From e2986ca59c90e2b9dc1a2fb2b386720f8ed31e0b Mon Sep 17 00:00:00 2001
From: Jean-Luc Parouty <Jean-Luc.Parouty@grenoble-inp.fr>
Date: Wed, 19 Feb 2020 09:39:39 +0100
Subject: [PATCH] test gitlab/jupyter/markdown bug image

Former-commit-id: 00ba2083c4d486b135989f4beddbf4db15dd4ad5
---
 BHPD/01-DNN-Regression.ipynb | 3 +--
 1 file changed, 1 insertion(+), 2 deletions(-)

diff --git a/BHPD/01-DNN-Regression.ipynb b/BHPD/01-DNN-Regression.ipynb
index 64e2b61..6406040 100644
--- a/BHPD/01-DNN-Regression.ipynb
+++ b/BHPD/01-DNN-Regression.ipynb
@@ -4,8 +4,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "![Fidle](../fidle/img/00-Fidle-header-01.png)\n",
-    "![Fidle](00-Fidle-header-01.png)\n",
+    "![Hello World]()\n",
     "\n",
     "# Deep Neural Network (DNN) - BHPD dataset\n",
     "\n",
-- 
GitLab