diff --git a/Wine.Lightning/01-DNN-Wine-Regression-lightning.ipynb b/Wine.Lightning/01-DNN-Wine-Regression-lightning.ipynb index 54b697214a50c64ef4ad76b36b04b144496e9f25..b07da288e24e9a925914de0619f912d1b49eaa8f 100644 --- a/Wine.Lightning/01-DNN-Wine-Regression-lightning.ipynb +++ b/Wine.Lightning/01-DNN-Wine-Regression-lightning.ipynb @@ -57,105 +57,9 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "<style>\n", - "\n", - "div.warn { \n", - " background-color: #fcf2f2;\n", - " border-color: #dFb5b4;\n", - " border-left: 5px solid #dfb5b4;\n", - " padding: 0.5em;\n", - " font-weight: bold;\n", - " font-size: 1.1em;;\n", - " }\n", - "\n", - "\n", - "\n", - "div.nota { \n", - " background-color: #DAFFDE;\n", - " border-left: 5px solid #92CC99;\n", - " padding: 0.5em;\n", - " }\n", - "\n", - "div.todo:before { content:url();\n", - " float:left;\n", - " margin-right:20px;\n", - " margin-top:-20px;\n", - " margin-bottom:20px;\n", - "}\n", - "div.todo{\n", - " font-weight: bold;\n", - " font-size: 1.1em;\n", - " margin-top:40px;\n", - "}\n", - "div.todo ul{\n", - " margin: 0.2em;\n", - "}\n", - "div.todo li{\n", - " margin-left:60px;\n", - " margin-top:0;\n", - " margin-bottom:0;\n", - "}\n", - "\n", - "div .comment{\n", - " font-size:0.8em;\n", - " color:#696969;\n", - "}\n", - "\n", - "\n", - "\n", - "</style>\n", - "\n" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/markdown": [ - "<br>**FIDLE - Environment initialization**" - ], - "text/plain": [ - "<IPython.core.display.Markdown object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version : 2.2b7\n", - "Run id : WINE1-Lightning\n", - "Run dir : ./run/WINE1-Lightning\n", - "Datasets dir : /home/achille-touye/fidle-tp/datasets-fidle\n", - "Start time : 01/11/23 13:44:36\n", - "Hostname : achilletouye-Precision-3571 (Linux)\n", - "Tensorflow log level : Info + Warning + Error (=0)\n", - "Update keras cache : False\n", - "Update torch cache : False\n", - "Save figs : ./run/WINE1-Lightning/figs (False)\n", - "numpy : 1.24.4\n", - "sklearn : 1.3.2\n", - "yaml : 6.0.1\n", - "matplotlib : 3.7.3\n", - "pandas : 2.0.3\n", - "torch : 2.1.0+cu121\n", - "torchvision : 0.16.0+cu121\n", - "lightning : 2.1.0\n" - ] - } - ], + "outputs": [], "source": [ "# Import some packages\n", "import os\n", @@ -194,7 +98,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -211,7 +115,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -227,126 +131,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "<style type=\"text/css\">\n", - "</style>\n", - "<table id=\"T_bdac6\">\n", - " <thead>\n", - " <tr>\n", - " <th class=\"blank level0\" > </th>\n", - " <th id=\"T_bdac6_level0_col0\" class=\"col_heading level0 col0\" >fixed acidity</th>\n", - " <th id=\"T_bdac6_level0_col1\" class=\"col_heading level0 col1\" >volatile acidity</th>\n", - " <th id=\"T_bdac6_level0_col2\" class=\"col_heading level0 col2\" >citric acid</th>\n", - " <th id=\"T_bdac6_level0_col3\" class=\"col_heading level0 col3\" >residual sugar</th>\n", - " <th id=\"T_bdac6_level0_col4\" class=\"col_heading level0 col4\" >chlorides</th>\n", - " <th id=\"T_bdac6_level0_col5\" class=\"col_heading level0 col5\" >free sulfur dioxide</th>\n", - " <th id=\"T_bdac6_level0_col6\" class=\"col_heading level0 col6\" >total sulfur dioxide</th>\n", - " <th id=\"T_bdac6_level0_col7\" class=\"col_heading level0 col7\" >density</th>\n", - " <th id=\"T_bdac6_level0_col8\" class=\"col_heading level0 col8\" >pH</th>\n", - " <th id=\"T_bdac6_level0_col9\" class=\"col_heading level0 col9\" >sulphates</th>\n", - " <th id=\"T_bdac6_level0_col10\" class=\"col_heading level0 col10\" >alcohol</th>\n", - " <th id=\"T_bdac6_level0_col11\" class=\"col_heading level0 col11\" >quality</th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th id=\"T_bdac6_level0_row0\" class=\"row_heading level0 row0\" >0</th>\n", - " <td id=\"T_bdac6_row0_col0\" class=\"data row0 col0\" >7.40</td>\n", - " <td id=\"T_bdac6_row0_col1\" class=\"data row0 col1\" >0.70</td>\n", - " <td id=\"T_bdac6_row0_col2\" class=\"data row0 col2\" >0.00</td>\n", - " <td id=\"T_bdac6_row0_col3\" class=\"data row0 col3\" >1.90</td>\n", - " <td id=\"T_bdac6_row0_col4\" class=\"data row0 col4\" >0.08</td>\n", - " <td id=\"T_bdac6_row0_col5\" class=\"data row0 col5\" >11.00</td>\n", - " <td id=\"T_bdac6_row0_col6\" class=\"data row0 col6\" >34.00</td>\n", - " <td id=\"T_bdac6_row0_col7\" class=\"data row0 col7\" >1.00</td>\n", - " <td id=\"T_bdac6_row0_col8\" class=\"data row0 col8\" >3.51</td>\n", - " <td id=\"T_bdac6_row0_col9\" class=\"data row0 col9\" >0.56</td>\n", - " <td id=\"T_bdac6_row0_col10\" class=\"data row0 col10\" >9.40</td>\n", - " <td id=\"T_bdac6_row0_col11\" class=\"data row0 col11\" >5.00</td>\n", - " </tr>\n", - " <tr>\n", - " <th id=\"T_bdac6_level0_row1\" class=\"row_heading level0 row1\" >1</th>\n", - " <td id=\"T_bdac6_row1_col0\" class=\"data row1 col0\" >7.80</td>\n", - " <td id=\"T_bdac6_row1_col1\" class=\"data row1 col1\" >0.88</td>\n", - " <td id=\"T_bdac6_row1_col2\" class=\"data row1 col2\" >0.00</td>\n", - " <td id=\"T_bdac6_row1_col3\" class=\"data row1 col3\" >2.60</td>\n", - " <td id=\"T_bdac6_row1_col4\" class=\"data row1 col4\" >0.10</td>\n", - " <td id=\"T_bdac6_row1_col5\" class=\"data row1 col5\" >25.00</td>\n", - " <td id=\"T_bdac6_row1_col6\" class=\"data row1 col6\" >67.00</td>\n", - " <td id=\"T_bdac6_row1_col7\" class=\"data row1 col7\" >1.00</td>\n", - " <td id=\"T_bdac6_row1_col8\" class=\"data row1 col8\" >3.20</td>\n", - " <td id=\"T_bdac6_row1_col9\" class=\"data row1 col9\" >0.68</td>\n", - " <td id=\"T_bdac6_row1_col10\" class=\"data row1 col10\" >9.80</td>\n", - " <td id=\"T_bdac6_row1_col11\" class=\"data row1 col11\" >5.00</td>\n", - " </tr>\n", - " <tr>\n", - " <th id=\"T_bdac6_level0_row2\" class=\"row_heading level0 row2\" >2</th>\n", - " <td id=\"T_bdac6_row2_col0\" class=\"data row2 col0\" >7.80</td>\n", - " <td id=\"T_bdac6_row2_col1\" class=\"data row2 col1\" >0.76</td>\n", - " <td id=\"T_bdac6_row2_col2\" class=\"data row2 col2\" >0.04</td>\n", - " <td id=\"T_bdac6_row2_col3\" class=\"data row2 col3\" >2.30</td>\n", - " <td id=\"T_bdac6_row2_col4\" class=\"data row2 col4\" >0.09</td>\n", - " <td id=\"T_bdac6_row2_col5\" class=\"data row2 col5\" >15.00</td>\n", - " <td id=\"T_bdac6_row2_col6\" class=\"data row2 col6\" >54.00</td>\n", - " <td id=\"T_bdac6_row2_col7\" class=\"data row2 col7\" >1.00</td>\n", - " <td id=\"T_bdac6_row2_col8\" class=\"data row2 col8\" >3.26</td>\n", - " <td id=\"T_bdac6_row2_col9\" class=\"data row2 col9\" >0.65</td>\n", - " <td id=\"T_bdac6_row2_col10\" class=\"data row2 col10\" >9.80</td>\n", - " <td id=\"T_bdac6_row2_col11\" class=\"data row2 col11\" >5.00</td>\n", - " </tr>\n", - " <tr>\n", - " <th id=\"T_bdac6_level0_row3\" class=\"row_heading level0 row3\" >3</th>\n", - " <td id=\"T_bdac6_row3_col0\" class=\"data row3 col0\" >11.20</td>\n", - " <td id=\"T_bdac6_row3_col1\" class=\"data row3 col1\" >0.28</td>\n", - " <td id=\"T_bdac6_row3_col2\" class=\"data row3 col2\" >0.56</td>\n", - " <td id=\"T_bdac6_row3_col3\" class=\"data row3 col3\" >1.90</td>\n", - " <td id=\"T_bdac6_row3_col4\" class=\"data row3 col4\" >0.07</td>\n", - " <td id=\"T_bdac6_row3_col5\" class=\"data row3 col5\" >17.00</td>\n", - " <td id=\"T_bdac6_row3_col6\" class=\"data row3 col6\" >60.00</td>\n", - " <td id=\"T_bdac6_row3_col7\" class=\"data row3 col7\" >1.00</td>\n", - " <td id=\"T_bdac6_row3_col8\" class=\"data row3 col8\" >3.16</td>\n", - " <td id=\"T_bdac6_row3_col9\" class=\"data row3 col9\" >0.58</td>\n", - " <td id=\"T_bdac6_row3_col10\" class=\"data row3 col10\" >9.80</td>\n", - " <td id=\"T_bdac6_row3_col11\" class=\"data row3 col11\" >6.00</td>\n", - " </tr>\n", - " <tr>\n", - " <th id=\"T_bdac6_level0_row4\" class=\"row_heading level0 row4\" >4</th>\n", - " <td id=\"T_bdac6_row4_col0\" class=\"data row4 col0\" >7.40</td>\n", - " <td id=\"T_bdac6_row4_col1\" class=\"data row4 col1\" >0.70</td>\n", - " <td id=\"T_bdac6_row4_col2\" class=\"data row4 col2\" >0.00</td>\n", - " <td id=\"T_bdac6_row4_col3\" class=\"data row4 col3\" >1.90</td>\n", - " <td id=\"T_bdac6_row4_col4\" class=\"data row4 col4\" >0.08</td>\n", - " <td id=\"T_bdac6_row4_col5\" class=\"data row4 col5\" >11.00</td>\n", - " <td id=\"T_bdac6_row4_col6\" class=\"data row4 col6\" >34.00</td>\n", - " <td id=\"T_bdac6_row4_col7\" class=\"data row4 col7\" >1.00</td>\n", - " <td id=\"T_bdac6_row4_col8\" class=\"data row4 col8\" >3.51</td>\n", - " <td id=\"T_bdac6_row4_col9\" class=\"data row4 col9\" >0.56</td>\n", - " <td id=\"T_bdac6_row4_col10\" class=\"data row4 col10\" >9.40</td>\n", - " <td id=\"T_bdac6_row4_col11\" class=\"data row4 col11\" >5.00</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n" - ], - "text/plain": [ - "<pandas.io.formats.style.Styler at 0x7f6d346eeaf0>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Missing Data : 0 Shape is : (1599, 12)\n" - ] - } - ], + "outputs": [], "source": [ "csv_file_path=f'{datasets_dir}/WineQuality/origine/{dataset_name}'\n", "datasets=WineQualityDataset(csv_file_path)\n", @@ -375,7 +162,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -386,72 +173,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/markdown": [ - "before normalization :" - ], - "text/plain": [ - "<IPython.core.display.Markdown object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "array([[ 7.4 , 0.7 , 0. , ..., 3.51 , 0.56 , 9.4 ],\n", - " [ 7.8 , 0.88 , 0. , ..., 3.2 , 0.68 , 9.8 ],\n", - " [ 7.8 , 0.76 , 0.04 , ..., 3.26 , 0.65 , 9.8 ],\n", - " ...,\n", - " [ 6.3 , 0.51 , 0.13 , ..., 3.42 , 0.75 , 11. ],\n", - " [ 5.9 , 0.645, 0.12 , ..., 3.57 , 0.71 , 10.2 ],\n", - " [ 6. , 0.31 , 0.47 , ..., 3.39 , 0.66 , 11. ]],\n", - " dtype=float32)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "text/markdown": [ - "After normalization :" - ], - "text/plain": [ - "<IPython.core.display.Markdown object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "tensor([[-0.5282, 0.9616, -1.3910, ..., 1.2882, -0.5790, -0.9599],\n", - " [-0.2985, 1.9668, -1.3910, ..., -0.7197, 0.1289, -0.5846],\n", - " [-0.2985, 1.2967, -1.1857, ..., -0.3311, -0.0481, -0.5846],\n", - " ...,\n", - " [-1.1600, -0.0995, -0.7237, ..., 0.7053, 0.5419, 0.5415],\n", - " [-1.3897, 0.6544, -0.7750, ..., 1.6769, 0.3059, -0.2092],\n", - " [-1.3323, -1.2165, 1.0217, ..., 0.5110, 0.0109, 0.5415]])" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "display(Markdown(\"before normalization :\"))\n", "display(datasets[:][\"features\"])\n", @@ -473,19 +197,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Original data shape was : (1599, 12)\n", - "x_train : torch.Size([1279, 11]) y_train : torch.Size([1279, 1])\n", - "x_test : torch.Size([320, 11]) y_test : torch.Size([320, 1])\n" - ] - } - ], + "outputs": [], "source": [ "# ---- Split => train, test\n", "#\n", @@ -519,7 +233,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -555,7 +269,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -657,25 +371,9 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LitRegression(\n", - " (model): Sequential(\n", - " (0): Linear(in_features=11, out_features=128, bias=True)\n", - " (1): ReLU()\n", - " (2): Linear(in_features=128, out_features=128, bias=True)\n", - " (3): ReLU()\n", - " (4): Linear(in_features=128, out_features=1, bias=True)\n", - " )\n", - ")\n" - ] - } - ], + "outputs": [], "source": [ "reg=LitRegression(in_features=11)\n", "print(reg) " @@ -690,7 +388,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -715,7 +413,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -725,1471 +423,9 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "GPU available: True (cuda), used: True\n", - "TPU available: False, using: 0 TPU cores\n", - "IPU available: False, using: 0 IPUs\n", - "HPU available: False, using: 0 HPUs\n", - "2023-11-01 13:44:37.819090: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", - "2023-11-01 13:44:37.820282: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.\n", - "2023-11-01 13:44:37.844348: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", - "To enable the following instructions: AVX2 AVX_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", - "2023-11-01 13:44:38.255107: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n", - "/home/achille-touye/.local/lib/python3.8/site-packages/lightning/pytorch/callbacks/model_checkpoint.py:630: Checkpoint directory ./run/models/ exists and is not empty.\n", - "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n", - "\n", - " | Name | Type | Params\n", - "-------------------------------------\n", - "0 | model | Sequential | 18.2 K\n", - "-------------------------------------\n", - "18.2 K Trainable params\n", - "0 Non-trainable params\n", - "18.2 K Total params\n", - "0.073 Total estimated model params size (MB)\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Sanity Checking: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "fe14fc5fbd2645b1a8393a976d762de0", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Training: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "`Trainer.fit` stopped: `max_epochs=100` reached.\n" - ] - } - ], + "outputs": [], "source": [ "# train model\n", "trainer = pl.Trainer(accelerator='auto',\n", @@ -2212,40 +448,9 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "7b73adbf29284541bbf8c1adbe91b1ae", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "x_test / loss : 0.4608\n", - "x_test / mae : 0.5277\n", - "x_test / mse : 0.4608\n" - ] - } - ], + "outputs": [], "source": [ "score=trainer.validate(model=reg, dataloaders=test_loader, verbose=False)\n", "\n", @@ -2263,36 +468,9 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " <iframe id=\"tensorboard-frame-e3a514f888c1c91a\" width=\"100%\" height=\"800\" frameborder=\"0\">\n", - " </iframe>\n", - " <script>\n", - " (function() {\n", - " const frame = document.getElementById(\"tensorboard-frame-e3a514f888c1c91a\");\n", - " const url = new URL(\"/\", window.location);\n", - " const port = 6006;\n", - " if (port) {\n", - " url.port = port;\n", - " }\n", - " frame.src = url;\n", - " })();\n", - " </script>\n", - " " - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# launch Tensorboard \n", "%reload_ext tensorboard\n", @@ -2315,26 +493,9 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loaded:\n", - "LitRegression(\n", - " (model): Sequential(\n", - " (0): Linear(in_features=11, out_features=128, bias=True)\n", - " (1): ReLU()\n", - " (2): Linear(in_features=128, out_features=128, bias=True)\n", - " (3): ReLU()\n", - " (4): Linear(in_features=128, out_features=1, bias=True)\n", - " )\n", - ")\n" - ] - } - ], + "outputs": [], "source": [ "# Load the model from a checkpoint\n", "loaded_model = LitRegression.load_from_checkpoint(savemodel_callback.best_model_path)\n", @@ -2351,40 +512,9 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "84ebfa2b48fc4d598f7fddcf45b1da88", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Validation: | | 0…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "x_test / loss : 0.4533\n", - "x_test / mae : 0.5209\n", - "x_test / mse : 0.4533\n" - ] - } - ], + "outputs": [], "source": [ "score=trainer.validate(model=loaded_model, dataloaders=test_loader, verbose=False)\n", "\n", @@ -2402,7 +532,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2415,7 +545,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2430,217 +560,9 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Wine Prediction Real Delta\n", - "000 5.81 6.0 +0.19 \n", - "001 4.93 5.0 +0.07 \n", - "002 6.22 7.0 +0.78 \n", - "003 5.21 3.0 -2.21 \n", - "004 6.46 7.0 +0.54 \n", - "005 5.03 5.0 -0.03 \n", - "006 6.59 7.0 +0.41 \n", - "007 5.86 5.0 -0.86 \n", - "008 6.55 7.0 +0.45 \n", - "009 6.71 7.0 +0.29 \n", - "010 5.65 5.0 -0.65 \n", - "011 5.25 5.0 -0.25 \n", - "012 6.31 6.0 -0.31 \n", - "013 6.94 8.0 +1.06 \n", - "014 5.55 5.0 -0.55 \n", - "015 5.47 7.0 +1.53 \n", - "016 5.49 5.0 -0.49 \n", - "017 6.81 8.0 +1.19 \n", - "018 5.40 5.0 -0.40 \n", - "019 5.86 6.0 +0.14 \n", - "020 5.15 6.0 +0.85 \n", - "021 4.76 5.0 +0.24 \n", - "022 5.34 6.0 +0.66 \n", - "023 5.55 7.0 +1.45 \n", - "024 6.02 7.0 +0.98 \n", - "025 5.92 6.0 +0.08 \n", - "026 5.16 5.0 -0.16 \n", - "027 4.92 5.0 +0.08 \n", - "028 5.68 6.0 +0.32 \n", - "029 5.63 5.0 -0.63 \n", - "030 5.27 5.0 -0.27 \n", - "031 5.93 7.0 +1.07 \n", - "032 6.55 7.0 +0.45 \n", - "033 5.15 6.0 +0.85 \n", - "034 6.94 6.0 -0.94 \n", - "035 5.29 5.0 -0.29 \n", - "036 5.19 5.0 -0.19 \n", - "037 6.97 7.0 +0.03 \n", - "038 4.95 5.0 +0.05 \n", - "039 5.85 7.0 +1.15 \n", - "040 5.84 5.0 -0.84 \n", - "041 6.59 7.0 +0.41 \n", - "042 5.47 5.0 -0.47 \n", - "043 6.31 7.0 +0.69 \n", - "044 6.71 7.0 +0.29 \n", - "045 5.47 5.0 -0.47 \n", - "046 5.14 6.0 +0.86 \n", - "047 6.59 7.0 +0.41 \n", - "048 4.76 5.0 +0.24 \n", - "049 5.28 5.0 -0.28 \n", - "050 5.54 6.0 +0.46 \n", - "051 5.36 6.0 +0.64 \n", - "052 6.44 6.0 -0.44 \n", - "053 6.46 4.0 -2.46 \n", - "054 6.46 4.0 -2.46 \n", - "055 5.14 6.0 +0.86 \n", - "056 5.08 5.0 -0.08 \n", - "057 5.56 5.0 -0.56 \n", - "058 5.57 4.0 -1.57 \n", - "059 5.86 6.0 +0.14 \n", - "060 5.23 6.0 +0.77 \n", - "061 5.18 5.0 -0.18 \n", - "062 4.92 5.0 +0.08 \n", - "063 5.63 5.0 -0.63 \n", - "064 6.49 7.0 +0.51 \n", - "065 5.55 5.0 -0.55 \n", - "066 6.55 7.0 +0.45 \n", - "067 6.94 6.0 -0.94 \n", - "068 6.07 6.0 -0.07 \n", - "069 6.46 7.0 +0.54 \n", - "070 6.02 6.0 -0.02 \n", - "071 5.36 6.0 +0.64 \n", - "072 6.09 7.0 +0.91 \n", - "073 5.81 6.0 +0.19 \n", - "074 6.27 6.0 -0.27 \n", - "075 4.89 5.0 +0.11 \n", - "076 5.48 5.0 -0.48 \n", - "077 5.21 5.0 -0.21 \n", - "078 6.71 6.0 -0.71 \n", - "079 5.68 6.0 +0.32 \n", - "080 5.33 5.0 -0.33 \n", - "081 5.43 5.0 -0.43 \n", - "082 5.23 6.0 +0.77 \n", - "083 4.84 5.0 +0.16 \n", - "084 6.28 8.0 +1.72 \n", - "085 6.32 7.0 +0.68 \n", - "086 6.30 7.0 +0.70 \n", - "087 6.07 6.0 -0.07 \n", - "088 5.91 6.0 +0.09 \n", - "089 5.43 5.0 -0.43 \n", - "090 5.79 5.0 -0.79 \n", - "091 5.27 6.0 +0.73 \n", - "092 5.95 6.0 +0.05 \n", - "093 6.41 6.0 -0.41 \n", - "094 5.04 5.0 -0.04 \n", - "095 5.44 6.0 +0.56 \n", - "096 5.15 6.0 +0.85 \n", - "097 6.39 6.0 -0.39 \n", - "098 4.96 5.0 +0.04 \n", - "099 5.12 5.0 -0.12 \n", - "100 5.89 7.0 +1.11 \n", - "101 5.86 6.0 +0.14 \n", - "102 5.65 5.0 -0.65 \n", - "103 5.32 6.0 +0.68 \n", - "104 5.96 5.0 -0.96 \n", - "105 4.91 5.0 +0.09 \n", - "106 5.22 4.0 -1.22 \n", - "107 5.96 7.0 +1.04 \n", - "108 6.22 7.0 +0.78 \n", - "109 5.96 5.0 -0.96 \n", - "110 5.08 5.0 -0.08 \n", - "111 5.92 6.0 +0.08 \n", - "112 6.06 7.0 +0.94 \n", - "113 5.43 5.0 -0.43 \n", - "114 5.22 5.0 -0.22 \n", - "115 6.08 6.0 -0.08 \n", - "116 6.07 7.0 +0.93 \n", - "117 5.21 5.0 -0.21 \n", - "118 4.75 5.0 +0.25 \n", - "119 5.31 6.0 +0.69 \n", - "120 6.07 6.0 -0.07 \n", - "121 5.58 6.0 +0.42 \n", - "122 5.05 5.0 -0.05 \n", - "123 5.49 5.0 -0.49 \n", - "124 5.36 5.0 -0.36 \n", - "125 5.75 7.0 +1.25 \n", - "126 5.78 6.0 +0.22 \n", - "127 5.94 7.0 +1.06 \n", - "128 6.44 6.0 -0.44 \n", - "129 5.12 5.0 -0.12 \n", - "130 5.46 5.0 -0.46 \n", - "131 4.81 6.0 +1.19 \n", - "132 5.05 5.0 -0.05 \n", - "133 5.01 5.0 -0.01 \n", - "134 4.53 6.0 +1.47 \n", - "135 5.94 4.0 -1.94 \n", - "136 6.04 5.0 -1.04 \n", - "137 5.61 5.0 -0.61 \n", - "138 5.85 6.0 +0.15 \n", - "139 5.01 5.0 -0.01 \n", - "140 5.36 6.0 +0.64 \n", - "141 5.15 5.0 -0.15 \n", - "142 6.26 6.0 -0.26 \n", - "143 5.49 5.0 -0.49 \n", - "144 4.89 4.0 -0.89 \n", - "145 5.58 5.0 -0.58 \n", - "146 5.94 4.0 -1.94 \n", - "147 6.45 7.0 +0.55 \n", - "148 4.60 5.0 +0.40 \n", - "149 5.10 5.0 -0.10 \n", - "150 5.77 7.0 +1.23 \n", - "151 4.86 5.0 +0.14 \n", - "152 5.03 5.0 -0.03 \n", - "153 6.08 6.0 -0.08 \n", - "154 6.35 7.0 +0.65 \n", - "155 5.63 5.0 -0.63 \n", - "156 5.16 5.0 -0.16 \n", - "157 5.40 5.0 -0.40 \n", - "158 5.70 6.0 +0.30 \n", - "159 5.91 6.0 +0.09 \n", - "160 6.31 7.0 +0.69 \n", - "161 6.06 6.0 -0.06 \n", - "162 5.52 6.0 +0.48 \n", - "163 6.73 7.0 +0.27 \n", - "164 5.18 5.0 -0.18 \n", - "165 5.68 5.0 -0.68 \n", - "166 5.56 5.0 -0.56 \n", - "167 5.39 5.0 -0.39 \n", - "168 5.36 5.0 -0.36 \n", - "169 5.36 5.0 -0.36 \n", - "170 4.93 5.0 +0.07 \n", - "171 6.30 7.0 +0.70 \n", - "172 5.49 5.0 -0.49 \n", - "173 6.59 7.0 +0.41 \n", - "174 5.69 6.0 +0.31 \n", - "175 5.29 5.0 -0.29 \n", - "176 6.42 6.0 -0.42 \n", - "177 6.97 7.0 +0.03 \n", - "178 5.56 5.0 -0.56 \n", - "179 5.41 5.0 -0.41 \n", - "180 6.30 5.0 -1.30 \n", - "181 5.57 6.0 +0.43 \n", - "182 5.94 7.0 +1.06 \n", - "183 5.13 5.0 -0.13 \n", - "184 5.19 5.0 -0.19 \n", - "185 5.05 5.0 -0.05 \n", - "186 5.48 6.0 +0.52 \n", - "187 5.23 5.0 -0.23 \n", - "188 6.07 7.0 +0.93 \n", - "189 5.16 5.0 -0.16 \n", - "190 6.31 6.0 -0.31 \n", - "191 5.24 5.0 -0.24 \n", - "192 6.02 6.0 -0.02 \n", - "193 5.03 5.0 -0.03 \n", - "194 5.63 5.0 -0.63 \n", - "195 5.33 6.0 +0.67 \n", - "196 5.43 5.0 -0.43 \n", - "197 4.75 5.0 +0.25 \n", - "198 5.33 6.0 +0.67 \n", - "199 5.42 5.0 -0.42 \n" - ] - } - ], + "outputs": [], "source": [ "# ---- Show it\n", "print('Wine Prediction Real Delta')\n", @@ -2653,25 +575,9 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/markdown": [ - "**End time :** 01/11/23 13:46:01 \n", - "**Duration :** 00:01:25 977ms \n", - "This notebook ends here :-) \n", - "[https://fidle.cnrs.fr](https://fidle.cnrs.fr)" - ], - "text/plain": [ - "<IPython.core.display.Markdown object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "fidle.end()" ]