From cb776ade458f773cb537d9ee4ae449a1ac8bfe39 Mon Sep 17 00:00:00 2001 From: Jean-Luc Parouty <Jean-Luc.Parouty@simap.grenoble-inp.fr> Date: Sun, 3 Mar 2024 20:56:31 +0100 Subject: [PATCH] Update notebook names, toc and ci (3.0.9) --- AE.Keras3/01-Prepare-MNIST-dataset.ipynb | 4 +- AE.Keras3/02-AE-with-MNIST.ipynb | 4 +- AE.Keras3/03-AE-with-MNIST-post.ipynb | 6 +- AE.Keras3/04-ExtAE-with-MNIST.ipynb | 4 +- AE.Keras3/05-ExtAE-with-MNIST.ipynb | 4 +- DCGAN.Lightning/01-DCGAN-PL.ipynb | 12 +- README.ipynb | 34 ++--- README.md | 22 ++-- VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb | 15 +-- VAE.Keras3/02-VAE-with-MNIST.ipynb | 4 +- VAE.Keras3/03-VAE-with-MNIST-post.ipynb | 6 +- fidle/about.yml | 2 +- fidle/ci/default.yml | 21 +-- fidle/ci/gpu-scale1.yml | 130 +++++++++++++++++++ 14 files changed, 197 insertions(+), 71 deletions(-) diff --git a/AE.Keras3/01-Prepare-MNIST-dataset.ipynb b/AE.Keras3/01-Prepare-MNIST-dataset.ipynb index be56312..8886e25 100644 --- a/AE.Keras3/01-Prepare-MNIST-dataset.ipynb +++ b/AE.Keras3/01-Prepare-MNIST-dataset.ipynb @@ -6,7 +6,7 @@ "source": [ "<img width=\"800px\" src=\"../fidle/img/header.svg\"></img>\n", "\n", - "# <!-- TITLE --> [AE1] - Prepare a noisy MNIST dataset\n", + "# <!-- TITLE --> [K3AE1] - Prepare a noisy MNIST dataset\n", "<!-- DESC --> Episode 1: Preparation of a noisy MNIST dataset\n", "\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", @@ -52,7 +52,7 @@ "import fidle\n", "\n", "# Init Fidle environment\n", - "run_id, run_dir, datasets_dir = fidle.init('AE1')" + "run_id, run_dir, datasets_dir = fidle.init('K3AE1')" ] }, { diff --git a/AE.Keras3/02-AE-with-MNIST.ipynb b/AE.Keras3/02-AE-with-MNIST.ipynb index e593173..be3b4ff 100644 --- a/AE.Keras3/02-AE-with-MNIST.ipynb +++ b/AE.Keras3/02-AE-with-MNIST.ipynb @@ -6,7 +6,7 @@ "source": [ "<img width=\"800px\" src=\"../fidle/img/header.svg\"></img>\n", "\n", - "# <!-- TITLE --> [AE2] - Building and training an AE denoiser model\n", + "# <!-- TITLE --> [K3AE2] - Building and training an AE denoiser model\n", "<!-- DESC --> Episode 1 : Construction of a denoising autoencoder and training of it with a noisy MNIST dataset.\n", "\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", @@ -66,7 +66,7 @@ "import fidle\n", "\n", "# Init Fidle environment\n", - "run_id, run_dir, datasets_dir = fidle.init('AE2')" + "run_id, run_dir, datasets_dir = fidle.init('K3AE2')" ] }, { diff --git a/AE.Keras3/03-AE-with-MNIST-post.ipynb b/AE.Keras3/03-AE-with-MNIST-post.ipynb index e9b3f78..3ecc33f 100644 --- a/AE.Keras3/03-AE-with-MNIST-post.ipynb +++ b/AE.Keras3/03-AE-with-MNIST-post.ipynb @@ -6,7 +6,7 @@ "source": [ "<img width=\"800px\" src=\"../fidle/img/header.svg\"></img>\n", "\n", - "# <!-- TITLE --> [AE3] - Playing with our denoiser model\n", + "# <!-- TITLE --> [K3AE3] - Playing with our denoiser model\n", "<!-- DESC --> Episode 2 : Using the previously trained autoencoder to denoise data\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", @@ -53,7 +53,7 @@ "import fidle\n", "\n", "# Init Fidle environment\n", - "run_id, run_dir, datasets_dir = fidle.init('AE3')" + "run_id, run_dir, datasets_dir = fidle.init('K3AE3')" ] }, { @@ -75,7 +75,7 @@ "outputs": [], "source": [ "prepared_dataset = './data/mnist-noisy.h5'\n", - "saved_models = './run/AE2/models'\n", + "saved_models = './run/K3AE2/models'\n", "dataset_seed = 123\n", "scale = 1\n", "train_prop = .8" diff --git a/AE.Keras3/04-ExtAE-with-MNIST.ipynb b/AE.Keras3/04-ExtAE-with-MNIST.ipynb index 2e74e09..2a26788 100644 --- a/AE.Keras3/04-ExtAE-with-MNIST.ipynb +++ b/AE.Keras3/04-ExtAE-with-MNIST.ipynb @@ -6,7 +6,7 @@ "source": [ "<img width=\"800px\" src=\"../fidle/img/header.svg\"></img>\n", "\n", - "# <!-- TITLE --> [AE4] - Denoiser and classifier model\n", + "# <!-- TITLE --> [K3AE4] - Denoiser and classifier model\n", "<!-- DESC --> Episode 4 : Construction of a denoiser and classifier model\n", "\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", @@ -64,7 +64,7 @@ "import fidle\n", "\n", "# Init Fidle environment\n", - "run_id, run_dir, datasets_dir = fidle.init('AE4')" + "run_id, run_dir, datasets_dir = fidle.init('K3AE4')" ] }, { diff --git a/AE.Keras3/05-ExtAE-with-MNIST.ipynb b/AE.Keras3/05-ExtAE-with-MNIST.ipynb index aa5cc5b..589ace8 100644 --- a/AE.Keras3/05-ExtAE-with-MNIST.ipynb +++ b/AE.Keras3/05-ExtAE-with-MNIST.ipynb @@ -6,7 +6,7 @@ "source": [ "<img width=\"800px\" src=\"../fidle/img/header.svg\"></img>\n", "\n", - "# <!-- TITLE --> [AE5] - Advanced denoiser and classifier model\n", + "# <!-- TITLE --> [K3AE5] - Advanced denoiser and classifier model\n", "<!-- DESC --> Episode 5 : Construction of an advanced denoiser and classifier model\n", "\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", @@ -65,7 +65,7 @@ "\n", "\n", "# Init Fidle environment\n", - "run_id, run_dir, datasets_dir = fidle.init('AE5')" + "run_id, run_dir, datasets_dir = fidle.init('K3AE5')" ] }, { diff --git a/DCGAN.Lightning/01-DCGAN-PL.ipynb b/DCGAN.Lightning/01-DCGAN-PL.ipynb index 99e9ab5..cfb550e 100644 --- a/DCGAN.Lightning/01-DCGAN-PL.ipynb +++ b/DCGAN.Lightning/01-DCGAN-PL.ipynb @@ -6,7 +6,7 @@ "source": [ "<img width=\"800px\" src=\"../fidle/img/header.svg\"></img>\n", "\n", - "# <!-- TITLE --> [SHEEP3] - A DCGAN to Draw a Sheep, using Pytorch Lightning\n", + "# <!-- TITLE --> [PLSHEEP3] - A DCGAN to Draw a Sheep, using Pytorch Lightning\n", "<!-- DESC --> \"Draw me a sheep\", revisited with a DCGAN, using Pytorch Lightning\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", @@ -66,7 +66,7 @@ "from modules.Discriminators import *\n", "\n", "# Init Fidle environment\n", - "run_id, run_dir, datasets_dir = fidle.init('SHEEP3')" + "run_id, run_dir, datasets_dir = fidle.init('PLSHEEP3')" ] }, { @@ -390,7 +390,7 @@ "metadata": {}, "outputs": [], "source": [ - "gan = GAN.load_from_checkpoint('./run/SHEEP3/models/bestModel.ckpt')" + "gan = GAN.load_from_checkpoint(f'{run_dir}/models/bestModel.ckpt')" ] }, { @@ -445,9 +445,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Fidle-keras 3", + "display_name": "fidle-env", "language": "python", - "name": "fidle-k3" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -459,7 +459,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.6" + "version": "3.9.2" } }, "nbformat": 4, diff --git a/README.ipynb b/README.ipynb index 311cc15..8b92b21 100644 --- a/README.ipynb +++ b/README.ipynb @@ -3,13 +3,13 @@ { "cell_type": "code", "execution_count": 1, - "id": "42b2ce5d", + "id": "60a4d6df", "metadata": { "execution": { - "iopub.execute_input": "2024-03-03T13:46:52.756661Z", - "iopub.status.busy": "2024-03-03T13:46:52.756452Z", - "iopub.status.idle": "2024-03-03T13:46:52.770894Z", - "shell.execute_reply": "2024-03-03T13:46:52.769696Z" + "iopub.execute_input": "2024-03-03T19:38:38.844681Z", + "iopub.status.busy": "2024-03-03T19:38:38.844023Z", + "iopub.status.idle": "2024-03-03T19:38:38.854300Z", + "shell.execute_reply": "2024-03-03T19:38:38.853434Z" }, "jupyter": { "source_hidden": true @@ -53,7 +53,7 @@ "For more information, you can contact us at : \n", "[<img width=\"200px\" style=\"vertical-align:middle\" src=\"fidle/img/00-Mail_contact.svg\"></img>](#top)\n", "\n", - "Current Version : <!-- VERSION_BEGIN -->3.0.8<!-- VERSION_END -->\n", + "Current Version : <!-- VERSION_BEGIN -->3.0.9<!-- VERSION_END -->\n", "\n", "\n", "## Course materials\n", @@ -68,7 +68,7 @@ "## Jupyter notebooks\n", "\n", "<!-- TOC_BEGIN -->\n", - "<!-- Automatically generated on : 03/03/24 14:46:51 -->\n", + "<!-- Automatically generated on : 03/03/24 20:38:37 -->\n", "\n", "### Linear and logistic regression\n", "- **[LINR1](LinearReg/01-Linear-Regression.ipynb)** - [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb) \n", @@ -155,27 +155,27 @@ "Using a Tranformer to perform a sentiment analysis (IMDB) - Colab version\n", "\n", "### Unsupervised learning with an autoencoder neural network (AE), using Keras3\n", - "- **[AE1](AE.Keras3/01-Prepare-MNIST-dataset.ipynb)** - [Prepare a noisy MNIST dataset](AE.Keras3/01-Prepare-MNIST-dataset.ipynb) \n", + "- **[K3AE1](AE.Keras3/01-Prepare-MNIST-dataset.ipynb)** - [Prepare a noisy MNIST dataset](AE.Keras3/01-Prepare-MNIST-dataset.ipynb) \n", "Episode 1: Preparation of a noisy MNIST dataset\n", - "- **[AE2](AE.Keras3/02-AE-with-MNIST.ipynb)** - [Building and training an AE denoiser model](AE.Keras3/02-AE-with-MNIST.ipynb) \n", + "- **[K3AE2](AE.Keras3/02-AE-with-MNIST.ipynb)** - [Building and training an AE denoiser model](AE.Keras3/02-AE-with-MNIST.ipynb) \n", "Episode 1 : Construction of a denoising autoencoder and training of it with a noisy MNIST dataset.\n", - "- **[AE3](AE.Keras3/03-AE-with-MNIST-post.ipynb)** - [Playing with our denoiser model](AE.Keras3/03-AE-with-MNIST-post.ipynb) \n", + "- **[K3AE3](AE.Keras3/03-AE-with-MNIST-post.ipynb)** - [Playing with our denoiser model](AE.Keras3/03-AE-with-MNIST-post.ipynb) \n", "Episode 2 : Using the previously trained autoencoder to denoise data\n", - "- **[AE4](AE.Keras3/04-ExtAE-with-MNIST.ipynb)** - [Denoiser and classifier model](AE.Keras3/04-ExtAE-with-MNIST.ipynb) \n", + "- **[K3AE4](AE.Keras3/04-ExtAE-with-MNIST.ipynb)** - [Denoiser and classifier model](AE.Keras3/04-ExtAE-with-MNIST.ipynb) \n", "Episode 4 : Construction of a denoiser and classifier model\n", - "- **[AE5](AE.Keras3/05-ExtAE-with-MNIST.ipynb)** - [Advanced denoiser and classifier model](AE.Keras3/05-ExtAE-with-MNIST.ipynb) \n", + "- **[K3AE5](AE.Keras3/05-ExtAE-with-MNIST.ipynb)** - [Advanced denoiser and classifier model](AE.Keras3/05-ExtAE-with-MNIST.ipynb) \n", "Episode 5 : Construction of an advanced denoiser and classifier model\n", "\n", "### Generative network with Variational Autoencoder (VAE), using Keras3\n", - "- **[VAE1](VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb)** - [First VAE, using functional API (MNIST dataset)](VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb) \n", + "- **[K3VAE1](VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb)** - [First VAE, using functional API (MNIST dataset)](VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb) \n", "Construction and training of a VAE, using functional APPI, with a latent space of small dimension.\n", - "- **[VAE2](VAE.Keras3/02-VAE-with-MNIST.ipynb)** - [VAE, using a custom model class (MNIST dataset)](VAE.Keras3/02-VAE-with-MNIST.ipynb) \n", + "- **[K3VAE2](VAE.Keras3/02-VAE-with-MNIST.ipynb)** - [VAE, using a custom model class (MNIST dataset)](VAE.Keras3/02-VAE-with-MNIST.ipynb) \n", "Construction and training of a VAE, using model subclass, with a latent space of small dimension.\n", - "- **[VAE3](VAE.Keras3/03-VAE-with-MNIST-post.ipynb)** - [Analysis of the VAE's latent space of MNIST dataset](VAE.Keras3/03-VAE-with-MNIST-post.ipynb) \n", + "- **[K3VAE3](VAE.Keras3/03-VAE-with-MNIST-post.ipynb)** - [Analysis of the VAE's latent space of MNIST dataset](VAE.Keras3/03-VAE-with-MNIST-post.ipynb) \n", "Visualization and analysis of the VAE's latent space of the dataset MNIST\n", "\n", "### Generative Adversarial Networks (GANs), using Lightning\n", - "- **[SHEEP3](DCGAN.Lightning/01-DCGAN-PL.ipynb)** - [A DCGAN to Draw a Sheep, using Pytorch Lightning](DCGAN.Lightning/01-DCGAN-PL.ipynb) \n", + "- **[PLSHEEP3](DCGAN.Lightning/01-DCGAN-PL.ipynb)** - [A DCGAN to Draw a Sheep, using Pytorch Lightning](DCGAN.Lightning/01-DCGAN-PL.ipynb) \n", "\"Draw me a sheep\", revisited with a DCGAN, using Pytorch Lightning\n", "\n", "### Diffusion Model (DDPM) using PyTorch\n", @@ -237,7 +237,7 @@ "from IPython.display import display,Markdown\n", "display(Markdown(open('README.md', 'r').read()))\n", "#\n", - "# This README is visible under Jupiter Lab ;-)# Automatically generated on : 03/03/24 14:46:51" + "# This README is visible under Jupiter Lab ;-)# Automatically generated on : 03/03/24 20:38:37" ] } ], diff --git a/README.md b/README.md index cbcd47c..320b9d2 100644 --- a/README.md +++ b/README.md @@ -32,7 +32,7 @@ For more information, see **https://fidle.cnrs.fr** : For more information, you can contact us at : [<img width="200px" style="vertical-align:middle" src="fidle/img/00-Mail_contact.svg"></img>](#top) -Current Version : <!-- VERSION_BEGIN -->3.0.8<!-- VERSION_END --> +Current Version : <!-- VERSION_BEGIN -->3.0.9<!-- VERSION_END --> ## Course materials @@ -47,7 +47,7 @@ Have a look about **[How to get and install](https://fidle.cnrs.fr/installation) ## Jupyter notebooks <!-- TOC_BEGIN --> -<!-- Automatically generated on : 03/03/24 14:46:51 --> +<!-- Automatically generated on : 03/03/24 20:38:37 --> ### Linear and logistic regression - **[LINR1](LinearReg/01-Linear-Regression.ipynb)** - [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb) @@ -134,27 +134,27 @@ Using a Tranformer to perform a sentiment analysis (IMDB) - Jean Zay version Using a Tranformer to perform a sentiment analysis (IMDB) - Colab version ### Unsupervised learning with an autoencoder neural network (AE), using Keras3 -- **[AE1](AE.Keras3/01-Prepare-MNIST-dataset.ipynb)** - [Prepare a noisy MNIST dataset](AE.Keras3/01-Prepare-MNIST-dataset.ipynb) +- **[K3AE1](AE.Keras3/01-Prepare-MNIST-dataset.ipynb)** - [Prepare a noisy MNIST dataset](AE.Keras3/01-Prepare-MNIST-dataset.ipynb) Episode 1: Preparation of a noisy MNIST dataset -- **[AE2](AE.Keras3/02-AE-with-MNIST.ipynb)** - [Building and training an AE denoiser model](AE.Keras3/02-AE-with-MNIST.ipynb) +- **[K3AE2](AE.Keras3/02-AE-with-MNIST.ipynb)** - [Building and training an AE denoiser model](AE.Keras3/02-AE-with-MNIST.ipynb) Episode 1 : Construction of a denoising autoencoder and training of it with a noisy MNIST dataset. -- **[AE3](AE.Keras3/03-AE-with-MNIST-post.ipynb)** - [Playing with our denoiser model](AE.Keras3/03-AE-with-MNIST-post.ipynb) +- **[K3AE3](AE.Keras3/03-AE-with-MNIST-post.ipynb)** - [Playing with our denoiser model](AE.Keras3/03-AE-with-MNIST-post.ipynb) Episode 2 : Using the previously trained autoencoder to denoise data -- **[AE4](AE.Keras3/04-ExtAE-with-MNIST.ipynb)** - [Denoiser and classifier model](AE.Keras3/04-ExtAE-with-MNIST.ipynb) +- **[K3AE4](AE.Keras3/04-ExtAE-with-MNIST.ipynb)** - [Denoiser and classifier model](AE.Keras3/04-ExtAE-with-MNIST.ipynb) Episode 4 : Construction of a denoiser and classifier model -- **[AE5](AE.Keras3/05-ExtAE-with-MNIST.ipynb)** - [Advanced denoiser and classifier model](AE.Keras3/05-ExtAE-with-MNIST.ipynb) +- **[K3AE5](AE.Keras3/05-ExtAE-with-MNIST.ipynb)** - [Advanced denoiser and classifier model](AE.Keras3/05-ExtAE-with-MNIST.ipynb) Episode 5 : Construction of an advanced denoiser and classifier model ### Generative network with Variational Autoencoder (VAE), using Keras3 -- **[VAE1](VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb)** - [First VAE, using functional API (MNIST dataset)](VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb) +- **[K3VAE1](VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb)** - [First VAE, using functional API (MNIST dataset)](VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb) Construction and training of a VAE, using functional APPI, with a latent space of small dimension. -- **[VAE2](VAE.Keras3/02-VAE-with-MNIST.ipynb)** - [VAE, using a custom model class (MNIST dataset)](VAE.Keras3/02-VAE-with-MNIST.ipynb) +- **[K3VAE2](VAE.Keras3/02-VAE-with-MNIST.ipynb)** - [VAE, using a custom model class (MNIST dataset)](VAE.Keras3/02-VAE-with-MNIST.ipynb) Construction and training of a VAE, using model subclass, with a latent space of small dimension. -- **[VAE3](VAE.Keras3/03-VAE-with-MNIST-post.ipynb)** - [Analysis of the VAE's latent space of MNIST dataset](VAE.Keras3/03-VAE-with-MNIST-post.ipynb) +- **[K3VAE3](VAE.Keras3/03-VAE-with-MNIST-post.ipynb)** - [Analysis of the VAE's latent space of MNIST dataset](VAE.Keras3/03-VAE-with-MNIST-post.ipynb) Visualization and analysis of the VAE's latent space of the dataset MNIST ### Generative Adversarial Networks (GANs), using Lightning -- **[SHEEP3](DCGAN.Lightning/01-DCGAN-PL.ipynb)** - [A DCGAN to Draw a Sheep, using Pytorch Lightning](DCGAN.Lightning/01-DCGAN-PL.ipynb) +- **[PLSHEEP3](DCGAN.Lightning/01-DCGAN-PL.ipynb)** - [A DCGAN to Draw a Sheep, using Pytorch Lightning](DCGAN.Lightning/01-DCGAN-PL.ipynb) "Draw me a sheep", revisited with a DCGAN, using Pytorch Lightning ### Diffusion Model (DDPM) using PyTorch diff --git a/VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb b/VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb index d0206c4..104c0b4 100644 --- a/VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb +++ b/VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb @@ -6,7 +6,7 @@ "source": [ "<img width=\"800px\" src=\"../fidle/img/header.svg\"></img>\n", "\n", - "# <!-- TITLE --> [VAE1] - First VAE, using functional API (MNIST dataset)\n", + "# <!-- TITLE --> [K3VAE1] - First VAE, using functional API (MNIST dataset)\n", "<!-- DESC --> Construction and training of a VAE, using functional APPI, with a latent space of small dimension.\n", "\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", @@ -59,7 +59,7 @@ "import fidle\n", "\n", "# Init Fidle environment\n", - "run_id, run_dir, datasets_dir = fidle.init('VAE1')\n" + "run_id, run_dir, datasets_dir = fidle.init('K3VAE1')\n" ] }, { @@ -413,9 +413,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Fidle-keras 3", + "display_name": "fidle-env", "language": "python", - "name": "fidle-k3" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -427,12 +427,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.6" - }, - "vscode": { - "interpreter": { - "hash": "b3929042cc22c1274d74e3e946c52b845b57cb6d84f2d591ffe0519b38e4896d" - } + "version": "3.9.2" } }, "nbformat": 4, diff --git a/VAE.Keras3/02-VAE-with-MNIST.ipynb b/VAE.Keras3/02-VAE-with-MNIST.ipynb index 2c1b740..0cc8c11 100644 --- a/VAE.Keras3/02-VAE-with-MNIST.ipynb +++ b/VAE.Keras3/02-VAE-with-MNIST.ipynb @@ -6,7 +6,7 @@ "source": [ "<img width=\"800px\" src=\"../fidle/img/header.svg\"></img>\n", "\n", - "# <!-- TITLE --> [VAE2] - VAE, using a custom model class (MNIST dataset)\n", + "# <!-- TITLE --> [K3VAE2] - VAE, using a custom model class (MNIST dataset)\n", "<!-- DESC --> Construction and training of a VAE, using model subclass, with a latent space of small dimension.\n", "\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", @@ -64,7 +64,7 @@ "import fidle\n", "\n", "# Init Fidle environment\n", - "run_id, run_dir, datasets_dir = fidle.init('VAE2')\n", + "run_id, run_dir, datasets_dir = fidle.init('K3VAE2')\n", "\n", "VAE.about()" ] diff --git a/VAE.Keras3/03-VAE-with-MNIST-post.ipynb b/VAE.Keras3/03-VAE-with-MNIST-post.ipynb index 8833ca1..1db7d95 100644 --- a/VAE.Keras3/03-VAE-with-MNIST-post.ipynb +++ b/VAE.Keras3/03-VAE-with-MNIST-post.ipynb @@ -6,7 +6,7 @@ "source": [ "<img width=\"800px\" src=\"../fidle/img/header.svg\"></img>\n", "\n", - "# <!-- TITLE --> [VAE3] - Analysis of the VAE's latent space of MNIST dataset\n", + "# <!-- TITLE --> [K3VAE3] - Analysis of the VAE's latent space of MNIST dataset\n", "<!-- DESC --> Visualization and analysis of the VAE's latent space of the dataset MNIST\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", @@ -65,7 +65,7 @@ "import fidle\n", "\n", "# Init Fidle environment\n", - "run_id, run_dir, datasets_dir = fidle.init('VAE3')" + "run_id, run_dir, datasets_dir = fidle.init('K3VAE3')" ] }, { @@ -83,7 +83,7 @@ "source": [ "scale = 1\n", "seed = 123\n", - "models_dir = './run/VAE2'" + "models_dir = './run/K3VAE2'" ] }, { diff --git a/fidle/about.yml b/fidle/about.yml index 39c16fa..74bff6a 100644 --- a/fidle/about.yml +++ b/fidle/about.yml @@ -13,7 +13,7 @@ # # This file describes the notebooks used by the Fidle training. -version: 3.0.8 +version: 3.0.9 content: notebooks name: Notebooks Fidle description: All notebooks used by the Fidle training diff --git a/fidle/ci/default.yml b/fidle/ci/default.yml index f84337a..31d363e 100644 --- a/fidle/ci/default.yml +++ b/fidle/ci/default.yml @@ -1,6 +1,6 @@ campain: version: '1.0' - description: Automatically generated ci profile (03/03/24 14:46:51) + description: Automatically generated ci profile (03/03/24 20:38:37) directory: ./campains/default existing_notebook: 'remove # remove|skip' report_template: 'fidle # fidle|default' @@ -189,13 +189,13 @@ TRANS2: # # ------------ AE.Keras3 # -AE1: +K3AE1: notebook: AE.Keras3/01-Prepare-MNIST-dataset.ipynb overrides: prepared_dataset: default scale: default progress_verbosity: default -AE2: +K3AE2: notebook: AE.Keras3/02-AE-with-MNIST.ipynb overrides: prepared_dataset: default @@ -206,14 +206,14 @@ AE2: batch_size: default epochs: default fit_verbosity: default -AE3: +K3AE3: notebook: AE.Keras3/03-AE-with-MNIST-post.ipynb overrides: prepared_dataset: default dataset_seed: default scale: default train_prop: default -AE4: +K3AE4: notebook: AE.Keras3/04-ExtAE-with-MNIST.ipynb overrides: prepared_dataset: default @@ -223,7 +223,7 @@ AE4: batch_size: default epochs: default fit_verbosity: default -AE5: +K3AE5: notebook: AE.Keras3/05-ExtAE-with-MNIST.ipynb overrides: prepared_dataset: default @@ -237,7 +237,7 @@ AE5: # # ------------ VAE.Keras3 # -VAE1: +K3VAE1: notebook: VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb overrides: latent_dim: default @@ -247,7 +247,7 @@ VAE1: batch_size: default epochs: default fit_verbosity: default -VAE2: +K3VAE2: notebook: VAE.Keras3/02-VAE-with-MNIST.ipynb overrides: latent_dim: default @@ -257,7 +257,7 @@ VAE2: batch_size: default epochs: default fit_verbosity: default -VAE3: +K3VAE3: notebook: VAE.Keras3/03-VAE-with-MNIST-post.ipynb overrides: scale: default @@ -267,7 +267,7 @@ VAE3: # # ------------ DCGAN.Lightning # -SHEEP3: +PLSHEEP3: notebook: DCGAN.Lightning/01-DCGAN-PL.ipynb overrides: latent_dim: default @@ -284,6 +284,7 @@ SHEEP3: dataset_file: default data_shape: default scale: default + num_workers: default # # ------------ DDPM.PyTorch diff --git a/fidle/ci/gpu-scale1.yml b/fidle/ci/gpu-scale1.yml index 090c84a..254f875 100644 --- a/fidle/ci/gpu-scale1.yml +++ b/fidle/ci/gpu-scale1.yml @@ -205,6 +205,136 @@ K3LADYB1: batch_size: 32 epochs: 10 +# +# ------------ AE.Keras3 +# +K3AE1: + notebook: AE.Keras3/01-Prepare-MNIST-dataset.ipynb + overrides: + prepared_dataset: default + scale: 1 + progress_verbosity: 2 + +K3AE2: + notebook: AE.Keras3/02-AE-with-MNIST.ipynb + after: K3AE1 + overrides: + prepared_dataset: default + dataset_seed: default + scale: 1 + latent_dim: 10 + train_prop: default + batch_size: default + epochs: 20 + fit_verbosity: default + +K3AE3: + notebook: AE.Keras3/03-AE-with-MNIST-post.ipynb + after: K3AE2 + overrides: + prepared_dataset: default + dataset_seed: default + scale: default + train_prop: default + +K3AE4: + notebook: AE.Keras3/04-ExtAE-with-MNIST.ipynb + after: K3AE1 + overrides: + prepared_dataset: default + dataset_seed: default + scale: 1 + train_prop: default + batch_size: default + epochs: 20 + fit_verbosity: default + +K3AE5: + notebook: AE.Keras3/05-ExtAE-with-MNIST.ipynb + after: K3AE1 + overrides: + prepared_dataset: default + dataset_seed: default + scale: 1 + train_prop: default + batch_size: default + epochs: 30 + fit_verbosity: default + +# +# ------------ VAE.Keras3 +# +K3VAE1: + notebook: VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb + overrides: + latent_dim: default + loss_weights: default + scale: 1 + seed: default + batch_size: default + epochs: 20 + fit_verbosity: default + +K3VAE2: + notebook: VAE.Keras3/02-VAE-with-MNIST.ipynb + overrides: + latent_dim: default + loss_weights: default + scale: 1 + seed: default + batch_size: default + epochs: 20 + fit_verbosity: default + +K3VAE3: + notebook: VAE.Keras3/03-VAE-with-MNIST-post.ipynb + after: K3VAE2 + overrides: + scale: 1 + seed: default + models_dir: default + +# +# ------------ DCGAN.Lightning +# +PLSHEEP3_1: + notebook: DCGAN.Lightning/01-DCGAN-PL.ipynb + overrides: + latent_dim: default + gan_name: GAN + generator_name: Generator_2 + discriminator_name: Discriminator_3 + epochs: 30 + lr: default + b1: default + b2: default + batch_size: 64 + num_img: default + fit_verbosity: default + dataset_file: default + data_shape: default + scale: 1 + num_workers: 2 + +PLSHEEP3_2: + notebook: DCGAN.Lightning/01-DCGAN-PL.ipynb + overrides: + latent_dim: default + gan_name: WGANGP + generator_name: Generator_2 + discriminator_name: Discriminator_3 + epochs: 30 + lr: default + b1: default + b2: default + batch_size: 64 + num_img: default + fit_verbosity: default + dataset_file: default + data_shape: default + scale: 1 + num_workers: 2 + # # ------------ Misc # -- GitLab