diff --git a/README.ipynb b/README.ipynb
index 4ca6affcd6b1cea0c8f5c5d18811aa104a3ffb88..add4bf8656a75d43b45eed3a7e12e5788f3b0759 100644
--- a/README.ipynb
+++ b/README.ipynb
@@ -3,13 +3,13 @@
   {
    "cell_type": "code",
    "execution_count": 1,
-   "id": "26e42746",
+   "id": "d32ade6b",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2022-10-12T14:41:38.853343Z",
-     "iopub.status.busy": "2022-10-12T14:41:38.852566Z",
-     "iopub.status.idle": "2022-10-12T14:41:38.864329Z",
-     "shell.execute_reply": "2022-10-12T14:41:38.863589Z"
+     "iopub.execute_input": "2022-10-12T22:58:07.403985Z",
+     "iopub.status.busy": "2022-10-12T22:58:07.403126Z",
+     "iopub.status.idle": "2022-10-12T22:58:07.414447Z",
+     "shell.execute_reply": "2022-10-12T22:58:07.413483Z"
     },
     "jupyter": {
      "source_hidden": true
@@ -52,7 +52,7 @@
        "For more information, you can contact us at :  \n",
        "[<img width=\"200px\" style=\"vertical-align:middle\" src=\"fidle/img/00-Mail_contact.svg\"></img>](#top)\n",
        "\n",
-       "Current Version : <!-- VERSION_BEGIN -->2.1b4<!-- VERSION_END -->\n",
+       "Current Version : <!-- VERSION_BEGIN -->2.1b5<!-- VERSION_END -->\n",
        "\n",
        "\n",
        "## Course materials\n",
@@ -67,7 +67,7 @@
        "## Jupyter notebooks\n",
        "\n",
        "<!-- TOC_BEGIN -->\n",
-       "<!-- Automatically generated on : 12/10/22 16:41:37 -->\n",
+       "<!-- Automatically generated on : 13/10/22 00:58:06 -->\n",
        "\n",
        "### Linear and logistic regression\n",
        "- **[LINR1](LinearReg/01-Linear-Regression.ipynb)** - [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb)  \n",
@@ -229,7 +229,7 @@
     "from IPython.display import display,Markdown\n",
     "display(Markdown(open('README.md', 'r').read()))\n",
     "#\n",
-    "# This README is visible under Jupiter Lab ;-)# Automatically generated on : 12/10/22 16:41:37"
+    "# This README is visible under Jupiter Lab ;-)# Automatically generated on : 13/10/22 00:58:06"
    ]
   }
  ],
diff --git a/README.md b/README.md
index bb5a0c2f2e5223f23566bbac307a9c446aab3b6f..eb321978324b6d232bad94cde30ef7754d5b4b3d 100644
--- a/README.md
+++ b/README.md
@@ -31,7 +31,7 @@ For more information, see **https://fidle.cnrs.fr** :
 For more information, you can contact us at :  
 [<img width="200px" style="vertical-align:middle" src="fidle/img/00-Mail_contact.svg"></img>](#top)
 
-Current Version : <!-- VERSION_BEGIN -->2.1b4<!-- VERSION_END -->
+Current Version : <!-- VERSION_BEGIN -->2.1b5<!-- VERSION_END -->
 
 
 ## Course materials
@@ -46,7 +46,7 @@ Have a look about **[How to get and install](https://fidle.cnrs.fr/installation)
 ## Jupyter notebooks
 
 <!-- TOC_BEGIN -->
-<!-- Automatically generated on : 12/10/22 16:41:37 -->
+<!-- Automatically generated on : 13/10/22 00:58:06 -->
 
 ### Linear and logistic regression
 - **[LINR1](LinearReg/01-Linear-Regression.ipynb)** - [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb)  
diff --git a/VAE/02-VAE-with-MNIST.ipynb b/VAE/02-VAE-with-MNIST.ipynb
index 813d4082c76093e036efc2032389134ce9d5a257..242c937f9f9e1130aff7256249040bd548165db0 100644
--- a/VAE/02-VAE-with-MNIST.ipynb
+++ b/VAE/02-VAE-with-MNIST.ipynb
@@ -426,29 +426,35 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "grid_size   = 18\n",
-    "grid_scale  = 1\n",
+    "if latent_dim>2:\n",
     "\n",
-    "# ---- Draw a ppf grid\n",
+    "    print('Sorry, This part can only work if the latent space is of dimension 2')\n",
     "\n",
-    "grid=[]\n",
-    "for y in scipy.stats.norm.ppf(np.linspace(0.99, 0.01, grid_size),scale=grid_scale):\n",
-    "    for x in scipy.stats.norm.ppf(np.linspace(0.01, 0.99, grid_size),scale=grid_scale):\n",
-    "        grid.append( (x,y) )\n",
-    "grid=np.array(grid)\n",
+    "else:\n",
+    "    \n",
+    "    grid_size   = 18\n",
+    "    grid_scale  = 1\n",
     "\n",
-    "# ---- Draw latentspoints and grid\n",
+    "    # ---- Draw a ppf grid\n",
     "\n",
-    "fig = plt.figure(figsize=(10, 8))\n",
-    "plt.scatter(z[:, 0] , z[:, 1], c=y_show, cmap= 'tab10', alpha=0.5, s=20)\n",
-    "plt.scatter(grid[:, 0] , grid[:, 1], c = 'black', s=60, linewidth=2, marker='+', alpha=1)\n",
-    "fidle.scrawler.save_fig('08-Latent-grid')\n",
-    "plt.show()\n",
+    "    grid=[]\n",
+    "    for y in scipy.stats.norm.ppf(np.linspace(0.99, 0.01, grid_size),scale=grid_scale):\n",
+    "        for x in scipy.stats.norm.ppf(np.linspace(0.01, 0.99, grid_size),scale=grid_scale):\n",
+    "            grid.append( (x,y) )\n",
+    "    grid=np.array(grid)\n",
     "\n",
-    "# ---- Plot grid corresponding images\n",
+    "    # ---- Draw latentspoints and grid\n",
     "\n",
-    "x_reconst = vae.decoder.predict([grid])\n",
-    "fidle.scrawler.images(x_reconst, indices='all', columns=grid_size, x_size=0.5,y_size=0.5, y_padding=0,spines_alpha=0.1, save_as='09-Latent-morphing')\n",
+    "    fig = plt.figure(figsize=(10, 8))\n",
+    "    plt.scatter(z[:, 0] , z[:, 1], c=y_show, cmap= 'tab10', alpha=0.5, s=20)\n",
+    "    plt.scatter(grid[:, 0] , grid[:, 1], c = 'black', s=60, linewidth=2, marker='+', alpha=1)\n",
+    "    fidle.scrawler.save_fig('08-Latent-grid')\n",
+    "    plt.show()\n",
+    "\n",
+    "    # ---- Plot grid corresponding images\n",
+    "\n",
+    "    x_reconst = vae.decoder.predict([grid])\n",
+    "    fidle.scrawler.images(x_reconst, indices='all', columns=grid_size, x_size=0.5,y_size=0.5, y_padding=0,spines_alpha=0.1, save_as='09-Latent-morphing')\n",
     "\n"
    ]
   },
diff --git a/VAE/03-VAE-with-MNIST-post.ipynb b/VAE/03-VAE-with-MNIST-post.ipynb
index cca90efe40889c04ae0bc67ee939d84f54109c24..730d530035897ea33439a57b51749609d6c56ef5 100644
--- a/VAE/03-VAE-with-MNIST-post.ipynb
+++ b/VAE/03-VAE-with-MNIST-post.ipynb
@@ -222,23 +222,29 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "# ---- Softmax rescale\n",
-    "#\n",
-    "zs = np.exp(z)/np.sum(np.exp(z),axis=1,keepdims=True)\n",
-    "# zc  = zs * 1/np.max(zs)\n",
-    "\n",
-    "# ---- Create collection\n",
-    "#\n",
-    "c = Collection(zs, colors=y_show, labels=y_show)\n",
-    "c.attrs.markers_colormap     = {'colorscale':'Rainbow','cmin':0,'cmax':latent_dim}\n",
-    "c.attrs.markers_size         = 4\n",
-    "c.attrs.markers_border_width = 0\n",
-    "c.attrs.markers_opacity      = 0.7\n",
-    "\n",
-    "s = Simplex.build(latent_dim)\n",
-    "s.attrs.width  = 1000\n",
-    "s.attrs.height = 1000\n",
-    "s.plot(c)"
+    "if latent_dim<4:\n",
+    "\n",
+    "    print('Sorry, This part can only work if the latent space is greater than 3')\n",
+    "\n",
+    "else:\n",
+    "\n",
+    "    # ---- Softmax rescale\n",
+    "    #\n",
+    "    zs = np.exp(z)/np.sum(np.exp(z),axis=1,keepdims=True)\n",
+    "    # zc  = zs * 1/np.max(zs)\n",
+    "\n",
+    "    # ---- Create collection\n",
+    "    #\n",
+    "    c = Collection(zs, colors=y_show, labels=y_show)\n",
+    "    c.attrs.markers_colormap     = {'colorscale':'Rainbow','cmin':0,'cmax':latent_dim}\n",
+    "    c.attrs.markers_size         = 4\n",
+    "    c.attrs.markers_border_width = 0\n",
+    "    c.attrs.markers_opacity      = 0.7\n",
+    "\n",
+    "    s = Simplex.build(latent_dim)\n",
+    "    s.attrs.width  = 1000\n",
+    "    s.attrs.height = 1000\n",
+    "    s.plot(c)"
    ]
   },
   {
diff --git a/fidle/about.yml b/fidle/about.yml
index 00946f5929ce8cec053c50578474884ae239859c..0780ad5cb536428d5fb20039a0406e91c6fe95c1 100644
--- a/fidle/about.yml
+++ b/fidle/about.yml
@@ -13,7 +13,7 @@
 #
 # This file describes the notebooks used by the Fidle training.
 
-version:          2.1b4
+version:          2.1b5
 content:          notebooks
 name:             Notebooks Fidle
 description:      All notebooks used by the Fidle training
diff --git a/fidle/ci/default.yml b/fidle/ci/default.yml
index 2f23ed0d8311f8fab43be46f42806a18e577853f..eb09f39865ad0b4392c4d21f685ad9d57b31c938 100644
--- a/fidle/ci/default.yml
+++ b/fidle/ci/default.yml
@@ -1,6 +1,6 @@
 campain:
   version: '1.0'
-  description: Automatically generated ci profile (12/10/22 16:41:37)
+  description: Automatically generated ci profile (13/10/22 00:58:06)
   directory: ./campains/default
   existing_notebook: 'remove    # remove|skip'
   report_template: 'fidle     # fidle|default'
diff --git a/fidle/ci/cpu-native.yml b/fidle/ci/default_settings.yml
similarity index 98%
rename from fidle/ci/cpu-native.yml
rename to fidle/ci/default_settings.yml
index 2841536853a8b6df2084ef38c09f655abf5ef8c0..69df1d9e20bb1d027ad3a921b12e2b16a0c17de4 100644
--- a/fidle/ci/cpu-native.yml
+++ b/fidle/ci/default_settings.yml
@@ -1,7 +1,7 @@
 campain:
   version:           1.0
-  description:       Full validation on CPU (fast)
-  directory:         ./campains/cpu_small
+  description:       Complete validation of notebooks with default settings
+  directory:         ./campains/default_settings
   existing_notebook: skip
   report_template:   fidle
   timeout:           6000
@@ -199,7 +199,7 @@ SYNOP2:
     sequence_len:          default
     batch_size:            default
     epochs:                default
-    fit_verbosity:         default
+    fit_verbosity:         2
 
 SYNOP3:
   notebook:      SYNOP/SYNOP3-12h-predictions.ipynb
diff --git a/fidle/ci/scale1_settings.yml b/fidle/ci/scale1_settings.yml
new file mode 100644
index 0000000000000000000000000000000000000000..f7d275b6e6398a2de5f3c27d9ee15957817129ca
--- /dev/null
+++ b/fidle/ci/scale1_settings.yml
@@ -0,0 +1,464 @@
+campain:
+  version:           1.0
+  description:       Full validation of notebooks with scale parameters set to 1
+  directory:         ./campains/cpu_small
+  existing_notebook: skip
+  report_template:   fidle
+  timeout:           6000
+  environment_vars:
+    FIDLE_SAVE_FIGS:         true
+    TF_CPP_MIN_LOG_LEVEL:    2
+
+
+#
+# ------------ LinearReg
+#
+LINR1:
+  notebook: LinearReg/01-Linear-Regression.ipynb
+GRAD1:
+  notebook: LinearReg/02-Gradient-descent.ipynb
+POLR1:
+  notebook: LinearReg/03-Polynomial-Regression.ipynb
+LOGR1:
+  notebook: LinearReg/04-Logistic-Regression.ipynb
+
+#
+# ------------ IRIS
+#
+PER57:
+  notebook: IRIS/01-Simple-Perceptron.ipynb
+
+#
+# ------------ BHPD
+#
+BHPD1:
+  notebook: BHPD/01-DNN-Regression.ipynb
+  overrides:
+    fit_verbosity: 2
+BHPD2:
+  notebook: BHPD/02-DNN-Regression-Premium.ipynb
+  overrides:
+    fit_verbosity: 2
+
+#
+# ------------ MNIST
+#
+MNIST1:
+  notebook: MNIST/01-DNN-MNIST.ipynb
+  overrides:
+    fit_verbosity: 2
+
+MNIST2:
+  notebook: MNIST/02-CNN-MNIST.ipynb
+  overrides:
+    fit_verbosity: 2
+
+#
+# ------------ GTSRB
+#
+GTSRB1:
+  notebook:      GTSRB/01-Preparation-of-data.ipynb
+  overrides:
+    scale:                 .05
+    output_dir:            ./data
+    progress_verbosity:    2
+
+GTSRB2:
+  notebook:      GTSRB/02-First-convolutions.ipynb
+  after:         GTSRB1
+  overrides:
+    enhanced_dir:          '{datasets_dir}/GTSRB/enhanced'
+    dataset_name:          set-24x24-L
+    batch_size:            64
+    epochs:                5
+    scale:                 1
+    fit_verbosity:         2
+
+GTSRB3:
+  notebook:      GTSRB/03-Tracking-and-visualizing.ipynb
+  after:         GTSRB1
+  overrides:
+    enhanced_dir:          '{datasets_dir}/GTSRB/enhanced'
+    dataset_name:          set-24x24-L
+    batch_size:            64
+    epochs:                5
+    scale:                 1
+    fit_verbosity:         2
+
+GTSRB4:
+  notebook:      GTSRB/04-Data-augmentation.ipynb
+  after:         GTSRB1
+  overrides:
+    enhanced_dir:          '{datasets_dir}/GTSRB/enhanced'
+    dataset_name:          set-24x24-L
+    batch_size:            64
+    epochs:                5
+    scale:                 1
+    fit_verbosity:         2
+
+GTSRB5_1:
+  notebook:      GTSRB/05-Full-convolutions.ipynb
+  after:         GTSRB1
+  overrides:
+    run_dir:               ./run/GTSRB5
+    enhanced_dir:          '{datasets_dir}/GTSRB/enhanced'
+    datasets:              "['set-24x24-L', 'set-24x24-RGB', 'set-48x48-L', 'set-48x48-RGB', 'set-24x24-L-LHE', 'set-24x24-RGB-HE', 'set-48x48-L-LHE', 'set-48x48-RGB-HE']"
+    models:                "{'v1':'get_model_v1', 'v2':'get_model_v2', 'v3':'get_model_v3'}"
+    batch_size:            64
+    epochs:                16
+    scale:                 1
+    with_datagen:          False
+    fit_verbosity:         2
+
+GTSRB5_2:
+  notebook:      GTSRB/05-Full-convolutions.ipynb
+  after:         GTSRB1
+  overrides:
+    run_dir:               ./run/GTSRB5
+    enhanced_dir:          '{datasets_dir}/GTSRB/enhanced'
+    datasets:              "['set-24x24-L', 'set-24x24-RGB', 'set-48x48-L', 'set-48x48-RGB', 'set-24x24-L-LHE', 'set-24x24-RGB-HE', 'set-48x48-L-LHE', 'set-48x48-RGB-HE']"
+    models:                "{'v1':'get_model_v1', 'v2':'get_model_v2', 'v3':'get_model_v3'}"
+    batch_size:            64
+    epochs:                16
+    scale:                 1
+    with_datagen:          False
+    fit_verbosity:         2
+
+GTSRB5_3:
+  notebook:      GTSRB/05-Full-convolutions.ipynb
+  after:         GTSRB1
+  overrides:
+    run_dir:               ./run/GTSRB5
+    enhanced_dir:          '{datasets_dir}/GTSRB/enhanced'
+    datasets:              "['set-48x48-L', 'set-48x48-RGB']"
+    models:                "{'v2':'get_model_v2', 'v3':'get_model_v3'}"
+    batch_size:            64
+    epochs:                16
+    scale:                 1
+    with_datagen:          True
+    fit_verbosity:         2
+
+GTSRB6:
+  notebook:      GTSRB/06-Notebook-as-a-batch.ipynb
+
+GTSRB7:
+  notebook:      GTSRB/07-Show-report.ipynb
+  after:         GTSRB5
+  overrides:
+    report_dir:            ./run/GTSRB5
+
+#
+# ------------ IMDB
+#
+IMDB1:
+  notebook:      IMDB/01-One-hot-encoding.ipynb
+  overrides:
+    vocab_size:            8000
+    hide_most_frequently:  0
+    batch_size:            512
+    epochs:                10
+    fit_verbosity:         2
+
+IMDB2:
+  notebook:      IMDB/02-Keras-embedding.ipynb
+  overrides:
+    vocab_size:            8000
+    hide_most_frequently:  0
+    review_len:            256
+    dense_vector_size:     32
+    batch_size:            512
+    epochs:                30
+    output_dir:            default
+    fit_verbosity:         2
+
+IMDB3:
+  notebook:      IMDB/03-Prediction.ipynb
+  after:         IMDB2
+  overrides:
+    vocab_size:            8000
+    review_len:            256
+    saved_models:          default
+    dictionaries_dir:      default
+
+IMDB4:
+  notebook:      IMDB/04-Show-vectors.ipynb
+  after:         IMDB2
+  overrides:
+    vocab_size:            8000
+    review_len:            256
+    saved_models:          default
+    dictionaries_dir:      default
+
+IMDB5:
+  notebook:      IMDB/05-LSTM-Keras.ipynb
+  overrides:
+    vocab_size:            8000
+    hide_most_frequently:  0
+    review_len:            256
+    dense_vector_size:     32
+    batch_size:            512
+    epochs:                10
+    scale:                 1
+    fit_verbosity:         2
+
+#
+# ------------ SYNOP
+#
+LADYB1:
+  notebook:      SYNOP/LADYB1-Ladybug.ipynb
+  overrides:
+    scale:                 1
+    train_prop:            0.8
+    sequence_len:          20
+    predict_len:           5
+    batch_size:            32
+    epochs:                10
+
+SYNOP1:
+  notebook:      SYNOP/SYNOP1-Preparation-of-data.ipynb
+  overrides:
+    output_dir:            default
+
+SYNOP2:
+  notebook:      SYNOP/SYNOP2-First-predictions.ipynb
+  after:         SYNOP1
+  overrides:
+    scale:                 1
+    train_prop:            0.8
+    sequence_len:          16
+    batch_size:            32
+    epochs:                10
+    fit_verbosity:         2
+
+SYNOP3:
+  notebook:      SYNOP/SYNOP3-12h-predictions.ipynb
+  after:         SYNOP2
+  overrides:
+    iterations:            4
+    scale:                 1
+    train_prop:            0.8
+    sequence_len:          16
+
+#
+# ------------ Transformers
+#
+# TRANS1:
+#   notebook:      Transformers/01-Distilbert.ipynb
+#
+# TRANS2:
+#   notebook:      Transformers/02-distilbert_colab.ipynb
+
+#
+# ------------ AE
+#
+AE1:
+  notebook:      AE/01-Prepare-MNIST-dataset.ipynb
+  overrides:
+    prepared_dataset:      default
+    scale:                 1
+    progress_verbosity:    2
+
+AE2:
+  notebook:      AE/02-AE-with-MNIST.ipynb
+  after:         AE1
+  overrides:
+    prepared_dataset:      default
+    dataset_seed:          123
+    scale:                 1
+    latent_dim:            10
+    train_prop:            0.8
+    batch_size:            128
+    epochs:                30
+    fit_verbosity:         2
+
+AE3:
+  notebook:      AE/03-AE-with-MNIST-post.ipynb
+  after:         AE2
+  overrides:
+    prepared_dataset:      default
+    dataset_seed:          123
+    scale:                 1
+    train_prop:            0.8
+
+AE4:
+  notebook:      AE/04-ExtAE-with-MNIST.ipynb
+  after:         AE1
+  overrides:
+    prepared_dataset:      default
+    dataset_seed:          default
+    scale:                 1
+    latent_dim:            10
+    train_prop:            0.8
+    batch_size:            128
+    epochs:                20
+    fit_verbosity:         2
+
+AE5:
+  notebook:      AE/05-ExtAE-with-MNIST.ipynb
+  after:         AE1
+  overrides:
+    prepared_dataset:      default
+    dataset_seed:          default
+    scale:                 1
+    latent_dim:            10
+    train_prop:            0.8
+    batch_size:            128
+    epochs:                30
+    fit_verbosity:         2
+
+#
+# ------------ VAE
+#
+VAE1:
+  notebook:       VAE/01-VAE-with-MNIST.ipynb
+  overrides:
+    latent_dim:            2
+    loss_weights:          default
+    scale:                 1
+    seed:                  default
+    batch_size:            64
+    epochs:                10
+    fit_verbosity:         2
+
+VAE2:
+  notebook:       VAE/02-VAE-with-MNIST.ipynb
+  overrides:
+    latent_dim:            6
+    loss_weights:          default
+    scale:                 1
+    seed:                  default
+    batch_size:            64
+    epochs:                10
+    fit_verbosity:         2
+
+VAE3:
+  notebook:       VAE/03-VAE-with-MNIST-post.ipynb
+  after:          VAE2
+  overrides:
+    scale:                 1
+    seed:                  default
+    models_dir:            default
+
+VAE5:
+  notebook:       VAE/05-About-CelebA.ipynb
+  overrides:
+    progress_verbosity:    2
+
+VAE6.1:
+  notebook:       VAE/06-Prepare-CelebA-datasets.ipynb
+  overrides:
+    scale:                 0.02
+    seed:                  default
+    cluster_size:          10000
+    image_size:            (128,128)
+    output_dir:            ./data
+    exit_if_exist:         False
+    progress_verbosity:    2
+
+VAE6.2:
+  notebook:       VAE/06-Prepare-CelebA-datasets.ipynb
+  overrides:
+    scale:                 0.02
+    seed:                  default
+    cluster_size:          10000
+    image_size:            (192,160)
+    output_dir:            ./data
+    exit_if_exist:         False
+    progress_verbosity:    2
+
+VAE7:
+  notebook:       VAE/07-Check-CelebA.ipynb
+  after:          VAE6.1
+  overrides:
+    image_size:            (192,160)
+    enhanced_dir:          ./data
+    progress_verbosity:    2
+
+VAE8:
+  notebook:       VAE/08-VAE-with-CelebA-128x128.ipynb
+  after:          VAE6.1
+  overrides:
+    scale:                 1
+    image_size:            (128,128)
+    enhanced_dir:          '{datasets_dir}/celeba/enhanced'
+    latent_dim:            300
+    loss_weights:          default
+    batch_size:            64
+    epochs:                15
+    fit_verbosity:         2
+
+VAE9:
+  notebook:       VAE/09-VAE-with-CelebA-192x160.ipynb
+  after:          VAE6.2
+  overrides:
+    scale:                 1
+    image_size:            (192,160)
+    enhanced_dir:          '{datasets_dir}/celeba/enhanced'
+    latent_dim:            300
+    loss_weights:          default
+    batch_size:            64
+    epochs:                10
+    fit_verbosity:         2
+
+VAE10.1:
+  notebook:      VAE/10-VAE-with-CelebA-post.ipynb
+  after:         VAE8
+  overrides:
+    image_size:            (128,128)
+    enhanced_dir:          '{datasets_dir}/celeba/enhanced'
+    models_dir:            ./run/VAE8
+
+VAE10.2:
+  notebook:      VAE/10-VAE-with-CelebA-post.ipynb
+  after:         VAE9
+  overrides:
+    image_size:            (192,160)
+    enhanced_dir:          '{datasets_dir}/celeba/enhanced'
+    models_dir:            ./run/VAE9
+
+#
+# ------------ DCGAN
+#
+SHEEP1:
+  notebook:      DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb
+  overrides:
+    scale:                 1
+    latent_dim:            128
+    epochs:                8
+    batch_size:            32
+    num_img:               12
+    fit_verbosity:         2
+
+SHEEP2:
+  notebook:      DCGAN/02-WGANGP-Draw-me-a-sheep.ipynb
+  overrides:
+    scale:                 1
+    latent_dim:            128
+    epochs:                4
+    batch_size:            64
+    num_img:               12
+    fit_verbosity:         2
+
+#
+# ------------ DRL
+#
+# DRL1:
+#   notebook:      DRL/FIDLE_DQNfromScratch.ipynb
+
+# DRL2:
+#   notebook:      DRL/FIDLE_rl_baselines_zoo.ipynb
+
+#
+# ------------ Misc
+#
+ACTF1:
+  notebook:      Misc/Activation-Functions.ipynb
+
+NP1:
+  notebook:      Misc/Numpy.ipynb
+
+SCRATCH1:
+  notebook:      Misc/Scratchbook.ipynb
+
+TSB1:
+  notebook:      Misc/Using-Tensorboard.ipynb