From a8223323e4cc9e51d5c7be426302461f73a09627 Mon Sep 17 00:00:00 2001 From: Jean-Matthieu Etancelin <jean-matthieu.etancelin@univ-pau.fr> Date: Tue, 19 Jun 2018 11:07:28 +0200 Subject: [PATCH] Fix hostarray nanmin and nanmax. Fix default timestep parameter.Fix Fortran FFTW diffusion operator. Add fftw diffusion test. --- ci/scripts/test.sh | 1 + hysop/__init__.py.in | 6 +- .../host/fortran/operator/diffusion.py | 50 ++-- .../host/fortran/operator/fortran_fftw.py | 32 +- hysop/backend/host/host_array.py | 43 +-- .../core/graph/computational_node_frontend.py | 39 ++- hysop/operator/diffusion.py | 26 +- hysop/operator/tests/test_diffusion.py | 277 ++++++++++++++++++ .../tests/test_directional_diffusion.py | 91 +++--- hysop/operators.py | 1 + hysop/parameters/default_parameters.py | 9 +- 11 files changed, 432 insertions(+), 143 deletions(-) create mode 100644 hysop/operator/tests/test_diffusion.py diff --git a/ci/scripts/test.sh b/ci/scripts/test.sh index be5da252b..40cf839ca 100755 --- a/ci/scripts/test.sh +++ b/ci/scripts/test.sh @@ -61,6 +61,7 @@ python "$HYSOP_DIR/operator/tests/test_solenoidal_projection.py" python "$HYSOP_DIR/operator/tests/test_custom_symbolic.py" python "$HYSOP_DIR/operator/tests/test_directional_advection.py" python "$HYSOP_DIR/operator/tests/test_directional_diffusion.py" +python "$HYSOP_DIR/operator/tests/test_diffusion.py" python "$HYSOP_DIR/operator/tests/test_directional_stretching.py" if [ "$HAS_CACHE_DIR" = true ]; then diff --git a/hysop/__init__.py.in b/hysop/__init__.py.in index f63bf48fa..a12fafcf2 100644 --- a/hysop/__init__.py.in +++ b/hysop/__init__.py.in @@ -32,7 +32,6 @@ __OPTIMIZE__ = not __debug__ __VERBOSE__ = get_env('VERBOSE', ("@VERBOSE@" is "ON")) __DEBUG__ = get_env('DEBUG', ("@DEBUG@" is "ON")) __PROFILE__ = get_env('PROFILE', ("@PROFILE@" is "ON")) -__KERNEL_DEBUG__ = get_env('KERNEL_DEBUG', False) __TRACE_CALLS__ = get_env('TRACE_CALLS', False) __TRACE_WARNINGS__ = get_env('TRACE_WARNINGS', False) @@ -80,7 +79,7 @@ def sprint(*args, **kargs): """prints only shared memory master rank 0""" if (shm_rank==0): vprint(*args, **kargs) - + def reset(): """Reset hysop state (registered objects).""" from hysop.tools.handle import RegisteredObject @@ -114,7 +113,7 @@ from hysop.problem import Problem from hysop.tools.io_utils import IO, IOParams __all__ = ['Box', 'Field', 'DiscreteField', 'ScalarParameter', 'TensorParameter', 'Domain', 'Discretization', 'Simulation', 'MPIParams', - 'Problem', 'IO', 'IOParams', + 'Problem', 'IO', 'IOParams', 'Topology', 'CartesianTopology', 'TopologyDescriptor'] if __MPI_ENABLED__: __all__ += ['MPI', 'main_rank', 'main_size'] @@ -138,4 +137,3 @@ msg_io = '\n*Default path for all i/o is \'{}\'.'.format(default_path) msg_io += '\n*Default path for caching is \'{}\'.'.format(cache_path) mprint(msg_io) mprint() - diff --git a/hysop/backend/host/fortran/operator/diffusion.py b/hysop/backend/host/fortran/operator/diffusion.py index 2dea7de14..7d7e8b474 100644 --- a/hysop/backend/host/fortran/operator/diffusion.py +++ b/hysop/backend/host/fortran/operator/diffusion.py @@ -1,20 +1,20 @@ - from hysop.backend.host.fortran.operator.fortran_fftw import FortranFFTWOperator, fftw2py from hysop.tools.types import check_instance, InstanceOf from hysop.tools.decorators import debug from hysop.tools.numpywrappers import npw from hysop.fields.continuous_field import Field from hysop.topology.cartesian_descriptor import CartesianTopologyDescriptors +from hysop.parameters.scalar_parameter import ScalarParameter from hysop.core.graph.graph import op_apply class DiffusionFFTW(FortranFFTWOperator): __default_method = {} __available_methods = {} - - def __init__(self, input_field, output_field, viscosity, variables, **kargs): + + def __init__(self, input_field, output_field, viscosity, variables, dt, **kargs): """Diffusion operator using FFTW in Fortran. - + Parameters ---------- input_field : :class:`~hysop.fields.continuous_field.Field @@ -22,9 +22,11 @@ class DiffusionFFTW(FortranFFTWOperator): variables: dictionary of fields:topology viscosity : double constant viscosity value - kargs : + dt: ScalarParameter + Timestep parameter that will be used for time integration. + kargs : base class parameters. - + Notes: *Equations: dW/dt = K*Laplacian(W) @@ -35,7 +37,8 @@ class DiffusionFFTW(FortranFFTWOperator): check_instance(input_field, Field) check_instance(output_field, Field) check_instance(variables, dict, keys=Field, values=CartesianTopologyDescriptors) - + check_instance(dt, ScalarParameter) + assert variables[input_field] == variables[output_field], \ 'input and output topology mismatch' assert input_field.domain is output_field.domain,\ @@ -43,13 +46,16 @@ class DiffusionFFTW(FortranFFTWOperator): input_fields = { input_field: variables[input_field] } output_fields = { output_field: variables[output_field] } + input_params = {dt.name: dt} super(DiffusionFFTW,self).__init__(input_fields=input_fields, output_fields=output_fields, - **kargs) - + input_params=input_params, + **kargs) + self.input_field = input_field self.output_field = output_field self.viscosity = viscosity - + self.dt = dt + def initialize(self, **kwds): super(DiffusionFFTW,self).initialize(**kwds) @@ -59,9 +65,9 @@ class DiffusionFFTW(FortranFFTWOperator): elif (dim==3): self._solve = self._solve_3d else: - raise AttributeError(dim + "D case not yet implemented.") + raise AttributeError(str(dim) + "D case not yet implemented.") + - @debug def discretize(self): if self.discretized: @@ -71,22 +77,20 @@ class DiffusionFFTW(FortranFFTWOperator): self.dout = self.output_field.discrete_fields[self.topology] @op_apply - def apply(self, simulation=None, **kargs): - super(DiffusionFFTW,self).apply(simulation=simulation,**kargs) - self._solve(simulation) - - def _solve_2d(self, simulation): + def apply(self, **kargs): + super(DiffusionFFTW,self).apply(**kargs) + self._solve(self.dt()) + + def _solve_2d(self, dt): """ Solve 2D diffusion problem """ - dt = simulation.time_step ghosts = self.topology.ghosts self.dout.data =\ fftw2py.solve_diffusion_2d(self.viscosity * dt, self.din.data[0], ghosts) - - def _solve_3d(self,simulation): + + def _solve_3d(self, dt): """ Solve 3D diffusion problem """ - dt = simulation.time_step ghosts = self.topology.ghosts self.dout.data = \ fftw2py.solve_diffusion_3d(self.viscosity * dt, @@ -94,12 +98,10 @@ class DiffusionFFTW(FortranFFTWOperator): self.din.data[1], self.din.data[2], ghosts) - + def available_methods(self): return self.__available_methods def default_method(self): return self.__default_method def handle_method(self, method): pass - - diff --git a/hysop/backend/host/fortran/operator/fortran_fftw.py b/hysop/backend/host/fortran/operator/fortran_fftw.py index a551c5879..f1a730cac 100644 --- a/hysop/backend/host/fortran/operator/fortran_fftw.py +++ b/hysop/backend/host/fortran/operator/fortran_fftw.py @@ -1,4 +1,3 @@ - import hysop try: @@ -21,9 +20,9 @@ class FortranFFTWOperator(ComputationalGraphOperator): @debug def __init__(self, input_fields, output_fields, **kwds): - super(FortranFFTWOperator, self).__init__(input_fields=input_fields, + super(FortranFFTWOperator, self).__init__(input_fields=input_fields, output_fields=output_fields, **kwds) - + check_instance(input_fields, dict, keys=Field, values=CartesianTopologyDescriptors) check_instance(output_fields, dict, keys=Field, values=CartesianTopologyDescriptors) @@ -34,14 +33,14 @@ class FortranFFTWOperator(ComputationalGraphOperator): msg+='\nHYSOP_REAL is {} but field {} has dtype {}.' msg=msg.format(HYSOP_REAL.__name__, f.name, f.dtype) raise RuntimeError(msg) - + domain = self.input_fields.keys()[0].domain self.dim = domain.dim self.domain = domain - + def handle_topologies(self, input_topology_states, output_topology_states): super(FortranFFTWOperator,self).handle_topologies(input_topology_states, output_topology_states) - + topology = self.input_fields.values()[0].topology domain = self.domain for (field,topoview) in self.input_fields.iteritems(): @@ -51,11 +50,12 @@ class FortranFFTWOperator(ComputationalGraphOperator): assert topoview.topology is topology, 'topology mismatch' assert field.domain is domain, 'domain mismatch' self.topology = topology - + @debug def get_field_requirements(self): requirements = super(FortranFFTWOperator, self).get_field_requirements() - + dim = self.domain.dim + # set can_split to True in all directions except the contiguous one # for inputs and outputs for is_input, (field, td, req) in requirements.iter_requirements(): @@ -63,30 +63,32 @@ class FortranFFTWOperator(ComputationalGraphOperator): can_split[:-1] = False can_split[-1] = True req.can_split = can_split + req.min_ghosts = (0, ) * dim + req.max_ghosts = (0, ) * dim return requirements - + @debug def discretize(self): if self.discretized: return super(FortranFFTWOperator,self).discretize() self._fftw_discretize() - + @debug def get_work_properties(self): return super(FortranFFTWOperator,self).get_work_properties() - + @debug def setup(self, work=None): super(FortranFFTWOperator,self).setup(work=work) - + @debug def finalize(self, clean_fftw_solver=False, **kwds): super(FortranFFTWOperator,self).finalize(**kwds) if clean_fftw_solver: fftw2py.clean_fftw_solver(self.dim) - + def _fftw_discretize(self): """ fftw specific way to discretize variables for a given @@ -94,12 +96,12 @@ class FortranFFTWOperator(ComputationalGraphOperator): It is assumed that in fft case, only one topology must be used for all variables of all fortran fftw operators. """ - + self._set_domain_and_tasks() topo = self.topology comm = self.mpi_params.comm size = self.mpi_params.size - + msg = 'input topology is not compliant with fftw.' assert topo.cart_dim == 1, msg diff --git a/hysop/backend/host/host_array.py b/hysop/backend/host/host_array.py index d333f137e..bd2b2370b 100644 --- a/hysop/backend/host/host_array.py +++ b/hysop/backend/host/host_array.py @@ -1,4 +1,3 @@ - from hysop.deps import np from hysop.core.arrays import MemoryType, MemoryOrdering from hysop.core.arrays import default_order @@ -8,29 +7,29 @@ from hysop.backend.host.host_array_backend import HostArrayBackend class HostArray(Array): """ Host memory array wrapper. - An HostArray is a numpy.ndarray work-alike that stores its data and performs + An HostArray is a numpy.ndarray work-alike that stores its data and performs its computations on CPU with numpy. """ def __init__(self, handle, backend, **kwds): """ Build an HostArray instance. - + Parameters ---------- handle: numpy.ndarray implementation of this array backend: HostArrayBackend backend used to build this handle - kwds: + kwds: arguments for base classes. Notes ----- This should never be called directly by the user. - Arrays should be constructed using array backend facilities, like zeros or empty. + Arrays should be constructed using array backend facilities, like zeros or empty. The parameters given here refer to a low-level method for instantiating an array. """ - + if not isinstance(handle, np.ndarray): msg='Handle should be a np.ndarray but got a {}.' msg=msg.format(handle.__class__.__name__) @@ -39,14 +38,14 @@ class HostArray(Array): msg='Backend should be a HostArrayBackend but got a {}.' msg=msg.format(handle.__class__.__name__) raise ValueError(msg) - + # if handle.dtype in [np.bool]: - # msg='{} unsupported yet, use HYSOP_BOOL={} instead.'.format(handle.dtype, + # msg='{} unsupported yet, use HYSOP_BOOL={} instead.'.format(handle.dtype, # HYSOP_BOOL) # raise TypeError(msg) - + super(HostArray,self).__init__(handle=handle, backend=backend, **kwds) - + # array interface self.__array_interface__ = handle.__array_interface__ @@ -56,14 +55,14 @@ class HostArray(Array): """ from hysop.symbolic.array import HostSymbolicArray return HostSymbolicArray(memory_object=self, name=name, **kwds) - + def as_symbolic_buffer(self, name, **kwds): """ Return a symbolic buffer variable that contain a reference to this array. """ from hysop.symbolic.array import HostSymbolicBuffer return HostSymbolicBuffer(memory_object=self, name=name, **kwds) - + def get_ndim(self): return self.handle.ndim def get_shape(self): @@ -98,8 +97,8 @@ class HostArray(Array): return self.handle.nbytes def get_int_ptr(self): return int(self.handle.ctypes.data) - - # array properties + + # array properties ndim = property(get_ndim) shape = property(get_shape) offset = property(get_offset) @@ -116,7 +115,7 @@ class HostArray(Array): itemsize = property(get_itemsize) nbytes = property(get_nbytes) int_ptr = property(get_int_ptr) - + def get(self, handle=False): """ Returns equivalent array on host device, ie. self. @@ -139,12 +138,12 @@ class HostArray(Array): """ self.handle.flags.writeable = True return self - + def tofile(self, fid, sep='', format='%s'): """ Write array to a file as text or binary (default). - This is a convenience function for quick storage of array data. + This is a convenience function for quick storage of array data. Information on endianness and precision is lost. """ self.handle.tofile(fid=fid,sep=sep,format=format) @@ -171,12 +170,12 @@ class HostArray(Array): """ handle = self.handle.take(indices=indices, axis=axis, out=out, mode=mode) return self.wrap(handle) - def astype(self, dtype, order=MemoryOrdering.SAME_ORDER, + def astype(self, dtype, order=MemoryOrdering.SAME_ORDER, casting='unsafe', subok=True, copy=True): """ Copy of the array, cast to a specified type. """ - handle = self.handle.astype(dtype=dtype, order=order, casting=casting, + handle = self.handle.astype(dtype=dtype, order=order, casting=casting, subok=subok, copy=copy) return self.wrap(handle) def view(self, dtype): @@ -185,3 +184,9 @@ class HostArray(Array): """ handle = self.handle.view(dtype=dtype) return self.wrap(handle) + + def nanmin(self, axis=None, out=None): + return self.backend.nanmin(a=self, axis=None, out=None) + + def nanmax(self, axis=None, out=None): + return self.backend.nanmax(a=self, axis=None, out=None) diff --git a/hysop/core/graph/computational_node_frontend.py b/hysop/core/graph/computational_node_frontend.py index 1b8df9cac..bfb7d5de9 100644 --- a/hysop/core/graph/computational_node_frontend.py +++ b/hysop/core/graph/computational_node_frontend.py @@ -1,4 +1,3 @@ - from hysop.constants import Implementation, Backend, implementation_to_backend from hysop.tools.decorators import debug from hysop.tools.types import check_instance, first_not_None @@ -23,8 +22,8 @@ class ComputationalGraphNodeFrontend(ComputationalGraphNodeGenerator): base_kwds: dict, optional, defaults to None Base class keywords arguments. If None, an empty dict will be passed. - impl_kwds: - Keywords arguments that will be passed towards implementation implemention + impl_kwds: + Keywords arguments that will be passed towards implementation implemention __init__. Attributes @@ -35,19 +34,19 @@ class ComputationalGraphNodeFrontend(ComputationalGraphNodeGenerator): the backend corresponding to implementation impl: ComputationalGraphNodeGenerator or ComputationalGraphNode the implementation class - impl_kwds: - Keywords arguments that will be passed towards implementation implemention + impl_kwds: + Keywords arguments that will be passed towards implementation implemention impl.__init__ during a call to _generate. """ - + base_kwds = first_not_None(base_kwds, {}) super(ComputationalGraphNodeFrontend,self).__init__(**base_kwds) check_instance(implementation, Implementation, allow_none=True) - + default_implementation = self.__class__.default_implementation() - available_implementations = self.__class__.available_implementations() - + available_implementations = self.__class__.available_implementations() + if not isinstance(default_implementation, Implementation): msg='default_implementation is not a instance of hysop.backend.Implementation.' raise TypeError(msg) @@ -60,7 +59,7 @@ class ComputationalGraphNodeFrontend(ComputationalGraphNodeGenerator): if default_implementation not in available_implementations: msg='default_implementation is not contained in available_implementations.' raise ValueError(msg) - + if implementation is None: implementation = default_implementation elif implementation not in available_implementations: @@ -72,7 +71,7 @@ class ComputationalGraphNodeFrontend(ComputationalGraphNodeGenerator): msg = 'Specified implementation \'{}\' is not an available implementation, ' msg+= 'available implementations are:\n {}' - msg=msg.format(implementation, '\n '.join(implementations)) + msg=msg.format(implementation, '\n '.join(simplementations)) raise ValueError(msg) self.implementation = implementation @@ -82,13 +81,13 @@ class ComputationalGraphNodeFrontend(ComputationalGraphNodeGenerator): self._generated = False self._input_fields_to_dump = [] self._output_fields_to_dump = [] - + @debug def _generate(self): try: op = self.impl(**self.impl_kwds) except: - sargs = ['*{} = {}'.format(k,v.__class__) + sargs = ['*{} = {}'.format(k,v.__class__) for (k,v) in self.impl_kwds.iteritems()] msg = 'FATAL ERROR during {}.generate():\n' msg += ' => failed to call {}.__init__()\n with the following keywords:' @@ -96,7 +95,7 @@ class ComputationalGraphNodeFrontend(ComputationalGraphNodeGenerator): msg = msg.format(self.__class__, self.impl) print '\n{}\n'.format(msg) raise - + for kwds in self._input_fields_to_dump: op.dump_inputs(**kwds) for kwds in self._output_fields_to_dump: @@ -104,13 +103,13 @@ class ComputationalGraphNodeFrontend(ComputationalGraphNodeGenerator): self._generated = True return (op,) - + @classmethod @not_implemented def implementations(cls): """ Should return all implementations as a dictionnary. - Keys are Implementation instances and values are either ComputationalGraphNode + Keys are Implementation instances and values are either ComputationalGraphNode or ComputationalGraphNodeGenerator. """ pass @@ -122,7 +121,7 @@ class ComputationalGraphNodeFrontend(ComputationalGraphNodeGenerator): Return the default Implementation, should be compatible with available_implementations. """ pass - + @classmethod def available_implementations(cls): """ @@ -134,7 +133,7 @@ class ComputationalGraphNodeFrontend(ComputationalGraphNodeGenerator): """ Tell the generated operator to dump some of its inputs before apply is called. - + Target folder, file, dump frequency and other io pameters are passed trough io_params or as keywords. @@ -144,12 +143,12 @@ class ComputationalGraphNodeFrontend(ComputationalGraphNodeGenerator): msg=msg.format(self.name) assert (self._generated is False), msg self._input_fields_to_dump.append(kwds) - + def dump_outputs(self, **kwds): """e Tell the generated operator to dump some of its outputs after apply is called. - + Target folder, file, dump frequency and other io pameters are passed trough instance io_params of this parameter or as keywords. diff --git a/hysop/operator/diffusion.py b/hysop/operator/diffusion.py index c594ed67d..dabce77bc 100644 --- a/hysop/operator/diffusion.py +++ b/hysop/operator/diffusion.py @@ -1,4 +1,3 @@ - """ @file advection_dir.py Directional advection operator generator. @@ -9,6 +8,7 @@ from hysop.tools.enum import EnumFactory from hysop.tools.decorators import debug from hysop.fields.continuous_field import Field from hysop.topology.cartesian_descriptor import CartesianTopologyDescriptors +from hysop.parameters.scalar_parameter import ScalarParameter from hysop.core.graph.computational_node_frontend import ComputationalGraphNodeFrontend from hysop.backend.host.fortran.operator.diffusion import DiffusionFFTW @@ -18,7 +18,7 @@ class Diffusion(ComputationalGraphNodeFrontend): Interface the poisson solver. Available implementations are: FFTW """ - + __implementations = { Implementation.FORTRAN: DiffusionFFTW } @@ -26,18 +26,18 @@ class Diffusion(ComputationalGraphNodeFrontend): @classmethod def implementations(cls): return cls.__implementations - + @classmethod def default_implementation(cls): return Implementation.FORTRAN - + @debug - def __init__(self, input_field, variables, viscosity, + def __init__(self, input_field, variables, viscosity, dt, output_field=None, implementation=None, base_kwds=None, **kwds): """ Initialize a Poisson operator frontend. Solves dF/dt = viscosity * Laplacian(F) - + Parameters ---------- input_field: field @@ -49,6 +49,8 @@ class Diffusion(ComputationalGraphNodeFrontend): dictionary of fields as keys and topologies as values. viscosity: scalar or Field Warning: some implementations may only offer scalar viscosity. + dt: ScalarParameter + Timestep parameter that will be used for time integration. implementation: Implementation, optional, defaults to None target implementation, should be contained in available_implementations(). If None, implementation will be set to default_implementation(). @@ -56,13 +58,13 @@ class Diffusion(ComputationalGraphNodeFrontend): Base class keywords arguments. If None, an empty dict will be passed. kwds: - Keywords arguments that will be passed towards implementation + Keywords arguments that will be passed towards implementation poisson operator __init__. Notes ----- - A diffusion operator implementation should at least support - the following __init__ attributes: + A diffusion operator implementation should at least support + the following __init__ attributes: input_field, output_field, variables, viscosity """ output_field = output_field or input_field @@ -72,7 +74,9 @@ class Diffusion(ComputationalGraphNodeFrontend): check_instance(output_field, Field) check_instance(variables, dict, keys=Field, values=CartesianTopologyDescriptors) check_instance(base_kwds, dict, keys=str) + check_instance(dt, ScalarParameter) super(Diffusion, self).__init__(input_field=input_field, output_field=output_field, - variables=variables, viscosity=viscosity, implementation=implementation, base_kwds=base_kwds, - **kwds) + variables=variables, viscosity=viscosity, dt=dt, + implementation=implementation, base_kwds=base_kwds, + **kwds) diff --git a/hysop/operator/tests/test_diffusion.py b/hysop/operator/tests/test_diffusion.py new file mode 100644 index 000000000..50166e67b --- /dev/null +++ b/hysop/operator/tests/test_diffusion.py @@ -0,0 +1,277 @@ +from hysop.deps import sys +from hysop.tools.numpywrappers import npw +import numpy as np +from hysop.testsenv import __ENABLE_LONG_TESTS__ +from hysop.testsenv import iter_clenv +from hysop.parameters.scalar_parameter import ScalarParameter +from hysop.tools.contexts import printoptions +from hysop.tools.types import first_not_None, to_tuple +from hysop.tools.numerics import is_integer, is_fp +from hysop.tools.io_utils import IO +from hysop.tools.sympy_utils import enable_pretty_printing +from hysop.operator.directional.diffusion_dir import DirectionalDiffusion +from hysop.operator.diffusion import Diffusion + +from hysop import Field, Box, Simulation +from hysop.methods import Remesh, TimeIntegrator +from hysop.constants import Implementation, DirectionLabels, ComputeGranularity, SpaceDiscretization +from hysop.numerics.splitting.strang import StrangSplitting, StrangOrder +from hysop.numerics.remesh.remesh import RemeshKernel +from hysop.numerics.stencil.stencil_generator import StencilGenerator, CenteredStencilGenerator, MPQ +from hysop.numerics.odesolvers.runge_kutta import TimeIntegrator, Euler, RK2, RK3, RK4, RK4_38 + +class TestDirectionalDiffusionOperator(object): + + @classmethod + def setup_class(cls, + enable_extra_tests=__ENABLE_LONG_TESTS__, + enable_debug_mode=False): + + IO.set_default_path('/tmp/hysop_tests/test_directional_diffusion') + + if enable_debug_mode: + cls.size_min = 8 + cls.size_max = 9 + else: + cls.size_min = 11 + cls.size_max = 23 + + cls.enable_extra_tests = enable_extra_tests + cls.enable_debug_mode = enable_debug_mode + + @classmethod + def teardown_class(cls): + pass + + def _test(self, dim, is_inplace, + size_min=None, size_max=None): + assert dim > 0 + + # periodic boundaries removes one computational point + # so we add one here. + size_min = first_not_None(size_min, self.size_min) + 1 + size_max = first_not_None(size_max, self.size_max) + 1 + + shape = tuple(npw.random.randint(low=size_min, high=size_max, size=dim).tolist()) + shape = (33,33,33) + shape = (65,65,65) + + if self.enable_extra_tests: + flt_types = (npw.float32, npw.float64) + time_integrators = (Euler, RK2,) + orders = (2, 4, 6) + else: + flt_types = (npw.float64,) + time_integrators = (RK2, ) + orders = (4,) + + domain = Box(length=(2*npw.pi,)*dim) + for dtype in flt_types: + Fin = Field(domain=domain, name='Fin', dtype=dtype, + nb_components=3, register_object=False) + Fout = Field(domain=domain, name='Fout', dtype=dtype, + nb_components=3, register_object=False) + coeffs = npw.random.rand(Fin.nb_components, dim).astype(dtype) + for order in orders: + for time_integrator in time_integrators: + print + self._test_one(time_integrator=time_integrator, order=order, + shape=shape, dim=dim, dtype=dtype, + is_inplace=is_inplace, domain=domain, + Fin=Fin, Fout=Fout, coeffs=coeffs) + + @staticmethod + def __random_init(data, coords, dtype): + if is_integer(dtype): + for d in data: + d[...] = npw.random.random_integers(low=0, high=255, size=shape) + elif is_fp(dtype): + for d in data: + d[...] = npw.random.random(size=d.shape) + else: + msg = 'Unknown dtype {}.'.format(dtype) + raise NotImplementedError(msg) + + @staticmethod + def __scalar_init(data, coords, dtype): + if is_fp(dtype): + for (i,d) in enumerate(data): + d[...] = 1 + for xi in coords: + d[...] *= npw.cos(xi*(i+1)) + else: + msg = 'Unknown dtype {}.'.format(dtype) + raise NotImplementedError(msg) + + def _test_one(self, time_integrator, order, shape, dim, + dtype, is_inplace, domain, Fin, Fout, coeffs): + + print '\nTesting {}D DirectionalDiffusion_{}_FCD{}: inplace={} dtype={} shape={}'.format( + dim, time_integrator.name(), order, + is_inplace, dtype.__name__, shape), + + dt = ScalarParameter('dt0', initial_value=0.1, const=True, + dtype=dtype) + + fin = Fin + if is_inplace: + fout = Fin + variables = { Fin : shape } + else: + fout = Fout + variables = { Fin : shape, Fout: shape } + msg='Out of place diffusion has not been implemented yet.' + raise NotImplementedError(msg) + + implementations = (Implementation.OPENCL, Implementation.FORTRAN) + ref_impl = Implementation.OPENCL + + method = {TimeIntegrator: time_integrator, SpaceDiscretization: order} + + def iter_impl(impl): + base_kwds = dict(fields=fin, coeffs=coeffs, dt=dt, + variables=variables, implementation=impl, laplacian_formulation=False, + method=method, name='test_diffusion_{}'.format(str(impl).lower())) + if (impl is Implementation.OPENCL): + for cl_env in iter_clenv(): + msg='platform {}, device {}'.format(cl_env.platform.name.strip(), + cl_env.device.name.strip()) + da = DirectionalDiffusion(**base_kwds) + split = StrangSplitting(splitting_dim=dim, + extra_kwds=dict(cl_env=cl_env), + order=StrangOrder.STRANG_SECOND_ORDER) + split.push_operators(da) + yield msg, split + elif (impl is Implementation.FORTRAN): + diff = Diffusion(input_field=fin, viscosity=coeffs, dt=dt, + variables=variables, implementation=impl, + method=method, name='test_diffusion_{}'.format(str(impl).lower())) + yield "", diff.to_graph() + else: + msg='Unknown implementation to test {}.'.format(impl) + raise NotImplementedError(msg) + + # Compare to other implementations + reference_fields = {} + outputs = {} + + for impl in implementations: + print '\n >Implementation {}:'.format(impl), + for sop,op in iter_impl(impl): + print '\n *{}: '.format(sop), + if (not is_inplace): + op.push_copy(dst=fin, src=fout) + op.build() + + dfin = op.input_discrete_fields[fin] + dfout = op.output_discrete_fields[fout] + + view = dfin.compute_slices + + sys.stdout.write('.') + sys.stdout.flush() + try: + dfout.initialize(self.__random_init, dtype=dfout.dtype) + dfin.initialize(self.__scalar_init, dtype=dfin.dtype) + S0 = dfin.integrate() + + if not npw.all(npw.isfinite(S0)): + msg='Integral is not finite. Got {}.'.format(S0) + raise RuntimeError(msg) + + _input = tuple(dfin[i].get().handle.copy() + for i in xrange(dfin.nb_components)) + + op.apply() + if impl is ref_impl: + for _ in range(100): + op.apply() + + outputs[impl] = tuple(dfout[i].get().handle.copy()[view] + for i in xrange(dfout.nb_components)) + if ref_impl in outputs.keys() and not impl is ref_impl: + reference = outputs[ref_impl] + output = outputs[impl] + for i in xrange(dfout.nb_components): + if npw.may_share_memory(reference[i], output[i]): + msg='Output and reference arrays may share the same memory.' + raise RuntimeError(msg) + if (reference[i].dtype != output[i].dtype): + msg='Output dtype {} differs from the reference one {}.' + msg=msg.format(output[i].dtype, reference[i].dtype) + raise RuntimeError(msg) + if (reference[i].shape != output[i].shape): + msg='Output shape {} differs from the reference one {}.' + msg=msg.format(output[i].shape, reference[i].shape) + raise RuntimeError(msg) + mask = npw.isfinite(output[i]) + if not mask.all(): + msg='\nFATAL ERROR: Output is not finite on axis {}.\n'.format(i) + print msg + npw.fancy_print(output[i], replace_values={(lambda a: npw.isfinite(a)): '.'}) + raise RuntimeError(msg) + di = npw.abs(reference[i] - output[i]) + max_di = npw.max(di) + neps = 1000 + max_tol = neps*npw.finfo(dfout.dtype).eps + if (max_di>max_tol): + print + print 'SCALAR INPUT' + print _input[i] + print 'SCALAR REFERENCE' + print reference[i] + print 'SCALAR OUTPUT' + print output[i] + print 'ABS(REF - OUT)' + npw.fancy_print(di, replace_values={(lambda a: a<max_tol): '.'}) + print + print reference[i].shape + msg='Output did not match reference output for component {}'.format(i) + msg+='\n > max computed distance was {}.'.format(max_di) + msg+='\n > max tolerence was set to {} ({} eps).'.format(max_tol, neps) + raise RuntimeError(msg) + + S1 = dfout.integrate() + if not npw.all(npw.isfinite(S1)): + msg='Integral is not finite. Got {}.'.format(S1) + raise RuntimeError(msg) + if (npw.abs(S0-S1)>max_tol).any(): + msg='Scalar was not conserved expected {} but got {}.' + msg=msg.format(to_tuple(S0, cast=float), + to_tuple(S1, cast=float)) + raise RuntimeError(msg) + except: + sys.stdout.write('\bx\n\n') + sys.stdout.flush() + raise + + + def test_diffusion_1D_inplace(self): + self._test(dim=1, is_inplace=True) + def test_diffusion_2D_inplace(self): + self._test(dim=2, is_inplace=True) + def test_diffusion_3D_inplace(self): + self._test(dim=3, is_inplace=True) + + def perform_tests(self): + #self.test_diffusion_1D_inplace() + #self.test_diffusion_2D_inplace() + self.test_diffusion_3D_inplace() + + print + + +if __name__ == '__main__': + TestDirectionalDiffusionOperator.setup_class(enable_extra_tests=False, + enable_debug_mode=True) + + test = TestDirectionalDiffusionOperator() + + enable_pretty_printing() + + with printoptions(threshold=10000, linewidth=240, + nanstr='nan', infstr='inf', + formatter={'float': lambda x: '{:>6.2f}'.format(x)}): + test.perform_tests() + + TestDirectionalDiffusionOperator.teardown_class() diff --git a/hysop/operator/tests/test_directional_diffusion.py b/hysop/operator/tests/test_directional_diffusion.py index 04c40f0dd..02b0ff34a 100644 --- a/hysop/operator/tests/test_directional_diffusion.py +++ b/hysop/operator/tests/test_directional_diffusion.py @@ -1,4 +1,3 @@ - from hysop.deps import sys from hysop.tools.numpywrappers import npw from hysop.testsenv import __ENABLE_LONG_TESTS__ @@ -22,19 +21,19 @@ from hysop.numerics.odesolvers.runge_kutta import TimeIntegrator, Euler, RK2, RK class TestDirectionalDiffusionOperator(object): @classmethod - def setup_class(cls, + def setup_class(cls, enable_extra_tests=__ENABLE_LONG_TESTS__, enable_debug_mode=False): IO.set_default_path('/tmp/hysop_tests/test_directional_diffusion') - + if enable_debug_mode: cls.size_min = 8 cls.size_max = 9 else: cls.size_min = 11 cls.size_max = 23 - + cls.enable_extra_tests = enable_extra_tests cls.enable_debug_mode = enable_debug_mode @@ -45,12 +44,12 @@ class TestDirectionalDiffusionOperator(object): def _test(self, dim, is_inplace, size_min=None, size_max=None): assert dim > 0 - + # periodic boundaries removes one computational point # so we add one here. size_min = first_not_None(size_min, self.size_min) + 1 size_max = first_not_None(size_max, self.size_max) + 1 - + shape = tuple(npw.random.randint(low=size_min, high=size_max, size=dim).tolist()) if self.enable_extra_tests: @@ -61,20 +60,20 @@ class TestDirectionalDiffusionOperator(object): flt_types = (npw.float32,) time_integrators = (Euler, RK2) orders = (4,) - + domain = Box(length=(2*npw.pi,)*dim) for dtype in flt_types: - Fin = Field(domain=domain, name='Fin', dtype=dtype, + Fin = Field(domain=domain, name='Fin', dtype=dtype, nb_components=3, register_object=False) - Fout = Field(domain=domain, name='Fout', dtype=dtype, + Fout = Field(domain=domain, name='Fout', dtype=dtype, nb_components=3, register_object=False) coeffs = npw.random.rand(Fin.nb_components, dim).astype(dtype) for order in orders: for time_integrator in time_integrators: print - self._test_one(time_integrator=time_integrator, order=order, + self._test_one(time_integrator=time_integrator, order=order, shape=shape, dim=dim, dtype=dtype, - is_inplace=is_inplace, domain=domain, + is_inplace=is_inplace, domain=domain, Fin=Fin, Fout=Fout, coeffs=coeffs) @staticmethod @@ -82,14 +81,14 @@ class TestDirectionalDiffusionOperator(object): shape = data[0].shape if is_integer(dtype): for d in data: - d[...] = npw.random.random_integers(low=0, high=255, size=shape) + d[...] = npw.random.random_integers(low=0, high=255, size=shape) elif is_fp(dtype): for d in data: - d[...] = npw.random.random(size=d.shape) + d[...] = npw.random.random(size=d.shape) else: msg = 'Unknown dtype {}.'.format(dtype) raise NotImplementedError(msg) - + @staticmethod def __scalar_init(data, coords, dtype): if is_fp(dtype): @@ -120,11 +119,11 @@ class TestDirectionalDiffusionOperator(object): variables = { Fin : shape, Fout: shape } msg='Out of place diffusion has not been implemented yet.' raise NotImplementedError(msg) - + implementations = DirectionalDiffusion.implementations().keys() method = {TimeIntegrator: time_integrator, SpaceDiscretization: order} - + def iter_impl(impl): base_kwds = dict(fields=fin, coeffs=coeffs, dt=dt, variables=variables, implementation=impl, laplacian_formulation=False, @@ -132,16 +131,16 @@ class TestDirectionalDiffusionOperator(object): da = DirectionalDiffusion(**base_kwds) if (impl is Implementation.OPENCL): for cl_env in iter_clenv(): - msg='platform {}, device {}'.format(cl_env.platform.name.strip(), + msg='platform {}, device {}'.format(cl_env.platform.name.strip(), cl_env.device.name.strip()) - split = StrangSplitting(splitting_dim=dim, + split = StrangSplitting(splitting_dim=dim, extra_kwds=dict(cl_env=cl_env), order=StrangOrder.STRANG_SECOND_ORDER) yield msg, da, split else: msg='Unknown implementation to test {}.'.format(impl) raise NotImplementedError(msg) - + # Compare to other implementations reference_fields = {} @@ -153,33 +152,33 @@ class TestDirectionalDiffusionOperator(object): if (not is_inplace): split.push_copy(dst=fin, src=fout) split.build() - + dfin = split.input_discrete_fields[fin] dfout = split.output_discrete_fields[fout] - + view = dfin.compute_slices reference = None - + sys.stdout.write('.') sys.stdout.flush() try: dfout.initialize(self.__random_init, dtype=dfout.dtype) dfin.initialize(self.__scalar_init, dtype=dfin.dtype) S0 = dfin.integrate() - + if not npw.all(npw.isfinite(S0)): msg='Integral is not finite. Got {}.'.format(S0) raise RuntimeError(msg) - - _input = tuple(dfin[i].get().handle.copy() + + _input = tuple(dfin[i].get().handle.copy() for i in xrange(dfin.nb_components)) if (reference is None): reference = self._compute_reference(fin=dfin, dfin=_input, dt=dt(), dim=dim, time_integrator=time_integrator, order=order, coeffs=coeffs, view=view) split.apply() - + output = tuple(dfout[i].get().handle.copy()[view] for i in xrange(dfout.nb_components)) @@ -220,7 +219,7 @@ class TestDirectionalDiffusionOperator(object): msg+='\n > max computed distance was {}.'.format(max_di) msg+='\n > max tolerence was set to {} ({} eps).'.format(max_tol, neps) raise RuntimeError(msg) - + S1 = dfout.integrate() if not npw.all(npw.isfinite(S1)): msg='Integral is not finite. Got {}.'.format(S1) @@ -234,11 +233,11 @@ class TestDirectionalDiffusionOperator(object): sys.stdout.write('\bx\n\n') sys.stdout.flush() raise - + def _compute_reference(self, fin, dfin, dt, - time_integrator, order, coeffs, dim, + time_integrator, order, coeffs, dim, view): - + dfin = tuple(f.copy() for f in dfin) csg = CenteredStencilGenerator() @@ -249,10 +248,10 @@ class TestDirectionalDiffusionOperator(object): dt_coeffs = (0.5,)*(2*dim) Xin = { 'F{}'.format(i): dfin[i] for i in xrange(len(dfin)) } views = { 'F{}'.format(i): view for i in xrange(len(dfin)) } - + ghost_exchangers = tuple(fin.build_ghost_exchanger(directions=i, data=dfin) for i in xrange(dim)) - + for (j, dt_coeff) in zip(directions, dt_coeffs): ndir = (dim-j-1) def rhs(out, X, **kwds): @@ -261,53 +260,53 @@ class TestDirectionalDiffusionOperator(object): fi = 'F{}'.format(i) Fi_in = X[fi] d2Fi_dxj = out[fi] - d2Fi_dxj[...] = D2(a=Fi_in, out=None, axis=ndir, + d2Fi_dxj[...] = D2(a=Fi_in, out=None, axis=ndir, symbols={D2.dx:fin.space_step[ndir]}) * coeff[i] out = time_integrator(Xin=Xin, RHS=rhs, dt=(dt_coeff*dt)) for i in xrange(len(dfin)): fi = 'F{}'.format(i) dfin[i][...] = out[fi] - ghost_exchangers[ndir].exchange_ghosts() + ghost_exchangers[ndir].exchange_ghosts() out = tuple(f[view] for f in dfin) return out - + def test_diffusion_1D_out_of_place(self): self._test(dim=1, is_inplace=False) def test_diffusion_2D_out_of_place(self): self._test(dim=2, is_inplace=False) def test_diffusion_3D_out_of_place(self): self._test(dim=3, is_inplace=False) - + def test_diffusion_1D_inplace(self): self._test(dim=1, is_inplace=True) def test_diffusion_2D_inplace(self): self._test(dim=2, is_inplace=True) def test_diffusion_3D_inplace(self): self._test(dim=3, is_inplace=True) - + def perform_tests(self): self.test_diffusion_1D_inplace() - # self.test_diffusion_2D_inplace() + self.test_diffusion_2D_inplace() self.test_diffusion_3D_inplace() - + # self.test_diffusion_1D_out_of_place() # self.test_diffusion_2D_out_of_place() # self.test_diffusion_3D_out_of_place() print - - + + if __name__ == '__main__': - TestDirectionalDiffusionOperator.setup_class(enable_extra_tests=False, + TestDirectionalDiffusionOperator.setup_class(enable_extra_tests=False, enable_debug_mode=True) - + test = TestDirectionalDiffusionOperator() enable_pretty_printing() - - with printoptions(threshold=10000, linewidth=240, - nanstr='nan', infstr='inf', + + with printoptions(threshold=10000, linewidth=240, + nanstr='nan', infstr='inf', formatter={'float': lambda x: '{:>6.2f}'.format(x)}): test.perform_tests() diff --git a/hysop/operators.py b/hysop/operators.py index 27efe79d4..6ace01759 100644 --- a/hysop/operators.py +++ b/hysop/operators.py @@ -7,6 +7,7 @@ from hysop.operators import DirectionalAdvection from hysop.operator.poisson import Poisson from hysop.operator.poisson_rotational import PoissonRotational +from hysop.operator.diffusion import Diffusion # FFTW diffusion from hysop.operator.redistribute import Redistribute from hysop.operator.analytic import AnalyticField diff --git a/hysop/parameters/default_parameters.py b/hysop/parameters/default_parameters.py index 88fc81cf2..b6776362a 100644 --- a/hysop/parameters/default_parameters.py +++ b/hysop/parameters/default_parameters.py @@ -4,7 +4,8 @@ from hysop.tools.sympy_utils import greak, Greak, subscripts from hysop.parameters.tensor_parameter import TensorParameter from hysop.parameters.scalar_parameter import ScalarParameter -def TimeParameters(dtype, **kwds): +def TimeParameters(dtype=None, **kwds): + dtype = first_not_None(dtype, HYSOP_REAL) t = ScalarParameter('t', dtype=dtype, **kwds) dt = ScalarParameter('dt', dtype=dtype, **kwds) return (t, dt) @@ -28,9 +29,9 @@ def VolumicIntegrationParameter(name=None, pretty_name=None, field=None, dtype=N name += '_v' pretty_name += u'\u1d65'.encode('utf-8') if (field.nb_components>1): - return TensorParameter(name=name, pretty_name=pretty_name, - shape=(field.nb_components,), + return TensorParameter(name=name, pretty_name=pretty_name, + shape=(field.nb_components,), dtype=dtype, **kwds) else: - return ScalarParameter(name=name, pretty_name=pretty_name, + return ScalarParameter(name=name, pretty_name=pretty_name, dtype=dtype, **kwds) -- GitLab