Skip to content
Snippets Groups Projects
user avatar
Jean-Luc Parouty authored
63cc63b6
History

About Fidle

This repository contains all the documents and links of the Fidle Training .
Fidle (for Formation Introduction au Deep Learning) is a 3-day training session co-organized
by the 3IA MIAI institute, the CNRS, via the Mission for Transversal and Interdisciplinary
Initiatives (MITI) and the University of Grenoble Alpes (UGA).

The objectives of this training are :

  • Understanding the bases of Deep Learning neural networks
  • Develop a first experience through simple and representative examples
  • Understanding Tensorflow/Keras and Jupyter lab technologies
  • Apprehend the academic computing environments Tier-2 or Tier-1 with powerfull GPU

For more information, see https://fidle.cnrs.fr :

For more information, you can contact us at :

Current Version : 3.0.1

Course materials


Course slides

The course in pdf format

Notebooks

    Get a Zip or clone this repository     

Datasets

All the needed datasets

Videos

    Our Youtube channel     

Have a look about How to get and install these notebooks and datasets.

Jupyter notebooks

Linear and logistic regression

Perceptron Model 1957

BHPD regression (DNN), using Keras3/PyTorch

BHPD regression (DNN), using PyTorch

Wine Quality prediction (DNN), using Keras3/PyTorch

Wine Quality prediction (DNN), using PyTorch/Lightning

MNIST classification (DNN,CNN), using Keras3/PyTorch

MNIST classification (DNN,CNN), using PyTorch

MNIST classification (DNN,CNN), using PyTorch/Lightning

Images classification GTSRB with Convolutional Neural Networks (CNN), using Keras3/PyTorch

Sentiment analysis with word embedding, using Keras3/PyTorch

Time series with Recurrent Neural Network (RNN), using Keras3/PyTorch

Sentiment analysis with transformer, using PyTorch

Diffusion Model (DDPM) using PyTorch

Training optimization, using PyTorch

Deep Reinforcement Learning (DRL), using PyTorch

Miscellaneous things, but very important!

Installation

Have a look about How to get and install these notebooks and datasets.

Licence


[en] Attribution - NonCommercial - ShareAlike 4.0 International (CC BY-NC-SA 4.0)
[Fr] Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International
See License.
See Disclaimer.