diff --git a/BHPD/01-DNN-Regression.ipynb b/BHPD/01-DNN-Regression.ipynb index 1fbeea66baff9d2a58abaf6609ac8d33ba29aecf..57cca597a6c388e04c536e9ae81689f87a31e840 100644 --- a/BHPD/01-DNN-Regression.ipynb +++ b/BHPD/01-DNN-Regression.ipynb @@ -7,7 +7,7 @@ "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", "\n", - "# <!-- TITLE --> [REG1] - Regression with a Dense Network (DNN)\n", + "# <!-- TITLE --> [BHP1] - Regression with a Dense Network (DNN)\n", "<!-- DESC --> A Simple regression with a Dense Neural Network (DNN) - BHPD dataset\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", diff --git a/BHPD/02-DNN-Regression-Premium.ipynb b/BHPD/02-DNN-Regression-Premium.ipynb index 350a322bc68135e8dd778e2089d52ff2e38bd9dc..98e58005e85db8113603bde2bcb8c31e6715dce3 100644 --- a/BHPD/02-DNN-Regression-Premium.ipynb +++ b/BHPD/02-DNN-Regression-Premium.ipynb @@ -6,7 +6,7 @@ "source": [ "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> [REG2] - Regression with a Dense Network (DNN) - Advanced code\n", + "# <!-- TITLE --> [BHP2] - Regression with a Dense Network (DNN) - Advanced code\n", " <!-- DESC --> More advanced example of DNN network code - BHPD dataset\n", " <!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", diff --git a/GTSRB/04-Data-augmentation.ipynb b/GTSRB/04-Data-augmentation.ipynb index 8779785fe265a41666fde772ccedf5d159a6ae63..31227ea323022b30f98f42660ea1c895c6b55134 100644 --- a/GTSRB/04-Data-augmentation.ipynb +++ b/GTSRB/04-Data-augmentation.ipynb @@ -4,9 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", + "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> CNN with GTSRB dataset - Data augmentation \n", + "# <!-- TITLE --> [GTS4] - CNN with GTSRB dataset - Data augmentation \n", "<!-- DESC --> Episode 4: Improving the results with data augmentation\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", @@ -399,7 +399,7 @@ "metadata": {}, "source": [ "---\n", - "" + "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" ] } ], diff --git a/GTSRB/05-Full-convolutions.ipynb b/GTSRB/05-Full-convolutions.ipynb index c1d833a0304086a330b369968767a83c0901cb52..3e30a98e72aa94f6e6868f527f39f3b7a6ace8a8 100644 --- a/GTSRB/05-Full-convolutions.ipynb +++ b/GTSRB/05-Full-convolutions.ipynb @@ -4,9 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", + "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> CNN with GTSRB dataset - Full convolutions \n", + "# <!-- TITLE --> [GTS5] - CNN with GTSRB dataset - Full convolutions \n", "<!-- DESC --> Episode 5: A lot of models, a lot of datasets and a lot of results.\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", @@ -406,7 +406,7 @@ "metadata": {}, "source": [ "---\n", - "" + "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" ] } ], diff --git a/GTSRB/06-Full-convolutions-batch.ipynb b/GTSRB/06-Full-convolutions-batch.ipynb index d1204e310ffb6dbe3b7f5d66160d85304dd3fc0b..ec2f4807f6f89f23575752c716077e1281ae5da9 100644 --- a/GTSRB/06-Full-convolutions-batch.ipynb +++ b/GTSRB/06-Full-convolutions-batch.ipynb @@ -4,9 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", + "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> CNN with GTSRB dataset - Full convolutions as a batch\n", + "# <!-- TITLE --> [GTS6] - CNN with GTSRB dataset - Full convolutions as a batch\n", "<!-- DESC --> Episode 6 : Run Full convolution notebook as a batch\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", @@ -195,7 +195,7 @@ "metadata": {}, "source": [ "---\n", - "" + "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" ] } ], diff --git a/GTSRB/05.2-Full-convolutions-reports.ipynb b/GTSRB/07-Full-convolutions-reports.ipynb similarity index 98% rename from GTSRB/05.2-Full-convolutions-reports.ipynb rename to GTSRB/07-Full-convolutions-reports.ipynb index 877b5b1631b3c872a51c6dc9d37226226e4327bf..d5eb2d904e686d74af3b4cd1f3a81a68389b62e0 100644 --- a/GTSRB/05.2-Full-convolutions-reports.ipynb +++ b/GTSRB/07-Full-convolutions-reports.ipynb @@ -4,17 +4,23 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "German Traffic Sign Recognition Benchmark (GTSRB)\n", - "=================================================\n", - "---\n", - "Introduction au Deep Learning (IDLE) - S. Arias, E. Maldonado, JL. Parouty - CNRS/SARI/DEVLOG - 2020 \n", + "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", + "\n", + "# <!-- TITLE --> [GTS7] - Full convolutions Report\n", + "<!-- DESC --> Displaying the reports of the different jobs\n", + "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", + "\n", + "## Objectives :\n", + " - Compare the results of different dataset-model combinations\n", + "\n", + "Les rapports (format json) sont générés par les jobs \"Full convolution\" [GTS5][GTS6]\n", "\n", - "## Episode 5.2 : Full Convolutions Reports\n", "\n", - "Ou main steps :\n", - " - Show reports\n", + "## What we're going to do :\n", "\n", - "## 1/ Import" + " - Read json files and display results\n", + "\n", + "## 1/ Python import" ] }, { @@ -640,18 +646,12 @@ ] }, { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "---\n", + "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" + ] } ], "metadata": { @@ -670,7 +670,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.5" + "version": "3.7.6" } }, "nbformat": 4, diff --git a/GTSRB/99-Scripts-Tensorboard.ipynb b/GTSRB/99-Scripts-Tensorboard.ipynb index fbee18e458fbe3042bdc6b876858d226a7bf45e0..2bcec6018804fbaea31fbf92cbb5ec09c649e212 100644 --- a/GTSRB/99-Scripts-Tensorboard.ipynb +++ b/GTSRB/99-Scripts-Tensorboard.ipynb @@ -4,9 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", + "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> Tensorboard with/from Jupyter \n", + "# <!-- TITLE --> [TSB1] - Tensorboard with/from Jupyter \n", "<!-- DESC --> 4 ways to use Tensorboard from the Jupyter environment\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", @@ -179,7 +179,7 @@ "metadata": {}, "source": [ "---\n", - "" + "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" ] } ], diff --git a/IMDB/01-Embedding-Keras.ipynb b/IMDB/01-Embedding-Keras.ipynb index ad3c1f594795e2012815b0e9b0a240fe577910a1..8c25562dd396972976f4f3a235b2170ea29f1b01 100644 --- a/IMDB/01-Embedding-Keras.ipynb +++ b/IMDB/01-Embedding-Keras.ipynb @@ -4,9 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", + "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> Text embedding with IMDB\n", + "# <!-- TITLE --> [IMDB1] - Text embedding with IMDB\n", "<!-- DESC --> A very classical example of word embedding for text classification (sentiment analysis)\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", @@ -750,7 +750,7 @@ "metadata": {}, "source": [ "---\n", - "" + "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" ] } ], diff --git a/IMDB/02-Prediction.ipynb b/IMDB/02-Prediction.ipynb index f3eafda0f97e85fa3f63de3f76dc4833d2fe5cb6..f9474b9fd7929b1897389111a29468d4c53517cd 100644 --- a/IMDB/02-Prediction.ipynb +++ b/IMDB/02-Prediction.ipynb @@ -4,9 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", + "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> Text embedding with IMDB - Reloaded\n", + "# <!-- TITLE --> [IMDB2] - Text embedding with IMDB - Reloaded\n", "<!-- DESC --> Example of reusing a previously saved model\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", @@ -294,7 +294,7 @@ "metadata": {}, "source": [ "---\n", - "" + "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" ] } ], diff --git a/IMDB/03-LSTM-Keras.ipynb b/IMDB/03-LSTM-Keras.ipynb index db456f1a75bc1f9371513f619d82e6535d5ab184..869ffdca5cb34e7341b52c59eaf3ed901b38b2c5 100644 --- a/IMDB/03-LSTM-Keras.ipynb +++ b/IMDB/03-LSTM-Keras.ipynb @@ -4,9 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", + "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> Text embedding/LSTM model with IMDB\n", + "# <!-- TITLE --> [IMDB3] - Text embedding/LSTM model with IMDB\n", "<!-- DESC --> Still the same problem, but with a network combining embedding and LSTM\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", @@ -416,7 +416,7 @@ "metadata": {}, "source": [ "---\n", - "" + "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" ] } ], diff --git a/LinearReg/01-Linear-Regression.ipynb b/LinearReg/01-Linear-Regression.ipynb index 73e0abb867a4a8369c65aa6d93d850f0b0f5aa41..1c3d16223b9451cc181ac2e3c434a2ea96b2547b 100644 --- a/LinearReg/01-Linear-Regression.ipynb +++ b/LinearReg/01-Linear-Regression.ipynb @@ -4,9 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", + "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> Linear regression with direct resolution\n", + "# <!-- TITLE --> [LINR1] - Linear regression with direct resolution\n", "<!-- DESC --> Direct determination of linear regression \n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", @@ -254,7 +254,7 @@ "metadata": {}, "source": [ "---\n", - "" + "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" ] } ], diff --git a/LinearReg/02-Gradient-descent.ipynb b/LinearReg/02-Gradient-descent.ipynb index 00f722e6d04a0aefeda4b55b0c0dcd6140b3aa16..cae799eb9d37919e73f8519239fb504dba4377a6 100644 --- a/LinearReg/02-Gradient-descent.ipynb +++ b/LinearReg/02-Gradient-descent.ipynb @@ -4,9 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", + "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> Linear regression with gradient descent\n", + "# <!-- TITLE --> [GRAD1] - Linear regression with gradient descent\n", "<!-- DESC --> An example of gradient descent in the simple case of a linear regression.\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", @@ -545,7 +545,7 @@ "metadata": {}, "source": [ "---\n", - "" + "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" ] } ], diff --git a/LinearReg/03-Polynomial-Regression.ipynb b/LinearReg/03-Polynomial-Regression.ipynb index bdb2c5bed1d2753c8b20a91762fc51342c4c986d..474d2b80cdd84d68dce3df8a49311f8e25908c77 100644 --- a/LinearReg/03-Polynomial-Regression.ipynb +++ b/LinearReg/03-Polynomial-Regression.ipynb @@ -4,9 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", + "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> Complexity Syndrome\n", + "# <!-- TITLE --> [FIT1] - Complexity Syndrome\n", "<!-- DESC --> Illustration of the problem of complexity with the polynomial regression\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", @@ -409,7 +409,7 @@ "metadata": {}, "source": [ "---\n", - "" + "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" ] } ], diff --git a/LinearReg/04-Logistic-Regression.ipynb b/LinearReg/04-Logistic-Regression.ipynb index 2e3e74ca94f0b004e23449d029b4f06b15e639e8..0e9a293a184c87c11df835bde13fff1ffd337a20 100644 --- a/LinearReg/04-Logistic-Regression.ipynb +++ b/LinearReg/04-Logistic-Regression.ipynb @@ -4,9 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", + "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# <!-- TITLE --> Logistic regression, in pure Tensorflow\n", + "# <!-- TITLE --> [LOGR1] - Logistic regression, in pure Tensorflow\n", "<!-- DESC --> Logistic Regression with Mini-Batch Gradient Descent using pure TensorFlow. \n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", @@ -821,7 +821,7 @@ "metadata": {}, "source": [ "---\n", - "" + "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" ] } ], diff --git a/MNIST/01-DNN-MNIST.ipynb b/MNIST/01-DNN-MNIST.ipynb index 7fc8612ac4b7c15407e74e2620889522120aa36a..5fc6d017e5b2a9e3546d3a479e05dedcab1bfe76 100644 --- a/MNIST/01-DNN-MNIST.ipynb +++ b/MNIST/01-DNN-MNIST.ipynb @@ -4,13 +4,22 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Deep Neural Network (DNN) - MNIST dataset\n", - "=========================================\n", - "---\n", - "Introduction au Deep Learning (IDLE) - S. Arias, E. Maldonado, JL. Parouty - CNRS/SARI/DEVLOG - 2020 \n", + "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", + "\n", + "# <!-- TITLE --> [MNIST1] - Simple classification with DNN\n", + "<!-- DESC --> Example of classification with a fully connected neural network\n", + "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", + "\n", + "## Objectives :\n", + " - Understanding the principle of a classifier DNN network \n", + " - Implementation with Keras \n", + "\n", + "\n", + "The [MNIST dataset](http://yann.lecun.com/exdb/mnist/) (Modified National Institute of Standards and Technology) is a must for Deep Learning. \n", + "It consists of 60,000 small images of handwritten numbers for learning and 10,000 for testing.\n", + "\n", "\n", - "## A very simple example of **classification** :\n", - "...but a must-have example, a classic !\n", + "## What we're going to do :\n", "\n", " - Retrieve data\n", " - Preparing the data\n", @@ -961,11 +970,12 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "---\n", + "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" + ] } ], "metadata": { @@ -984,7 +994,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.5" + "version": "3.7.6" } }, "nbformat": 4, diff --git a/Prerequisites/Numpy.ipynb b/Prerequisites/Numpy.ipynb index 9dc65aba45b314b0ccb2113d81c05195255342b6..d6279c9d8539e9b1d679ac939570e0b78cfe862c 100644 --- a/Prerequisites/Numpy.ipynb +++ b/Prerequisites/Numpy.ipynb @@ -8,10 +8,16 @@ } }, "source": [ - "\n", + "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", - "# A short introduction to Numpy\n", - "Strongly inspired by the UGA Python Introduction Course \n", + "# <!-- TITLE --> [NP1] - A short introduction to Numpy\n", + "<!-- DESC --> Numpy is an essential tool for the Scientific Python.\n", + "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", + "\n", + "## Objectives :\n", + " - Comprendre les grands principes de Numpy et son potentiel\n", + "\n", + "Note : This notebook is strongly inspired by the UGA Python Introduction Course \n", "See : **https://gricad-gitlab.univ-grenoble-alpes.fr/python-uga/py-training-2017**" ] }, @@ -836,7 +842,7 @@ "metadata": {}, "source": [ "---\n", - "" + "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" ] } ], diff --git a/README.md b/README.md index e2364c96ecdfa07c0075fb988a894bc30ad351b5..ff43f757ccc491747c1c5893388b0e0add87b67d 100644 --- a/README.md +++ b/README.md @@ -29,17 +29,21 @@ Useful information is also available in the [wiki](https://gricad-gitlab.univ-gr <!-- DO NOT REMOVE THIS TAG !!! --> <!-- INDEX --> <!-- INDEX_BEGIN --> -1. [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb)<br> +1. [[NP1] - A short introduction to Numpy](Prerequisites/Numpy.ipynb)<br> + Numpy is an essential tool for the Scientific Python. +1. [[LINR1] - Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb)<br> Direct determination of linear regression -1. [Linear regression with gradient descent](LinearReg/02-Gradient-descent.ipynb)<br> +1. [[GRAD1] - Linear regression with gradient descent](LinearReg/02-Gradient-descent.ipynb)<br> An example of gradient descent in the simple case of a linear regression. -1. [Complexity Syndrome](LinearReg/03-Polynomial-Regression.ipynb)<br> +1. [[FIT1] - Complexity Syndrome](LinearReg/03-Polynomial-Regression.ipynb)<br> Illustration of the problem of complexity with the polynomial regression -1. [Logistic regression, in pure Tensorflow](LinearReg/04-Logistic-Regression.ipynb)<br> +1. [[LOGR1] - Logistic regression, in pure Tensorflow](LinearReg/04-Logistic-Regression.ipynb)<br> Logistic Regression with Mini-Batch Gradient Descent using pure TensorFlow. -1. [[REG1] - Regression with a Dense Network (DNN)](BHPD/01-DNN-Regression.ipynb)<br> +1. [[MNIST1] - Simple classification with DNN](MNIST/01-DNN-MNIST.ipynb)<br> + Example of classification with a fully connected neural network +1. [[BHP1] - Regression with a Dense Network (DNN)](BHPD/01-DNN-Regression.ipynb)<br> A Simple regression with a Dense Neural Network (DNN) - BHPD dataset -1. [[REG2] - Regression with a Dense Network (DNN) - Advanced code](BHPD/02-DNN-Regression-Premium.ipynb)<br> +1. [[BHP2] - Regression with a Dense Network (DNN) - Advanced code](BHPD/02-DNN-Regression-Premium.ipynb)<br> More advanced example of DNN network code - BHPD dataset 1. [[GTS1] - CNN with GTSRB dataset - Data analysis and preparation](GTSRB/01-Preparation-of-data.ipynb)<br> Episode 1: Data analysis and creation of a usable dataset @@ -47,19 +51,21 @@ Useful information is also available in the [wiki](https://gricad-gitlab.univ-gr Episode 2 : First convolutions and first results 1. [[GTS3] - CNN with GTSRB dataset - Monitoring ](GTSRB/03-Tracking-and-visualizing.ipynb)<br> Episode 3: Monitoring and analysing training, managing checkpoints -1. [CNN with GTSRB dataset - Data augmentation ](GTSRB/04-Data-augmentation.ipynb)<br> +1. [[GTS4] - CNN with GTSRB dataset - Data augmentation ](GTSRB/04-Data-augmentation.ipynb)<br> Episode 4: Improving the results with data augmentation -1. [CNN with GTSRB dataset - Full convolutions ](GTSRB/05-Full-convolutions.ipynb)<br> +1. [[GTS5] - CNN with GTSRB dataset - Full convolutions ](GTSRB/05-Full-convolutions.ipynb)<br> Episode 5: A lot of models, a lot of datasets and a lot of results. -1. [CNN with GTSRB dataset - Full convolutions as a batch](GTSRB/06-Full-convolutions-batch.ipynb)<br> +1. [[GTS6] - CNN with GTSRB dataset - Full convolutions as a batch](GTSRB/06-Full-convolutions-batch.ipynb)<br> Episode 6 : Run Full convolution notebook as a batch -1. [Tensorboard with/from Jupyter ](GTSRB/99-Scripts-Tensorboard.ipynb)<br> +1. [[GTS7] - Full convolutions Report](GTSRB/07-Full-convolutions-reports.ipynb)<br> + Displaying the reports of the different jobs +1. [[TSB1] - Tensorboard with/from Jupyter ](GTSRB/99-Scripts-Tensorboard.ipynb)<br> 4 ways to use Tensorboard from the Jupyter environment -1. [Text embedding with IMDB](IMDB/01-Embedding-Keras.ipynb)<br> +1. [[IMDB1] - Text embedding with IMDB](IMDB/01-Embedding-Keras.ipynb)<br> A very classical example of word embedding for text classification (sentiment analysis) -1. [Text embedding with IMDB - Reloaded](IMDB/02-Prediction.ipynb)<br> +1. [[IMDB2] - Text embedding with IMDB - Reloaded](IMDB/02-Prediction.ipynb)<br> Example of reusing a previously saved model -1. [Text embedding/LSTM model with IMDB](IMDB/03-LSTM-Keras.ipynb)<br> +1. [[IMDB3] - Text embedding/LSTM model with IMDB](IMDB/03-LSTM-Keras.ipynb)<br> Still the same problem, but with a network combining embedding and LSTM <!-- INDEX_END --> diff --git a/README.md.old b/README.md.old new file mode 100644 index 0000000000000000000000000000000000000000..e2364c96ecdfa07c0075fb988a894bc30ad351b5 --- /dev/null +++ b/README.md.old @@ -0,0 +1,81 @@ +[<img width="600px" src="fidle/img/00-Fidle-titre-01.svg"></img>](#) + +## A propos + +This repository contains all the documents and links of the **Fidle Training**. + +The objectives of this training, co-organized by the Formation Permanente CNRS and the SARI and DEVLOG networks, are : + - Understanding the **bases of deep learning** neural networks (Deep Learning) + - Develop a **first experience** through simple and representative examples + - Understand the different types of networks, their **architectures** and their **use cases**. + - Understanding **Tensorflow/Keras and Jupyter lab** technologies on the GPU + - Apprehend the **academic computing environments** Tier-2 (meso) and/or Tier-1 (national) + +## Course materials +**[<img width="50px" src="fidle/img/00-Fidle-pdf.svg"></img> +Get the course slides](https://cloud.univ-grenoble-alpes.fr/index.php/s/z7XZA36xKkMcaTS)** + + + +<!--  --> +Useful information is also available in the [wiki](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home) + + +## Jupyter notebooks + +[](https://mybinder.org/v2/git/https%3A%2F%2Fgricad-gitlab.univ-grenoble-alpes.fr%2Ftalks%2Fdeeplearning.git/master?urlpath=lab/tree/index.ipynb) + + +<!-- DO NOT REMOVE THIS TAG !!! --> +<!-- INDEX --> +<!-- INDEX_BEGIN --> +1. [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb)<br> + Direct determination of linear regression +1. [Linear regression with gradient descent](LinearReg/02-Gradient-descent.ipynb)<br> + An example of gradient descent in the simple case of a linear regression. +1. [Complexity Syndrome](LinearReg/03-Polynomial-Regression.ipynb)<br> + Illustration of the problem of complexity with the polynomial regression +1. [Logistic regression, in pure Tensorflow](LinearReg/04-Logistic-Regression.ipynb)<br> + Logistic Regression with Mini-Batch Gradient Descent using pure TensorFlow. +1. [[REG1] - Regression with a Dense Network (DNN)](BHPD/01-DNN-Regression.ipynb)<br> + A Simple regression with a Dense Neural Network (DNN) - BHPD dataset +1. [[REG2] - Regression with a Dense Network (DNN) - Advanced code](BHPD/02-DNN-Regression-Premium.ipynb)<br> + More advanced example of DNN network code - BHPD dataset +1. [[GTS1] - CNN with GTSRB dataset - Data analysis and preparation](GTSRB/01-Preparation-of-data.ipynb)<br> + Episode 1: Data analysis and creation of a usable dataset +1. [[GTS2] - CNN with GTSRB dataset - First convolutions](GTSRB/02-First-convolutions.ipynb)<br> + Episode 2 : First convolutions and first results +1. [[GTS3] - CNN with GTSRB dataset - Monitoring ](GTSRB/03-Tracking-and-visualizing.ipynb)<br> + Episode 3: Monitoring and analysing training, managing checkpoints +1. [CNN with GTSRB dataset - Data augmentation ](GTSRB/04-Data-augmentation.ipynb)<br> + Episode 4: Improving the results with data augmentation +1. [CNN with GTSRB dataset - Full convolutions ](GTSRB/05-Full-convolutions.ipynb)<br> + Episode 5: A lot of models, a lot of datasets and a lot of results. +1. [CNN with GTSRB dataset - Full convolutions as a batch](GTSRB/06-Full-convolutions-batch.ipynb)<br> + Episode 6 : Run Full convolution notebook as a batch +1. [Tensorboard with/from Jupyter ](GTSRB/99-Scripts-Tensorboard.ipynb)<br> + 4 ways to use Tensorboard from the Jupyter environment +1. [Text embedding with IMDB](IMDB/01-Embedding-Keras.ipynb)<br> + A very classical example of word embedding for text classification (sentiment analysis) +1. [Text embedding with IMDB - Reloaded](IMDB/02-Prediction.ipynb)<br> + Example of reusing a previously saved model +1. [Text embedding/LSTM model with IMDB](IMDB/03-LSTM-Keras.ipynb)<br> + Still the same problem, but with a network combining embedding and LSTM +<!-- INDEX_END --> + + + +## Installation + +A procedure for **configuring** and **starting Jupyter** is available in the **[Wiki](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/howto-jupyter)**. + +## Licence + +\[en\] Attribution - NonCommercial - ShareAlike 4.0 International (CC BY-NC-SA 4.0) +\[Fr\] Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International +See [License](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). +See [Disclaimer](https://creativecommons.org/licenses/by-nc-sa/4.0/#). + + +---- +[<img width="80px" src="fidle/img/00-Fidle-logo-01.svg"></img>](#) \ No newline at end of file diff --git a/fidle/Charte.ipynb b/fidle/Charte.ipynb index c69dff70c5824f044d8ff664b611df24ad79d65c..fbd6f0fd67366e60fc095edf625720b10cca80c5 100644 --- a/fidle/Charte.ipynb +++ b/fidle/Charte.ipynb @@ -30,6 +30,13 @@ "---\n", "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": {