From 29406c698dfe8f68a32f303f147a23524e2862b0 Mon Sep 17 00:00:00 2001
From: Jean-Luc Parouty <Jean-Luc.Parouty@grenoble-inp.fr>
Date: Wed, 24 Feb 2021 08:56:34 +0100
Subject: [PATCH] Add one-hot encoding notebook

---
 IMDB/01-One-hot-encoding.ipynb                | 617 ++++++++++++++++++
 ...g-Keras.ipynb => 02-Embedding-Keras.ipynb} |   0
 ...ipynb => 02-Embedding-Keras==done==.ipynb} |   0
 ...2-Prediction.ipynb => 03-Prediction.ipynb} |   0
 ...ne==.ipynb => 03-Prediction==done==.ipynb} |   0
 ...3-LSTM-Keras.ipynb => 04-LSTM-Keras.ipynb} |   0
 ...ne==.ipynb => 04-LSTM-Keras==done==.ipynb} |   0
 7 files changed, 617 insertions(+)
 create mode 100644 IMDB/01-One-hot-encoding.ipynb
 rename IMDB/{01-Embedding-Keras.ipynb => 02-Embedding-Keras.ipynb} (100%)
 rename IMDB/{01-Embedding-Keras==done==.ipynb => 02-Embedding-Keras==done==.ipynb} (100%)
 rename IMDB/{02-Prediction.ipynb => 03-Prediction.ipynb} (100%)
 rename IMDB/{02-Prediction==done==.ipynb => 03-Prediction==done==.ipynb} (100%)
 rename IMDB/{03-LSTM-Keras.ipynb => 04-LSTM-Keras.ipynb} (100%)
 rename IMDB/{03-LSTM-Keras==done==.ipynb => 04-LSTM-Keras==done==.ipynb} (100%)

diff --git a/IMDB/01-One-hot-encoding.ipynb b/IMDB/01-One-hot-encoding.ipynb
new file mode 100644
index 0000000..71e1d9b
--- /dev/null
+++ b/IMDB/01-One-hot-encoding.ipynb
@@ -0,0 +1,617 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
+    "\n",
+    "# <!-- TITLE --> [IMDB1] - Sentiment analysis with hot-one encoding\n",
+    "<!-- DESC --> A basic example of sentiment analysis with sparse encoding, using a dataset from Internet Movie Database (IMDB)\n",
+    "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
+    "\n",
+    "## Objectives :\n",
+    " - The objective is to guess whether film reviews are **positive or negative** based on the analysis of the text. \n",
+    " - Understand the management of **textual data** and **sentiment analysis**\n",
+    "\n",
+    "Original dataset can be find **[there](http://ai.stanford.edu/~amaas/data/sentiment/)**  \n",
+    "Note that [IMDb.com](https://imdb.com) offers several easy-to-use [datasets](https://www.imdb.com/interfaces/)  \n",
+    "For simplicity's sake, we'll use the dataset directly [embedded in Keras](https://www.tensorflow.org/api_docs/python/tf/keras/datasets)\n",
+    "\n",
+    "## What we're going to do :\n",
+    "\n",
+    " - Retrieve data\n",
+    " - Preparing the data\n",
+    " - Build a model\n",
+    " - Train the model\n",
+    " - Evaluate the result\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Step 1 - Import and init\n",
+    "### 1.1 - Python stuff"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "\n",
+    "import tensorflow as tf\n",
+    "import tensorflow.keras as keras\n",
+    "import tensorflow.keras.datasets.imdb as imdb\n",
+    "\n",
+    "import matplotlib.pyplot as plt\n",
+    "import matplotlib\n",
+    "\n",
+    "import pandas as pd\n",
+    "\n",
+    "import os,sys,h5py,json\n",
+    "from importlib import reload\n",
+    "\n",
+    "sys.path.append('..')\n",
+    "import fidle.pwk as pwk\n",
+    "\n",
+    "run_dir = './run/IMDB1'\n",
+    "datasets_dir = pwk.init('IMDB1', run_dir)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### 1.2 - Parameters\n",
+    "The words in the vocabulary are classified from the most frequent to the rarest.  \n",
+    "`vocab_size` is the number of words we will remember in our vocabulary (the other words will be considered as unknown).  \n",
+    "`hide_most_frequently` is the number of ignored words, among the most common ones  "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "vocab_size           = 10000\n",
+    "hide_most_frequently = 0\n",
+    "\n",
+    "epochs     = 10\n",
+    "batch_size = 512"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Override parameters (batch mode) - Just forget this cell"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "pwk.override('vocab_size', 'hide_most_frequently', 'batch_size', 'epochs')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Step 2 - Understanding hot-one encoding\n",
+    "#### We have a **sentence** and a **dictionary** :"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "sentence = \"I've never seen a movie like this before\"\n",
+    "\n",
+    "dictionary  = {\"a\":0, \"before\":1, \"fantastic\":2, \"i've\":3, \"is\":4, \"like\":5, \"movie\":6, \"never\":7, \"seen\":8, \"this\":9}"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### We encode our sentence as a **numerical vector** :"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "sentence_words = sentence.lower().split()\n",
+    "\n",
+    "sentence_vect  = [ dictionary[w] for w in sentence_words ]\n",
+    "\n",
+    "print('Words sentence are         : ', sentence_words)\n",
+    "print('Our vectorized sentence is : ', sentence_vect)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Next, we **one-hot** encode our vectorized sentence as a tensor :"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# ---- We get a (sentence length x vector size) matrix of zeros\n",
+    "#\n",
+    "onehot = np.zeros( (10,8) )\n",
+    "\n",
+    "# ---- We set some 1 for each word\n",
+    "#\n",
+    "for i,w in enumerate(sentence_vect):\n",
+    "    onehot[w,i]=1\n",
+    "\n",
+    "# --- Show it\n",
+    "#\n",
+    "print('In a basic way :\\n\\n', onehot, '\\n\\nWith a pandas wiew :\\n')\n",
+    "data={ f'{sentence_words[i]:.^10}':onehot[:,i] for i,w in enumerate(sentence_vect) }\n",
+    "df=pd.DataFrame(data)\n",
+    "df.index=dictionary.keys()\n",
+    "df.style.set_precision(0).highlight_max(axis=0).set_properties(**{'text-align': 'center'})"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Step 2 - Retrieve data\n",
+    "\n",
+    "IMDb dataset can bet get directly from Keras - see [documentation](https://www.tensorflow.org/api_docs/python/tf/keras/datasets)  \n",
+    "Note : Due to their nature, textual data can be somewhat complex.\n",
+    "\n",
+    "### 2.1 - Data structure :  \n",
+    "The dataset is composed of 2 parts: \n",
+    "\n",
+    " - **reviews**, this will be our **x**\n",
+    " - **opinions** (positive/negative), this will be our **y**\n",
+    "\n",
+    "There are also a **dictionary**, because words are indexed in reviews\n",
+    "\n",
+    "```\n",
+    "<dataset> = (<reviews>, <opinions>)\n",
+    "\n",
+    "with :  <reviews>  = [ <review1>, <review2>, ... ]\n",
+    "        <opinions> = [ <rate1>,   <rate2>,   ... ]   where <ratei>   = integer\n",
+    "\n",
+    "where : <reviewi> = [ <w1>, <w2>, ...]    <wi> are the index (int) of the word in the dictionary\n",
+    "        <ratei>   = int                   0 for negative opinion, 1 for positive\n",
+    "\n",
+    "\n",
+    "<dictionary> = [ <word1>:<w1>, <word2>:<w2>, ... ]\n",
+    "\n",
+    "with :  <wordi>   = word\n",
+    "        <wi>      = int\n",
+    "\n",
+    "```"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### 2.2 - Load dataset\n",
+    "For simplicity, we will use a pre-formatted dataset - See [documentation](https://www.tensorflow.org/api_docs/python/tf/keras/datasets/imdb/load_data)  \n",
+    "However, Keras offers some usefull tools for formatting textual data - See [documentation](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text)  \n",
+    "\n",
+    "By default : \n",
+    " - Start of a sequence will be marked with : 1\n",
+    " - Out of vocabulary word will be : 2\n",
+    " - First index will be : 3"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# ----- Retrieve x,y\n",
+    "#\n",
+    "(x_train, y_train), (x_test, y_test) = imdb.load_data( num_words=vocab_size, skip_top=hide_most_frequently)\n",
+    "\n",
+    "y_train = np.asarray(y_train).astype('float32')\n",
+    "y_test  = np.asarray(y_test ).astype('float32')\n",
+    "\n",
+    "# ---- About\n",
+    "#\n",
+    "print(\"Max(x_train,x_test)  : \", pwk.rmax([x_train,x_test]) )\n",
+    "print(\"Min(x_train,x_test)  : \", pwk.rmin([x_train,x_test]) )\n",
+    "print(\"x_train : {}  y_train : {}\".format(x_train.shape, y_train.shape))\n",
+    "print(\"x_test  : {}  y_test  : {}\".format(x_test.shape,  y_test.shape))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Step 3 - About our dataset\n",
+    "When we loaded the dataset, we asked for using \\<start\\> as 1, \\<unknown word\\> as 2  \n",
+    "So, we shifted the dataset by 3 with the parameter index_from=3\n",
+    "\n",
+    "### 3.1 - Sentences encoding"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "print('\\nReview example (x_train[12]) :\\n\\n',x_train[12])\n",
+    "print('\\nOpinions (y_train) :\\n\\n',y_train)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### 3.2 - Load dictionary"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# ---- Retrieve dictionary {word:index}, and encode it in ascii\n",
+    "#\n",
+    "word_index = imdb.get_word_index()\n",
+    "\n",
+    "# ---- Shift the dictionary from +3\n",
+    "#\n",
+    "word_index = {w:(i+3) for w,i in word_index.items()}\n",
+    "\n",
+    "# ---- Add <pad>, <start> and <unknown> tags\n",
+    "#\n",
+    "word_index.update( {'<pad>':0, '<start>':1, '<unknown>':2} )\n",
+    "\n",
+    "# ---- Create a reverse dictionary : {index:word}\n",
+    "#\n",
+    "index_word = {index:word for word,index in word_index.items()} \n",
+    "\n",
+    "# ---- About dictionary\n",
+    "#\n",
+    "print('\\nDictionary size     : ', len(word_index))\n",
+    "print('\\nSmall extract :\\n')\n",
+    "for k in range(440,455):print(f'    {k:2d} : {index_word[k]}' )\n",
+    "\n",
+    "# ---- Add a nice function to transpose :\n",
+    "#\n",
+    "def dataset2text(review):\n",
+    "    return ' '.join([index_word.get(i, '?') for i in review])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### 3.3 - Have a look, for human"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "pwk.subtitle('Review example :')\n",
+    "print(x_train[12])\n",
+    "pwk.subtitle('After translation :')\n",
+    "print(dataset2text(x_train[12]))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### 3.4 - Few statistics"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "sizes=[len(i) for i in x_train]\n",
+    "plt.figure(figsize=(16,6))\n",
+    "plt.hist(sizes, bins=400)\n",
+    "plt.gca().set(title='Distribution of reviews by size - [{:5.2f}, {:5.2f}]'.format(min(sizes),max(sizes)), \n",
+    "              xlabel='Size', ylabel='Density', xlim=[0,1500])\n",
+    "pwk.save_fig('01-stats-sizes')\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "unk=[ 100*(s.count(2)/len(s)) for s in x_train]\n",
+    "plt.figure(figsize=(16,6))\n",
+    "plt.hist(unk, bins=100)\n",
+    "plt.gca().set(title='Percent of unknown words - [{:5.2f}, {:5.2f}]'.format(min(unk),max(unk)), \n",
+    "              xlabel='# unknown', ylabel='Density', xlim=[0,30])\n",
+    "pwk.save_fig('02-stats-unknown')\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Step 3 - Basic approach with \"one-hot\" vector encoding\n",
+    "Basic approach.  \n",
+    "\n",
+    "Each sentence is encoded with a **vector** of length equal to the **size of the dictionary**.   \n",
+    "\n",
+    "Each sentence will therefore be encoded with a simple vector.  \n",
+    "The value of each component is 0 if the word is not present in the sentence or 1 if the word is present.\n",
+    "\n",
+    "For a sentence s=[3,4,7] and a dictionary of 10 words...    \n",
+    "We wil have a vector v=[0,0,0,1,1,0,0,1,0,0,0]\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### 3.1 - Our one-hot encoder"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def one_hot_encoder(x, vector_size=10000):\n",
+    "    \n",
+    "    # ---- Set all to 0\n",
+    "    #\n",
+    "    x_encoded = np.zeros((len(x), vector_size))\n",
+    "    \n",
+    "    # ---- For each sentence\n",
+    "    #\n",
+    "    for i,sentence in enumerate(x):\n",
+    "        for word in sentence:\n",
+    "            x_encoded[i, word] = 1.\n",
+    "\n",
+    "    return x_encoded"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### 3.2 - Encoding.."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "x_train = one_hot_encoder(x_train)\n",
+    "x_test  = one_hot_encoder(x_test)\n",
+    "\n",
+    "print(\"To have a look, x_train[12] became :\", x_train[12] )"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Step 4 - Build the model\n",
+    "Few remarks :\n",
+    " - We'll choose a dense vector size for the embedding output with **dense_vector_size**\n",
+    " - **GlobalAveragePooling1D** do a pooling on the last dimension : (None, lx, ly) -> (None, ly)  \n",
+    "   In other words: we average the set of vectors/words of a sentence\n",
+    " - L'embedding de Keras fonctionne de manière supervisée. Il s'agit d'une couche de *vocab_size* neurones vers *n_neurons* permettant de maintenir une table de vecteurs (les poids constituent les vecteurs). Cette couche ne calcule pas de sortie a la façon des couches normales, mais renvois la valeur des vecteurs. n mots => n vecteurs (ensuite empilés par le pooling)  \n",
+    "Voir : [Explication plus détaillée (en)](https://stats.stackexchange.com/questions/324992/how-the-embedding-layer-is-trained-in-keras-embedding-layer)  \n",
+    "ainsi que : [Sentiment detection with Keras](https://www.liip.ch/en/blog/sentiment-detection-with-keras-word-embeddings-and-lstm-deep-learning-networks)  \n",
+    "\n",
+    "More documentation about this model functions :\n",
+    " - [Embedding](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding)\n",
+    " - [GlobalAveragePooling1D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/GlobalAveragePooling1D)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def get_model(vector_size=10000):\n",
+    "    \n",
+    "    model = keras.Sequential()\n",
+    "    model.add(keras.layers.Dense(32, activation='relu', input_shape=(10000,)))\n",
+    "    model.add(keras.layers.Dense(32, activation='relu'))\n",
+    "    model.add(keras.layers.Dense(1, activation='sigmoid'))\n",
+    "    \n",
+    "    model.compile(optimizer = 'rmsprop',\n",
+    "                  loss      = 'binary_crossentropy',\n",
+    "                  metrics   = ['accuracy'])\n",
+    "    return model"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Step 5 - Train the model\n",
+    "### 5.1 - Get it"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "model = get_model(vector_size=vocab_size)\n",
+    "\n",
+    "model.summary()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### 5.2 - Add callback"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "os.makedirs('./run/models',   mode=0o750, exist_ok=True)\n",
+    "save_dir = \"./run/models/best_model.h5\"\n",
+    "savemodel_callback = tf.keras.callbacks.ModelCheckpoint(filepath=save_dir, verbose=0, save_best_only=True)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### 5.1 - Train it"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "%%time\n",
+    "\n",
+    "history = model.fit(x_train,\n",
+    "                    y_train,\n",
+    "                    epochs          = epochs,\n",
+    "                    batch_size      = batch_size,\n",
+    "                    validation_data = (x_test, y_test),\n",
+    "                    verbose         = 1,\n",
+    "                    callbacks       = [savemodel_callback])\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Step 6 - Evaluate\n",
+    "### 6.1 - Training history"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "pwk.plot_history(history, save_as='02-history')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### 6.2 - Reload and evaluate best model"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "model = keras.models.load_model('./run/models/best_model.h5')\n",
+    "\n",
+    "# ---- Evaluate\n",
+    "score  = model.evaluate(x_test, y_test, verbose=0)\n",
+    "\n",
+    "print('x_test / loss      : {:5.4f}'.format(score[0]))\n",
+    "print('x_test / accuracy  : {:5.4f}'.format(score[1]))\n",
+    "\n",
+    "values=[score[1], 1-score[1]]\n",
+    "pwk.plot_donut(values,[\"Accuracy\",\"Errors\"], title=\"#### Accuracy donut is :\", save_as='03-donut')\n",
+    "\n",
+    "# ---- Confusion matrix\n",
+    "\n",
+    "y_sigmoid = model.predict(x_test)\n",
+    "\n",
+    "y_pred = y_sigmoid.copy()\n",
+    "y_pred[ y_sigmoid< 0.5 ] = 0\n",
+    "y_pred[ y_sigmoid>=0.5 ] = 1    \n",
+    "\n",
+    "pwk.display_confusion_matrix(y_test,y_pred,labels=range(2))\n",
+    "pwk.plot_confusion_matrix(y_test,y_pred,range(2), figsize=(8, 8),normalize=False, save_as='04-confusion-matrix')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "pwk.end()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "---\n",
+    "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.8.5"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/IMDB/01-Embedding-Keras.ipynb b/IMDB/02-Embedding-Keras.ipynb
similarity index 100%
rename from IMDB/01-Embedding-Keras.ipynb
rename to IMDB/02-Embedding-Keras.ipynb
diff --git a/IMDB/01-Embedding-Keras==done==.ipynb b/IMDB/02-Embedding-Keras==done==.ipynb
similarity index 100%
rename from IMDB/01-Embedding-Keras==done==.ipynb
rename to IMDB/02-Embedding-Keras==done==.ipynb
diff --git a/IMDB/02-Prediction.ipynb b/IMDB/03-Prediction.ipynb
similarity index 100%
rename from IMDB/02-Prediction.ipynb
rename to IMDB/03-Prediction.ipynb
diff --git a/IMDB/02-Prediction==done==.ipynb b/IMDB/03-Prediction==done==.ipynb
similarity index 100%
rename from IMDB/02-Prediction==done==.ipynb
rename to IMDB/03-Prediction==done==.ipynb
diff --git a/IMDB/03-LSTM-Keras.ipynb b/IMDB/04-LSTM-Keras.ipynb
similarity index 100%
rename from IMDB/03-LSTM-Keras.ipynb
rename to IMDB/04-LSTM-Keras.ipynb
diff --git a/IMDB/03-LSTM-Keras==done==.ipynb b/IMDB/04-LSTM-Keras==done==.ipynb
similarity index 100%
rename from IMDB/03-LSTM-Keras==done==.ipynb
rename to IMDB/04-LSTM-Keras==done==.ipynb
-- 
GitLab