From 7546c5fbc746c01d92fa12f8ba038102f4346c05 Mon Sep 17 00:00:00 2001
From: "Jean-Luc.Parouty@grenoble-inp.fr" <paroutyj@f-dahu.u-ga.fr>
Date: Sat, 15 Feb 2020 12:50:06 +0100
Subject: [PATCH] Update BPHD

Former-commit-id: d0923d31523d3011d946c291354bcd84503c75d2
---
 .gitignore                               |   3 +-
 BHPD/01-DNN-Regression.ipynb             | 961 +++++++++++++++++++++--
 BHPD/02-DNN-Regression Premium.ipynb     | 900 +++++++++++++++++++--
 BHPD/data/BostonHousing.csv              | 507 ------------
 GTSRB/data/dataset.tar.gz.REMOVED.git-id |   1 -
 5 files changed, 1758 insertions(+), 614 deletions(-)
 delete mode 100755 BHPD/data/BostonHousing.csv
 delete mode 100644 GTSRB/data/dataset.tar.gz.REMOVED.git-id

diff --git a/.gitignore b/.gitignore
index fd82efd..9063961 100755
--- a/.gitignore
+++ b/.gitignore
@@ -3,6 +3,5 @@
 __pycache__
 */__pycache__/*
 run/
-*/data/*
-!/GTSRB/data/dataset.tar.gz
+data/
 !/BHPD/data/BostonHousing.csv
diff --git a/BHPD/01-DNN-Regression.ipynb b/BHPD/01-DNN-Regression.ipynb
index b8ee713..8d27450 100644
--- a/BHPD/01-DNN-Regression.ipynb
+++ b/BHPD/01-DNN-Regression.ipynb
@@ -30,7 +30,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## 1/ Init python stuff"
+    "## Step 1 - Import and init"
    ]
   },
   {
@@ -38,16 +38,50 @@
    "execution_count": 1,
    "metadata": {},
    "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<style>\n",
+       "\n",
+       "div.warn {    \n",
+       "    background-color: #fcf2f2;\n",
+       "    border-color: #dFb5b4;\n",
+       "    border-left: 5px solid #dfb5b4;\n",
+       "    padding: 0.5em;\n",
+       "    font-weight: bold;\n",
+       "    font-size: 1.1em;;\n",
+       "    }\n",
+       "\n",
+       "\n",
+       "\n",
+       "div.nota {    \n",
+       "    background-color: #DAFFDE;\n",
+       "    border-left: 5px solid #92CC99;\n",
+       "    padding: 0.5em;\n",
+       "    }\n",
+       "\n",
+       "\n",
+       "\n",
+       "</style>\n",
+       "\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "IDLE 2020 - Practical Work Module\n",
-      "  Version            : 0.2.4\n",
-      "  Run time           : Sunday 2 February 2020, 15:17:29\n",
-      "  Matplotlib style   : ../fidle/talk.mplstyle\n",
-      "  TensorFlow version : 2.0.0\n",
-      "  Keras version      : 2.2.4-tf\n"
+      "\n",
+      "FIDLE 2020 - Practical Work Module\n",
+      "Version              : 0.2.8\n",
+      "Run time             : Saturday 15 February 2020, 12:38:00\n",
+      "TensorFlow version   : 2.0.0\n",
+      "Keras version        : 2.2.4-tf\n"
      ]
     }
    ],
@@ -66,16 +100,17 @@
     "sys.path.append('..')\n",
     "import fidle.pwk as ooo\n",
     "\n",
-    "ooo.init()"
+    "ooo.init()\n",
+    "os.makedirs('./run/models',   mode=0o750, exist_ok=True)"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## 2/ Retrieve data\n",
+    "## Step 2 - Retrieve data\n",
     "\n",
-    "**From Keras :**\n",
+    "### 2.1 - Option 1  : From Keras\n",
     "Boston housing is a famous historic dataset, so we can get it directly from [Keras datasets](https://www.tensorflow.org/api_docs/python/tf/keras/datasets)  "
    ]
   },
@@ -90,15 +125,122 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "**From a csv file :**  \n",
+    "### 2.2 - Option 2 : From a csv file\n",
     "More fun !"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 2,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<style  type=\"text/css\" >\n",
+       "</style><table id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826\" ><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>        <th class=\"col_heading level0 col13\" >medv</th>    </tr></thead><tbody>\n",
+       "                <tr>\n",
+       "                        <th id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826level0_row0\" class=\"row_heading level0 row0\" >0</th>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row0_col0\" class=\"data row0 col0\" >0.01</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row0_col1\" class=\"data row0 col1\" >18.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row0_col2\" class=\"data row0 col2\" >2.31</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row0_col3\" class=\"data row0 col3\" >0.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row0_col4\" class=\"data row0 col4\" >0.54</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row0_col5\" class=\"data row0 col5\" >6.58</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row0_col6\" class=\"data row0 col6\" >65.20</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row0_col7\" class=\"data row0 col7\" >4.09</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row0_col8\" class=\"data row0 col8\" >1.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row0_col9\" class=\"data row0 col9\" >296.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row0_col10\" class=\"data row0 col10\" >15.30</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row0_col11\" class=\"data row0 col11\" >396.90</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row0_col12\" class=\"data row0 col12\" >4.98</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row0_col13\" class=\"data row0 col13\" >24.00</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826level0_row1\" class=\"row_heading level0 row1\" >1</th>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row1_col0\" class=\"data row1 col0\" >0.03</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row1_col1\" class=\"data row1 col1\" >0.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row1_col2\" class=\"data row1 col2\" >7.07</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row1_col3\" class=\"data row1 col3\" >0.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row1_col4\" class=\"data row1 col4\" >0.47</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row1_col5\" class=\"data row1 col5\" >6.42</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row1_col6\" class=\"data row1 col6\" >78.90</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row1_col7\" class=\"data row1 col7\" >4.97</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row1_col8\" class=\"data row1 col8\" >2.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row1_col9\" class=\"data row1 col9\" >242.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row1_col10\" class=\"data row1 col10\" >17.80</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row1_col11\" class=\"data row1 col11\" >396.90</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row1_col12\" class=\"data row1 col12\" >9.14</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row1_col13\" class=\"data row1 col13\" >21.60</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826level0_row2\" class=\"row_heading level0 row2\" >2</th>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row2_col0\" class=\"data row2 col0\" >0.03</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row2_col1\" class=\"data row2 col1\" >0.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row2_col2\" class=\"data row2 col2\" >7.07</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row2_col3\" class=\"data row2 col3\" >0.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row2_col4\" class=\"data row2 col4\" >0.47</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row2_col5\" class=\"data row2 col5\" >7.18</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row2_col6\" class=\"data row2 col6\" >61.10</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row2_col7\" class=\"data row2 col7\" >4.97</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row2_col8\" class=\"data row2 col8\" >2.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row2_col9\" class=\"data row2 col9\" >242.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row2_col10\" class=\"data row2 col10\" >17.80</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row2_col11\" class=\"data row2 col11\" >392.83</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row2_col12\" class=\"data row2 col12\" >4.03</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row2_col13\" class=\"data row2 col13\" >34.70</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826level0_row3\" class=\"row_heading level0 row3\" >3</th>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row3_col0\" class=\"data row3 col0\" >0.03</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row3_col1\" class=\"data row3 col1\" >0.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row3_col2\" class=\"data row3 col2\" >2.18</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row3_col3\" class=\"data row3 col3\" >0.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row3_col4\" class=\"data row3 col4\" >0.46</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row3_col5\" class=\"data row3 col5\" >7.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row3_col6\" class=\"data row3 col6\" >45.80</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row3_col7\" class=\"data row3 col7\" >6.06</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row3_col8\" class=\"data row3 col8\" >3.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row3_col9\" class=\"data row3 col9\" >222.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row3_col10\" class=\"data row3 col10\" >18.70</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row3_col11\" class=\"data row3 col11\" >394.63</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row3_col12\" class=\"data row3 col12\" >2.94</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row3_col13\" class=\"data row3 col13\" >33.40</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826level0_row4\" class=\"row_heading level0 row4\" >4</th>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row4_col0\" class=\"data row4 col0\" >0.07</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row4_col1\" class=\"data row4 col1\" >0.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row4_col2\" class=\"data row4 col2\" >2.18</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row4_col3\" class=\"data row4 col3\" >0.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row4_col4\" class=\"data row4 col4\" >0.46</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row4_col5\" class=\"data row4 col5\" >7.15</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row4_col6\" class=\"data row4 col6\" >54.20</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row4_col7\" class=\"data row4 col7\" >6.06</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row4_col8\" class=\"data row4 col8\" >3.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row4_col9\" class=\"data row4 col9\" >222.00</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row4_col10\" class=\"data row4 col10\" >18.70</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row4_col11\" class=\"data row4 col11\" >396.90</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row4_col12\" class=\"data row4 col12\" >5.33</td>\n",
+       "                        <td id=\"T_9eb52d06_4fe7_11ea_bfba_2f4388d94826row4_col13\" class=\"data row4 col13\" >36.20</td>\n",
+       "            </tr>\n",
+       "    </tbody></table>"
+      ],
+      "text/plain": [
+       "<pandas.io.formats.style.Styler at 0x7f7b6c0c8050>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Données manquantes :  0   Shape is :  (506, 14)\n"
+     ]
+    }
+   ],
    "source": [
     "data = pd.read_csv('./data/BostonHousing.csv', header=0)\n",
     "\n",
@@ -110,17 +252,27 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## 3/ Preparing the data\n",
-    "### 3.1/ Split data\n",
+    "## Step 3 - Preparing the data\n",
+    "### 3.1 - Split data\n",
     "We will use 70% of the data for training and 30% for validation.  \n",
     "x will be input data and y the expected output"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 3,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Original data shape was :  (506, 14)\n",
+      "x_train :  (354, 13) y_train :  (354,)\n",
+      "x_test  :  (152, 13) y_test  :  (152,)\n"
+     ]
+    }
+   ],
    "source": [
     "# ---- Split => train, test\n",
     "#\n",
@@ -143,19 +295,304 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "### 3.2/ Data normalization\n",
+    "### 3.2 - Data normalization\n",
     "**Note :** \n",
     " - All input data must be normalized, train and test.  \n",
-    " - To do this we will subtract the mean and divide by the standard deviation.  \n",
+    " - To do this we will **subtract the mean** and **divide by the standard deviation**.  \n",
     " - But test data should not be used in any way, even for normalization.  \n",
     " - The mean and the standard deviation will therefore only be calculated with the train data."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 4,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<style  type=\"text/css\" >\n",
+       "</style><table id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826\" ><caption>Before normalization :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>    </tr></thead><tbody>\n",
+       "                <tr>\n",
+       "                        <th id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826level0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row0_col0\" class=\"data row0 col0\" >354.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row0_col1\" class=\"data row0 col1\" >354.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row0_col2\" class=\"data row0 col2\" >354.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row0_col3\" class=\"data row0 col3\" >354.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row0_col4\" class=\"data row0 col4\" >354.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row0_col5\" class=\"data row0 col5\" >354.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row0_col6\" class=\"data row0 col6\" >354.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row0_col7\" class=\"data row0 col7\" >354.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row0_col8\" class=\"data row0 col8\" >354.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row0_col9\" class=\"data row0 col9\" >354.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row0_col10\" class=\"data row0 col10\" >354.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row0_col11\" class=\"data row0 col11\" >354.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row0_col12\" class=\"data row0 col12\" >354.00</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826level0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row1_col0\" class=\"data row1 col0\" >3.73</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row1_col1\" class=\"data row1 col1\" >10.85</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row1_col2\" class=\"data row1 col2\" >11.11</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row1_col3\" class=\"data row1 col3\" >0.08</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row1_col4\" class=\"data row1 col4\" >0.55</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row1_col5\" class=\"data row1 col5\" >6.26</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row1_col6\" class=\"data row1 col6\" >69.55</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row1_col7\" class=\"data row1 col7\" >3.86</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row1_col8\" class=\"data row1 col8\" >9.69</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row1_col9\" class=\"data row1 col9\" >410.44</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row1_col10\" class=\"data row1 col10\" >18.56</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row1_col11\" class=\"data row1 col11\" >355.37</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row1_col12\" class=\"data row1 col12\" >12.98</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826level0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row2_col0\" class=\"data row2 col0\" >8.61</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row2_col1\" class=\"data row2 col1\" >22.71</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row2_col2\" class=\"data row2 col2\" >6.86</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row2_col3\" class=\"data row2 col3\" >0.27</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row2_col4\" class=\"data row2 col4\" >0.11</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row2_col5\" class=\"data row2 col5\" >0.67</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row2_col6\" class=\"data row2 col6\" >27.52</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row2_col7\" class=\"data row2 col7\" >2.17</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row2_col8\" class=\"data row2 col8\" >8.79</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row2_col9\" class=\"data row2 col9\" >170.55</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row2_col10\" class=\"data row2 col10\" >2.07</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row2_col11\" class=\"data row2 col11\" >93.33</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row2_col12\" class=\"data row2 col12\" >7.13</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826level0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row3_col0\" class=\"data row3 col0\" >0.01</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row3_col1\" class=\"data row3 col1\" >0.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row3_col2\" class=\"data row3 col2\" >0.74</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row3_col3\" class=\"data row3 col3\" >0.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row3_col4\" class=\"data row3 col4\" >0.39</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row3_col5\" class=\"data row3 col5\" >3.56</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row3_col6\" class=\"data row3 col6\" >6.50</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row3_col7\" class=\"data row3 col7\" >1.17</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row3_col8\" class=\"data row3 col8\" >1.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row3_col9\" class=\"data row3 col9\" >187.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row3_col10\" class=\"data row3 col10\" >12.60</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row3_col11\" class=\"data row3 col11\" >0.32</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row3_col12\" class=\"data row3 col12\" >1.92</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826level0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row4_col0\" class=\"data row4 col0\" >0.08</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row4_col1\" class=\"data row4 col1\" >0.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row4_col2\" class=\"data row4 col2\" >5.19</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row4_col3\" class=\"data row4 col3\" >0.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row4_col4\" class=\"data row4 col4\" >0.45</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row4_col5\" class=\"data row4 col5\" >5.89</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row4_col6\" class=\"data row4 col6\" >47.45</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row4_col7\" class=\"data row4 col7\" >2.07</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row4_col8\" class=\"data row4 col8\" >4.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row4_col9\" class=\"data row4 col9\" >279.50</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row4_col10\" class=\"data row4 col10\" >17.40</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row4_col11\" class=\"data row4 col11\" >374.59</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row4_col12\" class=\"data row4 col12\" >7.46</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826level0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row5_col0\" class=\"data row5 col0\" >0.25</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row5_col1\" class=\"data row5 col1\" >0.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row5_col2\" class=\"data row5 col2\" >9.12</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row5_col3\" class=\"data row5 col3\" >0.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row5_col4\" class=\"data row5 col4\" >0.53</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row5_col5\" class=\"data row5 col5\" >6.17</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row5_col6\" class=\"data row5 col6\" >78.50</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row5_col7\" class=\"data row5 col7\" >3.32</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row5_col8\" class=\"data row5 col8\" >5.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row5_col9\" class=\"data row5 col9\" >330.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row5_col10\" class=\"data row5 col10\" >19.05</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row5_col11\" class=\"data row5 col11\" >391.30</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row5_col12\" class=\"data row5 col12\" >11.57</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826level0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row6_col0\" class=\"data row6 col0\" >3.99</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row6_col1\" class=\"data row6 col1\" >12.50</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row6_col2\" class=\"data row6 col2\" >18.10</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row6_col3\" class=\"data row6 col3\" >0.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row6_col4\" class=\"data row6 col4\" >0.62</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row6_col5\" class=\"data row6 col5\" >6.55</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row6_col6\" class=\"data row6 col6\" >94.38</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row6_col7\" class=\"data row6 col7\" >5.27</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row6_col8\" class=\"data row6 col8\" >24.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row6_col9\" class=\"data row6 col9\" >666.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row6_col10\" class=\"data row6 col10\" >20.20</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row6_col11\" class=\"data row6 col11\" >396.21</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row6_col12\" class=\"data row6 col12\" >17.27</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826level0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row7_col0\" class=\"data row7 col0\" >73.53</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row7_col1\" class=\"data row7 col1\" >95.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row7_col2\" class=\"data row7 col2\" >27.74</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row7_col3\" class=\"data row7 col3\" >1.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row7_col4\" class=\"data row7 col4\" >0.87</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row7_col5\" class=\"data row7 col5\" >8.78</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row7_col6\" class=\"data row7 col6\" >100.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row7_col7\" class=\"data row7 col7\" >12.13</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row7_col8\" class=\"data row7 col8\" >24.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row7_col9\" class=\"data row7 col9\" >711.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row7_col10\" class=\"data row7 col10\" >22.00</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row7_col11\" class=\"data row7 col11\" >396.90</td>\n",
+       "                        <td id=\"T_9ebc7b06_4fe7_11ea_bfba_2f4388d94826row7_col12\" class=\"data row7 col12\" >36.98</td>\n",
+       "            </tr>\n",
+       "    </tbody></table>"
+      ],
+      "text/plain": [
+       "<pandas.io.formats.style.Styler at 0x7f7af2b97cd0>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<style  type=\"text/css\" >\n",
+       "</style><table id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826\" ><caption>After normalization :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>    </tr></thead><tbody>\n",
+       "                <tr>\n",
+       "                        <th id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826level0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row0_col0\" class=\"data row0 col0\" >354.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row0_col1\" class=\"data row0 col1\" >354.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row0_col2\" class=\"data row0 col2\" >354.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row0_col3\" class=\"data row0 col3\" >354.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row0_col4\" class=\"data row0 col4\" >354.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row0_col5\" class=\"data row0 col5\" >354.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row0_col6\" class=\"data row0 col6\" >354.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row0_col7\" class=\"data row0 col7\" >354.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row0_col8\" class=\"data row0 col8\" >354.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row0_col9\" class=\"data row0 col9\" >354.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row0_col10\" class=\"data row0 col10\" >354.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row0_col11\" class=\"data row0 col11\" >354.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row0_col12\" class=\"data row0 col12\" >354.00</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826level0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row1_col0\" class=\"data row1 col0\" >-0.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row1_col1\" class=\"data row1 col1\" >0.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row1_col2\" class=\"data row1 col2\" >0.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row1_col3\" class=\"data row1 col3\" >0.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row1_col4\" class=\"data row1 col4\" >-0.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row1_col5\" class=\"data row1 col5\" >0.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row1_col6\" class=\"data row1 col6\" >-0.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row1_col7\" class=\"data row1 col7\" >0.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row1_col8\" class=\"data row1 col8\" >-0.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row1_col9\" class=\"data row1 col9\" >0.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row1_col10\" class=\"data row1 col10\" >0.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row1_col11\" class=\"data row1 col11\" >0.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row1_col12\" class=\"data row1 col12\" >-0.00</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826level0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row2_col0\" class=\"data row2 col0\" >1.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row2_col1\" class=\"data row2 col1\" >1.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row2_col2\" class=\"data row2 col2\" >1.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row2_col3\" class=\"data row2 col3\" >1.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row2_col4\" class=\"data row2 col4\" >1.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row2_col5\" class=\"data row2 col5\" >1.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row2_col6\" class=\"data row2 col6\" >1.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row2_col7\" class=\"data row2 col7\" >1.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row2_col8\" class=\"data row2 col8\" >1.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row2_col9\" class=\"data row2 col9\" >1.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row2_col10\" class=\"data row2 col10\" >1.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row2_col11\" class=\"data row2 col11\" >1.00</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row2_col12\" class=\"data row2 col12\" >1.00</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826level0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row3_col0\" class=\"data row3 col0\" >-0.43</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row3_col1\" class=\"data row3 col1\" >-0.48</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row3_col2\" class=\"data row3 col2\" >-1.51</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row3_col3\" class=\"data row3 col3\" >-0.29</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row3_col4\" class=\"data row3 col4\" >-1.48</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row3_col5\" class=\"data row3 col5\" >-4.03</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row3_col6\" class=\"data row3 col6\" >-2.29</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row3_col7\" class=\"data row3 col7\" >-1.24</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row3_col8\" class=\"data row3 col8\" >-0.99</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row3_col9\" class=\"data row3 col9\" >-1.31</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row3_col10\" class=\"data row3 col10\" >-2.88</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row3_col11\" class=\"data row3 col11\" >-3.80</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row3_col12\" class=\"data row3 col12\" >-1.55</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826level0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row4_col0\" class=\"data row4 col0\" >-0.42</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row4_col1\" class=\"data row4 col1\" >-0.48</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row4_col2\" class=\"data row4 col2\" >-0.86</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row4_col3\" class=\"data row4 col3\" >-0.29</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row4_col4\" class=\"data row4 col4\" >-0.88</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row4_col5\" class=\"data row4 col5\" >-0.56</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row4_col6\" class=\"data row4 col6\" >-0.80</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row4_col7\" class=\"data row4 col7\" >-0.83</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row4_col8\" class=\"data row4 col8\" >-0.65</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row4_col9\" class=\"data row4 col9\" >-0.77</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row4_col10\" class=\"data row4 col10\" >-0.56</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row4_col11\" class=\"data row4 col11\" >0.21</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row4_col12\" class=\"data row4 col12\" >-0.77</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826level0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row5_col0\" class=\"data row5 col0\" >-0.40</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row5_col1\" class=\"data row5 col1\" >-0.48</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row5_col2\" class=\"data row5 col2\" >-0.29</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row5_col3\" class=\"data row5 col3\" >-0.29</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row5_col4\" class=\"data row5 col4\" >-0.21</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row5_col5\" class=\"data row5 col5\" >-0.13</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row5_col6\" class=\"data row5 col6\" >0.33</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row5_col7\" class=\"data row5 col7\" >-0.25</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row5_col8\" class=\"data row5 col8\" >-0.53</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row5_col9\" class=\"data row5 col9\" >-0.47</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row5_col10\" class=\"data row5 col10\" >0.24</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row5_col11\" class=\"data row5 col11\" >0.39</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row5_col12\" class=\"data row5 col12\" >-0.20</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826level0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row6_col0\" class=\"data row6 col0\" >0.03</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row6_col1\" class=\"data row6 col1\" >0.07</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row6_col2\" class=\"data row6 col2\" >1.02</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row6_col3\" class=\"data row6 col3\" >-0.29</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row6_col4\" class=\"data row6 col4\" >0.63</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row6_col5\" class=\"data row6 col5\" >0.44</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row6_col6\" class=\"data row6 col6\" >0.90</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row6_col7\" class=\"data row6 col7\" >0.65</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row6_col8\" class=\"data row6 col8\" >1.63</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row6_col9\" class=\"data row6 col9\" >1.50</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row6_col10\" class=\"data row6 col10\" >0.80</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row6_col11\" class=\"data row6 col11\" >0.44</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row6_col12\" class=\"data row6 col12\" >0.60</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826level0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row7_col0\" class=\"data row7 col0\" >8.11</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row7_col1\" class=\"data row7 col1\" >3.71</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row7_col2\" class=\"data row7 col2\" >2.42</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row7_col3\" class=\"data row7 col3\" >3.48</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row7_col4\" class=\"data row7 col4\" >2.81</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row7_col5\" class=\"data row7 col5\" >3.77</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row7_col6\" class=\"data row7 col6\" >1.11</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row7_col7\" class=\"data row7 col7\" >3.81</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row7_col8\" class=\"data row7 col8\" >1.63</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row7_col9\" class=\"data row7 col9\" >1.76</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row7_col10\" class=\"data row7 col10\" >1.67</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row7_col11\" class=\"data row7 col11\" >0.44</td>\n",
+       "                        <td id=\"T_9ec335cc_4fe7_11ea_bfba_2f4388d94826row7_col12\" class=\"data row7 col12\" >3.36</td>\n",
+       "            </tr>\n",
+       "    </tbody></table>"
+      ],
+      "text/plain": [
+       "<pandas.io.formats.style.Styler at 0x7f7af238e790>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
    "source": [
     "display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"Before normalization :\"))\n",
     "\n",
@@ -174,7 +611,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## 4/ Build a model\n",
+    "## Step 4 - Build a model\n",
     "About informations about : \n",
     " - [Optimizer](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers)\n",
     " - [Activation](https://www.tensorflow.org/api_docs/python/tf/keras/activations)\n",
@@ -184,16 +621,17 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 5,
    "metadata": {},
    "outputs": [],
    "source": [
     "  def get_model_v1(shape):\n",
     "    \n",
     "    model = keras.models.Sequential()\n",
-    "    model.add(keras.layers.Dense(64, activation='relu', input_shape=shape))\n",
-    "    model.add(keras.layers.Dense(64, activation='relu'))\n",
-    "    model.add(keras.layers.Dense(1))\n",
+    "    model.add(keras.layers.Input(shape, name=\"InputLayer\"))\n",
+    "    model.add(keras.layers.Dense(64, activation='relu', name='Dense_n1'))\n",
+    "    model.add(keras.layers.Dense(64, activation='relu', name='Dense_n2'))\n",
+    "    model.add(keras.layers.Dense(1, name='Output'))\n",
     "    \n",
     "    model.compile(optimizer = 'rmsprop',\n",
     "                  loss      = 'mse',\n",
@@ -205,32 +643,274 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## 5/ Train the model"
+    "## Step 5 - Train the model\n",
+    "### 5.1 - Get it"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 6,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Model: \"sequential\"\n",
+      "_________________________________________________________________\n",
+      "Layer (type)                 Output Shape              Param #   \n",
+      "=================================================================\n",
+      "Dense_n1 (Dense)             (None, 64)                896       \n",
+      "_________________________________________________________________\n",
+      "Dense_n2 (Dense)             (None, 64)                4160      \n",
+      "_________________________________________________________________\n",
+      "Output (Dense)               (None, 1)                 65        \n",
+      "=================================================================\n",
+      "Total params: 5,121\n",
+      "Trainable params: 5,121\n",
+      "Non-trainable params: 0\n",
+      "_________________________________________________________________\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAGVCAIAAADls7hIAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzde1wU5f448Ge4LCwLuyAJCwuKWkRe2Aj80RqEgkGFYGwgmmgdD8Q39QApKph6vJFpmHC+aiocA6VM4fXCAtPyoHQOCAkWmBpi4I27gguCclmZ3x/Pab7TLiw7sOzs4uf9l/vMM898dmI/zeWZzxAkSSIAAABqM2A7AAAA0DOQNwEAgBnImwAAwAzkTQAAYMaI/qGkpOSzzz5jKxQAANBNEolk1apV1Mc/HW/evXs3JydH6yEBoFV1dXXwd05XWlpaWlrKdhS6q7S0tKSkhN5ipNwpOztbW/EAwIITJ06Eh4fD3zklLCwMwQ9/cHj/0MH1TQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBACoJSsri/iDubm5wtLbt28HBwd3dHQghBobG5OSkjw8PPh8vlAo9PHxyc3NHd5Gv/vuO2dnZyOjAe5gkyRZXFy8YsUKZ2dnExMTGxsbLy+vrKwses2NhISE48ePK6yYkJBAfZGXX355GFFB3gRAXZ2dnc8999y8efPYDoRNn3/+OUmSnZ2d9MaKigoPDw9/f38+n48QioqKSklJ2bJlS2NjY2lpqYODg1QqTUhIYLShmpqa4ODgxMTE5ubmATtcv37dy8ururo6Jyenvb29tLR0woQJS5YsWbNmDdUnKioqMTFx48aN9BU/+eQTkiRJkjQ0NGQUEgXyJgDqIkmyv7+/v7+frQDMzc29vLzY2vpgOjo6goKC3n777ZUrV1KNycnJgYGBPB7Pycnpiy++EIlEycnJLS0t6g+7cePGWbNmXbp0ycLCYrA+RkZGJ06ccHV1NTU1nTx5ckZGhrW19d69e3t6enCHKVOm5ObmJiUlnThxYthfcIDtanAsAMY2CwuLmpoatqPQObt27Wpqatq0aRPVkp+fT+/A4XCmTp1aX19//fp1GxsbNYf95z//yeVyVXRwcXHp6+tT2JCjo2NFRUV3d7eJiQluFIvFoaGhq1evlkqlA57vDwMcbwIAho8kyfT0dE9PT3t7exXdamtrEULjxo1Tf2TVSXNAMpnsxo0bbm5uAoGA3h4SElJXV3fq1CmmAw4G8iYAajl58iR1M6G7u1uh5datW+Hh4ZaWltbW1vPmzaMOS5OTk3EHBweHsrIyPz8/CwsLMzOzOXPmFBcX4z7bt2/Hfahz8DNnzuCWZ555hj5OV1dXcXExXqSpQ6cRqqysbG5uFovFKvpkZmbW1NQ4OztPnTp1lMLo6OgoLi4ODg4WCoVHjhxRWPriiy8ihL7//ntNbQ7yJgBqeeutt0iSnD9//oAtcXFxcXFx9fX1x48fP3fu3KJFi3Cf+Ph4kiTFYrFMJouNjd2+fXtTU9O///3vtrY2X1/fH3/8ESG0YcMGkiR5PB418uuvv06SpLu7O9WCx+HxeK+88gq+pyGXy6mlvr6+1tbWrDxjfuXKFYSQg4PDgEuvXbsWGxu7bNkyKysrfDt+NGLYvn27QCDw8vIyNDTMzc2dPn26QgeRSESFqhGQNwHQgMjISIlEwuPx5s6dGxgYWFZWdv/+fXqHrq6u/fv34z4eHh5ZWVm9vb2xsbEa2Xp/fz9OphoZjZHGxkaEkMJ5McXV1TU7O3vlypVXrlyZOXPmKMWwYcOGnp6e3377zcXFxc3Nbdu2bQod+Hw+QRA4VI3QiUN9APQdPSk4OjoihBoaGqizbIQQj8fDZ4vYjBkz7O3tKysrGxsb7ezsRrj1wsLCEY4wbPiShbGx8WAdzp075+LiMtphcDgcFxeXzz//vLm5edOmTRKJZO7cufQORkZGjx8/1tTm4HgTAA2gH3BxOByEkMJ0JUtLS4VV8J1lRlNzdJCpqSlCSOG+NouCgoKQ0g19hJBcLh/GjabBQN4EQBtaW1sVzqNxxqTm5RgYGPT29tI7yGQyhUFG6frgSOCD5fb2drYD+S88/aitrY3e2NHRQZLkyI/rKZA3AdCG7u7usrIy6uOvv/7a0NAgFoupH7OdnV19fT3Voamp6c6dOwqDmJmZUbn1+eefP3To0ChHPTR8E6aurm7ApXK5fPRO0uPj4yMiIhQaT58+jf582QQhhHes8v2iYYO8CYA2CASC9evXl5SUdHV1lZeXR0REcDic1NRUqoO/v39DQ8PevXs7OztrampiY2OVp4i/9NJL1dXVd+/eLSkpqa2t9fb2xu0s3k8Xi8U2NjaVlZXKi9LS0ng83tq1a5UXRUREEARx8+bNEW79q6++2rp1661bt3p6em7durVu3bqsrCx3d/fIyEh6t4qKCoSQv7//CDdHgbwJgFrwbM1vvvkGIcTlciMiIkpLS+ktGzZsQAgRBLFz506EkJubG/1JdnNz8//93//dsmWLnZ3dq6++amVlde7cOR8fH6rD9u3bIyMjP/74Yxsbm/fee2/NmjVCobC1tZUgCOrJ7pSUFFdX1xdeeCE8PDw1NfWFF17A7XK5nK376QRBREZG/vTTTw0NDQqLVNzlb2xsNDc3nzBhgoqR8/Pz8UzV+vr6J0+e4H+np6dTHTZt2pSWlnbhwoU5c+bw+fwZM2YUFBTs2LHjP//5j8KlzNzcXJFIFBgYOIIv+mckDS4cQgIwpmn/71wsFotEIm1ukZHQ0NDQ0NAhux09ehT9UdeDTiaTiUSi6OhoNTf34MEDLpcbGRnJONBhqaioIAji2LFjyosMDQ09PT2HHEF5/8DxJgBgRAQCQV5eXk5Ozr59+4bsTJJkTEwMn89XnmU5Gmpra6VSaWJi4sKFCzU47HDyprm5OUGTnJyswYBGSJdjY0SXv4guxwZG2wcffKBcf9PNza28vPz06dO4/qYKzc3NtbW1BQUFQqFwNMP8r4MHDyYlJSUlJdEbqfqbT548Gea49INP9c9ffvnlF4TQ/Pnz1emsZbocGyO6/EV0ObYhafM8/dNPP6X/3D766CPtbJcRNc/Tn1pj6jxdN2sRjjGwk0cIP1dO2b59O9sRAQ3Q47wJAACsgLwJAADMaCxv6lctQrlcfvz48ddee00oFHK53BkzZqSmpuIHimUyGf2mBz6xksvlVEtoaCge5N69ezExMU5OThwOZ/z48VKpFE+vVdgb169fX7BggbW1Nf6oUCYHdrKu7WQAhka/+DLy+0K4FuH8+fMvXLjQ2dl59uxZLpc7c+ZMeh+xWMzj8SQSCe5TVlbm6urK4XAKCwupPvQ6g5i7u7u1tTW9RbmP6tjo8vLyEEIff/xxW1vbvXv3/vGPfxgYGNAvRQUEBBgYGPz+++/0tSQSyZdffon/3dDQMHHiRFtb21OnTj18+PDKlSs+Pj6mpqYXLlxQ2Bs+Pj7nz5/v6uoqLS01NDS8d+8eSZJz5swZN25cSUmJiiBhJ49wJw8G5ikrgPtCqinvn1HJm3l5efRNIoTof8e4NPQvv/xCtVy+fBkhJBaLqRYt/KRnz55Nb4mIiDA2Nm5vb8cfcWno5cuXUx2KiopEIlFvby/++O677yKEqF84SZKNjY0mJibu7u4Ke+O7775TDsDHx8fKyor++1f/i8BOVnMnDwbypgLIm6pp6X76gLUI6R1U1CIcjXiUzZs37/z58/QWsVjc19d39epV/NHf33/GjBkZGRmtra245dNPP/3b3/5G1Rk8efKkgYEB/UE6oVA4bdq0S5cuKdQ4+H//7/8pB1BYWNjW1iaRSIb9FWAn00cecCerRoA/5OTk5OTksB2F7srJyVH44xmVusXDq0XY0NDQ0tKiwVpPKrS3t+/evTs3N7euro5erevRo0fUv+Pi4v7617/u379/48aN1dXV586d++KLL/Cinp4eXDhrwDLXN27coL82gP7+Aw2CnTzCnYyPOgFCaM+ePQihDz/8kO1AdBTeP3Ts1HvHtQgJWjFBLdciDAoK+s9//pOamrpo0aJnnnmGIIiUlJQPP/yQpNUgWLx48fr16/fu3bt27drdu3e/++67VlZWeJGJiYmlpWVnZ+fjx4915PVYymAnq7ZgwQKNj6mnsrOzEeyQweH9Q8fOPCS2ahEaGRlVVVU9efKkuLhYKBTGxMSMHz8epwblGvomJibLly9vaWnZvXv3l19+qfAqGKlUKpfLqTvU2M6dOydMmEB/YRaLYCcDMErYyZujWotwSIaGhrNnz25qavr000/v37//+PHj8+fPHzhwQLnn8uXLcX2wuXPnPvvss/RFO3bsmDJlyrJly06fPt3e3t7W1nbw4MGtW7cmJyerc3CkhYKJsJMBGC30m0Rq3mdUuJb06aefkiRZUlJCb8TP4dJbAgMD8eq4pta1a9cCAgIsLCy4XK6Pj09RURF9EzKZLDIy0s7Ojsvlenl5lZWVUe9EXbduHe5TVVXl7e3N4/EcHR337ds3YGzKfvvtN5Ik7927Fx0d7ejoaGxsbGtr+95771ElDun3akmSjIqKQgj9+OOPyvuhtbV11apVkydPNjY2Hj9+vL+//9mzZ/Eihb2hvFe9vb1V30+HnTzynTwYuJ+uAO6nq6axeUgjoeO1CBUcPnxY4UeuF2AnqwB5UwHkTdXGVF0P7Thw4MCqVavYjmKMg52sF7KysqipOQp15BBCt2/fDg4OxnXkGhsbk5KSPDw8+Hy+UCj08fHJzc0d3ka/++47Z2fnAS/LkCRZXFy8YsUKZ2dnExMTGxsbLy+vrKwsknYSlpCQoDxxgqojRxDEyy+/PIyoIG8OID09PSQkpLOz88CBAw8ePID7jKMBdrKewvXeOzs76Y0VFRUeHh7+/v58Ph8hFBUVlZKSsmXLlsbGxtLSUgcHB6lUSl2lUVNNTU1wcHBiYmJzc/OAHa5fv+7l5VVdXZ2Tk9Pe3l5aWjphwoQlS5asWbOG6hMVFZWYmLhx40b6ip988gk+bDQ0NGQU0v+hH3yO9vmLXtQiJEkyLS0NIWRkZOTq6nrp0iW2w2EGdvKQtHyePtgzV7oz/gjfk9He3u7g4EB/T0ZgYGBGRgb1saenRyQSGRoaNjc3qx/VokWLduzY0dfXh9dV7vDbb78ZGRm1tbXRN2RtbW1iYtLd3U014vdkHD9+XHmEYb8nA94vBJ46kDcVjDBvfvTRR0ZGRvX19SrWfe211xBC//73v9WP6tGjR/gfg+XNAeFn5GQyGb0xLCzMwcGhr69PoTO8XwgAwAKSJNPT0z09Pe3t7VV0q62tRQiNGzdO/ZEV3kmpDplMduPGDTc3N4VnzEJCQurq6k6dOsV0wMFA3gRgUHgW1JQpUzgcjpWV1RtvvEE9cT+SWny6U+tv5CorK5ubm3EdmcFkZmbW1NQ4OztPnTp1lMLo6OgoLi4ODg4WCoVHjhxRWIoPQnEdGY2AvAnAwJqammbOnPnVV1+lpqbev3//p59+MjMz8/Pzw6/w3rBhA/nnqayvv/46SZLUHFj0x0sy6OfR+DEn3C4Wi2UyWWxs7Pbt25uamv7973+3tbX5+vr++OOPIxwf08KzFQihK1euIITotQLorl27Fhsbu2zZMisrK3w7fjRi2L59u0Ag8PLyMjQ0zM3NnT59ukIHkUhEhaoRkDcBGFhiYuLNmzdTUlLmzZvH5/OdnZ2/+uorOzu7mJiYwe7wMtXV1bV//36JRMLj8Tw8PLKysnp7exUeNh22/v5+nEw1MtpgcHmtAWuvIIRcXV2zs7NXrlx55coVegUvzdqwYUNPT89vv/3m4uLi5uam/IZhPp9PEIQGK4FB3gRgYHjKYWBgINViYmLi5+f3+PFjTZ3xjWqtv5HXKlRHd3c3Qogq/afs3Llzqampqq9+jhyHw3Fxcfn888+Dg4M3bdr0r3/9S6GDkZGRcnmEYYO8CcAAcBU7U1NTCwsLerutrS1CqKmpSSNbGbDWH/qjcpVeMDU1RQj19fWxHch/BQUFIYTy8/MV2uVy+TBuNA0G8iYAAzAxMREIBN3d3Q8fPqS34zN0oVCIP46wFh+u9Udv0XKtv5HD5bVwpVRdYGJighBqa2ujN3Z0dJAkqcGys5A3ARhYSEgIQog+eaWnp6egoIDL5QYEBOCWEdbiY6vWnwbhmzAK5fcpcrncxcVllDYdHx8fERGh0Hj69Gn057chIITwPlS+XzRskDcBGNiOHTsmTZoUFxeXn5//8OHD6urqd955p7GxMTU1FZ+toxHX4hvVWn/auZ8uFottbGwqKyuVF6WlpfF4vLVr1yovioiIIAji5s2bI9z6V199tXXr1lu3bvX09Ny6dWvdunVZWVnu7u6RkZH0bvgdqP7+/iPc3P+hT4KH54XA00D9v/P79+/HxcVNmjTJ2NhYIBAEBAQUFBTQOwy7Fh85yrX+SDVqFVJG+LzQ+vXrB3xe6MCBA1wul/4GU4qvr6+5ublcLlexOfw+VAVpaWlUh/b29vT09ICAAPyaaHNzc3d39x07dlAPGlHCwsLo7/ujwHOWAKhLR/7OdafW3wjzpkwmE4lE9OfTVXvw4AGXy42MjGQc6LDg59OPHTumvAieswQAsEMgEOTl5eXk5Ozbt2/IziRJxsTE8Pl85VmWo6G2tlYqlSYmJi5cuFCDw0LeBAAw8MEHHyjX33RzcysvLz99+jSuv6lCc3NzbW1tQUEBNSdhVB08eDApKSkpKYneSNXffPLkyfCGhbwJgLbh58orKyvr6+sJgtiwYQPbEaklIiKCOlFVqL+JEHJycsrPz8f1N1UQCoVFRUXTpk0btTD/ZOfOncpHmlT9TZIkh3ffDF5uBYC2xcfHx8fHsx0FGD443gQAAGYgbwIAADOQNwEAgBnImwAAwMwA94VOnDih/TgA0JqSkhIEf+c0+Oly2CGDqaurUyzMTJ8Er/yiYQAAAArPCxHkKJeDBmB48Ltb4b3qQAfB9U0AAGAG8iYAADADeRMAAJiBvAkAAMxA3gQAAGYgbwIAADOQNwEAgBnImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAZiBvAgAAM5A3AQCAGcibAADADORNAABgBvImAAAwA3kTAACYgbwJAADMQN4EAABmIG8CAAAzkDcBAIAZyJsAAMAM5E0AAGAG8iYAADADeRMAAJiBvAkAAMxA3gQAAGYgbwIAADOQNwEAgBnImwAAwAzkTQAAYIYgSZLtGABACKHo6Ojr169TH3/++edJkyZZWVnhj4aGhpmZmQ4ODixFB8D/MWI7AAD+y9bW9tChQ/SWy5cvU/+ePHkyJE2gI+A8HeiKd955Z7BFHA7nvffe02IsAKgC5+lAh0yfPv3atWsD/k1ev37d2dlZ+yEBoAyON4EOWbp0qaGhoUIjQRBisRiSJtAdkDeBDlm0aNGTJ08UGg0NDd99911W4gFgQHCeDnTLrFmzfvrpp/7+fqqFIIi7d++KRCIWowKADo43gW5ZsmQJQRDURwMDAy8vL0iaQKdA3gS6JSwsjP6RIIilS5eyFQwAA4K8CXTLM8884+fnR90dIggiJCSE3ZAAUAB5E+iciIgIfNnd0NAwICDA2tqa7YgA+BPIm0DnSKVSDoeDECJJMiIigu1wAFAEeRPoHB6PN2/ePIQQh8MJCgpiOxwAFEHeBLpo8eLFCKGQkBAej8d2LAAoIVnF9rcHAOil48ePs5i42K+HFBcXJ5FI2I4C6JysrKyFCxcaGf3fn2hJSUlKSsrx48dZjEqn7NmzByH04Ycfsh2ItoWHh7MbAPt5UyKRLFiwgO0ogM4JDg42NTVVaExJSYG/Fkp2djZC6CncIaznTbi+CXSUctIEQEdA3gQAAGYgbwIAADOQNwEAgBnImwA8LW7fvh0cHNzR0YEQamxsTEpK8vDw4PP5QqHQx8cnNzd3eMN+9913zs7O9JkPFJIki4uLV6xY4ezsbGJiYmNj4+XllZWVRZ+DmJCQoHdzJCBvgrGvs7Pzueeew88gPbUqKio8PDz8/f35fD5CKCoqKiUlZcuWLY2NjaWlpQ4ODlKpNCEhgdGYNTU1wcHBiYmJzc3NA3a4fv26l5dXdXV1Tk5Oe3t7aWnphAkTlixZsmbNGqpPVFRUYmLixo0bR/LttAzyJhj7SJLs7++n10LWMnNzcy8vL7a2jhDq6OgICgp6++23V65cSTUmJycHBgbyeDwnJ6cvvvhCJBIlJye3tLSoP+zGjRtnzZp16dIlCwuLwfoYGRmdOHHC1dXV1NR08uTJGRkZ1tbWe/fu7enpwR2mTJmSm5ublJR04sSJYX9BLWN//iYAo83CwqKmpobtKNi0a9eupqamTZs2US35+fn0DhwOZ+rUqfX19devX7exsVFz2H/+859cLldFBxcXl76+PoUNOTo6VlRUdHd3m5iY4EaxWBwaGrp69WqpVDrg+b6ugeNNAMY4kiTT09M9PT3t7e1VdKutrUUIjRs3Tv2RVSfNAclkshs3bri5uQkEAnp7SEhIXV3dqVOnmA7ICsibYIw7efIk8Yfu7m6Fllu3boWHh1taWlpbW8+bN486LE1OTsYdHBwcysrK/Pz8LCwszMzM5syZU1xcjPts374d96HOwc+cOYNbnnnmGfo4XV1dxcXFeJH2j6cqKyubm5vFYrGKPpmZmTU1Nc7OzlOnTh2lMDo6OoqLi4ODg4VC4ZEjRxSWvvjiiwih77//fpS2rmEsPhuP76mx+3w+0CP4ruvw1p0/fz5C6PHjxwot8+fPv3DhQmdn59mzZ7lc7syZM+lricViHo8nkUhwn7KyMldXVw6HU1hYSPXh8XivvPIKfS13d3dra2t6i3IfbM6cOePGjSspKRnelwoNDQ0NDR2y29GjRxFCH3/88YBLr169GhMTY2BgYGVldfHixeFFIhKJDA0NVXTYtm0bTjizZ8++fPmycof29naEkLe3tzqbYz1vwPEmeKpFRkZKJBIejzd37tzAwMCysrL79+/TO3R1de3fvx/38fDwyMrK6u3tjY2N1cjW+/v7qUQwehobGxFCCufFFFdX1+zs7JUrV165cmXmzJmjFMOGDRt6enp+++03FxcXNzc3Ko1S+Hw+QRA4VN2nB5dgARg99Ezh6OiIEGpoaKDOshFCPB4Pn0JiM2bMsLe3r6ysbGxstLOzG+HWCwsLRziCOvDVCWNj48E6nDt3zsXFZbTD4HA4Li4un3/+eXNz86ZNmyQSydy5c+kdjIyMHj9+PNphaAQcb4KnGv0oDL+cQ2G6kqWlpcIq+HYzo/k67MIVUhTua7MI1/BXuKGPEJLL5cO40cQKyJsAqNLa2qpwHo0zJjVZx8DAoLe3l95BJpMpDEJ/I7z24eNifAFRF+DpR21tbfTGjo4OkiRHfgivHZA3AVClu7u7rKyM+vjrr782NDSIxWLqF25nZ1dfX091aGpqunPnjsIgZmZmVG59/vnnDx06NMpR/8n06dMRQnV1dQMulcvlo3eSHh8fr/xmvdOnT6M/XyFBCOF9iEPVfZA3AVBFIBCsX7++pKSkq6urvLw8IiKCw+GkpqZSHfz9/RsaGvbu3dvZ2VlTUxMbG6s8b/yll16qrq6+e/duSUlJbW2tt7c3bvf19bW2ti4tLR3VryAWi21sbCorK5UXpaWl8Xi8tWvXKi+KiIggCOLmzZsj3PpXX321devWW7du9fT03Lp1a926dVlZWe7u7pGRkfRuFRUVCCF/f/8Rbk5LWLyXT+rAfAKgR4Y3D0mhXMXixYtLSkroLR999BH55zPxwMBAvK5YLBaJRNeuXQsICLCwsOByuT4+PkVFRfTxZTJZZGSknZ0dl8v18vIqKytzd3fH46xbtw73qaqq8vb25vF4jo6O+/bto9b19va2srK6cOHC8HaImvOQSJJcv369kZFRfX29QvuBAwe4XG58fLzyKr6+vubm5nK5XMWweXl5yiklLS2N6tDe3p6enh4QEODk5MThcMzNzd3d3Xfs2PHo0SOFocLCwkQiUW9vrzpfh/W8AXkT6I2RzN8cHpw3tblFRtTPmzKZTCQSRUdHqznygwcPuFxuZGTkCKJjoKKigiCIY8eOqdmf9byhB+fp5ubmBA2eoCsWi5cvX37p0iW2oxtdKip0qeNp3nWATiAQ5OXl5eTk7Nu3b8jOJEnGxMTw+XzlWZajoba2ViqVJiYmLly4UAub0wg9yJudnZ2//PILQmj+/PkkSfb19VVVVW3durWqqsrDw+Mvf/nLo0eP2I5R84as0KWOp3PXgQG5ubmVl5efPn0a199Uobm5uba2tqCgQCgUaiGwgwcPJiUlJSUlaWFbmqIHeVOBoaGhra3t/Pnzz507t3bt2oyMjEWLFpFj7lXs6lToYuop2XUagZ8rr6ysrK+vJwhiw4YNbEekAU5OTvn5+bj+pgpCobCoqGjatGnaiWrnzp16dKSJ6V/epPvkk088PT2//fbbr7/+mu1YNOyf//xnQkLC6NWAGMO7TiMUbpVs376d7YiADtHvvEkQBK7Dun//frZj0bDRfnBiDO86AEabfudNhBAu4VVaWko9Rnbv3r2YmBg872H8+PFSqRRPDUPqFRBDCPX09GzatMnFxcXMzGzcuHFBQUHffvvtkydPqA4qNqGamgFoh37tOgB0CAv38GmQevMJ6Dc3FFCFABoaGkiSbGhomDhxoq2t7alTpx4+fHjlyhUfHx9TU1P6FLkhC4hFRkYKBIIffvjh0aNHTU1N8fHxCKHz58/jpepsQjV1KphRVFToUqcK2Vjaddqfh6Tj1J+HNMaomTdGMQAWt01qIm9Sd4Txj//dd99FCH355ZdUh8bGRhMTE3d3d6oF//jz8vKoltDQUITQvXv38MdJkybNmjWLvhVnZ2fqx6/OJlQbMgA6FXnTx8dnyFnTY2nXQd5UAHmTLXpfRw4X7DM2Nsa1v06ePGlgYEB/c6FQKJw2bdqlS5fq6uocHByodhUFxF5//fXPP//8/fffX7Zs2cyZMw0NDa9fv051Vn8Tqg1ZwWxII6xCpqe7To/e3jXa8CPnsEO0T+/zZlFREUJIIjcOHrUAACAASURBVJEYGxv39PTgoi8Dlmi9ceMG/ZepooDYvn37JBJJZmamn58fQsjb2zs6OjokJAQhxGgTqg1ZwWy06emuCw8PV/cbPh1gh2ifft8X6u/vx88/rFixAiFkYmJiaWlpZGTU19enfGg9Z84cNYclCGLJkiX/+te/ZDLZyZMnSZKUSqWfffaZBjfBOv3ddSM9xRpDnubzdHbpd95MTEy8ePFiSEhIWFgYbpFKpXK5nHpzFrZz584JEybI5XI1h7W0tKyqqkIIGRsbv/baa/hWMvWmPY1sgnWw6wAYNv3Lm/39/S0tLd98842fn9+uXbuWLVv25ZdfUnVhd+zYMWXKlGXLlp0+fbq9vb2tre3gwYNbt25NTk5mNIf8f/7nfy5fvtzT09PS0rJr1y6SJH19fTW7iZFjWoUMdh0AmsH68faQ98V4PB49YIIgBALBjBkzPvjgg0uXLin3b21tXbVq1eTJk42NjcePH+/v73/27Fm8SM0CYhUVFdHR0S+88AKehPjyyy+npaVRr9BSvQnV1K9gNmSFLlKNKmRjadeRcD9dydN8ns7u/XSCZPViAUEQx48fX7BgAYsxAH1x4sSJ8PBwdv9idQq+xpKdnc12INrGet7Qv/N0AABgF+RNAJ4Wt2/fDg4OxnXkGhsbk5KSPDw8+Hy+UCj08fFRKIyvpr6+vj179ri7u1tYWNjY2Lzxxhv4sYgBOwcHBxMEoVAkJSEhAV+B0SOQNzWMGNzmzZvZjg48vSoqKjw8PPz9/XEduaioqJSUlC1btjQ2NpaWljo4OEil0oSEBEZjdnV1+fr6ZmRk7Nmzp6Wlpby83NzcPDg4+OrVq8qdjxw5MuBV+6ioqMTExI0bNw7ve7GDxWurpA5c3wV6RMv3hXg83iuvvKLL46t/X6i9vd3BwYH+nozAwMCMjAzqY09PD36it7m5Wf0APvjgAz6f39TURLV0dnaamJj8+uuvCj3r6+utrKyWLFmCENq2bZvCUvyeDPVTAet5A443ARj7du3a1dTUtGnTJqolPz8flwvAOBzO1KlTnzx5Qn8uVrXm5uZDhw4tXrzY1taWauTxeN3d3cqv842KigoLCxvsdZVisTg0NHT16tX6Mo0X8iYAYxxJkunp6Z6envb29iq61dbWIoTGjRun5rC4QiCuRqja4cOHr169mpycrKJPSEhIXV0d9YiEjoO8CcYgPEt0ypQpHA7HysrqjTfeOH/+PF60fft2fLmZ+sGfOXMGt1BFVfBLMrq6uoqLi/EiPC0ftxME4eDgUFZW5ufnZ2FhYWZmNmfOHOohqJGMP0oqKyubm5vFYrGKPpmZmTU1Nc7OzlOnTlVz2J9//hkhZGVltXr1akdHRw6HM3HixJiYmLa2Nnq3urq61atXHz58WPUbX1588UWE0Pfff6/m1lnG4jUCUgeuUwA9oub1zcbGxkmTJtna2ubl5bW3t1+/fl0qlRIEQX9qQPnaoru7u7W1Nb1lsOuPYrGYx+NJJBJchLSsrMzV1ZXD4RQWFmpkfHXKqmJqXt88evQoQujjjz8ecOnVq1djYmLwu04vXrw45GgUXFRQKBQuXry4pqbmwYMHmZmZPB7P2dlZJpNR3QICApYvX06PRPn6JkmSuOaLt7e3OptmPW/A8SYYaxITE2/evJmSkjJv3jw+n+/s7PzVV1/Z2dnFxMSM5OWgdF1dXfv375dIJDwez8PDIysrq7e3NzY2ViODU49XaWQ09EfBwAHLUCGEXF1ds7OzV65ceeXKFXqFwCF1d3cjhLhcbkZGxuTJky0tLZcuXZqYmFhdXb17927cJy0t7caNG7t27RpyND6fTxAEDlX3Qd4EYw2ehxgYGEi1mJiY+Pn5PX78WFOngTweD59XYjNmzLC3t6+srNTIz76wsLCtrU0ikYx8KAwnOGNj48E6nDt3LjU1VfXVT2X4Kd65c+fSLzIEBQWhP06379y5s2bNmsOHDys87zsYIyMj6h0EOg7yJhhTcJVPU1NThatp+J5vU1OTRrZiaWmp0GJjY4MQamlp0cj4mmVqaooQot4ipSlOTk4IIWtra3oj3g/37t1DCOHrJLNnz6amMON5SBs3bsQff//9d/q6crl8tF9HqCmQN8GYYmJiIhAIuru7Hz58SG/HZ+hCoRB/NDAw6O3tpXeQyWQKQ1GVopS1trYqnEfjjImzxsjH1yw7OzuEEL6AqEH4xpfCITbeD/j/UitWrFC4LKhwffPZZ5+lVuzo6CBJEoeq+yBvgrEGl5enz2jp6ekpKCjgcrkBAQG4xc7Orr6+nurQ1NR0584dhXHMzMyo3Pf8888fOnSIWtTd3V1WVkZ9/PXXXxsaGsRiMfWzH+H4moVnU+KXaiiTy+UuLi7DGPbNN98UiURnzpzB1wEw/ETQW2+9xXQ0vLuUJ37qJsibYKzZsWPHpEmT4uLi8vPzHz58WF1d/c477zQ2NqamplIztP39/RsaGvbu3dvZ2VlTUxMbG0sdKlJeeuml6urqu3fvlpSU1NbWent7U4sEAsH69etLSkq6urrKy8sjIiI4HE5qairVYSTjMy2rOiSxWGxjY1NZWam8KC0tjcfjrV27VnlRREQEQRA3b94cbFgTE5P09PTW1taFCxfeuHFDJpMdPXp0x44dnp6eMTExTIPEr4MebGK8ztHivfsBILbnEwA9ov5zlvfv34+Li5s0aZKxsbFAIAgICCgoKKB3kMlkkZGRdnZ2XC7Xy8urrKzM3d0d/yLWrVuH+1RVVXl7e/N4PEdHx3379lHrisVikUh07dq1gIAACwsLLpfr4+NTVFSkqfGHLKtKUf85y/Xr1xsZGdXX1yu0HzhwgMvlxsfHK6/i6+trbm4ul8tVj3zhwoWAgACBQMDhcFxcXDZv3vzo0SPlbtHR0QqZJyAggN4hLCxMJBL19vaq83VYzxuQN4He0JG6xThvsh0FSTLJmzKZTCQS0Z9PV+3BgwdcLjcyMnIE0TGAn08/duyYmv1Zzxtwng7A2CcQCPLy8nJycvDL+FQjSTImJobP52/btk0LsdXW1kql0sTExIULF2phcxoBeROAp4Kbm1t5efnp06dx/U0Vmpuba2trCwoKqOkHo+rgwYNJSUlJSUla2JamQN4EQF34ufLKysr6+nqCIDZs2MB2RMw4OTnl5+fj+psqCIXCoqKiadOmaSeqnTt36tGRJgYvEQRAXfHx8fHx8WxHAdgHx5sAAMAM5E0AAGAG8iYAADADeRMAAJhh/77Qnj17srOz2Y4C6AH8hHVYWBjbgegK/Cwm7BDtI0jNlUcdBvhPDgZz+vRpNzc37UwhBHpn1apVGixRyhTLeROAweAXwy5YsIDtQABQBNc3AQCAGcibAADADORNAABgBvImAAAwA3kTAACYgbwJAADMQN4EAABmIG8CAAAzkDcBAIAZyJsAAMAM5E0AAGAG8iYAADADeRMAAJiBvAkAAMxA3gQAAGYgbwIAADOQNwEAgBnImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAZiBvAgAAM5A3AQCAGcibAADADORNAABgBvImAAAwA3kTAACYgbwJAADMQN4EAABmIG8CAAAzRmwHAMB/yWQykiTpLV1dXQ8ePKA+mpubGxsbaz0uABQRCn+pALDF19f3/Pnzgy01NDSsr6+3tbXVZkgADAjO04GuWLRoEUEQAy4yMDB49dVXIWkCHQF5E+iK0NBQI6OBLxwRBLF06VItxwPAYCBvAl1hZWXl7+9vaGiovMjAwCAkJET7IQEwIMibQIdERET09/crNBoZGQUGBgoEAlZCAkAZ5E2gQ4KDg01MTBQanzx5EhERwUo8AAwI8ibQIWZmZiEhIQqTjbhc7ptvvslWSAAog7wJdMs777zT19dHfTQ2Ng4NDeVyuSyGBIACyJtAtwQEBNAvZfb19b3zzjssxgOAMsibQLcYGxsvXLiQw+Hgj5aWln5+fuyGBIACyJtA5yxatKi3txchZGxsHBERMdikTgDYAs9ZAp3T399vb2/f3NyMECoqKnrllVfYjgiAP4HjTaBzDAwMlixZghCys7ObNWsW2+EAoIjlM6ATJ06wGwDQTc888wxCyNPTMzs7m+1YgC6aNWuWg4MDa5snWcXa1wYA6LPjx4+zmLjYv+J+/PjxBQsWsB0F0Dk5OTmhoaH0lhMnToSHh8P/bilhYWEIoafwkHywullaA9c3gY5SSJoA6A7ImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CcDT4vbt28HBwR0dHQihxsbGpKQkDw8PPp8vFAp9fHxyc3OHMWZfX9+ePXvc3d0tLCxsbGzeeOONvLy8weY8BAcHEwSxfft2emNCQsLx48eHsWkWQd4EY19nZ+dzzz03b948tgNhU0VFhYeHh7+/P5/PRwhFRUWlpKRs2bKlsbGxtLTUwcFBKpUmJCQwGrOrq8vX1zcjI2PPnj0tLS3l5eXm5ubBwcFXr15V7nzkyJG8vDzl9qioqMTExI0bNw7ve7EC8iYY+0iS7O/vV34Dh9aYm5t7eXmxtXWEUEdHR1BQ0Ntvv71y5UqqMTk5OTAwkMfjOTk5ffHFFyKRKDk5uaWlRf1h16xZc/ny5R9++OHVV1/lcrkTJkzIyMhQrtiPEGpoaIiLi8OPzyqYMmVKbm5uUlKSHj09CHkTjH0WFhY1NTXfffcd24GwZteuXU1NTZs2baJa8vPz3333Xeojh8OZOnXqkydPrl+/ruaYzc3Nhw4dWrx4Mf39zDwer7u7e/r06Qqdo6KiwsLC/P39BxxKLBaHhoauXr1aLper+5VYBXkTgDGOJMn09HRPT097e3sV3WpraxFC48aNU3PYb7/99smTJ+ocRx8+fPjq1avJyckq+oSEhNTV1Z06dUrNrbML8iYY406ePEn8obu7W6Hl1q1b4eHhlpaW1tbW8+bNq6mpwWslJyfjDg4ODmVlZX5+fhYWFmZmZnPmzCkuLsZ9tm/fjvtQuePMmTO4Bdclocbp6uoqLi7Gi7RfTrSysrK5uVksFqvok5mZWVNT4+zsPHXqVDWH/fnnnxFCVlZWq1evdnR05HA4EydOjImJaWtro3erq6tbvXr14cOHLSwsVIz24osvIoS+//57NbfOMhafjcc33dh9Ph/oEXzXdXjrzp8/HyH0+PFjhZb58+dfuHChs7Pz7NmzXC535syZ9LXEYjGPx5NIJLhPWVmZq6srh8MpLCyk+vB4vFdeeYW+lru7u7W1Nb1FuQ82Z86ccePGlZSUDO9LhYaGhoaGDtnt6NGjCKGPP/54wKVXr16NiYkxMDCwsrK6ePGi+lvHO1AoFC5evLimpubBgweZmZk8Hs/Z2Vkmk1HdAgICli9fTo9k27ZtyqO1t7cjhLy9vdXZNOt5A443wVMtMjJSIpHweLy5c+cGBgaWlZXdv3+f3qGrq2v//v24j4eHR1ZWVm9vb2xsrEa23t/fTyWC0dPY2IgQGuwF9K6urtnZ2StXrrxy5crMmTPVHxYfvHO53IyMjMmTJ1taWi5dujQxMbG6unr37t24T1pa2o0bN3bt2jXkaHw+nyAIHKrug7wJnmr0TOHo6IgQamhooHfg8Xj4FBKbMWOGvb19ZWWlRn7hhYWFbW1tEolk5EOpgBOcwtuV6c6dO5eamqr66qcyHo+HEJo7dy79ykNQUBD643T7zp07a9asOXz4MO45JCMjo8ePHzOKgS2QN8FTjX4Uhl8GpzBdydLSUmEVGxsbhBCj+TrsMjU1RQjR366sEU5OTggha2treiPeOffu3UMI5eXltbe3z549m7qajOchbdy4EX/8/fff6evK5XJ9eeEz5E0AVGltbVU4j8YZEycIhJCBgQF+ixxFJpMpDMJuvUg7OzuEEL6AqEH4bpjCcTfeOXhm0ooVKxQuCypc33z22WepFTs6OkiSxKHqPsibAKjS3d1dVlZGffz1118bGhrEYjH1C7ezs6uvr6c6NDU13blzR2EQMzMzKrc+//zzhw4dGuWo/wTPpqyrqxtwqVwud3FxGcawb775pkgkOnPmDL4OgOEngt566y2mo+F9qDzxUzdB3gRAFYFAsH79+pKSkq6urvLy8oiICA6Hk5qaSnXw9/dvaGjYu3dvZ2dnTU1NbGwsdShKeemll6qrq+/evVtSUlJbW+vt7Y3bfX19ra2tS0tLR/UriMViGxubyspK5UVpaWk8Hm/t2rXKiyIiIgiCuHnz5mDDmpiYpKent7a2Lly48MaNGzKZ7OjRozt27PD09IyJiWEaZEVFBUJosInxOkeL9+4HgNieTwD0yPDmISmUq1i8eHFJSQm95aOPPiL/fCYeGBiI1xWLxSKR6Nq1awEBARYWFlwu18fHp6ioiD6+TCaLjIy0s7PjcrleXl5lZWXu7u54nHXr1uE+VVVV3t7ePB7P0dFx37591Lre3t5WVlYXLlwY3g5Rcx4SSZLr1683MjKqr69XaD9w4ACXy42Pj1dexdfX19zcXC6Xqx75woULAQEBAoGAw+G4uLhs3rz50aNHyt2io6MVMk9AQAC9Q1hYmEgk6u3tVefrsJ43IG8CvTGS+ZvDg/OmNrfIiPp5UyaTiUSi6OhoNUd+8OABl8uNjIwcQXQMVFRUEARx7NgxNfuznjf04Dzd3NycoMETdMVi8fLlyy9dusR2dKPiwYMHBw4c8PX1HTduHJfLfe655xYvXjzgeZZqT+GuAwMSCAR5eXk5OTn79u0bsjNJkjExMXw+f9u2bVqIrba2ViqVJiYmLly4UAub0wg9yJudnZ2//PILQmj+/PkkSfb19VVVVW3durWqqsrDw+Mvf/nLo0eP2I5Rw9asWfO3v/1t/vz5165da21tPXz4cEVFhbu7+8mTJxmN8xTuOjAYNze38vLy06dP4/qbKjQ3N9fW1hYUFAiFQi0EdvDgwaSkpKSkJC1sS2NYPNYl1T7epv/46fD17ODgYOq5i7Hhr3/96/vvv09vwVfNn3vuOaZDjaVdp83z9E8//ZT+M8HXQHWN+ufpY4yaeWP06MHxpgqffPKJp6fnt99++/XXX7Mdiyalp6cfPHiQ3iIWi7lcbk1NDamhZ/LG6q7TFIVbJQolysFTTr/zJkEQuA7r/v372Y5ldHV1dT1+/Hj69OmamkH99Ow6ADROv/Mm+uOhhdLSUuoxsnv37sXExDg5OXE4nPHjx0ulUnySi9QrIIYQ6unp2bRpk4uLi5mZ2bhx44KCgnCpQaqDik2opmYAyrKzsxFCH330EcPdo4p+7ToAdAhL1wf+C43s+iZJklQhgIaGBpIkGxoaJk6caGtre+rUqYcPH165csXHx8fU1JQ+RW7IAmKRkZECgeCHH3549OhRU1NTfHw8Quj8+fN4qTqbUE2dCmZ0TU1Ntra2ypNC1KlCNpZ2nfbnIek4uL7JWgAsbpvURN6k7gjjHz8u/f/ll19SHRobG01MTNzd3akW/OPHb93DQkNDEUL37t3DHydNmjRr1iz6VpydnakfvzqbUG3IAOju37//4osvhoeHK89A9vHxGXLW9FjadZA3FUDeZIu2S09rHC4rYGxsjCtsnzx50sDAgP7mQqFQOG3atEuXLtXV1Tk4OFDtAxYQw4O8/vrrn3/++fvvv79s2bKZM2caGhrSX7qi/iZUUxEApaurKyAgYOrUqUeOHDE0NFQYobCwUM1tDUhPd11YWNiwv/IYgx/QhB2ifXp/fbOoqAghJJFIjI2Ne3p62tvb+/v7BQIBfb43Luh/48YN+ooqCojt27fvyJEjtbW1fn5+fD7/9ddfp57VY7QJ1YasYCaXy/HDZ5mZmcpJc+T0d9cBwC79Pt7s7+/Hzz+sWLECIWRiYmJpadnZ2fn48eORvMUFFwpcsmRJX19fYWFhcnKyVCrdvXv3qlWrNLUJdURHR/f09OTm5lIbevbZZ7Oysl5++eWRD66/uw7fIgPojyPNp3CHsFuXD+n78WZiYuLFixdDQkKoUxWpVCqXy6k3Z2E7d+6cMGGC+q8YtbS0rKqqQggZGxu/9tpr+FYy9aY9jWxiSJs3b7569eo333wz4NuoR24M7zoARpv+5c3+/v6WlpZvvvnGz89v165dy5Yt+/LLL6n//+zYsWPKlCnLli07ffp0e3t7W1vbwYMHt27dmpyczOgY53/+538uX77c09PT0tKya9cukiR9fX01uwkVMjIytmzZ8tNPP1lYWNBPaRXmKjGtQvY07DoAtIHFe1KkevfFFF5OQhCEQCCYMWPGBx98cOnSJeX+ra2tq1atmjx5srGx8fjx4/39/c+ePYsXqVlArKKiIjo6+oUXXsCTEF9++eW0tDT684gqNqGamgEEBgYO9t+LPutoyCpkY2nXkXA/XQncT2cLQY7yu/RUIwji+PHjCxYsYDEGoC9OnDgRHh7O7l+sTnmar2+ymzf07zwdADA8t2/fDg4OxvWQGhsbk5KSPDw8+Hy+UCj08fFRKPCspr6+vj179ri7u1tYWNjY2Lzxxht4eu+AnYODgwmCUHjYPyEhAZ9J6BHImwA8FSoqKjw8PPz9/fl8PkIoKioqJSVly5YtjY2NpaWlDg4OUqk0ISGB0ZhdXV2+vr4ZGRl79uxpaWkpLy83NzcPDg6+evWqcucjR47gtw8piIqKSkxM3Lhx4/C+Fysgb2oYMbjNmzezHR1gwNzcHD/Cr6fj03V0dAQFBb399tu4mAuWnJwcGBjI4/GcnJy++OILkUiUnJzM6P3Ga9asuXz58g8//PDqq69yudwJEyZkZGQMOAOkoaEhLi4OvwdYwZQpU3Jzc5OSkk6cODGMr8YKuImpYXD1DeigXbt2NTU1bdq0iWrJz8+nd+BwOFOnTq2vr79+/brye+UG1NzcfOjQoffffx+/9Rfj8Xj011tSoqKiwsLCvL298auAFYjF4tDQ0NWrV0ulUr2YWQHHmwCMcSRJpqene3p62tvbq+hWW1uLEBo3bpyaw+JKV+ocMh8+fPjq1avJyckq+oSEhNTV1VFTfXUc5E0wBuHZTlOmTOFwOFZWVm+88cb58+fxou3bt+PLJtQP/syZM7iFKg6QnJxMEERXV1dxcTFehA+CcDtBEA4ODmVlZX5+fhYWFmZmZnPmzKEm849k/FFSWVnZ3NwsFotV9MnMzKypqXF2dp46daqaw+IHZK2srFavXu3o6MjhcCZOnBgTE9PW1kbvVldXt3r16sOHD1tYWKgY7cUXX0QIff/992punWUszoEidWAeFtAjas7fbGxsnDRpkq2tbV5eXnt7+/Xr16VSKUEQaWlpVB8ej/fKK6/Q13J3d7e2tqa3KPfBxGIxj8eTSCS4mF5ZWZmrqyuHwyksLNTI+OqUB8TUnL+JT40//vjjAZdevXo1JiYGv7Pv4sWLQ45GwcWxhELh4sWLa2pqHjx4kJmZyePxnJ2dZTIZ1S0gIGD58uX0SLZt26Y8Wnt7O0LI29tbnU2znjfgeBOMNYmJiTdv3kxJSZk3bx6fz3d2dv7qq6/s7OxiYmKam5s1somurq79+/dLJBIej+fh4ZGVldXb2xsbG6uRwanHBDQyGvqj8BW9Ggudq6trdnb2ypUrr1y5Qq90NSR8HZPL5WZkZEyePNnS0nLp0qWJiYnV1dW7d+/GfdLS0m7cuLFr164hR+Pz+QRB4FB1H+RNMNbgeYj0Z65MTEz8/PweP36sqdNAHo+HzyuxGTNm2NvbV1ZWauRnX1hY2NbWJpFIRj4UhhOcsbHxYB3OnTuXmpqq+uqnMvw02ty5c+kXGYKCgtAfp9t37txZs2bN4cOHFZ5bG4yRkRFVS1vHQd4EYwquVmdqaqpwNQ3f821qatLIViwtLRVa8D1oRpN4tMbU1BQhRL0NRVOcnJwQQtbW1vRGvB/u3buHEMLXSWbPnk1NxcPzkDZu3Ig//v777/R15XI5l8vVbJCjBPImGFNMTEwEAkF3d/fDhw/p7fgMnXohuIGBQW9vL72DTCZTGEpFsbLW1laF82icMakZPCMcX7Ps7OwQQvgCogbhG18Kh9h4P+D/S61YsULhsqDC9c1nn32WWrGjo4MkSRyq7oO8CcaakJAQhBB9RktPT09BQQGXyw0ICMAtdnZ29fX1VIempqY7d+4ojGNmZkblvueff/7QoUPUou7u7rKyMurjr7/+2tDQIBaLqZ/9CMfXrOnTpyOE6urqBlwql8tdXFyGMeybb74pEonOnDlDn7CJnwh66623mI6GdxcOVfdB3gRjzY4dOyZNmhQXF5efn//w4cPq6up33nmnsbExNTWVmqHt7+/f0NCwd+/ezs7Ompqa2NhY5cneL730UnV19d27d0tKSmpra729valFAoFg/fr1JSUlXV1d5eXlERERHA4nNTWV6jCS8ZmWBxySWCy2sbGprKxUXpSWlsbj8dauXau8KCIigiCImzdvDjasiYlJenp6a2vrwoULb9y4IZPJjh49umPHDk9Pz5iYGKZB4tea+vv7M12RHVq8dz8AxPZ8AqBH1K8jd//+/bi4uEmTJhkbGwsEgoCAgIKCAnoHmUwWGRlpZ2fH5XK9vLzKysrc3d3xL2LdunW4T1VVlbe3N4/Hc3R03LdvH7WuWCwWiUTXrl0LCAiwsLDgcrk+Pj5FRUWaGn/I8oAU9evIrV+/3sjIqL6+XqH9wIEDXC43Pj5eeRVfX19zc3PltwEquHDhQkBAgEAg4HA4Li4umzdvfvTokXK36OhohcwTEBBA74BfCdPb26vO12E9b0DeBHpDR+pv4rzJdhQkySRvymQykUgUHR2t5sgPHjzgcrnKr54eJRUVFQRBHDt2TM3+rOcNOE8HYOwTCAR5eXk5OTn4pVKqkSQZExPD5/O3bdumhdhqa2ulUmliYuLChQu1sDmNgLwJwFPBzc2tvLz89OnTuP6mCs3NzbW1tQUFBdT0g4kfVAAAFiBJREFUg1F18ODBpKSkpKQkLWxLUyBvAqAu/Fx5ZWVlfX09QRAbNmxgOyJmnJyc8vPzcf1NFYRCYVFR0bRp07QT1c6dO/XoSBPTg5JNAOiI+Pj4+Ph4tqMA7IPjTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAhlicc0/CK8wAAMPC7vNCLM9D0rv3zQOtCQ8Pj4uL02D5XjCWzJo1i8WtE3DQB3QTQRDHjx9fsGAB24EAoAiubwIAADOQNwEAgBnImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAZiBvAgAAM5A3AQCAGcibAADADORNAABgBvImAAAwA3kTAACYgbwJAADMQN4EAABmIG8CAAAzkDcBAIAZyJsAAMAM5E0AAGAG8iYAADADeRMAAJiBvAkAAMxA3gQAAGYgbwIAADOQNwEAgBnImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAZozYDgCA/zp27NjDhw/pLf/6179kMhn1MSQkZPz48VqPCwBFBEmSbMcAAEIIvffee5mZmcbGxvgj/sskCAIh9OTJE3Nz85aWFhMTEzZDBAAhBOfpQHcsWrQIIdT3B7lcLpfL8b8NDQ3DwsIgaQIdAcebQFfI5XJbW9u2trYBlxYUFPj6+mo5JAAGBMebQFcYGRktWrSIOk+ne+aZZ3x8fLQfEgADgrwJdMiiRYv6+voUGo2NjZcsWWJoaMhKSAAog/N0oENIkpwwYUJdXZ1C+8WLF2fOnMlKSAAog+NNoEMIgoiIiFA4VXd0dPTw8GArJACUQd4EukXhVN3Y2Pi9997Ds5EA0BFwng50jouLy/Xr16mPV65cmTZtGovxAKAAjjeBzlmyZAl1qj516lRImkDXQN4EOiciIkIulyOEjI2N3333XbbDAUARnKcDXeTh4XHp0iWCIG7dujVhwgS2wwHgT+B4E+iipUuXIoQ8PT0haQIdpAf1kEpKSj777DO2owBa1d3dTRBET09PWFgY27EArZJIJKtWrWI7iiHowfHm3bt3c3Jy2I4CjK6cnBz6dHdTU1NbW1sHBwcWQ2JRXV3d0/k3X1paWlJSwnYUQ9OD400sOzub7RDAKCII4sMPP1ywYAHV8vvvvz/77LMshsSiEydOhIeHP4V/8/pyeqEHx5vg6fTUJk2g+yBvAgAAM5A3AQCAGcibAADADORNAPTe7du3g4ODOzo6EEKNjY1JSUkeHh58Pl8oFPr4+OTm5g5jzL6+vj179ri7u1tYWNjY2Lzxxht5eXmDPSYTHBxMEMT27dvpjQkJCcePHx/GpnUf5E2gxzo7O5977rl58+axHQibKioqPDw8/P39+Xw+QigqKiolJWXLli2NjY2lpaUODg5SqTQhIYHRmF1dXb6+vhkZGXv27GlpaSkvLzc3Nw8ODr569apy5yNHjuTl5Sm3R0VFJSYmbty4cXjfS5dB3gR6jCTJ/v7+/v5+tgIwNzf38vJia+sIoY6OjqCgoLfffnvlypVUY3JycmBgII/Hc3Jy+uKLL0QiUXJycktLi/rDrlmz5vLlyz/88MOrr77K5XInTJiQkZEx4HvxGhoa4uLilixZorxoypQpubm5SUlJJ06cGMZX02WQN4Ees7CwqKmp+e6779gOhDW7du1qamratGkT1ZKfn08vhsLhcKZOnfrkyRN6aT7VmpubDx06tHjxYltbW6qRx+N1d3dPnz5doXNUVFRYWJi/v/+AQ4nF4tDQ0NWrV+NCLWMG5E0A9BVJkunp6Z6envb29iq61dbWIoTGjRun5rDffvvtkydP1DmOPnz48NWrV5OTk1X0CQkJqaurO3XqlJpb1wuQN4G+OnnyJPGH7u5uhZZbt26Fh4dbWlpaW1vPmzevpqYGr5WcnIw7ODg4lJWV+fn5WVhYmJmZzZkzp7i4GPfZvn077kPljjNnzuCWZ555hj5OV1dXcXExXmRkpO2n7yorK5ubm8VisYo+mZmZNTU1zs7OU6dOVXPYn3/+GSFkZWW1evVqR0dHDoczceLEmJgYhVc019XVrV69+vDhwxYWFipGe/HFFxFC33//vZpb1w+kzsO35NiOAowuhNDx48eHseL8+fMRQo8fP1ZomT9//oULFzo7O8+ePcvlcmfOnElfSywW83g8iUSC+5SVlbm6unI4nMLCQqoPj8d75ZVX6Gu5u7tbW1vTW5T7YHPmzBk3blxJSckwvhGp9t/80aNHEUIff/zxgEuvXr0aExNjYGBgZWV18eJF9beOd6BQKFy8eHFNTc2DBw8yMzN5PJ6zs7NMJqO6BQQELF++nB7Jtm3blEdrb29HCHl7e6uz6dDQ0NDQUPVDZQscb4KxKTIyUiKR8Hi8uXPnBgYGlpWV3b9/n96hq6tr//79uI+Hh0dWVlZvb29sbKxGtt7f349/YBoZbTCNjY0IIYFAMOBSV1fX7OzslStXXrlyhdHbQPHBO5fLzcjImDx5sqWl5dKlSxMTE6urq3fv3o37pKWl3bhxY9euXUOOxufzCYLAoY4ZkDfB2ETPFI6OjgihhoYGegcej4dPIbEZM2bY29tXVlZq5BdeWFjY1tYmkUhGPpQKOMEpvP6T7ty5c6mpqaqvfirj8XgIoblz59KvPAQFBaE/Trfv3LmzZs2aw4cP455DMjIyevz4MaMYdBzkTTA20Y/COBwOQkhhupKlpaXCKjY2NgghRvN12GVqaooQor/+UyOcnJwQQtbW1vRGvHPu3buHEMrLy2tvb589ezZ1NRnPQ9q4cSP++Pvvv9PXlcvlXC5Xs0GyC/ImeEq1trYqnEfjjIkTBELIwMCgt7eX3kEmkykMwu4Liu3s7BBC+AKiBuG7YQrH3Xjn4JlJK1asULjep3B9k17LqqOjgyRJHOqYAXkTPKW6u7vLysqoj7/++mtDQ4NYLKZ+4XZ2dvX19VSHpqamO3fuKAxiZmZG5dbnn3/+0KFDoxz1n+DZlPR6z3RyudzFxWUYw7755psikejMmTP4OgCGnwh66623mI6G96HyxE+9BnkTPKUEAsH69etLSkq6urrKy8sjIiI4HE5qairVwd/fv6GhYe/evZ2dnTU1NbGxsdShKOWll16qrq6+e/duSUlJbW2tt7c3bvf19bW2ti4tLR3VryAWi21sbCorK5UXpaWl8Xi8tWvXKi+KiIggCOLmzZuDDWtiYpKent7a2rpw4cIbN27IZLKjR4/u2LHD09MzJiaGaZAVFRUIocEmxusrLd67HyaYh/Q0QMznISmUq1i8eLHCKxY++ugj8s9n4oGBgXhdsVgsEomuXbsWEBBgYWHB5XJ9fHyKioro48tkssjISDs7Oy6X6+XlVVZW5u7ujsdZt24d7lNVVeXt7c3j8RwdHfft20et6+3tbWVldeHCheHtDfX/5tevX29kZFRfX6/QfuDAAS6XGx8fr7yKr6+vubm5XC5XPfKFCxcCAgIEAgGHw3Fxcdm8efOjR4+Uu0VHRyuklICAAHqHsLAwkUjU29urztfRl3lIepCPIG8+DYaRN0cC502tbY4p9f/mZTKZSCSKjo5Wc+QHDx5wudzIyMgRRMdARUUFQRDHjh1Ts7++5E04TwdAjwkEgry8vJycnH379g3ZmSTJmJgYPp+/bds2LcRWW1srlUoTExMXLlyohc1p0xjMm+Xl5e+9956Tk5OpqamlpeXMmTO3bt2qfCdU35mbmxM0+LEQsVi8fPnyS5cusR0d0B43N7fy8vLTp0/j+psqNDc319bWFhQUCIVCLQR28ODBpKSkpKQkLWxLy8Za3kxMTHz55ZetrKzy8/NlMtnNmzf//ve/5+bmOjs7U08fjw2dnZ2//PILQmj+/PkkSfb19VVVVW3durWqqsrDw+Mvf/nLo0eP2I5RF+HnyisrK+vr6wmC2LBhA9sRaYCTk1N+fj6uv6mCUCgsKiqaNm2adqLauXPn2DvS/C+2LxQMTf1rPfjs48CBAwrtXV1duGz1b7/9xnTrgz2ArCkjGZ+eN+nwXdTg4GDqaT/dh7R7fVPHPbXX9OH6prb9/vvvW7Zseemll5Rv8JmZme3Zs+fhw4fDmEWhjz755BNPT89vv/3266+/ZjsWAMagsZM3Dxw4IJfLB3tvvbe3t729/dmzZ3EtwrGNIAhc/Xv//v1sxwLAGDR28uaPP/6IEFJRixAv+s9//oNGVmBRLwo44u2WlpZSDy/fu3cvJibGycmJw+GMHz9eKpXiCclIvbKVCKGenp5Nmza5uLiYmZmNGzcuKCgIF7ilOqjYBABjCtsXCoam5rUe/HjcTz/9NFiHiIgI9OdihSMpsKgLBRwHu75JkiRVfqahoYEkyYaGhokTJ9ra2p46derhw4dXrlzx8fExNTWlT8wesmxlZGSkQCD44YcfHj161NTUFB8fjxA6f/48XqrOJlRAcH2TBq5v6rixc7yJDVlnQYOFGHS5gKPCiomJibdv3/7ss8/efPNNc3PzadOmff311yRJ/u1vf1NYUUXZyoKCgmnTpr322mtcLtfW1vbTTz91dnYexiYA0Hfaruw/euzt7RsbG1tbWwfrgBcxrUWogooCjiOv/lJYWDiS1XExG2NjY3xZ4OTJkwYGBvT35QqFwmnTpl26dKmurs7BwYFqH7BsJR7k9ddf//zzz99///1ly5bNnDnT0NCQ/qov9TcxmPDw8PDw8JF86zGG3WJLbAkNDWU7hKGNnbzp4+Nz6dKlioqK119/fcAOuPzB7NmzNbXFAQs4NjQ0tLS0sF41q6ioCCEkkUiMjY17enpwqbEBC4PfuHGDntRUlK3ct2+fRCLJzMz08/NDCHl7e0dHR4eEhCCEGG1iMHFxcaNd6FdflJSUpKSk4LP1p8qePXvYDkEtYydvRkdH/+Mf/8jOzk5ISFBeWlRU1NDQEBQUNGHCBKpxhAUWcQFHegcdKeDY39+Pn7pbsWIFQsjExMTS0rKzs/Px48cjufWEy9MuWbKkr6+vsLAwOTlZKpXu3r171apVGtmERCJZsGDBsMMbY1JSUp7CvZGdnc12CGoZO9c3nZ2d//73v//8888HDx5UWPTo0aO4uDhra+uUlBR6+wgLLOpsAcfExMSLFy+GhIRQs7KkUqlcLld4Ymrnzp0TJkxQ/8XWlpaWVVVVCCFjY+PXXnsN34Wn3u+qkU0AoB/YuyWlLkb3FhMTEw0NDT/88MMrV650d3c/ePAgLy/Pzc1NJBKVl5crdMaTHP/3f/9/e/cf0sQbxwH8OdqmS91RUS5OyDkYZT9WMigCESbMwhJavyQEIRIJYklJNcEockThH45vfxgrIoIiCwo2jIhVf0STVJpggdImlTYPtMwVLVmsPx467uvmdbeb7e72ef3n3eNzj/P4sN3z7P38F41G3717d+DAAYqi5s1379ixgyTJDx8+vHz5UqVSvX37Fh83m80kSVZXV3PMp4vpX+h8+q9fv2iafvjwodVqRQgdPnyYnfpF07TRaCwrK+vt7Z2ZmZmenu7u7l66dCl7Cjt5Y8jTp08jhF6/fo1/JEmyqqpqaGgoFovRNH3u3DmEUEdHB/9LcEAwn84C8+kSJ4P/jdB7qL+/v7Gxcc2aNRqNpqioyGKxdHR0sPcvZYgJWMx6gOO8LbEIgiBJcuPGjUePHh0cHExuPz09feLEibKyMrVavXLlSpvN9uTJE3yKZ2xlMBhsbm5et24dXr+5bds2j8fD/ionxyX+CuomG9RNiSMSi7xVqXg9PT0HDx6U2jg3b948NTW10BYFQCiCIO7evZuDT/RSkuY9/w/gJ0vSf8qpnOebAADG+/fv6+rqcLJcJBJxuVwWi0Wn0+n1+qqqqnlR+fz19vaaTKaUU39nzpzJnQUAUDcBUJpgMGixWGw2G06Wa2pq6urqOn/+fCQS6evrKykpsdvtKZedcAiFQnV1dU6nk6bplA2ampqcTmd7e3sG/gDJg7opmCIDHHNKYWEhkxsgx/65zc7O7t69e+/evXhaEuvs7KytrS0oKCgtLb1x4wZFUZ2dnYJ2im9vb9++ffvg4GBRUVHKBkaj8cGDBy6Xq6enR+zfIHnKWb/5z7S2tuKvZgMgQZcvX56cnDx79ixzxOfzsRtoNJry8vKJiYmRkZHkHToXcv36da1Wy93GbDbv27fv5MmTdrs9gyE1EgTvNwFQjkQice3ata1bt3J/nxinKS5fvpx/z38tmtiePXvGx8eZVb1KBXUTyAle6mQ0GjUazbJly3bu3Pns2TN8SvHZgHwMDQ3RNM2RpogQunnzZigUMplM5eXlGR8ATmx4/PhxxnuWluwug+IjZ9ey5RTEY/1mJBIxGAzFxcVer/fr168jIyN2u50gCI/Hw7SRezYglvY9f+vWLfT/sES2N2/eOBwOvIXfq1ev0ug/kUhQFLVkyZKFzuKYgsrKyvQ6l8v6TXi/CWTD6XSOjY11dXXt2rVLp9OZTKbbt2+vXr3a4XAsNMkrlJSzAfnAOVgp01UQQps2bbp3796xY8eGh4fZwVcZpNPpCILAw1AwqJtANvCqw9raWuZIXl5edXX1jx8/MvXBkCMbUHznz58///z586JmPsViMYSQWq1eqMHTp0/dbncG0xSTqVQqJjZbqaBuAnnAUXX5+fnz1sEUFxcjhCYnJzNylZTZgOhP0pX05efnI4SYzVGyIh6P85xEki+om0Ae8vLySJKMxWLRaJR9HH9C1+v1+MeMZAOyj0gkG5AnnMWFHzJmxezsbOLPpjUKBnUTyAbOSGavcfn586ff79dqtTU1NfiIUrMBedqwYQNCaKHYhHg8vnbt2kUdAH5x8DAUDOomkI2LFy8aDIaWlhafzxeNRkdHRw8dOhSJRNxuN/60jhCy2WyfPn26cuXKt2/fQqHQ8ePHk5d2V1RUjI6Ofvz4MRAIhMPhyspK5hRJkm1tbYFA4Pv37wMDAw0NDRqNxu12Mw3E9G+1WlesWNHX15f5l+YPs9m8atUqvLXBPB6Pp6Cg4NSpU8mnGhoaCIIYGxsTPwC8g6nNZhPflaRlczKfH1iHlAsQvxy5qamplpYWg8GgVqtJkqypqfH7/ewGss4GZIi559va2lQq1cTExLzj3d3dWq22tbU1+VesVmthYWE8Hufo1uv1JlcP9gowbP/+/RRFzc3NpTd4uaxDkkE9grqZC3jWzUWF62Z2x4CJuednZmYoimpububZ/suXL1qt9siRI+ldji0YDBIEcefOnbR7kEvdhM/pACgKSZJer/f+/ft4jyluiUTC4XDodLoLFy6IvG44HLbb7U6ns76+XmRX0gd1EwCl2bJly8DAwKNHj3D+JgeapsPhsN/vZxYkpO3q1asul8vlconsRxagbgKgwGzA0tJSn8+H8zc56PX6Fy9erF+/XvwVL126lAvvNDElZz0BwBNkAwJB4P0mAAAIA3UTAACEgboJAADCQN0EAABhZDMvlAubPeW4QCCQ7SFIBX4pcvCeHx8fLykpyfYoeMj2wvu/y51NmQEAsvi+EJFYzPRpAABQHni+CQAAwkDdBAAAYaBuAgCAMFA3AQBAmN/I1Q74MRFjcwAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<IPython.core.display.Image object>"
+      ]
+     },
+     "execution_count": 6,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "model=get_model_v1( (13,) )\n",
     "\n",
-    "model.summary()"
+    "model.summary()\n",
+    "keras.utils.plot_model( model, to_file='./run/model.png', show_shapes=True, show_layer_names=True, dpi=96)"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "**Let's go :**"
+    "### 5.2 - Train it"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 7,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Train on 354 samples, validate on 152 samples\n",
+      "Epoch 1/100\n",
+      "354/354 [==============================] - 1s 3ms/sample - loss: 418.8435 - mae: 18.6926 - mse: 418.8436 - val_loss: 363.6250 - val_mae: 17.0712 - val_mse: 363.6249\n",
+      "Epoch 2/100\n",
+      "354/354 [==============================] - 0s 280us/sample - loss: 185.7644 - mae: 11.5769 - mse: 185.7644 - val_loss: 130.8274 - val_mae: 9.1964 - val_mse: 130.8273\n",
+      "Epoch 3/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 63.7021 - mae: 6.1090 - mse: 63.7021 - val_loss: 54.9533 - val_mae: 5.5778 - val_mse: 54.9533\n",
+      "Epoch 4/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 33.5469 - mae: 4.2459 - mse: 33.5469 - val_loss: 38.7432 - val_mae: 4.5027 - val_mse: 38.7432\n",
+      "Epoch 5/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 25.0842 - mae: 3.5697 - mse: 25.0842 - val_loss: 31.9627 - val_mae: 3.9794 - val_mse: 31.9627\n",
+      "Epoch 6/100\n",
+      "354/354 [==============================] - 0s 270us/sample - loss: 20.9567 - mae: 3.2382 - mse: 20.9567 - val_loss: 30.0260 - val_mae: 3.7664 - val_mse: 30.0260\n",
+      "Epoch 7/100\n",
+      "354/354 [==============================] - 0s 275us/sample - loss: 18.9505 - mae: 3.0151 - mse: 18.9505 - val_loss: 23.8960 - val_mae: 3.3547 - val_mse: 23.8960\n",
+      "Epoch 8/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 17.1925 - mae: 2.8789 - mse: 17.1925 - val_loss: 22.9789 - val_mae: 3.1954 - val_mse: 22.9789\n",
+      "Epoch 9/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 15.8211 - mae: 2.7289 - mse: 15.8211 - val_loss: 20.5825 - val_mae: 3.1199 - val_mse: 20.5825\n",
+      "Epoch 10/100\n",
+      "354/354 [==============================] - 0s 274us/sample - loss: 15.0976 - mae: 2.6753 - mse: 15.0976 - val_loss: 21.2327 - val_mae: 3.0570 - val_mse: 21.2327\n",
+      "Epoch 11/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 14.0510 - mae: 2.5988 - mse: 14.0510 - val_loss: 18.8729 - val_mae: 2.9371 - val_mse: 18.8729\n",
+      "Epoch 12/100\n",
+      "354/354 [==============================] - 0s 278us/sample - loss: 13.9241 - mae: 2.5217 - mse: 13.9241 - val_loss: 18.5040 - val_mae: 2.8935 - val_mse: 18.5040\n",
+      "Epoch 13/100\n",
+      "354/354 [==============================] - 0s 276us/sample - loss: 13.2203 - mae: 2.4659 - mse: 13.2203 - val_loss: 17.7626 - val_mae: 2.8627 - val_mse: 17.7626\n",
+      "Epoch 14/100\n",
+      "354/354 [==============================] - 0s 277us/sample - loss: 13.0399 - mae: 2.4507 - mse: 13.0399 - val_loss: 18.7882 - val_mae: 2.8812 - val_mse: 18.7882\n",
+      "Epoch 15/100\n",
+      "354/354 [==============================] - 0s 274us/sample - loss: 12.7152 - mae: 2.3897 - mse: 12.7152 - val_loss: 17.5327 - val_mae: 2.7973 - val_mse: 17.5327\n",
+      "Epoch 16/100\n",
+      "354/354 [==============================] - 0s 276us/sample - loss: 12.4044 - mae: 2.3936 - mse: 12.4044 - val_loss: 18.3104 - val_mae: 2.8215 - val_mse: 18.3104\n",
+      "Epoch 17/100\n",
+      "354/354 [==============================] - 0s 280us/sample - loss: 12.0216 - mae: 2.3488 - mse: 12.0216 - val_loss: 16.1507 - val_mae: 2.7517 - val_mse: 16.1507\n",
+      "Epoch 18/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 11.9575 - mae: 2.3477 - mse: 11.9575 - val_loss: 15.5722 - val_mae: 2.6895 - val_mse: 15.5722\n",
+      "Epoch 19/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 11.7747 - mae: 2.3273 - mse: 11.7747 - val_loss: 15.7311 - val_mae: 2.6832 - val_mse: 15.7311\n",
+      "Epoch 20/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 11.6233 - mae: 2.3188 - mse: 11.6233 - val_loss: 16.9861 - val_mae: 2.7485 - val_mse: 16.9861\n",
+      "Epoch 21/100\n",
+      "354/354 [==============================] - 0s 275us/sample - loss: 11.3040 - mae: 2.2359 - mse: 11.3040 - val_loss: 20.0885 - val_mae: 3.0260 - val_mse: 20.0885\n",
+      "Epoch 22/100\n",
+      "354/354 [==============================] - 0s 267us/sample - loss: 11.5525 - mae: 2.2839 - mse: 11.5525 - val_loss: 16.2819 - val_mae: 2.6818 - val_mse: 16.2819\n",
+      "Epoch 23/100\n",
+      "354/354 [==============================] - 0s 270us/sample - loss: 10.9328 - mae: 2.2393 - mse: 10.9328 - val_loss: 14.8984 - val_mae: 2.6211 - val_mse: 14.8984\n",
+      "Epoch 24/100\n",
+      "354/354 [==============================] - 0s 271us/sample - loss: 10.6702 - mae: 2.2566 - mse: 10.6702 - val_loss: 15.2297 - val_mae: 2.5943 - val_mse: 15.2297\n",
+      "Epoch 25/100\n",
+      "354/354 [==============================] - 0s 268us/sample - loss: 10.6099 - mae: 2.2306 - mse: 10.6099 - val_loss: 14.0894 - val_mae: 2.5234 - val_mse: 14.0894\n",
+      "Epoch 26/100\n",
+      "354/354 [==============================] - 0s 271us/sample - loss: 10.5236 - mae: 2.1899 - mse: 10.5236 - val_loss: 16.2054 - val_mae: 2.6445 - val_mse: 16.2054\n",
+      "Epoch 27/100\n",
+      "354/354 [==============================] - 0s 276us/sample - loss: 10.3134 - mae: 2.1293 - mse: 10.3134 - val_loss: 14.1194 - val_mae: 2.5172 - val_mse: 14.1194\n",
+      "Epoch 28/100\n",
+      "354/354 [==============================] - 0s 252us/sample - loss: 10.1060 - mae: 2.1281 - mse: 10.1060 - val_loss: 15.9710 - val_mae: 2.6624 - val_mse: 15.9710\n",
+      "Epoch 29/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 10.3668 - mae: 2.1627 - mse: 10.3668 - val_loss: 14.1934 - val_mae: 2.4820 - val_mse: 14.1934\n",
+      "Epoch 30/100\n",
+      "354/354 [==============================] - 0s 271us/sample - loss: 9.9118 - mae: 2.0982 - mse: 9.9118 - val_loss: 14.3858 - val_mae: 2.4987 - val_mse: 14.3858\n",
+      "Epoch 31/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 9.8766 - mae: 2.0939 - mse: 9.8766 - val_loss: 13.8227 - val_mae: 2.5071 - val_mse: 13.8227\n",
+      "Epoch 32/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 9.8629 - mae: 2.1158 - mse: 9.8629 - val_loss: 13.7714 - val_mae: 2.4909 - val_mse: 13.7714\n",
+      "Epoch 33/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 9.7673 - mae: 2.0776 - mse: 9.7673 - val_loss: 13.6226 - val_mae: 2.4226 - val_mse: 13.6226\n",
+      "Epoch 34/100\n",
+      "354/354 [==============================] - 0s 269us/sample - loss: 9.9778 - mae: 2.1046 - mse: 9.9778 - val_loss: 13.7940 - val_mae: 2.4524 - val_mse: 13.7940\n",
+      "Epoch 35/100\n",
+      "354/354 [==============================] - 0s 269us/sample - loss: 9.5368 - mae: 2.0359 - mse: 9.5368 - val_loss: 14.8796 - val_mae: 2.7218 - val_mse: 14.8796\n",
+      "Epoch 36/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 9.6137 - mae: 2.0622 - mse: 9.6137 - val_loss: 13.3884 - val_mae: 2.4377 - val_mse: 13.3884\n",
+      "Epoch 37/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 9.0956 - mae: 2.0223 - mse: 9.0956 - val_loss: 14.0526 - val_mae: 2.4567 - val_mse: 14.0526\n",
+      "Epoch 38/100\n",
+      "354/354 [==============================] - 0s 269us/sample - loss: 9.1988 - mae: 2.0116 - mse: 9.1988 - val_loss: 13.9418 - val_mae: 2.4329 - val_mse: 13.9418\n",
+      "Epoch 39/100\n",
+      "354/354 [==============================] - 0s 267us/sample - loss: 9.2909 - mae: 2.0380 - mse: 9.2909 - val_loss: 12.7459 - val_mae: 2.4097 - val_mse: 12.7459\n",
+      "Epoch 40/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 9.0192 - mae: 2.0256 - mse: 9.0192 - val_loss: 14.2976 - val_mae: 2.4998 - val_mse: 14.2976\n",
+      "Epoch 41/100\n",
+      "354/354 [==============================] - 0s 281us/sample - loss: 8.7552 - mae: 1.9830 - mse: 8.7552 - val_loss: 14.4870 - val_mae: 2.4739 - val_mse: 14.4870\n",
+      "Epoch 42/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 8.8108 - mae: 1.9751 - mse: 8.8108 - val_loss: 12.7398 - val_mae: 2.4317 - val_mse: 12.7398\n",
+      "Epoch 43/100\n",
+      "354/354 [==============================] - 0s 270us/sample - loss: 8.6617 - mae: 1.9931 - mse: 8.6617 - val_loss: 15.7144 - val_mae: 2.5868 - val_mse: 15.7144\n",
+      "Epoch 44/100\n",
+      "354/354 [==============================] - 0s 274us/sample - loss: 8.6111 - mae: 1.9638 - mse: 8.6111 - val_loss: 12.5787 - val_mae: 2.3649 - val_mse: 12.5787\n",
+      "Epoch 45/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 8.3551 - mae: 1.9166 - mse: 8.3551 - val_loss: 12.4471 - val_mae: 2.3693 - val_mse: 12.4471\n",
+      "Epoch 46/100\n",
+      "354/354 [==============================] - 0s 266us/sample - loss: 8.3524 - mae: 1.9671 - mse: 8.3524 - val_loss: 14.4275 - val_mae: 2.4847 - val_mse: 14.4275\n",
+      "Epoch 47/100\n",
+      "354/354 [==============================] - 0s 274us/sample - loss: 8.4545 - mae: 1.9071 - mse: 8.4545 - val_loss: 13.2229 - val_mae: 2.4060 - val_mse: 13.2229\n",
+      "Epoch 48/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 8.5690 - mae: 1.9217 - mse: 8.5690 - val_loss: 13.4104 - val_mae: 2.3992 - val_mse: 13.4104\n",
+      "Epoch 49/100\n",
+      "354/354 [==============================] - 0s 278us/sample - loss: 8.1166 - mae: 1.9338 - mse: 8.1166 - val_loss: 14.6198 - val_mae: 2.5067 - val_mse: 14.6198\n",
+      "Epoch 50/100\n",
+      "354/354 [==============================] - 0s 249us/sample - loss: 8.1556 - mae: 1.8854 - mse: 8.1556 - val_loss: 13.2502 - val_mae: 2.4204 - val_mse: 13.2502\n",
+      "Epoch 51/100\n",
+      "354/354 [==============================] - 0s 266us/sample - loss: 8.1675 - mae: 1.8848 - mse: 8.1675 - val_loss: 13.0517 - val_mae: 2.4092 - val_mse: 13.0517\n",
+      "Epoch 52/100\n",
+      "354/354 [==============================] - 0s 268us/sample - loss: 7.8965 - mae: 1.8619 - mse: 7.8965 - val_loss: 12.2905 - val_mae: 2.4068 - val_mse: 12.2905\n",
+      "Epoch 53/100\n",
+      "354/354 [==============================] - 0s 268us/sample - loss: 7.7485 - mae: 1.8806 - mse: 7.7485 - val_loss: 14.3344 - val_mae: 2.4619 - val_mse: 14.3344\n",
+      "Epoch 54/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 7.8410 - mae: 1.8223 - mse: 7.8410 - val_loss: 12.4339 - val_mae: 2.3516 - val_mse: 12.4339\n",
+      "Epoch 55/100\n",
+      "354/354 [==============================] - 0s 270us/sample - loss: 7.7763 - mae: 1.8629 - mse: 7.7763 - val_loss: 12.4900 - val_mae: 2.3219 - val_mse: 12.4900\n",
+      "Epoch 56/100\n",
+      "354/354 [==============================] - 0s 276us/sample - loss: 7.7260 - mae: 1.8532 - mse: 7.7260 - val_loss: 12.1347 - val_mae: 2.4580 - val_mse: 12.1347\n",
+      "Epoch 57/100\n",
+      "354/354 [==============================] - 0s 276us/sample - loss: 7.7718 - mae: 1.8427 - mse: 7.7718 - val_loss: 12.2219 - val_mae: 2.3501 - val_mse: 12.2219\n",
+      "Epoch 58/100\n",
+      "354/354 [==============================] - 0s 276us/sample - loss: 7.4303 - mae: 1.8239 - mse: 7.4303 - val_loss: 14.0691 - val_mae: 2.4818 - val_mse: 14.0691\n",
+      "Epoch 59/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 7.4273 - mae: 1.8028 - mse: 7.4273 - val_loss: 11.7311 - val_mae: 2.3401 - val_mse: 11.7311\n",
+      "Epoch 60/100\n",
+      "354/354 [==============================] - 0s 271us/sample - loss: 7.5121 - mae: 1.8147 - mse: 7.5121 - val_loss: 11.3120 - val_mae: 2.2758 - val_mse: 11.3120\n",
+      "Epoch 61/100\n",
+      "354/354 [==============================] - 0s 264us/sample - loss: 7.2880 - mae: 1.8049 - mse: 7.2880 - val_loss: 11.9505 - val_mae: 2.3743 - val_mse: 11.9505\n",
+      "Epoch 62/100\n",
+      "354/354 [==============================] - 0s 267us/sample - loss: 7.4047 - mae: 1.8147 - mse: 7.4047 - val_loss: 11.3717 - val_mae: 2.3193 - val_mse: 11.3717\n",
+      "Epoch 63/100\n",
+      "354/354 [==============================] - 0s 271us/sample - loss: 7.1160 - mae: 1.8047 - mse: 7.1160 - val_loss: 11.4990 - val_mae: 2.3168 - val_mse: 11.4990\n",
+      "Epoch 64/100\n",
+      "354/354 [==============================] - 0s 271us/sample - loss: 7.2246 - mae: 1.7902 - mse: 7.2246 - val_loss: 11.6231 - val_mae: 2.3270 - val_mse: 11.6231\n",
+      "Epoch 65/100\n",
+      "354/354 [==============================] - 0s 270us/sample - loss: 7.2051 - mae: 1.7780 - mse: 7.2051 - val_loss: 11.8574 - val_mae: 2.3124 - val_mse: 11.8574\n",
+      "Epoch 66/100\n",
+      "354/354 [==============================] - 0s 275us/sample - loss: 7.2065 - mae: 1.7675 - mse: 7.2065 - val_loss: 11.4090 - val_mae: 2.2963 - val_mse: 11.4090\n",
+      "Epoch 67/100\n",
+      "354/354 [==============================] - 0s 270us/sample - loss: 6.8474 - mae: 1.7266 - mse: 6.8474 - val_loss: 12.4625 - val_mae: 2.3632 - val_mse: 12.4625\n",
+      "Epoch 68/100\n",
+      "354/354 [==============================] - 0s 276us/sample - loss: 6.9649 - mae: 1.7497 - mse: 6.9649 - val_loss: 12.4027 - val_mae: 2.4041 - val_mse: 12.4027\n",
+      "Epoch 69/100\n",
+      "354/354 [==============================] - 0s 271us/sample - loss: 7.0694 - mae: 1.7344 - mse: 7.0694 - val_loss: 12.8411 - val_mae: 2.4197 - val_mse: 12.8411\n",
+      "Epoch 70/100\n",
+      "354/354 [==============================] - 0s 271us/sample - loss: 6.6178 - mae: 1.6949 - mse: 6.6178 - val_loss: 10.8244 - val_mae: 2.2712 - val_mse: 10.8244\n",
+      "Epoch 71/100\n",
+      "354/354 [==============================] - 0s 265us/sample - loss: 6.5987 - mae: 1.7189 - mse: 6.5987 - val_loss: 11.3479 - val_mae: 2.2654 - val_mse: 11.3479\n",
+      "Epoch 72/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 6.6659 - mae: 1.7367 - mse: 6.6659 - val_loss: 13.3760 - val_mae: 2.5578 - val_mse: 13.3760\n",
+      "Epoch 73/100\n",
+      "354/354 [==============================] - 0s 267us/sample - loss: 6.7449 - mae: 1.7191 - mse: 6.7449 - val_loss: 10.6301 - val_mae: 2.2385 - val_mse: 10.6301\n",
+      "Epoch 74/100\n",
+      "354/354 [==============================] - 0s 269us/sample - loss: 6.4514 - mae: 1.7079 - mse: 6.4514 - val_loss: 11.2719 - val_mae: 2.4001 - val_mse: 11.2719\n",
+      "Epoch 75/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 6.4869 - mae: 1.6759 - mse: 6.4869 - val_loss: 12.1220 - val_mae: 2.3984 - val_mse: 12.1220\n",
+      "Epoch 76/100\n",
+      "354/354 [==============================] - 0s 274us/sample - loss: 6.5897 - mae: 1.6894 - mse: 6.5897 - val_loss: 11.1440 - val_mae: 2.2544 - val_mse: 11.1440\n",
+      "Epoch 77/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 6.4586 - mae: 1.6888 - mse: 6.4586 - val_loss: 12.3773 - val_mae: 2.3903 - val_mse: 12.3773\n",
+      "Epoch 78/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 6.4341 - mae: 1.7145 - mse: 6.4341 - val_loss: 11.4619 - val_mae: 2.3918 - val_mse: 11.4619\n",
+      "Epoch 79/100\n",
+      "354/354 [==============================] - 0s 274us/sample - loss: 6.3822 - mae: 1.6900 - mse: 6.3822 - val_loss: 12.2106 - val_mae: 2.3721 - val_mse: 12.2106\n",
+      "Epoch 80/100\n",
+      "354/354 [==============================] - 0s 276us/sample - loss: 6.1874 - mae: 1.6462 - mse: 6.1874 - val_loss: 10.5171 - val_mae: 2.2212 - val_mse: 10.5171\n",
+      "Epoch 81/100\n",
+      "354/354 [==============================] - 0s 268us/sample - loss: 6.2406 - mae: 1.6560 - mse: 6.2406 - val_loss: 11.1654 - val_mae: 2.2688 - val_mse: 11.1654\n",
+      "Epoch 82/100\n",
+      "354/354 [==============================] - 0s 277us/sample - loss: 6.1431 - mae: 1.6326 - mse: 6.1431 - val_loss: 10.5330 - val_mae: 2.2102 - val_mse: 10.5330\n",
+      "Epoch 83/100\n",
+      "354/354 [==============================] - 0s 268us/sample - loss: 6.0614 - mae: 1.6425 - mse: 6.0614 - val_loss: 11.1468 - val_mae: 2.3205 - val_mse: 11.1468\n",
+      "Epoch 84/100\n",
+      "354/354 [==============================] - 0s 271us/sample - loss: 5.9098 - mae: 1.6575 - mse: 5.9098 - val_loss: 10.3323 - val_mae: 2.2447 - val_mse: 10.3323\n",
+      "Epoch 85/100\n",
+      "354/354 [==============================] - 0s 262us/sample - loss: 5.8809 - mae: 1.6603 - mse: 5.8809 - val_loss: 12.0661 - val_mae: 2.3902 - val_mse: 12.0661\n",
+      "Epoch 86/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 5.9024 - mae: 1.6258 - mse: 5.9024 - val_loss: 10.2668 - val_mae: 2.2403 - val_mse: 10.2668\n",
+      "Epoch 87/100\n",
+      "354/354 [==============================] - 0s 267us/sample - loss: 5.9340 - mae: 1.6283 - mse: 5.9340 - val_loss: 10.3232 - val_mae: 2.2364 - val_mse: 10.3232\n",
+      "Epoch 88/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 5.7561 - mae: 1.6597 - mse: 5.7561 - val_loss: 11.0334 - val_mae: 2.3103 - val_mse: 11.0334\n",
+      "Epoch 89/100\n",
+      "354/354 [==============================] - 0s 278us/sample - loss: 5.7652 - mae: 1.6276 - mse: 5.7652 - val_loss: 10.5884 - val_mae: 2.2664 - val_mse: 10.5884\n",
+      "Epoch 90/100\n",
+      "354/354 [==============================] - 0s 265us/sample - loss: 5.7276 - mae: 1.6284 - mse: 5.7276 - val_loss: 10.8470 - val_mae: 2.3210 - val_mse: 10.8470\n",
+      "Epoch 91/100\n",
+      "354/354 [==============================] - 0s 264us/sample - loss: 5.6704 - mae: 1.5802 - mse: 5.6704 - val_loss: 10.5757 - val_mae: 2.2699 - val_mse: 10.5757\n",
+      "Epoch 92/100\n",
+      "354/354 [==============================] - 0s 277us/sample - loss: 5.6099 - mae: 1.5911 - mse: 5.6099 - val_loss: 12.4091 - val_mae: 2.4405 - val_mse: 12.4091\n",
+      "Epoch 93/100\n",
+      "354/354 [==============================] - 0s 265us/sample - loss: 5.4673 - mae: 1.5880 - mse: 5.4673 - val_loss: 9.5978 - val_mae: 2.1851 - val_mse: 9.5978\n",
+      "Epoch 94/100\n",
+      "354/354 [==============================] - 0s 267us/sample - loss: 5.3195 - mae: 1.5474 - mse: 5.3195 - val_loss: 11.3653 - val_mae: 2.3870 - val_mse: 11.3653\n",
+      "Epoch 95/100\n",
+      "354/354 [==============================] - 0s 271us/sample - loss: 5.2298 - mae: 1.5350 - mse: 5.2298 - val_loss: 11.4847 - val_mae: 2.4010 - val_mse: 11.4847\n",
+      "Epoch 96/100\n",
+      "354/354 [==============================] - 0s 270us/sample - loss: 5.3535 - mae: 1.5478 - mse: 5.3535 - val_loss: 11.1203 - val_mae: 2.3284 - val_mse: 11.1203\n",
+      "Epoch 97/100\n",
+      "354/354 [==============================] - 0s 269us/sample - loss: 5.2177 - mae: 1.5622 - mse: 5.2177 - val_loss: 11.1940 - val_mae: 2.3487 - val_mse: 11.1940\n",
+      "Epoch 98/100\n",
+      "354/354 [==============================] - 0s 268us/sample - loss: 5.3019 - mae: 1.5416 - mse: 5.3019 - val_loss: 10.6022 - val_mae: 2.2977 - val_mse: 10.6022\n",
+      "Epoch 99/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 5.0745 - mae: 1.5318 - mse: 5.0745 - val_loss: 9.1810 - val_mae: 2.1663 - val_mse: 9.1810\n",
+      "Epoch 100/100\n",
+      "354/354 [==============================] - 0s 276us/sample - loss: 4.9694 - mae: 1.5170 - mse: 4.9694 - val_loss: 12.8575 - val_mae: 2.7038 - val_mse: 12.8575\n"
+     ]
+    }
+   ],
    "source": [
     "history = model.fit(x_train,\n",
     "                    y_train,\n",
@@ -244,17 +924,27 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## 6/ Evaluate\n",
-    "### 6.1/ Model evaluation\n",
+    "## Step 6 - Evaluate\n",
+    "### 6.1 - Model evaluation\n",
     "MAE =  Mean Absolute Error (between the labels and predictions)  \n",
     "A mae equal to 3 represents an average error in prediction of $3k."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 8,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "x_test / loss      : 12.8575\n",
+      "x_test / mae       : 2.7038\n",
+      "x_test / mse       : 12.8575\n"
+     ]
+    }
+   ],
    "source": [
     "score = model.evaluate(x_test, y_test, verbose=0)\n",
     "\n",
@@ -267,15 +957,138 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "### 6.2/ Training history\n",
+    "### 6.2 - Training history\n",
     "What was the best result during our training ?"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 9,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>loss</th>\n",
+       "      <th>mae</th>\n",
+       "      <th>mse</th>\n",
+       "      <th>val_loss</th>\n",
+       "      <th>val_mae</th>\n",
+       "      <th>val_mse</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>100.000000</td>\n",
+       "      <td>100.000000</td>\n",
+       "      <td>100.000000</td>\n",
+       "      <td>100.000000</td>\n",
+       "      <td>100.000000</td>\n",
+       "      <td>100.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>15.538406</td>\n",
+       "      <td>2.299461</td>\n",
+       "      <td>15.538407</td>\n",
+       "      <td>19.231753</td>\n",
+       "      <td>2.775025</td>\n",
+       "      <td>19.231753</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>44.914352</td>\n",
+       "      <td>2.003585</td>\n",
+       "      <td>44.914356</td>\n",
+       "      <td>37.177478</td>\n",
+       "      <td>1.657639</td>\n",
+       "      <td>37.177476</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>4.969428</td>\n",
+       "      <td>1.516992</td>\n",
+       "      <td>4.969429</td>\n",
+       "      <td>9.180952</td>\n",
+       "      <td>2.166264</td>\n",
+       "      <td>9.180954</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>6.479793</td>\n",
+       "      <td>1.693636</td>\n",
+       "      <td>6.479793</td>\n",
+       "      <td>11.448713</td>\n",
+       "      <td>2.328062</td>\n",
+       "      <td>11.448714</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>8.136086</td>\n",
+       "      <td>1.885107</td>\n",
+       "      <td>8.136086</td>\n",
+       "      <td>12.954600</td>\n",
+       "      <td>2.421493</td>\n",
+       "      <td>12.954600</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>10.545197</td>\n",
+       "      <td>2.200065</td>\n",
+       "      <td>10.545198</td>\n",
+       "      <td>15.315346</td>\n",
+       "      <td>2.648960</td>\n",
+       "      <td>15.315347</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>418.843522</td>\n",
+       "      <td>18.692585</td>\n",
+       "      <td>418.843567</td>\n",
+       "      <td>363.624954</td>\n",
+       "      <td>17.071243</td>\n",
+       "      <td>363.624939</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "             loss         mae         mse    val_loss     val_mae     val_mse\n",
+       "count  100.000000  100.000000  100.000000  100.000000  100.000000  100.000000\n",
+       "mean    15.538406    2.299461   15.538407   19.231753    2.775025   19.231753\n",
+       "std     44.914352    2.003585   44.914356   37.177478    1.657639   37.177476\n",
+       "min      4.969428    1.516992    4.969429    9.180952    2.166264    9.180954\n",
+       "25%      6.479793    1.693636    6.479793   11.448713    2.328062   11.448714\n",
+       "50%      8.136086    1.885107    8.136086   12.954600    2.421493   12.954600\n",
+       "75%     10.545197    2.200065   10.545198   15.315346    2.648960   15.315347\n",
+       "max    418.843522   18.692585  418.843567  363.624954   17.071243  363.624939"
+      ]
+     },
+     "execution_count": 9,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "\n",
     "df=pd.DataFrame(data=history.history)\n",
@@ -284,18 +1097,63 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 10,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "min( val_mae ) : 2.1663\n"
+     ]
+    }
+   ],
    "source": [
     "print(\"min( val_mae ) : {:.4f}\".format( min(history.history[\"val_mae\"]) ) )"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 11,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAGdCAYAAACRlkBKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZxcVZ338c+vlt6zkJUskEDYITEEI2AU2R4QcRvUEUFmZAZxLGXcHmeAGQWRGR0dEc1QOkQfZ0BBwIXBgZHIyKKyhBgDiIGEhABJSAjZutPd1V3Lef44t7qrKtXd1Ul3Vd3k+3696nWr7z11+9RNp+vbZ7vmnENERERkKJFaV0BERETCQaFBREREKqLQICIiIhVRaBAREZGKKDSIiIhIRRQaREREpCIKDSIiIlIRhQYR2Stm9h9m5oJH2symDFH+vQXlnZl9pEyZCWb2D2b2qJltD867xcyeMrPbzexjZnZ4mdddW3LuwR43juBlEDmgxGpdARHZL8SAi4DBPpD/YrATmNnJwD1AYfhoB1qBecHjQuC/gPcOcJocsHWIurYPcVxEBqDQICL76mXgUHwoKBsazGwCcD6wG+gFJpQcH09/YFgDXAvc45zbHRw/GHgb8Of4YDCQV5xzs/f+rYjIYBQaRGRfPQakgRPN7Hjn3LNlylwINAC3A2cPcHwK0AOc6ZzbUHjQObcZuAO4w8yaR7LyIlI5jWkQkZFwa7AdqAsiv/+WAY7PDbYrSwNDKedc9zDrJiIjRKFBREZCPjRcbGZFv1fM7CjgZOAV4KEhzjPNzGzkqyciI0GhQUT2mXNuHfA7YAZwZsnhfCvDj5xzA41HWB5sDwX+ycwaR76WIrKvFBpEZKTkux76uiiCVoMPlxwv53bg+eD5VcBmM/upmf2dmZ1hZi0V1uEQM9s8xOP44bwpEemn0CAiI+VOIAVcYGatwb63AbOA5c65VQO90DmXwrdQ3BvsGg9cAPwL8Gtgp5ndY2anDlGHCDB1iEd8+G9NREChQURGiHNuJ/AL/LoK7wt2DzUAsvD1m5xz7wSOxbc23Au8GhyOA+8CfmdmnxrkNC8552yIx8q9eHsigkKDiIysfDi4JJga+T78dMzbKz2Bc+4559xXnXPvdM5Nx4eILwFdgAE3mNmCEa63iFRAoUFERtIvgdfwXQ2fBMYC/+Oce31vTxiEiGuB8wCH/731l/teVREZLoUGERkxzrkM8GP875Z/CnbfOvArhnXuR/CrRQIcNRLnFJHhUWgQkZGW76KIAzvw4xxGSmew7R3Bc4pIhbSMtIiMKOfc783sWmAM8LRzrmeo15jZQmC1c27XIGWOB94QfKnBjCI1oNAgIiPOOfelYb7kg8BlZnY78FPgCedcB4CZTcTfqOqL+NbRTuB7I1hdEamQQoOI1IM0MA74m+CBmbXjf0cVLuy0E7jQOffKAOc5xMw2D/G9HnXOXbCP9RU5ICk0iEg9uBr4b+DtwKnAMcBk/BTLrcAq4H5giXNu6yDnyS/uNJgJQxwXkQGYc67WdRAREZEQ0OwJERERqYhCg4iIiFREoUFEREQqotAgIiIiFVFoGEAikXCJREKjREVERAKacjk0BQcRETmQ2EAH1NIgIiIiFVFoEBERkYooNIiIiEhFFBpERESkIhoIOUzpdJoNGzaQSqVqXZVQaGpqYubMmcTj8VpXRURE9pFCwzBt2LCBMWPGMHv2bMwGHGAqgHOObdu2sWHDBg477LBaV0dERPaRuieGKZVKMXHiRAWGCpgZEydOVKuMiMh+QqFhLygwVE7XSkRk/6HQICIiIhVRaBAREZGKKDSE0Pr16znmmGO47LLLOOGEE7j44ot54IEHWLRoEUceeSTLli3j4YcfZv78+cyfP58TTzyRjo4OAL7+9a+zcOFC5s2bxzXXXFPjdyIiImGi2RP74Nwv3ztq577/C+cPevyFF17grrvu4uabb2bhwoXcdttt/Pa3v+Wee+7hn//5n8lms9x0000sWrSI3bt309TUxNKlS1mzZg3Lli3DOce73/1uHnnkEU477bRRex8iIrL/UEtDSB122GHMnTuXSCTC8ccfz1lnnYWZMXfuXNavX8+iRYv47Gc/y7e//W127txJLBZj6dKlLF26lBNPPJEFCxbw3HPPsWbNmlq/FRERCQm1NIRUY2Nj3/NIJNL3dSQSIZPJcOWVV3L++edz3333ccopp/DAAw/gnOOqq67iYx/7WK2qLSIiIabQsA+G6kIotHrTzr7nR04bN+pTEdeuXcvcuXOZO3cujz32GM899xznnnsuX/jCF7j44otpa2tj48aNxONxpkyZMqp1ERGR/YNCQ5WYGc45AJyD0V6+4MYbb+TBBx8kGo1y3HHHcd5559HY2MiqVas49dRTAWhra+OHP/yhQoOIiFTE8h9kUiyRSDiAZDJZtH/VqlUce+yxwz7fC5t3kcv5az3n4LFEIwfOcJK9vWYiIlITA/5Ze+B8ctWYFfwbKKeJiEgYKTRUSWF3hEKDiIiEkUJDlRS29TiUGkREJHwUGqqkcLaEWhpERCSMFBqqpKh7Qi0NIiISQnUXGsysxcxeNDNnZv9W5vjRZna3me0ws04z+42ZnTnAucaZ2WIz22hmKTN71sw+bjW4X3NR94Qyg4iIhFA9rtNwHTCp3AEzmwM8CmSArwG7gI8C95vZec65BwrKNgC/Ak4EFgOrgPOAJDAVuHb03kLZuvd/odAgIiIhVFctDWa2APg0MNDtF78CjAfOdc59xTmXBN4KbAJuKmlBuAxYCHzWOfdZ59wS59wFwM+Aq81s1qi9kTJq1T3R1tZWte8lIiL7t7oJDWYWBZYAv8R/sJcebwXeDTzknFuZ3++c2w18DzgKHxLyLgK6gnMWuhGIAx8cyfoPTQMhRUQk3Oqpe+IzwDHA+wY4Pg9oBB4rc+zxYLsQWGZmEWABsMI5lyopuwzIURww9s5lb6+46Mzhnvt7vyy7++///u+ZNWsWiUQCgGuvvRYz45FHHmHHjh2k02muv/563vOe9wz5LR566CGuueYapk6dysqVK7nggguYO3cu3/rWt+ju7ubuu+9mzpw53HXXXXzpS18iGo0ybtw4HnnkEbLZLFdeeSUPPfQQPT09fOITn9CNsERE9nN10dJgZocBXwKuc86tH6DY9GC7scyx/L4ZwfYgoLlcWedcD7CtoGxpXS43s+WV1bz6LrzwQu64446+r++8804uvfRSfv7zn7NixQoefPBBPve5z1Hp8uBPPfUU3/rWt3jmmWe49dZbWb16NcuWLeOyyy5j8eLFAFx33XXcf//9PPXUU9xzzz0AfP/732fcuHE8+eSTPPnkkyxZsoQXX3xx5N+wiIjUjboIDcB3gBeBGwYp0xJse8ocS5WUGaxsvnxLuQPOuZudc28cpB41deKJJ/Laa6+xadMmnnrqKQ466CCmTZvG1Vdfzbx58zj77LPZuHEjW7Zsqeh8CxcuZNq0aTQ2NjJnzhzOOeccAObOncv69esBWLRoER/5yEdYsmQJ2WwWgKVLl3LLLbcwf/58Tj75ZLZt28aaNWtG5T2LiEh9qHn3hJl9GDgHOM05lx6kaFewbSxzrKmkzGBl8+W7BjhWuQG6EMrZvLOL9q5eAKaOb2FcS8Nef9v3v//9/OQnP2Hz5s1ceOGF/OhHP2Lr1q38/ve/Jx6PM3v2bFKp0l6Z8hob+y9RJBLp+zoSiZDJZAD47ne/yxNPPMG9997L/PnzWblyJc45Fi9ezLnnnrvX70NERMKlpi0NZtaIb124D9hsZkeY2RFAfmbDuGDfePwMCSjfrZDfl++O2AF0lysbfM+JlO/mGDXF6zTs20jICy+8kB//+Mf85Cc/4f3vfz+7du1iypQpxONxHnzwQV566aV9q2yJtWvXcvLJJ3PdddcxadIkXnnlFc4991y+853vkE77nLd69Wo6OztH9PuKiEh9qXVLQzMwGTg/eJT6cPD4PPBdfHfDqWXKnRJslwM453JmtgI40cwag3EMeW/Ch6WqjlsYyWWkjz/+eDo6OpgxYwbTpk3j4osv5l3vehdvfOMbmT9/Psccc8w+1rbY5z//edasWYNzjrPOOos3vOENzJs3j/Xr17NgwQKcc0yePJm77757RL+viIjUF9vXv3r36ZubxYFyw/wn4xdh+iXwfeBp59xqM7sLuABY4Jx7KjhHG/AsPlAc7YI3ZGafAP4N+Fvn3OKC7/lT/NTNo5xzA47cSyQSDiCZTBbtX7VqFccee+yw3+vW9m527PbZZdLYJia0NQ3xiv3H3l4zERGpiQFXTa5pS0MwhuEnpfvNbHbwdK1zrvD4VcBZwFIz+ybQjl8RcgZwvitOQEuAS4EbgvOtAt4B/Blw/WCBYTRoGWkREQm7WndPDItz7gUzWwR8FbgSaABWAG8vXEI6KNtrZmcD1wMfwo9jWAtcAdxU1YpT0j1R5e/9zDPPcMkllxTta2xs5IknnqhyTUREJMzqMjQEazWUbR5xzq2ifJdGubI7gU8Gj5oayYGQwzV37lxWrlw5dEEREZFB1Ms6DaGyVx/6B+gNq2o5ZkZEREaWQsMwNTU1sW3btmF/GEYOwMzgnGPbtm00NR04gz5FRPZnddk9Uc9mzpzJhg0b2Lp167Be192bob3Lr2mwozHKtua9X9wpTJqampg5c9h33hARkTqk0DBM8Xicww47bNivW/rUK3zjgacBOHveDD7/Hk1BFBGRcFH3RJXEIv2XOpM9UDooRERkf6LQUCXxWP+lTmeyNayJiIjI3lFoqJJ4tCA05NTSICIi4aPQUCWxaGH3RK6GNREREdk7Cg1VEldoEBGRkFNoqJJYtH+hhnRGoUFERMJHoaFKisY0qKVBRERCSKGhSorHNGggpIiIhI9CQ5WopUFERMJOoaFKNBBSRETCTqGhSmJqaRARkZDTvSeqIZOh9eH/4sJdqzDg3uY317pGIiIiw6bQUA0uR/N//YBLgTQR7p58Sq1rJCIiMmzqnqiGWLzvaZwcGa3TICIiIaTQUA1muGhBo042g3OadikiIuGi0FAlFusPDTGXJaObVomISMgoNFRLtCQ0aAaFiIiEjEJDtcQLxjW4nKZdiohI6Cg0VEu0cDCkWhpERCR8FBqqpWRMg+50KSIiYaPQUC0F0y5jLqebVomISOgoNFRLQUtD3GU1pkFEREJHoaFaYsVjGhQaREQkbBQaqqVoymVOAyFFRCR0FBqqpbClQes0iIhICCk0VMseYxo0EFJERMJFoaFaCmdPkCWdzdawMiIiIsOn0FAtmnIpIiIhp9BQLZpyKSIiIafQUC3RktCgFSFFRCRkFBqqJV44piFHJqfQICIi4aLQUC1RTbkUEZFwU2ioltIbVmkgpIiIhIxCQ7UUDYTMaUyDiIiEjkJDtRRNuVT3hIiIhI9CQ7VEi29YpdAgIiJho9BQLbHiG1ZpnQYREQkbhYZqKblhlUKDiIiEjUJDtZSsCKnuCRERCRuFhmop7J5A954QEZHwUWiolqi6J0REJNwUGqolrtAgIiLhptBQLdHiFSE1pkFERMJGoaFaSsY0qKVBRETCRqGhWmINfU/VPSEiImGk0FAte0y51OwJEREJF4WGailZEVJjGkREJGwUGqqlcCAkWd3lUkREQkehoVo0pkFEREJOoaFaisY05MjkFBpERCRcFBqqJVa8ToO6J0REJGwUGqql5C6Xmj0hIiJho9BQLQWhQYs7iYhIGNU8NJjZ0Wb2IzNbZWa7zKzLzJ4zsxvMbNoA5e82sx1m1mlmvzGzMwc49zgzW2xmG80sZWbPmtnHzcxG/52ViOrW2CIiEm6xoYuMupnANODnwAYgA8wFLgcuNLP5zrnXAMxsDvBoUOZrwC7go8D9Znaec+6B/EnNrAH4FXAisBhYBZwHJIGpwLXVeHN9otH+pziymUxVv72IiMi+qnlocM79L/C/pfvN7BHgTuAj+IAA8BVgPHCSc25lUO4W4FngJjM7xjmXHyxwGbAQ+Fvn3OJg3xIz+ylwtZn9wDn30ii9rT2Z4WJxLJP2X2az5JwjUoNGDxERkb1R8+6JQeQ/0A8CMLNW4N3AQ/nAAOCc2w18DzgKHxLyLgK6gCUl570RiAMfHJ1qD8yKxjWoi0JERMKlbkKDmTWZ2SQzm2lm5wD/Hhy6L9jOAxqBx8q8/PFguzA4VwRYAPzBOZcqKbsMyFEcMKqjZK0GDYYUEZEwqZvQgO9O2Aq8AtyP74b4sHPuN8Hx6cF2Y5nX5vfNCLYHAc3lyjrneoBtBWWrR9MuRUQkxOopNNwN/B/gz4DrgJ3A5ILjLcG2p8xrUyVlBiubL99S7oCZXW5myyus8/CULPCk7gkREQmTugkNzrkNzrkHnHN3O+euAf4S+Bczuyoo0hVsG8u8vKmkzGBl8+W7yh1wzt3snHvj8GpfocJpl+j+EyIiEi51ExpKOeeeBv4AJIJdm4JtuW6F/L58d8QOoLtcWTNrBCZSvptjdBUOhHQ5LSUtIiKhUrehIdAMTAieP4Pvbji1TLlTgu1yAOdcDlgBnBiEhEJvwr/v0emCGMweYxoUGkREJDxqHhrM7OAB9p8BnEAwMyKYWvkL4HQze0NBuTb8IMo1+JkRebfjxy1cXnLqT+MXh7pzhN5C5UrHNOQ0EFJERMKj5os7Ad8Jlov+NX5thibgJOBCoAP4XEHZq4CzgKVm9k2gHb8i5Azg/IKFncCvz3ApcIOZzcavCPkO/EDL651zL47ieyqvaExDjt5MtupVEBER2Vv1EBpuxw96vAQ/W8Lhw8O/A193zr2cL+ice8HMFgFfBa4EGvDdEG8vXEI6KNtrZmcD1wMfwo9jWAtcAdw02m+qrLimXIqISHjVPDQ45+5kGF0FzrlVwHsqLLsT+GTwqL1o4UBIjWkQEZFwqfmYhgNK0ZgGrQgpIiLhotBQTSWzJxQaREQkTBQaqilWvLiTuidERCRMFBqqqWRxJw2EFBGRMFFoqKZo8ToN6p4QEZEwUWiopoKWhgaFBhERCRmFhmoqnD2hMQ0iIhIyCg3VtMeYBoUGEREJD4WGaiqdcqm7XIqISIgoNFRT4ZRLjWkQEZGQUWiopsLZE+R0l0sREQkVhYZqihXfe0LdEyIiEiYKDdWkZaRFRCTEFBqqqWhMg2ZPiIhIuCg0VJPWaRARkRBTaKgmdU+IiEiIKTRUU8niTmndsEpEREJEoaGaosXrNKh7QkREwkShoZoKuydQ94SIiISLQkM1FQ6E1OwJEREJGYWGaipd3EmhQUREQkShoZr2GNOggZAiIhIeCg3VFC+ccpkjncnWsDIiIiLDo9BQTdGSxZ10wyoREQkRhYZq0pgGEREJMYWGaipdEVJ3uRQRkRBRaKgm3bBKRERCTKGhmkpvWKWBkCIiEiIKDdUUieLMX/IIkFVLg4iIhIhCQ7UVTLuM5jJkNYNCRERCQqGhykw3rRIRkZBSaKi2onENGgwpIiLhodBQbaXTLhUaREQkJBQaqk2hQUREQkqhodqipbfH1kBIEREJB4WGaitc4Am1NIiISHgoNFRb6f0ntJS0iIiEhEJDtcVKplzmFBpERCQcKgoNiUTiLxKJxLySfQ2JRGLsAOXflkgkvjgSFdzvFLU0aMqliIiER6UtDf8BvLdk31XAjgHKnw5cs3dV2s8Vzp5A3RMiIhIe6p6otsLFnTTlUkREQkShodqipbfH1pRLEREJB4WGaitZ3EljGkREJCwUGqqtdMqlQoOIiISEQkO1FS3ulFNoEBGR0IgNXaTP+EQicWjh1wCJROIQwErL7mvF9lvR4oGQ6p4QEZGwGE5o+FTwKLV+ZKpygIjrhlUiIhJOlYaGlwEN8x8J0eLFnRQaREQkLCoKDclkcvYo1+PAUXLDKk25FBGRsNBAyGrTlEsREQkphYZqK1oRMqdlpEVEJDQq6p5IJBLNwDTg9WQy2V5ybBbwTeBM/CyKh4H/m0wmV49wXfcPpes06C6XIiISEpW2NHwSWAMcV7gzkUiMwYeE9wBjgTHAO4GHEonExBGs5/4jWjqmQaFBRETCodLQ8FbglWQy+XjJ/o8DhwKPAUcAU4HFwMGUn54pJWMa1D0hIiJhUemUy+OA5WX2X4CfivlXyWRyXbDvU4lE4nzgPOCL+17F/UzJmAbNnhARkbCotKVhMvBi4Y5EIhEHTgSeLzN+4df4lgcppXtPiIhISFUaGhqBaMm+44E4sKxM+deAln2o1/6rsHtCYxpERCREKg0Nm4ETSva9Gd81Ua7bYgywfR/qtf8qXNxJK0KKiEiIVBoafgecmUgkToe+KZgfDY79qkz5E4CNlZzYzI4ys+vM7HEz22pmHWa20sz+wcxay5Q/2szuNrMdZtZpZr8xszMHOPc4M1tsZhvNLGVmz5rZx82s9AZb1aMbVomISEhVGhq+GWyXJhKJFfjxDfOAh5LJ5POFBROJxFhgEVA602IgfwV8BlgLXAd8HngeuB541Mya8wXNbA7wKHAq8LWgbBtwv5mdXXhSM2vAB5q/Ae4ArgjOmwSuqbBuI6909oRCg4iIhERFoSGZTC4HPgJ0A/OBKfhuib8sU/wvgQZgaYV1+Akw0zl3sXNusXPuu865DwL/hA8mf11Q9iv4226f65z7inMuiZ8Ougm4qaQF4TJgIfBZ59xnnXNLnHMXAD8DrjazWRXWb2QVDoRE3RMiIhIeFS8jnUwmf4hff+Fk4IhkMnlyMpncUKboL/CzKn5ZyXmdc8udc7vKHLoj2J4AEHRVvBt4yDm3suD1u4HvAUfhQ0LeRUAXsKTkvDfiB3B+sJL6jbiiMQ26YZWIiIRHpes0AJBMJruBJ4cos35fKlRgZrDdEmzn4WdxPFambL4rZCGwzMwiwAJghXMuVVJ2GZCjOGBUzx7rNKilQUREwqEub1hlZlH8wlAZ4LZg9/RgW26AZX7fjGB7ENBcrqxzrgfYVlC29HtfbmblZoSMDI1pEBGRkKr0hlV/sTcnTyaTt+zN6/BdCKcAVzvn8gMt8+s+9JQpnyopM1jZfPmy60g4524Gbk4kEqPTb1A0pkGhQUREwqPS7on/wK/JUCkLyg87NJjZl/E3yLrZOfeVgkNdwbaxzMuaSsoMVjZfvmuAY6MrWrxOg7onREQkLIYzpiED/Dfwp1GqC2Z2LfCPwA/wUyULbQq25boV8vvy3RE78DM99ihrZo3ARPzdOasvXtw9oYGQIiISFpWGhoeB04D34qdbLgHuTCaTpYMM95qZXYNfP+EW4DLnXOmn6TP47oZTy7z8lGC7HMA5lzOzFcCJZtYYjGPIexN+LMfojVsYTMniTrrLpYiIhEWl6zScARwN/Cv+RlQ/AF5NJBKLE4nEvH2thJl9EbgWuBW41Dm3xydpMLXyF8DpZvaGgte24ddkWEPxfTBux49buLzkVJ/Gt5rcua/13iuF3RPkSGeyNamGiIjIcFXcPZFMJl8A/j6RSPwD8B78MtIfBxKJROL3wL8DP04mk53DqYCZfQL4EvAy8ABwUckqz1ucc/mlqq8CzgKWmtk3gfagHjOA80taJ5YAlwI3mNlsYBXwDuDPgOudc0V37ayaSAQXiWI5HxYsm8E5Ry1XthYREanEsNZpAEgmkxngp8BPE4nELPxf+R8BbgZuSCQSb08mk+XWUhhIfr2EQ4H/LHP8YYL7WzjnXjCzRcBXgSvxK0+uAN7unHug8EXOud5gaenrgQ/hxzGsxS8nfdMw6jfiLB6HHh8aoi5LzjmiCg0iIlLnhh0aCiWTyZeALyQSiUfxLQ0zgMnDOYdz7iP40FFp+VX4lo5Kyu7Ez8T45HDqNOrKjGuINtTlkhkiIiJ99jo0JBKJ6fibTf0VMAu/9sEP8X/5y2CKFnjKkc66vjmjIiIi9WpYoSGRSESAd+K7JN4evP4Z4FPArclkstw9JKRUYWggS28mi78dhoiISP2qdEXIw/B3m7wUmAZ04scfLEkmk8sGe62UESvunkilNYNCRETqX6UtDS8E2+X4tRRuH+4sCSlQctOqVG+mhpURERGpTKWhwYA0vpXhi8AXE4nEUK9xyWRy1j7Ubf8VLV4VsrtXLQ0iIlL/hjOmIU7/7aplX8SLxzR0q6VBRERCoKLQkEwmNR9wJEVLuyfU0iAiIvVPYaAWYoV3uszSnVZLg4iI1D+FhlqIaUyDiIiEj0JDLRSEhhhZzZ4QEZFQUGiohZIxDWppEBGRMFBoqIXSMQ1qaRARkRBQaKiFkjENmj0hIiJhoNBQC0VjGnJqaRARkVBQaKiFPaZcqqVBRETqn0JDLRS2NDjNnhARkXBQaKiFopYGzZ4QEZFwUGiohWjxrbE1pkFERMJAoaEWYg19T+No9oSIiISDQkMtxEoXd1JLg4iI1D+FhlrYY3GnLM65GlZIRERkaAoNtRAtDg0550hnczWskIiIyNAUGmohXry4E6AZFCIiUvcUGmohWryMNKBxDSIiUvcUGmohVjzlEtAMChERqXsKDbUQU0uDiIiEj0JDLRS2NGhMg4iIhIRCQy2UaWnQ/SdERKTeKTTUQsmUS1D3hIiI1D+FhloonHLpgu4J3R5bRETqnEJDLRTesAq1NIiISDgoNNRC2TENamkQEZH6ptBQC0WhIT97Qi0NIiJS3xQaaqHM4k6acikiIvVOoaEWonvee0JTLkVEpN4pNNRCrNyUS7U0iIhIfVNoqIVyy0in1dIgIiL1TaGhFqLR/qc4Ii6n2RMiIlL3FBpqwayotSHmcpo9ISIidU+hoVYKQwNZtTSIiEjdU2iolZLBkGppEBGReqfQUCtNLX1P23I9mj0hIiJ1T6GhVtrG9D0dm0uRzubIZHM1rJCIiMjgFBpqpW1c39Ox2RQAKd3pUkRE6phCQ620Frc0gO4/ISIi9U2hoVbaxvY9HZvrBrQqpIiI1DeFhlopDA357gm1NIiISB1TaKiVopaGfPeEWhpERKR+KTTUSmu50KCWBhERqV8KDbUypj80jOnrnlBLg4iI1C+Fhlop19KgO12KiEgdU2ioFc2eEBGRkFFoqJXCdRqyKXBOsydERKSuKTTUSmMTNDQCECdHs0urpUFEROqaQpOw0MwAACAASURBVEMtFbU2dGv2hIiI1DWFhloqvP9ELqXZEyIiUtcUGmqp5E6XamkQEZF6VvPQYGZXmdldZrbOzJyZrR+i/Mlm9oCZdZhZu5n90szmD1B2upndYmZbzazbzJab2QdG5Y3sjdbipaS7dZdLERGpYzUPDcA/A2cCa4EdgxU0s1OAh4HDgC8C1wBHAr8xs7klZScAvwUuAL4DfArYDdxpZpeO8HvYO2OK12rQ7AkREalnsVpXAJjjnFsHYGZ/BNoGKfttoBc4zTm3MXjNncAq4BvAOQVlr8SHi3c7534RlP0+8Bjwr2Z2l3Nu90i/mWFpLV6rQbMnRESkntW8pSEfGIZiZkcAC4G78oEheP1G4C7gbDM7uOAlFwFr84EhKJsFFgMTgHeMQPX3TcmdLjWmQURE6lnNQ8MwLAy2j5U59jhgwEkAZjYNmBHsL1e28Hy101baPaGWBhERqV9hCg3Tg+3GMsfy+2bsRdnaKQkNamkQEZF6FqbQ0BJse8ocS5WUGU7ZImZ2uZkt36saDlfB4k5jcilS6Sw556ryrUVERIYrTKGhK9g2ljnWVFJmOGWLOOduds69ca9qOFwFLQ3jsv6mVT2adikiInUqTKFhU7At162Q37dxL8rWTluZ22Ori0JEROpUmELDk8H21DLHTgEc8HsA59yr+FBwygBlAarTBTGYphaIRv1Tl6Ehl9G0SxERqVuhCQ3OuRfwH/QfMLP8QEeC5x8Afu2c21zwktuBOWb2roKyUeAKYCdwX1UqPhizkrUatMCTiIjUr5ov7mRmlwCzgi8nAw1m9o/B1y85524tKP4p4EH8CpCLg31X4MPP50pO/VV8mLjNzG7Atzx8CD/V8jLnXMeIv5m90TYW2v1CmFrgSURE6lnNQwPw18DbSvZ9Odg+DPSFBufco2Z2OnB98HDAo8AHnHNPFZ7AObfNzBbhw8Mn8CtN/gm40Dl3xyi8j71TMK5hjBZ4EhGROlbz0OCcO32Y5R8Dzqqw7Ebgkr2oVvUUTLscpwWeRESkjoVmTMN+a8y4vqdjcym602ppEBGR+qTQUGuFCzxlUxrTICIidUuhodYKF3jKdWv2hIiI1C2FhlorHAiZU0uDiIjUL4WGWmvV7bFFRCQcFBpqbY/uCbU0iIhIfVJoqLU9uifU0iAiIvVJoaHW2kq6J3SXSxERqVMKDbXW0orDAGhzvfSmempcIRERkfIUGmotEiXb0tb/ZdfuGlZGRERkYAoNdcAVhIZot0KDiIjUJ4WGelAw7bIh1VnDioiIiAxMoaEOWMH9JxpTamkQEZH6pNBQByJj+lsaGns7cc7VsDYiIiLlKTTUgUhBS8OYbIp0NlfD2oiIiJSn0FAPCtdqyHXr/hMiIlKXFBrqQekCT1oVUkRE6pBCQz1oHdP3dGwuRVePQoOIiNQfhYZ6UDCmYWwuxYZtmnYpIiL1R6GhHhS2NGS7Wbt5Vw0rIyIiUp5CQz0oudPl2i3tNayMiIhIeQoN9aCgpWFMrod1r6qlQURE6o9CQz2IxXFNLQBEcfS2t7Njt+52KSIi9UWhoU5YyVoN6qIQEZF6o9BQLyZM7ns6L7VRgyFFRKTuKDTUiwWL+p6e2fk8azerpUFEROqLQkO9WHgazgyAeT2b2P7yhhpXSEREpJhCQ70YNwF3zPy+L4/Z+JSWkxYRkbqi0FBHIqec0ff8jM7nWafBkCIiUkcUGurJgkVkIjEA5qRf57U/PVfjComIiPRTaKgnza1sPnRu35ctT/22hpUREREpptBQZ9Inndb3fM5LK8C5GtZGRESkn0JDnZm46DR2WwMAk3p2klnzpxrXSERExFNoqDNjx7ayfPzRfV93PvKrGtZGRESkn0JDHVp/+MK+581P/Q4ymnopIiK1p9BQh2LHzOP1aCsADd0dcM8Pa1wjERERhYa6dPj08fx3W/8sCu77MTz2QO0qJCIigkJDXZozdSx3jDuJZU2z+nf+57dgzR9rVykRETngKTTUoSnjmmlpbuQrk9/O+vgEvzOThpu+DFtfrW3lRETkgKXQUIfMjCOmjaUr0sAXp7yLrgY/voHdu+CGq+Ghe6FjZ20rKSIiBxyFhjp1/gLfNbElNpZ/OOg8ctG4P7D1VfjhYvjcRfCNq+CJB7UAlIiIVIVCQ51667EH85ZjDgbgT03TWDz9PFy8ob9ALger/gBL/gXuXKLgICIio06hoU6ZGVe84wTGtfigcF9kFt89/fNw4d/AEccVF/7Vz+De22tQSxEROZAoNNSx8a2N/O07Tuj7+u7V7Tx2yKlw5Q3wtVvhxDf3F777Fvj1PTWopYiIHCgUGurcW46dxhknTO/7+lv3PsNLWztgwmS4/Eo49sT+wrcl4bH/rUEtRUTkQGBOfeFlJRIJB5BMJmtdFdq7e/nYdx9h++4eABpjET52znG8Y8GhWE8KbrgK1j3X/4IJk2HaITDtUDjkcFiwCJpba1R7EREJGRvwgEJDefUUGgBWrHuda+54kt5Mrm/foqOn8ul3zmNsrge+/nnYuL78ixub4NSz4Yx3wozZfl8uBx27IN0DE6eCDfgzIiIiBxaFhuGqt9AAsP61Dr7ysz+wfmtH377xrQ2cPW8mZx/azOz/+T72pxWQzQ58kpmHQU8KdrzuF4wC3yLxtnfAm8+GlrZRfhf7qGMnvLgajjgeWtR6IiIyChQahqseQwNATzrLkgdW8YvlL+1x7JCJrZxx7FROm+SY2bsd2/QSPPkIbNqzbFkNjfCm032waG2DljE+REyYDAdNhEi0v2yqy7dsvLoB2sbA4cfC2PF7njPdC9Fo8Wv3Rqoblv4U7v8p9HTD2IPgkiuKB4OKiMhIUGgYrnoNDXmPr97Ct+59pm+cQ6mp45s59aipnHzEFE5IbaDhkXvhD4/6bom8ljbIZnzLw1CisSA8TPKtFOWWs550MBx+DMRi/vhrr8Ku7dDYDG98Kyw6B448fnhdIZk0/OaXcM+Pyq+C+abT4aIEtI2t/JwiIjIYhYbhqvfQAJDJ5lix7nUe/ONGHn1+C6l0+W6JWMQ4cvo4Fk6KMb+pm4OmT2XCoYfQNKbNtxg8/iA8+IuBx0SMpCnT4aS3wKSpMG4ijJ/ouxkyaf9Ip2HnNli3yg/uXL/Gt1YUikaLu2DGjIdz3gdHz4ND5/jQUqnXNsHKx8AisODNfnxHoUzG3yisazccdYL/XgeCXA42b4CJU/yYGBE5kCg0DFcYQkOhVG+Gx9e8xmPPb2HZC6/R1ZMZ8jXjWxuYNr6FWVPGcPiUMZzQ+yozNz9PPNVJpGs3dHX6+11se23Pv/KjUZg6E6Yf6j/k16/pHyNRyGzkVqs8aBK89y9g3sl+FcxytwtvbPJdJY2Nvv7dXT4YjTsIZh3pH4ccDi8+71+/5tni1x81F04503e1rPgdrHzcBwbwweLI42H+Kf1TXdNpP5g0l/OvGTcBWsfs3cDS3h4f3F5Z57fNrXDMG2DOsVC4Gij475fN+BagSAUzp7s7fVdSb8r/O/X2+H+XOcf64JbnHDy9DO7+T1+PtnHwrov8mJdYfODz53KwYZ0PWTMP811dg9nxuv836NoNhx4BM2cPvwsrm4Wtm2DsBI1vERlZCg3DFbbQUCidzfH0S9t4fPUWVr64jZdf3z3sc0QMopEI8ViECW2NzBwT44hYNzMj3UTGTaBn8nRiDY00xqM0NURpjcL47Rtp2/IiDfEY8YNnYFOmwYQp8NIa+N1SWPaw//AarkkHw9vOh7PeXfxh9NQTcOu3fWipJ7G4DxD5D3QzHzhiMX8sFoNoHHJZ34qSSfsuotc3F3cf5cUb/MDP8RNg+9b+RzYIhhbxIa6lDWYdAbOPgsOO9l+v+gP8aYVvtRlogOzso3wQmnYo3P+T4um7eZOnwfsuhZPe2h+InIOXX4BlD/mxM9u3+v3RKMw4zNdh0sGQ6fXvM90Lr2+B9at9aCjU3OpXOj38GF/veIP/t25shomTYdI0Hwyc869/4kF44iEfZqMxOH6Br9uJpw5/MG8mA88/DSt+60Niute3Op3+Tn9t6llPCna3+2teGP4Gks36n4lNL8PsI+HIEzRzKsy6O+F/7oR3XAhNzSN5ZoWG4QpzaCi1s7OHZ1/ZwR9f3s66Le1s2dXNa7u6yeZG798+YtDcEKOlMUZrY5y25jjj4zB/1xoO7nyNtlQ7rcGjIZ0iF43honFcLEa2sYWOKbPonH4EnTPmYOMn0tIY63s0xaP0ZnKk0ll629tpfvoxxm98nub1q4js2DrMikbghIX+A/zZFeDKfGhPmOx/Ib/4vO7xEW/oDz4O3xJVLa1jfEvS9kH+jaMx36qUy/l/y1wO4o0+cLS0+W005j88cznIpv1snK4BgvWsI+Et5/jw0zrWD/qNN8CObbAjCG+d7b5FZnzQ3ZYfEJzJ+GCXzfQ/z2T89+zt9a09PSm/jcd911fbWP9o3+lbbl5ZBxte9MEgEglCaMQHzc4O/9q8Q+bAyaf7cT4TJvfvz6Th5XXwxK99uGvf0X9sznFw/oUwd2FxeOjt8eOSNm+ALRv988ZmmDELps/y265OHzBffM5fw2wWDp7p14g5+BB/rbdu9mH49c3+/R89D+a+qbh++yrd60Pf6mf8v/EbTvF1GC3pXli10rdEvrbJh+NzLvCtjKV2d0Cqs/hnofDnsbQFcThWPg4/+jcfwM9+r7/FwMhRaBiu/Sk0lJPN5Xi9PcWG7Z28uKWDdVvaWbelnU3bO+nN5AjrT8Vh0S7m23Ya43GyTS24phYiTU1MTG3n4J0bmbJzI5PaX6W7aQzrZi3gxdkn0dsylng0wth0B4evX8GMdSuI5dLsOmwu7ce9iewhR2IRI7NjOy3P/57xq1fQsv1VLB7HGhqJNDYSjRiRjl1Y+3Ys1b1XdXdmMGU6dugRvol/+1Z4bqX/pV1ONNbf2lCJ6bP8B1I87n9xde2GF57ds3UjFvfdEedcAMt/6+9rMtCHaqHWMf78A9W3UGOT/0BuGwtr/wS7dgz9mnKaW/eu9Wp/d+gc33XWvsOHi6Eccrgfv7J9q/8Q6hjlMHjIHN/V19kRfM+t/gN2zLj+AddjxvtAtuN1H9Lad/hANmU6TJnhZ3Stew7++Hs/o6rQwTP9zKpDj/BBPx8gOzt8a9e2LX7bm/KBb0wQ1hqa/L5UKujKy/if1cYmH5q6dsMzT/ouz0LxBv9/5tz3+2u38jH/eHnt4Nch3uD/H+ey/UG3obF/vNf4Cb6V78jjfcBrbPL/V27/Dix/pP88ZvClf/fdxSNDoWG49vfQMJRszpHJ5uhJZ9nanuK1Xd1s2dXF1vYU3b0ZejM50hl/vDudoSuVoasnQ2dPhq7eDD0DDMo8EDTm0ozPdhHFYTgiOCLOESNH3GVpJEsDOXqc0Wsx0hal16JsjbbRG21kbEucsc0NxKMRcs4xNrWLI9tfoslypMdNJHfQZKKTphBvaSWbyZLLZsll0jR37mTStpeZvP1lpm5/mcZ0iq2TZrF5+jHsOOQ4IuPG09QQo7khRnNDlMZ4lEhXJ21rVzJ29Qoat71K9/TD2f62P8NNmEI8GiFiRiy1m3EP/ozWJ35FpLdkpk1js2/KX/g2OG6Bb4Ho7MCtX417cTW5jnZysTi5WAPZaAxrG0vjkccSnXFo/xgG5/xMmzV/9NOD0z3+L/F0jx+T8voW/5dqfkBsU4tf5fSUM/yYj22v+XDz+0f82Jq9MWGyP+eCt/i/5h++D558uPw4nXoSi/sPu93tldd13ATfDfT0suGFTqmtaMx3l736cnGIHzMOPpSAhaeNZFeTQsNwHeihYV9lczm6erJ09qTpTGXoSPWyuzvN7lSannSWrINczpFzPpykszl6Mzl6M9m+QJLf35PJ0dWTpqvHB5NUOktjLEpTMJ4iFo2ws7OHbR09pLNluhdkREScDz0xcsRcluaIo7OhlYz5D3/nwDlHJucG7foyoK05zrjmBlqafDeHw782/7L87yUzoykepSVuTHQpJuS62T1uCtbURCwaIR6N4Jz/ecvmHPHu3cSyvUSiUcwiWDRCPJumMd1NUzpFY7oLczlyFiFLhJxF6GkZR8+0WbQ2NdDWFKcxHsEwYt0dTPzj72h9dS2xrt1EU53EuncTzfSSbhtPZuxEsuMn4trGEelsJ9q+nWjHDmKd7VgkAtEYFo8TicZwsRguGiMXieIiUVy8AdfQiIs34RoaiKR7iXS2E+nswDrboamZyCGHEzl0DnbI4UFzvvN/jeYcRCPQNg7X0EjWgaW6iK58DJY9CH9aWdzNZhHfZXP8ST5oHT3PB7btW2Hpz+CR+4q7OcAHp4lT/WDng2f4v+47O/xYiI3rYcsGH1hmHwWHHQNzjvF96q++4j/UXn3Fn3PiVJh8sO/e6Un5v9Kff3rkw8rkaTDvTb5V4o/L93w/I23yNB+Wp8/2Nwp8aYCwGo351oJoLHhEffjt3A3duwdfiK8Sb/4/8OcfHY0p5woNw6XQED7OOXZ19bKtI9UXLrp7s3T3ZsgGH2T+g8mRC77O5vyHXCaboyeTpSedpTcdjJfIZOnJ+K9zztHUEKU57v9KNzM6unvZ2dVLe1cvu1Np/4HnwBF8+AX/t/JPs0FIKhSPRmiMR2iIRUn1Zunq1V9+0i8ejdDaFCMejZDNOdLZHNmsI5PLkckW/zy1NcUY29LAjGgvs7M7ScWb2d00hu54C5hvtcrmHNng5z8XhK2Wnk6O3rkWYnFSbQfRM2YCubEHYZEozrm+QOdbH/02l82AGfFYjGjEfKtUxPyYX3zYM4OIGZHgeTQSoSEWocWlmbnleca2b6WneQxdrQfR1TqeVGMbLT0dtHTtorVzB02p3WRaxpBuO4j02Ank2sbR3N1Oa/tWmnduobF9G9kJU9h99ElkJs/wQQ0Hvb00v/A0ratXEOnqwJkfB+LMcE3N5CZM9WFm0lSizc1YVwfW2UGks90Hm8bm/u6IWNQHut4Ukd4U5nJw5Fwihx4evMdgdtgzT8J/3+a7S5pbfYCZfyqccNLA9/1xzn+/XNaHuPyYlVS3H9y9c5sPQS+/4IPWppf7XztpKlzyKT8AeHQcmKHBzCLAp4CPAbOBrcCdwBedc4N2hCo0yGjI//LN5hyxaIRopPj/Zm8mS0d3ml1dvWRzzo+VMCMSMVK9GXZ09rCzs5cdu3voSWeJBueIRYxoxPq+jkYM5yCVzpLqzfSFp1Sw7U77gBQx/ws+/4s937qTyTrSGR+WcgVBqzeT6zvHUL85IubrEYsa0UiEWNTIZB27U3Xe5C9SoYjR1+IVixhtlsUa4lg0RjwW9fuj/v9BJOL/H/g/WHJ9ARAjKOcfEaPvd0Q25zCgMR5lQq6bOe0v0+LSrDv0DbiGpr7fIRPHNPGehbNH8q0NGBqGsQpOKH0T+Fvg58A3gGODr080s7OdKzdUXmT0mPkP0dgASxI0xKJMHBNl4pj6XlDJOR8gSrshIvnwEoSdcrK5XF8w6u7N+L/YoGCbL2nknPPjZvKBJ53p67rqzfpurMJfyNHgtYXdX/luDxcEH8z6wpLhpyh39mToTKXp7MnQm9mzyThq+V/8fk2MdCZLqqBlKho1YkEwipiRSmfp6sn4gNab7ftwyV8bC95k/i/54osLvZkcu1PpirrbImblzyOjLhf8W+VvJLgLoKsHGK3ukWCGxvbNRXsPmzJmpEPDgPbb0GBmxwNXAD9zzr2vYP+LwLeBC4HbalQ9kVAzMxrje3c/kWgkwvjWRsa3DrEAlNCbyfrwkMn1/SXa13JTEECyOUdnygex9m7fXZZvRHZBl1nECv7iLXgeCZrZ8+EsH3YcxV0NvkWroCUL3zKVyQbdJkH/nCsZo5LvEsxmXd+4pZ5MlkzW7dGF0f8Xdn/3S+Ff3fmWsHTGb50r/n6wZ/jMf435IJkfP5XO5MjkcljBH9UuqD9QFDhzuf7n5boZa620xXI07behAfgQ/mf+xpL9S4CvAh9GoUFE6lhDLMqEtqHDWTRijG1pYGzLPsz7l2HpG+eRDzNBkPHde/1fF4aebC7nZyQVhD/Ihy9fPuccsUikr9Uul3PBeCs/W60nk/XnCs6dyTkOaq3ev/v+HBoWAjlgWeFO51zKzFYGx0VERIatqKtxL1vdwqiCRetDazrwunOuXOfSRmCSmSmWi4iIVGh/Dg0tDDwaJVVQpoiZXW5my0etViIiIiG1P4eGLmCgkVZNBWWKOOduds69cdRqJSIiElL7c2jYhO+CKBccZuC7LnqrXCcREZHQ2p9Dw5P49/emwp1m1gTMB9QFISIiMgz7c2i4Az9999Ml+z+KH8vwo6rXSEREJMT22ymXzrlnzOwm4JNm9jPgPvpXhHwYrdEgIiIyLPttaAh8GlgPXA6cD7wOLMbfe0JLSIuIiAzDfh0anHNZ/D0nvlHruoiIiITd/jymQUREREaQQoOIiIhUZL/unhgJiUSi1lUQERGpJpdMJsveOlMtDSIiIlIRc3V2X/D9mZkt1xLV+07XcWToOo4MXceRoes4Mkb7OqqlQURERCqi0CAiIiIVUWiorptrXYH9hK7jyNB1HBm6jiND13FkjOp11JgGERERqYhaGkRERKQiCg0iIiJSEYWGUWZmETP7jJk9Z2YpM3vFzL5hZq21rlu9MbOjzOw6M3vczLaaWYeZrTSzfyh3vczsaDO728x2mFmnmf3GzM6sRd3rnZm1mNmLZubM7N/KHNe1HICZTTCzfzWzF4L/w1vN7EEze2tJuZPN7IHg57bdzH5pZvNrVe96YmZtZna1mT0TXJ/XzexRM/uImVlJ2QP+OprZVWZ2l5mtC/7Prh+ifMXXzMymm9ktwc9xt5ktN7MPVFw3jWkYXWb2LfztuH8O/A/+9txXAL8BztbdNvuZ2VeBTwD3AI8DaeAM4M+Bp4FTnHPdQdk5wDIgA9wI7AI+CpwAnOece6Dqb6COmdm/Ah8D2oCbnHOfLDimazkAM5sFPIS/bt8HVgPjgHnA/c65HwflTgnKbQTyoeyTwBTgzc65Z6pa8TpiZhHgYeDNwH/i/2+3AB8C3gR8zTn390FZXUfAzBywHVgBnAS0O+dmD1C24mtmZhOA5cGxG4ANwEXA24C/cs79YMjKOef0GKUHcDyQA35asv8KwAEX1bqO9fQA3giMK7P/+uB6fbJg351AFphfsK8NeAl4niAQ6+EAFuADwWeD6/hvJcd1LQe+dr8BXgGmDVFuGdAOzCjYNyPYt7TW76PG1/DU4OfumyX7G4B1wE5dxz2u2eEFz/8IrB+kbMXXDPha8G/xroJ90eAc24C2oeqm7onR9SHA8H+9FVoCdAEfrnqN6phzbrlzbleZQ3cE2xMAgq6KdwMPOedWFrx+N/A94Chg4ShXNxTMLIr/efsl8LMyx3UtB2BmpwFvwf8l/KqZxc2spUy5I/DX6C7n3Mb8/uD5XcDZZnZwtepdh8YG202FO51zvcDrQCfoOhZyzq2rpNxeXLOLgLXOuV8UlM0Ci4EJwDuG+p4KDaNrIb6lYVnhTudcCljJAfrLeC/MDLZbgu08oBF4rEzZx4Otrq33GeAYfHNlObqWA8v/An3ZzH4BdAOdZrbazAoDf/76DHQNDd/EfKBaBuwE/s7MPmBmhwZjaL6Cvy7XBuV0HYev4mtmZtPwLRCPD1C28HwDUmgYXdOB151zPWWObQQmmVlDlesUKsFfyl/EN6/fFuyeHmw3lnlJft+MUa5a3TOzw4AvAdc559YPUEzXcmBHB9sl+L/C/hL4a6AXuNXMLg2O6xoOwjm3A9+atR3fFfYS8Bx+/NL7nHNLgqK6jsM3nGs2ItdXt8YeXS1AucAAkCoo01ud6oTSjcApwNXOueeDffkm4nLXNlVS5kD2HeBF/ICngehaDmxMsO0Azgia0zGzn+P74v/ZzP4TXcNK7Mb3zd8DPIoPYZ8AbjOz9zjnfoWu494YzjUbkeur0DC6uvCjVMtpKigjZZjZl/HN6jc7575ScCh/zRrLvEzXFQiaz88BTnPOpQcpqms5sO5ge3s+MID/y9nM7gH+At8aoWs4CDObiw8Kn3HOfbdg/+34ILEkmMGj6zh8w7lmI3J91T0xujbhuyDK/SPNwHddqJWhDDO7FvhH4AfA35Qczg+oKteUlt9XrgnugBD8vN0A3AdsNrMjggFTs4Ii44J949G1HMyGYLu5zLFXg+1B6BoO5TP4D6W7Cnc657qAe/E/l7PRddwbw7lmI3J9FRpG15P4a/ymwp1m1gTMx8+XlRJmdg1wDXALcJkL5gUVeAbfxHZqmZefEmwP5GvbDEwGzgfWFDweCo5/OPj6MnQtB5MfwDyzzLH8vtfw/89h4GvogN+PbNVCJf+BFC1zLFaw1XUcvoqvmXPuVXwoOGWAslDJ//Vaz0fdnx/AXAZfp+HDta5jvT3wgx4dPjBEBil3F35tgTcU7MuvLbCaA3ttgTjw/jKPjwfX9n+Cr4/StRz0Oh6En+u+gYL568A0fB/96oJ9TwZlpxfsmx7se6DW76XG1/Gbwc/d35Xsz7d0bQdiuo4DXr+h1mmo+JoBX2fgdRp2AGOGqo9WhBxlZrYY3y//c3xz8bH4FSJ/B5zptCJkHzP7BH5Fs5eBL+ADV6Etzg+Yys9PXoZfNfKb+P8gH8UHtfOdc/dXq95hYWaz8QMjS1eE1LUcgJldDvw78Czw//ALEn0cHxze6ZxbGpR7M/AgPmAsDl5+BTAVWOSce6rKVa8bwaqaK/Ah7Ef4330T8D9js4FPOOeSQVldR8DMLqG/O/EK/M/dN4KvX3LO3VpQtuJrZmYT8S0PE/FdmBvx6wmdjm/V/f6Qlat1itrfH/gU9zn8yno9wT/SDVSw8taB9gD+A5+CB3o8VFL+WOC/8HPAu4Df4pfmrvl7qccH/hf0HitC6loOed0uwM9j78TPXjO1rwAABEFJREFUpFga/DIuLXcq8L/4VogO4H5gQa3rXw8PYA5+CekN+HDaDjwCXKDrWPZ6PVTp78HhXjN8d9Gt+IW1UvhA98FK66aWBhEREamIBkKKiIhIRRQaREREpCIKDSIiIlIRhQYRERGpiEKDiIiIVEShQURERCqi0CAiIiIV0V0uRWS/l0gkrsXfz+SMZDL5UG1rIxJeCg0iMqREIlHJKnD6QBbZzyk0iMhwfGmQY+urVQkRqQ2FBhGpWDKZvLbWdRCR2lFoEJERVziGAH+3vk8Dx+BvpvPfwNXJZHJzmdcdib/D6VnAZPxNdR4AvpxMJteUKR/F3y3xEuAE/N0AN+Jv+PMvA7zm/cDfBeVT+BtQfS6ZTG7cl/csciDQ7AkRGU2fAb4LPAXciL/b66XAo4lEYnJhwUQisRBYDnwYeBL4V/zdJS8GlicSiTeWlG8Afgl8BzgEuA34Nv7Wv38GLCpTnwTwQ3xXyk3AH4EPAg8kEonGfX63Ivs5tTSISMWCFoRyUslk8qtl9p8H/7+9uwex4ooCOP5fAgabrKmikdQSi6CCCrJECwk2kjRBDH4UNnJ6QURwSzvB4iCkkURjdpskKKQICBFFBNGFFH5UgmCINi4Ioqhrce+TYXizmdFsE/8/eFzemTP3zVTvvDv33sfmzLzZ6OMEZeThOHCgxiaAH4CPgD2ZebaRvwv4GTgTEWsz81U9NA1sB84D32bms8Y5H9a+2nYAGzPzr0buT8Bu4GtgtvPmJTnSIGmQYx2vwx35PzYLhmoamAe+a/y630J5fHG1WTAAZOYMcBlYA0zBm8cSATwFDjYLhnrOs8x8NOZ6TjYLhur72m7quAdJlSMNknrLzImBp/w5po/5iJgDtgKfA3PAhnr4Ykc/FykFw3rgEqXAmASuZeaDAddzfUzsfm0/HtCP9F5ypEHSUvqnIz6aBDnZav/uyB/FV7TaoZMXH4+JvajtBwP7kt47Fg2SltInHfGVtZ1vtSvH5AKsauWNvvxXv/2lSRrKokHSUtraDkTEJLCOstzxVg2P5j1s6+hnFL9R29uUwuGLiPj0v7hQSf/OokHSUtobEetbsWnK44hzjQmMVyjLMafqPgpv1PdfAncpEyLJzJdAAsuBU+3lkhGxrL2kU9K7cyKkpN4WWXIJ8GtmzrVivwNXImKWMi9hqr7u0VhxkZkLEbEf+AOYiYjfKKMJa4BvKJtC7Wsst4SypfVmYCdwNyIu1LzPgK+AQ8Dpt7pRSWNZNEga4tgix+5RVkI0nQB+oezLsAt4QvkiP5KZD5uJmXmtbvB0lLL/wk7KjpDnKDtC3mnlP4+IHcBBYB+wH5gAHtTPvDz89iQtZmJhoc+f10lSf/4VtfT/5JwGSZLUi0WDJEnqxaJBkiT14pwGSZLUiyMNkiSpF4sGSZLUi0WDJEnqxaJBkiT1YtEgSZJ6sWiQJEm9vAbzHFrpzcg1vgAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 576x432 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAGdCAYAAACo8fERAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZhcVZ3/8feprffudLZOJ4FsEMISIOwCKouCKygjyogLCOJYo+PCD3FDMqLoOIwzytgMuCEIyiarGyAJi4hhJ0hYQuiE7J1O0nt1bef3x6neqqvTVd3VqXuTz+t56qnqW/feOr0k9alzvudcY61FREREZKwCpW6AiIiI+JvChIiIiIyLwoSIiIiMi8KEiIiIjIvChIiIiIyLwoSIiIiMi8KEiIiIjIvChIgUlTHmemOMzdwSxpjpo+z/gUH7W2PMeaPs/z+D9v16Hu1ZmnX+Xd3+p8BvV0RQmBCRiRUCPjrKPp/I92TGmOzzfbKAtqSBLaPc2gs4n4hkhErdABHZY60D9sWFhZyf+I0xk4H3Ap1AHJg8yjnfA0wDHgZmAAcYY46z1j6RR3vetNbOza/pIlII9UyIyET5G/A6sMQYc/AI+5wDRIA7gJ48ztnXE3Fz5jZ4m4iUiMKEiEykGzP3Iw1l9G2/YbQTZXox3ofrwbgduCnz1EeMMWXjaaSIjI/ChIhMpL4wca4xZsj/N8aYhcCxwJvA8jzO9c+4Xow/WWu3W2tfB/4O1ANnFK3FIlIwhQkRmTDW2jXAX4FZwClZT/f1StxkrU3ncbq+4YybBm27Kes5ESkBhQkRmWh9Qxj9Qx3GGAN8LOv5ERljDgSOBjqAewc9dQuQBE43xjSMcpp9jDGbR7mNVNshIrugMCEiE+1WIAacZYypymx7OzAHeMpauyqPc5yXub/TWttfqGmt3Qo8iJuZdu4o5wgADaPcwnm0RUSyKEyIyISy1u7E9SZUAf+U2VxI4WWAgV6Mm3Ps0jfUMdp6FWuttWaU23OjtUdEhlOYEJHdoS80fNwYU4ELFQngN3kc+05gJtDXC5HtLqAbOMwYc1gR2ioiBVKYEJHd4U+4MHAK8DmgFvijtXZbHsf2FVdOB5LZS2Dj6igqs/YVkd1IYUJEJpy1Ngn8Fvd/znczm28c+QjHGFMLfKCAlzo3s+S2iOxGChMisrv0DXWEgR0MnZUxkg8DFbi1KOp3cZsCtOJ6L95V1FaLyKiU4EVkt7DWPm2MWQrUAC9Ya3vzOKxv2OJ3mULOERlj7gY+lTnmvvG0VUQKozAhIruNtfbf893XGLMAODHz5e/yOOR3uDDxfmNMvbV2xxiaKCJjoDAhIl7VN9VzC/BYHvs/gLuEeC3uAmLXZD2/jzFm8yjneNxae1ZBrRQR1UyIiPdkVsjsCxN357PctrU2zsDwRq5ZHfksWjXaJdBFJAdjrS11G0RERMTH1DMhIiIi46IwISIiIuOiMCEiIiLjojAhIiIi46IwUaBoNGqj0aiqVkVERDK0zsTYKVCIiMjexIz0hHomREREZFwUJkRERGRcFCZERERkXBQmREREZFxUgFkkiUSC9evXE4vFSt0U3ygvL2f27NmEw+FSN0VERMZBYaJI1q9fT01NDXPnzsVdo0h2xVpLa2sr69evZ968eaVujoiIjIOGOYokFosxZcoUBYk8GWOYMmWKenJERPYAChNFpCBRGP28RET2DAoTIiIiMi4KEyIiIjIuChN7kObmZhYtWsSFF17IIYccwrnnnsuDDz7ICSecwP7778+KFStYsWIFxx9/PEuWLOH444/nlVdeASCVSnHJJZdw9NFHc+ihh3LttdeW+LsRERG/0GyOCXD6Fb+fsHP/+bL37vL51atXc9ttt3Hddddx9NFHc/PNN/PYY49xzz33cOWVV3LDDTfwyCOPEAqFePDBB/n617/OHXfcwc9//nPq6up48skn6e3t5YQTTuC0007TTAsRERmVwsQeZt68eSxevBiAgw8+mFNPPRVjDIsXL6a5uZm2tjY++clP8tprr2GMIZFIAHD//ffzwgsvcPvttwPQ1tbGa6+9pjAhIiKjUpjYw5SVlfU/DgQC/V8HAgGSySSXXXYZJ598MnfeeSfNzc2cdNJJgFv34eqrr+b0008vRbNFRMTHFCYmwGhDEYO9sbWdRDINwNxpNUTCwYlqFuB6HGbNmgXA9ddf37/99NNP55prruGUU04hHA7z6quvMmvWLKqqqia0PSIi4n8qwCyxwKC1FtK74fW+8pWv8LWvfY0TTjiBVCrVv/3CCy/koIMO4ogjjuCQQw7hM5/5DMlkcje0SERE/M5Ya0vdBl+JRqMWoKmpacj2VatWceCBBxZ8vnUtncQS7k17n6nVVET2rs6isf7cRERktxtxpUH1TJTY4EUgletERMSPFCZKbPCS0uolEhERP1KYKLHAoJ6JtMKEiIj4kMJEiQ3tmShhQ0RERMZIYaLEhtRMoDQhIiL+ozBRYirAFBERv1OYKLHAoJk2qpkQERE/UpgosVL2TFRXV+/eFxQRkT2SwkSJaWqoiIj43d613OLucuG78t51SuaWt5/9acSnLr30UubMmUM0GgVg6dKlGGN45JFH2LFjB4lEgu985zuceeaZo77M8uXLufzyy2loaOC5557jrLPOYvHixfzoRz+ip6eHu+66iwULFnDvvffyne98h3g8zpQpU7jppptoaGigq6uLz3/+86xcuZJkMsnSpUvzel0REfEf9UzsQc455xxuueWW/q9vvfVWzj//fO68806eeeYZli1bxsUXX5x3D8jzzz/Pj370I1auXMmNN97Iq6++yooVK7jwwgu5+uqrATjxxBN54oknePbZZznnnHP4wQ9+AMB3v/tdTjnlFJ588kmWLVvGJZdcQldXV/G/aRERKTn1TOxBlixZwtatW9m4cSMtLS3U19fT2NjIl770JR555BECgQAbNmxgy5YtzJgxY9TzHX300TQ2NgKwYMECTjvtNAAWL17MsmXLAFi/fj0f+chH2LRpE/F4nHnz5gFw//33c88993DVVVcBEIvFWLduna7DISKyByp5mDDGfA04AjgSmAestdbOzbHfXOCNUU73MWvtTaO83nnAL0d4+ifW2s+N8hqj28VQRLb27jibd3YDUFMRobG+clwv/aEPfYjbb7+dzZs3c84553DTTTfR0tLC008/TTgcZu7cucRisbzOVVZW1v84EAj0fx0IBPqvKPr5z3+eL3/5y5xxxhksX76cpUuXAq7+44477uCAAw4Y1/cjIiLeV/IwAVwJbAeeASbtYr8W4OMjPPe/QAXw5wJfd1XWtlcKOL4ohs7mGH8B5jnnnMOnP/1ptm3bxsMPP8ytt97K9OnTCYfDLFu2jLVr1477NQZra2tj1qxZAPzqV7/q33766adz9dVXc/XVV2OM4dlnn2XJkiVFfW0REfEGL4SJBdbaNQDGmBeBnPMVrbVdwK+ztxtj3gLUAbdba7cV8LoPWGuXF97c4gqYwetMjP98Bx98MB0dHcyaNYvGxkbOPfdc3v/+93PUUUdx+OGHs2jRovG/yCBLly7l7LPPZtasWRx33HG88YbrPLrsssv44he/yKGHHoq1lrlz53LfffcV9bVFRMQbjJemI/aFiVzDHLs45ufAp4B3WWtH7ZkYNMxxMvA00Gutjef7etFo1AI0NTUN2b5q1aox1QN09yZY3+oKEysiIfaZunet/TDWn5uIiOx2ZqQnfD2bwxhTDXwYWAc8UODh9wDtQMwY87wx5mPFbl8+dKEvERHxO1+HCeAjuGGRX1hr03ke0w3cDHwJOAP4IlAO3GiMuXykg4wxFxljnhpne3Ocd+BxKS70tXLlSg4//PAht2OPPXa3t0NERPzLCzUT43EhkGbk2RnDWGtvBW4dvM0Ycy3wFPBNY8yvrLXNOY67Driub5ijWAZfm6MUPROLFy/mueee2/0vLCIiewzf9kwYYw4CjsMVUq4bz7mstb3AVbhwddo4zlPwMYN7Jva2C315qV5HRETGzrdhArggc/+zIp2vOXM/dSwHl5eX09raWvAb5N5aM2GtpbW1lfLy8lI3RURExsmXwxzGmDBuzYkW4O4inXb/zP2WsRw8e/Zs1q9fT0tLS0HHpa2lpc0tImUMxHdUjOXlfam8vJzZs2eXuhkiIjJOvgwTwJnANOCH1tpErh2MMZXAvkCbtXbToO1TrLWtWfvWAZcCcQpb+KpfOBzuX0q6EMl4gq9/7z7CNkV3sII/XPbesby8iIhIyZQ8TBhjPg7MyXw5DYgYY76Z+XqttfbGHIflM8RxDLAM+BVw3qDtK40xDwMrga3AXNw6FY3Axdba9WP4NsYs9JWPcXdnGwAfnn0ByVSaUNDPo08iIrK3KXmYwAWDt2dtuyJz/zAwJEwYY2bjiiQft9ZmL4edj98AJ2XOUQu0ASuA8/NZ9KrowuH+hxGbIp5UmBAREX8peZiw1p5U4P7rgWAe+y0nx2pd1tqLC3m9CReO9D+M2CTxZIrKspL/WkRERPKmj8ClFhromQjbFL2JVAkbIyIiUjiFiVIb0jPhhjlERET8RGGi1IbUTLhhDhERET9RmCg19UyIiIjPKUyUWnbNhHomRETEZxQmSm1Qz0TYpkioZ0JERHxGYaLUsqaGajaHiIj4jcJEqWUNc6hmQkRE/EZhotQG90yQ0mwOERHxHYWJUhs2NVQ9EyIi4i8KE6WWNTVUszlERMRvFCZKLatmQrM5RETEbxQmSi1raqhmc4iIiN8oTJTasKuGqmdCRET8RWGi1IZNDVXPhIiI+IvCRKkNmc2Rolc9EyIi4jMKE6WWNcyhAkwREfEbhYlSy54aqgJMERHxGYWJUsuumUipZ0JERPxFYaLUsqaGxtUzISIiPqMwUWpaTltERHxOYaLUNDVURER8TmGi1LIKMNUzISIifqMwUWq60JeIiPicwkSpDS7AJKkCTBER8R2FiVILDV0BU8McIiLiNwoTpZY9NTSZwlpbwgaJiIgURmGi1EJDp4am05ZUWmFCRET8Q2Gi1IJBCLhfQwAIkVYRpoiI+ErJw4Qx5mvGmNuMMWuMMdYY07yLfa/P7JPr9qECXnOmMeYGY0yLMabHGPOUMebsonxDY5E11KGLfYmIiJ+ESt0A4EpgO/AMMCnPYz6eY9uKfA40xkwGHgOmAz8E1gMfBW41xnzKWvvLPNtQPOEI9MYAXexLRET8xwthYoG1dg2AMeZFoHq0A6y1vx7H630VmAecYa29N/O6Pwf+BlxljLnNWts5jvMXLusy5JrRISIiflLyYY6+IFEI49QaY8bS/o8Cr/cFiUwbUsDVwGTgPWM45/hoSW0REfGxkoeJMWrL3HqMMQ8YY47N5yBjTCMwC3gix9N9244uThMLEM4OE+qZEBER//BbmNgM/DfwWeCDuHqLo4BHjTHvyOP4mZn7DTme69s2K9eBxpiLjDFPFdbcPIWGDnNoNoeIiPiJr8KEtfar1tovW2tvstbeZa39d+AYIAFck8cpKjP3vTmei2Xtk/3a11lrjyq40fkID10FU7M5RETET3wVJnKx1r4G3ArsZ4xZOMru3Zn7shzPlWfts/tkTQ3VbA4REfET34eJjObM/dRR9tuYuc81lNG3LdcQyMQKaTaHiIj4154SJvbP3G/Z1U7W2k24sHBcjqf7tk1MXcSuhLMv9qWeCRER8Q/fhAljTJUxpjzH9iXA2cAqa+3rg7ZXGmMWZWZwDPYbYIEx5v2D9g0Cnwd2An+YkG9gVwbP5iBFr3omRETER0q+aJUx5uPAnMyX04CIMeabma/XWmtvzDzeH/ijMeYu4DWgCzgM+BSQAi7KOvUxwDLgV8B5g7Z/Hxc+bjbG/BDXU/HPuCmhF1prO4r33eUpNPzKoSIiIn5R8jABXAC8PWvbFZn7h4G+MLEZeBA4GTgXqAA2AbcA37PWvpzPi1lrW40xJ+BCxb/iVtx8CTjHWnvLOL6PscteATOhngkREfGPkocJa+1Jee63mdzX5Bhp/+WAGeG5DYWca8INCRPqmRAREX/xTc3EHm3YctrqmRAREf9QmPCCIbM5kuqZEBERX1GY8IKsYQ7N5hARET9RmPCCrGEOLactIiJ+ojDhBdk9E1pOW0REfERhwguGXJtDNRMiIuIvChNeMGw5bQ1ziIiIfyhMeEFWzUSveiZERMRHFCa8IGsFTBVgioiInyhMeMGwqaHqmRAREf9QmPACrYApIiI+pjDhBYNnc5AirqmhIiLiIwoTXjBsOW31TIiIiH8oTHhBjquGWmtL2CAREZH8KUx4QVbNRNpCKq0wISIi/qAw4QVZPROAZnSIiIhvKEx4QdY6E4DWmhAREd9QmPCCrGEOQBf7EhER31CY8IJgEIz7VQSxBGyaXvVMiIiITyhMeIExw6aHJlQzISIiPqEw4RXDltRWz4SIiPiDwoRXDFtSWz0TIiLiDwoTXpG9cFVCPRMiIuIPChNekTU9VD0TIiLiFwoTXqErh4qIiE8pTHjFkNkcqpkQERH/UJjwisGXIbdJzeYQERHfUJjwisE1E6hnQkRE/ENhwitCQxet0mwOERHxi5KHCWPM14wxtxlj1hhjrDGmeYT9yo0xnzbG3G2MaTbG9GSO+Y0x5sACXu+8zOvkuv1v0b6xQg0Z5kjrqqEiIuIboVI3ALgS2A48A0zaxX5zgeuAx4CfAxuB+cBngbOMMe+y1i4r8HVXZW17pYDji2vYctrqmRAREX/wQphYYK1dA2CMeRGoHmG/FmCJtfa5wRuNMTcBzwL/CRxVwOs+YK1dXnhzJ0ho6GwO9UyIiIhflDxM9AWJPPZrBVpzbH8pE0IOKfS1jTE1QK+1Nl7osUU3ZJgjRad6JkRExCdKXjMxXsaYANAIbCnw0HuAdiBmjHneGPOxojeuEFlTQ+MJ9UyIiIg/+D5M4GomGoFf5bl/N3Az8CXgDOCLQDlwozHm8pEOMsZcZIx5apxtHVn2tTnUMyEiIj7h6zBhjDke+C/gBVxB5aistbdaa8+11v7cWnuvtfbHwKHAi8A3jTFzRzjuOmttITUZhcmeGqqaCRER8QnfhgljzJHA73GzOt5jrY2N9VzW2l7gKlwNyWnFaWGBwoOvzZFWz4SIiPiGL8OEMeYI4AGgDTjZWruhCKdtztxPLcK5Cpd11VDN5hAREb/wXZgwxizBBYkOXJBYW6RT75+5L7SQsziyaia0zoSIiPiFr8JEJkg8CHThgsQbu9i30hizyBjTmLV9So5964BLgTjw5+K2Ok9ZlyBXz4SIiPhFydeZMMZ8HJiT+XIaEDHGfDPz9Vpr7Y2Z/ebgeiTqgR8Dx2cKMAe701rblXl8DLAMN8vjvEH7rDTGPAysBLbiVtb8FG5GyMXW2vXF++4KkD01VD0TIiLiEyUPE8AFwNuztl2RuX8YuDHzeB7Q16uwdIRzzcP1WuzKb4CTcIWWtbi6ixXA+dba0vRKQNZy2imtMyEiIr5R8jBhrT0pz/2WA6aA8+bc31p7cb7n2K2GLaetngkREfEHX9VM7NEGD3OQIpFMYa0tYYNERETyozDhFVlTQ9MWkmmFCRER8T6FCa/ImhoKaBVMERHxBYUJrxgyNTQJQDyhugkREfE+hQmvyLoEOahnQkRE/EFhwiuypoYCmtEhIiK+oDDhFaHhYSKhngkREfEBhQmvyDHMEdPCVSIi4gMKE14RDIFxa2yFSBOwaYUJERHxBYUJrzBmWO9Eb1xhQkREvE9hwkuG1E0k1TMhIiK+oDDhJeGhlyFXmBARET9QmPCSrFUwY/FkCRsjIiKSH4UJL8maHqqeCRER8QOFCS/JunJoTAWYIiLiA3mFiWg0+rZoNLpvvieNRqOHRqPRT4y9WXuprCuH9iQ0zCEiIt6Xb8/EMuC8wRui0eil0Wi0dYT9Pwj8chzt2jtlD3OoZ0JERHwg3zBhcmwrByYVsS0SHnrlUNVMiIiIH6hmwkuyFq1SmBARET9QmPCSkKaGioiI/yhMeElYU0NFRMR/FCa8JGs2hwowRUTEDwoJE3bCWiFOaOhy2r3qmRARER8IFbDv0mg0ujR7YzQa1TtesWQvp60wISIiPlBImMg1PXRX1JNRqKypoT0qwBQRER/IK0w0NTWptmJ3yJrNEU+mSaUtwUChOU5ERGT3UUjwkqx1JgDVTYiIiOdNSJiIRqPvjkajd07EufdoWVNDAWK6PoeIiHhcITUTuxSNRmcBnwIuAPYp1nn3KkOuzeFChKaHioiI140rTESjUQO8F7gIeBcQzDz1MPDTfM9jjPkacARwJDAPWGutnbuL/Y8Fvgsciyv0fBz4qrX2uQJec9znKLocwxya0SEiIl43pjARjUb3AS7E9UTMZGCmx2PA+U1NTa8XeMorge3AM4xy8TBjzHHAcmAD8K3M5s8BjxpjjrfWrhztxYpxjgkxeGooChMiIuIPeYeJaDQaAM4APg2chuuFiAN34i43fi/w8hiCBMACa+0aAGPMi0D1Lvb9ceZ132at3ZA55lZgFfBfmbaNphjnKL7Q0KmhoGEOERHxvrzCRDQa/Q5wPjAD1wvxDHA9cHNTU9P2zD5jbkRfkBiNMWY/4GjgF30hIHP8BmPMbcD5xpgZ1trNE3mOCZO1aBWoAFNERLwv356JrwNp4Brgmqampn9MXJN26ejM/d9yPPcEbtjlSOD3E3yOiZGrZkI9EyIi4nH5Tg21mX3PBT4XjUaPnbgm7dLMzP2GHM/1bZu1G84xMXJODVWYEBERb8s3TMwBrgA6gM8Aj0ej0VXRaPQr0Wh0xoS1brjKzH1vjudiWfsU9RzGmIuMMU+N2sLxyDk1VMMcIiLibXmFiaampvVNTU2XA3NxRZi/B/YDvg+8GY1G/zBhLRyqO3NfluO58qx9inoOa+111tqjRm3heGhqqIiI+FBBU0ObmprSwH3AfdFodCYD00Pfldnl7Gg02gv8vKmpaSLWa9iYuc81DNG3LdfwRbHPMTFyFWCqZkJERDxuzMtpNzU1bWxqavo2bpGp9wJ3A1XAvwJPR6PRJ4vTxCH6zvmWHM8dh6vteHo3nGNi5Joaqp4JERHxuHEvp93U1GSBPwJ/jEajDbjltC/ArWhZVNba1Zm6hbONMZdZazcCGGNmAmcDDw2e0mmMmQpMBTZZa9vGco7dKucwh2omRETE24p2bQ6ApqamLbjVLK+MRqPvyPc4Y8zHcUWeANOAiDHmm5mv11prbxy0+xeAZbjVKq/ObPs8rpfl4qxTfw64HLdGxvVjPMfuk2s2h4Y5RETE44oaJgZramp6sIDdLwDenrXtisz9w0B/mLDWPm6MOQn4TubWd12Ns621z+fzYsU4x4QYPMxBmoBNa5hDREQ8L98VMD8xlpM3NTXdkM9+1tqTCjmvtfZvwKl57LcUWDqec+xWxrhAkUwAbqijR1NDRUTE4/Ltmbge9+k9Xyazf15hQgYJR4aECfVMiIiI1xUyzJHETQt9aYLaIuDCRE8X4OomVDMhIiJel2+YeBh4G/ABYDrwU+DWpqam2C6PksJlTQ/tVc+EiIh4XL4rYJ4MHABchVv58pfApmg0enU0Gj10Atu39xk8owMNc4iIiPflPczR1NS0Grg0Go1+AzgT+DTwWSAajUafBq4FftvU1NQ1IS3dW2StNaFrc4iIiNcVvAJmU1NTsqmp6Y6mpqZ3AQtw60o0AtcBG6PRaK6VJSVfkYFLhpSnE/Qm06RtIbWvIiIiu9eYl9MGaGpqWtvU1HQZcBHuehbVuEWnZKwqBi5YWp12FzZV3YSIiHjZmBetylzo61OZ2xzc5bt/DTxTnKbtpSpr+h9WpeOAWwWzIjJh64uJiIiMS0HvUNFoNAC8D3e10Hdljl+JW576xqamprait3BvU1nd/7Am7SbL9MST1Oe8YrqIiEjp5bsC5jzcktfn4+ojuoBfAT9tampaMXHN2wtVDYSJvmEOzegQEREvy7dnYnXm/inchbN+o1kbE6RSYUJERPwl3zBhgASuV+JbwLei0ehox9impqY5o+0kWYYMc2TChFbBFBERDyukZiIMzJ6ohkjGoDBR1d8zobUmRETEu/IKE01NTeOaQioFyFUzoZ4JERHxMIUEr8kxm0M1EyIi4mUKE14zaJ0JFWCKiIgfKEx4TWVV/8OBYQ7VTIiIiHcpTHhNRRUYA0ClTRCwadVMiIiIpylMeE0g4AJFRnW6V8McIiLiaQoTXpS1cJWmhoqIiJcpTHhR1owODXOIiIiXKUx40bCeCYUJERHxLoUJL6pSmBAREf9QmPCi7J4JDXOIiIiHKUx4kQowRUTERxQmvEjDHCIi4iMKE15UodkcIiLiHwoTXlQ1+DLkcS2nLSIinqYw4UVZ60z0JtOkrS1hg0REREbmqzBhjFlqjLG7uCXyOMfyXRx/1O74PkaV48qhvaqbEBERjwqVugEF+h2wOsf2Q4FLgHvzPM824Es5tq8ZY7uKK6sAEyAWT1ER8duvS0RE9ga+eney1r4AvJC93Rhzbebhz/M8VZe19tdFa1ix5boMuXomRETEo3w1zJGLMaYSOAfYAPypgOMCxphaYzLX+/aSisEFmL0Ya1WEKSIinuX7MAF8GKgFfmmtzffj+yygE2gDOo0xvzPGLJqoBhYsFIKyCsD9giptXD0TIiLiWb4a5hjBBYAFfpHn/m8Af8UNl6SAY4HPAacaY0601q6ckFYWqqoaensAqE7FFCZERMSzfN0zYYw5ADgReMha+0Y+x1hrz7fWfsNae4u19nZr7SXAaUA18MNdvNZFxpinitLwfAyZHtpLj4Y5RETEo3wdJnC9EgA/G89JrLWPAo8AJxtjKkbY5zpr7e6bOlo5tG5Cq2CKiIhX+TZMGGNCwCeA7cCdRThlMxAE6otwrvHL6pnQMIeIiHiVb8ME8H6gAbjRWttbhPPtDyRx4aT0hl05VGFCRES8yc9hom+II+faEsaYRmPMoszU0b5tdcaYYI593wucADxgrY1NSGsLlX3lUNVMiIiIR/lyNocxZibwLmDFLmZffA/4JHAysDyz7WTgh8aYe3GrXSaBY4CP4VbF/OIENrswWdfn6FbPhB6GPHYAACAASURBVIiIeJQvwwRwHq6+odDCy1eAp4H34YZIwsB64P+AK621G4rYxvGpHHrl0B0KEyIi4lG+DBPW2iuBK0fZ5zxc6Bi8bRVw9oQ1rJiG1EzENJtDREQ8y881E3u2Ks3mEBERf1CY8Kqsy5Br0SoREfEqhQmv0tRQERHxCYUJr8q6DLlqJkRExKsUJryqaugwRyyeKGFjRERERqYw4VXhCDYUASBEGtvrjbW0REREsilMeJgdNNQRinWVsCUiIiIjU5jwskFDHeHe7hI2REREZGQKEx5mBs3oCMd7SFtbwtaIiIjkpjDhYSZr4aq4poeKiIgHKUx4WdZaEz2aHioiIh6kMOFl2dfnUM+EiIh4kMKElw0qwKxJ9xLTktoiIuJBChNeVjEwNbRKS2qLiIhHKUx4WZWuzyEiIt6nMOFllUOHOXp6NcwhIiLeozDhZVk9Ey3tPSVsjIiISG4KE16WNZtj806FCRER8R6FCS8bEibibNmpJbVFRMR7FCa8TD0TIiLiAwoTXlZWjg0E3UObonV7e4kbJCIiMpzChJcZM6QIM9DTRWcsUcIGiYiIDKcw4XEm6/ocm3eobkJERLxFYcLrssOEijBFRMRjFCa8blCYqE33sKVNRZgiIuItChNeN62x/+H8+Db1TIiIiOcoTHjd/EX9Dw/s3azpoSIi4jkKE1634MD+hwfGN7NlR1cJGyMiIjKcwoTXTZ9Juspd8Ksm3UuwZSPW2hI3SkREZIDvwoQxxo5w6yzgHO8xxjxujOkyxmw3xtxmjJk3ke0eM2Mw8wd6J+Z3baStO17CBomIiAwVKnUDxuhR4LqsbXmt5mSMOQu4HXgeuASoA74I/NUYc5S1dmMxG1oMZsEiWLkCgIMydROTqspK3CoRERHHr2FijbX214UeZIwJA1cDbwJvtdZ2Zrb/EXgaWApcVMR2FseguolFvZt5c2c3i2ZNKmGDREREBvhumKOPMSZijKkefc8h3g7MBH7WFyQArLXPAcuBj2QCh7fMXYjFuIeJVlpbdpS4QSIiIgP8GiY+BHQDHcaYrcaYq40xdXkcd3Tm/m85nnsCqAUWFqmNxVNRRfvkmQAEsdD8aokbJCIiMsCPYWIFbjjiQ8AngYeAzwGP5tFTMTNzvyHHc33bZhWhjUUXm71//+PqDatL2BIREZGhfBcmrLXHWmuvstbeZa29wVp7DvANYDHwhVEOr8zc9+Z4Lpa1zxDGmIuMMU+NqdFFENhvoG6ioXVtqZohIiIyjO/CxAj+E4gD7x1lv761qHNNhSjP2mcIa+111tqjxta88as++ND+x/M6N5BOp0vVFBERkSH2iDBhrU0AG4Gpo+zaN+0z11BG37ZcQyAlV7HPHDoDLgPVpXvY+YZ6J0RExBv2iDBhjCkHZgNbRtn1ycz9W3I8dxzQDnizujEQYF3N7P4vu19eWcLGiIiIDPBVmDDGTBnhqStwa2bcO2jfRmPMImPM4BqIh4FNwIWDizWNMYcBJwG3ZXo5PKll2tyBL1avKlk7REREBvPbolXfNMYcBywD1gHVwHuAk4G/4xak6vM93GyPk3FrSGCtTRhjvgDcgpv98VPcdNAvAS3A5bvn2xib7ln7weq/AFChGR0iIuIRfgsTy4GDcCFhCpACXsPN5vihtTY28qGOtfY2Y0wP8E3gKtzMjr8Al1prPVkv0W/+ItIPu+6k+h0boDcGZeWjHiYiIjKRfBUmrLV3A3fnue95wHkjPHcfcF/RGrabTG2YwpvhycxJbCdg027xqgMOHf1AERGRCeSrmom9XcOkSl4qmzGwYcXDpWuMiIhIhsKEjzTUVfBQ1QH9X9vHH4COnSVskYiIiMKEr5SFg6yfMp9XI9MBMIk4PHTvKEeJiIhMLIUJn2mYVMnttUsGNiy7zxViioiIlIjChM80TKrk0cr92BKscRs62+Bvfylto0REZK+mMOEzC2fWkTYB7qw9fGDjA7+DdKp0jRIRkb2awoTPvO2gRgzwp+qD6Mhcq4MtG+D5v5e0XSIisvdSmPCZabUVHLLvZHoCEX5ffcjAE3+6vXSNEhGRvZrChA+dfMhMAO6uOZSkyfwKX38JXlhRwlaJiMjeSmHCh956YCPBgGF7qJqHKgfWnaDpCnjq0dI1TERE9koKEz5UWxnhqAXTALhh0rF0V9S6J5IJuPZKeOieErZORET2NgoTPtU31NESquHbC87FzpjtnrAWbm6C3/3SPRYREZlgChM+9ZaFDZSFgwA82xGi+fylMH/RwA5/uAXuv6M0jRMRkb2KwoRPlUdCHH9AQ//XDzV3wsXfh0OPHdjpnl/DztYStE5ERPYmChM+1jfUAbD8HxtJR8rgX78Fs+a6jb0xN9whIiIygRQmfOyI+dOoqQgDsLWth3+s2w7BIJzzmYGdHn8Q3nilRC0UEZG9gcKEj4WDAd56YGP/1/93/0vEkyk4cAksOX5gx99co2JMERGZMAoTPvfBY+YSDrpf4+rN7fxq+avuibMvhJDrtWDNy/D3ZSVqoYiI7OkUJnxu32k1XHDqwCyO2/+2hqfXtMD0mfCODw7seMcvdKlyERGZEAoTe4APHDOXo/eb1v/1VXc/z86uXnjfOVBb7zbu2AbXfFezO0REpOgUJvYAxhgufv9hTKqKALC9s5f/vvcFbFkFnHX+wI4vPgnf+gw88ZBqKEREpGgUJvYQ9dVlXPz+w/q/fuK1rdzw8KvYt5wK7xw03NHdCT/7gbuOR/NrChUiIjJuoVI3QIrnmP2n84Fj5nLXimYAbn50NbF4ios+fBHm0GPh+h9C61a387OPu9vk6XDE8W72x4KDIKQ/CRERKYzeOfYwF5y6iDe3dfL0mm0A/O7vb9Ddm+Tf3nsYwX//P7jt5/Dw7wcO2L4VHrzL3corYeFiOGgJHHg4zJwDxpToOxEREb8wVt3cBYlGoxagqamp1E0ZUTyZ4j/ufI7HXt7cv+2tBzbylQ8cRiQUhFdXwqN/guf/7oY9RjJ3IZzxMVh8tPdDResWeOx+WHwMzD9g9P1FRKRQI74RKEwUyA9hAiCVTvPf963kgefX92+bObmSi95xEMctnI4xBpJJeOUFN9zxwgrXS5HL/EUuVBx8pDdDRetWuPIL0LbDra1x2dUDS4qLiEixKEwUi1/CBEDaWq69/6X+Goo+S+ZN5V9OO4i502sGNloLWzfBqmfd7YUVkIgPPWFtPewzD2bPh33mw4x9YOoMqKoeGjKsdWtaRCIQCE7cNwjQ0wXfvxg2NA9s23cBfP1/BhbtEhGRYlCYKBY/hQkAay33Pb2W65e9Qmcs2b89YODMY+bxyZMWUhHJUTqzs9VdxvyRP0IysesXqaiEKQ0uRHR1QGe7O6aiCo48EY47xdViBAZNHkqnADN0W6FSKbj6cnjxqeHPve+j8IFPjP3cIiKSTWGiWPwWJvq0dce58eFX+f3Ta0kP+pVPqy3nc+8+hOMWNuQ+cMc2FyoefxB6e8begPqprsegbQe0bXe3UBgWHeYum37oMTB52ujn6WMt3PwTWHbfwLbFR8PKJ93jQAC++kM3RCMiIsWgMFEsfg0TfZq3dnDN/f/guTeGroT51gNncObRc9l/5iTKwzmGJtIpNwyyfg28ucYNK2zdBNs2Q7x3+P7BEKSSw7fvyqy5AzNJFi52s0uyxXrg1Rfgqcfg8QcGtr/3HDjzE3DVpa7AFKBhFnzrJ1BWXlg7vGxDsxtSmjmn1C0REa9a+5rrGZ4+s9hn3jPChDFmIfAx4DRgAVAOvA7cBvyPtbYrj3MsB94+wtNHW2tz9JkP8HuYADf08dDKDVz7wCrauofWRQQDhgUzajlodj1HLZjG4fOm9l9IbISTQUebm00RDEJ1HVTVQKQMXl/lLjD25CPQ2VZYI4NBV5tRUeV6MEIhN/Pk9VXDQ8rRb4dPX+p6I7ZthqVRiHW75456q7tGydyFxV9Do7MdWjbBnP3HN1yTr2X3wk0/cWHivC/BCadN/GuKiP9870vuAo+HHQdnfxoaihYq9pgw8X3gX4F7gCeABHAy8GHgBeA4a+0u++IzYeJg4Es5nv6DtXb7ro7fE8JEn/buONc9uGrIjI9sVWUhjlvYwAmLZnDkgmm5ey1Gk0zCay+6eopJU2DSZKib7IZQXlgBK1fAKytHr83IZdHh8IVvQzgysO2x+90CXYOVlcP+h7ihlsnTYfJUqJ/mknt2z0U6BX9fDn+6zRV4vuODcPL7Bl4jmYAH7oR7b3K9MgsXw0Vfdd/bRHn2cbdqad+/12AILv6ee20RkT5rXoYrv+geB0PwH78q5v9Ne0yYOAp4zVrblrX9O8A3gM9ba/93lHMsB+Zaa+eOpQ17Upjos3Lddh54/k1Wrd/Jum0jrztRFg5yzH7TOHFRI8fsP53KsiJ+0o/1uOGJVc/By8+5oZSRzJoLhxwJBx3phkSyewWsheu+D08+PPrr9tVtHHasq7lY8wrc82vY/ObQ/SZPdwWdk6e5Wo2N64Y+XzPJBYoDD8/r2y3I6y/BVV8dPrumuha+8SOY1lj818wllYIH73QLnM2cA5/6f1BXv3teWyZed5frSdz/YJg9r9StkbG69nsD//cd/w7377R49owwMRJjzGJcz8S11tp/GWXf5cBcYD5QDXTYAn4Ie2KYGKy9J84rG3byzBvb+OuqzWxpy93REw4GWDxnMgfvM5lD9qln0axJlOeaFTJWHTth83rXC5BIuHtjYN4B+aXsdBqeehT+8bQLJ60jrKFRTCYA7/8o7HcQdHa4npjuTojHIB53YSCZgPIKqKx2w0FVNW6a7UirjW5eD9//shtSARccYj3u5wMwc1/42n+74aBCWeuGjV5/yR1fP3XgVlUzdN8NzfDLH0LzqwPbGmbBl690M3l2pavDTRWunzr6OiXJBDz9GGx6E+buD4cc5Y0pvom4+x3UTy11SyZGrMd1jW9odj1wX/8f93cp/tK6Fb52nvv/D+DypmL/Hvf4MPFu4A/At621l4+y73LgBNwQSQXQDfwZ+Lq19uXRXmtPDxODWWtZvbmdx1Zt4rGXN7O+deSSlGDAMK22nOryMNXlYarKw8ysr+SwuVM4eJ/Jxe3FGIuWza7nY9tm2N7ihli2bYatG3PvX1EJ7zzLvenf95vhNR9lFXDmx10vyc//E9p3jK99k6fD4qPgkKOhvBy2bXF1KE885B6Dq0f52n9D5074z0sHhoUWLnYhq6PNveGlEm4YqW5yZlhpSubrenff3elm5zz+gAsrudRMcp9OZ891Iekvd+cuqK2fCl/+HjTuM/y5jevgj7e4T7vpNMyY7WpYjnyrO/fgYNHdCQ//ER662/1u+lTXwjEnwbEnuyGp8goXLrJDibVu0bXVL8Hqf8D6N2BqI7zjTFfTsistm+D3v3FvqG99Fxx0xMD5k0l45A9wz03ub+CwY+Gcf9l9vUFjlU677ydgchcyZ+977ZUuxPWZMRu+ebX7eUthOtrc8O3CxTBtxu597dt+Cn++wz1edBj8v/8o9ivsuWHCGBMEHgOOAg6x1r4yyv6/BDbiejJSwLHA54A4cKK1duUIx10EXPTZz372SNg7wkS2tS0dPLZqM4+9vJk1W9rzPi4YMCycWcecaTWk05ZU5lYeCTJ/eg3zZ9Qxv6GGqrISfALdttn9w3/+72410EiZq4847Z8GPp33dMH9v4P773CfsI88ET7ymYGprDtb3bDKqzn/dIojUub+Y+ib6vq3v7gQs7uFwq7r9PEHB8JMdR1ceIm7TyXdm9ijf3RvTiP9/1I32fWGhMPuk/CGtflPPQ4EXJ1LMOTe9AMBSKVHLvI9cAm8+2x3PziE9HTB729xQzeD63Vmz4PT/8kFxjt+AVs2DP8ZvPvD7hYpy/2a3V2wbrWrD2qYPTErx/bGXGja0Awb17r7bVtcMOvuApt2QfDIE1wAGqlH796b4O4bh28/7hS44JKBtq97Hf54qwvjAePObYzrHXv3R4ZP7U7E4a8PuJkFNg0Wdx/IFGrXZG6Tp7l6puAELHDX1QEP/8H9nt727pF/X8Wy8kn4xX+5nsNIGXzpu+57GyzW7eq6Nr3p/gZ7uty22np3OYDDjnFhvlCxHrjkY+58AJ9bCocfN+5vKcseHSauxoWBr1trvzfGc7wVWA48ZK1956723Zt6JnZly85u/vHmDl58czsvrtvO2pZdXOMjT5OrywgGDMYYDBAMGuoqI0yqLKO+uozaijBl4SBl4SCRUJCqshCH7DuZ6XVF+vSUTu16xc5YN3R1wpTpw59LpVzYeP4JCEXcqqBVNVBZA2Vl7g0zUubeiGLdA0MgO1rhleehp3vk1w2F4TNfhyVvGbr9d9fDH347pm+1X3mlO68xrkdgxzb3ZpFruu/8RW4Wycw58NIz8JNvuze0fITC+RfY1ta7dUf+8fTQXorxqp/qejemNEDtJBeIxtOjNLUBTjzd9WTM3d/97by5xs26+fuygZ9NTZ27Iu+Cg9zrBgLuZgLuZ9Ibc0Eq3usCUmWV6xGryNz3D4lVu560F5+CF5924TXfn2lFJZx1Prz9PUP/xp/9G/zk3we+3u8g17vT57wvw1tOdX9n993s/s5zKSt3S+6f+gEXCp59HG77mev1ycesufDJLxa+Lkysx/VEVVTCvEUD9VPWwhN/gVt/NjAkOK0RPv559/valc4OaGt1+2eHj0Qcml+DbZtcSNxnvvu3nYi74PngXUP3r6iCS37gCr/B9Tb++PKhK/ZmMwYWHOhms3W2QftO19thjOtlm3+A+15nzxs6Q+0vd8NvrnGPG2bBFT+diFlme2aYMMZcAXwTuM5a+5lxnmsZ8FagZlczQhQmcuvqTbCzK05XLEFHLEFHd4JXNu7kuebWgnoxxuLgfeo5+ZCZnLiokc5Ygtc2tfHapjbWtnRQVxlh/oxaFjS43o9IKEh7T5yOngTtPXEioSDTasqZXFPmLoJWCskkrFnlPtW88oL7z3hKg3uzmtLg1t7IVZeQTsNjf3ZDFdW17lYzCYIB2JlZGGzndvcfY9/X7TvccQccCie8E444McdslrQbFlqfWU9k+1b3RnjCO4e+Eb2+Cn502a4vFnfoMW4NkNnz3Zvg04+6XqBcIaRxX9cjcOzJ7j/odMrN8vnbX9wbZ0+XO26kN9CyCvdmtN9B7j/apx51N5se9VfA/EWw735u6Cc7SFVUue9h/oFw67XuzSRbZbULmbsqHN7dyiqG9/bMO8AVCQdD7o3mT7cP7LPocPdJ+oYfwV/vd9siZW7Z/HWr83vNmXNceHrlhcLbawyccgZ88JOu7du2uF6Nls1uauPCxe5vHFxA+Mvd8NC9A39/tfUuGC863AW6kXoK33IqfPjTQz/9t2xyweq5v8Fr/8j0oATccM/s+S4EvvEKrF099O8vFHaBItYDm9YNfy1wP49L/8u18+qlA+FmvMoq4NQzXa9bWTl848KB8PbRqPtZFt+eFyaMMUuBy4FfAhcUUkQ5wvl+CZwHzLLWjjCQrjAxFm3dcV5ct52dXb2EggECxhAMGHZ29fL6lnZe39zO2pZO0iX+W5xUFWHGpErmTqthzvQa5k6rYX5DDZOqJrhrdHdKp92bdLGKGjc0w103uE/MwaALG8GQ6wF45wfcG3S2RNz1OCQTA0Wp4TIXAPL5JNX3aT6ddjebdp9Ea+uHd5W3bHI9Rn/NERLA9Vb806dcXUYg4GpOlv8eHrrH/ef/tnfD+891bwjgfnaP/hl+90vXu7Qr0xoHeqAmyozZsM8CmDXHfbpvmA01tVBR7T61vvw83Pjj4UM12abOgG/+2L1Z98bgu/82fMYSuE/MZ37c9b7ZtPt53X2jG2bJpbIaTjvL/W4CAcC4mp6O9syn7h3w3BNDfzc1k9zPOdfPd9Zc9z3nunbQSOqnuu8p+/dgApm/2UDuv42xOuxYN538mu8MvGZfrVJfm4MheN8/u597RZWrTVn7mvtZrH4pvwDcp6YOlhzvLn0A7mf+gxsnqt5lzwoTxpjLgaXADcD51hbykx/xnI/h6idqrLUj9t0qTEyMeDLFzi73Dy1tLVi3ra07zs6uODu7e2nvTtCbSNGbTBFPptm0o5vnm7cNWR58Iuw7tZrD5k7hsLlTOGDmJMLBQP8wciyRYsP2LjZu72J9axcdPQkWzqzjiPnT2GdKlbs6q5ReIu66mPsKW1u3unVGjn9H7hVS02lX/zF4/ZLBujvdG9pLz8A/nnG9PuDenI44EU5+v5tiaa2bZrz6JfdmEe8dCEDptAt1ZeUQKXf3yST0dLpemK6++w73uLvDfRo9aIm7gu8hR+W3BH0i7mod/nBL7l6dsnJX2Dt4OuiGZvjuFwbeZENht8Ls6WcNHwpMJuEvd7kp1X09ToEAnPQ+OOPjUJ01Myhby2b49dVuWGsspjZAb+/wT/yBgHtTP+Njrvflt9fmN13cGPe3saMld81PwyzXi7Zx7dAC7nDE9Xic9D53jtUvwQ+/NjyoVNdC9FuwMKuWok/HTvc31dnuekRqJrn7nm63hsSal90MrJGGAN91NnzogtG/z7HZc8KEMeZbwL8DNwLnjRQkjDGNQB2wzlrbndlWB3Raa1NZ+74XuA/4o7X2Pbt6fYUJb9nR2csjqzax/MWNvLR+B3WVEQ6YWcf+jZOY31DDjq44azK9H81b28EYaivC1FZEqK4IE0+kaOmIsb0jVvRQMrW2nCVzp1JXFSEYcL0xAWNo74mzo7OX7Z29tHfHqasqY9+p1ew7tZp9plaTTKVpae+hpS1Ga2eMusoIRy2YziH71pduKEZGZq17Y9m2xdVO1E2euNeBsRdzbt3oAlCsxwWlvmBx1Ftzz3h59nG34mrDLPjnz46+9sT2Fhda4r1uuKqQJd+tdXUmv712oJC2shrm7Od6W9583U1LHlyzse9+rgj2yBPc16tXwbN/dfUkk6fChy4cPi3yhRWutiG7ZiEUdiHt8Le4VSPr6t3PaUOzG7rq2OmGO/Y7cOjwSGe7G/7YssGFuxmzh573xafc0EbfTKiGWfBvV4x/Rcp02v287rze/dz7BIPwvesLu85RYfaMMGGM+Vfgf4F1wGVAdpDYYq19ILPv9cAngZOttcsz2z4A/BC4F1gDJIFjcEt0bwdOsNa+yi4oTHhXKm1dkfkY/rNNpdNs7+xlfWsXzVs7aG7poHlrB6s3tZGc6K6PPJWHgyyZN5UZ9ZVsa4+xraOHlnb3SXDfqdXMmVbD3GnVzJxcRWUkRHkk2H9F2Jb2GC3tPWxrj9HeE6c8HKSyLERFJER1eZjZU6porK8iGFBPipRQrMe9edfVu2Giwf+We2Pu0/6mdS7YHHDo2IOVta53KJVyb8zBUPGX2+/z/N/dsNi+C9ysmuw1XMYj3utqR/7wW9dzccoZrl5i4uwxYeJ6XEAYycPW2pOy9h0cJg4Evg0cATQAYWA98CfgSmvtKAOLChN7m1gixUtv7uD55m08v7aVLTt7SFvr/i+yllAwQGN9JbMmVzFrchXlkSAvNLfybHMr3b0FXuisxMpCARdIptdQWxkhEgwQCQcJBQ09vSnae+K0d8fpiCWojIRomFRBw6RKGuoq2GdKNY2TKwlk/eceT6Zo3tpB2lrmN9SqZ0VkIvR0ueGifOuOxm7PCBNeoDAh+Uil07yysY1XN+4knky7tTVSaVLWUlMRYXJVGZOqI9RWRGjtiLFuWyfrWjpZv72LslCAabUVTKstZ3JNOWtbOvj7a1vZtGMX00c9oLIsxH4zatmvsY5UyvLKxp28vrmdRMp1IJaFAhy4Tz2HzZnCvOm1xBJJOmNJumIJunqT9MSTdGfu02nLnGk1LJxZx8KZk5hWW676E5HSU5goFoUJKZUNrV08vaaFnniSqTXlTKurYGpNOcm0ZV1LB2tbOlnb0kFLe4xYIkUskSQWT5G2linV5UyrLWdqbTl1lWXEk6n+N/C27jjNWzvY3lnEivYiqy4PUx4J9v9PFggYaisiTK4uY3J1GfVVZcSSKdq7M70nPQmm1JSzeM5kFu87hXkNNRhge2cvzZmfVSyepDwSojwcpDyzfkl5xD2uiISojISorYxQEQkqyIg4I/5DKPEaxyKSr1lTqpg1Jfc1OPadWs2JB47v/Du7emne2sGbrZ30xFPEE27WTDyVpiISpLYiQl1lhOryMJ2xBFvaetiys5vNO3tYs6V92OXs+zTWu+Wcx9Oz0hlL0BkbOhNhy87RV8x87OXNgAsjfecpVDgYoK4yQm1lhElVEeqryphU5X4OsUSKnniSnl43y6gsFKQsHKA8EiISDJBIpYklUm4WUiJFKBigPJIJLpm6leryMFVlYarKQ1Rl6lgqIqFMTUuQ4O64vL3IOClMiAgAk6rKOHxeGYfPK/xiVtZaWtpjrN7Uxutb2jHGcEBmiKKu0k2v3NrWwwtrW3lhbSvbOnqp6n8jdW+cVWUhKjJvpqmUZfXmNl7NLEA23vqTsYSIPolUmm0dMbZ15LnaZ5GFgwEqIkHKIyEmVUaYM62GOdOrmTuthvqqMnZ0uZlBrR0xYvGUCyWZa+TUVkSYPaVqxGGiZCrdv4Bbe0+CrliCsnCQ2oowNRWR/lVn1TMjo9EwR4E0zCGye6WtZUdnL6nMrBpr3bVd2rrjbM9Msd3Z1Ut5OEhtpes9qSwL8cbWDlau3c7Kda39a5hURkL9b8S1FRF6k6n+noOeuBsa6o27bZ2xBO3dcXqT417GpuQqIyH2nVZNY30lnbEErR0ufIzUmzRYwBgqMjODKiJB6qvLmDGpksb6SmbWV1EWDtLV6+peunuTJDI/L2Ncn3hPIpWZfRSjtSNGTzxJfVUZU2vL+4ff5kyrYX5Dbc4iXvEU1UwUi8KEiL9Ya9m8s6f/yraFfsqOJVK0dfXS1h1nR1evW0Stq5euWLJ/+m1lWYhIKEA8v9CsOQAAD1JJREFUmaY34cJIPJEiHBqow4iEAiRTtr+epTeeoivuClD7ClG7BxWh9vS6IZS96X/o8nCQfaZWY63tD3nxZJqaijBTaspdfUx1Gem07f85x+IpF2ZiSTp7Xe9KIpkmbd108bS1VJWFmDW5ipmZWVf11RHSFtJpi7WWjliCzTu62bSzm807euiOJ2moq6Cx3oWmabUVBEzmWmXWXbxwzrQa9m+so6aiBBcoLB3VTIjI3skY01+3MRbl4SDlkyppmDT2c4yVtZZ4Mk1P3BXTbm3vGbIOSlcsSX2mCHVydRmVZSG6e5N0xNybamtHL+u2ddAZyz1MZICazCJuNZVhajJ1IP1DH92J/tk4u0MskeK1TcOv/trWHWd9a9eYz9vVm+TVTW7YLF/rtnWybtvoS6E31lcyv6GWgDHEEkl64i4EAf0L1QUDhqm15W6p/sz062m15YSCw+thrLUkUmkXjjIznbpiCdLWMilTrzOpqoxwjmNLSWFCRMSjjDH9V8qlCmbUV3LonBEuJT4Cay3bO3tZ29JJS3sPtRURptSUMaWmnElVkVELPBOpNLF4qn/qbkt7D5t3drNxRzebd3STTLtP/q72JUwkFMi8rjs+HAowtcbNJJpSU05lJMSOrl62tbsVXjfv6Har1G5p7x+O8pNNO7rHXFwcDgb6C20t0J0ZKkrlsVBe38J0fcW85eFgf61MVXmI6rIwVeVhzj5+/m4ZOlKYEBHZgxljmFLj3sjHIhwMEK4I9Hfnz50+/hUcp9aWs39j3bDt2ztjbNrRTSQUpCzkZsUEA4b2QfUxO7p6CQVM/5to2aA30b6C3kg4SMC4ngFj3EUFN2zvZkNrJxu2d9PVmyBgXK9BIGAoDwdprK+kYVIFjZMqqSwLs2WnCwkbd3SzvdMV3xpjXB1IPMnrm9tZs6V9XCvkJlJp2rrjtI0hi3THk3THd12YHAkF+MgJC8bYusIoTIiIiCdMri5ncvXw0DOlppx5DeM/7+J9879uSk1FHfvlCDyDxZOp/vVdQplZNxWRkOtJwtVkpK0lkUyzcUc3zVs7WJtZ56StOz7ilZJDAUNVed90YXcP0NYV77/4YT5XWe6bEr07KEyIiIiMQSQUZP/Gupy9LNkOz7pOWl89THev62EwQFV5mIpIcNRl59PW0t2bHFKE6laUTfTXWnTGEjlrMiaKwoSIiMhuNrgepp6ygo4NGNM/rOMV3ioHFREREd9RmBAREZFxUZgQERGRcVGYEBERkXFRmBAREZFxUZj4/+3deZAcZRnH8e+PcAgC4RCBBARFORQRkCMgcklRoCKKIAUGEAGFBiwjJSoeBLAEEQhyvKDx5EiAlHIqV4QghxgiBsESomI4wi0QroTz9Y/3HWzHntmjN9ub7O9T1dXZt5+ZvPPszO6zb7/9tpmZmdXiYsLMzMxqcTFhZmZmtbiYMDMzs1pcTJiZmVktLibMzMysFt+bo5+Komi6C2ZmZoMphhBUdcAjE2ZmZlaLYi/uiW4LnqQZMcbNmu7Hws55HBjO48BwHgeG8zgwFmQePTJhZmZmtbiYMDMzs1pcTAwdP266A4sI53FgOI8Dw3kcGM7jwFhgefScCTMzM6vFIxNmZmZWi4sJMzMzq8XFREMkLSZpnKR7Jc2X9JCkUyW9tem+DUWS1pV0vKTbJT0p6XlJMyV9sypnktaTdJmkZyS9KOlmSTs20fehTNIykv4lKUo6q+K489iFpJUknSLpH/lz/KSkGyV9uC1uS0lT8/v2OUnXSNq4qX4PFZKWlXSMpLtzbp6SdJukz0lSW6xzCEj6hqQpku7Pn9vZPcT3Om+SRkk6L7+P50maIWmvXvXLcyaaIemHwJeAS4GrgQ2AI4GbgZ1ijG802L0hR9JJwOHAFcDtwKvADsBngL8AY2KM83LsOsB04DXgdGAucAiwIbBrjHHqoL+AIUrSKcAXgWWBs2OMR5SOOY9dSFoLmEbK3U+BWcBIYCPg2hjjRTluTI6bA7QKtiOAtwNbxxjvHtSODxGSFgNuArYGfkn6XC8D7ANsAZwcY/xajnUOM0kReBq4E/gg8FyMce0Osb3Om6SVgBn52GnAw8C+wHbA52OMP+/asRijt0HegPcBbwC/ams/EojAvk33cahtwGbAyIr27+acHVFquwR4Hdi41LYs8ABwH7mIHu4bsCmpUPhKzuFZbcedx+75uxl4CFi9h7jpwHPA6FLb6Nx2XdOvo8H8bZXfdxPa2pcE7geedQ4r8/au0r/vAWZ3ie113oCT8/djt1LbiPwc/waW7dYvn+Zoxj6ASH/tlU0EXgLGDnqPhrgY44wY49yKQxfn/YYA+ZTHJ4BpMcaZpce/APwEWBfYfAF3d8iTNIL0frsG+HXFceexC0nbAtuQ/np+VNISkpapiHs3KU9TYoxzWu3531OAnSStNlj9HmKWz/tHyo0xxleAp4AXwTlsF2O8vzdx/cjbvsA/Y4xXlmJfB84EVgI+2u3/czHRjM1JIxPTy40xxvnATIbxD+l+WCPvH8/7jYClgD9UxN6e984vjAPWJw15VnEeu2v9YH1Q0pXAPOBFSbMklf8YaOWoUx5FGqoejqYDzwJHS9pL0jvyHJ0TSTkZn+Ocw/7pdd4krU4asbi9Q2z5+Sq5mGjGKOCpGOPLFcfmAG+TtOQg92mhk/+6/g5pqH5Sbh6V93MqHtJqG72AuzakSXoncBxwfIxxdocw57G79fJ+IumvtgOAg4BXgPMlHZiPO48dxBifIY1+PU06pfYAcC9pbtSnY4wTc6hz2D99yVvtHPsW5M1YBqgqJADml2JeGZzuLLROB8YAx8QY78ttraHmqvzOb4sZrs4B/kWaZNWJ89jdcnn/PLBDHppH0qWk8/3fk/RLnMeevEA6738FcBupMDscmCRp9xjj9TiH/dWXvNXOsYuJZrxEmjFb5S2lGOtA0gmkIfofxxhPLB1q5W2piocN+9zmIfidgW1jjK92CXUeu5uX95NbhQSkv7YlXQHsTxq9cB47kPR+UgExLsZ4bql9MqnAmJivKHIO+6cveaudY5/maMYjpFMZVd+40aRTIB6V6EDSeOBbwM+BQ9sOtyZzVQ3JtdqqhvIWefn9dhrwW+AxSe/Ok7TWyiEjc9sKOI89eTjvH6s49mjer4jz2M040i+qKeXGGONLwG9I78u1cQ77qy95q51jFxPNuIOU+y3KjZLeAmxMutbXKkg6FjgWOA84OObrl0ruJg3VbVXx8DF5P1zzuzSwCvAx4O+lbVo+PjZ/fTDOY09ak6fXqDjWanuC9FmHznmMwJ8GtmsLjdYvqREVxxYv7Z3D/ul13mKMj5KKhTEdYqGnz3vT18wOxw14P93XmRjbdB+H4kaabBlJhcRiXeKmkNZH+ECprbU+wiyG6foIwBLAnhXbYTmvV+ev13Uee8zliqRr9R+mdP09sDppHsCsUtsdOXZUqW1Ubpva9GtpMIcT8vvu6Lb21sjY08DizmHXHPa0zkSv8wb8gM7rTDwDLNetL14BsyGSziSd87+UNOy8AWlFzFuBHaNXwPwfkg4nreD2IPBtUjFW9nhMk7Va11dPJ62SOYH0wTmEVMR9LMZ47WD1e2EgaW3ShMz2FTCdxy4kfQH4EfBX4GekxZYOIxUUH48xXpfjtgZuJBUeZ+aHHwmsCnwoxnjXIHd9SMgriN5JKswuJP3sW4n0HlsbODzGGHKsc5hJ2o//npo8kvS+OzV//UCM8fxSbK/zJmll0kjFyqTToXNIayJtTxoF/mnXjjVdWQ3XjVTxHUVaSfDl/I07jR5WGRuuG/ALUtXcaZvWFr8BcDnpOvaXgFtIy5Q3/lqG2kb6wf1/K2A6j73K3R6k6/BfJF3ZcV3+Id0etxXwO9KoxfPAtcCmTfe/6Q1Yh7SU9sOkovU54PfAHs5hx5xN6+3Pwb7mjXTq6XzSomHzScXe3r3pl0cmzMzMrBZPwDQzM7NaXEyYmZlZLS4mzMzMrBYXE2ZmZlaLiwkzMzOrxcWEmZmZ1eJiwszMzGrxXUPNbNgqimI86V4vO4QQpjXbG7OFl4sJM+u3oih6s+qdf1GbLeJcTJjZQDiuy7HZg9UJM2uGiwkzqy2EML7pPphZc1xMmNmgKc9RIN358MvA+qQbEF0FHBNCeKzice8h3S32I8AqpBsRTQVOCCH8vSJ+BOnuk/sBG5LurDiHdJOk73d4zJ7A0Tl+PummXUeFEObUec1mw4Gv5jCzJowDzgXuAk4n3T33QOC2oihWKQcWRbE5MAMYC9wBnEK6U+dngRlFUWzWFr8kcA1wDrAmMAk4g3R75U8BH6roTwFcQDolczZwD7A3MLUoiqVqv1qzRZxHJsystjziUGV+COGkivZdgS1DCH8uPccE0kjFScBBuU3AecDywNgQwoWl+L2Bi4ALiqJ4bwjhjXxoPLATcCWwVwjh5dJjlsrP1W4XYPMQwt2l2EnAPsDuwCUdX7yZeWTCzAbEsR22r3eIP79cSGTjgbnAvqXRgK1Jp0H+UC4kAEIIFwO3AOsB28CbpzcKYB5waLmQyI95OYTwZEV/zigXEtnEvN+iw2sws8wjE2ZWWwhBfXzITRXPMbcoipnAdsAGwExg03z4hg7PcwOpkNgE+D2p8BgJ/DGE8Egf+jOjou2hvF+xD89jNix5ZMLMmvB4h/bW5MuRbftHO8S32ldo2/d10uSzFW2v5f2IPj6X2bDjYsLMmrBqh/bV8n5u2361iliA1dviWkXB6P53zcz6ysWEmTVhu/aGoihGAhuTLsv8W25uzavYvsPztNrvzPt7SQXFRkVRjBqIjppZz1xMmFkT9iuKYpO2tvGk0xqTSxMnbyVdNrpNXgfiTfnrbYFZpImYhBBeBwKwNHBu+2WdRVEs2X7pqZnV5wmYZlZbl0tDAS4LIcxsa7sauLUoiktI8x62ydtsSleAhBBiURQHANcDFxdFcTlp9GE94JOkxa72L10WCmlp7y2B3YBZRVFclePWBHYGvgr8ol8v1MwquZgws4FwbJdjs0lXZpRNAC4lrSuxN/AC6Rf8MSGEJ8qBIYQ/5oWrvkVaP2I30gqYk0krYN7XFv9KURS7AIcC+wMHAAIeyf/nLX1/eWbWjWLszU3/zMzq8y2/zRZNnjNhZmZmtbiYMDMzs1pcTJiZmVktnjNhZmZmtXhkwszMzGpxMWFmZma1uJgwMzOzWlxMmJmZWS0uJszMzKwWFxNmZmZWy38ALYxwPLGUn9wAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 576x432 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAGdCAYAAACRlkBKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZxcVZ3//9enlt47K9kDSQhLkATZwiIaARlUGHXcAWGU7wBqKeiMX0bRGUTlN7iMuCAliv5QHGAARUcHBpSRVdYQAwEDQUICWQjZO+nu6q7lfP84t7qrK9WdqqS7qm7n/Xw8+lHVt86tPnXT6XrXWc05h4iIiMjuRGpdAREREQkHhQYREREpi0KDiIiIlEWhQURERMqi0CAiIiJlUWgQERGRsig0iIiISFkUGkRkSGb2MzNzZnb/HpxrZvZ+M/tPM3vZzLrMbLuZLTezH5rZCWU+z7Fm9lMze8HMOs2s28xWmdkjZvYdM3uPmbUOcu4EM/tSUHaLmaXNbIOZPW1mt5jZx83swEpfm8i+yLS4k4gMxcx+BnwUeMA5d3IF580CbgcWFhzeAcSBpoJjvwAucs6lBnmerwD/ClhwKAdsA9qD58p7r3PuN0XnHg/8FphccLgDiAKFIeO/nHN/V94rE9l3qaVBRIadmc0GHsUHhg7g/wJTnXNjnHPNwDzgGnwAOA+428ziJZ7nbOByfGC4DTgWaHTOTQSagQXAPwPPljh3HP2B4UXgI0C7c26sc64NmAacBdwBpIfrtYuMZmppEJEhVdrSYGZR4GHgBGAjcLJz7i+DlP0QcAv+A8y3nHP/XPT4Y8DxwJ3Oub/dzc9tKmytMLNPAD8EeoCDnHNrhji32TnXvbvXJrKvU0uDiAy39+EDA0BisMAA4Jy7Dbgu+PYzZja9qMiC4Pa/d/dDS3Rv5M9dOlRgCM5VYBApg0KDiAy3i4LbF5xzvyyj/Nfx3RQNwMcGKTNjL+ozzcxs98VEZHcUGkRk2ATjEt4UfPtf5ZzjnHsVeCr49uSihxcHtxeb2VsqrE7+3AOA/8/MGis8X0SKKDSIyHCaDbQE95+u4LxngtvDio5/Dd8KMRZ4MJiqeZ2Z/YOZzd9NC8ItwAvB/cuA18zsV2b2z2Z2ipm1DHGuiJSg0CAiw2lCwf3NFZy3KbidWHjQOXcv8HfA6uDQPODjwE+AZcB6M/uWmQ04Lzg3BZwK3BkcGocfb/EN4I/ANjP7rZmdWEE9RfZpCg0iMpz2dOzAoOc5534HHAScCXwPeAzID1ycgp/O+bSZzStx7rpg1sVh+NaGO4H1wcNx4F3An8zsM3tYb5F9ikKDiAynwtaFXT79DyFfdkupB51zGefcXc65zzrnTsS3GvwN/bMqZgA3D9Zd4Zx73jn3defc3zrnpuNDxFeALnxgudrMjq6gviL7JIUGERlOq/BvxABvrOC8I4LbQadnFnLO9Trn7nXOvQv4aXD4KODIMs9/3jl3BfBOwOH/Fn60gvqK7JMUGkRk2Djn0sAjwbfvKeccM9sfOCb49oE9+LE/Lbh/SCUnOucexK8WWfG5IvsihQYRGW4/Dm4PNbMPlFH+C/i/RWnghj34eZ0F93v34vw9OVdkn6LQICLD7Q7gyeB+0szeMFjBYBnpTwTfft85t67o8dPKWJjpnIL7SwvOXWhmY4c60cwOp78bZelQZUVEoUFEyhc3s/128xV3zmXxG0FtACYBj5jZP5lZ306TZnaImX0PuBn/d+hh4IslfuZ/AsvM7FIzW2BmkeD8qJm9wcyuw29YBfA759zLBed+GFgdbMF9mpm1F/z8iWb2SeDe4Od34qdxisgQtGGViAypYMOqcpzinLs/OG8OfmvsYwoe78BPdWwuOHYzcEGp/R/MbD0wteBQFtiOX+wpWnD8T8C7nXNbCs69Ct/1UagDiNG/ABX4bbbPcs7dU8brE9mnxWpdAREZnZxzL5vZQuADwAfxu1VOBjLACuB+4GfOuUeHeJpDgTOAU/DbYs/BB4Ye4DVgCX7L7F+6XT8BfRE/JfMdwIn4haEm4adYbgSWA/cA1zvnNu7lyxXZJ6ilQURERMqiMQ0iIiJSFoUGERERKYtCg4iIiJRFoUFERETKotAwiEQi4RKJhEaJioiIBDTlcvcUHEREZF8y6CqsamkQERGRsig0iIiISFkUGkRERKQsCg0iIiJSFg2ErFA6nWbNmjWkUqlaV6WuNTU1MXPmTOLxeK2rIiIiw0ShoUJr1qyhvb2d2bNnYzboANN9mnOOzZs3s2bNGubMmVPr6oiIyDBR90SFUqkUEydOVGAYgpkxceJEtcaIiIwyCg17QIFh93SNRERGH4WGEGpra6t1FUREZB+k0CAiIiJlUWgIMeccl156KfPnz2fBggXceuutAKxfv55FixZx5JFHMn/+fB566CGy2Swf+9jH+sp+5zvfqXHtRUQkbDR7Yi+8/Wt3jthz3/OvZ+62zB133MHSpUt5+umn2bRpEwsXLmTRokXcfPPNvP3tb+dLX/oS2WyWrq4uli5dytq1a3n22WcB2LZt24jVXURERie1NITYww8/zNlnn000GmXKlCm89a1v5cknn2ThwoXccMMNXHHFFSxbtoz29nYOPPBAVq5cycUXX8zdd9/NmDFjal19EREJGYWGEHOu9AacixYt4sEHH2TGjBmcd9553HjjjYwfP56nn36ak08+mWuvvZYLLrigyrUVEZGwU/fEXiinCyFvxbr+7oCDp40dlimJixYt4kc/+hEf/ehH2bJlCw8++CDf+ta3WL16NTNmzODCCy+ks7OTJUuWcMYZZ9DQ0MD73/9+5s6dy8c+9rG9/vkiIrJvUWioEjPraxlwDoZjGYP3vve9PProo7zxjW/EzPjmN7/J1KlT+fnPf863vvUt4vE4bW1t3Hjjjaxdu5bzzz+fXC4HwFVXXbX3FRARkX2KDdbEva9LJBIOIJlMDji+fPlyDjvssIqf76+vbSeX89d67tQxRCOjv2doT6+ViIjU1KAfa0f/O1edsIJ/A+U0EREJI4WGKinsjlBoEBGRMFJoqJLCth6HUoOIiISPQkOVFM6WUEuDiIiEkUJDlQzonlBLg4iIhFDdhQYzazGzl83MmdkPSjx+qJn9xsy2mlmnmT1kZqcO8lxjzewaM1trZikze87MPmk12Ld5QPeEMoOIiIRQPa7T8FVgv1IPmNlc4BEgA3wT2A5cCNxjZu90zt1bULYB+ANwFHANsBx4J5AEpgBXjNxLKFn3/m8UGkREJITqqqXBzI4GPgt8eZAiVwHjgLc7565yziWBtwDrgGuLWhAuABYC/+Sc+yfn3PXOufcBdwBfNLNZI/ZCSqhV90RbW9ugj61atYr58+dXrS4iIhJudRMazCwKXA/cjX9jL368FXg3cL9zbmn+uHNuJ/AT4BB8SMg7B+gKnrPQd4E48OHhrP/uaSCkiIiEWz11T/wjMA94/yCPHwE0Ao+WeOyx4HYh8ISZRYCjgSXOuVRR2SeAHAMDxp654B1lF51Z6XP/5O6Shz//+c8za9YsEokEAFdccQVmxoMPPsjWrVtJp9NceeWVvOc976nox6VSKT75yU+yePFiYrEYV199NaeccgrPPfcc559/Pr29veRyOX71q18xffp0PvShD7FmzRqy2Sz/+q//yoc/XOUMJiIiVVcXLQ1mNgf4CvBV59yqQYpND27Xlngsf2xGcDseaC5V1jnXA2wuKFtcl4vMbHF5Na++s846i1tvvbXv+9tuu43zzz+fX//61yxZsoT77ruPz33uc4PugDmYa6+9FoBly5Zxyy238NGPfpRUKsV1113HZz7zGZYuXcrixYuZOXMmd999N9OnT+fpp5/m2Wef5R3vKD88iYhIeNVFaAB+CLwMXD1EmZbgtqfEY6miMkOVzZdvKfWAc+7Hzrljh6hHTR111FG8/vrrrFu3jqeffprx48czbdo0vvjFL3LEEUdw2mmnsXbtWjZs2FDR8z788MOcd955AMybN49Zs2axYsUKTjzxRP7t3/6Nb3zjG6xevZrm5mYWLFjAvffey+c//3keeughxo4dOxIvVURE6kzNuyfM7FzgdGCRcy49RNGu4LaxxGNNRWWGKpsv3zXIY+UbpAuhlNe2ddHR1QvAlHEtjG1p2OMf+4EPfIBf/vKXvPbaa5x11lncdNNNbNy4kaeeeop4PM7s2bNJpYp7ZYY2WMvEOeecw/HHH8+dd97J29/+dn7yk59w6qmn8tRTT3HXXXdx2WWXcfrpp3P55Zfv8esREZFwqGloMLNGfOvCXcBrZnZQ8FC+62BscGwTfoZE4WOF8sfy3RFbge5SZYOfORF4YK9fQAUGrtOwdyMhzzrrLC688EI2bdrEAw88wG233cbkyZOJx+Pcd999rF69uuLnXLRoETfddBOnnnoqK1as4JVXXuHQQw9l5cqVHHjggVxyySWsXLmSZ555hnnz5jFhwgTOPfdc2tra+NnPfrZXr0dERMKh1i0NzcAk4Mzgq9i5wdelwHX47oYTS5Q7IbhdDOCcy5nZEuAoM2sMxjHkHYfvlqnquIXhXEb68MMPZ8eOHcyYMYNp06bxkY98hHe9610ce+yxHHnkkcybN6/i50wkEnziE59gwYIFxGIxfvazn9HY2Mitt97Kf/zHfxCPx5k6dSqXX345Tz75JJdeeimRSIR4PM4Pf/jDvXtBIiISCra3n3r36oebxYFSw/wn4Rdhuhv4KfCMc26Fmd0OvA842jn3dPAcbcBz+EBxqAtekJl9CvgBcIlz7pqCn/kr/NTNQ5xzLw9Wt0Qi4QCSyeSA48uXL+ewww6r+LVu7Ohm606fXfYb08SEtqbdnBF+e3qtRESkpgZdNbmmLQ3BGIZfFh83s9nB3Zecc4WPXwa8Dfi9mX0H6MCvCDkDONMNTEDXA+cDVwfPtxw4A3gvcOVQgWEkaBlpEREJu1p3T1TEOfdXMzsJ+DrwBaABWAK8o3AJ6aBsr5mdBlwJnI0fx/AScDFwbVUrTlH3RJV/9rJly/pmRuQ1Njby+OOPV7kmIiISZnUZGoK1Gko2jzjnllO6S6NU2W3Ap4OvmhrOgZCVWrBgAUuXLt19QRERkSHUyzoNobJHb/r72IZVtRwrIyIiI0OhoUJNTU1s3ry54jfFyD6UGZxzbN68maam0T/YU0RkX1KX3RP1bObMmaxZs4aNGzdWdF53b4aOLr921dbGKJub93xxpzBoampi5syKd9wQEZE6ptBQoXg8zpw5cyo+7/dPv8q3730GgNOOmMGl79FURBERCRd1T1RJLNJ/qTPZ0d5BISIio5FCQ5XEY/2XOp3J1rAmIiIie0ahoUri0YLQkFNLg4iIhI9CQ5XEooXdE7ka1kRERGTPKDRUSVyhQUREQk6hoUpi0f6FGtIZhQYREQkfhYYqGTCmQS0NIiISQgoNVTJwTIMGQoqISPgoNFSJWhpERCTsFBqqRAMhRUQk7BQaqiSmlgYREQk57T1RDZkMrQ/8F2dtX44Bdza/qdY1EhERqZhCQzW4HM3/dQPnA2ki/GbSCbWukYiISMXUPVENsXjf3Tg5MlqnQUREQkihoRrMcNGCRp1sBuc07VJERMJFoaFKLNYfGmIuS0abVomISMgoNFRLtCg0aAaFiIiEjEJDtcQLxjW4nKZdiohI6Cg0VEu0cDCkWhpERCR8FBqqpWhMg3a6FBGRsFFoqJaCaZcxl9OmVSIiEjoKDdVS0NIQd1mNaRARkdBRaKiW2MAxDQoNIiISNgoN1TJgymVOAyFFRCR0FBqqpbClQes0iIhICCk0VMsuYxo0EFJERMJFoaFaCmdPkCWdzdawMiIiIpVTaKgWTbkUEZGQU2ioFk25FBGRkFNoqJZoUWjQipAiIhIyCg3VEi8c05Ajk1NoEBGRcFFoqJaoplyKiEi4KTRUS/GGVRoIKSIiIaPQUC0DBkLmNKZBRERCR6GhWgZMuVT3hIiIhI9CQ7VEB25YpdAgIiJho9BQLbGBG1ZpnQYREQkbhYZqKdqwSqFBRETCRqGhWopWhFT3hIiIhI1CQ7UUdk+gvSdERCR8FBqqJaruCRERCTeFhmqJKzSIiEi4KTRUS3TgipAa0yAiImGj0FAtRWMa1NIgIiJho9BQLbGGvrvqnhARkTBSaKiWXaZcavaEiIiEi0JDtRStCKkxDSIiEjYKDdVSOBCSrHa5FBGR0FFoqBaNaRARkZBTaKiWAWMacmRyCg0iIhIuCg3VEhu4ToO6J0REJGwUGqqlaJdLzZ4QEZGwUWioloLQoMWdREQkjGoeGszsUDO7ycyWm9l2M+sys+fN7GozmzZI+d+Y2VYz6zSzh8zs1EGee6yZXWNma80sZWbPmdknzcxG/pUViWprbBERCbfY7ouMuJnANODXwBogAywALgLOMrMjnXOvA5jZXOCRoMw3ge3AhcA9ZvZO59y9+Sc1swbgD8BRwDXAcuCdQBKYAlxRjRfXJxrtv4sjm8lU9ceLiIjsrZqHBufc/wL/W3zczB4EbgM+hg8IAFcB44BjnHNLg3I3As8B15rZPOdcfrDABcBC4BLn3DXBsevN7FfAF83sBufc6hF6Wbsyw8XiWCbtv81myTlHpAaNHiIiInui5t0TQ8i/oY8HMLNW4N3A/fnAAOCc2wn8BDgEHxLyzgG6gOuLnve7QBz48MhUe3A2YFyDuihERCRc6iY0mFmTme1nZjPN7HTgR8FDdwW3RwCNwKMlTn8suF0YPFcEOBr4s3MuVVT2CSDHwIBRHUVrNWgwpIiIhEndhAZ8d8JG4FXgHnw3xLnOuYeCx6cHt2tLnJs/NiO4HQ80lyrrnOsBNheUrR5NuxQRkRCrp9DwG+BvgPcCXwW2AZMKHm8JbntKnJsqKjNU2Xz5llIPmNlFZra4zDpXpmiBJ3VPiIhImNRNaHDOrXHO3euc+41z7svAR4FvmNllQZGu4LaxxOlNRWWGKpsv31XqAefcj51zx1ZW+zIVTrtE+0+IiEi41E1oKOacewb4M5AIDq0Lbkt1K+SP5bsjtgLdpcqaWSMwkdLdHCOrcCCky2kpaRERCZW6DQ2BZmBCcH8ZvrvhxBLlTghuFwM453LAEuCoICQUOg7/ukemC2Iou4xpUGgQEZHwqHloMLOpgxw/BZhPMDMimFr5O+BkM3tjQbk2/CDKF/EzI/JuwY9buKjoqT+LXxzqtmF6CeUrHtOQ00BIEREJj5ov7gT8MFgu+o/4tRmagGOAs4AdwOcKyl4GvA34vZl9B+jArwg5AzizYGEn8OsznA9cbWaz8StCnoEfaHmlc+7lEXxNpQ0Y05CjN5OtehVERET2VD2Ehlvwgx7Pw8+WcPjw8CPgW865V/IFnXN/NbOTgK8DXwAa8N0Q7yhcQjoo22tmpwFXAmfjxzG8BFwMXDvSL6qkuKZciohIeNU8NDjnbqOCrgLn3HLgPWWW3QZ8OviqvWjhQEiNaRARkXCp+ZiGfcqAMQ1aEVJERMJFoaGaimZPKDSIiEiYKDRUU2zg4k7qnhARkTBRaKimosWdNBBSRETCRKGhmqID12lQ94SIiISJQkM1FbQ0NCg0iIhIyCg0VFPh7AmNaRARkZBRaKimXcY0KDSIiEh4KDRUU/GUS+1yKSIiIaLQUE2FUy41pkFEREJGoaGaCmdPkNMulyIiEioKDdUUG7j3hLonREQkTBQaqknLSIuISIgpNFTTgDENmj0hIiLhotBQTVqnQUREQkyhoZrUPSEiIiGm0FBNRYs7pbVhlYiIhIhCQzVFB67ToO4JEREJE4WGairsnkDdEyIiEi4KDdVUOBBSsydERCRkFBqqqXhxJ4UGEREJEYWGatplTIMGQoqISHgoNFRTvHDKZY50JlvDyoiIiFRGoaGaokWLO2nDKhERCRGFhmrSmAYREQkxhYZqKl4RUrtciohIiCg0VJM2rBIRkRBTaKim4g2rNBBSRERCRKGhmiJRnPlLHgGyamkQEZEQUWiotoJpl9FchqxmUIiISEgoNFSZadMqEREJKYWGahswrkGDIUVEJDxiuy+ye4lEIgbMBwx4NplMpofjeUel4mmXCg0iIhISZbU0JBKJOYlE4v8kEolDSjx2BrAGeApYDKxLJBLvH95qjiIKDSIiElLldk/8A3A90Ft4MJFIzAFuByYDrwLPAxOAmxOJxOHDWM/RI1q8PbYGQoqISDiUGxreDCxLJpOrio5fAjTjA8WcZDJ5OPBhIA5cPFyVHFUKF3hCLQ0iIhIe5YaGOcCzJY6/A8gAn08mkw4gmUz+EngUeOuw1HC0Kd5/QktJi4hISJQbGiYBrxQeSCQS7cAhwOJkMrmtqPwSYObeV28UihVNucwpNIiISDiUGxocMLbo2JH42RJLSpTfzjDNzBh1BrQ0aMqliIiER7mhYRVwUtGxU/Bh4vES5ScBG/a8WqNY4ewJ1D0hIiLhUW5rwO+BSxKJxL8A38d3S3wSP57h7hLlj6WoO0MChYs7acqliIiESLktDd8EtgFfAbbiWxemADckk8mNhQUTicQs4CjggWGs5+gRLd4eW1MuRUQkHMoKDclkcj2wCLgPSAFrgW/jp1wW+yh+TMP/DFMdR5eixZ00pkFERMKi7MGKyWTyOeC0Msp9Ffjq3lRqVCuecqnQICIiIaENq6ptwOJOOYUGEREJjeHasOqN+NkUBjyUTCYXD8fzjkrRgQMh1T0hIiJhUe6GVYsSicSNiUTihBKPXYFfq+HbwL8DjycSiauHtZajSVwbVomISDiV2z3xQeBDwPLCg4lE4i3A5UAOuAm4DtgMfCbY/VKKRQcu7qTQICIiYVFuaDgReDyZTG4vOv5x/AJPlySTyb9PJpOfws+yyADnD181R5GiDas05VJERMKi3NAwHXixxPFTgU78LpcAJJPJ54F7gIV7XbvRSFMuRUQkpMoNDRMpWhY6kUhMBaYCjySTyUxR+Rfxiz9JsQErQua0jLSIiIRGuaGhm11DwNHB7Z9LlO/Bd1FIseJ1GrTLpYiIhES5oeF54J2JRKJwiuaZ+PEMj5Qovz+wfi/rNjpFi8c0KDSIiEg4lLtOwy/x+0/8NpFIXIffsOof8MtF/6FE+ZMommkhgaIxDeqeEBGRsCg3NFwDnA28A3h7cMyA/5tMJlOFBROJxPHA7OAcKVY0pkGzJ0REJCzK3bCqBz+V8nL8Vtg3Ae9KJpM/KFH8SOC/gN8NVyVHFe09ISIiIVXJhlWdwJVllPsR8KO9qdSoVtg9oTENIiISItqwqtoKF3fSipAiIhIiFW9YlUgkWoEP4Ac7TsfPoFgP/An4ZdAiUTYzOwQ4FzgdmAs0AS8BtwPfdc51FpU/FPgG8FagAb/vxZedc38s8dxj8a0j78OvNfES8APgOudcbQYTaMMqEREJqYpaGhKJxLnAKuD/By4AzsBPvbwgOLYqkUh8pMI6/B/gH/Fv6F8FLgVewL/ZP2JmzfmCZjYXP8XzRPxsjkuBNuAeMzut8EnNrAE/s+MTwK3AxcHzJoEvV1jH4VM8e0KhQUREQqLsloZEInEx8F38rIkn8W/IrwbfzwROA44DbkwkEuMHGSRZyi+Bq5xzhftaXGdmLwJfwk/tzD/XVcA44Bjn3FIAM7sReA641szmFbQgXIBfyvoS51x+Jsf1ZvYr4ItmdoNzbnW5r3/YFA6ERN0TIiISHmWFhkQicQhwNbAV+EgymbynRLF/SSQSfwPcDFydSCR+n0wmV+zuuZ1ziwd56FZ8aJgPYGatwLuB+/OBITh/p5n9BN9KsRB4InjoHKCLgn0xAt/Fd1d8GN9aUV0DxjRowyoREQmPcrsnPoNvUXjPIIEBgGQy+QfgPUAUuGQv6zYzuM3veXEE0Ag8WqLsY8HtQgAzi+CXuf6zcy5VVPYJ/FbetdlQa5d1GtTSICIi4VBuaHgbcH8ymfzT7gomk8lHgPvw3RV7xMyi+DUhMviWC/CDLgHWljglf2xGcDseaC5V1jnXA2wuKFv8sy8ys8FaP/aexjSIiEhIlRsaZgJPVfC8T9HfUrAnvgucAFzunHshONYS3PaUKJ8qKjNU2Xz5llIPOOd+7Jw7trLqVmDAmAaFBhERCY9yQ4PDd0+Uq5KyA080+xrwaeDHzrmrCh7qCm4bS5zWVFRmqLL58l2DPDayogPXaVD3hIiIhEW5oWENUMmn72PwMysqYmZXAP8C3ICfKlloXXBbqlshfyzfHbEVv533LmXNrBG/ZkOpbo6RFx/YPaGBkCIiEhblhoY/AosSicRJuyuYSCTeBJwcnFM2M/syfv2EG4ELSiy+tAzf3XBiidNPCG4XAzjncvhFn44KQkKh4/Cve+TGLQylaHEn7XIpIiJhUW5o+C6+i+LXiURi0AGOiUTibcBvgCzwvXIrYWaXA1cAvwDOD970B3DO7cRvgnWymb2x4Nw2/JoML9I/3RLgFvy4hYuKnuqz+AGWt5Vbv2FV2D1BjnQmW5NqiIiIVKqsdRqSyeSLiUTic/jwcE8ikXgCuBffBeGAA+hf3MmAfypnjQYAM/sU8BXgleA5zzEbMCRig3PuD8H9y/AzOX5vZt8BOoAL8d0QZxa1TlwPnA9cbWazgeX4FSzfC1zpnHu5nPoNu0gEF4liOR8WLJvBOUfRaxYREak7lexy+f1EIrENHxyOxweEQgZsAz6XTCZvqKAO+fUSDgB+XuLxB/CrT+Kc+6uZnQR8HfgC/XtPvMM5d2/hSc653mBp6SuBs+nfe+Ji4NoK6jfsLB6HHh8aoi5LzjmiCg0iIlLnKtqwKplM3phIJO7Ab1j1ZmAaPiysBx7Gb1i1o5LndM59DPhYBeWX4xeQKqfsNvxMjE9XUqcRV2JcQ7RBG46KiEh9q3iXy2QyuRP4WfBVUiKRaAIakslkxx7XbDQbsMBTjnTW9c0ZFRERqVcj9fH2h8CWEXru8CsMDWTp1WBIEREJgZFsE1cn/WBiA7snUmmFBhERqX/qSK+Fok2rUr2ZGlZGRESkPAoNtRAduCpkd69aGkREpP4pNNRCfOCYhm61NIiISAgoNNRCtLh7Qi0NIiJS/xQaaiFWuNNllu60WhpERKT+lbVOQyKR0K/zS1sAACAASURBVEfh4RTTmAYREQmfchd32pPpk9rzeTAFoSFGVrMnREQkFMrdsErdGMOpaEyDWhpERCQMFAZqoXhMg1oaREQkBBQaaqFoTINmT4iISBgoNNTCgDENObU0iIhIKCg01MIuUy7V0iAiIvVPoaEWClsanGZPiIhIOCg01MKAlgbNnhARkXBQaKiF6MCtsTWmQUREwkChoRZiDX1342j2hIiIhINCQy3Eihd3UkuDiIjUP4WGWthlcacszmnVbRERqW8KDbUQHRgacs6RzuZqWCEREZHdU2iohfjAxZ0AzaAQEZG6p9BQC9GBy0gDGtcgIiJ1T6GhFmIDp1wCmkEhIiJ1T6GhFmJqaRARkfBRaKiFwpYGjWkQEZGQUGiohRItDdp/QkRE6p1CQy0UTbkEdU+IiEj9U2iohcIply7ontD22CIiUucUGmqhcMMq1NIgIiLhoNBQCyXHNKilQURE6ptCQy0MCA352RNqaRARkfqm0FALJRZ30pRLERGpdwoNtRDdde8JTbkUEZF6p9BQC7FSUy7V0iAiIvVNoaEWSi0jnVZLg4iI1DeFhlqIRvvv4oi4nGZPiIhI3VNoqAWzAa0NMZfT7AkREal7Cg21UhgayKqlQURE6p5CQ60UDYZUS4OIiNQ7hYZaaWrpu9uW69HsCRERqXsKDbXS1t53d0wuRTqbI5PN1bBCIiIiQ1NoqJW2sX13x2RTAKS006WIiNQxhYZaaR3Y0gDaf0JEROqbQkOttI3puzsm1w1oVUgREalvCg21Uhga8t0TamkQEZE6ptBQKwNaGvLdE2ppEBGR+qXQUCutpUKDWhpERKR+KTTUSnt/aGjv655QS4OIiNQvhYZaKdXSoJ0uRUSkjik01IpmT4iISMgoNNRK4ToN2RQ4p9kTIiJS1xQaaqWxCRoaAYiTo9ml1dIgIiJ1TaGhlga0NnRr9oSIiNQ1hYZaKtx/IpfS7AkREalrCg21VLTTpVoaRESkntU8NJjZZWZ2u5mtNDNnZqt2U/54M7vXzHaYWYeZ3W1mRw5SdrqZ3WhmG82s28wWm9kHR+SF7InWgUtJd2uXSxERqWM1Dw3AvwGnAi8BW4cqaGYnAA8Ac4DLgS8DBwMPmdmCorITgIeB9wE/BD4D7ARuM7Pzh/k17Jn2gWs1aPaEiIjUs1itKwDMdc6tBDCzZ4G2Icp+H+gFFjnn1gbn3AYsB74NnF5Q9gv4cPFu59zvgrI/BR4F/t3MbnfO7RzuF1OR1oFrNWj2hIiI1LOatzTkA8PumNlBwELg9nxgCM5fC9wOnGZmUwtOOQd4KR8YgrJZ4BpgAnDGMFR/7xTtdKkxDSIiUs9qHhoqsDC4fbTEY48BBhwDYGbTgBnB8VJlC5+vdtqKuyfU0iAiIvUrTKFhenC7tsRj+WMz9qBs7RSFBrU0iIhIPQtTaGgJbntKPJYqKlNJ2QHM7CIzW7xHNaxUweJO7bkUqXSWnHNV+dEiIiKVClNo6ApuG0s81lRUppKyAzjnfuycO3aPalipgpaGsVm/aVWPpl2KiEidClNoWBfclupWyB9buwdla6etxPbY6qIQEZE6FabQ8GRwe2KJx04AHPAUgHNuPT4UnDBIWYDqdEEMpakFolF/12VoyGU07VJEROpWaEKDc+6v+Df6D5pZfqAjwf0PAn90zr1WcMotwFwze1dB2ShwMbANuKsqFR+KWdFaDVrgSURE6lfNF3cys/OAWcG3k4AGM/uX4PvVzrlfFBT/DHAffgXIa4JjF+PDz+eKnvrr+DBxs5ldjW95OBs/1fIC59yOYX8xe6JtDHT4hTC1wJOIiNSzmocG4B+AtxYd+1pw+wDQFxqcc4+Y2cnAlcGXAx4BPuice7rwCZxzm83sJHx4+BR+pcm/AGc5524dgdexZwrGNbRrgScREaljNQ8NzrmTKyz/KPC2MsuuBc7bg2pVT8G0y7Fa4ElEROpYaMY0jFrtY/vujsml6E6rpUFEROqTQkOtFS7wlE1pTIOIiNQthYZaK1zgKdet2RMiIlK3FBpqrXAgZE4tDSIiUr8UGmqtVdtji4hIOCg01Nou3RNqaRARkfqk0FBru3RPqKVBRETqk0JDrbUVdU9ol0sREalTCg211tKKwwBoc730pnpqXCEREZHSFBpqLRIl29LW/23XzhpWRkREZHAKDXXAFYSGaLdCg4iI1CeFhnpQMO2yIdVZw4qIiIgMTqGhDljB/hONKbU0iIhIfVJoqAOR9v6WhsbeTpxzNayNiIhIaQoNdSBS0NLQnk2RzuZqWBsREZHSFBrqQeFaDblu7T8hIiJ1SaGhHhQv8KRVIUVEpA4pNNSD1va+u2NyKbp6FBpERKT+KDTUg4IxDWNyKdZs1rRLERGpPwoN9aCwpSHbzUuvba9hZUREREpTaKgHRTtdvrSho4aVERERKU2hoR4UtDS053pYuV4tDSIiUn8UGupBLI5ragEgiqO3o4OtO7XbpYiI1BeFhjphRWs1qItCRETqjUJDvZgwqe/uEam1GgwpIiJ1R6GhXhx9Ut/dUztf4KXX1NIgIiL1RaGhXixchDMD4IiedWx5ZU2NKyQiIjKQQkO9GDsBN+/Ivm/nrX1ay0mLiEhdUWioI5ETTum7f0rnC6zUYEgREakjCg315OiTyERiAMxNb+L1vzxf4wqJiIj0U2ioJ82tvHbAgr5vW55+uIaVERERGUihoc6kj1nUd3/u6iXgXA1rIyIi0k+hoc5MPGkRO60BgP16tpF58S81rpGIiIin0FBnxoxpZfG4Q/u+73zwDzWsjYiISD+Fhjq06sCFffebn/4TZDT1UkREak+hoQ7F5h3BpmgrAA3dO+C3/1HjGomIiCg01KUDp4/jv9v6Z1Fw13/Co/fWrkIiIiIoNNSluVPGcOvYY3iiaVb/wZ9/D158tnaVEhGRfZ5CQx2aPLaZluZGrpr0DlbFJ/iDmTRc+zXYuL62lRMRkX2WQkMdMjMOmjaGrkgDl09+F10NfnwDO7fD1V+E+++EHdtqW0kREdnnKDTUqTOP9l0TG2Jj+NL4d5KLxv0DG9fDf1wDnzsHvn0ZPH6fFoASEZGqUGioU285bCpvnjcVgL80TeOa6e/ExRv6C+RysPzPcP034LbrFRxERGTEKTTUKTPj4jPmM7bFB4W7IrO47uRL4axPwEFvGFj4D3fAnbfUoJYiIrIvUWioY+NaG7nkjPl93/9mRQeP7n8ifOFq+OYv4Kg39Rf+zY3wx9/WoJYiIrKvUGioc28+bBqnzJ/e9/337lzG6o07YMIkuOgLcNhR/YVvTsKj/1uDWoqIyL7AnPrCS0okEg4gmUzWuip0dPfy8eseZMvOHgAaYxE+fvobOOPoA7CeFFx9Gax8vv+ECZNg2v4w7QDY/0A4+iRobq1R7UVEJGRs0AcUGkqrp9AAsGTlJr5865P0ZnJ9x046dAqf/dsjGJPrgW9dCmtXlT65sQlOPA1O+VuYMdsfy+Vgx3ZI98DEKWCD/o6IiMi+RaGhUvUWGgBWvb6Dq+74M6s27ug7Nq61gdOOmMlpBzQz+39+iv1lCWSzgz/JzDnQk4Ktm/yCUeBbJN56BrzpNGhpG+FXsZd2bIOXV8BBh0OLWk9EREaAQkOl6jE0APSks1x/73J+t3j1Lo/tP7GVUw6bwqL9HDN7t2DrVsOTD8K6XcuW1NAIx53sg0VrG7S0+xAxYRKMnwiRaH/ZVJdv2Vi/Btra4cDDYMy4XZ8z3QvR6MBz90SqG37/K7jnV9DTDWPGw3kXDxwMKiIiw0GhoVL1GhryHluxge/duaxvnEOxKeOaOfGQKRx/0GTmp9bQ8OCd8OdHfLdEXksbZDO+5WF3orEgPOznWylKLWe931Q4cB7EYv7x19fD9i3Q2AzHvgVOOh0OPryyrpBMGh66G357U+lVMI87Gc5JQNuY8p9TRESGotBQqXoPDQCZbI4lKzdx37NreeSFDaTSpbslYhHj4OljWbhfjCObuhk/fQoTDtifpvY232Lw2H1w3+8GHxMxnCZPh2PeDPtNgbETYdxE382QSfuvdBq2bYaVy/3gzlUv+taKQtHowC6Y9nFw+vvh0CPggLk+tJTr9XWw9FGwCBz9Jj++o1Am4zcK69oJh8z3P2tfkMvBa2tg4mQ/JkZE9iUKDZUKQ2golOrN8NiLr/PoCxt44q+v09WT2e0541obmDauhVmT2zlwcjvze9cz87UXiKc6iXTthK5Ov9/F5td3/ZQfjcKUmTD9AP8mv+rF/jEShcyGb7XK8fvB3/09HHG8XwWz1HbhjU2+q6Sx0de/u8sHo7HjYdbB/mv/A+HlF/z5Lz438PxDFsAJp/quliV/gqWP+cAAPlgcfDgceUL/VNd02g8mzeX8OWMnQGv7ng0s7e3xwe3Vlf62uRXmvRHmHgaFq4GC/3nZjG8BipQxc7q703cl9ab8v1Nvj/93mXuYD255zsEzT8Bvfu7r0TYW3nWOH/MSiw/+/LkcrFnpQ9bMOb6rayhbN/l/g66dcMBBMHN25V1Y2SxsXAdjJmh8i8jwUmioVNhCQ6F0Nsczqzfz2IoNLH15M69s2lnxc0QMopEI8ViECW2NzGyPcVCsm5mRbiJjJ9AzaTqxhkYa41GaGqK0RmHclrW0bXiZhniM+NQZ2ORpMGEyrH4R/vR7eOIB/+ZVqf2mwlvPhLe9e+Cb0dOPwy++70NLPYnFfYDIv6Gb+cARi/nHYjGIxiGX9a0ombTvItr02sDuo7x4gx/4OW4CbNnY/5UNgqFFfIhraYNZB8HsQ2DOof775X+GvyzxrTaDDZCdfYgPQtMOgHt+OXD6bt6kafD+8+GYt/QHIufglb/CE/f7sTNbNvrj0SjMmOPrsN9UyPT615nuhU0bYNUKHxoKNbf6lU4PnOfrHW/w/9aNzTBxEuw3zQcD5/z5j98Hj9/vw2w0Bocf7et21ImVD+bNZOCFZ2DJwz4kpnt9q9PJf+uvTT3rScHODn/NC8PfYLJZ/zux7hWYfTAcPF8zp8KsuxP+5zY44yxoah7OZ1ZoqFSYQ0OxbZ09PPfqVp59ZQsrN3SwYXs3r2/vJpsbuX/7iEFzQ4yWxhitjXHamuOMi8OR219kaufrtKU6aA2+GtIpctEYLhrHxWJkG1vYMXkWndMPonPGXGzcRFoaY31fTfEovZkcqXSW3o4Omp95lHFrX6B51XIiWzdWWNEIzF/o38CfWwKuxJv2hEn+D/LLL2iPj3hDf/Bx+Jaoamlt9y1JW4b4N47GfKtSLuf/LXM5iDf6wNHS5m+jMf/mmctBNu1n43QNEqxnHQxvPt2Hn9YxftBvvAG2boatQXjr7PAtMuOC7rb8gOBMxge7bKb/fibjf2Zvr2/t6Un523jcd321jfFfHdt8y82rK2HNyz4YRCJBCI34oNm5w5+bt/9cOP5kP85nwqT+45k0vLISHv+jD3cdW/sfm/sGOPMsWLBwYHjo7fHjkl5bAxvW+vuNzTBjFkyf5W+7On3AfPl5fw2zWZg6068RM3V/f603vubD8KbX/Os/9AhYcNzA+u2tdK8PfSuW+X/jN57g6zBS0r2wfKlviXx9nQ/Hp7/PtzIW27kDUp0DfxcKfx+LWxArsfQxuOkHPoCf9nd+i4Hho9BQqdEUGkrJ5nJs6kixZksnL2/YwcoNHazc0MG6LZ30ZnKE9bdiTrSLI20LjfE42aYWXFMLkaYmJqa2MHXbWiZvW8t+Hevpbmpn5ayjeXn2MfS2jCEejTAmvYMDVy1hxsolxHJpts9ZQMcbjiO7/8FYxMhs3ULLC08xbsUSWrasx+JxrKGRSGMj0YgR2bEd69iCpbr3qO7ODCZPxw44yDfxb9kIzy/1f7RLicb6WxvKMX2Wf0OKx/0frq6d8Nfndm3diMV9d8Tp74PFD/t9TQZ7Uy3U2u6ff7D6Fmps8m/IbWPgpb/A9q27P6eU5tY9a70a7Q6Y67vOOrb6cLE7+x/ox69s2ejfhHaMcBjcf67v6uvcEfzMjf4Ntn1s/4Dr9nE+kG3d5ENax1YfyCZPh8kz/Iyulc/Ds0/5GVWFps70M6sOOMgH/XyA7NzhW7s2b/C3vSkf+NqDsNbQ5I+lUkFXXsb/rjY2+dDUtROWPem7PAvFG/z/mbd/wF+7pY/6r1deGvo6xBv8/+Nctj/oNjT2j/caN8G38h18uA94jU3+/8otP4TFD/Y/jxl85Ue+u3h4KDRUarSHht3J5hyZbI6edJaNHSle397Nhu1dbOxI0d2boTeTI53xj3enM3SlMnT1ZOjsydDVm6FnkEGZ+4LGXJpx2S6iOAxHBEfEOWLkiLssjWRpIEePM3otRtqi9FqUjdE2eqONjGmJM6a5gXg0Qs45xqS2c3DHaposR3rsRHLjJxHdbzLxllaymSy5bJZcJk1z5zb22/wKk7a8wpQtr9CYTrFxv1m8Nn0eW/d/A5Gx42hqiNHcEKO5IUpjPEqkq5O2l5YyZsUSGjevp3v6gWx563txEyYTj0aImBFL7WTsfXfQ+vgfiPQWzbRpbPZN+QvfCm842rdAdO7ArVqBe3kFuR0d5GJxcrEGstEY1jaGxoPnEZ0xq38Mg3N+ps2Lz/rpweke/0k83ePHpGza4D+p5gfENrX4VU5POMWP+dj8ug83Tz3ox9bsiQmT/HMe/Wb/af6Bu+DJB0qP06knsbh/s9vZUX5dx07w3UDPPFFZ6JTaisZ8d9n6VwaG+PaxcHYCFi4azq4mhYZK7euhYW9lczm6erJ09qTpTGXYkeplZ3eanak0PeksWQe5nCPnfDhJZ3P0ZnL0ZrJ9gSR/vCeTo6snTVePDyapdJbGWJSmYDxFLBphW2cPm3f0kM6W6F6QYRFxPvTEyBFzWZojjs6GVjLm3/ydA+ccmZwbsuvLgLbmOGObG2hp8t0cDn9u/rT83yUzoykepSVuTHQpJuS62Tl2MtbURCwaIR6N4Jz/fcvmHPHuncSyvUSiUcwiWDRCPJumMd1NUzpFY7oLczlyFiFLhJxF6GkZS8+0WbQ2NdDWFKcxHsEwYt07mPjsn2hd/xKxrp1EU53EuncSzfSSbhtHZsxEsuMm4trGEunsINqxheiOrcQ6O7BIBKIxLB4nEo3hYjFcNEYuEsVForh4A66hERdvwjU0EEn3EunsINK5A+vsgKZmIvsfSOSAudj+BwbN+c5/Gs05iEagbSyuoZGsA0t1EV36KDxxH/xl6cBuNov4LpvDj/FB69AjfGDbshF+fwc8eNfAbg7wwWniFD/YeeoM/+m+c4cfC7F2FWxY4wPL7ENgzjyYO8/3qa9/1b+prX/VP+fEKTBpqu/e6Un5T+kvPDP8YWXSNDjiON8q8eziXV/PcJs0zYfl6bP9RoGrBwmr0ZhvLYjGgq+oD7+dO6F759AL8ZXjTX8DH7pwJKacKzRUSqEhfJxzbO/qZfOOVF+46O7N0t2bIRu8kfk3Jkcu+D6b829ymWyOnkyWnnSW3nQwXiKTpSfjv885R1NDlOa4/5RuZuzo7mVbVy8dXb3sTKX9G54DR/DmF/zfyt/NBiGpUDwaoTEeoSEWJdWbpatXn/ykXzwaobUpRjwaIZtzpLM5sllHJpcjkx34+9TWFGNMSwMzor3Mzm4jFW9mZ1M73fEWMN9qlc05ssHvfy4IWy09nRy67SWIxUm1jaenfQK5MeOxSBTnXF+g862P/jaXzYAZ8ViMaMR8q1TE/JhffNgzg4gZkeB+NBKhIRahxaWZueEFxnRspKe5na7W8XS1jiPV2EZLzw5aurbT2rmVptROMi3tpNvGkx4zgVzbWJq7O2jt2Ejztg00dmwmO2EyOw89hsykGT6o4aC3l+a/PkPriiVEunbgzI8DcWa4pmZyE6b4MLPfFKLNzVjXDqxzB5HODh9sGpv7uyNiUR/oelNEelOYy8HBC4gccGDwGoPZYcuehP++2XeXNLf6AHPkiTD/mMH3/XHO/7xc1oe4/JiVVLcf3L1tsw9Br/zVB611r/Sfu98UOO8zfgDwyNg3Q4OZRYDPAB8HZgMbgduAy51zQ3aEKjTISMj/8c3mHLFohGhk4P/N3kyWHd1ptnf1ks05P1bCjEjESPVm2NrZw7bOXrbu7KEnnSUaPEcsYkQj1vd9NGI4B6l0llRvpi88pYLb7rQPSBHzf+Dzf9jzrTuZrCOd8WEpVxC0ejO5vufY3V+OiPl6xKJGNBIhFjUyWcfOVJ03+YuUKWL0tXjFIkabZbGGOBaNEY9F/fGo/38Qifj/B/4DS64vAGIE5fxXxOj7G5HNOQxojEeZkOtmbscrtLg0Kw94I66hqe9vyMT2Jt6zcPZwvrRBQ0MFq+CE0neAS4BfA98GDgu+P8rMTnOu1FB5kZFj5t9EY4MsSdAQizKxPcrE9vpeUMk5HyCKuyEi+fAShJ1SsrlcXzDq7s34T2xQcJsvaeSc8+Nm8oEnnenruurN+m6swj/I0eDcwu6vfLeHC4IPZn1hyfBTlDt7MnSm0nT2ZOjN7NpkHLX8H36/JkY6kyVV0DIVjRqxIBhFzEils3T1ZHxA6832vbnkr40FLzL/SX7gxYXeTI6dqXRZ3W0Rs9LPIyMuF/xb5TcS3A7Q1QOMVPdIMENjy2sDjs6Z3D7coWFQozY0mNnhwMXAHc659xccfxn4PnAWcHONqicSamZGY3zP9hOJRiKMa21kXOtuFoASejNZHx4yub5Pon0tNwUBJJtzdKZ8EOvo9t1l+UZkF3SZRazgE2/B/UjQzJ4PZ/mw4xjY1eBbtApasvAtU5ls0G0S9M+5ojEq+S7BbNb1jVvqyWTJZN0uXRj9n7D7u18KP3XnW8LSGX/r3MCfB7uGz/z3mA+S+fFT6UyOTC6HFXyodkH9gQGBM5frv1+qm7HWilssR9KoDQ3A2fjf+e8WHb8e+DpwLgoNIlLHGmJRJrTtPpxFI8aYlgbGtOzFvH+pSN84j3yYCYKM797r/74w9GRzOT8jqSD8QT58+fI554hFIn2tdrmcC8Zb+dlqPZmsf67guTM5x/jW6v27j+bQsBDIAU8UHnTOpcxsafC4iIhIxQZ0Ne5hq1sYlbFofWhNBzY550p1Lq0F9jMzxXIREZEyjebQ0MLgo1FSBWUGMLOLzGzxiNVKREQkpEZzaOgCBhtp1VRQZgDn3I+dc8eOWK1ERERCajSHhnX4LohSwWEGvuuit8p1EhERCa3RHBqexL++4woPmlkTcCSgLggREZEKjObQcCt++u5ni45fiB/LcFPVayQiIhJio3bKpXNumZldC3zazO4A7qJ/RcgH0BoNIiIiFRm1oSHwWWAVcBFwJrAJuAa/94SWkBYREanAqA4Nzrksfs+Jb9e6LiIiImE3msc0iIiIyDBSaBAREZGyjOruieGQSCRqXQUREZFqcslksuTWmWppEBERkbKYq7N9wUczM1usJar3nq7j8NB1HB66jsND13F4jPR1VEuDiIiIlEWhQURERMqi0FBdP651BUYJXcfhoes4PHQdh4eu4/AY0euoMQ0iIiJSFrU0iIiISFkUGkRERKQsCg0jzMwiZvaPZva8maXM7FUz+7aZtda6bvXGzA4xs6+a2WNmttHMdpjZUjP7UqnrZWaHmtlvzGyrmXWa2UNmdmot6l7vzKzFzF42M2dmPyjxuK7lIMxsgpn9u5n9Nfg/vNHM7jOztxSVO97M7g1+bzvM7G4zO7JW9a4nZtZmZl80s2XB9dlkZo+Y2cfMzIrK7vPX0cwuM7PbzWxl8H921W7Kl33NzGy6md0Y/B53m9liM/tg2XXTmIaRZWbfw2/H/Wvgf/Dbc18MPAScpt02+5nZ14FPAb8FHgPSwCnAh4BngBOcc91B2bnAE0AG+C6wHbgQmA+80zl3b9VfQB0zs38HPg60Adc65z5d8Jiu5SDMbBZwP/66/RRYAYwFjgDucc79Z1DuhKDcWiAfyj4NTAbe5JxbVtWK1xEziwAPAG8Cfo7/v90CnA0cB3zTOff5oKyuI2BmDtgCLAGOATqcc7MHKVv2NTOzCcDi4LGrgTXAOcBbgf/jnLtht5VzzulrhL6Aw4Ec8Kui4xcDDjin1nWspy/gWGBsieNXBtfr0wXHbgOywJEFx9qA1cALBIFYXw7gaHwg+KfgOv6g6HFdy8Gv3UPAq8C03ZR7AugAZhQcmxEc+32tX0eNr+GJwe/dd4qONwArgW26jrtcswML7j8LrBqibNnXDPhm8G/xroJj0eA5NgNtu6ubuidG1tmA4T+9Fboe6ALOrXqN6phzbrFzbnuJh24NbucDBF0V7wbud84tLTh/J/AT4BBg4QhXNxTMLIr/fbsbuKPE47qWgzCzRcCb8Z+E15tZ3MxaSpQ7CH+NbnfOrc0fD+7fDpxmZlOrVe86NCa4XVd40DnXC2wCOkHXsZBzbmU55fbgmp0DvOSc+11B2SxwDTABOGN3P1OhYWQtxLc0PFF40DmXApayj/4x3gMzg9sNwe0RQCPwaImyjwW3urbePwLz8M2VpehaDi7/B/QVM/sd0A10mtkKMysM/PnrM9g1NHwT877qCWAb8M9m9kEzOyAYQ3MV/rpcEZTTdaxc2dfMzKbhWyAeG6Rs4fMNSqFhZE0HNjnneko8thbYz8waqlynUAk+KV+Ob16/OTg8PbhdW+KU/LEZI1y1umdmc4CvAF91zq0apJiu5eAODW6vx38K+yjwD0Av8AszOz94XNdwCM65rfjWrC34rrDVwPP48Uvvd85dHxTVdaxcJddsWK6vtsYeWS1AqcAAkCoo01ud6oTSd4ETgC86514IjuWbiEtd21RRmX3ZD4GX8QOeBqNrObj24HYHcErQnI6Z/RrfF/9vZvZzdA3LsRPfN/9b4BF8CPsUcLOZvcc59wd0HfdEJddsWK6vQsPI6sKPUi2lqaCMlGBmX8M3q//YOXdVwUP5Y9qEygAABvRJREFUa9ZY4jRdVyBoPj8dWOScSw9RVNdycN3B7S35wAD+k7OZ/Rb4e3xrhK7hEMxsAT4o/KNz7rqC47fgg8T1wQweXcfKVXLNhuX6qntiZK3Dd0GU+keage+6UCtDCWZ2BfAvwA3AJ4oezg+oKtWUlj9WqglunxD8vl0N3AW8ZmYHBQOmZgVFxgbHxqFrOZQ1we1rJR5bH9yOR9dwd/4R/6Z0e+FB51wXcCf+93I2uo57opJrNizXV6FhZD2Jv8bHFR40sybgSPx8WSliZl8GvgzcCFzggnlBBZbhm9hOLHH6CcHtvnxtm4FJwJnAiwVf9wePnxt8fwG6lkPJD2CeWeKx/LHX8f/PYfBr6ICnhrdqoZJ/Q4qWeCxWcKvrWLmyr5lzbj0+FJwwSFko5/96reejjuYvYAFDr9Nwbq3rWG9f+EGPDh8YIkOUux2/tsAbC47l1xZYwb69tkAc+ECJr08G1/Z/gu8P0bUc8jqO5/+1d2+hVhVhAMf/iyLpoaxETEMIIsyISOlCJtmNMEq6UEgXk4iiRoRCipDCE70UXYyiqYhCsrR6KSkozcpCi0rKqKjsxS7aDSq7alSrh28dW+z29qydHrce/z9YLM7s2ctZ43Hvz1kz38Ra9y+prV8HRhPP6NfWyt6u6o6plY2pypb3+l563I/zq9+761vK+0e6vgf2tB879t9AeRoa9xlwO53zNPwA7DNQe8wIOciKoriXeC7/NDFcPJ7IELkKOKU0I+QWRVHMIjKafQ7cRARcdd+UMWGqf33yW0TWyPnEP5AriEDtzLIsl+6odu8qiqI4mJgY2ZoR0r7soCiKK4EHgQ+BR4iERFcTgcNZZVkuq+pNAl4hAox7q7fPBkYBJ5Rl+d4ObvpOo8qq+Q4RhD1OfPYdQPyOHQzMKssyV3XtR6Aoihn8+zhxNvF7d2f182dlWS6s1W3cZ0VRjCBGHkYQjzDXE/mETiJGdR8esHG9jqKG+kFEcXOIzHqbq7+ku2iQeWt3O4AFRBTc6VjRUn88sIRYA/4bsJJIzd3ze9kZD+ID+j8ZIe3LAfvtPGId+6/ESopl1Ydxa73jgZeIUYifgaXAxF63f2c4gEOIFNJfEsHpT8BrwHn2Y9v+WtH0c7DbPiMeFy0kEmttIgK66U3b5kiDJElqxImQkiSpEYMGSZLUiEGDJElqxKBBkiQ1YtAgSZIaMWiQJEmNGDRIkqRG3OVS0pCXUuoj9jM5Oee8oretkXZdBg2SBpRSapIFzi9kaYgzaJDUjZu38tq6HdUISb1h0CCpsZxzX6/bIKl3DBokbXf1OQTEbn3XAIcRm+k8B8zNOX/d5n2HEjucngqMJDbVWQ7cknP+tE39PYjdEmcARxC7Aa4nNvy5rcN7zgeur+pvIjagmpNzXr8t9yztDlw9IWkwXQs8ALwH3E3s9noZ8HpKaWS9YkrpGGA1cAnwNnAHsbvkxcDqlNLRLfX3Al4A7gfGAouAe4itf88FTmjTngQ8RjxKuQ/4AJgOLE8pDdvmu5WGOEcaJDVWjSC0synnfGub8jOA43LO79auMZ8YebgVuLwqK4BHgX2BS3LOj9fqTweeAB5LKR2ec/67eqkPOA14Frgg57y59p5h1bVaTQWOyTm/X6u7CLgQOBt4quPNS3KkQVJX5nU4buhQf2E9YKj0ARuBi2r/u59EPL54ox4wAOScnwRWAuOAybDlsUQCfgeuqgcM1Xs255y/a9Oee+oBQ+Wh6nxsh3uQVHGkQVJjOeeiy7e82uYaG1NKa4ApwHhgDTCxevnlDtd5mQgYJgCvEQHGcODNnPOGLtqzuk3ZF9V5/y6uI+2WHGmQNJi+6VDePwlyeMv5qw71+8v3azl3O3nxxzZlf1bnPbq8lrTbMWiQNJhGdSg/sDpvbDkf2KYuwOiWev1f/gf9/6ZJ6pZBg6TBNKW1IKU0HDiKWO74UVXcP+/hpA7X6S9/pzp/TAQOR6aUxmyPhkoamEGDpME0I6U0oaWsj3gcsbg2gXEVsRxzcpVHYYvq5xOBtcSESHLOfwEZ2Bt4oHW5ZEppr9YlnZK2nRMhJTW2lSWXAM/knNe0lD0PrEopPUXMS5hcHeuorbjIOZcppZnAi8CTKaUlxGjCOOAcIinUpbXllhAprY8DpgFrU0rPVfXGAqcD1wEL/teNSmrLoEFSN+Zt5bV1xEqIuvnA00RehunAL8QX+dyc87f1ijnnN6sETzcS+RemERkhFxMZIT9pqf9HSmkqcBVwKTATKIAN1Z+5svvbk7Q1RVk22bxOkppzK2ppaHJOgyRJasSgQZIkNWLQIEmSGnFOgyRJasSRBkmS1IhBgyRJasSgQZIkNWLQIEmSGjFokCRJjRg0SJKkRv4BeTghs9uKXAQAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 576x432 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
    "source": [
     "ooo.plot_history(history, plot={'MSE' :['mse', 'val_mse'],\n",
     "                                'MAE' :['mae', 'val_mae'],\n",
@@ -311,7 +1169,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 12,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -325,9 +1183,18 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 13,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Prédiction : 8.13 K$\n",
+      "Reality    : 10.40 K$\n"
+     ]
+    }
+   ],
    "source": [
     "\n",
     "predictions = model.predict( my_data )\n",
diff --git a/BHPD/02-DNN-Regression Premium.ipynb b/BHPD/02-DNN-Regression Premium.ipynb
index 9e37920..5c17267 100644
--- a/BHPD/02-DNN-Regression Premium.ipynb	
+++ b/BHPD/02-DNN-Regression Premium.ipynb	
@@ -32,14 +32,61 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## 1/ Init python stuff"
+    "## Step 1 - Import and init"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 1,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<style>\n",
+       "\n",
+       "div.warn {    \n",
+       "    background-color: #fcf2f2;\n",
+       "    border-color: #dFb5b4;\n",
+       "    border-left: 5px solid #dfb5b4;\n",
+       "    padding: 0.5em;\n",
+       "    font-weight: bold;\n",
+       "    font-size: 1.1em;;\n",
+       "    }\n",
+       "\n",
+       "\n",
+       "\n",
+       "div.nota {    \n",
+       "    background-color: #DAFFDE;\n",
+       "    border-left: 5px solid #92CC99;\n",
+       "    padding: 0.5em;\n",
+       "    }\n",
+       "\n",
+       "\n",
+       "\n",
+       "</style>\n",
+       "\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\n",
+      "FIDLE 2020 - Practical Work Module\n",
+      "Version              : 0.2.8\n",
+      "Run time             : Saturday 15 February 2020, 12:32:05\n",
+      "TensorFlow version   : 2.0.0\n",
+      "Keras version        : 2.2.4-tf\n"
+     ]
+    }
+   ],
    "source": [
     "import tensorflow as tf\n",
     "from tensorflow import keras\n",
@@ -55,16 +102,17 @@
     "sys.path.append('..')\n",
     "import fidle.pwk as ooo\n",
     "\n",
-    "ooo.init()"
+    "ooo.init()\n",
+    "os.makedirs('./run/models',   mode=0o750, exist_ok=True)"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## 2/ Retrieve data\n",
+    "## Step 2 - Retrieve data\n",
     "\n",
-    "**From Keras :**\n",
+    "### 2.1 - Option 1  : From Keras\n",
     "Boston housing is a famous historic dataset, so we can get it directly from [Keras datasets](https://www.tensorflow.org/api_docs/python/tf/keras/datasets)  "
    ]
   },
@@ -79,15 +127,122 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "**From a csv file :**  \n",
+    "### 2.2 - Option 2 : From a csv file\n",
     "More fun !"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 2,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<style  type=\"text/css\" >\n",
+       "</style><table id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9\" ><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>        <th class=\"col_heading level0 col13\" >medv</th>    </tr></thead><tbody>\n",
+       "                <tr>\n",
+       "                        <th id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9level0_row0\" class=\"row_heading level0 row0\" >0</th>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col0\" class=\"data row0 col0\" >0.01</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col1\" class=\"data row0 col1\" >18.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col2\" class=\"data row0 col2\" >2.31</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col3\" class=\"data row0 col3\" >0.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col4\" class=\"data row0 col4\" >0.54</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col5\" class=\"data row0 col5\" >6.58</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col6\" class=\"data row0 col6\" >65.20</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col7\" class=\"data row0 col7\" >4.09</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col8\" class=\"data row0 col8\" >1.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col9\" class=\"data row0 col9\" >296.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col10\" class=\"data row0 col10\" >15.30</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col11\" class=\"data row0 col11\" >396.90</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col12\" class=\"data row0 col12\" >4.98</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col13\" class=\"data row0 col13\" >24.00</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9level0_row1\" class=\"row_heading level0 row1\" >1</th>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col0\" class=\"data row1 col0\" >0.03</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col1\" class=\"data row1 col1\" >0.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col2\" class=\"data row1 col2\" >7.07</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col3\" class=\"data row1 col3\" >0.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col4\" class=\"data row1 col4\" >0.47</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col5\" class=\"data row1 col5\" >6.42</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col6\" class=\"data row1 col6\" >78.90</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col7\" class=\"data row1 col7\" >4.97</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col8\" class=\"data row1 col8\" >2.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col9\" class=\"data row1 col9\" >242.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col10\" class=\"data row1 col10\" >17.80</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col11\" class=\"data row1 col11\" >396.90</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col12\" class=\"data row1 col12\" >9.14</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col13\" class=\"data row1 col13\" >21.60</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9level0_row2\" class=\"row_heading level0 row2\" >2</th>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col0\" class=\"data row2 col0\" >0.03</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col1\" class=\"data row2 col1\" >0.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col2\" class=\"data row2 col2\" >7.07</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col3\" class=\"data row2 col3\" >0.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col4\" class=\"data row2 col4\" >0.47</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col5\" class=\"data row2 col5\" >7.18</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col6\" class=\"data row2 col6\" >61.10</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col7\" class=\"data row2 col7\" >4.97</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col8\" class=\"data row2 col8\" >2.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col9\" class=\"data row2 col9\" >242.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col10\" class=\"data row2 col10\" >17.80</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col11\" class=\"data row2 col11\" >392.83</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col12\" class=\"data row2 col12\" >4.03</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col13\" class=\"data row2 col13\" >34.70</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9level0_row3\" class=\"row_heading level0 row3\" >3</th>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col0\" class=\"data row3 col0\" >0.03</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col1\" class=\"data row3 col1\" >0.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col2\" class=\"data row3 col2\" >2.18</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col3\" class=\"data row3 col3\" >0.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col4\" class=\"data row3 col4\" >0.46</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col5\" class=\"data row3 col5\" >7.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col6\" class=\"data row3 col6\" >45.80</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col7\" class=\"data row3 col7\" >6.06</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col8\" class=\"data row3 col8\" >3.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col9\" class=\"data row3 col9\" >222.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col10\" class=\"data row3 col10\" >18.70</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col11\" class=\"data row3 col11\" >394.63</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col12\" class=\"data row3 col12\" >2.94</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col13\" class=\"data row3 col13\" >33.40</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9level0_row4\" class=\"row_heading level0 row4\" >4</th>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col0\" class=\"data row4 col0\" >0.07</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col1\" class=\"data row4 col1\" >0.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col2\" class=\"data row4 col2\" >2.18</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col3\" class=\"data row4 col3\" >0.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col4\" class=\"data row4 col4\" >0.46</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col5\" class=\"data row4 col5\" >7.15</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col6\" class=\"data row4 col6\" >54.20</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col7\" class=\"data row4 col7\" >6.06</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col8\" class=\"data row4 col8\" >3.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col9\" class=\"data row4 col9\" >222.00</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col10\" class=\"data row4 col10\" >18.70</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col11\" class=\"data row4 col11\" >396.90</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col12\" class=\"data row4 col12\" >5.33</td>\n",
+       "                        <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col13\" class=\"data row4 col13\" >36.20</td>\n",
+       "            </tr>\n",
+       "    </tbody></table>"
+      ],
+      "text/plain": [
+       "<pandas.io.formats.style.Styler at 0x7f869c8eef10>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Données manquantes :  0   Shape is :  (506, 14)\n"
+     ]
+    }
+   ],
    "source": [
     "data = pd.read_csv('./data/BostonHousing.csv', header=0)\n",
     "\n",
@@ -99,17 +254,27 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## 3/ Preparing the data\n",
-    "### 3.1/ Split data\n",
+    "## Step 3 - Preparing the data\n",
+    "### 3.1 - Split data\n",
     "We will use 80% of the data for training and 20% for validation.  \n",
     "x will be input data and y the expected output"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 3,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Original data shape was :  (506, 14)\n",
+      "x_train :  (354, 13) y_train :  (354,)\n",
+      "x_test  :  (152, 13) y_test  :  (152,)\n"
+     ]
+    }
+   ],
    "source": [
     "# ---- Split => train, test\n",
     "#\n",
@@ -132,7 +297,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "### 3.2/ Data normalization\n",
+    "### 3.2 - Data normalization\n",
     "**Note :** \n",
     " - All input data must be normalized, train and test.  \n",
     " - To do this we will subtract the mean and divide by the standard deviation.  \n",
@@ -142,9 +307,294 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 4,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<style  type=\"text/css\" >\n",
+       "</style><table id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9\" ><caption>Before normalization :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>    </tr></thead><tbody>\n",
+       "                <tr>\n",
+       "                        <th id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9level0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col0\" class=\"data row0 col0\" >354.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col1\" class=\"data row0 col1\" >354.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col2\" class=\"data row0 col2\" >354.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col3\" class=\"data row0 col3\" >354.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col4\" class=\"data row0 col4\" >354.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col5\" class=\"data row0 col5\" >354.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col6\" class=\"data row0 col6\" >354.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col7\" class=\"data row0 col7\" >354.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col8\" class=\"data row0 col8\" >354.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col9\" class=\"data row0 col9\" >354.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col10\" class=\"data row0 col10\" >354.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col11\" class=\"data row0 col11\" >354.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col12\" class=\"data row0 col12\" >354.00</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9level0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col0\" class=\"data row1 col0\" >3.76</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col1\" class=\"data row1 col1\" >11.31</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col2\" class=\"data row1 col2\" >11.18</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col3\" class=\"data row1 col3\" >0.07</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col4\" class=\"data row1 col4\" >0.56</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col5\" class=\"data row1 col5\" >6.25</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col6\" class=\"data row1 col6\" >69.29</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col7\" class=\"data row1 col7\" >3.82</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col8\" class=\"data row1 col8\" >9.95</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col9\" class=\"data row1 col9\" >413.48</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col10\" class=\"data row1 col10\" >18.49</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col11\" class=\"data row1 col11\" >354.37</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col12\" class=\"data row1 col12\" >12.89</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9level0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col0\" class=\"data row2 col0\" >7.96</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col1\" class=\"data row2 col1\" >23.25</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col2\" class=\"data row2 col2\" >6.80</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col3\" class=\"data row2 col3\" >0.25</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col4\" class=\"data row2 col4\" >0.12</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col5\" class=\"data row2 col5\" >0.70</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col6\" class=\"data row2 col6\" >27.93</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col7\" class=\"data row2 col7\" >2.17</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col8\" class=\"data row2 col8\" >8.87</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col9\" class=\"data row2 col9\" >170.11</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col10\" class=\"data row2 col10\" >2.15</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col11\" class=\"data row2 col11\" >93.94</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col12\" class=\"data row2 col12\" >7.13</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9level0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col0\" class=\"data row3 col0\" >0.01</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col1\" class=\"data row3 col1\" >0.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col2\" class=\"data row3 col2\" >0.46</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col3\" class=\"data row3 col3\" >0.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col4\" class=\"data row3 col4\" >0.39</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col5\" class=\"data row3 col5\" >3.56</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col6\" class=\"data row3 col6\" >6.20</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col7\" class=\"data row3 col7\" >1.13</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col8\" class=\"data row3 col8\" >1.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col9\" class=\"data row3 col9\" >187.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col10\" class=\"data row3 col10\" >12.60</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col11\" class=\"data row3 col11\" >0.32</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col12\" class=\"data row3 col12\" >1.73</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9level0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col0\" class=\"data row4 col0\" >0.08</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col1\" class=\"data row4 col1\" >0.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col2\" class=\"data row4 col2\" >5.13</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col3\" class=\"data row4 col3\" >0.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col4\" class=\"data row4 col4\" >0.45</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col5\" class=\"data row4 col5\" >5.88</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col6\" class=\"data row4 col6\" >45.18</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col7\" class=\"data row4 col7\" >2.08</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col8\" class=\"data row4 col8\" >4.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col9\" class=\"data row4 col9\" >280.25</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col10\" class=\"data row4 col10\" >17.40</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col11\" class=\"data row4 col11\" >374.49</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col12\" class=\"data row4 col12\" >7.26</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9level0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col0\" class=\"data row5 col0\" >0.29</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col1\" class=\"data row5 col1\" >0.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col2\" class=\"data row5 col2\" >9.69</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col3\" class=\"data row5 col3\" >0.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col4\" class=\"data row5 col4\" >0.53</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col5\" class=\"data row5 col5\" >6.17</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col6\" class=\"data row5 col6\" >77.75</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col7\" class=\"data row5 col7\" >3.20</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col8\" class=\"data row5 col8\" >5.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col9\" class=\"data row5 col9\" >335.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col10\" class=\"data row5 col10\" >19.10</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col11\" class=\"data row5 col11\" >391.39</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col12\" class=\"data row5 col12\" >11.86</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9level0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col0\" class=\"data row6 col0\" >4.52</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col1\" class=\"data row6 col1\" >12.50</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col2\" class=\"data row6 col2\" >18.10</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col3\" class=\"data row6 col3\" >0.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col4\" class=\"data row6 col4\" >0.63</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col5\" class=\"data row6 col5\" >6.60</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col6\" class=\"data row6 col6\" >94.45</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col7\" class=\"data row6 col7\" >5.19</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col8\" class=\"data row6 col8\" >24.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col9\" class=\"data row6 col9\" >666.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col10\" class=\"data row6 col10\" >20.20</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col11\" class=\"data row6 col11\" >396.12</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col12\" class=\"data row6 col12\" >16.96</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9level0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col0\" class=\"data row7 col0\" >73.53</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col1\" class=\"data row7 col1\" >95.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col2\" class=\"data row7 col2\" >27.74</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col3\" class=\"data row7 col3\" >1.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col4\" class=\"data row7 col4\" >0.87</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col5\" class=\"data row7 col5\" >8.72</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col6\" class=\"data row7 col6\" >100.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col7\" class=\"data row7 col7\" >12.13</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col8\" class=\"data row7 col8\" >24.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col9\" class=\"data row7 col9\" >711.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col10\" class=\"data row7 col10\" >22.00</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col11\" class=\"data row7 col11\" >396.90</td>\n",
+       "                        <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col12\" class=\"data row7 col12\" >36.98</td>\n",
+       "            </tr>\n",
+       "    </tbody></table>"
+      ],
+      "text/plain": [
+       "<pandas.io.formats.style.Styler at 0x7f87141c0c90>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<style  type=\"text/css\" >\n",
+       "</style><table id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9\" ><caption>After normalization :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>    </tr></thead><tbody>\n",
+       "                <tr>\n",
+       "                        <th id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9level0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col0\" class=\"data row0 col0\" >354.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col1\" class=\"data row0 col1\" >354.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col2\" class=\"data row0 col2\" >354.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col3\" class=\"data row0 col3\" >354.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col4\" class=\"data row0 col4\" >354.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col5\" class=\"data row0 col5\" >354.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col6\" class=\"data row0 col6\" >354.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col7\" class=\"data row0 col7\" >354.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col8\" class=\"data row0 col8\" >354.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col9\" class=\"data row0 col9\" >354.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col10\" class=\"data row0 col10\" >354.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col11\" class=\"data row0 col11\" >354.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col12\" class=\"data row0 col12\" >354.00</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9level0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col0\" class=\"data row1 col0\" >-0.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col1\" class=\"data row1 col1\" >0.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col2\" class=\"data row1 col2\" >0.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col3\" class=\"data row1 col3\" >-0.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col4\" class=\"data row1 col4\" >-0.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col5\" class=\"data row1 col5\" >-0.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col6\" class=\"data row1 col6\" >0.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col7\" class=\"data row1 col7\" >0.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col8\" class=\"data row1 col8\" >0.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col9\" class=\"data row1 col9\" >-0.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col10\" class=\"data row1 col10\" >0.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col11\" class=\"data row1 col11\" >0.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col12\" class=\"data row1 col12\" >-0.00</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9level0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col0\" class=\"data row2 col0\" >1.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col1\" class=\"data row2 col1\" >1.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col2\" class=\"data row2 col2\" >1.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col3\" class=\"data row2 col3\" >1.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col4\" class=\"data row2 col4\" >1.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col5\" class=\"data row2 col5\" >1.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col6\" class=\"data row2 col6\" >1.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col7\" class=\"data row2 col7\" >1.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col8\" class=\"data row2 col8\" >1.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col9\" class=\"data row2 col9\" >1.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col10\" class=\"data row2 col10\" >1.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col11\" class=\"data row2 col11\" >1.00</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col12\" class=\"data row2 col12\" >1.00</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9level0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col0\" class=\"data row3 col0\" >-0.47</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col1\" class=\"data row3 col1\" >-0.49</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col2\" class=\"data row3 col2\" >-1.58</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col3\" class=\"data row3 col3\" >-0.27</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col4\" class=\"data row3 col4\" >-1.45</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col5\" class=\"data row3 col5\" >-3.86</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col6\" class=\"data row3 col6\" >-2.26</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col7\" class=\"data row3 col7\" >-1.24</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col8\" class=\"data row3 col8\" >-1.01</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col9\" class=\"data row3 col9\" >-1.33</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col10\" class=\"data row3 col10\" >-2.74</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col11\" class=\"data row3 col11\" >-3.77</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col12\" class=\"data row3 col12\" >-1.56</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9level0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col0\" class=\"data row4 col0\" >-0.46</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col1\" class=\"data row4 col1\" >-0.49</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col2\" class=\"data row4 col2\" >-0.89</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col3\" class=\"data row4 col3\" >-0.27</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col4\" class=\"data row4 col4\" >-0.91</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col5\" class=\"data row4 col5\" >-0.54</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col6\" class=\"data row4 col6\" >-0.86</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col7\" class=\"data row4 col7\" >-0.80</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col8\" class=\"data row4 col8\" >-0.67</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col9\" class=\"data row4 col9\" >-0.78</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col10\" class=\"data row4 col10\" >-0.50</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col11\" class=\"data row4 col11\" >0.21</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col12\" class=\"data row4 col12\" >-0.79</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9level0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col0\" class=\"data row5 col0\" >-0.44</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col1\" class=\"data row5 col1\" >-0.49</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col2\" class=\"data row5 col2\" >-0.22</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col3\" class=\"data row5 col3\" >-0.27</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col4\" class=\"data row5 col4\" >-0.23</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col5\" class=\"data row5 col5\" >-0.12</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col6\" class=\"data row5 col6\" >0.30</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col7\" class=\"data row5 col7\" >-0.28</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col8\" class=\"data row5 col8\" >-0.56</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col9\" class=\"data row5 col9\" >-0.46</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col10\" class=\"data row5 col10\" >0.29</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col11\" class=\"data row5 col11\" >0.39</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col12\" class=\"data row5 col12\" >-0.14</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9level0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col0\" class=\"data row6 col0\" >0.10</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col1\" class=\"data row6 col1\" >0.05</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col2\" class=\"data row6 col2\" >1.02</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col3\" class=\"data row6 col3\" >-0.27</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col4\" class=\"data row6 col4\" >0.63</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col5\" class=\"data row6 col5\" >0.50</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col6\" class=\"data row6 col6\" >0.90</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col7\" class=\"data row6 col7\" >0.63</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col8\" class=\"data row6 col8\" >1.58</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col9\" class=\"data row6 col9\" >1.48</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col10\" class=\"data row6 col10\" >0.80</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col11\" class=\"data row6 col11\" >0.44</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col12\" class=\"data row6 col12\" >0.57</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9level0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col0\" class=\"data row7 col0\" >8.76</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col1\" class=\"data row7 col1\" >3.60</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col2\" class=\"data row7 col2\" >2.44</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col3\" class=\"data row7 col3\" >3.70</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col4\" class=\"data row7 col4\" >2.68</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col5\" class=\"data row7 col5\" >3.55</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col6\" class=\"data row7 col6\" >1.10</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col7\" class=\"data row7 col7\" >3.83</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col8\" class=\"data row7 col8\" >1.58</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col9\" class=\"data row7 col9\" >1.75</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col10\" class=\"data row7 col10\" >1.64</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col11\" class=\"data row7 col11\" >0.45</td>\n",
+       "                        <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col12\" class=\"data row7 col12\" >3.38</td>\n",
+       "            </tr>\n",
+       "    </tbody></table>"
+      ],
+      "text/plain": [
+       "<pandas.io.formats.style.Styler at 0x7f8699cc4310>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
    "source": [
     "display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"Before normalization :\"))\n",
     "\n",
@@ -163,7 +613,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## 4/ Build a model\n",
+    "## Step 4 - Build a model\n",
     "More informations about : \n",
     " - [Optimizer](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers)\n",
     " - [Activation](https://www.tensorflow.org/api_docs/python/tf/keras/activations)\n",
@@ -173,16 +623,17 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 5,
    "metadata": {},
    "outputs": [],
    "source": [
     "  def get_model_v1(shape):\n",
     "    \n",
     "    model = keras.models.Sequential()\n",
-    "    model.add(keras.layers.Dense(64, activation='relu', input_shape=shape))\n",
-    "    model.add(keras.layers.Dense(64, activation='relu'))\n",
-    "    model.add(keras.layers.Dense(1))\n",
+    "    model.add(keras.layers.Input(shape, name=\"InputLayer\"))\n",
+    "    model.add(keras.layers.Dense(64, activation='relu', name='Dense_n1'))\n",
+    "    model.add(keras.layers.Dense(64, activation='relu', name='Dense_n2'))\n",
+    "    model.add(keras.layers.Dense(1, name='Output'))\n",
     "    \n",
     "    model.compile(optimizer = 'rmsprop',\n",
     "                  loss      = 'mse',\n",
@@ -194,36 +645,70 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## 5/ Train the model\n",
-    "### 5.1/ Get it"
+    "## 5 - Train the model\n",
+    "### 5.1 - Get it"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 6,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Model: \"sequential\"\n",
+      "_________________________________________________________________\n",
+      "Layer (type)                 Output Shape              Param #   \n",
+      "=================================================================\n",
+      "Dense_n1 (Dense)             (None, 64)                896       \n",
+      "_________________________________________________________________\n",
+      "Dense_n2 (Dense)             (None, 64)                4160      \n",
+      "_________________________________________________________________\n",
+      "Output (Dense)               (None, 1)                 65        \n",
+      "=================================================================\n",
+      "Total params: 5,121\n",
+      "Trainable params: 5,121\n",
+      "Non-trainable params: 0\n",
+      "_________________________________________________________________\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAGVCAIAAADls7hIAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzde1wU5f448Ge4LCwLuyAJCwuKWkRe2Aj80RqEgkGFYGwgmmgdD8Q39QApKph6vJFpmHC+aiocA6VM4fXCAtPyoHQOCAkWmBpi4I27gguCclmZ3x/Pab7TLiw7sOzs4uf9l/vMM898dmI/zeWZzxAkSSIAAABqM2A7AAAA0DOQNwEAgBnImwAAwAzkTQAAYMaI/qGkpOSzzz5jKxQAANBNEolk1apV1Mc/HW/evXs3JydH6yEBoFV1dXXwd05XWlpaWlrKdhS6q7S0tKSkhN5ipNwpOztbW/EAwIITJ06Eh4fD3zklLCwMwQ9/cHj/0MH1TQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBACoJSsri/iDubm5wtLbt28HBwd3dHQghBobG5OSkjw8PPh8vlAo9PHxyc3NHd5Gv/vuO2dnZyOjAe5gkyRZXFy8YsUKZ2dnExMTGxsbLy+vrKwses2NhISE48ePK6yYkJBAfZGXX355GFFB3gRAXZ2dnc8999y8efPYDoRNn3/+OUmSnZ2d9MaKigoPDw9/f38+n48QioqKSklJ2bJlS2NjY2lpqYODg1QqTUhIYLShmpqa4ODgxMTE5ubmATtcv37dy8ururo6Jyenvb29tLR0woQJS5YsWbNmDdUnKioqMTFx48aN9BU/+eQTkiRJkjQ0NGQUEgXyJgDqIkmyv7+/v7+frQDMzc29vLzY2vpgOjo6goKC3n777ZUrV1KNycnJgYGBPB7Pycnpiy++EIlEycnJLS0t6g+7cePGWbNmXbp0ycLCYrA+RkZGJ06ccHV1NTU1nTx5ckZGhrW19d69e3t6enCHKVOm5ObmJiUlnThxYthfcIDtanAsAMY2CwuLmpoatqPQObt27Wpqatq0aRPVkp+fT+/A4XCmTp1aX19//fp1GxsbNYf95z//yeVyVXRwcXHp6+tT2JCjo2NFRUV3d7eJiQluFIvFoaGhq1evlkqlA57vDwMcbwIAho8kyfT0dE9PT3t7exXdamtrEULjxo1Tf2TVSXNAMpnsxo0bbm5uAoGA3h4SElJXV3fq1CmmAw4G8iYAajl58iR1M6G7u1uh5datW+Hh4ZaWltbW1vPmzaMOS5OTk3EHBweHsrIyPz8/CwsLMzOzOXPmFBcX4z7bt2/Hfahz8DNnzuCWZ555hj5OV1dXcXExXqSpQ6cRqqysbG5uFovFKvpkZmbW1NQ4OztPnTp1lMLo6OgoLi4ODg4WCoVHjhxRWPriiy8ihL7//ntNbQ7yJgBqeeutt0iSnD9//oAtcXFxcXFx9fX1x48fP3fu3KJFi3Cf+Ph4kiTFYrFMJouNjd2+fXtTU9O///3vtrY2X1/fH3/8ESG0YcMGkiR5PB418uuvv06SpLu7O9WCx+HxeK+88gq+pyGXy6mlvr6+1tbWrDxjfuXKFYSQg4PDgEuvXbsWGxu7bNkyKysrfDt+NGLYvn27QCDw8vIyNDTMzc2dPn26QgeRSESFqhGQNwHQgMjISIlEwuPx5s6dGxgYWFZWdv/+fXqHrq6u/fv34z4eHh5ZWVm9vb2xsbEa2Xp/fz9OphoZjZHGxkaEkMJ5McXV1TU7O3vlypVXrlyZOXPmKMWwYcOGnp6e3377zcXFxc3Nbdu2bQod+Hw+QRA4VI3QiUN9APQdPSk4OjoihBoaGqizbIQQj8fDZ4vYjBkz7O3tKysrGxsb7ezsRrj1wsLCEY4wbPiShbGx8WAdzp075+LiMtphcDgcFxeXzz//vLm5edOmTRKJZO7cufQORkZGjx8/1tTm4HgTAA2gH3BxOByEkMJ0JUtLS4VV8J1lRlNzdJCpqSlCSOG+NouCgoKQ0g19hJBcLh/GjabBQN4EQBtaW1sVzqNxxqTm5RgYGPT29tI7yGQyhUFG6frgSOCD5fb2drYD+S88/aitrY3e2NHRQZLkyI/rKZA3AdCG7u7usrIy6uOvv/7a0NAgFoupH7OdnV19fT3Voamp6c6dOwqDmJmZUbn1+eefP3To0ChHPTR8E6aurm7ApXK5fPRO0uPj4yMiIhQaT58+jf582QQhhHes8v2iYYO8CYA2CASC9evXl5SUdHV1lZeXR0REcDic1NRUqoO/v39DQ8PevXs7OztrampiY2OVp4i/9NJL1dXVd+/eLSkpqa2t9fb2xu0s3k8Xi8U2NjaVlZXKi9LS0ng83tq1a5UXRUREEARx8+bNEW79q6++2rp1661bt3p6em7durVu3bqsrCx3d/fIyEh6t4qKCoSQv7//CDdHgbwJgFrwbM1vvvkGIcTlciMiIkpLS+ktGzZsQAgRBLFz506EkJubG/1JdnNz8//93//dsmWLnZ3dq6++amVlde7cOR8fH6rD9u3bIyMjP/74Yxsbm/fee2/NmjVCobC1tZUgCOrJ7pSUFFdX1xdeeCE8PDw1NfWFF17A7XK5nK376QRBREZG/vTTTw0NDQqLVNzlb2xsNDc3nzBhgoqR8/Pz8UzV+vr6J0+e4H+np6dTHTZt2pSWlnbhwoU5c+bw+fwZM2YUFBTs2LHjP//5j8KlzNzcXJFIFBgYOIIv+mckDS4cQgIwpmn/71wsFotEIm1ukZHQ0NDQ0NAhux09ehT9UdeDTiaTiUSi6OhoNTf34MEDLpcbGRnJONBhqaioIAji2LFjyosMDQ09PT2HHEF5/8DxJgBgRAQCQV5eXk5Ozr59+4bsTJJkTEwMn89XnmU5Gmpra6VSaWJi4sKFCzU47HDyprm5OUGTnJyswYBGSJdjY0SXv4guxwZG2wcffKBcf9PNza28vPz06dO4/qYKzc3NtbW1BQUFQqFwNMP8r4MHDyYlJSUlJdEbqfqbT548Gea49INP9c9ffvnlF4TQ/Pnz1emsZbocGyO6/EV0ObYhafM8/dNPP6X/3D766CPtbJcRNc/Tn1pj6jxdN2sRjjGwk0cIP1dO2b59O9sRAQ3Q47wJAACsgLwJAADMaCxv6lctQrlcfvz48ddee00oFHK53BkzZqSmpuIHimUyGf2mBz6xksvlVEtoaCge5N69ezExMU5OThwOZ/z48VKpFE+vVdgb169fX7BggbW1Nf6oUCYHdrKu7WQAhka/+DLy+0K4FuH8+fMvXLjQ2dl59uxZLpc7c+ZMeh+xWMzj8SQSCe5TVlbm6urK4XAKCwupPvQ6g5i7u7u1tTW9RbmP6tjo8vLyEEIff/xxW1vbvXv3/vGPfxgYGNAvRQUEBBgYGPz+++/0tSQSyZdffon/3dDQMHHiRFtb21OnTj18+PDKlSs+Pj6mpqYXLlxQ2Bs+Pj7nz5/v6uoqLS01NDS8d+8eSZJz5swZN25cSUmJiiBhJ49wJw8G5ikrgPtCqinvn1HJm3l5efRNIoTof8e4NPQvv/xCtVy+fBkhJBaLqRYt/KRnz55Nb4mIiDA2Nm5vb8cfcWno5cuXUx2KiopEIlFvby/++O677yKEqF84SZKNjY0mJibu7u4Ke+O7775TDsDHx8fKyor++1f/i8BOVnMnDwbypgLIm6pp6X76gLUI6R1U1CIcjXiUzZs37/z58/QWsVjc19d39epV/NHf33/GjBkZGRmtra245dNPP/3b3/5G1Rk8efKkgYEB/UE6oVA4bdq0S5cuKdQ4+H//7/8pB1BYWNjW1iaRSIb9FWAn00cecCerRoA/5OTk5OTksB2F7srJyVH44xmVusXDq0XY0NDQ0tKiwVpPKrS3t+/evTs3N7euro5erevRo0fUv+Pi4v7617/u379/48aN1dXV586d++KLL/Cinp4eXDhrwDLXN27coL82gP7+Aw2CnTzCnYyPOgFCaM+ePQihDz/8kO1AdBTeP3Ts1HvHtQgJWjFBLdciDAoK+s9//pOamrpo0aJnnnmGIIiUlJQPP/yQpNUgWLx48fr16/fu3bt27drdu3e/++67VlZWeJGJiYmlpWVnZ+fjx4915PVYymAnq7ZgwQKNj6mnsrOzEeyQweH9Q8fOPCS2ahEaGRlVVVU9efKkuLhYKBTGxMSMHz8epwblGvomJibLly9vaWnZvXv3l19+qfAqGKlUKpfLqTvU2M6dOydMmEB/YRaLYCcDMErYyZujWotwSIaGhrNnz25qavr000/v37//+PHj8+fPHzhwQLnn8uXLcX2wuXPnPvvss/RFO3bsmDJlyrJly06fPt3e3t7W1nbw4MGtW7cmJyerc3CkhYKJsJMBGC30m0Rq3mdUuJb06aefkiRZUlJCb8TP4dJbAgMD8eq4pta1a9cCAgIsLCy4XK6Pj09RURF9EzKZLDIy0s7Ojsvlenl5lZWVUe9EXbduHe5TVVXl7e3N4/EcHR337ds3YGzKfvvtN5Ik7927Fx0d7ejoaGxsbGtr+95771ElDun3akmSjIqKQgj9+OOPyvuhtbV11apVkydPNjY2Hj9+vL+//9mzZ/Eihb2hvFe9vb1V30+HnTzynTwYuJ+uAO6nq6axeUgjoeO1CBUcPnxY4UeuF2AnqwB5UwHkTdXGVF0P7Thw4MCqVavYjmKMg52sF7KysqipOQp15BBCt2/fDg4OxnXkGhsbk5KSPDw8+Hy+UCj08fHJzc0d3ka/++47Z2fnAS/LkCRZXFy8YsUKZ2dnExMTGxsbLy+vrKwsknYSlpCQoDxxgqojRxDEyy+/PIyoIG8OID09PSQkpLOz88CBAw8ePID7jKMBdrKewvXeOzs76Y0VFRUeHh7+/v58Ph8hFBUVlZKSsmXLlsbGxtLSUgcHB6lUSl2lUVNNTU1wcHBiYmJzc/OAHa5fv+7l5VVdXZ2Tk9Pe3l5aWjphwoQlS5asWbOG6hMVFZWYmLhx40b6ip988gk+bDQ0NGQU0v+hH3yO9vmLXtQiJEkyLS0NIWRkZOTq6nrp0iW2w2EGdvKQtHyePtgzV7oz/gjfk9He3u7g4EB/T0ZgYGBGRgb1saenRyQSGRoaNjc3qx/VokWLduzY0dfXh9dV7vDbb78ZGRm1tbXRN2RtbW1iYtLd3U014vdkHD9+XHmEYb8nA94vBJ46kDcVjDBvfvTRR0ZGRvX19SrWfe211xBC//73v9WP6tGjR/gfg+XNAeFn5GQyGb0xLCzMwcGhr69PoTO8XwgAwAKSJNPT0z09Pe3t7VV0q62tRQiNGzdO/ZEV3kmpDplMduPGDTc3N4VnzEJCQurq6k6dOsV0wMFA3gRgUHgW1JQpUzgcjpWV1RtvvEE9cT+SWny6U+tv5CorK5ubm3EdmcFkZmbW1NQ4OztPnTp1lMLo6OgoLi4ODg4WCoVHjhxRWIoPQnEdGY2AvAnAwJqammbOnPnVV1+lpqbev3//p59+MjMz8/Pzw6/w3rBhA/nnqayvv/46SZLUHFj0x0sy6OfR+DEn3C4Wi2UyWWxs7Pbt25uamv7973+3tbX5+vr++OOPIxwf08KzFQihK1euIITotQLorl27Fhsbu2zZMisrK3w7fjRi2L59u0Ag8PLyMjQ0zM3NnT59ukIHkUhEhaoRkDcBGFhiYuLNmzdTUlLmzZvH5/OdnZ2/+uorOzu7mJiYwe7wMtXV1bV//36JRMLj8Tw8PLKysnp7exUeNh22/v5+nEw1MtpgcHmtAWuvIIRcXV2zs7NXrlx55coVegUvzdqwYUNPT89vv/3m4uLi5uam/IZhPp9PEIQGK4FB3gRgYHjKYWBgINViYmLi5+f3+PFjTZ3xjWqtv5HXKlRHd3c3Qogq/afs3Llzqampqq9+jhyHw3Fxcfn888+Dg4M3bdr0r3/9S6GDkZGRcnmEYYO8CcAAcBU7U1NTCwsLerutrS1CqKmpSSNbGbDWH/qjcpVeMDU1RQj19fWxHch/BQUFIYTy8/MV2uVy+TBuNA0G8iYAAzAxMREIBN3d3Q8fPqS34zN0oVCIP46wFh+u9Udv0XKtv5HD5bVwpVRdYGJighBqa2ujN3Z0dJAkqcGys5A3ARhYSEgIQog+eaWnp6egoIDL5QYEBOCWEdbiY6vWnwbhmzAK5fcpcrncxcVllDYdHx8fERGh0Hj69Gn057chIITwPlS+XzRskDcBGNiOHTsmTZoUFxeXn5//8OHD6urqd955p7GxMTU1FZ+toxHX4hvVWn/auZ8uFottbGwqKyuVF6WlpfF4vLVr1yovioiIIAji5s2bI9z6V199tXXr1lu3bvX09Ny6dWvdunVZWVnu7u6RkZH0bvgdqP7+/iPc3P+hT4KH54XA00D9v/P79+/HxcVNmjTJ2NhYIBAEBAQUFBTQOwy7Fh85yrX+SDVqFVJG+LzQ+vXrB3xe6MCBA1wul/4GU4qvr6+5ublcLlexOfw+VAVpaWlUh/b29vT09ICAAPyaaHNzc3d39x07dlAPGlHCwsLo7/ujwHOWAKhLR/7OdafW3wjzpkwmE4lE9OfTVXvw4AGXy42MjGQc6LDg59OPHTumvAieswQAsEMgEOTl5eXk5Ozbt2/IziRJxsTE8Pl85VmWo6G2tlYqlSYmJi5cuFCDw0LeBAAw8MEHHyjX33RzcysvLz99+jSuv6lCc3NzbW1tQUEBNSdhVB08eDApKSkpKYneSNXffPLkyfCGhbwJgLbh58orKyvr6+sJgtiwYQPbEaklIiKCOlFVqL+JEHJycsrPz8f1N1UQCoVFRUXTpk0btTD/ZOfOncpHmlT9TZIkh3ffDF5uBYC2xcfHx8fHsx0FGD443gQAAGYgbwIAADOQNwEAgBnImwAAwMwA94VOnDih/TgA0JqSkhIEf+c0+Oly2CGDqaurUyzMTJ8Er/yiYQAAAArPCxHkKJeDBmB48Ltb4b3qQAfB9U0AAGAG8iYAADADeRMAAJiBvAkAAMxA3gQAAGYgbwIAADOQNwEAgBnImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAZiBvAgAAM5A3AQCAGcibAADADORNAABgBvImAAAwA3kTAACYgbwJAADMQN4EAABmIG8CAAAzkDcBAIAZyJsAAMAM5E0AAGAG8iYAADADeRMAAJiBvAkAAMxA3gQAAGYgbwIAADOQNwEAgBnImwAAwAzkTQAAYIYgSZLtGABACKHo6Ojr169TH3/++edJkyZZWVnhj4aGhpmZmQ4ODixFB8D/MWI7AAD+y9bW9tChQ/SWy5cvU/+ePHkyJE2gI+A8HeiKd955Z7BFHA7nvffe02IsAKgC5+lAh0yfPv3atWsD/k1ev37d2dlZ+yEBoAyON4EOWbp0qaGhoUIjQRBisRiSJtAdkDeBDlm0aNGTJ08UGg0NDd99911W4gFgQHCeDnTLrFmzfvrpp/7+fqqFIIi7d++KRCIWowKADo43gW5ZsmQJQRDURwMDAy8vL0iaQKdA3gS6JSwsjP6RIIilS5eyFQwAA4K8CXTLM8884+fnR90dIggiJCSE3ZAAUAB5E+iciIgIfNnd0NAwICDA2tqa7YgA+BPIm0DnSKVSDoeDECJJMiIigu1wAFAEeRPoHB6PN2/ePIQQh8MJCgpiOxwAFEHeBLpo8eLFCKGQkBAej8d2LAAoIVnF9rcHAOil48ePs5i42K+HFBcXJ5FI2I4C6JysrKyFCxcaGf3fn2hJSUlKSsrx48dZjEqn7NmzByH04Ycfsh2ItoWHh7MbAPt5UyKRLFiwgO0ogM4JDg42NTVVaExJSYG/Fkp2djZC6CncIaznTbi+CXSUctIEQEdA3gQAAGYgbwIAADOQNwEAgBnImwA8LW7fvh0cHNzR0YEQamxsTEpK8vDw4PP5QqHQx8cnNzd3eMN+9913zs7O9JkPFJIki4uLV6xY4ezsbGJiYmNj4+XllZWVRZ+DmJCQoHdzJCBvgrGvs7Pzueeew88gPbUqKio8PDz8/f35fD5CKCoqKiUlZcuWLY2NjaWlpQ4ODlKpNCEhgdGYNTU1wcHBiYmJzc3NA3a4fv26l5dXdXV1Tk5Oe3t7aWnphAkTlixZsmbNGqpPVFRUYmLixo0bR/LttAzyJhj7SJLs7++n10LWMnNzcy8vL7a2jhDq6OgICgp6++23V65cSTUmJycHBgbyeDwnJ6cvvvhCJBIlJye3tLSoP+zGjRtnzZp16dIlCwuLwfoYGRmdOHHC1dXV1NR08uTJGRkZ1tbWe/fu7enpwR2mTJmSm5ublJR04sSJYX9BLWN//iYAo83CwqKmpobtKNi0a9eupqamTZs2US35+fn0DhwOZ+rUqfX19devX7exsVFz2H/+859cLldFBxcXl76+PoUNOTo6VlRUdHd3m5iY4EaxWBwaGrp69WqpVDrg+b6ugeNNAMY4kiTT09M9PT3t7e1VdKutrUUIjRs3Tv2RVSfNAclkshs3bri5uQkEAnp7SEhIXV3dqVOnmA7ICsibYIw7efIk8Yfu7m6Fllu3boWHh1taWlpbW8+bN486LE1OTsYdHBwcysrK/Pz8LCwszMzM5syZU1xcjPts374d96HOwc+cOYNbnnnmGfo4XV1dxcXFeJH2j6cqKyubm5vFYrGKPpmZmTU1Nc7OzlOnTh2lMDo6OoqLi4ODg4VC4ZEjRxSWvvjiiwih77//fpS2rmEsPhuP76mx+3w+0CP4ruvw1p0/fz5C6PHjxwot8+fPv3DhQmdn59mzZ7lc7syZM+lricViHo8nkUhwn7KyMldXVw6HU1hYSPXh8XivvPIKfS13d3dra2t6i3IfbM6cOePGjSspKRnelwoNDQ0NDR2y29GjRxFCH3/88YBLr169GhMTY2BgYGVldfHixeFFIhKJDA0NVXTYtm0bTjizZ8++fPmycof29naEkLe3tzqbYz1vwPEmeKpFRkZKJBIejzd37tzAwMCysrL79+/TO3R1de3fvx/38fDwyMrK6u3tjY2N1cjW+/v7qUQwehobGxFCCufFFFdX1+zs7JUrV165cmXmzJmjFMOGDRt6enp+++03FxcXNzc3Ko1S+Hw+QRA4VN2nB5dgARg99Ezh6OiIEGpoaKDOshFCPB4Pn0JiM2bMsLe3r6ysbGxstLOzG+HWCwsLRziCOvDVCWNj48E6nDt3zsXFZbTD4HA4Li4un3/+eXNz86ZNmyQSydy5c+kdjIyMHj9+PNphaAQcb4KnGv0oDL+cQ2G6kqWlpcIq+HYzo/k67MIVUhTua7MI1/BXuKGPEJLL5cO40cQKyJsAqNLa2qpwHo0zJjVZx8DAoLe3l95BJpMpDEJ/I7z24eNifAFRF+DpR21tbfTGjo4OkiRHfgivHZA3AVClu7u7rKyM+vjrr782NDSIxWLqF25nZ1dfX091aGpqunPnjsIgZmZmVG59/vnnDx06NMpR/8n06dMRQnV1dQMulcvlo3eSHh8fr/xmvdOnT6M/XyFBCOF9iEPVfZA3AVBFIBCsX7++pKSkq6urvLw8IiKCw+GkpqZSHfz9/RsaGvbu3dvZ2VlTUxMbG6s8b/yll16qrq6+e/duSUlJbW2tt7c3bvf19bW2ti4tLR3VryAWi21sbCorK5UXpaWl8Xi8tWvXKi+KiIggCOLmzZsj3PpXX321devWW7du9fT03Lp1a926dVlZWe7u7pGRkfRuFRUVCCF/f/8Rbk5LWLyXT+rAfAKgR4Y3D0mhXMXixYtLSkroLR999BH55zPxwMBAvK5YLBaJRNeuXQsICLCwsOByuT4+PkVFRfTxZTJZZGSknZ0dl8v18vIqKytzd3fH46xbtw73qaqq8vb25vF4jo6O+/bto9b19va2srK6cOHC8HaImvOQSJJcv369kZFRfX29QvuBAwe4XG58fLzyKr6+vubm5nK5XMWweXl5yiklLS2N6tDe3p6enh4QEODk5MThcMzNzd3d3Xfs2PHo0SOFocLCwkQiUW9vrzpfh/W8AXkT6I2RzN8cHpw3tblFRtTPmzKZTCQSRUdHqznygwcPuFxuZGTkCKJjoKKigiCIY8eOqdmf9byhB+fp5ubmBA2eoCsWi5cvX37p0iW2oxtdKip0qeNp3nWATiAQ5OXl5eTk7Nu3b8jOJEnGxMTw+XzlWZajoba2ViqVJiYmLly4UAub0wg9yJudnZ2//PILQmj+/PkkSfb19VVVVW3durWqqsrDw+Mvf/nLo0eP2I5R84as0KWOp3PXgQG5ubmVl5efPn0a199Uobm5uba2tqCgQCgUaiGwgwcPJiUlJSUlaWFbmqIHeVOBoaGhra3t/Pnzz507t3bt2oyMjEWLFpFj7lXs6lToYuop2XUagZ8rr6ysrK+vJwhiw4YNbEekAU5OTvn5+bj+pgpCobCoqGjatGnaiWrnzp16dKSJ6V/epPvkk088PT2//fbbr7/+mu1YNOyf//xnQkLC6NWAGMO7TiMUbpVs376d7YiADtHvvEkQBK7Dun//frZj0bDRfnBiDO86AEabfudNhBAu4VVaWko9Rnbv3r2YmBg872H8+PFSqRRPDUPqFRBDCPX09GzatMnFxcXMzGzcuHFBQUHffvvtkydPqA4qNqGamgFoh37tOgB0CAv38GmQevMJ6Dc3FFCFABoaGkiSbGhomDhxoq2t7alTpx4+fHjlyhUfHx9TU1P6FLkhC4hFRkYKBIIffvjh0aNHTU1N8fHxCKHz58/jpepsQjV1KphRVFToUqcK2Vjaddqfh6Tj1J+HNMaomTdGMQAWt01qIm9Sd4Txj//dd99FCH355ZdUh8bGRhMTE3d3d6oF//jz8vKoltDQUITQvXv38MdJkybNmjWLvhVnZ2fqx6/OJlQbMgA6FXnTx8dnyFnTY2nXQd5UAHmTLXpfRw4X7DM2Nsa1v06ePGlgYEB/c6FQKJw2bdqlS5fq6uocHByodhUFxF5//fXPP//8/fffX7Zs2cyZMw0NDa9fv051Vn8Tqg1ZwWxII6xCpqe7To/e3jXa8CPnsEO0T+/zZlFREUJIIjcOHrUAACAASURBVJEYGxv39PTgoi8Dlmi9ceMG/ZepooDYvn37JBJJZmamn58fQsjb2zs6OjokJAQhxGgTqg1ZwWy06emuCw8PV/cbPh1gh2ifft8X6u/vx88/rFixAiFkYmJiaWlpZGTU19enfGg9Z84cNYclCGLJkiX/+te/ZDLZyZMnSZKUSqWfffaZBjfBOv3ddSM9xRpDnubzdHbpd95MTEy8ePFiSEhIWFgYbpFKpXK5nHpzFrZz584JEybI5XI1h7W0tKyqqkIIGRsbv/baa/hWMvWmPY1sgnWw6wAYNv3Lm/39/S0tLd98842fn9+uXbuWLVv25ZdfUnVhd+zYMWXKlGXLlp0+fbq9vb2tre3gwYNbt25NTk5mNIf8f/7nfy5fvtzT09PS0rJr1y6SJH19fTW7iZFjWoUMdh0AmsH68faQ98V4PB49YIIgBALBjBkzPvjgg0uXLin3b21tXbVq1eTJk42NjcePH+/v73/27Fm8SM0CYhUVFdHR0S+88AKehPjyyy+npaVRr9BSvQnV1K9gNmSFLlKNKmRjadeRcD9dydN8ns7u/XSCZPViAUEQx48fX7BgAYsxAH1x4sSJ8PBwdv9idQq+xpKdnc12INrGet7Qv/N0AABgF+RNAJ4Wt2/fDg4OxnXkGhsbk5KSPDw8+Hy+UCj08fFRKIyvpr6+vj179ri7u1tYWNjY2Lzxxhv4sYgBOwcHBxMEoVAkJSEhAV+B0SOQNzWMGNzmzZvZjg48vSoqKjw8PPz9/XEduaioqJSUlC1btjQ2NpaWljo4OEil0oSEBEZjdnV1+fr6ZmRk7Nmzp6Wlpby83NzcPDg4+OrVq8qdjxw5MuBV+6ioqMTExI0bNw7ve7GDxWurpA5c3wV6RMv3hXg83iuvvKLL46t/X6i9vd3BwYH+nozAwMCMjAzqY09PD36it7m5Wf0APvjgAz6f39TURLV0dnaamJj8+uuvCj3r6+utrKyWLFmCENq2bZvCUvyeDPVTAet5A443ARj7du3a1dTUtGnTJqolPz8flwvAOBzO1KlTnzx5Qn8uVrXm5uZDhw4tXrzY1taWauTxeN3d3cqv842KigoLCxvsdZVisTg0NHT16tX6Mo0X8iYAYxxJkunp6Z6envb29iq61dbWIoTGjRun5rC4QiCuRqja4cOHr169mpycrKJPSEhIXV0d9YiEjoO8CcYgPEt0ypQpHA7HysrqjTfeOH/+PF60fft2fLmZ+sGfOXMGt1BFVfBLMrq6uoqLi/EiPC0ftxME4eDgUFZW5ufnZ2FhYWZmNmfOHOohqJGMP0oqKyubm5vFYrGKPpmZmTU1Nc7OzlOnTlVz2J9//hkhZGVltXr1akdHRw6HM3HixJiYmLa2Nnq3urq61atXHz58WPUbX1588UWE0Pfff6/m1lnG4jUCUgeuUwA9oub1zcbGxkmTJtna2ubl5bW3t1+/fl0qlRIEQX9qQPnaoru7u7W1Nb1lsOuPYrGYx+NJJBJchLSsrMzV1ZXD4RQWFmpkfHXKqmJqXt88evQoQujjjz8ecOnVq1djYmLwu04vXrw45GgUXFRQKBQuXry4pqbmwYMHmZmZPB7P2dlZJpNR3QICApYvX06PRPn6JkmSuOaLt7e3OptmPW/A8SYYaxITE2/evJmSkjJv3jw+n+/s7PzVV1/Z2dnFxMSM5OWgdF1dXfv375dIJDwez8PDIysrq7e3NzY2ViODU49XaWQ09EfBwAHLUCGEXF1ds7OzV65ceeXKFXqFwCF1d3cjhLhcbkZGxuTJky0tLZcuXZqYmFhdXb17927cJy0t7caNG7t27RpyND6fTxAEDlX3Qd4EYw2ehxgYGEi1mJiY+Pn5PX78WFOngTweD59XYjNmzLC3t6+srNTIz76wsLCtrU0ikYx8KAwnOGNj48E6nDt3LjU1VfXVT2X4Kd65c+fSLzIEBQWhP06379y5s2bNmsOHDys87zsYIyMj6h0EOg7yJhhTcJVPU1NThatp+J5vU1OTRrZiaWmp0GJjY4MQamlp0cj4mmVqaooQot4ipSlOTk4IIWtra3oj3g/37t1DCOHrJLNnz6amMON5SBs3bsQff//9d/q6crl8tF9HqCmQN8GYYmJiIhAIuru7Hz58SG/HZ+hCoRB/NDAw6O3tpXeQyWQKQ1GVopS1trYqnEfjjImzxsjH1yw7OzuEEL6AqEH4xpfCITbeD/j/UitWrFC4LKhwffPZZ5+lVuzo6CBJEoeq+yBvgrEGl5enz2jp6ekpKCjgcrkBAQG4xc7Orr6+nurQ1NR0584dhXHMzMyo3Pf8888fOnSIWtTd3V1WVkZ9/PXXXxsaGsRiMfWzH+H4moVnU+KXaiiTy+UuLi7DGPbNN98UiURnzpzB1wEw/ETQW2+9xXQ0vLuUJ37qJsibYKzZsWPHpEmT4uLi8vPzHz58WF1d/c477zQ2NqamplIztP39/RsaGvbu3dvZ2VlTUxMbG0sdKlJeeuml6urqu3fvlpSU1NbWent7U4sEAsH69etLSkq6urrKy8sjIiI4HE5qairVYSTjMy2rOiSxWGxjY1NZWam8KC0tjcfjrV27VnlRREQEQRA3b94cbFgTE5P09PTW1taFCxfeuHFDJpMdPXp0x44dnp6eMTExTIPEr4MebGK8ztHivfsBILbnEwA9ov5zlvfv34+Li5s0aZKxsbFAIAgICCgoKKB3kMlkkZGRdnZ2XC7Xy8urrKzM3d0d/yLWrVuH+1RVVXl7e/N4PEdHx3379lHrisVikUh07dq1gIAACwsLLpfr4+NTVFSkqfGHLKtKUf85y/Xr1xsZGdXX1yu0HzhwgMvlxsfHK6/i6+trbm4ul8tVj3zhwoWAgACBQMDhcFxcXDZv3vzo0SPlbtHR0QqZJyAggN4hLCxMJBL19vaq83VYzxuQN4He0JG6xThvsh0FSTLJmzKZTCQS0Z9PV+3BgwdcLjcyMnIE0TGAn08/duyYmv1Zzxtwng7A2CcQCPLy8nJycvDL+FQjSTImJobP52/btk0LsdXW1kql0sTExIULF2phcxoBeROAp4Kbm1t5efnp06dx/U0Vmpuba2trCwoKqOkHo+rgwYNJSUlJSUla2JamQN4EQF34ufLKysr6+nqCIDZs2MB2RMw4OTnl5+fj+psqCIXCoqKiadOmaSeqnTt36tGRJgYvEQRAXfHx8fHx8WxHAdgHx5sAAMAM5E0AAGAG8iYAADADeRMAAJhh/77Qnj17srOz2Y4C6AH8hHVYWBjbgegK/Cwm7BDtI0jNlUcdBvhPDgZz+vRpNzc37UwhBHpn1apVGixRyhTLeROAweAXwy5YsIDtQABQBNc3AQCAGcibAADADORNAABgBvImAAAwA3kTAACYgbwJAADMQN4EAABmIG8CAAAzkDcBAIAZyJsAAMAM5E0AAGAG8iYAADADeRMAAJiBvAkAAMxA3gQAAGYgbwIAADOQNwEAgBnImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAZiBvAgAAM5A3AQCAGcibAADADORNAABgBvImAAAwA3kTAACYgbwJAADMQN4EAABmIG8CAAAzRmwHAMB/yWQykiTpLV1dXQ8ePKA+mpubGxsbaz0uABQRCn+pALDF19f3/Pnzgy01NDSsr6+3tbXVZkgADAjO04GuWLRoEUEQAy4yMDB49dVXIWkCHQF5E+iK0NBQI6OBLxwRBLF06VItxwPAYCBvAl1hZWXl7+9vaGiovMjAwCAkJET7IQEwIMibQIdERET09/crNBoZGQUGBgoEAlZCAkAZ5E2gQ4KDg01MTBQanzx5EhERwUo8AAwI8ibQIWZmZiEhIQqTjbhc7ptvvslWSAAog7wJdMs777zT19dHfTQ2Ng4NDeVyuSyGBIACyJtAtwQEBNAvZfb19b3zzjssxgOAMsibQLcYGxsvXLiQw+Hgj5aWln5+fuyGBIACyJtA5yxatKi3txchZGxsHBERMdikTgDYAs9ZAp3T399vb2/f3NyMECoqKnrllVfYjgiAP4HjTaBzDAwMlixZghCys7ObNWsW2+EAoIjlM6ATJ06wGwDQTc888wxCyNPTMzs7m+1YgC6aNWuWg4MDa5snWcXa1wYA6LPjx4+zmLjYv+J+/PjxBQsWsB0F0Dk5OTmhoaH0lhMnToSHh8P/bilhYWEIoafwkHywullaA9c3gY5SSJoA6A7ImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CcDT4vbt28HBwR0dHQihxsbGpKQkDw8PPp8vFAp9fHxyc3OHMWZfX9+ePXvc3d0tLCxsbGzeeOONvLy8weY8BAcHEwSxfft2emNCQsLx48eHsWkWQd4EY19nZ+dzzz03b948tgNhU0VFhYeHh7+/P5/PRwhFRUWlpKRs2bKlsbGxtLTUwcFBKpUmJCQwGrOrq8vX1zcjI2PPnj0tLS3l5eXm5ubBwcFXr15V7nzkyJG8vDzl9qioqMTExI0bNw7ve7EC8iYY+0iS7O/vV34Dh9aYm5t7eXmxtXWEUEdHR1BQ0Ntvv71y5UqqMTk5OTAwkMfjOTk5ffHFFyKRKDk5uaWlRf1h16xZc/ny5R9++OHVV1/lcrkTJkzIyMhQrtiPEGpoaIiLi8OPzyqYMmVKbm5uUlKSHj09CHkTjH0WFhY1NTXfffcd24GwZteuXU1NTZs2baJa8vPz3333Xeojh8OZOnXqkydPrl+/ruaYzc3Nhw4dWrx4Mf39zDwer7u7e/r06Qqdo6KiwsLC/P39BxxKLBaHhoauXr1aLper+5VYBXkTgDGOJMn09HRPT097e3sV3WpraxFC48aNU3PYb7/99smTJ+ocRx8+fPjq1avJyckq+oSEhNTV1Z06dUrNrbML8iYY406ePEn8obu7W6Hl1q1b4eHhlpaW1tbW8+bNq6mpwWslJyfjDg4ODmVlZX5+fhYWFmZmZnPmzCkuLsZ9tm/fjvtQuePMmTO4Bdclocbp6uoqLi7Gi7RfTrSysrK5uVksFqvok5mZWVNT4+zsPHXqVDWH/fnnnxFCVlZWq1evdnR05HA4EydOjImJaWtro3erq6tbvXr14cOHLSwsVIz24osvIoS+//57NbfOMhafjcc33dh9Ph/oEXzXdXjrzp8/HyH0+PFjhZb58+dfuHChs7Pz7NmzXC535syZ9LXEYjGPx5NIJLhPWVmZq6srh8MpLCyk+vB4vFdeeYW+lru7u7W1Nb1FuQ82Z86ccePGlZSUDO9LhYaGhoaGDtnt6NGjCKGPP/54wKVXr16NiYkxMDCwsrK6ePGi+lvHO1AoFC5evLimpubBgweZmZk8Hs/Z2Vkmk1HdAgICli9fTo9k27ZtyqO1t7cjhLy9vdXZNOt5A443wVMtMjJSIpHweLy5c+cGBgaWlZXdv3+f3qGrq2v//v24j4eHR1ZWVm9vb2xsrEa23t/fTyWC0dPY2IgQGuwF9K6urtnZ2StXrrxy5crMmTPVHxYfvHO53IyMjMmTJ1taWi5dujQxMbG6unr37t24T1pa2o0bN3bt2jXkaHw+nyAIHKrug7wJnmr0TOHo6IgQamhooHfg8Xj4FBKbMWOGvb19ZWWlRn7hhYWFbW1tEolk5EOpgBOcwtuV6c6dO5eamqr66qcyHo+HEJo7dy79ykNQUBD643T7zp07a9asOXz4MO45JCMjo8ePHzOKgS2QN8FTjX4Uhl8GpzBdydLSUmEVGxsbhBCj+TrsMjU1RQjR366sEU5OTggha2treiPeOffu3UMI5eXltbe3z549m7qajOchbdy4EX/8/fff6evK5XJ9eeEz5E0AVGltbVU4j8YZEycIhJCBgQF+ixxFJpMpDMJuvUg7OzuEEL6AqEH4bpjCcTfeOXhm0ooVKxQuCypc33z22WepFTs6OkiSxKHqPsibAKjS3d1dVlZGffz1118bGhrEYjH1C7ezs6uvr6c6NDU13blzR2EQMzMzKrc+//zzhw4dGuWo/wTPpqyrqxtwqVwud3FxGcawb775pkgkOnPmDL4OgOEngt566y2mo+F9qDzxUzdB3gRAFYFAsH79+pKSkq6urvLy8oiICA6Hk5qaSnXw9/dvaGjYu3dvZ2dnTU1NbGwsdShKeemll6qrq+/evVtSUlJbW+vt7Y3bfX19ra2tS0tLR/UriMViGxubyspK5UVpaWk8Hm/t2rXKiyIiIgiCuHnz5mDDmpiYpKent7a2Lly48MaNGzKZ7OjRozt27PD09IyJiWEaZEVFBUJosInxOkeL9+4HgNieTwD0yPDmISmUq1i8eHFJSQm95aOPPiL/fCYeGBiI1xWLxSKR6Nq1awEBARYWFlwu18fHp6ioiD6+TCaLjIy0s7PjcrleXl5lZWXu7u54nHXr1uE+VVVV3t7ePB7P0dFx37591Lre3t5WVlYXLlwY3g5Rcx4SSZLr1683MjKqr69XaD9w4ACXy42Pj1dexdfX19zcXC6Xqx75woULAQEBAoGAw+G4uLhs3rz50aNHyt2io6MVMk9AQAC9Q1hYmEgk6u3tVefrsJ43IG8CvTGS+ZvDg/OmNrfIiPp5UyaTiUSi6OhoNUd+8OABl8uNjIwcQXQMVFRUEARx7NgxNfuznjf04Dzd3NycoMETdMVi8fLlyy9dusR2dKPiwYMHBw4c8PX1HTduHJfLfe655xYvXjzgeZZqT+GuAwMSCAR5eXk5OTn79u0bsjNJkjExMXw+f9u2bVqIrba2ViqVJiYmLly4UAub0wg9yJudnZ2//PILQmj+/PkkSfb19VVVVW3durWqqsrDw+Mvf/nLo0eP2I5Rw9asWfO3v/1t/vz5165da21tPXz4cEVFhbu7+8mTJxmN8xTuOjAYNze38vLy06dP4/qbKjQ3N9fW1hYUFAiFQi0EdvDgwaSkpKSkJC1sS2NYPNYl1T7epv/46fD17ODgYOq5i7Hhr3/96/vvv09vwVfNn3vuOaZDjaVdp83z9E8//ZT+M8HXQHWN+ufpY4yaeWP06MHxpgqffPKJp6fnt99++/XXX7Mdiyalp6cfPHiQ3iIWi7lcbk1NDamhZ/LG6q7TFIVbJQolysFTTr/zJkEQuA7r/v372Y5ldHV1dT1+/Hj69OmamkH99Ow6ADROv/Mm+uOhhdLSUuoxsnv37sXExDg5OXE4nPHjx0ulUnySi9QrIIYQ6unp2bRpk4uLi5mZ2bhx44KCgnCpQaqDik2opmYAyrKzsxFCH330EcPdo4p+7ToAdAhL1wf+C43s+iZJklQhgIaGBpIkGxoaJk6caGtre+rUqYcPH165csXHx8fU1JQ+RW7IAmKRkZECgeCHH3549OhRU1NTfHw8Quj8+fN4qTqbUE2dCmZ0TU1Ntra2ypNC1KlCNpZ2nfbnIek4uL7JWgAsbpvURN6k7gjjHz8u/f/ll19SHRobG01MTNzd3akW/OPHb93DQkNDEUL37t3DHydNmjRr1iz6VpydnakfvzqbUG3IAOju37//4osvhoeHK89A9vHxGXLW9FjadZA3FUDeZIu2S09rHC4rYGxsjCtsnzx50sDAgP7mQqFQOG3atEuXLtXV1Tk4OFDtAxYQw4O8/vrrn3/++fvvv79s2bKZM2caGhrSX7qi/iZUUxEApaurKyAgYOrUqUeOHDE0NFQYobCwUM1tDUhPd11YWNiwv/IYgx/QhB2ifXp/fbOoqAghJJFIjI2Ne3p62tvb+/v7BQIBfb43Luh/48YN+ooqCojt27fvyJEjtbW1fn5+fD7/9ddfp57VY7QJ1YasYCaXy/HDZ5mZmcpJc+T0d9cBwC79Pt7s7+/Hzz+sWLECIWRiYmJpadnZ2fn48eORvMUFFwpcsmRJX19fYWFhcnKyVCrdvXv3qlWrNLUJdURHR/f09OTm5lIbevbZZ7Oysl5++eWRD66/uw7fIgPojyPNp3CHsFuXD+n78WZiYuLFixdDQkKoUxWpVCqXy6k3Z2E7d+6cMGGC+q8YtbS0rKqqQggZGxu/9tpr+FYy9aY9jWxiSJs3b7569eo333wz4NuoR24M7zoARpv+5c3+/v6WlpZvvvnGz89v165dy5Yt+/LLL6n//+zYsWPKlCnLli07ffp0e3t7W1vbwYMHt27dmpyczOgY53/+538uX77c09PT0tKya9cukiR9fX01uwkVMjIytmzZ8tNPP1lYWNBPaRXmKjGtQvY07DoAtIHFe1KkevfFFF5OQhCEQCCYMWPGBx98cOnSJeX+ra2tq1atmjx5srGx8fjx4/39/c+ePYsXqVlArKKiIjo6+oUXXsCTEF9++eW0tDT684gqNqGamgEEBgYO9t+LPutoyCpkY2nXkXA/XQncT2cLQY7yu/RUIwji+PHjCxYsYDEGoC9OnDgRHh7O7l+sTnmar2+ymzf07zwdADA8t2/fDg4OxvWQGhsbk5KSPDw8+Hy+UCj08fFRKPCspr6+vj179ri7u1tYWNjY2Lzxxht4eu+AnYODgwmCUHjYPyEhAZ9J6BHImwA8FSoqKjw8PPz9/fl8PkIoKioqJSVly5YtjY2NpaWlDg4OUqk0ISGB0ZhdXV2+vr4ZGRl79uxpaWkpLy83NzcPDg6+evWqcucjR47gtw8piIqKSkxM3Lhx4/C+Fysgb2oYMbjNmzezHR1gwNzcHD/Cr6fj03V0dAQFBb399tu4mAuWnJwcGBjI4/GcnJy++OILkUiUnJzM6P3Ga9asuXz58g8//PDqq69yudwJEyZkZGQMOAOkoaEhLi4OvwdYwZQpU3Jzc5OSkk6cODGMr8YKuImpYXD1DeigXbt2NTU1bdq0iWrJz8+nd+BwOFOnTq2vr79+/brye+UG1NzcfOjQoffffx+/9Rfj8Xj011tSoqKiwsLCvL298auAFYjF4tDQ0NWrV0ulUr2YWQHHmwCMcSRJpqene3p62tvbq+hWW1uLEBo3bpyaw+JKV+ocMh8+fPjq1avJyckq+oSEhNTV1VFTfXUc5E0wBuHZTlOmTOFwOFZWVm+88cb58+fxou3bt+PLJtQP/syZM7iFKg6QnJxMEERXV1dxcTFehA+CcDtBEA4ODmVlZX5+fhYWFmZmZnPmzKEm849k/FFSWVnZ3NwsFotV9MnMzKypqXF2dp46daqaw+IHZK2srFavXu3o6MjhcCZOnBgTE9PW1kbvVldXt3r16sOHD1tYWKgY7cUXX0QIff/992punWUszoEidWAeFtAjas7fbGxsnDRpkq2tbV5eXnt7+/Xr16VSKUEQaWlpVB8ej/fKK6/Q13J3d7e2tqa3KPfBxGIxj8eTSCS4mF5ZWZmrqyuHwyksLNTI+OqUB8TUnL+JT40//vjjAZdevXo1JiYGv7Pv4sWLQ45GwcWxhELh4sWLa2pqHjx4kJmZyePxnJ2dZTIZ1S0gIGD58uX0SLZt26Y8Wnt7O0LI29tbnU2znjfgeBOMNYmJiTdv3kxJSZk3bx6fz3d2dv7qq6/s7OxiYmKam5s1somurq79+/dLJBIej+fh4ZGVldXb2xsbG6uRwanHBDQyGvqj8BW9Ggudq6trdnb2ypUrr1y5Qq90NSR8HZPL5WZkZEyePNnS0nLp0qWJiYnV1dW7d+/GfdLS0m7cuLFr164hR+Pz+QRB4FB1H+RNMNbgeYj0Z65MTEz8/PweP36sqdNAHo+HzyuxGTNm2NvbV1ZWauRnX1hY2NbWJpFIRj4UhhOcsbHxYB3OnTuXmpqq+uqnMvw02ty5c+kXGYKCgtAfp9t37txZs2bN4cOHFZ5bG4yRkRFVS1vHQd4EYwquVmdqaqpwNQ3f821qatLIViwtLRVa8D1oRpN4tMbU1BQhRL0NRVOcnJwQQtbW1vRGvB/u3buHEMLXSWbPnk1NxcPzkDZu3Ig//v777/R15XI5l8vVbJCjBPImGFNMTEwEAkF3d/fDhw/p7fgMnXohuIGBQW9vL72DTCZTGEpFsbLW1laF82icMakZPCMcX7Ps7OwQQvgCogbhG18Kh9h4P+D/S61YsULhsqDC9c1nn32WWrGjo4MkSRyq7oO8CcaakJAQhBB9RktPT09BQQGXyw0ICMAtdnZ29fX1VIempqY7d+4ojGNmZkblvueff/7QoUPUou7u7rKyMurjr7/+2tDQIBaLqZ/9CMfXrOnTpyOE6urqBlwql8tdXFyGMeybb74pEonOnDlDn7CJnwh66623mI6GdxcOVfdB3gRjzY4dOyZNmhQXF5efn//w4cPq6up33nmnsbExNTWVmqHt7+/f0NCwd+/ezs7Ompqa2NhY5cneL730UnV19d27d0tKSmpra729valFAoFg/fr1JSUlXV1d5eXlERERHA4nNTWV6jCS8ZmWBxySWCy2sbGprKxUXpSWlsbj8dauXau8KCIigiCImzdvDjasiYlJenp6a2vrwoULb9y4IZPJjh49umPHDk9Pz5iYGKZB4tea+vv7M12RHVq8dz8AxPZ8AqBH1K8jd//+/bi4uEmTJhkbGwsEgoCAgIKCAnoHmUwWGRlpZ2fH5XK9vLzKysrc3d3xL2LdunW4T1VVlbe3N4/Hc3R03LdvH7WuWCwWiUTXrl0LCAiwsLDgcrk+Pj5FRUWaGn/I8oAU9evIrV+/3sjIqL6+XqH9wIEDXC43Pj5eeRVfX19zc3PltwEquHDhQkBAgEAg4HA4Li4umzdvfvTokXK36OhohcwTEBBA74BfCdPb26vO12E9b0DeBHpDR+pv4rzJdhQkySRvymQykUgUHR2t5sgPHjzgcrnKr54eJRUVFQRBHDt2TM3+rOcNOE8HYOwTCAR5eXk5OTn4pVKqkSQZExPD5/O3bdumhdhqa2ulUmliYuLChQu1sDmNgLwJwFPBzc2tvLz89OnTuP6mCs3NzbW1tQUFBdT0g4kfVAAAFiBJREFUg1F18ODBpKSkpKQkLWxLUyBvAqAu/Fx5ZWVlfX09QRAbNmxgOyJmnJyc8vPzcf1NFYRCYVFR0bRp07QT1c6dO/XoSBPTg5JNAOiI+Pj4+Ph4tqMA7IPjTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAhlicc0/CK8wAAMPC7vNCLM9D0rv3zQOtCQ8Pj4uL02D5XjCWzJo1i8WtE3DQB3QTQRDHjx9fsGAB24EAoAiubwIAADOQNwEAgBnImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAZiBvAgAAM5A3AQCAGcibAADADORNAABgBvImAAAwA3kTAACYgbwJAADMQN4EAABmIG8CAAAzkDcBAIAZyJsAAMAM5E0AAGAG8iYAADADeRMAAJiBvAkAAMxA3gQAAGYgbwIAADOQNwEAgBnImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAZozYDgCA/zp27NjDhw/pLf/6179kMhn1MSQkZPz48VqPCwBFBEmSbMcAAEIIvffee5mZmcbGxvgj/sskCAIh9OTJE3Nz85aWFhMTEzZDBAAhBOfpQHcsWrQIIdT3B7lcLpfL8b8NDQ3DwsIgaQIdAcebQFfI5XJbW9u2trYBlxYUFPj6+mo5JAAGBMebQFcYGRktWrSIOk+ne+aZZ3x8fLQfEgADgrwJdMiiRYv6+voUGo2NjZcsWWJoaMhKSAAog/N0oENIkpwwYUJdXZ1C+8WLF2fOnMlKSAAog+NNoEMIgoiIiFA4VXd0dPTw8GArJACUQd4EukXhVN3Y2Pi9997Ds5EA0BFwng50jouLy/Xr16mPV65cmTZtGovxAKAAjjeBzlmyZAl1qj516lRImkDXQN4EOiciIkIulyOEjI2N3333XbbDAUARnKcDXeTh4XHp0iWCIG7dujVhwgS2wwHgT+B4E+iipUuXIoQ8PT0haQIdpAf1kEpKSj777DO2owBa1d3dTRBET09PWFgY27EArZJIJKtWrWI7iiHowfHm3bt3c3Jy2I4CjK6cnBz6dHdTU1NbW1sHBwcWQ2JRXV3d0/k3X1paWlJSwnYUQ9OD400sOzub7RDAKCII4sMPP1ywYAHV8vvvvz/77LMshsSiEydOhIeHP4V/8/pyeqEHx5vg6fTUJk2g+yBvAgAAM5A3AQCAGcibAADADORNAPTe7du3g4ODOzo6EEKNjY1JSUkeHh58Pl8oFPr4+OTm5g5jzL6+vj179ri7u1tYWNjY2Lzxxht5eXmDPSYTHBxMEMT27dvpjQkJCcePHx/GpnUf5E2gxzo7O5977rl58+axHQibKioqPDw8/P39+Xw+QigqKiolJWXLli2NjY2lpaUODg5SqTQhIYHRmF1dXb6+vhkZGXv27GlpaSkvLzc3Nw8ODr569apy5yNHjuTl5Sm3R0VFJSYmbty4cXjfS5dB3gR6jCTJ/v7+/v5+tgIwNzf38vJia+sIoY6OjqCgoLfffnvlypVUY3JycmBgII/Hc3Jy+uKLL0QiUXJycktLi/rDrlmz5vLlyz/88MOrr77K5XInTJiQkZEx4HvxGhoa4uLilixZorxoypQpubm5SUlJJ06cGMZX02WQN4Ees7CwqKmp+e6779gOhDW7du1qamratGkT1ZKfn08vhsLhcKZOnfrkyRN6aT7VmpubDx06tHjxYltbW6qRx+N1d3dPnz5doXNUVFRYWJi/v/+AQ4nF4tDQ0NWrV+NCLWMG5E0A9BVJkunp6Z6envb29iq61dbWIoTGjRun5rDffvvtkydP1DmOPnz48NWrV5OTk1X0CQkJqaurO3XqlJpb1wuQN4G+OnnyJPGH7u5uhZZbt26Fh4dbWlpaW1vPmzevpqYGr5WcnIw7ODg4lJWV+fn5WVhYmJmZzZkzp7i4GPfZvn077kPljjNnzuCWZ555hj5OV1dXcXExXmRkpO2n7yorK5ubm8VisYo+mZmZNTU1zs7OU6dOVXPYn3/+GSFkZWW1evVqR0dHDoczceLEmJgYhVc019XVrV69+vDhwxYWFipGe/HFFxFC33//vZpb1w+kzsO35NiOAowuhNDx48eHseL8+fMRQo8fP1ZomT9//oULFzo7O8+ePcvlcmfOnElfSywW83g8iUSC+5SVlbm6unI4nMLCQqoPj8d75ZVX6Gu5u7tbW1vTW5T7YHPmzBk3blxJSckwvhGp9t/80aNHEUIff/zxgEuvXr0aExNjYGBgZWV18eJF9beOd6BQKFy8eHFNTc2DBw8yMzN5PJ6zs7NMJqO6BQQELF++nB7Jtm3blEdrb29HCHl7e6uz6dDQ0NDQUPVDZQscb4KxKTIyUiKR8Hi8uXPnBgYGlpWV3b9/n96hq6tr//79uI+Hh0dWVlZvb29sbKxGtt7f349/YBoZbTCNjY0IIYFAMOBSV1fX7OzslStXXrlyhdHbQPHBO5fLzcjImDx5sqWl5dKlSxMTE6urq3fv3o37pKWl3bhxY9euXUOOxufzCYLAoY4ZkDfB2ETPFI6OjgihhoYGegcej4dPIbEZM2bY29tXVlZq5BdeWFjY1tYmkUhGPpQKOMEpvP6T7ty5c6mpqaqvfirj8XgIoblz59KvPAQFBaE/Trfv3LmzZs2aw4cP455DMjIyevz4MaMYdBzkTTA20Y/COBwOQkhhupKlpaXCKjY2NgghRvN12GVqaooQor/+UyOcnJwQQtbW1vRGvHPu3buHEMrLy2tvb589ezZ1NRnPQ9q4cSP++Pvvv9PXlcvlXC5Xs0GyC/ImeEq1trYqnEfjjIkTBELIwMCgt7eX3kEmkykMwu4Liu3s7BBC+AKiBuG7YQrH3Xjn4JlJK1asULjep3B9k17LqqOjgyRJHOqYAXkTPKW6u7vLysqoj7/++mtDQ4NYLKZ+4XZ2dvX19VSHpqamO3fuKAxiZmZG5dbnn3/+0KFDoxz1n+DZlPR6z3RyudzFxWUYw7755psikejMmTP4OgCGnwh66623mI6G96HyxE+9BnkTPKUEAsH69etLSkq6urrKy8sjIiI4HE5qairVwd/fv6GhYe/evZ2dnTU1NbGxsdShKOWll16qrq6+e/duSUlJbW2tt7c3bvf19bW2ti4tLR3VryAWi21sbCorK5UXpaWl8Xi8tWvXKi+KiIggCOLmzZuDDWtiYpKent7a2rpw4cIbN27IZLKjR4/u2LHD09MzJiaGaZAVFRUIocEmxusrLd67HyaYh/Q0QMznISmUq1i8eLHCKxY++ugj8s9n4oGBgXhdsVgsEomuXbsWEBBgYWHB5XJ9fHyKioro48tkssjISDs7Oy6X6+XlVVZW5u7ujsdZt24d7lNVVeXt7c3j8RwdHfft20et6+3tbWVldeHCheHtDfX/5tevX29kZFRfX6/QfuDAAS6XGx8fr7yKr6+vubm5XC5XPfKFCxcCAgIEAgGHw3Fxcdm8efOjR4+Uu0VHRyuklICAAHqHsLAwkUjU29urztfRl3lIepCPIG8+DYaRN0cC502tbY4p9f/mZTKZSCSKjo5Wc+QHDx5wudzIyMgRRMdARUUFQRDHjh1Ts7++5E04TwdAjwkEgry8vJycnH379g3ZmSTJmJgYPp+/bds2LcRWW1srlUoTExMXLlyohc1p0xjMm+Xl5e+9956Tk5OpqamlpeXMmTO3bt2qfCdU35mbmxM0+LEQsVi8fPnyS5cusR0d0B43N7fy8vLTp0/j+psqNDc319bWFhQUCIVCLQR28ODBpKSkpKQkLWxLy8Za3kxMTHz55ZetrKzy8/NlMtnNmzf//ve/5+bmOjs7U08fjw2dnZ2//PILQmj+/PkkSfb19VVVVW3durWqqsrDw+Mvf/nLo0eP2I5RF+HnyisrK+vr6wmC2LBhA9sRaYCTk1N+fj6uv6mCUCgsKiqaNm2adqLauXPn2DvS/C+2LxQMTf1rPfjs48CBAwrtXV1duGz1b7/9xnTrgz2ArCkjGZ+eN+nwXdTg4GDqaT/dh7R7fVPHPbXX9OH6prb9/vvvW7Zseemll5Rv8JmZme3Zs+fhw4fDmEWhjz755BNPT89vv/3266+/ZjsWAMagsZM3Dxw4IJfLB3tvvbe3t729/dmzZ3EtwrGNIAhc/Xv//v1sxwLAGDR28uaPP/6IEFJRixAv+s9//oNGVmBRLwo44u2WlpZSDy/fu3cvJibGycmJw+GMHz9eKpXiCclIvbKVCKGenp5Nmza5uLiYmZmNGzcuKCgIF7ilOqjYBABjCtsXCoam5rUe/HjcTz/9NFiHiIgI9OdihSMpsKgLBRwHu75JkiRVfqahoYEkyYaGhokTJ9ra2p46derhw4dXrlzx8fExNTWlT8wesmxlZGSkQCD44YcfHj161NTUFB8fjxA6f/48XqrOJlRAcH2TBq5v6rixc7yJDVlnQYOFGHS5gKPCiomJibdv3/7ss8/efPNNc3PzadOmff311yRJ/u1vf1NYUUXZyoKCgmnTpr322mtcLtfW1vbTTz91dnYexiYA0Hfaruw/euzt7RsbG1tbWwfrgBcxrUWogooCjiOv/lJYWDiS1XExG2NjY3xZ4OTJkwYGBvT35QqFwmnTpl26dKmurs7BwYFqH7BsJR7k9ddf//zzz99///1ly5bNnDnT0NCQ/qov9TcxmPDw8PDw8JF86zGG3WJLbAkNDWU7hKGNnbzp4+Nz6dKlioqK119/fcAOuPzB7NmzNbXFAQs4NjQ0tLS0sF41q6ioCCEkkUiMjY17enpwqbEBC4PfuHGDntRUlK3ct2+fRCLJzMz08/NDCHl7e0dHR4eEhCCEGG1iMHFxcaNd6FdflJSUpKSk4LP1p8qePXvYDkEtYydvRkdH/+Mf/8jOzk5ISFBeWlRU1NDQEBQUNGHCBKpxhAUWcQFHegcdKeDY39+Pn7pbsWIFQsjExMTS0rKzs/Px48cjufWEy9MuWbKkr6+vsLAwOTlZKpXu3r171apVGtmERCJZsGDBsMMbY1JSUp7CvZGdnc12CGoZO9c3nZ2d//73v//8888HDx5UWPTo0aO4uDhra+uUlBR6+wgLLOpsAcfExMSLFy+GhIRQs7KkUqlcLld4Ymrnzp0TJkxQ/8XWlpaWVVVVCCFjY+PXXnsN34Wn3u+qkU0AoB/YuyWlLkb3FhMTEw0NDT/88MMrV650d3c/ePAgLy/Pzc1NJBKVl5crdMaTHP/3f/9/e/cf0sQbxwH8OdqmS91RUS5OyDkYZT9WMigCESbMwhJavyQEIRIJYklJNcEockThH45vfxgrIoIiCwo2jIhVf0STVJpggdImlTYPtMwVLVmsPx467uvmdbeb7e72ef3n3eNzj/P4sN3z7P38F41G3717d+DAAYqi5s1379ixgyTJDx8+vHz5UqVSvX37Fh83m80kSVZXV3PMp4vpX+h8+q9fv2iafvjwodVqRQgdPnyYnfpF07TRaCwrK+vt7Z2ZmZmenu7u7l66dCl7Cjt5Y8jTp08jhF6/fo1/JEmyqqpqaGgoFovRNH3u3DmEUEdHB/9LcEAwn84C8+kSJ4P/jdB7qL+/v7Gxcc2aNRqNpqioyGKxdHR0sPcvZYgJWMx6gOO8LbEIgiBJcuPGjUePHh0cHExuPz09feLEibKyMrVavXLlSpvN9uTJE3yKZ2xlMBhsbm5et24dXr+5bds2j8fD/ionxyX+CuomG9RNiSMSi7xVqXg9PT0HDx6U2jg3b948NTW10BYFQCiCIO7evZuDT/RSkuY9/w/gJ0vSf8qpnOebAADG+/fv6+rqcLJcJBJxuVwWi0Wn0+n1+qqqqnlR+fz19vaaTKaUU39nzpzJnQUAUDcBUJpgMGixWGw2G06Wa2pq6urqOn/+fCQS6evrKykpsdvtKZedcAiFQnV1dU6nk6bplA2ampqcTmd7e3sG/gDJg7opmCIDHHNKYWEhkxsgx/65zc7O7t69e+/evXhaEuvs7KytrS0oKCgtLb1x4wZFUZ2dnYJ2im9vb9++ffvg4GBRUVHKBkaj8cGDBy6Xq6enR+zfIHnKWb/5z7S2tuKvZgMgQZcvX56cnDx79ixzxOfzsRtoNJry8vKJiYmRkZHkHToXcv36da1Wy93GbDbv27fv5MmTdrs9gyE1EgTvNwFQjkQice3ata1bt3J/nxinKS5fvpx/z38tmtiePXvGx8eZVb1KBXUTyAle6mQ0GjUazbJly3bu3Pns2TN8SvHZgHwMDQ3RNM2RpogQunnzZigUMplM5eXlGR8ATmx4/PhxxnuWluwug+IjZ9ey5RTEY/1mJBIxGAzFxcVer/fr168jIyN2u50gCI/Hw7SRezYglvY9f+vWLfT/sES2N2/eOBwOvIXfq1ev0ug/kUhQFLVkyZKFzuKYgsrKyvQ6l8v6TXi/CWTD6XSOjY11dXXt2rVLp9OZTKbbt2+vXr3a4XAsNMkrlJSzAfnAOVgp01UQQps2bbp3796xY8eGh4fZwVcZpNPpCILAw1AwqJtANvCqw9raWuZIXl5edXX1jx8/MvXBkCMbUHznz58///z586JmPsViMYSQWq1eqMHTp0/dbncG0xSTqVQqJjZbqaBuAnnAUXX5+fnz1sEUFxcjhCYnJzNylZTZgOhP0pX05efnI4SYzVGyIh6P85xEki+om0Ae8vLySJKMxWLRaJR9HH9C1+v1+MeMZAOyj0gkG5AnnMWFHzJmxezsbOLPpjUKBnUTyAbOSGavcfn586ff79dqtTU1NfiIUrMBedqwYQNCaKHYhHg8vnbt2kUdAH5x8DAUDOomkI2LFy8aDIaWlhafzxeNRkdHRw8dOhSJRNxuN/60jhCy2WyfPn26cuXKt2/fQqHQ8ePHk5d2V1RUjI6Ofvz4MRAIhMPhyspK5hRJkm1tbYFA4Pv37wMDAw0NDRqNxu12Mw3E9G+1WlesWNHX15f5l+YPs9m8atUqvLXBPB6Pp6Cg4NSpU8mnGhoaCIIYGxsTPwC8g6nNZhPflaRlczKfH1iHlAsQvxy5qamplpYWg8GgVqtJkqypqfH7/ewGss4GZIi559va2lQq1cTExLzj3d3dWq22tbU1+VesVmthYWE8Hufo1uv1JlcP9gowbP/+/RRFzc3NpTd4uaxDkkE9grqZC3jWzUWF62Z2x4CJuednZmYoimpububZ/suXL1qt9siRI+ldji0YDBIEcefOnbR7kEvdhM/pACgKSZJer/f+/ft4jyluiUTC4XDodLoLFy6IvG44HLbb7U6ns76+XmRX0gd1EwCl2bJly8DAwKNHj3D+JgeapsPhsN/vZxYkpO3q1asul8vlconsRxagbgKgwGzA0tJSn8+H8zc56PX6Fy9erF+/XvwVL126lAvvNDElZz0BwBNkAwJB4P0mAAAIA3UTAACEgboJAADCQN0EAABhZDMvlAubPeW4QCCQ7SFIBX4pcvCeHx8fLykpyfYoeMj2wvu/y51NmQEAsvi+EJFYzPRpAABQHni+CQAAwkDdBAAAYaBuAgCAMFA3AQBAmN/I1Q74MRFjcwAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<IPython.core.display.Image object>"
+      ]
+     },
+     "execution_count": 6,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "model=get_model_v1( (13,) )\n",
     "\n",
-    "model.summary()"
+    "model.summary()\n",
+    "keras.utils.plot_model( model, to_file='./run/model.png', show_shapes=True, show_layer_names=True, dpi=96)"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "### 5.2/ Add callback"
+    "### 5.2 - Add callback"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 7,
    "metadata": {},
    "outputs": [],
    "source": [
     "os.makedirs('./run/models',   mode=0o750, exist_ok=True)\n",
     "save_dir = \"./run/models/best_model.h5\"\n",
+    "\n",
     "savemodel_callback = tf.keras.callbacks.ModelCheckpoint(filepath=save_dir, verbose=0, save_best_only=True)"
    ]
   },
@@ -231,20 +716,228 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "### 5.3/ Train it"
+    "### 5.3 - Train it"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 8,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Train on 354 samples, validate on 152 samples\n",
+      "Epoch 1/100\n",
+      "354/354 [==============================] - 1s 3ms/sample - loss: 446.5069 - mae: 19.1690 - mse: 446.5069 - val_loss: 328.7387 - val_mae: 16.4455 - val_mse: 328.7387\n",
+      "Epoch 2/100\n",
+      "354/354 [==============================] - 0s 301us/sample - loss: 206.7491 - mae: 12.2281 - mse: 206.7491 - val_loss: 102.8150 - val_mae: 8.6449 - val_mse: 102.8150\n",
+      "Epoch 3/100\n",
+      "354/354 [==============================] - 0s 302us/sample - loss: 65.8724 - mae: 6.2331 - mse: 65.8724 - val_loss: 33.7508 - val_mae: 4.5848 - val_mse: 33.7508\n",
+      "Epoch 4/100\n",
+      "354/354 [==============================] - 0s 318us/sample - loss: 33.4179 - mae: 4.2331 - mse: 33.4179 - val_loss: 27.0058 - val_mae: 3.9154 - val_mse: 27.0058\n",
+      "Epoch 5/100\n",
+      "354/354 [==============================] - 0s 312us/sample - loss: 24.9602 - mae: 3.5624 - mse: 24.9602 - val_loss: 23.2470 - val_mae: 3.5429 - val_mse: 23.2470\n",
+      "Epoch 6/100\n",
+      "354/354 [==============================] - 0s 316us/sample - loss: 21.4080 - mae: 3.2530 - mse: 21.4080 - val_loss: 22.1707 - val_mae: 3.4498 - val_mse: 22.1707\n",
+      "Epoch 7/100\n",
+      "354/354 [==============================] - 0s 262us/sample - loss: 18.3586 - mae: 3.0399 - mse: 18.3586 - val_loss: 24.4102 - val_mae: 3.4754 - val_mse: 24.4102\n",
+      "Epoch 8/100\n",
+      "354/354 [==============================] - 0s 307us/sample - loss: 16.9126 - mae: 2.8925 - mse: 16.9126 - val_loss: 20.1919 - val_mae: 3.2138 - val_mse: 20.1919\n",
+      "Epoch 9/100\n",
+      "354/354 [==============================] - 0s 312us/sample - loss: 15.5047 - mae: 2.7532 - mse: 15.5047 - val_loss: 19.0378 - val_mae: 3.0763 - val_mse: 19.0378\n",
+      "Epoch 10/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 14.5763 - mae: 2.6404 - mse: 14.5763 - val_loss: 19.9752 - val_mae: 3.0986 - val_mse: 19.9752\n",
+      "Epoch 11/100\n",
+      "354/354 [==============================] - 0s 310us/sample - loss: 13.5901 - mae: 2.5801 - mse: 13.5901 - val_loss: 18.9675 - val_mae: 3.0192 - val_mse: 18.9675\n",
+      "Epoch 12/100\n",
+      "354/354 [==============================] - 0s 270us/sample - loss: 12.9341 - mae: 2.5158 - mse: 12.9341 - val_loss: 20.6757 - val_mae: 3.1029 - val_mse: 20.6757\n",
+      "Epoch 13/100\n",
+      "354/354 [==============================] - 0s 311us/sample - loss: 12.4520 - mae: 2.5061 - mse: 12.4520 - val_loss: 17.6596 - val_mae: 2.8839 - val_mse: 17.6596\n",
+      "Epoch 14/100\n",
+      "354/354 [==============================] - 0s 311us/sample - loss: 11.9484 - mae: 2.4710 - mse: 11.9484 - val_loss: 16.7645 - val_mae: 2.8083 - val_mse: 16.7645\n",
+      "Epoch 15/100\n",
+      "354/354 [==============================] - 0s 269us/sample - loss: 11.6260 - mae: 2.3959 - mse: 11.6260 - val_loss: 17.5048 - val_mae: 2.8007 - val_mse: 17.5048\n",
+      "Epoch 16/100\n",
+      "354/354 [==============================] - 0s 267us/sample - loss: 11.2504 - mae: 2.3567 - mse: 11.2504 - val_loss: 18.6748 - val_mae: 2.8771 - val_mse: 18.6748\n",
+      "Epoch 17/100\n",
+      "354/354 [==============================] - 0s 269us/sample - loss: 10.8352 - mae: 2.3051 - mse: 10.8352 - val_loss: 19.4796 - val_mae: 3.0041 - val_mse: 19.4796\n",
+      "Epoch 18/100\n",
+      "354/354 [==============================] - 0s 267us/sample - loss: 10.6488 - mae: 2.3377 - mse: 10.6488 - val_loss: 17.0329 - val_mae: 2.7640 - val_mse: 17.0329\n",
+      "Epoch 19/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 10.2134 - mae: 2.2439 - mse: 10.2134 - val_loss: 18.0589 - val_mae: 2.8565 - val_mse: 18.0589\n",
+      "Epoch 20/100\n",
+      "354/354 [==============================] - 0s 315us/sample - loss: 10.1024 - mae: 2.2432 - mse: 10.1024 - val_loss: 16.5968 - val_mae: 2.7402 - val_mse: 16.5968\n",
+      "Epoch 21/100\n",
+      "354/354 [==============================] - 0s 277us/sample - loss: 10.0576 - mae: 2.2401 - mse: 10.0576 - val_loss: 18.4496 - val_mae: 2.8156 - val_mse: 18.4496\n",
+      "Epoch 22/100\n",
+      "354/354 [==============================] - 0s 269us/sample - loss: 9.6590 - mae: 2.1500 - mse: 9.6590 - val_loss: 18.7084 - val_mae: 2.8309 - val_mse: 18.7084\n",
+      "Epoch 23/100\n",
+      "354/354 [==============================] - 0s 277us/sample - loss: 9.4596 - mae: 2.1967 - mse: 9.4596 - val_loss: 18.0308 - val_mae: 2.7595 - val_mse: 18.0308\n",
+      "Epoch 24/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 9.2778 - mae: 2.1680 - mse: 9.2778 - val_loss: 18.9343 - val_mae: 2.9152 - val_mse: 18.9343\n",
+      "Epoch 25/100\n",
+      "354/354 [==============================] - 0s 267us/sample - loss: 9.1075 - mae: 2.1451 - mse: 9.1076 - val_loss: 18.0646 - val_mae: 2.8202 - val_mse: 18.0646\n",
+      "Epoch 26/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 9.2196 - mae: 2.1282 - mse: 9.2196 - val_loss: 18.7244 - val_mae: 2.8288 - val_mse: 18.7244\n",
+      "Epoch 27/100\n",
+      "354/354 [==============================] - 0s 267us/sample - loss: 8.5733 - mae: 2.0703 - mse: 8.5733 - val_loss: 16.9568 - val_mae: 2.8123 - val_mse: 16.9568\n",
+      "Epoch 28/100\n",
+      "354/354 [==============================] - 0s 309us/sample - loss: 8.6252 - mae: 2.0821 - mse: 8.6252 - val_loss: 16.4984 - val_mae: 2.7069 - val_mse: 16.4984\n",
+      "Epoch 29/100\n",
+      "354/354 [==============================] - 0s 307us/sample - loss: 8.6336 - mae: 2.0822 - mse: 8.6336 - val_loss: 16.0498 - val_mae: 2.6532 - val_mse: 16.0498\n",
+      "Epoch 30/100\n",
+      "354/354 [==============================] - 0s 321us/sample - loss: 8.5071 - mae: 2.0379 - mse: 8.5071 - val_loss: 15.1042 - val_mae: 2.6004 - val_mse: 15.1042\n",
+      "Epoch 31/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 8.2888 - mae: 2.0627 - mse: 8.2888 - val_loss: 16.2730 - val_mae: 2.7019 - val_mse: 16.2730\n",
+      "Epoch 32/100\n",
+      "354/354 [==============================] - 0s 271us/sample - loss: 8.2021 - mae: 2.0000 - mse: 8.2021 - val_loss: 17.2852 - val_mae: 2.7962 - val_mse: 17.2852\n",
+      "Epoch 33/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 8.2973 - mae: 2.0336 - mse: 8.2973 - val_loss: 16.8973 - val_mae: 2.7318 - val_mse: 16.8973\n",
+      "Epoch 34/100\n",
+      "354/354 [==============================] - 0s 257us/sample - loss: 8.1033 - mae: 2.0105 - mse: 8.1033 - val_loss: 16.6509 - val_mae: 2.8218 - val_mse: 16.6509\n",
+      "Epoch 35/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 8.0724 - mae: 2.0170 - mse: 8.0724 - val_loss: 16.0802 - val_mae: 2.6733 - val_mse: 16.0802\n",
+      "Epoch 36/100\n",
+      "354/354 [==============================] - 0s 257us/sample - loss: 7.7939 - mae: 1.9606 - mse: 7.7939 - val_loss: 17.1008 - val_mae: 2.7384 - val_mse: 17.1008\n",
+      "Epoch 37/100\n",
+      "354/354 [==============================] - 0s 269us/sample - loss: 7.7812 - mae: 1.9719 - mse: 7.7812 - val_loss: 16.3472 - val_mae: 2.6939 - val_mse: 16.3472\n",
+      "Epoch 38/100\n",
+      "354/354 [==============================] - 0s 276us/sample - loss: 7.4494 - mae: 1.9224 - mse: 7.4494 - val_loss: 19.3916 - val_mae: 2.9414 - val_mse: 19.3916\n",
+      "Epoch 39/100\n",
+      "354/354 [==============================] - 0s 271us/sample - loss: 7.8023 - mae: 1.9978 - mse: 7.8023 - val_loss: 16.3499 - val_mae: 2.7018 - val_mse: 16.3499\n",
+      "Epoch 40/100\n",
+      "354/354 [==============================] - 0s 270us/sample - loss: 7.3681 - mae: 1.9293 - mse: 7.3681 - val_loss: 16.0445 - val_mae: 2.6872 - val_mse: 16.0445\n",
+      "Epoch 41/100\n",
+      "354/354 [==============================] - 0s 267us/sample - loss: 7.3013 - mae: 1.8820 - mse: 7.3013 - val_loss: 16.5657 - val_mae: 2.7222 - val_mse: 16.5657\n",
+      "Epoch 42/100\n",
+      "354/354 [==============================] - 0s 274us/sample - loss: 7.3978 - mae: 1.9154 - mse: 7.3978 - val_loss: 15.9821 - val_mae: 2.6576 - val_mse: 15.9821\n",
+      "Epoch 43/100\n",
+      "354/354 [==============================] - 0s 319us/sample - loss: 6.9832 - mae: 1.9037 - mse: 6.9832 - val_loss: 14.4977 - val_mae: 2.5418 - val_mse: 14.4977\n",
+      "Epoch 44/100\n",
+      "354/354 [==============================] - 0s 269us/sample - loss: 7.2307 - mae: 1.8968 - mse: 7.2307 - val_loss: 15.0962 - val_mae: 2.6188 - val_mse: 15.0962\n",
+      "Epoch 45/100\n",
+      "354/354 [==============================] - 0s 256us/sample - loss: 7.0289 - mae: 1.8685 - mse: 7.0289 - val_loss: 17.0531 - val_mae: 2.8123 - val_mse: 17.0531\n",
+      "Epoch 46/100\n",
+      "354/354 [==============================] - 0s 270us/sample - loss: 6.9010 - mae: 1.8537 - mse: 6.9010 - val_loss: 16.7469 - val_mae: 2.7081 - val_mse: 16.7469\n",
+      "Epoch 47/100\n",
+      "354/354 [==============================] - 0s 268us/sample - loss: 6.9256 - mae: 1.8664 - mse: 6.9256 - val_loss: 16.1227 - val_mae: 2.7760 - val_mse: 16.1227\n",
+      "Epoch 48/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 6.8333 - mae: 1.8552 - mse: 6.8333 - val_loss: 14.9262 - val_mae: 2.6213 - val_mse: 14.9262\n",
+      "Epoch 49/100\n",
+      "354/354 [==============================] - 0s 313us/sample - loss: 6.7351 - mae: 1.8375 - mse: 6.7351 - val_loss: 14.2252 - val_mae: 2.5309 - val_mse: 14.2252\n",
+      "Epoch 50/100\n",
+      "354/354 [==============================] - 0s 276us/sample - loss: 6.6672 - mae: 1.7913 - mse: 6.6672 - val_loss: 16.5652 - val_mae: 2.7693 - val_mse: 16.5652\n",
+      "Epoch 51/100\n",
+      "354/354 [==============================] - 0s 271us/sample - loss: 6.6222 - mae: 1.8325 - mse: 6.6222 - val_loss: 14.8928 - val_mae: 2.5921 - val_mse: 14.8928\n",
+      "Epoch 52/100\n",
+      "354/354 [==============================] - 0s 271us/sample - loss: 6.5606 - mae: 1.8150 - mse: 6.5606 - val_loss: 14.7382 - val_mae: 2.6124 - val_mse: 14.7382\n",
+      "Epoch 53/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 6.5737 - mae: 1.7757 - mse: 6.5737 - val_loss: 14.8866 - val_mae: 2.6357 - val_mse: 14.8866\n",
+      "Epoch 54/100\n",
+      "354/354 [==============================] - 0s 264us/sample - loss: 6.3009 - mae: 1.7569 - mse: 6.3009 - val_loss: 14.6100 - val_mae: 2.6115 - val_mse: 14.6100\n",
+      "Epoch 55/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 6.2524 - mae: 1.7679 - mse: 6.2524 - val_loss: 17.4939 - val_mae: 2.8652 - val_mse: 17.4939\n",
+      "Epoch 56/100\n",
+      "354/354 [==============================] - 0s 319us/sample - loss: 6.2461 - mae: 1.7830 - mse: 6.2461 - val_loss: 14.0397 - val_mae: 2.5829 - val_mse: 14.0397\n",
+      "Epoch 57/100\n",
+      "354/354 [==============================] - 0s 267us/sample - loss: 6.3124 - mae: 1.7788 - mse: 6.3124 - val_loss: 15.4946 - val_mae: 2.7133 - val_mse: 15.4946\n",
+      "Epoch 58/100\n",
+      "354/354 [==============================] - 0s 269us/sample - loss: 6.1133 - mae: 1.7282 - mse: 6.1133 - val_loss: 14.5244 - val_mae: 2.5982 - val_mse: 14.5244\n",
+      "Epoch 59/100\n",
+      "354/354 [==============================] - 0s 259us/sample - loss: 6.2866 - mae: 1.7860 - mse: 6.2866 - val_loss: 15.8915 - val_mae: 2.7331 - val_mse: 15.8915\n",
+      "Epoch 60/100\n",
+      "354/354 [==============================] - 0s 311us/sample - loss: 5.9945 - mae: 1.7178 - mse: 5.9945 - val_loss: 13.2656 - val_mae: 2.5189 - val_mse: 13.2656\n",
+      "Epoch 61/100\n",
+      "354/354 [==============================] - 0s 263us/sample - loss: 6.0649 - mae: 1.7064 - mse: 6.0649 - val_loss: 15.4134 - val_mae: 2.7351 - val_mse: 15.4134\n",
+      "Epoch 62/100\n",
+      "354/354 [==============================] - 0s 268us/sample - loss: 5.9954 - mae: 1.6767 - mse: 5.9954 - val_loss: 13.8741 - val_mae: 2.5721 - val_mse: 13.8741\n",
+      "Epoch 63/100\n",
+      "354/354 [==============================] - 0s 254us/sample - loss: 5.9648 - mae: 1.7023 - mse: 5.9648 - val_loss: 15.1974 - val_mae: 2.6602 - val_mse: 15.1974\n",
+      "Epoch 64/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 5.7276 - mae: 1.7202 - mse: 5.7276 - val_loss: 14.5766 - val_mae: 2.6508 - val_mse: 14.5766\n",
+      "Epoch 65/100\n",
+      "354/354 [==============================] - 0s 266us/sample - loss: 5.8443 - mae: 1.6907 - mse: 5.8443 - val_loss: 15.5797 - val_mae: 2.6848 - val_mse: 15.5797\n",
+      "Epoch 66/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 5.8195 - mae: 1.7295 - mse: 5.8195 - val_loss: 14.5484 - val_mae: 2.6527 - val_mse: 14.5484\n",
+      "Epoch 67/100\n",
+      "354/354 [==============================] - 0s 266us/sample - loss: 5.8216 - mae: 1.6966 - mse: 5.8216 - val_loss: 14.3616 - val_mae: 2.5733 - val_mse: 14.3616\n",
+      "Epoch 68/100\n",
+      "354/354 [==============================] - 0s 271us/sample - loss: 5.6572 - mae: 1.6543 - mse: 5.6572 - val_loss: 16.1438 - val_mae: 2.8151 - val_mse: 16.1438\n",
+      "Epoch 69/100\n",
+      "354/354 [==============================] - 0s 259us/sample - loss: 5.5142 - mae: 1.6657 - mse: 5.5142 - val_loss: 14.2295 - val_mae: 2.5796 - val_mse: 14.2295\n",
+      "Epoch 70/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 5.4965 - mae: 1.6313 - mse: 5.4965 - val_loss: 15.2662 - val_mae: 2.6980 - val_mse: 15.2662\n",
+      "Epoch 71/100\n",
+      "354/354 [==============================] - 0s 270us/sample - loss: 5.4534 - mae: 1.6717 - mse: 5.4534 - val_loss: 14.5025 - val_mae: 2.6441 - val_mse: 14.5025\n",
+      "Epoch 72/100\n",
+      "354/354 [==============================] - 0s 253us/sample - loss: 5.5146 - mae: 1.6526 - mse: 5.5146 - val_loss: 13.7906 - val_mae: 2.5753 - val_mse: 13.7906\n",
+      "Epoch 73/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 5.4499 - mae: 1.6130 - mse: 5.4499 - val_loss: 15.1649 - val_mae: 2.7624 - val_mse: 15.1649\n",
+      "Epoch 74/100\n",
+      "354/354 [==============================] - 0s 309us/sample - loss: 5.3808 - mae: 1.6297 - mse: 5.3808 - val_loss: 12.9326 - val_mae: 2.5007 - val_mse: 12.9326\n",
+      "Epoch 75/100\n",
+      "354/354 [==============================] - 0s 258us/sample - loss: 5.3546 - mae: 1.6313 - mse: 5.3546 - val_loss: 13.6397 - val_mae: 2.5810 - val_mse: 13.6397\n",
+      "Epoch 76/100\n",
+      "354/354 [==============================] - 0s 265us/sample - loss: 5.1666 - mae: 1.5998 - mse: 5.1666 - val_loss: 15.6069 - val_mae: 2.7630 - val_mse: 15.6069\n",
+      "Epoch 77/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 5.2465 - mae: 1.6192 - mse: 5.2465 - val_loss: 14.8084 - val_mae: 2.6388 - val_mse: 14.8084\n",
+      "Epoch 78/100\n",
+      "354/354 [==============================] - 0s 265us/sample - loss: 5.1107 - mae: 1.5772 - mse: 5.1107 - val_loss: 13.6319 - val_mae: 2.5756 - val_mse: 13.6319\n",
+      "Epoch 79/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 5.2677 - mae: 1.5989 - mse: 5.2677 - val_loss: 15.0306 - val_mae: 2.7715 - val_mse: 15.0306\n",
+      "Epoch 80/100\n",
+      "354/354 [==============================] - 0s 274us/sample - loss: 5.0534 - mae: 1.5504 - mse: 5.0534 - val_loss: 13.3917 - val_mae: 2.5352 - val_mse: 13.3917\n",
+      "Epoch 81/100\n",
+      "354/354 [==============================] - 0s 272us/sample - loss: 5.1013 - mae: 1.5826 - mse: 5.1013 - val_loss: 14.6761 - val_mae: 2.7158 - val_mse: 14.6761\n",
+      "Epoch 82/100\n",
+      "354/354 [==============================] - 0s 258us/sample - loss: 5.1137 - mae: 1.5984 - mse: 5.1137 - val_loss: 14.7063 - val_mae: 2.6576 - val_mse: 14.7063\n",
+      "Epoch 83/100\n",
+      "354/354 [==============================] - 0s 269us/sample - loss: 4.9343 - mae: 1.5545 - mse: 4.9343 - val_loss: 13.6205 - val_mae: 2.5494 - val_mse: 13.6205\n",
+      "Epoch 84/100\n",
+      "354/354 [==============================] - 0s 277us/sample - loss: 4.9839 - mae: 1.5815 - mse: 4.9839 - val_loss: 13.3857 - val_mae: 2.6047 - val_mse: 13.3857\n",
+      "Epoch 85/100\n",
+      "354/354 [==============================] - 0s 277us/sample - loss: 4.9946 - mae: 1.5818 - mse: 4.9946 - val_loss: 14.1012 - val_mae: 2.6176 - val_mse: 14.1012\n",
+      "Epoch 86/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 4.7884 - mae: 1.5321 - mse: 4.7884 - val_loss: 14.5182 - val_mae: 2.6687 - val_mse: 14.5182\n",
+      "Epoch 87/100\n",
+      "354/354 [==============================] - 0s 311us/sample - loss: 4.8134 - mae: 1.5660 - mse: 4.8134 - val_loss: 12.7966 - val_mae: 2.5734 - val_mse: 12.7966\n",
+      "Epoch 88/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 4.7923 - mae: 1.5483 - mse: 4.7923 - val_loss: 14.4001 - val_mae: 2.6707 - val_mse: 14.4001\n",
+      "Epoch 89/100\n",
+      "354/354 [==============================] - 0s 274us/sample - loss: 4.6705 - mae: 1.5086 - mse: 4.6705 - val_loss: 15.3677 - val_mae: 2.7359 - val_mse: 15.3677\n",
+      "Epoch 90/100\n",
+      "354/354 [==============================] - 0s 280us/sample - loss: 4.8776 - mae: 1.5806 - mse: 4.8776 - val_loss: 14.4442 - val_mae: 2.6343 - val_mse: 14.4442\n",
+      "Epoch 91/100\n",
+      "354/354 [==============================] - 0s 260us/sample - loss: 4.6349 - mae: 1.5300 - mse: 4.6349 - val_loss: 14.2969 - val_mae: 2.7718 - val_mse: 14.2969\n",
+      "Epoch 92/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 4.7835 - mae: 1.5637 - mse: 4.7835 - val_loss: 13.1123 - val_mae: 2.5578 - val_mse: 13.1123\n",
+      "Epoch 93/100\n",
+      "354/354 [==============================] - 0s 277us/sample - loss: 4.6759 - mae: 1.5259 - mse: 4.6759 - val_loss: 14.3508 - val_mae: 2.6888 - val_mse: 14.3507\n",
+      "Epoch 94/100\n",
+      "354/354 [==============================] - 0s 273us/sample - loss: 4.7856 - mae: 1.5560 - mse: 4.7856 - val_loss: 14.5237 - val_mae: 2.6956 - val_mse: 14.5237\n",
+      "Epoch 95/100\n",
+      "354/354 [==============================] - 0s 313us/sample - loss: 4.7038 - mae: 1.5331 - mse: 4.7038 - val_loss: 12.7707 - val_mae: 2.5393 - val_mse: 12.7707\n",
+      "Epoch 96/100\n",
+      "354/354 [==============================] - 0s 277us/sample - loss: 4.6006 - mae: 1.5331 - mse: 4.6006 - val_loss: 13.8540 - val_mae: 2.6720 - val_mse: 13.8540\n",
+      "Epoch 97/100\n",
+      "354/354 [==============================] - 0s 269us/sample - loss: 4.4720 - mae: 1.4912 - mse: 4.4720 - val_loss: 13.1524 - val_mae: 2.6311 - val_mse: 13.1524\n",
+      "Epoch 98/100\n",
+      "354/354 [==============================] - 0s 309us/sample - loss: 4.4242 - mae: 1.4854 - mse: 4.4242 - val_loss: 11.7020 - val_mae: 2.4886 - val_mse: 11.7020\n",
+      "Epoch 99/100\n",
+      "354/354 [==============================] - 0s 280us/sample - loss: 4.5642 - mae: 1.4920 - mse: 4.5642 - val_loss: 12.6523 - val_mae: 2.5232 - val_mse: 12.6523\n",
+      "Epoch 100/100\n",
+      "354/354 [==============================] - 0s 274us/sample - loss: 4.1971 - mae: 1.4564 - mse: 4.1971 - val_loss: 18.7164 - val_mae: 3.0774 - val_mse: 18.7164\n"
+     ]
+    }
+   ],
    "source": [
     "history = model.fit(x_train,\n",
     "                    y_train,\n",
     "                    epochs          = 100,\n",
     "                    batch_size      = 10,\n",
-    "                    verbose         = 0,\n",
+    "                    verbose         = 1,\n",
     "                    validation_data = (x_test, y_test),\n",
     "                    callbacks       = [savemodel_callback])"
    ]
@@ -253,17 +946,27 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## 6/ Evaluate\n",
-    "### 6.1/ Model evaluation\n",
+    "## Step 6 - Evaluate\n",
+    "### 6.1 - Model evaluation\n",
     "MAE =  Mean Absolute Error (between the labels and predictions)  \n",
     "A mae equal to 3 represents an average error in prediction of $3k."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 9,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "x_test / loss      : 18.7164\n",
+      "x_test / mae       : 3.0774\n",
+      "x_test / mse       : 18.7164\n"
+     ]
+    }
+   ],
    "source": [
     "score = model.evaluate(x_test, y_test, verbose=0)\n",
     "\n",
@@ -276,26 +979,70 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "### 6.2/ Training history\n",
+    "### 6.2 - Training history\n",
     "What was the best result during our training ?"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 10,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "min( val_mae ) : 2.4886\n"
+     ]
+    }
+   ],
    "source": [
     "print(\"min( val_mae ) : {:.4f}\".format( min(history.history[\"val_mae\"]) ) )"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 11,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAGdCAYAAACRlkBKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZxcVZ3//9enll6yryQhgQTCDoEEiYBRUfEnIi4zjAsCjjIiagFft9+M4HcUZBhlHBUUKRnQWURBFhVxGYkIARcgRAxGCJIEErKTfeutlvP949zqvl2p6q7uVFfV7byfD+pxK/eeun3q0n3rXeece6455xARERHpT6zeFRAREZFoUGgQERGRiig0iIiISEUUGkRERKQiCg0iIiJSEYUGERERqYhCg4iIiFREoUFEBsXM/tvMXPDImNkh/ZT/m1B5Z2YfKlFmgpn9XzP7g5ltD/a72cyeMbO7zOyjZnZkidddW7Tvvh43VfEwiBxUEvWugIgMCwngQqCvD+S/72sHZnY68AAQDh+7gZHAycHjAuCnwN+U2U0e2NJPXXf3s11EylBoEJED9TJwOD4UlAwNZjYBOA/YC3QBE4q2j6MnMKwArgUecM7tDbZPBc4C3osPBuWsdc7NGvxbEZG+KDSIyIF6HMgA88zsROfcsyXKXAA0AXcBby6z/RCgE3iTc25deKNzbhNwN3C3mbVWs/IiUjmNaRCRargjWJbrgiis/16Z7XOC5dLiwFDMOdc+wLqJSJUoNIhINRRCw0Vm1uu8YmbHAKcDa4FF/exnmplZ9asnItWg0CAiB8w59yLwe2A68KaizYVWhh8458qNR1gSLA8H/tXMmqtfSxE5UAoNIlItha6H7i6KoNXg4qLtpdwF/DV4fjWwycx+ZGb/ZGZvNLMRFdbhMDPb1M/jxIG8KRHpodAgItVyD9ABnG9mI4N1ZwEzgSXOueXlXuic68C3UPwiWDUOOB/4N+BhYKeZPWBmZ/ZThxgwpZ9HcuBvTURAoUFEqsQ5txP4GX5ehb8LVvc3ADL8+g3OubcDx+NbG34BbAw2J4F3AL83s0/0sZs1zjnr57F0EG9PRFBoEJHqKoSDDwSXRv4d/nLMuyrdgXPueefcDc65tzvnDsWHiC8CbYABXzezU6tcbxGpgEKDiFTTr4BX8F0NVwBjgP91zm0d7A6DEHEtcC7g8OetDx54VUVkoBQaRKRqnHNZ4If4c8u/BqvvKP+KAe37MfxskQDHVGOfIjIwCg0iUm2FLooksAM/zqFa9gXLriruU0QqpGmkRaSqnHN/NLNrgdHAn51znf29xszmAy8453b1UeZE4JTgnxrMKFIHCg0iUnXOuS8O8CXvAy41s7uAHwFPOuf2AJjZRPyNqr6Abx3dB3ynitUVkQopNIhII8gAY4GPBQ/MbDf+HBWe2GkncIFzbm2Z/RxmZpv6+Vl/cM6df4D1FTkoKTSISCP4HPBz4K3AmcBxwGT8JZZbgOXAg8DtzrktfeynMLlTXyb0s11EyjDnXL3rICIiIhGgqydERESkIgoNIiIiUhGFBhEREamIQoOIiIhURKGhjFQq5VKplEaJioiIBHTJZf8UHERE5GBi5TaopUFEREQqotAgIiIiFVFoEBERkYooNIiIiEhFNBBygDKZDOvWraOjo6PeVYmElpYWZsyYQTKZrHdVRETkACk0DNC6desYPXo0s2bNwqzsAFMBnHNs27aNdevWccQRR9S7OiIicoDUPTFAHR0dTJw4UYGhAmbGxIkT1SojIjJMKDQMggJD5XSsRESGD4UGERERqYhCg4iIiFREoSGCVq9ezXHHHcell17KSSedxEUXXcRDDz3EggULOProo1m8eDGPPvooc+fOZe7cucybN489e/YA8O///u/Mnz+fk08+mWuuuabO70RERKJEV08cgHP+5RdDtu8HP39en9tXrlzJvffey2233cb8+fO58847+d3vfscDDzzAl770JXK5HLfccgsLFixg7969tLS0sHDhQlasWMHixYtxzvHOd76Txx57jNe//vVD9j5ERGT4UEtDRB1xxBHMmTOHWCzGiSeeyNlnn42ZMWfOHFavXs2CBQv49Kc/zTe/+U127txJIpFg4cKFLFy4kHnz5nHqqafy/PPPs2LFinq/FRERiQi1NERUc3Nz9/NYLNb971gsRjab5aqrruK8887jl7/8JWeccQYPPfQQzjmuvvpqPvrRj9ar2iIiEmEKDQegvy6EsBc27KJwl+2jp40d8ksRV61axZw5c5gzZw6PP/44zz//POeccw6f//znueiiixg1ahTr168nmUxyyCGHDGldRERkeFBoqBEzcD4z4Jz/91C66aabeOSRR4jH45xwwgmce+65NDc3s3z5cs4880wARo0axfe//32FBhERqYi5wieZ9JJKpRxAOp3utX758uUcf/zxA97fyk27yOf9sZ49dQzx2MEznGSwx0xEROqi7Nfag+eTq84s9P9AOU1ERKJIoaFGwt0Rat0REZEoUmiokV6hoX7VEBERGTSFhhpR94SIiESdQkONqHtCRESiTqGhRsLzMigyiIhIFCk01Ej4+hU1NIiISBQpNNRIvbonRo0aVbOfJSIiw5tCQ430GghZx3qIiIgMlqaRPhCXvrXiotMHuu/v/Krk6s9+9rPMnDmTVCoFwLXXXouZ8dhjj7Fjxw4ymQzXX38973rXu/r9EYsWLeKaa65hypQpLF26lPPPP585c+bwjW98g/b2du6//35mz57Nvffeyxe/+EXi8Thjx47lscceI5fLcdVVV7Fo0SI6Ozu5/PLLdSMsEZFhTi0NEXPBBRdw9913d//7nnvu4ZJLLuEnP/kJTz/9NI888gif+cxnKu4CeeaZZ/jGN77BsmXLuOOOO3jhhRdYvHgxl156KTfffDMA1113HQ8++CDPPPMMDzzwAADf/e53GTt2LE899RRPPfUUt99+Oy+99FL137CIiDQMtTREzLx583jllVfYsGEDW7ZsYfz48UybNo1PfepTPPbYY8RiMdavX8/mzZuZOnVqv/ubP38+06ZNA2D27Nm85S1vAWDOnDk88sgjACxYsIAPfehDvPe97+X8888HYOHChfz5z3/mvvvuA2DXrl2sWLGCI444YijetoiINACFhgNRpguhlM0729jV1gXAlLGtjB3ZPOgf++53v5v77ruPTZs2ccEFF/CDH/yALVu28Mc//pFkMsmsWbPo6OioaF/NzT31iMVi3f+OxWJks1kAbr31Vp588kl+8YtfMHfuXJYuXYpzjptvvplzzjln0O9DRESiRd0TNVLNeRouuOACfvjDH3Lffffx7ne/m127dnHIIYeQTCZ55JFHWLNmzQH+hN5WrVrF6aefznXXXcekSZNYu3Yt55xzDt/+9rfJZDIAvPDCC+zbt6+qP1dERBqLWhpqJDxPQ/4AL7k88cQT2bNnD9OnT2fatGlcdNFFvOMd7+C0005j7ty5HHfccQdW2SL/+I//yIoVK3DOcfbZZ3PKKadw8skns3r1ak499VScc0yePJn777+/qj9XREQai2lK49JSqZQDSKfTvdYvX76c448/fsD727q7ne17OwGYOLqFiaNbqlDLaBjsMRMRkbqwchvUPVEjmkZaRESiTt0T9VDj1p1ly5bxgQ98oNe65uZmnnzyyZrWQ0REok2hoUZ6tTTUuKlhzpw5LF26tLY/VEREhh11TwzCYMaBxML3nqhiXRqdxsyIiAwfCg0D1NLSwrZt2wb8Ydj7LpcHxwepc45t27bR0nLwDPoUERnO1D0xQDNmzGDdunVs2bJlQK9r78qyu83PabC9Kc72EU1DUb2G09LSwowZM+pdDRERqYKGCw1mNgJ4FpgF3OKcu6Jo+7HAvwFnAU3A08A1zrmHS+xrLHA9cD4wEVgFfAu41Q3y634ymRzUVMmP/GU9NzzkxxWcdcI0Pvd3ugRRRESipeFCA3AdMKnUBjObDfwByAJfAXYBHwEeNLNznXMPhco2Ab8G5gE3A8uBc4E0MAW4dujewv4S8Z6eoGwuX8sfLSIiUhUNNabBzE4FPglcU6bIl4FxwDnOuS8759LA64ANwC0WvkQBLgXmA592zn3aOXe7c+584MfA58xs5pC9kRKSodCQUWgQEZEIapjQYGZx4HbgV/gP9uLtI4F3Aoucc93XDzrn9gLfAY7Bh4SCC4G2YJ9hNwFJ4H3VrH9/eoeGg2MgpIiIDC8NExqATwHHAVeU2X4y0Aw8XmLbE8FyPoCZxYBTgT8554pv97gYyNM7YAy5ZEItDSIiEm0NERrM7Ajgi8B1zrnVZYodGizXl9hWWDc9WI4HWkuVdc51AttCZWtCYxpERCTqGiI0AN8GXgK+3keZEcGys8S2jqIyfZUtlB9RaoOZXWZmS/qox6D06p7IKjSIiEj01D00mNnFwFuAjznnMn0UbQuWzSW2tRSV6atsoXxbqQ3Ouducc6f1UY9B0UBIERGJurpecmlmzfjWhV8Cm8zsqGBToetgbLBuK/4KifC2sMK6QnfEDqC9VNngZ04EHj3gNzAACg0iIhJ19W5paAUmA+cBK0KPRcH2i4N/Xwosw3c3nFliP2cEyyUAzrk8ftKneUFICHs1/n1XvQuiL4l4z9WgCg0iIhJF9Z7caR/wnhLrJ+MnYfoV8F3gz865vWb2M+B8MzvFOfcMgJmNwoeKFfgrIwruAhYAl+Endyr4JH5yqHuq/F76FL56QgMhRUQkiuoaGoIxDPcVrzezWcHTVc658PargbOBhWZ2I7AbPyPkdOC8oqmhbwcuAb4e7G858Dbgb4HrnXMvVfO99CcZj3c/10BIERGJonq3NAyIc26lmS0AbgCuoufeE28NTyEdlO0yszfj7z3xfnruPXElcEtNKw4kQ90TamkQEZEoasjQEMzVYGW2LQfeVeF+duIniyo3YVTNaHInERGJunoPhDxoxMy6U1DeQS6vqaRFRCRaFBpqxMzU2iAiIpGm0FBDmkpaRESiTKGhhjSVtIiIRJlCQw1pVkgREYkyhYYa0pgGERGJMoWGGkrENFeDiIhEl0JDDSUTmhVSRESiS6GhhsI3rcrmFRpERCRaFBpqSFdPiIhIlCk01FDvqyc0I6SIiESLQkMN9b56IlfHmoiIiAycQkMNJWLqnhARkehSaKihcEtDVt0TIiISMQoNNaQZIUVEJMoUGmpIoUFERKJMoaGGNI20iIhEmUJDDenW2CIiEmUKDTWkyZ1ERCTKFBpqqNc00mppEBGRiFFoqKFwS0OXQoOIiESMQkMNJTWmQUREIkyhoYZ09YSIiESZQkMN9b56QjNCiohItCg01JCunhARkShTaKghzQgpIiJRptBQQwoNIiISZQoNNaQZIUVEJMoUGmpIV0+IiEiUKTTUkGaEFBGRKFNoqCFdPSEiIlGm0FBDGggpIiJRptBQQwoNIiISZQoNNaSBkCIiEmUKDTWkaaRFRCTKFBpqSAMhRUQkyhQaakhjGkREJMoUGmrBOdi3h2TbLiZl9wIKDSIiEj2JelfgoNDVCZ94D63Af1qcdx6e0uROIiISOWppqIVksuepy4Fz5PKOvNNgSBERiQ6FhlqIxSHmD3UMiONbGdTaICIiUaLQUCuJotYGdAWFiIhEi0JDrZQKDWppEBGRCFFoqBWFBhERiTiFhlopERo0K6SIiESJQkOthK6gaKIwpiFXr9qIiIgMmEJDrZTsnlBLg4iIRIdCQ61oTIOIiEScQkOtKDSIiEjEKTTUSvGskGhyJxERiRaFhloJtTQkghkhNbmTiIhEiUJDrZS85FKhQUREokOhoVZKhIYuhQYREYmQuocGMzvWzH5gZsvNbJeZtZnZ82b2dTObVqb8/Wa2w8z2mdlvzexNZfY91sxuNrP1ZtZhZs+a2cfNzIb+nRXRmAYREYm4RL0rAMwApgE/AdYBWWAOcBlwgZnNdc69AmBms4E/BGW+AuwCPgI8aGbnOuceKuzUzJqAXwPzgJuB5cC5QBqYAlxbizfXTVdPiIhIxNU9NDjnfgP8pni9mT0G3AN8CB8QAL4MjANe5ZxbGpT7HvAscIuZHeecK8yYdCkwH/g/zrmbg3W3m9mPgM+Z2X8559YM0dvan8Y0iIhIxNW9e6IPhQ/08QBmNhJ4J7CoEBgAnHN7ge8Ax+BDQsGFQBtwe9F+bwKSwPuGptplhEJDk26NLSIiEdQwocHMWsxskpnNMLO3AP8RbPplsDwZaAYeL/HyJ4Ll/GBfMeBU4E/OuY6isouBPL0DxtALj2lA00iLiEj0NExowHcnbAHWAg/iuyEuds79Nth+aLBcX+K1hXXTg+V4oLVUWedcJ7AtVLY2NKZBREQirpFCw/3A/wf8LXAdsBOYHNo+Ilh2lnhtR1GZvsoWyo8otcHMLjOzJRXWuXKJnuEjGtMgIiJR1DChwTm3zjn3kHPufufcNcAHgX8zs6uDIm3BsrnEy1uKyvRVtlC+rdQG59xtzrnTBlb7CqilQUREIq5hQkMx59yfgT8BqWDVhmBZqluhsK7QHbEDaC9V1syagYmU7uYYOrp6QkREIq5hQ0OgFZgQPF+G7244s0S5M4LlEgDnXB54GpgXhISwV+Pfd/W7IPpSakZIXT0hIiIRUvfQYGZTy6x/I3ASwZURwaWVPwPeYGanhMqNwg+iXIG/MqLgLvy4hcuKdv1J/ORQ91TpLVRGM0KKiEjE1X1yJ+DbwXTRD+PnZmgBXgVcAOwBPhMqezVwNrDQzG4EduNnhJwOnBea2An8/AyXAF83s1n4GSHfhh9oeb1z7qUhfE/7SzR1P+255FKhQUREoqMRQsNd+EGPH8BfLeHw4eE/gH93zr1cKOicW2lmC4AbgKuAJnw3xFvDU0gHZbvM7M3A9cD78eMYVgFXArcM9ZvaT/jW2E63xhYRkeipe2hwzt3DALoKnHPLgXdVWHYncEXwqC91T4iISMTVfUzDQUOXXIqISMQpNNSKQoOIiEScQkOtJErde0KhQUREokOhoVaS+9/lMqsbVomISIQoNNRKqe4JXT0hIiIRotBQK5pGWkREIk6hoVY0EFJERCJOoaFWStwaW6FBRESiRKGhVtTSICIiEafQUCvhqyfIgXMa0yAiIpGi0FArsTjEeg53gryunhARkUhRaKiloi6KbN7R+8acIiIijUuhoZY0rkFERCJMoaGWkuHbY2tWSBERiRaFhlpSS4OIiESYQkMtJYquoEBTSYuISHQoNNSSppIWEZEIU2iopeT+oaFLoUFERCJCoaGW1NIgIiIRptBQS4mm7qcaCCkiIlGj0FBLamkQEZEIU2iopfCYBl09ISIiEaPQUEu9Whp8WFD3hIiIRIVCQy0lEt1PNaZBRESiRqGhlkqOadA00iIiEg0VhYZUKvX3qVTq5KJ1TalUakyZ8melUqkvVKOCw0qpaaSzuXrVRkREZEAqbWn4b+BvitZdDewoU/4NwDWDq9IwVqqlIa+WBhERiQZ1T9RSqRkhdfWEiIhEhEJDLSX2v+RS8zSIiEhUKDTUkm6NLSIiEabQUEuaEVJERCJMoaGWSoxp0IyQIiISFYn+i3Qbl0qlDg//GyCVSh0GWHHZA63YsKTuCRERibCBhIZPBI9iq6tTlYOAQoOIiERYpaHhZUATChyoUjesUmgQEZGIqCg0pNPpWUNcj4ODBkKKiEiEaSBkLZWcRlqhQUREokGhoZZKjmlQr4+IiERDRd0TqVSqFZgGbE2n07uLts0EbgTehL+K4lHg/0+n0y9Uua7Rp4GQIiISYZW2NFwBrABOCK9MpVKj8SHhXcAYYDTwdmBRKpWaWMV6Dg8a0yAiIhFWaWh4HbA2nU4/UbT+48DhwOPAUcAU4GZgKqUvzzy46eoJERGJsEovuTwBWFJi/fn4SzH/IZ1Ovxis+0QqlToPOBf4woFXcRhRS4OIiERYpS0Nk4GXwitSqVQSmAf8tcT4hYfxLQ8SpqsnREQkwioNDc1AvGjdiUASWFyi/CvAiAOo1/DUKzT4sKDuCRERiYpKQ8Mm4KSida/Bd02U6rYYDWw/gHoNT6VuWKXQICIiEVFpaPg98KZUKvUG6L4E8yPBtl+XKH8SsP6AazfcaEyDiIhEWKWh4cZguTCVSj2NH99wMrAonU7/NVwwlUqNARYAxVdaSCg0NJED59TSICIikVFRaEin00uADwHtwFzgEHy3xAdLFP8g0AQsrE4Vh5FYDOI9Q0MS5MlqRkgREYmIim+NnU6nv59KpX6E73rYFrrEstjPgMeA5VWo3/CTSELOd00kXU5XT4iISGRUHBoA0ul0O/BUP2VWH0iFhr1EEjo7AB8a2tU9ISIiEaEbVtVa0WDITC6Pc+qiEBGRxlfpDav+fjA7T6fT3xvM64a1EpddZvOOZNzqVSMREZGKVNo98d/4ORkqZUF5hYZiif3vP5HN5UnG1egjIiKNbSBjGrLAz4HnqlkBMzsGuBh4CzAbaAFWAfcCNznn9hWVPxb4N+As/FUaTwPXOOceLrHvscD1+HtkTAz2+y3gVlevPoF4zyEPTyXd2lSX2oiIiFSs0tDwKPB64G/wl1veDtyTTqc7qlCHfwAuBx4AfgBkgDfiP+zfa2ZnOOfaAcxsNvAHfID5CrALP8nUg2Z2rnPuocJOzawJP/HUPPydN5fjb6KVxt+N89oq1H3gSnRPdOkKChERiYBK52l4I3As8FX8jaj+C9iYSqVuTqVSJx9gHe4DZjjnLnLO3eycu9U59z7gX/ETSH04VPbLwDjgHOfcl51zafxtuzcAt5hZeGDApcB84NPOuU875253zp0P/Bj4nJnNPMB6D06JWSE7Mtm6VEVERGQgKu5IT6fTK9Pp9GeBw4D3Ak8CHwf+lEqlFqdSqQ+nUqmRA62Ac26Jc25XiU13B8uTAMxsJPBOYJFzbmno9XuB7wDH4ENCwYVAG75VJOwm/I223jfQulZFoqcfoqkQGrpydamKiIjIQAx49F06nc6m0+kfpdPpt+LHIHwJmAbcBmxIpVJnVqluM4Ll5mB5Mv5um4+XKFuYsno+gJnFgFOBPznnirtQFgN5egeM2gm1NCS6WxoUGkREpPEd0JD9dDq9Jp1Ofx64DH+DqlHA5AOtlJnFgS/gxy7cGaw+NFiWuhFWYd30YDkeaC1V1jnXCWwLla2t5P5XTyg0iIhIFAxoRsiwVCp1KH4Q4z8AM4EO4Pv4qxkO1E3AGcDnnHOFG2KNCJadJcp3FJXpq2yh/IhSG8zsMuCyj3/84wOqcMV6jWnwAyA7ujSmQUREGt+AQkMqlYoBb8cPMnxr8PplwCeAO9LpdKmxCQNiZv8CXAHc5pz7cmhTW7BsLvGylqIyfZUtlG8rtcE5dxtwWyqVGppLMksMhGzXmAYREYmASmeEPAJ/FcMl+PEL+4D/AW5Pp9OLq1UZM7sW+Gf81RkfK9q8IViW6lYorCt0R+zA35Fzv7Jm1oyfs+HRA6zu4JS45FLdEyIiEgWVtjSsDJZLgGuAu9Lp9L4+yg+YmV0T7Pt7wKUlJl9ahu9uKDXQ8oxQ/XDO5c3saWCemTUH4xgKXo0fy7GkmvWvmC65FBGRiKo0NBh+0qVp+AGKX0ilUv29xqXT6YrmQjCzL+AnW7oDuMQ5t99sR865vWb2M+B8MzvFOfdM8NpR+O6SFfgrIwruAhbgB2neHFr/SfwAy3sqqVvVlQgNneqeEBGRCBjImIYkPZdBVo2ZXQ58EXgZeAi4sPccTWx2zv06eH41cDaw0MxuBHbjZ4ScDpxX1DpxO7475etmNgs/I+TbgL8FrnfOvVTt91KRki0NCg0iItL4KgoN6XR6KO+mVJgv4XD8OIlij+Kng8Y5t9LMFgA3AFfRc++Jt4ankA7KdpnZm/HTUb+fnntPXAncMgTvozK65FJERCJq0JdcVotz7kPAhwZQfjnwrgrL7sRfiXHFYOo2JEq1NKh7QkREIkD3Y641DYQUEZGIUmiotVBoaNKYBhERiRCFhlpL9PQIaXInERGJEoWGWis5pkHdEyIi0vgUGmpNV0+IiEhEKTTUmm6NLSIiEaXQUGu65FJERCJKoaHWSk0jrZYGERGJAIWGWitxl8tMLk8uv9/tNkRERBqKQkOthVoamq0nKKiLQkREGp1CQ62FJ3eiJyhorgYREWl0Cg21lmjqftoUugO4ppIWEZFGp9BQayXGNIC6J0REpPEpNNRaiasnQHM1iIhI41NoqLUSkzuBQoOIiDQ+hYZaC3VPJPI94xh0/wkREWl0Cg21Fu+5y2XC5cA5QC0NIiLS+BQaai0Wg3i8+59J/BUUCg0iItLoFBrqQfefEBGRCFJoqIeSoUFjGkREpLEpNNSDbo8tIiIRpNBQDyUmeFJoEBGRRqfQUA/h7gk0pkFERKJBoaEeSo1p0L0nRESkwSk01EPJ0KCWBhERaWwKDfVQakyDuidERKTBKTTUQ6iloUktDSIiEhEKDfWgeRpERCSCFBrqoURoaFdLg4iINDiFhnpI6pJLERGJHoWGeijR0tCplgYREWlwCg31UCI0ZHJ5cvl8vWokIiLSL4WGegiFhhEx1/1cXRQiItLIFBrqIRQaWsOhQV0UIiLSwBQa6qFXaOjpklBLg4iINDKFhnoIXT3RbOGWBs3VICIijUuhoR5CLQ0t4ZYGdU+IiEgDU2ioh3BooCc0tKt7QkREGphCQz2EQkMz4TEN6p4QEZHGpdBQD6ExDU2m7gkREYkGhYZ6CN/lkp6goNAgIiKNTKGhHkrcGht0yaWIiDQ2hYZ6KDGNNKilQUREGptCQz0ky4QGDYQUEZEGptBQD6GWhoRaGkREJCIUGupBoUFERCJIoaEeQt0TiXxPl4S6J0REpJEpNNRDqKUhnguFBrU0iIhIA1NoqId4T2iI9WppUGgQEZHGpdBQD6HuiZhaGkREJCIUGuohUSY0aEyDiIg0MIWGegiFBlNLg4iIRIRCQz2Euicsm+l+rtAgIiKNrO6hwcyuNrN7zexFM3Nmtrqf8qeb2UNmtsfMdpvZr8xsbpmyh5rZ98xsi5m1m9kSM3vPkLyRgYgnup9aLgvOARoIKSIija3uoQH4EpbueGoAACAASURBVPAmYBWwo6+CZnYG8ChwBPAF4BrgaOC3ZjanqOwE4HfA+cC3gU8Ae4F7zOySKr+HgYnFegWHJvztsTO5PLl8vtyrRERE6irRf5EhN9s59yKAmf0FGNVH2W8CXcDrnXPrg9fcAywHvga8JVT2Kny4eKdz7mdB2e8CjwNfNbN7nXN7q/1mKpZIQjCeYVTCsT1oZOjoyjGypRGynIiISG91/3QqBIb+mNlRwHzg3kJgCF6/HrgXeLOZTQ295EJgVSEwBGVzwM3ABOBtVaj+4IXGNYwORTeNaxARkUZV99AwAPOD5eMltj0BGPAqADObBkwP1pcqG95ffbSO7H46IRYaDKlxDSIi0qCiFBoODZbrS2wrrJs+iLL1MWZc99NJdHQ/78horgYREWlMUQoNI4JlZ4ltHUVlBlK2FzO7zMyWDKqGAzFmfPfTifn27ufqnhARkUYVpdDQFiybS2xrKSozkLK9OOduc86dNqgaDkSopWG8C4UGdU+IiEiDilJo2BAsS3UrFNatH0TZ+hgdCg3ZnvyilgYREWlUUQoNTwXLM0tsOwNwwB8BnHMb8aHgjDJlAYa+C6IvoZaGMblQaND9J0REpEFFJjQ451biP+jfY2aFgY4Ez98DPOyc2xR6yV3AbDN7R6hsHLgS2An8siYVLyc0pmF0Zl/3c7U0iIhIo6r75E5m9gFgZvDPyUCTmf1z8O81zrk7QsU/ATyCnwHy5mDdlfjw85miXd+ADxN3mtnX8S0P78dfanmpc25P1d/MQIRaGkZ17YMm/7xdYxpERKRB1T00AB8Gzipa9y/B8lGgOzQ45/5gZm8Arg8eDvgD8B7n3DPhHTjntpnZAnx4uBw/0+RzwAXOubuH4H0MTCg0jOjc0z0PploaRESkUdU9NDjn3jDA8o8DZ1dYdj3wgUFUa+iFuidaO3pms9aYBhERaVSRGdMw7LSO9PefAJLZTprzflZItTSIiEijUmioFzMYPbb7n+OCKygUGkREpFEpNNRTqItiXDArpCZ3EhGRRqXQUE/hCZ6CloZO3XtCREQalEJDPY3ZPzSoe0JERBqVQkM9hUKDuidERKTRKTTUUzg0BC0N7brkUkREGpRCQz2FBkKqe0JERBqdQkM9jQ63NATdEwoNIiLSoBQa6qnXmIagpUFjGkREpEEpNNRTr+4J39KQyeXJ5V29aiQiIlKWQkM9jRrjZ4YExuQ7iDvfytChuRpERKQBKTTUUzzug0NgbE6XXYqISONSaKi3cBdFXoMhRUSkcSk01Nvo/edq2NuRqVdtREREylJoqLcSU0mvfmVPvWojIiJSlkJDvYXvdBmMaXhx8+561UZERKQshYZ6GzO2+2lhroZVmxQaRESk8Sg01FuJqaRXbd5N3mmuBhERaSwKDfUWGtMwiQ4A2jqzbN7ZXq8aiYiIlKTQUG+hqycmW2f381WbdtWjNiIiImUpNNRbeCBktq37+SoNhhQRkQaj0FBvoe6J1s69WDCW4UUNhhQRkQaj0FBvySZoHQFAzOUZlffjGlaqpUFERBqMQkMjCHVRTA4GQ27d3cGutq561UhERGQ/Cg2NINRFcfzontWa5ElERBqJQkMjCF1BMXtkvvu5JnkSEZFGotDQCELdEzObs93PddmliIg0EoWGRhDqnpgSnqtB3RMiItJAFBoaQah7Yny+HQuer926j85Mrj51EhERKaLQ0AhCLQ2Jfbs4dMJIAPLOsWaLbpMtIiKNQaGhEYTGNLB7J0dOGdP9T3VRiIhIo1BoaAShlgb27OSoqaHQoCsoRESkQSg0NIJwaNi9k9lTeiZrUGgQEZFGodDQCFpGQCLpn3d1cuS4pu5NL27eTT64H4WIiEg9KTQ0ArNe4xom7FzPuJE+OHRkcqzburdeNRMREemm0NAoZszqfmq3folXj+uZGfLWXy9Xa4OIiNSdQkOj+NsPdd/tkl3bufz5uxibawfgj6u28JMnX6pf3URERFBoaByHHQmXX9M9tqFl+ya+1baQlry/0+V//uZ5VmzUtNIiIlI/Cg2N5LhT4COf9WMcgEO2v8xXdj3IuFwb2bzjhh//ifaubD87ERERGRoKDY3mVa+Fi67o/uexu1fznxvu4O17lrFh2x5u+dWzuHLjG/J5yCpUiIjI0EjUuwJSwhvOgz074ad3ADAy38WV2xfxlr3P8d0nF/DP23by4bfN8zNHOgerlsPjD8FTj4HL+/ERb3g7xJQJRUSkeqzst9aDXCqVcgDpdLp+lXj2afjBt+CVDftt2pgYQ/vkw5iV2UZs66b9X3v8PLjk0zBhcg0qKiIiw4iV26Cvoo3sxFPhi7fCOy/GJXo3Ck3L7ubIjc+WDgwAy/8E13wMfv9r6OwoXSaXg727fWtFsX17YMlv4ed3wl+WlC4jIiIHFbU0lNEQLQ1hm9fDL++ma8VzxF/ZQJyeeRz2WhOPjzkGTn8TZ+XX0/SbH/f+kLcYTJkOhx8J4yfBKxth0zrfgpHL+ks9px0Oh86E0WPhhWXw4l99V0fB4UfBOy6CuWd0D9TsVy4Hm9f5um/ZCFs2+UdLC8w/C045AxID7CFzzgea9jbo6vCBKNPl6z1+ErSO7Cm3e2fPz25p9cdg8jRobvFlslnYtR12bvOvm3ZY5e+tkezcBr/5qX8vZ70NZp9Q7xqJSC1sWAMP3Q8XXj7wc2nfyp4IFRrKaLjQEOK6OnnmiaU8+ehTbGhzPN1yOF0x/wvTkozzttG7uXDFTxm9d1v1f/hhR8IZb/IfwFNmwOSp/kN72yuw/RXYuhnWvQQvr4L1q/22csaOhwXnwEmv8kFm4xpY/zK074OZR8ExJ8HRJ8GosbDiL/DMk/DMEyW7a7q1jvCza+7e4YNFKeMn+UGju3f0DlfjJ8Gc+TDn1f5njxh14CEinwvC0kZINvl9jhgJraN8eIrFK9hHHnZsBRyMmwTx4DU7t8H/3gOP/hKymZ7yJ5zqA97RJx5Y3fuzZxd0dfpA1jKip16NorMDlj4O4ybCMXOiGQhFylm/Gr56lR//9qrXwkeuqmZwUGgYqEYODQW5fJ6Hl23gzt+tYMP23h+QrfkuLtq1mNPbVzMjs5MYZf4/NzX7E38xM5h5tP/2veS35T/8zYa+66JcHYdaPAEjR8Oo0TByDIwaE/x7jL/J2CHT/fGZNNV/YO7eCS+v9IFp3Uv+W8Cmdb0/0Islkv79Nbf07HfMBL/cs8vvY+PLPV1MsZgPDhMmweoVfe/76BN9HVta/SOe8N1Ru3f6E017m/+ZYyf4ADd2gg9rRxzrA04pm9bB07/3j9Uv9N6WbOrZ37iJ/jFxCsyc7VuqRo0pvU/n4MXn4fcLfSCccaTvmjtmTk+r0EDs3QMP/9S3vuzb49cdPw/e+xEfesMyXb5FrKV1//10dfpjnOnyx7KpeeB16U8+78NfU4v/PevP1k3w7B+hsxOOnwszjqhPGNq90//ujZtQWfCV6lr3EnztKn+OAGhuhc/dCNNnVesnKDQMVBRCQ0EhPNz9+5Ws3bZvv+3N+QyzMtuY3bWVcbk2treOJzP5UJLTDmPK1InMbs0yK7uDSXtfIb5ruz+xnnCqb/IH3+z94I9g0c8H/uE9fpL/RZ48FSZNg0lT/Afr7x6EXTsG94abmn3rQ3MLNDdDPOk/BLdv6f0h2jKip0uiox1eWe9Puvmg28XMfziPnehbAtr3P3YViSd868GeOk6+NetoHxAKV9AciETSB4dCS8XO7f53YOsm390zWBMO8R9yEw/xA3QnTPYfmL9b6INRqXoceZz/PYwn/L8TCf8hn834rrVs1oeV5hb/yHTBk4+UHsdjMXjdOb41aeVzvvVqzUq/n/GTYOoM300H8OJyWPui/1ngw+LrzoU3vt3Xf/sWWLwInlwE61+CqYfBsSf7uVZmHePDz4vPw0vPw7rVvm6FIDV6HOzaBhte9u+78Dc1djwcOgumz4TxkyGZ9O85mfQfEsue8q8JmzQV5p3Z8zPXr/FBc/dOGB+EtklT/LHvPu6H+N/XtS/6K69WPefD4LTDfSviia8q/Y110zp4+ndBYFzh18UTfr+Tp/qWx8OOhMNn+65Oi8HaVf5nrHwO2vfCkcfDCfPgiON6/l9uWAMv/dV3ZebygPN/o7E4HDLNnz+mH9F3qMp0wfatsHcXtO31YbFtr//7Pm7e/q/NdPl6rVkJm9b6/w+b1vkgPXma/10onDuamn1d4wn//3Ha4f44hsOac761dMNq6GiDTMb/jmaz/ovFsSdXL3SufRG+drV/r+DPc5+8Ho6qarekQsNARSk0hG3e2caza3ew7OXt/OXl7bw8gJtdxWPGtPEjmDK2lYmjW5g0poVJo1sYN7KZMSOaGJ9rY8Lzi2nZup7YKxv8B8iOLT0njsKJacoMf+I4/Eh/giwlm4Vli3142L4FDjnUn2imz/TfulY9Byue9SfebMaf1Oee4cdBHHty6W/Czvlv0ru2+w+aMeP3/xaWzfo6x+L+G3Hh5JjL+ZPIssV+4Ofm9dVr3Rg30Z+A8jlo2+dPZm37/JiMSv/+Ro72dS0OWkcc67si5sz373XTOvjFD+GJhw88PPQnHvfHuKMNOjqG/ucNxriJ/phVq24W87+j64bxtO6jx8Kr3+CX27f4xysb+u4WLBZP+N+Pcn9Dza0wbYYPQZX+nY2f5FurmpqDD/KkD+rbt/iuxnIsBkccAyed5l+zfCmsfLbvrtP+jBoDh82GqdP939yalf7vupxkExx7Csw5zf+drnvJdy+sX+O3F0L0hMn+XHHUib7Vr3D3Y/DnipdegG9+3p/nwHfHfvJfYfbxg38vpSk0DFRUQ0Ox3e1dLF+3g+fW7uC5dTtYuXE3bQc4q6QBY0Y0MXZEExNa4oxobaK1pYkRzQlamxKMbE4wsiXJqJYEI5uTjGpNMqolyegW/zwZH8BFO5ku/wcybmLtm2G7Ov03lr27Q8vdvvl751Z/sti0LhhvgD+RzTjCn0wOP9J/O5p2mP/AL8U5//66OqGz3Z8Ad+/wH3K7dvhvg4fO9N9sxozz7z/T5U+SWzf7/c48qvRx2brJn2Da9/lWls52H75GjfX7Gj0WWkb6byu7d/jWhK0bfVDrqzUh2eRPvqe+Bk4+vee9Oeffx56dfl87t/nHxpf9CXXdS313pTS3wvzXwQmv8t86n3van1QHa/osOPe9fsDtprVwz+2+Wb+UeLynRaHYtMMh0+mP91AZOdq3jPR1fAoSSThurv+w+MtT5cftDLVGaF0b7pqa/ZeCcRN9K8zGdf7vuKB1BHzqS741rvoUGgZquISGYs45tu/tZN22fazbtpd12/bx8ta9vLx1L6/sau9/B1XQlIgFjzjJRIzmRJzRrUlGtzYxujXJyOYEyXiMWMxIxGLEY0YsZsQMwIjHjBHNie4QMqolSXMiRlMy3r3fpkSMZDyG1SJodLTBnt3+W0KjDQYcjF3bfdP96pW++2fshJ7HtMMGN84gm/UBYvO64NvrVj9w1jnfenTa6/YfV7Bzmw8cmU7/+kJzbzwedFUk/fNMl//Q7ezwZQ8/yjexF/+/X/aUH+fQ3ua/mR19km/SbR3pQ9bGoJk6l/XN/Uce5z/Q8zn482L/2uVL/b4sBifMhVe/0Y+/2LAGnv8z/PXPvol60lR/wj/yOD82KJ8LrtQJunpGjYVDD/eP0eN6BsxuWOO/fe7bA9muIFR2+W+2J77Kd390X/2TgeefgaVP+Naz7ta6Wf6DZud22LbZP7ZuDo77K37Zttc3vc8+3j+mHuZD1RMP++NeSndgXACnnO4H9Xa0+/2/stGHvLWr/JieLRv9ayYe4r81zz7eH8vnn/GBcNsrPfudMNkf78Nn+w9Ki/UE5I0v++6dDWv6DlWxmH/PY8bDyFEwYrT/UF2/ev8rwQqmTPfjZqbP6umaGjHSt6iEvxAUusGyGf//Ze2LpbsyR43xv3ujxwbdSk3+577wl9LdbweidSR8+kv+d2xoKDQM1HANDX1p78qyYfs+tu7pYOvuDrbu6WDbng52tWXY1dbJ7mC5tyM6U1Un4zGSQYDoXgYtHfm8I5vPk807WhJxJgbdMRNHtzCqJYFzkHcO5+ieurvw12JAPB4jETPi8RjJuNGUiNOciNOU9MElEbNQ4DHyzpHPO3J5R845ErFYd4BKJuLEzcD/R8yMZCJGS1OclmSCeEwj/xvChpd9i8zMY/wYhKjKZkuPW8jn/Af7sqd8F154/MmUGZUHxrZ9kMuU7p4s9P9vf8WH0HET+99fLueDT2ebD1FdHb5la+QYX8exE8oH9r17/Lw1y//k39/Rc/wg0sFOfOecD5lrVvqgN3mqH1M0cUr51tCtm2DZEn85eyLpWyRnzPKBJZ7woW/bFh/A1qz0ob3UHDytI31QePeHfcgaOgoNA3UwhoZKZXN5drd3sWtfF7vautjXmaWtM0tbl1/u68iwL1ju7cyytz3D3g7/2NPeRV6/cgPWnIiRCHXrmEEiHmNEc4IRTQlGNCeIx2Ls68zQ1pFlX2eWbD7vu4WCVpyRzT58xKyn5Saf9wNpc3lH3sGI5njwmiZGtSTI5R2dmRwdXTk6sjniFoSjpA86ybgRj/kgFo9Z9zkzfFqJB+EpHrQahR+xwtL8w8zXq/fSlzPzYapYUyJGS1OC5kSNWpZEamHH1mAA6T7fKjL1sJ5uyqFX9ocM63tPmFkM+ATwUWAWsAW4B/iCc26QQ+UlEY8xYVQLE0YNvJnaOUdnNk8mm6crmyOTzdPWlQ0CRYbd7V20dWbJ5lz3h5n/QOv5xp/NOx9MOjLs6ciwryNLZ7Cvrmy++3km14AD8wapM5unM7v/+9m5r+/BXHvaM2wc5EUqUWNAS1OceCzWK3AUn2MLv0uF36uY0d2l1ZSI+5bxXL77d8g5aG2K09qUoKXJtyblnQ9Z+bzDOed/VhDEYjHD8D+3EH6a4jGak/Huh3OQLfx+5xwOh9HT0lRcZzPbr7UsEY+RiFt3YKPwM4PyhZDl1wUtXUFrV97RXddCYOv175j17CdYJuK+9aspEacpHsMM8q4ndBbqmIgZiWB7Jutb8rqyOZyj+xg3J+Mk4tb9N11o1QN6XRyejBda4kIthMFr8s5RfCV5PChfKlxGzvhJMP/19a7FfoZ1aABuBP4P8BPga8Dxwb/nmdmbnWvE4d7Dm5nRkozTkowDyX7LHwjnXK+Tf1c23ytMxIOTWzxmtHVmu7tjtu7uoL0r233CjXV3G1jwHvwJLpdz3Sf+riAEdWb8siubJ5fPd59U83nf7Vr4th0zI5cPQk7Gh5xc4aQZnES7snk6Mlnau8oM0pNeHATHajDHq+8ut111Gm8og1MIWD48FP6uerZbMD4qFrTYxUNBpyvjv3h0ZXLk8o6m4HzVnIyTjMfI5x2ZfJ5sLk8253q1mMVjFnR79nRFAvuViZtveUvE/fpkqA6+xc6I4c+XDoKf5QMY4AebBwPORzYnmDSmlXecNrMmx3bYhgYzOxG4Evixc+7vQutfAr4JXADcWafqSQ1Y0JTelKhscOKsQyqYXKcO8s7RlcmRzbteJ76ubI72oEuorTNLNu8Y2ey7KkY2J0nErbsFZ097hn2dme5vmYVvneETGAZtnT2tPns7MiTiRksyEXxDjpHPQyabozMISYUTZzbvl4Vv3WG5vCMfhKts8O0+l3dkc3l/Yg19+83n/bdu1/1tstAy0LO90HBa+DjoyuToyPigJgJBS1GVWhqzwd9XIzt80iiFhip4P/68clPR+tuBG4CLUWiQCIiZ0dJU6k+1/5aacSOHYBbDBpXLOzoyWfL5nubrwje9sELrUaEZPh9qKerK5sk71/1NtSkRwzA6Mj6gtXdl6czkezXlFyZF7R7oGjSbO3rqkQlalDqzeToyOQxIxHvGeYQnVi01zizvfFjrCrWc5XL+G2+hxSv8skLTfaErJu+c/6ZrPd0mQFFo691tU2jxKryPbN75OgTdgM6FvmX3+kYcBEJcd1dK4Uom3xrn95HJ5Xu15oXrVdDdUhj8/wmPddmvfNDlczCGx5HNtfsoH86hYT6QBxaHVzrnOsxsabBdRIaJeMwY2Ty0XV7S+Ardkp0ZH2wKXYvhQbou6LIodCEUmv6dc91jLpoSPtB1ZoLAl8nRlc35cRPBmJJ4zLrDqX/4IFTYVhhbUQhi+VC5bPh5ELQyuXyvoFcIguExLM7Bvk4/lquwHD+qdl8OhnNoOBTY6pwrNd3YeuA1ZtbknDuAacFERKSRDLRbsj9NwTwy4g1gar7IGQGUm5+0I1SmFzO7zMyWDFmtREREImo4h4Y2oFybTUuoTC/Ouducc6cNWa1EREQiajiHhg3AJDMrFRym47su1DUhIiJSoeEcGp7Cv79Xh1eaWQswF1AXhIiIyAAM59BwN/5qoU8Wrf8IfizDD2peIxERkQgbtldPOOeWmdktwBVm9mPgl/TMCPkomqNBRERkQIZtaAh8ElgNXAacB2wFbsbfe+LgmwFERETkAAzr0OCcy+HvOfG1etdFREQk6obzmAYRERGpIoUGERERqYhCg4iIiFRkWI9pqIZUKlXvKoiIiNSSS6fTVmqDWhpERESkIlbq3u0yNMxsie5rceB0HKtDx7E6dByrQ8exOob6OKqlQURERCqi0CAiIiIVUWiordvqXYFhQsexOnQcq0PHsTp0HKtjSI+jxjSIiIhIRdTSICIiIhVRaBAREZGKKDQMMTOLmdmnzOx5M+sws7Vm9jUzG1nvujUaMzvGzK4zsyfMbIuZ7TGzpWb2f0sdLzM71szuN7MdZrbPzH5rZm+qR90bnZmNMLOXzMyZ2bdKbNexLMPMJpjZV81sZfA3vMXMHjGz1xWVO93MHgp+b3eb2a/MbG696t1IzGyUmX3OzJYFx2ermf3BzD5kZlZU9qA/jmZ2tZnda2YvBn+zq/spX/ExM7NDzex7we9xu5ktMbP3VFw3jWkYWmb2DeD/AD8B/hc4HrgS+C3wZt2iu4eZ3QBcDjwAPAFkgDcC7wX+DJzhnGsPys4GFgNZ4CZgF/AR4CTgXOfcQzV/Aw3MzL4KfBQYBdzinLsitE3Hsgwzmwkswh+37wIvAGOBk4EHnXM/DMqdEZRbDxRC2RXAIcBrnHPLalrxBmJmMeBR4DXA/+D/tkcA7wdeDXzFOffZoKyOI2BmDtgOPA28CtjtnJtVpmzFx8zMJgBLgm1fB9YBFwJnAf/gnPuvfivnnNNjiB7AiUAe+FHR+isBB1xY7zo20gM4DRhbYv31wfG6IrTuHiAHzA2tGwWsAf5KEIj1cACn4gPBp4Pj+K2i7TqW5Y/db4G1wLR+yi0GdgPTQ+umB+sW1vt91PkYnhn83t1YtL4JeBHYqeO43zE7MvT8L8DqPspWfMyArwT/L94RWhcP9rENGNVf3dQ9MbTeDxj+21vY7UAbcHHNa9TAnHNLnHO7Smy6O1ieBBB0VbwTWOScWxp6/V7gO8AxwPwhrm4kmFkc//v2K+DHJbbrWJZhZq8HXov/JrzRzJJmNqJEuaPwx+he59z6wvrg+b3Am81saq3q3YDGBMsN4ZXOuS5gK7APdBzDnHMvVlJuEMfsQmCVc+5nobI54GZgAvC2/n6mQsPQmo9vaVgcXumc6wCWcpCejAdhRrDcHCxPBpqBx0uUfSJY6th6nwKOwzdXlqJjWV7hBPqymf0MaAf2mdkLZhYO/IXjU+4YGr6J+WC1GNgJ/JOZvcfMDg/G0HwZf1yuDcrpOA5cxcfMzKbhWyCeKFM2vL+yFBqG1qHAVudcZ4lt64FJZtZU4zpFSvBN+Qv45vU7g9WHBsv1JV5SWDd9iKvW8MzsCOCLwHXOudVliulYlndssLwd/y3sg8CHgS7gDjO7JNiuY9gH59wOfGvWdnxX2Brgefz4pb9zzt0eFNVxHLiBHLOqHF/dGntojQBKBQaAjlCZrtpUJ5JuAs4APuec+2uwrtBEXOrYdhSVOZh9G3gJP+CpHB3L8kYHyz3AG4PmdMzsJ/i++C+Z2f+gY1iJvfi++QeAP+BD2OXAnWb2Lufcr9FxHIyBHLOqHF+FhqHVhh+lWkpLqIyUYGb/gm9Wv8059+XQpsIxay7xMh1XIGg+fwvweudcpo+iOpbltQfLuwqBAfw3ZzN7APh7fGuEjmEfzGwOPih8yjl3a2j9XfggcXtwBY+O48AN5JhV5fiqe2JobcB3QZT6nzQd33WhVoYSzOxa4J+B/wI+VrS5MKCqVFNaYV2pJriDQvD79nXgl8AmMzsqGDA1MygyNlg3Dh3LvqwLlptKbNsYLMejY9ifT+E/lO4Nr3TOtQG/wP9ezkLHcTAGcsyqcnwVGobWU/hj/OrwSjNrAebir5eVImZ2DXAN8D3gUhdcFxSyDN/EdmaJl58RLA/mY9sKTAbOA1aEHouC7RcH/74UHcu+FAYwzyixrbDuFfzfOZQ/hg74Y3WrFimFD6R4iW2J0FLHceAqPmbOuY34UHBGmbJQyd96va9HHc4PYA59z9Nwcb3r2GgP/KBHhw8MsT7K3YufW+CU0LrC3AIvcHDPLZAE3l3i8fHg2P5v8O9jdCz7PI7j8de6ryN0/TowDd9H/0Jo3VNB2UND6w4N1j1U7/dS5+N4Y/B7909F6wstXduBhI5j2ePX3zwNFR8z4N8pP0/DDmB0f/XRjJBDzMxuxvfL/wTfXHw8fobI3wNvcpoRspuZXY6f0exl4PP4wBW22fkBU4XrkxfjZ428Ef8H8hF8UDvPOfdgreodFWY2Cz8wsnhGSB3LMszsMuA/gGeB/8RPSPRxfHB4u3NuYVDuNcAj+IBxc/DyK4EpwALn3DM1rnrDCGbVfBofwn6AP/dNwP+OzQIud86lg7I6joCZfYCe7sQr8b93Xwv+vcY5d0eobMXHzMwm4lseJuK7MNfj5xN6A75VVXBkBwAABH1JREFU97v9Vq7eKWq4P/Ap7jP4mfU6g/9JX6eCmbcOtgfw3/gUXO6xqKj88cBP8deAtwG/w0/NXff30ogP/Al6vxkhdSz7PW7n469j34e/kmJhcDIuLncm8Bt8K8Qe4EHg1HrXvxEewGz8FNLr8OF0N/AYcL6OY8njtajS8+BAjxm+u+gO/MRaHfhA975K66aWBhEREamIBkKKiIhIRRQaREREpCIKDSIiIlIRhQYRERGpiEKDiIiIVEShQURERCqi0CAiIiIV0V0uRWTYS6VS1+LvZ/LGdDq9qL61EYkuhQYR6VcqlapkFjh9IIsMcwoNIjIQX+xj2+paVUJE6kOhQUQqlk6nr613HUSkfhQaRKTqwmMI8Hfr+yRwHP5mOj8HPpdOpzeVeN3R+Ducng1Mxt9U5yHgX9Lp9IoS5eP4uyV+ADgJfzfA9fgb/vxbmde8G/inoHwH/gZUn0mn0+sP5D2LHAx09YSIDKVPAbcCzwA34e/2egnwh1QqNTlcMJVKzQeWABcDTwFfxd9d8iJgSSqVOq2ofBPwK+DbwGHAncA38bf+/VtgQYn6pIDv47tSbgH+ArwPeCiVSjUf8LsVGebU0iAiFQtaEErpSKfTN5RYfy5wejqd/lNoHzfiWx5uAD4crDPge8AY4OJ0Ov2DUPn3AT8Evp9KpU5Ip9P5YNO1wJuBnwHvSafTnaHXNAf7KvZWYH46nV4WKnsn8H7gXcA9Zd+8iKilQUQG5Joyj6vKlL8jHBgC1wK7gAtD3+5fg+++eDwcGADS6fTdwO+AY4HXQne3RApoBz4WDgzBazrT6fSWEvX5ZjgwBG4Plq8u8x5EJKCWBhGpWDqdtgG+5NES+9iVSqWWAmcBxwNLgVODzQ+X2c/D+MAwD3gMHzDGAk+m0+kNA6jPkhLr1gbL8QPYj8hBSS0NIjKUNpdZXxgEObZoubFM+cL6cUXLgQ5e3FliXTZYxge4L5GDjkKDiAylKWXWTw2Wu4qWU0uUBZhWVK7w4T998FUTkYFSaBCRoXRW8YpUKjUWmIu/3HF5sLow7uENZfZTWP90sHweHxxOTqVSh1ajoiLSP4UGERlKH0ilUvOK1l2L7464KzSA8ff4yzFfG8yj0C349+uBF/ADIkmn0zkgDbQCtxZfLplKpZqKL+kUkQOngZAiUrE+LrkEuD+dTi8tWve/wO9TqdQ9+HEJrw0eqwldcZFOp10qlfog8Gvg7lQq9VN8a8KxwN/gJ4X6+9DlluCntD4deAfwQiqV+nlQ7jDgLcA/Av89qDcqIv+vvTtEQSAIowD8vJ3FbNMqewQRPIJtrmD0EhaPYDMZzCaLhjGIiPxW+b66A8OmfQz/vvlIaAB+sf7y7JT+J8SrTZJdei/DNMk1/UO+bK1dXhe21g7PgqdVev/CJL0RcpveCHl8W38bhmGcZJFklmSeZJTk/Nxz//vrAd+M7vfK5XUAda6ihv9kpgEAKBEaAIASoQEAKDHTAACUOGkAAEqEBgCgRGgAAEqEBgCgRGgAAEqEBgCg5AEXUrTVeaErVgAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 576x432 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAGdCAYAAACo8fERAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXxcdb3/8dd3ksm+NN33hbZQaAsUWnZkFVAUrijKFVEQxOsoV5EfriBVEL1erxveUbkim6hssqnIoi2bbC0tLbSlLaX7lm7Zk5nJfH9/fCfJJJ0kM8mkc076fj4e85jkzDlnvjNZznu+38/5HmOtRURERKSvArlugIiIiPibwoSIiIj0i8KEiIiI9IvChIiIiPSLwoSIiIj0i8KEiIiI9IvChIiIiPSLwoSIZJUx5i5jjE3cosaYkb2s/29J61tjzOW9rP+zpHW/lUZ75nfZf0+3n2X4ckUEhQkRGVj5wCd7WefT6e7MGNN1f5/JoC1xYEcvt9oM9iciCfm5boCIDFobgYm4sJDyE78xZihwPlAPRIChvezzg8AI4DlgNHCYMeYEa+0rabRnk7V2cnpNF5FMqGdCRAbKy8C7wBxjzMxu1rkEKAAeBprS2GdbT8QfErfkZSKSIwoTIjKQ7k3cdzeU0bb8nt52lOjF+BCuB+Mh4L7EQ58wxhT2p5Ei0j8KEyIykNrCxKXGmE7/b4wxhwLHA5uAhWns699xvRh/t9busda+C7wKVAEXZK3FIpIxhQkRGTDW2nXAS8A44MwuD7f1StxnrY2nsbu24Yz7kpbd1+UxEckBhQkRGWhtQxjtQx3GGAN8qsvj3TLGHA7MA+qAJ5Ieuh+IAecaY0b1spsJxpjtvdy6q+0QkR4oTIjIQHsAaAYuMsaUJpadBkwCFllrV6axj8sT949Ya9sLNa21O4FncWemXdrLPgLAqF5uwTTaIiJdKEyIyICy1u7D9SaUAh9NLM6k8DJARy/GH1Ks0jbU0dt8FRustaaX29Le2iMi+1OYEJEDoS00XGaMKcaFiijwxzS2fT8wFmjrhejqUaAROMoYc1QW2ioiGVKYEJED4e+4MHAm8CWgAnjSWrsrjW3biitHArGuU2Dj6ihKuqwrIgeQwoSIDDhrbQz4E+5/zvcTi+/tfgvHGFMB/FsGT3VpYsptETmAFCZE5EBpG+oIAnvpfFZGdz4OFOPmoqjq4TYM2I3rvTgvq60WkV4pwYvIAWGtXWyMmQ+UA8ustS1pbNY2bPHnRCFnt4wxjwGfTWzzl/60VUQyozAhIgeMtfa76a5rjJkKnJL49s9pbPJnXJj4sDGmylq7tw9NFJE+UJgQEa9qO9VzB/BiGus/g7uEeAXuAmK/6vL4BGPM9l728S9r7UUZtVJEVDMhIt6TmCGzLUw8ls5029baCB3DG6nO6khn0qreLoEuIikYa22u2yAiIiI+lvOeCWPMocaY7xljXjHGVBtj6owxS40x306aejd5/cOMMY8aY/YaYxqMMS8YY7peQKi35+z3PkRERMTJec+EMeaHwBeBx4FXcLPinYE7JWwZcELbXPyJgqzXcBf2+RlQA3wOmAV8wFqbana8rs/X732IiIhIBy+EibnAGmttTZfltwDfBq6x1v4ysewB3DS8x7bNoW+MKQPexl1IaIbt5QVlYx8iIiLSIefDHNbaRV2DRML9iftZAIkhjwuAhckX47HW1gO/BQ7FXaK4W9nYh4iIiHSW8zDRg/GJ+x2J+yOBQuDlFOu+krjvLQj0ex+hUMiGQiH1XIiIiCR4cp4JY0we8B1cXUPbJYfHJu63pNikbdm4XnadjX20UaAQEZGDienuAa/2TPwMOAH4jrX2ncSytqsCppqCt7nLOt3p8z6MMVcbYxb1sn8REZGDjufChDHmZtwlim+31v4g6aHGxH1his2KuqzTnT7vw1p7u7V2bi/7FxEROeh4KkwkLgJ0A3An8B9dHt6auE81DNG2LNXwRbb3ISIiIkk8EyaMMTcBN+EuU3xVitMzl+OGJ05MsfkJifvehiGysQ8RERFJ4okCTGPMd4D5wL3AFanm4bfW1htjngAuMsYcZa19M7FtGXAVsAY3GVXbPiuBMcAua+2uvuwjE9FolM2bN9Pc3Nz7ygJAUVER48ePJxgM5ropIiLSDzkPE8aYLwLfBTYCzwKfdNf4abfDWvtM4utvAmcBTxtjfoq7QuDncEMU53fpzfgIbrjku7igQh/2kbbNmzdTXl7O5MmT6dJ+ScFay+7du9m8eTNTpkzJdXNERKQfch4m6JjXYSJwd4rHn8NdWhhr7VpjzMnAD4FvAAXAG8B56U6DnY19pNLc3KwgkQFjDMOGDaO6ujrXTRERkX7KeZiw1l4OXJ7B+iuBC9NY7y7grv7sI1MKEpnR+yUiMjh4pgBTRERE/ElhQkRERPpFYWIQWb9+PTNmzOCqq65i1qxZXHrppTz77LOcfPLJTJ8+nddee43XXnuNk046iTlz5nDSSSfxzjtugtHW1lauv/565s2bx5FHHslvfvObHL8aERHxi5zXTAxG59781wHb91M3nt/j42vXruXBBx/k9ttvZ968efzhD3/gxRdf5PHHH+fWW2/lnnvu4fnnnyc/P59nn32Wb33rWzz88MPccccdVFZW8vrrr9PS0sLJJ5/MOeecozMtRESkVwoTg8yUKVOYPXs2ADNnzuSss87CGMPs2bNZv349NTU1fOYzn2HNmjUYY4hGowA8/fTTLFu2jIceegiAmpoa1qxZozAhIiK9UpgYZAoLOy47EggE2r8PBALEYjFuvPFGzjjjDB555BHWr1/P6aefDrh5H2677TbOPffcXDRbRER8TGFiAPQ2FJHsvZ21RGNuws/JI8opCOYNVLMA1+Mwbpy7DMldd93Vvvzcc8/lV7/6FWeeeSbBYJDVq1czbtw4SktLB7Q9IiLifyrAzLFA0lwLcfo0+WZGvva1r/HNb36Tk08+mdbW1vblV111FUcccQTHHHMMs2bN4vOf/zyxWGzA2yMiIv5n+jh79EErFApZgHA43Gn5ypUrOfzwwzPe38bqepqj7qA9YXgZxQUHV2dRX983ERE54LqdaVA9EzmWPAmkgp2IiPiRwkSOdRrmUJYQEREfUpjIMfVMiIiI3ylM5Fjyxa6UJURExI8UJnIskNQzEVeaEBERH1KYyDH1TIiIiN8pTOSYaiZERMTvFCZyrPOkVQdWWVnZAX5GEREZjBQmckw9EyIi4ncH13SLB8pV56W96tDELW2//Xu3D339619n0qRJhEIhAObPn48xhueff569e/cSjUa55ZZbuPDCC3t9moULF3LTTTcxatQoli5dykUXXcTs2bP5+c9/TlNTE48++ihTp07liSee4JZbbiESiTBs2DDuu+8+Ro0aRUNDA9dccw3Lly8nFosxf/78tJ5XRET8Rz0Tg8gll1zC/fff3/79Aw88wBVXXMEjjzzCG2+8wYIFC7juuuvS7gF58803+fnPf87y5cu59957Wb16Na+99hpXXXUVt912GwCnnHIKr7zyCkuWLOGSSy7hRz/6EQDf//73OfPMM3n99ddZsGAB119/PQ0NDdl/0SIiknPqmRhE5syZw86dO9m6dSvV1dVUVVUxZswYrr32Wp5//nkCgQBbtmxhx44djB49utf9zZs3jzFjxgAwdepUzjnnHABmz57NggULANi8eTOf+MQn2LZtG5FIhClTpgDw9NNP8/jjj/PjH/8YgObmZjZu3KjrcIiIDEIKEwOhh6GIruqaImzb2whAWVGQsUP7d8nvj33sYzz00ENs376dSy65hPvuu4/q6moWL15MMBhk8uTJNDc3p7WvwsLC9q8DgUD794FAoP2Kotdccw1f/epXueCCC1i4cCHz588HXP3Hww8/zGGHHdav1yMiIt6nYY4cy/a1OS655BL+9Kc/8dBDD/Gxj32MmpoaRo4cSTAYZMGCBWzYsKH/T5KkpqaGcePGAXD33Xe3Lz/33HO57bbb2odUlixZktXnFRER71CYyLFsn80xc+ZM6urqGDduHGPGjOHSSy9l0aJFzJ07l/vuu48ZM2b0+zmSzZ8/n4svvphTTz2V4cOHty+/8cYbiUajHHnkkcyaNYsbb7wxq88rIiLeYXQ6YmZCoZAFCIfDnZavXLmyT/UATZEYm3bVA1AUzGPiiPIstNI/+vq+iYjIAWe6e0A9Ezmm6bRFRMTvVICZY50u9MWBTxPLly/nsssu67SssLCQV1999YC3RURE/ElhIscMue2ZmD17NkuXLj3wTywiIoNGzoc5jDHfNMY8aIxZZ4yxxpj13aw3OfF4T7dL03i+y3vY/pf9eS19qT8xB/ElyFWvIyIyOHihZ+JWYA/wBjCkh/Wqgcu6eeyXQDHwVIbPu7LLsncy2L6ToqIidu/ezbBhwzrVQfQmcJDWTFhr2b17N0VFRbluioiI9JMXwsRUa+06AGPMW0DKS1laaxuA33ddbow5EagEHrLW7srgeZ+x1i7MvLmpjR8/ns2bN1NdXZ3RdhbYua+p/fvYvuJsNcnzioqKGD9+fK6bISIi/ZTzMNEWJPrhqsT9bzPd0BhTDrRYayP9bAPBYLB9KulMfe3WJ4m2uguQP/6N8ygM5vW3OSIiIgdMzmsm+sMYUwZ8HNgIPJPh5o8DtUCzMeZNY8ynst2+dBXkd/wYWmKtuWqGiIhIn/g6TACfwA2L/M5aG09zm0bgD8C1wAXAV4Ai4F5jzE3dbWSMudoYs6if7U0puSciEk33ZYiIiHiD38PEVUAcuDPdDay1D1hrL7XW3mGtfcJa+wvgSOAt4AZjzORutrvdWjs3C23ej3omRETEz3wbJowxRwAn4AopN/ZnX9baFuDHuBqSc7LQvIwU5Cf3TChMiIiIv/g2TABXJu4zLrzsxvrE/fCeVhoIycMcLTENc4iIiL/4MkwYY4K4OSeqgceytNvpifsdWdpf2pKHOSIa5hAREZ/xZZgALgRGAPdaa6OpVjDGlBhjZhhjxnRZPizFupXA14EImU18lRWdeiY0zCEiIj6T83kmjDGXAZMS344ACowxNyS+32CtvTfFZukMcRwHLADuBi5PWr7cGPMcsBzYCUwGPguMAa6z1m7uw8vol041ExrmEBERn8l5mMAFg9O6LLs5cf8c0ClMGGPG44ok/2Wt7Toddjr+CJye2EcFUAO8BlxhrT3gvRIAReqZEBERH8t5mLDWnp7h+puBXqeITEyVvd9FMqy112XyfAeCaiZERMTP/FozMaioZkJERPxMYcIDOk9apZoJERHxF4UJDyjUpFUiIuJjChMeUKBJq0RExMcUJjygUAWYIiLiYwoTHlCgAkwREfExhQkPKNSkVSIi4mMKE7n24lNMWfYsn6hZRGE8qp4JERHxnZxPWnXQe+QuptXsZRrwdNnhqpkQERHfUc9ErgUL2r8siMd0NoeIiPiOwkSu5SeFCVo1z4SIiPiOwkSuJfdM2Fb1TIiIiO8oTORaMNj+ZYGNqWdCRER8R2Ei1/brmVCYEBERf1GYyLWkMBG0Mc0zISIivqMwkWtdeyY0zCEiIj6jMJFrnWomWonEWrHW5rBBIiIimVGYyLXkU0NtjLiFWFxhQkRE/ENhIte6DHMAOqNDRER8RWEi17oUYAI6o0NERHxFYSLXutRMAESiOqNDRET8Q2Ei14KdayZAPRMiIuIvChO5lqpmQnNNiIiIjyhM5FqnmgkXJjTXhIiI+InCRK51uTYHaJhDRET8RWEi1/JTnRqqYQ4REfEPhYlcUwGmiIj4nMJErqUswFSYEBER/8h5mDDGfNMY86AxZp0xxhpj1vew7l2JdVLdPpbBc441xtxjjKk2xjQZYxYZYy7OygvKVFLNREcBpoY5RETEP/Jz3QDgVmAP8AYwJM1tLkux7LV0NjTGDAVeBEYCPwE2A58EHjDGfNZae2eabciOFMMc6pkQERE/8UKYmGqtXQdgjHkLKOttA2vt7/vxfN8ApgAXWGufSDzvHcDLwI+NMQ9aa+v7sf/MpBjm0KmhIiLiJzkf5mgLEpkwToUxpi/t/yTwbluQSLShFbgNGAp8sA/77LtUBZgKEyIi4iM5DxN9VJO4NRljnjHGHJ/ORsaYMcA44JUUD7ctm5edJqYpRc2EZsAUERE/8VuY2A78FPgC8BFcvcVc4AVjzNlpbD82cb8lxWNty8al2tAYc7UxZlFmzU1DUs9EoU4NFRERH/JVmLDWfsNa+1Vr7X3W2kettd8FjgOiwK/S2EVJ4r4lxWPNXdbp+ty3W2vnZtzo3mjSKhER8TlfhYlUrLVrgAeAacaYQ3tZvTFxX5jisaIu6xwYBcnX5lDPhIiI+I/vw0TC+sT98F7W25q4TzWU0bYs1RDIwEk1aZUKMEVExEcGS5iYnrjf0dNK1tptuLBwQoqH25Zlvy6iJ3n5YAwAQeIEbJwWFWCKiIiP+CZMGGNKjTFFKZbPAS4GVlpr301aXmKMmZE4gyPZH4GpxpgPJ62bB1wD7AP+NiAvoDvG7HcZck1aJSIifpLzSauMMZcBkxLfjgAKjDE3JL7fYK29N/H1dOBJY8yjwBqgATgK+CzQClzdZdfHAQuAu4HLk5b/EBc+/mCM+Qmup+LfcaeEXmWtrcveq0tTfhAiria0wLZqngkREfGVnIcJ4ErgtC7Lbk7cPwe0hYntwLPAGcClQDGwDbgf+IG1dlU6T2at3W2MORkXKr6Im3FzBXCJtfb+fryOvgt2LsLUPBMiIuInOQ8T1trT01xvO6mvydHd+gsB081jWzLZ14DrUoSpszlERMRPfFMzMah1CROaZ0JERPxEYcILkqbULrAx9UyIiIivKEx4wX49EwoTIiLiHwoTXtClADMWt7TGbQ4bJCIikj6FCS9Ivj4HbVcOVe+EiIj4g8KEF3SpmQA014SIiPiGwoQXpLo+h+aaEBERn1CY8IIu02mDeiZERMQ/FCa8oFPPhBvmUM2EiIj4hcKEF3SqmUj0TGiYQ0REfEJhwgtS9UxomENERHxCYcILUhRgahZMERHxC4UJL8jfvwBT1+cQERG/UJjwglTzTKhnQkREfEJhwgs0z4SIiPiYwoQXpCjA1DwTIiLiFwoTXpCyZ0JhQkRE/EFhwgtSXptDwxwiIuIPChNeoJ4JERHxMYUJL0hRM9GsmgkREfEJhQkvSDXPhHomRETEJxQmvCDVtTlUMyEiIj6hMOEFumqoiIj4mMKEF6S8Nod6JkRExB8UJrygILlmQlcNFRERf1GY8AJdNVRERHxMYcIL8lPMM6ECTBER8QmFCS/IywPjfhT5xAnYuHomRETEN3IeJowx3zTGPGiMWWeMscaY9d2sV2SM+Zwx5jFjzHpjTFNimz8aYw7P4PkuTzxPqtsvs/bCMmFMp9NDg7ZVZ3OIiIhv5Oe6AcCtwB7gDWBID+tNBm4HXgTuALYChwBfAC4yxpxnrV2Q4fOu7LLsnQy2z65gAURaAHd6qOaZEBERv/BCmJhqrV0HYIx5CyjrZr1qYI61dmnyQmPMfcAS4L+BuRk87zPW2oWZN3eAdCnCrFPPhIiI+ETOw0RbkEhjvd3A7hTLVyRCyKxMn9sYUw60WGsjmW6bdV3CRCQWx1qLMSaHjRIREeldzmsm+ssYEwDGADsy3PRxoBZoNsa8aYz5VNYbl4kUlyGPaOIqERHxAd+HCVzNxBjg7jTXbwT+AFwLXAB8BSgC7jXG3NTdRsaYq40xi/rZ1u6luNiXzugQERE/8HWYMMacBPwPsAxXUNkra+0D1tpLrbV3WGufsNb+AjgSeAu4wRgzuZvtbrfWZlKTkZlU1+dQEaaIiPiAb8OEMeZY4K+4szo+aK1t7uu+rLUtwI9xNSTnZKeFGdIsmCIi4lO+DBPGmGOAZ4Aa4Axr7ZYs7HZ94n54FvaVuVQ1E7o+h4iI+IDvwoQxZg4uSNThgsSGLO16euI+00LO7FDPhIiI+JSvwkQiSDwLNOCCxHs9rFtijJlhjBnTZfmwFOtWAl8HIsBT2W11moIpCjBVMyEiIj6Q83kmjDGXAZMS344ACowxNyS+32CtvTex3iRcj0QV8AvgpEQBZrJHrLUNia+PAxbgzvK4PGmd5caY54DlwE7czJqfxZ0Rcp21dnP2Xl0GkoY5ChPDHM3RWE6aIiIikomchwngSuC0LstuTtw/B9yb+HoK0NarML+bfU3B9Vr05I/A6bhCywpc3cVrwBXW2tz0SkDKsznUMyEiIn6Q8zBhrT09zfUWAmlPB9nd+tba69LdxwGV4jLk6pkQERE/8FXNxKCWsmZCBZgiIuJ9ChNekeLU0GaFCRER8QGFCa9Irpkg0TMRUZgQERHvU5jwihQFmOqZEBERP1CY8IoUNRMKEyIi4gcKE17RqWZCBZgiIuIfChNeoWEOERHxKYUJr0gxz4R6JkRExA8UJrxCPRMiIuJTChNeoUmrRETEp9IKE6FQ6H2hUGhiujsNhUJHhkKhT/e9WQchFWCKiIhPpdszsYDOV94kFAp9PRQK7e5m/Y8Ad/ajXQcfDXOIiIhPpRsmUl1gqwgYksW2HNyCKsAUERF/Us2EV3SqmUj0TGg6bRER8QGFCa9I0TPRHG3FWpurFomIiKRFYcIrUoSJuLVEW+O5apGIiEhaFCa8IkUBJkBLVGFCRES8LZMwof72gZSXBwH348jDErAuRDRHYz1tJSIiknP5Gaw7PxQKze+6MBQKqUowW4IF0NIMuN6JZlOgMzpERMTzMumZMBneJFM6PVRERHworZ6JcDis2ooDoZszOkRERLxMIcFL8pOn1NYsmCIi4g8DEiZCodAHQqHQIwOx70EtxRkdLZq4SkREPC6TAswehUKhccBngSuBCdna70FFwxwiIuJD/QoToVDIAOcDVwPnAXmJh54D/q9/TTsIBTXMISIi/tOnMBEKhSYAV+F6IsbScfbGi8AV4XD43ew07yCjszlERMSH0g4ToVAoAFwAfA44B9cLEQEewV1u/AlglYJEP3S62JeGOURExB/SChOhUOgW4ApgNK4X4g3gLuAP4XB4T2KdAWriQSRVAabChIiIeFy6PRPfAuLAr4BfhcPht7PZCGPMN4FjgGOBKcAGa+3kHtY/Hvg+cDxumu9/Ad+w1i7N4Dn7vY+s63RqqHomRETEH9I9NdQm1r0U+FIoFDo+y+24FTgTeBfY29OKxpgTcAWeU4DvADcB04EXjDGz03mybOxjQKhnQkREfCjdnolJuFqJK4DPA1eHQqHVuFqJe8Lh8PZ+tmOqtXYdgDHmLaCsh3V/gavVeJ+1dktimweAlcD/4Oo5epONfWRfipoJhQkREfG6tHomwuHw5nA4fBMwGVeE+VdgGvBDYFMoFPpbfxrRFiR6Y4yZBswDHmwLAYnttwAPAmcbY0YP9D4GTKp5JiK6aqiIiHhbRjNghsPheDgc/ks4HL4A11sxH9iCm2MC4OJQKHRbKBQ6OrvNbDcvcf9yisdewRWHHnsA9jEwUs0zEYvnpCkiIiLp6vN02uFweGs4HP4eru7gfOAxoBT4IrA4FAq9np0mdjI2cb8lxWNty8YNxD6MMVcbYxb12sL+UM+EiIj4UL+vzREOh204HH4yHA5/BDeN9g3AetzZGdlWkrhvSfFYc5d1sroPa+3t1tq5vbawP1SAKSIiPpS1a3MAhMPhHbgzM24NhUJnZ3PfCY2J+8IUjxV1WWcg9zEwNGmViIj40IBdgjwcDj87ALvdmrhPNZTRtizV8EW29zEwUswzoZ4JERHxunRnwPx0X3YeDofv6ct2PWirwzgR+G2Xx07AzYex+ADsY2CkGOZQz4SIiHhdusMcd+EOsukyifWzGiastWsTRZAXG2NutNZuBTDGjAUuBv5prW2f88IYMxwYDmyz1tb0ZR8HVHKYQD0TIiLiD5nUTMSAvwArst0IY8xluFNNAUYABcaYGxLfb7DW3pu0+peBBbjZKm9LLLsGN2RzXZddfwk3u+UVuEDUl30cOJ1qJlzPRCQWJ24tAWO620pERCSn0g0TzwHvA/4NGAn8H/BAOBxu7nGr9F0JnNZl2c1Jz90eJqy1/zLGnA7ckri1XVfjYmvtm+k8WTb2MSCS5pkoomN+iZZoK8UFWa2VFRERyZp0Z8A8AzgM+DFu5ss7gW2JCaqO7G8jrLWnW2tNN7fTU6z/srX2LGttmbW23Fp7rrX2jRTrzU/s466+7uOASuqZKKRjeENDHSIi4mVpf9wNh8Nrga+HQqFvAxfirtXxBSAUCoUWA78B/hQOhxsGpKUHg27CRHOk1U0HJiIi4kEZnxoaDodj4XD44XA4fB4wFTevxBjgdmBrKBQ6McttPHgkhwmbFCbUMyEiIh7Wr3kmwuHwhnA4fCNwNW5uhjJcAaX0Rf7+BZigMCEiIt7W56q+UCg0Fvhs4jYJNxX174Hc1h34WcH+80yAaiZERMTbMgoToVAoAHwIuAp3pdB8YDnuVMt7w+FwTdZbeDBJPjU0njzMoYt9iYiId6U7A+YU3OmbV+DqIxqAu4H/C4fDrw1c8w4yncJEcs+ELkMuIiLelW7PxNrE/SLcJFB/1FkbAyDp2hz58RhYC8aoZ0JERDwt3TBhgCiuV+I7wHdCoVBv29hwODypt5UkSV6eu7W2YrDkEydGnmomRETE0zKpmQgC4weqIZKQXwCtTYC7cmjM5OlsDhER8bS0wkQ4HB6wS5VLF8ECaHFhwp0eWkBLRGFCRES8SyHBa5Kuz1GQmLhKPRMiIuJlChNeE9x/rgmFCRER8TKFCa/pFCZciFABpoiIeJnChNd0GuZQz4SIiHifwoTXFJW0f1kajwDqmRAREW9TmPCa4o5rjZfGWwD1TIiIiLcpTHhNpzChngkREfE+hQmvKSlr/7LUup4JhQkREfEyhQmvKd6/ZkLDHCIi4mUKE16T3DMRV8+EiIh4n8KE1yTVTJS1FWBqOm0REfEwhQmvKdm/ALM52oq1NlctEhER6ZHChNck90wkCjDj1hJtjeeqRSIiIj1SmPCaTmEi2v51S1RhQkREvElhwmtK9p+0CqA5GstFa0RERHqlMOE1KWbABJ3RISIi3qUw4XAUlFEAACAASURBVDVJYaK4NYJJFF7qjA4REfEqX4UJY8x8Y4zt4RZNYx8Le9h+7oF4HT3Kz4eCQgACWIoTdRMtMYUJERHxpvxcNyBDfwbWplh+JHA98ESa+9kFXJti+bo+tiu7Ssog4oY4SuMtNAYKNAumiIh4lq/ChLV2GbCs63JjzG8SX96R5q4arLW/z1rDsq24FPbtBlyYqKacFg1ziIiIR/lqmCMVY0wJcAmwBfh7BtsFjDEVxhgzYI3rq24mrhIREfEi34cJ4ONABXCntTbdI+44oB6oAeqNMX82xswYqAZmLMUZHQoTIiLiVb4a5ujGlYAFfpfm+u8BL+GGS1qB44EvAWcZY06x1i4fkFZmonj/ngmdGioiIl7l654JY8xhwCnAP62176WzjbX2Cmvtt62191trH7LWXg+cA5QBP+nhua42xizKSsN7kzzMYdUzISIi3ubrMIHrlQD4bX92Yq19AXgeOMMYU9zNOrdbaw/MqaMprhyqngkREfEq34YJY0w+8GlgD/BIFna5HsgDqrKwr/5RAaaIiPiIb8ME8GFgFHCvtbalt5XTMB2I4cJJbqUowFTPhIiIeJWfw0TbEEfKuSWMMWOMMTMSp462Las0xuSlWPd84GTgGWtt84C0NhMlZe1fqgBTRES8zpdncxhjxgLnAa/1cPbFD4DPAGcACxPLzgB+Yox5AjfbZQw4DvgUblbMrwxgs9NX3J5/Ok4NjeiqoSIi4k2+DBPA5bj6hkwLL98BFgMfwg2RBIHNwK+BW621W7LYxr4r3r9nojkWz1VrREREeuTLMGGtvRW4tZd1LseFjuRlK4GLB6xh2ZLq1FD1TIiIiEf5uWZi8Op0aqhqJkRExNsUJryoRNNpi4iIfyhMeFFhMRj3oymyMfJsq3omRETEsxQmvMiYLmd0RNQzISIinqUw4VVdZsFUz4SIiHiVwoRXdTo9tIVILE7c2hw2SEREJDWFCa9KMXGVeidERMSLFCa8KmlK7TKrMCEiIt6lMOFVxSmuHBpRmBAREe9RmPCqVNfnUM+EiIh4kMKEV6W4cqjChIiIeJHChFelGOZQzYSIiHiRwoRXlSRfn6NtmEMX+xIREe9RmPCqpJ6JkkSY2NcQyVVrREREuqUw4VUl+185dMe+ply1RkREpFsKE16VXDORmGdiR01jrlojIiLSLYUJryrpPJ02wM4a9UyIiIj3KEx4VYqzOXYoTIiIiAcpTHhVl0uQYy3VNc20xuM5bJSIiMj+FCa8KljgbkA+cQptjLi17K5ryXHDREREOlOY8LJOQx2JIsx9KsIUERFvUZjwslSnh6puQkREPEZhwstSnB6qMzpERMRrFCa8rCTVMIfChIiIeIvChJfp9FAREfEBhQkvS3EZcg1ziIiI1yhMeFnSXBNlSbNgxq3NVYtERET2ozDhZUnDHFV57vLj0dY4e+s114SIiHiH78KEMcZ2c6vPYB8fNMb8yxjTYIzZY4x50BgzZSDb3SdJwxzDE2ECNNQhIiLekp/rBvTRC8DtXZZF09nQGHMR8BDwJnA9UAl8BXjJGDPXWrs1mw3tl6RhjiGBjjCxY18Th4+vykWLRERE9uPXMLHOWvv7TDcyxgSB24BNwKnW2vrE8ieBxcB84OostrN/ijt6JipNR1bSGR0iIuIlvhvmaGOMKTDGlPW+ZienAWOB37YFCQBr7VJgIfCJRODwhpL9Tw0F2FGjKbVFRMQ7/BomPgY0AnXGmJ3GmNuMMZVpbDcvcf9yisdeASqAQ7PUxv5LKsAsbu0oulTNhIiIeIkfhzleAx4E1uIO/h8EvgScZow5KbnHIYWxifstKR5rWzYOeDtLbe2fpJ6JgkgTJL7VLJgiIuIlvuuZsNYeb639sbX2UWvtPdbaS4BvA7OBL/eyeVtFY6pzK5u7rNOJMeZqY8yiPjW6r5JqJvIjHUMbO2qasJprQkREPMJ3YaIb/w1EgPN7Wa/tiFyY4rGiLut0Yq293Vo7t2/N66OiYjAGANPcRFnQ/bhaoq3UNqV18oqIiMiAGxRhwlobBbYCw3tZte20z3EpHmtblmoIJDcCARcoEiaWdfy4VDchIiJeMSjChDGmCBgP7Ohl1dcT9yemeOwEoBZYncWm9V/SUMf4UtP+9fZ9OqNDRES8wVdhwhgzrJuHbsYVkz6RtO4YY8wMY0xyDcRzwDbgquTTSo0xRwGnAw8mejm8I2niqnFFHXUS6pkQERGv8NvZHDcYY04AFgAbgTLc2RxnAK/iJqRq8wPgM4nHFoIbDjHGfBm4H3jBGPN/uDNCrgWqgZsOzMvIQNKU2qMKOsKEzugQERGv8FuYWAgcgQsJw4BWYA3ubI6fWGubu9/UsdY+aIxpAm4Afow7s+MfwNettd6pl2hT2hEmxsb2AeWAZsEUERHv8FWYsNY+BjyW5rqXA5d389hfgL9krWEDadpMWPoKAOPfXYTraNEwh4iIeIevaiYOSsef0X56aMl7bzMiVgfADhVgioiIRyhMeF3VcDh8DgDGWt7f5E42aWiJ0dDsrVpRERE5OClM+MGJZ7V/eXbjakjMfqm6CRER8QKFCT845mQodBN0jmvexbRINaAzOkRExBsUJvygsAiOOaX927MbVgGwasveXLVIRESkncKEX5x4ZvuXZzSsJs+2suCtrcR1wS8REckxhQm/mHGUK8YEhsSbmNu0kR01Tby9cU+OGyYiIgc7hQm/COTB8R29E21DHc8u8948WyIicnBRmPCTpKGOExrfozTewvMrt9ESbc1ho0RE5GCnMOEn4ybDxGkAFNDKR2uX0NgS4+XVvV0sVUREZOAoTPjN6ee3f/mJmsUcEqnmH8s11CEiIrmjMOE3p5wL044AIJ84X939D5as2c7e+pYcN0xERA5WChN+EwjA5ddCfhCA6ZFqPlqzmIVvb81xw0RE5GClMOFHoyfAhZ9u//bSfa/x9qtLc9ggERE5mClM+NU5F9E6aToABcT56KpH2bBpZ44bJSIiByOFCb/KyyPvs9fRavIAODyyg9E3X0n8zp/AmrfcxcCaG2H7Jli5FFa/1X6BMBERkWzKz3UDpB/GTab6tIsYvfBBAArjUXjpaXcLFkA00nn9k97v6i0CypAiIpI9Oqr43OhLP8urx13MhmBV5we6BgmAfz0D9/9GPRQiIpJVChN+ZwzzPvdZ7njftXx59MX8tWwmDYEC91h+EEaMgbETO9b/x2Pw+O9z01YRERmUNMwxCASM4WsfmcN/7mnkF3tG88uhpzOlIp//uvosyksKIN4Kt/8QFr3gNnjiPigpg/d/JLcNFxGRQUE9E4NEWVGQ71x8LEXBPOImwLt1ca6752V21jS5i4Rd9TWYNbdjg/t/A4/eDS3NuWu0iIgMCgoTg8jkkeVcd8FR7d9vqK7ny797ibXbatyQxxdugOkzOzb4yx/h21e6gs14vPPOequriEZUeyEi4kWpauYGmLE6IGQkFApZgHA4nOumdOsfyzbzkyeWEYu7n21RMI9vf/QYjps+Ehob4Oc3wrsrOm80dhKUVUDtPqjdCy1NMPlQOOYUOPZkGD4aavbA4hfh9edgzdsweTqEvgNDR+TgVYqISEp3/gS2bYRzLoI5J0NeXrb2bLp9QGEiM34IEwBL1+/iew8spqElBri6iktOnsonTplGUR7wr2fhkbugZm96Oxw5Fqq3g+3Sg1E1HL5yi7uiaX+8uxL27YajToB8lfKIiPRJzV74+qchFnXff/OnMPXwbO292zChYY5B6ujJw/npFScxqrIYgLi1/OHFtVz96+d4ec0ud8Gw7/8OPvRJKCjsfYc7t+4fJAD27oL/+n+wennfGrp2Bfz46/CDa+FXt7heE9VxZE/tPljxhivCFZHBb+FfOoLElMPgkBkH5GnVM5Ehv/RMtNlT38zND77Bis2deyCOmz6S/zjnCMYNLXXDF+tWQWERVFRBZRVYYNmrsOhFWLkEWmNgDEyfBfNOg4oh8Lv/ccMh4GoyLvtPOO40N2FWT6yF995xZ5Usf33/xw87Eq75LhQVZ+dNSPX8i15wp8gGC+Cks+GEM90wz2CycincdhNEWuDQ2fCf34Wikly3yhuiEff7nLhgnsigEI3A1y6Duhr3/dXfdP+Ts0fDHNnitzABrlfi70s28bt/rqKuKdq+PD9guPC4yXzy1OmUFfXwT7WxHjavhxGj3bBGm41r4Wc3uhqLNkUlMOtYOPpEl4qDBe6Wnw/r18CSf8HSV2BPl+uImEDnno/pM+HLN7szUZb8C156BjatgzknwrkXw6ixnbdvbnIBpa4GmupdbUhzI4we785iKR/i1tu9E+77JSx7rfP2+UGYcxIcMQdiMXcAjra4dpWUQWmZux86EsZMcAeigRZpgVVLXdunHJbZtqvehF98x+2jzdQj4Cs3Q3FpdtvZVc0ed185dGCfp6/eWuROlc7Lgy/Nz2YXcG5FWmBPtfudl4PTC3+Hu3/mvh46An5wVzbrJUBhInv8GCba1DZGuHPBOzz5xkaSf+qVJQVcdtqhfPCYCeRlOtV29Xb42bdhx5a+NcoYOP4M+PCn4I2X4OE7Oh4bNc4FlabGLtsEYN6pcPqHXZHR0pfdp/BYlJSMcQfjSdPdLKD9HUaZNB3OuhDmva/3XphUrHU9QS897YYgyipgxhw44mh3wN+wFl5+FhY93/Ha574PPnF15zDXnXeWueGi5CDRZsphcO33XTDKNmvhyQfcKcfWuhB31oVwxDFuCvd4q3ttb7/herTO+HB6xbu7trserFnzXKDtj5VLXchqq3Yvq4Rv/dTVBPnZ+tXuZ15X43rZLv9q/2uPYlF4Z7kLz+kWWa9d4f6+Dj/KfRDozbp3YO3b7n9AZVXv63vRpnXu9/Oo4/tfO9Yf1sJN/wFbN7jvP3YlnHdxtp9lcIQJY8yhwKeAc4CpQBHwLvAg8DNrbUMa+1gIdNfvM89au6in7f0cJtq8s3Ufv35qxX5DH6OGFPPREw7h3KPGU1SQwT+i+jp48n4XBqq3pbdNSZkrtjzvY53/AJ/+Mzxwe/rP3VfGwOnnw/hD4MWnXK9GpsqHwGkfgJnHuoDRW+1JXY0rfH3pKdi6sft2dfc3WVgMF37KDTOtXg4rlriei+YmdzbOhEPcP/0n7usITEOGwcnvh7/+qWM/k6bDh/7d9VCUlLpemV07XF3Mji2uEHb0eNdLM21meoGpudENe73x0v6PjRrn2rbqTaiv7fx6LroczvhQ9weetSvgZze4/RcUwiX/Aaee17eeoTVvwU+/vX/IGjXOFam1DXPFYvDqP2HvbjjxLBg2svP6u3fCE793wejsf4OTz+n8uLXu9/iFJ+Hwo+Ejl/ctvLU0u9fZ2+/VulXudTUl/fubcxJc/Y3OP7vGetiy3vWuDR3R83u4azv8+vuuNzE/6IYdZx7Tc1v/GIYXn3bfj5kIH74U5p6a+lpA8Tj87U/w2L3u/aoaDtf9cP9elfWr4ZUFLkROnwXjJ6cXUvorFnXv64olbpi3dp8LxWd8CMZPcevs3QWP3O2Cv7Xufbrqehf8u9q32/39R6Nu360x91raekyz4e034Kffcl8XFsF//34gPjQMmjDxQ+CLwOPAK0AUOAP4OLAMOMFa29TLPhYCM4FrUzz8N2vtnp62HwxhAsBay3MrtvG7f6xiR03nt6yiOMgF8yZzxqyxjBtaikn3H7e1LhUvedkl9dq97hNg261iCBx5vBuqmD67+09O/3gM/virju9HjnUXKZtwCPzzMfdHk8q4ye6fUUmZO0jm5bsDyNqVnYdQxk6ET38Fph3RsWzze+6fVs0eKCiAYKG7j8fdP+GGOndbuyJ1D0henmvflBmu4OmQGR2fdtetckVRrz/ffe9Jd4YMc/+I+qJyKFz/I/eeLPiLG97JVLDAvU9zT3U/g1TBYtsm+N/vuSvU9sWUw+DTX3bvX7J3lrlehK49Scee4tYvLe+83FrXk1O7x/3zLyh070FFlTvw/+SbLpSA+xTc2NDRQzF9Jlx7qxtSe/SejlCclwfHneFCb9Vw+Nv98OyjnX+OH/i4CwyBgAsiv7/NBdQ2VcNde2fPc99HI26Y7c1XIRZx7Swocu9t3T4X6qq3dZxpVVkFw8fA8FEwbpIbQhw7yT32biJsde29A9czFLrRhc2n/wwLnuiocaoc6n5Hpx4OM46CidM6Dvpvvgp3/Lf7vW9TWARfvdX1nHW1ZT385tbUAXncZDj/3+HI4zpqoJob4Y4fu/c6WUUVXPcDt008Dk89DI/eBa1JxcPFJTB1JhxzkuuBSad43Fo3/LN+Nby32g3P5gdd7+Yxp7jXBu45V7zhhgreWtR9D+b0We60+Of+lrr37+Kr4JyPurC2ZT38+U73nnaVH4TzL3G/P8m1O6vehKcegn173N/u2Inu5z350P2DbbKf3QhvJWrQzrwAPhnq/b3J3KAJE3OBNdbami7LbwG+DVxjre3xP2YiTEy21k7uSxsGS5ho0xJt5ZFX3+PhV9ZR27T/gW5oWSGzJw5l9qRhHDV5GBOGZRAu+uOtRa77c+ax7tNx8nOuX+N6Qtatcgfso0+Eo09w1yFJpb4OVix2B6dR4+HMD/e98K6uxn3iXPAX98mkJ6XlUF4J2zfv/1hhkRsmOfFsd1BbucR1wW/b6MLQvNPcp+Kph7t2/+F/u+/NSKWiygWJMRM6lj3/JNz7i75PNlZZBWdfBKd/0H06XLEElrzk5h5J/sd71oVw+ofg+b+5T6rJn5grq9wnvPdWdw4fgYD7OZ54tjvorl4Gv/xu6n/W4D5dzzjKHXzraqC+xh18U03WY4zbf9tBqaIKvvYjVwf06+93rFdS1vkA2lVRSUcY6eq4090/79/+yP3upnLS2e73btELPT9POkZPgNlz4fm/dwSEskrX1f7S0x3rjZ3oep26ex/blFW6nofiUhd8Uykpc79TbaEvFnW1TPf/pvP+84P7h+a8PBdeDjvS9V5197tcVgGf+7oLP28v7qXNFXDaB91wWVGJ6118d4UbOqnd60JUc6MLWi3dfMYsLoHjz3S/ly897d6rvuj6u3PaB93v4sv/6P3vbewk+MyXXU/dw79LXZTe5sSz4KOfdR8ykm3dCN+52n1tDNxyx/51ZdkxOMJEd4wxs3E9E7+x1v5HL+suBCYDhwBlQJ3N4E0YbGGiTXO0laeWbuLhV9axY1/3nTvDy4s4esowjp48nLFDSyjMz6OoII/CYB6VJQUU5B+ALkgviMVcrcay11yoSfdT+ZTD3D+aue9LfbZKc5P7hNq1aCoWg2cfcbOWRiMuZBx+tBuKGDLMfQLa9J4bv8XCv33aHXC6WvWmG2ppqHUhpinx6bxqBIwc47r8y4e4f8wrl6Z+XcUl7sDc9QBVUOjO6DnxrM6vZ8m/3PNMn+W6iI1xz/nkA+6TftcDT1mlOwi0La8c6s5Eef5J92mwP8oq3AGxbWjtqYfgwd/uv15JmQti765MvZ/J011YTO4lKyjs/J4ceTy8t6qjsj5TeXnuQNR1dtpUyivh//2XOzA9/ns31JXK0JGuh627g2undUe4A9efft3xGiqq4OIrYcVSePOVzgfQgkL45BddKHzmYXj2sd6f5+yPuA8Cv/xu90HtkBmu3Wve6ijuTZaXB3Gb+tT1/hgxpuNvrKTMBbclL3XuKZlwCHz8czBhGvzvfDeZXyrGuN+nYKELWw21nT9ktH1YSudQVFjsejTe/xEX6nftgMfugdcWusePPhG+dFNfXnE6Bn2Y+ADwN+B71toe38VEmDgZN0RSDDQCTwHfstau6u25BmuYaNMaj/PCiu38860tvLVxT/ukV+kIGBhRWcy4oaWMrSph2phKjps2kmHlRQPYYo9oqEt8Mlrp7t97xy0DFw6OP919Wp98aP+ep+2Td18KP/tiT7UrBH3mkZ57YkZPcGP0E6dmtv9tm1yvy8qlqR+vGu4OkqPGue8Xv+iq1bv7ZN8+tDHEHdjbxqrBHQi//D1XM9LGWrjvfzs+jRcUujqI8y52B5B3V8CTD7rgCG6o4aIrXBi01g3Hpfok/6FPwoWXuR6T+8LuPUw2fJTrph8z0bUz0uJ6d4pLXW/byLEdRY97q12hc/U292l9+eudQ0v5EPh/P+xce/S3+133epuJ09wBaM5JgHWfZNetcrU3b7/heniSzTzWXc+nvNINC/z311IPpbQZOxE+/63ObairgX886s7e2vxe5/WDBfDp/3Q9UeDa8rMb9v+5fuDjcOGn3ZCote49WPKyG+7c3eWMsJ4UlbgAOPlQd79zmxuK2rm183ql5a4H6dTzOoaSku3b7YZB3lsNx5wMJ53VUcMRjbi6odef67zN7HnudyZ5GC/eCv98wk0c2HU4xRj3vpx4lnu9WzfChjUuTCUrKXNhrbXLHDLX/8j1AA2MwRsmjDF5wIvAXGCWtbbHSjpjzJ3AVlxPRitwPPAlIAKcYq3tcfalwR4mkrXGLe/tqGXZxj0sW7+bZRt2ZxQu2swYN4QTDh3FsYcMZ+KIcoqCB0HvhbXuH9WeapgwFcrKe9/Gy6IReOWf8PcHO87cGTPRHZzmnOgO0JmeCZRs60Z45R+uW7gttAwfBdf91/5ncNTsdZ+KwR1IyyvdrbLKfWrrOgwXi7mDeml56hDW2up6PRrrXbFq1y5kcJ8id251n1ST92Et/P2hjrOQAgH41DXwvg903n7xi7Dwry4knHCmq0Pp63BhS7MLFUtehkizq9dIdTro4hddDcBRJ7gDWnfPF4/DpnfhrcWwbiXMONoNVSX/PLsrXh020r2eD17SUXuQSt0+N1y3cik01MMHP+4CTrKN78JPvuV+VuWVcOX1nS9OmKy11fV4PfOIC3zGuIP/tCPgkMNh9DgXIIpLXQ9gUcn+v5/WujD1yj9dD9rRJ7iA0J+gHo+7nqFnHnHB+iOfcXO8dGf3Drj3lx21DrPnud6gtiLPZCuXwB9/3XG2RiqTp8O3fzGQp64P6jBxGy4MfMta+4M+7uNUYCHwT2vt+7tZ52rg6i984QvHwsERJrpqjcdZs62Wpe/t4u1Ne6hrjtISjdMSbaUpEmNvfQvp/DaNqixmwvAyJo8s59AxlRw2bgijKovbazEaWqJs39tIJBZn+phK8vM0UatnxFthywZXMDgQY7LxVnfQ2b7Zffovr8z+cwyEtxe7WoDjz+j54OFnb78B9/7cFTbPORnmnuJCZDYPXHU17uc/4+j0A3jdPjd0MNDzp2TC2vTfF2tdiAsW9t6z19oKz/3VFQm39eJUDXdDMuMmw7kfdddRGjiDM0wYY24GbgBut9Z+vp/7WgCcCpT3dEbIwdQzkalIrJXtexvZsqeRjbvqWbyumuUb9hBP43essqSAERVF7Kxp6lQIOqS0gLOPHM85R41n0giff7oXEcmGWNQN8wwZ1nOPUPYNvjBhjJkP3ATcCVyZSRFlN/u7E7gcGGet3drdegoTmaltirBobTWvrN7Bu9tr2bq3Ma1wkcr0MZVUlRa0J36Du4BZIGDICxiCeQEOH1/FaTPHUFF8gGoKREQOHoMrTBhjbgLmA/cAV1jb/zJeY8yLuPqJcmttt1MkKkz0TyTWytY9jWzaVc/a7TW8s7WG1Vv3darFCOYFGD2kmIaWGHvqezmlLYX8gOH4Q0dx5izXDf/u9lre3VHL+uo6goEAIyqLGVlZxMiKYoZVFFFVWsjQskKGlhVRWVpAUMMqIiKpdBsmfHetZ2PMd3BB4l56CBLGmDFAJbDRWtuYWFYJ1FtrW7usez7uDI8newoS0n8F+XlMHlnO5JHlnHqEmxcibi2bdzdQ1xRhVGUJQ8sLCRhDa9zyxrpqnlq6iZff2UEsnl7wjcUtL63azkurtqd8fPOenidKLQrmUVYcpLwoyPCKIo4YX8WsiUM5bOwQCg+G4lERkQz5KkwYY74IfBfYCDwLfLLLBEo7rLXPJL7+AfAZ3AyZCxPLzgB+Yox5AlgHxIDjcFN07wK+MsAvQVIIGMPE4ftP+5oXMMybNpJ500ZS0xhh9dZ9tCYFiri1idPwLa3Wsre+hQVvbeWdrfv221cmmqOtNEdb2VXbzHs763h9bTXgejzGDi0lEmulKeKKTiOxzlk2L2AYP6yUKSMrOGRUBROGldLQEmN3XTO765upbYwyYXgZR00exoxxQzr1grREW9lZ00QwL0BVWaGCi4j4hq/CBJCYj5aJwN0pHn8OeCbF8jbvAIuBDwGjgCCwGfg1cKu1to9Xq5KBVllSwLxpPUwlm/CR46ewcVc9zy7bzBvrdlFamM/U0RVMG13JIaPctRd21jSxs7aJnfua2FPfwp6GFvbWu1tNY6Tbmo5Y3LJxV88zF7bGLRuq69lQXc/Ct7stveHe56AwmMfh44cQj1u27mlkV13nTrHSwnyqygoJ5gWItsbdLRanvDjI4eOrmDmhipkThjK2qoRILE5TJEZztJW8gGF4edF+M5XurW/h1TU72Lq3kamjKphzyHDVlohIVviyZiKXVDMxuFlraYq0UtcUobYpyvqddby9aQ9vb9rba5DIFQP7nZJbURxk+tghHDqmksJgHq+u2cGqzfs6rRcwcNjYIRw7dQRHjK9i6ugKhpR2vtZBXVOUnTVN5AUMRQV5FBfkU1yQRzAvcGCmVRcRLxlcBZi5pDBx8KppjLC7rrn9gFpUkE9hfueDamNLjPXVdazbUct7O2rZtq+JiuIgw8qLGFZWSHFhPqu27OPN9bvZtrfzjIJtM4i2xt2QTWuaNSLZNLyiiEkjyqlrjLB1byP1zd1fmCyYFyCYH6AgP0B5UZCRlcWMqCxmREUxQ8sKKS3Mp7QoSGlhPoGAoaklRmMkRlNLjFZrKQom3segCynlxUEqSgooCuYpqIh40+ApwBTJlcqSAipLeh4WKCnM54jxVRwxvqrbdT4wGS5uAwAAE/NJREFUZyIAO/Y18s7WGooL8hg7tJRRlcXtE3TFraW+KcqeRKgI5gcI5gXIzzNs3dPI25v2sHLzXlZs3kt9c4xgXoDiRM9BfXM05UylAQMzJwxl+thKVmzayztb9u3Xo7GrtpldtenVILcNvTS2wL6GCJt291zYmq78gGFIaSGTRpRxyCg3RDV2aAk79jWxobqO9dX1bNvbQGEwj4riAsqLg5QXBxk9pISJw8uYMLyMoWWFCiQiB5DChEiOjBpSwqghJSkfCxhDRUkBFSnCy4iKYo6a7KZ8ttbSGredZgm11rJ1byNrttawets+GppjzJo4lOOnj+y0v9rGCG+8t4tlG3bz7vZa1u2o3a+gtCA/0D47aXO0lcaWGM2RWNpn1vRFLG7ZVdfMrrpmFq/r5cqs3SgrymdERbF7D4uDlBcXYAw0R1ppTtSWNLbE2oNXQ3OUaGucvECAvMS8JWVFQaaOruDQsUM4dGwlQ0oKWLllH29tdMNeu2qbmDamkrlTRzB36ghmjBtCXn+mFO9FS7SVuLUUF+jftniPhjkypGEOGaxa43E27Wpg8+56KksLGVtVQlWZO013/3Vte0FoJNbKvoYI1bVNVNc2sbOmmdrGCA0tUeqb3YE6bi0lhfmJIaJ88vMMzZFWmqLu4N7YEqOuKUptU2S/QOMXJQX5DCkroDiY315fMqy8kJGVJYyqLGZERRGNLbH2oLSnroWapgh1jRHqmqLUNUcpDOYxsrKYUZXFjKwspiXayqbd9WzcVc/OfU1YXA/Z6CEljKkqYezQEiaNKGfKyHLGDS3dL1TGre024LTGLXvq3bBdaWG+enIkHRrmEJGe5QUC7XOA9L6uIS+Ql7hom6sJmTq6IivtaIm2Ul3bxLoddazdXsO6HbXs2NfEiMpiJo8oY9KIcsYPK6U1bqltjFDXHGVfQ4QtuxvYuKueTbvqaYxkfkG6/mqMxGjc0//n3VnTxFs9PF7TGKGmMbLfKdD5AcPwiiIisbgLapEYFlcHM7aqhLFDSxlaWsjWvY3t71O01QW3vIChoriAipIgY4aUMGG4e58nDC8jYKCuOUpdU5T65ijRWBxrLRY3HFdaGGTUkGJGDylhZGUx+QHXi1XTEKGmKYIBJgwvU4/KIKeeiQypZ0LE26y17KlvYV9DCzWNUWobOw5qxQX5FAXzKCrIo6Qwn9LCIGVFQcqK8gnmB2iN2/ZbdU0Tq7fV8M7WfazeWkNtU4RpoyuZNcFNYjaysphlG/aw+N1qFr1bvd+pvdkWMC7wtQUAL+qpjaOGFDN5RDnDK4qobYywryHC3oYWIrE4E4eXMW10BdPHVDJxeBl7GyJs39fItr2N7Kxpoq4pQn2zG5ZqjMQYUV7ElFEVHDKqnMkjyt3Pq7aZ6tomdtU1u96t/9/enUfHWZ13HP8+2qWRrA3FiwBDCFtiKCHsoRBTTk7SlKZNQzlQlqZJWvICPaU5pS1Ni7OchqYEaEje0NA0CSQQ4LQkkJYlNHHCEmIc6pT0FMxmwJJtyZYsyVqs7faPe8e8HmZGyytrZOv3Oec9r3XfO6M7j0eaR/e9S+KjrTFTxZHLGzlqeSPLm+swM8YmJtkWvsfQ7nHqayv3jMFpylTn3d14e/8I617s4rXtu1jeXMfRK/yU86oKX3d4dJzOniG6+4dpylRzSGuGTE3lXs8xMjpOV/8I5WVGS331/pZkaTbHXFEyISK5nHP0Du5maPc4w6N+0bPBkTG6+4fZtnOYrj7/IZeprqC1oYaDGmpoaaihKVPlewRqK6mvrWRo9zhdfSN09Q3R1TdCRblxSKsfVLqipY6K8jJ2DIywtXeIzl6/LH12UGpXX8H9CQtaUlvJ2MQkw6MTU1c+QNTX+CSyu3+YYkN/2pbUcGhbA4ceVE9VRRm/eKmbF7f2v6leRZnR3pqhf2iM3sE3L//fUl9Ne0uGkbAoXd/Q6F7XayrLaQ5JRfKTOlNTwcq2Bla21XNYWwPLmuuoqiinotz2TM0eG/eDoMdD8lbotuQcUjIxV5RMiMhCNDjiP8z2TLmtKmfSQdfOYTp7B+nsGaRn126WNtWxss0nKNlFy0bHJxgIs4c6dgzy6vYBXt++i807Bikz2zNjpr6mkqqKcsz8IGHMD+TdunOYrTuH2NE/gsNPG27MVNFUV8Xo+CSbdwzOeoM/mb6qijJWNGdob/G3tQ5uzbB6VftcrqarMRMiIgeyTE3lm7rUy4H21gztrZmij62qKKe1oZzWhhqOXN446zaMjk8wOemozlkrZHR8go4dg2zqHqBvaJTGuiqaMtU0Z6opM3hpWz8vbu3nhS19bO0doqW+mmXNdSxvqmNpUy1NmWoyNX6/nOrKcjp7Bnmla4BXuvp5rXsXVZXlHNRQQ9uSGlobaqirfuOjzTnHlt4hXtjSx8YtfQwM+7VTjDCepCVDfU0lu0bG9ozBKbTOS0WZsWplC+84uIWOnkFe2NJHR2Kvn4oyY2lTHW2NNfTu2k1nz9CbbvlUlBltjbVMTvrbcXN522p0fJJN3QNs6h7Y8xrPOa59zp6/GCUTIiIyJ7JjB/KVH750CYcvzT9I99C2Blavmv6H3vLmOt51RNuM2+ecY1vfMKPjkyxrqi3Y3vGJSTp7/IDe17bvYmBkjLcf3MyJbz2ITPXeCdvA8BgdPYM0ZapoW1JLedkbSdTE5CRbdw6zpXeI2qryvTYyzLYnuzvy6Ngbt5ocfvn7Td0DbOoa4NXuAXp27WZ8YpLxCT+TatK5sPaMXzhubGJyT6KU9ZbGwq9xrimZEBGRRcHMWFZgbZekivIyP16ibeqZTQ21lRzT3pT3WnlZGe0tGdpb8vcMmVkYAFyZ9/opR069H1FSNrHp7Bmko2dwr40E9zUlEyIiIgeAbGJTKLnZl+YvbREREZEDkpIJERERSUXJhIiIiKSiZEJERERSUTIhIiIiqSiZEBERkVSUTIiIiEgqSiZEREQkFSUTIiIikoqSCREREUlFyYSIiIikor05ZimKolI3QUREZD65OI4t3wX1TIiIiEgq5pwrdRsEMLP1zrmTSt2O/Z3iODcUx7mhOM4NxXFu7Ms4qmdCREREUlEyISIiIqkomVg4vlbqBhwgFMe5oTjODcVxbiiOc2OfxVFjJkRERCQV9UyIiIhIKkomREREJBUlEyViZmVmdrWZPWdmI2b2upl90cwypW7bQmRmR5nZZ8zsKTPrNrMBM9tgZn+TL2ZmdrSZfc/Mes1s0MweM7NzStH2hczM6szsFTNzZvblPNcVxyLMrMXMbjCzF8PPcbeZ/djMfj2n3qlm9mh43/ab2UNmdkKp2r1QmFm9mV1rZs+G2Gw3syfN7A/NzHLqKoaAmf21md1rZi+Hn9tNU9SfdtzMbIWZ3R7ex8Nmtt7Mzp9WuzRmojTM7J+APwXuAx4EjgWuAh4DznXOTZaweQuOmV0PXAHcDzwFjAGrgd8H/gc4zTk3HOoeAawDxoGbgT7g48Aq4P3OuUfn/QUsUGZ2A/AnQD3wFefclYlrimMRZrYSWIuP3deBjUAjcDzwsHPuu6HeaaFeB5BN2K4E3gKc4Zx7dl4bvkCYWRnwE+AM4Fv4n+s64ELgFOALzrm/DHUVw8DMHNADPAO8C+h3zh1WoO6042ZmLcD6cO1GYDNwEXA28EfOuW8UbZhzTsc8H8A7gEng33LKrwIccFGp27jQDuAkoDFP+edCzK5MlN0DTAAnJMrqgVeB5wlJ9GI/gBPxicKfhxh+Oee64lg8fo8BrwPLp6i3DugH2hNl7aHskVK/jhLG7/Twvrspp7wKeBnYqRjmjdtbE//+FbCpSN1pxw34Qvj/OC9RVh6eYwdQX6xdus1RGhcChv9rL+k2YAi4eN5btMA559Y75/ryXLo7nFcBhFsevw2sdc5tSDx+F/AvwFHAyfu4uQuemZXj328PAf+e57riWISZnQWcif/reYuZVZpZXZ56b8PH6V7nXEe2PPz7XuBcM1s2X+1eYJaEc2ey0Dk3CmwHBkExzOWce3k69WYRt4uAl5xzDyTqTgC3AC3Abxb7fkomSuNkfM/EumShc24E2MAi/iU9CweH87ZwPh6oBn6Wp+5T4az4wtXAMfguz3wUx+Kyv1hfM7MHgGFg0Mw2mlnyj4FsjArF0fBd1YvROmAncI2ZnW9mh4YxOp/Hx2RNqKcYzs6042Zmy/E9Fk8VqJt8vryUTJTGCmC7c253nmsdwEFmVjXPbdrvhL+u/w7fVX9nKF4Rzh15HpIta9/HTVvQzOxw4NPAZ5xzmwpUUxyLOzqcb8P/1XYZ8FFgFLjDzD4SriuOBTjnevG9Xz34W2qvAs/hx0b9nnPutlBVMZydmcQtdYy1BXlp1AH5EgmAkUSd0flpzn7rZuA04Frn3POhLNvVnC++Izl1FquvAq/gB1kVojgW1xDOA8Dq0DWPmd2Hv9//92b2LRTHqezC3/e/H3gSn5hdAdxpZh90zv0QxXC2ZhK31DFWMlEaQ/gRs/nUJOpIAWb2WXwX/decc59PXMrGrTrPwxZ9bEMX/HuBs5xzY0WqKo7FDYfzXdlEAvxf22Z2P3ApvvdCcSzAzI7DJxBXO+duTZTfhU8wbgszihTD2ZlJ3FLHWLc5SqMTfysj339cO/4WiHolCjCzNcCngG8Al+dczg7mytclly3L15V3wAvvtxuB/wS2mtnbwiCtlaFKYyhrQnGcyuZw3prn2pZwbkZxLOZq/AfVvclC59wQ8B/49+VhKIazNZO4pY6xkonSeBof+1OShWZWA5yAn+sreZjZdcB1wO3Ax1yYv5TwLL6r7vQ8Dz8tnBdrfGuBNuADwAuJY224fnH4+mMojlPJDp4+OM+1bFkX/mcdCsfRAb+Y26btN7IfUuV5rlUkzorh7Ew7bs65Lfhk4bQCdWGqn/dSz5ldjAdwHMXXmbi41G1ciAd+sKXDJxJlRerdi18f4dcSZdn1ETaySNdHACqBD+c5PhHi+mD4+ijFccpYNuPn6m8mMf8eWI4fB7AxUfZ0qLsiUbYilD1a6tdSwhjeFN531+SUZ3vGeoAKxbBoDKdaZ2LacQP+kcLrTPQCDcXaohUwS8TMbsHf878P3+18LH5FzCeAc5xWwNyLmV2BX8HtNeBv8clY0jbnB2tl51evw6+SeRP+B+fj+CTuA865h+er3fsDMzsMPyAzdwVMxbEIM/tj4J+B/wX+Fb/Y0ifwCcVvOeceCfXOAH6MTzxuCQ+/ClgKvNs598t5bvqCEFYQfQafmH0H/7uvBf8eOwy4wjkXh7qKYWBml/DGrcmr8O+7L4avX3XO3ZGoO+24mVkrvqeiFX87tAO/JtJ78L3AXy/asFJnVov1wGd8n8SvJLg7/MfdyBSrjC3WA/gmPmsudKzNqX8s8H38PPYh4HH8MuUlfy0L7cD/4n7TCpiK47Ri9yH8PPxB/MyOR8Iv6dx6pwP/he+1GAAeBk4sdftLfQBH4JfS3oxPWvuBnwIfUgwLxmztdH8PzjRu+FtPd+AXDRvBJ3sXTKdd6pkQERGRVDQAU0RERFJRMiEiIiKpKJkQERGRVJRMiIiISCpKJkRERCQVJRMiIiKSipIJERERSUW7horIohVF0Rr8Xi+r4zheW9rWiOy/lEyIyKxFUTSdVe/0QS1ygFMyISJz4dNFrm2ar0aISGkomRCR1OI4XlPqNohI6SiZEJF5kxyjgN/58M+AY/AbEP0AuDaO4615HnckfrfY3wDa8BsRPQp8No7jF/LUL8fvPnkJsAq/s2IHfpOkfyjwmA8D14T6I/hNuz4Zx3FHmtcsshhoNoeIlMLVwK3AL4Gb8bvnfgR4MoqitmTFKIpOBtYDFwNPAzfgd+r8A2B9FEUn5dSvAh4CvgocAtwJfAm/vfLvAu/O054I+Db+lsxXgF8BFwCPRlFUnfrVihzg1DMhIqmFHod8RuI4vj5P+fuBU+M4/u/Ec9yE76m4HvhoKDPgdmAJcHEcx99J1L8A+C7w7SiK3h7H8WS4tAY4F3gAOD+O492Jx1SH58r1PuDkOI6fTdS9E7gQ+CBwT8EXLyLqmRCROXFdgeOvCtS/I5lIBGuAPuCiRG/AGfjbID9LJhIAcRzfDTwOHA2cCXtub0TAMHB5MpEIj9kdx3F3nvZ8KZlIBLeF8ykFXoOIBOqZEJHU4ji2GT7kJ3meoy+Kog3A2cCxwAbgxHD5RwWe50f4ROKdwE/xiUcj8PM4jjtn0J71ecpeD+fmGTyPyKKkngkRKYVtBcqzgy8bc85bCtTPljflnGc6aHJnnrLxcC6f4XOJLDpKJkSkFJYWKF8Wzn0552V56gIsz6mXTQraZ980EZkpJRMiUgpn5xZEUdQInICflvl/oTg7ruI9BZ4nW/5MOD+HTyiOj6JoxVw0VESmpmRCRErhkiiK3plTtgZ/W+OuxMDJJ/DTRs8M60DsEb4+C9iIH4hJHMcTQAzUArfmTuuMoqgqd+qpiKSnAZgiklqRqaEA34vjeENO2YPAE1EU3YMf93BmODaRmAESx7GLougy4IfA3VEUfR/f+3A08Dv4xa4uTUwLBb+096nAecDGKIp+EOodArwX+Avgm7N6oSKSl5IJEZkL1xW5tgk/MyPpJuA+/LoSFwC78B/w18Zx3JWsGMfxz8PCVZ/Crx9xHn4FzLvwK2A+n1N/NIqi9wGXA5cClwEGdIbv+fjMX56IFGPOTWfTPxGR9LTlt8iBSWMmREREJBUlEyIiIpKKkgkRERFJRWMmREREJBX1TIiIiEgqSiZEREQkFSUTIiIikoqSCREREUlFyYSIiIikomRCREREUvl/UOtB+MjI/s8AAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 576x432 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAGdCAYAAACRlkBKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZxcVZ338c+vll6Szp6QFbIhBCHsgSAj2zCgoPC4sz7CCIyUIOg8joKK6DDiMoIjUqLoiDjAAIrbwACisskaMBggyBKS0NnI3kl6rarz/HFudd/uVHdXdbqr6na+71fqdavvPbfq1E131bfOOfdcc84hIiIi0p9YpSsgIiIi0aDQICIiIkVRaBAREZGiKDSIiIhIURQaREREpCgKDSIiIlIUhQYREREpikKDiPTJzG4xM2dmDw9gXzOzD5nZf5vZm2bWbGZbzWypmf3AzBYW+TiHm9lPzOxvZrbDzFrMbLmZPWFm15vZ6WY2spd9x5vZF4Oym8ysw8zWmdkLZnaHmf2Tmc0p9bWJ7I5MkzuJSF/M7Bbg48AjzrnjSthvJnA3sCC0ehuQBOpC634OXOSca+3lcb4KfBmwYFUO2AKMCh4r7wPOuV/32PdI4LfAHqHVTUAcCIeM3zjn/k9xr0xk96WWBhEZdGY2C3gSHxiagP8HTHHOjXbO1QPzgBvwAeBc4H4zSxZ4nDOBq/CB4S7gcKDWOTcBqAfmA/8CvFhg37F0BYbXgLOBUc65Mc65BmAqcAZwD9AxWK9dZDhTS4OI9KnUlgYziwOPAwuB9cBxzrmXeyn7UeAO/BeYbzvn/qXH9qeAI4F7nXPv6+d568KtFWb2SeAHQBuwt3OusY99651zLf29NpHdnVoaRGSwfRAfGABSvQUGAOfcXcBNwY+Xmdm0HkXmB8v/6e9JC3Rv5Pdd3FdgCPZVYBApgkKDiAy2i4Ll35xzvyii/Dfw3RQ1wHm9lJm+C/WZambWfzER6Y9Cg4gMmmBcwruCH39TzD7OubeA54Ifj+uxeVGwvNTM3l1idfL77gX8m5nVlri/iPSg0CAig2kWMCK4/0IJ+/01WO7XY/2/4lshxgCPBqdq3mRmnzCzA/ppQbgD+Ftw/wpgrZn90sz+xcyON7MRfewrIgUoNIjIYBofur+xhP02BMsJ4ZXOuYeA/wOsCFbNA/4J+DGwBFhjZt82s277Bfu2AicA9warxuLHW3wT+COwxcx+a2ZHlVBPkd2aQoOIDKaBjh3odT/n3O+AvYFTgf8AngLyAxcn40/nfMHM5hXYd3Vw1sV++NaGe4E1weYk8H7gz2Z22QDrLbJbUWgQkcEUbl3Y6dt/H/JlNxXa6JzLOOfuc85d7pw7Ct9q8A90nVUxHbi9t+4K59wrzrlvOOfe55ybhg8RXwWa8YHlOjM7tIT6iuyWFBpEZDAtx38QAxxUwn4HBsteT88Mc861O+cecs69H/hJsPoQ4OAi93/FOXc18F7A4d8LP15CfUV2SwoNIjJonHMdwBPBj6cXs4+Z7QkcFvz4yACe9ieh+/uUsqNz7lH8bJEl7yuyO1JoEJHB9qNgua+ZfbiI8l/Avxd1AD8dwPPtCN1v34X9B7KvyG5FoUFEBts9wLPB/bSZvbO3gsE00p8Mfvyec251j+0nFjEx01mh+4tD+y4wszF97Whm+9PVjbK4r7IiotAgIsVLmtnEfm5J51wWfyGodcAk4Akz+6yZdV5p0sz2MbP/AG7Hvw89DlxZ4Dn/G1hiZp8zs/lmFgv2j5vZO83sJvwFqwB+55x7M7Tvx4AVwSW4TzSzUaHnn2BmFwMPBc+/A38ap4j0QResEpE+hS5YVYzjnXMPB/vNxl8a+7DQ9ib8qY71oXW3AxcUuv6Dma0BpoRWZYGt+Mme4qH1fwZOc85tCu17Lb7rI6wJSNA1ARX4y2yf4Zx7oIjXJ7JbS1S6AiIyPDnn3jSzBcCHgY/gr1a5B5ABXgUeBm5xzj3Zx8PsC5wCHI+/LPZsfGBoA9YCz+Mvmf0Lt/M3oCvxp2S+BzgKPzHUJPwpluuBpcADwM3OufW7+HJFdgtqaRAREZGiaEyDiIiIFEWhQURERIqi0CAiIiJFUWgQERGRoig09CKVSrlUKqVRoiIiIgGdctk/BQcREdmd9DoLq1oaREREpCgKDSIiIlIUhQYREREpikKDiIiIFEUDIUvU0dFBY2Mjra2tla5KVaurq2PGjBkkk8lKV0VERAaJQkOJGhsbGTVqFLNmzcKs1wGmuzXnHBs3bqSxsZHZs2dXujoiIjJI1D1RotbWViZMmKDA0AczY8KECWqNEREZZhQaBkCBoX86RiIiw49CQwQ1NDRUugoiIrIbUmgQERGRoig0RJhzjs997nMccMABzJ8/nzvvvBOANWvWcMwxx3DwwQdzwAEH8Nhjj5HNZjnvvPM6y15//fUVrr2IiESNzp7YBSf/671D9tgPfPnUfsvcc889LF68mBdeeIENGzawYMECjjnmGG6//XZOPvlkvvjFL5LNZmlubmbx4sWsWrWKF198EYAtW7YMWd1FRGR4UktDhD3++OOceeaZxONxJk+ezLHHHsuzzz7LggUL+OlPf8rVV1/NkiVLGDVqFHPmzGHZsmVceuml3H///YwePbrS1RcRkYhRaIgw5wpfgPOYY47h0UcfZfr06Zx77rnceuutjBs3jhdeeIHjjjuOG2+8kQsuuKDMtRURkahT98QuKKYLIe/V1VvJX2X7HVPHDMopiccccww//OEP+fjHP86mTZt49NFH+fa3v82KFSuYPn06F154ITt27OD555/nlFNOoaamhg996EPMnTuX8847b5efX0REdi8KDWViBvmGAef8z7vqAx/4AE8++SQHHXQQZsa3vvUtpkyZws9+9jO+/e1vk0wmaWho4NZbb2XVqlWcf/755HI5AK699tpdr4CIiOxWrLcm7t1dKpVyAOl0utv6pUuXst9++5X8eK+v3Uou54/13CmjiceGf8/QQI+ViIhUVK9fa4f/J1eVsND/gXKaiIhEkUJDmYS7I9S6IyIiUaTQUCbdQkPlqiEiIjJgCg1lou4JERGJOoWGMlH3hIiIRJ1CQ5mE52VQZBARkShSaCiT8PkramgQEZEoUmgok0p1TzQ0NPS6bfny5RxwwAFlq4uIiESbQkOZdBsIWcF6iIiIDJSmkd4VF7yn6KLTS33sH99fcPXnP/95Zs6cSSqVAuDqq6/GzHj00UfZvHkzHR0dXHPNNZx++uklPV1raysXX3wxixYtIpFIcN1113H88cfz0ksvcf7559Pe3k4ul+OXv/wl06ZN46Mf/SiNjY1ks1m+/OUv87GPfazUVygiIhGj0BAxZ5xxBpdffnlnaLjrrru4//77+cxnPsPo0aPZsGEDCxcu5LTTTivpolg33ngjAEuWLOGVV17hpJNO4tVXX+Wmm27isssu4+yzz6a9vZ1sNst9993HtGnTuPfeewHYunXr4L9QERGpOuqeiJhDDjmEt99+m9WrV/PCCy8wbtw4pk6dypVXXsmBBx7IiSeeyKpVq1i3bl1Jj/v4449z7rnnAjBv3jxmzpzJq6++ylFHHcXXv/51vvnNb7JixQrq6+uZP38+Dz30EJ///Od57LHHGDNmzFC8VBERqTJqadgVvXQhFLJuSzNbm9sBmDymnjEjawf8tB/+8If5xS9+wdq1aznjjDO47bbbWL9+Pc899xzJZJJZs2bR2tpa0mP2NjjzrLPO4sgjj+Tee+/l5JNP5sc//jEnnHACzz33HPfddx9XXHEFJ510ElddddWAX4+IiESDQkOZDOY8DWeccQYXXnghGzZs4JFHHuGuu+5ijz32IJlM8qc//YkVK1aU/JjHHHMMt912GyeccAKvvvoqK1euZN9992XZsmXMmTOHT3/60yxbtoy//vWvzJs3j/Hjx3POOefQ0NDALbfcsouvSEREokChoUzCowtyu3jK5f7778+2bduYPn06U6dO5eyzz+b9738/hx9+OAcffDDz5s0r+TFTqRSf/OQnmT9/PolEgltuuYXa2lruvPNO/uu//otkMsmUKVO46qqrePbZZ/nc5z5HLBYjmUzygx/8YJdej4iIRINpSuPCUqmUA0in093WL126lP3226/kx9vQ1MKm7W0ATBhVx4RRdYNQy+o20GMlIiIV1esoeg2ELBNNIy0iIlGn7olKKHPrzpIlSzrPjMirra3l6aefLms9REQk2hQayqRbS0OZmxrmz5/P4sWLy/ukIiIy7Kh7YgAGMg4kFr72xCDWpVpprIyIyPCj0FCiuro6Nm7cWPKHYverXA7vD1TnHBs3bqSubvgP9hQR2Z2oe6JEM2bMoLGxkfXr15e0X0t7hqbmDgA21cTZNKJmKKpXNerq6pgxY0alqyEiIoOo6kKDmY0AXgJmATc65y7psX1f4JvAsUAN8DzwFefcHws81hjgGuCDwATgDeD7wE1ugF/3k8kks2fPLnm/P724im885McVHPvOqVz5IZ2KKCIi0VJ1oQH4GjCx0AYzmws8AWSAbwFbgQuBB8zsvc65h0Jla4DfA4cANwBLgfcCaWAycPXQvYSdJeJdPUGZbK6cTy0iIjIoqmpMg5kdClwOfKWXItcCY4GTnXPXOufSwLuB1cCN1v2yjhcAC4DPOuc+65y72Tn3QeAe4EozmzlkL6SAZCg0dCg0iIhIBFVNaDCzOHAzcD/+g73n9pHAacDDzrnO8wedc9uBHwP74ENC3llAc/CYYd8FksDHBrP+/ekeGob3QEgRERmeqiY0AJ8B5gGX9LL9QKAWeLLAtqeC5QIAM4sBhwJ/cc71vNzjM0CO7gFjyCUTamkQEZFoq4rQYGazga8CX3POLe+l2LRguarAtvy66cFyHFBfqKxzrg3YGCpbFhrTICIiUVcVoQH4AfAmcF0fZUYEy7YC21p7lOmrbL78iEIbzOwiM1vURz0GpFv3REahQUREoqfiocHMzgFOAj7pnOvoo2hzsKwtsK2uR5m+yubLNxfa4Jz7kXPu8D7qMSAaCCkiIlFX0VMuzawW37pwH7DWzPYONuW7DsYE6zbgz5AIbwvLr8t3R2wGWgqVDZ5zAvDILr+AEig0iIhI1FW6paEemAScCrwWuj0cbD8n+PkCYAm+u+GoAo+zMFguAnDO5fCTPh0ShISwI/Cve9C7IPqSiHedDarQICIiUVTpyZ12AB8psH4SfhKm+4GfAH91zm03s98BHzSzg5xzLwCYWQM+VLyGPzMi7w7gaOAi/OROeZfjJ4e6a5BfS5/CZ09oIKSIiERRRUNDMIbhFz3Xm9ms4O4bzrnw9iuAvwceNLPrgSb8jJDTgVN7TA19M3A+cF3weEuBU4APANc4594czNfSn2Q83nlfAyFFRCSKKt3SUBLn3OtmdjTwDeALdF174j3hKaSDsu1mdiL+2hNn0nXtiUuBG8tacSAZ6p5QS4OIiERRVYaGYK4G62XbUuD0Ih9nC36yqN4mjCobTe4kIiJRV+mBkLuNmFlnCso5yOY0lbSIiESLQkOZmJlaG0REJNIUGspIU0mLiEiUKTSUkaaSFhGRKFNoKCPNCikiIlGm0FBGGtMgIiJRptBQRomY5moQEZHoUmgoo2RCs0KKiEh0KTSUUfiiVZmcQoOIiESLQkMZ6ewJERGJMoWGMup+9oRmhBQRkWhRaCij7mdPZCtYExERkdIpNJRRIqbuCRERiS6FhjIKtzRk1D0hIiIRo9BQRpoRUkREokyhoYwUGkREJMoUGspI00iLiEiUKTSUkS6NLSIiUabQUEaa3ElERKJMoaGMuk0jrZYGERGJGIWGMgq3NLQrNIiISMQoNJRRUmMaREQkwhQaykhnT4iISJQpNJRR97MnNCOkiIhEi0JDGensCRERiTKFhjLSjJAiIhJlCg1lpNAgIiJRptBQRpoRUkREokyhoYx09oSIiESZQkMZaUZIERGJMoWGMtLZEyIiEmUKDWWkgZAiIhJlCg1lpNAgIiJRptBQRhoIKSIiUabQUEaaRlpERKJMoaGMNBBSRESiTKGhjDSmQUREokyhoRycgx3bSDZvZWJmO6DQICIi0ZOodAV2C+1tcNlHqAf+0+KctldKkzuJiEjkqKWhHJLJrrsuC86RzTlyToMhRUQkOhQayiEWh5g/1DEgjm9lUGuDiIhEiUJDuSR6tDagMyhERCRaFBrKpVBoUEuDiIhEiEJDuSg0iIhIxCk0lEuB0KBZIUVEJEoUGsoldAZFDfkxDdlK1UZERKRkCg3lUrB7Qi0NIiISHQoN5aIxDSIiEnEKDeWi0CAiIhGn0FAuPWeFRJM7iYhItCg0lEuopSERzAipyZ1ERCRKFBrKpeAplwoNIiISHQoN5VIgNLQrNIiISIRUPDSY2b5mdpuZLTWzrWbWbGavmNl1Zja1l/K/NrPNZrbDzB4zsxN6eewxZnaDma0ys1Yze8nMLjYzG/pX1oPGNIiISMQlKl0BYAYwFfgV0AhkgPnARcAZZnawc+5tADObCzwRlPkWsBW4EHjAzN7rnHso/6BmVgP8HjgEuAFYCrwXSAOTgavL8eI66ewJERGJuIqHBufcH4A/9FxvZo8CdwHn4QMCwLXAWOAw59zioNytwEvAjWY2zzmXnzHpAmAB8Gnn3A3BupvN7JfAlWb2U+fciiF6WTvTmAYREYm4indP9CH/gT4OwMxGAqcBD+cDA4BzbjvwY2AffEjIOwtoBm7u8bjfBZLAx4am2r0IhYYaXRpbREQiqGpCg5nVmdlEM5thZicBPww23RcsDwRqgScL7P5UsFwQPFYMOBT4i3OutUfZZ4Ac3QPG0AuPaUDTSIuISPRUTWjAdyesB94CHsB3Q5zjnHss2D4tWK4qsG9+3fRgOQ6oL1TWOdcGbAyVLQ+NaRARkYirptDwa+AfgA8AXwO2AJNC20cEy7YC+7b2KNNX2Xz5EYU2mNlFZraoyDoXL9E1fERjGkREJIqqJjQ45xqdcw85537tnPsK8HHgm2Z2RVCkOVjWFti9rkeZvsrmyzcX2uCc+5Fz7vDSal8EtTSIiEjEVU1o6Mk591fgL0AqWLU6WBbqVsivy3dHbAZaCpU1s1pgAoW7OYaOzp4QEZGIq9rQEKgHxgf3l+C7G44qUG5hsFwE4JzLAc8DhwQhIewI/Ose/C6IvhSaEVJnT4iISIRUPDSY2ZRe1h8PHEBwZkRwauXvgOPM7KBQuQb8IMrX8GdG5N2BH7dwUY+Hvhw/OdRdg/QSiqMZIUVEJOIqPrkT8INguug/4udmqAMOA84AtgH/HCp7BfD3wINmdj3QhJ8RcjpwamhiJ/DzM5wPXGdms/AzQp6CH2h5jXPuzSF8TTtL1HTe7TrlUqFBRESioxpCwx34QY/n4s+WcPjw8EPg2865lfmCzrnXzexo4BvAF4AafDfEe8JTSAdl283sROAa4Ez8OIY3gEuBG4f6Re0kfGlsp0tji4hI9FQ8NDjn7qKErgLn3FLg9CLLbgEuCW6Vpe4JERGJuIqPadht6JRLERGJOIWGclFoEBGRiFNoKJdEoWtPKDSIiEh0KDSUS3Lnq1xmdMEqERGJEIWGcinUPaGzJ0REJEIUGspF00iLiEjEKTSUiwZCiohIxCk0lEuBS2MrNIiISJQoNJSLWhpERCTiFBrKJXz2BFlwTmMaREQkUhQayiUWh1jX4U6Q09kTIiISKQoN5dSjiyKTc3S/MKeIiEj1UmgoJ41rEBGRCFNoKKdk+PLYmhVSRESiRaGhnNTSICIiEabQUE6JHmdQoKmkRUQkOhQayklTSYuISIQpNJRTcufQ0K7QICIiEaHQUE5qaRARkQhL9F+kf6lUKgEcABjwYjqd7hiMxx12EjWddzUQUkREoqaoloZUKjU7lUr9YyqV2qfAtlOARuA5YBGwOpVKfWhwqzlMqKVBREQirNjuiU8ANwPt4ZWpVGo2cDewB/AW8AowHrg9lUrtP4j1HB7CYxp09oSIiERMsaHh74Al6XR6eY/1nwbq8YFidjqd3h/4GJAELh2sSg4b3VoafFhQ94SIiERFsaFhNvBigfXvATLA59PptANIp9O/AJ4Ejh2UGg4nia4hJBrTICIiUVNsaJgErAyvSKVSo4B9gEXpdHpLj/LPAzN2vXrDTMExDZpGWkREoqHY0OCAMT3WHYw/W+L5AuW3MkhnZgwrhaaRzmQrVRsREZGSFBsalgNH91h3PD5MPF2g/CRg3cCrNUwVamnIqaVBRESiodjWgAeBT6dSqS8B38N3S1yMH89wf4Hyh9OjO0MoPCOkzp4QEZGIKLal4VvAFuCrwGZ868Jk4KfpdHp9uGAqlZoJHAI8Moj1HB4SO59yqXkaREQkKooKDel0eg1wDPAnoBVYBXwHf8plTx/Hj2n430Gq4/ChS2OLiEiEFT1YMZ1OvwScWES5rwFf25VKDVuaEVJERCJMF6wqpwJjGjQjpIiIRMVgXbDqIPzZFAY8lk6nFw3G4w476p4QEZEIK/aCVcekUqlbU6nUwgLbrsbP1fAd4N+Bp1Op1HWDWsvhQqFBREQirNjuiY8AHwWWhlemUql3A1cBOeA24CZgI3BZcPVLCSt0wSqFBhERiYhiQ8NRwNPpdHprj/X/hJ/g6dPpdPr/ptPpT+HPssgA5w9eNYcJDYQUEZEIKzY0TANeK7D+BGAH/iqXAKTT6VeAB4AFu1y74abgNNIKDSIiEg3FhoYJ9JgWOpVKTQGmAE+k0+lMj/Kv4Sd/krCCYxo0jbSIiERDsaGhhZ1DwKHB8i8FyrfhuygkTAMhRUQkwooNDa8A702lUuFTNE/Fj2d4okD5PYE1u1i34UdjGkREJMKKnafhF/jrT/w2lUrdhL9g1Sfw00X/vkD5o+lxpoWgsydERCTSig0NNwBnAu8BTg7WGfD/0ul0a7hgKpU6EpgV7CNhamkQEZEIK/aCVW34Uymvwl8K+zbg/el0+vsFih8M/Ab43WBVctjQ2RMiIhJhpVywagdwTRHlfgj8cFcqNWx1Cw0+LKh7QkREokIXrCqnQhesUmgQEZGIKPmCValUaiTwYfxgx2n4MyjWAH8GfhG0SEghGtMgIiIRVlJLQyqVOgdYDvwncAFwCv7UywuCdctTqdTZg1zH4SMUGmrIgnNqaRARkcgoOjSkUqlLgZ/hZ4dcBHwduBhIBfefDbbdmkqlLhn8qg4DsRjE450/JsiR0YyQIiISEUV1T6RSqX2A64DNwNnpdPqBAsW+lEql/gG4HbgulUo9mE6nXx28qg4TiSRkfddE0mV19oSIiERGsS0Nl+HnZTi9l8AAQDqd/j1wOhAHPr3r1RuGeoxrUPeEiIhERbGh4e+Bh9Pp9J/7K5hOp58A/gScuCsVG7YKhAbn1EUhIiLVr9jQMAN4roTHfS7YR3oqcNplJqfQICIi1a/Y0ODw3RPFKqXs7iWx8/UndNqliIhEQbGhoRE4vITHPQx4q5iCZraPmX3NzJ4ys/Vmts3MFpvZF81sZIHy+5rZr81ss5ntMLPHzOyEXh57jJndYGarzKzVzF4ys4vNrHKhJt419lRTSYuISJQUGxr+CByTSqWO7q9gKpV6F3BcsE8x/hH4DPAG8DXgc8Df8FNWP2Fm9fmCZjYXfynuo/BX3fwc0AA8YGbdxlCYWQ3+CpyfBO4ELg0eNw18pci6Db4C3RPtCg0iIhIBxYaG7+K7KH6VSqV6HeCYSqX+Hvg1kAX+o8jH/gUwwzl3tnPuBufcTc65jwH/BhyIvwR33rXAWOBk59y1zrk08G5gNXBjjxaEC4AFwGedc591zt3snPsgcA9wpZnNLLJ+g6vArJCtHZmKVEVERKQURc3TkE6nX0ulUv+MDw8PpFKpZ4CH8F0QDtgLf7bEEfjxDJ8tdo4G59yiXjbdCXwROAAg6Ko4DXjYObc4tP92M/sxvpViAfBMsOksoBm4ucfjfhf4IPAxfGtFeSVqOu/W5ENDe7bs1RARESlVKVe5/F4qldqC/9A9Eh8QwgzYAvxzOp3+6SDULX/2xbpgeSBQCzxZoOxTwXIB8IyZxYBDgeedc609yj4D5IKy5RdqaUh0tjQoNIiISPUr6doT6XT6Vnyrwj8CPwXuBx4AbsF3I8wcjMBgZnHgKiCDn2ES/MWxAFYV2CW/bnqwHAfUFyrrnGsDNobKlldy57MnFBpERCQKSr7KZTqd3o4PCbf0ViaVStUBNel0ummA9fousBC40jn3t2DdiGDZVqB8a48yfZXNlx9RaIOZXQRcdPHFF5dU4aJ1G9PgB0C2tmtMg4iIVL+SWhpK8ANg00B2NLN/BS4BfuScuza0qTlY1hbYra5Hmb7K5ss3F9rgnPuRc66U00tLU2AgZIvGNIiISAQMVWiAAUzwZGZXA1/Cd318ssfm1cGyULdCfl2+O2Iz0FKorJnV4q/GWaibY+gVOOVS3RMiIhIFQxkaSmJmX8HPn3ArcIHb+YIMS/DdDUcV2H1hsFwE4JzLAc8DhwQhIewI/Ovu7ayNoaVTLkVEJKKqIjSY2VXA1cDPgfODD/1unHPbgd8Bx5nZQaF9G/BzMrxG1+mWAHfgxy1c1OOhLscPsLxrEF9C8QqEhjZ1T4iISASUPBBysJnZp4CvAivxcz+c1WOW53XOud8H96/AX3HzQTO7HmgCLsR3Q5zao3XiZuB84DozmwUsBU4BPgBc45x7c6heU58KtjQoNIiISPWreGiga76EvYCfFdj+CH46aJxzr5vZ0cA3gC8ANfhuiPc45x4K7+Scaw+mlr4GOBM/juEN/HTSNw7B6yiOTrkUEZGIqnhocM6dB5xXQvmlwOlFlt2CPxPjkoHUbUgUamlQ94SIiERAUaEhlUrpU22waCCkiIhEVLEtDQO5lHTPsx8EuoWGGo1pEBGRCCn2glVVcZbFsJDoOuSa3ElERKJEYaDcCo5pUPeEiIhUP4WGctPZEyIiElEKDeWmS2OLiEhEKTSUm065FBGRiFJoKLdC00irpUFERCJAoaHcClzlsiObI5vb6XIbIiIiVUWhodxCLQ211hUU1EUhIiLVTqGh3MKTO9EVFDRXg4iIVDuFhnJL1HTerQldAVDIOKQAACAASURBVFxTSYuISLVTaCi3AmMaQN0TIiJS/RQayq3A2ROguRpERKT6KTSUW4HJnUChQUREqp9CQ7mFuicSua5xDLr+hIiIVDuFhnKLd13lMuGy4PwVxNXSICIi1U6hodxiMYjHO39M4s+gUGgQEZFqp9BQCbr+hIiIRJBCQyUUDA0a0yAiItVNoaESdHlsERGJIIWGSigwwZNCg4iIVDuFhkoId0+gMQ0iIhINCg2VUGhMg649ISIiVU6hoRIKhga1NIiISHVTaKiEQmMa1D0hIiJVTqGhEkItDTVqaRARkYhQaKgEzdMgIiIRpNBQCQVCQ4taGkREpMopNFRCUqdciohI9Cg0VEKBloY2tTSIiEiVU2iohAKhoSObI5vLVapGIiIi/VJoqIRQaBgRc5331UUhIiLVTKGhEkKhoT4cGtRFISIiVUyhoRK6hYauLgm1NIiISDVTaKiE0NkTtRZuadBcDSIiUr0UGioh1NJQF25pUPeEiIhUMYWGSgiHBrpCQ4u6J0REpIopNFRCKDTUEh7ToO4JERGpXgoNlRAa01Bj6p4QEZFoUGiohPBVLukKCgoNIiJSzRQaKqHApbFBp1yKiEh1U2iohALTSINaGkREpLopNFRCspfQoIGQIiJSxRQaKiHU0pBQS4OIiESEQkMlKDSIiEgEKTRUQqh7IpHr6pJQ94SIiFQzhYZKCLU0xLOh0KCWBhERqWIKDZUQ7woNsW4tDQoNIiJSvRQaKiHUPRFTS4OIiESEQkMlJHoJDRrTICIiVUyhoRJCocHU0iAiIhGh0FAJoe4Jy3R03ldoEBGRalbx0GBmV5jZ3Wa2zMycmS3vp/yRZvaQmW0zsyYzu9/MDu6l7DQzu9XM1ptZi5ktMrOPDMkLKUU80XnXshlwDtBASBERqW4VDw3A14ETgDeAzX0VNLOFwCPAbOAq4CvAO4DHzGx+j7LjgceBDwI/AC4DtgN3mdn5g/waShOLdQsONfjLY3dkc2Rzud72EhERqahE/0WG3Fzn3DIAM3sRaOij7PeAduAY59yqYJ+7gKXAd4CTQmW/gA8XpznnfheU/QnwJPDvZna3c277YL+YoiWSEIxnaEg4NgWNDK3tWUbWVUOWExER6a7in075wNAfM9sbWADcnQ8Mwf6rgLuBE81sSmiXs4A38oEhKJsFbgDGA6cMQvUHLjSuYVQoumlcg4iIVKuKh4YSLAiWTxbY9hRgwGEAZjYVmB6sL1Q2/HiVUT+y8+74WGgwpMY1iIhIlYpSaJgWLFcV2JZfN30AZStj9NjOuxNp7bzf2qG5GkREpDpFKTSMCJZtBba19ihTStluzOwiM1s0oBqWYvS4zrsTci2d99U9ISIi1SpKoaE5WNYW2FbXo0wpZbtxzv3IOXf4gGpYilBLwzgXCg3qnhARkSoVpdCwOlgW6lbIr1s1gLKVMSoUGjJd+UUtDSIiUq2iFBqeDZZHFdi2EHDAcwDOuTX4ULCwl7IAQ98F0ZdQS8PobCg06PoTIiJSpSITGpxzr+M/6D9iZvmBjgT3PwL80Tm3NrTLHcBcM3t/qGwcuBTYAtxXlor3JjSmYVTHjs77amkQEZFqVfHJnczsXGBm8OMkoMbMvhT8vMI59/NQ8cuAP+FngLwhWHcpPvz8c4+H/gY+TNxuZtfhWx7OxJ9qeYFzbtugv5hShFoaGtp3QI2/36IxDSIiUqUqHhqATwDH9lj3r8HyEaAzNDjnnjCz44BrgpsDngA+4px7IfwAzrmNZnY0Pjx8Cj/T5MvAGc65O4fgdZQmFBpGtG3rnAdTLQ0iIlKtKh4anHPHlVj+SeDviyy7Cjh3ANUaeqHuifrWrtmsNaZBRESqVWTGNAw79SP99SeAZKaN2pyfFVItDSIiUq0UGirFDEaN6fxxbHAGhUKDiIhUK4WGSgp1UYwNZoXU5E4iIlKtFBoqKTzBU9DS0KZrT4iISJVSaKik0TuHBnVPiIhItVJoqKRQaFD3hIiIVDuFhkoKh4agpaFFp1yKiEiVUmiopNBASHVPiIhItVNoqKRR4ZaGoHtCoUFERKqUQkMldRvTELQ0aEyDiIhUKYWGSurWPeFbGjqyObI5V6kaiYiI9EqhoZIaRvuZIYHRuVbizrcytGquBhERqUIKDZUUj/vgEBiT1WmXIiJSvRQaKi3cRZHTYEgREaleCg2VNmrnuRq2t3ZUqjYiIiK9UmiotAJTSS9/e1ulaiMiItIrhYZKC1/pMhjTsGxdU6VqIyIi0iuFhkobPabzbn6uhjfWKjSIiEj1UWiotAJTSb+xromc01wNIiJSXRQaKi00pmEirQA0t2VYt6WlUjUSEREpSKGh0kJnT0yyts77b6zdWonaiIiI9EqhodLCAyEzzZ3339BgSBERqTIKDZUW6p6ob9uOBWMZlmkwpIiIVBmFhkpL1kD9CABiLkdDzo9reF0tDSIiUmUUGqpBqItiUjAYckNTK1ub2ytVIxERkZ0oNFSDUBfFfqO6VmuSJxERqSYKDdUgdAbF3JG5zvua5ElERKqJQkM1CHVPzKzNdN7XaZciIlJNFBqqQah7YnJ4rgZ1T4iISBVRaKgGoe6JcbkWLLj/1oYdtHVkK1MnERGRHhQaqkGopSGxYyvTxo8EIOccK9brMtkiIlIdFBqqQWhMA01bmDN5dOeP6qIQEZFqodBQDUItDWzbwt5TQqFBZ1CIiEiVUGioBuHQ0LSFuZO7JmtQaBARkWqh0FAN6kZAIunvt7cxZ2xN56Zl65rIBdejEBERqSSFhmpg1m1cw/gtqxg70geH1o4sjRu2V6pmIiIinRQaqsWMWZ137aavc8TYrpkhb/r9UrU2iIhIxSk0VIsPnNd5tUu2buJTr9zBmGwLAM+9sZ5fPf1m5eomIiKCQkP12HMOfOornWMb6jat5fvND1KX81e6/M8/vMJrazSttIiIVI5CQzWZdxBc+Hk/xgHYY9NKvrX1AcZmm8nkHN+45y+0tGf6eRAREZGhodBQbQ77Ozj7ks4f921azn+u/jnv27aE1Ru3ceP9L+F6G9+Qy0FGoUJERIZGotIVkAKOOxW2bYHf/ByAkbl2Lt30MCdtf5mfPH00X9q4hU+ccoifOdI5eGMpPPkQPPsouJwfH3Hc+yCmTCgiIoPHev3WuptLpVIOIJ1OV64SLz0Pt30f3l6906Y1idG0TNqTWR0biW1Yu/O++x0C538Wxk8qQ0VFRGQYsd426KtoNdv/UPjqTXDaObhE90ahqZkm5qx5qXBgAFj6F/jKJ+HPv4e21sJlslnY3uRbK3rasQ0WPQb/czu8uKhwGRER2a2opaEXVdHSELZuFdx3J+2vvUz87dXE6ZrHYbvV8OTofeDIEzg2t4qaP9zT/UPeYjB5Ouw1B8ZNhLfXwNpG34KRzfhTPafuBdNmwqgx8OoSWPY339WRt9fe8P6z4eCFnQM1+5XNwrpGX/f1a2D9Wn+rq4MFx8JBCyFRYg+Zcz7QtDRDe6sPRB3tvt7jJkL9yK5yTVu6nruu3h+DSVOhts6XyWRg6ybYstHvN3XP4l9bNdmyEf7wG/9ajj0F5r6z0jUSkXJYvQIe+jWc9anS30v71usboUJDL6ouNIS49jZeeGoxTz/yLKubHc/X7UV7zP/C1CXjnDKqibNe+w2jtm8c/Cffcw4sPMF/AE+eAZOm+A/tjW/DprdhwzpofBNWvgGrlvttvRkzDo4+GQ44zAeZNStg1Upo2QEz94Z9DoB3HAANY+C1F+GFp+GFpwp213SqH+Fn12za7INFIeMm+kGjTZu7h6txE2H+Aph/hH/uEQ27HiJy2SAsrYFkjX/MESOhvsGHp1i8iMfIweYNgIOxEyEe7LNlI/zvXfDIfZDp6Cr/zkN9wHvH/rtW9/5s2wrtbT6Q1Y3oqle1aGuFxU/C2Amwz/xoBkKR3qxaDv/+BT/+7bC/gwu/MJjBQaGhVNUcGvKyuRx/XLKa2x9/jdWbun9A1ufaOXvrMxzZspwZHVuI0cv/c02tf+PvyQxmvsN/+170WO8f/mZD33XRWx2HWjwBI0dBwygYORoaRgc/j/YXGdtjuj8+E6f4D8ymLbDydR+YGt/03wLWNnb/QO8pkfSvr7au63FHj/fLbVv9Y6xZ2dXFFIv54DB+Iix/re/Hfsf+vo519f4WT/juqKYt/o2mpdk/55jxPsCNGe/D2ux9fcApZG0jPP9nf1v+avdtyZquxxs7wd8mTIaZc31LVcPowo/pHCx7Bf78oA+EM+b4rrl95ne1CpVi+zb4429868uObX7dfofARy/0oTeso923iNXV7/w47W3+GHe0+2NZU1t6XfqTy/nwV1Pnf8/6s2EtvPQctLXBfgfDjNmVCUNNW/zv3tjxxQVfGVyNb8J3vuDfIwBq6+HK62H6rMF6BoWGUkUhNOTlw8Odf36dtzbu2Gl7ba6DWR0bmdu+gbHZZjbVj6Nj0jSSU/dk8pQJzK3PMCuzmYnb3ya+dZN/Y33nob7JH3yz9wO/hIf/p/QP73ET/S/ypCkwcSpMnOw/WB9/ALZuHtgLrqn1rQ+1dVBbC/Gk/xDctL77h2jdiK4uidYWeHuVf9PNBd0uZv7DecwE3xLQsvOxK0o84VsPtlVw8q1Z7/ABIX8Gza5IJH1wyLdUbNnkfwc2rPXdPQM1fg//ITdhDz9Ad/wk/4H5+IM+GBWqx5x5/vcwnvA/JxL+Qz7T4bvWMhkfVmrr/K2jHZ7+U+FxPBaDd5/sW5Nef9m3Xq143T/OuIkwZYbvpgNYthTeWuafC3xYfPd74fj3+fpvWg/PPAxPPwyr3oQpe8K+B/q5Vmbt48PPslfgzVegcbmvWz5IjRoLWzfC6pX+def/psaMg2mzYPpMGDcJkkn/mpNJ/yGx5Fm/T9jEKXDIUV3PuWqFD5pNW2BcENomTvbHvvO47+F/X99a5s+8euNlHwan7uVbEfc/rPA31rWN8PzjQWB8za+LJ/zjTpriWx73nAN7zfVdnRaDt97wz/H6y9CyHebsB+88BGbP6/q/XL0C3vyb78rM5gDn/0Zjcdhjqn//mD6771DV0Q6bNsD2rdC83YfF5u3+73veITvv29Hu67XidVj7lv9/WNvog/Skqf53If/eUVPr6xpP+P/HqXv54xgOa8751tLVy6G1GTo6/O9oJuO/WOx74OCFzreWwXeu8K8V/Pvc5dfA3oPaLanQUKoohYawdVuaeemtzSxZuYkXV25iZQkXu4rHjKnjRjB5TD0TRtUxcXQdE0fVMXZkLaNH1DAu28z4V56hbsMqYm+v9h8gm9d3vXHk35gmz/BvHHvN8W+QhWQysOQZHx42rYc9pvk3mukz/beuN16G117yb7yZDv+mfvBCPw5i3wMLfxN2zn+T3rrJf9CMHrfzt7BMxtc5FvffiPNvjtmsfxNZ8owf+Llu1eC1boyd4N+Acllo3uHfzJp3+DEZxf79jRzl69ozaM3e13dFzF/gX+vaRrj3v+GpP+56eOhPPO6PcWsztLYO/fMNxNgJ/pgNVt0s5n9HG4fxtO6jxsARx/nlpvX+9vbqvrsFe4on/O9Hb39DtfUwdYYPQcX+nY2b6FuramqDD/KkD+qb1vuuxt5YDGbvAwcc7vdZuhhef6nvrtP+NIyGPefClOn+b27F6/7vujfJGtj3IJh/uP87bXzTdy+sWuG350P0+En+vWLv/X2rX/7qx+DfK958Fb73Zf8+B7479vJ/g7n7Dfy1FKbQUKqohoaemlraWdq4mZff2szLjZt5fU0Tzbs4q6QBo0fUMGZEDePr4oyor6G+roYRtQnqaxKMrE0wsi5JQ12CkbVJGuqTNNQlGVXn7yfjJZy009Hu/0DGTih/M2x7m//Gsr0ptGzyzd9bNvg3i7WNwXgD/BvZjNn+zWSvOf7b0dQ9/Qd+Ic7519feBm0t/g2wabP/kNu62X8bnDbTf7MZPda//o52/ya5YZ1/3Jl7Fz4uG9b6N5iWHb6Vpa3Fh6+GMf6xRo2BupH+20rTZt+asGGND2p9tSYka/yb76HvggOP7HptzvnXsW2Lf6wtG/1tzUr/htr4Zt9dKbX1sODd8M7D/LfOl5/3b6oDNX0WvPejfsDt2rfgrpt9s34h8XhXi0JPU/eCjjZ/vIfKyFG+ZaSv45OXSMK8g/2HxYvP9j5uZ6hVQ+vacFdT678UjJ3gW2HWNPq/47z6EfCZr/vWuMGn0FCq4RIaenLOsWl7G40bd9C4cTuNG3ewcsN2Vm7YzttbW/p/gEFQk4gFtzjJRIzaRJxR9UlG1dcwqj7JyNoEyXiMWMxIxGLEY0YsZsQMwIjHjBG1ic4Q0lCXpDYRoyYZ73zcmkSMZDyGlSNotDbDtib/LaHaBgMOxNZNvul++eu++2fM+K7b1D0HNs4gk/EBYl1j8O11gx8465xvPTr83TuPK9iy0QeOjja/f765Nx4PuiqS/n5Hu//QbWv1Zffa2zex9/y/X/KsH+fQ0uy/mb3jAN+kWz/Sh6w1QTN1NuOb++fM8x/ouSz89Rm/79LF/rEsBu88GI443o+/WL0CXvkr/O2vvol64hT/hj9nnh8blMsGZ+oEXT0NY2DaXv42amzXgNnVK/y3zx3bINMehMp2/812/8N890fn2T8d8MoLsPgp33rW2Vo3y3/QbNkEG9f524Z1wXF/2y+bt/um97n7+duUPX2oeuqP/rgX0hkYj4aDjvSDeltb/OO/vcaHvLfe8GN61q/x+0zYw39rnrufP5avvOAD4ca3ux53/CR/vPea6z8oLdYVkNes9N07q1f0HapiMf+aR4+DkQ0wYpT/UF21fOczwfImT/fjZqbP6uqaGjHSt6iEvxDku8EyHf7/5a1lhbsyG0b7371RY4JupRr/vK++WLj7bVfUj4TPft3/jg0NhYZSDdfQ0JeW9gyrN+1gw7ZWNjS1smFbKxu3tbK1uYOtzW00BcvtrdGZqjoZj5EMAkTnMmjpyOUcmVyOTM5Rl4gzIeiOmTCqjoa6BM5Bzjmco3Pq7vxfiwHxeIxEzIjHYyTjRk0iTm0iTk3SB5dEzEKBx8g5Ry7nyOYcWedIxGKdASqZiBM3A/+PmBnJRIy6mjh1yQTxmEb+V4XVK32LzMx9/BiEqMpkCo9byGX9B/uSZ30XXnj8yeQZxQfG5h2Q7SjcPZnv/9/0tg+hYyf0/3jZrA8+bc0+RLW3+patkaN9HceM7z2wb9/m561Z+hf/+t4x3w8iHejEd875kLnidR/0Jk3xY4omTO69NXTDWliyyJ/Onkj6FskZs3xgiSd86Nu43gewFa/70F5oDp76kT4ofPgTPmQNHYWGUu2OoaFYmWyOppZ2tu5oZ2tzOzvaMjS3ZWhu98sdrR3sCJbb2zJsb+lge6u/bWtpJ6dfuZLVJmIkQt06ZpCIxxhRm2BETYIRtQnisRg72jpobs2woy1DJpfz3UJBK87IWh8+YtbVcpPL+YG02Zwj52BEbTzYp4aGugTZnKOtI0tre5bWTJa4BeEo6YNOMm7EYz6IxWPW+Z4ZfluJB+EpHrQahW+x/NL8zczXq/vSlzPzYaqnmkSMupoEtYkytSyJlMPmDcEA0h2+VWTKnl3dlEOv1ycZ1teeMLMYcBnwT8AsYD1wF3CVc26AQ+UlEY8xvqGO8Q2lN1M752jL5OjI5GjPZOnI5GhuzwSBooOmlnaa2zJksq7zw8x/oHV948/knA8mrR1sa+1gR2uGtuCx2jO5zvsd2SocmDdAbZkcbZmdX8+WHX0P5trW0sGaAZ6kEjUG1NXEicdi3QJHz/fY/O9S/vcqZnR2adUk4r5lPJvr/B1yDupr4tTXJKir8a1JOedDVi7ncM755wqCWCxmGP558+GnJh6jNhnvvDkHmfzvd9bhcBhdLU0962xmO7WWJeIxEnHrDGzknzMonw9Zfl3Q0hW0duUcnXXNB7ZuP8es63GCZSLuW79qEnFq4jHMIOe6Qme+jomYkQi2d2R8S157JotzdB7j2mScRNw6/6bzrXpAt5PDk/F8S1yohTDYJ+ccPc8kjwflC4XLyBk3ERYcU+la7GRYhwbgeuDTwK+A7wD7BT8fYmYnOleNw72HNzOjLhmnLhkHkv2W3xXOuW5v/u2ZXLcwEQ/e3OIxo7kt09kds6GplZb2TOcbbqyz28CC1+Df4LJZ1/nG3x6EoLYOv2zP5Mjmcp1vqrmc73bNf9uOmZHNBSGnw4ecbP5NM3gTbc/kaO3I0NLeyyA96cZBcKwGcrz67nLbWqHxhjIw+YDlw0P+76pruwXjo2JBi108FHTaO/wXj/aOLNmcoyZ4v6pNxknGY+Ryjo5cjkw2RybrurWYxWMWdHt2dUUCO5WJm295S8T9+mSoDr7Fzojh3y8dBM/lAxjgB5sHA85H1iaYOLqe9x8+syzHdtiGBjPbH7gUuMc596HQ+jeB7wFnALdXqHpSBhY0pdckihucOGuPIibXqYCcc7R3ZMnkXLc3vvZMlpagS6i5LUMm5xhZ67sqRtYmScStswVnW0sHO9o6Or9l5r91ht/AMGhu62r12d7aQSJu1CUTwTfkGLkcdGSytAUhKf/Gmcn5Zf5bd1g258gF4SoTfLvP5hyZbM6/sYa+/eZy/lu36/w2mW8Z6NqebzjNfxy0d2Rp7fBBTQSClqJBamnMBH9f1WyviQ0KDYPgTPz7ynd7rL8Z+AZwDgoNEgExM+pqCv2p9t9SM3bkEMxiWKWyOUdrR4Zcrqv5Ov9NLyzfepRvhs+FWoraMzlyznV+U61JxDCM1g4f0FraM7R15Lo15ecnRe0c6Bo0mzu66tERtCi1ZXK0dmQxIBHvGucRnli10DiznPNhrT3UcpbN+m+8+Rav8G75pvt8V0zOOf9N17q6TYAeoa17t02+xSv/OjI55+sQdAM6F/qW3e0bcRAIcZ1dKfkzmXxrnH+MjmyuW2teuF55nS2Fwf9PeKzLTuWDLp/dMTyOrC3fR/lwDg0LgBzwTHilc67VzBYH20VkmIjHjJG1Q9vlJdUv3y3Z1uGDTb5rMTxI1wVdFvkuhHzTv3Ouc8xFTcIHuraOIPB1ZGnPZP24iWBMSTxmneHU33wQym/Lj63IB7FcqFwmfD8IWh3ZXLeglw+C4TEszsGONj+WK78c11C+LwfDOTRMAzY45wpNN7YKeJeZ1TjndmFaMBERqSaldkv2pyaYR0a8Eqbmi5wRQG/zk7aGynRjZheZ2aIhq5WIiEhEDefQ0Az01mZTFyrTjXPuR865w4esViIiIhE1nEPDamCimRUKDtPxXRfqmhARESnScA4Nz+Jf3xHhlWZWBxwMqAtCRESkBMM5NNyJP1vo8h7rL8SPZbit7DUSERGJsGF79oRzbomZ3QhcYmb3APfRNSPkI2iOBhERkZIM29AQuBxYDlwEnApsAG7AX3ti95sBREREZBcM69DgnMvirznxnUrXRUREJOqG85gGERERGUQKDSIiIlIUhQYREREpyrAe0zAYUqlUpasgIiJSTi6dTluhDWppEBERkaJYoWu3y9Aws0W6rsWu03EcHDqOg0PHcXDoOA6OoT6OamkQERGRoig0iIiISFEUGsrrR5WuwDCh4zg4dBwHh47j4NBxHBxDehw1pkFERESKopYGERERKYpCg4iIiBRFoWGImVnMzD5jZq+YWauZvWVm3zGzkZWuW7Uxs33M7Gtm9pSZrTezbWa22My+WOh4mdm+ZvZrM9tsZjvM7DEzO6ESda92ZjbCzN40M2dm3y+wXceyF2Y23sz+3cxeD/6G15vZn8zs3T3KHWlmDwW/t01mdr+ZHVypelcTM2swsyvNbElwfDaY2RNmdp6ZWY+yu/1xNLMrzOxuM1sW/M0u76d80cfMzKaZ2a3B73GLmS0ys48UXTeNaRhaZvYfwKeBXwH/C+wHXAo8BpyoS3R3MbNvAJ8Cfgs8BXQAxwMfBf4KLHTOtQRl5wLPABngu8BW4ELgAOC9zrmHyv4CqpiZ/TvwT0ADcKNz7pLQNh3LXpjZTOBh/HH7CfAqMAY4EHjAOfffQbmFQblVQD6UXQLsAbzLObekrBWvImYWAx4B3gX8DP+3PQI4EzgC+JZz7vNBWR1HwMwcsAl4HjgMaHLOzeqlbNHHzMzGA4uCbdcBjcBZwLHAPzrnftpv5Zxzug3RDdgfyAG/7LH+UsABZ1W6jtV0Aw4HxhRYf01wvC4JrbsLyAIHh9Y1ACuAvxEEYt0cwKH4QPDZ4Dh+v8d2Hcvej91jwFvA1H7KPQM0AdND66YH6x6s9Ouo8DE8Kvi9u77H+hpgGbBFx3GnYzYndP9FYHkfZYs+ZsC3gv+L94fWxYPH2Ag09Fc3dU8MrTMBw397C7sZaAbOKXuNqphzbpFzbmuBTXcGywMAgq6K04CHnXOLQ/tvB34M7AMsGOLqRoKZxfG/b/cD9xTYrmPZCzM7Bvg7/DfhNWaWNLMRBcrtjT9GdzvnVuXXB/fvBk40synlqncVGh0sV4dXOufagQ3ADtBxDHPOLSum3ACO2VnAG86534XKZoEbgPHAKf09p0LD0FqAb2l4JrzSOdcKLGY3fTMegBnBcl2wPBCoBZ4sUPapYKlj630GmIdvrixEx7J3+TfQlWb2O6AF2GFmr5pZOPDnj09vx9DwTcy7q2eALcC/mNlHzGyvYAzNtfjjcnVQTsexdEUfMzObim+BeKqXsuHH65VCw9CaBmxwzrUV2LYKmGhmNWWuU6QE35Svwjev3x6snhYsVxXYJb9u+hBXreqZ2Wzgq8DXnHPLeymmY9m7fYPlzfhvYR8HPgG0Az83s/OD7TqGfXDObca3Zm3Cd4WtAF7Bj1/6kHPu5qCojmPpSjlmg3J8dWnsoTUCKBQYAFpDZdrLU51I+i6wELjSOfe3YF2+ibjQsW3tUWZ39gPgTfyAp97oWPZuVLDcBhwfNKdj6wVEsAAABzFJREFUZr/C98V/3cx+ho5hMbbj++Z/CzyBD2GfAm43s9Odc79Hx3EgSjlmg3J8FRqGVjN+lGohdaEyUoCZ/Su+Wf1HzrlrQ5vyx6y2wG46rkDQfH4ScIxzrqOPojqWvWsJlnfkAwP4b85m9lvg/+JbI3QM+2Bm8/FB4TPOuZtC6+/AB4mbgzN4dBxLV8oxG5Tjq+6JobUa3wVR6D9pOr7rQq0MBZjZ1cCXgJ8Cn+yxOT+gqlBTWn5doSa43ULw+3YdcB+w1sz2DgZMzQyKjAnWjUXHsi+NwXJtgW1rguU4dAz78xn8h9Ld4ZXOuWbgXvzv5Sx0HAeilGM2KMdXoWFoPYs/xkeEV5pZHXAw/nxZ6cHMvgJ8BbgVuMAF5wWFLME3sR1VYPeFwXJ3Prb1wCTgVOC10O3hYPs5wc8XoGPZl/wA5hkFtuXXvY3/O4fej6EDnhvcqkVK/gMpXmBbIrTUcSxd0cfMObcGHwoW9lIWivlbr/T5qMP5Bsyn73kazql0Havthh/06PCBIdZHubvxcwscFFqXn1vgVXbvuQWSwIcL3C4Oju3/Bj/vo2PZ53Echz/XvZHQ+evAVHwf/auhdc8GZaeF1k0L1j1U6ddS4eN4ffB79y891udbujYBCR3HXo9ff/M0FH3MgG/T+zwNm4FR/dVHM0IOMTO7Ad8v/yt8c/F++Bki/wyc4DQjZCcz+xR+RrOVwJfxgStsnfMDpvLnJz+DnzXyevwfyIX4oHaqc+6BctU7KsxsFn5gZM8ZIXUse2FmFwE/BF4C/hM/IdHF+ODwPufcg0G5dwF/wgeMG4LdLwUmA0c7514oc9WrRjCr5vP4EHYb/r1vPP53bBbwKedcOiir4wiY2bl0dSdeiv+9+07w8wrn3M9DZYs+ZmY2Ad/yMAHfhbkKP5/QcfhW3Z/0W7lKp6jhfsOnuH/Gz6zXFvwnXUcRM2/tbjfgFnwK7u32cI/y+wG/wZ8D3gw8jp+au+KvpRpv+DfonWaE1LHs97h9EH8e+w78mRQPBm/GPcsdBfwB3wqxDXgAOLTS9a+GGzAXP4V0Iz6cNgGPAh/UcSx4vB4u9n2w1GOG7y76OX5irVZ8oPtYsXVTS4OIiIgURQMhRUREpCgKDSIiIlIUhQYREREpikKDiIiIFEWhQURERIqi0CAiIiJFUWgQERGRougqlyIy7KVSqavx1zM5Pp1OP1zZ2ohEl0KDiPQrlUoVMwucPpBF/n97dxOiVRUGcPw/CEqbphaSFS7DioiMTKghgyJsIRUUQ+UH0UaeVRFGSOBEG4PAEHoS2kSZppuKhIJEKLSQhpooqGwzENrXpoEgjWpanDNyubzvdF/HaWDm/4OXw3vuc8+cu3qfOfd8LHImDZIG8dws1yb/r05IWhgmDZI6y8yxhe6DpIVj0iDpomvOIaCc1vcEcC3lMJ0jwM7M/KnHfddQTji9C1hJOVTnKPB8Zn7fI34Z5bTELcANlNMAT1MO/Hmhzz0PAk/X+LOUA6ieyszTc3lmaSlw9YSk+fQksA/4EniJctrrY8AnEbGyGRgR64BxYDPwGfAi5XTJR4HxiLilFb8c+AB4BVgNHAD2Uo7+fQC4vUd/AthPeZXyMvA1MAocjYgVc35aaZFzpEFSZ3UEoZezmbm7R/29wPrM/KLRxh7KyMNu4PFaNwS8DlwKbM7MNxvxo8BbwP6IuD4z/6mXxoC7gfeAhzLzXOOeFbWtto3Ausz8qhF7AHgYuA843PfhJTnSIGkgu/p8nukT/0YzYajGgCngkcZ/97dRXl982kwYADLzEHAcWAOMwPnXEgH8AWxvJgz1nnOZ+WuP/uxtJgzVq7W8tc8zSKocaZDUWWYODXjLRz3amIqICWADcB0wAdxcLx/r084xSsKwFviYkmAMAycz88wA/RnvUfdDLS8foB1pSXKkQdJ8+rlP/cwkyOFW+WOf+Jn6y1rloJMXf+tR91ctlw3YlrTkmDRImk9X9KlfVcupVrmqRyzAla24mR//qy+8a5IGZdIgaT5taFdExDBwE2W54ze1embew5192pmp/7yW31IShxsj4qqL0VFJ/82kQdJ82hIRa1t1Y5TXEQcbExhPUJZjjtR9FM6r3+8ATlEmRJKZfwMJXALsay+XjIjl7SWdkubOiZCSOptlySXAO5k50ap7HzgREYcp8xJG6meSxoqLzJyOiG3Ah8ChiHiXMpqwBrifsinU1sZySyhbWq8HNgGnIuJIjVsN3APsAF67oAeV1JNJg6RB7Jrl2iRlJUTTHuBtyr4Mo8DvlB/ynZn5SzMwM0/WDZ6epey/sImyI+RByo6Q37Xi/4yIjcB2YCuwDRgCztS/eXzwx5M0m6Hp6S6H10lSdx5FLS1OzmmQJEmdmDRIkqROTBokSVInzmmQJEmdONIgSZI6MWmQJEmdmDRIkqROTBokSVInJg2SJKkTkwZJktTJvx8hX+sk6a13AAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 576x432 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
    "source": [
-    "reload(ooo)\n",
     "ooo.plot_history(history, plot={'MSE' :['mse', 'val_mse'],\n",
     "                                'MAE' :['mae', 'val_mae'],\n",
     "                                'LOSS':['loss','val_loss']})"
@@ -305,21 +1052,43 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## 7/ Restore a model :"
+    "## Step 7 - Restore a model :"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "### 7.1/ Reload model"
+    "### 7.1 - Reload model"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 19,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Model: \"sequential\"\n",
+      "_________________________________________________________________\n",
+      "Layer (type)                 Output Shape              Param #   \n",
+      "=================================================================\n",
+      "Dense_n1 (Dense)             (None, 64)                896       \n",
+      "_________________________________________________________________\n",
+      "Dense_n2 (Dense)             (None, 64)                4160      \n",
+      "_________________________________________________________________\n",
+      "Output (Dense)               (None, 1)                 65        \n",
+      "=================================================================\n",
+      "Total params: 5,121\n",
+      "Trainable params: 5,121\n",
+      "Non-trainable params: 0\n",
+      "_________________________________________________________________\n",
+      "Loaded.\n"
+     ]
+    }
+   ],
    "source": [
     "loaded_model = tf.keras.models.load_model('./run/models/best_model.h5')\n",
     "loaded_model.summary()\n",
@@ -330,14 +1099,24 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "### 7.2/ Evaluate it :"
+    "### 7.2 - Evaluate it :"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 20,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "x_test / loss      : 11.7020\n",
+      "x_test / mae       : 2.4886\n",
+      "x_test / mse       : 11.7020\n"
+     ]
+    }
+   ],
    "source": [
     "score = loaded_model.evaluate(x_test, y_test, verbose=0)\n",
     "\n",
@@ -350,29 +1129,36 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "### 7.3/ Make a prediction"
+    "### 7.3 - Make a prediction"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 21,
    "metadata": {},
    "outputs": [],
    "source": [
-    "mon_test=[ 1.26425925, -0.48522739,  1.0436489 , -0.23112788,  1.37120745,\n",
-    "       -2.14308942,  1.13489104, -1.06802005,  1.71189006,  1.57042287,\n",
-    "        0.77859951,  0.14769795,  2.7585581 ]\n",
+    "mon_test=[-0.20113196, -0.48631663,  1.23572348, -0.26929877,  2.67879106,\n",
+    "       -0.89623587,  1.09961251, -1.05826704, -0.55823117, -0.06159088,\n",
+    "       -1.76085159, -1.97039608,  0.52775666]\n",
     "\n",
     "mon_test=np.array(mon_test).reshape(1,13)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 22,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Prédiction : 16.20 K$   Reality : 21.70 K$\n"
+     ]
+    }
+   ],
    "source": [
-    "\n",
     "predictions = loaded_model.predict( mon_test )\n",
     "print(\"Prédiction : {:.2f} K$   Reality : {:.2f} K$\".format(predictions[0][0], y_train[13]))"
    ]
diff --git a/BHPD/data/BostonHousing.csv b/BHPD/data/BostonHousing.csv
deleted file mode 100755
index 63c67b4..0000000
--- a/BHPD/data/BostonHousing.csv
+++ /dev/null
@@ -1,507 +0,0 @@
-"crim","zn","indus","chas","nox","rm","age","dis","rad","tax","ptratio","b","lstat","medv"
-0.00632,18,2.31,"0",0.538,6.575,65.2,4.09,1,296,15.3,396.9,4.98,24
-0.02731,0,7.07,"0",0.469,6.421,78.9,4.9671,2,242,17.8,396.9,9.14,21.6
-0.02729,0,7.07,"0",0.469,7.185,61.1,4.9671,2,242,17.8,392.83,4.03,34.7
-0.03237,0,2.18,"0",0.458,6.998,45.8,6.0622,3,222,18.7,394.63,2.94,33.4
-0.06905,0,2.18,"0",0.458,7.147,54.2,6.0622,3,222,18.7,396.9,5.33,36.2
-0.02985,0,2.18,"0",0.458,6.43,58.7,6.0622,3,222,18.7,394.12,5.21,28.7
-0.08829,12.5,7.87,"0",0.524,6.012,66.6,5.5605,5,311,15.2,395.6,12.43,22.9
-0.14455,12.5,7.87,"0",0.524,6.172,96.1,5.9505,5,311,15.2,396.9,19.15,27.1
-0.21124,12.5,7.87,"0",0.524,5.631,100,6.0821,5,311,15.2,386.63,29.93,16.5
-0.17004,12.5,7.87,"0",0.524,6.004,85.9,6.5921,5,311,15.2,386.71,17.1,18.9
-0.22489,12.5,7.87,"0",0.524,6.377,94.3,6.3467,5,311,15.2,392.52,20.45,15
-0.11747,12.5,7.87,"0",0.524,6.009,82.9,6.2267,5,311,15.2,396.9,13.27,18.9
-0.09378,12.5,7.87,"0",0.524,5.889,39,5.4509,5,311,15.2,390.5,15.71,21.7
-0.62976,0,8.14,"0",0.538,5.949,61.8,4.7075,4,307,21,396.9,8.26,20.4
-0.63796,0,8.14,"0",0.538,6.096,84.5,4.4619,4,307,21,380.02,10.26,18.2
-0.62739,0,8.14,"0",0.538,5.834,56.5,4.4986,4,307,21,395.62,8.47,19.9
-1.05393,0,8.14,"0",0.538,5.935,29.3,4.4986,4,307,21,386.85,6.58,23.1
-0.7842,0,8.14,"0",0.538,5.99,81.7,4.2579,4,307,21,386.75,14.67,17.5
-0.80271,0,8.14,"0",0.538,5.456,36.6,3.7965,4,307,21,288.99,11.69,20.2
-0.7258,0,8.14,"0",0.538,5.727,69.5,3.7965,4,307,21,390.95,11.28,18.2
-1.25179,0,8.14,"0",0.538,5.57,98.1,3.7979,4,307,21,376.57,21.02,13.6
-0.85204,0,8.14,"0",0.538,5.965,89.2,4.0123,4,307,21,392.53,13.83,19.6
-1.23247,0,8.14,"0",0.538,6.142,91.7,3.9769,4,307,21,396.9,18.72,15.2
-0.98843,0,8.14,"0",0.538,5.813,100,4.0952,4,307,21,394.54,19.88,14.5
-0.75026,0,8.14,"0",0.538,5.924,94.1,4.3996,4,307,21,394.33,16.3,15.6
-0.84054,0,8.14,"0",0.538,5.599,85.7,4.4546,4,307,21,303.42,16.51,13.9
-0.67191,0,8.14,"0",0.538,5.813,90.3,4.682,4,307,21,376.88,14.81,16.6
-0.95577,0,8.14,"0",0.538,6.047,88.8,4.4534,4,307,21,306.38,17.28,14.8
-0.77299,0,8.14,"0",0.538,6.495,94.4,4.4547,4,307,21,387.94,12.8,18.4
-1.00245,0,8.14,"0",0.538,6.674,87.3,4.239,4,307,21,380.23,11.98,21
-1.13081,0,8.14,"0",0.538,5.713,94.1,4.233,4,307,21,360.17,22.6,12.7
-1.35472,0,8.14,"0",0.538,6.072,100,4.175,4,307,21,376.73,13.04,14.5
-1.38799,0,8.14,"0",0.538,5.95,82,3.99,4,307,21,232.6,27.71,13.2
-1.15172,0,8.14,"0",0.538,5.701,95,3.7872,4,307,21,358.77,18.35,13.1
-1.61282,0,8.14,"0",0.538,6.096,96.9,3.7598,4,307,21,248.31,20.34,13.5
-0.06417,0,5.96,"0",0.499,5.933,68.2,3.3603,5,279,19.2,396.9,9.68,18.9
-0.09744,0,5.96,"0",0.499,5.841,61.4,3.3779,5,279,19.2,377.56,11.41,20
-0.08014,0,5.96,"0",0.499,5.85,41.5,3.9342,5,279,19.2,396.9,8.77,21
-0.17505,0,5.96,"0",0.499,5.966,30.2,3.8473,5,279,19.2,393.43,10.13,24.7
-0.02763,75,2.95,"0",0.428,6.595,21.8,5.4011,3,252,18.3,395.63,4.32,30.8
-0.03359,75,2.95,"0",0.428,7.024,15.8,5.4011,3,252,18.3,395.62,1.98,34.9
-0.12744,0,6.91,"0",0.448,6.77,2.9,5.7209,3,233,17.9,385.41,4.84,26.6
-0.1415,0,6.91,"0",0.448,6.169,6.6,5.7209,3,233,17.9,383.37,5.81,25.3
-0.15936,0,6.91,"0",0.448,6.211,6.5,5.7209,3,233,17.9,394.46,7.44,24.7
-0.12269,0,6.91,"0",0.448,6.069,40,5.7209,3,233,17.9,389.39,9.55,21.2
-0.17142,0,6.91,"0",0.448,5.682,33.8,5.1004,3,233,17.9,396.9,10.21,19.3
-0.18836,0,6.91,"0",0.448,5.786,33.3,5.1004,3,233,17.9,396.9,14.15,20
-0.22927,0,6.91,"0",0.448,6.03,85.5,5.6894,3,233,17.9,392.74,18.8,16.6
-0.25387,0,6.91,"0",0.448,5.399,95.3,5.87,3,233,17.9,396.9,30.81,14.4
-0.21977,0,6.91,"0",0.448,5.602,62,6.0877,3,233,17.9,396.9,16.2,19.4
-0.08873,21,5.64,"0",0.439,5.963,45.7,6.8147,4,243,16.8,395.56,13.45,19.7
-0.04337,21,5.64,"0",0.439,6.115,63,6.8147,4,243,16.8,393.97,9.43,20.5
-0.0536,21,5.64,"0",0.439,6.511,21.1,6.8147,4,243,16.8,396.9,5.28,25
-0.04981,21,5.64,"0",0.439,5.998,21.4,6.8147,4,243,16.8,396.9,8.43,23.4
-0.0136,75,4,"0",0.41,5.888,47.6,7.3197,3,469,21.1,396.9,14.8,18.9
-0.01311,90,1.22,"0",0.403,7.249,21.9,8.6966,5,226,17.9,395.93,4.81,35.4
-0.02055,85,0.74,"0",0.41,6.383,35.7,9.1876,2,313,17.3,396.9,5.77,24.7
-0.01432,100,1.32,"0",0.411,6.816,40.5,8.3248,5,256,15.1,392.9,3.95,31.6
-0.15445,25,5.13,"0",0.453,6.145,29.2,7.8148,8,284,19.7,390.68,6.86,23.3
-0.10328,25,5.13,"0",0.453,5.927,47.2,6.932,8,284,19.7,396.9,9.22,19.6
-0.14932,25,5.13,"0",0.453,5.741,66.2,7.2254,8,284,19.7,395.11,13.15,18.7
-0.17171,25,5.13,"0",0.453,5.966,93.4,6.8185,8,284,19.7,378.08,14.44,16
-0.11027,25,5.13,"0",0.453,6.456,67.8,7.2255,8,284,19.7,396.9,6.73,22.2
-0.1265,25,5.13,"0",0.453,6.762,43.4,7.9809,8,284,19.7,395.58,9.5,25
-0.01951,17.5,1.38,"0",0.4161,7.104,59.5,9.2229,3,216,18.6,393.24,8.05,33
-0.03584,80,3.37,"0",0.398,6.29,17.8,6.6115,4,337,16.1,396.9,4.67,23.5
-0.04379,80,3.37,"0",0.398,5.787,31.1,6.6115,4,337,16.1,396.9,10.24,19.4
-0.05789,12.5,6.07,"0",0.409,5.878,21.4,6.498,4,345,18.9,396.21,8.1,22
-0.13554,12.5,6.07,"0",0.409,5.594,36.8,6.498,4,345,18.9,396.9,13.09,17.4
-0.12816,12.5,6.07,"0",0.409,5.885,33,6.498,4,345,18.9,396.9,8.79,20.9
-0.08826,0,10.81,"0",0.413,6.417,6.6,5.2873,4,305,19.2,383.73,6.72,24.2
-0.15876,0,10.81,"0",0.413,5.961,17.5,5.2873,4,305,19.2,376.94,9.88,21.7
-0.09164,0,10.81,"0",0.413,6.065,7.8,5.2873,4,305,19.2,390.91,5.52,22.8
-0.19539,0,10.81,"0",0.413,6.245,6.2,5.2873,4,305,19.2,377.17,7.54,23.4
-0.07896,0,12.83,"0",0.437,6.273,6,4.2515,5,398,18.7,394.92,6.78,24.1
-0.09512,0,12.83,"0",0.437,6.286,45,4.5026,5,398,18.7,383.23,8.94,21.4
-0.10153,0,12.83,"0",0.437,6.279,74.5,4.0522,5,398,18.7,373.66,11.97,20
-0.08707,0,12.83,"0",0.437,6.14,45.8,4.0905,5,398,18.7,386.96,10.27,20.8
-0.05646,0,12.83,"0",0.437,6.232,53.7,5.0141,5,398,18.7,386.4,12.34,21.2
-0.08387,0,12.83,"0",0.437,5.874,36.6,4.5026,5,398,18.7,396.06,9.1,20.3
-0.04113,25,4.86,"0",0.426,6.727,33.5,5.4007,4,281,19,396.9,5.29,28
-0.04462,25,4.86,"0",0.426,6.619,70.4,5.4007,4,281,19,395.63,7.22,23.9
-0.03659,25,4.86,"0",0.426,6.302,32.2,5.4007,4,281,19,396.9,6.72,24.8
-0.03551,25,4.86,"0",0.426,6.167,46.7,5.4007,4,281,19,390.64,7.51,22.9
-0.05059,0,4.49,"0",0.449,6.389,48,4.7794,3,247,18.5,396.9,9.62,23.9
-0.05735,0,4.49,"0",0.449,6.63,56.1,4.4377,3,247,18.5,392.3,6.53,26.6
-0.05188,0,4.49,"0",0.449,6.015,45.1,4.4272,3,247,18.5,395.99,12.86,22.5
-0.07151,0,4.49,"0",0.449,6.121,56.8,3.7476,3,247,18.5,395.15,8.44,22.2
-0.0566,0,3.41,"0",0.489,7.007,86.3,3.4217,2,270,17.8,396.9,5.5,23.6
-0.05302,0,3.41,"0",0.489,7.079,63.1,3.4145,2,270,17.8,396.06,5.7,28.7
-0.04684,0,3.41,"0",0.489,6.417,66.1,3.0923,2,270,17.8,392.18,8.81,22.6
-0.03932,0,3.41,"0",0.489,6.405,73.9,3.0921,2,270,17.8,393.55,8.2,22
-0.04203,28,15.04,"0",0.464,6.442,53.6,3.6659,4,270,18.2,395.01,8.16,22.9
-0.02875,28,15.04,"0",0.464,6.211,28.9,3.6659,4,270,18.2,396.33,6.21,25
-0.04294,28,15.04,"0",0.464,6.249,77.3,3.615,4,270,18.2,396.9,10.59,20.6
-0.12204,0,2.89,"0",0.445,6.625,57.8,3.4952,2,276,18,357.98,6.65,28.4
-0.11504,0,2.89,"0",0.445,6.163,69.6,3.4952,2,276,18,391.83,11.34,21.4
-0.12083,0,2.89,"0",0.445,8.069,76,3.4952,2,276,18,396.9,4.21,38.7
-0.08187,0,2.89,"0",0.445,7.82,36.9,3.4952,2,276,18,393.53,3.57,43.8
-0.0686,0,2.89,"0",0.445,7.416,62.5,3.4952,2,276,18,396.9,6.19,33.2
-0.14866,0,8.56,"0",0.52,6.727,79.9,2.7778,5,384,20.9,394.76,9.42,27.5
-0.11432,0,8.56,"0",0.52,6.781,71.3,2.8561,5,384,20.9,395.58,7.67,26.5
-0.22876,0,8.56,"0",0.52,6.405,85.4,2.7147,5,384,20.9,70.8,10.63,18.6
-0.21161,0,8.56,"0",0.52,6.137,87.4,2.7147,5,384,20.9,394.47,13.44,19.3
-0.1396,0,8.56,"0",0.52,6.167,90,2.421,5,384,20.9,392.69,12.33,20.1
-0.13262,0,8.56,"0",0.52,5.851,96.7,2.1069,5,384,20.9,394.05,16.47,19.5
-0.1712,0,8.56,"0",0.52,5.836,91.9,2.211,5,384,20.9,395.67,18.66,19.5
-0.13117,0,8.56,"0",0.52,6.127,85.2,2.1224,5,384,20.9,387.69,14.09,20.4
-0.12802,0,8.56,"0",0.52,6.474,97.1,2.4329,5,384,20.9,395.24,12.27,19.8
-0.26363,0,8.56,"0",0.52,6.229,91.2,2.5451,5,384,20.9,391.23,15.55,19.4
-0.10793,0,8.56,"0",0.52,6.195,54.4,2.7778,5,384,20.9,393.49,13,21.7
-0.10084,0,10.01,"0",0.547,6.715,81.6,2.6775,6,432,17.8,395.59,10.16,22.8
-0.12329,0,10.01,"0",0.547,5.913,92.9,2.3534,6,432,17.8,394.95,16.21,18.8
-0.22212,0,10.01,"0",0.547,6.092,95.4,2.548,6,432,17.8,396.9,17.09,18.7
-0.14231,0,10.01,"0",0.547,6.254,84.2,2.2565,6,432,17.8,388.74,10.45,18.5
-0.17134,0,10.01,"0",0.547,5.928,88.2,2.4631,6,432,17.8,344.91,15.76,18.3
-0.13158,0,10.01,"0",0.547,6.176,72.5,2.7301,6,432,17.8,393.3,12.04,21.2
-0.15098,0,10.01,"0",0.547,6.021,82.6,2.7474,6,432,17.8,394.51,10.3,19.2
-0.13058,0,10.01,"0",0.547,5.872,73.1,2.4775,6,432,17.8,338.63,15.37,20.4
-0.14476,0,10.01,"0",0.547,5.731,65.2,2.7592,6,432,17.8,391.5,13.61,19.3
-0.06899,0,25.65,"0",0.581,5.87,69.7,2.2577,2,188,19.1,389.15,14.37,22
-0.07165,0,25.65,"0",0.581,6.004,84.1,2.1974,2,188,19.1,377.67,14.27,20.3
-0.09299,0,25.65,"0",0.581,5.961,92.9,2.0869,2,188,19.1,378.09,17.93,20.5
-0.15038,0,25.65,"0",0.581,5.856,97,1.9444,2,188,19.1,370.31,25.41,17.3
-0.09849,0,25.65,"0",0.581,5.879,95.8,2.0063,2,188,19.1,379.38,17.58,18.8
-0.16902,0,25.65,"0",0.581,5.986,88.4,1.9929,2,188,19.1,385.02,14.81,21.4
-0.38735,0,25.65,"0",0.581,5.613,95.6,1.7572,2,188,19.1,359.29,27.26,15.7
-0.25915,0,21.89,"0",0.624,5.693,96,1.7883,4,437,21.2,392.11,17.19,16.2
-0.32543,0,21.89,"0",0.624,6.431,98.8,1.8125,4,437,21.2,396.9,15.39,18
-0.88125,0,21.89,"0",0.624,5.637,94.7,1.9799,4,437,21.2,396.9,18.34,14.3
-0.34006,0,21.89,"0",0.624,6.458,98.9,2.1185,4,437,21.2,395.04,12.6,19.2
-1.19294,0,21.89,"0",0.624,6.326,97.7,2.271,4,437,21.2,396.9,12.26,19.6
-0.59005,0,21.89,"0",0.624,6.372,97.9,2.3274,4,437,21.2,385.76,11.12,23
-0.32982,0,21.89,"0",0.624,5.822,95.4,2.4699,4,437,21.2,388.69,15.03,18.4
-0.97617,0,21.89,"0",0.624,5.757,98.4,2.346,4,437,21.2,262.76,17.31,15.6
-0.55778,0,21.89,"0",0.624,6.335,98.2,2.1107,4,437,21.2,394.67,16.96,18.1
-0.32264,0,21.89,"0",0.624,5.942,93.5,1.9669,4,437,21.2,378.25,16.9,17.4
-0.35233,0,21.89,"0",0.624,6.454,98.4,1.8498,4,437,21.2,394.08,14.59,17.1
-0.2498,0,21.89,"0",0.624,5.857,98.2,1.6686,4,437,21.2,392.04,21.32,13.3
-0.54452,0,21.89,"0",0.624,6.151,97.9,1.6687,4,437,21.2,396.9,18.46,17.8
-0.2909,0,21.89,"0",0.624,6.174,93.6,1.6119,4,437,21.2,388.08,24.16,14
-1.62864,0,21.89,"0",0.624,5.019,100,1.4394,4,437,21.2,396.9,34.41,14.4
-3.32105,0,19.58,"1",0.871,5.403,100,1.3216,5,403,14.7,396.9,26.82,13.4
-4.0974,0,19.58,"0",0.871,5.468,100,1.4118,5,403,14.7,396.9,26.42,15.6
-2.77974,0,19.58,"0",0.871,4.903,97.8,1.3459,5,403,14.7,396.9,29.29,11.8
-2.37934,0,19.58,"0",0.871,6.13,100,1.4191,5,403,14.7,172.91,27.8,13.8
-2.15505,0,19.58,"0",0.871,5.628,100,1.5166,5,403,14.7,169.27,16.65,15.6
-2.36862,0,19.58,"0",0.871,4.926,95.7,1.4608,5,403,14.7,391.71,29.53,14.6
-2.33099,0,19.58,"0",0.871,5.186,93.8,1.5296,5,403,14.7,356.99,28.32,17.8
-2.73397,0,19.58,"0",0.871,5.597,94.9,1.5257,5,403,14.7,351.85,21.45,15.4
-1.6566,0,19.58,"0",0.871,6.122,97.3,1.618,5,403,14.7,372.8,14.1,21.5
-1.49632,0,19.58,"0",0.871,5.404,100,1.5916,5,403,14.7,341.6,13.28,19.6
-1.12658,0,19.58,"1",0.871,5.012,88,1.6102,5,403,14.7,343.28,12.12,15.3
-2.14918,0,19.58,"0",0.871,5.709,98.5,1.6232,5,403,14.7,261.95,15.79,19.4
-1.41385,0,19.58,"1",0.871,6.129,96,1.7494,5,403,14.7,321.02,15.12,17
-3.53501,0,19.58,"1",0.871,6.152,82.6,1.7455,5,403,14.7,88.01,15.02,15.6
-2.44668,0,19.58,"0",0.871,5.272,94,1.7364,5,403,14.7,88.63,16.14,13.1
-1.22358,0,19.58,"0",0.605,6.943,97.4,1.8773,5,403,14.7,363.43,4.59,41.3
-1.34284,0,19.58,"0",0.605,6.066,100,1.7573,5,403,14.7,353.89,6.43,24.3
-1.42502,0,19.58,"0",0.871,6.51,100,1.7659,5,403,14.7,364.31,7.39,23.3
-1.27346,0,19.58,"1",0.605,6.25,92.6,1.7984,5,403,14.7,338.92,5.5,27
-1.46336,0,19.58,"0",0.605,7.489,90.8,1.9709,5,403,14.7,374.43,1.73,50
-1.83377,0,19.58,"1",0.605,7.802,98.2,2.0407,5,403,14.7,389.61,1.92,50
-1.51902,0,19.58,"1",0.605,8.375,93.9,2.162,5,403,14.7,388.45,3.32,50
-2.24236,0,19.58,"0",0.605,5.854,91.8,2.422,5,403,14.7,395.11,11.64,22.7
-2.924,0,19.58,"0",0.605,6.101,93,2.2834,5,403,14.7,240.16,9.81,25
-2.01019,0,19.58,"0",0.605,7.929,96.2,2.0459,5,403,14.7,369.3,3.7,50
-1.80028,0,19.58,"0",0.605,5.877,79.2,2.4259,5,403,14.7,227.61,12.14,23.8
-2.3004,0,19.58,"0",0.605,6.319,96.1,2.1,5,403,14.7,297.09,11.1,23.8
-2.44953,0,19.58,"0",0.605,6.402,95.2,2.2625,5,403,14.7,330.04,11.32,22.3
-1.20742,0,19.58,"0",0.605,5.875,94.6,2.4259,5,403,14.7,292.29,14.43,17.4
-2.3139,0,19.58,"0",0.605,5.88,97.3,2.3887,5,403,14.7,348.13,12.03,19.1
-0.13914,0,4.05,"0",0.51,5.572,88.5,2.5961,5,296,16.6,396.9,14.69,23.1
-0.09178,0,4.05,"0",0.51,6.416,84.1,2.6463,5,296,16.6,395.5,9.04,23.6
-0.08447,0,4.05,"0",0.51,5.859,68.7,2.7019,5,296,16.6,393.23,9.64,22.6
-0.06664,0,4.05,"0",0.51,6.546,33.1,3.1323,5,296,16.6,390.96,5.33,29.4
-0.07022,0,4.05,"0",0.51,6.02,47.2,3.5549,5,296,16.6,393.23,10.11,23.2
-0.05425,0,4.05,"0",0.51,6.315,73.4,3.3175,5,296,16.6,395.6,6.29,24.6
-0.06642,0,4.05,"0",0.51,6.86,74.4,2.9153,5,296,16.6,391.27,6.92,29.9
-0.0578,0,2.46,"0",0.488,6.98,58.4,2.829,3,193,17.8,396.9,5.04,37.2
-0.06588,0,2.46,"0",0.488,7.765,83.3,2.741,3,193,17.8,395.56,7.56,39.8
-0.06888,0,2.46,"0",0.488,6.144,62.2,2.5979,3,193,17.8,396.9,9.45,36.2
-0.09103,0,2.46,"0",0.488,7.155,92.2,2.7006,3,193,17.8,394.12,4.82,37.9
-0.10008,0,2.46,"0",0.488,6.563,95.6,2.847,3,193,17.8,396.9,5.68,32.5
-0.08308,0,2.46,"0",0.488,5.604,89.8,2.9879,3,193,17.8,391,13.98,26.4
-0.06047,0,2.46,"0",0.488,6.153,68.8,3.2797,3,193,17.8,387.11,13.15,29.6
-0.05602,0,2.46,"0",0.488,7.831,53.6,3.1992,3,193,17.8,392.63,4.45,50
-0.07875,45,3.44,"0",0.437,6.782,41.1,3.7886,5,398,15.2,393.87,6.68,32
-0.12579,45,3.44,"0",0.437,6.556,29.1,4.5667,5,398,15.2,382.84,4.56,29.8
-0.0837,45,3.44,"0",0.437,7.185,38.9,4.5667,5,398,15.2,396.9,5.39,34.9
-0.09068,45,3.44,"0",0.437,6.951,21.5,6.4798,5,398,15.2,377.68,5.1,37
-0.06911,45,3.44,"0",0.437,6.739,30.8,6.4798,5,398,15.2,389.71,4.69,30.5
-0.08664,45,3.44,"0",0.437,7.178,26.3,6.4798,5,398,15.2,390.49,2.87,36.4
-0.02187,60,2.93,"0",0.401,6.8,9.9,6.2196,1,265,15.6,393.37,5.03,31.1
-0.01439,60,2.93,"0",0.401,6.604,18.8,6.2196,1,265,15.6,376.7,4.38,29.1
-0.01381,80,0.46,"0",0.422,7.875,32,5.6484,4,255,14.4,394.23,2.97,50
-0.04011,80,1.52,"0",0.404,7.287,34.1,7.309,2,329,12.6,396.9,4.08,33.3
-0.04666,80,1.52,"0",0.404,7.107,36.6,7.309,2,329,12.6,354.31,8.61,30.3
-0.03768,80,1.52,"0",0.404,7.274,38.3,7.309,2,329,12.6,392.2,6.62,34.6
-0.0315,95,1.47,"0",0.403,6.975,15.3,7.6534,3,402,17,396.9,4.56,34.9
-0.01778,95,1.47,"0",0.403,7.135,13.9,7.6534,3,402,17,384.3,4.45,32.9
-0.03445,82.5,2.03,"0",0.415,6.162,38.4,6.27,2,348,14.7,393.77,7.43,24.1
-0.02177,82.5,2.03,"0",0.415,7.61,15.7,6.27,2,348,14.7,395.38,3.11,42.3
-0.0351,95,2.68,"0",0.4161,7.853,33.2,5.118,4,224,14.7,392.78,3.81,48.5
-0.02009,95,2.68,"0",0.4161,8.034,31.9,5.118,4,224,14.7,390.55,2.88,50
-0.13642,0,10.59,"0",0.489,5.891,22.3,3.9454,4,277,18.6,396.9,10.87,22.6
-0.22969,0,10.59,"0",0.489,6.326,52.5,4.3549,4,277,18.6,394.87,10.97,24.4
-0.25199,0,10.59,"0",0.489,5.783,72.7,4.3549,4,277,18.6,389.43,18.06,22.5
-0.13587,0,10.59,"1",0.489,6.064,59.1,4.2392,4,277,18.6,381.32,14.66,24.4
-0.43571,0,10.59,"1",0.489,5.344,100,3.875,4,277,18.6,396.9,23.09,20
-0.17446,0,10.59,"1",0.489,5.96,92.1,3.8771,4,277,18.6,393.25,17.27,21.7
-0.37578,0,10.59,"1",0.489,5.404,88.6,3.665,4,277,18.6,395.24,23.98,19.3
-0.21719,0,10.59,"1",0.489,5.807,53.8,3.6526,4,277,18.6,390.94,16.03,22.4
-0.14052,0,10.59,"0",0.489,6.375,32.3,3.9454,4,277,18.6,385.81,9.38,28.1
-0.28955,0,10.59,"0",0.489,5.412,9.8,3.5875,4,277,18.6,348.93,29.55,23.7
-0.19802,0,10.59,"0",0.489,6.182,42.4,3.9454,4,277,18.6,393.63,9.47,25
-0.0456,0,13.89,"1",0.55,5.888,56,3.1121,5,276,16.4,392.8,13.51,23.3
-0.07013,0,13.89,"0",0.55,6.642,85.1,3.4211,5,276,16.4,392.78,9.69,28.7
-0.11069,0,13.89,"1",0.55,5.951,93.8,2.8893,5,276,16.4,396.9,17.92,21.5
-0.11425,0,13.89,"1",0.55,6.373,92.4,3.3633,5,276,16.4,393.74,10.5,23
-0.35809,0,6.2,"1",0.507,6.951,88.5,2.8617,8,307,17.4,391.7,9.71,26.7
-0.40771,0,6.2,"1",0.507,6.164,91.3,3.048,8,307,17.4,395.24,21.46,21.7
-0.62356,0,6.2,"1",0.507,6.879,77.7,3.2721,8,307,17.4,390.39,9.93,27.5
-0.6147,0,6.2,"0",0.507,6.618,80.8,3.2721,8,307,17.4,396.9,7.6,30.1
-0.31533,0,6.2,"0",0.504,8.266,78.3,2.8944,8,307,17.4,385.05,4.14,44.8
-0.52693,0,6.2,"0",0.504,8.725,83,2.8944,8,307,17.4,382,4.63,50
-0.38214,0,6.2,"0",0.504,8.04,86.5,3.2157,8,307,17.4,387.38,3.13,37.6
-0.41238,0,6.2,"0",0.504,7.163,79.9,3.2157,8,307,17.4,372.08,6.36,31.6
-0.29819,0,6.2,"0",0.504,7.686,17,3.3751,8,307,17.4,377.51,3.92,46.7
-0.44178,0,6.2,"0",0.504,6.552,21.4,3.3751,8,307,17.4,380.34,3.76,31.5
-0.537,0,6.2,"0",0.504,5.981,68.1,3.6715,8,307,17.4,378.35,11.65,24.3
-0.46296,0,6.2,"0",0.504,7.412,76.9,3.6715,8,307,17.4,376.14,5.25,31.7
-0.57529,0,6.2,"0",0.507,8.337,73.3,3.8384,8,307,17.4,385.91,2.47,41.7
-0.33147,0,6.2,"0",0.507,8.247,70.4,3.6519,8,307,17.4,378.95,3.95,48.3
-0.44791,0,6.2,"1",0.507,6.726,66.5,3.6519,8,307,17.4,360.2,8.05,29
-0.33045,0,6.2,"0",0.507,6.086,61.5,3.6519,8,307,17.4,376.75,10.88,24
-0.52058,0,6.2,"1",0.507,6.631,76.5,4.148,8,307,17.4,388.45,9.54,25.1
-0.51183,0,6.2,"0",0.507,7.358,71.6,4.148,8,307,17.4,390.07,4.73,31.5
-0.08244,30,4.93,"0",0.428,6.481,18.5,6.1899,6,300,16.6,379.41,6.36,23.7
-0.09252,30,4.93,"0",0.428,6.606,42.2,6.1899,6,300,16.6,383.78,7.37,23.3
-0.11329,30,4.93,"0",0.428,6.897,54.3,6.3361,6,300,16.6,391.25,11.38,22
-0.10612,30,4.93,"0",0.428,6.095,65.1,6.3361,6,300,16.6,394.62,12.4,20.1
-0.1029,30,4.93,"0",0.428,6.358,52.9,7.0355,6,300,16.6,372.75,11.22,22.2
-0.12757,30,4.93,"0",0.428,6.393,7.8,7.0355,6,300,16.6,374.71,5.19,23.7
-0.20608,22,5.86,"0",0.431,5.593,76.5,7.9549,7,330,19.1,372.49,12.5,17.6
-0.19133,22,5.86,"0",0.431,5.605,70.2,7.9549,7,330,19.1,389.13,18.46,18.5
-0.33983,22,5.86,"0",0.431,6.108,34.9,8.0555,7,330,19.1,390.18,9.16,24.3
-0.19657,22,5.86,"0",0.431,6.226,79.2,8.0555,7,330,19.1,376.14,10.15,20.5
-0.16439,22,5.86,"0",0.431,6.433,49.1,7.8265,7,330,19.1,374.71,9.52,24.5
-0.19073,22,5.86,"0",0.431,6.718,17.5,7.8265,7,330,19.1,393.74,6.56,26.2
-0.1403,22,5.86,"0",0.431,6.487,13,7.3967,7,330,19.1,396.28,5.9,24.4
-0.21409,22,5.86,"0",0.431,6.438,8.9,7.3967,7,330,19.1,377.07,3.59,24.8
-0.08221,22,5.86,"0",0.431,6.957,6.8,8.9067,7,330,19.1,386.09,3.53,29.6
-0.36894,22,5.86,"0",0.431,8.259,8.4,8.9067,7,330,19.1,396.9,3.54,42.8
-0.04819,80,3.64,"0",0.392,6.108,32,9.2203,1,315,16.4,392.89,6.57,21.9
-0.03548,80,3.64,"0",0.392,5.876,19.1,9.2203,1,315,16.4,395.18,9.25,20.9
-0.01538,90,3.75,"0",0.394,7.454,34.2,6.3361,3,244,15.9,386.34,3.11,44
-0.61154,20,3.97,"0",0.647,8.704,86.9,1.801,5,264,13,389.7,5.12,50
-0.66351,20,3.97,"0",0.647,7.333,100,1.8946,5,264,13,383.29,7.79,36
-0.65665,20,3.97,"0",0.647,6.842,100,2.0107,5,264,13,391.93,6.9,30.1
-0.54011,20,3.97,"0",0.647,7.203,81.8,2.1121,5,264,13,392.8,9.59,33.8
-0.53412,20,3.97,"0",0.647,7.52,89.4,2.1398,5,264,13,388.37,7.26,43.1
-0.52014,20,3.97,"0",0.647,8.398,91.5,2.2885,5,264,13,386.86,5.91,48.8
-0.82526,20,3.97,"0",0.647,7.327,94.5,2.0788,5,264,13,393.42,11.25,31
-0.55007,20,3.97,"0",0.647,7.206,91.6,1.9301,5,264,13,387.89,8.1,36.5
-0.76162,20,3.97,"0",0.647,5.56,62.8,1.9865,5,264,13,392.4,10.45,22.8
-0.7857,20,3.97,"0",0.647,7.014,84.6,2.1329,5,264,13,384.07,14.79,30.7
-0.57834,20,3.97,"0",0.575,8.297,67,2.4216,5,264,13,384.54,7.44,50
-0.5405,20,3.97,"0",0.575,7.47,52.6,2.872,5,264,13,390.3,3.16,43.5
-0.09065,20,6.96,"1",0.464,5.92,61.5,3.9175,3,223,18.6,391.34,13.65,20.7
-0.29916,20,6.96,"0",0.464,5.856,42.1,4.429,3,223,18.6,388.65,13,21.1
-0.16211,20,6.96,"0",0.464,6.24,16.3,4.429,3,223,18.6,396.9,6.59,25.2
-0.1146,20,6.96,"0",0.464,6.538,58.7,3.9175,3,223,18.6,394.96,7.73,24.4
-0.22188,20,6.96,"1",0.464,7.691,51.8,4.3665,3,223,18.6,390.77,6.58,35.2
-0.05644,40,6.41,"1",0.447,6.758,32.9,4.0776,4,254,17.6,396.9,3.53,32.4
-0.09604,40,6.41,"0",0.447,6.854,42.8,4.2673,4,254,17.6,396.9,2.98,32
-0.10469,40,6.41,"1",0.447,7.267,49,4.7872,4,254,17.6,389.25,6.05,33.2
-0.06127,40,6.41,"1",0.447,6.826,27.6,4.8628,4,254,17.6,393.45,4.16,33.1
-0.07978,40,6.41,"0",0.447,6.482,32.1,4.1403,4,254,17.6,396.9,7.19,29.1
-0.21038,20,3.33,"0",0.4429,6.812,32.2,4.1007,5,216,14.9,396.9,4.85,35.1
-0.03578,20,3.33,"0",0.4429,7.82,64.5,4.6947,5,216,14.9,387.31,3.76,45.4
-0.03705,20,3.33,"0",0.4429,6.968,37.2,5.2447,5,216,14.9,392.23,4.59,35.4
-0.06129,20,3.33,"1",0.4429,7.645,49.7,5.2119,5,216,14.9,377.07,3.01,46
-0.01501,90,1.21,"1",0.401,7.923,24.8,5.885,1,198,13.6,395.52,3.16,50
-0.00906,90,2.97,"0",0.4,7.088,20.8,7.3073,1,285,15.3,394.72,7.85,32.2
-0.01096,55,2.25,"0",0.389,6.453,31.9,7.3073,1,300,15.3,394.72,8.23,22
-0.01965,80,1.76,"0",0.385,6.23,31.5,9.0892,1,241,18.2,341.6,12.93,20.1
-0.03871,52.5,5.32,"0",0.405,6.209,31.3,7.3172,6,293,16.6,396.9,7.14,23.2
-0.0459,52.5,5.32,"0",0.405,6.315,45.6,7.3172,6,293,16.6,396.9,7.6,22.3
-0.04297,52.5,5.32,"0",0.405,6.565,22.9,7.3172,6,293,16.6,371.72,9.51,24.8
-0.03502,80,4.95,"0",0.411,6.861,27.9,5.1167,4,245,19.2,396.9,3.33,28.5
-0.07886,80,4.95,"0",0.411,7.148,27.7,5.1167,4,245,19.2,396.9,3.56,37.3
-0.03615,80,4.95,"0",0.411,6.63,23.4,5.1167,4,245,19.2,396.9,4.7,27.9
-0.08265,0,13.92,"0",0.437,6.127,18.4,5.5027,4,289,16,396.9,8.58,23.9
-0.08199,0,13.92,"0",0.437,6.009,42.3,5.5027,4,289,16,396.9,10.4,21.7
-0.12932,0,13.92,"0",0.437,6.678,31.1,5.9604,4,289,16,396.9,6.27,28.6
-0.05372,0,13.92,"0",0.437,6.549,51,5.9604,4,289,16,392.85,7.39,27.1
-0.14103,0,13.92,"0",0.437,5.79,58,6.32,4,289,16,396.9,15.84,20.3
-0.06466,70,2.24,"0",0.4,6.345,20.1,7.8278,5,358,14.8,368.24,4.97,22.5
-0.05561,70,2.24,"0",0.4,7.041,10,7.8278,5,358,14.8,371.58,4.74,29
-0.04417,70,2.24,"0",0.4,6.871,47.4,7.8278,5,358,14.8,390.86,6.07,24.8
-0.03537,34,6.09,"0",0.433,6.59,40.4,5.4917,7,329,16.1,395.75,9.5,22
-0.09266,34,6.09,"0",0.433,6.495,18.4,5.4917,7,329,16.1,383.61,8.67,26.4
-0.1,34,6.09,"0",0.433,6.982,17.7,5.4917,7,329,16.1,390.43,4.86,33.1
-0.05515,33,2.18,"0",0.472,7.236,41.1,4.022,7,222,18.4,393.68,6.93,36.1
-0.05479,33,2.18,"0",0.472,6.616,58.1,3.37,7,222,18.4,393.36,8.93,28.4
-0.07503,33,2.18,"0",0.472,7.42,71.9,3.0992,7,222,18.4,396.9,6.47,33.4
-0.04932,33,2.18,"0",0.472,6.849,70.3,3.1827,7,222,18.4,396.9,7.53,28.2
-0.49298,0,9.9,"0",0.544,6.635,82.5,3.3175,4,304,18.4,396.9,4.54,22.8
-0.3494,0,9.9,"0",0.544,5.972,76.7,3.1025,4,304,18.4,396.24,9.97,20.3
-2.63548,0,9.9,"0",0.544,4.973,37.8,2.5194,4,304,18.4,350.45,12.64,16.1
-0.79041,0,9.9,"0",0.544,6.122,52.8,2.6403,4,304,18.4,396.9,5.98,22.1
-0.26169,0,9.9,"0",0.544,6.023,90.4,2.834,4,304,18.4,396.3,11.72,19.4
-0.26938,0,9.9,"0",0.544,6.266,82.8,3.2628,4,304,18.4,393.39,7.9,21.6
-0.3692,0,9.9,"0",0.544,6.567,87.3,3.6023,4,304,18.4,395.69,9.28,23.8
-0.25356,0,9.9,"0",0.544,5.705,77.7,3.945,4,304,18.4,396.42,11.5,16.2
-0.31827,0,9.9,"0",0.544,5.914,83.2,3.9986,4,304,18.4,390.7,18.33,17.8
-0.24522,0,9.9,"0",0.544,5.782,71.7,4.0317,4,304,18.4,396.9,15.94,19.8
-0.40202,0,9.9,"0",0.544,6.382,67.2,3.5325,4,304,18.4,395.21,10.36,23.1
-0.47547,0,9.9,"0",0.544,6.113,58.8,4.0019,4,304,18.4,396.23,12.73,21
-0.1676,0,7.38,"0",0.493,6.426,52.3,4.5404,5,287,19.6,396.9,7.2,23.8
-0.18159,0,7.38,"0",0.493,6.376,54.3,4.5404,5,287,19.6,396.9,6.87,23.1
-0.35114,0,7.38,"0",0.493,6.041,49.9,4.7211,5,287,19.6,396.9,7.7,20.4
-0.28392,0,7.38,"0",0.493,5.708,74.3,4.7211,5,287,19.6,391.13,11.74,18.5
-0.34109,0,7.38,"0",0.493,6.415,40.1,4.7211,5,287,19.6,396.9,6.12,25
-0.19186,0,7.38,"0",0.493,6.431,14.7,5.4159,5,287,19.6,393.68,5.08,24.6
-0.30347,0,7.38,"0",0.493,6.312,28.9,5.4159,5,287,19.6,396.9,6.15,23
-0.24103,0,7.38,"0",0.493,6.083,43.7,5.4159,5,287,19.6,396.9,12.79,22.2
-0.06617,0,3.24,"0",0.46,5.868,25.8,5.2146,4,430,16.9,382.44,9.97,19.3
-0.06724,0,3.24,"0",0.46,6.333,17.2,5.2146,4,430,16.9,375.21,7.34,22.6
-0.04544,0,3.24,"0",0.46,6.144,32.2,5.8736,4,430,16.9,368.57,9.09,19.8
-0.05023,35,6.06,"0",0.4379,5.706,28.4,6.6407,1,304,16.9,394.02,12.43,17.1
-0.03466,35,6.06,"0",0.4379,6.031,23.3,6.6407,1,304,16.9,362.25,7.83,19.4
-0.05083,0,5.19,"0",0.515,6.316,38.1,6.4584,5,224,20.2,389.71,5.68,22.2
-0.03738,0,5.19,"0",0.515,6.31,38.5,6.4584,5,224,20.2,389.4,6.75,20.7
-0.03961,0,5.19,"0",0.515,6.037,34.5,5.9853,5,224,20.2,396.9,8.01,21.1
-0.03427,0,5.19,"0",0.515,5.869,46.3,5.2311,5,224,20.2,396.9,9.8,19.5
-0.03041,0,5.19,"0",0.515,5.895,59.6,5.615,5,224,20.2,394.81,10.56,18.5
-0.03306,0,5.19,"0",0.515,6.059,37.3,4.8122,5,224,20.2,396.14,8.51,20.6
-0.05497,0,5.19,"0",0.515,5.985,45.4,4.8122,5,224,20.2,396.9,9.74,19
-0.06151,0,5.19,"0",0.515,5.968,58.5,4.8122,5,224,20.2,396.9,9.29,18.7
-0.01301,35,1.52,"0",0.442,7.241,49.3,7.0379,1,284,15.5,394.74,5.49,32.7
-0.02498,0,1.89,"0",0.518,6.54,59.7,6.2669,1,422,15.9,389.96,8.65,16.5
-0.02543,55,3.78,"0",0.484,6.696,56.4,5.7321,5,370,17.6,396.9,7.18,23.9
-0.03049,55,3.78,"0",0.484,6.874,28.1,6.4654,5,370,17.6,387.97,4.61,31.2
-0.03113,0,4.39,"0",0.442,6.014,48.5,8.0136,3,352,18.8,385.64,10.53,17.5
-0.06162,0,4.39,"0",0.442,5.898,52.3,8.0136,3,352,18.8,364.61,12.67,17.2
-0.0187,85,4.15,"0",0.429,6.516,27.7,8.5353,4,351,17.9,392.43,6.36,23.1
-0.01501,80,2.01,"0",0.435,6.635,29.7,8.344,4,280,17,390.94,5.99,24.5
-0.02899,40,1.25,"0",0.429,6.939,34.5,8.7921,1,335,19.7,389.85,5.89,26.6
-0.06211,40,1.25,"0",0.429,6.49,44.4,8.7921,1,335,19.7,396.9,5.98,22.9
-0.0795,60,1.69,"0",0.411,6.579,35.9,10.7103,4,411,18.3,370.78,5.49,24.1
-0.07244,60,1.69,"0",0.411,5.884,18.5,10.7103,4,411,18.3,392.33,7.79,18.6
-0.01709,90,2.02,"0",0.41,6.728,36.1,12.1265,5,187,17,384.46,4.5,30.1
-0.04301,80,1.91,"0",0.413,5.663,21.9,10.5857,4,334,22,382.8,8.05,18.2
-0.10659,80,1.91,"0",0.413,5.936,19.5,10.5857,4,334,22,376.04,5.57,20.6
-8.98296,0,18.1,"1",0.77,6.212,97.4,2.1222,24,666,20.2,377.73,17.6,17.8
-3.8497,0,18.1,"1",0.77,6.395,91,2.5052,24,666,20.2,391.34,13.27,21.7
-5.20177,0,18.1,"1",0.77,6.127,83.4,2.7227,24,666,20.2,395.43,11.48,22.7
-4.26131,0,18.1,"0",0.77,6.112,81.3,2.5091,24,666,20.2,390.74,12.67,22.6
-4.54192,0,18.1,"0",0.77,6.398,88,2.5182,24,666,20.2,374.56,7.79,25
-3.83684,0,18.1,"0",0.77,6.251,91.1,2.2955,24,666,20.2,350.65,14.19,19.9
-3.67822,0,18.1,"0",0.77,5.362,96.2,2.1036,24,666,20.2,380.79,10.19,20.8
-4.22239,0,18.1,"1",0.77,5.803,89,1.9047,24,666,20.2,353.04,14.64,16.8
-3.47428,0,18.1,"1",0.718,8.78,82.9,1.9047,24,666,20.2,354.55,5.29,21.9
-4.55587,0,18.1,"0",0.718,3.561,87.9,1.6132,24,666,20.2,354.7,7.12,27.5
-3.69695,0,18.1,"0",0.718,4.963,91.4,1.7523,24,666,20.2,316.03,14,21.9
-13.5222,0,18.1,"0",0.631,3.863,100,1.5106,24,666,20.2,131.42,13.33,23.1
-4.89822,0,18.1,"0",0.631,4.97,100,1.3325,24,666,20.2,375.52,3.26,50
-5.66998,0,18.1,"1",0.631,6.683,96.8,1.3567,24,666,20.2,375.33,3.73,50
-6.53876,0,18.1,"1",0.631,7.016,97.5,1.2024,24,666,20.2,392.05,2.96,50
-9.2323,0,18.1,"0",0.631,6.216,100,1.1691,24,666,20.2,366.15,9.53,50
-8.26725,0,18.1,"1",0.668,5.875,89.6,1.1296,24,666,20.2,347.88,8.88,50
-11.1081,0,18.1,"0",0.668,4.906,100,1.1742,24,666,20.2,396.9,34.77,13.8
-18.4982,0,18.1,"0",0.668,4.138,100,1.137,24,666,20.2,396.9,37.97,13.8
-19.6091,0,18.1,"0",0.671,7.313,97.9,1.3163,24,666,20.2,396.9,13.44,15
-15.288,0,18.1,"0",0.671,6.649,93.3,1.3449,24,666,20.2,363.02,23.24,13.9
-9.82349,0,18.1,"0",0.671,6.794,98.8,1.358,24,666,20.2,396.9,21.24,13.3
-23.6482,0,18.1,"0",0.671,6.38,96.2,1.3861,24,666,20.2,396.9,23.69,13.1
-17.8667,0,18.1,"0",0.671,6.223,100,1.3861,24,666,20.2,393.74,21.78,10.2
-88.9762,0,18.1,"0",0.671,6.968,91.9,1.4165,24,666,20.2,396.9,17.21,10.4
-15.8744,0,18.1,"0",0.671,6.545,99.1,1.5192,24,666,20.2,396.9,21.08,10.9
-9.18702,0,18.1,"0",0.7,5.536,100,1.5804,24,666,20.2,396.9,23.6,11.3
-7.99248,0,18.1,"0",0.7,5.52,100,1.5331,24,666,20.2,396.9,24.56,12.3
-20.0849,0,18.1,"0",0.7,4.368,91.2,1.4395,24,666,20.2,285.83,30.63,8.8
-16.8118,0,18.1,"0",0.7,5.277,98.1,1.4261,24,666,20.2,396.9,30.81,7.2
-24.3938,0,18.1,"0",0.7,4.652,100,1.4672,24,666,20.2,396.9,28.28,10.5
-22.5971,0,18.1,"0",0.7,5,89.5,1.5184,24,666,20.2,396.9,31.99,7.4
-14.3337,0,18.1,"0",0.7,4.88,100,1.5895,24,666,20.2,372.92,30.62,10.2
-8.15174,0,18.1,"0",0.7,5.39,98.9,1.7281,24,666,20.2,396.9,20.85,11.5
-6.96215,0,18.1,"0",0.7,5.713,97,1.9265,24,666,20.2,394.43,17.11,15.1
-5.29305,0,18.1,"0",0.7,6.051,82.5,2.1678,24,666,20.2,378.38,18.76,23.2
-11.5779,0,18.1,"0",0.7,5.036,97,1.77,24,666,20.2,396.9,25.68,9.7
-8.64476,0,18.1,"0",0.693,6.193,92.6,1.7912,24,666,20.2,396.9,15.17,13.8
-13.3598,0,18.1,"0",0.693,5.887,94.7,1.7821,24,666,20.2,396.9,16.35,12.7
-8.71675,0,18.1,"0",0.693,6.471,98.8,1.7257,24,666,20.2,391.98,17.12,13.1
-5.87205,0,18.1,"0",0.693,6.405,96,1.6768,24,666,20.2,396.9,19.37,12.5
-7.67202,0,18.1,"0",0.693,5.747,98.9,1.6334,24,666,20.2,393.1,19.92,8.5
-38.3518,0,18.1,"0",0.693,5.453,100,1.4896,24,666,20.2,396.9,30.59,5
-9.91655,0,18.1,"0",0.693,5.852,77.8,1.5004,24,666,20.2,338.16,29.97,6.3
-25.0461,0,18.1,"0",0.693,5.987,100,1.5888,24,666,20.2,396.9,26.77,5.6
-14.2362,0,18.1,"0",0.693,6.343,100,1.5741,24,666,20.2,396.9,20.32,7.2
-9.59571,0,18.1,"0",0.693,6.404,100,1.639,24,666,20.2,376.11,20.31,12.1
-24.8017,0,18.1,"0",0.693,5.349,96,1.7028,24,666,20.2,396.9,19.77,8.3
-41.5292,0,18.1,"0",0.693,5.531,85.4,1.6074,24,666,20.2,329.46,27.38,8.5
-67.9208,0,18.1,"0",0.693,5.683,100,1.4254,24,666,20.2,384.97,22.98,5
-20.7162,0,18.1,"0",0.659,4.138,100,1.1781,24,666,20.2,370.22,23.34,11.9
-11.9511,0,18.1,"0",0.659,5.608,100,1.2852,24,666,20.2,332.09,12.13,27.9
-7.40389,0,18.1,"0",0.597,5.617,97.9,1.4547,24,666,20.2,314.64,26.4,17.2
-14.4383,0,18.1,"0",0.597,6.852,100,1.4655,24,666,20.2,179.36,19.78,27.5
-51.1358,0,18.1,"0",0.597,5.757,100,1.413,24,666,20.2,2.6,10.11,15
-14.0507,0,18.1,"0",0.597,6.657,100,1.5275,24,666,20.2,35.05,21.22,17.2
-18.811,0,18.1,"0",0.597,4.628,100,1.5539,24,666,20.2,28.79,34.37,17.9
-28.6558,0,18.1,"0",0.597,5.155,100,1.5894,24,666,20.2,210.97,20.08,16.3
-45.7461,0,18.1,"0",0.693,4.519,100,1.6582,24,666,20.2,88.27,36.98,7
-18.0846,0,18.1,"0",0.679,6.434,100,1.8347,24,666,20.2,27.25,29.05,7.2
-10.8342,0,18.1,"0",0.679,6.782,90.8,1.8195,24,666,20.2,21.57,25.79,7.5
-25.9406,0,18.1,"0",0.679,5.304,89.1,1.6475,24,666,20.2,127.36,26.64,10.4
-73.5341,0,18.1,"0",0.679,5.957,100,1.8026,24,666,20.2,16.45,20.62,8.8
-11.8123,0,18.1,"0",0.718,6.824,76.5,1.794,24,666,20.2,48.45,22.74,8.4
-11.0874,0,18.1,"0",0.718,6.411,100,1.8589,24,666,20.2,318.75,15.02,16.7
-7.02259,0,18.1,"0",0.718,6.006,95.3,1.8746,24,666,20.2,319.98,15.7,14.2
-12.0482,0,18.1,"0",0.614,5.648,87.6,1.9512,24,666,20.2,291.55,14.1,20.8
-7.05042,0,18.1,"0",0.614,6.103,85.1,2.0218,24,666,20.2,2.52,23.29,13.4
-8.79212,0,18.1,"0",0.584,5.565,70.6,2.0635,24,666,20.2,3.65,17.16,11.7
-15.8603,0,18.1,"0",0.679,5.896,95.4,1.9096,24,666,20.2,7.68,24.39,8.3
-12.2472,0,18.1,"0",0.584,5.837,59.7,1.9976,24,666,20.2,24.65,15.69,10.2
-37.6619,0,18.1,"0",0.679,6.202,78.7,1.8629,24,666,20.2,18.82,14.52,10.9
-7.36711,0,18.1,"0",0.679,6.193,78.1,1.9356,24,666,20.2,96.73,21.52,11
-9.33889,0,18.1,"0",0.679,6.38,95.6,1.9682,24,666,20.2,60.72,24.08,9.5
-8.49213,0,18.1,"0",0.584,6.348,86.1,2.0527,24,666,20.2,83.45,17.64,14.5
-10.0623,0,18.1,"0",0.584,6.833,94.3,2.0882,24,666,20.2,81.33,19.69,14.1
-6.44405,0,18.1,"0",0.584,6.425,74.8,2.2004,24,666,20.2,97.95,12.03,16.1
-5.58107,0,18.1,"0",0.713,6.436,87.9,2.3158,24,666,20.2,100.19,16.22,14.3
-13.9134,0,18.1,"0",0.713,6.208,95,2.2222,24,666,20.2,100.63,15.17,11.7
-11.1604,0,18.1,"0",0.74,6.629,94.6,2.1247,24,666,20.2,109.85,23.27,13.4
-14.4208,0,18.1,"0",0.74,6.461,93.3,2.0026,24,666,20.2,27.49,18.05,9.6
-15.1772,0,18.1,"0",0.74,6.152,100,1.9142,24,666,20.2,9.32,26.45,8.7
-13.6781,0,18.1,"0",0.74,5.935,87.9,1.8206,24,666,20.2,68.95,34.02,8.4
-9.39063,0,18.1,"0",0.74,5.627,93.9,1.8172,24,666,20.2,396.9,22.88,12.8
-22.0511,0,18.1,"0",0.74,5.818,92.4,1.8662,24,666,20.2,391.45,22.11,10.5
-9.72418,0,18.1,"0",0.74,6.406,97.2,2.0651,24,666,20.2,385.96,19.52,17.1
-5.66637,0,18.1,"0",0.74,6.219,100,2.0048,24,666,20.2,395.69,16.59,18.4
-9.96654,0,18.1,"0",0.74,6.485,100,1.9784,24,666,20.2,386.73,18.85,15.4
-12.8023,0,18.1,"0",0.74,5.854,96.6,1.8956,24,666,20.2,240.52,23.79,10.8
-10.6718,0,18.1,"0",0.74,6.459,94.8,1.9879,24,666,20.2,43.06,23.98,11.8
-6.28807,0,18.1,"0",0.74,6.341,96.4,2.072,24,666,20.2,318.01,17.79,14.9
-9.92485,0,18.1,"0",0.74,6.251,96.6,2.198,24,666,20.2,388.52,16.44,12.6
-9.32909,0,18.1,"0",0.713,6.185,98.7,2.2616,24,666,20.2,396.9,18.13,14.1
-7.52601,0,18.1,"0",0.713,6.417,98.3,2.185,24,666,20.2,304.21,19.31,13
-6.71772,0,18.1,"0",0.713,6.749,92.6,2.3236,24,666,20.2,0.32,17.44,13.4
-5.44114,0,18.1,"0",0.713,6.655,98.2,2.3552,24,666,20.2,355.29,17.73,15.2
-5.09017,0,18.1,"0",0.713,6.297,91.8,2.3682,24,666,20.2,385.09,17.27,16.1
-8.24809,0,18.1,"0",0.713,7.393,99.3,2.4527,24,666,20.2,375.87,16.74,17.8
-9.51363,0,18.1,"0",0.713,6.728,94.1,2.4961,24,666,20.2,6.68,18.71,14.9
-4.75237,0,18.1,"0",0.713,6.525,86.5,2.4358,24,666,20.2,50.92,18.13,14.1
-4.66883,0,18.1,"0",0.713,5.976,87.9,2.5806,24,666,20.2,10.48,19.01,12.7
-8.20058,0,18.1,"0",0.713,5.936,80.3,2.7792,24,666,20.2,3.5,16.94,13.5
-7.75223,0,18.1,"0",0.713,6.301,83.7,2.7831,24,666,20.2,272.21,16.23,14.9
-6.80117,0,18.1,"0",0.713,6.081,84.4,2.7175,24,666,20.2,396.9,14.7,20
-4.81213,0,18.1,"0",0.713,6.701,90,2.5975,24,666,20.2,255.23,16.42,16.4
-3.69311,0,18.1,"0",0.713,6.376,88.4,2.5671,24,666,20.2,391.43,14.65,17.7
-6.65492,0,18.1,"0",0.713,6.317,83,2.7344,24,666,20.2,396.9,13.99,19.5
-5.82115,0,18.1,"0",0.713,6.513,89.9,2.8016,24,666,20.2,393.82,10.29,20.2
-7.83932,0,18.1,"0",0.655,6.209,65.4,2.9634,24,666,20.2,396.9,13.22,21.4
-3.1636,0,18.1,"0",0.655,5.759,48.2,3.0665,24,666,20.2,334.4,14.13,19.9
-3.77498,0,18.1,"0",0.655,5.952,84.7,2.8715,24,666,20.2,22.01,17.15,19
-4.42228,0,18.1,"0",0.584,6.003,94.5,2.5403,24,666,20.2,331.29,21.32,19.1
-15.5757,0,18.1,"0",0.58,5.926,71,2.9084,24,666,20.2,368.74,18.13,19.1
-13.0751,0,18.1,"0",0.58,5.713,56.7,2.8237,24,666,20.2,396.9,14.76,20.1
-4.34879,0,18.1,"0",0.58,6.167,84,3.0334,24,666,20.2,396.9,16.29,19.9
-4.03841,0,18.1,"0",0.532,6.229,90.7,3.0993,24,666,20.2,395.33,12.87,19.6
-3.56868,0,18.1,"0",0.58,6.437,75,2.8965,24,666,20.2,393.37,14.36,23.2
-4.64689,0,18.1,"0",0.614,6.98,67.6,2.5329,24,666,20.2,374.68,11.66,29.8
-8.05579,0,18.1,"0",0.584,5.427,95.4,2.4298,24,666,20.2,352.58,18.14,13.8
-6.39312,0,18.1,"0",0.584,6.162,97.4,2.206,24,666,20.2,302.76,24.1,13.3
-4.87141,0,18.1,"0",0.614,6.484,93.6,2.3053,24,666,20.2,396.21,18.68,16.7
-15.0234,0,18.1,"0",0.614,5.304,97.3,2.1007,24,666,20.2,349.48,24.91,12
-10.233,0,18.1,"0",0.614,6.185,96.7,2.1705,24,666,20.2,379.7,18.03,14.6
-14.3337,0,18.1,"0",0.614,6.229,88,1.9512,24,666,20.2,383.32,13.11,21.4
-5.82401,0,18.1,"0",0.532,6.242,64.7,3.4242,24,666,20.2,396.9,10.74,23
-5.70818,0,18.1,"0",0.532,6.75,74.9,3.3317,24,666,20.2,393.07,7.74,23.7
-5.73116,0,18.1,"0",0.532,7.061,77,3.4106,24,666,20.2,395.28,7.01,25
-2.81838,0,18.1,"0",0.532,5.762,40.3,4.0983,24,666,20.2,392.92,10.42,21.8
-2.37857,0,18.1,"0",0.583,5.871,41.9,3.724,24,666,20.2,370.73,13.34,20.6
-3.67367,0,18.1,"0",0.583,6.312,51.9,3.9917,24,666,20.2,388.62,10.58,21.2
-5.69175,0,18.1,"0",0.583,6.114,79.8,3.5459,24,666,20.2,392.68,14.98,19.1
-4.83567,0,18.1,"0",0.583,5.905,53.2,3.1523,24,666,20.2,388.22,11.45,20.6
-0.15086,0,27.74,"0",0.609,5.454,92.7,1.8209,4,711,20.1,395.09,18.06,15.2
-0.18337,0,27.74,"0",0.609,5.414,98.3,1.7554,4,711,20.1,344.05,23.97,7
-0.20746,0,27.74,"0",0.609,5.093,98,1.8226,4,711,20.1,318.43,29.68,8.1
-0.10574,0,27.74,"0",0.609,5.983,98.8,1.8681,4,711,20.1,390.11,18.07,13.6
-0.11132,0,27.74,"0",0.609,5.983,83.5,2.1099,4,711,20.1,396.9,13.35,20.1
-0.17331,0,9.69,"0",0.585,5.707,54,2.3817,6,391,19.2,396.9,12.01,21.8
-0.27957,0,9.69,"0",0.585,5.926,42.6,2.3817,6,391,19.2,396.9,13.59,24.5
-0.17899,0,9.69,"0",0.585,5.67,28.8,2.7986,6,391,19.2,393.29,17.6,23.1
-0.2896,0,9.69,"0",0.585,5.39,72.9,2.7986,6,391,19.2,396.9,21.14,19.7
-0.26838,0,9.69,"0",0.585,5.794,70.6,2.8927,6,391,19.2,396.9,14.1,18.3
-0.23912,0,9.69,"0",0.585,6.019,65.3,2.4091,6,391,19.2,396.9,12.92,21.2
-0.17783,0,9.69,"0",0.585,5.569,73.5,2.3999,6,391,19.2,395.77,15.1,17.5
-0.22438,0,9.69,"0",0.585,6.027,79.7,2.4982,6,391,19.2,396.9,14.33,16.8
-0.06263,0,11.93,"0",0.573,6.593,69.1,2.4786,1,273,21,391.99,9.67,22.4
-0.04527,0,11.93,"0",0.573,6.12,76.7,2.2875,1,273,21,396.9,9.08,20.6
-0.06076,0,11.93,"0",0.573,6.976,91,2.1675,1,273,21,396.9,5.64,23.9
-0.10959,0,11.93,"0",0.573,6.794,89.3,2.3889,1,273,21,393.45,6.48,22
-0.04741,0,11.93,"0",0.573,6.03,80.8,2.505,1,273,21,396.9,7.88,11.9
diff --git a/GTSRB/data/dataset.tar.gz.REMOVED.git-id b/GTSRB/data/dataset.tar.gz.REMOVED.git-id
deleted file mode 100644
index bbd0f25..0000000
--- a/GTSRB/data/dataset.tar.gz.REMOVED.git-id
+++ /dev/null
@@ -1 +0,0 @@
-7bb54a6fdefd74be4d659322f77a90cbba9757ec
\ No newline at end of file
-- 
GitLab