diff --git a/BHPD/03-DNN-Wine-Regression.ipynb b/BHPD/03-DNN-Wine-Regression.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..ecb36fa60975f6dd355cbc17af4b63ddb8d19232 --- /dev/null +++ b/BHPD/03-DNN-Wine-Regression.ipynb @@ -0,0 +1,482 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", + "\n", + "# <!-- TITLE --> [WINE1] - Wine quality prediction with a Dense Network (DNN)\n", + " <!-- DESC --> Another example of regression, with a wine quality prediction!\n", + " <!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", + "\n", + "## Objectives :\n", + " - Predict the **quality of wines**, based on their analysis\n", + " - Understanding the principle and the architecture of a regression with a dense neural network with backup and restore of the trained model. \n", + "\n", + "The **[Wine Quality datasets](https://archive.ics.uci.edu/ml/datasets/wine+Quality)** are made up of analyses of a large number of wines, with an associated quality (between 0 and 10) \n", + "This dataset is provide by : \n", + "Paulo Cortez, University of Minho, Guimarães, Portugal, http://www3.dsi.uminho.pt/pcortez \n", + "A. Cerdeira, F. Almeida, T. Matos and J. Reis, Viticulture Commission of the Vinho Verde Region(CVRVV), Porto, Portugal, @2009 \n", + "This dataset can be retreive at [University of California Irvine (UCI)](https://archive-beta.ics.uci.edu/ml/datasets/wine+quality)\n", + "\n", + "\n", + "Due to privacy and logistic issues, only physicochemical and sensory variables are available \n", + "There is no data about grape types, wine brand, wine selling price, etc.\n", + "\n", + "- fixed acidity\n", + "- volatile acidity\n", + "- citric acid\n", + "- residual sugar\n", + "- chlorides\n", + "- free sulfur dioxide\n", + "- total sulfur dioxide\n", + "- density\n", + "- pH\n", + "- sulphates\n", + "- alcohol\n", + "- quality (score between 0 and 10)\n", + "\n", + "## What we're going to do :\n", + "\n", + " - (Retrieve data)\n", + " - (Preparing the data)\n", + " - (Build a model)\n", + " - Train and save the model\n", + " - Restore saved model\n", + " - Evaluate the model\n", + " - Make some predictions\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 1 - Import and init\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# import os\n", + "# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'\n", + "\n", + "import tensorflow as tf\n", + "from tensorflow import keras\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import os,sys\n", + "\n", + "from IPython.display import Markdown\n", + "from importlib import reload\n", + "\n", + "import fidle\n", + "\n", + "# Init Fidle environment\n", + "run_id, run_dir, datasets_dir = fidle.init('WINE1')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Verbosity during training : \n", + "- 0 = silent\n", + "- 1 = progress bar\n", + "- 2 = one line per epoch" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fit_verbosity = 1\n", + "dataset_name = 'winequality-red.csv'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Override parameters (batch mode) - Just forget this cell" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fidle.override('fit_verbosity', 'dataset_name')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 2 - Retrieve data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = pd.read_csv(f'{datasets_dir}/WineQuality/origine/{dataset_name}', header=0,sep=';')\n", + "\n", + "display(data.head(5).style.format(\"{0:.2f}\"))\n", + "print('Missing Data : ',data.isna().sum().sum(), ' Shape is : ', data.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 3 - Preparing the data\n", + "### 3.1 - Split data\n", + "We will use 80% of the data for training and 20% for validation. \n", + "x will be the data of the analysis and y the quality" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# ---- Split => train, test\n", + "#\n", + "data = data.sample(frac=1., axis=0) # Shuffle\n", + "data_train = data.sample(frac=0.8, axis=0) # get 80 %\n", + "data_test = data.drop(data_train.index) # test = all - train\n", + "\n", + "# ---- Split => x,y (medv is price)\n", + "#\n", + "x_train = data_train.drop('quality', axis=1)\n", + "y_train = data_train['quality']\n", + "x_test = data_test.drop('quality', axis=1)\n", + "y_test = data_test['quality']\n", + "\n", + "print('Original data shape was : ',data.shape)\n", + "print('x_train : ',x_train.shape, 'y_train : ',y_train.shape)\n", + "print('x_test : ',x_test.shape, 'y_test : ',y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.2 - Data normalization\n", + "**Note :** \n", + " - All input data must be normalized, train and test. \n", + " - To do this we will subtract the mean and divide by the standard deviation. \n", + " - But test data should not be used in any way, even for normalization. \n", + " - The mean and the standard deviation will therefore only be calculated with the train data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"Before normalization :\"))\n", + "\n", + "mean = x_train.mean()\n", + "std = x_train.std()\n", + "x_train = (x_train - mean) / std\n", + "x_test = (x_test - mean) / std\n", + "\n", + "display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"After normalization :\"))\n", + "\n", + "# Convert ou DataFrame to numpy array\n", + "x_train, y_train = np.array(x_train), np.array(y_train)\n", + "x_test, y_test = np.array(x_test), np.array(y_test)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 4 - Build a model\n", + "More informations about : \n", + " - [Optimizer](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers)\n", + " - [Activation](https://www.tensorflow.org/api_docs/python/tf/keras/activations)\n", + " - [Loss](https://www.tensorflow.org/api_docs/python/tf/keras/losses)\n", + " - [Metrics](https://www.tensorflow.org/api_docs/python/tf/keras/metrics)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_model_v1(shape):\n", + " \n", + " model = keras.models.Sequential()\n", + " model.add(keras.layers.Input(shape, name=\"InputLayer\"))\n", + " model.add(keras.layers.Dense(64, activation='relu', name='Dense_n1'))\n", + " model.add(keras.layers.Dense(64, activation='relu', name='Dense_n2'))\n", + " model.add(keras.layers.Dense(1, name='Output'))\n", + "\n", + " model.compile(optimizer = 'rmsprop',\n", + " loss = 'mse',\n", + " metrics = ['mae', 'mse'] )\n", + " return model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5 - Train the model\n", + "### 5.1 - Get it" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model=get_model_v1( (11,) )\n", + "\n", + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 5.2 - Add callback" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "os.makedirs('./run/models', mode=0o750, exist_ok=True)\n", + "save_dir = \"./run/models/best_model.h5\"\n", + "\n", + "savemodel_callback = tf.keras.callbacks.ModelCheckpoint(filepath=save_dir, verbose=0, save_best_only=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 5.3 - Train it" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "history = model.fit(x_train,\n", + " y_train,\n", + " epochs = 100,\n", + " batch_size = 10,\n", + " verbose = fit_verbosity,\n", + " validation_data = (x_test, y_test),\n", + " callbacks = [savemodel_callback])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 6 - Evaluate\n", + "### 6.1 - Model evaluation\n", + "MAE = Mean Absolute Error (between the labels and predictions) \n", + "A mae equal to 3 represents an average error in prediction of $3k." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "score = model.evaluate(x_test, y_test, verbose=0)\n", + "\n", + "print('x_test / loss : {:5.4f}'.format(score[0]))\n", + "print('x_test / mae : {:5.4f}'.format(score[1]))\n", + "print('x_test / mse : {:5.4f}'.format(score[2]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 6.2 - Training history\n", + "What was the best result during our training ?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"min( val_mae ) : {:.4f}\".format( min(history.history[\"val_mae\"]) ) )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fidle.scrawler.history( history, plot={'MSE' :['mse', 'val_mse'],\n", + " 'MAE' :['mae', 'val_mae'],\n", + " 'LOSS':['loss','val_loss']}, save_as='01-history')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 7 - Restore a model :" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 7.1 - Reload model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "loaded_model = tf.keras.models.load_model('./run/models/best_model.h5')\n", + "loaded_model.summary()\n", + "print(\"Loaded.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 7.2 - Evaluate it :" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "score = loaded_model.evaluate(x_test, y_test, verbose=0)\n", + "\n", + "print('x_test / loss : {:5.4f}'.format(score[0]))\n", + "print('x_test / mae : {:5.4f}'.format(score[1]))\n", + "print('x_test / mse : {:5.4f}'.format(score[2]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 7.3 - Make a prediction" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# ---- Pick n entries from our test set\n", + "n = 200\n", + "ii = np.random.randint(1,len(x_test),n)\n", + "x_sample = x_test[ii]\n", + "y_sample = y_test[ii]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# ---- Make a predictions\n", + "y_pred = loaded_model.predict( x_sample, verbose=2 )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# ---- Show it\n", + "print('Wine Prediction Real Delta')\n", + "for i in range(n):\n", + " pred = y_pred[i][0]\n", + " real = y_sample[i]\n", + " delta = real-pred\n", + " print(f'{i:03d} {pred:.2f} {real} {delta:+.2f} ')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fidle.end()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.9.2 ('fidle-env')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.2" + }, + "vscode": { + "interpreter": { + "hash": "b3929042cc22c1274d74e3e946c52b845b57cb6d84f2d591ffe0519b38e4896d" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Misc/Using-pandas.ipynb b/Misc/Using-pandas.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..bc314cfeb5c7cc9595a8e37770898d496a3ac3fd --- /dev/null +++ b/Misc/Using-pandas.ipynb @@ -0,0 +1,148 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", + "\n", + "# <!-- TITLE --> [PANDAS1] - Quelques exemples avec Pandas\n", + "<!-- DESC --> pandas is another essential tool for the Scientific Python.\n", + "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", + "\n", + "## Objectives :\n", + " - Understand how to slice a dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 1 - A little cooking with datasets" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Get some data\n", + "a = np.arange(50).reshape(10,5)\n", + "print('Starting data: \\n',a)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Create a DataFrame\n", + "df_all = pd.DataFrame(a, columns=['A','B','C','D','E'])\n", + "print('\\nDataFrame :')\n", + "display(df_all)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Shuffle data\n", + "df_all = df_all.sample(frac=1, axis=0)\n", + "print('\\nDataFrame randomly shuffled :')\n", + "display(df_all)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Get a train part\n", + "df_train = df_all.sample(frac=0.8, axis=0)\n", + "print('\\nTrain set (80%) :')\n", + "display(df_train)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# Get test set as all - train\n", + "df_test = df_all.drop(df_train.index)\n", + "print('\\nTest set (all - train) :')\n", + "display(df_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "x_train = df_train.drop('E', axis=1)\n", + "y_train = df_train['E']\n", + "x_test = df_test.drop('E', axis=1)\n", + "y_test = df_test['E']\n", + "display(x_train)\n", + "display(y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.9.2 ('fidle-env')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.2" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "b3929042cc22c1274d74e3e946c52b845b57cb6d84f2d591ffe0519b38e4896d" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/README.ipynb b/README.ipynb index 72f868497d7e11e6be7b35b08d815a491f14ffd3..e1a120b941c601a9f4db69a7805d4712948726f5 100644 --- a/README.ipynb +++ b/README.ipynb @@ -3,13 +3,13 @@ { "cell_type": "code", "execution_count": 1, - "id": "a097c5d3", + "id": "c0502242", "metadata": { "execution": { - "iopub.execute_input": "2022-10-13T16:40:09.834885Z", - "iopub.status.busy": "2022-10-13T16:40:09.834097Z", - "iopub.status.idle": "2022-10-13T16:40:09.845618Z", - "shell.execute_reply": "2022-10-13T16:40:09.844753Z" + "iopub.execute_input": "2022-10-16T19:33:52.178836Z", + "iopub.status.busy": "2022-10-16T19:33:52.178369Z", + "iopub.status.idle": "2022-10-16T19:33:52.190555Z", + "shell.execute_reply": "2022-10-16T19:33:52.189704Z" }, "jupyter": { "source_hidden": true @@ -52,7 +52,7 @@ "For more information, you can contact us at : \n", "[<img width=\"200px\" style=\"vertical-align:middle\" src=\"fidle/img/00-Mail_contact.svg\"></img>](#top)\n", "\n", - "Current Version : <!-- VERSION_BEGIN -->2.2.0<!-- VERSION_END -->\n", + "Current Version : <!-- VERSION_BEGIN -->2.2.1<!-- VERSION_END -->\n", "\n", "\n", "## Course materials\n", @@ -67,7 +67,7 @@ "## Jupyter notebooks\n", "\n", "<!-- TOC_BEGIN -->\n", - "<!-- Automatically generated on : 13/10/22 18:40:08 -->\n", + "<!-- Automatically generated on : 16/10/22 21:33:51 -->\n", "\n", "### Linear and logistic regression\n", "- **[LINR1](LinearReg/01-Linear-Regression.ipynb)** - [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb) \n", @@ -88,6 +88,8 @@ "Simple example of a regression with the dataset Boston Housing Prices Dataset (BHPD)\n", "- **[BHPD2](BHPD/02-DNN-Regression-Premium.ipynb)** - [Regression with a Dense Network (DNN) - Advanced code](BHPD/02-DNN-Regression-Premium.ipynb) \n", "A more advanced implementation of the precedent example\n", + "- **[WINE1](BHPD/03-DNN-Wine-Regression.ipynb)** - [Wine quality prediction with a Dense Network (DNN)](BHPD/03-DNN-Wine-Regression.ipynb) \n", + "Another example of regression, with a wine quality prediction!\n", "\n", "### Basic classification using a DN\n", "- **[MNIST1](MNIST/01-DNN-MNIST.ipynb)** - [Simple classification with DNN](MNIST/01-DNN-MNIST.ipynb) \n", @@ -198,6 +200,8 @@ "A scratchbook for small examples\n", "- **[TSB1](Misc/Using-Tensorboard.ipynb)** - [Tensorboard with/from Jupyter ](Misc/Using-Tensorboard.ipynb) \n", "4 ways to use Tensorboard from the Jupyter environment\n", + "- **[PANDAS1](Misc/Using-pandas.ipynb)** - [Quelques exemples avec Pandas](Misc/Using-pandas.ipynb) \n", + "pandas is another essential tool for the Scientific Python.\n", "<!-- TOC_END -->\n", "\n", "\n", @@ -229,7 +233,7 @@ "from IPython.display import display,Markdown\n", "display(Markdown(open('README.md', 'r').read()))\n", "#\n", - "# This README is visible under Jupiter Lab ;-)# Automatically generated on : 13/10/22 18:40:09" + "# This README is visible under Jupiter Lab ;-)# Automatically generated on : 16/10/22 21:33:51" ] } ], diff --git a/README.md b/README.md index 9b225e6772b4d4e9fc7e3784775ae086c7ceaa63..db8aee27205397bf8f8803cde00fcdab284eb191 100644 --- a/README.md +++ b/README.md @@ -31,7 +31,7 @@ For more information, see **https://fidle.cnrs.fr** : For more information, you can contact us at : [<img width="200px" style="vertical-align:middle" src="fidle/img/00-Mail_contact.svg"></img>](#top) -Current Version : <!-- VERSION_BEGIN -->2.2.0<!-- VERSION_END --> +Current Version : <!-- VERSION_BEGIN -->2.2.1<!-- VERSION_END --> ## Course materials @@ -46,7 +46,7 @@ Have a look about **[How to get and install](https://fidle.cnrs.fr/installation) ## Jupyter notebooks <!-- TOC_BEGIN --> -<!-- Automatically generated on : 13/10/22 18:40:08 --> +<!-- Automatically generated on : 16/10/22 21:33:51 --> ### Linear and logistic regression - **[LINR1](LinearReg/01-Linear-Regression.ipynb)** - [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb) @@ -67,6 +67,8 @@ Example of use of a Perceptron, with sklearn and IRIS dataset of 1936 ! Simple example of a regression with the dataset Boston Housing Prices Dataset (BHPD) - **[BHPD2](BHPD/02-DNN-Regression-Premium.ipynb)** - [Regression with a Dense Network (DNN) - Advanced code](BHPD/02-DNN-Regression-Premium.ipynb) A more advanced implementation of the precedent example +- **[WINE1](BHPD/03-DNN-Wine-Regression.ipynb)** - [Wine quality prediction with a Dense Network (DNN)](BHPD/03-DNN-Wine-Regression.ipynb) +Another example of regression, with a wine quality prediction! ### Basic classification using a DN - **[MNIST1](MNIST/01-DNN-MNIST.ipynb)** - [Simple classification with DNN](MNIST/01-DNN-MNIST.ipynb) @@ -177,6 +179,8 @@ Numpy is an essential tool for the Scientific Python. A scratchbook for small examples - **[TSB1](Misc/Using-Tensorboard.ipynb)** - [Tensorboard with/from Jupyter ](Misc/Using-Tensorboard.ipynb) 4 ways to use Tensorboard from the Jupyter environment +- **[PANDAS1](Misc/Using-pandas.ipynb)** - [Quelques exemples avec Pandas](Misc/Using-pandas.ipynb) +pandas is another essential tool for the Scientific Python. <!-- TOC_END --> diff --git a/fidle/about.yml b/fidle/about.yml index b806e6b0e5490bd4f378bf4555823da9ec75eeb9..707666d66982d6fe80555c763d18401d8f827811 100644 --- a/fidle/about.yml +++ b/fidle/about.yml @@ -13,7 +13,7 @@ # # This file describes the notebooks used by the Fidle training. -version: 2.2.0 +version: 2.2.1 content: notebooks name: Notebooks Fidle description: All notebooks used by the Fidle training diff --git a/fidle/ci/OLD-full_ci.yml b/fidle/ci/OLD-full_ci.yml deleted file mode 100644 index 8dd473385643d4c3bac526ccf49c9e20824b9042..0000000000000000000000000000000000000000 --- a/fidle/ci/OLD-full_ci.yml +++ /dev/null @@ -1,292 +0,0 @@ -_metadata_: - version: '1.0' - output_tag: ==ci== - save_figs: true - description: Full profile for CI -# -# ------ LinearReg ------------------------------------------------- -# -LINR1: - notebook_id: LINR1 - notebook_dir: LinearReg - notebook_src: 01-Linear-Regression.ipynb - notebook_tag: default -GRAD1: - notebook_id: GRAD1 - notebook_dir: LinearReg - notebook_src: 02-Gradient-descent.ipynb - notebook_tag: default -POLR1: - notebook_id: POLR1 - notebook_dir: LinearReg - notebook_src: 03-Polynomial-Regression.ipynb - notebook_tag: default -LOGR1: - notebook_id: LOGR1 - notebook_dir: LinearReg - notebook_src: 04-Logistic-Regression.ipynb - notebook_tag: default -PER57: - notebook_id: PER57 - notebook_dir: IRIS - notebook_src: 01-Simple-Perceptron.ipynb - notebook_tag: default -# -# ------ BHPD ------------------------------------------------------ -# -BHPD1: - notebook_id: BHPD1 - notebook_dir: BHPD - notebook_src: 01-DNN-Regression.ipynb - notebook_tag: default -BHPD2: - notebook_id: BHPD2 - notebook_dir: BHPD - notebook_src: 02-DNN-Regression-Premium.ipynb - notebook_tag: default -# -# ------ MNIST ----------------------------------------------------- -# -MNIST1: - notebook_id: MNIST1 - notebook_dir: MNIST - notebook_src: 01-DNN-MNIST.ipynb - notebook_tag: default -# -# ------ GTSRB ----------------------------------------------------- -# -GTSRB1: - notebook_id: GTSRB1 - notebook_dir: GTSRB - notebook_src: 01-Preparation-of-data.ipynb - notebook_tag: default - overrides: - scale: 0.01 - output_dir: './data' -GTSRB2: - notebook_id: GTSRB2 - notebook_dir: GTSRB - notebook_src: 02-First-convolutions.ipynb - notebook_tag: default - overrides: - run_dir: ./run/GTSRB2_ci - enhanced_dir: './data' - dataset_name: set-24x24-L - batch_size: 64 - epochs: 5 - scale: 1 -GTSRB3: - notebook_id: GTSRB3 - notebook_dir: GTSRB - notebook_src: 03-Tracking-and-visualizing.ipynb - notebook_tag: default - overrides: - run_dir: ./run/GTSRB3_ci - enhanced_dir: './data' - dataset_name: set-24x24-L - batch_size: 64 - epochs: 5 - scale: 1 -GTSRB4: - notebook_id: GTSRB4 - notebook_dir: GTSRB - notebook_src: 04-Data-augmentation.ipynb - notebook_tag: default - overrides: - run_dir: ./run/GTSRB4_ci - enhanced_dir: './data' - dataset_name: set-24x24-L - batch_size: 64 - epochs: 5 - scale: 1 -GTSRB5_r1: - notebook_id: GTSRB5 - notebook_dir: GTSRB - notebook_src: 05-Full-convolutions.ipynb - notebook_tag: =1==ci== - overrides: - run_dir: ./run/GTSRB5_ci - enhanced_dir: './data' - datasets: "['set-24x24-L', 'set-24x24-RGB', 'set-48x48-L', 'set-48x48-RGB', 'set-24x24-L-LHE', 'set-24x24-RGB-HE', 'set-48x48-L-LHE', 'set-48x48-RGB-HE']" - models: "{'v1':'get_model_v1', 'v2':'get_model_v2', 'v3':'get_model_v3'}" - batch_size: 64 - epochs: 16 - scale: 1 - with_datagen: False - verbose: 0 -GTSRB5_r2: - notebook_id: GTSRB5 - notebook_dir: GTSRB - notebook_src: 05-Full-convolutions.ipynb - notebook_tag: =2==ci== - overrides: - run_dir: ./run/GTSRB5_ci - enhanced_dir: './data' - datasets: "['set-48x48-L', 'set-48x48-RGB']" - models: "{'v2':'get_model_v2', 'v3':'get_model_v3'}" - batch_size: 64 - epochs: 16 - scale: 1 - with_datagen: False - verbose: 0 -GTSRB6: - notebook_id: GTSRB6 - notebook_dir: GTSRB - notebook_src: 06-Notebook-as-a-batch.ipynb - notebook_tag: default -GTSRB7: - notebook_id: GTSRB7 - notebook_dir: GTSRB - notebook_src: 07-Show-report.ipynb - notebook_tag: default - overrides: - run_dir: ./run/GTSRB7_ci - report_dir: ./run/GTSRB5_ci -# -# ------ IMDB ------------------------------------------------------ -# -IMDB1: - notebook_id: IMDB1 - notebook_dir: IMDB - notebook_src: 01-Embedding-Keras.ipynb - notebook_tag: default -IMDB2: - notebook_id: IMDB1 - notebook_dir: IMDB - notebook_src: 02-Prediction.ipynb - notebook_tag: default -IMDB3: - notebook_id: IMDB1 - notebook_dir: IMDB - notebook_src: 03-LSTM-Keras.ipynb - notebook_tag: default -# -# ------ SYNOP ----------------------------------------------------- -# -SYNOP1: - notebook_id: SYNOP1 - notebook_dir: SYNOP - notebook_src: 01-Preparation-of-data.ipynb - notebook_tag: default -SYNOP2: - notebook_id: SYNOP2 - notebook_dir: SYNOP - notebook_src: 02-First-predictions.ipynb - notebook_tag: default - overrides: - scale: 0.5 - train_prop: 0.8 - sequence_len: 16 - batch_size: 32 - epochs: 10 -SYNOP3: - notebook_id: SYNOP3 - notebook_dir: SYNOP - notebook_src: 03-12h-predictions.ipynb - notebook_tag: default - overrides: - iterations: 4 - scale: 1 - train_prop: 0.8 - sequence_len: 16 - batch_size: 32 - epochs: 10 -# -# ------ AE -------------------------------------------------------- -# -AE1: - notebook_id: AE1 - notebook_dir: AE - notebook_src: 01-AE-with-MNIST.ipynb - notebook_tag: default -AE2: - notebook_id: AE2 - notebook_dir: AE - notebook_src: 02-AE-with-MNIST-post.ipynb - notebook_tag: default -# -# ------ VAE ------------------------------------------------------- -# -VAE1: - notebook_id: VAE1 - notebook_dir: VAE - notebook_src: 01-VAE-with-MNIST.ipynb - notebook_tag: default - overrides: - run_dir: ./run/VAE1_ci - scale: 1 - latent_dim: 2 - r_loss_factor: 0.994 - batch_size: 64 - epochs: 10 -VAE2: - notebook_id: VAE2 - notebook_dir: VAE - notebook_src: 02-VAE-with-MNIST-post.ipynb - notebook_tag: default - overrides: - run_dir: ./run/VAE1_ci -VAE5: - notebook_id: VAE5 - notebook_dir: VAE - notebook_src: 05-About-CelebA.ipynb - notebook_tag: default -VAE6: - notebook_id: VAE6 - notebook_dir: VAE - notebook_src: 06-Prepare-CelebA-datasets.ipynb - notebook_tag: default - overrides: - scale: 0.02 - image_size: '(192,160)' - output_dir: ./data - exit_if_exist: False -VAE7: - notebook_id: VAE7 - notebook_dir: VAE - notebook_src: 07-Check-CelebA.ipynb - notebook_tag: default - overrides: - image_size: '(192,160)' - enhanced_dir: './data' -VAE8: - notebook_id: VAE8 - notebook_dir: VAE - notebook_src: 08-VAE-with-CelebA.ipynb - notebook_tag: default - overrides: - run_dir: ./run/VAE8_ci - scale: 1 - image_size: '(192,160)' - enhanced_dir: './data' - latent_dim: 300 - r_loss_factor: 0.6 - batch_size: 64 - epochs: 15 -VAE9: - notebook_id: VAE9 - notebook_dir: VAE - notebook_src: 09-VAE-with-CelebA-post.ipynb - notebook_tag: default - overrides: - run_dir: ./run/VAE8_ci - image_size: '(192,160)' - enhanced_dir: './data' -# -# ------ Misc ------------------------------------------------------ -# -ACTF1: - notebook_id: ACTF1 - notebook_dir: Misc - notebook_src: Activation-Functions.ipynb - notebook_tag: default -NP1: - notebook_id: NP1 - notebook_dir: Misc - notebook_src: Numpy.ipynb - notebook_tag: default -TSB1: - notebook_id: TSB1 - notebook_dir: Misc - notebook_src: Using-Tensorboard.ipynb - notebook_tag: default diff --git a/fidle/ci/OLD-full_gpu.yml b/fidle/ci/OLD-full_gpu.yml deleted file mode 100644 index 511dba89d0c288894c29682d8f22dac1f47d912c..0000000000000000000000000000000000000000 --- a/fidle/ci/OLD-full_gpu.yml +++ /dev/null @@ -1,362 +0,0 @@ -_metadata_: - version: '1.0' - output_tag: ==done== - save_figs: true - description: Full profile for GPU -# -# ------ LinearReg ------------------------------------------------- -# -Nb_LINR1: - notebook_id: LINR1 - notebook_dir: LinearReg - notebook_src: 01-Linear-Regression.ipynb - notebook_tag: default -Nb_GRAD1: - notebook_id: GRAD1 - notebook_dir: LinearReg - notebook_src: 02-Gradient-descent.ipynb - notebook_tag: default -Nb_POLR1: - notebook_id: POLR1 - notebook_dir: LinearReg - notebook_src: 03-Polynomial-Regression.ipynb - notebook_tag: default -Nb_LOGR1: - notebook_id: LOGR1 - notebook_dir: LinearReg - notebook_src: 04-Logistic-Regression.ipynb - notebook_tag: default -Nb_PER57: - notebook_id: PER57 - notebook_dir: IRIS - notebook_src: 01-Simple-Perceptron.ipynb - notebook_tag: default -# -# ------ BHPD ------------------------------------------------------ -# -Nb_BHPD1: - notebook_id: BHPD1 - notebook_dir: BHPD - notebook_src: 01-DNN-Regression.ipynb - notebook_tag: default -Nb_BHPD2: - notebook_id: BHPD2 - notebook_dir: BHPD - notebook_src: 02-DNN-Regression-Premium.ipynb - notebook_tag: default -# -# ------ MNIST ----------------------------------------------------- -# -Nb_MNIST1: - notebook_id: MNIST1 - notebook_dir: MNIST - notebook_src: 01-DNN-MNIST.ipynb - notebook_tag: default -Nb_MNIST2: - notebook_id: MNIST2 - notebook_dir: MNIST - notebook_src: 02-CNN-MNIST.ipynb - notebook_tag: default -# -# ------ GTSRB ----------------------------------------------------- -# -Nb_GTSRB1: - notebook_id: GTSRB1 - notebook_dir: GTSRB - notebook_src: 01-Preparation-of-data.ipynb - notebook_tag: default - overrides: - scale: 0.05 - output_dir: ./data -Nb_GTSRB2: - notebook_id: GTSRB2 - notebook_dir: GTSRB - notebook_src: 02-First-convolutions.ipynb - notebook_tag: default - overrides: - run_dir: ./run/GTSRB2_done - enhanced_dir: '{datasets_dir}/GTSRB/enhanced' - dataset_name: set-24x24-L - batch_size: 64 - epochs: 5 - scale: 1 -Nb_GTSRB3: - notebook_id: GTSRB3 - notebook_dir: GTSRB - notebook_src: 03-Tracking-and-visualizing.ipynb - notebook_tag: default - overrides: - run_dir: ./run/GTSRB3_done - enhanced_dir: '{datasets_dir}/GTSRB/enhanced' - dataset_name: set-24x24-L - batch_size: 64 - epochs: 5 - scale: 1 -Nb_GTSRB4: - notebook_id: GTSRB4 - notebook_dir: GTSRB - notebook_src: 04-Data-augmentation.ipynb - notebook_tag: default - overrides: - run_dir: ./run/GTSRB4_done - enhanced_dir: '{datasets_dir}/GTSRB/enhanced' - dataset_name: set-24x24-L - batch_size: 64 - epochs: 5 - scale: 1 -Nb_GTSRB5_r1: - notebook_id: GTSRB5 - notebook_dir: GTSRB - notebook_src: 05-Full-convolutions.ipynb - notebook_tag: =1==done== - overrides: - run_dir: ./run/GTSRB5_done - enhanced_dir: '{datasets_dir}/GTSRB/enhanced' - datasets: "['set-24x24-L', 'set-24x24-RGB', 'set-48x48-L', 'set-48x48-RGB', 'set-24x24-L-LHE', 'set-24x24-RGB-HE', 'set-48x48-L-LHE', 'set-48x48-RGB-HE']" - models: "{'v1':'get_model_v1', 'v2':'get_model_v2', 'v3':'get_model_v3'}" - batch_size: 64 - epochs: 16 - scale: 1 - with_datagen: False - verbose: 0 -Nb_GTSRB5_r2: - notebook_id: GTSRB5 - notebook_dir: GTSRB - notebook_src: 05-Full-convolutions.ipynb - notebook_tag: =2==done== - overrides: - run_dir: ./run/GTSRB5_done - enhanced_dir: '{datasets_dir}/GTSRB/enhanced' - datasets: "['set-24x24-L', 'set-24x24-RGB', 'set-48x48-L', 'set-48x48-RGB', 'set-24x24-L-LHE', 'set-24x24-RGB-HE', 'set-48x48-L-LHE', 'set-48x48-RGB-HE']" - models: "{'v1':'get_model_v1', 'v2':'get_model_v2', 'v3':'get_model_v3'}" - batch_size: 64 - epochs: 16 - scale: 1 - with_datagen: False - verbose: 0 -Nb_GTSRB5_r3: - notebook_id: GTSRB5 - notebook_dir: GTSRB - notebook_src: 05-Full-convolutions.ipynb - notebook_tag: =3==done== - overrides: - run_dir: ./run/GTSRB5_done - enhanced_dir: '{datasets_dir}/GTSRB/enhanced' - datasets: "['set-48x48-L', 'set-48x48-RGB']" - models: "{'v2':'get_model_v2', 'v3':'get_model_v3'}" - batch_size: 64 - epochs: 16 - scale: 1 - with_datagen: True - verbose: 0 -Nb_GTSRB6: - notebook_id: GTSRB6 - notebook_dir: GTSRB - notebook_src: 06-Notebook-as-a-batch.ipynb - notebook_tag: default -Nb_GTSRB7: - notebook_id: GTSRB7 - notebook_dir: GTSRB - notebook_src: 07-Show-report.ipynb - notebook_tag: default - overrides: - run_dir: ./run/GTSRB7_done - report_dir: ./run/GTSRB5_done -# -# ------ IMDB ------------------------------------------------------ -# -Nb_IMDB1: - notebook_id: IMDB1 - notebook_dir: IMDB - notebook_src: 01-One-hot-encoding.ipynb - notebook_tag: default - overrides: - run_dir: default - vocab_size: default - hide_most_frequently: default - batch_size: default - epochs: default -Nb_IMDB2: - notebook_id: IMDB2 - notebook_dir: IMDB - notebook_src: 02-Keras-embedding.ipynb - notebook_tag: default - overrides: - run_dir: default - vocab_size: default - hide_most_frequently: default - review_len: default - dense_vector_size: default - batch_size: default - epochs: default - output_dir: default -Nb_IMDB3: - notebook_id: IMDB3 - notebook_dir: IMDB - notebook_src: 03-Prediction.ipynb - notebook_tag: default - overrides: - run_dir: default - vocab_size: default - review_len: default - dictionaries_dir: default -Nb_IMDB4: - notebook_id: IMDB4 - notebook_dir: IMDB - notebook_src: 04-Show-vectors.ipynb - notebook_tag: default - overrides: - run_dir: default - vocab_size: default - review_len: default - dictionaries_dir: default -Nb_IMDB5: - notebook_id: IMDB5 - notebook_dir: IMDB - notebook_src: 05-LSTM-Keras.ipynb - notebook_tag: default -# -# ------ SYNOP ----------------------------------------------------- -# -Nb_LADYB1: - notebook_id: LADYB1 - notebook_dir: SYNOP - notebook_src: LADYB1-Ladybug.ipynb - notebook_tag: default - overrides: - run_dir: default - scale: default - train_prop: default - sequence_len: default - predict_len: default - batch_size: default - epochs: default -Nb_SYNOP1: - notebook_id: SYNOP1 - notebook_dir: SYNOP - notebook_src: SYNOP1-Preparation-of-data.ipynb - notebook_tag: default - overrides: - output_dir: default -Nb_SYNOP2: - notebook_id: SYNOP2 - notebook_dir: SYNOP - notebook_src: SYNOP2-First-predictions.ipynb - notebook_tag: default - overrides: - scale: default - train_prop: default - sequence_len: default - batch_size: default - epochs: default -Nb_SYNOP3: - notebook_id: SYNOP3 - notebook_dir: SYNOP - notebook_src: SYNOP3-12h-predictions.ipynb - notebook_tag: default - overrides: - iterations: default - scale: default - train_prop: default - sequence_len: default - batch_size: default - epochs: default -# -# ------ AE -------------------------------------------------------- -# -Nb_AE1: - notebook_id: AE1 - notebook_dir: AE - notebook_src: 01-AE-with-MNIST.ipynb - notebook_tag: default -Nb_AE2: - notebook_id: AE2 - notebook_dir: AE - notebook_src: 02-AE-with-MNIST-post.ipynb - notebook_tag: default -# -# ------ VAE ------------------------------------------------------- -# -Nb_VAE1: - notebook_id: VAE1 - notebook_dir: VAE - notebook_src: 01-VAE-with-MNIST.ipynb - notebook_tag: default - overrides: - run_dir: ./run/VAE1_done - scale: 1 - latent_dim: 2 - r_loss_factor: 0.994 - batch_size: 64 - epochs: 10 -Nb_VAE2: - notebook_id: VAE2 - notebook_dir: VAE - notebook_src: 02-VAE-with-MNIST-post.ipynb - notebook_tag: default - overrides: - run_dir: ./run/VAE1_done -Nb_VAE5: - notebook_id: VAE5 - notebook_dir: VAE - notebook_src: 05-About-CelebA.ipynb - notebook_tag: default -Nb_VAE6: - notebook_id: VAE6 - notebook_dir: VAE - notebook_src: 06-Prepare-CelebA-datasets.ipynb - notebook_tag: default - overrides: - scale: 0.01 - image_size: '(192,160)' - output_dir: ./data - exit_if_exist: False -Nb_VAE7: - notebook_id: VAE7 - notebook_dir: VAE - notebook_src: 07-Check-CelebA.ipynb - notebook_tag: default - overrides: - image_size: '(192,160)' - enhanced_dir: '{datasets_dir}/celeba/enhanced' -Nb_VAE8: - notebook_id: VAE8 - notebook_dir: VAE - notebook_src: 08-VAE-with-CelebA.ipynb - notebook_tag: default - overrides: - run_dir: ./run/VAE8_done - scale: 1 - image_size: '(192,160)' - enhanced_dir: '{datasets_dir}/celeba/enhanced' - latent_dim: 300 - r_loss_factor: 0.6 - batch_size: 64 - epochs: 15 -Nb_VAE9: - notebook_id: VAE9 - notebook_dir: VAE - notebook_src: 09-VAE-with-CelebA-post.ipynb - notebook_tag: default - overrides: - run_dir: ./run/VAE8_done - image_size: '(192,160)' - enhanced_dir: '{datasets_dir}/celeba/enhanced' -# -# ------ Misc ------------------------------------------------------ -# -Nb_ACTF1: - notebook_id: ACTF1 - notebook_dir: Misc - notebook_src: Activation-Functions.ipynb - notebook_tag: default -Nb_NP1: - notebook_id: NP1 - notebook_dir: Misc - notebook_src: Numpy.ipynb - notebook_tag: default -Nb_TSB1: - notebook_id: TSB1 - notebook_dir: Misc - notebook_src: Using-Tensorboard.ipynb - notebook_tag: default diff --git a/fidle/ci/OLD-small_cpu.yml b/fidle/ci/OLD-small_cpu.yml deleted file mode 100644 index 135c785cca62e4fe2b34d208aad6ef7db45615aa..0000000000000000000000000000000000000000 --- a/fidle/ci/OLD-small_cpu.yml +++ /dev/null @@ -1,477 +0,0 @@ -_metadata_: - version: '1.0' - description: Full run on a small cpu - output_tag: ==ci== - output_ipynb: ./fidle/run/ci/ipynb - output_html: ./fidle/run/ci/html - report_json: ./fidle/run/ci/report.json - report_error: ./fidle/run/ci/error.txt - environment_vars: - FIDLE_SAVE_FIGS: true - TF_CPP_MIN_LOG_LEVEL: 2 -# -# ------ LinearReg ------------------------------------------------- -# -Nb_LINR1: - notebook_id: LINR1 - notebook_dir: LinearReg - notebook_src: 01-Linear-Regression.ipynb - notebook_tag: default -Nb_GRAD1: - notebook_id: GRAD1 - notebook_dir: LinearReg - notebook_src: 02-Gradient-descent.ipynb - notebook_tag: default -Nb_POLR1: - notebook_id: POLR1 - notebook_dir: LinearReg - notebook_src: 03-Polynomial-Regression.ipynb - notebook_tag: default -Nb_LOGR1: - notebook_id: LOGR1 - notebook_dir: LinearReg - notebook_src: 04-Logistic-Regression.ipynb - notebook_tag: default -Nb_PER57: - notebook_id: PER57 - notebook_dir: IRIS - notebook_src: 01-Simple-Perceptron.ipynb - notebook_tag: default -# -# ------ BHPD ------------------------------------------------------ -# -Nb_BHPD1: - notebook_id: BHPD1 - notebook_dir: BHPD - notebook_src: 01-DNN-Regression.ipynb - notebook_tag: default - overrides: - fit_verbosity: 2 -Nb_BHPD2: - notebook_id: BHPD2 - notebook_dir: BHPD - notebook_src: 02-DNN-Regression-Premium.ipynb - notebook_tag: default - overrides: - fit_verbosity: 2 -# -# ------ MNIST ----------------------------------------------------- -# -Nb_MNIST1: - notebook_id: MNIST1 - notebook_dir: MNIST - notebook_src: 01-DNN-MNIST.ipynb - notebook_tag: default - overrides: - fit_verbosity: 2 -Nb_MNIST2: - notebook_id: MNIST2 - notebook_dir: MNIST - notebook_src: 02-CNN-MNIST.ipynb - notebook_tag: default - overrides: - fit_verbosity: 2 -# -# ------ GTSRB ----------------------------------------------------- -# -Nb_GTSRB1: - notebook_id: GTSRB1 - notebook_dir: GTSRB - notebook_src: 01-Preparation-of-data.ipynb - notebook_tag: default - overrides: - scale: 0.01 - output_dir: ./data - progress_verbosity: 2 - -Nb_GTSRB2: - notebook_id: GTSRB2 - notebook_dir: GTSRB - notebook_src: 02-First-convolutions.ipynb - notebook_tag: default - overrides: - run_dir: ./run/GTSRB2_done - enhanced_dir: './data' - dataset_name: set-24x24-L - batch_size: 64 - epochs: 5 - scale: 1 - fit_verbosity: 2 - -Nb_GTSRB3: - notebook_id: GTSRB3 - notebook_dir: GTSRB - notebook_src: 03-Tracking-and-visualizing.ipynb - notebook_tag: default - overrides: - run_dir: ./run/GTSRB3_done - enhanced_dir: './data' - dataset_name: set-24x24-L - batch_size: 64 - epochs: 5 - scale: 1 - fit_verbosity: 2 - -Nb_GTSRB4: - notebook_id: GTSRB4 - notebook_dir: GTSRB - notebook_src: 04-Data-augmentation.ipynb - notebook_tag: default - overrides: - run_dir: ./run/GTSRB4_done - enhanced_dir: './data' - dataset_name: set-24x24-L - batch_size: 64 - epochs: 5 - scale: 1 - fit_verbosity: 2 - -Nb_GTSRB5_r1: - notebook_id: GTSRB5 - notebook_dir: GTSRB - notebook_src: 05-Full-convolutions.ipynb - notebook_tag: =1==ci== - overrides: - run_dir: ./run/GTSRB5_done - enhanced_dir: './data' - datasets: "['set-24x24-L', 'set-24x24-RGB']" - models: "{'v1':'get_model_v1', 'v2':'get_model_v2'}" - batch_size: 64 - epochs: 5 - scale: 1 - with_datagen: False - fit_verbosity: 0 - -Nb_GTSRB6: - notebook_id: GTSRB6 - notebook_dir: GTSRB - notebook_src: 06-Notebook-as-a-batch.ipynb - notebook_tag: default - -Nb_GTSRB7: - notebook_id: GTSRB7 - notebook_dir: GTSRB - notebook_src: 07-Show-report.ipynb - notebook_tag: default - overrides: - run_dir: ./run/GTSRB7_done - report_dir: ./run/GTSRB5_done -# -# ------ IMDB ------------------------------------------------------ -# -Nb_IMDB1: - notebook_id: IMDB1 - notebook_dir: IMDB - notebook_src: 01-One-hot-encoding.ipynb - notebook_tag: default - overrides: - run_dir: default - vocab_size: default - hide_most_frequently: default - batch_size: default - epochs: default - fit_verbosity: 2 - -Nb_IMDB2: - notebook_id: IMDB2 - notebook_dir: IMDB - notebook_src: 02-Keras-embedding.ipynb - notebook_tag: default - overrides: - run_dir: default - vocab_size: default - hide_most_frequently: default - review_len: default - dense_vector_size: default - batch_size: default - epochs: default - output_dir: default - -Nb_IMDB3: - notebook_id: IMDB3 - notebook_dir: IMDB - notebook_src: 03-Prediction.ipynb - notebook_tag: default - overrides: - run_dir: default - vocab_size: default - review_len: default - dictionaries_dir: default - -Nb_IMDB4: - notebook_id: IMDB4 - notebook_dir: IMDB - notebook_src: 04-Show-vectors.ipynb - notebook_tag: default - overrides: - run_dir: default - vocab_size: default - review_len: default - dictionaries_dir: default - -Nb_IMDB5: - notebook_id: IMDB5 - notebook_dir: IMDB - notebook_src: 05-LSTM-Keras.ipynb - notebook_tag: default - overrides: - run_dir: default - vocab_size: default - hide_most_frequently: default - review_len: default - dense_vector_size: default - batch_size: default - epochs: default - fit_verbosity: 2 - scale: .1 -# -# ------ SYNOP ----------------------------------------------------- -# -Nb_LADYB1: - notebook_id: LADYB1 - notebook_dir: SYNOP - notebook_src: LADYB1-Ladybug.ipynb - notebook_tag: default - overrides: - run_dir: default - scale: 0.1 - train_prop: default - sequence_len: default - predict_len: default - batch_size: default - epochs: default - fit_verbosity: 2 - -Nb_SYNOP1: - notebook_id: SYNOP1 - notebook_dir: SYNOP - notebook_src: SYNOP1-Preparation-of-data.ipynb - notebook_tag: default - overrides: - output_dir: default - -Nb_SYNOP2: - notebook_id: SYNOP2 - notebook_dir: SYNOP - notebook_src: SYNOP2-First-predictions.ipynb - notebook_tag: default - overrides: - scale: 0.1 - train_prop: default - sequence_len: default - batch_size: default - epochs: default - -Nb_SYNOP3: - notebook_id: SYNOP3 - notebook_dir: SYNOP - notebook_src: SYNOP3-12h-predictions.ipynb - notebook_tag: default - overrides: - iterations: default - scale: default - train_prop: default - sequence_len: default -# -# ------ AE -------------------------------------------------------- -# -Nb_AE1: - notebook_id: AE1 - notebook_dir: AE - notebook_src: 01-Prepare-MNIST-dataset.ipynb - notebook_tag: default - overrides: - run_dir: default - scale: 0.02 - prepared_dataset: default - progress_verbosity: 2 - -Nb_AE2: - notebook_id: AE2 - notebook_dir: AE - notebook_src: 02-AE-with-MNIST.ipynb - notebook_tag: default - overrides: - run_dir: default - prepared_dataset: default - dataset_seed: default - scale: default - latent_dim: default - train_prop: default - batch_size: default - epochs: default - -Nb_AE3: - notebook_id: AE3 - notebook_dir: AE - notebook_src: 03-AE-with-MNIST-post.ipynb - notebook_tag: default - overrides: - run_dir: default - prepared_dataset: default - dataset_seed: default - scale: default - train_prop: default - -Nb_AE4: - notebook_id: AE4 - notebook_dir: AE - notebook_src: 04-ExtAE-with-MNIST.ipynb - notebook_tag: default - overrides: - run_dir: default - prepared_dataset: default - dataset_seed: default - scale: default - latent_dim: default - train_prop: default - batch_size: default - epochs: default - -Nb_AE5: - notebook_id: AE5 - notebook_dir: AE - notebook_src: 05-ExtAE-with-MNIST.ipynb - notebook_tag: default - overrides: - run_dir: default - prepared_dataset: default - dataset_seed: default - scale: default - latent_dim: default - train_prop: default - batch_size: default - epochs: default -# -# ------ VAE ------------------------------------------------------- -# -Nb_VAE1: - notebook_id: VAE1 - notebook_dir: VAE - notebook_src: 01-VAE-with-MNIST.ipynb - notebook_tag: default - overrides: - run_dir: default - latent_dim: default - loss_weights: default - scale: 0.01 - seed: default - batch_size: default - epochs: default - fit_verbosity: 2 - -Nb_VAE2: - notebook_id: VAE2 - notebook_dir: VAE - notebook_src: 02-VAE-with-MNIST.ipynb - notebook_tag: default - overrides: - run_dir: ./run/VAE2.000 - latent_dim: default - loss_weights: default - scale: 0.01 - seed: default - batch_size: default - epochs: default - fit_verbosity: 2 - -Nb_VAE3: - notebook_id: VAE3 - notebook_dir: VAE - notebook_src: 03-VAE-with-MNIST-post.ipynb - notebook_tag: default - overrides: - run_dir: ./run/VAE2.000 - scale: default - seed: default - -Nb_VAE5: - notebook_id: VAE5 - notebook_dir: VAE - notebook_src: 05-About-CelebA.ipynb - notebook_tag: default - overrides: - run_dir: default - progress_verbosity: 2 - -Nb_VAE6: - notebook_id: VAE6 - notebook_dir: VAE - notebook_src: 06-Prepare-CelebA-datasets.ipynb - notebook_tag: default - overrides: - run_dir: default - scale: 0.01 - seed: default - cluster_size: default - image_size: default - output_dir: ./data - exit_if_exist: False - progress_verbosity: 2 - -Nb_VAE7: - notebook_id: VAE7 - notebook_dir: VAE - notebook_src: 07-Check-CelebA.ipynb - notebook_tag: default - overrides: - run_dir: default - image_size: default - enhanced_dir: ./data - progress_verbosity: 2 - -Nb_VAE8: - notebook_id: VAE8 - notebook_dir: VAE - notebook_src: 08-VAE-with-CelebA.ipynb - notebook_tag: default - overrides: - run_dir: default - scale: 0.1 - image_size: default - enhanced_dir: ./data - latent_dim: default - loss_weights: default - batch_size: default - epochs: default - progress_verbosity: 2 - -Nb_VAE9: - notebook_id: VAE9 - notebook_dir: VAE - notebook_src: 09-VAE-with-CelebA-post.ipynb - notebook_tag: default - overrides: - run_dir: default - image_size: default - enhanced_dir: ./data - -# ------ DCGAN ----------------------------------------------------- -# -Nb_SHEEP1: - notebook_id: SHEEP1 - notebook_dir: DCGAN - notebook_src: 01-DCGAN-Draw-me-a-sheep.ipynb - notebook_tag: default - overrides: - scale: 0.005 - run_dir: default - latent_dim: default - epochs: 5 - batch_size: default - num_img: default - fit_verbosity: 2 -# -# ------ Misc ------------------------------------------------------ -# -Nb_ACTF1: - notebook_id: ACTF1 - notebook_dir: Misc - notebook_src: Activation-Functions.ipynb - notebook_tag: default - -Nb_NP1: - notebook_id: NP1 - notebook_dir: Misc - notebook_src: Numpy.ipynb - notebook_tag: default diff --git a/fidle/ci/OLD-smart_gpu.yml b/fidle/ci/OLD-smart_gpu.yml deleted file mode 100644 index fc8cd714bbe86c84d585ad568042713c12e97ae7..0000000000000000000000000000000000000000 --- a/fidle/ci/OLD-smart_gpu.yml +++ /dev/null @@ -1,571 +0,0 @@ -_metadata_: - version: '1.0' - description: Full run on a smart gpu - output_tag: ==done== - output_ipynb: ./fidle/run/done/ipynb - output_html: ./fidle/run/done/html - report_json: ./fidle/run/done/report.json - report_error: ./fidle/run/done/error.txt - environment_vars: - FIDLE_SAVE_FIGS: true - TF_CPP_MIN_LOG_LEVEL: 2 -# -# ------ LinearReg ------------------------------------------------- -# -Nb_LINR1: - notebook_id: LINR1 - notebook_dir: LinearReg - notebook_src: 01-Linear-Regression.ipynb - notebook_tag: default -Nb_GRAD1: - notebook_id: GRAD1 - notebook_dir: LinearReg - notebook_src: 02-Gradient-descent.ipynb - notebook_tag: default -Nb_POLR1: - notebook_id: POLR1 - notebook_dir: LinearReg - notebook_src: 03-Polynomial-Regression.ipynb - notebook_tag: default -Nb_LOGR1: - notebook_id: LOGR1 - notebook_dir: LinearReg - notebook_src: 04-Logistic-Regression.ipynb - notebook_tag: default -Nb_PER57: - notebook_id: PER57 - notebook_dir: IRIS - notebook_src: 01-Simple-Perceptron.ipynb - notebook_tag: default -# -# ------ BHPD ------------------------------------------------------ -# -Nb_BHPD1: - notebook_id: BHPD1 - notebook_dir: BHPD - notebook_src: 01-DNN-Regression.ipynb - notebook_tag: default - overrides: - fit_verbosity: 2 -Nb_BHPD2: - notebook_id: BHPD2 - notebook_dir: BHPD - notebook_src: 02-DNN-Regression-Premium.ipynb - notebook_tag: default - overrides: - fit_verbosity: 2 -# -# ------ MNIST ----------------------------------------------------- -# -Nb_MNIST1: - notebook_id: MNIST1 - notebook_dir: MNIST - notebook_src: 01-DNN-MNIST.ipynb - notebook_tag: default - overrides: - fit_verbosity: 2 -Nb_MNIST2: - notebook_id: MNIST2 - notebook_dir: MNIST - notebook_src: 02-CNN-MNIST.ipynb - notebook_tag: default - overrides: - fit_verbosity: 2 -# -# ------ GTSRB ----------------------------------------------------- -# -Nb_GTSRB1: - notebook_id: GTSRB1 - notebook_dir: GTSRB - notebook_src: 01-Preparation-of-data.ipynb - notebook_tag: default - overrides: - scale: 0.01 - output_dir: ./data - progress_verbosity: 2 - -Nb_GTSRB2: - notebook_id: GTSRB2 - notebook_dir: GTSRB - notebook_src: 02-First-convolutions.ipynb - notebook_tag: default - overrides: - run_dir: default - enhanced_dir: '{datasets_dir}/GTSRB/enhanced' - dataset_name: set-24x24-L - batch_size: 64 - epochs: 5 - scale: 1 - fit_verbosity: 2 - -Nb_GTSRB3: - notebook_id: GTSRB3 - notebook_dir: GTSRB - notebook_src: 03-Tracking-and-visualizing.ipynb - notebook_tag: default - overrides: - run_dir: default - enhanced_dir: '{datasets_dir}/GTSRB/enhanced' - dataset_name: set-24x24-L - batch_size: 64 - epochs: 5 - scale: 1 - fit_verbosity: 2 - -Nb_GTSRB4: - notebook_id: GTSRB4 - notebook_dir: GTSRB - notebook_src: 04-Data-augmentation.ipynb - notebook_tag: default - overrides: - run_dir: default - enhanced_dir: '{datasets_dir}/GTSRB/enhanced' - dataset_name: set-24x24-L - batch_size: 64 - epochs: 5 - scale: 1 - fit_verbosity: 2 - -Nb_GTSRB5_r1: - notebook_id: GTSRB5 - notebook_dir: GTSRB - notebook_src: 05-Full-convolutions.ipynb - notebook_tag: =1==done== - overrides: - run_dir: default - enhanced_dir: '{datasets_dir}/GTSRB/enhanced' - datasets: "['set-24x24-L', 'set-24x24-RGB', 'set-48x48-L', 'set-48x48-RGB', 'set-24x24-L-LHE', 'set-24x24-RGB-HE', 'set-48x48-L-LHE', 'set-48x48-RGB-HE']" - models: "{'v1':'get_model_v1', 'v2':'get_model_v2', 'v3':'get_model_v3'}" - batch_size: 64 - epochs: 16 - scale: 1 - with_datagen: False - fit_verbosity: 0 - -Nb_GTSRB5_r2: - notebook_id: GTSRB5 - notebook_dir: GTSRB - notebook_src: 05-Full-convolutions.ipynb - notebook_tag: =2==done== - overrides: - run_dir: default - enhanced_dir: '{datasets_dir}/GTSRB/enhanced' - datasets: "['set-24x24-L', 'set-24x24-RGB', 'set-48x48-L', 'set-48x48-RGB', 'set-24x24-L-LHE', 'set-24x24-RGB-HE', 'set-48x48-L-LHE', 'set-48x48-RGB-HE']" - models: "{'v1':'get_model_v1', 'v2':'get_model_v2', 'v3':'get_model_v3'}" - batch_size: 64 - epochs: 16 - scale: 1 - with_datagen: False - fit_verbosity: 0 - -Nb_GTSRB5_r3: - notebook_id: GTSRB5 - notebook_dir: GTSRB - notebook_src: 05-Full-convolutions.ipynb - notebook_tag: =3==done== - overrides: - run_dir: default - enhanced_dir: '{datasets_dir}/GTSRB/enhanced' - datasets: "['set-48x48-L', 'set-48x48-RGB']" - models: "{'v2':'get_model_v2', 'v3':'get_model_v3'}" - batch_size: 64 - epochs: 16 - scale: 1 - with_datagen: True - fit_verbosity: 0 - -Nb_GTSRB6: - notebook_id: GTSRB6 - notebook_dir: GTSRB - notebook_src: 06-Notebook-as-a-batch.ipynb - notebook_tag: default - -Nb_GTSRB7: - notebook_id: GTSRB7 - notebook_dir: GTSRB - notebook_src: 07-Show-report.ipynb - notebook_tag: default - overrides: - run_dir: default - report_dir: ./run/GTSRB5 -# -# ------ IMDB ------------------------------------------------------ -# -Nb_IMDB1: - notebook_id: IMDB1 - notebook_dir: IMDB - notebook_src: 01-One-hot-encoding.ipynb - notebook_tag: default - overrides: - run_dir: default - vocab_size: default - hide_most_frequently: default - batch_size: default - epochs: default - fit_verbosity: 2 - -Nb_IMDB2: - notebook_id: IMDB2 - notebook_dir: IMDB - notebook_src: 02-Keras-embedding.ipynb - notebook_tag: default - overrides: - run_dir: default - vocab_size: default - hide_most_frequently: default - review_len: default - dense_vector_size: default - batch_size: default - epochs: default - output_dir: default - -Nb_IMDB3: - notebook_id: IMDB3 - notebook_dir: IMDB - notebook_src: 03-Prediction.ipynb - notebook_tag: default - overrides: - run_dir: default - vocab_size: default - review_len: default - dictionaries_dir: default - -Nb_IMDB4: - notebook_id: IMDB4 - notebook_dir: IMDB - notebook_src: 04-Show-vectors.ipynb - notebook_tag: default - overrides: - run_dir: default - vocab_size: default - review_len: default - dictionaries_dir: default - -Nb_IMDB5: - notebook_id: IMDB5 - notebook_dir: IMDB - notebook_src: 05-LSTM-Keras.ipynb - notebook_tag: default - overrides: - run_dir: default - vocab_size: default - hide_most_frequently: default - review_len: default - dense_vector_size: default - batch_size: default - epochs: default - fit_verbosity: 2 - scale: .5 -# -# ------ SYNOP ----------------------------------------------------- -# -Nb_LADYB1: - notebook_id: LADYB1 - notebook_dir: SYNOP - notebook_src: LADYB1-Ladybug.ipynb - notebook_tag: default - overrides: - run_dir: default - scale: 1 - train_prop: default - sequence_len: default - predict_len: default - batch_size: default - epochs: default - fit_verbosity: 2 - -Nb_SYNOP1: - notebook_id: SYNOP1 - notebook_dir: SYNOP - notebook_src: SYNOP1-Preparation-of-data.ipynb - notebook_tag: default - overrides: - output_dir: default - -Nb_SYNOP2: - notebook_id: SYNOP2 - notebook_dir: SYNOP - notebook_src: SYNOP2-First-predictions.ipynb - notebook_tag: default - overrides: - scale: 1 - train_prop: default - sequence_len: default - batch_size: default - epochs: default - -Nb_SYNOP3: - notebook_id: SYNOP3 - notebook_dir: SYNOP - notebook_src: SYNOP3-12h-predictions.ipynb - notebook_tag: default - overrides: - iterations: default - scale: default - train_prop: default - sequence_len: default -# -# ------ AE -------------------------------------------------------- -# -Nb_AE1: - notebook_id: AE1 - notebook_dir: AE - notebook_src: 01-Prepare-MNIST-dataset.ipynb - notebook_tag: default - overrides: - run_dir: default - scale: 1 - prepared_dataset: default - progress_verbosity: 2 - -Nb_AE2: - notebook_id: AE2 - notebook_dir: AE - notebook_src: 02-AE-with-MNIST.ipynb - notebook_tag: default - overrides: - run_dir: default - prepared_dataset: default - dataset_seed: default - scale: 1 - latent_dim: default - train_prop: default - batch_size: default - epochs: default - -Nb_AE3: - notebook_id: AE3 - notebook_dir: AE - notebook_src: 03-AE-with-MNIST-post.ipynb - notebook_tag: default - overrides: - run_dir: ./run/AE2 - prepared_dataset: default - dataset_seed: default - scale: 1 - train_prop: default - -Nb_AE4: - notebook_id: AE4 - notebook_dir: AE - notebook_src: 04-ExtAE-with-MNIST.ipynb - notebook_tag: default - overrides: - run_dir: default - prepared_dataset: default - dataset_seed: default - scale: 1 - latent_dim: default - train_prop: default - batch_size: default - epochs: default - -Nb_AE5: - notebook_id: AE5 - notebook_dir: AE - notebook_src: 05-ExtAE-with-MNIST.ipynb - notebook_tag: default - overrides: - run_dir: default - prepared_dataset: default - dataset_seed: default - scale: 1 - latent_dim: default - train_prop: default - batch_size: default - epochs: default -# -# ------ VAE ------------------------------------------------------- -# -Nb_VAE1: - notebook_id: VAE1 - notebook_dir: VAE - notebook_src: 01-VAE-with-MNIST.ipynb - notebook_tag: default - overrides: - run_dir: default - latent_dim: 2 - loss_weights: default - scale: 1 - seed: default - batch_size: default - epochs: default - fit_verbosity: 2 - -Nb_VAE2: - notebook_id: VAE2 - notebook_dir: VAE - notebook_src: 02-VAE-with-MNIST.ipynb - notebook_tag: default - overrides: - run_dir: default - latent_dim: 2 - loss_weights: default - scale: 1 - seed: default - batch_size: default - epochs: default - fit_verbosity: 2 - -Nb_VAE3: - notebook_id: VAE3 - notebook_dir: VAE - notebook_src: 03-VAE-with-MNIST-post.ipynb - notebook_tag: default - overrides: - run_dir: default - scale: 1 - seed: default - -Nb_VAE5: - notebook_id: VAE5 - notebook_dir: VAE - notebook_src: 05-About-CelebA.ipynb - notebook_tag: default - overrides: - run_dir: default - progress_verbosity: 2 - -Nb_VAE6: - notebook_id: VAE6 - notebook_dir: VAE - notebook_src: 06-Prepare-CelebA-datasets.ipynb - notebook_tag: default - overrides: - run_dir: default - scale: 0.05 - seed: default - cluster_size: default - image_size: default - output_dir: ./data - exit_if_exist: False - progress_verbosity: 2 - -Nb_VAE7: - notebook_id: VAE7 - notebook_dir: VAE - notebook_src: 07-Check-CelebA.ipynb - notebook_tag: default - overrides: - run_dir: default - image_size: default - enhanced_dir: ./data - progress_verbosity: 2 - -Nb_VAE8: - notebook_id: VAE8 - notebook_dir: VAE - notebook_src: 08-VAE-with-CelebA.ipynb - notebook_tag: default - overrides: - run_dir: default - scale: 1 - image_size: '(192,160)' - enhanced_dir: '{datasets_dir}/celeba/enhanced' - latent_dim: 300 - loss_weights: default - batch_size: 64 - epochs: 15 - progress_verbosity: 2 - -Nb_VAE9_r1: - notebook_id: VAE9 - notebook_dir: VAE - notebook_src: 09-VAE-with-CelebA-192x160.ipynb - notebook_tag: =1==done== - overrides: - run_dir: ./run/VAE9_r1 - scale: 1 - image_size: '(192,160)' - enhanced_dir: '{datasets_dir}/celeba/enhanced' - latent_dim: 100 - loss_weights: '[.7,.3]' - batch_size: 64 - epochs: 5 - progress_verbosity: 2 - -Nb_VAE9_r2: - notebook_id: VAE9 - notebook_dir: VAE - notebook_src: 09-VAE-with-CelebA-192x160.ipynb - notebook_tag: =2==done== - overrides: - run_dir: ./run/VAE9_r2 - scale: 1 - image_size: '(192,160)' - enhanced_dir: '{datasets_dir}/celeba/enhanced' - latent_dim: 100 - loss_weights: '[.5,.5]' - batch_size: 64 - epochs: 5 - progress_verbosity: 2 - -Nb_VAE9_r3: - notebook_id: VAE9 - notebook_dir: VAE - notebook_src: 09-VAE-with-CelebA-192x160.ipynb - notebook_tag: =3==done== - overrides: - run_dir: ./run/VAE9_r3 - scale: 1 - image_size: '(192,160)' - enhanced_dir: '{datasets_dir}/celeba/enhanced' - latent_dim: 100 - loss_weights: '[.3,.7]' - batch_size: 64 - epochs: 5 - progress_verbosity: 2 - -Nb_VAE10: - notebook_id: VAE10 - notebook_dir: VAE - notebook_src: 10-VAE-with-CelebA-post.ipynb - notebook_tag: default - overrides: - run_dir: default - image_size: '(192,160)' - enhanced_dir: '{datasets_dir}/celeba/enhanced' - -# ------ DCGAN ----------------------------------------------------- -# -Nb_SHEEP1: - notebook_id: SHEEP1 - notebook_dir: DCGAN - notebook_src: 01-DCGAN-Draw-me-a-sheep.ipynb - notebook_tag: default - overrides: - scale: 1 - run_dir: ./run/SHEEP1 - latent_dim: default - epochs: 10 - batch_size: 32 - num_img: 12 - fit_verbosity: 2 - -Nb_SHEEP2: - notebook_id: SHEEP2 - notebook_dir: DCGAN - notebook_src: 02-WGANGP-Draw-me-a-sheep.ipynb - notebook_tag: default - overrides: - scale: 1 - run_dir: ./run/SHEEP2 - latent_dim: 80 - epochs: 3 - batch_size: 64 - num_img: 12 - fit_verbosity: 2 -# -# ------ Misc ------------------------------------------------------ -# -Nb_ACTF1: - notebook_id: ACTF1 - notebook_dir: Misc - notebook_src: Activation-Functions.ipynb - notebook_tag: default - -Nb_NP1: - notebook_id: NP1 - notebook_dir: Misc - notebook_src: Numpy.ipynb - notebook_tag: default diff --git a/fidle/ci/default.yml b/fidle/ci/default.yml index c222b601aba5c27f960b3e39bb4a69c4794ab14c..4eb039b12729aa96e4f7fb8f8ccae7cc5783018a 100644 --- a/fidle/ci/default.yml +++ b/fidle/ci/default.yml @@ -1,6 +1,6 @@ campain: version: '1.0' - description: Automatically generated ci profile (13/10/22 18:40:08) + description: Automatically generated ci profile (16/10/22 21:33:51) directory: ./campains/default existing_notebook: 'remove # remove|skip' report_template: 'fidle # fidle|default' @@ -35,6 +35,11 @@ BHPD2: notebook: BHPD/02-DNN-Regression-Premium.ipynb overrides: fit_verbosity: default +WINE1: + notebook: BHPD/03-DNN-Wine-Regression.ipynb + overrides: + fit_verbosity: default + dataset_name: default # # ------------ MNIST @@ -361,3 +366,5 @@ SCRATCH1: TSB1: notebook: Misc/Using-Tensorboard.ipynb overrides: ?? +PANDAS1: + notebook: Misc/Using-pandas.ipynb diff --git a/fidle/ci/default_settings.yml b/fidle/ci/default_settings.yml index 69df1d9e20bb1d027ad3a921b12e2b16a0c17de4..7ab4f53d8058d00f5ebcb2827bbdb1a84ecc6d7f 100644 --- a/fidle/ci/default_settings.yml +++ b/fidle/ci/default_settings.yml @@ -15,10 +15,13 @@ campain: # LINR1: notebook: LinearReg/01-Linear-Regression.ipynb + GRAD1: notebook: LinearReg/02-Gradient-descent.ipynb + POLR1: notebook: LinearReg/03-Polynomial-Regression.ipynb + LOGR1: notebook: LinearReg/04-Logistic-Regression.ipynb @@ -35,11 +38,17 @@ BHPD1: notebook: BHPD/01-DNN-Regression.ipynb overrides: fit_verbosity: 2 + BHPD2: notebook: BHPD/02-DNN-Regression-Premium.ipynb overrides: fit_verbosity: 2 +WINE1: + notebook: BHPD/03-DNN-Wine-Regression.ipynb + overrides: + fit_verbosity: 2 + dataset_name: default # # ------------ MNIST # diff --git a/fidle/ci/scale1_settings.yml b/fidle/ci/scale1_settings.yml index 87c3630faac96f685e1a120f12bc522c34ca6b93..ad1cac6063c0073dbcf39f981f71f294c3f05baf 100644 --- a/fidle/ci/scale1_settings.yml +++ b/fidle/ci/scale1_settings.yml @@ -15,10 +15,13 @@ campain: # LINR1: notebook: LinearReg/01-Linear-Regression.ipynb + GRAD1: notebook: LinearReg/02-Gradient-descent.ipynb + POLR1: notebook: LinearReg/03-Polynomial-Regression.ipynb + LOGR1: notebook: LinearReg/04-Logistic-Regression.ipynb @@ -35,11 +38,24 @@ BHPD1: notebook: BHPD/01-DNN-Regression.ipynb overrides: fit_verbosity: 2 + BHPD2: notebook: BHPD/02-DNN-Regression-Premium.ipynb overrides: fit_verbosity: 2 +WINE1.1: + notebook: BHPD/03-DNN-Wine-Regression.ipynb + overrides: + fit_verbosity: 2 + dataset_name: winequality-red.csv + +WINE1.2: + notebook: BHPD/03-DNN-Wine-Regression.ipynb + overrides: + fit_verbosity: 2 + dataset_name: winequality-red.csv + # # ------------ MNIST #