Skip to content
Snippets Groups Projects

Resolve "Fine to coarse grid filters"

Merged Jean-Baptiste Keck requested to merge 33-fine-to-coarse-grid-filters into master
Compare and Show latest version
2 files
+ 210
2
Compare changes
  • Side-by-side
  • Inline
Files
2
+ 207
0
import numpy as np
def compute(args):
from hysop import Field, Box, Simulation, Problem, \
ScalarParameter, MPIParams, IOParams
from hysop.constants import Implementation
from hysop.operators import Advection, DirectionalAdvection, StrangSplitting, \
LowpassFilter, HDF_Writer
from hysop.methods import Remesh, TimeIntegrator, ComputeGranularity, \
Interpolation
## Function to compute initial velocity values
def init_velocity(data, coords, component=None):
if (component is None):
for i in xrange(len(data)):
data[i][...] = args.velocity[::-1][i]
else:
assert len(data)==1
i, = component
data[0][...] = args.velocity[::-1][i]
## Function to compute initial scalar values
def init_scalar(data, coords):
data[0][...] = 1.0
for x in coords[0]:
data[0][...] *= np.cos(x)
data[1][...] = 1.0
for x in coords[0]:
data[1][...] *= np.sin(x)
# Define domain
dim = args.ndim
npts = args.npts
snpts = tuple(4*(x-1)+1 for x in args.npts)
box = Box(origin=args.box_origin, length=args.box_length, dim=dim)
# Get default MPI Parameters from domain (even for serial jobs)
mpi_params = MPIParams(comm=box.task_comm,
task_id=box.current_task())
# Define parameters and field (time and analytic field)
dt = ScalarParameter('dt', dtype=args.dtype)
velo = Field(domain=box, name='V', is_vector=True, dtype=args.dtype)
scalar = Field(domain=box, name='S', nb_components=2, dtype=args.dtype)
# Setup operator method dictionnary
# Advection-Remesh operator discretization parameters
method = {
ComputeGranularity: args.compute_granularity,
TimeIntegrator: args.time_integrator,
Remesh: args.remesh_kernel,
Interpolation: args.interpolation
}
# Setup implementation specific variables
impl = args.impl
extra_op_kwds = { 'mpi_params': mpi_params }
if (impl is Implementation.OPENCL):
# For the OpenCL implementation we need to setup the compute device
# and configure how the code is generated and compiled at runtime.
# Create an explicit OpenCL context from user parameters
from hysop.backend.device.opencl.opencl_tools import get_or_create_opencl_env
cl_env = get_or_create_opencl_env(mpi_params=mpi_params, platform_id=args.cl_platform_id,
device_id=args.cl_device_id)
# Configure OpenCL kernel generation and tuning method
# (already done by HysopArgParser for simplicity)
from hysop.methods import OpenClKernelConfig
method[OpenClKernelConfig] = args.opencl_kernel_config
# Setup opencl specific extra operator keyword arguments
extra_op_kwds['cl_env'] = cl_env
elif (impl in (Implementation.PYTHON, Implementation.FORTRAN)):
pass
else:
msg='Unknown implementation \'{}\'.'.format(impl)
raise ValueError(msg)
# Create the problem we want to solve
problem = Problem(method=method)
if (impl is Implementation.FORTRAN) or (impl is Implementation.PYTHON):
# The fortran scales implementation is a special case.
# Here directional advection is a black box.
advec = Advection(implementation=Implementation.FORTRAN,
name='advec',
velocity = velo,
advected_fields = (scalar,),
variables = {velo: npts, scalar: snpts},
dt = dt, **extra_op_kwds)
# Finally insert our advection into the problem
problem.insert(advec)
else:
# Build the directional advection operator
# here the cfl determines the maximum number of ghosts
advec = DirectionalAdvection(implementation=impl,
name='advec',
velocity = velo,
velocity_cfl = args.cfl,
advected_fields = (scalar,),
variables = {velo: npts, scalar: snpts},
dt=dt, **extra_op_kwds)
# Build the directional splitting operator graph
splitting = StrangSplitting(splitting_dim=dim,
order=args.strang_order)
splitting.push_operators(advec)
# Finally insert our splitted advection into the problem
problem.insert(splitting)
#> Operators to dump all fields
io_params = IOParams(filename='fine', frequency=args.dump_freq)
df0 = HDF_Writer(name='S',
io_params=io_params,
variables={scalar: snpts},
**extra_op_kwds)
io_params = IOParams(filename='coarse', frequency=args.dump_freq)
df1 = HDF_Writer(name='V',
io_params=io_params,
variables={velo: npts},
**extra_op_kwds)
# Add a writer of input field at given frequency.
problem.insert(df0, df1)
problem.build(args)
# If a visu_rank was provided, and show_graph was set,
# display the graph on the given process rank.
if args.display_graph:
problem.display(args.visu_rank)
# Initialize discrete velocity and scalar field
problem.initialize_field(velo, formula=init_velocity)
problem.initialize_field(scalar, formula=init_scalar)
# Determine a timestep using the supplied CFL
# (velocity is constant for the whole simulation)
dx = problem.get_input_discrete_field(scalar).space_step.min()
Vinf = max(abs(vi) for vi in args.velocity)
dt0 = (args.cfl*dx)/Vinf
if (args.dt is not None):
dt0 = min(args.dt, dt0)
dt0 = 0.99*dt0
# Create a simulation and solve the problem
# (do not forget to specify the dt parameter here)
simu = Simulation(start=args.tstart, end=args.tend,
nb_iter=args.nb_iter,
max_iter=args.max_iter,
times_of_interest=args.dump_times,
dt=dt, dt0=dt0)
# Finally solve the problem
problem.solve(simu, dry_run=args.dry_run)
# Finalize
problem.finalize()
if __name__=='__main__':
from examples.example_utils import HysopArgParser, colors
class ScalarAdvectionArgParser(HysopArgParser):
def __init__(self):
prog_name = 'scalar_advection'
default_dump_dir = '{}/hysop_examples/{}'.format(HysopArgParser.tmp_dir(), prog_name)
description=colors.color('HySoP Scalar Advection Example: ', fg='blue', style='bold')
description+='Advect a scalar by a given constant velocity. '
description+='\n\nThe advection operator is directionally splitted resulting '
description+='in the use of one or more advection-remesh operators per direction.'
super(ScalarAdvectionArgParser, self).__init__(
prog_name=prog_name,
description=description,
default_dump_dir=default_dump_dir)
def _add_main_args(self):
args = super(ScalarAdvectionArgParser, self)._add_main_args()
args.add_argument('-vel', '--velocity', type=str,
action=self.split, container=tuple, append=False, convert=float,
dest='velocity',
help='Velocity components.')
return args
def _check_main_args(self, args):
super(ScalarAdvectionArgParser, self)._check_main_args(args)
self._check_default(args, 'velocity', tuple, allow_none=False)
def _setup_parameters(self, args):
if len(args.velocity) == 1:
args.velocity *= args.ndim
parser = ScalarAdvectionArgParser()
parser.set_defaults(box_origin=(0.0,), box_length=(2*np.pi,),
tstart=0.0, tend=2*np.pi, npts=(16,),
dump_freq=1, cfl=0.5, velocity=(1.0,),
ndim=3, compute_precision='fp64')
parser.run(compute)
Loading