diff --git a/VAE/01-VAE-with-MNIST.ipynb b/VAE/01-VAE-with-MNIST.ipynb
index 576132a2982362149e3f63c5902a4587c1d7ee0d..5ab28415b9fb75ca3f5c848ec5a159f02fae0b1d 100644
--- a/VAE/01-VAE-with-MNIST.ipynb
+++ b/VAE/01-VAE-with-MNIST.ipynb
@@ -7,13 +7,13 @@
     "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
     "\n",
     "# <!-- TITLE --> [VAE1] - Variational AutoEncoder (VAE) with MNIST\n",
-    "<!-- DESC --> First generative network experience with the MNIST dataset\n",
+    "<!-- DESC --> Episode 1 : Model construction and Training\n",
     "\n",
     "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
     "\n",
     "## Objectives :\n",
-    " - Understanding and implementing a variational autoencoder neurals network (VAE)\n",
-    " - Understanding a more advanced programming model\n",
+    " - Understanding and implementing a **variational autoencoder** neurals network (VAE)\n",
+    " - Understanding a more **advanced programming model**\n",
     "\n",
     "The calculation needs being important, it is preferable to use a very simple dataset such as MNIST to start with.\n",
     "\n",
@@ -34,9 +34,20 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 1,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\n",
+      "FIDLE 2020 - Variational AutoEncoder (VAE)\n",
+      "TensorFlow version   : 2.0.0\n",
+      "VAE version          : 1.28\n"
+     ]
+    }
+   ],
    "source": [
     "import numpy as np\n",
     "import sys, importlib\n",
@@ -59,9 +70,19 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 2,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Dataset loaded.\n",
+      "Normalized.\n",
+      "Reshaped to (60000, 28, 28, 1)\n"
+     ]
+    }
+   ],
    "source": [
     "(x_train, y_train), (x_test, y_test) = Loader_MNIST.load()"
    ]
@@ -70,20 +91,89 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## Step 3 - Get VAE model"
+    "## Step 3 - Get VAE model\n",
+    "Nous allons instancier notre modèle VAE.  \n",
+    "Ce dernier est défini avec une classe python pour alléger notre code.  \n",
+    "La description de nos deux réseaux est donnée en paramètre.  \n",
+    "Notre modèle sera sauvegardé dans le dossier : ./run/<tag>"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 9,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Model initialized.\n",
+      "Outputs will be in  : ./run/MNIST.001\n",
+      "\n",
+      " ---------- Encoder -------------------------------------------------- \n",
+      "\n",
+      "Model: \"model_13\"\n",
+      "__________________________________________________________________________________________________\n",
+      "Layer (type)                    Output Shape         Param #     Connected to                     \n",
+      "==================================================================================================\n",
+      "encoder_input (InputLayer)      [(None, 28, 28, 1)]  0                                            \n",
+      "__________________________________________________________________________________________________\n",
+      "conv2d_12 (Conv2D)              (None, 28, 28, 32)   320         encoder_input[0][0]              \n",
+      "__________________________________________________________________________________________________\n",
+      "conv2d_13 (Conv2D)              (None, 14, 14, 64)   18496       conv2d_12[0][0]                  \n",
+      "__________________________________________________________________________________________________\n",
+      "conv2d_14 (Conv2D)              (None, 7, 7, 64)     36928       conv2d_13[0][0]                  \n",
+      "__________________________________________________________________________________________________\n",
+      "conv2d_15 (Conv2D)              (None, 7, 7, 64)     36928       conv2d_14[0][0]                  \n",
+      "__________________________________________________________________________________________________\n",
+      "flatten_3 (Flatten)             (None, 3136)         0           conv2d_15[0][0]                  \n",
+      "__________________________________________________________________________________________________\n",
+      "mu (Dense)                      (None, 2)            6274        flatten_3[0][0]                  \n",
+      "__________________________________________________________________________________________________\n",
+      "log_var (Dense)                 (None, 2)            6274        flatten_3[0][0]                  \n",
+      "__________________________________________________________________________________________________\n",
+      "encoder_output (Lambda)         (None, 2)            0           mu[0][0]                         \n",
+      "                                                                 log_var[0][0]                    \n",
+      "==================================================================================================\n",
+      "Total params: 105,220\n",
+      "Trainable params: 105,220\n",
+      "Non-trainable params: 0\n",
+      "__________________________________________________________________________________________________\n",
+      "\n",
+      " ---------- Encoder -------------------------------------------------- \n",
+      "\n",
+      "Model: \"model_14\"\n",
+      "_________________________________________________________________\n",
+      "Layer (type)                 Output Shape              Param #   \n",
+      "=================================================================\n",
+      "decoder_input (InputLayer)   [(None, 2)]               0         \n",
+      "_________________________________________________________________\n",
+      "dense_3 (Dense)              (None, 3136)              9408      \n",
+      "_________________________________________________________________\n",
+      "reshape_3 (Reshape)          (None, 7, 7, 64)          0         \n",
+      "_________________________________________________________________\n",
+      "conv2d_transpose_12 (Conv2DT (None, 7, 7, 64)          36928     \n",
+      "_________________________________________________________________\n",
+      "conv2d_transpose_13 (Conv2DT (None, 14, 14, 64)        36928     \n",
+      "_________________________________________________________________\n",
+      "conv2d_transpose_14 (Conv2DT (None, 28, 28, 32)        18464     \n",
+      "_________________________________________________________________\n",
+      "conv2d_transpose_15 (Conv2DT (None, 28, 28, 1)         289       \n",
+      "=================================================================\n",
+      "Total params: 102,017\n",
+      "Trainable params: 102,017\n",
+      "Non-trainable params: 0\n",
+      "_________________________________________________________________\n",
+      "Config saved in     : ./run/MNIST.001/models/vae_config.json\n"
+     ]
+    }
+   ],
    "source": [
     "tag = 'MNIST.001'\n",
     "\n",
     "input_shape = (28,28,1)\n",
     "z_dim       = 2\n",
-    "verbose     = 0\n",
+    "verbose     = 1\n",
     "\n",
     "encoder= [ {'type':'Conv2D',          'filters':32, 'kernel_size':(3,3), 'strides':1, 'padding':'same', 'activation':'relu'},\n",
     "           {'type':'Conv2D',          'filters':64, 'kernel_size':(3,3), 'strides':2, 'padding':'same', 'activation':'relu'},\n",
@@ -115,9 +205,17 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 5,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Compiled.\n"
+     ]
+    }
+   ],
    "source": [
     "r_loss_factor = 1000\n",
     "\n",
@@ -133,7 +231,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 6,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -145,9 +243,220 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 7,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Train on 60000 samples, validate on 10000 samples\n",
+      "Epoch 1/100\n",
+      "  100/60000 [..............................] - ETA: 1:16:33 - loss: 231.5715 - vae_r_loss: 231.5706 - vae_kl_loss: 8.8929e-04WARNING:tensorflow:Method (on_train_batch_end) is slow compared to the batch update (0.261125). Check your callbacks.\n",
+      "60000/60000 [==============================] - 16s 259us/sample - loss: 63.3479 - vae_r_loss: 60.5303 - vae_kl_loss: 2.8176 - val_loss: 52.8295 - val_vae_r_loss: 49.3652 - val_vae_kl_loss: 3.4643\n",
+      "Epoch 2/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 50.9248 - vae_r_loss: 46.7790 - vae_kl_loss: 4.1458 - val_loss: 49.8544 - val_vae_r_loss: 45.4392 - val_vae_kl_loss: 4.4152\n",
+      "Epoch 3/100\n",
+      "60000/60000 [==============================] - 8s 127us/sample - loss: 48.9337 - vae_r_loss: 44.4075 - vae_kl_loss: 4.5262 - val_loss: 48.1853 - val_vae_r_loss: 43.6399 - val_vae_kl_loss: 4.5454\n",
+      "Epoch 4/100\n",
+      "60000/60000 [==============================] - 8s 128us/sample - loss: 47.8006 - vae_r_loss: 43.0700 - vae_kl_loss: 4.7306 - val_loss: 47.6048 - val_vae_r_loss: 42.8379 - val_vae_kl_loss: 4.7669\n",
+      "Epoch 5/100\n",
+      "60000/60000 [==============================] - 8s 129us/sample - loss: 47.1728 - vae_r_loss: 42.3272 - vae_kl_loss: 4.8456 - val_loss: 47.1257 - val_vae_r_loss: 42.5182 - val_vae_kl_loss: 4.6075\n",
+      "Epoch 6/100\n",
+      "60000/60000 [==============================] - 8s 128us/sample - loss: 46.6197 - vae_r_loss: 41.6877 - vae_kl_loss: 4.9320 - val_loss: 46.6778 - val_vae_r_loss: 41.8177 - val_vae_kl_loss: 4.8601\n",
+      "Epoch 7/100\n",
+      "60000/60000 [==============================] - 8s 127us/sample - loss: 46.2559 - vae_r_loss: 41.2509 - vae_kl_loss: 5.0050 - val_loss: 46.8471 - val_vae_r_loss: 41.7164 - val_vae_kl_loss: 5.1308\n",
+      "Epoch 8/100\n",
+      "60000/60000 [==============================] - 8s 129us/sample - loss: 45.9705 - vae_r_loss: 40.9047 - vae_kl_loss: 5.0658 - val_loss: 46.1138 - val_vae_r_loss: 40.8994 - val_vae_kl_loss: 5.2144\n",
+      "Epoch 9/100\n",
+      "60000/60000 [==============================] - 8s 128us/sample - loss: 45.7034 - vae_r_loss: 40.5799 - vae_kl_loss: 5.1235 - val_loss: 45.9027 - val_vae_r_loss: 40.6272 - val_vae_kl_loss: 5.2755\n",
+      "Epoch 10/100\n",
+      "60000/60000 [==============================] - 8s 127us/sample - loss: 45.4206 - vae_r_loss: 40.2416 - vae_kl_loss: 5.1790 - val_loss: 45.8569 - val_vae_r_loss: 40.7173 - val_vae_kl_loss: 5.1396\n",
+      "Epoch 11/100\n",
+      "60000/60000 [==============================] - 7s 124us/sample - loss: 45.2388 - vae_r_loss: 40.0393 - vae_kl_loss: 5.1995 - val_loss: 45.5438 - val_vae_r_loss: 40.2990 - val_vae_kl_loss: 5.2448\n",
+      "Epoch 12/100\n",
+      "60000/60000 [==============================] - 7s 124us/sample - loss: 45.0701 - vae_r_loss: 39.8384 - vae_kl_loss: 5.2317 - val_loss: 45.1382 - val_vae_r_loss: 39.8545 - val_vae_kl_loss: 5.2838\n",
+      "Epoch 13/100\n",
+      "60000/60000 [==============================] - 6s 102us/sample - loss: 44.9229 - vae_r_loss: 39.6576 - vae_kl_loss: 5.2653 - val_loss: 45.2182 - val_vae_r_loss: 39.7051 - val_vae_kl_loss: 5.5130\n",
+      "Epoch 14/100\n",
+      "60000/60000 [==============================] - 6s 101us/sample - loss: 44.7520 - vae_r_loss: 39.4462 - vae_kl_loss: 5.3058 - val_loss: 44.9645 - val_vae_r_loss: 39.6967 - val_vae_kl_loss: 5.2678\n",
+      "Epoch 15/100\n",
+      "60000/60000 [==============================] - 7s 112us/sample - loss: 44.6182 - vae_r_loss: 39.2917 - vae_kl_loss: 5.3266 - val_loss: 45.1804 - val_vae_r_loss: 39.8132 - val_vae_kl_loss: 5.3673\n",
+      "Epoch 16/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 44.5127 - vae_r_loss: 39.1662 - vae_kl_loss: 5.3465 - val_loss: 44.7445 - val_vae_r_loss: 39.5578 - val_vae_kl_loss: 5.1867\n",
+      "Epoch 17/100\n",
+      "60000/60000 [==============================] - 7s 122us/sample - loss: 44.3639 - vae_r_loss: 38.9776 - vae_kl_loss: 5.3864 - val_loss: 45.0144 - val_vae_r_loss: 39.4877 - val_vae_kl_loss: 5.5267\n",
+      "Epoch 18/100\n",
+      "60000/60000 [==============================] - 8s 131us/sample - loss: 44.2794 - vae_r_loss: 38.8709 - vae_kl_loss: 5.4085 - val_loss: 44.7394 - val_vae_r_loss: 39.3797 - val_vae_kl_loss: 5.3597\n",
+      "Epoch 19/100\n",
+      "60000/60000 [==============================] - 8s 127us/sample - loss: 44.1593 - vae_r_loss: 38.7339 - vae_kl_loss: 5.4254 - val_loss: 44.8999 - val_vae_r_loss: 39.5979 - val_vae_kl_loss: 5.3020\n",
+      "Epoch 20/100\n",
+      "60000/60000 [==============================] - 7s 124us/sample - loss: 44.0882 - vae_r_loss: 38.6534 - vae_kl_loss: 5.4348 - val_loss: 44.5456 - val_vae_r_loss: 39.1507 - val_vae_kl_loss: 5.3949\n",
+      "Epoch 21/100\n",
+      "60000/60000 [==============================] - 8s 125us/sample - loss: 43.9450 - vae_r_loss: 38.4855 - vae_kl_loss: 5.4596 - val_loss: 44.6002 - val_vae_r_loss: 39.1242 - val_vae_kl_loss: 5.4760\n",
+      "Epoch 22/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 43.9054 - vae_r_loss: 38.4365 - vae_kl_loss: 5.4689 - val_loss: 44.7089 - val_vae_r_loss: 39.3456 - val_vae_kl_loss: 5.3633\n",
+      "Epoch 23/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 43.8545 - vae_r_loss: 38.3684 - vae_kl_loss: 5.4860 - val_loss: 44.4804 - val_vae_r_loss: 39.0637 - val_vae_kl_loss: 5.4167\n",
+      "Epoch 24/100\n",
+      "60000/60000 [==============================] - 8s 129us/sample - loss: 43.7724 - vae_r_loss: 38.2644 - vae_kl_loss: 5.5080 - val_loss: 44.2626 - val_vae_r_loss: 38.7498 - val_vae_kl_loss: 5.5128\n",
+      "Epoch 25/100\n",
+      "60000/60000 [==============================] - 7s 120us/sample - loss: 43.6945 - vae_r_loss: 38.1870 - vae_kl_loss: 5.5075 - val_loss: 44.5109 - val_vae_r_loss: 38.9870 - val_vae_kl_loss: 5.5240\n",
+      "Epoch 26/100\n",
+      "60000/60000 [==============================] - 6s 103us/sample - loss: 43.6235 - vae_r_loss: 38.0840 - vae_kl_loss: 5.5396 - val_loss: 44.4880 - val_vae_r_loss: 38.9770 - val_vae_kl_loss: 5.5110\n",
+      "Epoch 27/100\n",
+      "60000/60000 [==============================] - 6s 104us/sample - loss: 43.5726 - vae_r_loss: 38.0224 - vae_kl_loss: 5.5502 - val_loss: 44.3887 - val_vae_r_loss: 39.0129 - val_vae_kl_loss: 5.3758\n",
+      "Epoch 28/100\n",
+      "60000/60000 [==============================] - 7s 125us/sample - loss: 43.4963 - vae_r_loss: 37.9367 - vae_kl_loss: 5.5596 - val_loss: 44.2672 - val_vae_r_loss: 38.7244 - val_vae_kl_loss: 5.5427\n",
+      "Epoch 29/100\n",
+      "60000/60000 [==============================] - 7s 125us/sample - loss: 43.4534 - vae_r_loss: 37.8870 - vae_kl_loss: 5.5663 - val_loss: 44.2616 - val_vae_r_loss: 38.6397 - val_vae_kl_loss: 5.6219\n",
+      "Epoch 30/100\n",
+      "60000/60000 [==============================] - 8s 125us/sample - loss: 43.4108 - vae_r_loss: 37.8235 - vae_kl_loss: 5.5873 - val_loss: 44.0783 - val_vae_r_loss: 38.4805 - val_vae_kl_loss: 5.5978\n",
+      "Epoch 31/100\n",
+      "60000/60000 [==============================] - 8s 127us/sample - loss: 43.3281 - vae_r_loss: 37.7423 - vae_kl_loss: 5.5858 - val_loss: 44.2450 - val_vae_r_loss: 38.6322 - val_vae_kl_loss: 5.6128\n",
+      "Epoch 32/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 43.3066 - vae_r_loss: 37.6978 - vae_kl_loss: 5.6089 - val_loss: 44.1004 - val_vae_r_loss: 38.3046 - val_vae_kl_loss: 5.7958\n",
+      "Epoch 33/100\n",
+      "60000/60000 [==============================] - 7s 124us/sample - loss: 43.2654 - vae_r_loss: 37.6541 - vae_kl_loss: 5.6113 - val_loss: 44.0908 - val_vae_r_loss: 38.7236 - val_vae_kl_loss: 5.3672\n",
+      "Epoch 34/100\n",
+      "60000/60000 [==============================] - 8s 128us/sample - loss: 43.2006 - vae_r_loss: 37.5831 - vae_kl_loss: 5.6176 - val_loss: 44.3048 - val_vae_r_loss: 38.5594 - val_vae_kl_loss: 5.7453\n",
+      "Epoch 35/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 43.1657 - vae_r_loss: 37.5287 - vae_kl_loss: 5.6370 - val_loss: 44.3178 - val_vae_r_loss: 38.7578 - val_vae_kl_loss: 5.5600\n",
+      "Epoch 36/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 43.1199 - vae_r_loss: 37.4728 - vae_kl_loss: 5.6471 - val_loss: 43.9947 - val_vae_r_loss: 38.4591 - val_vae_kl_loss: 5.5356\n",
+      "Epoch 37/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 43.0550 - vae_r_loss: 37.4052 - vae_kl_loss: 5.6499 - val_loss: 44.1075 - val_vae_r_loss: 38.4646 - val_vae_kl_loss: 5.6429\n",
+      "Epoch 38/100\n",
+      "60000/60000 [==============================] - 7s 125us/sample - loss: 43.0274 - vae_r_loss: 37.3612 - vae_kl_loss: 5.6662 - val_loss: 44.1100 - val_vae_r_loss: 38.3107 - val_vae_kl_loss: 5.7994\n",
+      "Epoch 39/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 43.0046 - vae_r_loss: 37.3353 - vae_kl_loss: 5.6693 - val_loss: 43.9765 - val_vae_r_loss: 38.1482 - val_vae_kl_loss: 5.8284\n",
+      "Epoch 40/100\n",
+      "60000/60000 [==============================] - 7s 124us/sample - loss: 42.9831 - vae_r_loss: 37.2976 - vae_kl_loss: 5.6855 - val_loss: 44.1622 - val_vae_r_loss: 38.5135 - val_vae_kl_loss: 5.6488\n",
+      "Epoch 41/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 42.9614 - vae_r_loss: 37.2653 - vae_kl_loss: 5.6961 - val_loss: 43.9546 - val_vae_r_loss: 38.3111 - val_vae_kl_loss: 5.6435\n",
+      "Epoch 42/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 42.8949 - vae_r_loss: 37.1996 - vae_kl_loss: 5.6953 - val_loss: 44.0486 - val_vae_r_loss: 38.4427 - val_vae_kl_loss: 5.6059\n",
+      "Epoch 43/100\n",
+      "60000/60000 [==============================] - 8s 125us/sample - loss: 42.8460 - vae_r_loss: 37.1553 - vae_kl_loss: 5.6907 - val_loss: 43.9027 - val_vae_r_loss: 38.3105 - val_vae_kl_loss: 5.5921\n",
+      "Epoch 44/100\n",
+      "60000/60000 [==============================] - 8s 125us/sample - loss: 42.8550 - vae_r_loss: 37.1409 - vae_kl_loss: 5.7141 - val_loss: 44.0527 - val_vae_r_loss: 38.4803 - val_vae_kl_loss: 5.5724\n",
+      "Epoch 45/100\n",
+      "60000/60000 [==============================] - 8s 125us/sample - loss: 42.7725 - vae_r_loss: 37.0586 - vae_kl_loss: 5.7139 - val_loss: 43.9695 - val_vae_r_loss: 38.1840 - val_vae_kl_loss: 5.7855\n",
+      "Epoch 46/100\n",
+      "60000/60000 [==============================] - 8s 127us/sample - loss: 42.7583 - vae_r_loss: 37.0431 - vae_kl_loss: 5.7152 - val_loss: 43.8917 - val_vae_r_loss: 38.4005 - val_vae_kl_loss: 5.4912\n",
+      "Epoch 47/100\n",
+      "60000/60000 [==============================] - 7s 112us/sample - loss: 42.7553 - vae_r_loss: 37.0322 - vae_kl_loss: 5.7231 - val_loss: 43.8994 - val_vae_r_loss: 38.2113 - val_vae_kl_loss: 5.6880\n",
+      "Epoch 48/100\n",
+      "60000/60000 [==============================] - 8s 125us/sample - loss: 42.7218 - vae_r_loss: 36.9855 - vae_kl_loss: 5.7363 - val_loss: 43.6855 - val_vae_r_loss: 37.9163 - val_vae_kl_loss: 5.7693\n",
+      "Epoch 49/100\n",
+      "60000/60000 [==============================] - 7s 125us/sample - loss: 42.6747 - vae_r_loss: 36.9308 - vae_kl_loss: 5.7439 - val_loss: 43.9899 - val_vae_r_loss: 38.4054 - val_vae_kl_loss: 5.5844\n",
+      "Epoch 50/100\n",
+      "60000/60000 [==============================] - 7s 125us/sample - loss: 42.6405 - vae_r_loss: 36.8940 - vae_kl_loss: 5.7464 - val_loss: 43.9136 - val_vae_r_loss: 38.1742 - val_vae_kl_loss: 5.7394\n",
+      "Epoch 51/100\n",
+      "60000/60000 [==============================] - 7s 119us/sample - loss: 42.6486 - vae_r_loss: 36.8904 - vae_kl_loss: 5.7582 - val_loss: 43.7776 - val_vae_r_loss: 37.8941 - val_vae_kl_loss: 5.8834\n",
+      "Epoch 52/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 42.5716 - vae_r_loss: 36.8282 - vae_kl_loss: 5.7433 - val_loss: 43.7207 - val_vae_r_loss: 37.9595 - val_vae_kl_loss: 5.7611\n",
+      "Epoch 53/100\n",
+      "60000/60000 [==============================] - 7s 124us/sample - loss: 42.5695 - vae_r_loss: 36.8049 - vae_kl_loss: 5.7646 - val_loss: 43.8533 - val_vae_r_loss: 38.1541 - val_vae_kl_loss: 5.6993\n",
+      "Epoch 54/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 42.5498 - vae_r_loss: 36.7861 - vae_kl_loss: 5.7637 - val_loss: 43.9121 - val_vae_r_loss: 38.2163 - val_vae_kl_loss: 5.6958\n",
+      "Epoch 55/100\n",
+      "60000/60000 [==============================] - 7s 125us/sample - loss: 42.5410 - vae_r_loss: 36.7715 - vae_kl_loss: 5.7695 - val_loss: 43.9402 - val_vae_r_loss: 38.2676 - val_vae_kl_loss: 5.6726\n",
+      "Epoch 56/100\n",
+      "60000/60000 [==============================] - 7s 118us/sample - loss: 42.5186 - vae_r_loss: 36.7312 - vae_kl_loss: 5.7875 - val_loss: 43.8019 - val_vae_r_loss: 38.0754 - val_vae_kl_loss: 5.7266\n",
+      "Epoch 57/100\n",
+      "60000/60000 [==============================] - 7s 120us/sample - loss: 42.4861 - vae_r_loss: 36.6955 - vae_kl_loss: 5.7906 - val_loss: 43.7560 - val_vae_r_loss: 37.9236 - val_vae_kl_loss: 5.8325\n",
+      "Epoch 58/100\n",
+      "60000/60000 [==============================] - 7s 120us/sample - loss: 42.4515 - vae_r_loss: 36.6663 - vae_kl_loss: 5.7851 - val_loss: 43.8697 - val_vae_r_loss: 37.9264 - val_vae_kl_loss: 5.9433\n",
+      "Epoch 59/100\n",
+      "60000/60000 [==============================] - 8s 129us/sample - loss: 42.4103 - vae_r_loss: 36.6236 - vae_kl_loss: 5.7867 - val_loss: 43.8263 - val_vae_r_loss: 37.9798 - val_vae_kl_loss: 5.8465\n",
+      "Epoch 60/100\n",
+      "60000/60000 [==============================] - 8s 125us/sample - loss: 42.3559 - vae_r_loss: 36.5556 - vae_kl_loss: 5.8003 - val_loss: 43.9342 - val_vae_r_loss: 38.3343 - val_vae_kl_loss: 5.5999\n",
+      "Epoch 61/100\n",
+      "60000/60000 [==============================] - 7s 117us/sample - loss: 42.4222 - vae_r_loss: 36.6162 - vae_kl_loss: 5.8060 - val_loss: 43.7412 - val_vae_r_loss: 37.9454 - val_vae_kl_loss: 5.7958\n",
+      "Epoch 62/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 42.3689 - vae_r_loss: 36.5495 - vae_kl_loss: 5.8194 - val_loss: 43.6502 - val_vae_r_loss: 37.7721 - val_vae_kl_loss: 5.8781\n",
+      "Epoch 63/100\n",
+      "60000/60000 [==============================] - 7s 121us/sample - loss: 42.3349 - vae_r_loss: 36.5133 - vae_kl_loss: 5.8216 - val_loss: 43.8532 - val_vae_r_loss: 38.1812 - val_vae_kl_loss: 5.6720\n",
+      "Epoch 64/100\n",
+      "60000/60000 [==============================] - 7s 124us/sample - loss: 42.3399 - vae_r_loss: 36.5160 - vae_kl_loss: 5.8239 - val_loss: 43.7407 - val_vae_r_loss: 37.7782 - val_vae_kl_loss: 5.9625\n",
+      "Epoch 65/100\n",
+      "60000/60000 [==============================] - 7s 122us/sample - loss: 42.3138 - vae_r_loss: 36.4957 - vae_kl_loss: 5.8181 - val_loss: 43.7347 - val_vae_r_loss: 37.8601 - val_vae_kl_loss: 5.8746\n",
+      "Epoch 66/100\n",
+      "60000/60000 [==============================] - 7s 123us/sample - loss: 42.2707 - vae_r_loss: 36.4429 - vae_kl_loss: 5.8278 - val_loss: 43.6608 - val_vae_r_loss: 37.7890 - val_vae_kl_loss: 5.8719\n",
+      "Epoch 67/100\n",
+      "60000/60000 [==============================] - 8s 125us/sample - loss: 42.2985 - vae_r_loss: 36.4611 - vae_kl_loss: 5.8374 - val_loss: 43.6500 - val_vae_r_loss: 37.8897 - val_vae_kl_loss: 5.7603\n",
+      "Epoch 68/100\n",
+      "60000/60000 [==============================] - 7s 125us/sample - loss: 42.2463 - vae_r_loss: 36.4053 - vae_kl_loss: 5.8411 - val_loss: 43.8904 - val_vae_r_loss: 38.1325 - val_vae_kl_loss: 5.7579\n",
+      "Epoch 69/100\n",
+      "60000/60000 [==============================] - 8s 125us/sample - loss: 42.2397 - vae_r_loss: 36.4007 - vae_kl_loss: 5.8389 - val_loss: 43.7959 - val_vae_r_loss: 38.0308 - val_vae_kl_loss: 5.7651\n",
+      "Epoch 70/100\n",
+      "60000/60000 [==============================] - 7s 124us/sample - loss: 42.2090 - vae_r_loss: 36.3648 - vae_kl_loss: 5.8442 - val_loss: 43.6900 - val_vae_r_loss: 37.9130 - val_vae_kl_loss: 5.7771\n",
+      "Epoch 71/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 42.1998 - vae_r_loss: 36.3484 - vae_kl_loss: 5.8514 - val_loss: 43.6552 - val_vae_r_loss: 37.8492 - val_vae_kl_loss: 5.8060\n",
+      "Epoch 72/100\n",
+      "60000/60000 [==============================] - 7s 123us/sample - loss: 42.1943 - vae_r_loss: 36.3286 - vae_kl_loss: 5.8657 - val_loss: 43.6515 - val_vae_r_loss: 37.9546 - val_vae_kl_loss: 5.6969\n",
+      "Epoch 73/100\n",
+      "60000/60000 [==============================] - 8s 125us/sample - loss: 42.1745 - vae_r_loss: 36.3193 - vae_kl_loss: 5.8552 - val_loss: 43.8444 - val_vae_r_loss: 38.1314 - val_vae_kl_loss: 5.7130\n",
+      "Epoch 74/100\n",
+      "60000/60000 [==============================] - 7s 124us/sample - loss: 42.1288 - vae_r_loss: 36.2784 - vae_kl_loss: 5.8504 - val_loss: 43.8137 - val_vae_r_loss: 38.0373 - val_vae_kl_loss: 5.7764\n",
+      "Epoch 75/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 42.1683 - vae_r_loss: 36.3033 - vae_kl_loss: 5.8650 - val_loss: 43.6371 - val_vae_r_loss: 37.9428 - val_vae_kl_loss: 5.6942\n",
+      "Epoch 76/100\n",
+      "60000/60000 [==============================] - 8s 125us/sample - loss: 42.1302 - vae_r_loss: 36.2609 - vae_kl_loss: 5.8692 - val_loss: 43.8022 - val_vae_r_loss: 37.9602 - val_vae_kl_loss: 5.8420\n",
+      "Epoch 77/100\n",
+      "60000/60000 [==============================] - 8s 125us/sample - loss: 42.1186 - vae_r_loss: 36.2503 - vae_kl_loss: 5.8684 - val_loss: 43.6853 - val_vae_r_loss: 37.9111 - val_vae_kl_loss: 5.7742\n",
+      "Epoch 78/100\n",
+      "60000/60000 [==============================] - 7s 124us/sample - loss: 42.1304 - vae_r_loss: 36.2550 - vae_kl_loss: 5.8754 - val_loss: 43.7015 - val_vae_r_loss: 37.8260 - val_vae_kl_loss: 5.8755\n",
+      "Epoch 79/100\n",
+      "60000/60000 [==============================] - 7s 124us/sample - loss: 42.0687 - vae_r_loss: 36.1876 - vae_kl_loss: 5.8811 - val_loss: 43.6678 - val_vae_r_loss: 37.7893 - val_vae_kl_loss: 5.8785\n",
+      "Epoch 80/100\n",
+      "60000/60000 [==============================] - 8s 125us/sample - loss: 42.0476 - vae_r_loss: 36.1643 - vae_kl_loss: 5.8833 - val_loss: 43.6656 - val_vae_r_loss: 37.8170 - val_vae_kl_loss: 5.8487\n",
+      "Epoch 81/100\n",
+      "60000/60000 [==============================] - 7s 124us/sample - loss: 42.0584 - vae_r_loss: 36.1825 - vae_kl_loss: 5.8759 - val_loss: 43.6267 - val_vae_r_loss: 37.8788 - val_vae_kl_loss: 5.7480\n",
+      "Epoch 82/100\n",
+      "60000/60000 [==============================] - 7s 111us/sample - loss: 42.0196 - vae_r_loss: 36.1357 - vae_kl_loss: 5.8840 - val_loss: 43.7281 - val_vae_r_loss: 37.6417 - val_vae_kl_loss: 6.0864\n",
+      "Epoch 83/100\n",
+      "60000/60000 [==============================] - 7s 125us/sample - loss: 42.0253 - vae_r_loss: 36.1311 - vae_kl_loss: 5.8943 - val_loss: 43.6205 - val_vae_r_loss: 37.8310 - val_vae_kl_loss: 5.7895\n",
+      "Epoch 84/100\n",
+      "60000/60000 [==============================] - 7s 124us/sample - loss: 42.0190 - vae_r_loss: 36.1276 - vae_kl_loss: 5.8914 - val_loss: 43.6444 - val_vae_r_loss: 37.8001 - val_vae_kl_loss: 5.8443\n",
+      "Epoch 85/100\n",
+      "60000/60000 [==============================] - 7s 124us/sample - loss: 42.0310 - vae_r_loss: 36.1556 - vae_kl_loss: 5.8754 - val_loss: 43.7125 - val_vae_r_loss: 37.8790 - val_vae_kl_loss: 5.8336\n",
+      "Epoch 86/100\n",
+      "60000/60000 [==============================] - 7s 124us/sample - loss: 42.0147 - vae_r_loss: 36.1276 - vae_kl_loss: 5.8872 - val_loss: 43.7536 - val_vae_r_loss: 37.7771 - val_vae_kl_loss: 5.9764\n",
+      "Epoch 87/100\n",
+      "60000/60000 [==============================] - 7s 124us/sample - loss: 41.9674 - vae_r_loss: 36.0723 - vae_kl_loss: 5.8951 - val_loss: 43.6899 - val_vae_r_loss: 37.8354 - val_vae_kl_loss: 5.8545\n",
+      "Epoch 88/100\n",
+      "60000/60000 [==============================] - 7s 122us/sample - loss: 41.9717 - vae_r_loss: 36.0720 - vae_kl_loss: 5.8998 - val_loss: 43.6792 - val_vae_r_loss: 37.9402 - val_vae_kl_loss: 5.7390\n",
+      "Epoch 89/100\n",
+      "60000/60000 [==============================] - 7s 124us/sample - loss: 41.9129 - vae_r_loss: 36.0126 - vae_kl_loss: 5.9003 - val_loss: 43.6925 - val_vae_r_loss: 37.8338 - val_vae_kl_loss: 5.8587\n",
+      "Epoch 90/100\n",
+      "60000/60000 [==============================] - 7s 124us/sample - loss: 41.9510 - vae_r_loss: 36.0328 - vae_kl_loss: 5.9181 - val_loss: 43.7327 - val_vae_r_loss: 37.8878 - val_vae_kl_loss: 5.8448\n",
+      "Epoch 91/100\n",
+      "60000/60000 [==============================] - 7s 125us/sample - loss: 41.9122 - vae_r_loss: 35.9966 - vae_kl_loss: 5.9155 - val_loss: 43.7091 - val_vae_r_loss: 37.8563 - val_vae_kl_loss: 5.8527\n",
+      "Epoch 92/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 41.9161 - vae_r_loss: 35.9930 - vae_kl_loss: 5.9231 - val_loss: 43.7270 - val_vae_r_loss: 37.8876 - val_vae_kl_loss: 5.8393\n",
+      "Epoch 93/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 41.9154 - vae_r_loss: 35.9875 - vae_kl_loss: 5.9278 - val_loss: 43.6541 - val_vae_r_loss: 37.6903 - val_vae_kl_loss: 5.9639\n",
+      "Epoch 94/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 41.8807 - vae_r_loss: 35.9663 - vae_kl_loss: 5.9144 - val_loss: 43.7643 - val_vae_r_loss: 37.8280 - val_vae_kl_loss: 5.9363\n",
+      "Epoch 95/100\n",
+      "60000/60000 [==============================] - 7s 125us/sample - loss: 41.9016 - vae_r_loss: 35.9739 - vae_kl_loss: 5.9277 - val_loss: 43.8913 - val_vae_r_loss: 37.9501 - val_vae_kl_loss: 5.9412\n",
+      "Epoch 96/100\n",
+      "60000/60000 [==============================] - 7s 120us/sample - loss: 41.8545 - vae_r_loss: 35.9314 - vae_kl_loss: 5.9231 - val_loss: 43.7067 - val_vae_r_loss: 37.7875 - val_vae_kl_loss: 5.9192\n",
+      "Epoch 97/100\n",
+      "60000/60000 [==============================] - 7s 118us/sample - loss: 41.8349 - vae_r_loss: 35.9267 - vae_kl_loss: 5.9083 - val_loss: 43.7083 - val_vae_r_loss: 37.7909 - val_vae_kl_loss: 5.9173\n",
+      "Epoch 98/100\n",
+      "60000/60000 [==============================] - 7s 123us/sample - loss: 41.8574 - vae_r_loss: 35.9213 - vae_kl_loss: 5.9361 - val_loss: 43.6804 - val_vae_r_loss: 37.8716 - val_vae_kl_loss: 5.8088\n",
+      "Epoch 99/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 41.8132 - vae_r_loss: 35.8820 - vae_kl_loss: 5.9312 - val_loss: 43.5919 - val_vae_r_loss: 37.7066 - val_vae_kl_loss: 5.8853\n",
+      "Epoch 100/100\n",
+      "60000/60000 [==============================] - 8s 126us/sample - loss: 41.8338 - vae_r_loss: 35.9009 - vae_kl_loss: 5.9329 - val_loss: 43.6792 - val_vae_r_loss: 37.6395 - val_vae_kl_loss: 6.0397\n",
+      "\n",
+      "Train duration : 750.18 sec. - 0:12:30\n"
+     ]
+    }
+   ],
    "source": [
     "vae.train(x_train,\n",
     "          x_test,\n",
diff --git a/VAE/02-VAE-with-MNIST-post.ipynb b/VAE/02-VAE-with-MNIST-post.ipynb
index eb3f02043144aa7b2cb342e3236f64d733a19597..9d8d7f1e6996a8cc8397adf6cb5b1f0c953b6295 100644
--- a/VAE/02-VAE-with-MNIST-post.ipynb
+++ b/VAE/02-VAE-with-MNIST-post.ipynb
@@ -7,11 +7,11 @@
     "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
     "\n",
     "# <!-- TITLE --> [VAE2] - Variational AutoEncoder (VAE) with MNIST - Analysis\n",
-    "<!-- DESC --> Use of the previously trained model, analysis of the results\n",
+    "<!-- DESC --> Episode 2 : Exploring our latent space\n",
     "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
     "\n",
     "## Objectives :\n",
-    " - First data generation from latent space \n",
+    " - First data generation from **latent space** \n",
     " - Understanding of underlying principles\n",
     " - Model management\n",
     "\n",
diff --git a/VAE/03-About-CelebA.ipynb b/VAE/03-About-CelebA.ipynb
index fa2a0b8eaba03ca6af01b2d847a3b9d3107d0ebc..809db8ef1a3cd6a2eef2419799cbb49af08b9dae 100644
--- a/VAE/03-About-CelebA.ipynb
+++ b/VAE/03-About-CelebA.ipynb
@@ -7,12 +7,12 @@
     "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
     "\n",
     "# <!-- TITLE --> [VAE3] - About the CelebA dataset\n",
-    "<!-- DESC --> New VAE experience, but with a larger and more fun dataset\n",
+    "<!-- DESC --> Episode 3 : About the CelebA dataset, a more fun dataset !\n",
     "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
     "\n",
     "## Objectives :\n",
-    " - Data analysis and preparation\n",
-    " - Problems related to the use of more real datasets\n",
+    " - Data **analysis**\n",
+    " - Problems related to the use of **more real datasets**\n",
     "\n",
     "We'll do the same thing again but with a more interesting dataset:  **CelebFaces**  \n",
     "\"[CelebFaces Attributes Dataset (CelebA)](http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) is a large-scale face attributes dataset with more than 200K celebrity images, each with 40 attribute annotations. The images in this dataset cover large pose variations and background clutter. CelebA has large diversities, large quantities, and rich annotations.\""
diff --git a/VAE/04-Prepare-CelebA-batch.ipynb b/VAE/04-Prepare-CelebA-batch.ipynb
index fc248d1310b00eea461a5d3b0727dae554b41e47..d0dd572a6eb9e4b4bf8a4c162fd2ffe6b0bc0f5b 100644
--- a/VAE/04-Prepare-CelebA-batch.ipynb
+++ b/VAE/04-Prepare-CelebA-batch.ipynb
@@ -7,11 +7,11 @@
     "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
     "\n",
     "# <!-- TITLE --> [VAE4] - Preparation of the CelebA dataset\n",
-    "<!-- DESC --> Preparation of a clustered dataset, batchable\n",
+    "<!-- DESC --> Episode 4 : Preparation of a clustered dataset, batchable\n",
     "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
     "\n",
     "## Objectives :\n",
-    " - Formatting our dataset in cluster files, using batch mode\n",
+    " - Formatting our dataset in **cluster files**, using batch mode\n",
     " - Adapting a notebook for batch use\n",
     "\n",
     "\n",
diff --git a/VAE/05-Check-CelebA.ipynb b/VAE/05-Check-CelebA.ipynb
index 4d7b927a99e5c114bf765a9abb31ffc3eab1e7f4..83fbf23048195dd8c755efc19a198d95fac44b0a 100644
--- a/VAE/05-Check-CelebA.ipynb
+++ b/VAE/05-Check-CelebA.ipynb
@@ -7,7 +7,7 @@
     "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
     "\n",
     "# <!-- TITLE --> [VAE5] - Checking the clustered CelebA dataset\n",
-    "<!-- DESC --> Verification of prepared data from CelebA dataset\n",
+    "<!-- DESC --> Episode 5 :\tChecking the clustered dataset\n",
     "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
     "\n",
     "## Objectives :\n",
diff --git a/VAE/06-VAE-with-CelebA-s.ipynb b/VAE/06-VAE-with-CelebA-s.ipynb
index c5141fec9ecd5fbae3d3842c6a8d8c393aec0899..febf7dfa833ae3cbfdce950decb8586c0b372c56 100644
--- a/VAE/06-VAE-with-CelebA-s.ipynb
+++ b/VAE/06-VAE-with-CelebA-s.ipynb
@@ -7,12 +7,12 @@
     "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
     "\n",
     "# <!-- TITLE --> [VAE6] - Variational AutoEncoder (VAE) with CelebA (small)\n",
-    "<!-- DESC --> VAE with a more fun and realistic dataset - small resolution and batchable\n",
+    "<!-- DESC --> Episode 6 : Variational AutoEncoder (VAE) with CelebA (small res.)\n",
     "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
     "\n",
     "## Objectives :\n",
-    " - Build and train a VAE model with a large dataset in small resolution(>70 GB)\n",
-    " - Understanding a more advanced programming model with data generator\n",
+    " - Build and train a VAE model with a large dataset in **small resolution(>70 GB)**\n",
+    " - Understanding a more advanced programming model with **data generator**\n",
     "\n",
     "The [CelebFaces Attributes Dataset (CelebA)](http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) contains about 200,000 images (202599,218,178,3).  \n",
     "\n",
diff --git a/VAE/07-VAE-with-CelebA-m.ipynb b/VAE/07-VAE-with-CelebA-m.ipynb
index a6bd343572a0025ea30855b6b7009ff72e1bc5c6..394355680c142600e2d2d7c2d942f4f49b570185 100644
--- a/VAE/07-VAE-with-CelebA-m.ipynb
+++ b/VAE/07-VAE-with-CelebA-m.ipynb
@@ -7,12 +7,12 @@
     "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
     "\n",
     "# <!-- TITLE --> [VAE7] - Variational AutoEncoder (VAE) with CelebA (medium)\n",
-    "<!-- DESC --> VAE with a more fun and realistic dataset - medium resolution and batchable\n",
+    "<!-- DESC --> Episode 7 : Variational AutoEncoder (VAE) with CelebA (medium res.)\n",
     "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
     "\n",
     "## Objectives :\n",
-    " - Build and train a VAE model with a large dataset in small resolution(>140 GB)\n",
-    " - Understanding a more advanced programming model with data generator\n",
+    " - Build and train a VAE model with a large dataset in **medium resolution(>140 GB)**\n",
+    " - Understanding a more advanced programming model with **data generator**\n",
     "\n",
     "The [CelebFaces Attributes Dataset (CelebA)](http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) contains about 200,000 images (202599,218,178,3).  \n",
     "\n",
diff --git a/VAE/08-VAE-with-CelebA-m.nbconvert.ipynb b/VAE/07-VAE-with-CelebA-m.nbconvert.ipynb
similarity index 100%
rename from VAE/08-VAE-with-CelebA-m.nbconvert.ipynb
rename to VAE/07-VAE-with-CelebA-m.nbconvert.ipynb
diff --git a/VAE/12-VAE-withCelebA-post.ipynb b/VAE/08-VAE-withCelebA-post.ipynb
similarity index 99%
rename from VAE/12-VAE-withCelebA-post.ipynb
rename to VAE/08-VAE-withCelebA-post.ipynb
index 867589985ddb2ec46805715e89db57e161e02a8a..3ed0684598d722a851281f53240542e242437011 100644
--- a/VAE/12-VAE-withCelebA-post.ipynb
+++ b/VAE/08-VAE-withCelebA-post.ipynb
@@ -7,13 +7,13 @@
     "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
     "\n",
     "# <!-- TITLE --> [VAE12] - Variational AutoEncoder (VAE) with CelebA - Analysis\n",
-    "<!-- DESC --> Use of the previously trained model with CelebA, analysis of the results\n",
+    "<!-- DESC --> Episode 8 : Exploring latent space of our trained models\n",
     "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
     "\n",
     "## Objectives :\n",
-    " - New data generation from latent space\n",
+    " - New data generation from **latent space**\n",
     " - Understanding of underlying principles\n",
-    " - Guided image generation (latent morphing)\n",
+    " - Guided image generation, **latent morphing**\n",
     " - Model management\n",
     " \n",
     "Here again, we don't consume data anymore, but we generate them ! ;-)\n",