBLl26iIxWcnIyBQUFqKmpUVZWRlVVFXV1dTg6OmJra0tRURFXrlwhMzOThoYGzMzM8PX1xcLCgurqarS0tGhsbCQxMRETExNxXVprvPbt25eoqCi2b99Onz59sLa2ZvTo0fj7+6Ourk5jYyPt2rUTzpsiGKKgiXXu3JmioiJOnz6NsbGx2CfkcjnffvstEydOxN/fn8bGRt5//32KioqYNWsW3bp1o66ujurqasrLy0XavampCRUVFVxdXbG2tqampgYTExPGjh1LRkYGu3fvbpGCfxGoq6uTkZFBbW2toMo5ODigoqJCdXU1GhoauLq60tDQQEZGBikpKXh7e1NfX09ubq4IUGRkZNCuXTtmzJgh9gsrKyt0dHTQ1NQUZ2pubi4qKio0NTWhpKSEoaGhON9NTU3x8fFBW1sbExMTMVdvb2+GDh0qngtFFPVFobh+aWlpVFZWikwFNAcpunXrxtOnT0lISMDCwoKEhAS0tbVxdXXFwcGBY8eOkZeXx7vvvktVVRWZmZlkZWUBzY5kfX09t2/fJjs7Gy8vL8rKyoSTWFlZya1bt5AkCV9fXzQ1NbG3t2fMmDHifLS1tWXu3LlcvXoVAwMDOnfuzMmTJ194frW1tdTX16Orq4u6ujrJycmkpaWhqamJm5sbBgYG6OrqtqA/hYaGYmZmxqhRowS1s7q6WqT2r1+/TkpKCoGBgcybN49Hjx6Rnp5Ou3bthDOurq6Oubk5VVVVJCUlkZOTg6WlJcXFxWhqauLl5dWChgDNQY/nnbR/hFYbr3fu3CE/P5/ly5ezfPlyEhMT+frrr1FRUeHVV1/F3NycX3/9lfj4eBYuXCg2BXd3dzQ1NcXmZ2JiQmxsLCkpKaxevRorKysiIyNZvHgxjx8/5sMPP2TZsmVA84aipqYmDv5ly5bh5+cHNBt9gYGBWFtbU1ZWhr6+Pmlpady4cYM+ffqwfPlyvv/++xeeX0hICN999x1LlixhwYIFQPNBfvfuXTw8POjXr594yADx/82bN9PQ0MCECRPw9fVFX1+fuLg4Tp8+zfHjx6mursbS0hJJktDR0cHb27sFV1hJSYm7d+9y8uRJpkyZwpw5c4DmqNCaNWv44IMPWLlyJV9++aVIiXzwwQds27aNjz76qFX3UBHhtbGxwdzcnLKyMrFJKK734cOHKSoqYurUqTg6OvLKK68wYcIE1NTUUFZWJiMjAxcXF9TV1WloaGDq1KlER0dz4MABbGxsgOZN6NKlS6xbtw4TExNsbW2xsLBAQ0NDpNoVRr7icC0uLuaVV16hrq6OPXv20KFDB+Li4lo1vy1btvDVV1/x9ttvs2rVKjFXJycnqqqqiIyMpL6+Hi8vL9577z3WrVvHlClT+Oijj7h06RKrVq3C0NAQPT09du/ezerVq1m7di0zZ85k6NCh3Lhxg2fPnmFoaIiBgYFwPAoKCujduze9evUCmiPnBQUFJCQkUFdXR9++fbGxscHCwoLy8vIWD+2/E9UqLi4mOTkZNTU14WT5+fmxePFiioqKsLGxwdbWlk8//VR42F999RU3btzg008/xdjYmOXLl/PTTz+hoaHB2LFjhfGqoaFBTU0NpaWlFBcXk5mZSU1NDWfOnOHo0aMYGhoKvuzBgwc5fvw4BgYGgkNZUVFB9+7dsba2pra2lqSkpFbPLzMzEwsLCxwdHTl8+DCvvfYa33zzDbt27WLt2rXIZDIqKyt5/fXXgWZunouLC++//z5vvPEGH374oTDKbty4QWJiIhMmTEBPT48nT56IVJ+trS3e3t5ib8rNzUUmk1FYWMhPP/2Evr4+o0aNwtramtOnT6OtrY2pqSnDhw8XRuW6deuQy+XMnTv3hee3d+9eXnnlFUxNTUlOTua1116jrKyMEydOCEfD19eXSZMmAc370LJly4iOjqZfv36MGTOGoKAgnJyciIuLIz09nTfffBMVFRVu376NhoYG+/fvF5FKZWVlEUyIiIgA4NNPPxUGEyD47dBMTYmNjeXUqVOcOHGihXH1olAYl+np6ejr6+Pi4oKnpycNDQ0MHDiQtLQ0zMzMcHR0RFdXV9CgIiIiKCkpoWvXrsTFxREcHExJSYlw9pKTk4mMjCQtLY2wsDDu3buHu7s7mzZtwtLSkurqahEFnTlzJpMmTUKSJIqKisRz5+DgwIkTJ9DS0mrB824N3nvvPcLCwkQQZtGiRfz666+sXr2aM2fOsHXrVmbMmMGJEydYtmwZ7du356uvvmoRAQ4JCeHVV1/l1VdfJSgoiODgYNatWwdA9+7dAfj5559Zv3490JyFW7p0KQMGDCAgIABLS0v09fX54osvUFVVRV1dndLSUvLy8lrQBL7//nu++eYbPvvss1bNMScnh4yMDKKiolBWVha1DNAcKFAYRD4+Phw6dIiamhq0tbWpra1FX19f0K5OnjzJkCFDCAgIYNOmTezbt49ly5YxefJkunfvTk1NDS4uLqioqBAaGsrVq1fp3r07/fv3JyMjg7S0NLp3786gQYPIzs6mrq4OKysrZs6cSXp6uqAFDR8+nLVr17ZqjtAc2d2/fz9xcXHMnz8fPz8/ysvLmTVrFv3792fz5s18/fXXvPvuu1hbWxMfH4+rqyvq6urk5uZSVFREr169eP3111myZImIVkJzpHHZsmXMmDGD+/fvU1tbK57HLVu2CE6yIrpbVlaGs7MzPj4+4jOUlZUJCAhoUSPyoqipqRHGa1VVFRcvXuT48ePo6Ogwe/ZsRo4cSWNjo6AHHDhwgIULFzJlyhTkcjnKysokJSUJm8XBwYFhw4Zx7tw5bt26xdOnT6moqGDQoEFiz83NzSU6OprAwECMjIw4dOgQUVFRrF+/ngULFjBixIgWtpQC/fv3x9LSkp07d/7TObXaeL1//z7Tpk0TBpOhoSE3btxAWVkZJycnamtrOXbsGFevXsXT01MYrxoaGkiSRGlpKbq6umKzsLKyEgdmRUUFo0aNwtfXl+TkZH744QdGjRqFg4MD0Ly4LCwsROEBQJcuXbCzsxNRXWiOFsTExDB48GARpn5RjB49mvT0dMrKyrhz5w7+/v64urpSVlbGtWvXOHLkCObm5piamgrS/I8//khycjJ+fn4i4rZ06VLc3d2ZMGECx44dIyUlhaKiIhHVCAwMpKamhu3bt2NsbMzw4cPx8fGhpKRERF1TU1NpampiyZIlTJ8+HR0dHfr3709wcDAFBQV07tz5hTyUv4Vi866oqKC+vh5JkoiKiiI5ORl/f3/at28votkKj8vU1FT8rcjISBISEnBwcEBZWZmLFy9SX19P//79UVdXJz8/n4SEBNTU1HBycmL06NHU1dWJCFF6erpwghQRRxUVFXJzc7lw4QL6+vr07duXDh06EBER8S8X8d/C1NQUQ0NDUSTi5OREYmIiN27cIDw8HDU1NQICAsTGoKysTGZmJvfv32f+/Pls3rxZUCAU6+rEiRNkZ2dTUlKCra0tnp6eHD58mKysLHx9fXF0dMTAwAB7e3vU1dW5dOkSRUVFwmNfsmQJ7733Hu+//z6AoLsooLjOL4qKigqUlJQwMTEhLCyMPXv20KVLFyZMmMDChQvZv38/27dvx8/Pj969e4sNLy4ujpycHAoLC1FSUqJ///4i2nTlyhXq6+sZPXq0KHYDGDZsGN988w0bNmzg1q1bQHMxla+vLw8fPmTVqlVkZmYyffp0NDQ0yM3NxcDAACcnJ7E5KYr4WoP8/HxsbGz45JNPMDMzIzMzE1dXVzp27Mj8+fPR1NQUlJLS0lKuX79OYmIimZmZjB07lhEjRgDNh/Yvv/xCbW0tv/76K4GBgXh5eWFmZkZxcTFDhgxh2LBhVFZWsn79eu7du0dYWBjt27fn6dOnqKqqYmNjg6mpKRcuXCA6OpqbN28ycOBAYbx6eXmJQrwXhYuLCw8fPsTHxwdLS0tee+01NDQ08PPzo6Ghgfv37wsn/dtvv+XevXsMHDiQ/v37k5eXR0JCgqAWnTx5krNnz7JlyxZcXV3ZsWMH0dHRbN68WVAhFNdJVVUVFxcXnJyccHR0JDMzkxMnTmBjY8PYsWMBRERP4WAquGythWLdZWZmUlxcjKOjYwuDKj09HQsLC8Ftz8/PF85tZmYmR44cITw8HB0dHTIzM/nss89ITk4mPj6e2tpaioqKhHMbERHBxYsXBU+5T58+uLm5iWiS4nmBZsfPyMgIe3t78vLyWLduHb1792514WRubi6TJ08mNzcXc3NzlJSUqKur49GjRyQlJbF161ag+Xk5efIkRUVFpKSk4OjoKIxXNzc3JkyYILIo3t7erFy5ktraWvr27UtjYyO6uroMHDgQS0tLevToQXV1NQYGBuL6lpSUYGRkJDJx+vr6qKiotHCQ+/fvT2lpKdnZ2a2a4969e+nXrx+urq5oamri6OhIREQE+/btIzAwkKCgIBITE2loaMDV1ZX6+nq2b99Ot27dxNldU1NDWFiYCJLo6Ojg4OAgAh1/u/+lp6ezfv16hg4dSrt27bhz5w7BwcH07t2bWbNmCY47wKlTp0hISMDd3Z2hQ4e2am7PQ0VFhfDwcK5evUpAQAAdOnQgIyMDb29v3NzcmDp1Kvfu3RPZJB0dHX7++Wfu379P3759CQgIEEECRcantraWa9eusWPHDhoaGnBzc0NNTa0FFePixYtkZ2djb29P3759xXPdq1cvwbe3tLTE0NAQLS0tERBrDX9ZTU1NrDclJSWsra0ZMmQI1dXVHDx4kODgYBYuXIivry+XL19m//799OjRg7lz5wpnVkFVg+b1Nm3aNOFYhISEkJ6ejqurK2lpaSQmJrJnzx4yMzN5+PAhZmZmREVFUVNTIxwfW1tbHj58yLlz50Sgp7KyktmzZzNw4MA/3nh1dXUVkb+srCxSU1Pp168fnp6eqKurU1VVhaamJjU1NZw+fRofHx/c3d3Jy8sjOztbhPrLyspwcHAQkbfKykpsbGx48803qaurY8qUKWzdupXq6mrB13JxcRGegcJDNjc3x8TEhIKCAuHxqaqqUltbKwjFrYGCIL59+3Y2bdpEZWUlgwYNol+/fty4cYMtW7agqalJjx49MDMzY8SIEcycORNA3BTF7y5ZsoT58+fz6quvsnLlShwcHHBycsLb25tJkyZRVVXFo0ePUFZWZuDAgfTo0QMdHR1cXFwoLi7m7NmzuLq6MnXqVJSUlGhqaqJv376EhoaSmpoqDOjWQsGzKSkpwdDQUDgTwcHBpKenCwWEpqYmamtrqampQU1NDW1tbdLS0vjpp58wMzMT5PojR46wfft2Xn31VW7evMm0adNQU1PjtddeY+zYsQQFBREfH09oaCjPnj2jsbFRUBMUVfMAJ06cIDc3l3Xr1omN/IsvvhBe4Iuib9++uLu7c/PmTc6dO8eYMWNITU1lzZo15ObmMnToUKZMmSLer66ujrGxMTo6OpSUlLRQIrC3t8fd3Z3IyEhOnDgBwHfffUdgYCAhISF88cUXzJ07ly1btqChoUFOTg6HDx/m3LlzYkPLz89n7969XLx4kbFjx+Li4kJNTY1IXTY0NIhN/kWhUO4wMjJCU1OTH374gQcPHtCnTx/s7Oyorq7m3LlzFBQU4ObmJg650aNHt+AeTZgwgalTpwIwceJEPvzwQ9q1a4evry91dXXk5eVhbW3NoEGDiI6OFioKCxYswMTEhKSkJLS0tOjXrx8ymYysrCwaGhqYPn26UD9ITU0VG2BrUFhYSHl5OXp6eiKiCIjnoG/fvgAUFRVx/vx5Pv74Y549e8bHH3/MypUrATh8+DByuVwYOE+fPqWqqoo5c+ZQXFzM+fPn6d69OyNHjuTYsWN8++235ObmMn/+fBYsWCB4Z8HBwdTU1LBixQo2bdqEgYEBDg4OXL16FVNTU0aOHMns2bNbFHL8KwwfPpybN2/y9OlTBgwYwPLly8VriqghNKsDfPrpp/j6+nL48GEKCwv54osvaGpqoq6ujqysLJFGj4+PR19fn5qaGtLS0pg2bRobN25k9uzZAILrq6qqSkVFBSkpKZw8eZIjR47g6+vL4MGD0dHRobGxkdzcXJKTk5Ekib59+/5deu9FoKSkhJGRkXjen0/LX7t2jTNnzoh1EhsbS35+PkOGDEFfXx9dXV1u3ryJsrIys2fPJiMjg/379xMVFfV3hbgaGhrU1taybt06cnNz+eKLLxg2bBiAcJqrqqpEZPJ5+sOVK1dYvXo1w4YNa7Xx+vPPP9O5c2csLCzEmaSqqoqxsXGLArfGxkZ27txJWVkZjx8/Jj8/H11dXYqLi7Gzs2P//v1A87lmY2PDunXrWjwzXl5efP7553h6eqKiokJsbCwZGRniuVZVVSUsLAwtLS06duyImpoa6urq4kyGZid08ODBLFiwoIXx9K+QnJzM3LlzMTU1RUNDAyUlJVJTU9m3bx/KysoEBQXx7NkzcnNzcXV1Zf/+/SxatIhZs2aJyLGqqiqenp6EhoZSXl7OwoULhYGXlZVFWload+7cwd7envHjx6OtrU1TUxOVlZWUlZXx8OFDTp48ycmTJ7l16xa7d+9GV1eXmJgYFi1ahKqqKpcuXQJoNVVQAV1dXTw9Pamvrxep6+joaC5cuEBAQAA9e/akR48eFBQUYGpqiq6uLpcvX+bQoUOsX7+eefPmUVtbS3x8PFZWVujq6pKXl8f169dxcHBgwoQJIntjaWkp6BvOzs7o6+uLCG///v2pqalBU1OTrKwsMjIyREEpIHizr7322gvPra6ujqKiIvT09DAzMxMZlCdPnnDs2DFiYmKYNGkSlZWVBAcH0759e7777jugOVDS1NQkqJ6KTG3Xrl3R0tIiOzubxsZGjh49yp49e7h79y5GRkZkZWURHR3NjRs3MDExwcvLi6CgoBbFrZs2beKXX35pMVZDQ0Oxt/8ztNp4nTZtGioqKuzZs4dVq1ahoqLChx9+KKJY2trafPDBB/j4+HDlyhUhadXU1ERZWRmOjo7o6+tTVlYmNpCqqirCw8OJjY0V/Ki33nqLCRMm8OjRI3bs2MG8efOE4fp89dv169c5duwY9fX1jBo1igEDBghO0++FpP8VLl68yKBBgwgKCsLY2LiFrMiwYcPQ1dVFSUkJW1tbtLS0RPQ0NTWVhIQE8vLyRPoqMjKSGTNm8Prrr/PkyRO2b98ONBsJqqqq6Ovr88orr9CuXTsMDAx4+PAhhw8fFpyp8ePHc+TIEb766isGDhworrG6ujpubm6CJ9dazJw5Ew8PDyZOnCg8RT09PXr27NmCE6qsrMxnn33GrVu38PHxoVevXoSEhLB9+3YmT57MqlWrRFGaYsMoKioSm8jzxHsFt7CkpITp06ezadMmIiIikCSJBw8ekJmZiY6ODr17924h/9VaDho0r4nXXnsNS0tL7ty5g5KSEt7e3rz22msUFBQIbqNiXObm5rz//vsMGzaM7OxstmzZgrm5OYsWLRKHu7q6OsOGDcPLy0vQSTw8PNDR0SEuLo6kpCQ6duzI/fv3CQ4OpmvXrqKCePTo0WzatImtW7cyZswYJk6cyDvvvIOysjKbN28mJCSECRMmtGqOzxdGWVpasnr1atLT02lsbBTRUy8vLyFNp+AXPp/2VWyCS5cupWvXrgwbNozCwkIiIiJISEhg165dgi+rOEx8fHyIiopi3bp1tG/fHl9fX/bu3Yuqqio+Pj6iOEZhkJw+fZrvv/8eMzOzVqe7MjIy+OSTTzAwMBB8QmNjY7y9vcW6O3DgACdOnKCwsBBra2smTJggskILFy7k8ePHLFmyhMbGRoKDg9HR0WHVqlUYGRlx5MgRtm3bhra2NqNGjcLV1VXsK5aWlnTp0gVra2uqqqpE8aIkSQQFBTF58mR69erFjRs3+OWXX5g2bVqroz4pKSnMnDkTBwcHSkpKhGRUUFAQfn5+JCUl0djYiIWFBcuXL8fT05O6ujp27drF3r176dSpEyEhIaiqqtK9e3fmzJmDgYEBZWVlrFixAnd3d06dOsWaNWtISkrinXfeERHYzZs3c/78ecaPH8+4cePw9PQkNjaWS5cu4eDgQFVVFZcvX0Yul5Odnc3ixYtZsWIFn376aavmqIBC4eN5KIoaFYe4mZkZFhYWInpoZmbGjBkzhBxUTEyMUIsIDQ0VBY6WlpYYGBjw7NkzJEni4sWLfPzxx+LvqKioUFpayvTp07GysmLz5s3iIIbmfX3UqFGcPHmS/v37i7X7IsjLy+PChQvcv3+frKwsli1bxqhRowgODhaf8+OPP1JRUcFbb72Fvr4+np6egm/91VdfoaGhIVL55eXlvPnmm2hoaCCXy1FSUiI/P58jR46QmJiIs7Mz/fr1w9HREUmShHOnq6uLg4MDGRkZ3Lp1i/DwcGpqahg2bBj6+vo8ffoUQ0ND6uvrSUxMbNUcFy5ciJWVFcnJydTU1ODp6cnIkSORJAkLCwtqamrQ1dUVPGt7e3umTp2KnZ0dwcHBREZGYmBgwJAhQ3j27BlnzpwRhdk7duxg5cqVSJKEkZERQ4YMEXJg3333Hb169cLZ2Zng4GAxnpiYGKqrq0Vh5cSJE9HW1hZGUU1NzQvP7W8xefJkxo0bJ4InlZWVvPfee2hra/Prr79ibm7OqlWryMrK4t133+Wdd97BwcGBR48ecfDgQaZMmYKzszPx8fGiqHvRokXo6elRXV3N2bNnSUlJYeDAgeJvvv3220yePJmsrCwiIiLw8vISEU5ra2ssLS3Zs2cPJ0+epEePHkydOpURI0aIYMqLIC4ujhs3buDl5SWoCRERERw9ehQfHx8WLlxIx44dyc7OZtCgQS0KyR8/fiyUc7p164a+vr54fhobGzEyMqJ37948ePCAAwcOEBMTw759++jWrRuff/45v/zyC5mZmbRr147s7Gxu3rwpzoKcnBwAUfBeUVFBVFQUr7/++r+sdWm18aoooEpJSRGpl7S0NCIiIrCyssLIyIiuXbvStWtXOnfuzL59+/jwww+ZNGkSo0aNQlNTk6qqKjH5hoYGlJSUKC0t5aeffuLhw4dYWFiwd+9e/Pz8hCSUu7s7fn5+ZGVlCf1RxQ3YuHEjNjY2jBgxgtTUVCRJYuzYsaIasjXYuHEjN27cYN68eYwfPx5AGMPdu3cXRo8Cd+7cISQkhNjYWLKysqiurua1115jxowZfP/997z55pu4u7szfvx44uPjKS4u5uHDh7i7u1NcXIy5uTnm5ubk5eVx7949kpKSOHXqFP7+/piZmZGdnc26desYO3Ysx48fFxIo/v7+KCkptcqDVkCR1lXw4hwcHAT37/l09s6dO/nkk0+AZs+tsrKSmJgYjI2N0dfX59GjR3To0EHoekJzpHLixIkkJiaiqqpKcXGxqB5sbGzEzs4OIyMjjIyM8PLyIj8/n7Nnz5KQkMDcuXNF+kjBgXV2dm61vEtUVBTPnj3D3NycXr16oaqqipmZ2d/xoCoqKigtLcXd3R1ra2usra0pKipCU1MTMzMzkVY0NjZGkiQmTZokuMi3bt1CX1+f7du3Ex8fL4z3Bw8ecOTIEbp27SqiW42NjYwdO5bHjx9z4MABUWgCzWurqKio1Ua6wjOPi4sT2YHnoXgG4X+cPQ0NDcH39fHxQUlJievXr1NUVMSePXuYN28eLi4uHD9+nEuXLpGQkICysjJPnz6loaGBQYMGMWrUKLF2fvzxR955550WUjZxcXGcP3+eqqoqkYJuaGjgzp07/7CK+B8hLy+PyMhIrK2tUVZWJiEhge7duwuVkvPnz/PLL7/w5MkT/Pz8ePvtt0Xk7MGDB1y5coXOnTuzePFioDlN5eXlJeTAFEUdOTk5pKWlERkZKaKLjx8/5sGDB+IaJiQk8PjxY/r27UtgYKAwnvPy8ti3bx+//PKLMAxfFLt37xbRQYUDn5+fT0NDAyNHjhQHiL6+PoMGDUJPT4/IyEiePn2Kg4MDAwcOxMTEhMePH9OhQwfc3NwICwujrq6O4cOH06tXL5qamjhw4ADHjx8XMlHQrJhy8+ZNRo4cKaRuOnbsSHR0NAUFBURERPDNN98IrVkHB4d/KxgAzfe/urqampoampqakCQJbW1tsZ/Gx8eTlpYm6GNPnz6loKAAQ0NDTExMUFNTo7S0lA4dOgiaiIODA+fPn6ehoYFRo0aRlJREbm4uRkZGDBgwgIsXL+Lp6UmHDh3Q1dXl6NGjPH78GA0NDVFtXVBQwJMnT2jXrh1ff/01ZmZmnDhxolWGXUpKCnv37uXJkyfo6OiQm5uLp6en4OaWlJSQlJREXFwc7u7u9OnTR5yhysrKQqbw8ePHeHt7i9qOiIgIevbsycyZM3n27Bk3b94UUn3Pnj1j9+7dwtEKDw9HQ0MDLy8vLCwsOH/+PAcPHqS4uBgrKysCAwMpLy8nNjaWioqKVht3vr6+QPNelZycTElJCc7Ozi0iy9ra2jQ0NIio5Jw5c3BycuLRo0d88803NDU1sXjxYgoLC4mPj2fbtm34+Pjw3nvvUVBQgIWFBUOHDsXIyIht27bh7+8v9tpHjx6hq6srnOvx48cL+oeTkxOzZs1qUfD7fC1Ja1FUVERGRgbQLGWnqamJuro6eXl5REREYG1tTVhYGJGRkUybNo0pU6bQpUsXvLy8uHLlCubm5lhaWnLv3j2RQaioqKCsrAwzMzNcXFzQ0tIS1EBozh43NjaKoEFTU5MwnquqqoiIiCAxMZGSkhLMzMzo3r274Gu/KMLCwjh//ry4bhkZGRw+fJiSkhIWLFhA165daWpqIjU1VdxXxZlkb29Penq6KOguKyvj6dOnGBkZ4ezsLIKQCkO0b9++Qnu4c+fOeHp6Eh0dTWJiIurq6igrKzNo0CAsLS2ZNGkSZmZmvPfee+LZvnPnDjt27PiX2dZWG68KzJo1iyFDhmBqakpKSgrBwcHY2toyatQocYFGjhxJeHg4a9euxd3dnWnTplFbW0t0dLR4IJSUlCgvL29RnafgeSo0OY2MjPjuu+9wcHAQxpViASh4mN27d8fDw4OcnBz09PTw9vYmJyeHgwcPtmpelpaWbN26FRMTE6HP+s/g7u7OihUrgGYvraSkRKRk/f39GTduHHv37mXTpk3k5uaipKTE66+/LlLVzxs5w4cP5+OPP+bQoUMi2qyIjCo2dHNzc5ycnFBTU0NTU7NFNfWLYt++fWRlZbFy5Uo2btzItm3bRJTSxMSEjh07kpqayqlTpzAyMsLV1RVfX1/y8/Px8PBgzZo1REVFMWrUKAYNGkRISIhIcTg5ObF582Zyc3NpbGxk165dbNu2DUNDQz7//HORDnj48KFIcQUEBKCsrNwiGqJwBBoaGlpNjfD09OT7779n+PDhBAUFiVSOsbGxWJvQXH3erl07UUUOzc7ZJ598Igzm3r17c+LECRYuXMjRo0cZOHAgt27dYtGiRchkMtauXUt1dbU4SKqrq2lqauLEiRN06dIFNTU1iouL0dPTY8KECcyZMwdjY2NhvM6bN4+JEydiZ2fHkiVLXniOGRkZdOjQgb1793L27Fm+/vrr320GUFdXR319vRjfDz/8wOHDh9m1axdjxowhJCSEw4cPc/XqVcaOHUu3bt344IMPSEtL45133iEgIICoqCgiIyNxdHRk9OjRLFu2jJs3bxIcHMzo0aPp0KEDy5cvx8XFhbq6Oq5evcrVq1dJSUnh22+/pXPnzpw+fZrIyMhW3UcbGxuOHDmCt7c3z549Y9OmTejp6Ym56Onp0aVLF/z8/AgKCmrhWDo7O3Pq1CmUlJTIyclBS0uLYcOGtUhZjRkzRiiHXLp0ie3bt5OcnCwiWAcPHsTNzY28vDwWLlyIjo4OP/30UwueeZcuXZg1axZyuZyFCxe2SpavqKiIQ4cOMWLECNq3b8/WrVtZt24dr7zyCpMnT0YulwPNadvjx4/j4ODA+PHj+eabb6ioqMDKyoqSkhLBj7148SKPHz/GyckJbW1tqqqqKCwspHPnzmhra3P06FEyMzOZNGmSUG54vrrY2toaKysrKisruXv3LiUlJRgYGHDw4EGUlZWFdmxroaKiQlxcHLGxsaIRi56eHkFBQdTV1bF69WqKi4vZuXMnqqqqfPzxxzx9+hQ3Nze0tLQwNDTE39+fgQMHoq6uTk1NDfHx8UyYMIHAwEB8fX25efMmQ4cOZfTo0Vy+fJnly5czY8YMVqxYwbfffsvBgwf59NNPGT9+vHjWs7KyWLBgAVZWVpw5c4Yff/yRmTNncuDAgReeW0REBGVlZUydOpVJkyYJw0VRbGhubi6KbBSOgbu7Oz4+PhgbGzNx4kTKy8sFh1NLS4vdu3dz7tw5Tp8+TXh4OJ06dcLV1VUYr3+ru7l27VrS0tLYuXMn3t7e9OnTBxsbG/Ly8mhqasLR0VE44Aqt69ZI19XX11NfX0+nTp3Q09Nj7969bN68mT59+vDqq6+iqqpKSkoKsbGxlJWVERkZSWxsLO+//z7Dhw/Hzc2N0NBQPv/8c/H8bdiwQezvHh4ebN26lYCAAG7dusWECRN4+vQpI0eOJDQ0lDfffFPsVdAcfFFASUlJUO/+XSkwaHYyqqqq2LZtG0ePHmXGjBksXboUNzc3du7cSX19Perq6hQUFCCTydDW1hbR0+zsbBwcHIiLi2PhwoVUVlbi6+vLvHnzAJgyZQq6urocP35ccP+fP9MUlDKFcsqZM2fIz89n0KBBfPvtt+zcuZPly5ezatUqoWsfExPTInr7IvNTUP0aGxuFXv/MmTOFg15bWyskJiVJoqCgAEtLS2xtbenXr5/Iyq5Zs4Zt27bx/vvvC1WBu3fvcufOHRYtWsTrr7/OgQMHeP/990WTBwWVxsbGBhUVFbKysrC0tGTmzJkMHDhQ2DnHjh17YZut1cZrSkoKubm5dOrUSaTUJUkiIiJCELGrqqpISUkhPz8fIyMjFi9ejLW1NVFRUUL6KDQ0lA4dOmBsbExUVBSXL19GV1eXV199le7du3P27FmSk5OZMmUKVVVVIgJoa2vLkCFDOHv2LKamppSVlbFy5UpKSko4fvy4iEj++OOPopCsNRGRmTNnkpiY2IJTpWgaYGlpiaenp9A3NTc3x9DQsAVpfseOHSQmJjJ16lQMDAxEytbU1BQ3Nzeqq6uFlA80RxB8fHyoqKgQ0Y/JkycTHx8vCqi+//57IdFjampKhw4dWmi1tRZWVlZIkoSmpiY5OTlcvnxZyI9kZWVx/Phx9PX1GT16NNOmTUNdXV0U+ZSUlAjxd2NjYyorK4XRam1tzd69ezE3NxepiUuXLvH06VO8vb2F4fr06VO0tLQEZ0gRNQgJCRGR9zFjxmBoaCjEzFuLtLQ0UlJSgGY+XGlpKevXr8fd3Z3FixcL3p+qqioNDQ3k5uaio6MjDtqLFy8iSRIrVqzAz8+PkpISHj9+zJ07d2jXrh2dOnWisLBQZB8AoUk7c+ZMjIyMKCgoEJFbTU1NfH19W0ib1dbWYmhoiJKSEjdv3mzV/BT3XV1dHTMzM1RUVCgpKeHgwYOoqqoybdo0tLW1UVdXF/q9jx49QklJiUmTJonoj7u7O2PHjmXTpk1ER0dTVFTEjRs3gGYOmCKFFB8fL7raKCsr06dPH8rKyjh+/DhXr15FVVWVTZs24e/vj6enJ+Xl5VRVVXHgwAF69+7NwoULW8UHheYiF8U4u3btypo1a6irqyMxMRE9PT3s7e2ZP3++aCQhSRKpqanimdTX1xcNHNTU1NDS0qK6upqYmBiKioqwsrIS6gAHDx6ktLQUBwcHxo0bh4aGBu3atRONIC5duiQ6YgEcP34cPT09Bg0aRK9evfjhhx+IiopqlfE6d+5c7O3tKSgoEJGYyZMnc/nyZaqqqoTKipOTE+7u7lhZWQnnKy4ujps3b5KVlUVJSQm6urpkZGQQFhZGWFiYKIRSNKdwc3PD39+fnJwc1q5dy4wZMwTvu6qqitraWoqLi4Uh1adPHxYuXMigQYMYOnQoCQkJZGZmtrpAVCEfp8h+eHl58eDBA86dOyfOkIiICKKjo7lz5w6jR4/GwcGBBw8eEBsbi4uLC66urujo6AhjrKGhgY4dO2JpaUlhYSEXLlzAzs6OwMBAGhsbhR5wVFQUSkpKuLq6MmTIEKZMmdIiFWlqasqMGTNITU3l2rVrjBw5ksDAwFYZr15eXujo6DBnzhwRSLh37x6VlZUtjDM3NzeKi4u5d+8ee/fuJSEhgb59+zJixAjBC25oaBB8wvLycm7cuCFStIoCNGtra5ydndm4cSMeHh5UVlZibGxMfX09SUlJeHt7C1WfzMxMmpqa0NDQwNzcHGiWbRo/fjw7dux44TlWVVWRnp6Ok5MTdnZ2dO/enfr6ehoaGkTjkJiYGCorK2loaODRo0ecOHGCyspK1q1bx9tvv82BAweEQoC6urpQ4ykoKGhR+NiuXTtMTU2pqqoiISGBsrIyOnbsKLIt9+/fp6amRnCMw8PDRSH4rl27sLS0/LeKmNeuXSuKygcMGEC7du3Q1dUVGTlodjb19fXp2rWroMCEhoYSFhaGh4cHeXl5hIaGYmlpiaurKzt37uTatWtkZGSIfebixYucOXOGESNGYG9vT1VVlbAHgoKCkCSJyZMnExERQZ8+fSgoKCAlJUXUFBUVFZGamtrqc9/T05PBgwfj5eWFiooKbm5upKam8uuvv9LU1IS/v3+Lz7xw4QJHjx7F0dGRIUOGiGuguEeampo8fPiQ2NhYKisrOXLkCKqqqowdO5ZOnTqJOoRbt25RVVVFjx49BB1m+/bt3Lt3D5lMxujRo4XhqlD2qaioEIb/P0Orjdf4+Hhu376NiooK3bp148aNG6SmpjJixAhUVVWJjIxER0eH8+fPs3XrViZOnMj3339PSEgI+/fvZ+nSpWhra7Nx40YCAgKYPXs2iYmJgrvl7OzMnDlzRJs4TU1N7ty5w6FDh3j27Bk5OTnC4D148CCvvfYan376KR999BG//PILgwYNQkNDg9WrV1NSUsI777zTKuqAqakps2fPFhcUmgtOFDp+/v7+QHPVruJBhGYS85YtW3j//fcZPHgw06ZNo7CwkKioKHx8fHjttddQV1cnKioKfX19Ll26hI6ODj169GDp0qUoKSkRFRVFWFgYLi4uuLm5kZycjL6+vkj1Pd+lSGEE/Ts6r4qOL9OmTWP06NGUlpaipqbG22+/zblz57hx4wbjx49n6NChSJLErVu3iI+Pp7q6mrt373L48GH8/f155ZVXyMvLY+fOnbz33nuUlZWxY8cO1NXV6dOnDxoaGowYMYKjR49iZWVFUlISxcXFhIeHM2/ePJKTk5k/fz4BAQFs376dK1eu8N133wmNOwWXrbW4e/cugwcPbqFnmJmZyenTp2lsbBRRT8X9y83NJS8vjy5dupCfn8/atWsJDg5GWVmZ9u3b4+rqiqmpKdnZ2ZiamhIQEMCVK1fYt28fp06dEo0K4uLi8PHxYdq0aYL/pSia+D3U19cTHh4uHvLWtPpVVOmOHz+eefPmYW1tLeR4hgwZwquvvgo0ZzGKi4s5cuQIFy5cYP78+X8n56SQxPrqq68oKytDWVmZpqYm3n33Xdq1a4eLiws3btygqqqKFStWiHsyYsQIcnJyWLBgAc+ePaO+vp6BAwcSGhqKtrY2ISEhrF69mujoaCHz0xooDFdFNW5QUBB6enpcuXIFLS0tQRFQOJOxsbEUFhbSvXt3amtrOXnyJFVVVUyYMEFwhJWUlCguLiYkJARXV1fc3NxQVVXFwMCAoUOH4uTkxNSpUzE2NhZOU1NTEx4eHnTr1g0lJSUSExN59OgRtra2Iq3u6upKYmJiq+a3ePFiVFRUaGxsFEaeg4MD+/fvR5IkGhoaUFNTw8DAgKlTp4r03NWrV9m4cSPnzp1DXV2dUaNGMWXKFDp27EhiYiL37t3j9u3b2NnZiWxWVVUV77//PgUFBUybNo1Tp04JnnVVVRWGhobcvXuX06dPM3DgQMaNG0dgYKAo7jQ1NWXNmjVs2rSpVXNMTk7GyckJDw8PkQq1trYWXfvs7e3p0qUL0dHRHDt2jN69e7Nu3Tq6du3KtWvXsLOzY9iwYUKSSNGVy8LCgrS0NC5dukRERAR9+/aluLiYM2fOiExQ+/btqampISgoiP79+7fYPysrK7G2tmb16tVcunSJzz77jAcPHrSqUQjAO++8w5kzZ4iOjhbGq7+/P3p6ekIuSqGW0LVrV2pra7l9+zanTp1CQ0NDaH02NTWhqqpKRkYGH3/8McePHweas0NhYWHo6urSo0cPkYJVRKsXLFjAp59+iiRJBAcH8+jRI7p06SIc6uepHgp+bLdu3VplvDY2NlJSUsLly5eFXq4iOJGamkpERAQaGhpYW1ujo6MjDJ2QkBDc3NxYuHAhEydOpKSkhFu3btHQ0ICPjw+5ubns2LGD7OxsTp48yejRo6mtrWXw4MGi+G3QoEH06dOH+vp6tmzZwpdffsmYMWPo2bMnjx8/5tGjR4wbN47i4mKWL19Ofn6+aELTGuzZswcNDQ1WrVolpPcUSjj19fXk5eVhaGiIsbFxi8YC4eHhhIaG0qdPH0xMTLC2tmbhwoX4+fkxefJkrly5wokTJxg2bBjPnj1j7dq11NfXM2PGDBoaGti5cye1tbWi+ErheHp4eIiW7D4+PkLi8dixYwwbNox169YJOtSLwN/fHwsLCzEnT09PwsPDWblyJenp6cKuUSArK4sdO3ZgY2ODqqoq3t7elJeX4+LiwrRp09DR0UEul4tUv8JuUxjAffr04d1332XJkiXk5+czduxYxowZQ1paGqmpqUIT29DQUESQ9fX1MTMzY8KECaxfv55Fixb90zm12ngtLi6mS5cudO3alYSEBFasWIGlpSWjRo0iMjKSZcuWYWZmxpAhQ5g3bx41NTV8+eWXVFZW0rlzZ9TV1Tl79ixHjx5FQ0ODGTNmYGVlhbq6OmVlZRw8eBBvb28GDx4sUrc9e/bk9OnTHDt2jMTERFxdXXn69CnQ/HCqq6uzZMkS9PX1MTIywsDAgJUrV2JmZoarqys//fTTC89v9+7dWFtbi4ptLS0toR1nZ2cn3idJEiEhIXTp0gV7e3u0tLSwtrZm/fr1WFhYcP36dVRUVJgxYwa3b99m9+7d+Pn5UVtbi6WlJYsXL0ZPT0/oKI4ePRpjY2MOHTqEsrIyU6ZMwdXVlSNHjvD111+zZMkSXF1dOXjwIAkJCSxfvryFbm5roJB78vf3F+13FSmBiRMnYmRkROfOncnJyREFG+3bt0dJSQljY2Mhr3Tw4EHGjRvH0KFD2bp1K+fOncPDwwN/f39iY2OFxMjOnTu5fv0627ZtIzc3F21tbb799lv2799PUlIS7u7uqKur8+abb1JaWiqKVKD5IWtNegSajdKRI0fi6OhIYWEhv/zyC1euXGHw4MFCGQKaD21JkqioqBAPtUKUuba2Fg8PD9q1ayc6ZBUVFYm0ioK3k5CQINrl6evro6WlJVJ6ioh/SkoK8fHxODo6ii4+CsPZ0NBQyOYoDI3W4HmD18jIiFdeeYX58+cDsGvXLoKDg1m8eDEfffQRPXv2JDg4mJSUFGbNmoWGhgYnTpwQBl6XLl0Ed1fRovH+/fsMHz6cwYMHk5CQ0OJvKysrM3bsWNLS0lBTU6OmpgYNDQ1hKA4aNIiKigoRVWotnj59yrlz54Tm57Vr1/Dx8WH48OGCD5qenk52djaWlpZUVFQQHR1NRUUFHTt2xNzcnNjYWA4dOiSExjU1NenUqRM1NTWoq6vz4MEDIiIiRO/y5/l0KioqXLt2TWgTKji7TU1NuLu7i172mpqazJkzhz59+rSqgLK2tpbQ0FB8fX3FWqmtrW0hAxQTE8Ply5cpLy/H399fpMknTpyIubk5VlZW+Pv7k52dzZMnTxg5ciR+fn7s3LmTtLQ0HBwc8Pf3Z968eXTo0IEOHTqwePFizM3Nyc3NFc1ABgwYgKGhIRoaGsLZqqys5Ndff6WhoYHx48e3utMdNB+CWVlZIrL2zTffUF1dzcKFC4mMjOS7777D1dWVJUuWsGfPHtTU1Pjll1+YMGEClZWVfP/998TExCCXywVf7ocffiA7O5vp06ezcuVK7t69y4YNG9ixYwfDhw8nODgYdXV17O3tqamp4datW0KfFGjhwCoO8Pv372NmZtbqZiE2NjZkZ2fzwQcfEB0dzaJFi1p0VtTQ0CA5OVlElRWFnBcuXBBcbT09PZ4+fYqNjQ3GxsYt9oGUlBRSUlJYtmwZ06dP5+LFixw6dIjS0lI6duxIr169hCP78OFDEhISsLW15YMPPmDIkCH4+vpSU1NDUlKSUIxp7Zlx8OBBBg8eTFpaGr/++iteXl6MGzcOa2trcfbp6uqSmZlJZmYm3t7ebNy4kfr6erS0tEhISMDa2hpDQ0OCgoJEPYOdnR21tbV8++23fP/99xgbG4sIY25ubgtZppiYGNLT03F0dKR9+/ZUVlZSWFiIhoYGFhYWWFhYMHHiRAoLCwkICODx48etmqOiODwhIUG0Ks/IyBCUx3fffRdoXs8KJQxoDlqlpKQwf/58AgMD8fPzo1evXigpKbFq1Spmz54teO0nT54UbaW7detGXl4eu3fvprS0VLRMvn//PgsXLmTx4sWoqqqSnp4uFAGMjIwIDw/Hx8en1eotipazNTU19OrViw4dOjB69Gjy8vI4f/48U6ZMYfTo0UJ5xsPDg5UrV2JpaUmvXr2oqanh119/paSkBF9fX5SVlVs462PHjmXRokVERETw/vvvY2ZmRmpqqtCzVUif6ejoCIqXiYlJC/71mDFjAMT1+1dotfGqqBpUQFNTE1tbW/T09KiqquL+/ftAcwj8jTfe4Pjx48yaNYsZM2YwatQozp49KwoBHjx4wI8//oiTkxMrVqzg6NGjPHz4kKVLl7Jq1SpRra0I17/++uuiJ/3Zs2fJyMigtLSU+Ph4nJ2dhYZmfn4+gwcPxs3NrdWi07du3cLGxgZ7e3syMzOJiopCV1f377wcNTU1srOzSU9PZ9CgQbi5uQk5mr179/L222+zcuVK3njjDQoLC1m7di2RkZE4OztTU1Mj2mnev3+fM2fOiM5BBgYGnD9/nnbt2tGxY0dqamrYt28fDg4OmJqaEhISQkpKCpMnT8bZ2Znk5OTW3kJsbGxE9KyxsVH0Ba+urm4hRP7TTz/x9ddfo6WlJYoiFAZLfHw8x44dw9/fH2tra549e0ZJSQkrV67E2tqaBw8ecPXqVaEPGBcXxxtvvIG6ujrjx4/n3LlzggNpZWUlOG4rV65sEam0trYWUiwvCj8/PxE5Lykp4ccffyQvL48ffviBPn36iM3T0NCQ2tpajIyMUFNTIyEhARMTE+bOnSuik5Ik0dTUhLOzM3V1ddy+fZv09HTRItXS0lJEgxwdHcnKyiI8PBw7Ozs0NTW5dOkSBw8epLKykjlz5tChQwdBWVBSUsLNzU1E/1qTVm9sbBQRUkWE7nn5qKdPn/Ldd9+Rk5PDsmXLUFFRYciQIaxbt46EhARGjhwpNtAnT56IzQqaD6vu3buTm5uLlpYWmZmZQsZJYVjV1NSgqqqKrq4ub7zxBvr6+qirq1NSUiKiFGZmZkycOJG6urp/y3jdvn27aFuYlZUlOrrY29vj5OREUlISn3zyCSoqKnzxxRcEBgaSkpLCTz/9RI8ePXjrrbcwNTXlyy+/pLi4WHBiFYdobm4un376KRs3bgSaN2Bra2s6dOiAp6cntbW1REREiI5B0HxY3bx5U+gwVldXEx4ejrW1NQMGDGjVPbxy5QpRUVEUFRW1MB4VlIG6ujpKS0s5e/YsZ8+eJSAggEuXLqGrq8uoUaPEQQPNVdsxMTH06XUZv14AAQAASURBVNMHb29v/P39KSgoYPr06UyYMEEY9wBvvfWW+L2rV68K2oCCM+jp6UlpaSmffvopjx8/JigoiNjY2H8rC5KSksL58+cxMDDAyMiIzZs3o66uzty5c6mqqiIuLo45c+bg7OxMWFgYoaGhZGZmigLcLVu2EBYWRmJiIp06dSIpKYmNGzeSkZEhKCr+/v6sWbOGuLg4li9fLp6B2NhYrl+/ztGjR1FXV0dNTY2ePXuiqqqKiooKBQUFbNy4UZxZAwcObHU3v7S0NOLi4oS2eHp6uoh6lpSUkJCQQEJCgihc7dmzJ0FBQTQ1NREbG0tdXR0ZGRlcuXKFgIAAvLy86NSpE/fu3cPe3l5wUwcPHoy7uzsffPABKSkpWFpa8vXXXwuH6s6dO2hoaNCxY0ehyW1vby+aRGRkZGBsbPxvBTvKy8vp0KED2dnZPHv2jLi4OAwNDZk4cSIaGhoiwKOQ1lN0ulNg165d/Pjjj4wePVo0MYmLi8PIyAg/Pz8mTpxISEiIkFBUV1entraWp0+fkp6eLmg0VlZWLFq0CB8fH7H/KTivXbp0Eefvv4Mvv/yS27dvc/XqVfbt28ecOXN48OABhw4dYvDgweLMUBRU6urqkpOTIzRZCwoKUFJSIiAggLKyMkpKSnB0dBR0h8uXL1NZWcm0adPEtTl+/Lg4NxctWiT0fj/44AMMDAxEu2N1dXXu3LmDjY2NoMu0tg4kMjKS0NBQnjx5wvXr15k7dy6BgYG89957aGhosHHjRtzc3ES2u1u3bmK/rK6u5sGDB+Tk5HDz5k3u3buHqakpTk5OqKur4+vry/Dhw7G2thYa2M9revv5+WFoaMiZM2fo3r073377LdDMXVYEejIyMlBXV2fMmDHU1dWJ4OQ/Q6vFF5+XjtLS0mL16tV88MEHKCsrExgYyMqVK+nQoQOpqakA+Pj4MHfuXPr3709iYiKbNm0iNTUVb29vkpOTeffdd4mNjRUe9OTJk3n27FmLHvKnT5+mf//+bN++HTU1NfT09FqQ2CdPntyC5Hvv3j1mz57N6tWrW228BgUFoa+vL7pI7d69m6NHj7Z4T3p6Otra2gwaNIhr167h7+8vyOQ3b95k5syZxMbGCs9k4cKFTJ48GWg2rJWVlQkLCyMiIoJx48axePFijI2N0dDQYNKkSSxfvhxvb2+hmnDgwAFsbW05ceIEpqamjB49mmfPnrF48eIWeqUvCmVlZeHxlJaW8sMPP4jFunv3bvE+Z2dnBgwYgIaGhii4UUgP5efns3v3bqqrqxk4cCDW1tbcunVL9HrX1dVtURyl6NBUVlaGra0tb7zxBocOHWLXrl3o6uoyefJkrKysePPNN1uIoZeXl7eQhXoRKDp8QHO6c9GiRYwaNUpoCT6fPlRRUcHc3Bx7e3tCQkJYs2ZNi8iHohWsQp/x7NmzohJfEXF9XimgqamJwsJC8vLyOHv2LMuXL+fo0aNCd/PevXvA/9A9nhdtbi0aGxspKCggLS1NaIJC86Y4bdo0nJ2dOXfuHL179+b+/fusWrWKgQMHcuXKFUGpUAh+79+/n0ePHhEeHo5cLsfZ2ZkTJ05gYGDA2rVraWxsxNraGiUlJe78P9r+My7La1vjRv/0DtJ7kSIdpIOiYMGCFWMvUWNijNHYkphiEhNjNCbGqDH2FnvvDTuiKEUF6SK9997L+cDvnkv2eve7Jeec8WmtlRX05rmfOce4xlWePOHRo0fk5eWhrKyMnp6eGDg2bdrE3LlzSUtLo7Kykk2bNnHo0KF/5RGam5vLnDlzGDNmDKNHj2bHjh2MHj2a1atXExoayvfff8/hw4e5fPmy8LIcP348BQUFHDt2TCA1RkZGgoKQnJws0NHCwsIe/Ma4uDjWrFnD2LFjWbNmDbKysixduhRvb2/++OMP5s+fz9q1a/n+++/Zvn07RUVFxMTEsHLlyl7xJKUqKSlh8uTJREdHM3bsWK5fvy7QsYMHD7J9+3b09PTEer+qqkq4Lmzfvl1ENUM3fWTlypW8evWKH3/8EXV1dfbu3cuyZcu4f/8+U6ZMYefOnf/lajFo0CB8fX1RU1MT0Z+amprU1dURExMjVN6PHz/uEZn5rvXmzRsuXLjAmTNn0NDQEBZx8+bNo7y8nLNnzzJ06FCMjY3ZunUrv//+ew+qwuXLl9m+fbvwSv7999+xtrZm+vTpZGVl8f333xMWFoaZmRmffPIJV69eZcGCBXz//fd8+eWXIqNeQ0ODefPm9RBFKigo8P7773Po0CFOnTrV6w0PdJ8fNjY2rFixQniUV1ZWAggEuba2lnXr1jFjxgyxVtXW1sbc3Bw5OTlevnzJrVu3eP78uQiGUFJSIiAggHXr1rF79278/Px48+YNZWVlQLey++1zo7W1lVmzZomV9+XLl0X2vKamJp2dnf9qswOITY6+vr4YkCUD/cTERDZs2MCDBw+wtrYmJCREuHlI1b9/f3R1dUlMTOTJkyfcvn2bZ8+eCWtMCbVrb2/n9evXTJgwgXHjxolQIFlZWZHUl5+fL5LxOjs7BX/67QQ/aRjpTWloaDBy5EiWLl2Ki4sL4eHh1NbWsmLFCqysrNizZw+ZmZnY2NiQnJzM4sWLCQ0N5c6dO9TX13P+/HmSk5OB7qFl+fLlDB06lK+++orMzEwRrqClpcVff/1FUFAQP//8c49hqaurixEjRqClpUVqaipbtmxh6NCh/PPPP/Tt25fGxkYWLlzI+++/L867d63Xr18zb948ZGVlOXjwoNCDQPfZcePGDZYsWUJzczP5+fkC2c3Ly2Pfvn1cv35dOIR0dHRQWlrK3LlzefToEVu2bEFdXZ0XL16grKzMiBEjelhuOjk58cUXX7Bp0ybhIAHd/GtdXV1yc3OZPHmyAE9u3bolaCn/b9Vr5LW5uZnU1FTs7OwwNTUVqkYpc3f69OlipVdcXIyqqip+fn5kZGTw5MkTFBQUWLRoER4eHkRFRfWY6BUVFZk8eTKKioo9DhJ9fX3BoevXr5+wqvHx8eHkyZOkpqYSEREhGrmsrCyKiopoamrqNbw+ffp0jh07RmRkJFpaWjg7O9OnTx8ePHggVsiqqqqiwR00aBDV1dU8evSImpoa7ty5g4WFBTY2NpiZmfHmzRvq6urw8fERwQkNDQ2CPyJ5hkL3i2JhYSHoCS0tLaipqTFq1Cji4+NJTU1lzpw5KCgocOHCBe7du9drex7o9lx8+/dy9epVSktL0dLSoqOjg8bGRlRVVbG1tcXc3JyIiAjq6uoEVSQ/P5+0tDQ2bdqEra0tFy5coLa2VnwRJaWt5B7Q1dUlIjaNjIyYMGGC8Kxta2tDRkaGyMhIiouL2bVrFwYGBqxevRoVFRXhZdsbbq80YLW3t6OlpcWyZcvIyckRViGKioo8e/aMmJgYxo4dK3K6u7q6KCsr4+nTp0yaNAnobjBycnLEiqO5uZmnT5+Sm5vLihUrhFKzrKyMmpoaISYoKysjLS0NKysr3N3dhQI4NzeXtrY2nJyc0NXVFUbWvc3ili4uqRlzc3MTdllnz57lxYsXLFmyRPAMY2JiuH37Nh9++CH6+vocP34cbW1tRo8eLZqx2NhYUlJShHLbyclJPO/OnTuFarahoUGIzaD7YJSRkaGiooKnT5/S3t6OmZkZsrKypKenY2Nj869CCt5//308PDzEsLB06VIcHR05ffo0L168YOTIkYSFhVFfX8+VK1dYsmQJWlpagkevpaUlwjFkZWVpaWmhsbGRqqoqmpubefPmDQoKClhaWjJz5kz09PS4ffs2WVlZ6OnpCVFGSEgIV69eJS4uTgjsrKysBNWjuLiYq1ev9trgPj09nQULFog415cvXwokTRIjWVhY8P7773Pz5k2B8hcXF4tEuMDAQGRkZNDS0mLEiBGcP3+erKwsYU6fmZnJ5s2befnypdiQZWZmilW6t7e3sB28fv06t27dYvny5djZ2dG3b19hh5OZmfmvhiw5OTlkZGTIz89HS0uLTz75hLS0NLZu3Up2drZ43tbWVmG51tjYyLlz56irq8PPzw8zMzOOHj3KkSNHMDIyYuXKlQwaNIgLFy4I+7s//viDwMBAxowZQ1lZGfPnz0deXp6UlBT69OmDt7e3OMuzsrJEIt7/bFh7C3ZoaWkxadIkpk+fjrGxMXl5eQIVa21tRVZWlsGDBwtVtlRxcXHU1tYyc+ZMXr9+TXh4OK2trYwdO5bx48eTkZGBjIwMFhYWwrooISGhByXhzz//RFZWFktLS5FW1dHRwZMnT7h79y4tLS3cuHGDtrY24uLiRAJcb5vY4uJiysrK6OrqYvbs2WKrkpmZyZ49ezh27Bh2dnaoq6szefJkEVIUHh6OrKwsoaGhuLu7c/78eY4fP46cnBwDBgygpaWF3bt3C1GiRDOwt7fHy8uL33//nfr6evz9/fH39ycuLo4rV66Qnp6Og4MDFRUV5Ofn4+TkJDa/ra2t/0oHEhkZybNnz5g5cya+vr5cuXIFeXl5Vq5cKbQo0oYtOjqauLg4Ojo6qKuro6ioCBMTE8LDw8nIyKCsrIyOjg7y8vJ4+fKlSNSysbGhtLSU8vJy2trakJOTQ0lJCT8/P3x9fZkxY4bgnkrgyPjx49HU1KSgoIC8vDzxLvTWM7u+vh43Nzfmzp1LfX19j6a5s7OTpqYmwa+XfnZlZSVRUVHExsaSmZmJgYGBuK+kqFmJRmdmZkZeXh63b98mKSkJTU1NSkpKMDU1xdvbW8SXt7a2ikCOsLAwEdTT2tpKY2Mj1dXV1NTUvNOmrtfNa1tbG6mpqSgpKQlPzgsXLnDr1i0cHByYNGkSEyZMQEtLC0VFRVJTU4mJieHSpUtYWVnx1VdfMWrUKBobGwkJCUFZWRkFBQVevXpFWloaqqqqbNq0SXTu7e3tIhlE8ot1cXFh586dhIaGEhkZyYYNGwSyUlpaiqmpKdevX+8RcfmupaioiLq6Ojdu3MDKyorvv/8eQ0NDjh07xrVr1xg2bBijRo2itbWVlJQUFixYwPLly1mwYAELFixg8+bN7N+/H+j2G42Li+PWrVtkZGTQ1tZGeXk5KioqLFiwQCjqJEW9kpKSINVDN18qOjqapKQkLCwsBHormfsvXbqUCRMmiBzsd623v9zy8vIMHDgQNzc3Fi5c2MPjUEIL6+vrhTmyZO/T1NRESkoKXl5e7N+/n19++YWxY8cKRT/8RxAlIyPDmDFjGDJkCGpqaj0ssdrb25k+fTpDhw7l1q1bQr1uZWXFzJkzMTMzo7S0tMeh/a71tp2M5D8rrfS++eYbnj9/jpeXl0i3eu+99xg/frzgU2lrayMvL09dXR2tra1iHfbgwQOOHTuGq6uraF6zs7N58eIFXl5e2NvbExUVhb6+Plu3bsXNzY2amhoyMjJ48eIFiYmJlJSUEBYWhpycHCoqKuTl5fX6+aCbHnDx4kURY6ivr8+QIUMoLi7ukTA3depUTE1NefnyJSNHjuT58+cEBQURHByMqakpX331FRcuXKC6uprAwEBqamr44YcfWLFiBevWrWPBggUcOnSITZs2MW7cOGRlZdHQ0BBRmNIqffDgwYKHp6ioyM8///yvUFfoRtBLS0v5/fffSU5Opn///gwaNIhvvvmGsrIyJk2aJCJbN27cSGZmJr/++ivLly8XvLXIyEgePXqEnJwcVVVV2NjYoKGhgZKSEjY2NqxcuRIfHx+CgoLo7OwkNDQUeXn5HoJNTU1NPvjgAyEycHJyws/PDx0dHTQ0NFi9ejVPnjzhp59+6tWZ09jYSEFBAT4+PnzyySc9Yq8nTJggxKeSeE5WVlbkm1tZWVFRUUFubm4PQ/GAgAAePnxIamoq69evx9vbm4qKCmRlZQkICEBeXp7k5GS++uorKioq2LRpk/jOx8bGcvjwYVxcXOjfvz+jR48mJSWFmpoaRo4cSXh4OJs3b+7VZ6ioqMiwYcOENSJ0+0Du2LGDjIwMwsLC2L17t9ADSJzpu3fvsnPnTjQ0NHB0dKSgoICamhp8fHywtLRETU0NFRUVbG1tBU87KSkJJSUlEa+qoqJCe3s7V69excDAgG3btqGnp8eDBw+oqqoSA/Tb1lO9dTbR0NBg1qxZQs1vZGQkBrV58+YxadIkcU9KK1nopmu8evWKDz74QMSb379/n6SkJIYPH46CggKHDx8mOjqakJAQVFRUMDU1RUlJSZxhN2/eJCkpiV9++YXZs2fT0NDAd999J5Tcw4cPZ9++fWzevFnEmwK90oBAtxI/NDSUoKAgIVK8c+cO169f5/Hjx1RWVvLs2TPa2trQ09Nj1KhRKCsrc/ToUWJjY9HT08Pf3x9VVVXy8vIwMjISXP1ff/2Vp0+fEhYWJnQdUs2dO5fa2lqMjY1RVVXFxcWF+Ph44Qqgrq4ubBz19fXp7OxEVVVVNEq9qXv37gk3k6+//hpXV1cSExNRVVVl4MCBuLu7o62tTXx8vNiUzJs3j2+++YajR4/i4+ODlpYW69evR01NjY8++ogffvgBIyMjTExMaG5uJiMjAy0tLX744Qe+++471q1bxx9//MGwYcPYtm1bj7/PkCFDGDhwoLgrfXx8epwtb28P36UMDQ2pra1l1qxZDB48uMcG5siRI2zevJl169YJeqSUquXi4kJHRwe3b9/m4cOHFBQUoKKigrW1tRDuDx8+HB0dHczNzYmNjeXUqVPo6+szb948nJ2de3ymcXFxLFu2DEdHR+EDbmBgwLFjx9DT00NTU5Nhw4Zx+vRp0eT+b9Xr5lUi6x45coTm5mZCQkIYPHgwFhYW6Onp9VB4S5e+ra0tnp6e2NraCnRCVVUVExMTMQEkJSVRVlYmDG5ra2uJiIjAxsYGR0dHampqsLa2xsDAgOfPn7NhwwYuXLjA9OnT2bBhA8+fP6e1tZXOzk4xraekpAg+27tWSUkJZmZmhIWF0d7eLqwvXFxc8PLyoquri/v376Ompoa+vj75+fncvXuXjIwMRo0axcCBA4HuyampqQkLCwtMTU159OgRr1+/Bro5IJKDwHfffUd6ejqnTp0Sf4eVK1eio6PDmjVr8PLy4saNGz0mJR0dHUaNGoWXl9e/QkOSkpI4ePBgD56ehG6/Xaampnz55Zd4eHhQUFBAe3s7AwcOxMHBgYsXLzJ37lzBvVVQUCAzM7MHgij9DqysrASft7Ozk/j4eBFWIK3RTE1NcXd358WLF6JRVFRUxNvbm7CwMJ48efLOz5ednU1ycjLe3t5oaWkJ25bQ0FAKCws5d+4cFhYWYr0hHQRvNyxXr14lNjYWd3d3rK2tOX36NBcvXmT69On89ttvnD17ljt37qCsrMyHH35I3759ycvLQ19fH3V1dXx8fGhoaBCXlZaWlvDr9PHxwcDAgNjYWAwNDTE2Nu7xZ79LJScn09jYiIyMjEB0Y2NjGT16ND4+PkIUGRMTg52dHR988IGY4l+/fo2fnx92dnacOHGCgIAAKioq2LNnDzIyMmzatEkosO3t7QU/qq6uDn19fbEpKSgoEMb+0rrL29tbxAhLgiKg1x6v0G3GnpSUxIsXL+jq6hJTvhS/KFniuLm5ifQtSYhTVFQkQgl++eUXTE1NkZGRoaWlRSj5PTw88PDwIDExkZ9++onS0lLmz5+Pl5cXr1+/5tSpUwwePBh1dXWOHz+OmpoaP/zwQw8rHhsbG+bPn4+dnR1PnjzpVST1Z599hrGxMd7e3tjZ2WFiYsLdu3fF2mz48OF0dHSQn5/f41yF7ndVR0eH8vJy0SwVFRXR0NAgLOD69u2Ln58fsbGxKCkpiSa3T58+ImzibZ/XIUOGUFVVJd7F4cOHY2NjIxq6t43V37WePn1KYGBgj+bVysqKJUuW8OTJk/9CJKWB9+OPP6atrU00cNK/J8WOS3Z9ffv2pbi4mJiYGGGf5uTkhKysLGZmZqxevRpvb28aGhq4ceOGEA5Jn2FXVxdnzpzh9u3bBAUFiQv1XUsKmYFupKpPnz7i85CERM3NzcTExIjfdXZ2Nvn5+WRlZfHFF18wf/58fvrpJ/bs2cPnn3/Ozp07CQoKQlZWlqqqKnFG6uvrk5aWhp6eHosWLeLUqVNER0cLkZmUAGdtbS3SEl1dXRk3bhxeXl7U1NSImOPelLW1NYGBgZibmwtRdW5uLnp6etjY2AgaTkpKCi9fviQoKIi8vDzS0tLIyspi/fr1fPPNN+jp6bFkyRL69OmDjY0NlZWVDB48WITRBAQE0N7ezvr165GVleW7774TgQO3bt3i4cOHImFPUVGR0NBQ5OTkeP36NR0dHbi7u6OiotKDb/muVVRUxHvvvYeJiQnV1dXo6OgQEBAg7kRpYJC2SQMGDMDc3JwZM2aQlZVFUFAQPj4+xMXFERERQWFhoRgWKisrOXbsGB0dHTg6OmJrayssDOvq6jh48CC2trbo6elRWFiIg4MDQUFB4tnr6upwdXUV20MnJ6cewMy71KBBg2hpaUFFRaWH8HzPnj2cO3cODw8PXF1dqa+vJyIiQvR2kkWfu7s7ampqnDlzhsmTJzNlyhTOnTvHsmXL8Pb2ZsKECSgpKaGkpMQnn3zCkCFDMDQ0JCcnp8f7pqWlJQJY3nZMelt4bGxsLKhs/2/1r0IK+vTpw927d0lISMDf358hQ4bg6OhIYWGhOHwqKyuJiYnBysqKpUuXMmTIEJ4/f052drZA5mJiYsjOziYwMFAIDRQVFenq6uLJkyc0NjZia2tLWloaa9euRU5OjqlTp3LgwAEKCwvJy8sjKytLrM5ramoEmTktLY2///6bvXv39ioDWFrnT5o0icTEREaMGEF7ezuRkZEik/7bb7/F3Nyc5cuXc+LECZYtW8aMGTM4ePAg5eXlfPPNN1RWVjJz5kwGDx5MZWUlN2/eRFlZGU1NTTw8PKivr6e4uJgrV65QUlJCbGws3t7elJSUcOPGDerr6wkJCcHPzw9ra2uSk5O5evUqQUFBGBoa0tjYKAzVe1sXLlxgy5Yt+Pr64unpiaOjI/Ly8iJatLOzk46ODjQ0NBg8eDCdnZ3s2bOH27dvo6CggJ+fH25ubty6dYuffvqJGTNm8MEHH2Bvby+mQ6mxaWpqEkk5ABEREYKfpK2tTVtbG1VVVcTFxbFt2zbhDfi2DdLs2bN71bw+fPiQu3fvoq2tjaenJ/Hx8RQWFmJubs6rV6+4c+cOixYtYsKECcB/kJeSkhL09PSQk5Ojra2NrVu3EhISwvvvv09qair37t3D09OTL774Ai0tLT777DN+//13bGxsGDt2LJMmTaKkpIS2tjb69OmDu7s7v/zyC15eXsydO5eCggLhWGBkZERcXByFhYVoaGj0GlmOiIgQfn2Ghobcu3eP9PR0Bg0ahIqKCtra2qSkpJCSkkJ4eDjt7e18++23PURdcXFxrF+/nm3btgmBxJQpU/Dx8SE3Nxf4T9O5ceNGYccE3Ur08PBwmpubmTp1Krq6urS3tws+dWVlJU1NTfTt25eMjIx/1bweO3YMd3d3+vfvT3NzMx0dHdy/f58ffvgBX19f4RzR1tbGxx9/jJ2dHZ2dndy/f5+0tDRGjhyJvb294FJBNzWnoKCAoqIivL29hfuJZMBfX1/P/v37efDgAfv37xe0Asn2R2okJMGJFHs7ZswYxo4d2yvBlrm5OR0dHSLhKjs7m+PHj3PgwAHi4uLo7OxETk5ORGmbmZkJWy1ZWVlUVVXFRVRWVsa1a9fYu3cviYmJKCgo4OPjw+jRoyktLeXatWsCoQwMDCQgIKDH4NvZ2cnYsWN7xAdLSXj/31Rqairu7u5imyRtmKSIZMlWqaurC0VFRXH+uLu788cff+Dv78/Vq1dpbGykb9++aGhokJCQQGZmJu3t7VRVVdHW1oaVlRVGRkZYWFjQ2tpKVFQUra2tBAYGEhgYyPPnz5kwYQKurq5cvXpVNJgyMjKoqqpy4sQJKisrey36kXj8ampqYvsnJWRJdKRjx45RVlZGnz59cHR0pLa2FldXV54/f87JkydRUVHhwIEDKCsrs2zZMh48eICvry8BAQHExcVRU1ODlpYWxcXF1NbWoqmpyYABA8RZ9bYn+XvvvUdUVBQ5OTlYW1szYcIEcc5FRkaSlZXFpEmTemWVJUVtQ/e2IDExEVNTUz7++GNOnjzJmTNnMDAwIDg4mISEBPbt24e7uztDhgwhISGBq1evCnHc5MmT6ejoIDExEUVFRX799dcef1ZWVhanTp2iqqqKESNG4OfnR2lpKV9//TXx8fEi6ECitvn7+7NlyxZKS0vx9PTk1atX/Pbbb72+F/v168fOnTuB7nfWwMBA3FmlpaXo6+uLqN7CwkLu37/PsmXL8PHx4aOPPsLKygpDQ0O2b9/Oxo0befz4sVD0FxYWkpycTFZWluCqvnz5kgcPHtCnTx+qq6v59ttv6d+/P+bm5mRlZdHR0cF7772HvLx8j01sbm4uioqKPXxX36UkKl19fb0Y8I8ePcry5csxNjZm9+7d+Pr6kpiYyKFDh7CyshLaEekcmDFjBhUVFXh5eREYGEhOTg43b94kPDycq1evArBixQq2b9+OnJyc8G9+G5gxNzfv8e5VVVXR1NQk3HpkZGTo6Oh4J2S5183r3r17KS4uZuDAgcyZMwcDAwPu37/P9evXuXTpEvb29vz1118YGRkJeoG9vT3q6uokJSWhr68vmtfc3FzOnz+PtbW1iCjNzc2lpaUFOzs7Menr6OigqqrKqVOn8PLy4uTJk8jJybFw4UIqKyvZtm2bQH6g+2XLyckhNDQUHx8fIZJ5l5LiUgF0dXUFP+XGjRv069cPZWVlTExMhIJz+PDhnD59Gnt7exQUFNDV1RUrMKkBu3r1Knl5efz000+MHj2a6OhoPvroI+Tl5Zk9ezZ1dXV8+umn1NbWMmDAAJYuXUplZSW//vorpqamWFlZERsbK3hrmpqaQkH9tvXTu1ZMTAw//vgjEydORFdXl1u3bmFgYICnpycnT57k9OnTjB8/noEDB3Lt2jXu378vFJTh4eHo6uoSHByMoaEh5eXleHh49CBYJyQkiICIgIAAbGxsKCkp4cWLF0Kd+PLlS3755ReSk5NRV1cXmcaSryggbMOmTJnSq+eLjIxET09PTIKzZs2ipKQECwsLYYKdmpqKnJwcY8eOFVPsJ598QlFREefOnWP48OG4uLhw69Yt1NXVcXV1xcHBgfr6er766iuqqqoYPnw49vb2PRrPpKQkbt68yaZNm+jbty/Pnz9n3759PHv2jPnz5+Ps7Cy8kl1dXVFUVOT169e9XldKljJ9+/alpqaGgoICSkpKiIiIoH///qxYsQJvb2+ePn1KXV0db968YefOnSxfvhx5eXmxuQDEOnzp0qUsWrSIK1eucOrUKUaNGsXUqVOBbsRBWrNmZWVx7949MjIyGD16NLq6ujx//pwff/wRb29vvvnmG/r3709cXByXL18WPODelp2dHT4+PmRkZHDkyBFmzZol4i3z8/P566+/GD16NDY2Npibm1NUVMStW7coLS3F19dXcMxu3LiBmZkZw4YNE03i7t27mTVrFoaGhkydOpX169dz4cIF5OTkaGhoICwsjKqqKsFb3LlzJ2pqajx9+lScCVZWVnR1dYmLrbc1b948MQzJyMhw+PBhnj9/TlhYGE1NTaxevRoPDw8MDAw4evQourq6jBs3jsDAQNTU1GhvbxfI0KNHj/jxxx9FtKU0fKmqqhIUFISzs3MPVLi2tpYjR47g6+uLv7+/iHZ8+1LMy8ujvr4ea2vrXqvwpQoKCiI+Pl7wsWVlZdHR0fmvnykjI8Ply5cxNTXFwcGB48ePExcXx6JFi5g7dy7x8fEienPXrl1s2LCBoqIioPtiHjFiBPb29ty8eZPOzk7c3Nx6rCs9PDxYsWIFffv2/S/+tY+PD4sXL+41Zxm6qRbvv/8+U6ZMEQNQXFwc3333HUVFRWhpaQmLudraWjZu3IibmxujR4/m8OHDAEI8s2DBApSVlYUwbufOnezZs0egVdra2vj5+ZGZmcnJkycZP348P/74I9euXWP37t18/PHHdHZ2sn//ftLT0wXHVSpvb2/69euHgYFBr5rXkpIS/vnnHwGmTJs2TSREqqurM2nSJJYuXUp7ezuffPKJoLT17duXU6dOUVxcTHJysmiynz17RmZm5n9FrUO3SO/LL7/kwoULLFq0SFAuMjMz8fHxwcvLi9u3b3Px4kXmzZvHqFGjmDRpknApyMzMpKysrNfN69vx2kZGRiIg5969e1RUVIjUuvPnz9PQ0EB+fj6PHz8mICCAwYMHi6FWRkaG1atXc+TIEY4fP05hYSEff/wxDg4O7N69G3d3dxwcHLhy5QpqamqcOHECHR0dAerV1dVx/vx56urqxL0kAYI2Nja0tLSgrq7e66GyoaEBNTU1AfQtWrSIq1evivQ3yfbTxcWFUaNGUVtbS01NjdhQ1NfXk5eXR2VlJb/99huRkZGMGDGCTZs2cfnyZQ4ePAjA48ePOXDggHBLCQgIwNvbm5qaGmJiYlBUVOzxPdPW1qa+vl7cs5Kn77uE9vS6ef3+++9xdHRkz5492NracuDAAX777TcqKyspLS2lurqa9PR0qqqquHTpkvhLAbi7u4s1UW5uLsnJyXR0dBAfH0///v1RVVVFQ0ND5MG/efOGzs5OFBUVmTdvHoWFhWRnZ9PZ2YmGhgZFRUVirQndh4OioiJmZmY0NzdjbGwsLpx3LSsrK3EhdHR0sHjxYp49e0ZJSQnZ2dmYmJiIlbChoSEKCgoMGzZMEP0l03CpcnJyePr0KcrKygwdOhQXFxeSk5M5efIkSkpK/Prrr5iYmPDixQuio6Px8PBg8eLFtLe3M2XKFN68ecOwYcME58vOzo6CggKOHz8uvCqlif9dy9fXlzVr1gDdvNznz58zePBgFBUVaW9vJzU1FWdnZ/r160d2drbw2ZQsmaqrq3F1dRU2INLPaW5uxsHBQaSA6ejoiFWZJPJxdnbG3Nyc9PR0SktLaW5upr6+XhzgGhoaZGVlkZ6ezsmTJ3usNd+13N3d8fT0FAefi4uLGC6gm7M4d+5c1q5dy08//cQXX3wBdH+R0tPTiY6OJjQ0lPnz53Py5Emam5vx8PBAVVWVc+fOcefOHTw9Pfnss89wcXGhoqKCqKgoZGVlefToEW/evGHv3r3C7iwtLY20tDQUFRXx9/enrKwMFRUVvL29ycrK4saNGwIVe9d624pGRUUFDQ0N2traMDAwQF9fXwx8/v7+1NfXi7jP/Px8VFRUePz4Mfn5+UyYMAE5OTlKS0uZNWsWioqKopk6deoUdnZ2IkBkwIABws/xwYMHZGVl0a9fPwYOHEhsbCwRERFoaWkJRM/MzIza2lq6urr+1cp58uTJqKio4Ovry/Pnz4mOjhbviaqqqkDrpCovL6e4uFiIKW/fvs2dO3fIysrC09NTrAH19PSIj4+nqKiIuro6Bg0aRGBgIB988AFPnjyhsrISKysrvvzySx4+fEhmZiYjR46kq6tLBCS4urqioKBAa2srHR0dIhWpNxUfH09AQAANDQ0ChbOwsGDz5s0kJSXx119/CeHb5cuXUVdXJzAwUOgEpPe5paWFhoYGwWnV0NAQFk1///03n332GaGhoRQXFwtazs2bN0VyT2trKxUVFbS2tqKtrU1XVxdpaWmUlZVhbm4uvvMSGt+bWrBgAWfOnCE2NlZYEOrp6YmMdCnV7uTJk/zwww+MHz+eVatWkZyczMGDB7Gzs6N///54eXlRXV3N8+fPaWtrY+TIkaSkpPDs2TOKiorw8fHBz8+P06dPExkZSWhoKG5ubrS1tVFQUICZmZmwCHv9+rWgVTQ2NpKcnCwElAkJCb16vjdv3tDQ0NBD6KWgoEBnZydlZWUoKyszcOBAKioqhJPH9OnT0dDQYP78+VRXV4s1u7m5uQgXuXHjBuvWraOsrAwlJSWRC29iYsLr16+Ji4vD3d2dWbNmcenSJc6fP09ISAjy8vKCIrFlyxbBaVdTU6OpqYmOjg4qKip69YxJSUmkpKRgYmKCv78/gwYNIi8vj59//pmOjg7Wr1+Pg4MDT58+xc7ODhkZGaKjo1FRURFG/T4+PqipqZGTk0NDQwMWFhY0NzcTERFBS0sLWlpawn5p3rx5mJub8+mnn4oBG7rPbUNDQ65du8apU6eQl5dn1KhRwsauoaGBtrY2xo8fLwabdy0XFxfxOUqCJWlDI22SCgoKqK6upk+fPjQ0NPD48WMcHR3FPVNRUUFZWZmwzWxqaiI9PZ3MzEzc3NyYNm0aJiYmvHr1ipycHBQUFDAzM8PFxQUnJychKDU2Nqazs1MIC6VYWiUlJQH89VZYqKCgIOy+rl+/TkREBIGBgWzdupVXr16xdetWtmzZwsqVK5kzZw6XLl1i586d+Pr6MnLkSBoaGoiOjubWrVsAIv1u6NCheHt7U1lZSWZmJllZWaxevRpXV1dmzJiBu7s7cnJyPYDFgoICdHV1xeeur69PSkoKbW1teHh4oK6u3sM953+rf+U2MHjwYGxtbWlubhZI7ObNm/H09CQuLo7nz5+TmJjIo0ePaG9vF7yXmTNnAnDlyhU2b96MoaGhaMx27NjBhx9+iLa2NrGxsRw4cICnT5/Sp08fZsyYwbhx4/jll184cuQIixYtwsDAgFWrVgnkMTk5mbq6Ojw9PVFQUMDW1pbIyMgelhDvUgYGBnR1dYlf3qpVq2hqahIHu5ycHIaGhsJD7/r163z++efMmzdPGBlLqx3onlr9/f3Jz8/n+vXrZGZmighUNTU1YmNjGT9+PEeOHKGgoECQ2uvq6vj6668xNzfH2NgYNzc3VFVVUVVVRUZGBn19ffLy8rh586b4vb5rrV69GuheXVy9ehVPT0/RDL333ns4ODiQlJREV1cXv/zyC+7u7mIdamJigoeHR4/kFugm9d+7d4+vv/6alStX/tdaw9zcnD59+qCqqkpnZycDBw5kwIABKCoqcvfuXXbt2kV6ejouLi68efNG5NE7ODj8l73P/1WzZs1CXV1dGOcnJibS2NiIj4+PmJADAwMJDw/n+++/p76+nu+++479+/eTkJBATk4O169fx8LCgl9//RUZGRnxv6WmphIWFsayZcvEQdLe3s7x48c5dOgQS5Ys4euvv2bNmjXExcXx999/s2HDBs6fP8+NGzcoLCzEw8Ojh0jm1atX4gB815ISmaCb6tLQ0ICdnZ0Q6Fy7dg1zc3ORjKKhoYGGhgYmJiYoKiqyc+dOioqKhDCtoKCAR48eCS/VuXPn4uPjwz///MPcuXOxtrbm4MGDDB48GEtLS/r06UNCQgJ79+7F1NSUsWPH0q9fvx4rPUNDQ/T19WlsbPxXbgPSZ+Xi4sKGDRuora1lw4YNnD59GmNjYxYsWICqqipNTU0oKyvj7OyMjo6OGB4OHz6Mu7s7GzZswMDAQNCcJG9qc3NzvvvuO9zd3UVQh4+PD+np6ejo6KCpqcmgQYN48OABYWFheHl5sWzZMoHodXV1ic+hra2t1xfKnj17GDRoEDdv3hTx1++9955QwquqqtK/f38yMzN59OgRBgYGDBs2DBUVFREd+7Y24Pjx4wKtaWlp4fbt2xw/fpw///yTsrIyPvroIxISEli4cCH9+/fn+PHj4nNMSkpiwIABqKiosH//fq5cucLMmTPFRuXw4cPcvHmz1++pp6cnlpaW/PTTT8ybN48ffviB4OBg2tvbUVRURE5OjkePHrF582bS09OJj49HXl6eLVu24OTkxKNHj7h+/boIH/jkk0+ws7Pjl19+wdDQkI8//pgXL16QmZmJn58ftbW1pKamcvjwYfr37y9Qrerqavr3709hYSEHDx5kyJAhGBgYsGPHDv766y9UVVVFqpHENXzXkrZyUg0aNIgjR45QWlqKrq4ulpaWFBcXc/z4cc6cOcPly5dZtGgR27ZtQ11dndraWsFtrq6upri4mJMnT1JWVkb//v157733uHPnDg8fPhQDhLa2Ns3NzTQ1NTFkyBDhIjF8+HAuXLjAypUrWblyJRMmTGD79u0YGBiwZ88eLl++3Ov7wsbGBj8/vx6aiKdPn/Ldd9+xYsUKHBwcCA8P586dO6xdu5bY2FgmT57M0KFDWbNmDV999RX19fVCzCatsKXtW2RkJIMHD+azzz7D0tISOTk5/P39OXbsGDt27BConpRsJycnJ7ijUmVnZwstRUBAAOvXr+/VMwKCsgjdZ7qpqSkTJkzg1atXNDY24unpiZ6eHjk5OURGRnL58mX8/PwEFz8rK4tjx44RFBTExIkTWbRoEWfPnuWbb75h8ODB7Nmzh6ioKH744QdevXqFuro6s2fPxsHBgdbWVmJiYjAyMmL27NnU1NTw66+/Mm/ePNE/lJeXM3ToUGRlZXtQRd712aC7n7lx4wbLly8XFmhSL/L777/z/fff88MPPyAvL8/ff/9NRkYGI0eOxNDQUDwndAcKZGdn8/PPP6OlpcXYsWPR1tbm7NmzpKSkMGbMGEEtsLGxQV5enqCgIKqqqtDT0yMvL4/CwkICAgJQUlJCVlaWjo4O5OXlBQD5f1Wvm9cvv/xSvPySaGT06NFCOV9fX8/69eupq6tj8uTJpKeni+ABAwMDAgMDcXJywsvLC29vb2bMmEFOTg5v3rwREWh79uzh4cOHwtPO1NQUAwMD6uvriY+Pp62tDWtr6x4Hhra2NmlpaVy9ehU/Pz/h1yr9jHctaTqpra2ltLQUV1dXIbqRytbWlpaWFp48ecLhw4epqqoSKI6GhgaamprU19ejrq4uDtCIiAjhB1dSUsKcOXPw9PTkwoUL/PXXX8yePZv333+fyspKPvvsMzo7OwVhOSEhAW1tbYyMjCgqKuLYsWMCdfmfTeS7lIKCAk+fPuXYsWMYGhr2QIq1tbWFov7GjRusXr0ad3d3/P39ef78OdbW1sLMPDs7Gy0tLeTl5enXrx/Pnz8Xa1sbGxsCAwMFR1JBQaEHQmxkZERVVRVZWVkoKysTGhoqsuONjY3x8fHB19cXMzOzXjevr169wtfXFwUFBdra2sjJyRHof25uLqmpqQQFBbF//3727t3bo/FoampCSUmJ4uJi6urqGDZsGDIyMujp6REVFUVwcDAjRozoQTCXhBkmJiaMHDkSb29vpk+fjp6eHhMnTkRBQQFFRUWRdV5fXy/SvSoqKlBUVOy1l21JSQlZWVncvXuXwsJCnJycUFJS4uzZs2RlZaGmpoaenh6tra2Cbyehn+np6aSlpSEnJycCE1JTU0lISKCzs1NM+2fPnqWgoIA5c+bg6+uLjo4OWVlZtLe3M3ToUFpbW1FQUEBFRUUIKVpbW8WzZGVlER8fj7u7e6+bHui29NHR0UFfXx99fX2BkqqrqxMcHNxjQ1JeXo6+vr6w73v27BnW1tY9OL61tbVA9wCuoqKCh4eHsKZJSUnBwsICc3NzWlpahDfttGnTsLKyEhGdUuO6d+9eXF1d8ff3B/h/jQH+38rf358bN27w8ccfk5eXx4cffkhYWBhlZWUcP36c8vJyLCws8Pb25ocffqCzs1OkKSkoKFBQUEBxcTHq6urU1dVx6dIl2tvbUVJSQkdHB2dnZ6ZPn86yZcv45ZdfCAwMFH7Ob79v5eXlXLlyhbq6OsLCwgQv+O3vqyQC6i2i1dLSgr6+PlZWVoJGBt30LGnLIzll6OjoMG7cOLGq/Oijj9DV1RVAgLm5OePHj8fKygpvb2+MjIz48ccfOXjwIOnp6URGRjJ27FgcHBxwdnZGXl6etrY2cW/k5+fT1NSEn58fISEhdHZ28s8//5CXl4etrS2+vr4oKyv3KhBFco+RlZWlvb1dWAhJaCAghrlJkybR0NBAXFycsJZ6+fIlysrKODg4UFBQIEJaNDQ0cHZ2Rl1dnc7OToYOHSqEzJqamtjZ2WFtbU1rayvjx4+nX79+gjLi7e3Npk2b+O6777C2thZNR35+Pg8ePOhVDDV0I57SZ1JVVUVUVBTh4eEEBQVhb2/P8ePHWbhwIVZWVmzatAkXFxf279+PrKzsf3m+ZmdnU15ejpOTE1ZWVowdOxZVVVWcnJzw9/cXHF4pTnf+/PmcO3cOR0dHBg0axLVr19DQ0GDPnj09tk9SHPC/cRgCRDwtIAZDTU1NNDU1ef78OY8ePSIoKAgnJyfh7vPy5UuOHz+OkZERtra23Lx5k61btwqtzfvvv4+zs7PYANnZ2WFvb8/kyZNRV1fnzp07lJSUUFNTQ0hICGZmZhgbG9O/f3/S0tKIiopCWVkZa2trHBwcKCkpoaGhQUQP/5t6/fo1KSkpdHR0kJOTw5MnT4RFl76+Pnfv3uXzzz/H39+fkJCQHoFUAQEBfPvtt4Lnf+PGDVJTU0UUe79+/bCxsREe4BcvXqRPnz7cvHkTXV1dxowZI8SNMjIy4rvW2NiIq6srVlZW6OvrU11d/U5naa+b1+XLlwtEpG/fvnz66afCU1BVVZWXL19SVFSEl5cXmzZtoqSkhMDAQAoKCvjwww85ffo0bm5ufPHFF0KFZmlpiaWlJfn5+Vy8eJHHjx+LgzYiIoKCggLOnTvHgwcPaGlp4ejRo7z33nucOHGCGzduMHv2bGxtbbGzs+Prr7/m6tWruLu74+bmhp2dHatWrXrn5yspKcHExITMzEwSEhJQUFAQB1FVVZVAX1NSUpgzZw6NjY0sX74cR0dHHj9+zMCBA9HQ0BANr5ycHK9evRLeZ8XFxRQXF+Pk5MSUKVO4cuUKt2/f5vbt25w7dw4VFRUePnyIv78/lZWVVFdXc/LkSYKDgzE3N+fmzZtcuHCB9vZ2/Pz8GDBgQK/Vo2lpacTGxmJmZoavry9tbW0UFRWRmprKgAEDUFNT482bN1y6dEl4ngYEBGBgYICcnBzZ2dloamry8OFDzM3NGTp0KHPnzsXQ0JDo6Gh27NhBfX09v/32mzgo314RQjeHad++fZw5cwYfHx/Gjh1Lfn4+2dnZKCoqYm9vj729PU+ePOm16fSBAwewsbERdk2DBg0SX5obN25w6dIlFi9ezNixYxk1apRABTdv3szjx4+ZM2cO7u7uxMXFiXdRTk6OgIAAamtriYmJISIignHjxonmZ9myZXz22Wfiop08ebIwZJYM5xcvXszUqVOJjIxkx44d2NjYYGJiQmhoKA4ODiLo4l2qtLSUQ4cOsWfPHhHPLCcnx/bt21FTU2Pjxo24urpSWVlJS0sLdXV1wqfwwYMHfPvtt2hoaPDBBx+QkZFBdHQ0VlZWBAcHU1NTQ1xcHOXl5cybN08Inl6/fs2jR4+wsrJi4sSJTJgwARkZGWRkZIiKiuLWrVu4uLgIU/2kpCT+/vtvJk6c2Cshk1Q1NTXic6uoqGDt2rUoKyuzadMmEZVoZGQkYlql54Puc2rFihWUl5eTmJhInz59xDQfFxdHbm4uTU1N3Lt3j6FDh4rIWOgeTsvLy7l8+TIuLi6EhoYyY8YMQWH55Zdf+Pbbb/nwww+FSvjf1KlTp1i8eDF1dXVoaWlhbW0t1s0XLlzg8ePHGBsbC5eW8vJy8e82NDQQGRmJubk5wcHB/P3333z66afIyMgIrv6cOXOYP38+AwcOJCIigqSkJCZPnszFixfZs2cPf/75JzNnzsTAwIDm5mYeP34scuttbW17gAPjxo1j1KhRLFu2rFfPKA0KkyZNYuDAgT2GmOjoaOLj44XHZWdn53/Fs0p+ywDDhg1j6NChQsgGMGrUKNTV1dm1axfPnz/n22+/Fdu4hoYGEezQ3NzM69evcXBwEPzGgoIC0Wz++OOPzJw5k87Ozl5lxisoKLB+/XqmTJnSY20vNbQdHR3s3r2b+vp6Fi1axJo1a3jy5Alubm48ffqUKVOm4OrqyvXr18UmLCwsjOHDh5OcnExkZCSRkZH8/fffIoinoqJCxFBLl7yRkREZGRlERUUREBCAv78/u3bt+n9Upevo6IgghXept73EJQ9efX19fv31V16/fi2ifBUUFMSqOzIyUrj/lJWVYWBggIyMDPHx8dy5c4eJEycybNgwlixZwty5c3vEar/NH3/69Cnu7u78+eef6OjoCPrO999/DyAsK5WUlHrYPPa2bty4wejRowV1rq6uTgxv169f5+DBgwQFBQlQTKozZ86QkJAgUtMkv9Nly5Zhbm6OhYWFoFS8//77nD17llWrViEnJ8edO3cAhGMSIOzi5OTkhMWiZJdmaWnZa22EVNL2MTg4GD09PZ49e8amTZvIzs6mqKiIlStXMmTIEBQUFKioqMDOzk5Yfkrl5+eHp6cnz58/59SpU+Tn5xMSEsLKlSvF97p///5iW15SUsL8+fPFtlkSagLidyNtxyX3G+gGLd4FWe518yo1Y2pqalhbW7Nw4UJOnz7N5MmT8fHxISwsjCNHjggEpq2tjXHjxlFSUoKXlxd3794lPDyciooKWlpaaG5uprq6GkdHR0aNGkVISAjm5uYEBASgra0tvpBSkpOfnx9OTk7IyMjg4uLCpUuXmDVrFnv27MHd3Z0ff/xR/KLgP6vHdy0pCu3KlStUVVWJg661tZXq6mpBlJaXl0dNTY3MzExu3rzJ0KFD0dLS4s8//0RDQ4NFixaRl5fHr7/+Sn5+Pi4uLhQWFiInJ8eIESOQl5cnMTGRYcOGYWBgQFZWFpcvXwZgzpw54oJOTk7G19dXNNA+Pj5MmDCBiooKnJ2dCQ4O7rUd2JkzZ7C3txfZ31u2bOHMmTOUlJQI8cHQoUPJyMggKSmJu3fv0rdvX/FinzlzhvT0dN68ecNXX30FdCe6REZGMn/+fCZMmCDW1lJJjWt4eDgPHjzA3Nycfv36MXHiRGGh1draSk5ODrt37xZem2fOnOHixYsiH/pdytbWFjk5OWF0LDVA0K3KjoiIoKqqCg0NDYKCgsQ/c3NzQ1NTU6yCPTw8ePr0KUeOHBEq6OTkZFJTU6mrq+PEiROMHDlSrHage8D59ddfaW1t5dNPPxWJLG8nrgUGBgqkKCQkpAfy/a4lBUV4enoyZ84cPDw8aGtrY/HixT3W9JKRtIaGBrKysrS2tmJmZsb8+fMpLi4mLS1NiO60tbWJiooiLS2N0aNHs3TpUmprawVXUGoO3d3dRdMqVVdXFzk5OT0aHisrK6ZMmUJdXR179uzp9TNaWVkhLy9PfX09J06c4M6dO5iYmBAfH4+Pj4+I95VKyu/Oyspi/vz5GBoaYmRkxKxZsygtLWXevHnC97O8vBxbW1vhrPE/kdNBgwahpaWFrq4u+vr6fP/998TExPDVV19x8+ZNNDU1qaiooLCwED09Pe7evcuff/7Z453/v6qgoAAbGxs8PDzw8fEhNTWVo0ePEhYWxmeffSacXKRSVVUV3LLMzEzU1NTEuWBlZcXUqVMxMDAgLy+PS5cuceTIEerr6xk4cCBjx47tgVSNGDGCyMhIEX389ddf09DQgK2tLRoaGj347NA9uDx48KCXn+B/LIb69u2LpqYm9+/fJy4ujpKSEtTU1PD29hZNh6ysLNnZ2Zw5c4ZJkybh4uLCjRs3yMvLY8CAAbx584aYmBiGDx8u0PRXr17x4MEDbt++TVVVFS0tLXh6etLV1UX//v0JDAzE3t6efv36YWxsTGFhIfv37xe562PGjGHAgAEEBARw//59CgoKevV806ZNIykpqcc9U1VVxYsXL4SnsLW1tRD25efn8+bNG9rb2ykrKyM/P5/8/HyGDRtGeno68vLyjBs3Dicnpx7R328nKr2dXAjdwrrU1FRev35NTEwMt27dQlZWFisrK3x9fcnMzOTixYtcuXKFvn370q9fv17pQOTk5ITjgampKfPnz8fCwgIdHR3k5eWxtLTEzMwMe3t7/v77b+bPn4+Tk5P4nRQVFVFfXy/S24KCgoQoTeK0Ojs7c+HCBZKSkpgyZQpdXV3s3buXxsZGVqxYgbOzM5cvXxa6moULF+Lh4UFGRgYvX75ET0+PcePG4erq+q/EoZLoC7qH5sOHD9PZ2YmhoSHPnj2jublZeNUvWrSI2bNnU1xczNdff82rV69wd3dn586dLF68mJkzZxIbG0tpaSn+/v54eHgQHR2Nvr4+u3fv5uDBgz0SwUpKSnjz5g1mZmZiKJOiYlVUVGhqauLnn3/Gzs6O9957j+joaNauXdvDF/r/qvPnz3Pw4EFWrFjBgQMHeP36NREREQB8++23aGpqMnLkSHR1dbl3754Ioti/fz+3bt1iw4YN2NjYcPbsWQ4dOkRKSgplZWW4ubn911ZNcpgqLi4Wzy9t/aT3SLo7DAwMUFRUFK4Lb968oampqYd39f9WvW5eX7x4IWxApD+gs7OTx48f09bWxpo1a+jfvz8FBQWsW7eO7OxsZs2axZQpU2hoaOD999/n/PnzQPeB1t7eTl5eHo6OjoJnJzUqkuuAtM776aefcHV15cKFC6SmpjJ58mQ++ugjpk2bxubNm/nnn3+YNm0a06ZNo6urS5j/96Z0dXWJjY2ltbUVAwMDkS2tqKgoCOfGxsY4Ojry9ddfs2TJEh48eEBhYSFWVlaEh4ejqKjIwoULefjwIbt378bBwYFhw4Zx48YNEbFWXFyMjIwMs2bNQllZmQcPHlBRUUFJSQkhISHCmkS6cBoaGqipqcHFxQUXFxdxef2bL2p5eTkfffQRhoaGhIeHk5CQIARXJSUlaGhoMGfOHAYPHszdu3c5deoUkZGRyMnJYW9vT3NzM1lZWcjKyorkqUePHnH37l0WLlzIuHHjeO+994DulW5LS4tYcxQVFfH8+XP09PT45JNPgO4LaN++faSlpSEjI8Pjx4+RlZVl6NChFBYW9kCc3qVWr14taBWSD6CWlhYGBgYEBQUJRHnatGmcOXOGQYMGAf9RnL569QpDQ0MMDAyoq6vj9u3bIrklLy8PTU1NLCwsSEpK4tq1ayI8oqqqisuXLxMXF8edO3dITk7m2rVrTJo0iZs3b/Zojvr160d1dTX19fVCBNCbam1txdPTk8mTJ4tGo7Ozk2nTppGXl0dOTg75+fmYmZmJhqq2tpbCwkKGDBlCaGgo2dnZLFy4kNTUVEaPHi0QoLS0NPr164e/vz/btm1jy5YtQDd/0dzcnKioKAwMDNDW1kZGRoby8nKePXtGfX19D26r9K5GRkZy9OjRXvNe37x5g729PcXFxaipqTF58mTKy8sF9WbkyJECHZG4ny9fvkRRUZG0tDSRRJeRkUFhYSF79uyhvLxcoE7jx48Xq8qWlhbxnsrLyxMSEkJISIhojh0cHMjPz+enn36ioqKCCRMmMGzYMIHmSqiZ9E6/SwUHBzN+/HgcHR1pampi5syZvHr1imnTpjFp0iQmTZokUoSkFaaqqip37twhNTWVWbNmie9VaGgooaGhlJeXc+zYMUpKSnj69CkXLlxg+PDhIn1QovpYWVkJRbbkkSkJ0KTEt7fPl+PHj7N27dpePR90X8zNzc0iWCAqKoo//vgDFRUVli5dio+PD5WVlSgpKSEvL8+uXbvYtm0bbW1tGBsbc/nyZbKzs9HW1ubChQucOHECPT090bwmJyeLbHsVFRWSkpKESPjrr78mLCxMfO8aGhooKSnh2rVrXLlyBWVlZSIiIvDx8aG4uJgzZ86I78y7lpOTE97e3j0GOQm1d3R0FMO8VC9fviQxMRF5eXnMzc0ZPXo0N27c4MmTJ6irqzNlyhRGjRqFmpoaQ4YM4cyZMwCEh4eLQcnIyAhPT0/hfqOgoEBVVRXZ2dmoqalRXV0tbJ/WrVuHj48PDx8+FM4t0lD+riUlL7W3t9PQ0ICHh4fwlJWVlWXOnDkUFRWRkJDA06dPqa2tZfny5VhZWdHW1ias7p4/f05+fj7GxsbU1NSQmZnJlStXyMvLQ0NDQ/hmDxo0iMLCQiIiIvj0008JCwsjMjKSH374QWzw7t+/z82bN4FuJLm6upodO3YQGhrK+++//87PJtXgwYOFZaKysjJFRUU8fPgQY2NjDA0NRUJiR0cHo0ePRkFBQdgQFhYWsnDhQtTV1VFXVxcUK3t7e6qqqigrK2P48OHMmDGDx48f9wiJkJWVJSoqiiVLliAjI4Ofnx8LFy5EV1eXAQMGoK+vL5LIcnNzmT17Nu3t7Tx9+rRXzauSkhJNTU08ffqUzz77DDs7O86dO8eHH35IZWUlcnJymJubIysry8OHD4mJiSE0NJTHjx+LZMby8nJmzZolPvfOzk7OnTvH+PHjGTVqFNB9B6qpqf0Xr3rs2LHk5eWRm5uLrq4u2traKCoq9gA77t27x8OHD/H29u4xaP9v1evmVUKl3uZauri48N1335GQkMDJkyfFOv3w4cMoKyvzzz//AN182JcvXwLdNjhLlixBR0eH4uJibG1te5jnSr/w0aNH9+C2SfYt0mExYsQILl68yPnz59m6dSufffYZMjIyJCUlER0d3QN1e9fS0NDgww8/pLOzU3AK33vvPTQ1NYmMjMTOzg5XV1cmTJhAR0eHcE14/Pgxffv2xdnZGUVFRQwNDenbty/V1dXk5OTg7OxMa2srb968wcXFhcGDB6OsrEx2djYHDx5k5MiRDB8+nNu3b7N48WJWr14tyO0bN24UnCiJ7/Rvy8LCQvxOXV1dmT17toiv9fHxEZeapaUlH3zwgfiy1NbWChRk8uTJmJmZCRNzKVDh5s2bGBoaihVrR0eHaCQBYc0hmddDt2jp9OnTqKioMGTIEIFqQ3eEXFhYmJgS36Xe/vM6OjpYuXIlxcXFQiCzZMkS5s2bR0lJCZGRkaJ5jY+Pp6GhATc3N7EqGzhwoBAnVlVViYQRdXV1MjIyMDU1ZciQIWRkZLBy5Uo8PT1ZtmwZGRkZJCQkCBX4559/LtK4jh49SmNjI1OmTOHZs2d88803gjP+rmVmZiY4VVIlJydz8+ZN9PT0GDZsWI986dTUVO7fv4++vr5AulpbW8nOziYvL4/o6GjmzZvHkiVLePHiBZcuXWLVqlXo6Ohw8uRJDAwMiIuL4+jRo3zyySecPn2a9evX4+TkxKlTp9i2bRsyMjL4+PgIeo1Ufn5+dHV1ceLEiV4947Zt2/j888/p168f+vr6wmMxNTWV2NhYWlpamDdvHjU1NcyfP5/ExES+++475syZQ3Z2NrNnz6agoIC1a9dia2vL+fPnRTMACL4odDe/L168wMTE5H9NsvH392fy5MmCtjN48GB0dHTIycnB3t6e06dPc//+/Xd+PinwBbrX61L8dGFhIWZmZhQUFLBhwwaqq6tZs2aNWFdK76c08DQ1NQmU6++//+bYsWMMHDiQhoYGXr16JTYQycnJREREEBIS0uPzKSkp4erVq3R2dtLV1cWlS5coKSlhzZo1YgjtLe9cqgMHDvDPP/+we/duBg8ejKqqKubm5nzxxRcsXbqUuro6jh49SnV1NU5OTpSWlgLdyUsaGhqMHz+euro6ysrKcHJy4uTJk+LvBIhAGhsbG9TU1IiIiOD58+eYmZkJQSh02wN+//33+Pr68vnnn5OTk0NCQoL4/JWVlZkxYwZtbW2cPXv2nZ/v6dOnODo60qdPH/Gz8vPzOXPmjEglfFsz4ezsjIGBAdbW1tTU1DBo0CAcHBwYMmQIJiYmtLS00NrairGxMfv27RNixfDwcCIiIlBUVKS2thY9PT2WLVvGmjVrRBhBUlISPj4+GBkZceHCBYqLi+no6GDkyJFoaWlRX1+Pr69vj7V3byo/P5+bN2+Sm5uLm5ub8FFOSUnh+PHjpKWlCWHkzJkzsba25uOPP2bEiBHinjt37hzl5eVoamoyceJEvvnmG86ePcuGDRuwsrJizZo1DBkyhOzsbHx9fQWQ9eDBA1JSUoBui7mhQ4dy4cIFCgoK+Oqrr1BRUWHbtm3o6OgITUZv6uzZs4wdO5Y+ffrQp08fli1bhp+fH2/evMHExARfX1/Mzc2RkZEhMzOTmJgY0tLSGDJkCDNnzsTc3Jzy8nI+/PBD4uPjmT9/PmpqaoSHhxMXF4eGhgZ6enps2LABDw8PNm3aRE5ODv3798fa2lokjBYWFjJo0CCGDBkihINKSkp88cUXtLS0ICsrS0hICPfv3+fo0aPv/HyTJ08mNDSU1atX4+vry9WrV/Hw8ODo0aOUlpaKDaSsrCwDBw4Ugut169YxZMgQ7ty5w6lTp4QbQ3BwsHD6+OSTT/jpp5+YNm0aKioqJCQkCPRU4uhDN1Wgra2Ny5cv09nZyaBBg3BychJos66uLk1NTe8cld7r5tXOzg4VFRXRXEB38yonJycI4b6+vigpKTFmzBjq6+spKytDU1OTpqYmYZclTYRvV3h4OLW1tQwaNEjwZ7OysoQIo7a2lpcvX1JfX4+GhgaRkZEi4KCyspKMjAxhwSSt3aWV57vW2bNn6ezsxNPTEyMjIxobG0lISCA8PBxbW1sGDBggvvyqqqrMnj0b6FYnxsfHiySSrq4uXF1dCQ0NZceOHVy9ehVLS0usra3R0dFh+vTpolmXDLX19PTEOunNmzckJSVhaWlJVlYWe/bsobS0lMDAQOzs7EQ+dW+VsdDtpXf16lUGDBiApaUl8vLyQkgkBSBICKMUSSiJXeTl5dHS0sLHx6dHOo6XlxdeXl6cPXuWq1ev8vr1awICAkQsHXSjoDk5ObS1tQki/8WLF/n+++8pLi7mxx9/ZNy4cRw5ckQ0WhLfsjfN68GDBzE1NcXZ2ZkXL15QU1ODurq6GHhmz57N69evBQIsZZFLF1p2djaenp4oKysLrqhEe1BQUEBfX5/+/fsLvit0X9JJSUl8+eWXBAYGcvv2bbZt28aePXuYP38+rq6uKCkpkZKSQktLixBSSJ/jxYsXe/UZSglllZWVtLa2iqSgPXv2MHXqVMG3lbjo0D2UvW1Z9ezZsx6m2Tt37sTZ2RkPDw8xkAQEBAhkWVVVlR9//BHovkza2trQ0tIiICBAiL0sLCzEu1ReXo6Wlhba2toMGjSo180rdHN7+/btS25uLleuXKFfv36MGzeOxMREVq5cKVJrsrKyMDY2FghAYmIiKioqjBs3Tljp+fj4UF9fz5EjRzA2NsbPz0+g3tra2kKZXlFRgYmJCWZmZqiqqlJTUyM8qj///HOcnZ2Jjo4mKiqKrq4uVFRUhLl/b5rXgoICCgoK6OzspLOzk5EjRwrhz4MHD4iKiiIlJQVbW1taW1vJysri2bNnGBgYEBISIoY0FRUV4TAhRfwWFhbS3NyMgoICjY2N1NbWUlxcjJ6eHn369KGsrIzi4mKsra3FeXb69GliY2Opq6vDzc2tx9bq7bV1b6qrq0ugwRkZGTx69Ahvb2+WLl0KdPMbT58+TVZWFp999hkzZsygo6ODR48e0dDQwOjRo6mqqmLWrFmEhoYybdo0Ghoa2L9/Px4eHvj6+mJnZ0dbWxv3798nNzdXXP61tbUUFBRgamoqstZlZWUZPHgwX3zxBZ9++ilbtmzhk08+QU9PTwyxvWleZWRkhMhTKkVFRaysrHB0dERZWVlYj1lYWNC3b1+xZtXT02Po0KFUVFTg6+sruNMnT57k8uXLzJgxo8cg5eDggL6+PqmpqcjKyorhpb29nZKSEgICAujbty91dXUsXLiQxsZGEdAjeY+Xlpb2Olq0paWFyspKKisrqaqq4unTp7S0tAhgSbI+s7e3Z8KECcTGxgr/UllZWcLDw8nMzKSxsRF7e3u0tLRQUlISjgGSQHrIkCHCV1qy3Ovs7OTZs2fCixq6z7FJkybR1dXFzz//LOwkQ0NDMTExEbZMvamIiAhxl+fk5IjPSbKjlIZMyU87MTGRwsJCZs+eLTZbv/76K8+ePWPAgAGEhYVhZGQk7h4JRJOcUfT19cnJyaG8vJyFCxcybdo01q9fT2FhIbW1teKukgblsLAw5OXlefnyJa2trQLUeteSLKn69+/P+fPn2bZtGz/++COOjo5YWFiI3svf31+codJ3Z/bs2djY2JCbm4uCggJ//vknwcHBREVF8cEHH5Cdnc3mzZuZMWMGioqKdHZ2cuHCBUxMTJg7d26PHsXc3BwXFxfOnz/Pw4cPGTNmjPgsm5ubRerlu5w3vW5edXV16dOnDxUVFeLgb2trIykpicLCQuTl5SkqKiI4OJijR49y/fp1oqKiUFdXx8rKSnDy/mfjWlBQwGeffYa9vT0hISEUFxezY8cOioqKxBQiKysr7GnKy8uFgMTBwUEoFxUUFDh9+jRXr15lypQpPVSf71IHDhwgICCA5ORkjIyMCAwMpKioiI8//pipU6eKRBDJ9Ff8IuXl8fLyIjs7m/r6etra2jA0NMTBwQFzc3Oxyg0ODmbhwoU9KBdjxozB0tKSjRs38uuvv7J27Vq+/fZb7t+/z+3bt9HX18fQ0FAkfQDcvn0bXV3dHok471qqqqpERESgr6+PpaUlOTk5HDhwgDdv3jB9+nRCQkJ4+fIlMjIyDB8+XBiYy8jIiEHh4cOHWFhYiENbUmhOnjyZM2fOcPjwYVpbWwX61djYiKGhIQcPHuTBgwccPXqUoKAgjh8/Tn5+Pnp6esyaNQsLCwtevHjBy5cvCQ4OFj+3N7V7926CgoK4fv26iBkcNGiQQGHk5OT4+uuvqaysFDF98vLywhP11KlTXLhwAT8/P5KTk7l48SLy8vIi0cbJyYl58+YxevRompqa2LFjB7GxscybN0+sOyRD+P3792NgYEDfvn1JTk5GUVFRHNC3b9/GysqKH3/8UVglvWtJvDdZWVnKy8tFjKqqqqo42BobG8nIyMDGxgYHBwf69u0rPq+qqirBwTYyMkJZWZkjR46Qnp7OtWvX8PLyYt++fT3WofHx8QLFGzZsmECaAgIChKWZRLWQbPL+p1F6b2r16tXU19cTExPDkSNH2LVrF5MnTxbq6qqqKo4cOcLnn3/OypUrMTU1pbCwkFWrVgmkTYpohG50TU1NjcGDB7NmzRoGDRpEWloaxcXFODg4CIHovn37UFBQYNmyZbi5uZGbm8tvv/2GoaEhO3bsYPbs2VhbW7No0SLMzMx6hYC8XefPnyctLQ1jY2OCg4PFYFxUVMS9e/eQlZXlyy+/xNvbm5SUFJYuXUpERATr1q1j6NChPX6WJMAaPHgw77//PleuXBFx1KWlpZSWluLt7Y2KigoKCgo8e/aMxMREGhoa8Pf3F/SR+/fvM3nyZLZu3dojgevfIq/jx4/HxcWF48ePs2DBAqDbZkdC57u6uiguLqa0tBRHR0dGjx7NkCFDuHjxotgQPH36lBs3boj//vPPP7Nx40aWLl0qIi23bNkiRC9TpkzBwMAABQUFcnNzUVVVxd7enosXL4oz28jICA8PD2FJ9cUXXwjQoTclCcjgP1tJJycnvvnmGzHcv3nzhvLy8h72gRJa7ufnx6VLl1iyZAnLli0jICCA6OhotmzZwrVr18QwExQUxOeff07//v3Fxd6vXz86OzvZvHkzzc3NLFu2jDdv3rB161YGDRokrJCkevnyJTExMf919/5fVVhYSGZmJjo6OiKlTFFRUQisBg4cyIoVK9DR0cHf358///yTe/fuMWfOHHx8fJgxYwY3btzg999/5/PPP0ddXR0VFRUaGho4ffo04eHhuLi49NgiFRYWEhMTQ1lZGRUVFT0EPJKNZVFRES9fvmTx4sXMnz+fSZMmoaWlRVRUVK+eDxCDQ2NjI7GxsdTU1ODm5iZQ887OTq5cuUJTUxPBwcGYmJjw+PFjmpubuXPnDlFRUaipqXHt2jU8PDzEuTlu3DjU1dXFgLF06VIuX74s7qLq6moMDAyEy4e0OZNq+/btxMfHY2pqyoABAzh//jxHjhzBwsKiV7SBhw8fEh4eznvvvcdHH33E3r172bdvHx9//DEXLlxgwYIFBAUFCUCmurqa169fiz5LErM6OTlhZGQkRPYJCQls2LBBpGJJWhUpqvttwaDUMwUGBhIVFcWWLVuE9qS4uBgdHR3CwsKoqKgQYrb/t+p18yqlPRgYGIhEG2VlZQwMDFBXV+f+/fsMGDBAcJIk26WHDx/Sr18/nJ2dKSoq4sCBAyIuTaIDuLu7s3TpUrS0tCgoKEBPTw8TExP09PR49OgRZWVlmJqa4ufnR25uLsePH6eoqIh58+bh5eUlmhwfHx+WLFkizPB7UxoaGvj4+IgveH19PTdu3CA7O5tNmzahoKDAV199hby8PPfu3aO6uho1NTWSk5MpLCzE399frKvk5eVZvHgx1tbW3LlzB3V1dRYtWoSJiQkHDhwgISFBWE88fvyYK1euAN1ItpGREfX19dy5c4fBgwczY8YM5syZQ0hICF1dXWhpaWFsbNzrwxYQyJqEuEipU/fv36e0tBQtLS2UlZWprq7G2NiYDz74ADU1NWxtbTEwMODChQuUlpZSVlZGdXU1L1++pH///lhaWvL48WPS0tKYNm2a4NkpKytjaWmJlpYWRkZG5Ofnc+nSJaqqqgSiqqCgwF9//YWhoSGDBw9m3rx5ODk5cejQIWJiYnqV5Tx37lzs7OwoLS1FTU2tR3rKq1evhNjv7eFD+nsGBgbS0tLCixcveP78ubC0Kisro6ysTCjs161bh4KCAsOHD0dJSQlnZ2cmTJhASkoKR44coaSkhPHjx+Ph4YGzszMuLi6YmZmRmprK9evXefXqFUVFRcyaNQs7OzuCgoK4d+/eOz/j26sWOTk55OTkiI+Pp7i4uAe/OCsrCwMDA9TU1CgrKyMtLU3QMkpLSykpKcHR0ZGZM2dSWVlJfHw8mzdvZtWqVWLlc/78eSES6t+/P52dnXh5edHR0cG9e/e4d+8eDg4OArmorq7mxYsX6OjoUFdXJ9JVels2NjaUlZVRVFSEs7Mz48aNw93dnba2NjG0Sb6O5eXl3L9/n71794qs9V27dmFubi4M7g8dOsQ///yDv78/AQEByMjIiDQ+NTU1zM3N8fPzIzExka1bt1JQUMD+/fvp06cPBQUFREREMHfuXAICAsQZ9OrVKw4fPsyKFSvIy8vr1fMVFBTg4eGBtbU1lpaWgr+rpaWFpaUlTk5O4hwqLi5GTk6OSZMmCQ7l06dPUVdXx8XFBVVVVUpLS8nMzBT817KyMhITE8XZ9LZtkbu7u0DApJo+fToyMjIsXrxYNFqSwOL999/Hycmp1zG/dXV1jB8/HnV1dfH309HRITc3F21tbWRlZQkODqaxsVEMfhoaGgwbNoympiZSUlKIjY0lMDCQ/v3709bWhqmpKQMHDkRNTU18l+7cuYOamhp9+/bFy8sLbW1toZU4d+4c2traPbin1tbWLFmyhLt37yIvLy8awt4mpVVXV1NdXY2Dg4P4d83MzDAzM6OkpIS4uDj09PTw9vbugWS3trYKqoelpaUIGliwYAE5OTkoKysLQ3hA2D/+zyosLMTIyAhjY2P69OlDZ2cnMjIyJCcnc/z4cWpqatDX1yc4OBhHR0d0dHR6nc70doKcsbGx8LeWSkVFRdjhycrKoqKiQllZGXl5eaipqYl1vI2NDRUVFcTHx1NTU0Nrayv19fWMGjUKfX39Hs+nrKyMu7s7TU1NvH79WjQ+9vb2oim3t7dn3LhxdHV1CceWK1eucOXKlV47D5SUlLB27Vqsra0JDAzE2tqasrIy7t27h7e3NzY2NsKFQKJj3blzh4iICAwMDHB2dhbnX21tLbdv3xbfbWtra/bt28eePXtQVVVl5MiRPHnyBCsrK5ESunr1aszNzfn55597CKDGjBkj7Puqq6sxNzfHzMys1z6vUpMsWXn2798fZWVl4UYTEhLC9OnTKS4uZt++fTg4OBAWFsaxY8c4d+4cy5cvR0NDg8uXL/PHH39QWFhISEgIH330EQEBAXR1dZGXl4e+vj41NTX4+vpibW2NhoYGZ86cITo6mrlz5wqRfV5eHgsXLqSqqkqEEQUFBVFYWMi2bduIior6PwOKet28/s+6desWDg4OfPnll2RmZnL37t0eSJmmpibjx4/nwIEDHDx4kJkzZ9LS0sLhw4dJSUlBUVGRgoICHBwcOH36NK6urnR1dXHjxg1sbGyYM2cOKSkpLFy4kNLSUnbs2EFQUBCJiYnU1tZSW1srLvCqqioUFRUZNWoUo0aNIiIigtOnT/fqeYKDg5k2bRoyMjLk5uby+++/Ex0djba2NlVVVWzdupWRI0fi5ubGiRMnKC0txcfHh9OnT5Obm8vgwYPFpV9TUyMyxp2cnNDQ0BCI2cmTJ4mJiWHixIk4ODgII2bJI7azsxMtLS0MDQ2RlZXFy8sLHR0d2tvb6erqYsCAARgYGPwr6wwbGxtsbGxoaGgAulGIRYsWoaSkRHBwMHZ2dmRkZFBQUEB+fj7W1tZMmjQJQ0ND6urqMDExoa2tjRcvXrBlyxbBkTQ0NGT9+vWoqqqyatUq5OXlyc7ORldXV6xyQkJCkJOTo7W1ldOnTyMjI4OhoSHq6ur8+eef9OnTh927dwt08vDhw+zdu7dXQpH/+f99G71VUFAgIyMDBQUF7O3taWtrEzYv0tp7/vz59O/fn7179zJgwAA++OADfvzxRxobG/nwww+JjY3l1KlThIeHM3z4cMaMGUNrays2NjZ88803/P7778yaNYsdO3agpaVFaWkptbW1wnz+448/JiIigokTJ1JbW0tcXBzDhw/vVfPa1dVFR0cHTU1N6OjooKOjw/jx4ykoKBBNeU5ODtXV1WhpaZGVlcXff/9NXV0dLi4u1NXV8eTJE9ra2mhra6Nfv35MmDCB9PR0PvnkE1atWsX27dvR0NAQZvJSIoympqZYid64cYNNmzYxbNgwwsLCUFNTIyUlBTk5OSwsLFBXV6e4uPhfpTNJ4hYXFxeWLFnSw8JIRUVFWEPV19dTVFREREQE6enpQlgRERHBDz/8wG+//UZERATffPMN0N3wVlVVoampSW1tLc3NzWRmZiInJ4eJiQmLFy/m7t27XL9+ncjISKZNm8bEiRPZvXs3hw4dol+/frS2tuLv78+tW7dITEyktLS015ZZzs7OzJ07V3yeEqoNiEQi6BYAqampMXXqVNHUVlRU8PTpU/T09HBwcMDNzQ0HBwdevHhBRESEaHJTU1O5desWTk5OmJub07dvXzo7O2lvb8fe3h4ZGRm6urro7OzE19cXX19fOjs7aWxsRElJCS0tLbq6ugQtqDc2UtA9LDo6OjJ06FAGDhzIxYsXhZcwIOKb29vbhbVSTk6O4BVGRESgpKTE5MmT0dPTIy0tTbwLJ0+e5MiRIxQVFeHq6sr3339PaGhoDxP31tZWtm7dSmpqKteuXWPo0KGCtzd58mRh6yatg3vLB83Pzxd0BHt7ezo7O8VZ8+zZM65fv07//v2ZMWMGWlpawqFCWVlZnIlFRUUidObQoUPMnz+f9evXExkZKdT4b4vI6urqUFFRobKykrq6OiZMmCAoBP3792fhwoX8+uuvbN26FWtra1avXo2amhoqKiooKSn1+s6QtjlSA1teXk57ezt6enrIy8sjIyNDa2ur8CBVU1NDUVGRJ0+eUFFRweLFixk/fjynT5/mjz/+IC0tDSUlJby8vJgwYQLTpk3DzMxMvHfKysoYGhrSp08f0cTa29tTV1eHk5OTcBmRRJWSvzp0g03379/vdfP68uVLbt++zcqVK8VWNDY2llu3btHc3IyNjQ3Dhw+nsrKSrq4ukpKSyMzMFGEGkp4BuumPUVFRKCoqip+VkJBAdHQ0e/fu5cMPP2Tt2rVUVlYyefJk/vnnH3bt2sXPP/8shtWKigp0dHSEzafk9PLRRx/h6OjIkydPehXApKOjw4IFC9i5cyfffvsta9asEdsbia6hoaFBTEwMx44dY+zYsYSFhREdHc2DBw9YsWIFtra2rF+/noKCAjGIjh07lrFjxxIfH88///xDe3s7AQEBeHh4iHf2xo0bHDlyhKCgIIyMjNi5cyf9+vVj9+7dnD9/nqNHjxIcHCw47UePHqW2tvb/983r24ppJSUlJkyYINI+JCKyRLKWIu+g2zLl9evXZGdn4+joKAx/pYlG4mGdP3+es2fPcu7cOSZMmMCSJUuoq6sjNTUVKysrgeZZWFgwfPhwgaxKZthvK5qlaVTiFb5LSWk5CQkJHDhwgPb2dhYtWkSfPn2oqqrC0NAQT09PUlNTBffIycmJHTt2kJOT00M1fuzYMXbu3ImpqSmurq7IyMgQEBDA8OHD2bx5M5cuXeLgwYMYGxszbtw46urqyM/PJzk5meDgYAYPHsygQYNEcsXJkydxd3dnxIgR4vf6b5KLUlJSRC67ZHptYmLCzJkzhS9rUVERd+7c4c6dO7S2ttLc3IynpyfOzs6Ul5eTm5vLoUOHePHiBdBtfC+lpLx48YIdO3aIuNBff/2VV69esW7dOgYOHMjGjRt5+PAhmzdvxtHREXNzc1RUVIQf8K5du6isrGT8+PEMGzYMeXl5wUt9lzpz5gx6enoCZdDT0xMXiuRwkZSUxKlTp3j69CkJCQmYmZnx1VdfMXHiRDo6OigoKMDb2xt3d3e8vLwYNmwYDx8+FD6x0I187d27t0cYg+RO4eDgIC4nqcFfvny58MocNGiQiLCVkZHptcH9s2fPePbsGUpKSgwbNkyICN9//31sbW1pbGyksLBQXFqlpaUkJCQwZswY/P39+fLLL4Vi1cDAgFu3buHu7i5Eeffv38fR0VH44UK3aDA8PJxRo0bx3nvvoa6uTlNTE87OzkLUFhMTQ0pKCq6urowcORI5OTk0NDRQUVHhl19+6dUzXr16lU2bNrFkyZL/ov8kJydz+PBhCgoKcHNzIzAwkNWrV7NkyRIRDxsXF0d2djZbt24VolFfX18++OADdHV1SU9Pp6WlBSsrK8zNzWlvbxcG2UuXLmXUqFGCgrFo0SLKyso4c+YMDQ0NBAcH4+bmRv/+/Zk9ezYGBga95hK+feFJ3MnW1lbU1NTEujI/Px9FRUVGjBjB4cOH+fbbb7ly5Qpz5szB398fdXV1KisrBSLq4OBAQ0OD2GxJDfGRI0cIDQ1FT0+Pc+fOkZSUhKenJ8HBwejr69PU1CQagFu3bvHo0SPCwsLw8fFBRkaGY8eO8ezZs149H3Q3U9LWRElJSdB3pCaxurpauK9cunRJJL7l5+fzzz//kJWVJbh6//zzD/X19Zw+fVokEd66dYu+ffvi6OhIQECAsIM7d+4cL1684MmTJ0IkvGvXLrKzs5GXlxf6BalMTU3Zvn07169f71WghpTIdvfuXY4ePYqXlxejRo0SaG5UVBS7d+/m9evXbN68mYSEBObOncsHH3zA2rVrOXnyJBs3bkRXV5chQ4bg4+Mj1tXGxsbCzUVaERcUFJCVlYWJiYkwiy8uLqa6uhorKysUFBQYOHAg7u7ulJWVMX78eIFU7tq1iwsXLghg4F1L4rhKFKDvv/+ezMxM9u7dK0RMRkZG4nMeMGCA8GWVtkC3b98Wvu9mZmasWrWK9vZ2/vnnH2pqavj000/Ztm0bDx8+5I8//kBWVpbly5fj7OzML7/8gqurKzExMaxZs4aHDx/i4eEhvtP79u1DVVWVjz/+mMmTJ/dKHyGVnJwcCxcu5KOPPqKlpYWNGzeSk5NDaGgoXV1dHDhwgOnTp9O3b1+KiopISkpi8ODBglb0559/0tbWxvz58xkxYgQuLi4UFBRw8+ZNamtrkZeXZ/r06aI/+Oqrr7h06RLbt29HU1OTixcv4unpKf4+urq6PUCXt+/5trY2Hj9+3EMM9X+VdC+9fv2a+/fv9xAIy8vLC5chHx8f/vjjD1JSUli+fDm7du0C4LfffqOlpUVYyQUEBNDW1sbff//Nxo0bSUxMJDc3l4EDB+Lq6tpD0C9RcgoLC3ny5AmTJk0S1pIDBw5ET09PPLuqqiozZ858p/u+181rTk4OSkpKKCgooKurK1YxNTU1uLu74+7uDvwn616yX3ry5IkQbfXp04dFixbR0dHRwxfxyJEj/PHHH+KwkRAfa2trgoKCMDExobCwEF1dXdLS0pgwYQL19fUoKSn1aADa2tpob29HU1OTwMBAkpOT3/n5amtr2bx5s1gBjhkzpse6SSop11dFRYWQkBA0NDRwd3cnNzdXWG5oampSU1NDTU0NBQUF1NbWUlVVRVhYGK6urpiamqKrq4uSkhJXr17F1dWV3bt3C3K3tJ6oqKggLy+P7OxsYfb8tkq6t3X8+HH09PSQlZVFU1MTFxcXTExMBJle+oxUVVWJjIyksrISc3NzcUkmJyeTnp5Oa2sr5ubm2NjYUF1dTVdXF1OmTGHgwIGMGTOGly9fYmtri46OjlA05+fnM3HiRGpqasjJyaG4uBgFBQVmzJjB9OnTef78OR9++CGffPIJERERfP755/z000/CT/ZdKikpCQsLC2pqamhsbERFRUWoeA0NDQXyePv2bbKzswXqAt3q8q1bt5KYmMjixYtxd3envb0dNTU1NDU1uXz5sng3pCZJ+iza2tpQU1MTokboFlNUVlby7Nkz7t69y9ChQ8UK9G3z7942Bq9fv+b777+ntraW+fPn88UXXwivZKnMzMxE+lR1dTWBgYGMGTOGvn374uTkRFRUFHp6evj7+6OhocG+fftITk6mtraWrq4u/vjjD3Jycli3bh26urrY29uTmpoqkHLoRvF1dHTESvrly5dERUUxbNgw5OTkyMzMpKys7F8pgOXk5DAzM+vRTOTn5yMrK0tKSgpPnz4lNjYWWVlZFi9ejKamJqWlpTx+/BgPDw+xtZEQBj8/PxwdHUlLS8Pb2xsNDQ1BITE2NiYuLo6bN2/i6OjYI5kLupELac31/PlzIVjx8vJCS0vrvxwW3qWcnJxITU1FVVUVCwuL/0rLk4ZGHR0d5OTkUFdXp6amhry8PCFUU1VVpby8nMzMTFpbW8V7debMGWF31dDQgKenp9j+SHQCTU1NBgwYgLy8vPizpQb+bZ9k6LbYun79eo/EnXcpX1/fHv9doiM8ffqUR48eoaenx4wZM2hvb+fSpUukpqbi6elJcXGxSIqbPXs2rq6u3Lt3j4iICDZu3Mj48eN58uQJzc3NgqdeWVnJsmXLaG5uJjIyklOnTiEvL0///v1pb2/n9u3bPHnyhGnTponnePToERoaGjg6OtLS0kJaWlqvmlcpqjQ5OVmsgltaWkQK5LBhw3jz5g0vX74kISGB3Nxc+vTpg5KSEnl5eaSnp9Pe3s6IESP48ccf0dDQ4MWLF5w+fZqamhoReKCiokJnZyfFxcW0trZiZWWFrKwsGhoaFBYWkp6eTmVlJf3790dWVpaFCxcyZsyYHmKZ7OxsoqOjGT58eK8+w+TkZGpqatDQ0BADg4GBgWioUlJS0NPTE2eek5OToBa0tLSwa9cuTp8+jba2Nk5OTixatIipU6dSUFDAxo0bSU9PFx7ghYWFdHZ20tTURFpaWo8Anrq6OiIiIkhMTMTBwYHXr19TX19PeHg4dXV1WFtb4+bmxqZNm9i7d2+vnlFLSwtvb2/U1NR4+fIld+7cET7kkiCpsbFRNLODBg0S77KWlhZFRUVcu3aNhoYGvv32W4yMjLhz5w579uyhtbWVTz75hA8//JDbt28zc+ZMBgwYIEAULy8vPD09xZZDSp6sqKgQ27qsrCw0NTXp6Ohg3bp13L9/v1fbyPb2dgoKCtDW1mbo0KGiiS4uLqaoqAglJSVev36NnZ0dY8eOxdjYmM8//1zQ/Z4+fUpNTQ1mZmasXbtWhA/s3r2bJ0+eUFJSgq6uLq2trWRkZAjP5fT0dOzs7Fi6dCnr169n//79zJ07VwxlUjplVFSUcJ36+uuvyc/P/6+QhP9ZvW5eN2/ejJOTE4MHD+5hliyZuEvqwsTERLE6kMj2Y8aMobOzk9zcXPz8/JCXlxdxrNB92VpYWNDQ0MCYMWNYtmwZsrKyODg4cOLECU6dOsXChQtRUFBgxIgRjB8/HlNTU5qammhoaKCurg41NTVkZGSQk5PD0NCw14iWiooKmzZtYvbs2fz00089bE7u37/P8ePHWblyJY6OjixfvpyOjg40NDS4cOECMTExzJw5E3l5eTo7OwkNDWXw4MHExMRw9+5dmpqaGDhwoPh5paWlKCsri/SXiRMn4unp2cNG6uHDh9y5cwdLS0t27NiBtrZ2DzVlUlJSbz9C4uPjUVJSIjs7GxMTEywtLTE2Nqa1tZW6ujo0NTUJDQ3F1taWN2/eIC8vL9YAt2/fZsmSJZSWlvLxxx+zatUqOjs7uXz5MidPnmTGjBkYGBjg4uJCcXEx77//PsrKytjb2zN16lQiIiL44IMPqK+vJyEhAeiOEdXT00NZWVkQ/v/880+ePXtGdHR0r23BpMx7VVVVOjo6KCoq4tmzZ5SXlzNs2DBcXV0FShMSEkJFRQWmpqaEhoZSUlLCjRs3RCCFvLw8VVVV/Pzzzzx69AhtbW2xAndxcREilKysLMLDw8nJyUFXV5e8vDzhP/nTTz+JOMqHDx8K8Zo0fZaWlgpR3LuWjIyMGFyuXbsmFPVvV3BwMCkpKdy4cUOkaamqqtLQ0MDmzZsxMzNj69atDBgwgOXLl3P69GmOHDlCTU0NysrKlJaWsnPnTuLi4ti6dSttbW0YGRlRWFgonD4iIiJYuXKlyK1XV1enrKwMOTk5mpub+eabb0hLS+Ozzz7r1fNBN19+7ty5PYQuiYmJvHjxAldXV/bu3UtCQgI6OjpoamqSmprK1KlTefXqFUFBQQLxUlZWZty4cYwePZrff/+dW7du4ePjg4ODg3j3oBtxfPPmzX8Z9Evl6OjIH3/8wZo1ayguLsbX1xd5eXl++OEHbG1tBS3hXUtWVhZ9ff3/lbcuJydHnz59hH/u8OHD8fT0RFVVFUVFRUpLS6mrqxPbE0tLSwoLC8WwWVhYiIGBAbNnzxa2hIDIHTc1Nf0ve0JZWVkCAwPFcC3V3LlzGTRoEKdOnerVM/4/VUJCAsuXL+fZs2dMnz5d8Mjz8/NJT0+nqKgIOTk5XF1d+frrr4XoTmqmDxw4wO3btzEwMGD06NHExMQQGxtLRkYGEyZMEElAbW1thISEMGzYMO7fv8/q1atpbm4mKChIuKr8/PPPJCcn89133zF79mwGDhzIkSNH3vlZbt68KTYR0vCvpaVFS0sLNjY2rFmzhq+++oqoqCgOHDiAs7Mzd+/epaKigqioKIYOHcqsWbNQUlJCQ0ODqqoqDh48yI4dO8R638zMDFdXV8EhV1VV7YHEeXl5IScnx7lz54iOjubjjz/GwsICNTU1bt26RVZWFkOGDOHzzz9n1KhR2NjYCHHbu5S2tjatra2sWLGC5ORk3nvvPTZu3IiOjg7bt2/n4sWLLF26lIkTJwLdtm/SvSl56/r4+DBt2jRsbGxEk6ukpERISAg3b97k/PnzhIWFMWjQIHR1dQX30dzcXLjf1NfX8/vvv2Nvby+idRsaGtiyZQv37t1j1apVjBkzplfPJpWenh5Hjx4Va+/NmzfT0dFBa2ur4KDv3buXhw8f8vvvv/c4k7S0tDh8+DA7duxg69atxMbGMmDAAIqLi0lPT8fIyAg1NTW0tLSorKzkxIkTnDhxgtmzZ7NhwwaOHz9OQEAAW7ZsYeTIkVy4cIH9+/f3EFD9/fffnD59GiMjo39FwXJxceHVq1cMGzZMWJn+8ccfvHr1ivHjxxMWFgb8h+Pu6OjIn3/+iaamJgUFBRw9epSmpiY++ugjwU23tbXl+++/Z+7cuZSWlhITE8OFCxd4/vw5I0eOJCkpie+++46QkBCWLFki0sKio6MpKioSKWk1NTUiXdLV1RUDA4P//yRs1dTUoK2tLQQCGRkZxMTECNN6T09PIYbYsmULN27cwMfHh7Vr1+Lk5MSNGzdISEjA3d0dDQ0NCgoKaGpq4s2bN5w+fZro6Gi8vLzYsGGDMO9vbm5m1KhRjB8/XkzKLi4u4nCVIhElTk5zc7P4cvcWDcnIyKClpQVzc3Px7zY0NHDt2jVWr15NdnY2MTExbN++XVirdHZ2Cv5Ja2urmPrNzc0ZNGgQGRkZvH79GjMzMyorK3nw4AHBwcEYGhry7bffisQyY2NjjI2Nyc7Opra2FktLS+zs7Hj69Ck+Pj5iNZ2WlkZ0dDQ2Njb/yrPPwcEBIyMj7OzsMDAwwM3NDfhPPntnZyeKioq4ubnh5uZGY2Mj9+7dw8zMjJCQEFatWsXJkycxNjampaWFsrIyYmNjuXPnDvX19VRUVFBbW8uWLVuYPn06UVFRnDp1itbWVvz8/CgqKiI3NxcjIyOCgoIYPXo0hoaGpKWlYWNjI9Yux44dw9jY+J1936SqqKjA2NhYXHbm5uakpqZy/vx5YmNjWbFiBV5eXvj5+XHnzh0cHBwEUpCeni54dpJBvba2NocOHRJNQVhYGDk5OWLokH6PWlpaxMfHk5mZiYeHB2VlZZw+fZqgoCAmT57MgwcPOHz4MCEhIXh6etLR0UFdXR1tbW3/1UT8X1VbW8uMGTNISUnB399frFqvX79OaWkpY8aMwcPDA0dHR968eYOOjg6mpqa0tbUhJycnLIO+/vprNmzYILLFx4wZIwzOJQ5rYmIin3zyCZaWloKWICW/KCsrY2ZmxosXL7hy5QqGhobCsDsxMREdHR08PDz+Fb1FXV1dIBodHR2EhITg4+ODiooK2traODg4iDV5UVERjx8/Fms2ZWVlXr9+TX5+Ph0dHTx//hxtbW0CAwOxsLAQl6tkwxUXF0dsbKwQ10kVHh5Oc3MzLi4uWFtbo62tTVBQEJ2dnbi4uAgqUW9DJqAnraqiooKrV68iJyfH8OHDMTIyQlZWVthbKSsro6ysTHx8PEZGRjg6OqKnp8eZM2c4cOAAnZ2dGBgYCNGlhLhJJvE6OjpER0eTm5vLmDFjRANRUVFBWVkZOjo6Ak0rKCgQAo+ysjJycnLw9vbG3Nz8XzevZ8+eJS8vj8DAQJKSksjNzUVZWRk/Pz90dHQoLy8XzVpdXR3m5uZiwEhPTycjI4MRI0YQEBDAwIEDefr0KT/++COjRo0Srg2Ojo6UlZXR2toqQI6MjAymT5/O1KlTUVVVpbCwED8/PyoqKrh48SKGhobo6uqiqqqKkZERRkZGvWpev/vuO8rLy5k9e3aP90YanqXVr5SKWFtby7Nnz8jKyqK+vp7AwEDRCOXm5rJ9+3aRmDhkyBDc3NwoLy/n0aNH1NfXExwcjLq6OlevXhVpYn379sXMzExwQaXBW+IRl5eX09TUJLYsRUVFvfrsFBQUyMvLo6GhgcDAQL744gsxCCUmJnLv3j2Cg4NF85qWlibS/6ysrAgNDaWzsxNnZ2fxzyROt4+PDxUVFfj5+Qn7NEn0Kt0F0N28ZWZmcvToUbS0tMjLyxNNuY2NDTIyMvz00088ePCg18JJ6Xctbb90dXV7AHPPnz+nqKgIW1tbXF1def36Nenp6RQUFGBgYEBoaCja2tp8+eWXZGVlcfv2bfLz8/H392fatGloaGjQ2toq3FxsbW2RkZFh6tSpuLu78+rVK86ePcvr16+Rk5Nj06ZNtLa2Mnr0aDQ0NHjy5AlaWloMGTJEeKz2lqLk6elJfX29+NxWrVrF9evXRYhMaWkp77//vgDG5OXlxRa9b9++QtMSGBhITU0Nu3btQlNTE29vb6qrq4mPjycxMRElJSUsLS1paWkRYkEjIyNsbGyYNWsWz58/Jz4+XgTHWFpa0tjYiJOTk+CBy8jIvNN92OvmNTQ0VHiORUZGcvPmTR49ekROTo7wAJ09ezZNTU28fPmSfv36ce3aNfT19SkuLiYpKQllZWXBaTA2NiY3N5f4+HguX75MVVWVMLOtrq7mn3/+oaOjAy8vL6ytrTl8+DAtLS3i5ZLEIJIXrFT/5rKEbsL3kiVLRKMI3UjBli1bqKmpwdDQkPj4eFatWsXx48extbVFVlaWBQsWCB/P48ePc/DgQZqbmzE3N6euro7q6mpkZGTQ0tLCz8+P9vZ2hg8fzpo1aygvLxfcoK6uLuLi4kROcp8+fXB2dhacFUBM11OnTuXQoUO9fsY5c+Zgb29PU1MTtbW14s9+u6QhBbo5RStWrGD58uVs3ryZhQsXoqWlxZMnT9i8ebNAUWtraykvLxdqb0l9eeTIEdEQzZgxg5EjR4r0kGnTpmFiYkJnZ6dI0zIwMMDExIRVq1aJJI/e1MmTJ5k7dy4KCgrU1NSgo6ODrq4u/fr1Iy0tjQcPHuDg4EBJSQmXL1+mT58+wqqqvr4eIyMjtLW1hRK7tbWVoKAgLly4QF5eHqNHj2batGns2bMHX19ftm3bxpw5c5g+fTpHjx4lMzOTUaNG4erqysyZM7l//z47d+6kpKRENO1v23aZmJj0ir8E3YPGnj17UFdXp7m5mdbWVs6cOcOGDRt6ZLo7OzuLywN6hka0trZiZGREcXExS5cuJS4ujs8++0zEFO/evRt9fX3i4uIIDQ2lsbGR3377DTs7O1pbWyksLGT06NGMHj2a7du3s3jxYhYsWMDatWtpaGigtLSU9evXC058b6kRLS0t/PHHH5w5cwYjIyP69u3LyJEjCQoK4tGjR1y9epWAgABUVFR4+fIlhoaGPHjwAA0NDerq6qioqBCDTHR0NKdPn+bo0aPC5L6rqwszMzPu3LnDvXv30NbWFutjJSUlysrKOHfuHI2NjVhYWFBdXU1UVBSGhob4+fkB3dSRL7/8slduGFI9evRIJNFUVlby008/oaioKNCW1tZWXr9+jZKSkmiqFi5cyIwZMzhw4ADQjUY+fvyY9vZ2Bg4cKJrytrY2ampqxGB9/fp1fv75Zzo6OnBzc6Nfv360t7cTFxdHS0sL3t7eQPegfvXqVcrKyjA2Nqa6upq///6boUOH8vHHH/f6GaU6f/48J06c4KOPPhIBLS4uLixfvhzoBiCcnZ0FZUwaCO7evcv58+dJSUlh//79TJo0CU9PTwoKChg8eDC+vr4Ceayurmb37t1Ad6JPcXEx3333HZqamnz22Wc91OyzZ8/m6tWr7N69W/gYSwh2b6q8vJwrV65gbGwsIk+lqqurIz09ndraWjw9Pfnggw84dOgQU6ZMQUNDg9WrV/c42yoqKgSn0MrKivXr1xMQEEBtbS1BQUFERUWJCM8vvviCuro6vvvuO9GoSnGi0jPo6uoK43jopg08ffqUjIyMXj1jQUEB4eHhzJ49+7980yVR4duuFTdv3iQ+Ph4ZGRlsbW3x8fGhtLSU8PBwDh48KMStkidraGgoH374IdD9PqempnLhwgVev36NgoIC8+fPJzc3l9u3bxMeHo6Wlhbbt29n8ODBwre6s7OThQsXEh0dzbp163r9fRw3bhwDBgwQw2R5eTna2tqC+lRTU8PSpUsJDg7mxIkTgpf79u9DUVFRoLPx8fF4eXkJgOvvv//m559/xsrKit9++43Q0FDa29spLCxk+PDhhIWF8ebNG9auXUt6ejpz5sxh0KBBZGdn8/LlSxYsWIC7u7tIrPyff/b/Ve3t7eJsCA8P559//sHU1JQPPviAmzdvsnz5ctra2oQgUxrKASHEV1VVZezYsWRnZ/PXX3+Rn5+PhYUFtbW1whry448/Zvr06SgoKBAYGMicOXNErzZs2DDu3LnDixcvyM/PJy4ujsbGRqysrJgxYwYtLS3ic3uX/q3XJ66tra24eA0NDbG3t0dHRwc9PT0sLCzo6Ohg27ZtXL9+HUtLS3744Qf09fVJS0tj2bJllJSUMGbMGIqKitDV1RXcWVdXV9auXSuyibdu3UpMTAxjxowhJCREPJQUwSZFyqmoqNDY2Mjp06dRUFBg1KhRgn9XVFTUK8Np6PYIHDRoEMbGxuTl5RETE8OLFy8YPnw4v/zyC6ampjx8+JAXL14IZwVLS0txYBgaGjJ69GgsLCzExWNvb09aWho7d+6kurqae/fuCZ+7CRMmiLWllNvs5OTEmzdv+PTTT4mLi0NeXl6ohKXJu6mpqUdD25uS+IcpKSlERESgra1NQUEBL168YNiwYXz00Udoa2uTl5fHhQsXSE5O5vPPP8fDw4OUlBThkaimpiYasoqKCiESkuqXX34hISEBfX19Ro0axYMHDzhx4oSIgzUzM+PQoUOYm5szZ84czMzMyMzM5MKFCygpKdGvXz8sLS17HIzvUgEBAZiZmaGhoUFiYiIrVqxARUWFdevWYWtry82bN/niiy/Q0NAQnr7Dhg1j4sSJhIaGsmvXLlRUVOjbty8xMTE8fPiQDz74QCglc3JyGDFihEgGev78OXPmzAHgzz//ZNGiReKiHDlyJPfv32fbtm14enoydepUDhw4wMOHD1m+fHmvNwNShYaG9kgHkpeXx8XFhY8++kjYmK1cuZIBAwawdu1a5OXlaWtrIzY2FmVlZaysrLCzs2Pjxo3cunVLWJzo6uqyceNGDA0NBXrn5eXF559/jo6OjvCuzM3N7bHakda++/btY8iQIcKAXJrk36bfvGv5+/vz6aefYmhoiIqKCpaWltTU1BAeHk5eXh5Dhw4VB6OUCidxNzU0NHj58iUdHR189dVXFBcXc+/ePfbs2UN+fj5Lly4VB6SqqiqhoaFAt2XOihUrKC8vR0NDA1NTU8FHk0y6pSCGqKgo8vPzsbKy6pXnolTJycksXryYNWvWYG5uLqyBpAu5vb0dCwsLkpOT+euvvzhz5gz6+vqMGTMG6B6qy8rK+Oqrr3j06BGvXr0iICCAjRs3oqioyLFjx3j16hWNjY3CYF7arEC3WEpCSiSqUkdHBw4ODnh4eIgo4NOnTwvbuH9b06ZNEwK3oqIi5OXle6ArJiYmLF++HDU1NU6cOCGcUBoaGrC0tKStrY1ff/2Vffv20adPH5HIBN0D4O3btzl9+jSVlZWCF9zV1cUnn3xCWVkZP//8M6qqquLCr6iooKamRqQ2QTfa1FsNwYYNG9DX10dfX1+o3lNSUoiMjBQuEC9fviQ5OZmAgABCQkKYM2cO5eXl2NvbC5X95cuX6ejoIDQ0lMLCQuLj47ly5QoBAQHibpG4iZKQS11dXQgK29ra/su4Xl5evkcTJ8W81tXV9eoZpZW9FOWZlZVFbm4ulpaWpKamAojN1WeffcaNGzdYvHixaNzgPxSZkJAQ8Z87OjpwdnYWFIfExEQiIiIwMzMjLCyMLVu2iKjg4OBgPD09aWho4ObNm+Tn5/dIzzQ3NxdOML11p4FuEE1VVZWEhATy8vJEuERdXZ1Q/SsqKvLmzRt8fHxYvXo1RUVFwh0gOzsbCwsLZGVlGTJkCNHR0Zw4cQJVVVW8vLzIyMgQFIqOjg4uX77Mw4cPMTExYdmyZaiqquLm5kZQUBDV1dUUFRWxatUq3Nzc8PT0xNramtLSUhoaGnrFyZbq7t27HDlyBAcHB5ydnVm6dOn/h73zDo+y2tr+L7333ntCQkJCSSAQCL2GDlKkIyojICgCKqgIImBDgRFBDlKk9wDSQguEXkIo6T2k916f749x9kuOnvcQv/Mej5zc18U1YWYy2Wue/ey99lr3uhc2NjZ07doVd3d39PT0uHz5Mo8fP6Zdu3b06tULfX19YmJiOHr0KPb29piZmRETE0O3bt346quvmD9/vlBYcnZ2pqamhrCwMDp27EhGRoag+2VnZ/Pxxx/z6quvEhoaSr9+/USXxKdPn1JVVSVaXys5+S+ivNNi51VLS0sUJDk7O5OTk4OJiQldunQRk0nJQfniiy9EAcknn3zCmTNnGDBgALa2tty4cYPq6mo8PDyIj49HkiRGjhwpTj5KeZOJEyeKi1VbW0t2djaXLl2iurqa7t274+vri6mpqeiB7erqKpzXO3fuCKHuF8Xw4cPJyclBVVUVTU1N1q9fj56eHuHh4aioqJCdnS26lhw/fpybN2+ir6+PmZkZtbW1Qjlg6NChzT43Pz+fyspKduzYQX19PbGxsVy4cAFDQ0O6dOkiuuSoq6uLdoNr1qzhzp07aGlpYW5uTnZ2Ng0NDXh4eIg2sX8U9fX1XLhwgaioKKHfeOTIETQ0NIR9e/bsYdeuXQwfPpwVK1YAiv7DyompdNCampqYM2cOSUlJBAcHExAQwPXr1zl9+jRPnz5l8+bNzJo1i40bN7J69Wohh6JsDdnQ0EBQUBBeXl6Ym5tTXV1NcnIyoEjZt7SL2MCBA4Wouo6ODrm5ueTm5gpCeL9+/fjb3/5GVVUVY8aM4dGjR2zcuJEHDx6goaFBWFiYkPmQy+UcPXqUc+fO8cUXX3Dnzh0sLS0xMTGhV69ePH78WDg+mZmZ1NTU0KdPH549e0Z9fT3jxo0jLy+PPXv2EBISwsyZM9m7dy/Xrl1j+vTpQoKtpSLwZmZmpKamYmhoiIaGBoWFhQQEBNC5c2dSU1N55513uHDhAnl5eQwePFho8Sk3M21tbczNzZk6daqQazp06BCXL18Wp+XCwkJqamqws7PjvffeAxTRyitXrpCdnS0UAEpLS6mursbZ2ZnMzEw2bdrEJ598gpeXF6DIFDxfePGiKC8vp0OHDnTs2FE46lFRUezcuZO+ffuKv5+YmCgyJdXV1aiqqpKfn09xcTEqKiq4ubkxcuRIXn31VQYMGMBXX31Fx44d8fHxITw8HDc3N4YNGwYoFBV27txJRUUFwcHBvPvuu/j4+AgZICXFJikpScis3b59W8jZtQT6+vrI5XK8vLyYO3cuQ4cO5f79+0IeTE9Pj44dO5KQkMCBAwewsrJi06ZNdO7cmeTkZLZv30779u2ZN28eDx8+RC6XM3r0aKFr7O/vz8WLF8nJySE2NpYRI0bQvn174eSYm5uLtpDFxcVIkoSpqanImCi7cDk4OKCtrc3Dhw9FFK8laGpqolu3bgwdOhRVVVXS09PJyMhoFl3R09OjU6dOgs+pbJE7aNAg3NzcRKX57du3WbhwIePHj6eoqIi8vDx0dHT4+eef2b59OyNHjkRHR4eUlBTGjRtHx44duXr1KvPmzSMjI4OmpiamTJnCmDFjePz4MTt27EBHR4fJkyc34zG+KMaPH48kSdTX14ugTm1tLbGxsSKK3qFDB5KSkoRO+ebNm3n27Bk5OTmUlpZy48YNDh48SGBgoDgoKbOO7dq1o23btnTu3Fl01MvPz6dHjx7Y2NgISSilxmtlZaWgWamqqorv2NjYWGQnNTU1OXTo0AvbWFFRIZQqqqurhT678hpaW1ujo6Mj2lM7ODiwYMEC8bvK7FeXLl0Ez18JZQYDFF0Gc3NzeeWVVxg2bBheXl5s27aNmzdvMn/+fPz8/Lh58yYVFRUMGjRIcNNra2tFUKtPnz4iet8SlJSUEBcXJwrozM3NqaiooKqqirZt2+Lq6srly5eJiYkhKChISKyBImLf1NQkIto1NTXY2tqSmJjI+fPnsbCwoFOnTnh6eqKjo8MPP/zA+fPnMTQ0ZMmSJTx69Ah7e3tsbW158803KS4uZvny5Zw/f56dO3fSpUsXLl++zJYtW/D09GTChAktvg/PnDnDsWPHqK2tZebMmSLbUF9fj4eHB6tWreLtt99mw4YN9OzZk+DgYPT09MjJyaGoqIiQkBB0dXVJT0+nS5cu9O3bl8DAQM6cOcOgQYOYPHkyNTU16Ovro6GhIXy2vLw85s+fz8mTJ/H19RXrjSRJomvXDz/8QHR0NEOHDmXp0qU0NjY2O1T+I7TYebWzsxMbYHl5OQ8fPuTw4cPo6enx3nvvERoaysqVK5k4caIYaENDA0OGDKFjx4507dqVoqIiwsPDSUpKElXP165dw9HRka5duxIQEMC7775L586d+frrr4mMjGTNmjUUFhayevVqSkpK6Nu3r4jmKPlgyhaPoNAWKy0tZebMmSKV9CJIT0/n559/ZubMmRgaGgrVAhUVFc6cOcPs2bP58ssvGTVqFMOGDWPXrl0cOnSIwMBAoUum1CtUji8/P5/a2lo+//xz9PT0+PHHH+nXr5/Qv/38889ZvHgxwcHBgqdpY2PD559/TmpqKsbGxjg7O6Otrc3jx49RU1PjnXfeQUdH5w9FXxMTE4XQvLJALCUlRbR8vXnzJkePHiUiIkLo6h07dgw/Pz86d+5MfX19syiMkptXW1vLq6++yrBhw9i2bRspKSlCdqqkpISpU6cyffp0mpqaePLkCVVVVaxatUpUTiqrUEeMGEF6ejrOzs6/S2n4Z4iJiSEmJkZEkbZu3cqBAwdYsGABkyZN4u2332b16tXExMSQl5cnZFcWLVrE7NmzuXHjhqBjKKuvY2Nj6dSpE59++ikVFRVIkiSkvPz9/UlLS2P48OHk5eURHBxMUlISLi4uvPvuu7i6unL9+nXi4+Pp0KED3377LdnZ2dja2pKXl8etW7eEssSL4tSpU2zfvp0hQ4YwdOhQUlNTqa6uxtvbm9zcXDIzM/Hw8CAkJERkAFxdXZttHpWVlUJUHBTpwejoaNq2bYuOjg43b978TeHOpUuXSEhIEM1DampqyMjIIDQ0lPbt23PmzBlqa2tFEVJTUxNxcXGiZ31L8Pnnn3Px4kVee+01URjn4+PDlClTRLX4nDlziI6OZt++fdja2qKurs6BAwfQ1dUlODiY6Ohovv32W6FbeOnSJfbu3cu5c+f44IMPRORSWYTg6ekpRNMnT54sIkq6urrNmlrY2tri5uZGcHAw6enpLS4MBYXM0pQpU7CxsSE6Opq7d+/y888/c//+fd577z3hUHfs2JH169cL0fOamhqePHlC3759RXSrXbt2bNiwoVmkzd3dHXd3d6ZMmcLx48f58ccfxaarLMwARbR54cKFODg4CDmzxsZGzp8/j4GBAatWrRKFpVFRUS22s7a2lvDwcEpKSpg5cyaOjo689tprVFdXC1F9ZXceHx8fVq1axbVr19DW1hbOmVJ+SUVFRfDkCgsLherCkiVL6NWrF42NjTg6OuLj4yOc0Y4dO/Lee+8RHh7Ojh07uHPnDm+//TZ/+9vfmDt3LqtXrxZtMFuKuLg4oqKi6Ny5s5gr3t7ezJo1i8ePH7N37146duz4G6k3W1tbSkpK+Oijjzh16hR6enqYm5sTGxvLL7/8AiiygLq6usTExDBq1CiMjY2Jj4/n9u3b2NjYCE7i81C2CFY2czAxMcHT05N+/fqJNHBoaGiLnNf6+npef/11odLi6uqKmpoakiSxcOFCYmNjiY+PF/JKSqlMUAQP/r7A7PeglMtUdjIERFW6Um4vPz8fdXX1ZtlVoBn1Quk37N69+4XtAwVtp6Kigs6dO4sspzKLc/ToUQ4dOsSQIUNo27YtH3zwAYGBgXz33XeA4iDr4ODAiRMnWL16NSNGjGD16tVMnjyZ1NRUHBwcmDhxIr6+vnz99dccOXIEd3d3lixZwtChQzl8+DDbtm3j3Xffxd3dXVBH/Pz8hFLK06dP0dfXJzg4mISEhBZTsJqamti8eTMdO3ZsFqHX0NAgNjaW1NRU+vXrJ5r0KBsy2NvbExgYSH19PTk5Ody7d4+IiAgaGxtF4PLs2bOoq6sL9SVQZOKOHz/OvHnzaGpqYu3atUyYMIHExETu3buHra2t4HOHh4eTk5Mj6gZMTEyYNm2akOn6R2ix82piYkJlZSX5+fmoqqrSvXt3jhw5wsmTJykrK+PKlSt06NBB6HYpoz3PLwzJycmiSlhXV5enT5/y8OFDHj58yPnz59m0aRODBg3C09OTHTt2CEdH2SPY19eX4cOHi4ici4sLr7zyCpWVlbi7u1NcXExBQQFOTk6/e4P/b/jyyy8pKyvj2bNn2NraMmPGDOrr68nMzCQjIwNzc3PRXEBVVVWcip5PN1VWVpKVlYWpqSlGRkYUFBSIyJC7uzv19fX07duXPn36IJfLOXfuHB06dBCcqbS0NGprawkJCRGbKigOC2lpaUIK7O87RL0oSktLRZtMJTw9PRkwYAANDQ3cuHGDiooKvL296dOnD6amphQXF1NcXCxSAUZGRqLryeXLl4mKihJk8urqaq5evUpwcLCIghYXF4uNNioqivv37wvNUVtbW4YOHcrFixd55ZVX0NfXx9bWlrS0NHR0dJqpL7wIlAU8jY2NuLq6iurs/Px87t27R0lJCa6urqirqwu+tLILzHvvvUd0dDRnz56lf//+eHt7Y2FhQVlZGQ0NDdTU1IgiK+UCmpGRwYEDB9DX16epqYmUlBTR8MDGxkaIeSspAspCOFDcH35+fjg5OQke44ugurpaHKokSRIyJXl5eWRlZRESEoKPjw+6uro8efIEGxsbOnToQEFBAVevXsXPz0+kp0FRqKbsxKOUDFIWJBQWFqKlpcXNmzeJiYkRcmMmJiY0NjY2K1Tp27cv6enppKenCwepf//+/PLLLyQlJbXoOpaXlxMXF0dZWZnQNqypqREOWE5OjhBMj4iIYPLkyWhoaNDQ0EBqaioDBgygffv2HDx4kD179uDo6EjHjh3x9/fnp59+Ek7B82m43r17o6uri5ubm8hsKPn58fHxpKen4+fnh42NDQ8fPqShoUGsdS0tonB1deWNN97Aw8NDiKSXlJRw9epVBg8eLLJZHh4eYiy3b98mPT0dBwcHIUOVlZUlsle2trY4OjqKQ59So7NNmzbN1qhnz56J5jCnTp0SLW5DQ0MZMGAAz549E9HkHj16UF1dLeSgWgodHR309fVFW2gfHx9KSkrEAQAUKe6GhgYqKyuprKzEw8ODtLQ0fvzxR1xdXenWrRu2trbk5ORgaGiIoaEhJSUlVFVVoaurK4r3iouLycrKEhFKCwsLbG1tmTBhAp6enixcuJALFy4QEhLCmDFjRHMdZXvjll7DhIQEioqKePToEU1NTejo6Ih2zCoqKly+fLlZmn7z5s08ePCAJUuW4OPjg56eXrOInTKKOGDAAGbMmIGKigr379/Hx8dHSN+VlJRgZ2eHhoYG8fHxQmrKzMyMtLQ0kcL29vYWXOBLly5hYmKCpaVlM8fvRSBJkrjHtbS0BF0DFHrrnTp1Yvfu3ZiYmAgd9qNHj2JjYyOK45QZHFBE+ZXXubGxUQQphg0bRkREBGvXriUgIIC+ffsKmUrlmnTt2jVBN7CxsREFQWlpady/fx93d3dCQkJa7LwaGxsLrebi4mJ0dXUpKSnh6dOnHDx4EFVVVYKDg2lsbBS6pnl5ecIxNzY2FioTDx484P79+zg7O5OSksKjR4/o168fLi4uZGRkUFZWxvz584XWqlK67vHjx7i7uzNo0CBB0UpMTBTzc+rUqejo6JCWlsbjx4/Jz89/YfvGjx8v9vv09HRiY2NFNDU8PJyff/6ZdevWiWzq3bt3uXbtGpcuXaKyspIePXqgra3NuXPnuHHjBg4ODgQHB2NhYUFBQQHXrl1DkiRx/RMTEzl9+jRWVlaMHTsWmUwGIFrGKjt9GRsb07lzZzIyMgSXeciQIS8krdhi5zU3N5eysjKysrJo27YtAQEBvPnmm1y8eLGZM6XsBKUsDlH2fQZFumrIkCG4ubmhqqrK/fv3uXTpEqDoha3kdEmSxNatW9HV1cXMzIzGxkbmzJkjuK5KaGhoMG7cOOrr69HX10dFRYWhQ4dSX1/f4jZqkZGRTJgwAWNjY0EWVzZXGDp0KOPGjRP8kaFDh+Lu7o61tXWztK+JiQkGBgaUlpZSVlbWLB2l7DykTO307duXp0+fUldXR2pqKs7OzqI6+s6dO7i6umJmZkZlZSWampqi7emtW7dwd3f/Tau+F0GbNm3+4UlYVVVVtMdNTk4mJiYGU1NTBg0aRE1NDXFxcVhYWGBqaoqenh6XLl3i22+/paqqSpyUd+/ezc6dO5k1a5ZITyixcuVKvvzyS+bOnSuigMpGEM8fNBITE9m5cyeNjY3NtEtfBJqamujp6TFkyBC0tbVFFejWrVvp06cPNTU1PHr0iIaGhmYOXEhICMeOHWPv3r0icmhsbEybNm3o0KED2dnZrF69msbGRsaMGYOmpiZpaWmMGTMGNTU1Nm3aREBAgOi84uzsLCJyDg4Ogg6Rl5eHvr4+np6eIhrSUowaNYq+ffuKanF9fX1UVVUpKSkhICCA3r17o6GhwcmTJ8nIyBC84a+//ppvvvmGTZs2CdtTU1MpKCigU6dOwkm6f/8+2traFBQUcPz4cUFNUBYSKjew35tHjo6OREdHExkZSVhYGFZWVoSFhXHr1q0W2fjuu+8ik8nw9vYmJSWFN998EwMDAzEfDAwM2LhxI8nJyZw/f56IiAj69OmDo6OjKHRwd3dn2LBhxMXFER4ezvr167l+/Tr5+flMnz6dDz74ADMzMwoKCjA3N8fY2FgUM2VnZ4sOfgYGBuzYsYOtW7eydu1aBgwYwJIlS0hJSeGXX37B2dm5RY00QLFOKPnKz+tmTpo0CQMDA8LDw+nevTuenp4UFBSwY8cOHj58yODBg5vpp9bV1bFp0yZ++eUXlixZIiS7Nm/ejFwuZ+rUqXzzzTecOXOGzZs3M2XKFDQ1Ndm3bx9lZWXExcWJz/r555+xtLSkffv2wnFQziulFvIfwdixY/Hz82Pbtm18+OGHVFZWsnTp0mZ2qKurc+/ePcLDw+nWrRvl5eUsXLiQzp07c/jwYY4ePcp7773HmjVreP3112nTpg0FBQVIkkR6erqoUk5JSWHlypWUl5czY8YMRo0ahZaWFi4uLsycOZPz589z/PhxMjMzmTZtmpCZKyoqajF9p127dvTs2ZMzZ87w448/4uXlRVhYGA4ODnh5eWFlZUVNTQ2NjY3k5uZy/vx5Dhw4gKenJ/Pnz+ejjz4SSjspKSkMGzasGYdQR0cHPz8/0tPTyc3Nxc3Njc6dO9PY2Ci6861bt47KykqmT59O+/btcXFxEc4FKGg7Bw4cIDU1lXbt2glZpBdFdnY2d+/eFZrXf59lUKp/KINJx44d46OPPkImk9G5c2fOnTtHWloa8+bNE12+Hj58yJ07dygpKRGtbx0dHdHS0mLlypW4u7sTHh4uHF4tLS0sLS1FZFrZInjo0KGCBrF69Wo6dOjA2rVrW2QfIAJNGzZsIC0tjVGjRon27YGBgezZs0ccsL7//nt0dHQwNTVFXV2dNm3aiMjjpk2bOHnyJG+88QbFxcXk5uZSU1PDtGnTCAkJoaioCKCZ/KOuri4WFhYigjxq1CiCg4O5desWhw8fxsDAgDfffLNZO+EpU6awfPnyF7ZP6bhWVFTw5MkToqOjaWxsxMvLi4KCAurq6pqpUBgbG3PlyhW+/vprzMzMeO211zA2Nub48eNMmzaNzz77DHNzc0pLS9HS0uLSpUuC/wyKDICOjg579uwRtirnTt++fQWPW0tLi0WLFhEYGMjevXuRyWQcOnQIuVz+T21qsfO6Z88exo4dS8+ePUlPT+fgwYNERETQt29fOnbsyN27d3FwcEBDQ6OZfIwyNZSYmEhRURFGRkZCRL5Xr16C8N63b1+RNqisrGzmXJSWltLQ0MCjR49ITEykoKAALS0tfH19f6PNqNRHVHZDelEMHjwYXV3dZvJMLi4uImJVXl4uKvGUC93zYvOnTp1CX1+fHj16oKGhwb59+3jy5Ant2rUjLCyMWbNm4ebmxokTJ7hz5w5jx47l0qVLpKSkkJqaiqamJtbW1ujq6rJ7927s7OyYOXMm9vb2ogpa2TDgxIkT7N27t0X2wf9UiMbGxpKYmIi/v7/gGldXV4vXvb29efDgAZGRkRQUFGBvb4+amlozyY379+9z/fp1evXqJbiyenp6TJ069XedTn19fbp27SoOKDk5OSIt9XzxUocOHUhMTOS7777jypUrzSLQ/wxr1qwhJyeH0NBQ3N3d8fX1xdPTU0S2NTQ0KC8vx8bGRvC0q6qqOH/+PFlZWbi6uoq0dHV1NVZWVjg7O9PQ0EBycjIqKiriIJaVlSV4ycqojfJmvXnzJrdv3yY0NBQ/Pz9iYmLYs2cPHh4eTJgwAU1NTe7cuUN4eDh5eXkt6quupMoou2Ndv34ddXV1evToIYTnASGndvjwYe7du0dqairjx4+nW7du5OTk8MMPP6ClpcWkSZOataB0dnamvLwcVVVVCgoKOH/+PNXV1QwbNqxZcVJxcTERERGkp6dTV1dHbm4u5ubm9O/fn7y8PJYuXcrgwYP/oXbq/4bnIzyGhoa8+uqrREREMG7cOKZPn87AgQPR09MThQSFhYWkp6dTU1MjIicHDx7k4sWLDBo0SHTXSkxMRFVVFW1tbW7cuIGrqyuNjY3ExMQIjUMdHR0ePnzI8uXLcXNzY9WqVdjY2FBUVER2djaGhoY0NTWJdCO0XOHk+fXx7t27wvGZMmUKiYmJXLlyBTs7Ozw9PamurkZTUxN3d3dROKOEi4sLISEhgm8NivvqwYMHBAYGMmHCBKytrRk8eDDR0dHi0NapUyc++ugjEhISeO211wgODsbAwEDc288X2WlrazeTD3pRHDhwgHv37vHWW2/Rpk0bDAwMRGWykrbw4MED4uPjGTlypHCAJEmibdu2TJgwQRSUBAYG4ufnx+nTp4VWs3KvKCkpQUNDA0mScHFxoXPnzuzatYvPP/+cjIwMRo8ejZWVFRMmTMDHx4f58+ezZs0akpKSRGtMZaakJTAzM0NPT08UEzo4OAiNY21tbcFFVfIng4KCSEhI4IcffhC1AqtXr8bJyYmamhqGDx+Ot7c3aWlpojDU0NCQlStXsm/fPpYuXcq4ceNEcxQ3NzdRzW9vby+kpXbu3MmdO3d44403CAoK4t69e9TX19O2bdsWK5tcvXqV119/nXfffVeoY5w4cYL09HSGDRuGqakp165dIzs7GycnJxwcHOjbt68ITmRnZ3PmzBnMzc2ZPHkyurq6BAQEEB8fz82bNykpKREyXl27dmXOnDloa2uL7EF9fT2JiYnk5eURGhqKm5sbGhoadOrUCVtbW06dOsXRo0dpbGzE1NT0D7VMh/9piqLk76urqxMWFsakSZPE3I+Ojm7G021sbERLSwtJkjAyMmLAgAFC/SEyMlJE3W/cuMHAgQP57LPPePbsWbNAjaqqKtnZ2cLegwcPcufOHcERLSgo4MCBAzx9+hQdHR2WLFnSYprZ1atXSUlJwcTEBC8vL5ycnIiIiGDLli3o6ury3nvv0b59e6G77+DgQLt27XjttdcwMDBATU1NZHz69esnAnLK+3XYsGFYW1uTkJBARkYGbm5uomDa0tKS+vp6NmzYQG5uLu+9955wXmtra7G1tUVDQ0McGPT09F6okLnFzquymwYoTvzvv/8+BQUFLFmyBE9PTxFdURYvKLUglaLqFy9epKqqijZt2vDkyROSk5OZMGECb7/9NqCYqMoorb6+Pg0NDaipqYn+yVeuXOHIkSNcuXKF2tpaOnbsKDonKdN/yk3kwYMHYqF8UYwZM4br16//htNpaWnJF198wZEjR3jttdd49dVXsbS0FFJTyhT0tm3bMDY2xs/PD0mShNRL27Zt8ff3x9bWlrCwMNavX8+lS5cICAggODgYS0tLzp8/z+3btxk0aBDBwcFcv34dAwMDPDw80NDQoKqqiry8PCwtLfH392fPnj2sWbOmxZWVz1/L1NTUf1j4pUz1HDlyhB9++IFZs2Yxb968ZidvIyMjvLy8aN++vXDihw8fLqI2fy/APn/+fCGPk52dLbrs2NjYoKqqKnQ5nZycGD9+PNHR0axdu7ZFzqvywHL69GkCAgJEJKq2tpb09HSKi4vx8fERBygjIyN0dXXZuXMnBw8eZNu2beKzlFXJGRkZeHl5MXHiRMrLy0VjDWU6/t69e+zbtw9XV1f09PQ4e/Ys69evJz4+HisrK/z8/Ni/fz9bt25l48aNYjE8fPiwENVuyXWsra1FTU1NqAhs3bqV0tJSIa1mamqKiooKLi4ueHl5sWPHDi5fvszcuXNFumr9+vV88sknQukBEBX6SnFuf39/ysvLuXv3LioqKrRp00Y4N6BwGk6ePEl8fDwaGhrC4QoLC0NHR4etW7eSmJj4h5zXxMRE7OzshDTesmXL8Pf3Z9y4cVRWVorDUXJyMjo6OmhqapKbm0tdXR1OTk5YWFhw7NgxDhw4gJeXF9OmTWPo0KF88803hIaGEhcXx7lz5xg/fjz9+vUjJyeHp0+fYmVlhZ2dHe7u7sTHx/PgwQNmz55Nnz59GDp0qFAXmTlzJmlpacIZUGaZWgLlJhcfH0/fvn0ZNmwYjo6OFBcXi447oIjcz5o1S3BDQXFv1dXVoaKigkwmEzqZsbGx/Pzzz3Tq1Elc68rKSkxMTOjZs6f4zJCQECEI/vbbb4vUsLLDWlNTk5jnlZWVf0gxIjIykvXr16Orq8uyZcto27YtVlZWaGtr4+npSWVlJdu2bSMmJgZfX198fX2ZPn26UBsJDAyktraW8vJy/P39uXLlCh988AHr16/HyMgIHx8fsrKyRDV0VVUVJiYmLF68GEmSeP/99zl9+jSdOnXC0tISNTU1OnToQGBgIJGRkRw8eJDDhw/j5ubGihUrWpzJqqysJCUlBScnJyE3poSSz6uqqoqamhqlpaX06dMHV1dXPvzwQ1asWEGbNm0YPHgwn3zyCVVVVZibm1NSUkJDQwMGBgYikKBMP9+4cYPBgwdjYGBAbW0turq69O/fH3V19WbtRXft2sWVK1dwc3Nj8ODBtGnTRrRlbymKioooKipqpp8aFRUlIqNhYWFkZGRw9uxZ5s6dS0hIiBiLUrLP0NCQW7duYWlpydChQzEyMmLo0KEUFRVx/fp1UbgbEhLCqlWrKCwsJCcnBz09PVRVVXn06JEo5npeZaCgoIAnT56go6PDe++9xyuvvNLipjZKKDud9e7dG21tbezs7IQDXlZWxtmzZ8nOzkaSJPH806dPxX5iZmaGJEkEBQWJA8P333/PtWvXGDFiBCNHjkRFRYWqqqpmwbFbt25x48YNGhsbKSwsZMWKFTx69Ij9+/czcuRIrl69ykcffcTFixcBRWarJTJZAEeOHKG6ulq0EgeFWsnly5cZMWKEyD5UVFSgoaGBpqYmffr0oU+fPjQ1NREZGcm9e/eEOoTSR6uoqKCpqQlDQ0OCgoI4cOAAtbW1TJo0iXPnzvHqq68yZ84ckWHYsWMHvXr1Erxbpd+kq6uLjY0NX3zxBfBbv+H30GLndcCAAVRXV4sw/uuvv05jYyMjRozA0NCQjIwMsZgrOVY6OjqUl5dz9uxZLly4gI+PD4aGhkIWyd/fX/AhlZw1dXV1JEmipKSE2tpaLCwsRAQsJyeHnJwcrK2tGTRoEF26dBHdmIYPH05ubi5ff/01enp6TJkyRXRyehEkJibSo0cPEd1Qdg5TV1cXvJWBAwc2u4Hq6uooKyvj6NGj3LhxQ1R2K6VuRo4cyahRo/D396e4uJj9+/fj6OjIwIEDOXDgAIaGhowYMQJdXV3OnTuHvb09HTt2ZPLkyWRlZYnK+/z8fHR1dcXfbt++vThptwRxcXFER0ejpqZGjx490NTUFBFFIyMjtLW1Bcc4MDAQT09PIiMjRftTUPAR1dXV6dmzJzU1NVy+fJm1a9cyd+7cZhzChoYGNDQ0KC4uJj8/v1kqXdmBRKlLamxsLLqR9enTh5EjRzJnzhzMzMzEd/AiUDqBenp6gvdWV1fHsmXL2LVrFz169GDjxo2Ulpby6aef4uLiwpw5c5g9e7Zok6tEZWUlMTExQhv2zTffJDc3VzgQ6urqaGhoYGFhgY+PDyYmJpSUlFBQUICdnR0dO3YU1d+pqam/cQI8PT0ZP358ix0DpXi9UnLI3NyczMxMoqKihHpFdXU1mZmZuLq6MnnyZNTU1Jq19wwICGDZsmXNikmqq6sJDw/H3Nxc8NQNDAxEdzylvFFdXR2ampqYmpqKQjVlSkjJfW9oaGD06NGYmJiIIpSWIDo6ml27dtGpUyfBxQoJCWHNmjWcP3+eRYsWic5dysjzvHnz8PX1JT09XdA7XF1dKSkpYc2aNbi4uHD8+HGsra2JjIxES0sLExMTPDw8sLOz4+TJk+zZs4chQ4bg7e0tlFPOnj2LnZ0dr7/+Oo6Ojjx79kwoISjviRdZcJ/H+fPnCQ8Px8HBgcGDB2NtbS0iGcr59HyU7HnJuIqKCi5dusShQ4eora3lk08+Effp1q1b6dSpk5Bva2pq4siRI9y8eZPAwEDGjh1LVVUVBw4cwNnZmSlTpgjH9ejRo2RmZtKpUyfBO7t58ybnz58XjmxL0LZtW3r16iXoMQEBAYwaNYrY2Fiio6OF06NshQuKQpXn+blnz57lxIkTvPrqq/To0YN33nmHnTt3curUKcLDw0WEzMzMrBmdbMSIEWRlZaGmpkZZWRm1tbWiCEepQNGmTRtiYmI4ceIE165d+w3N6Z9BX1+furq6ZvqwkiRRWloq9i0VFRWKioo4f/48bm5u9OvXDw0NDe7du9fsflIe/jU1NfHy8kJbW5u7d++KivX169fj5uYm6CkPHz4Uh8N+/foJmkBeXh4dOnTA398fX19fsrKyePDggbjPW7KWAqJ5yfOZNC8vL6KiosjLy0NNTY233nqLgICAZvvivXv3OH78OJWVlYSFhWFtbU1lZSXHjh0jODgYa2trXn/9dTIzMzlx4gSgaImurq7Orl27uHfvHv369WPChAkEBwfz+PFj7ty5IxxpdXV1jI2NBXXD29u7Wbv5luDKlSukp6czdOhQTExM+O677ygsLGTUqFFkZGTw888/o6Kigp2dHeXl5ZiZmeHh4cHFixeJjIxk3rx5hISENMuedejQgZkzZxIWFkZgYCAqKiqEh4fz5MkTBgwYgKamJps2bWLPnj2Awl9SVVVl2rRpVFZW4uXlxYULF3jw4AEjRoxAXV1dtDRvKezt7cnPz2/WnbNTp04sW7asGb+0srKS2NhYcXgHBa+7urpaOK7KrJzyHlY2kHFzc8Pf31/MT0NDQ/T09ERR+YwZM7C3t2+WTVdKxSlb7D558oSGhoYXymKpvOiCK5PJWrYy/wdCLpf/w7zsy24fvPw2vgz2wctvY+s8fbntg5ffxpfBPnj5bWydpy+vfX+sDVUrWtGKVrSiFa1oRSta8SfghSOvrWhFK1rRila0ohWtaMWfjdbIayta0YpWtKIVrWhFK/4yaHVeW9GKVrSiFa1oRSta8ZdBq/Paila0ohWtaEUrWtGKvwxaLJX1r4JMJlMBpgOvA20BNSAO2AZslMvlLevT9x8ImUw2BggFAgB/wAD4WS6Xt7yJ9n8oZDKZPfApMBAwA7KBo8ByuVxe/CcO7V+C/4ZrqIRMJusOzAe6AqZAERADrJPL5af+xKH9f+G/4Rr+l9i4BugEeALmQDWQhmK92SCXywv/vNH9/+Nl3xNfdvv+EWQy2WRgx6//nSWXy3/8M8fzr4BMJhsCvA348D/7/l3ga7lcfv3fMYY/M/K6HdgKuAD7gC2AJvAtsO/Xif5Xx1JgDooNJevPHcq/HjKZzA3FhJ0O3AK+AZJRTOrrMpms5S15/vPwUl9DJWQy2VLgCtADOA18BYQDJkDPP29k/xL8N1zD/wYbFwB6wDkU+8TPQAPwCfBQJpP9MZHP/xy87Hviy27fb/DrnFwPVPyz9/5V8Osh8gTQAcVe8S1wDxgOXJPJZP+WA/OfEnmVyWQjgMlAChAkl8sLfn1eA9gPjAamAj/9GeP7F2IBkAkkooiKXPxzh/MvhxywBObJ5fL1yidlMtnXKGz/DHjzTxrbvwov+zVEJpONBVYA54FRcrm8/O9eb3nrqP8svPTXkP8OGw3lcnnN3z8pk8k+Az4A3gdk//ZR/Qvwsu+JL7t9v4dfnfFtQCFwGFj4547o/x8ymcwahR25QDu5XJ733Gu9gAsoMrG7/q/H8mdFXkf9+viVchIDyOXyemDZr/+d+28f1b8Ycrn8olwuT5DL5S+dHplMJnMF+gOpwMa/e/ljoBKYLJPJ9P7NQ/uX4mW+hgAymUwVWANUARP/3nEFcV/+ZfGyX0P4r7HxN47rr9j/6+Pv97n+a+Bl3xNfdvt+D/OA3igyk5V/8lj+VXBC4TfefN5xBcUaBJQDFv+OgfxZzqv1r4+/16dO+VwHmUxm/O8ZTiv+AHr/+nhWLpc3Pf/Crw7QNUAX6PLvHlgrWoSuKNJ4p4BimUw2RCaTLZbJZG/LZLLgP3lsrWjFi2Dor48v3gf8Pw8v+574stvXDDKZzBtYDXwrl8uv/Nnj+RciAagDgmQymfnzL8hksh4ouPbn/x0D+bMKtpQnL5ffec31uZ/bADf+74fTij8Ar18f4//B6wkoIrOeQMS/ZUSt+CMI/PUxFwVvye/5F2Uy2RVgjFwuz/93D6wVrfg9yGSyhYA+YISigCsEheO6+s8c1/8nXvY98WW3T0Amk6kDO4F0FHSWlwZyubxIJpMtBr4GnshksqMoaBFuwDAUfPQ3/h1j+bMiryd+fXxHJpOZKp/89aIvf+59Jv/WUbWiJTD69bH0H7yufN74/34orfj/gOWvj28COkBfFKdnX+AMigKuA3/O0FrRit/FQhTUpPkoHNfTQP+/+AHrZd8TX3b7nsdHQHtgmlwur/6zB/OvhlwuX4eCBqIOzAKWAGOBDOCnv6cT/F/hz4q87gUmAYNQeO/HUXDu+qLw4BNQ8JdeSumM/xIoK0dfWg7eSwK1Xx9VUERYo3/9/2OZTDYSRWQ9VCaTBf+7JFBa0Yr/DXK53BpAJpNZoaC9rAbuy2SyMLlcfu9PHdwfx8u+J77s9gEgk8mCUERbv3pZ10uZTLYIWAV8B2wAclBEzD8HfpbJZAFyuXzR//U4/pTI668cyWEoTtA5KKoQZ6Colg1BEYYG+Ld48K34Q1BGVo3+weuGf/e+VvxnQqnFm/yc4wrAr1GDM7/+N+jfOqpWtOKfQC6X58rl8iMo6Elm/I+W5l8OL/ue+LLbB83oAvH8TxHaSwWZTNYTRYHvcblc/o5cLk+Wy+VVvx4aR6KQ6Xv314Lu/1P8aU0K5HJ5Awotya+ef14mk+mg0CqsBh7/+0fWihdE3K+Pnv/gdWXl7z/ixLbiPwPK61jyD15XOrc6//dDaUUrWg65XJ4mk8meAAEymcz8+Wr2vxJe9j3xZbcPBQ9buR/WyGS/q9q2RSaTbUFRyDX/3zWwfyHCfn38jRSfXC6vkslkt1A4se35/eK8fxn+E9vDTga0gf1/dYmelxzKydv/V7klAZlMZgB0Q7EY/aXJ9/8FuIJC6N1DJpNp/s7rvr8+pv7bRtSKVrQctr8+/qXTzv8AL/ue+LLYV4uiCcPv/bv/63uu/vr/vyqlQOvXx38kh6V8vu7/eiB/ZntYQ7lcXvZ3zwWi4C9VoBC6bcV/KORyeZJMJjuLImX3FoouIkosR9EJ5we5XP6y6Nu9lJDL5QUymWwf8CqKQoOlytdkMlk/YAAK6sfpP2eErWgFyGSyNkCJXC7P+bvnVVE02LAEov7KLalf9j3xZbfvV5rVa7/3mkwm+wRFNHL7X7w9bCSKTn6vy2SyH+RyuejmJ5PJBqEIWtUAUf/XA/nTnFfgnEwmqwYeoRC2bQsMRnF6GSWXy/9PQ87/DvzaVWTEr/9V6twFy2Syn379uUAul/+Vu27IUEzS72QyWR/gKdAZ6IWCLvDhnzi2fwn+C64hwDsortuHv2r13UIhRj0SRSRrllwuL/nzhvf/h/+Ga/hfYONA4ItfpduSUHAkrVB0E3NFwaOc9ecN71+Cl31PfNnt+2/AQRQ6rn2BpzKZ7AiKe88bBaVABVgil8sL//FH/GvwZzqvB4HxKCoQdYBnwI/AarlcnvonjutfiQAULe+ehyv/o2uXxl+4Zdyv0ddOKE7MA1EsRNkoqhCXy+Xyoj9zfP8iBPASX0MAuVyeJ5PJOqOIuo5E0ViiHDgJfC6Xy//q1I8AXvJryMtv43lgM4rIjj8KCb5KFIfkncB3L8F687LviS+7fS895HJ5k0wmG4wi2zoexX6hCxShaHTznVwuP/vvGIuKJLUqGbWiFa1oRSta0YpWtOKvgf/Egq1WtKIVrWhFK1rRila04nfR6ry2ohWtaEUrWtGKVrTiL4NW57UVrWhFK1rRila0ohV/GbQ6r61oRSta0YpWtKIVrfjLoNV5bUUrWtGKVrSiFa1oxV8Grc5rK1rRila0ohWtaEUr/jJ4YZ1XmUz2l9fUksvlKv/otZfdPnj5bXwZ7IOX38bWefpy2wcvv40vg33w8tvYOk9fXvtaI6+taEUrWtGKVrSiFa3460CSpBf6N3v2bGn27NlSXV2dpERBQYG0fPlyacWKFVJeXp4kSZIUGRkprV+/Xjp27JhUW1srSZIkFRcXS5IkSXFxcZKDg4Pk6+srXb58Wfrwww8lVVVV6aOPPhKf+eWXX0rq6uqSqamp5OfnJwFSr169pPz8fEmSJKmoqEjKzMwU79+/f780bNgwadOmTdK5c+ekkSNHSjNmzJBKS0ulrKws6dVXX5WUY38R+3766ScpMjJSqqiokFJSUqS5c+dK2traEiAFBwdLc+bMkRYuXCh9/PHHUnh4uJSbmytJkiRslSRJ+uqrryRAGjRokFRSUiLGXVpaKt7z3XffSa+99pp079498VxTU5P0+PFjafLkydLAgQOl27dvi9dGjBghAdKCBQuko0ePSitWrJAOHjwoSZL0QvY9b6MkSeI6lpeXS7/88ouUmJgoSZIkrVixQjI2NpY+/PBDSS6XS8bGxlKXLl2kyspKcc3Pnj0rnT17VoqPj5fq6uqkxsZGqby8XCoqKpLKy8ul6upq8fm1tbVScnKysOOzzz6TAKlLly5STEyMJEmSdOvWLWndunXSkSNHxPt++uknSUNDQ+rbt68UHh7eomtYV1cn1dfXS5IkSQ0NDVJpaalUVlYmNTU1Cdufv15NTU3itYKCAmnx4sUSIAHSxx9/LEmSJD179kwaMmSIBEhTp04V9l27dq2ZfUlJSdKVK1eazdHGxsZmj0rU1NSIn9PS0lpko/J6lZWVSTExMVJ0dLQUGRkpHTt2TIqNjZUaGxulrKwsqaCgQJIkSbp48aI0d+5c6cCBA+JvTps2TdhYW1srzZ49W8zb+/fvS3+Puro6qbq6WpIkSaqqqpLmzZsnDR8+vNl7i4uLfzPXf/zxRyksLKzF8zQtLU06f/689OTJE/FZtbW1zb7Ha9euSUuXLpVCQ0PFNVu+fLl4/ezZs9L48eOljRs3SpIkSfX19VJsbKy4L5uamsR3JEmSdPDgQSkgIEDauHGjVFdXJy1ZskQKCgpqdi8+b1tKSoq0b98+KSoqSpKkF7sXle+5du1as+82JydHysrKEveaJEnSqVOnpJ07d0rPnj0Tz2VkZEhpaWniWvz9mK5fvy4FBARIH330kdTU1CStWrVKMjExkb7//nvxnlmzZkmamprSJ598Ip5LSkoS8+j999+XHBwcpIEDB0rp6emSJElSRUVFi6/hwoULpZqaGunMmTPSvHnzpC1btkjz5s2TNDQ0pOnTp0t/jwMHDkihoaGSXC4Xz1VUVPzm3snNzZW2bNkiHTp0SLymvIfz8vKks2fPSrdu3ZLKy8ulsrIy8XtffPGFBEjvvfeeeK68vFysF5LUsmvo4OAgzZ07t9n8uHLlivTxxx9L33//vfjcS5cuSebm5pKvr6/08OFDSZIUc7mhoUH83vPXMz09XVq8eLG0bt068R6lnffu3ZMGDRokGRkZiTnv7+8v3bp1S7p+/brk7+8vAZKTk5MUHh4u7d+/X3J0dJRMTU2lr776SsrMzGyRjUp8+eWX0pAhQ6RNmzZJly5dkubMmSMZGxtLPXv2lBISEqTKykpp2bJl0oIFC8TaFhcXJ7Vp00YKDAwUc1i5JitRXFws1tPk5GTJ3d1d8vDwkJKSkiRJUqyTTU1NUllZWbPv+fXXX5cAad68eVJFRYUkSYr7u7GxscXzdM2aNZK1tbU0dOhQ6fz581JSUpL4zEuXLknbt2+X8vLypKKiImnSpEnie1+3bl2zeVRTU9NsrmZlZUkHDx6Uzp49Kx08eFBycHCQrKyspISEBOnJkyeSnZ2dFBISIp07d05asmSJ9Morr0i7d++WFixYIFlZWUmffvqp+KyysjKpurpaamhokBoaGlp0DZV7wpMnT6S4uDhJkhS+WkBAgLRgwQLp77F161ZJVVVVcnd3l65cuSJJkiTdvn1bmj17trR582bxPuU6evfuXWnYsGESIDk4OEi//PKLVFhYKG3ZskWaNm2atH79eik9PV2qqamRtm/fLllZWUmAtGbNmmbf1fXr18V++s/sa3F72Li4OJKTk2nfvj2mpqYEBgaio6ODhYUFhYWKdrZvvPEG6urqbNy4kXPnzhEcHMzixYvx9PTks88+4+LFi+zevZuIiAh0dXVxcHAQn29kZMSIESPQ09MjLy+PmJgYLl68yMaNG5k5cyYWFhbo6OiI96enpxMZGYmbmxtjx47l448/JikpiePHj/PDDz9w9epVZs+e/cL2NTU14ebmhp6eHk1NTfTr14/w8HBSU1NRVVVlypQppKenU1BQQK9evdDT0yMhIQF9fX1sbGyor6+nU6dO/Pjjj9jZ2REZGUl4eDg1NTUsWbIEQ0NDAPLz87l27RpqamosWrQIV1dXVFRUqKqqwsTEBFNTU6qrq6murubJkye0a9eOXr16MW7cOJKSkjh06BCJiYncunWrpZeQXbt2MWnSJADU1dWxtLTE1NQUgMDAQN5//33mzJmDrq4utbW1VFdXi+/czMwMAwMDampqMDU1RUNDA4Dbt2+TmpqKn58fnTp1En+rtraW2NhYvvvuO2JjY3F2dmbbtm3Y2dnh6+sLQHJyMqtWreLtt99mxIgRAPj7+7NixQru37/PDz/80GyO/DMoxwRQUFDAqlWrkCSJxYsXY2dn1+z1ZcuWoaury/vvvw8orr+npyf+/v7ExsZSU1MDgI2NDb6+vpw8eZIrV66QlpaGu7s79vb2ODo6iu9gy5Yt5ObmMmXKFEaPHg1AdnY2pqam4juUyWR4eXnx9ttv09DQwIcffkjXrl1f2D6Ap0+f8sUXX3DixAk8PDz45ptvCAkJIS0tDRUVFVRVVbG1tRU2mZub4+3tzYULF8jIyGDo0KGMHj0aLS0tQkND0dTUZOzYsRgZGTFs2DACAgKoqqpCkiTq6+spKChAV1dXfKaOjg6jRo0CICAggKKiIvbt2weAu7s7DQ0NuLi44Onpia+vL1paWkRFRbXIxnHjxtHY2Mgnn3yCt7c3gJiPd+7cYefOndy8eRMHBwf69+9Ply5dKC0tpX///gCEh4cTFRXFiBEjxHPq6up4eXmJ66qioshIPXv2DFtbW4yNjYmNjSU+Ph4NDQ3eeOMN/Pz88PPz49mzZ+zfvx8fHx/xeU1NTeTk5FBcXEx9fX2L7IuOjmbXrl1MnDiRkJAQYmNj0dbWxtbWljt37vDjjz/i7+/P5MmT0dfXF7+3fv167ty5w4IFCwgLC6Ouro6UlBR0dHRwdnZGX1+fSZMm0bdvX1RUVGhoaKBLly7inpfJZGzZsgVQ3GdKNDQ0EBsbS3h4OAkJCYwePZqZM2eKe09PT69F9gF89NFHaGlpoauri6amJq6urhQUFNDY2Ii1tTUAhYWFXLp0iT59+jBgwAAx5x48eIC9vT3m5uYAXLlyhfPnz2NoaIirqyu2trZYW1tTXl6OtrY2tbW1qKioYGBgQJ8+fVBVVSQWn78uurq6aGlpcezYMVRVVWlsbMTIyIhBgwaJedoSfPnllzg6OpKSkkJ2djZBQUE8e/aMU6dO0alTJ9TVFVusvb09r732GtbW1ri4uAAQHx9PbGwsBgYGdOjQAQsLCyoqKjh79iyFhYX07t2b0tJS1q5di7u7u7jf7O3t6dq1K9XV1RQXF2NiYsKbb75JYGAgu3btIjo6Gi0tLVauXMnAgQPZs2cPKioqBAQE0L17d7HWvyj27t3L7du3sbe3Z+TIkcTGxqKqqsobb7yBJEls3LiRoUOHsnDhQoKCgrh9+zYLFiygX79+dOvWjc2bN3P58mW2bt1K9+7dCQ0NFfsggLGxsfjZwMCAGTNmoKamJtYaLS0tkpOTMTU1pVOnTsTGxrJ69WqMjIzYuXMnJSUl7Nq1ix49eoh1oqUYM2YM2traPHr0iK+++or6+nrCwsJ488036dq1Kz4+PlhYWBAfH090dDQAvr6+dOvWTXyGmpoaWlpa1NTUUF5ejoWFBba2tgwcOJBPPvmEgwcP4uXlRWBgIOvXr6esrIxJkyahqanJhg0biIiIQFVVFTU1NTp27Mhnn31Ghw4dqKmpoaGhAW1t7WZ7V0vg4ODAs2fPKCwsJCcnh7Nnz3L16lUqKytJSkri4sWL9OrVS7zf0tKSlStXYm9vj5WVFUVFRZiamjJu3Dhyc3M5ceIE/v7+Ym0ICAhg/PjxqKio8PDhQxYuXMiwYcPw9vYmLS2NK1eu0K1bNxwcHAgICODVV18FoKioiIkTJ1JYWMiAAQNYsGABKioqwpf839Bi5zU1NZVLly6hpaXFgAED6NWrF9HR0URERJCWloaJiQm1tbVERkayYsUK8vLy0NPT4/Tp0wwaNIjJkyfj5OREaGgoAJs3b2bq1KnU1NSQm5vL8OHDeeWVVzh58iSHDx+mW7duPH78mE8//ZT6+npWrlwJKDaxoqIiGhsbCQgIwMPDA1NTU0xNTamsrGThwoVcv36dNm3atMi+mJgYevbsCSgWa19fX4YPH87evXvp0aMHgYGBBAQEEBMTQ2FhIcXFxdTU1IgbUEVFhR49etCjRw+uX7/O559/Tnh4OG3btqW2tlb8nY4dO1JQUEBOTg5XrlzBxMSE6Ohozp49S0BAgHB8Dx8+TPv27Zk6dSquroo25XFxcVhaWvLgwQO+++47pk+f3iIbb9y4wdChQzEyMgKgQ4cOADQ2NjJgwAAGDBggbJs/f754rbGxkaamJpydnWlsbMTAwABQTMCUlBTKy8sxMTER10dLSwstLS2Ki4s5c+YMiYmJfPrpp0ybNo2SkhIyMzOxt7envLychoYGcnNzaWpqQlVVlYCAAAICAjh48CD79+9vkX0JCQkAeHh4UFhYyP379zEyMhKb740bN3B2diYmJoaIiAjatGlDRUUF+vr6PHv2DBcXF9544w0SEhLw9PQUnzthwgTOnDmDoaEhpaWlAMJxzcvLIy4ujtLSUrS1tTEzMxO/Z2RkJBzXqKgojhw5goODA6Ghody/f5+TJ0+iq6vbIhsrKirYtWsXlZWV4tAE4OTkRE1NDY2NjQDcv3+fqKgo/Pz8GD58OHl5eURFRdG3b1/CwsJwdnamvLwcSZLo1asXvXr1ory8nPz8fCwsLACorq7m8uXL1NXVMWzYMOzs7CgoKMDFxUXYv3XrVhYtWsSoUaPw8PDg+vXrnD59mnfeeYfOnTvTuXPnFjuvN27cQFtbm7i4OAYPHgwoHKxHjx5x+fJl4uPjMTAwoGfPnixcuBBNTU3xu9nZ2Rw6dAh9fX1GjBghNpWysjKMjY3R1tamsbGRrKwsHjx4gIGBAcbGxqipqTFs2DDMzMxoaGjA2dkZZ2dnAC5dusSRI0eQJEk4rw0NDTg4OFBRUUFiYmKL7Hv27Bnff/89tra2hISEYGxsLK5jREQEP/30E2+++Sbl5eWUlJRgb28vbLt3755wtAoKCsjPzxffmbGxMW+99Rba2toAlJSUYGxsTEJCAiUlJURERGBvb49MJkNFRYVTp05hYmIiAgbHjh2joaGBFStW4OvrS25uLtXV1cKZaAkMDAxIT0/nwIEDSJJEcHAw7dq1IzU1FXNzc/Lz87l8+TKPHz+mXbt2eHh4MHbsWK5cuSKcBKXzGhERwYoVKwBYvXo1CxcuRE1NTfyt5x3P0tJSYmJiyMrKwtzcnM6dO6Ovr0+bNm0YNmwYSUlJHD58mISEBFRUVHjy5AkymYyQkJAW2ffKK68AUFxcTE5ODuXl5airq4tghhKOjo58/vnngGItbWhoICEhgc8++wwrKyu2b98ubLh9+zaWlpb0799fHFIKCwt5+vQpkyZNwtHRkUmTJtG2bVvU1NTo3LkzVlZWgGJd6NGjB5MmTRKHFR8fH9566y06depEYGBgi+wDOHLkCMeOHePHH39k0qRJbN++nby8POzs7Bg4cCBbt24lNjaWqKgofvzxR2pra5k4cSI3b97kl19+oXv37kRGRvLhhx/yyiuviL0/Li4OVVVVDAwMUFFRQVdXF3NzcxFIkH5tXV9QUMCNGzcwNzenT58+HD16lJ07d7J8+XJeffVVtm/fzt27d+nYsSOgWK9aCldXV+bNm8fmzZvFwa6iooJu3brRrl07cS/p6enRu3dvnJyc6N27N0ZGRkiShIqKiljjtbW1qaur4/79+7Rt2xY9PT0cHBwoKirivffeo3///gQHByNJEtu2bePChQtiXgcEBHDx4kUsLCx49913xfeQnZ2NqqoqpqamGBgYUFBQ0CL7kpOTiYuLQ0VFBTU1NbKysrhy5QrZ2dloa2uTnJyMtbU1ampqqKio0KVLF8LCwsTvp6SkYGNjg6urK8eOHePw4cNIkoSDgwNNTU1UVVUxYcIEJkyYQHh4OGvXrqWgoAAvLy86duzInTt3hMPr5eXFV199BcDatWtZs2YNoAg69e/fnzZt2lBWVvZPbWqx86qnp4eTk5PY2B4+fMi+ffuoq6sjNDQUDw8P9u3bx6effkpeXh6DBg1i5cqV4oJqamqKSenh4cGsWbMAxeavqqoqPvfUqVNEREQgl8spKirirbfe4tKlS2Ic1dXVaGlpERYWRmBgIO7u7uJzbt68ibW1NR999BFTpkwRX9SLoKGhQTii6enpfPvtt1RXV/Ptt98iSRK7d+9mxIgRmJiY8OGHH2JhYcHKlSuF86Gurk5paSnLly8nPDwcbW1tZsyYwfDhw/Hw8AAUC2tISAidO3cmMzMTgKtXr/LBBx+QkpLCkSNHcHJy4u2330aSJCZOnIiWlhZffvklT58+xcXFhXfffZePP/6Y+Pj4Fkdf+/Xrx40bNzAzM8POzg4bGxtKS0upra3F0tISgPnz55OQkMCBAwdwcHCgoKCA4uJinJycMDc3p6mpSUSt1NTU8PT0REtLCzc3N/E9amlpoampiYODA8uWLcPe3h4TExO2bNnCgQMHsLS0ZMmSJbz22mu4u7uzb98+3n//faZOnYqPjw9lZWVi0W/JNVy6dCk3b97knXfeYfr06axduxZ1dXWMjY3Zv38/b775JsXFxQwZMoQFCxYQEBBAfn4+hYWFtGnTBi0tLRHhNzc3F5FnZ2dnNm/ejIqKijhIPD9vzM3Nee2112jXrp3YTAARNdu1axeXL19m2bJlPHv2jFGjRuHm5sbrr7/eYsenZ8+ebNmyBU1NTdq1a9csMq2trU1VVRW//PIL69ev5+7du8ydO5cePXowZcoUESEvLCxk9+7d6OrqEhwcDEBaWhpvvfUWVlZWbN26FQBVVVVOnDhBeno61dXVWFhYEBUVRWNjI4sXL8bNzY3KykoArKys6Nmzp4hQy2SyFtn1PFatWkWHDh2ws7MT16Cqqoq7d+9iY2PD9u3bxUHqeccVwNDQkI8//hhDQ8NmTs3FixcxMzOjb9++nDp1ikWLFtGuXTvCwsI4c+YMqqqqvPPOO+jp6XH16lVcXV2Fg25ubk6vXr2E866trY2enh5BQUE0NjaKiPCLYvjw4bi6uopNt127duLQERwczIwZM3j27BlTpkyhoaGBJUuWMGDAAD777DMGDhxInz59AEVWoKmpiZSUFJ48eYK2tjbBwcFoa2tz9+5doqKiuHHjBnFxcbzyyits2bKFHj16IEkS06ZN49ChQ8yaNYsvvvgCR0dHTp06xcWLF4mMjOThw4f89NNPDBw4kLVr17b4Gi5YsIATJ06QmJhIWFgYhYWF2NvbM3r0aL7//nsiIyOZOHEiH3/8MQCZmZlkZGSgqqpKYGCgWI8A6urqALC2tsbT07OZ4/o8srKymDt3Lr/88gseHh6MHDkSExMT2rVrR0BAAJ988gnV1dWkpKRw+PBhzp07x927d3nw4AFBQUEtsm/79u34+voSEBCAqakpmpqaVFRUMG3aNNq3by/epxxrUVERBQUFeHp64urqysOHD9HV1RX7h4aGhsiAgCIyPn/+fFauXMknn3xCSUkJixcvbnaoUiIqKop27doxduxYQHHIsbGxoWPHjiIiD4g59qLo2bNnM4dw6tSpbN68mXfffRcfHx8OHDhAcnIyhoaG1NbW0rVrV7Zu3YqdnR1lZWVs3ryZZcuWAf8TvY+Pj2f58uU8ffoUfX19fH19efXVV5sdHpSHisePH6OiokJ6ejpr1qzB3Nycbdu2cfHiRQYNGsTYsWNZt24dampqPHjwgLS0tBbZp0R2djaSJOHr68ujR4+wtbWlqqqKH374gcjISGbMmMHAgQN5//33SUlJwczMDHNzcxobG0WEXQlDQ0Pu3LnD9evXkclkzJ49GxcXF2Hf+++/j4+PD6DI2Cm/1x49ejBr1ixOnz7d7Huora2lsrISDQ0NDAwMxIHuRZGTk0O7du1QU1PDysqKkSNHUlFRwYYNG3B1daVnz56sWLGCa9eusWPHDpydnTl//jx+fn5YWVnh4uJCXl4e8fHxmJiYMGLECEpLSzl48CCurq44OTmJ+TV06FC6du1KcXExFhYWvPfee/j5+XH69Gnefvtt3nnnHZF9sLGxYfLkydjb24so7KBBg1i6dOk/tanFzquFhQV9+vShuLiYNWvWcPnyZZqamujTp4+I+hQXF4ubsaysjPT0dBHNLCkpIT4+nunTp9OuXTsyMjJwcHDAzs5OLE5FRUXo6OgQFhbG2LFjqaqq4ty5c2ITAUQaytTUVEyCkpISNm/eTHJyMmPHjiUwMFCcmF4U6urq4gZLSEjg22+/xcTEhPfffx9zc3POnDlDdXW12CzLy8spKysTKfaioiJOnz7NrVu3UFdXZ+TIkbz77rtiMaqurqapqYlnz55hbGwsUuw//fQTlZWVIrJbVVWFvr4+ffr0ITAwkMuXL7N48WIcHBz4+OOPReSna9euLXZeGxsbWb58OePHj2f06NH89NNPxMfHM2nSJCwtLcnNzaWwsFA44g4ODtTW1mJraytOlzU1NeK7NTIyIj09nQcPHpCdnc3gwYPR09OjqqqK6upqunfvLubCtWvXCA8P59y5cxgYGDB9+nR8fX3p2bMnERERREdH09jYSF1dHYcOHcLCwkJEhl8U+vr6aGhooKOjg4GBAV26dCEjI4OPPvqIO3fuYG5uTmlpKaqqqvTq1Qtzc3PS09NFtFiJiooK3N3dhc1GRkbNIhdlZWXo6OigoaFBVlYWx44dw9nZGTc3NxITE8nIyMDc3Jy2bduSm5vLw4cPsbW1RSaTkZ+fT0REBIGBgcyePZs1a9bw7NmzF7bR2tqaCRMmAIpTsfK65ufnY2BggJ6eHl5eXujq6lJRUUFmZiaSJFFWVsaDBw+wsrISUe7no8QJCQnExcVx8+ZNvv76ayZNmsTZs2c5ffo0NTU16OjoUFtbK5y0hoYGZsyYgaOjIzNmzGD06NFkZGRQWlqKi4uLuJfi4uJadA0BBg0aREVFBU5OTuIapKenY25ujqurK3p6ety+fZuGhgZ8fHxIS0vj/v37tGvXjqCgICwsLPj5559JTk5m2rRp2Nvbc+zYMQoLCwkICMDQ0JCGhgbMzMyorq7m+++/x9XVlRUrVqCmpsbmzZspKSkR607v3r2xsbFBQ0ODuro6CgsLf0N7agmMjY1F1iQ/P5/q6moMDQ3R09OjR48etG3blsuXL3PkyBGio6NZs2YNOTk5TJ06lYkTJ/L06VNOnDiBvr4+/v7+lJaWirVJmTLPzMzEz88PExMT9PX1xfqWl5fHnTt3KC8vx8PDA319fTIzMzE0NCQsLAxra2tUVVWJiori2bNnGBoaisNqS7Bp0yacnJyYPn061tbWrFq1igEDBtChQwcaGhoIDw9HRUVFOFyZmZk8efKEvn374uTkBCjmtZqaGoMHD8bIyIjevXsTGBjIo0ePiIuLQ0NDA0mSMDMzw9TUlAsXLnD16lVqamqIiYnBw8MDDw8PVFRUsLa2FvtFx44d6dChA506dSI1NRV1dXVSU1NbZF9GRgampqY0NTVRX1+Po6MjAQEB+Pv78+DBAx4+fCgizZ9//jlNTU0iolZUVMSUKVPQ0NDg+vXrODs7U1dXR7t27VBXVxfZoLfffpuKigrOnDmDjY2N2FMTEhIwMDAgMDAQU1NT9PX1KSgo4MmTJ1RUVIgUs42NjbjHa2trKS4ubpGNw4cPF9lAJe7evcu2bduYPXs2CxcubPZ+GxsbEfV98uQJ9+7dQ19fn6CgIEaMGEFjYyMWFhb4+PgQERFBcXExDg4Owvmprq5GkiR0dXWpr69HU1OTPn36UFpayv79+wkNDcXLy4v09HQOHjzIpEmTxOFgx44dXLx4URzGXxQVFRVUV1fTrVs3jIyMuH37NiNHjiQkJIRt27Zx4MAB7O3tGThwIFZWVs2CEwC5ubkkJCSQlZWFkZERpqamuLi4UF5eLqLCQ4cOFTSjYcOGie/nzp07jBo1im+++QYDAwMuXryIvr4+VVVVFBYWcujQIWxtbQkLCxN+VU5OTovse/DgAX379m323NixY8nKyuLNN9/Ezc0NBwcHPDw8cHV1RZIkLly4wPHjxxk7dizt2rUjLy+P9PR0fHx88Pb2ZteuXSQkJODs7Czm140bN0hMTMTU1BRHR0e0tbUxMjJiypQpGBsbc+/ePRoaGgCFD+Ht7U3fvn2xsbFhz549HDt2jPr6epHV/d/QYudVX18fBwcH9uzZw7p168jJyeGNN95g2rRppKamcvXqVXr37s2AAQOYM2cOV65cYeDAgVy4cIGuXbty9uxZwZNJSkpi9+7dhIaG0qVLFzQ1NUlJSSEvL48FCxbg7u6Ompoaurq6bNiwoRnfQ+k8KjdgUGwAaWlpeHt7ExYWxp49e/jiiy/o16/fC9tXXV0tbhhTU1MRPayvr0dfX5/Ro0dTXl6OmZkZmzdv5saNG5w5c4aQkBCMjIw4cuQIBQUFyOVyPDw8qKmpEY4rKLiCmpqa3Lx5k7i4OIYPH46Pjw9eXl5s3rwZf39/LCwsyMnJ4a233mLQoEGAIhLd1NTEwoULW0wT+HtcunSJ69evM2HCBExNTTl27BgPHz5k2rRpAJiYmLBhwwbU1dXR0tKioKBALI6guHEKCgrw8PBAS0sLSZI4fvw4+/bt49KlS5ibm9O1a1fu3r1LdXU1/fv3JyUlhYkTJ1JRUUFISAgDBw4UaSIlHBwc0NDQEHwoc3NzqqqqOHToUIvs++ijj5AkqRm369KlS6xYsYKePXty+fJlrK2tuX//vkjHKDcFZYpVQ0MDVVXV/zUFpaKiIuZkbm4ue/fupaSkhL/97W+0adNGnJCtrKxwdnZm3LhxgsZiZmbGoUOHsLS0RF1dnaCgII4ePfrCNubk5GBtbc26des4c+YMy5Yto2vXrjx79ozc3FxCQ0Px9fVl6dKlVFZWEhAQgLq6Ovv27ePzzz/nww8//N25FBISwt69e9m4cSPvv/8+S5cuxczMTHBEHz9+3Cyls23bNrZv387ChQv54YcfqKurY+fOnRgbGzNy5EgsLS3JzMzk7t27L2ybEkePHuW7775j9erVvP7662RkZNDY2MjIkSO5fPkynTp1Ijs7m7CwMI4ePcrJkyeZPXs2H374IUFBQaxbt05EfAICArC3tyc/P58LFy4QGxtLaGgo58+fJy8vjzNnzlBWViYiZwYGBhgaGgpeJigOtu7u7mhqatLQ0EBVVRW5ublUVFRgaGjYYurHqVOnmDdvHqBIOx8+fBgzMzNGjx6NqakpZmZmjBw5kkGDBnH58mXefvttpk2bhqWlJYMGDeK7775j06ZNaGpq8tZbb+Hv70+bNm1wcXHBzMyMyspKkblRBg/Cw8OZOXMm0dHRwpns1asXDx8+ZPPmzRgYGBAUFMTEiRPR1dXl6dOngverzJi1BP369ePrr7/G3d2de/fu0adPH548ecLRo0eZNm0a4eHhHDlyhBkzZvDVV1/RpUsXwWUFSEpKorq6Gl9fX7p3707Xrl1RU1OjqqqKb7/9lr1796KqqoqOjo7g73t6ejJ48GBu3rxJYWEhFhYWaGlp8fjxY4qLizE3Nxf3rZOTE7Nnz6awsJAnT54IqsKLYunSpVRXV/PDDz+I76pDhw6oqKhw48YNkpOTWbRoEXl5eWzfvp2uXbvi7u7OiRMn2L17N/PmzcPFxYW1a9eSnJxMYGAgjx8/xtHRUawVampqzJw5E5lMhqWlJUlJSWzZsoUtW7ZgZGSEXC5n4sSJtGvXDplMxo4dO5g7d66gKZSUlKCnp4eGhgZqamo8ffq0RTYaGxuLdUpp8+bNmwEEleUfwdHRkQ0bNgh6gDLqq+Tpamtr09DQwPDhwwVfVUtLi6amJmpqanB2dsbd3R09PT1MTU2ZM2cOampqSJLEuHHj8Pf3R0NDg6KiIsrLy4mPj+fBgwctdl719fWFw6iqqoqbm5sIVCgd1b/PAih9ECUFZPv27ezfv5/a2lqmTJnCsmXLsLKyIioqSjiwdXV1wl+JiYnhm2++wcfHh3fffRdDQ0Oampr49NNPRWTyrbfeYteuXXz++edifUlKSiIjI6NF9j158kT8nJ+fLyL+W7ZsEY7nokWLhL8F0KNHD5YvX86+ffuYM2cO8+bNw9vbm4SEBPbs2cPFixexsbFpxl8+fvy4mHdTpkzh66+/FgGhoUOHMnjwYHEI1tbWbsYzDw0NZdeuXcL2f4YWO6+GhoaoqanRoUMHevbsyd69e6mtrcXCwgI1NTWePHlCmzZt0NXVZebMmZSVlVFVVcXKlSsJDAzEz88PW1tbjh49SkNDA23atEGSJEpLSzEyMsLa2pqsrCyys7OprKxEV1cXHx+fZqc+pcOqPJEDIgqhoaHBzJkzMTAwIDExkcTExBY5rzo6OiJa1LFjR7Zs2YK1tTUeHh4UFxdz8OBB3N3d6dWrl3hvdHQ0RkZGIkoqSRLt2rUTn5eWlkZhYSFWVlbY2dmJNHtUVBTvvPMOYWFhfPTRR2IMSuegS5cuJCQksGbNGr755hu0tbUFXwgUk7ClGyYoNhQ9PT369u2LtrY2ISEh+Pv7C1qDsrBCkiQmT56Mra0ta9eupbi4mG+++YaMjAzatWtHdXU1dnZ2JCQk4OXlxZgxY9DX1yc6Opq8vDyio6MpLS0lLi6OyMhIbty4AShSR1OmTKFr1660bdtWjEtTU5Pi4mJKS0txcnKiS5cuJCYmCn7pi8Lc3Bw9PT1OnDhBZGQky5YtY/LkyZSUlAiaBPCbiG5TU5NYXL28vCgqKuLcuXPs3LmT+vp6+vTpw8yZM1FRUaGmpqbZdx8WFsZnn33GW2+9RXx8PEFBQXh5efHDDz+goaHBDz/8INLDt27doq6ujuDgYNTU1KisrMTf379Fzmt9fT2pqakUFRVhZWUlouAmJiYkJSURHh6OoaEhjY2NvP3227Rv356qqiqcnZ2ZP38+AwcOJDExkRMnTuDt7S3oHo2NjXTs2JHly5cDCuc0MzOTbt26oaurS2RkJAEBAQwePJioqCguXLhAU1MT3333HVZWVgwdOpRBgwYxaNAgEbEsLi5u8YYJCsfCysqKQ4cOIUkSjo6O4jB37tw5srOzAcUiqaamhoGBAWPHjhVFSF26dBGZDT8/PwwMDJg3bx6mpqbNOML5+fmcPn0aExMTunXrJjawDh064OTkREJCArt376Zt27aMGTMGUDgUTk5OpKSk8Omnn5KRkdGs4OFF0NTUxNWrVwkJCcHT05OEhASePn0qDhTJyckcO3YMe3t7+vTpw/r16/nxxx85deoU2dnZ6Ojo0K9fP8zNzTE1NcXJyYnu3btTXl7Ozp07yczMxMDAgEePHlFRUUFYWJigEwDY2tpib29PQ0MD8fHxpKam0rNnT0FHgOYFXX/EeX3zzTcFpauqqoohQ4bg7OyMJEmMGDGCBQsW8M0337Bt2zb69+/P+PHjcXR05ObNm9y/f5+amhrx+9XV1SQmJpKSksKdO3eIiopCXV0dDQ0NcnNzAUXaXRmx09bWpnPnzkyZMgU/Pz8uX77crOglOzsbAwMD9PX1sbe3JzU1tcXOKyjW+Pbt25ORkcGNGzewtbXFwsJCHO7r6+txd3fn66+/xtvbm4aGBiIiIoiKimLQoEHY29vTpk0b/Pz80NbWFvzX9evXY2JigqqqarPofl1dHUFBQVRUVIg169atW1y/fp3Hjx/To0cPwRFXfidKx1NZUNMS6Orq0tjYyMOHD8UcBEX2R09Pj7Nnz3Lr1i3i4+Px8/MThVOGhobCKczLyyMtLU1EvS9evMjly5cJCgpqNtaysjIMDAxQV1envr5eBH4OHjxISUkJEyZMoK6ujl9++QV7e3tCQ0OJj48nMTERc3NzxowZg7e3t6AxvSiysrKIiIjg6NGjODo68v7779PY2Mj3339PXl4eGzdubHZfXLlyhYiICDp37syIESPw8fGhW7duqKurU1lZibm5OadPn8ba2hoTExMkSeLRo0fo6uoKypmZmRleXl707t0bQ0NDEhMTiYmJEUXLdXV12NnZMWvWLMLCwigrK+PEiROYmJgwaNCgFtWCBAUFkZWVhZ2dHRYWFvj5+REbG0tSUhJqampoa2uTkZFBWloaRkZGBAQE4OzsLPwxOzs7cS2uXr3Kl19+SUZGBmPHjuXZs2cYGRkRFxeHrq4uvXv3JjU1FTs7O5qamoiPj+fQoUM0NjbSp08fOnbsiJqamsgsKGFra4utrS337t1DLpf/U5ta7LwmJSVx9uxZwsLC2LFjhyhoURZ55Obmcu/ePUJCQhgxYgTDhw/nyZMnTJo0iXv37nH58mW0tLSYMGECAQEBfP/994DC+VSm8FRVVVm6dCkFBQVs3rwZHx8fJEkiLy8PS0tLVFVVkSRJPGZlZfH48WNUVVXp16+fiLjV1dU1+3JeBCoqKoJfV1RUxMCBAwUPd+vWrWzdupVBgwbRoUMHjIyM0NXVpVOnTjg5OYkUTnV1tTiZNTY2UllZiYqKSrMoY48ePdDU1GTevHlcvXqV1NRUnJ2defDgAYWFhXh4eAgHTPkdeXt7U1VVJT5DV1f3D1UA9+7dm27duqGlpYWKikozYrgy8giKBebEiRP079+f+vp6rl27xrp166itrcXa2prCwkKOHDnC06dPmTt3LsuXLyc5OZktW7YQHh4OQGVlJVu2bBFpLHV1dTQ1NfHz8yMgIECkEADOnDnD6dOn6d69O+3atRO8U319fY4fP/7C9j169IjOnTtz+PBhtm/fjpeXFzNmzGDu3LmUlpaKFJ/yepeWllJVVYWFhQW6urri0NSuXTsuXbrEzp07AUUEo1u3bnh7ewteKSg2VTMzM1EAc/PmTT777DMADh06JNLAoKiszs7OprS0lLq6Ovz8/LCwsGjxdbSxsaGmpoZFixahqqoqNicXFxc0NTXZuHEjX375Jf7+/uzfvx8XFxciIiJwd3fn9ddfBxQptuXLlzNhwgTGjRtHWVkZhw4dwsjIiODgYJYsWYKmpibR0dEMHDiQR48eUVNTQ79+/VixYgXff/89Fy9eBBQb5KZNm7CwsGDy5Mnie9HS0kJPTw9DQ8MXqiB9HtOnT6dDhw6sWbOGnTt38sEHH4jXGhoaMDExYfny5SLlHBYWJiqyAfr27UvPnj0pKiqipqaG6upqhg4dSp8+fbh+/Trp6enY2Niwf/9+rl27ho2NDd7e3piYmKCtrY2BgQEpKSns2rWLrVu30qNHD0JCQkRUUENDAz09PR4+fEhaWho1NTUtcmBfeeUV0tPTycrKori4GDc3N9TV1cVB98aNG3zxxRdoa2uzY8cO+vfvT//+/Vm3bh0PHjzg9ddfF4od5eXlItV2584d8dqiRYs4dOgQK1asIDw8nL59+zJ69Gh69uzJiBEjMDQ05NSpU9y7d4/u3buLuaGkDT2fNfojtIFevXpx9epVrly5gqGhIRs3bsTIyEgU93799deYm5sTEREhovugiErv3buXnj17Ehoaiq6uLlFRUezcuVNwBJ2dncWh6tixYxQXF9OzZ0+0tLTYs2cPNTU1IoqjqalJx44dqaqqoqqqCl1dXWxsbARVDRC8+JYgOjoaLy8vQkNDsbW1JSIigitXrjBs2DD69u1LaWkpWlpaaGhoMGPGDOFYl5SUkJaWxq5du7CysmLKlCloaWlRW1vLunXrSElJIT8/Hzc3N2pra6mvr0dNTY24uDjq6uqYMmUKr732GgC//PILS5Ys4fr167zxxhusW7cOUKy9SsdEmU1samr6DT/8RaCmpsbPP/8sHFd/f386dOhAYmIiUVFRJCcnExMTw86dOxk+fDjLly/H39+f3NxcoqKiiIqKQkNDg/nz56OlpcWaNWt4/PgxQ4cOBRT3c0VFhfj+a2pqRGCqsrKSU6dO8eDBA1RUVOjUqRN1dXXExcVRU1ODhYUFFhYWmJmZCcewpVz7zz//nI0bNwKKLM2HH37I3bt32bhxI8HBwb/5vPT0dA4fPiyisqampgQHBzNp0iTU1dU5e/Yso0ePxsjIiCtXrmBjY8OKFSvQ0NBg/PjxODg4YGJiwuLFi4W958+fp7KyktzcXKytrcnMzOS1114T3OYrV65w7Ngx2rdvz4ABA1pk37Rp08jPzyclJQVnZ2csLS1JSUlh7969DB06lJ49e3Ls2DEiIyOZM2cOxcXFxMTEMHjwYN56661mhcvm5ubiAPzo0SPy8/OJj4/n9OnTjBgxgoiICGFTbGwst2/f5uLFi5w7d45z586xZcsWPD09RZG2iYkJ1dXVYq25e/cux48f/01dyd+jxc7r8ePHkcvlNDU1MXHiRJYvX05RURGampr88MMPyOVyFi1aREhIiAgnu7i4MGvWLBoaGrC3t0dPT4+33nqL+vp66uvr0dDQwNPTk127dqGhoUFFRQXXr18HEKmT1157jfLyclavXi1kpUDBsbh58yYeHh7CCTt27BiffPIJlpaWHDt2jIMHD76wfeXl5YSHh3P//n3u3buHt7c3Ojo6JCUl4evry3vvvcelS5dYvnw5X3/9Nb6+vmIDUf7ttLQ0QkJCaN++PSoqKs1OLc+jS5cu/PTTTxw/flxIrnh5eQniu5ubG6NGjUJXV5eCggK8vb2bVbBWVFSQlZXVwisIcrkcNTU1AgMDBR+1vr6eCxcuNOOYOjo6smfPHlFN3dTURFhYGDU1NfTu3ZugoCAOHz7M0aNH6dOnD71790ZFRYXk5GTu37+PsbExWlpaVFRUAIpI55QpUwgLC8PR0ZHy8nKioqIoLS3lwYMH7N27F6CZKkNLDx+gSGVVVlYya9YsbG1tOXz4MOvXr8fGxobXX3+dIUOG8OTJE7Zu3crdu3cxNDRk3LhxzJgxA4AlS5ZQVVXF2rVrmT9/Pra2ttTU1JCZmcmiRYuYNGkS48aN486dO3z++efo6+vTuXNnHBwc6Natm5BmKy0t5eOPP0ZXV1csxHp6ejg7O1NVVSUiNH8ESjK8Es9Hxezs7OjZsyeff/45jx8/prKyksrKSo4dOyYidsHBwQQEBDB58mQ6dOhAWVkZV65c4cCBA1RXV3PgwAECAwNZuHAhWlpabN26VUhhKVOFXbt2Zd68ebi7u9OjRw8qKyu5ceOGSIV6eHhgYGCAhYUFQ4cO5bvvvmuxnf7+/rz99tukpaWJyDXAvHnzCAoK4tGjR0L67flNOTU1lZ07d+Lj48OIESNYu3Ythw8f5vjx49jY2PD06VN27txJUFCQSKllZ2eTk5MjPqegoIBPP/2U3NxclixZQmZmJkOGDOHVV1/lnXfeAcDNzY0vvviCiIiIFjt3tra2WFpaMnv2bG7fvs3SpUsJCQnh+PHjJCQkYGxszBtvvPGbe2DIkCEkJibi5eUlnlM6rjExMbz33nvU1NTg5+fH2LFjqaysxMjICHt7e5KSkjh37hwuLi506dIFUBzytbS0hCPxt7/9jS+++IIRI0bwySefiLTeH4m86ujokJ+fT1lZGd7e3mIdVBb/tWnThjlz5tCtW7dmNQ3V1dWoqanRtm1bUfjUtWtX4bhpaWnx5MkTIVNma2uLvr4+6enpPHv2TDjCMTExzJgxgzFjxrB06VKSkpL44IMPGD58OBMnTkRTU5PCwkL09PRwcXHB2NiY+/fvv7B9X3zxBQMHDmTgwIHY2dnRrVs3cfgBxX5iZGTE9evXWbVqFdOnT2fUqFFClcXKykrUL4AiZd6zZ0+8vLyoqKhgz5497Ny5E29vb6ZOnYqZmZngHioj0oWFhWhqajJ16lRB/Xr27BmPHz/G0tISPT09iouLsbOzw9bWliFDhhATE9Pia+nu7k63bt3o3Lkzc+fORZIk3n33XaKioli5ciVGRka88sorHDt2TOznZ8+exdTUlBEjRoiq88jISGxsbFi0aBEdO3akurqaTZs2ERISIlL1lZWVGBsbU1lZSXx8PEOGDMHLy4vU1FT09fXp1KmTCDzo6uo2S123NOoKCMfV19eXDz/8EF1dXXR0dHj33XebOW51dXWUlJRgY2PD6tWrGTlyJKDIUN28eZORI0fSu3dv4uLiqKiooKGhAScnJ9LS0kQ6/ebNm6SnpzNkyBC++OILQOG8e3t7Y2ZmhpGREQ0NDaKuBxRZGn9/f9566y1++uknevfuLaLYLwJtbW2srKxYtmwZ169fZ+LEiXTu3Jn+/fvj5OSEiooK3bp1E3z0+/fv88svv/Dmm28SFBTEtm3byMrKYunSpYwYMQJJkhg1ahS5ubnY2Nigo6NDdnY2RUVFzf7m5cuXMTAwYPbs2ZiZmVFeXi4OjMbGxiJAlpycLFQyJk6ciImJCRcuXPhfbWqx82plZYWBgQEPHz6kR48eZGZm4ujoiKmpKf7+/nh7ezersoyOjqahoYE333wTY2NjwSGcNGmS0BU0MjLi2rVrrFq1ivr6ekJDQwkICEBLS4v79++TmJjI3/72N7p06fKbhdzExISysjIePXpEUFCQ4DM1NDTQoUMHevfu3SLn1crKiqSkJG7cuMGlS5c4e/aseG3gwIHMmDGDtLQ0Nm/ejLu7u6i6s7OzIz4+nq+//pqoqCjGjh3L3LlzCQoKwsjIiGfPnpGZmYmNjQ0ODg6Ca+nj4yOUC3bu3Env3r2ZOnUq9vb2gsj+/Knv+Uhlfn4+SUlJLb2ErFq1iuDgYEETALh27Ro3btzAz89P3BRKeoi2tjbV1dUEBATg6upKZWUlfn5+6OrqMnDgQMrKyqirqyMiIoIzZ85w+fJlcnNzhSOgra0tpNCePXtGXV0dlZWVREZGsnv3boqKitDS0hLOeUtuyt+DUhYrODiY4OBg3nzzTU6ePMmDBw/o3bu3KLh58uQJsbGxBAcHCz7ThQsXhNxQVVUVZmZmTJ06lfLyclatWsWJEydobGyke/fuHDlyhNOnT2NnZ0ebNm1EVEdVVRVXV1ehWVxeXs6lS5ewsrLC09MTR0dHKioqxKGkvr6+xfSPI0eOEBoaKiKKfn5+qKqqkpOTg4uLC/3792f48OHEx8cLeovSaTt9+rRIHSk1DfPz84mLiyMmJkYoYFhZWaGmpkZqairHjh0DFAeatm3bUlFRwc2bNzE0NGTy5MkYGRlRUFDAgQMHuH//PhUVFejo6GBjY4OdnZ3YaFuCkpISDAwMhNQWKLjFOjo6oghnxYoVbNq0iaamJnr06IGBgQFmZmbo6emxcuVK6urq+PbbbykqKiI3N5eff/6ZwMBAoqKiUFNTE5qhSqSnp5OSkoKlpSWrVq3ip59+on379syZM4dHjx6xY8eOZtXMpqamjB07lrFjx5KUlNQiVQxQbLQlJSVCdkZXV5fY2Fiys7MZOXKk4O7V1tZy7NgxamtrCQsLw8PDg4qKCq5du4aJiQkuLi7ExcWxYsUKHjx4ACC0UkeOHCmcmu3bt3Pu3DlRUAMKp3TYsGHY2NhQVVXF9evXycvLIy8vjwsXLmBgYICrq2sz/u+L4rvvvuPx48eMHj2a/v37U1VVRUJCgghiKPnCoaGhzZyObt264eLiIooS7927h4ODA3PmzAEUnG9tbW2OHj3K9evXUVVVpba2VtBTlFkxpYrHpUuXePfdd6murubevXtYWFgwceJEQEGF09DQEBt8SxAdHY2HhwexsbH4+vri5+cHKFRvIiMjxaHBzs6OuLg4vv/+exwcHNDT06NLly6C8wyKYjUtLS0mTZpEcnIy0dHRIroYFRWFkZERS5YswcHBgSdPnlBQUICZmRlaWloMGTKESZMmCdrQnTt3qKqqEs6dlpaWyEg+f0h4EVRUVJCfn4+pqSkymYy+ffuK9XLQoEFIkoSdnR0uLi5MmzaN7OxstLS0ePjwIfHx8bRp04b27dsTEhLCL7/8QmFhIW+//bbQh96wYQPPnj3DwsICU1NTJEnCyckJNTU1du/ezZ07d/juu+/Q0tJi7ty5nD17lrFjxwru6PN49uwZsbGxLbIPFBSInj178sknn4hDoVLf+XkoI8S+vr6CynH8+HH+9re/UVhYSH19Pfv27SMiIgJDQ0MmTJjA06dPycnJoWfPnly6dIkzZ84AiszBuXPn6NKlC3p6eoISWFtbi7q6OtbW1uTn53Pz5k0cHR2xsbGhR48epKenc/369Rbvk8rI+/3793F2dmbIkCHCV5MkiU6dOqGrq0txcTFbtmwhIiKC7t27o6qqytq1a4mNjcXT05NXXnmFwYMHExYWxuPHj7lz5w6Ghoa0adMGQ0ND6urqKC8v5/jx49TW1jJmzBjs7OwwNjbmzp07wodTSmuWlZVx9OhRLl26xIgRI7CwsGDMmDH/euf1tddeo1u3bpSVlbFhwwZ++OEH+vfvz759+5g6dSrDhw9vlnqxtLRETU1NPKepqSnSNsoLtHz5cjZs2AAovPXc3Fz69etHWVkZ77//vigumDp1qrhplJqjXl5eTJ48GZlMxtatW/nhhx8YPHgw3bt3b3YKeFEMGDCAmpoarK2tMTIyEpu2tra2sKF79+5cuHCBDz74gC+//BIfHx/c3d0pLCwkOTmZhoYG9uzZg4GBAU5OTpiYmLBjxw62b98uGimUlZVx5MgRPD09GTVqFJ9//jlz5szh8OHDDB48mA4dOnD+/HnKy8vFIqu0W5kizs/Pb7HEEihumgULFtCtWzcaGxtFcZO1tTUFBQXExMRga2vL5cuX2bt3L35+fnz44YdYW1tTXV2NiooKWlpaNDY2MnjwYHr16kV6ejrnz5/n0qVLgn8GNEvLpaam8tlnn/Hzzz/zwQcfoKWlRWJiIpaWlixevBgnJydKSkoE//KP4unTp81UAZT6o42Njfj6+opClqlTp/Lhhx8KLtOPP/7I+fPnmT59OuPGjcPMzIykpCSuXbsm+J1K23fs2CHkTGbOnCk4ojKZjE8++YQvv/xSpLMTEhJ4+PAhNTU1eHl5YW9vT2FhIfHx8VRXV+Pg4PAb2Zt/hq+++oqtW7fS1NRE79698fLyorGxkcjISNTU1HB0dKRbt26i8AcUXOeuXbuK6vKGhgYsLCwoLy8nNzcXKysrTE1NyczMpHfv3rz33ntERkYKB8LLy4t58+bRq1cvSkpK+Pnnn1FXV+eDDz7g0aNHjBw5Eg8PDzZu3IixsTElJSUipfdH8Pcp3KqqKpqampo9t2zZMszNzVm8eDF+fn7ifjUwMKBt27bcv3+fGzdusGLFCiZPnsw333zD2rVr6d69Ox999JEoEvHy8iIlJaUZR+ubb74BFAt7cXExvr6+HD9+vJmCyfPRyJbO2wcPHhAdHc3rr7+Ou7s7OTk5/Pzzzzg7OzN+/Phmc1jJnTx//jweHh60b9+exMRErl69Knj1165do6CgAHd3d+rr69m1axdXrlzhiy++EHqk5eXluLi4iGrnlStXcvLkSX7++WdAcY8OGzaMN998k/r6ev72t79x/Phxpk+fLiJHLcGqVavIzc1l4MCBgKLgLyEhQaxp6enpYjN7+PAh2tratG/fnp49e6Knp4e6uroo6Pr000+ZO3culy9fZtOmTYwaNYoRI0aQmZlJfHx8M268sqkEKNZuPz8/bty4gYWFBatWrSIhIYGdO3cSFhYm0pbPc0NfFL179yY4OBhHR0cxXxMTE9mxYweSJIk1wNHRkZiYGBYvXsyoUaOYMGGC0EsHhVNkYGCAtrY2FhYW1NfXc+7cOfr06cPKlSt59913WbduHb179yYkJKSZ4xIQEEBhYaGIvjs6OvLo0SMRGOrQoQM+Pj7CeW1pBH3Hjh3cvXtXqN88H+WcNWsWXbp0YdGiReTk5LBixQrCwsLIy8ujuLiYN954g+vXrxMfH4+/vz9dunQRRYUPHjwQFKNXX31VzNUhQ4awatUqQMGv3LlzJ9OnT6dLly4UFBQQHR3NzZs3f7coS0mPaCm2bNmCn5+fULhQIiYmBlNTU1Fzo6RdVFZWcvjwYQ4ePCiCHf369RMqJZWVlXz99dcMGDCAvXv34urqyqlTp9i6dSunTp1i6tSp6Onp8eOPPxIZGSmk4urq6khISMDW1hZTU1MsLCzQ1NRslrmdNGkSgYGBfPvtty22c+7cuQwfPhwrK6tmWVxQyJedOHGC8PBwoWD07bffoqmpKQ4Ec+fO5fr167Rv355u3bpRX1/P1q1b8fDwYNy4cYwZM4bHjx/z8ccfU1lZyWeffSa+u5ycHExMTDAwMCAzM5OYmBj69u3LO++8Iw7mv9dY5B+hxc5rbm6u8NYbGhp4+vQpWVlZfPDBB3Tp0oWKigrS09OxtbVl9OjRv/mClNVsSm6lMlKqjAT5+flRUFDArVu3KC4uRlVVlREjRuDv74+RkRGPHj3C19eXqKgodu3axaxZs+jUqRPTp0/ns88+E0Ucjx8/pqqqqsXdRAICAigrK8PBwQEHBwf69OlDSUkJLi4uonhB2bnmxIkTqKioYGFhQWRkJL/88ougCbi5ueHl5UVTUxNqamrY29tjb2+Puro6TU1N2NvbY2xsTExMDIGBgTg4OLB06VKh5Wpqaio6xxQUFGBiYkJpaalwnkCx8J87d+6fckP+HnK5/Dc3frt27TA0NOTq1as8e/YMLy8vIbX0PBdMR0dHOLBqamqUlJRw7949EW0MDQ0VESRlSi45OZn6+noh7q9M8SllrIKCgkQK08bGhoyMDAoKCigvL6eoqKjFfND6+vpmZHBXV9fffEdt27YVr9fW1pKTk8O9e/cAmDhxorC3vr4eY2Nj3N3dMTY2FjfYtWvXRMcwZRGPkh6hq6vL/v370dLSokuXLri6ulJUVMTf/vY3IiIi6NWrF01NTaICtUOHDi0+aMXHx4ufMzMzGTp0qJDMuXnzJpWVlfTu3ZuOHTty8+ZN7t27R1ZWFsOGDWsmNl9fX09ubi6VlZXY2toyduxYnJ2d6devHxoaGs041hYWFiLFqaurS4cOHVBXVyc7O5usrCxsbW3x9PQU4unKCE9DQ0OL+a6gSIdqaWmJ66RUhQBF6u3Ro0fMnDmT2bNnc+3aNRoaGsjIyKCuro6TJ08yefJkZs2ahb6+PtbW1pSUlAiOVr9+/fD39ycrKwtVVVW8vLxITk6mvLwcW1tbqqurcXFxISUlBXt7ex4/fkxISIgoAFPK4yk3yuLi4maHthdBTU0NkiSJaJ9SKq5Dhw5kZWWJCLijoyNubm74+PjQ0NBAZmYmqamp3Lx5E2NjY5ycnIiIiODevXu88cYbjB8/nlOnTrFlyxbS09PZuHEjDg4OBAcHM2TIEE6dOsWVK1coLi7mq6++oqSkRKiEgCLDpCxqiomJIT09/Q8fKGfPns3FixfZs2cPubm52Nvbo6+vz/79+2lsbMTGxqaZPJ2qqioNDQ3NNmulbu2dO3d4//33OXLkCOrq6syaNYvOnTtTWFjIxo0bqaurIyAgABMTE7Kzs9HT02PQoEGYmZlx7949Tp8+zfLly5kyZQqbNm1i/fr1SJLE+PHjRUODF610VuKbb775TQRQWe/QrVs3PDw8+PHHH6mpqRFNEHbv3k1FRYWwW9kl63mblY1pjI2NKSsrE+vtiRMnMDc3p6KiguTkZKGA4eDgQFZWFk5OTmhoaHD79m2OHj3KzJkzBd9eiZbSW5qampAkCRMTE5ydndHW1ubp06fExsYycuRI/Pz88Pb2pra2VtwflpaWWFpa4uXlhba2Nrdv3yY+Pp7AwEARbYuMjERfXx9zc3MSEhLYt2+fKHaKi4vDycmJzp07izl87do1QeH67rvvuHjxIo6OjqipqeHt7Y2/v7/gE7cUSkH+0tJSMjIyKC8v5+TJkxw7dgxvb2+WLVuGn58f9fX1nDx5UvgvSikoCwsLMjIySExMRFVVlWnTprFgwQJAsS/s2LEDFRUVunfvzsiRI7GzsyMqKgpnZ2d69OghaGW5ubkYGRkRHx9PXl4egYGB2NjY8OjRI1JSUrCzsxMSgS1BVVUVjY2NODo6inVZmfVRHhKNjIxwdnYWNMj79++LAkYnJycMDQ2JiYlh3bp1BAQE0L59e8zNzUWh67hx4wAF1S85ORkzMzNxyEpLS0NdXZ127dphZmZGQUEBKioqPHjwADU1NRYvXiwaIUHzLpn/CC12XtetW8dXX32Fqqoqffr0oU+fPpw4cYIZM2Y0O5n7+fkJUWhAdKGoqKhARUUFIyMjamtriYmJwdvbm40bNxIaGoq+vj5btmxh//796OnpsXv3bgYNGsSJEyf49ttvsbCwYO7cuaSlpbFv3z5iY2O5fPkyY8eOpVevXqSkpDBt2jS2b9/OG2+8Qe/evVtkn76+Pnp6eqLSr1u3bsKBfP4L7dGjB127dhX6k0pReGX4fcOGDaKSt6GhgUmTJjF69GhFT95fK2SnTp1KUlKSaL3m7++PXC7n0KFDoguWMiLX2NgouLBK5Ofnc+bMmRa1vwX+oYyIs7MzTU1NFBQUiGr4/fv3NzsFSZLULPp18OBBVq1ahaenJ2+88QZz5sxBR0cHQ0NDEUXftGkT0dHRdOrUiUGDBomNMC8vT1BOlKiurub27dskJydTWVnJ3bt3m1UcvwiCgoJ+N6X0PAwMDNDR0WHdunUkJSWJ06GPjw+lpaXCeXVxcRG864qKCmJiYsjLy0NHR4ezZ89SU1NDU1MTZWVlyOVyxowZw6effsqrr77KlClTCA8Pp3v37pibm1NSUkJ+fr5wVGtqanB0dMTHx6fFVc4qKioigqJM0yibdpw9e5akpCR69OhBdnawnQQ3AAEAAElEQVQ2s2bNIjIyElBEM/38/IQTqKGhQU5ODjdv3sTZ2VloiJ48eZJly5bRqVMnVq9ezWeffSacSVAcQlesWIGqqiolJSWiSv3GjRscO3aMkJAQkSW5f//+H9pQsrOzsbCwEM7r8xGjqKgotm3bhoaGBlOmTGHXrl08ffqUs2fP8tVXX1FQUMCyZcvEBnL48GE2bNhAdnY2ixcvZuLEiaSnp3Ps2DGMjY3p2rUrV65cISkpCXNzc/z9/dHX1+fAgQPY2dn9ptpbX1+/2XgKCwtbLI6uPNh89913HDhwQLTbzsjIYPv27aSlpdGrVy+CgoKQJAkfHx+CgoKIj49nx44d3Lx5k9DQUNzd3QkKCkJbW5tevXphb2+PpaUlI0eOpKqqitOnTzN//nwOHTqEjo4OhYWF/PLLL6JASF9fnxs3buDp6Unnzp2brXPTp0/n1Vdf/UOqJgAff/wx06dPZ/jw4URERHDixAmcnZ2ZNGkS8fHxzJ8/HycnJ+zt7bGwsBD3bUlJidALV6pXfPHFFyxatAhQdLtTpt9nz55NTEwMd+7cYdiwYeTk5HD+/Hm6du2KTCYjLi6OXbt2AQiup46ODqWlpZw7d04caqqqqpq1tn4R/N464+Liwrx58zA0NKSmpoZ9+/Zx/vx54uPj6dKlC2PGjCEzM5MVK1Ywfvx4Qd9Squco1XQ6derEjRs32Lx5Mzk5OfTu3ZuUlBQ2bNiAiooKR48epbS0lA0bNjBlyhTx90tLS7l9+7agZzz//O/VXvwzjBo1SnDaJUkiNjaWBw8eEBMTg4aGBmFhYXz99dcio1pSUkJiYiJqamqoqamhqqpKaGioWEcbGhp4+PAhwcHBvP7661y/fp1PP/0UHR0dESSQy+X4+fkxZswYwsLCWLx4Mbt27WLy5MkYGBiwZs0a9u7di7a2NoaGhrz99tv4+vqSl5cnCob+CFRUVMjPz2f//v0cPnyYvLw8CgsLhWB/SkoKy5cvx8vLi+PHjzN69GiWL1/O+fPnRXRy9uzZolq+oqKC4OBgwsPDhV8yZcoUfvzxRx49esS8efNEYKWkpESsM2fPnhX1Q2PHjuXcuXPk5eUxZswYtm/fzueff96ifV9HR+c3EXdtbW20tbXFnLOyshKd2Xbv3s3MmTOpr69HS0uLoKAgamtrSUhIoKamhujoaB48eCAKSJ9vy2toaEjnzp2F1KSSsjZw4ECRHVDqn+/bt0+0yfX09BSqJy+SiWyx81paWkpFRQUHDx7kzp07fPPNN4SFhbFo0SKePn2Kj48PeXl5VFdXExkZybFjx8jPz6d3795CPkJZwBUbG8vy5cspLS1l7ty5YrPr2rUrCxYswNPTU0jjpKamcuPGDfT19RkwYABhYWFs2LCBr776ij59+vD999/j6enJ4cOHOXPmDEFBQfTq1esPpdVVVFRwdnYmOjqaPXv20NTUJNKrlZWV2NnZ0dDQIAT1lSdhDQ0N6uvrycrKEouGuro6t2/fxt3dvVn6NCcnBysrK3x9fcWps1+/fjg4ODBx4kQyMzPFBczJyRGnvOfTWv/MQftHWLlyJd27d8fNzY3bt2+zZ88ebG1t+fDDD3F1dcXFxYUzZ85gbm4u+nNfvnyZZ8+e0aZNG2xtbXn06BGnT58WxQ3nz5+n4v+x9pfhWV7b2j/8i7u7h7g7ECDBIUCwFNcWdy0UqFDaQoEWKRQKtBRv8SIBgocggRCIEeLu7q7vhxz3fMja+3kW6f8dX/Y69loJmfd1X3OOeY5T6upE1KSkDAwMaGpqIjExEUVFRfFympqaiob0yZMnnDx5kn79+uHs7Cz4fzY2NkhLS/P06dMerU/yGb18+ZKYmBhGjx6NpaUl8fHx7N+/HwUFBfbt24e1tTWOjo48fPiQvLw8kRx29+5dzM3N6ezspKmpibKyMsrKytDX12fIkCH069eP/v37i9GcJL1k4sSJYoOeM2cObm5ueHt7k5eXx86dO5GRkWHNmjVoaWnx5s0bZGRkuHfvHtXV1T1Gzw8dOoS8vDwFBQXo6+t3s4Pz8/MjIyODwsJC/vnnH9G4rly5kkWLFgnxgJ+fH1OnTiU3N5c9e/awYMECJk2aRFFREampqYSFhZGdnY2DgwOTJk3CyclJNJIyMjLiPysrK4uJh5OTE1VVVaxYsQI1NTXGjx9PWloasbGxH2U8/WE5OzvT0dHByZMnSUhIICAgAH19fW7evElCQgJjx47t5uAhUaTr6emhq6vL8ePHUVVVZfny5RQXFxMWFsa0adOE6jc7OxsTExN69+5Nc3Mz79+/Jzo6mlu3brFkyRJGjhwppgeSceKH4Rzwf0aq3t7ejB8/XtAWPrb09fUFKuXg4CB4gFeuXKGpqYmmpiaKioq4ceMGTU1NzJ8/n+HDh+Pu7s7Dhw85d+4cL168YO3atSxatIiXL1/yyy+/0NDQIC5kWlpaZGZmMmfOHDo7O8U7K2lcNTU1BTIuaVwTExMpLCzEzs5O7GXx8fE9Wht0cciHDh3K119/zdu3b7G2tkZfX5/AwEDa29vJzc3tZqgvqfb2dmH2Lqnhw4cLa62HDx+yfPly0fgNHTpUKN8lqJgkHc3c3Jzdu3eTl5eHl5cXZWVl9O3bl3nz5vHkyRO+/vpramtre6zgBsR3ZM2aNYwYMYK0tDQUFBTEPhcdHc306dOZO3cuUlJSpKen8/79e+Li4ujo6BD0jerqakpKSmhubiY5OZn8/Hxx6AcGBhIdHU1GRgYGBgYEBgbS0dHBgwcPyMvL+x+JWR0dHWISI2kqJGruzs5OkZz3sSWxMHr+/LlwCbC2tmb06NE4ODjQ2NgoAJn29nY0NTWRl5fniy++IDk5mX379glhE/wfVwdTU1MhUCsvLxeJVSdOnODUqVO4ubnh5+eHg4MD27dv5/fffyc+Pl74PUPX+ygrK4uWlhaysrJUVVWRlJTUYwQ9OjoaOzs7wd309vZGSUkJbW1tDAwMcHR0pK6ujvv371NYWEifPn1QU1MjIyODc+fOUVVVhaGhIUFBQcLt4fXr10RERDBgwABOnz7No0ePqKqqYvPmzZw4cYIxY8ZgZmbG48ePOXToEIsXLxb0mqysLNLT00WYjp+fH7W1tXh7e9Pc3NzjeFgpKSmkpKSor6+noqICMzOzbgl10tLS3L59m+bmZgYNGiSa1KlTp7Jy5UpCQkI4dOgQTU1NqKurCzvPtLQ0VFVVKSoq4uDBgxgZGWFra4uioiLS0tJCOCkvLy+mVFlZWTQ1NdHa2oqPjw9tbW0CEJMkcL558+a/cux73LyOGzcOdXV1YmJiOHbsGB4eHixevJgNGzZ0G9VKbB7u3buHpqYmfn5+SEtLk5mZKZqCd+/ecevWLTQ1NcnLyyMzM5NevXrRu3dv3NzcRHOWmJhIVFQUOjo6ODo6CluM2bNn09jYyJo1awR38fz589jY2HDs2DGcnJy6mfN+TBUWFgqLFTs7O/78809yc3OFofnt27eZMWOGMJWXiCPs7Ozw9PQU0L5kLVVVVaSnp/P27Vs8PDxwc3NDSUlJ3FDLy8tFw52bm8v69etRU1NDTU2NqKgo3r17JzYtFxcXzM3NhU/i+/fvu43cPraePXuGlZUVCgoKPHv2jJs3b9K7d2/BT5XEwOXn52Nubo6CgoJAQrKyssjJyeH06dOCsxsYGCgSbZKTk/H19aWtrY2qqirBm83KyiIpKYnz589jZ2fH999/L8YMpaWlJCYm4unpiZGREUOHDiU9PV1sBv369eOff/7p0RrLysr49ttvef78OcrKylhaWtLc3Ex4eDhJSUlCeTlt2jSMjY1JTEzk3bt3tLS0UFFRQUVFBcnJyXR0dNDR0UF6ejo2NjZCOCRxydDS0kJJSQkpKSmsra1JSkoSQjaJKGbfvn1cunSJZcuWsWDBAqDL408y3ouJiWHAgAE9Wt9/WrdUV1eTnZ2NiooK1tbWuLi48PLlS1JTUxk8eDBTpkwRP5OUlMSDBw9oa2sTARJ1dXVixBMWFkZbWxuDBw/m4sWL3Lt3jz179gg3j9bWVqSlpamrqxNITm5uLrGxscyePZvBgwfz008/ERMTIxrpmzdvMmvWrB6tUTIqTUhI4MWLF7i7u1NVVcWrV6/w9PTkm2++EQEicnJyvH37lqKiIqysrGhvb+fKlSvcu3ePefPm4e3tzezZs5k8ebJolCSfU1lZGQ0NDaxcuZLg4GDOnz9PQ0MDn332GTo6OlRUVJCamio25by8PLHZxsfHc/DgQUaOHPmvcuMBevfuzZMnT5CSkiIrK4uOjg7U1NSorq7G0tJS7GPPnj3j5MmT+Pn5sWzZMiorK9m3b5/IHR89erQQXgLCz9PX1xdfX1/i4uJ4+vQpbW1tYuJRWVlJYWEhMTExPHr0iF69emFiYoK0tDQJCQmkp6fj4+ODnJzcv0LPL168yIABA5g0aRKTJk3i2bNn5OXlsWjRIvz9/YmJiek22ZFYJEl42pKEourqaiZMmICnpydFRUVERkaKvS82NpZ3795RVVVFZGQk6urqzJo1i8GDB9PR0YGLiwtubm4UFBRQXl6OoqIiDg4ObN68mc7OTvFuOzs7dxPEfkw9ePAAQDRnjY2NFBYWoqyszMOHD3n8+DFBQUGMGjWKV69eERwczLNnz8QES1tbm7KyMk6cOEFtbS1eXl5UVVXx8uVLamtrWb16tQjGSUtLY8qUKfTv3x+Azz//nFu3biEjI0NzczNVVVXU19djZWUlhG0NDQ1kZ2cLqlBjY2OPz0TJc8nKyhL7pImJCX379sXGxoaWlhZ2795NWVkZ8+fPF2echGL14Ug8KyuLXr16idF0ZmYmzc3NTJo0CUCIaCsrK8nIyODevXsYGhoKPv6ePXvEu2dubo6xsTEBAQEEBgYCXaPwnuoHJJ+LhJ6mqanJtGnTUFFR6QYQSWKLx44dy9SpU2lqauLOnTuicd2+fbvY37Oysti8eTOlpaV4e3vTv39/+vfvz5gxYwgJCaFXr14sXLiQ0tJSzp07x507d7C0tBTNq6RhlkzpJBacBQUF4nf1xA6strZWXGDMzMyEZaOqqiqWlpaUlpaKi/vPP/8s9o6AgAA8PT25cuUKtbW1QFeYUG1tLTk5Oairq3Pjxg2ioqI4efKkiI6FLnchbW1t2tvbyc7OFuLCgoICoqKi0NbWFlqUP/74Q0RIa2lpERIS8l/DmHrcvEqSWubNm0efPn26wcWnTp3izZs37N27Fx0dHTFGW7RoEdOnT+/6B2VlRXJVUlISioqKrF27lqlTp5KcnCxSidLT03n+/DlTp07F2NgYXV1d/Pz8mDBhQrf86fnz56Onp8eVK1fYu3cvKioqQt0G9FiR9/fff3Pq1Cl+/PFHxo0bx4IFCyguLsbBwUF4Wra1tbF27VomTZrE8uXLuXXrloi83bx5M15eXt14Knp6emRlZbF8+XJMTU3Zv38/9vb2dHZ28s0333D48GEUFRWxtLQkODiY9vZ2IX5qaGhAQUGB8vJyzM3NmTNnDs7Ozjx79oyIiIgeR6dCF/IqIyNDZWUlzs7O/PLLLwwaNEgEDty7dw8LCwsGDBggHCIkY6OIiAj++OMPnjx5gqqqquCLfv/99zg4OFBVVUVGRgZmZma8ffuWo0eP/o/Ixf8UV3h5eXWLbZTwe0+fPs3IkSMZN25cj5rXhw8fsm/fPnGwnDp1Cjk5OUxMTFi3bh23b9/m6NGjJCUlsXPnTiZOnMi4ceOIioqioaGB5uZmnjx5QlJSkkBoVFRUqK+vR15engcPHnDlyhWeP3+Ot7c3GhoaJCYm8u233/Lq1SsmT57MmjVrBJKrqqrKjBkzulFYBg0ahIWFBWPHjkVPTw9LS0tOnDjR42cpqR07dnDs2DH69OnDd999R//+/cV41tTUVNi9hIaG8v79e1asWIGuri6nT58mNjaWlStXChFNZmYmrq6uQh1+8eLFbi4fEkeFlpYWMSp0cHBAX19f0Gi2bduGlpYWNjY2xMfHd0vl6knV1dURFBTE8OHDsbOzQ0FBAWtrawwNDcVNXk5OTggpGhsbuXjxIhoaGt1oLJ6ennz55ZfdpgISZe2RI0dob29n69atIm/+1KlTImwkNzdXeFv379+f3bt38+jRI3bs2MGCBQtIT08nJCSE+fPnd3Na+W917do1goKC+PTTTykoKBAeiB0dHZSUlABdiMXgwYMZMmQI165dIysrC2VlZXR0dPj++++xs7OjvLxcXH7Wrl1Le3s7oaGhREREAF3orgSlPHnyJLt27SIjI0OMdFtaWsjIyBCI7ZIlS9DU1ERPT4+Wlha0tbXR19f/V83rypUrRZNZU1PDuXPnaG1tZevWrfTu3RtNTU0xbpVYtuXm5uLt7U1JSQmzZ8+moaFB+Is+f/6ckSNHsnHjRhwdHTl+/DhffPEFjY2N4jsqyUvv16+fuHjk5+eTm5uLsbFxN2vDOXPmMGHCBNTV1Xn27BlPnjzphkj9t7p06ZKwMYIuL+7Y2Fj++usvQRV48+YNO3bsoLm5GTMzM6ZOncrFixfJyMigpaWFsrIy9u/fj5KSEv7+/vj4+ODk5CRM+h88eEBcXBxWVlbi8gwIu6P79+/j6+tLVlaWSCqTlLKyMnp6euLC1t7ezrx584R3+MdUfn4+aWlpGBgY8NNPPwlRlGTq0d7ezosXL3j79q2wlkxMTGTNmjVYW1tTV1fH9u3buXr1KomJicyZM4c//vgD6EpDLC8vZ926dZSWlvLzzz8LQEhdXZ3CwkLOnz9PeHg4V65c6UZZU1ZWZsKECcyfP18kj6moqDB16lQuX7780esDBIKfmZlJeXk5zs7Owke+ra2N1tZWqqurGTRoENOnT0dOTo7Xr1+jq6vLr7/+ipOTU7dnc/PmTUJDQ9HU1BSTwG+//ZaQkBDxn/38/KipqWHZsmUMHjyY06dPs3jxYrZt28bAgQN58OABN27cwMnJifHjx/P+/Xs2bdqEn5+f8If92Dp9+jR37tzhhx9+wNvbm71797Jz5048PDwYNWoUnp6ewipPQv+0t7fn9u3b3Lp1CwUFBZYuXYqSkhL19fU0NDSgpqaGtrY279+/Jzw8HOjib0dGRjJjxgwWLFiAkpIS27dv58yZM2zcuJFFixahqalJZWUltbW1REdHU1BQwLVr1/Dx8WHs2LEsW7YMNTU18Tv/b9Xj5lWy+Xt6enbbqOvq6gQXRoIyjh49munTp/PFF19QXFzM27dvhZ0VdPHEmpqaUFFRwcTEBCkpKZ48eSL8IltaWrCwsMDb25u5c+dSWVmJvr4+6urqNDQ0CO+6iRMn0tjYSGpqKgEBAWzcuBEFBQXy8/N7zEOrq6sjPT2da9euoaWlRUJCAtbW1pibm7Np0yZUVFTEIW9mZsacOXN4//49TU1NmJmZ0bt3725jtqSkJObMmSMoE/Ly8iJx48qVK8jLyzN06FDa29txcnLCwMCAiIgIEhIShEpWT0+PvLw8CgsLefr0qVDoTpkyBRUVFTIyMnq0RgcHB9ra2gRKJ7mp1tTUkJiYiL6+Pn379hXPSYKAycnJkZ6ezr1797Czs2Pjxo08ePCACxcu4ObmxogRI+js7ERNTQ05OTkSEhLIz88nMDBQoEdPnjzB2dkZb29v6uvrOXfuHJaWlgQEBFBTU8OTJ0/o378/xsbGVFdXc/v27R7b13R2dtLZ2SmEdS9fviQpKYmNGzeycOFCvL29+frrrykpKaG2tpbOzk4SExPx9vZGWlqae/fu8eLFCyorK9HQ0BB0DT09PUxMTCgtLaW1tVUcNC9fviQ0NJQ7d+6IWNHW1lbq6+vJzc0V0ZYuLi5UVlby4sULFBUVGT58OJaWlmRlZfUYWX769CkDBgxARkaGly9f0tDQIER3UVFRWFhYiDSxqqoqYmJiSE5O5vTp06ioqLBr1y7U1NTYunUrycnJIvUuOzub2NhYAgMDsba2ZvXq1dja2ooktI6ODoG2fkgDUFdXR11dnba2Npqbm7s16tra2t1G7R9bkoPK0NAQQ0NDLCwskJaWxtjYmNbWVhobG4XAQxLUIGmExowZw/jx42lvb+fNmzeYmJh080WFLoRZ0kx5eHhw8+ZN9PT0WL9+PaGhoeTm5uLp6Ym6ujohISFIS0uLcSEgfue3335Lfn6+QIQ/tiQTDhsbG2bPnk1CQgIRERHo6emhr6+PhoYG9vb2Iq3P1dWVxMRE0aSpqKiwZMkSoIsi8/jxY6ZPn87OnTt5+PAhly5dQk1NjcGDB6OlpUVJSYmwo2prayMzMxPoer99fX1xdXXFzs4OfX19VFVV6d27N3V1dYIy8W9U3BLHDmtra9LS0sReVVJSgqamJiEhIVy9ehVra2tmz55Nfn4+UVFRqKioYGxsjIaGBqqqqigpKXH37l327t1Lv3798Pb2JiwsjKysLHx8fIiJiaG0tBTomoJJGlQ1NTVOnTrFixcvMDc3F24jcXFxFBYW4uvrKxpFiXVhcnLyR69P4iYgqQ8tjvT09LCwsCA+Pl5YfQUFBeHu7k5zczNZWVm0tLRgYGCAq6srqqqq2NvbC7GwpMLDw2lvbyc1NZVffvmFvn37CoTczc2N1NTUbiIsCeUjPz+fESNGYGhoSG5uLqqqqmhpaf0P+6f/VpWVldTU1Aj3kv+sjo4OWlpaaG1tpbOzU1CK5OXlsbCwoLm5mTdv3gBdTaKWlhaXL18WzXx1dTWbN28WExBJAEtLSwtycnLo6OgIZxRJGFBnZyfDhg1j7NixdHR0EBUVRV1dHa6urpiZmfW4eZVQ+lpbW5GVlaW9vZ2ysjJSU1PF+FqSgDhv3jyys7M5ceIEpqamTJ06FX19fZqamsQFWltbG39/f8FZv3btGt9//z0AP/30k7BXc3BwoHfv3vTu3ZuCggJqamrQ0dGhtbWVpKQkUlJS+OGHH/D19UVaWpro6GgeP34svk8fW1FRUYSEhNDe3s6ePXsEohwTE4OWlhaLFi3CysoKfX19EhMTMTIyon///uzatYv379+ze/du0cdduHCBlpYWhg0bhpKSEqdOnRJndHJyMvHx8SgpKQkgo6amBhkZGdE7Ojk5cenSJd6+fYuysjJqamo0NTVx+/ZtHBwcGDx4MD4+Pv//b17/b6WiosK6deuYO3eusOLZsGGDGFesW7eOS5cucfjwYWG9I3nhzp8/z/Tp0zE1NSU7O5vNmzfj6+vLnDlzeP36Nfn5+Xz22Wd0dnYSFxdHeXk5RkZG3XhSErNrT09PcdMPDQ0lODhYjKA+pvr168f06dOpqKhg5cqVxMbGEhAQQN++fenfvz8WFhZUVlZSWVlJeXk5SUlJ6Ojo4OLiQu/evSkvLxcJFJLDvLGxEW9vb86ePYuhoSFKSkps27aNR48e8cMPP7Bv3z6ePHkixlkKCgrY29vj7u6OkpKSsLeJi4tj69at5OXl8csvv2BnZ0dubm6PLWz+/PNPFi1ahL29PbW1tbx69YrU1FSam5vx8vIS4QqSysrK4vr16+Tl5RETE0NHRwd+fn5CyHHhwgW+++473r9/z/fffy82gpaWFvz9/fnss8/o168fqampBAcHY2RkJFTwGzduJCgoiICAAE6fPs2OHTvYv38/M2bMYPXq1Xz99dci3vRjy9fXlz/++ANTU1NiY2OF115ycjIVFRV4enpy5MgRgR4cPnyYK1eusGHDBgIDA3n27BlxcXG4uroiJSXFvn37CAkJwc7OjuPHj+Pn54e9vT3a2tpkZmbyxRdfkJCQwFdffcXEiRMxNDREXV2dzs5ODA0NUVZWRldXFwUFBbKysli1ahUmJib06dOHkpISZsyYwZs3b3pEwL9x4wbOzs6UlpZSVFTEunXr0NPT482bN2RmZlJUVCSmD8ePH6e+vh4jIyMKCwspKyujoKCAvn37oq2tTXV1NefPn+ePP/4QCTYS1bePjw/a2trU1NSQlZWFgYGB2JQ+LAnVQldXV/DB7e3txbv3nxZXH1PS0tKoqqpy7949SkpKmDp1qrBOMjY2ZuTIkcJjWML/bWpqYsOGDSI4YOnSpULpvWjRom6//9GjRxw/fpwDBw4wf/58Vq9eTVVVFX///Tc+Pj48evRIoINqamrk5+ejpqYmzOYlvDp7e3u+++47IiMjhT3Tx5SWlhaHDh1i+vTp+Pv7M3v2bPT19QWKLScnh6urazehjb29veCSxcXF4ebmhqKiIiEhIezevZu6ujqWLl3K8OHDMTY2xtDQEG1tbXJycli6dKlAfgwMDIQ7goWFBfv27ROOH5KytLQUI/0PU+l6Unv27MHCwoLp06djbW3NhAkTUFVVFY4xkjSpmpoarKysyM/PJzExkVevXvHZZ59x+fJl0fxdvnyZ58+f8/z5cy5fvoyPjw/Lli3j66+/Zv/+/SKBra2tjfr6etTU1Kivr+fu3bsUFRWxbNkyevfuzdOnT1myZAn19fX8+OOPeHh4cO/ePXR0dFi6dKkQ+X1MSehh/1n9+/dHW1tbTCbz8/ORkpISnHgPDw9aW1tFeMPff/9NQ0MDpqamNDc3U1NTg7a2NjIyMvTv35979+5x8OBBrly5wsqVK9myZYv4twYMGMCNGzcEFeHhw4d8//33qKio4OHhgYqKCleuXMHR0ZFRo0b1WBxqZmaGjo5Ot6nFhyUjI0O/fv0wNjbG29tbuLvMmTOHhIQEDh06xKpVq/jkk0/EZXrmzJnU1NTw999/k5uby9y5c9HS0mLLli20tbXxzz//COBpzJgxTJ06lbdv35KSkoKamhre3t6iyb1z5w4NDQ0MHjy4m0Dt35S1tXW3ZC9JeEVNTQ2PHz8W4UmamppERERw8+ZNoqKi8PLyok+fPnh6emJsbMzEiRPx8PAQlyjJhWjv3r2sX7+emTNnEhMTQ0hIiLgczp07V/RLCQkJYmIp2eO9vLz45ptvWL9+Pbdu3erReSH5Ht6/f5/z58/z+eef4+DgwK5du4R/O3QBDT/++COOjo60t7dz4cIFkpOTxffWwMAANzc3Ojs7xe90dnZGTU2N2tpaTp48Kf5eSerfhg0bWL58ebdzQ0NDg6SkJJHCeu/ePS5dusTixYu7hVX8v6rHzauEX1ZeXi5U2dra2khJSWFhYYGmpiZycnLIycmJB1FcXExlZSW9evVCS0uLtLQ0/vzzT+Tl5fnll1+Ij4/n77//ZuPGjUydOpXs7GxaW1tpbm6mpaWFxMRETp06hbOzMyYmJsJnTmLlI9kYfH19kZOT4969e8IzcNq0aTx8+PCj16esrExRURHt7e14eXlhZWWFjY0N7969Q0FBgdu3b/Ps2TMGDx7MokWLcHZ25vHjx3h4eAi7jba2NoHEWltbEx4ejo6OjtjkYmJikJWVxdfXl+joaMzMzBg8eDBVVVU8ffoUBQUFxo8fj5ycHI8ePeLly5esX7+e3r17o6CgwOvXrykoKOgmpuhJ6erqCn5Pc3MzBw8eJD09nXHjxlFTU0NsbKzwp4WuFLNvv/1WNCCampqiQTExMWHIkCGEhoZy//591qxZI/6dMWPGkJWVJRKebG1tWb9+vaAM6OrqEhQUhJeXF+/evePEiRMUFxeLv01eXh45OTkRbPGxlZyc3C3TftiwYSJKUkFBAWlp6W68qPr6et69e8eePXt4//49srKyLFmyBA8PDwwNDXn8+LGwLpoxYwbff/+9sIwyNjamf//+DB48mMWLFwuEsbq6Gnl5eTQ1Nbv5lero6ODp6YmlpSXy8vKEhoYKVKInpaKiIi4wksvGP//8Q2xsrKB7HD16lLt372Jra8vixYuprKwkLS2Nuro6dHV1kZeXp6KiAjU1NQICAmhsbKS5uZnhw4cTGBgobN3Cw8N59OgRo0aNYtq0aeTl5fHzzz/T0dEhOMkSMYiCggI1NTXk5eUJqoIERfk3VVdXJ8R7Ojo6JCUlkZ2d3c0+SxIt2tDQwOeff46xsTGpqan07t0bb29vDh8+LMRGcXFx5OTkMHbsWObOnUtcXJzgc8+YMYP79++zfft2PDw8mDhxohCXWFlZCcQHuhCkW7duUVlZSWBgIAEBAQQEBPSIh3bz5k1u3rwpvkOS709FRQW+vr4YGxvz9OlTYmNjmTx5MmZmZgIxaWxspK6ujpSUFMzNzbGzs2PixIndjP7z8/M5fvw4c+bMwdPTk1WrVhEdHU1RURFjxoxh5MiRPH78mNzcXDIyMtDU1CQxMZGsrCxsbW0ZO3asAAKkpaX/FXouiQauqKjAzs5OcDGhC60fO3YsFRUV4uAvKSkRtBCJEMjU1FRYtkkEIElJSXz55ZeYmJjw4MED2tvbCQgI4MmTJ5SXl1NQUIChoSGamprEx8eLUTB08VSTkpKwsbERe5qVlRUGBgY91hBUV1eL7Pe2tjYyMjJobGykd+/e3cSEH3qjSvirycnJvH//vtuUq729XbwrGRkZNDQ08PbtWyEENDQ0xM/PT5yt1dXVQvApAXOsrKyE+NfMzIzi4mIxES0rK+sx/UNDQ0PYN0msHTMyMjh79iz9+vVj4cKFfPPNN0RFRXWzxkxLSyMqKorVq1dz//59cZmOjY3FwcEBKSkpMRXZu3eviH83MzNDT0+P58+f097eTmlpKaqqqlhZWXH48GHs7OzEWXv//n0UFRW7xUL31EYKuiKVbWxsaGtrE2i4lpaWaGTV1dWZMGEChoaG6Ovr4+bmxuTJk9m+fTshISGCvywJD5gzZ45oXK9fv87r168ZOnQodXV1bNmyhbt371JZWcmOHTv4/PPPMTIyIjs7m7S0NIyNjcnLy6NPnz7Y2toydepUOjs7qaioEElV/w2V/M8aNGgQa9asISMjA1tbW6EZ0tDQ4NGjR2zfvp0+ffowYsQIce4/ffpU+NafPn0afX19IYSHLkQ+NzcXZ2dnfH19qa2txdLSkri4OKSkpHj48CEjRowQQvwLFy5QV1fHwoULheDZ2dm5WyIdIEJR/hs3u8fNq2Tz1tHRQUdHp5v9gsTmwMHBQRwupaWlZGVlMXbsWBFJeOTIEXbv3s28efNYs2YNWVlZhIWFkZOTg4WFBQcPHuTWrVvExMSgr69PQkICv/76K1OmTBG3a0kKhZKSEvr6+pSUlNDa2kp5eTlHjx7l+vXrrFixgsWLF/eoeY2MjCQtLQ1ra2tmzpzJ8OHDga6G88yZMxw5coSmpiZqamqYO3cujo6OuLq6dtucqqurkZOTE+rs0NBQIiMjGTVqFDdv3uTSpUt8/fXXWFtb4+fnx2+//cbjx49pa2sjNDQUR0dHGhoaKCgo4NSpU6SkpDB48GA8PDxobm4WKnKJmranNWjQICGuq6qqIjw8HAUFBUaNGoWMjAyXLl3C19dXKGGbmppQVVWlpqYGTU1N/P39aW9vF9xmFxcXFBQUsLOzEzZYra2tuLq6YmxszLJlyzhx4gR79+5FV1eX169fixvc6dOnhQAMYPr06Tg6OlJeXs7r168JCAhATU1N8Pc+pk6cOIGjoyMqKioiH9zDw4NJkyahoqIiRqYGBgaoq6szcOBA7ty5Q1hYGPn5+SxbtoxZs2ZhbW2NtLQ0gwcPplevXmzatImIiAgRh1tYWEh4eDgzZszAxMREHIStra3cvXuXkpISYXfW0tKCrKwsdXV1YiSvqKiIhYUFixcvZuLEiQQHB3/0GrW0tLhw4YK43f/444989dVXAOLvDQ0N5d69e6xYsUJwuoYNG0ZycjLl5eXk5ubS2dnJ7NmzhQWRxGtPIoS6fPkyX3zxhYj+CwgIICEhgUuXLtHY2IiRkZEQaOjo6AgvQWNjY8H1am1t/VeNT1VVFVVVVVhYWIixlKamJsOGDRPovrKyMtnZ2YSGhvLpp5+ycuVKdu3axbp16zh8+DCTJ0/m1KlTwtIsLCyMW7duoaenR9++fTlw4ABnz54lNDSUuXPnioZ8wIAB3fx7PT09u7mF5Ofn8+bNm26iDonP78eWRKwq2Svl5eVxdnYWNla9evXixo0bvH37VjQjks9FVVW1GzVDYnEjEVIGBQVRVFTEoUOHyM/P5+LFi4wePZpt27aJAILp06fTr18/1q1bx4oVKzA0NMTc3JyGhgbMzMwwNDTsZh3V00skdGWqa2pqUl1dTWJiIoaGhqiqqtLU1IS7u3s3/QJ0JST16tULWVlZnj17Rnx8PF5eXgwePJh58+Zx+/ZtampqGDt2LFOmTOHOnTtMmjQJS0tLPv/8c4YOHUpeXh6xsbH06tWLrKwszMzM0NDQoLCwECMjI+E/amFhgY2NjYj4/tCG8GNLYgUJ/yd9ScJzh67zMjU1lc7OTkxNTens7OSff/7hzZs3dHR0ICsrS0lJCdnZ2cjJyeHm5oaamhqqqqq0tLRw+fJldu7cSV1dHQYGBqxfv154kUuoOomJiYSFheHj44OmpiZDhw7F399fNLN5eXnIyMgQExNDW1ubENT0pNrb29m2bRsFBQVcuHABTU1Nbt68SWFhIQsXLhT7/4fUkoCAAF69esWbN29YsGABn3zyCY8ePaK8vJw//viDxsZG3N3dsbGx4cWLFxQXFxMcHIyHhwe9e/fGxsaGsLAwoTx//Pgx58+fZ+TIkcJj/tWrV6KRha5p67+JTM/OzsbHx4eysjKys7ORkZHBwMBA6BakpaW7ATMSYW/v3r3JysrC2dmZsrIynjx50s39ISwsjE2bNtHY2MiAAQM4e/YsOTk5TJo0iby8PP744w+0tLTYvXs3cXFxnDt3jsmTJ9OvXz927twpOMQvXrwgPz8ff39/5s6dy5gxY9i6detHr8/Hx0dM1ADhyDFu3DgiIyP55ptvmDdvngBlrl69yp49e0hNTUVJSYmEhAQePnyIg4ODeJ8laLK1tbXYG7W1tZGXl+fFixfCyu3TTz+lsbGRmJgYysvLCQgIwNvbm4ULF9KrVy/h4CShCs2cOZPZs2f/VyDg/zNt4MPxsoKCgkhQkJS8vDwyMjKCN9ra2srIkSPZv38/T58+Ze3ataxYsYJPP/2Uzs5Onj59SlVVFbq6ugQGBpKUlERzczO9evXCyMhIeOFJPAoVFBTEzbCkpERYbyQlJREcHExra2uPCPi5ubkiYvHmzZuYmpri4OCAnp4eAwcORFFRkdu3bxMbG8uECROYPHkyn3zyCbW1tSxbtoy3b98ybNgwtm7dioyMDL169cLU1JR3796xZs0ajh49iqysLKtXr0ZFRQUHBwcuXLjAtm3bmDhxIkFBQSKBSeJysGTJEvz8/GhoaKCurk78nL6+fo/VsdBl4XH9+nUWLVoknpempqY4qKKjowkODiYlJQUPDw/69OnDjh07uHXrFtra2sycOZPGxkZBFdDT02P69OniBinhdY4dO1agZe/evcPe3p62tjbu3LnDmDFjBJcvLi6Oy5cvExQUxMqVK4mOjub8+fP07duXgIAAEZH3sVVVVUVJSQm9evWipaWFnJwcFBUVxUWrvr5eKI13796NkpKSEBS1tLQIBMHIyEgcQvPmzUNbW5t3796xaNEiZGRkOHPmDJcvX+b06dOYmJiIZDItLS3u3r3LqVOnuHXrFn379kVWVlY05X/99RcWFhZYWVkxcuRIsWH0pHlNTk5m0aJFQqUrsYQzMDBATk4OaWlpNm/eLPjGkrp+/Tq3bt1i69atdHZ2snbtWiZMmCD+exkZGdLS0ggNDeXBgwe8fPlS2GCFhISwd+9ehg8fztmzZykrK8Pa2hoNDQ2ys7OJiYnBwcEBe3t7ZGVlqa6uZtu2bUhJSREaGsqZM2c+en2AsIe7cuWKuAB7eHgIk+uKigqUlZXx8/PDwMBAqLB9fHy4e/cun376KUpKSri6uiIjI8OFCxeQl5fHyMiI3bt3ExAQwPTp09mwYQOvX79m//79xMXF8cknnzBu3DixvygqKjJhwgSMjY2F36mMjAxz5szB0tISGRkZbty4wfHjx3vEQxs8eDAjR47s1oTa2trS0tKCnp4eUlJSBAYGYmRkRHp6OkpKSlhaWv6P5LEPKzw8nNTUVIH+yMnJcf36dZYvX46TkxPPnz8H4Ny5c8JbWmLsbmRkxPz584GuQ/fGjRvIyMjg6elJXl6e+NmelLa2NlpaWujo6HDhwgW++uorpKSkxL75Yb169Yr4+HghEmttbe0WUDJixAhu3brFsWPHaGlp4dixY5SXl2NmZibcTHbv3k1FRQVLlixh/vz59O7dm88++ww7OztKSkpoampi1apVhISEEBISwvr16wEE/aunaXCS0aikTE1NuynspaSksLKyorS0lNLSUkJDQ7l8+bJIjJw1axZPnjxh7969DBw4UNAJkpOTUVZWxtbWFl9fX96+fUuvXr2orq5m3759vH//npkzZ7J8+XKRPPXh96K1tRUpKSlhYaWvr0///v0ZMWIEgwcP7pH9YHx8PD/++CPnz58XXu0eHh7C6QDg7du3lJeXi70MYOLEiRgYGHD//n3i4+MJDw+noqKCGTNmYGBgQE5ODjU1NURFRbFr1y5mzZrF5MmTBcdU4nss8f/V19dn8eLFeHp6Iisri6urK7m5ubx+/Zo//viD1NRU+vXrx+TJk3uMTEpAF11dXZSUlLrRnP43S8qwsDCuXr3KwoUL8fLy4sGDB7x48YLRo0cLlXxHRwfZ2dlYWFgQExNDWFgYjo6OfPXVVwQGBnLw4EGePXtGYmIira2tjB07ltbWVuzs7MSl7syZM1y6dInhw4czePBg3r59i7S0dI8nrv+5Bon9JnSJKhsbGzE0NCQmJoa8vDzOnTtHRkYGEydOZMqUKejp6eHu7o6mpib79u3j7NmzLFq0qFuDKTnbzp07R3V1NVVVVVy/fp3c3Fw2bNjApk2bSE9Pp6WlherqahwdHVFQUEBeXp558+aRkJDAjRs3PjryvsfNq7y8PO3t7aSlpVFcXIyuri6Ojo5ISUmJfGlJJnl9fT11dXUi17ajo0NEZNrb29Pc3MymTZsoLCzk5MmTZGRk8O233xIfH8+ePXv49NNP0dPTQ0ZGBicnJwHDS9R/Ej5odna2sIDQ19dnzZo1DBo0iIMHD5Kamir4Gh9T9vb2TJs2DUVFRS5evEhhYSFtbW3cvn2bwMBAJk6cyNKlSxkyZAhRUVEMHz6cIUOGkJeXx3fffUdUVBQmJiYkJiYKeyYjIyPk5eV5+/at+PufP38ujMTb29sFqiFJQyksLBTKV8mG8OTJE2JiYrC2thbI37Vr13r6CCksLCQnJ4eCggIGDhzIkSNHhIH40KFDcXJy4tdff+X48eO4u7szffp0tLW1GTt2LM7OzmJsUFxczE8//YSKigpjx47F3NycjIwMXr16hbq6Oq9evRJjiqamJk6dOkVeXh5tbW2YmZkRERGBj48PTU1Ngncj8Ts0MTER6/5/Hdb/W02bNk1QNOrr6wkLCwPg008/xd7eXjgttLe309DQQFpaGjExMUhLS+Ph4UF1dTXv37/H09MTOTk5cnJysLGxYcKECaLRS0pK4sqVK2RkZJCXl4ebmxtNTU3dnrG2trYQZTg6OjJ06FCkpKQoKCigublZID2vXr3qcTqTnp4eCxcuBLoOFwkvum/fvgL98PT0xNnZmYyMDMLCwgRKbmJiImxT/Pz8xO+QfAY1NTXcuXNHNNMODg5YWlpiZGSEuro6HR0d+Pr6dpuuHDp0iJs3bzJ06FC++eYb9PX1+f777/nll1+YNm0affv27XHzCl1G2kVFRUIE6uHhgZycHO/fvycpKYmBAwfi5uYm9oa8vDwUFRXx9fXl1KlTaGlpMW/ePJSVlcnPz2fIkCFYW1vzyy+/cPbsWTFitbCwYMyYMdTX13P//n3hm1tUVISenp5Arj/0LaysrBSC08bGRtLS0nrUvAYGBuLu7i7GqS0tLejq6oqM8/b2duzs7LC1tRWNmiRRSILWFRUVoaysjL+/P01NTZiampKRkcHTp0+xt7dn+vTphIWFdVOXu7i4CIuvlStXMnXqVHR1dXF1dRX2dZJUKok4sbOz818FFaSnp6OnpydS9VJTU6mrqxOfdWdnpwjKyMzMJDc3F1lZWfT19YWVV11dnUihknjh/vrrr1y+fJmvvvqKf/75h++//56zZ8/i5uaGlZUViYmJQBcyP3jwYJycnIiLiyM2NlaIDv38/ETjmZmZSVRUVI/CUABu376Nu7s7VlZWwvRdUhkZGZSUlIh3Jy8vj6qqKkxNTUVTLfnfhYSEkJqaypAhQ0T6UklJCb6+vpw/f56nT59y8OBBduzYIX6/xPkHuka4SUlJGBsbY2BgQElJCbKyspiZmQnQIyAg4F+hruXl5cjKygqR2O3bt+nXr58QUba3t5Oens6bN2/IysrC29sbS0tLPDw8sLOzw8jIiL/++osXL16gr6+PmpoacXFxtLe3M3/+fJ48eSK8bQcPHkxrayuRkZGUlZXh6Ogo3j1/f3/8/f1JT08XSZtjxowhLS2NU6dOATB16lT69u0rJnkfW5LJko6ODubm5mhpaQmPb2VlZTQ0NKipqREj9ZqaGpG8qaOjw/3798nJyWHz5s0YGBjw7t07FBUVcXNzw8fHR1iCubu788knnwg7t/z8fPr06SPccD6k1UjWFRsby6RJk/Dw8CA+Pl5YOvakKisriYuLE7abffv2JTk5mZSUFMaNG8fPP/9MZGQkV69exc7OjgEDBmBgYMCKFStwdXUVk0Og2/kpqaioKO7cucPVq1fJzMwUvHyJv6xEwNXR0cGVK1dwc3MTHv7QdWlfvXo1SUlJH50A96+QVykpKQ4cOMCZM2eYPHky+/btE5YJ9+/fx8vLCxsbG96/f4+GhgYTJ04UL/WHL3ffvn0xMDDg0qVLpKSkYGpqSnx8PGVlZYSFhTFmzBih5vuwJAeUBE7fu3cvY8eO7Qbre3h4cOLECfLy8kRO8seUZFTu7e2Nh4cHFhYW7N27ly+//JL29nZcXFzQ09MjICAARUVF4etmamrK4cOHqa+vp7m5mVevXnHt2jUUFBQEl2rYsGFUV1eTk5NDXFwc3t7eWFtbs3btWnR1dbtRD1pbW/nnn39ITk7m6tWruLm5ERkZSV1dHVZWVjQ2NnLs2DEOHDggFMc9WWPfvn0FP8nPz4+qqiqWLVuGtbU1Y8aMEV/M2NhYYmNj0dTUZPPmzcJEvb29neXLlxMQEEBnZyd2dnYkJyczZswYvLy8+OWXXzh58iSHDx9m9uzZ+Pr6iqx4X19fmpubOXbsmLgtW1pacvHiRZ4/f87ixYvFCOfD1J2PrQ+RxJcvX5KQkICtra0gjMvJybFp0ybh5SvhnEp4S56engwZMgQLCwv++OMP/vnnH4KCglizZg1tbW0cPnyYw4cPCxGRpFF2cHBg/fr1hIeHs3TpUr799ltiYmLEuMfLy0tw2nR1dbG1tRVJJk1NTT0i4H/4v83KyqKwsJDMzEzk5OSYNWsWnZ2dhIaGkpKSgre3NzIyMuzfv5/Hjx/j6OjI1q1bBdc4NjaWxMREIiIiUFFRoW/fvjg6Ogo1v6+vL0FBQfj7+wNdatmdO3eyePFiJk+ezJs3b4RdXEVFBdnZ2dTW1lJVVYWvry/Z2dnMnTu3xyEF0HUJmDZtGgEBAd0EI4mJiVy5cgUdHR2B4Ofm5hIeHk5WVhaqqqps3rxZpPxJbL1MTU1pb29HTk6O5ORk2traqKmpISEhAU1NTdrb27uNHQ0NDQViX1lZSVFREY6OjuTn5/PFF1+gqKjIsWPHmD59OpaWlj1q0OXl5YmNjUVZWRkXF5duASTl5eWkpaXRt29fpKSkhPhT8rdHREQIoSd0JR+uWbOGFStWoK6uTmxsLAcOHEBFRaWbVV1gYCDfffcdf/31FydPnhQI7dixYwkLC+Px48c4OTmJaGFJhK2EP3n37t0ePb/W1laePn2Kp6dnN8TeyckJbW1t4U6hpqbG8OHD8fb2Rl5eHktLS5KTkzl69CgGBgYMHDiQt2/fsmXLFhEdLSkfHx/GjBlDcHAwS5YsEYr0HTt2MGXKFBFZ7ubmxpEjR9i2bRszZ87k9OnT4n0cNWoUX375JevXr/8fiPD/q16/fs3jx4+ZNWsWgwYNEiIfgLNnz3LgwAHWrFnDN998g4yMDFZWVjg6OnYTeUmmZ2lpaZw+fZrVq1dTV1fHvn37mDJlCsOHDycoKIijR4+Kn5k/fz5jxowRAszjx49z5swZRo0axa+//trt97e3tyMtLf2/Ci0/ptzc3Dh8+DAKCgpERESwY8cO1q5di4qKCjt37mTVqlVMnTqV6Oholi1bRt++fTly5Ag6Ojrk5uZSWFjIgAEDGDBggHCXUFdXZ/Hixfz000+Cp11cXMz169cpLS2luLgYOTm5/9VpJjw8nJ9//pnFixezcuVKVq1ahbKyMjU1Nd0aop7U7du3+fPPPzE0NOSbb77h008/paqqiufPn6Orq8vw4cPR0tKisbERJSUlJk2ahJubG9evX2fJkiVkZmbi4eFBVFSU8F7+/fffcXBwICYmBgUFBWbOnEliYiKLFi3it99+w8HBgaVLl/6v4MzDhw85fPgwnp6eHDhwAFtbWzo7O3FxccHBwYGampoeOdQEBwezYcMGSktLmTp1KgEBAYSGhjJjxgx27NjBF198QVlZGQkJCcyaNQsHBwfhbQ1d1l7Nzc389NNPrFmzhr59+wrfZB0dHeLj4zlw4ACWlpasXLmS5ORk2tvbWbZsmeiprl69KgSa69atE89Kkr46dOhQgoODPxqs+lfNqwShevPmDUZGRmLTzczMJDExUfhWGhgYiGzj58+fExMTQ79+/VBTU+POnTu8fv2aPn36UFVVRVFREU+ePKGpqQklJSVCQkIoKChgzJgxeHh4CISss7MTT09PgRiVlZVhZGSEtbU1nZ2dPHz4kOfPn2Nvb4+zs3OPFbKShk4Cy//xxx/cu3ePwMBAmpub+frrr4mKiqJfv3588803NDY28ttvv9G/f/9uat1bt24RHx9PcXExNjY2eHp64urqSl5eHtXV1cTExBAXF8eCBQu6PayysjLS09OJi4tj4MCBaGlpERERIZAEV1dXAgICyM7ORkpK6l+lwkhSZ2JiYnjw4AEyMjIUFxfj4uJCYmIiJ0+eFLnSEquhmpoaKioqCAkJ4enTp5SUlDB9+nQmTpyIvLy88MbU0dHBxMSEkJAQ7ty5Q1FREdnZ2fj7+7Nz504hmJFECGZnZ/PmzRt69epFe3u7SF25fv06Z8+eJTAw8L+aFf9npaSkcPfuXWpqakhJSUFRURFjY2PRhCgoKHT73ExNTXFzcyMuLo68vDxmzZol7GSsrKxQV1envb2d1tZWKioqiI+PF3zWVatWoampSWtrK01NTcJk28TEBBsbGwwMDEhNTcXR0ZHk5GTBL5a4J2hqatKvX78eJ6YYGhpSUlIisrUlaGtKSgoFBQUizScnJ4fZs2cjIyPD9u3bycrKIisri8WLF5Odnc3WrVt58+YNFhYW5Ofni6bzk08+Yfz48UJh26tXLwYMGEBZWRmRkZE8f/5c+FHm5ubi5OSEp6cntra2yMnJUVxcjLu7O9bW1mzfvp1z5871OMYYEOjRfyKaNjY2DBkyRAjvamtraWpqwtbWlsbGRtLT01FTU0NRUVHY9khKkiLj7+9PYWGhQOQkdIecnBxOnDghqDSStLWsrCyBClhbW2NtbU12djalpaVoa2vj6+vbo+a1V69e3RB3aWlpEYl8/PhxsrKyWLBgAQEBASK0RXL519LSwsvLi8zMTFpaWgQaEhERQVZWlqCv5OXliXUYGxtz5MgRjI2Nyc3N5cCBA9y8eZNPP/0ULS0tEhMT+eOPP1i0aBFbtmzpdlkoKir6V2mF7u7uGBsbIyMjg6KiIt7e3t3+ewkFTFIfju1lZGREEIqcnBxPnz7lwYMHuLu7M2/ePPbt28fVq1ext7cXTbyPjw+6urq8ffuWp0+fYmNjIyhA0DVZGzBgAPr6+pSXl6OkpCT2X319/R7TBpycnEhNTRUC49LSUhHlLaGcaWhoCLpbU1MTubm5QNd3SFZWlj59+rBs2TJhq6eurk6vXr0wMDDgyZMn/Pjjj8jIyGBkZMSqVavQ1tYWegVlZWVcXV3x8vLi6dOnODs7C/HX48ePsbOzw9XVlUmTJpGcnMyZM2eEuv1jq6amhnfv3jF27Fj8/f0ZPXo04eHhaGtr09LSIpqPqVOnUlZWhpeXl7ADi46ORklJCT8/PxobGwkNDaWoqIhXr14xYsQIXFxchHamqqpKWElKLjUyMjK0traK2GZdXV2ysrJ49+4d9+/fZ+XKlUhJSbFw4UIqKyt59OhRjxMZoQtQqaurE84lEtsrXV3dbm5FNTU1hIeHM2zYMGF3lZmZiaamJkOGDOH69evCDz4uLo7a2loSEhLEpbOhoYGIiAh++ukn+vbtK85Wd3d3HB0dcXJyEs4pJiYmBAUFibNIYp3l7e0tpjUfW+np6SKV78qVK2zZsoXJkycTEREhxGMaGhp4enoSHx9Pr169RON67tw50tLSMDc3Jzw8HGVlZRITE4UwHboAoba2NgoLCyksLERHR4dhw4aJxlUiRrO1tcXV1ZXGxkauX78uzuGQkBDk5eUZO3ascJD4b/WvOa8LFy5kzpw5SEtLIycnR0pKCpWVlWhra2NsbIytrS2ampriFrp//35hkmtoaMju3bspKipi8uTJrFq1itraWi5evMjTp09pbGyksbGRoqIi4uPj8fHxEUr/9vZ2EW/X2NiIk5MTQUFBqKioUFxczMmTJ7l69apwQbC1te0RPyQtLU2MjlJTU/n666/p1asXf//9N3FxcQwbNgxAhAM8efKEo0ePUlVV1Y28L/Gfk+Rtu7q68vfff5Oenk5FRQXFxcVcvXqVgICAbs2rjIwMW7ZsISEhgWPHjvH7779z6tQp5s+fj6qqKnv27MHW1pazZ88yaNAgduzYIXhbPani4mJu3brFN998I57n9evX2bdvH19++SWzZs3i66+/prS0lDdv3tDW1kZCQgLHjx8XCHB0dDTJycloaGjw+++/Y2pqyrVr10hOTiYoKIi6ujrc3d159uwZpqam7N69G2NjY9asWUNFRQUWFhYkJyfz+PFjoMtWZ9q0aVy9epV169bR2dkpImJ7Ug8fPuS7775DT0+Pfv36iU1SgvxJmlgJf0tWVhZnZ2fi4uKIj4/vxndyd3dn9+7daGlpCSRgyZIl9OvXjz59+uDs7ExMTAxpaWliTNTU1CQO5MLCQhoaGnjz5g0nTpzg0aNHDB8+XCg+x4wZw4gRI2hsbGTz5s0fvcbbt28zcuRIFBQUcHJyon///mLTlCCHU6ZMEf6OhYWFuLq6EhMTQ3FxMTNmzBACMuhqeiUCj/fv36OsrIyHhwfv378nNTUVHR0dEhMTCQ8Pp7q6msDAQBFzq66uzhdffIG7uzuKioq0tbXR0NAgJglRUVH/yuD+P6u5uRkpKSnk5eUZOXIkI0aMQFZWlvr6evLz82lra8PExARTU1NOnz7Ntm3bcHV15cKFCxgbG1NXVydiR6Hr+RsYGCAvL096erqIgTY3N+fixYs8e/aM3377jblz5/Lu3TvKysoErQdg9+7ddHR0/I9o048tf3///2FBVVpaSnBwMP/8849IC/Ly8sLV1ZXCwkIiIiLQ19fHz88PPz8/Nm/eTFVVFSoqKrx8+ZL9+/fT1tbGnj178Pb2prOzk+DgYEpKSkQDC13ItSQK+ejRo4wfP16M7v+3JvXJkyfcuHHj/2qX9H8rBQWF/2uzJGl6JCVJ5dPR0UFKSor29nbU1NQwMDAQ+esAa9asISgoiMePHxMTE8OePXuIi4vD0NCQ33//HW1tbQYPHsy9e/eIiIjg4sWLGBoa0tDQwKBBgxg6dCi//vorW7ZsEUghdL0vEjeRj63PPvtMXGwlB3dDQwN2dnYsWLBA2EJKEsquXLlCcHAwmzdvFmlK9vb27N27l87OThGr6eDgwLBhw7h06RJfffUVZmZmLFu2jA0bNpCWlsbhw4eRk5NjzJgx4m8fPXq0UHZv2bKFJ0+esGnTJiZOnMigQYN4+vQpt2/fFtPCj63Tp0+zfft2Pv/8c3bu3MmaNWuYOHEiMjIy4l2CrmnnkSNHBJgl8Uh1c3NDWVmZkJAQ4bJjaWlJVFQUYWFhpKSkoKGhwSeffCLWk5WVRV5eHlZWVkhLS5OWlkZpaSn+/v6CE/thA9fZ2UlpaSlnzpzh/v37grv9sTVr1iyRACiZ0kjEuh+eP01NTcTHx6OnpycmPgCrV6/GxcWFq1evAgiaYGVlJb6+vrx+/Zp//vmH3r1788knn3Dp0iV++eUXtLW1KSoqQkVFhRMnTuDn50dubi5eXl5MmzaNkpISMjMzRYzsjz/+yMyZM9m2bVuP1qesrMyNGzf49ttvOX78uKBh/fzzz0ybNo3du3dz7tw5Jk6cyE8//URZWRlLly7l7t27hIeHs3r1avz9/QkODuazzz6joKCAffv2iWdgY2PDp59+yt9//83ly5cZO3as6KMKCwt59+4dnp6erF27FgUFBa5evUpwcDCmpqY4OTnx8OFDsrKyRKjDmTNn/ldP4Q+rx81rXFwc165dw9/fXwgNmpubKSgoEAbD9vb2qKmpkZubi66uLsrKynh6elJXV4e6ujqqqqqMHz8eGRkZ7O3tef78OZ2dnYwaNYrW1lZCQ0Px9fVl/vz5FBUVUVVVhbGxsRhD5OXlER8fj6mpabeEKUljISMjQ3BwMAoKCkycOLFHVkTr1q0T/Atzc3O+/fZbqqqqKCwsRE5OjnXr1ol830OHDgFdYh6JIMTW1lagC/b29hgYGAghlLGxMY2NjeKwevnyJRs3buSzzz4TXDNJDrnEDHjChAl89tlnKCsrIyUlxciRI8nOzubFixcYGRn9KxU3dDXJSkpK2NjY0NjYSFBQEAoKCqLhlwiBHj16RFJSEuPGjaOoqAh5eXlGjx6NgYEBtbW15OfnC5GFn58fJiYmvH//XgigDA0NSU5O5vz58xgYGNDU1ERlZSXFxcVUVVXRp08flJWVKSsrIz8/n6dPn3L58mVkZWWZNm1aj0Z4knJ1dWXTpk1oampiaWmJrKwslpaW4mVob2/n7NmzhIeH09bWhpaWFpWVlUCX2KulpYXQ0FB+/vlnhg0b1i0WVU5OTig3oYtTW1NTQ0dHBwYGBixdupSJEydia2srYj4l/ERzc3MWL15M//79cXR0pKmpifT0dGpra4Vg4GPr5cuXIhFFW1ubWbNmoaqqyv3790UzJbE027VrFwUFBejp6TFmzBhOnjwpbszTp08nIyOD169f09zcLAQj7969Izo6GmdnZ3bs2IGLiwvnzp0THpGWlpY8evQINTU15s6dKxqA2NhYgoODqampYdy4cfj7+7No0SIGDx7c40z1O3fu8ObNG/z8/ARfWCLmlCAy0EVFkpeX5+HDh9TX17N48WJ8fX2pqqoiNjYWbW1tSkpK+Oabbxg3bpxQJycnJ9PS0oKbmxsBAQEcOHCA5uZmjI2NaW9vp76+XtBnLly4ICKVo6KiOHfuHOvWreuGCPe0QZeEfzQ1NQlTezU1NQYMGICjoyNtbW3k5uZSUFCAq6sr0dHRfPXVVyxYsECILGRkZARCEhERwciRI3F0dBR7kJSUFMOHD6e0tBQ1NTWeP38uoh4PHDiAgYEBGhoaFBQU4OXlxRdffIGKigoPHz7E29sbZWVlUlJSaGhoICAggNevX/dojb/++itxcXFs3rwZOzs7Nm3aRGRkJN9++y2DBg0iJyeHo0ePUltby6xZs+jduzfNzc0oKipibm7OgQMHRJpar169WLJkCYMGDUJTU5NRo0Zhb28vEvri4uLEtGbz5s2EhYUJ1C4nJwddXV0KCgp4//49DQ0N4rIlqX9jOygrK4usrCwKCgpUVFSQlZWFioqK2HckPOG2tjbS0tK4evUqnZ2dArAoKSkhLS1NiA0l3F4VFRUiIyOpra1l6dKlwuHlzJkzIvFw/PjxVFdX8/3336OjoyOceEaNGsW9e/dwdXUVwRx1dXW0tbXh5uaGjY0N0dHRH73GJ0+e0KdPn25Z82ZmZsTHx6OpqYmUlBQtLS3cvXtXTJ46OzsZN26ccOyoqKhAXV2dSZMmoaWlhYaGhhCG3r59G21t7W7OFpaWlhgaGornY25uLhBQWVlZwcuErvjtqqoq5syZg4eHx79CXkNDQ3nx4gWTJk3CycmJiooKqqqqcHR0JCUlRUR4m5qa0rdvX1RVVamsrEROTg47OzthPaijo0NOTg4aGhqoq6szfPhwRo0axd69ewW6qKOjI6g8K1asoKysjJiYGGEtaGxsLFJIpaWlCQsLo66ujvv371NbW0tbW9tH80IlpaGhgbKyMl999ZUQ1WZnZ/PkyRN0dHT47bffRPjS5s2buXDhAsuXLyctLQ0/Pz9BGXN3dycwMBAZGZluAR1WVlYsWbIEJycnoqOj0dTUpKSkhLdv31JQUEB6ejrq6upUVlZiaGjIqFGj0NDQEN+pYcOG0djYiIODAx0dHYwePfq/irR73Ly+fv2ayMhIiouLRexic3MzqqqqwvagsrKS169fU11dLfzu+vbtS01NDYaGhgwbNkwQxyMjIzl48CD5+fmsX79eGLwvWrSI+fPnc+PGDaqrq5k7dy4AP/74I2/evEFOTk582M3NzVRUVGBkZMSgQYOwtbWld+/eqKioMGzYsB41rxIKQ2RkpMiDLyws5ObNmzg6OrJv3z6gy+j/5MmTTJ8+nXXr1hEfH8+dO3e6vYB2dnZISUmRl5dHZ2cnffv25csvv+TkyZNUVFSQl5fH3bt3effuHebm5vTr14/c3FxGjhzJyZMnuX79Otu2bWPt2rWMHTuWoqIiCgoKCA8PR0NDg/r6ekEn6Gnp6upibm7O7NmzmTBhguAFNjY2MnXqVGRkZHj8+DHr1q2jvr4eAwMDvLy86OjoEMk0Pj4+vHr1iqtXrzJ58mQhICoqKkJNTU0ILYyNjcnIyGDz5s2oqqqKIAYZGRnc3d357LPPaGlpoaqqiosXL5KSksL8+fMFx6unFjYSYv+HJfFWlGRxBwcHC7Gbq6srLi4umJmZ0dzcTHh4OA0NDbx69QptbW0RgSpJkpE0NEpKSmIdnZ2dArWDrsNKWloaIyMjNDU1MTMzY/bs2cD/aYKhiyZy9erVHscYl5eXk5qaKppeR0dHzMzMBJ1GUtHR0ezcuVPwwby9vQkKCiI6OhpbW1thc5WdnY2mpiZTp07F2dmZU6dO8ejRIxYuXChEBFVVVVRXVxMZGSnGtIqKipiZmeHo6Iienh5RUVFcvXqV7OxsmpubhVNHT1N9oMty7uXLl6KpkJOTE5GmGRkZ5Obm4ujoiL6+PhUVFWRmZiIrK4u0tDR2dnb4+Pigp6dHXV0dv//+O7///juKioqieS0rKxPetmVlZbS0tFBQUMCrV69QVlYWe1FDQ4M4SCV2Pq9fvyY+Ph4zMzPy8/MpLi7u8SgPunjWcXFxFBcX4+Pjg6mpqdgbW1tbCQkJEWhnamoqycnJyMjI0N7ezvr160lOTubgwYPY2dlhbGyMr6+vGJHX1tbS2tpKfn4+9fX1pKSksH//fkJCQpg7dy6rV68GEFaFzc3NYj+XjE0lTfywYcOwsLDocfN69epVnj9/Tr9+/QQXNyEhgaqqKsrKyvjll1/Yv38/VlZWrFy5EhkZGSFI09fXF5ShwsJCNDU1mT9/PlZWVuTm5qKiosLs2bMZO3YsXl5ejBgxgv3793P9+nXOnDnDkiVLqKysFAEr5ubmXLlyhTVr1vDFF1+IMILy8nJqamq6uQR8bCUnJ1NSUoKrqyumpqaYmpoKuyzoilIuLS0VceeS/UdWVpbs7Gzi4uKoqKgQEa6ysrJoaWmRlZVFSUkJw4cPF2K7v//+m4ULF6Kmpsbr169RVFRESkqKe/fu0dDQwNChQ2lqauL9+/eoqKiwePFizM3Nef78Ob/99huqqqosWrQIDw+PHiVQubi4sHXrVkFHaGlp4e3bt0RGRpKZmYmvr6+gApw7d07QIj5EJqWkpHB2dhaNH3QFOWhoaPD+/XuysrK6UWjy8/MF2NDW1oajo6PYM5WUlIQmpbCwkF9//ZXW1lZWrVrF1q1bUVJSEn/Dx1ZISAh79uyhvr6eXbt2IScnJyZHb968EXHR06ZNE/TAuro6nJ2dhW2noqIi48ePR0FBAV1dXUaMGCGmsQMHDiQkJITnz59jYWGBnp4efn5+rF+/HmVlZZ49eybE7srKyqioqIjksHv37pGUlISpqSnbt28nMDCwx/xlc3Nz6uvr0dTUZMGCBbS3t3PgwAFOnz7NzJkzWbp0qdjfLSwsKC4u5siRIwwZMkQICyMiIigsLGTz5s2YmJjQ2dlJRkaG8FPW0dERwQXffvst9+7dY9KkSTQ2NvLy5UuUlZVRV1dn8ODBgkdcV1eHsrIykyZNoq2tjbi4OHR1dfn000///9+8lpSUsGnTJjIyMnjy5AnS0tL07dsXe3t79PX1SU5O5sWLF7S0tBAUFCQO84cPH3LhwgU8PT272Z8oKCjg5+fHrVu3+PvvvwU6NXjwYB48eMDKlSuFt1lRURHnzp1DSUmJiRMnUldXh5SUFLW1tZSWlpKYmIi8vDyurq6sXr2aCxcusGbNGjEq+5iSjOULCgp49+4drq6uGBkZMWrUKHFb7ujoECb0kkbGxcUFRUXFbmpVye3o+++/p6CggEuXLjFlyhQCAwNpamoiPDycefPmkZ+fz+effy5sgCZPnix8P3Nycrh27Rp6enokJSWRmpqKnp4eS5cu7bY5/JvKzc2lqKhIHI4lJSV4enrS0tLClStXBO/E0tKS6upqvL29xYERExPDP//8g4+PDw8ePMDKykrcopSUlERDV1tb2+1Fq6uro3///kyZMoXy8nLCw8Pp7Oxk1qxZtLe3i+f54aixvLy8R+sqLS2lvLyciooKnJyc0NTUJDIykk2bNjFr1iyWLFnSDXExMjJi2bJlBAUFceDAAY4cOcKMGTO4c+cOOTk5/Pjjj4wdOxZfX18aGxt59OgRHR0dBAQEoKCggI6ODhEREbS3tzN48GDBIa6ursbJyQklJaVu6zl79iw6OjpMmDCBIUOGoKamhrS0tDDS/5hSUFAgKCiIqVOnsmHDBpSVlZGXlxfNa2trKzExMdy+fVugrI8ePWLkyJGC6H/gwAGOHj2Kvb09x44dQ09PD11dXezs7HBwcCA2NlbcriUJcKdPn+aff/5hxYoVQNcY7eTJk6ioqPDVV18xb948Ida0tLRESUmJhoYGbt261aNnCF3CQm1tbZSVlSkpKUFVVVWgLzU1NdTX1wubs3fv3uHg4MD06dNRU1OjurqasWPHUlZWxr59+8RFJTo6mr///hsTExMsLCzQ0NDg7Nmz/PXXXyKO8tdff8XZ2ZkFCxZQXV1NVlYWq1ev5u3bt+zatQtpaWmOHDmCq6srFy9eZMuWLdjY2LB79+4er1GCyCUnJ4vmB7oOisjISBwcHIRtjru7OydPnmTatGkUFhZy9+5dsrKyuHLlChs3bsTMzIy3b9+iqKiIp6cn1dXVXLt2jYiICNTU1DAyMqKoqEj82xKLrHPnzvH48WPS09PR0NBg9uzZDB06VByg/5m81ZOShIR0dnZy7949Zs6cyZ49ezAxMeHPP//kwIEDAMyYMaNbfG9hYaEQp9bW1hIXF4eMjIz4LKqrq0lJSRENleSyIaE+bN26lQ0bNjBw4EAGDRrULQL7PxHytLQ0li9fTn19PX369BHN1cfUyZMnOXXqFGvXrmXz5s34+/sL/2ToGmdnZ2dz9+5d0tPT+eKLL7C3t2f37t38+uuvQly1atUqRowYweeff05bWxvp6en88MMP3ZKGJJOG2tpanj59KkCA69evc/36dc6dO4e9vT137tzBwsJCNAO7d+/m1q1b+Pn5oaSk1GOay8qVK7sFLjQ3NwtXh9u3b7Nu3Tp0dXXp06cPBw8eJC0tjYKCArGnubi4oKWlJTisH9aECRN4/vw5e/bsEeurqqrixYsXWFpaCvHdh04XFhYWIgQgISGBzs5O6uvrxXRp7ty53VwZPqYGDhyInJyccNJRUlISa66oqCAmJqZb1HxHRweKiooEBQUxZMgQVFRUUFJSEoLnzs7OboENOjo6YuJYXV1NUFAQ9vb2PHv2jKFDh+Li4sLOnTtJSUlhw4YN+Pn5IS0tzbNnz7h+/Tp6enrMnz+f5cuX9/iCBV3i+A9/TkZGhqCgIPr06UNtbS2//PKLSDUzNjYmLS0NbW1tli5dirm5ufjupqen8/vvv2NiYsLRo0e5ffs233zzjZi8SerWrVs0NjYKLvL79+/p168f/fr1Q1dXV0RFa2hoiJ+9desWGzduZPz48ezdu/e/rqnHzeuQIUPo168fCgoKwksTEMbKcnJy5OXlUVNTg5ycHHV1dURERFBWVsbYsWPFOEuSoiUrKysecnFxMZ6ennh7e1NZWUl8fLxQ+964cYPExEQ0NDTo168fXl5eIp7zzZs3wj/M2NgYKysrNDQ0uH37Njdu3OiRUMTd3V3A3hYWFlRXV9Pa2iqaj4qKCiIiIsjNzUVfX7/bS9WrVy/evHkjvGrHjRsn4jRLS0s5duwYXl5edHZ2Cvj9yJEjXL9+neLiYtLT0zEwMMDb2xttbW28vLw4f/48UVFRWFpaipuLnZ1dN2/If1tpaWk8fvyYCRMmCC+60tJSlJSUSEtLQ0tLi1WrVnUb9RsbG2NmZkZLSwtZWVnU1NSgoaEh7Mja2trE+gHxXKDL1WDAgAEMHz4cPz8/qquriYuLEwET2trafPrppzg5OVFUVMSjR48YMGBAt9Sgj6mrV69ibGws8t6XLVsmBBMtLS0oKSmxfPly3r9/T3NzczclfVJSEi9evCAkJISVK1dSXFzMb7/9JuyXcnJyuH37NikpKTx79ozFixfj6OhIXFwcP/zwA1FRUSxdupR3794RFxdHY2MjCgoKIvjiQxPnwsJChg0b1g2t/9jq378/169fJywsjPHjx+Ph4UFnZydv377F3t4eVVVVgoODOXXqFMrKynR2dtLa2kpsbKwYUZuZmVFZWUloaCijRo0SLg2JiYno6OiIxvXo0aOcOXMGR0dHbGxsGDp0KIcPHyYrK4vExESR2lVbW4uioiIGBga8f/+elpYWFBUVaWpq6vEFRPIs+vfvj5ycnLBdkVRZWRkZGRlYW1sL6703b94IIYhElLhr1y6ampoYMmQIM2fO5M6dO8yaNYvPPvuMP//8E2lpaa5fv86TJ09QUVHBzs6OlJQU7O3tmTp1KjExMdy4cYOioiKRFifhsEPX+FRidv/hYfWxJRmHt7S0dGua8vPzqaqq6iYg+tAaqbm5mdGjR5OXl4erqysqKiqoqKhw8+ZNOjo6GD58ONXV1Zw7d46YmBiRFCjx7K2oqODdu3eCyy7hS2tqapKUlER0dDQaGho0NzeTmZmJrq7uv1qfi4sLCxYsEIJbOzs7wZPs06cPs2fPRlZWFgMDA65evYqLiwu9evVCQ0NDqPAliKTEcUGCyCsqKgrHAgkSbWJiwq1btzh//jyhoaH89ttvTJo0SfAWVVVV8fHxITIyUoACkstoeXk5L1686JEI1tzcHBUVlf/hdy7h16uoqIhAFk1NTWRkZEhKSqK8vBwXFxeGDx9OREQE9+7dIzo6GhcXF0pLS+no6BCTmocPH1JSUgJ0jZkbGxsF7cPZ2Znhw4ezYcMGFi9ezOPHj/H19UVNTY2MjAyKi4uxs7MjICAAbW1tXr161aPmHLomiElJSVRUVKCtrY25ublAB83MzGhtbeXly5cYGxt34+2XlpZSX19PRkaGoMRAF2jy7NkzpKWlcXFxYeTIkWhpaYk0ME1NTUxNTQUYJXEcyMzMFBOifv36ic9fR0eHqqoqUlNTcXd370Zv+NgaN26coGFJIt0VFRVJSEjgzz//pLS0tJvos7S0FAMDg24Xzv+sQ4cOUVRUxJw5c5CVlUVPT4/8/HwqKytpbGyksLCQ5uZm/Pz80NLSEgj9h3+/qqoqo0ePpl+/fjg6OvLixQsRcNOT+vDSL4ndNjAwEFH3MjIy6OnpkZycTGJiIr6+vowdOxZNTU3u3bsnQC5VVVUqKipoaGiguroaHR0dcens6OigtLSUBw8eiERNBQUFwdGXTMmg64Ly7t27bhPHjIwMwXX/GKF9j5tXyZdGMhL8kLAtSdyRoIn3799n7dq1lJWVsWrVKmHplJKSwvv37zE3N6e6upoXL16I9B5LS0tevnxJa2srq1evZt26deJm27t3b86cOYO5uTkdHR0oKSlRUlIiGg53d3cRR3bhwgUePHjQ0+Vx5MgRvv32WzZu3CjETPHx8eTm5mJpaYm6ujqGhobIycnR2tra7Qt96dIlTp06RWhoKK2trVy/fp358+ezadMm0tLS2LhxI+vXr0deXp7Vq1czb948goKCGDVqFJWVlYIjKUGmJW4NSUlJmJmZMXXqVFpbW0W86v/X0tHRwdTUFB0dHVpaWkhISCA5ORk3Nzf8/f1xdHTEzc2Np0+fcuvWLR49esTkyZM5d+6cMPxOT0/H0dFR3M4OHjwoPPY+zE/v1asX+/bto3fv3tTX15OamkplZSWurq50dnaSkpKChYUFRkZGjBs3jnv37vHXX39RXV3dzfj6Y6qiooK5c+fy5MkTfv/9d6ytrZkxYwYeHh4ChfTz8+PGjRvCqkhSQUFB/P7772RlZTFo0CCUlJRQVFSkvLychw8fkpmZSXp6Oo8fP+bx48dIS0uze/dudHV1CQsLQ0NDg4ULF1JWVkZSUhJ6enpERkZy/vx55s6dy4EDB5g9ezbHjh3jiy++wMHBgZ9//rmbEOhjauLEiVhZWfHo0SPi4+Px8PCgvLycc+fOMWzYMMaOHSuiI6GriWhvbyckJISwsDA8PDzw8vISFjxbtmxh8ODBODg48Ouvv2JjY8P69eu5fPkyq1atQklJibKyMl68eMHy5cvFyFnybrS3t/Pq1Suqq6sJDg4mJCSE4cOH079/f3R1dZkxYwbv3r3r0Rp37NjBmjVrRDiI5NlBFzUlPDwcXV1d7O3t6d+/P5cvX2bTpk38+eefzJw5k9TUVPEzs2bNYt68ecTHx/Pq1SshjJEkzUEXf7mpqYlZs2axaNEiXFxcSEtL4/Lly3z//ffMnDmTr776SuSAQ9cl4ubNmygqKv4r4VZZWZngbX6ouh82bBh9+vT5XwVSRUVFlJSUsGHDBgwNDbt9fz/0342PjxeG3+Xl5TQ0NAjkVU1NDVdXV+Tk5Bg5ciTnz5/HwcGBDRs28OrVK/7880+cnZ1paGhg48aNuLm58euvv/Z4fU1NTTx9+pQhQ4aINKL8/HycnJwYOHAg3t7eHDlyhH379pGXl8f48eNZtWoVXl5eYh9UVFTEx8cHDQ0N6urq2Lt3L+np6axYsYKBAwcK67m1a9ciJyeHtrY258+fB+Ddu3f06tULR0dHdHV1Bc0nNDRUoPFTpkzh6tWr3Llzp8drlPAuJf83Li6OhoYGcUh3dnZibm6Ovb09eXl5fPPNN1y4cIF58+bx22+/AZCTk4OcnJxwcJkxY4agyZWUlFBUVERDQwM2NjZ4eHigrKxMWloav/zyC3/99RfKysr079+f3r17s337dkaOHMnAgQP55JNP8PPzY+LEiULBnZycTF5eXo/WWFxczMuXL4mMjMTGxoa5c+ciLS0tRDg///wzS5cu5cSJEwwdOlSg43p6euJykJqayogRI5CWlqayspI///yTx48f4+DgwB9//MGXX37JH3/8wY4dO9i8eTMuLi7cv3+f9vZ2MXpvaWkhOzu72z4giaWvqakhJyeHsrKy/yr0+d8qKSlJADBNTU1ER0fz/v17nj17RkxMjPj3JfW/eR63tbV1s7u7dOkSkZGRuLi44Ovry9y5c3nw4AHp6emcPXuWkSNH8sMPP4jveWBgICNHjhTT2+LiYsaMGcPGjRtRUlLiypUrbNq0iT59+nSzBf3YkjSFkkb22bNnfPfdd4wYMYLvvvuOVatW8fbtW6SkpPDy8qK1tZXdu3fz4MEDJkyYwJ49ewStRVlZWST1SSbS0tLSXLp0iUuXLmFnZydoAU5OTmzbto2cnBzS0tJwcHDAwsJCcNWh6z0ZPnw4Dg4OGBgYfFT4Uo+b16ioKMzMzPD39yc2NpYffvgBVVVV5s6d2208r6qqSmlpKUZGRjg5OYnUhoCAAOzs7JCWlub27ds8fvyYsrIyBg8ejIGBAaGhodTW1jJo0CABc+fl5ZGVlYWLi4sQJ0DXw1VTU2POnDkiCMHDw4OSkhIuXLgAdBnT96QiIyPx8/MjOjqaU6dO8dlnn+Hi4kJubi5VVVVoaWnh6elJZWUlT58+pbS0lMuXL5OamkpCQgL29vaMGTOGzMxMfv31V3bu3MnkyZMZOHAgc+bMIScnR8QRVlVVERoaioWFRbd1VVZWioNMSkqK0tJSMjIyhKG3rq4umZmZKCgo9IgSIakff/xRIKCBgYG4urrS1tZGnz598PHxoVevXqipqYmxyahRoygtLUVGRkaIEDQ0NIiIiMDT0xNTU1OuXLnCrl27ePfuHXp6eoK/Jysri7GxMZMnTxabkIqKihBl9O7dm9bWVoqLi8nMzBToTmtrK0+ePMHLy6vHSMGkSZOEnYckhQm6NtP4+Hiio6NFBG9MTAwqKioCrXBxceHhw4ds27aNCxcu4Ovry6xZs0hJSeHHH3/ExsYGfX193N3d0dbWRklJiVOnTpGWlsa8efOYMGECsrKyqKmp4eDggJaWFubm5t2QTeg67BYvXkx6ejqhoaE9VnErKiqK53Xx4kU2b94sDjhHR0eKi4vR09NDSUlJGOhLzMs7OzvJzMwkNDQUT09PRo0ahZSUFEeOHEFeXp6KigrKysrYuXMnO3fupK2tTSBvT58+FSKaqVOniu+yZOLQ0NCAtbU1kydPFqI06HnQBHShmsrKygLh19bWFgIpBQUFOjs7u10eAwMDyczM5MaNG4SHhxMZGYmrq6tQYf/9998ioECyL7S3tzNjxgzq6uq4ffu2SC7z8fERPOmGhgZcXFyYOXOmaFwlQQCSC7ulpWW3qOyPqdWrV1NYWMjixYtFKEJTUxOtra1ERUVRVFSEv78/UlJS4rPV1dUlLi6Ojo4Opk+fjrKyMi9fviQiIgJDQ0P8/f0FreHmzZvo6OhQW1tLdXU1LS0tGBoa4uLiwqJFi0Sz7eTkxMKFCxk0aBCffPIJLS0tAtXOzs6msrKShoaGHj8/6BJy/Pzzz+zYsYOxY8cycOBASkpKuHPnDrq6unR2dnL69GkhYLl37x6NjY3s2LEDBwcHzp8/T21trTisJdGytra24sL3+++/Y2VlhZmZGTdv3uT58+fs2LEDIyMjOjs7yc/Px9raGhUVFVRVVcnPz8fIyIghQ4aQkZHB+PHjsbKyQlVVlZSUFOEo8zF16NAhWlpasLKywt3dHXt7ex48eMDJkyfp27cvTk5O5OfnIy0tjZWVFTNnzqS0tFRYspmbm2NjY8PChQuFxePEiRMFVUMSaWtpaYm1tTWVlZVERkby7t07rKysMDExQVFRUWg+/P39SU1NRV9fHzMzM8GJV1RUFLHt/5t36v+rCgoKsLCwoLGxERUVFTGml5KSEvZVEkqKpGk/c+YMUVFR2NvbY2NjQ1NTE1evXmXYsGG4ubmxYsUKDAwMMDAwICUlhXv37nHy5EkaGhrEnvn69WuCg4Opq6tj5cqV2Nvbo6SkxOPHj/nhhx9EKtzy5cspKysTwMKHFIePrTlz5jBhwgTWr19PZ2cnISEhpKSkEBQUxOLFi3n+/DmRkZFs27aNOXPmiM+1rq5O0OQkPqnKysqCHjdw4EBBOdy2bRvGxsZCWCctLU2fPn1oaGjgzJkzArzbs2cPxcXFzJ49u9tUTvJe1tTUMH369B6vUUZGppvtl7e3N1OnTiUuLo5Dhw6xZMmSblZ2cnJyjB49Wly+PqREZmVlYWlpSX19PevWrRMTFg0NDWJjYzEyMmLw4MHiAgNd4m1J8puMjAyamprdnF9kZWWpqKgQn+d/qx43r8+ePRORYCoqKoKDKrEEkeQAt7S0YGZmxpw5czAyMmLt2rUsWrSIgwcPsmjRImxsbEhLS+PmzZsMHDiQSZMmERUVJdTMSUlJQNeLk5ubi4eHRzd0qqCgQLyw7u7u6OnpCZJ8dXW1SBbR19fvUeZ4//79WblyJV9++SXLli2jo6OD+fPnY2Zm1g3x9PX1RUVFhfT0dMLCwvj7779RVFTk0KFDQiHf0dHBH3/8wfnz59m4cSMrV67ks88+E81YcXExS5Ysoaamhl27dtGnTx9aW1u7JVcUFhYKxE/yMmRmZvLixQuMjY3/VfN66dIlysrKmDJlCn369EFaWprOzk4xlpRE6koESk1NTYwYMYL6+npKSkowMjISecSmpqbU1NRw7do1saEGBASgqqqKlJSUuIFZWFjQ0tIiIh8liUiSsrS07Haz7ejoQEFBgezs7B6niUjGGLq6uqioqIhRKcDly5e5dOmSsFwJDQ2ld+/eYgzT2dmJvb09CxcupL29nYULFzJy5EimTZsmXDAk6vWRI0dibGzM/v37MTc358yZM6ioqHD16lW0tLRYs2ZNNzQNusYltbW1uLi48PPPP3P9+nVu37790ZF4kqqsrEReXh4VFRVcXV358ssvUVFR4csvv8TQ0JCkpCRcXV1Zu3YtZ8+eJS8vT3gDS0tLo6amJi5Pn332GQMHDmTfvn2kpqYKIYtkkzUzM2P8+PF4eXkRGBjI3bt3OXLkCDIyMsKVQl5eHhsbG5ycnHqcUvR/q0WLFiErK8v79+9pamrqxv8zNTUlKChIXIiam5sZPnw4w4cPZ/v27WJqcvHiRaZOncr27dv54Ycf+PnnnwVqXF1dLZL5XFxcaG1tJTc3l7CwMCZOnIiZmRnh4eE0NTVx5coVXFxcaGxsRF5eHkNDQwoKCvjhhx9oampi4MCBAi372AoODiY/P5/evXuL5lVRUZHm5mZ+/PFHHj58yLVr1xgxYgR79+7l4cOHTJ48GTMzMzQ0NIiJiRH0kMOHD2NgYMDZs2fx8vIiKSmJ169fo6OjI0RClpaWWFlZYW9vj4qKCg0NDVRVVSErK8v69etFetegQYNEyldVVRXTp0/vRlnoSdXU1BAREUFNTQ3FxcXMmjULNTU1Fi1a1I1/K3E4efbsGSEhIbi7u9OvXz+2b99Oa2srAQEBODg4UF1dzYABAwSH9fTp0+zatYvevXvz6NEjjh07hpOTEyEhIejo6BAcHIy8vLwABySJaUuXLmXx4sXd/tasrKweXyKPHz8OdHm2jho1CgUFBTQ1NQkPD8fc3BwnJycKCwuJiooS9m4jRozghx9+YO3atXzzzTd4e3uLSaODgwOlpaXExMRga2uLu7u7+LfKy8u5ePEikZGRWFpaMmvWLMFxT05O5t69e/Tp04dz5851+xtLS0tJTk7GyMiIoUOH9hh51dTUxNPTU1DVJAJkiVd1cnIyzs7OImCiurqazMxMDhw4gKamJnv37kVfX59r166Rnp7Opk2b+OSTT8Q5efHiRQ4cOEBdXR329vbs2rWr254fFRVFR0cHa9euxdzcHFlZWbZt20ZHRweWlpYEBwfj4+NDcHCwEGD2tCQgxieffIKJiQm1tbU0Njbi5+eHvb09/v7+9O/fn8ePHzN69GjRvDY0NIjzvK6ujvDwcMrKyvDz8+Prr79GVVVV0N5kZGQE5QO69rCWlhb++usvzpw5g7OzM7Kysvz5559UV1czbtw4QXeDrgu7hoaG0HH0pAoLC8nPz8fQ0BADAwPq6+vFtGL9+vWsWrWKxsZGNm7cCHRNLzU1NYUw7sN68OABFRUVgmN/7tw5PDw8mDVrlgg3efLkCdeuXRNe35JESYkIrrW1lZaWFioqKkQPU1VVxcOHD/Hx8RHc4/9X/SvOq+TGbmhoyObNm5GXl/8f5s56enoijQpg+fLlaGtrd+NNSWL1JAvr06cPlZWV3Lhxg6+++orw8HDmzJnDvHnzmDNnDs7OzpSXl4txy6ZNm6iurubHH38Ut1ro8n+bP38+u3btEt5lH1sS3sukSZOIj4/n+vXryMvLM2bMGLS1tUUDB10bbt++fTE3N+f27dtkZWVx9uxZRo8ejZKSEjt27MDHx4esrCwePHjAiBEjuqGISkpKNDc3ExoaKlJYhg4d2k3gVF1dTU1NDdXV1YJfnJOTIwyoPzzQP7ZmzZpFc3Mzly9fJiIiQiAPElV2WVkZS5YsoampiS+//BILCwt++ukn1NTUePToERYWFri7u6Ourk54eDhnzpxBSUmJAwcO0KtXL7Kzs4mKiqKxsZGSkhKCg4MpLy/H1NSUGTNmCONioNvL+SGKZmVlxdixY3nw4AGvX7/G2dm5x+vcv38/Li4u7N69m+joaDZu3EhzczNJSUmCnuDm5oa2trYY9zx79ow7d+7w/PlzzM3NBZk8NzcXTU1NpkyZQmlpKRs3biQ6Oppx48ahpqbGmDFjBOfw+++/Z9u2bf+jcf3555+5desWS5cuZcaMGZSXl/Py5UuKiopEPPDH1q+//oqsrCyzZ8/GxcWF/fv3U1paKrh3Ojo6IgoV4O7duyQmJgoV+SeffEJDQwMXL17k1KlTxMTE0NTUhKenJ/X19Tx79gzo8m7ctm0bTk5O6OjooK2tzZw5cwgPDycnJ4cbN24waNAgXFxcBLolqf8co/W02tvbefz4MVpaWgwfPhwjIyOKi4tJSkpCX1+ffv360dDQQHR0NDIyMri6uiIlJcXXX39NW1sb3333HcePH8fNzU1wvXR1dcnLy2PVqlW4u7uzbds2rl27xo0bNzh9+jRFRUVMmzaN27dvs3LlShE/LYnNXb16NZ6enqxZs4aFCxfy6NEjHj9+LHyeJfHAH1PffvstpaWlgoolcaHQ0NCgtLQU6NrQpaWlxe+9cuUKX3/9NaNGjUJOTk7YDj569IjIyEhyc3Px9fXlwIEDFBUVcfnyZTGKb2xs5O7du/zzzz8cO3YMS0tLAgMDGTVqFLa2tuLC6uTkRHx8PD/88AMVFRVMmDBBWDn1tA4dOoSTkxPGxsbMmzcPIyMjEhISROPq5eWFv78/kyZNwt/fn5MnTxIbG8vt27epqqpCU1MTdXV1Hj9+zJkzZ8jKymLatGmoqKjw+eefc/78eXEwKykpERAQwLp165CWluaHH34gIiKCH374AYCbN28SFRXF6tWrhTWhpJqampg7dy5eXl49ShFbu3YtRUVFYh8uKSlBXl6eNWvWYGBgQEdHh5jyREZGYmtri6ysLPPnz+fy5ctij5B4oUKXkPLevXscOnRI7D+FhYVs27aNs2fPMnHiRFavXo2CggIpKSnCYunChQvCOxYQrhEtLS0oKytjaWmJjIxMj+l0/4lklpeXU19fj5mZGXFxcTx//lykR0qExytWrEBHR4fff/+d58+fi/Pi7du3rFixAhsbG0aPHo2joyPjxo3j4sWLqKmpkZKS0s2HVmJ+f+zYMfT19Zk5cybm5uaYmZmJGPF169bh7+/P1KlTKS0tFc+7J3Xp0iXa29uRlZWlvb2dcePGcfbsWVavXs2qVatwdHTE09MTY2NjcTmvqamhtrZWoM2Sv9fAwAAnJydUVVVFIEFNTQ02NjbdFPRVVVWcPn2a5uZmBg8ezOvXr8nMzGT58uVi3RJ0Xlpamo6ODkaNGoWPjw/u7u5cvHjxo9cXFhbGzp07sbS0ZPLkySgrK4u9xsbGhm3btgnf6bq6OkG9+Pnnn0lLS2PLli1YWlryzz//8Pz5c7y8vKitrcXZ2ZnffvuNtrY2SktLUVBQYNq0aVRVVZGcnMzhw4fJyclBVVWVrKwsNDQ0RHKqjIwMqampgrLh4eHBp59++tHc+h6fLC4uLnR2dlJdXY2mpiZLly4FuhAtIyMj/Pz8KC0tJSsrCwMDA4qKimhpacHOzo6tW7d2+13q6urIysoSGRlJr169WLFiBf369cPU1JTffvuN/Px8+vbtK27ZkiosLKSoqIh3795RUFDA3bt38fT0JCAgAB0dHcFH1dDQ6OYD+zFlYWFBVVUV3t7eXL9+nR9++IH09HRxIy8qKhKiJgm/ys/Pjy+++IIjR46gqKjI3bt36dOnDyYmJsydO5eTJ08SFhaGoaEhrq6u1NTUIC8vT2dnJ1OmTOHFixe8evWK8+fPC5Pm2tpaMjIyyM7OxsPDg7lz54qRqaqqquD5SCyLelIrVqygtbWVffv28ezZM3x8fLCyshKNgbKyMiYmJuTn5xMZGUleXp5ATC0sLMRm1tbWxv379ykvL2f79u3Y29tz6dIlkpKS8PLyQlFRkdTUVLKzs3n+/DnQ1VRJmleJuruxsZHU1FSKi4vR1tbG3t4eFxcXJk+ezOvXr0lISOhR81pcXIysrCy6urps2rSJsLAwoQD29vbGz8+PqVOniovKh6Wvr8+LFy9EDrdEbCRJfmtsbMTR0ZEBAwbw4sULTp48iZ+fn0BIYmNjqa6uJjExES8vL9LT07GxscHMzIzc3Fxev36Nq6srHh4eQmVeW1v7Pxrd/1Z37tzBwcGBuLg4zM3NxQUtMTGR+vp6Md7W0dGhvb1drAG6Ymz9/f2pqqri0aNHlJWVUV5ezvDhw3F3dxdpVZqamqxfv17QHSSeoy4uLkyaNInr169TUVEhRmZ37twR8brV1dWUlZWJ5vXf8EHLy8tpbW3tJoZqamqiubmZ6upqcnNzxXMxMjKiqqoKGRkZ1NXVWbNmDQkJCaSmpnL//n28vb05deoUo0aN4unTp4SHh4vxqaqqKu3t7eTl5SEtLY2enh6vX78mNjYWd3d36urquHPnDu3t7VRUVAh6gL6+PuvWrSMqKkogDj3xspVY0AAiplYy1ps7dy5XrlwRgs/Vq1fz3Xfficz4vn37iikXdDWJR48eJTExUfB4JX7bfn5+YhT+7t074aBQX1+Pp6cn6enpIujA2dkZGRkZ8vLy2Lp1K5qamgJRlkzFelJGRkbMnTsXPz8/8XlLrMfc3Nz49ttvkZWVFQlLLS0tSEtLC9HcmDFjUFdX5927d8I6b8yYMXR0dHD79u1uUxUvLy/27dsn0vru3LnDq1evGD58OOrq6iJkZvLkybS0tHDx4kWcnJxwdXVFUVERKysrrKysetS8/vTTTxQXFwuLLIn4NiAgACUlJZSVldHV1WXYsGE8fPhQcIn9/PxYu3at+Dwk07aIiAju3LkjEH7oikONioqipKRE7JWJiYlUV1fz9u1bPvnkE9rb23F1dSUtLY1bt27h7+8v/GQ1NDSEjVttbS0hISE9EjWpqanR3t5OWloamZmZwiIT/k+0bWJiIi9fvuTChQsiJnzBggUYGRkJT9lhw4aRkJBAWFiYSMbU09MTHEsDAwP8/PxISUnh9OnTwl2kuroaOTk5MjIyqK6uRk1NjU8//VQ0UCtWrKC2tpaNGzeio6Pzr5xNxo0b1+2iPX78eLKzs9m0aRNtbW1s2bKFSZMmUVxcTG5urkic/HDyqaOjQ2BgIBkZGaSmpoqEsbi4OGpqalBXV8fExITMzEzq6+tJT0+nvLycWbNmibj3qqoq0XxnZ2fT2dkpwB1TU1PGjBmDo6Njj5HXoqIiamtrKSgooKioCHNzc96/f09jYyOzZs0Sk9Da2tpuoQxhYWE8fPiQYcOGYW5uTnNzM/r6+tjb2wt6hIWFBQoKCmJK1trayuLFiyktLSUzM5OSkhLk5OQoLCykoqJC/H5dXV2KiopEpLiFhQVDhgyhvr7+oxIne9y8vnjxAl9f326chKdPn7J69WpWrFiBn58fP/30Ew8fPuT06dM4ODhw6dIlKioq/oequqCggJSUFPHhSlT4W7duZdiwYejo6IjGNTo6Gi0tLZGde/nyZX777TchEJPY6ejo6PD27Vs2btyIra0tf/31F1u2bOnRGiUHrbS0NOvXr0dKSkogWlVVVUL5n5SUJPhOU6ZMEfxPfX19Mfaora1FS0uLXr16idG0oqIiKSkpYkQ3adIkTp061W2c8+7dOz7//HM0NDQ4fPiwQD7KysowMzNj1qxZvHjx4l8dKNXV1RgZGbF582ZiY2OFk4KJiQlfffUVenp6yMrKoq+vz9q1a8UtDejWpD1+/BgVFRUOHDiAsbExWVlZbNiwQaRpqaioUFtbi5qaGocOHWLNmjUUFhaKQ1eyOScnJ7Nt2zZu3LiBs7Mzv//+uxAgSFC04ODgj15fU1MTKSkp9OnTBw0NDW7cuEFZWRk6OjooKSlhZWUl0Ir/LAcHB/bs2cPTp09RUVERXEFPT0+ePHnCzZs32bp1K7dv32bevHlcu3aN58+fc/PmTWxsbFi+fDm2trZER0czYcIEYmNjmTdvHidOnODgwYM4OTnx008/0dzcLDK0z549240q8jFlbGyMv7+/iGGUoLeGhobd0H3JBScnJwfomhYMHjyY+vp6goODKSsrIygoiG3btpGVlUVFRQWBgYFYW1tz8+ZNMeaBLirPkSNHMDExYfbs2Xh6eqKsrExzczO///4733//PTIyMnz33XcsW7aM8vJyli9f3o1O0pNydXXF0dGxmwDDwsICCwsLjh8/zsGDB5kyZQpBQUHdfk6CCm/cuBEjIyOamppQVFQUquDRo0cTHBwskK5ly5YhJSXF+vXr0dLS4rPPPiMjI4O1a9cK5OXixYu0traya9eubp8JIH7//5eSlpbudoFZvHgxY8eOFZfmbdu2sWDBAioqKkQj8uEh06dPHywtLdm4cSPm5uZYWFigrq6Or69vN45jYGCg8IiWKPpjY2ORl5fH3NwcExMT9PX1xc8oKiqK7PJffvmlx/6Sf/31F6qqqoSGhhIZGcnYsWNRV1cXyJuPjw8//vgjf//9N0OHDiU/P5+amhrs7e1xd3ens7OTwsJCqqurkZWVpa2tjeLiYiEESU5OBrpSt1asWCGmUzIyMqxbt469e/dy9OhR3r59y/jx44Vp/t27d7l//363iWFCQkKP6TuysrLd1OaNjY2cOHGCPXv2sGrVKtasWYO0tDRtbW0MGzaMixcvcujQITo7O4XDiZSUFEVFRbx48YLMzEwWLVrE6NGjsbS0ZP/+/Xz33XesXbuW3bt309bWxq1btxg8eDAzZ87E09OTV69e4ejoyNmzZzl8+DBz5sxh2bJl/Pjjj//j75WSkurGe/yYkjRQEsutEydOiHdAIqxbvnw54eHhjB49mrq6OsaMGcOmTZtYuXIlAwYMIDs7GzMzMyEkA4Rjx8GDBzl06BCrVq1i1apV7Nq1i4kTJ5KTk8PFixepq6tj7ty5rFmzBjk5OaSkpOjXrx+9e/dGWlqaqqoqcaHU09Njy5YtgvL0sXXkyBFWrVrV7f83a9YsnJ2dUVZWxtbWlubmZt68ecONGzeor6/H2dlZWIFKuLpaWlqEh4dz4cIFlixZwsKFC+nXrx/V1dVYWVmRkZGBrKws169fF64gZmZm1NXV0atXL2RlZYWvuLGxcTcKhLu7OzY2NsK1oSfVq1cvLl26RF5envCnHTp06P+wpVRQUBDncmVlJWvXrmXixInIysoSExODv78/I0eORFlZmfr6en777Tf279/P4sWL2bFjBzdv3uT8+fNs3bqVZcuWUVZWRmVlJerq6iIp9cOGX0IFys7OprCwUIR9fMwkssfNa1VVFXJycqKZaWpqEtYInZ2dlJWVUV9fj6KiIkpKSsjLy2NkZISOjo5QPCopKTFy5Eh8fX3p06cPr1+/Rl5eXhy6enp6eHl5UVFRQXBwME+fPuX9+/f07duXmTNnYmxszMCBA0lOThZK4+LiYrGZv3nzhufPnxMRESEMyXtSEt5ibGwsM2bMQF1dnaNHj9LZ2UlQUJDwE5SMGVpbW4mOjubZs2fY2NgwceJE1NXVaWxsJDk5GUtLS/HAoWs8npCQQHZ2NkOHDmXmzJnCMqyxsRElJSURuysxXW9vb6e6ulpYSTQ1NeHm5ka/fv345ZdferS+kJAQCgoKRBIRIKIJNTU1iYiIEGT4JUuWiFGwxAy7T58+5OTk8Pz5c/z9/cWX8datW7i7u2NhYUF4eDimpqbC4kiCpgcEBIjnVFZWhpaWFtLS0ujr62NjY4Otra24KEhLSwsuYE+a15SUFJSUlHj//j319fUiNUlfX19Ym0jMxQ0NDcXG9OjRIyoqKhg+fDgbN24kJydHfOYzZ84kMDAQXV1dkpKS6OjoYOXKlXR0dHDjxg127tzJggULsLCwYPr06bS1tZGdnS0ar6ioKLy8vFi6dClbtmzh+PHjbNu2jaCgIIGC9aQWLlyIp6cnRkZGNDc3c+zYMeTk5Pjyyy8FSmFoaIiOjg6zZ8/GwcGB9vZ2iouLefLkCS9evBBefjNmzMDNzY26ujqqqqqwsbHBxsYGRUVFrl69SlpaGosWLRJRy4WFhTQ2NgoRx+bNm8nJyWHOnDn8/fff7N27lzFjxgh7l6ysrG7cvY+tDxuLxsZG8Z2Erkbj9u3b3dKyqqurcXd3R0VFhcbGRjo6OkRjIZkOSPynJYrojo4OwsLChE1dnz59GDBgAEZGRiKWUVVVFVNTUywsLHByciIuLo4rV64IO7aOjg4ePXrE2bNne7S+sLAwMjMzsbKyYuDAgaiqqtLW1iYM2iUXLEnynIuLi/gca2trkZOTEzQmHR0dgWpI7G/k5eVxcnLir7/+Eu97r169ePXqFbW1tRgaGqKlpYW+vj5SUlIi1Qe6LIiWLFmCkZER5ubmtLW1MWbMGGGp9bGlqqpKcXEx0dHRREZG8vbtW5SVlQkMDGTGjBm0tbVx584dUlNTBfVk+PDhTJo0CWtra77//nsiIyPx9fXFxsaGpKQkDh48SFxcnBBFampq8umnnwpeq8R2ysfHh6+//ppVq1Zx7tw59PX10dDQICoqitLSUoYMGdLNqkeCFPWkpKSkutFjZGRkhJCzo6ODFy9eUFBQgI6ODtOmTRPWYFevXiUsLAwvLy+MjIyorKykqamJwYMHC6N36GomXFxcGDNmDHZ2dqI5NzY2xsLCAh0dHeTl5YU4dOTIkdy6dUtcempra7l27RpqamoMHDgQHR0dFixYwJkzZz56jTk5OVhYWNC7d2+B3L179476+np8fX2xt7enb9++qKiosGXLFlJSUvj5559F42VoaCismKDLhSYrK0tc+hwcHIRzkKR8fX3x9fVFWlqaFy9edKMrmpqaoqKigoKCAqqqqsybN08EPxQWFn4UavefpaenR1FREe/fvxc0tfHjx3ezpKytrcXW1paamhpSUlLIysoiPDycAQMGiGlkVVUVeXl5KCgoiPNb8s5WV1eTlJREUVERioqK6OnpiSRKVVVVxo0bR2dnJ9LS0mRnZ5OQkICpqSn2/z/2zju+5vP9/8+TvfeeMiWRRGQQEXsTW63aWupUqVaryypKqbZo00GpVUVtEqOI2kFEQoZIIkOG7H0yz++P03P/pFP66fdD+8nr8fA4cuZ9v+/7fd3XfF1t24qUIuU1fJxx4Umgra1NYGAgBQUFbNu2jTZt2oi0TuVcPDw8hDKenp6OhoYGffr0ARTR7pycnGaG2vHjxzl58iSqqqrY2tpSU1NDRkYGaWlpxMXFMWDAAMzMzDAwMGhGeXbnzh3Ky8sJDAxEQ0MDExMTbt26RVFREba2tiIq/WdosfKqpqZGdnY2dnZ2IodKIpGInIjr16+LtnDKbkxdu3ZFQ0OD/Px8Dhw4QFNTE35+fgQHB7N27VrWrFmDhYUFFhYWNDY2sm/fPsEdqcwDMTIyEt1IlLx5EyZMEBagsg2tUqHU1dWlqqqK8ePHt7iXMyjyhw4fPoypqSmqqqq8++679O7dWzAG3Lp1i/bt24vFPnbsGBs2bMDMzIzq6mqmTZuGtrY2vr6+SCQS1NXVm4X5bty4wcmTJzEzM2PatGn07duXO3fukJ6ejpubG56ensyYMYPbt29z4sQJbty4gZ+fH6GhoTx8+JDY2Fjs7e1F+KYluH//PqtWrUImk7FixQrg/zdUOH78OMuXL0dTU1PkFymV1y+++IKoqCg+/fRT+vTpI7rexMfHCy/sgQMHOHr0KM8995wgbb5y5QqdOnUSB75yDMqOXk5OTqxfvx41NTXq6uqorKykqqoKXV1dSkpKiIuLa9H8Tp06xYoVKygpKWHevHmiQGvnzp04ODhQU1PDtm3bKCgoEMWHmpqagoB//vz5rFmzBgcHB5FHqOw1Dgq2BmVF89dffy1IuZUhNGWrYyVP440bN8jMzBRhLnd3d6Kjo/nhhx+YPHkyAwcOFB6kJ0WfPn2EMM/Pz6eqqgpVVVXS09NRV1fn7t27gCJ3ePbs2SI0O3/+fEEMb2JigpeXF9XV1eTm5gqBqqxwHjFiBF999RWLFi3C09OTQYMGMXPmTMEOArBz5042bNjAtGnT2LRpE23atGHt2rXExcXh7e3Nnj17yMvLw8TERIRJnxTx8fHcvHkTX19f/P39hYIgk8nIyspqFlqNjIyktLQUHx8focBGRkYil8sJDg4mMjJSFHE1NDRgYWGBra2tKI5KSkriwIEDdOrUiY0bN2Jubi4iE0eOHBFFh9nZ2URERBATE4Oenp6gKbp79y7h4eEtuh/v3r3Lxo0bGTJkiChGzc/P58GDB6KLHSBoofz8/Dh58iTq6uqiG5SWlhaFhYWcPn2a3NxczM3NBSVYVlYWt2/fRi6XExcXh4mJCc7OzsTExHDr1i0KCwuZOHGiiOpUV1cLz6qenh4zZ84UebBqamo899xzLVZelVyqfn5+FBQUcPz4cXx8fFi6dCmWlpZcvHiRrKwsbG1tefvttwkKCiIhIQEvLy9ycnJEPYSqqiouLi4kJSWRmZnJkSNH6NmzJ7NmzcLb27uZNzwnJ4d33nmHl19+mZUrVzJkyBA+++wzPv74Y9EhcdWqVeL+rK6uRkNDQ1RaK4uFnwRNTU0iCtnY2IiOjg7z589n8ODB1NbW8sMPP5CamkpTU5MIjY4bN46DBw+yfv16pk+fzpAhQygoKMDZ2bmZ4gqK1BJle/BHjx5RVlbG/Pnzee+990hISGDnzp0MGjRIKKv29vZ88803uLu709DQQFRUFGfPngUUEUVls5WWKK/K4pzZs2czbNgw1q1bx/r163F3d2fu3Ll0796dlStXUlxcjLGxMb6+vvTu3VvcXxcvXqSmpoY+ffqgpaVFfX09Z86coaamhvHjx9OvXz+6du0qHEHKND1LS0vc3d3Jy8ujrKxMnJ/K3HtloTEg5n/s2DEOHjz4q1TDP4Oyev/NN98Uua7KJjRlZWWUlJSgo6ODp6cnnp6exMfHC6PXxsYGMzMzysrKOHPmDFZWVixYsEAorXV1dSQmJnLmzBkOHTpETk6OiIgcOHCA/Px8/P39KSsrw8TEBC0tLR49esTp06dp3749lpaWVFdXU1dXJ5w7LU0zU57vR48e5dChQwwcOFAU+x0+fJgLFy4wY8YMoc+kpqZSUlJCQEAAzs7OWFtbo6+vLwy1uro6UlNT8fPz44svvsDb21s0OBgxYgT379/npZdeEh21lOmQ+fn5XLt2DUNDQ6ELKTl1lc0o2rRpg6GhoWim83tosfJ6+vRpLly4wKBBg9DX1xe9w8eNG0dMTAznzp1j9OjRODs7c/DgQYyNjUWoRkmt1LZtW0GRoKWlRdu2bbGxsaGhoYEffviBjz/+GA8PD4YNG4azszMqKirY2NiI6lsLCwsKCwvJysqiffv2dOzYUXg16+vrCQkJITw8nPv37zfLiXoSKInce/bsSVhYGL1796a+vh59fX0MDAxIT0/n1q1bNDU1iYq4yspKPD09mTNnDra2tqirq3P8+HEGDx4sNtmOHTuIiopi2LBh+Pj4kJGRQUpKSjO+OBcXF7KyslBXVxfcohYWFvj6+orWe/r6+rRv355u3brx5ZdftqjNnxLGxsYsXbqUsrIy3nnnHcH3qaqqioODgwhZ2djYcPz4cUaMGIGZmRk2NjbU1NQgl8uxs7MT1bpKj5iFhUWz3KSysjL09PRwd3fHysqKI0eOkJ6eTlZWFmPGjKF///4irUAJZVgoMzOTu3fvkpCQ0OI+zqmpqWhqamJlZYWtra1ofKH8HlVVVdEK7/EQhre3N+fOneP27duiM0xJSQkHDhzA0tISCwsLbt68iZqamjCcSktLWb9+PQYGBpiZmZGZmUl5ebnIIcrNzcXFxYX27dvz2WefcfjwYfz9/QkKCuLs2bMif0tJBv2kePToEXZ2dly4cIHLly8TFBSEra0tcXFxlJaW4ubmhoODAwkJCXz33XeiLeyCBQt49OgRZ8+eFR6x9PR00YHp6tWrXLhwgeHDh6OhocEbb7xBu3btsLa2Jjc3l9jYWNq1a0dTUxNff/01u3btYsyYMdjb27N69WrMzc0Fz58Sf4U0HBTdd0pKSsQeVSrrSs7X+vr6ZoU/mpqawuOVmZmJj48P9+7d4+OPP6akpITXXnuN4OBgPDw8RJhfJpMxbtw48vLyUFFRYd++fWzbtg0TExPq6+uxsLCgU6dOIrSmr69Pu3btcHFxEU1K0tLSiI+Px8DAQFA+PQmuX7+OTCYT3oz79+9z+/ZtnJycsLOzEweFjo4OkydPFqlKXl5ewqBUV1cX6TBKdhClJ8TExITy8nKSk5PJzc3lzTffZMyYMYwYMUIYbY+3tFWGApXKsZ6eHomJiaKhxl9pNGFubo6Hh4foQKSk6lLm7x89epT8/HyGDRsmip6U3lAbGxtWr15NTEyMONz69OlDfn6+cIAoWW7OnTvHnj17GD58OB06dGDOnDlYWFiQkpKCr68vnp6eJCYmoqKiwqRJk5oVbCllsJ6eXovZBg4ePCjo8VRUVAgJCRHtMkHRWMLR0REHBwfs7Ox4+PAhhw8fxsTEhE2bNjFy5Eiys7O5dOkSqampZGZmivSF0NBQxo0bJ2RUTU0N/fv3F0WiycnJbNq0CQMDA4YOHUpTUxMmJiaiSLO+vp527dqhrq5OYWGhaAP9VwjuS0tLMTExEU0rUlJSkMvlfPXVVyQkJPDSSy9hampKeXk59fX1Yk9nZ2dz5coVYmJiuHz5MlOnTsXd3Z2wsDCOHj3K1q1bGTBggJCXlZWVghmloqKCb775hoSEBBYtWoSvry+xsbEYGBiIyElhYWGzCE15eXmL2IWUqKurQ0NDg5kzZ4piV6Xhmp+fT3BwMCEhIaI4y9nZWUSWKysr2bFjB2VlZbi5udGmTRvc3NyEQbVhwwYyMjLo2rUrb775Jrdu3eL+/fs0NTWJwunly5fT0NBAnz59mDx5MsbGxnTv3p3a2lrRHCgnJ4f9+/djZWX1qzbgfwZvb2/y8/Px9vYWBXNKpKSkcPToUby8vER9Q1JSEp999hm1tbVMnTqVmTNnCpYhuVyORCKhX79+qKuri7WzsrJi9OjR9O3bl1OnTolua4WFhYKdJTc3lx49eogoiUwmQ1NTk+DgYM6ePcvBgwfp2bPnEzVharHyWl1dLXgXNTQ0ePToEaNGjRKDu3z5snAXGxkZiTB3QkICDQ0NvPTSS+jq6nL+/HkuXbrEo0ePqK6uxtbWFnNzc9FZatiwYQwcOLDZbyuLKoyNjUW4qaKiQmzkyspKVFRU8PX1bdY6VSmonwTnz5+nvLycPn364O7uLugcRowYgYGBAffu3SMxMRFQKG0aGhpcv36dnj17iuK19PR0cQgq3e6PHj0iPT2dTZs2CeqIoUOHYmtrS1NTk8j5VR76V69e5fjx4wwYMIBBgwZhamrKrl27RGhFaSHt2rVLCPAnRX19PUuWLOHVV19l1apVTJs2TQg/e3t74Z24d+8eU6ZMITo6mlWrVjFu3DgsLCxEEZySPNvKykooGj/99BMymYwuXbpw8+ZNzMzMmDdvHnZ2dmzbto3NmzdjbGzMkCFD0NbWRltbm8TERBoaGjAxMcHW1hYdHR2MjY0pLi6mvr5etOt9Unh5eQkapDFjxhAYGCj2FyhumMDAQIqKisjJyRG/1b9/fxobGzl69Cjbt2/nvffew9TUlNTUVHbt2iW+f9myZYwfP55Hjx5x9epVbGxsCAoKEqkHOTk5mJiYUFdXxxdffCG6qcXFxZGUlMRbb71Fu3btWL16NYWFhaiqqrZYwTt06BBz5swhOjqas2fPsm7dOry9vdm5cyfGxsb07NlTNCWIiIggJyeHXr16YWdnx3fffcf27dvZvHkzBQUFlJSUiENeU1NTtKbs3bu3+FddXc22bdu4fv06urq6FBQUiBzXzZs3k5SUxOTJk5k+fbq4Dx4+fIiRkZEIJbUUys5OypBcfn4+pqamqKmp0blzZ6Kjo4X1/rjn8uDBg5iYmDBmzBguXLjAmTNnGDlypGg5mJmZKRQWJaWZXC5nwoQJnDlzhk6dOqGhocGVK1cEh2FBQQGFhYW4uro2K/Srrq7Gx8dHKEMtkTXa2tq8++67jBw5UrBgKKv9tbS0qKmpYePGjdTW1vL6668Ljtf09HRBf1VSUoKuri7Ozs5kZGRw7do1YmJiUFdXZ8qUKQwePJgrV66wcuVKSktLefjwId7e3tjZ2VFUVCS82XV1dTQ2NgqluLy8nBMnTnDu3DnKy8vJysoiJSWlRd0KQUE9+PDhQ9TV1UV7SFB4LKOjo1FXV2fYsGHY2dlx5swZEd24evUqDQ0NdO/eHT8/P44fPy56nv8SykhYZmYmSUlJjBw5kg0bNnD27FnWr1+Pt7c3S5YsES2ElR7Xmpoa1NTURIOAx1PPnhQ3btwQB76Ojg4uLi7NihPbtWsnqM0ALl68yP79+xk1ahQvvPACoHAIKaMzyr73WVlZfPbZZxQWFrJo0SK0tbWxs7Nj5MiRQvlMT0/HwMCAsrIy8vPzsbS0FHnMKioqqKmpYW9vL4o3CwoKuHLlSouppJRnzblz5zh9+jTe3t6EhYWRmZnJN998Q2RkJIaGhkyYMIGHDx+KqIGOjg5GRkaCzzclJYWzZ89ia2uLpaUlYWFhbNiwgSNHjuDg4CBS7eLj48nNzUVNTU0wfXh5eWFmZkZMTAxFRUW0adMGCwsLzM3NRUU+KIyllvKCg6LwbsyYMYSGhhIaGkp1dTUfffQRmzZtwtPTk9DQUJKTk0lISMDX1xcrKytcXFyQSCSiW52GhgYvvfSSuKcaGxs5f/48KSkpODs7M2bMGEBh0EilUh4+fEivXr1QV1fn9OnTNDY2EhcXx+HDh5kzZw7Dhg0TkcwXXngBGxsbvvjiC7KyskSt0JPCzMwMdXV1IZ+UtKKgaDz14MGDZrmvypbweXl5fPrpp/Tu3Rtra2tBsaejoyOiTHV1dcLQNjIywsrKCmtra4qLi/n0009FyoGS41Umk4nfV3pdQSFLV65cya5du9i6deufzqnFyuuCBQtISUlhx44dXLhwAT8/PxHqKCoqasaFquxfrzyclSHozMxM1q9fz+nTp7GwsCAwMBBdXV10dHTo27cv3bt3b0ablJ6eTnFxMY6OjqxevRpVVVURQlHyvtXU1FBcXNys49dfQVRUFLNmzeLGjRu8//77aGtrk52dTV5eHuvWrRMKQEREBLdv36ZNmzbcv3+/2e86OTkRFBTEBx98wNKlS5k/fz5vvPEGL7zwAvPmzePbb79l0qRJvPbaazx48ICBAwfy6NEjVq9eLTjmtm3bJsJZNTU1dOrUCRsbm2ZVhspQYksZB65fv86xY8c4cuQIAIGBgairq7Nv3z7Ky8uFUK2uriYxMVFUyA8YMIA5c+ZgbGzMnj17WLFiBWpqaoJ6xsLCgtraWqRSqaBzuXnzpuDL09DQoEOHDhgZGTXzzF2/fp1t27YxceJEpk2bBihutrCwMEEnduXKlSeeX1hYGAkJCQQHB+Pi4sKxY8fIyMggNDSUhoYGbty4gb+/P5WVlWzcuJGIiAicnJyYNWsWOjo6xMbGUlRUxKRJk+jQoQM+Pj5cvXoVUFCqmJmZsWzZMkaOHElwcDAvv/wy+vr6bNiwAQ0NDY4dO4aFhQV9+/bFyMiIzZs3c/LkSVxdXdm1a5dQtGbNmtXiw1KJhIQEGhsbcXNzE/lJoKC2UlrCu3fv5s6dO6xatepXlvrkyZPp27cvJSUlfP/99yxZsoTBgwfTpUsXUYS3ceNGvvnmG0aNGkVSUhI1NTWMGDECW1tbDh48SG5urrCghw0bxueff05ubi7nzp3Dzs4OiUQiPO2/1ZHmz7B161YsLS0ZOHAgBQUFrFixAm1tbd577z1efvllXFxcmnW7Onz4MB9++KG490Bx8G7evJnBgwcDCnqqM2fOsHr16mbXpK6ujpycHJycnFi7di0eHh6kp6fj5OREamoqUqlUdJxR5v4dPnwYNTW1FvO7KtGvXz/BElFRUYGfnx9aWlpCmOfm5vLVV1+JfNy+fftSX1+Pnp4eeXl5bNu2jaamJvr160dqaip79+4lNzdXeJ60tLTo3bs3TU1NdOzYEW1tbYKDg/n888+JiopCQ0ODpUuX0rNnTwoKCqivrxfh1vr6emJjY4UHcNq0acjl8hbdh6BQ1tavX8+QIUMEu4KyG1JTUxNTp07FwcGBXbt2MWPGDAYNGsSqVatISUnhu+++Y/DgwRgZGXHw4EGsrKzw9PRsFhJeunQpW7Zs4bnnnuONN95odj+VlpZy6tQpXFxcGDt27K/osZQpEleuXBHRvoULF7Zofo83l1FVVRWhXyXu3r2Lubk5hoaGVFdX4+vry+rVq5HL5ezZs0cwIkgkEiwtLRkwYADz5s3j7NmzjBw5kkuXLolxNjU1CcVYLpczatQoYZgrzx9lfYSKigoVFRXcuHEDZ2dnkZ+elJT0l3mYa2pqkMlkTJw4EX9/f8H4cOPGDTIyMgBFWuHj6XGmpqaEhoYSGBiIqqoq0dHRbNiwgeeffx4HBwcmTZpEVlaWiIqVl5fz/fffk56ezsKFC9m+fTumpqY4OTlRX19PdXU18fHxHDt2jOnTpwOIFIhp06YJjtyWpg08fPiQ/v37s3TpUqZMmUJMTAzffvstpaWljB49miFDhrBp0yZu376Nm5ub8HwrqdwmTZokUhaVePnllzl37hxvvfWWMJgAwc6SlJREnz59mDhxIuPGjUNXV5fk5GRu374taiCio6PZvXs3nTt3pmfPnpiYmPDVV19x8eLFFjmtYmNjm9FqqqioCOaGsWPH0q9fv2aUaGFhYezcuZPXXnuN6urqZhSIOjo6Ip+7srKSgIAAjIyMSEhIIDExEQ8PDzp06MArr7xCVVUV9+/fF/VCcXFxzJkzBysrKz777LNmXnNl45n09HReeeWVP/Uut1h5VRZzKPnB2rVrJ9qqOTs74+XlxenTp2lqasLU1BRDQ0O0tbUxMjISN57ScxIREUFaWhr9+/fH2tqayMhISkpKsLa2pqGhAS0tLUG4fvnyZXx8fASX6+NWQmNjI9ra2sL6AoXiJZfLWxxCUFrKV69e5e7du5iZmVFbW0tqaipffPGFEPCdOnXiwoULJCYmiqIOJY2PoaGhKPyoqakRN5KhoSHjxo3DxMSE0aNH4+TkhEQiEQfFV199RXFxMefPn2fXrl2iO05BQQEWFhZoaGigoqIiirpsbW0ZM2ZMi5XXvLw8Zs6cSU1NjeCrLCgo4OrVq6irq1NSUiJawI0bN44rV64QGxuLv7+/UDrt7e0xNzenpKREeO9sbW1xcHAQxR8BAQHcunVLeIs7duwovOSPQ+mlv379Onp6ehgaGqKhoSEoQVrqKVBa+hKJBF1dXby8vETf5ZycHDQ0NPDz80Mul/Piiy+Sn59Pfn4+paWlNDU1YWNjwwsvvICPjw91dXWCGkaZn7p9+3a2b9+Oubk5PXv2FAwKenp6lJeXk5ubi42NDcbGxuTk5HDu3Dl69erFhx9+iJWVlbBElTl2ubm5pKSktGiOAQEBqKqqEhISgp6enkhP8fb2prq6mkOHDrFixQoqKyvp1q2bED63b98WhWShoaGiycedO3cE4bavry8DBw4kNjaWI0eOEBcXx6NHj+jUqRNDhgyhurqarKwsQHGgKStDJ06cyIULF0hOTsbe3p6CggI2bNiAiopKM+H9pHicSkrJxqBs4mFsbMzYsWObhelv377NlStX6N27t5ivpqamYCPIz8/n3LlzNDY2Cuq1K1euYGxsjJmZGRMmTBA0fI+3PVTm0CsjQzExMSxbtoyoqCh69+5Nly5dBBl9S6Crq8vu3bvx8fHB29sbfX19CgoKRG6ksbExEyZMIDY2FolEwqNHj7C0tMTKyoo7d+7w5ZdfYmVlxeDBgykqKiIlJQVdXV26dOlCQkICDx48EOT0a9asISgoSOSiXb16VdCLgSJ94OzZs1y7do2goCD09PQIDQ3F3Nycfv36CY9oS5XXuXPncvv2bRoaGsR6Kh0cjo6OIm0hJCQEBwcH7t+/z9mzZ5HL5Tg5OVFYWEhjYyN2dnZkZWXx9ttvi2Iae3t7mpqaMDQ0JDQ0VDBkfP3117Rv357k5GSGDRvGc889ByAMKaXyofTQNTY2IpFIMDIyarHXTlmMVF1djUwmE4rroUOHKCgooGPHjlhaWiKXy0Uhj7u7O48ePeLKlStkZGSgo6MjqriVPMvKPaChocGPP/4oIjs6OjpoaGgIR8DjOdbKtVTuW3V1dcrKykhLS6OxsZEvvviCH374QRDRPymSkpJE3UHnzp2JjY3FzMwMBwcHXn/9dbZs2SIMZmtrazQ0NFBTU6OoqIja2tpmDWmMjY25efMm+fn5ODg4iBzSBw8eoK+vj42NjTAc7969i62tLaqqqlRWVnL27FmioqKwsbGhffv2pKen89NPP1FeXk5tbS3Lly8XEaaWwtbWVqTKAOzfv79Z8Z5EIsHCwgIPDw+sra1FFBgUBWhK5oSbN29SW1tLfHw8V69eFUxE6urqFBcXY2JiwoMHD7h16xZ5eXlYW1sTFBQkdKOAgAC0tbWpq6ujsLCQtLQ0SkpKRMrO2LFjuXfvHvfv32/R/BITEykqKiIvLw+JREKvXr1E6k5NTQ11dXXk5uZSXl5OdXU1wcHB9O7dm507d3L48GFSUlIEQ5Cnpyf19fXs3r2b9PR01q5di4WFBe7u7ty+fZvz58+Tm5srCtZyc3PZvXs3BgYG5OTkUFRURIcOHYTiGhUVhaenJ/7+/ixbtoxjx449EdfrX2YQDwkJ+RVx9cCBA1FXV2fNmjWsXr2awMBA5syZQ48ePQSPn7m5Oba2trzxxhuiaCUkJAQXFxfeeOMNoqKi0NLSok2bNqLqOzAwkNTUVO7fv8/Vq1cJCgpCVVVVWGKPWwVK6OjoUFhY2OIDRUnyPHjwYDp27EhDQwP6+vokJiaycOFCJk6cyJYtW3jttddYvHgxRUVFTJkyBUtLS0HnAoqDacGCBbz++uvo6+tTX19Penq68GDm5eWRnp6Og4MDn3/+OevXryciIoLIyEjq6upoamqiuroaU1NTbGxsOHr0KKdPn2bChAnNLJK/koc2cOBAduzYwfPPP8/atWsBhUJrZ2eHi4uLyPtyd3cnPDycb7/9lqNHj5KWliZ+u1OnTnzzzTfIZDLMzMwwNzenurqahw8f4uDggKamJu3bt2fKlCmi7zf8NnH9oEGD6NChA++//74IrfTp00d01WkptYuyxW99fT06OjpMmDCBqqoq0eteuW+VqRqgEF7KQo3169eLLkx79+6loqKCDRs2YGdnx/Tp0zl58iQBAQGkpaVRX1/P+++/L1gRCgsLad++vWj/e/z4cfT09ITiWlZWxrZt20SFsK6uLvfu3WPXrl0tIvRXhq7NzMwIDAwUh7yqqiqHDh1i2bJlFBQUUFpayvTp00lJSWHlypXcvXuXFStW0K5dOyorK3F3dyc4OJjOnTujp6eHuro6RkZGdO/eXVSmfvfdd5iYmAgFRtnyFxQH/+M5dI6OjnTu3Bk1NTURAlOGO/8TmJmZsXjxYuRyebMoR2lpqTjofX196dmzZzNqqIaGBu7cuSOMrS1btghPWHR0NJ9++ildunRh7ty5zJo1i4MHD/L2228TGxvLgAEDWLt2La6urmzatAkTExMkEgkffPABR48eFW2Cq6qqhGe6Jbh8+TIffvghixYtEgUPO3bswMTEhJ49e+Lp6cnixYtFwVJ1dbW41tra2ujq6mJkZISDg4No62xhYYGPjw8qKiqkpaWxe/duRo0aJcjujYyMGDp0KH379sXHx6dZ9bCy+9G4cePYsGED06dPJzMz8y/1ildCSeVXUVHBhQsX6NKlC/b29lhYWDSjW2zbti0RERGcOXOGuLg4goOD+fjjjwWPr1wu57PPPmPZsmUcOnSIiooK5s+fz7vvvsvs2bOxtLQkOTmZjRs38uOPP2JnZ4dUKmXdunXo6emRlJTElClTBEXd4MGDhYGr5IdV/k5LoGyTGhMTQ2VlJQMGDCAmJoapU6fSsWNHXnzxRUCxD5UsM1evXiUwMJB58+Yxffp0Hjx4IFKmqqqqGDt2LFFRUUydOhUzMzNWrFiBnZ0dkyZNIiQkpFlU8vFxZGRkoK2tjYGBASoqKmhpaTFkyBDS0tIEfZfyvS3B119/zcaNGwkPD2fYsGGMGTOG1atXExUVxbhx4wSlWXV1NZqamjg6OlJWVsa1a9eora1l4MCBYt+2adOGNm3aUF9fL76/tLSU9PR04axSNoI5ePAgW7duFfRX2dnZnD9/ntmzZxMQEMA777zDV199xd69e9HU1GTQoEH4+vry/fffs2DBghbNMTAwkPHjx4t84ccdJqdPn8bLy4uBAweio6ODgYEBJSUl2NnZNVOySkpKuHLlimjv+u677/Lee+8BCg/qvXv3GDp0qGAS0tDQQCKRcObMGS5fvkzHjh3p168f/fr1o6GhgQcPHmBvb8/IkSOFs87Hx4f169fT2Nj4m1RovwdDQ0OWLVvG1atXRQqfUnndtWsXhw4domPHjnh6epKVlUV6ejrjx4/Hx8cHuVzOrl272LRpE35+foKHNjU1lejoaIqLiwGFzhUQECCowu7evStqQK5evcrBgwfp06cP69evF2fJuXPnRKfAwMBAFi9ezPz58yktLWXVqlV/OKcWK683btzg0qVLVFRUYGJigqWlJfb29vj4+KCnp8fw4cPJyMjAwMAAd3d3XFxchEehuLiY2tpa6uvrKSoqEoemknuwb9++ghzdzs6OgIAAwSLQu3dvcnJy0NXVpbKykuLiYtLS0vD29sbQ0JBz586xb98+3NzcmDBhApaWlhQWFgqC5CfFlStX6NWrFzo6Os28u/fv30dHRwcnJydsbW2xsrKiV69eoj+z8tq4ubkJZTo9PZ2cnBxBQaGurk5SUhKRkZHExMSgpqZGWFgYISEhLFy4EF9fX06ePEleXh6mpqZ07tyZKVOmoKamxunTp7ly5Yrgovvhhx+QyWR/ycp8+eWXRZcOJUxNTQkLCxNe4ri4ONzd3dHS0sLR0ZGrV6/i4eFBXV0dkZGR7N69Gz8/P1566SVh6ZeUlJCYmEhWVhZ2dnZ4e3s3C2MrKYauX7+OtrY2Xbp0EcU+1tbWDBs2jJMnT5Kens7Zs2dp167drzq3PQliYmK4fv06U6ZMoV27dhw9epTExEQGDhwoFNfIyEjWrFlDcnKy6Nakrq5Ox44dheK6Zs0afvrpJ2bMmEFoaChpaWmiQE5fX5+goCDatWvX7Dp269YNd3d3IiMjiYuLIzQ0lEGDBgmOY2WnNH19fWQyGbq6ujg4ONC5c2euX7/+xHPU0dERHnhNTU2+//57tLS0mDVrFoGBgUyaNAkjIyMKCws5e/YsNjY2SCQS0RjCxsYGU1NTNDU1mxXtwP8Pp1pYWNCvXz8RGrOysuLWrVvo6+szbNgwjI2Nyc3N5cSJE1y4cAEtLS2huILioJo9ezZmZmZ4enq2OEKQk5ODmZmZYOtQ7oXExMRmc3icceTxYlBQCG1VVVXRWEQZMt29e7c4lB5vZDJ06FBu3ryJqqoqEomE77//nh49eojWzTdu3EAikbBgwQJcXV3p2rUrJiYmxMfHi65YT4qCggJ8fHxE4auS7cLf3190Q7p79y4FBQVirykVF0tLS958803BQa08FPbs2cOBAwcoLi4mKCiIpqYmIRsbGhrw9PQkLCwMR0dHGhoaKC4uFhzBtbW1otZAuYaPR7Py8/NbND+At99+Gzc3N65evcqSJUvo378/06ZNE4UvNTU1wkjX09Nj2LBhuLi4oKen1yyFAhQHd0BAAOrq6rRv3x4zMzNBMdjY2Eh9fT0+Pj4UFxfj7+/PwIEDhSfthx9+IDo6GoAvv/ySNm3aiMiHurp6MyW+JVBGohoaGjh58iQnT56ktraW5557TlSwKwt0/Pz8CAkJIT4+nosXL5KdnU2vXr2E1w4UNIohISE4OTnx3HPP0dDQQFxcHNHR0Whra2NiYiLCvxcuXCAjI4POnTvj4uIi8sFVVFTIysrC0NBQKFobNmxATU2NdevWMXPmTF577bUnnqOPjw+DBg0iKCgICwsLwsLCiI6OFnRNnp6eHDlyhJs3b4r6DHV1ddzd3UlJSWH9+vU4OzsTHBzMrVu3SEpKYtSoUdja2vLDDz9QXFzMgAED0NXV5fTp0xw+fJjc3Fzs7e1xdHTE09MTZ2dnzM3N6dq1Kw8fPmTt2rVcvXqVgIAAwS4ybdo03Nzc/lKKktJpdfnyZfbs2YO/vz/79u0jJiYGGxsb2rVr18woNjY2Rl9fnx9++IGkpCS6dOlC586dCQkJYciQIZSUlAiHBsCZM2fYvn07ubm5vPDCC6xbt47du3ezdetWEem0t7cX0UJQnMmdOnVCW1tbdGlLSkrC3d29xRECb29vunfvjpGREdbW1jx8+FBEpy9fvsy5c+dEe+0zZ86IHH8zMzPR1KakpEToXiYmJjQ1NWFkZISFhQXl5eV8+umn2NnZMXToUGxsbFi5ciWFhYU4ODgQEhJCTU0NwcHB9OrVi7y8PD755BPq6+tFGkpycjKnT58WkZQ/Q4uV17t377J06VJKS0sxMDCgQ4cOjB07Vigo9fX1zJs3j3nz5pGZmYmKiorgvSsvLycmJoaLFy9SUVHB+PHjRR5SXV0d77zzzu+SC/v4+IibXEnB9bjX5+jRo3zxxRd4enoKeom6ujrBo/akOHbsGP369QMQHXdu377NoUOHCA0NZfDgwVhYWJCTk8OoUaNEG7f9+/eLsJ1S4H/66ads2bKF9957j+XLl+Pk5MThw4d57bXX0NTUZNiwYVy9epXGxkZ69uzJ7NmzCQkJ4f79++jp6eHv7y9uRGW3MBMTEy5fvsyCBQvo3LnzXwrHGhgY0LdvX0E1IpFIRMGQqqoqMpmM6Oho7t69y+jRo0lOTqaxsREjIyNKS0vZs2eP+KeiosKCBQuENamuri6Emo+PD6qqqqIbSU5ODg8fPhQdbNLT00UuorL71UcffcQnn3yCRCIhMDCQoKCgZn2unwTGxsZs2rSJXr164eLiwieffMLt27eF96+iooIvv/xSKFN6enqoqqoybtw40f3r22+/5b333mPgwIEi7JyXl0eHDh1ISUkRCplScU1PTxdhwoaGBmbNmkVKSgpff/21SKtR5mg/rhAow6NOTk4tUl6zs7OxsrJCW1ubrKwsvvrqK1RUVBg5ciTu7u689dZb1NfXo62tzdKlS8XndHV1mThxIiNHjhRehsrKSpF28Dj9Vm5uLgYGBsJ7lJCQIDypkyZNolOnTmRmZrJy5UrR8cvS0lIoiD4+Pi3mIP4lftmZKzs7m9TUVFEwofQegEIuGBgYNKsYV1ap5+bmUlJSIuiZVq9ejYuLCxs3bhS8sDKZDENDQ0Efd+3aNfbu3cuBAwcoKiqioKCAuLg4Bg8e/KuGCw8fPmxxz3hXV1fRtnXz5s1s27aNuro6dHV10dLSIjo6muXLl5Oens7bb7+Ng4OD6Jimp6fH5MmTkclklJaWYmhoSL9+/YiMjBRpOu3bt6dfv36CGB/gvffeY9SoUYJL0sjIiLKyMs6fPy8awIBCqVRVVRUhW7lc/qvmDE8CpXcoLy+PkydPcu3aNdE8RMkOocx1U+YMenl5kZWVxenTp6mursbd3R0HBwdsbGyYN28ezs7O4r6Lj48nMTERX19fUZilvM9AcR5duHCB4uJi2rdvL5hEbt26JZTX4uJiCgoKftW+/EmgHIexsTH5+fns3r1b0ALa2dmRkZHB0qVLqaioYPXq1bi5udG1a1e+/vproqOj+eijj0QURakUvPPOO8hkMm7dukV2drZg0ykoKODMmTM4ODiISF98fDz29va4uLg0U8CrqqqEp/7atWs0NDQwYcIEYZi3BNOmTWPatGk0NjbS0NAgvJrKVB6ZTMaDBw8oLCwUhoiOjg6urq4YGRnx3XffcefOHdTV1dm8eTMRERG4ublhbm7O2bNnkUgkvPTSS2hoaHDt2jVOnDhBbW0to0ePZtasWeIa19fX4+joyCeffMKKFSsYN24cr7/+ujizlBSAFRUVLZ6jEmvXriUyMpJt27YxevRoRo8eTUVFhTiHlc43PT091NTUiI6OZsuWLWRmZgoKz40bNwKKRhg3b94kICAAOzs70tPTOXfuHG+88QbPPfccWlpazJgxg4KCAubPn0///v0FpaaS0UfJkqOnp8f169fZsGEDnTp1Evfpk8LZ2ZnVq1cDijPn+PHj7Nmzh8bGRkpKSvDx8SEwMBAbGxuRhqaUoxoaGoSFhdGhQweuXLmCRCIR7bg9PT1xcXHh4MGDLFmyhGnTpjF9+nTCwsJIT0/H0NCQbt268frrr4szJi8vT1CSvfrqq8J5cPPmTd566y00NDRYsmTJn86pxcprRkaGoOKZPHkytbW1YrNevHiR2NhYcWH37dtHSUkJCxcuFJ6mAwcOUFBQwOTJk+nUqRO1tbVoamrS0NAgDpfHoVSuAJGXofSAWlhYkJWVxU8//YSzszNvvPEGMpmM4uJi6urqcHV1paGhoUUcmj179mzWTSs8PJy8vDwGDhzI0KFD0dbWJjMzU9BCZWdns2LFCtLT0+natWszq6+kpARoHqaxtbVl0KBBtGnTRlCeaGhoCAquwsJCevXqhbW1NbGxsUJpHTduHDdv3uTo0aPs27ePjIwMwQPZUnz00UeUlZXRvXt3wehQUFDAo0ePaNu2rcirPXToENeuXcPa2prly5fTq1cvkS9jZ2eHgYEBqampvPjii8ycOZNOnToRHBzMgwcPBD9uRUUFq1atoqqqiokTJzJ37lzs7OxITU2lU6dOIiUgPz+f+Ph46urqmDdvnuD5s7a2bnEor1evXjQ1NeHg4IC2tjbTpk0jMTFRhHXV1NQYNWoU7dq1w8TEhPz8fO7du8eVK1do27Ytbdu2xcvLi7ffflsccKDwRL777ruCjy4qKorDhw8zePBg1NXVuXPnDoaGhrRt25Zx48aRnZ0tFNeamhoqKirQ0tJqxtGXk5NDVVVVs8KPJ4GhoaEw3JKSksjKyqJNmzbI5XJR8GdhYcHo0aObFbHo6enh4eEhCp3OnTvH/fv3sbW1xc7ODj09PcEj+Di3cmBgIDU1NRw4cEB4dkHhmZs4cSLFxcXcuXOnRVRRf4aGhgaSkpJEDrWRkRHa2tq4ubkJJpPq6moaGhrQ1tbGycmJ4cOHNys8SEtLE62ZlZ4QpbXftm1b4eUoKSkRYVVlMVhQUBDV1dXU1tZiZ2eHXC7H2tq6mcKslE/Kpg5K796TwNXVlbZt25KQkMCtW7eoqKjAw8OD0aNH4+vrS21tLSNHjkRdXZ2uXbuipaWFXC4XVbvK0LCycUZcXJzIeW1sbCQkJAQ/Pz9BO9emTRsGDx6Mjo4ODQ0NwqOuVBiVe/W7777j9u3bTJ8+HQsLC44ePYqJiclfavgSHx9PZGQkjY2NrFmzBisrKzQ0NEhJScHR0RF9fX3Rztnc3Jwff/yRU6dO0a1bNxwdHdm5cyfnz59n3rx5+Pj44ODg8CvPupIXUvn3468r2UpCQ0MpLCwU7ae1tLRITk4WHj1Q3IstzSVUoqqqisDAQLy8vCguLuarr74SzDqlpaXExcUJHujk5GRBlfS4bNPV1aWhoYELFy5w+vRpUlJSRC6oslnO3r17yc/PZ+nSpfTp0wcNDY1maVVKI8DDw4OUlBTRZn3NmjVoa2uzfPnyv0Tirxz3zZs36d+/PxYWFoI2SUNDgy5dulBVVfUrA8fMzAypVMqJEyfYvXs3TU1NLFq0iKCgINTU1Bg+fLgo4NPV1aV///64ublx7tw5kpKSRHqOtbU16urqdOrUienTp+Pn50fPnj1xd3dHJpM161D4eEpCSyCTyZg1axZt2rQhMjISNTU1evfuzfnz5zl//jzDhw+nW7duZGdnU1BQgJOTE9OnTxeFaG+++SYjR44UFJLXr18nLS2NlStXEhYWxtKlS5vJpl69erFixQpu3ryJp6cn1tbWVFRUsGvXLgwNDUUag9J5k5eXx+nTp6mtreX5559v0dwep5uUSCT07NmTffv2ceDAAe7du4e1tTUnTpxg//79JCUlNfMaK1P9bG1tCQ0NRV9fH1VVVcaPHy+aMVhaWjJr1izh6Llx4wZ1dXWiw9rjZ56Wlha9evXC0dFROApBwRL06quvoqKigp+f35/qbZInVQykUmnLNIhnEOHh4b9LGPpvnx/8++f4b5gf/Pvn2LpP/93zg3//HP8N84N//xxb9+m/d35/jaenFa1oRSta0YpWtKIVrXgKeGLPayta0YpWtKIVrWhFK1rxtNHqeW1FK1rRila0ohWtaMU/Bq3Kayta0YpWtKIVrWhFK/4xaFVeW9GKVrSiFa1oRSta8Y9Bq/LailY8KSSS95FIZEgk9n/+5j/8nteRSOqRSDz+ppG14knRuoataEUrWvGPx1Mr2JJKpRJgGjATaAeoAsnAVuDz8PDwxj/4+D8KUqm0K/AqEAKYAMVAPPBpeHh4xFMc2t8OqVQ6Cdj+858vhoeHb36a4xGQSJqNC7m8ZeNSKDvJwGbk8rm/eO0B4PgbnwLIRy63+sX7tYH7wC3k8paTZ/4f4Znbpwpywt+VEcjlLZMRf7SGv37vH++XZ2gNpVLpVBTX5I/QFB4ervon73mmIZVKPwQCAXfADKgBMoBDwGfh4eEt75X9jOOZlad/EVKp9AF/ICvDw8Otfue1fwT+7XrNsyRrWtyk4G/ENmAS8AjYA1QBfYD1QDepVPpceHj4P54KQSqVvgcsBwqBY0AuCsHbAegB/GuUV6lUag9sBCqBlvWv+7+EQmn5T8e1CNAE1v7O62XAp7/xfOWvnpHLa5BI1gMfIpGEIJdf/otj+tvwjO7TP5QRSCTPtbCDxZ+toQJPsl+erTWMBZb9zmtdgV5A5H9tNP93mA/EAKdR7AldIBhYCsyUSqXB4eHhWU9veH8vnll5+p/jyWXlPw//dr0mlmdE1jwV5VUqlQ5HscDpQMfw8PDCn59XB/YCo4ApwLdPY3x/F6RS6XMoFIIfgZHh4eEVv3hd/Tc/+A/EzxbnVqAIOAAseLoj+hkK791/Ni6JxBB4HjiDXP57h2MpcvnSFnzrTuADQAo8VeX1mdynEslwHpMRyOWFPz//12TEk61hS/fLM7GG4eHhsSgOlV9BKpVe+fm/X/+3xvN/CIPw8HDZL5+USqUrgXeAt1GsxT8ez6w8/XtQGh4evvRpD+Lvxv+CXvMsyZqnlfM68ufHdcoFBggPD69H4R0BeOW/Pqq/EVKpVAX4EKgGJvxSIQAx338L5qKwuqahsDafFfwd4xoP6KCwpP8eyOU5wAVgNBJJy5vG/014hvepkBFCcQWQy/+qjHjSNXzy/fKMrOHvQSqVeqPwTD4Ejj/l4fzH+C3F9Wfs/fmxZT2Wn208q/K0Fb+Pf71e83t4GrLmaaUNKPNa0n7jNeVz/lKp1Cg8PLz0vzOkvx0hgBPwA1AilUoHA96ADIgODw+/8kcf/idBKpV6AquB9eHh4T9JpdJeT3tMAEgkYlzI5T8hkfzVcfX5+fHiH7xHE4lkIuCA4rCJA376k7zMSyhC8t1QhOqfBp7VffpEMgKJxAi5vPQJvu/P1/Cv7ZdnYQ1/D7N+fvzmn55r9ycY8vNj3FMdxd+EZ1ae/n3QlEqlv5KV/4I9+r+g1/we/uuy5mkpr0qrxOk3XnN+7P8ewNX/++H8nyDo58d8FHlaPo+/KJVKfwJGh4eHF/y3B/Z3QiqVqgE7gEwUobtnAxLJ3zmuUKACuPcH77H6+fceRzoSyTTk8vO/85nrPz8+TcXnWd2nf7eM+OM1/Ov75VlYw19BKpVqAxOBJuAfXeTzS0il0gUockANURRwhaJQgFY/zXH9HXhm5enfi9+UlVKpdFp4ePjvycp/Av4X9Jpf4WnJmqeVNqAU8q9JpVIT5ZM/37iPJwMb/1dH9ffC4ufHlwBtFJ4ffRRerZMoDrt9T2dofysWoyjqmRoeHl7ztAfzGMS4kMv/+rgkEg3AEsj7g+KgrUBvFEJZF4UC+BXQBohEImn/O5/L+/nR4S+P7z/Hs7pPhYxAIhEy4mcls2Uy4snW8K/ul2dhDX8LYwAjIPLfVMT0MxYAS1AwY4QCJ4B+/3RHwM94VuXp34U/lJVSqfT3ZOU/Af8Les1v4anImqflef0ehaY+EEiQSqVHUOTc9QFcgBQU+Uv/5DCCkipCgsJzdfvnv+9KpdIRKDxA3aVSaed/agqBVCrtiMI7sO6ZmoNEIsaFXP6fjsv058eS332HXP7L6ss7wEtIJJXA6yiqoUf8xieLf340+8+G+B/hWd2nzWQEEsl/IiP+eA3/s/3yLKzhb2Hmz49fPdVR/B9ASacklUotUaS9rAZuSaXSsPDw8JinOrj/AM+sPP0bER4e/puyUiqV/pms/Cfgf0Gv+S08FVnzVDyv4eHhTcBQFBZ0HooKvelANgpLWsnX9+hpjO9vgvKgTHtMIQDgZ4v65M9/dvyvjupvwmPhrXv8/2T0p4//H/79u8al9H5o/YXPfvnzY7ffeV37F7/xNPBs7lO5/O+UEb+/hv/5fnkW1rAZpFKpFwqlLpt/ERXfLxEeHp4fHh5+EOiHwkDZ/icfeWbxzMrT/x7+TFY+8/gf0Wua4WnKmqfG8xoeHt4ArPv5n8DP+RN+KA6Du//9kf1tSP75sfR3XlcqDdq/8/qzDj0UZOEAMqn0NxlqNkml0k0oCg9efRrjQiL5zXEhkWxCUZjzx+OSy0uRSOr4/967lkAppHR/53XTX7zvaeDZ3ady+W/KiJ8bBPjxpDLij9fwP90vz8Ia/hL/K4VaAISHh2dIpdIEwE8qlZo9Xun9D8KzKk//W/gzWfmPwP+AXvNLPDVZ8zSbFPweJqHwkGz7h1NJ/QQ0AG5SqVQjPDy87heve//8+OC/Oqq/D7XAN7/zmj+KvK2LKJSj/2YI7P9iXPFAByQSA+Ty8haMpfPPj79VfQqKxH34Hd68/xL+iftUyIifqbOeBL+3hv/pfnkW1lBAKpVqobg+Tfz+vP6NsPn58Z+qrD+r8vS/hT+Tlf90/Fv0GoGnLWuemvIqlUoNwsPDy3/xXBCK/KVK4P2nMrC/CeHh4YVSqXQPCmL0xcB7ytekUmlfoD+KTiMnns4I/zP8HFJ+4bdek0qlS1EI223/9XaGimKb3xwXEslSfh5XC9vDRgEBKELnP/7iO9sBucjlxb943hH47Oe/dv7O9wb//HiuBWP5W/FM79PfMhYkkr8qI6L4rTX8z/fLU1/DX+A5FAUhx/5NhVpSqdQDBbl93i+eV0HRYMMCuBweHv77uenPMJ5Zefo3QiqVtgNyw8PDi3/x/JPIyn8E/u16zS/wVGXN0/S8npZKpTUoErYrUPQBHoTCAh0ZHh7+b7DAXgM6Ae9KpdJuQDSKvs4jUHgIXvwX8r39G7EfRTFBf36pvCpu4LeQSM6h6KxSgSI5fzAKSzsC+OhX3yiRqKCouk1GLr/zfzbyJ8Ozuk9PI5H8roxALm+JjPijNfxreLbWUAll8cS/oaPW4xgArP2Zui0VRf6gJdAdBQ1RHvDi0xteK54AzwFvSaXSlsnKfxb+F/QaJZ6qrHlaVFmgIEXXR1Gd9xoKyozNQLvw8PCTf/TBfwrCw8MfoVAKPgHs+f9dU44DXcPDw/8NVFn/figq0G8BzyORqP7i1XPAQRTcfhNQ7OXuKEJ8U4Aw5PJfhuJBUYFqy/8vVHhqeIb36e/KCOTylsmIP17Dv4pnZg1BkNuH8u8s1PoRxSFpiqKT0Rso2m0Wo6AhahceHp7w9IbXiifAn8rK30hb+qfhX6/XwLMhayS/T3vYila0QkAiGQ98h8Ljd/Bv+L79KAS3C3J52X/8fa34c7SuYSta0YpW/CvQqry2ohVPAolEgqJQQlE1+p/cOBKJH4puVnORyz/7k3e34u9C6xq2ohWtaMW/Ak8zbaAVrfjnQKHozEQR9rL5k3f/GaxRcDk+E+Hm/xm0rmErWtGKVvwr0Op5bUUrWtGKVrSiFa1oxT8GrZ7XVrSiFa1oRSta0YpW/GPQqry2ohWtaEUrWtGKVrTiH4Mn5nmVSqX/+PyC8PDw3+z9CP/++cG/f47/hvnBv3+Orfv03z0/+PfP8d8wP/j3z7F1n/5759fqeW1FK1rRila0ohWtaMU/Bi3usBUeHk5TUxMLFixg586d9OrVixdeeAFPT0+MjIzQ1dUFoLa2lqioKN577z1u3LjB6tWrWbhwIfX19eTl5WFvb09aWhoJCQl4eHjg7OxMfn4+hYWF6OjooKOjg7W1NQAnTpxg0qRJFBYW8sILL/DSSy9RU1PDpUuXsLGxYdKkSQCUlJRw9+5dUlNTUVdXp2vXrtjY2PDKK6888fxGjhxJQkICbm5uDBw4EIDNmzfz4osv8sILL7Bp0ybS0tLYv38/gYGB9OzZE4A333yTtWvXArBy5UoWLlxITEwM27dvx9raGlNTU5KTkwkMDGTChAkUFxezYMECtm7dSs+ePfnhhx8wMTGhqKgIVVVVjIyMAKirq6OkpISHDx9y69YtkpOT8fT0pGfPnjx69IikpCSuXr3aojXU0tJizZo13Llzh71796KmpsaNGzeIjIxk/PjxzJ07l6SkJLKysnj++edxdnYGIDU1lR9++IG9e/fi7+/PqlWrMDMzE+OUy+U8evSI+vp6EhIS2Lp1K/n5+UilUiZMmABAUVERDQ0NWFhYIJPJuHPnDiUlJTg7O+Ps7MzBgwd544036NevH1988QWff/45r7zyCrNnz37i+S1cuJBNmzaxcuVKLCwsiIiIoE2bNqxduxZTU1PeeOMNAPLz87l16xbt2rXD3t6eHTt2cP36dWbOnIm3tzdZWVkYGhoikUjYtWsXDx8+ZOrUqbi4uACwb98+cnJyGDRoEG5ubsjlcmpqatDS0kImk6GjowPA4cOH+fbbb+nSpQv9+vXj6tWrnD17Fnt7e0aMGEFISAgAUqn0iedoamrK8uXLOXPmDAsWLKC4uJj+/fvTp08fnJycaNeuHTo6Oly/fp3Bgwfj4eHBqVOn0NLS4uDBgxw+fBgHBwemT59OmzZtqK+v58cff6S6uprOnTtjY6Moxo+JiaGoqAhHR0fc3d0BmD9/Plu2bGHlypXMmTMHgNLSUrFn5XI59fX1aGho0NTURFxcHDk5ORw7duyJ5wfw0ksvUVxcjLW1NVZWVgAYGhoC8MEHH/Duu+82e//UqVPZtGkTFRUVnD17FicnJ/z9/QH47LPPWLNmDQ4ODrzzzjsMGDCA7Oxsbt++jaOjI76+vs2+6+LFi9y5c4eQkBDxWkJCAidPnuTKlSvcuHGDoqIihg8fzocffoiVlRX19fXMmzfviec3duxYrl27hpubGyNGjABg48aNzJ07l3HjxrF7924AMjIy0NfXx8TERHy2rq6OhIQELl68SH5+Ps7OzvTt2xc7Ozv27t3LJ598gqenJ+Hh4WhpaVFUVMTu3bvx9/cnJCSEtWvXsmzZMt544w2WLFkCwNatWzly5AjPPfccEyZMoLGxkYyMDOzs7NDQ0ABatkcBRo0ahVwu59KlSyQkJNCuXTtGjx6Nl5cXdXV1nDp1ioiICLy8vBg1ahRRUVFMnDiRpqYm+vTpwxdffIGrqyv3799HJpPh4OBAVVWVOBvWrVvHggULeOWVV9iwYQOgOAcMDAxQVVWltraWjIwM7O3t0dbW5ujRo3zyySeMHj1azKW6uhpVVVXU1NSQSCRiTz8JPvvsM1RUVMTvHjp0iNLSUrp27Yqrq6u4J9LT0/nsMwWj2qRJk/Dz80Mmk/Ho0SPU1NTE/ab8HmNjY/H9K1eu5OWXX+a9996juLiYDz/8kD179pCRkYG2tjYHDhxgwIABREZGEh8fT8eOHQkODkZLSwtQnMVqamqoqqoSHx/P559/Lsb8JJBKpZw4cYLKykqMjY0xNzdnwIABmJiY8PXXXzNr1iwAXnzxRZYvX46lpSVVVVVUV1djZmaGRCKhoaEBmUyGnp4eAJWVleL/J0+eZOvWrYSFhTFx4kTq6+vJz8/Hzs4OgKqqKhobGzEwMADgzp07xMfH06FDBzw8PMjMzKShoQF7e3uuXbvGxo0bMTU1feL5AXh5efHCCy+IawYKGbB48WJCQkJYsWIFoJBzqqqq6OvrA3Do0CHi4uIYNmwY7du3p6GhATU1NaqqqujZsyeJiYlERkYSGhoKwO3bt1FVVcXOzk7sjbKyMiHXfvzxR0aMGIGrqytRUVEYGhpy/vx5NmzYgIODA++++644c1tyL4aHhwNw/fp1Hjx4gJ+fH25ubgDs2LGDixcvEhYWxpAhQwA4cuQIa9euJTs7m5EjRzJv3jwcHBwAOH/+PADdu3cnJSWFcePGERMTI+7B1NRURo4cSV1dHcePH8fZ2Zm6ujoqKirEuqSnp3Pz5k20tLRo164d1tbWaGhoIJFIfmY0/PP5/aX2sCoqKiQlJVFQUIC+vj59+vQBFIudmJiIoaEhTk5O1NTUiIF16tQJAHV1dbS1tQEwMjLCw8MDJycnSktLuXDhAgYGBnTq1In8/HwePHiAt7c3fn5+vPnmm5w6dQqJREJFRQUmJibU1NTw9ddfc+XKFd566y0cHBxo164dcrkcV1dXIeBagvr6ejw8PKirqyMlJQU3Nzd69OjB22+/LQ7CgoICTp8+zebNm5k/fz7PP/88vr6+dOjQASsrK3r06EFFRQV79+5l//79SKVS+vfvj66uLufOnSM5OZmgoCA6dOjAuXPnuHTpEitWrGDmzJlCidDX12fEiBGkpKSwaNEikpKSMDc3x8zMjA4dOqCvr88333zDzp07hZL9pJgwYQJqamp4e3sjkUioqanBwMCApqYmvL29MTY2xsnJCR8fH5ydnXn48CFffvkl1tbWDBgwgKCgIHR1ddHQ0CA2NpaCggL69u0LgL29PdnZ2fj4+LB06VJu3rzJuXPnuHz5Mq6urqSnp1NfX49UKsXb25uSkhLy8vJo3749KioqaGpqkp6ezqlTp3j06BFTp06lqamJpKSkJ57fnj17cHd3Z+nSpaiqqqKuro5MJqN3795YW1tTVlZGdHQ0+fn5+Pn5UV1dzZ49e5DJZPTp0we5XI5cLsfe3p6ysjJiY2NxdnZGT0+PrVu3YmpqSocOHbCzs8PR0VEoVhKJRCisOjo61NbWEhMTg0wmY9asWTg5OaGiooKdnR19+vTBzMwMS0vLFq2dEi4uLsTExNDQ0MCoUaOorq7Gzc0NHx8fPD09aWho4OjRo+JA79mzJ4WFhZw9e5bjx4/TvXt3QkNDycvLo7a2FhMTE2xtbdHS0hIHaWlpKfn5+cjl8mb30ksvvYSLi4u4pwEqKirIysrC1tYWAwMDSkpKMDMzQ1VVFT8/PzQ1NVs8x+PHj3P+/Hnatm3LuHHjCAoKEq8NHz4cVVVVbt++TVVVFfb29gwdOpSamhpKS0txd3fHx8cHgLi4OE6fPk1WVhZZWVlERUUxaNAg9PT0+PHHH+nWrRu+vr6kpqaKaxsaGkpBQQHffPMNgYGBjB07lpqaGuLi4jA1NeXtt98WRpjSYC8ra1mfAnNzc2xsbGjXrp14rlu3bnz++ec0NTVx7tw5fH19cXR0BBSy6YsvvqBdu3b07t0bPz8/srOzaWxsFNd41apVnDhxgoEDBzJt2jS0tLRIT09n9+7d/PTTT+jq6hISEiIM0nXr1hEQEEBYWBh9+vRh+/btrFmzhrKyMgYOHCjed+zYMRISWt7A6o033iAoKIiuXbtia2vLsWPHOH78OAEBAfj4+FBUVER9fT1GRkZYW1szfvx4qqurKSoqwt7enosXL5KTk4OtrS0RERHcuHGDmTNnYm1tTV1dHRYWFnz44YcEBQXx8OFDsrKyKC8vJzAwEBMTEzQ1NSksLGTTpk1kZmZiaWnJ8OHDMTIyYuvWraipqeHh4dFsb7UEa9aswdnZmTFjxmBsbEz37t1JT0/H09NT7AsAAwMDAgICaGpqEoqKlpYWDg4OpKamsmjRIqKjo3F2dub5558Xys6QIUMwMDCgoKCAw4cP07ZtW8aMGYOlpSXnz5/HycmJDh06AODt7Y2+vj4NDQ2sXr2asrIyXnzxRby8vAAoLi4WSmFOTs4Tz/HBgwcEBgYKpTogIIC8vDw+/fRT7t+/z/z58zEyMsLX15fi4mK2bdvGuXPnmD9/Pv369QNATU0NPT09rl27xqpVq/D396dz584kJCTQ2NjIm2++KYxjdXV1dHV12bNnD0ZGRoSGhgrFFRR6xurVq3nhhRd47733hFIFEBoaSm1tLfv372/ROurp6QnFtaysjOPHjxMXF0eXLl3o1auXeJ9S4YyNjWXZsmUcOnSInj17snjxYjHP+vp61NXVefXVVykqKqJt27YANDQ04ODgIAwTJdTU1Lh58ya7du3iwoULDB8+nFmzZol9oqKiQrdu3QgKCkJPT499+/Zx+vRp1NSeXH1LTExky5YtfP/999jZ2bFs2TLs7Oy4desWjY2NDBkyRFx/UOzNoKAg5syZg6mpKatXr8bb2xupVEr37t25ffs25eXl2NjYMHnyZBwcHGjfvj2gkJ/u7u5kZmYKRVtDQ6OZQWFvb4+Tk1OzMcrlciQSCdXV1eTm5v7pnFqsvKalpeHs7Iy3tzf3798XHgNQeLLi4+NRU1Pj4cOHGBoaMmLECNzd3YUSdPnyZTQ0NOjVqxcmJibCm9DU1ISamhqGhoYYGRlRV1dHQUEB5eXl2Nra8sYbbzBq1CjOnDlDfHw8FhYWmJmZoaWlxdmzZ/Hy8mLOnDkYGxvj7++PTCYDoLCwsEXzs7CwICAggLS0NC5fvkxjYyMeHh588MEHADQ2NpKVlUVeXh737t0jMTERfX19Bg8eTEVFBdra2lhZWZGdnU1NTQ0uLi64urrSpk0b2rRpw9atW9m8eTOrVq3irbfeQiKR8NFHH5GXlyc+c+7cOQAcHBx49OgRMTExFBcXI5fL6dGjB0FBQejr62NgYCCs05YgMDCQ8vJyGhoa8PHxQUVFheDgYCZPnkxjYyPGxsa4urqiqqroovnpp5/y0Ucf8eqrrwprSCaToaWlhYWFBRkZGZw/fx5PT0/Mzc0xNDRET08PiUSCnZ0dGzduJCEhgREjRnDr1i2SkpIICgrC29sbGxsbamtrxcZWKvWqqqrU19ejp6fH6NGjheX7JEhNTWXWrFloaWlx/vx5oZT07t1beBxu3bqFhoYGXl5eXLt2jT179jBmzBiGDh1KdXU1KSkpODg4EBcXR3FxMcOHDyc1NZV33nmHrKwsvvrqK2bOVLR2bmpqoqqqCrlcTl1dHerq6ujr65OXl0dsbCxt27alV69e3Llzh8TERAYNGoSurq74HCAenxRDhw7lp59+oqKigqFDh/7Kc9jQ0MCxY8e4e/cuU6dOFV6b8PBw4uLimD17Nr6+vuzcuZMLFy4QGhrKoEGDMDU1pb6+njt37pCfn4+amhpWVlZCKayursbR0ZE5c+ZQXFxMXl4eVlZWaGpqUlBQgJGRESYmJpSVlXHt2jUcHBzw8/PD09OzRfMDhUKsrq5OfHw8pqamtGnTBmtraxobG/Hy8sLLy4ucnBxqa2uFILx3754wvpR74caNG7Rv3x6JRMKZM2e4efMmt27doqSkBJlMRlNTE6DwZqenp5Oamkp1dTUXL15kw4YN+Pr6EhISgomJCRYWFnTq1ImRI0c2G2tVVRUPHz5s0fycnZ1xdHREVVVVRC7at29P+/btOXPmDOfPn6euro7+/ftTUVHBzp07SUpKEsosQKdOnejcuTOmpqbU1dVx4cIFoqOjGT9+PPb29oDCCDh06BDGxsbY2Nggl8uxsbGha9euREdH891332FiYoKLiwtTp04Vim5QUBBt2rQBFBGToqKiFq9hYWEhqqqqhIWFYWRkxI0bNzh8+DDR0dGMHTuWKVOm4ObmRkFBAdHR0Xh7ezNjxgxAoWxt2bKF6upq9PX1qaysJCsri5qaGrHW7dq1E5G3bdu2sWjRIpycnITXurKykpiYGPbt20dGRgbz5s1j7ty5ZGRksHnzZiF3ioqKMDU15d69ey2a3+rVqxkzZgza2toEBQWJCBJATU0N1dXVqKurY2pqKqJPytdqamrIyMhgz549bNiwgZqaGjw8PBg7diygOGscHR2ZPHkyGzZsYMuWLbzxxhuEhoYSEBDAa6+9BiiMmoKCAuzs7LC3tyciIoKoqCjKy8vp3r27UF7v3LlDaWkpvXv3ZseOHU88R2dnZ7y8vEhNTaWmpgZ9fX0OHz7M8uXLGTNmDB9//DGgUD5ycnJITU3lxx9/pEOHDkJ5Va7ntm3biIyMJC8vj1OnTnHp0iU6d+7M+PHj0dPTE4pfVlYWSUlJ+Pn5NTMClCgtLW0mMy9cuIBMJsPV1ZXevXu3WHlNTEwkNzcXa2trqqqquHPnDmZmZixYsABQRDoSExOxt7fHxMSEzMxMrly5AkBubi579uxhyJAh6OjooK6uDijOsvLycnHmqKmpUVJSws2bNzE0NKRt27YYGBhQXl7O2bNnOXToEI2NjYwZM0YYJNeuXaOsrIxx48YJR0d+fj537tzBz8/vied37NgxPvroI0BhHERHR1NVVYWWlhbdu3f/lSJpYGCAk5MTvXr1ora2litXrrB79248PDzo1auXUFTr6uoYPXo03bt3p7GxkYcPH1JYWEi3bt3Q1dUV3vbc3FzU1dUxNzdHIpEI/U55Bj569AhLS0scHBxIS0sjOTn5T+fUYuU1OTkZJycnli1bxssvvyyUp7q6Ory8vHBxccHQ0JC0tDSuXbuGrq4uTk5OlJWV8dFHH7Fp0ya6dOmCr68v+vr61NTUUF9fj5mZmTgQZDIZlpaWv/JKOTs7o6qqyssvv0x5eTnLly+nR48eHD9+vJlWn5OTw5YtW2hsbBSW0pNC6V11dnZGJpNRXV1NcXFxs5CdpaUlM2fORFdXV6QNGBsbExISwurVqzlx4gTTp08X1m9JSYn4bNu2bTl79qx4bs6cObi5ueHl5UVVVRVxcXFCiVSGGNavX09jYyN6enoEBAQIZeKVV15h8uTJLFu2rEVzvHPnDgcOHODRo0d07NiR4cOHY2BggIWFxa/eGxkZyYULF3BwcBDe1YiICHJzc5kxYwY2Njb06dOHcePGkZqayvvvv8+IESOoqalBR0cHY2Nj3n77baqrq/Hy8iI+Pp7Y2Fixtt7e3jg5OQkFwtLSkpEjR2JkZIStrS2HDx9m7dq1v1LO/ggvv/wyhoaGREZG8uOPPzJw4MBffX7KlCmUlZUJD+vMmTOFB0xHR4e6ujpOnDhBTU2NECQGBgaMHj2auro6unXrJr4rOTmZ2tpaNDU1iYuLIyMjg27dutGhQwcmTJggLOht27Zx7do1OnXqhK6uLioqKiL8lJ2d/cTzA9DU1KSpqYnExEQ0NDTE/CorK2loaMDIyAipVEqvXr2wt7dHXV0diURCcHAwJiYmwmofNGgQP/zwAx999BGurq507tyZb7/9ltTUVGbMmIGbmxv5+fls27aN9evXU1xczAcffMDLL79MZmYm+fn5WFlZYWFhgY+PD3V1itbk7u7uXLlyhVdffZVx48YJ468leP3116msrGTHjh1UV1eLe7CgoEAoBOrq6mRmZiKTyaioqKC8vFxY+6DwqHTs2JEBAwZgY2NDfn4+33//PVKpFHV1dYYPHy48DkZGRmhpaTFlyhRyc3PF79XW1lJRUSEiQA8fPmwW6gOF/CsuLm7R/B4PUTY1NaGiokJhYSHXr19HVVWVqVOnUllZySuvvML27dvp3r07H3zwAU5OTiQnJ2Nubo65ubn4Dg0NDT7++GO++uor1qxZQ01NDfPnzxfRrYEDB9K/f39AsceXLFmCi4sLUVFRzJw5k44dO/LVV18xZcoUkpKShBLW1NTExIkTqays5O23327RHA8cONDMC/nBBx9QUlLC3r17sbCwYODAgTx8+JCXX36ZdevWMXjwYAYMGEBeXh73798nMDCQHj16oKmpyfTp05k8eTLW1tbU19c3mzsovDlZWVlUVlYKBUJNTY0ePXpgY2NDamoqQ4cOBcDR0ZEpU6ZgbW2Nrq4uubm5fPDBBxw8eLBFXlhnZ2fc3NwIDw8nKyuLdevWiWt89OhRzpw5Q+/evRkzZkyzzyUkJHDs2DF2795NaWkpgwcPJjg4mHbt2tG+fXvkcjmVlZVij2lqaqKqqkp5efmvxrBv3z5u3brFpEmT0NXVJS0tjXHjxuHm5kZ5eTlfffUVurq6tG3blj59+qCrq9si5VWp/Nrb2yOTycjLyyMuLg4LCwu6dOki3hcXF4e3tzdLly4lJCSkmbc0MjKS+fPn07ZtW77//nvOnj0r0iiuXLnC4MGDWbhwIaNGjQIU5+nIkSOFAfY4unXrxjvvvEPv3r2RyWSsWrWK999/H4Bly5YJL2hLEBUVhampKSEhIRgZGTFjxoxmjqGamhqWLFkivOTdunXj6NGjqKioEBMTw4oVK9i8eTObN28WxuWxY8dISUlhwoQJwpN++PBhYXS89dZbLF68mMbGRhwcHNi5cyf5+fns3LkTTU1N5s6di4aGBunp6c2iXHPmzKF79+588cUXTzy/2tpaunbtiqenJ87OziKSOW/ePPT19SkvL0dTU1NEyMrLyzl06BARERF069aNESNGcPz4cV588UUWL17MlClTAMV5o6mpib29PefPn2fRokXU1NQwb948hg8fzv3791m6dCmJiYmMGDGCuXPniuu9fPlyYmNj6dOnD7Nnz8bT05Pk5GQuXbpEbW3tn86pxcqrMnxYVlZGcXExOjo6GBoaUlJSIkKGoAiJ3b9/H319fbS0tGhoaEAikWBhYYGLi4vYlNra2mhra5OXl8etW7eEoM3Pz+fKlSvY29tjamqKRCLB0dERGxsbsrOzKSoqws3NDXNzc77//ntxaALcvXuX27dv8+DBAwwNDYXy8STIzMzk7t27hIaG4uXlRUREBLdv32bIkCEifycgIICuXbsCkJWVxb59+xg9ejS2trZcvnyZzMxMOnfujKenJ9nZ2aioqAiLcuTIkZSWllJRUcGNGzcIDAykf//+FBQUcPPmTdq2bSusmunTp1NaWsrnn3/eLGxbX18vhNqFCxdauoT89NNPrFq1CnNzc3x9famvr6eyspKioiLkcjm2traoqqry8OFDKioqsLe3x8DAgIaGBpEflpKSwpdffknv3r0pKipCT08PAwMDqqqqUFVVRUdHR+RBjh49Wvx2YGBgs7Fcv36dhoYGHB0daWxsJDk5GQ8PD/r164dEIiEmJoa7d++2SHlVvvfKlStiDylTW1JTU0lOTsbX11coLXZ2dtjZ2dHU1CRCYyoqKhw8eBAPDw+ee+45AHR1dYWXQYnCwkLKyspwcnJCW1ubtWvXcvToUXx9fdHU1CQrK4sHDx7g4+NDcHAwRUVFHDp0iDZt2lBdXY2vry9OTk6kp6e3aA2vX79ObGwsoAgrnT9/ntjYWOLi4ujYsSOzZs0SXrySkhJOnDjB2bNniY2NxcTEREQmTExMsLGx4fDhw+KzFRUVqKioiJyo4uJilixZQk1NDebm5ujp6QmFvaysjEOHDtGxY0dsbGyQyWQin83AwAA9PT2Ki4uprKxs0fxA4QmVy+XMmDGDoqIijh8/Lq6ZMkS5ceNG7ty5Q58+fWjXrh0ymYz4+HgsLS3R1tbG0dERS0tLUlJSOHXqFP369WPevHncunWLiIgIsrOzhQGRnJzMl19+SWlpKf7+/gQFBdG3b1+MjY2FYVdXV0dcXBxnzpzB3NwcXV1dqqqqMDIyEuHBJ8WdO3dQUVHByMhIpGrk5eWRk5ODr68vlpaWREdHc+3aNaysrOjatSvOzs7o6OiIvPK6ujrh3evfvz8eHh588sknXLp0icOHDxMWFoaTkxNjx46ld+/e4reVMgYUSrS+vj6JiYls3bqV7t27o6amRkZGBkZGRpibm4uUiZbC1dWVCxcu0NTUJPIkw8PDMTU1paGhgaioKPT19QkJCRFRq6ysLNavX09+fj5hYWHCGHn06JGQpbq6usIArqioEN8xffp0Hj16RHp6Oubm5qiqquLt7Y23tzcA0dHRbNmyBblcLtLX/Pz8MDMzo7CwkKysrBYprxMnTiQkJITExEQyMjIoLS0Vr33xxRdERUUxYMAAQBHu3rZtGzo6OpiYmJCUlERjYyMDBgxgw4YNzZS9pqYmsS8bGhpwdXVFXV0dY2NjioqKkMlkFBYWEhsby8mTJ9HS0uLBgwciUqKUue+99x5RUVE8//zzWFhYiDSqliA6OhpPT0/09fXR0NBARUWFsLAw3N3dcXBwEHN/8OABRUVF9OrVSyg3oMjZPn36NPX19UyYMIERI0ZgbGxMQkICampqZGVlUVBQIPKOQaEo29vbU1BQwJkzZzAyMsLFxYWKigoOHz5MZmYmOjo6aGhokJeXB4CVlZVQtFsKXV1dioqK2L59O9ra2owePZrq6mrS0tLo3r07RkZGuLm5kZmZKaJrdnZ2WFtb09DQgL6+Po2NjSJfMzk5mbNnz6KnpyfSly5evEhKSgr+/v4UFxcLD6S1tTVdunTBxsaGa9euUVVVxd27d8nJycHFxUUYDGlpaWRmZmJtbS0iIk+KqVOnMmrUKAwNDamoqOD69euoqKhw7949cnNzuXv3Lg4ODoSGhqKvr4+enh5+fn4cOXIEY2Njli5diqenJy+88AJr167Fx8cHf39/jIyMxJ53dHTE29ub8vJyocBraGhw6dIl4uLimsmfoqIicnNzkclkmJqa0rt3bzQ1NamsrKSwsFA4s/4ILVZela7qRYsWcfz4ccLDwxk+fDiWlpYUFBSI98nlcpEnqPQavvXWW8ybNw9DQ8Nf5Wvs2LGDhQsXsmDBAtasWcPRo0d58cUXGTx4MEuXLhWbsqGhgaCgIAwMDLC2tmb//v2sW7eOV199FYD4+HjS0tIYMWIE9+7d4+7duy2a3+nTp9mxYwfl5eUMHTqUtLQ0cnJymrVBfzzZ/cCBA3z22WeoqanRv39/nJ2dRUghMjKSjIwMPvzwQ9TV1bl9+zYeHh5s3ryZmTNn8txzz7Fp0ybc3Nz48MMP0dfXZ/jw4YDihq+urubWrVusXr2a5cuXY2BgQGJiIjo6Ojg6OvLll1/yyiuv8OKLL7ZojsXFxchkMvr37y9C30pvsLu7u8iDVQqQiooKPv/8c65fv87QoUPp37+/8AjNnj2boUOH8uqrr9KxY0dUVFRE0vpveb2VHkpQKJKvv/46bdu25e233+bq1av8+OOPTJo0SSjLw4YNY+jQoXzzzTctmiMowjbJyckcP34cX19fevXqxZUrV5g9ezYdO3ZkzZo1BAQEiPenpaWhoaEhDojbt2+jr68v9upvCX09PT1cXV3FAaumpoaKigqmpqbIZDImT54sigtHjRqFn58fK1euFIU9X3/9Na6urmRkZLRobkeOHGHbtm0sXryYYcOGsWbNGhYtWgSAra0toPAWxMfHU1VVxeXLl1m/fj11dXVYWVnxwgsviO/S0NAQwldVVZW5c+c2y29sbGxELpejqanJiRMn8Pf3p7q6Gh0dHSQSCcuXL+fKlSusXr0aLS0toqKiKC4uxsLCgkOHDqGhofFEYaBfYseOHVy5coXFixfj6enJSy+9RHx8vDDYJBIJP/30E8XFxbz22muEhoZy9epVbty4we3bt7G0tBRCdNeuXaxZs4YVK1bw2muv8e233zJt2jS2bt1Kt27dsLa2Zvbs2dy8eZPDhw/To0cP6urqKCwsxMLCAjU1Nb7//nu2b9+OhYUFzs7ORERE8OOPPwKK3E6lx+1JceDAAYyMjOjataswTj08PPDw8CA7O5vdu3dz7do1xo4dy8SJE6muriYyMpK2bdvi5eXF6dOn+eyzz8jOzmbs2LHNfv/IkSMkJiZy//592rRpQ1hYmCige1x+TZ8+nQcPHrBu3Tqys7OZPn061dXVjBo1Cl9fX8aOHYu5uTnffPMNK1eubJYm9iRYuXIln332GYGBgWhra9O9e3dMTU1ZtGgRc+bMYeTIkaxatYo333xTfKayspKcnBxu377d7BD74YcfiIqK4sUXXxRRuqamJpFnrqWlxerVq7l27RrR0dGiiBEUh+WePXvYunUrN27cEFG/hoYGRo4cKdKAbGxsSEtLe+L5dezYEW9vb9577z1ReAqKIuPU1FSMjY3FHly8eLFICRs5ciT9+/fnzTffpG3btmIOSjy+RmpqagQEBODl5YWWlpaIbG7ZsoXIyEgRPXN2dkYulwvFJisrix9++AFtbW0GDBiAqakpkZGRzQyXJ8GWLVuE0a48y7t160aXLl24e/cu6enpaGpqoqamxqFDh8jOzmby5MmAIgr6/vvv09TUxMGDB4Vjwd/fn2+//ZaKigoaGhowMDD4lUJWWFjIunXrOHnyJAMGDGDIkCHExMSwZs0aSktLRX7/ggUL6NKlCx06dBCKYksRFhaGh4cHR44c4ciRI9y+fRstLS0qKyspLy9n0qRJvP3220ybNg1HR0fi4uLYunUr1dXVdOrUiTVr1uDh4YGZmRkymYycnBzc3d0JDg7G0NCQn376iTlz5jBs2DBu3ryJTCbj1KlTREdH06dPH0xNTXn99dc5ceIEYWFhdOjQgUuXLhEYGChyg/fu3cuxY8eoqamhT58+zSI3fwY7OzsaGhqIiYlBQ0ODiRMncvHiRV588UVyc3Pp3bs3xcXFxMfH4+LiQs+ePVm1ahXDhw+nuLgYc3NzwsLCWL16Nbt37+ajjz7inXfewdvbm/z8fGpqaggICCAgIEAYj8oCy65duxIXF9cs/cPS0pLp06fj5uZGWFiY0AkcHR0JCgrizp07fzqnv1SwBYpD28jIqFkhhrGxsciFlMvlVFRU8PXXX1NVVcWcOXMYNGgQoBBOe/fuJTY2Vnhk8vLy6N69Ozk5OSxevJjs7Gx69uyJtbU12dnZuLq6oqOjg7a2NhMnTsTCwkJUMXp7e9OhQwfq6urYuXMnmZmZLF68mP79+/PTTz9x+fLlJ56XMme2qqqKjIwM/P390dTU5PTp0/Tr1w9jY2OOHj1KU1MTY8eOZdKkSWhra+Ph4UFNTY0o3klLS6Nt27Z0796dDh06EBMTw9dff01oaCgjR45EVVWVBw8esG3bNvr164e5ubmo9Pvmm284evQozs7OtG3blg0bNnDixAneffddAgMDuXTpEosWLaK0tFR4BVuCkpISFixYIBSoU6dOcfHiRUJCQvD09ERNTa2ZceHu7s7QoUObeVCLi4sJDQ3l0aNHQllSbs579+5x6dIlUaSmVGqWLFlCbW0tn3zyCXV1daioqODh4UHnzp3R0NBAT0+PLl26EBwcDCjyUn18fNDS0mqR8qrMXVIWM5SUlHD9+nXOnz8vPL1nz55l5syZTJ48GTc3N2pqatDW1hbhmfz8fJHjqMTdu3fZu3cvxsbGPPfcc7Rp0wYtLa1mQuT9999n+PDhXL16lcWLF3Pnzh1Gjx5NbW0tOjo6pKam4uzszJAhQ9DS0qJHjx5oaGi0uKDp4MGDFBcXU1hYKK4dQNeuXZk+fTqgqFxftWoVtra2dOzYkbFjx1JaWoqdnZ3wYKWmplJcXIyTk5MoJFBTU8PX11eExr29vTl16hT37t1DIpFQVVUl1rpjx45069YNNTU1CgsLRVGhlpYWvr6+4lBuaUhduY6VlZUsXboUIyMjOnfuzIwZM3B1dQVAX1+fkSNHUl9fL4xqAwMDzM3NxWH46NEj0tLSUFNTY+rUqc3Sfzw8PCgtLeXUqVMMHz6c559/npEjR9KjRw/q6+vZtm2bYF7Iycnhyy+/5Pz580ybNg13d3ehuI4ZM4aePXuSlZXVovl5enpiYmKCp6en8NioqamRnp7OvXv3MDIyYtKkSRgaGpKSksKDBw9EKk5TUxNGRkYEBATQpUsXwaCxZs0aioqKBAOC0hukVIYSEhJ4+PAhKioqXLx4kd27d+Pp6UmbNm3w8vJi9OjRJCcni4IKZTqWoaEhnTt3bvEampubM3XqVK5cucI777zDvHnzGDduHNbW1oSGhnL37l0R/v/+++/R1dVlyJAhLF++nJ9++qmZEte+fXvu3bsn3n/y5Ek0NDTEtVfm2IeFhfH++++Tnp4urmtiYiLz58+nrq6OOXPmoK2tzZEjR6irqyM0NBQzMzPMzMzIzMxskfLq6uqKnp4eenp63Lx5k6qqKnR0dLCysuLVV1/l/v377Nq1i1OnThESEoKTkxNyuRwPDw+GDBmCtbU1MpmMFStWiHC1trY21dXV1NbWoqqqKu5v5T0OiHz98vJyrK2t0dfXx8XFRRS9giKqWVlZSU1NDbq6uuLM3rlzZ4vWMCwsTNzH+fn5bNq0CXNzc6RSKb6+vjQ2NoookI+PD7du3eLixYs8//zzWFlZiWJgpadcJpNhYGDQzNOsXM+jR48KmfLTTz+Js6J79+60a9cOFRUVZs+eLeRpZmYmbm5uuLm5UVpayqFDh1pc5wIKWaBcHw8PD5KSkoShb2VlRWJiIqmpqWhra+Pq6krHjh3Jz88Xef3KtAAllJHZ27dvs2LFCs6fP09JSQlFRUWieHTTpk1UVVURHh5OQEAAZ86cISkpScicO3fucOjQIdq3b4+dnR0jRozA3t6e4uJitLS0WpRq9uabb2JkZISGhgZBQUFUVVXx448/itqP3r17Y2lpyaNHj7Czs+PBgwfcu3eP9u3bi+JIDQ0NZs+ejYmJCREREaSkpFBSUsJnn33Go0ePmDBhAoGBgcTExHDp0iUmT55Mjx49hLG0fft2Jk+eLGoLLl++zODBg9HX12fv3r3cvXtXpLoZGRn96X34l5XXV155halTpwqrsrGxsRkVBihSC2JiYkhPTyckJEQorwkJCcLLFh8fDygqmPfs2cPx48dZsmQJL7/8Mlu2bCEmJobk5GTh9WpoaKBTp05CYTA3N2fixImEhoaKopLGxkZ0dXVxcHBg0KBBLVJeR40axahRo4iLi6OhoYGQkBBqampYsGABVVVVTJs2je+++45Dhw6hr6/PoEGDmDlzJpcvX+bq1atYWlri5uZGamoqzz//PPPmzeP69eusXLmShIQEsrOzOXv2rAhr5eXl0djYyMKFC0WoXZk/NXLkSLp168b169e5d+8eixcv5syZM2hpabFv3z6mTZtGeHh4i+lr7OzseOWVV1BTUyMtLU1QSL366quoqamRkJCAhoYGzs7OqKio0LVrV3EzPnz4kL1791JSUsIrr7xCly5dyM3N5cSJE9TX19OvXz/OnDnDsmXL0NXVZdCgQZw7d46SkhKmT59ORUUF27dvJyUlhZdffplVq1aJA1KZY5SZmcnVq1epq6trRinypEhNTRVV4B4eHiK0fejQIbp3787y5cuJiIjg3Llz5OfnExISgr+/vyhYAsWhNGnSpGYUNtnZ2URERKCpqSkOHTU1Nezt7VFTU6OxsRErKytCQ0P59ttvOXHiBIGBgbz66qsYGxvzzTffcPnyZebMmcN7771HeXk5EomEysrKFlWOgqKwMDc3FzU1NfLz8/H392fv3r1CKS4tLSUuLo7S0lJKS0sZN24c7733nvh8cnIyu3bt4vz581RVVTFu3Djat29PU1MTtbW1yOVyDA0NkclkaGho0LVrV4yMjDh48CCenp7CaKqvr+eNN94gPz+fmJgY2rRpI0K0ZWVl4jBvSdqHEm5ubgwaNIg333yTbdu28e2334piFmVKijKHSjkWV1dXPDw8UFFRobGxUeRsBwcHN5s/KBQALS0tsb+UhUKgKFI8cuQIDg4OeHt7s2fPHioqKujfv78QrMOGDWPx4sUEBQWRl5fX4mp8JUtEUVGRKHK8c+cOJ06cwM7OjnHjxgGKoo23334bT09PvvrqKyQSCTKZDGdnZ2bPno2enh6qqqoUFRVx8OBB7t+/T79+/ejdu7coolGmaWlpaXHmzBni4uKoqanB3d1dHNbu7u688sorNDU1YW9vj4WFhVAeJ02axKRJk1osa6ZPn46ZmRnTp09n165dNDQ0iNcMDAyYNWsWHTt2JDIyEqlUiqurKz179kRPTw9/f39KS0uprKxEQ0MDDw8PFi5ciLu7u8i7tLa2Ft7XrKwsTExMuH//Pg0NDdTX14vfkslkGBkZ4e/vz7p169DQ0GD8+PEUFBTg6OiITCajtra2xektxcXFGBsbc/DgQeLi4pgwYQJ2dnb4+fnh5+fH7du3GTNmDMXFxRw/fpyOHTsCCq+iMlrz448/sn//frp16yZSGWQymSiA/KWSJ5fLcXBwYNasWcyYMYN9+/aRlJSEp6cnVlZWQtEoKipCX18fmUxGWVkZFhYWdOvWjW3btv3qO/8IoaGhwilVV1fHvn37KCoqwtvbm27duuHt7c3169ext7dn4MCBHDlyhNGjR3Py5EkRGcrIyODw4cP4+fmJa1BSUoKamppIj9i7dy9btmzhzp071NfXk5WVhbW1tWAuUVNTIzg4WDg3IiIiOHnypKAH/Omnn/joo48oKysT59WTQl9fH319fcF6ERkZKc4vpUd527ZtWFpa4uzsjJOTE0OHDiUsLEwwDFRXVwvWgqqqKsrLyzlz5gxRUVFYW1sTFBTE1atX+eqrr9DQ0BCpW/v370dNTY3OnTuLItJr166RmppKdnY2mZmZjBs3joCAAIKDg1FTU0Mul/Pyyy8/8fw+/fRT/P39mTFjBoaGhmzZsoXdu3djbGzMu+++y7Rp05q9f/369bz//vtIpVKWL1+OhoYG9fX1gtbNycmJ6Oho0tLSOHnypFjPzMxMSkpK8Pf3F9FqiUQimIl2797NnDlzqK2t5eTJk4SFheHl5cUXX3zBzZs3GThwIJaWlgQHB7N9+/Y/nNNfUl4rKyuxtrYWIZLTp09z8eJFAgICREJ8WVkZnp6ebNy4ETU1NeEtAUTYPywsjISEBGJiYggKCkIikYgcJ+UG1dbWxsnJCV1dXerr6zlx4oSgj4mNjWX79u0UFBTQvn17evTowdSpU8nNzRVKiFIYtBSurq4iOb6iooLY2FiuXLnC0KFDRbHVjBkzmDVrFvfv3+fQoUO4ubmxfPlyXFxcmDt3Lh9++CG5ublEREQI/r2CggKOHz8OQOfOnfHz8xNeZVAobpMmTaK2tlbQYq1fv55JkyaRkZHB7du3GTlyJMeOHSM/P5/o6OgWz23AgAFCWaqqqiItLQ1VVVUkEglxcXGMHj2alJQUZs+ezerVq4Wg+/jjj9m3bx9jxowRdBlyuZxu3boxcOBAMjMzOX/+PIcPHyY/P5/U1FT09PT46KOP2Lt3L+Hh4ejo6DB69Gjs7e3p2LHjr/j4amtrefXVV0lISGD+/Pkih7ElqKqq4ubNm/j4+FBVVcWSJUuIiIigR48ezJ07l5CQEEJDQ9myZQvnz58XRR2PK1jKwyc5OZmIiAj09PRwdHRk3bp13L9/n4sXL/L555/j5ubGW2+9hZeXF6qqqnz55ZdEREQQEBCAp6cnJ06c4Pz58/j6+jJkyBC0tbVF5f358+fZu3evYHtoCT788EOqq6uxsrKiqqoKS0tLUURWXl7Ozp078fHxITw8HLlc/qvK1LZt27Jv3z6+/fZbpk6dKgpx3nrrLY4dO8b8+fOZMWMGGRkZvP3226ipqdGvXz/69u2LpaUlJ06c4NSpU4K3uKmpicjISPr06UPbtm0FT2r//v1/Vcn6pJDJZEJxXL58uWCtkEqlv0kx9su0jh07dojCkvj4eMH0oLwWTk5OLFy4UIQ4P/vsM0pLS5k9ezYTJ06kY8eOhIaGcv36dbZv306XLl147bXXeOutt/jmm2+4cOECvr6+fPLJJzx48IDnn3++RfMrLS3lzp077Nixgzt37gj6KBcXl2b0PHl5eYwePZrOnTsLT6KWlhZNTU3cvHmTa9eukZWVha6urkhT+fbbb/nkk0/Q0NCgoqKC7t27C1ohAwMDBg4ciI2NDZ9//rng3a6qqmLjxo0YGBgwc+ZMEUX6T5CZmUlkZCRaWlqsWLGCsLAwsrKyWLJkCefPn2fIkCEierZ48WK0tLQoKSkhKysLmUxGhw4dyMjIYP369RQUFDBs2DBBTzdlyhQqKyuRSCSYmpry6NEjZs6cSXx8PO3atSM/P5/x48djZ2eHv78/u3btIj09na+//pohQ4bg5ubGhQsX2LNnD/3796dr1674+fkJj/qT4NSpU5w/fx6JRML48eOF4abMnW/fvj1Dhw5l27ZtbNy4kZkzZ+Lv79+sqNDT05MlS5agpaUlokaGhobU1tb+ilYJEHsAFJ76rl27EhUVRVRUFJ07d8be3p6rV6+ycuVKkpOTGT58uEhLkcvlDBo0iIsXLz7xHF999VVCQ0MZPnw4NjY2rFq1iujoaO7evYudnR1t2rRhyJAhYqzKdLRt27axfft2VqxYQY8ePbhw4QJlZWWkpqZy/vx5KioqmvF3z5w5EyMjI7Kzs7l+/TpOTk588skn1NfXExsby8qVK+nYsSPa2trExMQIo+zBgwdYWVkRFBREz549uXHjxhPPTQlvb2+amprIzs7m+++/5+jRo3Tr1k3oM97e3owYMUIUGO/Zs4ddu3axfPly2rdvz4oVKygoKGDt2rVkZWWxcOFCSktL6dixI4GBgeTm5hIbG0t2djY9evTg+eefR19fnwsXLlBUVMSJEydEQZ2BgQG7du3iyJEjDBs2jFGjRpGbm8v333+Puro6ffv2bXHqx8qVK7G2tmbgwIFUV1dz79497OzsePfdd4X8exw6OjqUl5dz8eJFsrKysLe3Jz09nS1bthAbG0txcTHp6eno6+szZcoUOnXqxI0bN/jkk08AhTPS3t6eTz75BB0dHY4ePcqJEyeoqKgAFMawRCIhNDSU6upq/P39cXV1FRzqT4IWK6/5+fni4FDycpWWlorKbOViK/MlQWFlamlpUV9fT3FxMRUVFVhaWgrahbKyMjIzM0UFrZubm6DqUVVVxc3NjbS0ND777DMR/rG3t+fUqVNCO/fw8KBHjx4itKW08FuqvEZGRqKpqYmHh4fwutXW1tKmTRtKSkq4evUqISEhZGRkUFNTw3fffUdubi5VVVVoa2sLxejYsWOcOnWKyMhIkVZQVlaGpqYm7u7ulJSUYGpqyvjx4wXDQW5urihGUeYKJSYmMmrUKJYtW0ZERIRQOnv37s2mTZv4/PPPf5NK5I+Qk5MjwrsGBgaoq6tz9uxZVqxYgaqqqgh/Xrx4ke+++47p06eTkZHB9u3baWxsZNasWchkMmbPno2dnR1nz57FxsYGDQ0NPvroI+HpfvDgAfn5+YSGhqKhocHmzZupqqpizJgxBAUFifBWTk4OFRUVtG3blvz8fGQyGXV1dVRVVVFUVNTiNTQyMuLevXu0bdsWNzc3UUXepk0bzM3NBZOFp6cnixYtora2FplMxsOHD3n06JHg49PQ0CAmJoaffvoJPz8/xo0bh4+PD+7u7uTk5JCQkEBycjIhISEiJzsqKooLFy6wZMkSAgICqK2t5eDBgwQEBBASEiLocr7//nvGjx8PQHBwMBMnTmyRkt6jR4/ffL60tJSjR4+K66xUHDMzM1m/fj26urpMnz5dKMzOzs4UFhaKHKPbt29z9+5dTp48SadOnTh58iSHDx/G0NCQ0NBQLC0tuX79Op988gkZGRloamqSkZEhiOD9/PwoKyvj448/prKyUuQmKnP9WoKioiISEhLw8vJi9erV9OnTh/3794sc+4aGBsrLy4Xhl5GRQVVVFf7+/sTExPDRRx8JD+bGjRvZuXMnOTk5ospZTU0NU1NTtLS0SE1NZd++fdTV1TF16lTs7OwwNDQURPexsbEYGRlhZmZGjx49SElJISEhgaSkJNFopKUFW7GxsVRVVQljKz8/n+DgYJFXeufOHU6ePImLi4tI8UlPT6eyshKZTMaVK1fIyMigsbGR+Ph4rKyseOWVV7C2tmbFihXs27cPmUzGvXv3iI+Px93dna5duzJo0CAhc06cOEFaWhr19fU0NDSI4hszMzNRzFdRUUFdXV2Lid9B4R1btGgR48aNE0TpZ86c4fvvvxd0URUVFfj4+Ii6hcLCQm7duoWKiorINzY3N2fnzp1ERETw8OFDZs6ciYGBAdXV1TQ2NqKmpoaJiQnFxcWiKUZZWRn19fUifatPnz6cPXuWxYsXc/jwYYKCggTVWmlpKXV1dcIh86RobGzk0KFDdOnSBWtra5KSkigrK0NfX5/o6GgyMzOxs7MjICCAnTt3snPnTpYuXcqYMWOwt7dHT08POzs7CgoKOH/+PJcuXaJfv34iD7q+vp7ExEQePHiApqYmrq6uaGtrU1hYSElJicjrtrW15ZtvviEpKYmZM2eiqakpctVlMhkPHjygXbt2VFRUMGHChBYpr5mZmVRVVZGXl4eZmRlDhgxhyJAhREREcObMGVxcXOjQoQNVVVUkJCRgYWHB+++/j6urK0VFRXTo0EEUZSv5OwsKCigpKeHy5cuC3SU0NJROnTpx8OBBNm7ciEQiYerUqVhaWiKTydi4cSMRERHU1NSQm5tLhw4dsLe3F/NUpqIALaZ1UyreZWVlPHz4UKRkD1RFrwABAABJREFUKRU3V1dXbGxsmqVPXLhwgaioKMzNzcnKyhKMENevX+fIkSPY2dkxbdo0zMzM+Oqrr7h27RoGBgb06dOHLl264ODgQLdu3bh16xaXL1/mxo0bWFhY0KNHD27fvs3Ro0fx8/MjNDSUzMxMtm/fzq1bt7hx40aLc8+VaUUAqqqquLu707lzZ3EeJSYmoqKiImSYm5sbkydPRltbm7KyMuzt7YmOjubDDz9s9r1qamoYGBjg5uZGQ0ODKOjt3r07NTU1bNq0ieDgYGbNmkVoaCg//vgjN2/eJCAgQDSPksvlrFu3jsbGRsrLy6moqPhVDvhvocXK644dOwT3WVNTE6qqqrRr147u3bvTpk2bXxUEfPzxx3z77bfMnTuXyZMni8OwQ4cOhISE0LZtW2xtbXFycuLq1ascOXKES5cuERERgY+PD5s3b0ZPT4+lS5eyefNmtLW1GTZsGFevXiUqKkr8TnFxseDqA4RAaykGDRpEmzZt2Lhxo1BelRQ5Fy5c4MCBAzz33HPMnTuX3NxcSkpK0NLSorq6GiMjI3HgffHFF9y7dw8bGxvBp6nsrKIUMrGxsc1YBB6n3nn06BH79++noaFB5FhOmjQJJycnsrKy2LFjB0lJSXh7e/PgwYMWzfGjjz4SBNKamppYWlqSnJzMxx9/zKxZszhz5gx2dnYcOXKEjz/+mGXLltG7d28mTpzIsGHD0NHRITExkbq6OtTU1ESBVmlpKffu3RPWVUxMDJ9++il9+/bFycmJ1157jezsbO7evUtUVBR9+vQhODiY/Px8Nm7cSLdu3Zg6dSr79+9n//795OTkUFRU1KxK8UmgLB5MSkqiU6dOfPPNN9jb2/Ppp58Ka095vf39/Tlw4ACvv/46Dg4OqKurC5aKwMBAoSjo6uqKDmdt2rQRXYD27NnD2bNncXBwwNXVlVdffZU5c+YIC3L16tW89tprPP/887z++uuie09mZiYAZmZmfPrpp0JoPykyMjIoLCykbdu2IlWnpqaGCxcuYG1tTd++fUVXJOXvffvtt9jZ2REcHIy3tzeBgYHMnDmTzz//nL59+zJhwgTGjBmDo6MjKSkpvPvuuzQ1NbFw4ULGjBlDbW0tCxcu5IcffgCgV69eGBgYcPr0aczMzJgxYwZGRkbikLKxsRG5gEuXLm1Gxv8ksLCwYPPmzfTp00dQeqWlpQmvlLq6Og0NDZSWllJfX8+ePXs4ffo0U6ZMQV9fn4cPH2Jqakrbtm3p0qULO3fuJCMjg+LiYurr67l8+bJI4QkLC+Pdd9/FxsYGa2trtm/fzvXr13nhhReor69HW1ubqKgovvvuO6RSKV27dmXevHmkpqayZMkSpk+f/kT0Lo+jvr6enj170r17d5577jliY2PFvqmqquLAgQOiuQYoUj22bt3KgwcPyMzM5MaNGwwcOJDPP/8cOzs7rl+/LnKgZ8yYwSuvvML9+/dZvnw5hw8fZs6cOSxatIiXXnoJUBg6w4YNIyUlhbNnz9K1a1e2bt3Kl19+yd27dyktLcXGxkYUr/wV5VVXV1fknythamrKgAEDsLOzY8qUKZiZmTWT3cqo3P3799m/fz/+/v68/fbb5OXlsWHDBkHOf/bsWczMzJg3bx5qamokJSUxYsQITE1Nm+V1vvrqq3Tt2pX4+Hiqq6sZOXIkGzZs4OLFiyxfvlys8ZNUOP8SXbp0Yfz48VhZWREREcHBgwfp2bMnq1ev5tSpU7z++uv0798fLy8vTpw4ASicAjU1NYSGhhIWFsa9e/eYP38+V69excjIiNraWtq1a4eJiQkxMTHMnTuX6OhowUyjLNxNSkqie/fuvPnmmxgbG3P37l2OHz+Ok5MTU6ZM4eOPP6aoqIjIyEgMDQ15+eWXRTe/lmDDhg1UV1f/av179OjBxYsXhbFQXV3N3bt38ff3Z8qUKcIYAUX9wueff46joyM9e/Zk4MCBRERE8OGHH3LixAm0tLQ4cuQIffv2FZHZW7ducfr0aSZOnMjkyZPJy8vjiy++QCKR0KdPH0GTFxwcjEQi4datW8Lo+avw9fVlyZIlzJgxA1VVVZEj39jYSF5enmjiMnfuXLp27UpxcTH/j7b3jM6qWvu9f+m9995J7ySEEBJ66FWqFBWkSBEUQRRFRZAqiEqR3kWlgyChJ0AISQghvffee8/7IWPNh+z9nLPJHue9vuw91HHnnveaa86r/EtqaioLFizAw8MDZWVl5OTkCA0NxczMjKysLA4dOiRcMI2MjLh27RrHjh0jKCiIHTt2MHr0aMzMzJg4cSJxcXEMGDCA5cuXo6qqKhRxLC0t2bFjB0+fPhVSff9tyMrKMnz4cPHZd+/e5dKlS4wZM0Ykrzo6OgwfPlyoxmRnZ/P8+XPxGTIyMri6ulJZWcnOnTsJDw/Hzc0NeXl5ysrK+OOPP4Cee6e5uZk//viD4OBg1NXVBYxQUgCSJgnd3d2cOnVKcEL+U/Q5u3v16hVHjhxh1KhRWFpa0tnZiYaGBqtXrxbJXnR0NHfv3hV2orW1tRgZGaGoqIiZmRm6urro6emJ8Qj0ZPD6+voYGhqipKTUq0urpaXF8OHDiYuLo6amhrCwMK5evSoOg4CAAAYMGMDff/9NRkYGAQEBjBkzhuLiYq5cudKn9c2ePRsTExMSEhJoamrC29sbR0dHzM3NiY2N5datWwwdOlQAuf+3aG5u7iVWDT2uE9OnT2fy5MkEBQURFBTEwYMH2bNnj3D4efnyJXl5eYwfPx4TExMWLlwocHRvypDl5uaSkJCAiYkJkyZN4qeffurTGquqqrh8+TKmpqbCFq+trQ1NTU1mz54tDrgVK1YQERHB48ePsbCwEEVLUVERCQkJLF++nFevXrFq1So++eQT1NXVUVVVRUlJCQUFBRITE2loaMDS0lKMQR0dHSkoKKCoqEjIgjx58oT09HTBNlVRUWH69OncuHEDZWXlPhchysrKODk5kZiYKDp3H3zwAQ8ePBBWmYWFheTl5eHr68uzZ8+4fv06sbGxQvpIemZjxoyhpqaGJ0+ekJqair29PYMGDcLBwQE7OztUVFTIz8/n2bNnKCsri3VWV1cLZYVRo0Zx8OBBDh48yMCBA/H19WX48OFs3ryZCRMm9HkEBD3Vc3R0NNevX0dTUxNtbW06OzsxMjJi2LBhyMrKsnv3bh48eEBgYCA6Ojpi37a1tVFUVERsbCwvX76kvb0dZ2dnAgICsLS0JD09ncbGRjQ0NAgNDeW9995DXV2dvXv3isR16dKlWFlZERkZSXV1NYGBgdjb26OlpUV+fj5jxowRh1lVVRVOTk59XqOtrS0ZGRlUVVWRl5eHoqIimpqaqKmpia699M89PDzw9PQkLi4OJSUl1NTUhNlJd3c3EydOFG5Nq1evpqSkhMzMTDF29vDw4L333hN/29LSkvDwcPbt24e6ujqzZs3C2NgYe3t7iouLefbsGTk5OYSGhgqC3P+mwfl/CwUFBeFSM2XKFIyMjLh+/TrPnj0To27JPAB6OrURERHCnOT169fcuXOH33//nbVr1wqJp3v37qGqqir2WnBwMFevXqW8vFxMASwsLITDXL9+/YQ6g7GxMZ6envz+++/Ex8cLi9OCgoJel9fbxsSJEwkICMDY2FjYJyspKTF37lxhdtPa2kpxcTG1tbUoKioK7LuVlRVRUVFcvnyZ9957D2dnZ9asWcO4ceOoq6vj+fPnwqUrPj6en376idbWVnx8fFi8eLG4QKV9aWBgQGpqKnp6ekydOlWcD7Gxsb1gGn2J2tpa9u3bR2FhIcePH0dTUxMPDw80NTWxs7MjJCSE4OBgvLy8yMrK4tmzZ6SnpxMREUFsbCyurq5YW1vj6+tLTk4OKioqPH/+nGPHjjF48GDOnj0roGHR0dHk5eUxfPhw/P39yczM5MGDB6xevRovLy8xBY2MjMTT05OioiIxJf3999/x8fEhKCiIly9f9mmNknLCsGHDehGEVVVVGTVqFP369SM6Opr09HT09PRwdnamu7ub6OhoEhISMDAw4Pbt28LsxcfHh6SkJNLS0qioqMDLy0vghuvr6wkMDGTt2rXcuXNHyEpqaGgwZ84c0UnW0NAQbpVvyp5J78abykdvEzU1NaSnp1NaWoq9vf2/nclycnJYW1uTmppKXl4e7u7ueHt7U1JSQm5ubi8dVmVlZaHPWlxcTHd3N4MGDcLa2hodHR3y8vIEIa+0tBQDAwPc3d2ZOXMmCQkJNDQ0oKamJhodhYWFJCQkIC8vz5gxYzAwMODVq1ccOnTorddXXFyMuro63d3dqKur95IUu3PnDi9evOiFE25vb6elpQUFBQUiIyMF0fnLL78kPDycx48fk5OTI0wbLC0tsbCwwNfXl+fPn/P777+LqZKk3PLnn39SUFCAk5MTOjo6lJeXY2BgQGNjI+Hh4fz000+C2/OmutP/KfqcvDo6OrJlyxYaGxv5+OOPaWpqEqx86OnG/vbbbxw+fBiAkSNH8sknn4gsW7KllLyWpZDgAV5eXsybNw9XV1devHghQPeS6PKdO3e4c+cO0dHRKCoq4u/vz9ixY9HX1+fy5cucP3+eWbNmMWbMGG7dusXy5ctFp+Ft4ty5cwBs2rSJH374gXfffZe1a9eipqaGnZ0dhoaGvTRl35R+kuJNuajW1lZ27txJXl5eL8kv6CGbffPNN1y8eJFFixbx6NEjwsLChL/2tm3bqKioED7dUlhYWBAUFERDQ0Ofxe0BJk2axPPnz4Wo9Lx58xg7dixKSkq9CHe5ubnMnj2bBQsWCDHq6upqTp06hYuLCwsWLGDDhg1s27YNT09PZs+ejby8PGpqapibm5OdnU13d3evNbe2tvLuu+8yYsQIHj58yMmTJ+no6GD27NkMHjxYMNkVFRWZMGECMjIyb7WR3wwJY11VVUV6erpw7jh48CCKiork5uby+++/o6ury/Dhw3n33Xe5efMmhYWFInF1cnLinXfeYcSIEUJrNyUlhXXr1glcm0R8sba2pr29nbq6OgoLC0WhIT0zJycnvv76ayIiIjh9+jSqqqpCVkSKN/fU24SJiQlOTk7cunWLq1evIiMjw8KFC/n888+RlZWlqamJJ0+ecPPmTWJiYvjqq6/4/vvvBSnw9u3b/PbbbyQlJTF79myBVfrnn38EPEQyGKivr2fnzp1s2rQJgEOHDvHBBx+wa9curl69CvRMCnJycvDw8MDLy6sXZjI4OJjg4GDWrFnTpzU6ODjg6uqKiooK2dnZjBkzho6ODvE329rahJKAra0tkyZNEiLsxcXFjB49mu7ubtrb20W35ODBg9y8eZOysjJhdenn54eRkVGvd1liyc6fP5/79+9z+PBhcYZNnTqVO3fu8N133wnB8by8vD6PKrW1tXn27BkDBgzA3Nycmpoa7t69S15eHp988kkv+Sjo6f40NTURFBQkxnI3btzgs88+o6Ojg88//1x8l6dPn/Lq1SucnZ3JyMgQn1FfX09KSgoaGhro6uqio6ODpaUltra2KCoqilFpaWkpFy9eFCPhZ8+esXXrVrH33zbs7OxE8t3e3k5JSQlycnJYWVmhoaFBaWmpGPtKuHtpeicZbkh4zs8++0xINr148QITE5NeSXF4eDjt7e3Y2dlx6NAhfH192bRpE7GxsYwYMQJjY2NhFfzDDz+wfv16Jk6cyIIFC3jy5AmWlpZ97r4+evSI0NBQKisrsbe3Z/78+eIuHDx4sJhuFRYWYmtrK/THu7u7qampoaysDBsbG3755ReWL1/OvXv3OH36NHv37uXGjRuCX6Gurk5HRwdlZWVAD2FaTk6OvXv3kpKSIhz7lJSU0NHR4eDBg8TGxgrptZSUFDERk5o+bxufffYZ6urqGBkZic4v/A9s0NraWpBVbW1tRRPr5MmT/Prrr+jr6+Ps7My4ceNYuHAhMjIy/PTTTxw/fpzp06dz7Ngx1NXVWbVqFZs3b2b79u2MGjVKqNnIycnR0tKCubk569evJyYmhl27dnHjxg0hAQXg7e2NoaEhioqKfSJpA2RkZPDbb79x584dIWco7XUpeZaVlcXY2JiUlBRBcJQIopK2NfQkm9evXwfg/fff58cff8TJyYn29nbhfObl5YWdnZ2wIpeRkWHLli20tbWhoqIiSHfQ0wyTutg3b94U0Mq+hLGxcS+stPQ3AaFH/+bdr66uTktLC7dv3yY1NRVNTU3ef/99MTF5/vw5DQ0NNDU1sXDhQj788EMMDAzQ1tYmJyeH7OxscZdOnDiR4OBgli5dSlxcHFevXsXX11cU+y0tLRw8eFDsS01Nzf9/ktfJkydTVFQkFqqhoUFTUxP79u2jo6ODxsZG8vLycHJyYvDgwfz8888oKSlx4cIF7t27x5YtW0Tl8NNPPyEjI8P7779PUFCQIFzIysrS0tJCXV2d0G375ZdfUFBQYP78+Xh5eZGSkoKrq6uoDC5evEhqaipmZmYoKChw7NgxIiIiBLPxbUPCKUmjK1lZWRISEnBzc2P06NE4OjoyadIkuru7+e233/Dy8mLAgAHcunWLs2fPsnz5cgYOHCjGYEpKSly8eFFYclZVVfHpp5/S0tJCQEAAc+bMISMjg8jISFRVVfnkk09wd3enpqYGGRkZAeyXrNc0NDTIy8vjwYMHPHnyBHt7+z5fKP369cPX17eXl7E0Erpx4wYnT56ksrISZWVlDAwMeOedd8SBlZOTg5eXl+hUSH7yZmZmxMbGimTCxsZGODslJyeTn59PUVERw4cPx9fXV3SWJJzZv2I4JYbifxMSfsnb21vYnXZ2dgqiVElJCcHBwXR1dVFXV0dwcDC3bt1i586dwnmmf//+oluora0tiIBvVtjS6CYnJ4fnz5/T3t5OW1sbw4cP7zVis7KyYunSpXh6eqKoqIizszNdXV1s27aNu3fv4uLi8m92o/8p7ty5I5IpyWlq1KhRQrZMVVWVDz74AAsLC0xNTenfv7/AEWlra3P16lWKi4vZvn0748aNE5+rp6cnLPukw+3Zs2d8/vnndHV18ddffzFt2jRSUlJ6dXBSUlJoampCS0uLIUOG9JpK9FUGTIo3YTSVlZVCjkdK9LOzs9HX1yctLY1169Yxc+ZMQkJCgJ7k/osvvhAJEPTIekn7TUtLi9TUVIqLixk1ahRDhgzh2rVrgjhz+vRp7O3tCQ0NFR70gGBar127ViSun376KcXFxX1+hi4uLigqKhIWFkZNTQ1mZmasWbOG/Px8dHR0SEhIwNHREQUFBdrb28nKyqKpqYns7Gyam5vFBT179mxaWlqYM2cOJSUlmJmZiYQ8JiZGvJMdHR3iXJbk4STVFuldk6Zi1dXVXLt2DVdXV/T09EhKShKjwb7EnTt3OH/+PMOGDWPevHnY2tpibGxMYWEhampqyMnJiQmN9J2lBLK0tJSuri6srKwIDAzEwsKChw8f4ubmRmJiIq9fv0ZHRwdjY2NGjRrFN998Q2VlJUuXLkVZWZmAgADmzZsnvvPt27f5+eefqampoaqqCiMjI7799lsOHz7M1atXGTp0aC83xLcJTU1Ndu3axatXr9DX1xdqGEAvlZSsrCyam5spLy+nu7ub2bNnC43X6OhoSkpK6N+/P++88w6RkZFERUVRWFjIwIEDGTduHJWVlWL0XFNTQ3h4OFVVVbS1tfHTTz+ho6NDYWEhEyZMYPbs2WRkZKCjo8PAgQPFZw4cOJDOzk78/Pz6JOu2fv16vL29CQgIECYPLi4ufPrpp0RFRYnC7s3JRXFxMQEBAaioqAgsqIqKCqWlpbx48YIjR44APbrsJSUl2NvbY25uTmtrK9euXcPX1xc9PT0hVVhbWyv2qmR9DT0KMG9O5oyNjXs1et42pC6xkpISqqqqREVFoaOjg5mZGfn5+URERNDZ2YmjoyNOTk50dHTQ1dWFoqKigDHV1dWRnp4u8P0DBgxg6dKl4h5RUFDA2tq6l8OkjIwMmZmZvHz5kqCgIHFunj59mps3b7J3717s7e2xsbERCiPQo1vdl3izKMzIyGDHjh14eHiwYsUK3n//fTo6OsR36uzsxMnJCSUlJfbt20dqaio7duwgMDCQ06dP09DQwJYtW7h8+TJPnjxh165dDBw4kBEjRmBra0tpaalIXLW0tKipqSE6OpqkpCSKi4t5/fo1fn5+wvRISUmJd999l/r6eqqrq+ns7Pz/x6RAR0eHjRs39srSLS0t+fnnn8WG+vzzzzlx4gRGRkbIyMhQUVHB3r17efXqFWPHjmXw4MHs2rVLMKIlb2opuru7aWpqEiPZ2NhYfvzxRwYNGsSSJUswMzNjzJgxNDc3U1RURExMDI8ePaKkpEQcgNJGnDp1ap8woZIW5MGDB4W+5d27dzExMREMdOixeduyZQtDhgxBT0+PhIQEqqqqxPji6dOnmJubo6GhgaGhIf369SMrK4v79+9z4sQJDA0NmTp1Kh9++CGPHz/m9u3bjB49mtGjR1NXV8fVq1eRk5PD2dkZGxsbNDQ0RGLS2tpKREQEJSUl1NXV9flCkZWVFeLdbW1t1NfXo6enR1NTEzdu3OCvv/7C3t4eOTk5bt26RV5eHqNHj0ZBQQENDQ1BZmpsbMTR0ZG9e/cCcP78eYErc3Z2JiQkhOzsbJ48eUJeXh42NjY4ODhgY2ODtra28KeHnouqo6MDdXV15OXlhVNTc3Pzf5XENjY2Ii8v/7+yF42NjRk/fnyvf9avXz9xCPbr148hQ4bQ2dlJaWkpmpqaQiLo6tWrGBkZ4enpyYgRI7hx4wbd3d2UlJSgrq5O//790dPTE45lOjo6Yqwv4bSgR6d13759lJaWAvS69N4mHj58yKBBgwgJCREJmxQS6Wz8+PFinZ2dnaKaDw8P5/Xr1zg4OBAaGsqrV684fPgww4YNQ0FBQWg0JyYmUlVVRXd3N25ubkLzFXo6TpKFqvSuysnJUVRUJLDcSkpKVFZWYmVl1efOMvyP1a2E27OwsGDYsGFYWlpSWFjI8+fP8fPzo7a2ltOnT3Pr1i3Onz9PQEAAdXV1GBgY0NnZKcau0tg0KCiIwsJCdu7cSXV1NQUFBZSVlZGZmSkUNI4ePcp3333HBx98wIgRI5CXlxdSZ5988gmTJk0CYM+ePfz99994eXn1ufOqrKyMm5sbT58+JT09vZdn+D///MOVK1cYOXIkAwYMIC4ujqysLGGtKsXKlSvZt28fjx8/FjbRQUFB7NmzB319fV6+fElFRQUyMjLiWUhJgJKSEk1NTcjKyiIvL4+CggKtra3CPefatWucP38efX19Wltb+0wMldZx5syZXlabGRkZGBoaiou6s7OT8vJyioqKRDIAPQVYWVkZw4YN49ixY1RWVrJp0yYuXrxIaWkpGRkZ2Nvb097ejo6ODl988YU4LyQXrg8//BAHBwfq6+uJjIwULo/p6elAj/KKgYEBmzdvJjk5uc+YUDMzM8HWDgkJoaSkROjQSgTdwsJCCgoKejnNeXt74+XlRXl5OVu3bhX2qR988EEvGavq6mrU1NTEhM3b2xsnJycuX77Mo0ePKCgoEF0zSe3HxcUFd3d3QeqRGiHa2trIyckxYsQILl269NZr3LZtG01NTWRmZnLx4kUx3ZTcsc6ePUt6ejoDBgwQnf7Y2FicnZ2ZO3cuAE1NTVy5coUHDx7Q3NzM7NmzuXz5MikpKSxZsoStW7eKMbympibx8fG4uLgIYqaULMrKylJTU4Ovry+vXr0S0zrpbJN4GH0NSdJv9OjRjBo1iurqanJzc8U5VlJSQk5ODjIyMri5uYmkuqmpSRi4NDQ0EB4ezqtXr9DW1iYwMBA5OTlh0NLd3U1GRgaysrKUlpairq5OTU0N//zzD0lJScjKyooCOC8vj8uXL+Pg4MC3337Lhg0bBNzt2bNnfYZ+VFZWCvyuqqoqYWFh/PPPP/j6+qKvr097e7tI+iXMsI2NDX5+fqioqDBlyhSampq4fPkys2fPFgTSJ0+eCEkwqdHo7u5OVFQUDQ0NtLa2UlJSgpaWFrq6utTV1YnEVldXVziPTp8+nYEDB/LLL7+QkpLyVooffX7KCQkJwmtaCnt7eyZPniySV29vb4yNjUlISOCnn34SrOQlS5YgKyvLkSNHSEtLY968eUJmCBCdKwUFBbZs2cKDBw/YvXs3TU1NrF+/Hnd3d4GTKCgoYO3atejq6jJ27FgCAgK4cuUKL168wM3NjUWLFpGXl0dYWFifOj8DBw5k6NCh4pJWVlamrKyMuLg4QZw4efIkW7ZsEcSpmzdvsmLFCn7//Xc0NTWJiIhg69atxMXF4e3tTUhICF9++SW2trYkJyfj5eXFtGnTeOedd4TMy6xZs4RckiQG7+HhQXd3N48ePcLT01NgQiVlhfz8fEaNGiXs8d42JLycg4ODUIGAnk2tr6+PtbU127dvR0VFhbFjx5KXlyeSLmVlZWJiYpCRkUFFRUVoDlpZWWFhYUFXVxdtbW1YWFgwevRo0tPTCQsLw9DQkA8++ID29nb27dtH//79RWIVExPD7t27heaqtbU1hYWF3LlzhydPnmBra9sn96KSkhKSk5NRUlLC1tYWAwODXgnwv0I9cnNzWb16NVeuXEFbW5vPPvuMefPmUV9fT3h4OJaWlkK3bvfu3WRlZbFp0yYCAwP58ssvuXPnDnZ2dixYsEBUxjt37iQmJob58+czatQo2tvbkZWVFQzb0tJStm7dKuw3vb29OX/+/Fuv0d3dnadPnzJo0CChkyjFyZMnCQsL4+uvvxbkNDk5OeTk5Ni1axenTp3CxsYGR0dHlixZwrVr14AeUkVHR4cgJhgbG9PV1UVwcDB//vkn58+fZ9WqVYwbNw4fHx9sbGxITk5m4MCBaGpq8vjxY65fvy4Y8Gpqajx79gwzM7N/KxbeJh4/fkxTUxMnT54kMTGRpUuX8sUXXwA9DlKxsbF4e3szaNAghg8fztWrVxk3bhxr1qzBy8uLFy9eEB8fT2NjIxERETg7OxMREYGKigpr1qzhypUrDBkyhGPHjnH69GneffddoqKiyM7OpqOjg4KCAiFaXlBQgJGREcuXL8fHx0eM8lJTU9mwYYMoTv+bcHFxwcLC4t8gRaampkK/tbS0FAUFhV6GGO7u7iI56OrqwtXVlcLCQgYNGiT2t7e3N8rKygwcOJD6+npiYmJYuXIl77zzDjNmzCA9PZ2KigoGDx5MRkYGT548wc/Pj9WrVxMVFUVaWhoFBQWEhISgoqJCc3Nzn9Zmb2/PqVOnmDlzJhUVFaxatYrW1laB1+vq6sLFxQU1NTXi4+PJzMxk4sSJwulOIm02Njaip6fHnDlzuHHjBpWVlUJy7+nTp4wePZr29nY2btxITU2N0IOVvq+GhgbLli0TSi5v8hHq6+spKyvD2toaf3//Po2c37SD1dTUFAl5e3s71dXVmJiYYGdnR3V1NSoqKsLI5/jx4yQnJ2Nvb09BQQEtLS1ER0fj5+cn9D+hZ6KRm5tLd3c3gwcPZs2aNfTv35+rV6/2KmLmzZsnNGYzMzMBxGQtKyuLCxcu4OXl9V8ZTTx79owvv/xS2Ldv3ryZsWPH0tnZKUxCvv32W0HmlJ7506dP0dfXx8rKClVVVdEg8fPzE8nr1KlTKSgowM3NTRjehIaGYmVlxaNHj1BUVBQk5ZKSEkxNTdHX1+eXX37BwcGB0tJS/vrrLwoLC4VhUF+ttgGhLmJnZyf0VgsLC+ns7MTOzo6VK1cKmEd8fDx2dnbY2NggLy9PfX09mpqatLW1CdWKpqYmHj16RG5uriBXamtrs2LFCr799ltkZWW5f/8+X3zxBSkpKUyePFlMd6qqqujfvz9fffUVWVlZHD58mAULFghin8QxOnDgwFuvT+J+6OnpYWpqyocffsipU6d499136erqwtbWVsiZysjIUF5eTn5+PkuWLEFVVZXm5maePXvGmDFjBBZXkiTbu3cv3t7enDhxAg8PD7Zv387WrVu5fPkyLS0teHh4MHHiRO7du0dFRYWQdITe8obt7e24uLjw6NEjrl279m9W8v8afU5ezczMUFJSIiEhgadPn+Li4oKPjw/+/v5s2rSJrKwsYQ/W2NgoQOUjR45k5cqV2Nra0tjYiJ2dHT4+PpiYmIh2sYWFhcA4qqmpERwczP79+/Hw8GDJkiXk5eWxadMmPvroI1RUVHj8+DHl5eU4ODgwdepUamtrycrKon///gQGBmJpacm9e/f6tL79+/ejpKRETEwM0dHR6Onpoa2tzdGjR6mqqhJVmfT9WlpakJGRETaqf//9N4cOHeL169coKChgYWHBjBkz8Pb2BnqUC6qqqrC2tqa2tlb4ryspKQk7yrq6OpydnUUCXVlZyePHj3n58iVycnJkZWVhY2MjsKp9FQ738fEhIyOD/Px8rK2txYFbUVFBenq6GBsPGDCAb775hvT0dP7++2/Gjh0rsHnSQXz48GE2btzIO++8g4mJCb6+vmRmZooDWJLfsbOzIzg4mKamJp49e9aruyBJZd2/f5+CggKWLFmCpqamcEp5s2vzNiErK4uqqipNTU2iE1NRUUFiYiK2trZYWFjQ1NREfn6+ME2QiH1TpkxhypQpKCoqoqamhq2tLZ2dnTx8+JAHDx5QV1cnlAck8pD0siclJWFmZsaLFy8oKipCRUWFzs5O0UGU/MhVVVUZN25cr2Slr107yd6voKAAMzMzSktLMTU1RU1NDUNDQzo6OkhPT+/l/NLV1cX169dJSEhg3bp1mJiYiAswNDSUzs5OcnNzGTx4MOPHj2fgwIGUlJTg5uZGv379mDdvHnv37uXly5esW7cOHx8fXF1dcXBw4Pnz5wKLKisri6enJxoaGqSmpvaq6vsSFRUV5OXlERMTQ3d3dy/P+YiICDIyMqioqMDd3Z1x48aRmppKV1cXmZmZZGdnc+XKFaqqqjAxMUFeXp7y8nIOHTqEiYkJtbW1QpNWggJ88skn9O/fXxyakh4l9MApvL29xfSjvr6e9vZ2hg8fLjpvqqqqfZIgioqKElqykp859GDafXx8RMFUWVmJmpoaenp6GBkZIS8vT0hICKtWrRKToKamJmbOnImNjQ2jR49GQ0ODhIQEioqKcHd3F+zda9eucfXqVdTV1Zk7d66wTZX2jUTidHFxYcyYMURHR+Pr68v06dNxdHTkt99+69MzHDVqlJh+NDU1CYKcJLskKyuLiYkJJiYmVFRUCOwr9EAO5OTkMDY2Fr+BZBqjpKSEm5sbd+/e5fLlyxgYGGBjY0NRURENDQ1CprG7u5u0tDS0tLTQ1NRk3LhxdHZ29ipeq6qqGDBgAJMnT+4FpXqbsLGxYdasWRQVFWFmZsb9+/cZOXIkurq6vexO7ezshIxQdXU1ycnJJCcnCyWX3NxcrKys8PDwoLi4WJwvkuV2UlKSaFpIUAtJM1uasEhQpaSkJGpra4WRR1NTk7CtlrgYfYmEhAQyMzNpbW1lyJAh/2b28f7773Pnzh1u3rzJyZMnGT58OObm5qSkpHD9+nWsra1FI6mqqgpNTU2io6Npa2tj4sSJuLu7U1paSlxcnHgHBgwYgKqqKkVFRQKz3dDQQEpKCtbW1gwcOJC6ujpiY2NJTEwU+8fc3Py/UsUoLy8XUz/omTBL8LO8vDw6OjqEOcGdO3dITEzE1NQUJSUl0RgpKysjIyODwsJCoAc3Kk2kVFRUhIHLm2oIioqK1NbWEhMTQ1NTE9AzEfHz88PPz4+bN2/S3d2NpqamMIlwdXXtsw1ubGws165dw8TEBB8fH0aNGoWXlxfXrl3j0KFD5ObmMm7cOEaNGgUg3MQCAwMFdLK8vJza2loePXpEZ2cnCQkJQkKysbGRoqIiBg0aRP/+/XtBvtrb2ykrKyMvL4/8/HwxVc7JycHExAQFBQUePXqEoaEhfn5+PHnyhBcvXvy/T16lhGrPnj0cO3aMLVu2YG5uTnFxMQsWLEBRUZHPPvuM6OhoDhw4wLp163jy5IkYTUOPScGjR484duyYyLAlQL2ioqIYEXR1dbFlyxaR+B0+fJijR48KQsjGjRtZs2YN33//PT/88AP379+ntbVVbIKamhpCQkL6VElLh9rWrVsJCwtj06ZNdHd3c+nSJdrb25k+fTqrV69m2LBhKCoqCrD63bt3WbhwIf/88w/y8vKMGDGCefPmMWzYsF6C6mZmZtTX17Nt2zZh82pqakpubi4lJSVYWVkxaNCgXk40ampq3L59W3TmLC0tGTduXC/r0r6EvLw8Tk5OlJWV0dDQgI6ODs3Nzfz22288efKEwsJCvv76a7q6uvjyyy85ePAgixcvZvHixXz99de9YAqysrI8fvyYx48fExwcjKurK6qqqjx+/FhYB1ZWVorxgbGxsXAFgp4u6IQJE+jfvz8LFy4kMTERd3d3Ro4cia2tLW1tbYSGhrJ+/fq3Xp+JiQkGBgZUVVWJ3ygiIoI1a9YwY8YMtm/fjqysLIcOHeLmzZvk5uYK+71Zs2aJfSp1v+vq6li6dCmRkZGsWrWKkJAQnj17xtGjR4mOjhZOMa9evcLKyoqgoCDmzp2Lr68vcnJy4sKQkZERxJg3o7y8nPj4+D4/x4EDBwod0tbWVl68eIGGhgaDBw8WxKU3IyEhAUNDQyZNmiSUBb755hu0tLQIDg4mJSWF7Oxs+vfvLxjDFy5c4MWLF4IdvnPnTr744gu2b9/O5s2bxfgoOTkZ6JkKbNmyRTBXzc3NhY5jX8PDw4Ouri4mTZqElpaWUA+IioqitbUVU1NT9PT0hMbyhg0bCA4OJi0tjXPnzuHo6Eh9fT26urrMmjVLKCZ0d3dz8OBB/P39+eWXXzA3N8fDw4PGxkaqq6tF4SIl98+fP8ff3x8PDw+ys7Px9PTE0NCQX3/9tde6+ioFdvbsWYHJr6+v5/z58ygrK/cSbpdw73Z2diQkJGBhYcGIESOYPn16L1MNHR0dDA0Nsbe3Fzj5e/fusW/fPpYsWSLIXxLRQ8Jj5ufnC0WYDRs2MHLkSLq7u3n+/DmBgYGEhob2UgrpaxgaGlJWVoa6ujqWlpacO3dOsLqlc0iKkJAQMUWQICB6enpMmTIFXV1dsrOziYyMFIRVad3t7e1COeT48eOicASESUNERARNTU1CN/PNCAgIwMzMrFey+bYxbtw4IcN18+ZNTp8+TWlpaS/nN+gp4pWVldHR0RF4U11dXfz9/ZGRkRGe8nZ2doSGhqKnp4ePj494XtevX6e7uxsdHR3u3bvHzZs3RbfrX99z6Tl1dnZSW1uLh4cHO3fuFIYrfVX+mDFjBiNGjBB//1+jra2NCRMm0N3dzZ07d8jPzycoKIhJkyaRnJzMtm3bhAuTtrY2L1684NtvvxVjYl1dXS5cuEBpaSkVFRWsXbuW8ePHc/ToUQwNDTl+/LhQIQoPD+f27dtcu3ZNwJpmzpzJoEGDqKqqQltbu8+4ZejRoW5oaPhfiUL379/n8ePHLF26FH9/fwwNDamsrOxVkHd3dxMXF0d4eDjd3d0oKyszcuRI3nnnHZF0ShCympoaSktLGTRoEHfu3GH58uWcPn2a2NhYgoODUVNTo6KigtraWgGTgp4C6Ndff+2VGL5tyMnJ8csvv9DS0oK7uzvbt29n7NixYrIq6dtDDzSusbGROXPmUF1dTXV1NW5ubmRmZgqH0XHjxmFqakp5eTnbt2/H0NAQXV1dCgoK+OOPP2hpacHQ0BBlZWXOnz/P2bNnhZb4pk2b+PHHHzEyMmLcuHFYWlqSnZ2NlZUVzs7OvZo6/7foc/Kanp7O7du3kZOTY/fu3cybN08IREtafu3t7Vy+fBkXFxfKy8tFxaulpcW9e/f46aefeP36tRBe1tfXp7q6mqysLOzt7UX1o62tLRLX169fU1lZyciRI8nOzhYP2sfHh8jISM6fP8/777+PkpKSqPKio6N7jdneJtLS0ujXrx/jxo2jqamJjIwMWltb8fb27tXufvPiCAsLo76+nrlz5zJs2DBBdiovL+fOnTtiLGxsbExzczNZWVkkJiZSVFSElpYW48ePx8zMrNflIG2kP/74g6NHj1JSUkJoaCgmJiYYGRlhbW1NQUGBEH3uSyQkJFBQUICPjw86OjqEhYURHx+PpqYmixYtIjs7G11dXcaMGSMUEwoLCwVO7MqVK9y9e5cRI0YwcOBA5s6dy5kzZ3j8+LHw037+/DleXl7Mnz+fNWvWCB1A6OliRUZGUlJSQmBgIIaGhpiYmBAaGkpGRgZFRUVADxmspKRE4ELfNqTC502h49zcXHJyctixYwc2Njbo6+vT1NSEqqoqra2tFBQUYGtrKzBveXl5QoNXGnk5ODjg7+8vRrGbNm2iuroaY2NjLCwshDrGhx9+SEBAwP8KV2lpaeHo0aM0NTUxYcIErK2txfvTl9i3b5/QB1RTU8PNzY1Lly6xfft2JkyYILrxGRkZHD16FC0tLTw9PYXETnx8PJ2dnbi4uKCjo4O+vj5BQUGoq6sTHh4uBKvb29v57rvvOHr0KN9//z0LFy7EwMCAU6dOCa1aQHS+pEPxr7/+IjY2lq1bt4rfsK/h5eWFo6Mjnp6eyMjIiC6joaEh48aNw8LCQryHhoaGAvJibW1Nv379KC0t5f79+yQnJ+Pu7o6JiQlff/01OTk5wuY3KyuLwsJCZGRkKCoq4vfffycuLo4hQ4Ywe/ZsVqxYQVlZGfv372fYsGF89NFHREVFkZubK4TGU1NTBcyiL5GcnMzXX3/NqlWrUFJSEr70urq6JCUlcfToUdzd3XnvvfewtLTExsaGhIQEKisruXr1KufPn0dbWxtfX1/MzMzw8fGhtraW7OxsbGxsGDNmDKmpqfz55590dHTwxRdf8N1336Gnp0ddXR1Hjx7lxo0b1NTU8OeffyInJ8fEiRN58uQJWVlZLFu2jAkTJgib3zftVt82SktL0dLSorm5GVVVVdTV1fH29ub169fIyclRUFDA06dPaWhoYNq0aUDP+2tsbIyXlxe///47f/zxB8XFxcTExJCZmcnatWtFl7Ojo4P169fT1dVFXl6eUE64fPky+vr6DB48GGdnZyorKwUnQTJdaGxsxMzMDFNTU0xNTQX2sC8hIyODhoYGysrKuLi4YGNjQ3FxMStXrsTd3Z1Zs2ahqalJS0sLHR0dTJgwgRUrVnD58mUiIiI4duwYU6dOZerUqTx79owPP/yQ6dOnM3PmTKqrqzl+/Di5ubkEBweLIsLT05M1a9ZgbGxMVVUViYmJVFZWimlHfX09pqamyMrKCkUZSY/522+/5cMPP+zTGrW0tP4tYcrPzxddVFVVVRwcHFiwYAGysrLC237AgAG4ubkJvO6yZctQVlYW3fuQkBAxXTAyMsLMzAxPT09kZWWxsbFBVVUVFxcXBg4cSFJSEi9fviQlJQVlZWW0tLQwNTXF29ub0aNHM3DgQPLz8/nll1948uSJ6Ly/bbS1tXHnzh2BE25paaGgoECoCZSUlKCqqkpBQQFhYWFYWloiJyfH3bt3+eOPPwTP4U0GfVhYGAEBAYJYW1lZSVlZGVpaWkJSEmDJkiUYGhqKTmNBQQHp6eloamqipaUlMOuGhoZi8tNXqOC0adO4ffs2N2/epL29XUwYbty4gZWVFadPn2bu3LmkpaXx448/IiMjg7GxMWZmZqJT7Ovry4wZMygrK0NbW5u6ujoSExM5c+YMzs7OmJmZERYWhpqaGtOmTWPevHlcvHiR48eP093dzZAhQxgwYADV1dWUl5djZmaGq6srZmZmoujOzc3F19eXs2fP/scpVp+T1yNHjrBjxw5Wr14t2LYlJSWCaFBUVISenh7W1tbcvn2bqKgoGhsbsbKyorGxkV9//ZXr169jb2/Pxo0bUVFRobi4WIwDqqqqqKurExtYRkaGp0+fCha4r68vKSkpnD59mmnTpjFu3DiSk5Npbm5m//79NDY20tHRgaKiIi9evKCwsFBsnreJRYsWsWXLFj744ANmz57N1q1byc3NZf369YSGhtLe3k5NTY0A5W/evJmvv/6aRYsWCXmwzMxMrl+/zsGDB0lJSSEgIIBvv/0WY2NjIUelqKhITU0NFy9eREtLS+BIGhoayMjIECM1aVy9bt06vv/+ewAxho2NjRU4475EYmIi9+/fR09PDxUVFW7dukVNTQ179uxBS0uL0tJS6uvrRdeyubkZNTU1oQjw999/c/jwYQoKCjh27BjHjh1DXl6eEydOkJOTQ21trXgGtra2bNiwgdbWVvESSFCC4uJiAX4vLS2ltLQUa2trAT0xNDQUTiN9idraWiorK5GVlRUdXk9PT2xtbcnKyuLcuXNMnTqVkSNHYmJiIhLkNy9nXV1dUYXLycmxYsUK0tLShBC9s7MzI0eOFLI7DQ0NvHz5kilTprB48WKKi4t5+PAhwcHBmJmZCZxtRUWF2MsS6UddXb3P3ZADBw5QXFxMaGioeC5dXV28evUKdXV1kbxmZWVx8OBBrK2tRaJaWlpKWFgYL1++JDs7m9LSUsaOHcuaNWtobW1l5cqVBAcHc+PGDRQVFcnJySEnJ4eff/4ZNzc3Jk6cSEtLC69eveKff/4hNDQUZ2dnZs2aha2tLbm5uXz//ffU1taycOFC7OzsBEi/LyF1rKUCtrW1le7ubvr164eDgwPl5eUkJCSgqKgo2KupqanIyclhb2+PtbU1ampqdHR0UFRUhLKyMkOHDuX8+fNcvHiR7OxsysvLKSsro66ujpcvX1JfX8+dO3doampi9uzZaGhoMHr0aA4dOkRLSwv+/v7ExMRw9+5dKisrGTp0qNhnfVVVkJOTY/Pmzairq7Nu3TomT55Me3s7ioqKREZG8ssvv2BtbY2hoSFjx47FyMiI4uLif3sfbGxs+PHHH5k8eTKXL1/m4MGDzJ49Gy8vL/bv38/MmTPZtGkTenp6LFmyhNWrVwtxfkAwwpOSkigsLCQ5ORkHBwdRvEmmE32xbpQiMjJSkHskYpG2trYYe7569Yp79+7R3NyMl5cXPj4+yMrK4u3tjY2NDenp6dy4cYPCwkLKy8tpamri+vXrnD17lkePHvHOO+8wb9484uPjuXfvHjNnzuTly5d8+umnDBkyhMGDB6OqqsrgwYNFgVBTU0NSUhKVlZW9CK9Xrlzh4MGDvTrf/yny8vKIiIggLi6OoKAg5s2bx927d5k2bRoeHh4CUiLBggICAhg/fjyKiorcunVLFA07duwgJSWFPXv24O7uzqhRowgPD+eTTz6hpqaGH374QSSvSkpKrFmzhtzcXEF6GjZsGKamprx8+ZJz584xdOhQISHZ1taGsrIySUlJZGVl9cLpvm10d3fT2traqxmUmZmJtbU1NjY2wkVSQ0OD7u5uzp07x7Vr1wRp09vbm2+//RYVFRW8vLzw8/MT6i/t7e29lAoWLFgg/n9JSQmKioq0tLRQW1uLoaEhhoaGwlTlTUiZtrY2hw8f5ubNm32Sx4SevEKCA0hk27y8PNTU1PD19RV8lISEBF69eiXuh4cPH3L48GEhizZs2DBBrnz8+DE//PAD9vb2dHZ2cuHCBXF+ampqCqMVf39/MYGpqKggLi4OAwMD7O3tefXqldD2hZ5uugSl6Us0NTWxYMECnJ2d8fDwwM7Ojlu3brFs2TKGDRsmTHfOnTtHWVkZ9fX1nDhxguXLlwuFHTk5OVatWoWtrS0FBQWsWrWKwsJC1NXVkZWVFcXFgAEDGDhwIA4ODvz9998CBvrxxx8zefJkgP8VvhIXF8fOnTtxc3Nj6dKl/++TV6kC+/PPP2lubqa1tRUPDw8+/PBD6uvrxXh91apV9O/fn9OnT/Pzzz+L7NvHxwcLCwsmTpzI8OHDRQequrqauXPn0tbWxqpVq0hISMDFxQVZWVlRNdfX19PZ2Ymenh42NjYYGRkxc+ZMnJ2d0dbWpri4mEuXLmFnZ8fixYupq6vjxIkTfVpfeHg4K1as4Pbt26IbmJOTIzqq169fp6OjA2trayorK4UsRkREBJ988gnKysqoqKigpqaGp6cnqampREZGCucVX19fXF1duX//PnJycvTv35/BgwfT2tpKWFgYZ8+epbCwUEiT+Pn5MXz4cNGVePz4Ma2trYwcOZL+/fvT1tbWy03mbcLT0xNVVVVSU1N59eoVbm5u+Pj4iGdbXFzMtm3bMDIyYv369YSEhFBYWCgOm+3btws1gqKiItzc3Dh+/Djjxo3jzJkzZGdnM2TIkF7wgjcvdnl5eaZOnUpaWhpJSUns2LGDu3fv4urqyjvvvIOtra0gWlhbWxMSEtIne1F1dXW6urp6ER+GDBnC+fPnhZ7jhAkTyMjI4OzZszg7O7N3716CgoJoaWlBWVkZdXV1YS+ppqaGo6MjsrKy5OfnC02/VatW8c477zB16lQOHDggRoPQQ3769ttvCQ0NFQ4wQ4cOxdzcXAD2zc3NKS0tJT4+vs/J64ABA0hLSxP6u5JF8aZNm3B1daWpqUmI+n/33XeiYKqoqEBNTY3W1laePHkiftf29nbWrFmDiYkJbW1txMfH8/z5814kpI6ODu7evUtKSgrx8fHMnj2bgIAA4uPjMTIyYtmyZRw/fpwrV67g5+fHxx9/jJmZGX/88cd/5Td++/ZtUlJShDnGmjVryMnJ4ccff8TQ0JD169dz4sQJpk+fLrC7jx8/ZuvWrTg7O/Pjjz+KPSjZR06cOBF/f3/c3NyEHuOwYcOQk5Pj6dOnpKSkYGZmhrOzM9nZ2dTV1Qnh7ODgYGRlZfH19WXbtm1CAqijo6PPlwn0uKs5ODgI0oK/vz+VlZV0dnYyceJEysrK2LNnDz/99BOOjo40NDTw5MkToEcxY+jQoTx8+JDs7Gxu377N+PHjkZOTE3hcKb755hscHByIjo5m8ODBgiAlxdSpU3nvvfdQVFQkNTVVnOkSgcPAwICampo+yStJERsbKxIOqRh8U0LKxsaGd999VzgUvhna2trs3buXOXPm8OTJE/Lz8ykrK+PFixei8/T8+XPef/99WlpahOV0SUkJ2dnZQgNUMsqQrIBlZGQEMbGpqUnskf8mqZMMKyR7XujRNZbgdMrKyrS2tgrr59evX1NaWkpxcTFGRkaUlpaSmJiItrY2W7duxc/Pj379+lFfX4+ysjK//vorioqKREVF4ebmRm1tLf7+/owbNw43NzcBZ5EK2IyMDA4fPkxLS4twi5QiICCAjRs3EhIS0ovs9TYhIyODgoKCwCyrqKjg7u5OV1cXnZ2dgsNw7do16urqWLhwIZGRkezevZvy8nKRvC1YsEAk9NDTaHiT//Cvcf/+fQ4ePMjIkSP56quvhIxYW1vb/6p+sXbtWpycnMSI+m3Dy8uLX375hfPnzzNu3Dg2bdqEj48Pz58/R01NTUBN7OzsmDdvHqampnR2djJixAgx/XByciI+Pp6rV6/y5MkTqqqqaGpqYuvWraKDKxXinZ2dKCgo/JsbmJ6eHsHBweI3UVBQwNLSUiTpERERDBw4sM8KPHPnzmXgwIFCQz8+Pp7Kykq+++47VFRU+OKLL7hw4QKampqsWbMGVVVVEhMTe3V4c3NziYqKYunSpcKmGHqggxYWFmhra2NtbY2joyNPnz7lxo0bIgG1tbXtZfxQU1Mj4E1SNDQ0cPToUaysrN4Ke97n5HXUqFFUVlby5MkTwRh1cnJi5MiR6OnpISsri5ubGxMmTMDc3Jzk5GTMzc0FWN/d3R05OTkBMcjKyqK0tBQ5OTmBXQoLC6Ojo0PgRJSVlTEyMsLAwIDy8nJhB2llZUVVVRXNzc2MGzcOZWVliouL0dDQICAggIqKij5ZbkKPJmd8fDx79+5l8eLFtLS04OrqiqamJjdu3OCLL75AXl6ekSNHisQqKCiI8vJybt68SVpaGtAzIpH0My9cuMClS5eYOXMmLi4uAg/j7e3NkCFDcHV1JTs7mz/++IPLly9jZWVFaWkpT548YfDgwYwZMwbo6QycPHkS6Knkx48fT2BgYJ+TV0m4et++fdy4cYNt27bh5eVFZ2cnZ8+e5cSJEzx48IAhQ4agoqKCj48P9+/f5/Lly2hoaODu7k5wcDDXrl0jOjpaHP4GBgaoqKjg6urKwoULRbX4+vVrIbdUVVVFVVUV/fr1w9DQkO+//55r165hbW3NgAEDBClMCkdHRxwdHfuUvMrKyvYC7aekpNDV1dWrwoUeu83Lly/j5uYmSFptbW3cv38fLS0tYSJQUVHBpUuXKCkpEaPZ6upq2trakJWV5eLFi0K7zsnJidevX3PmzBlBIJKTk8Pd3Z2qqiqBc5NefGn/9vXiXLVqFXfv3sXIyIjOzk4yMjIwNzfvZaVbUlKCi4uL6Bp0dHTwzz//8OLFC6FPrKmpSVZWFi4uLiQlJVFWViaKrq1bt9LW1oa1tbVQbDh06BAPHz5ER0eH9957j8rKSk6ePIm7uzvTpk2jqqqK3NxcNmzYIPZFc3MzZWVlfYYOdHZ2kpOTw40bN9DU1OT169c0NDRw9+5dwsPDxQXc0dEhyAipqakUFRVRVVVFeHg406ZNE9+jpaWFlpYWwSru6OhARkYGLS0t5OXl6ezsxMvLi5kzZ2Jvb8/p06fJzMwkICBAGABAz8i0ra2Nzs5OLCwskJeXp6SkRMBq3jbc3NwYPHgwI0eOBHoSBDk5ORobG9HX1+fzzz8nLCxMCNs3NjbS1dWFvr4+27ZtIzQ0lHPnznHkyBGcnJyQl5fH3d1dOBp2dnbS0tKCs7Mz33//Pfv37+f+/fuYmZkREBDA7Nmz0dbWZtKkSbi4uGBgYNALGiXBfHR1dSkvL+fatWv/ldtdWVkZioqKmJqaCvy/VBhKeGspOjo6qKurEzbb8vLyqKurY21tjYKCAnp6elhYWJCZmUlaWpogsDY0NGBvby9ITqGhocIMB3res5aWFuzs7NDS0sLd3V04AEki9IMGDRJJ5ttGSkoKT548wdHREQ8PD4HrlyZpRUVFxMfHk52dTWJiIsXFxULDWnJicnJyEs5O48ePR0FBAXl5eUGeaWtr4+HDh+Tm5gro3aVLl9i8ebMgT5WWlqKiokJhYSH9+vUT51x1dTW1tbVYW1tjYmLSi5T0ttHY2CgKdmmSpaam1iv5aGpq4u+//yY6OpqpU6fi7+9PZGSkcLoaNGgQJSUl/PXXXzg4OAit36ioKJSUlAgJCRHJTXl5OcrKytTW1vL48WNqamoECXvAgAFcuXKF5uZm0tPTcXV1RU5OjrS0NKqqqnBxceGjjz7qM4nZ09NTqKdcunSJ7u5utLW16erqEvwTySTkTeWbIUOGiMKhtLQUS0tLAgICUFZWpru7m/j4eP766y+WL18uZLAkeSjogSmqqKgImEN9fb3A3mppaeHv709rayv19fU8evSI+/fvk5iYKHCwbxuS3rO7uztOTk60trbi5eUlSI8nTpyguLiYmTNnMn/+fJSVlYmOju6lBiAjI0NhYSGnT5/G29sbNzc37t+/L4hz48aNY9q0abS1tfHrr7/y+++/Awi74MbGRl69ekV+fj7Gxsa9NOzl5OQoLCzEyckJZWVlUaT/36LPyauVlRXLly/nk08+4fLly6xdu5aamhohKzNx4kQMDQ0pKSlh48aN/PPPPwwePJiPPvoIMzMzTp06xdWrV4XsS3t7u8Ap/fnnn9TU1AiQs7+/P35+flRWVpKdnU1wcDAKCgqsWLGCjIwMAZL+9NNPqampYcWKFbz77ru9mNtvkqXeJr777jsOHDhAVFQUVVVVKCkpMWPGDAAhhQE92N+VK1fi5uZGTU0NWlpaZGRksHHjRm7dusW9e/ewsLAQHtUtLS3ExsaSlJRESkoK7733HhMnTuT58+dcunQJBQUFFBQUCAgIYNGiRTg7O3PlyhXu3LlDamoqycnJ1NTU4OfnR2JiIrNnz+aDDz7g6NGjfX2EImRkZIQVL/R0MbZs2UJaWhoLFizgl19+QV1dXYgLX7hwgbNnzwoMUkpKinC8+eOPP1i1ahVaWlqMHDmyF5h9z549KCsrs3v3btLS0ti3bx8BAQE0NDRw7do1nJ2duXjxIs7Ozr0IMN3d3XR2dv5Xh61UuTY1NbF//34KCgpYt26dSORevnzJ/fv3MTQ0pKCggM2bN7N582ZkZWXZsmULCgoKwvHjxIkTfPXVVxgbG2NkZISqqip37tzh5cuXxMfHU1JSwsyZM7lx4wZlZWWsW7dOEBSamprQ0NAQY9/79+9z5MgRzM3N+fTTT3F2dsbCwkLAEd42TExMCAoKQk9PT0w03nRQAUQnSML2Sr+jdOm/++67bNiwAXV1dVJSUrhw4QL//PMPeXl5tLS08M8//2Bubk5ISIgQvI+KisLDw4Phw4dz+/ZtVq1aRW5uLqGhoVhaWvLpp58yZswYSkpKeP36Ne7u7ixYsIABAwawb9++Pq1x/PjxeHp68vPPP5ORkcHy5csJCgoSOEjowf4OHz6cpUuXEh4ezpIlSzhx4gSampooKChQWloqzoCIiAj+/PNPoqKiUFFRwcjIiIaGBsrLy1FQUGDQoEGsW7cOV1dXtmzZwuHDh1m0aNG/jZHPnTvH3r17sbS05JdffmHAgAH89ddfrFu3rtf48z/F6NGj6erq6lWsSYmLFEOHDsXU1JT6+nqKi4vFJGb+/PnIyMgwbdo0RowYIbC/UmKqp6eHnJxcrzHvjBkzaGhoQElJCR8fH+EmmJyczHvvvYePjw8//PADWVlZXL16lYCAAIEBv3fvHocPH+7TSB16upD9+/cXqhxS9y4pKUlg/iW8HPRAmmJjY5kzZw5ycnKsWbOG48ePY2NjQ0dHB3Z2duzfv5/29nbmz5+Pra0tP/zwA2FhYdy7d4/IyEgCAgKEcL8UkpuRFBLGW7IaBRgxYgRGRkZ9KpRzc3NJT09n/PjxAp4mJSeRkZGcO3cOfX19SkpKePDgAQYGBkyaNInMzExSUlLw9/dn5MiRpKSksG/fPrKysli8eDETJ04EenznN2zYgKOjIxkZGRgZGQm3PKm4OHnyJD/88IPAxf7666/4+fnR1tbG559/jpWVFV988QWxsbF89913wq3pbSMlJYXnz58LMtn/FuvWrSMpKYnvvvsOf39/4uLiSEtLY9y4cUyZMoWFCxcC8MknnwjDFnt7e+7evUt5eTnz5s1j48aN9OvXDwMDA3755ReuXbuGmZkZW7ZsEeRNOTk5pk2bJkwB2traKCsr4/jx45w8eZJBgwbxww8/9Gl9gGimbdiwQdz3r169wt3dXbyfT548obS0lDFjxvTSuYeeSXReXp5Igtva2igoKEBFRUXkN1JIAvwvX75k6dKlDBo0SNyjERERHDlyBFdXV7766isUFRVpamri999/59atW7x8+ZL8/HzU1NR6dbD/U/zwww+cOXOGsLAwAduQZMYkkxdbW1tcXV1FV9fDwwN5eXkaGxvJz8/H3t6eDRs28NVXX7F79242b97M1atXmTlzJomJiUyYMAEnJydyc3N7NWOWLVvGvHnzOHPmDOHh4bz//vu9lAQkN8iWlhZ+/vlnnJ2dyc3NFUYW/6foc/La1dVFU1MTtra2rFixAisrK27dukVOTg5OTk5iTFFQUMDu3btRVlZm+/btws5UW1ubhoaGXl2KQYMGkZWVxa+//sqoUaP47rvvKCoqoqCgAG9vbzEKq6mpoaGhgZEjRwpgelNTE6ampjx69EjIeCkpKZGbm4udnR0ff/wxYWFhb72+Fy9e0NjYSGRkJE+fPmXjxo3Y29uTk5ODnJycsFaVHKQ0NDTQ0NCgtbUVfX19Nm/ejLa2NufPn+fRo0d8/vnnaGtrU1lZydixYyktLSU5OZnc3FzRNamvryc0NFQwi319ffH09MTY2JiwsDBqa2uxtbWlvr5eEB+mTp0qwOV9jbq6OuHW8uGHH+Lk5NSLcTh//nx27dolZF3S0tLw9PSkra2N9PR0WltbsbCwwMbGBk1NTc6cOcPSpUtpbGzE2dkZdXV1Dhw4wO3bt8Ul6uHhgaysrNA1ffjwIa2trQQEBDBw4EBxYbe0tHDs2DG0tbUZN24c2dnZQoLpbUNTU5Ouri4hSePu7k5AQIDYm/X19Zw8eZKKigr27NnDvXv3+P7778nNzWXYsGEUFhZSWlrKpk2baG5uFgWCp6cnjY2NPHnyhIiICJ4/fy6q8ubmZh49esTr1695/fq1kOoqLCwkOztbQDLKysq4fPkyXl5eomvy5gX6tiEVFObm5sjLyyMvL09tbS21tbXIyMjQ2NhITU0NLS0twkQhJSUF6BkTS8YhGRkZfPLJJ7i4uPDixQvhXz9kyBDMzc0pLCwUclSjR4/Gzc2NWbNmYWVlxeTJk8nNzQV6uvmS1q+FhQXPnz/n1q1bvH79msmTJ/cZFgH/4yc+dOhQoKdTaW5ujpOTE8uWLcPOzo6xY8dSX1+Pvb093d3deHl59bpgY2JiSExMpLW1lcjISKKjowWBpLW1FUtLS4yMjNDW1sbLy0skgdnZ2RQUFAgiXWlpKQUFBZiYmKCnp4ejoyPa2tpC19HIyEgQyt42PD09yczM5NSpU7S3tzNs2DAxLqupqUFWVpa1a9eSlZXFX3/9xa1btzA0NGTQoEGiULGysgJ68GL//PMPwcHBQsuzo6NDSG3Jy8ujr68vuh0RERHk5+fj6uoqdIFlZGSQkZHh2rVrwopVSl61tbX/jaX/NuHm5vZv40FFRUWUlJRITEyksbFREFHKysq4f/8+6enpooOpqakpsOrQc6+Eh4djbm6Oi4sLjo6OGBgY4OPjw9OnT/n111/R1tbGycmJ2tpafvzxR2xsbMRZmZGRQUZGhmA2Q0/np6KiAnV1dUaMGNGn5DU4OJji4mIhNv+mEcmxY8c4fPgwxsbGwsZ2+PDhfP3119TW1nLlyhWamprQ09MjJyeH8+fPU1FRgZycHLa2thQWFrJ69WpSUlKYN2+eKMLMzMz47LPPWLJkCWVlZWzcuJGCggJmzJjBrFmzgJ69fePGDerr60VhoKKigq2treikv22oqKigp6dHa2srly9fJi0tDWNjY0JCQigrK+PatWs0NTUxdepUoQhw+fJloqKihHKM9J2cnZ2ZOHEi6enpJCcn4+vrKzryly9fxtXVVWiaW1hYYGdnh5WVFRkZGfz111/CWtjT01N0H3V0dITcWEREBNOnTxdnxtuGJNtkYGCAgYEBBw4cQE5OjsWLFwM9zZmYmBicnZ1pbm6mu7ub3NxcQTZPTU0VHf2amhoSExNFJ72trY3MzEz27NkjrMElI6SoqCgyMjKYNWsW/v7+wgggKyuLDRs2CPUlY2NjYdoEMH369D6tz9PTEyMjIxQVFYUkYlZWFiUlJbi6ujJ27NheXVboeU8fPHjA+fPnqaysZPPmzWJynJycTEdHB8HBwaxevZqIiAjc3d158OABf/75p8gv+vfvj7m5OU+fPmXXrl10d3ezfft2oKcgNjU1xdnZGWtra3R0dAS+9m3kzvqcvL5+/Zq7d+8SGBjIxIkTmTBhAhYWFkRFRfHq1SuRIEiOF1JnKS4ujrt372Jubs68efPYsWOHcBvJyMgQjHIPDw/69+/Pli1bOHDgADo6OsydOxcNDQ2OHTvG8+fPWbx4MUOGDCEhIYGBAwfy7Nkz1q9fz9SpUxk6dCiLFy/G0tISZ2dnHBwc+pS8Hj16VOAtdXR0CA0NxdTUlLCwMKytrTl+/LgY/7wZJ0+epKmpiZUrV7JgwQIuXryIrKysGCvU1taipaWFra0tTU1NnDt3TjB97e3tiY6OFhaj06ZNExXclClT0NbWRkFBgZycHD7//HPhaS0RKvoaz58/5/bt2wwYMEBU+I8ePSIzM5O5c+cKWR2pc2Bra8vixYtZtmyZgGxIhLU7d+6we/du2traBAyiurqaq1ev0traipWVFcePHxeHiYuLCz/88AO//fYbeXl5DB48mNzcXH788UfWrVuHuro6R48eRUlJidDQUJqamjhz5kyvcfjbRFNTExcvXiQrK4u5c+f2wt9WVlYiIyODk5MT06ZNw9LSksuXL3P69Glu376NhYUFVlZW/PjjjzQ0NCArK8u2bdvo378/165dIysrCwcHB9ra2qisrMTPz4/29nYWLVpEXV0dDg4OeHp6kpaWRnp6OhkZGaSlpeHh4YGbm5tgjysoKNDU1ERMTEyfZXpqa2uJj4/HysoKS0tLysrKKCsro1+/fsjJyZGQkMDjx4+xsbEhMDCQ48eP88svv7Bz50527drFypUrOXDgAA8ePEBbW5tp06aJDoOSkhIbN25k2LBhrFu3jqNHjwq8VFVVFVpaWhQUFIiE3NzcHG9v716EngEDBtDV1cXx48dpb2/vRcJ42wgPDxeaswEBAYSHh5OWlkZwcLC4FPbu3Ut5eTnr16/H0dFR2ChLeqgyMjIcOXKEoqIi5OTkqKmpQV1dnRkzZuDq6kp9fb2Q4WpvbycpKQkTExNRlDQ1NdHU1MSdO3eEZuWwYcP4+eefqaqqQk1Nje7ubsaPH4+hoSEXLlzo0xrLysq4ePEiFRUV9OvXTySvzc3N4v1WVlbm1q1bREZGYmJi8r9qAp86dYo9e/awe/dukbxKiZC6urrwh5c6sffv32fTpk3Y2NiIKUm/fv3o6OggPz+/17gUehzgJk2a1GedV1NTU+Gj3t3dTVtbm9BoPXXqFPfu3SMwMBAPDw/Cw8Opq6vD2NiY8+fPi7Ng9erVvP/++zx+/Bh3d3fOnDmDsbExAQEBaGlpcfToUTFmjYuLIyIiAicnJ86fP8+nn37K+PHjGTt2LEpKSiQnJwv+gZS8FhQUkJ+fj6Wl5f8qBfV/C+l8/+ijj/jqq69QVlYmJCSEFy9eCLOAkpISqqqqsLGxwdbWFm1tbbS1tZk7dy7Hjh0jPDwcKysrli1bxoMHD4iMjMTb25uOjg60tLQIDQ1FXl6e7du3c/bsWeTk5Ni+fTtWVlbU1taio6NDdXW1gBlAj9xRdXU1GzduFNJDb2pYSxJ3bxNSkZCVlcWePXs4cOAAo0aNwtfXl9OnT7N//35OnjzJ7Nmzxd1nbGwsyLvV1dVoa2tz7NgxXF1duXDhAidPniQ2NpbFixfj7u5Ofn4+P/zwA1FRUaxZs0Zo10ZGRvLo0SOeP3/OkydPyMnJwc3NjSVLljBnzhxBnJL++/Xr17Njx44+J69JSUlidB8dHS24IJ2dncTExHD9+nVsbW0ZNWoUBgYGZGVlicmBra0tISEhQoc5Li6OqKgoxo8fLzqMaWlpnDp1CjMzMwoLC4mOjhYuUnV1dRw8eBAvLy8cHByELJhUoKqpqTF58mTa2tq4dOkS48eP5/jx432CRly6dIndu3ejoqIizhxVVVVmz579b4mi5GQGPUpKx48fx8HBQXRTOzs7kZWVFapA69ev54MPPqC4uJi9e/cK61pbW1vc3Ny4du0aYWFhZGRkMGjQIOTl5UlNTeXMmTMMHDgQZ2dnnJychDXs22qC9zl5vX79Os+ePetVTXt5eaGurk58fDwPHjxg6NCh4jDJy8vj8OHDREdH8/DhQ4YOHYqZmZlwsjIxMWHHjh2UlpYybtw4kZxVV1ejoaHRy+PWxcUFFRUVzM3NqaiooLKyUiQl0phYW1tbVJ+1tbVifPu2sXLlSgoLC4VmosSKd3FxEZp7AQEBolNYXFzMvn37UFFR4aOPPhKWrt98882/ubh89tln2NvbCy9haS1NTU38+OOPYnwvVUA3btwgNjaWESNGCOepNWvWEB4ezsGDBykpKaG+vv7fiA7/KSTpFUmLs7q6moqKCpycnHo5sCQkJBAWFsaIESMEXvHNv9XR0YGlpSUbNmxgyZIl5Ofnk5qaSklJCYMHD6alpYVBgwYJLJM0TlNXV2f27Nm8ePECZWVlrKysMDc3R19fn87OTiZNmoS2tjY6Ojo4OTkxY8aMPon47969m1GjRtHa2sqzZ89ISEjAwcFBHAa6urr4+PggJyfH0aNH0dPTY9euXfz888/ExcVRXl7O+PHjGTZsmPCTnjZtGikpKTx48AAHBwcWLlzInTt32Lt3L/Hx8ULT7/r162RmZoqkKz4+Hm1tbfH7ubm58eWXX5Kdnc3z5897HXh9icDAQNTV1YmNjeXVq1f4+fnh5eUlcLumpqYMHDgQXV1dtLS0GD58ODo6OkyZMoXW1lZqampQU1Nj+vTpdHV1CbebWbNm0dHRIawrS0pKaGtro7S0lNzcXOLj4zlz5gyNjY1MmjSJYcOGcfHiRQ4fPkxHR4fohDk6OuLr6yuIFX3p9EhRUVHB06dPCQwMRF9fHxMTE+ECV1JSwsmTJ2ltbWXw4MFijCcnJ4eZmRmVlZVCEurZs2fk5OSI38bAwEDg8tPS0jh58iQtLS28++67qKiocOXKFQoKCpg8eTKDBg2iqKiI69ev8+effwI9xZ9EWJw5cyZKSkrEx8dz8uTJPknzHTt2jNraWkJCQoSdshQmJiZ0d3dz9uxZTp06JSwmi4uLKS8vp6uri0ePHiEnJ0dwcDCLFi1CTU1NnFGAEEiX9l58fDyqqqrY29sTGBjIkiVLMDExobW1lStXrhATE8NXX31FSUkJ77zzDj4+PuKzHBwc/iujiTcJKS0tLcJgQBqHJiQksHTpUsrKynB3dxfybFZWVpSVlRETE4O+vj6rV6/ms88+Q1lZmYaGBoqKimhtbcXc3BxLS0uOHj1KdnY2S5YsISAggN27d3Pv3j1mzZpFaGio+B4uLi5Ct1IKiVPRVxzhm7Fo0SKMjY1JTEzk2rVr3Lx5E2tra37++Weqq6u5ceMGOTk53Lx5k7a2NiwtLXn48CFXr14Vd+D48eMpKirCxcVFkII9PT159uwZz549o62tTZBQ//rrL7y9vTEwMODSpUscPnyYffv2kZOTw8yZM5k+fbooFKDnrP5v7H2lkJOTw9TUlKFDh6KoqMiAAQOws7Nj6NChFBYWkpKSwrfffisSF8mSXU9PD11dXTQ1NfH09OTevXu8fv0aZ2dn1q5di5GRkVCimTNnDkCvkXJAQADl5eXs3LlTdB0lE4TDhw8TERGBjo4Os2fPxs/PT9iYV1VV9Wl96urq5Ofno62tjaysLD4+PhgaGlJTU4OxsTFLlizBxcVFTGJMTEx63e/GxsYCinbv3j2io6OFHbBk17tr1y4yMzO5f/8+d+/epb29HV1dXSwtLbGwsBDWyP369cPc3FzkAdIztLCwwMzMjOrqav76668+ra+oqEi4vHV3d+Pu7o6ZmZlIXCViY0xMjID1LVu2jIkTJ9LV1cWgQYMIDAykoqKCyMjIXgku9DSE4uPjqampEdNAExMTEhMTef36teAaDBkyRJgdDBo0SGhjV1ZWUlBQQHl5udgj/+l97HPyWlNTg6qqai8dte7ubuzt7SkrKxN2gwYGBujp6REXF8epU6cwMDBAS0uL+/fvAz2Yo++++46AgACuXr1KeXk527ZtEz9mYGAg3t7eouPW0dEhxg8RERE8fPhQHEB5eXk8ffpUbDJAXMixsbF9Wp/EbJY6iydOnCA/P1+wuhsaGmhpaRF+wBcvXiQqKopJkyaJhF5LS4s1a9ZQU1Mj8IY5OTlcv34dZ2dnVq9ezYQJE4TrTVZWlhhF29vb4+rqSk1NDZcuXeL69eukp6cLaIHU0ZozZ47Qyf3ggw/6tEZlZWUhWVFTU0NCQgK6uro4ODjg7e1Nd3e3cLkwNTXF0dFRyHpIUmgNDQ2kpqaip6fHgAEDyMvLE7Imjo6OjBw5Uki7/PHHH9TV1fHuu++ioKBAbW2tYH4nJCSgoKDQS+NWGqdLifnmzZv7VGW+fv2aIUOG4O/vT2pqKpcuXeLevXsYGxujoaEh4CVFRUXcu3ePZcuWsWzZMrq7u1m0aBEyMjIMGzaMNWvWiM88f/48hw8fRkVFhQ8++ICgoCBSUlKor68X46/Tp0+Tl5fH/PnzKSsrw8jIiMWLF6OmpoaKigoFBQUYGxtjbm5Oe3s7Dx8+xNjYGHd3d169etWnZyiNIjMzM4mMjGTAgAHikOvq6hJ6p1JMnjyZyZMni/G5t7c38+bNY+jQoTx79ozr16+LZBZ6xtA///wzZ86cQUlJCWVlZQoLC3n+/DnR0dFYW1szbdo0HBwcSEpKIjIyksjISOHrPW/ePBwcHHolZH2Nuro6YmJiKCoqYsSIEQKvDD1OeDdu3GDnzp0MHz6c58+fc/PmTUJCQsRIPywsjN9++01MSeTk5DA3N0dDQ4OoqCjBEJaIom5ubhgZGfHHH3/w8OFDpkyZgq2trdgzUic0Pj6ex48f069fP0aOHCmgJcePH+8TJjQnJwczMzPGjh2Lo6Mj3d3dgnCqrq4uyINvTo78/f0JCAigsbGRw4cPk5eXxy+//IKXlxebN2/u9flvanPW1dX1uqhGjBjBiBEjyM/PJzExUXQ7t23bhry8PJ999lmvd7Kjo+O/Sl4jIiIwMzPDzMwMZWXlXp8RGhrKtWvXKCkpYevWrdy6dUvAS7y9vWlra2PFihV0d3fz008/oaqqKrq49fX1PHv2TDROfvjhB1JSUnBzcxNC91LXR15enqamJmpra4URQGtrK5mZmejr62NgYCBG8pKr39tGXl4eysrK+Pj44OXlxYIFCwSBdsWKFYK41dXVxbZt24TedGRkJLdu3QJgzJgxopHQ1NREUFAQ+fn5jBs3jtbWVp4/f05dXR3a2tqoq6tTUVHB0aNH6ejoYP/+/djb2zNv3jwmTpxIfX09kydPRkFBgby8PDo7O7G2tkZZWZnGxkZhM9yXaGxsREFBQZwP0hnR2trK1KlT6d+/P+vXr+f3339HXV1dOPzZ2tqKc9LCwoKhQ4fy6tUrjhw5wldffYWVlRVZWVkkJSVhb2+Ps7OzwKonJSWRmJjI0KFDmTBhAsnJyaxfvx5jY2MCAwMJDg7m8ePH3LhxQ7g+njp1ivnz5/P999/3mbAlNcskK3BTU1M6OjrQ09NDT08PAwMD6urqxAS1o6ODvLw8NDQ0yMnJ4dixY8TFxaGrq0tZWRkFBQUUFBRw9epVbG1tWb16NfPmzcPW1pbi4mKsra1JT0+nubkZT09PMQHt6OggJCQEY2NjwfeQkkRZWVmcnZ3JycnhwIEDfTINcXBwICsri/r6egChCQwIJzbp70sqL++++y4BAQEEBASIYkRfX58hQ4aIZgD0THFOnjxJQ0MDNjY2+Pj4kJaWxoMHDygoKEBHR0fo3Le3t4vmmQQRaG9vp7i4GC0tLTo7O0lMTOTevXu8//77/9c19Tl5HTlyJImJib2IUFKFJ2Xy+vr6oiqOi4vDycmJ5cuXi9H/n3/+SUVFBQ8ePMDY2JjW1lZUVVV7dfWGDBki7NVaW1uprKzE1NQUQJC1JK/yFStWkJyczCeffEJQUBDp6ens2bMHRUVF5s2bx/Hjx996fTdv3uxFunjvvffIzMzk6tWrqKqqCses8+fPs3XrVvr168fHH39MTEwMEyZM4P333xeswvz8fMrLy/Hx8cHT05NTp04Jj/k3w9bWlgMHDnD37l26u7sFEz0kJETgXd6smh0cHPj111+Fb3tfrUXfHO/Ky8tja2uLiYmJOBwBfvzxR+7cucOOHTv46KOP6O7upq6uDnV1dQEb0NHR4fHjx+zcuZO4uDhcXFyYO3euGGVLcfDgQcrKyhg5ciRWVlZER0djZ2cn7PKKioq4ffu2YOLD/7xEAQEBfRac/vjjj7G3txcJs9SJr6+vp76+nri4OP744w9KSkoYO3asIBMkJiaioKDAF1980StxhZ4u2cOHDzlx4oRQf3iTICWxlC0tLTl//jwLFy7k559/Zvny5QwaNEjgnCX/dGNjY/z8/NDW1hZEFAlv2peQNFYl7CMgun8SA1lTU5Pu7m6ioqLo6uqif//+hISECNx1a2srZmZmQrN3ypQpyMnJ8ezZMwBh0jFp0iRMTU0JDQ3F19cXNzc3urq6+Oijj9i4cSPt7e0sXbqUlJQURo8ejYODA/fv38fU1PS/wrxGR0cLM4F33nmn17+bOHEiPj4+YsxuYGDAgwcPOHDgADt37iQkJISzZ8+KDoWHhweBgYEMHDiQ2NhY/vrrL4yMjNi9e7foWLm4uJCQkCCew+3bt0lKSmLEiBGsXbuWadOmoaamJuTSLC0t6erqYteuXaSkpDB79uw+rW/RokUoKytz7949fv31V6ysrAgMDKRfv35C2mzJkiVUV1dz5coVNDU1+fTTT4XwuyRltmvXLt577z0cHBx67QMpnj59SlVVFePHjwd6IAnS5GjPnj20tLSwdetWLCwsmDp1Kh0dHURGRgqtzH9lRPclpk+fjpaWFl9++SXz5s1DUVGR5uZmVFRUmDZtmjCEycnJITw8vNc+kZOTY8aMGULUvaWlhZs3b4ou7YgRI5CVleXevXt0d3djbGzMkSNHCA8PB3q6ftI6KyoqePbsGaNGjUJHR4cnT55w/PhxRo4cKYgvL1686PMEJDY2lpSUFFatWoWMjIwoQvfs2SMSV+g5c/38/AgMDOSjjz6isLAQBwcHVFVV+eSTT9DS0uLAgQMcOnSITz/9FF9fX7Zv305bWxvnzp2jurqaP//8k+TkZCF19/LlS/bs2cPnn38uYBgAhYWFnDx5ktOnT+Pl5cX333+Pp6cn58+f59ixY30uKF++fImHh4dIVtrb24mPj6e5uVl0KAcOHChwo2PGjKF///5oaGgQFhbGjh07iImJ4fPPP2f16tV4e3ujoKBAQUEBCgoKYl8ePXqUmJgYxowZQ2lpKWfOnOHly5ds3bqVdevWYWFhwdKlS/n9998ZPXo0H330EU5OTvTr14+4uDjOnj0rkqy+hgSjkRJFbW1tcY4mJyezefNmIiMjWbBgARs3biQmJobFixcL2+L8/HzMzMxYtGgRlZWV5OTkCJmprKwsVq1axenTp/n888+ZM2cOra2t7Nmzh+bmZqFhKxUoktmSJEMm5Qt6enoMHTqU5uZmXF1duXfv3luvz9HREVtbW0xNTcnLyyM6OhptbW08PT175V0ODg7s2LGDiooKSkpKxET7448/RkVFhd9//52tW7cKjPmyZcuEJq6ioqJw2MzPzxfNmlWrVuHg4MClS5d4+fIlI0eOFDkO9EyapUaktbU1X375JbNnzxbv8f8p+py8TpgwgX79+qGtrS2qYKnj8+bBmZKSQmNjI0OHDmXdunWMHj0a6ElKmpubqaurE84VRUVF5OXlcffuXebOnUtOTo6QRWlvb0dWVlYkrgCDBw/GyMgIdXV18vLyyMvLY8yYMWzevFlI3mhraxMYGIifn1+fkterV6/i4+ODtbU1ra2tNDY2sm/fPvbt28eUKVPEBSVJWkiuTJJLz5v6ZMbGxuIS0tDQEJ1jgMuXL5Ofny/EpdPS0igpKcHa2hojIyO0tLSYN2+esPlUUlISOGJ9fX1h7Sa5RvUl/P39aWlpEeLqbzInOzs7efDgATU1NYSGhoqDXZJ3eXPTtbW10dHRQUtLCyUlJaLycnBwQE1NjYyMDE6fPk1FRYXoPISGhqKkpMSFCxeQk5PD09OT7Oxs4uPjxSFWXl5OTEwMXV1d/P333312SZO09F69ekVCQsK/jWTt7e1JSUnBwMCADz74AEVFRbq6uoiOjhbau9JvkZeXR2JiInJycgwZMkSMitra2lBXVxc4YH19ffbu3YuzszPt7e24urry/Plzjhw5Qnp6unDmqq2tJTo6muDgYNzc3CguLub48eO9uopvE3V1dXR1dWFrayu+kzRSlFQ88vLyhNtOeXm5IEBKhVBYWBhPnz5lxowZ9O/fn8zMTA4cOEBKSgp+fn6Ym5ujpKSEu7s7Xl5eaGhoiG56Xl4excXFGBsb9yLyjBkzhq6uLoGbNDQ0JC0tTeCj+hL19fX/dhlVVFSgra1N//79xXPq6OggNzcXBQUFQYxRUFBg1KhRXLlyhdraWnx9fdm0aRNaWlpERUVRWFjIkydPKCkpwdzcXOB9Gxoa8PPz4+7du3h5eYkCxczMDFVVVSGgL0VBQQG3bt1CTU1NYPfeNqQCb+/evURFRfHZZ5/1gu3IyMjg4ODA7NmzkZGREeYbLS0twg3rwYMHKCoqUldXR25uLnFxcSgoKODn5yemRyUlJcTGxorfrr29ndDQUDQ1NTE1NRU4UWNjY+bOncu5c+fo6OigpqYGZWVlLl++TEtLi3g/+xIlJSUoKCj0KtgrKyvp7u7GwsKC7u5usSfb29uprq4WnX45ObleBjN3794lIiICZWVllJSUaG5uxtbWFn19fdzd3SkpKSEvL0+o1AwbNozGxkbU1NRQUFAQXfaEhASOHz/O06dPe0Ej8vLy+mzTLGmLu7q6Mn78eKH+IDH6S0tLKSsrw9zcXJheSDa1bz5r6EkSa2pqhIyWrq4uurq6hISEUFVVRXl5OS4uLjQ2NpKdnU1TUxMlJSXcuHGDoKAg8R5mZmZSVFSErq6u0AI/dOgQW7duJS8vj6ysLNFgeZvQ09MTSYxEgOzs7MTAwIDHjx8L8o+SkhJlZWV0dHTg4OBAcXExxcXFKCsrC/LzzJkz8fLy4tmzZzx8+FCcJzk5OeTn51NRUcGNGzeIj48nMjISPT09ioqKMDQ0pL6+nuDgYPz9/dHU1ERTU1NoEXt6etLS0kJ1dfV/1QQwMTFBU1OTjo4OkpKS0NXVxdzcnPz8fA4cOCCs2fft28fChQuxsbHB3NycgoICTE1NsbS0FN+rtraWSZMmoauri6GhIbGxsZw5c4akpCQ6OztxcHBg1apVZGRk8Oeff3LhwgXKy8vZv38/jo6O/0ZwrK+vJykpidbWVkaNGkVVVVWfTV/8/PxEDmVpaUl8fLywTzc0NKSqqkq4eC1YsIC2tjZycnLEZLa5uZmkpCT27t3LrFmz0NLSIjo6msjISIYNG8akSZNoa2sjNzeXBw8eUFFRwbBhwxg3bhzz58+nra2NFy9e0K9fP0aMGEFLSwt79+7FwMCAcePGUVVVxf379+ns7GT+/PkMGDDg/33yqqWlRf/+/ampqaGiogJdXd1/6yS+fv2aixcv0tjYKJyMoKdj6unpyenTp4V+34sXL8SlK4ltZ2RkYGZmhqKiItra2r0SJujdOfT29uann37C29tbVNlOTk588803yMrK9iIdvE0MGDCAhw8fMnr0aOTk5Pjiiy+ELM+bY9jp06czfvx4cnNzuXLlCrq6uuzdu7cXDubNTkV1dTUFBQXCWebhw4e8ePGCoKAg6uvr+fLLL0lJSaFfv374+fnh6+uLrKysYIpK1nNSxzs+Pp4XL178V57xcnJy/yaOLMWWLVv47bffWLJkCV999RXQAwvp7u7uJeGTlpZGVFQUzs7OHDhwgCtXrrB27Vq+//57FBUVWb58OVu3buX06dN89913QA8coL6+nk2bNnHlyhV+++03lJWVGThwIP7+/ri4uNDc3Mz169fR1dVlwoQJHDp0iG+//VbAHN4mJLJJRkYGO3fuJCsri/fff5+ffvoJDQ0N3Nzc2Lt3L4AYnUi/dXh4OJGRkULwXSJdffzxx2hrawvm+uDBg+nXrx9GRkYMHjyY+Ph4Zs2aRVpaGtra2ly/fp1p06axcuVK/vnnHz788EP09PQoKSnh3LlzyMrKiimBpGPal5Au+4aGBhQUFMSFL+Gm5eTk0NbWJjs7m/T0dDGe1tLSoqamhkOHDlFVVcXHH38sMMmrV6/GyMiIK1eukJ+fz4QJE5g4cSLm5ua9usxnzpzh119/ZdmyZaK4kToEX3/9NZMmTSI8PJyYmBj8/PxIT09n06ZNYu+/bUgWlxKBEvi30TP0vFv379/HycmJHTt2CImwOXPm0NbWJvSaNTU1iYuL486dO+KzEhMTaWpqEuQrRUVFli1bxurVq4VMTktLC/fv3+fChQs0NDSwatUqUQyZm5sL6aILFy4Idv7bRnl5ubiIpNGxFK2trezYsYPW1lZ27dol9Kebmpr49NNP2bNnD69evUJTUxMbGxvq6+uZOnUqKSkpXLx4USSvJiYmyMjI8O2331JTU8OUKVOwtrbGz8+PtWvXcuvWLdasWYO1tTXr1q0TxEOJCJiYmMiDBw+IiIjohal9m1i5cqXokElr0tHRITU1ld9++427d++ioqLC7NmzcXJyor6+HjU1NXE+tbS0iORXU1MTHx8fJk2aJLqdI0eOZPPmzXh6evLPP/8wbtw4Vq5cSVNTE83NzUKpxsTEBBMTE2pqaoiJiaGtrY0hQ4b0SiCtra3x8vIiJibmrdenqqqKsrIyRUVFyMjIsGnTpl7C7pJ9qpmZGTIyMpw4cYJff/2VxYsXi7FoeXk5xcXFbNq0iU8++YRr166RmJjIu+++i6amJvv37yc2NhZbW1uCg4NJTk4mJiYGV1dXli1bhpqaGtHR0TQ3N9OvXz9sbW3ZsWMHSkpKaGlpER4ezo4dO8jLyxOTzr6ERGxLT08nLi4OOTk5BgwYIIja4eHhhIeHC7toGRkZ8vPzef36NRoaGmzevJnS0lLee+89tmzZIlwHTUxM6OzspKysjNraWkaPHs2SJUs4fvw4x44dA3r4CVeuXOHw4cPU1NRw9OhRkfC+GTo6OqxZs4a///67TwRtKT777DNkZGT4+++/yc/PZ/DgwbS1tXH69GkePXok/jslJSVqampwc3Pj9u3bJCYmYm5ujoGBAREREWzZsoWysjLmzp3LnDlzMDIyora2lrVr16KgoCCgR8bGxrz//vvcvXtXnF8FBQUCClBXVyfuBGnd5ubmrFu3jujoaA4fPixyg748QylMTU2FOk1JSQl1dXW9chdFRUVsbGx49eoVzc3NfP3118Je+PPPP8fU1JTCwkIUFRWxtLTE1dVVQAnz8vIwMjISNsc6OjoUFBQwc+ZMUSyeP3+er776ihEjRqCurs7FixcFp0BWVpaVK1f+xzX1OXltaGhAWVkZNTU1kSQUFRWRlZVFXV0dGRkZ/P333xQUFBAYGIizszPp6enIy8tjamoqyAN37twhIiKC3NxcTE1NGTx4MAMGDEBHR0doYxoYGCAvL09LSwtHjhwhMTERVVVVtLS0BI4iKCgIZ2dnoqOj+fDDD6mrqxN+1gUFBSQnJ/dpfR9++CH3799HQUEBc3NzRo8ejbKyMs7OzgQFBVFYWIiamho6Ojro6OjQ2dnJ4cOHaWxsJCEhQWjPmZmZCf9lf39/VFVVaWxsJCMjQ2gbGhgYYG1tja6uLu+//z7r168nLS2NOXPm8NNPPxESEsLNmzcJDw9n4sSJhISEcOnSJeLj41FWVubq1av/1bjy4cOHhISEICMjQ3V1tfBgtrS0JDExkcLCQqF7V1RUREZGhnAXkrq/JiYmaGho0NHRQVlZGQkJCdTU1CAvLy8qSk1NTT7//HOWLVtGaWkpGRkZBAQECNamJLptamqKsbGxgFSYmppiaGiIqqoqCxYsEBiotw0JRmFpaUm/fv3Iysri5cuX1NbWoqGhIV64f41/LZIAQSiToAJNTU2im25ra0tYWBgXLlygpqYGf39/tLW1hUA6wNKlS2ltbRV4wxcvXvDXX3+xb98+goOD8fDwwNfXt9cB+TYh/Vb79+/n6NGjzJkzh08++aQXnk1SBnB2dkZBQYGSkhK0tLRoa2tDVVWV/v37i8T1wIEDAuozZswYNDQ0CAwMREdHR4yVCgsLOXbsmNCufFOfVEqQNTQ08PT0FGPOixcv0tzcTGBgoMBbvW10dHTQ0dHRq/sqYYnb29tJS0sjJyeHsrIyLCwscHJyQkVFRRicFBcXExcXR3t7O2FhYSxevJj6+nrKy8vR0dERznyampoUFBTw4sULFBUVCQwM7EXoefHiBRs2bBBdOQsLCyGcr6enh6qqKv7+/uzfv79Pyevhw4fx9/fn+++/5/nz50RERHDp0iVkZGTYvHkzBgYGXL16VaiMTJ48mejo6F5Ytzdda6Txvru7u5iG5efnC7FzaaI1bNgwHj58yI0bN5g7dy6qqqrk5uaSmpqKqqoqe/bsEVM0bW1txo4dS0pKChkZGX1OXt/U9pXwgkpKSkJ31cDAgClTpmBpaUlUVBSdnZ1YWloSExPDtm3baGtrY/78+UyaNAl3d3csLCzQ1NTEysoKGxsbHj9+zI4dO5CRkWHMmDHU1NTw1Vdf0dLSwujRoxk+fLiY3Fy8eBEZGRkGDhyIq6srnZ2d+Pv7i66PqakpCxcu7FPy6u7uztatWwkPD2fXrl0sW7ZMYPtqa2t7ddEyMjJISEhAQ0Ojl1KMpCwhFRv5+flERkYKqb3r16/z4sULwfh/9uwZKSkpBAUFib3Q1tZGVFQUDQ0NKCoqYmhoSGZmpkg4/f39mTlzJu7u7kKK7G0jNzeXly9foqSkhIuLC3JycvTr1w95eXmGDRtGbm4uFhYWlJSUEBMTQ0VFBX///Td5eXmMGzdOSMitXLmSL7/8ksePHwM92qo3btzAxMREcEZ0dHSYOnUqNTU1XLhwgYcPH4rxc1BQEAoKCqSnp/PkyROioqLQ1tZmwoQJDBw4ECUlJUaPHo2VldV/1Aj915AKYi8vL7q7uykrK0NWVhY1NTWsra1RVFQU3XPJyCg5OZlhw4aJ5/b06VOKiopobm7m8ePHNDY2EhISwuDBg4UEX0ZGBjdu3BBn64gRI6itrcXHx4c7d+6Qnp7OpEmTqKysJCMjQ6g5SR1oSbbwnXfeEbCutwmpGKytreX58+dERUXh6OjIoEGDRCdfOs/z8vJEot2/f38ePXrE33//TWNjI9OnT+f06dNkZ2cDPUlwaWkpP/74o4CABAQE8Ntvv3Hjxg3RdFJQUBCJ6/PnzwkPD2f06NFMmjRJnN0jRozAzMyMtra2/9h1hf8ieVVQUKC6upru7m4MDQ2BnlHe7t27efHiBVpaWqioqDBw4EAmT56Mnp6eEFeWWvw3btxg/vz5YkS0YcMG5s+fLxKmN6vh5uZm7t27x927d3ny5IkA1MvIyBAaGips3K5evSo2rNTBjIyMpKCgoE8kCh0dHQFIb2xsZPbs2aJCTk1NJSkpCRsbG3Gh5+Tk0NLSwoMHD0SH1sjICFtbW6HXZ2JiQmBgIHp6eqLlv2jRIkEkgB6RZ21tbZYuXUpaWhoPHz7Ez8+PuLg49u3bh42NjUhm4+Li+PDDD7Gzs+Ply5d9fYQcOXJEvOzNzc0kJiairKyMpaUlgwcPFmOThoYGduzYQVdXF76+vsInXrJynDRpEkVFRezfv5+DBw9iY2PDhg0bUFZW5sWLF4wYMUKMGtXU1IReand3N1OnThWWt7m5uWKsaWZmxujRo4Ubkq6uLkuXLmXVqlVvvT5pGjB06FAUFBRwdnYW5gLQ05ltb28X/ytVuJJ24ZuyXJLV6suXL1FQUBBGGdJYNTo6mu3bt+Pj48O9e/fQ1tams7OT5uZmOjo6CAwMFKoZWVlZvHr1iqamJnJzczl9+jTr169nxowZfT5soSdJj4uLIzY2lqqqKhQVFZk9e7ZQbZAqY3t7e0pKSoQgeFBQUK/Kdtu2bWzYsAHoGftPnjwZIyMjoS4QHByMp6cniYmJouLfu3cvvr6+gnUqddba29sFTrugoIDz58+zbNkyfvrppz6TKHR0dFBRUaGlpYWEhATMzMxQU1NDVVUVGRkZqqqqOH78OJaWlmzfvp2CggK+++47Ro8ejYeHBxs3bhQuLw0NDZw/fx4rKysxmvP29qZ///7IysqioqJCcnIyz58/p7CwkMLCQoYPH468vHwv/Bv0XARKSkpiP3V2dqKsrMzMmTP7tL5nz56xcOFCPD09CQwMZNGiRVy/fh2AYcOGCe3HrKwsTpw4wdSpUxk+fDgGBgbC4UsquG7dusWdO3eYMGEC06ZNQ1dXl8rKSsrKylBSUmLAgAEEBwcLEtfevXs5ePAgt27dwsXFBVNTU7Kysrh8+TIBAQFCLi81NVVAFNTU1PrsIiZpYqqoqKClpUVLSwvy8vJoaWmxbNky2tvbsba2JjMzk3PnzqGurs6QIUNEkQeIrpC3tzc6Ojq0tLRgZGTEzp07+fzzz1m/fj1jxoxh+vTphIWFiRFveXk5Xl5e6Onp8fTpU44ePYqTkxNjxozpVaimpKRw7tw5fHx8+tw5NzQ0xNzcnOPHj/PHH39gamrKnDlzRLFYVVWFnZ0dWVlZZGZmMmTIEKZNm4aXl5d4dwwMDKiurqampgYVFRWcnZ1RUVGhtLSUzMxMNDU1UVRUJDIyktjYWDFtq6mpERMPXV1dpk6dKnCp27dv58iRI1hYWDBz5ky+/PJL9PX1aWxsxMrKqk+ujFlZWcTHxxMUFNTrbpYgGMbGxoKrEBYWxosXL+js7CQ4OBhnZ2fi4+Px8PDgiy++QElJiS+++AI1NTWam5vJzs5m5syZrFmzhlOnTrF9+3Y2bdrE4sWL+f3330XD47fffqOhoYHly5cTHx+Pg4MDCQkJKCsr95IIa2lp6QXredtoaWmhs7NTQIgKCgpob2/HzMwMQ0NDcnNzGTJkiJiORERE8Ntvv9He3s6sWbPYt28fsbGxLFiwgFevXnHq1CmuXLnCkiVLMDQ0FKTnsLAwHjx4wN27d1FUVMTOzo7PPvtMmPtcv36dCRMmICsry6FDhygvL+fDDz+kf//+5Obminfn3Xff7VPyWldXh66uLvX19WRkZJCUlISCggL19fXo6emJ6UZhYaEw55kzZw7q6uqYmJhw/vx5NDQ0OHjwIEFBQSxatIj29naqqqp48OCBaExI0KdLly4RExMjoGVSw+Hp06ecOXMGDw8PFixYIOy3V6xYISa02dnZFBYW/sc19Tl5VVJSQkFBgaysLJG86urqEh4eTk1NDZ6enmzYsAEnJychFWFtbU1FRQXHjx8nNzeX6Ohouru7hQ5qSEiISFzfjAcPHrB582ZUVVVZs2YNGzdu5MaNG8TExPD69Wtu375Namoq48ePx97eni1bttDU1ISPj4/Aw0qC5G8bp0+fFpqUf/31lzgsZGRkMDExwcPDoxd5qqamBgUFBaZNm4a3tzfq6uqiMysZCrz5wks4JikePnxIXFwc2traGBkZiQPbyckJPT09ZsyYgY6ODqamprx+/ZoxY8aIy9nPz4+hQ4f2qVMAPTgtSYJMTU1NXIhNTU0MHjwYV1dXAgMDefz4MUePHqWxsZHAwEBmzZqFqqoqf//9t6iETU1NCQgIIDMzEycnJ6FLa2RkRF1dHa9fv8bIyEjsFeip/t4EiVtZWaGsrNxLFk1ZWZnw8HDu3btHampqn/QX6+rq0NHREdafQ4YMobOzk4SEBBwdHdHQ0CA3N5fk5GTa29txdHRER0dHTAok3HJ7ezv6+vrU19ezceNGocenp6fH6dOn0dLSEthrqYtXX1/Phx9+iK2trSg+jI2NmTFjBhYWFoSGhmJtbU1qaip1dXVYW1tTV1fHpEmT+mTG8MMPP3Dy5Enee+89bt++zeeff86qVasEuUBbWxt5eXmePn1KSkoKenp6qKur99p7LS0tfP311720O2tqaqiuriY6OlqQECU2b0tLC+vWrcPLy0tY5/4r/OTu3bvEx8djZmbG+PHjGTJkiOha9zXGjRuHjY0NOTk5xMbGYmFh0Yso6uDgwMSJE4W6wMuXL0lMTBR4TycnJxQVFTEzM2PSpEmYmZmRmZlJTk6O0OKVvr+amhqBgYEkJyezc+dO1NTU+Oyzz1i7di3u7u6cOnWKRYsWERUVhY2NDW5ublRXV7N582ZSUlLw8fFh3rx5wrXqbWL16tXi7xsaGrJlyxa8vLx4/fo1ra2ttLa28sUXX2BpacmDBw94+PChYI1LeqLTpk1DWVmZV69ekZ2dzeDBg8UzlqTCJAjJm37okoPV9evXOX/+PG1tbQwePJhJkybR0NDA9OnTxTSptraWLVu2sGLFij4XIO+++y6GhoZs27YNbW1ttm7dSkpKCt988w0uLi7C9crS0pLly5fz8uVLTp06Rf/+/dm5cyefffaZgFhJSYlUSJibmzNp0iQSExNFZ9DX15djx47R2NhIdHS0gKwFBgYKosy+ffvw9PQUPAxdXV3s7e25f/9+n7HZmZmZ/PPPPwIS9qYFskQ2ysnJYejQocydO5fx48ejpqbGs2fP6OjoICAggKSkJH755RfMzMwYNmwYqampdHd3M2XKFLy9vQW+VVtbm2HDhuHp6UlTUxM1NTViTSNGjOhFELt+/ToZGRnMmzePhQsXCnOHiooKoa/+tuHr6ytE8qWora1l2bJl3Lx5E2dnZ0aNGoWJiQm1tbUCizplyhRkZWW5cuUKr169Yt68eXz88cdYW1sjJydHSUkJycnJojHx6tUrTpw4gbGxMTo6OuTn56Opqcn69euFhN2ff/6JhYUFc+fOpbOzk+LiYmxtbenu7ubq1avExMT0mgi9bfz1118cO3aMyZMns2rVql4Y+IEDB/bCkAMsWbIENzc3TExMKC0txdzcnMDAQHx8fPjyyy+BHkhjYGAg9+7d45tvvqG1tRU/Pz8cHR05cuSIcGYsLCwUEmlS91FWVpbOzk7u37+PmpoaVVVVguibnJzMjRs3+rS+7u5uamtrUVJSYuLEiQQHBxMdHc3u3buFTbWkRXvr1i1UVVVpaGhg/vz5GBoasnnzZi5dusSBAweYN28ecXFx7N27l8OHD6Ompoa/vz8ODg5kZ2fT0tLCe++9h76+voArdHd38/jxY168eIGfn58wf9ixYwd3797l3LlzGBoaUlZWhqGhITY2Nv/xLO1z8io5nzg6OpKUlCSYhyNGjKCmpkboT9bX11NQUCCcSxobG7l+/TqXL18GYN68eRgbG4vWvBRJSUkCiN/W1kZ1dTX19fXo6uqKTkl3dzf3799n27ZtxMTEUFpayurVq3thNqBnxNsXshb0tLQ9PT2pra3l4cOHXLp0ibq6OqDnkJsxYwa6urpi7NOvXz/eeecd+vfvL/5ZbW2tEAeH/5Gjkn47Ozs7CgsLuXfvHo8ePRKSKRs3bhRyN3l5eeTm5uLh4YGHhwf5+fmkpaUxbdq0XvhDX1/fPievo0ePFheZ5C1eUVHBb7/9hrm5uWB2Ozo6Mnz4cNFxfv36NXp6etjZ2ZGRkcHt27cZPXo048ePR1NTU3iwe3l5MWzYMP744w9u374tOtmSNaXEsC8pKUFNTU0kgdDTxaqsrKShoYHW1lbS0tL4/fff+9Q9P3z4MGPGjKG1tZWnT5+Sn5+PhoaGuFwk4k1nZyfd3d2kp6dTWVlJbW0tVlZWYj9KGF9lZWVBKCgoKKC1tZXCwkLMzMxYs2YNvr6+5Obm8scff3DkyBEiIiJYuXIljY2NJCcn09XVJWADHh4e6OjoEBQUREdHB1lZWZSVlfXZnUlZWVmodHh5eTFkyBCSkpIoKSkRxYHUMfH19RVSVxoaGtjb26OoqCh8qefMmSOKBQUFBWRkZEhLSyM2NpaZM2eip6fH69evkZeXFxekhINubW2lrKwMExMTFBUVaW1tpba2VhBYoGcy09eOHSCKCDU1NeTk5IQ0TWdnJ/r6+tjZ2fXaF7KyssJURMJNtbS08OrVK9577z08PT3Zv38/d+7cwc/PD2NjY8F8l5WVpbKyksbGRmxtbbGxsUFeXp6bN28SEBCAo6MjZ8+e5eTJk8jIyAiYDCA68G9ebm+7voiICFRUVPD19cXd3Z3a2lqhhaqmpoajoyPz58+nqKiIixcvUltbK55/S0sLbW1t6OvrU1BQgLKyMpWVlaSkpNDe3i7ciN48X1taWmhqakJRUZGgoCAKCgoERjAwMJBPP/2UuLg4Hj16RFpaGvX19UKQvK9kJuhhcbe2tjJgwADc3Ny4fPkyubm5LFy4EBcXF2RkZETC4ePjQ3t7O4cOHcLW1pbly5dTXFzM69evxdRO0qSWOvyWlpZMnDiRHTt2cOXKFdzd3cWk7M8//xSJ+ahRo5g7dy4xMTF8/PHHyMjI9CIRKykpER0dzaNHj4Tc4tvEo0ePKC8vx9TUFAcHB2EIIH1XaTL3/7F33vE1n/3/f56sk72nLBmyF5mICGJvtUfNW9uD6la6FEWr1Vbbg1LUqlF7b4oIQYgEIRKyZMpOTub5/XGc6ysdd6Xf3rdv/fJ6PDyOnHOSc13nc32u6z1e79fbwMCAHj16iCyPms6hq6tLcXEx69atw9fXFx8fH/bt20dWVhZeXl5Cf9TJyYmePXsycOBAQUnav38/mzZtIi8vj7i4OExNTRkzZgwSiYTRo0cLnVi1g2BgYEBhYeFvGuz8Ge7fv09OTo4w6MrLy1m9ejWnTp2irKyMoqIiamtrKSwsFMVcHTp0wM7Ojrq6OvGo5nGqM25qKJVKYmNjKS4upk2bNuzbt4+SkhKcnJx4++238fPzo6qqigsXLuDk5MTEiRN/k+VQ65Omp6c3qz5CjYsXLxIXF8fAgQMBVYAnNTWVTp06NaHKNDQ0iFqTNm3aiDNf3VIWVNQmY2NjJk2aRHh4OF9//TXXr1+nc+fOWFlZkZOTQ5s2bTA1NaWxsZFt27bh6enJ+++/j62tLdnZ2SQkJPDCCy9QW1tLeXk51tbWWFpakpOTw5EjR/jll1+apf5hYWEhGq6oo8uFhYV8/PHHWFtbU1FRwf3799mzZw8ZGRlYWVlx5MgRCgsLCQ4OxsnJidatW3P06FHRtMLT01NoM48ePRorKysuXbrE3bt3mTJlCiYmJhQXF6Orq0ttbS0HDx7k/v37ohUuqOy9oqIi7t69S5s2bbhz585TaxI323hdtmwZCxcuxMDAgNLSUsaOHYu1tTUrV67Ew8ODZcuWMWnSJPT09IiIiCAzM5ObN2/Sp08ffHx8hPFqaWlJXl6e4PKEhoYCcOnSJU6cOEFMTAzjx4+nW7duLF68WGhrfvLJJxgbG9OtWzdcXFzIycnB0tLyN4YrwMCBAwkODm5Wr2NHR0dRXBMVFcV7770nOJOXLl1i3bp12NnZ4ePjg4WFBS4uLoJ3lJOTw7p164iLi8PBwUGk2lNSUjh8+DB37tzB39+fdu3aCd7Ok8Uoas/21KlTbNiwgY4dOzJhwgQhvK6rq/ub/vV/BRMnTkRTU1No0ALCOxw0aJAwXp2cnFi5ciVZWVncuXOHnTt3EhwcTL9+/aivr2fKlCns3btXtCfcu3cvd+/eZerUqfj5+dG9e3cKCgoEv1TNFwVEwZ5aNFndwKCgoIALFy6goaFBeHg4y5YtY/jw4aLI5mnw3XffcfHiRSIjIykqKuLMmTO4uLgwYsQIUaClr69Ply5dMDU15fDhw6xfv5709HQGDhwo5EPU37W2tjYDBw4kNzcXS0tLnJ2dGTNmjDBIo6Ki+OqrrwSF5dy5c0LrztXVVaTUS0pKOHPmDOXl5dTU1NDQ0ICfnx/e3t7N4vQCvP766/Ts2ZOPP/6YtWvXMnPmTO7duydSrDU1NYL+MWPGDBISEpg6dSoRERHY2tpSWlpKQUEB06dPx8/Pj7KyMgYNGiRE8y0sLLh165Yo7tDT02sSuVO3Ei0qKuL48ePY29vTpUsXgoKChFZifX09q1evJjY2VhgfzcGlS5fYtm0bffv2JSoqip9++omdO3fi5uZG165dCQ8PFxW0CoUCPz8/wWWsr6/H3Nyc3r17U19fL7jAankpDQ0N0f0nODiYuro6fv75Z7Kysvjuu+/o3LkzOTk5LFy4kM2bN/Puu+8SGBjIBx98wCuvvMJ3333Hu+++y8KFC8nPz2fGjBl8+OGHvzmY/x2++eYbFi5cKKSRjh49yogRIygpKWmyZ9XU1NChQwehTRoYGIiJiQnHjx9n3rx5omWtvb294AqqtX/nzJnT5DN1dXW5ePEiW7duJSEhAV1dXQIDA8nJySE3N5cHDx4QFBTEypUrOXfunGjRuWnTJl588cVmp9VlMhlLlixBJpMRGhqKl5cXY8aMacIpLigoEMWozs7OmJiYMG/ePEJCQhgxYgRffPEFoKLJHDhwQAQkhg8fjpGREbdv38bS0pL8/HxWrFhBY2Mjb775JoMHD2bv3r2CHwqqfScqKqrJPHbv3i0UFvr27dus+amLHhMTE4UwPaiMnOjoaA4ePIihoSFOTk5N+K9qzuOTMDMzw8LCAl1dXW7cuMHEiROFM//uu+8yefJkMjMziY2NJTIykgEDBhASEoKhoSEHDhxg4cKFHDx4kPXr1yOTyYiIiODbb7/l6tWrzJkzh9atW4uiGjWF62mwePFiTp06xTfffIO7uzvTp09n3759vPrqq0RHR2NsbIyPj4/ge6alpZGRkcHJkyeF0f3kXGtqakhMTBStxLdt28Yrr7zC9OnT2bp1K++88w6VlZWsWLGCmJgYsrOz0dTUZOLEibRt2/Z395L09HROnTpFREQEb7/9NgsWLGjWdayvr2f+/PnMnDmT2tpaBg4ciEQiEcoFatWKhoYGPvroI44ePYq3tzfLli1roohx8eJF9PT0CAsLo66ujp07d3Lx4kXGjx/Pm2++yaJFi1i3bh2zZs0iKiqKAwcOUF1dTc+ePbGysqKiooL33nsPU1NT3nvvPTQ0NHj48CGenp4cOnSIxYsXEx4ezieffMKKFSueen6NjY1Cb76goICAgACsra0JDAzk8uXL/PTTT9jZ2REaGiqySrW1taIBhbpgcOrUqRQXFzNmzBikUinDhg0jMDBQZHvUbcX19fW5dOkSt27don///kilUm7evMm1a9coLi4WnPqPPvqI+vp64fhHRkYyd+5c5HL5b+QRf41mG69aWlqcOHGCbt26CV5rVlYWGhoagjcJqhRAQUGB6EltaGjI+PHjWbhwoSj8Wb58OQqFoom2Xq9evdDT0xNGlZaWFn369GHevHmUlZURGRlJQ0MDjY2NjB07VhitalkrdYGXmq/SXG3CgoICLl++jIuLC8uXL8fFxYXbt29z8OBBcQA6OTkJwyUhIYHc3FwGDhwodNDU6X0jIyMyMzPR09PD2tpacE1KSkpE6zxLS0tsbGwwMzPDw8OD0tJSrl27hq6uLh07dkRTU1MQ1tUX+NGjRyiVSurr65uk2p8WlpaWomgHEIUitra2eHl58fDhQ+7cuUNGRgbR0dG0a9cOS0tLvLy8qK6u5ueffyYxMRFPT0/hZSmVShITEzl+/DhpaWmsXbtWaMGqW3NaWFhw8uRJoeX35AGmqanJo0ePuHHjBlKpVDS10NPTY9CgQc0yXl1dXbG3txc6pKWlpTg5OQmVinPnzqGjoyN4WgkJCULwPDo6mj179rBjxw5GjBiBvb099+/fp1u3bhgZGYkDyNXVlcTERPbu3YtCoSAxMRFbW1vGjRsniOlPtvvcv38/mzdvRlNTk549ewKqlKO6are5qbxffvmF7OxsUlNTqaurIzw8vEm6TC0zlJ2dzbFjxzh79iy6urp4enrSqlUrEYVJS0vDwMCApKQk0V42PDyc8PDwJi0TraysRIvPuro6kca0t7fH09NTFOK0bt2auro6zp07x40bNzh27FiTPaA5OHDgAGZmZqJCWt35xtbWlmPHjrFq1SrGjRvHqFGj0NXV/V1JtfDwcDw8PCgrK+OHH37g7t27BAUFoampKUS01ZEGY2NjQkJChKpIQUEBXl5e6Ovro6Ojw6NHjzhx4gS5ubl4enqKDdja2pouXbo0u8pZrVWtdm7y8vJwdXVFKpVy7949fvjhB6KiosR7PT09GTt2LD169CA1NZWEhAQUCgXp6emkp6eTm5uLrq4utra2BAYG0r59ezHua9euUVVVJZQTli9fDqgKssLCwoQTmZaWhrm5OXl5eaSkpKClpUWHDh0IDw//S3Jn0dHR/PDDD+Tn53P27Fnmzp3Lu+++C6g4v2fOnMHCwoIePXqIe1VbW5uEhARSU1Px8PDAx8dHRIi///57kpKS0NDQYNq0aWRnZxMXF0e3bt1o1aoVixYt4pNPPiE4OJjBgwfTs2dPwTl99OgRTk5OtG3bltOnT3P27FkePXokWj737t2bxYsX8+233z71/Dp06IC7uzsKhUJwUp2cnGjVqpUo0qmtrSUzMxNzc3OysrK4e/cuoaGhGBsbo1AoWLVqFdra2mK8586dY9euXaJ6X/09Ojg4cO7cOS5evIiWlhalpaXk5+eLe0BdlFpaWoqFhQV6enpoaWlx+/ZtfvrpJzw9PdHX1yc4OLhZxqv6XHB2dqahoYGCggJsbGyYOHGiuAcSExNRKpW8/vrr7N+/n3Xr1vHo0SMmTZpEYWEh58+fp66uTlS579q1Cx0dHQYNGsSVK1ewtbVl4MCBtG3bFhcXF/T19cU+WV5ejpeXF7a2trRt25b79+8LTqS64l4qlRIVFcWAAQOayGo+LQIDA4mMjGT//v3s378fS0tLnJycWLJkCQqFgvLyciwtLWlsbMTAwAB3d3dMTEy4evWqOKfUmcXp06eTm5vLuXPnWLduHQ8ePKBdu3YcOHCA1atXk5GRQY8ePXBxceHEiRN4eHhgZWVFTU0NCxYsoLy8nJEjR2JlZcX69etJSEhg4sSJnD9/XkSf1WvrabF79246deqEmZmZCEj4+Pgwc+ZMXnrpJU6fPs3XX3/N2LFj2bJlC1999RVSqZSuXbuio6NDQkIC165dIyQkBHd3d4KCgkRBcHBwMPb29lRUVDTJNhcXF4v22Tk5OZSXlyORSJqcdU9K1YEqAFhWVtZEUeqP0GzjtUePHly+fBmpVEpkZCRffPEFt2/fJikpidTUVHx8fFi7di3bt29nxYoVaGlpERQUhLGxMenp6UybNg1XV1fxGtBE8sHW1pYRI0Zw9OhRdu7cyaBBgzA1NWX69Om4u7tjYWHBp59+SkFBAYGBgfj7+1NRUUFVVZXgVap7xqtTTM3BwYMHARg6dGgTHq61tbXguag9v6ysLD7++GOOHDnCzz//zIABA7Czs+PGjRsiDVxRUcHw4cPp0qULR44c4ezZs5SWlmJubo62tjZhYWFYWlqiVCpxdXXF2NiY7t27ExoaKgxzLS0tockGqs1QLSf2V1oa3rlzB2tra3R0dCgsLGTbtm1UVlayYMEC+vfvT0pKCtu3bxe8x379+tG5c2ecnZ25e/cugwcPxsPDg927d7N//34mTJiAr68voaGhHDhwgLKyMmEYq9tzhoaGoqWlxcmTJ/nkk0/Q1NRsYrwCHDlyhISEBEaNGiX4bb9uQ/c0UEcI1NJR4eHhgmN75swZ4uPjRXcPQBS9TZ8+nSFDhjBixAji4+NFu9W0tDR8fX1xcXERUlSA6EgEqjaGY8aMEVxQtQYyqLq0qTuu9ejRg/DwcJydnbl48aKocn2y+vhpoJZqmj17NrNnz8bIyEj0rq+pqUEqlTJ8+HDi4uIYNWoUpaWlLF68mLFjx6Knp0dtbS1paWmsX7+e3Nxc4VBGRUVRV1cnir3U6Rt1ilMdcYX/aSkYGRnZxIkqLCxkzZo15OfnC71NHR2dZgvASyQS3n//fZKTk/n++++JiIgQ3eSmTp3KoUOHmujj5uTkUFVV1UTVRCqVYmtrS1paGikpKURFReHp6SkKasrLy1m5ciXt2rXjX//6F61ateLw4cN8/vnnmJqa0qNHD1GksXDhQj744ANeffVVvvzyyybXOTo6mpUrV3Lq1Kmnnt/rr7/OjBkz0NPTo6GhgT59+jBu3DhApXoybdo01q9fz7Bhw9i3bx/FxcV07twZDQ0NTE1N8fPz48aNG6JyPCsri5s3b+Lt7c3EiRPF3rB161bRZMXe3p6srCxMTEwoLS3F0dERqVSKk5MTvXv3JjIyktjYWObNm8cvv/yCVCpl06ZNTJs2Dblc3mzOa1pamnD61aLoauzZs4cff/yRl19+WRhBGRkZQuwe4Ouvv2bjxo1YWFhQWloqMhRhYWF07dpVNMEZMWIEYWFhIsOlTvU2Njby9ddfi2iPp6cndnZ2fPnll1y4cAFTU1NMTU3x9fWld+/eTdL+TwN1uljd1U7Nte3Ro4fg8UdFRaFQKDh48CDFxcV8+eWXjB8/noEDB/LKK6+wbds2goKCRMpaXcndrl07CgoKyMzMJC0tjc6dO5Obm0tKSgqbN2/m4sWL3L9/Hy0tLUaNGsVnn30maCWnTp2iurqa999/nzt37vD555+TkpJC3759m0WLAJg7dy5aWlro6+sLh87NzU3sy/v372fMmDH4+/tz9OhR7O3tuXjxIgYGBlRVVbFv3z6RAXj99dfp0aOHUFGIjY0lJiaGDz74gICAACoqKnBwcMDW1pbi4mLMzMxo06aN2NtAZcyqZRrVtkNYWBhLliyhpqaGy5cvN2t+oHKs165dy9KlS7G1teXo0aNIpVK6d+8u6Erl5eW4urry448/iiDaypUrkcvluLm5iRoQGxsbjI2NiY+PF9nUjRs3sn79empra4X8XllZmShKBlWR3dWrV1mwYAFhYWHExsYyd+5c8vPzsbCwELKfZWVlzVZuUWeDHRwchGarj48PXbp0oVOnTty9e1fURKiLq7S0tHBwcGDMmDH07t2bl156iSVLlggH7/vvv+fkyZN07twZe3t7DA0NqampEW1uu3btilKpREdHh+LiYtq3b09wcLAIsqilHtVR+Vu3bnHkyBG6du3K4sWLhVbyH+EvtYcdOnQoR44cYfPmzfTu3Zs+ffpga2tLfHy82GB1dHRISUnBzc2N119/nRs3brB161Y2btyIn58f+vr6vP/++7Ru3Zp+/fqRlZXFl19+SXFxMfb29hw5coTS0lIaGxuJiIigb9++tG3bFnNzc1F9rF7MJSUlTVoh6unpoaenR3V1NQ0NDc2an1KpZNmyZU04NZaWlkRERGBtbY2xsTG1tbXs3LmT1atXC77q7Nmz2bFjB8XFxbRu3ZoDBw6Qnp6Oq6srAQEBmJiYMHz4cDw9PcnOzqayslJoLYKK+6FOVVtZWbF3714WLlxI7969efHFF8nIyODChQt06NCBkpISrl27hrW19V9q2XjkyBFBmFbLBsXExNCtWzekUikODg5MmjQJPz8/kpOTefToEdra2lRUVHDs2DEhxm1hYUFkZCSvvPIKurq6+Pv78+KLL9KlSxcMDAy4desWBw8exMHBQWwyMTExNDY2NjHW8vPz2bx5M1u3bkVLSws/Pz9hvG7atInvvvvuNx7av4PaKC4pKaG8vLxJ9N3Ozo6YmBhxiMbHx9O1a1eio6ORSqWsXbtWNDVwc3PD1tZWcJPU4vdpaWmcOnWKqqoqoXl38+ZNTp8+jY2NDYGBgUgkElJTU5HL5cLQAVXUvrS0FB0dHTp16sTu3buRy+VCm7Q5GDZsGPPmzUNLS4uysjKOHz8uqp/V0cOIiAhRgDhgwAD09fXZvXs369ev5+7du0JSSX2NMzMzeeONN4iLi+POnTuMHz+eIUOGoKmpSV5eHmfOnCEkJARvb2/R59rAwEBolfbs2ZP27dtTWVnJ6dOncXBwICYmBmdn52YbPkOHDkUqlbJlyxZ+/vnnJlqFgwYNwtfXlxdeeIG8vDw+//xztLS06Ny5M0uXLiU7O5sFCxZgZWXFZ599hkKhYNSoUXh4eDRpfJKfn8/cuXPJzMwUTmlERAQaGhrC4MjOzmbkyJF06NCBfv36iYg9qDosJSQk0KdPH4YNG9Ys41VbW1sYdkqlUmRzAMF1NzQ0RCKR4O/vLwTgQbXHqfm9OTk53L9/X/Beb926xcaNGxkzZgwGBgb88ssvnD9/nlmzZiGTyUhJSSEkJEQI2asLKtV94Z2cnOjbty8dOnTg/PnzHDlyRDQWaC7q6+tFH/hXXnmlCR/Rz8+PcePGYWdnJ+oBJBIJCoWCwsJCHj16JJyidu3aERISgoeHB+np6XTs2FHw9TU0NOjUqROamprMmzdPUEhycnL44IMPOH/+PEFBQeTl5eHp6SlSk+fPn6e2thYDAwO0tLREIdVfgY6ODra2tjg5OXHr1i2GDBmCra0t5eXlIvWs5rnW1taya9cuDhw4IKr+ly9fjpubG3PmzGHTpk3iGqv3908//ZSysjIePXpEXl6e6Hr13nvvYW9vT2pqKnZ2dqJ1qampqciyODk5kZmZSUZGBq6uriJA87R4UoO6sLBQ6OQmJSXx8OFDli5dSllZGefPn2fo0KHU19dTU1PDhQsX2Lp1K1ZWVoKjnZqayptvvin2p9zcXAoLC0UWydHRkT59+lBaWirWujpLa2BgwIsvvkhycjKffPIJY8eOFfQPGxsbbGxsiIuLY8OGDc2+ftevX2fp0qX4+voyZ84c8vLyuH37NoMHDyY7O5tHjx6Je05NQdHU1MTR0ZG8vDyCg4PR19cXNQ9qebr33nuPoqIiiouLyczM5NSpUxgYGBAfH4+pqSnR0dE8evSILVu2UFdXx6uvvkpYWBiFhYWsXr2asLAw+vXrh5OTE0qlkuDgYGJjY5k1a1az5telSxdatWrFyZMn+fzzz8nMzOSzzz5j8uTJzJs3j4yMDBYtWsSdO3eIiopi8eLFoqi4vLycgIAAXn/9dcaNG8fGjRvR1tYmLi6OgoICrl+/zs2bN7l586ZQ0lBDHaB0d3dn/vz5FBYWiuAJqOoU1PTFVq1a0adPnyaNnv4dmm28XrlyhaioKNLT01m+fDnLly9n1apVDBs2DD09PZKTk3F0dMTb25upU6cikUjQ0NBAS0uL2tpaDhw4QGFhIS+++CLDhw8XBujdu3eJjY3l2rVr2NjYUFRUhL29PQ0NDVhYWODu7k5aWhqVlZX069dPFIMoFApMTEyQSCRCgxRUNILa2tpmpxDGjBkjZISqq6uRSCRYWlqKdHF1dTVnz57l559/Jj4+Hjs7OxHN2L59O66urjg5OYlih9zcXI4ePcqLL76IpqYmnp6eTaIP6pS62uNXt8JNT0/n0KFDODg4YGJigqamJrdv38ba2ho3NzfRnez3tEmf5ho+GSnz9/fH1tZWfHdqRQQXFxeSk5Np3bo11dXVbNq0iYyMDObPn4+NjQ379+/H19cXuVxOVlYWFy5cwN/fHysrK8rLyzl9+jTp6elC7Fx9s0ZHR7NixQoWLVrEhAkTqKioEMUgGhoarFu3jrq6Ovr37y84080xXhUKBUqlknPnzpGamkpwcLAwKF1dXdHS0iIrK4vs7Gy0tLQYO3YshYWFfPPNN+Tn57NgwQKRtiguLhZd29RrbMeOHezfv59JkyYJw3Du3Ll8//33aGpqMnr0aIyMjCgqKhJVoQ4ODowdO5aAgABRGGRgYEBsbCzLly/H39+/SaeqP8PixYvFBnbhwgX27duHhYUF3t7etG7dmsbGRoqKitDV1WXu3Lni99QSX2fOnMHf359PP/2UI0eO8NFHH+Hm5oadnR0HDx4kLS0NExMTIaUWEBBAamoq+/bt48GDB0ybNo3Kykpu3LjB5cuXMTQ0FBurn58fMTExtG7dmmPHjhEXFye4xs1BSEgIO3bsYMuWLVRXVzch8bdr144+ffoAKm7soUOHaNeuHWZmZuTl5ZGUlIRUKqW4uJidO3cSEREhIqhlZWXU19eL3uEDBgwQ6WcnJycMDQ2FkXX06FGWLVuGt7c30dHRdOjQgdLSUmprawVvuKGhgdTUVCF797RQb+A6OjpoaGg0ESZXcyLV0dN+/fpRXFxMbm4uCoUCKysrevbsSUxMDPfv32fnzp3s27dPpOe3bt1KbGwsL7/8MuXl5WIvNDc3p3379hgZGZGcnExJSQlt27YVBrk6kvfGG28AKuduzJgxXL58mUWLFjVbhqi6upqsrCxmzpwp9KiTkpLw9fVl7NixgKrb4MGDBxk1ahRRUVFcuHCBhISEJl0SdXV1BZfZzs4ODw8PCgsLsbGxITo6msrKShoaGpp0AduxYweJiYlCdszc3Fyon/To0YMePXpw+/ZtqqqqhJTamjVrmpWSVetcZ2Zm4uHhgZ+fH5qamty7d4+TJ0+KlHBkZCRt2rTB0NCQ8PBwdu7cyZ07dwBVDYKdnR3nzp3j5s2bIj2v1vN2cnISnfgGDx5M7969SUpKYsCAAUyaNImKigq2bNnCgwcPCAkJoU+fPrRt21bwT9WfoYZaBu1pkZaWRmNjI+7u7tjY2KCpqUlSUhL79u1DT0+PoqIiHB0d0dTU5OzZs1RWVgqnTK2IoK+vz1dffUVYWBj29vZ07tyZ+/fv4+3tjaamJrdu3cLd3R1vb2/ROU99f0ilUh49ekRpaamgyxUVFTVptpCdnY2ZmRkPHz4U6fvmwMDAAGtra9577z2GDx/OzJkzKSoqYu3atejq6nLkyBGCg4Ob2AHa2tqCE+7j48O5c+dYvny56GTXu3dv+vXr10RZ5+DBg+zevRuFQiEaZ5w9e5bMzMwmht/hw4epq6tjyJAhTYrBQJVh+eKLL5rFr3d1dRVFWuoWxgcOHKB9+/ZCd33OnDmcOHGCmTNnYmdnx549e7h+/TpXrlyhffv2tG3blqlTp7Jq1SrefPNNoS7U2NjI9evXefDgAWfOnMHd3R1DQ0NSUlI4duwY9vb2dOvWDQMDA9EZTY0n6yj09fWxs7MT9II/Q7ONV3Nzc+bMmcOtW7fw9PSktLSUL774gs2bN4uoU21tLZqamvTq1YtVq1bx4YcfUl1dTUhICFOnThWRmNTUVBITE7G2tsbKyop58+ZRUVEheBLqftV6eno4OzuzcuVKfvrpJ2bNmiX6btfW1iKVSsnJyaGxsRE3NzdKS0uJjY2lrq6u2WmgJ6uXtbS00NLSEuFtXV1dIe9ha2vL559/LvQUpVIpFRUV3LhxAysrK1G1u23bNr7++muOHTtGcHAwAwYMEJHB7Oxshg4dipubm/DAMzIyKC0tZerUqQwcOBAbGxsKCwvR19enc+fOmJqaYm1tTUxMjOif3RyjB1RqCI8ePcLe3h4LCwsaGxupqKgQhnBJSQl79uyhsbGR/v37Y2lpKUT4Q0NDycnJYfXq1SQlJQl9UBMTE/bv38/ChQuxtbUlIiKCbt264e7uzi+//EJycjKjR4/Gw8OD+/fvs3HjRq5evUpDQwMjRowQm0VsbCzff/89U6ZMwdHRkTfffJO9e/cKDd2nwccff8yAAQPQ1NQkLS2N48ePY2dnR8eOHencuTNZWVnI5XKMjIz46KOPaGhoYMeOHVhaWgr9XDXi4uLEzasW5E5MTKSmpkbQOlatWkVsbCzjxo0TwtKLFy/G3d2d/v37k5GRwZgxY2jfvj0aGhrU1dUJOoI6Ddrc9rDTpk0DVBF7mUzGtWvXmDlzpohO1tbWcujQIYyMjBg8eLD4PXWKsbCwkIiIiCZt+Hr27MnMmTNxcHCguLiYfv36UVRUxIkTJ8jJyUFfXx8fHx/27t0rikB69OhBYmIirVu3plevXqxYsYLXXnuNRYsW0atXL3755Rfkcjn79u1rdhexu3fvcvToUTQ0NES/dDXUSibqgrd3330XPT09PD09+e6776ioqMDd3Z3S0lKWLVvWRKpNIpFw7tw5vvvuO/Ly8gSdYsmSJfz8888MHDiQWbNmiexQWlqaiN7r6OhgZWUlnI6goCCmTp3K9u3bhRTS00IdrVY79092sLOyshIarWqYmZkJI00NTU1N3NzcKC4u/o2wd2xsLG5ublRUVFBbW8uPP/6Ijo4Ofn5+6OjooKOjQ3Z2Nr6+voAqbafeTz7++GMAIeRva2tL7969m9X+FhBcXPUBPnv2bG7cuNFE6qeyspLa2lqx/wwbNozGxkYaGxuJiYmhU6dOlJSUMGfOHH766SfRGau6uprs7GwUCgUPHjxAV1eXkJAQcSB6e3uLSJa6qHbjxo3s3bsXCwsLPD09qa6uxsfHB1tbW+7cucP58+ebZbxu2rSJr776it69e7Nw4UJAJXS/a9cuHj58SF1dHQYGBgQGBor17+XlJbR3p02bRk1NDWPHjsXOzo4FCxbg5+fHqlWrmD9/PsHBwUydOpWzZ88SGxuLp6cnI0eOpKSkhIMHD/LFF1/g4eGBiYmJKE5VF+Ls3r1bdJxbu3atyHY1tylKVVWVGLu5uTmrV69m6dKl7Nu3D319ffr06SNoZXl5eSxfvpyTJ08yePBgPvjgA9HMIywsjFatWqFUKomIiMDFxQUjIyMkEgllZWXo6uoKKhIgIv0aGhq88847IhprY2PD/PnzGThwIJWVlcyfP59r167Rr18/IUd4+vTpp54fqAz6mJgYTp8+zbRp03Bzc+O1114TwbWwsLAmRWdKpVI01FE71SUlJZibm+Pv789rr72GlZUVN27cICQkRKxtdbbkSaNNnZlVr7vy8nLCwsJo3bo1sbGxLFiwgNGjR4vzRl9f/6mjk2rs3LmT2bNnM3ToUIyMjJBKpdTX1/PDDz9gY2ODh4cHGzZswNvbGzs7O3JyckhOTqZNmzZCM7+wsJDIyEiKi4u5ceMGY8eO5YUXXqCuro6hQ4eiUCiYNm0aGzduZNWqVaKJTl5eHkOHDkVfXx9/f/8mtBV14xJQBdVWrVpFmzZtnkpdqNnGa2RkJCkpKURGRhIaGkpKSgrffvstp06dwtnZWbSOVUMtC2VmZsbgwYPp37+/eO3bb7/l+PHjvPnmm026hfwRWrVqJbwrdeTK2NiYqqoqdHV1xeIqKCggISGBrKws0W3paaE+ILS1tcUCUxepFBUVidTPiBEjBG/yyRvu7Nmz6OjoEB4eTmBgIPHx8SQnJ3P//n2KiopISkqiV69ejBs3DqVSKTzuRYsW8fLLL6Ojo0NsbCw2NjaMHTuWhIQE3nzzTcaNG9ekqjE7O5urV682+zABVbpOncbX1tbG1dVV8GD8/PxEIY6625alpSWmpqYi6rJgwQJOnz4taAUXLlzg8OHDnD9/Hm1tberq6ggJCRFG9ccff8yNGzeENI2Ghgb+/v5kZWVx4sQJPD09hZyWpaUljx494rvvvhPSVM3tqX7mzBm8vb0JDAwkLCyMiooKjI2NcXNzQ19fn5ycHEpLS8UBYGFhIQ5na2trMjIyqKiowNXVFTMzM0GXKCsrw9bWVmi6qiMiS5YsITMzk7lz5wrDPzk5mYiICNFuVy2yr6aJgIon19DQIL6P5nSDy8/P5/Lly1y4cAF3d3ecnJyora1l3bp19OzZEzs7O9q1aydScuoinIKCAjIyMpBIJOL7f/DgATExMQwZMgQXFxc+/PBD8TlqsfNu3brx0Ucf4eDgwLZt29i1axc9evTg5ZdfZtasWVhbW4v7U91Nrb6+Hjc3N2FcNdd43bdvH6dPn6Zbt26MGDFC0CI6deqElpYW8fHxGBoaoq+vT1lZGdra2piYmKCtrU1qaiq1tbX4+PgwYMAAQBWRV9/TZWVl5OTkCJ6on58frq6udOrUCVtbW5KSkmjdujWurq64urrS0NBAeXm5kJTZuHEjBw8eRE9PT9BTfq9g7N+hvLycCxcuCE1gfX19SkpKyM/Pp7y8XEh5bdu2jTt37tC+fXvRQENtqPj5+eHh4UGvXr04efIkRUVFgu9ZVlbGnj17ePDggfhZfR309PRwdHTExMQEBwcH7t27x3vvvSd0JVNSUsjLy2P//v24uLgwadIkfH19hVH7tFCrJHh6epKZmUleXh4ZGRl88cUXhIaGUlFRgY2NDRYWFuzZs4fAwEC8vLwYPXo0Bw8e5MKFCwQEBGBqakqXLl04deqU4FxmZWWRn5+Pra0tlpaW6OrqUlZWJjSO1fvl/fv3uX//Pq1bt8bDw4MTJ04IVQBvb29kMhlOTk6CR94cXLhwgbt37zaJgl28eBFDQ8MmzU7UNSEuLi60a9eOqKgoTE1NGTt2LOXl5SxYsABzc3MR2IiOjkZXV5fCwkLu378vdLbV6XZTU1Nu377N9u3bGTNmDK+//rqQZVKrxtja2mJhYSGqxtXtcSMjI5tlvNrY2GBiYsLRo0extbUlICCAjz/+mB07dqCjo8PEiRPFuB89eiRksZ6kLzU2NopufRKJBHt7+z9sb3ru3DmkUimhoaE0NDQIilx1dTXHjh1DqVQybtw4zMzMSE9PZ//+/dy5c4euXbvSoUMHGhsbm2286uvrC/H9lJQUTp8+LWhEBQUFWFlZUV9fL6L9+vr6VFVVYWFhIagdbm5u9O7dmwEDBtC1a1eqq6u5ePEidXV16OnpkZiYSFpaGg4ODiLCmp6eLvTjQbVOdHR0RLFvdXU1+/fvJzk5GVdXVxobG+nRoweRkZFN9Ln/DPn5+VRXV+Pg4MDkyZMBlbGdkpKCrq4uffv2FdHy3NxckpOTadeunTizb9++LboPmpmZceXKFV544YUmKk/5+fkUFxejra2NjY0NBgYGODo6kp+fDyA0zeVyOV5eXgQEBDRx2EtLS4mPjxf70p+h2caruoWeqakpzs7OBAUFkZ2dzQ8//CAqzcrLy8nMzMTR0ZGuXbty+PBhcUHUiI+P5/79+4LjqUZ6erpY+E9ywADGjx/PyJEjBRdIXXVvbGzchENpYGCAk5MTBQUFT9Wp4Umoyf7a2to0NDSIiIC1tTVFRUXU19cTHR0t+HLa2tpNPLKAgACMjIxQKpVCvFztEV66dIkVK1awY8cOMjIyeP/999m5cyfvvPMOc+bMQaFQ8O6773Lnzh3B/7158ybr16/HxsZGbMb79+9nwYIF6Ovrs3LlymbfqE86CbW1tYSEhPDw4UNOnz5NZWUl4eHhxMTE4OXlxY0bN2hsbBSGa3l5OQ4ODrzyyiv4+/tz8OBB3nzzTUDF5/zkk0+aeKlq5YeGhgbS09NFG9rly5dz5swZNm/ezMGDB2loaKBz584EBASwcOFCRo4cyf79+0Xlv/omehoEBwejVCoxMjJi6NChQiRfvZ7UFcg///wzK1asIDo6ms8++wxNTU2KiorYs2cPDQ0N9O3bl4iICCorK5kxYwbHjh1j7dq1vPTSS5w5cwYdHR0sLS3p27cvp0+f5v79+3h4eDBr1iwRzVIfqB9//DF5eXlNjFd3d3e8vLw4efKkKLR4WqhT+35+fmzZsgVNTU2WLVuGTCZj+PDhrFu3Dj8/P6HA0dDQwJ07d1i2bBkHDhxAKpWio6ODsbExkydPZuvWrU0aGICqgcbmzZtJTU2le/fu4h7r1asXGRkZorDkSY7TK6+8IiplGxoaaNeuHR07diQ7O5tPP/20WXPMzc0VfcbDw8MZMWIECQkJ/PTTT0RFReHk5IS5uTlnzpwRUeDOnTuzfPlyFi5cyNtvvy2iYUqlEqlUikQiEV15evfuTXFxMadPn2bLli0MGDCA0aNHAyqdx+zsbBITE0WkQ52BWLFiBRs3bsTJyYn6+nq2bNmCr68vJ0+eFJ/3NDh37hxff/01/fv3F+vi3Llz7NixA39/f0aNGkV+fj5r1qzhyJEjDB06VBhEeXl5zJ49G2dnZ/bu3UtUVBRbt24VDtaDBw/YvHkz58+fB1RO+Zw5c4STWF1dLTimZWVlfP311yQkJGBvb4+VlRWHDx+msLCQoqIiQkNDiYiI+Ev8+rFjxzJ27FguXbrE9evXmTp1Ku3ateOTTz4hNzcXLy8vdu7ciY6ODu+88w42NjYsW7YMe3t7Ll++zMaNG7l27RqbN29m2LBhhIaGioKSS5cuoa2tjb+/v9D//T1e7vbt2yksLGTOnDkEBwczfPhwITPk6+uLs7Mz2trajB8/nqlTp4pOP08Da2trlixZIigpJSUlbNmyhT179jBz5kxee+01rly5wpQpU7h79y4LFixg5syZ9O3bl6SkJBobGzEyMmLq1KmUlpayefNm7t27h6+vL+PGjWPNmjVMmzaN6dOns2TJEkB1RsXFxZGXl0eHDh3w9/fHwMAAAwMDLC0tOXr0KJ6enrzyyisMHDhQdIUE1dnYXAqPmZkZWlpanD17luzsbFauXImBgQFdunRpYnDn5uby/fffc+DAAYAm1LS8vDxOnDjRxAErKSnB1NRUXDOJREJlZSUzZ86kVatW7Nu3j6tXr/Lyyy/j6+uLhYUFW7duJSgoSNSkqDt9Wlpa0qdPH9Fs56/gypUrQtNdTVmA/+H8VlVViaxHRUUF2dnZWFlZiX3T2tqaiIgIYQfp6ekRHR0NqDJkK1as4N69e/Tv35927dqJzo3q6H9SUhJJSUliLQF0796dkJAQkpOTuXjxIv7+/s2OugIMHjy4SbQXVHSMadOmiQKq+Ph4du3ahVKppFu3bk3O3ODgYMzNzUW77pSUFFJSUoTxunbtWr755hu6d+/O3Llz0dPT4+HDh3z++edUVlbi6+uLubk5586dY9iwYZiamrJ27VoiIiJEgbGXl5eQbnwaNNt4vX79OocOHaJjx464uLjg4OCAv78/dXV1pKSkUFlZSUBAALdv3+bTTz+lZ8+eItqampqKpaWlCFtPmzaN3NxcYmNjSUlJEX1uDQwMRHu82NhYjI2NiYqKorKykvz8fAICAsjOzmb27NkEBgby5ptvkpOTw7Fjx+jatSuOjo4MGDCAwMBACgsL2b59+1PPz8zMTHggGhoaTTZsW1tbHBwcMDIyIisrixkzZqClpcXIkSPJzMykoqKCV199FQ0NDS5dukR+fj6DBg0Shl9MTAz19fUcOHCgiccxY8YMKioq0NTU5MaNG3Ts2JHa2lqSk5OxtbVl1qxZpKSkMG/ePKZOnUpKSgoXL14kIiKC4cOHN9t4zcnJ4e2336Zbt25ERUWJiEjr1q25efMme/bswdbWVsgM3bhxg5MnTxIaGkqnTp0YN26c+F5SU1MZOnSo6IWcnp5OYGAgVlZW3Lt3j127dtG/f3/69OnD7t27WblypeDXdO7cGQcHBz755BO2bNmCjo4OQ4YMQVdXl7CwMBoaGvjpp5+EkfS0GDp0KObm5hgbGwsJpdLSUlatWiWisW3btiUpKUkUhyxdupTp06eL4qzS0lKhVnDkyBFu3bqFiYkJFhYWWFhYEB0dzbVr19DX12fkyJF0796dqqoqof976dIljh8/TkxMDAMGDBCRyJMnTxIcHCw8y27dulFXVycKTJ4WVVVVREdHNzEqBg4cSFxcnOAHZ2VlkZSURFhYGObm5oSHh9OrVy/RM11TU5OAgABiYmLEBnz//n127NghGgEMGDCAbt26NcmYTJkyhbZt2yKRSNi1a5dIfwcFBeHn5yd4YXV1deKgVFeTNwcuLi6EhoZiYWEhsh0KhYIzZ87g4eEhNl0PDw8GDx6MjY0NWVlZODk5MWzYMFq1akVmZqYoGFFDW1tb0AgsLCywtrZm48aN7NixA3t7e8FFU7dMlEgkwvFxdHTE2NhYHMy2trYEBQWJTk7NwapVqygoKGgyNk1NTXJycrh58ybl5eVERkYydepUfHx8iI+PZ8aMGYJzbm1tzbFjx3jrrbeYO3duk+/43r17mJub06NHD65du0b37t3p378/9fX1fPXVV5ibmzNo0CBSU1OJjY3FwcGBDRs28PDhQ9avX8+KFSsYPnw4EydOFEoTzVX9AJURsG3bNiGd9/777zN9+nQ0NTWRyWTcvn2b5ORkhg4dSp8+fcjPzxcyfpGRkSQlJXHs2DGmTp3K/PnzRSTv4sWLmJmZERoaKvjlRUVFuLm5UV1dzb59+7h06RJ1dXWig9bFixextLRk1KhReHl5ifbNUqmU9PR00biiOVAXEqsNAwMDAxwcHITSQHl5OSdOnCArK4tOnTrh6OhIVlaWiLS9//77pKenU1paSllZmeAIqjsi5ebm0q9fP+7du8f69et58cUXxZ6sr6+Pr68vXbt2BVQ8ydTUVKZMmdIky/WkMaA+25qDkpISLC0tmTBhAnv27GHOnDlYWVkxfPjwJvUbWlpatGnThpdffhldXV2R8QAwMjLC2dmZsrIyfv75Z06ePElubi5Dhw5l5MiRaGhocOPGDT744AOuXr1KVlaW0FhOTk4mKioKNzc3Hj58iIGBgTAQ1ZSGJ9vP/5U6kKtXr7Jx40YGDRpE69atSU9P59q1awQFBXHv3j1Onz6Nvb29KBAzNDTE1NSUkydPcv78eUpLSwkMDKRr165CHaGsrAwDAwOKior44osvWLNmDcOHDyc6OprU1FTS09OxtrZGIpGwf/9+9u3bh52dHX379kWhULB9+3Zqa2vx9PREKpWKzOHJkyeJjY1t1vw8PT0FV1ltU40cORIHBwfy8vL49NNPefDgAVZWVmhra3P27Fnu3buHiYkJbdu2FQGv5cuX88knn1BcXIyRkREdOnTAxMREOM2TJ09GT0+PtWvXkp6e3sQRvHv3LomJiQwePFhQdRQKBUVFRVRXV2NkZETPnj05e/bsU2UGmm28Hj9+nK+++oqqqiohIqv25tT9c21sbEhLS2Pz5s3Ck6ivryc2Npa2bdvi6+uLr68vAQEBKBQKunTpIqrc3N3dsbS0FNW+Z8+eFRHcCxcusGPHDubNm0dtbS2HDx+mrKyM6dOns2nTJj7//HO++eYbccD4+/tTX1/fLOP1yQiuRCJp4q1oamqKwzg3N5dr164J2auCggK0tLS4f/++aI3r5uYmDFd1Mdm0adNEy01QFWg5Ojoil8vZtm0b69at45VXXuHFF19k//79In0wceJEPvnkE8zMzDA0NMTY2PgvtcEDVQpg7dq1osI4NjaWrKwsOnToQF5enhBIVxcF3bhxg7Vr11JRUUFUVJRo7SeRSAgPDxdp/bNnz9K5c2cSEhLYtm0bR44cYevWrcybNw9HR0d+/PFH0tPTuXjxInZ2dkycOBE3NzcGDRrE7t27mxDwHz58SGFhIV26dHlqT0yNoKAgUWykxi+//MKyZcsYOHAgYWFh3Lp1CwcHB4YPH853330nxJJnz56Nv78/CoUCR0dH9uzZw+effw6oCtsKCwuxt7cX17ygoIC+ffs2kd6qqanh9u3bZGZmCr3HdevW8cMPP3DkyBFMTU2FgRkeHk5YWBiGhobN0rL18vKif//+SCQS0fDA3t5etNQrLS1l3bp1lJaW4u3tjbm5OYaGhkyfPp3p06dz7tw5lEql8PLVkk/qVLOenh6LFi0S0lSAKFrz8fHBx8eHe/fusXPnTg4dOoSBgQE1NTVYWlqir68vNCrVkmXNVf0AVXtFNacdECLle/bs4fz587zwwgtoaWlhbW3N2rVrycnJ4erVq3Tp0oXJkyeTm5tLSUlJE76reh7l5eU8evQIS0tLjI2NGTp0qDD++/fvT9++fWndurXIIqijA42NjXTt2pXbt2/z4MED6urqxD1eUFDQrPndv3+fwYMHN0lXt2vXjr59+7J48WKhibpo0SKGDBnCokWL+Pjjj7GxseH9999nzpw5TJ8+nb1799K6dWveeustQOVQXr58WTSoKCoqwsLCAi0tLTZs2MCsWbPo378/Hh4ebN++nStXrrB48WJB89myZQvFxcWEhoaK536t6PK02LBhg+B12tjY0LNnT/z8/HjllVdISUlh9erVIjs2efJkKioqhMzZSy+9RExMDG+99ZZoQ/nll19y7do1kpKS6N+/v3C69u3bR3l5OcOHDxfd41avXo2pqSm7du0iOjqa/fv3c/ToUSIjI5k0aZLYy9PS0rhx4wapqanNNl7V9716faj1Wq2srOjYsaNQMhg3bhwfffQRUqmUU6dOER4eTseOHQUfHFQRvuDgYGQyGYmJiUyaNImJEyeyfft2PvjgA8aPH49CoWDq1Kn07NlTFMEaGRkRHx/PiBEj8PHxEYoJt2/fxsjISKTn8/PzKSkp+U1G889w7tw5ka2Kjo5m8uTJmJmZCaWImpoa7t+/j4GBAcOGDROFeaCK8NfX1+Pn54efnx+JiYl89dVX7Nq1C4VCgba2toh+f//996JFtlKpZO7cudTV1WFlZcXEiROxsbEReutqrqRaP9fBwUG0TVarFDQHmZmZ6OrqMnnyZME5vnz5Mn5+fuTn57Nr1y6cnJwwNjamXbt2oitkWloaX331FaByZNTdCtVygzU1NTx48ICkpCQkEgldu3bFz8+P3bt3C41epVLJ7t27uXv3Lq1ataKhoYGKigpBxwsPD+f1118Xa33btm1s3bq1yff8Z1A7nidPnuSnn35q0oxj8eLFfPXVV/Tr148XX3yRsrIy1q9fLzJKai1vtY67ujNmVVUVcXFxeHt707t3b0aMGCGyPj/++CPFxcUMHTqUgIAASkpKGDFiBA8fPmTPnj2iQPTWrVvk5OTw8OFD0Rzo/Pnz7Nix4+9vUlBYWMjs2bObRBpCQkJYtGgRtbW1YrPz9fXl008/JTY2lk8//VSkodVVaWqDJyUlhdDQUGGNq3tb9+rVi549ezJ8+HAUCgWg6mXes2dPka79+OOPUSgUrF+/XuhKpqamcu3aNe7evYuDg0OzmxTExcXh4+ODgYEBCoUCDQ0N4cklJSXx4MEDOnXqhKenJ/PmzePmzZui8Ek9n8TERLFpVFVVcenSJQ4cOEBlZSW9evUSHmlNTQ0lJSUiDRYXF8f+/ftxd3fH39+f7t27k5KSwpEjR3BxcWHBggV06NCBu3fvEhMT85c4WqAqBpkyZYrQJA0ICBBGS3JyMj169MDDw4O2bduSk5Mjqh7V12zHjh1cv36drl270r59+yZ/18TEBKVSSW1tLaampjQ0NBAXFyeqcQMCAvD39ycuLo7i4mJmzpzJgAEDMDMzQ6FQkJeXJ/hFenp69OvXj6qqKn755Zennp/6kFVHPzQ0NPDw8OBf//oXtbW17NmzBysrK9q1a4e+vr6I6GVkZLB06VKCg4NFJXteXh62trYiraFuqerl5UXbtm0pLCyksrKShw8fimhccXExvr6++Pv7iw1HqVRSUVFBRkYG165dw8nJCTMzs2a3FFVDHcVVt9RUcxXVEVJtbW28vb1F16ILFy6wbds2Ro0aRVhYGJGRkeK+Uo9ZTbMZOnQodnZ2TdoiFhcXU11djZWVFdXV1aKbTvv27bGzs2vSha6wsJDi4mLatm3LuHHj/pTL/kdQi5KrFUMaGhqws7Ojf//+XLt2jYkTJ5KRkcHQoUOZMWOG0Gg9fPgwoaGhxMTEYGtry927d9HU1BTFbGopqSNHjuDt7c2SJUuwt7dnypQpREVFERoaSmxsLAcPHhQNRDZu3Mju3btxd3cnNDSUUaNGERcXx/nz55k9ezaTJk1qdjpvwoQJQvJLzau3sbFh+PDhXL58mQ0bNvD1118TERHBwIEDmTJlCg0NDWIeXbp04dNPPyU7O5vg4GAUCgWZmZminaqnp6fo2qOpqYmGhobokOTg4ICxsTHDhg3DxMSErVu3oq2tTXh4OO+99x6xsbFNomr5+fkkJSU1+xrGxsYSFRVFXFwcdnZ2mJub8+DBA06ePImJiQk//PBDE+kxdURNrbzg5uZGnz59OHToEIWFhTQ0NODq6kp5eXkTI6ympobCwkLKy8txd3dn4MCBaGtr4+zsLJzf0NBQcnNzuXTpEgqFgqioKCFxFRwcLOQV/woKCgqaVFJnZmaSnZ2Nu7u76I6o3pekUinV1dWYm5szYcIEnJ2dsbKyEsV0vXr1Ejqeag1fNbVJXWDj5uaGq6srOjo6VFZW8uDBAzQ0NH7TqOTOnTuYm5ujp6fHiRMn2LVrV5MCzqfBkSNHRDtedVtSdRc+UGVYtm7dyq1btxgwYIAwqrZu3cqpU6cYPXq0aLZhYWHBoEGDCAkJISsri5SUFN566y3s7Oxo3bo1s2bN4tKlS0Jyrnfv3owePZqcnBwyMjJ47bXXSEtLY9asWWhra4uiWF9fX4yNjcnPzxccy+agpKSEvn37irUSERFBRUUFDQ0NIsO5ceNGVq5cydy5c8W1DA4O5v3336ewsJBOnToJw1qtb2xpaYmOjg7vvvuu4Gi/++67GBoaEh0dLWwLtUasvb091dXVaGpq0qdPH6ytrUVNhhrdu3fH2tq6WRr26nPm6tWr3Llzh3/9618UFhby008/kZGRwezZs4mJiSEgIIDa2lpBJ2zdurWoAcjKymLw4MF069YNiUSCjY0NGhoa5Ofn4+LiItaDnp4eb731Fjt37uSDDz5gzpw5eHl5YWFhQUJCAgsXLuTrr7/G0tKSBw8e8MsvvwgnxszMjPbt2zc5m/4IkqfV7pPJZM0X+fs/Brlc/of6C8/7/OD5n+PzMD94/ufYsk6f7/nB8z/H52F+8PzPsWWdPr/zaz6JqQUtaEELWtCCFrSgBS14RnjqyGsLWtCCFrSgBS1oQQta8KzREnltQQta0IIWtKAFLWjBPwYtxmsLWtCCFrSgBS1oQQv+MWgxXlvQgha0oAUtaEELWvCPQYvx2oIWtOD/H0gk85BIFEgkzdPQ++3feROJpA6JxOtvGlkLWtCCFvyz8Az302dasCWTyfoCMwEfwAJ4CFwBlsrl8gvPbGB/E2Qy2adACOABWALVwANgN/CtXC4venaj+99DJpMNBToDQUAgYARsksvlY5/luP7TkMlk44D1j3/8l1wuX/0sx/O/gUwmkwATgamAL6AJpABrge/kcnnzuwv8XZBIfnd9oVT+tfWl2mBTgNUola8+8bwFMBjoC/gD9kAtcAPV97AWpbLxV39LD0gFElAq+/2l8fzNkMlkDsA8oBf/s5/uBj6Wy+XFz3BofwtkMtl94I9ateXJ5fLmdRj4P4bnfX5qPO/rFEAmk3UCXgM6AObAI1T7yVdyufzgMxmURPJv7RGUyubZI3+0n6pe+7fnCkplw6/e3+z99JlFXh8bdvuBdsBh4GvgKjAQOC+TyZ4HA+h1wAA4hmp+m4B6YC6QKJPJ/nfeyrPH+8B0VMZF9rMdyn8Hj6/ZN0DFsx7L34QfgR8AF2ArsArQQbVetz42bp8V/u719QEgBZb86vlhqOYdDlwEvgJ2AH7AamDb4834f6BUVqP6jvoikXT4G8b2v4JMJnND5fhPBC4BXwJpqIIDF2QyWfPaKv3fRSnw8e/8+/xZDupvxHM9v/8f1qlMJnsf+AWIQmXbfAHsA8yA6Gc3sn9vj/yF6Okf7afwJ+fK37GfNrvD1t8BmUxmC7wF5AEBcrk8/4nXugAnUXlmG5/F+P5GGMvl8t+0ipDJZJ8Ac4DZgOy/Pqq/D68DWag8ps7AqWc7nP8sHhtya4EiYCeqNfyPhUwmGwSMA9KBMLlcXvj4eW1gG/ACMB5Y94yG+PetL4nEBBgDnECpzPzVq3eAAcCBJhFWiWQOqgP2BWAIKoP2SWwEFqK6h5vXbPzvhxywBl6Vy+XfqJ+UyWRLUX2PnwAvP6Ox/Z0okcvlc5/1IP6DeN7n91yvU5lMNgyYDxwHhsjl8vJfva79TAamgjFK5W9bV0kkzbdH/t1+KpEM4olzBaWy8PHzf3auNGs/fVaRV+fHn33xScMVQC6XnwLKgb/WN/P/EH7PcH2MbY8f2/zB6/8IyOXyU3K5/K5cLv//RSz4VaArqqhB5TMey9+BIY8fv1AbrgByubwOlVcNMOO/Pio1lMpTKJV3+Xu4TaMAfVRRgF9/zkmUyn2/oQYolbnAisc/Rf/O7+UAZ4GhSCTGf8MY/xJkMpkr0AO4D3z3q5c/QrVWx8lkMoP/8tBa0AKB532dymQyDeBToAoY/WvDFcTe+mzwe4arCn/FHvnj/fSJc0UYrqrP//fnSjP302cSeQXuouKUhclkMssnD06ZTBaFitu2+xmN7b+B/o8fE5/pKFrw1JDJZN7AYuBruVz+i0wm6/qsx/Q3QM2hS/ud19TPtZPJZKZyubzkvzOk/xhiHj+ea+bvqQ+b+j94/TwqwzYKFQ3qWUC9Fo/K5fImBrhcLi+XyWTnURkNEcCJ//bg/mZIH1PKnFAZO4nAL8+Um/334nme3/O+TjugSpP/DBQ/runxAxTApf/DdTx/xR75d/vpU50rSCSmKJUlv3r9qffTZ2K8yuXyRzKZbBawFLgpk8l2o0rFuqFK3x0DXnoWY/tPQCaTvQUYAiaoCNORqBbK4mc5rhY8HWQymRawAchAlV55XqB2Gl1+5zXXJ/7vBcT954fzH0UkqozOnaf+DYlEC3jx8U+H/+Bd8Y8fn6Xx6vn48Y/mdheVUeDBP9MoeBK2qO7FJ5Euk8kmyuXyM89iQH8znuf5Pe/rNPTxYx6q+h3/J1+UyWS/AEPlcnnBf3tgTSCR/B32yL/bT/8358pT76fPrGBLLpd/hSq8rAX8C3gXVeFEJrDu13SCfzjeQpUWeQ3VRT8M9Hjmi7gFT4sPgbbABLlcXv2sB/M3Qr05vCGTyczVTz421j9+4n1m/9VR/d2QSHQAGyC3mRSExagiJwdRKo/8wXtyHz86/S9G+L+FyePH0j94Xf286X9+KP9RrAW6oTLwDFAZByuB1sAhmUwW+OyG9rfgeZ/f875OrR8/vgzooYpOGqHaQ46gMsi2P5uhNcHv2iMolU9nj/z5firOFSQS8yd+72nOlafeT58VbQCZTPYOKnLuMuBbVIP2AhYBm2QyWZBcLn/nWY3v74Ra4kQmk9mgSi0sBhJkMlk/uVx+9ZkOrgX/FjKZLAxVtPWL/8Npn7+KLcBYoDeqDMheVHytGFRZkLuoeFD/9JSluoL56WV4JJJXgTeB26iKD/4Ijx4/Wv6lkf13oK7s/Udz0+Vy+ce/eioJeFkmk1WgulZzUUme/SPxvM/vKfBPX6eajx8lqCKs1x//nCyTyQajilJ2lslk7Z/pWaJUqtL6EkkTewSJpB9K5dPYI3+2nzY5V5BImnOuPPV++kwirzKZLBoVsXmvXC5/Qy6Xp8nl8qrHhtxgVLI4bz4meD83kMvleXK5fBeq1IgF/6MV2oL/g3iCLnCH/yGaPzd4zDsbgMoTz0VlpE1CVeEfiYrKA/BPz4Koo+W6T/VuiWQaKtmWm0AXlMpH/+bder/6jGcBdcTK5A9eN/7V+543qIvqop7pKP5zeF7m97yvU7Uxl/aE4QrA44ydOnsT9l8d1R9BqcxDqfwr9si/309Vha9/9Vx56v30WUVe1SK0v5G+kcvlVTKZ7BIqI7Ytv0/6/UdDLpc/kMlkN4GgXxesteD/FAxR8a8AFDLZ76qIrJLJZKtQFXK99t8a2N8FuVxej0qH8Isnn5fJZHqo9FWrgeT//sj+RiiVJUgktfxPxOCPIZG8hkp7MgnohlL5Z4a7+m8+SwM/5fGjxx+8rq4ifnq+7z8L6u/+H1ml/hR4Xub3vK9T9fxK/uB1tXGr9wevPxsolQ+QSG4CQUgklk0UAn7//X++nyqVv3uuPG5GEMQfnytPvZ8+K86r9PHjH8lhqZ+v/S+M5Vmh1ePHf3pK9nlGDSqh5d/7l/D4Pece//y8UQrGofKstz1TeZe/DzcAu38rwSKRzEJluF5DFXF9GoNU3c7w2v9yfP8bqIMAPR7L9QjIZDIjoCOqw+KfXnT3R2j/+PG5C3Q8xvMyv+d9nf6CSpWkjUwm0/md1/0eP97/r43o6dFce+TP99PfhzhXHktn/RpPvZ8+q8jrWVSdc6bKZLKVcrlcdM+RyWS9US1iBc9e+PsvQyaTeaESnM791fMaqESMrYHY56Ud3vOIx6meKb/3mkwmm4sqM/DjP7w9rLFcLi/71XOhqHhQFaiahTwPOA0Eo0rZHf/NqxLJB6jmegVV8cK/owo8iYjHj8+sQYdcLr8nk8mOokr/TUPVAU6Nj1FF7FbK5fJ/rDaxTCbzBR7K5fJHv3reGVXNBPyDm9o87/OD53+dyuXyQplMthWVeP+HqDoEAiCTyboDPVFRIv5IueQ/B4nECyh5rF395PNN7BGUyqe1R07z7/dTY5TKsl899zTnylPvp8/KeP0Z1YRjgFsymWwXKm6ENypKgQR4Vy6XN6/X7v8t9AKWPJbHuIeK52GDqlOQK6r5/uvZDe9/j8cdmgY9/lGt7dZeJpOte/z/Qrlc/o/uQvX/AY7JZLJqVGnyclR9qPugijoPkcvlzy7ao+rUMujxT2J9IZGse/z/QpTKp11fO1AVvfTk15utRDIe1WbagMqxfpVfdS8E7qNUrvvV72mgqg5PQalMespx/Keg7kqzTCaTdQNuoWp32wVVGva9Zzi2vwPDgHdlMtkpVJ17ylEVf/RFFck5yD+7herzPj81nvd1+gaq+bz3WLP+EqqmTINR7S//ekaa2b2AJUgkf5c98sf7qQrHkEj+8FxBqfztudLM/fRZ6bw2ymSyPqi8r5GoLqw+qkqzg8AyuVx+9FmM7W/EceB7VFHkQFTyH5WobtANqOb4tNGd/6sIQtXm7Um48j9abg/4h7dQ/f8AP6O6B8ei4mLlAKuBxXK5/P4zHBf8netLqbyARJIAjEEieRel8sn0mFqPUBOVfMzv4Qy/bWcYA9ijamv5TPE4qhWCygjvheqgeIhKzeXj52CvOYVKJ7QtqjS6ASpu4TlU++mGf3inv+d9fsDzv07lcnm+TCYLRxV1HYwqklgOHAAWyeXyZ0WJ+FN7pBnZpj/bT+HfnCsolff/4K82az+V/D2dF1vQgha04P84JJJRwGZUnv+uv+Hv7UAVuXBDqfynVki3oAUtaEHz8Yz30xbjtQUtaMH/H5BIJKgK61QVr/+bzU8iCULVRedVlMpv/+TdLWhBC1rwfOEZ76fPrMNWC1rQghb8V6HaXKcCu/if6tq/CjtU2r8r/uyNLWhBC1rw3OEZ76ctkdcWtKAFLWhBC1rQghb8Y9ASeW1BC1rQgha0oAUtaME/Bi3Gawta0IIWtKAFLWhBC/4xeGqpLJlM9o/nF8jl8t+IN6rxvM8Pnv85Pg/zg+d/ji3r9PmeHzz/c3we5gfP/xxb1unzO7+WyGsLWtCCFrSgBS1oQQv+MWh2kwIDAwM+//xzJkyYwNq1awFYv349M2bMoKysjNDQUKqrq0lKUjVIGDJkCD/++COGhobk5uYye/ZspFIpH3zwAfb29uLvpqWlsWHDBvz9/enQoQOfffYZO3bs4LXXXmPkyJHk5eWho6ODj48PAAkJCSQnJ+Ps7EynTp0AVfGbRCKhqqqKR48eoaOjg7m5Oa+++upTz2/JkiWcOHGCzz77jMrKSj7//HO6desGQHZ2thjzyZMn6devH8HBwZw4cQIdHR127drFjRs30NDQwNHRES8vL8LDwwE4c+YMAwYMICgoiCNHjqCrq8tnn33G2rVruX37NgDvv/8+8+fPp6ysjJSUFFq3bo2VlRUAlZWVGBgYALB161amTJnCyJEjWbVqFTKZrFnX8M0330RHRwc9PT0sLS0BuH//PhcuXMDR0ZHIyEgA6urqUCqV6Oj8T5tmpVIp/mloaDxWy1A9X1dXh6amJhoaGuJaKJVKGhoaxPMKhYLq6mp0dXXR09MDoKqqirq6OoyNjZFIJDQ2NqKhofKrMjIyyMnJYf369U89v4EDB7Jnzx46derEqFGjAMjJySE7OxtLS0tcXFyavD8/P5+8vDzMzMxwcHAQz9fU1KClpYWmpqaYY2FhIVlZWRw7dozly5fj6OjIjz/+iJ6eHgsXLsTBwYGXX36Z4uJi0tLS8PX1xdraGoCNGzdy584d+vbtK9bFli1bOHbsGD169ODMmTNPPUe5XP6b52pqaoiLi2PlypXk5uYyY8YMBg8eLD4nKSmJTp060bNnT0B1z12/fh1nZ2fatWv3m7+Xk5PD5s2bKS0tZeDAgVRWVrJ8+XIqKioYMmQIkZGReHh4APDZZ58xa9Ysxo8fz6xZs0hMTCQ7O5vx48djYWGBQqHgjTfeeOr5AfTq1Yvbt2/j6elJeno6c+fOxdnZmQMHDuDg4CDWSXx8PGPGjCE8PJwNGzZQWVnJvn378Pb2JjAwEICXXnqJ77//ni+++EKMIy8vDwsLC7S0tEhLS2PAgAE0NDRw4MABXF1dKS8vZ926dQAMHToUOzs7lEolqampODo6oqury7Fjxxg+fDglJSW8/vrrKBSKp57f0qVLqaurQ0dHB6lU+rvvqa6uprGxEX19fXGvVVVVoa+vD8C5c+fYvHkzAwcOpGfPnixcuJD33lM1KZo/fz5vvvkmb7/9Nt999x2LFi3i3XffBSAlJQWJRIKrqyvV1dVcunSJmpoaunXrhlQqJS8vj8mTJ5Odnc38+fPp168ftbW1vPbaa826hsOHDyc6OpqCggJSUlKws7PDzc0NgD59+nD48GEOHDhAcHAww4YNQyqVsmfPHvT09EhKSqK2thaFQkF2dja6urr4+vri6qrqUZGUlMSXX35JRkYGn332GW5ubkyYMAGFQsGGDRtQKpWsXbsWc3NzLCwsuHDhAsXFxbi4uGBtbY2hoSH29vZiv5s5cybLli3jlVdeeer5ff755+jp6SGRSMjNzeWLL76gqKiICRMmEBUVBUBjYyMA9fX1aGlpif2xtraW+vp6DAwMKC0t5aWXXmLXrl18+umn4nu+d+8e1dXV2NvbY2ZmJvZSUJ27CQkJvPbaa0ilUt544w3s7Oz44osvqKys5Pr16wQFBVFeXs7hw4dp1aoV3bt3B2jWmTFz5kxu3ryJm5sbAQEBgGpvKCkpwcfHB4VCQZ8+fbh69SpfffUVnp6efPnll8THxzN48GBmzZqFgYEBR44cQU9Pj969e4u1DFBUVISuri4GBgakp6fTpUsXTE1NOXr0KHp6emzfvp3Q0FD8/f25ceMGCoWCoKAgtLW1qa2tJS8vD01NTSwtLdHW1qampqbZe83o0aPp2LFjk3GdPn2acePGkZWVha2tLe3bt0dLS4va2lq6du1K27Zt2bFjB6WlpXz44YfU1NTw0Ucf4ePjw0cffSTmZmpqKlSktLS0yM7OZtq0aVy4cAEPDw/u379PVlYWY8eOZcqUKeTm5rJgwQKSkpKYP38+77+v6jJbXl6OgYEBjY2NVFZWMnv27Keen7m5OR988AFSqZTMzEwWLVqEs7Mzb7/9No8ePWLv3r14e3vTvn178Tvq8668vBwjIyNhiyxcuJCzZ8+yaNEirK2t6d+/P1evXuWNN97giy++ICMjg0GDBlFfX8++fftwdnamrq6OR48eYWNjA8C3337LwoULmTBhAh9++CFZWVmcO3cOd3d3IiMjqaqq4q23/n3/mWYbr6+++irt27fHyclJPNe3b1/S09MpLi7G1dWVqqoqbt++jZGRERMnTsTQ0JB79+6xYcMGWrduzcsvv4yNjQ1nz57l0KFDvPLKK7i6utK1a1e0tbWxtbVlzJgx9OrVix49enDv3j3eeOMNgoKCWLp0KQCurq5kZ2dz+vRpzp8/T58+ffDw8ODBgwc0NDQII7e5OHToED/88AOenp6MGzcOf39/SkpKADAxMRHv69y5Mxs2bKCxsZFLly5x7tw5duzYgaamJv369cPX15fGxkYuXLhAaGgoHh4ezJ49GxMTE7H59OrVCwsLC7KysrCysmLQoEEAGBsbExoaCqiM1m3btlFYWEhoaChBQUFERkby7bffcurUKSZPnvyHB98fYdeuXbz66qvo6OhQXV2NtrY2jo6OaGtrU11dTXZ2NkZGRhgbG4sxpKenY2tri6WlZZMbfOfOnVy+fJlx48bh7e0tnle/RyKRCEO0vr4eXV1ddHV1SUpKoqysjA4dOoiDeM6cORQWFrJ06VIMDQ0BsLe3x8nJqVnG65EjR+jRowcRERHiOV1dXWxtbTE3NweguLgYiUSCqakpurq6GBkZCcP19ddfx9HRUWyACxcuRCKRMG7cOBwcHLCyssLFxYXCwkIuX77M8uXLcXJyok2bNgwYMABjY2M0NDR4+PChuNYA7dq1o0OHDuLwXbFiBefOnSMgIABfX99mGa+3bt3i4MGD6OnpERISgp2dHY6OjuIwuXbtmvjsuro6qqursbVVdVhNTU1FT08PQ0NDOnXqRGpqKvPnz+fq1avY2dnRvXt3DA0NOX/+PJcvX8bHxwdtbW10dXXx8PDA2tqacePGoa2tza1bt1ixYgXV1dXib0yaNIkxY8YQERHBjRs3aNu2rXBUmgNdXV3i4+P58ssvkUql9OnThwkTJojrpF5XoaGhyOVyjhw5wvvvv8+gQYNo3749Z86c4d69e/Tr14/p06cTFBSEv78/586dY9euXejo6PDxxx8DYG1tTXJyMqBa7wBGRkZ069aNO3fukJ+fj52dHRKJBAsLC9LS0vD09MTf35/58+dTVVWFj48PBw8efOr5nTx5km+//ZZhw4YxevRoTpw4wZkzZ/Dy8iIoKAhfX1/xvZWXl1NaWoqFhYW4XwB8fHwYNmwYZWVlbNy4kdLSUvr374+NjQ2dOnVCoVDQqVMn9PX1CQsLE7/XunVrioqK0NLSwsjIiICAAHE4HTx4kNWrV+Pk5MTYsWNp1aoVFRUVlJY2vw+DVCrl9OnTmJmZ4eXlhampqXitX79+mJubY2hoiIaGBsOGDcPY2FjMWUdHB1tbWzQ0NNDX10dTU5OMjAyWL1+OpqYmvXv3xt/fn4cPH5KZmUlgYCBDhw4lIyMDhUKBvb09QUFBLFu2DFNTU15//XW0tLTYvHkzubm5tGvXjsrKSrKzs7G1tWXYsGEEBARw5cqVp57fk9fC1taWGTNmkJ6ejrm5uXAy1Ov0ySBAdXU1GhoaPHr0iFOnTrF582a2bt0KIJxdgFatWlFcXMy9e/fQ0NDA29tbfD+urq40NjZSXV2NqakpQ4YM4erVq3z99dcEBAQQEBCAvr4++vr6jBw5stnXTg09PT0GDx5MVlYWx48fJzAwkFatWon55Ofno6WlRatWrXBzc6N9+/bC4A4ICMDGxoZLly7x448/MmnSJCQSCRs3bmTXrl3C6VDj/v37dO3aFRcXF6RSKUZGRgwZMgRNTU0aGhrw8PBoct7p6Ojg6OjYxKjX1dVt9hyPHTtG+/btefToEUeOHKGgoIBbt25hYmKCt7c3vXv3pk2bNsLRbNWqFVpaWkRFRaGnpycCItOmTcPd3R2Abdu2ceXKFcaOHYu/v7/4LHt7e1577TW8vb0pKioiMDBQBOHUZ5aVlRWHDx/G1tZWBK6MjIxQKBRcvnyZsrKyZs1v9OjR4ntzdHRELpdz/PhxJk6cSF1dHa+88grt27enpKSEt99+G2dnZ95//32srKwwNDSktrZW/K0BAwYQGhpKQEAAEomEyZMnExISQpcuXQBwcnJi0qRJlJSUYGZmBoC2tjY3b97k5s2bBAYG0rVrV0xNTQkKCkJXVxd3d3dxn0DT++qP0GzjVVtbmw4dOmBhYQGoNnoTExPhafwe6uvr+fnnn3nw4AEzZswQ1vdXX33Fzp07USgULF26VERQGxsbcXd3Jzg4GIADBw4QHx/fJCqmVCqJiIjg2rVrbN26FTMzMzw9PcnLy+PevXvo6Ojg5uZGdXV1s+ZXUVFBY2Mj7du3Jzo6GlB5T5mZmZiamoqNo7GxkRdeeIGHDx+yZcsWVqxYQWZmJuPGjWPSpEm0atWKs2fPcvbsWRoaGoiMjBRRD/XvqzcYUEVTlEolCoWChoYGEWU9fPgwGzZsEBsxqBb/+PHjKS8v58svvxSRtKdFRkYGNTU16OjoUF5ejo6ODqamptjb25ORkUFWVhYODg7CeM3Ly6OgoABdXV3MzMyora0V30NeXh5xcXH4+fkJ4zU9PR1NTU0sLCwwMDCgurqa4uJidHV1MTc3p7q6mkOHDpGdnY2Wlha+vr5s2rSJtWvXUl9fT3BwMFOnTqWhoYGqqiq0tbWbNT99fX3h+cXGxtKmTRusrKyE4drQ0EBycjK3b9/GxsYGLy8v2rRpA8Dly5fZsWMHFhYWwgO8fv069vb23L17F4VCgbm5OTo6OgwfPpz79++zZMkSbG1t2bJlC87OzqSmplJeXk7btm2RSqUkJCRw6tQpAgMDRRR/3bp17N69Gx8fH4YMGSI2vKfFrVu3uHLlCtbW1nh5eYlrZWVlRZs2bTh8+DApKSkAKBQKoqKiMDU1JSsri+TkZMzNzWnbtq3IiNy/f5+9e/dibW2NpaUl/v7+5Ofnc+XKFerr63nppZcIDAxEIpHw4MEDFAoF2traFBUVsWHDBgYMGMAbb7zB4sWLuXr1KiEhIURERHDw4EFu3LgholvNgVQqpaKigtzcXAICAnjnnXcICgqioaGBiooKDA0NycjIwMXFhZiYGC5cuMCHH36IoaEhb775Jlu2bOHUqVMcPnyYzp074+/vT3p6OmvWrGHjxo1ERUVRW1uLjo4OV65cwcvLCxcXF2HE3b17l9atWwuHoKCgAIlEQmFhIfX19VRWVmJra8v06dPFmJtjvB46dIizZ88SFRWFQqEgOTmZ9evX4+Pjg729vTAObt++TVlZGRKJhOLiYhwdHTEyMqKmpgZzc3O6dOnCuXPnuHz5Mu3atePTTz8FVE7LgwcP6N27NyNGjACgsLCQ/Px8LCwsaNVKJc14/fp1Ll++TFRUFHZ2dvz4448cOnSI7du3069fP0BlVMTHxzf7GiYnJ7N582ZGjRrFv/6lap1eUVGBjo4OkyZNokuXLty+fZvU1FTxPd66dQttbW2cnZ3R1tZGQ0ND3Ltr165l9erVAHh5eRETE4OTkxM2NjZoaGgwevToJp/fvXt3Dh06RGlpKVZWVhQXF3P//n1MTU1xcHDAxMSEnJwcGhsb6dChA5GRkc0yXtXR1Lq6OiorK4VDqD6I1dmByspKcnNzsbCwwMTEhEuXLhEXF4empibZ2dlcvnwZPT09evToIYw5tfGrp6dHamoqiYmJNDY2EhISAoCmpiaampooFApMTEwYOnQolpaWrFmzBisrK2FM5OTkoFQqMTExaXagA1RReg0NDeLi4khPT6dVq1ZYWVlhaWlJeXk5FRUVTJgwgaKiIkpLS6moqKBr167U19eL7+HOnTvs27cPKysrunfvztGjRzl06BDTpk3Dzc2NrKwsTp8+jaGhIfPnzxcZztLSUhoaGtDW1qaxsZHa2lrKy8uprKykqKgIDQ0NXF1dxf6nVCp58OBBs+dYW1srsoVXr15l//79uLu7M2/ePAYOHCgM44aGBnF2amlpCaO1pqaG0tJSwsLC0NXVJS8vj1mzZpGTk8Pw4cMB1Vl59+5dfHx8iI6OJjo6mtu3b2NoaChsm6ysLOrr64mOjqZr167iO8jNzcXAwICysjJyc3PJzs5u1vzU51txcTH6+vpIpVLy8/M5evQoxcXFtGvXjk6dOnH37l1OnDgBQEREBDExMVRXV1NYWEhZWRk2Njb4+fnh6ekpMgpPBtDUWVT1vaw2esvLy0lOTubMmTP4+voyYMAARo0ahaamJnV1dTQ0NGBtbS2M1pqamj+dU7ON17feeovS0lLee+89IiIiqKqqIj09HT8/v999v0Kh4OrVq3h6etKjRw/atm0rXlNvSJs2bSIsLEx4h+pU4L59+zhz5gx6enrMmjWLIUOGcOvWLU6cOIGdnR0vvPACffv2JTU1lZqaGqRSKVFRURQVFTF79mxCQ0MZNmxYs+bXp08fvL29RZhbnXIClYdZWVmJsbExmZmZ7Nixg+rqagwNDWnXrh1t27blrbfeEoeCk5MTgwYNakKPUCM7OxszMzMMDQ2Ji4tj1qxZBAUFsWTJkiaeY0VFBbq6unTs2FGkfNQYNWoU7dq1Y+PGjc2aY2BgILt37yYqKgpnZ2cAysrKKC0tpbi4WHi8atjb26Ovr09JSQn37t3D0tJSGK+9evXCz88POzs7AHJzc/nyyy85d+4cs2fPZtiwYVy+fJnbt2+Lg1BPTw9vb28KCgpYtmwZDx48QEdHh48++ghNTU2WLVuGXC7nvffew93dvdk36sSJE8V3Z2pqKowRNRobG0lJSWH79u1YWFjw5ptvApCYmMiFCxdYunQpN2/e5MUXX8THx4d58+bh5+fH2bNnWbp0Kbdv36Zt27YMHToUPz8/tm/fTlVVFRYWFuzatYv33nuPQYMGsXDhQgCOHj3KggULmDNnDm3atOGDDz7g7NmzzJkzhxdeeAFNTU0R7Xta6OjoMH36dMzNzXF0dBTODsCgQYPQ0NAgKyuLn376ib59+4oDUaFQUF9fj7W1tfgdPz8/FixYQJ8+fUhLS8PW1pauXbsSHh5OYWEhKSkpIuoWFhbGxo0bWb16NR988AGRkZGcP3+e0tJSampqGDJkCN27dxcRhPDw8CaR+uagqqoKb29vevbsSVBQEOnp6Zw8eRJbW1v69+9PbW0tP//8M3Z2dowdO1YcYLdu3SI1NZVbt26hUCi4dOkSmpqaXLp0CX19fdq2bcuyZcuwt7fnzp07nD59mosXLzJw4EBee+01bG1t+eijj9iwYQMLFy5k5MiR6OrqcvToUQ4cOEB4eLiIPFdWVtLQ0CA+uzmorKzkhx9+oEePHkgkEry9vXn11VfFXgmq6E1cXBxdunTBwsKCe/fuUVNTQ0BAgDhIpVIpPj4+6OnpNVnr2trawnlUj+/8+fN8/fXXDB06FJlMRlpaGm+99RbHjx8nKCiI/v3706lTJ3r06NEkk6KhoUFubm6z57h582ZOnTqFl5eXeK6srIyKigo8PDzw9vYmOTmZjIwMIiIiyMzM5JtvviEoKIgpU6YgkUiEgQgQFRXFv/71L65du0ZiYiKenp707dv33xpl7733Hvn5+Vy7do2NGzdy7do1xo8fT3h4OFKplIKCArS0tMjIyGj2HNVjKy8vZ9euXezbt4/o6GiR9q+oqMDY2FgY56GhocyfP5/CwkKOHTtGVFQUQ4cOpXfv3tTV1eHm5oanpye5ublcvnwZZ2dn/P39CQgIICMjg7i4OOzs7LC3t+fKlSts2bKFOXPmiMBG27ZtmTBhAvr6+tTW1tLQ0MCGDRvYvHkzgwYNEpmG5iA2NpY33niDHj168Pbbb2Nrayvm3dDQgK2tLaNHj+by5ct88sknbNu2jd69e3Pp0iV0dHTo3LmzuH6nT5+moKCAqVOn0qdPH0JCQkTGxMrKinfeeafJeblmzRrOnTvHjBkziI6OZuvWrWzdupWCggJqa2sJCgpixowZwq44efIkO3bsaPYcu3TpIqgHY8aMoXPnzmJ9gsqoLCoqIjY2ljNnztCxY0dmzJgBqJzczMxMcnJyqK+vJzIykjt37lBYWIi5uTmtW7cGVNSlPXv2MHHiRFatWoWmpiZeXl5cvXqVxMREbt26xfHjx8nOzmb48OGCLmBiYsLq1avR1tZm2LBheHp6kpmZ2az5ffPNN8ycORMTExO+/PJLvv32W4KCgvj66685ffo0q1atwtTUlClTpnDo0CFmz57N2LFj6du3L/3796eqqgpXV1ccHR05c+YMx48fZ+DAgYSEhHDr1i1sbW1FtDglJYVZs2YJh0ehUIgMc25uLtra2ixevBg9PT1mzpxJu3btOHDgAA8fPmT06NFP7WQ123g1MzNDKpVy8eJFQGWASqVSsrKysLCwoLq6msTERDQ1NQkICCAnJ4dHjx7Rv39/cYDU19fToUMH5s2bh6mpKdnZ2aSkpHDkyBGio6ORSqUoFAri4+O5efMmI0aMYObMmRgZGXHv3j1++OEHFAoFpqamBAQEMGTIEBHNBSgoKCA7OxtfX19x0zwtrK2tsba2pqSkhFOnTlFUVERISAhBQUHCiAWVAXT79m2kUikjRowgMDCQq1evcu7cOcrKyvDx8RGG4aNHj8jMzMTa2hqpVEptbS2PHj0CwNDQUPDabGxsRLRF7bF36NCBK1euUFdXR0pKCo8ePUKhUODr64ulpaUwJpoDb29vFi1aRHx8PG+//TaOjo5UVlZy+fJl9PX1CQkJwcDAgMLCQmpra2nVqpVI32VnZwtDtaamBhcXlyYc0vr6eh4+fEhCQgL37t0DVNQBIyMjkQ7Lzs7GxMQEY2NjTp8+TWFhIePHj+fll18GVGnty5cvk52dzYULF4iLi2vi9PwZ1BF3U1NTTExMSEtLo7a2Vhyg6kiOOq1WXV1NWloaly5dwsnJiYEDB5KTk8OWLVvQ19cXjpmHhweOjo6kpKSIKNygQYPIyckRazY3NxcvLy9hfIAqAubi4kJxcTHbt2/n4sWL9OrViylTplBfX8/8+fPp0KFDs6+h2iB9+PAh+/btQyKREB0dTfv27fHy8mLBggUcPHgQR0dHgoODyczMRENDA39/f7HO1FFoPT09XnjhBQBOnDhBQkIC7du3Z8aMGezatYujR4/i6+uLVColODiYc+fOkZCQQGRkJE5OTuTk5KCrqysO0dzcXGpra7G3t0dTU1NQb5oDV1dX+vTpQ0xMDI2NjYSHh3P58mXmz5+PkZER9fX1GBoaUlxcTH5+Pn5+fowaNYoOHToImsfevXs5ePAgycnJSKVSzMzMaN++PYGBgTx8+JCXX36ZtLQ0XnjhBUaMGCGoFdra2mhpaXHp0iXhVO/YsYP169djYGAgsgG5ubmUlZVhb2/fJN37NOjatauIytTU1BASEiIcPIBTp05RVlYmUpapqank5+eL9KX6GpaVlWFubi6CAfX19eTn59OqVStxr6rh4uKCra0tFRUVgmempaVFjx49UCqVpKen06dPH+F8VFRUcPr0aQ4cONAkDfi0sLa2JjIykv79+4vnGhoahIMfHx/P8ePHsba2Jjo6mvT0dBITE0lMTMTJyYlevXrR2NjI8ePHsbCwoG3btsydO5edO3dy9epVEhIScHZ2FtSGe/fuiYO9devWeHp6YmFhQVFREUVFRTg5OdG2bVtGjx4tqEnqsdy6dYu9e/c2a37qQEN9fT16eno0NjZy6tQpLC0tadeuXROKi5WVFe7u7hgYGGBmZoa7uztDhgxpklJWw8TEBF1dXVJTUzE2NsbZ2ZkxY8awb98+0tPTsbe3x8vLC0dHRxITE9HT06Ouro727dvTtWtXFAoFsbGxWFpaCnpCcXFxs+amhqmpKQUFBeIcAFUkTVdXV9BASktLOX/+PCUlJbi7u2NqakpDQwMPHz4kPz+f/v37M2vWLEBFi3syE3PlyhUuX77MlClT8Pf35969e+jr62NnZyfubzWX3MDAgKCgIPLz8/n+++9JSEgQ/NOkpCRiY2MFxaA5aGhooKGhAS0tLYKDgwkODqa+vp5r166Rk5ODkZERBgYGxMfHs3XrVlJSUhg9ejQWFhZkZGRQWlrKwYMH2b17N2+88QbDhg0jJiaGK1eucPToURwdHWlsbMTc3Jzs7Gx++OEHPDw8KCgo4OHDh1RWVlJYWCgoCOo1K5VKWbNmDT///DODBg3Czs6OgoIC4uPjm1Bw/gyZmZmUlpZibm6Oqakp9fX1dOzYkeHDh1NdXc3y5cuJj49nypQpeHp68tZbb7Fw4ULBy3ZycsLNzQ2lUkliYiLJycnExMRQW1vLnTt3KCkpEXOLj4/n2LFj6OjosG7dOtq2bUunTp3IyckRZ9SaNWu4ePEilpaWODs7s3r1au7evUvPnj0xMTHh/v37fzqnZhuvixYtwtDQkA8++IC33nqLDz/8kB49eoj0m1Kp5PLly+Tk5GBsbIy5uTnW1tZoampSXV3NsmXLaGxspF27dtjZ2TFp0iRMTEwoLy/n6NGjlJeXM3jwYPr160ebNm1QKpXo6+uLTcLe3h5tbW2uXbvGpUuXMDIyQkNDAxcXF2pqali1ahU3b97kjTfeIDo6WmxQzYWaCymXy7G1tWXNmjXixlWPY86cOWhpaWFtbU1dXR1XrlzhrbfewtfXl23btmFqasrDhw9JTk7G2toaR0dH8ftPRsu6dOnCkSNHxGH0ZHGWra0tbdq0Yf/+/cyfP5+6ujpeffVVwsLCuHnzJkePHm323NTUhJ07dwLw0UcfYWxsTH19PQ0NDcJIVxt0np6edO/eHWtra3R1dUVov6SkBIVCgYGBgeBWOTg4MH78eFq3bi0oEWFhYYSEhKCpqcnNmzfZuXMnWVlZlJWV4ezszMSJExk3bpwY36JFiygqKuLIkSOsWbOGpKSkZhmvSqVSOC3V1dUcO3YMiUSCu7u7KJiIjIykR48eaGhocO/ePW7cuIGXl5fYVOvr65kxY0aTa2Ztbc1rr73GiBEjKCsro1WrVlhbW7N8+XJu3bpFTk4OwcHBTJ48WVzL+Ph4wsPDad++Pffu3SMnJ4dPPvlEGIpffPEFy5Yta/Y6VfNmGxoa+Pnnn5k1axatW7cmODgYGxsbzMzM8PHxEVGf5ORkcnNziY6ObkJRePjwIevWrSM7O5ulS5dib29PWloa27Zto1evXrzxxhtYWloyYcIEjh49yr59+xg/fjxRUVFoamryww8/sHjxYrp168aKFarOftu2bSMvL49WrVoJg6G5HC0AT09P4Rjt3LmTxMREjI2NRVGBpqYmI0eOFMUvgYGBrFy5ksbGRkxMTJg3bx6urq4sXryYkJAQ3nnnHW7evEl5eTmg4rnt3buXUaNGMXfuXECVXamoqGDq1KmMHj2as2fP8u2332Jubi7SkU8WZZmbm2Nra9sk8v20GDJkiPi/VCptchht3LiRvXv38uKLL4qMS05ODlZWVr+J8hobG4v9F1RFIX90sAUEBLB69WquXbvGwYMHqa2tZdGiRQQFBREXF8eBAwfIzMwUxuu1a9d45ZVXyMrKIjQ0VKSsnxZLlixBU1NTGIjp6emAymkvKytj27ZtfP/994SFhTFmzBiioqLo2rUr8+fP5+OPP6Z9+/YoFAq++uorWrVqxffff4++vj5BQUFkZmaSmprKgQMH8PT0pKysjNjYWOHILViwAB8fH1avXs2lS5eYMmUKEyZM+MOxGhkZ4ePjQ2xsbLPmCCpnZ/jw4YwePZoNGzbw3Xff0blzZxYtWgT8D89QfYY4OjoycuTIJvei2jlxcXHBzs5OGD+3b9/G0tISAwMDQkJCyMzMpLKykpiYGPz9/Vm6dCmTJk3CxcWFhQsXEhERwcOHD8nKyhJ71tChQ5twbpuDUaNGCUqJGk/uV1VVVXzzzTfcvHmT2bNnC8fdzMyMrKwsKioqsLe3Z/HixdTX1zepAwCws7OjXbt2BAYGCh59SUkJQ4cO5V//+hc9e/YUjln37t1FEWpiYiJxcXGYmppy9uxZJk2aRKdOnfjkk0+YP39+s+Z45coVQekC1To9fPgwcXFxhISEiCjr6NGjSU5Oxs3NTWTb1IGJ8vJyqquraWhoIDAwUGQ4X3rpJWbPns23336Lk5MT586d48MPP+Ty5csEBwfTrVs3fH19CQoKwszMDIlEIuprXnvtNb7++msiIiJETUxCQgLXrl0TtManwTvvvCOypePGjaNbt24iInz9+nWAJmddu3bt2LZtG8XFxejp6WFubk55eTkHDhzAxMSEt99+G19fXxFpVgcPtbW1MTY2JiMjg6tXr7JlyxZcXV3x8/PDwcGB2tpaBg0ahI6ODhcvXkQqlXLv3j2SkpKErVdZWflUAblmG6+nTp0iJyeH/Px8wsLCRHRRfWPo6+sTGhrKnTt3yMjIoK6uDiMjI3JyckhLS8PR0RGpVMrBgwe5ePEi+fn5zJs3D09PT4qLi5sUuXh6eorPraurQ6FQkJ6eTq9evRgyZAiTJ08mLS2N48ePU1VVRWRkJFZWVkRERNC/f/+/xO+pra2lpqYGpVKJi4sLMpmM5ORkli5dKjx5Ly8v7O3tfxNx9PLyYvTo0Xh7e4uCtsrKSvz9/SkoKGDFihW0adOGbt26iZsxJyeH1NRUMjIyyMzMpE2bNgwdOhRQGXGurq6MHj2a8+fPU1BQgIGBAV26dMHAwACpVNqkiOxpoVAoGDt2LAkJCWhra3P37l1RfFJXVyfeZ25uzq5du1AqlZiZmRESEoKxsTGNjY0UFRWhra2NRCKhvLycmpoaYdT269ePdu3aiY1avTbS09NF2qesrAwLCwscHBwoLy/n4cOHuLi4CM8tNzeXmpoaOnXq9LuRiX+HmpoadHV1qampIS0tDTc3N8rKyti3bx8uLi54e3s3Sa/6+fnh4uLSJL2dnp5OZmamqKYHFV9QoVBgaWmJmZkZGRkZVFRU4Orqio+PDzdv3iQ7O1s4LPn5+XTo0IHevXsL7lpAQIAwDHbs2EFKSgpjx45t9lpVqzhcu3aN0tJSxo4dS69evXB3d6e6upqEhASio6Nxdnbm1q1bHD16lOrqasrKygS3Ky0tjbi4OFxdXXF1dWXZsmWUl5djY2NDUFAQWlpaSCQScY0uXbrEJ598wsKFC8Xal0qlPHz4kCNHjvDtt9+ir6/P5cuXxTqRSqW/yVo8La5fv05gYCAXL17kzJkzjBkzhq5du+Lr60tDQwP19fUiEqhOoasrZPX09AQvOTMzk+DgYKysrOjcuTNlZWXU1dVhaWnJ1KlT8ff3F9/JzZs32bNnDyNHjiQ8PBx9fX02bdpEaWmpOByzsrL48MMPeeGFF4SaQWxsLL/88kuz5qevr09RURENDQ1IpVIR/QFV9sDb25udO3fy8OFDXnzxRTp06ICdnR23b99m165dJCcn07lzZ8aOHUt2djbr1q2jrKyMqVOn4u3tTWFhIe+//z61tbWEhYWhpaVFUFAQISEhoko7Ojoaf39/Tp48yVdffUVxcTG+vr4UFhZy8OBBtmzZQtu2bRk3btxfMuzUB+LGjRs5f/68KLhbu3YtZmZm+Pn5YWJiQkJCAgUFBXh6ejJgwACWLFlCXFwcr776qkjhqqP6ADY2Nty5c4esrCwaGxs5efIkcXFxSKVSnJyc6NChAx07dqS8vJxffvmF4uJicVatXLmS/Px8evXqhYeHB6dPn+bIkSN069aNsWPHNmuOhw4donfv3k0i0gMHDqSwsBAzMzOqq6vR19fH1NSUR48esX//fkpKShgyZAhubm58+eWXaGpqMmHCBFJTU/nhhx/o2rWrUDwIDg7m9u3brF27lpycHPz9/Wnfvr0wRJRKJaGhoSKatnfvXtasWYOWlhYRERG0adMGbW1tcb+qqQTNgTobCao9UL1XGxoakpiYyJo1a7hz5w4vv/wyPXr0oLGxkU8//RRfX1/69u3L8ePHWbBgAVZWVkyaNAk3Nze2bt1KaWkpQ4YMwdzcnMbGRnbu3ImWlhZ2dnZYW1uTl5eHs7OzOEvz8/O5efOm4H16eXkxfvx4+vXrx44dO0hNTaVPnz6/yTY8Dfz8/MQ5VVBQwKNHjzAyMiIoKKgJfSYmJgZLS0u0tLQwMzMjJyeHmpoa7OzsGD9+vCicPXv2rMg8lpeXc/nyZaEOEBkZya1btygvL8fU1JQHDx5w9epVLC0tMTIyYs+ePbRp04aoqCgCAgKIiYlh+PDh2NrakpKSgo6ODuPHj28Wt1f9nSgUCi5cuEBFRQUGBgZYWlri4OBAdHS04MUCnD17lrq6OkJCQjA3N+f+/ft89913XLlyhV69ejFixAhxZqnPfXUWLzExEUdHR/Lz86mtreXevXtCDePGjRuYmJgwaNAg3NzchBpG//79sbKywsjIiBMnTnD06NE/pKKq0cvfAfIAAQAASURBVGzj9cUXX6SkpITPP/9ccAXVUhdaWlpIpVI6d+5MSEgIZ8+eJTs7GysrK1JSUjA1NWXRokWUlZUxZ84cvvvuOwwMDMSmERERQU1NDY2NjTQ0NIgIh5GREdra2uTk5AhJETUvJj4+HoVCQUZGBvX19aIwAVQGpVqi4mmhTsetW7eOiooKZDIZ8fHx9OrVi4qKCj766CN0dHRE4YSJiYkotAoNDaV3797C+FanUEAleTJv3jycnZ0JDAzE0tKSvLw8Dh8+zE8//cTJkyfR0dHh1VdfZejQoZw6dYq5c+cycOBABg8ejLu7O1KplE2bNgmPy8HBgcmTJzerwABURmmfPn0YPXo02dnZFBUVUVFRgZeXV5PvS6FQYGNjQ0NDA48ePRLFXVKp9HeNkSclbVq1aiUqYfX09CgpKeHSpUscPXqUlJQUITV069YtUlJSqK6u5qOPPkJXV5eFCxeSnJzMBx98wODBgwWF42mhjtJfv36d+vp6unXrRm5uLj///DMlJSU4ODgglUqbrA81f1F9IxYVFbFy5UqSkpKER56Xl8cPP/yAjY0NgwcPRldXV2QY1Gm+devWceDAAUBVUNKhQwd0dHTQ1NQkKChI/P1jx46xadMmhg0bxqhRo9i8eXOzrmFmZibOzs6YmprSoUMHxo0bJw7nU6dOcePGDaKjo3Fzc8Pa2pqQkBCKiop4+PAh58+fJzIykpycHLZt28bw4cMZPHgwr776Knv27OHzzz9n6NCh4pqraT9q2kOrVq0EIb9Pnz5s2rSJpUuXMmPGDNq3b8+//vUvbG1tefjwIdXV1Tx8+LDZ6WZQRVsDAgJobGykVatWDB48GC8vL2pqaqioqBD3nkQiQVNTU/AaTUxMMDIywszMjLq6OsaPH09tbS2FhYVYWlpSW1tLfHw8lpaWyGQyNm/ezGuvvcb777+Pvb09eXl5HDlyhPDwcGxtbYmJiUGpVArjadSoUcyfP5/WrVsL43X16tWsXbu2WTJLSqXyN/dRZWUl1dXVtG/fnvDwcLp3786OHTtwd3enS5cuuLi48Msvv4g0W0VFBSNGjBApzvT0dAIDA/Hw8ODYsWP8+OOPKBQK8vPzBR2qurpaVDl37NiRzMxM3n33XeLj42ndujUdOnRAQ0OD77//nqqqKo4fP465uTlXr179S1FJUBVaqTNi6enpTJo0iUmTJvHDDz+Qk5PDjz/+KIyqkJAQ3nvvPT744APWr19PaWkpP/30E3p6emI/uXr1Krt27cLMzIx+/fpRXV0tUo2DBg3irbfewtDQUPAf27Rpw7FjxwRP1MXFBUdHRwoKClizZg179+5FoVCIqN7TYteuXXTt2hWpVEp1dTVKpRJjY2Nef/31Ju9Tp5U/++wzkXHy8vLiwIEDSCQSJk6ciLW1NZWVlUJWTENDgzZt2uDl5cW2bdsEt7579+5oaGhw5coVHjx4QEhICEOHDuWXX37hiy++4MqVK0RGRmJvb49CoaCxsZHGxkY0NTX/UvRVoVCIIJTa4bK1tcXQ0JBNmzbx9ddfM2/ePAYMGADAK6+8wvfff88333yDnp4ee/fuFZG0sLAw/Pz8uHfvHnFxcbRp04ba2loyMjK4du0aVlZWLF68GBcXF3GuOzo6IpFI0NLSIi4ujo8//hiFQsHChQsF1UxbW5uRI0fi5OTUJADztFBHNUFV9GplZSUKxp9EQ0MDvr6+gjaUnp5OaWkpDg4ODBo0CGtra86dO8fSpUsFtbJ169a0bdtW8NMTExMxNDQUBuqxY8c4duwYXbt2pbi4mHfffRcnJycRTZ40aRKgyoQmJCQQGBjIqFGjmi2RWV1dzfXr19m1axdnz55l5MiRvPXWW3Ts2JHU1NQmTk1GRgbr1q1jwoQJTJ48mfT0dH7++Wfu37+Po6MjJSUl2NjYUFxcjLa2Npqampw5c4bY2Fhu3LhB69atMTU1xd3dnaysLHbv3k3Hjh3x9/cnOzsbDQ0NwsLCkEqlKJVKhgwZgoODAwYGBhgaGhISEvKnsoPNNl719PSYMGGCCKODyvs8cOAArVq1YsSIEYSFhWFgYEBYWBjp6elkZ2dTWFiIr68voEpzWVhYMGLECLp3706bNm148OABzs7OSKVSSktL+fLLLzl9+rQojvDz88Pa2loc0JmZmbz33ntoaWkhk8lwdnamqqqqyVgfPHjApUuXmjtFQFU1vH37dnFISqVS/P39CQkJISsri127duHo6EhoaCienp4YGxtTUFDA+fPnKSoqwsbGRmhnKpVKzp8/T2VlJXFxcQwYMID+/fvT0NDA5cuXqampYebMmUIXcNasWcTHx9OxY0ccHR1ZtGgRSUlJzJo1i4EDBwIqfUdzc/O/JAn2pMyZvb09VlZWVFZWNqmM3bx5M1lZWbz66qtERERQUVHBmjVrUCgUvPXWW6KKNCcnp0lKcNSoUYSGhrJkyRKOHTvGTz/9xIgRI+jVqxcaGhrU19djamoqDIPTp09TXFxMfX099fX12NjY8NJLL6FQKOjWrRu//PILhw4dapLSeBrcvHkTQ0NDLCwsyM3Npb6+nmHDhlFTU4NCofh/tP13VJbntr6BXvTee6/SpCoCKohiBQv2Eo0tmkiWRo1RoyaxRE2iMdbEaEzsvaFiRUXFgoBIRzqIdKT3ev5gfM8Oe639W5Jzzhxjjb3H2m7gK+/7zmfO+75u6uvrkZGRISEhgXPnzlFcXMyCBQsYM2YM0N0Am5mZcePGDYKCgjh+/DjKysqkpKSQl5dHSEgIGhoa2NvbC4elpqamcElOnTqV8ePHU1dXR3p6utDXlpeXi9Pu+PHjGTx4MNB90OpN5efno6CgIBAjBw4coLm5meDgYLFG/u233zh48CDGxsYMHz4cExMT7t+/T2JiIs7OzmJKmpCQQF1dHf7+/gQEBDB8+HCUlZXp7OwUjvZPP/0UTU1NHj58SFNTE2VlZVRXV6Ourk5wcDBRUVE8efKElpYWJk2ahKampnDA//jjj/9IviNx2Lu5udHW1iYaPQUFBXHq//u0vLGxEQ0NDTw9PVFTUyMxMZH09HSh+3v9+jVVVVUkJSXx+vVrTExM0NbW5saNG3R0dAgG7qJFiwSTWFFREUtLyx7uV2VlZfT19XtsPXrDd5WUZEPw91JRURENhrS0NL/99hvPnz/vMZkfOHAgS5cupbi4mICAAKGhXLp0Kbq6uuTl5TF+/HhkZWX5888/MTc3p6qqCnl5eUxMTATrWElJCWlpafT19fniiy9IT0/Hy8tL3B+2b98u8HJRUVECp9Obkphev/vuO1pbW7GwsBAHteLiYgCWLl2Knp6eWGNCN/O6ra2NLVu2CLpJXV0d06dPp6uri8bGRmpqatDS0qJ///7Mnz8fAwMDtm7dysWLF7G0tKSuro6wsDB0dHRob2/n22+/RUlJiRUrVjB58mRycnLYs2cPXV1d7N27l5ycHIKCgoQk50PKyMiIoqIidHR0aGlpQU9Pj/r6egoKCsTErrW1lZKSEtzc3PD39+fo0aPs37+fuXPnsnjxYtTV1VFUVMTExISvvvoKHR0dCgsLefbsmaCRhISE0K9fPzQ1NcW918nJSUhzDhw4wK1bt9DU1OTgwYP069ePsrIyzp8/T2ZmJlpaWowZM6bH9PpD69KlS5w/f57p06cLfKRkc1hWVgZ0TyShe/1eWFjId999x+LFi8nMzOTu3bsArFu3TujHR48ejZOTE1ZWVhQXFzN8+HCxIZHohBUVFVFXV6eoqAgjIyO0tbWZOnUqNTU1VFZWCgnI5s2b6erq4tChQ1y7do1hw4YJyVpvqrS0VAwh/q+S+DCMjIzw8vISf5eampqYkKemptLc3Mz79++xtLTk+++/Z86cOQBcvHiRM2fOYGZmhq2tLXl5eSgqKrJixQpmzZqFtrY233zzDY2Njf9mdNXR0cHZ2Vmw2XtTR44c4fz58wwbNozZs2fj5eWFmZkZMjIylJeXU1FRIegBAOPHj0dZWVlsKIcNG8bcuXPZsmUL8vLy6OjocP36dX799VfMzc3R09MjOzsbDQ0NPDw8KCoqwtTUlFWrVhEfH8/y5ctRVlYmJCSESZMmER8fz9dff422tja+vr6oqKiIQ0dAQAA+Pj7/v+e8rlu3TjSuV69eJS8vj+fPn3Pp0iWge60gIyND//790dbWpqKiAmlpafz9/YVDsrS0lKlTp6KqqkpzczPS0tJkZGTw+PFjRo8ejYGBAQ0NDTx+/Jiamhr8/PywsbFBXl6egoIC0tPTuXHjBvHx8QwfPhxHR0ehOZPw8yQTwn/ikG1ra8PLy4v4+HiOHTuGk5MTa9as4fPPP0dRUZGnT58SFRVFW1sbGhoa4gM2NTXlzJkzZGZmEhgYSENDA2/fviU0NJRLly6JB2BMTAyGhobY29uLxuLvh4HvvvuOgoICHj16hIGBAevXr8fY2Jjg4GCysrI4d+6cYKv+k+bV2NhYOH4l0gNJQAAgHoZFRUVCq6iqqoqGhgZJSUkcOnRIiMf/fiFJXOnGxsZoampSXV1NWFgYgJCLmJqaUlNTg5qaGi4uLsjJyZGQkEBmZiaXLl1iwoQJfPbZZ+Jn/vHHH4SFhfVqovX48WOUlZXp27cvysrKxMfHU1tbi62tLcrKysjJyaGqqipu7ocOHUJOTg5LS0v69euHvr4+Q4YM4csvv2TNmjW8fv1abBCys7N5+/Yt58+fZ8CAAcLp/fbtW+7evYuRkRHXrl0TU4i9e/cSHh5OQ0ODaHxnzpzZAy3W0dGBhYUFUVFRH/waU1JSBLtWWlpasAlHjBiBvb29WFnev3+fqqoqgbOprq4mKSmJ7Oxswe1NSEggMjKSnTt3ivVSV1cXqqqqoulUU1Pj008/BboRKvr6+hQXF/P27VsMDQ3p168fLi4uzJ49W+gtVVVVKSoq4u3bt72WfkD35DoxMRFXV1eGDBlCY2MjeXl5qKioICMjQ01NjTBBSDS+Tk5OFBYWUlpaiqqqKvLy8ly5coWqqiqMjY1Fw6alpcWzZ88EyUJPT49nz54hLy+PkZER5ubm4iEmaVJzc3M5efIkTU1NjB07ltTUVIYOHYqOjg42Nja9ln60traSkJBAc3MzMjIydHV1CYi/xMChp6fHjBkzKC8vJzs7GyMjI+zs7HrIWSSsZok2VlZWlvr6eszNzRk/fnwPcgh0N80SBFV9fT2ysrLi4dre3k50dDSlpaWYmZmJ3/PixQtycnJ63bxeuXKFmTNn4u/vT1NTEw0NDcJoK5laq6mpMX/+fGRlZcnIyKC0tBQ/Pz82b96MjY2NOHBcuXKFO3fuiJ8tYXBWVFSgoaHB4sWLSU5O5vbt22zevFnc+6dOnYq6ujrNzc0YGRnx0Ucfic3PnTt3cHd354svviA5OZnp06f3qnm1tbWlvr5erOXT0tKIj48XxlUJ0kzCR5ZMhFtaWqisrERLSwsTExMUFBQwMDAQ2sFr165x8uRJvL29mTx5Mnp6evj5+fU4MEmCZoqKijh9+jRRUVGMHTsWf39/6urqOH/+vMCCaWhoUF9fLybXvf0MIyIi8Pf3B+ixLZD8PWfOnEFbW5uysjJWrVolMF1qamoYGRnh6OjI8uXLgW4coYeHh/AXODo6YmlpSVJSEi0tLSQnJwukorKyMjo6OtTV1YnDugSsb2RkRFJSEps3bxbbsIaGBl6+fNnr5vXFixekpKTQp08fPDw8hP5STk6OwsJCCgsLcXV1RU1NjZqaGhoaGnB1de3x/EtLSxOhJu7u7rS2tlJbWysGL1VVVWzfvp34+Hjxc969e4e3tzf9+vUjLi4OKysr8T5JfmZjYyOGhoaYmJj8I5kgdG+BMzIyCAwMxNvbW4TkQLesQVdXVxwes7KykJaWFgE/ktLS0hJTVkmPFRcXx71797C3t2fmzJmMHz+enJwcKioqGDNmDEOGDEFZWZlDhw4BkJSUxBdffEF+fj5Xr14VMk1/f38qKyvJy8sTgUf/rXrdvEpG6ceOHRNIIokbPz4+Xhg9JP+usbERS0tL+vTpw/v371m0aBFmZmZcv36dJ0+esGzZMiZPnkyfPn2Erufrr79mypQpXLlyhZKSEgoKCpCSkiIzM5P169dz9epVRo8ezcmTJ5GXl+fMmTP4+fnh4OAgLmZJozR+/HgRbPAhVVZWxvv371m6dCnTpk3j2LFjdHZ2smjRIvEwGzx4MJqamtTV1fUwcQFMmjSJjo4OjIyMiIyM5PTp0xQUFFBaWkpLSwvOzs4sXboUf39/FBQUkJaW/reTXnBwMKWlpbi4uCAtLc26devQ09OjubmZFStWCJj13wXmva26ujqR3qKjo4O1tbXQHklLSzN16lRsbGxYsmQJmzZt4sCBA8ybN09MRo8dO8aNGzfQ19envr6ekydPUlJSwh9//CFO4UOHDmX58uUkJiYSGhrKgAEDGDRoEDU1NT0Yq8XFxYSGhpKfn4+srCyBgYHiMPIhsOL/XaGhoWzevFmIv2VkZEhJSeHSpUu4u7uLNYzkZuPg4MDKlSuJjIxk7NixwoAUHBwsUFvOzs48ePBA4FC++OILWlpaGD16NOfOnSM/P5/ffvuNoUOHisa1uroaOzs77t27J5jAdnZ2DBs2rIeeR0ZGBl9fX/G5fkjV1tYKA1xOTg7ffPMN7u7u2NnZERsbi6amJlu2bBH6uYiICKZMmYKNjQ1v376lrKwMTU1NgoKCmDhxIhMmTKCmpkbozP7Tml9bWxsbGxvxgDUwMCA9PZ07d+7Q1NTUw1wE/7MWnzt3LhMnTuzBQ/2QMjEx4dy5c0hLS4tJcXFxMYWFhYJ1KCUlhbe3t9hIdHV18dVXX/H+/Xv++OMPvL29+fHHH4mOjmb58uVMmzYNS0tLEhMT2b17tzh0q6iokJycTFxcHCoqKsydO/ffwO6PHj3i559/Foifs2fP0tTUxPbt23tM3T+0MjMzOX36NM+ePRPTmnnz5rFnzx7U1dW5ffs29+7dw8nJiQULFoim9u8JdBIKCSCmfxoaGly8eJHbt28zf/58+vTpw5gxY1BUVKSwsJDW1lYMDQ2FJEgyAZaVlSUpKUmkvmlqavL5558TEhLCihUr8PX1FamKH1pxcXG4urry9OlTcnNz+fTTT5k+fTpSUlI97p0Sg+XNmzfZsWMHa9asYeXKlcydO5dHjx6xceNG0tLSsLCwoLi4GHV1dYYNG4axsTE3btzg3r17WFhYEBAQgK2tLXfu3BHNq7q6Ol5eXujr65Oenk5oaCjLli1DTU0NNzc33r17R3R0NF5eXly4cOE/ptf9X6WsrNyDdCNBHa5fv56HDx+ye/duFi5cKBq1zs5Opk6diqurK0lJSXz++eeoqKhw5cqVHo2JoqIimZmZ9OvXDykpKa5fv86uXbv49ttvxf314cOHFBUV4erqyrfffsvPP/9MRkYG06ZNE2zgxYsXExISgpqaGsnJydy8efO/agn/dzU3N/Ppp5+KrdTfS9K8HThwgOrqasG8lpSOjg7z5s0jMzOTHTt28OTJE+rq6ti/f3+Pe4W1tTU5OTncvHmTO3fuUFNTQ3t7O4sWLRIJTqmpqTg5OVFWVsa7d+9QV1dHX19fcGMlJstdu3aJ1MoPrZqaGrGFiouLQ0tLSzCDr1+/zqZNm/jmm29YtmwZCxcuJD8//9+2Sa2trWhoaFBTUyMOxdXV1dy9excZGRlevXpFUVER0P38jYuLA7qb2hMnTvDgwQP69u3LrVu3xBDh3LlzvHjxgsDAQKZPn/4fsZsfUtOnT2fw4ME9thuSsre3R1dXF09PTzIzM/n++++pr69nw4YN9O/fn+rqavbu3cvx48cxMTGhtbWV6OhoxowZww8//CC2B6tXr6a5uZkLFy70CAmytrZm2bJloqGF7u3Rnj17CA8Px9TUFC8vL7S1tTl//jzHjh2jsbFRHID+r+p18xoWFsapU6dITk7GwsICIyMjRo0ahbGxMffu3SM1NZXc3FzBgXN3d6eqqoqSkhJSUlIICAjAxMSEiIgIdu/eTWJiongoZWdnc+3aNYyNjcUarqSkhMjISBYsWEB5eTlXr14Fuqd8b9++RVZWloiICO7fv8/HH3/MuHHjMDY2Fjeu3sLfJWkuz549o7W1lVmzZqGlpUV8fDyPHj0SDzZHR0eOHj3KxYsXhZbMwMCAFStWiAlmYmIit2/fpn///sybN4/q6mq8vLzElOPv1dzczOPHj3n37h3jxo1DRkaGo0ePYmpqKkII6uvrcXNz4+HDh5SXl/PkyZMeaJ0PrefPn+Pj44OamhqxsbFkZ2fT0NCAmZkZtbW1lJeXCzegZJX/d67rlClTyMjIICkpieHDh6Oqqsrz588pLCxk7NixZGRkCB7m2rVrOXfuHKWlpTg6OjJx4kQsLS354Ycf+Ouvvxg+fDhWVlYEBQVRW1vLixcv0NDQYOjQoWRmZhIZGdnr19fZ2SkehgoKCly8eJGHDx/i6OjYY2rQ0dGBkpISc+bMYe7cueTn53PkyBF2796NhYUFenp6ohGNiIjg0qVLgiSQlpZGYWGhkMhoaWnRt29fISkZNWoUmpqaBAYGIi8vT1RUFMXFxSgrKwvpS1tbG8+fPxfJVb2pOXPmYGJiwtKlS4mJieHWrVuieUlKSsLV1RUHBwccHByoqqri/v373L59G2traxYsWEBjYyMxMTGMGjVKaKh///134uPj2bp1K2VlZfz1118MGDAAb29vwsLCqK2tZcSIERQVFXHt2jX09PSQlpbmzp07VFRUYGtry+PHjykvL8fLywsPDw/U1dVJT08nPDy8159jdXU1nZ2dHD16FEtLSwHul0CzJWYwDQ0Njh07hqqqqggNAbh//z6dnZ1ioj169GgsLCyIj48nMjJSmDLq6up4+/Yt+vr61NbWUl1dLUxNLS0tvHr1iuzsbC5duoS5uTmzZs1i5MiRQlbx7t07jIyMekwzPqQePHiAi4sL6urqIpVQcu9obW0VpjJJLCh0N9nXrl3jxYsXjBs3Dl9fX5SUlERTINGstra2cvv2ba5cuYKDgwOtra1ERkZSXl7OmDFjxGc3aNAgzM3NKSgoEBNZOzs7qqqq0NTUxNDQUOiKBwwY0OvmVfIAkrzXtra2lJWV8fjxYzF5/Xu5u7tjaGjIvXv3GDBgABYWFly4cEHc9z08PMRksb6+nsrKSlpaWrhw4QL19fWMHz+eUaNGMX36dPHgLS8v5969eygqKiInJ0dxcTFxcXGYm5uzefNmcnNzaW5uFlPh3tSIESNE0MGuXbt49+4dn376Kaamppibm9O3b98eDYcEMWdqakq/fv3o27cvMTExxMTEiKYUuqVdAwYMQFtbm8jISNauXcubN2+4ceOG+HfS0tLY2Njg4eGBh4cHw4YNIzAwUBBoZs2axbRp08RUOCsri2PHjv3H58//qz7++GPGjh1La2sr8fHxGBkZYWBgQGdnJwEBARQVFXHz5k0SExM5e/YskydPprm5mZs3b1JTU4Ovry9OTk4cPnyY2NhYFBUViYiIQEVFherqaiorK5GTkyM9PZ2oqCiSkpJQVFQkJCSEAQMGUFBQwKFDh6ipqcHOzg5VVVVycnJITk4mICCAzZs3o6qqKgJufHx8ehUJD4hr4scffxQH/djYWJKTkzl27JjQKEP3QUti2qqrqyMtLY2oqChu3LgheNjl5eWYmZnh6urKu3fvePHiBc7OzuzYsYOUlBTq6+uBbo17bW0tHR0dzJgxg5aWFlauXMn8+fNFXG1MTAzy8vLC1F5UVCQa3w8tc3NzIQeSYLPMzMxEGqSSkhKKior06dMHLy8vLl++zJkzZzAyMkJJSUm8t76+vtTU1HD9+nWMjIwYP348//rXv6isrOTq1au0tbVRVVUl0GwSioqk8e7o6BBmrJCQENEvmJqaCqlaYWHhB8mwet28RkVFERERwZgxYzh79iz9+vWjqamJ0tJSrK2tyc3NpaysjDNnzhAUFCRuvj/88ANlZWWsXLkSBQUF1q1bR0pKCvb29rx+/ZqcnByGDRtGeXk5n332WY/TbHFxMbm5uWRmZqKhoYGcnBwmJib861//QkVFBSsrK+rq6vjtt98oLy9n7Nix/wam/9DS1dVFV1eXFStWiNg+Nzc3li9fLswgQ4YMQU5Ojrt374rJjeT/t0+fPqKhfPPmDTU1NZibm7N06VKxas3IyEBPT08YSiTRmzdv3iQ8PJwTJ05gYmLC4sWLkZeXx9vbG01NTVRVVVm3bh2DBg1iw4YNlJSU9GrVLKmTJ0/i5eWFuro6bm5uPHnyhJiYGOLi4ujTpw/p6ens3LlTGMT+jo+SlZXlq6++IiEhQaSXtba28v79e168eMG5c+coLCzkwoULrFmzhk2bNjF48GAyMzMxNTVFTk6O8ePHc/nyZV6/fk1YWBh//vknGzdu5MyZMzx69Ij6+nrKy8u5ffs2aWlpvX6geHh4iMlUYWEhJ0+eRFZWlqNHj9KnTx8xudLW1sbe3l6sKCTTxps3b4rp89y5c+ns7OTgwYNkZGRw5MgRPD09aW9vF9pm6L45zJ8/n02bNvHxxx/z+++/i4eEZKp67do13r9/L/StEkxXTk7OvwVQ/LeSPBDT09NJSEggMTGRYcOGcfv2bTQ1NXuYDdatW4e2tjY//vgjgYGBTJkyhdTUVGpqasQqsKOjg8OHDyMrK4ucnBz37t1j3bp17NmzB29vb3bt2kVHRwezZ88mJiaGNWvW4Ofnx7Bhw4iIiCAvLw8vLy+R062trY27uzs2NjZcunSJCxcu9Lq56+joYNy4cezfv59ffvmFESNGsGzZMhE5qaamxsCBAykqKuLIkSOEhoaK91ZRUZHnz5+LqaQEufP69Wu+++47Xrx4gb6+PlZWVuLwpqioiI6OjkD7yMvLi5VsaGgo9vb2bNiwgaFDh6KsrMzSpUtJS0sjPDwcQ0NDtm/f3uN+8N8qMzOTffv2oaSkxL/+9S+io6PR09MT68qxY8cybtw4urq6eujRLl68yIULF3BycsLX1xd7e3siIyNpbm7G09MTOTk5VqxYwYULF4BusL+ioiL5+fnU1dVRW1tLbm4u5eXleHh44OjoiJmZGZWVlZiYmDBx4kQhZZCTk6O9vZ23b9/+I9zZyJEjef/+PR9//LGgxzx79ozr16/3MA/l5+djZGTEgAEDRHb64cOHaW5u7uGqTk1Nxd3dHXV1dR48eICysjLDhw/HxcWFFy9ecOPGDZqbm/n4449xc3MjJiaGFy9e8OzZMyorK3FxccHDwwNNTU3U1dUZOXKk2O788ssvnDx5slfSCMm0dNWqVVy5coUjR44IWoyHhwd//vlnj5TH4uJidu/ejaysLDt27ODPP//kwIED3L9/n+bmZvHs0NTUZO7cuSQmJvL999+LiV1iYiKXL18mMDBQbN4kaXNKSkqMGTOGx48f89lnnwl0naQqKip4+/atYIx/aEnWxy9evOD9+/fY2tpSVVXFo0eP0NXV5bfffqO6uprt27ezY8cOKisrWbBgAbGxsZw/f55Tp04xa9YsrK2tcXR0JC0tjbS0NB4+fCgmpNbW1mhpaQlGr7u7OytXrsTQ0JDY2FhycnLQ1dXF2NhYyN4kchgfHx9BWFBRUelxrfSm+vfvj6GhIU+fPqW0tJQjR45w+vRpBg4cyMmTJzEzMyM3N1eYViXvy/379zl48CDv3r3r8fPmzZtHUFCQCCQaNmxYjwjU8vJyEQktCShJSEggODhYGKYmTZokWNLV1dUoKChw4MABbty40SspXVNTE21tbairq6OrqyuaSw0NDWRlZSkoKCA5OVlshu3s7Hjy5Anx8fEEBQWxceNGMRAKCwvjxIkTrFu3jqFDh+Lv78/t27fZsGED9vb2DB06lPj4eDIzMwXpR3KITE9P5/r16wwZMoQff/wRc3Nz9PX1kZWVpb29nSFDhqCuri6Qq/+v6nXz+umnn+Ls7Iybm5u4yBUUFFBWVsbExIR+/fqRmJjI9evXiYiIYNWqVUJk/Ntvv1FUVMSgQYNQUVFh5MiRvHnzhvT0dBobGwkJCeHVq1c8fPgQLS0tvv/+e96+fUtRURHXr1/nypUrqKqqsnXrVnx8fNi+fTsnT56ksbGR77//Hjk5ObZv387t27fFjfuvv/7q7UsEugXLLS0tnDhxgnfv3hEfHw90X8j9+/dHWlpamGPMzMwwNTWlsrKSa9euiSnBo0ePAES0mr6+PhEREZw6dYpx48bx+eefC9die3u7cC9XVFRQWVkpYlslK17Jl1dOTo5Ro0YJ0Xdvp5MSqP2kSZPQ0dFBU1OTnJwcGhsbGTBgALNnzxanQUnjmpSUhJGRER0dHezbt0+sFaB7mnD79m2gW0Iyc+ZMjIyMUFNTIzIykry8PCoqKpCSkkJfX5+3b9+ira2Ni4uL0K0pKChgZGREc3OzSAqyt7dn7dq12NjYiMi6DymJAUJyQ3VxcWHhwoUCBfL3lask3rWsrIyuri709PQoLy/nxo0bVFdX8/79e1RVVdHS0sLc3Jw7d+6gr6+Pubk5eXl5PHv2DHd3dzo7O8nIyKC9vR1lZWXCwsJ4/fo1TU1NjBo1iokTJ7Js2TIiIyM5d+4c7u7uYl3/7NkzYYD40Hr+/DkJCQlinVRYWCiMAJKY5bCwMDo7O5kwYQLW1ta8e/eOgwcPkpubK9zrGhoaJCcn8+WXX/L69Ws0NTXJyMjAzMyMtWvXMm3aNFRVVRkyZAgvX74UmsOZM2ciJSXF8+fPycvLQ1dXl8GDBwtsj7S0NOXl5eKGJHHP9qYGDhyIhYWFANw7OTlha2uLtbU1+vr6ZGVlcf78eXR1dfn4448pKysjPDwcRUVF1qxZg6OjI/7+/qxfvx43Nzc6OjqQkpJi7NixDBgwAGNjY0xNTQWlICcnh8TERLS0tMR6TXJNysrKMm3aNPz8/Dh+/DjR0dF88skn4pqfOnUqs2bN6lXzamdnR3x8PAMHDsTIyIjg4GDev39PRUUFxsbGAl+WkpLCqlWrKCgo4LvvvuPZs2dMnDixh4lxypQpJCUlCZ62paWleCBUVFQQGBjIoEGDyMzMJDo6msjISIEzg259cnl5OSUlJZiYmKCoqMjx48dpbGxk0aJFPUyevan4+Hi0tbV7aAPt7OxYvXq1OGBJsFw5OTlYW1sLSkdubi4KCgq4urqioKDAyZMnuXjxInFxcRgaGqKmpkZhYSE3b95kyZIlTJw4kT///JPk5GRev35Nc3MzWVlZ9OvXj0GDBnHy5EmSkpI4fvw4EyZMQF5enrt376Kjo8OgQYMoLy8Xn8eHlmTL1NXVxffff9+DVy0Juvh7UI6dnR1z5szB1NRU+D1kZWV5+fKl0MRL4n9tbW25d+8e9+/fZ/78+VhbW7N7924OHz7cgxMdFhaGlZUVXl5eaGpqcvjwYRYtWiR+Z3NzMwoKCgwbNgxNTU2cnZ17RTeRbAUVFRUZO3YsUlJShIaGsmvXLlpaWli7di1Tp07l22+/RVpaGldXV6ytrfn666/R1dUVwwdzc3Nmz57NL7/8QlhYmDiUGBoaMm7cOK5du0Z1dTW+vr58/PHHxMTE0NHRgaenJ3v37iU6Opr79+9jZ2eHp6dnj6HG3yUXf28QP7QkvYauri5TpkwhPDyclpYW1q1bJzTSgOCtS2g9ampqyMvL069fP8aPHy8Cftra2nBychKm7fT0dK5evSqQkvX19eTl5ZGTkyOkUNnZ2cjIyIjDmLKyMnZ2duzYsYO4uDiUlJTQ1dVl6tSpODk59eowGRERQVxcHAsWLMDExARnZ2dxUHB2dqatrY1z585haGjIokWLGDVqFNra2uK7K/mfkr5AcqjYvXu3GNqFhISgp6cnTODp6emcOHGCtLQ0YbKUcJ7r6+txd3cX6YXQLflydHTEw8NDhCb9v6rXzevMmTOZOXMmHR0dpKWloaqqKpKj5OXlUVVVxd3dnezsbG7dukVkZCQGBgZCnHzhwgWysrLw9vamurpaTA4DAwMZOHAgbW1tuLu7M3nyZHEK/e6778SJbsCAAdjY2GBoaIi7uzsnT56kuLhYmEaOHz9OXl4eqampdHR08OTJk17rJru6uggODkZRUZHff/+dZ8+e0a9fP7Zv387o0aNpb2+npKSEOXPm9FjBVFVV8eOPP7Jv3z6am5sxNzfHx8eH5ORktm3bxhdffEFeXh4vXrzo4fpMT0+nqqqKYcOG4evrS3p6OpGRkWKdLlkpKysrC53T6NGjxSSrt6s8e3t7/vjjD+Tk5Bg3bhx1dXWoq6vj7++PtrY2SkpKIkYwLS2Nv/76i7q6OoEJe/r0KdnZ2cyZMwcjIyNUVFTw9vYWWe9eXl54eXnx+PFj/vjjD9LS0hgyZAi2trbcv3+fBw8eYGtry7Jly8RDqLKykrKyMpycnMSEdty4ceI70JvmNTU1FQ8PDxYsWMDjx4+5desWgYGBQHfTJ9FtamtrC4TO7t27MTExwdbWFh0dHd68eUNkZCSRkZGMGDGCCRMmoKenJ9JOXF1defjwIZWVlWzevBlnZ2fq6+sZPny4gGZLNKy5ubn4+fmho6ODvb09Z8+e5f79++ImHxwc3GukmwRJMnfuXFxdXTl16hQ1NTUEBQUB3c7Z1tZWAXx+/vy5uKnHxcXh5uYmqAKRkZFirT9w4EBhRliyZIkwRa1cuZLKykpKSkpoaGhg1KhRpKenU11dzZgxYwgICGDmzJmYmZlRU1NDdnY2L1++FHGsHh4evW5eJd/7qVOnMnPmzB5NQFdXFwUFBdy/f59BgwaxaNEi5OTkhJZ66NChPTRT586dIysriylTpgjEn6QkMbMPHz6ksLBQYKf69u2Lqanpv2l1nz9/ztGjR4mNjcXd3R1jY2MRqNKbsrGxYdWqVYwcOVJcb5mZmbx48YKAgADk5OT4888/6ejoYOvWrSQlJXH27Fn8/PxYtWoV7969Y/fu3QwbNgx3d3eGDBnC2bNnRba4iYkJGzZsEOgtAwMD4uPjefLkCU1NTYK6ISkJQcLExISSkhLOnDlDXV0dw4cPx87Ojrdv3/bq9QFER0cLQ2NKSgpubm54enqKsIOOjg6ioqK4ePEiERERKCoqsmDBAgYNGoSzszMuLi7o6urS2NjI3Llz0dXV5ezZs5SWljJt2jSioqKIj4/H3t6e+fPn4+TkRHh4OKqqqjx8+JD8/HxmzJgh3Oy5ubkkJSWRmJiIrKwsx44dEySZoKAgITn50Prhhx/o6Ojgq6++EnifhoYGdHR0uHnzJhEREcycOVOQZDw9PQkMDERBQYHCwkIOHjzI6dOnqa6uxtramlu3blFVVYWqqirGxsZER0fT1dXFsGHDGDFiBJGRkdTW1pKQkEBSUhLr16+ntbWVJ0+ecPToUTw9Pfn666/Jzc0VrnCJ5OvvRp3eNK+HDh3i+vXrTJkyBT8/P968ecODBw+oqKigqamJS5cuIS8vz4QJE/jxxx+BbtSSo6Mj+/btEz+nrq6Oa9euich3yUDmu+++IyQkBGNjY9avX4+LiwuqqqpERESQmJhISEgITk5OaGhosH//fqqrq/Hx8UFaWlrIaxQVFZGSkqKrq6vHpPtD68yZM7x584Zdu3YxefJk4uLiqKqqYu7cucLAV15eTk1NDR0dHcjIyAiiQGVlJba2tvj6+tK/f///eNCrr68nNTWVpKQkSktLqa6uRllZGS0tLcrKyoQMwNLSkk8++YRhw4YJPKiysjL+/v68f/+e/Px8xowZw9y5c3uFypJ4SO7fv8+ECRPQ0tJCS0uLpKQknJyccHd358GDB0RFReHo6Mjw4cPFhlFSEu+KJCTj/fv3ZGRkANC3b1++/vprAGFETE5O5vLly0hLSzN27FhKS0upq6sTfNeKigpiYmLo06cPioqKNDQ0iO/q/w6y+E/V6+b17du3mJubC8dZfHw8xsbGInKyra0NWVlZpk+fTmBgIO/evWPfvn3s2rVLrLPMzMzYv38/mZmZQDfUfvHixeTl5ZGQkICdnR3q6urExcURGRnJ3r17qa2tRVZWFg8PDx4/fszOnTt58uSJOElK8CA7d+6koqKC7du3U15ejr+//7+N8/9bSUlJcevWLR49esT06dNZv349mpqaQoD8zTffkJyczIULF1BWViYtLY0ff/wRbW1t5s2bh66uLmvWrGHMmDEsW7aMTz75hCtXrrB06VKCgoKIiYkROiTJ6kBOTo4xY8agoaHBo0ePuH37tjgFSkpeXh4rKyusra17rZH8e/Xt25eIiAjq6upob2+nqKgIJycnZsyYwa1bt9i4cSPff/89Dg4O7N27l0OHDmFmZkZgYCDBwcFcvXqV3bt3s2vXLmbPns3EiROJiopiz549/Prrr0hJSYkghWfPnlFaWiqMGtra2jx69Ii2tjY8PDxwc3MjKyuLyMhINDU1mTdvXo+Yzfr6+l4xXqFbJx0QECC4j5KbT0JCAlu3bkVJSUlkZZ8+fZrZs2cTHh5OYWEh48aNo2/fvoSFhQnt2KtXr4QWT9K0SlJJ1NXVxSpTQia4du2akIJIJsmSNBZ9fX2+/PJLEhMTiYyMRE5OTmiNe1Nz5swhNTWV7OxsHjx4QGNjI15eXtTW1hIXF0dpaalIvlu6dClXrlwR0P6RI0fi6uoqphUDBgxg+fLlaGtrM2vWLPr06cPLly/Zv38/Dx48wM/Pj19++QVXV1dcXV05cOAAf/zxB9bW1sybN48BAwaI9zgxMZH4+HgUFBTw9vZGS0uL27dvEx4e3ms3fl1dHWpqav8RXdPY2Chc91JSUjx48ICysjJWrFhBRUWFaMrq6+sJCQnh1KlTqKmpYW9v3wM6Dt0asNevX5OVlYWsrCze3t5cvnyZ48ePs2fPnh5RvwALFiygra2NJ0+e0Nrayvr167G1tSU5OblXr6+yspKYmBgR8wvd94Pz58+zdu1aHBwcCAoKYu7cuUKjunDhQvr3709jYyMXL17k/PnzuLi4cPHiRezt7YmJieHdu3cEBwfj7+/PwIEDCQoKwsDAgDt37nD37l20tLTQ1tYW7l5JGRkZCbmVoaEhP/74I5mZmcTGxrJv3z4ePnzYq1Qf6F7FSnSA2tra//ZZdnV1UVxcLN675uZmGhsbCQ8Pp7q6GgcHBwoLC0lOTmbZsmWEhITQ3t5OUlISU6ZMYf78+Tx48EC8hyNHjsTX15eOjg7k5OS4ceMGKSkpVFRU8Pr1axQVFfH29ub58+dERkaioqJCv3796Orqws/Pj19//VUQUj6ksrOz2bhxo2jGjx49ipycHG5ubty4cYMLFy7Qv39/0bwqKyuL60BaWppHjx6Jz8DPzw9HR0d+//33f5ODlZeXY2RkxJYtWzh+/DiLFy8mJiYGRUVFtmzZAiBSm1asWCEa/8WLF/eAz/+TunTpEq9fv6ayspKXL1/S1taGiooKX3/9NT4+Prx7947z58/T0NDArFmzKCgoYOzYsUycOFEkXeXl5bFx40ZOnDiBtLS0MJ5JQnwAlixZgqamJr/88gtFRUVMmTKF7OxsQkJC+PjjjxkxYoTgsf59utrW1oaCggIyMjI0NDT8o9TJnTt38v79exwdHXFycuLo0aMcO3aMlStXsmDBAiZOnIienh7e3t589tln9O/fn+LiYi5evCgOQJmZmVy5cgVFRUWRGNfe3s758+fR0NDg008/5fXr19y7dw9zc3P8/Pyora1l//79NDQ0sHjxYnR0dPjtt9/IyMjg008/5ebNm+Tk5LBjxw7U1dU5fvw4qqqqfPnll716ff7+/tjb27Nw4UJ+//13rl69iq6uLrt27aKrq4vVq1ezYMECqqure/hCJE1ka2srcXFxnD17lry8POTl5cUzy87ODmNjY+Li4sQ2NSIigt9++43Ozk6mTJnC77//Lsg/EkpOQ0MDiYmJgnXs6uqKn58fysrKHzQI6HXzGhoairGxMePHj8fe3l7Awdva2pCXl0dOTk6swgEBg29qamLw4MHs2LED6MZlZGZmMn36dP766y9UVFT49ttv2bp1K7q6uri4uHD9+nUxkRg5ciTOzs7k5uaKDt7Q0JChQ4fi6+vLgwcPSE9Pp6WlhYSEBE6fPo2GhgY///wzBw8e7O3LpLS0lI6ODqZMmSKcf21tbYSFhXHmzBlKS0v566+/WLp0KY2NjZw4cQLo1rlIBPWSvPXly5fz8uVLDA0NqaqqwtLSUugrS0tLhRZFEvsoCQ3Q0dEhJSUFWVlZ1NTU6OrqQlFRESUlJRISEjAwMPg32sGHVGdnJ5999hmDBg1CVlYWJycnysvLuX//PqGhodTU1FBWVoa0tLTg5HZ1dYkvq56eHh999BG7d+/mwoULGBgYCDh9YmIip06dQlNTk+bmZnx8fISL8+7duyQkJCArKyvyyOXk5NDU1MTGxgY7Oztx4RQVFZGenk5SUlKPiduH1OTJk0lISEBbW5vg4GDy8vIoKysjPT0dFRUVmpqahIZMT0+PnTt3sm3bNlpbW8Xp2dnZGScnJ0JDQ4HuCVG/fv3Ef6KiooQL3t3dXVy0+fn55ObmMnToUEJCQoRMRrJ2qq+vF6vvK1euiNVob2+4hoaGGBoaIiUlxb179/D398fPz4+mpiY6OzuxsbGhpaWFx48f8+zZM6D70BIUFMSMGTN6BDkoKyuzZ8+eHj9fEqIA3Wi1yMhILCws6Ojo4NWrV8jKyjJ58mQmTZpERUWFmEacO3eOK1euEBISIlbvbW1tlJeXC37jh1Z2drYAgpeUlBARESF4lba2tgL6XVFRwddff01HRwcbNmxAU1OT1tZWGhsbefbsmWgEHBwcCA8PF2t0yd8nCTkwNTXF2dmZ8ePHi+YmKSkJHx8fqqqqaGhowM7ODj8/PywtLTl//rzQ2N26dUtIZz60Ghsb+eijj+jfv794LX5+fgQGBoqptsTsAt3XRHV1tUAeaWlp4erqKqblaWlp4nOWlZUlJSWF9PT0Hmab4uJiZs+ezbRp07h48SJRUVFs376dOXPmiIlRZmYmLS0teHh44OLiwqZNm7h582avWcTQTWaRxJtKPv+qqiq6urrQ1tamq6uLlpYWTExMcHBwICQkBAsLC5YtW0ZcXBzXr19HRUVFGONUVFSYOHEivr6++Pr60tXVRV1dnTg8SQYoGhoaTJo0icbGRi5dukRWVpb4myoqKsT0zsXFBQMDA/GQDgoK6lXz6unpKZrRhoYGtLW1BSLJwsKCoUOHCm1vV1cX0tLSAlsUHR2NnZ0dz58/p6urCw0NDebNmyeS8HR0dMjPz6eiokJsD5WVlQXiDLqbfUkoiLGxMevWrRPYNW1t7R7PYglLu7eaV0kQxqNHjzhx4gSDBw/m4MGDoulUVlbG0NCQpKQkurq6ePr0aQ/DTWNjI/v27RPPSFtbW6ZOnSqoBxK8meRgvXPnTq5du4ahoSGdnZ2kpaVx584drK2t8fb2FqZGCYdZEkufl5eHjIzMP3Lk/2/js729PXPnzsXZ2Zl79+5x9epVxowZw8CBA2lqakJDQ4PKykoeP35McXExlpaWaGhokJiYSGJiIkeOHCExMRErKyuuXLmCjY0Nrq6ueHp6iqhU6JadNDc3Y2hoyIwZM1BRUWHfvn1ER0fTp08fDh06RFVVFQsXLsTHx0dsbv/JtWhoaIiNjQ3379/n7t27jB49Gi8vL27dusXevXuZPHkyQ4cORUFBQdyPpKSkBNEkNjZWaJQ1NDSEvGfcuHG0tLQQHx+PtLQ07u7u6OnpYW5uTkZGBioqKlRWVorepaurS5hB9fX1yc7O5vr16zQ2NorP4UNwbr1uXisrK9mxYwfFxcUsW7YMW1tbVFVVe1wk0J0G8euvv+Lm5sbKlStRVFTkyZMnIvLxjz/+YMKECZiYmIibU0pKCkCPhyGAlZUV+/fv5/nz55w7d45FixaxefNm6uvrKS4uxtTUlDlz5hAfH8/27du5ePEi0N3w9haOLvm9n3zyCfX19T10NQ8ePODChQsiIUuiT+vfvz/BwcFcu3aNsLAwISRPTU0lNjaWcePGMXToUGpra/nrr7+4f/++uNk6OzuLPGANDQ1aWlooKiqira0NPT09YmNj2bt3L9LS0vTt2xcdHR1UVFSwsbEhKCjoHzWvVVVVLFu2jM7OTgoKCujbty9nzpxh8eLF2NracuDAAby8vMjKysLPz4+cnBwUFRVFwx0bG4ucnBz79+9n06ZNjB07ll27drFgwQKxVpdA4MeMGUNOTg4HDx7k6NGjKCoq4ujoyODBg0W4ga6u7r9F+t25c4eNGzcycOBADhw40KupVkBAgAB6V1dXc/ToUZKSkujXrx9r164VZh+JccvNzY2DBw8K85ycnByOjo5iHRsREdFjDd2/f3+6urooLCxESUkJKysrSkpK+OGHH7h9+zY2NjYEBwfj6+tLY2OjePCUl5eTn5+Pk5MTysrKBAUF0draKljJvam9e/eyfPlyhg0bhpmZmWA5tra2YmdnR1dXF6tWrWL37t1Ad6a9ra0t6enpJCcn4+npSXR0NKtWraJv377s2rVLrJbgf6D7K1euZM2aNWzfvl2gY0JCQrh58yaGhoaUlJRw/vx5/P396devH5WVleTm5vY4vY8ePZoxY8awcePGXr1GyUMJuhsDCbD+/PnzPZqGuro6kZBWVlaGh4eHSOWzsbHh0KFDuLu7U1ZWxmeffca9e/fo16+faF7Nzc2ZNm0a0tLSNDY2YmBgwJYtW4RZ6MqVK8jIyODs7CwenGZmZnz11VckJydz6NAhzp49i5qaWq/wdQ4ODsyaNYuSkhJevnwpjEQbN25k/PjxZGRkUFVVJZLB3r9/z9mzZ0WcYr9+/ZCRkUFPT49Xr15x+/Zt/Pz8REpUZGQk+fn5PH36FF9fX9zc3DA1NcXPzw9NTU2h09u3bx9+fn6Ym5vT2dnJqVOnKCsrY8qUKcjKylJbW8snn3zC7Nmz2blzZ68+Q0VFRZydncUBVEIukDycpKSkMDc3Jzg4GGdnZ2F2cnZ2Ji4uDnl5ebZs2cKwYcOQkpIiNjYWAwMDwfFMSEggNzdXNPjXrl0jNjYWT09PtLS06OzsFCB9ySYkJSWFadOmsXjxYqB7WPBPUpmgW2Zz/vx5mpqaGDlyJDNmzKC0tBR5eXnxnauqquLBgwfCSPn+/Xt+/PFHnj59yooVK9i6dSuHDh2itrYWRUVFli5dypQpU9DU1GT9+vX8/vvvQjP8/fffk5CQwFdffSW4t+Hh4Xz88cd88skneHt7o6SkhIqKCkpKSqiqqor7nKysLDIyMuLg/qE1evRo1q5dy9q1a8nJyWHSpEmicX38+DFJSUnMnz+f0tJSvvzyS4H2cnR0JDc3l1WrVgkfiIaGhtgcSCo8PJz169dz7tw55syZw+DBg0lMTOTQoUOMGTOGDRs2CGZ8VVWV8AckJycjJSUlpqBXr17F3t5ehMr8f1vm5uasW7eObdu2MXPmTK5cuUJAQADv378nJycHY2NjysrKkJWVZcOGDSxatIjr16+zcuVK0f/Y2dkJGVVrayvz588X9KC3b99y6tQpEZizfft2dHV1GTVqFDo6OjQ0NIhDn4qKChoaGkyZMoWUlBRCQ0N70Cn+W1VUVFBSUsK6desICQkhKiqKzMxMPv/8c8zMzNiwYQOvXr1ixowZAjcnub/W1tYSHh4uBiweHh4sXLhQDAAkE++GhgZxf3RxceHLL7+koqKC69evEx8fj66uLoqKijg5OTF06FACAwNRU1NjxowZJCQkUF1d3SviR6+bV1lZWQoLC9m3bx9WVlaMGzdONFBZWVmUlJQIQK+enh7u7u7o6+vj4eHBpk2bGDBgAH/99Rdz5szB0dGRn376iV27dtGvXz8CAgLw9/enpqaG4uJiWltbWbNmDba2tty6dYvLly9jbW3N/PnzkZKSQk1NTbijoduhaG1tTZ8+ffD398fV1VWYpj60ampq0NDQEJoQQGBjLC0tCQwMRF1dXTTttbW1IiVKktNtYmLCunXrcHd3x8LCgnv37lFYWIilpSW5ubkkJydTV1cnfqfEhSv5/ZmZmTQ0NHD//n2MjIzQ1NSkb9++dHZ28vjxY/r27cvs2bOxsLAQburelIaGBjExMWRlZZGbm4u2traIHVRWVhZTZ1tbW7Hi/vt6S/K+S4IAJDgPCfd36tSpXLx4kYyMDLKyskhKSgK6v/T9+/fHyckJLy8v8ffk5eWJKFFbW1sMDAyIjY3l3bt3yMrK9pARfEjt2LEDT09P5OXlyczM5P379zg5OeHj4yPWe5JqbW39jzGdTU1NpKenIyMjI8DOkurs7KS9vb3HROzw4cOEh4eLNaTk9K+srExCQgLHjx8XPFctLS3MzMxQVlYW/7G3t+/VZ/nDDz/w8uVLfvnlF4GD6+zsFAfBP//8k8OHDwMI08Ddu3dpamrC0dGRJ0+ecPjwYdLT04mJiaGhoQEbGxsmTJggrkVJHOCpU6eEXnXAgAFs3LgRAwMDoYt0cHAQv0NdXR1vb28xaS4vLxc6p96Wnp6emFrp6uoyb948QkND+e6775g7dy6TJ08Wcc7ffvstJSUlVFdXc//+fTw8POjTpw+2trbi/ZHouSsqKmhra6OiooLDhw9jZmZGQEAAfn5+3Llzh/j4eJFcZWBgQGlpKbq6ulhbWyMjIyNywaWkpNDR0aGxsVGwVCUmiA8pNzc39PT00NDQ4Pbt21y8eBFdXV0MDQ0xMzNDT0+P3NxciouL0dXVJSgoSExdGxsbxQH4+PHjbN26FTMzM3Fwz87ORk9Pj6+++or29naOHDmCqqoq2trahIeH4+vrS11dHb6+vsjLy+Po6EhycjKbN2+mrq5ORK6+efMGVVXVHvHDvS1ZWVnRSHt7e4s1dkdHRw+u8+XLl3n06BE+Pj5CX6mhocHUqVPFQ/Hly5fU1NQIaL2NjQ3a2trExMRw7Ngxzp07h4+PD4MGDSIpKYm7d+/i5eXFiBEjUFJSoqqqio6ODoyNjUlISMDJyQkdHR2ampqoq6vrtW5ZSkoKR0dHcnJyuHXrFo6OjkISBt2c0/T0dCorK3tkwKuqqvL+/Xtu375NcHAwW7ZswdLSUhygJdePubk57e3t7Nq1SzQtbW1t1NXVsWHDBjw9Pbly5QovX75k/PjxojH639XY2Ciai95KzlavXo2Wlhby8vJoaGhgZWVFU1MTO3bs4OXLl3z++efY2NhgY2MjJDUSaY6GhgapqalA971DV1eXzMxMfv/9d6Kjo6mrqxNov4qKCk6fPi2+68rKysydO5fAwEDq6upEqqDkPTx+/DgvX75k8eLFgoebmJjY6xAG6G7uCgoKiIyM5PXr16iqqjJ+/HgWL16MhoYGr1+/FvHEf9eoSig6kqTECRMmICcnJybmEgO6uro6dnZ2Pe6D2dnZKCsrs3DhQmpra9m5cyfv3r1j4MCBbNu2DWdnZ/z9/cnPzxffndmzZwtZSW+a14aGBtTU1AStwdbWVjCV5eTkWLhwIe/fv0dJSUlsbcrKyvDy8qKzs1MECRkaGrJixQrmzp1LXV0dr1+/xsjISAwhJe9lamoqN2/e5O3bt2LjoKmpKVBcdnZ2IigpOTkZKysrqqqqOHLkCC4uLh+EOO1185qZmYmsrCxZWVn89ttvGBoaioagvLyc9+/fC62SRMAriUeF7hXioUOHePfuHdnZ2WKV8ObNG44fPy4egsOHDycnJ4cbN26gra2Nv78/WVlZrFixgpaWFjo7O5GSkhK58Z2dnbS1tfHjjz8K0fjTp095+vRpr16fmpoaMjIytLW10d7e3mPi+HdupuS/O3v2LLNnz6arqwt/f39GjhyJg4MDkydPBrqb0UOHDlFWVsYPP/yAl5cXYWFhPXS42dnZaGpqoqOjg46ODp6eniIXecCAAXzyySdYW1sTEREhmgw9PT1aW1uFbrg3paysTGhoKJ2dnTQ0NBAfH8/EiRM5f/48r1694vLly6ioqBAQEMDbt2+prq5GSkqKhoYGoLvZbmhoEO78kJAQgXrq6OigpqaGvn37kpycLFAxEyZM4MyZMz2+4JKqqKjg3LlzKCoqinVCnz59cHR0/I8syP9WmzZtorm5ma6uLhQUFNiwYYO4CRUXF1NeXo6qqirW1tbIy8uTm5tLSkqK0DRBN13h2LFjGBkZMWfOnB7otZKSErKysujfvz8KCgr89ttvnDhxAkNDQyZNmkRQUFCP0+Pz58/Zv38//fr1Y8KECeIGJkkSkaTr9KZ5bW5u5uzZs7i4uLBu3Trgf3Rg+/btY82aNUC3wXL06NHcunVLTCpKSko4e/Ys6enpwtX85s0b8vLyUFdXFw2Bra0tYWFhXL16FQ0NDZYvX873338vDHYS6sTfNaGTJk1ixIgR2NjY0NHRQXV1NW/evBEr7d6Unp4eXV1dYtry9ddf4+rqyowZM3j//j3u7u44ODhgZGSEsbEx1dXVREZGcvHiRW7dusXSpUtxd3ensLAQc3Nzampq0NXVxdXVlby8PK5cucLu3bsJDg6mb9++1NTU8PLlS4qLi5GRkWH9+vWoqamJibOklJWVRTOlrKzMl19+iba2Njo6Or0yUUhCAqB7kvvy5UsePnyIrq6uAJ7PmjVLTLlsbGxYt24djx8/FtfPkydPWLduHcXFxQwbNoyKigpqampISEhg0qRJuLu7c/36dVavXk1GRgZKSkq4urpy/fp1oXW2sLCgrKyMXbt28ezZM1asWMHSpUuprKyktbWVzs5Oqqur/zF+ELq1oNeuXeOPP/4QzatkayYnJ4eenh5PnjwhJSWF2tpavvzyS8FYrquro7OzEw0NDby9vXnw4AE3btxg2LBhGBkZ0dTUxLVr14TZysPDg6CgIK5evYq8vDxjx45l1qxZJCUlYWpqioODAydOnODAgQN89tlneHp6ioant81rcnIymzZtIi4ujkOHDhEVFcWkSZPo06cPcnJywrhrZWUlvjP6+voEBQWJ51N1dTWbN29myJAh4vo0MDBASkoKCwsLNDU1iYqK4uXLl6ipqdHW1sbWrVvZsmULEydOJD4+nl9//ZX6+nqMjIzo06ePeD2SZlhZWRlFRcV/i1D/kJIc7CXpmSUlJZw7d47z588zatQoseqtqKjgk08+QVZWVrjLU1NTCQ4OJiMjQwQNJScnExsbK4zG/v7+LFiwgOjoaI4dO4a8vDwzZsxg1qxZDBo0iPb2drq6ukRqoCRhTzI0gW6976hRo7h9+za//fZbr7+rWlpaZGdnExMTw6lTp4BuzOKRI0dYvXq1+HdlZWXU19eTlpYmhjIaGhpiGPXw4UO6urpYsmQJ0I0WrampwcHBQUggJYdPiX/FwsKCrq4ucnNz2bNnD69eveLZs2cMGDCAYcOG0dXVJXTjsrKyDBs2TPzuDy3JwbO0tBQDAwPk5eVpbW3l22+/ZfLkyZw9e7bHv09PTyc+Pp6bN29SXV0taEuKiooYGRnR2trKsWPHSEtLEwbYpqYm8vPzhXTwxo0bQPdQURKFbmVlJUzejY2N3Lx5k/z8fMGPvXTpEpmZmT2oHf9X9bp5jYyMpL29HT09PbGaLS0tFQ3Y/8aM1NXVCc3RZ599xpgxY4iOjmbTpk04OTnxyy+/kJuby7t370hMTMTW1paUlBRKS0spLCzk6dOnTJgwgeXLlxMVFUVJSQmbNm2iT58+TJ06Vbj2nz17Rm5uLnPnzhW/29fXF21tbQ4cOPDBr08yxf3rr79ITU0lJCQEBwcHGhoaRPKGo6MjLS0tnDp1ip9//lnc8GpqasQNqqKigtDQUBE5t3TpUoYPHy4SgSIiIsQkRbLq/O6773B0dGT//v0MHjyY+vp6xowZg5mZGXfu3KGoqIh58+aRm5vLsmXLGD9+fA9D14dWeno6gwcPxtXVlebmZtLT04XerX///qioqFBYWMiqVav4888/0dfXZ8+ePQwcOJDw8HBqa2vx8fEROexqamoCqfX999+jrKzMvHnzMDIyEqd9Pz+/HmvpvLw8GhsbMTc3x8XFhX79+glcmIqKCh999BFKSkoCKdObGj9+vECltbS0iGhb6JZ+7Nq1i/z8fJYuXSoQRH/88QdaWlrIyMjg5uaGtrY2QUFB6OvrY2JigpSUlOApOjg4YGVlxYULF7h37x719fVoaGhQVlYmQM/Q3WDKysri5eXFzp07MTMzw8PDQ/ydEj1RUVERd+7c6RUVY968ebi5uVFWVsa3337LyJEjhSnk72tBNzc3Jk6cyNixYxk7diwRERHExMQwePBgAY62t7dHQUGBly9fEh8fz7p165CWlhZYlr83/DU1NcTFxfHs2TMR+bl69WpsbGzYu3dvj+u/paUFLS0trKysem2alFRWVhYdHR1iVejv78+yZctIT08nMTERBwcHmpub2bt3Lx0dHbi7u6OiosKhQ4c4c+aMAPkrKyuL75yFhQXPnz/n9evXWFlZib/52bNn4tAYFhaGn5+fwI5B9+fZ2tqKrKysCMLQ0ND4x5GNjY2NYqpqa2vL6NGjRfzi5s2buXPnDsbGxmJFfvbsWa5du4a3tzfTpk0jNzeXwsJCduzYwYgRI5CXl+fnn38mLS2NZcuW4eTkRExMDDk5Oejp6ZGRkSF4j6qqqpiZmYmH2qFDh+jq6uLSpUsMGjQI6NadjR8/nsbGRk6ePMnOnTuFLv+fvFYJW1JSEt11U1MT79+/Z8mSJTg6OmJvby801wEBAbS3t/PixQsmTpyIl5cX5eXllJWVoaurS0xMDMuXLxcoxpaWFnE4HDdunAgQ2LFjBw8fPsTMzIwJEyYIPfz/dob/7zz5/1aSJKV+/frx0UcfkZSUxMmTJ6mvr2fixImC/tHW1tajMa6rq6OqqgoVFRVSUlKYP38+8vLyjBs3jr179xIWFsauXbuYPn06ysrK/Pzzz6Snp2NoaEh1dTV5eXksW7aMESNGCNqGlZUVhYWFZGZmEhwcjKysLGlpaVRUVBAQEIC0tDSqqqrs3bu3V69Roi3t37+/IE54enpy8OBBBgwYAMD58+c5d+4cbm5urF27FiUlJXbs2EFUVBSrV68mKCiIpUuXkpycjImJiXjfoLuhev78uWj8WlpahN586NChTJ06VaD+CgoK8PHxwdTUlB9++AFDQ0MSEhKoq6vD3t6e6upq8vPze60JlZGRwdLSks2bN2NhYcG2bdtEPP3fMYb19fUC7ykpZWVlVFVVSUtL47vvviMjI4NvvvmGL774Ah8fHzZv3tzDtyGRQykrK4v/XkpKirVr1zJ8+HAePnzI5cuXCQ8PZ+vWrULmIzmIbNu2jcDAwH9rOP9bJScnU19fL2QyXV1d7Nq1S0yN/1729vbY29uzZMkSDh06hJKSkvDsXLp0ierqagoKCnBxcRGpjXPmzKGkpIRx48YJGsTjx4/F9qaiokK8dj8/PwICAggICKCpqQlnZ2e6urrE/eX/L5NXLy8vAQefMWOG+CWNjY1UVVURHx9PS0sL5ubmGBkZCaZg3759WbhwocgjNjIyYtasWaxcuRLoRlXcu3ePo0eP8u7dOyorK2lra2PXrl3o6uqydOlSli5dyrfffsv9+/fp06ePWK3ExcVx+/Ztwc0zNTWltbUVMzMzsdrtbeXn54tRuYODA1JSUjx79oy2tjYBK168eDFdXV1YWFiQn59PVlYWBQUF2NjY8Ouvv/LHH3/Qr1+/HqtdyVr5+vXr3L17VwB6o6Oj+f3330WcY1BQEEpKSsjLy9PR0cHevXtJTU3lwoULmJiYcOTIEWpra3tIDj603r59K/SHpaWlIlqzvb2djo4OdHV1efbsGffu3UNKSoovv/ySJUuWCD2coqIiBQUFwnSnoqJCYmIihYWFFBUVMWLECAwMDLC0tMTBwUFMIF6/fo2zszMdHR2oqKhQWlpKc3MzysrKTJ48WdwkqqurSUlJwcTEBEdHx//oNv9/1dixY3n06BFlZWX4+Pj0WHeqqKhQU1NDVVWVgDQ3NDRw/fp1kV0tJyfXY90sKVVVVTF1f//+vfgMp0yZwqhRowRLLy8vD0tLS6Ez69+/v2Ba1tbWcuvWLWRlZRk8eDAqKip0dXX9m2b8v9VHH32Et7c3J0+e5NKlSz2aLDMzM5EWlZ2dTVZWFs7OztjZ2fHixQvy8/Oxs7Pjo48+Eg/v7OxsofmMj4+ntrYWQ0NDHBwc8PLyoq2tDSkpKa5cuUJ1dTWWlpaMHj2a1NRUSkpKBFFBUVGRZ8+eYW1tjbm5OR0dHbS3t/+jic/jx4/R0NDA2tpaTGA1NDREPvjbt29pa2vjwYMHrF+/HnV1dS5fvszQoUN59uwZ5eXlFBUVceXKFREpa2xszMSJExkwYAAdHR1ER0cjIyNDRUWF4ApqaGgwfPhw8X+XaGfV1dVpa2vjzp07NDY2Mnz4cOTl5UlISMDc3LzXaX5v3ryho6MDNTU19PX1RWAEdOsMU1JSerxvqamphIaGCsNHeHg4RUVFBAcHY2hoyIsXL4iPjxfbsNLSUrZs2cLr16/R09PDzc0NCwsLAgMDcXZ2xtDQkIqKChISEgR8XldXV0zMoXvqJi8vj5aWFkVFRb1uXqOjo1FQUKB///6YmJiIZge6pSC1tbV8//33ZGZmsmzZMoYPH05RUZFAKrq5ueHk5ISMjAxxcXEoKipSUVGBgYGBQKPl5uYybdo0AW2/d+8ex44dE8aumTNnCs2loqIiCQkJLFu2TKzP6+vrkZeXp7Ozs9eTVxkZGUHFcHZ2pqSkhNTUVKqqqkhJScHMzAxra2tkZWWRkpKisrKS+Ph4oqOjsbCwEOmSDQ0NFBQU8O7dO+rr68UhBrqb8Ddv3tDV1YWTk5MYZkRGRpKYmMiqVatE7Ka6ujp1dXUUFhaSm5vLjRs3aGxspLGxEU9PT9LS0nj16lWvvCARERF4eXnh5+cnmsvCwkKh3Zfg9DIzMwkNDaW6uppNmzahp6eHuro6BgYGmJub4+zsLBooNzc37O3tUVZW5s6dO5w8eRLo9ivY2dmRkJBAeno6hYWFNDQ0kJeXR0FBAV1dXaSmplJeXo6hoSGTJ08WprvW1la0tLQICAjotQE2IyNDfB9Wr15NTEyMkCb+vSorK3nw4AGtra1iDT927Fisra3JyMjg/fv31NXVUVRUxJs3b3BwcOhxb5ZMkeXl5UXjGhMTQ2pqKt7e3ri7u/Ps2TPS0tKQlpbm1q1bdHR0UFRURGtrK4GBgRgYGAjJ0IfWw4cPaWtrQ1lZmZycHAoKCrCwsBAR2A0NDTQ1NVFTU0N5eTl6enrC/Ovh4cHIkSOpqKjgr7/+4smTJ4JioqOjQ1FREZcvXyYrKwt5eXkMDAwEJzYxMZHc3FyRLCfZ3paWljJ58mQ0NTWpqqri1atXgmj0odXr5nXHjh3C1f/3C93KyoonT56wYsUKqqurWbt2LRs3bkRDQwNLS0smT56Muro6M2fOJDExkX379gn4OHQ3xZLUjYKCAszNzVFVVSUrK4vQ0FAh5B8/fjz9+/dn5MiRqKiocObMGTZu3Ii1tTV+fn4cOXKEx48fIyUlxZIlS3qdpw7dH6Qk1UoyHVNWVsbR0ZGysjKhfZFoOebOnSv4Z4qKiqSmpnL+/HmMjIz4+eefxUPt5cuX5OXlYWRkhI+PD0FBQcyZMwcZGRnB0nv+/Dnu7u7o6uqKyYeOjg7t7e2Ul5dTWVlJYGBgryd1fy/JSuXRo0ccP36cL7/8EhcXF2RlZTl9+jTnz59HUVGRTz/9lGHDhglXaFxcHCYmJgwfPpwbN24we/ZsZs2axZYtW9i9ezfHjh1j/fr1TJ8+HUBEeDY1NQmt2qhRoxg5cqTQ2F25cgUtLS1hngDYvn07sbGxTJ8+/b/mG/+nys7OxsbGBmNjY/z8/HpkeQ8fPpzjx4/z7t07sZYsLS0Fuk97/9dhoK2tjYaGBt69e8eff/7J+fPnSUxMxMjIiJaWFmRlZXF1dSUzM5MtW7Ywf/58MQn9e6Wnp7Nu3TrU1NQ4deoUKioqODs7s3Llyl5tCCwsLEhMTKS+vh5/f/8emdUuLi5MnDiRe/fucefOHXJycpCWlqa2thYnJyd0dXU5ePAgra2t7Nixg+TkZEaMGEFpaSkjR44kKCiIgoICbty4wYsXLxg5ciTr169HRkaGR48e4e3tzahRo3jy5AnPnz/nl19+YdiwYbS3tzNnzhweP37M7t27MTc3p7GxkUePHvH+/fsPfm2SOnv2LD/88APq6uo0NzfT1tYmHuju7u6YmpqSlJTE9evXgf9JyAH417/+xdixY8nJyWH69OnCtNPa2oq9vT0zZ86kvb2dw4cP09LSwqhRoygqKkJTU5Ndu3axcOFCCgsL+eyzzygsLOTw4cMMGDAANTU1zp49S0JCArW1tVRWVrJt2zZmzZrV60AUSfLOf0oEmjZtGgMGDOjhnJbgguzs7IRGMykpifPnzws517Rp00Qj//z5c6KjoykrK6OhoYE9e/aIh1VdXR15eXmcOXMGQ0ND1qxZw7Vr1xgxYgTjxo1j69atqKqq0tDQIDYhFhYWvZ72REVFERoayrx588T6VbLBgO6p66NHj0RMtZGREenp6fTt25fdu3eLlbSZmRmPHj3iypUrQDcPs7S0lAEDBnDy5MkeWsLExEQOHz7MkydPcHJy4v79+wAsX76cZcuWoaysLAyikkZCWlqawsLCXn9PjY2NUVBQoKioiJMnT1JYWMiYMWNwdnbm/v37rF27Fjc3N9atW4e6ujrHjh3j+++/Z+zYscybN4/9+/ejr6/Pn3/+Ke6/AQEB/PTTT+L+npGRwe3bt8nPz2flypWMGjUKBwcHZs6ciYuLC1paWty5c4e6ujpGjhyJpaUle/fu5dtvv0VRURF7e3vu3LlDXl4eBgYGrFu3rlcSpbq6OsLCwvD29uajjz7i9OnTrFmzBg0NDWbMmMGnn37KrFmzkJKS4rPPPuPq1asMGjSIhQsXMnnyZN6/fy8MvjU1Ndy+fZtRo0YJ8tCkSZMIDQ3Fx8eHw4cPY2hoKJo3c3Nzurq6ePnyJbq6ugwcOFCENjQ1NfGvf/2LWbNmIScnx5MnTygsLPxHGMl79+6hrKxMXV0doaGhGBkZCTb336utrU2QHoYPH86CBQsYMGCAkBdu2rQJIyMjfH19/2NYgqysrNjQSg6CSUlJbNu2TRhuU1JS8PHx4YcffqC1tZW1a9cSHR3NrFmzmDRpEjdu3GDr1q09UhT/W4WHh7NixQrKysooLi7Gz88PBQUFrl+/LoZEGRkZXLx4kUePHok00ZCQEBFhfvHiRV6/fo2Li4vo5x4+fEhISAjq6uqcO3cODw8PSkpKyM/PJzk5mfb2diGNKCwsFFzYvx8Kjh49yv79+xkxYgSHDh0SQ5T/Vr1uXmVkZBg5ciQZGRlERkby4MEDdHV1kZKSIicnBwsLC6qrq4mOjqa8vBxPT09sbW3R1NSkvLwcWVlZRo0aJRpXiZPW1taW6dOnIyMjQ3V1NU5OTrx584bdu3dz+/Zt/vrrL4HNWLJkCSoqKrS2tlJTU8PYsWOFk83IyEg82Gxtbf/RxEdKSgpra2s0NDTQ1dUVTXpAQACysrLIy8tjZ2fHF198ga6uLsHBwcjLy1NZWYmHhwfXrl0jLS2NwMBAcSEdOHCAI0eO4OTkxKBBg2hpaSE7OxtFRUVkZGTIzc1FSkqK0aNH4+TkxL1797h16xZlZWWsXbuWzz//XMB8oXsd3NDQ0GuXOiBSuW7cuEFsbCz79+9nx44daGpqcvbsWe7evcvcuXNZsGABmZmZhIWFIS0tzeXLl2loaBApPiNGjGD69OniQVBeXk5cXBz379+nuLhYpJTU1NQQEREhLgiJPtbQ0BATExN0dHSora2lqqqKGzduUF9fT2BgIE5OTuKg1JtydnZGT09POBs1NTVJSkqiqKgIb2/vHifhiIgIYmNjWbBgAR9//LEI12hra2Px4sVC3xkaGiqwYsXFxWJKp6CgwIsXL4iKisLKygo1NTUsLCyETrGuro709HSsrKzQ0dERKKbOzk4RLfufaB3/rQwNDWlpaUFDQ4OamhrS0tIwNjZGVVWVkSNH0tHRwcOHD0VcK4CpqanAo1VWVvLnn39ibm6OsrIyra2tQHcE5IYNG5CSkiI/P5/6+no+++wzhg4dyu3bt3ny5ImQghw7dozIyEiR3iMrK4uzszPl5eVi1d3W1oaSkhJOTk69DimQcGKhe2ImSU27fPky3t7eODs78+TJEyoqKti4cSNLlixBTU2N0NBQoqKi6OrqEhOxrKws7O3tsba2pqqqiuPHj1NcXMy0adMoLS3lwoULlJSU8NFHH7Fw4UKgO4JXMr3OzMwUU0NVVVUyMzNZtWoVPj4+BAYG4ujoyIsXL3r1+lRUVIT0BhAHVDk5OWGsgO7vUEdHh+DaSmro0KEUFRURFRWFkpISPj4+gkpgamrKu3fvRNO+YMECJkyYIAwv9fX1Yo0swdYNGDAAW1tb1NXVkZeXR0pKitevX9PZ2cngwYPx8/PrdfM6YcIEpKWlSU1N5eLFiwQHB9PY2EhkZCTu7u4YGRlx9OhRFi5cSExMDMnJyfTp04dTp06hra1NaGgora2tTJ8+naFDh/L48WM6OztpbGwkPT2dhoYGOjo6qK2tpbOzU6xFMzMzyczMxN3dnZCQEIHoSUpKYtCgQRQWFlJXV0efPn3E+6+oqNhreYvEGJqdnU1sbCzt7e1oa2tjbW3N+PHjefbsGRcuXMDIyIgvvvgCf39/kYilp6dHe3u7WPVLfr+Kior4fN68ecOhQ4d4+PAhmpqa2NraoqysTGNjIwEBATg4ONDU1MT58+cpLS0VhmPJdaqkpIS0tDT6+vrIy8tjYmLS6+mytrY28fHxdHV1YWpqir+/v0D8eXl5iffPy8tL6O91dHTIysqitrYWdXV1YUz9+eefsba2pr29ndzcXKysrDhz5gw///wzKSkpREZGMn/+fDw9PQWZArolgKqqqsjKygqJISBSGx8+fMimTZsEvqm3ZW1tzfPnzzl27Bi3b99GUVERAwMDXr9+TWNjI01NTfj6+uLs7MzWrVt5+/YtEydO7GGaMjMzY8aMGeTn53PixAlcXV3p168fpaWlpKWlCcawRGaUl5fH3bt3+eWXX8jJyRE/x97eni1btgimclhYGAUFBQwfPlxw4KOjo3vVvHp7ewsdtcRcDogobwUFBR4+fMjBgwdpaWnB2toaa2trmpqaCAsLE8FD+/btQ0FBQTTeki2th4eHGNaoqalRUVGBlZWV2HJpampy9OhRMjIyUFVVpbm5mbCwMAYOHIiqqip5eXlcvnyZ2bNnM3To0A965ve6ef3xxx9ZvXq1YEyeOXNGPMh3797NixcvuHz5MgkJCeKBqKmpSUdHB3p6epw+fVqcSLq6unrEBiopKREQEICSkhLa2tp0dnYKHWJsbCzPnj0jNTUVT09P+vTpI04BS5YsISUlhZSUFMGf7ezspKmpqddNAfyPIUNKSkqIm6H7oSW5mHR0dMTJsbCwULBKVVRUUFdXR1ZWlqqqKgoLCwVEPSEhAWNjY0xMTGhqauLevXtC6/H48WPGjx/P1q1bxe+SMNX09fWZNGkSAQEBPf7OlJSUXhvSoFs2EBkZiaOjIzNmzODatWuEhIQwffp08ZlNmTKFjo4OlixZQnR0NOPHj6e0tJTo6GhiYmL417/+xV9//SVYjYMGDWLy5Mlcv36dkydPivddSkpKYIwaGhp6aN4UFBQYP368MDdJXJRLliwRa7BTp07915i4/12TJ0+mq6tLGPkKCgp4+fIlGRkZ1NTUiMlwdHQ069atw9bWlt9++w11dXW2bNnCxo0bcXNzY8qUKaipqSElJcW+ffuoqanh119/ZciQIQIn9PbtW2RlZQVbMjg4mC+++EK8z0eOHMHQ0FAYz5SUlNi4caMI+YBurJxketibsrCwIDMzk7t374qY1sWLF6OsrIyfnx8+Pj6Cb+ni4iIYfjU1NUyaNIk3b96wc+dOZs+ezebNm9myZQuysrLo6OjQt29fli1bhrm5Od7e3iQmJnL27FmePn3K/fv32bdvHxoaGjQ1NfH7778jKyvLsmXL+Oabb1ixYoWYGhkaGrJgwQJkZGR63bxK6BWSBzJ0TxCWLl3KggUL+O2338Rabvz48WLqWlFRwc2bN7l58yZ+fn5MnDgReXl5lJWVGTx4MOHh4SxcuJBZs2Zx4sQJDh8+zPLlywXarbW1FXl5eVpaWpg/fz4pKSl0dnaK9fCsWbOIj48nPj4eeXl5Dhw4QFtbW68xUn5+fj00lrKysigpKYlNgOTe+HeDGPwPbkpbW5vRo0ejoaGBv78/srKyTJ06lQsXLnD27FkUFRVRVVVlwYIF/PLLL9TX13Pt2jUUFBSwsrLC0tJSkFs6Ozvx9PTk7t27tLa2Cn26rq4uERERtLS0iENnb8rS0lKEs/z+++8YGBjg4+PDq1evSExMZO3atTg7O7Nt2zaCg4MxNTUlMjISbW1tcnJyCAkJEZIKAwMD3NzcRNykmpoar1694saNG3h5eYnGWxK5LCEczJs3D3V1dcaOHcvBgwdZs2YNMjIyvH//no8//lhsWyQa5t6UxKyso6ODv78/dXV15OTkoK2tjZOTE3v27GHZsmWEhoYyatQo+vfvz71793j+/DkREREoKSmRkZHB5MmTmTt3rtBb/v777xw/fhxZWVlBzLGzs0NVVZXS0lKSkpLIyMhg0aJFAruXlZXFrVu3ePXqFXZ2dnz55ZeCIT5u3Di8vLyoqalh9erVvWJny8nJCXOwra0tPj4+uLm5CbM0IIYDs2bNEjKtKVOmEBERwfHjx8Vh1snJiZ9//pnPP/+cjz/+mD179uDp6cm3335LUFAQ27Zto2/fvjg6OrJ9+3b09PRYuXIlmpqadHZ2CgpRcHAw/fv3FwfNJ0+eEBUVhaenJw4ODr36DAERKiGRyzQ3N/P8+XPMzMy4e/cu0dHR/PTTT8yfP5/Vq1dTWFjYYysiadKhe1D1888/s2HDBvr160dtba3wCrW3twt/SEREBOvXr+/B3TUyMmL16tU9dKg7duxg3bp1Ykj0T3oaSbiDnp6ekOdJ4t8lsr43b97Q0tKCgYEBR48eZciQISxdulRg5X766Sd8fX17pPIpKioybtw4LCwsaG9vF36AgQMHoqury6tXr/D390dLS0scfO3s7Ojo6ODOnTsCk5eenk5aWpp4/z9EntTr5vXp06eMHDmSCRMmMGXKFOFK09LSwsHBASUlJebMmUP//v0xMzMjJiaGmzdv4uPjw5gxY8QpVV1dXayv9+/fT2hoKKamplhbW1NdXc3bt2+prKzEx8cHPz8/XFxccHR0pLCwUDA6+/bty4MHD9i5cyfOzs7MmDFD/J0FBQVIS0v3yP/+kJKstGxsbFBQUKC0tFScNDIzM7l58yalpaVMmTJFTGIePXrE7t27sbS0xNHRkXHjxnH//n3++usvgoKCqKurQ1NTk1mzZjFq1CjMzMyYN28eM2fOxMvLS8Qytra2imlYW1sbn332mcjvlkyC4X+yqg0NDfH29u6RkvMhdfz4cQwMDJg5cyZ2dna8efOGFy9eYGZmxrRp05gzZw7W1takpqbi4OBAWVkZNTU1DB06lKFDh5Kenk5cXBzm5uZ4eHhQV1dHc3OzODTk5eWRnp4uYvokDbGiomIPjIxEeiGpRYsW0adPnx56LDMzM/Ly8nrFJkxKShJGPslEZvLkydTV1XHu3DkWL17MnDlzMDQ0ZOLEiVhaWoqLxd3dnW+++YaioiKuXr3KihUr0NLSora2lry8PB48eICnp6dozoyNjQkODsbCwgJVVVWh2Xn16hWLFi0iPj6ezz77jMbGRp4/f87p06fx9vZm8ODBVFZWCirC/9ZW/beKjY3l7NmzuLq6EhwczI8//siKFSs4d+4cO3fuxNfXl02bNjFo0CAKCgqEwL65uRkrKysCAgIwNjbm4sWL/PXXXwwZMoTPP/8cFxcXzMzMkJKSYuzYsVy7do1t27YRExODhoYGbm5uxMfH09TUREtLC6tXr2b06NE8evSIyZMns2XLFpydnTlw4AAVFRVs2rRJ6Al7WxkZGfTp0wcNDQ3a2tp4+fIlBw8epLm5WdzwnZycUFBQ4MaNG/Tt25eRI0eyaNEiocGVALPT0tKQkZERRoR3794JxvKrV68AWL9+PYGBgRw/fhw5OTkmTpzI7Nmzyc7OFuB4NTU1Bg0axK5du4iNjSUvL48dO3ZgZ2fH8OHDRczuh9R/eghpamry6NEjQkNDUVRUZP78+SLZr7m5maamJnJzcykvLxcTOEkM9suXL8X099ixY4wcOZJTp04J01BGRgbh4eF0dnYybty4f5PIVFZWkpOTg76+vmheJY1AZWVlr/mg0L2OvXv3LoaGhuzatQsHBwfk5eWZPXs2R48eJTg4GBcXF/T19YXkyMDAgFevXrFt2zZGjx7NlClTaG1tpaKiAjc3N8G5liT0KSoqEh4eLigbAwcO5NChQ0yaNIn09HTWrFmDl5cXhoaGDBs2DCcnJ44cOUJYWBhFRUV4enry7t07vL29GThwoMCNfUhJNnNGRkYEBwfT0dEh7o9aWloYGRlx5MgR9u7dy86dO5kxYwajRo1iyJAhxMXFiYe1ubk5FhYWFBQUUFJSQn19PY6OjrS2torDjJWVFe3t7RgYGBAYGMhPP/3E9evX+fjjj1m4cCFOTk4YGhrSt29fCgsLUVdXx9fXt0cojoaGBmZmZhQXF3/wa6ysrOT+/ftkZGSISO3k5GTCw8PJyMgQhBxXV9celJWWlhaqqqq4fPkyY8aMQU5OjgcPHvD69Wv69u2Ln58fr1694s2bN7S1tWFkZISrqyu6uro8efKEhw8fMmTIEKqrq0lNTSU1NRU/Pz8mT55Mv379xKYJujnWixYtEt/13taVK1cYMGAAFhYWhIeHk52dzdixY4WBuqysTAzkbty4QXZ2NoMGDRLaVWdnZ5qamnjy5ImQZXl5eVFcXExjY6OQZR0+fJhff/2VTz75BDU1NTw9PQWz/cGDB5w9e5YDBw4gJyfHlClTaGlpobGxUYQaJCcnCxxpb0riYxgyZIgYrB09epTOzk7Gjx+Pqakpvr6+QuJ17tw5gQCUEAny8vI4fPgwgwYNws/Pj4iICO7cuSPCJSSUCclQpqioiKNHjyIlJSW26tA9dJk7dy6ysrKUlJRQWVnJlClTkJGRQVZWluLi4g/i1/e6eTU0NERBQYGSkhKkpaVZtGgRlpaWPH/+nPz8fDG1kHDeJGtkyU3w+fPnvHnzpgdKKjMzk4cPHwLdF7GrqyvR0dE0NDTw3XffsWLFCjH9hO6LSbLyqq6u5sCBA0yYMEF8cS9fvsy5c+fw9/fvtea1uLgYKysrMf3dtWsXOjo6/Otf/xJ/f3JyssB16evrU15eTm1tLRkZGeTl5eHu7o6/vz+vX78WKLCBAweyZcsWOjs7uXr1Kk5OTsyaNQvonkD6+/vz008/cfr0aVxdXfnzzz/x9PQkIyODv/76S2icpKSkqKmpQV1dHXNzc8zNzTl//nyvXmNLS4twzFtbWzNu3DiBRpKsf5OSktDU1OT48ePk5uby6NEjhg4dipWVlTCXnT17lvLycrS0tLh16xYKCgrs2bMHPT09Dh48SGhoKLm5uTQ2NuLk5MSYMWNwcXERgnBNTU3y8/MpLCxEQ0ND4MJu3bpFUlISixcvxt/fHw0NDcEs/ZCKiorCzs4OZWVl3r9/L1Z5knjKgoIC6urq8Pf35+uvvxZYF2VlZSZMmIC1tTU3btygtLSUmJgYdHV18fPzEwi1u3fvkpeXh4qKijiJ/91U1tjYSFhYmMCLSMxpf0dG1dTUkJubS3t7Ox4eHgQEBIh//yEVFhbGq1evCAoKYvjw4URFRRETE0NUVBRPnjzB19cXGxsblixZgpSUFOvXr+fgwYP4+voya9YsQc+Abs3v9evX+eSTT3pwIpWVlcnMzBTIE0NDQ4yMjKipqaGgoIAhQ4Ywd+5ckScfGhrKmDFjcHJy4tWrV7x8+fLfGLm9KYmpRUFBgaqqKk6fPk1KSgq+vr49EnFu377NypUrcXZ25uXLlzg7O/PDDz8AiM8rIiKC3Nxc6uvrWb16tcDpnTp1ivDwcMzMzNDW1ubu3bscOHAAFxcXpk+fjoKCAqampuTl5dHW1iYQfRKn7JMnTxg9ejQTJkzg/PnzvWpe09LSkJOTQ1dXVyTS1dfX09XVJbT//v7++Pj48OTJE4HjKykpITExEVlZWQwNDSkrK+Py5ctER0eLsApJMtW3336LnJwc5eXldHR0CBOIoaHhvz3oT58+zfbt2/n888/59ttvqa2tpa6uDgcHB6KiosS9rDd16NAhrly5wsaNG1m0aBHQPfGxsrKiT58+fP/991y/fh0zMzMiIiKEdnXHjh3k5+ezZ88e/Pz8aG9vp62tDS8vL6SkpEhNTaW5uRlfX18hC4iIiODWrVtCTjFixAja2trEFH7q1Kl8+eWXmJubk5KSQnh4OLdu3eLMmTO0tLQQEhIizKsfWpIHtYQNLvnfY2NjefXqFaNHj0ZRUREfHx/Wr1/P/fv3iY2NRU9Pj6lTp/Lo0SPa29uZOXMm5eXl/PzzzwAiTSkjI0Mc/HJycjh79iwff/wxgwcPZuDAgRw9epTCwkLKysqEJGvkyJF89tlnHDp0iEGDBmFlZcWJEyd4+vQp5ubm6Orq9qp5TUxMJCIiAkNDQ7y8vGhtbeXJkyccP36ckpISNDQ0CAgI+DfS0Ny5c+ns7BQhHL6+vjx79oyDBw/yyy+/MGvWLNavXy+u1VGjRvHtt98KPbOEBKKpqUl2djZxcXEEBARgamoq8GmSCg4OZvjw4bS1tYmhSW9KQvCBbnJESkoKzs7O6Ovrs2DBAv78808UFRW5d+8e169fJyoqiqdPnzJw4ECGDx+OnJwc79+/p7m5mYEDBzJ48GDRrP09gOfhw4dcvHiRgQMH4u3tTWBgIDY2NgQGBmJkZERUVBRRUVEkJSXx8ccfc/ToUa5evcrWrVuxtrbm+++/Jzo6muDgYDEU+pDKyspCWVmZBw8eYGtri5aWlghSePr0KaGhoSxZsoTW1lYuX74sgldWr14t4ocvXLhAaGgourq6eHh4EBYWRkxMDIsWLcLQ0JDm5mYyMzOFZC4nJ4d79+7h4eHBjBkzhAzKzc1N4BWvXLlCQUEBkyZNwtzcnLq6OhoaGj7otfW6eXV2dsbLy0sYVtavX4+LiwtbtmyhvLycOXPm9Gg0R48ejbW1tWhmra2tRSJQbm4uBQUFfP755ygqKrJz506kpaX54YcfyM3N5d69ez3i9SRJIdra2jQ3N9PS0sKQIUPYv38/jx8/ZvPmzUyYMIG2tjZaW1vFl6c31dXVJcbf+fn5XLp0CVVVVTGlDAkJITw8nJcvX3Lr1i3Gjh3L7NmzGTJkiIiJS0pKIiUlBV1dXb799lsOHjyItLQ0zc3NJCYmsn37dqytrUlKSuLVq1eUl5ejrq4uZAJDhw4V66i8vDyOHDmCg4MDlpaWODk5UVhYyLt373Bzc+t1dCrATz/9hJKSEhoaGgLdJdGfFRQUCJj92LFjAYReUzKdtLKyIigoiJqaGszMzMTfY2NjI1ZGixcv5qOPPiIjI4Nff/0Vb29vVq1axYMHD5g9ezazZ89m3rx59OnTh4MHD7Jv3z4qKysxMTHB3Nycfv36idf2v7Po/1vZ2dmRkZGBsbEx+vr65OTkcOjQIfLz8zE0NGTnzp3iApNUfX09ysrKNDc3s2bNGqqqqli9erWIzJ0+fTo///wzz549Y/369UB3GIPku/v3kpeXZ/jw4ZiYmCAnJ4eWlhaFhYUMGTKEOXPmoKamxosXL3jz5g2ZmZn/Zgr4kJKc4iUayNmzZ2Nubk5LSwsTJ06ktbWVc+fOoa6uzsSJE8XJfcCAAfj5+ZGcnMzr168pKysThhx9fX26urro6uoSKKjFixfj7e3Nq1eviImJ4cWLF5SWlmJubs6aNWtQVFRk5syZgjX56aefAvDNN9+wY8cOVq9ezZdffinWVr2pgQMHCg6uvLw8VlZW+Pv7M2TIECZNmkRXVxe//vqreOioqqqKZuLkyZM8fPiQvn37Ym9vj4mJCbdv32bNmjWkpaUJc1Vubi7m5ubiviPR0vn4+IjpelNTExkZGWhpaaGhodHjmhsyZIhg/Pa2nJycsLCwYM+ePUyYMIFHjx4hLS2Nr68vU6ZM4erVqxgaGlJZWckvv/wieNeOjo5UV1ejoqKCpaUl1dXVWFlZUVtbi6urqwgbOHfuHMbGxjg4OGBoaIiHhwePHj0iNze3x0GprKyM0tJSHj58SElJCbW1tTx48IAff/wRTU1NgQ364YcfmD17dq9eY1BQENOmTSM6OppvvvmGTz/9lPr6eo4cOYKdnR2XL19m1apVPZLoAFasWMG7d+94/fo1JSUlBAYGiilbbW0tBw8eJDY2lqVLl7J7927mz5+PtbU1586dY/78+cI0HBoaSnh4ONu2bePBgwfcvHmTkJAQVq9ejbm5Obdu3RJN+T/xRzQ1NdHc3IySkpK4D2hpaeHt7U1sbCx3797Fzs6OqKgoOjs7UVRUFBN3U1NTtm/fTmVlJe/fv+fMmTOi8SotLWXhwoWUlpYK/V9MTIy4Bj///HMmT57M6NGj0dbWFripOXPmICcnR2VlJYWFhTx+/BhVVVVOnz5NeHg4Hh4eDBgw4D+aif6vys/PR1FRUUz69fX1+fzzzxk9ejR37tyhoqLiP9ILPD09RaiR5PeNGzeO+vp6IiMjefLkSQ8qgIQSsWnTJhErLmn8PvroI2xsbJCVlRXOdYmfBrq9OBoaGsTHx4truDcluYdIflZ2djZFRUVMmTKFr7/+mrFjxxIWFkZiYiLDhg2jpqaGa9euYWVlhYuLC+3t7WL6fvDgQTZt2sQ333zzb1K/devWMXPmTCwtLcnOzubly5ccPnyYW7dusWDBAg4dOsSrV69E5PPx48eJjY2lvLwcgNDQUJSVlZk+fbrg0X5ITZ06lbq6OiZMmCAOE9OnT+fXX38lISFB/LuFCxcyZMgQfv31V/78808uXLiAvLy8oNJs2rRJSIkApk+fLtCQt2/fJiEhgZqaGnx9fcUWWtLLmJmZMXr0aJFCmJqaiqKiIv7+/uL5pKysjJqa2gfhMXvd+Zibm6OlpYWenh6GhoZoa2tTV1eHlZUV/fr1E+um0tJSwU6TOKEbGxvR1dUVN//MzExevHiBu7s7gwYNYvbs2aiqqtLS0sLo0aMZOnQoMjIyYjUmLy8vDAdtbW2UlJRgb2+PlZUVqqqqXLx4kZycHGE8sLGx6fW6UkFBAUVFRYqLi4mIiKBfv35iNQndpi0JfFlfXx9HR8cewuk///yTR48e4ejoyEcffYSTkxOPHj0iMjKSr776CkNDQ6ytrVFSUuLOnTsCYzNo0CC8vLwoLS0VLL/c3FwOHDhATU0NVlZWSEtLEx8fT2ZmJpaWlkJD09uaN28eb9++FTfFv6/yc3NzMTAwoKamhtjYWBITE0XyjIODAx4eHigrK6OhoUFubi4qKiq4urry2WefkZqayv79+3FxcaFPnz7o6elha2vLwoUL0dPTExrTmJgY+vbty7x584Du1buMjAxlZWX06dOHlStXYmZmxuXLlzEwMPiPHLr/V9nY2HDz5k1cXV3x9fXF3d2d1NRUka9cWVlJVFQUcXFxVFRUMGjQICG8l6zEFRQUiI2NJSwsjKSkJD766CP09PTExFRKSorAwEDReCYkJGBqairSehQVFQkICMDa2prs7GzOnz+PqqoqSkpKQss9atQosaLtLctWsk6UTKvd3Nx6BDq0trYSGxtLTU0NLi4ujBo1ii+//BJpaWmePn2Krq4u8+fPJzw8HHt7e9HwRkdH4+7uLr7v0H1NtLe3o6SkJBKn3r59i4qKCqqqqrx7947g4GBCQkKEViwgIICNGzdiYmJCZGTkP5raWVhYiHuFBIGnpaVFUFAQKioq1NXVkZWVhaqqKra2tmICnpqays8//yymkw8ePGDNmjXU1tZy9+5dcYiUpFtpa2vT1tYmTKXFxcU9HsadnZ1YWFggLS1NZ2cnampqdHR0cPr0abS1tZk2bRpAD3blh5Senp7Y4EhLSwuIvJ6eHsuXL2fQoEG4u7sLPN/79++Jjo7Gy8tLTLnq6+vFBkZS/fv3Jzc3l/z8fHFIlRg0AgMDxXUlKU1NTTIyMhg5ciSDBg3CyMiImzdvEh0dTWBgINra2tjZ2QndYm/K19cXe3t7iouLiYyMxNzcnJcvX7J7927GjBnD7du3MTQ0ZM+ePTx79oyhQ4eiqqoqXt+ePXt4/fo1Xl5etLS08OLFCzo6Ohg/fjxKSkoCwyYhCDx8+FAcggcOHChe99u3b0lLSyM/P19gkWbMmEH//v1FdPk/0UomJSURFxeHp6cnnp6egs6grq4ugk4kzN2+ffvi7OyMvLw8xcXFvHr1ilGjRiEvL090dDTW1tb4+PhQXV1Nc3MzxcXFIoxCV1cXbW1tmpqaKC8vJzo6GiMjI7HVkJKSIi8vj9jYWGxtbRkxYgTV1dXExsZy6tQpcnNzUVRUxM3NrdcsWwsLC5YvX46BgQEeHh6YmJigpaUlEFiSg+3t27exs7Nj2rRpGBkZ8ezZMzFBlAwLJCFEkydPJj8/H+hurCTbus2bN4vrd9KkSbx8+ZIzZ84wePBgYcTKzMykuLj4P5Ih7ty5w4kTJ4TZ6UOrra2NrKwsgYsrLS2lsrKS4cOHi2uosrKS2tpaNDU1UVBQEKmbfw+4SE9PJzY2lqKiIp4/fy6021VVVRgbG9PS0oKjo6OgVEi2cWlpabi4uPD555+L66yoqAhfX1+cnJzQ1tamuLhYvA/9+vXrVfMK3UaqoUOH8uLFC65cuYKhoSErV65ET0+P5ORk8WySlpYWSK+amhpKS0tpaGjAx8dHbOY6OjpYsGABFhYWFBUVUV5ejoGBAX5+fmLjqaSkxIwZMzA1NeXly5c8f/4cPT09+vbtC3RTgUxMTIQE4v379ygrK4uUr/9WvW5eXV1daWlpYcqUKYwbNw4pKSlMTEw4f/58D5GtxKT195JMHyUPBgUFBeLi4jh27Bjjxo1jyZIlhIeHM23aND799FOR0CWBDv99/K6kpNQDDzRkyBD69u2LnJwcGhoaYv3U2+ZVkqwVGxsrAOx/b05LSkoEKDk4OLgHR7akpIQ9e/YgKyvL1q1bMTQ0ZN++fWJVfPfuXWbNmsXFixdRUVHh8ePHlJSU0L9/f+FWPnr0KBcvXuTEiROUlZUhLy/PRx99xMqVKzE1NSUsLIzOzk6cnJxQVFTsIZ7uTRkbG/eIqG1oaODmzZs4ODgwbdo0Tp06JQIkqqur0dbW5quvvhKOwvz8fLZv305AQACXL1+mf//+XLt2jS+++AInJyeWLVtGXFwcRUVFrF27VujcYmJisLS07IHAGjRoEDdv3qS4uBgHBwc0NTUJCwtj3rx5zJ07VwjcP7Tevn1Lbm5uD73zRx99xPTp09mxYwcTJkygqalJXKAbN25kxIgRFBcXU1payunTp0lMTGTRokUUFhbi5uZGXFwcM2bMIDMzE1VVVYYMGSK+Y3l5ebS0tIjm4+nTp7x69UpowZqamigpKeH27dts2LABKysrVq1axdSpUzEwMODevXs9RPsfUq2trYwdO1akXv3vkpWVZfjw4aSmppKdnS3QNNOnT2fy5MkcOXKE5cuXs2TJEqKiokRyjJ6eHg0NDaJ5PXjwoPj5Q4cOJSgoSOh/4+PjGTBgANeuXRNN/Jo1a4iKiiI8PBw9PT3R7C5evFiYKz60bt682WONq6CggK6urjBKKCgosGbNGlasWIGSkpKIEZaRkcHR0ZHExESMjY2Flv7o0aOUlpYKdmlNTQ3S0tK8ePECExMTLl26RFFREdOmTSM7O1v8XlVVVQYMGEBzc7PY5lRWVrJp0ybU1dVFwxUVFdWr1xcfH099fb2Y2g4ePFhooC0tLbGwsBARqrt27eLBgwfExsZiYmKCiYkJ6enpZGRk9Igjhu777Jo1a2hubu5x4Ifug913333XQ5soLy+Pm5ubuM7CwsIA2LZtG5MnT0ZXV1cEBGzbtq1Xr7GgoAB7e3tmz57N/PnzAcQ9Kz09XZjBTE1NefPmDerq6nh4eIgp5oIFC6ivrychIYGffvqJjIwMdu/ezfr161m/fj1VVVUoKyvT0tLC5cuXSU9Px93dnXPnzmFnZ8eFCxfIzMxk2LBhrFq1ipaWFgoKCpCSkhLxwUuXLsXT01No9nv7GZ4+fRpZWVk8PT17BLEkJCQQHx+PpqYm48eP58WLF+jo6CAjI8O5c+e4cuUK2traDBo0SCCsGhsb2bZtGxkZGcydO5fMzExOnDiBsbExISEhIlkRuiVscXFxDB06lD59+mBtbU1xcTGKiop89tlnBAQEsHz5cnJzc4Hue+CKFStIT08XMr0PqaCgILFqbmxsJD8/nwsXLpCQkICKigrS0tI8e/ZMpGg2NzcLVuoff/xB//79RfNaX19PQ0MDBgYGonkNCAhg8eLFaGpq8sMPP3Dx4kUcHBzYsmULeXl5rFq1ig0bNggzs7q6uqAL/b2ysrJ49eoV6enpvW5ef//9d0aOHCkmuRKGrZGREXfv3hXSBj09Pfbs2SNIFn+/7q5fv87evXsZMWIE27dvJyIiglmzZvHmzRv09fWRlpYWetUrV65gZWXFkCFDxBbk75vipqYmNDQ02LVrl5BWwv9En7e1tfXq9dXU1FBUVMTGjRvJyspi1qxZGBkZcfbsWVJSUvjiiy8wMTHB1dWVmzdv8vjxYwCGDRvGokWLMDAwEMEGUlJSIt69oKBAJDNKDheNjY08ePBAGF2rqqpITk4mMjISFxcXGhoa0NLS+rcNgCTdFPj/T/MqAWlXVVVx5coVsrKymD17Ns7OzsTHx7N3716Cg4N7rAklp9G/f9nq6+uJiYmhvLwcd3d3HB0dSU1NJTIyksLCQl68eEFZWZlAfEgyt+fMmcOQIUPQ0tJCVlaW+vp6mpub0dbWFg+Bqqoqfv/9d6ytrXuYuD6kKioqiIuLw9raGi8vL0pKSsjIyMDU1JTExEQeP36MpqYmwcHBYvVfWlrKoEGDKCoqor29HRUVFYqLizl27Bi7d+8WrNR79+5haWkpLpBRo0YJCgN0M2ylpKTYsGEDb968wcLCgoULFzJp0iQxQfD19cXU1FR8uP9kRdLS0oKCggJaWlpi9XrmzBkUFRUJDAwkOjqaK1eukJubi5GREXZ2dhgYGPRo4t3d3YV+SlIDBgxgypQpODo6Ym1tzaVLl7h9+zZOTk4EBAQwYcIERo4cydSpU8WqoaysjPb2diwsLITk4OHDh/z222+4u7v30DZ+aEni5kaNGkVtbS1//PEHZmZmTJ8+XcgRNDU1GTFiBJqamrS3t7Njxw6qq6uxt7dHU1MTZ2dnJkyYQGhoKG/fviU/P1+YK+bMmSOiQ+/du4eSkpLAb4WHh3Pnzh3c3d1RU1MTCWVTpkyhb9++nDt3Tjw4VVRUKCgo4NSpU/920PtvpaWlhY+Pj1jB3L9/n6ysLCZPnoy+vr5gFUsypCUIppEjR9LU1MTTp0/x8fFBX18fOzs7wsLCSEtLw9XVtYcj1dzcnAEDBpCbm0txcTGPHz/GwcGBGTNmiBuYlpYWT58+JTY2Fjk5Odzc3AgJCUFVVVUEefwTzuvx48fFtdWnTx+mTJkiHNXW1tY4ODgIHRV032ck36UNGzYwdOhQ0bjW1tby+PFjVFRUxKZBQUGBwsJCqqurRbSshN0qMclA94MkMjISMzMzXFxcKCgo4OTJk/Tv319MuEJDQ7l586bQPX5IqaioiL8/PT0dExMTYdyrqqoSciJDQ0Pk5eUJDAzkxYsX3Lx5U/CmR48ejYmJCQUFBZw/f562tjamTJmCnZ0dxcXFHD58mObmZgwMDES09KxZs1BRUaGjo4N79+4hJyeHv78/DQ0NXLt2jfT0dKZPny6MYrt27cLR0fEfmWEkgwrJweLkyZM8ffqUDRs2CPZnbm4uhoaGgussJyfHixcvaG1tFZr3bdu28eTJ/4e98w6Pgsre/2cmvffeeyWBkEIglACh9yoISC8RBJEmYkNFEBSQNaB0YVE6SJFeQw0JEEIoIT0hvfc6vz/GuZIVd4lfVll/eZ/HZyTT7p3bzj3nPe+5JLyUqqqqFBQUIJVK8fHxQU1NTWR819TUcPv2bZEI2bZtWwICAsRepahWVFFRQU1NjTAujYyMmi0jpaOjIwqd/CvCw8Nxc3MTFKGQkBDxG7q4uNCzZ0/s7e2JjY1l+/btzJs3DxcXF6ytrTl16hS2trZYW1sTGRmJmZkZurq6KCkpYW5ujr29PampqWRkZIi9QyqVNjGmGhsbMTc3JyAgQGiSOjg4CBm9F8WzhSWqq6uJi4sjOjpaFArR0dEhICAACwsL8vLycHR0RElJifHjx/P48WM2b95MbW0tAwYMQFtbG0tLS1asWMHly5eFpujVq1eZPHkylpaWHDhwgPLycu7du4eRkREzZswQ+sR79+5lw4YNWFpaNjFQjx49ypEjR2hoaGDJkiUizP6i6NixI66urkI9KTg4WCje7Nq1i4sXL2JoaNgk8SgzM5PMzEyioqKIjo4mOjqafv36MXLkSHE57NatG6GhoURFRQnVHGVlZRGhDAkJwcbGBm1tbZEHFBMTg7m5OZaWlshkMqKjo1FTUyMkJESso+ZSXDZv3oyDg4OgDCguxVu3bmXz5s3cuXOHN998EzU1NS5evIiysjLz58+nrKyMtWvXsmLFCtGngoIC7ty5w6lTp7C0tGTy5MnU1dXxww8/0NDQgK6uLlFRUZw+fZqqqio6d+5MQEAANjY2ogiOInJfU1NDTk4OOjo6gjakoK39JzSfMIncZbxo0SK+++47dHR06NatG97e3vz4449s27atiTdSUUsX5EaTwrhrbGxETU2Nnj17smDBArKzs+nSpQvFxcWsXbsWQ0NDIiMj6du3LwkJCZw6dYrMzEzU1NRwdXXFwMBAeM6MjY2FgQxw+PBhPvjgAwYNGtRs41Wh66igCpw+fRotLS2mT5+OVCqlpKSEbt264enpydmzZzl79qyQv1KIhFdVVRETE8OxY8fQ0dFh4cKF9OzZk88//1xIRmlpaaGnpyc2S5lMRlVVFWZmZrz++uv07duX1q1b4+vrK2o6q6ioYGZmJoz248ePEx8f3+zxU1RLUlVVJS0tjT179gj6RnR0NA8ePBDE67fffpvBgwejpqYmNntVVVUMDQ359NNPm3jD9fX1+eCDD0TJw+LiYqFFGxwczOzZs8U8qKmpEaGxe/fuoaOjw8CBA0lLS2PJkiVkZ2ezYcMGevTo0WxqhLGxMT179hShtJUrV2JhYUFoaCihoaGsWLECJycn4f3ds2cPK1euxMfHh4CAAA4cOICPjw8RERG0b99e1Fk2NjamXbt2jBo1CmdnZ27fvk1mZmaTzf3GjRtkZGQwd+5c6uvrmTVrFsbGxixcuJDOnTsL2SaFkZOSkkJeXp4oI/yiCAkJ4euvvwYQBQUUXhCQH6qKkn7FxcWcPXuWsrIypk+fzmuvvUa3bt34+eefOXbsGLa2thgZGYmwUX5+Punp6VhbWzN58mQmTZrEhg0bWLx4sSiysGzZMkDu/bl37x779+8nLy+Pzz//HDMzMyZMmCCq0bi4uNDQ0NCEV/YiOHjwIAcPHuSLL74Ql7eioiJRdMHNzQ2JREJxcTEZGRkiiRHkvGdHR0exJxw/fpz169ejr69PbW0tYWFh3Lx5U2RQ19XVER4eLubas1qRivK93bt3p1WrVpw6dYrLly8ze/ZsccBVVFQ02/BR/I61tbWkp6ejoqIijL3bt2/z6NEjOnbs2IRPa2dnx969e7l27ZpwGoC8oMOGDRto27atmK+XLl1i3bp1aGhoYGtrS2xsLK1atSI0NBQnJyeqq6s5fvw4xsbGdO7cmejoaFatWkW7du2E4fr9998TERFBnz59/pDxKpVKiY6OFlSGVatWoa6uzrFjxzA2Nmbu3LmC29u/f3/BB83LyxPJN4oEy06dOtG2bVtkMhmfffYZd+7cQUtLi9DQUAICAjAxMWH06NFs27aNUaNGMXPmTNatWyfGp7a2FqlUir6+PsrKypSWlrJ3714aGxuF0H1zx9DT01PQwxTIyspCT08Pf39/PDw86N69O4mJiRw+fBiQ778+Pj7iYn769Gm++uorCgoK2LBhA97e3iISV1tbi4mJCVZWViJz3draGj8/P3EJO378OHfv3qVLly6YmZlRVVXFrVu3SE9PZ8iQIbz33nvY29sLo+tZA/dF0NDQgEQiQSaT8fTpU0G/aGhowMDAAE9PT+bMmSMus0VFRVRWVorQ9pAhQ4iIiBA6pQ4ODjg5OeHn54eTkxOnT59m+/btDBgwQFTSzMzM5OzZsxgZGREREQHI95rFixfz5MkTevbsKS4M6enpnDlzhhs3bjB+/HjmzJlDeHh4s/o4ePBgQL4m9+/f3yQnwtTUFHV1dVxdXQkODqZz5858++23XLhwgRMnTnD37l22b99OQEAAn3zyCfr6+hw6dAhLS0sho/fJJ5+Ql5dHu3btMDAwYO3atXh6enLu3DnhvAK5vZScnIypqSkNDQ2MHTuWAwcO8P333wsHiSJPoTl48uQJPj4+fPDBB9y6dYvvv/8eDw8PXnvtNe7fv4+1tTX+/v4i4jR+/HiWLVvGhx9+yNKlS/Hx8WH69OmijVFRUWzduhVfX1+GDBlCTk4OH3/8MY8ePcLFxUUU0amqqmLAgAFMnjyZuLg4jh8/DsjtLIVevFQqFXNTYbS+SL5Ss43XoUOHUl9fL3QpBw4ciL29PaWlpfj6+vLll1/Sv39/IiMjWbp0KZ6ennz55Zfk5+ezbNkyEhISGDx4MFOmTGHWrFmCY3Hx4kXS0tIIDQ0VP9KuXbsYPXo02travPXWWygrKyOVSkXYpLGxUWx2WlpaPHz4kF27dhEZGcnQoUNFFZ3mQCKRMHLkSH788UdOnDhBWFgY77zzDhKJhFatWiGVSsVGZWZmRqdOnTAxMaGhoYH8/HzhpXRwcMDa2pqKigq6desmMrQLCwu5d+8e7dq1azJAEomEf/7zn1y5coU333yTgIAAUSDAxMSEXr16oampybZt2/jhhx8oKytDV1cXJycnwbl5UaSnp/Po0SORhb906VLi4uJISkrC1dWVgQMHcv78eaqrq/H29hZhx5iYGBYsWEBiYqKomKNQWygrK6O+vp4nT54QFxfHiRMnOH/+PMrKygQGBooD5+rVq5SWllJZWSnk0x4+fMjp06e5d+8eo0aNYtGiRcTFxZGWlsbRo0ebGMgvgqCgIMHramxsZMCAAcKjCHKvx7M82oCAAGbNmoWLiwuWlpYkJiYKD9iYMWOIj4/n888/p1WrVnzzzTfU19czf/58jI2NmTZtmvhcRWKDm5sbT58+5ebNm2RnZ5Odnc2RI0dwdnamvr5eGAYgL2VrY2PDkydPnuu9+T0oDr7a2lri4+Pp1q2byPhUQOGd19fXx8zMTBi2+vr6pKenk5eXR1paGra2towcOZLBgwejoaEhyudaWVkJvWNF+9q1aye8IJGRkU343devX+fWrVtYWloyYsQI3NzchEF+9uzZZoxgUyhKIe7cuZOYmBhmzZpFdXU1W7ZsoWfPnoLsr/AMVFRUsGfPHqqrq+ncuTOenp54enoyefJkbGxs0NDQYOXKlZw/f15I4+Tk5DBixAjKy8uZN28e7733HvDrQdy1a1ex7sPCwkRSQUNDA0pKSkybNo22bds2q8pWVVUVEydOJCgoiNdffx1ra2tyc3M5efIkycnJODo6NpFQu379OufPn0dTU5MPP/yQkJAQkpOTWbduHf/4xz8wNDRk6NCh4vfo0KEDmzZtwt7enqdPn7JixQqxRp2cnKipqRGlNVVUVPDz8+PNN9+kdevWNDY28tNPP3Hnzh0WLlxIx44d/1AW95kzZ9i0aRPvvvsu48aNY+bMmTx+/Fjs4fPnz0cikXDkyBE2bNjA48ePad++PZaWlpibm4soyZgxYwT3VyqVMnr0aNLT09mzZw+7d+/mp59+YurUqcyePVt4dBXVfECuie3u7k5WVhYPHz6kZ8+eNDQ0cP78eXJycmjXrh1t2rRpdv+0tbUJDQ0Ve9S2bdtobGxk7NixPHr0iPXr14ucgJycHObPny++X6GEY2Vlhbu7O9u3byc3N5dVq1axbds2li5dKrS0u3btSkBAgHBcVFZWCunETz75hOzsbI4fP056ejqTJk3CycmJLVu2iPKbR44cwdPTE1dX1ybG0otAYUzp6uqip6dHUVGRSLQaN24cn376aROK1pMnT9i5cyczZszA3d2dTz75hLS0NBFluHHjBjdu3EBdXR1vb29WrlxJTEwMy5cvZ+/evezcuRMrKyvMzc25f/8+Z8+eJScnh8jISIKCgggPDxelZvfs2YOpqam4aCsqcf4RlJeX07VrV9zc3ESUUSaTMXr0aDp06EBDQwMBAQHY2tpiZmZGY2MjN2/eREtLC2NjY54+fSoKugwZMgQ7Ozvy8/P59NNPSU1NZeTIkeTm5rJhwwbg12I6IF/bT548Ed72hIQEPvjgA6GN+izFT+F9bQ58fX1xdXVlwoQJjBw5UvD0Z82aRV5eHl5eXpw7d05UeXzy5ImQPzQxMSE2NpZ+/fqhra3NuHHjGDt2LNra2hw4cIApU6Y0KbaSkJCAVCoVEQHFJUuRD6SwaU6ePEljYyO9evVCIpGQn59PQkIClpaWTUq6/x6abbxeunQJqVQqeItvv/22CIMrpJ9APkGjo6MFL/Xy5cvCU/Tw4UNcXV3FbX/16tXcvn2b4cOHExQURFRUFAEBAfTo0YOFCxeioqLC9u3bxWd///33JCQk0K9fP9TV1YX0krOzMzdv3iQrK4ulS5c2mysJ8sPK0dGRgoICHj58yBtvvCEqs2hqaorMuaKiIhwcHITno7q6mvz8fKGHWFlZSXBwsJhohYWF1NfXI5VKycrKIjMzk5qaGioqKnB2dkZDQwMNDQ1yc3M5ceIEVlZW6OvrU1NTw8WLF/H19cXa2pp9+/aJwgRTp07Fzc1NCNG/KCoqKrh06RIgFy/u1KkTpqamKCkpiSoiFhYW3L59W3iC7ty5w08//SQ8hSkpKcJANDExQVlZmRMnTrBx40aRHKAgtCsrK/PDDz/w1VdfAXLJJYWWYZ8+fcQmIJVKWbJkiVAtmDZtGvr6+nz88cfN6p+GhgZ1dXWoqKjg4eHBd999R1ZWFlevXqWyshI1NTWioqJQV1fH3NwcBweHJklrJiYmpKSkEBMTg5+fH8uWLcPd3Z20tDQqKiq4efMmN27c4PXXXxebz6NHj3j48CGWlpaYmJhw9uxZbty4gY+Pj+D5xMfHU1JSQnZ2tvAMBgcHExwczP79+5tl4CkyfxMTE7G0tMTLywupVEpZWRkXL16koqICNzc3wctV6JuCXO+zVatWqKmpiSQVRchPQ0NDSNClpqbi4OBARkYGKioqgruWk5PDtWvXuHnzJoaGhgwaNEjMndGjRxMVFcWsWbOYPn06NTU1nDhxgkOHDjX7kqWgVpSWlgoZJC0tLRFxKS0t5ebNm+jq6qKvr09OTg5JSUlkZGSIxJzy8nJsbGzw8fERiRAK3WBNTU26dOmCn58fUVFRWFtbY2lpKYoN1NTUUF5ejrq6OmVlZTx48ECoYdja2nLo0CG++uorvL296dChA/7+/s0yXn19fYUAu8Lg3L9/v6A8TJw4Ufwd5GHK06dPM3r0aOHxPXr0KBERESIMruAjl5SUUFdXx+jRo8Wec+vWLfLz88WF39DQkKlTp5KamioSDidNmgTI96uHDx/i4ODAxIkT/5CqCfxaGU0mk6GmpkZAQAC3bt1i1apVDBkyBBcXF+EFTkhIoLy8HDMzM7p27SrC/Kampk0k3BSep4CAAHE5evz4Mfb29iIy5+DgIAyQu3fvkpWVJf6t0D1WUVEhOzub5ORkYRw0l/OqpKQkDNdDhw7x3XffMXDgQFRUVNiyZQtr165l6tSp9O3bl4iICCGFVVJSgrGxMX369KF79+589913zJw5U8h3KfJJFGOhpqaGpaUlDx8+JC0tDWtraywsLMjPz8fe3h4dHR0SEhJ4+PAhtbW1QmIK5BJoO3fuxNfXl9mzZzfxEr8IGhsbRT6Lvr4+Li4ueHl58fTpU+zt7QVtQkVFBVVVVW7cuCHoUWvWrBFUw+LiYiIjIzl58iSJiYnY2dnh5eWFsbExPXr04MKFC2zdupUFCxbw5ptvYm1tTXZ2Nrt27SI+Ph4HBwemTZsmPu/o0aP84x//YPjw4Xz99dciQlFSUtKs/oE8FF5bW8uECROacMQlEglt2rRpcrEpLi7GyMiI0aNHk5eXx4MHDwgODqawsJCffvoJIyMj3n77bQBWrVrF2rVr6dmzJyNHjuTy5cuYm5tjZ2dH+/btOXv2LCoqKqSlpZGSkoK1tTVBQUFs2rSJrVu3AvDWW28JYzM2NhYdHZ0mCZcvgt69e2NrayvyDhITE4UU4bRp0wC5NrkidyAtLY0FCxawcOFCOnTowD//+U/B6ZfJZGzatImZM2diZWXFm2++SXZ2Nv369aN79+6oq6tjbGzMkSNHuHjxIkVFRZSWllJRUUF+fj7nz5+nQ4cOlJSUCIlARdRPEeF9kYtys3ekHTt2kJ+fT21tLdbW1r9rIXft2pW9e/fi5+eHkpISN27cEM8lJyczZ84cnJ2diYuL4+HDh5iZmbFo0SIyMzN5//33WbRoEV26dGHu3Lncu3dP6MeCnBNZVlZGt27dKC8vZ+fOnQwbNkyI7J8/f57CwkIqKiqayHa9CAoLCzl58qS4oURGRhIQECBuVQsWLEBTU1OEUkpLS5FIJOjo6ODo6Mj333/P1q1bMTU1ZenSpWJiKA6B7Oxs6uvrOX36NKmpqVRVVWFpaUlwcDBjxozB1dWVMWPGcOTIEc6cOcPUqVP54osvyMvLw9bWFnd3d4qKili8eDHDhw8nLS1NaFa+KBobG0W4zdvbm++++47z58/Tpk0bGhsbSUtLo6GhgS5dumBvb8+lS5dYv3690PNsbGwUpUkV0NbWpqysDHV1dQYMGMCYMWNQV1fn8OHDQu7DwMCATz/9lNDQUH744QdkMhkBAQHk5+cLL7ICCokYOzs72rRp0+Ty8p9w9+7dJqF8kG/gixcvZvbs2bz77rt8/fXXQv7HwsKCoqIi6uvrMTExQVNTk+joaI4dO0bv3r1F4tjly5eZO3cuenp6rFy5son3Vk9PD21tbVEfu7KyEi8vL9599128vLyEisXt27dZuHAhenp6rFu3DnNzc+7evdtsr9bTp08xMjJqkgihra2Njo4OJ06cYNOmTbz33nvMmTNHjLkiqcrY2JjJkyeL8scAP/74owiXvf3225iamgr+eUhICMuXL2fTpk18/vnn/PzzzwwfPpwhQ4bg4eEhIgjOzs6iMMm6deuoq6tj/PjxWFhY0Lt3b1Ep6EXx+PFjUlNTmTNnDg8fPuSTTz7B0tKSdevW0bZtW8aNG8cPP/zAkiVL6NGjB5cvX2bjxo2MGTOGmTNnkpycTGlpaZOkgOTkZDIyMpg4caLwhO/du5eVK1fy8OHDJqWDlZSUsLGxEd4TQ0ND3NzchDzZoEGDWL9+PW+88QZdu3YVWtAvCkNDQ9q1aycysEFenldRhU5huFZVVaGhoYGNjQ3t2rVroiygqCh1+PBhoWH76aef0tjYiKurK927d8fKyoq0tDTy8/Px8PD4jfRcWVkZH3zwAW5ubqJqoKGhIRMnTqSoqIi7d+9iYWHRhF/8ohg9ejTDhg3D1taWoqIiVq9ezffff4+pqSmVlZVoaWlx8uRJ0tPT8fb25o033qBPnz4YGhpSVFRESkoKampqTQyurVu3sn//fkJCQhgwYADr1q3DxMSExMREli9fTmRkJF26dGHo0KGCVqbgXWtrazNw4EDMzc1JS0ujoKAAJSUlwfFubiKMYu5v2LCBFStWYGxsLBQA7O3t0dfX58aNG3z++efk5uYybNgwNDU1ycvL4/Tp07i4uNC2bVs6duzIJ598IuTlfvjhB8LCwggMDOTmzZvk5+dz7949MT6Kamdqamr88MMPxMTE8NVXX6Gjo8Pp06extramurpa1KPX0NDg1KlT3Lt3j3feeadZfXw2P+HJkyeiSlhBQQFbt25l0KBBjB49Wuj4GhsbExgYKOhuGhoaIhqyZs0akQg9YMAAMb98fX1ZtmwZvXr1Ytq0aRw8eJAPPvgAX19f6urq8PLywsbGpsncl8lkmJub06lTpybUmuaqKYDcKH9Rac0ff/yR7OxsbGxshA2SmJiIj48PI0eOxNPTkx9++IGEhATu3Lkjkrv9/Pzw8fFhxIgRGBkZsWXLFoYPH86AAQNYu3atoOWB/Dz18PCgf//+rFixApDTQ7744gs8PT2ZN29es/r37NotLCxk/vz5HDx4EFdXV1atWkX//v356KOPGDx4MKmpqezevZu9e/cyefJkrK2tiYuLE+/fs2cPZWVlrFu3jsGDB6Orq8v8+fO5ffs2vXr1EpSN4uJiUlJSSEtLQ1tbm++++46vvvqKBQsW0K1bN5YuXUpFRQU//vgjvr6++Pn5YWpqyr17916ocmizjVfFjb+6ulqoB1y7do27d+8ik8lwcnIS/z37gxkaGhIaGoq9vT0PHjzg+vXrZGZmMnnyZCorK3F1dcXPz482bdqQnp5OZGQkEolE6Arev39fePx0dHQICgqiqqqKc+fOsXXrVs6dO0fPnj3Jy8vDzc2NqqoqVq9e3STx4kXg4+MjwuWVlZUsX76cmJgYcbtOSEjA19dXHPrnz59nz549LFiwADs7O27fvg3IJUHCwsIE76+qqoqhQ4fSrl07Hj9+zNWrV9HT08PW1hYlJSVBMA8MDOTtt99mz549rFq1Cl9fX8LCwoRe3OjRoxk+fLjgaz67mF8UDx8+pE+fPkJLrqioSCQpWVlZUVNTg5WVleizvr4+oaGh9OrV6zff99NPP5GcnExoaCg9e/bEwMAAa2trYTxGRkairKyMm5sb7du3x9nZGT09PaZNmya4VyNHjhRcKAW0tbUZPnx4E53fF4XCeLx//z6HDx8mLS2NpKQkunfvzpw5czA0NOT27dsUFBTg7e1Neno6o0ePJjg4WBwOjx8/Zvfu3URFRWFqakpYWBgZGRmi9J3Cq6/IvlSE7EtLS9HS0qJdu3ZYWlri7+9PWVkZDx8+xMvLCwsLC7y8vERY7PTp03z++efCm/Ci0NTURE1NjbS0NHJyckQEABAZ289WYXn2pq6lpUWvXr2oqakhNjaWmzdv8tNPPxEXF4eNjQ0ymew3WerwaynMjIwMjhw5wptvvomRkRH37t0TxscHH3yAmZkZBw4c4NGjRzQ0NAgZuOYarwqJKoVMUrdu3TAwMBA6xNra2ri5uZGcnMzNmzdJT08XxTcU1J2CggJhkFRUVAjeoK+vr4gq6OrqimTSixcvsnLlSkaMGCEu5vn5+Tg5OaGvr09ubi7Ozs7CIA4KCqJVq1YYGBg0W+7Mz8+P9957D1VVVR4/foxUKqVTp07CQ6mgVCk81jo6OoSGhuLh4SHk3hoaGli2bBmDBw9m27ZtZGZmUlBQQHZ2NhoaGhQUFIiKhNbW1rRr1w4LCwvu3bsn9gElJSVR1bCgoAB9fX2SkpJwcXHB1NS0SZi/uairqxPqAtXV1VRWViKRSHBycsLCwoLGxkbc3NxQU1PD399fVL6rrKwU4WRHR0cCAgLQ0dEhOTmZR48eUVdXx/79+8nOzmbu3LmYmJgQFRXFpk2bAPj444+Fp1WhznDu3DlqampEFbzy8nKys7PFngW8UE31Z5GamsqTJ09ISkrC19eX7t27Cy9d586dWbp0qYjYGBkZMWDAAGxsbFi1ahU3b94kNTWVtm3bEh0dzZkzZygoKEBPT4/u3buLM+Xx48dUVFSgra0tPluxD+vo6FBcXMyJEyc4duwY5ubmdOvWjSFDhlBSUoKqqipt2rShbdu2REVFUVhY+FxN1n8HiUQilHQePXrEjBkzCAoKwtLSkpKSEs6fP9+EI2pvb8+4ceOEJJiNjQ2pqalcv35dKO84OjpibW2NhoYG8fHxlJeXI5FIKCoqwt/fn/v377Nt2zY8PDxo164dEydObKKQUVFRgbm5OdOmTRP0i3Xr1iGRSP5Qkq8iyqKsrCykC2NiYsjIyKBz585CEuzWrVvo6+sTHx/P/v376dq1K1OnTuX777+nsbGRvn37kpqayldffUVjY6PwLKampvLo0SPKy8sxNDREVVWV4cOH89NPP2Fra4uenh56enpER0fT0NBAx44d2bVrFzk5Ofz444+i1HxAQAD+/v5NEqVfBArKYtu2bTE0NMTb25vLly9jZmZGZWWl0LbX19cnLi4OiUSCsbExeXl5lJeXi0i7gYEBERER/Pzzz/Tq1UtQ1iZOnMisWbP48ssv8fHxIS8vj8zMTEaOHEn37t3FfvnGG29w4MABgoKCcHBwYOvWrSxfvlw4pwoKCjh16lSTMvK/h2Ybrwqvm1QqRVVVldraWi5evMj69evx8PBgxIgRpKSkcO7cOfr16ycMIB0dHQYMGEB4eDinTp1i6NChBAYGisSP4uJi4T0KDw9n5cqVbNmyhdmzZ+Pn58eTJ09YvXo1hYWFvPnmm4wbN4709HQhA3Ls2DGOHz+Oq6srs2fPxsvLi59//pnt27czY8aMF+7fs3zJQ4cOcfnyZZydnfnyyy9xdnbm4cOHNDQ0CG/JpUuX2LBhg+CtWVhYiCQhR0dHSkpK+Oyzz8jNzcXT0xN/f39cXV3R1dUV8hl5eXkkJCQIusSMGTNwc3Nj6NCheHt78/PPPwNy4nybNm0EWbuxsbFZPEkFkpKSBMVDWVmZ8PBwNDU1kUqlou+KTEegScgV5IeQ4rA/f/48GzZsYOXKlcycORM7OzvKy8vJy8tj37593Lp1i9dff12UKd20aRNFRUXMnTtXGK/KysqCMK+Aj48Pbm5uGBkZNdsbYm5uzpMnT9i+fTvr168HoHv37nz77bfCOFdWVqZ169aUlpZy+vRpIiMjm/C2vLy8BGdZkdBmY2PDxo0bxcGhCF8rKysjkUiws7Ojrq4OJSUllJSUqK6u5t69e1y7do3Y2FiRDdyuXTvR3+vXrxMXF9fsuvGKjXz//v08ePCAt99+Gw8PD5KTk+nbty/vvPPOc41+hbSQgYEBUVFRfP7552RmZhIYGMjAgQPx9vZGR0cHVVVVkYGugJqaGr6+viI0n5ubi6WlJRs3buT+/fvMmzeP3r17s3r1asaNG0dVVVUTo7q5mDNnDqtXr+bdd99lxowZInT98ccfExMTQ1RUFGFhYdjY2PDpp5/i4eHBxo0buX37Nhs2bGDAgAF4eHiIBDQrKyvat28vPHpSqRRvb2969uyJq6srb775pihkYGxszIQJEwTPdvXq1Tg7OxMTEyPoFCBP2FFUs6qtreXgwYMv3D9vb2+8vb25e/cucXFxGBkZ0bdvX1E68V+hp6dHcXExeXl5VFdXk5eXh5GREXZ2djg7O+Pl5UVsbCzx8fEUFxfTvn17Bg8ejJaWluBJKmhMp0+f5tixY5iamtK+fXtee+01NDQ00NfXFzJoSkpKODo64urqSmVl5R/aa86fP8+BAwcYOXIko0aNYsWKFbRt25bGxkY6dOhAx44dkUql7Ny5k2PHjnHlyhWGDh3Knj17hDyRwvDMzMzEyMiIiRMn0qtXL06cOMHFixcZPXo0+vr6PHr0CECUFIdfL5fl5eUkJSVRUlIiikOoqKigoaGBVCqloqICfX39ZksPxsXFERUVRc+ePcXFV2EAu7q64uLigoqKChkZGVy/fh1LS0tcXV0JDAwkPz+fjIwMNm/ezOrVq7l//z4aGhqsXr1aROwaGhpQUVGhrq4ODw8PwsLChMqCon9vvfUWO3bsAOTn6PDhw5kwYQIffPABI0eO5NGjR1y5coXXXnuNLl26oKamJpLHXgQK/dL4+Hiys7OfGyV61qnh7e0tqkMq6BhGRkZNjM/c3Fzxd8VY9e/fn+vXr4sEvu7du4sLR0hISJP3a2lpoaOjIyptXbhwgcWLFxMcHPybqNuLQOEh9PLywsDAgNOnTzNz5kxSU1PZsGED06ZNY//+/Tx8+JCvvvqKkpIS1q1bx8CBA1myZAlaWlocPXqUffv2ERsbS1paGiNGjADkRrWiVO/hw4e5fv06a9eupWvXriLpOi4uDnV1daF3rpC/+/rrr0Wi84wZM0QEqLlQlJVVUVHBx8eHpUuXMn78eEpLS0Uy3/nz5/n66685c+YMenp6hIaG4urqKnIgPDw8cHd3p7GxkTVr1vDkyROGDx/OoUOHmlTV6tGjB1VVVfTq1Yt3331X0EoV4/aszvSBAwdIS0sTuUkrVqwQWuP/Cc02XhMSEjA3NyczM5PCwkJMTU3x8vJi+vTpQrdy3LhxnDhxAmVlZSZMmADIN8vi4mLmzJlDv379eP3117l79y7vv/8+NTU1YuPOzc3l6NGjKCkpERwczNWrV0lKSsLBwYEpU6YQFxdHaWkp169fx9zcnIEDB+Lm5sbjx48pKioS2Y9mZmaMHDlS6Fa+KIqKiqiursba2hpnZ2caGhrQ1NQkNDQUVVVVIiIiuHfvHra2tshkMlFGrqCggIyMDBYvXszZs2c5cuQIhoaGmJiY0L9/f65cuUJiYiKurq4iC/zZ37S8vBxra2vy8vKEXNeAAQNEwtrFixe5cuUKEyZMEDI3d+7caZY0jwLOzs5kZWVha2uLmpqa8LCVlJRw8+ZNcnJyCAgIaMKRvHbtGjKZDCsrK8zMzIQxO23aNKFcoKB2KDiTly5dIikpiUGDBuHn54efnx/Xr1/n1KlT3LhxA21tbVGzWiHFZWlpSX19Pfr6+sJAaG7SXWNjI/fu3cPa2pr33nuP+vp6KioqWLNmDR4eHmKOxMbG8vbbb4vkhmfDqa+99hrKysqkp6djYmKCsbExISEhwmtx9OhR4uPjhXySnZ2dMPoUqK2t5fr16ygrK9OlSxd27drFN998Q4cOHTAwMMDf3582bdowa9Ys2rVrR3p6erP6WVVVhZ2dHfHx8SxZsgQ9PT2Cg4OZMmUKIPd679y5U3A727Rpg46Ojhjvu3fvcvDgQdzd3ZkzZw5OTk5C1QLkIdFntZuVlZXFodOpUycaGhrYv38/e/fuxc7ODplMxpYtW4iLi2Ps2LEiMe3WrVvcu3evWX0DhMyXgYGB4H8rjBEXFxdRFEBLS0vonz4rU+fm5oaHh4eo5qempoapqSkGBgbU1NTw448/cu3aNaZMmYKDgwNBQUHionjt2jVMTExYtmwZ2dnZzJ8/HyUlJRwcHPjss8+orKxk9OjRTTzmzY0QKKBIpkhISCAhIQGZTCaiVgcPHiQzM5M333wTS0tLUlNTWb16NSYmJsybNw9VVVW+//57QWfYsWMH0dHRvPvuu00uRNra2k08br6+vmhqauLm5oaKigr+/v6oqKiIi5e7u7tIlDt58iR5eXlNdLVfFI6OjqKstOLfoaGhHD58mNzcXGGEtWrVipUrVzJ79my2b98uKvgoktbu3r1Lhw4dGDlyJCkpKRw4cAALCwtatWrVxBCbOnUqM2bMEIaORCJh6dKlPHz4UIR0FYVhrK2tGTp0KKmpqcTHxyOVSiktLW1W/yorK8VerYBCvvFZWpW1tTWdO3cWDoHJkycTGhrKxo0bRVjYxMSExYsX065dO+7cuUN0dDQHDx6koaFBqOAoCqFER0dz4cIF0tPT0dDQoGvXrsTHx+Pi4kJAQADp6els3ryZTz75hLKyMjZu3MisWbNQU1Nrthf98OHDWFtbM2/ePExMTPDw8CAyMpJPP/0UAwMDUfXp5MmTdOjQQcwzV1dXUlNTRZ/d3NyYN28ejo6O+Pj4UFpaio6OjnCYKCpo+fv7o66uTp8+ffj5559paGjgyJEj3L9/n/j4eObPn0///v0pKSnhww8/FN7rIUOGEBAQ0Gw1BZDPE2VlZfT09Hj69Cn/+Mc/hA7t8uXLefjwIU5OTri4uBAZGSnC5gplj+nTp5OXl8fOnTvJy8ujV69eDB48WOyhHh4eBAcHk5WVxdGjRxk/fjxr165l8ODB2NjYcOTIEVHpEuSOs1u3bqGurs66desoLi6mrq6OvXv3imTG5iAzMxNvb282bNhAaWkp3377LY6OjkRHRxMTE0Pbtm3R19cXuSgaGhq8+eabWFhYsG/fPvLy8ti1axcymYwxY8awadMm5s2bx+HDhzE1NeWLL77g9OnT/PTTT+zbtw9nZ2feeOMNnJ2dyczM5ODBg0ilUsaMGYOZmRlFRUWsWLECLS0t5syZw9GjR1m6dCnJycm0atUKX19foqKi/m2fmm28KgZYcUO4c+cONjY2LFq0CIlEQmJiIpWVlaIErAIymYz4+Hh+/PFH2rZtS3l5uZBOqa6uxs/Pjz59+nDjxg3WrFnD8uXLmT59OuvXr+fkyZMsX75cTNARI0awefNmtm/f/lyvYElJCSYmJvTu3ZvevXs3SzZDwWUFuXerU6dOqKuri7CNm5sbMTEx7Nu3j+rqarGhenl5YWtrK7TUFCGBM2fO8Mknn3D16lWkUilxcXHiEMzIyGDv3r3k5OQwfvx4PD09Ra37zMxMbt26JUJfikzSe/fuYWFhgZKSEq6urs0OVYI8C7m4uJiSkhJhYKuqqiKTySgqKuLp06fk5uYK4zUyMpLPP/8cJycnlixZgo+PD5WVlWRlZeHi4sJXX31FRkYGFy9exMbGBnd3d5SVlenUqRO+vr7C+5aeni6MqJycHJHl/fDhQxHCCwwMRENDAyMjI1H9qLmJPmlpaURHRxMSEiKyT/fu3csbb7yBtbW12MQfP35McXExTk5OwvMEiKoiNjY2QgsW5HSE8vJyrly5wsGDBykqKhKSTampqWRmZgoer5GREYmJiVy/fp3Q0FCGDRsmdDXv3bvH6dOn0dXVJTQ0lN69eyOVStm7d+8L91Emk6GhocGQIUOQSqUsXLiQzMxMrK2tKS4uRklJSSR3qKqq4u/vj66ubhP+p5WVFfb29nTs2FHwjevq6pBKpdTV1VFWVoaysrK46T969Ah9fX3CwsIICAjg3LlzomrKa6+9hqmpqVivXl5eIsS5c+dOfvrpJ0E5elEowoH19fVkZ2eTmJiIqakpTk5OREdHC33Q6upqWrdujaGhITU1NRQUFGBqaiqMdGVlZWxtbcW4GhsbiwjSjh07OHv2rLgEDxs2jAcPHuDk5ISKigr29vZUVVUJDUdjY2OSkpI4ceJEE85zXl5es0N5ycnJwujPzc0VJa+fPHmCkpISJSUlPHr0iLy8PKKioggMDBTKAPn5+RQXF5OYmCgOQSsrK548eUJMTIzQgSwpKUEmkwmjvqqqClNTU7p16yY0gnNzc1FXV0dLS0sUSAD55evMmTNcvHgRCwsLYcw2ByEhIYSEhFBZWSkqYTU0NJCent6EllJbW4uBgQGxsbHk5eUhlUpxdXUlJCREiN8PGTKEWbNmMXv2bHbv3o27uzvdu3enQ4cOXLlyBX9/f6ZNm9bEa1NQUMCBAweoqakRodxNmzZRXFzM+PHjmTBhAnFxcWhra4vfqjkwNDQU1AoFKioqyMjIQElJCUtLS8zMzFBVVcXExITq6mpBBykpKRGJs+rq6kyePBkHBwf27dvHt99+S15eHurq6vTs2VPQY2xtbUWi1okTJ9DQ0GDPnj2oq6uzePFivL29GT16NNOmTWPNmjUMHToUXV1dEhMT+frrr2nVqpWIVr4o1NXV8ff3p7a2Vpw3hYWFxMTEMGbMGAYOHEhUVBSXLl3CxcVFSDBaWFjg5OQkKAM6OjpMnz69SQGhkpISUf75448/prKykrq6OhobG3n//feZMGECycnJ3L9/n0uXLvHgwQPMzc3R1NSksLAQLS0t7t27R8eOHfnoo4+wtrYWl+/mwNzcHFtbW7EGNDU10dLSwsnJSUhxKZLIJk+ejLa2Nt98842g/CnsDUUp9/fee0/QrBSe5crKSkaOHImamhrLli1j8+bNBAQEYG1tjb29PY8ePRK/TXJyMp999hk9evTg5MmTgDxZa9GiRchkMuGgeFF4enoSEhLCuXPn2Lx5M6qqqowYMYKcnBy0tLRISUmhoKAAOzs7Hj16JErel5eXo6Ojg7a2NpmZmeTl5TFhwgQmTZqERCJh0qRJ5OXlERsby6BBg4SSj4ODg5BOu3btGqmpqbi5uZGdnc3t27dZsmQJjx49Yvv27fTu3ZtRo0Zx+vRpVFRU6N+/P/b29i/feFUcZNra2gQFBfHFF18IHouC/zl48GC+//77JjfPBQsWcPToUfbs2cNbb71FXl4ew4YN4/XXXyc2NpaGhga0tbUZNWoUTk5OglPYo0cPXF1dm9R/z8/PJzY2VniBnoWiUEBzs/EUULxv9+7d7Nu3j549ezJs2DCMjY2RSCTMmjWL3r17k5SUJEo76urq4uXlJQjfCgO4pKSEqKgo2rRpI7iehYWFXLlyhW3btvHzzz+TlpZGjx49moTQs7KygF8zXxVZ+VVVVeTk5HD+/HlCQ0PR0dFpIqXzotDT08PGxoa3336bK1euiCooCsPkXz1IpqamBAUF4eLiIsbl8uXLvP3224JQbm1tTWJiIv/85z/R19enY8eODBkyRPyesbGxrFq1isDAQGbMmEFqaio3b96ke/fuGBoakp6ezuPHj6mpqcHb2xuJRMLZs2exsLBotmpEVVUVubm5PHz4UGjqdu3ale+++w4bGxtBlvf09GTEiBFkZ2fz5ptvMnfuXLy9vUW9dTs7O3bs2IG+vj7fffcd+/fvJzg4mPz8fCIjIwkNDWXChAkYGRlx6tQpli1bxoMHD3j99ddZuHAhZWVlJCYmoqKiwsiRIxk2bJigfJibm6OtrY1EInnhRIFn8WxSQocOHfjiiy9ITk5GV1eXlJQUXF1dGTVqFJ07d6aurk4kvKSnpxMXF0ebNm3o3bs3+/btIzExkXPnzolSzmVlZaxfv57o6Gjmzp2Ln58fn332Gffv3xce2s2bN7Nq1SqUlJSYO3cuffr0oaKiglGjRjF69Ghx6WpoaBDahX8UqampHDp0iOPHjxMUFESfPn1E3e2KigpmzpzJN998Q3l5OWpqanTu3Bl7e/sml1qFAREeHi6qFzU0NBAfH09MTAxZWVkiKS0pKUkYHYpKXc9m/U+fPh0/Pz/hqa+vr/9DXtf8/HwcHBxYt24de/fuZdKkSaJk8ltvvcXp06f5+OOPGTduHFu2bOH8+fMsWLCAzZs3c+TIERYvXsz58+cxNTXF3NwcDQ0NoSmdn5/Pl19+iaqqKq+99hpZWVmEh4dz7do1Fi1axPz58wF48OABGRkZeHl5CZF+iURCVVWVoIAtW7aM/v3709jY2OySlAooas5bW1vT0NBA69atcXR0FFw7VVVVevbsSUBAAD4+Pjg7O5OcnMzOnTsFHeD+/fskJCTQpUsXUcHHwsKCuXPnsnr1arKzsyktLRUROJBnVY8fPx5/f3/Mzc3Zt2+fiAqOHDkSHx8fzM3N0dPTEwZlc2BmZib447t27cLGxgYVFRXBt1dSUuKDDz6gbdu21NfXo6KiglQqZf369SxevJji4mI6depEt27duHfvHhs2bMDY2FhQpVxdXVm8eLHISNfT0xNlXufPn4+tra2gcM2ZM4eamhru3LnD5cuXqa6upq6uDldXVxYtWsR7771Hv379mq23rLh0rlq1ih07drB69WoGDBhAZGSk4MsbGhry+uuvU1NTw5QpUzh9+jTfffcd/fr1IyUlhUOHDuHr69tEJlAqlZKUlERjYyMuLi6C96kooqOocKUoAR8WFkZxcTE7duzg9ddfZ+zYsSLZNTc3F4lE0uRy3hwoKSmJvVlPT4+PPvqIIUOGIJPJqKmpEYVbFFUgGxoa+P7777lw4QI6Ojp89dVXuLq60rNnT3x9fYXhqkBiYqLgiY4bNw4NDQ2ePHnShDvfv39/1q5dy86dO8X/nzp1itmzZ7N27VqR7FVaWkq7du04c+bMC/dPYUh+8MEHODo6snjxYjHf2rZtK2SyKisrWbt2LQMGDBBG/IgRI/D09CQ4OBhVVVVatWpFYWEhISEhXL9+nYqKCk6fPs2QIUPo2bMnkyZNEkmSEolEqNRYW1tz8+ZN5s2bR0xMDKGhoaJdo0aNEmooCn34/4RmG68GBgYUFxeTm5vL48ePUVdXRyqVcvnyZU6cOEFJSYlIRgH5baOmpgYzMzNMTEzYtm0beXl56OjoMHv2bEJCQmhsbCQyMhKZTIaDgwP29vYUFhZSWFgokr+ePHkiOqbYiBISErC1tRXZv42NjYJm4O7ujq+v7x8yYk+fPi20LMeOHSvkkM6ePUt9fT1OTk706NFDvD4lJYXz589jaGhIWFgY/fv355tvvuHevXvs3r2bb7/9Fmtra0aPHk2bNm0ICwvjypUrqKqqCg3SH374AR8fH3R1dXnvvfeoqKgQnkBtbW28vb158OABmpqaGBsbk52djb6+frPDXCA3hhVeOEXZUpDX6VZo2VlbW4vFrBBKf1ZfLjU1lbq6uiaVTBwdHdHU1MTMzAxvb2+KiooEVzQpKYmqqirBKXN0dMTOzk4Ybt7e3qICR+vWrUlLS2Pt2rW0bt262cZrUFAQ+fn55Obmsm/fPgIDA/Hw8GDMmDHiNebm5gQGBjJy5Eiio6NF6cHx48fz7bffiqpLBw4cQENDg4iICO7evUtgYCBKSkpCqk1xqSoqKuLmzZtUV1ejpaWFubk55ubmjBo1ipKSEvLy8rC0tGySTKDQCK2trRW36xdFcXExN27cQEtLi5CQEFFGNS0tjbq6OlFxSHEI3r59m6KiIiFZpChC0bZtW6qqqjh9+jRGRkZIpVLKy8tZv349aWlpdOvWDX19fZYvX05dXR1r1qwRURVFSLe2tpYnT57g4uLC6NGjRRtTU1M5f/48ampqzfa6gnyeamlpoaamRnZ2NufOnePcuXM8ePAAZWVlevToIaIDRkZGVFdXiyppCsOyoKCAoqIinJ2dRT3yxsZGcnJyqKqqQk1NDYlEgpubG0pKSujp6dGmTRsSExOJjo4mMDBQjFl1dbVITlQk/cCv0ajmQlEzXENDAwcHhyaeTZlMRkNDAyUlJVRVVaGqqkpmZiaPHj3C3d2dHj16sHXrVuzt7Zk0aRIqKiocOHCA8PBw2rVrJyhM2dnZmJqa4uLigq2tLampqeTn5/P48WPMzc0pLy9HVVVV1GtXeB7v3r0rtLv79+8P0KRkbnNhaWlJZGQkq1atwsXFhdmzZzfhQ/v6+hIdHY2Li4uIlgQHBws9UXt7e7S1tUlMTKRbt27IZDI+/fRT9PX16dGjhwhVnzlzhiNHjuDv74+FhQWenp7igAREMRQPDw9BR2poaCAyMhJnZ+cX0pd8FmZmZtjZ2ZGRkcHNmze5ePEibdu2pU2bNlRVVXHhwgWuXbuGi4tLEwqOIuEZ5Geqs7Oz4DEHBQVhZGRETEwMffv2JTAwkKysLC5dukRtbS09e/YU+0thYSFbt25FTU2NYcOGoaqqSkJCAj169KBDhw5ERUXh6OjIlClThBZscxO2QK7wc+PGDSwsLMRFzdXVlR9++IE7d+7w1ltviTPf2NgYPT09jhw5grW1tajSFxUVhaamJpMnTxY0A4V2q8LYU8z1goIC4uPj0dDQwNvbuwmPNSsri/j4eFRUVLCxsUFZWRkLCwsqKyspKir6Qw6du3fvoq2tLfYQkEemFPYIyOlzN2/eFHviyZMniY2NRVtbm3PnztG5c2fefPNN4anV1tbGysoKAwMDEZF++vSp0DRV7P0g904qlIsyMzNp3bo1W7Zs4YMPPuDy5cuiqlhSUpKg1zUHN27coKysjK5du4rzsLS0VIylvb09RkZGWFpa0r9/f7GfKfaH1q1bi6RxkFMdNTU1he2Vk5MjqnDNnTsXkDtYGhoa0NfXF5fJ4OBg7OzsKCwspFWrVhw7dkxUs3R3d2fbtm2oq6u/ULT1D4n3PX36VEjRrFu3ju7du3P+/Hnat2+Pqakpe/bsYe7cucyZM0dsmF9//TXbt2+nqqoKKysrxo0bh76+PocPH2bhwoVUV1fTp08fHB0dyc7O5t69e9jY2AhP7/Xr19m3bx+mpqZMmTIFU1NTzp07x82bN8UPKJVKkclk3L17l5iYGPLz85udefjzzz8LhQNoWmP31KlTrFmzBkdHR8aNG0eHDh3o1KkT9vb2zJ8/nzNnzrBjxw769evHjBkzWLZsGStWrKC0tBQLCwtMTEzEDTM8PJzx48fTqlUrzp8/zxtvvEFmZia9e/dm6dKlv7m5XbhwgatXr/Laa6/h6enJ48ePuXXrVpMN8UVRX1/P7du3mThxIn379uXQoUOMGTOG7OxsiouLcXBwEDqMgLjpq6ioiFCikpIS33//PV5eXuJzjY2NGTNmjEh8Wr58OWvWrKFXr17MmDGD999/n9LSUh48eIC3tzdKSkokJycLg1dxQIFcEeHKlSt/qH+2tra8/vrrgo6grq4uQnUK9O/fXxjnzs7OLFiwgGvXrjFv3jzu3r0rXqeoJmJgYMCAAQOYOnUqt27dYv/+/U00IRXPu7i4CI0/gClTpgi5GAUUvCLFpiiVSpttvB4/fpzVq1czdOjQJsa9tbW1UAHZunUre/fuFZIlmpqarFixgsmTJ5OSkkJycjIODg7o6ekJvUb41WgEuVFeVFSEvb09WVlZJCUlYWJiQocOHejevTtxcXHs2LGD6urq39QTT0tL49ChQ9jZ2TF9+nS+//77ZvXx/v37+Pv7Y2lpSatWrYQ+8MmTJ1m2bJmQAcvJyeHy5csUFhZia2tLq1atRCRDUWYyNTWVgIAA1q5dy/3790WSno+PD7Nnz6Z9+/ZER0cTFxcnvO8ffvghixcv5v333wcgPj6eyMhIOnbsKCgRiiiLVCpttkao4gDo1auXkBl6+vQp9+/fZ+bMmcyaNYtt27axdu1apk+fjpaWFlevXqWkpITWrVuzfPlyJBIJNTU1fPjhh5w7dw59fX1Gjx6NtbU1oaGh7Nixg5MnT2JlZcWXX37J06dPSU5Oprq6WpT1fFZOTFEw4M6dO8yfP5+goCDy8vJE6Le5UIRU7e3t6dmzJ9988w35+fksXbr0N687cuQIpqamTYTmJ02aRJcuXTA2Nhb6z5qamnTu3BltbW1Bd1CgVatWlJaWcuXKFQICAn6T+KGQB6ypqRFGzs2bN5kzZw4DBw5kzZo1zeqfosylp6cnWVlZbNiwgYSEBIYOHUpAQAB9+/Zl8+bNbN68mVmzZonz5O2336Zbt24sWrSI2NhY/Pz8GD9+PB9++CFqamo8ffqU4OBgocN8+/ZtDh06RGVlJdXV1YwdO5b8/Hzeeecdvv/+eyE15O7uTteuXenatStxcXHMmjVLSFR98cUXTJ8+nadPnzarrPj27dvZuHEjvXr1YsmSJYA8krZr1y5iY2Px9vZuwsH84osveOONN1i2bBlr1qxhw4YNdOnSRchkTZo0ifT0dI4dO0ZqamqTXAPFPpmens4PP/xAfX09w4YNo0ePHjQ2NpKUlET//v3p27cvW7ZsYdSoUYwdO5YBAwaIqpt/BDExMaKgTHJyMhUVFXTv3r2JrFhRURFGRkY4OjpiZmaGqakpNjY23Lp1iytXrohk3AcPHvDJJ58IGpKlpSWWlpYEBATQ0NDArl27+Pzzz/H09KR9+/bcvn2bI0eOMGnSJEaNGoW6ujo1NTViHGNiYli5ciU//vgjAB9++KFwVjRnDEEuc2Vvb8/MmTMpKChg27ZtdOrUiYEDB/Ltt9+SkZEhxqChoYHU1FRRVvpZKGQGFXB0dGTt2rV4eHg0oW3k5eVx584dZDIZISEh6OjosG/fPjZs2MCOHTs4d+4cI0eOFJz9JUuWUFxcjJ6eHvv37/+3ffpDxqtCE00mk2FnZyc4MQoPZWVlJQcPHiQkJARbW1sMDQ25deuWyFLU0dHh9u3bJCcno62tTVhYGIaGhiQkJFBXV4e1tTWenp6iBGpdXR1GRkb06dMHNTU1oR07ePBgbt68yY4dO0Royd/fn7feeouEhARyc3O5ePFis/p2/PhxunTpIiR6ns2iHD16NHfv3uXkyZNs27YNLS0t/Pz8aGxspFOnTuTl5bF9+3bc3d1FspfCM7p48WLat2/Pjz/+KBZgcHAwACoqKvTr14+oqCjq6+s5e/askNm4efMmt2/fxsDAABcXF06cOMG9e/fo2rUrbdu2fS514j9BT0+P6upqEUqWSCQ4OztTW1vLmjVrSE5OFhMzMjJSSF6A3FC4ceMGtra2ov2ZmZnU1dVhb2+PjY0NjY2NbN68mb1796Kmpoajo6NIomtsbOTx48ecPXsWNTU1DA0NKSwsJDs7G19fX0CeDLV7927Gjx8vxJmbg8jISEJCQggMDBR8PqlUSk1NDdnZ2SgpKYks9B07dohyplZWVuzcuZN+/frh4+ODlpYWEomE1NRUBgwYIDLbVVRUWLRoUZMEloCAAJycnLCxsaG2tpbNmzdz//59OnbsKH4nNTU16urqqK+vp6SkRCSVlZeXY2dn16zQ+smTJ+nSpQujR4+mpqaGtWvX8uTJE2bOnImPj48oZ6irqyuMjurqagoKCgD5TTs3N5eysjKhQ3vq1CmkUqmgA129elVkZq9bt05sYtXV1bRq1QptbW3s7OxECWhFbeqysjJ0dHSE58vNzY2AgIBmG68nT54kMDAQiURCSEgIS5cuJSsrC6lUSlVVFTt27KBbt25YWlqKAiVPnz7Fzs5OGK+K8GNFRYXg1nl6ejJ37lzu3LnDxx9/zNChQwEE39TJyQlra2t69epFmzZtxDzJycmhQ4cOpKSkcOnSJUxMTIQqxh8JVyYnJ6Onp8fDhw8xMDCgT58+GBgYYGxsLDzKAwcOJCEhQazV+vp6UaHOxMSEx48fc/z4cUHd2rVrFyCPZBgaGtKnTx/hKU9MTEQmk+Ht7S1oUCCXCisuLhbh5yNHjrB3714WLlyIkZERUVFRQpO2ueWob9++TWNjI126dBEJO5mZmWRlZWFgYCAKJChoVCNGjCAyMpLo6GiePHkiqnsp+v5s1bjQ0FBxUK5fv57k5GQmTZrEkCFDiImJISYmhuvXr1NbWyu40nV1dcKZoMDTp09JSUlh+/btIuL2otDW1hZt8PX1paamhvPnz7No0SI2btyIk5OTKEJw8+ZNRo0aJZK7dHV1GTZsGHl5eWhpaXHs2DGMjIxEol16erpI+FEUwFEk68bGxorEVy8vL2bOnImrqytpaWk8fvyY7t274+3tjbKyMmfOnOHEiROCqtHcbHUnJye6du1KQUEBR48eFTq8impQvXr1wtnZmcLCQlJSUlBSUkJNTY3evXuTmZkpiiSkp6cLtZzq6mratWtHSEgIBQUFLFmyhLZt2woVltatW9O/f38uXrzIzZs3sbW1xcnJCW1tbWEo+/r6Eh8fLxwiBQUFeHp6/qFsfEVSaOvWrcnJySExMREvLy90dHRISUnhwoULWFlZiWpQqamppKWl0blzZ2xsbPjwww/Jy8vj66+/JiQkRBQ9UVNT4+HDhzg7O4tIg6I0sJ2dneBB+/r60rt3b7EGb968SXl5Ob1798bPz487d+4Acs1dRbJsc9CmTRvU1dVJTU0V0ZSrV6/yzjvvcPXqVTp27IihoaE4006cOMHhw4eblEcHBHVRoYENiKJEU6dOFTz2H3/8kZKSEry8vCgrK2Pnzp0sWLCAzz//nH79+hESEiKq+fn4+LB37140NDQYOXKkOEf+E/6Q8WppacnMmTN59OiRWLgKw1URqnR0dBQ/sJmZGd26dePWrVuisw8fPsTc3JwJEyawcOFCQF4AITExkbCwMJSVlcnOzubUqVOoq6uzaNEiEapTHJb6+vqoqKjwxRdfEBcXh4WFBR07dqRz58507tyZ7du3c/ny5WZVh2loaODAgQMAQh4mNzcXVVVVfH19OXHiBAsWLCA+Ph4fHx/B6Zs1axY9e/Zk+vTprFixguXLl6Orq4uWlhaLFi0SySd79+5l+fLlqKioEBwcTGJiItnZ2bz99ttoaGhw5swZDhw4wJ07d+jYsSN79+7lwoUL7NixgzFjxjBmzBgOHDggShL+EVqEkZGRCHfX1NQQHBwsNsza2lqhlJCYmMiyZcsEiVpTUxN1dXWsrKzQ1dWlpKQEFRUVcnJymnhI9+/fz4YNG7C2tubzzz+nT58+qKqqijC5q6sr169fp76+nnHjxpGWlsaZM2ewtLSktraW+fPnU1lZyfXr17GwsGj2bfrMmTNC8sTAwEDItaipqZGZmUlaWhp9+vShrq6O2NhYjI2N6dq1K6NGjRJZ0dbW1tTV1XH37l2Ki4vp2LGjkPwwMjIS46mAgtQO8o1n586dXLhwgZ07d/Lmm28yatQo7Ozs0NDQwNraGnV1da5duyYqzQwdOlRU33kRSCQSVqxYgVQq5dGjR3z77bdUVVXRt29fvLy8hN6ho6Mj48ePF+T3xMREIiMj8ff3R0dHB6lUilQqxc7OjmvXrpGWlka7du3o168fvXv3prKyEh0dHaysrIRnUWGoNTY2YmBg0MQ70djYKDxaFhYWTJ48WXB/m4vs7Gxqa2tRU1PDwsKCQYMGiX1m7ty5LF68mM8++4zFixfTunVrpFIpmZmZTeZLQ0MDdXV1FBcXk5ycjLu7O3fv3iUlJUVUCwK5wW1tbY2ysjLKysqMHj1aUCAuXLjAu+++S58+fVi+fDnHjx8XtcktLCxE5Ke54ugKzccvv/yS69evs2PHDl577TXatGlDUVGRyCtQiN5XVFRgaWkpjLDLly+zc+dO7t69i5+fHy4uLjx58oT169fj7e1N+/btGTRoEM7OzhQUFPDJJ58gkUh47733UFZWFuuxrKyMtLQ0dHR0UFJSQlNTk+LiYnbv3k1SUhIymYxevXo1u4IYyOkt9+/fJycnh759+zJr1iyKi4uJjY3l2rVrZGZmsmHDBuG56tq1K5WVlezevZs7d+7Qvn17IetXWVkp9pmGhgZqa2vF+RMVFcXRo0fFZUJx4H/77bc8ffqUnj170q1bN7KyskhMTCQkJERclhWUKEXlvebg2aiOjY0NPXv25J///CebNm3C2NiYpUuX0r59e3bu3MnWrVvR1NSkd+/enDlzhkOHDjFt2jT8/Pw4fvw4kydPJjs7m5UrVxIUFMStW7coKysjODgYBwcHWrVqha6uLrq6umRmZlJSUkJoaCjDhw8XId2rV6+Kqk0dOnRg4MCBaGtri5LuhoaGwpv7olAk3SkE9Xfu3Mno0aMJDw+noKBAnCUNDQ1cvXpVVIRU7Avjxo0TGs+Ki4iiQhXICzx89tln9OvXj7Zt22JlZYWSkhK9e/dGT0+PmJgYampqUFFRwdzcXFALOnXqJCofbt++nYyMDMaNGyc00JuDLl26CEeVTCajsbFRUNoUfG1zc3Oxxm/evMm1a9ews7PDycmJ3Nxc7t27x4IFC3BxcSEiIgKQl1k9fPiwsE9cXFzo0qVLkyiVm5sb3bt3b5J8XVJSwqlTp7Czs8PU1BQzMzMqKirYsWMHQUFBzTZeFTznjIwMEWErKCigsbGRxsZGEhIScHV1FeF9BR9WXV1dGK+KCGJ1dbXYF8zNzamvr2/ye6WlpfHTTz+RlZXF8OHDMTc3p7a2lri4OD777DMCAgJISEjA2dmZt99+mwEDBgh7sn379tjY2LxQInqzjVdFAozCPfxsooLiB3/8+HGTkocg5xLq6uoKV3C3bt3w8/NDIpGwe/du4f1zdnYWxqaamhr19fXU1taK0FBZWRlXr16lrKwMqVTKpUuXKCgoICQkhEGDBjVxWT/7/S8KhccjPj6eXbt2ERYWRn19Pbt372bAgAH069ePsWPHcuPGDRwdHdHT0xPZkcbGxowfPx4tLS0hOB4REdGEK9K7d2+UlJRo3bq18Cjr6OgQHR2Ng4ODKNWq8ML5+/vj5+cnQsPjxo3j+vXrpKWl4eDg8IcJ6iCfvPfv3xdZ8sXFxdy6dQs1NTViY2O5cOEC586do127dsJw0dTUpGPHjkIaq76+HktLyyZhcQcHByZNmoS9vT1hYWFiTBSHpVQqxd3dHU1NTVRVVUlNTeX48ePCMK6vr8fY2LiJd6Q56NChg1hIUqmUwsJCpFKpMBjPnj0rhPoHDBhAbW2tmHPBwcGUlpZy//59wYN6VupHkXTxLMrLy7l27RrR0dHY2dnRrl07PvnkE1asWMHRo0e5du0ar732mhCrdnR0xNjYGAcHByorK0Wpx+Zg8ODBgp9YU1PDhAkTMDU1xcfHhzt37pCfn0/Pnj3x9PRk0KBBZGRkUFRUxJkzZ8jIyKB169a0bt2aNm3a4OLiQmNjI4MGDSI/P1/c/pWUlNDR0aG6uppdu3YJWbju3buLYgYKUj7IN31FTesnT56IqnOPHj1qQsV4UXTr1o28vDxBhUhISEBFRQV9fX169+7N06dPRVJWcXExWlpatG7dWtAEAgMDycnJYe/evcTExBAWFiZKKq9atYrLly9z584dzM3NadOmDb6+vr+pyAVyD9no0aPFBU8qleLp6UmXLl3w9vYWe2BzjVd9fX18fX2ZOHEidnZ2SKVS6uvrKS8vJysri7S0NBISErC3tycoKIibN2+KYiw9e/bEy8uLjh07EhAQIKgSSUlJPHnyBCMjI9zd3UW4T09PT6xbPT09ZDIZWVlZWFhYUF1dLTQ8AwICeO2117CxsUFDQwMTExOhDKOoyd4ctGnTRnDlFZcKfX19XF1diYmJoaioiK5du9KrVy9cXV3x9PREQ0ODxYsXc+7cOfbs2UNWVhYTJkzAwMBA7LVKSkpNnBKvv/469vb21NTUiH4NHz6ckpISvvvuOzIyMjAxMSEoKIgHDx6goaEhpP1cXFyYMmUKampq4vkXxbOKCYaGhrzzzjuYmZlx//59LC0tKSwsJDc3FwcHB2bOnElYWBhxcXEcOnSIvLw8se5jY2NxdXVl/PjxghLRtWtXzMzMRFEHNzc3zp49i6qqKmPHjmX48OHcvXuX/Px8oqKihAJJr169hORgWFgYnTt3RiKRcOrUKR49eiSiaM3F6NGjRZVHkJ/3Ct59u3btUFdXR1NTEwcHB/z9/cWZMGzYMHR0dHBxcaFPnz6/+VwnJyc6duwoeKTJyckUFRURGBiIs7MzYWFhWFpaEhcXR2RkJBoaGoImUFJSIkprW1lZceXKFZHw3BwoDNerV6/y+PFjBg8eLIw8Z2dnEb3LyMjA2toaDw8PUfWupKQES0vL5yZtGhoaoqWlRWNjI+np6dy9exdVVdXf6JoDogy1VCrF0tKSbt26oaGhgbKyMvPmzaO+vl7oqf7Rc//ChQvEx8czbtw47OzsGDduHO7u7piamvLjjz9y7949goODMTMzY/z48Tx9+pSFCxdiZ2eHj48Pbdq0wd3dnbq6Onbt2kVCQgLu7u4MGjQIZWVl4uLiuH37NmFhYeTn5xMXF0dubq7YP+Pi4pg9ezZ6enq8//77jB07lrKyMsHh1tDQID8//4V0iCUvKg0SHh7ePA2RVxARERG/e7r83fsHf/8+/h36B3//PrbM0793/+Dv38e/Q//g79/Hlnn69+3fH3fbtaAFLWhBC1rQgha0oAV/Ml7Y89qCFrSgBS1oQQta0IIW/NVo8by2oAUtaEELWtCCFrTgfwYtxmsLWtCCFrSgBS1oQQv+Z9BivLagBS1oQQta0IIWtOB/Bi3G658FiWQpEkk1EonN//Fz3kEiqUMiaZ5Y35+B/x/62IIWvOpoWYf/+2gZwxa04N/iL0vYCg8PHw9s/Q8va4yIiFD6E5rz7yGRjAUU5YGmIJNtaub7bYBHwCZksrd+5zUdgTlAe8AQKATuAWuQyY4/8zoN4AlwG5msebVv/30b/zt9lEiMgMFAX6AVYAXUIu/bVmArMlnjv3zWf6ePzcT/1Bx9iQgPD28yFyIiIpo3F14xhIeHS4AJwFTAC1BCPle3At9EREQ0T/H7ZUIuDvu7bUMma17bfn8djucF5jIy2a9z+RVZhwqEh4dbA0uBXoARkAUcAj6OiIgo+ssa9meN4a/P9wVmA578+jtEA18hk137l9e+MmP4Sq/Dl4hXdp6+RLwKffwrPa93gI9/579zv7zm57+kZc9CvpGsA8r/D5/yPqAGrPyd71gCXAI6ASeAL4EjgAHQpclrZbIqYC3QF4mk/f+hTc9+/3+zj8OBjUAQcANYA+wHvIFNwJ7fqLv/N/r4x3CH/4U5+hIRHh7+MubCq4btwGbAAdiNfD6qIp9ju385VF/JtjW78sHvr8M7NHcuvzrrkPDwcCfkBtoE4CawGkhCbsRdCw8PN/oLm/dnjSFIJCuAo4Af8rNiLRADDASuIJGMafL6V2gMebXX4UvBKz5PXwpelT7+ofKwLwMRERF3kG+ov0F4eLji9vjdn9We50K+6WwFCoADwLw/8Bl6wOvAWWSy9Oc8Pxz4BDgDDEEmK/uX51V+8x7YCSwDwoGrzW5T08//b/fxMTAAONbEwyqRLEY+8YcCQ5AbtM/i5fXxD+J/Yo6+RPxyePzf5sIrhvDw8EHAWCAZCIyIiMj/5e8qwB7k8+8NYNuf3jiJpEnbkMnyf/n7H2vbv1uHMtkdfmcuI5H8u7n8l6/DXxABmAJvRURErFP8MTw8/CvgbeAzYPqf3qo/cwwlEnPkazIH8EEmy33muVDkl5ClyMfsWfzlY/hKr8OXi1dznr5cvBJ9fOU4r+Hh4d5AOyATOPYXN+ctoCvyG0bFH/yMUYAm8ptmU0gkUmAFUAmM/o3hCiCT1T3nb0+By8AwJBLdP9guBf67fZTJziGTHfkNNUAmywYU9Sa7POd9L7OPLxWv2Bx9mXgZc+FVw5BfHr9UHJgAERERdcg9XACz/vRWySHaJoweUKz5P9K231+HvweJ5N/P5VdgHYaHhzsCPYAU4Jt/efpD5HN1bHh4uNaf3DT4c8fQDvmZfaOJ4Sr/vvNAGWDym3e9AmPIq70OXwpe8Xn6UvAq9fGVM16Bab88bv6LuWgewHJgLTLZpf/DJ3X/5THyOc+1Rx5COQ4UIZH0RSJZiEQyG4kk+D987hXkoaVOf7hlf04f/x0Uhnn97zz/f+/jfwevxhx9iQgPDxdzISIi4v8yF141mP/ymPSc5xR/8wsPD9f/c5rTBC/UNiQS/Rf8vD+yDsVc/jfczL96HXb95fFUREREk0twREREGfL2aSI3wv9s/JljmIA8XyAQicS4yTMSSSdAB3kE73n4q8fwVV6HLwuv8jx9WXhl+vhKGa/h4eEawBigETkf8q+BRKIM7ADSgMX/x08LQX4jfvyc5wJ+ecxBzls6ityAWANcRSK5iETy25u0HFG/PP6xzejP6+O/+/5xv/zrxO+86v/Wx/8CXpk5+hIRHh7+MufCqwaFl8fhOc85PvP/f0U29stuW/PWoTyZ50Xm8l+9Dt1+efy9fiX88uj6J7TlX/HnjaFMVggsBMyAeCSS75BIPkci2QOcAk7z62XkX/FXj+GrvA5fFl7lefqy8Mr08ZUyXoERgD7wc0RExG/5oX8ePgDaAON/Ibz/MUgkqsg3mmyeL+tg+svjdEAD+a1bB3ky00nkG83e3/n07F8ebf9g6/6sPv4eliPv53FkspO/85r/ax//G3hV5ujLhJgLERERf3wuvJo4+svj3PDwcEPFH38x2D9+5nUGf2qr5BBtQyIRbfvlYte8tv2xdSjm8nP5+L/ir16Her88lvzO84q/6//3m/Ib/LljKJOtQR6CVwamAIuQJ8WmA9t+Qyf4FX/1GL7K6/Bl4VWepy8Lr0wf/7KErd/B1F8ev/3LWiCRBCL3Pn35G9mR5kORdfd70hEKWRoJMAyZ7O4v/76PRDIY+e2mMxJJ8HPaUvjLozHNxZ/bx+d9/1vAO8BD5CT+38Mf7+N/D3/9HH2JCA8PF3MhIiLi/zoXXkX8iNy72BuIDw8P/wk5x7w74ITcU+AC/BX0jyZtQyL5v7St+evwxefyq7gOn4UiS/2v0H38c8dQIlmAPPnqa+AfyI1Sd+Bz4J9IJK2RyRY8551/9Ri+yuvwz8JfOU//LPxpfXxlPK/h4eGeyDmgGcg5oH8+fg2lP+ZXEvn/BQovlvrvPK/YpJKeMVzlkHtDFR7JwOe8V+NfvuPF8Of38V+//03k0ijxQOgvobDfwx/r438Jr8QcfYl4hi7wsubCK4dfeFkDkGdpZyO/LE1EPoYhyJUVAH7PY/XfgzyJ8WW1rbnrsDlz+a9ehwpvjt7vPK/7L6/78/BnjqFE0gV5gu9PyGRzkcmSkMkqkclikGtpZwLvIJE4Pufdf+kYvtLr8OXh1Z2nLw+vTB9fJc/rq5AEo82vXI1qni/PtxGJZCPyJKc5//bTZLJiJJJafr1R/yse/fJY/DvPK4xbjec8p/jM5i72P7uPv0IimYNcEy4O6PZvQlwK/NE+/rfwKszRl4kmcyE8PPx5r9kYHh6+EXki15w/q2EvExEREfXItZO/fPbvv/CXWyM/0O//+S0DZLLntu0XPmprXrRtzVmHcrxIopYCf/U6VOyTv8ejc/nl8cU59y8Tf94YKooMnH/OeyuRSG4iN2Lb8NvEqL96DF/tdfhy8GrP05eDV6aPr4TxGh4ero78JtaIXMT4r0LNv/l+P+SbQiTyAXzREOs9oA0SiS4yWem/PHcJeaa9CxKJKjJZ7b887/3LY8pzPldBbL/zgu1Q4M/uoxwSyULkPNc7QFgTWZnfxx/t40vHKzRHXyb+G3PhfwljkXu5tv8i2fMqQbTtuXJ5z8d/XocAEklz5/JfvQ4VxlqP8PBw6bNZzuHh4TpAB+SGz/W/onH/Bi97DNV+efy9JF7F3//1HIG/fgz/HV7lddgc/K/O0+bglenjK2G8IiecGwBH/9IkGHmofvJzn5NIPkJ+mG9vZunUC0Bb5KH/pjImMlk+Eslu5KLUHwBLnvm+MKAncvf787LxFVIUv72F/zv82X2Uf+77yMWzo4Ee/4Eq8Cz+WB//O3g15uhLxC/JWc+dC+Hh4R/xy1z4G5SH1Y2IiCj9l78FIL9MlSOfm38NnmekSCR/tG0X+Hfr8FeIufwfErUU+EvXYURERGJ4ePgp5PqSbyKvAKfAx4AW8G1ERMRfo038543hZWAmMBWJ5Ftkssxnvq83csOhmucXIvjL99JXeh2+BLzy8/Ql4FXq46tivCoSB/421YqewX7kyUk9ef6BMhd56dT3ftHqu4lcjHowcvL6FGSy4ibvkBc36AY8QiaL+6+1/MXx+32USN5Avik1IN9833oOVSEFmWzbv7zvVevj33mO/t1xOjw8vAo5XaUMeV31Psg9z0MiIiKepz35p7UNieR324ZM1py2/ae9RoEXn8uvzjpUVIf6Ojw8vBvwAPm+GYo8RPneX9i2P2sM9/3yt+7AAySSg8j5ox7IKQUSYBEyWUGTd706Y/gqr8OXhVd5nr4svBJ9/MsTtn4RRw/hb5IE8xvIs/lvA68jkSg95/lc5AO/GrDh1ypHx4COyGTPk8rqDljxa4Wqvxb/vo8KXT8lYA7yKhz/+t/453zqK9PHv/0c/ftjH3IJujHIL4utkOuaekVERPyeTNufhd9t27+RkHs+/tNeA4rCJM2Zy6/EOoyIiEgE/JGXDw1CbuA5Ic+6D46IiCj4/Xf/1/HnjKE8OawP8hKc8cgdHO8g96oeB3oik619zqe+EmPIq70OXwpe8Xn6UvCq9FHSPGnOFvwhSCSjgF3Ib+EHX8Ln7Qc6A07IZK9G5uL/D31sQQtedbSsw/99tIxhC1rwH9FivP4ZkEgkyBNe5FmV/5cfXSJpjbwa11vIZP94Ke17Gfj/oY8taMGrjpZ1+L+PljFsQQv+I/5y2sD/F5BvPlOBg4Dl//HTLJBrcv7VIaCm+P+hjy1owauOlnX4v4+WMWxBC/4jWjyvLWhBC1rQgha0oAUt+J9Bi+e1BS1oQQta0IIWtKAF/zNoMV5b0IIWtKAFLWhBC1rwP4MX1nkNDw//n+cXREREPLcWKvz9+wd//z7+HfoHf/8+tszTv3f/4O/fx79D/+Dv38eWefr37V+L57UFLWhBC1rQgha0oAX/M2h2hS0/Pz/y8vLo1asXmZmZjB07lvr6eo4dO0anTp0AKCkpoaysjNLSUrS1tQG4ffs2Bw4cIDY2FhcXF1577TWCgoIoKSkhKiqK7OxsNDQ0yMvLQ0lJiXHjxgHw4YcfYmlpyYoVK6ivr2fTpk24urrStWtXAEaNGsWPP/7IRx99xIcffsiJEyfYtWsXgYGBTJgwAS0tLcLDw1+4f61bt2bFihW4uLiwZs0a3N3dqaysZNOmTUilUgYMGICtrS3l5eXIZDJ0dHQAuHTpEv/85z/R19fHxcWF2tpaqqqqMDExwcXFBQMDA1JSUjh16hS1tbVMnjyZ1q1bc+PGDQoLC+nduzcAVVVVTJ06lTNnzjB8+HBmz56Nk5MThYWFVFdXY2xsjLKyMlFRUZw/f56KigoKCpqnCbx69WrU1ORlsp8+fcqKFSu4ePEi7du3Z/r06fj4+ACQk5PDo0ePxLhu376dXbt2MWXKFDp06EBkZCQA7du3x8jICHV1dQAiIyM5c+YM3bp1o2PHjsTFxREXF4eWlhZlZWXU1tbSunVrWrduDcD169f5+uuvqaioYPjw4fTv35+CggLOnj1LfX09bdq04fvvv3/h/kVERHD16lXu3LmDoaEh3bp1w8TEhIyMDCorK3FwcEBFRUW8vrS0FC0tLZSUlMjLy2PVqlWoqamxdOmv1QpjY2O5dOkSGRkZBAQE0KFDByorK8nOzsbc3BxHR0eKi4tZt24d0dHRTJo0if79+5OZmYm6ujqVlZW8++67pKWlsWXLFpydnTlx4gRnz57F29ubvn378sEHH7xwH4cMGULnzp3Ztm0b169fZ8mSJTg4yOtBJCQkkJGRQWNjI4WFhSQmJlJfX09wcDDdunUjJyeHTz75hIsXLxIcHEz//v1xc3PDyMgIIyMj8R1FRUWoqKgglUrJyclBXV0dCwsLAGpqati8eTONjY0MHjyY/Px8zp49S3BwMMHBwVRWVpKZmYmNjY3o/7x58164fwCjR4/G0dERS0tLiouL2bZtG8rKykyfPh1lZWXq6+t5+PAh1dXV1NfXk56ezqNHj1BXV8fLywt3d3csLCyor6/nyZMnFBcX4+TkhI2NDQApKSlcv36dJ0+eoK+vj5OTE2VlZaSmpmJnZ0efPn3Q1tYmIyODn3/+mcuXL6OmpkaPHj1wc3Pj0aNHnDhxgrKyMjp16kT79u3ZtOnFK+leu3YNDQ0NJkyYwIQJE1BWViYtLY38/HyMjY2xtrZGKv3Vv5Cfn09UVBRlZWWcPXuW7777DolEwmeffYalpSXp6em0b9+etm3bkpmZSWZmJsXFxSQlJfH06VOkUikGBgbIZDJSUlLQ09Nj2LBhmJmZ8dNPPxEdHY2+vj76+vqoqamhpaUlVJqMjY0xMTHh+PHm1eiIiIgQ/6/Y4/X09KirqyMqKopz587x9OlTRo0aRceOHcnMzOTzzz/H39+f8ePHA1BXV0dqaipHjx4lOTmZPn360KNHj18UpeQ4dOgQsbGxdOrUCT8/PzIyMkhJSUFVVRVbW1tcXV0BOHHiBEePHiUsLIyBAwdSUlJCfn4+1tbWyGQycnJyWLFixQv3r2PHjty7d48xY8bg6OjI2rVrqays5P3330dZWZmqqio0NDTE6zdu3MimTZvQ1tbGx8cHNTU1fHx8GDlyJEpKv9YkWL16NXPnzmXQoEEcPHiQgwcPsnnzZlauXImHhwfz58/nxIkT+Pr64uPjQ3Z2Nvfv3ycoKIgOHTpw+PBhHj58yKJFi+jRowcAH3zwAadOnaJ9+/ZUV1e/cB+//vprlJXlpkJlZSUXL14kNzcXMzMzAB48eEBaWhpWVla0a9cOqVRKdHQ0ycnJ6Onp4eTkhJ2dHQYGBhgZGaGjo0N9fT06OjooKSlx4cIFoqKi6Ny5M4GBgdy5c4erV69ia2tLv379qK6u5q233iI7O5vVq1fj5OTE+vXrOXPmDEFBQQwaNIi4uDg2btxIYGAgH3/8cbPOfMXvrTgTS0pKuH37NnZ2dmJPLSsrE2d9dXU1mzZt4saNG/j7++Pk5MSdO3fQ0dGhc+fOPHjwgPj4eAYPHoyfnx9JSUnIZDKcnJzE961ZswYtLS0mTJhAYmIiZ8+eJTQ0FCcnJ86dO0djYyO9evVCKpWSmZnJ2bNnKS0tRV1dnWvXrhETE0NwcPAL92/YsGEkJSXRo0cPbG1tmzx39OhRnj59yrhx41BXV2fLli1IJBKGDRtGdXU1t27dQkdHh9atW6OtrU1KSgpnzpwhISEBX19fhgwZgoqKCrGxsdTU1JCWlsbZs2fx9PRkypQpPH36lG3btlFRUYGZmRm6urq0a9cOV1dXoqOjOXlSXp+iffv29OjRA1VVVYD/OIbNNl579eqFmZkZjY2NnD9/npKSEtzd3bGzsxOvyczMRFNTEycnJ+rr69m7dy8ffvghpaWlvPPOO+jr67Nv3z6MjY0JCgpixowZZGRkcPXqVeLi4hg2bBjKysosWbKELl26iM6sX7+euXPnMn/+fGG8Kg5TAwMDSkpK+Prrr/n555/x9PRsYqC8KMrLy0lKSqKmpoaYmBjc3d1RUVHBz8+PtLQ0njx5gpqaGjo6OjQ2Nor3rV27lp9++okdO3bw2muvERkZyRdffEFdXR1Dhw5FRUWFAwcO4OTkxPLly9HW1haG2bOQSqWoqqpSVlZGeno6xcXFABQWFlJWVoaZmRmZmZmsX7+e7du3I5VKmTZtWrP6qFikIJcU7N+/P0OHDqVNmzZigQKYmZlhamoq/t2lSxdatWqFnp4e165d4+jRoxgbG+Pg4ICJiYl4XevWrfH09MTQ0JCqqioeP35MWloaDQ0N3Lp1i/LycvT19YXxWlVVhaurK8HBwfTs2RMAPT09HB0diYyMJCYmpln9y8rK4tatW2zZsgVLS0tat26Nvr4+V6/KS35bW1s3mRuqqqqUl5ejqamJiYkJy5Yto6qqCplMhkQiobGxkf3795OVlcW8efNwdXUlJSWFkydP0tDQIIx7xaFfWloqDtbc3FxhXCUkJFBRUYGamhpxcXFMmDABHx8fVq5c2az+AXTt2hWpVMr48eMZN25ckzF1cXHBycmJqKgoALp3746BgYGYr8rKyrRt25aLFy+yceNGsrKyWLhwIXp6ehQXF6Ovr095eTmZmZnY2tqiqqpKXl4ejY2NmJubI5FIkEqljBo1CgMDAxoaGvj222/ZuXMnqqqqwnjNz8/HysoKoMkB/qJo1aoVxcXFVFRUoK+vz+zZs6mpqREHqZKSElZWVhgYGADyC+Snn37K/Pnz6d27NxkZGTx58gRvb2+Ki4s5ceIEXbp0EcbrzZs3+fjjj0lMTCQkJIS2bdsSExPDnTt3mDx5MiNGjABAV1eXUaNGMXHiRBoaGigsLGT9+vUsXbqUTp06sWvXLjQ0NDhy5Eiz+3jt2jX8/PyEkVhSUkJhYSFaWlpNDFeQ702PHz9m+/bt3L59G5Cv0a1bt5KQkICOjg4bN25ET0+P9PR0Dh48SE5ODl26dGHtWnnhpW3btjFp0iRGjBjB1q1bqa+v5/jx47Ru3ZrBgwdjaWmJuro6R48eZfHixTg6OrJ+/XosLCw4depUs/v3LHR0dLh9+za2trYYGxuzc+dONmzYwNKlS+nYsSMg38e/+uorsT5LSkpISUmhoKCATp06MW7cOAwNDamrq6O+vl7Mq/Pnz3P27Fns7e2xtrYmKioKU1NTunbtSkNDg2hDbGws33zzDfr6+gwcOJDy8nLy8/NxcnIiKSmp2WN46tQptm3bBsCyZctYuHAhhYWFwhBVVVWloqICLS0tABwdHZFKpZw7d46YmBjmzJmDj48PBQUFNDQ0iPPM09MTkO+DABcvXuTYsWPMmjULHR0d9u7dS2pqKnFxcfzzn//EwsKCxYsXM2XKFHHxyMnJwdnZWbS1f//+aGpqkpGR0aw+VlZWoqOjg0QiERfBrVu3oq+vz9q1a+nYsSPDhw8nIiKCQ4cO0bt3b9q3b8/IkSNZvXo1gwcPZsKECdTV1VFdXY21tTUSiQR9fX0AoqKiWLx4MTNmzCAwMJDWrVtTUlLC1atXMTY2pl27drz++uvcvXtX7GEzZszgxIkTvPvuu1RVVdGrVy/69+8v9pvmIj4+XpzFMpmMp0+fUlJSgq2tLUpKSmhoaIjzQF1dnXHjxjFx4kQ0NTW5evUq3377LRoaGujr63PmzBl27tyJkpISqqqqHD9+nMbGRhYtWgRAWloaGzZsQF1dnT59+uDm5oaDgwOqqqokJiZy8OBB9PT06N69u7AFVq9eja2tLf/4xz/w8fERc+5FIZFIxLr5VwQHB2NoaIhEIhFj4eDgwPDhwzExMaFdu3bcvn2bpKQkvLy8MDU1pVOnTgwZMgRDQ0PxOVZWVhw/fpyioiLeeecdXF1dKSwsRF9fn08//RSQG/5KSkpifefl5XHnzh3q6+sxNTUlJCQEVVXVJmv299Bs43X//v3Mnj0bgIkTJ2JjY4OFhQUWFhZERUVx8uRJPD09GTJkCIDwyKSlpWFiYsKgQYNQUVHhypUrPH78mE6dOtG7d2/+8Y9/MHv2bCwsLHjjjTcYNGiQvIHKysTHx/PJJ5/w9ddfU19fj7GxMSCfcMnJyXTt2hU3Nzdqa2sJCwujR48evP766/z888/s3r1bLJIXgampKcOGDWPgwIH06tWLnTt3smXLFlRVVenbty+BgYFoamqiqakJyD3K69atA+DAgQP0798fABMTE3r37o2mpia+vr7U1NQwYMAAvL290dbWpqGhgbKyMgwMDHj06BEffPAB/fv3p0+fPuTn51NRUUGbNm1o27YtIDdqFQspOjqaM2fO4OHhwYABAygtLW3uMFJSUkJdXR3a2tp0795d/L20tJR9+/Zx+PBhPDw8eOONN4iMjOTw4cMsXryY9u3bC4Ny1KhReHh4IJVKqampobGxkYqKCiQSiTAoZDIZLi4utGrVCkNDQwICAkhJScHLywuAe/fuUV5ezoABA8TfnoW3tzdmZmbExb14Se7r168TFBREXl4e1dXV6Ovrk5uby7179/D390dVVZUdO3bw5MkTZs6ciYmJCUlJSVRWVuLv74+SkhJaWlqsXLmSpKQkPD098fT0xNbWlosXL1JSUoKLiwutW7emoKAANzc38d0+Pj6Ym5vTt29fABwcHMjKykJNTY2xY8eSmprKuXPnOHz4MNnZ2TQ2NnL48GFxuDUHzx6KGzdu5OzZs3Tv3p1WrVpRV1eHlpYWzs7OSCQSZDKZMIbU1dVp3bo1M2bMICcnB39/fwICAgD5LfzEiRNoamoydOhQvL29AQgICODAgQO88847+Pj4CMMVoKGhgQ4dOqCjo4O1tTW5ublirBWGZkVFRbP7l5iYiJ+fH5s3byY6OpqIiAjU1dWJi4ujoqKCoKAg4e0H+aVEV1dX9KW0tJSUlBS8vb2FYVpTUyNe//TpU7Kzs+nXrx8zZswgLS2NrKwsXF1d6dixozisdHV1xXuUlJQwNzfHxcWFdu3a0aVLF3Fgdu7cmRs3brxw/9577z2uXr1Kp06dxGaekZHBxo0bCQ0NFfMqOTmZhw8foqmpiY+PD3379iUoKIjQ0FD09PTYsmULCQkJTT7b29ubCRMmcPv2bWQyGZGRkVhbW6Ompsbs2bMJCwsDEN7Bb775hn79+jFr1ixA7pXu3Lkz/fv3FwaVwtPWHPz0009s27aNiRMn4u/vz65du1BXV2fJkiW4urri6+vLwIEDAViwYAF1dXWsXr0akDtBduzYgUQiYejQoU0MsdraWurq6lBVVaWkpISwsDC6dOlCWFgYSkpKODk5ib3p2UuAv78/8+bNE84PKysrampqxJpURKBeFD169EBLS+s3TogLFy4QGhqKkpISX375JQkJCaxatYouXbrQs2dPjIyM6NKlC3379kVbW5tjx46xf/9+LC0tWbJkCT179mT37t3CmPHz82PFihVkZGSQmprKuHHjUFFRoa6ujvv37wtngOIS2759eyQSCRKJhLKyMhITE1FTU2PYsGFkZmaye/fuF+5jZWWlWAO6urpMmTKF+vp6Dh48yJMnT2jVqhUTJkygbdu2BAYGUlpayieffMLTp0+ZNWsW/fv3p23btigpKVFTU4OmpqaIyIJ8b/H29m5yTnfu3Fk4EBT/DgwMpKqqSrxGMacGDx6MsbGxMNb/iPznmTNn+Pbbb+nRowdDhgxh9OjRbNu2jf79+7N48WJCQkI4evQo+/fv59133xWefJA7C6ZNm4ZMJsPV1RUzMzNMTExIS0vjgw8+ICEhAalUyo0bNzAwMKCuro5OnTrh7+8vnBwKB525uTk9evQgLS2NO3fuEBgYiLu7O6NGjeL27ds8evSIbt26oa+vz5o1a164f6GhoQDs3LmTMWPGUFVVxahRo5g3b56ItuXl5fHPf/4TDQ0NRowYIcYoKioKIyMj3N3dAbkhXFFRwc8//0xNTQ2dOnWiXbt2mJqa0q9fP+HcA/k+cunSJaysrBg+fDjq6uqsWbOGoqIiwsLCsLKyYvTo0Whra2NnZ0dxcTG5ubncvXv3P/ap2cbr/fv3efr0KRYWFhQXF9O+fXuxeZ87d46LFy/i4eEhXp+cnIyJiQkmJiY4OjpSW1uLhYUFPXr0EAti0aJFFBUV8cUXX/DGG2+IW8W2bdtISUkhKSmJPXv2APLNplOnTtTU1HDgwAH09PQYNWoUlpaWlJWVMXv2bLFZ7du3jx9++IEZM2a8cP/8/f0xNjbG1dWVyspKHj9+zPnz5wE5ZeLZDRQQht2bb74pDNdbt26hoqLCuHHjmhglQUFBADQ2NnLt2jV0dHQwMDDg2rVrHDx4EG9vbwwNDfHw8CAuLo4+ffqI92ppaYlJpqenR5s2bZgwYQJDhgxpdohE8RkKlJSUUFlZSU1NjQg/nTx5ksePH+Pr68uDBw84d+4cfn5+2NnZceXKFcrKyoRB9yykUinKyspiUWpqatKqVStqamooKSmhS5cuwqCJj48nJycHJycn4WkoLS0lNzcXNTU1LC0t0dfXb7bXLiMjg8GDB+Pj40N6ejpmZmakpqZiZWWFg4MDMpmMrKwscbs2MTGhpqZG/L6pqals3ryZLVu2kJmZSUBAAN9++y1GRkb84x//ICMjg/fee4/g4GCqq6uFp8XAwIBevXoBck95aWkptra2YlOeOXMm6enp7Nmzh9zcXHEZef/991FSUmpWGKimpkbMrXPnzvHhhx9SVVVFUFAQSUlJFBQUMHDgQGxsbLh58ya1tbUEBQWhoqIiDlvFgVtVVUVDQwOampro6+tz69Yt8vLyxAbUvn17lJWV0dXV5cKFC6ipqYlDsqCgAB0dHXr27EnPnj15+vQpSUlJ1NXVYWRkRG1t7W8OqxfFoUOHsLOz4+7du/z444+0bt2aESNGkJKSIvqumBuVlZXo6+szf/58dHR0ePDgARcuXKC8vFwYMrNnz6a+vl58vre3N2PHjqV///6EhYURGxuLv78/vr6+gJx+oa6ujrKyMunp6SgpKeHp6YmGhgZ9+vRBRUWFyspKHjx4gJOTkzDyXhTDhg1j2LBhVFRUUFdXh4qKCiUlJRw8eJDi4mJhSCopKZGTk4O9vT2hoaGEhoZSVVVFSUkJhoaGuLi4oKGhwfXr18W6KywsxNvbm4CAAGJjY9mwYQPl5eW89tprfPXVV+I309TUxM3NjdjYWCQSCRMmTKC6uhpzc3NGjBghIi8HDx4kMTGx2WN49uxZjh49Sps2bbC3t6esrAyQ7z/u7u64uLhQWVlJbGws+/fvR0NDg6KiIgwMDKiqquL27dvo6emJS0pOTg6qqqri4qSIavTr14+amhpu376NhoYGISEhACQlJaGlpYWJiQlSqZSuXbsKw1Vx+VNRUSEyMpIff/yR3NzcZhmvffr0ISgoSDgzQO5ZS05OxsHBAWVlZc6fP8+TJ09ITU3FzMyMQYMGMXHiRLF3Kmhf8fHxnD59Gk9PT+bMmcOIESO4fPkykZGRDB48GHd3d3bs2EFRUVETSlNWVhZ1dXUi+tXY2Eh5eTkaGhqoqKhQVlZGVlYWZmZmODs74+zs3CzjVeGYkEqlNDY2oqqqSu/evbGyssLExASZTMbw4cMZPnw4IPdAr1q1io8//lhQoTIzM9HV1RXzqbCwkIqKCmQyGcrKynz00Ud4enpSX19Pfn4+EolE7KUymYyqqiqysrJISEhAQ0MDb29vBg4cKC4+P//8M/v372fYsGFN7I8XRUlJCadPn0Ymk9G/f39UVFQoKiri5MmTeHh4YGFhwdq1a7l48SLjx4/H1dWV9PR0ETVcsmRJk8/r1asXAwcO5KeffkJHRwcvLy9Onz5NRUUFgYGBbN++XRiDRUVF1NfXI5FIMDY2ZujQoYCcjnHv3j00NDTo2rUrhoaGPH78GBcXl2bvNU+fPhUh/+vXrwNga2vLsGHDcHJy4vHjx+zcuZPq6mo+/PBDsZdfvnyZgoIC7O3thYFdUlLC/fv3OX78OPHx8Vy9epVJkybRrVs3dHR0yMvLo7y8HAsLC5ydnXnvvfc4deoUUqmUHj16cP36dS5evIiuri7Tpk0T515OTg5ZWVkUFBRQWVn5H/vUbON14sSJ6OnpsXbtWtauXYu1tTULFy6kV69eDB48GE9PT3x9fSkoKODixYvo6ekxffp0dHR0OHv2LCdOnGDo0KH07t27iVEybdo0HBwcGDZsGABbtmzh448/pm/fvri6uqKlpUVFRQW9e/fG0tISNTU1evfuLTx7ycnJFBQU4OjoSFlZGZ9//jkZGRksWLBAbJgvAgXHdcmiWjV9AAEAAElEQVSSJZSVlTFjxgy2bNnC119/3eR1CsMnMDCQiIgIkpKSmDJlChUVFXh6egoPwPPQ0NCAhoYGmZmZVFdXY2pqyqZNm4TxO2PGDEJCQpoYys+GuUNDQzEwMGhC1WgOFIeDAps3b+bx48cEBwcTGBjI2LFjCQ0Npa6uDltbWzp37ky/fv3YsmULo0aNomvXrtjZ2bFs2TKCgoKYMGGC+CzFBH8WWVlZREREcPjwYaZOncrMmTNFuC4wMBBdXV2xOaalpTF69Gisra05fPgwSkpKzdpoQe7tTE1NRUVFBWVlZXJzc9HT02PQoEFIJBIqKyuZOnUqlZWV1NbWEhcXh42NDcbGxpSXl/Pmm29y7Ngx/Pz88PHxQUNDgzt37tCtWzdmzZrFkydPuHv3LgEBAairq7Ny5UpSUlJYs2aNOJDmzJnDw4cP2bJli/BeAtjY2AiKRnZ2NpcuXeLGjRvCoH9RKNbOwYMHWb58OcbGxkydOlUYH1lZWSI8ruA7Ps8jkZmZyYEDB1BWVua1116jW7dufPnll6xatYrvvvuOQ4cO8cYbb/D6669jaGjImDFjhGcTEKExBczNzSkuLubixYtUVlbi7e1Nu3btmtU3BTIyMliyZAkdOnSgbdu27N69m7Nnz7J48WLBywa5x2D27Nm4uroyY8YMdu3axeeff46dnR1GRkYcO3aMt99+m0GDBjVZk927d8fLy4udO3eyb98+hg8f3iQKkZ2dzd27dzlz5gxXrlyhV69e/OMf/0BDQwMtLS3q6uo4efIkW7ZswcXFpcl7XwTx8fF4enqSlpbGhQsX6Nq1K7q6uvj6+tLQ0MD169dp164dtra29OrVq8n41dbWMmXKFNq0acPSpUvp3bs3Fy5cQEVFhYyMDCZOnIidnR0bN27Ex8eHnj178vDhQ2E8NDY2kpCQgLOzMx4eHmzcuFF4KY2NjcU+DFBcXMyePXs4evQoY8eObVYfdXR0+P777/Hx8UEikfDGG2+I6MbDhw85ePAg+fn5jB07lg8//BBjY2Mxt42MjOjduzfl5eXcvn2bQ4cOkZeXx7Bhw8T+pa6ujrq6OllZWaxbt47ly5czYcIENm/eTExMDNOmTaN79+4sWbKkiSMhLS2NW7duCQOvqqqqiVf+RZGWlkZMTAyurq6Ym5sDYGdnh46ODjdv3iQmJoY2bdowevRoJBIJaWlp2NraNgm3GhkZMXjwYMzNzXnw4AGurq7iMtOhQwf09PRITk7myZMnODs7i/2krq6OxMREtLW1mzgRpFIpCQkJlJaW4urqiqWlpdhj/wikUim1tbWoq6uTkpLC559/LkLBampq1NTUNKEtdevWDQsLC5G3kpKSwvr16zE0NGTs2LFYWlqyd+9eFi5cSElJCVOnTuWzzz7D2NiYM2fO8PHHH+Pt7c369esB+eX6o48+4uTJk5iamjJu3Djc3d15/Pgxubm5AOzatYudO3eipaUlztHmoFu3bvj6+qKmpsamTZs4f/48SkpKLF++nPz8fLp27UpaWhrjxo3Dy8uLEydO8PHHHxMaGsqyZcue+5mKiGhISAhTp06lsbGRsrIy9PT0mkQDioqKBFUgLCxMnOseHh4sWLCAbdu20atXL2bMmIGenh43btwgJSWlWf2bN28ehoaGBAUFcenSJQoKCqirqyM2Npbdu3dz69YttLW1GT9+PF27duXEiRN8/fXXBAUF8cYbb1BXV0dmZiZWVlaiX4sXL+batWt89NFHgo976tQpjh49yjvvvMPkyZPR1dXFycmJxsZGHj9+zNChQ/niiy/46aefsLOzE06N69evk5CQgL+/P127diU/P/8/RrGabbwaGBigpaVFfX09eXl5mJmZUVpaSllZGa6ursKdfuvWLYqKiggICMDGxgYHBwcRVlSEw6qrq8nOzqa+vh5HR0emT58OwOXLlzlz5gympqaCM/H222+jp6eHm5sbpaWlGBsbi5A6yD2Tig0hMjKSTZs20bZtWxYsWMD777//wv2rr6+nvr5etMvT05MOHToQFRVFdXW1IG6bm5ujoqKCh4cHQUFBnDhxgj179mBsbCyoFM+GNBWbEcgNUT09PZ4+fUpRUZHwsObl5XHgwAF69+5Nv379gF+9A3p6euL27uDgIPiieXl5zR1Cdu7ciZGRkUi+u3PnDkVFRejp6Ylbq+LzGxoaUFJSwtLSkiNHjnD//n1hcF6+fFlsHgB37tyhsrKSrKwsADp16kRjYyPLly/n66+/Fp6qsrIyCgsLKSoq4u7duzg6Ogrvva2tLV5eXjQ2NnLnzh2AZtMiAgMDuXfvHsePHycrK4tOnTrRp0+fJht8amoqWVlZaGpqNvGOnjx5ksrKSsLCwpg0aRJdunShsLCQhIQEiouL8fHx4fTp02zcuJG3334bGxsbNm3aRFlZGe+++y62tracOHGC2NhYdHV1m3CM4uLiMDMzw97eHnt7ew4dOoSbmxsBAQE0NjYKHuOLIDY2lvj4eKKiohg6dCjjxo3D3NycuLg4GhoahPfw559/ZsuWLbi7uws+cXZ2NpcvX0YqlWJmZoa2tjZxcXH88MMPtGvXDhUVFZycnIiOjiYzM5MzZ86Qm5uLi4sLLi4ulJWVcfPmTRHqKy4uJi0tDQMDA2xsbPD09BSeldatW4tEo+aiT58+nDx5krCwMMzMzEhOThZezmeTddavX88PP/xAQEAAH330Ea1atSIvL4+8vDzU1NQwNDTk0KFDgm9XU1ODjo4OgYGBWFhYsHnzZh49eiRCaz///DMVFRV4eXlRVlbGxYsXKS8vx9LSUkQsSkpKUFVVJSMjgytXrpCQkNAsjx3AlStXKC4uJj4+nvLycoqKirC2tmby5Mk0NjZSWVlJTEyMoGWVlJQQFxeHh4cHhYWFYk84d+4caWlpIhRpbm6OlpYWe/fuxd3dnXfeeYeBAwdiYmJCamoq1tbWmJiYUFdXx9GjR3FychL7DSCSSO3t7fHw8EBfX5+goCAePHjQ7DH08fER3OGcnBxsbGzEgWVkZISDgwPnz5/HysqKHTt2iPeVlJRgYGBAv379RGLksWPHiI2NxdbWViTANjY24ubmRkFBATKZDB8fH7S1tbl9+zY3b95EV1dXcO/r6+uprKz8f6y9d3jP9/7/f8veW/YeskVIghAkVmyC2rtGqV20aNHSlqraalOj9owRBBERRJYM2XsP2Xv+/sj1fn6bzzmfz5Fz/R7Xda5zTrVNXuv5fDzvj/ugtbVVHG4l//vdu3dUVlZ2+RBZVlZGaWlpp8OUlpYWWlpayMnJER4eLigzUlJSyMnJ0dbWRmFhIWpqaqioqFBaWkpmZiYeHh5CuJuamoqioiImJia4uLgQHx/P06dPWbJkiZiIrFixgrCwMAEiRUREUFNTw+DBg7G2tiY7OxtNTU3B25dcW1FRUZeuUV1dXexllpaWQqz48OFDQZtoamoSNKi+ffvSt29fCgsLhRinpKSEe/fuYWhoyIwZM4iNjaWyshIVFRU8PDwEFbC6uprk5GRCQ0OxtrZm/fr1SElJER0dTUxMDAMHDmTGjBnIysry66+/cvr0aTZs2MDw4cPJycnpRPHpSkm+fYCdO3dy/fp1DA0NmT9/PnV1dZw5cwboEC5269aN8vJy3r5922laFhISgqWlpWjwxo4di6WlJePHjxc0SICcnBwuX74saGra2to4OjqirKxMfn4+qampKCsr09jYiLa2NlZWVrx//54vvvgCT09PGhsbuX79eiedyX8qTU1NGhsbkZeXF/xyQAgwe/fujZKSkvg229ra0NfXx83NDQsLCwoKCsjNzUVOTk4IHAcPHoynpydv376ltbVV/D1KSkqix5PoTDZu3CiQdDMzM7HGtbe3Ex8fT2hoKI6Ojjg4ONDQ0MD9+/f/4zV1uXn95Zdf+Oabb1iwYIEYnUmEKv8sW1tbrKys0NbWpri4mJqaGvr27dvpxpWUlFBcXExrays6OjoC4bp58yY2Nja4ubkRFhZGbW0ta9aswdLSkvr6enJzcykqKsLY2FicYCQqNuhYFK2trWlsbOzypllaWoqtrS3Xrl3j06dPxMXF8fbtWzECzsvLw97eHmlp6U4vz7Bhw4S4S0ND4184jP9TPKalpYWDg0OnBnffvn0cOXKEgwcPMm/ePAAxdpWRkSEqKoqtW7fSvXt3Lly4gIaGRqdx1efWixcvePjwIR4eHowfPx43NzcMDAw6PZvGxkZkZGSQlZUVzYqWlhZLly6lf//+NDY2Mm3aNNHsvnnzhlOnTpGRkUFcXBzS0tJs2LABDQ0NLl68iJaWFjdv3sTHx4fW1lbU1NT48OEDS5cupV+/fmJxUFdX5/Lly0RHR/P48WPMzc1ZuHBhl5TqEnFScHBwJ6WknJycGLf88MMPxMTEcOjQIdG4Xr16lczMTLZv3y5G5dDxbjk4OFBeXk5wcDBnz57l7du3PHjwgMGDB4v3oaysDH9/fwIDA1m/fj3jx4/v9HwSEhIICwtj1qxZFBQU8Pz5c6ysrIRjR1ea19u3b7Nv3z5mz57Nxo0bgY7T608//YSdnR3bt29HQ0ODwMBA/P39KSkpoampCQUFBYqLi9mwYQPq6uo8ePAALy8voqOj2bp1K2vXrkVJSQkHBwdGjRqFra0tRUVF3Lp1Czk5Odzd3UlLSxNcvr59+3Lz5k1qamr48ssvxe/Xp08fgci+evWK33//vRM3+HNq4sSJDB48WHxn33zzDZWVleKetre3ExwczIMHD4AOFK6lpYVhw4Zx4sQJlixZgoqKCl999RU5OTnMmDEDKysrJk2aRK9evejTpw+A+FbNzc3Jzc1lx44d9OnThylTplBQUMCsWbMYOHCg4DGXlZWhqKjI5MmTBc1myJAhzJ07t0viQj09PR4+fIiLiwvTp09HVVWV4uJivvjiCwEKPHz4kOjoaAYPHkxFRQVv3rwhNzdX8PHv37/PsWPHsLe3Z+/eveJe3b59m5UrV/LDDz+gr6/P7NmzSUxMJCoqCk9PT2RkZDA3NycqKor3799jYmIikMNdu3YRFBTE6dOnxfc9Z84cJk2axK5du7r0DCWjUeigCuTl5ZGYmIiqqipz5szBzc2NadOmERISIlwe2traaGpqAjo23W7duqGjo4O5ubnQVbx69YqXL1+iqqrKkiVLGDNmDL/++iu//vorsbGxhIeHY2BgwJUrV9DV1aWiooK0tDQ+ffqEkpISurq6Yr27d+8esbGxAJ8lFPlneXh44OLi0mmSJeFKm5mZ8fXXXzNp0iShv5C4X2RnZ4v7HRoayvr16xkzZozg+2pqanbaM0xNTXF1de2E2BUUFIgDfnt7OytXrqS1tZXg4GA0NTVRV1dHWlqayspKwsPD0dXVxdzcnIyMjC5d4z/XMCkpKdavX8/jx4/5+eefef/+Pb/88gvy8vI0NDQIdF9ZWZk//viDwMBADh8+jKurqwAs5OTkGDRoEFJSUixatEgctKEDpfz55585ePAgBw4cwNHREV9fX0xMTNDQ0GDFihViXQ4LC6Ompobu3bszY8YMJk6c2AlM+W9rypQp3L59m8jISC5dusS+ffsIDAxkzJgx3Llzhx9++IE+ffowfPhw8X1UV1dTW1srOLnq6upiwvjP+ycZxcfFxfHgwQOam5tZt24d27dvBxAUyQMHDlBbW8u5c+cIDAxk//79JCQkMG7cOCwtLXFwcKC0tPSzr+no0aOUlZVx//59Dh8+zMyZM9HW1qZ///54e3ujoKDAixcvCA0NpaCggB49enDgwAExBTE0NERGRoaMjAxaWlrQ1NQkKSkJTU1NTp8+Lb45Nzc3du7cibW1NQ8fPmT58uX07t2ba9euISsrS1JSErdu3cLCwoLRo0dTVFTEmzdv0NTUFM3toUOH2Lp1a6eJ7r+rLjevEh7ZzZs30dHR4fHjx1RXVzNlyhRSUlI4evQokyZNEgtDXl4eqampDB48mJqaGq5cuYKysjKzZ8/G1NQUU1NTKioqqKiooLy8HB0dHYYOHcrNmzfJyclh+PDhzJw5U6BmSkpKdO/eHeg4HbS2tiIlJUVjYyPh4eFkZmaSk5ODg4MDISEhbNiwoVNT9p9KsqBAxynr+PHjhIaGMnv2bMFFefnyJVlZWdTW1ooxwOTJk7GwsBD/bF1dHefPnycjI4NFixZhYWHBlStXqKysZM6cOcKWqKSkhNLSUuTk5AQSERoaip6eniB+a2lpUVRUREBAAImJiSQmJhIWFsbw4cP/K6HPzJkzgQ5RmbW1Nd27d8fAwAAdHR0aGhoEmiux5ZKXl0dKSorc3FzBj6ypqeHp06cEBwfj5eVFaGgojx49QkFBQTQcwcHBJCYm0qNHDzZv3ixOt5LRrZubGwkJCSQkJODu7s6IESPIzMxETk6OkpISNDQ0cHV17XKDnpeXR3x8PE5OTvTr14++ffuira0tkLLQ0FDa2toYPny4mBRIOLyDBw8W70BDQwOXLl2iuLiYqVOnYm1tLcQJvr6+mJubY2dnx5EjR2hoaBD2UF5eXoL/9c9KTU0lISGBIUOGYGZmJlAyeXn5f0u3+L/KzMwMaWlpcnNzhS3OixcvsLCwYNSoUaioqFBfX4+bmxtLlizB3t5e3EdnZ2fmzZtHUFAQt2/fZtWqVbi6umJtbU1TU5OgUlhaWjJ27Fhyc3MFbUZBQYH09HThytHe3s7+/ftxd3cXiNehQ4fo06cP5ubmwkJm9erVBAQEdOkac3NzxTdVXFyMnp4eampqtLa2Ul9fj7y8PNbW1nz77bekp6djZGREWVkZenp6jB49mh07diAtLc2gQYNIS0ujqqoKc3NzRo4c2Qkp27ZtG6mpqVhZWVFbW4u3t7eY6pibmzNnzhzBV6+vr+fTp09iDVqyZIlwxujqM+zZsyctLS34+fmJpuSf7h6SkdunT58oLi6mtLQUTU1NsRZWVlaSm5uLra0t3333HcrKykRGRlJaWsqIESNYtGgRN27c4OnTp1hYWJCcnExVVRWVlZUYGRmhq6vLnDlziImJEZZv0IFCSUQXoaGh3Llzh+HDhwuRV1fK0dGR8vJyVFVVBS2htbVVTMkcHR1Zv349x44d4/fff2fz5s0YGhqio6Mjmtni4mLOnTvH69evUVNTIyUlRTh3APj7+4spmITTPGDAgE6iGlVVVfT09GhoaKCmpqYTwurl5cXcuXN5/vz5vzg8/KeSiHc/fPhAaWkpPj4+JCcnc/nyZSZPnoyLiwsLFizg2bNn4pplZWU7id/S09NJSUnhzp07/PrrrygqKqKhoUFraytJSUnEx8ejrKyMn5+foAIBfPnll3Tv3p2IiAguX75MVFQUvr6+VFVVoaamxsuXL5GRkcHOzo5evXpRUlJCWFhYl+kRJSUl5OfnC2peY2Mj+fn59OzZU0zooAOwys/P5+PHj2hqaqKrq8vw4cOFDd9vv/0mns/UqVMZMmQIHz584OLFixgZGdGvXz90dXVZtGgRxsbG3LlzB11dXerr64XoycXFhfr6eqFm/+qrr1BWVhaUiv+WHjFixAiqq6s5ffo0jo6OAgnW0NAQe/X+/fs5ceIEv//+O6NHj2bjxo3Exsbyxx9/MGjQIHx9fWloaCAuLo7m5ma6d+/eyXqwvb2diooKpKWlsbCwwMzMTIB1PXr0YPLkyVhZWeHp6cmzZ88IDg7m1KlTAs2Oiopi+fLlqKuro6ur26XmFUBbW5vhw4fz8uVL3r9/z4ABA4TGQTIVNDEx4fHjx7x+/ZovvviiE0VMS0tLCLLz8/OF7ZqXlxfGxsbMnj2b1tZWTExMMDMzw9DQkJUrVwruN3Qc/K9cuYK6ujoNDQ1i+urk5IS/vz+JiYk8ffpUOPj8X/VfWWW9fv2aR48eCU9UBQUFfHx8iI2N5enTp1haWoqGUUKw79GjB7m5uZw/f56mpiYmTJiAjo4O1dXVyMvLo6GhQXV1Nerq6piamnLhwgXev3/PqlWrMDMzo7CwkOrqarFp1NXVIScnJ06nNTU1vHr1Cn9/f0xNTYXX34sXL7rUvDY1NQmCemhoKDU1NQwbNoxZs2aJUdWpU6d48OABmpqaWFhYYGNjg62tbafRQ2FhIZcuXSIsLIxhw4ahq6vLzZs3AVi8eDHQsTnHxcWhqqqKu7s733zzDRMnTmTbtm1s2bKFRYsWCRusmJgYPn36hIKCAjY2NiQmJuLk5ISRkVFXH6EQirx584a0tDTxMUjuq6KiorDVKCgowNDQUPBg3r17R2pqKrKyskRGRpKXl0dbW5tQu7a1tbFs2TIGDhzIihUrCA0NZe/evcJrUML5gg4xn4ODA4WFhSQmJiItLU1ISAhv3rzB29ubP/74Aw0NDYHCfG4VFxejrq7ON998Q48ePTr92V9//UVAQACLFi1i6NChQEdDoqamRo8ePaivr6ehoQFFRUVqa2uJjo7m/v37tLa2sm7dOrS0tJgxY8a/iMiysrLIyMhg2LBhgqssQRkkoxhtbW1UVVUpLCzEwsKCuXPn0tzcTFtbW6cx+OdUr169WL58Of7+/mIkNWHCBH777TdBV2htbWXmzJnMnDmTxsZGcnJyaG9vx9LSkh9//JGIiAguXLiAv78/AwcOFKiThYUF3bp1o6GhAVVVVQYMGMCwYcOIiIhgyJAhGBsb8/jxY/z9/ZGVlSUuLg4PDw9aWloICAjg7NmzvHjxAl1dXeLi4li8eDErVqzocvN6584dli9fLgQ6eXl5ggYguf9GRkaMHTtWCAWhA0HPzs5mwYIFGBsbk5ycjJGRkZhmtLa20tLSIlCS8ePHi5/Z3t4uOGwtLS1kZGSIhtjS0lIcntvb22lubkZaWlr8e7u6aUroI5IDg5KSEtLS0uKAqKamhoeHB7W1tSQkJNCtWzf69Okj0I4dO3ZgZmYmAIH8/Hw2bNhAW1sbJiYm9OzZk99++42IiAiePn2KoaEhPXv2pKioCAUFBQwNDZGTk8PDw0O8fy0tLaxcuZJVq1bR1NTEd999x759+ygqKvqvmtfGxsZOqKSlpaUQTba0tNDa2srAgQP5+PGj8ILcv38/srKy4n3Mysri5s2bJCQkYG5uLtxYoAPMSEpK4uTJk6SlpVFZWUm/fv2EwFcitDMyMsLExERYPUmut62tDS0tLfbu3Ut+fj6XL1/+r4Rpjx8/pqKigr59+1JVVcWVK1dISUnh77//ZsWKFSxfvlw0bk1NTbx//57i4mK6detGZmYmSkpKeHp6Cl6zhJb38uVLYmNjGTdunGhcJRx+iWDpl19+EWjWnDlz0NXV5d27dzx+/FgAFNra2qSmppKdnU3v3r27dG3y8vKkpKRw8uRJIV6eOHEi58+fF5aRtbW1KCoqYmdnJzyV58+fj6qqKu/evaOxsZEBAwZ0AiJSUlJYtGgRjY2N/Pbbb0AHYCAtLc3AgQMFhaK2tlbQdhQVFblz5w7Hjx/n22+/Ze7cudy6dYsrV66wdOnSLo3S/1lPnz4FOvYnIyMjamtrhdgIOvbFKVOmYGBgwJw5c6ipqWH//v1kZGSwb98+jI2NcXd3R1FRkfT0dMLDw7G3t2f48OFCECwrKytG44GBgSgqKuLh4UF0dDRHjhwRQlAvLy++/vprlJWVuXfvHlFRUZw8eRITExN27dqFgoICa9eu7dL1BQcH4+npiaGhIRMnTiQ3N1fsS3fu3OHGjRscO3YMHx8f9u/fz+vXrzlx4gQnT54UQIysrCyWlpYkJSVx9+5dnj59SkVFBT179iQnJ4e6ujrKy8vZunUrCQkJTJ48mXXr1lFSUiL4spaWlvj4+HD16lV27tyJm5sbHh4eqKmpcejQIV69esWCBQv46aef/qPveZeb1w0bNjBmzBiCg4O5d+8eQ4YMoa6ujtWrV+Pk5MSBAwcoLy/n1q1b9O/fHxcXF4qLi8nLyyM3N5cFCxZgbW2NgoICBw8e5ObNm3z55ZfMnTsXdXV1ysrKiI2NZdq0aUyZMoWqqiqOHTuGvr6+4GWdOnWKjx8/MmfOHKGYlnjG1tTUoKWlhZeXF/b29gwYMKBLHJ8rV66wb98+srOzGTBgAJMnT2bAgAHIyspSUlJCYGAgT548oby8nNmzZzNixAhkZGT+5aORlZVl5syZjB49mu7du9PW1sakSZOEncm5c+fYu3cvkydP5uuvvxb0AWtra5qbm/n06RMeHh7IyMjQ3t5OeXk5vr6+LFiwgNLSUuLj43n9+rWwJOtK5ebmYmJiwps3bzh06BAXLlwQJHEJOlBcXCy4sH369MHS0pLVq1cTEhJCfn4+BgYGHDp0iE+fPqGtrY2rqyvv37/n559/5tSpU0It2q9fP4YMGUJjYyNPnjzBwcGBqqoqtm/fzvPnz1m7di2LFy+msrKSq1evUlNTg6enJ/Pnzxf8wq6O8hQVFVm4cOG//TOJylmC6EmaBujgTt64cYP9+/fTo0cPdHR0mDVrFtbW1uTk5LBp0yaam5uprq7GwsJCWHycOXOGgoICFixYIBrXly9fUlJSQq9evcQi4efnh5WVFdHR0TQ3NzNw4EDk5OQoKCjokqgQOhaj3r17k5CQQFFREV988QVbt25FXV1dKP5tbGzEz66oqODevXskJCTg6enJ3LlzcXNzw97engMHDrB69WrhDDJ9+nR69uyJjo4OxsbGKCgosHv3bqEgDQwMJCEhgcuXL6OoqCiEbSkpKbi6urJ69Wqys7OxtbVl0qRJvH//Hj8/vy4rZP95aJEcVCsrK1FUVERVVZX29nZOnDjBixcv8PLyEur8t2/fcuPGDQYOHIixsTG2traiUU1OTubRo0d8+PCB9PR0dHV1WbFiBYMHDwY6mhnJZKC5uZnnz59z79493Nzc2LBhgxDLZGdnc+vWLXR1dZk9ezZAl1E7Sa1fv564uDiOHz8uQhj09PQ4duwYKioq1NTU0NDQgIODAzo6Oty5c4cVK1bQ0NAg3tOYmBgx/RoyZAgFBQU4OjoyZ84c2trayMnJYciQIUL1/Mcff5CQkICMjEwnT9uQkBD09PRwdHREXl6eefPmYWpqiqysLI8ePerytb1+/Zrhw4f/y+EsPj6euLg4FBUVsbGxwcrKioaGBs6ePUtFRQVbt24Vo2bJSPzu3bs8evSI+vp6Yf9WX19PeXm58FOGjue/Zs0a5s2bh5eXVydnlZaWFhG2UVVVxa1bt9DW1mb8+PEYGRkJ28auVHNzMwYGBmIqYGxszLRp0zpZP0n8uwMDA7lx4wavX7+msLAQVVVV7O3t+eGHH/Dx8RFgjIyMDOXl5UCH/mDAgAFUVlYKv0yJN3R+fj5+fn5oaWlx69YtoQ/o27cvtbW1mJqaUlZWxtmzZ5GXl2fcuHGdxvSfU926dcPT05Nvv/0W6AA/jh8/Lri3LS0tXL58mba2NqZOnYqWlhYhISHY2dmhqqrK2bNnuXjxIpMnT+arr77C0NCQ2NhYLl68iKqqKqtXr2bq1KlkZWWxb98+UlJSxN8LHbSeH3/8EWVlZXHgq66uJiAggOXLlzNp0iTWr1+PgoJCJ21JV+r8+fNoaWnRr18/KioqGDlyJI6OjkJH8PDhQzZu3MiAAQPQ09MTug6JbRj8P32IpqYm9fX1FBUVUVtbK6wYS0tLGThwoPDJ1tTUZOHChVRXV5OdnU23bt1obm4mIyOD0NBQ0tLSGDRokKCftbS0sH37dhQVFenevXuXRFuampq0trYSFRVFZmYmAwYMEH82evRobGxs8Pb2pry8nI8fPwIdk52TJ08iJycnnATy8/O5du0ax44do6qqiuTkZFpbWxk9ejSBgYEUFhYSGRlJcHAw9+/fx9zcHHd3d/r06YOUlBRGRkZs27ZNBLwMGTKEDRs2AB0Iv46ODkOGDPksd5ouN6+WlpbY2NiQkpJCS0sL33//PcXFxcKja9OmTcTFxfHkyRPc3d2RlZXFyMiIDx8+IC8vL/h59+7d49ChQ9TU1HRa9A8fPsyrV69Yv349vr6+nD59mujoaCZPniyCER48eICsrGwn9EtNTY3+/fujrKzMw4cPuXXrFpMmTWLbtm1dspJqbm6mvr6euro64XPa3NzM7t27yc/Px9TUlPHjx2NnZ9eJhylBumpqalBQUMDMzOxfLLok6suioiICAwMpKioiOzubqKgodHV10dbWFqichoYGZWVlQAfPSOKZaWpqSlVVlRCd/G+OBv9X+fv7M3r0aLKysoAOVNfNzY2ioiKam5vR0tIS4yHoaGQNDAwwNjbG3NycgIAAUlNTmTJlirCkgY6NPzY2lufPn5Obm8vZs2dFqsjVq1d5/vy54HUGBgaioKAgmoGKigoyMzNxc3Nj1apVQmGbk5Mj0PbPrYqKCqKjo4WptuR5SJI9DA0NaWtrEz6R0MGfunfvHqmpqTx+/Fggvurq6gwYMICAgAAePnzIhw8fRCOUlpYm+KWSUzEgqCB6enoCZW5tbUVPT4/hw4ejra1NQUEBRUVF6OvrY2hoKJ7F59aDBw/4/vvvWbt2LRMmTMDGxqYTel5cXCzGk1JSUpSXl1NVVUVUVBSpqanIy8szffp0pKSkUFBQEBu/ra0tbm5uTJo0SXyX2dnZVFRUYGFhgZWVFQoKCqSkpPDo0SPk5OTo27cvNjY2yMnJYWdnh5qaGo2NjQLZvnPnDqtWreokCvqc6tu3r0iqk9BzsrOzefPmDT4+PqipqfH8+XOuX7/O9evX0dDQoGfPnoIikJKSQr9+/cR3mZyczNGjR7lw4YJ4hv369evkHVlUVER7ezvGxsa0tbURFBREfHw848ePF9OdAQMGYG5ujqKiIjk5OeTk5GBqavpfCZoqKipITEwUyIWEIvT8+XPs7OxYtWoV+vr6aGhoiDCNtLQ08bwkriXBwcGUlJQwbNgwtmzZQo8ePaiurhbUETc3N/T09MjPz6ehoQF5eXk+fvxIYWGhsPAZNmwY0tLSVFdXk5ubS0tLCz169BDNTkxMTJevr7a2VhwIqqqqhDpd8rspKytjaGjIyJEjSUtL48KFC+Tm5lJYWEhZWRmBgYEoKyszbtw40tPTuXHjBpaWlgwfPpyEhASROAYdlIsxY8ZQVlbGx48fKSgoQFtbm6ioKFJSUpg0aRI2NjZIS0tTUVFBZGQkBw4coKGhgfb2diZMmNCJ+vW5JScnR//+/SktLaWtrQ1jY2PWr18vNuDk5GTU1NQwNDQUjUxRURGqqqpoamri5ubGvHnzOk3RJDZSo0ePxsTEBOjgIku443PnzqWsrIx79+4xc+ZMFi9eTHt7O3Fxcbx48UKABtBB9UtNTWX06NFdblwBYZX0zTffCFeOf7oltLe3k56eLnxZTU1Nqa2t5fTp0xgaGqKhoYGhoSFBQUEMHz6cbt26cerUKd6/f8+FCxcYO3Ys+fn5HDx4kOPHj9PW1kZkZCSZmZmMHDkSZ2dnxo8fT1tbG+Hh4bi7u7NkyRJiY2M5fPgw9vb2wulDEmjS1ZKgqUVFRSQkJKCsrIycnBz5+flkZmbS2NjIs2fPMDU1Zd68eWRkZHD79m38/PyER3RycjLW1tbY2dnR3NyMgoKCmDro6elRWVkphL+vXr0SzfL/LIkws7a2lmPHjuHl5SUS4yRTtq6K7qSlpVFUVKSsrIzExET09fVpbm4mMzMTIyMjITbNzMxk+vTpRERECKDm7du3uLm50dLSwpUrV7h37x7dunXDxsaG+vp6Ll++TFJSEj/99BOjR49m9OjRDB8+nMjISCIjIzEyMhKTFuigH6xatYri4mJkZGSEKH327NncunWLlJSUzwoL6XLzGhoaysCBAxkxYoQY0ykpKWFvb09kZCRHjx7F19eXhQsXdnqJunfvLkYGaWlpXL9+nYEDB7Ju3TqcnZ1pb2/n8ePHREREEB4ezqZNm8TPmjdvHrKysuzfv5+zZ8/Sv39/vvnmm3/xXG1tbSUsLIwdO3bQ0NCAiopKJ07O59T06dMZMmQIxcXFYuT84cMHLly4gKGhIQsWLBDin3+WnJwcRUVFPH78GG1t7f91o759+zbXr19n6NChfP311xw6dIipU6eir69PbW0tRkZGbN26FW1tbU6ePElERIRIvJAo19XV1ZkyZUqnNKyulKmpKRERESxYsID58+fz+PFjZs2ahYqKCtbW1mK0Z2lpiba2thAZ+Pv7c/nyZeLi4igpKeHy5cssWrSIkSNHEh4ezqlTpwRfNjY2lo8fP4rmVVFRUSSoqaurs2fPHnx9fXn58qUwctbQ0GDNmjXCieGrr74SB6KuVFRUFLt27RLK1IqKChISEhg7dqxwifjnCf3AgQP89NNPrF27lr179/Ltt9+yYcMGBg8ejLq6OqWlpTg5OTFu3DhsbGy4ePEi0LEplJSUYGNjw7Bhw8T7LrEk0dfX/7cogJubmwipkFRXQhig45tzdHRER0cHTU1NNm7ciI2NDQcPHsTGxgZ5eXmio6N5//49Li4u2NvbM2LECMrKygS/fOvWrYSEhDBu3Dhev37NkydP+PjxIxYWFqJxbWpq4vnz5+zatYsePXpw9uxZzMzMWLduHStWrCA5OZknT57Q0tKCjY0NL1++JDg4uBPnd+LEidjb2/+L3dx/KonKNiIiAg0NDYYOHSpU56mpqYwYMQIHBwfMzMyorq7m+++/74RoODo6EhsbS1JSEvb29ujr66OlpYWmpib9+vVjwoQJDBkyRHznko1K0kRIRrc2NjZs2LCBhIQEZsyYwddff82mTZtYtmwZycnJaGpq8vTp0//KUUFVVZW9e/dSXV2Nnp4ehoaGXL58mYULF/LDDz9gYWHB7NmzUVRUFFxPKysrFi9ezMmTJ0lKSgI6lOeurq5069ZNiKQCAgIIDQ1lypQpuLi48PLlS0JDQ3F3d2f79u2MHDmSpUuXkpmZycKFC/n+++/ZvHkzSkpK5OTkcOXKFYyMjMSh+5884c8tDw8PMjIyiImJoa6uDk9PT6ytrenVq5cQ4airq6Ojo8O3337L9OnTkZGRQUZGhgcPHnD//n00NTXJz88nMTERQ0ND/Pz8+OGHH2htbWXfvn38/PPPQAdCN23aNDHaHDRoEC0tLfz666/i/0uinJ88eUJgYKCIF168eDF5eXld9swuLCxEW1sbOTk5QfsAhHhYIqBqbW1l6dKl9OzZk99//10cbiVOMv9sBqGjITQ0NBTc2Dt37gg6i7y8PNevXycvL4/w8HAKCgrYunUry5cvZ+fOnUyaNInNmzezYcMGsrOzyczMZOPGjWIvzMnJ6dI17tixg/3797N69WpcXV1Zs2YNV65c4erVq8I9wcDAQDR86urqGBsbc/36daqqqli5ciUrVqwgMDAQT09PkYKmoKAgGuzvv/8ef39/rK2tRSTq7t27efjwIStXrmT69Om8e/eOAwcO4OXlxbfffsuqVavE2D4+Pp758+cLbnpX69tvvyU4OJhevXphamrKkydPqKioYO7cuXzxxRc4OjoSFBREWVkZU6ZMISgoiOPHj5OTkyOojXV1dUKlL0khlezZEt7sqVOnxGRy0aJF//Z38fDwYPr06YSFhYk93sTEpBNY11UdiL+/P7a2towcORIFBQUhIMzKyuK7775jzZo15OXlkZGRwebNmzExMSE1NZUrV64gLy9Pc3Mz796948qVK7S0tHDgwAHGjh3L48ePWbJkCXfv3uXx48dER0djZ2eHpqYm9vb27NmzBxsbGz58+NDJNWjUqFFYWVmxbNkyhg8fzuXLl5GTk+PatWsUFhZ+1p7f5eZVQhK2s7PD39+fe/fukZubi76+PqampsI8XVNTk5KSEhISEmhra0NPTw87OztkZGTIysrC0NCQ0aNH4+zsLE5aEissCc+jsrKSCRMmiCbZ399fjMdsbGwoKysjNDSU/v37o62tTUZGBnv37qWhoYGBAwcyYMCALmU4A6KhMDY2FghWTk4Oy5cvx9nZGScnJ4qLiwkMDCQ1NRV9fX3BhZEkQb179453795hbGxMe3s7dnZ2GBsb8/btW5YtW0Z9fT0zZ87E09OT7777jsrKSiorK4EOsZGJiYmwGAoICODx48cMHDgQaWlpcbLU09OjurqaN2/edPURMnbsWLKysjAwMEBGRob09HSys7NRU1PD0tKS1tZW7ty5g5aWFl999ZWweNHU1KS6ulooc9va2iguLiYkJISAgAAyMjKwtbUVSN22bdvQ19cX1lqSccSgQYMYOnQoSkpKpKWlUVxcLOIHY2NjiYqK4ubNmyKOsquIT2trK9bW1iQmJuLv78+wYcPEaVhJSQkdHR3KysrIz8/HyMgIY2NjvL29cXBwQEtLix49eqCkpISLiwvnz58nJSVFxFNKOM6pqakkJSWhrKwsDhc3btxAWVmZPn36YGJiQllZGeHh4Whra+Pu7g50mLa/f/8eZ2dnccA5fPgwBw4c6BKn0N7eXoxDjY2NsbKy4vnz5yxbtozt27djZmbGp0+fiI2NRVlZGVNTU7S1tVm8eDHy8vLk5eURFhYmoiIlhvBFRUUi6UxiLfTP8AZJYpUEDbKysiI9PZ3CwkJhwu7h4UF1dTU3b94kIiICBweH/wrxkZjXNzQ00L17d5qbm7G1tWXevHnExsZy7949lJSU2LZtG01NTVy9epW3b9/i5eXFsmXLRCP49u1bdHR0cHZ25rvvvsPOzg4jIyNhHfbhwwfh1Tx27FiRIKigoICmpiYxMTEcOHBAHABycnJ48uQJQ4cOFaIgiWl5V6I3JVG8/5OX7eDgwJ49e9i1axcvX74U4qqgoCCePXsmqEQ9evToFOns5eXF27dvCQsLo0+fPigoKBASEkJtbS0TJ04kMzNTcLvV1dUZMWIEt2/fZu/evYSEhJCRkSGCSZSVldHX1xdC2NbWVmGm35VSVVXlwIEDnDx5Ent7e/EdKCoqCg7ntWvXKCsrY9GiRZ34mOnp6eTl5fH69WtKSkpwcnLCwcEBIyMjsR5t3LiR169fC49bLy8vVFRUUFJS6jR5iYmJYd26dfz8889YWlqip6eHs7MzW7du5dChQxQUFPDu3bsuN69tbW2EhITQ2tqKmZkZCgoKglMtLy9PXV0dlpaWvH//nv379zN27NhOhwCJhVdjY6MYJ8vKyopmNicnh+vXr7Njx45OAQ8NDQ3k5ORQXl6OpqamaHI1NTVxcnLC1dWVxsZGtm3bRn5+Pt7e3tTW1vL333+Lid7nlpSUFJ8+fUJHRwc9PT1MTU2Jjo7m559/ZuvWrcjIyFBWVkZERATu7u707t0bR0dHli5dirKyMqWlpbS3t+Pp6YmJiQnS0tIsXLhQRGyXl5ejp6fHwoULhUNRZmYmYWFhAgmNjY0VQjToOFTLyclRVlZGZmYmly9fZvbs2cKTtqu1Z88e2tvb6dWrFz169CAgIIDs7GxUVFTEWqeoqEh9fb2gKDY2NqKnp0d6ejq1tbXo6OhgZGREQ0MDmZmZYkoVFxeHiooKra2tvHr1infv3iEnJ0evXr3Q09PD2NiYvLw8kpKScHNzw8fHR3zLZ86cERQvHR0dKisr0dDQ6DJw9fr1a7755hugg7Lz5MkTioqKhDgtOjqasLAwQkJCBKAkcXx6+/atsPR7//49w4YNE3uXtrY28+bNIzAwsJNtorGxMW5ubowdO5bExERevXqFpqYmzs7OlJSUoKurK5rcsLAwSktL0dHRobGxEXV1dZycnP7jvt/l5lVy02JiYrh48SKBgYHU1NRgY2PD6tWrWbFiBdABa9+/fx9/f3/y8/Px8vJi3rx59OzZk+7du1NTUyMWx+fPnwtC9z/TMQYMGNCJKyXhzEkWvZcvX5KamiqEUhITYHNzc86cOYONjU2nRJ3PqePHj3Pw4EGUlZWFibmTkxNLly5FUVGR5uZmAgIC2LlzJ5mZmfj5+TF//nygw49USUmJ7Oxsdu7ciba2tuCKfPz4kaNHj1JfX4+CggJJSUm0tLR0aq6lpKRwdHQkPz8fV1dXxo8fj6KiImFhYSgoKODt7d3JWuvDhw//dd64JLmoqKiI/v374+fnR2NjI0pKSqSmpooFfeTIkWIc3bt3b2Fro6CgwG+//YaDg4OwZhk4cKAYS2ZnZ4sUjj59+lBbW4uMjAzDhw/n1KlT5OXlcfbsWczNzQkMDERdXZ3z588TFRVFVFSUOKX16NGj0zV/TtnY2PD8+XN27NiBv78/06ZNEyrVpqYm5OXlSU9PF4bgEgHbzZs3OXToEJ6engLlaG5u5qeffkJOTk6EYIwYMUIkhRgYGDBjxgxCQkJYu3YttbW1bNq0ib59+xIWFiYWdFdXV2RlZYmPj2fTpk0MGzaMoUOHEh8fz88//0xhYWGXmlcJhwg6xjCHDx/m9OnTQgBx5swZdHR0KCoqIiYmhrKyMtTU1MTGmZSUhIODA/b29qSnpwtU08XFhYKCAqysrJCVlUVTU5MhQ4awe/du2tvb/yUYo6mpiX79+hEXF0d4eDiDBg3C3t6ee/fuceLECYKCgmhqasLHx6eTbdLnVEREBC9evGDixIkiSQc6GkV1dXWOHTtGZmYmc+bM4auvvsLExISjR48yaNAgbG1tiY2NJSAggKysLNzd3fHx8UFTU5OxY8eKKNi6ujqOHTvGiRMngI5DuSR5qqioCB8fH8LDw/nxxx/ZsmULp06d4tChQ2zZsoWWlhbh0SxxJQgPD//s66uvr0dDQ6PTGicJ6/Dy8mL79u0sX76cq1evCvT11atXlJWVCR6itbU1Hz9+ZPDgwTQ0NLB27VoqKip48OABVlZWFBcX88cff5CZmcmyZcsYNGgQ8vLytLS0ICsri6urK0eOHCEoKEhEZE6ZMoUhQ4aIwIvExES2bt1KcHCwQGE/t968ecP9+/eprKwkOzubmpoa4P8FpdTV1XH48GHi4+Nxd3cXzS10IL1OTk5UVFQIbqyOjg61tbXExMTg6elJW1sb7u7uBAUFUVdXR0ZGBs7OzkRFRaGqqsqQIUMEn/vy5ctAR3Kjq6urQCJ1dXVZvHhxJ27s51ZmZiYvX76ke/fuIrQEOjiraWlpgj5TV1fHokWLuHfvHk+ePEFWVpby8nLevHmDrKys+K4aGhowNzcXaPO+ffs4dOhQp31Mkp5VWlpKcXExnp6eaGlpkZycjJmZGQ8fPkRdXZ2cnByioqKIjY1l48aNVFRUEBUVxbhx47q0pvr5+aGjo8PFixd58eIFM2bMICUlhbNnz9KtWze+/vpr6uvrRdS35D8+Pj7U1dXx9ddfk5+fz7p16ygqKqK0tFRwgqdOnYqJiQk3b95ETU2N6upqWltb0dTUpK6ujqtXrwqwZNKkSYwePVr87vfv3xc0tGnTpomUxv+GSuft7Y2mpiaDBg1CT0+PiRMnMmXKFOEwBB2NmoyMDFJSUpiYmIjAjtLSUh48eCD0Avn5+URGRqKmpoa2trZoWCXWZT169CA5OZnz588TFxeHl5cXLS0tBAYGEhwcTFlZGcnJySIu2MvLS/CH/5t3FDrQ+uDgYIqLi3n27BndunXj999/Z9q0aSgpKfHq1SuqqqqIiYnh8ePHNDU18ccff6CiooKamhrKysoYGRlhY2MjKAYSR4RZs2aJxLfS0lIKCwsFrevx48ccPXqUx48f09raiouLC4aGhtTU1JCTk8Po0aOZMWOGaGpnzpyJkZERAwcOFN/r/1b/VTzspUuXBPdj/PjxXLlyhaSkJPLz88Xfp6+vT0REBHfv3gXo5AVbWVlJZGQkra2twk9S4ltZV1fHjh07hJWEmpqagN7nzJnD0KFDRddvbW1Nz549hV2Urq4uR44cEZxbFRWVTtZXn1O5ubmUlZVRVlZGUFAQs2fPpq6ujuXLl9OvXz+WLFnCl19+SU1NDZGRkSxevBhVVVWePXvGqVOn6N+/P7/99htv3rwRYyx7e3v+/PNPoRj+8ccfUVVVFfy5qqoqEhMTmT9/PuvWrePOnTscPHiQKVOm0L9/f/HS/M/S0NDA0dGR4ODgLl3j5s2b6dGjBwYGBlhaWopDgWQsYWFhQc+ePTE0NBScnTt37lBQUEC3bt04evQoOjo66Ovr8/HjR2FrJVFFa2hosGHDBgwMDHBwcKCtrQ0dHR2mTp2Kl5cX+vr61NfX4+zsjKurq2iOFy9eTHJyMtra2vTq1Qt7e3tMTEzQ19fvEjldVVUVeXl5FixYgIyMDNnZ2aIxP3v2rKCszJ07FzU1NeLi4qioqBCmzGFhYUJBP3jwYM6ePYusrKzgIjc2NtLU1ISvr69YMDMzMwXqtmPHDjQ0NDAyMmLatGk4OTkJtHXJkiVYWVmRlJTE33//DXTYLXXVn1CS4CZpxqHDOkdJSYm2tjbCwsLIzMwU3oNWVlaYmJgQFBTEtWvXyMvLE4dAf39/CgsL8fPzw8nJiTVr1uDs7MyWLVtQUVFBRUWFvn37dvqWCgsLaWpqQkpKCmVlZby9vampqeH8+fMkJibSvXt3pk+fTr9+/SgrK8PY2Jjs7OwuXWN0dDR3795FV1dXHBATEhI4efIkvXr1YurUqaxcuZKTJ0+yePFidHR0CA8PF4fZ+/fvc/v2beTk5Hj69Cmtra3Y2toK+z4HBwe8vLyYNWuWQJsrKipYuHAhjY2NQtg2ceJE/P39kZGR4ebNm5SWljJmzBh69epFeHg4e/bsEYEoXSnJd5ecnMzHjx/p1q0b1tbWyMnJUVFRwfPnz0lOTsbAwIChQ4dSXV2NtbU1np6e9OjRg/DwcI4ePUpKSgpubm7U1dURFxcnAg/k5eWJj48HOg5hTk5OyMvLExsbK8bSoaGhvH37lurqalJSUpCSkuq0+Uuaxvr6eqHw70qFh4fTv39/Ro4cKRC77OxsXF1d0dLSQllZmTVr1hAdHS0Qs9bWVoKCgsjKymLEiBEMGDCAoKAgTp06hbOzM7NmzcLR0ZEXL15w9+5doYDPzc1l2bJl+Pn5MWzYMKysrICOyO+ffvqJGzduCKeIf9bgwYNZtmwZcnJy3Lhxo0vXd+LECczNzTE1Nf0Xr/PU1FRKSkro3r27mJS9ePGC27dv88UXX6ClpcWIESP48OEDz549Iy0tTVjANTU1UV1dTVNTEytXrhSHb39/f+EFmpiYCHSkUUqU7L6+vkK4lJyczPjx41FQUOD69esAQjfRlXAbCVKblJTEmTNneP78ObNnz+arr77C09MTKSkpZs6cyaRJk3BzcyMuLo6//vqL48ePC8/XJUuW4OHhwY4dOwgODha2WImJiUJ0qqam1glRbGhooKqqivr6etGwSv771atXKCsrc+zYMRQVFTE2Nhbv7X/TvP7666+0tbVx+/Ztbt26xdy5cztR/7Kysti1axcGBgZs27aNwsJCfv/9d0aNGsWIESOYPn06Dx484PLlyxgZGeHj44OhoSGJiYmkpKQQFhaGubk5c+fOZdSoUezevZvIyEjhjTpy5EgGDRrEq1ev2LJli6ADLViwgCFDhnQ6bFy8eFHwTj+3zM3NWbduHf369WP+/PmoqKgIsafEO9/AwICdO3cKvu7r168xNzdn7dq1yMjIYGFhgZOTExYWFtTX15OdnY2uri76+vqUlpZy7NgxUlJSGD16NNOmTQNg//79PHz4kJaWFo4dO4a5uTnfffcdqqqqqKqqMnjwYGxsbATgZWNj08me6/+qLjev9fX1XLlyhWXLlgnysJmZGdu3b++kCv/777/FQqCvr8/AgQOFh2FBQQGvXr2ioKCAUaNGoaioiL29PWfPnkVBQYG5c+d2Gh+1tLQI/0wJ/F5dXY2LiwuNjY3Cb9La2ho/Pz80NTXZtm0bQJfHQF988QUxMTEiQWjQoEFERkYSEBBAeXk5S5YsAWDWrFlivFheXs6pU6d4+/Ytw4YNEznPkrEr/L8YzeHDh7N8+XJKS0tJTEykrq5OoC+2trZCSfn48WOCgoL4/fffWbhwIa2trWKDk9xHKysrzMzMuty8vnv3jrq6OmbOnCnEUP+0dWptbWXAgAHU1NSI9JTc3FxOnDhB9+7d2b17N/r6+sLaQl9fH3l5eWJiYsjOzqZnz5706dMHPz8/sZC4urqybt06YVI8cOBApk+fDnQcZiQcZT09PUpLS9HV1RXPrrW1lb/++uuzr09GRkaktm3fvp3z588TFhbGwIEDKSoq4sWLF3h7e4tUr8ePH3PlyhV27NjBxIkTuXbtGteuXcPPz49ffvlF8LIkFRISIpKJJM2rqakpzs7OpKamCv9VKysrli9fLvillpaWbN68mbFjx6Kjo8OLFy/w9PTkyy+/pLy8XNiyfE7JyspSX1+PkpISTU1NQmTwxRdfEBUVxa1bt2hsbMTe3l6oZuvq6njz5g3v379HUVGRkpISQTuxsLDg7NmzSElJ0b9/f4qKivjxxx8BhC9mUVERDQ0NGBkZoaKiQlhYmBh1Se7Rjh07uHPnDufOnRMLmKS6+i3q6uoKLp2kLl++LHiOc+bM4fbt27x69YrU1FThMSjhzEkM3Jubm0lJSUFbWxspKSkiIyO5f/8+kyZNYubMmVhaWuLh4YGCggIfP37kzJkzZGRkkJubi5GREbNnz6Z///6Cc9etWze2b9+OtrY27969Izg4+L9O9qmsrBQJheXl5Zibmws19sOHDzE1NWXTpk1MnjyZu3fv0t7eTt++ffH29iYqKorCwkIqKipoaGhAXV2dSZMmUVVVhYWFhRDaZGZmoq6uzqdPn3j16hUXL17Ez8+PBQsWUF1dzbFjx6ioqAA6KAtpaWn06tULeXl54ewgiZvtapWVlbFixQrhCnPy5Emqq6sxMzOjtbWV6OhovL29O7mmyMjIEBMTQ2VlJd9++y3l5eUcOXKEsLAwdHR0UFFRQVZWltLSUqKiogRfXFFRkezsbIqKijA0NBRrWVNTE0OGDPmX77i2tpb4+HgyMzOxsLAgNDSUzMzMTh6s/6mkpaUZMmSIcKvIzc2lW7duKCoqIi0tTWRkJHV1dbS3t2Nvb8+HDx84ffq0mEIpKyujoaGBqqoqCQkJvHjxotM0burUqfzxxx8AArW+fv06YWFhaGhooKSkREpKCk+ePMHT0xMFBQUqKytFgMM333yDj48P3377Le/fv8fOzo78/PwuKfIlBxDJ88/MzCQ2NpbLly+jpKQk9AMuLi7IyMiQkpIiJhkGBgYEBAQI2pDE/zU/Px93d3eWLl3K8ePHmT9/PuvXrxc9RUJCAv7+/iQlJWFubk5jY6MQbkqcGjw9Pf+tpkVyn7pSEouzLVu28ObNG2bNmgUgJhTm5uZERkZSXFzM5MmTSUxM5PDhw+Tl5TFixAh0dXXx8vLi+fPnJCQkYGlpCSCCRz59+kTPnj3R09OjpaVFIKj19fXo6+sLClOPHj2IjIwkKSmJfv364e3tjY6OTifkPTw8nNu3bwvLzc8pyUR16tSpnaZY7e3tREVFoaSkxMiRI8WeeOvWLW7duoWnpyfGxsbIy8vz6dMn9PT0UFRURE5OTojoysvLOXfuHDt37qStrY3KykoMDQ0FYLJgwQKePHlCVlYWR48eFZQ5CXhSX1/Ps2fPyM/PF4LJz3mGXW5ex4wZg6KiYicOm6ampiAZQ4eXpgQp6du3Lzt27KBnz560t7fT2NiIqakp/fv3JyAggHnz5rFp0yZcXV3ZtGkTISEhxMTEoKGhIcQ+srKy1NbWCuTnwoUL1NTUMGXKFPz9/dm5cydz585lx44dQAe5ecOGDV0eU0KHWfGgQYO4d+8excXF5Ofn4+HhwePHj5GRkeHZs2ccOXIES0tL9u7dy6dPn1iyZIng3kmaaYnY5Ntvv8XKykqgdZIGv1u3bpiZmbF79260tLTYvn07lZWVLFq0CE9PT44fP87t27e5f/8+6enppKam0t7ezurVq4WyUpKY1NXas2cPcnJy1NTUEB4ejrW1NaqqqsJdQMK7ys3NJSYmBl9fX/z8/Lh37x537tyhW7duGBoacvXqVWRkZDA0NCQzM5PKykqcnJxoamri9OnT6OrqikVdSUmJ3r17k5iYKEQYks0kOzubV69eUVJSQlJSkviZe/fuBbp+ktbU1OxkQj5hwgTq6+tpbm5mwoQJODs7d+KdSZTy165do6GhgVGjRuHh4UGPHj3+7YYtLS3N8+fPOXHiBPn5+Wzbto3BgweLsZiUlBSBgYHC9y8nJ4eAgADk5ORIS0sjPz8fQ0NDIVYEusxDCwgIQFNTkwEDBgikSjLlkIx6evXqxaBBg3BwcCAmJkaESBw+fBgpKSkuXrwomtfMzEyysrJwcXHh0KFD1NfXiw1OckqWfGsrV65k9uzZPHz4kKtXr3Lu3Dnxe02ePJnhw4eLZyvhdf43NXbsWDw9PcUo2d/fn8zMTFatWiXG9d988w1+fn4oKSnh5eXFo0ePiIqK4sqVKyLzPTs7G0NDQ9asWUOPHj24ePEiZ8+eFe4aly9f5vr16+zevRtHR0d++eUXzp8/T3x8PHPmzMHf35/Tp0/Tt29fNmzYIGy2JKbff//9d5eFodDR6CQnJ6Ojo0OPHj2Ii4sjKysLU1NTfHx8qK6uJikpCXV1dWJjY3n9+jXh4eF8+PCBqKgoHB0dhR2dJLL766+/RkFBQQhE/vrrL3777TfS0tL4+++/ef/+PYGBgWhpabFgwQJmz55NaWkpmzZtoqGhgYSEBL7//nuePHnCpk2b6NmzJ83NzYwZM4Y5c+b8VweQf35r3t7e4sB84sQJvv/+e6ZOndrJnqqsrAwDAwP69u0rRpoxMTH4+PiwadMm3rx5w+nTpxk7dizffvst6urqBAYG4uLiwvLly3F0dBRBL7169RK2Wv/Trkuy/gUHB5Obm0tOTg7W1tZdal63bNnSCQFLTExEVlZWJMzl5OTw8uVLVFRUaG9vF6PU3NxcDhw4QFVVFdOmTWPhwoVkZ2f/ix2ZxC4LOr75nJwcHB0dsbe3F7QfBQUFEc+qpqaGjo4Offv2pbm5GQ0NDXx8fLh27RoHDx7k8uXLnDp16l+ccP6vMjU15dy5c1hZWXHp0iVCQkJEWpKrqytNTU3s2LGDyspK1q5d28kn9+uvvxa9Qnl5OdOmTWPx4sU0NjbS2trK7t27qays5PLly1hYWIjmVeLG4urqio+PDyUlJcyePZugoCBGjx7NunXrUFVV5d69e2hpaQkv9+rqap49e/bZ1/bPamlpYdKkSdjb2wvLKCMjI7F+Xbx4kdOnT7Nx40YsLCz4888/UVNT4+HDh/Tq1QsbGxtsbGxYvnw5ly9f5tKlS5iYmJCVlSWU9ffu3SM6OpqioiIUFRVRV1fvRAVQUlISjgtZWVnExsYKcaqEXz9q1ChcXFy6RFEqKyvj0KFDwjtXUlJSUsI5QAKKrVq1irNnz6KhocGLFy+4fPkyXl5eZGVl8fbtW/z8/Ni+fbvQQjQ1NQkd0t9//83du3e5e/cuM2bMYNOmTUyZMoXExES2bNnCrVu38PPz45tvvmHz5s2oq6tTWVnJu3fvUFVVZdSoUSgoKBAWFvYfr6nLzauzs7MQGEhsoXr27Im+vj4FBQVcuHCBly9fYmtri5SUFMOHD6dHjx6dkmPs7e2ZM2eOQLhUVVXZvXs30tLSNDY2UlNTI8YmSUlJpKamYmdnh4KCAi0tLZw4cYKqqirGjRtH7969MTAw6IT6SjLYoevG4RIjZ0m6kAT1UVRUpKKigqysLD59+oS6ujrp6em8ffuW+Ph4xo0bh4ODA/7+/hw8eJBJkyaRlJREY2Mjb968ERzOoqIiYfcxfvx4goODsbe3Z8GCBSxdupRHjx4xfPhwvvzySwYPHszkyZNFPrSFhUWnZuqfxuxdKTMzM7p168bdu3cJDg5mzpw5/+KgYGRkREZGBvHx8djZ2aGrq0uPHj0IDAzk2rVr1NXV0dTUxIgRI3B3dyc2NpaSkhImTJggPNwcHBwYPHgwBQUFtLa2YmhoSGFhIbGxsZ2ELSUlJRQUFBAVFSXsbVpbW3nx4sV/JbqTxIbm5uaioKCAp6enUJA7ODiIbPikpCTk5eUxNTVl4MCBHDlyhGfPnnHhwgVx+IIOdOzFixfC2ispKUlYnty6dQs9PT1hF6WmpkZERIQ4bRcXF9PU1IS5uTmtra2UlZURHx9PQ0NDJ2FBcnJyl65RgnjKy8tTWFjYaXw6e/ZsJkyYIJLTAJGUVltbi7S0NB4eHpiZmdHY2Mi1a9dwdnYmIyMDJycnevfuTU5ODsnJySgqKgq7r5ycHMLCwggODmbUqFEoKSlhZmbWKfbV3d2dwsJCAgMDCQsLo6KigqlTp/7Lovk59U/+e0hICBEREXzxxReMGzcO6FiQHR0dBfrd2NhIXl6eSByThHhkZ2fTvXt3sW41NjaiqalJ7969UVRU5NOnT4SGhopv0dzcHBsbG/Ly8igrKxOCFFVVVWGJl5aWhrS0NA4ODvj4+FBUVCRoIJ9bUlJSGBoaoqamRlJSEs+fP6e4uJgFCxYwefJkxo8fz61bt/jjjz+ora3Fzs4Ob29vkYz26tUrYVUnESNKIm+jo6MxMzNj0KBBaGtr8/3333Pu3DmkpaUZMGAARkZGxMTE4OLiQu/evdHT00NeXp6hQ4dy/fp1rl69iq+vLz179kROTo7a2trP2lD+Z7m7u4upSllZmWiyy8vLyc7OxsLCAgMDA549e0ZWVhaurq707t1bNAVycnKUl5fj4+PD9u3b6dOnD0uXLuXDhw+sXbsWa2trAgMD+fjxIw4ODsjLy1NWViaM7eXl5YUDgCRZT9JYqqqqYmtry/3793n9+jWAAEw+t/Ly8khLSxPj8ba2Nt68ecPVq1dFWmFUVJRAXidNmkRLS4v4jqDjPVZXV6e2thZLS0t0dXVRUVGhpKREBGhcvXqVH374AVlZWfr164eLiwvjx4/vtB+8ffuWtLQ0WlpaaG9vJyMjg9jYWAYPHoyFhQUyMjIUFhZ2+Rn26dOHZ8+eCUeVMWPGcOHCBXJycnB1dUVRUREDAwOePHnC5s2bhT5jw4YNjB49mra2Ns6cOcPHjx+Fu0dkZCRaWlr4+vryww8/CO6ypGRkZFBWVqZXr144OzuTl5cnAAhnZ2eB5P/1119ivC1J9evKOF1S0dHRaGhosHTpUt6+fcu+fftITU1l586dJCYmkpqaytixY9m1a5f4bo8ePQrAsWPHBKADHULT4OBg/vjjD3r37k1FRQWGhoY0NjZy9uxZqqurcXBwYPPmzZiamoo9LjQ0lKioKCwtLYWtW0ZGBiEhIVhYWNC9e3ekpKQEStuV5rWhoUHEd+fn51NYWIiWlhYGBgaiKZYEMN2/fx8PDw+8vb2Jjo6moKBAcPFzc3M70YdiY2Oxt7fH2NiYHj16UFtbK8JoDAwMxPfU1tYmrONaWlqEKwUgQD0tLS0MDQ1pb2//rMlAlzufwMBAISyRpMGoq6tjYmLC8ePHOXz4MN999x1nzpyhsbGRBw8e8Pz5cwYPHiwgaegQXbi4uJCcnIyhoSFhYWFs2bIFBQUFbt68ibGxMdHR0fz4449IS0sLU2aJ0ra2tpampibc3Nx48uQJqampIkJSUv/utP2f6syZMxw8eBA/Pz8uXLgAdKRvfPnll5ibm/Prr79y69Yt2tvbUVVVxcDAAE9PT968eUNcXBxaWlpIS0tz//59xo8fz/3797l79y6//fabWDgyMzNxdXXFyMiIP//8k7a2NhISEgRnWMJ/1NLSwsrKSvDW/Pz8OnkBSkb6Xa0DBw6wcuVKqqurRZoYdJx2Jckivr6+GBkZ8ejRI27fvi14LRKT6Pz8fJKTk+nVqxd9+/YlICCAmJgYkRgFHXSR1tZWnj17RnV1NT4+PqSnpxMfHy/oFK2trbS1tdGjRw9MTEwwNjamX79+5OfnExYWhpKSklioPrcqKyvZtWsXAQEBWFhYsGvXLjHCzs/Pp7KyktLSUvLy8sjOzqa1tVUYStfW1v7LAq+oqEhpaSmRkZE8ffqU0NBQKioqGD58OM7Ozhw9epT9+/czYsQIamtrOXv2LNChVq+rq8Pd3Z0VK1agqKjIsGHDkJeX58mTJzx8+JCqqir69+/fZWNtLS0tsdhLONNSUlKcO3eOuXPn0tLSIpKI2tvbcXR0RFZWljVr1nDp0iVOnDjBwIED+fPPP/H19UVGRoa+ffuSnZ3NhQsXSEhIoG/fviLKFjoOPa6urqSlpQl7tYULF3biY6enp/PXX38RFhZGTk4ORkZGAn3/byo2NpbAwECqqqrw9fXF09NT/JkkYlDCB3vw4AHLli0TvsT6+vriWf7TczMoKKjTv0sSUtDY2Mjhw4c5ceIE6enpeHl58f333wvbr1u3brF//3769u3L7NmzKS8vJyAgQJjrv3//nhkzZnz2tUmcLnJycnj9+jUBAQFCRObm5oaFhQXR0dHiUOLj48OKFSv44YcfCA4O7jRKrKysFJt2TU0NL168QFVVlcWLF+Ps7Mz69ev5+uuv0dfXZ8eOHZSUlLBjxw66desmRKRfffUVK1euxMzMjBMnTnTiht6+fZv169f/r/Y+/1v16dNHTE6kpaV5+vQpSUlJ2Nra4uvry8aNG1FXVycgIIClS5cyc+ZM/vrrLxITE/n5559JS0tj3rx5rFy5kj59+lBTU8OnT59QVFQUoqWgoCDa2tooKyvjxx9/pFevXuzevVu8t9DR3EdHR9PW1ia4v7KysqipqXXichcUFHRpYvfVV19ha2uLnp4egwYNYvjw4aSmpnL8+HGR125ra0tSUhINDQ14e3vTq1cvDh8+LHiN2dnZfPvttzg5OeHh4UFzczPq6uosW7ZMvHtv3rwhJSUFWVlZWlpaiIuLQ01NTTQkkZGRFBQUiINGbW0taWlp5ObmUlBQgLq6OkFBQQCsXLmyS0Jma2trzMzMBAJ57do1ysvLBdVDRkZGWFgtWLAAIyMj/P39xaH21q1b3L17l9TUVDIzMzE3N6eurg5bW1v69euHg4MD586dE5M/yZ6go6MjDh7GxsYcOXKEpqamTs3ptGnTCAoK4ty5c5w7d47t27ezbdu2Lh8kQ0JCmDx5MnJycmhpafHx40eBiD58+JCdO3cSEhKCo6Mj2traQmytqKjI2LFjkZeXp7y8nLi4OBwdHRk1ahSXL1/mwoULODs7M23aNHGwqa6uZsyYMSxfvlygl21tbcjLyxMUFMT69etZvXq1iN2WINk1NTViZN/V+qfNVlNTExcvXkRKSoqVK1cKDuuaNWtISkriwIEDAiDIzc0VbkOSyHVJwMHbt29JTU3F0NBQPJP29naGDx9Ov379WLZsGcrKyrx9+5Y///yTp0+f4uDgwOTJkzuBQ1paWiLSXHIf3N3d//8XbG3ZsoUPHz4wa9Ys9PT0iI2NpaCgQBCAv/vuO3R1dampqUFVVZVJkyYRFBQkPMVycnKECGLTpk1YW1szd+5ciouLSU1NxdnZWTS5MjIyDBgwAGdnZ2xtbSkqKuL27duCj3Lq1CnMzc0ZP348bm5upKWlce3aNdra2vD19e2ECH1ueXh4MHHiRDQ0NLh48SLNzc0iG3z69OnCo1OyGVpYWPDmzRuxEPn5+dGvXz/h2yolJcXs2bNJTU1l9+7dVFRU4O3tTVFREZGRkfj4+JCfn8+uXbtobW1lwYIFFBUVMXfuXNra2rC2tubUqVM4ODjw6dMn9uzZg4ODA35+fmRlZQlUtislER3Z2tpiYmJC7969SU9P58iRI5ibm7Nq1SoAkXUvQTKioqIoLi5m4cKFDB06lLS0NBQUFPj06RP29vZUVFQIux0TExO8vb1F4oicnJyInK2vryciIkI8YycnJ9TV1VFRUaGuro7w8HDy8vLo1auXyJjvSikpKTFo0CAhHPL29qa5uZlt27ZRVVXF0qVL6dOnDxEREcLkvqKiAg8PD2bOnEnv3r1JS0ujqKgIIyMjLCws8PHxISsri4sXLwrx2PLly8Vfv3XrFsnJydjb2wsUe9iwYSgpKaGoqMjUqVM7hXGMHTsWJSUlHj16xN27dwV6+LklCZOAjkPC/PnzcXBwEArYV69e8enTJ7EoNDc3c/78eVJTU1FRUSEoKAg3NzeUlZWxt7cnPj4efX19qqqqiIyMpLCwUCg/JeXk5ISioiLPnz/H2tqamTNnAvDx40devnxJt27d0NDQwMPDg4aGBgwNDbGxsRHIdVcrIiJCWOLY2dnh6elJXl4eBw4cwMHBgQULFiArK0tBQQEKCgrIy8vj6urKkydPaGtro62tDTs7O4E65+fnU1ZWJlCNqKgofvnlFzZv3oyrqysvX74UKV0KCgo4ODigpKREeHg4DQ0NxMfHY2lpiYuLCwYGBgLVk6jou6oEzsnJ4ePHjygqKuLu7s78+fPJzMzE0dGRtLQ0IiMjO/n/ZmRkEBUVRW1tLQ0NDSxYsIBDhw4xevRoPn36xNmzZykuLsbBwUGEM3z48IGePXvi5eXF6dOnhR+tZOPNyMjAxsaG3377DVtbW0JCQlBRUWH//v1MnDiRuro6du/eTXBwMCNHjuzyM/wnZaS5uZnQ0FBaWlqYP38+tra2FBYW0traioWFBT///DMRERFMnz4dDQ0N5s6dS2VlJefPn2fQoEGCgiKxNXv37h0RERF8/PiRxsZGCgsL6dOnDwMGDBCoTlVVFX/99Rd5eXl4e3vj6OgomvJPnz5x+PBhoVlITEzkjz/+6BTz/Z9KQ0ODpKQkysrKGDRoEPr6+ixfvlwc4F1dXQkLC+PIkSNkZ2dz48YN8vLyOk1aBg8ejKurK9LS0iQnJ1NVVYW3t7doXCXaAgsLCxEQIrEpbGlpoXfv3kIs5OXlxe+//46WlhZxcXEkJSVRWVlJZmYmvr6+zJw5k5EjR3Lo0KHPvkbJvYyOjmbt2rUEBQUxYcIEIVAsLCzEwMCAkSNHir3Bzs6O7OxslixZIiKp9fT0sLCwwNHRUegbmpqaiIuLo6CgACcnJzQ0NEhNTUVBQYERI0ZQVFTErVu3cHd3FzzS0tJSzp07h6+vL87OzqxevVocQmxtbbs8xYKOiagE+HJ2dmbt2rXU1dXx/v17NDU1cXFxYc2aNZiamjJ79mwGDBggDs0mJiacPn2asrIyfHx8cHd35/3790KTIAGDTE1NsbCwoLS0lNGjR5Ofn8+JEyewtrZm6tSpuLm54enpSUVFBc7OzlRWVnLt2jVevXrFvHnzUFNT486dO9y8efNfQpr+U7W1tYm1QEVFRUw1fv31V6BjH5YkufXv35/09HSeP3/OsGHDsLCwICkpievXr1NdXY2hoSH29vZ0796dyspKgoKC0NXVRUdHBw8PD2pqaggLC+P27dtC6B4fH09VVRUaGhpoaGhw/vx5SkpKGDt2LKNHjxa0D0l9zrV1uXmVjCIk3mxZWVn8/fff6Orqsn79evz8/Dh8+DBffvkly5cvZ/DgwXh7e3Pv3j1hUi6B3W1sbNi0aRMaGhrIycmxfPlydHV1hVWNvb09RkZG4nSyceNGzp8/z/nz5/Hx8RHRk7m5ufzyyy8oKipy5swZoqKi2LFjB0uXLhVK7M8tPz8//Pz8CAsLY+/evTx58gRfX1/u3bsnfE5/+OEHVFVVWbVqlfC4hI6Fura2FgsLC0aOHElAQADHjh1j7dq1LFiwgCtXrgh+6f3794Uxb1VVFcHBwWhpaWFqasr79+8F9+mLL75g586dqKiokJOTw759+wgODhYjqn86PHxuSZLBdHR0OgVHREZGdrpfL1++JCcnB2lpaWpqamhsbMTY2Ji+ffvi6emJp6cnwcHBfPjwQSweEmXh8OHDhS+enZ0dlpaWIm1NXl6+k8BFVlZWnCbLy8vZv38/UlJSYoGVoLSfW7q6umzatIkJEyZQV1eHvr4+9+/f5++//6Z///5ifCyJ8ZOIVcaPH8+aNWsABA1Ccn+0tLTQ19fv9FE1NzcjIyMj3k/oQGmHDx/OsmXLxGIrURADghajo6PD0KFDCQkJ4fz5853S2j6nNDU1hdOAgoIC27ZtE/znc+fO8eeff6KoqCiQgYsXL3Ly5EmhVg8KCqK2tpYffviB+vp6EhMTef/+PZaWlowePVqkGv2z4uLiRC68xJS7sLCQY8eOER4eTr9+/RgzZgze3t7CMF9eXp6TJ09y5syZTpGEn1NVVVX4+PiIZhjgxYsXPHr0iLq6OhYsWAB08NzOnz+Pq6uriC7cv38/BQUFeHh44OHhQa9evZCWlsbe3l6k2ty+fZtt27bR1tbG6tWrOXnypPjZX3zxBVJSUixfvpycnBw8PDwYMWIE/fv3x8bGRrhPSKgNEkcJiUjsc+r9+/c8fPiQsWPH4ufnJ3i8gKDnVFdXM3HiRMrLywkNDeXOnTsoKCggLS1NZmYm58+fR0NDg9evXwtj7wkTJohEsIsXLxIdHc28efNwd3fn6dOnrFq1ChUVFRYuXMiwYcMYMGAANjY2wvFFknIHcPToUXbs2MGSJUs4duxYlzmvVVVVtLW1CR66ra0tSkpKImLz3LlzJCQkMHXqVDZu3MjOnTvZtm0b+/btY9WqVWzatIldu3YRHR2NsrIyc+fOZdy4cSQlJbFt2zaeP38upk/du3fnyJEjODs7k5mZibKyMjU1NVy/fp309HS++OILzMzMxNizsrKSZ8+eYWNjw9SpU3nx4gW///57l67v8OHDPHr0SFgaNTQ00NrayrJly8SU0MTEhKamJo4ePYq/vz/+/v6d4sQNDAz49ddfycvLY8uWLYIiAh3WjatWrcLe3p7FixcTHh5ORkaGuIf5+fn07NkTVVVVioqKyMnJEe481tbWODs709raSnZ2Npqammhpaf1X1AHoQFAl6K28vDzV1dUoKCggJydHTEwMioqK/PzzzyImd+PGjTx9+pQ5c+bQt29fCgsLcXV1ZdSoUZ1CYk6dOsXmzZtZv349e/bsEeuYxKkmLi4OXV1dgaQHBwcTGBhIeXk58+bNE1aH0BFQ01UBMyA0OS0tLSJQ4sOHD/z5558MHjyY48ePs379eiFMGjBggEiGkngIW1tbs2jRIuLj4wkKCkJKSop58+YxdOhQ9PX10dbWFl60dXV1bNmyhf379zNv3jymTp2KkpISq1evZt26daIxjo+PF7xXc3Nzbty4waVLl1BRUemSbV1TUxP+/v5YWlrS0tKChYUFVVVVQuEvJSXFpk2b+PTpExcuXODo0aNUVFSQk5PDjBkz+PDhg/Byl5eXZ/LkySgpKaGhocHWrVtpampi3bp1DBs2DDk5OZ48eUJycjLDhg3D1taWOXPmoKury+3bt9m+fTu1tbWoqqoKmhMg7Bzl5OT+xRHk31WXm9dvvvmGMWPG4OjoSF1dHdbW1qxdu5bm5mYuXrxIRkYG3t7e9O7dm2XLljFhwgS2b99Or169GDVqFKNHj6aiooIZM2Ywffp0fvrpJ6Kjo4mOjmb27NlCfOLr6ytugry8PP379xeL1P79+1FSUmLGjBn4+Pjg7e0NdDQOffv2JTU1lYsXL1JSUtKlUzR0cAmzsrJoaWlhypQpDB8+nO7duwsEITY2lvT0dPz9/Tly5Ajz5s3jr7/+orCwEH9/f/Ly8sjNzUVRURFvb2/hF2lnZ0dwcDAfP35kz549/P3333Tv3h1XV1eam5sF8nPx4sVOtknPnj1jw4YNfPvtt5ibm3P06FH27NkjXAi2bNkisoG7Wv8UQpmamrJmzRoUFRUJCQkhOjqa169fk5GRQWFhIXJycvj4+DBt2jT69+9PS0sL+fn5tLe3o6CgQGZmJo8ePaK2tpapU6eyfPlyQkND2b9/P/PnzxccZGdnZ/bt2yey1HNzcwkNDUVLSwsXFxcUFRVZsmQJ2dnZPH78mLy8vE6ihc8pScPp6OhIeXk5y5cv5927d3z55ZfCLSIrK4urV6+SmprK7Nmz8fX1RVNTk/v37wvyvWQcUlZWxsGDB3nz5g1eXl5oamry5s0bTpw4we3bt7l8+TIGBgb88ssvPH36lNOnTzNp0iTRvMbGxiIjI0O3bt1QUFCgvr6ehoYGpKSkcHNzY9u2bfTt27eT0OE/1ZgxY8jOziY9PR0dHR2BUPv7+3Pu3DnBT4yJiREn5VmzZlFRUcHff/8trK6ys7Nxc3Ojvr6eoKAgPn78KCIpJbSbsrIyLl68yIkTJ1BXV2fLli3MmDGDN2/esG/fPpKSkpgzZw7jxo3j5cuXnD59mrlz5wo+ZnV1NTExMV1uXiVqVFlZWSEoHDBgAEeOHAH+nyeqlJQUly5dIioqCldXV5ycnJCVleX169eoqakxc+ZMRo0ahYyMjIhl7N27tzAf/+mnn7h165bwjPTz88PZ2Zlnz56JNCITExNyc3O5c+cO06dPx93dvdP4rlevXmhqanapea2ursbZ2Vlw5f5ZEvGilpYWvXr1oqKigg8fPtDU1MTIkSOFM0VgYCDbtm0TnE3oQKwlsd2vXr1CQUGBhw8foqGhIWyyampq+Ouvvxg5ciQ2NjZcv36dkydPoq2tzYABA0hMTCQ0NJSEhAR+//33Limb/1n37t3j4cOHjB49mtmzZzN9+nSOHDnCwoUL8fb2xtvbG2lpaX7//XcxYbp16xajR4+mpKREHCzT0tK4dOkSNTU1uLq6EhkZybt37ygpKUFVVZUvv/ySFStWCApLS0sLlZWVaGpqsm7dOoKDg3nx4gVNTU3CyUZXV5cffviBpqYm7t69y/Xr14Xt4ueWm5sbLi4u4l3Yu3cv169fR09Pjz59+jBw4EBcXV2ZPXu2CGwoLS1l2bJlmJmZsW/fPrHuSxLPJM85JydHeJxOmDCBkSNH8uzZMzQ1Nfn9998ZPXo0ZWVltLe3M3PmTHx9fYmOjmbDhg2kp6czYMAAAQ5ZWlqSkpLC69evOzXOn1vV1dV4e3ujoaGBtLQ0zs7OYp3V0dGhoaFBWF2lpKSwefNmpKWlefnyJW5ubty9e5c7d+7w4MEDXr9+jaysLFOmTMHZ2Vk0agEBAezatQsTExPy8/NJTU3FxMSEr776StjHpaSkIC8vz8iRI8nOzub27dsMHz6c2tpaHj9+jLy8PD4+PkRGRnbp+saPH09BQQGrV6+mqamJ+/fvY2xszLt376ipqWHatGkcOXKEvXv38vTpU27fvo2Ojg69evUSvuTJycn4+/tTWVlJS0sLFRUVmJiYMHz4cD5+/MiyZcuYMWMGw4YNIyIigoKCAr7++utOXrKS6aOkfv75Zw4ePMiuXbvYt28fKioqzJkzh/79+3cpvMfAwIC//vqLrKwsvv76a37//XcePHjAL7/8gq2tLWPGjEFbW5vbt29z6dIljIyMWLhwISoqKsK/+8iRI9y4caMTDSwqKkrsNQkJCZSWlpKdnc2ePXtQVVXl4sWLwj1IUVGR9+/fi8Pj2bNnmTJlCnFxcfzxxx9CkC7pif5Tdbl57dOnD6ampmRkZJCXl4e1tbVYfB8+fMidO3f47rvvcHZ25vHjx4JUPHToUOTl5Rk4cCAhISFISUkJs+k///yTkpIScSK7evUqtbW1aGlp8dtvv1FTU8O2bduYM2cO9fX1fPz4kcTERL7//nvxe7W0tKCjo8NPP/2Ek5MTN27cICcnp8shBbdu3eLUqVOsWLGCtWvXAh0n9KioKJqamqisrMTZ2Vkgc62trQwbNkxEq+7du1f4hurp6XXyiuvWrZvILe7ZsycTJ06ktbWViIgIITgrKChAVlZWcFtkZWV59+4dv/76K8uWLaNnz55s27aN7777rpO3aFcqLi4OBweHTk4F9vb22Nvbk5aWxq1bt0hLS6OwsJB3794BHZv3+PHjRV59dXU1dXV1NDY2kpOTQ3h4uLC3cHJywt3dnby8PCorKzu9iJIPNT8/nydPnhAXF0dTUxMWFhYUFBTg6urKyJEjKSkp4eDBgyQnJ6OiotIlU+1/Ls4FBQWEhISIpktaWpry8nL27NkjLGtWr17N9OnTuXbtGvfv38fCwgJjY2PBwdLW1ub58+e8evVKNC7h4eEEBgaKn7Np0yYWLFiAgYEBb9684fjx4zg4OKChoYGLiwufPn1CU1NTbI4pKSmEhITg4eHxv0YJ/1/16dMnmpub0dTUpL29naysLKEyHzRokLhOySbQo0cPXF1dCQwMFIeRIUOGCEK9l5cXiYmJ5OTk8OnTJ0xMTARfvLm5mVOnThEfH0/Pnj3FgfDKlSs8ePAAT09PZsyYQffu3bl//z5paWmduNi2trbCR7Ur1a1bN+7fvy/GUQoKCkLg097eLmgYCQkJVFVV8fz5c4G8+fj4cPXqVaKiohg1ahStra0kJiZy7NgxsrKyGDJkiMgHl2R8S6hP3t7emJmZUVlZSXl5ORYWFvj6+hIcHExeXp6IwQREKlm/fv3EYeVzq6ioSPixAsJ7U1dXV/gSm5iYICsrS2JiIhUVFUhLS2NmZiZS4CoqKjh8+DBNTU1iDJubm8vx48cBRHhIc3Mzf/31l6Bh6OjoYGtrKzLaX7x4QUVFBd26dUNFRYXS0lLS0tKwtrZm2bJlKCkpdckbVFKStKHMzEwaGhqora3l1atXhISEoKqqysqVK3F1dSU2NpZLly4JNE1WVpZnz56RmpqKuro6VVVVPHnyhDdv3rBo0SK0tbWFWLVfv34MHjxY+Lq+evWKly9f4uzszMSJE5k4cSKKiooEBAQICyLJ+yVR3R8+fJiAgIAuawjKysqoqqoiPz+flJQUMjIyhI95Xl4eOjo6WFtbY2JiwooVK7C2tiYzM5OpU6eio6ODvLw8165dE4ekIUOG4OnpSUlJCfLy8ri5uYkI7rq6OnJzc9HW1sbHxwcdHR1kZWWRkpJCXV0dXV1dPn78SG5uLpmZmRgYGPD27Vt8fX2prKwkODiYzMxMRowY0aVrbGtrQ01N7d/ajSUmJlJeXo6ZmZmYpp0/f55bt26xZMkScYC1srJCVVWV58+fi4NWQkICGzZswNXVlVmzZpGens7Ro0dZuXIl/fv3Jyoqio8fP+Lo6Ej37t0FImdra4ulpSUhISGEh4dz7do1zpw5Q0JCguCSdrXk5eWFLV90dDQPHz7ExcWFkSNHiumcmZkZ33//PSNHjhTN8ePHjwW6Licnx7Zt2xg4cCBbtmwhPT2d5uZmkpKS2LdvH2fOnEFDQ4PBgweTk5MjhNnQsZ9KUtNevHiBkpISnp6eNDY2oqGhQVFREVVVVULpb2Bg0KXr9PX1JT8/XwjhbG1tkZaW5tWrV8L1oLm5mfT0dBQVFVm5ciWTJ0+mrKyMs2fPEhcXx+jRoxk1ahTFxcVERUUJL/Px48eLBFWJ6HTatGl4eHgIqlJ8fLxIiLOzs2P69OmdwqWePn1KY2Mj8+bNA+hEsfvfqsvN6/Pnz3n06BGtra10795d+HIBbNiwQVgRAfz555/IyMigoKCAqqoqaWlp/PnnnxgaGrJv3z5GjBjBy5cvBTqQkpICdKjoJKOYlpYW1NTUyM7OZsiQIVy5coXQ0NB/oQO0trYiKyuLrq4uX331FV5eXlRWVqKnp8fz588/+/ra29v59OlTJ6FXeHg4zc3N2NvbY2pqSm1tLa6urnh6evLu3Ts2bdrE8uXLGTZsGImJiWRlZf1Ls5Wens6CBQtoa2vjjz/+wMPDg7y8PCFyKy8vx9XVlV69epGRkUFQUBANDQ3MnTuXxYsXc+TIEaZPn87x48cZNGgQ27ZtY9WqVZw5c4YxY8Z06RkeP36cvXv3/lsLqrS0NKqrq/H19cXCwkKMiZYvX46hoSGpqalCVW9vb09WVhYxMTGdNjZJQz1hwgSMjIwEgvbP2rJlCzdu3GDs2LEsXrxY8J0k1dLSwrhx44TvrcQ263NK8uLX19eTk5PDxo0bcXBwEH9dYlclGUU/e/YMHR0dqqqq8PLyEpHFL168YPDgwWhra2NnZ8erV6+4cuUKPXr0EA25pqYmx44dE4KwUaNG4e/vL9DJgwcPYmNj00msCAiqzOecMP9d/fXXX3zzzTc4ODgIv0pLS0v69+8vEBFLS0tGjhxJS0sL9+/f59y5cxQXF/PFF18wbNgwRo0a1YnOMH/+fEJDQzlz5gx2dnZicZSRkREHAgmhv729natXr6KpqcnMmTMpLS3l5cuXmJubc+nSJYGANTY2MnHiRHx9fTlw4ECXrvHly5ds376dESNGCHHVq1evuH79OmPGjGHkyJG8f/+eu3fvMmjQIAARvjBq1CiUlZX58OEDoaGhtLe3CxP/xMREYmJixOFk9erVjBs3jitXrpCWloaqqqrwx12yZAlVVVWkpqaK1Kl/mmhHRUWxYcMGvvzyS3777bcuXZ+E89a9e3d69+5NdnY2xcXFjBw5UlBpJI4JCQkJQMdCHxgYKJB9dXV1Zs+eTWNjo1g3JKWurs78+fMFnWD16tVcuXKF5uZmdu7cydSpU8W0YMOGDXh4eLBr1y4sLCz45ZdfGDhwIC9evODevXvCnLyrNXLkSHr37k23bt2IjY3l9OnTVFdXM2XKFBwcHHj8+DG9evXiyJEjTJs2jd9++42RI0fy448/4uPjw5MnTzodEqurq3F0dMTFxYXQ0FBMTU2ZMmUKwcHBhISEsGXLFsrKyti9ezezZs1i4sSJPH/+nHv37jF69GhxUGxtbe20/i1btoywsDAh0v3cCgsLY+fOnbx+/RoTExOOHDnC7t27+fjxI+Xl5VhaWnaiGo0aNYqqqirxjfr5+TFy5EjU1NTEniFx8YAO+oqPjw+5ubk8ffoUTU1NrK2tiYyM5OHDhxQXFzN79mzS09NZsWIF8vLy7Nu3DxcXF+Fhe/jwYaqrq7G3t2fAgAHivf/c+r8aiT///JMLFy6wZ88e0Yh5eHiItWTmzJls3ryZPn36cPPmTWbMmCHU6G/evGH8+PFs27aNCxcusHnzZk6cOMGgQYPo2bMnFhYWbNmyhYyMDHbu3MnkyZPp06eP8Kn18fFBQ0ODffv2ie/jn4LtrtS5c+eYP38+Fy9eFIERbW1tfP311+jp6SEtLS38oiUcZYn1VU1NDX5+fuTm5nL79m169uwpaGCPHj1iwYIFwpJQWVmZwsJC+vbt2wlkCQoK4tOnTzQ2NpKbm8unT5+4ffs2ISEhGBoa8tNPP2FoaEhkZCSlpaVdDl/y9vbGzc2NkpISEQRhb2/P9u3bkZGREa4VX331FY6OjuI+amtro66uzldffcW8efPYsWMHmZmZrFixgtmzZ7Nq1SomTJhAdXU1lZWVVFRUcPv2bX766ScWLlwoqEkrVqzg0aNH6Onpcfv2bbKyspg0aRIrV65kypQprFixgqSkJLFvfI7QvsvNq7q6urA8kSSHhIaGEhAQwMyZMxk8eDD5+fl8+PBBIB73799HV1cXY2NjwsPDqa2txcfHB0VFRTFWr6mpISYmhvr6erFYWVlZCdQgNzeXkydPMnToUIYMGUJZWRm//fYbWlpazJ8/HwUFBd6+fUtGRgbjxo0TvotXr17t0vU1NDRgYWFBbGws7969w9TUFBkZGerr64WFiaenp1CpFxQU8PTpUwoLC5kzZ45IjSotLSU6OpqKigqRO5+Wloavr6/Y/PLy8qiqqsLOzo7Gxkbs7Oxobm7uxGPt378/PXv2RFFRUfASBw0aREREBBkZGf925PifqkePHsjIyJCamsqFCxf49OkTEydOxMvLi9bWVqSlpbGwsMDGxoasrCx69OjB8uXLuXfvHps3b8bR0ZFBgwYhJyeHoqIiY8aMobCwkIKCAqBjAUlJSSE8PJysrCymTp1Keno6t27donfv3kLwYmlpSe/evfH09ERJSYmWlhays7ORkpJCRUUFNzc3IfjqSpWXl3P79m2ePn2KjIwMY8aMwc7OjqamJu7du8e7d+/o0aMHysrKXLp0ScTV7tq1S0RL5uTk0L17d6qqqnjw4IFIs4EO1FRVVZWamhra29vJy8sjPz8fBQUFwQMaPHgwr1+/5o8//hAj5ZKSEmprazE0NMTQ0BBTU1MaGhoICQnpMqplY2MjONjp6en06tULOTk57t27x+HDh2lpaWHo0KHi/XB0dERKSors7GxsbW1xdXVFXV2dd+/eUVBQwODBg9HS0sLOzo63b99y4sQJcnJymDp1Kq2trYwZM0b4kkrcFAA8PT3x9vbmzp07bN26ld9++00sQC9fvsTU1FQgYl2tNWvWkJmZ2clCp7y8nNraWhITE5GTk+PZs2fU1dWJdJ+wsDDOnz9Pt27dWLt2LcnJyXz33Xc0NDSwcOFCPD09qa2txd3dXYhK9+/fDyC4lZs2baKoqIjnz5+zaNEiXFxcUFVVFdfx4cMHXr16xeLFi/H19eXatWsiuKIr1bdvX96+fcu7d+9Ek+Pt7Y2UlBSJiYmEhYUxdOhQ+vTpw/jx4zl27JgwAZc0AObm5ly7do1evXoJr1OJiElCUwkODqa8vLzTOFICGOTm5uLg4ED//v1xcXEhNjZWUHygAwVOS0sT7ipdLRMTE0HPyMzMJD4+HisrK7Zt24a2tjZ///03165dY+rUqYwbN46ysjJ+/fVXYdG2ZMkSsrKyRK69kZERhYWFZGZmoqurS+/evbG1tSU9PV2IQnv27ImbmxseHh60tLSI5nLr1q0AIjSgpqaGs2fPoqioyMKFC9m7dy82NjZd4oS+e/dOIImzZs3C0NAQeXn5f0kJKigooLCwkG7dunU6zEuCFaKiorCxscHIyIiPHz/y4cMHIRRVVVUlJCSEgIAA+vTpw9y5c2lubhaG+BKeZk1NDf369cPJyQkpKSkRvy4Ruvn5+QF0+n4/pyQiTltbW4yMjCgtLRXq8mHDhhEVFdWJ2jV+/HjGjh2LhYUFly9fpnv37jg7O6Opqcn8+fPR0tLC3NycuLg47t+/z6pVq9DW1mbIkCHU1tayf/9+fHx8MDc3x8XF5V/4j/Ly8oIz27t3byFqHDhwYJf8a/9ZGzdupLq6mpUrVzJ06FAePnzIjRs3WLFiBePHj6e6ulr4QTc2NjJp0iQsLCzIyMggMDCQDx8+YG9vj4+PDwoKCrx8+ZLBgwczaNAgXF1dCQ8PR0FBgfT0dEpLSztZfV25cgVlZWXGjh0rnDASExOprq5GXV2dnj17Mnv2bAARCiFBMT+3JKK92NhY6uvrcXFxoW/fvri7uxMXF8f58+fR1dWlZ8+eTJgwQQCIo0aN4ssvv+TYsWP89ttvKCsr09raiqWlJT169KC9vV003qampujq6tKvXz/U1dWpr6/n5s2btLe3M2TIEBFpraWlxZ9//klwcDBKSkoMHDiQMWPGdEpL/Rxv9y43r0uWLBFEeG1tbaADaZOkTfz+++9ERESI00tkZCSRkZGsX7+eefPmCX7S0qVLKSsrY8qUKYwbN46nT5+SmppKaWkpCgoKjB49mhUrVlBVVUVWVhbV1dU8efKEqKgo7O3tKS0tZd++fdjZ2TF//nxycnL47bffKCsrQ1NTk1GjRglid1esJTQ0NPD09CQ3N5eHDx+KCLyIiAhSU1Pp2bMn3bp148qVK+zbt0+MvB8+fEhQUBA7duzA09OTK1euEBQUREVFBS0tLejr67Nw4UKGDBkiGuOYmBhhMaasrMzJkycFeiPxbJQk46ioqDB27Fjc3Ny4d+8eO3bsoF+/fvz11198/fXXXX6G0JFWJMkkrqurY9CgQSgoKBAfH4+1tTVz5szh0KFDYjwn8X19/fq12PD//PNPFi9eTHR0NGFhYcKi6PHjx/zyyy80NDTg4OBAS0sLe/fuxdvbm8uXL/Prr7+ydu1aVFRUhOVNamoq+fn5qKio0LNnT2RkZMjIyCA9Pb1L13fjxg1WrVpFQ0MDvXv3FgLACRMmUFNTQ1JSEosWLWLKlCkkJCQQGRlJSEgI9fX1tLe38+LFC5EgcufOHUGMV1VVRU5Ojrq6Ompra1FSUqKyspJvvvmG+Ph4Tpw4wfnz5zl69Cjbtm1j7ty5TJ06lT///BNVVVW0tLTEeHDkyJHiNO3v78+jR4/EJv85JRmv3Llzh8rKSuzs7MjNzWX9+vWkpKSgpKQkqCghISFUV1ezfv16du/ezf379zEzM6NPnz4kJSVhaWkpnAvq6upwcnIiLCyMXbt28fr1a4YMGYKCggKWlpadlLwS0VJbW5uw5Pr48aNIi2pvbxdiNsmIviuVmZmJnJxcJ8eJ8ePHM2HCBG7evMm+ffvQ1NRk9OjReHh4YGFhgZWVFSdOnODp06esXr0aAwMDioqKUFBQYNy4cZiamuLk5MT48eOxsrISY+KcnBwiIiKws7Ojf//+/P333/z0008oKSnx3XffdWrADxw4wI0bN9DQ0GDOnDkibGXq1KmdLGD+U40fPx5LS0suXLjAsWPHWLp0qUDpCgoKaGhoQFZWFjs7Ow4cOMCnT5+4dOkSTk5OjBw5kkuXLqGkpISBgQFycnKMGDGC7t27Y29vT0BAAG1tbVRVVbFnzx7BS1NXV6etrY2//vqLy5cvs3btWlasWAF0NFK7du1CXl6etrY2ioqK0NDQYPbs2V2i7fyz/mlXaG1tzcSJE5GVlcXExARNTU1sbGz4/fffefbsGRcvXmTevHlMmzZNTEX69evHyZMniYuLE+l7O3bsIDIykrlz52JmZkZ5eTn9+vUTjh2Kiop88803DBs2jJaWFlpaWlBQUKCgoEB4gqupqVFVVSU8Xt+9e8cPP/zA1q1buzSOVVRUxNLSku+//56FCxfy999/8/jxY1auXNlpkiQtLU18fDyqqqoYGRkhIyNDc3OzWEtjY2P59ddfmTJlCpcuXeKPP/7A3d2d+/fvo6+vz4sXL4iOjmb58uWiMVZRUeHt27e8fv0aBwcHAgICaGlp4cCBA2RnZ+Ph4cHIkSNxc3PrRJ97//59l57hmzdvePjwIcOHD8fIyIhu3bqJNXXcuHEMHTqUrKwsIiMjsbGxQV1dHWlpaby9vQkICOhEGTI0NGTevHnY29uTlJREWlqaEOxduXKFBQsWsHLlSoGErlu3jh07dgjKgATYkDQ3EgqUra0te/bs+exo0f9ZJSUlrFq1ira2Nvr160dERAQvX77E2NgYGxsbFBQUqK6upqCggNLSUsLCwmhpacHY2Bg5OTmCg4Opr68XWoTdu3eLKdfRo0fp1asXBw8epLy8XKzLycnJ3Lp1i4CAACwtLVm0aBFeXl54eHgQERFBW1sbe/fu7bQv9O3b97+Kv01ISODEiRO8fv0aJyenTs/k1KlTHDp0CHNzc37//XcmTZpEQ0ODCO3x8/Pj0KFDzJs3j82bN4sJTmNjI2vWrOHPP//EycmJqVOnUlJSgra2NuvXrycqKoqJEyfS0tLC2bNnWb9+PUlJSXz11VeEhoaKidqLFy+ws7PDzc2tSwfkLjevEhRM0rgCTJo0ifr6et6/f8+5c+cYOHAgnp6e/PLLL8TExODu7i5u+OTJk4mPj2fbtm389ddfrFu3jvPnz3Pu3Dlu3bqFrKwsx44dY+LEiaipqZGZmSm4g/369aOgoICamhrq6+uZMmUKTk5O5OXl8csvvxAUFMS6devEDa+vr2f69OldMteePXs2OTk55ObmIiMjw6dPn1BVVRUj9Pfv3+Pl5YW+vj55eXlAh3WHxHv23Llz+Pv7Ex4eTnFxMSoqKp38cPPy8sjIyCArK0twhVxdXRkxYoSgWwDMnTsXHx8frKysaGtrY9asWdTV1aGgoEBqaioTJkzgq6++6rKP7T9LQtSura1l1qxZyMvL8+7dO+7fvy/QLllZWWGUrKCgwNatW3n37h1nzpwBOqIK7ezsMDIyEiR+STSp5OWUk5OjurqaH3/8kf79+4ufLxlNlJeX8+LFC5FOJjHE/uGHH7C0tOyyYOvhw4f06dOH/v37Y2VlRXZ2thiVjR49Wti0WFpasmfPHrZu3crr168ZO3Ys69evZ8iQISL95Z90BQMDAxGHBwgbpvDwcFJTU0U0okQRPHbsWLZt20ZGRgYtLS34+fmRk5PD7du3CQgIYPfu3ZiYmODg4ICcnFyXRQYS8/a4uDjWrVtHdXU1s2bNEsiIZJQeHByMnp6eSFNKSkri6tWrtLa2MmHChE7eqQoKCkyaNIkhQ4bQ2NhIcnIyDx8+JCcnB09PT44cOUJmZiZBQUEYGBjg5uZGfn4+Q4YMoXv37qSmpnL69GmmTZsmhJRAl4MmANE09unTRzgrSN53ZWVlKioq6N+/P+PHj+/UKJw7d467d+9y5MgRYmNjMTU1xcjIiNTUVFxdXbG2tqagoAAZGRmUlJSIiori6tWrbNiwQeR+m5ubs2bNGoGQpKWl8ebNG3Jzc9HX1+fLL7/shJY7OjpSX1/fpeuTBEb079+fiooKSkpKKC4uRkdHh4EDByIvL98p3EGC2CkrK7N06VKGDBlCfX29OHgEBgZy48YNGhoaOlEt0tLSePToEVevXhXRqePGjWPQoEEixep/Onq0tbUJ+zroEIFJ7O26UomJiXz69AlbW1uMjY1ZsGABqampZGVliQP6ihUrxJgdOhrC6OhoQkJCmD59OlZWVlhZWXH//n38/f1RVVVlzJgxKCsrk5CQINaXN2/eoKioSFtbG1paWsLOZ+PGjbx8+ZKIiAh0dHTESN7Q0JCff/6Zffv2ceXKFdF0dqUmTZokDo4HDx5EW1ubRYsWoa6uLtxqNmzYwLBhw3B0dKSlpQVpaWni4uJ49OgR1dXVaGtr4+3tjYODA+3t7UKkFh4ezvbt21FVVRXrrST9S+LH3bNnTwYMGIC2tjYGBgYkJydz9+5dlJWV8fPzo1u3bjQ2NpKQkEB0dDTV1dX069ePt2/ffvY1vnz5Eg8PD0JDQ0lKSuKbb76hoaGBbdu2YWxszJo1a3BwcODNmzcsXryY4uJievXqxeDBg0VDJilJuI+LiwsjRozg1KlT7N27Vxz+fX19+eabb+jbty9hYWE8fvxYuMO0tLTQ1taGgoIC+fn5vH//nvj4eObOncv48ePFc/X39+/SM4SOcfmLFy/EoaK9vZ3u3bszc+ZMHB0dSU9Px8LCgh9++AF1dXXi4+NJSEjA3d0dV1dXfv75Z96/f09TUxOjR4/Gx8enU+penz59GDduHCNGjMDKyoqDBw+Sk5MjnBhevXpFREQEI0eOREFBgf79+5OQkNDp0FxWVib6rq7uiVZWVowfP17YY/7zdyssLKStrQ0TExPBB5d40l65coWlS5eyevVq5s2bx969ewWy/+jRI86cOYOzszMLFy5EWVmZd+/e8ejRI3JyctDS0hJuJqNHj6alpYVDhw5x9+5d3N3dOXXqFPr6+rx7907EBksqOzv7P15Tl5vX9vZ2ER3Z3NxMRUUFRkZGzJs3D0NDQ+Li4rCxscHAwECMcHbt2tVpIzMxMcHAwAAvLy/BuTM1NUVDQwNXV1fmzZsnBF2Sh5ebm4uZmZlAevT19fnjjz+Qk5MjKyuLDx8+YGxszJdffik8Se3s7Jg3b16XmlcFBQXc3d1F8/b27VuqqqowNjZGTU2NsLAwfH19mTVrFg8fPuTy5cuoq6uLFB7JoiCJA6ypqUFNTY2CggIxepaMdMrLyykvL2fv3r307t1bnMhkZWVxd3fvlA2vq6tLS0sL79+/p1evXsIs/MmTJ119hCJPfcqUKf+SP19eXo6MjEwnXtTLly8JCgpi4cKFDBo0CHt7e6qrq8nPz6e+vp5t27ahoqKCj48P6urqXLx4kaysLHx9fVm6dKlIoZGMqnNzcykpKREJH/Hx8RQVFeHm5oaKigqnT5/mxIkT+Pj44OXlJdTBn1uNjY0cOHAAJycnEhMT0dfXx8DAgNraWrS1tbG3tycnJ4fKykqGDBmClpYW06ZNIyUlhd27d4tT6ZkzZygpKRG+xUVFRTg5OQm/WonqMikpiZqaGq5duyZGKhJEb/DgwQQGBvL69Wu0tLQoKiqiuLgYIyMjwVuSqK67gvgUFBTQ0tIiGpqNGzfS3NzMnj17OvGh3rx5Q01NjfBoNTc3p1+/fjQ2NuLh4YGnpycqKio0NDQgLS2NkZERhoaGSElJ0dTUJJKkbt++LXiwGRkZyMrK4uDggLW1NYmJiQwePJjhw4ezdetWDh06RLdu3ZgxYwaFhYUYGxt3Moz/3JJ4EEpK4glaXFyMv78/8vLy9O7dWzSumZmZqKurY2Zmxvjx47l69SqJiYmsWLECHx8fCgsL0dTUpKKigoiICCGI2rNnj4jNlNAshg4dKoQtra2t1NXV8erVKz5+/MjPP//MoEGDiI2N5enTp8LvsKuc0JSUFGJiYpg8eTL6+vo8ffqUiIgIRo0ahbe3NwUFBURHR4sGWmKGn5+fT0VFhRglQge/u7Kykvv376Oqqsq2bduwsbGhvLyc7t27CzSnqKiIGTNm8O2336KqqkpMTAw5OTm4uLgQExPDhQsXMDc3F1ZARkZGWFlZISUl1WXLOkA0Y/n5+ejp6aGtrY25uTnJycmUlpZibGzMhAkTsLe3F0Eo6enp3L59m5KSEhITEwXydP/+fU6cOMGCBQsYMGAAV69eJTo6Gg8PD169eiXEwZ6engwfPpxPnz7RvXt3xo4dS58+fcSh8v9j77zDo6q29/9J770XUkkhhYQAIXRC70iTIiAgdaQoiIJSRQVRug4gCCLSQar0mgQIEEogISEkpJPeez2/P8bZl3gb8ee9fuXmfR6eITOTydlzztl77bXe9b5aWlpIkoS6ujpdu3ZFkiSSkpKIjIxk5cqVzJgx45XHp3Rz7NevH+fOnWPTpk3i/ouPj+f27dskJCTQs2dPAgICqK+vR0VFhadPnxIdHY21tTVjx44lKCgIfX19amtrBYfw4sWL/PDDDyLxExAQICoZT548obi4GG9vb5ydnYVhzZ07d2jZsiVDhw4Va25GRga3b9/m9u3bGBoa8sYbbzQqePX19WXMmDGMGTOGVatW4e3tLYwslFrsSjm7nJwcrl27xrVr11i/fr3YQKekpKCurk5ycjIvXrwgNjYWGxsbOnToQIcOHUhLS2POnDlcvnyZ4cOH4+joyPnz54UpkpqaGuXl5fj7+1NQUMDx48e5cuUKjo6OvPHGG8It8P79+6K61RgEBgZiZmZGYGAgzZs3Z9y4cWRmZor4w8XFhby8POrr62nVqpVQD9LX16e8vBxPT0/CwsJEv4sywaXUUzY2Nmb48OG0bt2aqKgoli1bho6ODrNmzWLEiBEsXryYQ4cO8eLFC6ZMmSIqgHfv3qV3795YWFiIwPVlFY5XhampqbDeBcVcquRdDx48mOrqaiZMmCB0vXNyckQAGRYWJvT2P/nkEwICAnjx4gUnT56kQ4cOovdBqQYRGRnJoUOHmDVrluCQKxMsFy9eJCAggI8++ggDAwPi4uJITEwkLS1NbNz19fUbSGn+MzQ6eK2vrycnJwdLS0sKCgpEp2Tnzp1p0aKF6BrPyMhgxowZuLi4NEjlf/bZZ3z//ff4+PiIRoIVK1Zw8eJF3n//fYKDgwkNDSU7O5vWrVsLiY+PPvqIy5cv0759e+bPny9cvkDB+5oxYwYpKSnk5uZib2/Pzp07MTExaXRmcuPGjXzyySeiVG5lZSUWtI4dO2JlZSUChqCgINzd3fH09OTHH38U2qwjRozAw8NDqC28zE/R19fHx8eH2traBo5bhw8f5ubNm4Bih/nyDVhSUkJ+fj5aWlqYmJgITmFERAQHDhxodEkvJyeHGzdu0L9//7+TTVH6xIOivNS2bVt8fX2pq6sTHuU3btxAR0eHd999l/j4eD7//HOqqqrQ1NRk7ty51NfXs2rVKkEGnzNnDvb29iI7rquri7W1NZ6ennh4eAhJGz8/P0HRWLt2LVOnTmXZsmWMHj26UeNT7nofPHjA5s2bUVFREfzrJ0+eEB8fT+vWrUXGytXVlVWrVrFjxw4uXLjAm2++SWBgIMOGDcPNzY27d++ydetW8f3Mnz+fsrIyDh06xM8//4yJiQmPHz/mnXfeYdy4cRw6dEiUM01MTHB1dcXOzg6ZTMbdu3dZsmSJkApTQskXflXY2NhQUFBAbGwsRUVFrFu3juTkZK5cuSLMA3744Qc2bNiAl5eXCIyVagOLFi1i8ODBhIaGkpSUhLOzM87OztjZ2aGiosLPP//M1q1bmTBhAqtWrWLs2LFkZWWJ7H///v1p0aIF5eXlREdHExkZSXZ2Nnfv3uX58+fMnj2bjRs3oquryyeffNLoDud/hE2bNglnmPz8fJycnESZSRkkPXr0iOvXr5ORkcHIkSNZtWoVdnZ2YhHasmULDx48YNSoUeI+zsvLA2DKlCnk5OQwc+ZMERDX1tairq6Or68vffv2paSkRFAgfH19uXHjBnPmzKFly5YcPnxYZMheBRoaGmhoaIiNTmBgoPi7KSkprFq1ipKSEkJDQ/n888956623qK6u5uDBg5w/f57g4GCx+dfR0WHkyJHk5eUhSZIwYfjggw8wNjbGyMiIe/fuMXToUL744gvu3r3L3LlzcXBwEPrbERER7N69Gy8vL54+fcqZM2fw8/NrwFVX6r++KqysrCgvL2/AU9TV1cXGxgY7Ozvq6uo4evQoqampTJs2jYiICHbu3ImrqysLFy7ExsZGBLHZ2dno6+sTExMj1DosLCxo1qxZA5WAjh07Mnv2bMzNzQX1wtLSkv79+xMSEsKXX35JcnKy0Jtu1qyZWIuio6PJzc1t1BgBunTpwvPnz3nw4AGxsbF4enry0UcfMXTo0AbZs7q6OmGI4uDgIPobiouLhcqMsns7MzOT0NBQrKysGD9+PAMGDBCNNW5ubmzevJkPPvgAX19f3nzzTaHr2q5duwa8ZScnJzp37kzHjh0pLCwUfOlXhdI1TplcURpNBAQE4OnpiZqaGnK5nJqaGr7//nu2b9/OqlWrOHr0KC1btuTBgwds3LiRqqoqpk+fzujRo8nPz+f06dP07NkTbW1t7O3t2bFjB9euXWPbtm0cOHCA1NRUJk2ahJOTE1u3biUzM1MkHs6dO0fLli0ZO3YssbGx7Nq1CysrK1q3bk2PHj0amHu8Cg4fPoyxsTGPHz/Gx8eHqVOn8tNPPzFjxgzeffdd3njjDbKyspg5cyaWlpasXbuWt99+m02bNjFv3jzq6+sZP368aCiTyWRYW1szYcIEunXrhqOjI3l5eYSEhHD37l20tbXJyMjg/fffF1zfrKws0QDXo0cPUVn46aefWLBgQQNn08ZKut27d4+ioiIxD69Zs4bq6mpWr17N2LFjad68eYNmt5SUFCRJYty4ccyePZvHjx+TmprKkCFDKCsr48CBA/j5+bF48WJRjTc2Nmby5MkEBweLhjpQbNLHjh3L48ePRcbVwsKCNWvWcPDgQeEol5OTg6qqKkuWLHmlRE6jg9cnT56INL6dnR1lZWVERESgoaFBp06dsLCw4P79+9TX1zNq1ChKSko4deoUlpaWJCYmsmnTJnJycnBzc6O2tpZ79+7x888/U11dTWBgIKamprx48YLs7GzRzX7x4kVu3LhBcXEx169fFxNoTU2NEF/u378/qamp5OTkoK2tLSQ9lPJNrwpVVVURuFZWVgpR37CwMFq1akVgYCDp6ekcO3YMGxsbZs6ciYaGBjo6Ojx79oz4+HjMzMx499136dSpE5999hkZGRnCd93FxYX27duLbLC2tjY1NTWsWrUKJycnRo4cSWZmJpcvXwZg+vTp2NraIkmSuHmVSEpKwsXFpdFGBevWrSMkJITr168zZcoUWrRogYqKCrq6usJ84ObNm6Snp+Pg4EDr1q0F7/D+/fusX7+enJwczMzMhMUsKDRFb9y4ga2tLcHBwVy9epXdu3fTpUsX3N3dRQYAFJIww4YNw9fXl8jISOLj4zl//jympqaUlZXh4OBAs2bNGsh5vSqGDx9OVVUVcrmcXbt2icy40o3J09NTaPBWVFQQExODpqYmrVq1IiMjQ5RW+/XrR8eOHXFxcSEjIwNbW1vhKvPs2TPWrl1LQkICgwYNQpIkbt26hbm5eYMGo4yMDGxsbNDW1sbc3JzS0lJBY1AGYQUFBUJp41Xx+PFjTE1NSU9PR1NTk549ewKK7JSSq5WdnS1sMJW878ePHxMeHk5MTIyQJLt48SKmpqYMGDBAqCLExsYSGhqKJEnY2tpiaWmJuro6cXFxuLi4iFKgmZkZb775Jvfv3+f8+fOiWU2p9+fu7k59ff0riU7/FlFRURgbG1NcXEx4eDixsbGoqqpSWVmJo6Mjbdu2paSkhJycHFH2io+PRy6XU1lZyfTp04VzS2FhIbdu3eLHH3+ksrJSOJFJksTs2bPR0dHh1KlT3L17V2ia5uXlCQ9uJZcrMDBQmCQouXuFhYVYWVnRpk2bRgWvStmo06dP06NHDwYMGEBdXR137tzh+PHj6OnpUVJSQnx8PHl5edjY2DB9+nTc3NyIiorixIkT9OjRA1NTU6KiokhKSmLw4MHiHD569IiwsDAR2Cn1Rp89e8bp06fJzc0VPFIltcLFxUVkUJQl1NOnT2Nra9voUiUoAh4/P78GfQelpaXimCoqKsSGyNbWFg0NDczNzWnZsqXwXH/69ClLliwhISEBMzMzkTU0NzfH19eXZ8+ekZ+fj46ODpqamjx79ozr168LxYn6+noqKysF91WSJB48eEBiYiJ2dnYsWLCgQQWqMRWQyMhImjdvzuTJk/H09CQmJoZHjx4JZz5jY+MGHMXCwkJKS0uxsbHBwcGB6upqsQn29/cX/QhqamoiQKmursbGxgYnJyexNhkbG2Ntbc3Dhw+prKykc+fONGvWDC8vLzQ1NXn48CG3b99GV1cXf39/sWaDomGrMfNqXV0dd+/excDAQPBeLSwsWL58OZ6enmhpaXHlyhVBe/Hy8qJFixZERkYyfPhwkSXU0tIiICAALy8v8vPzefr0KVVVVSQnJ5OYmEjfvn0ZNmwYERERInmjqqqKqqoqrq6uaGtrU1tbi6amJv3792fChAno6+uzePFiTpw4Qb9+/RrtVKhEZWUlxcXFpKenk52djZOTE2pqaiQlJXHu3DnMzc358ccfSUtLIy0tjaVLl7Jp0ybMzMzw8fERHN9WrVqxa9cuzp49K6T9tLW1iYiIENzOnj17snz5cj777DOOHTvGsWPH8PT0pH379oKyWFRUhLW1tdDOVVYD6+rqMDIyEtfBq8LIyIjk5GTq6+uFdBfA1KlT8fPzE9bLSu1sDw8PevXqhbe3N/n5+cTGxuLn54ebmxthYWHExsYKWtfdu3e5f/++4Nwr6WNKTWm5XC7Wq7fffhtTU1NRCSgrK8PR0RELCwtUVVXJzs4mLCxMJMr+FRodvO7du5fVq1cDiuDR0tKSiRMn0qtXL1RVVbl16xa6urpiMT1y5Ajz58+npqYGFxcXEUympqbywQcfYGdnx/Tp02nfvj1WVlZIkkT//v2prKwkKiqK7777jvz8fGbMmEFNTY3YRYMic5Gdnc2tW7fw9vamdevWFBUV8fjxY9FFq8yuvSqU2q7V1dUioxkeHs6aNWuQyWT079+fNWvWcPz4ceGQBQpZKAsLCwYOHMjVq1f5/PPP6du3L97e3qL566uvviIlJYWkpCRhRODp6UlmZiaZmZn07NmT77//nszMTCZPnsynn35KRkaGEIf/bRa5Z8+edO/evYHe7atgy5YtgEK+q66ujvnz54uLRcktDAwMFPSQl2VlDA0Nsba2Jicnh40bN4rMj7GxMbW1taJUNHHiRKZOnSp40GPHjmXjxo0YGRmxefNm2rZtK1xR0tLSOHLkCAcPHiQtLU3Y7H377bcNMgivChcXF4qKioQYsrIxw8rKijFjxjB9+nSR4dLR0aG+vp5jx47x4MEDAgMDmTFjBvb29sTFxREXF0fXrl3x9vYWJbt79+4xYsQIoaXYt29fnJyc6Nat29911ltbW4vvdM2aNQwcOJCvvvqKa9euiRs5PT290VbGO3fu5N133yU4OFjYhSrdtJKSksjJyWHSpEn06dOHa9eukZSUhJWVFX5+fkKLuby8nNmzZ1NWVsbBgwcbZJzGjx+Pl5cXmzdvpm/fvrRp04bp06fj5eUlSjrKic7IyAhPT0+ys7Pp0aMHXl5eFBYWUlBQgIWFBdbW1r+Lm/3w4UNatGjBt99+y61bt5g/f74wRTAyMqJZs2ZERkZy5MgR7O3tMTMzE5a4+fn53L59mw4dOqChocHhw4dZuHAhZWVldO/encuXLxMXF4ezszMdO3Zk4MCBQhfa2Ni4wSKRmprK119/TXFxMQ4ODiQlJQkr0ubNmzNp0iShl9sYpKSkcPjwYSorK4mMjKS2tpb09HS+//57rKys+OCDD3BxccHY2LgB7aJ79+54e3vzww8/YGhoSJ8+fTh+/Diff/65MAAoKSlBVVWVUaNGidLd+vXrsbS05OOPP8bNzU2UJZWbHaWs2rlz57C2tmb16tWoq6sjl8vZsmULpqamf0cz+ncICQkR97kSqqqqpKamkpSUJAJypbWwkZERMpmsQbBbUlLCnTt3GnCKNTU1WbFiBaqqqmzdupWamho8PDzIyMjgxIkTnDhxgjlz5rB69Wp0dHRISUnh0KFD+Pv78/HHH2Ntbc2pU6eYOnWqaH78PTh48CBLlizByspKeLrb2NhQW1vLyZMnuX//vqAFgSKI0NfX58WLF0JXVEtLi/3795OWlkb//v3Jzc1l69atwnK8oKCAa9euYW9vT3BwsCgfm5ubM2rUKPr378+YMWOQJImamhri4uJYt24de/bsQUdHh/feew8rKyssLS2pra1l9OjRHDt27JXH+P777wtzD6W0l5Iio6xMTJ06lUOHDgmLYycnJ8zNzUlMTAQUc/KePXtEz0NlZaXgZJ8/f54tW7YQGxvLe++9xxdffIGhoSHLli1j27ZtmJmZERQUJKgVDg4OTJkyBU1NTeHKZGBgQGVlJXFxcY1OWIGC8xoWFoaxsTHPnj0jJCSEuro65HI5sbGxrFy5kujoaEGXDA0NpX///mzdupWQkBD27dtHWFgYRUVFuLm5MW7cOKKjozly5Aj79+8XlMEVK1YIvdzs7GyhgFFZWclbb73F4MGDha58Tk4OAwYMICAgQJTzlaobjYWbmxvNmjUTyTlDQ0Oh+fwylLJoXbp0ITMzk7179/LZZ5/RoUMH0bicmppKaWmpyMRv3bqVO3fuYGVlhbOzM3l5ecyePZtr167Rs2dPLCwsmDlzJoMGDaK6uprp06dTWVnJxIkT6dSpE+rq6qKpvbS0FLlczsKFC/9tANvo4PXkyZO4ubnh4OAgdkgymYxmzZpx6NAhli1bxoIFC/Dz8wMQkXVhYSH19fWoq6ujpaVFbm4usbGxNGvWjHfffbdBs5KhoSEGBgbcvHmTb775hk6dOgkyfFRUlPjSQMGVvXTpEo6OjqioqAgLvIKCAkxNTRttD6umpkZYWBjm5ua4uLiQmZnJo0ePxKJ16tQpdHV1GTNmjMhwKG/gDh068Omnn3L//n0uX77MsGHDaNasGc2aNUNPT49nz55x/vx5rl69irW1NX5+ftTU1ODg4ECfPn3w9vbm1q1b+Pn58dVXX9GiRQtCQ0OZOXOmmCCV5ZPp06f/LpksUDSDKXexzs7ODXT8lN2yb775ppBWCQ8P58CBAwwZMoTg4GAOHDjAsmXLuHfvHg4ODri5uZGfn8+zZ8+wtLSkvr6evLw8pkyZgrm5ubBp7dmzJx06dGDz5s3iZgwLC+P27du0bNmSJ0+ekJ+fDyiC4dzcXExNTX9Xs4+mpiajR48mNTWVsLAwMjIyGD16tMicrl27lszMTJYtWyaoClZWVrRt2xZdXV10dXXp2LEj5eXl1NTUYGFhQUZGBsePH+fx48e89dZbIlBNSkri0qVLWFhY0LVrV+rq6jh+/DhpaWmMHTsWCwsLEVx26dKFFy9esH37drZu3Urnzp3p06cP7dq1Y/fu3a88vh49egj6iHIyq66u5vjx42hoaDBo0CCheyxJksjivPHGG+zdu5f4+HgOHTrEihUrGD9+vFAsUEJ5zSo7/i0tLfH398fS0pKoqCjOnTtHt27dsLa2Zv/+/VRVVTFu3DixqL1smft7kZCQQJs2bRg0aBDe3t706tULR0dHUToFRcfu7du3OXbsGElJSYCi/O/o6MiJEyf49NNP+eijj3B3d6d58+ZCruzs2bOYmppiY2PDTz/9ROfOnYXdLCh44coNTmpqKnFxcTx9+hQfHx9cXV1p06YNZmZmxMTEkJSUhLq6eqMXTTMzM4KDg4V2ckZGBoaGhgwbNowHDx5w48YN4d8OCv5ydHQ0enp6oolUGdS2aNGCXr168fTpUw4cOEBkZKQwVhk2bJhooMvJycHd3R1DQ0NSU1OFhJbS7nvgwIHCNlo5hwcFBfHkyZNGJwIATpw4ga+vr9DWHTJkCC1btsTLywu5XE5paSkffvghRkZG1NbW8uTJEywtLXFxcaGmpobr168TExPDvHnzuHz5MlFRUQQHBzNv3jw6dOjA/fv3GTVqFDo6Oujo6HDp0iWioqIwNDTk5s2bzJs3j8WLFwslDGNjYwYOHMi0adNo1aqVKKN+9tlnnDx5skHz4qvAz89P0KyUmV9QZMiU1Ral1KK2trZ4XcmH1NXVFesdKGgLv/zyS4MGrXbt2mFnZ4ckSaJEe+rUKaFMo2yKhb8ZbpibmzNu3DgcHR1xcnIiIiICf39/bG1t6dWrV6OC1+fPnwvnOA8PD3GfpKSkUFpaipeXF0ZGRqJcv337dmJjY+nUqRNDhw7FyMiIbt26icD17t27XLlyBV9fX/r370+rVq2Ee5cSw4YNY+vWraSlpXH69GkuXLhAUFAQs2bNoqqqih9++AEnJyd69+7Nnj17WLFiBdu2bcPb25uxY8c22iLWxMSEuLg4TExMePHiBfv27cPLy4tJkyZhbm7OhQsX6NGjB+PHj6esrIzx48eTkZHB999/j4mJCRcvXuT69esEBAQIzdKZM2dy9epVQFGl7t27N5IkcfHiRXr16sWSJUtwc3MjMjJSzG9aWlpYWlrSp08f0tLSBN978eLFGBkZsWDBAmJjY1mzZk2j6II7duygX79+6OnpYWpqymeffYadnZ3YxB46dIi+ffsyZMgQQJFQUjawjRo1Cnd3dx4+fEhERAQXLlwgMzOTX375hZYtW9KqVStatmwprLIrKytp1aoVDx8+FCYZH3/8Mc2bN+f8+fOcPXsWc3PzBva2FRUV6OjooKenx6xZs0Q/1b9Co4NXV1dXTp06JZoYTE1NKS4uBhQlyYSEBMEhAwX/s3Pnzty8eZOQkBCxc1H+Tk5ODvfv3xcTtDKbc/ToUXbv3i30BZUBjJmZWYMyTHZ2Ns2bN28gBO3m5iY6kxvbZBAZGcnDhw8xMzMjPj6eZ8+eiSxIdHQ0UVFRjBw5UjQRKR2k1NTUMDExYdasWWRnZ3Pjxg1CQkIEfcHW1pYePXpw+/ZtkpKSmDZtGq1bt+aHH37A3d2d9evXc+fOHdasWUOvXr2YMWMG69atY/ny5axYsQI/Pz+mTp3K7du3iY2NFQ1bjXWEAYW2XFVVlSgdvZzRePToEQcPHsTT01MEr0ePHhUC88HBwXh5efHFF1+QkZEhysI7d+6kWbNmDB48mDt37nDq1Ck6depEYGCg6MYtLi4W0iY2NjaUlZWxadMmrKysWLRoEQUFBURHRzNmzBgxwZqZmTXahAEUC0nPnj1JSkoiNjYWJycnkVUvLCzk8OHDQspE2fGsPJ9Lly6loqKCxYsXi+CgoKCA7du3s2zZMoKCgrh48SL6+vokJyczbdo00TjXqlUrvLy8uHz5MlevXiUoKEhY4ykzEqNHj0ZTU5NRo0ZhbGzM8uXLGz2+AQMGCMqGUnPxl19+4euvvyY4OFicu9LSUlq2bCk2KC1btmTp0qV89NFH6OrqcuvWLdzd3fHx8Wmw0bt+/Tr379+nY8eOvPfee+L5tLQ0QbxfuXIl9vb2rF69Gg8PDyHMrcx46+npiY3d70FBQQEeHh54eno2MHNQNpfV1tYKB7Pk5GRBvXB3d+eNN94QerClpaV07dqV77//nilTphASEiI2DUlJSWzbto1jx45hYmIimhrq6uoE1aG+vh4LCwuSkpLQ0dFh2LBhQgXgwoULHD58mB49ejTacKJNmzaCLlRaWsrZs2fx8/Ojbdu2rFmzho8++ghfX18xNxoYGPD8+XO++eYbzMzM2LNnj1gwhg8fzvDhw7l06RI7d+7k7NmzYvLfsmWL4FgruWbnzp3jq6++wtLSkmHDhmFkZERVVRUaGhoigKuvrwcUm13lQtNY9yIzMzMyMjL4+eefCQ0Nxd3dnZYtW9KsWTMMDQ2JjIwkLi6OZs2aceLECSIjI0UF4/Hjx+zYsQMfHx8WLlyIvr4+Dx8+pGPHjiKTaWpqypAhQ/Dy8qKyslKYydja2vLdd9+xY8cOevXqxbBhw+jfvz81NTVUVVVRVVUlNtDh4eHs2LGD5ORkoqKiGiV3NmrUKLFm1dXVER0dTX19Pb6+vvTu3ZvevXuTlZVFfn4+FhYWaGpqivlWmUH18PBgwYIFPHv2jO+//15IWTk5OTF06FD69++Pra0ttra2GBsbExcXx5EjRwgPD8fBwYFbt26JCpXyvh04cKBYe+Lj47l37x7Pnz/Hysqq0VJLEydO5NatW+Tn53Pu3DmmT5+On58fMTExYt2tra3FxcWFjRs34unpyXvvvUfXrl357LPPAEX2vK6ujszMTI4dO8ZXX32Fs7MzNjY2tGrVimXLljWQ04uLi6O6ulooC0RERJCTk8PIkSMJCwtj4cKF4vsFRd+Lck5orIA/IJSDDA0N0dXVpaamhrKyMsrLy6mvr8fGxoaePXuKivK6dev48MMPefjwIfPnz+fevXu0adOGYcOGAYqmdFdXVxG8fvzxx8hkMj788EP69+/Pli1bmDJlCqNHj2bAgAFi81JTU0N1dTWVlZUiOXb79m22bduGj48P48eP59q1a+zatatRmrZLlizh+vXrzJ49m/bt2yOTycR1cOrUKbZu3SoSTcrnLly4wCeffMLKlSspKipi2rRpHDp0CG1tbQYNGoSamhqamppMmzZNrB1FRUXY2dnxxRdfMHToUL7++mtcXFxEokVDQ4NmzZphbm7OgwcPhCnTuXPnMDU1pUePHlRXV9OjRw+OHj36L8fU6FVlyZIlPH36lNraWiwsLISm27Vr12jRogU//vijkFuoq6vD2toaa2trfv75Z+Lj45k8ebKQikhJSUFXV5dr164JS1WlbVhoaCjx8fF4eHgQGBjI4cOHcXFxYeDAgaioqPDgwQOmTZuGr68vy5cvJzIykpkzZzJgwAB69+5NQkICd+/eFd7QrwqlwO7u3buJjo4mODiYvn37YmpqSn19PTo6OkKuBBSB3507d3BxcRGZCUtLS4YOHUpubi5xcXHU19fz4sULEhISqKurw9fXl7feeouWLVuKzn4VFRXatWvHyJEjSU1NJTk5GUdHR95//31MTU2FYP/cuXMpLS0VO7Lfo58JNOA8KYWPy8vLadeuHd988w3jx4+nurqapUuXEhoayuzZswWnLysri4CAAPr06SM+o1u3boIzl5OTg5qaGpWVlRgZGbFjxw4SExNRUVHBy8uLhQsX0rlzZ/T09ES2ztbWFhMTE9q3by9KBpcvX6aioqJR+qeg4DEqbWttbW1ZvXo13t7eokFHQ0ODL774gpSUFNLT00WDBSjKerq6unz33XeEhoby5ZdfMnjwYExMTDA2NkZfX587d+4wYcIEPD09hd6rEjt27MDW1hYPDw/MzMzEtVJXVycWVw0NDTQ1NbGwsGhwLTUGe/fu5dSpU8yaNYvAwEDmz59PaGgoEydOxMvLi2PHjuHt7S14gy9/N4MGDcLZ2ZmjR48yc+ZMtLW1admyJbq6uhQXF5OdnS0yfEZGRgQGBgIKnu/06dPFhHzlyhX8/f2ZNWsWbdu2FZkAVVVV6uvrBb/P0NDwlbpHfwslVSY8PJyzZ88yZ84czMzM2Lt3L4cPH8bT05Px48czb948Bg8ezJkzZ1BVVRWB5eTJk0lISBBdtT4+PoK3+fbbb/POO++Qn59P586dhd6kpaUlHTp0oKKiQhh06OnpCemXt99+u4G3t7u7O76+vtja2jbaaEJpVgGK687S0lLoc86cOVPoCZ84cYIOHTqIIO748ePExMQ0SBIoN6M9e/YkOztbNOW4u7ujpaVFcnIyBgYGImDq2rUrz549w9jYWLj9KBtelRsZVVVVSkpKfleZUokFCxZQX1/PwIEDad++fQPlEKX7VuvWrbl//z6HDh3Czs4OZ2dnbt68yZEjR3BxcWHQoEHk5OQQGRlJZWUlGzZsICAggF69egmFm5KSEnR1dSkoKGDfvn1iIzF48GDatWsHKALNjIwMUlNTOXnyJNHR0QQGBmJtbc2oUaOIiIgQi+yroqioiNjYWLy9vdHX16eoqIiKiooGG0GlvaqmpiZHjhzhxx9/pG/fvmIj4OTkxOzZs5k/fz6HDx9GRUWFNWvW8NZbb1FSUkJ6eroIXJUBcuvWrRkyZAgaGhqcPXuW77//XiRcSkpKxKbm5c17RkYGq1atavT5HD58OHp6eoJLnp2djSRJeHl5iQ3OyxvUNm3asHz5cqHaoKzQKi1KT548SW1tLcXFxQ0SJ3fv3iUvLw9/f38yMjIoKSmhtLRUUAsNDAzYv38/d+7coUuXLrRo0UIkfaqqqpg0aRJVVVWiutYYtGrVCmdnZ1q2bEl6ejpubm74+fmhq6vL48ePOX78eAPqzoQJE2jdujUxMTGkpKTwxhtviDWwrq6OuLg4FixYQMuWLZHL5SJQbNasGbW1tSxYsEAI++fn59OsWTMGDhxIVFQU8+fPp3nz5nz33XeAYh48cuQIkZGRyGQyDAwM2LlzZ6P0eq2srNi/fz+BgYGCW5uXl4eXlxcuLi4iyVJaWkpMTAyVlZVCrrS4uFhYwYKiT+fjjz/G39+f6upqYZSTlZWFnZ2dUEdp27Yt8+bNE7bZRUVF6Ovrc/DgQbZv386wYcNYsWIFQ4YMITY2lh9//BEXFxc0NDRQUVERn/PP0OjgNSAgQCxmSsTHx/Pll1/Stm1bQTgvLCxEkiRMTEyora0VUiaTJk2if//+VFVVCSvVGzduoKenR2JiIi4uLnTv3h07Ozusra3p378/vr6+REdHk5+fL7hzeXl5lJSUCBmeixcv8vTpUyZPnoyqqip79+7l9u3bQkS4MfDy8iI1NZXQ0FA++eQTMeE7OzuLya2mpoa8vDzi4+OF44Vyolc2jtnb2+Pu7s79+/fZsmULR44cwdjYmBEjRggRcmWn7OPHj/H19WX06NGirNKyZUtat24tGtQKCwtxd3dHQ0ODnJwcSkpKGj02UGQaHjx4gK6uLq1btxaBm7JEoIRSwLtv374sX76cO3fuMGbMGJ4/f46/vz8VFRX07NkTdXX1Blp+bdq0QUVFhfT0dJ4+fdqg4Uu5W87IyCA+Pp7BgwcDignewcGBrl27ivKNUrS4sZk7FRUVKioqqKmpwd3dHScnJwwNDamrq6O4uBgTExO6d+9OYmIin3zyCZaWlqxcuRIDAwPi4+Pp0KEDqampnD17Frlcjre3N66urgwZMoS1a9dSWlpKRESEKL21atWKmTNnEhsby+PHj1m6dCkzZ85k7ty5gGJSjoyMpF27dkJsu7q6mjlz5uDj4yMC2sYgMTFR8LKVC5y3tzfvv/8+tbW1fPvtt5iYmIjgVSkqXl1djbGxsZByuXbtGrdv3+bevXtCyFxbW1tUOrZv3467uzudOnXiyZMnZGRkYGFhITYp1dXVrFixQhxXXl5eA8qAMnD8PXB0dBTUDmVme/78+RQUFHD+/HnOnz9P8+bNhSqJ8j4pKiri+vXr6Ovr06xZMxFIKBVMHB0dxcRYXFzM8OHDAdizZw8xMTH4+/tTW1tLRUUF6urq1NTUcO3aNYKDg+nfvz95eXls3bpV6Kz6+fnRqVOnRktlKZ2PMjMzCQ8P5/nz55iampKdnY2lpSXLly9n8+bNLFu2jMDAQJYsWYKamhouLi7C8Q8U56iuro4JEyagoaEhHBCVGqJXr14lPz+f4cOHY2pqSkxMDNeuXaOmpgY3NzfxOUq927Zt2zJ16lT09fXR09OjqqqKysrKBnStV4W2tjZmZmYNXKVKS0vR0tJqsDg1b96cDh06CImomJgYjI2NWbZsGaDocLe0tBSSXnPmzGHr1q24u7ujo6ODgYEBeXl5HDp0iOfPn6Ovr8/UqVMJCAggMTFR0CIcHBxISUlh79693L9/n+rqar788ksCAwO5evUqaWlpgn7yKjh16hQ///wzrVq1YsCAAejo6KCiokJqaqowRFB6x4NCoujUqVMNVF6UJdPmzZvTrl07goKC6NmzJ5WVlbx48YKSkhLhmKZsVgwODsbY2JiysjL2798vyuSGhoa0adMGdXV1njx5wr1793B2dqZdu3ZERUVx9OhRVFRUGiUGr1RradeuHQkJCZiYmFBfX/93tt9RUVGcOXMGJycnod5w7tw5vv/+ezp16iQaoJQVuw8++KBBg9WDBw84duwYzZo1Q11dHQMDA9TV1bG1tRV65Ldu3cLHx4d58+ahra3NV199xdWrVzExMaFVq1bo6ek1WrkFEBQZ+JvGcWVlJQUFBVRXVwsKS7du3WjZsiVlZWWYm5sLZRcllLGOUue8rq6Omzdv8vz5c3JycoS18aNHj0TDk5WVFf369WPIkCHo6uqSkZEh1ipDQ0NatGhBixYthIRcz549GTp0aKOC11mzZiGXy4Wk1ebNmwkNDaVPnz4UFRVhYmKCqqoqDx8+5NmzZ/Tq1QsfHx9hqNSrVy9mzZpFdHQ07du3FzqxSu3gGzdu8OzZMyHfV1FRQUlJidg4KqXh2rdvj42NDZmZmVy7do3c3FyMjIwICAjg5MmTREVFiQbFPzx43b17t/AwfhmpqanU1dXRr18/0SWu3JXl5+cLPsvp06cFn/LEiRPs3r0bfX193njjDWJiYtDW1qauro633noLS0tL4fPs5+cnslTV1dW0aNGCs2fPiqhe2ejVtm1biouLiYqKwsbGhiVLlogGs1eB0sVDGWC83GhSUVEhbvq8vDzWrl2Li4sLb775Jjdu3GDfvn1MmTJFyCZNmTKFlStXUlVVxZEjRwBEV+/atWt58uQJCxcuJCAggHPnzvHs2TOGDRtG27ZtMTAwICcnh9TUVJo1a0ZNTQ2PHz8mMjKS5ORk1NXV6dy5cwP93FdFRkYGN2/eFJqAn3zyCf7+/g0CKOUNt2zZMlEqOXfunHC7evbsGTNnzmT69Ol89NFH4rsrKyvD1dUVV1dX5syZw8aNG9m8eXODDnxQlDIjIiLYtGkTzZs3p7CwkH79+mFubs7ixYupr69n5cqVDBo0SFxHr4rq6mp0dXVFuVUpit68eXORHc/Ly2P37t2cPXuWkSNHoqmpSXJyMpcuXcLb25uffvqJ9PR03nnnHYYOHcr169cxMjIiMzMTGxsbzp07R0hICDNnziQyMpLZs2ezZMkSPv30U7Zu3cqxY8eYPHkyoOD1fvXVV8ydOxdfX1+RZe/Zs2cDCaHGYPr06UIhAmDbtm2C16qurs6wYcOETqidnZ1YLH9Lr9m7dy+//PILu3btEv7gH3zwAcnJyezZs4eHDx9y7NgxYmNjsba2Zs+ePWRmZorrw8LCgri4OBEk/zZbp+S5/x74+fnxyy+/iIzmF198gb6+Pn379uXZs2d89913XL9+HR0dHeLj4/H19aVz587s3r2bJUuWADBv3jyWLFmCtrY2FRUVLF++HBUVFSIiIvj0009JSUlh7NixDBo0iObNmwu6gKGhoaBjKLNDyjns2bNn7Nq1i/Pnz2NhYUFRURGWlpaN5tfHxcURGBiIXC5n1apVjBw5krlz5zbIUqemphIZGUlkZCTXrl0TetKjR4+mQ4cOhIWF8cknn/DGG28wceJENmzYIDJP6urqojO/V69e6Ovr8/jxY77++mt+/PFHtLW12bx5s6iURUZGsn//fmJiYmjZsiXdu3dHVVUVLS0tYQzTWGzYsIGVK1eKn2tqalBVVf27Bj5DQ0Pmzp3Ll19+ybx58xg0aBBffvmleN3X15egoCASExNZvHgxp06d4ttvv2X8+PEMHDgQUNBJlE1Ov/zyi9AY37p1K5aWlvTr14+pU6dia2srrsmWLVtia2tLXl4e169f59ixY3/XYPav8OLFC2FFXVNTQ7du3cjNzeXevXv4+vrSq1evBtxELy8vevXqJRb1oqIi4QLZsWNHJk6ciKamJhs3buTzzz9nyJAhfPrpp1y7do2vv/6at99+W5R2w8PDuXbtGk5OTkyZMoXnz5/Ttm1b3nnnHTGnDhgwQCRffHx8mDt3LpmZmZw5c+aVx6iEqamp+Kzq6mphuKA04bl27RqHDx8WAczTp085evQo3t7eDB06VKzLPj4+yGSyv2v+09LS4sGDBzx48AArKyv69u2Lv78/9fX1rF69GkNDQwYMGCC0Y0GR2Z86dSrr1q1DLpczZswYNm7c2Gh6y4sXL4iLi6Nt27aoqqqipqZGaGioqMRs3LiRa9eucefOHTw9PYmOjmbfvn28+eab9O3bV5zL9PR03N3dqa2t5aeffuLcuXNoaWmJ4NjDw4OxY8eSl5dHeno6SUlJvPHGG2KtMDMzY9WqVYLaosQ333zD0aNH6d27NyYmJo2KaQBhPauvr09ISAhRUVHExsaSmpoqGnWV5gU9evTA3t4eVVVVjI2NRRXD1dWVnTt3Ym9vT2VlpaD6LVq0CB8fHy5duiToF9evX6e2tpaBAwfy5MkTIa2lrDQpufzq6urU1dUxZswYtLW1xeZl9OjRfP/99/9yTI1eVZYtW0Z8fDwzZ87EwcGB2NhYHjx4wLhx4zA3NycvLw9TU1PhgQuKMrqRkRHa2tp07twZU1NTEhIScHZ2ZuHChYwaNYrmzZsTEhIi3C3s7OyYOHEiBQUFaGpqNtA109TUFJZ5lZWVQnbrzJkzZGRkCE/kXr16NVocXSnOrqmpSWVlJevXr2fRokUYGBgQERFBWloaNjY2gh/m5+eHmZkZ9fX1ZGRkUFxcTIsWLQgMDCQhIYEtW7Zw4sQJjI2NBaVBKYWhTNlXV1eTmZnZYCerTJ8rJ1kNDQ1sbW2Ji4vj0aNH5OTk4Ovr+7syW+bm5rz11ltYWFigrq4uMmURERHo6+tjbm5OZmYmqqqqItNcUVHB9evXAcWF17dvX3Jzc4V+naGhIbW1tWLhVQoOu7m5NWhkiYmJYefOnWzcuBFfX18xPiU32cDAACcnJ/Ly8sTN+3JD2atAGUSkp6cTGRlJVVUV9vb24nqsq6sTJdNFixbRr18/tLS0yMzMRJIkEaTY2dkRFBTEihUr+PDDDxkzZgwff/yxaMxo3749y5YtIzU1VegBr127FhUVFcFJ+uabb4TU1tatW2nfvj1dunQRJZrfU04HRUYzISFBTIqJiYkkJiYKt51mzZpx+/ZtiouLG7ipFBcXExcXR2hoqGiU8PLywt3dnXPnzomMh7OzM4MHDyY/P5+TJ0+yZ88e3n33XZEJMzY2JjU1lczMTNatW4e/vz+TJ09u0NQTFRXFo0ePcHJyauCs9qpo06aNaLIxMDDAwcEBGxsbfH19Wbx4MY6OjhQUFJCVlUVVVRVHjx5ly5YtVFVV4e/vj5GREW5ubsISta6uTvDISktLhdPd/fv38fPzw8fHB1NTU7S0tBrMN87OzqxevZqSkhIuXbqEk5MTY8eOZcWKFaioqLBo0SJ0dXUb1QQDig1UaWkp1tbWwif8zp07REdHY2lpSUJCgvChb9OmDaqqqsTFxdGnTx8mTpwozuXAgQNFE+bLQaGGhoaQcVJKgynnmb59+wq5JiU6dOhA37596dixI0FBQaioqFBUVISenh4aGhqNvg9BEZCkp6eTn59PdnY23bt3b7BRq6ysJDQ0FG1tbVq1aoWRkRGtW7dGJpOhqanJxYsXuXr1Km+//TYeHh5oaGgITWktLS3Ky8sJCQnBzMyMpKQkZsyYgZ2dHaamply5coXo6Gi0tLSwtramtrZW0CtmzZpFaGio4NPX1NSgra3dIGB4FTg6OtK7d288PT0JCgoiLi6OQ4cOUVFRIebVoqIiQkNDKSgoIDs7m549e+Lr60tFRQVlZWXY2NhQXV1Neno6z58/p76+nvj4eOzt7enfvz/29vYYGBhQVlbW4Lq8e/cucXFxDB48mBYtWnD37l00NDRwcHBARUUFExMT0tPT2bNnDxkZGUyYMEEkERobvEqSRHh4OC9evMDPz68BvaKuro78/Hz8/Pz44IMPMDc3JywsjFu3buHq6ioad0tKSvDw8BCxQGRkpGiyTklJEc5Ynp6eyGQyOnfujL+/P8XFxaxduxY1NTURuH7zzTfcuXOHadOm0alTJ2bMmMHu3bvZs2dPo5vuQKEaUVlZiYuLCw4ODnTv3h1Jkqivr8fFxQUfHx+R5Tc3N6d9+/ZcunSJY8eOUVZWRmBgIJIkCaczgDt37nDy5EkWLlzYIEPbpUsXrl+/Tnp6OvX19RgZGYl5SV1dnW7duqGnp0deXh5Xr17l8uXL3Lt3Dzc3N4KCgigsLCQtLa1R47Ozs0NTU5P09HTq6uoIDg7G3t5e6MdramoiSRLx8fEEBgaiqqpKREQECQkJQrnHxsZGUKa0tbVxc3PD0tISDw8PkpKSuHHjhpDKUmpHt2zZEnV1dfT19UUCpb6+Xmz4lWutmpoaXl5e7NixA0dHR1q3bv3HB68GBgasXr1aXJR3797l2bNnzJ07FzMzswYBQlVVlQhOcnNz0dTUpHPnzqiqqnLkyBFMTExEqa+8vBxXV1d0dHQaEMpfXgxfzuiEh4czYsQIevfuzf79+9HX1+fq1atcvXpVePEqL4jGQlNTk7Zt2/Lzzz9z6NAhCgoKkMlkpKWlsWTJEioqKmjXrh1bt24VgYG5uTmtW7emoKAAFxcXTpw4waZNm8QOsGfPnsjlchISEjh+/DiDBg0SElePHz8WriUvw8HBQUz0SrcxZVZTKSH2e6ChoUHfvn1F96OamhpPnjzh9OnTeHt7M3LkSAYOHMjp06c5d+4cb775JqampiLzPXr0aNHUUFBQQH19PWlpaSKjce3aNfbt20e3bt1EsKPE2bNn+frrr7G0tGTChAni/Nrb2wvx6+3bt1NTU0N8fLxwuPo9OH36NNHR0UyePBl/f38hIeXs7ExQUBABAQGCXwOKpjpdXd0GPNTAwED69esntOeWLVvGuXPneOeddxg4cKBotnrx4oUoza9evZpr165x/Phx5s6dS5cuXYTu7erVq7GwsMDV1VUEZj4+Po3uVN+xYwf79+9n7dq1tG3bltmzZwttVlNTU6qrq8nJyaGurk7YxYJiEbp//z5r1qyhRYsW+Pr6YmZmxpAhQxgyZAiRkZEsW7YMS0tLPvroI+Lj4/nss8+E44qy1N2hQweqq6u5dOkSFy9exNDQsIGWa21tLYmJicJY5PcErwBjx47lyJEj1NTU8MknnwjBdHt7ez744AOuXbuGiYkJbdu25csvv2ThwoVMmzaNbdu2AYrrU3mN29raCpeluro6unbtSlZWFt27d6dDhw6i1J6bm4uOjo7IMtna2vLWW29x9epV4uPj6dGjB2+//TY//vgjBgYGzJw5k8TERJYuXfpK+oRKKJ333nnnHcaMGcO5c+fYt28f0dHRODo6Ul9fT25uLr6+vuzevRsrKyvR1OXt7c2ZM2dQV1dn/fr1YhFQymstWLCAsrKyBpk6UAQGS5YsQV1dHVVV1QbnTKkGoq2tLQJVpY/87+W9Ll68mLy8PGExbGdn10CrWl1dncePH3Pp0iXatGlDt27dOH36NAYGBqSlpfHhhx+SlZWFr68vWlpaHDhwgPj4eNq2bUvXrl1JTU3ls88+o6SkhHnz5rF+/Xru37/PyJEjiY2NJTAwkFWrVonmJSUdRtkoo6ykWVtbM3fuXNzc3Hjy5Mkrj69Dhw54e3vj4+NDWVkZ69evF5xJZVXw/v37bN26laioKPz9/Rk4cKCo9JiYmIh7Y/Xq1SxatAgTExMWLFjAmTNnxBpmY2PDrFmzGkgH+vj4oKamhqWlpVDbOXbsGCtXrmT06NF4e3tz7tw5Pv30U6qrqzE0NGyUe9jLUNqBhoWFic5x+Ju0ooWFhTjW58+fc+7cOaFEoJxfDQwM6NatGxcvXmT9+vWUlJTQp08fmjVrxi+//EJYWBgmJiasX79eZDOVVZB3331XrBVnz55l0aJFlJaWcvv2bQ4dOoSfnx9Lly5l9uzZjBs37h9Wh/8Vnj9/jp+fn6jyKe2V6+rqRAwTFBREbW0ttbW16OnpsXr1aoYNG8bkyZPZtWuXaNZSwszMjGHDhjFy5MgGzys1a5V4eVOo1IMPCAjA2tqaOXPmcPLkSXbs2MG4ceMIDw9HVVWVVq1aCVraqyA8PJwLFy7g6OhIr169GDJkCEVFRULqsKysjI0bNxIeHo6LiwvNmjXj+vXr7N27lwcPHgAIXu4777xD69atmT59uojVlI2KpaWlouldKUPp7u7Ou+++K9Y4VVVVUeVs2bKloA5GR0cTFhZGYWGh+Jv/Co0OXg8dOsTevXtFKtjZ2RkdHR327t2Lo6MjnTp1wszMTIj+ZmRkEBERQV5eHsXFxUydOpUxY8bg6+uLtra26PK0s7Nj4MCBojnn4sWL4gtQelQ3a9aMsrIy7t69y9GjR+nWrRujR49GXV1d8LSysrKYOnWquJGUqgaviqtXrxIcHMysWbMoLCxkyZIlpKamYmpqSvfu3UlLS2PDhg2kpaU1CKosLS2xsbERZdmamhpMTEzw8PDg6dOnJCcn880333D9+nUuXrwoThgoSmJWVlZ8//33fPXVV8yYMUM0Q8XGxhISEkJSUpLQde3WrRulpaVcvXpVkLobgydPnhAWFsawYcOE3FNhYSGdOnUSC4umpiY+Pj6Eh4eLBa5nz56Ym5uLwHXhwoW0bt2akSNHoqurS3x8PHp6epw7d47t27c3CMaTk5OxtLQkMDCQzZs3C+HyH3/8keDgYHx8fPDz8xMmD6BwiDp16lSjqRHl5eVkZmbi6uoqiP2gKPfW1NSIRaWsrIwNGzZgZmbGnDlzhKzZy45obm5udO7cmQ4dOmBvb8/+/fs5efIk9fX1DRZhJZk9MTGRW7du8fbbb4smsbS0NDw9PUlISEBDQ4PCwkI0NTVxdXUV+rbKMuKrIjY2FmNjY7799luMjIwERyg5ORl9fX3U1NTo3bs3t27d4rPPPsPV1ZUJEyYIC2Zlpi80NFTI8AQGBuLn58eoUaPQ0tKiXbt2wo5ZRUUFf39/tLS0KCsrE25A/fr1o6KiAldXV7S0tDhx4gQhISGMGzeOwMBAKisrcXBwaDT1Qwkl503J9VMiLy9PdBcrF7UJEyZQVFQkyua5ubnCJEPZUKYUcE9MTCQmJgYVFRWR6QAElcXZ2Zlly5ZhZGREbGwscrkcd3d3Jk2aRHR0NDt37qRLly6MHz9eZNE7derUqPlG2fmtpaWFlpYWY8aMEdaP3t7edOrUiT59+mBlZSW4gcHBwWRlZfH8+XPs7OwwNjYmPDycp0+f4uvrS3BwMMOGDePLL7+kpKQENTU1fvjhB+7fv0/79u1599130dLS4ubNm0RERIhu+Q0bNjB8+HACAwO5d+8eGzZsYNWqVY1ulvxHMDMzw9PTk9DQUObNm8eIESN488030dfXJysri+bNm6OtrY2pqSmtWrUSgXJERATt27fHxcWF1q1bU1dXR+vWrenUqRN6enqEhoayefNm0eTWuXNn1NTUhCILKLKTLydAlFJFHh4eYn5SbshcXFwYO3Zso3SzmzVrhpmZGSdOnCAmJgZvb2/27duHuro6rq6uwiDBw8MDX19fYS1qbGyMqqpqA6qJj48PAwcOJDs7m5KSEp4+fUpYWBjPnj2jXbt2DBw4sIFsoDJp4ODggLa2Nu7u7tTV1bF9+3aMjIzw8fHBw8ODefPmYWZmxo0bN+jevbsoUb8qampqiImJQVdXl7ffflvQyD777DMMDQ2ZM2cOmpqaxMfHs3v3bqFHGx4ezu7du4W1eJs2bcjNzeXkyZOiiqe0e3327Blt2rRh4MCBVFVVkZiYSE1NDTt27CAmJoaPPvpI9FUUFhbSu3dv4ZSoVNx58803cXFx4dGjR4I+8qoYPnw4Ojo6hIWFERoaysCBAxtcN0oNWaXKg9LxShnnKDdBcXFx/PTTT1RXV2NqasqyZctwdXUV1sYffPABXbp0wc7OjhYtWrB06VJGjBghFCv09fUbOF29+eabmJubiwqBp6cnlZWVjaaZffDBB+Tl5TFt2jSxVr08voSEBOrr69HW1iYuLg5dXV2cnZ1FY7eWlhZqamocPXpUqASoq6ujp6eHi4sLurq6fPXVV3h6eqKvr89HH32EkZGRmLP19PQaVA0CAgLIzs5mz549nDhxgvfee48WLVowZ84cXF1dG1QL/xkaHbz6+vqyevVqfv75Z7Kyshg9ejRXr15l5MiRWFtbc/XqVczMzARv9N69exw/fpyioiJAsegmJSWxdOlSnj59yueff050dDSjRo0SdmKgCDpv3bpFQUEBAwYMEBlbLS0tkYnZt28fenp61NTU4Ojo2CCQy8rKemWP3Jfxww8/UFhYyNChQ1m4cCGGhoYUFBTg7e2NoaEh69evx8DAgOTkZOHNXVdXR7NmzUTgmpqayqlTp8jLy2PIkCGcO3eOR48e8cknnwCKCyEpKYn09HTR0GBpaUl1dTXnz5+ndevWIngtKyujqKiIR48ekZKSQnl5OX379sXHx4c7d+4QEhLS6DG+ePGCpUuXkp2dzZo1a0SgHRQUhKqqKmVlZaiqquLu7i64jLm5ubi7u9O+fXskSWLbtm18++239OvXj8DAQNGprLSitLa2FrsypYuUcnOjnIQePXpEVFQUGRkZQt2goqKC0tJSzp8/z5o1aygoKODFixeNyvwUFhaSm5uLs7MzTk5OlJeX8+TJE2pqaoROIigyInK5HF9fXyZNmiSaPpTHrdwBenl5MWTIEJKSkvD19aWmpkbonCYnJ/P8+XN8fX0xNzfnl19+Yc+ePUyePFlw8W7fvs2NGzfo0KEDo0ePFsG1jY0Njo6O3Llz59+S03+LYcOG4eDgwNtvv83Dhw+5c+cOfn5+hISEcPPmTYYNG4aFhQX19fXs2rWL3NxcIXfk6urK+++/j4aGBgYGBty/f1+4OPXr109kN5XuWsrNivK6UF7nSUlJVFdXi8zC/fv32bdvHwUFBZSUlGBlZcXIkSN59uyZyIQ2Bk+ePBE8u+Dg4Abd/MomNQ0NDVEKa968OV988QUAly9fZtu2bSIIr6mpEZ3m5eXl3LlzR/CzYmNjBe84NzeXR48eAYjJNikpiS1btjBo0CDGjBnDjz/+yPr16+nZsyc6OjqUl5fj7OzMF198ISTXXgXm5uZiAVGWs4cMGYK1tTVeXl74+PiQlJREYmKi2EAr7wdl9qWkpISNGzeydetWrKysWLJkCZaWlnh5eYm5KSYmhrNnz3Lz5k3s7e0ZPnw4YWFhrF27lrq6Ojp16kRKSgonT57EyMgIuVzOsWPHaNeuHTNnziQ/Px8TExMhgdYYlJaWUlZWhru7O126dGH//v3cvn1bSLnl5eXRqVMnkeUuKioSusyOjo7I5XLxWUo+PSiae8LCwkhJSUFDQ4NPP/2UVq1asWPHDjZv3izcqMzMzDh16hSSJGFubk5MTAxpaWmYmpqK4NXAwEB8/8rjaAwePnzIli1byMrK4ssvvxTNqcqeiebNm+Pi4vJvjUiUmb4bN24QGxvLw4cPUVNTw83NDQMDA1RUVMS9V15ezqNHj4TzkRKmpqb4+PiIBMDL861S+7exDU0//fQThw8f5s033xSGDitWrGD58uUEBQUxfvx4TExMiI6OZtu2bYwYMYJJkyZx7tw5YZnu7u5OmzZtxPqgpaWFjY0NNTU1pKamoqmpiUwmo1+/fhw+fJiIiAhx/d+4cYOHDx+KcYwcOVLMUUooaXzBwcG0bt2ahQsXNmqM3bp1IyUlhYsXL1JQUEDbtm0xNjYW8mK6urpcuXJF8LdtbGyEkYmDg4Owes/OziYyMpKSkhIWLFggrtfw8HAuXrxIQEAAAQEB9OzZE0dHR9q1aydE+uvr69HT00NHR4f8/Hzy8/Px8PDA2tqa27dv4+bmhqurK0lJSZw4caJR44uIiKB79+7i2szKyiIvLw89PT2eP38uXOG8vLyoqqoiNze3gQynu7s75ubm3Lp1i/DwcMGlNzY2ZtCgQUyaNKlB/KZMOCmb3goKCigrKxPGVs2bN2fw4MGcOnWKn376icDAQCHBBrySa2ijg9eNGzcyd+5chg0bJvhBSgFjY2NjkdVSV1fH2NgYb29vEhMTyc7OxtramqFDhwqitq6uLkuXLqWsrAxJkoiNjUVNTY3mzZszdOhQwWNVZiaUnzt8+HDRCQuKsrvS4xoQ2c2hQ4eKk/WqUFNTY/LkyTx79owPP/yQOXPmkJCQ0EBAedKkSaKcnZmZSWlpaQMOkJmZGTo6OsTFxQntW01NTTw8PGjbti329vZUV1fz7bff4uPjw4ABAzAyMmLevHn4+/uTm5vLxYsX8fPzE536Li4u7N27l88//5y7d+/Sv39/goODcXd35+bNm40ao4uLC76+viKQ09DQEDdqQUEBlZWVgssCCkep7777jnHjxmFra8v06dPJyMjg0KFDPHr0CH9/f+zt7Vm0aBGGhoaMHj2awMBAkZlU+tCDggf0008/4efnx+DBg5kxYwYbN26kW7duuLq6MmnSJAoLCzl69KiQNcrJyWlU8Kq0mbx16xarV68mNjaWDh06MH36dJycnCgsLERbW5vmzZuzfv16NDQ0BLenqqoKa2tr9u3bx759+3BychILqJIXp8zyVFVVsXz5cs6dO4efnx9DhgzB0tKSjh07cvbsWZo1aybc4h49ekSPHj3o168fmzZt4sSJE3zxxRcMHjyYVq1aoa+vz6VLl155jEp9w27duonSISACGiXc3NxYvny5EEpPSEggMzOTli1biqxaTk4OaWlpJCQk8OzZM1GarK+vF4H8xYsXCQsLo0WLFowePRqATz/9VHTAamlpsWXLFuzs7FiyZEmDjN2ZM2dYtGhRo/QzlX/z2LFjdO3aFblcTm1trbDjNDMzEzyqmzdv8vXXXzNu3Di6du3KDz/8wJw5cxg3bhybNm1CXV2dgwcPcvDgQSoqKjAxMcHf3x8vLy8sLS3R1dXlwIEDuLm5YWNjw8aNG7G3txflQjc3NyZOnEh4eDhDhw7F2NhYmKO8//777NixA3d390ZzQn9rGxodHS3cCbW1tQkJCeHKlStUVFTQpk0bfH19MTIyon379mLDamBgwKxZs3jy5An79+9n6NChIvvq5uaGra0tMpmMPn368O6777J9+3aGDx/Ohx9+SHV1NU+fPsXT05M1a9Zw4MAB3nzzTbp27crWrVs5dOgQn3/+OT169GDw4MG/Kwu7d+9eDh48yMiRI3n33Xfp378/xcXFgl9qbm7eYPMdHR3N6dOncXFxaVBujYyMxMTEhPLycr755htOnTqFk5MTffr0wdjYWCjg7Nu3j8TERHbu3Mm4ceN4/Pgxn3/+uaAvTZo0iXnz5jUwxVFTUyM+Ph5XV9dGO8EVFhZSUlLC6NGjqaio4MGDB9y6dQsrKys6deqEj48Pbm5ur2SPHBcXx6ZNm0QjpJOTE4MHD2bYsGENehvq6ur45ZdfuH37tpBYi4uL48KFCxQWFvL55583yFxlZGSwb98+jIyMOH78OO3atWPevHmvPMbQ0FDOnj1Ljx49AIW7n5IuZWlpybVr1xg4cCCdOnVi586d1NXVcfr0aaGAoKOjQ0VFBZIk4eDgwGeffSZ4sY8ePSIhIQFtbW3BTR4+fDiRkZHCgvajjz4SjlBKu+vfQktLS3TRK+lvjUFFRQVaWlr06NFDNIkfPHiQXbt28dZbbzFhwgRhQd2+fXsGDRqEqqoqHTt2pKqqivXr15OSksK0adNYv369oBcpMXr0aNq2bUtmZiYRERH079+fixcvCne+zz77TATEiYmJbNy4kSNHjtCtWzecnJxEsmT9+vUkJSWxbt26Ro1x6tSpDBo0iC5dupCfn8/777/P0aNHCQoKYsKECfTp0wdLS0sqKyuFsc/hw4eFnfvjx49FA729vT1ubm4ijggICMDKyurvKH7V1dWEh4ezf/9+Dh8+TEFBAUFBQUydOlXES2+//TZeXl4NxhIVFcXs2bNFxfSfodHBa0FBAcXFxRQVFVFUVISPjw+dO3fmjTfeoHPnziLIzM3NxcrKCh8fH3R1dbG3t6e4uBhvb29UVVWprq7G1ta2QZPSN998Q1hYGLNmzcLR0ZFRo0Zx8+ZN9u3bJ8qWhoaGDSL8x48fiw7h8vJyKisrhYSWUl+1MWjXrh2RkZENglUTExPB4VVVVcXZ2VkE6aBY5MPDw0lKShIWh0qbvsjISEDRcDF37lxBc7h48aLgdcTFxaGvr0/z5s0ZNGgQ169fp7KyEmNjY6qqqggPD8fQ0JAJEyZw8+ZNcnJySExMpEOHDnTo0KHRwauTkxM7d+4Uu8LCwkIKCwupq6vDxMQEMzMzjIyMqKur4+nTp2zfvl1oplZUVHD69Glqa2tZt24dNjY2InhRTvzK76empobs7Gzs7e1RU1Pj8OHDzJ49m6ysLCZOnMg777yDhYUFffv2JSUlBWNjY4yNjbGxsWHEiBG4urqK66SxZSALCwuR1Xz06BFJSUnMmzcPVVVVQU1wdnbG0dERSZKEu5WhoSFbt27l8OHDGBgYIJPJxOKakpLC1q1badasGZcvXxaLKCh2mMnJySxZsoQ5c+awYsUKlixZQkZGBpmZmXTp0oURI0ZQWlrKDz/8QFZWFnPmzBFdwcrKxKvixYsXZGVl4enpiYGBAZcvX6Zfv36YmZlRUVHBTz/9RH5+Pv3796dz584UFxezfPlyHjx4IDT9bG1tqa+vp0WLFhgaGlJRUUFeXh4GBgYic3716lUePHggmnbOnj1Ldna2MDjQ1tYmPT1dNLcp+X+guC+UXNmXKRavigcPHgh5Gk9PT8rLy7l3716D8hMouOEGBgZERkZiYGAgGkUmTZokFjqlrJiGhgaOjo74+fnRq1cvTExM2LVrF9988w16enosWLBAZMyTk5NRU1PDw8ODTZs2MX36dPbv38/y5ctZs2YNmzZtoqSkpIFtcGPw8OFDSktLad++vciSFxYWCnmq27dv88svv6Cnp4evr2+D7zAlJQVVVVXs7e3R09MTDVkPHz4kOzubmzdv4uTkJDztW7VqhYuLC0+fPuWnn35i3LhxzJ49mwcPHggpKyVtZ9CgQbRp04Y7d+4I2SovL6/fZYH75MkTrl69SvPmzZk5c6aQhlNTU0NVVRVbW1uKi4uprq7G3NwcU1NTmjdvTtu2bQFF1lupCzpw4EDq6upISUmhpqaGnj17EhgYSHl5OSoqKjx9+hQPDw9atWolOt6NjIywsLAQC2/Xrl3F9RkRESHm9crKSmxsbBrlWgSKqoqJiYmolP3000/s2rULQ0NDbGxsxN9SNqTW19eLLGFpaSnJyclUVlZSXl7OxYsXiYqKIjs7m9raWuzt7UlLS+PGjRsik15VVcWpU6fYvn074eHh9OzZExsbGxISEli9ejU+Pj58+OGHglPr6OjIs2fPOHToEKampvj7+xMfH9+oMfbu3Zuamhp8fHxITU3l+vXrODk5MWbMGNGdr3SfU5b9v/vuOywsLFixYgVeXl5oa2tz5MgRdHV1cXR0ZPDgwairq7Np0ybKysooLS0Vx6U0ZFAiMTFRrLcPHz7k6dOn6OrqoqmpiY6OjnCaMzY2Jj09nbi4uEYHrzk5OdjZ2Yl+h5iYGA4cOMCjR4+YOHEikiSRmZmJkZERM2fOFDFIly5dqK2t5dixYzx8+JDmzZszevRoXFxcuHPnDi9evBC0OB8fH0Gt09DQoL6+npSUFGxtbdHR0UGSJNLS0lBVVRU8Zk9PT+rq6nj48KFwroyKiiIkJKRRY1RWZAAhAairqyvoJi/PLUZGRoSEhJCZmUm7du3w8PDg8ePHxMTE0L59e5YuXUpAQAC//PILhYWFggL68OFD7t27h729vaj61NfXY2JigoODAzU1Nejq6grFAaU9bbt27USvwLVr1zh48OAr9YA0OnhV7rjee+89QegNCgpi9+7dIuOTm5srnClUVVVxcnISXJQpU6ZgYGDAoUOHGuhBVlRUEBoayrNnzwgODhYNC0+fPhVp6jZt2tCnTx+sra3FiXBwcBCZ2bq6OtTU1Ojfvz+SJPHixYtGB69+fn6cOnUKW1tbysvLuX79OioqKkJU/x/toFVVVfn555/56quvsLGxYdiwYcLhSwlTU1Pc3NzEYtq1a1dat25NSUkJ2dnZPHr0iNDQUAwNDXFxcRE3x+bNm/nkk0+YMmUK69at44033uDOnTtkZ2dTVlbWwGzgVREdHc3UqVMBRdnuxIkT6OrqMmjQoAaBwYMHD5g0aRLl5eWsW7cOV1dXsrOzGTRokGhG+uijj7h69SoxMTGkp6dTUVEhAv+IiAjU1NQIDAwkKiqKBQsWkJWVhbOzc4OsyqBBgxg8eLCQXtHX18fPz49hw4ZRU1NDRUVFo8pAMTExtGjRAj8/P9auXUuvXr2oqakhPT2dnJwcfvnlF4KDg8WEePfuXbKzs3nzzTepq6vjk08+oaSkhAMHDojd865duzAyMmL48OFERUUxYcIEEVCPGTOGwsJCHj9+TFJSEmPHjmXatGmsXLmS7du3ExwczI8//oijoyMPHjzgyZMn+Pn5YWlpyenTp5k6derfkfr/Hb7++mvRqVpTU8P9+/dxdHSkc+fOXLlyRQQzaWlprFmzhhs3brB582Z0dXUZNWoUGhoanDx5kqSkJDw8POjWrRs6OjpkZ2c34FP9/PPPREVFsXHjRmxsbHjrrbeYO3cu6urqtG/fnqFDh4ry9zvvvENUVBSRkZH4+PiQk5PD1atX6dGjB/PmzePzzz9v1BhTU1MBxD2nq6vboPSq7Aa2t7dn5cqVhIeHExYWRt++fVm1ahWmpqaUlpaSlpZG586d6du3L5mZmRQUFODu7i7mH6UlZFpaGk5OTnTv3l1ou+rq6jJw4EAMDAyYN28enTt3Fhm1rVu3oqKigoqKCmfOnOH8+fONGt/169fZtGkTc+fOZfHixfTs2ZOcnByh1aqpqYmJiYlIAihx+fJlsrKyhEPY4cOHMTc3Z9++fYAiM7ZgwQJ0dHQYOHAgycnJfPfdd7Rv356ioiI2b97M/fv3mT9/Pt26dRM2l+7u7mzZsoWLFy+ybds2Jk+ezKRJkzh27BhWVlaNprbA36yLlVlpSZIICwtDW1tbdIVHRUURExNDu3btsLe3Z9CgQVhZWQmbzqioKDp06CCSIGvXrqWwsBATExORWCgoKEBVVZX3339fUJ3CwsK4cuUKffr04bPPPhMcPVAEnUePHiU7OxtbW1sCAgIoKytrdGPaixcvhNQYKBoMlVaaL3MKlcYkZWVlvHjxgtjYWFJSUoQNZ0xMDJ06dUImkwlbzRs3bnDs2DFUVVXZvXs348aN48CBA+zYsUPwYkNDQ6mursbR0VFwRRMSEgBFoKepqUm7du0YO3YsGzZsYOTIkXTq1KlB49e/w+jRoxk9erTYoI8cOZJJkybh6+uLqakpZWVlQiMaFJU2BwcHvL29RaNcVFQUn376KYcPH8bd3Z0ffviBGTNmCCdK5Xek3Lwp56BPP/2UHTt28NNPP9GlSxd++OEHDh06REBAAPr6+tja2jawdV68eDFz5szh66+/btR5tLCwEJWQ2tpaDhw4QHp6OuPGjWP48OFUVVUJA4iXYwBtbW0GDhzIDz/8QGRkJN9++y39+/fH0NCQLVu2EBMTIyomoaGhwpiksLAQBwcHzp07h5qaGqmpqaSkpGBmZoaDgwPvvfces2bNwsTEhMTERC5evEiLFi3Q1dVt8F2/KszNzYUMqJmZGWvWrGHZsmV/R5VRagsrXUX79OmDq6sr169f59y5czg5OQlKwIEDBwgJCREJTF9fXx48eEBSUhJ9+/bFycmJzp0707JlS+bPn09paSn19fVCjUFTU5MrV66Qn5+Pp6cnT548YcWKFdjb23Py5MkGEnv/CL9LgLGiooKKigqeP3/OtGnT+O6774QzVWVlJVpaWpibmwv5DwsLC/T19YVswq1bt7h27RrDhw8X1ICVK1cSERFBcHAwtra23L59mwMHDmBgYCD4Uf7+/jg6OrJ3715hG/pyAKyuro66ujoFBQUihd1YByNnZ2esrKy4fv0627ZtIzU1lX79+omJtrCwkL179xIeHo6WlhZeXl6oqamRm5tLYGAg+vr6gk+lp6dHaWkp0dHRaGhooKenR0JCAjdu3CAgIEBI8ygndqV+68uNTioqKnTp0qWBTqqTkxOmpqZ/l4F6VezcuZPS0lJkMhmqqqrExMRQVlaGvb09KSkpxMfHM2XKFFFCsLOzo3PnzoDiZp04cSJt27bl+fPn3L59m8zMTExMTHB1dRXfd1lZmdg9P3v2jJiYGIYMGUJ9fT2dOnVqMJ64uDiio6Pp0aMHNjY23L59myNHjqCnp8fgwYMbuPK8CtLT00lJSaFPnz707NmTU6dOkZqaSnV1Nfv372fHjh1ERkYKo4jU1FRatGghqA3vvPMOmpqaInC9efOm2CX+/PPPLFu2jKdPn9KiRQvmz59PdHQ0z58/Z8iQIaIRT1VVlS5duqCvr4+/v7/YbNnZ2TFr1ixatWqFoaEh9+/fJzMzs9ENTcoy6c2bN0lOTqZz585iJ66vr09QUBDh4eHk5OSQkZGBpaUlEydOxMLCgnHjxqGvr8+tW7f49NNPGTx4sHClerlZABT6oObm5kRGRnLx4kXq6uoYOnQo9vb23L9/n8ePH/PWW29RVlYmuLV9+/ZFTU0NNTU1bGxsaNeuXQN92VdFdXW1yNorYWJiwvnz53FwcKBFixbiNT09PXr06EF9fT1+fn4NOJTK7KiFhYXIcKqqqnL69GmuXLlCq1atmD59OkuWLOHYsWMsXboUJycnbGxsCAkJISsriwEDBtCmTRvatGnDzZs3Wb58Obq6urz55psiu3XlyhVxn7wKCgoKyM3NFTqLgCi7xcbGCv7diBEj8Pf3Jz09na1bt1JdXc2UKVNEhURHR4dz585RX1/PO++8w+TJk3nx4gWlpaU8ePBAaE927tyZtLQ09u7di5WVFSoqKkRFRREREYG6ujrl5eXs3LmT/fv3Y2try/vvv4+WlhahoaHo6en9LqkspcxZYmIijx8/xtXVlYSEBA4fPoypqSne3t7ExsZy584dEbgOGDBAyPi1a9cOLy8vjIyMBF/Z3d1dnN+ysjKysrJQVVXF0dGxQQNUfn4+bm5uIpN+9epVIS+n5EIrG/+0tbWpqalpNG2gW7duGBkZUV5eztOnT2nVqhWBgYG0adOmQfZIU1NTiM5bWlryxRdfEBYWxowZM5g7dy4nT57E3t6eoKAgUT1JTk6mvr6e1q1bExQURHJyMuvWrSMjI4N58+Zx4cIFrl+/TkZGBr1792bYsGHU19djZWWFhoYGL168EOYMw4cPR01NjXv37uHg4NAoN7hLly4RExMjrIvNzc2pr68Xa+9vDQ9CQkK4fPmy2JBnZWWRkZFBcHAwly5dIi4ujuzsbNq3b8+KFSvYs2cPtra2eHt7U1VVhbGxMYmJiezZs4ddu3ZRUlKCXC7n5s2b6OvrM2vWLOzs7MjLy8PW1pYWLVqQlZXFqVOnaNeunag2NAaFhYXcvXsXbW1tCgoKqKmpoV27dnTt2lVocffp04dOnTrh7OzM5cuXOXPmDEOHDqVTp06sWbOG48ePY21tza1bt5AkCUdHR8zNzYmKiiI/P5/ExERhnhIQECBkv86ePcu3337LjBkzaNmyJXl5eTx69Eho5efl5fHRRx8JSkOXLl1YunRpo87h9evXuXLlCoGBgQwaNOjvLHSVlIzw8HB27txJQEAAU6dOJTo6ms2bN9O9e3e+/PJL8vPzOX78OFeuXKGyspIZM2aIioyamhpDhgwhOTlZSGUaGBigpaVFcXGxSBZFRUWhr6+Pk5MTAQEBJCQkCKvZgIAAEQf8OzQ6eC0sLOTFixe89dZbgCL6fu+999i7dy+urq5CgLquro6ysjLBtdPX1yc/P59p06Zx8+ZNkpKSKCwsREdHh8uXLxMREQHA0KFD8ff3Z/bs2XzzzTesWbOGBQsWiL8vSRKLFi3i3r17tGvXTtxAyokBFOW7mzdv0q9fv0ZfyCYmJly6dIm1a9cKLqOZmZmYuAsKCjhz5owgouvo6ODq6sq7777LypUrKS0tpaamRmilSpKEnp6e0JuMi4vj4sWL1NbWimyKkq+rLJWBotEhPT2dN954QzSBlJWVER0djaamJt7e3sKtqbHIzc1l+/bt+Pn50aFDB6qqqgT1ICIiQhDOW7duTdeuXampqSEkJITevXuLrKgymF+xYgWTJk1i8uTJrFq1ChUVFSFppqenR3FxMb/88gtqamqsWbOmAa1EiZ9//pnPPvtMnOvvvvuOnTt3AooNSWODVwMDA8LDw1FXV6dHjx6iS/fRo0ekpqZSVFTEnTt3KCwsRFdXl86dO4vsSXl5OWPGjBHSUmFhYcTHx9OxY0dqampYtmwZUVFRAHz//fd4enqyY8cOnjx5woYNG/Dx8aGiooKrV6+ip6fHxIkTyc7OZu3atfj5+TFo0CA+//xzUZ708fERZPfLly+/8hiVvNMXL16QkpKCm5ubWNBbt27NypUrefToEWZmZmhoaNC6dWu2b99OQUGBWGyUklovE/OVmr11dXVoamoyePBggoKCGDBgABEREcycORO5XE5FRQVBQUGEhoZSW1tLREQECxcupE+fPoJfqK2tTdeuXVFRUWm0fiYoBN1tbGwaSN7dvHlTCNArOVEVFRVCvqZXr14AogpjZGREZWWl4KYbGhpiZmaGJEns27eP/fv3s2/fPhYuXMiNGzeIiIgQJd6uXbsSHh7O48eP8ff3x9nZGUmS+Omnn9iyZQugyGzPnDkTW1vbRnuqK52L/pGMmDKD9nLG8+TJk2zevBmZTNaAl/zWW29x8+ZNpkyZQk5ODgsXLmTx4sXExMSQnJyMu7u7COC0tbUZN24c3bt3p76+nvnz51NWVsZPP/1EVFQUM2fOREVFhW+//Zbi4mKePn1KVVVVo8vpSii5jEVFRcI8xNXVlejoaNLT09HT08Pc3JzU1FSePXtGXl4eurq66OnpYWdnR48ePSgoKCAsLIwzZ86goqLC0KFDxfyjzFi5uLiIwFXZfNe7d29x3GFhYYwZM4aqqirWrVvH6NGjBS80Pz+flJSU31XFUtKjoqKiKCoqIjMzE2tra9FcrMx25eTkkJ+fj6GhIdbW1qirq5Ofn4+7uztvvvkmkydPJiwsjPz8fGxtbRkxYgTZ2dkYGhrSs2dPmjdvTkREBKWlpXTs2JH58+fTsWNHIWNXX1/P+PHjKS0tRU9PDy0tLdGElJaWhr29fYNmwsaI+G/fvp1Dhw7x6aef0qVLF4qKinjy5IlI1tTV1ZGXlyc2vgkJCWzfvl3oof7yyy+oqqqK++TLL78UVZVu3brRrVs3JEniwYMHFBcXY2VlxePHj1mzZg2dOnVi8uTJ7Nixgx9//JFDhw6JdTMrK0skS65cucJ7773HoEGD2L9/f6PPY0REBHv37sXIyIj+/fszfPhwEhISeP78OdevX6dr165Mnz5dvP/HH39k3bp1qKmp0alTJ+EcCbB//35CQ0NZsGABVlZWLF++HHNzc/r168cvv/zCoUOHWLlypQheDxw4wPnz54U8WGRkJJs3bxZJpW7duvHhhx9iYGAgpKdWrFjRqHP46NEjjhw5gpGREYMGDQIUsYyenh4qKiri3snKyiI8PBx3d3f09PQ4fPgwX3/9NZs3bxaZdqUK0LZt25gyZQqgSEApk2p1dXXs27eP9PR0hg4dytWrV9m7dy9vvvkmgYGB3Lp1Cw0NDcaOHdvAYt7IyIjVq1cLhY5/h0YHr8+fP0dXVxd/f39BmL98+TJLlixh2rRpQoA3Ojqa3r17i+61AwcOEBkZiZ2dHWPHjsXQ0JCkpCRyc3Px9PRk9uzZ6OnpiY5opQjvbyNwFRUVBg4cSEZGhghcJUlqsON2dnYmLy+Py5cvC5HvV4WmpibW1tYMGDCAVq1a4enp2SBzZGJiwtixY/H19RXC3SYmJvTo0UMssrW1taJhbfTo0QQFBQk+l5OTE2+88UaD7Oo/cuZR2gq+vHDX1dVhbGyMlpaWKKv8nhLC/PnzqaiowNfXVyzskZGRmJqaMnjwYHr27El0dLSQmSkpKWHdunVUVlYKWSwlevXqRVVVlVgM79+/L2S2cnNzha+2Us+xefPmGBsbY25uTk1NDVlZWVRXVxMcHEzbtm0pLCwUjVojRoxg5MiRjQ58zM3N6dChA4mJiezatUs09xQXF9OrVy86duwI/M1zvE2bNmInf/XqVWJjY/H396dr164YGxtjYmIiOHNDhgzB29sbT09P8vLyWLZsGcnJyfTo0UMEU/X19dTW1vL48WPWrVtHQkICISEhtGnTBhMTkwZWup07d8bV1VV0vjcGGRkZwujh6dOn3L59m3bt2pGTk8PDhw9Fc8HLmZGCggKOHz+Ouro6paWlLFu2jEGDBlFTU8O2bduIiorinXfewc/PT2yM9PX1BR9t9OjRlJaWsmHDBlxcXBg8eDBWVlaiCaB169Yie1VZWSnKsL+nU/3tt9+mpqYGU1NT0YSZnp6Ok5MTRUVFHDlyhN69ews1AEdHR0EvefHiBTdv3qSurg5XV1fhGFNRUUF5eTnq6uq88cYbODk50bp1a9TV1Zk5c6awRLa2tsbQ0JDevXtTWlqKh4cHaWlpfP/995w5cwZjY2P69OlD165dhSD9hAkTuHXr1iuPLy0tjd69ezfYYGdmZhIdHY26ujqLFi3C2tpaZDaUIvAdOnTg0aNH7NmzBwsLC+bMmcOiRYuwtLQUwYSamhotWrRAU1NTNFpVVVWRlJRETU0NtbW1lJaWoqKiImRwWrduzQcffIC6ujodO3ZEQ0MDKysrgoODRcDfWNjY2AgJPmUlxs/PjxUrVnDw4EGys7Px8fHBxsaG/Px8JElCQ0MDNTU1amtruXXrFleuXOH+/fvcvHkTMzMzISuXn59PRUUFTk5OQnVCT09P0JYqKytFg56hoSF9+/alrq4OKysrsrOz0dHRwdLSUlS/9PX1Gz3G0NBQ9uzZg7u7O1OmTMHY2JioqCju3LmDg4MD9vb23Lp1i8zMTBE0gML5zcPDg8uXLwtqSqdOnbh586bomi8sLOTcuXP88MMPjBgxAnd3dz7//HM0NTXR0NCgc+fOzJs3j6ysLJ4+fUpQUBA3b95k7dq1gg9sZ2cnOMbKLHtjRfyDgoKwtbUV5WItLS3MzMzE2lNVVcWFCxewt7enW7duohFYSQEICAgQWWgrKyucnJx48OABhw4dElzq2tpasrKySEtLw9LSEhcXFz766CPatm0reKUVFRUicN23bx8ODg4NOKplZWVC17mxePr0KZcvX6Zbt25i3k9PT+fChQsUFxcLcX4lunbtyuLFi//hxlNZXV2wYAG6uro8ffqUFy9eMG3aNEaMGEFISAiHDh3CwsKCjh07MmXKFFxcXLhx4wa5ublCxzk5OZmWLVvStWtXrl27xhdffIEkSUyfPr1B38+rwMLCghYtWjSgxRQUFJCSkiJMbUBhKvDhhx/SrFkz0tPT6dChA7Nnz6asrIyoqCjMzc0ZPHgwLVu2pGPHjuTn57Nnzx6Ki4vp3LkzpaWl/Pzzzzx79oxRo0ZRXV2Njo4OGRkZfPPNNwwaNEgEwUpFEfibs6mGhgYPHz7k559//rdjUnnVEy2TyRp/Rfwfg1wu/6c1odd9fPD6j/F1GB+8/mNsuk5f7/HB6z/G12F88PqPsek6fX3H13gSUxOa0IQmNKEJTWhCE5rwJ+GVM69NaEITmtCEJjShCU1owp+NpsxrE5rQhCY0oQlNaEIT/jJoCl6b0IQmNKEJTWhCE5rwl0FT8NqEPw4qKp+iolKJikqzf//mf/k581FRqUFFpfG2TE1oQhOa0IQmNOG1xp/OeZXJZJ2B94AOgCmQDzwGNsjl8jN/4qH9f0Mmk6kAk4BpgDegBjwFdgHfyuXyuj/t4FRURgBdAX/ADzAA9iJJ437n5zVDMbYdSNKcl543A4YCAwBfwA6oRnGOdwG7kKT633yWDhAPPECSBv6u4/mD8H/6HP7BeJ3vxd9CJpONB3789cepcrl8x595PH80XsfxyWSyAcBcwAswAzKAe8A6uVz+6hpl/wchk8kmophT/hXq5XK52r95z/9pyGSyJMDxn7ycJZfLGyeW/BfAa3ov2gOfAn352714HFghl8sL/hvH8KdmXmUy2WIgBOgCnAPWAqcAE6Dbn3dkfxh2A98DzsBBYDugCWwEDv4aGP1ZWAzMQhG8Nl5k9O+xBNACvvrN8yNRjLsdcBvYABwFfIAdwKG/s7WRpAoU39EAVFT+Xkjvv4v/y+fwD8P/wL0oIJPJmgGbgX9voP0XxOs4PplM9iVwGghAcX1uBO4DQ4AbMpns9226/+/gIbDin/y78ut7zv4pR/bHo4h/PM7Gebr+BfCa3ouuKDaNk4A7wHrgOYqN5S2ZTGb2L379D8Pvsof9IyCTyUYCK4FLwDC5XF7ym9c1/uEv/kUgk8neAMYDiUCgXC7P/fV5DeAQMBx4G/jhTzrE94E0FBnOrsDV3/1JKipGwFvAZSQp9TevxgGDgV8aZFhVVD5GceEPB4ahCGhfxk/AF4AMuPm7j+3/A3+Bc/iH4HW/F1/Gr5uNXUAe8DPwwZ97RH8sXsfxyWQyaxTjyAJayuXy7JdeC0YR3H2KYs74S0Iulz9EEcD+HWQymTKr/N1/63j+wyiUy+XL/+yD+E/jdbwXf4UcsATmyOXyzconZTLZOhRxxefAjP/0QfwpmVeZTKYKfAmUA2N/u1gCyOXymv/6gf2xGPbr41pl0ANiXEt+/XH2f/2olJCkq0jSs99lR/L3GAPooshM/vbvXEGSTv0dNUCSMoGtv/7U7R/83gsgFBiBiorhH3CMvwf/t8/hH4D/kXvxZcwBuqPIGjTe9uv/Pl7H8TmiWKtuvxy4Asjl8qtACWDxZxzYfxoymcwHCEJRHfvlTz6cJjQOr929KJPJXIDeQBLw7W9eXoZinONlMpnef/pY/izaQAcUZdgzQIFMJhsgk8k+kslkc2UyWeO86/7vQsndef4PXlM+FyCTyYz/O4fzH0XPXx/DGvl7yqDon3nc3kBBRejyew7qD8D/wjn8X7gXAZDJZC2A1cBGuVwe8mcfzx+N13h8z1Dw5ANlMpn5yy/IZLIuKPj6l/6MA/svYPqvj9+/Rvx6LZlMNk4mk3386zwTLJPJ/tJc3t/iNb4Xu//6eEEulzdISP2a+LiBIpEV9J8+kD+LNtD218csFLwl35dflMlkIcAIuVye898+sD8Qykyd8z94zeWl/3sC4f/5w/mPohOK7EfcK/+Gioo6MOHXn879k3fd/fWxCwq+238b/wvn8H/hXkQmk6kDe4AU4OM/+XD+cLzO45PL5fkymewjYB3wRCaTHUdRinVFQUm6yN+CvNcGMplMBxgH1KPoD3hdYI3iWn0ZiTKZbJJcLr/+ZxzQH4nX+V4EPH59/Gdr/TMUmVl34PJ/8kD+rMyr5a+PMwAdFJk7AxRNPOdRBCuH/5xD+8OgDLbmyWQyU+WTv17YK156n8l/9aj+aKioaAJWQGYjKQirUZzvM0jS+X/ynsxfHx3+P47w/wf/C+fwf+FeBFgKtAImyuXyij/7YP4DeK3HJ5fLN6Cg8agDU4GFKJpBU4EffksneE3wJmAMnJXL5b/tJfirYhfQA0UAq4dis7wNcALOymQyvz/v0P4wvM73otGvj0X/5HXl88b/6QP5szKvyhKBCoqsTuSvP0fLZLKhKKL6rjKZrP1fWALlAIpdcz8U2YKTKHiFPVFkDJ4BbsBfvRSk7Cx8dXkMFZU5wHwgFkVD1D9D/q+P5v/iPf9J/C+cw9f+XpTJZIEoMiBr/6pj+Fd43ccHIJPJPkTRwLkJ+AbFxtYTWAXslclk/nK5/MM/8RD/E5j26+O2P/Uo/kDI5fIVv3kqCpghk8lKUawJy1FIK/4l8b9wL/4bKNV3/uMarH9W5lUZ6Dx/abEE4NedijITF/hfPao/EL/yQQaj6DDMRBGkTUbR4d8JRdkL4K+eMVDuLLVf6d0qKu+ikLl5AgQjSfn/4t06v/kb/1X8j5zD1/pefKmEF8ffmuxeG7zu4wOQyWTdUDQVnpTL5fPkcvlzuVxeLpfL76MIdNKB+b82k7wWkMlkXij46Gko+OivO5TNu39Wf8P/N/4X7kX+llk1+ievG/7mff8x/FmZ16e/Phb+k9eVC6rOP3n9LwG5XF6LQi9z7cvP/8pl8kcRlEX/94/sD4QkFaKiUs3fMrD/HCoq76HQhIsCeiBJ/y7oU37mnxYc/g+cw9f9XtRHwb8CqJTJZP/oPdtlMtl2FM0V7/23DuwPwus+PgClUcnfyfnJ5fJymUx2B0UQ24p/3Fz5V8Tr2Kj1r6Cc4//jXer/Qfwv3IvK9cL9n7zu9uvjq/e//E78WcFrCIoOczeZTKYpl8urf/O6z6+PSf/Vo/rvYTyKTOXu10SG6DHQChUVQySp+B++Q0XlIxQ814dALyQp9x++ryGU9rAP/4Bj/KPxupzD1/1erEJhMvGPEIAi4AlDMSn/Fct8r/v4QKE4Av9cDkv5/G+v3b8kZDKZNor5pZ5/fm5fNyiVTf7Km4//hXtRuYHsLZPJVF9WHJDJZAZARxQJnf94A/OfErzK5fJcmUx2EIWw/VIUbk8AyGSyXkAfFGnnf9aF/peATCYzlMvlxb95ri2KIK4UhbD264BrQGsUpeW/l6xRUVmCYqz3gN7/hirwMpRyG7/fQOH/E6/7OXzd78VfqQ9T/tFrMplsOYoFZfdf1bLxdR/frwhF4QY4TSaTbZPL5cIRUCaT9UOxYFbyJ5mZ/AcwEkUT6OnXqFELmUzmDWTI5fL83zzviILHDH9to4nX/l6Uy+UJMpnsAgpFgXdRuIcpsQJF5nybXC7/j+va/mkOW8A8FJahn/yq1XcHhRj1UBQNMFPlcnnhn3d4fwguymSyChRl8hLAG+iPYoc2TC6X/3m7TBWVN4A3fv1JqWfaHhWVH379fy6S9KqOIEdRkO378NvgVUXlbRQBXh2KRWgOv3GDBZKQpB9+83uqKLpSnyJJUa94HP8J/N89h38c/hfuxSb8dXEExbzSE4iRyWTHUHDQW6CgFKgAC+Vyed4//4i/FJSNWq+Lo5YSI4GFMpnsKgrXwhIUja8DUFSxzvAaWsS+hlC6Xm6SyWQ9gBgU60cwCrrAJ/+Ng/izGrb4VdqkHQoOZDP+5kbxC9BZLpe/DvI8R1DIDo1DESD4otDr85bL5f9MHuq/BX8U1qZvowg6QaFdqnxuxCt/kiTdAh4Ab6Gi8luxaaVGqhrwHgoXjt/+m/gPPrUnYMffiPx/Fv4vn8M/BP8j92IT/qL4tTTZH4X15BMUm6r5KCozZ4A+crl84593hH8cfhW378Tr2ah1FTiGYk0Yi2I+7YqilP42MPAf0Jaa8H8Mcrk8AWiDwha9HYp70RWFEkj7/9YmUuWPcQdtwv88VFTGAPuAYUjSsT/g846imNhckaT/eOdiE5rQhCY0oQlN+GugKXhtwh8DFRUVFCR0RRf+/8+FpaLij8LtaQ6S9M2/eXcTmtCEJjShCU34H8KfRhtowmsGRbA6DUVZyPb/89NsUOjk/dmUgSY0oQlNaEITmvB/DE2Z1yY0oQlNaEITmtCEJvxl0JR5bUITmtCEJjShCU1owl8GTcFrE5rQhCY0oQlNaEIT/jJoCl6b0IQmNKEJTWhCE5rwl8ErmxTIZLK/PDlWLpf/nTq+Eq/7+OD1H+PrMD54/cfYdJ2+3uOD13+Mr8P44PUfY9N1+vqOrynz2oQmNKEJTWhCE5rQhL8OJEl6pX8zZ86UZs6cKe3bt0/S1taWAMnGxkbas2ePpMSGDRuk4OBgadu2bVJ2drb0+PFjqaCgQMrKypJ69uwpqaioSAcPHhTvz83NFf8vLCyUbt++LWVkZEiSJEm3bt2S9u3bJ+Xl5UmSJEmxsbHS/fv3xfsfPnwo9e7dW5o2bZpUVlYmSZIkVVZWSpWVleI9dXV1Ul1dnaQ89lcZX3l5uSRJkjR48GBJVVVV2rlzp3T06FHJ0NBQcnJykkJCQiRJkqSamhqppqZG/K2srCzp6tWr0uHDh6UHDx5IVVVVUkpKinTo0CFp586dYhwbNmyQAGnWrFnid2tra6WamhopIiJC2rNnj3Tu3DnpypUr0v79+6VTp05J1dXVkiRJ0osXL6QBAwZIgNS2bVvpxo0bUlZW1iuN7+Ux3rt3T7pw4YIUGhoqffnll5KlpaXk6+srXb9+XZIkSaqoqJCKiorE8d24cUP6/PPPpUOHDkkhISHSunXrpK1bt4r31NbWiu9NkiQpJCREWr9+vZSRkSEVFBRI48ePl+bOnStVVlZK27ZtkywsLKSVK1dKJSUl0rfffisBEiAdPXpUqqiokBYtWiSNHDlSSklJkSRJkqqqqhp1Dvfs2SNNmTJFevLkiVRQUCB1795d8vDwkBISEiRJkqSysjLp2LFj0pkzZ6TS0lJxPqurq6W6ujqpsLBQjGX69OkSIO3atUuSJEm6evWquAZOnjwptW3bVmrVqpV06tSpBudXRUVFWr16tZSZmSk+69SpU9L58+fF9du+fXvJ399f2rNnj5SXl9eoMS5evFgCpLffflt8/vbt2yUtLS1p/Pjx4jnl/ZCcnCydPHlSevTokfQyEhMTpenTp0umpqZS9+7dpeXLl0vjx4+XjIyMJEtLS+mrr76SJEmSqqurpTFjxkiAtHnzZkmSJGnkyJGStra2+D5OnTolPXz4UKqurpZu3bolXblyRaqqqpIkSZLq6+sbfZ1+8skn0okTJ6SNGzdKK1eulCIjI8VxKz9X+ShJknTmzBlp+NTsTwABAABJREFU5syZ0pkzZ6T6+nopJCREWrVqlXTgwAEpOTlZqqurE+dbkiRpy5YtkouLi7RhwwZJkiQpLS1NGjVqlOTp6SktWrRISk1NlUpKSsT7P/nkE3Et1NXVSb169ZIsLS2lp0+fiu+6Mefwvffek4YMGSLZ2dlJmpqaUvv27aXvvvtOys/PF3/z4cOH0q1bt6ScnBzxXH19vSRJivlNkiSptLRUGjp0qASI86U8t9nZ2ZIkSVJOTo60cOFCydjYWPL09BTzdkxMjPTuu+9K1tbW4j6cPn26dP/+/Qb3QW5urvTw4cNGn8PRo0dLqqqq0qhRo6S4uDjp2bNn0ooVKyRPT08JkDp37iyFhoZKkqSYd5RQXt+AtHTpUqmmpka6cOGCNH78eGnLli1SRESE9PXXX0tTp06Vdu7cKRUUFEiSpJirli1bJm3YsEGqra2VCgsLpVatWknNmzeXkpKSpEuXLkn6+vpS3759xfe4adMmydraWmrXrp20dOnSRp3DDz/8UAKkDz/8UBx7ZmZmg+vswIED0oYNG6Tk5GRJkiSpoKBAKioqkurq6hpcX7NmzZJ0dHSkffv2SZIkSfv27ZM+/fRTKT09XZIkxT08Z84cafHixVJxcbEkSZL0xRdfSIDk5OQkRUREiOvj5MmT0saNG6Vdu3ZJd+7cEWtkdXW1dPjw4UaN8dNPP5UkSZLWr18vde/eXbp9+7ZUW1srTZs2TQIkExMTadu2bdL+/fulLl26SBMnTmywHkiSJO3YsUPS0dGRRowYIZ5LS0uTTp48KZ07d07MU8+ePZPatGkjeXh4SD/++KN04cIFadKkSVL37t2lFStWiDVBkiTp6dOn0s2bN6Xw8HDp6tWr0vnz56WkpCSptra20ddpVVWV9Pz5c+n+/fvS+fPnpaNHj0pJSUmSJEnSd999Jzk5OUktWrSQPDw8JEAaOnSoOOaqqqoG9+y+ffukGTNmSLdu3ZIkSRHLfP/999L169elJ0+eSCdOnJDGjx8v6ejoSMbGxtLKlSvF7z5//lz6/vvvpXPnzjX4/srKyqT9+/dLo0ePltauXSuVl5c36hx+++234u8FBwdL3bt3l95//30xPxQVFUm+vr5SixYtpJSUFOnp06fSpEmTpFOnTon1V0tLS+ratau0aNEiac+ePdKLFy/E8b148UJ69uyZlJ6eLn333XeStbW11KpVK+n58+eSJCnmxkWLFknvvfeeFB8fL35PGdu8jPj4eOnGjRv/dnyvTBtQ4uTJk4wePZqqqipcXFxo2bKleK1Xr144OTlRUlLCrVu3aNasGVpaWqiqqjJ16lSGDRtG+/btAYiLi6O8vBwzMzMAcnNz2bBhA8+ePWPEiBG8/fbbALz//vs4OzuzfPlyADIyMrCxsSEjI4OLFy/Ss2dPdHV1AcjOzubWrVs0b96cgIAAVFVVSU1NbdT4amtrAdiwYQPt27fn+vXrpKen4+/vT58+fbCxsaGqqgotLS3xO9nZ2aSlpWFtbU3Xrl1/1esHTU1NXF1d8ff3R1VVkeRu1qwZ8+bNE+Pbs2cPBw8exMPDg969e+Pt7U1hYSGSJBEcHIyVlRUAqampXLt2DScnJ95//30GDRpEhw4dyM7ObtT4AM6cOUPr1q1xcnLi5s2bZGdnk52dTVJSEvn5+Vy6dInu3bszbNgwANzd3TExMUGSJKqrq/H390dDQwM1NYUTrJqaGkePHiUtLY3JkyfTuXNnWrduja6uLteuXePSpUu0a9eOiooKsrOzycnJIS8vD319fSZNmsT69euJj4/n4cOHBAcHU1xcTE1NDTY2NuJ7bCzy8vJISUmhRYsWzJ07l+fPn4vvUlVVlUuXLnHixAnat2/Pxx9/jL+/PwCVlZXiXAH069cPc3NzPDw8KC0tRVVVlfr6ejIzM7G2tmbKlCmYmJjQqVMnAObOnYuzszOXLl3CysoKKysrMjIy2Lt3L4aGhgwZMoSkpCRWrVrFrVu3aNWqFX5+fpiamjZqfM2bN+frr79ucP+9ePGCqqoq7t69S1RUFD4+PuI6vXDhAvv370cmk+Hr6wvA8+fPiYuLIygoiD59+uDr64u6ujr379/Hz88PGxsbWrduDYCGhgbdunVj//79fPvtt+jo6NCyZUuCgoLo3LkzAE5OTpiZmaGhoUFQUBCRkZFcu3YNd3d3nJycGn0Oc3NzcXFxIT8/n6qqKjHW0tJSKisrMTc3Jz09HU1NTezs7OjUqROVlZW0atUKFRUVOnXqhIaGBrq6ulhYWKCqqoqenh719fWoqqrSt29fqqqqOH/+PNevX6d3795MmDCBrKwsdHV1qaqqQl9fXxzP9OnTcXNzo7CwkFmzZpGYmIi3tzfp6em4u7s3mBNeBdOmTSMhIYHKykrCw8Px9vZmzJgx6Ovrc/XqVQ4cOEBgYCDvvPNOg99TUVEhJSUFuVxOeXk5Q4YM4f3332fSpEl0795dvM/S0lL839zcnBEjRlBeXo6KigoODg4AeHp60r9/f44cOSLGOHXqVIyMjLh8+TKnTp0iLy+PYcOGMXHixEaND6BNmzacOXMGAwMDbG1t0dLSolevXvj5+ZGfn4+vry9t2rShvLycWbNm4eLiwuLFixkxYgR5eXl4eHjw7rvvoq6ujo+PDzKZjKCgIJKSkti3bx+WlpbMnDmTixcvcvLkSbp3786sWbMwNzcHQE9PDwcHBywtLXF0dOTJkyeUlpaio6Mj5ulOnTrx+eefc/DgQT777DOmT5/+yuNbvHgxrq6uZGVl8c0332BlZUXfvn3R09PjwoULbN26lYCAABYvXix+p76+HmNjY4AG10xkZCQVFRXExMRQVFREaGgoW7Zs4dSpU5w+fRoHBwfy8/PZuXMnWlpaLFy4kGHDhvHkyRNUVFQwMTEhOTmZnTt3YmVlxcCBA9HS0sLMzAxtbW0AcnJyxLl/VcyePRuAhIQE4uPjycrKQk1Njf79+1NbW4ufnx8DBw4kLCyMuLg47Ozs0NHRobS0lISEBPz8/NDT06OiooKcnBzxHVy6dAlLS0s6duwovgdbW1veeust6uvr6dChAyYmJlRVVZGUlISHhwfNmjUDoKhIYbqora1NSUkJenp6BAQEYGho2KixKRESEkLPnj15+PAh7733HjExMUyZMoWvvvqKqVOnoqOjw8KFC0lPT8fZ2Znx48dTW1tLSEgIiYmJDBkyBICUlBRMTEzo378/BQUFhIeHY2Vlhbm5OTk5OTx58oTLly9z4sQJqqqq6NatG9XV1Rw/fpw33ngDZ2dn1NTUuHPnDl9++SWRkZG4ubnxwQcfMHr0aHR0dFBTU2v0mpifn8+cOXOoq6vDwcEBT09PoqOjWbZsGR988AEODg7U1tYSExPD48eP6d+/P5MnTyY/P5/nz58ze/Zs+vTpQ05ODgEBAejr67Nt2zbMzc2ZNWsWycnJyGQy+vTpw5QpU9DX16eyslLMQXfv3sXNzQ1jY2MRNwDs3r2bJ0+eMGjQIIKDgwEwMjJ6pfWw0cGrvb09X331VYPnqqqqUFdXx8vLCy8vL+bNm8eLFy9Ys2YNOjo66OjoMHz4cHHQ6enpJCYmNrjQysvLKSgoICIiAkNDQ9555x3c3NyIi4vj8uXL9OzZk44dO4pA1dHREScnJ8rLy4mJiUFPT4+tW7cSHx9P9+7dsbe3p76+nsjIyEaN79q1awQFBeHs7MykSZPo27cvDx8+5K233mL48OE0b94cUAQ5hYWFgGJhd3d3p66ujuzsbCRJwsDAQAQveXl5FBUVYWtry7Bhw0RQmJ6ezs8//8zly5fR0tLC2toaPz8/CgoKiI2NJT8/XwRcBw4c4Ny5cwwdOpThw4djYGAANFygXhV3795l4sSJ2Nvb06tXL3766SeaN2+Ol5cX27dv57vvvqNVq1YAhIWFUVBQQI8ePcjOziY3N5d27dr9P9r+Mjrqq+37hz9xd3cnHmIkIQSSAMHdi2txKVpaSgv0BEoLlELxYkVLcQmuQQIBkhDi7u4+kedF1uyruc/7f92kaz3Hm64Cmcye/Zu9D/kKqqqqtLW1AZCVlcX169cpLS1lyJAhGBoaUlVVRVVVFRUVFcjJyfHo0SNWrlxJTk4OhoaG4vBWUVFh/fr1/Pzzz1RUVBATE4Orqyu2trZkZ2dja2tLa2trl9YnTT6lhcuIESOAjqQHoLCwkIKCAnJzc0lOTiYlJQVHR0fa29upqalBX19fJKgDBgwQB1NLSwsGBgaUlZVRXl6Op6cnPXr0ADoKmLS0NHR0dOjdu3enNb579473798zadIkjIyMuHfvHjExMWhrazNlyhSRTHYlvL29O/1cTk4OsrKyGBsbU1xczO7duxkyZAgjRoxAQUGBnJwcHj16hJmZGWPHjhWfk7KyMj4+PnTr1g15eXmqqqro06cPgwYNQlFRkbKyMpqbm1FUVMTc3BwjIyMSExOJi4tjy5YtqKur09zcjIKCAm5ubrx8+ZJnz54xcOBALCws+PjxI21tbZiadt23wtvbGzc3NyorK0lNTeX+/fs4ODiQmpqKlZUVmpqa4izx8vLCzc2N0aNH09TURGVlJerq6gQEBPzX6zY3N5OamoqbmxvLly8nLS2NP//8k0mTJjFkyBCgI3Fua2ujqakJGRkZmpubsbCwYMaMGUyYMIGLFy+ybNkyhg8fLhLQsLCwLq3P2dkZZ2dnAPr27cvw4cNFsnz79m0eP34sCoPKykoSExPx8fFBQUEBJSUlwsPDycjIwNfXlylTplBbW0ttbS319fXIycmho6ODjIyM2EMfHx9RjJSUlJCfn4+pqSnGxsY4ODigqalJWFgYPj4+FBQUsH37dt6+fQtAr169urx/AHV1dejp6eHs7IyamhoAPj4+KCoqUldXJ76rd+/e5dq1a3h4eLBy5Uq6d+/O/v37aW5uprKyUhSO0u9bdHQ0DQ0N9O3bFy8vL86ePcv58+cZOXIk+vr6VFdXk5qairKyMqtWrcLc3ByA1tZWRowYgZeXF7m5uejr6+Pl5YWXlxetra28efOmS+tTVVXlyy+/5Pr16xw+fJjKykpUVFQYNmwYz54948aNG/j7+wMdBXVBQQHW1tZUV1fT2NiIhoYGCgoKlJSUYGZmhrW1NQ4ODuTk5PDp0yeg47xOSEhAUVGRmpoaamtrqaioQF5eHjs7O8zMzGhvb8fc3JzY2FhevnzJ0KFDsbW1BTrOpoqKCoqLi6mrq8PGxqZLa5SeY7m5uRQXF9Pc3AzAyJEj6d+/v9hXW1tbmpubaWhooKGhgcjISJ49e4aJiQmGhoZYW1uL/YuJiaGurg4/Pz/U1dUpLi7m6dOnqKmpsWLFCrFXcnJyDBs2jNOnTxMZGYmJiQkODg5IJBK6desGQHx8PDU1NTQ3N1NWVibu5a7EqVOnaGlp4e3bt+Tn5wOQmprKkydPGDVqFEOHDuXs2bPo6upy7NgxfH19aWxsJDw8nIqKCvz8/FBSUiI6OhoPDw+sra25c+cOr1+/ZtKkSRgbG1NaWkpmZiZtbW0MHDgQNzc3/P39aWpqoqCggHv37tG3b18sLS2RlZUlMjKSixcvoq2tjYODA1OnThV3UVfD2dmZsWPHUlZWRnJyMj179kRNTY0LFy5w48YNli5dysyZM/n777+pr68HOoq6qKgoPn36hJubW6ffXV5eztmzZ2lubmbQoEFAx5n58uVLJk2axBdffCH+bUREBHl5eYwePRptbW3y8/MpLy+nubmZp0+fEhUVRUhICNXV1Tx58gQNDQ2RyP5v0eXkddWqVZ3+v6ysjIqKCtFZqa6uJjw8nMLCQnbs2CH+nfSQqqiooKGhAV9fX9F1bW1tRV1dna+//ppx48bR2tpKeno6bm5unDx5kp07dzJt2jQmTZrEtm3bxGbMmDGDR48eMWrUKJKTk9HW1ubnn3+mV69ePHv2DAUFBXr06MHt27c/e30nTpwgMTGRsLAwkRBAR6VYUVEh/l1WVhZ79uzB2NiYjRs3ij//9ddfKSoq4quvvsLBwQGA9evXk5yczK+//io6fADGxsYsXLiQSZMmiQceQEdHh5aWFhYvXszgwYNZvXo1ampqNDU1oa+vT1JSEn/++Se+vr4sXLjws9cmjYCAAJEUe3l5sX//fuzs7DAxMeHp06d4eXnh6uoKdCR6p0+f5uHDh3h7e+Pp6YmKigrQsac3b97kxYsXuLq60rdvX1RVVVm6dCk3b95k1apVDB06lMDAQP766y+OHz/OrFmzWLZsGYqKily+fBljY2N69uzJkSNHyMzMpKKigv79+5Ofn8/p06exsLAQydbnhqWlJWPGjBEXljRSU1PR09PDwMCA8ePH4+bmRt++fenduzeNjY2kpKQgKysrPht9ff1OFa68vDzOzs7k5eWhoKCAgoICbW1tXLx4kfDwcLKzsykoKEBfX58vvviC4cOHU1JSgpGREUuWLBGJioODA0eOHMHIyAg7O7su7x8gOhDSkF5mISEhJCYmcvnyZR4/fkxGRgYLFy5k+PDhvH//nrdv3/LNN98wa9YsHBwcsLa25uDBgyxcuJC6ujr69u1LYGAg5eXlfPjwgZaWFkJCQnByciIiIoLa2lp69uzJ5MmTUVdXp6qqiszMTLp37w7A33//zcWLF2ltbWXy5Mn069ePnJycLheRgCigjIyMyM3NZdq0afTq1YtvvvkGU1NT4uLiqKysFIn5mDFjxGceGRkppgv/ZygrK1NUVISsrCwuLi588803TJgwQXTPKyoqaGtr61QYKioqEhkZybZt27h27Rp+fn5Mnz4dHx8f0tPTaWtro66urkvrq62tRV1dnQEDBuDr60t7ezstLS3Iy8sze/ZshgwZgo2NDefOnWP79u1YWVlx7tw5FBQUMDIyYujQoWhqajJw4ECuXr3K1q1bsbOzIzQ0FDU1NVHE//HHHzx8+JA1a9bQv39/oOPC/+OPP/D09MTCwgJtbW0iIiL44YcfcHBwQFVVVRR/s2bNYsqUKf/K8fnixYtkZGR0Ojurq6tFU+LFixe0t7djYGDA/Pnz8fHxER3RlpYWduzYwaVLl9DS0qJv374oKSnx8uVLALZv386IESOoqanBx8eHv//+m5EjRxIVFcXKlSsxNTXll19+wcXFhfb2dgoLCwkODsbZ2ZkTJ06wdu1aFi1aJPZ90qRJWFlZcfXq1c9eX69evfDw8GDUqFGsWbOGR48ekZycTFpaGoMGDcLBwYH+/ftz//59li5dSlhYGLt37+b8+fNcuHCBjRs30qNHD7S0tBg/fjyzZs0iNDSU9PR0MfGZO3cuvXr1oqmpieHDh4tiBToKsWfPnlFfX8/q1avx9fVl1apVyMv/z9V++/ZtLl++jI+PD9OnT6epqalLe5ibm4ucnBwFBQU0NjaKpgV0JMba2tro6OjQ2NhIeXk5ubm5lJSUUF9fT3x8PNeuXcPV1ZXt27eLYtLe3h4TExP09PQoLi5m2bJlXLhwAVdXV7y8vDAxMeHly5fIycmhpKTE+fPnefr0KdXV1cyaNQtHR0fxHlRVVUlJSSEiIoK///6b4uJiBg4c2KU1trS0MHHiRLy9vdm7dy82Njaoq6tTX1/Pjz/+SHx8PGFhYcydO1c0jhQVFZk3bx4lJSXk5uaSk5ODhYWFOHOCg4MxNDSkoqICTU1NHB0dqaqqwtLSkl69eqGhoUFqairGxsZIJBIOHjzI1atX+fbbbzE3N2fVqlWMHj2aly9fcvDgQZ49e8b27du7PKUDxB2alZXFqVOniImJwc/Pj127dmFmZkZDQwOhoaHY2dlhaWkpziZfX19kZWXZs2cPtra2rF69Gug452VkZHBwcKC0tJSAgABu375NbGwsr1+/5v379/j7++Ps7Iy2tjaVlZXimTQ1NeXdu3fk5uYyYMAAli5dip+fHzExMbx+/RobGxtREP1v0eXktampSXQKDQwMaGpqIj4+njdv3jBx4kQ0NTWZPHkyt2/f5v79+wwfPhxVVVXU1dUpKSlhz549tLW1MXfuXHR1dUlNTaW9vR1jY2Osra0JDg6msbGRT58+0dzcTLdu3fjuu+94//49GRkZJCQkUFxcTGpqKr169UJHR4fDhw+jpqbGzJkzmTFjBrKysrx79w4tLa0ud3yam5t58+YNKioqdOvWjTlz5tC3b1/MzMxoamqisbERZWVlmpubaWtro7a2ltjYWHR0dHj8+DFtbW306dNHJE4xMTE0NjZiY2MjusbNzc0kJCQIqADAlStXiIqKYtq0aQBIJBIeP36MoqIiq1atEhANZ2dnwsPDOXbsGI8fP2bq1Kld3ULs7e35z3/+g76+Pv379xeHd3V1NYWFhbS3t3Pp0iU0NTWxsLBAVlaW48eP09jYSL9+/WhpaaG9vR2JREJtbS0ODg7Mnj0b6LisLly4gKGhIf7+/tjY2PDVV1+RmZkJdIygvLy8qKurY9euXWRnZ4tKOzU1ldu3bxMaGoqDgwOvX7+mpKSky51XDQ0NhgwZIr7kT58+pa6uDn9/f1EwTZo0iYaGBioqKpCVlUVVVRUlJSWioqIoKirC09MTXV1dJBIJOTk5JCcno6ioiI+PD2ZmZuJ3tbS0kJ6ezsOHD8nNzQU6OhCWlpZYWFhQXl6Os7Nzp/GzjY0NNjY2xMTE8PHjR5EsdCW0tbVpbm4mPj6eiIgI0tLS0NPTY+zYsUgkEi5evMiVK1f466+/GDFiBL6+vixfvpxz585RX1/fqTuhqqrKy5cvaW9vJzo6GiUlJTQ0NIiNjaWlpQVnZ2ccHBzQ1dUlNDSUTZs24e3tzfHjx7l8+TK//PKL+CySk5Npbm4WF6SJiQkmJiZUV1d3aX3QUck3NTVhY2ODm5sb169fR01NDR8fHyQSCW/fvhXQhoqKCgoLC6mtraW5uRlNTU2UlZWpra0Ve2dmZkZhYSHPnz8nMzMTFxcXjI2NMTY2FklRZWUlmpqamJubU1hYKDpVsrKyJCQk8Pz5cwICAlizZg36+vo0NjaKDldaWlqX1iftYCkqKqKkpMTOnTtpbm5mxYoVoisrhdpUVVVhZmaGoqIiTU1NXL9+nZ49ezJ8+HCgI8GQwhc0NDRob28Xz3p4eDhPnjxh4sSJ4v//+usvjI2N0dXVRVFREX9/fxITE5FIJDQ3N+Ph4cGECRPIyspi27ZtoqDravTu3Rs9PT0BAYKORkB5eTnPnj3jwYMHAIwfPx5PT0+0tLRIS0vDzc2NiooKjh07JuAZlpaWNDc3I5FI0NLSwsLCguLiYj59+tQJYvXPi1d6DmdlZYmkQkNDA3l5eRoaGlBSUqK9vZ1nz55hYGDAgAEDupS8RkZGUllZyZQpUwgODsbFxYUnT55QVVVFUFCQOFtfvHiBjo4OPXr0QF5enuvXr3Pz5k0cHBzo0aMHioqKYiIHHc+EFHZnZGRERkYGBgYGzJgxg8zMTAoLC7GxsUFGRgY7Ozvu37/PxYsXWbRokeiEScPU1FQ8xzY2NhQUFHRpD0tLS9HX12fgwIFoaGjQ2Ngozn+JRMKnT5/Iy8vj3r17ODs7ExoaioKCAt27d2fSpEloa2vj5uZGQEAAiYmJ3L9/H0dHRywtLWlqauLRo0dUV1djaGhIt27dKCgoQF5enrKyMkpKSlBRUcHLy4uysjLu37+PpaUl5ubmpKenExMTg62tLXZ2diQnJ9PY2Cg6xV2JadOmkZmZycSJE8UdXFFRQVlZGUlJSbx8+ZKRI0eioaHBo0ePKC0tZfz48eJ7euTIEWxtbfHy8iIlJYVz584xefJkvL29uXLlCp8+fWLcuHEMHDiQzMxMkpOTUVFRwc7ODn19faKioigvL0dTUxMlJSXKy8uJioqiZ8+eKCsrs2vXLvLy8kTzrqvdZYlEwq1bt3j//r2AdBQWFuLn5ycgNpGRkeTn5+Pu7o6amhqxsbHU1taSkpJCSUkJ2traJCcnU1BQQHR0NGPHjmXq1Km4uLgAoKuri7m5ueis1tXVISMjg7KyMpmZmdy4cUNMlyQSCSkpKfTo0QM/Pz+gY4Lt6OiIoaHhZzUCupy87tq1i2fPnqGrq8uUKVMICAigqKiIa9euUVhYyMqVK/nuu+/w8PDgt99+4+HDh/z4448CA3H37l2Ki4vFuKqgoIABAwagrq7Ohw8fkJGRwcvLCx8fH+rq6mhpacHMzIwbN26QkpLCr7/+yuHDh7G3t+f8+fMsW7aM0aNH09raKg6n+vp6Bg8eLDqEXYlp06bx/v17XF1dCQ0Nxd3dneLiYiwsLFBQUKCiogIVFRUcHR358ccfKSws5N69e/z6668AHDx4UIwenz9/TkJCAqNHj6Z79+4i6ZGOf7KysnB0dOTt27fMnj0bX19f8cXR0NDgiy++IDQ0FFlZWerq6jAwMBDjfegg2z1+/LjLaywqKmLLli0oKCiwfft2HB0dycvLY+vWrVy6dIni4mKio6NJTU3lyJEjfPHFF7x69Yqqqio0NTVRUFCgvLyc+vp6vLy8RBUsfV07OzsuXbokCoeAgADu3LlDfX29+AzU1NSYOnWq6LIAvH79mjt37vDFF1/Qt29fRo4cSXV1NVpaWl1aX319vYCkVFRUsGvXLlRVVcVYV9rdqq+v59ChQ5iZmfHll1/i5OTE48ePuXHjBm5ubsybNw9jY2Py8/NZs2YN7e3tHD9+XIy+pHsZGhrKgwcPyM3NZeTIkezduxcLCwtaWlrEWBAQhQ/AjRs3mDdvHv379+f06dNd3kPp7z558iS//vorxsbGrFmzhpCQEPT19QkICCArK4uKigpqamqAjkTCzs4OTU1N0T2AjsShtraWxYsXIyMjI5KiadOmcenSJeTk5DAyMmL58uV88cUXYg9/++03EhMTRUcuJiYGMzMzcVH9M/4NFi0+Pp6goCA0NDSYOnUqjo6OAraTlJREQ0MDhoaGBAQE0KtXL/H5GhgYYGVlhZycHE+fPmXXrl3o6enh7e3No0ePuHLlChoaGvzyyy9oaGiIrlhSUhJTp05lx44dmJiY8OjRI6KionB0dKRfv35iFGtra4uamhoPHjxATk6OkSNHIicnJz7nz41/dlCqqqp48OABMjIyoqv9/v17rK2tmTt3Lv369cPZ2Rk5OTk2btzI1atXWb58ufj5cePGERoaSltbG3JycmhpaYnzT7o/BgYGREREMHPmTMzMzLh8+TLW1tZUVFQQGBjIxIkTkZeXF2PlESNGkJ6eTnZ2NlpaWuLZ7Ur89NNPohMXGRmJjY0NhoaGDBs2jJKSEkxNTXF1dcXa2pqEhATS09MJCQkReG1lZWXU1dXZt28fISEhAMyYMYOkpCTu3r1LfX09fn5+nTo1ISEheHp6oq2tTVNTE48fP6apqalTF75fv36MHz8eFxcX7ty5w+LFi+nTpw/Hjx/v0vr27NlDa2srOjo64jPu169fp84nwIABA+jVq5f47kj/PiMjg9zc3P+aEkHHORYeHs79+/fx9vZm7ty5jB07lhcvXvD9998zZswYdu3axaZNm6irq+PAgQMALFq0qNPr9O/fH2NjYzHlKSoq6tIanZyckJOTY9OmTSQmJvL333+zbds2Zs2aRbdu3dDV1WX79u18+vSJDRs2MGvWLPGzlpaWtLe3i3P+9OnTPHjwgLVr16KhocHVq1eprKxk7969mJubU11dTXt7u5goREVFUVtby7fffsu4ceP44YcfKCkpIS8vj59//pnLly9z/PhxgoKCcHBwYMSIEejq6vL99993aY39+vXD19cXAwMDAA4dOkRJSQmDBg1iyZIlohnyww8/sGfPHkJDQxk9ejQKCgqkpaWhoqIippWHDx/ml19+wcTEBHt7e2RlZcnNzaW+vh5VVVUKCwtZtmwZPXr04I8//uDdu3esW7eO4OBgMcXds2cPGzduZPDgwQQHB4vPWToJ/D+fr/9XHDx4kK1btzJ69Gj2798v9mLmzJl89dVXhISEcOfOHQGTkJGRISUlhR07dmBkZMSqVavw8PDg7t27vHv3DicnJwIDA0UucvnyZTZu3Cj2CP6HP1RYWEh8fDyKioo4ODiIKZM0EVZSUsLd3R0rKytMTEwE/vnixYv/65q6nLw2NDQQHR0NgJmZGX5+fgQHB5OSksKBAweoqqpi06ZNDB06lA0bNlBcXCw+6Ldv3+Lr64uZmZlImJqamlBUVBQ4tPr6epycnFBRUUFNTY1Lly6Jjo+xsTExMTHMmzcPT09PMZa3sLDg8ePHXLt2jcmTJ2NgYCA6WdIP8HNj5MiRWFlZIS8vT2RkJGlpaZiZmYmxqPSLBR1jZX19fQoKCvD39yclJYWbN2+iqqqKm5sbVlZWZGVlcePGDRISEli4cCFKSkpkZ2fj4eGBsrIy169f59atW0ycOJGBAwcKfKGZmRkLFy7ExcUFiURCRkaGAMyPGDGC8PBwYmNjSUxM7OoWYmpqKkD4/v7+yMjI8PDhQw4cOICtrS3jx4/nwIEDpKamoq+vj52dHVVVVdTX14ukR1ZWlqKiIoqLi4mPjycvL4/9+/eTkJCAjY0NHz9+5NOnTzx69AhTU1O+/PJLdHR0uH37Ng8ePGDZsmXikszIyODFixdoamoyZMgQ7t69S3x8PM7OzmJs0ZVQUlJCXl6e7OxsHj58iKenJzk5OSxbtozp06fTs2dPmpubuX//PnJychQXF/Po0SP69u3L2LFjuX37NpGRkaxduxbowHlL1y7FWd29e5eIiAh0dXVpaGjohK+1sLDgzp07/PXXXyxZsgRvb2+amppITU0VozIFBQVcXFxE1flvorGxkR49erBw4UIsLCzo1q0b1dXV6OvrY2Njg52dHW/fvhVdUCUlpf8r3q2wsBBFRUW++uornJycRDfP3NwcbW1tTp06hZqaGrNmzcLMzIz79+/zxx9/0LNnT2bNmsWZM2dobGxEU1MTExMTMYaGDoLl69evef78eZfXZ2RkJIpFY2Nj8b6io6PJysrCy8tLQDHU1dVFd1tZWVng6zU0NIiLiyM9PV2QOaXFY3x8PAoKCty/f5+kpCSgo/tfVVWFiYkJ3bt35+bNmxQWFhIaGoqBgYG43BoaGnj//j21tbW4ubn9K1La8ePHKSsrY8KECZibmzN16lQqKytRU1OjpKSEiooKDA0NUVNTw83NDeg4f9ra2rC3txcdE+g4i5WUlLh27RoSiUR08SIjI/Hy8kJPT4/79++jrq7OwIEDkUgk/Pnnn4SFhYlCQ7o2acLk7OyMRCLhwIED9OjRQ5BMuxJv3ryhurqaT58+oaSkhK6uroBjjBw5ksDAQExNTWltbRXTj+rqaq5evcrDhw9JSEhg1qxZhISEIJFI+P777xk+fLj4Dqenp2NtbU1DQwOfPn0iLi6OhoYGnJycsLGxoampibq6Ol68eMGVK1cYPHgwEydOFB1R6Hj+09PTOxV0nxs9e/bk77//Ji0tTRAKpUVJcXExkZGRuLu7Y2RkRHp6uiDMTJ48GXt7e3x9fcnMzCQ8PBxNTU3RHdfT0yM3N1d02O7du0dNTQ0FBQXcvn2brKws3r17R0tLC1ZWVlhYWBAeHi5G3HZ2dsTFxVFQUMD06dOZNGkSycnJ/Pjjj9TW1mJsbPzZa0xJSRH4eicnJ5KSkqioqBBTP11dXfr06UNQUJCYfEIH1j8hIYHq6mp69eqFo6MjVlZW+Pr60rNnTxoaGvjrr7/w8fERiXV2djYKCgriGbG1tRWENXt7e7755hsBmXJycmLMmDHi/5WUlLC3t+/ynQ+QmJiIiYkJSUlJREZGkpOTg5mZGaqqqhgaGuLs7IympiYVFRVoa2sjIyNDZWWlOP/79OlDZmYmO3bsICEhge+++05wLUaMGEFDQwMKCgq8evWKa9eu4ejoiI2NDYcOHWLv3r18+vSJ6dOni/dTWlqKl5cXYWFhuLm5cffuXa5cuUJLSwu//PKLuIc+NzIzM2lsbOy07/X19dy6dYuoqCi2bdtG3759cXBwoL6+nvr6eqytrRk4cKAgoqempvLHH39QW1vL0qVLkZOTIyIignfv3rFmzRokEgnffPMNALGxsdy7d48+ffpgaGhIUFAQJSUlohFVUlLCjRs3BLFbXl4eJSWlz4ILSKPLyas0aSwoKEBBQUGwQJcvX05UVBT79++nT58+eHh44Ovri42NDZaWlly5coW///6bJUuWEBgYCHR02qTduJqaGvLz85GVlRUXT2ZmJi9evEBNTQ13d3fBbJOOLBoaGsT7OnDgALdv30ZPT098qSoqKkRF/LkhTUQ/fPjAtWvXKCgooE+fPnh7e6OhoYGGhoYgGsjKytLS0kJYWBhhYWG8evWK6dOnc+rUKfbs2cOcOXPw9vbmxx9/5NGjRwwfPhwdHR3BnGxoaODOnTvIycnx448/ChiFgYEBJiYmyMjIiNFfeno6z58/Z9SoUXTv3p1BgwZRV1dHRkZGV7cQDw8PxowZg0QiEV1BOTk5FBQUmDx5Mlu2bBGFgnRkaWFhIaos6DjwX7x4wd9//01ERATt7e0oKyujoaFBRkZGp9GVuro6nz59IiwsjNu3b/P8+XOsra1ZtmwZAHFxceTl5bFy5UqMjIyYMWMGO3bswNPTkx9++KHLIHXpQXvw4EHy8vI4cOAACQkJhIaGUlRUxOXLl8nNzUVHR4eNGzeSnZ3N1atXUVdXFwVZaWmpIFcYGRnx5Zdf0tbWRn19PaWlpZw5c4YLFy7Q3NyMkpKSSBBbWlqQSCScOHGCixcv0r9/f7y9vVFSUqKyspKCggI8PDwYNGgQYWFh1NXV/Zd6xedEVVUVtbW1DB06lMmTJwP/A/tobGwkMzNTXGzSYqulpYW6ujo0NTVpamoSnbT3798TFxfH5MmT8fPzE++ntbWVR48eiQJE2lH5888/xfe5d+/e9O3blw8fPrB69WpxGP0T43758mVOnz7dZXz22LFjyc/PJzU1FVtbWxQVFfn48SO3b9/G2dmZ4OBgoCOJlz6/0rPhn91uQ0ND0tPTycnJYd68efj5+fHLL78QHR3N8+fPO3WFKyoqOHfuHIsXL0ZNTQ1ra2vy8/MpKipCU1NTdJGkxKh/XrT/hIZ8Tty8eZPr16/z5s0btm/fzpIlSzr9vfRCb2lpoaGhAWVlZRQUFPjuu++oq6vrBDWJi4vjr7/+4urVq5iYmKCgoEBpaSkPHjzAwcEBBwcHbt68SVBQEFu2bOHcuXOsX7+e27dvs3nzZrp37y7W8fTpUy5fvoyXlxeamprk5ubSs2fPLkNboIND0NraSkVFBd26dUMikYi/U1dXR1dXV6g/DBs2jO7du/PXX3/x008/8fr1a7H+uro6zpw5w7Zt27h58yb79+8nKCgIY2NjMjIyhBLKzZs3uXr1KsbGxowbN46JEyfSu3dvEhIS2LNnD0VFRQwdOhR1dXWxl6qqqmhpaf2rQlKKI/8ndl26nqioKPLy8ggODqampoajR4+irq7Ojz/+yLBhwxg2bJjYu48fPyIrK0u3bt3w8vIiLy8PY2NjbGxsaG9vp6SkhKioKCoqKigvLwc6phmvXr1CX1+f7t27M3LkSCIiIvj9999RV1cXBFU9PT3GjBnDy5cv+fPPP7GwsBC/+3PiwYMHODo6oqioSG5uLurq6hgaGornQUZGRhT6DQ0NollVUFDAoUOHxGRxx44djBkzBhMTE+rr60lPT6e5uRlVVVUaGhr4448/OH/+PN9++60oBLKysigtLeXOnTs4OTkxf/58kYD9U8FBGsnJycTHx3dpD+F/yFl//fUXra2t/PDDDwI3W1hYKHg5YWFhGBsbCwUTADc3NxoaGti3bx+7d+9m9uzZbN68GeiYHmlpaYmO+5s3b1BQUODYsWNUVFQwYMAAkpKSUFNTIzMzk4iICDQ0NJg2bRpbtmwBOiBB0unJjRs38PX1Zd26dV1aX8+ePQWpXhra2tpYWFiQk5PDzZs32b17N6ampty5c4d79+4xcuRIQfDMyMhg3759PHv2DFNTUz5+/EhCQgKvX78mJiYGiUSCmZkZlpaWFBUVsXz5cp48ecLQoUP5+eefmTx5Mjk5OeKszc/Pp7m5GW9vb7HXUrLj596FXU5e8/Pz2bt3L0pKSsjJyYkNtLe3Z/fu3WRlZaGgoMD79+/x8vKif//+tLe38/DhQ169esXcuXPFa7W0tKCtrY2ioiINDQ3cu3dPjE8aGho4ePAgb9++JTQ0tFMSumPHDqKjo8UoT1NTky1bthASEsJff/3F9u3b8fb2Zu3atV3Gv1y7do3ly5fj6ekpMHfm5uY0NTWhoaFBVVUVv/32G+/evaNnz564urri4OCAk5MTPXv2ZP369Zw4cYJ3797h6+uLra0tR48eJS8vDzk5OZqamlBRUWHLli2UlJQwdOhQzM3NOXLkCPX19YSEhIjRaEVFhcCK1dTUUFhYKD6fLVu28O7dO8aNG0d6enpXt5EPHz5QUFCAqakpnp6eeHt7s3TpUuzs7MjOzsbQ0FCwxQ0NDdmzZ4+QWCkvLxcHYVRUFNCBIV29ejXy8vL88MMPAjfm4OBASUkJhw4d4unTp0ybNo2AgABu3bpFREQEGzduZPjw4QwcOFCMRKTrj46O5sCBA13uiCgoKAjGq7y8vGDUHz16lBs3brB582b69+8vDidLS0u6devG8uXLkZGRYdmyZXh6evLTTz9haWnJ+PHj6d+/P+Hh4axZswYZGRna29txcnIiNjZWJK7a2toCJrBo0SJ8fHxExww6uoBlZWWkpaVhZGSEnJwcL1++5NGjR4wbN65La6yursbAwIA7d+6Qnp7OmDFjsLa2RlNTk6ysLJKSkrCwsKB///5069aNuLg4zpw5Q48ePRgzZgzKyspizO7j44OlpSU9evSgpqaGPXv2EB8fj7q6OklJSXh7exMSEiLUJgYPHoyLiwsvXrzg8ePH9O/fn4ULF+Lr64u1tXWn76pEIiE4OBhHR0fB4v3cUFFRwdDQkLKyMpEMNzU1IZFIxLkDHYeetrY2ZWVlFBUVie5ydHQ0N27cQEVFhaCgIKGoIJXee/78OTt37mTy5Mk8f/6cffv2cf36dS5cuMDr16+xtbUlLCwMJycnHjx4QFxcHKNHjwYQiiL29vbijImLi+vS+kaPHk1sbCwXL16ktraWo0eP/l8x+omJiWzduhUXFxc2bNiAkpKSOOBra2t5/Pgxr169orCwkF69eqGgoMDNmzcFljAtLY2wsDBGjBiBlpYWN27cICsrC39/fxQUFPjtt9/Q0dER8njbt28nKCiI06dPU1RUxOTJk/9LrutzY/r06UgkEhISEpBIJFRWVlJdXU1bW5uANUg7PVK+wcePH5GRkcHKyoq8vDxevXrFtm3bCA4O5syZM1y/fp3vv/8eDw8Pamtrqa6uZvLkyTg7O2Nubo66ujra2toYGRlhYWGBoaEhixYtwsrKioSEBA4fPoy7uzu6urpUVVUhLy/PiRMnkJGR6RK5Fzqeg39OkaBjwnj48GGUlJRYsWIFmpqaaGpqMnr0aCFVJo3m5mbMzc35+uuvBclVIpHQt29fBg0ahKqqKn/99Rdqamq4uLhQWFhIaWkpmpqaZGZmcuXKFaZOncrs2bPp378/R48e5cGDB9jb29OzZ0/U1dXp1q0b7e3teHl5ceDAAbS1tXn27Nlnr1FDQ0OQtJSVlRk1ahSAOPek6ykpKeH+/ftoa2sTFhbGsGHDyMjIICsri7y8PPLy8pBIJJw+fZqIiAg8PT0ZO3Ystra2/PDDD/z222/Y29uLz/LPP/8kLy+P/v37M3bsWB4+fMjq1avx8vJi1apV/1dYoLOzM4qKijx8+LBL+zh48GBiYmLYtWsXWVlZnfbI2NiYkpISli1bhoyMDHv37v2vn79//z6lpaXMnj0bS0tLtmzZQk5ODm/fvqW1tZW5c+eyYMECZs6cSW1tLRoaGuTl5WFoaEhaWhoGBgaioz537lwx6Y2KimLv3r2Ymppy+PBhWltbiYmJoXfv3vj6+n72+uzt7YUiRVVVFTU1NZiYmLBjxw5R/H348IH4+HhxhsrIyIjfl5iYSF1dHXZ2dujq6hITE0NcXBxmZmbs2LGDgoICzp8/z4YNGzA1NRXT+Vu3bhESEoKzszN6enpERkYikUhQV1dn06ZNnSYgVVVVfPz4EX19fTFR+9+iy8lra2trJyaflEwjxcr17NlTaIWmpKQAHdVHcnIymZmZrFmzhiNHjuDt7U1lZSX379/HwMCA1NRUwsPDcXNzE5WrlpYWwcHBWFlZERUVhb+/P7W1tTx9+pQnT57g5+eHhoYGampqODo6oqKiwpMnT/j06VMnYHlXoqamhpqaGjQ0NARGUgou1tfXR1tbW8hEqaiokJ+fz/Xr1zEyMmLatGnMnj0bDQ0N9u/fz/3791m9ejVBQUGUlZWhoqIiNB1///13DAwM+O6777CwsODXX3/l9evXtLe3Y2VlhYqKCqWlpWKcWVZWhqWlJfX19URERHDp0iWMjY3p1q2bYN92JR4/fkxubi4eHh6YmJjg4uLC6tWrefjwIRcuXMDW1pahQ4cKQpa7uzuvXr3i4MGDODs7Iy8vT2FhIdAhWzZmzBhRpX311VcYGhpiZGSEoaEhf//9N0+fPiUxMZHU1FScnJzIzs7ulJQkJyeTkJCAuro6Tk5OLFy4kBcvXiArK/uvustSXPKxY8f45ZdfWLt2LRMmTKC+vp79+/ejq6uLp6cnHz9+JC8vj6KiIioqKjA1NWXixImUlZXxww8/UFxczJgxY0hISODChQtIJBImTpxI9+7dkZWVJTY2FuiovocNG4aenh5lZWX06dOHPn36AB2dGBkZGZydnamvr+fVq1fIysoSEBBATU0NT5486XLnNTk5GQsLC3bv3s2zZ8/Q1NRk7ty5AsLh5uaGkZER1tbWKCoq8uHDBy5cuICcnJwYKcvLy4viTElJib///pvo6GjS09N5/PixIIX89ttvDBs2jNTUVHbv3s2UKVP44osvmDdvHm/fvuX169eii5ucnCx0FxsbG5GRkaFfv37Y2Nj8Fxbv/xVZWVlYWVmJEb+0SJR2nZOSklBVVUVbWxtlZWVkZGQE47mlpYXS0lKUlZXp06cP/v7+aGho8OTJE5qbmxk1ahS6urqcOnWK8vJy0QlLTEwkJiaGpKQkrKysWL9+PZaWlpw8eZK4uDh69uyJsbEx7e3tuLu7U19fz8uXL1FTU+vEqP+cCAgIYP369fz2229ER0dz7tw55s6dS3t7O/Hx8bS2tmJqaioul+rqavHn9fX1uLm5ERsby4EDB8jIyGD06NECJ3727Fn09PQwNDQUMJLZs2cTHh7O6tWr8fDwYNmyZTx48IDTp0+Lac4/Jfh0dXUJDAwUiWtkZGSX1geIM7Rv374kJSVRVVVFUVGRgHw1NjZy48YNnjx5QnZ2Nh8+fKC9vZ1FixZhYmLC9u3bSU1NJS8vDzs7OwIDA2lra2PHjh2CZ6CmpkZQUBCqqqrU1dUJiIMU5pCdnY2JiQnTpk3j5cuXLFmyhH79+jFnzhwKCgrQ09MjODiYhoaGLiV10JEUSBUcpBEfH8+xY8eYMGEC3bp1o62tjRcvXnSSUpMSDHNzc7G2tsbQ0JDa2lrevXtHc3MzLi4uYoRbUVGBhoYGMjIyQgmjtraW3Nxcnjx5Ii57S0tLBgwYQGVlJZMmTRITTil0r3v37iIp6so6Q0JCUFZWpr29XRC3srKyOH78OHp6eowfPx4tLS0SEhKoqakR/xY6dINLSkrQ0dHBwsKCxMREoqOjKSgooH///ixatIjo6Gh2796NRCJh1apV2NvbExERwYcPH7C1tRWwltbWVg4fPkxzc7PQ6pUSbrOyskhOTsbV1bUTnOZzQ0VFhYCAAJYuXcq9e/cAxPfNy8sLLS0tMjMzuXfvHra2towbN46CggJUVFQoLy8nLi6O2bNnExQUxL59+wQsT6oLHh0djaKiIoqKipSUlHDnzh1qamoYPHgwmpqaREdHI5FIsLe3F8TD2NhYDh8+zKNHj3BwcGDx4sW4ublx48YNTp482aXkNS4ujlu3brF8+XK0tLR49uwZhYWFzJs3D+jIcY4cOUJ+fj59+/alb9++NDQ0cPz4cSIiIjA2NkZTU1PAo2RlZYmOjkZHR4cRI0bw/v17ARmQNh2kkBcpVODGjRucOHGCkJAQ1q5dKwoEKcHS0NBQYGA/J7qcvP6TEQkdHVLpuOzt27ckJSURHByMhYUFz549Y9++fTg4OIiH+f3795w6dQpvb2/Ky8v59ddfqampwdbWFiUlJVFNKSkpsXLlSpSUlLh9+zY//fQTI0aMYObMmezcuZPIyEgCAwPF796zZw/v3r1j4sSJbN26lYKCArS0tLqMl5wyZQqNjY3iQ7SysqK2tpa8vDzR/l+9ejWzZs1CQ0ODFy9ecPbsWY4ePcrz58+5fPkyurq6ZGZmCvjDjz/+yMuXLzl37hy1tbUcPnwYWVlZAgMDuXXrFqGhoezYsYM9e/Zw/PhxampqmDZtGtXV1dy+fZvc3Fyhwfjy5UuMjY3ZsWMHrq6uXcKISMPMzIwRI0bQ2NiIurq6eFhMTExEsjhw4EA8PDxISkpCRkaG0tJSdu/ezcuXL9mzZw9eXl44ODiI93bjxg1qamoYMGAAzs7ObNy4ERMTE5KTk7lx44b43cePH+fevXt4e3uzfft2XFxcePv2LSNGjKCwsBArKysOHz7M/v37hcTSP+EhnxMXLlxg4sSJgpHe0tLChAkTsLa2xtraGhsbG27evMnNmzcFW9jPz4/FixeLQ6eqqgpPT08mTpyIvb09mzZtIi4ujiNHjjB37lwhBi4NV1dXFixYIMbk/fr1Eyx0KYNdUVERU1NTIiIiyMrKIiAggPHjx5ORkSHGYp8bHz9+pG/fvoKxbmdnR21tLV9++SXdunXj2LFj2NnZic9OS0sLJyenTh1XeXl55OXlefLkCYcPH+bmzZsMHDiQNWvWYG9vz5YtW6ioqBCjpuzsbE6dOiXEtbdt20Z0dHQnIs/ly5d5+/YtgYGBBAYG0tLSQklJSZf3EODYsWNs2rSJqqoqnj17RktLC97e3vTr148//viDW7duMXToUAFR0dfXFxCVtLQ0unXrhru7u0hQpAVXfX098vLyDB06VEidPX36lKFDhzJt2jTy8vIoLS2lR48eIpmbNm0aDx484NWrV2hpaWFlZUWvXr3Yu3cvmzZtYv78+SxYsOD/STL4Z9y4cYOZM2cKskRubi5//PEHjY2NPH78mLdv3+Lp6cmCBQvYtm0b+fn5/Pbbb5w8eVJ8xyorK4mMjKS8vJyysjIaGxsxMzNj+vTpDBs2DHV1dQG70tLSQklJibq6OiorKykqKqK+vh53d3eWL18u4Cdr167l9OnTDBs2TEB7Dhw4wJEjR/6vurn/W7S1tdHW1oaysjLdu3fn7du3lJaWiuS1paWFy5cvC5ME6OjuBQUFYWZmxoYNG9DQ0GDevHkkJyezfv16+vXrx+LFi1m4cCHt7e34+vpSVFQkpLccHBywsrISr3f79m3U1dWZOnUqbW1tYiLj5OSEk5MTZWVlwP8kMNeuXfvs9VlYWAg90n++f01NTWxsbCgtLWXTpk08fvyYs2fPihHptWvXqKysxN/fn9TUVJYtW8arV6+EdFB9fT0///wzcXFxBAQEUFlZ2UmDtq2tjfb2dtLS0ti5cyetra1899135Obm8vTpU0Fu27t3LykpKWzatEmYGHSVPGlkZERbWxtFRUUYGhoiJydHdnY2hw4dQk5ODg0NDYYNG4aHhwf29vZiKltTU8OLFy+Qk5PD3t4eVVVVHB0dWb9+PRUVFaKYTUpKQiKRMHfuXGbOnMnHjx+FcsE/4WcGBgYcOXIEDQ0NgSuWaqv+9ddfPHnypMuQCGlIIYZLlixh3LhxNDY2smfPHs6cOUNgYCArV67khx9+wMzMjB9//JFvv/0WLS0tGhsbsbKyYt26daKLKIV1ODo6Cj6C1Dzk119/5ezZs4SEhNCnTx+am5vJycnByMiIBQsWCJOU+fPn8+LFC2bMmIG/vz/ffPMN06dP5/nz5wwfPpzw8HAuXLjw2et79+4d58+fZ9SoUQQEBJCQkMCnT59E8qqgoMCIESNoamoSE9bi4mLevHnD+/fv6d27Ny0tLeTl5TFs2DAGDBhAQUEBd+7c4fvvv6e0tFT8Lim0UlNTk0GDBgmZrpMnT/LkyRMWLVrUqbMtzeFUVFTw9PREWVn5s9Rpupy8/pNpXVVVRUFBAaqqqqipqVFQUEBtbS0NDQ2Ympri6+tLbGwsKSkpaGpq0qdPH+Tk5NDU1OT+/fuiC1JYWEhgYCB79+7Fzs4OWVlZ4uLihLyRq6srNjY2lJWVkZ+fj6ampmiDS0M61rC0tMTe3h57e3txsXclbGxsaGtr4+effyYxMZFvvvmGgIAArK2tuXXrFo2NjYIhq6CgQGBgIGvWrCErK4vq6mqUlZXx8/PDxsaG6Oho/vzzT3bv3k15eTkXL17E2NgYNTU1bG1tSUxM5MaNG+zevZtly5bh5OTEwYMHKSoqQlFRkWfPnpGcnMzo0aPx9PSkurqampoaHB0d/7U+KHQ8JNLRPPwPG7mtrY28vDzu3r1LRUUFa9euFVqbhYWFgj2fk5NDbW2tICl9/PhRSGQ8efIEe3t7cck5OTlhaWlJSEgIwcHBJCYmEhsby4ABA+jXrx/Z2dlERUURGhpKQUEB3t7eIumTSuF0VVHhwYMH5OTkEB8fj7+/P76+vpSXl2NhYYG+vj6mpqZERkYiIyNDWFgY+vr6yMnJIS8vz9OnT6mqquLRo0fU1tZSV1dHQkICmpqaQsS+paWFBw8eEBoairm5OSdOnKC+vh5zc3OsrKzIzc0lOztbYKOkgHTpZ93a2sqBAwdEF3jt2rU8evSoS2vU19enpaWFFStWEBcXh56eHidOnODFixfiPSspKZGbm4u9vT0WFhZMnjxZwGGePHmCt7c3Li4uQtoFYOLEifj5+eHn50dKSgqvX79m3759BAQE8P79e7y9vQV0RSq1tmvXLtzd3QkLC8PX15eYmBhMTEzQ0dEhKiqKpqamf4WXlBJxNDQ0cHJy6tRRcXd3F5JO0pCTk0NNTQ1NTU0aGxvR09OjurpadAh69epFr169aG5uxtjYWIi9P3v2jLq6OqqqqhgzZgzLly8nIiKCxMREZsyYwYIFCxgyZAgDBgzg2bNnVFVVoaWlhb6+vpAz0tDQ6DK+/uLFi3z11Vfo6OgwefJktm7dyokTJygvL0dRUZHu3bszdOhQevbsiZWVFRKJBGVlZdra2pBIJIKAZ2dnJ6ZdNjY2jBkzhpCQEHFB/FPlQpo0vn//nubmZqZMmcK6devE9xw6EkoLC4tOncLW1tZOZ8bnhqysLO3t7RQUFJCVlSX+GxMTw+jRozEwMMDLy4usrCzc3NxEkSfVehw3bhwuLi4EBgYSFRVFXV2dIHJKZQhHjx7NjRs3uH79Ovb29hgbG/P777/z6tUrPD09RdevqamJ4uJioWUpDW1tbdra2rh161aX9YilMkBSlytp0bZ582bq6+s5ePAgSUlJ2Nvb09jYKH4uPz9fTCvj4+N59OgRzc3NGBgY0KdPH+rq6pg0aRJVVVV89913ZGdnU1FRIciQUjku6DhjjY2NiYuLE46JWVlZ5OfnU1FRgYyMDA0NDUKLtasNnVevXqGrq4ubmxulpaWcOnWKp0+f0rdvXzG5k5eXF3ANaezZs4ddu3ahpKSEl5cXjx8/Jjg4uJMawY0bN7hy5QoLFixg7dq1FBcXs2/fPmEQo6SkxKtXrzA0NMTOzk50JZubm8U6qqurkZOTw8vLC0NDwy7r2EKHyUtVVRWGhoaYm5uTmZmJlZUVfn5+PHr0iMLCQn777Tf279+PgYGByAUSExNRUFAQRe7x48f5448/0NLSYurUqZ0UQYqLi/n6669pampixYoV6OnpcfDgQWpqajh58qRI8qSOjHV1dWhpaTFnzhwUFRUJDw8nNzcXR0dHgoODu5S89urVi/T0dF6+fImCggLGxsZoaGhw9uxZiouLhbqRqqoq+fn5PH/+nJiYGKKjo9HX1ycoKIiYmBgBUZTK1lVWVpKSksLYsWMxNDQkIyODuLg4MS1VVFTk3r17Qj5r9OjRODs7k5CQwMWLF/H29mbo0KHk5uaSkZGBjY0NFhYWnYrB/6/ocvL6z1BRUaGlpUXg43r27Cl0+srKyli0aBEKCgocOnQIU1NTvv76awYPHkxcXBx79uzh2rVrItGRCucrKChQWVnJ1q1befv2LTt37mTEiBHs3LmTq1evsmPHDmpqajA3N8fBwYHGxkbc3d356quvKCws7KSpJgXldzVkZWVJS0vj5s2bjBs3joCAABwcHLh+/Tq//fYbDQ0N9OvXj5EjRzJ8+HCGDRuGqqoqZWVltLa2oqamxoQJEzhx4gRnz56lpaUFLS0t7t27R1hYGPPmzeP69etcv34dQOC8pG42w4YNw8HBQbBCp0yZIka8CgoKnaqWrmqgQgcEQUoEg47LSip/JSXOXb58GQMDA8zMzDA0NMTY2JiRI0eira1NVFQUVVVVAjYgJVuMGTOGlJQUEhMTUVRUxNvbm5qaGszMzLC3t2fZsmWUlZXx8OFDunXrxqNHjzhz5gw2NjYcP34cJSUlGhsbOx0+SUlJxMTEdAn3amZmxtq1axkwYAAHDhzA0dFRJE9SzJ2TkxMBAQHMnDlTsMQXLVrEokWLOsFQrl+/Trdu3TA2NqZPnz6UlZUJiZZffvlFJB+5ubmUl5djYGBA9+7dUVVVRVlZWbgbGRsbCwvH0aNH8+rVK44ePSrIjj179uyShI3UOWvixImMHDmS6OhoXr58KXBK165dw9DQEHl5eTQ1NbG0tMTFxQUlJSVu3rzJmjVrGDBgACdPnhSvuXTpUoG9zcrKonfv3qSlpbF79240NDTw9vYmLCxMEKWg49n98ccf8fX1JSwsjP79+2NpaYmSkhLv3r3j6dOn9OnTh549e/Lnn39+9vqgg7BVXV2Ntrb2f41mjYyM6N69uyBmwf9IoEk1aaWky0+fPjF+/Hj09fXF+F1JSYnk5GQSExOxtbUlOTmZ8PBw6uvrmT9/PrW1tdy9e5e4uDjk5ORwdXXFysqKPn36dCKCjh07FkdHR6EJ3JWQOhJJsd5mZmbIycnR1tbGrFmz+Pbbb5GVlSUlJYWrV6+ip6fH0qVLGT58OHV1dXTr1o3S0lKhKlFfXy90Qf95RtTV1YnktbW1FW1tbRoaGkhNTRWi8NAxRVNRUeHnn38WiXJrayutra0sWbKEmTNnCmJOV0JOTo6oqCji4+Oxt7envr6ev//+m4qKCtavX88333zDggULUFNTQ0lJCYlEgoyMDPLy8uzdu5empibKysowMDDg2LFjGBoaUlhYyKBBg/D398fIyIizZ88iLy/P0qVLsbS0ZP78+fz9999MmzaNr776SqxRV1eXgIAATExM+PjxI2lpabi7u2NnZyee5a4QC9XU1NDX1+f333/n8uXLrF+/nvnz57N8+XLmzJnDw4cP+frrr1mwYEGnn/P09KS+vp6WlhY0NTUJCgri0aNHXL9+XSQ2Q4YMwdjYmDlz5hAVFYWKigrBwcE0NTWRlZUlCtQdO3YwfPhwTp8+LTCnampqmJqasnHjRgHPam5u7iTu/7nx/PlzXF1d8fX1paSkRGAvHz58iI2NDcnJyVRVVYkOWmtrK1FRUbx48UJAacLDwwkPD6eqqkoQcB88eMD06dNxcnLiwIED6OjocOHCBc6ePSsUhwoLC3n16hVBQUGiYdPc3Iy8vLww9XBzc8POzg5DQ0O0tLSorq7m66+/7tIabWxsyMrKIjY2loaGBqysrJg+fTrTp09n/vz5YjK1YsUKfvzxR1auXElmZiY//fQTmZmZ5OXlceLECTZu3CigIN7e3uL129raiI2NFfrctra2VFZWUl5eTq9evUTimp6eTmJiIubm5iQlJQn792nTpjFw4EDq6uqIj4/vcgEybtw4xo0bx6RJk/j66685cuQIwcHBrFq1il27dmFtbY2zszOBgYH88ccf/P7775SXlyORSOjRoweqqqq0trZSXl4uXESlE9upU6cKkvzmzZuFsoyxsTHZ2dmsX78eBQUFFi5cyOzZs0lJSWHx4sW8efOGPXv2ICMjQ0JCAi9evBDOjJ8jc9rl5PXOnTtkZ2fj5+eHp6enGCn+k7wl7ZA6OTkJLbjGxkbR6ndzc6NPnz6cPn2auLg4zM3N0dHR4ddff0VZWVmwLVNTUzuNG6VJrxQ+ILU+bG1tFdaYUjeXvn37/qvkVepNPGrUKHH5S2P+/PnY2toSGxuLnZ0dfn5+PHjwgA8fPjBu3Dg8PDz47rvvkJOTY/HixdTX1wucmIaGBr169RKySXJycujr6xMeHs7ly5eJjo7G2tqazZs3C6/nzZs3c+TIEb788ktGjBhBUFAQcXFxvH37FgMDAxwdHbt8YUIHvCMzM5Ps7GwsLCwYOXIkpqam6Ovr4+Pjw44dO/Dw8BCsQS8vL6ZNm0ZbW5tgSwYEBLB69Wrk5ORQUVHBxMRECKmXl5dz584dHj16RGNjI9HR0cjJyfHLL7+Qn58vnoXm5mZiYmJ49epVJ/jJ4MGDBX7WzMwMfX39LlXTs2fPFl1wKUYZOgg89+7dQ0tLi9DQUOrq6gQDtn///syZM4fy8nJ0dXUFplVNTY3k5GT+/PNPPDw8cHNzE9a1U6dOJTY2VljvSS07c3JymDp1KrKysuTk5JCUlERAQABWVlZoaWkxc+ZMXF1defv2LZWVlRw6dAh/f39RzHxOaGpq0tzcTH5+PlpaWjg6OookXUtLi8DAQNzd3cnNzRX+5tCBx9uzZw+FhYU8efKEL7/8El1dXS5duiQgQWvXruWvv/4SDH83Nzch1H///n2io6NF56GoqAgfHx9ycnIYPnw427Ztw83NjV9++YUNGzagq6vbKdntSqSkpKCkpERVVRXt7e3CqrWoqIjw8HABofniiy8YMWIE7e3tlJaWiunG7du3efToEQMHDux0OTx+/BhdXV3c3d1ZvXo19+7dY9++fSQlJfH06VOKioro3bu3IOc5Ojp2uiz+2WGVmjC8ffuWO3fudGl9/2QMKykpMWHCBCwsLCgpKeHLL79ERkaGkydPcuzYMcaOHUtYWBhqamriEr9z5w5nz54lPT1dWFiOGTNGYMykSbZ07w8fPkxERASTJk2ira2NnJwcLl26RFZWFr169cLc3FxMV+Tk5GhoaKCwsBAdHR0UFRW7rKYAHYmPlKjVvXt3IalkaWnZqfDQ1dXl8uXLKCsrC51s6LhXPn78yIoVKxg/fjwrV66kubmZR48eYWtrKzpxGhoaODs7izO2urpamFpITUpcXV1xdHRET08PZWVlsrOzefPmDVVVVdjY2DBlyhQBIfjckE4DzM3NhXKINNLS0sjKyuo0HZCeL0OGDCEyMpLdu3eTkpIiLDnz8vL49ddf+eqrr4RmtvRzaG9vR0tLSyRsxsbGrFy5kmHDhpGWlsaRI0eEdOI/n1fp/qemplJcXNxle1hLS0ucnZ1pb29HRUWF//znP8jKylJdXc3p06f59OkT/fr1E4x6KcTE1dWVc+fOUVNTIxoQffr0ESoPGRkZmJiYEBQU1EknFxBdaCl7/dWrV+Tm5uLn59dJE1dKhvtn/BtNaQ0NDezs7IiOjiYpKamTu978+fOxsbHB09OThIQE3rx5Q2BgIN7e3mhpaREbG0t9fT0+Pj706tWLu3fvEhISgru7O1VVVfz5558oKCgQHBzMjh07OH/+vCBFXrp0CYCXL18SEBCAiooKaWlpBAQEsHjxYgwMDPjtt98oLS3tZHsuKyvb6fvzueHl5UVcXJxIivv160dqaioaGhpUV1fz6NEjHj9+3KmR8vbtW0FkAwTpcNu2bfTs2RNzc3MaGxtJSkoiKytLFIi9e/cWlsvW1tYsWLAAFRUVYmJiaG5uZtasWQKX7ujoiLy8vMBpf87UvMvJa3h4OEeOHGH16tV4enoiKysr9CChYyxaWVlJeno67e3t9O3bF29vbz58+EBOTo7A3k2bNo1nz55x584dtLS0kEgkPHz4kLS0NAYPHkxFRQXKysriQ4aObpCxsTFDhw4Vnt+NjY0iwSwsLBSwAemX4Z8diM+Jhw8fMmTIEEaNGkWPHj2orKwUAvvW1taCRSl9cM6ePcumTZtITU0V7iympqZs2LChE8QiKCiIxYsX09DQwJMnT5g6dSozZ85k7NixXL58mU+fPmFvb4+pqak4yKT2pOfOnROg+4yMDO7fv49EIsHX1/dfJQZZWVl8+vRJJMz+/v6C5TxgwABR9Ug1aEtLS+nXrx8lJSVkZWXh7u7OkCFDhO4mwKZNm4iMjGTDhg2MHDmSnJwcnj9/TnJysmAepqamkp2dTWVlJZmZmfTu3RtnZ2c+fPjATz/9BCC6W9DRSZNKOnUleTU3N2fXrl1CgktNTY2MjAzOnTtHZWUlX3zxhbDUPHfuHB8+fBDGGOfPn+/0WgkJCdy8eZP09HQMDAwoKysjNDSUGTNmcPLkSc6ePcuOHTsEeL6iooL3799jbm5OQEAAxcXFyMrK0tjYSHFxsZCv6dGjBz169CA8PJy7d+922fJP2rHLzc0lNTVVMHJfv36Nv7+/+Azb29sFLrqoqIjNmzfz4MED0S0+cuQIs2bNEonr+fPnuXPnDllZWWRlZTFhwgRWr16NtrY2169f5+nTp0LCCDpIRydOnODq1ats3LiR4OBg3NzcKCgooKmpCVtb2y673EkjKysLHx8fiouLiY2NpbW1FT09PUpKSsjIyCA+Pp60tDTs7e3p06cPxsbG4tmVdhGnTJnCypUrgY7E4Pbt24KsIi8vT+/evZGXl0dWVhYzMzPy8vJITExk7ty5wgo7ISFBnCdtbW20traKzo+srCz19fWdLDM/N5ycnMQ5oqCggEQiwcvLSyQX+fn5HDhwgOrqakaMGIGamhrV1dWUlZUhLy9PXV2dsFadOXOm6GgVFhaip6eHjo6OkD2LiYnhxYsXJCUlYW5uTr9+/YiOjmbr1q2cPHmSWbNmsWTJEnR0dPj06ZPoeNvY2IizXXoudSWkhevIkSMxMzOjpaUFGRkZ0amR6tY+ePCAK1eu4OzsTO/evUXXV1lZmZycHBITEwUBODMzE4lE0klXt0+fPpiamgqNz+HDh2NlZUVkZCTv37+noaEBd3d3UWxAR5MlOjqa6OhogoODcXJyYv/+/V0iFlZXV1NeXo6Ojg6rVq2iV69e4u969+5NbGwsV65coUePHigoKFBfXy/cz9zc3Pjpp5+4cuUKsrKy6OjooKOjg7KyMikpKRgbG1NWVkZtbS2XLl0iMjJS4HUbGhrE1A8Qa4SOxPWfEzkpAbqkpIT37993uWvXp08f0bHV19dn7NixFBQUcPPmTfbs2UN5eTmWlpZiOtLQ0EB6ejpDhgxh0qRJnV6rqamJ3Nxc4aAktUyVnsHOzs6sW7eOpqYmsYawsDAxwvb39xfrVVZWxsXFhaamJqKjo0lJSUFXV7dLRKZ/hoqKinCVlPIP2tvbcXR0FF3U3bt3s3LlSqZPn87JkyextLREVVVViO/v2LEDNzc3wdKXOmV5eXnh5OSEqakp4eHhnD9/nvz8fC5cuEBVVRVXrlyhvr5eELrDwsJYunQp4eHhzJo1S2i0Ojo6oqGh0eUztbGxkbKyMgYNGoSvry8SiYT4+Hgh2RgZGcmDBw9IS0tDS0sLDw8PUQjZ2toK6Al0NADy8vKwsrJizpw5REdHs2PHDt69e4eSkhJDhw5FR0cHU1NT/P39Wbt2rejSSgnOJ06cEORBKVzA0tJSkHQ/x4Shy8mrFNP6T4u5pKQkbG1tMTAwEOMeOTk5jI2NRSUlKyuLpqZmpw99w4YNzJgxQxyQv/zyC2fOnOHs2bNkZ2cDHbapZWVl4sCdNGmSwEQCYhzW3NyMsrIyffv2FYK30PXkVSryXllZSVNTE/b29kRFRbFp0yZiY2MJDQ1l9uzZTJo0CXl5eVxdXXF3d+fMmTPExMQwadIkxo8fT01NjbCS9PHxYcOGDcjLy5OZmSnkWQCBIRk8eDDNzc38/vvvmJubY2dnx+nTp2lra+PatWskJSWRmprKyJEj0dHR4ZtvvsHQ0JDAwMAuy7tI1QVsbGwoLi6moqKC7OxsJBKJqPQ3bdrEmTNnmD17NkuWLEFfX5+ysjLmzZtHc3Pzf8EVpOuSXuKDBw+mvb2d1NRU8Tt//PFHysvLWbFiBU+ePCE+Pp4pU6awadMmgUeTXl7p6ens3buXjIwMZGRkOtlL/r/i6dOndO/eHTc3N6HrevPmTVpaWhg1apSw5B05ciTnz5+nvr6e6urqTlAKaZw6dYrz58+zdu1aJk2axNOnT9HU1GTfvn3CVeaf+LnJkydjZmbGH3/8wfHjx5k9ezbjx49HIpGwZcsWLl68iLm5OaampigqKtKvXz9mzJjB5cuXu7SHe/fuZdWqVQQFBQkGupubG1u3bsXc3Jz29nbu379PW1sbgwYNIj4+niVLlvD48WNkZWWRSCSd5G+uX7/O77//TnZ2NmvXrqWuro6bN28ybNgwQkNDuXDhAsXFxcyYMYPCwkKePXuGoqIiEydOxNHRka+++gp7e3vx/Hz77bcMHz4cFRWVTtqCXYmwsDA0NDREkp6UlERra6vA11ZUVFBQUICampoYvUtDVVWVqVOnikSwoKCAffv20djYiL29PXFxcWzZsgV5eXkaGxsxMDAgLCwMHR0dIa0EcPToUV6+fMm6detEB1aq7yqFaMjLy+Ph4YGcnBzh4eGfvb6jR48yc+ZMVFRUKCsrY+/evejp6bFu3TpkZGQoLi5mw4YN+Pr6Cm1LaZJnbm7O/PnzGTp0KAkJCeKyvXLlCsnJyUydOhUzMzOSk5PZsWMHjY2NzJo1SxCITp8+LRyFysvLuXnzJubm5owaNUoonUiTY2l0NemBjs6O1HQFOhwao6OjWbduHd27d6eiooJ169aRlZXFihUrGDJkiOhWtba2MmrUKIYPH85ff/2FpqYmLS0tGBoaMmjQoE6WtUFBQVhbW1NTU8OxY8eIiYkRShpDhgwhICDgv5z6tLS0+PDhg9Bm/jdx9uxZtm3bxoQJE9i2bVunS3flypW0tLSwd+9eoqKiOHr0qLCGHTRoECYmJoSEhHDlyhXa2toEpMzc3JwHDx6wdetW0tLSUFZWFlJiJSUlwt65vr4eAwMDfH19sbOzY/78+Xh7eyORSFBTUxNdXumEUktLi6CgoE4yc58T/+e5OG/ePBobG1m0aBHLly/n6tWrnaYRX375JY6Ojrx//57jx48zYcIE1NTUiImJISMjQ2jE5ufnc/fuXZqamqisrMTNzQ1nZ2dWrFhBS0sL7969AzpG+qNGjRKazb/99hs7d+5kypQpjB8/nlOnTvHq1Svc3d2pra1l//79nc7kz4m2tjY+fvxISUmJ0FmHjvyhpKRE6AFbWFigo6MjnpcNGzbg7u4uCimp5OD+/fs5fvw4Dg4OTJkyhVGjRtHW1sbr16+RkZHB2NhYEFvnzp1LcHAwcXFx/P7775SUlAgiVVpaGo2Njfj7+zNmzBhaW1sxNjbG29ubQ4cOffb6IiMj+fDhAyNGjBBJY1paGm1tbaKAPn78OPX19WzdupWMjAySk5MZN26c+D3Hjh3j8uXLpKSksHr1auzt7QkKCqJ79+5oa2tTU1PDqFGjcHNz4+eff+bJkydiiix9falcpvQ9fPPNN4LMCB2SmwEBAezZs+f/uaYuJ689e/YkIyNDdHakbeFjx47h7u4urMy8vLw6HS42NjYoKioSGxuLsrKyIDtYWVmJFrGbmxs9e/Zkx44dQEdXx8vLS7Cie/ToIS7HxsZGbt68iaamJqGhoUKG4p+AcSkGrithYGBAbm4uFRUVKCkpoa+vT3BwML169SIlJYWUlBTi4+MFrmX06NGoqqqyYMECamtrmTlzJs7OzpSVldHW1sb48eOZPn26GC8VFRWJxKC+vh5XV1ecnJzo1asXiYmJ6OvrY2trS2trK3l5eejo6NCvXz+hUaitrY2DgwNDhw5l4MCBXe7YAQQHB6OlpUVJSQlxcXFUVVWhoaEh9iEvL4+IiAisra2FHA10VGCDBg3ixYsXxMbGYmVlhZeXl5BPe/z4MTt27GDIkCGikKmvr0dbW5t169YxfPhwzp49i6ysLPb29ri6uvLp0ye6d+/+X+49Hz584MCBA6ipqTF79uzP8jqWhpREoaysLAiBbW1t+Pv7ExQUREVFBenp6cjJyQnZt/LycoqKioSlpFQeLS8vT5Aw3NzcqK6uJj09nQ8fPmBgYEBgYKCQTHv+/DkTJ04kODiY5cuXExMTIzCCCgoKAsqgpqbGxYsXaWhooKWlhUmTJpGTk9OlsfPHjx95/fo1AQEBIjlsaGjoRLypqamhpaWFyspKQeYAxPixvb2duro6UUgkJiYSHBzM1KlTBRlROoI9e/YskZGRrFixgoEDBxIaGkr//v1RVFTk+PHjODk5idF8cnIy1dXV+Pv7o6KiQltbGwkJCZ+9NmlIdZa1tbVRUlIiMjKS7t27C0xiZmZmpy7LmzdvSE9Pp3v37jg7O6Ovr8+HDx8oKioiJiYGVVVVevfuTX19PW/evCEqKgo1NTV8fHzw9/cX2prS+Pnnn8X+zZw5U3Sf/lm4ycnJIScnR11dXZdtN0+dOiU6kFLCmKysLPn5+ZiZmaGuro61tTUlJSUkJyejqqoqXG/S09N58uQJwcHBYs+lz/U/DVxkZGRQU1PDzMyMPn360NDQwPnz5wkPD6e8vBx9fX26deuGpaWlGMGampqipKREUlIS7969o1u3bpiamv4ru23psyktIl++fImKigqZmZl0794deXl5jI2NycvLEyN7qbXtnTt3MDIyYsSIEZ3IY1Lc4Js3b5CXl0dfX5+EhARKSkpwcHBAW1ubkpIS6urqhA0sdIxmCwsLCQkJQVdXFx0dHSHeLoUWSUlQnxt5eXno6upiY2PTqSFRVFSEi4sLs2bNIi0tjYaGBkHy8/Dw4O3bt7S3t4uJTklJCW/evGHgwIGigylVcFFRUaGuro66ujq0tbVpaWmhtrZWPHdXr16lqKgICwsLPDw8aG1txdzcXHR609LSqKmpwdPT818RJ/X19ZFIJMjKynLy5EkuX75MYGAgQUFBBAUF4e3tjbGxMZWVlcTHxxMYGMiIESMoLy/nt99+o6SkhNDQUD5+/CgSUCn8RaqIYWtrS0REBBcvXiQ3N5ehQ4diZGQkCm2pTCV0FFGqqqpoampSWlrK69evUVJSYtiwYRw7doxbt2512RAlPT1dTClSUlI4fPgwgYGBAi4RGxuLi4uL4FFkZWURGRmJv7+/sASPiooS32cpBExKhJImcJmZmRgbG7NlyxYSEhJ4+PAhVlZW9O/fn/j4eGprawkKCsLQ0FAYQkydOlUoFvzbrrK5uTk5OTncvn0bR0dHYRUuDUtLS7y8vFBVVWX48OE8ePBAdGuhoxnwxRdf4OfnR1RUlJDYS0tLY+XKlcIaV1qoSKEd0uftn/Jh0jzx+fPnnD9/XsCRpBjmrKys///ABoYPH05ISIhITCsqKsjJyeH48eOoqqqyaNEi5s2b1ylxhY7qLTY2VsgqTJ48WVQrgYGB2Nra0tjYSH5+PsOGDcPMzIwxY8bg6+uLmpoaLS0tnbzDs7OzWbFiBQ4ODgQFBaGgoCBYwNDxMKqqqnbJBg86sGdRUVE4OzsLoVwpiWHLli2UlZWRm5tLUVGReP8DBw5k5syZQsxXKsg7f/585OXlRVUq9fLOy8vj+++/p7q6mtWrV+Pq6sq7d+8ICgpi1KhRopv87bffcvv2bbZu3Ur//v0JDg7m0aNHpKens3z5cpycnP6VFd4/ddeuXr3KgAEDxHusr69HV1eXEydO/JcMV21tLR8+fODNmzdC51ZBQQE3NzcmTZqEkpISc+fO5caNG0yZMoXnz5/T3NzM7t27mTlzJuHh4YIM89dffwlG8759+/4reZXiOF1cXFi0aBE///zzZ6+vZ8+eSCQSUlNTSUxMxNHRkQEDBuDg4EBrayvPnj3j2bNnNDY2CntjqeSNVAD+wYMH7N+/X+A4f/31V65du8bOnTsxMjJiwIAB5OTkMHr0aC5fvkxpaSk7d+6koqKCBQsWCBvFfxZPs2fP5rvvvkNHR4cdO3awfv16nj59ytOnTwkLC+tS8mpnZ8dXX33Fl19+Kdi7OTk5ZGdnC6mgsWPHCqmywsJCZs6cycWLF8WYr1u3bjx+/JiEhAQ8PT3Zvn07hoaG3Lx5k/b2djGGlmL5Ghsb+fPPP1m5ciWLFy9GSUmJuLg4Dh8+jIeHBz179gQ6fMEPHTrEuHHjOHDgABKJhBcvXnz22qRx+PBh7OzsCA0Npby8nIcPH4pO4KNHj1i/fj1Lly4VF8bff//Nr7/+ysaNG9mwYQNRUVHMmTOH/Px8Zs2axe7du1FWVub+/fskJydjbW3Nd999R//+/cnPz6empkZoDt69e1ckrsbGxp2KROmeSsex0IHHv3nzZpfWJ9XgBYQ1qFS5ADqStK1bt3L+/Hns7OyYM2cOM2fOxNvbm7i4OMaMGcOBAwe4ceMGhoaGqKurC6Kqmpoazc3N2Nvbc/DgQYqLi7l16xY6OjocPXqUq1evsnjxYqHo8v333xMUFCQKfqk+s1RhYtiwYXh6enZ5D6UGEtu2bePQoUPMnDmTdevWYWBgIP5uy5Yt3L59my1btpCSksLmzZsZPXo0ubm5vH79mrKyMsGyt7W1RVdXl8TERNGh7t27N48fP6akpITff/9dYNhTU1MF3jQ+Pp4FCxaITmi/fv3Q1tbmu+++Q1ZWViRGXTVE6dmzJ0uWLOmEBy4uLmb79u3Cme/w4cM0NjaKBoaPjw/h4eFs2bKF5uZm8TszMzNZtWoV1tbW9O3bl7Nnz4pJ59q1a7lx4wbGxsYoKCjQ1tbGqFGjmD59OitWrODw4cN4e3sL+cSgoCDU1dW5evUqSUlJhIaG/qvEVRoKCgocPHiQkydPMmjQoE5mQ1JnslevXrFu3ToGDhzIhg0bsLS0FPtcWVmJgYEBRkZGODs7C4eqYcOGoa2tTWtrK2vWrOHu3busXLmSN2/esHnzZqysrGhtbaWwsJCqqiqsrKyYO3cuI0aMwMzMjIKCAkaOHImXlxcDBw7k9evXXeIOSCM+Pp4BAwagrq7O8+fPuXfvHr6+vixdupSAgAD09PRobW1FR0eHiRMncuLECXbv3s2GDRswMTHh+PHjKCsrM2bMmE5nfrdu3airqxPJq5KSEm1tbRgbGzNp0iR+/PFHURT26tWLn3/+GSUlJSoqKsjMzBT8iPnz5/Pp0ych49ZVFzE7OzusrKyYOHEi33//PUePHhWGK9CR3O7evRsTExORfygoKPDgwQNmz56Nq6srQUFBhIaGCsUZS0tL8vPzOXr0KD169GDQoEEiZ1i5ciWampooKysLDLc0tm7dyt9//42zszPz588nICAAMzMzFBUVuXnzJnl5eSQnJ/8/19Tl5NXIyAgjIyPKysq4dOkSL168IDMzk8mTJ4v28f79+yktLcXExISysjJqamoICwujurpaMNH27NmDi4sLWlpaNDU1oaioiJKSEv3792f06NEi+U1MTKS2thZfX18hShweHs7FixexsLBg+vTpqKqqkpmZyenTp4ULUGtrK1OmTKFfv35dWl95ebnwMc7KyqKwsJCcnBwMDQ3p06cPenp6xMTEsGLFCoyNjYWbl4mJCYcOHRKJ7ZAhQ8Toorm5maioKKqrq3F2dsbR0ZHW1lZSU1P56aefWL58OdbW1ujp6ZGSkkJrayseHh4ChyeVitLR0RGfi3RM2JWO5D+jurqavLw8lJSUxIgkLS2N1tZWunXrhpmZGREREfz22294e3vz1Vdf0d7eTnh4OE+fPgU6sHUZGRlMnTqVwMBARo8ezZs3b3j16hWZmZmYmpoycuRIZs6cCXRgW7y8vHB1daWuro7IyEh69+6NhYUFhYWFnQoNFxcXdu3ahZaWlvCu/tyIiYmhe/fu6Ovro6+vj56enugANTc3o6ury4QJEygpKeHt27cC2yd15dLW1qa+vp4rV67g5eWFmZkZzc3N4oDy9/cXF8GVK1eYOXMm/fv3Z/LkydjY2FBYWMjkyZNxdHQUOCAXF5dOxI2vv/4aeXl5/vjjD1asWPFfbOT/VxgaGvL69WsyMzPp1asX3bp1o6ysjD///JO4uDhmzJjBsmXLUFdX57fffkNdXZ1ffvmFYcOGsWfPHvLy8jAwMGD8+PFYWFgIVY28vDwh52JqakpAQAB1dXUEBASQmJiIioqKsLstKyvj1q1bTJgwgT59+lBaWkpaWhppaWnU1dURExNDQUEBtra2DBkyhPfv33dpjVpaWrx8+RI7Ozuhzys1W9DS0sLQ0JDNmzdTUlLCV199xahRo8jMzBQjai0tLVRVVWlqahL2xdBBAqyrq0NGRkZ0HQ0MDJg1axb79u1j2rRpvH//Hm1tbXr27MnXX3+NjY0NEomE1tZWcdn8M3nV0tLC1NS0S4SfuXPnip/X19fvRECV/llwcDCqqqooKipSWlrK0aNH8fb2pqSkBF9fXzQ1NamsrMTQ0JC2trZO+qb/jHv37vGf//yHkSNHMmDAAEaMGMG6deuora3FwMBAaFRKL15FRUXS0tK4cuUKlZWVnfDtXQnpZebo6IiSkhIfP36ksLBQFP719fWoqqoyZMgQampqOHPmDMuXL+frr78WrP1du3bh7++Pp6en4BwYGhoSHx9PcXExNTU1wunvxo0b9O3bF01NzU5s7+LiYmRkZMjPz+fOnTvY2Nhga2uLk5OTGLMDXZZZsra2Rk5OrhOkorS0lKysLK5fv87bt2/Zu3cvHh4eXLx4kYKCAlpaWvjzzz9pbm5GRkaGoKAgtLW1hanO1atXaWpqYvDgwWJkHxYWRlJSEnV1dZSUlAgceHZ2Nr169UJOTg4rKyuysrIE+72trY2TJ09iaGjI119/TXNzM9u3b+/UBPqckGISvb29iY+PJzs7m3fv3qGlpUVpaSm6urr4+/uLO+PFixd4enry4sUL8vLymDJlCq2trVy8eJGwsLBONrxXrlxBV1cXCwsL1NXVMTIyoqmpiY8fP7J27VomT57M+PHjcXJyoqioiMTERKysrMTdam5uzvjx4ykoKODRo0dYW1vz/fffd+LKfE7ExsYyfPhwnJycGDBgAHp6ejQ0NPD+/XvBRflnaGtrC6c4PT09jI2NKS0tpaqqCm1tbfr06YOioiIeHh7Cba2iooJ79+6RlJTE69evuXPnDra2tri6ujJw4EB8fHxwdXXlhx9+ICsri2+//Rbo4EdkZGTw4cMHxowZQ2BgIPHx8Z30tT8n5OXlcXZ2pqKiQnRGnzx5Ip6RBQsWiNeU6tR3795dTN8uXbrEmzdvRId6yJAhxMTEsHfvXurq6hg5ciTFxcXk5OQIwnVcXBxPnz4lICCAiRMnkpqayu+//87r16/Ztm0bISEhSCQS3r17h6WlJaamppiYmHzW/nU5eZUyBVtaWoScVLdu3fjpp58wMjKiubmZCRMmcO3aNdTV1VFXV6e4uJhXr15hbW1Nt27dSE5OprS0lPr6enr16iWE8X18fNDQ0BCHd1JSEpMmTaKxsVFIFsnLy3P06FGKi4s7iT6fPn2ao0ePCntaHx8ftLS0uizin5KSwrx588jIyODMmTNIJBIkEokA90uZ2R8/fuTjx48C71JfX09BQQEFBQUC0yL9cku1brW0tPD398fKyooZM2awcuVKMjIyiImJYcmSJSQkJLB//34cHR07jQ03btwoOjTSS6a9vV2Mf7saJSUlREZG4uzsTFBQEE5OTlRWVvL+/Xt0dXWFdNCWLVu4d+8e+vr6KCgokJuby6dPn4COMYPURSkuLg4NDQ3c3d3ZsGEDJ0+e5MGDB/Tt21dU6M+ePaOgoIA5c+bQ2toqYBbXr18Xgtqtra3U1dXx7t07ZGVl/7Wf+vXr13Fzc8PAwAB9fX2B7ZSSAIKCggSBQXpgtrW1CQ9p6UUiZSSXl5eL7siBAwfIzc1l8eLFvHz5kvPnz3Pu3DmsrKxYtWoVmpqagphobW0tVDMcHBxQUFCgoqKC6OhoLCwsWLRoEe3t7fz888/88ccfXRoJ1dbWoqmpiba2NhkZGXTr1o2qqiru3btHYWEhsrKyTJkyhcrKSkpLS5FIJLi4uODj44O2tjZr1qyhtraWFStWMHr0aNrb24mJieHkyZOUl5cjIyPDzZs3cXFxwcLCAmdnZ4KDg7GzsxNj2j179pCdnc3mzZvFYfXgwQNaWlrw9PQU8lTAv4K3SN20dHR06N69O/Pnz+fPP//k1atXrF+/nj179jBlyhS2bdtGjx49CAoKIjAwUOhp2tjYsGnTJt69e9fJpretrY0JEybw9OlTTp06hYuLC/X19WRlZQltYHd3d9atW0ePHj0IDAwUSZ2CgoJ4Ttva2oT9sJOTEzY2Np06DP+vsLe3F6/78uVLDh8+jKGhofiOSyQSAgMDRQdcKuW0c+dORo8eza5du0TB19LSgpKSkpACg/+ZsFy9epW9e/eSnp6OgoICzc3NvH79WpAHi4uLiYuL6/QZSS14HR0dhUrGP3VKPzcaGhpobW1l9OjRFBYWsnnzZubNm8fVq1exs7NDVVWVvLw8zMzMmDhxIjk5OWzatAlbW1sWLlwoyJpxcXFkZ2eTk5ODg4MDioqKuLq6UlxczPv371FRUUFDQ4PS0lLu3LlDcHBwJ5hD7969OXToENevX6e6upr8/HxsbW0pKyvj5cuX6OjoEBYW1mWnu9raWpGs9ejRg7y8PJqamggLC6OwsJC0tDTu3bvHp0+f2Lp1q+ByeHh4EBwcjIKCAlZWVkyYMIHQ0FDa2tpYvXo1hw4dwsTERHS7XV1dmTp1KpGRkVRVVaGmpiZUP0aMGMH06dMBuHv3LocOHeLKlSu0t7fz+vVrevfuTUlJCampqVy7do0PHz50qVi+fv06CxcuxM/PD1NTU8LCwnjy5AltbW1oaWmJ86y6upru3btTXV3NtWvXuHTpEmpqavTp04fq6mpu3LjBp0+fmDZtGtCR2Ejd5aQwhwEDBrBixQoiIiJYt24d8vLyAvbR0NBAdnY2DQ0NQmddIpFgYmLC5cuX+eOPP5g5cyY//PBDl938pE5Zenp6jB07lrFjx1JYWMiDBw9ISEjA2Ni4U4EinWypqKhQWVnJmDFjhAlNU1MTPXv2pKSkRNyZUhIkdIjyJycnCyWixYsXC/jamzdviImJwc7Ojm7duonPSaqTe+XKFd6/fy9s3bsa8+bNY/ny5RgYGPDq1SsWLlwoppNSfXopadXS0pIlS5YwdepUnjx5wi+//MKtW7fIzs6mX79+TJ06FXt7e+7du4eqqip6enoUFRWRlZWFmZkZ8vLyPHz4EB0dHSZNmsTEiRP5+PEjERERwuESEFqxeXl5YiLyOS5pXU5er169SnBwMEZGRsycOVM41lRWVmJkZISioiLfffcdgwcPFl3MhoYG/vOf//DkyRPWrFmDq6urcMOYNWsWBgYGFBcXExkZybVr13j//j1ubm6kp6cL0WjpIS8rK8vKlSuxsrLC3d0dQIhEKyoq8uWXXzJgwABcXFw+yx/3/wxp56S0tJTExESBWyorK2P37t1cunQJNzc31qxZg46ODsbGxsTHx+Pk5MTAgQO5e/cub968obi4mHv37rF//35hiSolW0FHEvrFF1+gqKjIokWLkJOTw87OjpEjRwoXE6ldqTT+qQnZ3Nz8XxX/58aFCxeIjY3F29tbdLmloPCYmBi2b99ObW0tPj4+jBs3Tsg+PX/+HBkZGdauXcuoUaOor6/H2dmZtrY2vv/+eyoqKliyZAnl5eVCkur169fcvn2bEydOAB0XdkZGBgUFBSgoKHRa3/Xr17l58yaxsbHo6uoybNgw5s6d22Wsnbu7uxA5lpGRQU5Ojvj4eI4ePcqIESMICQnh559/5v379/znP//B1tZWyIAYGBgQGxvL69ev6dOnD+PHj0dRUZGPHz8CHWNFV1dXYd05f/58gdvesmULkydPxtbWlsuXL/PmzRu+++47QkJCKC4uxszMTFTUFhYWnDlzhjVr1mBgYEB1dbVgd35OKCkpcebMGYyNjUXSW1paSmFhIYqKiqxduxY9PT2am5vZuHEjsrKy4lkJCgpi7ty5xMbGClxTeno627dvJz8/n2+++UYcKKWlpdja2grZn+7du3P06FFu3bqFtrY28vLyzJ49m6+++opZs2Zhbm4u7JXd3d2FVu7Bgwc7scM/J54+fcr48ePFITdgwABMTU0FaUpdXZ3NmzcL+1RpKCsrU1VVRUREBPLy8ixbtgxjY2OKi4uFT/yGDRvw8/Nj06ZNpKSkMH36dFauXCk0XR0cHEhMTOSPP/7g9u3brFu3TsjnSEeYGhoaAtst3ZOuxPPnz5k6dSovX75k6dKlZGZmsnjxYtFtkxK2zM3N2bJlC35+fqxatYrnz5/j4+PTaVIhPR/v3r3Lvn37qK+vZ/LkyYwdOxYfHx/GjBmDnZ0dPj4+yMrKdnrW3rx5w/fff8+sWbM6uRONGDGCwYMHC0OMrnbOoUOd5t69e4wfP56wsDAhj3j48GGhMGJmZkZ2djYJCQmYm5vz008/kZubyw8//ICrqytr1qzh4sWLZGZmkpmZSXp6Oh4eHuJzamtrY/bs2axfv56SkhIKCwsFVlQacnJyBAQE4O7uLvzT29vbaW5u5vLlyzx69IidO3eKxOpzo6GhQRTf9+/fJzs7WwjUDx8+HBkZGTw8PLh9+7ZIXMPCwjh8+LDwsU9PTxcQFWnRbmtrKxovNTU1wqind+/e5Ofn09LSgpGREaqqqqSmpook2MrKipaWFm7cuIG6ujo6Ojq8e/eOcePGMWzYML755htu3brVpTXm5uaKs8Pc3JyRI0fy4sULqqurGTBgAMXFxSxduhQ1NTWOHj1KSUkJK1asoKKigkmTJmFlZUV5eTl9+vTh5s2bBAQEEBISQo8ePfj22285ceKEeE+urq54e3vj7e2NoaGhMMa4du0aT58+ZdiwYXh5eQliXnt7O5MmTcLe3l6Qfv9NjBw5Eg0NDVFsqaurY2xszIgRI3j79i2XL1/G1dUVOzs7Wltb8fLywt7enj179vD69WsmT54sHOpSU1O5c+cOMTExQj/V19eX1tZWQkJCCA0NFU0fRUVFoa196tQpnjx5wvz58xk1ahQA33//Pbdv32bcuHFs3bqV2NhYEhMT0dbWFjrrXQnpZKa9vZ1z586RmJiIsbExv/76K/b29hw7dowXL16QlpaGi4sL6urqvHv3TtgQf/nllzQ0NKCrqysmXN9//z2ampqiaefg4EBmZibl5eUCMhEREUFSUhK+vr6cOnWKa9euMXr0aCZMmMCsWbPo3bs32dnZFBcXU1VV9VnTgS4nrykpKRQXF9OjR49OHdIDBw4wcuRIoYXp7e3dielfWFjI2bNnKSkpwcjIiGXLlpGenk5UVBSBgYFYWlry/v17YmNjBYlIX1+fXr164efnJ5IRNTU1goODqa2tJSUlBWVlZXJzczEwMGD48OFs3rwZNTU1iouLiYiI6HJrXSojISMjQ0hICCNGjMDQ0BBra2t8fHyIiIjA0dGRr7/+Gl1dXUpKSrh48SKampp8+eWXGBoakpWVRWJiotjQ3NxcqqqqsLe3FyQEdXV1jh49KjqLJSUlyMvLiwqstbWVkpISHjx4gKysLA4ODp3G59KxbV5eXle3EOjonEoFvqHjwpdq6j169IiGhgZ69OghOhjt7e3Y2NgwZMgQbG1tqa+vRyKRoKKiIty2MjIyyM/PR1lZGQ0NDcrKynjx4gW3bt0SblwKCgpiNOfj4yP8jwHhYR8VFYWFhQU+Pj48ePCgy+xYeXl5UlNTO1VwkZGR3L9/Hw8PD9ra2vj06RO3b9/miy++wNbWFh0dHXHwnzx5kvDwcOHn3NbWhrW1NX5+fixfvhxPT08uX77Mixcv8PPzY8yYMRw6dIjdu3dTUlLCiRMnaGpq4tOnT6irq6OqqiosA7t164asrCwfPnwQZDUprKIr3QKpC1ZFRQX5+fmYmppiYWFBQEAAY8eOFd0KXV1dgYmNi4ujsbERCwsLxo4di4uLC9HR0Vy4cEHIPfXu3ZuRI0dy584dLl26xO3bt+nZsyfXr18nMTFRXJi1tbXIy8vT0tJCbm4ub968YejQodjb2zN+/HiKioqEo09KSgrh4eFdJlHo6ekJ3b+KigrhnNfU1ERKSgpVVVU4Ojri5uZGRUUFERERmJubY21tTW1tLUeOHKG6upo9e/YIrGBlZSWtra3CMEKKEy4pKeHMmTN0796dhoYGZGVlhanDu3fvePnypTijbG1thd3jP6OrhiFSpY+kpCTq6+txcXFBVVWVqKgofH19MTMzE/AsKdYvODi4kzxeZmYmDQ0NyMjI0NzcTHV1NcXFxbx9+1ZYburo6LBu3Toh+C8vLy/cxiQSCaWlpVy+fJnm5maCg4PR0NCgpqaGgIAAkRRnZWX9Kyvquro6cnJyRCFuaWlJRUUFJiYmvHr1CgUFBXx9fZGTk+PVq1cMHDiQSZMmcfToUS5fviySSanBhZS4GhMTg6urK7a2tjQ0NGBoaIi2tra4UKEj6UpLSxN3R3Nzs/iOAELrVirJlZCQQFpaWpfWV1lZiY+Pj3DnO3XqFP7+/owePRo5OTlKSkrQ0tLC09OTvn37YmJiwunTp8XPGhkZCU4HdDRPpIW0VK9UQ0MDDQ0N2tvbkUgkGBsbd7KSlhJad+/eTVVVFSkpKUgkEjw9PWlsbCQ8PJyMjAzCwsIYO3YswcHBbNy48bPX6ObmhkQiQV5enrKyMubMmUNISAgNDQ34+PhQX1/Pf/7zHzIzM5k9ezatra0iUW9vbxeuf3p6enTr1o2srCxOnjyJpqYm33zzDYGBgUyaNInnz5+L512qLCTdx8WLF5OXlyck/aRaxI2NjcjJydG/f39WrVqFrq7uvzLukTp2Ssl2UikzTU1N5OXlqaioQF1dvZOqiYaGBu/fv+f27dvivba3twu1C6lxk76+Ps3NzZiamtK3b18xWQkLC6O1tVWQeevq6lBTU+vUkEpJSSE7O1uY6gQEBFBTU0NpaWmXeCBS6UKpC1pBQQFycnI4ODgwe/ZsBg0aRHZ2Nvfu3ePatWsoKytjbm5OYWEhN27c4MSJE8yYMYP169cDHSoBmzdvZtGiRQQFBVFVVcWTJ09wcnLC3d2d5ORkamtr8fDwICMjg4MHDwIdnKl9+/bRvXt3jh07xt69e7GxsWHQoEFYW1sTFRXVSdP2f4suJ6/a2tps3ryZ6upqDAwMBHteWqkoKSmxYcMGqqurhcRCREQEo0aNwsPDg1mzZlFUVMRff/1FQkICy5cvZ9asWWzYsAFHR0cBfldQUMDCwkJ06iIjI1FRUcHQ0JCdO3dy9uxZRo0aJTq3UtkXqU3tF198wdOnTwkKChId2s+JCRMmiE2VXibQoW4g1X799OkT79+/p3///rS3t5Obm0tmZiZffPEFp06d4vTp02zYsIHx48dz9OhRNmzYwLlz54SmYGlpKT/99JPoDF+6dIm8vDy6d+8uLibpWHvfvn28fv2aVatWsWbNmk7v9ePHj538rj83hg8fjpaWVidlBqlXtru7O0uXLuXNmzdcv36do0eP0rt3b5YsWcLChQvx8vLi+++/5/79+xgZGeHj44OZmRmBgYGsW7eOkJAQMjMz0dLSEp2p1tZWtLS0kJeXZ86cOTg6OnLixAmKi4uFkURUVBQeHh6sX7+eY8eO4ejoyOTJkzl79iwHDx78L73A/y1u377NixcvGD58OPr6+hQUFAi7P6k258GDBwkNDSUqKgqJRCKY8lLGbFpamrBCHDJkCAsWLGDNmjXo6+ujrKyMRCLh5cuX3LhxAwUFBaFlK03MZ8+eLfT7srOz8fT0xNzcHFVVVZYuXdqpm/Fvws/Pj7y8PHbu3ElxcTHfffcdwcHBbNu2TRQkjY2NooBsaWkhPDycxMREQkJCGDlyJH5+fkItREtLi2+++QYNDQ0eP37M8ePH+fTpEzt37kRTU1N06qqrq1myZIkgilRVVXHp0iUCAwOJiIjAwsKCJUuWAB3J8qtXr3BxcWHv3r1dJhlIXXJyc3MpLCwUHWZZWVlhVblx40by8vL49ttvcXd3F8WcVGoqMjKSAwcOsGLFCpycnNiwYQOPHj1i1apVvHjxQnRsP336xM8//8yAAQPQ1dXF29sbU1NTtm7dyrt373jw4AELFy6ksLCQ/fv3d0pepSSnru5nSEgIycnJohsRHx/Phw8fuH79Ojo6OtjZ2XH58mXOnDnD69evefjwIa6ursydO1d0XePi4ti7dy/37t3Dz8+PPXv2sGbNGmbMmPFf3Yv4+HiSkpLo378/oaGhPHjwAGVlZc6fP88XX3zBp0+fKC0tRV1dnYqKCnR1dcX308jI6P8TT/u/hVRXUnqJycjIMHr0aBYvXszFixfZsGED3377LXPmzGH16tWi2WBubs7YsWNxdnbm9evX1NfXo6KiIpJZqTj+sGHDGDx4MA8ePBATFWkn9MiRI2zbtg1ZWVk0NDRobGxkxowZ7Nu3T+z5qVOnsLe357vvvqOoqIidO3d2aX2NjY2cPn1aTAWkOpatra28evWKOXPm4OPjw6xZs9iyZYsoxuLi4rh9+zbfffcdnp6enWApFy9eJCUlRUw4pVFUVMS2bduQSCTs27dP2NrGx8ejpKSEioqKGPnOmjWLlStXsnnzZgCh7NPa2vpZI9l/xpAhQ2hraxNObVIMupTE2djYyMaNG7ly5QoLFy6kvr5euCudO3eOsrIyCgoKiIqKYtmyZUydOpX9+/dz7do1fH19GTBgAMeOHePevXtERETw+++/c+fOHUJDQ0XXWvq9/qcwv5+fH8rKyigrK6OoqMj8+fOpq6sTyX9Xo7GxUSicGBoaUl9fT2JiIu3t7QwZMqRTYSQNJycnMeouKytjz549XLx4EWVlZU6fPo2HhwcrVqzg+vXrBAQEkJmZyfnz50WB2NraiqurKxMmTGDhwoXcvHmTpUuXcv78eU6dOsWff/7JtWvXUFVVFcmthoZGlw1DLly4QFJSEkOHDhWE+Dlz5jB69Gjy8vLYvHkziYmJZGVlYWJiQmFhIdHR0Xh5eaGhoUFbW5so7OLj49m2bRvQ0fRau3Ytt2/fZvbs2axYsYJt27ZhaGhIe3s7pqamnXKUzMxMtm/fzrx583j+/DmLFy8WcmvOzs5Cl93FxYWrV6/+r2vqcvKamppKbW2tEOZ1c3NDRkaG/v374+zsLGzjPnz4gL29Pb169SI7Oxt/f3+sra0JDg4WHRupiK2xsbGQdlFUVBQYO+j4kh86dEgcpvr6+jx79oy0tDQ0NTWxtbWlpaWFsrIy1NTUaG1tJTk5maamJiHl1BVGvnQUJbWZk3Zvhg8fTrdu3dDX16exsVEQUqADv6Sjo4O6ujptbW2kpKSQlZVFbW0t1tbWYpzo4uJCeXk5r1+/ZsuWLQKAHhERgaurq5Afg44L29TUlP79+wtJF+gQTK+traVHjx4YGxujr69PZmZml/bQxMSEkpISgVmSkZERF6+cnBy2trbCljI1NZXc3FyRlAUEBODk5CQ8tO/du4e/vz+zZ8/G39+fxMRESktLGTdunBjDeHh44OHhQUpKCi4uLri7uzNhwgThU/769WsOHz6Mv7+/IDrFxcUJNyepDMfnhpOTE4aGhmLMq6mpiYODA7m5uaSkpFBQUICJiQkzZszg+PHjPH78GFVVVQYPHkxDQwOVlZUYGxsTEhKCsrIyL168wNTUFGdnZyHU3r17dzZs2MChQ4d4/PgxlZWVhISEMHr0aNra2tDV1cXAwIBLly4J/K+npyempqb4+fkxfvx48ZlLSYhdibKyMkpLSzE1NUVdXV3gqUJCQoTskPRZvnHjBsePHychIQF7e3saGhooLS0VtpSqqqrIysqKTs3mzZuRk5Nj1qxZ3Lt3j9jYWOTl5Vm4cCFDhw7F09OT9PR0QkJCqKmpoampiZKSEiQSCQ8ePKC+vp6ePXtSXV3Nli1b6Nev37/CoeXm5lJSUkJrayulpaUcO3ZMTFik+3rq1Cnq6uqYPHkyfn5+KCkp0draipGREfPnz6epqYlbt26hqqrKrl27gA71AKkvuIqKCgsWLKCyspInT55QV1fHN998Q3l5uZiyGBsbY2xszODBg5FIJOTn57N3716UlZWxsbEhKCgIeXl5SktLu7Q+GxubThq10s6Ira0tT58+5erVq6xatYoZM2ZgYGDAwoULOX/+PBcvXuSnn35i0KBBtLe3c+/ePaBj/P/ixQvk5eUF3v7EiRP4+/vz+PFjiouL6dWrF+rq6uTk5BAZGYmvry+enp6sWLECQ0NDMU6Xk5MTiawUehMXF9el9UHHeSqFBmlrawuoVFRUlBhNSqFUKir/P/bOOy7Lsn//75u9995LNgKKCA7ce+XWNM3VuF2lpbkzs9Iy04rSSstMc++9RUURRRSZygbZQ/a8f3/cXedX6qlHenqexs/j9epFguB1cV7XeX7G8TkObR4/fiz2Vx0dHQoKCrCzs2PmzJns3LmTq1ev8vLLLzN58mRWrlyJtrY2o0aNIi0tjQMHDnD8+HERvPr4+NC3b19ycnKoqalBQ0ND2G5LagXnz59n4sSJWFpaYmVlxf37959q0lmCj48P0dHRXLp0iezsbDp16kTPnj2F+11ycjLJyclYWlqyfv16ANauXcvhw4dFdf3nyjwDBw6ksrISCwsLamtrefToEc7OzjQ3N3Pw4EHKysp46aWXCAsLIzc3F2tra2Gp+fjxY6ysrJg4cSK+vr6CqiNJh1VVVbXagepfdb4kh6eqqirBVbW0tCQtLY3KykoGDhwojAyOHDki+NLBwcH4+fmRm5tLVFQUt27dom/fvri5uVFSUsLx48fFgLJkJLN+/XpsbW2ZP38+bm5ulJaWcuzYMa5fv46NjQ0DBgwgMDCQ2tpaLl++LBKI1kJbWxtPT08yMjLQ09Ojvr6eyspKPDw8sLa25vr169y/f58ePXoIrXlJy/zcuXNkZ2dz5swZACG5eP/+fSIjIwEEz1wmkwkaWufOnRk9ejQWFhZkZWURHR2Ng4MD1tbWVFZWYmRkxIgRI8jOziYmJkaYvrTWOVTi9Et2vVIBAGD//v28++67NDQ04OnpyYIFC7h06RI//vgjhw4dElrv0iCwo6Mjs2bNIiMjAzU1NSorK7G2tmb06NFiSFIyO9DX1xeSp56engQEBIgES3LAfPDgAR988AHjxo3Dzs5OzE/8O7Q6eK2rq2Pp0qVCMkEmk1FSUiIy5ubmZoYNG0ZlZSXnz5/Hzc2NkSNHoq6uTlFRER9//LH4HjMzM7744gusrKxoamoiKSmJXbt2UVVVxTvvvIOLiwtLly7l0KFDYoDJ2tqa5557jiVLlhAcHIxMJiMrK0tox4JSeuvUqVMYGBhQV1fXqiGK2tpaNDU1kclk3Lx5kyVLlmBnZyfkeGJjY3F3d0ddXZ3Tp0+jUCgYPHiwMDbYvn07R44cQVdXF2NjY/bt28f169cxMzNj1KhRaGlpkZiYyJ07d5g5cyYKhQI7OzuGDh0qJgBv3rxJfn4+nTp1YtasWTQ1NYnDY8eOHVhZWeHj44OdnR2Ojo5i0vZpceHCBU6dOkXPnj1bcNwAbt26RWxsLKGhoSxbtozJkydTV1fXwlJww4YNvPLKKxw/fpz79+/TqVMnOnbsSHJyMq+99hrm5uZ89dVXqKmpoaGhQVVVFRoaGpSXl3Po0CEyMjJabKxSZVRFRYURI0bg4eFBQkICX3zxBV27duXYsWPMnDnzqe9v2LBhODg4iEEtXV1d/Pz8uHbtGjU1NaSlpYlJ9ClTppCeni7aIR07dqSxsRFnZ2fee+89NDQ0+Pzzz4URhI+Pj6i0derUSRysqqqqvPXWW/Tr14/6+npu3rxJSUkJlpaWlJWVsXv3bk6fPk2/fv1wcnJqUaXT1tbmwoULrbL7y8rKwtfXF39/fxoaGlpsZnp6emLA7MGDB7z99tvcvn0bKysrOnbsKLzdJbRp00Z8f2JiohhaGDZsGEuXLmXNmjX4+fnx0ksv4evry+HDh4mMjGTu3Lk8fvxYyMksXryYgwcP8tlnn3Hs2DG0tbW5c+fOLwwEnhZvvvkmBgYGjBkzBh0dHc6fP09zczNBQUFYW1tTV1cnuKlSgqilpcWVK1cwMDBgypQpeHp6sn79+hYDYydPnsTIyIiysjLCwsKETatcLsfCwgJ/f3/Onj3LtGnTsLGxYcGCBfTv31/IuS1evJg5c+YASs/xjh070tTU1Go5sJiYGFHBlZL3AQMGoKOjIw6Uuro6Fi9ezMCBA1m6dCnz58/n7t27LFiwgLZt2+Ls7IyVlZXgv61cuVJYvFZVVfHyyy/j6elJcHAw3bt35/nnn0dTU5Pvv/+eJUuW0K1bN959911Wr16NlpaWeC49PT1baC1evnyZixcvtnYJRYCqUCgwNjZmxowZXLx4kTVr1hAYGCjkxeLj40lISMDPzw83Nzd0dHS4cuUK9fX1TJ48mffee4/8/Hy2bNmCk5MTFhYWYmDHxMSEsWPHkpOTg0wm4/Dhw+jp6dG2bVu2bNlCZWWl6BRK1bPt27dz/vx5QEl7W7ZsGVOnTmX27NlCj/Jp4O7ujq+vL5s2bRLcVSl4DgwMZNGiRbz//vvCEvPq1assXboULy8v+vbtS2lpKTdv3hRujLq6uixevBh1dXUaGxu5du0ajx8/FvuvlZUVWlpa4v1VVVVl8ODB6Orqcu/ePZKTk3F3dxfvs0TLqq2tpbS09HdZp/4rSHurjo6O6O60bduWQ4cOCVdEqai1YsUKYmNjMTMzo7KykqNHj5KUlCSUWyQkJSWJxMHJyYmRI0eyfv16SkpKWLhwoTjHv/vuO8LDw4mKisLKygo/Pz9hKX/06FEePXrUaoUaCXl5eSQnJ1NYWIitrS3e3t6YmZlRU1PD5s2bSUhIwNvbWwSvycnJpKenk5ubi7e3N/7+/ujp6VFbW8vcuXPFcJ0Ec3NzjI2NSUxMRFdXl1mzZtGzZ0/RFZAGxaUKvYSysjJ0dXXFPtZa86WePXtiZGQkhsCehGRQBEoqRNu2bYUetKQ9O3jwYAoKCti2bRsvvfSS6KqXlZWhpaVF586dCQkJQUtLi/z8fLZt24a5uTkLFy4Uz7qhoSGDBw9GX1+fnTt3smbNGkxMTBg6dCjnzp0jNTWV995776nvqdXB65IlS1r4/kLLSeKqqipGjBiBqakpSUlJ6OjoiIOloqICBwcHGhsbuXLlCvHx8Tg7O9OjRw+srKwIDAzEwsKCy5cvc/XqVXx9fVmyZAkqKiqcPHmSb775hlGjRvHuu++28Pe+ePGiKIU3NDSgrq4uAoEnncCeFtKkuaWlJa+++ioNDQ2kpaUBSl0/KZD85JNPcHR0FJxFIyMjjI2NGTVqFKampoSGhlJSUkJoaKjgpdXW1tK9e3d69epFRUUFp06donPnzkyaNIl79+6xatUqampqGDRoEDo6OhgZGZGcnMyVK1coKSnB29ubYcOGoaOjw+7duzl//nyr25XHjx8nMjJSkOFB+QB/9913fPTRR9TX17N582a8vLxaOJVIwtja2tp4eXnR0NCAh4eHEHavqakhJiamRaBbWVlJVFSUmHINCwvD2tpatPGkDczAwABLS0vxbAUGBrJ69Wq6du3a6hf14sWLWFlZ4e/vj5WVFaWlpZSXl4sM38DAgPPnz+Pv74+9vT0BAQGsW7eOhw8fipe8sbFRJBOSKLydnR2amprixZZsANXV1fHz8xN8ZQ0NDUxMTBgxYgTq6uokJycTHR2NmZmZcKSKiopiz549dOnShWHDhjFjxgwx1PY0kIaYUlJSqKqqajF5Kk2ZR0ZGsnr1auLi4ujQoQMvv/wynTt3xsPDQ/xOr127hpqaGr6+vlRUVFBcXEznzp3p0aMHampqDB48mOzsbHR0dDh58iTHjh2jpqaGzp07ExgYSGlpKV26dKF79+44OTlhZWUlFEmkNXzyOWsNsrOzqaysxNvbm/Hjx/P666+zY8cOFi1axPTp02nXrh1Tp07lwYMHglKQlJTE8uXLaW5uZseOHYSGhuLg4CCClsWLF/PNN98wbtw4hgwZIpx+pIl3dXV1NmzYIDQ2dXV16dChA7a2tpSWlnLkyBGsra0ZN24cP/74I3FxcVRWVlJYWCiCoadFVFQUu3fvxt3dneeee44uXbpw584ddu/eTVZWFm+++SbW1tbi2mbMmIGDgwMvvfQS5eXlJCcn07VrVxYuXMgPP/zAnTt3qKioQF1dnWnTphEdHc2ZM2eor69n7NixtGnTRgwx+fr6MmPGjBb0KIVCQUJCAtbW1mIY786dO0LdJSwsrFVSYKCsjkvKDFJC5eLiQnBwsOCewv/pOkuH64ABA4SdqYGBAcOHD+ezzz7D29ub48ePs3XrVvF9TU1NQrJIR0eHu3fvcuXKFZqbm+nVqxfPPffcLyazJf66JG13/fp1zp49K975p0VSUhJ+fn6MHz+eTp06taCoSYoNU6dOpbm5mfnz5yOTyVi4cCHt27enR48eaGtrc+TIESZPnsyMGTPo0qULly5d4ujRo4wdOxYfHx9SUlJISEggIyODoKAgvLy8aNOmDYCQLMrPz2fHjh0cOHCAuro6Nm/ezGeffSZar5JagDSg0xpcu3aNb7/9lsbGRoYNG8bAgQPF+ZqXlyfkGqUu45ODi8OGDaOhoYHZs2eTl5fH7du3WbRoEbt27RIKQ6CsYNrb22NnZ0dKSgoXLlzgxo0buLu788YbbwjVmoKCAmJjY2lubqZLly4MGTJESG95enoyfvx4UlJSBI3raXHhwgW++uorUlJS0NTUxMLCgt69ewsVB21tbbp37y6sch8+fMjXX3+NmZkZu3fvJiwsjLq6OnFmxsfHM3z4cGpra3nxxRcZP348Z8+eZf/+/ZSUlPDWW2/Ru3dvtLW1uXbtGjk5OXTo0AFvb+8Wcyz37t3jiy++ID09naFDh4rnq7V21AEBAdjb24tiyqFDh3j48CEymYwjR46ItQoJCSE8PJzs7GzGjx+PkZERly9fFuoXb731FjKZjKVLl9K/f3/B392xYwexsbHMmzcPDQ0Nzpw5I0yVOnbsSH19PcePH0dFRYVZs2YRHBzMuXPnsLKyEsFyamoqH330EeHh4U+VfPwuqazs7GyMjIwE76Kurk5MvhsZGWFkZISfnx+xsbE8fvxYiFE7Ojqya9cubt++TU5ODvv376euro7169fz2muvoa+vz+jRo3FwcBCZTYcOHZg5cya5ubncvXuXmpoa7t69K+gChw8f5osvvqC6ulqYFdTV1ZGfn09MTIxopz4tNDQ0xPCDr68vvr6+1NXVsWfPHhITExk9ejS6urpCeNna2prHjx9jYGBAaWkpQ4YM+YUmoqOjIydOnOCbb74hPT2drl27ihbmqlWrxJTe3bt3iYiIoLGxES8vL5ycnNi9e7fIciwtLZkxY4bgnh0+fJgffvih1YMweXl5FBUVtTiIJN21mpoanJycuHjxIurq6vTp00ccQJLeZGNjI6mpqVRXV2Nvby8GIoqKijA3N6e+vp6YmBhCQ0Npbm7m9OnTnD59Gn9/f8aMGUP79u0pLi4mISEBZ2dnbG1tsbW1JT09ncTERKytrXF0dMTa2pry8nIKCwtbdX/3798nPT1dCJpfuHCB6upqxo8fj6qqKg0NDSQlJZGVlYWBgQENDQ2MHj0af39/VFVVCQgIELI89vb2dOrUiZCQEOEZHh4ezvbt2+ncuTO9e/emc+fOgnsmHb5SIAvKlk1OTg4aGhpi7QoKCsQwnsQ/bU3wKuH27dvcunWLR48eifa1NMwXExPDw4cPUVFRoWfPnkybNg1AGH4kJiYSHx8vnFWenCJtamqipqYGb29vnn/+eXbu3Ml7772HsbExK1euFBV7bW1twsPDAeVATKdOnXB2dhYDYFKF8vcMFo4YMYJ79+4J7pSNjQ0pKSmMHz+ex48fs3//fmbPnk10dLSoXEqOV/Hx8URFRfHcc8+JalNGRgbXr19HS0uLcePGCX75119/zblz52hqaiI/P5/Lly8D0K5dOzZs2CDk+DZt2sT+/fv55JNPmD17Nn5+fhQWFoohESsrK7Kzs5/6/mxtbfn22285c+YMtra2uLi4kJ6ezkcffUSnTp1YtmwZ1dXVnDx5krZt29KhQwf69evHZ599RmpqKra2toLekZaWJjowPj4+6OjooKamhoGBATNmzBCuTVKFZejQoQwdOrTF9Uga1Xl5eYSFhaGqqkpycjLffPMNoaGhjBo1SnAonxZSMBgfHy/kqVxcXFi8eDGAaKNKe4BEUXJ1dWXChAlUVVVx584dOnTogJ2dHbNmzSIzM1MkCn5+fmhqanLu3Dm2bdtGr169cHBw4Nq1a1RUVJCWlibmE4YMGYKVlRWNjY2MHz9eTIcnJydz//59du/eLWhBT4vCwkLq6+sxMDDA2tpa7BmgVH64ceMGr7/+OoWFhQwZMoS2bdsKupmEmpoa4uLiuHv3LnZ2dnzwwQdERkby/PPPY2pqiqmpKfHx8dTU1NCjRw+sra1JS0vD1NRUFI5qa2tJT08nPz8fVVVVzp49K4ZE586dK5wSz54922qd19jYWM6cOYO6ujpt2rTBx8dHJKQaGhqoqqoKaoG0t0jDVJJFb9++fYV5gIWFBVZWVtjY2LRQhZHE+6VkMy4ujueff15U/SIiIigsLMTa2lrIWUlBfFZWFgqFAk9PT3x9fVsdvCYmJnLw4EEaGxvp3r07NjY2mJmZCS5yZWVli73k888/54MPPmDmzJliODY5OZmOHTuirq4utG+lQNXBwYGkpCTy8vKEfnaHDh04deoUhw4dwt/fX6hvrFy5ko8//pgJEyYQExPDgQMHqK2tFcNaxsbGrd5PFQqFSODV1NQoKSkRw4rp6enY29vz7rvvYmtrS+/evbl9+zZvvPEGHTp0YN++faSkpODn58eECROE+sqWLVs4ceIE/v7+PHr0iLVr12JmZsbrr79OSEgIpaWl1NbWkpGRwbVr17hx4wb5+fki0RsxYgTa2tp07twZb29v9uzZw7Vr18Qg+L8btm918NqjRw8sLCxYtmyZMACQWu0//8f8/f05ceIEP/74IzNmzEBVVZUjR46wc+dOLCwsBI9S0hsEZfYmBS4lJSWsWrWKpKQkRo0axbhx4zh9+jQLFy7k9OnT9OnTR7RFPv30U4YMGUKfPn3IzMxk6tSpWFlZsW7dOsE5eRoUFRVhYWHRInvU1NREV1eX7777josXLzJr1iw8PDxYtWoVOjo6NDY2EhcXJ+RAfg5nZ2fc3NxYtGgRjx8/bsHhDA4OJjIykhs3bjBo0CBOnDjBsmXLKC0tJSAgoEXw3bNnzxb8o9a6wUiwtbXl9OnTgv8Cygq1r68vw4cPp2PHjixfvpyrV6/i7e1NZWUlu3btYuDAgfj6+nL27FkuXrxIQEAAzs7OXLx4UWTEFhYWpKen8+mnn2JpaYm6ujq5ubk4Ozvz7rvvEhAQgEKhEIGvvr4+DQ0NHDx4kOXLl2NkZMS3335LfX09CxYsoKioiJdffrlV9zdy5Ehho1tWVkZdXR2GhoZioywtLaVdu3akpKTwwQcfoKGhwbx58/Dz86OpqYm+ffuKF0iixOjo6JCfn88bb7whpoWHDh0qJE0kKoWnpyfz588XVqKA4Ifn5+eTmpoqKk/Lly/HxcWF+vp6Tp061ap7/Oyzz3j55ZcZO3YsJSUlzJkzBxcXF+bOnSsUAPr16yf4bwcPHuTNN98UWnyvvfYalZWVLFq0SFQ/JOkyTU1N6uvrqa2txcTEBAcHBxFELly4UFBoJJUDCefPn8fHx4cOHTrw7bffcu7cOaZOnUpBQYHgmLYGPXr0oHv37i06PQUFBYLTLMHOzo63336bjh07MmXKFL744guOHj2KhYUFUVFRbN++nYyMDFxdXRk9ejS+vr4t2nJWVlaiwxETEyM+J03SSujbty8BAQGiyjt9+nRqamrQ1NTEzs6OadOmsXLlyqe+vwkTJgi5nV27duHt7c2AAQP48MMPOXz4MAsXLsTNzQ0rKyvOnz/P0aNHMTc3JyQkhMGDB4vqucQtk5CZmcnq1auRyWSEhYWJAx74BTVF0lf08PAQQvHbtm3j5s2bTJo0ieDgYN566y1RVf+9uHTpEmfOnGHYsGGiMAHKxE6SJ3rw4AEfffQRt27dYtmyZUycOJHx48eTl5eHpaUlUVFRREREEBYWRkBAANeuXROJRVFREY8fP+bEiRMEBQXh4eHBmDFjcHZ25u233+bGjRu0bdsWKysr0tLSBAUNlPt7Tk4OSUlJorP2tJAUSqSBo65duzJixAiKi4uJi4vDyMhI6L+qqalx9+5dbt26Rfv27Xn06BFvvvkm6urqfPzxx+Tm5jJjxgysrKzEfUjw9vYWkoanTp3iu+++IzQ0lLlz5wLKM9jJyYnevXujqqpKeXk5ampqDBgwQAyjgjLYl0xmnhaNjY2sX78eOzs7GhoaiI2NJSMjg44dO/5Cv1lNTY2cnByRVBcWFmJhYUFAQIBw+Vq7di2XL1/G3t6eN954gzZt2pCUlMT3339PWVkZ69ato1u3bsIGFuDo0aMcPnyYIUOGMGDAAFRVVbGysqKqqopjx47x9ddfk5ycTKdOnUS1tDXo1q0bmzZtwtjYGB8fH9FFBaVJQ2JiIvb29oInamdnh4aGBg8ePGDz5s3cuHEDa2trVqxYASC4+OPHj8fBwYGbN2/y7rvvEhISwowZM8S+1KFDB2HCIGHq1KkcOXKExYsXk5ubS7du3ejSpQs9e/akoaGByMjIVhd0KioqBJVDT0+PSZMmCW16Y2NjSktL0dHRwdjYmNWrV/POO++wb98+srKyGD16NO+88w5XrlzhnXfewcPDg08++YStW7eycuVK9u/fz/z589HR0RGFj2XLlrFkyRKsrKyIiIgQcZqhoSG2trbk5ORw48YNhg4diqurK66urlRVVTFw4EAhg7ds2bLfvKdWB6+5ublYWFgQHR2Nnp4ejo6OWFhYiOn469evC3/jrl27UlFRwZo1a4T9aXx8PNbW1rz00ks8fvxYVCIl1NfXi1Z1SUkJBw8eRFtbmxEjRmBpacn169dJSUkhJSWF6upqPD09GTt2rBDel1rCubm59O7du0Xb+2kgiSBL8hYZGRk0NjZiZmYmpIUk/UnpEAdl9Tk9PZ0TJ05gb28vBh9MTU3R0NAgKCiI6dOnc/z4cQoKCvj+++9F693S0pKamhrU1NTw8fHBwMCAyspKbGxseO655zh79iz6+vq89tprODs7U1VVxaNHj/D39+e9994TMlRPi8DAQO7du0ePHj0A5QFiaWnJ0qVLcXJy4u7du6ioqNC9e3fatm3LnTt3BIm+srKSTz75hFOnThEUFCS4us3Nzbi6umJnZ8fly5cFX7hPnz6ifa5QKIT95pNtgZycHLKzs6mvrxdKE4WFheTk5KCjo9PqNZQGMwDhCFVXVycmGaXAR1dXl5MnT2JrayvaMTU1NS3E2m/cuEF6ejqDBg1CTU1NVGak6oEkWB8fH09ERAQJCQlikzM3N6ddu3bo6Ojw6NEjEeiUl5djYWHRwp6vtdSIU6dOMW3aNNTV1cVgAyiJ+NKkp6GhIc7OzvTp0weFQkFubi6mpqaUl5cLHp2UbB0/fhw/P79/2a5xcHDA0dERb29vXnrpJfF5GxsbmpubOX/+PAkJCTg5OWFnZ4dMJsPFxYXMzEwuXLhATU0Nzs7Ord5wtbS0xFqkp6ezdu1acnNzefHFF9HV1WXTpk0EBQURERHBpk2bOH78OAYGBtjZ2eHi4oKamhplZWVioNPd3Z3JkyeLA7G4uFiI+stkMry8vDA0NCQ2NhYbGxsePXrE8ePHxf1LwwgNDQ1iDUHJEwdaJCxPA0nT8/Hjx8TExFBeXo6mpiZz584Vk+Xa2tps2LBByOydOnUKPT093N3defToEbW1teKdkVBVVSUoWGpqahw4cICYmBjs7OzE0Ku3tzcaGhrk5+dTUVEhqEfGxsaisldXVycci4qKin6XSYEENTU1HB0dsbW15caNG9y6dYvAwEAxiJqSkiKuQzIRAEQnD5Qt+ocPHzJhwgSsrKwICwujsLCQ/Px8vLy8cHd3Jy0tjaysLEaMGCHUWRISErh//74YjEpPT6esrAx3d3eam5u5fv06AQEBDBw4kJ49e7Jnz56nvq/Dhw/j5+fHw4cPKS4upry8nPz8fBQKBf369UNHR4eMjAxSUlIYPHgwhYWFpKSkiO7TwYMHMTU1ZdasWdTX16OiosKSJUvw9PQkLi6OXbt24eTkJJKQx48fY2FhgYuLCzExMSxYsABvb29qamooKCigsbERJycnhgwZQmhoqNgHJRfL36MaoaenJ5J0UCbqZWVldOvWDYVCwe7du0lNTaVPnz4EBQVRX1/Pzp07KSsrw8/PT7x/kntSdHQ0J06cwMjISAxxJiYmYmFhQYcOHXBychJmIGlpady6dYtLly5hb29P9+7dcXV1pbm5mdjYWPbs2cP69eupra3Fy8uLa9euERMTI862p4W3t7dwYZSCVckWurS0FBUVFVE4kjp2kjJFTEyMGDwrKioSrmqlpaXo6+tTUlLCkSNHaG5u5s033yQsLIyTJ0+yc+dO0tLS+Pbbb3FxceHmzZtoa2vj6+tLaGgo77//PmpqanzyySfCqASUbmDl5eWtuj+Jm9zQ0CBiHF9fX3FWnTp1Sugf9+nTh/v37/PGG2+QlpaGm5sbo0aNYvv27ezZs4e3336buXPnUlRUxLvvvisoVE92gI2NjWlsbKSyshIXFxfGjx/P6tWrqa+vJzIykqSkJHbv3s39+/cxNjYWmvISJCfW30Krg9eoqCiMjY1ZtmwZa9euZfbs2bz99tsAHDt2DLlcTk1NDQMGDCA4OBg9PT3S09P5+uuviY6OpqysjAEDBjB//nz09fUpKChoQWjW0tKitLQUY2NjjI2NmTx5Mrq6utja2tLY2IiDg4MYtoiJiaFr166i2nT48GHef/99SktLGTVqlNCEaw20tLSIjY1FV1cXhUJBSkoKoNR/XbBgAaWlpdy/f5+YmBjU1NRE5cna2po2bdqwYsUKUTUMCQmhrq6O5ORkzMzMWLduHb169WLTpk2cOXOG5uZmHBwcGDBggJhm/Oqrr8jIyCAgIIDExEQCAwP5/PPPaWhoEEHczZs32bZtG15eXixatKjVU9yBgYHo6uq20NAcMGAAhoaGrFy5kg8++IDZs2ezdu1aALExSIYDkjNIdHQ0bdq0oVevXhgYGKCjo4O1tTVt27Zl5cqV/Pjjjzx48ICDBw/S1NTEkiVLcHNzE9kpKLk71tbWvPjii4wdOxY1NTXhsvbdd98J/mhrsGPHDu7cuSNsUz08PISRhbOzszgMtbS0mDt3bosq+5O+1IDYIDU1NXnuuefYtWsXn3zyCdHR0eTk5LB7924ePHgggnup9Xnr1i08PDzw8fFBQ0OD5ORk7OzsROtGkj2RMHjwYDEU9jTo2bMn6urqVFdXk5+fzyeffIK1tTXq6upCdWPXrl3ExsYybtw4wsLCMDc3p6amBh0dHdasWSN4gCtWrCA8PJy1a9cKTVjJAhCUQf7o0aNRKBRiWE3C/fv3mTVrFpaWlmzbtk3IiI0bN45Hjx5x584dHB0d6dChQ6tl3c6fP4+7uzsaGhpUV1dz7949bGxsGDp0KJGRkcyZM4fGxkYRcGdlZfHCCy+goaGBnZ0dgwcPZtCgQSxcuBAVFRVRQQdlkmJqaiosj8+ePcvbb7/NmDFjWLduHXFxcZw8eVJMhS9YsAB9fX3q6urIy8sT/2ZcXBxfffUVTU1NDBgwoFX3Jzl6OTk50atXL9HSB0RbtqamhpycHCZPnoyLiwvbtm3j/v375ObmkpmZiYGBAW5ubuTn54vv9fLyYtu2bcIv/ocffkBTUxM1NTVsbW3p3r27aN116dKFioqKFu/AoEGDaGxsbOHe93vUFCQ0NTUxYsQIRo8eTXV1NatWreLLL7/k1VdfFcGriYkJNjY2uLu7k5ubK96TJ59DyVVJUo+xt7cnPz+ftLQ0xowZQ0BAAMuXL+f+/fvIZDLOnTuHiYkJ48aNw8HBAU1NTeLi4oSl+ffff09+fj4eHh689NJLdOnShebm5lYFr1u3buXFF19k8uTJzJ49m7KyMhoaGrC1taVjx45UVVXxww8/cObMGezs7HjhhRfEkJ6lpSWvv/46W7duZfDgwYwZM4YdO3ZgampKbm4ur7zyihgCfPvtt3nhhRcwNjZm8ODBwnDg/fffx8jICE9PT2Hf7OLigqOjY4sunaamJhUVFUJPuDV4csirsbERR0dHnJ2dUVNT48iRI0LGMCoqigMHDlBRUUFOTg49e/Zk3bp1FBUV8cknn7B3714mT57Mm2++iZ6enrCorqiooLm5mZdeeonGxkbmz59PeXk5L730EllZWcKFcerUqSLwVlFRQVtbm/T0dGpra+nWrRs7duzgm2++Yfny5a0OXiUkJyfzwQcfcPLkSQICApgzZw7t2rXDy8sLbW1tKioq2L9/PzKZjB49eqCqqoqnpyfTp0/H0dGR4uJi7t69i5aWFlZWVoK/K0mCSZ0c6Qy6fv26mNHYu3cvOTk5fPbZZzg6OtKlSxfy8/MpKSmhpKREnINt2rRBT0+vVR1lieKZkJDAnj17xHzH9OnT0dHRoXfv3ty8eZObN28KZ9Tg4GCioqJYu3Ytp06dErQkaV+QEuZdu3bh6ekp4kBQ6jLHx8eLYa0ePXoQFxdHUlISe/bswdjYGHt7e6KiopgwYQLffPONoNotWLCAr776ivHjx//mPbU6eJU4ffX19ZSUlLSYcpYEs0Ep2SNN0i9cuFAMcRw9epQDBw6go6PDsmXLhKh/Wloavr6+WFhYCK5OY2MjOTk5VFZWEhcXh42NDaampjg5OREfH09FRQVZWVmUlJTg6OgoNov4+HgaGhpISUn5hSfxv4Ovr6/Q2pM8eiVrT6kKYG9vz9WrV7l7967g265btw4PDw9iY2NJTEzkgw8+AJSbRnh4OKWlpUydOhVdXV2cnJyEWLYkqQTKTcLLywsPDw9hIefl5SXaW+Xl5RgaGopq7vXr11vN6ZXu0dnZme+++460tDQmT54sDgtJMkpq1Uv8rNmzZ7Nw4UIiIyOZOXMmbdq04erVqwwePBh/f392795NUVERr732Gl26dKFNmzacPXuW6OhovvjiC9q3by/sIM+ePUt9fT06OjqEhoaiqakpkpUnoaenR2FhIUlJSa26P21tbQ4ePEh9fb14XiVr1sjISKqqqtDX1xeyNvB/waSWlpZwifH09BRSV1paWjz33HOoqanx3HPPcfv2bdTV1XFyciIxMVEkOcHBwSxevJj6+nri4+OJi4vDy8sLe3t7Lly4wOXLl5kyZUoLWbeqqipSU1NbdY+vvfYaMpmMzz//nMuXLzN//nwhLxcbG0tmZib19fVCFu3Ro0dijaV3SEJ+fj5FRUWcP38eBwcHUlNTqaqqwsfHBxUVFcrKyjA3NxfOYtevXyczMxMfHx+SkpLQ1dVFV1dXDBGoq6tz/fp1qqqqhDLH79Ej/vjjj4mJiWHt2rV4e3uzYMECLC0t8fLyori4mMbGRurq6pDJZISEhGBjYyM4ouXl5WIStkuXLoLzWVNTw/3793F1dUVbWxuZTCacyaRnPSkpCQsLC3x9fdm+fTuPHj0S3N3m5uYWznZNTU24uLigo6PTaivjhw8foqurK/YxY2Nj0tLSOH/+PNeuXcPX15ecnBxOnDiBtra2kOS7cOECpaWldO3aFS0tLbZu3Srcr7S0tHBzcyMhIUG0CGUyGQqFgr59+zJ69Gg8PDzQ1dUlLy8PIyOjX9CPpKTqzp071NbWiv3oyeD6aSEppUiybZGRkZiamvLGG2+gqqrK1q1bGTduHKampjQ3N6Orqyv2u4KCAkpKSoSxx927d4W967hx41BVVcXS0lIM7wYFBQm+/q1bt8jKykJTU1MMqwFiz5acmFxcXOjUqRMaGhoUFBRw7dq1Vt3fq6++Ss+ePUXVXVI5iY2NFfSbO3fusHfvXry8vOjYsaMIXMzNzVmyZAl37tzh6NGjojMCSvkic3Nz+vTpg42NDc7OzsIxCxBmGW+++SaxsbFcu3aNyspK+vfvT//+/Xn06JGQQgsODkahUFBTU0NVVVWrpRUl17zc3FxRfHqSatG9e3eKi4txcnLi0qVLlJaWMmnSJLp37y7W6OWXXxaW5Obm5ixatIjU1FSx7k5OTiQnJ7Nx40ZOnjwJwPvvv4+joyNlZWWMHTsWa2trPvnkE7S0tISKxvDhw7GwsBDOcW3btmXq1Kmtuj9Q0hLy8/NFh+XcuXMkJSWhpqYmOiz79u2jtLSUTp06UVlZyfr164mOjmbMmDEsXboUUL4zWlpaTJs2jezsbNFtk2YEkpOT+fjjj0WnTFtbGycnJ7S0tEhJSeHIkSN0796d6dOnM3PmTA4cOMDOnTv5/vvv8fX1pXPnznTs2JGOHTuybdu2Vt2jpFZ069Yt2rRpIwp+AQEBODg40K1bN/Ly8igsLKS8vBxra2teeeUVHj16xKFDhwCE9KlcLsfAwIBFixaRmZlJVFQUw4cPx8zMDE1NTTQ0NATN6syZM5w7d47OnTszd+5cUlNTaWpqYvXq1cTHx5OZmUlSUhKdOnVCX18fAwODFt3PX0Org1cJXbt2RV9fv0W1wcvLi6VLlzJq1Cj8/f0BJd9TCuRiY2OJjY3l/v37fPbZZyKwbWpq4uHDhyL7fpKEfuPGDR49eiS4avb29jQ2NlJfX09TUxNZWVmcOXOGkJAQ2rZti7e3N1FRUbz//vtUVFT8LmFtDw8PwQ3s0qWL0Gd98OABDg4OaGho0K1bNx4+fMjatWu5cOECgYGBDB48GDs7OwoKCgSfV/Kyv3TpEoWFhXTo0AFTU1PBywJl0B8bGys2dYDU1FTWr19PXl4er7zyCtra2mRlZVFfX4+Liwvz589n1apVLFmypNWcUFAeUBcuXODIkSMEBgaKh2XKlCmi3RYZGcm8efMYPnw4CxYswMrKioaGBkJCQhgzZgweHh54e3ujqqrKiRMnBBUhKCiIPn36cPfuXa5evcrq1at5//33efvttzl+/DhyuRxLS0vmz58v+NKgbNdIPEtjY2OSkpLYuXMnWVlZreL3SkoODx8+5OzZs4SEhGBra4urqyu7du1i//792NnZoaWlRWBgIMbGxuLATk1N5ejRo9y/f5+2bdtSUlKCnp4epqamYhL7xIkTaGlp0bNnT0JDQ1tICEmDiRKuXbuGvb09Li4u7Nixg927d6Ojo8PYsWNRVVWlsrKSI0eOcODAgRb0mX8HiWaQkZHB1atXBU+8uLiYb775hrq6OlasWIGpqSnLly8nLy+Ptm3boqGhQVlZGY8fPxbBrI2NDUZGRlRVVQkr35KSEvHsW1hY0K5dO0xMTNDU1KS2tpaoqCgePnyIs7Mz06ZNo7m5mfz8fJydncnNzeXAgQNYWloSFhbG/fv32bx5c6vtUzMyMrh48SLHjh3jxRdfbDEIeefOHZydnbGxsRG/7xkzZhAaGsp7773HkiVL0NfXJycnRwyKhIWFkZiYSHp6upCsAeUepa+vT3R0NBERESQlJQmv+cLCQuEe5+npiba2dgtzD4kCExQUhJubm/i3ngYlJSXY2tpy7949Hj58iLGxMQkJCRw4cACZTIa7uztGRkZERUURFRVFQEAAfn5+REZGoqOjw/Dhw9HR0REc8d69e+Pi4kJaWhorVqygT58+DBkyhLq6OtLS0njxxReFMsipU6coLCykY8eOIrCrqKhAR0cHVVVVqqqqSExM5PHjx5iammJsbNxqcXtQ0szMzc3R0tKipKRE0MT69evHnj172LJlC/r6+owaNUoER66urjQ2NlJVVYWJiYlIFOLj4zlw4AD29vaiGmhkZCSoSCkpKcTFxVFTU8OlS5ewtrbG1dWVK1eu4OTkhK+vrxgkAiWvuV+/fgwYMACZTMZ7773H1q1bmTBhwlPf36uvvkpTUxPV1dUiebl9+zZHjx7FwMAAbW1twaNWUVEhNzeX69evY25ujqurK1paWkydOpXLly+LPaiyspJ27drx0ksvCZk5aSgYlNXeuXPnMm/ePNauXcuqVas4ffo048aNY/Pmzejr67Nu3TrOnTuHk5OTSDz09fXR0tLi3LlzrVpDY2Nj9PX10dTUpLm5mfLycrS0tCguLqZ///7izLp79y4ffPABbm5uLFy4EDU1NaKjo7G2thazLDKZjMbGRu7duye0pq2trQkMDGTx4sUicJ0yZQre3t6YmJgQEhKChoYGERERrFq1Ch8fH0GZGj16NKNHj+bcuXMMGTKEcePG8c0337S6G5mcnExCQgL+/v68+uqraGlpUVhYKOYBvvjiC+RyOW3atBH7/969e6moqBCdZnd3d2pra+nXrx9+fn7cvn1buChK+OSTT8QAtoeHB4MGDSIkJITGxkZqa2tpbm4WEnVdunTh+++/F9qxN2/e5ODBg0yfPp158+a16v4eP34sZovCwsKYM2cOGhoa7Ny5k5iYGBwcHFBVVRWDkzU1NTx69Ag/Pz9BfZBmRS5cuMCdO3dYt26duI7du3czffp0EXN9++23QjJOcigcOXIkXbp0obq6moKCAoYMGcKIESOorKxk//79HDx4UMgzLl269N+uYauD102bNvHyyy8zZcoU4uPjRWWzvr6ekJAQ+vfv36LdJAUdkZGRnDt3jvbt2+Pv74+mpqZ4MFxcXCgtLWX9+vXY29uLKoeBgQGjRo0S1qqampoEBwfj4uJCXFwcqqqqODg4EBwcLIj7gJAuKSgoICEhoVX3t2vXLry8vOjevTsDBgwQFSoTExNiYmI4evQoXbp0ISgoCFdXVxYvXoy9vT3R0dFUVVXRtWtXPD09OX36NBkZGdTV1REQEIClpSXOzs5oa2tTX18vAqE2bdpw/vx53n33XTw8PNi7dy+6uroYGhpy4cIF7t+/z4ULF3jrrbcIDAwUAYCNjQ2vv/465ubmv7udt3DhQtq0acOhQ4fIy8tj2rRpLQ6ogoICrl+/TklJCc7OzlRWVqJQKFiyZAl79+5FJpMxcuRIOnbsSJ8+fbCzsxMHw/Dhw4mIiODq1asYGxuLlsCVK1dISUkhKCiI/v37k5uby82bN+nYsSPOzs6UlZUxdepUzMzMeOONN1BXV+fAgQOtIuGrqqoyZ84cvvvuO77++mtMTU0JDAykffv2DBs2DCMjI2xsbOjSpUuLau97773H6dOnCQsL48UXX6SkpASZTCbW+uzZs8jlchQKBW+88QZdu3bl/PnzfPXVVwBMnDgRFRUV+vTpQ2NjI507d2bw4MFoamry4MEDhg0bhpaWFitWrODSpUuEh4fj6OhIZWVli8Ggp8GWLVvo3r07wcHB6Ojo0K5dOzIyMoiOjsbCwoKePXvi6OhIdXU1/v7+mJiYCLvKhIQELC0tRfCamJhIWVkZ7dq1Y/DgwRw9elSI9Hfo0IGhQ4diaGhIYWEhDg4Ogn/X0NBAaWkp+fn52NjYYGFhwZEjR4iLi6N9+/b0799fqH+0b9++1SL3Q4YMYcyYMTx48ICJEycSFBSEkZER+/btE/qggYGBmJub8+jRIxHQL168GGNjY2xtbfHw8BAT4WfPnhXyMPfv3+fixYvExcVhYmLCW2+9RVxcHNHR0ZibmxMTE4OGhgYjR47EwMCA+Ph4YmNj8ff3x9PTU7ThkpKSCA8Pb1Hde1rEx8fz4Ycf0r59e1xcXNi5c6eooAYGBqKlpdXC6rKoqEi0SUG5J7m5uTFs2DBMTU0ZNGgQhw4dEkNNs2bNwtzcnOjoaCIjI/nmm2+4fv06UVFR5ObmMnDgQMG7lvYkiROpq6tL3759hZLFk5PtrcGNGzeEOYJkhXzixAlWrVqFqakp06ZNo6ioSLi01dbW8umnnwo61ZNnyYQJEzA2Nm4x3PLw4UPeeustsrKyMDIyajHJr1Ao6NWrF506dRIt37Zt27J582aampqora0lLy8PBwcHPD092bJlS6s7WR999BHZ2dmMGDECOzs7Nm7cyKlTpwSH8vz581y/fl0UcaQ9/t69e4wdO5Zhw4YxfPhwMjMzyc7O5uzZs/j7+7cYKJQqyDo6Oly6dIn33nuPiooKLl68yPr164Vj2MyZM4Vzk46ODn369GnReQLlmRoUFCQC6qdBZWUlDQ0NODk5YWpqKobENm/e3IJCJJPJOHHiBF27dhVOl1999ZWYIbG0tGTq1Kloa2vz2WefERMTw4YNG0SlfeDAgTg6OtK+fXtqa2sJDw/HwcFB7P1qamq4urqKIVfJtlzSeo+Ojv6XA9NPg969e+Pm5kZubi4FBQWCnmRsbMzu3bt57bXXACU3e/bs2YSGhoqB4vz8fD744AMCAwMZO3as6ARYW1tTUVHRwmJZ4scvWrSISZMmCaOinJwcMaQtBX2AoOhNmTIFKysr3n//fdatW9fqvcbAwICQkBD8/PyQyWQi0QoODhYKHIcOHRKUr9DQUIyNjVmyZAlVVVVMmzYNExMTvv76a1JTU+nfvz+dO3cWP3/QoEHs2bOHU6dO4eHhQffu3amsrGTJkiVoaGgIR82RI0eSmpqKp6cnDQ0NuLi4IJPJRJevNda+rQ5er1y5Qrt27YQmmUKhEBtBRUUFKSkp6OrqYmVlhaGhISYmJmRnZ7N7927S0tJYtGhRC2HiwsJCSktLuXHjBnFxcYKwb2BgQHV1tdAmlF5CNzc3hg8fTkVFBVVVVTg6OgpnoDt37mBqakqbNm0YM2YMoMxWWtMKOn/+PKdPn8bPz4+OHTuiUCgwMjISmUhDQ4PIkFNSUmjTpg2rV6/m888/59KlS7z55puYmJjw5Zdfkp2dLQjo1dXVNDU1YWNjg52dHUVFRZw6dYoDBw4QFRUlsq1r167RqVMnoqOjsbS0JCcnBz09PeFGAUpJm9zcXAICAoS/cGuQmZmJpqYmQUFBBAUFiRd08ODBQjdRVVWV9u3bM3z4cLKysjh9+jSpqaloaWlRUVEhOLuurq4MHz6cGTNmCJ3QqqoqHjx4QGJioghwJZ6Vvr6+EEvX0tIS2pK5ubl0796d+Ph4MjIyhKDy8OHDuXnzZqvur6CggI4dOxIaGkp1dTXZ2dkEBgYCyuqHs7Mzc+bMwcDAgIcPH6KjoyO4V/X19YwYMULwQYuLi2loaKCyspKEhARu374tpj8lvmRpaSkvvPACS5Ys4datW6xduxaFQoGbmxsdO3YkPT2dY8eOMWnSJN544w1u3rxJTEwMiYmJtGnThrFjx+Lt7S3E8p8GaWlpBAUFERISwpAhQ0T7OSoqivbt2wsZqH379vHgwQN69uwpppDLy8tb0GlcXFwICAggJCQEZ2dnXF1dSU5OxsTEBDs7O4yMjNDW1hYHoNQKk+wmL126hKGhIXZ2dmRmZgoDEqn7IFUlWxu8Dh06lIkTJ7JixQp++OEHdu7cybBhw8jOzhbuVm5ubtja2lJRUcG2bdsoLy+nX79+YnigsbERDw8PGhsbuX37NgUFBdTU1BAbG8u2bdtITExk1KhRvPDCC9TU1Aixf2kodOTIkSIBWb58OcePH2f69OlCy7ihoYHGxsbflUCqqKhw7949unXrxqhRo4Q9pZOTE927d8fW1pbc3FwOHTrEnTt3sLCwwMfHh8LCwha+7l26dKFt27Z4eXlx4cIF+vfvL6T49u7dy4kTJ8jLy2Pv3r3s3btX6KZ26NCB+Ph4QS9o3749qqqqJCUlUVNTQ0BAAF27duXkyZPEx8e3OsECZYdH4iv7+/ujra1NaWkpy5cvZ+bMmcjlcmHaYm1tzc2bN9m0aRNz5swRgevly5cxMDAgICBAVLEUCgWlpaVERESQmJhIaWkpurq6+Pv7k5+fj7a2NoMGDWLs2LGCTgNKdYAn//zyyy+zYcMG5syZQ/v27cU+8bRYunQpdXV1+Pv7ExYWRlFRETk5ObzyyitYWFiwd+9eAEH3kqrQKSkpfP755xQVFdGnTx+6du3K8ePHOX78OLW1tXTq1ImysjLu3LmDmZkZYWFhVFZW8vbbb/PgwQMsLCyoqanhnXfeoba2lvHjx6OlpUVCQgLXrl3D0NCQYcOGYWNjQ2VlJampqaipqeHm5tbqe3wyALtw4QJnzpwRw66+vr5UVlaKzl2HDh2Eosz169eJjIzEzMyMvLw8IiMjCQ4OpmvXrlRVVVFeXi6qyZIrltRF/OCDD1i2bBl9+/YVwau+vj6zZ88mKCgIQ0ND4uLiSElJoXPnzjg6OtKvXz9yc3N/l+Sg5AK5du1arl27xuTJkwVdIC8vD1NTU+GAl5mZyfPPPy8GtqdOnSqoO5Kyw5UrV7h16xb29vYiUJT2T2mI2NPTEzU1NbKysnj8+LEw9Llx44Y4LyWVia+++gpVVVUiIyNJTExstdxZTEwMtbW1GBsbo6OjQ319Perq6mLdqqqqOHfuHBEREeTk5DB//nyRpMfFxdGuXTv8/PxISkpCRUWFsWPH0rFjRwoLC9m1axcmJiYMHjwYe3t7QR3dtm0bGzduZPLkyYSGhvLWW2+xf/9+QJmIR0dHY2Njw8CBA5k+fbqgzOTm5oqg/bfQ6uDVwsKCyZMnM2fOHF555RVhHWhgYMCFCxdYv3690IZ0d3dHJpNhamrKkCFDKCkpacFlSE5OZsuWLezbtw8zMzNmzpxJr169RAUlKSmJTZs2YWFhQefOnYUUlyQ/sXv3bhobG4Ub0/nz51m9enWLrKR9+/ZC0Ppp0L17d7766iu2bNmCl5cXr7zyCo6OjqSkpKClpcWUKVMwMzPj9u3bTJ06lbCwMNatW0doaChVVVVCaUCqQNvY2PDhhx+K6tzChQvFy7ht2za+/vpr9PT02LhxIyNGjCA+Pp6lS5dSUlLCa6+9RmhoqAgCJNy8eZO33nqLCRMmsHz58tYuIY8fP6ampgZLS0vq6upEW06q6EhSMVIlQdJKzMzMZPDgwbzyyitoampy9uxZ/Pz8xEupr6+PQqHghx9+4MMPP+TBgwdiYjM+Pl7wFqdOnUp2drbQRHR2dhZuXv7+/ixZskRMt/r4+LBs2TK+//77p74/aaLZ19cXT09PIiIiOHr0KHZ2dvz4449ERUWJitr8+fPJysris88+4/XXX2fYsGEtPKwTEhJ49913KS8vx9PTk9dffx0/Pz/u3r1LcnIyurq6bNiwgbCwMGxsbMR7UF5eTvv27ZHJZOTk5PDw4UPOnTvHqFGj2LVrF1euXCEtLe0XLjNPiyFDhohWpZRM6evrExQUJPRKa2triY6O5quvvuLhw4d06tQJNzc3EXBJSeKyZcuYMmUKGRkZrFixgujoaFxcXOjXrx9lZWXs3buXrl27iuBl165dnDt3jldeeYUePXrQpUsXYQbSqVMnVFRUmD59Onv37uXQoUMtEq/W4OeVPk1NTbp06cLbb7+NiooKzc3NmJmZ0djYSE1NDR988AE7d+5k9+7d9OnTh6KiIg4fPoyrqyshISEEBwdjZGTEtWvXSExMFNzVuLg4ofEpTchKkHRb+/Tpw5EjR/jqq69aVHeCgoLYunUrxsbGrRYO79ixI6+99hqBgYE4OTmxdOlSAgIC+O6779DU1BTKDo6OjsybNw8zMzMmTZpEWFgYKSkpWFlZUVtbS0FBARcvXqSuro5evXoJ5Yxbt24xY8YMysrK0NPTE0HGhg0b6NmzJzU1NUyYMIGEhATCw8NFRXPNmjVcu3aNbdu2CQH41h6WEgYMGEDHjh05evQoe/bsYfTo0bRt21bw/UEpLi8VJ65fv05qaqrYkxITE1m9ejXa2trMnDmTPn36AErx9vDwcLS1tTlw4ICwlI6OjhaJuZ2dHWpqajQ3N4ufV1VVJSxUQbnnbdu2jStXrvDee++xc+dONmzY8NT316lTJy5cuCCSng0bNjBlyhQ6d+7MtWvXcHR0RFtbm+rqasaOHcv06dN54YUXUFFR4e233yYiIoLnn3+evn37YmRkxP3799m4cSNLly6lvLycQYMGsXHjRkDJt37w4AGgpMhoamqSlJTECy+8gJOTExs2bOD27duEhIQQFBQk5lFu3LjB4sWLcXd35/3332+1EYMksbRmzRq2bt3K8OHDMTU1Zd68eVRWViKXy3FycsLPz4/3338fNzc3ZDIZDx48wNDQkFdeeYWAgACuXr2Kurq6cCNsbGwkICBASDA1NjbSqVMniouL+fLLLwFEFROUFB2pwwdKd6eMjAxsbGzo0aMHwcHBTJ06lVdffVUMnrYWBgYGODg4tJgJeOGFFwgNDeXWrVuiSyYZbERGRoph3ebmZlJTU4XSTkFBAa+88org20uFq6ioKBYsWEBJSQmDBw+mR48e5ObmkpiYyHfffceKFSuEO94nn3xCeXm5OJPlcjlNTU307NmzVVq2+/btIzw8HCMjIwICAlBTU6N9+/bMnj0bHR0dmpub8fb25uzZs7zxxhvk5eXx4YcfsmnTJm7evCnmct544w2MjIyIi4ujuLgYNTU19u/fz4ULFwgJCRFa4S+//DIaGhoioR4zZgzZ2dkEBweLLlxERAQdOnQQpk4SVq1axZYtW4Qu+a+h1cGrp6cnx48f/5ftleLiYtLS0nB2dsbZ2RkzMzMR7ffs2VNIRlhbW9OuXTtu3LjBnj170NPTY968eULsV0JWVhaXLl1CRUWF1atXY25uLgZrevbsSUpKCmZmZoL7KpHwAU6cOMHp06dbuD09DSRXCR0dHcG5Mjc3p7y8HBcXF9FWz8/PF5m0uro6gwYNoqioiO3bt+Pl5UVoaKjIKp881G7evMnRo0cZPHgwffv2pby8HGNjY6GM4OzszLfffouKigqbNm1CS0uL7du3U11dLQ6zhoYGMS37ewIfc3NzCgsLKSgoIDk5mdGjR+Pu7i6oF6dOnUImk9G5c2fs7Oyws7PDw8OD2tpaUlNTefToEWFhYUyePJnMzEx2796NQqEgMDAQR0dHjI2NxfORl5eHrq6umPatrq6muLiY4uJirK2t0dDQwMnJSbTvzc3NhfUjKAPt1jqIdezYkeLiYm7evEl6ejq6urqiet6tWzcsLCz44YcfyMzM5OTJk7Rp04Zbt25x69YtFAoFVlZWyGQyjh8/TnZ2Nu3atePOnTsYGxuLCt2GDRuIi4tj0qRJIhk5f/48tra2ouopoampCT09PZqamigrK6O+vl60hGNjY4mLi2uxST8NiouL+e6775g8eTJubm7s37+flJQUhg4dio6ODjk5Odjb29OjRw9u3LhBc3OzOMy8vLy4c+cOly9fJjAwEFtbW0xMTNi/fz8//vgjhYWFNDQ0CHMRW1tbYV8JiGBUCmg0NDSwsrIiMTERDw8PHB0dCQ4OJj4+nu3btzN27NjfpUksTQxL192rVy/CwsLw9fVt8Uw8fvyYnJwc6uvraWxs5PPPP6esrIz27dujp6fHDz/8wKVLl+jbty8KhUIMcs2dOxdDQ0P27dvHnj17MDU1FT9fuvcn10XiRj6pvykNcT5pk/m00NbWpra2VrheVVRUsG/fPvbt20deXh4jR47Ew8OD8ePHU1hYiKWlJaGhofj6+pKVlYWjoyOZmZkUFxcLWSIpwTh8+DBbt24lMDCQAQMGYGJiwsWLF1EoFOIgvHLliqBVSVzEr776ipiYGLy8vER1VxJrz8zMbO0SAsokpKqqilu3buHl5UW7du149913aWxsJCsri5qaGjQ0NMRz5eTkxP79+9HX18fMzIyePXsSGxvLxo0bSUpKYtasWTg6OmJnZ4e6urrYA9u2bcv27duxs7MTz+u1a9dISkrC09MTFRUVKisrhVVqVVUVffr0oaamhsrKSoyNjVstd7Z27Vr27NnDvXv32L59OxMnThTKEaWlpbz00kt4e3uzefNm1q9fT2xsLMuXL6dTp06CH6+vry90vjt27MiMGTME/eHcuXPs2rULd3d3cdi7urrSv39/NDQ06NWrF6GhoVy6dEmookj2yZmZmdja2mJoaEhzczONjY2tfkYBYcRTWVmJl5cXI0aMQE9Pj4SEBFRUVPDz82sheQTKwpSenh4vvfQSzz33HBoaGri6upKXlyfc9yRUVlbi5ubGtWvXWL16tfj85MmTadOmDQcPHmxB4Xv48CEPHz7EwsKCSZMmifdHV1eX559//nc/p6AMVBMTE1FRUSE1NRUdHR2srKzo0KEDHTp0oK6ujqysLA4dOkR8fDzV1dX079+fkpIShg8fTteuXdm4caO4huPHj2NsbMykSZNwcHBg3LhxxMfHk5iYyNWrV0WAZmNjQ0BAgKiIOjk5oaqqioWFBRYWFsTGxlJQUEDXrl1/l96yt7c3Xbt2pbS0lISEBEEVkwqB+vr6vPDCC2hpabFjxw4AcU517dpVcNCTk5PZtWuX4G23bdtWJG7Xr18X/15FRQXt27fHwsKCS5cukZmZyYgRI/jyyy8xNzfngw8+ICIiAisrK7HH3rt3jytXrlBUVMSgQYP+7T21Onitqanh448/FpqHT0qZODs7M3z4cCZOnCgkUAoLCwUvpaKignXr1uHm5saWLVvQ1dVFU1OTV199VQSuNTU14mF0dXUVHA3pQcrPzxcbkbu7O/b29ri5uTFy5Ejat29PaGgoSUlJzJs3TwgLS5N+T4sBAwbQu3dvGhsbheNWcHCwaJ3k5eXh7u7OgQMHRDVYat8tWLCAyMhIAgMDMTAwICcnh6CgIOHvfPLkSS5fvszGjRt59dVXmT17NomJicIqtampCSMjI2QyGVVVVVy/fp3p06czfPhwEbza29szcuRIIiIi+Pjjj1sd+Eg2rKmpqSgUCmbNmiUq4ufPn+fIkSPY29tjY2ODt7c3KioqVFVVYWNjw8GDB9m8eTMTJkzg66+/5tatW4wdOxYtLS0+//xznJ2d6dChA3379mX79u0YGRnh7+8vMqvt27cTGRnJyJEjReu6sbGRuXPnsn37dlRVVdm+fTupqalMmjSJ5ORkdu7c2ar7A+VE/alTp7h48SIff/wxXbp0ITMzk7lz51JZWcmkSZM4duwYw4YNo3///ly+fJmdO3fi5OTE8OHDefDgAXPnzmXIkCFs27aNiIgIbt++jYaGhqiipqWlERwcTF1dHQUFBSJZkg7A3NxcYR3q6urKwIEDqaur46233sLIyIhVq1Zx4cIFVq1aRd++fVt1f5cuXeL8+fOMHTuW6upqNmzYQGJiIkOHDhXDW6Cs0AYGBtLc3CzeU4VCQUlJiXCiy8zM5Pr161y/fh1DQ0NKSkooKyvjwoULvPvuuyI4l97jSZMmMXbs2BZKI2VlZSQmJhIZGUmHDh3YsmULV65c4ZtvvqG+vr7V1BZQDoo0NDSgpqZGz5496dWrF01NTRw6dIjy8nKCgoLw9fWlsLCQ1NRU/P39cXZ2Zv/+/cTExHDs2DFCQ0NZvny5GP6bNGkSMpmM0tJSrK2tGTx4MMXFxZw6dQpzc3MGDx7MkCFDMDQ0pL6+Hg0NDcrLy4mKikJfX5+1a9e2GDwrLCwkIiJCTOu2BseOHWPDhg0iwV68eLFoeSYlJbFo0SLeeustgoODWbBggWjH6ejoiLaiFDxoa2uLwPXGjRssWbIEe3t79u/fLxINQ0NDduzYwdChQ7GwsCAsLIxp06bRrVs3PDw8WLp0KWvWrOHVV18VrmllZWV06NCB+vr6VovbgzKxkJy7mpqaaGxsRFVVlV69elFaWkpqaipnz54FlJPMHTp0IDo6mj179pCRkcGWLVtYuHAhJ06cYOrUqVy4cAELCwvGjBnD888/z6FDh/jss89wdXUVdrsdO3akrKwMbW1toqOjKS8vJz09HUtLS/GMxMTEkJKSgqOjI+Hh4ejq6v7CwOFpIFGvBg4ciFwux9bWlh49enDlyhXBHwTlmfLpp5+KFnJkZCQymYxXX30VY2Nj1q9fj6+vL1OnThXBOigLOC+++CJGRkZ069aNqVOn4ufnJ3ScdXR0iIqK4uDBg8JkZsyYMVRUVAj1H19fXz777DOMjY2xsbFptTtTUVERly5dYuTIkSxbtozMzEwyMzN59913cXNzo66ujm3bttHc3IytrS0lJSWcOHECb29v+vTpQ0NDA4WFhZiamrboatXU1HDz5k38/f3p06cPy5YtE/f9448/MnbsWN59912mTJnC0qVLmT9/vvjdnT59uoXtb3l5OXp6egwbNoyAgADhVvW0iIuLo02bNujq6uLj48PNmzdJTk7GwsKC0tJSPD09RRdt0qRJREZGYmtryxdffMHAgQNJT09HX18fPT29FtJiycnJrFixgvT0dL744gthvFJdXY2xsTE1NTVCWSg0NFQ8Lw0NDSLRqKmpIT09XRRBgBZ779Pg+eefF9XPb7/9VnR8pVirqKgIdXV1pk+fLvZ7DQ0NGhoaUFdXF1bRCxYsEJXmbdu2oaKiQlFREQEBAbRr14709HQiIyOJjo7m9u3bwjWtU6dO9OnTRxT/pPfgyS7Xw4cPOXHiBIMGDWL69OnMnj37N++p1cFrVlaWGKhSKBSoqanR0NDAgwcPMDU15fXXX/+F6UB+fj5WVlaUlJRQXFyMlpYWjY2N9OnTh4iICM6cOUNaWhoNDQ08fPgQTU1Npk+fTt++fcWE3fHjx/nuu++Ei4iTkxO2trbikJaIzhYWFoIEDUqJp7S0tKe+vxMnTnDz5k3GjRsnWllPTnrW19ejr68vsp/MzEyOHTsmaBJz587l1q1blJWViYVydXVFXV2drKws0ZqPjY2lpKSE3bt3c/DgQbp16yaEiBctWiR+dnZ2NtOnTxdWhqAMzPz8/Lh+/bqQ/WktZDKZkMmxsLCgvLyczZs3U1NTw6BBg4T9r4qKCpcvX+bLL78UrQ1QJi1aWlqiilNbW0tlZSXq6uqiqufj48Nbb73VwsNcT09PiL5L39fc3Ezv3r1F+7tLly6UlZWhqqoqpjB/rr/6W7h48SL79u1DQ0ODtWvX0rZtWyGdFBUVRUJCAubm5nz66af07duX06dPc+HCBcFftra2FoNmCQkJrFy5kuzsbEFsr6+vF37ex48fF8YSDQ0N1NXViefl/v377Nixg+bmZp5//nlRffT29sbNzQ1dXV2Cg4Px8fEhJyfn39rhPYmhQ4fi5eWFnZ0dSUlJ9OnTh379+onfq4aGBnfu3KG5uVkkmqC0ikxMTGT69Oli+l6S1SotLUVPT4/nn3+evLw86uvrRTV+48aNZGRkCLkqKYDLzs5m+/bt1NfX07VrV5FQSuuYm5uLpqamcFhpDbZs2cKWLVvo378/O3fupLi4mMLCQqysrLh37x4XL15k/PjxeHt707t3b5KSkigpKRG83m+++QZDQ0MhtZaYmIiGhgYODg5s3bqVEydOEB0dTVNTE0OHDqV79+6MHTtWBDHSpLfUcXjyviVoamqip6cnuNWtgaRjXF9fT2FhIaGhoZiYmIgB0MTERO7fv4+3tzdVVVXU1tZiY2PTIsiysLCgf//+LTSDTUxM6Nu3L+3bt8fIyIiIiAhiY2MZMGAABQUFHDhwgMePH7NmzZoWWtiDBw+mubm5hSOTRPfQ1NRstewgKINrmUyGmpoaqqqqgtsPyhatpqamcO/y9vbm7t27aGho0Lt3bzHAU11dTWVlpeAEXr9+XcgVSjaoEi9TUg/IyMjg0aNHJCQkCM3ladOmYW5uLg7UuLg4PvvsMzp27Njq6e0nUV1dzfDhw4XBCyA44LW1tchkMm7cuEFjYyN3794VVLm0tDQOHDiAm5ubkLu6cuUKHTt25PTp09TV1bFjxw7OnDlDt27dWLhwoTA3KCsrE78/IyMjevTowYQJE/Dy8kJDQwNTU1NUVFSIjY3FzMysRYeuNYoYoJTtunbtGkuXLkVDQwM3NzeioqJIT08nOztbrK29vT26uroUFRWhqakpOKMqKiqUlJSgpqaGsbExiYmJ7Nq1i/Pnz+Pm5sYXX3yBqqqq6OTMmzePsWPHAohOiSSt9tprrzF69GgqKirYsmWLkG50cnISXdnfozB08OBBrl27ho+PD4MGDcLU1JSqqioqKiowNTXl0aNHXL58mZUrV4ozcOzYsfTv3x9VVVVOnTpFVFQUJiYmJCcnC4cuKfaQ1urWrVuCEpGQkMCpU6fQ1NTExMREDOmtW7eOxsZG5s2bJ+IGaTalublZPFOtQWFhIWlpaaiqqhIUFCRoApqamhw+fJivv/4aT09P3njjDbFukpmBi4sL6urqwi6+X79+1NXVsXnzZpEIzZkzB7lczr1791i/fj2XLl0Se/6AAQMYMmQIycnJQlf2/v37uLu7t6CRent7M2HCBCwsLJ7KeOl3SWXduXMHd3d3tLW1UVVVpaSkhMzMTDQ0NLCxsaG4uFhs6pLuFyBaGOXl5RQVFeHs7Iy/vz9Hjx7l2LFj2NvbU1lZSV5enpiYDA4OxtHRkf3797N7924MDQ3FcIFE6FcoFEK3EZTZzgsvvMCAAQMYP358q6o+Dx48YM+ePaioqAjttvr6eqHDqKurS2lpKdra2qioqHD48GFWrFghBg169OhBjx49BM/K1taWY8eOCW9oT09P6urqGDFihHAiuXnzJsHBwRw5coSMjAymTp1KUFAQtbW1+Pr6MnHiRGpra0UbyNTUFAsLC/r16yecgFqD2tpaGhsb0dLSaqHpmJCQQNeuXX8htp6dnS2qn5KEj7+/Pzdv3iQyMhJtbW38/PwEt6e4uJj6+nomTZrUwoUMlJxiBwcHLC0taW5uJi8vD2trazGdWlxcTLt27cQBbWFhwZAhQzhx4sRT39/WrVvZtm2bcPhKTU0lLS0NHR0djh07xuXLl3n33XeFCPKXX35JXl4eL7/8MqNHjxbawjNnzuTcuXNCfLlz586YmZmRmJgoKComJiYUFRVhY2PD6NGjMTExEYmO5CplZmYmLIF1dHSEtExZWRnp6ekMHTqU8vLypyKpS+jUqROhoaEcOHBA6OtKkjiSg1ZMTAypqank5+eLNS0tLeXevXsYGhpiaWkpAnFVVVXc3d3JzMwU+rseHh506NCB/Px8Tp48KfiDjx8/JioqipCQEKGn7OzsLNr85eXlQlR79OjRZGVl/a5WXlFREQkJCfTo0QMTExPhEuTq6oq+vj67du0Sqh1DhgzB1taWgwcP4uTkRHp6uvBzl/7s6enJkCFDcHd3Z8eOHRw8eJCtW7cycuRIXnjhBbp06SL0gOvr6zE1NUVNTQ11dXVcXFxoamoiIyMDCwsLsdeoqqqiq6sr2u6twaNHj4S7noaGhkhQCwsLhRqG5N4UFRWFubm5SAykqVwNDQ1RSQdlcmhhYcGLL74IwMmTJ/n888+FPvGQIUOIiYnB399fBK43btxAV1eX0NBQUb2tq6ujubmZqqoqysrK0NXVbZEEPS309PTw8vJi8ODBJCUloaWlJRJWHR0dfH19WxxgeXl55OfnM2XKFJ5//nkaGxv57LPP2L9/P5mZmaipqWFtbc2tW7dYvnw5NTU1opjh7u7OkiVL0NbW5sqVK5SUlIhgqbS0lKVLlyKTyZDJZFhbW9O7d28+/vhjTp8+jampqbB1bQ3u3LmDhoYGM2bMAJR6oaWlpXTr1o2ysjIOHjxIZWWlGMSTyWTcvXsXKysrNDQ0hG2ypaUljx8/Zt++fXTp0kVweyXqj5eXl2jJm5qaik5WXV0dHh4eeHh40Nzc3GI+QlVVFZlMRnJysjhLysrKWjXRDYj1T05OFrrYdXV1TJ8+HYVCgYeHB8OHD8fV1ZXKykqam5txc3MThQ1pb6moqCAvL4+bN2+yZ88ekpKS8Pb2pr6+HplMRn19PR4eHuIZrK6uJjAwkMmTJ/Pdd9/xxRdf0K5dO8LCwhgwYACbN28mIiKC0NBQnJyc0NXVFcWx34Nbt25x4sQJbty4waeffkq3bt1ISkoSscXNmzdF4Prhhx/yxhtviIl6Scnk8ePHaGpq4ubmhoGBARkZGWLPTE9P5/Lly4Cyq2RpaSnkBqUi3Pbt21m2bJnQRFVXVxe/Gw0NjVYVcZ7E3bt3OXLkCJaWlnTs2LHFUPLDhw85cuQI0dHRtG3blmHDhlFcXExmZiYeHh6oq6tz9+5dHj9+LAproAzIX3/9dQBhDBIYGIinp6fo0vj5+WFra0tsbCy7du0Svz9PT0/Gjx/fouPo7u6OmZkZhw4dEpJpv4VW/yZ8fX1Fa2bIkCHIZDK0tLTw8PAQC5Sfn4+5uTk9e/ZsUamQSvAVFRWUlpZiYWGBTCZjxYoVWFhYkJeXJ6zkjh49SteuXdHW1ubll1+mX79+QvS9oKBABK7Nzc00Nzejra1NQ0MDU6ZMoaioiE2bNv2uDKx79+44OzsLAXnpF1pSUiImunfs2IGmpiaTJk3CyMiIkpIStm7diqamJmvWrMHAwKAFJ2/Hjh1cvnyZzz77jA0bNlBRUSH8vd98800MDQ3x9fXlrbfeYvPmzfj7+xMUFNTiJXz33Xe5ePEi77zzDj179qR3795Csqi1LVnpJQwKChLcI1dXV5YtW4aJiQlNTU3U1NSgpaWFmpoa9vb2okKprq5OWFgYFRUVTJo0icTERLp27crrr78uWpnDhw/H3d29haSNhPr6eqGzaWFhgYGBgRjcWLJkCefOneO7774TciGGhoaEhYW1KnhVKBTMmTOHgoICXnzxRVGtd3Nz49VXX2XIkCHixQUltzI6Oprz589TW1uLnZ0djo6Ooh0LSv3XkpISPv74YxGIDRkyhDfffBM7OzvBz3sSbm5uLF26VFRh4P+G4RoaGti4cSPXr1+nXbt2jBs3rlXBq+Tqdfr0aVxcXASvOiEhgS1bttDU1ET37t0xNTVlyZIlRERE8N5777Ft2zYiIyNFq9re3p64uDgePHhA27Zt0dbWZs+ePQQEBIihBwsLCxYtWiSu/eHDh9TW1lJVVYWDgwMLFy4UXYq8vDwuXbpEcHAwJiYmZGZmkpyc/Ls4rwsWLGDYsGF8/PHHDB06lNdee01sdr6+vrRp04Yff/yRM2fOMHr0aIYOHYqLi4vghEvX/sknnwhbZek6N2/eLDjnwcHBdO7cmebmZs6dO8fDhw9p06aN6CDJZDLatGmDlpYWhoaGgiqloqJCZmYmBw4cwN3dvdXT+F26dBFBlqGhIbm5uXz00Ufk5eXRp08fxo4di46ODnfv3kVTU7OFbJS0FpWVlURERBAREYGqqqow/YiKiqKpqQl/f3/mzJkjgmsNDQ1WrlwpqqiSSxPA6tWrWbRokTgsc3Nz2bJlCzt37mTixIm89957rV5DCQEBAfj6+pKYmCjUA57syEjQ1dXF1NRUBFhqamqoqakJPl1jYyNt27YVuqM1NTV06NCBSZMmtdhvysrKsLe3R11dHQMDA8rKyn4xUGdtbc2GDRvYvn07X375JQsXLhTOWE+Lffv2sWrVKvFnf39/0bG6cOECJ06coHv37ixYsIDJkycTFxeHrq4uXl5eDBo0iNdff52SkhL69+/P+PHjqa2tJS0tjW3btjFw4ED8/f3x8vLi448/5vvvv+ell14SQWx+fj4ZGRkEBQVRXl7Otm3bsLe3Z8SIEZSUlBAfH4+Hhwfl5eUsWLAAMzMzpk+fzrBhw4iPj3/qexw+fLj4fUttZENDQ9G6TkpK4uTJk6iqqlJUVISGhgbq6uqicwHKd8jAwICkpCSysrLo2rUrkyZNolevXmKYcNCgQdjZ2ZGTk8P169eFe6OHhwdDhw6loKCAzMxMIiIikMlkzJ07l6amJlEYAGUxQRpqaw1GjhyJp6cn06ZNIyIigqysLPz9/Wnbtq14FqdMmUJJSQkpKSnifNq6dStffvklM2bM4I033mD79u3U1NQQGBhIRkYGhoaGlJaWsnXrVq5evcrEiRO5d+8erq6uZGRkUFRURKdOnWhqamLWrFkcOnSIefPm8eKLL4rzX11dnbfffhs9PT3WrFnTosvytPD19RXFDUNDQxEsg3IYdfLkycI4SKFQoK2tjYmJCaamppSWlnL8+HFkMhmdOnUSe89rr70mgtAff/wRGxsbJk2aJBIxUO5xxcXFwi5YJpNhb2/P8OHDxdksIT8/n4sXL5KVlYWzs7PoYvwaWh282tra8vDhQxwcHESApq+vLw6nCxcuiPZ4amoqdXV1xMfHo6enR25uLp6ennh4eAizASMjI6ysrH6xYdjZ2VFWVsbdu3cpKiqid+/eNDc3s2vXLgYOHAgodRIfPXokHqRTp05x48YNHj9+zPnz55kyZUqrJ4D9/Pzw8/Nj3759zJ07l+7duzN58mRBE5Cqao2Njejp6RESEkLv3r3JyMjAxcWF2tpaSkpKuH37tijLOzo6MmzYMGF1q6amxjfffIORkRHDhw8Xv0fJu1mSbbpy5Yrwp29oaKC5uVm8SI6OjmRnZ7cQyH9apKamsnHjRsaOHSuCV6ndY2hoSFVVFeHh4ZSVlbFo0SK6du3KrFmzyMzMFG0UR0dHMaQjcdokf3KJ5A3Kje3u3bvU1dUJe00tLS0RFD45UW5mZia08SSYmpq2movW2NjI4sWLuXz5MsuXLxcyPMHBweI/KfhzcXFhyJAhmJmZsWrVKn788UcmTZrEyJEjkclk3L59G3d3dwYPHoy2trYYpunQoQNr164VB2ZeXh5XrlzByMgILS0tIc4uHdCxsbFiQKOmpobIyEgxRHX79u0W05ZPg6qqKlFNtrS0JDMzE19fXyEdV1dXR79+/SgtLRXT9dHR0SLLl5KuK1eucPPmTcrKyigrKyMlJQU9PT26desm7IgfPHgg1jMuLo78/Hzs7e3R1NREVVUVGxsb7ty5Q3x8PDk5Obi7u2NhYcG9e/eEqPyTBgNPi+zsbGFrKbW8JKSnp4tnC/6PO+Xr64ufn58Y/lmyZEkLX/BLly5RU1NDx44dGT9+PA8ePMDGxgZNTU3y8/OprKwU3ytVOST3t6amJpEoS2hqaqKiooLbt28LMfGnxaJFi/j0009FIpWamsqDBw+oqqqisbFR8MLatm2LoaEhampqYq+QVELq6uqorKzk/PnzlJeX06ZNG2QyGevXr0dPT4/Dhw+LymZqairJycmCd1haWoqZmRlWVlYUFRXR3NyMTCYjMzOT6OhonJycBMXl91az7t69S3Z2NhYWFtTX13Pz5k0cHR3FnhkREYGbm5t4T6SO0pODtqNGjeLq1atcunSJoKAgQQPp168fmZmZ5OXlER0dzePHjwU1wdraGk1NTWJjY1FXV8fExITCwkK8vLyIjIwUeqpDhw7F1taWESNGkJ+f3+r7LC4u5vr162Iozd7eXgyfpqSkcO7cObp164aNjQ02Njb4+PiItfXy8sLGxoaUlBRBkQAIDQ3l9u3bnDx5kh49eqChoSEkFaXh17i4OPbt24ebmxvBwcEUFxfzwQcfoKenh4uLCxYWFsJNKzs7WwxrSa3w1kDSVwdEdyEgIICXXnqJtLQ07OzshEuis7Mz1dXVZGZmijWUKFGS3FRTUxOTJk0SczGgrNBLHFhJKs7U1JTs7GxKS0tFlyAmJobIyEhcXFxEdwEQyYmJiUmrNVBBSQ2sqKigV69e4p4BkaA2NTXh6+vL1q1buXz5MqmpqURGRvL999/TqVMn3n//fTQ0NBg4cCAXLlygrq4Oc3NzLC0tyc/P58qVKxQUFGBsbIyDgwMJCQk0NTWJhFfSgJUs5iUbZOmdP3HiBAUFBQQGBjJt2jRBP3xaWFpaYmlpSUNDAwUFBWhra/Pw4UNiYmIwMjJi9erVNDc3U11dLVzRLC0tAYTWc2BgIKqqqqSkpHDo0CHs7OxwdnZm/vz5fPDBB3z88ccYGxvTq1cvJk6cSHl5Of379xe6rpLTpPTMSIGr1KWura0lNzcXJycnhg4d+scHrzo6Orz66qstIvcnERQURENDAxUVFTx48ICrV6+yceNGKioq8PLyYu3atS0GqLp06cKGDRs4cuQIK1euFAfU+PHj6d+/P6dOnUJDQwMzMzPGjRvHkCFDsLS05Pbt20ycOFG0EdLT07lz5w5z5szh4sWLwtZs8eLFrb1FQLlgJ0+e5OTJk2RkZPDJJ5+ITHLixInCaUgSrDc2NhYv+NGjR1m4cCGampqMGzeObt264e7ujq6uLlVVVaxatYr169fj5OSEk5MT7du358GDBwQEBDBz5kxhASm5jBw8eJA1a9YIVxIJP/74I6tXr/63HsA/R3FxMQ8fPmxB3D906BArVqxg5cqVvPjii9y6dYsjR44wduxY/P39cXJyolu3boJ4L7Valy9fzvr165k3bx69e/fGzMwMLS0tAgICBOdx/fr1REZGYmJiwsqVK4XMi/RySli8eDHz588XpHTgdw1RSNnl6NGjsbS0FJI0zz33nHghy8rKqKqqEpaAoaGhLFy4kNjYWNq1ayee78zMTE6fPi2CnTFjxnD//n3s7OxacADj4uL4+OOPBR/5zp07ODk58fbbb5OTk8PBgwfp06cPjo6OXLp0icePHyOXywkKCmLdunVs3LjxF3SN34K/vz92dnZkZWXR1NQkkitDQ8MWm7qenh6bNm0iKSmJ48ePs3PnTjw9PUVysmHDBgwNDenTpw9nzpyhoKCANWvWiIBv27Zt5OTkMHHiRFRVVTl27BgGBgb07t0bNTU18vPz2bNnDx9++CGZmZksX75cfG90dDTp6emCbtFadO7cGW1tbQYOHMiWLVtaTILv37+fRYsWYWRkxOzZs1sMSWhpaTFu3Dief/550X4FZaC5ceNGzp8/z9SpU3FzcyMrK4sePXpgY2ODpaUlXbt2RVVVtUWAKqG0tJTS0lLh6y4ZBowcOZLz58+zffv2Vt1n3759CQ0NRV9fXzjLvffee5iZmZGens7x48eFWLjE/XwSdXV1mJqa0qtXLy5cuEB8fDy+vr5oaGhgaGiIvr6+SEBAqeSRlpbG3r178fPzY/DgwULlpbi4WATR586d4+LFi8ycOZPJkyczduzY38VZBiUn/PDhw+jp6QnKmFwuR0VFhUOHDgmnQCl4tbGxwcvLq8V6WllZ8dFHH2Fra0t2djaTJk0SkoKmpqZ8+OGHbN26FXt7e3r16sW0adPw9/cXCZWTkxO9evXC2NiYAwcOsGDBAh48eECbNm1EYtCpUyc6derElClTWqUTamNjw7hx4/D29ubVV19tsSfIZDLq6upaUBGkimRhYSHV1dX06NFD0K1A+VwnJCSgrq7eYh+Uktv79+/z1ltvcezYMYqLiwW1TaIIPHjwgKNHj7J06VJqa2t5++23KSkpYeXKlYSGhhIfH8+6deta5XZ37tw5EWRJ1VYXFxfef/99UYgoKSlBR0cHbW1t0tLSBBe2qalJGAr17NkTMzMzbG1thfTSkwPfR44c4ciRI2zYsEEkXBcvXiQ+Ph4VFRXRKbSysmrxuwFl8eXnkpKtwcmTJ1m/fj1Tp05lzZo1godubm4ulGtKSkro0KEDYWFhrF27VrT316xZI2IDIyMjevXqRU5ODr6+vujr66Ojo0NRURFpaWkUFhYybdo09u7dy/Dhw4Xu6b1795g5cyadO3dGXV2d6upqysrKsLGxQV9fn9GjR/P555+zbNky6uvrhY51a1FTU4Oqqio5OTl89tlnbN68mUGDBgkVAIn2IeHx48fk5uair68vkqvGxkaOHTvGxYsXGTNmDJ9++ikWFhbMnj2b/Px8QkNDCQ0N5cGDB1hbWxMaGirsfe/evcu6des4e/YsVlZWdO/eXRSwbGxsmDhxIlpaWk/VqWt18Orj4yPcn06cOMGMGTOws7Nj37592NjY0LNnT9q1ayd0FD09PRk8eLDILqXA9e7duzg7Owv3ozVr1nDjxg3mzp3L4MGDSU9PZ+/evTx+/JiQkBBRhZAe2gMHDoiXvLm5GRsbG0JDQ2nfvj2enp4UFBTw8OFD4cnbGlRVVTFs2DAyMzP54YcfxECVubm5yAJlMhnbt28X11dYWCgsPoODg3nhhRfYunUr7733Hh4eHgwZMoTi4mJhJxcSEkJgYCB6enrC6EGSmQKlw85zzz2Hurq6aBP4+fnx6quvsnXrVoYNG0ZqaurvasempaUxdepUUcEGJYk/MzOTlStX4uLiwqBBg2hsbGT79u2kpKRgbGzMhAkTqK6ubkHGnzFjBsePHycpKYkjR44wb948jI2NuXXrlrD2mzZtGtbW1kJySdqsqqurKSoqQl9fH3Nz8xZaoI2NjeTl5YnEpTWQ1A9AaYX38ssvi4EPUJoYWFhY4Ofnh5qaGrdv3+bu3bu4uroya9asFpSPIUOGiIpkeno6Tk5OIkkJDw8nKSmJV155BTc3N1ENLy0tFRJj0v316dMHc3Nz4TQXFhYmqlHXrl37lxSL30J+fj6WlpaYmpoKPlReXh4HDx6kpKQECwsLtLS0CA4Oxt3dnZCQEFEVdXNzE9Wo3r17Y25uTpcuXYTsmxR8RkREcO7cOeFHfvbsWTZs2MCAAQPE5iklmz4+PrRr107wXkEpWC551T/pfPS0kNqjkg3vk/Dz8yMsLIzU1FQKCgpa8PgePXpEY2OjoLFIrc7Hjx/T3NyMoaEhZmZmlJaWimqHhCc7AU1NTURFRQl9VOl3LbW+Dxw4QGBgIHPmzMHR0ZGLFy+2qmWZm5uLiooKxsbGqKmpkZycLIaXsrKyBOVk/vz5DBgwQOyBoKwMSe+RiYkJEydOJDc3V/BSly1bhqamJgYGBjQ3N1NQUICVlRUhISE8evRI0FgiIiJoaGigZ8+eNDU1sXLlSiGFV11dTUREBPr6+nh6era6iwXK4MTJyQlLS0vMzc3Jzc3l7Nmz3L59mwcPHjB69OgWdAuJ03vjxg02b95MRUUFw4cPFwm6trY2BgYGtG3blk6dOuHt7U1GRoaY2vbz8xM6llJg379/fwYPHiwCZmmNZs+ejZ2dndCg7tu3Lx4eHq0KXrW1tcnIyEBDQ4MOHTpgaWlJTEwMhw4dIikpiVdffZUePXpQUVEhnj1QdglPnz6Nra0tGhoaZGdn4+npSdu2bVm/fj137tzh5MmTeHp6oq+vT0BAANHR0fj6+uLh4SGqeO3bt+fKlSvcuXOHMWPG0NTUJGTCjI2NOXLkCIB4f2xtbbl//36r+Mv29vaUlpaK7kNCQgIuLi6YmJhw7949bty4wahRo9DW1ub48eNCbUcKUB0dHUXX0NHRUWgp5+bmYmBgQF1dHTExMVhbW7No0aIWQ4RSMqClpUV9fb2oqoNS6m3v3r2CDmFlZUV6ejq7d+9+6nuTIBUnRo0aJYaTpATWysoKR0dHMaQLSn5m3759mThxIj4+PsLGNSwsjJEjR7YwwgBl4ujl5SV0jKU2/YwZM/Dx8aFHjx4tbGTz8vLIycmhubkZOzs7PvzwQ1EEiYqKanXwWl9fT1NTEwYGBpSWlrJx40YuX75M7969cXR0ZMeOHbRv3168i6dPn+b48eMiwY6Li+ODDz4gLi6O0NBQXnzxRUxMTPDx8cHCwoLnn3+empqaFsPjbm5uAC1oDpICxccff8z8+fP58MMPGTVqFPX19Tx+/Fg8M0+zj7Y6eJVevnXr1nH16lWGDx+OmZkZFy5cwM7OjoCAADGg0aFDB0JDQ38xtPPw4UNiY2N59OgR/fr1Y/jw4SQkJLBkyRKsra3p27cvZ86c4c033wRg+vTpdOjQQWQGkmyElZWVOOC0tbUJCwtDoVDQp08ffH19uXHjBocPH25VlllbW4uuri4dO3YUfFfJLerKlSs0NTURGBiIrq4uN27cQF1dHWdnZ44cOcKxY8eYMGEC7733HsuXL8fc3By5XM6dO3cE1zckJIQZM2bg4eHRYlE9PDwoLi4mLi5OWFt++eWXLbT5MjIyiImJ4caNG6ipqdGjRw8GDBjQKj4oKAOOBQsWYGNjQ1VVFadOnaK5uVlsJNeuXWPBggV4eHgwatQoPvroI1atWiVcqYqLi8nLy8PY2BgnJyfmzZvH0qVLsbCwYNSoUTg4OHDy5EnMzMyws7Nj2rRpTJ06FZlM1kLio66ujjt37mBvb4+5ubnweJc0EB89eoS2trYIlJ8WQ4cOFdIfhoaGYnIVlAGJrq4uKioq4rm4ffs2H374IVOmTBHt8by8PDG45Onpybp161i0aBEzZ84UL/ihQ4e4evUqPXv2ZNiwYWLAS0NDA3t7e9zd3TExMUFLSwszMzMiIiI4ceIEtbW1IouNjY2lsbGRYcOGtcql6fbt2/Tp0wc1NTURlGdkZPDVV19x+/ZtrK2t6dWrF+rq6piZmWFiYsLIkSNbTJIDLQj4kioGKAdRoqKicHR0FNWA9PR0ysrKWsibAIwYMaKFD3tjY6OYZvXx8aGgoKDVLXVAVCVKS0vJyMgQ0/5NTU306dOHPn368Mknn5CUlERZWZn4nRYVFXH37l3u3r2Lra2tsKitra1lxIgRjBs3jh49epCQkEBpaWmLpEnybZd83JOSkkhLS8PU1BRra2tsbGyIj4/n6NGjnD17Fl1dXTQ0NGjXrh3t2rVrFf9c6hYNGjQIY2Nj7t27R0pKCu7u7tTV1ZGdnU1MTIwY9pGqUeXl5ejq6opgUlVVVUwqS3qeT9opx8bGUlhYSGNjI3Z2dmI/zsnJ4bXXXkNbWxsfHx/OnTvHqlWrmDdvHtOmTWPfvn0sW7YMV1dXVq9e3YJb+LSQBqmkoZqEhARmzZrF+fPnmTNnjjAEkNRF9PX1SUtLY+vWrWzZsgVQdvsGDhxIQ0MDhw4dYvjw4YSEhODo6IiWlhZvvfUWkyZNEu1pSTtX0hsvLS0VCankGjdz5kxmz55NbW0tiYmJwrCltdU7STO4X79+ovsRGxvLmjVr8PLy4rXXXiMoKOgXPzczM5MjR460qGjPnTtXnHmxsbGsXLmSH374QST/Xl5eDB06lG7dujFhwgQKCgrIy8vjwIEDVFRUMH78eNq1ayfOlbKyMjw9PampqSExMRFPT080NDTo27dvq/aacePGtXi3peFsT09PNm3axPbt27GysqJz5868//77wmhBGuh+MvFRV1fHx8eHO3fuCKe/u3fvcvXqVfr27Ss6JVKi+WThKjc3l/Pnz+Pr64u/vz9xcXHs2LEDY2Nj/P39GTJkCGfPnuXbb79tYbH6NOjfvz/9+/cHlMmuBIVCga2trZAAk+Z5+vXrR/fu3TEyMiIpKYnDhw9z9uxZKioqcHR0FI6GEs1CTU0NhUKBj4+P6DLs3buXCRMmMHz4cGE/K0mF1tbWkpycTGVlJXZ2dmhrazNhwgThtNdaqay6ujrxXNTX17Nv3z5h9FRXV8fChQtJTEwUlK+oqCg2bNggHLBUVFQ4ffo0VVVVODs7M3nyZCZPnkxVVRXR0dEYGhoK22BJEk9FRUV0BKShNVBSu2xtbYmJieHhw4eAshuckJBAQEAAJiYmYmbht9Dq4PXatWucOHFC6FRKHJ5BgwZhYWFBTk4O3377LSkpKcKqVUJDQwMNDQ1YWFgIa8KjR4/SrVs3pk+fjoGBAXl5eRw5cgQrKyvGjh3Lrl27hFSIk5MTaWlpODg4MHr0aNq3b4+9vT0aGhqUlZWRnZ2NjY0NJiYmWFtbiwz09OnTT31/UiUpPj6ehIQE+vXrx6RJk8RhIpW01dXVhbSMi4sLY8aMwcDAgLS0NDZt2sTIkSPp27cv69atIysrCzs7O7y8vGjTpg0uLi4thl8qKyuFFmp+fj5r167FxMSEFStWiLa6ZEs7c+ZMBg4ciK+vLyEhIejr67c6eB00aJDIaJubm1FXV6dnz5707dtXTEpWVlaSlZUlNjmJu+Xv7y+kiNTU1DAzM2Po0KGYm5tTV1eHmZkZMpmM7t274+rqSnNzM3v37iUzM5OQkBA8PDyEjEtNTQ0PHjygvr6edu3aCbkTaSLWwMCgRfvwaZGQkMCxY8fw9vYWTl1Prq+qqipXr14FlN7O6urquLq6it9JTk4OX375JVVVVcyYMQMvLy+6devGlStXWLBgAfPnz2fgwIHMmjWLzp07i2dcT08PV1dXCgsLhSObm5sbOTk5fPXVV1y8eBEbGxtGjhwpBof69++PgYFBqz3V7e3tqa6uRktLSxwsNjY2TJ8+neTkZMzNzfHx8cHGxobc3FzhRvUkampqxDQ9KJ2z0tLS6NatGyYmJnTs2BFXV1eqqqpYsWIFqampvPPOO2hpabFgwQKMjIwICQkhLCysBf2juLiYffv2YWpqytixY7G0tMTHx6dVNs1PwtjYWOiDAi1kYsaPH8+tW7dEcFBQUCDa/k/KMkVGRlJYWEhAQACOjo7k5+ejqanJmDFjaG5u5sqVK+jp6WFsbCyyf1VVVfz9/XFwcGghDO7m5sbzzz8vHMt+zwAFKKkfKioqHDlyhIKCAqGR3NTUREBAAEuXLmXu3LnExcWRnZ0tgteTJ09y6tQp4eI2dOhQ8bXjx4/z6NEj+vfvj729PTk5OURFRXHq1CkqKyuZMGECkydPBpTVzdDQUNq1a4eWlhZ2dnYsXbpUJHsVFRW4u7vTs2dPHBwcfpfAPSB4rk5OTnh5eTF+/HgcHR0ZOnSo+Ds6Ojqoq6tz48YN9u7di6amJkuWLKG6ulqoQNy9e5eCggIxxAMI6pGNjQ16enqsW7eO+vp6Zs6ciZ2dHbm5ufzwww+i5Wttbc3LL7+Mnp4ea9eu5eLFi7Rr145p06Zx8+ZNPvzww1Z1s5qamhg/fnyLLlZISAjvvPMOiYmJQpf252Y5jY2Ngt8rnaFPdhf8/f2ZNWsWd+/eZc2aNWhpaTFnzhxR0ZPUWfbu3YuJiYlQ25CoLFKwvnz5ch4+fMj58+epqanBx8eHKVOm8OGHHz71PT5Z8VdXV8fBwUEkCWFhYYJn2tDQgJ+fH5WVlaSlpZGfny/WQArqJLcuY+IJc0QAAM3ZSURBVGNjFAqFsBgPCwujsLCQmzdvCrmvgoICGhsbxXBzRUUF586d49q1a4wZMwY7OztmzZqFhoYG0dHRYppeLpe3aiANlJ1HFRUVnJycaGpq4ubNm1RWVhIaGirmcUxMTCgtLaW2tlZQJEC57w8cOJC+fftiZWXFjRs32L9/P2PHjhVBdFFREQYGBuLZyszMpKysjPnz57dw7MvPzyciIkLMCxUUFAgziuHDh6Orq0tmZmar1g+Ue7K0T2lqagqZRR0dHZEcnjt3juPHjzNo0CD69+9PQ0MD2trawszm008/Fd2nK1eu4OvrS1paGkePHsXW1lacg+Xl5Vy6dInKyko8PT1xcXFBW1sbhUJBVFQUJ0+exMLCgg8//BAnJycuXryIkZEROTk5nD17lk6dOj1Voix72gheLpe3LtT/CyI8PPxXd99/+v3BP/8e/wn3B//8e3z2nP6z7w/++ff4T7g/+Off47Pn9J97f63z3XyGZ3iGZ3iGZ3iGZ3iGZ/gT8dSV12d4hmd4hmd4hmd4hmd4hj8bzyqvz/AMz/AMz/AMz/AMz/C3wbPg9Rme4Rme4Rme4Rme4Rn+NngWvD7DMzzDMzzDMzzDMzzD3watlsr6r0EmewdYALRBocj6D37OfOADwA+FIvEPurrfBblcLgOmAC8BPoAqkARsBT4PDw9v+o1v/1tALpcPAuYC3oAp8Ai4BXwcHh4e+Wde2x8BuVy+BggC3AEzoAbIAA4Cn4WHhxf/+nf/DfHPfA//0Wsol8tNgeHAIMAPsAXqgXso95qt4eHhrXcY+Ivhn76OAHK53A54B+jP/+2nB4GV4eHhpX/ipf1XIJfLXwC2/fTHGeHh4V//mdfzn+L/h2cU/hrP6e+rvMpka5DJziGTZSGT1SCTlSCTxSCTrUAma51Ju/Ln2QNvAJt/cWDKZOnIZIpf+S/vX/y0cKAA+Oh33Nkfje+AbwBnYBfwFaABbAB2/RTc/m3x04t6FGgHnER5X7eBYcBVuVw+8Te+/e+C1wFd4AzK+/sBaATeBu7K5XL7P+WqZLIXf+O9kP5rXXL02++hDJlsKjLZdWSyCmSy6p/e+TnIZKr/4qf9ld7Dv+Ya/nEYjXJv6QjcAD4B9gG+wNfA7r/7XvMT/tHrKJfLXVEm/lOAKGA9kIqyOBD5U5Lyj8FP6/UpUPnv/u7fCP/oZxT+Os/p7628vo4ySDmD8oDSBUJQLtBLyGQhrazaLAM0gV9T3i1HuSH/HL986BWKGmSyDcAaZLJOKBS/Txn9P4RcLn8OeAFIA4LDw8OLfvq8OrAbGAlMBr79M67vP4VcLrdCGejkA23Dw8MLnvhaD+A8ysxs+59zhX8YDMLDw2t//km5XL4aWAwsAp7eVumPwx1g5a98rSvQE2ide8Vvv4ffoXyeC1AmYlVAb5QbdBgy2egWti9/kffwJ/xV1/CPQjIwFDj2ZIVVLpcvRnm4jARGoAxo/874p69jOGABzAkPD/9U+qRcLv8Y5Zm7GnjlT7q2PxQ/JVNbgWJgP8qz5J+Af/ozCn+R5/T3cl4NUChCUCimolC8hUIxG4WiA/AeYINygZ4OMpkhMAE49xsBbxkKxdv/4r9fq+psB5r4cx8SyaB5nRS4AoSHhzegDBIAZv/Pr+qPgyPK5+fGk4ErQHh4+AWgAjD/My7sj8S/2oh+gmSg3eZXvv7fhUJx51feibcByRJn81P/vN96D2Wy5/i/RMwHhWI6CsVcIABlq0hKxH6Ov8J7+Nddwz8I4eHh58PDw4/8nBoQHh6eB3z50x+7/88v7A/GP3kd5XK5C9AXSAc+/9mXV6BMFl+Qy+W/z87tr4c5KBPsKSjv7R+Bf/IzCn+t5/T3Ba8KxR+5QONRHra7fte1/CsoFLlABDAKmaz1/qJ/DCQ/ydR/8TXpc+3kcrnR/+Zy/nCkoOTVBcvl8ha+o3K5PAzQB87+GRf2P8KQnz7e/VOv4ueQyXxRdkFygGOt+M7feg9FIoZC8X+m6ArFbydif4338Lfw11zDPxaSUXvjn3oV/138E9ax508fT/+LJKQCuIry/Qz5X1/YHw25XO6Fkg+/ITw8/PKffT3/I/wTnlH4Cz2nf/TA1u9ZoN4/fbzyG39HE5lsIuCAMrK/C1xGofgtTt9VlNWGMJS8zP81pEPe+V98zeWJ//cErv/3L+ePRXh4eIlcLl8IfAzEy+XygyhbQK4oW5hngJf/vCv8YyGXy98A9ABDlIT8Liifww/+zOv6F5B+59/8m/fj5/it9/CpEjFkMiMUirKfff3Pfg8F/kZr+IdALperAZN++uPJP/Na/kj8Q9fR46ePyb/y9RSUFS934Nz/5Ir+C/jpmfweyETZRv9H4h/6jMJf6Dn9z4JXmeyPWKAuKFvMv/bLAOXh+f3PPpeGTDYFheLSr3zPzZ8+/lmH5lGU1ax5crn8x/Dw8BIQL++TXEXjP+Ha/hCEh4d/IpfL04EtwIwnvvQA+PbndIK/Od4ALJ/480ngxfDw8MI/6Xp+CZlMG5gINKMc1GkNfus9/E8SsT/7PXwSf/01/GPxAcqhrePh4eGn/uyL+QPxT1xHw58+lv/K16XPG/33L+W/iuVAINAlPDy85s++mP8i/onPKPyFntP/VOf1DZQ8h9dQHn4ngb4oFE+3QDKZBsoFzuPXfWq3Ar1QBrC6KKVgNgFOwAlkMv9f+T5JicDhqa7lj8ePKAdmXFFWJjfL5fJPUA7aDESZoYCSE/i3hFwuXwDsRTl05opyfdqjrMb9IJfL1/55V/fHIjw83Co8PFyG8jkcgTJoi5HL5e3+3CtrgTEoN40TrRqY/PfvoRR0zkMmM3ni+54mEfuz30OBv8ka/iGQy+VzgPlAIkq+8j8G/z+t4xOQ1CL+tn7ucrk8GGW1dd0/QUbxt/D/6TMK/8Pn9D8LXhUKKxSKXywQMtnTLpAkqfDrumAKxUoUivMoFPkoFNUoFHEoFK+gbFdro1Q4+Fco+emj2a98/b+Kn/ggQ1EG+HkoD5CpQDbKQF/Se/tbViflcnl3YA1wODw8fF54eHhqeHh4dXh4+G2UmpM5wPyfCN7/GISHh+eHh4cfQNkaMeX/NAr/Cnjpp4+bWvl9/+49bJGIIZNtRib7hKdLxP7U9/Bf4S++hv8x5HL5TJQqEPFAD6nr80/DP2wdpYqV4a983eBnf+9vhSfoAsn8H0/+H49/2DMKf6Hn9I9x2FIGlr9ngaS2gdbv+FelKdqwX/m69s/+jf85wsPDG8PDw9eFh4cHhIeHa4eHhxuEh4f3R3moBPx0bff/rOv7DzH4p48Xfv6F8PDwapQSPSooW0T/OISHh2egXEefnw+s/SmQybyBTiiTo+Ot/O7ffg8Viv8kEfvT38Nfw19uDf8AyOXy14DPgDiUgeu/0sL+R+Efso5JP310/5WvS0PQv0Wv+ytDD+W9eQG1crlcIf2HsnsL8NVPn/vkz7rI/xb+Ic8o/IWe0z/WHlahEAuETPbvF0g53FHP/1V+WgPpoPw1SQbTn/29vxJeQBko7P5JOuvvCM2fPv6aHJb0+fr/wbX8WbD56eNfgfrxewe1nu49VCgaUSjWoVAEoFBoo1AYoFA8TSL2V34P4a+1hv8RfhqgXI+yIt7jH8Y5/3f4u6+jVAToK5fLW5zLcrlcH+iM8h372w33/oQ6lIY9/+q/mJ/+zpWf/vxPpRT83Z9R+As9p/8Ne9jWLtA9IBCZzACF4nEr/p3Qnz7+qwloUA6PgHIj/1Mgl8sNwsPDH//scx1QDlJUohTx/7siApgFvCSXyzeFh4fnSF+Qy+UDUD7EtcCfKU7/H0Eul3sCZT+vXv300q5CKdR87U+3bZTJtFAmRM0oN//fg9/7HkqJ2Hc/SWf9HH/qe/i3WcP/EHK5fBnK/eQW0PefRhX4p69jeHj4Q7lcfhpl93ImSucpCStRFmk2hYeH/y01UX8azpr+r74ml8vfRtmh++7vbA/7T39G4a/1nLY+eJXJPFGaBuT97PMtFgiF4mkX6CLKIZ9gfq4LKpP5AI9QKEp+9nlHlK0x+HUHJ0ln7Bdt7f8hzsjl8hqULbwKwAclR7AOGBEeHv5rgfffAXtRrldvIEEulx9A2VL2QkkpkAFv/c29nPsDH8rl8svAQ5TtcUugG0p+dx4tVRb+LIxGOSx1tJXOdk/iIr/2HgL/MqiVyZ4mEfuz38O/yxr+bsjl8skof/9NKJPKOXL5L3wh0sPDw7/9H1/aH4l//DqiNPO4BmyUy+W9gASUlr89ULZhl/yJ1/YM/x7/Pzyj8Bd5Tn9P5bU/8CEy2R+1QPtQTsX245eH5mjgLWSyCyjdfSpQDo0MQlntOc6/8k5XBtK94P+x99bRVZ7b2vcv7u7uBoEYECGBCF4sQPHiheKF0t1S6i1t2bRQWgpFilPcrRAgCRogkOAJcXf3rGQ93x95132ad5/zHdL3/c7Z+3y5xmAMCCvPeuaj857zuq5JKpL0rAv78n8bx4HJdNgXaQGFdFgYfbdly5bs/8b9+j/Gli1b5IsWLRpBx+prMh0iLW06BDoXgZ+2bNly5b9xF/9v4CodU6r6Az50KPkb6LhB99MR4z9DhUsh1Hr9iVr/iP+3+xAgBiWl/3AhhiT940Lsn+M+/Fc5h/8nUFiYqdDh/PLvIZ5/0VHU/wv/48/j/6pq9aFjITKMjvurCPgJ+OJfPb7/H+B//DUK/zzXqdJ/7FD1H/2GkjewkI4TZEvnE3QB+OkfKqX/+TYf0eFYYNeJr6ekNJCOGbl+/JtVVjUdLcj9wP5/19pHSWkIcBlYgST92KV96UY3/pWgpORFB+80H3DsMt+187b+/fuw4//ep2OR4sK/LcQuA98hSdn/wfa678NudKMb3ejG/3V0PXn9/2QvlKYAv9NRwTn1f2F7J+ioBLsgSf+S1iLd6MZ/Obrvw250oxvd6Ma/AP5ZklclOhSGWoDv/8vAgtfZli/wCFiGJG3+Tz7djW50Q4Hu+7Ab3ehGN7rxL4D/u1ZZfxUdL8n5wCn+za3gr8KKDhPkX/+zD3ajG934E7rvw250oxvd6Ma/AP45Kq/d6EY3utGNbnSjG93oxmvgn6Py2o1udKMb3ehGN7rRjW68BrqT1250oxvd6EY3utGNbvzL4LV9Xv/XDOJ/aWzZskXpP/q//+nxwf/8GP8nxAf/82Psvk7/Z8cH//+IsRvd6MZ/H7orr93oRje60Y1udKMb3fjXgSRJr/Vn4cKF0sKFCyUFbt68KV24cEFqbGyU8vPzpYMHD0plZWVSc3OzFBoaKpmbm0tpaWlSc3OztHXrVunx48dSY2OjNGXKFAmQAGnbtm2SJEnSo0ePpF27dkn5+fmSJElSe3u7JEmSVFZWJn344YfSkiVLpIKCAkmSJKmhoUEaNGiQpKysLL3xxhvSmDFjJHV1dcnW1lb6+9//LpWUlEiSJEktLS1Se3u7JJfLpT/t+38an1wul9ra2qTGxkYRa3p6urRp0ybpzJkz0n+EtrY2qaamRmpubhb7L0mS1NTUJG3YsEFavXq1lJOTI35eVVUl7dixQ7Kzs5OCgoKk9PR0SZIkqbGxUdqwYYM0ZcoU6ZtvvpHkcrkkSZK0cuVKyd3dXTp+/LjYRnV1tSRJ0mvF9++dw4iICElfX1969OiR9PTpU8nLy0tatmyZ1NbWJv3444+Surq65OjoKEVHR0vvv/++dO7cOenXX3+VPD09JXd3d2n//v1SW1ubiF8mk0ltbW2SXC6XWltbpfr6evFdz58/l9avXy+dO3fuH47d0aNHJV9fX2nNmjXiZ9u2bZMAafLkya8d4/8enyRJUmFhoTR79mxp/vz5UlVVlSRJknTmzBnJxsZGGjt2rNTQ0CAdO3ZMUlJSkt5++23xe3v37pVWr14tXbp0SfysoaFBampq6rT95ubmf4hHkiRp9+7dUlhYmOTq6ioNGDBA+uCDD6SzZ89KR44ckWbPni0NHTpUWrhwobR27Vpp165dUnp6epdijIuLk65fvy6VlpZKra2t0tOnT6W8vDxJkiQpKSlJ2rRpk5SQkCD2p66uTux7S0uLVFFRIf5v+fLlEiB99dVX4mc7d+6U5s+fL+Xm5koVFRWSp6enFBwcLDU1NUm//PKLZGBgIP3xxx9Sbm6uZGZmJvXp00dqamqSEhMTJUNDQwmQhg8fLvapqampy9fp8+fPpVOnTkl5eXlSU1OTdO7cOenUqVPi/iooKJAKCwul6upqqaGhQez7o0ePpOjoaAmQBg0aJBUVFYm4a2pqxOdaW1ul6upqqaamRmpqaup03+7fv18aN26c9O2330q5ubniGCo+k5mZKXl4eEiOjo5SZmam+L2unMOUlBTp22+/lfr37y+eiREREdLTp08lSZKkiooKsb/Nzc2dYnzy5Im0YsUKKSwsTJo/f7507tw58ax4/vy59Pbbb0tbtmyRWltbpZs3b0o///yzVFJSIhUWFko//fST9PTpU6m6uloKDw+XTE1NxXcmJiZKjx8/lkpLS6W4uDjp5s2bIubm5uYun8Pt27dLQ4YMkU6fPi3J5XJp//790vr166W6ujoRi2K/JanjmXbmzBlp9OjR4pgMHz5cPP/r6+vF+ZQkSXr48KH0yy+/SAkJCVJ7e7t0//59afXq1dKqVaukq1evSv87rl+/Ln3xxRdSXl6eVFFRIQUHB0uamprS7t27pZqaGikvL++1Y+z+0/2n+89/358uj4dNT08nLS2N9vZ2evTogZaWFjY2Nri5uXH06FGKi4sJCgoiODiYffv2AeDi4oKDgwOSJBEaGoqtrS19+vRBRUWFTZs24eDgwLBhw7CysgJAWbmjIKyjo8O4ceNoaWnBwMAAgFevXpGYmIhcLueNN94gMzOTM2fOoKqqipeXF5WVlejr66OpqQlAS0tLl+JTUlJCRUUFLS0tSktLSUhIoLCwkF69ehEREQHAJ598Qk5ODvPmzaOhoYELFy4QFRVFdHQ0ALdu3eLLL79kyJAhrFq1imXLlnHo0CHOnj2Ll5cXfn5+GBgYYGNjw6BBg3Bzc8PFxQUALS0tXF1dxecSExM5dOgQzc3N/Pbbb4SGhop9VRyTriI/Px9bW1vWrVtHamoq5ubmNDY2snz5cvr374+KigphYWEsWbIEAwMD3N3d0dTUpLGxkaKiIvz8/IiKimLSpEkUFhZy//59+vTpg4ODAwAymQxlZWV0dHTEd/bo0QMnJycaGxvFz9LS0vjtt9+QJImNGzdibm7OvXv3UFFRoXfv3uzYsYO4uDimT5+Ovr7+a8c3Y8YM5HI548ePJzo6mu3bt/PLL7+waNEiVq5cyejRo7G3tyc1NRVtbW2Cg4NZsWIFtra2FBQUoKurS1hYGP7+/jQ1NXHo0CGePn3KgAEDGDZsGKWlpfz888+EhoYydOhQAC5evMjevXupqanB19cXLy8vVq1ahZaWFs3NzaiqqmJtbY2enh7Ozs4UFhairq6Oh4cH+vr6PHnypEvnsLm5GXd3d7S0tFBTU8Pb25uLFy+yatUq7OzsmD9/Pm5ubuLzurq64u/q6uoYGxuLf0+ePBllZWVUVFSor69HV1cXNTU1jh07RllZGSEhIaipqWFjY0NrayuhoaG88847aGtrY21tzdmzZ5HL5WhqahIQEMC6detYsGABly5dQi6XAx3Pja7izp07eHt7Y2trC8DIkSPZvn07b775JkOHDmX+/PmdPn/37l02btyIrq6u+N6HDx9SUlKCpaUlKioqZGVloaKigqWlJS0tLejo6Ij76OOPP6a+vp4NGzYwefJkZDIZZmZmWFhYANDY2EhpaSmOjo6YmJiwZMkSEhMTWbduHaWlpTQ3N+Po6Pja8VlaWhIUFERTUxNOTk5oamoik8nYsGEDQ4YMYeLEiSgrK1NZWUl2djbGxsbI5XKOHDlCamoq4eHhGBsbc/HiRXr27Pm/bHrhyZMn7Nixg2HDhrFw4UJCQ0ORyWRoaWnR3t6Ou7s73t7eAGzZsoXVq1ezfPlyIiIiGD16NL179wZg4MCBJCUlsX79evT19YmMjOzyOXR1dSU0NBRjY2OUlJSIjIzk6tWr/PLLL7S3t1NSUkJWVhaGhoZMnjyZESNGMHr0aCSpg3WQk5PDiBEjsLbucG7T0dERz5W9e/dSVFTEsGHD8PX1Fce0b9++qKmpievmz/D19cXBwYHU1FTu3buHh4cH48aNo3///rS3t9Pa2trlGLvRjW7816PLyeupU6fYsGEDK1asYOTIkQCUlZWhpqbGtm3bePLkCXFxcQwcOJDPPvuMTZs2MWTIENzc3AgJCWHRokViW3v37uXx48d4e3uLxLWkpITm5mYMDAwwNDSkb9++AMjlctra2khJSUFJSYn+/fszY8YMcnJyOHv2LNra2jQ0NNDc3MyLFy8wNDTE2tpaJLGvi8LCQnR1ddHX10ddXZ3Y2FhqampErOXl5Zw/f56qqipGjhxJeXk5ly9fpr29XSSvL1++5PHjx5ibmwOgoqJCv379OHr0KAUFBURFRQEwfPhw8UKqrKzEyMiI5uZmhg0bhpqaGgA7duxg7969fPTRR+Il9OLFC1xdXdHR0aG+vr6rp5CSkhLMzMzo27cvLi4u5OTkoK+vz4IFCwBobW3F398ff3//Tr+XmpqKtbU1n332mXhR/vDDD1y7do1Vq1Yxc+ZMAAoKCqipqcHc3BxLS0taW1upqqoCoK2tTWyvtraWkydP4uHhwapVq9DQ0GDDhg08f/6cFStWMG/ePOrq6li5ciULFy587fgU58fDw4Po6GhUVVUxMDDg2bNnbNmyha+//lokmDU1NdjY2PDDDz9QVlZGcnIybW1t9OjRgx49epCWlkZiYiInTpwgNzcXKysrnj9/TlxcHG1tbSJ5NTEx4fnz5zx//pzLly9z8uRJRo8eDUBlZSWampq0tLTQ3NyMp6cnfn5+qKioAB0LrIKCgi6dw9zcXPHdCsjlcq5fv87AgQPFQqK8vJy2tjaUlZVpbm6mqakJbW1t7OzsAKivrycoKIigoCDOnDnDxYsXGT9+PObm5sjlck6dOkVeXh6BgYH0798fgN69e9O7d2/i4uI4efIkISEhKCkp8fDhQ/z9/Rk+fDgTJ06ktrZWJAN/Xsi8LlxcXAgKCqK6uhpJkjAyMsLe3p579+6hq6srkle5XI6ysjKJiYmcO3eO0aNHEx0dTU1NDQ8ePODgwYNYWVlhampKZWUlsbGxYoESHBwMwOXLl9m1axcWFhbk5OTg5OTE7NmzaWlpQV1dHYDq6mru379PZmYmgwYNYsmSJTx79oxRo0aRnZ2NpaVll5JXAwMDwsPDMTAwwMDAAGdnZ5KTkwkLC6O4uJjJkycDHYt5U1NTioqKOHToEJs2bcLZ2Zm1a9eioaFBQkICf/zxB1OnTsXU1BQ3NzeCgoLQ0tKisLAQa2trIiIiaGhoQE9Pj6FDh1JUVERjYyNeXl5s3ryZgQMHcuLECd58801kMhnl5eVYWVnR0tJCfHw8enp6eHh4dPkcBgUF0bt3b/G8sLa2pm/fvnz00UdcvnyZpqYmALy9vRk0aJC4ZjQ0NJgzZw59+vTBxsaGoqIiEYuVlRV3797l999/JyAgQCSu9+/fx9nZWTyHHz9+zO7du3F1dcXHxwdtbW2MjIwwMjLi2LFjJCQkMGvWLMaNGwdAVlZWp8V1N7rRjX9edDl5zcrKori4mPz8fABu3rzJyZMnMTIywtDQkD59+ohV8kcffUR8fDzHjh3Dzs6OkJAQAF68eMG2bdvQ19dn6dKlouoIHVW7O3fu4OHh8Q/JU1VVFUpKSowYMQInJyeRZCxZsoQNGzawe/duvv32W+rq6vjyyy8JDAxk2bJlXYrvwoUL+Pj40K9fPwwNDfHw8CA/P5/MzEzq6+t5/vw5ixcvxtnZmZ49e9LU1ISpqSkZGRn8/e9/x8LCAgcHB65cuYKNjQ3V1dXk5uZSX1/P3LlzRZKuQEBAAIWFhWRkZJCVlYWxsTGDBg0C4LfffuPChQsMHDiQqKgosrKy+OKLL1BWVmbdunW0t7dz/fr1rp3A//WdZWVlfPbZZ6SmpvLhhx/So0cP7t69iyRJBAUF/bu/5+Hh0ekF9sknn7Bp0yYAkZwCmJmZoa+vj5qaGnV1dTx+/Jht27Zx//59xo8fz7fffgtAz549+eijjzhy5AjR0dGMHTsWe3t7nj9/zvHjx7GysqJ///6sX7+ezMzM147vyy+/pLCwUCyUPvzwQ9LS0vj888+5d+8eQUFBjB8/nkmTJlFfX4+5uTm9e/fGzMwMHx8f2tvbKSoq4v79+6irqzNhwgQGDhzI+fPnmTx5Mn5+fqKqGhcXR3h4OIGBgZw8eZJ58+aRlJREdnY2mZmZJCYmYmBgwNChQ2lvb+fo0aMkJCTQq1cvJk+ejK2tLfn5+fTo0YM7d+68dozl5eWd/p2VlUXPnj2JiYkhJSWFw4cPiyr6sWPHSEtLo7Gxkfj4eBwdHTl48CD29vaUlZVRWFiIu7s74eHhyGQyVFRUsLa2ZtKkSVy5coWKigpaW1vR0dERiRzAjRs3+PXXX9HT08PGxgboqHwNHTqUn376iaqqKhITE5HJZHh5eb12bAooOh379u3j5s2bzJw5E39/f3bv3i0qx01NTchkMvT19YmKimLPnj307NkTW1tbWltbSU1NZdOmTWhpafHFF18QERHBo0eP+P7775EkieDgYM6cOcOqVasYNWoU7777bqd7tKWlBSUlJdTV1ZEkibq6OlGJhY57Yt26dWhra2Nqaiq6TV1BcXExmZmZODs74+vry5o1a9DW1kaSJJSUlDA0NMTQ0JCYmBg2bdqEu7s7+/btw8bGhszMTHr06EF8fDwfffQRS5YsISAggLt373LixAkOHDjAmDFj8PDw4MWLF3h7e4vrdvXq1WzYsIFx48axc+dO2trasLe358iRI/zxxx8MHDgQR0dHJkyYgLOzMwEBARw/frxLsamqqopngQJGRkZERkZib2+PmZkZ7u7u9OrVC11dXc6ePcv27du5e/cu8+bNY8yYMUiSxIIFCzh37hyjRo1i+vTpNDY24unpyYgRIwCIiYnhwIEDzJ07lwEDBgCIGLW0tPjkk09YuHAhKioqPHnyhP79+zNixAgaGhq4fv06hoaGuLi44OTk1OXz141udOO/Hl1OXp2dnZk+fTojRozgwYMHfPbZZxQWFvK3v/2NVatWceXKFdavX8/ixYvx8fHh008/ZdWqVaiq/ttXnTt3jp9++olRo0bx1VdfAR3Vk/z8fJKTkykvL8fR0VE8vNva2lBVVcXIyIh+/frh4eGBnZ0dBgYGZGVlkZycTHZ2Nrq6upiZmdHU1MTFixe5fPlylys+kZGRuLi4UFtby7Nnz7C0tCQiIgJNTU2+//577ty5w9atW+nXr5/4HUdHRw4dOsTHH3/MiBEjGDduHE1NTRgYGKCmpkZeXh7p6enU1dWRkZFBUVERLS0t9OrVCx8fH+zt7cnMzOTmzZsYGxvj7u5OU1MTp06d4t69e4wdO5bm5mbq6+tRVlbGzMwMLS0tVFRUREWjK1Acz6qqKkpKStDX10dDQwNVVVVRpYOOqpyKigo1NTWUlJTQ0tJCS0sLOTk5pKWlkZ6eTt++fdHV1aW1tZWEhASMjY3R0tISlT3oqErK5XIaGxuxtLQE4NmzZ6SmptKnTx+eP3/O5s2bCQwM5K233kJbW5t9+/bx5ZdfMn36dN577z0WL1782vEtWrRIxHDy5EmuXbuGl5cXbm5uFBYWiqq6hoYGVVVVFBYWYmZmhqGhoaiWa2hocPv2bXx8fER1Lj8/nx07djBq1CjGjBlDQUEBS5cu5dq1ayxfvlwkFRcvXuTZs2d89tln6Onp4e/vT15eHnZ2dtjY2HDx4kUuXbqElZUVQ4YMERScruDw4cM4OzszdOhQ0tLSOHHiBFZWVowaNQp9fX3S09OxtbVFQ0MD6Gh529ra0rNnT168eMHnn3/OmjVrcHFxYd++faxZs4YxY8Ywffp0oKPdO336dAoLCzl//jwGBgYEBQVRXl6Ora0t6enpFBcXo6ysTE1NDTo6OlhaWqKnp4e6ujr19fWcP3+eTZs2MWjQID755JMuxQfw6NEjqqqquHnzJomJibi5uTFgwAAGDx4MdCSWWlpaaGlpAYhqOUBdXR1jxoyhvb2dQ4cOUVZWJrY7duxYPv/8cw4fPkxAQAAJCQnY2dnx2WefiYV3fX09ampq5Ofn097ejouLCxoaGjg7O2NnZ0d1dTWFhYXo6ekxceJEoGMB0RXcvXsXb29vKioqOHnyJAkJCYwbN4533323U8eoubmZ27dvc+XKFUJDQ/n8888JDAwEwNTUlMGDB6OsrExTUxOlpaXIZDKKiopIS0sTnaySkhIOHjxIUVERw4cPJykpCXV1dZ49e0Z0dLRYKAAYGhpSW1vLN998wxtvvMHHH3+MpaUlJSUlXT2FKCsrU15eTnZ2NioqKnh4eKCrqysoCg4ODjQ2NlJbW0tpaSkvXrzg6dOntLW1UVJSwuXLl6moqCAlJQXoeHfk5eXh5eVFXV0dv//+O5mZmchkMqysrLh+/Tr6+vr06tULIyMj7OzsUFZWprGxkSdPnqCsrExtbS1OTk7o6+uTmJhIQ0MD5ubm5OXl8eLFiy7H2I1udOO/Hl1OXtXV1dmxYweampp89913xMbGEhQUxJgxYzAwMODo0aMcOHCArKwsdu/eTWRkJCdPnqSmpkZsw97eHujMR62pqeHq1as0Njbi5+eHu7s7MplMVDwqKytFhcXCwgJtbW2g4wWwa9cuAKZOnYqtrS2FhYUYGxtTUlLCt99+K9pIrwNFFXj37t0cO3aMyZMnM3bsWKDjJfLo0SNu3LjRKXmFjheXvb09b775JpWVlcycOZPBgwfz22+/0atXLx4+fMjSpUtJS0tDU1MTSZIYMGAAP/74Iz169MDFxUU8vAcPHoyXlxfGxsZIkkRsbCzR0dG89dZb9OvXj+LiYtTV1VFXVycqKorLly936RweOnSIyZMnc/DgQfLz8zEyMgIQFA2ZTEZxcTGqqqpYWlpSUVHB3bt3uXbtGleuXKG2tpbg4GB+/fVXevfuTXx8PJcvX2bfvn24ubkRFhaGhYWFqNLZ29vz+eefI5fLsbOz48WLF2zcuJE7d+4QEhJCSEgIJ0+exNPTEwsLC4YOHUpCQgK7du1CU1MTHx+fLsVXX1+Pvr4+e/bs4d69e2zYsAEjIyOOHz+OoaEhN27cEJW7qqoqVFRU0NHR6bQQMDY2Ztq0aZ14xYGBgaxfv55hw4YBHTzXU6dOcerUKeLj45kwYQILFy5kzpw5rFy5krKyMqZPn462tjYnTpxgwoQJTJgwgbt375KYmIimpiZ6enqYmJh0qmi+Dp48ecKHH37I3bt3cXJyorCwkNOnT3PkyBEmTpzI/Pnz0dDQQCaTYWNjg4ODA0OGDMHQ0JB169bx4Ycf0tjYyOHDh9HU1OT48ePk5+fTs2dPPD090dbWJiQkBBMTE6CjgmZiYkJrayu5ubnk5eXh7u7ON998Q0hICE1NTZSXl9OnTx9kMhnvvfcee/bsAToqYC0tLRgaGnYpxqlTp9KvXz+8vLyIiIjAycmJnJwcdHR00NbW7nRuGhoaxEL11atX1NTU0LdvX2bMmCGoOQro6uoSHh7O+fPnWbNmDe+88w7vv/9+Jx6wgiOsqqpKfX099fX12NvbY2pqSkVFBZcuXSI+Pp6oqCjs7Oy4e/cuW7ZsQU9P77Xje/jwIb179yY8PJwbN27w888/k5aWJq57BZ4+fcrMmTOxtbUVXSwF9PX1GThwoDju2dnZLF++nGPHjmFhYcGXX36Jj48PhYWFPH/+nKtXr3L06FE++eQTUVU/efIkXl5eODg4oKOjw8iRIzEwMGDkyJFcv35dLDzOnDnTpfMHHQvltLQ0Pv30U8rKyvjll18YMGAAtra2tLS0UFpaysmTJ7lw4QJKSko4ODiwfv16goKCqK+v5+zZs7S1tbFy5UpOnjwpOguqqqqkpKRQX1/PoUOH+O2334iOjubdd9/l8uXLHD58mBkzZhAaGoqOjg7V1dXcvn0bNzc3+vXrx7Vr10hISGDIkCEMGTIEgM8//5z4+Pi/1CXoRje68V+LLievhw8fRktLC29vb7S1tRk4cCAqKiocOXKEPn36MHToUAwMDFBXV6e0tBRbW1vBA8vLy0NJSYnS0lL8/PwYMmQIra2tXLt2jZiYGCIjIwW39M/IyMjg4sWL5OXloaGhgbq6OpaWltjY2FBXV8eqVaswNzdn/PjxQIfoycvLS1QduoJff/2VgoICvv76a6BD/KPYB2NjY+bMmSNapIqfb9y4kaamJr777jsCAwOpqalh3rx5PHr0iM8//1y04Xv16oW7uzuqqqqcOXOGmJgY1qxZw6lTp7Czs0Mmk3H9+nWWLVuGiYmJqOQoBAXQsXhQJP/QWYjzujA3NxdVbcW2nj17xtmzZxk2bBj+/v7cv3+fBw8eMG/ePFxdXenfvz9r166ltrYWR0dHvvnmGyHs0NXVRUNDA2NjY/z9/enTpw/QQQ+5cOECkiQxbNgwnJ2d2bdvn2hZe3p6cvz4caytrZk7dy7QwQ81NjbGwcGBuro64uLiuiyi0NLSoqSkhLa2NsLCwggLCwPg3r17ODs7Y2RkxMmTJ6mqqhLf297ejrKyMg0NDfzyyy+4ubkRHR3Ny5cv+f777xk7diyjRo0iICCA4uJi9u/fz/bt28V3FhQUIEkSmZmZlJWVYWZmJgRd9+/f5/Dhw5w4cYKpU6cSFRXFmDFjsLW1RVlZucu8bIDly5ejpqaGq6srjo6OuLi44OPjg7KyMhMnTkRbW5urV6+yYcMGZDIZY8aMoaqqisbGRqytrZk+fTqqqqp888031NXV8fbbbxMUFISuri7t7e1AB1d7wYIFGBkZYWVlxYABA0QFLi8vD0NDQwYNGoS1tTXFxcU8fvxY8JtTUlIIDg5m6tSpPH36lH379jF79uwuxejn54euri7jx4/Hx8eH3NxcHjx4gJOTE87OzgBs3ryZlJQUVqxYgYuLC0VFRdTU1KCmpkZsbCxnzpzh1atXvPfeewAigTI0NMTf3x8DAwOGDBmCsbEx1dXV3Lt3D19fXywsLCgtLcXQ0BAHBwdRwdbV1aW0tJSLFy9y9OhRqqqqCAgIwMDAgMGDB5OQkPDa8SkEYwphanNzM71796a9vZ2XL1+SmppKVFQUpqamDBo0SCzcoUPsePDgQTQ0NFi+fLlYgH755Zds3boVX19f3n77bXEvGhkZMW3aNOrq6lBXV2fJkiWYm5vzxx9/sGzZMiIiIpg7dy4DBw7EwsKCsLAwVq1aBXRUYmtqarq8wIIOGtaBAweIjY0FOp4JAwYMwNDQkKamJkpKSvDz8+PRo0fs2LEDX19fPvnkE9EBefXqFdra2owePRo/Pz9sbW0xNDSkX79+NDQ0EBsbS2NjI0pKSiQnJ5OQkICmpqa4pxTXiYWFBZWVlXh4eKCjo4O5uTn29vb06tUL6Hjuv3z5krCwsH+g5HSjG93450OXk9fExETu3r3LrFmzeO+99+jXrx/bt29nz549tLW1sWzZMtF6VFga1NXVUVlZSVlZGVVVVcjlcqZOncrbb7+NXC5n/fr1JCYmigpna2srmZmZeHp6Ah2JwbfffiseKpqamjQ3N6Opqcn777/PunXrRJsYOpKXoKAgjIyMcHR07FICu2LFClER9vHxYeDAgdTU1HD69GkCAgJEi1CBY8eOsWPHDt5//33RyjMwMODTTz9l48aNfPnllzx58oQVK1awZ88eUZlZvXo13333HU+ePCEhIYGgoCBsbW0xMDBAQ0ODgoICysvL8ff3Z+fOnSgpKVFVVcWzZ88wMDDAw8MDDQ0NocrtChRCnzt37qChoUFAQAAvX77k448/JiMjg6+++oq4uDjOnz/P4MGDcXV1pVevXvj5+dHY2MjGjRsJDw8HIDY2lvT0dLS0tHB2du7EGfv73//O3r17UVJS4sGDB2hqanL+/HlkMhlRUVGoqalx+fJl7ty5Q1VVFerq6hQWFmJoaIiJiQkGBgYEBgaKVu7rIj8/n4qKCsaMGYOZmRnQUTVXJKrXr19n5cqVNDU14e7uTlhYmBBPKa61nj17EhUVxe3bt9m1axcmJiaMGjUK6Ghdbtq0CTU1NcLDw8nKyuLNN99k+fLlJCYm8ttvv4nEDToEclVVVbx69Yry8nK2bt0qeHkKwUpXz+OPP/4o/i5JErm5uXh6emJra4u6ujpXr15l/fr1XLlyBUBwKBX8vu3bt/Pq1SsGDBiAsbExx44do0+fPoJS0tbWRltbG8HBwQQHB9PW1oZcLqe1tZWWlhacnZ1pbm6mtraWlpYWjhw5wm+//Ya+vj7e3t54enoybNgw3nzzTa5cuUJhYWGX4oMOTnVGRgYmJibU1tZy//59ysvLxWKktLSUnTt3Ul5ezrx588Tx9PDwQFtbmx9//FFwsqOioujXrx8//fQTO3fuZNSoUXz22WdoaGhQWFhIYWEhJSUlWFtbY25uTmtrK42NjRgZGaGurk5DQwPKysooKSlRW1uLsrIyra2tFBcXo6uri7OzM25ubl1KXh0dHWlsbKSgoAAVFRXWr1+PhYUFbW1tHD9+nJcvX2JkZMTAgQPZs2cPt27dIj4+nsGDB6Otrc2pU6coLS1lzJgx9OjRg6qqKlJTUwkMDGTXrl2CQqFwkJg1axazZs0S319ZWcm1a9eQyWTU1tZSW1tLQUGB6HD9mepRUVFBUFAQ9+/f79I5fPbsGefPnwc6OO6KjpUkSZSUlODo6CiKG5cuXRLCRsV39unTB3Nzc9TU1LC0tGTMmDFoaGhgY2ODra2tuKd/+uknli9fDsDgwYOpqanBwsKC5uZmWltb0dfXF/SftrY2evXqJYoKMTExHDp0iMjISD777LNOouJudKMb/5zocvI6b948bt682cluRZIkXr58+Q/tXSUlJXbu3Mn69euJjo5mzZo1wh5IoYaura2lT58+NDQ08Ntvv/HHH3+QnJzMzZs3GT9+PHv27MHc3Fwkrqqqqnh6epKSkkJzczPHjh2jR48ejB8/XogCdHV1mTJlilC279y587Xj++abb5DJZMLGxt3dncrKSkJCQjrFd+nSJbZt20ZVVRUfffQRw4YNIz09naysLJKSkigqKkJLS4sNGzbQt29f3NzcRPUGYNKkSWhoaIiW7/fff0+/fv14++23qaurE+KfoUOHinZ2QUEB9+/fx8jISPAZ/wrnVQGFgE4ul6OhocGkSZOQy+Vs3ryZvLw8IiMjsbKyQpIkHjx4wLhx4+jTpw+xsbHI5XLGjRuHl5cXr169oqWlhbS0NO7evYuuri41NTXs3bsX6Lg+rl69SnV1NdOmTWP8+PHExMRw8OBB1NXVaWxsZM2aNURERNC/f3+UlZXx9vZmy5Ytgt/YFfz9739nwoQJInGVyWS0traKakxkZCRffPEFmzZtYu7cuaxYsUK4GSiSverqao4fP46JiQkrV66kra2NS5cuYWFhwaVLl3j+/Dnr169n6tSpfP3116Iqpa6uTkVFRaeWdnt7O2PGjKGpqQl/f/9OAkUFXzMxMbFLMRYWFtLe3i5ayEeOHOHSpUtoaWlRV1cn4gwICCAuLo6ePXsSHBzMy5cvBefaxcUFV1dXHj16xLfffktERARDhgzB3d2dxMRETp06hY+PD1OnTkVVVZXLly+zZcsWhg8fzjvvvCN4iSYmJlRUVJCens7MmTNZsGABe/bsYfbs2WzdupW5c+eyYcMGNm7c2KUYnzx5gpeXF1evXuXs2bO0trYycuRIcnNzOXnyJBcvXqRv376MGTMGIyMjnj17Rltbm6i2+fv78/e//x0lJSVyc3Px9/cnPT2dPn36MHLkSEaPHk1DQwPLli0jLi6Od955R3R+1NXVsbKyoqysjPj4eC5cuEBaWho9e/ZkypQpTJ8+HZlMhr+/v+BLrlu3rkvxmZmZsWTJEi5evEhISIh4TuXl5aGlpcXw4cNFZRA6lPr19fVCQLdo0SKqq6uprKykoqKC5uZmNm7cSENDA3K5XHRX/r3uzJMnT7h8+TITJ07kww8/JCcnh9bWVgoLC3n48CG2trYMHz4c6HAZycvLE8/srsDHx0dU0Ddv3oyXlxeZmZnMmzePwYMHs3r1alpaWrh37x5/+9vfiIiIwNzcnCdPnvDw4UN0dHTw9PSksrKSV69e8fDhQ4qLi0lKSqK5uZkzZ87g7OxMbW0t0MEBHjFiBNeuXePixYs4ODjg6uqKm5sbqqqqvHr1iuLiYtzc3ATNxNvbm8WLF4v3WTe60Y1/fnQ5ef36669JSkrqZAmjqM4AQtzj7u4OdCQura2tmJubi6pjXV0djx49omfPnujr6zN06FAePHjAvn37UFdXFw/p27dvc+nSJRwdHZkyZQqHDh3C1taWyMhIhg8fTkxMDHK5nOLiYgoKCrC0tKSpqQktLS3R0u4qVqxYIf5eWloqWsDBwcHk5+fz/Plz4dMZFxfHxIkT+eyzz4AObp+GhgYlJSXs2rWL5cuXi1bpq1ev0NHRwczMjFevXnHt2jUhimlra+PTTz9FR0cHfX197t+/T3NzM++//z4ARUVFxMTEkJiYSEFBAWFhYSIR/jOX+HXx6tUr0tPTUVZWxsbGBlVVVdrb23FwcKC0tJSmpibCwsIYOnQoPXr04MWLF1y+fBkfHx/q6+v57LPP2L59O/fu3UNNTY1Xr15ha2uLkpKS4Dvb2dkRFhZGU1MT+fn5FBcXo6mpyciRI4mOjubJkyfihVNaWkpxcTEuLi6iyvpnq66ueoTq6uqKqkpDQwMaGhro6+vT3t5OYmIi6urqzJw5k169ejFmzBiOHDlCVFQUL168YMuWLWhqaqKjo8PVq1cZPnw4/fr147fffiM5OZk5c+bg6emJp6cn+vr6VFdXk5eXR35+PikpKTx58kRY/UCHfU9FRQVTp04Vlj4lJSU8ffoUT09P1NTUqK6upqioqEsxrl69GhcXF2bMmIGpqSnNzc0UFxdTU1MjtqVI7EJDQ3FzcxMv8NjYWE6cOIGysjJubm68ePGCkydPUltbi6+vr+CbFxUVUV1dTZ8+fXB3d0dfX5+WlhYePnxIVlYWTk5OgkKjqI75+voSHBzM6dOnaWpqIj4+nujo6L+k4r5//z59+/bl8uXLnDp1Cm9vbwICApAkiW3btpGcnMyJEycYOXIkWVlZZGVl4efnR0NDA+3t7URGRgpv0nPnznH27FlcXV0ZP368qADq6Ojg5ubG8+fPqamp4c6dO2hqaqKvr4+trS0qKiqUlZXx6tUrXrx4gampKVZWVjg5OWFsbEx9fT35+fmcPHmSR48eiXP8OpDJZIL/Xl1dTX5+PvX19ezfvx9NTU3efPNNdHR0uHfvHnv37iU8PJyJEyeSmppKZmamsLb78MMPuX37Nh988AE2NjY8fvyYxMREnj59Sq9evXByckJVVRVlZWWxwC8tLUVZWRlLS0th8/bixQuMjIwwNTVFWVmZV69eoaamRmtrK05OTv+ub+p/hrS0NLy8vJg6dargkm7cuJG7d+/Sp08fSkpKuH79OpWVlaxcuVL4OdfU1NDa2kplZSUWFhbY2tpy584d9uzZg5ubG/r6+iQnJ7N48WIWL15MY2Mj/v7+DBw4EGdnZ4qLi3nx4gWVlZX4+fmhqalJcXEx5eXlmJubY2RkRFNTk1hoKjpqf8V6sBvd6MZ/PbqcvBobGxMcHIyGhgatra2Ul5djaGgoBFQlJSUoKSnR3t6OiooKY8eOJSwsTFgsvXz5klWrVvHo0SN++uknJk+ezMuXL4mLiwNg4cKFTJo0CXNzc2JjY/n9998ZOnQo27Ztw9nZmfXr16OsrMywYcNoa2vDzMyMxYsXo6amRm5uLlpaWkJk8ldQXl6Oqakpp06dYvv27QQGBvLJJ5+goqLCnj17OH/+PCtWrGD8+PEYGhp2ss0ZMGCAcAMwMzMTQoDvv/+eR48esWDBAqqqqli7dq2wMoqIiMDGxoYvv/ySxYsX8/333zN06FD+9re/ie0mJSWxfft2bt++jYeHB5MmTUJHR4ecnJwutSkVePToER988AG5ubn4+vry7bffkpWVxZYtWwgNDWXdunWYmZmJ9p0izpKSEqHGVVdX58aNG9y6dYu4uDh+/vlnBg0axKNHjygsLGTw4MF8/vnn5OXlMW3aNADGjx9PaWkp27ZtIyIiAiUlJT777DPkcjmrV6/+B2s06Kj6xMTEdCm+zz77TFRV1NTUkMlkqKqqiqEYly5d4sSJE0RGRrJ7925+//13vv76ax48eCBUzWpqaqioqLB//36ysrJIT08Xiayvry95eXns3LmTn3/+mWfPnuHr68vx48e5fv06ycnJjB49muzsbG7fvo1cLu9kMabgi6qpqVFYWMjNmzc7XUevg7i4OCwsLGhpaUFXV1e8xJuamti2bRtff/01GzduJCsri3Xr1uHm5oYkSfj4+GBiYsL27ds5ffo0ZWVlWFhY4OPjw1tvvYWfnx/QYeausBjLycnBysqK4OBg4TkcHR3N0qVLRdtWUeW7c+cO/fv3JyoqCmdnZxwdHdHU1OxEc3hdjBgxAgcHB1E5HD9+PH379uXJkyd4e3tjbm6OkpKSWDArWsnV1dVUVVV1Gmyh4CvfvHmTsrIy0tLSMDY2Rl1dnQ8//JBhw4axbt06hg4dKtTw0dHRDBgwgLFjx+Lj40NtbW0nDn9AQAC3bt1iz549WFpasn//fn744YfXju/hw4esX7+ejz76iNLSUlxdXYmJieH06dO4urqSlZWFqakpe/bsYfv27RgaGjJx4kQKCwtJTk5m+PDh5Ofnc/r0aYYMGUJVVRU//PADcXFxLF++nIqKCubMmcPo0aP5+OOPO323YjjK2rVr2b9/PyoqKri5uREREcEbb7yBtbU1169fF9XurgwJ+TN+/vlnQkJC6NOnDy0tLYwdO5aUlBT27t2Lh4cHFy5cwNLSkhUrVojvaGhowNfXF3t7e9LS0rCyskJXV5eysjKqq6sZNmwYq1evprGxkalTp4r4zp49S2xsLLm5uQwbNgwjIyPu3LkjElJTU1OUlJTEvVZWVsYff/yBgYEBb775JkAnS69udKMb/7z4S5xXhQigvb0dDQ0N6urqyM3NpaSkBAMDA1F9UPDjLCwsSE1NJTExkZs3bxIfHy/sX0xMTDh37hwA0dHRLF68WEwG0tfX59y5czx8+JCwsDBaWlpoa2sTljkPHz4UYpigoCAsLCw6PWQfPXrU5eTujz/+ICgoiNjYWEFhCA4OJiIigpqaGvLz89HU1MTQ0JDx48dz7NgxNm/ejJubGx4eHjQ1NXH58mVaWloE5+zEiRMkJCQQGhqKk5MTt27dAuD27du88847/Pjjj7i4uODt7c3ly5dxd3fH0dGR7Oxs2tvbCQgIYMKECWhra+Pt7Y2vry9VVVX8/vvvXLly5S+pYxWiht69eyNJEioqKoSGhhIZGSna7fn5+Rw/fhy5XE5AQADa2trk5eXRt29fgoKC8PLyIj4+nvr6emHA39DQgJaWFu7u7tjZ2WFlZcXkyZNpaGhg6dKltLe3c/r0aW7dukVZWRkREREsWrSIvn37kp2dLbh6Y8eORVVVlaamJjw9PbtkYaOogPbu3Rs/Pz9qa2tRUlJCU1OTqVOn0tzczIEDBzAyMhLG6B988IEw7E9NTaW+vh6ZTMaTJ08oKSnB09OT+fPn4+7uTmxsLE+fPuXFixciSS4rK+PevXsUFhZSVVXFsWPHhIdsjx49BGWhrKwMfX19LC0tKS0tZfPmzdy4caNTxf914OvriyRJ1NbWUl9fT0lJCYaGhhgbG3fifzs6Ogoxj4JioqenR3l5Oc+ePROfGzBgAOHh4SIePT09YT2VnJzM48eP0dLS4unTpzx8+JDHjx/z7rvvivtAT09P3O/m5ua4u7uLxduNGzfYsWOHGM7xuoiKikJJSYmRI0cKX9ysrCx+/vlnGhsbGTNmjDDRVwztKCkpwcLCAkNDQ27dukVmZiYODg5YWFiQlpbGzZs3yczM5MWLF1y7dg07OzuioqKorKwkLi5OOAtcvnyZtLQ0lJWVGT9+fKcFsaJr4ezsTGhoKG1tbaioqHSig7wOtm7diq2trXBJUVS7g4KCiIqKor29nQ0bNnDx4kUiIyMFnaOiooKWlha+/vprNDQ0mD59OtbW1nzzzTd8//33KCsrM23aNE6fPs2DBw8ER7ipqYmffvoJNzc3xo0bh4ODA05OTpibm2Nubk5ISAiBgYHY2dnR1NREYWEhLS0t5Obmoq6u3mW+K3QsQMLCwjA2NiY9PZ22tjaio6NFpbO0tJTevXsLmo1MJut0DSoGQ2RnZ4tqdGVlJTk5OTg4OPDNN9+goaFBUFAQ5ubmPHjwgCtXrlBTU0NUVBRBQUFcuHCB4uJiBg0ahKGhIUeOHKF37954eXnh4uJCQUGBmDr4Z2pXN7rRjX9e/B8lr2pqapiYmFBZWUl+fj4ymayTEr6goICTJ09y5coVqqqq0NXVRVNTk7Fjx2JhYYGBgQHnz59HW1ubpUuXCtN2BRSJUEZGBufOnSMtLQ13d3fc3NyQy+U8evSIw4cPc/jwYXbt2sXs2bORyWTIZDK0tbVJT09n/fr1grv1OmhvbycjI4P+/fuTl5fHmTNnOHz4MAMGDGDatGloamoKE/PLly/z6aefkpqayqxZsxg2bBjXr19n27ZtALi5uTF16lRcXFxISEggJiYGIyMj4ZeorKzM+fPn0dHRYevWrbzzzjv4+vpiampKfn4+GRkZGBkZ4eLiwrvvvsv8+fNRUlJCTU2NxMREbt++TVxcXJeTV29vb9avX0/v3r2xsLAgISEBFxcXDh061IkfV11dzZYtW6itrWXr1q0MGTIEe3t7MZUqNDQULS0tzMzMaG9v5/LlyyQmJoo2eFpaGm5ubnz77bfi/KupqbFgwQJGjx7N48ePOXz4sDAa//TTT9m/fz+hoaGYmpoyYMAAkaSdPHnyteN7++23aWpq4uOPP6ZPnz60t7eTlJREr169GDlyJOHh4SxfvpyffvqJ9evX4+fnJ/i/oaGhFBYWkpiYSH5+PqampgwZMoSZM2eK5OvMmTM8fvyYCRMmMGLECA4dOsSNGzeoqakhJCQEa2trMjIySEpK4osvvhAUmsbGRlGVl8vlpKSkkJaWRkVFRZfpHx988AHJycmiGnXq1ClRfVRUqpcuXcrixYupr6+ntrZWJFdKSkr07NmTAQMGkJCQQGtrK6dOnWLEiBFiqpOCfgPg6enJ3bt32bZtG8eOHRMV+fr6ejZu3MigQYNwd3fHw8NDjN/8M4qLi0VFtytQJNsDBgwQCfjJkyc5ePAgXl5eeHt7C86vk5MTz5494969e4wePVokfvHx8YwaNUrwyKEj8bexsSE3N5cLFy7w8ccfU11dTXNzM0OHDiU0NJTr168TGxvL8ePH8fb27lQ5Ly4uprq6Gn19fUxNTQkKCuLu3btiEf66yM7OZtq0abS3t/PWW2+Rnp6OlZUV48ePx8zMjPPnz7N37160tLRYv3493t7eYlR0bW0tGzdu5I033uDIkSPEx8eLKri9vT1nz54V14FiEb1v3z5Onz5NSEiIcPSYN28ec+fORUNDAwMDAyRJ4smTJzx9+hR9fX3Rnr9//z6xsbEiEX5dbN68WSymXF1duXjxIvX19RQVFaGtrf0PnPY/Vz6bm5vJycnh3LlzZGdnM2zYMJycnPj55585fPgwp06dok+fPhw5coRTp07x4YcfkpKSQkpKCqtWrWL37t1MnjyZLVu2sG3bNm7dukVlZSXfffcdI0eO5KuvviIiIkI8m7rRjW7866DLyaskSezatQtPT0+8vLyEJZZiShF0tMkVlijZ2dlCBDN58mQGDBiAh4cHJiYm1NTUiAdHv379BCe2oqJCGNsnJCSgr6/P4MGDsbKyEm2x5ORkDhw4AHS0BEePHo1MJuPnn38WyvJ+/foxZ86cLvEJFVyviRMn4u/vT2VlpRiC4Ovri6GhIadPn2bjxo0kJSWRmpoKdFiyREZGdpoEtXz5cs6ePYuOjg6hoaHExcVRXV0t/l/RTh46dKh4ORsYGJCTk4O1tTVOTk48efKE2NhYIiIiRFu9ra2NqqoqjIyMhDilK+jZsydubm7U1dWRmpoqOMk6OjpCdQ9gZWXFihUruHLlCklJSUyePFksTo4dO4aXlxcDBgzg/fffR1VVlefPnxMWFkZJSQl2dnadfD0rKyv59ddfGTduHB4eHixcuJAnT56IhPDly5cEBwejqalJWloaDx8+FFUtRSv/ddHc3Mz8+fOF2t/Y2JiamhrhT5qUlIStrS1+fn6oqqpiZ2fH22+/zcWLF2lqamL27NkEBQXx9ddfo6WlxcKFCwWnGzr4nYMGDWLp0qX069ePmJgYMYkpMDCQyMhIioqKMDc3F1XsPw9/kMlkKCkp4eHhwQcffEBxcTH29vZdEm2FhITg5eVFbGwsycnJODg4iCTFzc2N5uZmysrK2LdvH6ampuTl5SGTyZg3bx7e3t4sWbIEW1tb9u3bx/nz54Vfpq6uLj179iQlJYX8/Hxxv3p5eTF79mwGDhzIwYMHiYuLw83NjXfeeQddXV169erFe++9J2ztFAuSyspK3Nzc2LRpE1988UWXzmNTUxMNDQ2CkgQdC69ly5Zhb28vJogpIEkS2dnZfPLJJzx//pxLly4BHWOoBw8ezMKFC9HX18fDw0MskPbs2cPKlSsBGDNmDPv370dPTw9jY2MaGhrIy8vjs88+EwKqiRMnEhoaSmxsLJ9//jmPHz/GwMCAYcOGERAQ0KX4HB0dGTRoEOrq6ty6dQtVVVXGjBkDdNBCVq1aRW1tLbNmzRLdrIEDB7Jv3z4x6erx48fs37+f8vJyjI2NqaysJDs7m+zsbGbOnMmwYcN49OgRgwcPJiQkhG3btgk3hbKyMnJzc7GzsxPWVEpKSjx58oTMzEwmTpyIl5cX9+7do7S0lJEjR3Z5kfXixQvkcjlyuRw/Pz/U1NSQy+XMmDEDS0tL1q1bh7W1NS0tLbS3t7Nr1y6uXbvG/PnziYyMFI4E06dPp6CggCNHjmBra8vQoUNRV1enra2NGzdusHLlSqqrq9mwYQP+/v589913pKamoqmpibu7O1euXOGjjz5i0KBBTJkypRNFSfHshW7Oaze68a+CLievDg4O5OTk0NbWJoQMkiSJFmFZWRn5+fkkJiaSk5MjPAMVE258fHw6jYmtqanB2dkZPT09ysrKqKmpwdXVFehIQhSVPQV3UaE6NTU1xd7enqCgIPbv34+6ujq//fYb7733HnZ2dsyZMwdHR0c++eSTLlmfqKmpcf36dVxdXUV7PC8vTzzcjY2NOX36NPHx8Z2mhhkYGKCnp4ejoyOBgYGkpKRQXl7O2bNnCQ8Px9LSktzcXNrb29HS0qKsrIwePXrw7bffMmrUKNra2jh06BCnT5+mtraWRYsWER0dLapDysrK4oFbVVWFn58fGhoa9OrVi+zs7C6dQyUlJTQ0NFi/fj03btwQiX5ycjJNTU3Y29ujra2NtbU17777LmFhYRw8eJDLly/j4eFBXV0dz549Y+vWraKtCx3il8rKSqAjySguLqa9vR1LS0tSU1P5/fffycrKYvv27UydOlUkl2fOnCEuLo4FCxawcOFCLl++LK6XsrIykpOTuxTfhAkTREKSkZGBoaEh7u7upKSksHr1apKSkti/f7+wZoOOiuuNGze4dOmSEC2FhYWhqamJkZERRUVFGBsbo6GhQb9+/SgqKkJZWZnq6mrxwsvNzUVTU5PJkyd3ujagwyVD8TNFdUlVVRVfX1+UlZWpqKjoUozt7e1oa2tjbm6Ouro6gwcP/oeW51tvvUVcXJyo7l27dg1lZWW++eYbNDU1MTU1Fap6ZWVlKisref78Oba2tmRlZREbG4uJiYkYkezg4EBkZCSlpaU8fPiQ+fPnM336dCRJwtzcnLfffptFixbxxhtv8N133/HBBx9gbGwszOj/ChRcZYV1lZubG9999x2AmMqkOA6Ojo44Oztz4sQJ7t+/j62tLTU1NdTV1REYGCim+UmSRGFhIcrKygwYMIBZs2aJccmKVrVcLickJAQtLS2qqqrIyMjg9u3bhIWFYWVlhZ+fH1u3bhUUoBEjRhAcHMz+/ftfO7a5c+cKLuqtW7fEMwY6ujqFhYVMnDiRqVOnUlNTg4GBAfb29hQXF5OXlwd0JFtff/21sHlKTk5m9+7dQEdyPHnyZJ49e0ZiYiKLFi2id+/eoqLZ3t7Ow4cPSUxMZPTo0bi5uZGenk5iYiKlpaUUFRXh5eVFYGCgsAHsqo3UxYsXsbOz65Qsnjp1iocPH+Lh4UFhYSHW1tbI5XLi4uKEMHLo0KHCxq9///706NGD9957j7i4OHbs2CGs0c6fP09MTAxlZWU4Ojri5uaGjY0Nd+7cQUlJCZlMxpQpU8jJySEvL4/29nahJ6itreXYsWPo6ekxZMgQVFRUuiwO7UY3uvHfgy4nr2VlZcyYMUMIhu7cuYOTkxMaGhpkZWUJ/t6QIUOYNGkSrq6ufPjhhxw/fpxTp04xcOBAkbzGxcWxadMmZs+ejaurK7/88gseHh6sX7+eyspKbty4wbvvvktNTQ3Tpk0jISEBPT09ZsyYQVRUFGPHjsXBwQF1dXVKSko4cuQI0FHl+quiLblczr1792hpaWH06NHo6ekxevRosb3k5GQ0NTWF/Up7ezuZmZkcO3aMu3fvUlRURGFhIW5ubkyZMgVzc3N27drFy5cveeeddxgyZAhlZWWUlpbi5eUluJ5r164lPj5etIFNTEyIjo4mPDycuro6UXlJSUmhqakJPz8/LC0t8fDwYO3atX8pVsV4WBUVFYyMjPDy8mLFihVcvXqViRMniiShZ8+e9OrVi4MHDyJJkjB2z83N5Y8//sDb2xtHR0fa2tqQyWQEBgbi6enJggULiImJYd++fQQGBhIWFoa+vr7w6FXgwYMH7Ny5E2dnZzw9PRk6dKgQ/llZWREUFMSdO3deOy4nJyfu37/P77//TkpKCh988AERERG4ubkxePBg7OzsBK/6z+jVqxfXrl1j06ZNREdHM3PmTPT09Hj8+DFXr17F29ubSZMmkZOTw/nz51FTUyM6Olq0t8vKyigvL/+HxPU/wunTp8nPz8fGxqbLY4z//ve/U1dXx/Dhw//dwR7QYZVlY2PD8OHD8fb2ZuDAgWzZsoV+/foRHByMTCbj2rVrNDQ0EBYWhr+/P4GBgXh4eIihHMbGxpSWlrJ9+3bi4uKIjIxEW1ub6OhoDA0NSU5OxsLCQlBpFJXmDz/8EBcXFzFRbOHChWKIyOtCQ0NDUBdKSkq4cuUK7u7uIpHauHEjv/76Kz4+Pnz//fd4e3sTHh6OTCajvb0dV1dX8vPzuXPnTqepVNnZ2SxevJiUlBQmTJjAO++8Q79+/cQAlT179nD58mWsra2ZNWsWUVFRQqC3evVqZs6cSUREBAsWLBC2f6GhoV0epvFnZ4KAgABxHSl8sAcOHIitrS2urq6oqalRXl5OUlIStbW1QqxnZmYmKCATJ05EX18fV1dX1qxZw/bt2xk2bBjLly9n2LBhaGho8PPPP3PkyBEcHR2ZOnUqQ4YMoaWlhYaGBhITE3n27Bl5eXm8evWKvXv3oqysLDyd/wqGDBmCubm5cKVISEigtLSUNWvW4OPjI45BXl4eJ06cwMHBgeXLlws6gb+/P42NjRw6dIj79+8zYMAAMQmwtbUVBwcHli1bxujRo3nw4IGoQltaWopBFT169GDHjh1UVlZSVFREeno6rq6uaGpqsmPHDoqKitDT08PT07PLhYBudKMb/z3ocvL666+/4uLiIviOFhYWaGlp0dDQQEtLC3K5XHA6FRN7ysrKUFFRwcnJicrKSqHePn36NCoqKujq6lJVVcXLly/JycnB1taWR48ekZKSwqxZs3BxcRGtHRUVFYqKitDX1xcvsdbWVh49ekRoaCje3t6oq6uzdetWgoODO/kkvg6Ki4uJjIwUk5igw6rqwIEDNDQ00NTUxMyZM8nKyuKPP/7A1NSU0aNH8/vvv3Pz5k0A+vTpw6BBg0T1T8ETXLly5T9Ux5KSksQ0LmNjY8aMGcOlS5c4cuQIISEhLFu2jFGjRiGTyTh79iy5ubmoqKiQkZEhBht0FQUFBdy8eRMVFRWio6MFF1JHR4cRI0aIyUSK9lxFRQUPHjwQo0THjh2LpqYmhYWF5OfnC6N9mUyGsbExOjo6SJKEnZ2dSGpNTEz49ttvUVdXF/ZAtbW1yGQyzM3N6d+/PxoaGjQ1NQn7KW1tbTQ0NEQl/nWhra3N7t27uX//Pi4uLqLtrKKiwpw5c0hJSenUii4sLKS8vBxXV1dWrFjBtWvXyM7OZuTIkRgaGtLY2Mi+ffu4c+cOKSkpYvKZoaEh1dXVlJWVoaGhwahRo6iqquL999/Hw8MDJycn5HI5WlpaYgBFa2sreXl5PHjwgMzMTKysrNDU1OxyZfLq1atcv36d58+fY2Njg7m5ORkZGcjlciFcHD58OCEhITg6OqKhocGYMWOoq6tj5syZPH36VMQQGRnJ4MGDcXZ2xsTEhIaGBkxNTXnjjTdE4qLgMFtYWGBtbU1JSQlaWlrY29vj5OREdna2sDyKiIggKyuLc+fOCXsyxcCRrqCmpoaGhgZsbW0xNjbG0tKStLQ0qqqqyMrKIiYmhqqqKrS1tYVQ09TUlClTpnTazhtvvNEpsayvr6etrQ0DAwNMTEwoKysTtlJ1dXVkZ2eTnp5ORkaGsIlydnbG2dmZL7/8UvA1c3NzCQsLY8iQIdTW1rJhw4Yuxefl5SWem83NzWKBrKysTK9evf7h2dXU1ER2djbKysoYGBjw6tUrXF1dmTRpEhEREeIYzJo1i8LCQkpLSykoKMDLywtzc3MOHTrE3r17KS0tRV1dnZaWFuFteuTIEV69eoWVlRXDhw+nZ8+eyGQycnNzSUpKor6+npycnK6dQBBc54yMDO7du0dmZiYhISHCwkxhRaipqYmxsTEDBw4UUw0bGxspLCwkKSmJu3fvEhISQv/+/TEyMqKhoQEVFRXMzMxoa2ujb9++WFtbc+LECcrLy1FSUiIlJYWysjLa2toYMWIEFhYWpKSkMH/+fMaMGUNgYCCurq5oaWnR3NxMc3OzWHx1oxvd+OdGl5PXhIQERo8ezY4dOxg9erR4cdXV1eHp6YmhoSGTJk2irq6OjRs30tjYyPfff4+zszMHDhygsbGR1atXc+bMGTw9Pfnyyy8ZMWKEGFt46NAhvvvuOxoaGgD45ZdfWLhwIXv37iUjI4MffviBq1evoq2tzfvvvy9anx4eHkKYde7cOd566y38/f3FhJ3XhcJayMbGhqamJu7cucP+/fs5ceIEzc3NzJ49m7Fjx9Lc3MzNmzcZOXIk77//vpiQ4+joyLJly8QEJeh4gP9ZyAYdbV9FteHRo0cAvPnmm6xYsQJbW1t++OEHTp8+zdixY7G3t+fQoUMcOHCAsLAwCgsLOXjwIO+88w5///vfu3oKOXLkCN9++y1Dhw5l7dq1ODg4IJfLUVZWZuzYsfTo0YNJkybxww8/4OjoiLq6Ojdv3kQmk6GiosL169cpKCgAOri+CsGYsbEx4eHhgou2Zs0ali5dKkzU/1wNV1JSQi6X8/LlSzw9PRk3bhy2trbk5+ezZcuWTupthUDodaGrq0tbWxtvv/02M2bMQFtbm/b2dmpqaqisrERdXb2TMOT+/fucPXuW0aNHM3bsWEaOHMnDhw8pKyvD0NAQV1dXHBwcOHz4MAkJCXh6ehIdHc20adOoqKhAU1OTYcOGsXjxYq5evcratWuxt7cnICCAoqIiMY61V69eJCQkCK72woULBcfx/PnzJCUlvXaM/fr14/r165w9e5aSkhI+/fRTDA0NefLkCe7u7kRGRtLQ0EBDQwNtbW1i0TR9+nRMTU15++23yc/PZ8aMGSxevFiIBB89ekR5eTmOjo6i+tXe3k5gYCCjRo1i7Nix/Pjjjxw9ehRbW1tBF/r5559Zu3YtEydO5Pr160DHwI+ZM2cyZcoU4uLiWLx4cZfOY05ODk+ePMHNzY3g4GAGDx7M3bt32bJlC+fPn8fW1pZff/2VadOmoaamJqaD/e/Q0tISFVwAd3d3duzYIYRl8+fPJyEhQVjFBQUF0dzczMuXLzl69ChFRUVcvnxZJIdFRUWcO3eO33//HT8/PwYPHkxBQQFnz57tks+r4vo+dOgQz549Y8aMGaK9/uzZMyoqKujVqxfGxsZAx5CCAQMGkJSUxKtXr4COa93T0xMLCwtkMhn37t2jtrZWjMttaWlh3bp1bNy4kebmZt566y2io6Oprq6mpqZGjNJNS0ujqKiIfv360a9fP3R0dGhvb6ewsJDbt29z7Ngxnjx5whtvvNGlc6gYdfvFF19w8+ZN5syZIxLXx48f8/TpU4KDg3FxcWHx4sXk5+cLikRVVRWLFi2irq6OH3/8kcDAQOrq6qirqxOdioSEBDZt2kSfPn1YvXo1H3/8MU+fPuXYsWMcOnRICPG8vb2xt7cnNzeX2NhYsU9ffPEF+vr6qKmpoaSkhIuLC7///nuXYuxGN7rxX48uJ68Kv08dHR3BD71+/bp4qBkZGWFjY4OJiQkDBw6kvb2dhIQEAgICCAgIoK6ujtDQUJSVlamrq+PBgwfY2NgQHBzMzJkzaWxsJCUlhcDAQPr06cPLly9JSEgQwqY1a9awa9cu6urqKC4uxtTUlKamJuzs7KiuriYmJobbt28zfPhwSktLmT59Ov3793/t+EpLS7GxsaG9vZ0TJ05gbm7O4sWLsba25sCBA8TFxREQEICFhQULFixg+PDhWFpaCnGFlpYWISEh4sX49OlTBg0aREFBAe+9957g7Sk8B52cnPjhhx+QyWTCHH7kyJH07NmTiooKkfArKSkxf/58/Pz8OHbsmBhb+VeQm5srqhOK/bx8+TKXLl3inXfeoUePHnh7e3P16lUMDAwICwvjb3/7Gxs2bCA5OVkkrl5eXsLsHToqJX9OUJ89e0ZycjLGxsYYGRnx5MkTLl68KBYe/v7+ODk5IZPJRAXZ1taWAQMGdJqI1VX7mtbWVlxdXQkJCREV1qNHj3L06FECAgKYO3duJ5GGqqoqMTEx5OTk4OXlhYeHhxDfvHz5khs3bvDkyROMjY1pa2sTYqjS0lLc3d1ZsmSJGC+qqanJxIkTcXBwwMTEhPLycpycnHBwcKC4uJjKykoGDRrE0KFD6dWrFxkZGZw+fbrLtIEFCxZgYmLCRx99xLNnz1BSUqJfv37U19djbGyMJEk8ffpUTIE6deoUZ86cYdeuXQwbNoxly5bx22+/ER4eLtwQDA0NuX79OkePHmXatGno6+uTk5PDunXr0NTUZNGiRRgbGzN69GiKiorEuFyA4cOHo66uLrohAFOmTCElJYWqqiqRsHcFysrKyOVyUdkHBEWlurqa6upq7OzsxEKkuroaPT09Tp8+TUZGBhMmTMDFxYUzZ87wxx9/oKqqSlhYGEFBQejr61NTU0NGRgaqqqp4eHhQXV3N06dPaW1tZejQoUyZMoXY2FjBg7W3t2fatGnU1NRQXl7OoEGD6NGjB9nZ2ejq6jJq1CjBRX1dNDY2cvHiRa5evYqTkxP+/v7U1taKBDUlJQUfHx8cHR0FTUghbIUODYIiYZYkiaSkJJ49e4aPjw+LFi0SdC6FUFQx4OXhw4fs3bsXExMTRo4cyciRI8nMzERdXZ2XL19ib2+Pra2tsJJS2F11Fbm5ucjlcjIyMigpKREC04SEBFJSUrCzsxNVcUdHR+7fv8+mTZv4+OOP0dbWFoUKxXWlp6fXadz3w4cPiYuLw8HBAQ0NDUpLS5HJZPTv359Lly6Rnp7OhQsXhNjUzc2NyZMn4+npyZgxY7rsr9yNbnTjnwNdTl6/++47Tp8+ja6uLgUFBSQkJFBfXy+U1BoaGmLl2t7ejrKyslAZNzc3097ezpIlS1iyZAkff/wxa9eupaioSKi5VVRU8PDwoGfPnkydOhUNDQ127NjBt99+S0FBAUuWLGHFihU8fvxYtHi0tLRISkri66+/5uTJk0yePJlDhw5x6dIlRowY0aXkNTAwEEmS2LFjB7///jsrV65kyJAh9O3bV5i779mzh0WLFvHTTz+hrq4u2k2//vorJSUl1NXVkZeXR2FhoXAayM3NZcOGDcIrUeF1GBkZKYQasbGxxMTEEBgYKFqfs2bNYu/evaxYsYIJEyYAMHLkSFxcXP5hHO/rwtzcHH19/U5uAPn5+fzyyy88f/6cTz75hKFDhwqeGnSIf4qLi8WMdyMjI8zMzITFzMuXL3n58iV+fn5imtKHH37IhQsXWL58OVFRUVy4cIFz586hr6/P2LFj8ff3x9bWVkxEUlJSoq2tjfDwcCFwamtr63LlVVFVevbsmXDAqKur48KFC2hpaQl+pmKQhkItn5eXxy+//MLMmTNF8qp4yWdkZBAQECDGqR44cIB79+7x888/M27cOOLi4li5ciVRUVGCe93S0iIER9CxQJAkiYEDB4qW8MGDBzl+/DhLlizpUoyOjo6sWrUKOzs74uPjKSkpoaysTFRCZTIZr169EvdIeXk5+/btw9bWljVr1tDS0oKhoSHp6emcP38eFxcXIc7529/+JhZnFy9eZOvWrWhpaeHm5sa0adMICgoiKChIqMjb2trw8fHB398fJSUlWlpaqK6uxsnJiX379vHRRx8xY8YMMYL3ddHS0oJMJutkY6SlpcWkSZNISkri+vXrPH36VNjaOTo6oqamxp49e7h69Sr+/v7Cl3fHjh1oamrS3t6Orq4uFRUVbNy4kcLCQjZv3sykSZO4du0aH330EXp6erz55puEhIR0snLS1dVl/vz5PHr0CC0tLUaMGNGJS7t69eouC5qKi4sxNzfH2dmZxsZGiouLUVdXx83NjZqaGtLT08X0OwWcnJwEZaWwsJDc3FysrKy4evUqMplMiCKPHj3KnDlzOlWjq6qqgI7JVy9fviQoKAglJSV8fX0xMTEhJSWFpKQknj59KuIbMGCA6CR1Nb76+np69+7NqlWrSExMFNupra2lR48e9OvXj7q6OsGDb2lpoaKigqqqKhwcHAgLCyMrK4tnz57h7e1Nc3OziKepqQlDQ0NGjx7NW2+9hZaWlqi2Dhs2jAkTJvD48WPU1dXJzMyktraWESNGiCltinujvb2d5uZmVFRUOnHxu9GNbvzzosvJ68SJE1FVVWX9+vXU1NQwYsQIIiMj/93JJI8ePcLe3h4LCwva2tqIj4/HxsZGJE12dnaYmppiY2NDeXk5t27d4uDBg9y7d4+kpCR0dHR47733WLNmDadOnaKyspIrV64IW6A/2+QcPXqUkydP0r9/fyE0Gjp0KNevX+fYsWOvHd/ChQuRyWQ4ODjw5ptvYmFhQXp6Oq9evcLDw4M1a9Zw5swZkpKSGDx4MEVFRfz++++EhYUxevRoLCwsyM3NZenSpdjb27N161agw3tx+/btjBkzhpycHJqbmwkODqauro6XL18KRwUjIyMyMzMxMzPDxMSEnj17YmVlxZ07d0Rr29vbGxsbG4yMjDpVIV4X5ubm2Nvbd+J3OTo68tZbb6Guro5MJmPMmDH4+Phw8eJFDhw4gLm5OaampmzevBl3d3d2797N9u3bGTRoEADx8fGitdrS0sLWrVvJzMwUdkZVVVW89dZbzJ07F319ffT09MjNzRVipebmZu7du8fNmzepqqpi5MiRhIaGcuzYMX788UfhLfw6aGxsJDY2ttPPxo4dK2x7FC/C6upqzp07hyRJfPnllxQXF4sRlAcOHEBXVxcXFxfmzZvH7du3aWlpEdcrdCQAiolo6urqJCUldaKHqKurCxFOU1MTKioqZGVlcfr0aWxsbAgPD6dfv34MGjQIPz+/LrsqVFVVMWnSJKytrVm9ejWXL1/m0KFD4hhAh3ixvr6eCRMm0NDQIMb85uXlYWpqKtrBQUFBxMXF4evri0wm49y5c9y6dQsbGxs0NTVpamri119/7cStrK+vJzU1lUePHnHv3j2am5uZOnUqgwcP7pQErFy5EhUVlS47KqSkpBAbG4ulpaX4WXl5OVZWVnz00UdMmzYNb29vamtrkcvl4hmkGGby9OlTBgwYQGRkJE5OTri7uwtnAiMjI/Lz86msrEQul4vzef78efr168etW7eIjY2ltbUVPz8/xo0bh46ODnp6egwaNAhVVVVevHhBYWFhp2pzV3Dr1i1cXV1Zvnw50dHRGBkZiViDgoJQVlbG2toaR0dHseCCjnHcU6ZMYevWrcTExDBhwgRaW1upra0lPDxcHPv4+Hju378vqpIymUxMTGtra8POzk5QfvLz88nKysLBwQFTU1Nqampoamr6B3FlV6Gw1po6dSqTJk0Sz2zFIgs6qqmNjY3U19fTr18/AgMDRTdg1qxZ7N69mxUrVjBw4EDCw8Px9PSkoaGB+vp6Bg8eTEREBPb29kiSxNChQ0lKSiIpKYmIiAiuXbvGgQMH+O233ygvL+fjjz/GwsKCDz74gKysLA4fPkxbWxvjx4/H2dmZLVu2/OVYu9GNbvzXocvJq7a2Nv7+/mzfvp2ioiJGjhyJv78/R44cITc3VzxIKisraWlpoaWlhZKSEo4dO0ZaWpog40uSRHJyMq6urgwcOJDm5mYOHjzIjRs3sLe3F2KG5ORkwsPDmTt3LkVFRfzxxx+YmJh08lR88eIFT58+pW/fvvz66684ODjQ2tpKVlYWPXv27FLyWl1dLUQL0NH2OnHiBPn5+SxcuBBXV1ecnZ2Ji4sjISGB3NxcMjIyMDMzIyoqCk1NTY4fP05qaipjxozBxMRE2M74+Phw7Ngx/va3v+Hl5UVtba3g9dnY2BAQECCUzZmZmchkMhYsWICLi4vgRx48eJCpU6eKtvdfebFYW1szZcoUgoKCxM8GDRqEj48PL168QFVVFQ0NDUxNTXn27Jlo+fbp04dDhw7h6OhIz549xfzw2tpasrKyyMjI4NWrV+zZs4eDBw8SFBTE+vXraWpqQi6Xi0Q3KyuLs2fPIpfLxaQfhYjr8ePH3Lx5E3NzcyIiItDW1ubFixddSl719fWxtrYW10hJSQlxcXEEBwejoqJCfX09crmcuro6ysvL0dXVxcfHhz59+hAQEMD+/fu5ePEiJiYmjBkzhj59+jBnzhy2bdvG6dOnhfekguutED8FBwejpKREamoqHh4eyOVyVFRUKC4u5tGjR+Tn54tK/fnz53n+/DkLFixg0qRJIsl9XVy6dAltbW0GDhxIz549UVVVJT09nbt376Krq8uJEyewsrKiR48etLa2YmxszLvvvouKiopIJlVVVXnw4IE4RqdOnRLuGjKZjMzMTBobG+nVqxdZWVni3oaO+0RJSYnq6mo2b94spnW9+eabaGhoEB8fT1xcHMOGDWPAgAF89dVXXa7aKYRnZWVlYvysIrkLCQkRriVAJ5spDw8PXr58SVtbm3BGUOzzn7sNq1ev5vz589TU1BAbG8uuXbuADi5mYmKiSGqXLFnCvHnzyM7OJiYmhhEjRuDp6cnt27e5fPkyKioq9OnTR3z+dSGXy7G0tMTS0lIkkbW1tbx8+RJnZ2fBP1WMs9XQ0MDMzIxevXoxdepUsZhPSUlBRUVFHCsrKyuio6PJzs6mqqqK9vZ2PD09MTMzw87OjubmZlxcXFBWVkaSJF69esWTJ0+wsLAQSeOf0djYSFlZWSf6xuvi+fPnZGdnY2dnh62tLZqamtTW1tLY2CgGJSgrK6OlpUVtbS36+vq0trby9OlT1NXVCQ8Pp76+nmPHjomFi66uLs3NzVhYWGBhYSF43SoqKtjZ2fH48WM2btzIm2++yeLFi7lz5w7bt28nMTERFxcXJk6cSF1dHTdv3mTPnj1oa2vz8uXLv0SL6EY3uvHfgy4nr+3t7bi7u7N//36ys7PJyMjgzp07wkx//fr1jBkzhhkzZuDp6Ymenh63bt1i586d1NTUiBdJcXEx8fHxFBQUoKOjI9ShFhYWHDlyRPirxsXFce/ePQIDAzsllQocPnyYTZs2ERwczHfffYeysjIPHjxAVVWVK1eucPjw4U4G8/8Zvv/+e6GKhw4luoeHByNHjhSq99DQUCwtLamoqEBHRwdnZ2dUVVVZt24dBw4cQFVVlV9++UX4mK5Zs4YHDx6wfv16Bg8ezO+//y4mxISHh7Ns2TKampqEDZWCB6asrIyqqirjxo1j586dXLp0iYyMjK6esn+AhYUFy5cv78SzVFJSwtzcnNLSUl69esWdO3fQ1NTEy8sLGxsbCgoKSExM5IsvvuDTTz9FRUWF3r17k5GRwYEDBygrK0NXV5f4+HjhuqBwFFAkHImJiVy5coWtW7eSn5//DzZPTk5OTJkyhR49etCzZ0+go2J66dIlUVF8HSjswzw9PamoqGD69OlcvXqVt99+m5UrV+Li4kJFRQXt7e1MmjSJ6upqkpOT8fX1xcrKinfeeYeIiAj09PQ6tYUHDRrE7t27KSoq4p133mHo0KE0NTXx4MED5HI5ixYtIi0tjW3btjF27FjRIq2pqeHp06dUVFQwaNAgvvjiCy5evMi7777LwoULOXny5D9MGvrPEB8fz7vvvgt0VK42b95MdXU1Dx8+ZOPGjeTm5vLTTz/9A7Vk/vz59OzZk8zMTK5du4a6ujpRUVF4eXmxadMmmpub+frrrxk4cCB79uxh3bp1yGQyPvvsM0FtyM7ORkdHBzMzM7S0tHj+/DnQ4aoRHR3N/fv3WbZsGampqbS1teHv7/+XJhgNGTIEd3d3Xr16RVxcnBAS/RktLS2dONEymYyePXvS3t7eSa2/c+dOtm7dynfffSeO9dKlS3nnnXf45ZdfmDBhgvAo/jNNZcaMGfz8888A3Llzh4MHD6KlpYW3tzezZ8/m66+/Zv369URHR4vpZK8LRcVW4ZigoaHBrVu3mDdvHhMnTuTHH38EEBVCY2NjJk6ciLu7OwEBAaxbt4558+ZRVVWFq6srra2tnDx5kubmZr788ku8vb25d+8eFy9eRJIkoqKi6NWrF3K5HAcHB+zs7Dh16pQYQPAfVZDLysoEl7aryMjIYNu2bbS2tjJ69Gh8fHy4ceMGd+7cYd68ecKhQUlJCQMDA27evMmnn35KUVERM2bM4N1332XRokUMGjQIPT09wY1XLNprampISUnBwcEBAwMDampqOHXqFElJSWRlZZGamircbwB27NiBr68vmzdvxtPTk9WrV2Ntbc3mzZsJDQ39S44K3ehGN/7r0eXktbW1FRUVFRwcHHBwcGD+/Pnk5uaycOFC+vXrx2+//UZ1dbUQ7ygrK2NmZoa6ujrZ2dmcOXOG8PBwrKysCA0N5dq1a2hrayOXy6mursbd3V1UBG/duiXayTExMYwdOxZvb2/Onz9PQ0MD48aNw8LCAicnJwYNGoS3tzdnz57l2rVrWFtbC2FRV2Bubi74u9evX+fKlSv06NGDoKAgIUAKCwvD1dUVS0tLlJSU0NHR4d69e6SkpNDa2sqcOXNE4rp//37y8/OJiorqNCa0uLhYvER0dXWFXVhaWppoe7a3t2NkZISysjJvvfUWo0aNomfPnpw+fZobN25gYWHRqf32uqioqODly5f06tULNTU1njx5giRJeHl5YWdnR35+Pq9evcLa2ppJkyYxfPhwDhw4wLZt2zh+/Dhqamo4OztjYWHB/fv3uXfvnlAnK9wD3njjDUpLS/nwww+xsrLC29sbDQ0NKioqROvwzp07lJSU4ObmRnV1NU1NTYSHhzNkyBBSU1M5evQoQUFBhIWFdSl5dXNzE1WU+vp6AgMDxYuvrq5OdAWMjIwwNjbGzs6O3NxcLl68iL6+PhEREcJLsrCwUHhTVldXM2nSJPT09Bg5cqRIynfs2MGhQ4cYN24cgwcPplevXhgZGVFcXCwGdigU+97e3pSXl/PkyRPRRm9ra+uy+C47O1t8v6qqqrA8kiSJkJAQAgICxMQtgBs3btDc3MyQIUOIjIxEJpNhZGTE8uXLiYyMJCEhgYcPH6KsrIyysjJqamrU1dWJkc719fViOIi6uroQDamoqDBr1iymTp3KoEGDaG9v59dff6VHjx5Mnz4dV1dXMjIyhLK+K6itrcXR0REbGxtiY2M5ePAgpaWltLe34+vrS3h4OAYGBrx8+ZKHDx8K1fq0adNwd3cXx+T48eP88MMPpKSkCP5uQEAAWlpapKamcuDAASorKwkMDGTs2LFkZ2eLxcxHH30kjuuhQ4fEIn3p0qUoKyvj6urKwYMH0dTU7BK3Hjr0AYphJm5ubqLS7O/vz7Vr19i8eTNLliwRA0Tq6+sFNUJLS0s8g/+MtLQ0YmJiSExMFIIrPz8/mpqa6NOnT6fk39bWFjU1NTQ0NMT1fvPmTerq6tDS0iI9PV3Ydtnb21NVVUVhYWGXYnRzcyMgIID29nYhYGxtbaVnz57i/Ci406qqqujp6YlFo5+fHxUVFVhZWeHl5UVWVhYnTpzA19cXFxcX8vLySE1NRVlZWXSwnj17hpqaGlOmTKG8vJxLly4JG7rw8HD69OnD2bNnsbGxob6+np49exIZGSnEhwpOcDe60Y1/bnQ5eVVSUhLJh6KdZ2NjQ//+/TE1NWXixIk8ePCA9vZ2ysrKsLCwwMfHh/79+/PgwQN+/PFHXFxcWLJkCTNmzMDNzQ0XFxeKiopQU1PD1dUVSZJYu3Ytu3fvZuvWrbS2tjJt2jQSExNZs2YNFy9e5Pnz53h4eBAREUFoaCjFxcWkp6ejoaGBkZEROTk5hIeH8/3334sK1evggw8+ACAzM5PHjx/z/PlzURU4duwYJ06c4O233+aTTz4RjgHQIQgaMGAA7733nqhg7Nmzh7NnzzJt2jSmT58OdCTEe/fuRUVFhcDAQDGe1dXVFW1tbQoLCzl+/DjV1dX4+fmhpaVFW1sbgYGBvPHGGyQmJrJ161auXLmCr68v1tbWXT2FZGVl8cMPP7B06VJGjhzJs2fPKCgowNHRUQwr0NHRQVdXF0tLS/EC9PDw4Nq1a0iSxKNHj3jw4IHgtKmoqFBdXY2WlhYTJ05k0aJFbN++nWXLlpGcnExZWRlvvvkmEydOZPTo0axfv55Xr15x7tw5zMzMhHdjdXU1zs7OtLa2cvjwYTIyMli9enWX4lO0HhVtxM8++0y89BMTE7l58yY+Pj6d+KmmpqakpqYKvrG3tzfp6elkZmaSkJDAjz/+iIGBAbt37+5k2l5bWyteeCdPniQsLEwI67Zs2cLx48fR1NRk7ty5jB8/nrKyMpYsWcKpU6cA+Pzzz1m9ejWNjY0iUXodKCsrU1RUhJWVFXK5HEmShJq+f//+tLW10dbWJj7f2NhIXFyc8GWNj49HR0eH6dOnC4FPfX09Xl5e7Nu3j/3791NdXc2IESNoampiy5YtnD59mq+++orBgwfT3t5OSkoKysrKfPXVV4IH/PHHH/Py5Uu++uorQROprq7+S5XXmJgYoqOjUVNTw9vbmy1btnDmzBmgo+WvsBk7ffo0X375JWPHjuXQoUMYGRkRGRmJqqoqR48eZcGCBWhoaDBgwABOnTpFVlYWp06dQkdHhxUrVvDs2TMsLS1FbNCxaFEk6i0tLZw9e1YY2P+ZeqCqqipstbrKWY6Pj+f69euEhoZiYWGBJEmEhoZy/vx5FixYwLJly1BWVmbRokXMnz+f0tJSTE1N/8PtyeVy/P39yczM5Oeff+aXX34RNn2urq40Njb+Q+VaRUUFQ0NDQe+6cuUKGhoa1NfXs2PHDlxcXNi3bx+enp54eHgImsnrYtq0aUybNg1tbW2qqqq4desW4eHhhIWFCepTe3u7uD9DQkL4448/0NLSIjMzk5MnT3Ljxg28vLzYsWMHp06dYtWqVUyaNImHDx8KMdvp06e5d+8eQUFBvPnmm+L6rKurEwNhtmzZgp2dHcuXL+fDDz/E1taW3bt3i+tUUUzoRje68c+PLievVVVVndTa48aNIyYmhmXLljF79mwGDx5MVFQUKSkpwqsVOsanKrB27VoyMjIIDQ1l/PjxGBoa8uzZM4KCghg+fDhKSkqEhIQgk8mIioqiqKgIJycniouLRWXPxcUFR0dHoGPcpkJBbGVlRVhYGDU1NUJI81dQX1+Prq4ugwYNIiwsDG1tbYqKimhubmbbtm2EhIQwYcIEVFVVhSG/t7e3qIbl5uZSX1/PuHHjmD59Om1tbXz88cccOXIEJycnwsPDSU9PZ8+ePTg6OvL555/j4eEhpjxpaGgwdOhQnJ2duXXrFnFxcWzYsIG7d++ira3NihUrGDZsGObm5ty9e7dLsclkMp4/f05ycrJQ3yqq5NAhpHNwcKC6ulpwJwcPHsz8+fMZOXIkjx49Yu3atcI+aO3atZibmxMXF0djY6MYODB27FgKCwupqKjgjTfeICQkhAcPHvDgwQOWLFlCZmYmP/74I3V1dWzZsgVzc3OSk5Npbm7GycmJUaNGYW9v36nt97rnTpIk8XLctm0bFhYWjBs3jj59+ggupwKKEZOKoQ3Ozs6kpaWRkJCAjo4O/fv3p76+npiYGNauXUtycjLu7u68ePGC/Px8xo4dy/z58ykoKKC1tZX4+Hj69u2Lo6Mjzc3NGBoaCksxbW1txo0bR0JCAkVFRfTo0QN1dfVO+/M6cHR05Pbt29ja2mJjYyOoJopWvampKTo6OsIqrEePHty6dYuUlBSMjIwIDQ3F0NAQfX19UlNTSU1NFcfu+vXrFBUVoaSkhJ+fHzo6OshkMkxNTQW3tL29HVVVVVxdXTExMeHOnTscP34cdXV1Ro8ezZkzZ3j16hVz587F0NDwL/ElTUxMyM/Px97eHhUVFbS1tTEyMiI6OppZs2YBHZXCixcv0tzczOHDh6mpqeGjjz4iNDRUHG8HBwcKCgpE4lVUVERTUxNGRkbCKqlXr16CqgJ0WhTW1tZiamrK1KlTqa+vZ8SIEeL/6urqyM3NRVtbm169enHp0qXXjm/v3r3k5OSI7/0z73nRokW0tLRw/vx5NDU1mTNnTideb1tbGwkJCchkMnx9fdHX10dZWZkePXowb948Kisr2bZtG4mJiURGRorPXLlyhR07dqClpYWNjQ1xcXEoKSkJnUFISAi6urpUVlZSVlaGk5OTGDDRVTs3oNMwEFVVVYKCgpAkicbGRhobG7G2thaJa25uLubm5mhpafH06VMhQrSxscHd3Z3U1FSam5vZuXMn9fX1opO1e/duDh48iJ2dHV988YWY6nj27FksLS2ZOHEikyZNErzi8ePH09bWhlwup7y8XAxKUDz/utGNbvzzo8vJ6+7du5k1axZmZmZYWloyfPhwSkpK2LJlC3K5XFQu9PX1KSgowNLSEk1NTTQ1NbG1tcXU1BQjIyNevHghpvrcuXOHu3fvMnPmTNzc3MjOziY8PLzTFJbZs2dTXFyMhoYGS5cuFQ/64uJiDAwMMDIy6uTdqUBubm6X4issLMTCwgJPT09sbW3R0dERnLqpU6eSnp6OjY0NSkpKNDQ0YGBgIMytFRYu+fn5lJeXM3bsWMHROnHiBEeOHEFDQ4PQ0FAaGxs5cOAAxcXF2NnZiaRXV1eXCRMmIJPJhJ3VgAEDiImJ4fTp0wBEREQQHBzMoEGD/tIDV5IkcS6UlZXx8vLC3t6e2tpaWltbhQuBIoGzs7MjJCREvLw0NTVxcnIiMzOzU1VZQWG4e/cuW7duZeDAgXz77bedvnvbtm2cPXuWc+fOsXjxYo4fP86NGzfEyEYTExNaW1uxtLRk9uzZXY4NOuytFNfO3bt32bt3L8bGxri6umJjYyMEHwrU19fz4MEDpk6dytChQ4GOamFxcTHe3t5ERUURFRXFrl27+Pzzz0XSc/ToUR48eMBPP/0kuNy///47MTExWFpaMmLECNrb26mvr0dLS4u6ujr09PSYPn06VlZWDBs2jL179xISEsLjx4+7FGNzczN1dXW0tLTQ2toqfDxramq4cOECDQ0NTJw4kdDQUOrq6khLSyMoKAhfX18sLCxEAiaTySgtLRVCGBsbG5SVlYUV3v379zE2NmbGjBnMnj1bWI+pq6vj6Ogorvn4+HiSk5P5+uuv8ff3Z+zYsWzevJnS0lIxKKKr6Nu3L3V1dUBHZfytt95i9OjRjBw5El1dXZqamjhy5AhpaWlYWVlRUlLC5cuXRTcGOkawfvjhh8LrVZKkTuelb9++5OfnY2pqSk5Ojkhas7OzkSQJY2NjzMzMCAsLIzAwkJaWFoqLi4X4y8jICHt7e6KiosRi+nWhr69P//79hbVcW1sbRUVFGBsb4+Pjw5YtW1iwYAG7du2iZ8+eBAYG0tbWJuzIFAsIHR0dVFRUhBWhTCbDw8MDb29vXr58KSahaWhooKenR0pKCvX19Xh6epKVlSUmTLm5uXUamzxmzBhaW1uprKxES0vrtcce/xn19fW0trZy69Yt5HI5I0aMoKysjN9//x0nJyfRpXj27BktLS0oKSlRUlLCTz/9xO3bt3F2dkZJSYmYmBixzeLiYvbs2cPixYtpaWnh4MGDQEdyrfD9fvz4MdXV1chkMnbs2CGuB0U3YcSIEaSmpnLs2DHy8vKYMmUKtra2XV5EdqMb3fjvQZefRps2bSI/P5/p06cLte+YMWPQ0NAQK1voaMFUVlaSmZmJra0t/fv3x8rKCl9fXwwMDKivrxecpx9//JHa2lqWL1/Ow4cPmT17NsuXL2fhwoVkZmYSExODqakp2traGBoaisT11q1bFBQUdKqE/Bnl5eXs3bu3S/GpqKjQ1NSErq7uP6hPp02bhr+/PyoqKlhaWqKsrCxUuHK5HF1dXTG8QVdXt1MyHRISwunTp2lrayMpKYnNmzdTXFyMp6cn8+fPx8DAgKKiIpKTkxkwYAAlJSW89957GBoasnr1ambNmkXfvn2Fr+eqVauIjY1l7dq1XYoPOgYxWFpadlIW19XVCZN+SZI4f/48d+/eZdCgQbzxxhuoqKhw6tQpjhw5QnV1NRERESxatEiMTlVMQYKOwQzvvvsu7733Ht988w3QkWyVl5dTX18P/FuLfevWrfz8888sW7aMqVOnikT4/8Si59GjR0RFRbFjxw4OHjzInDlz6N27N7t37yYnJ4fg4GCR3AKMHj0aNze3TpZMCk/QP1fu/fz82L59OwMHDkRFRUX4uX7wwQc0NDTg6+uLjY0NPXr0ENsaNWoUNTU15OTkoKSkJERECsutCxcu8MknnzB27NguxZiXl8ecOXPw9vamqqpKTKwLDQ0lLS2NvXv3MnDgQBISEvjb3/6GlpYWe/fuFfulmEalpqaGgYGBqLr16tWLpKQkqqqqaG5u5tKlSygpKREZGSkSVwX+vHBasGABQUFBmJqaoqmpydatW/n222/Zvn07hYWFfP31112KDzo4oYrjr6Kigr+/P/fv3+fBgwdERESgqqqKurq6UNf7+vrS0tIinkOKdnRAQACOjo5MnDiRmpoasbA+f/48sbGxGBsb07t3b2EPpaWlxdmzZzl9+jSTJk1i7ty5wndYW1tbiCcnTZpEYGAge/bswcvLq8vVZcVkMyMjI2pqati7dy+qqqrClUFVVZUxY8ZQW1uLuro6lZWVopulra2Nn58fGhoaqKmpUVtby+PHj7lw4QK3b98WPM+QkBCGDRsmhgMEBwdz8OBBamtrAcQY5qioKLFfCmcH6HiG/vDDD3h5eTFv3rwun8NffvmFoKAgqqurkcvlNDc3o62tLUaMA6xYsYLnz5+zfv16tLW1iYuLw9bWlpiYGLy9vdm5cydLly7ttN36+nqOHj2KsrIySkpKSJJEdXU1R48eZfLkyWzdupWffvqJ4uLiTgunP09aMzMzY+rUqWRkZHD9+nWMjY07Vbe70Y1u/POiy8lrcHAwdnZ2WFtbU1dXx507d7C3t2fKlCk0Nzdz/Phx/P39cXZ2xtjYWLxgFCKntrY2JElCV1eX2tpa0tPT0dPTw9DQULyYoKNiKkmSqMQdOnQIZ2dnjIyMuHjxIpmZmaiqqhIaGoqenh45OTlcv36dpqYmrK2tsba2RktLCx8fH4qKil47PkUbMTU1lYyMDDw8PLC0tKS6uhodHR38/Pw6JVaSJHHq1CkKCwsJCwsjKioKFRUVnj9/TmFhIUFBQWhqamJtbU1bWxsNDQ1YW1vj4+NDe3s7/v7+VFZW8uDBA5qamvDw8EBHR4fS0lLu3buHg4MD5ubmGBoaijnh9vb23L17l4aGBlGZ6gr09fWZOHEieXl5nDlzhj59+ohERCGeqK+vx8TEhMjISFF5lsvl5OTkkJCQQGBgIKGhoZw8eZIff/yRlStXEhwcjCRJvHz5Em9vb7S1tcnIyKClpQV1dXVMTU2ZMWMG6enp7N69G0NDQzZs2MCyZcv4+OOPO50nNTU1WlpayMvL60Q/eR0o2pznzp0jPj5e2ILdvHmTffv2UV1dLVwrsrOzqaiowMfHB2VlZWpra9HW1kZHRwdvb2/MzMzEiMyCggIiIyPR0tKipKSEqKgocnJySE5OZvXq1Xh5ebFu3ToGDhwIdIw3LSgoQF9fH3t7e7S0tGhvbwc6kuOVK1fy6NEjrK2t6dGjB3/88cdrx9i/f3+x+MvPz0eSJGQyGU+fPuX8+fMkJydTW1uLlZUVMpkMe3t7kbjGxsZiYWEhBF1+fn74+PiI5FQxFlRNTY3k5GRKS0s7TXV69uyZiEnh3+zj40NERASxsbHcvHmTuXPnsmrVKk6fPk1WVlan339dqKqqIpfLycvL49atW9y+fRtAcBQlScLf3x83NzfmzZvXyWu6vLwcuVyOjo4ObW1tpKSkAB2LCVVVVXbs2MGxY8fQ0NAgPDyc3r1709raSlVVFVpaWtjZ2aGvry+eYYrj0tLSgouLCxYWFpw/f56WlhYWL17cyXP6dWFhYUFNTQ1GRkbIZDKg41xevnwZV1dXVFRUGDFihBhvrNg3Be+1qamJmpoajI2N0dfXR0VFhe3bt1NVVYW/vz9aWlrk5eXh6uqKrq4ur169IjExkcDAwH9YiBQVFZGWloaDgwOqqqrCy3f79u1s2LCBcePG/aXk1dDQEBMTEzIyMsjKyiInJ4devXoxbtw44N9s8yRJwtDQkJqaGh4/fkxYWJiwx3N2dmbKlCncuXMHBwcHJkyYQGlpKd999x1tbW1YWlpSVVVFSUkJRUVFGBgY4OHhgZubGwkJCZSVlfHs2TNUVVWxtLQUk7jkcjnOzs5YWlpy+PBh7ty58+9277rRjW7886HLyevWrVsxNjYWYwe3b9+Ora0t7777LkePHmXz5s18/vnnODs7d1rxtre3CyVsfHw8RUVF2NraMm7cONauXUthYSF79+5FT0+PCxcuYGVlJayj+vXrx65du6ioqECSJGJiYpDJZPz222/iBb5t2zbRonZ1dWXkyJFMnz6d0aNHdykpUODXX39l7969LFu2jBkzZlBQUEBdXR2NjY08ffqUgIAARo8eLQRWLS0tovJYVlZGcnIyDQ0N2NnZ4eLiwsuXL3nvvfeora1l/vz5zJ49G3t7e86dO8cff/zBgAEDWLp0qaiQyOVypk2bRs+ePTsJREpKStDV1eX48eOoqqr+JdpAY2MjvXv35ssvv+SPP/5g+/btTJ48GTU1Nerr6zEyMmLChAk0Njaip6eHXC5HWVmZ8ePHY2VlxeLFi0lISODOnTsUFhbi6elJWFgYAHPmzKGlpYVjx45hYWHB06dPMTMzE2rzIUOGcO/ePbZu3crJkyd5++238fHxYefOnUJgpPBHVVFRIT4+ngsXLnSqiv5nUCiHFZSN7777Di8vL5YvX05lZSXXr18X7cGffvqJu3fvMn/+fMaNG4empqaoWg0cOBB1dXVSUlLIyMjg2rVr7N27F3Nzc2Gm/v7773P8+HHu3r2LpaVlp+qbov0ZHBzM8uXLqampIT4+Hm9vbzw8PPDw8KCmpgYVFZUu8wkVIsSbN29SUFDAqFGjKCoqYu7cuWKKm56eHiEhIZw6dUrcizt37uTevXssWLBAbMvOzk5w0uVyOfn5+dTW1op57+rq6iLpho6FXUtLC1OnTqWoqIhPPvmEAQMG8N1335GUlMSXX35JRkYG7u7uYkH354pXV6CsrMyBAweEmG3kyJHiWlNRUSEiIgJTU9NOiWtRURHV1dUYGxujq6uLkpISx44dIzExkT179hAQEMDTp0+pq6tjxowZjBo1ira2Nkr/n/bOOyyqM+3D99A7CAgKSBERFVQEBUFELGjsorEmirE7Ro1ZkxhjiWbdJJJsotmMLcZuLIldsUTBiFJUVCwUUZEmRZr0Ot8f47wJ2exG/JJY9tzX5XV0Zji+hznleZ/3eX6/3FwxGRw2bJjIJKtRS1oNHz4cf39/QkNDOXz4MABTpkxpdGnEqVOnSEpKwsPDgwEDBgjLXoVCIZo/QRWka2pqNrBeBoiNjSUxMREPDw98fHxwc3PD0NAQpVLJli1bxHl948YNXnnlFb755htCQ0MxMjJixYoVzJkzB1CVjmzZsgV9fX0mTpyIiYkJdXV15ObmirKrpwnOAXGe/fjjj9y5c6dBN//t27cJDw+nb9++uLq6kp+fz/nz50lJScHIyIjt27eTmJiIpaUlK1eupKCggPz8fHr27Mnt27fZtm0b9+/fp3Xr1sTFxaGlpcWAAQNo1qwZSUlJaGlpMWjQIOLj49m5cyd3796lV69ejB8/HisrK6qrq6moqMDAwIA+ffqQkZHB0aNHG6h0SEhIPJ80OnjV1NTkp59+IigoCCcnJwYMGCAeLk5OTrz33nvY2tpy6tQp7t27R3p6OkqlEm1tbbS1tcnPzxc6oBkZGSxfvlwIdV+/fh1zc/MGsjpXrlxBJpPx6aefcvr0aXbt2kVVVRXTpk2jZ8+egOrma2NjQ3BwMDU1NXh5eQm7z3v37jXq+LKysggLC+PSpUuUlpaKOtW+ffuiqanJ6dOn2blzJ2ZmZpw9e5asrCySk5MJDg6mffv2FBUVUVBQQNu2bYmKiuK7775j/PjxIqBWKBSsXLlSuHOpax29vLyIj49n//79DB8+HDc3N2FtmZ+fL9xptm7dyrlz5/Dz82PatGn/tfv4P/Hll19y48YN8vPzefXVV0Wdp6WlJTk5OdTU1KCpqSkCmrq6OsrLyzEwMMDPz4/+/ftz7NgxTp06Rbdu3XBzcyM+Pp6xY8eKUgN1EG5paYmzszOFhYWsX7+e5s2bM3XqVJydncnNzRVBhzrjXVVVRVZWlqgDTEtLIzw8XNjlNgYdHR1MTU3p2LEjtra26Ojo8Oabb+Li4kJKSgr79+/n66+/xsLCAiMjI3G8aptIdbawVatWjBgxggcPHrB69Wr09PSEfW5KSopwWZo3bx5dunShpqYGbW1tvL29GTp0KCUlJXzzzTfs2bOH8vJyvvjiC1q2bMnVq1cpKiqiXbt2T1VPePbsWZKSkoR18fXr1ykuLsbMzIxZs2YJk4ZfBv7qsoZfBhFpaWnCCc7MzIzMzExsbGzo2rUr8+bNo7a2tkEDU5cuXbh58yZhYWEkJyfj4uKCu7s7qampxMbGUlxczMcff4y3tzcBAQGN0ln+LdS/G7Vk0uHDh2nVqhX+/v7Y2tpSV1fHwoULMTIyYvr06VhbW1NZWSkCZplMRps2bSgtLSUxMZH09HQePHhAy5YtcXV1xcjICH19fVq3bk1xcTGXLl3C3d2d5s2bk5WVxYkTJzA1NRXZwsuXLxMVFUW/fv2EpvA777zDjBkzGnVchoaG2NraNlC98PPzIy8vr0EAlZWVJdQPTExMiI+P5/bt25iampKbm8vKlStFCcOYMWOorKykbdu2NG/enEuXLnHr1i3WrFkjlEFKS0tJSEgA4NChQ4SGhjJw4EDmzJkjygU0NDQwMzNj7NixWFhY0KFDh0abMPwSdZZefZ2npqbyxRdfkJOTw8yZM+nYsSMbN25k9+7dVFZWcvXqVe7cuYOTkxP9+vXDzs6OZs2acfLkSfbt20dUVBTFxcUMGzaMiRMnsnv3bhISEsSEVVNTU9xbO3ToQEZGBrt27eL48eOkp6czevRoHB0dhQqGvb09xcXF/PTTT1LwKiHxAtDoJ+YPP/zApk2biIqKYsmSJUyePJnq6mpWrlyJq6srb775JkeOHGHevHliqQ5UVq0TJkwgICCAiooKdu7cydSpU0UW5dGjR4SEhAA/e86np6fz3Xff4ebmRkhICGlpaRQXF/Pmm2+yatUq4GdVgDfffPPf/OHDwsLYt29fo2R61AFyYGAg/fr147PPPmPHjh2EhIRgY2PD3bt3OXPmDFevXiUxMRFbW1sGDBjAhAkTaNq0KTdv3qS0tBQrKyv09PS4fPkyrq6ujBw5ktmzZ2NiYsKsWbOE8DmoLGkXLFjA559/zurVq3F0dKR79+7Y2tpy7tw54uPjhXbnzZs3OXr0KEePHsXExOTfjvlJKCoq4vvvv2fDhg1iKTAlJYUWLVqIh0tOTg6VlZWYm5tjYGAgskpFRUX4+flRUlJCaWkpLVu2xMnJibfffluoHri7u1NcXIypqakwdjh//jxbtmwhKCiICRMmiBIIUD3Ibt++LZrkftl1XVlZKZqRGsv9+/cpKyvjjTfeEBMiW1tbQkJCmDhxonAOmzt3rmgcqaiowNzcXATV6uNwcXFh6tSpJCYm4urqyty5c6mqqiI0NJSYmBjReGNgYEBtbS3Z2dk0a9aMsWPHcunSJebPn8/Zs2dp06YN1tbWJCUlERISQm5uLn//+99Fw9eTcvbsWRISEujSpYsoZSktLWX+/Pl4enri6ekJIJajNTQ00NTUpH///vTt25f4+HiysrKwsbEhLCyMNWvWoKOjQ7t27UTm29DQEFdXV/T19bGwsECpVFJdXY29vT0tWrQgNDSU0tJSVq9ejaGhIaGhoSQlJWFlZUVVVRWpqamYmpri7+/f4Pt+UpKTk3F0dMTY2JgFCxYwbdo0EhMTmTt3Lh07dhQ1k2FhYaxevZouXbrw9ttvC1tVdbbYwMCAOXPmcOHCBfbt20dycjItWrQQgv1VVVWi1jE9PZ3ExERMTExwdnbmwoULnDlzhrZt21JdXY22tjbLly8nJiaGXbt2MXjwYL766itSU1PZvHkzr7322hMf3yuvvAKo7n2ZmZmi9rht27YNjBIqKipYv349hoaG+Pr6cuzYMSoqKli5ciUtW7bkX//6F/v27WPGjBmit6CwsBBLS0vWrVvH+++/z8cffyzqX6OioujYsSPl5eVs2bKFGzdu8OmnnyKTyaisrKSsrAwLCwt0dHQICgoiKCiIgoICYUbRGGpraykvLycgIIB+/foJ5Qp1E1irVq3w8vIiNzeXtWvXkp6ejlwuR1tbm+rqaqZMmYKHhwcAGzduZOPGjVRUVJCVlUVRURG6urq0bNkSLy8vioqKyMrKwtPTk1atWnH8+HFOnjzJnDlz8PT0xM7OTsgEGhsbM2zYMDGBAJW6hSSVJSHxYtDo4NXc3BwnJye+++47jIyMePvtt5k5cyYHDx7k22+/5e7du2RkZIhMgbGxMR4eHkydOlXUGerp6TFw4EDxQFNnFtzd3dHT00NTU5PNmzdz5coVunTpgq2tLYsWLeLHH39kzJgxTJ48GVAtXyqVSlHjCD93t5qbm9OvXz+cnZ2FU82T4OLiQkhICEOGDCE3N5dDhw6JhixQdfqrFQKqq6sJDg5m4MCBlJSUcP78eSwtLamtreXAgQOUlpYybNgwOnToIJYyu3TpwsaNG1m0aBEpKSmMHz+eTz/9FIDg4GBat24tGk4GDBjA+vXryc7OxsvLi7KyMtLT0wEICQmhd+/ewhWoMaxcuRItLS0RuE6aNImEhAS+//57cSNXL/kvXrwYb29v3nzzTW7cuEF0dDS9evXCzMyMTZs2ER0dTcuWLenfvz9GRkZ069YNFxcXHj58KDKZ9+7do6qqin/84x84OzuLMgSA+Ph4Nm7cSFJSElOmTBEyXWqqq6sbfXxqlEql8LgfOnSocGN6+PAhP/30EwADBw4kODiYjIwMoqOjUSqV9O/fH21tbR4+fMiZM2fQ19enf//+2NjYMHToUGxsbIR0U2BgIFevXiUlJYVPPvmEd955h2bNmnHmzBlu3LhBu3btMDExoU+fPri6ugr5r+3btxMfHw+As7Nzo60pjx8/zrhx40QDWHV1tXCyUtcrgmqyoaWlhb6+vlj61dTUpFOnThw6dIhVq1ZhYGDAzp07cXBw4PDhw2zevJlz584J4xAHBwf+8Y9/YGhoSFRUFE5OTqL2UJ2h37NnDwsXLsTDw4OTJ09iamrKggUL2LNnD+3btxearI3h7t27LFmyhKqqKmbPno2Tk5OQ6rO1taW4uJjMzEwuXLjAzJkz6d69u7hOdXV1GwSAVVVVREREsHnzZqysrJgyZQre3t5UVlYKF7Xt27dz69YtBg0aJJoZnZycmD59Oi1atODEiRMcOnQIR0dHgoKCiIqK4sKFC/ztb38TqiTHjh1r9HFu376dEydOMHXqVOE4l5WVRVlZGe7u7lRXV3Pu3DkePHiAhoYGbdq0oW3btjg6OuLo6IiXlxdhYWGsXbsWZ2dn0fSoJigoiOPHj7Nnzx6Cg4PZtm0bxcXFvP/++/j4+PDBBx9QX1/PjBkziI2N5d1332XMmDFcvHgRQ0ND2rdvj6GhIZcuXWr0sWlpaVFeXt4g+6+uVe7QoQPl5eXo6+vzr3/9i/v379OmTRsWLVqEnp4e586da+Bwd/DgQS5evMigQYPo378/oaGh7N69m+rqakpKSsRETU1VVRVhYWHcu3ePbt26YWdnJxRcTE1NSUtL4+uvv0ZfX58PP/yQ0aNHY2NjI8puJCQknl8aHbz6+flhZWXFzp07iY6OZu/evcKVR0tLi5s3bwrtwZ49e9KjRw8hpK52bercuXMDr3oLCwsMDAyoqalBT0+PiooKFi9eTEZGBtevX8fe3p7p06dTWlrKF198gYeHB7W1tWIGX1tbi52dHRUVFWRkZGBqaoq5uTnV1dUNrCOfhK5duwqHr9zcXBwcHNDT0xNLl1ZWVgwcOJCAgAB0dXXp2LEjlZWVbN68mZKSEj755BOUSiVhYWGYmpoydOhQTExM2Lx5M6dPn0YulzN69GiuXLnCunXreP3118XytEwmIyAgAFNTUx49eiTqSdUNKnl5eUKGaO7cuY396gTvvPOO+HtYWBixsbG0a9cOAwMD7t27x48//kjv3r3Jz88nPDxcZKoiIiLIzMykb9++4mFWW1vLuHHj6Nu3L3379qW4uFi4qwFcvXqVjRs3oq+vz1tvvSWWn9WuSOHh4Rw6dIja2lpGjRolfg/qjmd3d/ff9Fv/PTIyMmjdujWBgYEYGhqSnp4ulhTVcklxcXF4eHhw48YNrl27xokTJ2jWrBnm5ua0b9+effv2sX79ehwcHGjfvj2Ojo7U1tZy4sQJnJ2dad++PdOmTSMrK4vPP/+cK1euiG71iIgINmzYAMCoUaOYOHEiixYtEuPT1dVl4MCBuLm5PVW2p6ioSASuVVVVGBsbC3MGUE3i9u3bR2lpKaNGjRINhunp6SIg0NHR4d69e1hYWODt7Y2zszNt2rTh+PHjIiBXL6vv37+fzMxMwsPD8fT05N1336Vly5aiw3vz5s107tyZWbNmCUva119/nVOnTj1VUyGoDCWuXLmCra0tOTk53L9/Hz09PebNm0dRURFffvklMTExeHp6EhoaKn6uuLgYHR0dMUHKzc1l6dKlrF27FlNTU+bNmycc8NTExMRw4cIFHB0dhclIXl4eLi4uYjIQFRVFcnIyISEhdO/ena+++gqlUsn777+PTCajqKio0cFrfX29yHSq9bNBdf6q7znm5ub0799faGOryxcqKyvZuXOnkC1zcnKiVatWZGdnk5uby6NHj2jRogUdOnRg9OjR3Lp1C1NTUwYPHsyBAwfYs2cP06ZNo0OHDoSFhREZGUlZWZm4Z5aXlwt3OHNzc7y8vBptUlBSUiIaXh88eCAa0W7cuIFSqcTAwID4+HiuXLmCo6MjvXv3prS0FBMTE9zc3ETiIDU1FVtbWzw8PIQ6yI0bNzh//jw3b96ktrYWV1fXBmVUzs7O9OnTh9LSUmEw0bVrV8zNzampqSE2NpabN2+ioaFBfHw8r776Ks7OzlLwKiHxAtDo4NXIyIhOnTrh6+tLTEwMn3zyCcePH8fMzIzVq1fTt29ffvjhByIjI3FzcxN1qe+88w6xsbEsXrxYBGNqdHV1GwSZx44dIyMjA1A9eNzd3XnnnXeoqakRNoZqS8wNGzawfv16+vfvz1tvvSWkrEDVnLJhw4ZG2zaq/9+TJ09iYmIilthSUlK4d+8eDg4OeHt7U1dXR1JSEidOnODw4cO0bNmSqqoq9PT0eOuttygrKxOlA4mJichkMvLy8sjMzERXV5dOnTo1qCNTKBRERESwatUqbG1tmTJlCoaGhhw8eBA9PT2MjIyYNWuWWNp/WtRqCT/99BOXL19m+fLl4oH4j3/8g1WrVjF48GAGDx5M3759iYqKYv78+eTn59O9e3du3bpFZGQk8fHxoiwAVFnUDz/8kDZt2jBv3jyysrL4+OOPOXv2LIWFhZw7d44VK1bQq1cvdHR0OHPmDAcOHKCwsJDAwEBRa3b//n2qq6txcXGhW7duvPfee43K+kRERHDs2DG8vLxYtGgR1dXVPHr0iNraWrS1tWnWrBlfffUV586dY+/evaxcuZLs7GwePHiAra0tBw4c4OjRoxw6dIi7d+9iaWkpAt+TJ09y9OhR6urqWL9+PYCwBp0zZ444BvX5CyobXCsrKzw8PGjevDkXL17EwsKCXbt2UV1dze3btxvdEGNra0tcXBxubm7i2qmsrKS8vBxzc3M0NDTYu3cvKSkp+Pn5iYe6TCYjLS2NyspKunfvTkREBHPnzqV///7s3buXjh074uDgINyili5dSo8ePXjvvfdEmYWWlhbnzp3Dy8uLnTt38ve//52uXbty7NgxoREMqlWMsWPH0qpVK2GF2xiio6OZNm0aZmZm5OTkEBERwcCBA2nXrh2hoaF88sknODs7N2g+A0Rtp1q7eN26daxduxZQyZrNmzevwedPnDjB8ePH6d27NyNGjABUtfa3b9+mS5cuIngNDg7G3d1dlFl0796dwYMHU1hYyNdff01cXFyDAPRJqK+vZ+bMmWhqajZoanNzc6O+vl7UiS5ZsoRHjx41mOgsW7aMTz75BFA5ji1btgxtbW02b97MRx99hImJCXPnziUwMBBPT0/+/ve/i9UuV1dXPDw8+Pjjj7l48SLvvfceZ86cISsrC5lMRkVFBQEBAeL34+fnJ0q8GkNYWBijRo1i586dfP/996xZs4amTZsyadIkLl68SMeOHamqqqJ169YsW7aM+/fvM3bsWNq1a8f06dNxdnYmJiaGO3fuMHz4cEaMGMGJEyc4c+YMw4cP58MPP+T+/ftcu3ZNKBuo6dSpE56enrRo0YKYmBiWLFlCYmIi7u7unDlzBhsbG1atWkV1dTXXr1/n8uXLok5cQkLi+abRwesvpUR69OjBmTNnuHz5MjY2NhQUFHDlyhUKCgrQ1dVtkHHx9fUVri4A+fn5pKSkCPs+mUwmsl66urq8//77GBgYiKzbqFGjxDL0vn37sLKyEgLsly5dwsjIiEWLFpGRkUFycjJGRkZCgLux3L59mwULFpCQkMA777yDn58f3377LVu2bKFFixYsX76c1q1bo6mpyZUrV4iNjUVPT4+cnBxmzJhB7969GT9+vNjfjh07+OGHH/Dx8UGpVJKRkYGnpyceHh4NsoqJiYnC4lYtkZWXlyccxkxNTcXvIC0tjQsXLjxV2UB5eTl6enpYW1sLSSC1xai9vT2BgYE4OjpiYGCAhYUF9+7do7Kykp49e9KvXz8iIyM5ePCgWD4+ePAg169f54cffqCoqAilUsny5cs5f/48V69exczMjOrqaqKjo5kwYQKbN2/Gzc1NNKp0796d5cuXC8H4iooKUQpy8+ZNzp8/36gM+sOHD9HX1xcSOmq7ybFjx3L//n2uX79OQEAAPXv25MqVK3zzzTdiyVFTU5Njx46JRj9fX1+CgoLYsWMH0dHRxMTEAKra6JkzZ2JlZYVSqeRvf/ubMOiIjo7Gzc0NOzs7jIyMuH79OmfPnqVDhw6MGDGCrKwsoqOjuX//Pt26dcPT07NBt/yT0Lp1a06ePMnDhw/x9/dHR0cHbW1tUX5QWlqKi4sLTZo0aWATq1QqycnJoa6ujtatW2NoaMigQYNEs1VNTY3wr9fR0SEjI4OUlBThtKSlpYWVlZXQBa6ursba2pry8nLCw8Px8fGhSZMmmJiYUFlZiZ2dHcbGxk8l/q6rqysMNbS0tERnuPo4LCwsmD59OkOHDhWd9+qVEvVkIyYmhkOHDmFtbc2YMWPo3bs3SUlJ3Lp1S9hbZ2dn4+Dg0CBwUUs3aWhoUFNTQ3V1tZBPKyoqIiEhgREjRohJQmRkZKMVI9SNfVlZWSQkJAjt5SZNmjQoI6mtrUVHR4eysjIOHDhATk4OCQkJHD16VHzm8uXLnD17lj59+uDg4ICjoyPV1dXCwKJJkyb07t0bc3NzHj16RLNmzQgODhZShWp5t3379hEeHs7AgQOZMGECvXr1EgovjTXSAFW2urS0lA8++ICioiIiIyPp168fjo6OXLt2TeyzvLycQYMGce/ePeHC5+joKJpJbW1tsbOzIyYmRpSBzZ49G29vb7y9venYsSNaWloNJg8mJibo6OhQU1Mj7qPp6enk5eXh7+/P6NGj6d69OxUVFXz44Yf885//ZMGCBY0+RgkJib+eRgevcXFxWFhYiA7tZcuWMXbsWHbu3CkMDNQP7qNHj6JUKpk8eTLDhw9n2LBhQkvz4sWLREdHk5CQQFpamhDLnjRpEm+99RaDBg0SQur19fUNskvfffcd2tradO7cWTjHeHt7o6Ojw+XLl5k1axYACxcu5OOPPxayQk9CcXExV65c4fTp02hra9OpUyfMzc35/vvvycjIoLS0tMGD2MnJia5du9KxY0fi4+P54YcfOHz4MOXl5UyfPp3a2lpu375NWloanp6e6OrqYmhoiJ+fn8hSVVVVcfv2beFnru6037VrFxUVFb+pkZmfn8/69euJjIxstP6iOgBwdXVFS0uLkJAQVqxYwbZt25g9ezZTpkxBX1+fzMxMrly5gp2dHS1btmTZsmXY2dnx+eef4+TkRJ8+fcjMzBQC+23atOGjjz4iKytL1CoaGxvTuXNnKioqhFbqxx9/zDfffMOkSZNITU3FwsICPz8/NDU1KSsrQ6lUirHGxsby7bffMnPmzCc+Pm9vb7p06UJ2djYff/wx3377La+99hpjxowhISGBVatWkZ+fT0hICGPGjCEyMpL9+/djb29P+/btxRKjh4cHK1euxMPDgxkzZrBjxw6sra3p2rUrly9fZu3atZiYmBASEiJ0M/fv38+RI0fo37+/aAI7ePAgJ06coK6ujoqKCpE1/eSTT5g9ezarV69u1PcH4ODgwJ07d0hJSaF58+a0atVKTNTUQdHixYupqKigtLRUNJ5VVVVRWVmJq6ur2NfYsWMZO3YsVVVVnDt3DisrK9H0oy4P2LJlC8uXLycqKoqrV6+KJVy1dvNnn33G6NGjmT59usgGlpeXk5aWRpMmTRrULj4pAwYM4MCBA1hZWTFhwgTq6uqEM5qPjw+LFi1i2LBhVFZWcvLkSY4dO0bXrl0ZP368KDVQy+pNmjSJiRMnkpCQwNq1a0lNTeXs2bPU19ejUCiYOXMmsbGxXLlyhT59+uDp6UldXR319fVCKUWNWuMYVBPO/Px8FixYgK+vL2+//fYTH5/6e9q0aZPQB16yZAkBAQENMvGFhYVs3LiR/fv3Ex8fT2VlJcbGxgQHBzNo0CDRmHTlyhXWrFnDiBEjxMSspKRETCRiY2MxMzOjX79+6Onp0aVLF/bu3Ssaonbt2sXcuXOprq4WK2zt27end+/e7Nmzh48++qhR1yGoJgGzZs2isrJSqDnU19ezY8cOIXe1atUq8vLyOHnypJiMOzk5oaurS0VFhSiHiYuLE2UZjo6ODSYL9vb26OnpUVxcjJ6eHjKZjJs3b3Lw4EFycnIoKSkR2f/Kykr8/f1FJll9XyosLGTp0qVP7ewnISHx19Ho4HXkyJEYGhoyfvx4UTupNiywt7enR48eQkZKvfRWVVVFeXk5ZWVlBAUFUVZWJny9AwMDCQ4OZteuXRw8eJDw8HAx+z1w4ABFRUX07t1bBHQpKSl06dIFa2trKioq6Ny5M7t37xbLYX379sXR0ZHo6GgKCgoaOCQ9CWlpaeTm5jJ16lQsLS1JTEzkwoULdO/eHT8/Pzp27IixsTGPHj3CxMQEHx8fmjdvzsOHDwkKCiIkJISDBw/y5ZdfcvDgQfz8/GjdujUzZ87E3d2dvLw8cnJyRD1XamoqZWVleHl5Cc3a3bt3I5PJGDVqlBj/5cuX0dDQwMLCAhMTE0pLS2nRokUDZ5wnRe2e9Y9//AMbGxvi4uKoqKgQHdfqIMjW1pb33nuP0aNHY2pqipOTE0qlkoEDB2JpaYmNjY2QB+rQoQP79u3D2dlZNBM9ePAAGxsbmjdvTuvWrZk1axaHDh2irq4OPT09mjdvzuTJk9m5c6ewwnR1dWXbtm1cu3aN4cOH079/f/Ly8hp1fPb29lRUVIjGkLS0NBwcHITA/MiRI/H29gZU5+6CBQvo37+/EHw3Njbm4sWL5OXliUnal19+ibGxMdHR0URHRwOqrGzHjh3JyMhg3759jB49mqSkJM6fP9/A9W3AgAH4+fmRkpLCnTt3sLa2Zu7cudjZ2ZGQkMCiRYtEve+TorYjvnfvHtXV1ejr63Pt2jVWr15N165dmTp1KqBaKUlPT6eyslLUpf96MqSezBgYGDBkyBA6dOiAQqEQdaSGhoakpqbStWtXfH19RfmFvr4++vr6xMbGUl1dzYQJE2jXrh0XL14kICBAfM+/LC1pDAMHDhQNSqDKiqsbsXr06EHHjh0JCwsjPDxc6CwHBASIe8H27duFKL+xsTGHDx/GxMSEXr16kZaWJrL86rKiO3fucOnSJWF88ssAsry8nOLiYtLS0khKSsLIyIju3bvTtGlTAgMDRQDYGIqKikQd+4ABA4iNjWX//v20a9eO1NRU4uLiGDp0KDKZjJMnTxIbG4uGhgZdu3YVk7Hw8HB27dqFqakpkydPFhlnUC2b379/nyZNmlBQUEBCQgJ6enoEBQUJy1j1MntcXBy5ubl8/vnnmJiYoKGhwb1797Czs6NJkya88cYbNGvWrNHXopubGy4uLvTp04cpU6aICYi2tjbt2rVDLpfj4uJCYWEhurq6xMXF0a1bNwYMGMC0adPQ0dFh8+bNHD58GHd3d2HhXF1dLcZeW1tLfX09d+/e5c6dO3Tv3h09PT3OnDnDZ599RkBAAAEBAeK67dOnD127duXevXtCkuuDDz4gLy+P6upq4QIoISHx/NLo4PXu3bsYGRk1EMc/cOAA58+fZ8qUKUybNo2ysjJmz57NgwcPkMlkbN++naioKJo2bYqvry/l5eUcOHCAyspK3nvvPYYOHYq3tzfl5eW0bNlSBLp37tyhrKyMpKQkNDU1KS0tpba2lnfffRdAuKa88sor3Lhxg4cPH+Lp6cmGDRt4++23KSgoeKpl9ZYtWzJ16lS0tbUJDQ0lOTmZKVOmCL3KqqoqYdVoYWGBvb09zZs3F9kZtb1qWFgYpaWlLFy4EF9fX9LT04mIiBDuVUVFRURFRVFQUEBdXR39+vUjNzdXuNHo6uqKLm2lUklZWRnt2rVDV1eXJk2aMHnyZKysrBqduXv48CFxcXGEhYUxYMAAPvzwQ27evElsbCwdO3YkLy8PPT09DA0NqaqqwsbGBgMDA5RKJXV1dfj7+4sGoICAABITE5k9ezbOzs5UVVXh7e3NK6+8QmlpKZcuXaKgoIBOnTrh5ORE7969iYmJISUlBUtLSzw8PITeqqWlJT169ODEiROkpqbi4eFBYGAggYGBwjLzSTh27JhoLJs2bRr9+vUjOzsbHR0d4d9eVlYmnKPUS4/37t3j7t271NbWYmhoSExMDKGhoXzwwQc4Ozsjl8s5e/asOEe2bNlC8+bNmT9/Pvfu3cPc3Bx/f39Onz7doOa1pKSEwsJCNDU10dDQQF9fX/irL126lOXLlzfaRczCwgJLS0uMjIyorKwUZRnbtm0jMzOTESNGYG5uTklJSYOsp0wmQ1tbWyyXq7Pj+vr6FBQUYG5ujqOjI25ubjg5OWFtbU2bNm1Yt24d169fZ8mSJdjb23PhwgWMjIy4dOkS58+fZ+zYsWzatImqqip2797N1atX0dXVpVmzZmRmZgqx+8bQtGlTkQWrq6tDqVRSUVEhVmE0NDRYtWoVMTExLFq0SNgpg6rZ67PPPkNHR4eJEyeSnZ1NZGSkKANSZ4SbNGlCs2bNuH37NteuXUNHR+ffpNoMDQ1FQ2l8fDx79+7FwsICJycnOnXqJGTEGhv0pKenk5CQwOjRo+nZsyejRo0iIyODpk2bkpeXR2JiIl26dKF9+/Z06dKFsrIyBg0axKhRo0TmvLy8nMLCQsaNGydMWoqKikhPT8fU1FTUyCqVSpo3by7KINTnEKgSAtevX8fW1pZ+/foJacHIyEhiYmLw8PAQjayNuQ5BdX+wtbVt4Oimprq6mhYtWjBp0iTxmroEydfXFwsLC5KSkoiMjOTKlSt07txZqDGojwl+1gFWlz4VFBRgY2NDWVkZDg4OyOVyevbsSWFhIcnJyQwbNozc3FxxLfv7+zeYbDb2GCUkJP56Gh28qnVTXVxcxGs6OjoYGRmJDI6hoaGQ0Lpw4QJ79+4VHcp9+/bl3LlzYvnv4cOHgCoY2Lp1K2VlZWhoaGBubs57771HbW0te/fuZcaMGbRp04Zly5aJ//fy5ctoamqSnJzMmjVruH//Pt988w1+fn7s3LmTHTt2sG7dukYdn4ODAy1atBAPSF9fXxwcHLC0tBTLfOoGM7VZweuvv462tjYJCQl89dVXJCUl0bNnT8zMzLC2tsba2pqioiKSk5PR19enc+fO2NnZUV5eTlFREfv27WPOnDlYWlry2muv8frrr/Pjjz8ya9YsNm7cyKZNm+jcubPQNQSVcL6enp74PTaGV199lU6dOqGnp4eOjg7vvvsuR44cYfbs2fj7+/P5559TXV3NZ599xvfff49MJiM4OJgpU6YIMW9ANKZ16NCBVatWcezYMRYtWiQ0Ro2MjOjSpQulpaXi3GjatCleXl5s2LCB2NhYpkyZwqBBg4iKimLLli1cuHCBO3fuNJgMNJaZM2fi7OyMi4sLDg4OwvJS/burq6tjxYoVZGdns2DBAlq3bs3Dhw+pra2lpKSE1atXEx4eDsBPP/3E6dOn6d+/v2j88vb2ZunSpeIaeP3110UJiK+vLxMmTBDuPfr6+pw7d45ly5YxatSof6up8/Lyonnz5lhYWIha0ydB3Rjo4uLC5cuXWbNmDWVlZSxevJioqCghOv9rcwc9PT0hm7VlyxZWrFjBuHHjWLhwIVFRUaxfv55WrVrh6enJ/PnzhWlHXFwcTZs2pby8HAcHBw4dOsTgwYOprKxkxowZYhVGV1cXHx8fHj16RGFhIeXl5axZs4Z//vOf+Pn5Nep7fPjwoWhOzMzMpKysrEHdfF5enpAC8/PzE4FrdHQ0oaGhZGdnY29vT9u2bQkKCsLHx0eMITs7Gw8PD9q3b8/NmzfZsWMH2dnZBAQENFit+WUgW15ezq1bt+jcubPIXqampmJvb4+Ghoa4Lp6U/Px8rl+/TteuXXF1dRVWzBoaGri7uzNy5EhhZ/rGG2/w6quvYm9vj1Kp5OHDh2J5vEePHg267EtLSxk9ejReXl5s27YNUN2T+/Xrh4GBgVhZKSsr49q1axgZGTF06FC2b9/OwIEDmTlzJmPGjMHZ2Zm0tDSMjY1JT0/n9OnTjTo+QNi0rl+/nkOHDrFgwQLx/6treX9Jr169RAnWzJkzuXz5Mo6OjnzxxRfY29sTGxtLhw4dxLHX1NQgk8nQ0tKiVatWtGrVioSEBM6fP4+npyevv/66UOVQN3clJycTGxuLtrY2gwYNwsnJiVu3buHs7NxodRoJCYlnQ6OD1+DgYNLS0qivr6eiogJtbW0CAgJwcHCgtLSUuLg4HBwcxBK4pqYm2dnZBAUF0atXL0DVDe7h4UHTpk3R0tIiKytL1C85OTmhoaHBpUuXqK+vF8X4mzdvxsjISNiVqhUOHBwcSEtLE8YG6mUtS0tLzMzMSEpKatTxqTuLy8rKqK+vJyAggJycHDIyMsRyV1RUFOHh4TRt2hR7e3uKioowMzNDV1dX1AQuWLCAKVOmUF9fz8WLF/nuu++4efMmb7zxBm+88QYaGhqkpKTg6elJcXExCQkJlJSUiEzu8OHDOXjwoGh+AVXW++rVq2LpU09P76lkiNQBhprs7Gxh36i2RAXVA8/GxobCwkLRCKdeajx37hwpKSmMGzeOXr16sXbtWuLj40VG9tixY1hYWODj44OhoaGoZZXJZDRv3hwXFxeqqqrQ19fHxsYGJycnsrOzuXXrFtnZ2fj5+eHo6EhhYSHfffddo47P0tKSDh06oKWlRV1dHTKZTKhFqKV61A1Tixcvpqqqim+//VY4OLm7u3Pz5k00NTVxdHQUkkRKpZJXX32V5cuXi2zmgwcP8Pf3p7KyktOnT2NoaMiwYcMoKSmhrKyMqqoqoqKiuHPnToOO+1u3bnHx4kWys7P59NNP6dq1K1988cUTH6NSqRSqEQAff/wxgYGB7Nq1i61btxISEiIUJLKysti5cydGRkai1AF+zlRpaWmho6ODpaUl9+7d48aNG3h7ezNlyhRKS0uFPJLawatp06b069ePsLAwHB0dRcavpKQEY2NjXF1dOX36NOHh4eK1p5lk6ejoUF1dzb59+7h8+TJ9+vTB29tb3HesrKywsrIiKyurQdDx7bffsm/fPkBlQKFWKFE7ZmVlZWFkZCQygbdv36agoABvb2+GDx+OiYkJd+/eJTc3VxhPXLx4kY0bNyKTyfjss8/Q1NTkm2++4dixY3zwwQd4eXk1WLJ/EmQyGRYWFpSWliKTyZg0aRInT55k/fr1uLu707lzZ2FXXF1dTevWrTE1NeXKlSvs2bOH7OxsmjRpwsiRI+nWrRs1NTVkZGSwfft2tLW1ycvLY8uWLfj4+GBpaSn0o0F1D46MjMTU1FTUuBsYGJCYmChWDYqLi6mrq8PQ0JDo6GgUCkUDicMnRUNDA5lMxpUrV8QyvqGhIfb29ujr65OXl0dubi62trY0adIEY2Nj9u7dKxQibGxshHbt3r17qaysJCAgQCQTQHWOq01TXFxchKVuixYtxMqEtrY2JiYmYgVQU1OT3Nxcjh49SmpqKoMHD26Q2ZWQkHh+aXTwGhERwXfffUe7du0YMWIETZo0wcbGBhsbG86ePcvhw4fp1auXKIbPzs7G1tYWd3d36uvrWbBgAYcPH2bIkCEMHjyY9u3bY2pqSmJiIjt27KBfv374+/uzdetWtm3bxrZt2xg0aBCbN29GT08PpVLJnj17yMjIYPTo0bRo0YKOHTvSunVrDAwMRDAZFhZGeno6/v7+REZGPvHxVVdXU1lZiUwmEwG1gYEBDg4OolZwyZIlYtnd29tbaM62bNmSr776im+//ZYbN25w/fp1vL29uXz5MkeOHAFUN9mMjAwSExNJSEhgyJAhjBw5UlhUqo0cTExM+Pbbb9HV1RWC+YcPH0ahUNC2bVu8vLwwNzd/Ks/xjRs34uPjg6+vL1lZWYwbN46oqCjefPNNZs+eTW1tLbW1tbz55pvMmzeP+/fvc+PGDR49eiSWllNTU5k7dy6nTp1i06ZNbNy4kcLCQuzt7YWU0NChQ0WQLJPJGmSx1MuTOjo6ZGVloaOjw8CBA2nSpAm7d+/G1NQUTU1NDh06xKxZsxrVKHLw4EGR6VU33FRVVXH58mWaNm2Kqakpfn5+NGvWDFNTUx4+fChMNTp37oynpye9evUiPT1dOBbt2bOHO3fuEBISIgLXoqIi0d188uRJ5HI5gYGBbN++HWNjY27cuMH+/fsxMTFh+/btVFZWEhMTg4+PDykpKbz55pv06tWLgwcPNvo7VGebQDUZKS4uJikpifr6ejw9PRkzZgyurq4olUq2bt3K+++/D6isgdXB6yuvvCJ0cAECAwPZuHEju3btEq5mRkZGLFy4kFOnTolmG1CpHWzbtq2BNNEvlT0yMzN58OABVlZWjB07Fn19fWEM8aSolU1OnDjBkSNH6NatWwP1BGNjY/Ed/lJyTr2aM3jwYNFMqObMmTOAqnYfVKs3FRUVDB06lM6dOwsd4kOHDhEXF8fChQupra1lzpw5REdHs2jRIjQ1NamtrWX9+vWkpKSwZMmSRh2XmtatW2NsbCyUBWxsbNDS0mL27NnY2dnx9ddf06tXLzIyMoiIiKBVq1YMGTJErNqEhYXRvn17pkyZQtu2bVEqlYwYMYLS0lK2b99OamoqEydOJDAwUMi6qTl9+jShoaGMGjWKwYMH06xZM7p160ZkZKQI/tRKBKCaLP3aBOBJUE+wpk+fjqenJ8uXL+fDDz/E19eXpUuXEhQURG1tLSkpKeTn5wvVg1+uulRWVormXfXn1TJi6hKYCxcucP36dXr27Clk97Zv386KFSsYNWoU7du35+jRo1RWVjJp0iTMzMxITk5mxowZhIeH06ZNGyZOnPhUNs0SEhJ/PY2+UpOSkrCzs8PKykpYh5aUlLBp0yYuXryIi4tLg4aQvLw8UlJSSEhIEILf7u7uDTp2QeWp3qJFC2pqasjOzsbR0ZGAgABRW6sOEsrLy7l37x4PHjzg2rVrFBQUoKGhIZaGALZu3cqmTZsIDAxk5syZjQpea2pqqK+vF0uQ6sYs9dLZunXrsLa2ZuTIkZw7dw5nZ2csLCwIDw8nLi6OIUOGMGrUKFavXk12djb6+vrU19cjk8kICgoiMDCQkydPsnnzZkxMTBg2bBhKpVJISgUFBaGtrS3kjHJycigtLUVfX582bdrwyiuviHpE4KmsU69fvy4yKJqamvj6+mJjY0O3bt2wtbVFS0sLLS0tampqOH78OMnJyTRv3lzU3R07dox9+/bRsWNH2rVrR3l5uciYgKo0YMiQIcKSFVSZ7B9//JHS0lIMDQ2FzWiXLl3EQ7lVq1a0bNlS+Kjfv3+fmpqaRjczqTNgJSUlIktnZmZGSUkJixcvRk9PDxMTE4KDg8nOzubhw4f06tWLbt26iZrN/Px8goODcXR0pKKigpCQEOrr68nNzWXfvn2Ul5fj6ekpzpPa2lpycnIa1Fjr6+tjZWXFgAEDaNGiBUeOHGHXrl3Y2dnh5eXFqFGjGpTfNIbi4mKsra2prq4W5QJqMf66ujratGlDRUUFZ8+epXnz5sycOZP8/HwePXrEhQsXaN++/W9qkgYEBBARESFqXL/44gt69OjB7t27qampoXXr1ty9e5ft27eLGsrz58/j4+PD9OnThT98kyZNmDJlCtnZ2cTFxVFYWNhg8vIkqDPl/fv3Fxa1oKpxzMnJ4cyZM3Tp0oXp06fTu3dvSkpKCAsLw93dHVdXV6qqqli6dCkGBgYMHjyYPn364OPjw/Xr19m4cSOnT58mNTWV6dOn07dvX2GE4ODgIK4PQ0NDdHR08PX1xc7ODmdnZw4fPsyhQ4d49OgR8+bNw8PDgwcPHvDPf/6zUcfn7OyMnZ0dO3bs4Mcff2Ty5MmMGzdOKCGcP38eJycn7OzsaNOmDRoaGlRUVNC0aVN69+5Neno6nTp1EhnkFStWUFtby7Rp0/D29sbJyYlhw4bh5+eHnZ0dubm5aGtr06RJE9zd3bGysiIiIoIVK1bQu3dvxowZA6jKDk6dOoWFhYXQeo2OjiYxMVHU/T8p6lUPAwMD8V3l5+dTX19PUlISQUFBoqnz008/ZefOnYwfP57OnTuzbNkycnNzMTc3Z9++ffTs2bOBjrB6shQZGUlJSQl+fn64urqSn5/PgQMHeP/99yksLMTb2xsXFxdh4KFeybK3txf1+7169cLT01NMeiUkJJ5vGh28Ghoasnjx4gavnTp1ioULF+Lo6Mgbb7zRQIbHxsaGCxcukJ6eTteuXZk8eTIpKSmYmpqSl5eHsbExGhoaNGvWjGnTplFQUEBaWhrjx48XsjMlJSXU19djamqKtrY2RkZG3Lhxg7t372Jra4uTkxNlZWV06dKFwsJCSktLMTIyws7OrkFm6EnQ19cXmaji4mJiYmJo06YN9vb2fPnll+zevZv9+/djZ2eHj48P4eHh7N27l/DwcD766CNu3LjB4MGDCQgIEMGNh4cHK1asYNq0aVhYWBAaGsr58+fp2LEjSqWSzMxMDhw4QEVFBR4eHvTr14+ysjL2799PWloanTp1om/fvowePZrRo0cDCO3Cp7FP9fDwwN/fn6ysLO7cucPSpUvR0NDgxx9/JCwsjCFDhgAqofbZs2eTmprKokWLGDt2LA8ePGDLli0UFRWxbt06Ud9aXl6Orq4uMplMOKgVFRWJus+cnBzCwsLIzMzExMSEkpIS2rZti62tLfb29tjb24ssTefOnYX2Zffu3ZkyZUqjmijUzTPXr1+nsrKSDh06YGdnh5ubGxs3biQ+Pp4lS5bg4eFBWloaGhoa4pjXrl0rrEYnTpxIeno6e/bsoUePHnTq1Iljx46xf/9+zM3NMTExEYGDtrY2gYGBDeo6raysCAkJEUv7p0+fJioqivj4ePr378/GjRtJTk4mMjJS1HE+KervXT0hWLhwIdHR0fTt2xcNDQ3effddysvLycrKYsCAAYSEhABw+PBhLl26hIWFhbhO8/PzxXWiHk9iYiKJiYl4e3szffp0kakElaTS0qVLAdX1UlFRQV1dHSNHjuT27dskJyfTu3dvPDw8yMrKYs2aNZw5c6bRMkuJiYk4OTkxatQoRo0aRU5Ojnjvu+++Y/fu3UydOlUobuzZs4eTJ08yY8YMevbsycqVK0UphoGBAYMGDcLFxYXa2lq++uorIiIiAEQ2/tSpU6SlpTFhwgT8/f3x9/cXGT91YBobG8t7771HREQEPXv2ZMKECQB89dVXbNiw4d+cu34PXV1dzp49y6FDhzAwMOD1118XdeN37tyhuLgYJycnBgwYIOyNAXr37k1NTY04/959911CQ0P58ssvhfueTCZj586dABQUFBAZGYmOjg49e/Zk+PDhFBQU8MUXX3D69GlxHYNqaf769esMHDhQvJadnd1AL/hJqa6uFkoNzZo1Y9CgQXh5eXH69Gk0NTXF/aGmpkZkwX18fBg3bpxIbkRERBAbG8vly5d55ZVXAEQJ0rVr17h9+zZOTk7CEOfIkSMsWLCAhw8f0qdPH4yNjcnNzRUT7QsXLuDi4oK1tTXLly9vMN5fyvRJSEg8vzQ6eL19+7b4uzoLd+nSJaZOnSpkatQPa4B27drx6quviq7XyspKHBwc0NfX59ixY0RERODr68ukSZPQ0tLCzMxMuASpuXDhAps3b2bkyJEMHz6cqqoqwsPDsbS05N1338XHx4fjx4+zbt06xo0bx/jx4+nQoUMDP+0nRZ3pzcrK4syZM5w7d47a2lqcnJzQ1tZm/vz5ODs7c+nSJTIzM0lPT2fWrFncvXsXUD1UjY2NGTdunHDh8vT0xM/PTwQIffr0EVm+3NxcvLy8+Nvf/kZSUpLIVFhZWeHl5YWTkxPOzs4NNA1TU1P57LPPaN++vQhmG4P6oXD8+HF2797NuHHjCAkJwcPDgzVr1nD8+HHkcjnt2rVj7ty5JCcni3plMzMzXnvtNbS0tBo88JKTk4WpRG5uLjdv3sTGxgZnZ2fu379Pbm4u3bt3JzExkQcPHuDq6kpAQECDyYVap3HLli3k5uYydOjQBhOhJ+X27dvY2tpy6dIl4uLimD59OpaWlnh5eTF58mTy8/MZOHAgzZs3p66uDkdHR0D10N6wYQO9evVi3rx5NGnSRNQb/vDDD0RFRWFgYEBwcDC1tbVER0dz5MgR9PT0yM7ORkNDo0EQqs5E19XV8a9//Yvdu3ejoaHRoE45NTWVtWvX0rRp00aVgKhLF+7cuSMCWUNDQ0pKSrC1tWXw4MG0aNGCGzduUFJSIjJWgYGBmJmZCVtSdT2imszMTFEnPn/+fIYNG0Z6ejoHDhygrq4OLy8vdHV18fX1xdHREXd3d6qqqrC2thYSUj4+PpSWllJYWIiFhQUhISFPlWFu2bJlg7FZW1sTHx/Pzp07OXPmDLW1tcTExDQo6wkODhZZ0379+pGZmUlpaWkDlz0HBwcmTJhA69athVueUqkUqguZmZmiAerXy8ht2rQR58v9+/dZs2aNMEZYuHCh0Ah+Es6ePUuPHj1o27YtFy5cEM51qampaGpqEhQUJFZYgAZ1vYaGhpiYmFBXV0dJSYkw1VCXPcDP59+DBw8IDQ3l1q1buLm5YWlpSdeuXRkxYoSQ/evWrRt1dXUUFxfToUMHSkpK2Lp1Kw8ePOC1115j/PjxmJubi5KMJ0WtOhEeHk5+fj4jR46kU6dOIqisr69n69atREREMHbsWNzd3Wnfvn2DZ4iuri42NjYNVjkOHz7MqVOnsLGxoX///piampKZmYmtrS3t2rVjzpw5aGtr06FDB3JycoiOjsbExITMzExycnLo27evcFP7JU8ToEtISPz1yJ50pimXy1/4KalCofiP65Yv+/HBy3+ML8Pxwct/jNJ5+nIfH/xvHKOEhMSzQ+P3PyIhISEhISEhISHxfPDEmVcJCQkJCQkJCQmJZ42UeZWQkJCQkJCQkHhhkIJXCQkJCQkJCQmJFwYpeJWQkJCQkJCQkHhheGZ2InK5/FOgM9AasAQqgPvAAeBfCoUi/z//9POPXC6fCGz6nY/VKxSKxltkPUfI5fJUwOE/vJ2jUCgar1f2HPGyn6e/hVwuHw9sffzPqQqF4ptnOZ7/D/8r12EDZLLlwLuAC0pl+v9jP38DPgHao1Qm/kGjeyrkcrkFEAwMBNoDtkA1cB3V97tJoVDU/+c9SEhIvEw8Sy+8eUAccArIBQyBrsCHwDS5XN5VoVA8/Y332XMVWPYf3usO9ALC/rLR/LkUA1/+xuulf/E4/gxe9vO0AXK5vAXwFarvzugZD+eP4CrP83WoErJ9A5gGuAGaQBKqgOxrlMq6Ru6vBTAfWP+7gatM1mCSglL560mKAngb+AwY1Khx/PGMBNYAD4BwIA2wBoYD3wD95XL5SIVCIXUgS0j8D/Asg1cThUJR+esX5XL5CmAh8D7w5LZKzxkKheIqqgfnvyGXy6Me/3X9b73/AlKkUCg+fNaD+JN4qc/TXyKXy2WogqZ8YB+qIOiF5gW4DrcA41FNjHYDZUAfYBUQgEw2spG2T4sBXSD0v35KFeT+90mKUlmBTLYK+BSZzA+l8kIjxvFHkwwMAY7+MsMql8sXArHACFSB7A/PZngSEhJ/Jc+s5vW3AoLH7Hm8fTrT9+ccuVzujipzlwkcfcbDkfgd/sfO0zmoMpFvoAqiXlqei+tQJhuGKnC9B7ihVE5BqZwLeKAqSxkBhDRif6bAa8Dp/5p1VWV71ZOUtb+z1+1AHc94gqZQKM4oFIrDvy4NUCgU2fx8DIF/+cAkJCSeCc8y8/qfGPx4G/9MR/HnMf3xdqNCoWjckuDzi65cLn8dsEcV9MQDP71Ex/dbvFTnqVwub4uqvnGVQqH4SS6X93rWY/qTeR6uw+GPt5+jVP7su6pU1iCTLQaGAbOBzU+4v7GAAaoM7n9DPUkJfLz9zyiVWchk54BXkcnkKJWPnnAsfyU1j7eSt6uExP8Izzx4lcvl81EtW5miaozxRxUQfPIsx/VnIJfL9YHXgXpUdVovC82Abb967Z5cLn9DoVCcfRYD+qN5mc9TuVyuher7S0NVCvFS8xxdh+pmxru/8Z76NU9kMjOUyqIn2F+fx9vI//gJmUxMUlAqf0Ime5JJynlUgW4AcOQJPv+X8fjcnfD4n8ef5VgkJCT+Op4Hqaz5wFLgLVQBwXGgr0KhyHuWg/qTGAWYAWEvUZPPJqA3qgexIapO4HWAIxAml8s7Pruh/aG8zOfpEqATMFGhUFQ868H8BTwv16E62+r0G++1/MXf2zzh/vyBElT1of+OTPa0k5SLj7cBjfiZv4pPAHfgmEKhOPGsByMhIfHX8Mwzr2opJblcbg34oboZXZHL5YMUCkXcMx3cH8+0x9t1z3QUfyAKheLXndw3gBlyubwU+Buqrvzgv3pcfzQv63kql8u9UQUynysUiqjf+/xLwvNyHR5BtdT/NjLZLpTKAkAdZP7yumryu3uSyXRQdd/f/i8NXupJij9KZWMmKdmPt/aN+Jk/HblcPgfVPSYRVe2whITE/wjPQ+YVAIVCkaNQKPYDfQELfpZweSmQy+XtUAU9GcCxZzycvwJ1E8XzmK15al6m8/QX5QLJqLrUX3qes+twFyqZLmfgFjLZemSyL1GpIwwAbj/+3JPU5Fo83hb+5rsymZikoFQ2dpJS8Hhr2cif+9OQy+WzUCky3AJ6KhSKgt/5EQkJiZeI5yZ4VaNQKO6juiG5yeXy5+Zm+QfwPDSI/JXkPt4aPtNR/Em8JOepESrzhbZApVwuV6r/oCqRANjw+LUvn9Ug/2Cen+tQqaxHJf80H1V2czwwCVVg7Y9KDQB+vpb+G+pMqt6/vfNzucDTTlL0f/V/PFPkcvlbwL9QrfL0fKw4ICEh8T/EMy8b+A/YPN6+FEGeXC7XQ/Vgqgc2PuPh/FX4Pt7+VjPKy8KLfp5W8Z/PR09US8yRqETzX/iSgufyOlQqa4HPH//5GZlMH5VkVgVw8wn2U4RMVs3PGdhfop6kAFQik/3WHjYgk21A1cj11q/eU+/zSYLoPxW5XP4eqpKdq0CQQqF4+N9/QkJC4mXkmQSvcrm8DSph++xfva4BfARYARcUCsVvL4G9eIxEVbd25CVq1EIul7sBD369ZCeXyx1QZUZApRP5QvKyn6ePm7Om/NZ7crn8Q1TB65YX2R72V7xI1+F4VFnULSiVNb/34cdcBzohk5n8StLq/ztJUTeMXX3CcfwpyOXyxcBy4DKqZkmpVEBC4n+UZ5V5fQUIlcvlPwF3UC2PWQM9UHXZZgNTn9HY/gzUDSIvi6OWmpHAArlcHo5KaL0EVf3eQFQP3mOorCVfVP7XztOXnefvOvz3QBNksi6osoulqIK1JyUC8AK8gR/Fq6rmrN+cpCCTfcjjScpv2MOq6fp4G96IsfyhyOXyEFS/izrgHDBHLv8334RUhUKx+S8emoSExDPgWQWvP6J6gHQDOqKSrSlDVZO1DVj9ssyqH4u/+/N8NIj80YQDrqgefr6o6luLUGVxtgHbXnCv8f+Z8/Rl5zm+Dk8hk1Wgqt8sAdxQNWtVAcNRKhtTdvMDqu77fvwyeP3/IJNpoJLCS0KpvPGH7PPpUMuJaaKSq/stzvLkhg4SEhIvMLLG2WZLSEhISPxhyGTvAGNQrVjoA1nACeATlMrUp9hfHCrN5RYolb9fi63KvC4Fpv5m5lUm6/t4PPNQKr9s9HgkJCQk/gSk4FVCQkLiZUEmGwvsRJW13f8H7O8HVGUyziiVxf/v/UlISEj8AUjBq4SEhMTLgkwmQ9V0pVIr+P/c4GUyDyAOmINS+a/f+bSEhITEX8Zzp/MqISEhIfGUqILVacB+fpZye1qao9KFXft7H5SQkJD4K5EyrxISEhISEhISEi8MUuZVQkJCQkJCQkLihUEKXiUkJCQkJCQkJF4YpOBVQkJCQkJCQkLihUEKXiUkJCQkJCQkJF4YpOBVQkJCQkJCQkLihUEKXiUkJCQkJCQkJF4Y/g/V7xhNw7Vv8wAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 864x1652.4 with 200 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "score = model.evaluate(noisy_test, [clean_test, class_test], verbose=0)\n",
-    "\n",
-    "pwk.subtitle(\"Accuracy :\")\n",
-    "print(f'Classification accuracy : {score[3]:4.4f}')\n",
-    "\n",
-    "pwk.subtitle(\"Few examples :\")\n",
-    "classid_test  = np.argmax(classcat_test, axis=-1)\n",
-    "pwk.plot_images(noisy_test, class_test, range(0,200), columns=12, x_size=1, y_size=1, y_pred=classid_test, save_as='04-predictions')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 19,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-14T21:40:52.950796Z",
-     "iopub.status.busy": "2021-03-14T21:40:52.950327Z",
-     "iopub.status.idle": "2021-03-14T21:40:52.953138Z",
-     "shell.execute_reply": "2021-03-14T21:40:52.952642Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "End time is : Sunday 14 March 2021, 22:40:52\n",
-      "Duration is : 00:02:44 200ms\n",
-      "This notebook ends here\n"
-     ]
-    }
-   ],
-   "source": [
-    "pwk.end()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "---\n",
-    "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.9"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/BHPD/01-DNN-Regression.ipynb b/BHPD/01-DNN-Regression.ipynb
index cf85e4762360ffc0232f7c385e9f789be9252b54..757cf9d558f7a6362d4f54abeec4cb439f37edc4 100644
--- a/BHPD/01-DNN-Regression.ipynb
+++ b/BHPD/01-DNN-Regression.ipynb
@@ -2,7 +2,9 @@
  "cells": [
   {
    "cell_type": "markdown",
-   "metadata": {},
+   "metadata": {
+    "tags": []
+   },
    "source": [
     "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
     "\n",
@@ -33,6 +35,7 @@
     " - B: This is calculated as 1000(Bk — 0.63)^2, where Bk is the proportion of people of African American descent by town\n",
     " - LSTAT: This is the percentage lower status of the population\n",
     " - MEDV: This is the median value of owner-occupied homes in 1000 dollars\n",
+    " \n",
     "## What we're going to do :\n",
     "\n",
     " - Retrieve data\n",
@@ -44,103 +47,28 @@
   },
   {
    "cell_type": "markdown",
-   "metadata": {},
+   "metadata": {
+    "tags": []
+   },
    "source": [
-    "## Step 1 - Import and init"
+    "## Step 1 - Import and init\n",
+    "\n",
+    "You can also adjust the verbosity by changing the value of TF_CPP_MIN_LOG_LEVEL :\n",
+    "- 0 = all messages are logged (default)\n",
+    "- 1 = INFO messages are not printed.\n",
+    "- 2 = INFO and WARNING messages are not printed.\n",
+    "- 3 = INFO , WARNING and ERROR messages are not printed."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 1,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<style>\n",
-       "\n",
-       "div.warn {    \n",
-       "    background-color: #fcf2f2;\n",
-       "    border-color: #dFb5b4;\n",
-       "    border-left: 5px solid #dfb5b4;\n",
-       "    padding: 0.5em;\n",
-       "    font-weight: bold;\n",
-       "    font-size: 1.1em;;\n",
-       "    }\n",
-       "\n",
-       "\n",
-       "\n",
-       "div.nota {    \n",
-       "    background-color: #DAFFDE;\n",
-       "    border-left: 5px solid #92CC99;\n",
-       "    padding: 0.5em;\n",
-       "    }\n",
-       "\n",
-       "div.todo:before { content:url();\n",
-       "    float:left;\n",
-       "    margin-right:20px;\n",
-       "    margin-top:-20px;\n",
-       "    margin-bottom:20px;\n",
-       "}\n",
-       "div.todo{\n",
-       "    font-weight: bold;\n",
-       "    font-size: 1.1em;\n",
-       "    margin-top:40px;\n",
-       "}\n",
-       "div.todo ul{\n",
-       "    margin: 0.2em;\n",
-       "}\n",
-       "div.todo li{\n",
-       "    margin-left:60px;\n",
-       "    margin-top:0;\n",
-       "    margin-bottom:0;\n",
-       "}\n",
-       "\n",
-       "div .comment{\n",
-       "    font-size:0.8em;\n",
-       "    color:#696969;\n",
-       "}\n",
-       "\n",
-       "\n",
-       "\n",
-       "</style>\n",
-       "\n"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**FIDLE 2020 - Practical Work Module**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Version              : 2.0.1\n",
-      "Notebook id          : BHPD1\n",
-      "Run time             : Thursday 14 January 2021, 10:57:04\n",
-      "TensorFlow version   : 2.2.0\n",
-      "Keras version        : 2.3.0-tf\n",
-      "Datasets dir         : /home/pjluc/datasets/fidle\n",
-      "Run dir              : ./run\n",
-      "Update keras cache   : False\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
+    "# import os\n",
+    "# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'\n",
+    "\n",
     "import tensorflow as tf\n",
     "from tensorflow import keras\n",
     "\n",
@@ -155,6 +83,41 @@
     "datasets_dir = pwk.init('BHPD1')"
    ]
   },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Verbosity during training : \n",
+    "- 0 = silent\n",
+    "- 1 = progress bar\n",
+    "- 2 = one line per epoch"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "fit_verbosity = 1"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Override parameters (batch mode) - Just forget this cell"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "pwk.override('fit_verbosity')"
+   ]
+  },
   {
    "cell_type": "markdown",
    "metadata": {},
@@ -167,7 +130,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -184,116 +147,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<style  type=\"text/css\" >\n",
-       "</style><table id=\"T_ba065_\" ><caption>Few lines of the dataset :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>        <th class=\"col_heading level0 col13\" >medv</th>    </tr></thead><tbody>\n",
-       "                <tr>\n",
-       "                        <th id=\"T_ba065_level0_row0\" class=\"row_heading level0 row0\" >0</th>\n",
-       "                        <td id=\"T_ba065_row0_col0\" class=\"data row0 col0\" >0.01</td>\n",
-       "                        <td id=\"T_ba065_row0_col1\" class=\"data row0 col1\" >18.00</td>\n",
-       "                        <td id=\"T_ba065_row0_col2\" class=\"data row0 col2\" >2.31</td>\n",
-       "                        <td id=\"T_ba065_row0_col3\" class=\"data row0 col3\" >0.00</td>\n",
-       "                        <td id=\"T_ba065_row0_col4\" class=\"data row0 col4\" >0.54</td>\n",
-       "                        <td id=\"T_ba065_row0_col5\" class=\"data row0 col5\" >6.58</td>\n",
-       "                        <td id=\"T_ba065_row0_col6\" class=\"data row0 col6\" >65.20</td>\n",
-       "                        <td id=\"T_ba065_row0_col7\" class=\"data row0 col7\" >4.09</td>\n",
-       "                        <td id=\"T_ba065_row0_col8\" class=\"data row0 col8\" >1.00</td>\n",
-       "                        <td id=\"T_ba065_row0_col9\" class=\"data row0 col9\" >296.00</td>\n",
-       "                        <td id=\"T_ba065_row0_col10\" class=\"data row0 col10\" >15.30</td>\n",
-       "                        <td id=\"T_ba065_row0_col11\" class=\"data row0 col11\" >396.90</td>\n",
-       "                        <td id=\"T_ba065_row0_col12\" class=\"data row0 col12\" >4.98</td>\n",
-       "                        <td id=\"T_ba065_row0_col13\" class=\"data row0 col13\" >24.00</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_ba065_level0_row1\" class=\"row_heading level0 row1\" >1</th>\n",
-       "                        <td id=\"T_ba065_row1_col0\" class=\"data row1 col0\" >0.03</td>\n",
-       "                        <td id=\"T_ba065_row1_col1\" class=\"data row1 col1\" >0.00</td>\n",
-       "                        <td id=\"T_ba065_row1_col2\" class=\"data row1 col2\" >7.07</td>\n",
-       "                        <td id=\"T_ba065_row1_col3\" class=\"data row1 col3\" >0.00</td>\n",
-       "                        <td id=\"T_ba065_row1_col4\" class=\"data row1 col4\" >0.47</td>\n",
-       "                        <td id=\"T_ba065_row1_col5\" class=\"data row1 col5\" >6.42</td>\n",
-       "                        <td id=\"T_ba065_row1_col6\" class=\"data row1 col6\" >78.90</td>\n",
-       "                        <td id=\"T_ba065_row1_col7\" class=\"data row1 col7\" >4.97</td>\n",
-       "                        <td id=\"T_ba065_row1_col8\" class=\"data row1 col8\" >2.00</td>\n",
-       "                        <td id=\"T_ba065_row1_col9\" class=\"data row1 col9\" >242.00</td>\n",
-       "                        <td id=\"T_ba065_row1_col10\" class=\"data row1 col10\" >17.80</td>\n",
-       "                        <td id=\"T_ba065_row1_col11\" class=\"data row1 col11\" >396.90</td>\n",
-       "                        <td id=\"T_ba065_row1_col12\" class=\"data row1 col12\" >9.14</td>\n",
-       "                        <td id=\"T_ba065_row1_col13\" class=\"data row1 col13\" >21.60</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_ba065_level0_row2\" class=\"row_heading level0 row2\" >2</th>\n",
-       "                        <td id=\"T_ba065_row2_col0\" class=\"data row2 col0\" >0.03</td>\n",
-       "                        <td id=\"T_ba065_row2_col1\" class=\"data row2 col1\" >0.00</td>\n",
-       "                        <td id=\"T_ba065_row2_col2\" class=\"data row2 col2\" >7.07</td>\n",
-       "                        <td id=\"T_ba065_row2_col3\" class=\"data row2 col3\" >0.00</td>\n",
-       "                        <td id=\"T_ba065_row2_col4\" class=\"data row2 col4\" >0.47</td>\n",
-       "                        <td id=\"T_ba065_row2_col5\" class=\"data row2 col5\" >7.18</td>\n",
-       "                        <td id=\"T_ba065_row2_col6\" class=\"data row2 col6\" >61.10</td>\n",
-       "                        <td id=\"T_ba065_row2_col7\" class=\"data row2 col7\" >4.97</td>\n",
-       "                        <td id=\"T_ba065_row2_col8\" class=\"data row2 col8\" >2.00</td>\n",
-       "                        <td id=\"T_ba065_row2_col9\" class=\"data row2 col9\" >242.00</td>\n",
-       "                        <td id=\"T_ba065_row2_col10\" class=\"data row2 col10\" >17.80</td>\n",
-       "                        <td id=\"T_ba065_row2_col11\" class=\"data row2 col11\" >392.83</td>\n",
-       "                        <td id=\"T_ba065_row2_col12\" class=\"data row2 col12\" >4.03</td>\n",
-       "                        <td id=\"T_ba065_row2_col13\" class=\"data row2 col13\" >34.70</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_ba065_level0_row3\" class=\"row_heading level0 row3\" >3</th>\n",
-       "                        <td id=\"T_ba065_row3_col0\" class=\"data row3 col0\" >0.03</td>\n",
-       "                        <td id=\"T_ba065_row3_col1\" class=\"data row3 col1\" >0.00</td>\n",
-       "                        <td id=\"T_ba065_row3_col2\" class=\"data row3 col2\" >2.18</td>\n",
-       "                        <td id=\"T_ba065_row3_col3\" class=\"data row3 col3\" >0.00</td>\n",
-       "                        <td id=\"T_ba065_row3_col4\" class=\"data row3 col4\" >0.46</td>\n",
-       "                        <td id=\"T_ba065_row3_col5\" class=\"data row3 col5\" >7.00</td>\n",
-       "                        <td id=\"T_ba065_row3_col6\" class=\"data row3 col6\" >45.80</td>\n",
-       "                        <td id=\"T_ba065_row3_col7\" class=\"data row3 col7\" >6.06</td>\n",
-       "                        <td id=\"T_ba065_row3_col8\" class=\"data row3 col8\" >3.00</td>\n",
-       "                        <td id=\"T_ba065_row3_col9\" class=\"data row3 col9\" >222.00</td>\n",
-       "                        <td id=\"T_ba065_row3_col10\" class=\"data row3 col10\" >18.70</td>\n",
-       "                        <td id=\"T_ba065_row3_col11\" class=\"data row3 col11\" >394.63</td>\n",
-       "                        <td id=\"T_ba065_row3_col12\" class=\"data row3 col12\" >2.94</td>\n",
-       "                        <td id=\"T_ba065_row3_col13\" class=\"data row3 col13\" >33.40</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_ba065_level0_row4\" class=\"row_heading level0 row4\" >4</th>\n",
-       "                        <td id=\"T_ba065_row4_col0\" class=\"data row4 col0\" >0.07</td>\n",
-       "                        <td id=\"T_ba065_row4_col1\" class=\"data row4 col1\" >0.00</td>\n",
-       "                        <td id=\"T_ba065_row4_col2\" class=\"data row4 col2\" >2.18</td>\n",
-       "                        <td id=\"T_ba065_row4_col3\" class=\"data row4 col3\" >0.00</td>\n",
-       "                        <td id=\"T_ba065_row4_col4\" class=\"data row4 col4\" >0.46</td>\n",
-       "                        <td id=\"T_ba065_row4_col5\" class=\"data row4 col5\" >7.15</td>\n",
-       "                        <td id=\"T_ba065_row4_col6\" class=\"data row4 col6\" >54.20</td>\n",
-       "                        <td id=\"T_ba065_row4_col7\" class=\"data row4 col7\" >6.06</td>\n",
-       "                        <td id=\"T_ba065_row4_col8\" class=\"data row4 col8\" >3.00</td>\n",
-       "                        <td id=\"T_ba065_row4_col9\" class=\"data row4 col9\" >222.00</td>\n",
-       "                        <td id=\"T_ba065_row4_col10\" class=\"data row4 col10\" >18.70</td>\n",
-       "                        <td id=\"T_ba065_row4_col11\" class=\"data row4 col11\" >396.90</td>\n",
-       "                        <td id=\"T_ba065_row4_col12\" class=\"data row4 col12\" >5.33</td>\n",
-       "                        <td id=\"T_ba065_row4_col13\" class=\"data row4 col13\" >36.20</td>\n",
-       "            </tr>\n",
-       "    </tbody></table>"
-      ],
-      "text/plain": [
-       "<pandas.io.formats.style.Styler at 0x7f64eb329f50>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Missing Data :  0   Shape is :  (506, 14)\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "data = pd.read_csv(f'{datasets_dir}/BHPD/origine/BostonHousing.csv', header=0)\n",
     "\n",
@@ -314,19 +170,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Original data shape was :  (506, 14)\n",
-      "x_train :  (354, 13) y_train :  (354,)\n",
-      "x_test  :  (152, 13) y_test  :  (152,)\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "# ---- Suffle and Split => train, test\n",
     "#\n",
@@ -348,7 +194,9 @@
   },
   {
    "cell_type": "markdown",
-   "metadata": {},
+   "metadata": {
+    "tags": []
+   },
    "source": [
     "### 3.2 - Data normalization\n",
     "**Note :** \n",
@@ -360,388 +208,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<style  type=\"text/css\" >\n",
-       "</style><table id=\"T_e5177_\" ><caption>Before normalization :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>    </tr></thead><tbody>\n",
-       "                <tr>\n",
-       "                        <th id=\"T_e5177_level0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
-       "                        <td id=\"T_e5177_row0_col0\" class=\"data row0 col0\" >354.00</td>\n",
-       "                        <td id=\"T_e5177_row0_col1\" class=\"data row0 col1\" >354.00</td>\n",
-       "                        <td id=\"T_e5177_row0_col2\" class=\"data row0 col2\" >354.00</td>\n",
-       "                        <td id=\"T_e5177_row0_col3\" class=\"data row0 col3\" >354.00</td>\n",
-       "                        <td id=\"T_e5177_row0_col4\" class=\"data row0 col4\" >354.00</td>\n",
-       "                        <td id=\"T_e5177_row0_col5\" class=\"data row0 col5\" >354.00</td>\n",
-       "                        <td id=\"T_e5177_row0_col6\" class=\"data row0 col6\" >354.00</td>\n",
-       "                        <td id=\"T_e5177_row0_col7\" class=\"data row0 col7\" >354.00</td>\n",
-       "                        <td id=\"T_e5177_row0_col8\" class=\"data row0 col8\" >354.00</td>\n",
-       "                        <td id=\"T_e5177_row0_col9\" class=\"data row0 col9\" >354.00</td>\n",
-       "                        <td id=\"T_e5177_row0_col10\" class=\"data row0 col10\" >354.00</td>\n",
-       "                        <td id=\"T_e5177_row0_col11\" class=\"data row0 col11\" >354.00</td>\n",
-       "                        <td id=\"T_e5177_row0_col12\" class=\"data row0 col12\" >354.00</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_e5177_level0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
-       "                        <td id=\"T_e5177_row1_col0\" class=\"data row1 col0\" >3.81</td>\n",
-       "                        <td id=\"T_e5177_row1_col1\" class=\"data row1 col1\" >12.47</td>\n",
-       "                        <td id=\"T_e5177_row1_col2\" class=\"data row1 col2\" >11.00</td>\n",
-       "                        <td id=\"T_e5177_row1_col3\" class=\"data row1 col3\" >0.08</td>\n",
-       "                        <td id=\"T_e5177_row1_col4\" class=\"data row1 col4\" >0.55</td>\n",
-       "                        <td id=\"T_e5177_row1_col5\" class=\"data row1 col5\" >6.32</td>\n",
-       "                        <td id=\"T_e5177_row1_col6\" class=\"data row1 col6\" >67.06</td>\n",
-       "                        <td id=\"T_e5177_row1_col7\" class=\"data row1 col7\" >3.86</td>\n",
-       "                        <td id=\"T_e5177_row1_col8\" class=\"data row1 col8\" >9.58</td>\n",
-       "                        <td id=\"T_e5177_row1_col9\" class=\"data row1 col9\" >406.70</td>\n",
-       "                        <td id=\"T_e5177_row1_col10\" class=\"data row1 col10\" >18.35</td>\n",
-       "                        <td id=\"T_e5177_row1_col11\" class=\"data row1 col11\" >353.78</td>\n",
-       "                        <td id=\"T_e5177_row1_col12\" class=\"data row1 col12\" >12.34</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_e5177_level0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
-       "                        <td id=\"T_e5177_row2_col0\" class=\"data row2 col0\" >9.49</td>\n",
-       "                        <td id=\"T_e5177_row2_col1\" class=\"data row2 col1\" >24.98</td>\n",
-       "                        <td id=\"T_e5177_row2_col2\" class=\"data row2 col2\" >6.86</td>\n",
-       "                        <td id=\"T_e5177_row2_col3\" class=\"data row2 col3\" >0.27</td>\n",
-       "                        <td id=\"T_e5177_row2_col4\" class=\"data row2 col4\" >0.12</td>\n",
-       "                        <td id=\"T_e5177_row2_col5\" class=\"data row2 col5\" >0.71</td>\n",
-       "                        <td id=\"T_e5177_row2_col6\" class=\"data row2 col6\" >29.01</td>\n",
-       "                        <td id=\"T_e5177_row2_col7\" class=\"data row2 col7\" >2.14</td>\n",
-       "                        <td id=\"T_e5177_row2_col8\" class=\"data row2 col8\" >8.74</td>\n",
-       "                        <td id=\"T_e5177_row2_col9\" class=\"data row2 col9\" >169.05</td>\n",
-       "                        <td id=\"T_e5177_row2_col10\" class=\"data row2 col10\" >2.18</td>\n",
-       "                        <td id=\"T_e5177_row2_col11\" class=\"data row2 col11\" >97.53</td>\n",
-       "                        <td id=\"T_e5177_row2_col12\" class=\"data row2 col12\" >7.17</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_e5177_level0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
-       "                        <td id=\"T_e5177_row3_col0\" class=\"data row3 col0\" >0.01</td>\n",
-       "                        <td id=\"T_e5177_row3_col1\" class=\"data row3 col1\" >0.00</td>\n",
-       "                        <td id=\"T_e5177_row3_col2\" class=\"data row3 col2\" >0.46</td>\n",
-       "                        <td id=\"T_e5177_row3_col3\" class=\"data row3 col3\" >0.00</td>\n",
-       "                        <td id=\"T_e5177_row3_col4\" class=\"data row3 col4\" >0.39</td>\n",
-       "                        <td id=\"T_e5177_row3_col5\" class=\"data row3 col5\" >3.56</td>\n",
-       "                        <td id=\"T_e5177_row3_col6\" class=\"data row3 col6\" >2.90</td>\n",
-       "                        <td id=\"T_e5177_row3_col7\" class=\"data row3 col7\" >1.13</td>\n",
-       "                        <td id=\"T_e5177_row3_col8\" class=\"data row3 col8\" >1.00</td>\n",
-       "                        <td id=\"T_e5177_row3_col9\" class=\"data row3 col9\" >187.00</td>\n",
-       "                        <td id=\"T_e5177_row3_col10\" class=\"data row3 col10\" >12.60</td>\n",
-       "                        <td id=\"T_e5177_row3_col11\" class=\"data row3 col11\" >0.32</td>\n",
-       "                        <td id=\"T_e5177_row3_col12\" class=\"data row3 col12\" >1.92</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_e5177_level0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
-       "                        <td id=\"T_e5177_row4_col0\" class=\"data row4 col0\" >0.08</td>\n",
-       "                        <td id=\"T_e5177_row4_col1\" class=\"data row4 col1\" >0.00</td>\n",
-       "                        <td id=\"T_e5177_row4_col2\" class=\"data row4 col2\" >5.19</td>\n",
-       "                        <td id=\"T_e5177_row4_col3\" class=\"data row4 col3\" >0.00</td>\n",
-       "                        <td id=\"T_e5177_row4_col4\" class=\"data row4 col4\" >0.45</td>\n",
-       "                        <td id=\"T_e5177_row4_col5\" class=\"data row4 col5\" >5.92</td>\n",
-       "                        <td id=\"T_e5177_row4_col6\" class=\"data row4 col6\" >39.25</td>\n",
-       "                        <td id=\"T_e5177_row4_col7\" class=\"data row4 col7\" >2.11</td>\n",
-       "                        <td id=\"T_e5177_row4_col8\" class=\"data row4 col8\" >4.00</td>\n",
-       "                        <td id=\"T_e5177_row4_col9\" class=\"data row4 col9\" >281.75</td>\n",
-       "                        <td id=\"T_e5177_row4_col10\" class=\"data row4 col10\" >16.90</td>\n",
-       "                        <td id=\"T_e5177_row4_col11\" class=\"data row4 col11\" >376.25</td>\n",
-       "                        <td id=\"T_e5177_row4_col12\" class=\"data row4 col12\" >6.72</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_e5177_level0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
-       "                        <td id=\"T_e5177_row5_col0\" class=\"data row5 col0\" >0.27</td>\n",
-       "                        <td id=\"T_e5177_row5_col1\" class=\"data row5 col1\" >0.00</td>\n",
-       "                        <td id=\"T_e5177_row5_col2\" class=\"data row5 col2\" >8.56</td>\n",
-       "                        <td id=\"T_e5177_row5_col3\" class=\"data row5 col3\" >0.00</td>\n",
-       "                        <td id=\"T_e5177_row5_col4\" class=\"data row5 col4\" >0.53</td>\n",
-       "                        <td id=\"T_e5177_row5_col5\" class=\"data row5 col5\" >6.23</td>\n",
-       "                        <td id=\"T_e5177_row5_col6\" class=\"data row5 col6\" >76.80</td>\n",
-       "                        <td id=\"T_e5177_row5_col7\" class=\"data row5 col7\" >3.27</td>\n",
-       "                        <td id=\"T_e5177_row5_col8\" class=\"data row5 col8\" >5.00</td>\n",
-       "                        <td id=\"T_e5177_row5_col9\" class=\"data row5 col9\" >329.50</td>\n",
-       "                        <td id=\"T_e5177_row5_col10\" class=\"data row5 col10\" >18.80</td>\n",
-       "                        <td id=\"T_e5177_row5_col11\" class=\"data row5 col11\" >391.88</td>\n",
-       "                        <td id=\"T_e5177_row5_col12\" class=\"data row5 col12\" >10.61</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_e5177_level0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
-       "                        <td id=\"T_e5177_row6_col0\" class=\"data row6 col0\" >3.65</td>\n",
-       "                        <td id=\"T_e5177_row6_col1\" class=\"data row6 col1\" >12.50</td>\n",
-       "                        <td id=\"T_e5177_row6_col2\" class=\"data row6 col2\" >18.10</td>\n",
-       "                        <td id=\"T_e5177_row6_col3\" class=\"data row6 col3\" >0.00</td>\n",
-       "                        <td id=\"T_e5177_row6_col4\" class=\"data row6 col4\" >0.62</td>\n",
-       "                        <td id=\"T_e5177_row6_col5\" class=\"data row6 col5\" >6.68</td>\n",
-       "                        <td id=\"T_e5177_row6_col6\" class=\"data row6 col6\" >93.75</td>\n",
-       "                        <td id=\"T_e5177_row6_col7\" class=\"data row6 col7\" >5.29</td>\n",
-       "                        <td id=\"T_e5177_row6_col8\" class=\"data row6 col8\" >24.00</td>\n",
-       "                        <td id=\"T_e5177_row6_col9\" class=\"data row6 col9\" >666.00</td>\n",
-       "                        <td id=\"T_e5177_row6_col10\" class=\"data row6 col10\" >20.20</td>\n",
-       "                        <td id=\"T_e5177_row6_col11\" class=\"data row6 col11\" >396.38</td>\n",
-       "                        <td id=\"T_e5177_row6_col12\" class=\"data row6 col12\" >16.44</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_e5177_level0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
-       "                        <td id=\"T_e5177_row7_col0\" class=\"data row7 col0\" >88.98</td>\n",
-       "                        <td id=\"T_e5177_row7_col1\" class=\"data row7 col1\" >95.00</td>\n",
-       "                        <td id=\"T_e5177_row7_col2\" class=\"data row7 col2\" >27.74</td>\n",
-       "                        <td id=\"T_e5177_row7_col3\" class=\"data row7 col3\" >1.00</td>\n",
-       "                        <td id=\"T_e5177_row7_col4\" class=\"data row7 col4\" >0.87</td>\n",
-       "                        <td id=\"T_e5177_row7_col5\" class=\"data row7 col5\" >8.78</td>\n",
-       "                        <td id=\"T_e5177_row7_col6\" class=\"data row7 col6\" >100.00</td>\n",
-       "                        <td id=\"T_e5177_row7_col7\" class=\"data row7 col7\" >12.13</td>\n",
-       "                        <td id=\"T_e5177_row7_col8\" class=\"data row7 col8\" >24.00</td>\n",
-       "                        <td id=\"T_e5177_row7_col9\" class=\"data row7 col9\" >711.00</td>\n",
-       "                        <td id=\"T_e5177_row7_col10\" class=\"data row7 col10\" >22.00</td>\n",
-       "                        <td id=\"T_e5177_row7_col11\" class=\"data row7 col11\" >396.90</td>\n",
-       "                        <td id=\"T_e5177_row7_col12\" class=\"data row7 col12\" >37.97</td>\n",
-       "            </tr>\n",
-       "    </tbody></table>"
-      ],
-      "text/plain": [
-       "<pandas.io.formats.style.Styler at 0x7f64356310d0>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<style  type=\"text/css\" >\n",
-       "</style><table id=\"T_0f378_\" ><caption>After normalization :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>    </tr></thead><tbody>\n",
-       "                <tr>\n",
-       "                        <th id=\"T_0f378_level0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
-       "                        <td id=\"T_0f378_row0_col0\" class=\"data row0 col0\" >354.00</td>\n",
-       "                        <td id=\"T_0f378_row0_col1\" class=\"data row0 col1\" >354.00</td>\n",
-       "                        <td id=\"T_0f378_row0_col2\" class=\"data row0 col2\" >354.00</td>\n",
-       "                        <td id=\"T_0f378_row0_col3\" class=\"data row0 col3\" >354.00</td>\n",
-       "                        <td id=\"T_0f378_row0_col4\" class=\"data row0 col4\" >354.00</td>\n",
-       "                        <td id=\"T_0f378_row0_col5\" class=\"data row0 col5\" >354.00</td>\n",
-       "                        <td id=\"T_0f378_row0_col6\" class=\"data row0 col6\" >354.00</td>\n",
-       "                        <td id=\"T_0f378_row0_col7\" class=\"data row0 col7\" >354.00</td>\n",
-       "                        <td id=\"T_0f378_row0_col8\" class=\"data row0 col8\" >354.00</td>\n",
-       "                        <td id=\"T_0f378_row0_col9\" class=\"data row0 col9\" >354.00</td>\n",
-       "                        <td id=\"T_0f378_row0_col10\" class=\"data row0 col10\" >354.00</td>\n",
-       "                        <td id=\"T_0f378_row0_col11\" class=\"data row0 col11\" >354.00</td>\n",
-       "                        <td id=\"T_0f378_row0_col12\" class=\"data row0 col12\" >354.00</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_0f378_level0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
-       "                        <td id=\"T_0f378_row1_col0\" class=\"data row1 col0\" >-0.00</td>\n",
-       "                        <td id=\"T_0f378_row1_col1\" class=\"data row1 col1\" >0.00</td>\n",
-       "                        <td id=\"T_0f378_row1_col2\" class=\"data row1 col2\" >-0.00</td>\n",
-       "                        <td id=\"T_0f378_row1_col3\" class=\"data row1 col3\" >0.00</td>\n",
-       "                        <td id=\"T_0f378_row1_col4\" class=\"data row1 col4\" >-0.00</td>\n",
-       "                        <td id=\"T_0f378_row1_col5\" class=\"data row1 col5\" >-0.00</td>\n",
-       "                        <td id=\"T_0f378_row1_col6\" class=\"data row1 col6\" >-0.00</td>\n",
-       "                        <td id=\"T_0f378_row1_col7\" class=\"data row1 col7\" >-0.00</td>\n",
-       "                        <td id=\"T_0f378_row1_col8\" class=\"data row1 col8\" >-0.00</td>\n",
-       "                        <td id=\"T_0f378_row1_col9\" class=\"data row1 col9\" >0.00</td>\n",
-       "                        <td id=\"T_0f378_row1_col10\" class=\"data row1 col10\" >0.00</td>\n",
-       "                        <td id=\"T_0f378_row1_col11\" class=\"data row1 col11\" >-0.00</td>\n",
-       "                        <td id=\"T_0f378_row1_col12\" class=\"data row1 col12\" >-0.00</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_0f378_level0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
-       "                        <td id=\"T_0f378_row2_col0\" class=\"data row2 col0\" >1.00</td>\n",
-       "                        <td id=\"T_0f378_row2_col1\" class=\"data row2 col1\" >1.00</td>\n",
-       "                        <td id=\"T_0f378_row2_col2\" class=\"data row2 col2\" >1.00</td>\n",
-       "                        <td id=\"T_0f378_row2_col3\" class=\"data row2 col3\" >1.00</td>\n",
-       "                        <td id=\"T_0f378_row2_col4\" class=\"data row2 col4\" >1.00</td>\n",
-       "                        <td id=\"T_0f378_row2_col5\" class=\"data row2 col5\" >1.00</td>\n",
-       "                        <td id=\"T_0f378_row2_col6\" class=\"data row2 col6\" >1.00</td>\n",
-       "                        <td id=\"T_0f378_row2_col7\" class=\"data row2 col7\" >1.00</td>\n",
-       "                        <td id=\"T_0f378_row2_col8\" class=\"data row2 col8\" >1.00</td>\n",
-       "                        <td id=\"T_0f378_row2_col9\" class=\"data row2 col9\" >1.00</td>\n",
-       "                        <td id=\"T_0f378_row2_col10\" class=\"data row2 col10\" >1.00</td>\n",
-       "                        <td id=\"T_0f378_row2_col11\" class=\"data row2 col11\" >1.00</td>\n",
-       "                        <td id=\"T_0f378_row2_col12\" class=\"data row2 col12\" >1.00</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_0f378_level0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
-       "                        <td id=\"T_0f378_row3_col0\" class=\"data row3 col0\" >-0.40</td>\n",
-       "                        <td id=\"T_0f378_row3_col1\" class=\"data row3 col1\" >-0.50</td>\n",
-       "                        <td id=\"T_0f378_row3_col2\" class=\"data row3 col2\" >-1.54</td>\n",
-       "                        <td id=\"T_0f378_row3_col3\" class=\"data row3 col3\" >-0.30</td>\n",
-       "                        <td id=\"T_0f378_row3_col4\" class=\"data row3 col4\" >-1.42</td>\n",
-       "                        <td id=\"T_0f378_row3_col5\" class=\"data row3 col5\" >-3.87</td>\n",
-       "                        <td id=\"T_0f378_row3_col6\" class=\"data row3 col6\" >-2.21</td>\n",
-       "                        <td id=\"T_0f378_row3_col7\" class=\"data row3 col7\" >-1.28</td>\n",
-       "                        <td id=\"T_0f378_row3_col8\" class=\"data row3 col8\" >-0.98</td>\n",
-       "                        <td id=\"T_0f378_row3_col9\" class=\"data row3 col9\" >-1.30</td>\n",
-       "                        <td id=\"T_0f378_row3_col10\" class=\"data row3 col10\" >-2.64</td>\n",
-       "                        <td id=\"T_0f378_row3_col11\" class=\"data row3 col11\" >-3.62</td>\n",
-       "                        <td id=\"T_0f378_row3_col12\" class=\"data row3 col12\" >-1.45</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_0f378_level0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
-       "                        <td id=\"T_0f378_row4_col0\" class=\"data row4 col0\" >-0.39</td>\n",
-       "                        <td id=\"T_0f378_row4_col1\" class=\"data row4 col1\" >-0.50</td>\n",
-       "                        <td id=\"T_0f378_row4_col2\" class=\"data row4 col2\" >-0.85</td>\n",
-       "                        <td id=\"T_0f378_row4_col3\" class=\"data row4 col3\" >-0.30</td>\n",
-       "                        <td id=\"T_0f378_row4_col4\" class=\"data row4 col4\" >-0.89</td>\n",
-       "                        <td id=\"T_0f378_row4_col5\" class=\"data row4 col5\" >-0.56</td>\n",
-       "                        <td id=\"T_0f378_row4_col6\" class=\"data row4 col6\" >-0.96</td>\n",
-       "                        <td id=\"T_0f378_row4_col7\" class=\"data row4 col7\" >-0.82</td>\n",
-       "                        <td id=\"T_0f378_row4_col8\" class=\"data row4 col8\" >-0.64</td>\n",
-       "                        <td id=\"T_0f378_row4_col9\" class=\"data row4 col9\" >-0.74</td>\n",
-       "                        <td id=\"T_0f378_row4_col10\" class=\"data row4 col10\" >-0.67</td>\n",
-       "                        <td id=\"T_0f378_row4_col11\" class=\"data row4 col11\" >0.23</td>\n",
-       "                        <td id=\"T_0f378_row4_col12\" class=\"data row4 col12\" >-0.78</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_0f378_level0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
-       "                        <td id=\"T_0f378_row5_col0\" class=\"data row5 col0\" >-0.37</td>\n",
-       "                        <td id=\"T_0f378_row5_col1\" class=\"data row5 col1\" >-0.50</td>\n",
-       "                        <td id=\"T_0f378_row5_col2\" class=\"data row5 col2\" >-0.36</td>\n",
-       "                        <td id=\"T_0f378_row5_col3\" class=\"data row5 col3\" >-0.30</td>\n",
-       "                        <td id=\"T_0f378_row5_col4\" class=\"data row5 col4\" >-0.18</td>\n",
-       "                        <td id=\"T_0f378_row5_col5\" class=\"data row5 col5\" >-0.13</td>\n",
-       "                        <td id=\"T_0f378_row5_col6\" class=\"data row5 col6\" >0.34</td>\n",
-       "                        <td id=\"T_0f378_row5_col7\" class=\"data row5 col7\" >-0.28</td>\n",
-       "                        <td id=\"T_0f378_row5_col8\" class=\"data row5 col8\" >-0.52</td>\n",
-       "                        <td id=\"T_0f378_row5_col9\" class=\"data row5 col9\" >-0.46</td>\n",
-       "                        <td id=\"T_0f378_row5_col10\" class=\"data row5 col10\" >0.21</td>\n",
-       "                        <td id=\"T_0f378_row5_col11\" class=\"data row5 col11\" >0.39</td>\n",
-       "                        <td id=\"T_0f378_row5_col12\" class=\"data row5 col12\" >-0.24</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_0f378_level0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
-       "                        <td id=\"T_0f378_row6_col0\" class=\"data row6 col0\" >-0.02</td>\n",
-       "                        <td id=\"T_0f378_row6_col1\" class=\"data row6 col1\" >0.00</td>\n",
-       "                        <td id=\"T_0f378_row6_col2\" class=\"data row6 col2\" >1.04</td>\n",
-       "                        <td id=\"T_0f378_row6_col3\" class=\"data row6 col3\" >-0.30</td>\n",
-       "                        <td id=\"T_0f378_row6_col4\" class=\"data row6 col4\" >0.60</td>\n",
-       "                        <td id=\"T_0f378_row6_col5\" class=\"data row6 col5\" >0.50</td>\n",
-       "                        <td id=\"T_0f378_row6_col6\" class=\"data row6 col6\" >0.92</td>\n",
-       "                        <td id=\"T_0f378_row6_col7\" class=\"data row6 col7\" >0.66</td>\n",
-       "                        <td id=\"T_0f378_row6_col8\" class=\"data row6 col8\" >1.65</td>\n",
-       "                        <td id=\"T_0f378_row6_col9\" class=\"data row6 col9\" >1.53</td>\n",
-       "                        <td id=\"T_0f378_row6_col10\" class=\"data row6 col10\" >0.85</td>\n",
-       "                        <td id=\"T_0f378_row6_col11\" class=\"data row6 col11\" >0.44</td>\n",
-       "                        <td id=\"T_0f378_row6_col12\" class=\"data row6 col12\" >0.57</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_0f378_level0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
-       "                        <td id=\"T_0f378_row7_col0\" class=\"data row7 col0\" >8.97</td>\n",
-       "                        <td id=\"T_0f378_row7_col1\" class=\"data row7 col1\" >3.30</td>\n",
-       "                        <td id=\"T_0f378_row7_col2\" class=\"data row7 col2\" >2.44</td>\n",
-       "                        <td id=\"T_0f378_row7_col3\" class=\"data row7 col3\" >3.34</td>\n",
-       "                        <td id=\"T_0f378_row7_col4\" class=\"data row7 col4\" >2.70</td>\n",
-       "                        <td id=\"T_0f378_row7_col5\" class=\"data row7 col5\" >3.46</td>\n",
-       "                        <td id=\"T_0f378_row7_col6\" class=\"data row7 col6\" >1.14</td>\n",
-       "                        <td id=\"T_0f378_row7_col7\" class=\"data row7 col7\" >3.86</td>\n",
-       "                        <td id=\"T_0f378_row7_col8\" class=\"data row7 col8\" >1.65</td>\n",
-       "                        <td id=\"T_0f378_row7_col9\" class=\"data row7 col9\" >1.80</td>\n",
-       "                        <td id=\"T_0f378_row7_col10\" class=\"data row7 col10\" >1.68</td>\n",
-       "                        <td id=\"T_0f378_row7_col11\" class=\"data row7 col11\" >0.44</td>\n",
-       "                        <td id=\"T_0f378_row7_col12\" class=\"data row7 col12\" >3.57</td>\n",
-       "            </tr>\n",
-       "    </tbody></table>"
-      ],
-      "text/plain": [
-       "<pandas.io.formats.style.Styler at 0x7f64e825c510>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<style  type=\"text/css\" >\n",
-       "</style><table id=\"T_b130d_\" ><caption>Few lines of the dataset :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>    </tr></thead><tbody>\n",
-       "                <tr>\n",
-       "                        <th id=\"T_b130d_level0_row0\" class=\"row_heading level0 row0\" >473</th>\n",
-       "                        <td id=\"T_b130d_row0_col0\" class=\"data row0 col0\" >0.09</td>\n",
-       "                        <td id=\"T_b130d_row0_col1\" class=\"data row0 col1\" >-0.50</td>\n",
-       "                        <td id=\"T_b130d_row0_col2\" class=\"data row0 col2\" >1.04</td>\n",
-       "                        <td id=\"T_b130d_row0_col3\" class=\"data row0 col3\" >-0.30</td>\n",
-       "                        <td id=\"T_b130d_row0_col4\" class=\"data row0 col4\" >0.52</td>\n",
-       "                        <td id=\"T_b130d_row0_col5\" class=\"data row0 col5\" >0.93</td>\n",
-       "                        <td id=\"T_b130d_row0_col6\" class=\"data row0 col6\" >0.02</td>\n",
-       "                        <td id=\"T_b130d_row0_col7\" class=\"data row0 col7\" >-0.62</td>\n",
-       "                        <td id=\"T_b130d_row0_col8\" class=\"data row0 col8\" >1.65</td>\n",
-       "                        <td id=\"T_b130d_row0_col9\" class=\"data row0 col9\" >1.53</td>\n",
-       "                        <td id=\"T_b130d_row0_col10\" class=\"data row0 col10\" >0.85</td>\n",
-       "                        <td id=\"T_b130d_row0_col11\" class=\"data row0 col11\" >0.21</td>\n",
-       "                        <td id=\"T_b130d_row0_col12\" class=\"data row0 col12\" >-0.10</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_b130d_level0_row1\" class=\"row_heading level0 row1\" >232</th>\n",
-       "                        <td id=\"T_b130d_row1_col0\" class=\"data row1 col0\" >-0.34</td>\n",
-       "                        <td id=\"T_b130d_row1_col1\" class=\"data row1 col1\" >-0.50</td>\n",
-       "                        <td id=\"T_b130d_row1_col2\" class=\"data row1 col2\" >-0.70</td>\n",
-       "                        <td id=\"T_b130d_row1_col3\" class=\"data row1 col3\" >-0.30</td>\n",
-       "                        <td id=\"T_b130d_row1_col4\" class=\"data row1 col4\" >-0.39</td>\n",
-       "                        <td id=\"T_b130d_row1_col5\" class=\"data row1 col5\" >2.83</td>\n",
-       "                        <td id=\"T_b130d_row1_col6\" class=\"data row1 col6\" >0.22</td>\n",
-       "                        <td id=\"T_b130d_row1_col7\" class=\"data row1 col7\" >-0.01</td>\n",
-       "                        <td id=\"T_b130d_row1_col8\" class=\"data row1 col8\" >-0.18</td>\n",
-       "                        <td id=\"T_b130d_row1_col9\" class=\"data row1 col9\" >-0.59</td>\n",
-       "                        <td id=\"T_b130d_row1_col10\" class=\"data row1 col10\" >-0.44</td>\n",
-       "                        <td id=\"T_b130d_row1_col11\" class=\"data row1 col11\" >0.33</td>\n",
-       "                        <td id=\"T_b130d_row1_col12\" class=\"data row1 col12\" >-1.38</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_b130d_level0_row2\" class=\"row_heading level0 row2\" >256</th>\n",
-       "                        <td id=\"T_b130d_row2_col0\" class=\"data row2 col0\" >-0.40</td>\n",
-       "                        <td id=\"T_b130d_row2_col1\" class=\"data row2 col1\" >3.10</td>\n",
-       "                        <td id=\"T_b130d_row2_col2\" class=\"data row2 col2\" >-1.06</td>\n",
-       "                        <td id=\"T_b130d_row2_col3\" class=\"data row2 col3\" >-0.30</td>\n",
-       "                        <td id=\"T_b130d_row2_col4\" class=\"data row2 col4\" >-1.35</td>\n",
-       "                        <td id=\"T_b130d_row2_col5\" class=\"data row2 col5\" >1.59</td>\n",
-       "                        <td id=\"T_b130d_row2_col6\" class=\"data row2 col6\" >-1.13</td>\n",
-       "                        <td id=\"T_b130d_row2_col7\" class=\"data row2 col7\" >1.15</td>\n",
-       "                        <td id=\"T_b130d_row2_col8\" class=\"data row2 col8\" >-0.75</td>\n",
-       "                        <td id=\"T_b130d_row2_col9\" class=\"data row2 col9\" >-0.96</td>\n",
-       "                        <td id=\"T_b130d_row2_col10\" class=\"data row2 col10\" >-1.13</td>\n",
-       "                        <td id=\"T_b130d_row2_col11\" class=\"data row2 col11\" >0.33</td>\n",
-       "                        <td id=\"T_b130d_row2_col12\" class=\"data row2 col12\" >-1.29</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_b130d_level0_row3\" class=\"row_heading level0 row3\" >425</th>\n",
-       "                        <td id=\"T_b130d_row3_col0\" class=\"data row3 col0\" >1.27</td>\n",
-       "                        <td id=\"T_b130d_row3_col1\" class=\"data row3 col1\" >-0.50</td>\n",
-       "                        <td id=\"T_b130d_row3_col2\" class=\"data row3 col2\" >1.04</td>\n",
-       "                        <td id=\"T_b130d_row3_col3\" class=\"data row3 col3\" >-0.30</td>\n",
-       "                        <td id=\"T_b130d_row3_col4\" class=\"data row3 col4\" >1.07</td>\n",
-       "                        <td id=\"T_b130d_row3_col5\" class=\"data row3 col5\" >-0.59</td>\n",
-       "                        <td id=\"T_b130d_row3_col6\" class=\"data row3 col6\" >0.98</td>\n",
-       "                        <td id=\"T_b130d_row3_col7\" class=\"data row3 col7\" >-0.91</td>\n",
-       "                        <td id=\"T_b130d_row3_col8\" class=\"data row3 col8\" >1.65</td>\n",
-       "                        <td id=\"T_b130d_row3_col9\" class=\"data row3 col9\" >1.53</td>\n",
-       "                        <td id=\"T_b130d_row3_col10\" class=\"data row3 col10\" >0.85</td>\n",
-       "                        <td id=\"T_b130d_row3_col11\" class=\"data row3 col11\" >-3.55</td>\n",
-       "                        <td id=\"T_b130d_row3_col12\" class=\"data row3 col12\" >1.68</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_b130d_level0_row4\" class=\"row_heading level0 row4\" >230</th>\n",
-       "                        <td id=\"T_b130d_row4_col0\" class=\"data row4 col0\" >-0.34</td>\n",
-       "                        <td id=\"T_b130d_row4_col1\" class=\"data row4 col1\" >-0.50</td>\n",
-       "                        <td id=\"T_b130d_row4_col2\" class=\"data row4 col2\" >-0.70</td>\n",
-       "                        <td id=\"T_b130d_row4_col3\" class=\"data row4 col3\" >-0.30</td>\n",
-       "                        <td id=\"T_b130d_row4_col4\" class=\"data row4 col4\" >-0.41</td>\n",
-       "                        <td id=\"T_b130d_row4_col5\" class=\"data row4 col5\" >-0.48</td>\n",
-       "                        <td id=\"T_b130d_row4_col6\" class=\"data row4 col6\" >0.04</td>\n",
-       "                        <td id=\"T_b130d_row4_col7\" class=\"data row4 col7\" >-0.09</td>\n",
-       "                        <td id=\"T_b130d_row4_col8\" class=\"data row4 col8\" >-0.18</td>\n",
-       "                        <td id=\"T_b130d_row4_col9\" class=\"data row4 col9\" >-0.59</td>\n",
-       "                        <td id=\"T_b130d_row4_col10\" class=\"data row4 col10\" >-0.44</td>\n",
-       "                        <td id=\"T_b130d_row4_col11\" class=\"data row4 col11\" >0.25</td>\n",
-       "                        <td id=\"T_b130d_row4_col12\" class=\"data row4 col12\" >-0.10</td>\n",
-       "            </tr>\n",
-       "    </tbody></table>"
-      ],
-      "text/plain": [
-       "<pandas.io.formats.style.Styler at 0x7f64eb329f50>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"Before normalization :\"))\n",
     "\n",
@@ -771,7 +240,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 40,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -800,32 +269,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 41,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Model: \"sequential_5\"\n",
-      "_________________________________________________________________\n",
-      "Layer (type)                 Output Shape              Param #   \n",
-      "=================================================================\n",
-      "Dense_n1 (Dense)             (None, 32)                448       \n",
-      "_________________________________________________________________\n",
-      "Dense_n2 (Dense)             (None, 64)                2112      \n",
-      "_________________________________________________________________\n",
-      "Dense_n3 (Dense)             (None, 32)                2080      \n",
-      "_________________________________________________________________\n",
-      "Output (Dense)               (None, 1)                 33        \n",
-      "=================================================================\n",
-      "Total params: 4,673\n",
-      "Trainable params: 4,673\n",
-      "Non-trainable params: 0\n",
-      "_________________________________________________________________\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "model=get_model_v1( (13,) )\n",
     "\n",
@@ -844,7 +290,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 42,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -852,13 +298,15 @@
     "                    y_train,\n",
     "                    epochs          = 60,\n",
     "                    batch_size      = 10,\n",
-    "                    verbose         = 0,\n",
+    "                    verbose         = fit_verbosity,\n",
     "                    validation_data = (x_test, y_test))"
    ]
   },
   {
    "cell_type": "markdown",
-   "metadata": {},
+   "metadata": {
+    "tags": []
+   },
    "source": [
     "## Step 6 - Evaluate\n",
     "### 6.1 - Model evaluation\n",
@@ -868,22 +316,11 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 43,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "5/5 [==============================] - 0s 2ms/step - loss: 11.9059 - mae: 2.6448 - mse: 11.9059\n",
-      "x_test / loss      : 11.9059\n",
-      "x_test / mae       : 2.6448\n",
-      "x_test / mse       : 11.9059\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
-    "score = model.evaluate(x_test, y_test, verbose=1)\n",
+    "score = model.evaluate(x_test, y_test, verbose=0)\n",
     "\n",
     "print('x_test / loss      : {:5.4f}'.format(score[0]))\n",
     "print('x_test / mae       : {:5.4f}'.format(score[1]))\n",
@@ -900,651 +337,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 44,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>loss</th>\n",
-       "      <th>mae</th>\n",
-       "      <th>mse</th>\n",
-       "      <th>val_loss</th>\n",
-       "      <th>val_mae</th>\n",
-       "      <th>val_mse</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>0</th>\n",
-       "      <td>496.808258</td>\n",
-       "      <td>20.406666</td>\n",
-       "      <td>496.808258</td>\n",
-       "      <td>299.685791</td>\n",
-       "      <td>15.153587</td>\n",
-       "      <td>299.685791</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>162.919540</td>\n",
-       "      <td>10.265703</td>\n",
-       "      <td>162.919540</td>\n",
-       "      <td>65.847511</td>\n",
-       "      <td>6.263887</td>\n",
-       "      <td>65.847511</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>58.518223</td>\n",
-       "      <td>5.800590</td>\n",
-       "      <td>58.518223</td>\n",
-       "      <td>33.691109</td>\n",
-       "      <td>4.296726</td>\n",
-       "      <td>33.691113</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>31.010996</td>\n",
-       "      <td>4.039098</td>\n",
-       "      <td>31.010996</td>\n",
-       "      <td>24.567926</td>\n",
-       "      <td>3.534089</td>\n",
-       "      <td>24.567926</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>23.336550</td>\n",
-       "      <td>3.394345</td>\n",
-       "      <td>23.336550</td>\n",
-       "      <td>21.112747</td>\n",
-       "      <td>3.387527</td>\n",
-       "      <td>21.112747</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>5</th>\n",
-       "      <td>20.368439</td>\n",
-       "      <td>3.112291</td>\n",
-       "      <td>20.368439</td>\n",
-       "      <td>19.033449</td>\n",
-       "      <td>3.166226</td>\n",
-       "      <td>19.033449</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>6</th>\n",
-       "      <td>18.681219</td>\n",
-       "      <td>2.996637</td>\n",
-       "      <td>18.681219</td>\n",
-       "      <td>18.153992</td>\n",
-       "      <td>3.020701</td>\n",
-       "      <td>18.153992</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>7</th>\n",
-       "      <td>17.302563</td>\n",
-       "      <td>2.853846</td>\n",
-       "      <td>17.302563</td>\n",
-       "      <td>17.151873</td>\n",
-       "      <td>3.000582</td>\n",
-       "      <td>17.151873</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>8</th>\n",
-       "      <td>15.752460</td>\n",
-       "      <td>2.701095</td>\n",
-       "      <td>15.752460</td>\n",
-       "      <td>16.664345</td>\n",
-       "      <td>3.016817</td>\n",
-       "      <td>16.664345</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>9</th>\n",
-       "      <td>14.797948</td>\n",
-       "      <td>2.587970</td>\n",
-       "      <td>14.797948</td>\n",
-       "      <td>16.029793</td>\n",
-       "      <td>2.958454</td>\n",
-       "      <td>16.029793</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>10</th>\n",
-       "      <td>14.564775</td>\n",
-       "      <td>2.623680</td>\n",
-       "      <td>14.564775</td>\n",
-       "      <td>15.449832</td>\n",
-       "      <td>2.906943</td>\n",
-       "      <td>15.449832</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>11</th>\n",
-       "      <td>13.653079</td>\n",
-       "      <td>2.468045</td>\n",
-       "      <td>13.653079</td>\n",
-       "      <td>15.164533</td>\n",
-       "      <td>2.916796</td>\n",
-       "      <td>15.164533</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>12</th>\n",
-       "      <td>13.325779</td>\n",
-       "      <td>2.432350</td>\n",
-       "      <td>13.325780</td>\n",
-       "      <td>14.665699</td>\n",
-       "      <td>2.861158</td>\n",
-       "      <td>14.665699</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>13</th>\n",
-       "      <td>13.007739</td>\n",
-       "      <td>2.429434</td>\n",
-       "      <td>13.007739</td>\n",
-       "      <td>14.335600</td>\n",
-       "      <td>2.844846</td>\n",
-       "      <td>14.335600</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>14</th>\n",
-       "      <td>12.266639</td>\n",
-       "      <td>2.299131</td>\n",
-       "      <td>12.266639</td>\n",
-       "      <td>15.228933</td>\n",
-       "      <td>2.983851</td>\n",
-       "      <td>15.228933</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>15</th>\n",
-       "      <td>12.286620</td>\n",
-       "      <td>2.368878</td>\n",
-       "      <td>12.286620</td>\n",
-       "      <td>14.127678</td>\n",
-       "      <td>2.842794</td>\n",
-       "      <td>14.127678</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>16</th>\n",
-       "      <td>11.410469</td>\n",
-       "      <td>2.229515</td>\n",
-       "      <td>11.410469</td>\n",
-       "      <td>13.894320</td>\n",
-       "      <td>2.823238</td>\n",
-       "      <td>13.894320</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>17</th>\n",
-       "      <td>11.181726</td>\n",
-       "      <td>2.190278</td>\n",
-       "      <td>11.181726</td>\n",
-       "      <td>13.606056</td>\n",
-       "      <td>2.797815</td>\n",
-       "      <td>13.606056</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>18</th>\n",
-       "      <td>10.828321</td>\n",
-       "      <td>2.154480</td>\n",
-       "      <td>10.828321</td>\n",
-       "      <td>13.565251</td>\n",
-       "      <td>2.819813</td>\n",
-       "      <td>13.565251</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>19</th>\n",
-       "      <td>10.569035</td>\n",
-       "      <td>2.154685</td>\n",
-       "      <td>10.569035</td>\n",
-       "      <td>13.530810</td>\n",
-       "      <td>2.809333</td>\n",
-       "      <td>13.530810</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>20</th>\n",
-       "      <td>10.488348</td>\n",
-       "      <td>2.108964</td>\n",
-       "      <td>10.488348</td>\n",
-       "      <td>13.247073</td>\n",
-       "      <td>2.791539</td>\n",
-       "      <td>13.247073</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>21</th>\n",
-       "      <td>9.903971</td>\n",
-       "      <td>2.094111</td>\n",
-       "      <td>9.903970</td>\n",
-       "      <td>13.581500</td>\n",
-       "      <td>2.839964</td>\n",
-       "      <td>13.581500</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>22</th>\n",
-       "      <td>10.251574</td>\n",
-       "      <td>2.115290</td>\n",
-       "      <td>10.251573</td>\n",
-       "      <td>12.943285</td>\n",
-       "      <td>2.775483</td>\n",
-       "      <td>12.943283</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>23</th>\n",
-       "      <td>9.634067</td>\n",
-       "      <td>2.032825</td>\n",
-       "      <td>9.634067</td>\n",
-       "      <td>13.090726</td>\n",
-       "      <td>2.801419</td>\n",
-       "      <td>13.090726</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>24</th>\n",
-       "      <td>9.194120</td>\n",
-       "      <td>2.028062</td>\n",
-       "      <td>9.194120</td>\n",
-       "      <td>12.963680</td>\n",
-       "      <td>2.766797</td>\n",
-       "      <td>12.963680</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>25</th>\n",
-       "      <td>9.178823</td>\n",
-       "      <td>2.010767</td>\n",
-       "      <td>9.178823</td>\n",
-       "      <td>12.949334</td>\n",
-       "      <td>2.778063</td>\n",
-       "      <td>12.949334</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>26</th>\n",
-       "      <td>8.793119</td>\n",
-       "      <td>1.980939</td>\n",
-       "      <td>8.793119</td>\n",
-       "      <td>12.878089</td>\n",
-       "      <td>2.799960</td>\n",
-       "      <td>12.878089</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>27</th>\n",
-       "      <td>8.908919</td>\n",
-       "      <td>2.031492</td>\n",
-       "      <td>8.908919</td>\n",
-       "      <td>12.313911</td>\n",
-       "      <td>2.714739</td>\n",
-       "      <td>12.313910</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>28</th>\n",
-       "      <td>8.373400</td>\n",
-       "      <td>1.955855</td>\n",
-       "      <td>8.373400</td>\n",
-       "      <td>12.750246</td>\n",
-       "      <td>2.753815</td>\n",
-       "      <td>12.750246</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>29</th>\n",
-       "      <td>8.350707</td>\n",
-       "      <td>1.945564</td>\n",
-       "      <td>8.350707</td>\n",
-       "      <td>12.749087</td>\n",
-       "      <td>2.743346</td>\n",
-       "      <td>12.749087</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>30</th>\n",
-       "      <td>8.124330</td>\n",
-       "      <td>1.945379</td>\n",
-       "      <td>8.124330</td>\n",
-       "      <td>12.534031</td>\n",
-       "      <td>2.733095</td>\n",
-       "      <td>12.534031</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>31</th>\n",
-       "      <td>7.931583</td>\n",
-       "      <td>1.883138</td>\n",
-       "      <td>7.931583</td>\n",
-       "      <td>13.131082</td>\n",
-       "      <td>2.795423</td>\n",
-       "      <td>13.131082</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>32</th>\n",
-       "      <td>7.955390</td>\n",
-       "      <td>1.944531</td>\n",
-       "      <td>7.955390</td>\n",
-       "      <td>12.266490</td>\n",
-       "      <td>2.685935</td>\n",
-       "      <td>12.266490</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>33</th>\n",
-       "      <td>7.463126</td>\n",
-       "      <td>1.846264</td>\n",
-       "      <td>7.463126</td>\n",
-       "      <td>11.979753</td>\n",
-       "      <td>2.714817</td>\n",
-       "      <td>11.979753</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>34</th>\n",
-       "      <td>7.368988</td>\n",
-       "      <td>1.846916</td>\n",
-       "      <td>7.368988</td>\n",
-       "      <td>11.962049</td>\n",
-       "      <td>2.671768</td>\n",
-       "      <td>11.962049</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>35</th>\n",
-       "      <td>6.900507</td>\n",
-       "      <td>1.808072</td>\n",
-       "      <td>6.900507</td>\n",
-       "      <td>12.391670</td>\n",
-       "      <td>2.715800</td>\n",
-       "      <td>12.391670</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>36</th>\n",
-       "      <td>6.988751</td>\n",
-       "      <td>1.797553</td>\n",
-       "      <td>6.988751</td>\n",
-       "      <td>11.833957</td>\n",
-       "      <td>2.653125</td>\n",
-       "      <td>11.833957</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>37</th>\n",
-       "      <td>6.939470</td>\n",
-       "      <td>1.778816</td>\n",
-       "      <td>6.939470</td>\n",
-       "      <td>11.929521</td>\n",
-       "      <td>2.664361</td>\n",
-       "      <td>11.929521</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>38</th>\n",
-       "      <td>6.756051</td>\n",
-       "      <td>1.810675</td>\n",
-       "      <td>6.756051</td>\n",
-       "      <td>13.190271</td>\n",
-       "      <td>2.799606</td>\n",
-       "      <td>13.190269</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>39</th>\n",
-       "      <td>6.769431</td>\n",
-       "      <td>1.799516</td>\n",
-       "      <td>6.769431</td>\n",
-       "      <td>11.429970</td>\n",
-       "      <td>2.627498</td>\n",
-       "      <td>11.429970</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>40</th>\n",
-       "      <td>6.317815</td>\n",
-       "      <td>1.738746</td>\n",
-       "      <td>6.317815</td>\n",
-       "      <td>11.718296</td>\n",
-       "      <td>2.641332</td>\n",
-       "      <td>11.718296</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>41</th>\n",
-       "      <td>6.295363</td>\n",
-       "      <td>1.727006</td>\n",
-       "      <td>6.295363</td>\n",
-       "      <td>12.176748</td>\n",
-       "      <td>2.699434</td>\n",
-       "      <td>12.176748</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>42</th>\n",
-       "      <td>6.230900</td>\n",
-       "      <td>1.758334</td>\n",
-       "      <td>6.230900</td>\n",
-       "      <td>11.816090</td>\n",
-       "      <td>2.656886</td>\n",
-       "      <td>11.816090</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>43</th>\n",
-       "      <td>6.054307</td>\n",
-       "      <td>1.728827</td>\n",
-       "      <td>6.054307</td>\n",
-       "      <td>11.509453</td>\n",
-       "      <td>2.641540</td>\n",
-       "      <td>11.509453</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>44</th>\n",
-       "      <td>5.801526</td>\n",
-       "      <td>1.640258</td>\n",
-       "      <td>5.801526</td>\n",
-       "      <td>11.625114</td>\n",
-       "      <td>2.642927</td>\n",
-       "      <td>11.625114</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>45</th>\n",
-       "      <td>5.755993</td>\n",
-       "      <td>1.697481</td>\n",
-       "      <td>5.755993</td>\n",
-       "      <td>11.275146</td>\n",
-       "      <td>2.659705</td>\n",
-       "      <td>11.275146</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>46</th>\n",
-       "      <td>5.937313</td>\n",
-       "      <td>1.772940</td>\n",
-       "      <td>5.937313</td>\n",
-       "      <td>11.071560</td>\n",
-       "      <td>2.608654</td>\n",
-       "      <td>11.071560</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>47</th>\n",
-       "      <td>5.462420</td>\n",
-       "      <td>1.618898</td>\n",
-       "      <td>5.462420</td>\n",
-       "      <td>11.362513</td>\n",
-       "      <td>2.568167</td>\n",
-       "      <td>11.362513</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>48</th>\n",
-       "      <td>5.272933</td>\n",
-       "      <td>1.623106</td>\n",
-       "      <td>5.272933</td>\n",
-       "      <td>10.980933</td>\n",
-       "      <td>2.594174</td>\n",
-       "      <td>10.980933</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>49</th>\n",
-       "      <td>5.369299</td>\n",
-       "      <td>1.630379</td>\n",
-       "      <td>5.369299</td>\n",
-       "      <td>10.639811</td>\n",
-       "      <td>2.507906</td>\n",
-       "      <td>10.639811</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>50</th>\n",
-       "      <td>5.704035</td>\n",
-       "      <td>1.701261</td>\n",
-       "      <td>5.704035</td>\n",
-       "      <td>11.174335</td>\n",
-       "      <td>2.609001</td>\n",
-       "      <td>11.174335</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>51</th>\n",
-       "      <td>5.041009</td>\n",
-       "      <td>1.605503</td>\n",
-       "      <td>5.041009</td>\n",
-       "      <td>10.786023</td>\n",
-       "      <td>2.556108</td>\n",
-       "      <td>10.786023</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>52</th>\n",
-       "      <td>4.881229</td>\n",
-       "      <td>1.567759</td>\n",
-       "      <td>4.881229</td>\n",
-       "      <td>10.944572</td>\n",
-       "      <td>2.572653</td>\n",
-       "      <td>10.944572</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>53</th>\n",
-       "      <td>4.838391</td>\n",
-       "      <td>1.540383</td>\n",
-       "      <td>4.838391</td>\n",
-       "      <td>10.939477</td>\n",
-       "      <td>2.554094</td>\n",
-       "      <td>10.939477</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>54</th>\n",
-       "      <td>4.814469</td>\n",
-       "      <td>1.545582</td>\n",
-       "      <td>4.814469</td>\n",
-       "      <td>10.696045</td>\n",
-       "      <td>2.531351</td>\n",
-       "      <td>10.696045</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>55</th>\n",
-       "      <td>4.725338</td>\n",
-       "      <td>1.553826</td>\n",
-       "      <td>4.725338</td>\n",
-       "      <td>11.119137</td>\n",
-       "      <td>2.539284</td>\n",
-       "      <td>11.119137</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>56</th>\n",
-       "      <td>4.820696</td>\n",
-       "      <td>1.552765</td>\n",
-       "      <td>4.820696</td>\n",
-       "      <td>11.093773</td>\n",
-       "      <td>2.531371</td>\n",
-       "      <td>11.093773</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>57</th>\n",
-       "      <td>4.658049</td>\n",
-       "      <td>1.518365</td>\n",
-       "      <td>4.658049</td>\n",
-       "      <td>10.783175</td>\n",
-       "      <td>2.515865</td>\n",
-       "      <td>10.783175</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>58</th>\n",
-       "      <td>4.609218</td>\n",
-       "      <td>1.538498</td>\n",
-       "      <td>4.609218</td>\n",
-       "      <td>10.579556</td>\n",
-       "      <td>2.479394</td>\n",
-       "      <td>10.579556</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>59</th>\n",
-       "      <td>4.376875</td>\n",
-       "      <td>1.495850</td>\n",
-       "      <td>4.376875</td>\n",
-       "      <td>11.905892</td>\n",
-       "      <td>2.644810</td>\n",
-       "      <td>11.905892</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "          loss        mae         mse    val_loss    val_mae     val_mse\n",
-       "0   496.808258  20.406666  496.808258  299.685791  15.153587  299.685791\n",
-       "1   162.919540  10.265703  162.919540   65.847511   6.263887   65.847511\n",
-       "2    58.518223   5.800590   58.518223   33.691109   4.296726   33.691113\n",
-       "3    31.010996   4.039098   31.010996   24.567926   3.534089   24.567926\n",
-       "4    23.336550   3.394345   23.336550   21.112747   3.387527   21.112747\n",
-       "5    20.368439   3.112291   20.368439   19.033449   3.166226   19.033449\n",
-       "6    18.681219   2.996637   18.681219   18.153992   3.020701   18.153992\n",
-       "7    17.302563   2.853846   17.302563   17.151873   3.000582   17.151873\n",
-       "8    15.752460   2.701095   15.752460   16.664345   3.016817   16.664345\n",
-       "9    14.797948   2.587970   14.797948   16.029793   2.958454   16.029793\n",
-       "10   14.564775   2.623680   14.564775   15.449832   2.906943   15.449832\n",
-       "11   13.653079   2.468045   13.653079   15.164533   2.916796   15.164533\n",
-       "12   13.325779   2.432350   13.325780   14.665699   2.861158   14.665699\n",
-       "13   13.007739   2.429434   13.007739   14.335600   2.844846   14.335600\n",
-       "14   12.266639   2.299131   12.266639   15.228933   2.983851   15.228933\n",
-       "15   12.286620   2.368878   12.286620   14.127678   2.842794   14.127678\n",
-       "16   11.410469   2.229515   11.410469   13.894320   2.823238   13.894320\n",
-       "17   11.181726   2.190278   11.181726   13.606056   2.797815   13.606056\n",
-       "18   10.828321   2.154480   10.828321   13.565251   2.819813   13.565251\n",
-       "19   10.569035   2.154685   10.569035   13.530810   2.809333   13.530810\n",
-       "20   10.488348   2.108964   10.488348   13.247073   2.791539   13.247073\n",
-       "21    9.903971   2.094111    9.903970   13.581500   2.839964   13.581500\n",
-       "22   10.251574   2.115290   10.251573   12.943285   2.775483   12.943283\n",
-       "23    9.634067   2.032825    9.634067   13.090726   2.801419   13.090726\n",
-       "24    9.194120   2.028062    9.194120   12.963680   2.766797   12.963680\n",
-       "25    9.178823   2.010767    9.178823   12.949334   2.778063   12.949334\n",
-       "26    8.793119   1.980939    8.793119   12.878089   2.799960   12.878089\n",
-       "27    8.908919   2.031492    8.908919   12.313911   2.714739   12.313910\n",
-       "28    8.373400   1.955855    8.373400   12.750246   2.753815   12.750246\n",
-       "29    8.350707   1.945564    8.350707   12.749087   2.743346   12.749087\n",
-       "30    8.124330   1.945379    8.124330   12.534031   2.733095   12.534031\n",
-       "31    7.931583   1.883138    7.931583   13.131082   2.795423   13.131082\n",
-       "32    7.955390   1.944531    7.955390   12.266490   2.685935   12.266490\n",
-       "33    7.463126   1.846264    7.463126   11.979753   2.714817   11.979753\n",
-       "34    7.368988   1.846916    7.368988   11.962049   2.671768   11.962049\n",
-       "35    6.900507   1.808072    6.900507   12.391670   2.715800   12.391670\n",
-       "36    6.988751   1.797553    6.988751   11.833957   2.653125   11.833957\n",
-       "37    6.939470   1.778816    6.939470   11.929521   2.664361   11.929521\n",
-       "38    6.756051   1.810675    6.756051   13.190271   2.799606   13.190269\n",
-       "39    6.769431   1.799516    6.769431   11.429970   2.627498   11.429970\n",
-       "40    6.317815   1.738746    6.317815   11.718296   2.641332   11.718296\n",
-       "41    6.295363   1.727006    6.295363   12.176748   2.699434   12.176748\n",
-       "42    6.230900   1.758334    6.230900   11.816090   2.656886   11.816090\n",
-       "43    6.054307   1.728827    6.054307   11.509453   2.641540   11.509453\n",
-       "44    5.801526   1.640258    5.801526   11.625114   2.642927   11.625114\n",
-       "45    5.755993   1.697481    5.755993   11.275146   2.659705   11.275146\n",
-       "46    5.937313   1.772940    5.937313   11.071560   2.608654   11.071560\n",
-       "47    5.462420   1.618898    5.462420   11.362513   2.568167   11.362513\n",
-       "48    5.272933   1.623106    5.272933   10.980933   2.594174   10.980933\n",
-       "49    5.369299   1.630379    5.369299   10.639811   2.507906   10.639811\n",
-       "50    5.704035   1.701261    5.704035   11.174335   2.609001   11.174335\n",
-       "51    5.041009   1.605503    5.041009   10.786023   2.556108   10.786023\n",
-       "52    4.881229   1.567759    4.881229   10.944572   2.572653   10.944572\n",
-       "53    4.838391   1.540383    4.838391   10.939477   2.554094   10.939477\n",
-       "54    4.814469   1.545582    4.814469   10.696045   2.531351   10.696045\n",
-       "55    4.725338   1.553826    4.725338   11.119137   2.539284   11.119137\n",
-       "56    4.820696   1.552765    4.820696   11.093773   2.531371   11.093773\n",
-       "57    4.658049   1.518365    4.658049   10.783175   2.515865   10.783175\n",
-       "58    4.609218   1.538498    4.609218   10.579556   2.479394   10.579556\n",
-       "59    4.376875   1.495850    4.376875   11.905892   2.644810   11.905892"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "df=pd.DataFrame(data=history.history)\n",
     "display(df)"
@@ -1552,63 +347,18 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 45,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "min( val_mae ) : 2.4794\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "print(\"min( val_mae ) : {:.4f}\".format( min(history.history[\"val_mae\"]) ) )"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 46,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAGdCAYAAACRlkBKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABDH0lEQVR4nO3deZxcVZ3//9en9k46CdmAkMgyKIuYEJAIiF9F4OcyuMwXHQcHHHVEdEoUGX864AKIjjo6CMJQKuBvHBAUUGREHYmMbMouBqOChCUQEoEEQrbu6trO749zq+tWpTqpTrrr3up+Px+P4t6691T1qUun+91nu+acQ0RERGR7ElFXQERERHqDQoOIiIh0RKFBREREOqLQICIiIh1RaBAREZGOKDSIiIhIRxQaREREpCMKDSKyw8zsu2bmgkfZzHbdTvm/CZV3Zva+NmVmmdlnzOxOM3sheN9nzexBM/u+mX3IzP6qzevObXnvbT0uHLurIDJ5pKKugIhMGCng74ELt1HmH7b1BmZ2OPATIBw+NgJTgUXB40Tgv4G/GeFtasDa7dR143bOi0gbCg0iMhaeAvbEh4IL2xUws1nA8cBmoATMajm/C43AsAI4F/iJc25zcH534HXAu/DBYCSrnHN77+gHEZGRKTSIyFi4CygDh5jZQc65P7YpcyKQAb4PHDfC+V2BIeAY59zT4ZPOuWeAa4BrzKxvLCsvIp3RmAYRGStXBtuRuiDqx68Y4fzCYLusNTC0cs4NjrJuIjIGFBpEZKzUQ8NJZtb0s8XM9gMOB1YBt27nfeaZmY199URkZyk0iMiYcM49DvwGmA8c03K63spwlXNupPEI9wfbPYF/NbPs2NdSRHaGQoOIjKV618NwF0XQanByy/l2vg/8Odg/C3jGzH5kZp8ys9eb2ZQO6/ASM3tmO4+DRvOhRMRTaBCRsXQtUAROMLOpwbHXAXsB9zvnHhrphc65Ir6F4mfBoV2AE4B/A34FvGhmPzGzI7dThwSw23Ye6VF/MhFRaBCRseOcexG4Eb+uwjuCw9sbABl+/Rrn3FuAA/GtDT8D/hKcTgNvBX5jZqdv422edM7Zdh7LRv3hREShQUTGXD0cvCeYGvkO/HTM73f6Bs65h51zX3HOvcU5twc+RHweGAAM+LqZHTrG9RaR7VBoEJGx9gvgOXxXw2nAdOB/nHPrdvQNgxBxLvBmwOF/dr1356sqIqOh0CAiY8o5VwF+gP/58q/B4StHfsWo3vt2/GqRAPuNxXuKSOcUGkRkPNS7KNLAevw4h7GyJdiWxvA9RaQDWkZaRMacc+63ZnYuMA34vXNuaHuvMbMlwCPOuQ3bKHMQcHDwdNkYVFVERkGhQUTGhXPu86N8yd8Bp5jZ94EfAfc45zYBmNls/I2qzsa3kG4BLh/D6opIBxQaRCQuysAM4MPBAzPbiP85FV7Y6UXgROfcqhHe5yVm9sx2vtadzrkTdq66IpOPQoOIxMWngZ8CbwKOBA4A5uKnWK4FHgJuAi5zzq3dxvvUF3fallnbOS8ibZhzLuo6iIiISA/Q7AkRERHpiEKDiIiIdEShQURERDqi0CAiIiIdUWjYhnw+7/L5vEaKioiIoCmXnVJwEBGRycJGOqGWBhEREemIQoOIiIh0RKFBREREOqLQICIiIh3RQMgdUC6XefrppykWi1FXpSfkcjkWLFhAOp2OuioiIrITFBp2wNNPP820adPYe++9MRtxkKkAzjmef/55nn76afbZZ5+oqyMiIjshFt0TZuZGeGxuU3Z/M7vBzNab2RYzu8PMjhnhfRNmdoaZPWxmRTNbZWbnm9nUnalvsVhk9uzZCgwdMDNmz56tVhkRkQkgTi0NdwCXthwrh5+Y2b7AnUAF+CqwAfggcJOZvdk5d3PL6y8APgb8GDgfODB4foiZHeecq+1oZRUYOqdrJSIyMcQpNDzunPvedsp8GdgFeKVzbhmAmV0B/BG4xMwOcMG9vs3sIOCjwPXOuXfU38DMngAuAk4Erh7rDyEiIjJRxaJ7os7MMmbWP8K5qcDbgFvrgQHAObcZuBzYD1gSesm78ataXdjyVpcBA8DJY1ZxERGRSSBOoeGd+F/mm8zsOTO72MxmhM4vArLAXW1ee3ewDYeGJUANuDdc0DlXBJa1lO05K1eu5IADDuCUU07hFa94BSeddBI333wzRx11FC972cu49957ue2221i8eDGLFy/mkEMOYdOmTQB87WtfY8mSJSxatIhzzjkn4k8iIiK9Ii7dE/cC1wGPAtOBvwZOA15nZq8OWhP2CMqubvP6+rH5oWN7AOucc0MjlH+1mWWcc6Wdqfgbv/CznXn5Nt30ueO3ef7RRx/luuuu49JLL2XJkiVcffXV/PrXv+YnP/kJX/rSl6hWq1xyySUcddRRbN68mVwux9KlS1mxYgX33nsvzjne9ra3cfvtt/Pa17523D6HiIhMDLFoaXDOHe6c+3fn3A3OuSuccycCnwEWAqcHxaYE23YhoNhSpr7fruxI5YeZ2almdn/HHyAi++yzDwsXLiSRSHDQQQdx7LHHYmYsXLiQlStXctRRR/HP//zPXHTRRbz44oukUimWLl3K0qVLOeSQQzj00EN5+OGHWbFiRdQfRUREekAsQsMIvgaUgPqf2wPBNtumbK6lTH2/XdmRyg9zzl3qnDus86pGI5ttfLxEIjH8PJFIUKlUOPPMM7n88ssZHBzkiCOO4OGHH8Y5x1lnncWyZctYtmwZjz76KB/4wAei+ggiItJD4tI9sRXnXNnM1gBzgkNrgu38NsXrx8JdF2uAl5tZtk0XxXx818VOdU3A9rsQ6p7fVOT5Tb6BY1Z/ljnT+3b2S2/XY489xsKFC1m4cCF33XUXDz/8MG984xv53Oc+x0knnUR/fz+rV68mnU6z6667jnt9RESkt8U2NJhZDlhAY5Djcnx3w5Ftih8RbMNdCvcBbwBehV8DIvy+i4Hbx7bG25YIrVVQc935mhdeeCG33HILyWSSl7/85bz5zW8mm83y0EMPceSR/jL29/fzve99T6FBRES2K/LQYGaznXPPtzn1BXz9bgQ/tdLMbgROMLODnXMPBq/vB04BVtA8U+Ia4NPAxwmFBvxiUFOAq8b4o2xTeH2jYCmJnbL33nvzhz/8Yfj5d7/73RHPtTr99NM5/fTTRzwvIiLSTuShAfismR0B3AI8BfTjZ0+8HrgHuDhU9izgWGCpmV0AbMSHgPnA8S7029g5t9zMLgFOM7PrgZ/TWBHyNrq8sFN4VcQuNTSIiIiMqTiEhluBlwPvBWYDVXyrwWeArwfrKgDgnHvUzI4CvgKcCWSAB4A3tVlCGnwrw0rgVPyAynX4EHL2ziwhvSMSoZaGWrf6J0RERMZQ5KHBOfffwH+PovxDwNs7LFvF33Pi/B2r3dhRS4OIiPS6OE+5nFDCt2waizENIiIi3abQ0CVNLQ3KDCIi0oMUGrqkaUyDUoOIiPQghYYuUUuDiIj0OoWGLhnrdRpGo7+/7d3GRURERkWhoUsSmj0hIiI9LvIplz3vlDd1VCwF7Dfa9778F20P/8u//At77bUX+XwegHPPPRcz4/bbb2f9+vWUy2W++MUv8va3b39m6q233so555zDbrvtxrJlyzjhhBNYuHAh3/jGNxgcHOSGG25g33335brrruPzn/88yWSSGTNmcPvtt1OtVjnzzDO59dZbGRoa4iMf+Qgf+tCHRvspRUSkR6iloQedeOKJXHPNNcPPr732Wt7//vfz4x//mAceeIBbbrmFT3ziEx13gzz44IN84xvfYPny5Vx55ZU88sgj3HvvvZxyyilcfLFfkPO8887jpptu4sEHH+QnP/kJAN/5zneYMWMG9913H/fddx+XXXYZTzzxxNh/YBERiQW1NPSgQw45hOeee441a9awdu1aZs6cybx58zjjjDO4/fbbSSQSrF69mmeffZbdd999u++3ZMkS5s2bB8C+++7LG97wBgAWLlzILbfcAsBRRx3F+973Pt71rndxwgknALB06VJ+//vf88Mf/hCADRs2sGLFCvbZZ5/x+NgiIhIxhYadNUIXQjsr/rJh+K//l+4+g0R4HuYovfOd7+SHP/whzzzzDCeeeCJXXXUVa9eu5be//S3pdJq9996bYrG4/TcCstns8H4ikRh+nkgkqFQqAHzrW9/innvu4Wc/+xmLFy9m2bJlOOe4+OKLeeMb37jDn0NERHqHuie6aCxnUJx44on84Ac/4Ic//CHvfOc72bBhA7vuuivpdJpbbrmFJ598cidr2+yxxx7j8MMP57zzzmPOnDmsWrWKN77xjXzzm9+kXC4D8Mgjj7Bly5Yx/boiIhIfamnoooQZtWDuRA1I7sR7HXTQQWzatIn58+czb948TjrpJN761rdy2GGHsXjxYg444IAxqXPdJz/5SVasWIFzjmOPPZaDDz6YRYsWsXLlSg499FCcc8ydO5cbbrhhTL+uiIjEh+k+CCPL5/MOoFAoNB1/6KGHOPDAA0f9fk88t5Fyxd9cc+9dp5FJ7Uxs6C07es1ERKTrRuw7V/dEFxlaFVJERHqXuie6KMr7Tyxfvpz3vOc9Tcey2Sz33HNPV+shIiK9S6Ghi6K8/8TChQtZtmxZd7+oiIhMKOqe2EE7MhYkyvtPRGkyfVYRkYlMoWEH5HI5nn/++VH/MpyMd7p0zvH888+Ty+WiroqIiOwkdU/sgAULFvD000+zdu3aUb1uw0CJYqkKwJa1aXKZyXH5c7kcCxYsiLoaIiKykybHb60xlk6nd2ip5H//yYP88sG/APDPb13EGw98yVhXTUREZNyoe6KLsqnG5S5VqhHWREREZPQUGroovJjTULkWYU1ERERGT6GhizJqaRARkR6m0NBF2XS4pUGhQUREeotCQxeFuydKVXVPiIhIb1Fo6KKm7gm1NIiISI9RaOiipu6JiloaRESktyg0dJFaGkREpJcpNHRRNjymQS0NIiLSYxQauiitKZciItLDFBq6SGMaRESklyk0dFHTlEuNaRARkR6j0NBFzfeeUEuDiIj0FoWGLmq694TGNIiISI9RaOiiTFoDIUVEpHcpNHRRVne5FBGRHqbQ0EWZ0OyJsloaRESkxyg0dFF4RcihSg3nXIS1ERERGR2Fhi5KmJFONi55WXe6FBGRHqLQ0GVNrQ0a1yAiIj1EoaHLwqtCagaFiIj0EoWGLktrgScREelRCg1d1jztUi0NIiLSOxQauiyjO12KiEiPUmjoMt3pUkREepVCQ5el1dIgIiI9KnahwcymmNkTZubM7D/anN/fzG4ws/VmtsXM7jCzY0Z4r4SZnWFmD5tZ0cxWmdn5ZjZ1/D9Je9mm22OrpUFERHpH7EIDcB4wp90JM9sXuBM4Evgq8EmgH7jJzI5r85ILgK8DfwI+ClwHfAy40cwi+ey606WIiPSqVNQVCDOzQ4GPA58Czm9T5MvALsArnXPLgtdcAfwRuMTMDnDB2sxmdhA+KFzvnHtH6Gs8AVwEnAhcPV6fZSRZ3elSRER6VGxaGswsCVwG/AK4vs35qcDbgFvrgQHAObcZuBzYD1gSesm7AQMubHmry4AB4OSxq33nwi0NWqdBRER6SWxCA3AGcABw2gjnFwFZ4K425+4OtuHQsASoAfeGCzrnisCylrJd0zTlUus0iIhID4lFaDCzfYDPA+c551aOUGyPYLu6zbn6sfkt5dc554ZGKD/HzDI7UN2d0rS4k1oaRESkh8QiNADfBJ7AD1ocyZRg2y4EFFvK1PfblR2p/DAzO9XM7t9GXXZYJnzvCbU0iIhID4k8NJjZycAbgA8758rbKDoQbLNtzuVaytT325Udqfww59ylzrnDtlGXHdbUPaFbY4uISA+JdPaEmWXxrQs/B54xs5cGp+rdDDOCY+uANS3nwurHwl0Xa4CXm1m2TRfFfHzXRWlnP8NoZZtuja2WBhER6R1RtzT0AXOB44EVocetwfmTg+enAMvx3Q1HtnmfI4JtuEvhPvzne1W4oJnlgMUtZbsmo1tji4hIj4p6nYYtwN+2OT4XKOCnX34H+L1zbrOZ3QicYGYHO+ceBDCzfnyoWEHzTIlrgE/j1324I3T8g/ixDFeN7UfpTPNdLtU9ISIivSPS0BCMYfhh63Ez2zvYfcw5Fz5/FnAssNTMLgA24kPAfOD4+sJOwXsvN7NLgNPM7Hp8F8iB+BUhbyOChZ2g+d4TZbU0iIhID4m6pWFUnHOPmtlRwFeAM4EM8ADwJufczW1e8nFgJXAqvgtkHXAxcLZzLpI/8zXlUkREelUsQ0OwVoONcO4h4O0dvk8Vvxx1uyWpI5HRMtIiItKjoh4IOeloTIOIiPQqhYYua773hFoaRESkdyg0dFnT4k4a0yAiIj1EoaHLsunwQEi1NIiISO9QaOgy3eVSRER6lUJDlzW3NKh7QkREeodCQ5dlWhZ3Cq1HJSIiEmsKDV2WTCRIJvwSFDUHlZpCg4iI9AaFhgiE12rQuAYREekVCg0RCK8KqRkUIiLSKxQaItC8wJMGQ4qISG9QaIiApl2KiEgvUmiIgO50KSIivUihIQK606WIiPQihYYIaEyDiIj0IoWGCGRDYxqGNKZBRER6hEJDBNTSICIivUihIQJN959QS4OIiPQIhYYIpMP3n6iqpUFERHqDQkMEmqZcqqVBRER6hEJDBJoWd9KUSxER6REKDRFoHtOg7gkREekNCg0RUEuDiIj0IoWGCGjKpYiI9CKFhgg0dU+opUFERHqEQkMEdJdLERHpRQoNEcjoLpciItKDFBoiEG5pKKt7QkREeoRCQwSaxzSopUFERHqDQkMENKZBRER6kUJDBDSmQUREepFCQwSyWtxJRER6kEJDBDJpLe4kIiK9R6EhArrLpYiI9CKFhgjo3hMiItKLFBoioO4JERHpRQoNEUgljIT5/WrNUa0pOIiISPwpNETAzJqnXZYVGkREJP4UGiKicQ0iItJrFBoionENIiLSaxQaIqJplyIi0msUGiKi7gkREek1Cg0R0Z0uRUSk1yg0REQtDSIi0msUGiISnnJZ0pRLERHpAQoNEQnf6XJILQ0iItIDFBoi0jTlUrMnRESkB0QeGsxsfzO7ysweMrMNZjZgZg+b2dfNbN4I5W8ws/VmtsXM7jCzY0Z474SZnRG8X9HMVpnZ+WY2dfw/2bZlmloa1D0hIiLxl4q6AsACYB7wY+BpoAIsBE4FTjSzxc655wDMbF/gzqDMV4ENwAeBm8zszc65m1ve+wLgY8F7nw8cGDw/xMyOc85F9ts6PKahrO4JERHpAZGHBufc/wL/23rczG4HrgXehw8IAF8GdgFe6ZxbFpS7AvgjcImZHeCcc8Hxg4CPAtc7594Ret8ngIuAE4Grx+VDdUBTLkVEpNdE3j2xDU8G25kAQZfC24Bb64EBwDm3Gbgc2A9YEnr9uwEDLmx538uAAeDk8aj0iNY8Cb/9Ndx5M6xe2TzlUmMaRESkB0Te0lBnZjmgH8gBLwf+LTj182C7CMgCd7V5+d3Bdglwb2i/FnoOgHOuaGbLaA4Y4+/XS2Hpj/z+Oz9Apv+Q4VNqaRARkV4Qp5aGU4C1wCrgJnw3xMnOuTuC83sE29VtXls/Nj90bA9gnXNuaITyc8ws064iZnaqmd0/uupvRzbX2C8ONk251OJOIiLSC+IUGm4A/h/g/wLnAS8Cc0PnpwTbdiGg2FKmvt+u7EjlhznnLnXOHbbdGo9GLvSlhgZ1l0sREek5semecM49jZ89AXCDmf0IuM/M+pxzX8aPQwDfRdGq/mf8QOjYALDrCF+uXfnxlWttadBdLkVEpLfEqaWhiXPu98DvgHxwaE2wnd+meP1YuOtiDb4Lol3ImI/vuiiNRV070tLSkFb3hIiI9JjYhoZAHzAr2F+O7244sk25I4JteBzCffjP96pwwWDA5eKWsuNvqzEN6p4QEZHeEnloMLPdRzj+euAVBDMjgqmVNwJHm9nBoXL9+EGUK2ieKXEN4ICPt7z1B/FjGa4am0/QoXBLQ3GQTFr3nhARkd4ShzEN3wyWi/4Vfm2GHPBK/OJLm4BPhMqeBRwLLDWzC4CN+BAwHzi+vrATgHNuuZldApxmZtfjp27WV4S8jW4v7LStlgbd5VJERHpAHELD94H3Au/Bz5Zw+PDwbeBrzrmn6gWdc4+a2VHAV4AzgQzwAPCmNktIg29lWIlfkvp4YB1wMXB215eQbp09oTENIiLSYyIPDc65a/HLRXda/iHg7R2WreLvOXH+jtVuDLW0NGQ0pkFERHpM5GMaJo2mloZiy70n1NIgIiLxp9DQLeGWhqFBMkkbfqoxDSIi0gsUGrolmYRMsGSEc2RqleFTamkQEZFeoNDQTaHWhmy1OLxf1pgGERHpAR2Fhnw+/w/5fH5Ry7FMPp+fPkL51+Xz+bPHooITSmhcQ7pSot5BUa7WqNZc+9eIiIjERKctDd8F/qbl2FnA+hHKHw2cs0M1mshCLQ3WMu2yrC4KERGJOXVPdFOur7FfLJIO37RKXRQiIhJzCg3dlA2HhgGy4aWkdadLERGJOYWGbgq3NAwVmxZ40mBIERGJO4WGbmptaUhpgScREekdCg3dtFVLg+4/ISIivWM0957YJZ/P7xl+DpDP518CWGvZnavWBNV0e+wBMuGlpLUqpIiIxNxoQsPpwaPVyrGpyiSQC9+0qkhWLQ0iItJDOg0NT+FvWS07o+mmVQO606WIiPSUjkJDoVDYe5zrMTlkm1saMrtoyqWIiPQODYTspm2MaVD3hIiIxJ1CQzc13R67dUyDuidERCTeOuqeyOfzfcA8YF2hUNjYcm4v4ALgGPwsituA/7dQKDwyxnXtfduaPaGWBhERiblOWxpOA1YALw8fzOfz0/Ah4e3AdGAa8Bbg1nw+P3sM6zkxbNXSEOqe0JRLERGJuU5Dw/8BVhUKhbtbjv8TsCdwF/BSYDfgYmB32k/PnNxaWxpC3RNqaRARkbjrdMrly4H72xw/AT8V8x8LhcLjwbHT8/n88cCbgbN3vooTSK65pUH3nhARkV7SaUvDXOCJ8IF8Pp8GDgH+3Gb8wq/wLQ8S1tTSMNh8l0u1NIiISMx1GhqyQLLl2EFAGri3TfnngCltjk9uqTQkgkteKZO1xnpZGtMgIiJx12loeAZ4RcuxV+O7Jtp1W0wDXtiJek1MZk2tDX2uNLyvlgYREYm7TkPDb4Bj8vn80TA8BfODwblftin/CmD1TtduIgrNoOirVYb3tU6DiIjEXaeh4YJguzSfzz+AH9+wCLi1UCj8OVwwn89PB44CWmdaCDS1NORqjZYGrQgpIiJx11FoKBQK9wPvAwaBxcCu+G6J97Yp/l4gAywdkxpONKGWhnBo0L0nREQk7jq+NXahUPhePp//Eb7r4fnQFMtWNwK3Aw+NQf0mnlBLQ6YSbmlQ94SIiMRbx6EBoFAoDAL3bafMyp2p0IQXWqshWx0a3lf3hIiIxJ1uWNVt2b7h3XQlHBrU0iAiIvHW6Q2r/mFH3rxQKFyxI6+b0HKN0OC7JzKAxjSIiEj8ddo98V38mgydsqC8QkOrUGhIlYvUQ4O6J0REJO5GM6ahAvwU+NM41WVyCHVPpELdE0NaEVJERGKu09BwG/Ba4G/w0y0vA64tFArFcarXxBVqaUiWGpevXK3hnMPMoqiViIjIdnW6TsPrgf2Bf8ffiOo/gb/k8/mL8/n8onGs38QTammwoSLpZON/gQZDiohInI1mnYZHgX/J5/OfAd6OX0b6n4B8Pp//LfBt4AeFQmHLuNR0ogi1NFAcJJNKUK76sDBUqZJNt94XTEREJB5GPeWyUChUCoXCjwqFwpuAfYEvAfOAS4E1+Xz+yDGu48QSamlgaLApJOhOlyIiEmc7tU5DoVB4slAofA44FX+Dqn5g7lhUbMJq09JQpxkUIiISZ6NaETIsn8/vAfxj8NgLKALfAx4Ym6pNUK2hYVqopUFjGkREJMZGFRry+XwCeAtwCvCm4PXLgdOBKwuFwoYxr+FEk2vungi3NAyppUFERGKs0xUh9wE+ALwfP35hC/BfwGWFQuHe8aveBJRtbmloHtOg0CAiIvHVaUvDo8H2fuAc4PuaJbGDthrToO4JERHpDZ2GBgPK+FaGs4Gz8/n89l7jCoXCXjtRt4kp27jLJUOD5EIzLNU9ISIicTaaMQ1pYMF4VWTSSCQhk4WSX0K6zxqtC5pyKSIicdZRaCgUCrqF9ljK9g2HhmlWHj6slgYREYkzhYEohMY1TKUyvK8xDSIiEmeRhwYz28/MzjOzu81srZltMrNlZvYZM5vapvz+ZnaDma03sy1mdoeZHTPCeyfM7Awze9jMima2yszOb/e+XTViaFBLg4iIxFfkoQG/ONQZwGPAecAngT8DXwTuNLPh37Bmti9wJ3Ak8NWgbD9wk5kd1+a9LwC+jr+d90eB64CPATeaWXSfPRQa+mqh7glNuRQRkRjb4RUhx9APgS8758ILQ33LzFYAn8GvD/EfwfEvA7sAr3TOLQMwsyuAPwKXmNkBzjkXHD8IHxSud869o/7GZvYEcBFwInD1OH6ukYXWapjiSkAGUPeEiIjEW+QtDc65+1sCQ901wfYVAEGXwtuAW+uBIXj9ZuByYD9gSej178ZPFb2w5X0vAwaAk8eg+jsm1NKQC7U0qHtCRETiLPLQsA316Z3PBttFQBa4q03Zu4NtODQsAWpA04qVzrkisKylbHdlw6GhNLyvlgYREYmzWIYGM0viF5Gq0OhC2CPYrm7zkvqx+aFjewDrnHNDI5SfY2aZEb7+qWZ2/6gr3qlc+9CgMQ0iIhJnsQwN+C6FI4CznXN/Do5NCbbtQkCxpUx9v13ZkcoPc85d6pw7rOPajlaopSFbUUuDiIj0htiFBjP7AnAacKlz7suhUwPBNtvmZbmWMvX9dmVHKt89oZaGTLWRa9TSICIicRar0GBm5wKfBf4T+HDL6TXBdj5bqx8Ld12swXdBtAsO8/FdF6U258ZfODRUGqGhVFVLg4iIxFdsQoOZnYO/g+YVwCn1qZMhy/HdDUe2efkRwTY8DuE+/Od7VcvXyQGLW8p2V6h7IhXunlBLg4iIxFgsQoOZnQ2cC1wJvN85t9Wf3MHUyhuBo83s4NBr+4FTgBU0z5S4BnDAx1ve6oP4sQxXjd0nGKVQS0O6XBze170nREQkziJf3MnMPgJ8HngKuBn4ezMLF3nWOffLYP8s4FhgqZldAGzEh4D5wPHh1gnn3HIzuwQ4zcyuB34OHIhfEfI2olrYCZpCQ7Ic6p7QXS5FRCTGIg8NNNZL2BP4rzbnbwN+CeCce9TMjgK+ApyJX0rxAeBNzrmb27z248BK4FTgeGAdcDF+VkZ0v6FD3RPJUnG4vadUVUuDiIjEV+ShwTn3PuB9oyj/EPD2DstWgfODR3w0tTQUh+d4qKVBRETiLBZjGiadUEtDYkhjGkREpDcoNEQh1NJgpUZo0OwJERGJM4WGKIRCA8XB4d1SpcbWM01FRETiQaEhCqk0JJMAWLVCzvxYBgeUtcCTiIjElEJDFMyaxjXMSDS6JXT/CRERiSuFhqiEuiimhUKD7j8hIiJxpdAQlVBLw/REZXi/rJYGERGJKYWGqIRbGqwRGjTtUkRE4kqhISqh0NBPIzRoTIOIiMSVQkNUQt0TU8MtDRrTICIiMaXQEJVwS4MrD++rpUFEROJKoSEqoZaGKU3dE2ppEBGReFJoiEqopWFKrdHSoO4JERGJK4WGqIRCQx+N0FBUaBARkZhSaIhKeJ2G0EDI5zcV25UWERGJnEJDVEZYp2HtRoUGERGJJ4WGqIRCw9TQQMh1amkQEZGYUmiISqh7IhcaCLlOLQ0iIhJTCg1RCbU0ZKtDw/vrNg5GURsREZHtUmiISqilIVUeIpkwADYOljXtUkREYkmhISqhlgYbGmT2tNzwc41rEBGROFJoiEooNDA0yJxwaNC4BhERiSGFhqiEQ0NxkDnTw6FB4xpERCR+FBqikmmEBIaKzJmWGX6q7gkREYkjhYaoJBKQbQSHebnG/wot8CQiInGk0BCl0AyKXXM2vK8xDSIiEkcKDVEKjWuYk3HD++qeEBGROFJoiFKopWFWuja8r5YGERGJI4WGKIVaGmYkqgTrO7F+yxDlam2EF4mIiERDoSFKoZaGZLnIrP7GwEjdIltEROJGoSFK21yrQaFBRETiRaEhSrnQWg1FrQopIiLxptAQpdyUxn5LS8PaTVoVUkRE4kWhIUrZ8KqQ6p4QEZF4U2iIUktLw9xpjTEOCg0iIhI3Cg1Ryrbcf2K6bo8tIiLxpdAQpaaWhgF1T4iISKwpNESppaVhdmj2xAubi1RrWuBJRETiQ6EhSi0tDelkgplTswDUHLyweSiiiomIiGxNoSFKueaWBkBdFCIiElsKDVFqaWkAtMCTiIjElkJDlMJjGopbtzSs1QwKERGJEYWGKLVpaZjb1D2hVSFFRCQ+FBqilG0zpkHdEyIiElMKDVFKZyCZ8vvVCpRLzJkeWhVS3RMiIhIjCg1R29aqkGppEBGRGIk8NJjZWWZ2nZk9bmbOzFZup/z+ZnaDma03sy1mdoeZHTNC2YSZnWFmD5tZ0cxWmdn5ZjZ1XD7MjmhdFXJa81LSNeciqJSIiMjWIg8NwJeAY4DHgPXbKmhm+wJ3AkcCXwU+CfQDN5nZcW1ecgHwdeBPwEeB64CPATeaWRw++1ZrNWTTSab3pQGo1hwvbtECTyIiEg+pqCsA7OucexzAzP6ADwEj+TKwC/BK59yy4DVXAH8ELjGzA5zzf5qb2UH4oHC9c+4d9TcwsyeAi4ATgavH/NOMVru1Gqb3sXGwDPguiln9uXavFBER6arI/9quB4btCboU3gbcWg8Mwes3A5cD+wFLQi95N2DAhS1vdRkwAJy8w5UeS9tZq0HjGkREJC4iDw2jsAjIAne1OXd3sA2HhiVADbg3XNA5VwSWtZSNznZWhdQCTyIiEhe9FBr2CLar25yrH5vfUn6dc67doIDVwBwzy7T7QmZ2qpndv8M1HY2mlga/mNNctTSIiEgM9VJoqP9J3i4EFFvK1PdHGkXYrvww59ylzrnDRl3DHRFuaRjyoWGOVoUUEZEY6qXQMBBss23O5VrK1PfblR2pfDTatDTMmaYFnkREJH56KTSsCbbz25yrHwt3XazBd0G0Cw7z8V0XpTGs347JNQJCu5aGteqeEBGRmOil0LAc391wZJtzRwTb8DiE+/Cf71XhgmaWAxa3lI1ONhQahlsamsc0OC3wJCIiMdAzoSGYWnkjcLSZHVw/bmb9wCnACppnSlwDOODjLW/1QfxYhqvGs74da9PSMCWbYmrWL6FRrtaG12wQERGJUuSLO5nZe4C9gqdzgYyZfTZ4/qRz7spQ8bOAY4GlZnYBsBEfAuYDx7vQn+TOueVmdglwmpldD/wcOBC/IuRtxGFhJ2gODcXGoMc503NsWbsZgLUbBpkxpe1EDxERka6JPDQAHwBe13LsC8H2NmA4NDjnHjWzo4CvAGcCGeAB4E3OuZvbvPfHgZXAqcDxwDrgYuBs51xt7D7CTmgKDY3xC3Om9/FkEBrWbSry0nkzul0zERGRJpGHBufc0aMs/xDw9g7LVoHzg0c8hcc0DDUmc8ydpsGQIiISLz0zpmHCGrGlQWs1iIhIvCg0RK1p9kSjpaEpNGitBhERiQGFhqg1zZ4ItTRM01LSIiISLwoNUcu1b2mYOz20KqRCg4iIxIBCQ9QyoWWkS0NQqwItq0Ju0gJPIiISPYWGqCUSzfefCLoopmZT5NJJf6hcZXOxEkXtREREhik0xEGbcQ1mphkUIiISKwoNcRC+PbZmUIiISEwpNMRB0+2xG+FgbugW2VrgSUREoqbQEAedtDQoNIiISMQUGuKgzUBIaO2e0JgGERGJlkJDHIRbGgY2De9qgScREYkThYY42HVeY3/5fcO7c6frplUiIhIfCg1xcNhrG/vL7h4e1zAnvCqkZk+IiEjEFBri4CV/BfP39vulIfjdnQBM70uTTvr/RQNDFbYMlSOqoIiIiEJDfBz++sb+3bcA7RZ4UmuDiIhER6EhLg4/urH/p9/BhvUA7LZLo4ti2crnu1wpERGRBoWGuJi9G7zsFX7f1eC+2wB4zQGNQZI/vf9J3bhKREQio9AQJ0eEuiju8V0Uxy6cz5RMCoCn1m3mwSfV2iAiItFQaIiTV74Wkj4g8MSf4dnVTMmmOHbR/OEiP73/yYgqJyIik51CQ5z0T4OFhzWeB60Nb3nlXsOHfvPwszyv6ZciIhIBhYa4OfyYxv49t4Bz7L3rNBbtNQuAmnP8/IGnIqqciIhMZgoNcXPw4Y1lpZ9dDSsfAeCth+09XOTnDzxFpVqLoHIiIjKZKTTETSYLh7668Tzoonj1/rsxqz8LwAubh7jrz89GUTsREZnEFBriKNxFce9tUK2SSiZ48yF7Dh++8bcaECkiIt2l0BBHBx4MM2b6/Y3r4eFlAPz1oXuSMAPgwZXP8+TaTSO8gYiIyNhTaIijRBKWHN14HiwrPWd6jlfvv9vw4Z+qtUFERLpIoSGuwgs9PfAbfyMr4K2HNaZf3vzgagZLlW7XTEREJimFhrja62WwW7Co09AgPHgPAAfvPZuXzJ4KwECpwq+Wr46qhiIiMskoNMSVGRwRXrPhV8Fha2ptuFH3oxARkS5RaIizV4W6KJbfD4/+CYDjFi0gm04C8MRzm/jjqvVR1E5ERCYZhYY4220P+KsD/H61Al/7FNz2c6bm0hy7sHE/iht1PwoREekChYa4O+kj0D/d71crcOVFcMU3eMvBewwXufWPa7jgxt+zpViOqJIiIjIZKDTE3V4vg89eBC/Zt3Hs9v9h3yu+wNELssOHfrFsFR/69u389vG1EVRSREQmA4WGXjBndzjzfDg8NMbh8Yf5l+Xf4e/nlYYPrd1Y5NNX3cs3fracgSFNxRQRkbGl0NArsjk45VPwrlMh4f+3JTau5733fYdLd3uChfYiBLMofv7AU3z427ez7Il1EVZYREQmGtN0vZHl83kHUCgUoq5Ks4eWwbe/DJs3NB3ekJvBbek9ubtvH36fW0DZkizeezaH7DOHxfvM5mXzZpBMKCeKiMg22YgnFBpGFtvQAPD8s3DJF+CpR9ueHrA0D/TtyZ+yu/N4eg6PZ+ZQnjKdRXvOYvE+c/wiUXP6SScVIkREpMmIoSHVzVrIGJq9G3z6Ar/E9LK74Q/3w8Dm4dNTXJnXDDzGawYeGz72fHIKTzw1h8fvncOP0rNYn+onPWMG/XNns8uuc9lt15nMnz2V+bOmMnd6Tq0SIiLSRKGhl6XS8Kqj/aNSgUf/CA/e7UPE2r9sVXx2dYDZ1ac4rPhU4+CzwCN+d8iSbEz0sSGRY3VyCgO5fipTp8O0maR2mUl2zhz6Z89m9pwZzJ49g1TfFD/WIp3xK1iKiMiEptAwUaRScMDB/vGuU+Evq/wttVc9Dk8/gVu9EgtuejWSrKsyt7qZudXNUAaKwIvb/9IOo5LKUMvkcLk+rG8qialTSU3tx/qmQN9UyPVBbkqwDe1np0Am4+ufTEM6DclUY5tKj10gqVWhXPZBR0RERk2hYSIygz329I/6oVoVnvsLPO1DBM+sprZpA5UNL+I2byA1sJlkbcemaRqOdGUIKkMwsGH7LxgFZwnIZiGTg1wfls35/WzOB4tU2rd0pILAkcpAwmDLJti8ETZt9ANGN2/03TfO+ddOnwm7zIIZ9cdM6J8RBJUUJJM+xCSTjWOpIMQMP1L+XDI5fCV8wDHfI1jfD041P7fGe3cSiqpVKJd88Mn2hb6miEj3KDRMFokk7L7APw57rT8EZOrnnYOhov8Fu2kD5RdfYPNzaxlct47SCy9Q27Ce5OYNJItbSJSGSFdL5FyZbK1Chuq4VdtcDYqD/rFxjO6xMVT03TdtunAiEQ4hqSCoVCpQKfugUClDrdb8mkwW+qb4Fpu+qX4/m/Plhh/VxtY5P1XXEv57IZHwYaV+LJxbmkJMEISGH4nGfjrTaDnKhlqQ6vUoFf0t3cOPcml4anBbiXpIC7aJpL8eZsH3wYDfDgbboQEfqKZO8yun9k+HqdNhWrDtm9qm9SrTCIYjqVZgaAjK9bqXgvoP+f9Hw5839PnrLVjOBY8a1Jy/FpUSvPgCrF8H69f67QvBdnAA5uwG814Cuy3w290XwJT+7X/v1Gqh6xtc76GiP5fOhB71cJ1pXE+ZGIaK/ntq9m7+//E4U2gQz6zxA3DO7qSBmcGjnaFylWdfHGDN+gGeeX4Ta9dtYMuLGyht3kxly2aqW7ZggwP0uRJTa0NMqZXpcyWm1MrkXJkptRJ9wbGMq5JyVdKuRpr6fvCgNkINdkyJBJkxfs+dVin7x2jUf1Fs0M3KJoRVj8HvWo5Nnwmz5gSho9wIkuFAWS61fbttMtu6xazeUgc+6LggeA5vXRC8wgEk3QglyWQj8CUTjcCXSPj6Vsu+a7BaadTf1RpBJlMPN1n//pls6P1bWhTrf+AUB/x2aBCKwRZ8uUy2Ubf6PjSCdLXqv361unUgb71WiWQjZKZCrY+JhL/+w6GyGDwvNf97tuH/NAL3cMto6JFOh1o3W0JzMglbNsMLz/mw+cLaxv7mjf69P/MN2Gf/0X8/jJJCg+yQbDrJnnOnsefcacBubctUazU2DpTZMFCiWK5Sqdao1GpUq45KrcaWquPFao0tRV9mw0CJjcF2w0CJjYNlyqUyyfIQyfIQqcoQOVchFwSPtKuSCcJFxlWCkFEl6RybElk2JPvYmMgF2z42JbLUMKa6ErOqW5hV2cKs2oDfrw4wtTZEytX8gyopVyPpaqSoDQeZFLVQyPEPw1HveDD8X9HmXOiP98Z5gjKGI+kcqQ4DTBWjYklqliBbK2lVtslg4/qxa10Lc27HA4fE1wtrFRqktyUTCWb2Z5nZn91+4Q445yhXa5QrNcrVGqVg23he9dtyjc3FMluGymwaLPv9YoVNxTLFUmW4adaATcBmg6eAUqXGxoESGwdLbBwoU66Of4uEOUeKoJUlCCMpalRIULIkZUtSshQ1C8UE58i5MlNrJaa4ElNqJabWSmRdmRoJqmbUSFDDqJrfOiCBI4kj4WokQsGlHnTq1yT0hYaDkDm/TdSPOUfWVehzZfpqpWDrW476amWqlqBoKYYsTcmSFBNpSpbCpTKhdWit6euaQQpHmhpp84Eqg98mzSilMpTSWcqpHOVUlnImRyWVxZIJcqVB+soD9JUGmFIeoK+0hSnlAbLVEilXI+0qQSCskKpVSdaqmKs1WulDPSaGwyVTuHQWl8lCJotlsySyOSyTwSplGCpixUEYGvTbUhGrdwskElt157hkEqbPxM2ci82cA7PmkJi1K8ycA7mcH2/07NN+APMzT8OzqztvfcoEY34yWd9Fksn6C1oOtUaUy0FXS8n/hS0TRzLpv4+q49dNHDahQ4OZJYDTgQ8BewNrgWuBs51zWyKsmuwAMyOTSpJJjf8gQOccxXJ1uPVjsFRtaiWpbyvBtlQJQkulsV8PNZVqUC7YL9f8vnPOtwQ7F3SD++fVWo1iuQqlCtWhKq7UMkDVjKJlKCYyPI///ZBJJTAz/7qJrBo8hoCmf8E5mjrTUoztT7dS8GiVDR6d2hw8VoFRJpV8lsRwdtoVx66QeyWJPWvMrWxiZm2QRCpNIpPGUmmSmQyJTIZUxjfXVxMpXML/exhuybJ6i7gF7+23ZubH3+LIuCoZ/MN3C/rQmkgYyVSSZDJJIpkgmUwFzxMkXY1EtUyyWiZZrZColEnWyiQrZVy1CtUqrloJ9itQrWA1RyKdJpHJkMxkSGUypLLBI5UiWauQqvj3TFTL/j2rJR/MgtDj6uN6ymWsXKIGVDM5KukslVTWB8hUhlIyQzJhZF2VHBX/GV2FVLVMolxqdDUkEsG4jmCbSNAal4e5YExQpeJ/KVfKflsNxhmls75rJZMN9oPn9Vlf4fE79f369al/xkrLI7iW1OrXsea3uT6YNRdm7Rps58LsXWH6Lv5zdcmEDg3ABcDHgB8D5wMHBs8PMbPjnFPklvbMjL5Mir5Mit13mRJpXWrOUSxVGSxVKJarpJMJMqkEmVSSdCpBKmFY8CdzzTkGSxUGhloepQqlcpWhig8kQ+UqpXKVYsV3G9W1jlGsVBshaKhSo1SuDj/3YyuDX0Tm65BI+F9QpUrN1zeo92Cp2pWWm17iYJvXZJVNY1Vymi84RCgolYPHQBdq2YnRJrQqMNhyzPDDsjPA1DGqV0Nfxv+xkTAjmfCPRMJIBt+zPmhZ0/hQM2tMegodA583SELCDKtAompYMRTO8P8WnfPb8D6Oxtcf3iZIpiGR8S1U9a8bDn8JM1LJBMkhI/VcguS6KunksyQTz5FKJjj6oD3Ye9dpY37tWk3Y0GBmBwEfBa53zr0jdPwJ4CLgRODqiKon0rGEGVOyKaZkt//PNWHG1Gyaqdl0F2o2OpWqDyz+56Yb7hKo5xTnHNWaa7TMBC051VqNSs2fqwatPNXgeaVWo1Zzwz+ogaZZrpWaY6hcpRgErmKp6rdlH2Jc6If58A/4mu8Gq4erYqnKUKX+Wt/qY9b4BZGwxi8d/3nccPhyzuGCba3mW5F8vbV8fzcNlqoMliZ2K9xLd5+u0LCT3o3/uXFhy/HLgK8AJ6PQINI1qWSCft3rBGjuiqrVXNOfs+GG8przoaf+KIa2larz4QuaAlg9qNRzWf2vWx+M/NetuVAIqwewekAbDmzN+zVXf8+tQ1EyYaQSieG/nusP8K1O9cA2VK4Mh7ZSuea/fr0u1Uadas6RGG65CkJZENCSCRtubUunEsF+knQy4QdYFytsGSqzZajCQNG3sk0GqS7925rIoWEJUAPuDR90zhXNbFlwXkSk68yMpEGyg77ovsxE/jE9/qo1R7FUoVxtBKRGaPItS8NBi3oXXTDOKPQ+9Zs7hlvGwq1U4TFKtWBZlES9284a+1CvQz00Nlqg6gGvNfzVuzjCLW/1UFcPei+Z3cG6HmNgIn837gGsc861Wzt5NfBqM8s45zTvSERkgkomjKm5+HXX9aqJ3FY4BT90qJ1iqMxWzOxUM7t/XGolIiLSoyZyaBhg5MlQuVCZrTjnLnXOHTYutRIREelREzk0rAHmmFm74DAf33WhrgkREZEOTeTQcB/+870qfNDMcsBiQN0PIiIiozCRQ8M1+EGoH285/kH8WIarul0hERGRXjZhZ08455ab2SXAaWZ2PfBzGitC3obWaBARERmVCRsaAh8HVgKnAscD64CL8fee0Jq2IiIiozChQ4Nzroq/58T5UddFRESk103kMQ0iIiIyhhQaREREpCMKDSIiItKRCT2mYazk8/moqyAiItItrlAoWLsTamkQERGRjlj9dp/SHWZ2v+5r0UzXZGu6Js10Pbama7I1XZOtjfU1UUuDiIiIdEShQURERDqi0NB9l0ZdgRjSNdmarkkzXY+t6ZpsTddka2N6TTSmQURERDqilgYRERHpiEKDiIiIdEShYZyZWcLMzjCzh82saGarzOx8M5sadd3Gm5mdZWbXmdnjZubMbOV2yu9vZjeY2Xoz22Jmd5jZMV2q7rgzs/3M7Dwzu9vM1prZJjNbZmafaff9MNGvBwx/xqvM7CEz22BmA8G/la+b2bwRyk/oa9KOmU0xsyeCf0f/0eb8hL8uwWdv99jcpuyEvx4AZjbLzP7dzB4Nfr+sNbNbzOz/tJQbs+uhFSHH3wXAx4Af4++2eWDw/BAzO26C36L7S8ALwAPALtsqaGb7AncCFeCrwAbgg8BNZvZm59zN41vVrvhH4CPAT4CrgDLweuCLwLvM7Ajn3CBMmusBsACYh//38TT+8y7E387+RDNb7Jx7DibVNWnnPGBOuxOT7LrcwdYD+8rhJ5PlepjZXsCtQD/wHeARYAawCJgfKje218M5p8c4PYCDgBrwo5bjHwUc8PdR13GcP/9fhfb/AKzcRtlrgSqwOHSsH3gS+DPBoN1efgCHATPaHP9i8P1w2mS6Htu5Vn8bXJNPTfZrAhwa/MD/5+Ca/EfL+UlxXYLP/t0Oyk2W63EHsAqY183roe6J8fVuwIALW45fBgwAJ3e7Qt3knHu8k3JB0/zbgFudc8tCr98MXA7sBywZjzp2k3Pufufchjanrgm2r4DJcz2248lgOxMm7zUxsyT+58UvgOvbnJ9018XMMmbWP8K5SXE9zOy1wGuArzrn/mJmaTOb0qbcmF8PhYbxtQTf0nBv+KBzrggsYwJ8846RRUAWuKvNubuD7US+VguC7bPBdtJdDzPLmdkcM1tgZm8Avh2c+nmwnXTXJHAGcABw2gjnJ9t1eSf+D65NZvacmV1sZjNC5yfL9fjrYPuUmd0IDAJbzOwRMwv/MTrm10OhYXztAaxzzg21ObcamGNmmS7XKY72CLar25yrH5vf5lzPC/6SPBvf/Hx1cHgyXo9TgLX45tab8GNgTnbO3RGcn3TXxMz2AT4PnOecWzlCscl0Xe4FzsUHh/cCv8KHqTtCLQ+T5XrsH2wvA2bhr8cHgBJwpZm9Pzg/5tdDAyHH1xSgXWAAKIbKlLpTndiqN6u1u1bFljITzYXAEcCnnXN/Do5NxutxA/Awvq/1EHyT6tzQ+cl4Tb4JPAF8fRtlJs11cc4d3nLoCjP7PfCvwOnBdrJcj2nBdhPweudcCcDMfgw8DnzJzP6LcbgeamkYXwP4pqF2cqEyk139GrS7VhP2OpnZF/B/KV3qnPty6NSkux7Ouaedczc7525wzp2D/8vp38zsrKDIpLomQRPzG4APO+fK2yg6qa5LG1/D/9F1fPB8slyPwWD7/XpgAHDOrcfPztod3xox5tdDoWF8rcF3QbT7HzYf33Ux2VsZwF8naN9MVj/WrnmtZ5nZucBngf8EPtxyetJdj1bOud8DvwPywaFJc02Cnxdfx4/neMbMXmpmLwX2CorMCI7twiS6Lu0EgWoNjemok+V6PB1sn2lz7i/BdibjcD0UGsbXffhr/KrwQTPLAYuB+yOoUxwtxzefHdnm3BHBdsJcKzM7BzgHuAI4xQVzoEIm1fXYhj58fy1MrmvSh++aOR5YEXrcGpw/OXh+CpPrumwl+Fm6gMYg4slyPeqD6xe0OVc/9hzjcT2inms6kR/4RWq2tU7DyVHXsYvXYnvrNFyHn0t8cOhYfS7xI0ycudVnB//vrwASuh7sPsLx1wef/38n4TVJ4wf7tT7+Kfje+Z/g+X6T5boAs0c4/jW2Xs9jMlyPmcBGfItDf+j4PGAz8Mh4XQ/d5XKcmdnF+H7rH+ObG+srQv4GOMZN4BUhzew9NJpUPwpk8KtiAjzpnLsyVPal+PRcxq+iuRG/atlC4Hjn3E3dqvd4MbOPAP8BPAV8Dh8ow551zv0yKDvhrwcMD9yahx8J/yS+n/WVwIn4vtajXTC/fLJck5GY2d74gZGXOOdOCx2f8NfFzC7A/2V8C/7fTz9+2uHrgXvwgwHrq6lO+OsBYGan4qcm/xH4//A/X/8J/+/pLc65pUG5sb0eUSemif4AksAn8CtvDeH7j75OKB1O1Ae+OdWN8Li1TfkDgf8GXsT/wvg1cFzUn2MMr8d3t3E9tromE/16BJ/xXcDP8FMti/gBXg8DFwN7Trbvke1cq71psyLkZLguwNvxU3FXB98nW/Br3XwayE226xH6nCfg11vYgp9JsRQ4ajyvh1oaREREpCMaCCkiIiIdUWgQERGRjig0iIiISEcUGkRERKQjCg0iIiLSEYUGERER6YhCg4iIiHREt8YWkQkvn8+fi7/fx+sLhcKt0dZGpHcpNIjIduXz+U5WgdMvZJEJTqFBREbj89s4t7JblRCRaCg0iEjHCoXCuVHXQUSio9AgImMuPIYAf6fTjwMH4G+q81Pg04VC4Zk2r3sZ/g6gxwJzgXXAzcAXCoXCijblk/g79r0HeAX+Tn+r8TdL+7cRXvNO4FNB+SL+Jj+fKBQKq3fiI4tMCpo9ISLj6QzgW8CDwIX4u72+H7gzn8/PDRfM5/NLgPuBk4H7gH/H38HvJOD+fD5/WEv5DPAL4JvAS4CrgYuA3wL/FziqTX3ywPfwXSmXAH8A/g64OZ/PZ3f2w4pMdGppEJGOBS0I7RQLhcJX2hx/M3B4oVD4Xeg9LsC3PHwF+EBwzIArgOnAyYVC4apQ+b8DfgB8L5/Pv7xQKNSCU+cCxwE3An9bKBSGQq/JBu/V6k3AkkKhsDxU9mrg3fjbL1870mcXEbU0iMjonDPC48wRyl8ZDgyBc4ENwN+H/rp/Nb774q5wYAAoFArXAL8G9gdeA8PdEnlgEPhwODAErxkqFApr29TnonBgCFwWbF81wmcQkYBaGkSkY4VCwUb5ktvavMeGfD6/DHgdcCCwDDg0OP2rEd7nV/jAcAhwOz5gzADuKRQKa0ZRn/vbHFsVbGeO4n1EJiW1NIjIeHp2hOP1QZAzWrZ/GaF8/fguLdvRDl58sc2xSrBNjvK9RCYdhQYRGU+7jXB892C7oWW7e5uyAPNayr0YbOfvcM1EZNQUGkRkPL2u9UA+n58BLMZPd3woOFwf93D0CO9TP/5AsH0YHxwW5fP5PXa+miLSCYUGERlP78nn84e0HDsX3x3x/dAAxt/gp2O+JlhHYVjw/LXAI/gBkRQKhSpQAPqAb7VOl8zn85nWKZ0isvM0EFJEOraNKZcANxQKhWUtx/4H+E0+n78WPy7hNcFjJaEZF4VCweXz+fcCvwSuyefz/41vTdgf+Bv8olD/EJpuCX5J68OBtwKP5PP5nwblXgK8Afgk8N0d+JgiMgKFBhEZjXO2cW4lfiZE2AXAj/HrMvwdsBn/i/zThULhuXDBQqFwT7DA02fx6y+8Fb8i5PfxK0L+uaV8KZ/Pvwn4MPAPwHsBA9YEX/PXo/1wIrJt5lwnN68TEemcbkUtMjFpTIOIiIh0RKFBREREOqLQICIiIh3RmAYRERHpiFoaREREpCMKDSIiItIRhQYRERHpiEKDiIiIdEShQURERDqi0CAiIiId+f8BCll9FEpFiNcAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 576x432 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAGdCAYAAACo8fERAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABOMUlEQVR4nO3deXyrZZ3//9cnaZp0Oz371iMcPCwH5IAgm4CyqLiO29cFt1FGhtGMjDozOiOjclQGx2UUfzhRQUcFcQVRccaNkYOC7IssHjgcDucczr73dEuTNtfvj+tOm/akbdqkzZ32/Xw8wp3cW67cLSfvXtttzjlEREREJipS7QKIiIhIbVOYEBERkbIoTIiIiEhZFCZERESkLAoTIiIiUhaFCRERESmLwoSIiIiURWFCRCrKzL5jZi54ZM1s4Rj7v75gf2dm7xlj/6sK9r2shPKsHnb+0R5Xje/TiggoTIjI5KoD3j7GPn9d6snMbPj53j2OsuSAnWM8Do7jfCISqKt2AURk2toMHIYPC1cV28HM5gKvBjqBDDB3jHO+ClgA3A4sBo4xszOcc3eXUJ5nnXPLSyq5iIyLaiZEZLLcBTwNnGRmzxthnwuBeuAmoKeEc+ZrIr4fPArXiUiVKEyIyGS6PliO1JSRX3/dWCcKajFeg6/BuBG4Idj0VjOLl1NIESmPwoSITKZ8mHiHmQ3598bMjgZOB54F1pRwrrfhazF+7Zzb55x7GrgHmAO8tmIlFpFxU5gQkUnjnNsA3Am0AecP25yvlbjBOZcr4XT55owbCtbdMGybiFSBwoSITLZ8E8ZAU4eZGfDOYdtHZGbHAqcCHcAtBZt+BPQBLzezRWOc5jlmtmOMx0h9O0RkFAoTIjLZfgykgTeaWVOw7hzgcOB+59zaEs7xnmB5s3NuoKOmc24XcCt+ZNo7xjhHBFg0xiNWQllEZBiFCRGZVM65A/jahCbg/wWrx9PxMsJgLcb3i+ySb+oYa76KTc45G+Px8FjlEZFDKUyIyFTIh4Z3mVkDPlRkgR+UcOzLgKVAvhZiuJ8B3cCJZnZi+UUVkfFSmBCRqfBrfBg4H/gAMAv4lXNuTwnH5jtXLgT6hk+Bje9H0ThsXxGZQgoTIjLpnHN9wA/x/+b8e7D6+pGP8MxsFvD6cbzVO4Ipt0VkCilMiMhUyTd1xID9DB2VMZK3AA34uSjmjPKYB+zF1168oqKlFpExKcGLyJRwzj1gZquBFuAR51xvCYflmy1+GnTkHJGZ/Rz4m+CYX5ZRVBEZJ4UJEZkyzrlPlbqvma0Azg5e/rSEQ36KDxN/ZWZznHP7J1BEEZkAhQkRCav8UM+dwB0l7P87/C3EZ+FvIPa1YdufY2Y7xjjHn5xzbxxXKUVEfSZEJHyCGTLzYeLnpUy37ZzLMNi8UWxURymTVo11C3QRKcKcc9Uug4iIiNQw1UyIiIhIWRQmREREpCwKEyIiIlIWhQkREREpi8LEOCWTSZdMJtVrVUREJKB5JiZOgUJERGYSG2mDaiZERESkLAoTIiIiUhaFCRERESmLwoSIiIiURR0wKySbzbJlyxbS6XS1i1IzEokEy5YtIxaLVbsoIiJSBoWJCtmyZQstLS0sX74cf48iGY1zjr1797JlyxaOOOKIahdHRETKoGaOCkmn08ybN09BokRmxrx581STIyIyDShMVJCCxPjoeomITA8KEyIiIlIWhQkREREpi8LENLJx40ZWrlzJxRdfzPHHH8873vEObr31Vs466yyOOuoo7r33Xu69917OPPNMTjrpJM4880yefPJJAPr7+/nIRz7CqaeeygknnMA3vvGNKn8aERGpFRrNMQle/pn/mbRz/+YTrx51+/r16/nJT37CNddcw6mnnsr3v/997rjjDn7xi19w5ZVXct111/GHP/yBuro6br31Vi677DJuuukmvvWtb9Ha2sp9991Hb28vZ511FhdccIFGWoiIyJgUJqaZI444glWrVgHwvOc9j5e85CWYGatWrWLjxo20t7fz7ne/m6eeegozI5vNAvDb3/6WRx55hBtvvBGA9vZ2nnrqKYUJEREZk8LENBOPxweeRyKRgdeRSIS+vj4+8YlPcN5553HzzTezceNGzj33XMDP+3D11Vfz8pe/vBrFFhGRGlb1MGFmRwPvBC4AVgAJ4GngJ8BVzrmuYfsfA3wOOAeoBx4ELnfO/X4c79kKXAG8EZgXvN9Xga8758q+tfhYTRGFtuztpLu3D4C2uU00JSZ3Nsj29nba2toA+M53vjOw/uUvfzlf+9rXOP/884nFYqxbt462tjaampomtTwiIlL7wtAB82+AD+O/0D8NfAR4Ev9l/ycza8jvaGYrgD8BLwQ+H+zbDPzGzF5aypuZWT3wO+B9wI+AS4P3SwGXV+YjlS5SMNdCrvwcM6aPfvSjfOxjH+Oss86iv79/YP3FF1/Mcccdx8knn8zxxx/P3/3d39HX1zfp5RERkdpnFfhDvLwCmJ0CPOWcax+2/grg34BLnXNfDdb9GPh/wAuccw8H65qBx4E0sHKsmgUzSwL/BfyDc+7qgvU3AX8FHOWc2zTS8clk0gGkUqkh69euXcuxxx5bykceYsf+bg72ZABYNLuR1sb6cZ+jlk30uomIyJQbcabBqtdMOOfuHx4kAj8KlscDmFkT8FpgTT5IBMd3At8EjgZOLeEt3w50A9cOW38VEAPeOo7il80KfgLVDnYiIiITUfUwMYplwXJnsDwBiAN3Fdn37mA5apgwswhwMvCQc274TSHuBXJjnaPSprqZQ0REpNJCGSbMLAp8EugDvh+sXhostxY5JL+ubYxTzwEaip3DOdcL7C3hHBVlQ8LEVL6ziIhIZYQyTOCbHM4APumcezJY1xgse4vsnx62z0hGO0f+PEXPYWaXmNn9Y5x/3CIFLVBq5hARkVoUujBhZp8BPgBc45z7bMGm7mAZP/QoEsP2Gclo58ifp+g5nHPXOOdOGeP846ZmDhERqXWhChNmthr4OPBt/NDNQtuCZbFmiPy6Yk0ghfYDPcXOYWZx/JwTY52jogqbOVxuKt9ZRESkMkITJszscvw8D9cBFxcZ4vkovnnihUUOPyNYjtoM4ZzL4Se5OikID4VOw1+PijdljKawmUM1EyIiUotCESbM7JPAauB64KLgS3+IYAjoLcC5ZnZiwbHNwMXAU/gRGfn1MTNbaWaHDTvVD/D9Ii4Ztv5D+A6fPy7384xHpIodMJubm6f2DUVEZFoKw3Tafw98CtgM3Aq8vbDqH9jpnPtd8PxjwEuA35rZl4GDwN/imy1ePaw2ow1YC9wOnFuw/lrgIuBLZrY82OdVwBuAK5xzz1Ty841lSDOHaiZERKQGVT1MMDivw2HAd4tsvx0//TXOufVmdhbwH8C/Mnhvjlc4524t5c2cc5lg6u0rgLcxeG+OS/EzY5bv4leUvGsjfratkn3z1yNu+pd/+RcOP/xwkskkAKtXr8bM+MMf/sD+/fvJZrNcccUVvO51rxvzbdasWcPll1/OokWLePjhh3njG9/IqlWr+MpXvkJPTw8/+9nPWLFiBbfccgtXXHEFmUyGefPmccMNN7Bo0SK6urq49NJLefTRR+nr62P16tUlva+IiNSeqjdzOOfe45yzUR7nDtt/rXPudc652c65Rufc2cWChHNuY7Hjg20HnHMfcM4tdc7FnXPHOee+WombfFXThRdeyI9+9KOB1z/+8Y+56KKLuPnmm3nwwQe57bbb+Kd/+qeSa0D+/Oc/85WvfIVHH32U66+/nnXr1nHvvfdy8cUXc/XVfibys88+m7vvvpuHHnqICy+8kM9//vMA/Pu//zvnn38+9913H7fddhsf+chH6OrqGu3tRESkRoWhZkIq5KSTTmLXrl1s27aN3bt3M2fOHJYsWcKHP/xh/vCHPxCJRNi6dSs7d+5k8eLFY57v1FNPZcmSJQCsWLGCCy64AIBVq1Zx2223AbBlyxbe+ta3sn37djKZDEcccQQAv/3tb/nFL37BF7/4RQDS6TSbN2/WfThERKYhhYnJMEpTxHD9uRxP7zgIQCRiHLm4tay3ftOb3sSNN97Ijh07uPDCC7nhhhvYvXs3DzzwALFYjOXLl5NOD59JvLh4fHDASyQSGXgdiUQG7ih66aWX8o//+I+89rWvZc2aNaxevRrw/T9uuukmjjnmmLI+j4iIhF/VmzlmuqEdMMs/34UXXsgPf/hDbrzxRt70pjfR3t7OwoULicVi3HbbbWzaNOINUSekvb2dtjY/bcd3vzvY5eXlL385V1999UCTykMPPVTR9xURkfBQmKgyK/ivc67suSae97zn0dHRQVtbG0uWLOEd73gH999/P6eccgo33HADK1euLLvMhVavXs2b3/xmXvSiFzF//vyB9Z/4xCfIZrOccMIJHH/88XziE5+o6PuKiEh4WI33OZxyyWTSAaRSqSHr165dO+H+AOt3tJMLJplYsXgW0cjMyXjlXDcREZlSNtKGmfOtFWLVnLhKRESkXOqAGQKFc3S5nIPo1L33o48+yrve9a4h6+LxOPfcc8/UFUJERGqawkQIVPPOoatWreLhhx+e0vcUEZHpRc0cFTTR/icztZlD/XVERKYHhYkKSSQS7N27d0JfkEOaOWbIF6xzjr1795JIJKpdFBERKZOaOSpk2bJlbNmyhd27d4/72ANdvfRm/Y1Su/bUk4hNYaeJKkokEixbtqzaxRARkTIpTFRILBYbmEp6vD5380P8/rHtAPzza0/kZcfqC1ZERGqHmjlCIFE/mOnS2b4qlkRERGT8FCZCoLBZI53pr2JJRERExk9hIgSGhImswoSIiNQWhYkQGNrMoTAhIiK1RWEiBBL1hc0c6jMhIiK1RWEiBNTMISIitUxhIgTUAVNERGqZwkQIDGnmUM2EiIjUGIWJEEjE1AFTRERql8JECKgDpoiI1DKFiRBQB0wREallChMhoDAhIiK1TGEiBIZMWqVmDhERqTEKEyGgoaEiIlLLqh4mzOxjZvYTM9tgZs7MNo6yrxvj8W8lvN+5oxz/y4p+uBLV10Ww4HlfztHXn6tGMURERCakbuxdJt2VwD7gQWD2GPu+a4T1q4EVwC3jeN9rgD8OW7dlHMdXjJmRqI/SE9RKpLP9NEernvNERERKEoYwscI5twHAzB4Dmkfa0Tn3veHrzGwZcARwv3PukXG8713FzlctDfV1g2Ei009zIlblEomIiJSm6n/+5oNEGS7Cf45vjvdAM2sys0SZ718R8SEjOtQJU0REakfVw0Q5zMzwYaIb+ME4D/8K0An0mNk6M/tgcL6qUCdMERGpVTUdJoDz8U0cP3bOHSzxmCzwC+CjwGuB9wEHgKuA/x7pIDO7xMzuL6ewo9H9OUREpFbVepi4OFh+q9QDnHN3Oude55z7hnPuFufcN4AzgN8A7zGzs0c47hrn3CnlF7k43Z9DRERqVc2GCTObA7wBeMI5d0c553LO5YDPBi9fVW7ZJmJoM4f6TIiISO2o2TABvBOIM45aiTFsDJbzK3S+cVEzh4iI1KpaDhPvxfd/uK5C5zsqWO6s0PnGRffnEBGRWlWTYcLMTgFOBG5xzu0aYZ+Yma00s8OGrZ9XZN84fuIrGN/EVxUz9P4cChMiIlI7qj5plZm9Czg8eLkAqDezjwevNznnri9y2HuD5WhzS7QBa4HbgXML1v/azLYBDwDbgKX4JpOjgKudc/dO5HOUS30mRESkVlU9TOCDwTnD1n0mWN4ODAkTZtYAvA0/9fVvJvB+NwKvBy7FT9/dBTwEXO6cG+9cFRWjZg4REalVVQ8Tzrlzx7l/D2PfwwPn3EbgkEmonHOfAz43nvecCuqAKSIitaom+0xMR5oBU0REapXCREgMnbRKfSZERKR2KEyEhJo5RESkVilMhMSQMKFmDhERqSEKEyGhe3OIiEitUpgICc0zISIitUphIiTUZ0JERGqVwkRIaNIqERGpVQoTIaF7c4iISK1SmAiJeF1kYLrObH+O/pyranlERERKpTAREmZGfEhThzphiohIbVCYCBHNNSEiIrVIYSJEdH8OERGpRQoTIaL7c4iISC1SmAgRzTUhIiK1SGEiRNRnQkREapHCRIjo/hwiIlKLFCZCRPfnEBGRWqQwESLqMyEiIrVIYSJEdH8OERGpRQoTIaJ5JkREpBYpTITIkJt9qWZCRERqhMJEiCR0bw4REalBChMhonkmRESkFilMhEhhzUSPwoSIiNSIqocJM/uYmf3EzDaYmTOzjaPsuzrYp9jjn8fxnq1mdrWZbTWztJk9bmbvNzOryIeaoMJJq3rVzCEiIjWibuxdJt2VwD7gQWB2icd8GNgzbN0DpRxoZvXA74CTgKuBtcArgRSwCFhdYhkq4+fXw/bNkE4z68UXDqxWB0wREakVYQgTK5xzGwDM7DGguYRjfuac2zjB97sYOBX4B+fc1cG6a83sJuAyM/u2c27TBM89fo8/ABueAKDptNcMrFafCRERqRVVb+bIB4nxMrNZZjaRMPR2oBu4dtj6q4AY8NaJlGfC4g0DTxMuO/BcNRMiIlIrqh4mJugRoB1Im9mfzOyVpRxkZhHgZOAh51x62OZ7gRy+1mLqJAbDRLyvd+C5woSIiNSKWgsTB4BrgEuB1wEfAw4H/sfM3lPC8XOABmDr8A3OuV5gL9BW7EAzu8TM7p9QqUdTECbqc5mB57rRl4iI1IqaChPOuaucc3/nnPuuc+4XzrkvACcAO4Evm9lY/S0ag2XvCNvTBfsMf+9rnHOnTKjgoykME9nByhLVTIiISK2oqTBRjHNuL/B1/EiQM8fYvTtYxkfYnijYZ2oU9JmIZgczTqYvR3/OTWlRREREJqLmw0RgY7CcP8Z++4EeijRlmFkcmEeRJpBJVVAzEelNEy+YuKpXtRMiIlIDpkuYOCpY7hxtJ+dcDj+fxUlBeCh0Gv56VL5fxGgKaiZId+v+HCIiUnNqJkyYWZ2ZtRZZ/xzg/fjOk38qWB8zs5VmdtiwQ36A7xdxybD1HwL6gB9XstxjShSGiR7dn0NERGpO1SetMrN34UdkACwA6s3s48HrTc6564PnzcAzZvYz/KyV+4Fj8JNQNQNvc871FJy6LdjvduDcgvXXAhcBXzKz5cE+rwLeAFzhnHumkp9vTImC/p69PcNqJhQmREQk/KoeJoD3AucMW/eZYHk7kA8TPcBNwOnA6/EBYg9wK/B559y9pbyZcy5jZi8FrgDehu8n8TR+uOl/TfhTTFQ8Mfg83UNi1uCPRGFCRERqQdXDhHPu3BL368XXQpR63o1A0Rt3OecOAB8IHtU1vGaivvDOoeozISIi4VczfSamreF9JgpHc6jPhIiI1ACFiWqLjxwm1MwhIiK1QGGi2gprJoY1cyhMiIhILVCYqLZhzRwN9QUdMNVnQkREaoDCRLXVx8GCH0M2Q2KwYkI1EyIiUhMUJqrNDBKDw0ObbbA2QpNWiYhILVCYCIOCTpjNFIQJ1UyIiEgNUJgIg4J+E00uO/Bc9+YQEZFaoDARBgVhoqEwTKiZQ0REaoDCRBgUNHM0DqmZUJgQEZHwU5gIg4KaiUROYUJERGqLwkQYFNyfI9HfO/BczRwiIlILFCbCoODOofX9mYHnutGXiIjUAoWJMCiomajvG6yZ6FUzh4iI1ACFiTAo6DNRGCbUZ0JERGqBwkQYFIzmqMsW9plQM4eIiISfwkQYFNRMRAvCRG9fjpxz1SiRiIhIyRQmwqAgTER6e4jXDf5Y1G9CRETCTmEiDAqaOejtITHkNuQKEyIiEm4KE2FQUDNBuodEbPA+5OqEKSIiYacwEQZDwkQ38cIwoU6YIiIScgoTYVAYJnrTJOpVMyEiIrVDYSIMCiatIt2tZg4REakpChNhUDCdNml1wBQRkdqiMBEGhWGiN02izgZeprPqMyEiIuFW9TBhZh8zs5+Y2QYzc2a2cYT9zMzeaWY/NLP1ZtZtZpvN7Bdmdvo43u/c4H2KPX5ZsQ82HpEo1McHXrZEcgPPe1QzISIiIVc39i6T7kpgH/AgMHuU/eLA9cDDwA+BZ4AlwPuAu8zsr51z3xvH+14D/HHYui3jOL6yEo2Q8bNftlh2YLX6TIiISNiFIUyscM5tADCzx4DmEfbrA851zt1euNLMrgUeB/7TzL7vnMsVPfpQd40zfEyuRAMc3A9AM4MBQkNDRUQk7KrezJEPEiXs1zc8SATrdwK3AwuDR8nMrMnMEmPvOQUKZsFsRjUTIiJSO6oeJipkGZABDozjmK8AnUCPma0zsw+amY110KQpmGuiqSBM6N4cIiISdjUfJszsVcBpwI+cc+kSDskCvwA+CrwW3+fiAHAV8N+jvM8lZnZ/ueUdUUGYaHSDTRsaGioiImFX02HCzI7Cd8rcCvxTKcc45+50zr3OOfcN59wtzrlvAGcAvwHeY2Znj3DcNc65UypV9kMUNHM05DIDz9XMISIiYVezYcLMjgD+D3DAK51zuyd6rqDT5meDl6+qQPHGr6BmIl4YJtQBU0REQi4MoznGzcyWA7fhR368xDn3aAVOuzFYzq/AucavYErteL9qJkREpHbUXJgws8PxQaIVeKlz7qEKnfqoYLmzQucbn8TgoJJ4X+/Ac4UJEREJu5pq5giCxBpgDnCBc+6BUfaNmdlKMzts2Pp5RfaNA6uDl7dUrMDjER+smagvrJlQB0wREQm5qtdMmNm7gMODlwuAejP7ePB6k3Pu+mC/FnyNxHLgauAYMztm2Ol+F8w7AdAGrMXPQXFuwT6/NrNtwAPANmAp8E58zcTVzrl7K/fpxqGgZiKWLayZUJ8JEREJt5LCRDKZfDGwMZVKbS5x/xOA56dSqetK2P29wDnD1n0mWN6OH60BMA84Inh+6QjnOo+xmyluBF4fnGM20AU8BFzunPtBCeWdHAUdMOvUzCEiIjWk1JqJ24BPAZ/Or0gmk/8CfDSVSh3SbAC8AfgkMGaYcM6dW0oBnHMbgZInlRppf+fc54DPlXqeKVPQATOaGZwuQ80cIiISdqX2mSj2JZ5g9BtzyXgU3IZ8SJjI9pNzrholEhERKUlNdcCc1gpqJqy3h1h08EeTUVOHiIiEmMJEWBT0mSDdQ6I+OvhSYUJEREJMYSIsCqbTpreHRKwgTKjfhIiIhJjCRFgMq5loqB/sG6uaCRERCbPxhAn1ApxM8WHNHHWDPxrNNSEiImE2nkmrVieTydXDVyaTSf3ZXAl1dVAXg74suBwtdYPZTc0cIiISZuOpmbBxPmS8CkZ0zIoM1kaomUNERMKspJqJVCqlvhVTIZGAznYAWmwwQKhmQkREwkwhIUwK+k00W2HNhPpMiIhIeE1KmEgmk69MJpM3T8a5p7WCZo5m1MwhIiK1oWJ3DU0mk23A3+Bv3PWcSp13Rim4c2iTywJxQM0cIiISbmWFiWQyacCrgUuAVwD5mZZuB64tr2gzUEHNRCN9DIQJ1UyIiEiITShMJJPJ5wAX42siljI4euMO4KJUKvV0ZYo3wxT0mWh0GaAJgJ6M+kyIiEh4lRwmkslkBHgt8LfABfhaiAxwM/Bt4BbgCQWJMhTMgtmQyww8V82EiIiEWUlhIplMXgFcBCzG10I8CHwH+H4qldoX7DNJRZxBCsJEvDBMqM+EiIiEWKk1E5cBOeBrwNdSqdTjk1ekGawwTPSpZkJERGpDqUNDXbDvO4APJJPJ0yevSDNYQZ+JeH9hmFCfCRERCa9SayYOx/eVuAj4O+CSZDK5Dt9X4rpUKrVjkso3sxTUTNT39w4871Uzh4iIhFhJNROpVGpLKpW6HFiO74T5P8CRwH8AzyaTyf+dtBLOJAU1E3XZ9MBzNXOIiEiYjWtoaCqVygG/BH6ZTCaXMjg89BXBLm9OJpO9wLdSqdTDlSzojJAoDBPqMyEiIrVhwtNpp1KpbalU6tPAEfiJq36Onxjh74EHksnkfZUp4gxSMGlVNFNQM6FmDhERCbGyp9NOpVIO+BXwq2QyuQg/nfZ7gZPLPfeMEx+cTjua6YF6/1wdMEVEJMwqdm8OgFQqtRO4ErgymUy+tJLnnhEKaiYskx4ME5l+nHOY2QgHioiIVM+k3YI8lUrdOlnnnrYK+kxYuodY1P94HJDpy1WpUCIiIqMrdQbMv57IyVOp1HVj7WNmH8M3ibwA3/9ik3Nu+Sj7HwN8DjgH/7f7g8Dlzrnfl1ouM2sFrgDeCMwDnga+CnzdOedKPU/FFYQJ0j3EY1Gy/T5EpLP9xGPREQ4UERGpnlKbOb6D/wO5VBbsP2aYwDeL7MOHgtmjntRsBfAnoA/4PNCOn//iN2b2SufcmLUhZlYP/A44CbgaWAu8EkgBi4DVJZR5ctTFIBqF/n7o76MlZnQG/TC70llaG+urVjQREZGRjKfPRB9+WOhfKlyGFc65DQBm9hjQPMq+n8UHjhc45x4OjrkOeBz4LzNbWULNwsXAqcA/OOeuDtZda2Y3AZeZ2bedc5sm/GnKYebnmujuBGBR3LG9w2/a39XL0rlNVSmWiIjIaEoNE7cDLwZeDywErgV+nEql0qMdVIp8kBiLmTXhJ8xakw8SwfGdZvZN4NP4kHDvGKd6O9CN/wyFrsI3e7wVX+tRHYmCMNEw2OFyX0fvSEeIiIhUVakzYJ4HHAN8ET/z5beB7clk8upkMnnCJJav0AlAHLiryLa7g+Wpo53AzCL4/hkPOeeGB6F78TczG/Uck66g38TC+ODqfZ1l5zYREZFJUXIzRyqVWg/8SzKZ/Dfgdfi+Cu8Hkslk8gHgG8APU6lU16SUFJYGy61FtuXXtY1xjjlAQ7FzOOd6zWxvCeeYXAVTas+PDY7g2NupmgkREQmncQ8NTaVSfalU6qZUKvUKYAW+A+US4BpgWzKZfGGFy5iXn4Sh2Ldqetg+EzlH/jxFz2Fml5jZ/WOcv3wFNRNzY4PdP/YpTIiISEiVNc9EKpXalEqlPgFcgv9rvxlYUImCFdEdLONFtiWG7TORc+TPU/QczrlrnHOnjHH+8hVMXNUaHZxGW2FCRETCasIzYAY3+vqb4HE4/q/67+GHeE6GbcGyWDNEfl2xJpBC+4GeYucwszh+zonbJ1rAiiiYUrvV+sj/iPZ1qM+EiIiE07jCRDKZjACvwQ+vfEVw/KPAB4HrU6lUe8VLOOhRfPNEsWaUM4LlqM0QzrmcmT0InGRmcedc4Z/7p+Fraia/KWM0BTUTzdbPQJhQzYSIiIRUqTNgHoG/eddF+P4RXcB3gWtTqdRYQzErIhgCegvwRjM70Tn3ZwAza8aHm6coGBZqZjF8n45u59zmglP9ADgL3zRzdcH6D+Hn0vjxZH6OMRX0mWh0GYw4DmjvzpDtzw1MsS0iIhIWpdZMrA+W9wOXAz+o1KgNM3sXvpkEfH+LejP7ePB6k3Pu+oLdPwa8BPitmX0ZOIgfVdIGvHrYhFVt+NktbwfOLVh/LT4UfcnMlgf7vAp4A3CFc+6ZSnyuCSto5ohk0sxums/+Ll8rsb+zl4WtDSMdKSIiUhWlhgkDsvhaiU8Cn0wmk2Md41Kp1OFj7YSv8Thn2LrPBMvbgYEw4Zxbb2ZnAf8B/CuD9+Z4RSlTaQfnyJjZS/H35ngbg/fmuBT4r1LOMakKmjlI9zC3OT4QJvYpTIiISAiNp89EDFhW6QI4584d5/5r8fNcjLXfRnwIKrbtAPCB4BEuBTUTpHuY2xLn6Z3+pSauEhGRMCopTKRSKTXUT5XCmoneHubOHxzFqk6YIiISRgoJYTPsNuRzmwdrKnR/DhERCSOFibAZEia6mdcyWDOxV80cIiISQgoTYVMYJnrTQ2sm1MwhIiIhpDARNvFDR3PkaRZMEREJI4WJsEkUjuboHhomVDMhIiIhpDARNkNGc6SZUxAmDnT10p9zRQ4SERGpHoWJsKmPgwXTY2R6qTdoaYgBkHPQ3q3aCRERCReFibAxg/jwTpgFIzo0PFREREJGYSKMDhkeWjiiQ50wRUQkXBQmwmj4lNrqhCkiIiGmMBFGw6fU1iyYIiISYgoTYXTIlNqFNRNq5hARkXBRmAij+GhhQjUTIiISLgoTYTRkSu0e5rZoSm0REQkvhYkwGqWZY6+m1BYRkZBRmAij+NCaiXkFYWJ/Zy/OaRZMEREJD4WJMBpWM5Gor6MxXgdAX85xsCdbpYKJiIgcSmEijAqHhqa7AXT3UBERCS2FiTAqvHNorw8OGtEhIiJhpTARRkVrJjSiQ0REwklhIoyGTacNMLdFE1eJiEg4KUyE0ZCaCR8m5hXUTOjOoSIiEiYKE2E0bDQHDO8zoZoJEREJD4WJMBo2zwQMb+ZQzYSIiIRHTYUJM1ttZm6Ux5gTMJjZmlGOP2UqPseYitZMqAOmiIiEU121CzBOPwXWF1l/AvAR4JYSz7MH+HCR9RsmWK7KKhIm5g2bZ8I5h5lNdclEREQOUVNhwjn3CPDI8PVm9o3g6bdKPFWXc+57FStYpRWO5sikIZejMV5HvC5Cb1+O3r4c3b19NCVi1SujiIhIoKaaOYoxs0bgQmAr8OtxHBcxs1kWxj/vI1GoD2oinINML2Y25O6huuGXiIiERc2HCeAtwCzg2865/hKPaQM6gXag08x+amYrJ6uAEzLWlNrqNyEiIiFRU80cI3gv4ID/LnH/Z4A78c0l/cDpwAeAl5jZ2c65RyellOMVLzaltjphiohI+NR0zYSZHQOcDfzeOfdMKcc45y5yzv2bc+5HzrkbnXMfAS4AmoEvjfJel5jZ/RUpeCmK1EzMKxgeuldzTYiISEjUdJjA10oAfLOckzjn/gj8ATjPzBpG2Oca59zUDR1NFJlSW80cIiISQjUbJsysDvhrYB9wcwVOuRGIAnMqcK7yxQtqJnqLzDWhKbVFRCQkajZMAH8FLAKud85V4pv1KKAPH06qT1Nqi4hIjajlMJFv4ig6t4SZLTGzlcHQ0fy6VjOLFtn31cBZwO+cc+H4li7SzDGvRTUTIiISPjU5msPMlgKvAO4dZfTFZ4F3A+cBa4J15wFfMrNb8LNd9gGnAe/Ez4r5ockr9TgVuXOo+kyIiEgY1WSYAN6D798w3o6XTwIPAK/BN5HEgC3A14ErnXNbK1jG8iQOvdlXS0OMWDRCtj9Hd6aPdKaPRH2t/ghFRGS6qMlvIufclcCVY+zzHnzoKFy3FnjzpBWskuKH9pkwM+Y0x9nV7l/v7eylbW5N/ghFRGQaqeU+E9NbkQ6YoKYOEREJH4WJsBoSJroHns4ddvdQERGRalOYCKvCZo7ewdCgmgkREQkbhYmwGqGZY57uHCoiIiGjMBFW8RKaOVQzISIiIaAwEVaJkZo5dOdQEREJF4WJsCpy11DQlNoiIhI+ChNhNVIHzBY1c4iISLgoTITV8KGhzgHQ2hgnYn51R0+WTF9/FQonIiIySGEirOrqoC7mn+dykM0AEI34WTDzVDshIiLVpjARZkXuzwHqhCkiIuGiMBFmza2Dz3dtH3iqWTBFRCRMFCbC7IijB58/vXbgqeaaEBGRMFGYCLPnHjv4fENhmFAzh4iIhIfCRJitKAgThTUTLZprQkREwkNhIszalkM8qIXYvwf27QbUzCEiIuGiMBFm0Sgccczg66CpY+jNvhQmRESkuhQmwu65hzZ1aEptEREJE4WJsCvSb2JO0+AsmAe6MnSms1UomIiIiKcwEXbPXTn4fNN6yGaoi0ZYsXhwDorHNu+rQsFEREQ8hYmwa2mFRW3+eX+fDxTACYfPHdjlkU17q1EyERERQGGiNhRp6jjh8HkDqx7ZpJoJERGpHoWJWrDi0Mmrjj9s7kC/iad3tNOlfhMiIlIlChO1YPiIDudoTsR47qJZAOQcPPasaidERKQ6FCZqQdvhkGj0zw/sHZi86oTlauoQEZHqU5ioBZFo0Zt+nTik34Q6YYqISHXUXJgwMzfCo3Mc53iVmf3JzLrMbJ+Z/cTMjpjMcpdthH4TQbcJ1m9vp6tX/SZERGTq1VW7ABP0R+CaYetK+iY1szcCNwJ/Bj4CtAIfAu40s1Occ9sqWM7KKTITZnMixorFs1i/4yA5B49v3s9pRy2sUgFFRGSmqtUwscE5973xHmRmMeBq4FngRc65zmD9r4AHgNXAJRUsZ+UUhonNT0M2A7F6Tjh8Hut3HAR8U4fChIiITLWaa+bIM7N6M2se52HnAEuBb+aDBIBz7mFgDfDWIHCET3MLLF7mn/f3wcanAM03ISIi1VerYeJNQDfQYWa7zOxqM2sd6yDg1GB5V5FtdwOzgKOLbAuHIU0dfwGG9pt4Sv0mRESkCmoxTNyLb454E/Bu4PfAB4A/llBTsTRYbi2yLb+urdiBZnaJmd0/7tJWUpGZMFsafL8JgJxz/OXZ/dUomYiIzGA1Fyacc6c7577onPuZc+4659yFwL8Bq4APjnF4MFkDvUW2pYftM/x9r3HOnTKhQlfKkccNPt/gJ68CWFXQ1PHnjRoiKiIiU6vmwsQIvgBkgFePsV93sIwX2ZYYtk/4LDkMGoKs074f9u4Eht7061HdQVRERKbYtAgTzrkssA2YP8au+WGfxZoy8uuKNYGEQyQCRxTckvzpQ+ebWLetne7evqkvm4iIzFjTIkyYWQJYBuwcY9f7guULi2w7AzgIrKtg0SqvSL+JWQ31BffpcDyu+3SIiMgUqqkwYWbzRtj0GfycGbcU7LvEzFaaWWEfiNuB7cDFhZ01zexE4FzgJ0EtR3gVmQkTYFVBU4eGiIqIyFSqqTABfNzM7jKzK83sfWb2z2b2e+CfgXvwE1LlfRZYC5yWXxEEhQ8Cz8GP/kia2b8CvwV2A5dP1QeZsCOOGXz+7AbI+L6khffpeFT36RARkSlUa2FiDb4p4t3AVcCngLn40RznOud6xjqBc+4nwGvxIzq+CPwLfnrus5xz4e0vkdfU4jtiAvT3D0xedfzhg/0mntzWTk9G/SZERGRq1NR02s65nwM/L3Hf9wDvGWHbL4FfVqxgU23FSti+2T9/ei0cfTyzGuo5YtEsNuw8GPSb2M8pKxZUt5wiIjIj1FrNhMDQmTAL+k2cMKTfhJo6RERkaihM1KLCTphPPTbQb2LofToUJkREZGooTNSiJYdB6xz/vPMg/PanAKw6bLBmYp36TYiIyBRRmKhFkQi85h2Dr3/1I9i/h1mN9RyxsAWA/pzu0yEiIlNDYaJWvfiV0LbcP+9Nw0+/DaipQ0REpp7CRK2KRuHC9w2+vuv/YMMTQzph3vPULvpzrgqFExGRmURhopYd+3w46czB1z/8OiccPpdY1P9Yn9nVwU13b6hO2UREZMZQmKh1b74Y6mL++YYnmPXInbz9RUcObL5uzTo27uqoUuFERGQmUJiodQuXwkvfMPj6pv/mrae0cfTSVgCy/Tm+8POHyfbnqlRAERGZ7hQmpoPXXAizgqGi+/cQ/c2NfOS1Jw40d6zfcZAf/HF9FQsoIiLTmcLEdJBohDe+Z/D1b27ksEg3F50/eFOwH9yxnnXbDkx50UREZPpTmJguznwZHBb0lchm4Mb/5vWnHcHxwURWOef4ws//TG+2v4qFFBGR6UhhYrqIROBtBUNF77ud6CP38M9/dQKJWBSAzXs6+e6aJ6tUQBERma4UJqaTo46HU88ZfP3V1Sz5wgf4z5YnWJHZDc7x07uf4dHN+6pXRhERmXZq6hbkUoI3vRcevQ/S3f717u0cuXs7KWBrXSt/bDySH/+okyM/+P9oqNePX0REyqeaielm3kK47Mtwxvm+Y2aBtr52Ljz4AJ958ts8+7EPsOO+e6tUSBERmU7MOU23PB7JZNIBpFKpahdlbNkMPP4A3PcHePhu6O05ZJftS45hwbv+lrqjj69CAUVEpIbYSBtUzz2dxerh+S/0j2wG99j9bP6fX7Js40NE8SFyyfYn4fP/TOeKE2h+y0Ww4tgqF1pERGqNwsRMEavHTjqTw086k2f/so5t13+TU3Y/OhAqmp9+BD77YfqPPYno2RfAiacf0kwiIiJSjMLEDPSc445m6b9/jv+79V7qfvVDzul4YiBURNc+BGsfIlcXI/e8F1B32jkKFiIiMiqFiRkqGjEuuOB0dpy2iq/85DZOfOy3nNf15ECP3Ehflsif74Y/301/pI7OI0+k6aRTqGtshkQDxBPBo8E/cJDpHXxkeyGT8cumWbBgCcxf5JteRERkWlGYmOEWz27kwxe/iv979EQ++Ms7ecHetby4+ymem907sE8010frugdg3QPlv+Gc+TB/MSxY7APGvEUwd4EfhTJn/uAdUKfC7h3w0J1+KG0uB8efAiefDYuWTl0ZRESmAY3mGKeaGs0xTulsP49t3sdDz+xh21+e5PDND/OirvWsyO6ZmgKY+RuWzVsIs+f5dX190B88+rL+NQShZJEPJvMW+XAyb5GvNRmJc7DlGXjoT/7x7Ibi+7Uth5PPghec7Z/biB2YRURmkhH/MVSYGKfpHCaGa+/O8OeNe3nm0bUkHruHxo59NLgMiVyWBpcl4fpoyGVodFlisTriTY00NjcSiScgFod43Nc0HNzvawH27fI1AJOpockHilg91MeHPrY/C7u3j+98C5fCkccNNufE4wXNOwn/Xg1Nwx6NEI368JLNQLrHTyKW7vGPTNpPf14Xg2gd1NX553Ux/7w+DvUJ/xkiw6aCyeWg4wDs3wP7dvvl/j0+aC1YAova/GPeQohEK3ZZRUTQ0FCZiNbGel583BJefNwS3FvO45ldHdyxdgd/XLudzXs6ix4Tr4vywhWLOPd5SznlyAUDt0EHfK3Cvl0+WOzZPhgw9u72ywP7wJUZNnq6/KMUdTE47iQ46Uz/xfvQn+Cx+/0Xc96ubf4xXvVxf55yw1M+WNTH/ev2fb6WZix1MV9rs7gNGpuhp9tfl+7g+vR0+4ATiUBzKzTPgpZZ/nlL8DoSgWzWv1826z9P/nlvz2BI6k0PhqVsxoeaw46Ew4/0y+cc4UPWcP390NkOBw9Ad+ewYFUH0WA5/HlhSOrrg727YNdW/3PauRV2bYfd23zYO+p4OOYEOHqV/0xhluuHp9fCw3f5prf+fj+s+0WvgMXLql06kVHVVM2EmR0NvBO4AFgBJICngZ8AVznnxvwWMbM1wDkjbD7VOXf/aMfPpJqJ0Wze3cEdT+zgjrU7eHrnwaL7NCfqOHvlEs5auZhVh88de/ruvj5o3+vDRfs+/2WW/4KJFnyp5Pp9+NizA/bs9I+9O/2XSmEQKCbRCKtO9c0Yq045dJRKugceuw8euBMeubfoRF8yAYvaYMlh/voe3O8DRNdBX3szXhYZDBa96dIDW9tyHyyOOQFaZkN3hw9X3Z3Q1eGXPV3+d6J1Lsye65f5502zfGg6sNf/fh7Y6wNw+z7o6oQ583xN1sI23+9m1pyxm8h60/CXh3yA+PM9PlwVc/QqHypecPZgsCxFrt+Xcfd2//9HrH7oZ4onSj+XyHRp5jCz/wD+HvgFcDeQBc4D3gI8ApzhnBv1X/8gTDwP+HCRzf/rnBv1LlgKE4fauq+L2x/fxm2PbRuxxiIaMY5ZOpvnL5/HiUfM47hlc6ivG1oN75yjJ9NPe3eGdKaPtnlNh+wzqlzOfylkM8NGlQQjS+IJPylXqSNKshl48hH/pZFvnugtfPQM/oXf3TX413+6e/BLsi7mv5wSQdNIotGXw+V8eMr3A+kPltmMf/Sm/bKY5lm+z8ic+TBngV9Go4N/me/cAu37S79uUhqz8YWfeIMPF/MW+N/NgZ93wWPPTv/7WarGZj9V/nEnD/Yjyv/OZDP+9/zAXh8e9uwYO2AnGqF1jg8Xhc2Dhcv8/y+Fn905wPnPlcn4/zfy/9/19vrX4H835y6AuQv9dZi70D8ai9RUSWXkcvDUY3Dnb32N4NveX8mzT5swcQrwlHOufdj6K4B/Ay51zn11jHOsAZY755ZPpAwKEyNzzrFhZwdrHt/G7Y9vY2f7yLmuvi7CyrbZ1EUjtHdlaO/2j2z/4F+ZzYkYLzp2MeevauP4w+YSqZWOkLmc/0c1X11fznnywSIT/AXeWuJfkz1dg+GiNz20T0djIzQ0+74duX7oOAgd7f6v4s6Dg8ucg1jQryMWG9r8MBCOgoCUCJ5bFLZvgk3rYfPTsHk9bNs0cu1BcyvMavVfkvkv3PyXZH/f4Bdw4fPh/2bNme+/tBe1wYKlsHCJf92+z4fBdY/CxnW+2SDsWufAiWfA88/w1/+O38Aj90x+X6OpFm/wn3XWbP87PWu2r8mZNcf/jh3SLBeE9MaWoAltBRx2FDS3HHruzg54+i+w/nFY/xfYssH/jg4EmkW+T1F+BJnLD2tPB8Eo+AOkPxv0/QqaGeMJ3+SYHxaf/50PS9+kPTvgrv+DO3/nn4O/zl/6QSVroKZHmBiJma3C10x8wzn3vjH2XQMsB54LNAMdbhwXQWGiNM45/rJlP3es3cFDz+zhmV0dZZ1vwawE5z5vKeevauO5i0Le9i1DZTOwdaPvy9DU7L8wWlp9U0N0Av8Q5/qDYNE32GF1LOke/wXz5CP+C6Yv67+Ympp9kMkvG5r8F1f7vsEmjPyyp8u/15z5Bc0g8/zIo8Ym3yF259bBfjbdxWvpDrH0sMFp75cffWin2wN74U+/gz/+ZvwdiMFf6/ww7L7s4Gc6uH/sZsGwm78o6JfzXN8Ref3jsG3z1JahPu7DSkOj//KO1Qcj0Pr972r+eX8/4Hw4j0Z9CInWQTTfnBvz4aW+flgNUcL/fuX/n2kJ+jXNmu2b/B68A+68FZ54uHj53v9x3zxWGdM+TLwS+F/g0865y8fYdw1wFr6JpAHoBn4DXOace2Ks91KYmJgDXb08smkfD2/cw5+f2cuWfcW7t8TrIrQ2xenP5djbUbz697D5zbTNbaK1qZ7WxnpmN/rlrMZ6WhpiRMwwMwwwMyLmly0NMea1qI1YJqivz38JlFJD5pyv3dm1zYeB4bU7+dE7jc0+nJQil/Nh6O7f+3PWx/05Y/nmiOCcLa2+hmbBYt8Jd6Th0s75vh7te32w6A3+Mh9oMukdfA6Dn7twaTZ09FE8Pvi6vz8YdbRrsKP1/t0+dI2naUfGr7EZTj8XznyZD6iVq9WdvmHCzKLAHcApwPHOuSfH2P/bwDZ8TUY/cDrwASADnO2ce3SE4y4BLnn/+9//AlCYKNfugz2s29ZOLBoZEgoSQSfNfM3G7x/dyh/+sp2DPZX5C+qw+c2cftRCTj96Ecctm010+F+BBTJ9/ew40ENzoo65zQohIhXhnK+1OXjA15LkO+S27/N9fXL9QXNckSHX+3bDpqd889mWjcVrVqJRX1ux4jg/rPu5K/1++3YPdtTOP9r3+XCXrwGoD2oG6uM+AA7M6hv0k8r0DvaZSvf4flNh+Q61CDzvZDjrAt9MNjmzDU/rMHE1Pgxc5pz77ATP8SJgDfB759zLRttXNRNTr68/xwMbdvP7R7dx15M76O2rTPtxcyLGqUcu4PSjFrJodiNb9nayeXcnz+7p5Nm9XWzf300u+P/j6KWtnL1yMWces5jnzG+uyPuLSBn6+nx/nM3rfTNac6sPD8uPnrpRKvn+UenuocOj800Z0brB5ox8Z/K+wuaPPujPBX2CMoO3IChcZnp9x/KO9qBv04HB55leP2z4zJfBC19Sei3XxE3PMGFmnwE+DlzjnPu7Ms91G/AioGW0ESEKE9XVk+lj/Y6DHOjq9Z02Czpvtndn6OrN4pyv2XAOcgXL7fu7h3TwnKjD5jdz1srFnLVyMUcunoXVSsdQEZle+rJTewuC6ThplZmtxgeJbwOjdros0UbgXGAOoMkFQqqhvo5Vh82d0LHpTB8Pb9zLPU/t4p6ndo7YJyPPgPmzEuzr7KU/Nxi6N+/pZPMd6/nBHesHmmnmNMWZ01TP7KY4c5rizG6O+74cTfW0NtQPNOWMa6iriMhopjZIjKomw4SZXQ5cDlwHXDye0RijOAroA0adZ0JqV6K+jjOOXsQZRy/CuePZsPMg9zy1i/uf3k13bx/L5jVz2PxmnjO/yXfynNdMIhaloyfLPU/t5M4ndvDA07uHNLNk+3PsOZhmz8F0SWVorK+jpTFGNFI84EfMmNMUZ15Lgnktcea3JJjbkmB+S4I5zXESsSixugjxuij1dZFDakX6+nN0Z/pIZ/rpyfTRk+kjXhdl2fzmobORiohUUM01c5jZJ4FPAdcD73Gu+PzLZrYEaAU2O+e6g3WtQKdzrn/Yvq8Gfgn8yjn3qtHeX80cM1s6288DT+/mzid2cN/6XRXrGDpR9XWRgVCRzvSP2IxTFzEOX9DCisWz/GPRLJ67aBZNifD8ZSMioTc9mjnM7O/xQWIzcCvw9mF/me10zv0ueP5Z4N34GTLXBOvOA75kZrcAG/A1Eafhp+jeA3xocj+B1LpELDrQXwJ8uDjQ2cv+Lv840JVhf/B6oC9HQb+OXIXDe6YvR6aEDql9OcfTOw/6qc//PLi+MV5HxIxoxDDzNSORiBExoz4aIR6LDnkkgkdjoo6WRIyWhhjNiRgtDfU0J2I01kfZ35VhV3sPuw/2sPtgmt0He9jV3kNHT5bFsxtZvrDFPxb4ZWvjpPQ6F5EpVFNhAjg1WB4GfLfI9tuB3xVZn/ck8ADwGmAREAO2AF8HrnTOba1cUWUmSMSiLJ7TyOI5jWPu65yjM93HwZ4MjJApsv059nX2srcjzd6ONHs60uzrSLOno5f27l4yfTl6s/1k+nJFayEiZjTGoyTq62iIRWmor6O9J8POA8W7AXX3lnDTsAra19nLX7YMnep7TlOcZfOaSNRHiUYixKJGXTRCXTRCLBoZsUkIfB+apXMbWTqniba5TcxtiR8yU2rOOfZ2pNm2r5tt+7vYsb+bloZ6jl02m6OWtKofi0gF1FwzR7WpmUPCIucc2b4cvX39OAcN9VFi0UP7UQB0prNs2HmQp3f42omndxxk0+6OIR1Lp4N4XYQlc5pYOreRnIPt+/0Q35Fqb+oixpFLWjl22RyObZvNscvmMKfZz6hZ7N9GBQ+Z4abn0NBqUJiQ6aKv39dy9DtHLufIOUcuR7B0ZILthY908OhKZ+noydKRztIZPO9MZ+nu7aO1sZ4FsxIsbG1gwawEC1obWDCrgeZEjK37uti4q4ONuzvYtKuDTbs7KjZvyFSIx6LMDkbvzG6KDzxvbawnHotSFzXqIhFidb5WJV+7MtBEVD/YVBSP+WDS1dtHR0+Wgz0Zv+zO0JHOkunrJxYdep5Y1J+7ORFjyZxG5jbHNTRZptL06DMhIpWTb0qYSkvmNHLKigUDr/tzjp0HutlxoIe+/hx9/b75pq8/R1/ODSyLco6Onixb93WxbX832/Z1jdghtrWxnqVzGlkyp5HFsxvZ3ZFm7Zb9bNlbfFr3kfRm+9l5oGfEZqPxipi/n9dEJWJRlsxp9J9tbhNL5zTS2ljvw0ddhPro0GDTk+mnIwgtA8sgEMZj0aD/S4yWhO8L09wQY1ZDPcvGewffgHOOfZ29A+Fx4+4ONu7qxAxOP2oh5z5vKUvn6g6i04HChIhUTTRiLJ3bVLEvlI6eLNv2d7FtXxdmRtvcJpbMaaR5hFErB7szrN26n788u5+1Ww/w1LZ2Mn1+sNfwv/hzzlW8Wajc06Wz/Tyzq6PsG+mNJRoxli9o4ailrRy9pJWjlrSyfGEL9XVRnHO0d2fYcaCHHfu72XGgm+0Hutm6t4uNuzvoGCHgPbH1AN9ds46VbbM57/ilvPi4JWVPW58PL8/u6WTTHj+b7Y4D3SyY1cDKttkc2zabZfOba+cOxDVEzRzjpGYOkZnJOUd3po8DnRkOdPcGo3YyA7Ox+poVN1Czkl/mO83mm4jSmT7SQSda8H1dWhrqmdXgR8W0NMSY1RCjPhYdPGfQ4Tb/2N/Zy7Z9XXRNcQfaQnURY9HsRvZ1punJlH9794jBicvnc+LyeRhBc1swm21uoCkO+nI5cjkf7PqD2qtsf44dB7rZvLtzzGvSFK/jmLbZrAwei1obmd1UT0tD/aidfQVQM4eISHnMjKZ4jKZ4jLZ55dek9Af9VCY6mZgLmnnyTTzb93ezfX83Xb1ZHzryAaQgiCRihcElNvC8KREjne2ns2ewD0y++WNvR5rt+7sPef++nGPrCHf/LdRQH2X5ghYOLxgOfKCrlzWPbeO+p3cP1PbkHDz0zB4eembPhK5Hqbp6+3hwwx4e3DD0fSIGsxrrmd3o+8K0NtbT3BCjOe6vT3OiLljGaKiP+kAzrJ9RvvYqH3L6c46+nA+EuVxuoCZq4Mar+Tc3IxGLDtz9uLXBL5sSdUNqUfpzjt6sn5AunfHhtClRx9zmeNU7BytMiIhUQTRiREf+Q29MZsas4MtnZdvsyhWsiK50lqd2tPPU9nae2tbOuu3tQwJGQ32UxbN9fxTfL6WBxXMaWb6ghYWtDUU7iZ53fBsHuzPc8cQObntsK49sqszkw431dTxnfjOHLfAz2i6Z3cjWfV2s3XqAJ7bu50BXpuhxOQcHujJ+++6KFKVsETNaGnwTXTrTN2pn5eZEjLnN8cFHS4K5zXFeduIyZjVM/lwuChMiIjKqpkSM5y+fz/OXD96VsqMny+6DPcxrSTCrITahUSWzGut51cmH8aqTD2NXew93PrGDPR1pIuYnUYuaYQMTqfkAFon4ETPRiJ9srS4aIWLG3JY4h89vYV7LyCNcnHPsPNDD2q37eWLrAZ7ecXBgsrnOdHVnsy0mF/RHKUVnUJO0eU/nkPUvPm4JNExG6YZSmBARkXFrCZpKKmVhawNvOP2Iip2vGDMbmGTuvOPbhmzL9uc42O37wBwIZq3Nf0F39fb5ZTpLZ7qPdLZvYObYwllj88u6IOT4sGNEC8JPvpuiC2auy7/uyfT59+/OcLA7w8HuLN2ZQ/t/JILJ6BL1UeJ1UTrTWfZ19o44u+6cpnjlLuAoFCZERGTGi0UjwQ32yhtRUkmZvn46erJEzGioj1IfixYdiZJzjoPdGfZ29LKvM82+zl72dfbSlc5O2fBvhQkREZEQqq+LMq9l7I6VEbNgErU4K5g1BSUrUoaqvKuIiIhMGwoTIiIiUhaFCRERESmLwoSIiIiURWFCREREyqIwISIiImVRmBAREZGyKEyIiIhIWRQmREREpCwKEyIiIlIWhQkREREpi+7NMUHJZLLaRRAREZlKLpVKFb2/u2omREREpCzmRrgHukwtM7vfOXdKtcsRJromQ+l6HErX5FC6JofSNRlqMq6HaiZERESkLAoTIiIiUhaFifC4ptoFCCFdk6F0PQ6la3IoXZND6ZoMVfHroT4TIiIiUhbVTIiIiEhZFCZERESkLAoTVWJmETP7sJk9YWZpM3vWzP7TzJqqXbbJZmYfM7OfmNkGM3NmtnGM/Y8xs5+Z2X4z6zKzP5rZ+VNU3ElnZkeb2afN7G4z221mHWb2sJn9W7Hfh+l+PWDgM95gZmvNrN3MuoP/V75kZktG2H9aX5PhzKzRzJ4J/h/6apHtM+KaBJ+/2KOzyL4z5ZrMNbMvmtn64Ptlt5ndZmYvGrZfxa6HZsCsni8D/wDcDPwncGzw+iQze6lzLlfNwk2yK4F9wIPA7NF2NLMVwJ+APuDzQDvwt8BvzOyVzrlbJ7eoU+JvgL8HfgHcAGSB84ArgLeY2RnOuR6YMdcDYBmwBP//xxb8510FXAJcaGbPd87tghl1TYb7NDC/2IYZeE3+yKGdCrOFL2bKNTGzw4E1QDPwLWAd0AqcALQV7FfZ6+Gc02OKH8DzgBxw07D1lwIOeHu1yzjJn/+5Bc8fAzaOsu+PgX7g+QXrmoFNwJMEnYhr+QGcArQWWX9F8PvwgZl0Pca4Vm8OrslHZ/I1AU4OvgT+MbgeXx22fcZck+Dzf6eE/WbENcEHq2eBJVN5PdTMUR1vAwy4atj6a4Fu4J1TXaCp5JzbUMp+QRX/a4E1zrmHC47vBL4JHA2cOhllnErOufudc+1FNv0oWB4PM+d6jGFTsJwDM/OamFkU/2/Fr4GfFtk+464JgJnVm1nzCNtmxDUxsxcDZwOfd85tN7OYmTUW2a/i10NhojpOxddM3Fu40jmXBh5mGvxSV8gJQBy4q8i2u4PldL5Wy4LlzmA5466HmSXMbL6ZLTOzC4BvBJv+N1jOuGsCfBhYCXxghO0z8Zq8Cf+HWIeZ7TKzq82stWD7TLkmrwqWm83sFqAH6DKzdWZW+Edqxa+HwkR1LAX2OOd6i2zbCsw3s/opLlMYLQ2WW4tsy69rK7Kt5gV/fX4SX5X9/WD1TLweFwO78dW2v8H3sXmnc+6PwfYZdU3M7AjgU8CnnXMbR9htRl0T/B9lq/GB4t3A7/FB648FNRUz5ZocEyyvBebir8d7gQxwvZldFGyv+PVQB8zqaASKBQmAdME+makpTmjlq+eKXav0sH2mm6uAM4DLnHNPButm4vX4GfAEvi33JHzV7IKC7TPtmnwNeAb40ij7zKhr4pw7fdiq68zsEeDfgQ8Gy5lyTVqCZQdwnnMuA2BmNwMbgCvN7LtMwvVQzUR1dOOrmIpJFOwz0+WvQbFrNW2vk5l9Bv+X1TXOuc8WbJpx18M5t8U5d6tz7mfOucvxf2l9zsw+FuwyY65JUE19AfA+51x2lF1nzDUZxRfwf4y9Ong9U65JT7D8QT5IADjn9uNHiy3G115U/HooTFTHNnxTRrEfZBu+CWSm10qAv05QvLotv65YNV3NMrPVwMeBbwPvG7Z5xl2P4ZxzjwAPAclg1Yy4JsG/FV/C9xXZYWZHmtmRwOHBLq3ButnMkGsymiBsbWNw6OxMuSZbguWOItu2B8s5TML1UJiojvvw1/60wpVmlgCeD9xfhTKF0aP4argXFtl2RrCcNtfKzC4HLgeuAy52wVitAjPqeoyiAd8eDDPnmjTgm3deDTxV8FgTbH9n8PpiZs41GVHwb+kyBjsvz5Rrku/Uv6zItvy6XUzG9aj2mNiZ+MBPvjPaPBPvrHYZp/BajDXPxE/wY6FPLFiXHwu9jukzNvyTwc/+OiCi68HiEdafF3z+/5tJ1wSI4TsYDn+8P/i9+VXw+uiZck2CzzRvhPVf4ND5SKb9NcHXOhzE11A0F6xfAnQC6ybreuiuoVViZlfj28Vvxldd5mfAvBM4303jGTDN7F0MVs9eCtTjZwEF2OScu75g3yPxaTuLnzX0IH6WtlXAq51zv5mqck8WM/t74KvAZuAT+KBZaKdz7nfBvtP+esBAh7El+J75m/DtuC8ALsS35Z7rgvHxM+WaFGNmy/EdMv/LOfeBgvUz4pqY2Zfxf0nfhv//pxk/PPI84B58J8T87LEz5Zpcgh9C/Tjw3/h/X9+P///pNc653wb7VfZ6VDtJzdQHEAX+CT/TWC++fepLFKTJ6frAV826ER5riux/LPBz4AD+i+QO4KXV/hwVvB7fGeV6HHJNpvv1CD7jW4D/wQ8JTeM7lj0BXA0cNtN+R0a5TsspMgPmTLkmwOvwQ4a3Br8nXfi5ei4DEjPxmgSf8434+SK68CM7fgucNZnXQzUTIiIiUhZ1wBQREZGyKEyIiIhIWRQmREREpCwKEyIiIlIWhQkREREpi8KEiIiIlEVhQkRERMqiW5CLyIyVTCZX4++Hcl4qlVpT3dKI1C6FCRGZsGQyWcqsd/qiFpnmFCZEpBI+Ncq2jVNVCBGpDoUJESlbKpVaXe0yiEj1KEyIyJQp7KOAv3Psh4CV+JsR/RK4LJVK7Shy3FH4O6q+BFgA7AFuBT6TSqWeKrJ/FH8HxHcBx+PvnLgVf5O5z41wzJuAjwb7p/E3R/qnVCq1tYyPLDIjaDSHiFTDh4GvA38GrsLfPfci4E/JZHJB4Y7JZPJU4H7gncB9wBfxd0R8B3B/Mpk8Zdj+9cCvga8BzwG+D/x/wAPAG4CzipQnCXwP3yTzX8BjwFuBW5PJZLzcDysy3almQkTKFtQ4FJNOpVL/UWT9K4HTU6nUQwXn+DK+puI/gPcG6wy4DpgFvDOVSt1QsP9bgR8C30smk8elUqlcsGk18FLgFuDNqVSqt+CYeHCu4V4BnJpKpR4t2Pf7wNvwt7n+8UifXURUMyEilXH5CI9/HWH/6wuDRGA10A68vaA24Ex8M8hdhUECIJVK/Qi4AzgGOBsGmjeSQA/wvsIgERzTm0qldhcpz/9XGCQC1wbL00b4DCISUM2EiJQtlUrZOA+5vcg52pPJ5MPAOcCxwMPAycHm349wnt/jg8RJwB/wwaMVuCeVSm0bR3nuL7Lu2WA5ZxznEZmRVDMhItWwc4T1+c6XrcOW20fYP79+9rDleDtNHiiyri9YRsd5LpEZR2FCRKph0QjrFwfL9mHLxUX2BVgybL8DwbJtwiUTkXFTmBCRajhn+IpkMtkKPB8/LHNtsDrfr+LcEc6TX/9gsHwCHyhOSCaTS8svpoiUQmFCRKrhXclk8qRh61bjmzV+UNBx8k78sNGzg3kgBgSvXwysw3fEJJVK9QMpoAH4+vBhnclksn740FMRKZ86YIpI2UYZGgrws1Qq9fCwdb8C7kwmkz/G93s4O3hspGAESCqVcslk8t3A74AfJZPJn+NrH44BXo+f7OqvC4aFgp/a+3Tgr4B1yWTyl8F+zwEuAD4CfGcCH1NERqAwISKVcPko2zbiR2YU+jJwM35eibcCnfgv+MtSqdSuwh1TqdQ9wcRVH8fPH/FX+Bkwf4CfAfPJYftnksnkK4D3AX8NvBswYFvwnneM98OJyOjMuVJu+iciUj7d8ltkelKfCRERESmLwoSIiIiURWFCREREyqI+EyIiIlIW1UyIiIhIWRQmREREpCwKEyIiIlIWhQkREREpi8KEiIiIlEVhQkRERMry/wOO8emUv3xUwQAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 576x432 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAGdCAYAAACRlkBKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABF7ElEQVR4nO3deZwcdZ3/8den70kmCbk4ksghyiG3EAF1EZBFlEV3V1dBYdEVEFtE2P25igfi8RMFORakVdBVUdgfoMgugoCsnHKDwYggIARIgJCEkGump6/v749v9Ux1pyfpSWa6qmfez8ejqeqqb9VUF0nm3d/vt75fc84hIiIisjGJqC9AREREuoNCg4iIiLRFoUFERETaotAgIiIibVFoEBERkbYoNIiIiEhbFBpERESkLQoNIrJRZvYTM3NmdvsmHPu3ZvZjM3vKzNaY2Vozezo45+FtnmNnM7vIzBYG5xgwsxfM7AEz+56ZfcjMZgxz7CQzO9XMbjOzZWZWMrPlZvYnM7vWzD5jZruN9HOJTESmwZ1EZGPM7CfA8cAdzrmD2zxmBnAFcERocx/ggMmhbTcDH3bOvTrMeU4CLgYywSYHvAZMArKhoqc75y5sOvYNwE3AjqHN64AaMCW07VHn3N5tfCyRCU01DSIy6sxsC+BufGAYAL4B7OCcm+yc6wW2A74KFIF3AXcHxzSf523A9/GB4VbgHUDOOTcD6AF2Ak4B7sWHifCxKeA6fGB4GfgkMNM51+ucmwrMBN4LXA70j96nFxm/VNMgIhs10poGM7sG+AD+l/G7nXN3DFPuIHxNQA9wjXPug037/x/wIeCPwJudc9UN/Mwe51x/6P0RwG+Ct/Odcw+1e6yItKaaBhEZVWa2Hz4wAJw5XGAAcM7dCXwlePtPZrZvU5E9guVvNhQYgnM1/9KvH7t0Q4FhmGNFpAWFBhEZbZ8Ilq8Bl7RR/rvAqqZjm83djOuZYWa5zTheRAIKDSIy2g4Olre08w0+KHNL07F19RqCD5nZP47wOurHpoHvm9mUDRUWkY1TaBCRUWNmaeANwdtHR3DoH4PlG4MOjHXn4J+4SAO/NLNFweObnzSzfc0sOdwJnXO3AfWmkeOBl8zs12b2ZTM7olXHSxHZMIUGERlN4bESVozguOWtzuGceww4DHgs2LQd8FGggK9JWGFm3zez1w1z3vrTETX8Y55HAl/Dd5BcEYzd8J4RXKfIhKbQICKjyUb7OOfcvfhOjQcD3wbuBFYHu6fh+0EsNLO/aXHsaufc8cAOwOnAtcBzwe5EcM4bzOy8TbxukQlFoUFERlO4dmHmCI4Ll11vkCfn3eGc+7xz7h342oi3Az/Fj88wDbjKzHpandw597xz7kLn3Pudc9vjayz+NfSz/tXM3jeC6xWZkBQaRGTUOOfKwF+Dt3uN4NA9g+VTzrlKGz+n6pz7vXPuo8CZweZtaBx9ckPHP++cuwA4EN9nAuBfRnC9IhOSQoOIjLbbguXhw33zDwvK1OegGHZMhw34UWh9p5Ec6Jx7Ej9y5YiPFZmIFBpEZLRdGiy3AD7VRvlT8M0LAD/YhJ+3LrRe2ozjN+VYkQlFoUFERpVz7kF8h0OArwVDRbcUdF78avD2l80jN5rZwRt6rDLw4dD6gtCxu5vZ1hs60My2Ag5tPlZEWlNoEJGRSJvZrI280sAJwF/wc0rcYmZfM7Nt6ycxs9eZ2Vfwgzr1BGVPbPHzvgM8bWZnmdn84NyYWcLMdjCzs4GLgrIL8E9W1B0MPGtmPzOzo8JTZ5vZVDP7CL5pYhr+kczvjsL9ERnXNGGViGxUaMKqdhzinLvdzGYC/wX8bWjfOvzTDr2hbbcCRzvn1hvXwczuBQ4Ibarhh5zuxQ/4VPc48B7n3KLQsZ/Az5AZtjb4+eHRIYvAyc65n7b16UQmsNTGi4iIjFwQAg43s3fhmxDeDmyNH5PhGeD3wJXOuZs2cJpD8FNnvxOYjx9tcguggp/u+lHgV8DPnXMNfRKccz8wsweAdwc/+03Bz0/iHw19CvgdcFk4bIjI8FTTICIiIm1RnwYRERFpi0KDiIiItEWhQURERNqi0CAiIiJtUWjYgHw+7/L5vHqKioiIoEcu26XgICIiE8WwU9WrpkFERETaotAgIiIibVFoEBERkbYoNIiIiEhb1BFyE5TLZRYvXkyxWIz6UmItl8sxb9480un0xguLiEjsKTRsgsWLFzNlyhS23357zIbtZDqhOedYsWIFixcvZocddoj6ckREZBTEonnCzNwwr7Utyu5sZteZ2UozW2dmd5nZocOcN2Fmp5vZE2ZWNLMXzOw8M5u8OddbLBaZOXOmAsMGmBkzZ85UbYyIyDgSp5qGu4BLm7aVw2/MbEfgHvy0uOcAq4ATgZvN7N3OuVubjr8AOBU/de55wK7B+33M7DDnXG1TL1aBYeN0j0RExpc4hYZnnHM/30iZs4EtgH2dcwsAzOxy4DHgEjPbxQVzfZvZbsCngWudc++vn8DMngUuAo4GrhztD9Epvb29rF27XkWMiIjImIlF80SdmWXMrHeYfZOB9wK31wMDgHNuLfBDYCdgfuiQY/CjWl3YdKrLgD7g2FG7cBERkQkgTqHhA/hf5mvM7BUzu9jMpoX27wlkgXtbHHtfsAyHhvlADXggXNA5VwQWNJXtWs45PvvZz7L77ruzxx57cNVVVwHw0ksvcdBBB7H33nuz++67c9ddd1GtVvnoRz86WPaCCy6I+OpFRKSbxKV54gHgGuBpYCrwHuAU4B1m9tagNmFOUHZJi+Pr2+aGts0BljvnBoYp/1YzyzjnSptz4e/6+g2bc/gG3fzlIzda5tprr2XBggU8+uijLF++nPnz53PQQQdx5ZVX8q53vYsvfvGLVKtV+vr6WLBgAUuWLOFPf/oTAK+99tqYXbuIiIw/sahpcM7t75z7jnPuOufc5c65o4EvAnsAnwmKTQqWrUJAsalMfb1V2eHKDzKzk8zsobY/QITuvvtujjnmGJLJJFtttRXveMc7ePDBB5k/fz4//vGPOeuss1i4cCFTpkzh9a9/Pc888wyf/vSnuemmm5g6dWrUly8iIl0kFqFhGOcCJaD+dbsvWGZblM01lamvtyo7XPlBzrlLnXP7tX+p0Qn6fa7noIMO4s4772Tu3Lkcd9xxXH755UyfPp1HH32Ugw8+mEsuuYQTTjihw1crIiLdLC7NE+txzpXN7EVgVrDpxWA5t0Xx+rZw08WLwJvMLNuiiWIuvulis5omoL0mBIAVa4qsWOMrOGb0Zpk1tWdzfzTgw8EPfvADjj/+eF599VXuvPNOzj33XJ577jnmzp3LiSeeyLp163jkkUd4z3veQyaT4f3vfz877rgjH/3oR0flGkREZGKIbWgwsxwwj6FOjgvxzQ0Htih+QLAMNyk8CBwOvAU/BkT4vHsDd47uFW9YIjRmQa115cAm+Yd/+Afuvfde9tprL8yMc845h6233pqf/vSnnHvuuaTTaXp7e7n88stZsmQJH/vYx6jV/PAUZ5999uhdiIiIjHuRhwYzm+mcW9Fi19fx13c9+Ecrzex64B/NbC/n3KPB8b3ACcBTND4pcRXwBeA0QqEBPxjUJOCKUf4oGxQe52i4JoWRqI/RYGace+65nHvuuQ37jz/+eI4//vj1jnvkkUc2+2eLiMjEFHloAL5kZgcAtwHPA734pycOAe4HLg6VPQN4J3CLmV0ArMaHgLnAkS7029g5t9DMLgFOMbNrgRsZGhHyDjo8sFN4dMRRrGgQERHpmDiEhtuBNwHHAzOBKr7W4IvA+cG4CgA45542s7cB3wI+D2SAR4AjWgwhDb6WYRFwEr5D5XJ8CDlzc4aQ3hSJUE1DbTTbJ0RERDok8tDgnPtv4L9HUP5x4H1tlq3i55w4b9OubvSopkFERLpdnB+5HFfCUzeNRp8GERGRTlNo6JCGmgZlBhER6UIKDR3S0KdBqUFERLqQQkOHqKZBRES6nUJDh4z2OA0j0dvbcrZxABYtWsTuu+/ewasREZFupdDQIQk9PSEiIl0u8kcuu94JR7RVLAXsNNJz//Cmlps/97nPsd1225HP5wE466yzMDPuvPNOVq5cSblc5hvf+Abve19bT6YOKhaLfPKTn+Shhx4ilUpx/vnnc8ghh/DYY4/xsY99jFKpRK1W45e//CVz5szhgx/8IIsXL6ZarfLlL3+ZD33oQyP9hCIi0kUUGrrQ0UcfzWmnnTYYGq6++mpuuukmTj/9dKZOncry5cs54IADeO9739vQl2JjLrnkEgAWLlzIE088weGHH86TTz7J97//fT7zmc/wkY98hFKpRLVa5cYbb2TOnDnccMMNAKxatWr0P6iIiMSKmie60D777MMrr7zCiy++yKOPPsr06dPZZptt+MIXvsCee+7JYYcdxpIlS1i6dOmIznv33Xdz3HHHAbDLLruw3Xbb8eSTT3LggQfyzW9+k29/+9s899xz9PT0sMcee3Drrbfyuc99jrvuuotp06aNxUcVEZEYUU3D5hqmCaGVp15aNdgJ8g1bTyORaL8WoNkHPvABfvGLX/Dyyy9z9NFHc8UVV7Bs2TIefvhh0uk022+/PcViceMnChmug+aHP/xh9t9/f2644Qbe9a538cMf/pBDDz2Uhx9+mBtvvJEzzjiDww8/nDPPPHOTP4+IiMSfQkMHmQ09bul/QW96aDj66KM58cQTWb58OXfccQdXX301W265Jel0mttuu43nnntuxOc86KCDuOKKKzj00EN58sknef7559l555155plneP3rX8+pp57KM888wx//+Ed22WUXZsyYwbHHHktvby8/+clPNvmziIhId1Bo6KCEGbXg2YkakNyMc+22226sWbOGuXPnss022/CRj3yEo446iv3224+9996bXXbZZcTnzOfznHzyyeyxxx6kUil+8pOfkM1mueqqq/j5z39OOp1m66235swzz+TBBx/ks5/9LIlEgnQ6zfe+973N+DQiItINTPMgDC+fzzuAQqHQsP3xxx9n1113HfH5nn1lNeWKn1xz+y2nkEltTmzoDpt6r0REJDLDVoOrI2QHGRoVUkREupeaJzooyvknFi5cOPhkRF02m+X+++/v6HWIiEj3UmjooCjnn9hjjz1YsGBBZ3+oiIiMK2qe2ESb0hckyvknojARPqOIyESi0LAJcrkcK1asGPEvxYk006VzjhUrVpDL5aK+FBERGSVqntgE8+bNY/HixSxbtmxEx63qK1EsVQFYtyxNLjO+b38ul2PevHlRX4aIiIyS8f1ba4yk02l22GGHER/3nf95lN8++hIA/3rUnrxr19eN9qWJiIiMGTVPdFA2NXS7S5VqhFciIiIycgoNHRQezGmgXIvwSkREREZOoaGDMqppEBGRLqbQ0EHZdLimQaFBRES6i0JDB4WbJ0pVNU+IiEh3UWjooIbmCdU0iIhIl1Fo6KCG5omKahpERKS7KDR0kGoaRESkmyk0dFA23KdBNQ0iItJlFBo6KK1HLkVEpIspNHSQ+jSIiEg3U2jooIZHLtWnQUREuoxCQwc1zj2hmgYREekuCg0d1DD3hPo0iIhIl1Fo6KBMWh0hRUSkeyk0dFBWs1yKiEgXU2jooEzo6YmyahpERKTLKDR0UHhEyIFKDedchFcjIiIyMgoNHZQwI50cuuVlzXQpIiJdRKGhwxpqG9SvQUREuohCQ4eFR4XUExQiItJNFBo6LK0BnkREpEspNHRY42OXqmkQEZHuodDQYRnNdCkiIl1KoaHDNNOliIh0K4WGDkurpkFERLpU7EKDmU0ys2fNzJnZd1vs39nMrjOzlWa2zszuMrNDhzlXwsxON7MnzKxoZi+Y2XlmNnnsP0lr2YbpsVXTICIi3SN2oQH4GjCr1Q4z2xG4BzgQOAf4LNAL3Gxmh7U45ALgfODPwKeBa4BTgevNLJLPrpkuRUSkW6WivoAwM3szcBrw78B5LYqcDWwB7OucWxAccznwGHCJme3igrGZzWw3fFC41jn3/tDPeBa4CDgauHKsPstwsprpUkREulRsahrMLAlcBtwEXNti/2TgvcDt9cAA4JxbC/wQ2AmYHzrkGMCAC5tOdRnQBxw7elffvnBNg8ZpEBGRbhKb0ACcDuwCnDLM/j2BLHBvi333BctwaJgP1IAHwgWdc0VgQVPZjml45FLjNIiISBeJRWgwsx2ArwJfc84tGqbYnGC5pMW++ra5TeWXO+cGhik/y8wym3C5m6VhcCfVNIiISBeJRWgAvgc8i++0OJxJwbJVCCg2lamvtyo7XPlBZnaSmT20gWvZZJnw3BOqaRARkS4SeWgws2OBw4GTnXPlDRTtC5bZFvtyTWXq663KDld+kHPuUufcfhu4lk3W0DyhqbFFRKSLRPr0hJll8bULNwIvm9kbgl31ZoZpwbblwItN+8Lq28JNFy8CbzKzbIsmirn4povS5n6Gkco2TI2tmgYREekeUdc09ACzgSOBp0Kv24P9xwbvTwAW4psbDmxxngOCZbhJ4UH853tLuKCZ5YC9m8p2TEZTY4uISJeKepyGdcA/tdg+GyjgH7/8EfBH59xaM7se+Ecz28s59yiAmfXiQ8VTND4pcRXwBfy4D3eFtp+I78twxeh+lPY0znKp5gkREekekYaGoA/DL5q3m9n2wepfnXPh/WcA7wRuMbMLgNX4EDAXOLI+sFNw7oVmdglwipldi28C2RU/IuQdRDCwEzTOPVFWTYOIiHSRqGsaRsQ597SZvQ34FvB5IAM8AhzhnLu1xSGnAYuAk/BNIMuBi4EznXORfM3XI5ciItKtYhkagrEabJh9jwPva/M8Vfxw1K2GpI5ERsNIi4hIl4q6I+SEoz4NIiLSrRQaOqxx7gnVNIiISPdQaOiwhsGd1KdBRES6iEJDh2XT4Y6QqmkQEZHuodDQYZrlUkREupVCQ4c11jSoeUJERLqHQkOHZZoGdwqNRyUiIhJrCg0dlkwkSCb8EBQ1B5WaQoOIiHQHhYYIhMdqUL8GERHpFgoNEQiPCqknKEREpFsoNESgcYAndYYUEZHuoNAQAT12KSIi3UihIQKa6VJERLqRQkMENNOliIh0I4WGCKhPg4iIdCOFhghkQ30aBtSnQUREuoRCQwRU0yAiIt1IoSECDfNPqKZBRES6hEJDBNLh+SeqqmkQEZHuoNAQgYZHLlXTICIiXUKhIQINgzvpkUsREekSCg0RaOzToOYJERHpDgoNEVBNg4iIdCOFhgjokUsREelGCg0RaGieUE2DiIh0CYWGCGiWSxER6UYKDRHIaJZLERHpQgoNEQjXNJTVPCEiIl1CoSECjX0aVNMgIiLdQaEhAurTICIi3UihIQLq0yAiIt1IoSECWQ3uJCIiXUihIQKZtAZ3EhGR7qPQEAHNcikiIt1IoSECmntCRES6kUJDBNQ8ISIi3UihIQKphJEwv16tOao1BQcREYk/hYYImFnjY5dlhQYREYk/hYaIqF+DiIh0G4WGiKhfg4iIdBuFhojosUsREek2Cg0RUfOEiIh0G4WGiGimSxER6TYKDRFRTYOIiHQbhYaIhB+5LOmRSxER6QIKDREJz3Q5oJoGERHpAgoNEWl45FJPT4iISBeIPDSY2c5mdoWZPW5mq8ysz8yeMLPzzWybYcpfZ2YrzWydmd1lZocOc+6EmZ0enK9oZi+Y2XlmNnnsP9mGZRpqGtQ8ISIi8ZeK+gKAecA2wK+AxUAF2AM4CTjazPZ2zr0CYGY7AvcEZc4BVgEnAjeb2budc7c2nfsC4NTg3OcBuwbv9zGzw5xzkf22DvdpKKt5QkREukDkocE597/A/zZvN7M7gauBj+IDAsDZwBbAvs65BUG5y4HHgEvMbBfnnAu27wZ8GrjWOff+0HmfBS4CjgauHJMP1QY9cikiIt0m8uaJDXguWE4HCJoU3gvcXg8MAM65tcAPgZ2A+aHjjwEMuLDpvJcBfcCxY3HRw3rxOXj4brjnVliyqPGRS/VpEBGRLhB5TUOdmeWAXiAHvAn4drDrxmC5J5AF7m1x+H3Bcj7wQGi9FnoPgHOuaGYLaAwYY+/uW+CWX/r1D3ycTO8+g7tU0yAiIt0gTjUNJwDLgBeAm/HNEMc65+4K9s8JlktaHFvfNje0bQ6w3Dk3MEz5WWaWaXUhZnaSmT00ssvfiGxuaL3Y3/DIpQZ3EhGRbhCn0HAd8LfAPwBfA14DZof2TwqWrUJAsalMfb1V2eHKD3LOXeqc22+jVzwSudCPGujXLJciItJ1YtM84ZxbjH96AuA6M/sl8KCZ9Tjnzsb3QwDfRNGs/jW+L7StD9hymB/XqvzYyjXXNGiWSxER6S5xqmlo4Jz7I/AHIB9sejFYzm1RvL4t3HTxIr4JolXImItvuiiNxrW2pammIa3mCRER6TKxDQ2BHmBGsL4Q39xwYItyBwTLcD+EB/Gf7y3hgkGHy72byo699fo0qHlCRES6S+Shwcy2Hmb7IcDuBE9GBI9WXg8cbGZ7hcr14jtRPkXjkxJXAQ44renUJ+L7MlwxOp+gTeGahmI/mbTmnhARke4Shz4N3wuGi/4dfmyGHLAvfvClNcC/hcqeAbwTuMXMLgBW40PAXODI+sBOAM65hWZ2CXCKmV2Lf3SzPiLkHXR6YKcN1TRolksREekCcQgN/wUcDxyHf1rC4cPDD4BznXPP1ws65542s7cB3wI+D2SAR4AjWgwhDb6WYRF+SOojgeXAxcCZHR9CuvnpCfVpEBGRLjMqoSGfz+8FHIIfgfGuQqHQdn8B59zV+OGi2y3/OPC+NstW8XNOnNfu+cdMU01DRn0aRESky7TVpyGfzx+Uz+cvz+fzB7TYdxb+2/55wHeA+/P5/PmjepXjQUNNQ7Fp7gnVNIiISPy12xHyn4APAo+HN+bz+b8BzsQP13wF8H1gBfCZfD7/nlG8zu4XrmkY6CeTtMG36tMgIiLdoN3QcCBwf6FQWNW0/RP4PginFgqFfy4UCp8CDsJPXf2x0bvMcSCZhEwwZIRzZGqVwV2qaRARkW7QbmiYg3+ksdmhwDr8zJEAFAqFJ/BzR3R2QqhuEKptyFaLg+tl9WkQEZEu0G5omAksDW/I5/NbA1sD9xQKhUpT+aeArTb/8saZUL+GdKVEvYGiXK1RrbnWx4iIiMREu6Ghn/VDwJuD5R9alB/AN1FIWKimwZoeuyyriUJERGKu3dDwBPDufD4ffkTzSHx/hntalH8d8NJmXtv4k+sZWi8WSYcnrVIThYiIxFy74zT8AjgH+J98Pv99YCfg48Aq4Lctyr+NpictBMiGQ0Mf2XSCtUHXBs10KSIicdduaLgYOAY4AnhXsM2A/1MoFIrhgvl8fn9g++AYCQvXNAwUGwZ4UmdIERGJu7aaJwqFwgD+UcozgZvwYzIcVSgUvtui+N7Af+Mnl5Kw5pqGlAZ4EhGR7tH2MNKFQmEd8I02yv0AP2+ENFuvpqF38K3mnxARkbiLfGrsCaVheuw+MuGhpDUqpIiIxNxmT1iVz+fTwCfxAz0ZftrpS4ImDQnLhSetKpLVTJciItJF2p2w6p/z+fzz+Xz+nU3bE8CvgQuA9wJHAecCv2t6PFOgadKqPs10KSIiXaXd5om/BaYAtzdtPybYtxQ4AfgQcD9wAP6RTAnLNtY0hAd30iOXIiISd+2Ghjfjh4tu/s12LH6Ap38uFAr/WSgUrgEOx4/f8MHRu8xxYgN9GtQ8ISIicdduaNgKeKbF9rcCSwuFwq31DYVCYS1wA7D75l/eONMwPXZznwY1T4iISLy1Gxqm4mezHJTP59+Ab7L4fYvyi4EtNuvKxqMNPT2hmgYREYm5dkPDSmCHpm31qa9bTViVAtZu6kWNW+vVNISaJ/TIpYiIxFy7oeEPwJH5fH6b0Laj8f0Z7mhR/o1owqr1Ndc0hDtCqqZBRERirt3HIn+E7+B4bz6fvxY/YdV7gKcLhUJD80TwqOXf4IeblrBcY02D5p4QEZFu0u7cE9cAPwS2BU7DB4ZVwIktih8FTKf17JcTW0NNQz/ZtGoaRESke7Q9jHShUDgJeDvwOfyYDLsVCoVWTRN9wOnA/4zKFY4nqTQkglteKZM1N7hLfRpERCTuRjRqY6FQuAe4ZyNlbgZu3pyLGrfMfG1Dn+8j2uNKg7tU0yAiInGnCas6LfQERU+tMriucRpERCTuRjw/RD6fPxA4CXgbMAf/BMVLwN3AZYVC4d5RvcLxJtSvIVcbqmnQiJAiIhJ3bYeGYDbLAvAv+Nksw94QvI7P5/P/CeQLhUJ51K5yPAnVNIRDg+aeEBGRuBtJTcOP8HNNrMQ/SfFb4AV8gJiHn7jq4/hQkQGOH9UrHS9CNQ2ZSrimQc0TIiISb22Fhnw+fxg+MDwMHFUoFF5uKvIEcGs+nz8fP1X2sfl8/vJCofC/o3q140ForIZsdWBwXc0TIiISd+12hDwRP/fE37cIDIMKhcJS4O+BflqP4SDZnsHVdCUcGlTTICIi8dZuaDgQ+E2hUFiysYJBmRvwM2BKs9xQaAg3T6hPg4iIxF27oWFL4KkRnPdpYPbIL2cCCIWGVLk4uK7mCRERibt2Q0Mffhrsdk0BihstNRGFmidSoeaJAY0IKSIiMdduaHgKOHQE5z2EkdVMTByhmoZkaShXlas1nHOtjhAREYmFdkPDDcCu+Xw+v7GC+Xz+ZOBN+KcopFmopsEGiqSTQ/8L1BlSRETirN1xGi4CPg38Rz6fnwOcWygUVoUL5PP5qcBn8RNavQpcPJoXOm6Eahoo9pNJJShXfVgYqFTJppPDHCgiIhKttkJDoVB4LZ/Pvx9f43AG8K/5fP5h/OBODj9l9r5AFv+45QcKhcLKsbnkLheqaWCgn2w6yboBPwdFqVyDnmGOExERidhIpsa+E9gfuA3I4eeeOBo4JljPAbcDBwwzZbZAy5qGOj1BISIicTbSqbH/DByWz+e3B94ObIMfRvol4O5CofAsQD6fzwGZQqGwenQvdxxoDg1Thpoj1KdBRETibMSzXAIUCoVFwKINFPkecNymnn9cyzU2T4RrGgZU0yAiIjHWdvPEJmieCVOgsU9Dsb+h42NJo0KKiEiMjWVokFbW69Og5gkREekOCg2dlh2a5ZKBfnKhJyzVPCEiInGm0NBpiSRksoNve2yodqGkoaRFRCTGFBqiEOrXMMXKg+uqaRARkThTaIhCqF/DZCqD6+rTICIicdbWI5H5fH7MvgKb2U7AscDhwI74QaL+ClwDXOicW9dUfmfg28A7gAzwCPAV59zvWpw7AXwG+ASwPbAMuBo4s/m8HTVsaFBNg4iIxFe7NQ22Ca92/QtwOj4ofA0/f8VfgG8A95jZ4G9YM9sRuAc4EDgnKNsL3Gxmh7U49wXA+cCf8XNnXAOcClwfBIpohEJDTy3UPKFHLkVEJMbanXtiLH/B/gI42zkXngDr+2b2FPBF4OPAd4PtZwNbAPs65xYAmNnlwGPAJWa2iwvmlzaz3fBB4Vrn3PvrJzazZ/ETcB0NXDmGn2t4oT4Nk1wJX2Gi5gkREYm3yPs0OOceagoMdVcFy90BzGwy8F7g9npgCI5fC/wQ2AmYHzr+GHyNx4VN570M6MM3iUQjVNOQC9U0qHlCRETiLPLQsAHzguXSYLknfhbNe1uUvS9YhkPDfKAGPBAu6JwrAguaynZWNhwaSoPrqmkQEZE4i2VoMLMkcCZQYagJYU6wXNLikPq2uaFtc4DlzrmBYcrPMrPMMD//JDN7aMQX3q5c69CgPg0iIhJnsQwN+CaFA/BPOfwl2DYpWLYKAcWmMvX1VmWHKz/IOXepc26/tq92pEI1DdmKahpERKQ7xC40mNnXgVOAS51zZ4d29QXL7PpHkWsqU19vVXa48p0TqmnIVIdyjWoaREQkzmIVGszsLOBLwI+Bk5t2vxgs57K++rZw08WL+CaIVsFhLr7potRi39gLh4bKUGgoVVXTICIi8RWb0GBmXwG+AlwOnFB/dDJkIb654cAWhx8QLMP9EB7Ef763NP2cHLB3U9nOCjVPpMLNE6ppEBGRGItFaDCzM4GzgJ8BH3POrfeVO3i08nrgYDPbK3RsL3AC8BSNT0pcBTjgtKZTnYjvy3DF6H2CEQrVNKTLxcF1zT0hIiJx1tbgTmPJzD4FfBV4HrgV+LBZw4CSS51zvw3WzwDeCdxiZhcAq/EhYC5wZLh2wjm30MwuAU4xs2uBG4Fd8SNC3kFUAztBQ2hIlkPNE5rlUkREYizy0MDQeAnbAj9tsf8O4LcAzrmnzextwLeAzzM098QRzrlbWxx7GrAIOAk4ElgOXIx/KiO639Ch5olkqThY31OqqqZBRETiK/LQ4Jz7KPDREZR/HHhfm2WrwHnBKz4aahqKg894qKZBRETiLBZ9GiacUE1DYkB9GkREpDsoNEQhVNNgpaHQoKcnREQkzhQaohAKDRT7B1dLlRrrP2kqIiISDwoNUUilIZkEwKoVcub7MjigrAGeREQkphQaomDW0K9hWmKoWULzT4iISFwpNEQl1EQxJRQaNP+EiIjElUJDVEI1DVMTlcH1smoaREQkphQaohKuabCh0KDHLkVEJK4UGqISCg29DIUG9WkQEZG4UmiISqh5YnK4pkF9GkREJKYUGqISrmlw5cF11TSIiEhcKTREJVTTMKmheUI1DSIiEk8KDVEJ1TRMqg3VNKh5QkRE4kqhISqh0NDDUGgoKjSIiEhMKTREJTxOQ6gj5Io1xValRUREIqfQEJVhxmlYtlqhQURE4kmhISqh0DA51BFyuWoaREQkphQaohJqnsiFOkIuV02DiIjElEJDVEI1DdnqwOD68tX9UVyNiIjIRik0RCVU05AqD5BMGACr+8t67FJERGJJoSEqoZoGG+hn5pTc4Hv1axARkThSaIhKKDQw0M+scGhQvwYREYkhhYaohENDsZ9ZU8OhQf0aREQkfhQaopIZCgkMFJk1JTP4Vs0TIiISRwoNUUkkIDsUHLbJDf2v0ABPIiISRwoNUQo9QbFlzgbX1adBRETiSKEhSqF+DbMybnBdzRMiIhJHCg1RCtU0zEjXBtdV0yAiInGk0BClUE3DtESVYHwnVq4boFytDXOQiIhINBQaohSqaUiWi8zoHeoYqSmyRUQkbhQaorTBsRoUGkREJF4UGqKUC43VUNSokCIiEm8KDVHKTRpab6ppWLZGo0KKiEi8KDREKRseFVLNEyIiEm8KDVFqqmmYPWWoj4NCg4iIxI1CQ5SyTfNPTNX02CIiEl8KDVFqqGnoU/OEiIjEmkJDlJpqGmaGnp54dW2Rak0DPImISHwoNESpqaYhnUwwfXIWgJqDV9cORHRhIiIi61NoiFKusaYBUBOFiIjElkJDlJpqGgAN8CQiIrGl0BClcJ+G4vo1Dcv0BIWIiMSIQkOUWtQ0zG5ontCokCIiEh8KDVHKtujToOYJERGJKYWGKKUzkEz59WoFyiVmTQ2NCqnmCRERiRGFhqhtaFRI1TSIiEiMRB4azOwMM7vGzJ4xM2dmizZSfmczu87MVprZOjO7y8wOHaZswsxON7MnzKxoZi+Y2XlmNnlMPsymaB4VckrjUNI15yK4KBERkfVFHhqAbwKHAn8FVm6ooJntCNwDHAicA3wW6AVuNrPDWhxyAXA+8Gfg08A1wKnA9WYWh8++3lgN2XSSqT1pAKo1x2vrNMCTiIjEQyrqCwB2dM49A2Bmf8KHgOGcDWwB7OucWxAccznwGHCJme3inP9qbma74YPCtc6599dPYGbPAhcBRwNXjvqnGalWYzVM7WF1fxnwTRQzenOtjhQREemoyL9t1wPDxgRNCu8Fbq8HhuD4tcAPgZ2A+aFDjgEMuLDpVJcBfcCxm3zRo2kjYzWoX4OIiMRF5KFhBPYEssC9LfbdFyzDoWE+UAMeCBd0zhWBBU1lo7ORUSE1wJOIiMRFN4WGOcFySYt99W1zm8ovd8616hSwBJhlZplWP8jMTjKzhzb5SkeioabBD+Y0WzUNIiISQ90UGupfyVuFgGJTmfr6cL0IW5Uf5Jy71Dm334ivcFOEaxoGfGiYpVEhRUQkhropNPQFy2yLfbmmMvX1VmWHKx+NFjUNs6ZogCcREYmfbgoNLwbLuS321beFmy5exDdBtAoOc/FNF6VRvL5NkxsKCK1qGpapeUJERGKim0LDQnxzw4Et9h0QLMP9EB7Ef763hAuaWQ7Yu6lsdLKh0DBY09DYp8FpgCcREYmBrgkNwaOV1wMHm9le9e1m1gucADxF45MSVwEOOK3pVCfi+zJcMZbX27YWNQ2TsikmZ/0QGuVqbXDMBhERkShFPriTmR0HbBe8nQ1kzOxLwfvnnHM/CxU/A3gncIuZXQCsxoeAucCRLvSV3Dm30MwuAU4xs2uBG4Fd8SNC3kEcBnaCxtBQHOr0OGtqjnXL1gKwbFU/0ya1fNBDRESkYyIPDcDHgXc0bft6sLwDGAwNzrmnzextwLeAzwMZ4BHgCOfcrS3OfRqwCDgJOBJYDlwMnOmcq43eR9gMDaFhqP/CrKk9PBeEhuVrirxhm2mdvjIREZEGkYcG59zBIyz/OPC+NstWgfOCVzyF+zQMDD3MMXuKOkOKiEi8dE2fhnFr2JoGjdUgIiLxotAQtYanJ4ZqGhpCg8ZqEBGRGFBoiFrD0xOhmoYpGkpaRETiRaEharnWNQ2zp4ZGhVRoEBGRGFBoiFomNIx0aQBqVaBpVMg1GuBJRESip9AQtUSicf6JoIlicjZFLp30m8pV1hYrUVydiIjIIIWGOGjRr8HM9ASFiIjEikJDHISnx9YTFCIiElMKDXHQMD32UDiYHZoiWwM8iYhI1BQa4qCdmgaFBhERiZhCQxy06AgJzc0T6tMgIiLRUmiIg3BNQ9+awVUN8CQiInGi0BAHW24ztL7wwcHV2VM1aZWIiMSHQkMc7HfQ0PqC+wb7NcwKjwqppydERCRiCg1x8LrXw9zt/XppAP5wDwBTe9Kkk/5/Ud9AhXUD5YguUERERKEhPvY/ZGj9vtuAVgM8qbZBRESio9AQF/sfPLT+5z/AqpUAbLXFUBPFgkUrOnxRIiIiQxQa4mLmVvDG3f26q8GDdwDw9l2GOkn++qHnNHGViIhERqEhTg4INVHc75so3rnHXCZlUgA8v3wtjz6n2gYREYmGQkOc7HsQJH1A4Nm/wNIlTMqmeOeecweL/Pqh5yK6OBERmegUGuKkdwrssd/Q+6C24e/23W5w0++fWMoKPX4pIiIRUGiIm/0PHVq//zZwju23nMKe280AoOYcNz7yfEQXJyIiE5lCQ9zstf/QsNJLl8CiJwE4ar/tB4vc+MjzVKq1CC5OREQmMoWGuMlk4c1vHXofNFG8deetmNGbBeDVtQPc+5elUVydiIhMYAoNcRRuonjgDqhWSSUTvHufbQc3X/+wOkSKiEhnKTTE0a57wbTpfn31SnhiAQDvefO2JMwAeHTRCp5btmaYE4iIiIw+hYY4SiRh/sFD74NhpWdNzfHWnbca3Pxr1TaIiEgHKTTEVXigp0d+7yeyAo7ab+jxy1sfXUJ/qdLpKxMRkQlKoSGutnsjbBUM6jTQD4/eD8Be28/kdTMnA9BXqvC7hUuiukIREZlgFBriygwOCI/Z8LtgszXUNlyv+ShERKRDFBri7C2hJoqFD8HTfwbgsD3nkU0nAXj2lTU89sLKKK5OREQmGIWGONtqDrx+F79ercC5/w533MjkXJp37jE0H8X1mo9CREQ6QKEh7j7yKeid6terFfjZRXD5f/B3e80ZLHL7Yy9ywfV/ZF2xHNFFiojIRKDQEHfbvRG+dBG8bsehbXf+hh0v/zoHz8sObrppwQt84gd38vAzyyK4SBERmQgUGrrBrK3h8+fB/qE+Ds88wecW/ogPb1Ma3LRsdZEvXPEA/3HDQvoG9CimiIiMLoWGbpHNwQn/Dh88CRL+f1ti9UqOf/BHXLrVs+xhr0HwFMWNjzzPyT+4kwXPLo/wgkVEZLwxPa43vHw+7wAKhULUl9Lo8QXwg7Nh7aqGzaty07gjvS339ezAH3PzKFuSvbefyT47zGLvHWbyxm2mkUwoJ4qIyAbZsDsUGoYX29AAsGIpXPJ1eP7plrv7LM0jPdvy5+zWPJOexTOZWZQnTWXPbWew9w6z/CBRs3pJJxUiRESkwbChIdXJq5BRNHMr+MIFfojpBffBnx6CvrWDuye5Mm/v+ytv7/vr4LYVyUk8+/wsnnlgFr9Mz2Blqpf0tGn0zp7JFlvOZqstpzN35mTmzpjM7Kk51UqIiEgDhYZulkrDWw72r0oFnn4MHr3Ph4hlL61XfGa1j5nV59mv+PzQxqXAk351wJKsTvSwKpFjSXISfbleKpOnwpTppLaYTnbWLHpnzmTmrGnMnDmNVM8k39cinfEjWIqIyLim0DBepFKwy17+9cGT4KUX/JTaLzwDi5/FLVmEBZNeDSfrqsyurmV2dS2UgSLw2sZ/tMOopDLUMjlcrgfrmUxi8mRSk3uxnknQMxlyPZCbFCxD69lJkMn460+mIZ2GZGpomUqPXiCpVaFc9kFHRERGTKFhPDKDOdv6V31TrQqvvASLfYjg5SXU1qyisuo13NpVpPrWkqxt2mOahiNdGYDKAPSt2vgBI+AsAdksZHKQ68GyOb+ezflgkUr7mo5UEDhSGUgYrFsDa1fDmtW+w+ja1b75xjl/7NTpsMUMmFZ/TYfeaUFQSUEy6UNMMjm0LRWEmMFXyu9LJgfvhA845lsE6+vBrsb3NnTudkJRtQrlkg8+2Z7QzxQR6RyFhokikYSt5/nXfgf5TUCmvt85GCj6X7BrVlF+7VXWvrKM/uXLKb36KrVVK0muXUWyuI5EaYB0tUTOlcnWKmSojtllm6tBsd+/Vo/SHBsDRd9806IJJxLhEJIKgkqlApWyDwqVMtRqjcdkstAzydfY9Ez269mcLzf4qg4tnfOP6lrC/1lIJHxYqW8L55aGEBMEocFXYmg9nRmqOcqGapDq11Eq+indw69yafDR4JYS9ZAWLBNJfz/Mgj8HfX7ZHywH+nygmjzFj5zaOxUmT4UpwbJncovaq8xQMBxOtQIDA1CuX3spuP4B//9o8POGPn+9Bsu54FWDmvP3olKC116Flcth5TK/fDVY9vfBrK1gm9fBVvP8cut5MKl34392arXQ/Q3u90DR70tnQq96uM4M3U8ZHwaK/s/UzK38/+MxptAgntnQP4CztiYNTA9erQyUqyx9rY8XV/bx8oo1LFu+inWvraK0di2VdWuprluH9ffR40pMrg0wqVamx5WYVCuTc2Um1Ur0BNsyrkrKVUm7Gmnq68GL2jBXsGlKJMiM8jk3W6XsXyNR/0WxSpOVjQsv/BX+0LRt6nSYMSsIHeWhIBkOlOVSy9NtkNn6NWb1mjrwQccFwXNw6YLgFQ4g6aFQkkwOBb5kYijwJRL+eqtl3zRYrQxdv6sNBZlMPdxk/fkz2dD5m2oU619win1+OdAPxWAJvlwmO3Rt9XUYCtLVqv/51er6gbz5XiWSQyEzFap9TCT8/R8MlcXgfanx77MN/mcocA/WjIZe6XSodrMpNCeTsG4tvPqKD5uvLhtaX7van/uL/wE77DzyPw8jpNAgmySbTrLt7ClsO3sKsFXLMtVajdV9ZVb1lSiWq1SqNSq1GtWqo1Krsa7qeK1aY13Rl1nVV2J1sFzVV2J1f5lyqUyyPECyPECqMkDOVcgFwSPtqmSCcJFxlSBkVEk6x5pEllXJHlYncsGyhzWJLDWMya7EjOo6ZlTWMaPW59erfUyuDZByNf+iSsrVSLoaKWqDQSZFLRRy/Mtw1BseDP8t2pwLfXkf2k9QxnAknSPVZoCpYlQsSc0SZGsljco2EaxeOXq1a2HObXrgkPh6dZlCg3S3ZCLB9N4s03uzGy/cBucc5WqNcqVGuVqjFCyH3lf9slxjbbHMuoEya/rLfr1YYU2xTLFUGayaNWANsNbgeaBUqbG6r8Tq/hKr+8qUq2NfI2HOkSKoZQnCSIoaFRKULEnZkpQsRc1CMcE5cq7M5FqJSa7EpFqJybUSWVemRoKqGTUS1DCq5pcOSOBI4ki4GolQcKkHnfo9Cf2gwSBkzi8T9W3OkXUVelyZnlopWPqao55amaolKFqKAUtTsiTFRJqSpXCpTGgcWmv4uWaQwpGmRtp8oMrgl0kzSqkMpXSWcipHOZWlnMlRSWWxZIJcqZ+ech89pT4mlfvoKa1jUrmPbLVEytVIu0oQCCukalWStSrmakO19KEWE8PhkilcOovLZCGTxbJZEtkclslglTIMFLFiPwz0+2WpiNWbBRKJ9ZpzXDIJU6fjps/Gps+CGbNIzNgSps+CXM73N1q62HdgfnkxLF3Sfu1TJujzk8n6JpJM1t/Qcqg2olwOmlpK/hu2jB/JpP9zVB27ZuKwcR0azCwBfAb4BLA9sAy4GjjTObcuwkuTTWBmZFJJMqmx7wTonKNYrg7WfvSXqg21JPVlJViWKkFoqQyt10NNpRqUC9bLNb/unPM1wc4FzeD+fbVWo1iuQqlCdaCKKzV1UDWjaBmKiQwr8L8fMqkEZuaPG8+qwWsAaPgbnKOhMS3F6P7rVgpezbLBq11rg9cLYJRJJZeSGMxOW+LYEnL7kti2xuzKGqbX+kmk0iQyaSyVJpnJkMhkSGV8dX01kcIl/N+HwZosq9eIW3BuvzQz3/8WR8ZVyeBfvlnQh9ZEwkimkiSTSRLJBMlkKnifIOlqJKplktUyyWqFRKVMslYmWSnjqlWoVnHVSrBegWoFqzkS6TSJTIZkJkMqkyGVDV6pFMlahVTFnzNRLftzVks+mAWhx9X79ZTLWLlEDahmclTSWSqprA+QqQylZIZkwsi6Kjkq/jO6CqlqmUS5NNTUkEgE/TqCZSJBc1we5II+QZWK/6VcKftlNehnlM76ppVMNlgP3tef+gr336mv1+9P/TNWml7BvaRWv481v8z1wIzZMGPLYDkbZm4JU7fwn6tDxnVoAC4ATgV+BZwH7Bq838fMDnNOkVtaMzN6Mil6Mim23mJSpNdSc45iqUp/qUKxXCWdTJBJJcikkqRTCVIJw4KvzDXn6C9V6BtoepUqlMpVBio+kAyUq5TKVYoV32xU19xHsVIdCkEDlRqlcnXwve9bGfwiMn8NiYT/BVWq1Pz1BtfdX6p2pOammzjY4D15wabwQnKKLzhAKCiVg1dfB66yHSNNaFWgv2mb4btlZ4DJo3RdQ3oy/stGwoxkwr8SCSMZ/Jn1Qcsa+oea2dBDT6Ft4PMGSUiYYRVIVA0rhsIZ/u+ic34ZXscx9PMHlwmSaUhkfA1V/eeGw1/CjFQyQXLASL2SILm8Sjq5lGTiFVLJBAfvNoftt5wy6veu2bgNDWa2G/Bp4Frn3PtD258FLgKOBq6M6PJE2pYwY1I2xaTsxv+6JsyYnE0zOZvuwJWNTKXqA4v/d9MNNgnUc4pzjmrNDdXMBDU51VqNSs3vqwa1PNXgfaVWo1Zzg/9QAw1PuVZqjoFylWIQuIqlql+WfYhxoX/MB/+Br/lmsHq4KpaqDFTqx/paH7OhXxAJG/ql4z+PGwxfzjlcsKzVfC2Sv24N399J/aUq/aXxXQv3hq2nKjRspmPw/25c2LT9MuBbwLEoNIh0TCqZoFdznQCNTVG1mmv4OhuuKK85H3rqr2JoWak6H76gIYDVg0o9l9W/3fpg5H9uzYVCWD2A1QPaYGBrXK+5+jnXD0XJhJFKJAa/Pddf4Gud6oFtoFwZDG2lcs3//Pq1VIeuqeYcicGaqyCUBQEtmbDB2rZ0KhGsJ0knE76DdbHCuoEy6wYq9BV9LdtEkOrQ363xHBrmAzXggfBG51zRzBYE+0VEOs7MSBok22iL7smM53+mx1615iiWKpSrQwFpKDT5mqXBoEW9iS7oZxQ6T31yx3DNWLiWKtxHqRYMi5KoN9vZ0DrUr6EeGodqoOoBrzn81Zs4wjVv9VBXD3qvm9nGuB6jYDz/aZwDLHfOtRo7eQnwVjPLOOf03JGIyDiVTBiTc/FrrutW47mucBK+61ArxVCZ9ZjZSWb20JhclYiISJcaz6Ghj+EfhsqFyqzHOXepc26/MbkqERGRLjWeQ8OLwCwzaxUc5uKbLtQ0ISIi0qbxHBoexH++t4Q3mlkO2BtQ84OIiMgIjOfQcBW+E+ppTdtPxPdluKLTFyQiItLNxu3TE865hWZ2CXCKmV0L3MjQiJB3oDEaRERERmTchobAacAi4CTgSGA5cDF+7gmNaSsiIjIC4zo0OOeq+Dknzov6WkRERLrdeO7TICIiIqNIoUFERETaotAgIiIibRnXfRpGSz6fj/oSREREOsUVCgVrtUM1DSIiItIWq0/3KZ1hZg9pXotGuifr0z1ppPuxPt2T9emerG+074lqGkRERKQtCg0iIiLSFoWGzrs06guIId2T9emeNNL9WJ/uyfp0T9Y3qvdEfRpERESkLappEBERkbYoNIiIiEhbFBrGmJklzOx0M3vCzIpm9oKZnWdmk6O+trFmZmeY2TVm9oyZOTNbtJHyO5vZdWa20szWmdldZnZohy53zJnZTmb2NTO7z8yWmdkaM1tgZl9s9edhvN8PGPyMV5jZ42a2ysz6gr8r55vZNsOUH9f3pBUzm2RmzwZ/j77bYv+4vy/BZ2/1Wtui7Li/HwBmNsPMvmNmTwe/X5aZ2W1m9jdN5UbtfmhEyLF3AXAq8Cv8bJu7Bu/3MbPDxvkU3d8EXgUeAbbYUEEz2xG4B6gA5wCrgBOBm83s3c65W8f2UjviX4BPAf8DXAGUgUOAbwAfNLMDnHP9MGHuB8A8YBv834/F+M+7B346+6PNbG/n3Cswoe5JK18DZrXaMcHuy12s37GvHH4zUe6HmW0H3A70Aj8CngSmAXsCc0PlRvd+OOf0GqMXsBtQA37ZtP3TgAM+HPU1jvHnf31o/U/Aog2UvRqoAnuHtvUCzwF/Iei0280vYD9gWovt3wj+PJwyke7HRu7VPwX35N8n+j0B3hz8g/+vwT35btP+CXFfgs/+kzbKTZT7cRfwArBNJ++HmifG1jGAARc2bb8M6AOO7fQFdZJz7pl2ygVV8+8FbnfOLQgdvxb4IbATMH8srrGTnHMPOedWtdh1VbDcHSbO/diI54LldJi498TMkvh/L24Crm2xf8LdFzPLmFnvMPsmxP0ws4OAtwPnOOdeMrO0mU1qUW7U74dCw9iaj69peCC80TlXBBYwDv7wjpI9gSxwb4t99wXL8Xyv5gXLpcFywt0PM8uZ2Swzm2dmhwM/CHbdGCwn3D0JnA7sApwyzP6Jdl8+gP/CtcbMXjGzi81sWmj/RLkf7wmWz5vZ9UA/sM7MnjSz8JfRUb8fCg1jaw6w3Dk30GLfEmCWmWU6fE1xNCdYLmmxr75tbot9XS/4Jnkmvvr5ymDzRLwfJwDL8NWtN+P7wBzrnLsr2D/h7omZ7QB8Ffiac27RMMUm0n15ADgLHxyOB36HD1N3hWoeJsr92DlYXgbMwN+PjwMl4Gdm9rFg/6jfD3WEHFuTgFaBAaAYKlPqzOXEVr1ardW9KjaVGW8uBA4AvuCc+0uwbSLej+uAJ/Btrfvgq1Rnh/ZPxHvyPeBZ4PwNlJkw98U5t3/TpsvN7I/A/wU+Eywnyv2YEizXAIc450oAZvYr4Bngm2b2U8bgfqimYWz14auGWsmFykx09XvQ6l6N2/tkZl/Hf1O61Dl3dmjXhLsfzrnFzrlbnXPXOee+gv/m9G0zOyMoMqHuSVDFfDhwsnOuvIGiE+q+tHAu/kvXkcH7iXI/+oPlf9UDA4BzbiX+6ayt8bURo34/FBrG1ov4JohW/8Pm4psuJnotA/j7BK2ryerbWlWvdS0zOwv4EvBj4OSm3RPufjRzzv0R+AOQDzZNmHsS/HtxPr4/x8tm9gYzewOwXVBkWrBtCybQfWklCFQvMvQ46kS5H4uD5cst9r0ULKczBvdDoWFsPYi/x28JbzSzHLA38FAE1xRHC/HVZwe22HdAsBw398rMvgJ8BbgcOMEFz0CFTKj7sQE9+PZamFj3pAffNHMk8FTodXuw/9jg/QlMrPuynuDf0nkMdSKeKPej3rl+Xot99W2vMBb3I+pnTcfzCz9IzYbGaTg26mvs4L3Y2DgN1+CfJd4rtK3+LPGTjJ9nq88M/t9fDiR0P9h6mO2HBJ//fyfgPUnjO/s1vz4Z/Nn5TfB+p4lyX4CZw2w/l/XH85gI92M6sBpf49Ab2r4NsBZ4cqzuh2a5HGNmdjG+3fpX+OrG+oiQvwcOdeN4REgzO46hKtVPAxn8qJgAzznnfhYq+wZ8ei7jR9FcjR+1bA/gSOfczZ267rFiZp8Cvgs8D3wZHyjDljrnfhuUHff3AwY7bm2D7wn/HL6ddV/gaHxb68EueL58otyT4ZjZ9viOkZc4504JbR/398XMLsB/M74N//enF//Y4SHA/fjOgPXRVMf9/QAws5PwjyY/Bvwn/t/XT+L/Pv2dc+6WoNzo3o+oE9N4fwFJ4N/wI28N4NuPzieUDsfrC1+d6oZ53d6i/K7AfwOv4X9h3A0cFvXnGMX78ZMN3I/17sl4vx/BZ/wgcAP+UcsivoPXE8DFwLYT7c/IRu7V9rQYEXIi3BfgffhHcZcEf07W4ce6+QKQm2j3I/Q5/xE/3sI6/JMUtwBvG8v7oZoGERERaYs6QoqIiEhbFBpERESkLQoNIiIi0haFBhEREWmLQoOIiIi0RaFBRERE2qLQICIiIm3R1NgiMu7l8/mz8PN9HFIoFG6P9mpEupdCg4hsVD6fb2cUOP1CFhnnFBpEZCS+uoF9izp1ESISDYUGEWlboVA4K+prEJHoKDSIyKgL9yHAz3R6GrALflKdXwNfKBQKL7c47o34GUDfCcwGlgO3Al8vFApPtSifxM/YdxywO36mvyX4ydK+PcwxHwD+PShfxE/y82+FQmHJZnxkkQlBT0+IyFg6Hfg+8ChwIX62148B9+Tz+dnhgvl8fj7wEHAs8CDwHfwMfh8BHsrn8/s1lc8ANwHfA14HXAlcBDwM/APwthbXkwd+jm9KuQT4E/Ah4NZ8Pp/d3A8rMt6ppkFE2hbUILRSLBQK32qx/d3A/oVC4Q+hc1yAr3n4FvDxYJsBlwNTgWMLhcIVofIfAv4f8PN8Pv+mQqFQC3adBRwGXA/8U6FQGAgdkw3O1ewIYH6hUFgYKnslcAx++uWrh/vsIqKaBhEZma8M8/r8MOV/Fg4MgbOAVcCHQ9/u34pvvrg3HBgACoXCVcDdwM7A22GwWSIP9AMnhwNDcMxAoVBY1uJ6LgoHhsBlwfItw3wGEQmopkFE2lYoFGyEh9zR4hyr8vn8AuAdwK7AAuDNwe7fDXOe3+EDwz7AnfiAMQ24v1AovDiC63moxbYXguX0EZxHZEJSTYOIjKWlw2yvd4Kc1rR8aZjy9e1bNC1H2nnxtRbbKsEyOcJziUw4Cg0iMpa2Gmb71sFyVdNy6xZlAbZpKvdasJy7yVcmIiOm0CAiY+kdzRvy+fw0YG/8446PB5vr/R4OHuY89e2PBMsn8MFhz3w+P2fzL1NE2qHQICJj6bh8Pr9P07az8M0R/xXqwPh7/OOYbw/GURgUvD8IeBLfIZJCoVAFCkAP8P3mxyXz+Xym+ZFOEdl86ggpIm3bwCOXANcVCoUFTdt+A/w+n89fje+X8PbgtYjQExeFQsHl8/njgd8CV+Xz+f/G1ybsDPw9flCofw49bgl+SOv9gaOAJ/P5/K+Dcq8DDgc+C/xkEz6miAxDoUFERuIrG9i3CP8kRNgFwK/w4zJ8CFiL/0X+hUKh8Eq4YKFQuD8Y4OlL+PEXjsKPCPlf+BEh/9JUvpTP548ATgb+GTgeMODF4GfePdIPJyIbZs61M3mdiEj7NBW1yPikPg0iIiLSFoUGERERaYtCg4iIiLRFfRpERESkLappEBERkbYoNIiIiEhbFBpERESkLQoNIiIi0haFBhEREWmLQoOIiIi05f8D6qlXhOBM3V8AAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 576x432 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "pwk.plot_history(history, plot={'MSE' :['mse', 'val_mse'],\n",
     "                                'MAE' :['mae', 'val_mae'],\n",
@@ -1625,7 +375,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 47,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -1639,18 +389,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 48,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Prediction : 10.68 K$\n",
-      "Reality    : 10.40 K$\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "\n",
     "predictions = model.predict( my_data )\n",
@@ -1660,19 +401,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 49,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "End time is : Thursday 14 January 2021, 11:24:04\n",
-      "Duration is : 00:26:59 485ms\n",
-      "This notebook ends here\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "pwk.end()"
    ]
@@ -1688,7 +419,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -1702,7 +433,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.10"
+   "version": "3.9.7"
   }
  },
  "nbformat": 4,
diff --git a/BHPD/01-DNN-Regression==done==.ipynb b/BHPD/01-DNN-Regression==done==.ipynb
deleted file mode 100644
index 66690afd740cda641008022c0ca0dabe88350dd5..0000000000000000000000000000000000000000
--- a/BHPD/01-DNN-Regression==done==.ipynb
+++ /dev/null
@@ -1,1867 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
-    "\n",
-    "\n",
-    "# <!-- TITLE --> [BHPD1] - Regression with a Dense Network (DNN)\n",
-    "<!-- DESC --> Simple example of a regression with the dataset Boston Housing Prices Dataset (BHPD)\n",
-    "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
-    "\n",
-    "## Objectives :\n",
-    " - Predicts **housing prices** from a set of house features. \n",
-    " - Understanding the **principle** and the **architecture** of a regression with a **dense neural network**  \n",
-    "\n",
-    "\n",
-    "The **[Boston Housing Prices Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html)** consists of price of houses in various places in Boston.  \n",
-    "Alongside with price, the dataset also provide theses informations : \n",
-    "\n",
-    " - CRIM: This is the per capita crime rate by town\n",
-    " - ZN: This is the proportion of residential land zoned for lots larger than 25,000 sq.ft\n",
-    " - INDUS: This is the proportion of non-retail business acres per town\n",
-    " - CHAS: This is the Charles River dummy variable (this is equal to 1 if tract bounds river; 0 otherwise)\n",
-    " - NOX: This is the nitric oxides concentration (parts per 10 million)\n",
-    " - RM: This is the average number of rooms per dwelling\n",
-    " - AGE: This is the proportion of owner-occupied units built prior to 1940\n",
-    " - DIS: This is the weighted distances to five Boston employment centers\n",
-    " - RAD: This is the index of accessibility to radial highways\n",
-    " - TAX: This is the full-value property-tax rate per 10,000 dollars\n",
-    " - PTRATIO: This is the pupil-teacher ratio by town\n",
-    " - B: This is calculated as 1000(Bk — 0.63)^2, where Bk is the proportion of people of African American descent by town\n",
-    " - LSTAT: This is the percentage lower status of the population\n",
-    " - MEDV: This is the median value of owner-occupied homes in 1000 dollars\n",
-    "## What we're going to do :\n",
-    "\n",
-    " - Retrieve data\n",
-    " - Preparing the data\n",
-    " - Build a model\n",
-    " - Train the model\n",
-    " - Evaluate the result\n"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 1 - Import and init"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:13.527470Z",
-     "iopub.status.busy": "2021-03-01T17:41:13.526994Z",
-     "iopub.status.idle": "2021-03-01T17:41:16.170044Z",
-     "shell.execute_reply": "2021-03-01T17:41:16.170537Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<style>\n",
-       "\n",
-       "div.warn {    \n",
-       "    background-color: #fcf2f2;\n",
-       "    border-color: #dFb5b4;\n",
-       "    border-left: 5px solid #dfb5b4;\n",
-       "    padding: 0.5em;\n",
-       "    font-weight: bold;\n",
-       "    font-size: 1.1em;;\n",
-       "    }\n",
-       "\n",
-       "\n",
-       "\n",
-       "div.nota {    \n",
-       "    background-color: #DAFFDE;\n",
-       "    border-left: 5px solid #92CC99;\n",
-       "    padding: 0.5em;\n",
-       "    }\n",
-       "\n",
-       "div.todo:before { content:url();\n",
-       "    float:left;\n",
-       "    margin-right:20px;\n",
-       "    margin-top:-20px;\n",
-       "    margin-bottom:20px;\n",
-       "}\n",
-       "div.todo{\n",
-       "    font-weight: bold;\n",
-       "    font-size: 1.1em;\n",
-       "    margin-top:40px;\n",
-       "}\n",
-       "div.todo ul{\n",
-       "    margin: 0.2em;\n",
-       "}\n",
-       "div.todo li{\n",
-       "    margin-left:60px;\n",
-       "    margin-top:0;\n",
-       "    margin-bottom:0;\n",
-       "}\n",
-       "\n",
-       "div .comment{\n",
-       "    font-size:0.8em;\n",
-       "    color:#696969;\n",
-       "}\n",
-       "\n",
-       "\n",
-       "\n",
-       "</style>\n",
-       "\n"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**FIDLE 2020 - Practical Work Module**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Version              : 2.0.17\n",
-      "Notebook id          : BHPD1\n",
-      "Run time             : Monday 01 March 2021, 18:41:16\n",
-      "TensorFlow version   : 2.4.0\n",
-      "Keras version        : 2.4.0\n",
-      "Datasets dir         : /gpfswork/rech/mlh/uja62cb/datasets\n",
-      "Run dir              : ./run\n",
-      "Update keras cache   : False\n",
-      "Save figs            : True\n",
-      "Path figs            : ./run/figs\n"
-     ]
-    }
-   ],
-   "source": [
-    "import tensorflow as tf\n",
-    "from tensorflow import keras\n",
-    "\n",
-    "import numpy as np\n",
-    "import matplotlib.pyplot as plt\n",
-    "import pandas as pd\n",
-    "import os,sys\n",
-    "\n",
-    "sys.path.append('..')\n",
-    "import fidle.pwk as pwk\n",
-    "\n",
-    "datasets_dir = pwk.init('BHPD1')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 2 - Retrieve data\n",
-    "\n",
-    "### 2.1 - Option 1  : From Keras\n",
-    "Boston housing is a famous historic dataset, so we can get it directly from [Keras datasets](https://www.tensorflow.org/api_docs/python/tf/keras/datasets)  "
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:16.173803Z",
-     "iopub.status.busy": "2021-03-01T17:41:16.173338Z",
-     "iopub.status.idle": "2021-03-01T17:41:16.175013Z",
-     "shell.execute_reply": "2021-03-01T17:41:16.175483Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "# (x_train, y_train), (x_test, y_test) = keras.datasets.boston_housing.load_data(test_split=0.2, seed=113)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 2.2 - Option 2 : From a csv file\n",
-    "More fun !"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:16.180430Z",
-     "iopub.status.busy": "2021-03-01T17:41:16.179962Z",
-     "iopub.status.idle": "2021-03-01T17:41:16.354784Z",
-     "shell.execute_reply": "2021-03-01T17:41:16.355277Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<style  type=\"text/css\" >\n",
-       "</style><table id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44f\" ><caption>Few lines of the dataset :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>        <th class=\"col_heading level0 col13\" >medv</th>    </tr></thead><tbody>\n",
-       "                <tr>\n",
-       "                        <th id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44flevel0_row0\" class=\"row_heading level0 row0\" >0</th>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow0_col0\" class=\"data row0 col0\" >0.01</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow0_col1\" class=\"data row0 col1\" >18.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow0_col2\" class=\"data row0 col2\" >2.31</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow0_col3\" class=\"data row0 col3\" >0.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow0_col4\" class=\"data row0 col4\" >0.54</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow0_col5\" class=\"data row0 col5\" >6.58</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow0_col6\" class=\"data row0 col6\" >65.20</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow0_col7\" class=\"data row0 col7\" >4.09</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow0_col8\" class=\"data row0 col8\" >1.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow0_col9\" class=\"data row0 col9\" >296.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow0_col10\" class=\"data row0 col10\" >15.30</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow0_col11\" class=\"data row0 col11\" >396.90</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow0_col12\" class=\"data row0 col12\" >4.98</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow0_col13\" class=\"data row0 col13\" >24.00</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44flevel0_row1\" class=\"row_heading level0 row1\" >1</th>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow1_col0\" class=\"data row1 col0\" >0.03</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow1_col1\" class=\"data row1 col1\" >0.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow1_col2\" class=\"data row1 col2\" >7.07</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow1_col3\" class=\"data row1 col3\" >0.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow1_col4\" class=\"data row1 col4\" >0.47</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow1_col5\" class=\"data row1 col5\" >6.42</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow1_col6\" class=\"data row1 col6\" >78.90</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow1_col7\" class=\"data row1 col7\" >4.97</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow1_col8\" class=\"data row1 col8\" >2.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow1_col9\" class=\"data row1 col9\" >242.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow1_col10\" class=\"data row1 col10\" >17.80</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow1_col11\" class=\"data row1 col11\" >396.90</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow1_col12\" class=\"data row1 col12\" >9.14</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow1_col13\" class=\"data row1 col13\" >21.60</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44flevel0_row2\" class=\"row_heading level0 row2\" >2</th>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow2_col0\" class=\"data row2 col0\" >0.03</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow2_col1\" class=\"data row2 col1\" >0.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow2_col2\" class=\"data row2 col2\" >7.07</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow2_col3\" class=\"data row2 col3\" >0.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow2_col4\" class=\"data row2 col4\" >0.47</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow2_col5\" class=\"data row2 col5\" >7.18</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow2_col6\" class=\"data row2 col6\" >61.10</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow2_col7\" class=\"data row2 col7\" >4.97</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow2_col8\" class=\"data row2 col8\" >2.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow2_col9\" class=\"data row2 col9\" >242.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow2_col10\" class=\"data row2 col10\" >17.80</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow2_col11\" class=\"data row2 col11\" >392.83</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow2_col12\" class=\"data row2 col12\" >4.03</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow2_col13\" class=\"data row2 col13\" >34.70</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44flevel0_row3\" class=\"row_heading level0 row3\" >3</th>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow3_col0\" class=\"data row3 col0\" >0.03</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow3_col1\" class=\"data row3 col1\" >0.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow3_col2\" class=\"data row3 col2\" >2.18</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow3_col3\" class=\"data row3 col3\" >0.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow3_col4\" class=\"data row3 col4\" >0.46</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow3_col5\" class=\"data row3 col5\" >7.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow3_col6\" class=\"data row3 col6\" >45.80</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow3_col7\" class=\"data row3 col7\" >6.06</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow3_col8\" class=\"data row3 col8\" >3.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow3_col9\" class=\"data row3 col9\" >222.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow3_col10\" class=\"data row3 col10\" >18.70</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow3_col11\" class=\"data row3 col11\" >394.63</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow3_col12\" class=\"data row3 col12\" >2.94</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow3_col13\" class=\"data row3 col13\" >33.40</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44flevel0_row4\" class=\"row_heading level0 row4\" >4</th>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow4_col0\" class=\"data row4 col0\" >0.07</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow4_col1\" class=\"data row4 col1\" >0.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow4_col2\" class=\"data row4 col2\" >2.18</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow4_col3\" class=\"data row4 col3\" >0.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow4_col4\" class=\"data row4 col4\" >0.46</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow4_col5\" class=\"data row4 col5\" >7.15</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow4_col6\" class=\"data row4 col6\" >54.20</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow4_col7\" class=\"data row4 col7\" >6.06</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow4_col8\" class=\"data row4 col8\" >3.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow4_col9\" class=\"data row4 col9\" >222.00</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow4_col10\" class=\"data row4 col10\" >18.70</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow4_col11\" class=\"data row4 col11\" >396.90</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow4_col12\" class=\"data row4 col12\" >5.33</td>\n",
-       "                        <td id=\"T_52e39a68_7ab5_11eb_8219_0cc47af5a44frow4_col13\" class=\"data row4 col13\" >36.20</td>\n",
-       "            </tr>\n",
-       "    </tbody></table>"
-      ],
-      "text/plain": [
-       "<pandas.io.formats.style.Styler at 0x148fce1af090>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Missing Data :  0   Shape is :  (506, 14)\n"
-     ]
-    }
-   ],
-   "source": [
-    "data = pd.read_csv(f'{datasets_dir}/BHPD/origine/BostonHousing.csv', header=0)\n",
-    "\n",
-    "display(data.head(5).style.format(\"{0:.2f}\").set_caption(\"Few lines of the dataset :\"))\n",
-    "print('Missing Data : ',data.isna().sum().sum(), '  Shape is : ', data.shape)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 3 - Preparing the data\n",
-    "### 3.1 - Split data\n",
-    "We will use 70% of the data for training and 30% for validation.  \n",
-    "The dataset is **shuffled** and shared between **learning** and **testing**.  \n",
-    "x will be input data and y the expected output"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:16.364655Z",
-     "iopub.status.busy": "2021-03-01T17:41:16.364187Z",
-     "iopub.status.idle": "2021-03-01T17:41:16.366905Z",
-     "shell.execute_reply": "2021-03-01T17:41:16.367376Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Original data shape was :  (506, 14)\n",
-      "x_train :  (354, 13) y_train :  (354,)\n",
-      "x_test  :  (152, 13) y_test  :  (152,)\n"
-     ]
-    }
-   ],
-   "source": [
-    "# ---- Suffle and Split => train, test\n",
-    "#\n",
-    "data_train = data.sample(frac=0.7, axis=0)\n",
-    "data_test  = data.drop(data_train.index)\n",
-    "\n",
-    "# ---- Split => x,y (medv is price)\n",
-    "#\n",
-    "x_train = data_train.drop('medv',  axis=1)\n",
-    "y_train = data_train['medv']\n",
-    "x_test  = data_test.drop('medv',   axis=1)\n",
-    "y_test  = data_test['medv']\n",
-    "\n",
-    "print('Original data shape was : ',data.shape)\n",
-    "print('x_train : ',x_train.shape, 'y_train : ',y_train.shape)\n",
-    "print('x_test  : ',x_test.shape,  'y_test  : ',y_test.shape)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 3.2 - Data normalization\n",
-    "**Note :** \n",
-    " - All input data must be normalized, train and test.  \n",
-    " - To do this we will **subtract the mean** and **divide by the standard deviation**.  \n",
-    " - But test data should not be used in any way, even for normalization.  \n",
-    " - The mean and the standard deviation will therefore only be calculated with the train data."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:16.375278Z",
-     "iopub.status.busy": "2021-03-01T17:41:16.371659Z",
-     "iopub.status.idle": "2021-03-01T17:41:16.483268Z",
-     "shell.execute_reply": "2021-03-01T17:41:16.482763Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<style  type=\"text/css\" >\n",
-       "</style><table id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44f\" ><caption>Before normalization :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>    </tr></thead><tbody>\n",
-       "                <tr>\n",
-       "                        <th id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44flevel0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow0_col0\" class=\"data row0 col0\" >354.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow0_col1\" class=\"data row0 col1\" >354.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow0_col2\" class=\"data row0 col2\" >354.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow0_col3\" class=\"data row0 col3\" >354.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow0_col4\" class=\"data row0 col4\" >354.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow0_col5\" class=\"data row0 col5\" >354.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow0_col6\" class=\"data row0 col6\" >354.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow0_col7\" class=\"data row0 col7\" >354.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow0_col8\" class=\"data row0 col8\" >354.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow0_col9\" class=\"data row0 col9\" >354.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow0_col10\" class=\"data row0 col10\" >354.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow0_col11\" class=\"data row0 col11\" >354.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow0_col12\" class=\"data row0 col12\" >354.00</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44flevel0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow1_col0\" class=\"data row1 col0\" >3.32</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow1_col1\" class=\"data row1 col1\" >12.08</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow1_col2\" class=\"data row1 col2\" >10.92</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow1_col3\" class=\"data row1 col3\" >0.08</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow1_col4\" class=\"data row1 col4\" >0.55</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow1_col5\" class=\"data row1 col5\" >6.28</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow1_col6\" class=\"data row1 col6\" >67.44</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow1_col7\" class=\"data row1 col7\" >3.81</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow1_col8\" class=\"data row1 col8\" >9.19</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow1_col9\" class=\"data row1 col9\" >401.68</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow1_col10\" class=\"data row1 col10\" >18.34</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow1_col11\" class=\"data row1 col11\" >358.29</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow1_col12\" class=\"data row1 col12\" >12.46</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44flevel0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow2_col0\" class=\"data row2 col0\" >7.46</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow2_col1\" class=\"data row2 col1\" >24.40</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow2_col2\" class=\"data row2 col2\" >6.70</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow2_col3\" class=\"data row2 col3\" >0.27</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow2_col4\" class=\"data row2 col4\" >0.12</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow2_col5\" class=\"data row2 col5\" >0.72</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow2_col6\" class=\"data row2 col6\" >28.67</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow2_col7\" class=\"data row2 col7\" >2.10</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow2_col8\" class=\"data row2 col8\" >8.52</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow2_col9\" class=\"data row2 col9\" >162.31</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow2_col10\" class=\"data row2 col10\" >2.22</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow2_col11\" class=\"data row2 col11\" >88.23</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow2_col12\" class=\"data row2 col12\" >7.20</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44flevel0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow3_col0\" class=\"data row3 col0\" >0.01</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow3_col1\" class=\"data row3 col1\" >0.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow3_col2\" class=\"data row3 col2\" >0.74</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow3_col3\" class=\"data row3 col3\" >0.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow3_col4\" class=\"data row3 col4\" >0.39</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow3_col5\" class=\"data row3 col5\" >3.56</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow3_col6\" class=\"data row3 col6\" >6.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow3_col7\" class=\"data row3 col7\" >1.13</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow3_col8\" class=\"data row3 col8\" >1.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow3_col9\" class=\"data row3 col9\" >188.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow3_col10\" class=\"data row3 col10\" >12.60</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow3_col11\" class=\"data row3 col11\" >2.52</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow3_col12\" class=\"data row3 col12\" >1.73</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44flevel0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow4_col0\" class=\"data row4 col0\" >0.08</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow4_col1\" class=\"data row4 col1\" >0.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow4_col2\" class=\"data row4 col2\" >5.15</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow4_col3\" class=\"data row4 col3\" >0.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow4_col4\" class=\"data row4 col4\" >0.45</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow4_col5\" class=\"data row4 col5\" >5.88</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow4_col6\" class=\"data row4 col6\" >42.65</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow4_col7\" class=\"data row4 col7\" >2.03</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow4_col8\" class=\"data row4 col8\" >4.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow4_col9\" class=\"data row4 col9\" >281.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow4_col10\" class=\"data row4 col10\" >16.90</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow4_col11\" class=\"data row4 col11\" >375.65</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow4_col12\" class=\"data row4 col12\" >6.88</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44flevel0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow5_col0\" class=\"data row5 col0\" >0.25</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow5_col1\" class=\"data row5 col1\" >0.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow5_col2\" class=\"data row5 col2\" >9.12</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow5_col3\" class=\"data row5 col3\" >0.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow5_col4\" class=\"data row5 col4\" >0.54</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow5_col5\" class=\"data row5 col5\" >6.21</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow5_col6\" class=\"data row5 col6\" >74.95</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow5_col7\" class=\"data row5 col7\" >3.27</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow5_col8\" class=\"data row5 col8\" >5.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow5_col9\" class=\"data row5 col9\" >330.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow5_col10\" class=\"data row5 col10\" >18.70</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow5_col11\" class=\"data row5 col11\" >391.44</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow5_col12\" class=\"data row5 col12\" >11.17</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44flevel0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow6_col0\" class=\"data row6 col0\" >2.81</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow6_col1\" class=\"data row6 col1\" >20.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow6_col2\" class=\"data row6 col2\" >18.10</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow6_col3\" class=\"data row6 col3\" >0.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow6_col4\" class=\"data row6 col4\" >0.62</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow6_col5\" class=\"data row6 col5\" >6.61</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow6_col6\" class=\"data row6 col6\" >93.90</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow6_col7\" class=\"data row6 col7\" >5.21</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow6_col8\" class=\"data row6 col8\" >8.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow6_col9\" class=\"data row6 col9\" >437.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow6_col10\" class=\"data row6 col10\" >20.20</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow6_col11\" class=\"data row6 col11\" >396.30</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow6_col12\" class=\"data row6 col12\" >16.23</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44flevel0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow7_col0\" class=\"data row7 col0\" >67.92</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow7_col1\" class=\"data row7 col1\" >100.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow7_col2\" class=\"data row7 col2\" >27.74</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow7_col3\" class=\"data row7 col3\" >1.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow7_col4\" class=\"data row7 col4\" >0.87</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow7_col5\" class=\"data row7 col5\" >8.78</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow7_col6\" class=\"data row7 col6\" >100.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow7_col7\" class=\"data row7 col7\" >10.59</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow7_col8\" class=\"data row7 col8\" >24.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow7_col9\" class=\"data row7 col9\" >711.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow7_col10\" class=\"data row7 col10\" >22.00</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow7_col11\" class=\"data row7 col11\" >396.90</td>\n",
-       "                        <td id=\"T_52ef16ee_7ab5_11eb_aa7b_0cc47af5a44frow7_col12\" class=\"data row7 col12\" >36.98</td>\n",
-       "            </tr>\n",
-       "    </tbody></table>"
-      ],
-      "text/plain": [
-       "<pandas.io.formats.style.Styler at 0x148fcd465590>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<style  type=\"text/css\" >\n",
-       "</style><table id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44f\" ><caption>After normalization :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>    </tr></thead><tbody>\n",
-       "                <tr>\n",
-       "                        <th id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44flevel0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow0_col0\" class=\"data row0 col0\" >354.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow0_col1\" class=\"data row0 col1\" >354.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow0_col2\" class=\"data row0 col2\" >354.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow0_col3\" class=\"data row0 col3\" >354.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow0_col4\" class=\"data row0 col4\" >354.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow0_col5\" class=\"data row0 col5\" >354.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow0_col6\" class=\"data row0 col6\" >354.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow0_col7\" class=\"data row0 col7\" >354.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow0_col8\" class=\"data row0 col8\" >354.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow0_col9\" class=\"data row0 col9\" >354.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow0_col10\" class=\"data row0 col10\" >354.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow0_col11\" class=\"data row0 col11\" >354.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow0_col12\" class=\"data row0 col12\" >354.00</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44flevel0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow1_col0\" class=\"data row1 col0\" >0.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow1_col1\" class=\"data row1 col1\" >0.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow1_col2\" class=\"data row1 col2\" >-0.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow1_col3\" class=\"data row1 col3\" >-0.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow1_col4\" class=\"data row1 col4\" >-0.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow1_col5\" class=\"data row1 col5\" >0.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow1_col6\" class=\"data row1 col6\" >0.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow1_col7\" class=\"data row1 col7\" >0.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow1_col8\" class=\"data row1 col8\" >-0.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow1_col9\" class=\"data row1 col9\" >-0.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow1_col10\" class=\"data row1 col10\" >0.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow1_col11\" class=\"data row1 col11\" >-0.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow1_col12\" class=\"data row1 col12\" >0.00</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44flevel0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow2_col0\" class=\"data row2 col0\" >1.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow2_col1\" class=\"data row2 col1\" >1.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow2_col2\" class=\"data row2 col2\" >1.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow2_col3\" class=\"data row2 col3\" >1.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow2_col4\" class=\"data row2 col4\" >1.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow2_col5\" class=\"data row2 col5\" >1.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow2_col6\" class=\"data row2 col6\" >1.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow2_col7\" class=\"data row2 col7\" >1.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow2_col8\" class=\"data row2 col8\" >1.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow2_col9\" class=\"data row2 col9\" >1.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow2_col10\" class=\"data row2 col10\" >1.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow2_col11\" class=\"data row2 col11\" >1.00</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow2_col12\" class=\"data row2 col12\" >1.00</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44flevel0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow3_col0\" class=\"data row3 col0\" >-0.44</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow3_col1\" class=\"data row3 col1\" >-0.50</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow3_col2\" class=\"data row3 col2\" >-1.52</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow3_col3\" class=\"data row3 col3\" >-0.29</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow3_col4\" class=\"data row3 col4\" >-1.42</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow3_col5\" class=\"data row3 col5\" >-3.78</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow3_col6\" class=\"data row3 col6\" >-2.14</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow3_col7\" class=\"data row3 col7\" >-1.28</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow3_col8\" class=\"data row3 col8\" >-0.96</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow3_col9\" class=\"data row3 col9\" >-1.32</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow3_col10\" class=\"data row3 col10\" >-2.58</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow3_col11\" class=\"data row3 col11\" >-4.03</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow3_col12\" class=\"data row3 col12\" >-1.49</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44flevel0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow4_col0\" class=\"data row4 col0\" >-0.43</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow4_col1\" class=\"data row4 col1\" >-0.50</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow4_col2\" class=\"data row4 col2\" >-0.86</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow4_col3\" class=\"data row4 col3\" >-0.29</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow4_col4\" class=\"data row4 col4\" >-0.89</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow4_col5\" class=\"data row4 col5\" >-0.56</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow4_col6\" class=\"data row4 col6\" >-0.86</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow4_col7\" class=\"data row4 col7\" >-0.85</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow4_col8\" class=\"data row4 col8\" >-0.61</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow4_col9\" class=\"data row4 col9\" >-0.74</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow4_col10\" class=\"data row4 col10\" >-0.65</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow4_col11\" class=\"data row4 col11\" >0.20</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow4_col12\" class=\"data row4 col12\" >-0.78</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44flevel0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow5_col0\" class=\"data row5 col0\" >-0.41</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow5_col1\" class=\"data row5 col1\" >-0.50</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow5_col2\" class=\"data row5 col2\" >-0.27</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow5_col3\" class=\"data row5 col3\" >-0.29</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow5_col4\" class=\"data row5 col4\" >-0.14</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow5_col5\" class=\"data row5 col5\" >-0.10</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow5_col6\" class=\"data row5 col6\" >0.26</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow5_col7\" class=\"data row5 col7\" >-0.26</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow5_col8\" class=\"data row5 col8\" >-0.49</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow5_col9\" class=\"data row5 col9\" >-0.44</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow5_col10\" class=\"data row5 col10\" >0.16</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow5_col11\" class=\"data row5 col11\" >0.38</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow5_col12\" class=\"data row5 col12\" >-0.18</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44flevel0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow6_col0\" class=\"data row6 col0\" >-0.07</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow6_col1\" class=\"data row6 col1\" >0.32</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow6_col2\" class=\"data row6 col2\" >1.07</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow6_col3\" class=\"data row6 col3\" >-0.29</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow6_col4\" class=\"data row6 col4\" >0.58</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow6_col5\" class=\"data row6 col5\" >0.45</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow6_col6\" class=\"data row6 col6\" >0.92</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow6_col7\" class=\"data row6 col7\" >0.66</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow6_col8\" class=\"data row6 col8\" >-0.14</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow6_col9\" class=\"data row6 col9\" >0.22</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow6_col10\" class=\"data row6 col10\" >0.84</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow6_col11\" class=\"data row6 col11\" >0.43</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow6_col12\" class=\"data row6 col12\" >0.52</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44flevel0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow7_col0\" class=\"data row7 col0\" >8.66</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow7_col1\" class=\"data row7 col1\" >3.60</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow7_col2\" class=\"data row7 col2\" >2.51</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow7_col3\" class=\"data row7 col3\" >3.48</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow7_col4\" class=\"data row7 col4\" >2.65</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow7_col5\" class=\"data row7 col5\" >3.47</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow7_col6\" class=\"data row7 col6\" >1.14</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow7_col7\" class=\"data row7 col7\" >3.22</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow7_col8\" class=\"data row7 col8\" >1.74</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow7_col9\" class=\"data row7 col9\" >1.91</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow7_col10\" class=\"data row7 col10\" >1.65</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow7_col11\" class=\"data row7 col11\" >0.44</td>\n",
-       "                        <td id=\"T_52f97e82_7ab5_11eb_b389_0cc47af5a44frow7_col12\" class=\"data row7 col12\" >3.41</td>\n",
-       "            </tr>\n",
-       "    </tbody></table>"
-      ],
-      "text/plain": [
-       "<pandas.io.formats.style.Styler at 0x148fcea34410>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<style  type=\"text/css\" >\n",
-       "</style><table id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44f\" ><caption>Few lines of the dataset :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>    </tr></thead><tbody>\n",
-       "                <tr>\n",
-       "                        <th id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44flevel0_row0\" class=\"row_heading level0 row0\" >403</th>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow0_col0\" class=\"data row0 col0\" >2.88</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow0_col1\" class=\"data row0 col1\" >-0.50</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow0_col2\" class=\"data row0 col2\" >1.07</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow0_col3\" class=\"data row0 col3\" >-0.29</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow0_col4\" class=\"data row0 col4\" >1.16</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow0_col5\" class=\"data row0 col5\" >-1.30</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow0_col6\" class=\"data row0 col6\" >1.00</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow0_col7\" class=\"data row0 col7\" >-1.00</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow0_col8\" class=\"data row0 col8\" >1.74</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow0_col9\" class=\"data row0 col9\" >1.63</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow0_col10\" class=\"data row0 col10\" >0.84</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow0_col11\" class=\"data row0 col11\" >0.44</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow0_col12\" class=\"data row0 col12\" >1.02</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44flevel0_row1\" class=\"row_heading level0 row1\" >361</th>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow1_col0\" class=\"data row1 col0\" >0.07</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow1_col1\" class=\"data row1 col1\" >-0.50</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow1_col2\" class=\"data row1 col2\" >1.07</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow1_col3\" class=\"data row1 col3\" >-0.29</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow1_col4\" class=\"data row1 col4\" >1.80</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow1_col5\" class=\"data row1 col5\" >-0.05</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow1_col6\" class=\"data row1 col6\" >0.83</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow1_col7\" class=\"data row1 col7\" >-0.72</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow1_col8\" class=\"data row1 col8\" >1.74</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow1_col9\" class=\"data row1 col9\" >1.63</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow1_col10\" class=\"data row1 col10\" >0.84</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow1_col11\" class=\"data row1 col11\" >-0.09</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow1_col12\" class=\"data row1 col12\" >0.24</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44flevel0_row2\" class=\"row_heading level0 row2\" >487</th>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow2_col0\" class=\"data row2 col0\" >0.20</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow2_col1\" class=\"data row2 col1\" >-0.50</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow2_col2\" class=\"data row2 col2\" >1.07</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow2_col3\" class=\"data row2 col3\" >-0.29</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow2_col4\" class=\"data row2 col4\" >0.24</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow2_col5\" class=\"data row2 col5\" >-0.53</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow2_col6\" class=\"data row2 col6\" >-0.50</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow2_col7\" class=\"data row2 col7\" >-0.31</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow2_col8\" class=\"data row2 col8\" >1.74</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow2_col9\" class=\"data row2 col9\" >1.63</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow2_col10\" class=\"data row2 col10\" >0.84</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow2_col11\" class=\"data row2 col11\" >0.34</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow2_col12\" class=\"data row2 col12\" >-0.14</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44flevel0_row3\" class=\"row_heading level0 row3\" >282</th>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow3_col0\" class=\"data row3 col0\" >-0.44</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow3_col1\" class=\"data row3 col1\" >0.32</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow3_col2\" class=\"data row3 col2\" >-1.13</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow3_col3\" class=\"data row3 col3\" >3.48</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow3_col4\" class=\"data row3 col4\" >-0.93</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow3_col5\" class=\"data row3 col5\" >1.89</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow3_col6\" class=\"data row3 col6\" >-0.62</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow3_col7\" class=\"data row3 col7\" >0.66</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow3_col8\" class=\"data row3 col8\" >-0.49</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow3_col9\" class=\"data row3 col9\" >-1.14</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow3_col10\" class=\"data row3 col10\" >-1.55</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow3_col11\" class=\"data row3 col11\" >0.21</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow3_col12\" class=\"data row3 col12\" >-1.31</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44flevel0_row4\" class=\"row_heading level0 row4\" >465</th>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow4_col0\" class=\"data row4 col0\" >-0.02</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow4_col1\" class=\"data row4 col1\" >-0.50</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow4_col2\" class=\"data row4 col2\" >1.07</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow4_col3\" class=\"data row4 col3\" >-0.29</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow4_col4\" class=\"data row4 col4\" >0.84</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow4_col5\" class=\"data row4 col5\" >-0.73</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow4_col6\" class=\"data row4 col6\" >-0.67</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow4_col7\" class=\"data row4 col7\" >-0.36</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow4_col8\" class=\"data row4 col8\" >1.74</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow4_col9\" class=\"data row4 col9\" >1.63</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow4_col10\" class=\"data row4 col10\" >0.84</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow4_col11\" class=\"data row4 col11\" >-0.27</td>\n",
-       "                        <td id=\"T_52fa862e_7ab5_11eb_a422_0cc47af5a44frow4_col12\" class=\"data row4 col12\" >0.23</td>\n",
-       "            </tr>\n",
-       "    </tbody></table>"
-      ],
-      "text/plain": [
-       "<pandas.io.formats.style.Styler at 0x148fcd153b10>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"Before normalization :\"))\n",
-    "\n",
-    "mean = x_train.mean()\n",
-    "std  = x_train.std()\n",
-    "x_train = (x_train - mean) / std\n",
-    "x_test  = (x_test  - mean) / std\n",
-    "\n",
-    "display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"After normalization :\"))\n",
-    "display(x_train.head(5).style.format(\"{0:.2f}\").set_caption(\"Few lines of the dataset :\"))\n",
-    "\n",
-    "x_train, y_train = np.array(x_train), np.array(y_train)\n",
-    "x_test,  y_test  = np.array(x_test),  np.array(y_test)\n"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 4 - Build a model\n",
-    "About informations about : \n",
-    " - [Optimizer](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers)\n",
-    " - [Activation](https://www.tensorflow.org/api_docs/python/tf/keras/activations)\n",
-    " - [Loss](https://www.tensorflow.org/api_docs/python/tf/keras/losses)\n",
-    " - [Metrics](https://www.tensorflow.org/api_docs/python/tf/keras/metrics)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:16.488433Z",
-     "iopub.status.busy": "2021-03-01T17:41:16.487962Z",
-     "iopub.status.idle": "2021-03-01T17:41:16.489656Z",
-     "shell.execute_reply": "2021-03-01T17:41:16.490133Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "  def get_model_v1(shape):\n",
-    "    \n",
-    "    model = keras.models.Sequential()\n",
-    "    model.add(keras.layers.Input(shape, name=\"InputLayer\"))\n",
-    "    model.add(keras.layers.Dense(32, activation='relu', name='Dense_n1'))\n",
-    "    model.add(keras.layers.Dense(64, activation='relu', name='Dense_n2'))\n",
-    "    model.add(keras.layers.Dense(32, activation='relu', name='Dense_n3'))\n",
-    "    model.add(keras.layers.Dense(1, name='Output'))\n",
-    "    \n",
-    "    model.compile(optimizer = 'adam',\n",
-    "                  loss      = 'mse',\n",
-    "                  metrics   = ['mae', 'mse'] )\n",
-    "    return model"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 5 - Train the model\n",
-    "### 5.1 - Get it"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:16.493313Z",
-     "iopub.status.busy": "2021-03-01T17:41:16.492835Z",
-     "iopub.status.idle": "2021-03-01T17:41:17.735045Z",
-     "shell.execute_reply": "2021-03-01T17:41:17.735541Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Model: \"sequential\"\n",
-      "_________________________________________________________________\n",
-      "Layer (type)                 Output Shape              Param #   \n",
-      "=================================================================\n",
-      "Dense_n1 (Dense)             (None, 32)                448       \n",
-      "_________________________________________________________________\n",
-      "Dense_n2 (Dense)             (None, 64)                2112      \n",
-      "_________________________________________________________________\n",
-      "Dense_n3 (Dense)             (None, 32)                2080      \n",
-      "_________________________________________________________________\n",
-      "Output (Dense)               (None, 1)                 33        \n",
-      "=================================================================\n",
-      "Total params: 4,673\n",
-      "Trainable params: 4,673\n",
-      "Non-trainable params: 0\n",
-      "_________________________________________________________________\n"
-     ]
-    }
-   ],
-   "source": [
-    "model=get_model_v1( (13,) )\n",
-    "\n",
-    "model.summary()\n",
-    "\n",
-    "# img=keras.utils.plot_model( model, to_file='./run/model.png', show_shapes=True, show_layer_names=True, dpi=96)\n",
-    "# display(img)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 5.2 - Train it"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:17.739289Z",
-     "iopub.status.busy": "2021-03-01T17:41:17.738813Z",
-     "iopub.status.idle": "2021-03-01T17:41:26.567675Z",
-     "shell.execute_reply": "2021-03-01T17:41:26.568223Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "history = model.fit(x_train,\n",
-    "                    y_train,\n",
-    "                    epochs          = 60,\n",
-    "                    batch_size      = 10,\n",
-    "                    verbose         = 0,\n",
-    "                    validation_data = (x_test, y_test))"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 6 - Evaluate\n",
-    "### 6.1 - Model evaluation\n",
-    "MAE =  Mean Absolute Error (between the labels and predictions)  \n",
-    "A mae equal to 3 represents an average error in prediction of $3k."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:26.572432Z",
-     "iopub.status.busy": "2021-03-01T17:41:26.571955Z",
-     "iopub.status.idle": "2021-03-01T17:41:26.650298Z",
-     "shell.execute_reply": "2021-03-01T17:41:26.649791Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      "1/5 [=====>........................] - ETA: 0s - loss: 8.2492 - mae: 2.0208 - mse: 8.2492"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "5/5 [==============================] - 0s 1ms/step - loss: 10.5366 - mae: 2.3895 - mse: 10.5366\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "x_test / loss      : 10.5366\n",
-      "x_test / mae       : 2.3895\n",
-      "x_test / mse       : 10.5366\n"
-     ]
-    }
-   ],
-   "source": [
-    "score = model.evaluate(x_test, y_test, verbose=1)\n",
-    "\n",
-    "print('x_test / loss      : {:5.4f}'.format(score[0]))\n",
-    "print('x_test / mae       : {:5.4f}'.format(score[1]))\n",
-    "print('x_test / mse       : {:5.4f}'.format(score[2]))"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 6.2 - Training history\n",
-    "What was the best result during our training ?"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 10,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:26.660124Z",
-     "iopub.status.busy": "2021-03-01T17:41:26.659655Z",
-     "iopub.status.idle": "2021-03-01T17:41:26.674099Z",
-     "shell.execute_reply": "2021-03-01T17:41:26.673601Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>loss</th>\n",
-       "      <th>mae</th>\n",
-       "      <th>mse</th>\n",
-       "      <th>val_loss</th>\n",
-       "      <th>val_mae</th>\n",
-       "      <th>val_mse</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>0</th>\n",
-       "      <td>545.863098</td>\n",
-       "      <td>21.133850</td>\n",
-       "      <td>545.863098</td>\n",
-       "      <td>360.953522</td>\n",
-       "      <td>17.025244</td>\n",
-       "      <td>360.953522</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>261.080231</td>\n",
-       "      <td>13.490397</td>\n",
-       "      <td>261.080231</td>\n",
-       "      <td>79.581886</td>\n",
-       "      <td>7.230071</td>\n",
-       "      <td>79.581886</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>78.006409</td>\n",
-       "      <td>6.512011</td>\n",
-       "      <td>78.006409</td>\n",
-       "      <td>33.526943</td>\n",
-       "      <td>4.489775</td>\n",
-       "      <td>33.526943</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>44.336273</td>\n",
-       "      <td>4.793118</td>\n",
-       "      <td>44.336273</td>\n",
-       "      <td>26.515295</td>\n",
-       "      <td>4.051670</td>\n",
-       "      <td>26.515295</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>34.118382</td>\n",
-       "      <td>4.250879</td>\n",
-       "      <td>34.118382</td>\n",
-       "      <td>23.403603</td>\n",
-       "      <td>3.777257</td>\n",
-       "      <td>23.403603</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>5</th>\n",
-       "      <td>29.745378</td>\n",
-       "      <td>3.934070</td>\n",
-       "      <td>29.745378</td>\n",
-       "      <td>21.074188</td>\n",
-       "      <td>3.566497</td>\n",
-       "      <td>21.074188</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>6</th>\n",
-       "      <td>26.922581</td>\n",
-       "      <td>3.699979</td>\n",
-       "      <td>26.922581</td>\n",
-       "      <td>19.873693</td>\n",
-       "      <td>3.435581</td>\n",
-       "      <td>19.873693</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>7</th>\n",
-       "      <td>24.309175</td>\n",
-       "      <td>3.481427</td>\n",
-       "      <td>24.309175</td>\n",
-       "      <td>16.510469</td>\n",
-       "      <td>3.084693</td>\n",
-       "      <td>16.510469</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>8</th>\n",
-       "      <td>22.581955</td>\n",
-       "      <td>3.343732</td>\n",
-       "      <td>22.581955</td>\n",
-       "      <td>16.982376</td>\n",
-       "      <td>3.156864</td>\n",
-       "      <td>16.982376</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>9</th>\n",
-       "      <td>20.892347</td>\n",
-       "      <td>3.184236</td>\n",
-       "      <td>20.892347</td>\n",
-       "      <td>15.236839</td>\n",
-       "      <td>2.978724</td>\n",
-       "      <td>15.236839</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>10</th>\n",
-       "      <td>19.455772</td>\n",
-       "      <td>3.048441</td>\n",
-       "      <td>19.455772</td>\n",
-       "      <td>14.255507</td>\n",
-       "      <td>2.867748</td>\n",
-       "      <td>14.255507</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>11</th>\n",
-       "      <td>18.247261</td>\n",
-       "      <td>2.958500</td>\n",
-       "      <td>18.247261</td>\n",
-       "      <td>16.440861</td>\n",
-       "      <td>3.141482</td>\n",
-       "      <td>16.440861</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>12</th>\n",
-       "      <td>17.271641</td>\n",
-       "      <td>2.874703</td>\n",
-       "      <td>17.271641</td>\n",
-       "      <td>12.513843</td>\n",
-       "      <td>2.669228</td>\n",
-       "      <td>12.513843</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>13</th>\n",
-       "      <td>17.312550</td>\n",
-       "      <td>2.809710</td>\n",
-       "      <td>17.312550</td>\n",
-       "      <td>12.203506</td>\n",
-       "      <td>2.616666</td>\n",
-       "      <td>12.203506</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>14</th>\n",
-       "      <td>16.602661</td>\n",
-       "      <td>2.740153</td>\n",
-       "      <td>16.602661</td>\n",
-       "      <td>12.345321</td>\n",
-       "      <td>2.649013</td>\n",
-       "      <td>12.345321</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>15</th>\n",
-       "      <td>15.696836</td>\n",
-       "      <td>2.713213</td>\n",
-       "      <td>15.696836</td>\n",
-       "      <td>11.687651</td>\n",
-       "      <td>2.582579</td>\n",
-       "      <td>11.687651</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>16</th>\n",
-       "      <td>14.900456</td>\n",
-       "      <td>2.602173</td>\n",
-       "      <td>14.900456</td>\n",
-       "      <td>12.254040</td>\n",
-       "      <td>2.632470</td>\n",
-       "      <td>12.254040</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>17</th>\n",
-       "      <td>14.419192</td>\n",
-       "      <td>2.590802</td>\n",
-       "      <td>14.419192</td>\n",
-       "      <td>11.413322</td>\n",
-       "      <td>2.546107</td>\n",
-       "      <td>11.413322</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>18</th>\n",
-       "      <td>13.794635</td>\n",
-       "      <td>2.509831</td>\n",
-       "      <td>13.794635</td>\n",
-       "      <td>11.820964</td>\n",
-       "      <td>2.580392</td>\n",
-       "      <td>11.820965</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>19</th>\n",
-       "      <td>13.609015</td>\n",
-       "      <td>2.501352</td>\n",
-       "      <td>13.609015</td>\n",
-       "      <td>11.115652</td>\n",
-       "      <td>2.524524</td>\n",
-       "      <td>11.115652</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>20</th>\n",
-       "      <td>13.208405</td>\n",
-       "      <td>2.441689</td>\n",
-       "      <td>13.208405</td>\n",
-       "      <td>11.522743</td>\n",
-       "      <td>2.543711</td>\n",
-       "      <td>11.522743</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>21</th>\n",
-       "      <td>13.172217</td>\n",
-       "      <td>2.435287</td>\n",
-       "      <td>13.172217</td>\n",
-       "      <td>11.286185</td>\n",
-       "      <td>2.514078</td>\n",
-       "      <td>11.286186</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>22</th>\n",
-       "      <td>12.370877</td>\n",
-       "      <td>2.387458</td>\n",
-       "      <td>12.370877</td>\n",
-       "      <td>10.830916</td>\n",
-       "      <td>2.480028</td>\n",
-       "      <td>10.830916</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>23</th>\n",
-       "      <td>13.251469</td>\n",
-       "      <td>2.503675</td>\n",
-       "      <td>13.251469</td>\n",
-       "      <td>11.117655</td>\n",
-       "      <td>2.471750</td>\n",
-       "      <td>11.117655</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>24</th>\n",
-       "      <td>11.752858</td>\n",
-       "      <td>2.327749</td>\n",
-       "      <td>11.752858</td>\n",
-       "      <td>11.707895</td>\n",
-       "      <td>2.563395</td>\n",
-       "      <td>11.707895</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>25</th>\n",
-       "      <td>11.362391</td>\n",
-       "      <td>2.317912</td>\n",
-       "      <td>11.362391</td>\n",
-       "      <td>11.417477</td>\n",
-       "      <td>2.520683</td>\n",
-       "      <td>11.417477</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>26</th>\n",
-       "      <td>11.814208</td>\n",
-       "      <td>2.377963</td>\n",
-       "      <td>11.814208</td>\n",
-       "      <td>10.415172</td>\n",
-       "      <td>2.421767</td>\n",
-       "      <td>10.415171</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>27</th>\n",
-       "      <td>11.050715</td>\n",
-       "      <td>2.265368</td>\n",
-       "      <td>11.050715</td>\n",
-       "      <td>10.890196</td>\n",
-       "      <td>2.473913</td>\n",
-       "      <td>10.890196</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>28</th>\n",
-       "      <td>10.748952</td>\n",
-       "      <td>2.250687</td>\n",
-       "      <td>10.748952</td>\n",
-       "      <td>10.721397</td>\n",
-       "      <td>2.450498</td>\n",
-       "      <td>10.721397</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>29</th>\n",
-       "      <td>10.422258</td>\n",
-       "      <td>2.193367</td>\n",
-       "      <td>10.422258</td>\n",
-       "      <td>11.784633</td>\n",
-       "      <td>2.559052</td>\n",
-       "      <td>11.784633</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>30</th>\n",
-       "      <td>11.032021</td>\n",
-       "      <td>2.338972</td>\n",
-       "      <td>11.032021</td>\n",
-       "      <td>12.865352</td>\n",
-       "      <td>2.835979</td>\n",
-       "      <td>12.865352</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>31</th>\n",
-       "      <td>10.664175</td>\n",
-       "      <td>2.268342</td>\n",
-       "      <td>10.664175</td>\n",
-       "      <td>10.925707</td>\n",
-       "      <td>2.472692</td>\n",
-       "      <td>10.925707</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>32</th>\n",
-       "      <td>10.063553</td>\n",
-       "      <td>2.215009</td>\n",
-       "      <td>10.063553</td>\n",
-       "      <td>10.491047</td>\n",
-       "      <td>2.431164</td>\n",
-       "      <td>10.491047</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>33</th>\n",
-       "      <td>9.667834</td>\n",
-       "      <td>2.164389</td>\n",
-       "      <td>9.667835</td>\n",
-       "      <td>11.071754</td>\n",
-       "      <td>2.508192</td>\n",
-       "      <td>11.071754</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>34</th>\n",
-       "      <td>9.544786</td>\n",
-       "      <td>2.138699</td>\n",
-       "      <td>9.544786</td>\n",
-       "      <td>10.235384</td>\n",
-       "      <td>2.385182</td>\n",
-       "      <td>10.235384</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>35</th>\n",
-       "      <td>9.474145</td>\n",
-       "      <td>2.153771</td>\n",
-       "      <td>9.474145</td>\n",
-       "      <td>10.599800</td>\n",
-       "      <td>2.463238</td>\n",
-       "      <td>10.599800</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>36</th>\n",
-       "      <td>9.191185</td>\n",
-       "      <td>2.112283</td>\n",
-       "      <td>9.191185</td>\n",
-       "      <td>11.751669</td>\n",
-       "      <td>2.645589</td>\n",
-       "      <td>11.751669</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>37</th>\n",
-       "      <td>9.204374</td>\n",
-       "      <td>2.113544</td>\n",
-       "      <td>9.204374</td>\n",
-       "      <td>10.500607</td>\n",
-       "      <td>2.388815</td>\n",
-       "      <td>10.500607</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>38</th>\n",
-       "      <td>8.517492</td>\n",
-       "      <td>2.060591</td>\n",
-       "      <td>8.517492</td>\n",
-       "      <td>10.215607</td>\n",
-       "      <td>2.381148</td>\n",
-       "      <td>10.215606</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>39</th>\n",
-       "      <td>8.414390</td>\n",
-       "      <td>2.031565</td>\n",
-       "      <td>8.414390</td>\n",
-       "      <td>11.372686</td>\n",
-       "      <td>2.478850</td>\n",
-       "      <td>11.372686</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>40</th>\n",
-       "      <td>8.128014</td>\n",
-       "      <td>2.040994</td>\n",
-       "      <td>8.128014</td>\n",
-       "      <td>11.426974</td>\n",
-       "      <td>2.575274</td>\n",
-       "      <td>11.426974</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>41</th>\n",
-       "      <td>8.535659</td>\n",
-       "      <td>2.052226</td>\n",
-       "      <td>8.535659</td>\n",
-       "      <td>12.184478</td>\n",
-       "      <td>2.650800</td>\n",
-       "      <td>12.184478</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>42</th>\n",
-       "      <td>8.053762</td>\n",
-       "      <td>2.057051</td>\n",
-       "      <td>8.053762</td>\n",
-       "      <td>10.568820</td>\n",
-       "      <td>2.469352</td>\n",
-       "      <td>10.568820</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>43</th>\n",
-       "      <td>8.049109</td>\n",
-       "      <td>1.989046</td>\n",
-       "      <td>8.049109</td>\n",
-       "      <td>10.641511</td>\n",
-       "      <td>2.504025</td>\n",
-       "      <td>10.641510</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>44</th>\n",
-       "      <td>7.913955</td>\n",
-       "      <td>2.044883</td>\n",
-       "      <td>7.913955</td>\n",
-       "      <td>10.633894</td>\n",
-       "      <td>2.423619</td>\n",
-       "      <td>10.633894</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>45</th>\n",
-       "      <td>7.509055</td>\n",
-       "      <td>1.971726</td>\n",
-       "      <td>7.509055</td>\n",
-       "      <td>10.770216</td>\n",
-       "      <td>2.525566</td>\n",
-       "      <td>10.770216</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>46</th>\n",
-       "      <td>7.757057</td>\n",
-       "      <td>2.014369</td>\n",
-       "      <td>7.757057</td>\n",
-       "      <td>10.875947</td>\n",
-       "      <td>2.505037</td>\n",
-       "      <td>10.875947</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>47</th>\n",
-       "      <td>7.606764</td>\n",
-       "      <td>1.951356</td>\n",
-       "      <td>7.606764</td>\n",
-       "      <td>10.371101</td>\n",
-       "      <td>2.436970</td>\n",
-       "      <td>10.371101</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>48</th>\n",
-       "      <td>7.675611</td>\n",
-       "      <td>2.010800</td>\n",
-       "      <td>7.675611</td>\n",
-       "      <td>10.850504</td>\n",
-       "      <td>2.430246</td>\n",
-       "      <td>10.850504</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>49</th>\n",
-       "      <td>6.942144</td>\n",
-       "      <td>1.882025</td>\n",
-       "      <td>6.942144</td>\n",
-       "      <td>10.217519</td>\n",
-       "      <td>2.365719</td>\n",
-       "      <td>10.217519</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>50</th>\n",
-       "      <td>6.937889</td>\n",
-       "      <td>1.874226</td>\n",
-       "      <td>6.937889</td>\n",
-       "      <td>10.485810</td>\n",
-       "      <td>2.423001</td>\n",
-       "      <td>10.485810</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>51</th>\n",
-       "      <td>6.673793</td>\n",
-       "      <td>1.843762</td>\n",
-       "      <td>6.673793</td>\n",
-       "      <td>10.278848</td>\n",
-       "      <td>2.361650</td>\n",
-       "      <td>10.278848</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>52</th>\n",
-       "      <td>6.708609</td>\n",
-       "      <td>1.842232</td>\n",
-       "      <td>6.708609</td>\n",
-       "      <td>10.417801</td>\n",
-       "      <td>2.360500</td>\n",
-       "      <td>10.417801</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>53</th>\n",
-       "      <td>6.690241</td>\n",
-       "      <td>1.867497</td>\n",
-       "      <td>6.690241</td>\n",
-       "      <td>10.323244</td>\n",
-       "      <td>2.390611</td>\n",
-       "      <td>10.323244</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>54</th>\n",
-       "      <td>6.484379</td>\n",
-       "      <td>1.814816</td>\n",
-       "      <td>6.484379</td>\n",
-       "      <td>10.891093</td>\n",
-       "      <td>2.481188</td>\n",
-       "      <td>10.891093</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>55</th>\n",
-       "      <td>6.447615</td>\n",
-       "      <td>1.795610</td>\n",
-       "      <td>6.447615</td>\n",
-       "      <td>10.601263</td>\n",
-       "      <td>2.377287</td>\n",
-       "      <td>10.601263</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>56</th>\n",
-       "      <td>6.234385</td>\n",
-       "      <td>1.785737</td>\n",
-       "      <td>6.234385</td>\n",
-       "      <td>10.595686</td>\n",
-       "      <td>2.388525</td>\n",
-       "      <td>10.595686</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>57</th>\n",
-       "      <td>5.924729</td>\n",
-       "      <td>1.730040</td>\n",
-       "      <td>5.924729</td>\n",
-       "      <td>10.048926</td>\n",
-       "      <td>2.335052</td>\n",
-       "      <td>10.048926</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>58</th>\n",
-       "      <td>5.995744</td>\n",
-       "      <td>1.771412</td>\n",
-       "      <td>5.995744</td>\n",
-       "      <td>11.698400</td>\n",
-       "      <td>2.565150</td>\n",
-       "      <td>11.698400</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>59</th>\n",
-       "      <td>6.071790</td>\n",
-       "      <td>1.739701</td>\n",
-       "      <td>6.071790</td>\n",
-       "      <td>10.536556</td>\n",
-       "      <td>2.389516</td>\n",
-       "      <td>10.536557</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "          loss        mae         mse    val_loss    val_mae     val_mse\n",
-       "0   545.863098  21.133850  545.863098  360.953522  17.025244  360.953522\n",
-       "1   261.080231  13.490397  261.080231   79.581886   7.230071   79.581886\n",
-       "2    78.006409   6.512011   78.006409   33.526943   4.489775   33.526943\n",
-       "3    44.336273   4.793118   44.336273   26.515295   4.051670   26.515295\n",
-       "4    34.118382   4.250879   34.118382   23.403603   3.777257   23.403603\n",
-       "5    29.745378   3.934070   29.745378   21.074188   3.566497   21.074188\n",
-       "6    26.922581   3.699979   26.922581   19.873693   3.435581   19.873693\n",
-       "7    24.309175   3.481427   24.309175   16.510469   3.084693   16.510469\n",
-       "8    22.581955   3.343732   22.581955   16.982376   3.156864   16.982376\n",
-       "9    20.892347   3.184236   20.892347   15.236839   2.978724   15.236839\n",
-       "10   19.455772   3.048441   19.455772   14.255507   2.867748   14.255507\n",
-       "11   18.247261   2.958500   18.247261   16.440861   3.141482   16.440861\n",
-       "12   17.271641   2.874703   17.271641   12.513843   2.669228   12.513843\n",
-       "13   17.312550   2.809710   17.312550   12.203506   2.616666   12.203506\n",
-       "14   16.602661   2.740153   16.602661   12.345321   2.649013   12.345321\n",
-       "15   15.696836   2.713213   15.696836   11.687651   2.582579   11.687651\n",
-       "16   14.900456   2.602173   14.900456   12.254040   2.632470   12.254040\n",
-       "17   14.419192   2.590802   14.419192   11.413322   2.546107   11.413322\n",
-       "18   13.794635   2.509831   13.794635   11.820964   2.580392   11.820965\n",
-       "19   13.609015   2.501352   13.609015   11.115652   2.524524   11.115652\n",
-       "20   13.208405   2.441689   13.208405   11.522743   2.543711   11.522743\n",
-       "21   13.172217   2.435287   13.172217   11.286185   2.514078   11.286186\n",
-       "22   12.370877   2.387458   12.370877   10.830916   2.480028   10.830916\n",
-       "23   13.251469   2.503675   13.251469   11.117655   2.471750   11.117655\n",
-       "24   11.752858   2.327749   11.752858   11.707895   2.563395   11.707895\n",
-       "25   11.362391   2.317912   11.362391   11.417477   2.520683   11.417477\n",
-       "26   11.814208   2.377963   11.814208   10.415172   2.421767   10.415171\n",
-       "27   11.050715   2.265368   11.050715   10.890196   2.473913   10.890196\n",
-       "28   10.748952   2.250687   10.748952   10.721397   2.450498   10.721397\n",
-       "29   10.422258   2.193367   10.422258   11.784633   2.559052   11.784633\n",
-       "30   11.032021   2.338972   11.032021   12.865352   2.835979   12.865352\n",
-       "31   10.664175   2.268342   10.664175   10.925707   2.472692   10.925707\n",
-       "32   10.063553   2.215009   10.063553   10.491047   2.431164   10.491047\n",
-       "33    9.667834   2.164389    9.667835   11.071754   2.508192   11.071754\n",
-       "34    9.544786   2.138699    9.544786   10.235384   2.385182   10.235384\n",
-       "35    9.474145   2.153771    9.474145   10.599800   2.463238   10.599800\n",
-       "36    9.191185   2.112283    9.191185   11.751669   2.645589   11.751669\n",
-       "37    9.204374   2.113544    9.204374   10.500607   2.388815   10.500607\n",
-       "38    8.517492   2.060591    8.517492   10.215607   2.381148   10.215606\n",
-       "39    8.414390   2.031565    8.414390   11.372686   2.478850   11.372686\n",
-       "40    8.128014   2.040994    8.128014   11.426974   2.575274   11.426974\n",
-       "41    8.535659   2.052226    8.535659   12.184478   2.650800   12.184478\n",
-       "42    8.053762   2.057051    8.053762   10.568820   2.469352   10.568820\n",
-       "43    8.049109   1.989046    8.049109   10.641511   2.504025   10.641510\n",
-       "44    7.913955   2.044883    7.913955   10.633894   2.423619   10.633894\n",
-       "45    7.509055   1.971726    7.509055   10.770216   2.525566   10.770216\n",
-       "46    7.757057   2.014369    7.757057   10.875947   2.505037   10.875947\n",
-       "47    7.606764   1.951356    7.606764   10.371101   2.436970   10.371101\n",
-       "48    7.675611   2.010800    7.675611   10.850504   2.430246   10.850504\n",
-       "49    6.942144   1.882025    6.942144   10.217519   2.365719   10.217519\n",
-       "50    6.937889   1.874226    6.937889   10.485810   2.423001   10.485810\n",
-       "51    6.673793   1.843762    6.673793   10.278848   2.361650   10.278848\n",
-       "52    6.708609   1.842232    6.708609   10.417801   2.360500   10.417801\n",
-       "53    6.690241   1.867497    6.690241   10.323244   2.390611   10.323244\n",
-       "54    6.484379   1.814816    6.484379   10.891093   2.481188   10.891093\n",
-       "55    6.447615   1.795610    6.447615   10.601263   2.377287   10.601263\n",
-       "56    6.234385   1.785737    6.234385   10.595686   2.388525   10.595686\n",
-       "57    5.924729   1.730040    5.924729   10.048926   2.335052   10.048926\n",
-       "58    5.995744   1.771412    5.995744   11.698400   2.565150   11.698400\n",
-       "59    6.071790   1.739701    6.071790   10.536556   2.389516   10.536557"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "df=pd.DataFrame(data=history.history)\n",
-    "display(df)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 11,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:26.677312Z",
-     "iopub.status.busy": "2021-03-01T17:41:26.676834Z",
-     "iopub.status.idle": "2021-03-01T17:41:26.679464Z",
-     "shell.execute_reply": "2021-03-01T17:41:26.678975Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "min( val_mae ) : 2.3351\n"
-     ]
-    }
-   ],
-   "source": [
-    "print(\"min( val_mae ) : {:.4f}\".format( min(history.history[\"val_mae\"]) ) )"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 12,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:26.694471Z",
-     "iopub.status.busy": "2021-03-01T17:41:26.691932Z",
-     "iopub.status.idle": "2021-03-01T17:41:28.418058Z",
-     "shell.execute_reply": "2021-03-01T17:41:28.418549Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/figs/BHPD1-01-history_0</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAGdCAYAAACRlkBKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABEhUlEQVR4nO3deZxcVZ3//9en9u50VhIgJGyi7IEEiYDM1wUYly+j+EXHwRFHHZHREhfGnzPgKCA66uggCEPpgDPjoKCAIiOjI8jIpoCAGIgQICzBLCwJZOmtums5vz/Ore5blap0ddJddav7/Xw8Krfq3lO3T90k3e8+59xzzDmHiIiIyFhi7a6AiIiIdAaFBhEREWmKQoOIiIg0RaFBREREmqLQICIiIk1RaBAREZGmKDSIiIhIUxQaRGSnmdl3zcwFj4KZ7T5G+XeEyjsz+0CdMvPM7B/M7G4zezk47wtm9pCZ/cDM/sbMXlHnfRfUnHtHj0sm7iqITB+JdldARKaMBPCXwCU7KPNXOzqBmR0D/BQIh49twAzgiOBxGvBfwDsanKYMbByjrtvGOC4idSg0iMhE+COwDz4UXFKvgJnNA04G+oBhYF7N8TmMBobVwAXAT51zfcHxPYHXA+/GB4NG1jrn9tvZDyIijSk0iMhEuAcoAMvM7DDn3CN1ypwGpIAfACc1OL47MASc4JxbFz7onHseuBa41sy6JrLyItIcjWkQkYnyvWDbqAuisv+qBseXBNsVtYGhlnNucJx1E5EJoNAgIhOlEhrea2ZV31vM7EDgGGAtcPsY51loZjbx1RORXaXQICITwjn3NPAbYBFwQs3hSivD1c65RuMRHgi2+wD/aGbpia+liOwKhQYRmUiVroeRLoqg1eD0muP1/AB4PHh+LvC8mf3YzP7OzN5oZt1N1mFvM3t+jMdh4/lQIuIpNIjIRLoOyAOnmtmMYN/rgX2BB5xzqxq90TmXx7dQ/CzYNQc4Ffgn4FfAFjP7qZkdN0YdYsAeYzyS4/5kIqLQICITxzm3BbgJP6/CO4PdYw2ADL9/g3Puz4BD8K0NPwOeCw4ngbcBvzGzT+7gNM8652yMx4pxfzgRUWgQkQlXCQfvC26NfCf+dswfNHsC59xjzrmvOuf+zDm3Fz5EfAEYAAz4hpkdNcH1FpExKDSIyET7BfAivqvhLGAW8D/OuU07e8IgRFwAvBVw+O9d79/1qorIeCg0iMiEcs4VgR/iv7/8Y7D7e43fMa5z34mfLRLgwIk4p4g0T6FBRCZDpYsiCWzGj3OYKP3BdngCzykiTdA00iIy4ZxzvzOzC4CZwMPOuaGx3mNmy4EnnHNbd1DmMODI4OWKCaiqiIyDQoOITArn3BfG+Za/AM4wsx8APwZ+65zrBTCz3fALVZ2HbyHtB74zgdUVkSYoNIhIVBSA2cBHggdmtg3/fSo8sdMW4DTn3NoG59nbzJ4f42vd7Zw7ddeqKzL9KDSISFR8Fvhv4C3AccDBwAL8LZYbgVXAzcCVzrmNOzhPZXKnHZk3xnERqcOcc+2ug4iIiHQA3T0hIiIiTVFoEBERkaYoNIiIiEhTFBpERESkKQoNO5DNZl02m9VIUREREXTLZbMUHEREZLqwRgfU0iAiIiJNUWgQERGRpig0iIiISFMUGkRERKQpGgi5EwqFAuvWrSOfz7e7Kh0hk8mwePFikslku6siIiK7QKFhJ6xbt46ZM2ey3377YdZwkKkAzjleeukl1q1bx/7779/u6oiIyC5Q98ROyOfz7LbbbgoMTTAzdtttN7XKiIhMAQoNO0mBoXm6ViIiU4NCg4iIiDRFoUFERESaotDQodasWcPBBx/MGWecweGHH8573/tebr31Vo4//nhe9apXcd9993HHHXewdOlSli5dyrJly+jt7QXg61//OsuXL+eII47g/PPPb/MnERGRTqG7J3bRm7/4s0k7982fP3mHx5988kmuv/56rrjiCpYvX84111zDr3/9a37605/y5S9/mVKpxOWXX87xxx9PX18fmUyGW265hdWrV3PffffhnOPtb387d955J6973esm7XOIiMjUoJaGDrb//vuzZMkSYrEYhx12GCeeeCJmxpIlS1izZg3HH388f/u3f8ull17Kli1bSCQS3HLLLdxyyy0sW7aMo446iscee4zVq1e3+6OIiEgHUEtDB0un0yPPY7HYyOtYLEaxWOScc87h5JNP5uc//znHHnsst956K845zj33XP7mb/6mXdUWEZEOpdCwi8bqQqh4uS/Ppm1+roK5PWkWzOqazGoB8NRTT7FkyRKWLFnCPffcw2OPPcab3/xmPv/5z/Pe976Xnp4e1q9fTzKZZPfdd5/0+oiISGdTaGiRWGiuAuda8zUvueQSbrvtNuLxOIceeihvfetbSafTrFq1iuOOOw6Anp4evv/97ys0iIjImMy16idYB8pmsw4gl8tV7V+1ahWHHHLIuM61dWCYF7YMADCrO8Wec7onqJadYWeumYiItEXDGfk0ELJFYqG/gnJZQU1ERDqPQkOLWBu6J0RERCaSQkOLhMc0lJUaRESkAyk0tEhV94RCg4iIdCCFhhZR94SIiHQ6hYYWUfeEiIh0OoWGFlH3hIiIdDqFhhaxWPu6J3p6elr7BUVEZEpSaGgRC/3pnEOTaomISKfRNNK76oy3NFXMgAPHe+7v/KLu7r//+79n3333JZvNAnDBBRdgZtx5551s3ryZQqHAl770JU455ZQxv8Ttt9/O+eefzx577MGKFSs49dRTWbJkCd/85jcZHBzkxhtv5IADDuD666/nC1/4AvF4nNmzZ3PnnXdSKpU455xzuP322xkaGuJjH/uYFsISEZnC1NLQgU477TSuvfbakdfXXXcdH/zgB/nJT37Cgw8+yG233canP/3pplszHnroIb75zW+ycuVKvve97/HEE09w3333ccYZZ3DZZZcBcOGFF3LzzTfz0EMP8dOf/hSAf/u3f2P27Nncf//93H///Vx55ZU888wzE/+BRUQkEtTS0IGWLVvGiy++yIYNG9i4cSNz585l4cKFnH322dx5553EYjHWr1/PCy+8wJ577jnm+ZYvX87ChQsBOOCAA3jTm94EwJIlS7jtttsAOP744/nABz7Au9/9bk499VQAbrnlFh5++GF+9KMfAbB161ZWr17N/vvvPxkfW0RE2kyhYVc16EKo59mNvQwVSgDsM7+HTGrnL/+73vUufvSjH/H8889z2mmncfXVV7Nx40Z+97vfkUwm2W+//cjn802dK51OjzyPxWIjr2OxGMViEYBvf/vb/Pa3v+VnP/sZS5cuZcWKFTjnuOyyy3jzm9+8059DREQ6h7onWqh6roZdO9dpp53GD3/4Q370ox/xrne9i61bt7L77ruTTCa57bbbePbZZ3exttWeeuopjjnmGC688ELmz5/P2rVrefOb38y3vvUtCoUCAE888QT9/f0T+nVFRCQ61NLQQqHMsMt3Txx22GH09vayaNEiFi5cyHvf+17e9ra3cfTRR7N06VIOPvjgXaxttc985jOsXr0a5xwnnngiRx55JEcccQRr1qzhqKOOwjnHggULuPHGGyf064qISHSYbv1rLJvNOoBcLle1f9WqVRxyyCHjPt+Gl/vpy/vfyhfO7WZmV2oCatkZdvaaiYhIy1mjA5HonjAz1+DRV6fsQWZ2o5ltNrN+M7vLzE5ocN6YmZ1tZo+ZWd7M1prZRWY2Y/I/1fZiWn9CREQ6WJS6J+4CrqjZVwi/MLMDgLuBIvA1YCvwYeBmM3urc+7WmvdfDHwC+AlwEXBI8HqZmZ3knCtP+KfYAQtFtFZPJb1y5Ure9773Ve1Lp9P89re/bWk9RESkc0UpNDztnPv+GGW+AswBXu2cWwFgZlcBjwCXm9nBLuhvMbPDgI8DNzjn3lk5gZk9A1wKnAZcM9EfYkfauWjVkiVLWLFiRUu/poiITC2R6J6oMLOUmdVdKCHoUng7cHslMAA45/qA7+AnXFweest78P0yl9Sc6kpgADh9V+q6M2NBJvLuiU6icTMiIlNDlELDu/A/zHvN7EUzu8zMZoeOHwGkgXvqvPfeYBsODcuBMnBfuKBzLg+sqCk7LplMhpdeemncPwwn8u6JTuGc46WXXiKTybS7KiIisoui0j1xH3A98CQwC/i/wFnA683stUFrwl5B2fV13l/Ztyi0by9gk3NuqEH515pZyjk3PN7KLl68mHXr1rFx48ZxvW9gqEjvoB+msTkdZ9M0uXsik8mwePHidldDRER2USRCg3PumJpdV5nZw8A/Ap8Mtt3BsXohoDL1YXdoX3eDsrXltwsNZnYmcOZHP/rRum9OJpM7NVXyLx9axz/f+hAAJy5ZxN+9Q7cgiohI54hS90Str+N/oJ8cvB4Ituk6ZTM1ZSrP65VtVH6Ec+4K59zRzVe1OZlUfOR5frg40acXERGZVJENDc65ArABmB/s2hBsF9UpXtkX7rrYAMw3s3rBYRG+62LcXRO7IpMMhYZgDQoREZFOEdnQYGYZYDHwQrBrJb674bg6xY8Ntg+E9t2P/3yvqXPepTVlWyK8QJVCg4iIdJq2hwYz263BoS/ix1zcBCO3Vt4EvMHMjgy9vwc4A1hN9Z0S1wIO+FTNeT+MH8tw9QRUf1zCLQ2DwwoNIiLSWaIwEPJzZnYscBvwR6AHf/fEG4HfApeFyp4LnAjcYmYXA9vwIWARcLIL3cfonFtpZpcDZ5nZDcDPGZ0R8g5aPLETQFd4TENBYxpERKSzRCE03A4cCrwf2A0o4VsN/gH4RjCvAgDOuSfN7Hjgq8A5QAp4EHhLnSmkwbcyrAHOxA+o3IQPIee1egppgEwy1D2hlgYREekwbQ8Nzrn/Av5rHOVXAac0WbaEX3Piop2r3cSqvntCoUFERDpL28c0TCfVd08Up82skCIiMjUoNLRQIh4jGfeXvOygUGp5D4mIiMhOU2hosXRSXRQiItKZFBpaLDyuYVCzQoqISAdRaGixLs0KKSIiHUqhocU0K6SIiHQqhYYWy2hMg4iIdCiFhhbTmAYREelUCg0tVjUrpLonRESkgyg0tFi4pWFIoUFERDqIQkOLVY9pUPeEiIh0DoWGFtPy2CIi0qkUGlqsS7dciohIh1JoaLGqlS4VGkREpIMoNLSYxjSIiEinUmhoMY1pEBGRTqXQ0GIa0yAiIp1KoaHF0lVjGtQ9ISIinUOhocW09oSIiHQqhYYWq5pGWqFBREQ6iEJDi3Wpe0JERDqUQkOLaZ4GERHpVAoNLRbuntAtlyIi0kkUGlosnaxe5bLsXBtrIyIi0jyFhhaLx4x0YvSyD6uLQkREOoRCQxtkNMGTiIh0IIWGNtBU0iIi0okUGtqg6g4KLVolIiIdQqGhDaomeFL3hIiIdAiFhjbQXA0iItKJFBraoHpMg7onRESkMyg0tEHV8tgaCCkiIh1CoaENqla6VPeEiIh0CIWGNtCYBhER6UQKDW0Qnkpat1yKiEinUGhoA41pEBGRTqTQ0AYa0yAiIp1IoaENwmMadMuliIh0CoWGNlBLg4iIdCKFhjbo0iqXIiLSgRQa2iCjuydERKQDRS40mFm3mT1jZs7M/qXO8YPM7EYz22xm/WZ2l5md0OBcMTM728weM7O8ma01s4vMbMbkf5LGqle5VEuDiIh0hsiFBuBCYH69A2Z2AHA3cBzwNeAzQA9ws5mdVOctFwPfAB4FPg5cD3wCuMnM2vbZtcqliIh0osTYRVrHzI4CPgX8HXBRnSJfAeYAr3bOrQjecxXwCHC5mR3snHPB/sPwQeEG59w7Q1/jGeBS4DTgmsn6LDuiGSFFRKQTRaalwcziwJXAL4Ab6hyfAbwduL0SGACcc33Ad4ADgeWht7wHMOCSmlNdCQwAp09c7cdHYxpERKQTRSY0AGcDBwNnNTh+BJAG7qlz7N5gGw4Ny4EycF+4oHMuD6yoKdtSmdDdE4Ma0yAiIh0iEqHBzPYHvgBc6Jxb06DYXsF2fZ1jlX2Laspvcs4NNSg/38xSO1HdXZZOxLDgeaFUplR27aiGiIjIuEQiNADfAp7BD1pspDvY1gsB+Zoylef1yjYqP8LMzjSzB3ZQl11iZjXjGtRFISIi0df20GBmpwNvAj7inCvsoOhAsE3XOZapKVN5Xq9so/IjnHNXOOeO3kFddlnVHRTqohARkQ7Q1tBgZml868LPgefN7JVm9kpg36DI7GDfHGBDsG/R9mca2RfuutiA74KoFxwW4bsuhnf1M+wszdUgIiKdpt0tDV3AAuBkYHXocXtw/PTg9RnASnx3w3F1znNssA13KdyP/3yvCRc0swywtKZsy1WvP6HuCRERib52z9PQD/x5nf0LgBz+9st/Ax52zvWZ2U3AqWZ2pHPuIQAz68GHitVU3ylxLfBZ/LwPd4X2fxg/luHqif0o46O5GkREpNO0NTQEYxh+VLvfzPYLnj7lnAsfPxc4EbjFzC4GtuFDwCLg5MrETsG5V5rZ5cBZZnYDvgvkEPyMkHfQpomdKjSmQUREOk27WxrGxTn3pJkdD3wVOAdIAQ8Cb3HO3VrnLZ8C1gBn4rtANgGXAec558qtqHMj4e6JQU3wJCIiHSCSoSGYq8EaHFsFnNLkeUr46ajrTUndVl3qnhARkQ7T7oGQ01Z4VkiFBhER6QQKDW1Svf6EQoOIiESfQkObaNEqERHpNAoNbaLuCRER6TQKDW2ieRpERKTTKDS0iW65FBGRTqPQ0CYaCCkiIp1GoaFNujSmQUREOoxCQ5toTIOIiHQahYY20S2XIiLSaRQa2kRjGkREpNNEcu2JKemxh+DpVTCUh8OOJrPHASOH1D0hIiKdQKGhVf7wAPziev883UVm7wNHDuUL6p4QEZHoU/dEq6Qzo8+H8zXzNKilQUREok+hoVVSodCQz5OMx4iZX/27VHYUSuU2VUxERKQ5Cg2tkqluaTAzulIaDCkiIp1DoaFVwi0NQ3mgdq4GjWsQEZFoU2holUzX6POhQb8rOToOVeMaREQk6hQaWqVeS0NoMOSQbrsUEZGIU2holfQY3ROaFVJERCJOoaFV6oYGLVolIiKdQ6GhVeqFBs3VICIiHUShoVXS2w+E7NLdEyIi0kEUGlpljJYGzdMgIiJRp9DQKqn06PPhISiXq8Y0qHtCRESiTqGhVWKx7YJDVUuDuidERCTiFBpaqaaLonpGSLU0iIhItCk0tFLNYMjwjJAa0yAiIlGn0NBKtS0NSU3uJCIinUOhoZXUPSEiIh1MoaGVakJDl2aEFBGRDqLQ0Erh0DBc2z2h0CAiItGm0NBK4YGQ+cGaaaQ1pkFERKJNoaGValsaNKZBREQ6iEJDK6VCoSFfPaZhSKFBREQiTqGhlTIa0yAiIp1LoaGVUo1vuRwcLuKca0OlREREmqPQ0EqZ6hkh47EYybj/K3DAcLHcnnqJiIg0QaGhlVJ1lsfWYEgREekQCg2tlK4TGjSVtIiIdAiFhlYaIzQMajCkiIhEWNtDg5kdZGZXm9kqM9tqZgNm9piZfcPMFjYof6OZbTazfjO7y8xOaHDumJmdHZwvb2ZrzewiM5sx+Z+sjnqhQVNJi4hIh0iMXWTSLQYWAj8B1gFFYAlwJnCamS11zr0IYGYHAHcHZb4GbAU+DNxsZm91zt1ac+6LgU8E574IOCR4vczMTnLOtXbkYc3S2ABdVWMa1D0hIiLR1VRoyGazfwWsyOVyD4f2pYBMLpfbVqf864HX53K5C8c6t3Puf4H/rd1vZncC1wEfwAcEgK8Ac4BXO+dWBOWuAh4BLjezg11w36KZHQZ8HLjBOffO0HmfAS4FTgOuGat+E2rMMQ1qaRARkehqtnviu8A7avadC2xuUP4NwPk7VaNRzwbbuQBBl8LbgdsrgQHAOdcHfAc4EFgeev97AAMuqTnvlcAAcPou1m/8qqaRHvK7kqHuCYUGERGJsLaPaagws4yZzTezxWb2JuBfg0M/D7ZHAGngnjpvvzfYhkPDcqAM3Bcu6JzLAytqyrZGODTkffdERt0TIiLSISITGoAzgI3AWuBmfDfE6c65u4LjewXb9XXeW9m3KLRvL2CTc26oQfn5ZpaqVxEzO9PMHhhf9ZtQs2AVztWMaVBLg4iIRFeUQsONwJ8C/w+4ENgCLAgd7w629UJAvqZM5Xm9so3Kj3DOXeGcO3rMGo9XIgnxoDuiVIJigUyoe0K3XIqISJRF4e4JAJxz6/B3TwDcaGY/Bu43sy7n3Ffw4xDAd1HUqvwKPxDaNwDs3uDL1SvfGukMDPT550NDmtxJREQ6RpRaGqo45x4Gfg9kg10bgu2iOsUr+8JdFxvwXRD1QsYifNfF8ETUdVxquijUPSEiIp1iPC0Nc7LZ7D7h1wDZbHZv/F0K1B6bAF3AvOD5Snx3w3F1yh0bbMPjEO4H3gS8BqiMi8DMMsBS4M4JquP41AyG1OROIiLSKcYTGj4ZPGqt2ZUKmNmezrnn6+x/I3A4cDv4WyvN7CbgVDM70jn3UFCuBz+IcjXVd0pcC3wW+BSh0ICfDKobuHpX6r3TUtUtDZnk6OSUuuVSRESirNnQ8Ef86s2T4VvBdNG/ws/NkAFejZ98qRf4dKjsucCJwC1mdjGwDR8CFgEnVyZ2AnDOrTSzy4GzzOwG/K2blRkh76DVEztVhJfHzg+SSc4afakxDSIiEmFNhYZcLrffJNbhB8D7gffh75Zw+PDwr8DXnXN/rBR0zj1pZscDXwXOAVLAg8Bb6kwhDb6VYQ1+SuqTgU3AZcB5LZ9CuqK2paFH3RMiItIZ2n73hHPuOvx00c2WXwWc0mTZEn7NiYt2rnaTIB0alzk0RGaeBkKKiEhniOzdE1NWzaJV1Utjq3tCRESiq9kFq7rwK1Fuql2gKpvN7otfTfIE/F0UdwD/Xy6Xe2KC6zo11CxaVTVPg1oaREQkwpptaTgLf3fCoeGd2Wx2Jj4knALMAmYCfwbcns1md5vAek4dNS0NXSktWCUiIp2h2dDwf4C1uVzu3pr9HwX2wS8i9UpgD/xAwz2pf3umVI1pyNcsWKXQICIi0dXsQMhDqZ44qeJU/N0Of53L5Z4O9n0ym82eDLwVOG/XqzjFVHVPDJEOdU8MFUqUnSNmtXNliYiItF+zLQ0LgGfCO7LZbBJYBjxeZ/zCr/AtD1KrpnsiZkY6MfrXMKTWBhERiahmQ0MaiNfsOwxIUj0LY8WLNFhBctqrGQgJVE8lrXENIiISUc2GhufxUzqHvRbfNVGv22Im8PIu1GvqqmlpAKrGNei2SxERiapmQ8NvgBOy2ewbYOQWzA8Hx35Zp/zhVK84KRU1kzsBuu1SREQ6QrOh4eJge0s2m30QP77hCOD2XC73eLhgNpudBRwP1N5pIbDd0tgAmaSmkhYRkehrKjTkcrkHgA8Ag/hlpXfHd0u8v07x9+PXhLhlQmo41aSrF6wC6ArfdqkxDSIiElFNrz2Ry+W+n81mf4zvengpdItlrZuAO4FVE1C/qaduS0M4NGhMg4iIRNO4FqzK5XKDwP1jlFmzKxWa8qpaGurcPaHuCRERiSgtWNVqdVoautOjoaEvX2h1jURERJrS7IJVf7UzJ8/lclftzPumtGRq9PnwEJRLzOxKjuxSaBARkahqtnviu/g5GZplQXmFhlqxmG9tCCZ2YniImZnR0NA7qNAgIiLRNJ4xDUXgv4FHJ6ku00cqFBqG8lUtDb1qaRARkYhqNjTcAbwOeAf+dssrgetyuVx+kuo1taUz0Bs8z+fpUUuDiIh0gGbnaXgjcBDwz/iFqP4DeC6bzV6WzWaPmMT6TU01gyFndo2Oc9CYBhERiarxzNPwJPD32Wz2H4BT8NNIfxTIZrPZ3wH/Cvwwl8v1T0pNp5KaRat6euaPvOwdHG5DhURERMY27lsuc7lcMZfL/TiXy70FOAD4MrAQuALYkM1mj5vgOk49NYtW6e4JERHpBLs0T0Mul3s2l8t9HjgTv0BVD7BgIio2pdW0NFQNhNSYBhERiahxzQgZls1m9wL+OnjsC+SB7wMPTkzVprCq0DBIJhknETOKZcdwscxQoUQ6NLW0iIhIFIwrNGSz2RjwZ8AZwFuC968EPgl8L5fLbZ3wGk5FVaFhCDOjpyvJln4/nqEvX1BoEBGRyGl2Rsj9gQ8BH8SPX+gH/hO4MpfL3Td51ZuiaronAGZmRkND72CB3WZm6r1TRESkbZptaXgy2D4AnA/8QHdJ7IKagZAAPZrgSUREIq7Z0GBAAd/KcB5wXjabHes9LpfL7bsLdZu66rU0hOdq0GBIERGJoPGMaUgCiyerItNKg+6Jit685moQEZHoaSo05HI5LaE9keq2NITmalBLg4iIRJDCQDvUTCMNaP0JERGJPIWGdggPhMz7gZBa6VJERKJOoaEd1NIgIiIdSKGhHVKh0JCvM6ZBLQ0iIhJBCg3tkFFLg4iIdB6FhnZIjTFPg1oaREQkghQa2iGz/YyQVfM0DGqeBhERiR6FhnaobWlwrmoa6b58gbJzbaiYiIhIYwoN7ZBIQDyYV6tchmKBZDxGJljZsuxgcKjYxgqKiIhsT6GhXcaYFVJzNYiISNQoNLRLndCgOyhERCTKFBrapc7y2FUtDQoNIiISMW0PDWZ2oJldaGb3mtlGM+s1sxVm9g9mNqNO+YPM7EYz22xm/WZ2l5md0ODcMTM728weM7O8ma01s4vqnbflxljpUrddiohI1LQ9NAB/DZwNPAVcCHwGeBz4EnC3mY38Sm5mBwB3A8cBXwvK9gA3m9lJdc59MfAN4FHg48D1wCeAm8ysvZ+97piG0bkadNuliIhETVNLY0+yHwFfcc5tDe37tpmtBv4B+BDwL8H+rwBzgFc751YAmNlVwCPA5WZ2sHP+XkUzOwwfFG5wzr2zcmIzewa4FDgNuGYSP9eO1RvToKmkRUQkwtre0uCce6AmMFRcG2wPBwi6FN4O3F4JDMH7+4DvAAcCy0Pvfw9gwCU1570SGABOn4Dq77wxuic0pkFERKKm7aFhBxYH2xeC7RFAGrinTtl7g204NCwHysB94YLOuTywoqZs6401EFItDSIiEjGRDA1mFgfOA4qMdiHsFWzX13lLZd+i0L69gE3OuaEG5eebWarOMczsTDN7YNwVHw/dcikiIh0mkqEB36VwLHCec+7xYF93sK0XAvI1ZSrP65VtVH6Ec+4K59zRTdd2Z6S2X+lSi1aJiEiURS40mNkXgbOAK5xzXwkdGgi26Tpvy9SUqTyvV7ZR+dYKL4+drzMjpFoaREQkYiIVGszsAuBzwH8AH6k5vCHYLmJ7lX3hrosN+C6IesFhEb7ron33NdZradA8DSIiEmGRCQ1mdj5wPnAVcEbl1smQlfjuhuPqvP3YYBseh3A//vO9pubrZIClNWVbL7w8dt4PhOzp0vLYIiISXZEIDWZ2HnAB8D3gg865cm2Z4NbKm4A3mNmRoff2AGcAq6m+U+JawAGfqjnVh/FjGa6euE+wE9LbtzR0pxPEzO8aHC5RLG13GURERNqm7ZM7mdnHgC8AfwRuBf7SzMJFXnDO/TJ4fi5wInCLmV0MbMOHgEXAyeHWCefcSjO7HDjLzG4Afg4cgp8R8g7aObETVHdPBHdPxMyYkUmOjGfoyxeYM6PRsAwREZHWantoYHS+hH2A/6xz/A7glwDOuSfN7Hjgq8A5QAp4EHiLc+7WOu/9FLAGOBM4GdgEXIa/K6O9v8Zntg8N4AdDVkJD76BCg4iIREfbQ4Nz7gPAB8ZRfhVwSpNlS8BFwSNa6rQ0QM1cDRoMKSIiERKJMQ3TUmb7GSGhZq4G3XYpIiIRotDQLg1aGqrXn9AdFCIiEh0KDe1SNY306MSVM7XSpYiIRJRCQ7tUhYbR7gmtPyEiIlGl0NAuqTRUbi0tDEO5BGilSxERiS6FhnYxqzuuQS0NIiISVQoN7VRneWyNaRARkahSaGinOoMhZ6qlQUREIkqhoZ3qDIasmqdBLQ0iIhIhCg3tVKd7QmMaREQkqhQa2im9/ayQtWMatl8hXEREpD0UGtqpTktDOhknGfd/LYVSmaFCqR01ExER2Y5CQzulQitYDlevdFmhuRpERCQqFBraKbxoVb7BSpca1yAiIhGh0NBO4cmdGrU0KDSIiEhEKDS0U3hMQz60PHZGEzyJiEj0KDS0U/juiaqWhtG5GrQ8toiIRIVCQzulQwMhQ8tj92ggpIiIRJBCQzvVmacBNJW0iIhEk0JDO9WZpwGqWxo0pkFERKJCoaGd6qw9AWppEBGRaFJoaKeq7on6t1yqpUFERKJCoaGdGgyE1DwNIiISRQoN7dRgIGSP5mkQEZEIUmhopwYDITVPg4iIRJFCQzul608j3ZNJjDzvzxcplbU8toiItJ9CQzuF157I58H5cBCPxehO++DggP4hdVGIiEj7KTS0UyIBiWD8gitDcTQcVK0/ocGQIiISAQoN7dZo0SpNJS0iIhGj0NBujcY1dKmlQUREokWhod1SDe6g0KyQIiISMQoN7ZapGQwZqLrtUt0TIiISAQoN7ZZqdNtluKVBczWIiEj7KTS0WyY0K2SDgZCaFVJERKJAoaHdmmppUGgQEZH2U2hot4ZTSaulQUREokWhod0ahQa1NIiISMQoNLSbWhpERKRDKDS0WxPLY6ulQUREokChod2aWR5bLQ0iIhIBCg3t1iA0dKXixMz87kKJ4WKp1TUTERGp0vbQYGbnmtn1Zva0mTkzWzNG+YPM7EYz22xm/WZ2l5md0KBszMzONrPHzCxvZmvN7CIzmzEpH2ZnNAgNZqZxDSIiEiltDw3Al4ETgKeAzTsqaGYHAHcDxwFfAz4D9AA3m9lJdd5yMfAN4FHg48D1wCeAm8wsCp+9YWgA3UEhIiLRkmh3BYADnHNPA5jZH/AhoJGvAHOAVzvnVgTvuQp4BLjczA52zrlg/2H4oHCDc+6dlROY2TPApcBpwDUT/mnGq8FASKhZHluhQURE2qztv21XAsNYgi6FtwO3VwJD8P4+4DvAgcDy0FveAxhwSc2prgQGgNN3utITaQctDT3qnhARkQhpe2gYhyOANHBPnWP3BttwaFgOlIH7wgWdc3lgRU3Z9knXn0Ya1D0hIiLR0kmhYa9gu77Oscq+RTXlNznnhhqUn29mqTrHMLMzzeyBna7peKTrL40N1S0Nuu1SRETarZNCQ3ewrRcC8jVlKs/rlW1UfoRz7grn3NHjruHO2GFLQ2iuBi2PLSIibdZJoWEg2KbrHMvUlKk8r1e2Ufn2SNdfGhs0pkFERKKlk0LDhmC7qM6xyr5w18UGfBdEveCwCN910f5f35MpCCZxoliA8ugkThrTICIiUdJJoWElvrvhuDrHjg224XEI9+M/32vCBc0sAyytKds+ZpDSolUiIhJ9HRMaglsrbwLeYGZHVvabWQ9wBrCa6jslrgUc8KmaU30YP5bh6sms77hkxg4NamkQEZF2a/vkTmb2PmDf4OUCIGVmnwteP+uc+16o+LnAicAtZnYxsA0fAhYBJ1cmdgJwzq00s8uBs8zsBuDnwCH4GSHvIAoTO1U0aGkIr3TZp9AgIiJt1vbQAHwIeH3Nvi8G2zuAkdDgnHvSzI4HvgqcA6SAB4G3OOdurXPuTwFrgDOBk4FNwGXAec658sR9hF2UqT8r5EzdcikiIhHS9tDgnHvDOMuvAk5psmwJuCh4RFcTLQ29gwWcc1hl0KSIiEiLdcyYhimtwVTSqUScdDIOQNk5BoaLra6ZiIjICIWGKGhypUuNaxARkXZSaIiCrtDElFteqjqkOyhERCQqFBqiYL8DR5+vWlF1aPaM0amkVz+/tUUVEhER2Z5CQxQcumz0+eMPQXF07MJrXrn7yPNfPrSulbUSERGpotAQBXsshnlBOBgcgGceHzl0wuGLiAV3TDyydjMbXu5vRw1FREQUGiLBDA47avT1ow+OPJ3bk+boVy4YeX3rw/VWBhcREZl8Cg1RcWj90ADwpiMWjzy/9eF1lEcnvhQREWkZhYaoOGTp6GqXTz8OA30jh445cPeRiZ5e2DrIymdfbkMFRURkulNoiIqeWbDvq/xzV666iyKViPOGwxaOvP7lwxoQKSIirafQECVVXRS/rzr0p0eOdlHc9ehzDGp2SBERaTGFhihpMBgS4KC95rD3bjMAyBdK/HrV862smYiIiEJDpBxwyOiU0hufgxc3jBwys6rWhlvVRSEiIi2m0BAliSQcdMTo65ouihOWLKKyxuVDa17ixa2DiIiItIpCQ9SExzU88ruqQwtmdbHsFfMBcKi1QUREWkuhIWrCoeGxFVAqVR3+06o5G9bjNGeDiIi0iEJD1CzcG+b61gQGB2DN41WHX3vwnnSnEgCsf7mfR9dtbnUNRURkmlJoiJraKaUfqb6LIpOM87pDR+ds0LTSIiLSKgoNUbSDKaUBTgrdRXHHIxsYKpS2KyMiIjLRFBqi6JBloSmlH4OB6pUtD997LgvndgPQP1TknideaHUNRURkGlJoiKKZs2HvA/zzchkef6jqsJlxUmhA5C8f0l0UIiIy+RQaomoHs0MCnHTEopHnDzy1kX//38colXUnhYiITB6Fhqg67NWjzx/ZPjTsOaeb4w7cY+T1tXc/xQXXPUB/vtCK2omIyDSk0BBVBxwCqbR//uIG2Lj9WhOfOeVIXvPKBSOv71v9Ip/899+w/qX+7cqKiIjsKoWGqEqm4MDwlNLbtzbMyCS54C+W8+7XHjCyb+1L/Xzi33/N757a2IpaiojINKLQEGVjjGsAiMeMD514MH//jqWkEv6vsy9f5HM/uI8f3/u0ZowUEZEJo9AQZYcuG32+agUM5RsWPWHJIr7xgdcyf5ZfJbPs4IpfruLT/3kPP/vds2wbGJ7kyoqIyFSn0BBle+0Lc3bzzwf64HNnwD23+tsw63jVwtlc9qHjOXTx3JF9j6zdzKU//wOnXXwrn//h/fxq5XoGh4utqL2IiEwxpubrxrLZrAPI5XLtq8SP/x3+57rqffu+Ct794epltEOGiyWu+OUqfva7Z6l3F2Y6EeOYA/dg2f7zOXTxXPZZ0EOsMpmUiIhMdw1/ICg07EAkQkO5DHf9Am68Cnq3VB9b9lp414dgj0V13/pyX567Hn2O2/6wgVXrt9QtAzAjneDgxXM5dPFcDlk8h4MXzWFGOjlxn0FERDqJQsPOiERoqMgP+BaHW26AQmh8QjwOS4+Dg4/0LQ8L9xmdgjrkuc0D3P7IBm7/wwbWbOzd4ZcyYO/5PRy01xwO3Gs2By2aw/67zySViE/whxIRkQhSaNgZkQoNFS9vhBv+A+79Vf3jM2fDgUt8gDhwCey1D8Sqf9g/88I2HnhqI6vWbebRdVvY3D805pdNxIxX7DGLVy6czV7zulk0dwYL53azcG43mWCpbhERmRIUGnZGJENDxZon4Lor4YmVOy6XSsPi/WHvV8DiV8A+r4BF+0OmCwDnHM9vGeTRtS+zav0WHlm7mTUvbqs7FqKReT1pFs7tZq+5M9hzbjd7BWFi4dxuZnenMI2XEBHpJAoNOyPSoQHAOVi/Bh5/2D+eWAl928Z+nxnM3xPmLYDZc2H2PJg1D+bMhVnzGJo1j9XlmTz+3Fae2LCVxzds4bnNAztVxa5UnD3ndLPHnG52n51hwawudp/VxYLg+W4z08RjuolHRCRCGoYGtSt3MjPfirB4fzjxFD9o8rk/joaIJx+BrZu3f59zsPE5/6gjDRw+ay6HH7IUDj0K3riMbelZPL5hC3/c1MdzmwfYsHmA5zb388KWwR0ulDU4XOKZF3t55sX64yhiBnNmpJnXk2bezIzfzkgzb2aaeT0Z5sxIMasrxazuFD2ZJPGYWi1ERNpFLQ07EPmWhmZs3Qzrnoa1ocfzaxvO9dDQwn38ZFP7vBJKRRgeguEhykN5Bnr7Gejrp7cU47nkbNa4mTxe7ObR/gR9hXF+HQDn2KPUy57FbaxPzGFTogfw0XdmV5JZ3SlmdiVHbhN1DhzBv2PnC3anEnSnk8xIJ+jOJJiRStCd8a9ndiWZ1ZWq2ibiau0QEQmopWHamj0XZr+6etXMwrBfBGvLy7DtZdiy2W+3vuz3rV8D/TUtA8/90T9qxICe4LE7cADwJ8ExF49TnrcHg7MX0Ns1h62xDC+R5sVyiueHE6wdjvPcUIz5pT72G36J/Qsvsd/wS+xbeIkZbnS1zsdTu3NP9yu4u+sVPOvmsW1w4lfy7E75MDEjk6Qnk6AnU3mepCedoDudIJ2MjzwyNc+7Ugm6Ugm603F1t4jIlKWWhh2YEi0NO6Ncgj8+BY/+3j+efASK0Vhye11iDnd3v4J7u/ZnY6KHInEKFqdgMYoWp0hs9JZT54gRPJwjRhmHMWSJurelTpRkPEZ3OkFXKk4yHiMeixGLGfGaRzIeI5mIk0rESCfiJBMxUokYqUQcs9Gob2Yjz2MxY0Y6MRpogpAzI5MklYjRly/SOzhM72DBP/IFegeHKZcdC2b78SS7z+5ijzlddEX5rpdiEfq2wrYtfn6S4SE/DmePRaOrv4rIZNFAyJ0xbUNDraG8Dw6P/h42b/LftMOPZBpSKRjshxefg40b/Hbryzv/NXtmwW57+K6VUmlcb3WxOLgy1uDfdhljKJ5iMJZiwJL0kWQglqJIjIwr0OUKZMoF/7xcIOOKOKAvlqYvlqY3lhl53hdPUyJGypVIuWLwKJEMXhctTn8sxYClGIil/PPgdQw3Uj68TboSZWIULUbJYpQwihanRIyCxRi2BEOWGNkOxfzzAnHilEm6EglXIjHyvEzKFUc+T1ewnRUrMjteJh0HF0vg4glcIgHxBATb4USavuQMehNdbIt3sS2WYUusi82WJh6PMycBs5NlZiUcM2NleuJleqxMMhEjlkgQTySIJeIkEgniyQTxWIzUUD+pgV6Sg9tI9G8j3r+NeP9WrG8rbusW6N1KbKD+GBiHUZgzn+H5e1HcfRHl3RdhC/Yk1T2D1IwukpnM6L/HZBAuhvOQH4ShQf9vOR9sYzHo7oEZPcF2JmS6tw+UzvnQXChAYcgPNt76sg80WzfDtuDRtw26Zvip3+fM8wOM5+zmH7Pn+vrEYvUDa7kEfb3BeYPzbd0MA/2A84vJ4HxdcL4brljw08sP9vty4W0iCfP38EFrZBs8urpD56l57PA/Vtl3a1YeLrx1futc9Wuo/l6RzkAq41fxjcV8OBwe8tc16PJkaMi/N9Pl/z4q2/gO5okpl323qZm/xXwiW/uc862zQ/nRf0NDeV/Xyv+VRLL6eaO/Z/D1SwfXoF6ZUsnfWr/peT/ubNPz/gEwa65/jAxgn+Nfz5yz4+szfuqekF2QzvjujXAXRzPyg6MDLrdu9r859m0LHluhdxv0b4Oe2bBoP1i8n98u2s//hzDz3xRX3g+/vxtWPuD/047ByjsOGTEcXaUhukpDzBvHx5lbHmRueeyvLztvrPYfw5HaspHUlo3w5EMT/vXLFmM41YXDiJcLxEtF4mP8exoPh0E8jksksEQSEgms7Pz/CbcT4392pHcLPPP4xJ5zIsVi4xtblUz5ABFP+LBRCj9q/o7MfLlYzP8wjcW3DzTlsg9rLhgIFTOw4Ie9Bc/Bh4OJ/rup1DGV8d9fK4+hPLz0wvjHnJnBB86G49808fWsodAgkyfT5eeH2PsVO3+O7h445o3+URiGVb+H398Dqx/x/5lLwW+ApaL/zaveN49YzH8DiMVGf2uQSCthvlUj3s2WeBdFYiwqbmWP4jbijPEb8S6IuTKZof5JO7/hoFTESsUdrlo7LYz3B2NhuPn/u5XWoaY5KEHwR2s4F7RcTMAvIs5B98xdP08TpnRoMLMY8Engb4D9gI3AdcB5zrnJ+84gkyOZgiOO8Y9GKr89VEJCo+a//IBvCckP+MfggN+fzviwkwq2ld8AnPODQwf6/La/zz8f6PNfM5nyj1Rq9Hki6b9x5Qd8s3Hl6wwOQL7f//aTTG3/SCT9bzal0uhvUZXfqIrF0W+elebcyvNS0f921ajJNNMNmQykuyinMwy4OFtLcQaKjlKhQLlQoDRcwBX9c1cokCoM0jU8QNdwH5l8P6l8H8l8H8mg+6CUTFGMpyjGkxRiSYaDrpKyc5grY+Wy3wbPcWX6411sjXexJd7FllgXL1sXL1uGly3DQHomQ10zKXXPIJNKkUnF6U4nSMVjFMqO0vAQs3s3sVvfRhYMbGLBwCZmDfeSKBVIlgukyr6bJx10FRkwEEuStySDliQfG93GnKOnPMTMcp6Z5SF6ykN0ufo/aIaJBWNn4vTGMrwcn8HmeHfVozeWYUZ5iHmlfnYLHvNKA+xW7GdOeYCkK+0w8PTG0rwc72ZzbAab411sjs+gN5bGmVH2cYMgduAwihajL5amP5aiP5amP5amz1IMxNJkXIE9itvYs+axR3EbaVfEBecpm408Z2S7PcN365WDuvjnsdDzSh2DbfDacKRdkXS5SDroIvNbv9JuCSM/0tWWZCiWIG/+x5LvShumO+gqHCssFoJFm5NMfKvAsMUZiqUYiiX9I56iEEsQd2USrjSyTbgS8XKJOOWqVjODke9FcVciVSqQKDdebbg/M4vent3YNmMe22bsxrYZcykTpyu/je5878i2e6jPb4f7WVdMsnjCP/n2pnRoAC4GPgH8BLgIOCR4vczMTnJuMtqcpK1isbH7M+Nx3389Y5zJvNI/PQWE73rZKc6BGQkm7puIc26XZg91zlEolRkcLjE4XGTLcIl8oUihWGaoWGa4WGK4WA5elyiVHS+WHc45Ss5RLoMVCySG+ik5oxyLU4wnKFoM36kFZecol/3XKZbKFEuOYtlvY6Uyg8D64AGj3S3OOQYLJQYGhxnKDzE8NExhaIjiUAHDsS3eRcEmrk+6lwwbEzP5A/UXs2s3c4445eqByzvifPjocgUSrlw18LloMUo154m5MnFcsC2TcOUgJNUPOuAjUyyomwUDqA3IW4KyTeAYiVAdM644Mn4q4woULM4L8VkMx0L/q/qDBwDB958Y0B088EHk8z2LFBp2hZkdBnwcuME5987Q/meAS4HTgGvaVD2RzjYJd5/s6nTjZkYqESeViDO7OzVBtZpcpbJjqFDCOee72p2j7BzO+YBSKvvHaEgpB88dDkc6uPsmmYiTDu68SSV8wBkqlEYfxRJDhTL5QrFhr4Aj+LplH6JcEJDKQV184CqNBLBCsez3lcrEDBLxGPGYkYjFiMeDbcx80Kqct1weOV/ZOWLBnUE2svXPi6Uy/UNFBoaK9A8V6M8H2yEfAoG6gbUUfI1iKUahVIZxBrESjD2wZoKULTYyQHpXlSyOa9F0/VM2NADvwf/1X1Kz/0rgq8DpKDSISBvFY0Z3enK+Dfdkpvfy9pUAVmkNGundMDBsJPeOtAZVvbeyz4e2cnk0wBVL5ZHn4a/lwu8LWq9KZUcpVL7SKjUa/soUSqOhsFQOglRlLCZGLEhTMQuHK1+mMsFdzOCAPWdNzoWsMZVDw3KgDNwX3umcy5vZiuC4iIhMQWZG3Ix4DNJM6O2I09pUnrpuL2CTc67eus/rgflmVrddyMzONLMHJrV2IiIiHWYqh4ZuoF5gAMiHymzHOXeFc+7oSamViIhIh5rKoWEAv2BjPZlQGREREWnCVA4NG/BdEPWCwyJ814Vm+REREWnSVA4N9+M/32vCO80sAywFNGZBRERkHKZyaLgWfxfNp2r2fxg/luHqVldIRESkk03ZWy6dcyvN7HLgLDO7Afg5ozNC3oHmaBARERmXKRsaAp8C1gBnAicDm4DL8GtPaAppERGRcZjSocE5V8KvOXFRu+siIiLS6abymAYRERGZQAoNIiIi0pQp3T0xUbLZbLurICIi0ioul8vVXTZTLQ0iIiLSFHPOjV1KJoyZPaB1LarpmmxP16Sarsf2dE22p2uyvYm+JmppEBERkaYoNIiIiEhTFBpa74p2VyCCdE22p2tSTddje7om29M12d6EXhONaRAREZGmqKVBREREmqLQICIiIk1RaJhkZhYzs7PN7DEzy5vZWjO7yMxmtLtuk83MzjWz683saTNzZrZmjPIHmdmNZrbZzPrN7C4zO6FF1Z10ZnagmV1oZvea2UYz6zWzFWb2D/X+PUz16wEjn/FqM1tlZlvNbCD4v/INM1vYoPyUvib1mFm3mT0T/D/6lzrHp/x1CT57vUdfnbJT/noAmNk8M/tnM3sy+Pmy0cxuM7P/U1Nuwq6HZoScfBfjl+P+CX7hrMry3MvM7KQpvtrml4GXgQeBOTsqaGYHAHcDReBrwFbgw8DNZvZW59ytk1vVlvhr4GPAT4GrgQLwRuBLwLvN7Fjn3CBMm+sBsBhYiP//sQ7/eZfgV6Y9zcyWOudehGl1Teq5EJhf78A0uy53sf3AvkL4xXS5Hma2L3A70AP8G/AEMBs4AlgUKjex18M5p8ckPYDDgDLw45r9Hwcc8JftruMkf/5XhJ7/AVizg7LXASVgaWhfD/As8DjBoN1OfgBHA7Pr7P9S8O/hrOl0Pca4Vn8eXJO/m+7XBDgq+Ib/t8E1+Zea49PiugSf/btNlJsu1+MuYC2wsJXXQ90Tk+s9gAGX1Oy/EhgATm91hVrJOfd0M+WCpvm3A7c751aE3t8HfAc4EFg+GXVsJefcA865rXUOXRtsD4fpcz3G8GywnQvT95qYWRz//eIXwA11jk+762JmKTPraXBsWlwPM3sd8CfA15xzz5lZ0sy665Sb8Ouh0DC5luNbGu4L73TO5YEVTIF/vBPkCCAN3FPn2L3Bdipfq8XB9oVgO+2uh5llzGy+mS02szcB/xoc+nmwnXbXJHA2cDBwVoPj0+26vAv/C1evmb1oZpeZ2ezQ8elyPf5vsP2jmd0EDAL9ZvaEmYV/GZ3w66HQMLn2AjY554bqHFsPzDezVIvrFEV7Bdv1dY5V9i2qc6zjBb9Jnodvfr4m2D0dr8cZwEZ8c+vN+DEwpzvn7gqOT7trYmb7A18ALnTOrWlQbDpdl/uAC/DB4f3Ar/Bh6q5Qy8N0uR4HBdsrgXn46/EhYBj4npl9MDg+4ddDAyEnVzdQLzAA5ENlhltTnciqNKvVu1b5mjJTzSXAscBnnXOPB/um4/W4EXgM39e6DN+kuiB0fDpek28BzwDf2EGZaXNdnHPH1Oy6ysweBv4R+GSwnS7XY2aw7QXe6JwbBjCznwBPA182s/9kEq6HWhom1wC+aaieTKjMdFe5BvWu1ZS9Tmb2RfxvSlc4574SOjTtrodzbp1z7lbn3I3OufPxvzn9k5mdGxSZVtckaGJ+E/AR51xhB0Wn1XWp4+v4X7pODl5Pl+sxGGx/UAkMAM65zfi7s/bEt0ZM+PVQaJhcG/BdEPX+whbhuy6meysD+OsE9ZvJKvvqNa91LDO7APgc8B/AR2oOT7vrUcs59zDweyAb7Jo21yT4fvEN/HiO583slWb2SmDfoMjsYN8cptF1qScIVBsYvR11ulyPdcH2+TrHngu2c5mE66HQMLnux1/j14R3mlkGWAo80IY6RdFKfPPZcXWOHRtsp8y1MrPzgfOBq4AzXHAPVMi0uh470IXvr4XpdU268F0zJwOrQ4/bg+OnB6/PYHpdl+0E30sXMzqIeLpcj8rg+sV1jlX2vchkXI9232s6lR/4SWp2NE/D6e2uYwuvxVjzNFyPv5f4yNC+yr3ETzB17q0+L/i7vwqI6XqwZ4P9bww+//9Ow2uSxA/2q318NPi38z/B6wOny3UBdmuw/+tsP5/HdLgec4Ft+BaHntD+hUAf8MRkXQ+tcjnJzOwyfL/1T/DNjZUZIX8DnOCm8IyQZvY+RptUPw6k8LNiAjzrnPteqOwr8em5gJ9Fcxt+1rIlwMnOuZtbVe/JYmYfA/4F+CPweXygDHvBOffLoOyUvx4wMnBrIX4k/LP4ftZXA6fh+1rf4IL7y6fLNWnEzPbDD4y83Dl3Vmj/lL8uZnYx/jfj2/D/f3rwtx2+EfgtfjBgZTbVKX89AMzsTPytyY8A/47//vpR/P+nP3PO3RKUm9jr0e7ENNUfQBz4NH7mrSF8/9E3CKXDqfrAN6e6Bo/b65Q/BPgvYAv+B8avgZPa/Tkm8Hp8dwfXY7trMtWvR/AZ3w38DH+rZR4/wOsx4DJgn+n2b2SMa7UfdWaEnA7XBTgFfyvu+uDfST9+rpvPApnpdj1Cn/NU/HwL/fg7KW4Bjp/M66GWBhEREWmKBkKKiIhIUxQaREREpCkKDSIiItIUhQYRERFpikKDiIiINEWhQURERJqi0CAiIiJN0dLYIjLlZbPZC/Drfbwxl8vd3t7aiHQuhQYRGVM2m21mFjj9QBaZ4hQaRGQ8vrCDY2taVQkRaQ+FBhFpWi6Xu6DddRCR9lFoEJEJFx5DgF/p9FPAwfhFdf4b+Gwul3u+zvtehV8B9ERgAbAJuBX4Yi6XW12nfBy/Yt/7gMPxK/2txy+W9k8N3vMu4O+C8nn8Ij+fzuVy63fhI4tMC7p7QkQm09nAt4GHgEvwq71+ELg7m80uCBfMZrPLgQeA04H7gX/Gr+D3XuCBbDZ7dE35FPAL4FvA3sA1wKXA74D/Bxxfpz5Z4Pv4rpTLgT8AfwHcms1m07v6YUWmOrU0iEjTghaEevK5XO6rdfa/FTgml8v9PnSOi/EtD18FPhTsM+AqYBZwei6XuzpU/i+AHwLfz2azh+ZyuXJw6ALgJOAm4M9zudxQ6D3p4Fy13gIsz+VyK0NlrwHeg19++bpGn11E1NIgIuNzfoPHOQ3Kfy8cGAIXAFuBvwz9dv9afPfFPeHAAJDL5a4Ffg0cBPwJjHRLZIFB4CPhwBC8ZyiXy22sU59Lw4EhcGWwfU2DzyAiAbU0iEjTcrmcjfMtd9Q5x9ZsNrsCeD1wCLACOCo4/KsG5/kVPjAsA+7EB4zZwG9zudyGcdTngTr71gbbueM4j8i0pJYGEZlMLzTYXxkEObtm+1yD8pX9c2q24x28uKXOvmKwjY/zXCLTjkKDiEymPRrs3zPYbq3Z7lmnLMDCmnJbgu2ina6ZiIybQoOITKbX1+7IZrOzgaX42x1XBbsr4x7e0OA8lf0PBtvH8MHhiGw2u9euV1NEmqHQICKT6X3ZbHZZzb4L8N0RPwgNYPwN/nbMPwnmURgRvH4d8AR+QCS5XK4E5IAu4Nu1t0tms9lU7S2dIrLrNBBSRJq2g1suAW7M5XIravb9D/CbbDZ7HX5cwp8EjzWE7rjI5XIum82+H/glcG02m/0vfGvCQcA78JNC/VXodkvwU1ofA7wNeCKbzf53UG5v4E3AZ4Dv7sTHFJEGFBpEZDzO38GxNfg7IcIuBn6Cn5fhL4A+/A/yz+ZyuRfDBXO53G+DCZ4+h59/4W34GSF/gJ8R8vGa8sPZbPYtwEeAvwLeDxiwIfiavx7vhxORHTPnmlm8TkSkeVqKWmRq0pgGERERaYpCg4iIiDRFoUFERESaojENIiIi0hS1NIiIiEhTFBpERESkKQoNIiIi0hSFBhEREWmKQoOIiIg0RaFBREREmvL/AwV7nMO5JUwgAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 576x432 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/figs/BHPD1-01-history_1</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAGdCAYAAACo8fERAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABQkElEQVR4nO3deXxcdb3/8ddnJpOZbE26r7TFsgpFQBAuiywqqLjyU8FdlIs6ynW76hUXqiIu16t4q+MF9KIgKgKC4AZypezIWkFkhxa6t2mbNstkm+/vj+9JMjOdJJNMkjmTvJ+PxzzO5JwzJ985aTPvfFdzziEiIiIyWpFyF0BEREQqm8KEiIiIlERhQkREREqiMCEiIiIlUZgQERGRkihMiIiISEkUJkRERKQkChMiMqbM7Gdm5oJHt5nNGeb8t2Sd78zsA8Ocf1HWuecVUZ4Vedcf6nHRyN6tiIDChIiMryrgXcOc875iL2Zm+dd7/wjKkgE2D/PYNYLriUigqtwFEJFJ6wVgMT4sXFToBDObAZwGtAJdwIxhrvl6YDZwGzAP2N/MjnbO3VtEeV50zi0tquQiMiKqmRCR8XIP8CxwmJkdNMg5ZwLVwLVARxHX7KuJ+GXwyN4nImWiMCEi4+mKYDtYU0bf/suHu1BQi/EGfA3GNcCVwaEzzCxeSiFFpDQKEyIynvrCxLvNLOf3jZntBxwFvAisKuJa78TXYvzZObfdOfcs8DdgOvCmMSuxiIyYwoSIjBvn3HPAXcBC4OS8w321Elc65zJFXK6vOePKrH1X5h0TkTJQmBCR8dbXhNHf1GFmBrwn7/igzOxA4EhgN3Bj1qGrgB7gVDObO8xl9jKzTcM8BuvbISJDUJgQkfH2GyANnG5mdcG+E4AlwAPOuceLuMYHgu11zrn+jprOuS3ALfiRae8e5hoRYO4wj1gRZRGRPAoTIjKunHM78bUJdcD/C3aPpONlhIFajF8WOKWvqWO4+SrWOudsmMfq4cojIntSmBCRidAXGt5rZjX4UNEN/KqI174GWAD01ULkux5oB15mZi8rvagiMlIKEyIyEf6MDwMnAx8HpgF/cs5tK+K1fZ0r5wA9+VNg4/tR1OadKyITSGFCRMadc64H+DX+d843gt1XDP4Kz8ymAW8Zwbd6dzDltohMIIUJEZkofU0dMWAHuaMyBvMOoAY/F8X0IR4zgWZ87cVrx7TUIjIsJXgRmRDOuQfNbAXQADzinOss4mV9zRa/DTpyDsrMfgd8MHjN70soqoiMkMKEiEwY59xXiz3XzJYBxwVf/raIl/wWHybeaGbTnXM7RlFEERkFhQkRCau+oZ6bgTuLOP8v+CXEp+EXEPtx3vG9zGzTMNe42zl3+ohKKSLqMyEi4RPMkNkXJn5XzHTbzrkuBpo3Co3qKGbSquGWQBeRAsw5V+4yiIiISAVTzYSIiIiURGFCRERESqIwISIiIiVRmBAREZGSKEyMUDKZdMlkUr1WRUREAppnYvQUKEREZCqxwQ6oZkJERERKojAhIiIiJVGYEBERkZIoTIiIiEhJ1AFzjHR3d7Nu3TrS6XS5i1IxEokEixYtIhaLlbsoIiJSAoWJMbJu3ToaGhpYunQpfo0iGYpzjubmZtatW8fee+9d7uKIiEgJ1MwxRtLpNDNnzlSQKJKZMXPmTNXkiIhMAgoTY0hBYmR0v0REJgeFCRERESmJwoSIiIiURGFiElmzZg0HHHAAZ599NgcffDDvfve7ueWWWzj22GPZd999ue+++7jvvvs45phjOOywwzjmmGN48sknAejt7eWzn/0sRx55JIcccggXX3xxmd+NiIhUCo3mGAenfv0P43btm7582pDHn3nmGa6++mouueQSjjzySH75y19y5513csMNN3DhhRdy+eWXc/vtt1NVVcUtt9zCeeedx7XXXstPf/pTGhsbuf/+++ns7OTYY4/llFNO0UgLEREZlsLEJLP33nuzfPlyAA466CBe9apXYWYsX76cNWvW0NLSwvvf/36efvppzIzu7m4Abr75Zh555BGuueYaAFpaWnj66acVJkREZFgKE5NMPB7vfx6JRPq/jkQi9PT08OUvf5mTTjqJ6667jjVr1nDiiScCft6HlStXcuqpp5aj2CIiUsEUJsbBcE0R2dZvb6Mt7WsHFsyooz4xvrNBtrS0sHDhQgB+9rOf9e8/9dRT+fGPf8zJJ59MLBbjqaeeYuHChdTV1Y1reUREpPKpA2aZRbLmWshk3Lh/v8997nN84Qtf4Nhjj6W3t7d//9lnn81LX/pSDj/8cA4++GA+/OEP09PTM+7lERGRymfOjf8H2GSSTCYdQCqVytn/+OOPc+CBB474eptb2mlp6wJgTmMNTXXxYV4xuYz2vomIyIQbdKZB1UyUWTSrZqJ3AmomRERExprCRJlFIlnNHKolEhGRCqQwUWYT3WdCRERkrClMlFlOmFDNhIiIVCCFiTLLaebIlLEgIiIio6QwUWY5HTBVMyEiIhVIYaLMcmsmFCZERKTyKEyUWTn7TNTX10/o9xMRkcmp7GHCzPYzs6+Z2b1mttXMdpvZajP7opntMZezme1vZteb2Q4zazOzO8zs5BF+z0YzW2lm680sbWaPmdlHzWzQCTnGSyTrJ6CaCRERqURhWJvjg8DHgBuAK4Fu4CTgAuAdZna0c64DwMyWAXcDPcB3gBbgX4GbzOx1zrlbhvtmZlYN/AU4DFgJPA68DkgBc4EVJb+js19b9KlRYL+RXPsnfx700Oc//3mWLFlCMpkEYMWKFZgZt99+Ozt27KC7u5sLLriAN7/5zcN+m1WrVnH++eczd+5cVq9ezemnn87y5cv5wQ9+QEdHB9dffz3Lli3jxhtv5IILLqCrq4uZM2dy5ZVXMnfuXNra2jj33HN59NFH6enpYcWKFUV9XxERqTxlr5kArgEWOefe7Zxb6Zz7H+fcGcA3gEOAD2Wd+02gCTjVOfdN51wKOB7YAPyoyJqFs4EjgU875z7tnLvUOXc68FvgPDNbMnZvbWKdeeaZXHXVVf1f/+Y3v+Gss87iuuuu46GHHuLWW2/lM5/5DMVOof73v/+dH/zgBzz66KNcccUVPPXUU9x3332cffbZrFy5EoDjjjuOe++9l4cffpgzzzyT73znOwB84xvf4OSTT+b+++/n1ltv5bOf/SxtbW1j/6ZFRKTsyl4z4Zx7YJBDVwFfBA4GCJo83gSscs6tznp9q5n9BPgaPiTcN8y3fBfQDlyat/8i4HTgDHytR8U57LDD2LJlCxs2bGDr1q1Mnz6d+fPn86lPfYrbb7+dSCTC+vXr2bx5M/PmzRv2ekceeSTz588HYNmyZZxyyikALF++nFtvvRWAdevWccYZZ7Bx40a6urrYe++9Abj55pu54YYb+O53vwtAOp3mhRde0DocIiKTUNnDxBAWBdvNwfYQIA7cU+Dce4PtkGHCzCLA4cBDzrl03uH7gExwjdIM0RRRyNqtu+ns9it4Lp5dTyI2+h/L2972Nq655ho2bdrEmWeeyZVXXsnWrVt58MEHicViLF26lHQ6/60XFo8PLDoWiUT6v45EIv0rip577rl8+tOf5k1vehOrVq1ixYoVADjnuPbaa9l///1H/V5ERKQyhKGZYw9mFgW+gu8b8ctg94Jgu77AS/r2LRzm0tOBmkLXcM51As1FXGPM5U6pXdq1zjzzTH79619zzTXX8La3vY2WlhbmzJlDLBbj1ltvZe3atSWWNldLSwsLF/pb9vOf/7x//6mnnsrKlSv7m1QefvjhMf2+IiISHqEME/gmh6OBrzjnngz21QbbzgLnp/POGcxQ1+i7TsFrmNk5ZjZYk0xJxnKxr4MOOojdu3ezcOFC5s+fz7vf/W4eeOABjjjiCK688koOOOCAUoubY8WKFbz97W/n+OOPZ9asWf37v/zlL9Pd3c0hhxzCwQcfzJe//OUx/b4iIhIeVmxnvIliZl8HvgRc4pz7cNb+/4fvrJl0zv047zUvBR4DvumcO2+Ia88EtgG/CTp55h/fAjzjnDtmsGskk0kHkEqlcvY//vjjo+4PsHFHO7s7ugCY11TLtNrqUV2nEpVy30REZEINOsghVDUTZrYCHyQuAz6Sd3hDsC3UDNG3r1ATSLYdQEeha5hZHJhZxDXGXM5cEyELdyIiIsMJTQdMMzsfOB+4HDjb7Vll8ii+eeJfCrz86GA7ZDOEcy5jZg8Bh5lZPOgn0ecV+HA1Lk0ZQ8lZn2OCJ6569NFHee9735uzLx6P87e//W1CyyEiIpUrFGHCzL6CnyzqCuAs59we3RCDIaA3Aqeb2cucc38PXluPnzviabJGcphZDFgGtDvnXsi61K+AY4Fz8JNW9fkkvsPnb8bunRVnLPtMjNTy5ctZvXr1hH5PERGZXMoeJszsY8BXgReAW4B35c09tdk595fg+ReAVwE3m9n3gV34GTAXAqfl1WYsxM9ueRtwYtb+S4GzgO+Z2dLgnNcDbwUucM49P9r34pxjNDNy547mmDrNHGHrryMiIqNT9jDBwLwOi4GfFzh+G376a5xzz5jZscC3gP8AqoGHgNcWM5V2cI0uM3s1frrud+L7STwLnAv8aLRvIpFI0NzczMyZM0ccKMpZM1Euzjmam5tJJBLlLoqIiJQodKM5wm6w0Rzd3d2sW7eu6AmhsnV297KzzY/miMciNNXFh3nF5JBIJFi0aBGxWKzcRRERkeEN+pdyGGomJoVYLNY/lfRIPfbidr75Oz+x54ELm7jog4eOYclERETGV6iGhk5VdfGBv8zbOnvKWBIREZGRU5gIgdr4QAVRW2d3GUsiIiIycgoTIVCXyAoTadVMiIhIZVGYCIGa6qr+Xi3p7l56S13tS0REZAIpTIRAxCyvqUO1EyIiUjkUJkKiLjHQCbNdTR0iIlJBFCZCok6dMEVEpEIpTISEmjlERKRSKUyERHYzh0Z0iIhIJVGYCAk1c4iISKVSmAiJOjVziIhIhVKYCIncZg7VTIiISOVQmAgJrc8hIiKVSmEiJHKn1FbNhIiIVA6FiZBQnwkREalUChMhoWYOERGpVAoTIZHdzNGuZg4REakgChMhoZoJERGpVAoTIVGrSatERKRCKUyERO5oDtVMiIhI5VCYCIma6ioseJ7u7qU3kylreURERIqlMBESETOtHCoiIhVJYSJEsqfUbldTh4iIVAiFiRDRyqEiIlKJyh4mzOwLZna1mT1nZs7M1gxxrhvm8cUivt+JQ7z+92P65kYou5mjVTUTIiJSIaqGP2XcXQhsBx4CmoY5972D7F8BLANuHMH3vQS4I2/fuhG8fszVZ68cqpoJERGpEGEIE8ucc88BmNk/gPrBTnTO/SJ/n5ktAvYGHnDOPTKC73tPoeuVU04zh2omRESkQpS9maMvSJTgLPz7+MlIX2hmdWaWKPH7j5mcDpiqmRARkQpR9jBRCjMzfJhoB341wpf/AGgFOszsKTP7RHC9stHQUBERqUQVHSaAk/FNHL9xzu0q8jXdwA3A54A3AR8BdgIXAf872IvM7Bwze6CUwg5H63OIiEglqvQwcXaw/WmxL3DO3eWce7Nz7mLn3I3OuYuBo4GbgA+Y2XGDvO4S59wRpRd5cLlTaquZQ0REKkPFhgkzmw68FXjCOXdnKddyzmWAbwZfvr7Uso1WnZo5RESkAlVsmADeA8QZQa3EMNYE21ljdL0RUzOHiIhUokoOEx/C93+4fIyut2+w3TxG1xux7GaOdjVziIhIhQjDPBMjZmZHAC8Dfuuc2zLIOTH8RFbtzrkXsvbPdM41550bx098BSOb+Kp069dA225Id1DftLh/t2omRESkUpQ9TJjZe4ElwZezgWoz+1Lw9Vrn3BUFXvahYDvU3BILgceB24ATs/b/2cw2AA8CG4AF+CaTfYGVzrn7RvM+Ru2n34UXngGg4RPf6d+tGTBFRKRSlD1M4IPBCXn7vh5sbwNywoSZ1QDvxE99fdMovt81wFuAc/HTd7cBDwPnO+dGOldF6RI1/U9rGAgQWptDREQqRdnDhHPuxBGe38Hwa3jgnFsD7DEJlXPu28C3R/I9x1V8YALOeG8XBjigs7uXnt4MVdFK7tYiIiJTgT6pyi0+UDMR6UznzILZrn4TIiJSARQmyi2rZoLOdN7KoQoTIiISfgoT5ZYXJnLW59DwUBERqQAKE+WW1QGTzo6clUNVMyEiIpVAYaLcsvpMkE7nTamtmgkREQk/hYlyy27m6MoLExoeKiIiFUBhotyyw0Q6t5mjXTUTIiJSARQmyi2e22eiViuHiohIhVGYKLdE7mgOrRwqIiKVRmGi3HJqJtI5K4dqaKiIiFQChYlyy5lnoiNvNIdqJkREJPwUJsotv2Yiu5lDNRMiIlIBFCbKbY/RHKqZEBGRyqIwUW7ZM2B2qWZCREQqj8JEuVVn10ykqa2O9n+pmgkREakEChPlVlUFVUFthMtQH3X9hxQmRESkEihMhEFWv4ka10XE/PPO7l56ejNlKpSIiEhxFCbCIGtEh3V15syC2a7aCRERCTmFiTDQLJgiIlLBFCbCoDp3eGjO+hwa0SEiIiGnMBEGidzFvrJXDlXNhIiIhJ3CRBjkTKndmTeltmomREQk3BQmwiBvGfKcMJFWzYSIiISbwkQY5C/2ldPMoZoJEREJt7KHCTP7gpldbWbPmZkzszVDnLsiOKfQ499H8D0bzWylma03s7SZPWZmHzUzG5M3NVLZNRPpdF4HTNVMiIhIuFUNf8q4uxDYDjwENBX5mk8B2/L2PVjMC82sGvgLcBiwEngceB2QAuYCK4osw9hJ5NVM1KtmQkREKkcYwsQy59xzAGb2D6C+iNdc75xbM8rvdzZwJPBvzrmVwb5Lzexa4Dwzu8w5t3aU1x6d/GXItXKoiIhUkLI3c/QFiZEys2lmNpow9C6gHbg0b/9FQAw4YzTlKUk8f9IqNXOIiEjlKHuYGKVHgBYgbWZ3m9nrinmRmUWAw4GHnXPpvMP3ARl8rcXEyu+AmTUDZruaOUREJOQqLUzsBC4BzgXeDHwBWAL8wcw+UMTrpwM1wPr8A865TqAZWFjohWZ2jpk9MKpSDyenA2aHmjlERKSiVFSYcM5d5Jz7sHPu5865G5xz/wkcAmwGvm9mw/W3qA22nYMcT2edk/+9L3HOHTGqgg8newbMrry1OTSdtoiIhFxFhYlCnHPNwP/gR4IcM8zp7cE2PsjxRNY5EydnbQ51wBQRkcpS8WEisCbYzhrmvB1ABwWaMswsDsykQBPIuMsfGqpVQ0VEpIJMljCxb7DdPNRJzrkMfj6Lw4LwkO0V+PsxPv0ihpI3NLSmOkokmD6rs7uXnt7MhBdJRESkWBUTJsysyswaC+zfC/govvPk3Vn7Y2Z2gJktznvJr/D9Is7J2/9JoAf4zViWuyh5Q0PNLGcWzHbVToiISIiVfdIqM3svfkQGwGyg2sy+FHy91jl3RfC8HnjezK7Hz1q5A9gfPwlVPfBO51xH1qUXBufdBpyYtf9S4Czge2a2NDjn9cBbgQucc8+P5fsrSt4S5AB18RitwRwTreluptVWT3ixREREilH2MAF8CDghb9/Xg+1tQF+Y6ACuBY4C3oIPENuAW4DvOOfuK+abOee6zOzVwAXAO/H9JJ7FDzf90ajfRSmqs1pcOtOQyeSuz6GaCRERCbGyhwnn3IlFnteJr4Uo9rprgIILdznndgIfDx7lF4n6QNEVjFjt6tTKoSIiUjEqps/EpDfElNrtmlJbRERCTGEiLOK5/Sbq1MwhIiIVQmEiLPJrJtTMISIiFUJhIiyyw0S6I7cDppo5REQkxBQmwiI+xPocqpkQEZEQU5gIi0TuyqH1Wp9DREQqhMJEWOTNNZG7cqjChIiIhJfCRFjkzYKZvXJou5o5REQkxBQmwiK7z0Q6rRkwRUSkYihMhEX2aI68DpitadVMiIhIeClMhEVeB8zcZg7VTIiISHgpTIRFdfakVR15HTBVMyEiIuGlMBEWidwZMGuqo0SCZco6ezL09GbKUy4REZFhKEyERc7aHGnMTJ0wRUSkIihMhEXeQl9Azvoc6oQpIiJhpTARFnkLfQHUq9+EiIhUAIWJsMhb6Augvia7ZkLNHCIiEk4KE2GRyF3oC6A+q8+EmjlERCSsFCbCIm8GTMivmVCYEBGRcFKYCIt47jwToA6YIiJSGRQmwiJWDRZMLNHdBZleGhQmRESkAihMhEUkkjcLZlo1EyIiUhEUJsIkbxbM7JqJNo3mEBGRkFKYCJP44It97VbNhIiIhFTZw4SZfcHMrjaz58zMmdmaQc4zM3uPmf3azJ4xs3Yze8HMbjCzo0bw/U4Mvk+hx+/H7I2NRl4nzPqEJq0SEZHwqxr+lHF3IbAdeAhoGuK8OHAFsBr4NfA8MB/4CHCPmb3POfeLEXzfS4A78vatG8Hrx15OmOikfnpWn4kOhQkREQmnMISJZc655wDM7B9A/SDn9QAnOuduy95pZpcCjwH/ZWa/dM4Vu7zmPSMMH+Mvb32O7JqJ1k6FCRERCaeyN3P0BYkizuvJDxLB/s3AbcCc4FE0M6szs8TwZ06QxBBhoqMb51wZCiUiIjK0osJEMpl8ZTKZXFzsRZPJ5CHJZPJ9oy/WiC0CuoCdI3jND4BWoMPMnjKzT5j1TfRQJtlDQ9Np4rEosaj/EfVkHJ09xVa6iIiITJxiayZuBT6QvSOZTH4+mUw2D3L+W4HLSihX0czs9cArgKucc+kiXtIN3AB8DngTvs/FTuAi4H+H+D7nmNkDpZZ3SIk9Z8HMr50QEREJm2LDRKG/2BMM3WFy3JnZvvhOmeuBzxTzGufcXc65NzvnLnbO3eicuxg4GrgJ+ICZHTfI6y5xzh0xVmUvKKfPRLA+R0KLfYmISLiVvc/EaJnZ3sD/AQ54nXNu62ivFXTa/Gbw5evHoHijU2B9jnrNgikiIiEXhtEcI2ZmS/FNL/XAq5xzj47BZdcE21ljcK3RiefOgAlaOVRERMKv4sKEmS3BB4lG4NXOuYfH6NL7BtvNY3S9kcubAROgLq4wISIi4VZRzRxBkFgFTAdOcc49OMS5MTM7wMwW5+2fWeDcOLAi+PLGMSvwSGUPDe3yNRMNNZoFU0REwm0kNRPjMsmBmb0XWBJ8ORuoNrMvBV+vdc5dEZzXgK+RWAqsBPY3s/3zLveXYN4JgIXA4/g5KE7MOufPZrYBeBDYACwA3oOvmVjpnLtv7N7dCMVzh4YC1MWz1+fQYl8iIhI+IwkTK5LJ5Ir8nclksrfEMnwIOCFv39eD7W340RoAM4G9g+fnDnKtkxi+meIa4C3BNZqANuBh4Hzn3K+KLfS4KNQBUzUTIiISciMJEyOd0Kmomgzn3IlFnrdmJGUY7Hzn3LeBbxd7nQmVN5025I7m0MqhIiISRkWFiVQqVVF9KypW3kJfgFYOFRGR0FNICJPE0DUTGs0hIiJhNC5hIplMvi6ZTF43Htee1AoMDc0NE+qAKSIi4TNm80wkk8mFwAfxHSr3GqvrTimFJq1SzYSIiIRcSWEimUwacBpwDvBaIBocug24tLSiTUFVMYhEIJOB3h7o6VaYEBGR0BtVmEgmk3sBZ+NrIhYwMGriTuCsVCr17NgUb4ox800dHW3+6840dbX1GH5oTHtnD70ZRzRS3pXSRUREshUdJpLJZAS/ZPe/AqfgayG6gOvwy43fCDyhIFGiRG6YiNQ1UBuvoq3T95do6+xmWk11GQsoIiKSq6gwkUwmLwDOAubhayEeAn4G/DKVSm0PzhmnIk4x1fGB5+mBiav6wkRrh8KEiIiES7E1E+cBGeDHwI9TqdRj41ekKS6+5/oc9fEYm/HBoi9UiIiIhEWxQ0NdcO67gY8nk8mjxq9IU1yiwPDQrCm1d3eoE6aIiIRLsTUTS/B9Jc4CPgyck0wmn8L3lbg8lUptGqfyTT2FhodmLfalWTBFRCRsiqqZSKVS61Kp1Pn4FTvfBPwB2Af4FvBiMpn847iVcKoZZrEvrc8hIiJhM6KhoalUKgP8Hvh9MplcwMDw0NcGp7w9mUx2Aj9NpVKrx7KgU0bOYl/BMuRan0NEREJs1NNpp1KpDalU6mv4ZcFPA34H1AEfAx5MJpP3j00Rp5gCzRwNWjlURERCrOTptFOplAP+BPwpmUzOxU+n/SHg8FKvPSUV6IBZp1kwRUQkxMZsbQ6AVCq1GbgQuDCZTL56LK89ZcT3XDm0IaeZQ0NDRUQkXMZtCfJUKnXLeF17UivQzFGXGMh8auYQEZGwKXYGzPeN5uKpVOry0bxuShtm5VB1wBQRkbAptpnjZ/iJq4rVtzaVwsRIFWjmyFk5VJNWiYhIyIykz0QPfljoP8epLAKQyKqZSO9ZM9HaqTAhIiLhUmyYuA14JfAWYA5wKfCbVCqVHqdyTV3VBSatyquZcM5hpmXIRUQkHIqdAfMkYH/gu/iZLy8DNiaTyZXJZPKQcSzf1JPYc9KqeCxKLOp/VD0ZR2dPphwlExERKajo0RypVOqZVCr1eWAv4B3A34CPAg8nk8n7ksnkh5LJZN04lXPqKNBnAtRvQkREwmvEQ0NTqVRPKpW6NpVKvRZYhp9XYj5wCbAhmUz+yxiXcWopMJoDoD5reKgmrhIRkTApaZ6JVCq1NpVKfRk4B1gP1AOzR3INM/uCmV1tZs+ZmTOzNcOcv7+ZXW9mO8yszczuMLOTR/g9G81spZmtN7O0mT1mZh+1MHREKLDQF+TVTChMiIhIiIx6Bsxgoa8PBo8lQBr4BfDQCC91IbA9eF3TUCea2TLgbvzIku8ALfil0W8ys9c554adKMvMqoG/AIcBK4HHgdcBKWAusGKE5R9b+TUTzoFZzsqhChMiIhImIwoTyWQyArwBv1roa4PXPwp8ArgilUq1jKIMy5xzzwGY2T/wtRuD+SY+cLzcObc6eM3lwGPAj8zsAOfccPNhnA0cCfybc25lsO9SM7sWOM/MLnPOrR3F+xgbVTH/6OmGTMZvY9XUxRUmREQknIqdAXNv/OJdZ+H7R7QBPwcuTaVS95VSgL4gMRwzqwPeBKzqCxLB61vN7CfA1/AhYbjyvAtoxw9vzXYRcDpwBr7Wo3ziCR8iwC/2FaumoUazYIqISDgVWzPxTLB9ADgf+FUqlWobnyIN6hAgDtxT4Ni9wXbIMGFmEfxqpg855/LnyLgPyATXKK94DbTt9s87O6Chkbp49vocWuxLRETCo9gwYUA3vlbiK8BXksnkcK9xqVRqSQlly7cg2K4vcKxv38JhrjEdqCl0Dedcp5k1F3GN8VdofQ7VTIiISEiNZDRHDFg0gsdeY1pSqA22nQWOpfPOGc01+q5T8Bpmdo6ZPTDM9cfGMIt9aeVQEREJk6JqJlKp1LgtVT4C7cE2XuBYIu+c0Vyj7zoFr+GcuwS4JJlMjmTBs9FJDL3Yl2omREQkTMIQEoq1IdgWaobo21eoCSTbDqCj0DXMLA7MLOIa4y8+zGJfChMiIhIilRQmHsU3TxSaYfPoYDtkM4RzLoOfz+KwIDxkewX+fkxMU8ZQssNEV6EwoQ6YIiISHhUTJpxzrcCNwIlm9rK+/WZWj5874mmyRnKYWczMDjCzxXmX+hW+X8Q5efs/iZ8M6zdjX/oRyl6fI11g5VDVTIiISIiMegbMsWJm78XPoAl+Ku5qM/tS8PVa59wVWad/AXgVcLOZfR/YhZ8BcyFwWt6EVQvxs1veBpyYtf9S/HwZ3zOzpcE5rwfeClzgnHt+7N7dKBVY7EthQkREwqrsYQI/GdYJefu+HmxvA/rDhHPuGTM7FvgW8B9ANb7Z4rXFTKUdXKPLzF4NXAC8E99P4lngXOBHJbyPsZPYczRHbdY8E+2dPfRmHNFI+ZcSERERKXuYcM6dOMLzHwfeXMR5a/DzYxQ6thP4ePAIn+rsDpi+ZiIaMeriVbR1+v4SbZ3dTKupLkfpREREclRMn4kpJXtoaFf2MuRZTR0dauoQEZFwUJgIowJDQyFvrolOjegQEZFwUJgIowIdMAHqElnrc6hmQkREQkJhIowKzIAJ0KBZMEVEJIQUJsKoes/RHJC72JfW5xARkbBQmAijAkNDAepUMyEiIiGkMBFGBWbAhNxmDtVMiIhIWChMhFGBJchBNRMiIhJOChNhNEiYaNBiXyIiEkIKE2GUv2poJgPkDg3V+hwiIhIWChNhFIlCdbBCunPQ3QVosS8REQknhYmwiu+5PofChIiIhJHCRFjlN3WgMCEiIuGkMBFWBYaH5qzNke7BOTfRpRIREdmDwkRYFRjREY9FiUX9j6y7N0NnT6YcJRMREcmhMBFWgyz2Va+5JkREJGQUJsJqkLkm6rVyqIiIhIzCRFjlhIlBaiY6FSZERKT8FCbCKnsZ8vQgK4eqZkJEREJAYSKsBukzURdXnwkREQkXhYmwGmx9jhrNNSEiIuGiMBFWg60cGs9en0OLfYmISPkpTITVYENDVTMhIiIhozARVok91+YATaktIiLhU1FhwsxWmJkb4jHsp6uZrRri9UdMxPsoSk7NRPY8EwoTIiISLlXDnxIqvwWeKbD/EOCzwI1FXmcb8KkC+58bZbnG3qCTVilMiIhIuFRUmHDOPQI8kr/fzC4Onv60yEu1Oed+MWYFGw9FTKetDpgiIhIGFdXMUYiZ1QJnAuuBP4/gdREzm2ZmNm6FK0URNROaZ0JERMKg4sME8A5gGnCZc663yNcsBFqBFqDVzH5rZgeMVwFHJTF8zcRuhQkREQmBimrmGMSHAAf8b5HnPw/chW8u6QWOAj4OvMrMjnPOPToupRyp6sI1E7VZ80y0d/bQm3FEI+GsXBERkamhomsmzGx/4Djgr86554t5jXPuLOfcF51zVznnrnHOfRY4BagHvjfE9zrHzB4Yk4IXI1F4NEc0YjkTV2mxLxERKbeKDhP4WgmAn5RyEefcHcDtwElmVjPIOZc45yZu6GisGvq6c3R1QmagBSe334Q6YYqISHlVbJgwsyrgfcB24LoxuOQaIApMH4NrlS4SGbSpQ8NDRUQkTCo2TABvBOYCVzjnOsfgevsCPfhwEg6DzIJZlxho5tAy5CIiUm6VHCb6mjgKzi1hZvPN7IBg6GjfvkYzixY49zTgWOAvzrl0/vGymTZj4Pm2zf1PGzQ8VEREQqQiw4SZLQBeC9w3xOiLbwKPA6/I2ncS8LSZ/cDMPmFmHzOznwM34GfF/OQ4FnvkFiweeL7xhf6ndRoeKiIiIVKpQ0M/gO/fMNKOl08CDwJvwDeRxIB1wP8AFzrn1o9hGUs3PytMbBgIE9krh6pmQkREyq0iw4Rz7kLgwmHO+QA+dGTvexx4+7gVbKzl1Eys7X9aH1fNhIiIhEdFNnNMGQtUMyEiIuGnMBFmsxdANKg82rENOtoAqM+atEqLfYmISLkpTIRZNArzFg18vfFFILdmQvNMiIhIuSlMhF2BTpiatEpERMJEYSLsFi4ZeL7Bd8JUmBARkTBRmAg71UyIiEjIKUyEXYHhoTlhoqOb3oyb6FKJiIj0U5gIuzkLfEdMgOYtkO4gHosysyEOQE/G8eymljIWUEREpjqFibCrisGchQNfb/IjOg5dOqt/18PPN090qURERPopTFSCApNXHbr3zP5dq9dsm+gSiYiI9FOYqAQFOmFm10w89sJ2unp6J7pUIiIigMJEZSjQCXNOYw0LZ9QB0NmT4fF1O8tQMBEREYWJyjDI6qE5TR3Pq6lDRETKQ2GiEsxbBBb8qLZtgq5OAA7L6YSpMCEiIuWhMFEJYtUwZ75/7hxsWgfAy5bOxIJTntzQQlunJrASEZGJpzBRKbKbOjb6po5ptdUsmzcNgIxzPLp2ezlKJiIiU5zCRKXIGR66tv/poXurqUNERMpLYaJSDNYJc2l2J0xNXiUiIhNPYaJSLNizmQNg+eIZVEV8z4k1W3ezo7VzoksmIiJTnMJEpZi3F1jQ3XLLBujuAiBRXcUBi6b3n6bZMEVEZKIpTFSKeAJmzvXPMxkfKAKHqalDRETKSGGikmQ3dawfpBOmaiZERGSCKUxUkgLDQwH2X9hEIuaXKd+8s4ONO9onumQiIjKFKUxUkkGGh8aiEZYvmdH/tYaIiojIRFKYqCTzlww8z6qZgNxVRLVOh4iITKSKCxNm5gZ5tI7gGq83s7vNrM3MtpvZ1Wa293iWe0ws2Gvg+eb10NPT/+VhWf0mVq9pJuPcRJZMRESmsKpyF2CU7gAuydtX1MIUZnY6cA3wd+CzQCPwSeAuMzvCObdhiJeXV6IWZsyG7Vuht9eP6AiaPvae20BjbTUt7V20tHexZstuXjJ3WpkLLCIiU0GlhonnnHO/GOmLzCwGrAReBI53zrUG+/8EPAisAM4Zw3KOvfmLfZgA39QRhImIGS9bOpPb/7kR8E0dChMiIjIRKq6Zo4+ZVZtZ/QhfdgKwAPhJX5AAcM6tBlYBZwSBI7wG6YQJuU0dD6/RfBMiIjIxKjVMvA1oB3ab2RYzW2lmjUW87shge0+BY/cC04D9xqiM42OQ4aGQu07Ho2ub6enNTFSpRERkCqvEMHEfvjnibcD7gb8CHwfuKKKmYkGwXV/gWN++hYVeaGbnmNkDIy7tWFuQNaJjQ26YmD+9lrmNNQB0dPXy5IadE1gwERGZqiouTDjnjnLOfdc5d71z7nLn3JnAF4HlwCeGeXltsC20GlY675z873uJc+6IURV6LM3PGtGxaZ3viBkwMw7dW1Nri4jIxKq4MDGI/wS6gNOGOa9vash4gWOJvHPCqa4BGoMJqnq6YdumnMPZ803c+cQmutXUISIi42xShAnnXDewAZg1zKl9wz4LNWX07SvUBBIuOZ0wc5s6Dn/JrP4lyZ/bvIsf/ekfOM05ISIi42hShAkzSwCLgM3DnHp/sP2XAseOBnYBT41h0cZHTifM3BEdTXVx3nfiQB/SPz38Ir+7f80EFUxERKaiigoTZjZzkENfx8+ZcWPWufPN7AAzy+4DcRuwETg7u7Ommb0MOBG4OqjlCLchOmECvOOYZbxq+UDly8U3/5MHnt06ESUTEZEpqKLCBPAlM7vHzC40s4+Y2b+b2V+Bfwf+hp+Qqs83gceBV/TtCILCJ4C98KM/kmb2H8DNwFbg/Il6IyUZopkDfEfMT75hOQcubAIg4+DCax/ihW1FzzguIiJStEoLE6vwTRHvBy4CvgrMwI/mONE51zHcBZxzVwNvwo/o+C7wefz03Mc658LfXwJyayZefA7+dusep1RXRfnKO17OrGm+X2lbZw/nX3U/uzq6JqqUIiIyRVRUmHDO/c45d6pzbqFzLuGcq3POHeqcu9A5l8479wPOOXPOrSpwnd875452ztU656Y7597mnHt2wt5Iqeqnwf6H+OcuAz/5Dtx18x6nzahP8NV3HEE8FgVgw/Z2vnHtQ5rMSkRExlRFhQnJcs4XYOFS/9w5uOx7cNsf9zhtn/mNfPbNL+v/evXzzfzPzf+coEKKiMhUoDBRqRqnw79/G/ZaNrDviv+Gv96wx6nHHzif950wMMLjxgfW8r9/fUI1FCIiMiYUJipZQyN85luwdN+Bfb9MwU3X7nHqu47fhxMPWtD/9VV3Pctnfn4P65vbJqKkIiIyiSlMVLr6Bvj0t2DZgQP7rr4U/vDrnNPMjE+/8ZCclUWfWL+T5KV38KeHX9DEViIiMmoKE5NBbR186huw3/KBfdf9zDd7tA8MB43HonzjXa/gQ686oH+WzHR3Lxf9/lG++psH2dlWaMkSERGRoSlMTBaJWvjE1+GAQwf23fZH+NK/wr1/9Z00gWjEeMcxy/jBB49l8ayBRVbveWozH7n4Du5/ZssEF1xERCqdwsRkEk/Av30VDjtmYN+uHX7o6Hc/nzPB1T7zG/nh2cfx5iOX9u/b0dbJl351PyuueoDnN++awIKLiEglM7WVj0wymXQAqVSq3EUZnHPw4J1w1cWwY9vA/mgVnHI6vOFdPngE7n9mC9+78RG2tw40cxhwwkELeN8J+7FwZt0EFl5ERELKBj2gMDEyFREm+qTb4Xe/gP+7HjJZw0BnzIE3vRuOPhmqYgC0tHfx45se49Z/bMi5RMSMUw5dxLuP35c5jTUTWHgREQkZhYmxUlFhos+Lz8EvfgjP5k1WNX0WvOat8MrX+T4XwLObdnH5qie59+ncvhOxaITTXr6Yt//Lsv4pukVEZEpRmBgrFRkmwNdM3H0LXPMTaM3rD1FbDye/EV71ZmhoAuDxdTv42a1PsnpNc86psWiEUw5dxBnHLGNuUy0iIjJlKEyMlYoNE33a2/woj1t+Cy07co9Vx+GY18ARx8M+L4WqGKuf38bPbn2Sx9fvzDk1GjFetXwhZx67j/pUiIhMDQoTY6Xiw0Sf7i5fU/Hnq2Hrxj2PJ2rhoMNh+ZG4g47g/m29/PKOp/cIFRHzHTXf/i8v4SVzp2E26L81ERGpbAoTY2XShIk+mV548C7401XwwhALpy7eB/fy4/j7fq/kynvW8sja7XucMn96LUfvN5ej95vDwXvNoCqqkcciIpOIwsRYmXRhoo9z8MTf4aG74NH7YNvmwuct2Rc++kUeba/mV3c+w4PPbi14Wn0ixiv2mc3R+83liH1mUxePjWPhRURkAihMjJVJGyayOQcbX/Sh4pH74JnHoLd34HhdA/zr5+HgI3hyw05+e+/z3Pf0Ftq7egperroqwlH7zuXk5Qs4YtlsqquiE/RGRERkDClMjJUpESbytbfBnTfBtf8LvUFgMIM3vQdOeydEInT3ZnhkTTP3PLWZe5/azNZd6YKXqk/EOP7AeZy8fCEHL55BRH0sREQqhcLEWJmSYaLPs/+EH38DdmYNFz3kFfChz/raioBzjmfX7+Cxh//J2sef4eHWGBtiTXtcbta0BMcfOJ+j953DwYtH0Meip7t/si0REZkwChNjZUqHCfDDSS/5Jjz5yMC+2fPhtDOheQtsfMGvAbJlg//QD2ya/RKuTxzIH1hMV6Rqj8vWxas4cp85HLXvHI7cZw4NNQXCwvNPwq9+DGue8nNivP1fIaJOniIiE0RhYqxM+TABvv/EdT/zw0pH+tJELf9YeBiX976Ef7imgudEzDh48XQOXjyDfec3sl9jlJm3/Bq77Y/9q58CPlCc+RHf5CIiIuNt0F+2e/6JKDKcaBTe9iHYe3+47Ht+DZBCmmbCjNm+JiFYGySabudlz97Ff3EXrQuWsXrmS7mpYzoPdDWQMV/LkHGOR9Zu55E1zby67QleuuMuLNOx5/X/73eQqIG3fmCc3qiIiBRDYUJG7+XHwcIlcN3PfZPG/MUwfy+/nbcX1AYzY+5shrv/AnfclDNBVv2GZzluw7Mch6+x2DRrb+6PzOOvXTPotijJ7bezvDN34bH7EkvotijHdjznd/zh19y7dhe7Tnory+ZOY/HsBmKa30JEZEKpmWOE1MxRgkwGnlgNt/8ZHr57YGRIEbZE6/nxjFdyd81LqCLDV7b+kaM61vQf/9H0V3LDtJcRMWNuUw0LZ9QFj1oWBM/nNtUQVR+LycE5ePoxSLfBwUdARMONRSaAmjkkBCIReOnh/rF7p58g68lH4MlHoWXPGTUBiEZxrzmdrmPezPHNnczb1MIzG1u4KP5GPvfidRyWXgfAx3bcTjoS4+b6l7JxRzsbd7TzQN6EWlURY8GMOhbNrGOvmfXsNaueRTPrWDSzvnCHTwmnrRvhyhT8437/9fIj/bwntfXlLZfIFFZRNRNmth/wHuAUYBmQAJ4FrgYucs61FXGNVcAJgxw+0jn3wFCvV83EOHDOj/548hF46lH/aNkO+x0C7/wILFhS4CWObVt3kPjhV2jY8AwAGeBbs07ltrr9RlyEungVdYlY7jZ4Pq+plkOWzGDZvGmq2Sin7i646Rr4w6/982xzF8LHzocFi8tTNpGpYXKM5jCzbwEfA24A7gW6gZOAdwCPAEc75wr01Mu5xirgIOBTBQ7/0Tk3yJ/InsLEBHAOXKa4quv2Vvju5/vXFXGRKOklB7C7ppGtVdPYaLU831PDk+kYG9NGQyY98OjtZFrwvNuibKhqZH2siXVVTeyO1uzxrWqrqzhoryZePq+Gl03LsCTWSbShCRYt9Suuyvh54u/wi5Wwad3APrPc0T2JWjj7c3Do0RNfvkIyvfDYQ7Bhre9fNGvexJehdZf//uvXwraNMGchHHnCQH8mkZGZNGHiCOBp51xL3v4LgC8C5zrnfjjMNVYBS51zS0dTBoWJENrdAv/5WT+/xVhdMhJnXVUT62NNOIzZPa3M6vWPhMvt69GLsblmFhvq57GpYT6bGxewrWkBsxtr2a8BltQ45lX1EOto9b/c0+0wrQlmzoVZc/02nhizspesM+0/fAxonOHLWq5JwnY2wzU/hXv/mrt/8T7w3nP9GjKX/Rd0dQ4ce/N7+2dmLYuW7b6z8R1/8nOvgL9/p5wOrz/Dh56x1tvrQ8PzT8K65/3/hQ1rYdeOPc+tjsNRJ8EJr4elI6/Fk5Do7fU/79nzoXH6RH3XyREmBmNmy/E1Exc75z4yzLmrgKXAS4B6YLcbwU1QmAipnc2wcgWsfbrcJRmVrpp6OqfNorthOglzxDPdRLs7oSvtP9w7074Da02t7xtQWw91wba2wT+vnwZ106Ah2NYHjwK1Jh1dPTy5fid1kQz79G7H1j4Na572w3g3vOBrhrLVTwuCxXT/i2vBYnjJgf7DKLFnLc6o7dgGT/8DnvqHb+7asDb3eKIW3vp+OOkNAzVXLz4HP1wx8MENcPix8MHPFP/B3d7qA9SWDTBjFuxzEMSqiy93JgNP/h1W/QFW35O7lk22adPh9A/AMa8efadR5/x9eu4JeP4JeO5J/+8+O1AVa/E+cOJp8IoT/c/ROejs8KG375Fuh1nz/c98uBq4nc3w7OP+0bwZqhOQSATbmoGv66b5pqk5C8IVpCtBphf+tgpuvNL/e41E4JCj4PjX+s7I0XHtjDzpw8TrgD8CX3POnT/MuauAY/FNJDVAO3ATcJ5z7onhvpfCRIg556vBt2/xHyzbt/rn27f5X2xdaT/td12D/2XW/7zBH9u8fuAxxC/mrmg1W6sa2GI1zOppZWHPTkLdkyIaxUWqyJjRTYRuZ3RmoIcIs3rbqCIz/DUGYxFYtDe85AD/WLqvDz7b++7/Vv+z2LEVdrVAdbX/UEnU+W1Nrd92pv3ojKyhw3s48gQ44xw/f0m+3S1w8YW+OaRP4ww/THlakw9A0/oeTf4v9vVrYf0aH1h2bMu9XnUc9lvuOwsfdLjvt5M9OVrb7oHXr18D/3zI/2LP1xfC1q/J3b94GZzxYdj/kKHurteZ9iHvuScGHoN1WM5XHffDtBcu8XO+rL53z7IAxIOfReuunJlrc1gE5i7wP+9Fe8PCvf19Xfs0PPNPHyC2bSquXNlmzIa5i2DeIh8wmmZCtMp/SEajfhuJ+uf1jb42r9igl8n4fxu1dSMLh8Xa2Qxrn/E/n7XPBKEuDUv2g31e6h8vOXBsmpUyGXjwTrjhF36m4UKaZsKxr4HjTvU1FmNv8oYJM4sCdwJHAAc7554c5vzLgA34moxe4Cjg40AXcJxz7tFBXncOcM5HP/rRl4PCxKTmnP8lsXn9wAfEjNkwfRZMn93/i6F5d5rWdDc9be1UbXye2Prnqd64hppNa6jZtp6eSBVtVTXstDjbMtXsitawK5Kgw2JMz7Qzr2cXc3t2M7tnN7FSPtDHmMNg/iKsqtp/aO3emds3YSJFo35ytDe8y//VNZSeHrjmJ3DL9WNfjqaZ/oO/bbf/MM4PH/n2Pdj/xX/4sf6D8W9/hWsvy13XBvxIlNnzBz4so9GBD9KdzT44rFuzZ01RIdNn+UC3ZB8ffhYs8R+82TUgzvkP/dv+APffPnhwCDOLwMzZvv/HnAXBY74PXc2bfdPXts0+2DRv8UPQzfz/3dnz/P2eMx9mL8gNJtlh0cx/eLe3Qftu/3Nva/U1WO2t/vusfWbPn2fB8hosXOpru+Yu9OXp6fHb7m7o7fZfx2v8+5oxB2bO8dvaOv8ze/hu+N0VewbB6vjgf/gceKivrTjsmLEMUpM6TKzEh4HznHPfHOU1jgdWAX91zr1mqHNVMyGjke7qYc3WVp7fsosXt7XS1ZOhN+PozWTo7ekl0bGL+tbtVLfvYmtHL5vaM7S6KOlIjLTF6LQqei1CXaaT+kwnDZlO6jNp6jJdOZ1Jp2U6mNabDp6naejtoHqYoLKuqomnq+fwVHwOT1XP4dnq2dQ1TePgvWYQi0aosgzTejto6GqlobOVho4d1G9aw5zmtcxt3zK2tTKxalh2oP8w3u9g/1ddXjX4zrZO7n5yM/c8tZndHV0snDEw1HevmXUseOJuqq66ePCZWQupivkJ1+Ys8H0ONq8fedlr6nzzxStf5z888nWm/RT0f756z9EoIxWvgb33g6X7w0v29yGiUI3NUFp3wz23wG1/hE0vDuyvjvsagPoGv43FfI3flg3Dh8pYtQ9/yw70tRc93QPNdJ0dfpvu8Gv8bF7na6Iy4QnSoVMT1ODlh9eaWnj1W+E1p/tatjtvgrtvKdxH5qNf8h2Ax8bkDBNm9nXgS8AlzrkPl3itW4HjgYahRoQoTMhEyDjH9t2dbNzZzqZg3oztrekggDgyLtgGX3d09bBtd5ptu9Kku7Pa650jSoYql2Hx9ASH7NXE8kVNvHR+PY3xKOnqWu5Ys5s/PfwCj71Y4BfRMGozXezfuYkDOjdzYNcmlnQ1szuaYFu0ni1VDWwNtjvi05gxfx6N8Qj1ros6102N66bWdVHT20Usargl+1K730uZO6uB6XVxLOsvxa27Orj7iU3c+cQm/vHCdjJD/NqKRowl06o4OJFmUaybedbJTNdBU08b9V2txDt2Y7V1/gN/4VLfBDB7QW5b87ZN8M+H4bEH4fHV/q/RbFUx34SycMnAdfY/pLj2/+Yt8NvL4G+3FneTzXwtw977DzQnLVg8dhN1Oef/ko9GfZPfYO+hM+2r19c9HzzW+JqrhUt9df6yA2Gvl4yss25PN2zd5MPKpnWw+UVfA+Ayvt9Jphd6M8G2x9cEbN86spqy2nroaBuf2rXquG+yWrofLNnXP+IJv8LyM/+EZx6DF58vrmapGPGEX5PolLf5sJetpwcevQ/u+DM8+oD/ng1N8J9XjGUH6skXJsxsBXA+cBnwoZF0ohzkepcBHwAWOucKNH56ChMSZs452juDYBGEi1g0wvIlM5g9beiOki9sa+Wm1S/yl7+vo6W9+L+coxFjTmMN86fXMq2mmmc2trBu+7BTvgypuirC3MYa5k2vZXdHN0+s31nS9bJFI8ashgSzpiWYPa2G2dMSwaOG2Y01TKuJURuPURuvIhox/0HW1zl12nT/4TlnQekd3V58zjc59AZV3tkfmpleX/uwdD/fD6VGQzn7dXf5Go0tG2DzBtiy3geSeMI3W8yaFzyCkVKJGv+a5s3+vK0bYctG2LrBB5NMJggawUdI3yeJATXZHZ3rfdiqrYeGRh+c5u81fKhLt8OzT/iA0brLf7BXxaCqKnjEfNNWe+tAX6/mzX7bV4MVq4aT3give7sPCMPZvtUvYRCLw6n/b3T3ubDJFSbM7HxgBXA5cJZzpcc+M7sT33+iwTmXHuw8hQmZ7Lp7MzyyppmW9i56Mhl6eh3dvRl6ezN09/qmmaa6OPOn1zK/qZbZjYk9JvPativNI2ubg8d21pcYLrIZcNDiGRx7wDyWzm5gw442XtzW6h/NbWxpGXKqmRFJxKLUJaqora6iJl5FJuPo7O6lqzdDV3eGrp7eoMkqQ0NNNdPr4kyvjzO9rjrYxplWW93fHN/367bv924sGmHWtBrmNNYwa1pC68rIAOd859GW7T4UhWNukMkTJszsK8BXgSuADwwWJMxsPtAIvOCcaw/2NQKtzrnevHNPA34P/Mk59/qhvr/ChMjIbduV5rnNu/wHcU8vnT0ZuoMP4s6eDG3pbjbvbGdzSwebdrbTms6dyyNixqF7z+TYA+ZxzP5zmVE/eHNCuquHF5vb2LyznS0tHWzZlfbb4DGSWpeJZMCMhjhzghqSmQ0J6hMx6hNVwXbgEYtGfMDLDAQ8H/h88OvpzQRb/3Xfvr6msYxzZBz9zwFmNiTYK5hefmZDbjNTtt6Mo3l3ms0tHezu6GJ+Uy0LZ9ZRXaX1UaaAybE2h5l9DB8kXgBuAd6V9w9+s3PuL8HzbwLvx8+QuSrYdxLwPTO7EXgO6AFegZ+iexvwyfF9ByJT06xpvlmhWK1BuNi0s4OMc7xs6Uym1RTXIz1RXcW+8xvZd35jwePp7l627epg2640W3el2bqrg6270mwLtq3pbto6e+jo7GEi/9RyQPPuTpp3d/L4GDbrjEYiFu1ft2b2tAQ727vY0tLB5p3tbN3l++5kixjMn17HXrPqWTKrnsWz65nZkKClrYvtrWm2t3ayo62THa2dbG/tJOMc85tqmT+jjgXT/WJ8C6bXMrepBjCad6fZuKOdTTvb+9fa2dzSTmNNNYcvm80r9pnD/OnjMPmXjFpF1UyY2c/wAWEwtznnTsw79yTn3Kpg34HA14DDgblADFgH/Bm40Dk3bBdu1UyITA0Z5zu2tnf20JbuoaOrh6pohFg0QjwWpboqQnVVlHgsQsSMlvYudvR9aAYfnDvautjd4WtCrO+POvN/3plBuquXrbvSbNnVwfbd6SE7lk4F0Yi/Sz1F3IhFM+o4Yp/ZHLnPHA5ZMkM1IxNj8jRzlJvChIiMh57eDNt2p9na0sHmlg52tnXRmu7uf7Slu9md7qa1o5te56iKRKiKRqiKGNGoEYtGiEYixILnVcEjVhXp/zoaMSJmmEHUjEjEMDOcc2za2c765jZebG6jNT30/BPT6+LMaayhPlHFhh1+xFE5P0niVRHmNtUSjVjw8O+1Kuqf18araEjEqK+J9W/7moz6AowPef6z0iwIk529tHV2+0DZGQTLzm56M47ZDQlmN/r+Lr5pKjEVAs3kaOYQEZmsqqIR5jXVMq+pluVlLIdzjl0d3axrbmVdcxtbd6WZXlfN3KZa/8HZWEMilvuhme7uZX1zK2u3+o6wa7e1squ9i6asjqgz6uPMqE8wvd5Pyb1xRzsbtrexYUcbG7a3s2FHG827/QRM0+vizJtew7wm38l33vRa5jbW8GJzK/c9s5W/P7+Nzp6B7nKdPRle2JY3fLcMmuqqmVGfIBGLkqiO+m0sSqK6ikRQm1XVH/SsPxDGokZDTTVzGmuY21RDQyI2aJ8VGBi1tbO9i3hVlIaaGPFYeYOMaiZGSDUTIiLjI93dC86RqB7679yunl4eXbud+5/dyv1Pbyl5KHLY1FRHmdtYy5ymGuY21tDTm2FHm29G29nm+5109+aOPaiuijCtppqGmph/JGI01FRz1sn701Q3Zqsaq2ZCRETCLb/GYzDVVVFevmw2L182m4+c8tL+qe37JnXrDYY092YcPb0Z2jp7aE13s7ujm90dXf3P2zp7yDhH9h/VzvnOsAbUxKuoi1dRG6+iLph7pC5ehRm+824wWmhri++8mxmjP847unpZs3U3a7buLvo1XT2Z/vllsp118v5jUqbhKEyIiEhFm9mQYGZDeVcf7c04trem2dnWRbq7l3RXT7Dt9dvuHrp7fMjp6c30z+HSk8nQ3ZNhZ3uXHx69syN3FttBxGNRmmqr6e7NsKu9a9BOqw01Yzb75ZAUJkREREoUjVgwo+rQM80Op6/PypZgzpWtLR1URSNMr/f9TpqC/ic1WU1BzvnJ1HZ1BLUv6S52d/iOo/kTyo0XhQkREZGQMDMaa6tprK0edK6UQq9JVFeRqK5iTmNpYWa0NHeriIiIlERhQkREREqiMCEiIiIlUZgQERGRkihMiIiISEkUJkRERKQkChMiIiJSEoUJERERKYnChIiIiJREYUJERERKojAhIiIiJdHaHKOUTCbLXQQREZGJ5FKplBU6oJoJERERKYk5V3gNdJlYZvaAc+6IcpcjTHRPcul+7En3ZE+6J3vSPck1HvdDNRMiIiJSEoUJERERKYnCRHhcUu4ChJDuSS7djz3pnuxJ92RPuie5xvx+qM+EiIiIlEQ1EyIiIlIShQkREREpicJEmZhZxMw+ZWZPmFnazF40s/8ys7pyl228mdkXzOxqM3vOzJyZrRnm/P3N7Hoz22FmbWZ2h5mdPEHFHXdmtp+Zfc3M7jWzrWa228xWm9kXC/17mOz3A/rf45Vm9riZtZhZe/B/5XtmNn+Q8yf1PclnZrVm9nzwf+iHBY5PiXsSvP9Cj9YC506VezLDzL5rZs8Eny9bzexWMzs+77wxux+aAbN8vg/8G3Ad8F/AgcHXh5nZq51zmXIWbpxdCGwHHgKahjrRzJYBdwM9wHeAFuBfgZvM7HXOuVvGt6gT4oPAx4AbgCuBbuAk4ALgHWZ2tHOuA6bM/QBYBMzH//9Yh3+/y4FzgDPN7FDn3BaYUvck39eAWYUOTMF7cgd7dirszv5iqtwTM1sCrALqgZ8CTwGNwCHAwqzzxvZ+OOf0mOAHcBCQAa7N238u4IB3lbuM4/z+X5L1/B/AmiHO/Q3QCxyata8eWAs8SdCJuJIfwBFAY4H9FwT/Hj4+le7HMPfq7cE9+dxUvifA4cGHwKeD+/HDvONT5p4E7/9nRZw3Je4JPli9CMyfyPuhZo7yeCdgwEV5+y8F2oH3THSBJpJz7rlizguq+N8ErHLOrc56fSvwE2A/4MjxKONEcs494JxrKXDoqmB7MEyd+zGMtcF2OkzNe2JmUfzvij8Dvy1wfMrdEwAzqzaz+kGOTYl7YmavBI4DvuOc22hmMTOrLXDemN8PhYnyOBJfM3Ff9k7nXBpYzST4Rz1GDgHiwD0Fjt0bbCfzvVoUbDcH2yl3P8wsYWazzGyRmZ0CXBwc+mOwnXL3BPgUcADw8UGOT8V78jb8H2K7zWyLma00s8as41Plnrw+2L5gZjcCHUCbmT1lZtl/pI75/VCYKI8FwDbnXGeBY+uBWWZWPcFlCqMFwXZ9gWN9+xYWOFbxgr8+v4Kvyv5lsHsq3o+zga34atub8H1s3uOcuyM4PqXuiZntDXwV+Jpzbs0gp02pe4L/o2wFPlC8H/grPmjdkVVTMVXuyf7B9lJgBv5+fAjoAq4ws7OC42N+P9QBszxqgUJBAiCddU7XxBQntPqq5wrdq3TeOZPNRcDRwHnOuSeDfVPxflwPPIFvyz0MXzU7O+v4VLsnPwaeB743xDlT6p44547K23W5mT0CfAP4RLCdKvekIdjuBk5yznUBmNl1wHPAhWb2c8bhfqhmojza8VVMhSSyzpnq+u5BoXs1ae+TmX0d/5fVJc65b2YdmnL3wzm3zjl3i3Pueufc+fi/tL5tZl8ITpky9ySopj4F+IhzrnuIU6fMPRnCf+L/GDst+Hqq3JOOYPurviAB4JzbgR8tNg9fezHm90Nhojw24JsyCv0gF+KbQKZ6rQT4+wSFq9v69hWqpqtYZrYC+BJwGfCRvMNT7n7kc849AjwMJINdU+KeBL8rvofvK7LJzPYxs32AJcEpjcG+JqbIPRlKELY2MDB0dqrck3XBdlOBYxuD7XTG4X4oTJTH/fh7/4rsnWaWAA4FHihDmcLoUXw13L8UOHZ0sJ0098rMzgfOBy4HznbBWK0sU+p+DKEG3x4MU+ee1OCbd04Dns56rAqOvyf4+mymzj0ZVPC7dBEDnZenyj3p69S/qMCxvn1bGI/7Ue4xsVPxgZ98Z6h5Jt5T7jJO4L0Ybp6Jq/FjoV+Wta9vLPRTTJ6x4V8JfvaXAxHdD+YNsv+k4P3/31S6J0AM38Ew//HR4N/Nn4Kv95sq9yR4TzMH2f+f7DkfyaS/J/hah134Gor6rP3zgVbgqfG6H1o1tEzMbCW+Xfw6fNVl3wyYdwEnu0k8A6aZvZeB6tlzgWr8LKAAa51zV2Sduw8+bXfjZw3dhZ+lbTlwmnPupokq93gxs48BPwReAL6MD5rZNjvn/hKcO+nvB/R3GJuP75m/Ft+O+3LgTHxb7okuGB8/Ve5JIWa2FN8h80fOuY9n7Z8S98TMvo//S/pW/P+fevzwyJOAv+E7IfbNHjtV7sk5+CHUjwH/i//9+lH8/6c3OOduDs4b2/tR7iQ1VR9AFPgMfqaxTnz71PfISpOT9YGvmnWDPFYVOP9A4HfATvwHyZ3Aq8v9PsbwfvxsiPuxxz2Z7PcjeI/vAP6AHxKaxncsewJYCSyeav9GhrhPSykwA+ZUuSfAm/FDhtcH/07a8HP1nAckpuI9Cd7n6fj5ItrwIztuBo4dz/uhmgkREREpiTpgioiISEkUJkRERKQkChMiIiJSEoUJERERKYnChIiIiJREYUJERERKojAhIiIiJdES5CIyZSWTyRX49VBOSqVSq8pbGpHKpTAhIqOWTCaLmfVOH9Qik5zChIiMha8OcWzNRBVCRMpDYUJESpZKpVaUuwwiUj4KEyIyYbL7KOBXjv0kcAB+MaLfA+elUqlNBV63L35F1VcBs4FtwC3A11Op1NMFzo/iV0B8L3AwfuXE9fhF5r49yGveBnwuOD+NXxzpM6lUan0Jb1lkStBoDhEph08B/wP8HbgIv3ruWcDdyWRydvaJyWTySOAB4D3A/cB38Ssivht4IJlMHpF3fjXwZ+DHwF7AL4H/Bh4E3gocW6A8SeAX+CaZHwH/AM4Abkkmk/FS36zIZKeaCREpWVDjUEg6lUp9q8D+1wFHpVKph7Ou8X18TcW3gA8F+wy4HJgGvCeVSl2Zdf4ZwK+BXySTyZemUqlMcGgF8GrgRuDtqVSqM+s18eBa+V4LHJlKpR7NOveXwDvxy1z/ZrD3LiKqmRCRsXH+II//GOT8K7KDRGAF0AK8K6s24Bh8M8g92UECIJVKXQXcCewPHAf9zRtJoAP4SHaQCF7TmUqlthYoz39nB4nApcH2FYO8BxEJqGZCREqWSqVshC+5rcA1WpLJ5GrgBOBAYDVweHD4r4Nc56/4IHEYcDs+eDQCf0ulUhtGUJ4HCux7MdhOH8F1RKYk1UyISDlsHmR/X+fLxrztxkHO79vflLcdaafJnQX29QTb6AivJTLlKEyISDnMHWT/vGDbkredV+BcgPl55+0MtgtHXTIRGTGFCREphxPydySTyUbgUPywzMeD3X39Kk4c5Dp9+x8Ktk/gA8UhyWRyQenFFJFiKEyISDm8N5lMHpa3bwW+WeNXWR0n78IPGz0umAeiX/D1K4Gn8B0xSaVSvUAKqAH+J39YZzKZrM4feioipVMHTBEp2RBDQwGuT6VSq/P2/Qm4K5lM/gbf7+G44LGGrBEgqVTKJZPJ9wN/Aa5KJpO/w9c+7A+8BT/Z1fuyhoWCn9r7KOCNwFPJZPL3wXl7AacAnwV+Noq3KSKDUJgQkbFw/hDH1uBHZmT7PnAdfl6JM4BW/Af8ealUakv2ialU6m/BxFVfws8f8Ub8DJi/ws+A+WTe+V3JZPK1wEeA9wHvBwzYEHzPO0f65kRkaOZcMYv+iYiUTkt+i0xO6jMhIiIiJVGYEBERkZIoTIiIiEhJ1GdCRERESqKaCRERESmJwoSIiIiURGFCRERESqIwISIiIiVRmBAREZGSKEyIiIhISf4/KRlBT5JVDwgAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 576x432 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/figs/BHPD1-01-history_2</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAGdCAYAAACRlkBKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABHTUlEQVR4nO3deZxkdX3v/9en9u7pWVlnepA17KsyAmoQkKCRqybRKChGjEC0ggrJjyguSIw3uATwJ1IqmKhEyAUjkktAUKJsgrLowAjDJgwwMywzMFsv1V1d9b1/fE91n6o51V090111qvv9fDyKU33O95w+dYaZfvd3NeccIiIiIhNJtPsGREREpDMoNIiIiEhTFBpERESkKQoNIiIi0hSFBhEREWmKQoOIiIg0RaFBREREmqLQICITMrPvm5kzs9u34dw/MbPvmdmTZrbFzPrM7Kngmic1eY39zOwbZrYiuMaQmT1vZveZ2bfM7H1mtqjBud1m9gkz+6WZrTOzYTNbb2a/N7PrzeyTZnbQZD+XyGxkmtxJRCZiZt8HPgTc4Zw7rslzFgFXA28L7R4AHDAntO9W4P3OuVcbXOcs4DIgE+xywEagG8iGip7rnPt63bn7ALcAe4d29wMVYG5o30POucOb+Fgis5pqGkRkypnZAuBufGAYAr4E7Omcm+Oc6wF2B/4RKAJvBe4Ozqm/zhuBb+MDw23Am4Gcc24R0AXsC5wN3IsPE+FzU8AN+MDwIvAxYAfnXI9zbh6wA/BO4CpgcOo+vcjMpZoGEZnQZGsazOxHwHvwP4z/1Dl3R4Nyx+JrArqAHznn3lt3/P8A7wMeBl7rnCuP8z27nHODoa/fBvw0+HKZc+6BZs8VkWiqaRCRKWVmR+IDA8AFjQIDgHPuTuALwZd/aWavqytySLD96XiBIbhW/Q/96rkvjRcYGpwrIhEUGkRkqv1NsN0IXN5E+W8Cm+rOrde7HfezyMxy23G+iAQUGkRkqh0XbH/WzG/wQZmf1Z1bVa0heJ+Z/cUk76N6bhr4tpnNHa+wiExMoUFEpoyZpYF9gi8fmsSpDwfbPwo6MFZ9FT/iIg382MxWBcM3P2ZmrzOzZKMLOud+CVSbRj4EvGBm/21mnzezt0V1vBSR8Sk0iMhUCs+V8MokzlsfdQ3n3CPAicAjwa7dgdOBAr4m4RUz+7aZ7dbgutXRERX8MM+TgS/iO0i+Eszd8PZJ3KfIrKbQICJTyab6POfcvfhOjccBXwHuBDYHh+fj+0GsMLM/jjh3s3PuQ8CewLnA9cCzweFEcM2bzOzibbxvkVlFoUFEplK4dmGHSZwXLrvVJE/Ou8M592nn3JvxtRFvAn6An59hPnCtmXVFXdw595xz7uvOuXc75/bA11j8Xeh7/Z2ZvWsS9ysyKyk0iMiUcc6VgD8EXx42iVMPDbZPOudGmvg+Zefcr5xzpwMXBLsXUzv75HjnP+ecuxQ4Bt9nAuCvJ3G/IrOSQoOITLVfBtuTGv3mHxaUqa5B0XBOh3H8a+j9vpM50Tn3BH7mykmfKzIbKTSIyFS7ItguAP62ifJn45sXAL6zDd+vP/R+eDvO35ZzRWYVhQYRmVLOufvxHQ4BvhhMFR0p6Lz4j8GXP66fudHMjhtvWGXg/aH3y0PnHmxmu453opntApxQf66IRFNoEJHJSJvZjhO80sAZwOP4NSV+ZmZfNLPXVC9iZruZ2Rfwkzp1BWXPjPh+/wI8ZWYXmtmy4NqYWcLM9jSzi4BvBGWX40dWVB0HPGNm/25m7wgvnW1m88zsA/imifn4IZnfnILnIzKjacEqEZlQaMGqZhzvnLvdzHYA/gP4k9Cxfvxoh57QvtuAU5xzW83rYGb3AkeHdlXwU0734Cd8qloJvN05typ07t/gV8gM6wu+f3h2yCLwUefcD5r6dCKzWGriIiIikxeEgJPM7K34JoQ3Abvi52R4GvgVcI1z7pZxLnM8funstwDL8LNNLgBG8MtdPwT8BPihc66mT4Jz7jtmdh/wp8H3PjD4/kn80NAngV8AV4bDhog0ppoGERERaYr6NIiIiEhTFBpERESkKQoNIiIi0hSFBhEREWmKQsM48vm8y+fz6ikqIiKChlw2S8FBRERmi4ZL1aumQURERJqi0CAiIiJNUWgQERGRpig0iIiISFPUEXIblEolVq9eTbFYbPetxFoul2Pp0qWk0+mJC4uISOwpNGyD1atXM3fuXPbYYw/MGnYyndWcc7zyyiusXr2aPffcs923IyIiU0DNE9ugWCyyww47KDCMw8zYYYcdVBsjIjKDKDRsIwWGiekZiYjMLAoNHaqnp6fdtyAiIrOMQoOIiIg0RaGhwznnOO+88zj44IM55JBDuPbaawF44YUXOPbYYzn88MM5+OCDueuuuyiXy5x++umjZS+99NI2372IiHQSjZ7YTm/9p5um7dq3fv7kCctcf/31LF++nIceeoj169ezbNkyjj32WK655hre+ta38tnPfpZyuczAwADLly9nzZo1/P73vwdg48aN03bvIiIy86imocPdfffdnHrqqSSTSXbZZRfe/OY3c//997Ns2TK+973vceGFF7JixQrmzp3LXnvtxdNPP83HP/5xbrnlFubNm9fu2xcRkQ6i0NDhnItegPPYY4/lzjvvpLe3lw9+8INcddVVLFy4kIceeojjjjuOyy+/nDPOOKPFdysiIp1MzRPbqZkmBIBX+4qs3+znLFjYk2WneV1T8v2PPfZYvvOd7/ChD32IV199lTvvvJOvfe1rPPvss/T29nLmmWfS39/Pb3/7W97+9reTyWR497vfzd57783pp58+JfcgIiKzg0JDiyRCcxY0qBzYJn/+53/Ovffey2GHHYaZ8dWvfpVdd92VH/zgB3zta18jnU7T09PDVVddxZo1a/jwhz9MpVIB4KKLLpq6GxERkRnPGlVvC+TzeQdQKBRq9q9cuZIDDjhgUtfaNDDMSxsHAJjXnWHXBd1TdJfxti3PSkRE2qrhzHzq09AiidAfQaWioCYiIp1HoaFFbJqaJ0RERFpFoaFFwn0aKkoNIiLSgRQaWqSmeUKhQUREOpBCQ4uoeUJERDqdQkOLqHlCREQ6nUJDi6h5QkREOp1CQ4tYon3NEz09PQ2PrVq1ioMPPriFdyMiIp1KoaFFLPRf51zDNSNERETiStNIb68z3tZUMQP2ney1v3tL5O5PfepT7L777uTzeQAuvPBCzIw777yTDRs2UCqV+NKXvsS73vWuSX27YrHIxz72MR544AFSqRSXXHIJxx9/PI888ggf/vCHGR4eplKp8OMf/5glS5bw3ve+l9WrV1Mul/n85z/P+973vsl+QhER6SAKDR3olFNO4ZxzzhkNDddddx233HIL5557LvPmzWP9+vUcffTRvPOd76wZtTGRyy+/HIAVK1bw2GOPcdJJJ/HEE0/w7W9/m09+8pN84AMfYHh4mHK5zM0338ySJUu46aabANi0adPUf1AREYkVNU90oCOOOIKXX36ZtWvX8tBDD7Fw4UIWL17MZz7zGQ499FBOPPFE1qxZw0svvTSp695999188IMfBGD//fdn991354knnuCYY47hn//5n/nKV77Cs88+S1dXF4cccgi33XYbn/rUp7jrrruYP3/+dHxUERGJEdU0bK8GTQhRnl23haFSGYDX7NhDLrPtj/8973kP//mf/8mLL77IKaecwtVXX826det48MEHSafT7LHHHhSLxUlds1E/i/e///0cddRR3HTTTbz1rW/lu9/9LieccAIPPvggN998M+effz4nnXQSF1xwwTZ/HhERiT+Fhhaqnath+651yimncOaZZ7J+/XruuOMOrrvuOnbeeWfS6TS//OUvefbZZyd9zWOPPZarr76aE044gSeeeILnnnuO/fbbj6effpq99tqLT3ziEzz99NM8/PDD7L///ixatIjTTjuNnp4evv/972/fBxIRkdhTaGihcPeC7R09cdBBB7FlyxZ6e3tZvHgxH/jAB3jHO97BkUceyeGHH87+++8/6Wvm83k++tGPcsghh5BKpfj+979PNpvl2muv5Yc//CHpdJpdd92VCy64gPvvv5/zzjuPRCJBOp3mW9/61nZ9HhERiT/T0L/G8vm8AygUCjX7V65cyQEHHDDp6619tZ++YgmAxQu7mduVmYK7jLdtfVYiItI2DXvQx6IjpJm5Bq++iLL7mdkNZrbBzPrN7C4zO6HBdRNmdq6ZPWZmRTN73swuNrM50/+ptpbQ+hMiItLB4tQ8cRdwRd2+UvgLM9sbuAcYAb4KbALOBG41sz91zt1Wd/6lwCeAnwAXAwcEXx9hZic65ypT/inGYaGI1uqppFesWDE6MqIqm83ym9/8pqX3ISIinStOoeFp59wPJyhzEbAAeJ1zbjmAmV0FPAJcbmb7u6C9xcwOAj4OXO+ce3f1Amb2DPAN4BTgmqn+EONp56JVhxxyCMuXL2/p9xQRkZklFs0TVWaWMbPIhRKCJoV3ArdXAwOAc64P+C5+wsVloVNOxbfLfL3uUlcCA8Bp23Ov29IXZCpHT3QC9ZcREZlZ4hQa3oP/Yb7FzF42s8vMLDxj0KFAFrg34txfB9twaFgGVID7wgWdc0VgeV3ZScnlcrzyyiuT/qE4laMn4s45xyuvvEIul2v3rYiIyBSJS/PEfcCPgKeAecDbgbOBN5vZG4LahCVB2TUR51f39Yb2LQHWO+eGGpR/g5llnHPDk73ZpUuXsnr1atatWzep8waGRtgy6LtpbMgmWT/DR0/kcjmWLl3a7tsQEZEpEovQ4Jw7qm7XVWb2MPC/gU8G2+7gWFQIqE592B3a192gbH35rUKDmZ0FnPWxj30s8uR0Os2ee+7Z4NKN/fyh1fzLbQ8B8JZDevmHP9NQRBER6Rxxap6o9zX8D/STg68Hgm02omyurkz1fVTZRuVHOeeucM4d2fytNieXSY6+Lw6PTPXlRUREplVsQ4NzrgSsBXYMdq0Ntr0Rxav7wk0Xa4EdzSwqOPTimy4m3TSxPXLpUGgI1qAQERHpFLENDWaWA5YC1aUaV+CbG46JKH50sH0gtO9+/Od7fcR1D68r2xLhBaoUGkREpNO0PTSY2Q4NDv0Tvs/FjTA6tPJG4DgzOyx0fg9wBvAktSMlrgUccE7ddc/E92W4egpuf1LCNQ2DwwoNIiLSWeLQEfJzZnY08EvgOaAHP3rieOA3wGWhsucDbwF+ZmaXApvxIaAXONmFxjE651aY2eXA2WZ2PXAzYzNC3kGLJ3YC6Ar3aSipT4OIiHSWOISG24EDgQ8BOwBlfK3BZ4FLgnkVAHDOPWVmbwS+DHwayAC/Bd4WMYU0+FqGVcBZ+A6V6/Eh5IJWTyENkEuHmidU0yAiIh2m7aHBOfdfwH9NovxK4F1Nli3j15y4eNvubmrVjp5QaBARkc7S9j4Ns0nt6ImRGT8rpIiIzCwKDS2USiZIJ/0jrzgolVveQiIiIrLNFBpaLJtWE4WIiHQmhYYWC/drGNSskCIi0kEUGlqsS7NCiohIh1JoaDHNCikiIp1KoaHFcurTICIiHUqhocXUp0FERDqVQkOL1cwKqeYJERHpIAoNLRauaRhSaBARkQ6i0NBitX0a1DwhIiKdQ6GhxbQ8toiIdCqFhhbr0pBLERHpUAoNLVaz0qVCg4iIdBCFhhZTnwYREelUCg0tpj4NIiLSqRQaWkx9GkREpFMpNLRYtqZPg5onRESkcyg0tJjWnhARkU6l0NBiNdNIKzSIiEgHUWhosS41T4iISIdSaGgxzdMgIiKdSqGhxcLNExpyKSIinUShocWy6dpVLivOtfFuREREmqfQ0GLJhJFNjT32YTVRiIhIh1BoaIOcJngSEZEOpNDQBppKWkREOpFCQxvUjKDQolUiItIhFBraoGaCJzVPiIhIh1BoaAPN1SAiIp1IoaENavs0qHlCREQ6g0JDG9Qsj62OkCIi0iEUGtqgZqVLNU+IiEiHUGhoA/VpEBGRTqTQ0AbhqaQ15FJERDqFQkMbqE+DiIh0IoWGNlCfBhER6UQKDW0Q7tOgIZciItIpFBraQDUNIiLSiRQa2qBLq1yKiEgHUmhog5xGT4iISAeKXWgws24ze8bMnJl9M+L4fmZ2g5ltMLN+M7vLzE5ocK2EmZ1rZo+ZWdHMnjezi81szvR/ksZqV7lUTYOIiHSG2IUG4IvAjlEHzGxv4B7gGOCrwHlAD3CrmZ0YccqlwCXAo8DHgR8BnwBuNLO2fXatcikiIp0oNXGR1jGz1wLnAP8AXBxR5CJgAfA659zy4JyrgEeAy81sf+ecC/YfhA8K1zvn3h36Hs8A3wBOAa6Zrs8yHs0IKSIinSg2NQ1mlgSuBG4Bro84Pgd4J3B7NTAAOOf6gO8C+wLLQqecChjw9bpLXQkMAKdN3d1Pjvo0iIhIJ4pNaADOBfYHzm5w/FAgC9wbcezXwTYcGpYBFeC+cEHnXBFYXle2pXKh0ROD6tMgIiIdIhahwcz2BP4R+KJzblWDYkuC7ZqIY9V9vXXl1zvnhhqU39HMMttwu9stm0pgwftSuUK54tpxGyIiIpMSi9AAfAt4Bt9psZHuYBsVAop1Zarvo8o2Kj/KzM4yswfGuZftYmZ1/RrURCEiIvHX9tBgZqcBJwEfdc6Vxik6EGyzEcdydWWq76PKNio/yjl3hXPuyHHuZbvVjKBQE4WIiHSAtoYGM8viaxduBl40s33MbB9g96DI/GDfAmBtsK936yuN7gs3XazFN0FEBYdefNPF8PZ+hm2luRpERKTTtLumoQvYCTgZeDL0uj04flrw9RnACnxzwzER1zk62IabFO7Hf77XhwuaWQ44vK5sy9WuP6HmCRERib92z9PQD/xlxP6dgAJ++OW/Ag875/rM7EbgL8zsMOfcQwBm1oMPFU9SO1LiWuAz+Hkf7grtPxPfl+Hqqf0ok6O5GkREpNO0NTQEfRj+s36/me0RvP2Dcy58/HzgLcDPzOxSYDM+BPQCJ1cndgquvcLMLgfONrPr8U0gB+BnhLyDNk3sVKU+DSIi0mnaXdMwKc65p8zsjcCXgU8DGeC3wNucc7dFnHIOsAo4C98Esh64DLjAOVdpxT03Em6eGNQETyIi0gFiGRqCuRqswbGVwLuavE4ZPx111JTUbdWl5gkREekw7e4IOWuFZ4VUaBARkU6g0NAmtetPKDSIiEj8KTS0iRatEhGRTqPQ0CZqnhARkU6j0NAmmqdBREQ6jUJDm2jIpYiIdBqFhjZRR0gREek0Cg1t0qU+DSIi0mEUGtpEfRpERKTTKDS0iYZciohIp1FoaBP1aRARkU4Ty7UnZqTHHoKnV8JQEQ46ktwue48eUvOEiIh0AoWGVvn9A3DLj/z7bBe53fYdPVQsqXlCRETiT80TrZLNjb0fLtbN06CaBhERiT+FhlbJhEJDsUg6mSBhfvXvcsVRKlfadGMiIiLNUWholVxtTYOZ0ZVRZ0gREekcCg2tEq5pGCoC9XM1qF+DiIjEm0JDq+S6xt4PDfpd6bF+qOrXICIicafQ0CpRNQ2hzpBDGnYpIiIxp9DQKtkJmic0K6SIiMScQkOrRIYGLVolIiKdQ6GhVaJCg+ZqEBGRDqLQ0CrZrTtCdmn0hIiIdBCFhlaZoKZB8zSIiEjcKTS0SiY79n54CCqVmj4Nap4QEZG4U2holURiq+BQU9Og5gkREYk5hYZWqmuiqJ0RUjUNIiISbwoNrVTXGTI8I6T6NIiISNwpNLRSfU1DWpM7iYhI51BoaCU1T4iISAdTaGilutDQpRkhRUSkgyg0tFI4NAzXN08oNIiISLwpNLRSuCNkcbBuGmn1aRARkXhTaGil+poG9WkQEZEOotDQSplQaCjW9mkYUmgQEZGYU2hopZz6NIiISOdSaGilTOMhl4PDIzjn2nBTIiIizVFoaKVc7YyQyUSCdNL/EThgeKTSnvsSERFpQmriIhPL5/OHAccDBtxVKBQemIrrzjiZiOWxM0lKgz4sFEtlsqEmCxERkThpqqYhn88fm8/nr8rn80dHHLsQ+C1wMfAvwG/y+fwlU3qXM0U2IjRoKmkREekQzTZP/CXwXmBleGc+n/9j4AKgAlwNfBt4BfhkPp9/+xTe58wwQWgYVGdIERGJsWZDwzHAbwqFwqa6/X+Db47/RKFQ+KtCofC3wLHACPDhZi5sZvuZ2dVmttLMNpnZgJk9ZmaXmNniBuVvMLMNZtZvZneZ2QkNrp0ws3OD6xXN7Hkzu9jM5jT5uadWVGjQVNIiItIhmg0NS4AnI/afAPQDV1Z3FAqFx4BbgWVNXnspsBj4CXA+cA7wc+As4EEz27la0Mz2Bu7Bh5ivAucBPcCtZnZixLUvBS4BHgU+DvwI+ARwo5m1vhNo3dLYAF01EzypeUJEROKr2Y6QOwAvhXfk8/ldgV2BnxUKhfqfdk8Cf9LMhZ1z/wP8T/1+M7sTuA44HR8QAC4CFgCvc84tD8pdBTwCXG5m+7tg3KKZHYQPCtc7594duu4zwDeAU4BrmrnHKTNhnwbVNIiISHw1+9v2ILBL3b7XBtvfRZQfwjdRbI9ng+1CgKBJ4Z3A7dXAAOCc6wO+C+xLbe3GqfjRHF+vu+6VwABw2nbe3+TVTCM95HelQ80TCg0iIhJjzYaGx4A/zefz4ZqJk/H9Ge6JKL8b8MJkbsTMcma2o5ktNbOTgO8Eh24OtocCWeDeiNN/HWzDoWEZvoPmfeGCzrkisJzmm0+mTjg0FH3zRE7NEyIi0iGaDQ3/ie938H/z+fw78/n8/wd8BNiE739Q741E94EYzxnAOuB5fJ+IBcBpzrm7guNLgu2aiHOr+3pD+5YA651zQw3K72hmmagbMbOzzGzq55qoW7AK5+r6NKimQURE4qvZ0HAZvhnibfgOi18BMsAFhUKhGC6Yz+ePAvYAbpvkvdyA7wfx58AXgY3ATqHj3cE2KgQU68pU30eVbVR+lHPuCufckRPe8WSl0pAMKmvKZRgpkQs1T2jIpYiIxFlTHSELhcJQPp8/FjgXP3LhFeDaQqFwU0Txw4H/Am6czI0451YDq4MvbzCzHwP3m1mXc+4ifD8E8E0U9aq/wg+E9g0AO0eUbVS+NbI5GOjz74eGNLmTiIh0jKankS4UCv3Al5oo9x3G+iNsM+fcw2b2OyCPHzWxNjjUG1G8ui/cdLEWONDMshFNFL34povh7b3PSQuHhuGimidERKRjxH3Bqi5gUfB+Bb654ZiIctXprcP9EO7Hf77XhwuaWQ5fG9Ke9THqOkNqcicREekU271gVT6fTwMfw0/0ZMAdwOWFQqFRf4IaZrarc+7FiP3HAwcDt4MfWmlmNwJ/YWaHOeceCsr14DtRPkntSIlrgc/gJ4u6K7T/THxfhqub/5RTKFPbGTKXHpucUkMuRUQkzpoKDfl8/q/wTRMfLhQK/xPanwD+GzgRHxgA/hfw7nw+/+aISZ+ifCuYLvoX+LkZcsDr8JMvbQH+PlT2fOAtwM/M7FJgMz4E9AInVyd2AnDOrTCzy4Gzzex6/NDNA/AzQt5Bqyd2qgovj10cJJeeN/al+jSIiEiMNVvT8CfAXILf+kNODY69CHwO/0P+XHxzwUdorm/DfwAfAj6IHy3h8OHhO8DXnHPPVQs6554yszcCXwY+jR/B8Vvgbc65qNEa5wCr8FNSnwysx48EucA5V2ni3qZefU1Dj5onRESkMzQbGl4L3FMoFOp/qp2G/yH/V4VC4TaAfD7/U+A5/KqYE4YG59x1+Omim+KcWwm8q8myZfyS3Rc3e/1plw0N/hgaIrdIHSFFRKQzNNsRchfg6Yj9bwBeqgYGgEKh0AfchO+PIPXqFq2qXRpbzRMiIhJfzYaGefjVLEfl8/l98E0Wv4oovxo/o6PUq1u0qmaeBtU0iIhIjDUbGjYAe9btq67dELVgVQro29abmtHqahq6MlqwSkREOkOzoeF3wMn5fH5xaN8p+P4Md0SU/yMmuWDVrFHTp6FYt2CVQoOIiMRXsx0h/xU4Cbg3n89fj1+G+u3AU4VCoaZ5IlgJ84+BW6byRmeMmuaJIbKh5omhUpmKcyTMIk4UERFpr6ZqGgqFwo+A7wKvwQ9jfDt+hcszI4q/A1hI9OqXUtc8kTAjmxr7YxhSbYOIiMRU09NIFwqFs4A3AZ/Cz8B4UKFQiGqaGMDP1fB/p+QOZ5q6jpBA7VTS6tcgIiIxNalppAuFwj3APROUuRW4dXtuakarq2kAyGWSbArW2xwcHmFh5EKeIiIi7RX3BatmnrrJnQANuxQRkY4w6QWr8vn8Mfhpmd8ILMGPoHgBuBu4slAo3DuldzjTZGunkQbIpTWVtIiIxF/ToSFYzbIA/DVji1NV7RO8PpTP5/8NyBcKhdKU3eVMkq1dsAqgKzzsUn0aREQkpiZT0/Cv+LUmNuBHUvwceB4fIJbiF676CD5UZPCLUEm9yJqGcGjQVNIiIhJPzS6NfSI+MDwIvKNQKLxYV+Qx4LZ8Pn8Jfqns0/L5/FXhZbQlUFPTEDF6Qs0TIiISU812hDwTv/bEn0UEhlGFQuEl4M+AQaLncJCImobu7Fho6CuqVUdEROKp2dBwDPDTQqGwZqKCQZmb8CtgSr10Zuz98BBUysztSo/uUmgQEZG4ajY07Aw8OYnrPgXsNPnbmQUSibrahiHm5sZCw5ZBhQYREYmnZkPDAH4Z7GbNBYqTv51ZIlM7K2S4pmGLahpERCSmmg0NTwInTOK6xzO5monZJVzTUCzSo5oGERHpAM2GhpuAA/L5fH6igvl8/qPAgfhRFBKlrjPk3K6xfg7q0yAiInHV7DwN3wA+Dvz/+Xx+CfC1QqGwKVwgn8/PA87DL2j1KnDZVN7ojFK3aFVPz46jX24ZHG7DDYmIiEysqdBQKBQ25vP5d+NrHM4H/i6fzz+In9zJ4ZfMfh2QxQ+3fE+hUNgwPbc8A9QtWjV3J42eEBGR+JvM0th3AkcBvwRy+LUnTgFODd7ngNuBoxssmS1V2XE6QqpPg4iIxNRkl8Z+FDgxn8/vAbwJWIyfRvoF4O5CofAMQD6fzwGZQqGweWpvd4aoCQ2D5NJJUgljpOIYHqkwVCqTDU0tLSIiEgeTXuUSoFAorAJWjVPkW8AHt/X6M15NaBjCzOjpSrOx3/dn6CuWFBpERCR2mm6e2Ab1K2FKVV3zBKAJnkREJPamMzRII3UdIQF6NMGTiIjEnEJDO0TVNITnalBNg4iIxJBCQztM1DxR1FwNIiISPwoN7RBZ0xCaq0E1DSIiEkMKDe1QN400oPUnREQk9poaEpnP58vTfSOzSrgjZNF3hNRKlyIiEnfNzqOwLcMn3TacMzuopkFERDpQs2tPqBljKmVql8aGuj4NqmkQEZEYUhhoh5xqGkREpPMoNLRDZoJ5GlTTICIiMaTQ0A65rWeErJ1GWvM0iIhI/Cg0tEN9TYNzNdNI9xVLVJz6kYqISLwoNLRDKgXJoA9qpQIjJdLJBLlgZcuKg8GhkTbeoIiIyNYUGtplglkhNVeDiIjEjUJDu0SEBo2gEBGROFNoaJeI5bFrahoUGkREJGbaHhrMbF8z+6KZ/drM1pnZFjNbbmafNbM5EeX3M7MbzGyDmfWb2V1mdkKDayfM7Fwze8zMimb2vJldHHXdlptgpUsNuxQRkbhpe2gA/ho4F/gD8EXgPOBx4EvAPWY2+iu5me0N3AMcA3w1KNsD3GpmJ0Zc+1LgEuBR4OPAj4BPADeaWXs/e2SfhrG5GjTsUkRE4qbZtSem038CFznnNoX2fdvMngQ+C3wE+Gaw/yJgAfA659xyADO7CngEuNzM9nfOj1U0s4PwQeF659y7qxc2s2eAbwCnANdM4+caX1SfBk0lLSIiMdb2mgbn3AN1gaHq2mB7MEDQpPBO4PZqYAjO7wO+C+wLLAudfyp+oa2v1133SmAAOG0Kbn/bTdA8oT4NIiISN20PDeNYGmxfCraHAlng3oiyvw624dCwDKgA94ULOueKwPK6sq03UUdI1TSIiEjMxDI0mFkSuAAYYawJYUmwXRNxSnVfb2jfEmC9c26oQfkdzSwTcQwzO8vMHpj0jU+GhlyKiEiHiWVowDcpHA1c4Jx7PNjXHWyjQkCxrkz1fVTZRuVHOeeucM4d2fTdbovM1itdatEqERGJs9iFBjP7J+Bs4Arn3EWhQwPBNhtxWq6uTPV9VNlG5VsrvDx2MWJGSNU0iIhIzMQqNJjZhcDngO8BH607vDbY9rK16r5w08VafBNEVHDoxTddtG9cY1RNg+ZpEBGRGItNaDCzLwBfAK4CzqgOnQxZgW9uOCbi9KODbbgfwv34z/f6uu+TAw6vK9t64eWxi74jZE+XlscWEZH4ikVoMLMLgAuBfwc+7Jyr1JcJhlbeCBxnZoeFzu0BzgCepHakxLWAA86pu9SZ+L4MV0/dJ9gG2a1rGrqzKRLmdw0Olxkpb/UYRERE2qbtkzuZ2d8C/wg8B9wGvN/MwkVecs79PHh/PvAW4GdmdimwGR8CeoGTw7UTzrkVZnY5cLaZXQ/cDByAnxHyDto5sRPUNk8EoycSZszJpUf7M/QVSyyY06hbhoiISGu1PTQwNl/Ca4AfRBy/A/g5gHPuKTN7I/Bl4NNABvgt8Dbn3G0R554DrALOAk4G1gOX4UdltPfX+NzWoQF8Z8hqaNgyqNAgIiLx0fbQ4Jw7HTh9EuVXAu9qsmwZuDh4xUtETQPUzdWgzpAiIhIjsejTMCvltp4REurmatCwSxERiRGFhnZpUNNQu/6ERlCIiEh8KDS0S8000mMTV87VSpciIhJTCg3tUhMaxpontP6EiIjElUJDu2SyUB1aWhqGShnQSpciIhJfCg3tYhbZr0E1DSIiElcKDe0UsTy2+jSIiEhcKTS0U0RnyLmqaRARkZhSaGiniM6QNfM0qKZBRERiRKGhnSKaJ9SnQURE4kqhoZ2yW88KWd+nYesVwkVERNpDoaGdImoasukk6aT/YymVKwyVyu24MxERka0oNLRTJrSC5XDtSpdVmqtBRETiQqGhncKLVhUbrHSpfg0iIhITCg3tFJ7cqVFNg0KDiIjEhEJDO4X7NBRDy2PnNMGTiIjEj0JDO4VHT9TUNIzN1aDlsUVEJC4UGtopG+oIGVoeu0cdIUVEJIYUGtopYp4G0FTSIiISTwoN7RQxTwPU1jSoT4OIiMSFQkM7Raw9AappEBGReFJoaKea5onoIZeqaRARkbhQaGinBh0hNU+DiIjEkUJDOzXoCNmjeRpERCSGFBraqUFHSM3TICIicaTQ0E7Z6Gmke3Kp0ff9xRHKFS2PLSIi7afQ0E7htSeKRXA+HCQTCbqzPjg4oH9ITRQiItJ+Cg3tlEpBKui/4CowMhYOatafUGdIERGJAYWGdmu0aJWmkhYRkZhRaGi3Rv0aulTTICIi8aLQ0G6ZBiMoNCukiIjEjEJDu+XqOkMGaoZdqnlCRERiQKGh3TKNhl2Gaxo0V4OIiLSfQkO75UKzQjboCKlZIUVEJA4UGtqtqZoGhQYREWk/hYZ2aziVtGoaREQkXhQa2q1RaFBNg4iIxIxCQ7uppkFERDqEQkO7NbE8tmoaREQkDhQa2q2Z5bFV0yAiIjGg0NBuDUJDVyZJwszvLpUZHim3+s5ERERqtD00mNn5ZvYjM3vazJyZrZqg/H5mdoOZbTCzfjO7y8xOaFA2YWbnmtljZlY0s+fN7GIzmzMtH2ZbNAgNZqZ+DSIiEittDw3APwMnAH8ANoxX0Mz2Bu4BjgG+CpwH9AC3mtmJEadcClwCPAp8HPgR8AngRjOLw2dvGBpAIyhERCReUu2+AWBv59zTAGb2e3wIaOQiYAHwOufc8uCcq4BHgMvNbH/nnAv2H4QPCtc7595dvYCZPQN8AzgFuGbKP81kNegICXXLYys0iIhIm7X9t+1qYJhI0KTwTuD2amAIzu8DvgvsCywLnXIqYMDX6y51JTAAnLbNNz2Vxqlp6FHzhIiIxEjbQ8MkHApkgXsjjv062IZDwzKgAtwXLuicKwLL68q2TzZ6GmlQ84SIiMRLJ4WGJcF2TcSx6r7euvLrnXNDDcrvaGaZiGOY2Vlm9sA23+lkZKOXxobamgYNuxQRkXbrpNDQHWyjQkCxrkz1fVTZRuVHOeeucM4dOek73Bbj1jSE5mrQ8tgiItJmnRQaBoJtNuJYrq5M9X1U2Ubl2yMbvTQ2qE+DiIjESyeFhrXBtjfiWHVfuOliLb4JIio49OKbLtr/63s6A8EkToyUoDI2iZP6NIiISJx0UmhYgW9uOCbi2NHBNtwP4X7853t9uKCZ5YDD68q2jxlktGiViIjEX8eEhmBo5Y3AcWZ2WHW/mfUAZwBPUjtS4lrAAefUXepMfF+Gq6fzficlN3FoUE2DiIi0W9sndzKzDwK7B1/uBGTM7HPB18865/49VPx84C3Az8zsUmAzPgT0AidXJ3YCcM6tMLPLgbPN7HrgZuAA/IyQdxCHiZ2qGtQ0hFe67FNoEBGRNmt7aAA+Ary5bt8/Bds7gNHQ4Jx7yszeCHwZ+DSQAX4LvM05d1vEtc8BVgFnAScD64HLgAucc5Wp+wjbKRc9K+RcDbkUEZEYaXtocM4dN8nyK4F3NVm2DFwcvOKriZqGLYMlnHNYtdOkiIhIi3VMn4YZrcFU0plUkmw6CUDFOQaGR1p9ZyIiIqMUGuKgyZUu1a9BRETaSaEhDrpCE1NufKXmkEZQiIhIXCg0xMEe+469X7m85tD8OWNTST/54qYW3ZCIiMjWFBri4MAjxt4//hCMjPVdeP0+O4++//lDq1t5VyIiIjUUGuJgl6WwKAgHgwPwzOOjh044uJdEMGLikec3sPbV/nbcoYiIiEJDLJjBQa8d+/rR346+XdiT5ch9dhr9+raHo1YGFxERmX4KDXFxYHRoADjp0KWj7297eDWVsYkvRUREWkahIS4OOHxstcunH4eBvtFDR+278+hETy9tGmTFs6+24QZFRGS2U2iIi555sPsf+feuUjOKIpNKctxBi0e//vnD6hApIiKtp9AQJzVNFL+rOfQnh401Udz16AsManZIERFpMYWGOGnQGRJgvyUL2G2HOQAUS2XuXvliK+9MREREoSFW9j5gbErpdS/Ay2tHD5lZTW3DbWqiEBGRFlNoiJNUGvY7dOzruiaKEw7ppbrG5UOrXuHlTYOIiIi0ikJD3IT7NTzyYM2hneZ1ccReOwLgUG2DiIi0lkJD3IRDw2PLoVyuOfwnNXM2rMFpzgYREWkRhYa4WbwbLPS1CQwOwKrHaw6/Yf9d6c6kAFjzaj+Prt7Q6jsUEZFZSqEhbuqnlH6kdhRFLp3k2APH5mzQtNIiItIqCg1xNM6U0gAnhkZR3PHIWoZK5a3KiIiITDWFhjg64IjQlNKPwUDtypYH77aQxQu7AegfGuHeJ15q9R2KiMgspNAQR3Pnw257+/eVCjz+UM1hM+PEUIfInz+kURQiIjL9FBriapzZIQFOPLR39P0Df1jHv/3PY5QrGkkhIiLTR6Ehrg563dj7R7YODbsu6OaYfXcZ/frae/7Ahdc9QH+x1Iq7ExGRWUihIa72PgAyWf/+5bWwbuu1Js5712G8fp+dRr++78mX+eS//Yo1r/RvVVZERGR7KTTEVToD+4anlN66tmFOLs2F71vGe9+w9+i+51/p5xP/djcP/mFdK+5SRERmEYWGOJugXwNAMmF85C3786k/O5xMyv9x9hVH+Nx/3MePf/20ZowUEZEpo9AQZwceMfZ+5XIYKjYsesIhvVxy+hvYcZ5fJbPi4Iqfr+Tvf3AvNz34LJsHhqf5ZkVEZKZTaIizJbvDgh38+4E++NwZcO9tfhhmhD9aPJ/LPvJGDly6cHTfI89v4Bs3/55TLr2Nz/+f+/nFijUMDo+04u5FRGSGMVVfN5bP5x1AoVBo3038+N/gp9fV7tv9j+C9Z9Yuox0yPFLmip+v5KYHnyVqFGY2leCofXfhiD135MClC3nNTj0kqpNJiYjIbNfwB4JCwzhiERoqFbjrFrjhKtiysfbYEW+A93wEdumNPPXVviJ3PfoCv/z9Wlau2RhZBmBONsX+Sxdy4NKFHLB0Afv3LmBONj11n0FERDqJQsO2iEVoqCoO+BqHn10PpVD/hGQSDj8G9j/M1zwsfs3YFNQhL2wY4PZH1nL779eyat2Wcb+VAbvt2MN+Sxaw75L57Ne7gD13nksmlZziDyUiIjGk0LAtYhUaql5dB9d/D379i+jjc+fDvof4ALHvIbDkNZCo/WH/zEubeeAP61i5egOPrt7Ihv6hCb9tKmHstcs89lk8nyWLuuldOIfFC7tZvLCbXLBUt4iIzAgKDdsilqGhatUTcN2V8MSK8ctlsrB0T9htL1i6F7xmL+jdE3JdADjneHHjII8+/yor12zkkec3sOrlzZF9IRpZ1JNl8cJuliycw64Lu1kShInFC7uZ353B1F9CRKSTKDRsi1iHBgDnYM0qePxh/3piBfRtnvg8M9hxV1i0E8xfCPMXwbxFsGAhzFvE0LxFPFmZy+MvbOKJtZt4fO1GXtgwsE232JVJsuuCbnZZ0M3O83PsNK+Lned1sVPwfoe5WZIJDeIREYmRhqFB9cqdzMzXIizdE97yLt9p8oXnxkLEU4/Apg1bn+ccrHvBvyJkgYPnLeTgAw6HA18Lxx/B5uw8Hl+7kefW9/HChgHWbhjghQ39vLRxcNyFsgaHyzzz8haeeTm6H0XCYMGcLIt6siyam/PbOVkWzc2yqCfHgjkZ5nVlmNedoSeXJplQrYWISLuopmEcsa9paMamDbD6aXg+9Hrx+YZzPTS0+DV+sqnX7APlERgeguEhKkNFBrb0M9DXz5ZyghfS81nl5vL4SDeP9qfoK03y+wA4xy7lLew6spk1qQWsT/UAPvrO7UozrzvD3K706DBR58AR/H/sfMHuTIrubJo52RTduRRzMim6c/7ruV1p5nVlarappGo7REQCqmmYteYvhPmvq101szTsF8Ha+CpsfhU2bvDbTa/6fWtWQX9dzcALz/lXnQTQE7x2BvYG3hQcc8kklUW7MDh/J7Z0LWBTIscrZHm5kuHF4RTPDyd5YSjBjuU+9hh+hT1Lr7DH8CvsXnqFOW5stc7HMztzb/de3NO1F8+6RWwenPqVPLszPkzMyaXpyaXoyVXfp+nJpujOpsimk6OvXN37rkyKrkyK7mxSzS0iMmOppmEcM6KmYVtUyvDcH+DR3/nXU4/ASDyW3F6dWsA93Xvx6649WZfqYYQkJUtSsgQjlmSExNiQU+dIELycI0EFhzFkqchhqVMlnUzQnU3RlUmSTiZIJhIkEkay7pVOJkinkmRSCbKpJOlUgkwqQSaVxGws6pvZ6PtEwpiTTY0FmiDkzMmlyaQS9BVH2DI4zJbBkn8VS2wZHKZScew03/cn2Xl+F7ss6KIrzqNeRkagbxNs3ujnJxke8v1wdukdW/1VRKaLOkJui1kbGuoNFX1wePR3sGG9/0c7/EpnIZOBwX54+QVYt9ZvN7267d+zZx7ssItvWimXJ3WqSyTBVbAG/29XMIaSGQYTGQYsTR9pBhIZRkiQcyW6XIlcpeTfV0rk3AgO6Etk6Utk2ZLIjb7vS2YpkyDjymTcSPAqkw6+HrEk/YkMA5ZhIJHx74OvE7jR8uFt2pWpkGDEEpQtQRljxJKUSVCyBMOWYshSo9uhhH9fIkmSCmlXJuXKpEbfV8i4kdHP0xVs5yVGmJ+skE2CS6RwyRQulYJkCoLtcCpLX3oOW1JdbE52sTmRY2Oiiw2WJZlMsiAF89MV5qUccxMVepIVeqxCOpUgkUqRTKVIpJKkUimS6RTJRILMUD+ZgS2kBzeT6t9Msn8zyf5NWN8m3KaNsGUTiYHoPjAOo7RgR4Z3XMLIzr1Udu7FdtqVTPccMnO6SOdyY/8/poNwMVyE4iAMDfr/l4vBNpGA7h6Y0xNs50Kue+tA6ZwPzaUSlIZ8Z+NNr/pAs2kDbA5efZuha46f+n3BIt/BeMEO/jV/ob+fRCI6sFbK0LcluG5wvU0bYKAfcH4xGZy/F5xvhhsp+enlB/t9ufA2lYYdd/FBa3QbvLq6Q9epe437F6vimzWrLxfeOr91rvZrqP23IpuDTM6v4ptI+HA4POSfa9DkydCQPzfX5f88qtvkOPPEVCq+2dTMDzGfyto+53zt7FBx7P+hoaK/1+rflVS69n2jP2fw95cNnkFUmXLZD61f/6Lvd7b+Rf8CmLfQv0Y7sC/wX89dMP7zmTw1T8h2yOZ880a4iaMZxcGxDpebNvjfHPs2B69NsGUz9G+GnvnQuwcs3cNve/fwfyHM/D+KK+6H390DKx7wf2knYJXxQ0YCR1d5iK7yEIsm8XEWVgZZWJn4+8u2m6j+x3BkNq4js3EdPPXQlH//iiUYznThMJKVEsnyCMkJ/n+aDIdBMolLpbBUGlIprOL83wm3Df1/xrNlIzzz+NRecyolEpPrW5XO+ACRTPmwUQ6/6v6MzHy5RML/ME0ktw40lYoPay7oCJUwsOCHvQXvwYeDqf6zqd5jJuf/fa2+horwykuT73NmBqefC288aervs45Cg0yfXJefH2K3vbb9Gt09cNTx/lUahpW/g9/dC08+4v8yl4PfAMsj/jevqH88Egn/D0AiMfZbg8RaGfO1GsluNia7GCFB78gmdhnZTJIJfiPeDglXITfUP23XNxyUR7DyyLir1s4Kk/3BWBpu/u9utXaoaQ7KEPynNZwLai6m4BcR56B77vZfpwkzOjSYWQL4JPA3wB7AOuA64ALn3PT9yyDTI52BQ4/yr0aqvz1UQ0Kj6r/igK8JKQ741+CA35/N+bCTCbbV3wCc851DB/r8tr/Pvx/o898znfGvTGbsfSrt/+EqDvhq4+r3GRyAYr//7Sed2fqVSvvfbMrlsd+iqr9RjYyM/eNZrc6tvi+P+N+uGlWZ5rohl4NsF5VsjgGXZFM5ycCIo1wqUSmVKA+XcCP+vSuVyJQG6RoeoGu4j1yxn0yxj3Sxj3TQfFBOZxhJZhhJpikl0gwHTSUV5zBXwSoVvw3e4yr0J7vYlOxiY7KLjYkuXrUuXrUcr1qOgexchrrmUu6eQy6TIZdJ0p1NkUkmKFUc5eEh5m9Zzw5969hpYD07Daxn3vAWUuUS6UqJTMU382SDpiIDBhJpipZm0NIUE2PbhHP0VIaYWykytzJET2WILhf9g2aYRNB3JsmWRI5Xk3PYkOyueW1J5JhTGWJRuZ8dgtei8gA7jPSzoDJA2pXHDTxbElleTXazITGHDckuNiTnsCWRxZlR8XGDIHbgMEYsQV8iS38iQ38iS38iS59lGEhkybkSu4xsZte61y4jm8m6EVxwnYrZ6HtGt1szfLNeJbgX/z4Rel+9x2AbfG04sm6EbGWEbNBE5rd+pd0yRnG0qS3NUCJF0fyPJd+UNkx30FQ4UVgsBYs2p5n6WoFhSzKUyDCUSPtXMkMpkSLpKqRceXSbcmWSlTJJKjW1Zgaj/xYlXZlMuUSq0ni14f7cPLb07MDmOYvYPGcHNs9ZSIUkXcXNdBe3jG67h/r8drif1SNplk75J9/ajA4NwKXAJ4CfABcDBwRfH2FmJzo3HXVO0laJxMTtmcmkb7+eM8lkXm2fngHCo162iXNgRoqp+0fEObdds4c65yiVKwwOlxkcHmHjcJliaYTSSIWhkQrDI2WGRyrB12XKFcfLFYdzjrJzVCpgIyVSQ/2UnVFJJBlJphixBL5RCyrOUan47zNSrjBSdoxU/DZRrjAIrAleMNbc4pxjsFRmYHCYoeIQw0PDlIaGGBkqYTg2J7so2dS1SW8hx7rUXH5P9GJ27WbOkaRS23F5PM6Hjy5XIuUqNR2fRyxBue46CVchiQu2FVKuEoSk6KADPjIlgnuzoAO1AUVLUbEp7CMRusecGxntP5VzJUqW5KXkPIYTob9V/cELgODfnwTQHbzwQeTzPb0KDdvDzA4CPg5c75x7d2j/M8A3gFOAa9p0eyKdbRpGn2zvdONmRiaVJJNKMr87M0V3Nb3KFcdQqYxzzje1O0fFOZzzAaVc8a+xkFIJ3jscjmww+iadSpINRt5kUj7gDJXKY6+RMkOlCsXSSMNWAUfwfSs+RLkgIFWCe/GBqzwawEojFb+vXCFhkEomSCaMVCJBMhlsE+aDVvW6lcro9SrOkQhGBtno1r8fKVfoHxphYGiE/qES/cVgO+RDIBAZWMvB9xgpJyiVKzDJIFaGiTvWTJGKJUY7SG+vsiVxLZquf8aGBuBU/B//1+v2Xwl8GTgNhQYRaaNkwujOTs8/wz252b28fTWAVWuDRls3DAwbzb2jtUE151b3+dBWqYwFuJFyZfR9+Hu58HlB7VW54iiHyldrpcbCX4VSeSwUlitBkKr2xcRIBGkqYeFw5ctUJ7hLGOy967zpeZB1ZnJoWAZUgPvCO51zRTNbHhwXEZEZyMxImpFMQJYpHY44q83kqeuWAOudc1HrPq8BdjSzyHohMzvLzB6Y1rsTERHpMDM5NHQDUYEBoBgqsxXn3BXOuSOn5a5EREQ61EwODQP4BRuj5EJlREREpAkzOTSsxTdBRAWHXnzThWb5ERERadJMDg334z/f68M7zSwHHA6oz4KIiMgkzOTQcC1+FM05dfvPxPdluLrVNyQiItLJZuyQS+fcCjO7HDjbzK4HbmZsRsg70BwNIiIikzJjQ0PgHGAVcBZwMrAeuAy/9oSmkBYREZmEGR0anHNl/JoTF7f7XkRERDrdTO7TICIiIlNIoUFERESaMqObJ6ZKPp9v9y2IiIi0iisUCpHLZqqmQURERJpizrmJS8mUMbMHtK5FLT2TremZ1NLz2Jqeydb0TLY21c9ENQ0iIiLSFIUGERERaYpCQ+td0e4biCE9k63pmdTS89iansnW9Ey2NqXPRH0aREREpCmqaRAREZGmKDSIiIhIUxQappmZJczsXDN7zMyKZva8mV1sZnPafW/TzczON7MfmdnTZubMbNUE5fczsxvMbIOZ9ZvZXWZ2Qotud9qZ2b5m9kUz+7WZrTOzLWa23Mw+G/X/w0x/HjD6Ga82s5VmtsnMBoK/K5eY2eIG5Wf0M4liZt1m9kzw9+ibEcdn/HMJPnvUqy+i7Ix/HgBmtsjM/sXMngp+vqwzs1+a2R/XlZuy56EZIaffpfjluH+CXzirujz3EWZ24gxfbfOfgVeB3wILxitoZnsD9wAjwFeBTcCZwK1m9qfOudum91Zb4q+BvwX+L3A1UAKOB74EvNfMjnbODcKseR4AS4HF+L8fq/Gf9xD8yrSnmNnhzrmXYVY9kyhfBHaMOjDLnstdbN2xrxT+YrY8DzPbHbgd6AH+FXgCmA8cCvSGyk3t83DO6TVNL+AgoAL8uG7/xwEHvL/d9zjNn3+v0PvfA6vGKXsdUAYOD+3rAZ4FHifotNvJL+BIYH7E/i8F/z+cPZuexwTP6i+DZ/IPs/2ZAK8N/sH/u+CZfLPu+Kx4LsFn/34T5WbL87gLeB5Y3MrnoeaJ6XUqYMDX6/ZfCQwAp7X6hlrJOfd0M+WCqvl3Arc755aHzu8DvgvsCyybjntsJefcA865TRGHrg22B8PseR4TeDbYLoTZ+0zMLIn/9+IW4PqI47PuuZhZxsx6GhybFc/DzI4F3gR81Tn3gpmlzaw7otyUPw+Fhum1DF/TcF94p3OuCCxnBvzPO0UOBbLAvRHHfh1sZ/KzWhpsXwq2s+55mFnOzHY0s6VmdhLwneDQzcF21j2TwLnA/sDZDY7PtufyHvwvXFvM7GUzu8zM5oeOz5bn8fZg+5yZ3QgMAv1m9oSZhX8ZnfLnodAwvZYA651zQxHH1gA7mlmmxfcUR0uC7ZqIY9V9vRHHOl7wm+QF+Orna4Lds/F5nAGsw1e33orvA3Oac+6u4PiseyZmtifwj8AXnXOrGhSbTc/lPuBCfHD4EPALfJi6K1TzMFuex37B9kpgEf55fAQYBv7dzD4cHJ/y56GOkNOrG4gKDADFUJnh1txObFWr1aKeVbGuzEzzdeBo4DPOuceDfbPxedwAPIZvaz0CX6W6U+j4bHwm3wKeAS4Zp8yseS7OuaPqdl1lZg8D/xv4ZLCdLc9jbrDdAhzvnBsGMLOfAE8D/2xmP2AanodqGqbXAL5qKEouVGa2qz6DqGc1Y5+Tmf0T/jelK5xzF4UOzbrn4Zxb7Zy7zTl3g3PuC/jfnL5iZucHRWbVMwmqmE8CPuqcK41TdFY9lwhfw//SdXLw9Wx5HoPB9j+qgQHAObcBPzprV3xtxJQ/D4WG6bUW3wQR9QfWi2+6mO21DOCfE0RXk1X3RVWvdSwzuxD4HPA94KN1h2fd86jnnHsY+B2QD3bNmmcS/HtxCb4/x4tmto+Z7QPsHhSZH+xbwCx6LlGCQLWWseGos+V5rA62L0YceyHYLmQanodCw/S6H/+MXx/eaWY54HDggTbcUxytwFefHRNx7OhgO2OelZl9AfgCcBVwhgvGQIXMqucxji58ey3MrmfShW+aORl4MvS6PTh+WvD1Gcyu57KV4N/SpYx1Ip4tz6PauX5pxLHqvpeZjufR7rGmM/mFn6RmvHkaTmv3PbbwWUw0T8OP8GOJDwvtq44lfoKZM7b6guDP/iogoefBrg32Hx98/v+Zhc8kje/sV//6WPD/zk+Dr/edLc8F2KHB/q+x9Xwes+F5LAQ242scekL7FwN9wBPT9Ty0yuU0M7PL8O3WP8FXN1ZnhPwVcIKbwTNCmtkHGatS/TiQwc+KCfCsc+7fQ2X3wafnEn4Wzc34WcsOAU52zt3aqvueLmb2t8A3geeAz+MDZdhLzrmfB2Vn/POA0Y5bi/E94Z/Ft7O+DjgF39Z6nAvGl8+WZ9KIme2B7xh5uXPu7ND+Gf9czOxS/G/Gv8T//enBDzs8HvgNvjNgdTbVGf88AMzsLPzQ5EeAf8P/+/ox/N+n/+Wc+1lQbmqfR7sT00x/AUng7/Ezbw3h248uIZQOZ+oLX53qGrxujyh/APBfwEb8D4y7gRPb/Tmm8Hl8f5znsdUzmenPI/iM7wVuwg+1LOI7eD0GXAa8Zrb9PzLBs9qDiBkhZ8NzAd6FH4q7Jvj/pB8/181ngNxsex6hz/kX+PkW+vEjKX4GvHE6n4dqGkRERKQp6ggpIiIiTVFoEBERkaYoNIiIiEhTFBpERESkKQoNIiIi0hSFBhEREWmKQoOIiIg0RUtji8iMl8/nL8Sv93F8oVC4vb13I9K5FBpEZEL5fL6ZWeD0A1lkhlNoEJHJ+Mdxjq1q1U2ISHsoNIhI0wqFwoXtvgcRaR+FBhGZcuE+BPiVTs8B9scvqvPfwGcKhcKLEef9EX4F0LcAOwHrgduAfyoUCk9GlE/iV+z7IHAwfqW/NfjF0r7S4Jz3AP8QlC/iF/n5+0KhsGY7PrLIrKDREyIync4Fvg08BHwdv9rrh4F78vn8TuGC+Xx+GfAAcBpwP/Av+BX8PgA8kM/nj6wrnwFuAb4F7AZcA3wDeBD4c+CNEfeTB36Ib0q5HPg98D7gtnw+n93eDysy06mmQUSaFtQgRCkWCoUvR+z/U+CoQqHwu9A1LsXXPHwZ+Eiwz4CrgHnAaYVC4epQ+fcB/wf4YT6fP7BQKFSCQxcCJwI3An9ZKBSGQudkg2vVexuwrFAorAiVvQY4Fb/88nWNPruIqKZBRCbnCw1en25Q/t/DgSFwIbAJeH/ot/s34Jsv7g0HBoBCoXAtcDewH/AmGG2WyAODwEfDgSE4Z6hQKKyLuJ9vhAND4Mpg+/oGn0FEAqppEJGmFQoFm+Qpd0RcY1M+n18OvBk4AFgOvDY4/IsG1/kFPjAcAdyJDxjzgd8UCoW1k7ifByL2PR9sF07iOiKzkmoaRGQ6vdRgf7UT5Py67QsNylf3L6jbTrbz4saIfSPBNjnJa4nMOgoNIjKddmmwf9dgu6luu2tEWYDFdeU2Btvebb4zEZk0hQYRmU5vrt+Rz+fnA4fjhzuuDHZX+z0c1+A61f2/DbaP4YPDofl8fsn236aINEOhQUSm0wfz+fwRdfsuxDdH/EeoA+Ov8MMx3xTMozAq+PpY4Al8h0gKhUIZKABdwLfrh0vm8/lM/ZBOEdl+6ggpIk0bZ8glwA2FQmF53b6fAr/K5/PX4fslvCl4rSI04qJQKLh8Pv8h4OfAtfl8/r/wtQn7AX+GnxTqr0LDLcFPaX0U8A7giXw+/99Bud2Ak4DzgO9vw8cUkQYUGkRkMr4wzrFV+JEQYZcCP8HPy/A+oA//g/wzhULh5XDBQqHwm2CCp8/h5194B35GyP/Azwj5eF354Xw+/zbgo8BfAR8CDFgbfM+7J/vhRGR85lwzi9eJiDRPS1GLzEzq0yAiIiJNUWgQERGRpig0iIiISFPUp0FERESaopoGERERaYpCg4iIiDRFoUFERESaotAgIiIiTVFoEBERkaYoNIiIiEhT/h+cqmn4xIRtqwAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 576x432 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "pwk.plot_history(history, plot={'MSE' :['mse', 'val_mse'],\n",
-    "                                'MAE' :['mae', 'val_mae'],\n",
-    "                                'LOSS':['loss','val_loss']}, save_as='01-history')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 7 - Make a prediction\n",
-    "The data must be normalized with the parameters (mean, std) previously used."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 13,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:28.422640Z",
-     "iopub.status.busy": "2021-03-01T17:41:28.422168Z",
-     "iopub.status.idle": "2021-03-01T17:41:28.423787Z",
-     "shell.execute_reply": "2021-03-01T17:41:28.424272Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "my_data = [ 1.26425925, -0.48522739,  1.0436489 , -0.23112788,  1.37120745,\n",
-    "       -2.14308942,  1.13489104, -1.06802005,  1.71189006,  1.57042287,\n",
-    "        0.77859951,  0.14769795,  2.7585581 ]\n",
-    "real_price = 10.4\n",
-    "\n",
-    "my_data=np.array(my_data).reshape(1,13)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 14,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:28.427688Z",
-     "iopub.status.busy": "2021-03-01T17:41:28.427215Z",
-     "iopub.status.idle": "2021-03-01T17:41:28.589307Z",
-     "shell.execute_reply": "2021-03-01T17:41:28.589794Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Prediction : 10.20 K$\n",
-      "Reality    : 10.40 K$\n"
-     ]
-    }
-   ],
-   "source": [
-    "\n",
-    "predictions = model.predict( my_data )\n",
-    "print(\"Prediction : {:.2f} K$\".format(predictions[0][0]))\n",
-    "print(\"Reality    : {:.2f} K$\".format(real_price))"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 15,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:28.592999Z",
-     "iopub.status.busy": "2021-03-01T17:41:28.592525Z",
-     "iopub.status.idle": "2021-03-01T17:41:28.594896Z",
-     "shell.execute_reply": "2021-03-01T17:41:28.595377Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "End time is : Monday 01 March 2021, 18:41:28\n",
-      "Duration is : 00:00:12 427ms\n",
-      "This notebook ends here\n"
-     ]
-    }
-   ],
-   "source": [
-    "pwk.end()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "---\n",
-    "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.9"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/BHPD/02-DNN-Regression-Premium.ipynb b/BHPD/02-DNN-Regression-Premium.ipynb
index 3d8fde915c6ddcaaa1e2abaa2e27b62ee0992645..06049de7b2ebe20c9e2ba3f20a4cf46aea3b5df7 100644
--- a/BHPD/02-DNN-Regression-Premium.ipynb
+++ b/BHPD/02-DNN-Regression-Premium.ipynb
@@ -47,7 +47,13 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## Step 1 - Import and init"
+    "## Step 1 - Import and init\n",
+    "\n",
+    "You can also adjust the verbosity by changing the value of TF_CPP_MIN_LOG_LEVEL :\n",
+    "- 0 = all messages are logged (default)\n",
+    "- 1 = INFO messages are not printed.\n",
+    "- 2 = INFO and WARNING messages are not printed.\n",
+    "- 3 = INFO , WARNING and ERROR messages are not printed."
    ]
   },
   {
@@ -56,6 +62,9 @@
    "metadata": {},
    "outputs": [],
    "source": [
+    "# import os\n",
+    "# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'\n",
+    "\n",
     "import tensorflow as tf\n",
     "from tensorflow import keras\n",
     "\n",
@@ -73,6 +82,41 @@
     "datasets_dir = pwk.init('BHPD2')"
    ]
   },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Verbosity during training : \n",
+    "- 0 = silent\n",
+    "- 1 = progress bar\n",
+    "- 2 = one line per epoch"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "fit_verbosity = 1"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Override parameters (batch mode) - Just forget this cell"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "pwk.override('fit_verbosity')"
+   ]
+  },
   {
    "cell_type": "markdown",
    "metadata": {},
@@ -266,7 +310,7 @@
     "                    y_train,\n",
     "                    epochs          = 100,\n",
     "                    batch_size      = 10,\n",
-    "                    verbose         = 1,\n",
+    "                    verbose         = fit_verbosity,\n",
     "                    validation_data = (x_test, y_test),\n",
     "                    callbacks       = [savemodel_callback])"
    ]
@@ -418,7 +462,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -432,7 +476,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.10"
+   "version": "3.9.7"
   }
  },
  "nbformat": 4,
diff --git a/BHPD/02-DNN-Regression-Premium==done==.ipynb b/BHPD/02-DNN-Regression-Premium==done==.ipynb
deleted file mode 100644
index 5b833d28f8008c94537b2a897add3b34bea20ec8..0000000000000000000000000000000000000000
--- a/BHPD/02-DNN-Regression-Premium==done==.ipynb
+++ /dev/null
@@ -1,3717 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
-    "\n",
-    "# <!-- TITLE --> [BHPD2] - Regression with a Dense Network (DNN) - Advanced code\n",
-    "  <!-- DESC -->  A more advanced implementation of the precedent example\n",
-    "  <!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
-    "\n",
-    "## Objectives :\n",
-    " - Predicts **housing prices** from a set of house features. \n",
-    " - Understanding the principle and the architecture of a regression with a dense neural network with backup and restore of the trained model. \n",
-    "\n",
-    "The **[Boston Housing Prices Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html)** consists of price of houses in various places in Boston.  \n",
-    "Alongside with price, the dataset also provide these information :\n",
-    "\n",
-    " - CRIM: This is the per capita crime rate by town\n",
-    " - ZN: This is the proportion of residential land zoned for lots larger than 25,000 sq.ft\n",
-    " - INDUS: This is the proportion of non-retail business acres per town\n",
-    " - CHAS: This is the Charles River dummy variable (this is equal to 1 if tract bounds river; 0 otherwise)\n",
-    " - NOX: This is the nitric oxides concentration (parts per 10 million)\n",
-    " - RM: This is the average number of rooms per dwelling\n",
-    " - AGE: This is the proportion of owner-occupied units built prior to 1940\n",
-    " - DIS: This is the weighted distances to five Boston employment centers\n",
-    " - RAD: This is the index of accessibility to radial highways\n",
-    " - TAX: This is the full-value property-tax rate per 10,000 dollars\n",
-    " - PTRATIO: This is the pupil-teacher ratio by town\n",
-    " - B: This is calculated as 1000(Bk — 0.63)^2, where Bk is the proportion of people of African American descent by town\n",
-    " - LSTAT: This is the percentage lower status of the population\n",
-    " - MEDV: This is the median value of owner-occupied homes in 1000 dollars\n",
-    "\n",
-    "## What we're going to do :\n",
-    "\n",
-    " - (Retrieve data)\n",
-    " - (Preparing the data)\n",
-    " - (Build a model)\n",
-    " - Train and save the model\n",
-    " - Restore saved model\n",
-    " - Evaluate the model\n",
-    " - Make some predictions\n"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 1 - Import and init"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:30.249826Z",
-     "iopub.status.busy": "2021-03-01T17:41:30.249359Z",
-     "iopub.status.idle": "2021-03-01T17:41:33.040499Z",
-     "shell.execute_reply": "2021-03-01T17:41:33.040997Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<style>\n",
-       "\n",
-       "div.warn {    \n",
-       "    background-color: #fcf2f2;\n",
-       "    border-color: #dFb5b4;\n",
-       "    border-left: 5px solid #dfb5b4;\n",
-       "    padding: 0.5em;\n",
-       "    font-weight: bold;\n",
-       "    font-size: 1.1em;;\n",
-       "    }\n",
-       "\n",
-       "\n",
-       "\n",
-       "div.nota {    \n",
-       "    background-color: #DAFFDE;\n",
-       "    border-left: 5px solid #92CC99;\n",
-       "    padding: 0.5em;\n",
-       "    }\n",
-       "\n",
-       "div.todo:before { content:url();\n",
-       "    float:left;\n",
-       "    margin-right:20px;\n",
-       "    margin-top:-20px;\n",
-       "    margin-bottom:20px;\n",
-       "}\n",
-       "div.todo{\n",
-       "    font-weight: bold;\n",
-       "    font-size: 1.1em;\n",
-       "    margin-top:40px;\n",
-       "}\n",
-       "div.todo ul{\n",
-       "    margin: 0.2em;\n",
-       "}\n",
-       "div.todo li{\n",
-       "    margin-left:60px;\n",
-       "    margin-top:0;\n",
-       "    margin-bottom:0;\n",
-       "}\n",
-       "\n",
-       "div .comment{\n",
-       "    font-size:0.8em;\n",
-       "    color:#696969;\n",
-       "}\n",
-       "\n",
-       "\n",
-       "\n",
-       "</style>\n",
-       "\n"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "<br>**FIDLE 2020 - Practical Work Module**"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Version              : 2.0.17\n",
-      "Notebook id          : BHPD2\n",
-      "Run time             : Monday 01 March 2021, 18:41:33\n",
-      "TensorFlow version   : 2.4.0\n",
-      "Keras version        : 2.4.0\n",
-      "Datasets dir         : /gpfswork/rech/mlh/uja62cb/datasets\n",
-      "Run dir              : ./run\n",
-      "Update keras cache   : False\n",
-      "Save figs            : True\n",
-      "Path figs            : ./run/figs\n"
-     ]
-    }
-   ],
-   "source": [
-    "import tensorflow as tf\n",
-    "from tensorflow import keras\n",
-    "\n",
-    "import numpy as np\n",
-    "import matplotlib.pyplot as plt\n",
-    "import pandas as pd\n",
-    "import os,sys\n",
-    "\n",
-    "from IPython.display import Markdown\n",
-    "from importlib import reload\n",
-    "\n",
-    "sys.path.append('..')\n",
-    "import fidle.pwk as pwk\n",
-    "\n",
-    "datasets_dir = pwk.init('BHPD2')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 2 - Retrieve data\n",
-    "\n",
-    "### 2.1 - Option 1  : From Keras\n",
-    "Boston housing is a famous historic dataset, so we can get it directly from [Keras datasets](https://www.tensorflow.org/api_docs/python/tf/keras/datasets)  "
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:33.044287Z",
-     "iopub.status.busy": "2021-03-01T17:41:33.043812Z",
-     "iopub.status.idle": "2021-03-01T17:41:33.045475Z",
-     "shell.execute_reply": "2021-03-01T17:41:33.045955Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "# (x_train, y_train), (x_test, y_test) = keras.datasets.boston_housing.load_data(test_split=0.2, seed=113)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 2.2 - Option 2 : From a csv file\n",
-    "More fun !"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:33.049820Z",
-     "iopub.status.busy": "2021-03-01T17:41:33.049350Z",
-     "iopub.status.idle": "2021-03-01T17:41:33.157394Z",
-     "shell.execute_reply": "2021-03-01T17:41:33.157884Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<style  type=\"text/css\" >\n",
-       "</style><table id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44f\" ><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>        <th class=\"col_heading level0 col13\" >medv</th>    </tr></thead><tbody>\n",
-       "                <tr>\n",
-       "                        <th id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44flevel0_row0\" class=\"row_heading level0 row0\" >0</th>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow0_col0\" class=\"data row0 col0\" >0.01</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow0_col1\" class=\"data row0 col1\" >18.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow0_col2\" class=\"data row0 col2\" >2.31</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow0_col3\" class=\"data row0 col3\" >0.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow0_col4\" class=\"data row0 col4\" >0.54</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow0_col5\" class=\"data row0 col5\" >6.58</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow0_col6\" class=\"data row0 col6\" >65.20</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow0_col7\" class=\"data row0 col7\" >4.09</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow0_col8\" class=\"data row0 col8\" >1.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow0_col9\" class=\"data row0 col9\" >296.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow0_col10\" class=\"data row0 col10\" >15.30</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow0_col11\" class=\"data row0 col11\" >396.90</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow0_col12\" class=\"data row0 col12\" >4.98</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow0_col13\" class=\"data row0 col13\" >24.00</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44flevel0_row1\" class=\"row_heading level0 row1\" >1</th>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow1_col0\" class=\"data row1 col0\" >0.03</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow1_col1\" class=\"data row1 col1\" >0.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow1_col2\" class=\"data row1 col2\" >7.07</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow1_col3\" class=\"data row1 col3\" >0.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow1_col4\" class=\"data row1 col4\" >0.47</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow1_col5\" class=\"data row1 col5\" >6.42</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow1_col6\" class=\"data row1 col6\" >78.90</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow1_col7\" class=\"data row1 col7\" >4.97</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow1_col8\" class=\"data row1 col8\" >2.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow1_col9\" class=\"data row1 col9\" >242.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow1_col10\" class=\"data row1 col10\" >17.80</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow1_col11\" class=\"data row1 col11\" >396.90</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow1_col12\" class=\"data row1 col12\" >9.14</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow1_col13\" class=\"data row1 col13\" >21.60</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44flevel0_row2\" class=\"row_heading level0 row2\" >2</th>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow2_col0\" class=\"data row2 col0\" >0.03</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow2_col1\" class=\"data row2 col1\" >0.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow2_col2\" class=\"data row2 col2\" >7.07</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow2_col3\" class=\"data row2 col3\" >0.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow2_col4\" class=\"data row2 col4\" >0.47</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow2_col5\" class=\"data row2 col5\" >7.18</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow2_col6\" class=\"data row2 col6\" >61.10</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow2_col7\" class=\"data row2 col7\" >4.97</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow2_col8\" class=\"data row2 col8\" >2.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow2_col9\" class=\"data row2 col9\" >242.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow2_col10\" class=\"data row2 col10\" >17.80</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow2_col11\" class=\"data row2 col11\" >392.83</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow2_col12\" class=\"data row2 col12\" >4.03</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow2_col13\" class=\"data row2 col13\" >34.70</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44flevel0_row3\" class=\"row_heading level0 row3\" >3</th>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow3_col0\" class=\"data row3 col0\" >0.03</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow3_col1\" class=\"data row3 col1\" >0.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow3_col2\" class=\"data row3 col2\" >2.18</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow3_col3\" class=\"data row3 col3\" >0.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow3_col4\" class=\"data row3 col4\" >0.46</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow3_col5\" class=\"data row3 col5\" >7.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow3_col6\" class=\"data row3 col6\" >45.80</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow3_col7\" class=\"data row3 col7\" >6.06</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow3_col8\" class=\"data row3 col8\" >3.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow3_col9\" class=\"data row3 col9\" >222.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow3_col10\" class=\"data row3 col10\" >18.70</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow3_col11\" class=\"data row3 col11\" >394.63</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow3_col12\" class=\"data row3 col12\" >2.94</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow3_col13\" class=\"data row3 col13\" >33.40</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44flevel0_row4\" class=\"row_heading level0 row4\" >4</th>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow4_col0\" class=\"data row4 col0\" >0.07</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow4_col1\" class=\"data row4 col1\" >0.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow4_col2\" class=\"data row4 col2\" >2.18</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow4_col3\" class=\"data row4 col3\" >0.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow4_col4\" class=\"data row4 col4\" >0.46</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow4_col5\" class=\"data row4 col5\" >7.15</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow4_col6\" class=\"data row4 col6\" >54.20</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow4_col7\" class=\"data row4 col7\" >6.06</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow4_col8\" class=\"data row4 col8\" >3.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow4_col9\" class=\"data row4 col9\" >222.00</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow4_col10\" class=\"data row4 col10\" >18.70</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow4_col11\" class=\"data row4 col11\" >396.90</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow4_col12\" class=\"data row4 col12\" >5.33</td>\n",
-       "                        <td id=\"T_5ce797d2_7ab5_11eb_9ae9_0cc47af5a44frow4_col13\" class=\"data row4 col13\" >36.20</td>\n",
-       "            </tr>\n",
-       "    </tbody></table>"
-      ],
-      "text/plain": [
-       "<pandas.io.formats.style.Styler at 0x14b6600fed50>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Missing Data :  0   Shape is :  (506, 14)\n"
-     ]
-    }
-   ],
-   "source": [
-    "data = pd.read_csv(f'{datasets_dir}/BHPD/origine/BostonHousing.csv', header=0)\n",
-    "\n",
-    "display(data.head(5).style.format(\"{0:.2f}\"))\n",
-    "print('Missing Data : ',data.isna().sum().sum(), '  Shape is : ', data.shape)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 3 - Preparing the data\n",
-    "### 3.1 - Split data\n",
-    "We will use 80% of the data for training and 20% for validation.  \n",
-    "x will be input data and y the expected output"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:33.166560Z",
-     "iopub.status.busy": "2021-03-01T17:41:33.166086Z",
-     "iopub.status.idle": "2021-03-01T17:41:33.169678Z",
-     "shell.execute_reply": "2021-03-01T17:41:33.169180Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Original data shape was :  (506, 14)\n",
-      "x_train :  (354, 13) y_train :  (354,)\n",
-      "x_test  :  (152, 13) y_test  :  (152,)\n"
-     ]
-    }
-   ],
-   "source": [
-    "# ---- Split => train, test\n",
-    "#\n",
-    "data_train = data.sample(frac=0.7, axis=0)\n",
-    "data_test  = data.drop(data_train.index)\n",
-    "\n",
-    "# ---- Split => x,y (medv is price)\n",
-    "#\n",
-    "x_train = data_train.drop('medv',  axis=1)\n",
-    "y_train = data_train['medv']\n",
-    "x_test  = data_test.drop('medv',   axis=1)\n",
-    "y_test  = data_test['medv']\n",
-    "\n",
-    "print('Original data shape was : ',data.shape)\n",
-    "print('x_train : ',x_train.shape, 'y_train : ',y_train.shape)\n",
-    "print('x_test  : ',x_test.shape,  'y_test  : ',y_test.shape)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 3.2 - Data normalization\n",
-    "**Note :** \n",
-    " - All input data must be normalized, train and test.  \n",
-    " - To do this we will subtract the mean and divide by the standard deviation.  \n",
-    " - But test data should not be used in any way, even for normalization.  \n",
-    " - The mean and the standard deviation will therefore only be calculated with the train data."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:33.181342Z",
-     "iopub.status.busy": "2021-03-01T17:41:33.177096Z",
-     "iopub.status.idle": "2021-03-01T17:41:33.258580Z",
-     "shell.execute_reply": "2021-03-01T17:41:33.258081Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<style  type=\"text/css\" >\n",
-       "</style><table id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44f\" ><caption>Before normalization :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>    </tr></thead><tbody>\n",
-       "                <tr>\n",
-       "                        <th id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44flevel0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow0_col0\" class=\"data row0 col0\" >354.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow0_col1\" class=\"data row0 col1\" >354.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow0_col2\" class=\"data row0 col2\" >354.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow0_col3\" class=\"data row0 col3\" >354.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow0_col4\" class=\"data row0 col4\" >354.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow0_col5\" class=\"data row0 col5\" >354.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow0_col6\" class=\"data row0 col6\" >354.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow0_col7\" class=\"data row0 col7\" >354.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow0_col8\" class=\"data row0 col8\" >354.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow0_col9\" class=\"data row0 col9\" >354.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow0_col10\" class=\"data row0 col10\" >354.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow0_col11\" class=\"data row0 col11\" >354.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow0_col12\" class=\"data row0 col12\" >354.00</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44flevel0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow1_col0\" class=\"data row1 col0\" >3.68</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow1_col1\" class=\"data row1 col1\" >11.92</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow1_col2\" class=\"data row1 col2\" >10.96</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow1_col3\" class=\"data row1 col3\" >0.07</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow1_col4\" class=\"data row1 col4\" >0.55</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow1_col5\" class=\"data row1 col5\" >6.29</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow1_col6\" class=\"data row1 col6\" >69.46</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow1_col7\" class=\"data row1 col7\" >3.79</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow1_col8\" class=\"data row1 col8\" >9.65</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow1_col9\" class=\"data row1 col9\" >407.92</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow1_col10\" class=\"data row1 col10\" >18.56</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow1_col11\" class=\"data row1 col11\" >355.93</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow1_col12\" class=\"data row1 col12\" >12.73</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44flevel0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow2_col0\" class=\"data row2 col0\" >9.17</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow2_col1\" class=\"data row2 col1\" >24.39</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow2_col2\" class=\"data row2 col2\" >6.87</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow2_col3\" class=\"data row2 col3\" >0.26</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow2_col4\" class=\"data row2 col4\" >0.12</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow2_col5\" class=\"data row2 col5\" >0.72</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow2_col6\" class=\"data row2 col6\" >27.28</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow2_col7\" class=\"data row2 col7\" >2.13</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow2_col8\" class=\"data row2 col8\" >8.82</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow2_col9\" class=\"data row2 col9\" >171.08</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow2_col10\" class=\"data row2 col10\" >2.14</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow2_col11\" class=\"data row2 col11\" >94.36</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow2_col12\" class=\"data row2 col12\" >7.27</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44flevel0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow3_col0\" class=\"data row3 col0\" >0.01</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow3_col1\" class=\"data row3 col1\" >0.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow3_col2\" class=\"data row3 col2\" >0.46</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow3_col3\" class=\"data row3 col3\" >0.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow3_col4\" class=\"data row3 col4\" >0.39</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow3_col5\" class=\"data row3 col5\" >3.56</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow3_col6\" class=\"data row3 col6\" >2.90</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow3_col7\" class=\"data row3 col7\" >1.13</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow3_col8\" class=\"data row3 col8\" >1.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow3_col9\" class=\"data row3 col9\" >187.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow3_col10\" class=\"data row3 col10\" >12.60</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow3_col11\" class=\"data row3 col11\" >0.32</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow3_col12\" class=\"data row3 col12\" >1.73</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44flevel0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow4_col0\" class=\"data row4 col0\" >0.08</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow4_col1\" class=\"data row4 col1\" >0.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow4_col2\" class=\"data row4 col2\" >5.13</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow4_col3\" class=\"data row4 col3\" >0.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow4_col4\" class=\"data row4 col4\" >0.45</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow4_col5\" class=\"data row4 col5\" >5.88</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow4_col6\" class=\"data row4 col6\" >47.25</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow4_col7\" class=\"data row4 col7\" >2.09</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow4_col8\" class=\"data row4 col8\" >4.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow4_col9\" class=\"data row4 col9\" >277.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow4_col10\" class=\"data row4 col10\" >17.40</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow4_col11\" class=\"data row4 col11\" >376.12</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow4_col12\" class=\"data row4 col12\" >6.92</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44flevel0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow5_col0\" class=\"data row5 col0\" >0.25</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow5_col1\" class=\"data row5 col1\" >0.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow5_col2\" class=\"data row5 col2\" >9.12</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow5_col3\" class=\"data row5 col3\" >0.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow5_col4\" class=\"data row5 col4\" >0.54</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow5_col5\" class=\"data row5 col5\" >6.21</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow5_col6\" class=\"data row5 col6\" >77.90</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow5_col7\" class=\"data row5 col7\" >3.20</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow5_col8\" class=\"data row5 col8\" >5.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow5_col9\" class=\"data row5 col9\" >330.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow5_col10\" class=\"data row5 col10\" >19.10</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow5_col11\" class=\"data row5 col11\" >391.38</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow5_col12\" class=\"data row5 col12\" >11.43</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44flevel0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow6_col0\" class=\"data row6 col0\" >3.76</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow6_col1\" class=\"data row6 col1\" >16.25</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow6_col2\" class=\"data row6 col2\" >18.10</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow6_col3\" class=\"data row6 col3\" >0.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow6_col4\" class=\"data row6 col4\" >0.63</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow6_col5\" class=\"data row6 col5\" >6.66</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow6_col6\" class=\"data row6 col6\" >93.47</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow6_col7\" class=\"data row6 col7\" >5.08</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow6_col8\" class=\"data row6 col8\" >24.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow6_col9\" class=\"data row6 col9\" >666.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow6_col10\" class=\"data row6 col10\" >20.20</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow6_col11\" class=\"data row6 col11\" >396.23</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow6_col12\" class=\"data row6 col12\" >17.11</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44flevel0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow7_col0\" class=\"data row7 col0\" >88.98</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow7_col1\" class=\"data row7 col1\" >100.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow7_col2\" class=\"data row7 col2\" >27.74</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow7_col3\" class=\"data row7 col3\" >1.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow7_col4\" class=\"data row7 col4\" >0.87</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow7_col5\" class=\"data row7 col5\" >8.78</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow7_col6\" class=\"data row7 col6\" >100.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow7_col7\" class=\"data row7 col7\" >12.13</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow7_col8\" class=\"data row7 col8\" >24.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow7_col9\" class=\"data row7 col9\" >711.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow7_col10\" class=\"data row7 col10\" >22.00</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow7_col11\" class=\"data row7 col11\" >396.90</td>\n",
-       "                        <td id=\"T_5cf2e082_7ab5_11eb_932c_0cc47af5a44frow7_col12\" class=\"data row7 col12\" >37.97</td>\n",
-       "            </tr>\n",
-       "    </tbody></table>"
-      ],
-      "text/plain": [
-       "<pandas.io.formats.style.Styler at 0x14b5f2312490>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<style  type=\"text/css\" >\n",
-       "</style><table id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44f\" ><caption>After normalization :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>    </tr></thead><tbody>\n",
-       "                <tr>\n",
-       "                        <th id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44flevel0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow0_col0\" class=\"data row0 col0\" >354.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow0_col1\" class=\"data row0 col1\" >354.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow0_col2\" class=\"data row0 col2\" >354.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow0_col3\" class=\"data row0 col3\" >354.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow0_col4\" class=\"data row0 col4\" >354.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow0_col5\" class=\"data row0 col5\" >354.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow0_col6\" class=\"data row0 col6\" >354.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow0_col7\" class=\"data row0 col7\" >354.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow0_col8\" class=\"data row0 col8\" >354.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow0_col9\" class=\"data row0 col9\" >354.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow0_col10\" class=\"data row0 col10\" >354.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow0_col11\" class=\"data row0 col11\" >354.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow0_col12\" class=\"data row0 col12\" >354.00</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44flevel0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow1_col0\" class=\"data row1 col0\" >-0.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow1_col1\" class=\"data row1 col1\" >0.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow1_col2\" class=\"data row1 col2\" >-0.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow1_col3\" class=\"data row1 col3\" >0.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow1_col4\" class=\"data row1 col4\" >-0.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow1_col5\" class=\"data row1 col5\" >0.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow1_col6\" class=\"data row1 col6\" >0.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow1_col7\" class=\"data row1 col7\" >-0.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow1_col8\" class=\"data row1 col8\" >-0.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow1_col9\" class=\"data row1 col9\" >0.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow1_col10\" class=\"data row1 col10\" >0.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow1_col11\" class=\"data row1 col11\" >-0.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow1_col12\" class=\"data row1 col12\" >-0.00</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44flevel0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow2_col0\" class=\"data row2 col0\" >1.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow2_col1\" class=\"data row2 col1\" >1.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow2_col2\" class=\"data row2 col2\" >1.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow2_col3\" class=\"data row2 col3\" >1.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow2_col4\" class=\"data row2 col4\" >1.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow2_col5\" class=\"data row2 col5\" >1.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow2_col6\" class=\"data row2 col6\" >1.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow2_col7\" class=\"data row2 col7\" >1.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow2_col8\" class=\"data row2 col8\" >1.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow2_col9\" class=\"data row2 col9\" >1.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow2_col10\" class=\"data row2 col10\" >1.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow2_col11\" class=\"data row2 col11\" >1.00</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow2_col12\" class=\"data row2 col12\" >1.00</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44flevel0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow3_col0\" class=\"data row3 col0\" >-0.40</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow3_col1\" class=\"data row3 col1\" >-0.49</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow3_col2\" class=\"data row3 col2\" >-1.53</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow3_col3\" class=\"data row3 col3\" >-0.28</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow3_col4\" class=\"data row3 col4\" >-1.46</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow3_col5\" class=\"data row3 col5\" >-3.80</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow3_col6\" class=\"data row3 col6\" >-2.44</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow3_col7\" class=\"data row3 col7\" >-1.25</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow3_col8\" class=\"data row3 col8\" >-0.98</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow3_col9\" class=\"data row3 col9\" >-1.29</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow3_col10\" class=\"data row3 col10\" >-2.79</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow3_col11\" class=\"data row3 col11\" >-3.77</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow3_col12\" class=\"data row3 col12\" >-1.51</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44flevel0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow4_col0\" class=\"data row4 col0\" >-0.39</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow4_col1\" class=\"data row4 col1\" >-0.49</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow4_col2\" class=\"data row4 col2\" >-0.85</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow4_col3\" class=\"data row4 col3\" >-0.28</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow4_col4\" class=\"data row4 col4\" >-0.88</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow4_col5\" class=\"data row4 col5\" >-0.57</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow4_col6\" class=\"data row4 col6\" >-0.81</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow4_col7\" class=\"data row4 col7\" >-0.80</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow4_col8\" class=\"data row4 col8\" >-0.64</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow4_col9\" class=\"data row4 col9\" >-0.77</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow4_col10\" class=\"data row4 col10\" >-0.54</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow4_col11\" class=\"data row4 col11\" >0.21</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow4_col12\" class=\"data row4 col12\" >-0.80</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44flevel0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow5_col0\" class=\"data row5 col0\" >-0.37</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow5_col1\" class=\"data row5 col1\" >-0.49</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow5_col2\" class=\"data row5 col2\" >-0.27</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow5_col3\" class=\"data row5 col3\" >-0.28</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow5_col4\" class=\"data row5 col4\" >-0.15</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow5_col5\" class=\"data row5 col5\" >-0.11</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow5_col6\" class=\"data row5 col6\" >0.31</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow5_col7\" class=\"data row5 col7\" >-0.28</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow5_col8\" class=\"data row5 col8\" >-0.53</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow5_col9\" class=\"data row5 col9\" >-0.46</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow5_col10\" class=\"data row5 col10\" >0.25</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow5_col11\" class=\"data row5 col11\" >0.38</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow5_col12\" class=\"data row5 col12\" >-0.18</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44flevel0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow6_col0\" class=\"data row6 col0\" >0.01</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow6_col1\" class=\"data row6 col1\" >0.18</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow6_col2\" class=\"data row6 col2\" >1.04</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow6_col3\" class=\"data row6 col3\" >-0.28</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow6_col4\" class=\"data row6 col4\" >0.65</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow6_col5\" class=\"data row6 col5\" >0.51</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow6_col6\" class=\"data row6 col6\" >0.88</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow6_col7\" class=\"data row6 col7\" >0.61</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow6_col8\" class=\"data row6 col8\" >1.63</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow6_col9\" class=\"data row6 col9\" >1.51</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow6_col10\" class=\"data row6 col10\" >0.76</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow6_col11\" class=\"data row6 col11\" >0.43</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow6_col12\" class=\"data row6 col12\" >0.60</td>\n",
-       "            </tr>\n",
-       "            <tr>\n",
-       "                        <th id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44flevel0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow7_col0\" class=\"data row7 col0\" >9.31</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow7_col1\" class=\"data row7 col1\" >3.61</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow7_col2\" class=\"data row7 col2\" >2.44</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow7_col3\" class=\"data row7 col3\" >3.55</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow7_col4\" class=\"data row7 col4\" >2.72</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow7_col5\" class=\"data row7 col5\" >3.46</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow7_col6\" class=\"data row7 col6\" >1.12</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow7_col7\" class=\"data row7 col7\" >3.91</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow7_col8\" class=\"data row7 col8\" >1.63</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow7_col9\" class=\"data row7 col9\" >1.77</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow7_col10\" class=\"data row7 col10\" >1.61</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow7_col11\" class=\"data row7 col11\" >0.43</td>\n",
-       "                        <td id=\"T_5cf9f2a8_7ab5_11eb_bf98_0cc47af5a44frow7_col12\" class=\"data row7 col12\" >3.47</td>\n",
-       "            </tr>\n",
-       "    </tbody></table>"
-      ],
-      "text/plain": [
-       "<pandas.io.formats.style.Styler at 0x14b6600fec50>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"Before normalization :\"))\n",
-    "\n",
-    "mean = x_train.mean()\n",
-    "std  = x_train.std()\n",
-    "x_train = (x_train - mean) / std\n",
-    "x_test  = (x_test  - mean) / std\n",
-    "\n",
-    "display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"After normalization :\"))\n",
-    "\n",
-    "x_train, y_train = np.array(x_train), np.array(y_train)\n",
-    "x_test,  y_test  = np.array(x_test),  np.array(y_test)\n"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 4 - Build a model\n",
-    "More informations about : \n",
-    " - [Optimizer](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers)\n",
-    " - [Activation](https://www.tensorflow.org/api_docs/python/tf/keras/activations)\n",
-    " - [Loss](https://www.tensorflow.org/api_docs/python/tf/keras/losses)\n",
-    " - [Metrics](https://www.tensorflow.org/api_docs/python/tf/keras/metrics)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:33.263525Z",
-     "iopub.status.busy": "2021-03-01T17:41:33.263058Z",
-     "iopub.status.idle": "2021-03-01T17:41:33.265207Z",
-     "shell.execute_reply": "2021-03-01T17:41:33.264717Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "  def get_model_v1(shape):\n",
-    "    \n",
-    "    model = keras.models.Sequential()\n",
-    "    model.add(keras.layers.Input(shape, name=\"InputLayer\"))\n",
-    "    model.add(keras.layers.Dense(64, activation='relu', name='Dense_n1'))\n",
-    "    model.add(keras.layers.Dense(64, activation='relu', name='Dense_n2'))\n",
-    "    model.add(keras.layers.Dense(1, name='Output'))\n",
-    "    \n",
-    "    model.compile(optimizer = 'rmsprop',\n",
-    "                  loss      = 'mse',\n",
-    "                  metrics   = ['mae', 'mse'] )\n",
-    "    return model"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## 5 - Train the model\n",
-    "### 5.1 - Get it"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:33.268396Z",
-     "iopub.status.busy": "2021-03-01T17:41:33.267931Z",
-     "iopub.status.idle": "2021-03-01T17:41:34.413665Z",
-     "shell.execute_reply": "2021-03-01T17:41:34.414169Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Model: \"sequential\"\n",
-      "_________________________________________________________________\n",
-      "Layer (type)                 Output Shape              Param #   \n",
-      "=================================================================\n",
-      "Dense_n1 (Dense)             (None, 64)                896       \n",
-      "_________________________________________________________________\n",
-      "Dense_n2 (Dense)             (None, 64)                4160      \n",
-      "_________________________________________________________________\n",
-      "Output (Dense)               (None, 1)                 65        \n",
-      "=================================================================\n",
-      "Total params: 5,121\n",
-      "Trainable params: 5,121\n",
-      "Non-trainable params: 0\n",
-      "_________________________________________________________________\n"
-     ]
-    }
-   ],
-   "source": [
-    "model=get_model_v1( (13,) )\n",
-    "\n",
-    "model.summary()\n",
-    "# img=keras.utils.plot_model( model, to_file='./run/model.png', show_shapes=True, show_layer_names=True, dpi=96)\n",
-    "# display(img)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 5.2 - Add callback"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:34.417831Z",
-     "iopub.status.busy": "2021-03-01T17:41:34.417364Z",
-     "iopub.status.idle": "2021-03-01T17:41:34.421068Z",
-     "shell.execute_reply": "2021-03-01T17:41:34.421538Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "os.makedirs('./run/models',   mode=0o750, exist_ok=True)\n",
-    "save_dir = \"./run/models/best_model.h5\"\n",
-    "\n",
-    "savemodel_callback = tf.keras.callbacks.ModelCheckpoint(filepath=save_dir, verbose=0, save_best_only=True)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 5.3 - Train it"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:34.425094Z",
-     "iopub.status.busy": "2021-03-01T17:41:34.424621Z",
-     "iopub.status.idle": "2021-03-01T17:41:51.019050Z",
-     "shell.execute_reply": "2021-03-01T17:41:51.019548Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 1/100\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 1/36 [..............................] - ETA: 35s - loss: 820.6553 - mae: 26.5753 - mse: 820.6553"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "29/36 [=======================>......] - ETA: 0s - loss: 536.9244 - mae: 21.1701 - mse: 536.9244 "
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 2s 25ms/step - loss: 527.1821 - mae: 20.9309 - mse: 527.1821 - val_loss: 366.4511 - val_mae: 16.9141 - val_mse: 366.4511\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 2/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 315.7886 - mae: 15.7783 - mse: 315.7886"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "29/36 [=======================>......] - ETA: 0s - loss: 323.9455 - mae: 15.8696 - mse: 323.9455"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 309.9913 - mae: 15.4079 - mse: 309.9913 - val_loss: 148.6833 - val_mae: 9.7529 - val_mse: 148.6833\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 3/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 59.3099 - mae: 6.3410 - mse: 59.3099"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 103.5178 - mae: 8.1731 - mse: 103.5178"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 102.1436 - mae: 8.0940 - mse: 102.1436 - val_loss: 62.3322 - val_mae: 5.7757 - val_mse: 62.3322\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 4/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 39.9416 - mae: 5.4185 - mse: 39.9416"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 49.6750 - mae: 5.0914 - mse: 49.6750"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 49.3320 - mae: 5.0692 - mse: 49.3320 - val_loss: 38.5014 - val_mae: 4.6232 - val_mse: 38.5014\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 5/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 17.5183 - mae: 3.3742 - mse: 17.5183"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 35.7436 - mae: 4.2565 - mse: 35.7436"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 35.3356 - mae: 4.2235 - mse: 35.3356 - val_loss: 28.1337 - val_mae: 3.8852 - val_mse: 28.1337\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 6/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 22.1115 - mae: 3.4379 - mse: 22.1115"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 21.7539 - mae: 3.2625 - mse: 21.7539"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 21.9365 - mae: 3.2677 - mse: 21.9365 - val_loss: 21.7231 - val_mae: 3.5152 - val_mse: 21.7231\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 7/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 4.7899 - mae: 1.9316 - mse: 4.7899"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 23.6831 - mae: 3.1045 - mse: 23.6831"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 23.4475 - mae: 3.1046 - mse: 23.4475 - val_loss: 20.5046 - val_mae: 3.1931 - val_mse: 20.5046\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 8/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 5.8030 - mae: 1.7633 - mse: 5.8030"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 15.3522 - mae: 2.6887 - mse: 15.3522"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 15.6525 - mae: 2.7052 - mse: 15.6525 - val_loss: 17.8349 - val_mae: 3.1130 - val_mse: 17.8349\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 9/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 10.4013 - mae: 2.6733 - mse: 10.4013"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 15.8170 - mae: 2.6635 - mse: 15.8170"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 15.9569 - mae: 2.6720 - mse: 15.9569 - val_loss: 16.5775 - val_mae: 2.9695 - val_mse: 16.5775\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 10/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 91.7153 - mae: 5.3759 - mse: 91.7153"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 23.8195 - mae: 2.9376 - mse: 23.8195"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 23.2261 - mae: 2.9186 - mse: 23.2261 - val_loss: 16.0855 - val_mae: 3.1254 - val_mse: 16.0855\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 11/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 8.8565 - mae: 2.2688 - mse: 8.8565"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 17.4861 - mae: 2.5884 - mse: 17.4861"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 17.3960 - mae: 2.5932 - mse: 17.3960 - val_loss: 14.6855 - val_mae: 2.7753 - val_mse: 14.6855\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 12/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 9.9510 - mae: 2.6078 - mse: 9.9510"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 13.1098 - mae: 2.4412 - mse: 13.1098"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 13.2974 - mae: 2.4527 - mse: 13.2974 - val_loss: 14.2963 - val_mae: 2.7852 - val_mse: 14.2963\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 13/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 4.7602 - mae: 1.8258 - mse: 4.7602"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 16.5663 - mae: 2.4904 - mse: 16.5663"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 16.4325 - mae: 2.4938 - mse: 16.4325 - val_loss: 13.7564 - val_mae: 2.8934 - val_mse: 13.7564\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 14/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 13.3699 - mae: 3.1891 - mse: 13.3699"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 12.3543 - mae: 2.5245 - mse: 12.3543"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 12.5363 - mae: 2.5235 - mse: 12.5363 - val_loss: 12.9430 - val_mae: 2.6516 - val_mse: 12.9430\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 15/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 68.4972 - mae: 4.1083 - mse: 68.4972"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 20.2423 - mae: 2.7711 - mse: 20.2423"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 19.7471 - mae: 2.7515 - mse: 19.7471 - val_loss: 13.4048 - val_mae: 2.6880 - val_mse: 13.4048\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 16/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 4.3792 - mae: 1.8021 - mse: 4.3792"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 16.5802 - mae: 2.4869 - mse: 16.5802"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 16.3510 - mae: 2.4826 - mse: 16.3510 - val_loss: 12.8310 - val_mae: 2.6340 - val_mse: 12.8310\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 17/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 16.0477 - mae: 3.5006 - mse: 16.0477"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 10.6636 - mae: 2.2813 - mse: 10.6636"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 10.8826 - mae: 2.2884 - mse: 10.8826 - val_loss: 12.0806 - val_mae: 2.6247 - val_mse: 12.0806\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 18/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 8.6191 - mae: 2.3694 - mse: 8.6191"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 11.6103 - mae: 2.2973 - mse: 11.6103"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 11.7191 - mae: 2.3040 - mse: 11.7191 - val_loss: 11.9184 - val_mae: 2.6959 - val_mse: 11.9184\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 19/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 14.6948 - mae: 3.1449 - mse: 14.6948"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 11.3195 - mae: 2.4608 - mse: 11.3195"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 11.4301 - mae: 2.4512 - mse: 11.4301 - val_loss: 11.3863 - val_mae: 2.5772 - val_mse: 11.3863\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 20/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 9.3119 - mae: 2.2334 - mse: 9.3119"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 9.4933 - mae: 2.2492 - mse: 9.4933"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 9.7270 - mae: 2.2546 - mse: 9.7270 - val_loss: 11.9726 - val_mae: 2.5209 - val_mse: 11.9726\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 21/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 10.2041 - mae: 2.4026 - mse: 10.2041"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 11.7656 - mae: 2.2168 - mse: 11.7656"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 11.7891 - mae: 2.2266 - mse: 11.7891 - val_loss: 11.6104 - val_mae: 2.5028 - val_mse: 11.6104\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 22/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 4.3200 - mae: 1.6309 - mse: 4.3200"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 10.0424 - mae: 2.1249 - mse: 10.0424"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 10.1912 - mae: 2.1403 - mse: 10.1912 - val_loss: 11.0094 - val_mae: 2.5126 - val_mse: 11.0094\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 23/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 11.7311 - mae: 2.7516 - mse: 11.7311"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 14.9133 - mae: 2.4718 - mse: 14.9133"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 14.6403 - mae: 2.4542 - mse: 14.6403 - val_loss: 10.7057 - val_mae: 2.4868 - val_mse: 10.7057\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 24/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 21.5207 - mae: 3.0129 - mse: 21.5207"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 11.4855 - mae: 2.2650 - mse: 11.4855"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 11.4889 - mae: 2.2633 - mse: 11.4889 - val_loss: 12.7086 - val_mae: 2.6150 - val_mse: 12.7086\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 25/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 4.3034 - mae: 1.7330 - mse: 4.3034"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 9.3907 - mae: 2.1392 - mse: 9.3907"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 9.5448 - mae: 2.1476 - mse: 9.5448 - val_loss: 10.6592 - val_mae: 2.4392 - val_mse: 10.6592\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 26/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 3.7952 - mae: 1.5505 - mse: 3.7952"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 8.5280 - mae: 2.1006 - mse: 8.5280"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 8.7323 - mae: 2.1100 - mse: 8.7323 - val_loss: 10.3444 - val_mae: 2.4491 - val_mse: 10.3444\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 27/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 2.1216 - mae: 1.2292 - mse: 2.1216"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 9.9900 - mae: 2.1214 - mse: 9.9900"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 10.0589 - mae: 2.1262 - mse: 10.0589 - val_loss: 10.9042 - val_mae: 2.4283 - val_mse: 10.9042\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 28/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 3.3230 - mae: 1.3775 - mse: 3.3230"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 11.4200 - mae: 2.3133 - mse: 11.4200"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 11.3581 - mae: 2.3027 - mse: 11.3581 - val_loss: 10.4503 - val_mae: 2.4054 - val_mse: 10.4503\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 29/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 33.9899 - mae: 3.5797 - mse: 33.9899"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 14.3554 - mae: 2.3502 - mse: 14.3554"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 14.0357 - mae: 2.3363 - mse: 14.0357 - val_loss: 10.9305 - val_mae: 2.5384 - val_mse: 10.9305\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 30/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 6.6930 - mae: 2.0682 - mse: 6.6930"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 9.3449 - mae: 2.1414 - mse: 9.3449"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 9.4282 - mae: 2.1445 - mse: 9.4282 - val_loss: 10.2903 - val_mae: 2.4415 - val_mse: 10.2903\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 31/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 11.8937 - mae: 2.3838 - mse: 11.8937"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 10.5827 - mae: 2.2641 - mse: 10.5827"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 10.5401 - mae: 2.2549 - mse: 10.5401 - val_loss: 10.1078 - val_mae: 2.4803 - val_mse: 10.1078\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 32/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 6.2220 - mae: 1.6252 - mse: 6.2220"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 7.1669 - mae: 1.9461 - mse: 7.1669"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 7.3891 - mae: 1.9584 - mse: 7.3891 - val_loss: 10.8149 - val_mae: 2.4682 - val_mse: 10.8149\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 33/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 7.1659 - mae: 1.8492 - mse: 7.1659"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 10.5973 - mae: 2.1637 - mse: 10.5973"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 10.5331 - mae: 2.1599 - mse: 10.5331 - val_loss: 10.4850 - val_mae: 2.3976 - val_mse: 10.4850\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 34/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 4.9443 - mae: 1.6369 - mse: 4.9443"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 9.7709 - mae: 2.0532 - mse: 9.7709"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 9.7843 - mae: 2.0587 - mse: 9.7843 - val_loss: 10.2603 - val_mae: 2.3652 - val_mse: 10.2603\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 35/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 3.8693 - mae: 1.7068 - mse: 3.8693"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 7.9969 - mae: 1.9389 - mse: 7.9969"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 8.1164 - mae: 1.9520 - mse: 8.1164 - val_loss: 10.2702 - val_mae: 2.3564 - val_mse: 10.2702\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 36/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 5.1246 - mae: 1.7626 - mse: 5.1246"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 10.1620 - mae: 2.1557 - mse: 10.1620"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 10.1048 - mae: 2.1496 - mse: 10.1048 - val_loss: 10.9475 - val_mae: 2.4407 - val_mse: 10.9475\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 37/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 26.8062 - mae: 3.5022 - mse: 26.8062"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 9.9746 - mae: 2.1454 - mse: 9.9746  "
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 9.9147 - mae: 2.1392 - mse: 9.9147 - val_loss: 9.3594 - val_mae: 2.3350 - val_mse: 9.3594\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 38/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 31.4384 - mae: 3.7348 - mse: 31.4384"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 11.1125 - mae: 2.2808 - mse: 11.1125"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 10.9497 - mae: 2.2646 - mse: 10.9497 - val_loss: 9.8773 - val_mae: 2.3356 - val_mse: 9.8773\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 39/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 3.0597 - mae: 1.4835 - mse: 3.0597"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 7.6970 - mae: 1.8359 - mse: 7.6970"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 7.8042 - mae: 1.8512 - mse: 7.8042 - val_loss: 9.5791 - val_mae: 2.3411 - val_mse: 9.5791\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 40/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 10.4556 - mae: 2.2817 - mse: 10.4556"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 8.9211 - mae: 2.0942 - mse: 8.9211  "
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 8.9099 - mae: 2.0918 - mse: 8.9099 - val_loss: 9.5765 - val_mae: 2.3260 - val_mse: 9.5765\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 41/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 5.0242 - mae: 1.6484 - mse: 5.0242"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 6.9539 - mae: 1.9069 - mse: 6.9539"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 7.0982 - mae: 1.9182 - mse: 7.0982 - val_loss: 10.1250 - val_mae: 2.4027 - val_mse: 10.1250\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 42/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 5.9777 - mae: 1.6900 - mse: 5.9777"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 9.1127 - mae: 2.0323 - mse: 9.1127"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 9.0609 - mae: 2.0304 - mse: 9.0609 - val_loss: 9.2410 - val_mae: 2.3204 - val_mse: 9.2410\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 43/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 3.8947 - mae: 1.6572 - mse: 3.8947"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 6.8456 - mae: 1.8275 - mse: 6.8456"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 6.9718 - mae: 1.8414 - mse: 6.9718 - val_loss: 10.1315 - val_mae: 2.3870 - val_mse: 10.1315\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 44/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 2.1908 - mae: 1.0202 - mse: 2.1908"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 8.4003 - mae: 1.9864 - mse: 8.4003"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 8.3959 - mae: 1.9868 - mse: 8.3959 - val_loss: 9.5313 - val_mae: 2.3538 - val_mse: 9.5313\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 45/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 2.9424 - mae: 1.4150 - mse: 2.9424"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 7.4175 - mae: 1.8604 - mse: 7.4175"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 7.4903 - mae: 1.8714 - mse: 7.4903 - val_loss: 9.4255 - val_mae: 2.3224 - val_mse: 9.4255\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 46/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 3.2843 - mae: 1.5118 - mse: 3.2843"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 5.4673 - mae: 1.7281 - mse: 5.4673"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 5.7588 - mae: 1.7538 - mse: 5.7588 - val_loss: 9.4536 - val_mae: 2.2841 - val_mse: 9.4536\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 47/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 4.5242 - mae: 1.8014 - mse: 4.5242"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 8.0858 - mae: 1.9638 - mse: 8.0858"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 8.0666 - mae: 1.9616 - mse: 8.0666 - val_loss: 9.3771 - val_mae: 2.2794 - val_mse: 9.3771\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 48/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 2.5158 - mae: 1.3427 - mse: 2.5158"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 5.2510 - mae: 1.7276 - mse: 5.2510"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 5.4544 - mae: 1.7439 - mse: 5.4544 - val_loss: 9.0303 - val_mae: 2.2857 - val_mse: 9.0303\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 49/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 7.0113 - mae: 2.3244 - mse: 7.0113"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 10.0570 - mae: 2.0944 - mse: 10.0570"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 9.8586 - mae: 2.0777 - mse: 9.8586 - val_loss: 9.6222 - val_mae: 2.3390 - val_mse: 9.6222\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 50/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 8.6105 - mae: 2.3070 - mse: 8.6105"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 6.2373 - mae: 1.8485 - mse: 6.2373"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 6.3645 - mae: 1.8534 - mse: 6.3645 - val_loss: 9.4830 - val_mae: 2.3877 - val_mse: 9.4830\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 51/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 6.5701 - mae: 2.1784 - mse: 6.5701"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 9.8791 - mae: 2.0646 - mse: 9.8791"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 9.6962 - mae: 2.0534 - mse: 9.6962 - val_loss: 9.5123 - val_mae: 2.3311 - val_mse: 9.5123\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 52/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 6.9199 - mae: 2.1750 - mse: 6.9199"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 7.2686 - mae: 1.9192 - mse: 7.2686"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 7.2934 - mae: 1.9189 - mse: 7.2934 - val_loss: 9.7919 - val_mae: 2.3407 - val_mse: 9.7919\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 53/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 5.5711 - mae: 1.9560 - mse: 5.5711"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 7.4455 - mae: 1.8877 - mse: 7.4455"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 7.4496 - mae: 1.8885 - mse: 7.4496 - val_loss: 9.3431 - val_mae: 2.2829 - val_mse: 9.3431\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 54/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 5.0990 - mae: 1.7059 - mse: 5.0990"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 7.5390 - mae: 1.8675 - mse: 7.5390"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 7.5137 - mae: 1.8678 - mse: 7.5137 - val_loss: 9.8575 - val_mae: 2.3537 - val_mse: 9.8575\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 55/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 6.4456 - mae: 1.8713 - mse: 6.4456"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 7.2897 - mae: 1.8513 - mse: 7.2897"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 7.2544 - mae: 1.8538 - mse: 7.2544 - val_loss: 9.9189 - val_mae: 2.3745 - val_mse: 9.9189\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 56/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 3.0889 - mae: 1.4011 - mse: 3.0889"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 6.3596 - mae: 1.7326 - mse: 6.3596"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 6.4362 - mae: 1.7449 - mse: 6.4362 - val_loss: 9.2654 - val_mae: 2.3062 - val_mse: 9.2654\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 57/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 42.2115 - mae: 3.5370 - mse: 42.2115"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 10.0257 - mae: 2.0061 - mse: 10.0257"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 9.7742 - mae: 1.9938 - mse: 9.7742 - val_loss: 9.3887 - val_mae: 2.3165 - val_mse: 9.3887\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 58/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 1.2311 - mae: 0.9329 - mse: 1.2311"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 8.1524 - mae: 1.8889 - mse: 8.1524"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 8.0380 - mae: 1.8832 - mse: 8.0380 - val_loss: 9.1425 - val_mae: 2.2983 - val_mse: 9.1425\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 59/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 5.4501 - mae: 2.0312 - mse: 5.4501"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 6.9204 - mae: 1.7908 - mse: 6.9204"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 6.9039 - mae: 1.7940 - mse: 6.9039 - val_loss: 10.1422 - val_mae: 2.3810 - val_mse: 10.1422\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 60/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 4.0486 - mae: 1.4273 - mse: 4.0486"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 5.0735 - mae: 1.6587 - mse: 5.0735"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 5.2159 - mae: 1.6703 - mse: 5.2159 - val_loss: 9.2774 - val_mae: 2.3348 - val_mse: 9.2774\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 61/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 3.7692 - mae: 1.5098 - mse: 3.7692"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 4.5414 - mae: 1.5457 - mse: 4.5414"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 4.7032 - mae: 1.5662 - mse: 4.7032 - val_loss: 9.2544 - val_mae: 2.3472 - val_mse: 9.2544\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 62/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 14.1521 - mae: 2.5104 - mse: 14.1521"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 7.1558 - mae: 1.9008 - mse: 7.1558  "
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 7.0993 - mae: 1.8902 - mse: 7.0993 - val_loss: 9.1819 - val_mae: 2.3220 - val_mse: 9.1819\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 63/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 2.4848 - mae: 1.3113 - mse: 2.4848"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 6.1309 - mae: 1.7177 - mse: 6.1309"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 6.1473 - mae: 1.7232 - mse: 6.1473 - val_loss: 9.7829 - val_mae: 2.3943 - val_mse: 9.7829\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 64/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 4.0655 - mae: 1.6831 - mse: 4.0655"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 5.0143 - mae: 1.7087 - mse: 5.0143"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 5.1355 - mae: 1.7173 - mse: 5.1355 - val_loss: 9.4744 - val_mae: 2.3056 - val_mse: 9.4744\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 65/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 4.1810 - mae: 1.5446 - mse: 4.1810"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 4.8101 - mae: 1.6590 - mse: 4.8101"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 4.9310 - mae: 1.6712 - mse: 4.9310 - val_loss: 9.2431 - val_mae: 2.2771 - val_mse: 9.2431\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 66/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 7.9442 - mae: 2.2875 - mse: 7.9442"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 7.2274 - mae: 1.9590 - mse: 7.2274"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 7.1330 - mae: 1.9434 - mse: 7.1330 - val_loss: 10.0637 - val_mae: 2.3787 - val_mse: 10.0637\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 67/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 3.0155 - mae: 1.4887 - mse: 3.0155"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 4.8413 - mae: 1.7057 - mse: 4.8413"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 4.9432 - mae: 1.7104 - mse: 4.9432 - val_loss: 10.6425 - val_mae: 2.4232 - val_mse: 10.6425\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 68/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 5.2355 - mae: 1.8739 - mse: 5.2355"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 7.1915 - mae: 1.8727 - mse: 7.1915"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 7.0821 - mae: 1.8639 - mse: 7.0821 - val_loss: 9.9486 - val_mae: 2.3677 - val_mse: 9.9486\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 69/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 2.8912 - mae: 1.2661 - mse: 2.8912"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 5.9240 - mae: 1.6713 - mse: 5.9240"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 5.9329 - mae: 1.6759 - mse: 5.9329 - val_loss: 9.5338 - val_mae: 2.3042 - val_mse: 9.5338\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 70/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 4.3385 - mae: 1.5660 - mse: 4.3385"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 4.4338 - mae: 1.6182 - mse: 4.4338"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 4.5776 - mae: 1.6304 - mse: 4.5776 - val_loss: 9.2585 - val_mae: 2.2633 - val_mse: 9.2585\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 71/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 4.5695 - mae: 1.8160 - mse: 4.5695"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "34/36 [===========================>..] - ETA: 0s - loss: 5.8897 - mae: 1.7104 - mse: 5.8897"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 5.8780 - mae: 1.7089 - mse: 5.8780 - val_loss: 9.4555 - val_mae: 2.3616 - val_mse: 9.4555\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 72/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 2.9233 - mae: 1.3537 - mse: 2.9233"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 6.4952 - mae: 1.7174 - mse: 6.4952"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 6.3992 - mae: 1.7181 - mse: 6.3992 - val_loss: 9.6444 - val_mae: 2.3257 - val_mse: 9.6444\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 73/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 2.6198 - mae: 1.4640 - mse: 2.6198"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "29/36 [=======================>......] - ETA: 0s - loss: 5.5768 - mae: 1.6959 - mse: 5.5768"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 5.5339 - mae: 1.6942 - mse: 5.5339 - val_loss: 10.5231 - val_mae: 2.5063 - val_mse: 10.5231\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 74/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 4.4950 - mae: 1.4474 - mse: 4.4950"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "29/36 [=======================>......] - ETA: 0s - loss: 5.6547 - mae: 1.7134 - mse: 5.6547"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 5.6532 - mae: 1.7132 - mse: 5.6532 - val_loss: 9.0941 - val_mae: 2.2430 - val_mse: 9.0941\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 75/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 4.2808 - mae: 1.7725 - mse: 4.2808"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "29/36 [=======================>......] - ETA: 0s - loss: 6.1228 - mae: 1.8543 - mse: 6.1228"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 6.0196 - mae: 1.8187 - mse: 6.0196 - val_loss: 10.0033 - val_mae: 2.3537 - val_mse: 10.0033\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 76/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 2.4221 - mae: 1.1343 - mse: 2.4221"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "30/36 [========================>.....] - ETA: 0s - loss: 4.1946 - mae: 1.5413 - mse: 4.1946"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 4.4301 - mae: 1.5707 - mse: 4.4301 - val_loss: 9.1314 - val_mae: 2.2875 - val_mse: 9.1314\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 77/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 5.0121 - mae: 1.7153 - mse: 5.0121"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "30/36 [========================>.....] - ETA: 0s - loss: 5.0351 - mae: 1.6183 - mse: 5.0351"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 5.0792 - mae: 1.6261 - mse: 5.0792 - val_loss: 9.6146 - val_mae: 2.3574 - val_mse: 9.6146\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 78/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 2.5820 - mae: 1.3799 - mse: 2.5820"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "29/36 [=======================>......] - ETA: 0s - loss: 5.2953 - mae: 1.6405 - mse: 5.2953"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 5.3188 - mae: 1.6513 - mse: 5.3188 - val_loss: 9.4899 - val_mae: 2.3598 - val_mse: 9.4899\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 79/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 6.3683 - mae: 1.8826 - mse: 6.3683"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "30/36 [========================>.....] - ETA: 0s - loss: 4.0044 - mae: 1.5464 - mse: 4.0044"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 4.1686 - mae: 1.5630 - mse: 4.1686 - val_loss: 9.3313 - val_mae: 2.2644 - val_mse: 9.3313\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 80/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 11.2149 - mae: 2.4181 - mse: 11.2149"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "32/36 [=========================>....] - ETA: 0s - loss: 5.1197 - mae: 1.7075 - mse: 5.1197  "
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 5.0788 - mae: 1.6972 - mse: 5.0788 - val_loss: 9.9378 - val_mae: 2.3022 - val_mse: 9.9378\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 81/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 1.4385 - mae: 0.8965 - mse: 1.4385"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 4.0133 - mae: 1.4800 - mse: 4.0133"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 4.1273 - mae: 1.4965 - mse: 4.1273 - val_loss: 10.8592 - val_mae: 2.4694 - val_mse: 10.8592\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 82/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 5.0292 - mae: 1.9395 - mse: 5.0292"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 5.7289 - mae: 1.7079 - mse: 5.7289"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 5.6518 - mae: 1.6982 - mse: 5.6518 - val_loss: 10.0976 - val_mae: 2.3798 - val_mse: 10.0976\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 83/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 8.6699 - mae: 2.3824 - mse: 8.6699"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 5.5654 - mae: 1.7310 - mse: 5.5654"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 5.5151 - mae: 1.7205 - mse: 5.5151 - val_loss: 9.6754 - val_mae: 2.3623 - val_mse: 9.6754\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 84/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 4.5357 - mae: 1.7781 - mse: 4.5357"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 4.0814 - mae: 1.5638 - mse: 4.0814"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 4.1512 - mae: 1.5657 - mse: 4.1512 - val_loss: 11.0365 - val_mae: 2.4104 - val_mse: 11.0365\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 85/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 6.4269 - mae: 2.0289 - mse: 6.4269"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 4.9203 - mae: 1.6064 - mse: 4.9203"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 4.9118 - mae: 1.6053 - mse: 4.9118 - val_loss: 9.7858 - val_mae: 2.3077 - val_mse: 9.7858\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 86/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 2.1923 - mae: 1.2115 - mse: 2.1923"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 3.9008 - mae: 1.4805 - mse: 3.9008"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 3.9980 - mae: 1.4911 - mse: 3.9980 - val_loss: 10.0655 - val_mae: 2.3251 - val_mse: 10.0655\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 87/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 8.0132 - mae: 1.8202 - mse: 8.0132"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 4.6954 - mae: 1.5274 - mse: 4.6954"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 4.7092 - mae: 1.5292 - mse: 4.7092 - val_loss: 9.4244 - val_mae: 2.2671 - val_mse: 9.4244\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 88/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 5.1463 - mae: 1.7807 - mse: 5.1463"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 4.1792 - mae: 1.5463 - mse: 4.1792"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 4.2292 - mae: 1.5492 - mse: 4.2292 - val_loss: 9.7510 - val_mae: 2.3007 - val_mse: 9.7510\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 89/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 3.3645 - mae: 1.4511 - mse: 3.3645"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 4.7393 - mae: 1.5746 - mse: 4.7393"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 4.7310 - mae: 1.5752 - mse: 4.7310 - val_loss: 10.0711 - val_mae: 2.3494 - val_mse: 10.0711\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 90/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 1.7477 - mae: 0.9966 - mse: 1.7477"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 5.3938 - mae: 1.6194 - mse: 5.3938"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 5.3310 - mae: 1.6148 - mse: 5.3310 - val_loss: 9.3629 - val_mae: 2.2559 - val_mse: 9.3629\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 91/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 27.8543 - mae: 3.2737 - mse: 27.8543"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 6.1757 - mae: 1.5865 - mse: 6.1757  "
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 5.9897 - mae: 1.5806 - mse: 5.9897 - val_loss: 9.8954 - val_mae: 2.3155 - val_mse: 9.8954\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 92/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 5.9039 - mae: 1.7434 - mse: 5.9039"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 3.5070 - mae: 1.4349 - mse: 3.5070"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 3.5993 - mae: 1.4465 - mse: 3.5993 - val_loss: 10.0380 - val_mae: 2.3217 - val_mse: 10.0380\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 93/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 8.2391 - mae: 2.0149 - mse: 8.2391"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 4.0579 - mae: 1.4960 - mse: 4.0579"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 4.1093 - mae: 1.5015 - mse: 4.1093 - val_loss: 10.2133 - val_mae: 2.3160 - val_mse: 10.2133\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 94/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 1.5280 - mae: 0.8573 - mse: 1.5280"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 4.0365 - mae: 1.4609 - mse: 4.0365"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 4.0767 - mae: 1.4691 - mse: 4.0767 - val_loss: 10.2056 - val_mae: 2.3780 - val_mse: 10.2056\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 95/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 4.5629 - mae: 1.5756 - mse: 4.5629"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 3.8873 - mae: 1.4877 - mse: 3.8873"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 3.9396 - mae: 1.4890 - mse: 3.9396 - val_loss: 9.6103 - val_mae: 2.2735 - val_mse: 9.6103\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 96/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 2.7845 - mae: 1.4086 - mse: 2.7845"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 3.5573 - mae: 1.4517 - mse: 3.5573"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 3.6334 - mae: 1.4583 - mse: 3.6334 - val_loss: 9.9200 - val_mae: 2.3324 - val_mse: 9.9200\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 97/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 3.6348 - mae: 1.3828 - mse: 3.6348"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 3.5600 - mae: 1.3744 - mse: 3.5600"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 3.6402 - mae: 1.3870 - mse: 3.6402 - val_loss: 9.7711 - val_mae: 2.2834 - val_mse: 9.7711\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 98/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 3.1237 - mae: 1.5199 - mse: 3.1237"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 4.4887 - mae: 1.5771 - mse: 4.4887"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 4.4480 - mae: 1.5691 - mse: 4.4480 - val_loss: 10.7803 - val_mae: 2.4217 - val_mse: 10.7803\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 99/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 3.0721 - mae: 1.4835 - mse: 3.0721"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 5.4807 - mae: 1.6019 - mse: 5.4807"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 5.3517 - mae: 1.5898 - mse: 5.3517 - val_loss: 9.5158 - val_mae: 2.2703 - val_mse: 9.5158\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 100/100\n",
-      "\r",
-      " 1/36 [..............................] - ETA: 0s - loss: 0.7394 - mae: 0.7038 - mse: 0.7394"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "33/36 [==========================>...] - ETA: 0s - loss: 3.4165 - mae: 1.3382 - mse: 3.4165"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
-      "36/36 [==============================] - 0s 4ms/step - loss: 3.5067 - mae: 1.3559 - mse: 3.5067 - val_loss: 10.6235 - val_mae: 2.3723 - val_mse: 10.6235\n"
-     ]
-    }
-   ],
-   "source": [
-    "history = model.fit(x_train,\n",
-    "                    y_train,\n",
-    "                    epochs          = 100,\n",
-    "                    batch_size      = 10,\n",
-    "                    verbose         = 1,\n",
-    "                    validation_data = (x_test, y_test),\n",
-    "                    callbacks       = [savemodel_callback])"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 6 - Evaluate\n",
-    "### 6.1 - Model evaluation\n",
-    "MAE =  Mean Absolute Error (between the labels and predictions)  \n",
-    "A mae equal to 3 represents an average error in prediction of $3k."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 10,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:51.023631Z",
-     "iopub.status.busy": "2021-03-01T17:41:51.023156Z",
-     "iopub.status.idle": "2021-03-01T17:41:51.102915Z",
-     "shell.execute_reply": "2021-03-01T17:41:51.103404Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "x_test / loss      : 10.6235\n",
-      "x_test / mae       : 2.3723\n",
-      "x_test / mse       : 10.6235\n"
-     ]
-    }
-   ],
-   "source": [
-    "score = model.evaluate(x_test, y_test, verbose=0)\n",
-    "\n",
-    "print('x_test / loss      : {:5.4f}'.format(score[0]))\n",
-    "print('x_test / mae       : {:5.4f}'.format(score[1]))\n",
-    "print('x_test / mse       : {:5.4f}'.format(score[2]))"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 6.2 - Training history\n",
-    "What was the best result during our training ?"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 11,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:51.106956Z",
-     "iopub.status.busy": "2021-03-01T17:41:51.106480Z",
-     "iopub.status.idle": "2021-03-01T17:41:51.108543Z",
-     "shell.execute_reply": "2021-03-01T17:41:51.109028Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "min( val_mae ) : 2.2430\n"
-     ]
-    }
-   ],
-   "source": [
-    "print(\"min( val_mae ) : {:.4f}\".format( min(history.history[\"val_mae\"]) ) )"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 12,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:51.124638Z",
-     "iopub.status.busy": "2021-03-01T17:41:51.119781Z",
-     "iopub.status.idle": "2021-03-01T17:41:52.877772Z",
-     "shell.execute_reply": "2021-03-01T17:41:52.878275Z"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/figs/BHPD2-01-history_0</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg4AAAGdCAYAAAB6oftJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABC70lEQVR4nO3deZxcdZ3v/9en1l7TWYEQVlkjBAMSBfGqLOMyuA16FRW3GUQtcWG8jqCOIHrVcQZBGEoHnN/MqKAsAsKIgigBF2SRG2SUJSCBLCQkIWt3V3ct398f31Od08WpTnWnu6pO5/18POpxus/51ulvnV7q3d/tmHMOERERkUYkWl0BERERiQ8FBxEREWmYgoOIiIg0TMFBREREGqbgICIiIg1TcBAREZGGKTiIiIhIwxQcRGTCzOw/zcwFj6KZ7bGT8m8NlXdm9oGIMrPN7PNm9jszez447zoze8jMfmhmHzazF0U874Kac4/1uGTyroLI7iXV6gqIyLSRAt4NXDJGmfeNdQIzezlwMxAOIFuBbuCo4HE68BPgrXVOUwHW76SuW3dyXETqUHAQkcnwDLAfPhhcElXAzGYDpwLbgWFgds3xmewIDcuBC4CbnXPbg+N7Aa8G3oEPB/WsdM4dMNEXIiJjU3AQkclwD1AEjjazI5xzf4ooczqQAX4InFLn+B7AEHCSc25V+KBzbi1wDXCNmXVOZuVFpHEa4yAik+X7wbZed0R1//fqHF8UbJfVhoZazrnBcdZNRCaJgoOITJZqcHiPmY3622JmhwIvB1YCS3dynvlmZpNfPRGZDAoOIjIpnHN/AX4LLABOqjlcbW24yjlXb3zCA8F2P+D/mll28mspIrtKwUFEJlO1G2KkuyJoPTij5niUHwKPBR+fB6w1sx+b2T+Y2Ylm1tVgHfY1s7U7eRwxnhclIjsoOIjIZLoWKACnmVl3sO/VwP7AA865R+o90TlXwLdU/DTYNRM4Dfgn4FfAZjO72cyO30kdEsCeO3mkx/3KRARQcBCRSeSc2wzcgl934W3B7p0Nigw/f41z7o3AQnyrw0+BZ4PDaeBNwG/N7JNjnOZp55zt5LFs3C9ORAAFBxGZfNWA8N5g2uTb8FM1f9joCZxzjzrnvu6ce6Nzbm98kPgSMAAY8E0zO2aS6y0iDVBwEJHJ9nPgOXy3w9nADOBnzrkNEz1hECQuAN4AOPzfrvfvelVFZLwUHERkUjnnSsCP8H9f/m+w+/v1nzGuc9+NX1US4NDJOKeIjI+Cg4hMhWp3RRrYhB/3MFn6g+3wJJ5TRBqkJadFZNI55/5gZhcAvcAfnXNDO3uOmS0BHnfObRmjzBHAS4JPl01CVUVknBQcRGRKOOe+NM6nvBM408x+CPwYuNc5tw3AzObgb271RXxLaT/w3Umsrog0SMFBRNpFEegDPhI8MLOt+L9T4cWfNgOnO+dW1jnPvma2didf63fOudN2rboiuycFBxFpF58D/ht4PXA8cDgwDz/9cj3wCHAbcKVzbv0Y56kuADWW2Ts5LiJ1mHOu1XUQERGRmNCsChEREWmYgoOIiIg0TMFBREREGqbgICIiIg1TcBhDLpdzuVxOo0dFREQCmo7ZGIUHERHZXdhYB9uixcHMXJ3H9oiyh5nZTWa2ycz6zezXZnZSnfMmzOwcM3vUzApmttLMLjKz7ql/VSIiItNPO7U4/Bq4omZfMfyJmR0E/A4oAd8AtgAfAm4zszc45+6oef7FwCeAG4GLgIXB50eb2SnOucqkvwoREZFprJ2Cw1+ccz/YSZmvATOBlzrnlgGY2feAPwGXm9nhLljRKrgZzseBG5xzb6uewMyeAi4FTgeunuwXISIiMp21RVdFlZllzKynzrFu4M3A0mpoAHDObcff7OZQYEnoKe/C99NcUnOqK4EB4IxJq7iIiMhuop1aHN6OfzNPmtl64BrgC6Fb7B4FZIF7Ip77+2C7BLgv9HEl9DkAzrmCmS1jdMgYl2KxyKpVqygUChM9xW6lo6ODffbZh3Q63eqqiIjILmqX4HAfcB3wBDAD+GvgbODVZvaKoFVh76Ds6ojnV/ctCO3bG9jgnBuqU/4VZpZxzg3XHjSzs4CzPvrRj0ZWdtWqVfT29nLAAQdgNubg092ec46NGzeyatUqDjzwwFZXR0REdlFbdFU4517unPsX59xNzrnvOedOBz4PLAI+GRSr3lY3KggUaspUP44qW698uD5XOOeOrVffQqHAnDlzFBoaYGbMmTNHrTMiItNEWwSHOv4ZGAZODT4fCLbZiLIdNWWqH0eVrVd+XBQaGqdrJSIyfbRtcHDOFYE1wNxg15pguyCieHVfuBtjDTDXzKLCwwJ8N8YLuilERESkvrYNDmbWAewDrAt2PYzvejg+ovhxwfaB0L778a/vZRHnXVxTVkRERBrQ8uBgZnPqHPoyfvDmLTAy7fIW4DVm9pLQ83uAM4HljJ5BcQ1+qehP1Zz3Q/ixDVdNQvVbZsWKFRx++OGceeaZHHnkkbznPe/hjjvu4IQTTuCQQw7hvvvu46677mLx4sUsXryYo48+mm3btgHwz//8zyxZsoSjjjqK888/v8WvRERE4qQdZlV8wcyOA+4EngF68LMqTgTuBS4LlT0POBm43cwuBrbig8AC4NTq4k8AzrmHzexy4GwzuwG4lR0rR97FJC3+9Lov/3QyThPptn88dczjTzzxBNdddx1XXHEFS5Ys4eqrr+Y3v/kNN998M1/96lcpl8tcfvnlnHDCCWzfvp2Ojg5uv/12li9fzn333Ydzjje/+c3cfffdvOpVr5qy1yEiItNHy1scgKX4APB+/GJNXwJm42dVvMY5N1gt6Jx7AjgBv27DucC/AP3A651zt0Wc+1PA/wGOAC7HrxZ5GfDG6bDc9IEHHsiiRYtIJBIcccQRnHzyyZgZixYtYsWKFZxwwgn8/d//PZdeeimbN28mlUpx++23c/vtt3P00UdzzDHH8Oijj7J8+fJWvxQREYmJlrc4OOd+AvxkHOUfAd7SYNky/h4VF02sdu0tm90x7jORSIx8nkgkKJVKnHvuuZx66qnceuutHHfccdxxxx045zjvvPP48Ic/3Kpqi4hIjLU8OMTdzroTqjZuK7Bxm1/LYHZPlrkzOqeyWgA8+eSTLFq0iEWLFnHPPffw6KOP8rrXvY5//Md/5D3veQ89PT2sXr2adDrNHnvsMeX1ERGR+FNwaJLwUgaufrFJdckll3DnnXeSTCZ58YtfzBve8Aay2SyPPPIIxx/vJ6f09PTwgx/8QMFBREQaYqHxhFIjl8s5gHw+P2r/I488wsKFC8d1rs39Qzy3xQ/XmNmdZY++qW9xaCcTuWYiItISY67a1w6DI3cL4e+CwpqIiMSVgkOThJddVm4QEZG4UnBokvAYh4qSg4iIxJSCQ5NYqLNCsUFEROJKwaFJRs2qUIuDiIjElIJDk4wODq2rh4iIyK5QcGiSUYMjW1gPERGRXaHg0CStnI7Z09PT1K8nIiLTl4JDk2g6poiITAdacnpXnfn6hoplgUPHe+7v/jxy92c/+1n2339/crkcABdccAFmxt13382mTZsoFot85Stf4S1v2fm9wJYuXcr555/PnnvuybJlyzjttNNYtGgR3/rWtxgcHOSmm27ioIMO4rrrruNLX/oSyWSSvr4+7r77bsrlMueeey5Lly5laGiIj33sY7p5lojINKcWhxg6/fTTueaaa0Y+v/baa/ngBz/IjTfeyIMPPsidd97Jpz/96Ya7RB566CG+9a1v8fDDD/P973+fxx9/nPvuu48zzzyTyy67DIALL7yQ2267jYceeoibb74ZgH//93+nr6+P+++/n/vvv58rr7ySp556avJfsIiItA21OMTQ0UcfzXPPPceaNWtYv349s2bNYv78+ZxzzjncfffdJBIJVq9ezbp169hrr712er4lS5Ywf/58AA466CBe+9rXArBo0SLuvPNOAE444QQ+8IEP8I53vIPTTjsNgNtvv50//vGPXH/99QBs2bKF5cuXc+CBB07FyxYRkTag4LCr6nQn1CpXKjy5disACTMOnt+3S1/27W9/O9dffz1r167l9NNP56qrrmL9+vX84Q9/IJ1Oc8ABB1AoFBo6VzabHfk4kUiMfJ5IJCiVSgB85zvf4d577+WnP/0pixcvZtmyZTjnuOyyy3jd6163S69FRETiQ10VTTLZ0zFPP/10fvSjH3H99dfz9re/nS1btrDHHnuQTqe58847efrppyfhq+zw5JNP8vKXv5wLL7yQuXPnsnLlSl73utfx7W9/m2KxCMDjjz9Of3//pH5dERFpL2pxaJLa6ZjOuVFhYryOOOIItm3bxoIFC5g/fz7vec97eNOb3sSxxx7L4sWLOfzww3e90iGf+cxnWL58Oc45Tj75ZF7ykpdw1FFHsWLFCo455hicc8ybN4+bbrppUr+uiIi0F9Pyx/XlcjkHkM/nR+1/5JFHWLhw4bjPt/zZLSMDFg/eq49EYuLBIW4mes1ERKTpxnxzUldFE41adlrrR4qISAypq6KJ/B0yfWBodkPPww8/zHvf+95R+7LZLPfee29zKyIiIrGm4NBErbxD5qJFi1i2bFlTv6aIiEw/6qqYoIm88Y/uqth9aByNiMj0oeAwAR0dHWzcuHHcb4jG7ne/CuccGzdupKOjo9VVERGRSaCuignYZ599WLVqFevXrx/X857fVqBY9omh8HyWdHL3yG0dHR3ss88+ra6GiIhMAgWHCUin0xNaVvmc//gdf161CYCL3n88C/ebPdlVExERmVK7x7+8bSKd2nG5h0uVFtZERERkYhQcmigTCg7FcrmFNREREZkYBYcmCo9pKKrFQUREYkjBoYnCwUFdFSIiEkcKDk2UHtVVoeAgIiLxo+DQRJlUcuRjBQcREYkjBYcm0hgHERGJOwWHJtJ0TBERiTsFhybKJDXGQURE4k3BoYlGDY4saR0HERGJHwWHJho1HVMtDiIiEkMKDk00auVIjXEQEZEYUnBoorSmY4qISMwpODSRpmOKiEjcKTg0kZacFhGRuFNwaKKMlpwWEZGYU3BoIt2rQkRE4k7BoYlGj3HQOg4iIhI/Cg5NlNZ0TBERiTkFhybS3TFFRCTuFByaSLMqREQk7touOJhZl5k9ZWbOzP414vhhZnaTmW0ys34z+7WZnVTnXAkzO8fMHjWzgpmtNLOLzKx76l/JC2lwpIiIxF3bBQfgQmBu1AEzOwj4HXA88A3gM0APcJuZnRLxlIuBbwJ/Bj4OXAd8ArjFzJr+2rUAlIiIxF2q1RUIM7NjgE8B/wBcFFHka8BM4KXOuWXBc74H/Am43MwOd865YP8R+LBwg3PubaGv8RRwKXA6cPVUvZYo4XUchjWrQkREYqhtWhzMLAlcCfwcuCHieDfwZmBpNTQAOOe2A98FDgWWhJ7yLsCAS2pOdSUwAJwxebVvjLoqREQk7tomOADnAIcDZ9c5fhSQBe6JOPb7YBsODkuACnBfuKBzrgAsqynbFOqqEBGRuGuL4GBmBwJfAi50zq2oU2zvYLs64lh134Ka8hucc0N1ys81s8wEqjth4eBQqjgqvldFREQkNtoiOADfBp7CD2SspyvYRgWBQk2Z6sdRZeuVH2FmZ5nZA2PUZULMTK0OIiISay0PDmZ2BvBa4CPOueIYRQeCbTbiWEdNmerHUWXrlR/hnLvCOXfsGHWZMI1zEBGROGvprAozy+JbGW4F1prZwcGhapdDX7BvA7Cm5lhYdV+4G2MN8GIzy0Z0VyzAd2MM7+prGC+1OIiISJy1usWhE5gHnAosDz2WBsfPCD4/E3gY3/VwfMR5jgu24e6F+/Gv72XhgmbWASyuKds0aU3JFBGRGGv1Og79wP+O2D8PyOOnZv478Efn3HYzuwU4zcxe4px7CMDMevDBYjmjZ1BcA3wOvy7Er0P7P4Qf23DV5L6UxmTUVSEiIjHW0uAQjGm4vna/mR0QfPikcy58/DzgZOB2M7sY2IoPAguAU6uLPwXnftjMLgfONrMb8N0hC/ErR95Fkxd/qlJXhYiIxFmrWxzGxTn3hJmdAHwdOBfIAA8Cr3fO3RHxlE8BK4Cz8N0hG4DLgC8651ryrj3qRldqcRARkZhpy+AQrOVgdY49ArylwfOU8UtXRy1f3RKjbq2tFgcREYmZVg+O3O1oOqaIiMSZgkOTjeqq0KwKERGJGQWHJtPgSBERiTMFhybTdEwREYkzBYcm0xgHERGJMwWHJhs9xkHBQURE4kXBock0HVNEROJMwaHJ1FUhIiJxpuDQZOqqEBGROFNwaLJRsyq0joOIiMRMWy45PS2tfxbWP8t+q59h72I/a9Iz1VUhIiKxo+DQLHfdCj+/jlcCj808nmv7jlVXhYiIxI66KpolnRn5MON8F4VaHEREJG4UHJolnR75MONKgKZjiohI/Cg4NEtKLQ4iIhJ/Cg7NEuqqSAfBQWMcREQkbhQcmmVUV4VaHEREJJ4UHJplVItDdYyD1nEQEZF4UXBollREi4O6KkREJGYUHJpl1HTMoMVBXRUiIhIzCg7NErGOgwZHiohI3Cg4NEt4jAMaHCkiIvGk4NAsoTEOaY1xEBGRmFJwaJaolSPV4iAiIjGj4NAskWMcNB1TRETiRcGhWaJucqWuChERiRkFh2aJmI5ZqjgqzrWqRiIiIuOm4NAsEfeqAChpnIOIiMSIgkOz1M6qCFoatJaDiIjEiYJDsySTkPCXO4kjiQ8MGucgIiJxouDQTFEDJNVVISIiMaLg0EyakikiIjGn4NBMUTe6UleFiIjEiIJDM0UtO62uChERiREFh2aKmJKpWRUiIhInCg7NlNL9KkREJN4UHJpJy06LiEjMKTg0U9TgSLU4iIhIjCg4NNOoW2trOqaIiMSPgkMzRQyOVIuDiIjEiYJDM0UFB41xEBGRGFFwaKaIWRWajikiInGi4NBM4cGRqKtCRETiR8GhmdIR6zioxUFERGJEwaGZdJMrERGJOQWHZtKsChERiTkFh2ZKKTiIiEi8KTg0U8QYB82qEBGROGl5cDCzw8zsKjN7xMy2mNmAmT1qZt80s/l1yt9kZpvMrN/Mfm1mJ9U5d8LMzgnOVzCzlWZ2kZl1T/0rixCxcqQGR4qISJykWl0BYB9gPnAjsAooAYuAs4DTzWyxc+45ADM7CPhdUOYbwBbgQ8BtZvYG59wdNee+GPhEcO6LgIXB50eb2SnOuea+a6d0rwoREYm3lgcH59wvgV/W7jezu4FrgQ/gQwLA14CZwEudc8uCct8D/gRcbmaHO+dcsP8I4OPADc65t4XO+xRwKXA6cPWUvKh6dHdMERGJuZZ3VYzh6WA7CyDoXngzsLQaGgCcc9uB7wKHAktCz38XYMAlNee9EhgAzpiKSo8pYlbFsFocREQkRtomOJhZh5nNNbN9zOy1wL8Fh24NtkcBWeCeiKf/PtiGg8MSoALcFy7onCsAy2rKNkdojMOOe1VoHQcREYmPtgkOwJnAemAlcBu+S+IM59yvg+N7B9vVEc+t7lsQ2rc3sME5N1Sn/Fwzy0Qcw8zOMrMHxlf9BqQ1xkFEROKtnYLDTcBfAX8DXAhsBuaFjncF26ggUKgpU/04qmy98iOcc1c4547daY3HK6VZFSIiEm8tHxxZ5ZxbhZ9VAXCTmf0YuN/MOp1zX8OPSwDfXVGrI9gOhPYNAHvU+XJR5adeRIuD1nEQEZE4aacWh1Gcc38E/h+QC3atCbYLIopX94W7MdbguyOigsYCfDfG8GTUtWFaclpERGKubYNDoBOYHXz8ML7r4fiIcscF2/C4hPvxr+9l4YJm1gEsrinbHFoASkREYq7lwcHM9qqz/0TgSIIZE8G0y1uA15jZS0LlevADK5czegbFNYADPlVz6g/hxzZcNTmvYBzU4iAiIjHXDmMcvh0sLf0r/NoNHcBL8Qs0bQM+HSp7HnAycLuZXQxsxQeBBcCp1cWfAJxzD5vZ5cDZZnYDflpndeXIu2j24k8QPatCLQ4iIhIj7RAcfgi8H3gvfhaFwweIfwP+2Tn3TLWgc+4JMzsB+DpwLpABHgReH7HcNPjWhhX45atPBTYAlwFfbPpy0xA9q0ItDiIiEiMtDw7OuWvxS0s3Wv4R4C0Nli3j71Fx0cRqN8nCwYEyOEexXKHiHAmzFlZMRESkMS0f47BbSSRGhYc0vtWhpFYHERGJCQWHZtPMChERiTEFh2aLuLW2FoESEZG4UHBoNk3JFBGRGFNwaDZ1VYiISIwpODTbqCmZ1a4K3VpbRETiQcGh2dRVISIiMabg0GyjVo9UcBARkXhpKDjkcrn35XK5o2r2ZXK53Iw65V+dy+W+OBkVnHZ0a20REYmxRlsc/hN4a82+84BNdcq/Bjh/QjWa7kKDI9MaHCkiIjGjropmU1eFiIjEmIJDs0XMqlCLg4iIxIWCQ7NFzKoYLms6poiIxIOCQ7NFdVWoxUFERGJCwaHZ0hFdFRrjICIiMZEaR9mZuVxuv/DnALlcbl/AasvuWrWmsaiuCrU4iIhITIwnOHwyeNRaMTlV2U2k1FUhIiLx1WhweAZwU1mR3Ya6KkREJMYaCg75fP6AKa7H7iOyq0KzKkREJB40OLLZUhG31VaLg4iIxISCQ7NF3auiqOAgIiLx0FBXRS6X6wTmAxvy+fzWmmP7AxcDJ+FnV9wF/J98Pv/4JNd1egh3VeBbHApFdVWIiEg8NNricDawHHhxeGcul+vFB4W3ADOAXuCNwNJcLjdnEus5fUQsADWk4CAiIjHRaHD4X8DKfD7/+5r9HwX2A+4BDgb2BC4D9iJ66qZEzKpQi4OIiMRFo9MxXww8ELH/NPw0zb/N5/N/CfZ9MpfLnQq8Afjirldxmkm9cFaFWhxERCQuGm1xmAc8Fd6Ry+XSwNHAYxHjGX6Fb4GQWukXzqpQi4OIiMRFo8EhCyRr9h0BpIH7Iso/B3TtQr2mr4hZFWpxEBGRuGg0OKwFjqzZ9wp8N0VUF0Yv8Pwu1Gv6ihgcWSiWWlUbERGRcWk0OPwWOCmXy70GRqZnfig49ouI8kcCq3e5dtNRxMqRanEQEZG4aDQ4XBxsb8/lcg/ixzscBSzN5/OPhQvmcrkZwAlA7QwMgVFjHNLVWRXDCg4iIhIPDQWHfD7/APABYBBYDOyB76J4f0Tx9wMZ4PZJqeF0E7HkdKniKGnZaRERiYGGb6udz+d/kMvlfozvhtgYmn5Z6xbgbuCRSajf9BMxxgF8d0UqqRXARUSkvTUcHADy+fwgcP9OyqzYlQpNe8kUmIFzpKiQcBUqlqBQLNPdkd7580VERFpI/+I2m1nkAEmt5SAiInHQ6E2u3jeRk+fz+e9N5HnTXioNw0OA764YIq2ZFSIiEguNdlX8J37NhkZZUF7BIcqoFgfdr0JEROJjPGMcSsB/A3+eorrsPiKWnVaLg4iIxEGjweEu4FXAW/FTMa8Ers3n84Upqtf0lopYPVJrOYiISAw0uo7DicBhwL/gb171H8CzuVzuslwud9QU1m960v0qREQkpsazjsMTwGdzudzngbfgl5z+KJDL5XJ/AP4N+FE+n++fkppOJ5F3yNT9KkREpP2NezpmPp8v5fP5H+fz+dcDBwFfBeYDVwBrcrnc8ZNcx+knPDgSjXEQEZH42KV1HPL5/NP5fP4fgbPwN7XqAeZNRsWmNc2qEBGRmBrXypFhuVxub+Bvg8f+QAH4AfDg5FRtGou8tbaCg4iItL9xBYdcLpcA3gicCbw+eP7DwCeB7+fz+S2TXsPpKOJGVwoOIiISB42uHHkg8HfAB/HjGfqB/wKuzOfz901d9aapUYMjNatCRETio9EWhyeC7QPA+cAPNXtiF0R0VSg4iIhIHDQaHAwo4lsbvgh8MZfL7ew5Lp/P778LdZu+om5ypQWgREQkBsYzqyIN7DOOx76NnNTMDjWzC83s92a23sy2mdkyM/u8mXVHlD/MzG4ys01m1m9mvzazk+qcO2Fm55jZo2ZWMLOVZnZR1HmbKvXCWRVDJQUHERFpfw21OOTz+am8/fbfAh8DbgauwrdsnAh8BXiHmR3nnBsEMLODgN/h75vxDWALfiGq28zsDc65O2rOfTHwCeBG4CJgYfD50WZ2inOuMoWvq76oBaDU4iAiIjEw4emYk+h64GvOufCMjO+Y2XLg8/hBmf8a7P8aMBN4qXNuGYCZfQ/4E3C5mR3unHPB/iOAjwM3OOfeVj2xmT0FXAqcDlw9ha+rPg2OFBGRmJrKloSGOOceqAkNVdcE2yMBgu6FNwNLq6EheP524LvAocCS0PPfhR+bcUnNea8EBoAzJqH6ExN1kysFBxERiYGWB4cx7BNs1wXbo4AscE9E2d8H23BwWAJUgFHTRZ1zBWBZTdnm0qwKERGJqbYMDmaWxM/eKLGjO2HvYLs64inVfQtC+/YGNjjnhuqUn2tmmYhjU09LTouISEy1ZXDAdy8cB3zROfdYsK8r2EYFgUJNmerHUWXrlR9hZmeZ2QMN13a8QmMc0uqqEBGRGGm74GBmXwbOBq5wzn0tdGgg2GYjntZRU6b6cVTZeuVHOOeucM4d21iNJ6BOV0XFj+sUERFpW20VHMzsAuALwH8AH6k5vCbYLuCFqvvC3Rhr8N0RUeFhAb4bY3jitd0FoeDQwY6WhuFSa2aHioiINKptgoOZnY9fzvp7wJnVaZUhD+O7Ho6PePpxwTbcvXA//vW9rObrdACLa8o2V+gmV1nbERwKw6VW1EZERKRhbREczOyLwAXA94EPRi3MFEy7vAV4jZm9JPTcHvzdOpczegbFNYADPlVzqg/hxzZcNXmvYJxCLQ5ZtyM4aGaFiIi0u5YvAGVmHwO+BDwD3AG828zCRdY5534RfHwecDJwu5ldDGzFB4EFwKnhVgrn3MNmdjlwtpndANzKjpUj76JViz/BqMGR2VBXhQZIiohIu2t5cGDHegr74W/VXesu4BcAzrknzOwE4OvAuUAGeBB4fcRy0+BbG1YAZwGnAhuAy/CzNVo3oGDUdMwd1VCLg4iItLuWBwfn3AeAD4yj/CPAWxosW8bfo+KiidRtyoyaVbFjXINaHEREpN21xRiH3U7EbbVBLQ4iItL+FBxaITSrIl0JtTjoDpkiItLmFBxaIdTikKqoq0JEROJDwaEVQi0OqUoJgskgCg4iItLuFBxaIZn0D8BwJPEzKzTGQURE2p2CQ6ukXni/CrU4iIhIu1NwaJU6N7oSERFpZwoOrRJaPbK6loOCg4iItDsFh1YJT8kc6arQTa5ERKS9KTi0SsTqkUNF3VZbRETam4JDq0SsHqnbaouISLtTcGiVUWMcguBQ0hgHERFpbwoOrRLVVaElp0VEpM0pOLRKxHRMreMgIiLtTsGhVSJnVSg4iIhIe1NwaJXIWRUKDiIi0t4UHFolanCkgoOIiLQ5BYdWCU/HREtOi4hIPCg4tEroJlfZIDiUK45iWYtAiYhI+1JwaJVQi0OX7QgLanUQEZF2puDQKqExDp2h4FDQWg4iItLGFBxaJdRV0akWBxERiQkFh1YJtTh02I6woDtkiohIO1NwaJWOzpEPu11x5GNNyRQRkXam4NAqPTNGPuwtD458rOAgIiLtTMGhVbp3BIee0o7goDEOIiLSzhQcWqV3R3DoDgUHzaoQEZF2puDQKj19Ix92FQdGPh4qKTiIiEj7UnBola5uMH/5O4qDJKv3q1CLg4iItDEFh1ZJJKG7Z+TT3soQoDEOIiLS3hQcWik0s2JGuQAoOIiISHtTcGilcHCo+AGSmo4pIiLtTMGhlUIDJPsUHEREJAYUHFqpp3fkQ3VViIhIHCg4tFKoxWFGxQcHtTiIiEg7U3BopdAYh76yuipERKT9KTi0UkSLg7oqRESknSk4tFLUrIph3VZbRETal4JDK2kdBxERiRkFh1YKj3HQ4EgREYkBBYdWCo9xCAZHqsVBRETamYJDK4VudNXjhkm6slocRESkrSk4tFIiAd2hRaAqBYZLFSrOtbBSIiIi9Sk4tJoGSIqISIwoOLRab3hKpoKDiIi0NwWHVgvf6Kq6euSwgoOIiLQnBYdWqxnjAJqSKSIi7UvBodVGLTut+1WIiEh7a3lwMLPzzOw6M/uLmTkzW7GT8oeZ2U1mtsnM+s3s12Z2Up2yCTM7x8weNbOCma00s4vMrHtKXsxE9GpwpIiIxEfLgwPwVeAk4Elg01gFzewg4HfA8cA3gM8APcBtZnZKxFMuBr4J/Bn4OHAd8AngFjNrh9des3pktcVB96sQEZH2lGp1BYCDnHN/ATCz/8EHgXq+BswEXuqcWxY853vAn4DLzexw5/wiCGZ2BD4s3OCce1v1BGb2FHApcDpw9aS/mvHqjmpxqLSqNiIiImNq+X/d1dCwM0H3wpuBpdXQEDx/O/Bd4FBgSegp7wIMuKTmVFcCA8AZE670ZIqYjqkWBxERaVctDw7jcBSQBe6JOPb7YBsODkuACnBfuKBzrgAsqynbOhGDIzXGQURE2lWcgsPewXZ1xLHqvgU15Tc454bqlJ9rZpmoL2RmZ5nZAxOu6XiExziUNR1TRETaW5yCQ1ewjQoChZoy1Y+jytYrP8I5d4Vz7thx13AiOrv9PSuAbjdMypUZ0gJQIiLSpuIUHAaCbTbiWEdNmerHUWXrlW+Nmhtd9VYKanEQEZG2FafgsCbYLog4Vt0X7sZYg++OiAoPC/DdGMOTWL+JC49zKCs4iIhI+4pTcHgY3/VwfMSx44JteFzC/fjX97JwQTPrABbXlG2tmrUcNDhSRETaVWyCQzDt8hbgNWb2kup+M+sBzgSWM3oGxTWAAz5Vc6oP4cc2XDWV9R2Xmltrq8VBRETaVcsXgDKz9wL7B5/OAzJm9oXg86edc98PFT8POBm43cwuBrbig8AC4NTq4k8AzrmHzexy4GwzuwG4FViIXznyLtph8aeqntFrOazqrzemU0REpLVaHhyAvwNeXbPvy8H2LmAkODjnnjCzE4CvA+cCGeBB4PXOuTsizv0pYAVwFnAqsAG4DPiic659lmes6ar4/cb+FlZGRESkvpYHB+fca8ZZ/hHgLQ2WLQMXBY/2VTM48vntQwwMlejKtvzbIyIiMkpsxjhMa6O6KvzqkaufV6uDiIi0HwWHdtDzwhtdrdq4vVW1ERERqUvBoR1E3Fp7tcY5iIhIG1JwaAejbnQVtDioq0JERNqQgkM7CN9au6wWBxERaV8KDu1g1I2uiqRcmVUb+wktSyEiItIWFBzagRl0jx4gOTBcYpMWghIRkTaj4NAueiOmZKq7QkRE2oyCQ7sIDZDs0wBJERFpUwoO7SI0JbN3ZC0HBQcREWkvCg7tImItBwUHERFpNwoO7SJi9cjVWj1SRETajIJDu4hocXh20wDlSvvcxFNERETBoV2EBkfOSwwDUKo41m4ebFWNREREXkDBoV3Mmjvy4cHFDSMfa0qmiIi0EwWHdnHQQkhnANhrYD3zStsATckUEZH2ouDQLjJZOPTIkU+PHXwa0ABJERFpLwoO7eSIY0c+fGnhGUBTMkVEpL0oOLSTI3cEh2MGV5J0ZXVViIhIW1FwaCfz94XZ8wDodsMcPrSODVsLFIZLLa6YiIiIp+DQTsxGtTpUuytWPz/QqhqJiIiMouDQbo546ciH1QGSqzRAUkRE2oSCQ7tZuBgS/ttyyPBz9JUHWa1xDiIi0iYUHNpNVw+86HDAf3OOKTyjmRUiItI2FBzaUWicw7GDT/Onlc9TrrgWVkhERMRTcGhHNdMy120a4J7H1rawQiIiIp6CQzva7+CRm17NrgzwouIGrv/9X1pcKREREQWH9pRIwBHHjHx67ODTPLJqM39a+XwLKyUiIqLg0L5C0zL/avsjpF2Z6+9Rq4OIiLSWgkO7OuplkO0EYN/SZt655QHueWyd1nQQEZGWUnBoVz0z4LQPjHx6+pYH2G94Izfc+1Tr6iQiIrs9BYd2duIb4aCFAKSpcM7GX/LLZc+wuX+oxRUTEZHdlYJDO0sk4X2fxCVTACwcXsfrNj3ET+5f0dp6iYjIbkvBod0tOAA79fSRTz+4+R5+tfRBlv5pTQsrJSIiuysFhzj463fi9t4fgE5X5LPP3cZlP75X4UFERJpOwSEOUmns/Z/EmQHw4uG1fHXtjVx+/T0KDyIi0lQKDnFx0Iuxd3545NPDhp/jn9bewHeu/y033vsUw6VyCysnIiK7CwWHODnlrfDej498+qLiRv5p7Q3cecuvOPNbv+C6e55kYKjUuvqJiMi0l2p1BWScXn0qpLO4//gm5irsX9zEpWuvo7zWWPnELB64dg8GDzuarlecyKKD9mRmd7bVNRYRkWlEwSGOXnEKlsngrvgnrOK7KJI4Dig+zwHF5+GBR9n64I38ovtw/rj/y9hr4WEcse9sjtxvFrN7OlpceRERiTMFh7g69lVY32z45U9wTz8J65/FcCOHZ1QKvG3bMt72P8t45tFZPJmZxw2ZuWyesw+de+9D37w5zNlrDvNn9zCrO0s2lSSbTpJJJ+jMpEgEAzFFRETCFBzi7JAj4ZAjMYDCIOWVT/HcvffQc/8v6e3fcSfN/Uqb2K+0iRMHHofNwJN+fxljeyLL2tQMHsrsyWNZ/3guO5t5s7qZP6uLvWZ2sUdfJ31dGfq6MszsztDbkSGbTgaPBOlkAlPQEBHZLSg4TBcdnSQPeTHzD3kxvPuD8OcHKS+9FfvjvSQq0TMukjj6KgX6hgscNvwcbH8YgAowuCLDQCJDfyLD9kSWLYlOnk928lSik03JLp5L9bIu1cu61AwGE1nmdsBe6TJ7pErMTDmsdwY2Yxbpnl56OtN0d6TpyqTo6kjRnU3TnU3RHXycSSl4iIjEhYLDdJRIwJHHkjzyWBgqwOoV8MyTlJ9+gqEVT8CWTaQGt5MpFqKfDnS7YbrLw8xrYJZnGSMZ6iYJK5Jgc7KTjcke1qd6eDrZy4ZUNwVLU7QkRZK4ZJLhbBdD2W6KHT0Uu2bQk6gwuzLAzPIAfeVBMukEic4ekl1dpLp7SPb2Qu9MUpk06WSCbDpJZyZJRzpFRzpJOpUgMbid9CMPkv7zAyS3bYGDF5I45hUk9j8EFFRERCZEwWG6y3bAiw6HFx1OEugKHyuVYPsWHyyeesw/VjwOWzaN60vUCw3gb841r9zPvHI/hw+vm8grqKsCbE10sDnZxZZEJ1sSadZZikHLML+0hSOH1oyu2+MPwa0/Yn2qh2U9L2JruodiOkMplcWl0syoDDGzMkBvaZDu0iDldJZitovhbDeVbCeZSomu4gAdxUE6igOU01mGu/oY7u5jqKsPOrtId2RJZzvIdGbJloZIb99EeusmUls3kqiUsGwn1tmFdXZBpoNKOkMlmaacTEMqRTaTJFkNNcUibHkeNm/0j8EBWLC/76I6+Ajo6g5djAoUBiGZhEx27GBUHIZtW/z3PpmCuXv5n5PaMhvWwdAg9M6EGTMhnZmk79wucM4/EnVmkpfLvs6VCriK3yYS0N3r7/0yXtu3wYZnoaMT5uw5sWvggp/BRsKqc/778vx62LrZP7ZthoHt0D0DZs6GWXOhbw709EJn18ReF/jf/+efg/VrYcNa/7X3Oxj2PfCFr7MwAP3boG82pNIT+3phlTJs2+q/7vpn4bk1vh5mMHvejkffbOjq8T/rHV0w2A9PL4cVy/3fqoHtMH8/2O8g2PdFsOc+UC75f5iGC/7noWcG9PZFXyfnYHjIly8M+G1XT/A6Uy8sWy1TLkGp7Lflkv9dLRWhNOx/5sJSaf/1Z8wKfg6Dn91y2Z+rOOR/D5NJX7ZS8ddk7Sr/2LTef8/3Pci/zplz/NdctxrWPANrnvaPM872v6tNoOCwO0ul/A/hzDlwxEt37K+U/ZvUYL/f9m/zf8y2BY/NG2Hjc/7x/HMwPIRLZyh3dlPKdlNMpkkObic9sI10nVaNyZAAZlYKzKyM72vMK23nrzb/cWoqNU7j/pP/x3vhZ9dSwdjQMw8DuoYH6CwOkHD+D5bDKKYylFIZXPDH0gwMSA8Pkiq+8O6qw919DM/aE0skyGx+jtS2TZgbHQgrnd1Uunr9H7iEbyky838EqwNzDbBEAksk/B/IZBIyHf6Nt6PLB5TBfti6KXhT3OLf4JOpHQ+z4M02CAmlIgwN+TeC4SGwhH8j6eqB7h7/hrB9q38MbI++bomE/8PdN9v/EXfO/5yXy36bykAm498wkyn/s71utf+5D5s5B+bu6b82wUU183Uy818nkfBvCFs373idxWH/2rOdwbbDB7xU2m+d82Fh4zr/Gsejsws6u/01zmT99c527Lh2xWH/KBV3vMEVi/732lVeeL5U2r9BzdnT12f9s/77BP51zprjw+bMOT6s9m+D/q3++2qJkZ8PUj4Mk0xCMu23A9tHf9/HwxLRz3lkWWPPndEHPX3Bz1PB131ocEewG1Xe/JvwzDlByNnif77Ku7hOTiLhv1fDQ/57MhFdPb7e5Zrm4BPfBIfP3LX6Nchc1EUTAHK5nAPI5/Otrkr7qv5xqvef2PCQb8HYtMEn5+fX++BRHPb/8ZRLVIaHqGzfhtu2BevfSrJ/G5V0hmLXDIa7ZjDU0UPZgRUGSQwNkhwepGOon87hgVEzSaIs79iLB3tfxLOpPl6y7SmOHXiK3opuSy4i08y7c3DSmyfrbGM2j03rFgfz/w59EvgwcACwHrgW+KJzrr+FVZs+zMZuvs1kYd5e/lFHghcuYZoMHmOuOlEu+2bcrZv9fzJDBZ/EC4P+6y5czCF9szkk/JThIkOPPUx5xXLc4ACVwUFcYQBXHKaY7aLQ0Ush28NguhM3VCAx2E9ycDvJQj9DiQwDqU760x1sT3SQKg7RXdhK19A2ugvb/H/ypSKJchErlxi2FM+netiY6mFDsodBkmTKw2SDR0elSJYyHZTIUiZVKVOq+CDkgLIl2JTsYmOym43JHoqW5PChtRw5tIYXDW94QRfRoKVJugoZxh6YUiLBlmQHWxKddLgSe5S2kWL0f3JljPXJXvoTGWZWBplZHhizS6pdVPDXoWIJKhgVjBSVCYfFIUvybKqPzkqRueXtTbkGg8ksWzr62JbpZSDbzUC2h0K6k86hfroLW+kd2sqMoW10lgp0lnctBA92z2Swbx5DM+ZilTK9a5+ie+v6F5QrJ1IUs11kB7ftNKw3qtLZQ3nWXMpz9vKPufMxg+TmDSQ3byCxaT2J/m3YwHZssB8bLuASSSp7H4A74BASBx5KYsYsWL0Ct/JJWPkX3wKazmLVVh1L+Faj7VvrVySd8a012aDFpn+bbymK+qc6k/UtZ6lQC1kqtaN1JZWBZM1fs+GhHd1Og6G3HUv4OqYzvlUj+EcKV4HZe8Be+/iulzl7+C6dZ4LXWBjwz5+zB+y9P+y9n98eetSufksaNq1bHMzsW8AngBuBnwELgY8DvwZOcW7stjK1OEizVZxjYKjEtsEiA0PFkb9dDnDOMVyqMFQqU+rvJ71uJcOJNIVMN4VsF0VLUqk4XLmMFYdIDBcol8oMFcsMlcoMFysUEmkKqU6cQaXiKFccpeEinQObmbF9A65cYV2mjw2pGQxhlCvODyuoVOgqDdBZKpCoVEhQwSplEq5CxUHFQdk5ymUolkokcCRwJF2FDlekuzJMZ6VIpyvSn8iwOZidsznZRTl4c085/zAcDsMF//MMk2QokaZgKYYsTYIKPZVheioFeitDJF2FrUEQ2p7IUrEXjn9IuzKzyv3MDgbbls0ok6AcBIy0K5NxZTpckbQrszHZzar0LDYke0ZuLpd0ZfYobWfP0layroThgn/L/DbhHEkqGD6cPR+8vk3JLoYsRdaV6KwU6XD+kXFlsq5ExpVIOMf6VA/rUjPoTzS+2mvCVeh0RXoqQ3RUz10p0uFKVMwokmTYkhQtybCl/IBk8/sGEhmK9sL/HWeUBzlseB0zy4OsS/XybKpv5DqkXZk9SlvZq7SVWeUB+hMZtiU62JboYHsiiwXXqfr9TFIh7crB97ZMfyLL5mQXm5OdlGx8HXVJ5wNxOfS8hPmfvVqphJFMJkglfMxJVUr0lQaZUR6kkkpRTGcpZzoopzr8z4BzOOd/1ssVB+USM4rb6RveBsk0xa4eyp29pDo7SacS/vtuhhGE/EqFctn/PjkcyUSCZMJIJoyEGYmgSytVKdFRHqaSzkI6QyqVIJVI4Ah+z0L1TyX9VPdkwig7R6lcoVQq09G/mcFUB8VUdlS2+ZuXH8gh8/vGdU3HsHu2OJjZEfiQcINz7m2h/U8BlwKnA1e3qHoikRJm9HSk6enY2QC0ebDogGZUadzKFR9+BoaKDAyVqDhHxfngU3GOYtkxXCpTLFUoliokE0Y6lfCP4L+1YqlCsewf1fBS/eNervjzVCr+vMVyxYej4DE4XAq+fon+oRLDpQo9nWl6O9L0dqbpzKQoFEv0F4JywyUKpTLbShWGg6/rnCMJ7AHgIJEwkmYkEn1sSexDqVxhqFShMFyiUCxTKvs6jWXQMgwmJneAacUS9Ft2XGFjZ7YmO7m/84DIY0VLsjo9i9XpWZP29RpVjggaUaEBoFRxlCplwu0xW+mERKdvlhoChhwwWPfrbaADrMOX3w5sHxyz/PjUGYuzC89/5cK9JjM4jGnaBgfgXfjUdEnN/iuBrwNnoOAgMumSCaO3079J727C4aZUDv5LrFRwDtLJBKlkglTSMDNKZR9UhktlH1iC1qThov+8GpDKFR+SkkkjXf0vNJmA6tepOMrB14Bg4glu5HxDxTKF4fJIECuVXbANHhVHuewbXzsyKbLpJB3pJKlkgnJwvBQKcaVgWyxXKJcrFIN9pfLoBtzqf++l4L/xYrkSXB9Ggh/saE1zwSfhMuDDtJnfVoJWt2JwzcK5IWGM+q9dps50Dg5L8FnxvvBO51zBzJYFx0VEJk3CDMxIJiCzk7+u6WSCzjaY4RpXLmjJShijFpCruB3hplR2IzOKqkoVN6pFy/AtSomg6yERdDEkE0YiYRRLFQaGSr4la7hEqezDoa+DH+ZV7ZpIJf1XqowEOh+QRroigpa3ahgrVSqj6lh9HdUgVgzCZzJpZEaCZyLylgAH79Wc1gaY3sFhb2CDcy5q9NBq4BVmlnHOTXBOjIiItIqZkYzoiU+YkUlNcG2LOub0TurpYq/OKirTQhdQb8hxIVTmBczsLDN7YEpqJSIiEmPTOTgMAPVGDHWEyryAc+4K59yxU1IrERGRGJvOwWENMNfMosLDAnw3hropRERExmE6B4f78a/vZeGdZtYBLAbUFSEiIjJO0zk4XIOfmfOpmv0fwo9tuKrZFRIREYm7aTurwjn3sJldDpxtZjcAt+JXjvwEcBdaw0FERGTcpm1wCHwKWAGcBZwKbAAuw9+rYpy3ZhMREZFpHRycc2XgouAhIiIiu2g6j3EQERGRSabgICIiIg1TcBAREZGGTesxDpMll8u1ugoiIiLN4vL5fMSdQDy1OIiIiEjDrHp7UGkOM3tA98HYdbqOk0PXcXLoOk4OXcfJMdXXUS0OIiIi0jAFBxEREWmYgkPzXdHqCkwTuo6TQ9dxcug6Tg5dx8kxpddRYxxERESkYWpxEBERkYYpOIiIiEjDFBymmJklzOwcM3vUzApmttLMLjKz7lbXrR2Z2aFmdqGZ/d7M1pvZNjNbZmafj7pmZnaYmd1kZpvMrN/Mfm1mJ7Wi7u3MzLrM7Ckzc2b2rxHHdR3HYGazzexfzOyJ4Pd4vZndaWb/q6acrmMdZtZjZp8zs4eD3+sNZvY7M/uAmVlN2d3+OprZeWZ2nZn9Jfi9XbGT8g1fs119X9LKkVPvYuATwI34u3QuDD4/2sxO0e29X+BvgY8BNwNXAUXgROArwDvM7Djn3CCAmR0E/A4oAd8AtgAfAm4zszc45+5oQf3b1YXA3KgDuo5jM7P9gaVAD/DvwONAH3AUsCBUTtexDjNLAD8DXgH8F3AZ0AW8C/gP/N/FzwZldR29rwLPAw8CM8cqOIFrtmvvS845PaboARwBVIAf1+z/OOCAd7e6ju32AI4F+iL2fyW4ZmeH9l0LlIHFoX09wNPAYwSDf3f3B3BM8Afl74Nr+K81x3Udx75+vwZWAvN3Uk7Xsf61OT742bu4Zn8G+AuwWdfxBdfsRaGP/wdYMUbZhq/ZZLwvqatiar0LMOCSmv1XAgPAGc2uULtzzj3gnNsSceiaYHskQNCk9mZgqXNuWej524HvAocCS6a2tu3PzJL4n7efAzdEHNd1HIOZvQp4JfAN59yzZpY2s66IcrqOY5sRbNeEdzrnhoENQD/oOoY55/7SSLkJXLNdfl9ScJhaS/DJ7r7wTudcAVjGbvILMEn2Cbbrgu1RQBa4J6Ls74Otri+cAxwOnF3nuK7j2P462D5jZrcAg0C/mT1uZuE/sLqOY7sP2Az8g5n9bzPbL+iT/xrwUuCCoJyu4/iN95rt8vuSgsPU2hvY4Jwbiji2GphrZpkm1yl2gv+av4hvbr862L13sF0d8ZTqvgURx3YbZnYg8CXgQufcijrFdB3HdliwvRKYDbwf+DtgGPi+mX0wOK7rOAbn3Cb8f8XP45vVnwYexY9neptz7sqgqK7j+I33mu3y+5IGR06tLiDqmwNQCJUZbk51YusS4Djgc865x4J91ebiqOtbqCmzu/o28BTwzTHK6DqOrTfYbgNODJrWMbMb8X3zXzWz/0LXsRHb8X31N+MH8s3GB4erzewtzrlfoOs4EeO9Zrv8vqTgMLUGgD3qHOsIlZE6zOzL+Gb2K5xzXwsdql63bMTTdvtrGzSjvxZ4lXOuOEZRXcexDQbbH1ZDA/j/oM3sZuB9+FYJXccxmNkifFg4xzn3ndD+H+LDxJXBzABdx/Eb7zXb5fcldVVMrTX4Zp+ob+gCfHORWhvqMLMLgC/gp2t9pOZwdZBVVLNldV9U0920F/y8fRO4FVhrZgeb2cHA/kGRvmDfTHQdd2ZVsF0bcezZYDsLXcedOQf/pnRdeKdzbgD4Kf5n8wB0HSdivNdsl9+XFBym1v34a/yy8E4z6wAWAw+0oE6xYGbnA+cD3wPOdMF8oZCH8c1tx0c8/bhgu7te305gHnAqsDz0WBocPyP4/Ex0HXemOoBsn4hj1X3Poeu4M9U3sGTEsVRoq+s4fuO9Zrv+vtTquarT+QEsYuz5sme0uo7t+MAPhHT40JAYo9x1+LnLLwntq85dfpzdZL53xHVJA2+PeHw0uK4/Cz4/VNdxp9dyFrAV3/LQE9o/H99n/3hon65j/et4cfCz9w81+2fi/wN+HkjpOta9fjtbx6HhazYZ70u6O+YUM7PL8H30N+KbjqsrdP0WOMlp5chRzOxjwL8CzwD/iP8BD1vn/CAqgub3+/CrS16M/wP/IfwvxqnOuduaVe84MLMD8IMlL3fOnR3ar+s4BjM7C/g34E/A/4dftOij+PDwRufc7UE5Xcc6gtU3H8QHsavwf/9m46/PAcDHnHP5oKyuI2Bm72VH9+LH8T93FwWfP+2c+36o7Liu2S6/L7U6SU33B75p7tP41buG8H1N3yT034seo67Xf+JTb73H0pryC4Gf4OeIDwC/AU5p9etoxwf+D/QLVo7UdWzo2p2GnxPfj59hcTtwgq7juK7hQfjlplcFb3BbgbuB03QdI6/X0kb/Do73mu3q+5JaHERERKRhGhwpIiIiDVNwEBERkYYpOIiIiEjDFBxERESkYQoOIiIi0jAFBxEREWmYgoOIiIg0THfHFJFpL5fLXYC/98mJ+Xx+aWtrIxJvCg4islO5XK6RleL0piyyG1BwEJHx+NIYx1Y0qxIi0joKDiLSsHw+f0Gr6yAiraXgICKTLjymAH+Hv08Bh+NvEPXfwOfy+fzaiOcdgr8r6snAPGADcAfw5Xw+vzyifBJ/F8D3Akfi7yC4Gn+DoH+q85y3A/8QlC/gb1j16Xw+v3oXXrLIbkOzKkRkKp0DfAd4CLgEfze+DwK/y+Vy88IFc7ncEuAB4AzgfuBf8HekfA/wQC6XO7amfAb4OfBtYF/gauBS4A/A3wAnRNQnB/wA361yOfA/wDuBO3K5XHZXX6zI7kAtDiLSsKAlIUohn89/PWL/G4CX5/P5/xc6x8X4FoivA38X7DPge8AM4Ix8Pn9VqPw7gR8BP8jlci/O5/OV4NAFwCnALcD/zufzQ6HnZINz1Xo9sCSfzz8cKns18C7gLcC19V67iHhqcRCR8Ti/zuPcOuW/Hw4NgQuALcC7Q//lvwLflXFPODQA5PP5a4DfAIcBr4SRLoocMAh8JBwagucM5fP59RH1uTQcGgJXBtuX1XkNIhKiFgcRaVg+n7dxPuWuiHNsyeVyy4BXAwuBZcAxweFf1TnPr/Ch4WjgbnzI6APuzefza8ZRnwci9q0MtrPGcR6R3ZZaHERkKq2rs786MLKvZvtsnfLV/TNrtuMd0Lg5Yl8p2CbHeS6R3ZKCg4hMpT3r7N8r2G6p2e4VURZgfk25zcF2wYRrJiITouAgIlPp1bU7crlcH7AYPxXykWB3dRzEa+qcp7r/wWD7KD48HJXL5fbe9WqKSKMUHERkKr03l8sdXbPvAnzXxA9Dgxp/i5+q+cpgnYURweevAh7HD5Ikn8+XgTzQCXyndiplLpfL1E73FJHJocGRItKwMaZjAtyUz+eX1ez7GfDbXC53LX6cwiuDxwpCMzHy+bzL5XLvB34BXJPL5X6Cb1U4DHgrfuGo94WmYoJf/vrlwJuAx3O53H8H5fYFXgt8BvjPCbxMERmDgoOIjMf5YxxbgZ8hEXYxcCN+3YZ3Atvxb+afy+fzz4UL5vP5e4NFoL6AX5/hTfiVI3+IXznysZryw7lc7vXAR4D3Ae8HDFgTfM3fjPfFicjOmXON3PRORKRxuo21yPSlMQ4iIiLSMAUHERERaZiCg4iIiDRMYxxERESkYWpxEBERkYYpOIiIiEjDFBxERESkYQoOIiIi0jAFBxEREWmYgoOIiIg07P8HDo/by0aERjkAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 576x432 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/figs/BHPD2-01-history_1</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhQAAAGdCAYAAABKLepoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABO+ElEQVR4nO3deXxcdb3/8ddnJpN960ZXaEsplKUgSAUBFZCLoPe6/VRQQUEQdRSX688NRapw8er1Kv6qo4BeFQRkuyK4AkrZZIeyyVK6QfclbZo9s3x/f3xPkkk6SSaZSWcmeT8fj3mc5Mz3nPnOaZp557sdc84hIiIikotQoSsgIiIipU+BQkRERHKmQCEiIiI5U6AQERGRnClQiIiISM4UKERERCRnChQiIiKSMwUKEckrM/uVmbngETezfYYp/+608s7Mzhmm/BVpZS/Koj5LB5x/qMcVI3u3ItJDgUJExlIZ8KFhynwk25OZ2cDzfXQEdUkBW4Z57B7B+UQkTVmhKyAi49arwH74wHBFpgJmNhl4B9AKdAOThznn24FpwL3ADOAgMzvWOfdwFvV5zTk3L6uai8iIqYVCRMbKQ8Aq4EgzO3SQMmcC5cCtQEcW5+xpkbg+eKTvE5ECUqAQkbF0bbAdrFujZ/81w50oaM34V3xLxi3AdcFTZ5hZRS6VFJHcKVCIyFjqCRQfNrN+v2/M7EDgGOA1YHkW5/ogvjXjL865JufcKuARYBLwzrzVWERGRYFCRMaMc2418CAwGzh5wNM9rRPXOedSWZyup2vjurR91w14TkQKRIFCRMZaT3dGb7eHmRlw1oDnB2VmBwNLgBbgjrSnbgQSwNvMbPowp9nXzDYP8xhsrIeIDEOBQkTG2k1AJ/BeM6sJ9r0FmAs87px7IYtznBNsf+ec6x286ZzbCtyNn7H24WHOEQKmD/OIZFEXEclAgUJExpRzbhe+VaEG+D/B7pEMxgzR15pxfYYiPd0ew61nsc45Z8M8VgxXHxHJTIFCRPaGnuBwtplV4YNFHLghi2P/BZgF9LRGDHQb0A4cYWZH5F5VERkNBQoR2Rv+gg8EJwOfAeqBPzvntmdxbM+Ay32AxMDlsvHjKqoHlBWRvUyBQkTGnHMuAfwW/zvnP4Ld1w5+hGdm9cC7R/BSHw6W5xaRvUyBQkT2lp5ujwiwk/6zNQbzAaAKv1bFpCEeU4Ad+FaM0/JaaxHJipK8iOwVzrknzGwpUAc845zryuKwni6M/w0Gdw7KzH4PfCw45g85VFVERkGBQkT2Gufct7Ita2YLgBOCb/83i0P+Fx8o/s3MJjnndo6iiiIySgoUIlKseqaBbgEeyKL8Xfjbj9fjbzr20wHP72tmm4c5xz+cc+8dUS1FBNAYChEpQsFKmj2B4vfZLM3tnOumr6sj02yPbBa2Gu726SIyCHPOFboOIiIiUuLUQiEiIiI5U6AQERGRnClQiIiISM4UKERERCRnChQjFI1GXTQa1UhWERGRNFqHYvQUKkREZCKxoZ5UC4WIiIjkTIFCREREcqZAISIiIjlToBAREZGcaVBmnsTjcdavX09nZ2ehq1IyKisrmTNnDpFIpNBVERGRHClQ5Mn69eupq6tj3rx5+PsayVCcc+zYsYP169czf/78QldHRERypC6PPOns7GTKlCkKE1kyM6ZMmaIWHRGRcaLggcLMDjSzb5vZw2a2zcxazGyFmX3dzGoylD/IzG4zs51m1mZm95vZySN8zQYzW2ZmG8ys08yeN7NPWY5pQGFiZHS9RETGj2Lo8vgY8GngduA6IA6cBFwGfMDMjnXOdQCY2QLgH0AC+B7QDHwc+KuZne6cu3u4FzOzcuAu4EhgGfACcDoQA6YDS/P55kRERCaCYggUtwDfcc41p+37mZmtBL4OnAf8ONj/HaAReL1zbgWAmV0DPA/8xMwWOeeGW8HyfGAJ8Fnn3LJg39VmditwkZn90jm3Lg/vS0REZMIoeJeHc+7xAWGix43B9jCAoPvjncDynjARHN8K/Bw4EB8UhvMhoB24esD+K4AIcMYIql9U1q5dy6JFizj//PM57LDD+PCHP8zdd9/N8ccfz8KFC3n00Ud59NFHOe644zjyyCM57rjjeOmllwBIJpN86UtfYsmSJRx++OFceeWVBX43IiJSSoqhhWIwc4LtlmB7OFABPJSh7MPBdgnw6GAnNLMQcBTwpHNu4GjAR4EU2YWSIb3t0j/meopB/fXidwz5/CuvvMLNN9/MVVddxZIlS7j++ut54IEHuP3227n88su55ppruO+++ygrK+Puu+/moosu4tZbb+UXv/gFDQ0NPPbYY3R1dXH88cdz6qmnagaGiIhkpSgDhZmFgW/ix0pcH+yeFWw3ZDikZ9/sYU49CajKdA7nXJeZ7cjiHEVt/vz5LF68GIBDDz2Ut771rZgZixcvZu3atTQ3N/PRj36UlStXYmbE43EA7rzzTp555hluueUWAJqbm1m5cqUChYiIZKXgXR6DuAI4Fvimc+6lYF91sO3KUL5zQJnBDHWOnvNkPIeZXWBmjw9z/oKrqKjo/ToUCvV+HwqFSCQSXHzxxZx00kk899xz3HHHHb3TNp1zLFu2jBUrVrBixQrWrFnDqaeeWpD3ICIipafoWijM7FLgM8BVzrnvpD3VHmwr9jyKygFlBjPUOXrOk/EczrmrgKui0eiwty0frlsi3fodbbR3+VaC2ZNrqKkc21Ujm5ubmT3bN8L86le/6t3/tre9jZ/+9KecfPLJRCIRXn75ZWbPnk1NzR4zd0VERPZQVC0UZrYU+AbwS+CTA57eGGwzdUn07MvUHZJuJ9CR6RxmVgFMyeIceRVKW4ohNewEldx9+ctf5mtf+xrHH388yWSyd//555/PIYccwlFHHcVhhx3GJz7xCRKJxJjXR0RExgcbfpbl3mFml+DXgLgGONc5lxrwfC2wHXjQOffWAc9dDHwbONY598gwr/MAfg2Kyc65rrT9bwLuA77qnPvuYMf3tFDEYrF++1944QUOPvjgYd7lnjbtbKeloxuAGY3V1FeXj/gcpWy0101ERPa6IVcjLIoWCjP7Jj5MXEuGMAG900PvAE40syPSjq3Fry2xkrQZHmYWMbNFZrbfgFPdgB8nccGA/Z/HDwK9Kdf3MxLpLRTFEu5ERERGquBjKMzs08C3gFeBu4EPDViSeYtz7q7g668BbwXuNLMfArvxK2XOBt4xYFGr2fhVMO8FTkzbfzVwLvADM5sXlHk78B7gMufcmny+v+Gkv9eU8oSIiJSoggcK+tZ92A/4dYbn78UvlY1z7hUzOx74T+CrQDnwJHBaNstuB+foNrNT8Et7fxA/bmIVcCHwkxzex6js7TEUIiIiY6HggcI5dw5wzgjKvwC8K4tyaxmkv8c5tws/k+Qz2b7uWElvoVCXh4iIlKqiGEMxkYXU5SEiIuOAAkWBmQZliojIOKBAUWChfl0eBayIiIhIDhQoCswKOCiztrZ2r76eiIiMXwoUBaYxFCIiMh4UfJbHuHT+aVkXrQEOHMm5f/6XQZ/6yle+wty5c4lGowAsXboUM+O+++5j586dxONxLrvsMt71rmEnybB8+XIuueQSpk+fzooVK3jve9/L4sWL+dGPfkRHRwe33XYbCxYs4I477uCyyy6ju7ubKVOmcN111zF9+nTa2tq48MILefbZZ0kkEixdujSr1xURkdKkFopx5Mwzz+TGG2/s/f6mm27i3HPP5Xe/+x1PPvkk99xzD1/84hezHvz59NNP86Mf/Yhnn32Wa6+9lpdffplHH32U888/n2XLlgFwwgkn8PDDD/PUU09x5pln8r3vfQ+A//iP/+Dkk0/mscce45577uFLX/oSbW1t+X/TIiJSFNRCMY4ceeSRbN26lY0bN7Jt2zYmTZrEzJkz+cIXvsB9991HKBRiw4YNbNmyhRkzZgx7viVLljBz5kwAFixY0Hs788WLF3PPPfcAsH79es444ww2bdpEd3c38+fPB+DOO+/k9ttv5/vf/z4AnZ2dvPrqq7pvh4jIOKVAMRaG6JYYKJ5IsmZrCwCRcIj50+tzeun3ve993HLLLWzevJkzzzyT6667jm3btvHEE08QiUSYN28enZ2dWZ2roqLvLu+hUKj3+1Ao1Hsn0gsvvJB///d/553vfCfLly9n6dKlgJ8Ce+utt3LQQQfl9H5ERKQ0qMujwPJ9L48zzzyT3/72t9xyyy28733vo7m5mX322YdIJMI999zDunXrcn+RNM3Nzcye7e8G/+tf962c/ra3vY1ly5b1dq889dRTeX1dEREpLgoUBdZ/lkfuieLQQw+lpaWF2bNnM3PmTD784Q/z+OOPc/TRR3PdddexaNGinF8j3dKlS3n/+9/Pm970JqZOndq7/+KLLyYej3P44Ydz2GGHcfHFF+f1dUVEpLiYVmccmWg06gBisVi//S+88MKoxgc451i5qbn3+4UzGxhwt9VxbbTXTURE9rohP5zUQlFgZjbgBmEFrIyIiMgoaVBmEQgZJIMg4VuM9l4LxbPPPsvZZ5/db19FRQWPPPLIXquDiIiUPgWKIuBbKHyiSDkI78XXXrx4MStWrNiLrygiIuORujzyaLTjUfI9MLNUaPyOiMj4oUCRJ5WVlezYsWNUH5IT8Rbmzjl27NhBZWVloasiIiJ5oC6PPJkzZw7r169n27ZtIz62qbWLeCIFQMeOCsrLJkbOq6ysZM6cOYWuhoiI5IECRZ5EIpHeZadH6qu/eYSn1mwH4PIPvYEjFkzLZ9VERETG3MT4U7jIVUb6hmF2xZMFrImIiMjoKFAUgYq0QNGpQCEiIiVIgaIIVCpQiIhIiVOgKAIV6vIQEZESp0BRBBQoRESk1ClQFAEFChERKXUKFEWg3xiKhAKFiIiUnoIHCjP7mpndbGarzcyZ2dohyrphHl/P4vVOHOL4P+T1zWWp3yyPbgUKEREpPcWwsNXlQBPwJNA4TNmzB9m/FFgA3DGC170KuH/AvvUjOD5vtA6FiIiUumIIFAucc6sBzOw5oHawgs653wzcZ2ZzgPnA4865Z0bwug9lOl8haAyFiIiUuoJ3efSEiRyci38fPx/pgWZWY2YFvztVRaTvn6FLYyhERKQEFTxQ5MLMDB8o2oEbRnj4j4BWoMPMXjazzwXn2+vUQiEiIqWuGLo8cnEyvrvjV8653VkeEwduB/4EbARmAecBVwCvwweUvaoy0vfPoJUyRUSkFJV0CwVwfrD9RbYHOOcedM69yzl3pXPuDufclcCxwF+Bc8zshEzHmdkFZvZ47lXeU6VmeYiISIkr2UBhZpOA9wAvOuceyOVczrkU8J3g27cPUuYq59zRubzOYPp1eWgMhYiIlKCSDRTAWUAFI2idGMbaYDs1T+fLWr9BmeryEBGRElTKgeI8/HiIa/J0voXBdkuezpc1DcoUEZFSV5KBwsyOBo4A7nDObR2kTMTMFpnZfgP2T8lQtgK/OBaMbHGsvBi4sJVzbm9XQUREJCcFn+VhZmcDc4NvpwHlZvaN4Pt1zrlrMxx2XrAdau2J2cALwL3AiWn7/2JmG4En6JvlcRa+hWKZc+7R0byPXIRDISLhEPFkipSDeDJFeVl4+ANFRESKRMEDBT4cvGXAvkuD7b1Av0BhZlXAB/HLZP91FK93C/Bu4EL8Ut9twFPAJc65ka5lkTcVER8owE8dVaAQEZFSUvBA4Zw7cYTlOxj+nh8459YCeyxU5Zz7LvDdkbzmmNq2CdpbWdy9mRWpejpC5X4cRVWhKyYiIpK9ggeKCe/Ky2HtSpYCn53xfl6qmKGBmSIiUnJKclDmuBKp6P2ywiUAzfQQEZHSo0BRaOXlfV8GgULLb4uISKlRoCi0jC0UqULVRkREZFQUKAotvYUi5VsmOuOJQtVGRERkVBQoCq1cYyhERKT0KVAUmgZliojIOKBAUWhpXR4KFCIiUqoUKAotrYWib5aHBmWKiEhpUaAoNLVQiIjIOKBAUWgZWyg0y0NEREqLAkWhqYVCRETGAQWKQuvXQuGDhBa2EhGRUqNAUWjp61Ck4oCW3hYRkdKjQFFombo8EgoUIiJSWhQoCi1jl4cChYiIlBYFikLL0ELR2a1AISIipUWBotAyTBtVC4WIiJQaBYpC0xgKEREZBxQoCk0tFCIiMg4oUBRavxYKHyQ0bVREREqNAkWhlVf2flnh/DoUaqEQEZFSo0BRaJEBLRTOkUw54kmtlikiIqVDgaLQQiEoi/R+q7UoRESkFClQFIOIbhAmIiKlTYGiGKQNzOy7hbkChYiIlA4FimKQNnVULRQiIlKKCh4ozOxrZnazma02M2dma4couzQok+nxf0fwmg1mtszMNphZp5k9b2afMjPLy5saqQwtFAoUIiJSSsoKXQHgcqAJeBJozPKYLwDbB+x7IpsDzawcuAs4ElgGvACcDsSA6cDSLOuQP+V7tlCoy0NEREpJMQSKBc651QBm9hxQm8Uxtznn1o7y9c4HlgCfdc4tC/ZdbWa3AheZ2S+dc+tGee7RUZeHiIiUuIJ3efSEiZEys3ozG00g+hDQDlw9YP8VQAQ4YzT1yYkGZYqISIkreKAYpWeAZqDTzP5hZqdnc5CZhYCjgKecc50Dnn4USOFbL/YutVCIiEiJK7VAsQu4CrgQeBfwNWAu8EczOyeL4ycBVcCGgU8457qAHcDsTAea2QVm9vioaj2c9BaKlBa2EhGR0lNSgcI5d4Vz7hPOuV875253zv0XcDiwBfihmQ03/qI62HYN8nxnWpmBr32Vc+7oUVV8OGqhEBGREldSgSIT59wO4Gf4GSLHDVO8PdhWDPJ8ZVqZvUdjKEREpMSVfKAIrA22U4cptxPoIEO3hplVAFPI0B0y5tRCISIiJW68BIqFwXbLUIWccyn8ehdHBgEi3Rvw12NsxkkMRetQiIhIiSuZQGFmZWbWkGH/vsCn8AMq/5G2P2Jmi8xsvwGH3IAfJ3HBgP2fBxLATfmsd1bKdXMwEREpbQVf2MrMzsbP1ACYBpSb2TeC79c5564Nvq4F1pjZbfjVLXcCB+EXqqoFPuic60g79eyg3L3AiWn7rwbOBX5gZvOCMm8H3gNc5pxbk8/3l5W0Lg8tvS0iIqWo4IECOA94y4B9lwbbe4GeQNEB3AocA7wbHyK2A3cD33POPZrNiznnus3sFOAy4IP4cROr8FNRfzLqd5ELtVCIiEiJK3igcM6dmGW5LnxrRLbnXQtkvNmXc24X8JngUXj9Wih8kNAYChERKSUlM4ZiXFMLhYiIlDgFimKQ3kKR0iwPEREpPQoUxSBTC0VCgUJEREqHAkUxyLAOhbo8RESklChQFANNGxURkRKnQFEMMnR5dHYrUIiISOlQoCgGGVooEilHIpkqVI1ERERGRIGiGPRroehrmdDATBERKRUKFMUgw91GQeMoRESkdChQFIOBYyicA6Arri4PEREpDQoUxSAUhnDfKugRfMuEWihERKRUKFAUi7S1KCp7V8tMDFZaRESkqChQFIu0bo+emR5afltEREqFAkWxyDAwU10eIiJSKhQoikWmFgotbiUiIiVCgaJYZGqh0DoUIiJSIhQoikW/FgofJNRCISIipUKBolhoDIWIiJQwBYpi0W9xqzigWR4iIlI6FCiKRdo6FOWpoMtDgUJEREqEAkWxUJeHiIiUMAWKYqFpoyIiUsIUKIpFhhYKLb0tIiKlQoGiWGRooVCXh4iIlAoFimKRsYVCgUJEREqDAkWxiGhhKxERKV0FDxRm9jUzu9nMVpuZM7O1g5QzMzvLzH5rZq+YWbuZvWpmt5vZMSN4vROD18n0+EPe3thIpd++XOtQiIhIiSkrdAWAy4Em4EmgcYhyFcC1wArgt8AaYCbwSeAhM/uIc+43I3jdq4D7B+xbP4Lj8yt9HYqghUJjKEREpFQUQ6BY4JxbDWBmzwG1g5RLACc65+5N32lmVwPPA/9tZtc751JZvu5DIwwgY6vfSpkaQyEiIqWl4F0ePWEii3KJgWEi2L8FuBfYJ3hkzcxqzKxyJMeMmUj6SpkKFCIiUloKHijyZA7QDewawTE/AlqBDjN72cw+Z2Y2FpXLSoYWiq54kpRzhaqRiIhI1ko+UJjZ24E3ADc65zqzOCQO3A58GXgnfgzGLuAK4H+GeJ0LzOzxXOs7qPRpo/S1THSrlUJEREpASQcKM1uIH6i5AfhiNsc45x50zr3LOXelc+4O59yVwLHAX4FzzOyEQY67yjl3dL7qvoe0FopK+lbIVLeHiIiUgpINFGY2H/gb4IDTnXPbRnuuYCDnd4Jv356H6o1cv4Wt+kKEAoWIiJSCYpjlMWJmNg+4Bz8j5K3OuWfzcNq1wXZqHs41chnGUIAWtxIRkdJQcoHCzObiw0QDcIpz7qk8nXphsN2Sp/ONTL91KPoCRVdCgUJERIpfSXV5BGFiOTAJONU598QQZSNmtsjM9huwf0qGshXA0uDbO/JW4ZHoN2003vu1WihERKQUFLyFwszOBuYG304Dys3sG8H365xz1wbl6vAtE/OAZcBBZnbQgNPdFaxLATAbeAG/RsWJaWX+YmYbgSeAjcAs4Cx8C8Uy59yj+Xt3I5B+t9FUApwDM93CXERESkLBAwVwHvCWAfsuDbb34mdxAEwB5gdfXzjIuU5i+C6LW4B3B+doBNqAp4BLnHM3ZFvpvAuFIVwGSR8gIiSJU0ZXPNuFP0VERAqn4IHCOXdiluXWAlkvPDVYeefcd4HvZnuevaq8HDp8oKhIJYiHy9RCISIiJaGkxlCMe5E9B2ZqDIWIiJQCBYpikr64Vdry2yIiIsUuq0ARjUbfHI1G9xu+ZG/5w6PR6EdGX60JKsPUUS1sJSIipSDbFop7gHPSd0Sj0a9Eo9Edg5R/D/DLHOo1MfVbLVOBQkRESke2gSLTYMhK/CwJyZf0qaPB8tvq8hARkVKgMRTFJFMLhQZliohICVCgKCb9Wih6ujw0bVRERIqfAkUx0RgKEREpUQoUxSQyYPltNIZCRERKw0gChRuzWohXrjEUIiJSmkay9PbSaDS6dODOaDSqT7x8yRQo1EIhIiIlYCSBIuv7aATUojFSGQZlqstDRERKQVaBIhaLaazF3qBBmSIiUqIUFIpJZM+FrTq7NW1URESK35gEimg0eno0Gv3dWJx7XMswhqIrkSLl1HskIiLFbSRjKIYUjUZnAx8DzgP2zdd5J5S0Fooq+ro6uuNJKsvz9k8lIiKSdzl9SkWjUQPeAVwAnAaEg6fuBa7OrWoTUFoLRZX1BYpOBQoRESlyo/qUikaj+wLn41skZtE3A+QB4NxYLLYqP9WbYNJaKCpd39gJDcwUEZFil3WgiEajIeCdwMeBU/GtEd3A7/C3Kr8DeFFhIgcVfS0UlWldHlrcSkREil1WgSIajV4GnAvMwLdGPAn8Crg+Fos1BWXGqIoTSPq0Ufp3eYiIiBSzbFsoLgJSwE+Bn8ZisefHrkoTWNrCVhVpXR5a3EpERIpdttNGXVD2w8BnotHoMWNXpQksrYWi5+ZgoFuYi4hI8cu2hWIufuzEucAngAui0ejL+LET18Risc1jVL+JJa2FIpI+KFNjKEREpMhl1UIRi8XWx2KxS4B5+IGZfwQOAP4TeC0ajf5pzGo4kaS1UESS8d6vuxIKFCIiUtxGNG00FoulgD8Af4hGo7Pomzp6WlDk/dFotAv4RSwWW5HPik4I6S0Uqb5AoRYKEREpdqNeejsWi22MxWLfBubjF7f6PVADfBp4IhqNPpafKk4gA1sogiW3NctDRESKXc738ojFYi4Wi/05Fou9B7/k9jeAtcBR2RxvZl8zs5vNbLWZOTNbO0z5g8zsNjPbaWZtZna/mZ08kjqbWYOZLTOzDWbWaWbPm9mnzGykt2jPr3AYwn2NRpFg6qhmeYiISLHL63rOsVhsC3A5cHk0Gj0ly8MuB5rwa1s0DlXQzBYA/wASwPeAZvxg0b+a2enOubuHezEzKwfuAo4ElgEvAKcDMWA6sDTLeo+N8nLo8AMyK1IJ4uEytVCIiEjRG7MbRMRisWE/3AMLnHOrAczsOaB2iLLfwYeO1zvnVgTHXAM8D/zEzBY5N+ytOc8HlgCfdc4tC/ZdbWa3AheZ2S+dc+uyrHv+RSqgox2A8mCmh25hLiIixS7blTI/MpqTx2Kxa4Yr0xMmhmNmNfgZJst7wkRwfKuZ/Rz4Nj4oPDrMqT4EtLPnzcuuAN4LnIFv/SiMfotb9XR5pApVGxERkaxk20LxK/ziVtmyoPywgWIEDgcqgIcyPPdwsB0yUJhZCD+240nnXOeApx/Frwa6JPeq5iB9caueFgotbCUiIkVuJF0eCfyU0X+OUV2GMyvYbsjwXM++2cOcYxJQlekczrkuM9sx2DnM7ALggk996lPZ1Xa0Insuv60xFCIiUuyyDRT3Am8G3g3sg+8uuCkWiw38K38sVQfbrgzPdQ4oM5pz9Jwn4zmcc1cBV0Wj0ZG01Ixchvt5aJaHiIgUu2xXyjwJOAj4Pn6FzF8Cm6LR6LJoNHr4GNYvXXuwrcjwXOWAMqM5R895hjvH2Eq/42jvoEwFChERKW5Zd3nEYrFXgK9Eo9GvA+/CT9f8FBCNRqNPAFcCv43FYm1jUlPYGGwzdUn07MvUHZJuJ9CR6RxmVgFMwbfGFE5FpjEUChQiIlLcRrywVSwWS8RisVtjsdhpwAL8OhIzgauAjdFo9I15rmOPZ/FdFZnOf2ywfXyoEzjnUvj1Lo4MAkS6N+Cvx5DnGHPllb1fVgXLb6vLQ0REil1OK2XGYrF1sVjsYuACfOtALTAtHxUbyDnXCtwBnGhmR/TsN7Na/NoSK0mb4WFmETNbZGb7DTjVDfhxEhcM2P95/MDTm/Jf+xGo7luGoyblh3qohUJERIrdqBe2Cm4O9rHgMRc/oPE3+BaArJnZ2cHx4MNIuZl9I/h+nXPu2rTiXwPeCtxpZj8EduO7XmYD7xiwqNVs/CqY9wInpu2/Gn8b9h+Y2bygzNuB9wCXOefWjKT+eVdd0/tlbU+g0MJWIiJS5EYUKKLRaAj4V3yLwGnB8c8CnwOujcVizaOow3nAWwbsuzTY3gv0Bgrn3Ctmdjz+tulfBcrxAea0bJbdDs7RbWanAJcBH8SPm1gFXAj8ZBT1z6+0FoqeQNGVSJFyjlCBbzUiIiIymGxXypyP/+A/Fz9eog34NXB1LBYbbmXKITnnThxh+Rfwg0KHK7cWv8BWpud2AZ8JHsUlLVDU0937dXc8SWX5mK2ULiIikpNsP6FeCbaPA5cAN4zhbI6JLa3Lo971BYpOBQoRESli2X5CGRDHt058E/hmNBod7hgXi8XmDldIBkhroahzfetvaWCmiIgUs5H8yRsB5oxVRSSQYQwFaHErEREpblkFilgsltP0UhmB9GmjSbVQiIhIaVBQKDZpgaI62XerFC1uJSIixUyBothU9Q3KrEp2EXIpQLcwFxGR4qZAUWzCYajsu+FpdcrP9NAYChERKWYKFMUow/LbXQkFChERKV4KFMUobS2Kut7ltxUoRESkeClQFCPdIExEREqMAkUxSl/cqqfLQ4FCRESKmAJFMUrr8lALhYiIlAIFimJUXdf7ZZ1uYS4iIiVAgaIYZWih6IqnClUbERGRYSlQFKP0+3m4ni4PtVCIiEjxUqAoRumBIqkxFCIiUvwUKIpR+rRRp3UoRESk+ClQFCNNGxURkRKjQFGMNG1URERKjAJFMUofQ6FAISIiJUCBohhlCBTq8hARkWKmQFGMKir9bcyBCpck4hJa2EpERIqaAkUxMoOq/q0UXYkUKecKWCkREZHBKVAUq5o9uz261e0hIiJFSoGiWFX1zfTQwEwRESl2ChTFKq2FonfqqBa3EhGRIlVSgcLMlpqZG+IRz+Icy4c4/ui98T6yUrXn4lZqoRARkWJVVugKjND/Aq9k2H848CXgjizPsx34Qob9q0dZr/zT4lYiIlJCSipQOOeeAZ4ZuN/Mrgy+/EWWp2pzzv0mbxUbC9V1vV/2tVBo6qiIiBSnkuryyMTMqoEzgQ3AX0ZwXMjM6s3MxqxyucjQQqHFrUREpFiVfKAAPgDUA790zmX7iTsbaAWagVYz+18zWzRWFRyVDNNGNShTRESK1XgIFOcBDvifLMuvAb4HnAu8H4gBpwOPmNniwQ4yswvM7PEc65q9Kt3PQ0RESkdJBwozOwg4Afi7c25NNsc45851zn3dOXejc+4W59yXgFOBWuAHQxx3lXNu780CydRCoUAhIiJFqqQDBb51AuDnuZzEOXc/cB9wkplV5VyrfMjQQtHSMeysWBERkYIo2UBhZmXAR4Am4Hd5OOVaIAxMysO5cpdhUOaOls5C1UZERGRIJRsogH8DpgPXOue68nC+hUACH1AKr2bPha2aWvPxNkVERPKvlANFT3dHxrUnzGymmS0KppX27Gsws3CGsu8Ajgfucs4VRzNAWpdHdaobc46m1uKomoiIyEAltbBVDzObBZwGPOqce3aQYt8BPgqcBCwP9p0E/MDM7sCvipkA3gCchV898/NjV+sRKiuDikro6iSMo8rF1UIhIiJFqyQDBXAOfrzDSAdjvgQ8AfwrvrskAqwHfgZc7pzbkMc65q66Frp8q0RtqpMdrRWknCNUpGtxiYjIxFWSgcI5dzlw+TBlzsEHj/R9L+DXnigN1bWwczvgZ3psTTl2t3fTWFNR4IqJiIj0V8pjKMa/tJketb0zPdTtISIixUeBophV9w3MrOmd6aGBmSIiUnwUKIpZtaaOiohIaVCgKGZVWtxKRERKgwJFMaup6/1SLRQiIlLMFCiKWYYWCgUKEREpRgoUxSzDHUeb1OUhIiJFSIGimFVnCBRqoRARkSKkQFHMBgkUzrlC1UhERCQjBYpilhYo6l03APFkipbOeKFqJCIikpECRTFLb6EIAgVAk1bLFBGRIqNAUczSl95O9g3G3KHVMkVEpMgoUBSziiow/09UnopT5pKAWihERKT4KFAUs1CoXytFTcp3e2imh4iIFBsFimLXb6aH7+rQDcJERKTYKFAUuwxTR3ULcxERKTYKFMUufWCmbmEuIiJFSoGi2Gm1TBERKQEKFMVOq2WKiEgJUKAodo1Ter+cn9wJQFc8SXtXolA1EhER2YMCRbHbf1Hvl4fGt/Z+vUPdHiIiUkQUKIpdWqCY27GF8pRvmdDATBERKSYKFMWupg5m7AtA2KVY2O1bKbRapoiIFBMFilKQ1kpxcNdmQPfzEBGR4qJAUQoWHNz75cHdPlBo6qiIiBQTBYpSkB4oujaDc+ryEBGRolJygcLM3CCP1hGc4+1m9g8zazOzJjO72czmj2W9czJrP6isBmBKso19ki0alCkiIkWlrNAVGKX7gasG7Itnc6CZvRe4BXga+BLQAHweeNDMjnbObcxjPfMjFIb5B8ILKwDfSrGqZWZh6yQiIpKmVAPFaufcb0Z6kJlFgGXAa8CbnHOtwf4/A08AS4EL8ljP/FlwcL9A8ZjGUIiISBEpuS6PHmZWbma1w5fs5y3ALODnPWECwDm3AlgOnBGEjuIzYKZHe3eCzm6tlikiIsWhVAPF+4B2oMXMtprZMjNryOK4JcH2oQzPPQzUAwfmqY75tX/fwMwF3duIuIRWyxQRkaJRioHiUXzXxPuAjwJ/Bz4D3J9Fi8WsYLshw3M9+2bnoY75V1sP033VIqRY2LWNphYNzBQRkeJQcoHCOXeMc+77zrnbnHPXOOfOBL4OLAY+N8zh1cE205/2nQPK9GNmF5jZ46OqdL70W49ik1ooRESkaJRcoBjEfwHdwDuGKdcebCsyPFc5oEw/zrmrnHNHj656ebJ///UotLiViIgUi3ERKJxzcWAjMHWYoj1TQjN1a/Tsy9QdUhzSWigWdW1m0862AlZGRESkz7gIFGZWCcwBtgxT9LFg+8YMzx0L7AZezmPV8mv2XJIR37gyLdnGqy+vKXCFREREvJIKFGY2ZZCnLsWvqXFHWtmZZrbIzNLHRNwLbALOTx/AaWZHACcCNwetHcUpFIb5B/V+W79xFTs0MFNERIpASQUK4Btm9pCZXW5mnzSz/2tmfwf+L/AIftGqHt8BXgDe0LMjCAufA/bFzwqJmtlXgTuBbcAle+uNjFb4gEN6vz6y8zVWrNlewNqIiIh4pRYoluO7JT4KXAF8C5iMn+VxonOuY7gTOOduBt6Jn+nxfeAr+KW8j3fOFe/4iR6L+8aFntC+iqdXby1gZURERLySWnrbOfd74PdZlj0HOGeQ5/4A/CFvFdubFhxCvH4ykd1N1Kc6STz7BO5dR2Jmha6ZiIhMYKXWQiGhEOFjT+r99qjtz7GhSbM9RESksBQoSlDomBN7vz6ufTVPryy+G6SKiMjEokBRivY7gNaGfQCodnHaH8t0axIREZG9R4GiFJmReP2be7+ds+oxkilXwAqJiMhEp0BRohpO/Jfer1/fuobVazcVsDYiIjLRKVCUKJs1ly31MwEoJ0nT/fcUuEYiIjKRKVCUsN2H9q0g3vC8xlGIiEjhKFCUsMlvfVvv1wc0raZrZ1MBayMiIhOZAkUJmzJvLq/U+JuklpFi691/LXCNRERkolKgKHEbD+hbinvaPbdAs1opRERk71OgKHFVJ57OtrC/cWpldxuJX/4QnKaQiojI3qVAUeKOOnQuv573r73flz33GNz/lwLWSEREJiIFihIXDhmve8cp3FZ3eO8+d+NVsE3rUoiIyN6jQDEOnHTYLP68/ym8VtYIgHV1wP98H1LJwlZMREQmDAWKcSAcCvF/3nww35t6KkmC25ivfB7+fHNhKyYiIhOGAsU4cfJhs9k9fR7XNSzp23nbNfD8k4WrlIiITBgKFONEWTjEmSccwG8bjua5Cr8kNy4FV30Htm0ubOVERGTcU6AYR045fA5TG2u5bNrpbA/X+J1tLRC7FLo6C1s5EREZ1xQoxpFIOMQZxy9gZ7iGy6adTrznn/e1VXDt/9P6FCIiMmYUKMaZt71uX46cP5UXKmYSm/yWvice/jssWwoP/c23WoiIiORRWaErIPlVFg5x6QeX8OM/P8efnnQc2L2F01v/6Z985hH/CIfhwMPhre+CI44Bs74TJBLw99vhifv9c6ef0f95ERGRDBQoxqFIOMTn37GYuVNr+emdSRqTHbyxY01fgWQSXnjKPxa9Dj7wcdhvgZ9q+ptlsGGtL7fqBaiph7e8vRBvQ0RESogCxThlZrz32P2ZPaWG/7y1gint2ziufTXHt6/ioO6tfQVfXAGXfgYOOMQHioF++zP/3Ox5e6vqIiJSgjSGYpw7ZuF0fnDucXRNnc2NDUfz2ZlncNbsc3jugONxoeCf37n+YaK8Aibv47+Od8OV34HurqFfqLNdM0lERCYwBYoJYP70en70seM4cFYDANvK6vhi/Cj+Y/EF7Frwuv6FjzwOLr0aPvdtiJT7fRvXwY1X7Xli5+DFp+En34YL3wdfPhv+qYW0REQmInOaSjgi0WjUAcRisUJXZcQ640n+67YVPPBi/4Wu3lW7k/fVbGfaG4/HFqettHnvH+HaZX3fv//jMGUadHdDyy548C4fNtKVReCTF8Hr3jh2b0RERAphyBH6JRUozOxA4CzgVGABUAmsAm4GrnDOtWVxjuXAWwZ5eolz7vGhji/lQAGQco7f3LuSm/6xingy1e+5ybUVLJzZwIEzGzhgZgOHzG6k/pr/giceGNmLhEJw3pfgmJPyWHMRESmwIQNFqQ3K/BjwaeB24DogDpwEXAZ8wMyOdc51ZHGe7cAXMuxfna+KFquQGR858UBOP2pfbnxwFX9+8lUSKR8qm1q7eGTlVh5Z6QdtGrB42jFcUv08te07M5+wohKOO8V3lVy7zN82PZWCn38PNr0KFoKtG/3+ZBLmHgDzDoT5B8GsuX4Ka49kEta8BM8/Ac89Drt2wIGL4bT3w777j/GVERGRXJRaC8XRwErnXPOA/ZcBXwcudM79eJhzLAfmOefmjaYOpd5CMdCWXe389sFV/P3ZDXTGM9/ufL/uJj7a/DAVLkGkqorqulrqGmqoP/Agat78NqgOlvnetQN+cNGe3SCDsZAfAFpeAeXl0N4GHYM0Mh22BE5/vw8Y+VgXY/tmuOcPfhzI6e+HusbczykiMr6Nny6PwZjZYuAZ4Ern3CeHKbscmAfsD9QCLW4EF2G8BYoeyZRj/Y5WVm5qZuWmZl7csIuXN+4iNcyVmd5QxaLZjSya3cicKbXUJjvY/4bvUrlhjBp7GibB/gf7x4JFMGUfv1ZGRWX/oOEcJOIQLvNdMD12bIE//hYevNO3iIAPEx/9XO7jPrZuhH8+BfsfBPsdkNu5RESKz7jq8hjMnGC7Jcvys4FWoApoN7O/Ahc5514ci8qVgnDImDutjrnT6jjlcH85WzvjPLNuB0+t2c6KNTt4dXvrHsdtae5gS3MH9/5zU+++6tC/8JG6h5mabGVTWQMbyhrZGGnAnONIdvDG8l3M2b2est0ZulEmTYVDXw+HvR7qJ8PfboMnH+y7D0nzTnjqH/6RriwC1bX+DqvdXf7hnA8UDZOhcTJU1fhZKclE/2NbdsGPvwUnnApnfMKXA3+8c/0DSSZN2+AP18MDf/XdPeC7aI4/1Y8jKSuDzethywbf9QNQUQWVwWP6bNh3wfCvI7I3rXgI7rjeh/iPfA4ap+z9OsS74aVnYNpM//9EilrJt1CYWRh4ADgaOMw599Iw5X8JbMS3aCSBY4DPAN3ACc65Z4c6fry2UGRjd3s3/1y/k+df28nzrzXxyqZmuhKp4Q8cxCEz6njD3AYOn1XLwikVlJdH/PoXA7s0tmyAv94Cj90LHe05vos0Cw+FrZugualvX1U1hCPQ3elDiZkPKnUN/lHbAPWNUD/JP7ZsgOV/8K0hmVjIh5zh1DXAIUf5MHXAIf46lA2R93fv8kHrqQf9NTn8GHjTaf6Xfy7i3X6l1MYpg3+A9PzO2JtLsjs3/paA72jzQbhnenY2UknYthnWr/Fdi22tMGc+7L8IZszJTyjt6oQbr4T7/ty3b9Z+8KXv7d2uwZXPw69/6MM4wNyFcMyJsOQt/g+PgVJJ30q4fq3vhj3oiP5jtMYL52DFw7DuZX8tBlt0MJX0Px91Dfl89fHd5WFmy/CB4CLn3HdGeY43AcuBvzvn/mWQMhcAF3zqU596PUzMQDFQIplizdYWXtywk5c2NNPU1kVnd4KO7iQd3b4VoLq8jKqKMqrLw7yyeTdNrZkXyIqEQ+w/vZ5kKtV7fDyZYkZjNftNrWXfqbXsO6mK6R3bmbRlDTUbVlK+cQ3W0oy1t2Dx7j1PGg73dWukW3govPNsWHSEv1Hab34Mj9+Xn4syZ74PGZnqMxIW8r80p073ASYSjDOJlMNrq+Hl5/YMKuEyeP3xcPzboLYOev5ru5S/DsmEv1dLKulbRqpq+lpjXngKnn7EryPSs0DZ/ovgqOPhyOOhqx1eWAEvPA0rg9eeOh2mzgge02FK8Jg6HWrqRh8AWpph3Up49RV4dZV/bN3ou7f2PxgWHOzrVlnd1xoV74ZJU2DGvnt+qG7d6N/f1k3+3K27obXZf5gfdDgcfKQ/31ABrkd7Kzz9MDzxoK/XpKn+33zOfJg917/nrs6+hd6qaoIWsilQW+/f17OP+UHHr632dTj8DfCGE/22vGLP14x3+w+Q+/8Crzw/+CJzVTV+sPOBh/l79cw/cPCwkkr5f8/nHvM/W/vM8o9U0t+ZeMuGPY/Zd3/44nf9z1ZPvZ5+xP8fOuAQP8g6/d98xxZ4/knY9Jo/r3P+dSMRPybq4CMglOEDv6sTfvcr+NvvM98h2cz/zFXX+p+z6hrYud2HrPTF9SZNhRPe5oP25Gl9+7NteQT/8/LaKtjV5H/ucmklad7p/++8/CysfgEqa+CNJ8PRb/Zdtuk6O6Crw//Rkn5NX34WbvkFrA4a00Mhf0+mfzur/1i2B/7qf172XQCfuWT0dd7T+A0UZnYp8A3gKufcJ3I81z3Am4C6oWaKTOQWilwlUykeX7WNO1es5+GXt/TOLsmH8lSC2lQnKQvRZWVU19YwpbGa+Y3lHFrnWFCVYE64i8qZs/0sk4Efdo8uhxt+6n+BjMa8A+G95/gPp44235ry4F3+P35ZBPaZCdPn+F9I4XDwodPhfxm/8vzoX7dYVVb79zp9tv/LefI+/oMkHPYfIhYKAk7ch5yWZv8X19qXYXu2PZcZVNf2ja/ZvROee6Kvm2koFVWw3/4+eHUFrVPJpP8lXVvvP7g62+HFZ/bsMsuXymofcqdOh0nTfEBatxIevNsHoJGKlPsPwTn7w8x9YeZ+UFMLj9/vfzabtg5/joMO7x9e5y2E874Mj9zj16lJ/7mta/T1r63zY4kyhZJ0k6bCsSf7v7K7u2BL0C346L1+0HSPikr/bzFYK+BwLOQDX1eHD4Rtrf7ncO5COOBgOOBQ/3PatM23/mzfDJtf84Fx5/b+51pwMBz7Vjj6Tf6D+5V/+v+/a1/2/5+TCYjH/TYU8iG/ZxxXpi5e8D+zx/2LnwG3+kV/zvVr/DWvrfehYO4BsPFVf3PHTOonwanv9fdfevrhvq7XUAi+e03mFp1RXs0hnyzVQGFmS4FLgF8C541kYOUg5/slcA4w2zm3cbByChT5sbu9mydXb+fpdTt4Zu0O1jcNu4RIXjRUl1MZCVMRCVMZCVMeCVNeFqI8HKI85JiWbKe8pprKmmqqa6tprClnblWKWWVxIh2t/hfo7p3BY5f/RXfkcfC6YzP/Rd7Z4VsWMv0l1iOV8n8FPf+k/0t683r/y2qoH2kzWHgYvP4E/5fpvX+CVf/M+foA/q+5XTv6finJ2Mi2O2yghkkwe75v6q6u8aFj1Yt+LFC+VFTBh6J+SvhDf4Nf/vfQP49j5bCj4ezP+q7IJx/0QebFpwevS8+1eW11fq9HsSmL+G6oV1cNXa62Hj7+VTj0qHy98vgLFGZ2CbAUuAY417nR/K/c45wP4MdT1DnnBr0phQLF2Ni+u5ONO9uoiISpKi+jurwMM9jQ1Ma6ba28tr2VjTvbaO2M09aZoK0rTntXgrJwiKryMh8OykLs7oizfXcnqTz/XIfMmDWpmpmTqwmnBYeBr+KAVMrhnCMZ1GFKbSUzGquZOamaGZOqmTu1lvrqYfrN493+L6btm30rRrzbr1Aa7/IBYvGSPcc4vLYalv/Rr+XRWzPz4SMc9n8plZX5D7KuDt+S0t7m/zqcM9/frv6IY3y3Qevuvqb9F1f4D5iDj/B3pz34df6vqu2bfWvCtk2wY6tv4t6x1e/rymY5mEGURfzdb+ce4P8622+Br9Pm9b6peNUL/hepS/kugkiFf3+bXs3c0lNe4f9y3v9g331U1+h/0e7a4QPcP58cWavIvIVw1An+w273Tv/X5Po1vn7hMqis9K0N5RX+r+FdO/w4nZZdPqwderQ/9uAjoGm7bx17dLnvmhnM5Gm+6f64f/FdPwM556//yud9s/hLzwx9PvDX4JiT/If11o3+sXO77zb5wAW+C6THvX/yXSGZ6jV3oW/Kb93d/7lIuZ/mvfCwvllYoWBdmkfuGbpVrrrWD5A+7pQ9g3pnOzTv8v8v2lv8tqbOd8k0TPZlEnE/qPTeP/mundEqi/j/GzV1mQd0j/Rc8w+EhYt9t+uGtb5+mVrQeqbUD/x/ZOZbSN59tm/1e/x+uOmqPVtSDjoc3ny677IcyRid4Y2vQGFm3wS+BVwLnDNYmDCzmUAD8Kpzrj3Y1wC0OueSA8q+A/gD8Gfn3JD36lagKH7JVIodLV1sae5gzZbdvLK5mZWbdrNuWwvJPHaz5GJGYxULZzaycGYD1RXhICQlaO+K0xVPEU/2PcpCRl1VhLqqcuoqI9RXl9MQPBpryqmvKqemsozwgD5h5xzdiRSJVIqaisjee3PO+Q+Lzet9M/bm9f6DN5kIxnIkfRgoi/SFnIpK/4t73oH+L++yUdTXOT9OYtU/fRN0ZZXvgjrgkKF/qTrXF4rKy6G80j9Cob4PrLZW/yF14GF+nMhor8tg40qc6xto2bQddm7zHxIVlX58xWGvH7qVK5Ombb4JfdOr/t9g06uwc4cPACec6sPjSD5s/n473PAz/2+38FB467t961w47FuzNqz1H96d7f6aLzxs8PMnEn78xoN3+QBc3xh0Cc7y28VLfODJh6Zt/nrW1EF1nQ8r7a0+mK4Kuiyad/pugWkzfZfTtJk+oMzYt29gZ0uz78p86G9BnSf563DAof79Nk7xP7dlZX6bSvWNW0rE/eDIgdcjlfKB9qG/+Z+x+Qf6c+2/yIf47Zv7xhGlUn5Q6sBF/jo74C83+XE5CxfDW0739R4b4ydQmNmngR8DrwIXAwPDxBbn3F1B2V8BHwVOcs4tD/a9G/gBcAd+VcwE8Ab8ct5NwPHOuZeHqoMCRemKJ1O0dsTpiifpjCfpjCf6PrwTKboTfn9LR5yWjm5aOuNs293Ja9tb2byzfY/WiGJTEQlTU1FGpCxER1eC9q5E7ziVqXWVHDSrgYNmNzJ3Wh0727rYsKON13a0sbW5g/KykA8tlT64TKmrZHpjFTMaq9inoYqG6grCoXE2y0JGbutGH34m+hTORMIHjfE282h442odip47V+0H/DrD8/cCdw1x/EvAE8C/AtOBCLAe+BlwuXNumFFEUsoi4RCTajOMos9CZzzJ+u2tbNu9Z2/YwN8pIbOgdddIpRzbWzrZtLOdzTvbe7twBt5HJR+64km6BlntdHtLJ9tf6uTBl0Y/4LGqPEx1RRk1FZHe8ScVZSEiZWHCBvGUI5FMkUimCIWMusryoGUlQmNNBftNrWW/qbVMq6/EJt4v4vEhvRtkIstmRtAEVFItFMVALRSSq3gyxdqtLazc1Myqzc2kHNRUlFFTGaGmoozK8jBloRCRshCRcIh4MhW0mviWk+b2/o/d7d10dCcyrmoaCYd6X7NYVJeXMXNSNeGw+fAFlIVD7Du1lgNm1LNgRj1zp9XRFU+yq63/e+15/62dccrCIaor/Hib6ooy6qoi1Ff5rqD66nIaq8uprihTeBHJn3HVQiFS8iLhEAtnNrBwZv4WnHHO0dGdpL0rQXci6T9oK8ooLwuTTKV4dVsrL23cxUsbm9nQ1MaU2gpmT6llzuQaZkyqJpnqCy27O7rZtruTLbva2bKrgy3N7bR25m+qZHt3glVbdu+x/9lXmzKUzk1Pq1RjTTnlZeHeVpyueJKuRJJE0N0VTzrCIWNaQyXTG6qZ3ljF9IYqZk+u8Y8pNVSV+1+Xzjm6Er4lpkaBRaSXAoXIOGBmvSFioHAoxPzp9cyfXs9pR47u/Cnn6OhO0Nbpx2Z0xpN0J/wHc3cihXOOsnAoeBjJpPMBpbOblo44W5s7eHV7K+u2teQ1nAwnnkyxtbmDrc3DzzpJJR0bm9rZ2JR5Nda6qgiJZIrO7mTveJpIOMQ+DVVMa6hkWn1Vb4tQj/qqCFPrq5hWX8mUOr94UWtnvPfR3NbNzrYudrV109TaSXci5bvLzDAzairK2G9qLfP28cviz5pUTaQsRDgUIhwykqkUu9q62dHSSVNrF53dSeZPr2PfqbWEFHRkL1OgEJFhhcyoqYjkPFvEOUdTa1cwFsX5RQuBts44a7a2sGqzn5Wzsamd6ooyGmuC2SxBN0Z9ld/WVUVIphxtXXE6upK0dfW1rvR0j+xq6x50TMlotHTsubBSPJliQ1MbG8ZwHZVHVmZegKonLmTqtK6rinDInEkcOKuRVMrR0tlNa0ecju4kMydVs3BmAwfOamDWZL+64u523yq1o6WTSDhEY01F77U3g7bOhJ+y3ZUgHDKm1ldSVxnZo3WmpwtdrTYTkwKFiOw1ZsaUur6/1tMtOaBvfQXnXF4+lDq6E+xs7WJnWxfJlAvWK/GLmkXK/DiV8rDfdidSvV08W3Z1sGlXOxt3+LCwaWd7v5VdI2HfQtCZx8AyUkONfmvpiPPIyq2DhpEelZEwyZQb1RibikiYaXWVVJaHgynPPnQY+HVXJlcza1INU+oqSCQd3Ykk3ckUqZQLpjxXMLm2gobqcsqC6xkyIxzyrW01lREqykIKJyVEgUJEik6+PkSqysuomlzW+5f40GVDzNunjnn71O3xXDKVYnd7nPJIiMpIuHfNj7ZgavGW5nZ2tHT1W1DNOceutm627+5ke4v/6z8cMmoqI9RWlFFdGaG+KsKk2gom11TQWFtBVXkZzjlSzi+QtrOti3VbW1i3rYW121rZ0dJJMphN0/NKDdXlTK6tYHJdJeGQ8dKGXTS3Z3cvmVwCUVc8OegKt+ub2oLnto36/ABlwfXys4vKegfhJlKO9q4EHd0J2rsT1FVGev/t5u9TT1V5uLc7aWdbNwbs0+CnQU9vrGZKXcUe67YM1DNWprM7QVc86VfXLS9TyBmCAoWIyDDCocxTjmsqI9QEH2Zj5tDMu/0ibS7jgmbrd7Txz/U7WbethcpIGbXBGiORshDrtvkZRi9vbO4NHrWVEabVVzK5rpJkMtU7rmN38HxNZYTaSj9luDuRZNvuzr3SOpNIud4urKFsoYNXNu850HcwZSFjRmM1s6bUMGtSNQ3V5UEw7GDLrnaaWrvo6EpkbAUyoKqijBmN1ew7pYZ9p9Yye3INzjlaO+O0dCZo64zjgHDICJsRDhvhUIiykP86Eg5RVxlh1uQaZk2uob5qz+6jXCVTjpaObhprRjdVfjQUKERESpBfaGzPDyEz83fnnVo75PHO+Q/ryuAv70ySKdc7SHTgsW1dCbY1d9CVSPWGjZrKMpIpP7h10842Nu5sp7m9u7dbqbzMrzrZ3N4zGLWL5vZukklHyrne7peeAcBjNd05kXJprSgj44D2rgSrt+xmdYbZSqNRW1lGY3UFiVSKRMqRTDrCYWNSTYVvwQpar1o6utndEaelvZuO7iRVFeFgbFMZ5ZEwze3dNAUDdHe1dVMWNm7/6ml7rUVFgUJEZAIys2H/eh1sdVQzo7YyQm1l5kG6C4L1RHLVnUjS2ukH3rZ3p93DJxSiKuj+qCoPs6OlkzVbW1gTdA/FkykmBQNLG2sqSKUcW5s7ghaIDna2DXIL+AHKy/y9giJlIbqDFXa7E/kPOa2diYyzn7ZnWEhvJLoTPvgN9u+UbwoUIiJSlMrLwkyuDcPQjS3MmlzD4rlThi6UpqM7wcamNjY2+dVrWzvjTK33a5D0TAOuqdjz/jjgx9O0dibY0NTGa9t7blzYTiQcorayrDdo+Wm9vtUlkXIkUykSSedbIZIpmlq62NDkW3HyORspXV1VhJaOuAKFiIjIWKgqL2PBjAYWzBj54nLhUKj35nyHzJmUc116plK3dcYJh0O9M4jiyZSfodTaxY7WLjrjCeqryntXhK0qD9PR7adMt3X6tWF6B+jW+q6Sni6mvUWBQkREpECGmko9o7G6ADUavaHnzYiIiIhkQYFCREREcqZAISIiIjlToBAREZGcKVCIiIhIzhQoREREJGcKFCIiIpIzBQoRERHJmQKFiIiI5EyBQkRERHKmQCEiIiI50708RikajRa6CiIiInuTi8Vime9pj1ooREREJA/MOVfoOghgZo87544udD1Kna5jfug65oeuY37oOubHWF9HtVCIiIhIzhQoREREJGcKFMXjqkJXYJzQdcwPXcf80HXMD13H/BjT66gxFCIiIpIztVCIiIhIzhQoREREJGcKFAViZiEz+4KZvWhmnWb2mpn9t5nVFLpuxcjMDjSzb5vZw2a2zcxazGyFmX090zUzs4PM7DYz22lmbWZ2v5mdXIi6FzMzqzazNWbmzOzHGZ7XdRyEmU02s++b2SvB/+FtZnaPmb1pQDldw0GYWa2ZXWRmzwb/p7eb2T/M7BwzswFlJ/x1NLOvmdnNZrY6+D+7dpjyWV+zfHwmaaXMwvkh8Fngd8B/AwcH3x9pZqc451KFrFwR+hjwaeB24DogDpwEXAZ8wMyOdc51AJjZAuAfQAL4HtAMfBz4q5md7py7uwD1L1bfBqZmekLXcXBmNhdYDtQCvwBeBhqAw4HZaeV0DQdhZiHgz8BxwK+BZUA18EHgl/jfiV8Jyuo6epcDTcCTQONQBUdxzXL/THLO6bGXH8ChQAq4dcD+CwEHfKjQdSy2B3A00JBh/2XBNftM2r6bgCTwurR9tcA64CWCwcgT/QEcFfyy+ffgGv54wPO6joNfu/uB14CZw5TTNRz82rwx+Ln74YD95cBqYJeu4x7XbP+0r58D1g5RNutrlq/PJHV5FMYHAQOuGLD/aqAdOGtvV6jYOeced841Z3jqxmB7GEDQPPdOYLlzbkXa8a3Az4EDgSVjW9viZ2Zh/M/bX4D/zfC8ruMgzOzNwAnA95xzm8wsYmbVGcrpGg6tPthuTN/pnOsGtgNtoOuYzjm3Optyo7hmeflMUqAojCX4NPho+k7nXCewggnynyNP5gTbLcH2cKACeChD2YeDra4vfAFYBHxmkOd1HQf39mD7qpndAXQAbWb2spml/+LVNRzao8Au4Mtm9n4z2y/o8/8O8HpgaVBO13HkRnrN8vKZpEBRGLOA7c65rgzPbQCmmln5Xq5TyQn+yv4mvtn++mD3rGC7IcMhPftmZ3huwjCz+cC3gG8759YOUkzXcXAHBdurgcnAR4HzgG7gWjM7N3he13AIzrmd+L+im/DN8+uAF/Fjpf6Pc+7qoKiu48iN9Jrl5TNJgzILoxrI9A8H0JlWpnvvVKdkXQEcC1zknHsp2NfT9Jzp+nYOKDNR/RRYA/xgiDK6joOrC7YtwElBEz1m9jt83//lZvZrdA2z0YofC3A7fgDhZHyguN7M3uWcuwtdx9EY6TXLy2eSAkVhtAP7DPJcZVoZGYSZXYpvrr/KOfedtKd6rltFhsMm/LUNmuRPBd7snIsPUVTXcXAdwfaGnjAB/i9uM7sd+Ai+FUPXcAhmthgfIr7gnPtZ2v4b8CHj6mCmgq7jyI30muXlM0ldHoWxEd+ElOkfeza+6UmtE4Mws6XAN/BTyz454OmeAV6ZmkB79mVqBhz3gp+3HwB/Ajab2QFmdgAwNyjSEOxrRNdxKOuD7eYMz20KtpPQNRzOF/AfVjen73TOtQN/xP9czkPXcTRGes3y8pmkQFEYj+Gv/RvSd5pZJfA64PEC1KkkmNklwCXANcD5LpjblOZZfNPdGzMcfmywnajXtwqYBrwDWJn2WB48f1bw/fnoOg6lZ+DanAzP9ezbiq7hcHo+2MIZnitL2+o6jtxIr1l+PpMKPa92Ij6AxQw95/esQtexGB/4AZgOHyZCQ5S7GT//+oi0fT3zr19mgsxZz3BdIsD7Mjw+FVzXPwffH6jrOOR1nATsxrdU1Kbtn4kfE/By2j5dw8Gv4w+Dn7svD9jfiP+LuQko03Uc9PoNtw5F1tcsX59JuttogZjZMvwYgN/hm6B7ViV7EDjZaaXMfszs08CPgVeBi/E//Om2OD+Ai6AZ/1H8apo/xP/y/zj+P807nHN/3Vv1LgVmNg8/SPMnzrnPpO3XdRyEmV0AXAk8D/wPfjGmT+FDxb865+4MyukaDiJYbfRJfEC7Dv+7bzL++swDPu2ciwVldR0BMzubvi7KC/E/d/8dfL/OOXdtWtkRXbO8fCYVOmVN1Ae+me+L+BXLuvD9WT8g7S8ePfpdr1/hk/Jgj+UDyh8M/B4/z70deAA4pdDvoxgf+F/ee6yUqes47HV7L35Ofxt+xsedwPG6hiO6hgvwy26vDz74dgP3Ae/Vdcx4vZZn+ztwpNcsH59JaqEQERGRnGlQpoiIiORMgUJERERypkAhIiIiOVOgEBERkZwpUIiIiEjOFChEREQkZwoUIiIikjPdbVREJqxoNLoUf2+Yk2Kx2PLC1kaktClQiMioRaPRbFbG04e1yASgQCEi+fCtIZ5bu7cqISKFo0AhIjmLxWJLC10HESksBQoR2WvSxyzg75r4eWAR/uZafwAuisVimzMctxB/l9m3AtOA7cDdwKWxWGxlhvJh/J0VzwYOw9+VcQP+5krfHeSY9wFfDsp34m/29cVYLLYhh7csMmFoloeIFMIXgJ8BTwNX4O9weC7wj2g0Oi29YDQaXQI8DpwFPAZ8H3+Xzw8Dj0ej0aMHlC8H/gL8FNgXuB74f8ATwHuA4zPUJwr8Bt898xPgOeAM4O5oNFqR65sVmQjUQiEiOQtaHjLpjMVi/5lh/+nAMbFY7Km0c/wQ32Lxn8B5wT4DrgHqgbNisdh1aeXPAH4L/CYajR4Si8VSwVNLgVOAO4D3x2KxrrRjKoJzDXQasCQWiz2bVvZ64IPAu4CbBnvvIuKphUJE8uGSQR5fHaT8telhIrAUaAY+lNYqcBy+S+Sh9DABEIvFbgQeAA4CToDero4o0AF8Mj1MBMd0xWKxbRnq8//Sw0Tg6mD7hkHeg4ikUQuFiOQsFovZCA+5N8M5mqPR6ArgLcDBwArgqODpvw9ynr/jw8SRwH348NEAPBKLxTaOoD6PZ9j3WrCdNILziExYaqEQkULYMsj+ngGZDQO2mwYp37O/ccB2pAMpd2XYlwi24RGeS2RCUqAQkUKYPsj+GcG2ecB2RoayADMHlNsVbGePumYiMioKFCJSCG8ZuCMajTYAr8NP2Xwh2N0zzuLEQc7Ts//JYPsiPlQcHo1GZ+VeTRHJlgKFiBTC2dFo9MgB+5biuzhuSBtM+SB+SukJwToRvYLv3wy8jB+cSSwWSwIxoAr42cApn9FotHzgtFQRyQ8NyhSRnA0xbRTgtlgstmLAvj8DD0aj0Zvw4yBOCB5rSZsZEovFXDQa/ShwF3BjNBr9Pb4V4iDg3fgFsT6SNmUU/DLgxwD/BrwcjUb/EJTbFzgV+BLwq1G8TREZggKFiOTDJUM8txY/YyPdD4Hf4dedOANoxX/IXxSLxbamF4zFYo8Ei1t9A7++xL/hV8q8Ab9S5ksDyndHo9HTgE8CHwE+ChiwMXjNB0b65kRkeOZcNjcLFBHJnW4XLjJ+aQyFiIiI5EyBQkRERHKmQCEiIiI50xgKERERyZlaKERERCRnChQiIiKSMwUKERERyZkChYiIiORMgUJERERypkAhIiIiOfv/y+84pNC7YysAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 576x432 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div class=\"comment\">Saved: ./run/figs/BHPD2-01-history_2</div>"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg4AAAGdCAYAAAB6oftJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABFxklEQVR4nO3deZxcVZ3//9entl6TzsISEmRfEgmLQhTUQUAElK+ogyOgIKDAaAkIMz/HdRCXhygOy4iUKM6MouAAijoMKIrKJsgiE4zIKgRIAiH70t3VtZ3fH+dW53blVqc66VTV7byfj0c9bvetc2+duul0vfts15xziIiIiDQi0eoKiIiISHwoOIiIiEjDFBxERESkYQoOIiIi0jAFBxEREWmYgoOIiIg0TMFBREREGqbgICKbZGbfNzNnZndtxrFvN7P/MrNnzGydma03s2eDcx7T4Dn2NbNvmtmC4BxDZvaSmT1kZt82s5PMbFqdY7vN7Hwz+72ZLTOzgpktN7O/mNktZvYJM9tvrO9LZFtlWgBKRDbFzL4PnA7c7Zw7osFjpgHXA8eFdg8ADugJ7bsD+IBzbmWd85wDXAVkgl0OWA10Ax2hohc6566sOXYv4FfAnqHd/UAFmBTa95hz7qAG3pbINk8tDiIy7sxsCnAfPjQMAV8BdnfO9TjneoFdgS8CeeBY4L7gmNrzvBm4Bh8a7gTeCnQ656YBXcA+wLnAA/hAET42BfwcHxpeAT4GTHfO9TrnJgPTgROA64DB8Xv3IhObWhxEZJPG2uJgZjcD78N/IL/DOXd3nXKH41sEuoCbnXPvr3n+v4GTgD8Dr3fOlUd5zS7n3GDo++OAXwbfznPOPdLosSJSn1ocRGRcmdkh+NAAcFG90ADgnLsH+ELw7T+Y2cE1RfYPtr8cLTQE56r94K8eu3S00FDnWBGpQ8FBRMbbPwbb1cDVDZT/FrCm5thas7agPtPMrHMLjheREAUHERlvRwTbXzfyl3xQ5tc1x1ZVWwpOMrO/H2M9qsemgWvMbNJohUWkMQoOIjJuzCwN7BV8+9gYDv1zsN07GNRYdSl+JkYa+KmZLQymdn7MzA42s2S9Ezrnfg9Uu0lOB142s/81s381s+OiBmOKyKYpOIjIeAqvpbBiDMctjzqHc+5x4Gjg8WDXrsAZQA7forDCzK4xs9fUOW911kQFPwX0eOBL+EGTK4K1Hd45hnqKbPMUHERkPNl4H+ecewA/0PEI4OvAPcDa4Ok+/LiIBWb2dxHHrnXOnQ7sDlwI3AK8EDydCM55m5ldtpn1FtnmKDiIyHgKtzJMH8Nx4bIbLQTlvLudc592zr0V3yrxFuAH+PUb+oAbzawr6uTOuRedc1c65050zu2Gb7n4p9Br/ZOZvXsM9RXZZik4iMi4cc4Vgb8F3x44hkMPCLbPOOdKDbxO2Tn3B+fcGcBFwe6dGLlK5WjHv+icuwI4DD+GAuDDY6ivyDZLwUFExtvvg+0x9VoAwoIy1XtW1F3zYRT/Efp6n7Ec6Jx7Gr/C5ZiPFdlWKTiIyHj7brCdAny8gfLn4rsaAL6zGa/XH/q6sAXHb86xItscBQcRGVfOuYfxgxABvhQsKx0pGND4xeDbn9au8GhmR4w25TLwgdDX80PHzjWzGaMdaGY7AkfVHisi9Sk4iMhYpM1su0080sBZwFP4e1D82sy+ZGa7VE9iZq8xsy/gF37qCsqeHfF6/wY8a2YXm9m84NyYWcLMdjezS4BvBmXn42dcVB0BPG9mPzSzd4Vvu21mk83sg/huij78dM1vjcP1EZnwdJMrEdmk0E2uGnGkc+4uM5sO/Bh4e+i5fvwsiN7QvjuBk51zG637YGYPAIeGdlXwy1P34heFqnoCeKdzbmHo2H/E31kzbH3w+uFVJPPAR51zP2jo3Yls41KbLiIiMnZBEDjGzI7Fdye8BZiBX7PhOeAPwA3OuV+Ncpoj8bfdfhswD78q5RSghL9V9mPAz4AfOedGjFFwzn3HzB4C3hG89muD10/ip40+A/wOuDYcOERkdGpxEBERkYZpjIOIiIg0TMFBREREGqbgICIiIg1TcBAREZGGKTiMIpvNumw2q9GjIiIiAU3HbIzCg4iIbCvq3uYe2qTFwcxcncf6iLL7mtnPzWyVmfWb2b1mdlSd8ybM7EIze9LM8mb2kpldZmY9W/9diYiITDzt1OJwLxtujlNVDH9jZnsC9+MXf7kUv4Lc2cAdZvYO59ydNcdfAZyPXyDmMmBO8P3rzOxo51xl3N+FiIjIBNZOweE559yPNlHmEvyqcQc75+YDmNl1wOPA1WY22wUrWpnZfsB5wC3OuROrJzCz5/Fr258M3DDeb0JERGQia4uuiiozy5hZb53neoATgLuqoQHAObce+B6wD35J2qpT8P00V9ac6lpgADh13CouIiKyjWinFof34T/Mk2a2DLgR+Lxzbk3w/AFAB/BAxLF/DLbzgIdCX1dC3wPgnMub2XxGhowxKRaLLFq0iHw+v7mn2CZ0dnay8847k06nN11YRERioV2Cw0PAzcCzwGTgncC5wFvN7E1Bq8LMoOziiOOr+2aF9s0EljvnhuqUf5OZZWpvjANgZucA53zsYx+LrOyiRYuYNGkSu+22G2ajDj7dZjnnWLFiBYsWLWL33XdvdXVERGSctEVXhXPujc65f3PO/dw5d51z7mTgc8D+wCeCYt3BNioI5GvKVL+OKluvfLg+33XOHVKvvvl8nunTpys0jMLMmD59ulplREQmmLYIDnV8AygAxwffDwTbjoiynTVlql9Hla1XfkwUGjZN10hEZOJp2+DgnCsCS4Dtgl1Lgu2siOLVfeFujCXAdmYWFR5m4bsxNuqmiIve3sgxpCIiIltV2wYHM+sEdgaWBrsW4LseDosofmiwfSS072H8+3tDxHkPqikrIiIiDWh5cDCz6XWe+jJ+8OatMDzt8lbgCDM7MHR8L3AW8AwjZ1DciF8q+oKa856NH9tw/ThUv+Wcc3zyk59k7ty57L///tx4440AvPzyyxx++OEcdNBBzJ07l3vvvZdyucwZZ5wxXPaKK65oce1FRCRu2mFWxefN7FDg98CLQC9+VsWRwIPAVaGynwHeBvzazK4A1uKDwCzg+OriTwDOuQVmdjVwrpndAtzOhpUj72acFn869su3jcdpIt3xr8dvsswtt9zC/Pnzeeyxx1i+fDnz5s3j8MMP54YbbuDYY4/lc5/7HOVymYGBAebPn8/ixYv5y1/+AsDq1au3Wt1FRGRiaofgcBfwWuB0YDpQxrcefA643Dk3PCzfOfesmb0Z+BrwaSADPAocF7HcNPjWhoXAOfhBlsvxQeSiibLc9H333ccpp5xCMplkxx135K1vfSsPP/ww8+bN48Mf/jDFYpH3vOc9HHTQQeyxxx4899xznHfeeRx//PEcc8wxra6+iIjETMu7Kpxzv3DOHeucm+Wc63TO9TjnDnLOfTUcGkLln3DOvds5N8U51+2ce0ud0IBzruycu8w5t69zriN4jX8Kuj0mhFAjywiHH34499xzD7NmzeK0007juuuuY+rUqTz22GMcccQRXH311Zx11llNrq2IiMRdO7Q4xFoj3QkAK9blWbHO56BpvR1sN7lrXF7/8MMP5zvf+Q6nn346K1eu5J577uEb3/gGL7zwArNmzeLss8+mv7+fRx99lHe+851kMhlOPPFE9txzT84444xxqYOIiGw7FByaJLykQXQbweZ573vfywMPPMCBBx6ImXHppZcyY8YMfvCDH/CNb3yDdDpNb28v1113HYsXL+bMM8+kUvG9NJdccsk41kRERLYFVq+pWyCbzTqAXC43Yv8TTzzBnDlzxnSu1f1DvLpmEIApPR3s0Dc+LQ7tbnOulYiItNSoq/e1fIzDtiL8r6CwJiIicaXg0CTh5ZeVG0REJK4UHJokPMahouQgIiIxpeDQJBbqrFBsEBGRuFJwaJIRsyrU4iAiIjGl4NAkI4ND6+ohIiKyJRQcmmTE4MgW1kNERGRLKDg0SSunY/b29tZ9buHChcydO7eJtRERkThTcGgSTccUEZGJQEtOb6mzjmuoWAewz1jP/b1fRe7+1Kc+xa677ko2mwXg4osvxsy45557WLVqFcVika985Su8+93vHtPL5fN5Pvaxj/HII4+QSqW4/PLLOfLII3n88cc588wzKRQKVCoVfvrTnzJz5kze//73s2jRIsrlMv/6r//KSSedNNZ3KCIiMaPgEEMnn3wyF1xwwXBwuOmmm/jVr37FhRdeyOTJk1m+fDmHHnooJ5xwwoiWjk25+uqrAViwYAFPPvkkxxxzDE8//TTXXHMNn/jEJ/jgBz9IoVCgXC5z++23M3PmTG677TYA1qxZM/5vVERE2o66KmLoda97Ha+++ipLlizhscceY+rUqey000589rOf5YADDuDoo49m8eLFLF26dEznve+++zjttNMAmD17NrvuuitPP/00hx12GF/96lf5+te/zgsvvEBXVxf7778/d955J5/61Ke499576evr2xpvVURE2oxaHLZUne6EWuVKhb+9shaAhBl77bRlH7Tve9/7+MlPfsIrr7zCySefzPXXX8+yZcv405/+RDqdZrfddiOfz4/pnPUGbX7gAx/gjW98I7fddhvHHnss3/ve9zjqqKP405/+xO23385nPvMZjjnmGC666KItek8iItL+FByaZLynY5588smcffbZLF++nLvvvpubbrqJHXbYgXQ6ze9//3teeOGFMZ/z8MMP5/rrr+eoo47i6aef5sUXX2TfffflueeeY4899uD888/nueee489//jOzZ89m2rRpnHrqqfT29vL9739/HN6ViIi0OwWHJqmdjumcG9P4g1r77bcf69atY9asWey000588IMf5F3veheHHHIIBx10ELNnzx7zObPZLB/96EfZf//9SaVSfP/736ejo4Mbb7yRH/3oR6TTaWbMmMFFF13Eww8/zCc/+UkSiQTpdJpvf/vbm/1eREQkPkzLH9eXzWYdQC6XG7H/iSeeYM6cOWM+3zMvrxnuDthrRh+JxOYHh7jY3GslIiItM+qHkwZHNtGIZae1fqSIiMSQuiqayN8h0weGZjf0LFiwYHjGRFVHRwcPPvhgcysiIiKxpuDQRK28Q+b+++/P/Pnzm/qaIiIy8airYjNtzgf/yK6KiU/jZ0REJh4Fh83Q2dnJihUrxvzBaGw796twzrFixQo6OztbXRURERlH6qrYDDvvvDOLFi1i2bJlYzpu5bo8xbJPDPmVHaSTEzu3dXZ2svPOO7e6GiIiMo4UHDZDOp1m9913H/NxF/7X/fx10SoALjv9MObsMm28qyYiIrJVTew/edtMOrXhchdKlRbWREREZPMoODRRJhQciuVyC2siIiKyeRQcmig8pqGoFgcREYkhBYcmCgcHdVWIiEgcKTg0UXpEV4WCg4iIxI+CQxNlUsnhrxUcREQkjhQcmkhjHEREJO4UHJpI0zFFRCTuFByaKJPUGAcREYk3BYcmGjE4sqR1HEREJH4UHJpoxHRMtTiIiEgMKTg00YiVIzXGQUREYkjBoYnSmo4pIiIxp+DQRJqOKSIicafg0ERaclpEROJOwaGJMlpyWkREYk7BoYl0rwoREYk7BYcmGjnGQes4iIhI/Cg4NFFa0zFFRCTmFByaSHfHFBGRuFNwaCLNqhARkbhru+BgZt1m9ryZOTP7VsTz+5rZz81slZn1m9m9ZnZUnXMlzOxCM3vSzPJm9pKZXWZmPVv/nWxMgyNFRCTu2i44AF8Ctot6wsz2BO4HDgMuBT4J9AJ3mNnREYdcAVwO/BU4D7gZOB+41cya/t61AJSIiMRdqtUVCDOz1wMXAP8CXBZR5BJgCnCwc25+cMx1wOPA1WY22znngv374cPCLc65E0Ov8TzwTeBk4Iat9V6ihNdxKGhWhYiIxFDbtDiYWRK4FvgVcEvE8z3ACcBd1dAA4JxbD3wP2AeYFzrkFMCAK2tOdS0wAJw6frVvjLoqREQk7tomOAAXArOBc+s8fwDQATwQ8dwfg204OMwDKsBD4YLOuTwwv6ZsU6irQkRE4q4tgoOZ7Q58EfiSc25hnWIzg+3iiOeq+2bVlF/unBuqU347M8tsRnU3Wzg4lCqOiu9VERERiY22CA7At4Hn8QMZ6+kOtlFBIF9Tpvp1VNl65YeZ2Tlm9sgoddksZqZWBxERibWWBwczOxU4Bvioc644StGBYNsR8VxnTZnq11Fl65Uf5pz7rnPukFHqstk0zkFEROKspbMqzKwD38pwO/CKme0VPFXtcugL9i0HltQ8F1bdF+7GWAK81sw6IrorZuG7MQpb+h7GSi0OIiISZ61ucegCtgeOB54JPe4Knj81+P4sYAG+6+GwiPMcGmzD3QsP49/fG8IFzawTOKimbNOkNSVTRERirNXrOPQD/xCxf3sgh5+a+R/An51z683sVuDvzexA59xjAGbWiw8WzzByBsWNwGfx60LcG9p/Nn5sw/Xj+1Yak1FXhYiIxFhLg0MwpuEntfvNbLfgy78558LPfwZ4G/BrM7sCWIsPArOA46uLPwXnXmBmVwPnmtkt+O6QOfiVI++myYs/VamrQkRE4qzVLQ5j4px71szeDHwN+DSQAR4FjnPO3RlxyAXAQuAcfHfIcuAq4CLnXEs+tUfc6EotDiIiEjNtGRyCtRysznNPAO9u8Dxl/NLVUctXt8SIW2urxUFERGKm1YMjtzmajikiInGm4NBkI7oqNKtCRERiRsGhyTQ4UkRE4kzBock0HVNEROJMwaHJNMZBRETiTMGhyUaOcVBwEBGReFFwaDJNxxQRkThTcGgydVWIiEicKTg0mboqREQkzhQcmmzErAqt4yAiIjHTlktOT0jLXoZlL7PL4heZWexnSXqKuipERCR2FBya5e7b4Vc38xbgqSmHcVPfIeqqEBGR2FFXRbOkM8NfZpzvolCLg4iIxI2CQ7Ok08NfZlwJ0HRMERGJHwWHZkmpxUFEROJPwaFZQl0V6SA4aIyDiIjEjYJDs4zoqlCLg4iIxJOCQ7OMaHGojnHQOg4iIhIvCg7NkopocVBXhYiIxIyCQ7OMmI4ZtDioq0JERGJGwaFZItZx0OBIERGJGwWHZgmPcUCDI0VEJJ4UHJolNMYhrTEOIiISUwoOzRK1cqRaHEREJGYUHJolcoyDpmOKiEi8KDg0S9RNrtRVISIiMaPg0CwR0zFLFUfFuVbVSEREZMwUHJol4l4VACWNcxARkRhRcGiW2lkVQUuD1nIQEZE4UXBolmQSEv5yJ3Ek8YFB4xxERCROFByaKWqApLoqREQkRhQcmklTMkVEJOYUHJop6kZX6qoQEZEYUXBopqhlp9VVISIiMaLg0EwRUzI1q0JEROJEwaGZUrpfhYiIxJuCQzNp2WkREYk5BYdmihocqRYHERGJEQWHZhpxa21NxxQRkfhRcGimiMGRanEQEZE4UXBopqjgoDEOIiISIwoOzRQxq0LTMUVEJE4UHJopPDgSdVWIiEj8KDg0UzpiHQe1OIiISIwoODSTbnIlIiIxp+DQTJpVISIiMafg0EwpBQcREYk3BYdmihjjoFkVIiISJy0PDma2r5ldb2ZPmNkaMxswsyfN7HIz26lO+Z+b2Soz6zeze83sqDrnTpjZhcH58mb2kpldZmY9W/+dRYhYOVKDI0VEJE5Sra4AsDOwE/AzYBFQAvYHzgFONrODnHOvApjZnsD9QZlLgTXA2cAdZvYO59ydNee+Ajg/OPdlwJzg+9eZ2dHOueZ+aqd0rwoREYm3lgcH59xvgd/W7jeze4CbgDPwIQHgEmAKcLBzbn5Q7jrgceBqM5vtnHPB/v2A84BbnHMnhs77PPBN4GTghq3ypurR3TFFRCTmWt5VMYoXgu1UgKB74QTgrmpoAHDOrQe+B+wDzAsdfwpgwJU1570WGABO3RqVHlXErIqCWhxERCRG2iY4mFmnmW1nZjub2THAd4Knbg+2BwAdwAMRh/8x2IaDwzygAjwULuicywPza8o2R2iMw4Z7VWgdBxERiY+2CQ7AWcAy4CXgDnyXxKnOuXuD52cG28URx1b3zQrtmwksd84N1Sm/nZllIp7DzM4xs0fGVv0GpDXGQURE4q2dgsPPgbcD7wW+BKwGtg893x1so4JAvqZM9euosvXKD3POfdc5d8gmazxWKc2qEBGReGv54Mgq59wi/KwKgJ+b2U+Bh82syzl3CX5cAvjuilqdwXYgtG8A2KHOy0WV3/oiWhy0joOIiMRJO7U4jOCc+zPwf0A22LUk2M6KKF7dF+7GWILvjogKGrPw3RiF8ahrw7TktIiIxFzbBodAFzAt+HoBvuvhsIhyhwbb8LiEh/Hv7w3hgmbWCRxUU7Y5tACUiIjEXMuDg5nNqLP/SGAuwYyJYNrlrcARZnZgqFwvfmDlM4ycQXEj4IALak59Nn5sw/Xj8w7GQC0OIiISc+0wxuHbwdLSv8Ov3dAJHIxfoGkd8M+hsp8B3gb82syuANbig8As4Pjq4k8AzrkFZnY1cK6Z3YKf1lldOfJumr34E0TPqlCLg4iIxEg7BIcfA6cDp+FnUTh8gPgO8A3n3IvVgs65Z83szcDXgE8DGeBR4LiI5abBtzYsxC9ffTywHLgKuKjpy01D9KwKtTiIiEiMtDw4OOduwi8t3Wj5J4B3N1i2jL9HxWWbV7txFg4OlME5iuUKFedImLWwYiIiIo1p+RiHbUoiMSI8pPGtDiW1OoiISEwoODSbZlaIiEiMKTg0W8SttbUIlIiIxMW4jHHIZrMHAkfi70Z5by6Xa/4aCXGhKZkiIhJjDbU4ZLPZw7PZ7HXZbPbQiOcuxs9suAz4N+DBbDZ7+bjWciJRV4WIiMRYo10V/wC8H3givDObzf4dcBH+9tXXA9cAK4BPZLPZd45jPSeOEVMyq10VurW2iIjEQ6PB4TDgwVwut6Zm/z/i1104P5fLfSiXy30cOBwoAWeOXzUnEHVViIhIjDUaHGbil3SudRTQD1xb3ZHL5Z4E7gDmbXHtJqIRq0cqOIiISLw0GhymA0vDO7LZ7AxgBnB/Lpcr1ZR/Bthxy6s3AenW2iIiEmONBodBNg4Crw+2/xdRfgjfXSG1QoMj0xocKSIiMdNocHgSeEc2mw1P3zweP77h/ojyrwFe3sK6TUzqqhARkRhrdB2HnwCXAv+TzWavAfYBPgKsAX4TUf7N1MzAkEDErAq1OIiISFw0GhyuAk4BjgOODfYZ8P/lcrl8uGA2m30jsFtwjNSKmFVRKGs6poiIxENDXRW5XG4IP83yIuBX+DUb3pXL5b4VUfwg4BfAreNUx4klqqtCLQ4iIhITDS85ncvl+oGvNFDuO8B3tqRSE1o6oqtCYxxERCQmdJOrZovqqlCLg4iIxMQW3+Qqm82mgY/hF4My4G7g6qB7Q2ql1FUhIiLx1ehNrj6UzWZfzGazb6vZnwD+F7gCOAF4F/AN4Hc1UzelSl0VIiISY412VbwdmATcVbP/lOC5pcBZwEnAg8Ch+OmaUiuyq0KzKkREJB4aDQ6vxy8tXfsJdyp+EagP5XK5/8zlcjcDx+DXd3j/+FVzAklF3FZbLQ4iIhITjQaHHYHnIva/CViay+XurO7I5XLrgduAuVtevQko6l4VRQUHERGJh0aDw2T8XTCHZbPZvfDdF3+IKL8ImLJFNZuowl0V+BaHfFFdFSIiEg+NBodVwO41+6q3zY66yVUKWL+5lZrQIhaAGlJwEBGRmGg0OPwfcHw2m90ptO9k/PiGuyPK741uchUtYlaFWhxERCQuGp0y+R/4QY8PZLPZW/A3uXon8GwulxvRVRFMw/w7/NLUUiu18awKtTiIiEhcNHqvipuB7wG7ABfgQ8Ma4OyI4u8CphJ910xJbzyrQi0OIiISFw0vOZ3L5c4B3gJ8Cr9mw365XC6qm2IAuBD4n3Gp4UQTMatCLQ4iIhIXY1rdMZfL3Q/cv4kydwB3bEmlJrSIwZH5YqlVtRERERkT3eSq2SJWjlSLg4iIxMWY7yeRzWYPA84B3gzMxM+seBm4D7g2l8s9MK41nGhCYxzS1VkVBQUHERGJh4aDQ3AXzBzwYfxdMMP2Ch6nZ7PZ/wSyuVyuOG61nEgilpwuVRylcoVUUg1AIiLS3sbS4vAf+HtTrMLPsPgN8BI+ROyMv9nVR/DBIgOcPq41nSgixjiA765QcBARkXbXUHDIZrNH40PDn4B35XK5V2qKPAncmc1mL8ffZvvUbDZ7XS6X++241nYiSKbADJwjRYWEq1CxBPlimZ7O9KaPFxERaaFG/8Q9G3+vivdEhIZhuVxuKfAeYJDoNR7ELHKApNZyEBGROGg0OBwG/DKXyy3eVMGgzG34O2dKlIhxDppZISIicdBocNgBeGYM530W2H7s1dlGjGhx0P0qREQkPhoNDgP4W2g3ahKQH3t1thERy06rxUFEROKg0eDwDHDUGM57JGNrodi2pCJWj9RaDiIiEgONBofbgDnZbDa7qYLZbPajwGvxsyskiu5XISIiMdXoOg7fBM4D/j2bzc4EvpHL5daEC2Sz2cnAJ/E3wVoJXDWeFZ1QIu+QqftViIhI+2soOORyudXZbPZEfMvDZ4B/ymazf8IvAOXwt9s+GOjAT8V8Xy6XW7V1qjwBhAdHojEOIiISH2O5rfY9wBuB3wOd+HtVnAycEnzdCdwFHFrndttSpVkVIiISU2O9rfZfgaOz2exuwFuAnfBLTr8M3JfL5Z4HyGaznUAml8utHd/qThCRt9ZWcBARkfY35rtjAuRyuYXAwlGKfBs4bXPPP+FFLACl4CAiInGwNe+qVHsHTakaMThSsypERCQ+dDvGVojoqlBwEBGROFBwaIWom1xpASgREYmBlgcHM9vHzL5kZn80s2Vmts7M5pvZ58ysJ6L8vmb2czNbZWb9ZnavmUWuamlmCTO70MyeNLO8mb1kZpdFnbepUhvPqhgqKTiIiEj7a3lwAD4MXAj8DfgSfhGpp4CvAPebWVe1oJntCdyPv1vnpUHZXuAOMzs64txXAJcDf8UvYHUzcD5wq5m17r1HLQClFgcREYmBdpj18BPgEudceCXKa8zsGeBzwEeAbwX7LwGmAAc75+YDmNl1wOPA1WY22znngv374cPCLc65E6snNrPn8SthngzcsBXfV30aHCkiIjHVUHDIZrNb7VPNOfdInaduxAeHuQBB98IJwF3V0BAcv97MvodvrZgHPBQ8dQp+ZseVNee9FvgacCqtCg5RN7lScBARkRhotLneNuOxpXYOtkuD7QH4Ja0fiCj7x2A7L7RvHlBhQ5AAwDmXB+bXlG0uzaoQEZGYavReFU0dD2BmSeAioMSGVoGZwXZxxCHVfbNC+2YCy51zQ3XKv8nMMs65wjhUeWy05LSIiMRUOwyOjHIlcChwkXPuqWBfd7CNCgL5mjLVr6PK1is/zMzOMbN6XShbLjTGIa2uChERiZG2Cw5m9mXgXOC7zrlLQk8NBNuOiMM6a8pUv44qW6/8MOfcd51zhzRW481Qp6ui4sd1ioiItK22Cg5mdjHweeC/gI/WPL0k2M5iY9V94W6MJcB2ZhYVHmbhuzGa300BI4JDJxtaGgqlSitqIyIi0rC2CQ5m9gXgC8B1wFnVaZUhC/BdD4dFHH5osA13LzyMf39vqHmdTuCgmrLNFbrJVYdtCA75QqkVtREREWlYWwQHM7sIuBj4IXCmc26jP72dc+uBW4EjzOzA0LG9wFnAM4ycQXEj4IALak51Nn5sw/Xj9w7GKNTi0OE2BAfNrBARkXbX8gWgzOzjwBeBF4E7gQ+YjZjNudQ595vg688AbwN+bWZXAGvxQWAWcHy4lcI5t8DMrgbONbNbgNuBOfiVI++mVWs4wIjBkR2hrgoNkBQRkXbX8uDAhvUUdgF+EPH83cBvAJxzz5rZm/ELOH0ayACPAsc55+6MOPYCYCFwDnA8sBy4Cj9bo3UDCkZMx9xQDbU4iIhIu2t5cHDOnQGcMYbyTwDvbrBsGbgseLSPEbMqNoxrUIuDiIi0u7YY47DNibitNqjFQURE2p+CQyuEZlWkK6EWB90hU0RE2pyCQyuEWhxSFXVViIhIfCg4tEKoxSFVKUEwGUTBQURE2p2CQyskk/4BGI4kfmaFxjiIiEi7U3BoldTG96tQi4OIiLQ7BYdWqXOjKxERkXam4NAqodUjq2s5KDiIiEi7U3BolfCUzOGuCt3kSkRE2puCQ6tErB45VNRttUVEpL0pOLRKxOqRuq22iIi0OwWHVhkxxiEIDiWNcRARkfam4NAqUV0VWnJaRETanIJDq0RMx9Q6DiIi0u4UHFolclaFgoOIiLQ3BYdWiZxVoeAgIiLtTcGhVaIGRyo4iIhIm1NwaJXwdEy05LSIiMSDgkOrhG5y1REEh3LFUSxrESgREWlfCg6tEmpx6LYNYUGtDiIi0s4UHFolNMahKxQc8lrLQURE2piCQ6uEuiq61OIgIiIxoeDQKqEWh07bEBZ0h0wREWlnCg6t0tk1/GWPKw5/rSmZIiLSzhQcWqV38vCXk8qDw18rOIiISDtTcGiVng3Bobe0IThojIOIiLQzBYdWmbQhOPSEgoNmVYiISDtTcGiV3r7hL7uLA8NfD5UUHEREpH0pOLRKdw+Yv/ydxUGS1ftVqMVBRETamIJDqySS0NM7/O2kyhCgMQ4iItLeFBxaKTSzYnI5Dyg4iIhIe1NwaKVwcKj4AZKajikiIu1MwaGVQgMk+xQcREQkBhQcWql30vCX6qoQEZE4UHBopVCLw+SKDw5qcRARkXam4NBKoTEOfWV1VYiISPtTcGiliBYHdVWIiEg7U3BopahZFQXdVltERNqXgkMraR0HERGJGQWHVgqPcdDgSBERiQEFh1YKj3EIBkeqxUFERNqZgkMrhW501esKJF1ZLQ4iItLWFBxaKZGAntAiUJU8hVKFinMtrJSIiEh9Cg6tpgGSIiISIwoOrTYpPCVTwUFERNqbgkOrhW90VV09sqDgICIi7UnBodVqxjiApmSKiEj7UnBotRHLTut+FSIi0t5aHhzM7DNmdrOZPWdmzswWbqL8vmb2czNbZWb9ZnavmR1Vp2zCzC40syfNLG9mL5nZZWbWs1XezOaYpMGRIiISHy0PDsBXgaOAvwGrRitoZnsC9wOHAZcCnwR6gTvM7OiIQ64ALgf+CpwH3AycD9xqZu3w3mtWj6y2OOh+FSIi0p5Sra4AsKdz7jkAM/sLPgjUcwkwBTjYOTc/OOY64HHgajOb7ZxfBMHM9sOHhVuccydWT2BmzwPfBE4Gbhj3dzNWPVEtDpVW1UZERGRULf+ruxoaNiXoXjgBuKsaGoLj1wPfA/YB5oUOOQUw4MqaU10LDACnbnalx1PEdEy1OIiISLtqeXAYgwOADuCBiOf+GGzDwWEeUAEeChd0zuWB+TVlWydicKTGOIiISLuKU3CYGWwXRzxX3Terpvxy59xQnfLbmVkm6oXM7Bwze2SzazoW4TEOZU3HFBGR9han4NAdbKOCQL6mTPXrqLL1yg9zzn3XOXfImGu4Obp6/D0rgB5XIOXKDGkBKBERaVNxCg4DwbYj4rnOmjLVr6PK1ivfGjU3uppUyavFQURE2lacgsOSYDsr4rnqvnA3xhJ8d0RUeJiF78YojGP9Nl94nENZwUFERNpXnILDAnzXw2ERzx0abMPjEh7Gv783hAuaWSdwUE3Z1qpZy0GDI0VEpF3FJjgE0y5vBY4wswOr+82sFzgLeIaRMyhuBBxwQc2pzsaPbbh+a9Z3TGpura0WBxERaVctXwDKzE4Ddg2+3R7ImNnng+9fcM79MFT8M8DbgF+b2RXAWnwQmAUcX138CcA5t8DMrgbONbNbgNuBOfiVI++mHRZ/quoduZbDov56YzpFRERaq+XBAfgI8NaafV8OtncDw8HBOfesmb0Z+BrwaSADPAoc55y7M+LcFwALgXOA44HlwFXARc659lmesaar4o8r+ltYGRERkfpaHhycc0eMsfwTwLsbLFsGLgse7atmcOTK9UMMDJXo7mj5P4+IiMgIsRnjMKGN6Krwq0cuXqlWBxERaT8KDu2gd+MbXS1asb5VtREREalLwaEdRNxae7HGOYiISBtScGgHI250FbQ4qKtCRETakIJDOwjfWrusFgcREWlfCg7tYMSNroqkXJlFK/oJLUshIiLSFhQc2oEZ9IwcIDlQKLFKC0GJiEibUXBoF5MipmSqu0JERNqMgkO7CA2Q7NMASRERaVMKDu0iNCVz0vBaDgoOIiLSXhQc2kXEWg4KDiIi0m4UHNpFxOqRi7V6pIiItBkFh3YR0eLw8qoBypX2uYmniIiIgkO7CA2O3D5RAKBUcbyyerBVNRIREdmIgkO7mLrd8Jd7FZcPf60pmSIi0k4UHNrFnnMgnQFgxsAyti+tAzQlU0RE2ouCQ7vIdMA+c4e/PWTwBUADJEVEpL0oOLST/Q4Z/vLg/IuApmSKiEh7UXBoJ3M3BIfXD75E0pXVVSEiIm1FwaGd7PQamLY9AD2uwOyhpSxfmydfKLW4YiIiIp6CQzsxG9HqUO2uWLxyoFU1EhERGUHBod3sd/Dwl9UBkos0QFJERNqEgkO7mXMQJPw/y96FV+krD7JY4xxERKRNKDi0m+5e2GM24P9xXp9/UTMrRESkbSg4tKPQOIdDBl/g8ZdWUq64FlZIRETEU3BoRzXTMpeuGuCBp15pYYVEREQ8BYd2tMtewze9mlYZYI/icn7yx+daXCkREREFh/aUSMB+rx/+9pDBF3hi0Woef2llCyslIiKi4NC+QtMy377+CdKuzE8eUKuDiIi0loJDuzrgDdDRBcBrSqs5ac0jPPDUUq3pICIiLaXg0K56J8PfnzH87clrHmGXwgpuefD51tVJRES2eQoO7ezI/wd7zgEgTYULV/yW385/kdX9Qy2umIiIbKsUHNpZIgkf+gQumQJgTmEpx656jF88vLC19RIRkW2WgkO7m7UbdvzJw9+eufoBfnfXo9z1+JIWVkpERLZVCg5x8M6TcDN3BaDLFfnUq3dw1U8fVHgQEZGmU3CIg1QaO/0TODMAXlt4ha++8jOu/skDCg8iItJUCg5xsedrsZP+cfjbfQuv8vVXbuGan/yBnz34PIVSuYWVExGRbYWCQ5wc/R447bzhb/coruDrr9zC72/9HWf9+2+4+YG/MTBUal39RERkwku1ugIyRm89HtIduP+6HHMVdi2u4puv3Ez5FeOlZ6fyyE07MLjv6+h+05Hsv+eOTOnpaHWNRURkAlFwiKM3HY1lMrjvfh2r+C6KJI7diivZrbgSHnmStY/+jN/0zObPu76BGXP2Zb/XTGPuLlOZ1tvZ4sqLiEicKTjE1SGHY33T4Le/wL3wN1j2MoYbfnpyJc+J6+Zz4l/m8+KTU/lbZntuyWzH6uk70zVzZ/q2n870GdPZaVovU3s66Egl6UgnyaQTdGVSJIKBmCIiImEKDnG291zYey4GkB+k/NLzvPrgA/Q+/Fsm9W+4k+YupVXsUlrFkQNPw2rgb35/GWN9ooNXUpN5LLMjT3X4x6sd09h+ag87Te1mxpRudujroq87Q193hik9GSZ1ZuhIJ4NHgnQygSloiIhsExQcJorOLpJ7v5ad9n4tfOBM+OujlO+6HfvzgyQq0TMukjj6Knn6Cnn2LbwK6xcAUAEGF2YYSGToT2RYn+hgTaKLlckunk90sSrZzaupSSxNTWJpajKDiQ6264QZ6TI7pEpMSTls0mRs8lTSvZPo7UrT05mmO5OiuzNFT0eano4UPcHXmZSCh4hIXCg4TESJBMw9hOTcQ2AoD4sXwot/o/zCswwtfBbWrCI1uJ5MMR99ONDjCvSUC2zfwCzPMkYy1E0SViTB6mQXK5K9LEv18kJyEstTPeQtTdGSFEnikkkKHd0MdfRQ7Oyl2D2Z3kSFaZUBppQH6CsPkkknSHT1kuzuJtXTS3LSJJg0hVQmTTqZoCOdpCuTpDOdojOdJJ1KkBhcT/qJR0n/9RGS69bAXnNIvP5NJHbdGxRUREQ2i4LDRNfRCXvMhj1mkwS6w8+VSrB+jQ8Wzz/lHwufhjWrxvQS9UID+JtzbV/uZ/tyP7MLSzfnHdRVAdYmOlmd7GZNoos1iTRLLcWgZdiptIa5Q0tG1u3px+D2/2ZZqpf5vXuwNt1LMZ2hlOrApdJMrgwxpTLApNIgPaVByukOih3dFDp6qHR0kamU6C4O0FkcpLM4QDndQaG7j0JPH0PdfdDVTbqzg3RHJ5muDjpKQ6TXryK9dhWptStIVEpYRxfW1Y11dUOmk0o6QyWZppxMQypFRyZJshpqikVYsxJWr/CPwQGYtavvotprP+juCV2MCuQHIZmETMfowahYgHVr/L99MgXbzfA/J7Vlli+FoUGYNAUmT4F0Zpz+5baAc/6RqDOTvFz2da5UwFX8NpGAnkn+3i9jtX4dLH8ZOrtg+o6bdw1c8DPYSFh1zv+7rFwGa1f7x7rVMLAeeibDlGkwdTvomw69k6Cre/PeF/j//ytfhWWvwPJX/Gvvshe8ZveN32d+APrXQd80SKU37/XCKmVYt9a/7rKX4dUlvh5mMG37DY++adDd63/WO7thsB9eeAYWPuN/Vw2sh512gV32hNfsATvuDOWS/4OpkPc/D72TYVJf9HVyDgpDvnx+wG+7e4P3mdq4bLVMuQSlst+WS/7/aqkIpYL/mQtLpf3rT54a/BwGP7vlsj9Xccj/P0wmfdlKxV+TVxb5x6pl/t/8NXv69zllun/NpYthyYuw5AX/OPVc/3+1CRQctmWplP8hnDId9jt4w/5K2X9IDfb7bf86/8tsXfBYvQJWvOofK1+FwhAunaHc1UOpo4diMk1ycD3pgXWk67RqjIcEMKWSZ0plbK+xfWk9b1/9561TqTEa86/8Pz8Iv7yJCsby3u0xoLswQFdxgITzv7AcRjGVoZTK4IJflmZgQLowSKq48d1VCz19FKbuiCUSZFa/SmrdKsyNDISVrh4q3ZP8L7iEbyky878EqwNzDbBEAksk/C/IZBIynf6Dt7PbB5TBfli7KvhQXOM/4JOpDQ+z4MM2CAmlIgwN+Q+CwhBYwn+QdPdCT6//QFi/1j8G1kdft0TC/+Lum+Z/iTvnf87LZb9NZSCT8R+YyZT/2V662P/ch02ZDtvt6F+b4KKa+TqZ+ddJJPwHwtrVG95nseDfe0dXsO30AS+V9lvnfFhYsdS/x7Ho6oauHn+NMx3+end0brh2xYJ/lIobPuCKRf//2lU2Pl8q7T+gpu/o67PsZf/vBP59Tp3uw+aU6T6s9q+D/rX+39USwz8fpHwYJpmEZNpvB9aP/HcfC0tEH/PE/MaOndwHvX3Bz1Pe131ocEOwG1He/IfwlOlByFnjf77KW7hOTiLh/60KQ/7fZHN09/p6l2uag498F8yesmX1a5C5qIsmAGSzWQeQy+VaXZX2Vf3lVO8vscKQb8FYtdwn55XLfPAoFvxfPOUSlcIQlfXrcOvWYP1rSfavo5LOUOyeTKF7MkOdvZQdWH6QxNAgycIgnUP9dBUGRswkifJM5wwenbQHL6f6OHDd8xwy8DyTKrotuYhMMB/IwlEnjNfZRm0em9AtDub/HPoE8I/AbsAy4CbgIudcfwurNnGYjd58m+mA7Wf4Rx0JNl7CNBk8Rl11olz2zbhrV/u/ZIbyPonnB/3rzjmIvfumsXf4kEKRoacWUF74DG5wgMrgIC4/gCsWKHZ0k++cRL6jl8F0F24oT2Kwn+TgepL5foYSGQZSXfSnO1mf6CRVHKInv5buoXX05Nf5v+RLRRLlIlYuUbAUK1O9rEj1sjzZyyBJMuUCHcGjs1KkgzKdlOigTKpSplTxQcgBZUuwKtnNimQPK5K9FC3J7KFXmDu0hD0KyzfqIhq0NElXIcPoA1NKJFiT7GRNootOV2KH0jpSjPxLroyxLDmJ/kSGKZVBppQHRu2SahcV/HWoWIIKRgUjRWWzw+KQJXk51UdXpch25fVNuQaDyQ7WdPaxLjOJgY4eBjp6yae76Brqpye/lklDa5k8tI6uUp6u8paF4MGeKQz2bc/Q5O2wSplJrzxPz9plG5UrJ1IUO7rpGFy3ybDeqEpXL+Wp21GePsM/ttsJM0iuXk5y9XISq5aR6F+HDazHBvuxQh6XSFKZuRtut71J7L4PiclTYfFC3Et/g5ee8y2g6Q6s2qpjCd9qtH5t/YqkM761piNoself51uKov6oznT4lrNUqIUsldrQupLKQLLmt1lhaEO302DoY8cSvo7pjG/VCP6QwlVg2g4wY2ff9TJ9B9+l82LwHvMD/vjpO8DMXWHmLn67zwFb+k/SsAnd4mBm/w6cD/wM+CUwBzgPuBc42rnR28rU4iDNVnGOgaES6waLDAwVh393OcA5R6FUYahUptTfT3rpSxQSafKZHvId3RQtSaXicOUyVhwiUchTLpUZKpYZKpUpFCvkE2nyqS6cQaXiKFccpUKRroHVTF6/HFeusDTTx/LUZIYwyhXnhxVUKnSXBugq5UlUKiSoYJUyCVeh4qDioOwc5TIUSyUSOBI4kq5CpyvSUynQVSnS5Yr0JzKsDmbnrE52Uw4+3FPOPwyHw3DB3zwFkgwl0uQtxZClSVCht1Kgt5JnUmWIpKuwNghC6xMdVGzj8Q9pV2ZquZ9pwWDbshllEpSDgJF2ZTKuTKcrknZlViR7WJSeyvJk7/DN5ZKuzA6l9exYWkuHK2G44M8yv004R5IKhg9nK4P3tyrZzZCl6HAluipFOp1/ZFyZDlci40oknGNZqpelqcn0Jxpf7TXhKnS5Ir2VITqr564U6XQlKmYUSVKwJEVLUrCUH5Bsft9AIkPRNv7bcXJ5kH0LS5lSHmRpahIvp/qGr0PaldmhtJYZpbVMLQ/Qn8iwLtHJukQn6xMdWHCdqv+eSSqkXTn4ty3Tn+hgdbKb1ckuSja2jrqk84G4HDouYf5nr1YqYSSTCVIJH3NSlRJ9pUEmlweppFIU0x2UM52UU53+Z8A5nPM/6+WKg3KJycX19BXWQTJNsbuXctckUl1dpFMJ/+9uhhGE/EqFctn/f3I4kokEyYSRTBgJMxJBl1aqUqKzXKCS7oB0hlQqQSqRwBH8PwvVP5X0U92TCaPsHKVyhVKpTGf/agZTnRRTHSOyzXvfuDt779Q3pms6im2zxcHM9sOHhFuccyeG9j8PfBM4GbihRdUTiZQwo7czTW/npgagbQ/779aMKo1ZueLDz8BQkYGhEhXnqDgffCrOUSw7CqUyxVKFYqlCMmGkUwn/CP5aK5YqFMv+UQ0v1V/u5Yo/T6Xiz1ssV3w4Ch6DhVLw+iX6h0oUShV6u9JM6kwzqStNVyZFvliiPx+UK5TIl8qsK1UoBK/rnCMJ7ADgIJEwkmYkEn2sSexMqVxhqFQhXyiRL5YplX2dRjNoGQYT4zvAtGIJ+q1jTGFjU9Ymu3i4a7fI54qWZHF6KovTU8ft9RpVjggaUaEBoFRxlCplwu0xa+mCRJdvlhoChhwwWPf1ltMJ1unLrwfWD45afmzqjMXZguPfMmfGeAaHUU3Y4ACcgk9NV9bsvxb4GnAqCg4i4y6ZMCZ1+Q/pbU043JTKwV+JlQrOQTqZIJVMkEoaZkap7INKoVT2gSVoTSoU/ffVgFSu+JCUTBrp6l+hyQRUX6fiKAevAcHEE9zw+YaKZfKF8nAQK5VdsA0eFUe57BtfOzMpOtJJOtNJUskE5eD5UijElYJtsVyhXK5QDPaVyiMbcKt/vZeCv8aL5UpwfRgOfrChNc0F34TLgA/TZn5bCVrdisE1C+eGhDHir3bZeiZycJiHz4oPhXc65/JmNj94XkRk3CTMwIxkAjKb+O2aTiboaoMZrnHlgpashDFiAbmK2xBuSmU3PKOoqlRxI1q0DN+ilAi6HhJBF0MyYSQSRrFUYWCo5FuyCiVKZR8OfR38MK9q10Qq6V+pMhzofEAa7ooIWt6qYaxUqYyoY/V9VINYMQifyaSRGQ6eichbAuw1ozmtDTCxg8NMYLlzLmr00GLgTWaWcc5t5pwYERFpFTMjGdETnzAjk9rMtS3qmD5pXE8Xe3VWUZkQuoF6Q47zoTIbMbNzzOyRrVIrERGRGJvIwWEAqDdiqDNUZiPOue865w7ZKrUSERGJsYkcHJYA25lZVHiYhe/GUDeFiIjIGEzk4PAw/v29IbzTzDqBgwB1RYiIiIzRRA4ON+Jn5lxQs/9s/NiG65tdIRERkbibsLMqnHMLzOxq4FwzuwW4Hb9y5PnA3WgNBxERkTGbsMEhcAGwEDgHOB5YDlyFv1fFGG/NJiIiIhM6ODjnysBlwUNERES20EQe4yAiIiLjTMFBREREGqbgICIiIg2b0GMcxks2m211FURERJrF5XK5iDuBeGpxEBERkYZZ9fag0hxm9ojug7HldB3Hh67j+NB1HB+6juNja19HtTiIiIhIwxQcREREpGEKDs333VZXYILQdRwfuo7jQ9dxfOg6jo+teh01xkFEREQaphYHERERaZiCg4iIiDRMwWErM7OEmV1oZk+aWd7MXjKzy8ysp9V1a0dmto+ZfcnM/mhmy8xsnZnNN7PPRV0zM9vXzH5uZqvMrN/M7jWzo1pR93ZmZt1m9ryZOTP7VsTzuo6jMLNpZvZvZvZs8P94mZn93sz+rqacrmMdZtZrZp81swXB/+vlZna/mZ1hZlZTdpu/jmb2GTO72cyeC/7fLtxE+Yav2ZZ+LmnlyK3vCuB84Gf4u3TOCb5/nZkdrdt7b+TDwMeB/wGuB4rAkcBXgPeb2aHOuUEAM9sTuB8oAZcCa4CzgTvM7B3OuTtbUP929SVgu6gndB1HZ2a7AncBvcB/AE8DfcABwKxQOV3HOswsAfwSeBPwA+AqoBs4Bfgv/O/FTwVldR29rwIrgUeBKaMV3IxrtmWfS845PbbSA9gPqAA/rdl/HuCAD7S6ju32AA4B+iL2fyW4ZueG9t0ElIGDQvt6gReApwgG/27rD+D1wS+Ufwqu4bdqntd1HP363Qu8BOy0iXK6jvWvzWHBz94VNfszwHPAal3Hja7ZHqGv/wIsHKVsw9dsPD6X1FWxdZ0CGHBlzf5rgQHg1GZXqN055x5xzq2JeOrGYDsXIGhSOwG4yzk3P3T8euB7wD7AvK1b2/ZnZkn8z9uvgFsintd1HIWZHQ68BbjUOfeymaXNrDuinK7j6CYH2yXhnc65ArAc6AddxzDn3HONlNuMa7bFn0sKDlvXPHyyeyi80zmXB+azjfwHGCc7B9ulwfYAoAN4IKLsH4Otri9cCMwGzq3zvK7j6N4ZbF80s1uBQaDfzJ42s/AvWF3H0T0ErAb+xcz+wcx2CfrkLwEOBi4Oyuk6jt1Yr9kWfy4pOGxdM4HlzrmhiOcWA9uZWabJdYqd4K/mi/DN7TcEu2cG28URh1T3zYp4bpthZrsDXwS+5JxbWKeYruPo9g221wLTgNOBjwAF4IdmdmbwvK7jKJxzq/B/Fa/EN6u/ADyJH890onPu2qCoruPYjfWabfHnkgZHbl3dQNQ/DkA+VKbQnOrE1pXAocBnnXNPBfuqzcVR1zdfU2Zb9W3geeDyUcroOo5uUrBdBxwZNK1jZj/D981/1cx+gK5jI9bj++r/Bz+Qbxo+ONxgZu92zv0GXcfNMdZrtsWfSwoOW9cAsEOd5zpDZaQOM/syvpn9u865S0JPVa9bR8Rh2/y1DZrRjwEOd84VRymq6zi6wWD742poAP8XtJn9D/AhfKuEruMozGx/fFi40Dl3TWj/j/Fh4tpgZoCu49iN9Zpt8eeSuiq2riX4Zp+of9BZ+OYitTbUYWYXA5/HT9f6aM3T1UFWUc2W1X1RTXcTXvDzdjlwO/CKme1lZnsBuwZF+oJ9U9B13JRFwfaViOdeDrZT0XXclAvxH0o3h3c65waA2/A/m7uh67g5xnrNtvhzScFh63oYf43fEN5pZp3AQcAjLahTLJjZF4AvANcBZ7lgvlDIAnxz22ERhx8abLfV69sFbA8cDzwTetwVPH9q8P1Z6DpuSnUA2c4Rz1X3vYqu46ZUP8CSEc+lQltdx7Eb6zXb8s+lVs9VncgPYH9Gny97aqvr2I4P/EBIhw8NiVHK3Yyfu3xgaF917vLTbCPzvSOuSxp4X8TjY8F1/WXw/T66jpu8llOBtfiWh97Q/p3wffZPh/bpOta/jlcEP3v/UrN/Cv4v4JVAStex7vXb1DoODV+z8fhc0t0xtzIzuwrfR/8zfNNxdYWuPwBHOa0cOYKZfRz4FvAi8K/4H/Cwpc4PoiJofn8Iv7rkFfhf8Gfj/2Mc75y7o1n1jgMz2w0/WPJq59y5of26jqMws3OA7wCPA/+JX7ToY/jw8P+cc78Oyuk61hGsvvkoPohdj//9Nw1/fXYDPu6cywVldR0BMzuNDd2L5+F/7i4Lvn/BOffDUNkxXbMt/lxqdZKa6A9809w/41fvGsL3NV1O6K8XPUZcr+/jU2+9x1015ecAv8DPER8A7gOObvX7aMcH/hf0RitH6jo2dO3+Hj8nvh8/w+LXwJt1Hcd0DffELze9KPiAWwvcA/y9rmPk9bqr0d+DY71mW/q5pBYHERERaZgGR4qIiEjDFBxERESkYQoOIiIi0jAFBxEREWmYgoOIiIg0TMFBREREGqbgICIiIg3T3TFFZMLLZrMX4+99cmQul7urtbURiTcFBxHZpGw228hKcfpQFtkGKDiIyFh8cZTnFjarEiLSOgoOItKwXC53cavrICKtpeAgIuMuPKYAf4e/C4DZ+BtE/S/w2Vwu90rEcXvj74r6NmB7YDlwJ/DlXC73TET5JP4ugKcBc/F3EFyMv0HQ1+sc8z7gX4LyefwNq/45l8st3oK3LLLN0KwKEdmaLgSuAR4DrsTfje9M4P5sNrt9uGA2m50HPAKcCjwM/Bv+jpQfBB7JZrOH1JTPAL8Cvg28BrgB+CbwJ+C9wJsj6pMFfoTvVrka+AtwEnBnNpvt2NI3K7ItUIuDiDQsaEmIks/lcl+L2P8O4I25XO7/Que4At8C8TXgI8E+A64DJgOn5nK560PlTwL+G/hRNpt9bS6XqwRPXQwcDdwK/EMulxsKHdMRnKvWccC8XC63IFT2BuAU4N3ATfXeu4h4anEQkbH4Qp3Hp+uU/2E4NAQuBtYAHwj9lf8mfFfGA+HQAJDL5W4E7gP2Bd4Cw10UWWAQ+Gg4NATHDOVyuWUR9flmODQErg22b6jzHkQkRC0OItKwXC5nYzzk7ohzrMlms/OBtwJzgPnA64Onf1fnPL/Dh4bXAffgQ0Yf8GAul1syhvo8ErHvpWA7dQznEdlmqcVBRLampXX2VwdG9tVsX65Tvrp/Ss12rAMaV0fsKwXb5BjPJbJNUnAQka1pxzr7ZwTbNTXbGRFlAXaqKbc62M7a7JqJyGZRcBCRremttTuy2WwfcBB+KuQTwe7qOIgj6pynuv/RYPskPjwckM1mZ255NUWkUQoOIrI1nZbNZl9Xs+9ifNfEj0ODGv+An6r5lmCdhWHB94cDT+MHSZLL5cpADugCrqmdSpnNZjO10z1FZHxocKSINGyU6ZgAP8/lcvNr9v0S+EM2m70JP07hLcFjIaGZGLlczmWz2dOB3wA3ZrPZX+BbFfYF3oNfOOpDoamY4Je/fiPwLuDpbDb7v0G51wDHAJ8Evr8Zb1NERqHgICJj8YVRnluInyERdgXwM/y6DScB6/Ef5p/N5XKvhgvmcrkHg0WgPo9fn+Fd+JUjf4xfOfKpmvKFbDZ7HPBR4EPA6YABS4LXvG+sb05ENs2ca+SmdyIijdNtrEUmLo1xEBERkYYpOIiIiEjDFBxERESkYRrjICIiIg1Ti4OIiIg0TMFBREREGqbgICIiIg1TcBAREZGGKTiIiIhIwxQcREREpGH/P6fB2r2RFntRAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 576x432 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "pwk.plot_history(history, plot={'MSE' :['mse', 'val_mse'],\n",
-    "                                'MAE' :['mae', 'val_mae'],\n",
-    "                                'LOSS':['loss','val_loss']}, save_as='01-history')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 7 - Restore a model :"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 7.1 - Reload model"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 13,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:52.881755Z",
-     "iopub.status.busy": "2021-03-01T17:41:52.881282Z",
-     "iopub.status.idle": "2021-03-01T17:41:52.948210Z",
-     "shell.execute_reply": "2021-03-01T17:41:52.948689Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Model: \"sequential\"\n",
-      "_________________________________________________________________\n",
-      "Layer (type)                 Output Shape              Param #   \n",
-      "=================================================================\n",
-      "Dense_n1 (Dense)             (None, 64)                896       \n",
-      "_________________________________________________________________\n",
-      "Dense_n2 (Dense)             (None, 64)                4160      \n",
-      "_________________________________________________________________\n",
-      "Output (Dense)               (None, 1)                 65        \n",
-      "=================================================================\n",
-      "Total params: 5,121\n",
-      "Trainable params: 5,121\n",
-      "Non-trainable params: 0\n",
-      "_________________________________________________________________\n",
-      "Loaded.\n"
-     ]
-    }
-   ],
-   "source": [
-    "loaded_model = tf.keras.models.load_model('./run/models/best_model.h5')\n",
-    "loaded_model.summary()\n",
-    "print(\"Loaded.\")"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 7.2 - Evaluate it :"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 14,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:52.952623Z",
-     "iopub.status.busy": "2021-03-01T17:41:52.952147Z",
-     "iopub.status.idle": "2021-03-01T17:41:53.215437Z",
-     "shell.execute_reply": "2021-03-01T17:41:53.215930Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "x_test / loss      : 9.0303\n",
-      "x_test / mae       : 2.2857\n",
-      "x_test / mse       : 9.0303\n"
-     ]
-    }
-   ],
-   "source": [
-    "score = loaded_model.evaluate(x_test, y_test, verbose=0)\n",
-    "\n",
-    "print('x_test / loss      : {:5.4f}'.format(score[0]))\n",
-    "print('x_test / mae       : {:5.4f}'.format(score[1]))\n",
-    "print('x_test / mse       : {:5.4f}'.format(score[2]))"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 7.3 - Make a prediction"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 15,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:53.220122Z",
-     "iopub.status.busy": "2021-03-01T17:41:53.219647Z",
-     "iopub.status.idle": "2021-03-01T17:41:53.221345Z",
-     "shell.execute_reply": "2021-03-01T17:41:53.221813Z"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "my_data = [ 1.26425925, -0.48522739,  1.0436489 , -0.23112788,  1.37120745,\n",
-    "       -2.14308942,  1.13489104, -1.06802005,  1.71189006,  1.57042287,\n",
-    "        0.77859951,  0.14769795,  2.7585581 ]\n",
-    "real_price = 10.4\n",
-    "\n",
-    "my_data=np.array(my_data).reshape(1,13)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 16,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:53.225136Z",
-     "iopub.status.busy": "2021-03-01T17:41:53.224661Z",
-     "iopub.status.idle": "2021-03-01T17:41:53.376894Z",
-     "shell.execute_reply": "2021-03-01T17:41:53.377378Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Prediction : 11.37 K$   Reality : 10.40 K$\n"
-     ]
-    }
-   ],
-   "source": [
-    "predictions = loaded_model.predict( my_data )\n",
-    "print(\"Prediction : {:.2f} K$   Reality : {:.2f} K$\".format(predictions[0][0], real_price))"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 17,
-   "metadata": {
-    "execution": {
-     "iopub.execute_input": "2021-03-01T17:41:53.380641Z",
-     "iopub.status.busy": "2021-03-01T17:41:53.380174Z",
-     "iopub.status.idle": "2021-03-01T17:41:53.382470Z",
-     "shell.execute_reply": "2021-03-01T17:41:53.382953Z"
-    }
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "End time is : Monday 01 March 2021, 18:41:53\n",
-      "Duration is : 00:00:20 344ms\n",
-      "This notebook ends here\n"
-     ]
-    }
-   ],
-   "source": [
-    "pwk.end()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "---\n",
-    "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.9"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/LinearReg/04-Logistic-Regression.ipynb b/LinearReg/04-Logistic-Regression.ipynb
index 1476d535642e6f1b569990d7bcf15f8928c5f582..6507e316aa9e43161c023f37a77262a43df15e86 100644
--- a/LinearReg/04-Logistic-Regression.ipynb
+++ b/LinearReg/04-Logistic-Regression.ipynb
@@ -55,7 +55,13 @@
     "$\n",
     "J(\\theta) = -\\dfrac{1}{m} \\sum_{i=1}^{m}{\\left[ y^{(i)} log\\left(\\hat{p}^{(i)}\\right) + (1 - y^{(i)}) log\\left(1 - \\hat{p}^{(i)}\\right)\\right]}\n",
     "$\n",
-    "## Step 1 - Import and init"
+    "## Step 1 - Import and init\n",
+    "\n",
+    "You can also adjust the verbosity by changing the value of TF_CPP_MIN_LOG_LEVEL :\n",
+    "- 0 = all messages are logged (default)\n",
+    "- 1 = INFO messages are not printed.\n",
+    "- 2 = INFO and WARNING messages are not printed.\n",
+    "- 3 = INFO , WARNING and ERROR messages are not printed."
    ]
   },
   {
@@ -64,6 +70,9 @@
    "metadata": {},
    "outputs": [],
    "source": [
+    "# import os\n",
+    "# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'\n",
+    "\n",
     "import numpy as np\n",
     "from sklearn import metrics\n",
     "from sklearn.linear_model import LogisticRegression\n",
@@ -85,7 +94,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "### 1.1 - Usefull stuff"
+    "### 1.1 - Usefull stuff (hidden)"
    ]
   },
   {
@@ -94,7 +103,8 @@
    "metadata": {
     "jupyter": {
      "source_hidden": true
-    }
+    },
+    "tags": []
    },
    "outputs": [],
    "source": [
@@ -329,7 +339,7 @@
     "# ---- Create an instance\n",
     "#      Use SAGA solver (Stochastic Average Gradient descent solver)\n",
     "#\n",
-    "logreg = LogisticRegression(C=1e5, verbose=1, solver='saga')\n",
+    "logreg = LogisticRegression(C=1e5, verbose=0, solver='saga')\n",
     "\n",
     "# ---- Fit the data.\n",
     "#\n",
@@ -410,8 +420,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "### 4.2 - Run the classifier\n",
-    "...and with Tensorboard tracking and checkpoint recording."
+    "### 4.2 - Run the classifier"
    ]
   },
   {
@@ -423,7 +432,7 @@
     "# ---- Create an instance\n",
     "#      Use SAGA solver (Stochastic Average Gradient descent solver)\n",
     "#\n",
-    "logreg = LogisticRegression(C=1e5, verbose=1, solver='saga', max_iter=5000)\n",
+    "logreg = LogisticRegression(C=1e5, verbose=0, solver='saga', max_iter=5000, n_jobs=-1)\n",
     "\n",
     "# ---- Fit the data.\n",
     "#\n",
@@ -470,7 +479,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -484,7 +493,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.7.9"
+   "version": "3.9.7"
   }
  },
  "nbformat": 4,
diff --git a/Misc/Test.ipynb b/Misc/Test.ipynb
deleted file mode 100644
index 43473022f0933d9bc0fed7c03c696ea7d4aea08d..0000000000000000000000000000000000000000
--- a/Misc/Test.ipynb
+++ /dev/null
@@ -1,35 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "id": "respiratory-chuck",
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# Ceci est un test"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.8.5"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
diff --git a/README.ipynb b/README.ipynb
index 49d3a28ecd82e47a37eee54d6a20c7df2aeaea39..fa4ce4e226b2adb3b7c2250b76551568ee3f3ef2 100644
--- a/README.ipynb
+++ b/README.ipynb
@@ -3,13 +3,13 @@
   {
    "cell_type": "code",
    "execution_count": 1,
-   "id": "cardiac-mounting",
+   "id": "18d935c7",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2021-05-17T17:05:53.833672Z",
-     "iopub.status.busy": "2021-05-17T17:05:53.833266Z",
-     "iopub.status.idle": "2021-05-17T17:05:53.837307Z",
-     "shell.execute_reply": "2021-05-17T17:05:53.836917Z"
+     "iopub.execute_input": "2021-10-22T13:43:17.380919Z",
+     "iopub.status.busy": "2021-10-22T13:43:17.377572Z",
+     "iopub.status.idle": "2021-10-22T13:43:17.397089Z",
+     "shell.execute_reply": "2021-10-22T13:43:17.396194Z"
     },
     "jupyter": {
      "source_hidden": true
@@ -49,7 +49,7 @@
        "Voir ou revoir les [vidéos](https://www.youtube.com/channel/UC4Sukzudhbwr6fs10cXrJsQ)\n",
        "\n",
        "Current Version : <!-- VERSION_BEGIN -->\n",
-       "**2.0.23**\n",
+       "**2.0.24**\n",
        "<!-- VERSION_END -->\n",
        "\n",
        "\n",
@@ -166,6 +166,10 @@
        "- **[VAE10](VAE/batch_slurm.sh)** - [SLURM batch script](VAE/batch_slurm.sh)  \n",
        "Bash script for SLURM batch submission of VAE8 notebooks \n",
        "\n",
+       "### Generative Adversarial Networks (GANs)\n",
+       "- **[DCGAN01](DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb)** - [A first DCGAN to Draw a Sheep](DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb)  \n",
+       "Episode 1 : Draw me a sheep, revisited with a DCGAN\n",
+       "\n",
        "### Miscellaneous\n",
        "- **[ACTF1](Misc/Activation-Functions.ipynb)** - [Activation functions](Misc/Activation-Functions.ipynb)  \n",
        "Some activation functions, with their derivatives.\n",
@@ -173,8 +177,6 @@
        "Numpy is an essential tool for the Scientific Python.\n",
        "- **[SCRATCH1](Misc/Scratchbook.ipynb)** - [Scratchbook](Misc/Scratchbook.ipynb)  \n",
        "A scratchbook for small examples\n",
-       "- **[??](Misc/Test.ipynb)** - [??](Misc/Test.ipynb)  \n",
-       "??\n",
        "- **[TSB1](Misc/Using-Tensorboard.ipynb)** - [Tensorboard with/from Jupyter ](Misc/Using-Tensorboard.ipynb)  \n",
        "4 ways to use Tensorboard from the Jupyter environment\n",
        "<!-- INDEX_END -->\n",
@@ -228,7 +230,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.5"
+   "version": "3.9.7"
   }
  },
  "nbformat": 4,
diff --git a/README.md b/README.md
index db215bf7c2142bfdbcb20556c74c2bc3efd17c3e..9f58b2cdac3741c6fedf5755a2004e9c9e613cfb 100644
--- a/README.md
+++ b/README.md
@@ -28,7 +28,7 @@ Voir le [programme](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/w
 Voir ou revoir les [vidéos](https://www.youtube.com/channel/UC4Sukzudhbwr6fs10cXrJsQ)
 
 Current Version : <!-- VERSION_BEGIN -->
-**2.0.23**
+**2.0.24**
 <!-- VERSION_END -->
 
 
@@ -145,6 +145,10 @@ Episode 5 : Exploring latent space to generate new data
 - **[VAE10](VAE/batch_slurm.sh)** - [SLURM batch script](VAE/batch_slurm.sh)  
 Bash script for SLURM batch submission of VAE8 notebooks 
 
+### Generative Adversarial Networks (GANs)
+- **[DCGAN01](DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb)** - [A first DCGAN to Draw a Sheep](DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb)  
+Episode 1 : Draw me a sheep, revisited with a DCGAN
+
 ### Miscellaneous
 - **[ACTF1](Misc/Activation-Functions.ipynb)** - [Activation functions](Misc/Activation-Functions.ipynb)  
 Some activation functions, with their derivatives.
@@ -152,8 +156,6 @@ Some activation functions, with their derivatives.
 Numpy is an essential tool for the Scientific Python.
 - **[SCRATCH1](Misc/Scratchbook.ipynb)** - [Scratchbook](Misc/Scratchbook.ipynb)  
 A scratchbook for small examples
-- **[??](Misc/Test.ipynb)** - [??](Misc/Test.ipynb)  
-??
 - **[TSB1](Misc/Using-Tensorboard.ipynb)** - [Tensorboard with/from Jupyter ](Misc/Using-Tensorboard.ipynb)  
 4 ways to use Tensorboard from the Jupyter environment
 <!-- INDEX_END -->
diff --git a/environment.yml b/environments/archives/environment.yml
similarity index 100%
rename from environment.yml
rename to environments/archives/environment.yml
diff --git a/fidle_environment_linux.txt b/environments/archives/fidle_environment_linux.txt
similarity index 100%
rename from fidle_environment_linux.txt
rename to environments/archives/fidle_environment_linux.txt
diff --git a/fidle_environment_linux_gpu_cuda101.txt b/environments/archives/fidle_environment_linux_gpu_cuda101.txt
similarity index 100%
rename from fidle_environment_linux_gpu_cuda101.txt
rename to environments/archives/fidle_environment_linux_gpu_cuda101.txt
diff --git a/fidle_environment_windows10.txt b/environments/archives/fidle_environment_windows10.txt
similarity index 100%
rename from fidle_environment_windows10.txt
rename to environments/archives/fidle_environment_windows10.txt
diff --git a/fidle_environment_windows10_gpu_cuda101.txt b/environments/archives/fidle_environment_windows10_gpu_cuda101.txt
similarity index 100%
rename from fidle_environment_windows10_gpu_cuda101.txt
rename to environments/archives/fidle_environment_windows10_gpu_cuda101.txt
diff --git a/environments/environment-cpu.yml b/environments/environment-cpu.yml
new file mode 100644
index 0000000000000000000000000000000000000000..c582c7778e66f551d6a0e0ecd03d2ae7add4e760
--- /dev/null
+++ b/environments/environment-cpu.yml
@@ -0,0 +1,13 @@
+name: fidle-cpu
+channels:
+  - default
+dependencies:
+  - tensorflow
+  - keras
+  - scikit-learn
+  - scikit-image
+  - matplotlib
+  - plotly
+  - pandas
+  - pandoc
+  - jupyterlab
diff --git a/environments/environment-gpu.yml b/environments/environment-gpu.yml
new file mode 100644
index 0000000000000000000000000000000000000000..b9ff07c21b08629d6b10a58f55de6adf15aa2c92
--- /dev/null
+++ b/environments/environment-gpu.yml
@@ -0,0 +1,13 @@
+name: fidle-gpu
+channels:
+  - default
+dependencies:
+  - tensorflow-gpu
+  - keras
+  - scikit-learn
+  - scikit-image
+  - matplotlib
+  - plotly
+  - pandas
+  - pandoc
+  - jupyterlab
diff --git a/fidle/01-update-index.ipynb b/fidle/01-update-index.ipynb
index 97e9dc86f6005322528f5057742ed25907ff2896..6173420d8903d90f90e323ab39d3ef1c840073a5 100644
--- a/fidle/01-update-index.ipynb
+++ b/fidle/01-update-index.ipynb
@@ -58,7 +58,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -71,6 +71,7 @@
     "                        'SYNOP':'Time series with Recurrent Neural Network (RNN)',\n",
     "                        'AE':'Unsupervised learning with an autoencoder neural network (AE)',\n",
     "                        'VAE':'Generative network with Variational Autoencoder (VAE)',\n",
+    "                        'DCGAN':'Generative Adversarial Networks (GANs)',\n",
     "                        'Misc':'Miscellaneous'\n",
     "                        }"
    ]
@@ -85,7 +86,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 6,
    "metadata": {},
    "outputs": [
     {
@@ -130,12 +131,13 @@
       "Read :  VAE/07-Check-CelebA.ipynb\n",
       "Read :  VAE/08-VAE-with-CelebA.ipynb\n",
       "Read :  VAE/09-VAE-with-CelebA-post.ipynb\n",
+      "Read :  DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb\n",
       "Read :  Misc/Activation-Functions.ipynb\n",
       "Read :  Misc/Numpy.ipynb\n",
       "Read :  Misc/Scratchbook.ipynb\n",
       "Read :  Misc/Using-Tensorboard.ipynb\n",
       "Catalog saved as ../fidle/logs/catalog.json\n",
-      "Entries :  45\n"
+      "Entries :  46\n"
      ]
     }
    ],
@@ -163,7 +165,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 7,
    "metadata": {},
    "outputs": [
     {
@@ -282,6 +284,10 @@
        "- **[VAE10](VAE/batch_slurm.sh)** - [SLURM batch script](VAE/batch_slurm.sh)  \n",
        "Bash script for SLURM batch submission of VAE8 notebooks \n",
        "\n",
+       "### Generative Adversarial Networks (GANs)\n",
+       "- **[DCGAN01](DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb)** - [A first DCGAN to Draw a Sheep](DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb)  \n",
+       "Episode 1 : Draw me a sheep, revisited with a DCGAN\n",
+       "\n",
        "### Miscellaneous\n",
        "- **[ACTF1](Misc/Activation-Functions.ipynb)** - [Activation functions](Misc/Activation-Functions.ipynb)  \n",
        "Some activation functions, with their derivatives.\n",
@@ -351,7 +357,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 8,
    "metadata": {},
    "outputs": [
     {
@@ -426,7 +432,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 9,
    "metadata": {},
    "outputs": [
     {
@@ -471,14 +477,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 10,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Completed on :  Monday 22 March 2021, 13:10:57\n"
+      "Completed on :  Friday 22 October 2021, 15:43:20\n"
      ]
     }
    ],
@@ -497,9 +503,11 @@
   }
  ],
  "metadata": {
+  "interpreter": {
+   "hash": "7822d55dc7294a4f6f06b86d8ad2ca65bd6e1ee5d72628c47c30a06bbf89aef6"
+  },
   "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
+   "display_name": "Python 3.9.7 64-bit ('fidle': conda)",
    "name": "python3"
   },
   "language_info": {
@@ -512,7 +520,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.7.9"
+   "version": "3.9.7"
   }
  },
  "nbformat": 4,
diff --git a/fidle/02-running-ci-tests.ipynb b/fidle/02-running-ci-tests.ipynb
index 9f5ed793e004fd13e54ee3289fecbc326a478478..ea742766a4e8c9664b093415bbb9d9cd16024819 100644
--- a/fidle/02-running-ci-tests.ipynb
+++ b/fidle/02-running-ci-tests.ipynb
@@ -29,14 +29,16 @@
    "outputs": [],
    "source": [
     "import cookci\n",
-    "import os"
+    "import os\n",
+    "\n",
+    "os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## Create default profile\n",
+    "## Step 1 - Create default profile\n",
     "Génère un profile par défaut comprenant tous les notebooks du moment...  \n",
     "...avec la liste des overrides disponibles :-)"
    ]
@@ -55,7 +57,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## Profile"
+    "## Step 2 - Profile"
    ]
   },
   {
@@ -64,17 +66,24 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "# ---- Profile of tests\n",
-    "#\n",
-    "# profile_name = './ci/smart_cpu.yml'\n",
-    "profile_name = './ci/fidle-ad_s05.yml'"
+    "profile_name = './ci/small_cpu.yml'\n",
+    "# profile_name = './ci/fidle-ad_s05.yml'"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "profile_name = os.getenv('FIDLE_OVERRIDE_PROFILE', profile_name )"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## Run it"
+    "## Step 3 - Run it"
    ]
   },
   {
@@ -83,10 +92,6 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "# ---- Override for batch mode\n",
-    "#\n",
-    "profile_name = os.getenv('FIDLE_OVERRIDE_PROFILE', profile_name )\n",
-    "\n",
     "cookci.run_profile(profile_name, report_name='./logs/ci_report.json')"
    ]
   },
@@ -111,9 +116,11 @@
   }
  ],
  "metadata": {
+  "interpreter": {
+   "hash": "7822d55dc7294a4f6f06b86d8ad2ca65bd6e1ee5d72628c47c30a06bbf89aef6"
+  },
   "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
+   "display_name": "Python 3.9.7 64-bit ('fidle': conda)",
    "name": "python3"
   },
   "language_info": {
@@ -126,7 +133,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.7.9"
+   "version": "3.9.7"
   }
  },
  "nbformat": 4,
diff --git a/fidle/ci/default.yml b/fidle/ci/default.yml
index d3fe05acbe16305f1e3b3d28ceef2c1175a572d5..9f4157295e467a1daf9c77335e4b6b2039050bff 100644
--- a/fidle/ci/default.yml
+++ b/fidle/ci/default.yml
@@ -386,6 +386,18 @@ Nb_VAE10:
   notebook_dir: VAE
   notebook_src: batch_slurm.sh
   notebook_tag: default
+Nb_DCGAN01:
+  notebook_id: DCGAN01
+  notebook_dir: DCGAN
+  notebook_src: 01-DCGAN-Draw-me-a-sheep.ipynb
+  notebook_tag: default
+  overrides:
+    run_dir: default
+    latent_dim: default
+    epochs: default
+    batch_size: default
+    num_img: default
+    scale: default
 Nb_ACTF1:
   notebook_id: ACTF1
   notebook_dir: Misc
diff --git a/fidle/ci/small_cpu.yml b/fidle/ci/small_cpu.yml
new file mode 100644
index 0000000000000000000000000000000000000000..be13cdfae59800f685906b6f238fe4f80ad72bb4
--- /dev/null
+++ b/fidle/ci/small_cpu.yml
@@ -0,0 +1,336 @@
+_metadata_:
+  version: '1.0'
+  output_tag: ==ci==
+  save_figs: true
+  description: Full run on a small cpu
+#
+# ------ LinearReg -------------------------------------------------
+#
+Nb_LINR1:
+  notebook_id: LINR1
+  notebook_dir: LinearReg
+  notebook_src: 01-Linear-Regression.ipynb
+  notebook_tag: default
+Nb_GRAD1:
+  notebook_id: GRAD1
+  notebook_dir: LinearReg
+  notebook_src: 02-Gradient-descent.ipynb
+  notebook_tag: default
+Nb_POLR1:
+  notebook_id: POLR1
+  notebook_dir: LinearReg
+  notebook_src: 03-Polynomial-Regression.ipynb
+  notebook_tag: default
+Nb_LOGR1:
+  notebook_id: LOGR1
+  notebook_dir: LinearReg
+  notebook_src: 04-Logistic-Regression.ipynb
+  notebook_tag: default
+Nb_PER57:
+  notebook_id: PER57
+  notebook_dir: IRIS
+  notebook_src: 01-Simple-Perceptron.ipynb
+  notebook_tag: default
+#
+# ------ BHPD ------------------------------------------------------
+#
+Nb_BHPD1:
+  notebook_id: BHPD1
+  notebook_dir: BHPD
+  notebook_src: 01-DNN-Regression.ipynb
+  notebook_tag: default
+  overrides:
+    fit_verbosity: 2
+Nb_BHPD2:
+  notebook_id: BHPD2
+  notebook_dir: BHPD
+  notebook_src: 02-DNN-Regression-Premium.ipynb
+  notebook_tag: default
+  overrides:
+    fit_verbosity: 2
+#
+# ------ MNIST -----------------------------------------------------
+#
+# Nb_MNIST1:
+#   notebook_id: MNIST1
+#   notebook_dir: MNIST
+#   notebook_src: 01-DNN-MNIST.ipynb
+#   notebook_tag: default
+# Nb_MNIST2:
+#   notebook_id: MNIST2
+#   notebook_dir: MNIST
+#   notebook_src: 02-CNN-MNIST.ipynb
+#   notebook_tag: default
+#
+# ------ GTSRB -----------------------------------------------------
+#
+# Nb_GTSRB1:
+#   notebook_id: GTSRB1
+#   notebook_dir: GTSRB
+#   notebook_src: 01-Preparation-of-data.ipynb
+#   notebook_tag: default
+#   overrides:
+#     scale: 0.01
+#     output_dir: ./data
+# Nb_GTSRB2:
+#   notebook_id: GTSRB2
+#   notebook_dir: GTSRB
+#   notebook_src: 02-First-convolutions.ipynb
+#   notebook_tag: default
+#   overrides:
+#     run_dir: ./run/GTSRB2_done
+#     enhanced_dir: './data'
+#     dataset_name: set-24x24-L
+#     batch_size: 64
+#     epochs: 5
+#     scale: 1
+# Nb_GTSRB3:
+#   notebook_id: GTSRB3
+#   notebook_dir: GTSRB
+#   notebook_src: 03-Tracking-and-visualizing.ipynb
+#   notebook_tag: default
+#   overrides:
+#     run_dir: ./run/GTSRB3_done
+#     enhanced_dir: './data'
+#     dataset_name: set-24x24-L
+#     batch_size: 64
+#     epochs: 5
+#     scale: 1
+# Nb_GTSRB4:
+#   notebook_id: GTSRB4
+#   notebook_dir: GTSRB
+#   notebook_src: 04-Data-augmentation.ipynb
+#   notebook_tag: default
+#   overrides:
+#     run_dir: ./run/GTSRB4_done
+#     enhanced_dir: './data'
+#     dataset_name: set-24x24-L
+#     batch_size: 64
+#     epochs: 5
+#     scale: 1
+# Nb_GTSRB5_r1:
+#   notebook_id: GTSRB5
+#   notebook_dir: GTSRB
+#   notebook_src: 05-Full-convolutions.ipynb
+#   notebook_tag: =1==done==
+#   overrides:
+#     run_dir: ./run/GTSRB5_done
+#     enhanced_dir: './data'
+#     datasets: "['set-24x24-L', 'set-24x24-RGB']"
+#     models: "{'v1':'get_model_v1', 'v2':'get_model_v2'}"
+#     batch_size: 64
+#     epochs: 5
+#     scale: 1
+#     with_datagen: False
+#     verbose: 0
+# Nb_GTSRB6:
+#   notebook_id: GTSRB6
+#   notebook_dir: GTSRB
+#   notebook_src: 06-Notebook-as-a-batch.ipynb
+#   notebook_tag: default
+# Nb_GTSRB7:
+#   notebook_id: GTSRB7
+#   notebook_dir: GTSRB
+#   notebook_src: 07-Show-report.ipynb
+#   notebook_tag: default
+#   overrides:
+#     run_dir: ./run/GTSRB7_done
+#     report_dir: ./run/GTSRB5_done
+#
+# ------ IMDB ------------------------------------------------------
+#
+# Nb_IMDB1:
+#   notebook_id: IMDB1
+#   notebook_dir: IMDB
+#   notebook_src: 01-One-hot-encoding.ipynb
+#   notebook_tag: default
+#   overrides:
+#     run_dir: default
+#     vocab_size: default
+#     hide_most_frequently: default
+#     batch_size: default
+#     epochs: default
+# Nb_IMDB2:
+#   notebook_id: IMDB2
+#   notebook_dir: IMDB
+#   notebook_src: 02-Keras-embedding.ipynb
+#   notebook_tag: default
+#   overrides:
+#     run_dir: default
+#     vocab_size: default
+#     hide_most_frequently: default
+#     review_len: default
+#     dense_vector_size: default
+#     batch_size: default
+#     epochs: default
+#     output_dir: default
+# Nb_IMDB3:
+#   notebook_id: IMDB3
+#   notebook_dir: IMDB
+#   notebook_src: 03-Prediction.ipynb
+#   notebook_tag: default
+#   overrides:
+#     run_dir: default
+#     vocab_size: default
+#     review_len: default
+#     dictionaries_dir: default
+# Nb_IMDB4:
+#   notebook_id: IMDB4
+#   notebook_dir: IMDB
+#   notebook_src: 04-Show-vectors.ipynb
+#   notebook_tag: default
+#   overrides:
+#     run_dir: default
+#     vocab_size: default
+#     review_len: default
+#     dictionaries_dir: default
+# Nb_IMDB5:
+#   notebook_id: IMDB5
+#   notebook_dir: IMDB
+#   notebook_src: 05-LSTM-Keras.ipynb
+#   notebook_tag: default
+#
+# ------ SYNOP -----------------------------------------------------
+#
+# Nb_LADYB1:
+#   notebook_id: LADYB1
+#   notebook_dir: SYNOP
+#   notebook_src: LADYB1-Ladybug.ipynb
+#   notebook_tag: default
+#   overrides:
+#     run_dir: default
+#     scale: default
+#     train_prop: default
+#     sequence_len: default
+#     predict_len: default
+#     batch_size: default
+#     epochs: default
+# Nb_SYNOP1:
+#   notebook_id: SYNOP1
+#   notebook_dir: SYNOP
+#   notebook_src: SYNOP1-Preparation-of-data.ipynb
+#   notebook_tag: default
+#   overrides:
+#     output_dir: default
+# Nb_SYNOP2:
+#   notebook_id: SYNOP2
+#   notebook_dir: SYNOP
+#   notebook_src: SYNOP2-First-predictions.ipynb
+#   notebook_tag: default
+#   overrides:
+#     scale: default
+#     train_prop: default
+#     sequence_len: default
+#     batch_size: default
+#     epochs: default
+# Nb_SYNOP3:
+#   notebook_id: SYNOP3
+#   notebook_dir: SYNOP
+#   notebook_src: SYNOP3-12h-predictions.ipynb
+#   notebook_tag: default
+#   overrides:
+#     iterations: default
+#     scale: default
+#     train_prop: default
+#     sequence_len: default
+#     batch_size: default
+#     epochs: default
+#
+# ------ AE --------------------------------------------------------
+#
+# Nb_AE1:
+#   notebook_id: AE1
+#   notebook_dir: AE
+#   notebook_src: 01-AE-with-MNIST.ipynb
+#   notebook_tag: default
+# Nb_AE2:
+#   notebook_id: AE2
+#   notebook_dir: AE
+#   notebook_src: 02-AE-with-MNIST-post.ipynb
+#   notebook_tag: default
+#
+# ------ VAE -------------------------------------------------------
+#
+# Nb_VAE1:
+#   notebook_id: VAE1
+#   notebook_dir: VAE
+#   notebook_src: 01-VAE-with-MNIST.ipynb
+#   notebook_tag: default
+#   overrides:
+#     run_dir: ./run/VAE1_done
+#     scale: 1
+#     latent_dim: 2
+#     r_loss_factor: 0.994
+#     batch_size: 64
+#     epochs: 10
+# Nb_VAE2:
+#   notebook_id: VAE2
+#   notebook_dir: VAE
+#   notebook_src: 02-VAE-with-MNIST-post.ipynb
+#   notebook_tag: default
+#   overrides:
+#     run_dir: ./run/VAE1_done
+# Nb_VAE5:
+#   notebook_id: VAE5
+#   notebook_dir: VAE
+#   notebook_src: 05-About-CelebA.ipynb
+#   notebook_tag: default
+# Nb_VAE6:
+#   notebook_id: VAE6
+#   notebook_dir: VAE
+#   notebook_src: 06-Prepare-CelebA-datasets.ipynb
+#   notebook_tag: default
+#   overrides:
+#     scale: 0.01
+#     image_size: '(192,160)'
+#     output_dir: ./data
+#     exit_if_exist: False
+# Nb_VAE7:
+#   notebook_id: VAE7
+#   notebook_dir: VAE
+#   notebook_src: 07-Check-CelebA.ipynb
+#   notebook_tag: default
+#   overrides:
+#     image_size: '(192,160)'
+#     enhanced_dir: '{datasets_dir}/celeba/enhanced'
+# Nb_VAE8:
+#   notebook_id: VAE8
+#   notebook_dir: VAE
+#   notebook_src: 08-VAE-with-CelebA.ipynb
+#   notebook_tag: default
+#   overrides:
+#     run_dir: ./run/VAE8_done
+#     scale: 1
+#     image_size: '(192,160)'
+#     enhanced_dir: '{datasets_dir}/celeba/enhanced'
+#     latent_dim: 300
+#     r_loss_factor: 0.6
+#     batch_size: 64
+#     epochs: 15
+# Nb_VAE9:
+#   notebook_id: VAE9
+#   notebook_dir: VAE
+#   notebook_src: 09-VAE-with-CelebA-post.ipynb
+#   notebook_tag: default
+#   overrides:
+#     run_dir: ./run/VAE8_done
+#     image_size: '(192,160)'
+#     enhanced_dir: '{datasets_dir}/celeba/enhanced'
+#
+# ------ Misc ------------------------------------------------------
+#
+# Nb_ACTF1:
+#   notebook_id: ACTF1
+#   notebook_dir: Misc
+#   notebook_src: Activation-Functions.ipynb
+#   notebook_tag: default
+# Nb_NP1:
+#   notebook_id: NP1
+#   notebook_dir: Misc
+#   notebook_src: Numpy.ipynb
+#   notebook_tag: default
+# Nb_TSB1:
+#   notebook_id: TSB1
+#   notebook_dir: Misc
+#   notebook_src: Using-Tensorboard.ipynb
+#   notebook_tag: default
diff --git a/fidle/config.py b/fidle/config.py
index 8b1129413fbe4f63b9bc0fe9ce55e4b36578be31..71ba96f380224569e45fe7062710ea638e595e7f 100644
--- a/fidle/config.py
+++ b/fidle/config.py
@@ -14,7 +14,7 @@
 
 # ---- Version -----------------------------------------------------
 #
-VERSION = '2.0.24'
+VERSION = '2.0.25'
 
 # ---- Default notebook name ---------------------------------------
 #
@@ -40,4 +40,10 @@ CI_REPORT_JSON = '../fidle/logs/ci_report.json'
 CI_REPORT_HTML = '../fidle/logs/ci_report.html'
 CI_ERROR_FILE  = '../fidle/logs/ci_ERROR.txt'
 
-# ------------------------------------------------------------------
+# ---- Used modules -------------------------------------------------
+#
+USED_MODULES   = ['tensorflow','tensorflow.keras','sklearn','skimage',
+                  'matplotlib','plotly','pandas','jupyterlab',
+                  'pytorch', 'torchvision']
+
+# -------------------------------------------------------------------
diff --git a/fidle/logs/catalog.json b/fidle/logs/catalog.json
index de8ce0c2e6b0440c4ad59604aabc396e34d08dfe..a80aa48a56766dfa39f6125a599c34a2b2949336 100644
--- a/fidle/logs/catalog.json
+++ b/fidle/logs/catalog.json
@@ -508,6 +508,22 @@
         "description": "Bash script for SLURM batch submission of VAE8 notebooks ",
         "overrides": []
     },
+    "DCGAN01": {
+        "id": "DCGAN01",
+        "dirname": "DCGAN",
+        "basename": "01-DCGAN-Draw-me-a-sheep.ipynb",
+        "title": "A first DCGAN to Draw a Sheep",
+        "description": "Episode 1 : Draw me a sheep, revisited with a DCGAN",
+        "overrides": [
+            "run_dir",
+            "latent_dim",
+            "epochs",
+            "batch_size",
+            "num_img",
+            "scale",
+            "run_dir"
+        ]
+    },
     "ACTF1": {
         "id": "ACTF1",
         "dirname": "Misc",
@@ -532,14 +548,6 @@
         "description": "A scratchbook for small examples",
         "overrides": []
     },
-    "??": {
-        "id": "??",
-        "dirname": "Misc",
-        "basename": "Test.ipynb",
-        "title": "??",
-        "description": "??",
-        "overrides": []
-    },
     "TSB1": {
         "id": "TSB1",
         "dirname": "Misc",
diff --git a/fidle/logs/ci_report.json b/fidle/logs/ci_report.json
index 3f57fe89cb5e8a2d02aacb44945239875fce19a9..b6afc1d6c9ac642760811f585b3ac980dba7fc4f 100644
--- a/fidle/logs/ci_report.json
+++ b/fidle/logs/ci_report.json
@@ -1,123 +1,83 @@
 {
     "_metadata_": {
         "version": "1.0",
-        "output_tag": "==done==",
+        "output_tag": "==ci==",
         "save_figs": true,
-        "description": "Heavy profile for S05 with GPU",
-        "host": "r10i7n7",
-        "profile": "./ci/fidle-ad_s06.yml",
-        "start": "22/03/21 14:39:05",
-        "end": "22/03/21 15:58:24",
-        "duration": "1:19:19"
+        "description": "Full run on a small cpu",
+        "host": "Oban",
+        "profile": "./ci/small_cpu.yml",
+        "start": "24/10/21 21:57:40",
+        "end": "24/10/21 21:58:41",
+        "duration": "0:01:01"
     },
-    "Nb_VAE1": {
-        "id": "VAE1",
-        "dir": "VAE",
-        "src": "01-VAE-with-MNIST.ipynb",
-        "out": "01-VAE-with-MNIST==done==.ipynb",
-        "start": "22/03/21 14:39:05",
-        "end": "22/03/21 14:41:08",
-        "duration": "0:02:03",
+    "Nb_LINR1": {
+        "id": "LINR1",
+        "dir": "LinearReg",
+        "src": "01-Linear-Regression.ipynb",
+        "out": "01-Linear-Regression==ci==.ipynb",
+        "start": "24/10/21 21:57:40",
+        "end": "24/10/21 21:57:46",
+        "duration": "0:00:06",
         "state": "ok"
     },
-    "Nb_VAE2_r0": {
-        "id": "VAE2",
-        "dir": "VAE",
-        "src": "02-VAE-with-MNIST.ipynb",
-        "out": "02-VAE-with-MNIST=0==done==.ipynb",
-        "start": "22/03/21 14:41:09",
-        "end": "22/03/21 14:43:04",
-        "duration": "0:01:55",
+    "Nb_GRAD1": {
+        "id": "GRAD1",
+        "dir": "LinearReg",
+        "src": "02-Gradient-descent.ipynb",
+        "out": "02-Gradient-descent==ci==.ipynb",
+        "start": "24/10/21 21:57:46",
+        "end": "24/10/21 21:57:55",
+        "duration": "0:00:09",
         "state": "ok"
     },
-    "Nb_VAE2_r1": {
-        "id": "VAE2",
-        "dir": "VAE",
-        "src": "02-VAE-with-MNIST.ipynb",
-        "out": "02-VAE-with-MNIST=1==done==.ipynb",
-        "start": "22/03/21 14:43:04",
-        "end": "22/03/21 14:44:59",
-        "duration": "0:01:55",
+    "Nb_POLR1": {
+        "id": "POLR1",
+        "dir": "LinearReg",
+        "src": "03-Polynomial-Regression.ipynb",
+        "out": "03-Polynomial-Regression==ci==.ipynb",
+        "start": "24/10/21 21:57:55",
+        "end": "24/10/21 21:58:02",
+        "duration": "0:00:06",
         "state": "ok"
     },
-    "Nb_VAE2_r2": {
-        "id": "VAE2",
-        "dir": "VAE",
-        "src": "02-VAE-with-MNIST.ipynb",
-        "out": "02-VAE-with-MNIST=2==done==.ipynb",
-        "start": "22/03/21 14:45:00",
-        "end": "22/03/21 14:46:56",
-        "duration": "0:01:56",
+    "Nb_LOGR1": {
+        "id": "LOGR1",
+        "dir": "LinearReg",
+        "src": "04-Logistic-Regression.ipynb",
+        "out": "04-Logistic-Regression==ci==.ipynb",
+        "start": "24/10/21 21:58:02",
+        "end": "24/10/21 21:58:08",
+        "duration": "0:00:06",
         "state": "ok"
     },
-    "Nb_VAE2_r3": {
-        "id": "VAE2",
-        "dir": "VAE",
-        "src": "02-VAE-with-MNIST.ipynb",
-        "out": "02-VAE-with-MNIST=3==done==.ipynb",
-        "start": "22/03/21 14:46:56",
-        "end": "22/03/21 14:48:51",
-        "duration": "0:01:55",
+    "Nb_PER57": {
+        "id": "PER57",
+        "dir": "IRIS",
+        "src": "01-Simple-Perceptron.ipynb",
+        "out": "01-Simple-Perceptron==ci==.ipynb",
+        "start": "24/10/21 21:58:09",
+        "end": "24/10/21 21:58:14",
+        "duration": "0:00:05",
         "state": "ok"
     },
-    "Nb_VAE3": {
-        "id": "VAE3",
-        "dir": "VAE",
-        "src": "03-VAE-with-MNIST-post.ipynb",
-        "out": "03-VAE-with-MNIST-post==done==.ipynb",
-        "start": "22/03/21 14:48:51",
-        "end": "22/03/21 14:49:26",
-        "duration": "0:00:35",
+    "Nb_BHPD1": {
+        "id": "BHPD1",
+        "dir": "BHPD",
+        "src": "01-DNN-Regression.ipynb",
+        "out": "01-DNN-Regression==ci==.ipynb",
+        "start": "24/10/21 21:58:15",
+        "end": "24/10/21 21:58:26",
+        "duration": "0:00:11",
         "state": "ok"
     },
-    "Nb_VAE5": {
-        "id": "VAE5",
-        "dir": "VAE",
-        "src": "05-About-CelebA.ipynb",
-        "out": "05-About-CelebA==done==.ipynb",
-        "start": "22/03/21 14:49:27",
-        "end": "22/03/21 14:49:54",
-        "duration": "0:00:26",
-        "state": "ok"
-    },
-    "Nb_VAE6": {
-        "id": "VAE6",
-        "dir": "VAE",
-        "src": "06-Prepare-CelebA-datasets.ipynb",
-        "out": "06-Prepare-CelebA-datasets==done==.ipynb",
-        "start": "22/03/21 14:49:54",
-        "end": "22/03/21 14:51:44",
-        "duration": "0:01:50",
-        "state": "ok"
-    },
-    "Nb_VAE7": {
-        "id": "VAE7",
-        "dir": "VAE",
-        "src": "07-Check-CelebA.ipynb",
-        "out": "07-Check-CelebA==done==.ipynb",
-        "start": "22/03/21 14:51:44",
-        "end": "22/03/21 14:52:01",
-        "duration": "0:00:17",
-        "state": "ok"
-    },
-    "Nb_VAE8": {
-        "id": "VAE8",
-        "dir": "VAE",
-        "src": "08-VAE-with-CelebA.ipynb",
-        "out": "08-VAE-with-CelebA==done==.ipynb",
-        "start": "22/03/21 14:52:01",
-        "end": "22/03/21 15:56:33",
-        "duration": "1:04:31",
-        "state": "ok"
-    },
-    "Nb_VAE9": {
-        "id": "VAE9",
-        "dir": "VAE",
-        "src": "09-VAE-with-CelebA-post.ipynb",
-        "out": "09-VAE-with-CelebA-post==done==.ipynb",
-        "start": "22/03/21 15:56:45",
-        "end": "22/03/21 15:58:24",
-        "duration": "0:01:39",
+    "Nb_BHPD2": {
+        "id": "BHPD2",
+        "dir": "BHPD",
+        "src": "02-DNN-Regression-Premium.ipynb",
+        "out": "02-DNN-Regression-Premium==ci==.ipynb",
+        "start": "24/10/21 21:58:26",
+        "end": "24/10/21 21:58:41",
+        "duration": "0:00:14",
         "state": "ok"
     }
 }
\ No newline at end of file
diff --git a/fidle/pwk.py b/fidle/pwk.py
index 2170880c410329322358dfe21fa1227783e6bfbf..d2d6a01efccbddad34b8b0957992148aa08e9b25 100644
--- a/fidle/pwk.py
+++ b/fidle/pwk.py
@@ -34,6 +34,8 @@ from IPython.display import display,Image,Markdown,HTML
 import fidle.config as config
 
 
+__version__   = config.VERSION
+
 datasets_dir  = None
 notebook_id   = None
 running_mode  = None
@@ -82,17 +84,16 @@ def init(name=None, run_directory='./run'):
     #
     attrs   = override('run_dir', return_attributes=True)
     run_dir = attrs.get('run_dir', run_directory)
-
-    # Solution 2, for fun ;-)
-    # run_dir = run_directory
-    # override('run_dir', module_name='__main__')
-    # override('run_dir', module_name=__name__, verbose=False)
-
     mkdir(run_dir)
     
     # ---- Update Keras cache
     #
     updated = update_keras_cache()
+
+    # ---- Tensorflow log level
+    #
+    log_level = int(os.getenv('TF_CPP_MIN_LOG_LEVEL', 0 ))
+    str_level = ['Info + Warning + Error','Warning + Error','Error only'][log_level]
     
     # ---- Today and now
     #
@@ -104,11 +105,16 @@ def init(name=None, run_directory='./run'):
     print('Version              :', config.VERSION)
     print('Notebook id          :', notebook_id)
     print('Run time             :', _start_time.strftime("%A %d %B %Y, %H:%M:%S"))
-    print('TensorFlow version   :', tf.__version__)
-    print('Keras version        :', tf.keras.__version__)
+    print('Tensorflow log level :', str_level,f' (={log_level})')
     print('Datasets dir         :', datasets_dir)
     print('Run dir              :', run_dir)
     print('Update keras cache   :', updated)
+    
+    # ---- Versions catalog
+    #
+    for m in config.USED_MODULES:
+        if m in sys.modules:
+            print(f'{m:21s}:', sys.modules[m].__version__)
 
     # ---- Save figs or not
     #