diff --git a/GTSRB/05-Full-convolutions.ipynb b/GTSRB/05-Full-convolutions.ipynb index 95d1d49ae4ce345a8ab162afd20996f438851202..47bec69c47b04276f6693b8595f53dd979907e92 100644 --- a/GTSRB/05-Full-convolutions.ipynb +++ b/GTSRB/05-Full-convolutions.ipynb @@ -14,23 +14,14 @@ "Our main steps:\n", " - Try n models with n datasets\n", " - Save a Pandas/h5 report\n", - " - Can be run in :\n", - " - Notebook mode\n", - " - Batch mode \n", - " - Tensorboard follow up\n", - " \n", - "To export a notebook as a script : \n", - "```jupyter nbconvert --to script <notebook>```\n", - "\n", - "To run a notebook : \n", - "```jupyter nbconvert --to notebook --execute <notebook>```\n", + " - Write to be run in batch mode\n", "\n", "## 1/ Import" ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -38,9 +29,8 @@ "from tensorflow import keras\n", "\n", "import numpy as np\n", - "import pandas as pd\n", "import h5py\n", - "import os,time\n", + "import os,time,json\n", "\n", "from IPython.display import display\n", "\n", @@ -56,22 +46,9 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Full Convolutions Notebook\n", - " Version : 1.0\n", - " Run time : Sunday 19 January 2020, 12:37:56\n", - " TensorFlow version : 2.0.0\n", - " Keras version : 2.2.4-tf\n" - ] - } - ], + "outputs": [], "source": [ "print('\\nFull Convolutions Notebook')\n", "print(' Version : {}'.format(VERSION))\n", @@ -89,7 +66,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -118,7 +95,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -207,7 +184,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -252,7 +229,7 @@ " bestmodel_callback = tf.keras.callbacks.ModelCheckpoint(filepath=save_dir, verbose=0, monitor='accuracy', save_best_only=True)\n", " # ---- Train\n", " start_time = time.time()\n", - " history = model.fit( x_train[:1000], y_train[:1000],\n", + " history = model.fit( x_train, y_train,\n", " batch_size = batch_size,\n", " epochs = epochs,\n", " verbose = 0,\n", @@ -283,18 +260,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Reset directories : ./run/logs and ./run/models .\n" - ] - } - ], + "outputs": [], "source": [ "%%bash\n", "\n", @@ -309,61 +277,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 6.2 Start Tensorboard" + "### 6.2/ run and save report" ] }, { "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Tensorbord started with pid 1610\n" - ] - } - ], - "source": [ - "%%bash\n", - "tensorboard_start --logdir ./run/logs" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 6.3/ run and save report" - ] - }, - { - "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "---- Run --------------------------------------------------\n", - "\n", - "Dataset : set-24x24-L\n", - " Run model v1 : -\n", - " Run model v3 : -\n", - "\n", - "Dataset : set-24x24-RGB\n", - " Run model v1 : -\n", - " Run model v3 : -\n", - "\n", - "Report saved as ./run/report-2020-01-19_14h56m27s.h5\n", - "-----------------------------------------------------------\n", - "CPU times: user 29.2 s, sys: 4 s, total: 33.2 s\n", - "Wall time: 7.57 s\n" - ] - } - ], + "outputs": [], "source": [ "%%time\n", "\n", @@ -372,16 +293,16 @@ "# ---- Datasets and models list\n", "\n", "# For tests\n", - "datasets = ['set-24x24-L', 'set-24x24-RGB']\n", - "models = {'v1':get_model_v1, 'v3':get_model_v3}\n", + "# datasets = ['set-24x24-L', 'set-24x24-RGB']\n", + "# models = {'v1':get_model_v1, 'v3':get_model_v3}\n", "\n", "# The real one\n", - "# datasets = ['set-24x24-L', 'set-24x24-RGB', 'set-48x48-L', 'set-48x48-RGB', 'set-24x24-L-LHE', 'set-24x24-RGB-HE', 'set-48x48-L-LHE', 'set-48x48-RGB-HE']\n", - "# models = {'v1':get_model_v1, 'v2':get_model_v2, 'v3':get_model_v3}\n", + "datasets = ['set-24x24-L', 'set-24x24-RGB', 'set-48x48-L', 'set-48x48-RGB', 'set-24x24-L-LHE', 'set-24x24-RGB-HE', 'set-48x48-L-LHE', 'set-48x48-RGB-HE']\n", + "models = {'v1':get_model_v1, 'v2':get_model_v2, 'v3':get_model_v3}\n", "\n", "# ---- Report name\n", "\n", - "report_name='./run/report-{}.h5'.format(time.strftime(\"%Y-%m-%d_%Hh%Mm%Ss\"))\n", + "report_name='./run/report-{}.json'.format(time.strftime(\"%Y-%m-%d_%Hh%Mm%Ss\"))\n", "\n", "# ---- Run\n", "\n", @@ -389,41 +310,13 @@ "\n", "# ---- Save report\n", "\n", - "output = pd.DataFrame (out)\n", - "params = pd.DataFrame( {'datasets':datasets, 'models':list(models.keys())} )\n", - "\n", - "output.to_hdf(report_name, 'output')\n", - "params.to_hdf(report_name, 'params')\n", + "with open(report_name, 'w') as outfile:\n", + " json.dump(out, outfile)\n", "\n", "print('\\nReport saved as ',report_name)\n", "print('-'*59)\n" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 6.4/ Stop Tensorboard" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Tensorbord stopped (1610)\n" - ] - } - ], - "source": [ - "%%bash\n", - "tensorboard_stop" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -433,20 +326,9 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Sunday 19 January 2020, 14:32:36\n", - "The work is done.\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "print('\\n{}'.format(time.strftime(\"%A %-d %B %Y, %H:%M:%S\")))\n", "print(\"The work is done.\\n\")" diff --git a/GTSRB/05-Full-convolutions.nbconvert.ipynb b/GTSRB/05-Full-convolutions.nbconvert.ipynb deleted file mode 100644 index 8f71569c32ea8709a07bffe031f4fef03ce505fe..0000000000000000000000000000000000000000 --- a/GTSRB/05-Full-convolutions.nbconvert.ipynb +++ /dev/null @@ -1,484 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "German Traffic Sign Recognition Benchmark (GTSRB)\n", - "=================================================\n", - "---\n", - "Introduction au Deep Learning (IDLE) - S. Arias, E. Maldonado, JL. Parouty - CNRS/SARI/DEVLOG - 2020 \n", - "\n", - "## Episode 5 : Full Convolutions\n", - "\n", - "Our main steps:\n", - " - Try n models with n datasets\n", - " - Save a Pandas/h5 report\n", - " - Can be run in :\n", - " - Notebook mode\n", - " - Batch mode \n", - " - Tensorboard follow up\n", - " \n", - "To export a notebook as a script : \n", - "```jupyter nbconvert --to script <notebook>```\n", - "\n", - "To run a notebook : \n", - "```jupyter nbconvert --to notebook --execute <notebook>```\n", - "\n", - "## 1/ Import" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import tensorflow as tf\n", - "from tensorflow import keras\n", - "\n", - "import numpy as np\n", - "import pandas as pd\n", - "import h5py\n", - "import os,time\n", - "\n", - "from IPython.display import display\n", - "\n", - "VERSION='1.2'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2/ Init and start" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Full Convolutions Notebook\n", - " Version : 1.2\n", - " Run time : Sunday 19 January 2020, 15:35:20\n", - " TensorFlow version : 2.0.0\n", - " Keras version : 2.2.4-tf\n" - ] - } - ], - "source": [ - "print('\\nFull Convolutions Notebook')\n", - "print(' Version : {}'.format(VERSION))\n", - "print(' Run time : {}'.format(time.strftime(\"%A %-d %B %Y, %H:%M:%S\")))\n", - "print(' TensorFlow version :',tf.__version__)\n", - "print(' Keras version :',tf.keras.__version__)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3/ Dataset loading" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "def read_dataset(name):\n", - " '''Reads h5 dataset from ./data\n", - "\n", - " Arguments: dataset name, without .h5\n", - " Returns: x_train,y_train,x_test,y_test data'''\n", - " # ---- Read dataset\n", - " filename='./data/'+name+'.h5'\n", - " with h5py.File(filename) as f:\n", - " x_train = f['x_train'][:]\n", - " y_train = f['y_train'][:]\n", - " x_test = f['x_test'][:]\n", - " y_test = f['y_test'][:]\n", - "\n", - " return x_train,y_train,x_test,y_test" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4/ Models collection" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "# A basic model\n", - "#\n", - "def get_model_v1(lx,ly,lz):\n", - " \n", - " model = keras.models.Sequential()\n", - " \n", - " model.add( keras.layers.Conv2D(96, (3,3), activation='relu', input_shape=(lx,ly,lz)))\n", - " model.add( keras.layers.MaxPooling2D((2, 2)))\n", - " model.add( keras.layers.Dropout(0.2))\n", - "\n", - " model.add( keras.layers.Conv2D(192, (3, 3), activation='relu'))\n", - " model.add( keras.layers.MaxPooling2D((2, 2)))\n", - " model.add( keras.layers.Dropout(0.2))\n", - "\n", - " model.add( keras.layers.Flatten()) \n", - " model.add( keras.layers.Dense(1500, activation='relu'))\n", - " model.add( keras.layers.Dropout(0.5))\n", - "\n", - " model.add( keras.layers.Dense(43, activation='softmax'))\n", - " return model\n", - " \n", - "# A more sophisticated model\n", - "#\n", - "def get_model_v2(lx,ly,lz):\n", - " model = keras.models.Sequential()\n", - "\n", - " model.add( keras.layers.Conv2D(64, (3, 3), padding='same', input_shape=(lx,ly,lz), activation='relu'))\n", - " model.add( keras.layers.Conv2D(64, (3, 3), activation='relu'))\n", - " model.add( keras.layers.MaxPooling2D(pool_size=(2, 2)))\n", - " model.add( keras.layers.Dropout(0.2))\n", - "\n", - " model.add( keras.layers.Conv2D(128, (3, 3), padding='same', activation='relu'))\n", - " model.add( keras.layers.Conv2D(128, (3, 3), activation='relu'))\n", - " model.add( keras.layers.MaxPooling2D(pool_size=(2, 2)))\n", - " model.add( keras.layers.Dropout(0.2))\n", - "\n", - " model.add( keras.layers.Conv2D(256, (3, 3), padding='same',activation='relu'))\n", - " model.add( keras.layers.Conv2D(256, (3, 3), activation='relu'))\n", - " model.add( keras.layers.MaxPooling2D(pool_size=(2, 2)))\n", - " model.add( keras.layers.Dropout(0.2))\n", - "\n", - " model.add( keras.layers.Flatten())\n", - " model.add( keras.layers.Dense(512, activation='relu'))\n", - " model.add( keras.layers.Dropout(0.5))\n", - " model.add( keras.layers.Dense(43, activation='softmax'))\n", - " return model\n", - "\n", - "# My sphisticated model, but small and fast\n", - "#\n", - "def get_model_v3(lx,ly,lz):\n", - " model = keras.models.Sequential()\n", - " model.add( keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(lx,ly,lz)))\n", - " model.add( keras.layers.MaxPooling2D((2, 2)))\n", - " model.add( keras.layers.Dropout(0.5))\n", - "\n", - " model.add( keras.layers.Conv2D(64, (3, 3), activation='relu'))\n", - " model.add( keras.layers.MaxPooling2D((2, 2)))\n", - " model.add( keras.layers.Dropout(0.5))\n", - "\n", - " model.add( keras.layers.Conv2D(128, (3, 3), activation='relu'))\n", - " model.add( keras.layers.MaxPooling2D((2, 2)))\n", - " model.add( keras.layers.Dropout(0.5))\n", - "\n", - " model.add( keras.layers.Conv2D(256, (3, 3), activation='relu'))\n", - " model.add( keras.layers.MaxPooling2D((2, 2)))\n", - " model.add( keras.layers.Dropout(0.5))\n", - "\n", - " model.add( keras.layers.Flatten()) \n", - " model.add( keras.layers.Dense(1152, activation='relu'))\n", - " model.add( keras.layers.Dropout(0.5))\n", - "\n", - " model.add( keras.layers.Dense(43, activation='softmax'))\n", - " return model\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 5/ Multiple datasets, multiple models ;-)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "def multi_run(datasets, models, batch_size=64, epochs=16):\n", - "\n", - " # ---- Columns of report\n", - " #\n", - " report={}\n", - " report['Dataset']=[]\n", - " report['Size'] =[]\n", - " for m in models:\n", - " report[m+' Accuracy'] = []\n", - " report[m+' Duration'] = []\n", - "\n", - " # ---- Let's go\n", - " #\n", - " for d_name in datasets:\n", - " print(\"\\nDataset : \",d_name)\n", - "\n", - " # ---- Read dataset\n", - " x_train,y_train,x_test,y_test = read_dataset(d_name)\n", - " d_size=os.path.getsize('./data/'+d_name+'.h5')/(1024*1024)\n", - " report['Dataset'].append(d_name)\n", - " report['Size'].append(d_size)\n", - " \n", - " # ---- Get the shape\n", - " (n,lx,ly,lz) = x_train.shape\n", - "\n", - " # ---- For each model\n", - " for m_name,m_function in models.items():\n", - " print(\" Run model {} : \".format(m_name), end='')\n", - " # ---- get model\n", - " try:\n", - " model=m_function(lx,ly,lz)\n", - " # ---- Compile it\n", - " model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])\n", - " # ---- Callbacks tensorboard\n", - " log_dir = \"./run/logs/tb_{}_{}\".format(d_name,m_name)\n", - " tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)\n", - " # ---- Callbacks bestmodel\n", - " save_dir = \"./run/models/model_{}_{}.h5\".format(d_name,m_name)\n", - " bestmodel_callback = tf.keras.callbacks.ModelCheckpoint(filepath=save_dir, verbose=0, monitor='accuracy', save_best_only=True)\n", - " # ---- Train\n", - " start_time = time.time()\n", - " history = model.fit( x_train[:1000], y_train[:1000],\n", - " batch_size = batch_size,\n", - " epochs = epochs,\n", - " verbose = 0,\n", - " validation_data = (x_test, y_test),\n", - " callbacks = [tensorboard_callback, bestmodel_callback])\n", - " # ---- Result\n", - " end_time = time.time()\n", - " duration = end_time-start_time\n", - " accuracy = max(history.history[\"val_accuracy\"])*100\n", - " #\n", - " report[m_name+' Accuracy'].append(accuracy)\n", - " report[m_name+' Duration'].append(duration)\n", - " print(\"Accuracy={:.2f} and Duration={:.2f})\".format(accuracy,duration))\n", - " except:\n", - " report[m_name+' Accuracy'].append('-')\n", - " report[m_name+' Duration'].append('-')\n", - " print('-')\n", - " return report" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 6/ Run\n", - "### 6.1/ Clean" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Reset directories : ./run/logs and ./run/models .\n" - ] - } - ], - "source": [ - "%%bash\n", - "\n", - "/bin/rm -r ./run/logs 2>/dev/null\n", - "/bin/rm -r ./run/models 2>/dev/null\n", - "/bin/mkdir -p -m 755 ./run/logs\n", - "/bin/mkdir -p -m 755 ./run/models\n", - "echo -e \"\\nReset directories : ./run/logs and ./run/models .\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 6.2 Start Tensorboard" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Tensorbord started with pid 2128\n" - ] - } - ], - "source": [ - "%%bash\n", - "tensorboard_start --logdir ./run/logs" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 6.3/ run and save report" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "---- Run --------------------------------------------------\n", - "\n", - "Dataset : set-24x24-L\n", - " Run model v1 : Accuracy=6.76 and Duration=8.58)\n", - " Run model v3 : -\n", - "\n", - "Dataset : set-24x24-RGB\n", - " Run model v1 : Accuracy=17.55 and Duration=8.21)\n", - " Run model v3 : -\n", - "\n", - "Report saved as ./run/report-2020-01-19_15h35m25s.h5\n", - "-----------------------------------------------------------\n", - "CPU times: user 1min 37s, sys: 8.44 s, total: 1min 45s\n", - "Wall time: 18.5 s\n" - ] - } - ], - "source": [ - "%%time\n", - "\n", - "print('\\n---- Run','-'*50)\n", - "\n", - "# ---- Datasets and models list\n", - "\n", - "# For tests\n", - "datasets = ['set-24x24-L', 'set-24x24-RGB']\n", - "models = {'v1':get_model_v1, 'v3':get_model_v3}\n", - "\n", - "# The real one\n", - "# datasets = ['set-24x24-L', 'set-24x24-RGB', 'set-48x48-L', 'set-48x48-RGB', 'set-24x24-L-LHE', 'set-24x24-RGB-HE', 'set-48x48-L-LHE', 'set-48x48-RGB-HE']\n", - "# models = {'v1':get_model_v1, 'v2':get_model_v2, 'v3':get_model_v3}\n", - "\n", - "# ---- Report name\n", - "\n", - "report_name='./run/report-{}.h5'.format(time.strftime(\"%Y-%m-%d_%Hh%Mm%Ss\"))\n", - "\n", - "# ---- Run\n", - "\n", - "out = multi_run(datasets, models, batch_size=64, epochs=2)\n", - "\n", - "# ---- Save report\n", - "\n", - "output = pd.DataFrame (out)\n", - "params = pd.DataFrame( {'datasets':datasets, 'models':list(models.keys())} )\n", - "\n", - "output.to_hdf(report_name, 'output')\n", - "params.to_hdf(report_name, 'params')\n", - "\n", - "print('\\nReport saved as ',report_name)\n", - "print('-'*59)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 6.4/ Stop Tensorboard" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Tensorbord stopped (2128)\n" - ] - } - ], - "source": [ - "%%bash\n", - "tensorboard_stop" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 7/ That's all folks.." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Sunday 19 January 2020, 15:35:44\n", - "The work is done.\n", - "\n" - ] - } - ], - "source": [ - "print('\\n{}'.format(time.strftime(\"%A %-d %B %Y, %H:%M:%S\")))\n", - "print(\"The work is done.\\n\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.5" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/GTSRB/05-Full-convolutions.py b/GTSRB/05-Full-convolutions.py deleted file mode 100644 index 780579b8a1e395556079d92f96b02459247c6273..0000000000000000000000000000000000000000 --- a/GTSRB/05-Full-convolutions.py +++ /dev/null @@ -1,270 +0,0 @@ -#!/usr/bin/env python -# coding: utf-8 - -# German Traffic Sign Recognition Benchmark (GTSRB) -# ================================================= -# --- -# Introduction au Deep Learning (IDLE) - S. Arias, E. Maldonado, JL. Parouty - CNRS/SARI/DEVLOG - 2020 -# -# ## Episode 5 : Full Convolutions -# -# Our main steps: -# - Try n models with n datasets -# - Save a Pandas/h5 report -# - Can be run in : -# - Notebook mode -# - Batch mode -# - Tensorboard follow up -# -# To export a notebook as a script : -# ```jupyter nbconvert --to script <notebook>``` -# -# To run a notebook : -# ```jupyter nbconvert --to notebook --execute <notebook>``` -# -# ## 1/ Import - -# In[1]: - - -import tensorflow as tf -from tensorflow import keras - -import numpy as np -import pandas as pd -import h5py -import os,time - -from IPython.display import display - -VERSION='1.2' - - -# ## 2/ Init and start - -# In[2]: - - -print('\nFull Convolutions Notebook') -print(' Version : {}'.format(VERSION)) -print(' Run time : {}'.format(time.strftime("%A %-d %B %Y, %H:%M:%S"))) -print(' TensorFlow version :',tf.__version__) -print(' Keras version :',tf.keras.__version__) - - -# ## 3/ Dataset loading - -# In[3]: - - -def read_dataset(name): - '''Reads h5 dataset from ./data - - Arguments: dataset name, without .h5 - Returns: x_train,y_train,x_test,y_test data''' - # ---- Read dataset - filename='./data/'+name+'.h5' - with h5py.File(filename) as f: - x_train = f['x_train'][:] - y_train = f['y_train'][:] - x_test = f['x_test'][:] - y_test = f['y_test'][:] - - return x_train,y_train,x_test,y_test - - -# ## 4/ Models collection - -# In[4]: - - - -# A basic model -# -def get_model_v1(lx,ly,lz): - - model = keras.models.Sequential() - - model.add( keras.layers.Conv2D(96, (3,3), activation='relu', input_shape=(lx,ly,lz))) - model.add( keras.layers.MaxPooling2D((2, 2))) - model.add( keras.layers.Dropout(0.2)) - - model.add( keras.layers.Conv2D(192, (3, 3), activation='relu')) - model.add( keras.layers.MaxPooling2D((2, 2))) - model.add( keras.layers.Dropout(0.2)) - - model.add( keras.layers.Flatten()) - model.add( keras.layers.Dense(1500, activation='relu')) - model.add( keras.layers.Dropout(0.5)) - - model.add( keras.layers.Dense(43, activation='softmax')) - return model - -# A more sophisticated model -# -def get_model_v2(lx,ly,lz): - model = keras.models.Sequential() - - model.add( keras.layers.Conv2D(64, (3, 3), padding='same', input_shape=(lx,ly,lz), activation='relu')) - model.add( keras.layers.Conv2D(64, (3, 3), activation='relu')) - model.add( keras.layers.MaxPooling2D(pool_size=(2, 2))) - model.add( keras.layers.Dropout(0.2)) - - model.add( keras.layers.Conv2D(128, (3, 3), padding='same', activation='relu')) - model.add( keras.layers.Conv2D(128, (3, 3), activation='relu')) - model.add( keras.layers.MaxPooling2D(pool_size=(2, 2))) - model.add( keras.layers.Dropout(0.2)) - - model.add( keras.layers.Conv2D(256, (3, 3), padding='same',activation='relu')) - model.add( keras.layers.Conv2D(256, (3, 3), activation='relu')) - model.add( keras.layers.MaxPooling2D(pool_size=(2, 2))) - model.add( keras.layers.Dropout(0.2)) - - model.add( keras.layers.Flatten()) - model.add( keras.layers.Dense(512, activation='relu')) - model.add( keras.layers.Dropout(0.5)) - model.add( keras.layers.Dense(43, activation='softmax')) - return model - -# My sphisticated model, but small and fast -# -def get_model_v3(lx,ly,lz): - model = keras.models.Sequential() - model.add( keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(lx,ly,lz))) - model.add( keras.layers.MaxPooling2D((2, 2))) - model.add( keras.layers.Dropout(0.5)) - - model.add( keras.layers.Conv2D(64, (3, 3), activation='relu')) - model.add( keras.layers.MaxPooling2D((2, 2))) - model.add( keras.layers.Dropout(0.5)) - - model.add( keras.layers.Conv2D(128, (3, 3), activation='relu')) - model.add( keras.layers.MaxPooling2D((2, 2))) - model.add( keras.layers.Dropout(0.5)) - - model.add( keras.layers.Conv2D(256, (3, 3), activation='relu')) - model.add( keras.layers.MaxPooling2D((2, 2))) - model.add( keras.layers.Dropout(0.5)) - - model.add( keras.layers.Flatten()) - model.add( keras.layers.Dense(1152, activation='relu')) - model.add( keras.layers.Dropout(0.5)) - - model.add( keras.layers.Dense(43, activation='softmax')) - return model - - -# ## 5/ Multiple datasets, multiple models ;-) - -# In[5]: - - -def multi_run(datasets, models, batch_size=64, epochs=16): - - # ---- Columns of report - # - report={} - report['Dataset']=[] - report['Size'] =[] - for m in models: - report[m+' Accuracy'] = [] - report[m+' Duration'] = [] - - # ---- Let's go - # - for d_name in datasets: - print("\nDataset : ",d_name) - - # ---- Read dataset - x_train,y_train,x_test,y_test = read_dataset(d_name) - d_size=os.path.getsize('./data/'+d_name+'.h5')/(1024*1024) - report['Dataset'].append(d_name) - report['Size'].append(d_size) - - # ---- Get the shape - (n,lx,ly,lz) = x_train.shape - - # ---- For each model - for m_name,m_function in models.items(): - print(" Run model {} : ".format(m_name), end='') - # ---- get model - try: - model=m_function(lx,ly,lz) - # ---- Compile it - model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) - # ---- Callbacks tensorboard - log_dir = "./run/logs/tb_{}_{}".format(d_name,m_name) - tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1) - # ---- Callbacks bestmodel - save_dir = "./run/models/model_{}_{}.h5".format(d_name,m_name) - bestmodel_callback = tf.keras.callbacks.ModelCheckpoint(filepath=save_dir, verbose=0, monitor='accuracy', save_best_only=True) - # ---- Train - start_time = time.time() - history = model.fit( x_train[:1000], y_train[:1000], - batch_size = batch_size, - epochs = epochs, - verbose = 0, - validation_data = (x_test, y_test), - callbacks = [tensorboard_callback, bestmodel_callback]) - # ---- Result - end_time = time.time() - duration = end_time-start_time - accuracy = max(history.history["val_accuracy"])*100 - # - report[m_name+' Accuracy'].append(accuracy) - report[m_name+' Duration'].append(duration) - print("Accuracy={:.2f} and Duration={:.2f})".format(accuracy,duration)) - except: - report[m_name+' Accuracy'].append('-') - report[m_name+' Duration'].append('-') - print('-') - return report - - -# ## 6/ Run -# ### 6.1/ Clean - -# In[6]: - - -get_ipython().run_cell_magic('bash', '', '\n/bin/rm -r ./run/logs 2>/dev/null\n/bin/rm -r ./run/models 2>/dev/null\n/bin/mkdir -p -m 755 ./run/logs\n/bin/mkdir -p -m 755 ./run/models\necho -e "\\nReset directories : ./run/logs and ./run/models ."') - - -# ### 6.2 Start Tensorboard - -# In[22]: - - -get_ipython().run_cell_magic('bash', '', 'tensorboard_start --logdir ./run/logs') - - -# ### 6.3/ run and save report - -# In[24]: - - -get_ipython().run_cell_magic('time', '', '\nprint(\'\\n---- Run\',\'-\'*50)\n\n# ---- Datasets and models list\n\n# For tests\ndatasets = [\'set-24x24-L\', \'set-24x24-RGB\']\nmodels = {\'v1\':get_model_v1, \'v3\':get_model_v3}\n\n# The real one\n# datasets = [\'set-24x24-L\', \'set-24x24-RGB\', \'set-48x48-L\', \'set-48x48-RGB\', \'set-24x24-L-LHE\', \'set-24x24-RGB-HE\', \'set-48x48-L-LHE\', \'set-48x48-RGB-HE\']\n# models = {\'v1\':get_model_v1, \'v2\':get_model_v2, \'v3\':get_model_v3}\n\n# ---- Report name\n\nreport_name=\'./run/report-{}.h5\'.format(time.strftime("%Y-%m-%d_%Hh%Mm%Ss"))\n\n# ---- Run\n\nout = multi_run(datasets, models, batch_size=64, epochs=2)\n\n# ---- Save report\n\noutput = pd.DataFrame (out)\nparams = pd.DataFrame( {\'datasets\':datasets, \'models\':list(models.keys())} )\n\noutput.to_hdf(report_name, \'output\')\nparams.to_hdf(report_name, \'params\')\n\nprint(\'\\nReport saved as \',report_name)\nprint(\'-\'*59)') - - -# ### 6.4/ Stop Tensorboard - -# In[23]: - - -get_ipython().run_cell_magic('bash', '', 'tensorboard_stop') - - -# ## 7/ That's all folks.. - -# In[21]: - - -print('\n{}'.format(time.strftime("%A %-d %B %Y, %H:%M:%S"))) -print("The work is done.\n") - - -# In[ ]: - - - - diff --git a/GTSRB/05.1-Full-convolutions-run.ipynb b/GTSRB/05.1-Full-convolutions-batch.ipynb similarity index 59% rename from GTSRB/05.1-Full-convolutions-run.ipynb rename to GTSRB/05.1-Full-convolutions-batch.ipynb index 608973b46a2ba7304f80ef836f4365f01f717965..cd78bdb09743e8dcbaec8f577011c7be7e42239d 100644 --- a/GTSRB/05.1-Full-convolutions-run.ipynb +++ b/GTSRB/05.1-Full-convolutions-batch.ipynb @@ -40,21 +40,23 @@ "\n", "# ---- This will execute and save a notebook\n", "#\n", - "jupyter nbconvert --to notebook --execute '05-Full-convolutions.ipynb'\n" + "jupyter nbconvert --ExecutePreprocessor.timeout=-1 --to notebook --output='./run/full_convolutions' --execute '05-Full-convolutions.ipynb'\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## 2/ Export as a script\n", + "## 2/ Export as a script (better choice)\n", "To export a notebook as a script : \n", - "```jupyter nbconvert --to script <notebook>```" + "```jupyter nbconvert --to script <notebook>``` \n", + "To run the script : \n", + "```ipython <script>```" ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -62,48 +64,33 @@ "output_type": "stream", "text": [ "[NbConvertApp] Converting notebook 05-Full-convolutions.ipynb to script\n", - "[NbConvertApp] Writing 8775 bytes to 05-Full-convolutions.py\n" + "[NbConvertApp] Writing 8155 bytes to ./run/full_convolutions.py\n" ] } ], "source": [ "%%bash\n", "\n", - "# ---- This will convert notebook to a notebook.py script\n", + "# ---- This will convert a notebook to a notebook.py script\n", "#\n", - "jupyter nbconvert --to script '05-Full-convolutions.ipynb'\n" + "jupyter nbconvert --to script --output='./run/full_convolutions' '05-Full-convolutions.ipynb'" ] }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "total 8156\n", - "-rw-r--r-- 1 pjluc pjluc 16893 Jan 19 15:07 01-Preparation-of-data.ipynb\n", - "-rw-r--r-- 1 pjluc pjluc 9181 Jan 19 15:08 02-First-convolutions.ipynb\n", - "-rw-r--r-- 1 pjluc pjluc 12879 Jan 19 15:09 03-Tracking-and-visualizing.ipynb\n", - "-rw-r--r-- 1 pjluc pjluc 10667 Jan 19 15:10 04-Data-augmentation.ipynb\n", - "-rw-r--r-- 1 pjluc pjluc 3325 Jan 19 15:50 05.1-Full-convolutions-run.ipynb\n", - "-rw-r--r-- 1 pjluc pjluc 19865 Jan 19 15:17 05.2-Full-convolutions-reports.ipynb\n", - "-rw-r--r-- 1 pjluc pjluc 14466 Jan 19 15:11 05-Full-convolutions.ipynb\n", - "-rw-r--r-- 1 pjluc pjluc 14533 Jan 19 15:35 05-Full-convolutions.nbconvert.ipynb\n", - "-rw-r--r-- 1 pjluc pjluc 8775 Jan 19 15:43 05-Full-convolutions.py\n", - "-rw-r--r-- 1 pjluc pjluc 12346 Jan 19 15:47 99 Scripts-Tensorboard.ipynb\n", - "drwxr-xr-x 1 pjluc pjluc 512 Jan 10 22:10 data\n", - "drwxr-xr-x 1 pjluc pjluc 512 Jan 19 15:07 fidle\n", - "-rw-r--r-- 1 pjluc pjluc 7391072 Jan 19 00:41 foo.h5\n", - "-rw-r--r-- 1 pjluc pjluc 2816 Jan 11 15:45 README.ipynb\n", - "drwxr-xr-x 1 pjluc pjluc 512 Jan 19 15:35 run\n" + "-rwxr-xr-x 1 paroutyj l-simap 8155 Jan 19 22:24 ./run/full_convolutions.py\n" ] } ], "source": [ - "!ls -l" + "!ls -l ./run/*.py" ] }, { @@ -116,21 +103,31 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Writing ./run/batch_full_convolutions.sh\n" + "Overwriting ./run/batch_full_convolutions.sh\n" ] } ], "source": [ "%%writefile \"./run/batch_full_convolutions.sh\"\n", + "#!/bin/bash\n", + "#OAR -n Full convolutions\n", + "#OAR -t gpu\n", + "#OAR -l /nodes=1/gpudevice=1,walltime=01:00:00\n", + "#OAR --stdout full_convolutions.out\n", + "#OAR --stderr full_convolutions.err\n", + "#OAR --project deeplearningshs\n", "\n", - "#!/bin/batch\n", + "#---- For cpu\n", + "# use :\n", + "# OAR -l /nodes=1/core=32,walltime=01:00:00\n", + "# and add a 2>/dev/null to ipython xxx\n", "\n", "# ----------------------------------\n", "# _ _ _\n", @@ -141,13 +138,17 @@ "# Full convolutions\n", "# ----------------------------------\n", "#\n", - "CONDA_ENV=\"deeplearning2\"\n", - "RUN_DIR=\"~/fidle/GTSRB\"\n", - "RUN_SCRIPT=\"05-Full-convolutions.py\"\n", + "\n", + "CONDA_ENV=deeplearning2\n", + "RUN_DIR=~/fidle/GTSRB\n", + "RUN_SCRIPT=./run/full_convolutions.py\n", "\n", "# ---- Cuda Conda initialization\n", "#\n", - "echo -e 'Init environment with cuda and conda...\\n'\n", + "echo '------------------------------------------------------------'\n", + "echo \"Start : $0\"\n", + "echo '------------------------------------------------------------'\n", + "#\n", "source /applis/environments/cuda_env.sh dahu 10.0\n", "source /applis/environments/conda.sh\n", "#\n", @@ -156,7 +157,36 @@ "# ---- Run it...\n", "#\n", "cd $RUN_DIR\n", - "$RUN_SCRIPT" + "ipython $RUN_SCRIPT" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-rwxr-xr-x 1 paroutyj l-simap 955 Jan 19 22:13 ./run/batch_full_convolutions.sh\n", + "-rwxr-xr-x 1 paroutyj l-simap 8155 Jan 19 22:24 ./run/full_convolutions.py\n" + ] + } + ], + "source": [ + "%%bash\n", + "chmod 755 \"./run/batch_full_convolutions.sh\"\n", + "chmod 755 \"./run/full_convolutions.py\"\n", + "ls -l ./run/*full_convolutions*" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "%%bash\n", + "./run/batch_full_convolutions.sh" ] }, { diff --git a/GTSRB/05.2-Full-convolutions-reports.ipynb b/GTSRB/05.2-Full-convolutions-reports.ipynb index c02d06d86acd664c8bebc53dc434be86efa87290..61e5387684e077c595ea8b5436e25fb1c37c5bf4 100644 --- a/GTSRB/05.2-Full-convolutions-reports.ipynb +++ b/GTSRB/05.2-Full-convolutions-reports.ipynb @@ -24,7 +24,7 @@ "outputs": [], "source": [ "import pandas as pd\n", - "import os,glob\n", + "import os,glob,json\n", "from pathlib import Path\n", "from IPython.display import display, Markdown" ] @@ -43,17 +43,19 @@ "outputs": [], "source": [ "def show_report(report_name):\n", - " # ---- Read report\n", - " output = pd.read_hdf(report_name, 'output')\n", - " params = pd.read_hdf(report_name, 'params')\n", - " # ---- Build format\n", + " # ---- Read json file\n", + " with open(report_name) as infile:\n", + " dict_report = json.load( infile )\n", + " # ---- Create a pandas\n", + " report = pd.DataFrame (dict_report)\n", + " models = list(dict_report.keys())[2:]\n", + " # ---- Build formats\n", " lambda_acc = lambda x : '{:.2f} %'.format(x) if (isinstance(x, float)) else '{:}'.format(x)\n", " lambda_dur = lambda x : '{:.1f} s'.format(x) if (isinstance(x, float)) else '{:}'.format(x)\n", - " format_dict = {'Size':'{:.2f} Mo'}\n", - " for m in params['models'].tolist():\n", - " format_dict[m+' Accuracy']=lambda_acc\n", - " format_dict[m+' Duration']=lambda_dur\n", - " t=output.style.format(format_dict).hide_index()\n", + " formats = {'Size':'{:.2f} Mo'}\n", + " for m in models:\n", + " formats[m]=lambda_acc if (m.endswith('Accuracy')) else lambda_dur\n", + " t=report.style.format(formats).hide_index()\n", " display(t)" ] }, @@ -66,7 +68,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -75,7 +77,7 @@ "text": [ "\n", "\n", - "Report : report-2020-01-19_12h45m57s \n", + "Report : report-2020-01-19_22h14m29s \n", "\n" ] }, @@ -83,227 +85,91 @@ "data": { "text/html": [ "<style type=\"text/css\" >\n", - "</style><table id=\"T_5d373846_3ac6_11ea_820c_836bead0fd53\" ><thead> <tr> <th class=\"col_heading level0 col0\" >Dataset</th> <th class=\"col_heading level0 col1\" >Size</th> <th class=\"col_heading level0 col2\" >v1 Accuracy</th> <th class=\"col_heading level0 col3\" >v1 Duration</th> <th class=\"col_heading level0 col4\" >v3 Accuracy</th> <th class=\"col_heading level0 col5\" >v3 Duration</th> </tr></thead><tbody>\n", + "</style><table id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7\" ><thead> <tr> <th class=\"col_heading level0 col0\" >Dataset</th> <th class=\"col_heading level0 col1\" >Size</th> <th class=\"col_heading level0 col2\" >v1 Accuracy</th> <th class=\"col_heading level0 col3\" >v1 Duration</th> <th class=\"col_heading level0 col4\" >v2 Accuracy</th> <th class=\"col_heading level0 col5\" >v2 Duration</th> <th class=\"col_heading level0 col6\" >v3 Accuracy</th> <th class=\"col_heading level0 col7\" >v3 Duration</th> </tr></thead><tbody>\n", " <tr>\n", - " <td id=\"T_5d373846_3ac6_11ea_820c_836bead0fd53row0_col0\" class=\"data row0 col0\" >set-24x24-L</td>\n", - " <td id=\"T_5d373846_3ac6_11ea_820c_836bead0fd53row0_col1\" class=\"data row0 col1\" >228.77 Mo</td>\n", - " <td id=\"T_5d373846_3ac6_11ea_820c_836bead0fd53row0_col2\" class=\"data row0 col2\" >11.99 %</td>\n", - " <td id=\"T_5d373846_3ac6_11ea_820c_836bead0fd53row0_col3\" class=\"data row0 col3\" >8.5 s</td>\n", - " <td id=\"T_5d373846_3ac6_11ea_820c_836bead0fd53row0_col4\" class=\"data row0 col4\" >-</td>\n", - " <td id=\"T_5d373846_3ac6_11ea_820c_836bead0fd53row0_col5\" class=\"data row0 col5\" >-</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row0_col0\" class=\"data row0 col0\" >set-24x24-L</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row0_col1\" class=\"data row0 col1\" >228.77 Mo</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row0_col2\" class=\"data row0 col2\" >5.72 %</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row0_col3\" class=\"data row0 col3\" >5.0 s</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row0_col4\" class=\"data row0 col4\" >5.94 %</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row0_col5\" class=\"data row0 col5\" >2.4 s</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row0_col6\" class=\"data row0 col6\" >-</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row0_col7\" class=\"data row0 col7\" >-</td>\n", " </tr>\n", " <tr>\n", - " <td id=\"T_5d373846_3ac6_11ea_820c_836bead0fd53row1_col0\" class=\"data row1 col0\" >set-24x24-RGB</td>\n", - " <td id=\"T_5d373846_3ac6_11ea_820c_836bead0fd53row1_col1\" class=\"data row1 col1\" >684.39 Mo</td>\n", - " <td id=\"T_5d373846_3ac6_11ea_820c_836bead0fd53row1_col2\" class=\"data row1 col2\" >16.95 %</td>\n", - " <td id=\"T_5d373846_3ac6_11ea_820c_836bead0fd53row1_col3\" class=\"data row1 col3\" >8.4 s</td>\n", - " <td id=\"T_5d373846_3ac6_11ea_820c_836bead0fd53row1_col4\" class=\"data row1 col4\" >-</td>\n", - " <td id=\"T_5d373846_3ac6_11ea_820c_836bead0fd53row1_col5\" class=\"data row1 col5\" >-</td>\n", - " </tr>\n", - " </tbody></table>" - ], - "text/plain": [ - "<pandas.io.formats.style.Styler at 0x7fb458777110>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Report : report-2020-01-19_13h53m43s \n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "<style type=\"text/css\" >\n", - "</style><table id=\"T_5d39a356_3ac6_11ea_820c_836bead0fd53\" ><thead> <tr> <th class=\"col_heading level0 col0\" >Dataset</th> <th class=\"col_heading level0 col1\" >Size</th> <th class=\"col_heading level0 col2\" >v1 Accuracy</th> <th class=\"col_heading level0 col3\" >v1 Duration</th> <th class=\"col_heading level0 col4\" >v3 Accuracy</th> <th class=\"col_heading level0 col5\" >v3 Duration</th> </tr></thead><tbody>\n", - " <tr>\n", - " <td id=\"T_5d39a356_3ac6_11ea_820c_836bead0fd53row0_col0\" class=\"data row0 col0\" >set-24x24-L</td>\n", - " <td id=\"T_5d39a356_3ac6_11ea_820c_836bead0fd53row0_col1\" class=\"data row0 col1\" >228.77 Mo</td>\n", - " <td id=\"T_5d39a356_3ac6_11ea_820c_836bead0fd53row0_col2\" class=\"data row0 col2\" >10.48 %</td>\n", - " <td id=\"T_5d39a356_3ac6_11ea_820c_836bead0fd53row0_col3\" class=\"data row0 col3\" >8.4 s</td>\n", - " <td id=\"T_5d39a356_3ac6_11ea_820c_836bead0fd53row0_col4\" class=\"data row0 col4\" >-</td>\n", - " <td id=\"T_5d39a356_3ac6_11ea_820c_836bead0fd53row0_col5\" class=\"data row0 col5\" >-</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row1_col0\" class=\"data row1 col0\" >set-24x24-RGB</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row1_col1\" class=\"data row1 col1\" >684.39 Mo</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row1_col2\" class=\"data row1 col2\" >16.62 %</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row1_col3\" class=\"data row1 col3\" >2.9 s</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row1_col4\" class=\"data row1 col4\" >5.94 %</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row1_col5\" class=\"data row1 col5\" >2.5 s</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row1_col6\" class=\"data row1 col6\" >-</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row1_col7\" class=\"data row1 col7\" >-</td>\n", " </tr>\n", " <tr>\n", - " <td id=\"T_5d39a356_3ac6_11ea_820c_836bead0fd53row1_col0\" class=\"data row1 col0\" >set-24x24-RGB</td>\n", - " <td id=\"T_5d39a356_3ac6_11ea_820c_836bead0fd53row1_col1\" class=\"data row1 col1\" >684.39 Mo</td>\n", - " <td id=\"T_5d39a356_3ac6_11ea_820c_836bead0fd53row1_col2\" class=\"data row1 col2\" >15.67 %</td>\n", - " <td id=\"T_5d39a356_3ac6_11ea_820c_836bead0fd53row1_col3\" class=\"data row1 col3\" >8.3 s</td>\n", - " <td id=\"T_5d39a356_3ac6_11ea_820c_836bead0fd53row1_col4\" class=\"data row1 col4\" >-</td>\n", - " <td id=\"T_5d39a356_3ac6_11ea_820c_836bead0fd53row1_col5\" class=\"data row1 col5\" >-</td>\n", - " </tr>\n", - " </tbody></table>" - ], - "text/plain": [ - "<pandas.io.formats.style.Styler at 0x7fb45815d350>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Report : report-2020-01-19_14h26m21s \n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "<style type=\"text/css\" >\n", - "</style><table id=\"T_5d3bfef8_3ac6_11ea_820c_836bead0fd53\" ><thead> <tr> <th class=\"col_heading level0 col0\" >Dataset</th> <th class=\"col_heading level0 col1\" >Size</th> <th class=\"col_heading level0 col2\" >v1 Accuracy</th> <th class=\"col_heading level0 col3\" >v1 Duration</th> <th class=\"col_heading level0 col4\" >v3 Accuracy</th> <th class=\"col_heading level0 col5\" >v3 Duration</th> </tr></thead><tbody>\n", - " <tr>\n", - " <td id=\"T_5d3bfef8_3ac6_11ea_820c_836bead0fd53row0_col0\" class=\"data row0 col0\" >set-24x24-L</td>\n", - " <td id=\"T_5d3bfef8_3ac6_11ea_820c_836bead0fd53row0_col1\" class=\"data row0 col1\" >228.77 Mo</td>\n", - " <td id=\"T_5d3bfef8_3ac6_11ea_820c_836bead0fd53row0_col2\" class=\"data row0 col2\" >10.68 %</td>\n", - " <td id=\"T_5d3bfef8_3ac6_11ea_820c_836bead0fd53row0_col3\" class=\"data row0 col3\" >8.5 s</td>\n", - " <td id=\"T_5d3bfef8_3ac6_11ea_820c_836bead0fd53row0_col4\" class=\"data row0 col4\" >-</td>\n", - " <td id=\"T_5d3bfef8_3ac6_11ea_820c_836bead0fd53row0_col5\" class=\"data row0 col5\" >-</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row2_col0\" class=\"data row2 col0\" >set-48x48-L</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row2_col1\" class=\"data row2 col1\" >913.90 Mo</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row2_col2\" class=\"data row2 col2\" >6.99 %</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row2_col3\" class=\"data row2 col3\" >8.0 s</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row2_col4\" class=\"data row2 col4\" >5.94 %</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row2_col5\" class=\"data row2 col5\" >3.7 s</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row2_col6\" class=\"data row2 col6\" >5.94 %</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row2_col7\" class=\"data row2 col7\" >2.0 s</td>\n", " </tr>\n", " <tr>\n", - " <td id=\"T_5d3bfef8_3ac6_11ea_820c_836bead0fd53row1_col0\" class=\"data row1 col0\" >set-24x24-RGB</td>\n", - " <td id=\"T_5d3bfef8_3ac6_11ea_820c_836bead0fd53row1_col1\" class=\"data row1 col1\" >684.39 Mo</td>\n", - " <td id=\"T_5d3bfef8_3ac6_11ea_820c_836bead0fd53row1_col2\" class=\"data row1 col2\" >18.24 %</td>\n", - " <td id=\"T_5d3bfef8_3ac6_11ea_820c_836bead0fd53row1_col3\" class=\"data row1 col3\" >8.4 s</td>\n", - " <td id=\"T_5d3bfef8_3ac6_11ea_820c_836bead0fd53row1_col4\" class=\"data row1 col4\" >-</td>\n", - " <td id=\"T_5d3bfef8_3ac6_11ea_820c_836bead0fd53row1_col5\" class=\"data row1 col5\" >-</td>\n", - " </tr>\n", - " </tbody></table>" - ], - "text/plain": [ - "<pandas.io.formats.style.Styler at 0x7fb457f9d350>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Report : report-2020-01-19_14h27m02s \n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "<style type=\"text/css\" >\n", - "</style><table id=\"T_5d3f7fba_3ac6_11ea_820c_836bead0fd53\" ><thead> <tr> <th class=\"col_heading level0 col0\" >Dataset</th> <th class=\"col_heading level0 col1\" >Size</th> <th class=\"col_heading level0 col2\" >v1 Accuracy</th> <th class=\"col_heading level0 col3\" >v1 Duration</th> <th class=\"col_heading level0 col4\" >v3 Accuracy</th> <th class=\"col_heading level0 col5\" >v3 Duration</th> </tr></thead><tbody>\n", - " <tr>\n", - " <td id=\"T_5d3f7fba_3ac6_11ea_820c_836bead0fd53row0_col0\" class=\"data row0 col0\" >set-24x24-L</td>\n", - " <td id=\"T_5d3f7fba_3ac6_11ea_820c_836bead0fd53row0_col1\" class=\"data row0 col1\" >228.77 Mo</td>\n", - " <td id=\"T_5d3f7fba_3ac6_11ea_820c_836bead0fd53row0_col2\" class=\"data row0 col2\" >7.00 %</td>\n", - " <td id=\"T_5d3f7fba_3ac6_11ea_820c_836bead0fd53row0_col3\" class=\"data row0 col3\" >9.2 s</td>\n", - " <td id=\"T_5d3f7fba_3ac6_11ea_820c_836bead0fd53row0_col4\" class=\"data row0 col4\" >-</td>\n", - " <td id=\"T_5d3f7fba_3ac6_11ea_820c_836bead0fd53row0_col5\" class=\"data row0 col5\" >-</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row3_col0\" class=\"data row3 col0\" >set-48x48-RGB</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row3_col1\" class=\"data row3 col1\" >2736.36 Mo</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row3_col2\" class=\"data row3 col2\" >14.96 %</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row3_col3\" class=\"data row3 col3\" >8.5 s</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row3_col4\" class=\"data row3 col4\" >5.94 %</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row3_col5\" class=\"data row3 col5\" >3.7 s</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row3_col6\" class=\"data row3 col6\" >5.94 %</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row3_col7\" class=\"data row3 col7\" >2.1 s</td>\n", " </tr>\n", " <tr>\n", - " <td id=\"T_5d3f7fba_3ac6_11ea_820c_836bead0fd53row1_col0\" class=\"data row1 col0\" >set-24x24-RGB</td>\n", - " <td id=\"T_5d3f7fba_3ac6_11ea_820c_836bead0fd53row1_col1\" class=\"data row1 col1\" >684.39 Mo</td>\n", - " <td id=\"T_5d3f7fba_3ac6_11ea_820c_836bead0fd53row1_col2\" class=\"data row1 col2\" >11.59 %</td>\n", - " <td id=\"T_5d3f7fba_3ac6_11ea_820c_836bead0fd53row1_col3\" class=\"data row1 col3\" >8.9 s</td>\n", - " <td id=\"T_5d3f7fba_3ac6_11ea_820c_836bead0fd53row1_col4\" class=\"data row1 col4\" >-</td>\n", - " <td id=\"T_5d3f7fba_3ac6_11ea_820c_836bead0fd53row1_col5\" class=\"data row1 col5\" >-</td>\n", - " </tr>\n", - " </tbody></table>" - ], - "text/plain": [ - "<pandas.io.formats.style.Styler at 0x7fb45849c750>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Report : report-2020-01-19_14h31m50s \n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "<style type=\"text/css\" >\n", - "</style><table id=\"T_5d42c210_3ac6_11ea_820c_836bead0fd53\" ><thead> <tr> <th class=\"col_heading level0 col0\" >Dataset</th> <th class=\"col_heading level0 col1\" >Size</th> <th class=\"col_heading level0 col2\" >v1 Accuracy</th> <th class=\"col_heading level0 col3\" >v1 Duration</th> <th class=\"col_heading level0 col4\" >v3 Accuracy</th> <th class=\"col_heading level0 col5\" >v3 Duration</th> </tr></thead><tbody>\n", - " <tr>\n", - " <td id=\"T_5d42c210_3ac6_11ea_820c_836bead0fd53row0_col0\" class=\"data row0 col0\" >set-24x24-L</td>\n", - " <td id=\"T_5d42c210_3ac6_11ea_820c_836bead0fd53row0_col1\" class=\"data row0 col1\" >228.77 Mo</td>\n", - " <td id=\"T_5d42c210_3ac6_11ea_820c_836bead0fd53row0_col2\" class=\"data row0 col2\" >10.22 %</td>\n", - " <td id=\"T_5d42c210_3ac6_11ea_820c_836bead0fd53row0_col3\" class=\"data row0 col3\" >8.6 s</td>\n", - " <td id=\"T_5d42c210_3ac6_11ea_820c_836bead0fd53row0_col4\" class=\"data row0 col4\" >-</td>\n", - " <td id=\"T_5d42c210_3ac6_11ea_820c_836bead0fd53row0_col5\" class=\"data row0 col5\" >-</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row4_col0\" class=\"data row4 col0\" >set-24x24-L-LHE</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row4_col1\" class=\"data row4 col1\" >228.77 Mo</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row4_col2\" class=\"data row4 col2\" >8.14 %</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row4_col3\" class=\"data row4 col3\" >2.7 s</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row4_col4\" class=\"data row4 col4\" >5.94 %</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row4_col5\" class=\"data row4 col5\" >2.5 s</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row4_col6\" class=\"data row4 col6\" >-</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row4_col7\" class=\"data row4 col7\" >-</td>\n", " </tr>\n", " <tr>\n", - " <td id=\"T_5d42c210_3ac6_11ea_820c_836bead0fd53row1_col0\" class=\"data row1 col0\" >set-24x24-RGB</td>\n", - " <td id=\"T_5d42c210_3ac6_11ea_820c_836bead0fd53row1_col1\" class=\"data row1 col1\" >684.39 Mo</td>\n", - " <td id=\"T_5d42c210_3ac6_11ea_820c_836bead0fd53row1_col2\" class=\"data row1 col2\" >12.98 %</td>\n", - " <td id=\"T_5d42c210_3ac6_11ea_820c_836bead0fd53row1_col3\" class=\"data row1 col3\" >8.2 s</td>\n", - " <td id=\"T_5d42c210_3ac6_11ea_820c_836bead0fd53row1_col4\" class=\"data row1 col4\" >-</td>\n", - " <td id=\"T_5d42c210_3ac6_11ea_820c_836bead0fd53row1_col5\" class=\"data row1 col5\" >-</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row5_col0\" class=\"data row5 col0\" >set-24x24-RGB-HE</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row5_col1\" class=\"data row5 col1\" >684.39 Mo</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row5_col2\" class=\"data row5 col2\" >19.96 %</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row5_col3\" class=\"data row5 col3\" >2.5 s</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row5_col4\" class=\"data row5 col4\" >5.94 %</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row5_col5\" class=\"data row5 col5\" >2.7 s</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row5_col6\" class=\"data row5 col6\" >-</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row5_col7\" class=\"data row5 col7\" >-</td>\n", " </tr>\n", - " </tbody></table>" - ], - "text/plain": [ - "<pandas.io.formats.style.Styler at 0x7fb45850fed0>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Report : report-2020-01-19_14h56m27s \n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "<style type=\"text/css\" >\n", - "</style><table id=\"T_5d461c80_3ac6_11ea_820c_836bead0fd53\" ><thead> <tr> <th class=\"col_heading level0 col0\" >Dataset</th> <th class=\"col_heading level0 col1\" >Size</th> <th class=\"col_heading level0 col2\" >v1 Accuracy</th> <th class=\"col_heading level0 col3\" >v1 Duration</th> <th class=\"col_heading level0 col4\" >v3 Accuracy</th> <th class=\"col_heading level0 col5\" >v3 Duration</th> </tr></thead><tbody>\n", - " <tr>\n", - " <td id=\"T_5d461c80_3ac6_11ea_820c_836bead0fd53row0_col0\" class=\"data row0 col0\" >set-24x24-L</td>\n", - " <td id=\"T_5d461c80_3ac6_11ea_820c_836bead0fd53row0_col1\" class=\"data row0 col1\" >228.77 Mo</td>\n", - " <td id=\"T_5d461c80_3ac6_11ea_820c_836bead0fd53row0_col2\" class=\"data row0 col2\" >-</td>\n", - " <td id=\"T_5d461c80_3ac6_11ea_820c_836bead0fd53row0_col3\" class=\"data row0 col3\" >-</td>\n", - " <td id=\"T_5d461c80_3ac6_11ea_820c_836bead0fd53row0_col4\" class=\"data row0 col4\" >-</td>\n", - " <td id=\"T_5d461c80_3ac6_11ea_820c_836bead0fd53row0_col5\" class=\"data row0 col5\" >-</td>\n", + " <tr>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row6_col0\" class=\"data row6 col0\" >set-48x48-L-LHE</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row6_col1\" class=\"data row6 col1\" >913.90 Mo</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row6_col2\" class=\"data row6 col2\" >12.69 %</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row6_col3\" class=\"data row6 col3\" >7.6 s</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row6_col4\" class=\"data row6 col4\" >5.94 %</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row6_col5\" class=\"data row6 col5\" >4.0 s</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row6_col6\" class=\"data row6 col6\" >5.94 %</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row6_col7\" class=\"data row6 col7\" >2.0 s</td>\n", " </tr>\n", " <tr>\n", - " <td id=\"T_5d461c80_3ac6_11ea_820c_836bead0fd53row1_col0\" class=\"data row1 col0\" >set-24x24-RGB</td>\n", - " <td id=\"T_5d461c80_3ac6_11ea_820c_836bead0fd53row1_col1\" class=\"data row1 col1\" >684.39 Mo</td>\n", - " <td id=\"T_5d461c80_3ac6_11ea_820c_836bead0fd53row1_col2\" class=\"data row1 col2\" >-</td>\n", - " <td id=\"T_5d461c80_3ac6_11ea_820c_836bead0fd53row1_col3\" class=\"data row1 col3\" >-</td>\n", - " <td id=\"T_5d461c80_3ac6_11ea_820c_836bead0fd53row1_col4\" class=\"data row1 col4\" >-</td>\n", - " <td id=\"T_5d461c80_3ac6_11ea_820c_836bead0fd53row1_col5\" class=\"data row1 col5\" >-</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row7_col0\" class=\"data row7 col0\" >set-48x48-RGB-HE</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row7_col1\" class=\"data row7 col1\" >2736.36 Mo</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row7_col2\" class=\"data row7 col2\" >20.77 %</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row7_col3\" class=\"data row7 col3\" >9.5 s</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row7_col4\" class=\"data row7 col4\" >5.56 %</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row7_col5\" class=\"data row7 col5\" >3.8 s</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row7_col6\" class=\"data row7 col6\" >5.94 %</td>\n", + " <td id=\"T_deb0ddec_3b01_11ea_a4ca_350a472bdab7row7_col7\" class=\"data row7 col7\" >2.4 s</td>\n", " </tr>\n", " </tbody></table>" ], "text/plain": [ - "<pandas.io.formats.style.Styler at 0x7fb4587551d0>" + "<pandas.io.formats.style.Styler at 0x7f5585503390>" ] }, "metadata": {}, @@ -311,9 +177,9 @@ } ], "source": [ - "for file in glob.glob(\"./run/*.h5\"):\n", + "for file in glob.glob(\"./run/*.json\"):\n", " print(\"\\n\\nReport : \",Path(file).stem,'\\n') \n", - " show_report(file)" + " show_report(file)\n" ] }, { diff --git a/GTSRB/99 Scripts-Tensorboard.ipynb b/GTSRB/99 Scripts-Tensorboard.ipynb index 290e20a92c015034e43150daf1f8f0a16b960de3..daba57fae76a8abc2454e3a6f9d34f55cca76c37 100644 --- a/GTSRB/99 Scripts-Tensorboard.ipynb +++ b/GTSRB/99 Scripts-Tensorboard.ipynb @@ -21,9 +21,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tensorbord started - pid is 49306\n" + ] + } + ], "source": [ "%%bash\n", "tensorboard_start --logdir ./run/logs" @@ -31,9 +39,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tensorboard status - not found...\n" + ] + } + ], "source": [ "%%bash\n", "tensorboard_status" @@ -41,9 +57,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tensorboard process not found...\n" + ] + } + ], "source": [ "%%bash\n", "tensorboard_stop" @@ -58,9 +82,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Overwriting /home/paroutyj/bin/tensorboard_start\n" + ] + } + ], "source": [ "%%writefile \"~/bin/tensorboard_start\"\n", "\n", diff --git a/README.md b/README.md new file mode 100644 index 0000000000000000000000000000000000000000..146861fcd8998f71db32de2aece738cb039453e3 --- /dev/null +++ b/README.md @@ -0,0 +1,18 @@ + + +German Traffic Sign Recognition Benchmark (GTSRB) +================================================= +--- +Introduction au Deep Learning (IDLE) - S. Arias, E. Maldonado, JL. Parouty - CNRS/SARI/DEVLOG - 2020 + +## 1/ Environment +To install your conda environment : +``` +conda env create -f environment.yml +``` + +## 4/ Misc +To update an existing environment : +``` +conda env update --name=deeplearning2 --file=environment.yml +``` \ No newline at end of file