diff --git a/DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb b/DCGAN.Keras/01-DCGAN-Draw-me-a-sheep.ipynb similarity index 99% rename from DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb rename to DCGAN.Keras/01-DCGAN-Draw-me-a-sheep.ipynb index ff676d8de18c94ea905ede53f87b0afc83ca7cb8..a4465693b164a5fef9d4b06baeb77f2adc8b8fa2 100644 --- a/DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb +++ b/DCGAN.Keras/01-DCGAN-Draw-me-a-sheep.ipynb @@ -7,7 +7,7 @@ "<img width=\"800px\" src=\"../fidle/img/header.svg\"></img>\n", "\n", "# <!-- TITLE --> [SHEEP1] - A first DCGAN to Draw a Sheep\n", - "<!-- DESC --> Episode 1 : Draw me a sheep, revisited with a DCGAN\n", + "<!-- DESC --> \"Draw me a sheep\", revisited with a DCGAN\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", "## Objectives :\n", diff --git a/DCGAN/02-WGANGP-Draw-me-a-sheep.ipynb b/DCGAN.Keras/02-WGANGP-Draw-me-a-sheep.ipynb similarity index 99% rename from DCGAN/02-WGANGP-Draw-me-a-sheep.ipynb rename to DCGAN.Keras/02-WGANGP-Draw-me-a-sheep.ipynb index dee76ea54d0d623523957d016271db992b7b307a..5ff34437c32a6d1332cf892bdc7e0b6b3103c170 100644 --- a/DCGAN/02-WGANGP-Draw-me-a-sheep.ipynb +++ b/DCGAN.Keras/02-WGANGP-Draw-me-a-sheep.ipynb @@ -7,7 +7,7 @@ "<img width=\"800px\" src=\"../fidle/img/header.svg\"></img>\n", "\n", "# <!-- TITLE --> [SHEEP2] - A WGAN-GP to Draw a Sheep\n", - "<!-- DESC --> Episode 2 : Draw me a sheep, revisited with a WGAN-GP\n", + "<!-- DESC --> \"Draw me a sheep\", revisited with a WGAN-GP\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", "## Objectives :\n", diff --git a/DCGAN/modules/callbacks/ImagesCallback.py b/DCGAN.Keras/modules/callbacks/ImagesCallback.py similarity index 100% rename from DCGAN/modules/callbacks/ImagesCallback.py rename to DCGAN.Keras/modules/callbacks/ImagesCallback.py diff --git a/DCGAN/modules/callbacks/__init__.py b/DCGAN.Keras/modules/callbacks/__init__.py similarity index 100% rename from DCGAN/modules/callbacks/__init__.py rename to DCGAN.Keras/modules/callbacks/__init__.py diff --git a/DCGAN/modules/models/DCGAN.py b/DCGAN.Keras/modules/models/DCGAN.py similarity index 100% rename from DCGAN/modules/models/DCGAN.py rename to DCGAN.Keras/modules/models/DCGAN.py diff --git a/DCGAN/modules/models/WGANGP.py b/DCGAN.Keras/modules/models/WGANGP.py similarity index 100% rename from DCGAN/modules/models/WGANGP.py rename to DCGAN.Keras/modules/models/WGANGP.py diff --git a/DCGAN/modules/models/__init__.py b/DCGAN.Keras/modules/models/__init__.py similarity index 100% rename from DCGAN/modules/models/__init__.py rename to DCGAN.Keras/modules/models/__init__.py diff --git a/DCGAN-PyTorch/01-DCGAN-PL.ipynb b/DCGAN.Lightning/01-DCGAN-PL.ipynb similarity index 98% rename from DCGAN-PyTorch/01-DCGAN-PL.ipynb rename to DCGAN.Lightning/01-DCGAN-PL.ipynb index fb2912157113d067211ba2fa8969a2e68bf88992..98d335e518c8091d2b97f072e3793c1f03dd550d 100644 --- a/DCGAN-PyTorch/01-DCGAN-PL.ipynb +++ b/DCGAN.Lightning/01-DCGAN-PL.ipynb @@ -6,8 +6,8 @@ "source": [ "<img width=\"800px\" src=\"../fidle/img/header.svg\"></img>\n", "\n", - "# <!-- TITLE --> [SHEEP3] - A DCGAN to Draw a Sheep, with Pytorch Lightning\n", - "<!-- DESC --> Episode 1 : Draw me a sheep, revisited with a DCGAN, writing in Pytorch Lightning\n", + "# <!-- TITLE --> [SHEEP3] - A DCGAN to Draw a Sheep, using Pytorch Lightning\n", + "<!-- DESC --> \"Draw me a sheep\", revisited with a DCGAN, using Pytorch Lightning\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", "## Objectives :\n", diff --git a/DCGAN-PyTorch/modules/Discriminators.py b/DCGAN.Lightning/modules/Discriminators.py similarity index 100% rename from DCGAN-PyTorch/modules/Discriminators.py rename to DCGAN.Lightning/modules/Discriminators.py diff --git a/DCGAN-PyTorch/modules/GAN.py b/DCGAN.Lightning/modules/GAN.py similarity index 100% rename from DCGAN-PyTorch/modules/GAN.py rename to DCGAN.Lightning/modules/GAN.py diff --git a/DCGAN-PyTorch/modules/Generators.py b/DCGAN.Lightning/modules/Generators.py similarity index 100% rename from DCGAN-PyTorch/modules/Generators.py rename to DCGAN.Lightning/modules/Generators.py diff --git a/DCGAN-PyTorch/modules/QuickDrawDataModule.py b/DCGAN.Lightning/modules/QuickDrawDataModule.py similarity index 100% rename from DCGAN-PyTorch/modules/QuickDrawDataModule.py rename to DCGAN.Lightning/modules/QuickDrawDataModule.py diff --git a/DCGAN-PyTorch/modules/SmartProgressBar.py b/DCGAN.Lightning/modules/SmartProgressBar.py similarity index 100% rename from DCGAN-PyTorch/modules/SmartProgressBar.py rename to DCGAN.Lightning/modules/SmartProgressBar.py diff --git a/DCGAN-PyTorch/modules/WGANGP.py b/DCGAN.Lightning/modules/WGANGP.py similarity index 100% rename from DCGAN-PyTorch/modules/WGANGP.py rename to DCGAN.Lightning/modules/WGANGP.py diff --git a/README.ipynb b/README.ipynb index 18f0ab1cb3bb79491403f83b3edc43e6263f89c0..37db95df9687f02cf652333dc78fd963be486bb8 100644 --- a/README.ipynb +++ b/README.ipynb @@ -3,13 +3,13 @@ { "cell_type": "code", "execution_count": 1, - "id": "c7f25450", + "id": "173d25d2", "metadata": { "execution": { - "iopub.execute_input": "2023-10-31T17:24:12.865964Z", - "iopub.status.busy": "2023-10-31T17:24:12.865178Z", - "iopub.status.idle": "2023-10-31T17:24:12.875759Z", - "shell.execute_reply": "2023-10-31T17:24:12.874784Z" + "iopub.execute_input": "2023-11-06T14:13:54.813170Z", + "iopub.status.busy": "2023-11-06T14:13:54.812440Z", + "iopub.status.idle": "2023-11-06T14:13:54.823230Z", + "shell.execute_reply": "2023-11-06T14:13:54.822337Z" }, "jupyter": { "source_hidden": true @@ -52,7 +52,7 @@ "For more information, you can contact us at : \n", "[<img width=\"200px\" style=\"vertical-align:middle\" src=\"fidle/img/00-Mail_contact.svg\"></img>](#top)\n", "\n", - "Current Version : <!-- VERSION_BEGIN -->2.4.0<!-- VERSION_END -->\n", + "Current Version : <!-- VERSION_BEGIN -->2.4.1<!-- VERSION_END -->\n", "\n", "\n", "## Course materials\n", @@ -67,7 +67,7 @@ "## Jupyter notebooks\n", "\n", "<!-- TOC_BEGIN -->\n", - "<!-- Automatically generated on : 31/10/23 18:24:11 -->\n", + "<!-- Automatically generated on : 06/11/23 15:13:53 -->\n", "\n", "### Linear and logistic regression\n", "- **[LINR1](LinearReg/01-Linear-Regression.ipynb)** - [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb) \n", @@ -98,7 +98,7 @@ "Another example of regression, with a wine quality prediction!\n", "\n", "### Wine Quality prediction (DNN), using PyTorch\n", - "- **[LWINE1](Wine.Lightning/01-DNN-Wine-Regression-lightning.ipynb)** - [Wine quality prediction with a Dense Network (DNN) using Lightning](Wine.Lightning/01-DNN-Wine-Regression-lightning.ipynb) \n", + "- **[WINE1](Wine.Lightning/01-DNN-Wine-Regression-lightning.ipynb)** - [Wine quality prediction with a Dense Network (DNN) using Lightning](Wine.Lightning/01-DNN-Wine-Regression-lightning.ipynb) \n", "Another example of regression, with a wine quality prediction!\n", "\n", "### MNIST classification (DNN,CNN), using Keras\n", @@ -112,9 +112,9 @@ "Example of classification with a fully connected neural network, using Pytorch\n", "\n", "### MNIST classification (DNN,CNN), using Lightning\n", - "- **[LMNIST1](MNIST.Lightning/01-DNN-MNIST_Lightning.ipynb)** - [Simple classification with DNN using Pytorch Lightning](MNIST.Lightning/01-DNN-MNIST_Lightning.ipynb) \n", + "- **[MNIST2](MNIST.Lightning/01-DNN-MNIST_Lightning.ipynb)** - [Simple classification with DNN using pytorch lightning](MNIST.Lightning/01-DNN-MNIST_Lightning.ipynb) \n", "An example of classification using a dense neural network for the famous MNIST dataset\n", - "- **[LMNIST2](MNIST.Lightning/02-CNN-MNIST_Lightning.ipynb)** - [Simple classification with CNN using Pytorch Lightning](MNIST.Lightning/02-CNN-MNIST_Lightning.ipynb) \n", + "- **[MNIST2](MNIST.Lightning/02-CNN-MNIST_Lightning.ipynb)** - [Simple classification with CNN using lightning](MNIST.Lightning/02-CNN-MNIST_Lightning.ipynb) \n", "An example of classification using a convolutional neural network for the famous MNIST dataset\n", "\n", "### Images classification with Convolutional Neural Networks (CNN)\n", @@ -185,11 +185,15 @@ "- **[VAE3](VAE/03-VAE-with-MNIST-post.ipynb)** - [Analysis of the VAE's latent space of MNIST dataset](VAE/03-VAE-with-MNIST-post.ipynb) \n", "Visualization and analysis of the VAE's latent space of the dataset MNIST\n", "\n", - "### Generative Adversarial Networks (GANs)\n", - "- **[SHEEP1](DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb)** - [A first DCGAN to Draw a Sheep](DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb) \n", - "Episode 1 : Draw me a sheep, revisited with a DCGAN\n", - "- **[SHEEP2](DCGAN/02-WGANGP-Draw-me-a-sheep.ipynb)** - [A WGAN-GP to Draw a Sheep](DCGAN/02-WGANGP-Draw-me-a-sheep.ipynb) \n", - "Episode 2 : Draw me a sheep, revisited with a WGAN-GP\n", + "### Generative Adversarial Networks (GANs), using Keras\n", + "- **[SHEEP1](DCGAN.Keras/01-DCGAN-Draw-me-a-sheep.ipynb)** - [A first DCGAN to Draw a Sheep](DCGAN.Keras/01-DCGAN-Draw-me-a-sheep.ipynb) \n", + "\"Draw me a sheep\", revisited with a DCGAN\n", + "- **[SHEEP2](DCGAN.Keras/02-WGANGP-Draw-me-a-sheep.ipynb)** - [A WGAN-GP to Draw a Sheep](DCGAN.Keras/02-WGANGP-Draw-me-a-sheep.ipynb) \n", + "\"Draw me a sheep\", revisited with a WGAN-GP\n", + "\n", + "### Generative Adversarial Networks (GANs), using Lightning\n", + "- **[SHEEP3](DCGAN.Lightning/01-DCGAN-PL.ipynb)** - [A DCGAN to Draw a Sheep, using Pytorch Lightning](DCGAN.Lightning/01-DCGAN-PL.ipynb) \n", + "\"Draw me a sheep\", revisited with a DCGAN, using Pytorch Lightning\n", "\n", "### Diffusion Model (DDPM)\n", "- **[DDPM1](DDPM/01-ddpm.ipynb)** - [Fashion MNIST Generation with DDPM](DDPM/01-ddpm.ipynb) \n", @@ -251,7 +255,7 @@ "from IPython.display import display,Markdown\n", "display(Markdown(open('README.md', 'r').read()))\n", "#\n", - "# This README is visible under Jupiter Lab ;-)# Automatically generated on : 31/10/23 18:24:11" + "# This README is visible under Jupiter Lab ;-)# Automatically generated on : 06/11/23 15:13:53" ] } ], diff --git a/README.md b/README.md index 09730272b709a37cfcc53ad3ccfa053f9ea4aba7..93c753535c308b5240dd1287918abd31b05ed1c5 100644 --- a/README.md +++ b/README.md @@ -31,7 +31,7 @@ For more information, see **https://fidle.cnrs.fr** : For more information, you can contact us at : [<img width="200px" style="vertical-align:middle" src="fidle/img/00-Mail_contact.svg"></img>](#top) -Current Version : <!-- VERSION_BEGIN -->2.4.0<!-- VERSION_END --> +Current Version : <!-- VERSION_BEGIN -->2.4.1<!-- VERSION_END --> ## Course materials @@ -46,7 +46,7 @@ Have a look about **[How to get and install](https://fidle.cnrs.fr/installation) ## Jupyter notebooks <!-- TOC_BEGIN --> -<!-- Automatically generated on : 31/10/23 18:24:11 --> +<!-- Automatically generated on : 06/11/23 15:13:53 --> ### Linear and logistic regression - **[LINR1](LinearReg/01-Linear-Regression.ipynb)** - [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb) @@ -77,7 +77,7 @@ A Simple regression with a Dense Neural Network (DNN) using Pytorch - BHPD datas Another example of regression, with a wine quality prediction! ### Wine Quality prediction (DNN), using PyTorch -- **[LWINE1](Wine.Lightning/01-DNN-Wine-Regression-lightning.ipynb)** - [Wine quality prediction with a Dense Network (DNN) using Lightning](Wine.Lightning/01-DNN-Wine-Regression-lightning.ipynb) +- **[WINE1](Wine.Lightning/01-DNN-Wine-Regression-lightning.ipynb)** - [Wine quality prediction with a Dense Network (DNN) using Lightning](Wine.Lightning/01-DNN-Wine-Regression-lightning.ipynb) Another example of regression, with a wine quality prediction! ### MNIST classification (DNN,CNN), using Keras @@ -91,9 +91,9 @@ An example of classification using a convolutional neural network for the famous Example of classification with a fully connected neural network, using Pytorch ### MNIST classification (DNN,CNN), using Lightning -- **[LMNIST1](MNIST.Lightning/01-DNN-MNIST_Lightning.ipynb)** - [Simple classification with DNN using Pytorch Lightning](MNIST.Lightning/01-DNN-MNIST_Lightning.ipynb) +- **[MNIST2](MNIST.Lightning/01-DNN-MNIST_Lightning.ipynb)** - [Simple classification with DNN using pytorch lightning](MNIST.Lightning/01-DNN-MNIST_Lightning.ipynb) An example of classification using a dense neural network for the famous MNIST dataset -- **[LMNIST2](MNIST.Lightning/02-CNN-MNIST_Lightning.ipynb)** - [Simple classification with CNN using Pytorch Lightning](MNIST.Lightning/02-CNN-MNIST_Lightning.ipynb) +- **[MNIST2](MNIST.Lightning/02-CNN-MNIST_Lightning.ipynb)** - [Simple classification with CNN using lightning](MNIST.Lightning/02-CNN-MNIST_Lightning.ipynb) An example of classification using a convolutional neural network for the famous MNIST dataset ### Images classification with Convolutional Neural Networks (CNN) @@ -164,11 +164,15 @@ Construction and training of a VAE, using model subclass, with a latent space of - **[VAE3](VAE/03-VAE-with-MNIST-post.ipynb)** - [Analysis of the VAE's latent space of MNIST dataset](VAE/03-VAE-with-MNIST-post.ipynb) Visualization and analysis of the VAE's latent space of the dataset MNIST -### Generative Adversarial Networks (GANs) -- **[SHEEP1](DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb)** - [A first DCGAN to Draw a Sheep](DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb) -Episode 1 : Draw me a sheep, revisited with a DCGAN -- **[SHEEP2](DCGAN/02-WGANGP-Draw-me-a-sheep.ipynb)** - [A WGAN-GP to Draw a Sheep](DCGAN/02-WGANGP-Draw-me-a-sheep.ipynb) -Episode 2 : Draw me a sheep, revisited with a WGAN-GP +### Generative Adversarial Networks (GANs), using Keras +- **[SHEEP1](DCGAN.Keras/01-DCGAN-Draw-me-a-sheep.ipynb)** - [A first DCGAN to Draw a Sheep](DCGAN.Keras/01-DCGAN-Draw-me-a-sheep.ipynb) +"Draw me a sheep", revisited with a DCGAN +- **[SHEEP2](DCGAN.Keras/02-WGANGP-Draw-me-a-sheep.ipynb)** - [A WGAN-GP to Draw a Sheep](DCGAN.Keras/02-WGANGP-Draw-me-a-sheep.ipynb) +"Draw me a sheep", revisited with a WGAN-GP + +### Generative Adversarial Networks (GANs), using Lightning +- **[SHEEP3](DCGAN.Lightning/01-DCGAN-PL.ipynb)** - [A DCGAN to Draw a Sheep, using Pytorch Lightning](DCGAN.Lightning/01-DCGAN-PL.ipynb) +"Draw me a sheep", revisited with a DCGAN, using Pytorch Lightning ### Diffusion Model (DDPM) - **[DDPM1](DDPM/01-ddpm.ipynb)** - [Fashion MNIST Generation with DDPM](DDPM/01-ddpm.ipynb) diff --git a/fidle/about.yml b/fidle/about.yml index 32032a38ed6e409170f3d7173f34f3aaebfa1e35..da3528c0e3ade98206ad3da72e8b4fa70712543f 100644 --- a/fidle/about.yml +++ b/fidle/about.yml @@ -13,7 +13,7 @@ # # This file describes the notebooks used by the Fidle training. -version: 2.4.0 +version: 2.4.1 content: notebooks name: Notebooks Fidle description: All notebooks used by the Fidle training @@ -39,7 +39,8 @@ toc: Transformers: Sentiment analysis with transformer AE: Unsupervised learning with an autoencoder neural network (AE) VAE: Generative network with Variational Autoencoder (VAE) - DCGAN: Generative Adversarial Networks (GANs) + DCGAN.Keras: Generative Adversarial Networks (GANs), using Keras + DCGAN.Lightning: Generative Adversarial Networks (GANs), using Lightning DDPM: Diffusion Model (DDPM) Optimization: Training optimization DRL: Deep Reinforcement Learning (DRL) diff --git a/fidle/ci/default.yml b/fidle/ci/default.yml index 372cef3ebc2ef0e995d9dc66e0c37d7c8a65cdb7..a89237d69437931b77a2125045c28404e1fae3b8 100644 --- a/fidle/ci/default.yml +++ b/fidle/ci/default.yml @@ -1,6 +1,6 @@ campain: version: '1.0' - description: Automatically generated ci profile (31/10/23 18:24:11) + description: Automatically generated ci profile (06/11/23 15:13:53) directory: ./campains/default existing_notebook: 'remove # remove|skip' report_template: 'fidle # fidle|default' @@ -54,7 +54,7 @@ KWINE1: # # ------------ Wine.Lightning # -LWINE1: +WINE1: notebook: Wine.Lightning/01-DNN-Wine-Regression-lightning.ipynb overrides: fit_verbosity: default @@ -81,9 +81,7 @@ PMNIST1: # # ------------ MNIST.Lightning # -LMNIST1: - notebook: MNIST.Lightning/01-DNN-MNIST_Lightning.ipynb -LMNIST2: +MNIST2: notebook: MNIST.Lightning/02-CNN-MNIST_Lightning.ipynb # @@ -310,10 +308,10 @@ VAE3: models_dir: default # -# ------------ DCGAN +# ------------ DCGAN.Keras # SHEEP1: - notebook: DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb + notebook: DCGAN.Keras/01-DCGAN-Draw-me-a-sheep.ipynb overrides: scale: default latent_dim: default @@ -322,7 +320,7 @@ SHEEP1: num_img: default fit_verbosity: default SHEEP2: - notebook: DCGAN/02-WGANGP-Draw-me-a-sheep.ipynb + notebook: DCGAN.Keras/02-WGANGP-Draw-me-a-sheep.ipynb overrides: scale: default latent_dim: default @@ -331,6 +329,12 @@ SHEEP2: num_img: default fit_verbosity: default +# +# ------------ DCGAN.Lightning +# +SHEEP3: + notebook: DCGAN.Lightning/01-DCGAN-PL.ipynb + # # ------------ DDPM #